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Abstract

The subject of this thesis concerns the model order reduction of parameterized non-
Newtonian fluid flows. For the purpose of simulating complex flows, high-performance
computing (HPC) is a widely used predictive tool. However, HPC systems are chal-
lenging to use for real-time interactive scientific computing because of limitations on
simulation time and heavy resource usage. The methods that are frequently used to
accelerate calculations are always founded on the presumptions such as the existence
of low-dimensional representation bases, which result in low-level numerical algorithms.
These machine learning approaches, known as reduced order models (ROM), have
been shown to be reliable and robust. However, due to the "invasive" nature of their
implementation, they continue to have significant downsides.

The main objective of the thesis is to deploy model order reduction (MOR) methods
that are less intrusive to solve complex problems such as parameterized viscoelastic
fluid flows that have significant industrial applications. Traditional MOR methods
restrict the computational performance of such highly nonlinear problems due to their
dependency on the original dimension of the system, so we propose a state-of-the-art
hyper-reduction technique based on a sparse approximation to tackle the evaluation
of nonlinear terms at very reduced complexity and which is also less intrusive. We
also provide an offline stabilization for the constitutive model in the reduced order
model framework that is less expensive to compute online while maintaining the
accuracy of the full order model. Combining the two significantly lowers the CPU
cost as compared to FOM evaluation, which inevitably boosts the MOR performance.
We validate the suggested approach on two flow benchmark problems. In addition,
an adaptive parametric sampling strategy for multi-dimensional parametric PDE
systems is presented in this work which is achieved by leveraging multi-fidelity model
approximation, and further extending to the viscoelastic fluid flow problem. This
technique avoids the need for prerequisite residual-based error estimators.

Towards the end of the thesis, we address another issue that is typically observed for
cases when adaptive finite element meshes are deployed. In such cases, MOR methods
fail to produce a low-dimensional representation since the snapshots are not vectors
of the same length. We, therefore, suggest an alternate method that can generate
reduced basis functions for a database of space-adapted snapshots, and demonstrate
the technique using a numerical example of a diffusion-reaction problem by altering
the reaction coefficient over an extensive range of values.

Keywords: Viscoelastic flows, reduced-order modeling, hyper-reduction, stabiliza-
tion, adaptive parameter sampling, multi-fidelity modeling, space-adapted snapshots.
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Chapter 1

Introduction

Significant enhancements in computer hardware and advances in numerical modeling over
the past few decades have led to a monumental impact on resolving complex physical
and engineering problems, thereby rapidly increasing the growth of industrial projects.
However, many problems in computational mechanics still remain intractable despite
remarkable development in high-performance computing (HPC) and numerical modeling.
One such example is the numerical simulation of particle suspensions in viscoelastic
fluid flows [2–4]. Studies of the rheology of such fluids have seen a significant scientific
contribution given its wide industrial applications ranging from pharmaceutical to drug
delivery in medical science [5], personal care and cosmetics [6], composite manufacturing [7],
food products [8], to name a few. Figure 1.1 shows some regular viscoelastic materials
that combine attributes of both elastic deformation and a dissipative viscous component.
Often, industrial applications require multi-query predictive simulation for both process and
product design, but also for monitoring and control applications. Indeed, the exploration of
the parametric space is a fundamental task in applications like optimization, model-based
control, system identification, uncertainty quantification, and contingency analysis.

Viscous Elastic

Viscoelastic materials

Figure 1.1: Everyday viscoelastic materials can be found on a spectrum, with the majority falling
somewhere between fully viscous and entirely elastic (image source: google).

The computational burden of such complex physics simulations is potentially very
high, which will be discussed shortly, and even the usage of HPC and massively parallel
computing resources might impose severe restrictions on the use of high-fidelity models
in this framework. On the other hand, surrogate modeling has proven to be an effective
approach to alleviating the intrinsic complexity of multi-parametric analysis by providing
quick and inexpensive parametric estimators compared to high fidelity models [9, 10]. In
this scenario, model order reduction (MOR) provides a robust and reliable approach to
building parametric surrogate models from a high-fidelity model by reducing the complexity
of the full order model (FOM) without significantly compromising on its accuracy, thus
potentially bridging the gap between HPC and surrogate modeling.

Particle-laden fluids involve multi-scale level modeling: The microscopic scale modeling

1



is related to the kinematic motion of the individual particles, in the mesoscopic scale a
cluster of particles at a material point is studied, and finally, the macroscopic scale is
related to the forming process and the final part itself [11]. As early as 1922, the motion of
a single ellipsoid particle immersed in an incompressible Newtonian fluid was well-predicted
thanks to Jeffrey [12]. Since then, many theoretical models have been developed to study
dilute and semi-dilute suspensions on Newtonian fluid, a survey of which can be found
in [13]. One can also find in the literature on direct numerical simulation (DNS) to study
the particle kinematics [14–19]. However, due to the continuous evolution of the particle
position and orientation and also due to its particle-particle interactions and interaction
with fluids, DNS is not currently tractable even with the most powerful computing resources.
As it requires full-scale simulation of the flow around the particle at each time step, most
of the research based on DNS remains qualitative and conducted on a small representative
volume as shown in figure 1.2 and far from actual configurations. The bulk properties of the
system are then predicted by some numerical homogenization [20] or volume averaging [21]
up-scaling techniques. In DNS, the hydrodynamic forces and torques on the particles are
not modeled, but determined in the post-processing from the computed motion of the fluid
to calculate the particle trajectories.

MACRO-SCALE

MESO-SCALE

MICRO-SCALE

HOMOGENIZATION

Length
m mm m

Laminate

Part

RVE

Figure 1.2: Homogenization of a fiber reinforced composite material.

This calls for less detailed mesoscopic models such as those of kinetic theory that results
from coarsening of microscopic descriptions [22,23]. It involves a probability distribution
function (PDF), ψ(x,p, t), that allows describing more widely the state of orientation of a
population of particles at a material point since it is not feasible to study the motion of
each particle due to the aforementioned reasons. The PDF presents at a time and position
the probability of finding the particles oriented in the direction p and is governed by the
Fokker-Planck equation,

D

Dt
ψ = − ∂

∂p · (ψṗ), (1.1)

where D/Dt is the material time derivative and ṗ is the time evolution for the particles.
For concentrated suspension where hydrodynamic interactions and contacts take place
between neighboring particles, Folgar and Tucker [24] gave the following expression for ṗ
where,

ṗ = −1
2ω · p + 1

2λ(γ̇ · p− γ̇ : p⊗ p⊗ p)− Dr

ψ

∂ψ

∂p , (1.2)
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where ω and γ̇ are the vorticity and deformation rate tensors respectively, and λ is
related to the aspect ratio of the particle. The last term in the right-hand side of (1.2)
with Dr is a rotary diffusivity term, an addition to the original work of Jeffery [12] that
takes into account the effect of particle interactions.

This mesoscopic approach is a reasonable compromise between the detailed microscale
modeling and the coarser macroscopic approach discussed below. However, the Fokker-
Planck equation (1.1) involves a high dimensional approximation space as it is solved in
both the physical and conformation spaces and in time, therefore suffers from what is known
as the curse of dimensionality and hence, cannot be solved by means of standard mesh-based
approximation techniques. Numerical strategies based on the use of particles have been
extensively developed by many authors [25–27]. Based on the separated representation of
variables within the reduced basis approximations have been presented for directly solving
the Fokker-Planck equation in conformation spaces of high dimension [26]. On the other
hand, there are few works on the solution of the Fokker-Planck equation with standard
discretization techniques that can be referred to in the articles [28–30].

For the efficiency of the computation, orientation tensors [31,32] which resort to closure
approximations have been widely accepted, which enables a compact representation of the
orientation state in the macroscopic scale,

a =
∮

p⊗ pψ(p)dp (1.3)

A =
∮

p⊗ p⊗ p⊗ pψ(p)dp (1.4)

a and A are second and fourth-order orientation tensors, respectively. The equations
governing the time evolution of a are obtained by taking the time derivative of eq. (1.3),
expressing ψ̇ from eq. (1.1) and then integrating by parts. This procedure yields,

ȧ =
∮

(ṗ⊗ p + p⊗ ṗ)ψ(p)dp (1.5)

which leads to,
ȧ = ∇u · a + a · (∇u)T − 2A : ∇u (1.6)

It can be seen that the fourth-order orientation tensor appears in the equation (1.6).
So the evolution of the fourth-order tensor in the Folgar and Tucker equation is a function
of the sixth-order tensor and so forth. Thus, a closure approximation is required where a
low even order particle orientation tensor depends on the tensor of the next higher even
order. Different closure approximations have been proposed in the literature [31, 33, 34]
but often result in inaccuracy and loss of information [35], and hence care must be taken
while working with these models. However, this method delivers a significant decrease in
the necessary computing expenses, which is appreciated in engineering applications.

The vast majority of the work for multi-scale level modeling for orientation prediction
in the literature is based on the Jeffery theory that describes the motion of an ellipsoidal
particle immersed in a Newtonian fluid, and there is no existing close analytical form to
predict ṗ, a general Jeffery counterpart available for suspending fluids of second order at-
least in macroscopic scale taking into account hydrodynamic interactions. The complexity
of particle-filled fluids manifolds when the suspending medium is a viscoelastic fluid,
which is the case often for industrial applications. The rheology of viscoelastic fluids is
complex in nature with the governing equations being strongly coupled, hyperbolic, and
having stability issues, for which additional degrees of freedom are added to an already
high dimensional problem. The fluid displays viscoelastic properties which cause extra
stress tensor, along with shear thinning or thickening behavior, so essentially they are
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constitutively highly nonlinear in a stress-strain relationship. This can further increase the
complexity of multi-scale modeling using DNS.

Few authors have explored the effects of the suspending fluid’s non-Newtonian rheology
on the motion of a single particle under simple shear flow [17, 36–42]. In the late 1970s,
Leal [43] and Brunn [44] derived the equations governing the motion of rods and transversely
isotropic particles respectively that could be viewed as the counterparts of the Jeffery
equation for the second-order viscoelastic fluids in the limit of low Weissenberg numbers.
Domenico et al. [45] have addressed modeling of short fiber suspensions in second-order
fluids at various description scales, from microscopic to macro-scale. Based on Brunn’s
model [44], the authors demonstrated a macroscopic description for viscoelastic fluids,
however, it turns out that there are sixth and eighth-order tensors, for which there isn’t
currently a good closure approximation. Accordingly, the authors proposed a condensed
modeling framework that makes use of an effective velocity gradient that is created by
expanding the Giesekus constitutive equation asymptotically for low Weissenberg numbers.
This effective velocity gradient is then injected into the equation of the ellipsoid motion,
resulting in the extended Jeffery model and its macroscopic equivalent, the Folgar and
Tucker model.

However, it is very important to precisely simulate the rheological characteristics of
such fluid flows in order to forecast an efficient and reliable outcome on an industrial scale.
It is vital to maintain the physics of the issue since more complex fluid dynamics are seen
in viscoelastic suspensions, particularly as the typical characteristic flow rate rises [46].
For a precise result, it is, therefore, necessary to research the effect of high Weissenberg
numbers, focusing on simulating concentrated suspensions in 3D while taking into account
all hydrodynamic forces and accounting for contact interactions between the particles. The
difficulty in obtaining high-order moments of the distribution function in a macroscopic
scale, which necessitates precise closure relations, as well as the enormous computational
cost involved in calculating the forces acting on the particle surface and integrating them
to derive an explicit expression for the particle kinematics on a microscopic scale, make
this problem, particularly challenging. Additionally, second-order conformation tensors
that characterize the orientation of the polymer macromolecules are typically used in
constitutive models to describe the viscoelastic deformation of polymeric fluids [1]. Such
a macromolecule can be idealized by elastic dumbbell models [47], equivalence can be
drawn to the elastic dumbbell models used to describe the ellipsoid particles in viscoelastic
suspensions [44,45].

As a result, in addition to the rigorous, repetitive calculations required by full-scale
simulation over each particle at the microscopic level, particles suspended in viscoelastic
media also suffer from additional, hyperbolic evolution equations of the conformation tensor.
In light of this, we would like to suggest reduced-order modeling for viscoelastic flows
which has received less attention than a problem involving Newtonian fluids [48, 49] for
different ranges of fluid’s relaxation times, while streamlining the computations of nonlinear
terms, so that such surrogate models can significantly aid future research on the study of
DNS of particle kinematics. The fundamental idea of MOR is to tackle the complexity of
multi-parametric problems in two stages. In the first offline phase, training data sets are
generated through the FOM for given sampling points in the parametric space. The model
reduction then is achieved through some dimensionality reduction techniques such as Proper
Orthogonal Decomposition (POD) employed by truncated singular value decomposition
(SVD) or Principal Component Analysis (PCA) which are used to create a low-rank basis
for the solution of the problem [50]. Then, the governing equations are reduced by using
POD-Galerkin (POD-G) projection onto the subspace spanned by the reduced basis. Then,
during the second online phase, the ROM can be solved for previously unseen parameters
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to produce an output of interest. These are generally classified as posteriori methods, On
the other hand, a-priori methods like Proper Generalized Decomposition (PGD) [51,52]
assume a canonical tensor decomposition format for the solution and do not need prior
availability of high fidelity solutions. It aims to directly construct a reduced model without
using the standard solver. In this thesis, we focus on the posteriori methods for performing
model order reduction.

While traditional MOR methods are exceptional in accelerating the computational
speed-up for linear systems, it is not quite that effective in reducing the computational
cost for nonlinear or non-affine parametric dependent systems. The evaluation cost of the
projected nonlinear equation on the low dimensional subspace spanned by the reduced
basis still depends on the original dimension of the system or in other words the ROM is
not fully independent of the true size of the system Therefore, it is necessary to seek a
hyper-reduction approach such that the purpose of the model order reduction is served,
and the overall significant gain in the computational performance is achieved which is the
main goal of MOR. Thus, the first objective of this thesis is met by implementing a stable
hyper-reduction framework in the numerical modeling of viscoelastic flows.

As mentioned previously, industrial applications require multi-query predictive simula-
tion for both process and product design, but also for monitoring and control applications.
The exploration of the parametric space is a fundamental task in such applications [51].
This leads us to the second MOR method bottleneck: the input parameter for which the
snapshots are generated has a significant impact on how accurately ROM replicates the
high-fidelity solver. This suggests that in order to effectively represent the large-scale PDE,
the training set must be sufficiently rich to fully cover key areas of the parametric space.
On the downside, it involves an enormous offline cost. To address this issue, there is already
detailed research in the literature on assessing the accuracy of the ROM, thanks to the
availability of rigorous error estimators that is the driving process for efficient parametric
sampling [10,53–55]. However, the construction of error estimators is not simple, especially
in a complex coupled problem such as viscoelastic fluid flows. Thus, this leads to the
second objective of the thesis which is to propose an original training strategy for a ROM
by overcoming the requirement of a prior error estimator which is stable, robust, and
efficient to overcome build a stable, robust and accurate ROM at a reduced offline cost
while having a no prior error estimator.

Another crucial finding in the numerical simulation of particle suspensions is the dynamic
evolution of the mesh, where the mesh topology changes in response to the locations where
stress is concentrated and moves as a result of continuous particle movement [17, 18]. This
implies that each snapshot would be located in a distinct finite element space. The MOR
approaches are only relevant to static snapshots produced by a single, identical finite
element mesh, which brings us to our third bottleneck. As a result, the thesis’ third and
final goal is to be able to address the problem of creating a POD-ROM for snapshots that
are produced using adaptive finite elements. This is demonstrated in this study using a
numerical example of a diffusion-reaction problem that necessitates the use of an adaptive
mesh discretization due to the presence of abrupt gradients in the boundary layer at higher
values for the reaction coefficients.

The manuscript is organized in the following manner:

1. In chapter 2, a review of some dimensionality reduction methods is presented for
a parametrized PDE problem to introduce notations, followed by a discussion on
techniques for the reduction of non-linear terms.

2. In chapter 3, a Non-Newtonian viscoelastic fluid system is formulated. The discretiza-
tion using the finite elements is outlined, and a reduced-order model framework is
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derived. Different stabilization strategies are proposed for obtaining a stable and
efficient ROM. A hyper reduction technique based on the reduced quadrature rule
is examined for the treatment of the nonlinear terms appearing in the governing
equations. The chapter is concluded with some numerical benchmark problems
resolved with the proposed methodology.

3. In chapter 4, a novel multi-fidelity modeling in conjunction with projection-based
ROM is introduced for the reduction of a multi-dimensional parameterized PDE
system. The chapter is devoted to adhoc sampling of parameter points from a given
discrete training set. The effectiveness of the proposed methodology is demonstrated
and validated on a parametric elliptic PDE problem and extended to the viscoelastic
fluid flow benchmark problem outlined in chapter 3.

4. Chapter 5 is finally dedicated to model reduction for snapshots that lie on different
finite element spaces. The concept from chapter 4 is expanded upon for this issue,
and for the first time, a framework is presented that enables one to quickly sample
the right parametric points from spatially adjusted snapshots without building any
error estimator and easily construct a ROM by simply interpolating from their own
mesh into a fixed reference mesh. Additionally, we present a different approach in
which we create adaptable reduced basis functions as linear combinations of the
chosen adaptive snapshots.
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Chapter 2

Review of dimensionality reduction
techniques

Model order reduction based on projections on low-dimensional spaces (for PDEs) can be
traced back to the late 1960s [56] used for studying coherent structures in turbulent flows
with the assumption of continuous velocity fields, which was then extended by Sirovich for
a discrete database [50]. This has led researchers to apply POD-ROM to a wide range of
physical science problems such as for modeling advection-diffusion equations, Navier–Stokes
equations for CFD applications, to turbulence modeling which can be referred for further
details in the articles [48,49,53,57–59]. Besides physical modeling, POD-ROM has been
extensively used for engineering applications such as for shape optimization, and flow
control problems [60–62].

Among projection-based MOR methods, the most established are Proper Orthogonal
Decomposition (POD) and reduced basis (RB) methods. Other used popular methods
are balanced truncation [63], and Krylov subspace methods [64,65], although it lies out of
the scope of the present manuscript. An excellent survey of projection-based reduction
techniques can be found in [66]. Before proceeding to the discussions on model order
reduction methods, let us first introduce a general idea about the problem definition in
the following section. In order to demonstrate the fundamental concept of reduced order
modeling, we will take into consideration an elliptic parameterized PDE for the implication
that is well discussed in any of the textbooks on model order reduction [10].

2.1 General problem definition

Let Ω be a bounded Lipschitz domain of dimension Rd for d = 1, 2, 3 with Dirichlet
(ΓD) and Neumann (ΓN ) boundary conditions enforced such that ∂Ω = ΓD ∪ ΓN and
ΓD ∩ ΓN = ∅. We also introduce P -dimensional bounded parametric domain D ∈ RP with
P ≥ 1 where it can be any set of input parameters be its physical properties of the system,
source terms, boundary, or initial conditions, the geometry of the computation domain
and so on. Let us introduce the associated Hilbert space,

Vi =
{
v ∈ (H1

0 (Ω))d|v|Γ i
D

= 0
}

i = 1, . . . d

Here, H1
0 (Ω) =

{
w ∈ L2(Ω) | ∇w ∈

(
L2(Ω)

)d} where L2(Ω) is the space of square-
integrable functions over Ω. We equip V with inner product (w, v)V and the induced norm,
∥w∥V =

√
(w,w)V .

The abstract variational formulation in the weak form reads as: for µ ∈ D, find u(µ) ∈ V
such that,
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a(u(µ), v;µ) = f(v;µ) ∀v ∈ V (2.1)

where, a : V ×V ×D → R is a parameterized bilinear form where the bilinearity is with
respect to the first two variables, and f : V × D → R is a parameterized linear form where
the linearity is with respect to the first variable.

To ensure the problem is well-posed, the bilinear form a(·, ·;µ) is continuous and
coercive for every µ ∈ D:

α(µ) = inf
v∈V

a(v, v);µ)
||v||2V

> 0 ∀µ ∈ D

γ(µ) = sup
u∈V

sup
v∈V

a(u, v;µ)
∥u∥V∥v∥V

<∞ ∀µ ∈ D
(2.2)

Under these assumptions and conditions on a and f, there exists a unique solution to the
weak form due to the Lax-Milgram Theorem [67].

However, the work produced in this manuscript is extended to a more relevant class
of problems called saddle point problems, which do not have bilinear forms satisfying the
expression as in (2.2). Let V = (H1

0 (Ω))d and Q = L2(Ω) be two Hilbert spaces along with
their dual V ′, Q′ respectively. The saddle-point problem is to find a pair of fields u in V, p
in Q for µ ∈ D such that, for all v in V and q in Q,

a(u, v;µ) + b(v, p;µ) = f(v;µ) ∀v ∈ V
b(u, q;µ) = g(q;µ) ∀q ∈ Q

(2.3)

where a : V × V → R and b : V ×Q → R are the bilinear forms and f ∈ V ′ and g ∈ Q′

respectively the linear functionals. There exists a unique solution u, p of the saddle-point
problem provided the inf-sup condition on both the bilinear forms a and b are fulfilled over
V and Q given by [68]:

α = inf
u∈V

sup
v∈V

a(u, v)
∥u∥V∥v∥V

≥ α0 > 0 ∀µ ∈ D

β = inf
q∈Q

sup
v∈V

b(v, q)
∥v∥V∥q∥Q

≥ β0 ∀µ ∈ D
(2.4)

This framework is used to formulate a number of problems, including Stokes equations,
high-order PDEs, and optimal control problems, to name a few. The research done for
this manuscript focuses on second-order non-Newtonian fluid flows as mentioned in the
introduction, thus we will be dealing with reduced basis approximation of the parameterized
Stokes equation with a nonlinear constitutive law that is covered in chapter 3 in great
detail.

2.1.1 Discretization space

This section discusses the finite element formulation to the abstract form (2.1). Let us define
a discrete approximation space VN ⊂ V of dimension N . The finite element approximation
uh ∈ VN to the "exact" problem (2.1) can then be expressed as,

a(uh(µ), vh;µ) = f(vh;µ) ∀vh ∈ VN (2.5)

Note that, VN inherits the same inner product and norm from V. Similar coercivity
and continuity conditions as (2.2) are to be fulfilled for well-posedness of the problem in
the discrete from,
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αN (µ) = inf
VN ∈VN

a (vh, vh;µ)
∥vh∥2VN

≥ α(µ) ∀µ ∈ D

γN (µ) = sup
vh∈VN

sup
wh∈VN

|a (vh, wh;µ)|
∥vh∥VN ∥wh∥VN

≥ γ(µ) ∀µ ∈ D.
(2.6)

The FE solution of the field variable ‘u’ can be approximated as:

u ≈ uh(x;µ) =
N∑

i=1
Ni(x)(u(µ))i (2.7)

where, Ni are the shape functions of choice and (u(µ))i represent the scalar values of the
field uh at discretization points xi ∈ Rd, i = 1 . . .N . In practice, these values are stored as
a collection of high-fidelity solutions that we call "snapshots" at distinct parameter values
µ ∈ Ξtrain ⊂ D, of cardinality |Ξtrain| = N . This set of snapshots {uk}Nk=1 are generated
in the offline stage by solving the PDE equation (2.5) using a high fidelity solver for varying
choice of input parameters.

2.1.2 Affine parameter dependence

The affine parameter dependence indicates that an operator can be expressed as the sum
of the products of parameter-dependent functions and parameter-independent operators.
In particular, we say that the parametric bounded bilinear form a : VN × VN ×D → R
and linear form f : VN ×D → R are affine in the parameter if

a(wh, vh;µ) =
Qa∑
q=1

Θq
a(µ)aq(wh, vh)

f(vh;µ) =
Qf∑
q=1

Θq
f (µ)f q(vh)

(2.8)

for some finite Qa and Qf . Here, Θq
a, Θ

q
f : D → R are smooth parameter-dependent

functions, and aq(wh, vh) : VN × VN → R and f q(v) : VN → R, 1 ≤ q ≤ Qa, Qf , are
parameter-independent bounded bilinear and linear forms respectively.

As noted, here N represents the number of spatial grid points used for the discretization
of the system and it can become enormous for a complex physical system. So solving such
a high-fidelity system for any value of µ ∈ D entails severe computational costs, which can
be mitigated by introducing a suitable reduced basis approximation that can represent
such high models with similar accuracy. Thus follows our next discussion on model order
reduction.

2.2 Model order reduction

2.2.1 Main features

The reduced basis approximation recognizes that the solution field u(µ) (of the correspond-
ing elliptic PDE) theoretically belongs to an infinite-dimensional space V, but in fact,
resides on a very low-dimensional smooth manifold M≡ {u(µ) | µ ∈ D} induced by the
parametric dependence. However, the solution manifold M is clearly unavailable and we
can only compute approximations of a discretized counterpart Mh = {uh(µ) : µ ∈ D}. In
the case of a single parametric dimension (P = 1), for instance, Mh can be described as a
one-dimensional filament that winds through VN as illustrated in figure 2.1. All possible
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solutions uh(µ),∀µ ∈ D, lying on this filament, would reside correspondingly on this
manifold Mh and for any new parameter µnew, the solution uh can be approximated as a
linear combination of pre-computed solutions. This observation presents a key opportunity
where we could obtain a significant dimensionality reduction and therefore save considerable
computational efforts.

Figure 2.1: Low-dimensional manifold in which the field variable resides and approximation of
the solution at µnew by the linear combination of the precomputed solutions.

In reduced order modeling, we aim to exploit a low dimensional structure VR ⊂ VN ,
R = dim(VR) by appropriately choosing a set of orthogonal basis functions {ϕ1,ϕ2, . . . ,ϕR}
with R << N that spans the subspace of the manifold Mh and can well represent the
manifold with small error. The associated reduced subspace is then given by,

VR = span{ϕ1,ϕ2, . . . ,ϕR} ⊂ VN

The smaller R, the cheaper the reduced problem to solve. The reduced solution uR ∈ VR

can then be approximated by a linear combination of these basis functions given by:

uR(x;µ) =
R∑

k=1
ϕk(x)bk(µ) (2.9)

whose coefficients bk(µ) are calculated thanks to Galerkin projection onto the reduced basis
(RB) space. Therefore, the reduced basis approximation for eq. (2.5) can be sought as: for
any µ ∈ D,

a
(
uR

j , v;µ
)

= f(v;µ) ∀v ∈ VR (2.10)

for j = 1 . . . N . Recall that, R << N , so to find the RB solution uR we just need to
solve an R×R linear system which is greatly reduced from solving a N ×N system in the
finite element setting. Although, eq. (2.10) is usually a very low dimensional system, it still
involves quantities related to the high-fidelity N -dimensional space. Using these quantities
to assemble the operators for each value of µ leaves the cost of the single evaluation
input-output µ→ uR(µ) too high. The problem is overcome thanks to the assumption of
parameter separability, as discussed in 2.1.2.
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Now, the system (2.10) can be expressed as follows,
Qa∑

q=1
Θq

a(µ)Aq
R

uR(µ) =
Qf∑
q=1

Θq
f (µ)f q

R, (2.11)

where (Aq
R)ik = aq

(
ϕk, ϕi

)
, (f q

R)i = f q
(
ϕi
)
, for 1 ≤ i, k ≤ R. Therefore, the computation

now requires an expensive offline phase, where all the µ-independent structures are computed
and stored once for all, and an extremely efficient online phase whose complexity is
independent of N , to compute for each selected value of µ ∈ D.

In order to derive a ROM for the saddle point problem as expressed in eq. (2.3), we
introduce abstract reduced spaces VR ⊂ V and QR ⊂ Q for the field, u, p respectively. The
index R is related but doesn’t necessarily equate to the dimensions of VR and QR. Thus,
by Galerkin projection, find uR

1 , u
R
2 , . . . u

R
N ∈ VR and pR

1 , p
R
2 , . . . , p

R
N such that,

a(uR
j , v;µ) + b(v, pR

j ;µ) = f(v;µ) ∀v ∈ VR

b(uR
j , q;µ) = g(q;µ) ∀q ∈ QR

(2.12)

for all j = 1 . . . N . The stability of the reduced eq. (2.12) is not guaranteed for all
pairs of VR and QR. It has been extensively discussed in the literature on the construction
of ROMs that satisfy the inf-sup condition for problems like the parametrized Stokes
equation [48,59,69] which is addressed by Galerkin projection of the governing equations
onto a POD space for pressure field and a POD space for the velocity field enriched with
supremizer functions. On the other hand, the pressure term can be removed while still
satisfying the continuity equation by building projection space in the spirit of [70,71] by
ensuring that the resulting velocity POD modes are divergence-free with respect to the
pressure reference space.

Remark: The Galerkin projection can be very inaccurate for non-coercive or ill-conditioned
problems such as convection-diffusion-reaction, wave equations, and heterogeneous prob-
lems. In such cases, stability is achieved by choosing a test space different from the
approximation space. Various approaches for selecting suitable test spaces have been
proposed in the context of reduced basis approximation methods [72–75]. One of the
simplest ways is to use minimal residual methods, where the test space is chosen such that
the dual norm of the residual error ||r

(
uR(µ);µ

)
||VN ′ is minimized. More precisely, the

minres projection is a Petrov-Galerkin projection defined by,

〈
r
(
uR(µ);µ

)
, v
〉

= 0, ∀v ∈ WR (2.13)

The choosing of test space WR can be appropriately referred to in details in [10]. Here
r(·;µ) ∈ VN ′ is the residual of the high-fidelity problem computed on the RB solution
given by,

r(v;µ) = f(v;µ)− a
(
uR(µ), v;µ

)
∀v ∈ WR.

Note that
⟨r(·;µ), v⟩ = r(v;µ)

The following section is dedicated to the construction of reduced basis functions.
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2.2.2 Reduced basis generation via classical POD

The proper orthogonal decomposition, also known as Karhunen–Loève expansion and
principle components analysis computes a set of basis vectors that capture the dominant
structures of the system [50, 56]. Given a set of snapshots S =

[
u1,u2 . . . ,uN

]
∈ RN ×N , a

POD basis of dimension ‘r’ with 1 ≤ r ≤ d = min(N , N) is a set of orthonormal vectors
{ϕj(x)}rj=1 ⊂ RN whose linear span best approximates the concerned manifold of solutions.
The basis set {ϕj(x)}rj=1 is obtained in such a way that it minimizes the following problem
in L2-norm

min
{ϕj}r

j=1

N∑
k=1

∥∥∥∥∥∥uk −
r∑

j=1
⟨uk,ϕj⟩ϕj

∥∥∥∥∥∥
2

L2

(2.14)

with ϕT
i ϕj = δij =

{
1 if i = j
0 otherwise , i, j = 1, . . . , r (2.15)

Here, ⟨·, ·⟩ represents the inner product in L2-norm. It is well known that the solution
to eq. (2.14) can be obtained by SVD. The basis vector is provided by the set of the left
singular vectors of the snapshot matrix S. In particular, suppose that the SVD of S is

S = UΣV⊤ (2.16)

where U =
[
ϕ1, . . . ,ϕr

]
∈ RN ×r and V = [ψ1, . . . ,ψr] ∈ RN×r are orthonormal left, and

right singular vectors of rank r, and Σ = diag (σ1, . . . , σr) ∈ Rr×r.
It is possible to define ‘r’ such that the loss of relative information content of the

parametric system corresponding to the unselected ‘d − r’ modes is less than a certain
tolerance δg using the following relation:

I(r) =

d∑
i=r+1

σ2
i

d∑
i=1

σ2
i

≤ 1− δg (2.17)

Remark: It is essential to have a decay of singular values for an efficient POD. If the
decay of the singular values is very slow which is typical for high-rank PDEs, either the
ROM constructed will be of large dimension or it will contain large approximation errors.
For practical reasons, if N << N , the method of snapshots [50] can be used as a way to
efficiently determine the POD modes for large problems, such as those encountered in CFD
applications. Instead of computing SVD on the snapshot matrix, we compute eigenvector
of the covariance matrix S⊤S ∈ RN×N reduced significantly from order O(N ×N). POD
basis is then calculated by post-multiplying the snapshot matrix with these eigenvectors.
An eigenvalue problem can be written mathematically as,

S⊤Sψj = λjψj , for j = 1, . . . , r (2.18)

where S⊤S is known as the covariance matrix with size N ×N . Note from eq.(2.16),

S⊤S = VΣ2V⊤ ⇔
(
S⊤S

)
V = VΣ2.

Comparing (2.18) with (2.16), we see that the right singular vectors of S are the same
as the eigenvectors of S⊤S, and the singular values of S are the positive square roots of
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the eigenvalues of S⊤S. Now, the jth POD basis function ϕj is determined by,

ϕj = 1√
λj

N∑
k=1

S(·,k)ψ
j
k, 1 ≤ j ≤ r,

The method of snapshots has been effectively used in both continuous and discrete
settings [76, 77] for cases when snapshots lie in different discretization spaces. Some other
state-of-the-art POD methods are discussed below which are useful in many applications
such as pattern recognition [78], image processing, face reconstruction [79], to deriving
reduced order models.

2.2.3 Modified POD/SVD techniques

• Randomized algorithms:
Randomness is a powerful concept that has been a hot topic in the scientific community
over the past few decades due to its surprising reliability and computational efficiency
[80]. In recent times, probabilistic methods are used as an effective strategy for
designing better algorithms so that the bottleneck of deterministic algorithms can be
overcome. It has been effectively used in matrix approximations. The Monte Carlo
algorithm is one of the most well-known and widely used randomized methods [81].
Generally, probabilistic matrix algorithms work by introducing a degree of randomness
to derive smaller matrices from a large-scale dataset while retaining the essential
features of the matrix. It is crucial to understand randomized matrix algorithms are
most effective for low-rank matrices.
For instance, in randomized SVD (RSVD) we can compute singular vectors from a
smaller-sized matrix B ∈ Rk×N , k << N instead of the full-sized snapshot matrix S.
The smaller matrix B is constructed by projecting the full snapshot matrix S onto a
basis matrix computed using a randomized scheme Q ∈ RN ×k, i.e. B = Q⊤S. Now
full SVD is computed on B matrix rather than S,

B = ŨΣV⊤ (2.19)

The right singular vectors V ∈ Rk×N as well as the corresponding singular values
are recovered. The true left singular vectors U ∈ RN ×k can be recovered from the
approximate left singular vectors,Ũ ∈ Rk×k as,

S ≈ QQ⊤S = QB = QŨΣV⊤ (2.20)

where,
U ≈ QŨ (2.21)

Detailed work on randomized SVD can be found in [82, 83]. The computational
complexity of this approximation in time is O(NNr) (assuming dense matrix) in
contrast to O(NN2) for full SVD. Wolfe et al. [84] provided a computationally more
effective alternative for structured random test matrices, bringing down the costs to
NNlog(r). In the PhD thesis of Balabanov [85], a randomized sketching technique
was developed for random projections of high dimensional data into a low dimensional
space initially, and after the reduced model is then efficiently constructed which is
also numerically stable from the projections of the reduced approximation space and
the spaces of associated residuals rather than the original high dimensional space.
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• Incremental POD/SVD: Different methods on incremental SVD have been proposed
for “long-thin" matrices in [86, 87] which is a good assumption for many MOR
problems. These algorithms incrementally compute the SVD of a matrix when new
rows (columns) are added to the matrix. In the article [86], the authors implemented
a surrogate POD model by a rank-1 update to a 2D airfoil simulation, as proposed by
Brand [88]. The method follows as: when a new snapshot is available uk , and POD
basis of the updated snapshot matrix [Sk,uk+1] ∈ RN ×(k+1) has to be computed that
can be obtained by rank-1 update of the SVD,

Sk+1 =
[
Sk,uk+1

]
=
[
Uk

ϕ

∥ϕ∥

]
Dk+1

[
VT

k 0
0T 1

]
(2.22)

where,

Dk+1
def=

[
Σk UT

k uk+1

0T ∥ϕ∥

]

where ϕ is the basis obtained by Gram Schmidt orthogonalization of the new snapshot
uk+1 against the columns of Sk. By SVD, Dk+1 = ŨΣk+1ṼT , we can rewrite (2.22),

Sk+1 =
[
Uk

q

∥q∥

]
ŨΣk+1ṼT

[
V T

k 0
0T 1

]
= Uk+1Σk+1VT

k+1

In [89], the authors proposed low-rank updates to the SVD of dense matrices. One
can read the work of [90], where the authors have implemented online adaptivity to
the ROM by low-rank updates to both the POD basis and the reduced operators,
while avoiding expensive rebuilding of the FOM operators online. In [86], the authors
combined incremental SVD with a self-adaptive (adaptation in the parametric space)
strategy to estimate and increase the accuracy of the POD/SVD surrogate model and
successfully implemented the procedure in a 2D airfoil simulation. This strategy is
based on the leave-one-out algorithm (LOOA), which is extensively used in machine
learning algorithms for cross-validation when data samples are limited. Detecting
the regions with large errors, the parametric domain is resampled using quad-tree
data structures.

• Gappy POD: Gappy POD is an extension to classical POD that allows the consid-
eration of incomplete data sets. It uses a POD basis to reconstruct the missing or
"gappy" data. Gappy POD was developed by Everson and Sirovich in the context
of reconstruction of images, such as human faces, from partial data [91] and has
been extended to flow problems where only partial experimental data might be
available [92–94]. The method follows: suppose we are given the first ‘r’ POD basis
ϕr of the snapshot matrix S where all snapshots are known, and let g(µ) be another
solution vector whose some spatial elements are missing. Then, by gappy-POD
approximation, we can reconstruct the full vector g̃(µ) from the incomplete data
using the existing POD basis functions as,

g̃ =
r∑

i=1
ϕibi (2.23)

The coefficients bi are computed by minimizing the error between the original missing
data and repaired solution vector,
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min
b
||g − g̃||2n (2.24)

using the gappy norm so that only the elements present in the gappy data are
compared.

Definition: ||vk||n is called the gappy norm of vk which is defined as the following,∥∥∥vk
∥∥∥2

n
:=
(
vk,vk

)
n

=
(
nk ⊙ vk,nk ⊙ vk

)
L2

=
∥∥∥nk ⊙ vk

∥∥∥2

L2
(2.25)

where ‘⊙’ denotes a point-wise multiplication and nk ∈ RN is a mask vector that
describes where the data are missing and available on the particular observation
vector vj . Hence, ni for an observation, the data set vi is defined in the following
way:

nk
i =

{
1, if vk

i is known
0, otherwise

• Partitioned method of snapshots: If ‘p’ multiple processors are used for generating
high-fidelity snapshots, the partitioned method of snapshots is a suitable choice for
computing basis functions. The idea of partitioned SVD was developed by Beattie et
al. [95] and further developments on the domain decomposition approach to SVD can
be found in the article [96]. The method follows: assume Si ∈ Rni×N is the local data
on each processor, with ‘n’ being the local degrees of freedom, N the total number of
snapshots and p is the number of processors. Due to the parallelism of the simulation,
one can first compute Di = S⊤

i Si locally on each processor, then transfer Di to a
single processor which can be obtained by simple addition, D = ∑p

i=1 D followed
by solution of the eigenvalue problem [V,Σ] = eigs(D) where eigs is a matlab
function. Then the components of POD basis functions can be computed by vector
multiplication of V and Si locally on each processor,

ϕj
i = 1√

λj

N∑
k=1

Si(·,k)ψ
j
k, 1 ≤ j ≤ r, 1 ≤ i ≤ p.

2.2.4 Greedy RBM

The objective of the greedy algorithm in the context of the reduced basis method is to
adaptively enrich the reduced subspace with linearly independent basis functions [97]. By
doing so, the evaluation of high-fidelity snapshots for all the training parameters (as done
in the classical POD) can be avoided in the offline step, thereby reducing the offline cost
and improving the efficiency of MOR. It is based on the idea to select the parameter
representing a local optimum in relation to an opportune error indicator iteratively,

µn+1 = arg max
µ∈Ξtrain

∆R(µ) (2.26)

which means in the (n+ 1)th step, basically the sample point whose error metric ∆R(µ)
indicates to be worst approximated among all the parameters µ ∈ Ξtrain by the solution
of the current reduced model VR

n+1 is selected as the next sample point. At the sampled
point, the high-fidelity snapshot is generated using the finite element model, followed by
an enrichment of the reduced basis. This is repeated until the error estimator reaches a
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prescribed tolerance. The algorithm is given below,

Input: δg, µ
1, Nmax

Output: A reduced space VR

n = 1

Sn =
{
µ1
}

Evaluate uh

(
µ1
)

;

VR
n = span

{
uh

(
µ1
)}

compute ∆R
n

(
µ1
)

;

while ∆R(µ) > δg and n ≤ Nmax do
n← n+ 1
compute ∆R

n (µ) ∀µ ∈ Ξtrain

µn := argmaxµ∈Ξtrain ∆R
n−1(µ)

Sn ← Sn−1 ∪ {µn}
compute uh (µn)
VR

n ← VR
n−1 ∪ span {uh (µn)}

end
It is essential for a good a posteriori error estimator to be sharp, and rigorous for ensuring

the reliability of the RBM. The ideal error indicator would be, ∆R
n−1 = ||uh(µ)−Πuh(µ)||VN

where Πuh(µ) is the orthogonal projection of uh(µ) onto VR
n−1. However, such an error

indicator is expensive to compute due to the evaluation of FOM solve for each parameter
in the training set in every step of the algorithm. So, to obtain an efficient performance
of the greedy sampling instead a surrogate error indicator is used which is given by dual
norm of the residual such that,

∥∥∥uh(µ)− uR(µ)
∥∥∥

VN
≤ ∆R(µ) =

∥∥∥r (uR;µ
)∥∥∥

VN ′

αN
LB

(2.27)

where r
(
uR(µ);µ

)
: VN → R is the dual norm of the residual w.r.t the reduced solution

given by,

⟨r
(
uR(µ);µ

)
, vh⟩VN ′ ×VN = f(vh;µ)− a

(
uR, vh;µ

)
, ∀vh ∈ VN (2.28)

and αN
LB : D → R is the lower bound for the coercivity constant αN such that:

0 < αN
LB(µ) ≤ αN (µ) ∀µ ∈ D

The computational cost to evaluate µ→ αN
LB(µ) is independent of N . To get this lower

bound, we can resort to theta methods for simple PDEs ( [9]) explained in the appendix A
or by successive constraint method (SCM) for general PDEs [98–100].

2.3 Reduction of non-linear terms
The online efficiency of the classical projection-based MOR methods usually depends
on parameter separability, as shown in eq.(2.8). So far, we considered the parametric
dependence of the operator a(w, v;µ) is affine in relationship to µ and linear w.r.t u(x;µ)
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which is indeed a very restrictive hypothesis. Typically, all operators do not admit such a
trivial affine decomposition (2.8) and without this assumption, we lose the possibility of
offline-online decoupling and our problem still depends on the original dimension of the
system.

To fix this problem, the most popular techniques involve the use of a hyper reduction
stage, first coined by Ryckelynck [101] and can be broadly classified into interpolation
approaches such as (discrete) empirical interpolation method (EIM) [55,102], the best point
interpolation method (BPIM) [103] and integral approaches based on empirical cubature
rule [104, 105]. Some other commonly used methods are the missing point estimation
method [106], Gauss-Newton Approximated Tensors (GNAT) [107], Petrov–Galerkin
reduced integration [101]. The idea is to find a reduced integration domain (RID) for doing
fast numerical integration of the nonlinear terms in the online stage. In this chapter, we
will be focusing only on DEIM and empirical quadrature rule by sparse approximation.

2.3.1 Interpolation based approach

Let F (uh(x;µ);µ) ∈ RN denote a nonlinear operator that is nonlinear in the field variable
and does not admit an affine structure as in (2.8). The corresponding projection onto a
reduced order space is given by FR(x;µ) = ϕ⊤F (uh(x;µ);µ) ∈ Rr. In DEIM, the idea is
to approximate the non-linear function F (uh(x;µ);µ) using an interpolative approach in
order to construct an affine decomposition for an online efficient ROM,

F (x;µ) ≈ F̂ (x;µ) =
r′∑

j=1
qj(x)mj(µ) (2.29)

where qj(x) ∈ RN ×r′ are the basis functions of dimension ‘r′’ such that r′ ≤ N and mj

denotes the interpolative coefficients. The basis functions are obtained by performing POD
on the set of snapshots of the nonlinear term evaluated in the offline stage {F 1, F 2 . . . FN} ∈
RN . The interpolation coefficients are determined in such a way that the approximation is
exact at certain points xp, p = 1 . . . r′

F (xp;µ) = F̂DEIM (xp;µ) =
r′∑

j=1
qj(xp)mj(µ) ∀p (2.30)

The above equation is now a r′× r′ system and is solved to determine the interpolation
coefficients. The above equation can be re-written in algebraic form as:

F̂DEIM = Qm (2.31)

where,

[F̂DEIM (µ)]p = F̂DEIM (xp;µ) (Qp)j = qj(xp) [m(µ)]p = mp(µ)

Now eq. (2.29) can be written as,

F (x;µ) ≈ F̂ (x;µ) =
r′∑

j=1
qj(x)[Q−1F̂DEIM (µ)]j (2.32)

The interpolation points can be determined through the DEIM algorithm using the
greedy approach as explained in detail in [108]. Since the input basis functions are linearly
independent and arranged according to the dominant singular values, the DEIM algorithm
ensures the indices of the interpolation points selected are non-repetitive and hierarchical
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in nature. Once the interpolation points are found, the interpolative basis functions are
determined as the inverse of the operator Q, whose rows correspond to the evaluation of
the basis functions, {qj}r′

j=1 at points xp. The user can choose to apply such an algorithm
either on the nodes of the grid or on the set of quadrature points.

The DEIM algorithm selects the indices of the interpolation points from the basis
functions sequentially by finding the max norm of the residual of the current approximation.

Algorithm 1 DEIM algorithm
1: Input: POD basis of the non-linear terms {qi}r′

i=1 ∈ RN

2: Output: DEIM points, p
3: p1 ← arg max︸ ︷︷ ︸

j=1....N

∣∣q1(xj)
∣∣

4: Q = [q1],p = [p1] and Q = Q(xp1 ,·)
5: for l = 2 : r′ do
6: Solve Qm = ql(xp)
7: r← ql −Qm
8: pl = arg max︸ ︷︷ ︸

j=1....N

|r(xj)|

9: Q = [Q, ql],p = [p,pl] and Q = Q(xp,·)
10: end for

2.3.2 Integral approximation approach

In the context of numerical integration by quadrature rule, the essence of this approach
is to apply a low-cost quadrature rule during the online phase, instead of computing an
affine decomposition in the offline phase [109]. In the reduced order model, FR(x;µ) can
also be obtained as a result of integrating over the concerned domain,

FR(x;µ) = Φ⊤
∫

Ω
fhdΩ =

∫
Ω
fdΩ

As done in a standard finite element model, we can now express the approximation of
the nonlinear term using the standard Gaussian quadrature rule as,

∫
Ω
f(x;µ)dΩ ≈

Nq∑
i=1

f(xi;µ)ωi (2.33)

with additional constraints,

Nq∑
i=1

ωi = |Ω|

ωi ≥ 0
(2.34)

where Nq is the number of quadrature points of the finite element domain and ωi are its
corresponding weights. The idea is to approximate the integral at an optimal set of points
‘p’ from among the original set of integration points p ⊂ Nq using the data from high
fidelity simulations as, ∫

Ω
f j

HRdΩ =
p∑

k=1
ωHR

k f j(xk) j = 1 . . . N, p << Nq

s.t
∫

Ω
f j(x;µ)dΩ ≈

∫
Ω
f j

HRdΩ

(2.35)
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But p is not known a priori, so instead a sparse representation of ‘ωHR
k ’ is to be found

such that we approximate,

∫
f j

HRdΩ ≈
Nq∑
k=1

ωHR
k f j(xk) j = 1 . . . N, (2.36)

This leads to the following optimization problem,

min
y∈RNq

∥y∥ℓp (2.37a)

subject to ∥Ay − b∥ℓ2 ≤ ϵ (2.37b)
Nq∑
k=1

yk = |Ω|, yk ≥ 0 ∀k (2.37c)

where || · ||p is the classical ℓp−norm associated with vectors and the value p depends
on the algorithm chosen for sparse approximation. A and b are given by,

A :=


f1 (x1) f1 (x2) · · · f1 (xNq

)
f2 (x1) f2 (x2) · · · f2 (xNq

)
. . . . . .

... . . .
fN (x1) fN (x2) · · · fN

(
xNq

)

 , b :=


∫

Ω f
1dΩ∫

Ω f
2dΩ
...∫

Ω f
NdΩ


Notice that the kth column of A ∈ RN×Nq contains the value of the integrand at the kth

integration point for all the parameters in the training set, the vector b ∈ RN , on the other
hand, is formed by arranging the exact integral of each function in a single column and
y ∈ RNq contains the modified integration weights. This is an under-determined system
since N << Nq.

Proposition: One particular solution of the undetermined system (2.37), assuming A
full rank so that AAT is invertible, is

y = A†b,

where A† = AT
(
AAT

)−1
denotes the Moore-Penrose inverse [110]. This solution is the

one that minimizes ∥y∥ℓ2 , i.e. y is the solution of the optimization problem (2.37)

min
y∈RNq

∥y∥ℓ2

subject to ∥Ay − b∥ℓ2 ≤ ϵ
(2.38)

Unfortunately, the minimum norm solution does not provide a sparse solution. Rather,
it has the tendency to spread the energy among all entries of, y instead of focussing all
the energy into just a few entries. If the sparse solutions are obtained using ℓ0 norm,
then one needs to find the number of non-zero components of y but solving in ℓ0 norm
is an NP-hard problem and needs appropriate formulations [111]. A common strategy in
sparse regression is to replace ℓ0 by ℓ1 norm [112], also known as Lasso regression which
naturally provides a sparse solution, however, this choice is not consistent in this scenario
as it conflicts with the constraints (2.37c) expressed in the optimization problem. Since
the sum of the reduced quadrature weights, ∑k yk is exactly equivalent to the ℓ1- norm of
y (as the quadrature weights are non-negative), and therefore cannot be minimized.

To address these issues while respecting all the constraints, Manucci et al. in the
article [113] have developed a modified version of the FOCUSS algorithm originally
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introduced for signal processing [114] into an efficient cubature scheme that can exactly
retain the Gauss Legendre Quadrature rule. The idea is to search for a solution that
minimizes the ℓp norm with 0 < p < 1. There are also different concepts proposed in sparse
approximation and one can read [104] where sparsity is obtained by a heuristic sequential
point selection process but at the cost of solving a non-negative least squares problem. In
order to treat the nonlinear terms appearing in the governing equations of viscoelastic fluid
flows in this manuscript, the hyper reduction method is adapted from the work of [113].

2.3.3 Reduced quadrature rule based on sparse recovery technique:
non-negative FOCUSS algorithm

The problem is solved using a non-negative FOCUSS algorithm [113]. It is an iterative
fixed-point algorithm, that achieves the ℓp quasi norm minimum by solving a sequence of
weighted ℓ2 norm optimization problems, i.e.

∥∥W−1y
∥∥

ℓp
where W is a square invertible

matrix with 0 < p < 1 for which we have a unique solution. At iteration n+ 1, the solution
reads as,

yn+1 = Wn (AWn)† b (2.39)

where Wn = diag
(
|yn|1− p

2
)

, diag is a diagonalization operator in matlab and (AWn)†

denotes the Moore-Penrose inverse.
The authors extrapolate the idea of the FOCUSS algorithm into an efficient quadrature

scheme that can exactly retain the Gauss Legendre quadrature rule. To adapt into an
efficient quadrature rule, it needs to ensure the non-negativity of the integration weights.
This can be obtained by introducing a relaxation step to check at every iteration if each
entry is positive:

yn+1 ← αny
n+1 + (1− αn)yn if yn+1 ≱ 0 (2.40)

The algorithm begins with an initial guess y0 with all positive entries, for instance, the
full order quadrature rule, and then at every iteration onwards (n+ 1), first, it checks if
each entry of the weights yn+1 are non-negative. If not, the new solution of step (n+ 1) is
determined according to the condition expressed in (2.40).

Besides, the condition on the measure of the domain ∑Nq

k=1 yk = |Ω| is enforced by
adding to the last row of the matrix A, a uniform vector of one corresponding to a constant
function and the last entry of b corresponds to |Ω|. This step ensures the well-posedness
of the minimization problem, otherwise ill-posed for cases in which the integral function
is zero for all values of the input parameters, i.e. which possess trivial solution [104]. As
we seek for the sparsest solution, the algorithm is considered to reach convergence when
∥yk+1 − yk∥ℓ2

/ ∥yk∥ℓ2
< ϵ, where ϵ is a user-defined tolerance.

By introducing a regularization parameter γ, sparsity can be tuned as per the user’s
requirements while always controlling the residual at each step. Finally, the objective
function can be replaced with:

min
y∈RNq

[
∥Ay − b∥ℓ2 + γ

∥∥∥W−1y
∥∥∥

ℓ2

]
(2.41)

The solution of this minimization problem is given by:

W−1yk+1 = WkAT
[
AWk(AWk)T + γI

]−1
b (2.42)

By setting to a higher value of γ, we tend to obtain the solution of the minimization
problem with more zero entries in the set. For details on the algorithm, please refer to [113].
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Chapter 3

Reduced order modeling
framework for viscoelastic fluid
flows

Abstract

This chapter is divided into two parts: Part I is a brief review on the rheology of
fluids with a focus on viscoelastic fluids referred from the books [1, 115] and, Part II is
dedicated to a computational framework for reduced order modeling of viscoelastic
fluid flows, particularly focused on the stabilization method and the approximation of
nonlinear terms appearing in the governing equations. Three different stabilization
approaches are proposed, two based on offline stabilization only and one that uses
offline-online stabilization. Two main techniques for treating nonlinear terms are
compared with each other: the discrete empirical interpolation method (DEIM) and
a reduced quadrature method based on a sparse recovery technique. A number of
numerical experiments are conducted on two benchmark flows: flow past a sphere and
the 4:1 contraction flow problem. Significant computational speedup manifests with
the proposed offline stabilization together with hyper-reduction as compared to the
original formulation. Discussions about potential accuracy losses of the reduced order
model (ROM) that could result from mesh-related issues of the full order model (FOM)
is carried out, and possible remedies are proposed.

3.1 Part I: Fundamentals of rheology

3.1.1 Introduction

It is well known that the mathematical models describing small deformations for fluid
substances under the assumption of continuum modeling is often explained by the Cauchy
stress tensor. For a general 3D case, there are 6 shearing components and 3 normal
components of the stress tensor which can be split into two parts given by:

σ = −pI + τ (3.1)

where p is the isotropic part, I is the identity operator, and τ is the deviatoric part of the
stress tensor. In Newtonian fluids, the deviatoric stress tensor τ can be modeled with a
constitutive law which is quite simple and is proportional to the rate of deformation tensor
D given by:

τ = 2ηsD (3.2)
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where ηs is the dynamic viscosity and D = 1
2(∇u + (∇u)⊤). However, most of the

materials which have industrial significance such as modeling of multi-phase fluids which
includes polymer suspensions, emulsions, foams, composites, and slurries, to study complex
biological systems, or soft matter, with classical equations of fluid mechanics cannot capture
the intricacies of the deformation or flow behavior of such fluids as a result of which the
deviatoric stress tensor evolves non-linearly in the rate of strain and the system of equations
to describe the evolution state of the fluid may be nonlinear and strongly coupled. A
brief description of different types of non-Newtonian behavior is explained in the following
subsections.

Figure 3.1: A qualitative curve representation of typical Newtonian and non-Newtonian fluids [1].

3.1.2 Non-Newtonian fluids

This class of fluids shows non-Newtonian behavior in the sense that the applied shear stress
deviates from the linear response with respect to the deformation rate or, simply put, the
apparent viscosity is not a constant but a function of σ or γ̇. The total stress tensor can
then be expressed as,

σ = −pI + 2ηs(γ̇)D (3.3)

where γ̇ is the equivalent shear rate, computed as γ̇ =
√

2D : D. When the viscosity
of the fluid is influenced only by the instantaneous shear rate, these fluids are termed
generalized Newtonian fluids or purely viscous fluids. These fluids have no dependency on
the deformation history, or in other words, no memory of past stresses.

Depending on the deformation rate or applied shear stress, these fluids can be classified
as:

• Shear thinning fluids ∂ηs

∂γ̇ < 0

• Shear thickening ∂ηs

∂γ̇ > 0

• Viscoplastic fluids with or without shear thickening

The typical response of τ − γ̇ is shown in the graph 3.1. Shear thinning is one of the
most commonly seen fluidic behavior in engineering practice such as in food or cosmetic
products like ketchup, honey, whipped creams, shampoos, etc. In such fluids, the apparent
viscosity decreases with the increase in shear rate. On the other hand, when apparent
viscosity increases with an increase in shear rate, these types of fluids are referred to as
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shear thickening fluids. Typical examples include cornstarch water, thick suspensions, and
so on. Another behavior observed in this class of fluids is the linear or non-linear response
of τ − γ̇ and it deforms only upon loading beyond yield stress. When the applied load is
below a yield stress limit, the fluid acts as an elastic solid. These fluids are categorized as
viscoplastic and when the flow curve is linear, the fluids are called Bingham plastic fluids.
Examples include toothpaste, blood, yogurt, emulsions, foams, etc. The numerical modeling
of the above-classified fluids has been extensively studied in the literature [116–119]. Most
industrialized products display fluid characteristics where the apparent viscosity is not only
a function of shear rate or applied stress, but also of the duration of the applied loading
and their past kinematic histories. Such behavior can be observed commonly, for example
in cement paste which happened to be sheared at a constant rate, followed by a long period
of rest which eventually leads to the breakage of internal microstructures. This causes
a decrease in viscosity until the rate of change of viscosity ultimately approaches zero.
Depending on the response of deformation with time, this fluid can be further classified
mainly into two types: thixotropic and rheotropic fluids.

3.1.3 Viscoelastic fluids

There is another category of fluids belonging to the non-Newtonian class also known as
viscoelastic fluids and these are of primary concern to this thesis. These fluids exhibit a
blend of both viscous and elastic responses to the applied forces. A familiar example of
this phenomenon is the silly putty [120]. When the putty is applied a sudden deformation,
it bounces like a perfectly elastic solid because its response time to deform is very large
as compared to the time of observation, whereas if the putty is kept at rest for a long
time without any external disturbances, it will flow and dissipate on a time scale governed
by its viscosity. In this scenario, the flow is considered rheologically slow, as the time of
observation is quite large compared to its response time for deformation. Such characteristic
can be measured by what is known as the relaxation time of the fluid or its counterpart
dimensionless parameter also known as Deborah number ∗

De = λ

tc
−→ Relaxation time of the fluid

Characteristic flow time scale (3.4)

When De −→ 0, it represents a purely viscous response, and when De −→∞ represents
a purely elastic solid, and most engineering applications occur between these two extremes.
In the prior discussions on non-Newtonian fluids where the apparent viscosity is shear
dependent or time-dependent, the structure of the stress tensor is in a general sense like
Newtonian fluids for a particular fluid flow and the velocity gradient acts instantaneously
as stress changes and there is no presence of additional stresses in the fluid flow. While for
such viscoelastic fluids also known as complex fluids, the structure of the stress tensor is
quite different, and they do not behave like Newtonian counterparts. One consequence
of this type of fluid behavior is the rise of extra stress tensors due to elastic components
which are given by the normal stress differences in the direction normal to the applied shear
stress, which is absent in generalized Newtonian fluids subjected to the same deformation
history [115]. The normal stress differences N1 and N2 are also proportional to the shear
rate and can be expressed in terms of normal coefficients as:

ψ1 = N1
(γ̇)2

ψ2 = N2
(γ̇)2

(3.5)

∗Markus Reiner chose the name Deborah number inspired by a verse in the Bible, stating "The mountains
flowed before the Lord" in a song by the prophetess Deborah in the Book of Judges [121].
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where, N1 = σxx − σyy and N2 = σyy − σzz . To quantify the viscoelastic effects,
another dimensionless parameter is often used, which is given by the Weissenberg number.
It is expressed as the ratio of elastic forces to viscous forces,

Wi = Uλ

lc
= λ

lc/U
(3.6)

Here, ‘lc’ represents the characteristic length, and ‘U ’ the characteristic velocity scale.
For Wi < 1, the viscous forces are too weak, and so the fluid acts as inelastic, and for
Wi > 1, the fluid starts to display viscoelastic effects.

Remark: Both the quantities Deborah number and Weissenberg number have been used
interchangeably by rheologists quite often. This has been possible because the complex
fluids are characterized by the relaxation time, and a single characteristic time and length
and velocity scales do result in identical definitions [122]. It is to be noted that all these
assumptions are made based on the unidirectional shear flows and depending on kinematic
histories and different types of model flow like elongational or oscillatory motion, the
viscoelastic behavior may vary. One can reverse engineer to change the structure of the
fluid to impart desired rheological properties to a product that has industrial demand.

Polymer solutions, polymer melts, colloidal, suspensions, or worm micellar substances
are some of the viscoelastic fluids [2, 123,124]. At the molecular level, they are quite larger
than the molecules of a Newtonian fluid, and also the relaxation time of such fluids is
of a much higher order than regular Newtonian fluids, hence depending on the action of
forces, even at very low shearing rates, micro-structural changes are observed in a time
scale which can be captured in real-time. However, the continuum hypothesis is kept true
while modeling the flow as long as the size of the micro-structures is much smaller than
the characteristic length scales. For example, in figure 3.2, it can be seen that at very low
shearing rates or at rest conditions, the micro-structures are oriented randomly and are
coiled together corresponding to their minimum energy levels. This represents qualitatively
that at low shearing rates, the polymer molecules resist deformation by exhibiting higher
yield stress and this can be represented as an elastic response of the polymer. But upon
high shearing rates, the tangled coiled-up polymer chains start detangling and straighten
up and orient along the direction of streamlines, representing a purely viscous response.
This polymer chain, on the other hand, influences the flow field and produces extra stress
which is the viscoelastic stress tensor as an additional term in the governing equations.

Figure 3.2: Schematic representation of a polymer chain at rest and under the influence of shear
stress [1].

One of the simplest models of a polymer chain is an elastic dumbbell model consisting
of two beads connected by a spring mass which is used for approximating a single polymer
molecule shown in figure 3.3 and the total contribution of a single polymer chain is given
by the sum of each individual molecules [125]. The orientation and elongation of the
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dumbbell is represented by an end-to-end vector ‘r’ with a fixed length ri = |l| and req

is the equilibrium length. The conformation tensor is a measure of the micro-structural
changes in the state of the fluid which basically provides information about the state of
stretch of the polymers, and is given by the statistical average of the dyadic product of the
end-to-end vectors normalized with the equilibrium length squared,

C = ⟨r⊗ r⟩
r2

eq
(3.7)

Figure 3.3: A polymer chain represented by a random walk of step length ‘ri’ in an elastic
dumbbell model.

In the dumbbell model, the stress due to the polymers (τe) is expressed in terms of the
second-order conformation tensor and is linearly related τe = ηp

λ (C − I). There are many
constitutive models in the literature [126] that appropriately relate the extra stress tensor
(τe) (or conformation tensor) with shear rate γ̇. One of the simplest models is given by
the upper convected Maxwell model (UCM) also known as the Oldroyd-B model which
can be expressed as:

λ
∇
C +C − I = 0 (3.8)

where ηp is the polymer viscosity and λ is the relaxation time of the fluid. The symbol
(∇) denotes the upper convected time derivative

∇
C = ∂C

∂t
+ u · ∇C − (∇u)⊤ ·C −C · ∇u (3.9)

where ∇u = ∂uj

∂xi
. Due to the hyperbolic nature of the equation (3.9), even efficient

numerical solvers are severely limited by what is known as the high Weissenberg number
problem [46]. The numerical evidence of this breakdown at moderately large Weissenberg
numbers is due to the polynomial-based approximation to represent the stress (or confor-
mation) tensor profiles, which are exponential in the regions of geometrical singularities or
of large stress gradients. The exponential stress growth can be remedied by changing the
variable that scales logarithmically with the conformation tensor S = log(C) [46]. Since
the conformation tensor can be recomputed C = exp(S), it retains the positive definiteness
of the tensor even if S contains large numerical errors. The constitutive equation (3.8)
reformulated in terms of S as:

λ
∇
S + S − I = 0 (3.10)

Oldroyd-B model can only predict the first normal stress difference and is not able to
capture the transverse normal stress in a shear flow, i.e. σyy = σzz = 0 and then in a trivial
sense normal coefficient ψ2 = 0. In order to capture both the normal stress differences,
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there is a need to switch to non-linear models which have higher-order derivatives. Some
common second-order non-linear constitutive models that are able to quantitatively describe
the behavior of viscoelastic fluids are finite extensible nonlinear elastic dumbbell with a
Peterlin closure approximation (FENE-P) [127], Giesekus [128], and Phan-Thien Tanner
(PTT) [129] models. The PTT model is derived from network theories of concentrated
polymer solutions and melts, where the stress tensor (or log conformation tensor) S satisfies
the following equation [129]

λ
□
S + Y (trS)(S − I) = 0

Y (trS) =
{

1 + ϵ(trS − 3) linear
exp[ϵ(trS − 3)] exponential

(3.11)

□
S denotes the following Gordon-Schowalter convected derivative operator, given by,

□
S = ∂S

∂t
+ u · ∇S − (∇u− ξD) · S − S · (∇u− ξD)T (3.12)

In the PTT model, the dimensionless parameter ϵ controls how fast the effective
polymeric viscosity and the relaxation time decrease with the stress, and ξ is the slip
parameter that is related to the second normal stress difference. When ϵ = 0, the UCM
model is recovered. In the Giesekus model, S satisfies the following equation [128],

λ
∇
S +S − I + α (S − I)2 = 0

Here, α is the mobility parameter that modulates shear thinning and
∇
S denotes the

Oldroyd’s upper convected derivative operator (eq. 3.9). Giesekus model can predict both
the normal stress difference and the second normal stress coefficient is always negative. If
α = 0, the Giesekus model simplifies to the UCM model.

3.2 Part II: Reduced order modeling for viscoelastic flows

3.2.1 Motivation and background

This part of the chapter is devoted to the surrogate modeling of viscoelastic fluid flows of
second order via the POD reduced order model. In particular, the choice of the stabilization
technique is discussed, as the approximation of the nonlinear terms in the reduced model
framework. These two are closely related, as it is shown that the improper treatment of
nonlinearity can affect the global numerical stability of the ROM.

One can find in the literature, a number of articles on the use of POD-ROM as well
as greedy RBM methods on incompressible viscous fluid flow for CFD applications to
turbulence modeling [48, 48, 49, 53, 57, 57–59]. Besides physical modeling, POD -ROMs
have been extensively used for engineering applications such as for shape optimization, and
flow control problems [60–62]. However, there are relatively few works in the literature
addressing MOR for viscoelastic flows. Recent studies on modeling viscoelastic fluid flows
can be found in the literature [130,131]. In the article [130], the authors have established
a POD-Galerkin approach for modeling isotropic turbulence flow of FENE-P fluid by
DNS and have demonstrated well the efficiency, stability, and robustness of the ROM
for computing the flow fields, while in [131], the authors applied POD-ROM to study a
thermal flow problem governed by Boussinesq approximation for an Oldroyd-B model with
intrinsic stabilized closure models. Both papers concentrated on the turbulence mechanism,
however, our area of interest is in studying the flow behavior of purely polymeric fluids for
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moderately high Weissenberg numbers. Also, for the first time non-linearity is addressed
in this manuscript for second-order viscoelastic fluids, which were not addressed in the
earlier works.

The problem of modeling complex fluids is indeed quite challenging because of the nature
of the governing equations which are hyperbolic, highly nonlinear, non-affine in parametric
dependence, and strongly coupled. In the finite element (FE) formulation, stabilization is
required in both the momentum balance and the constitutive model equations.

In Newtonian cases, the discretization of velocity and pressure field satisfies the LBB
condition required for the stability of the numerical simulation. However, in viscoelastic
fluids, due to the dependency of the viscoelastic stress tensor on velocity gradients, there
arises some compatibility issues in the discretization space between the velocity field and
the viscoelastic stress tensor. There are many improvements in the numerical techniques to
treat and maintain the elliptic nature of the momentum equation for small solvent viscosities
such as elastic viscous split stress(EVSS/FEM) developed by Rajagopalan et al. [132],
discrete elastic viscous split stress-Galerkin(DEVSS-G) by Guénette and Fortin [133], and
discontinuous Galerkin method (DG) by Fortin and Fortin [134]. Such numerical treatment
allows using the same discretization spaces for the elastic stress tensor and the additional
variable. In this work, the DEVSS-G method has been implemented followed by the work
of D’Avino et al. [135] for smooth interpolation of velocity gradient in the constitutive
equation by considering velocity gradient as an additional dependent variable. By doing
so the number of scalar degrees of freedom for 3D models adds to 19: 3 for velocity, 1
for pressure, 6 for stress tensor, and 9 for velocity gradient (or equivalently, 10 in 2D).
Therefore, it is clear that viscoelastic fluid flows is a high dimensional problem and that,
despite the use of powerful computers, invoking the full-order model for the evaluation of
all solutions in a vast parametric space for multi-query problems is still time-constrained.

Similarly, to introduce the elliptic component in the constitutive equation in case of
smaller solvent viscosities, artificial diffusion in the upwind direction such as streamline
upwind diffusion (SUPG) [136] needs to be applied. In addition, due to the hyperbolic
nature of the constitutive equation, even efficient numerical solvers are severely limited by
what is known as the high Weissenberg number problem [46]. The Weissenberg number is
a dimensionless parameter, which is a ratio between the elastic relaxation time and a time
corresponding to the local rate of deformation. A high Weissenberg number means that the
history dependence of viscoelastic stress tensor is evident. The numerical evidence of codes
to breakdown at moderately high Weissenberg numbers is due to the polynomial-based
approximation to represent the viscoelastic stress tensor (or conformation tensor) profiles
which are exponential in the regions of large stress gradients, near stagnation points, or
geometrical singularities (example re-entrant corners) [137,138]. However, by operating
instead on the logarithm of the conformation tensor, which may be referred to in the
works [46], the exponential stress growth can be effectively handled. This adds additional
complexity to an already high-dimensional nonlinear problem.

It is widely known that projection to a lower dimensional space alone is insufficient for
nonlinear problems to achieve computational efficiency, thus numerous hyper reduction
strategies have been created [139–142] to specifically address the cost of assessing nonlinear
terms, typically by empirical interpolation or empirical quadrature, in order to get around
this bottleneck. Unfortunately, the interpolation-based method focuses primarily on the
approximation of the nonlinear terms and very little attention has been paid to preserving
the properties of the resulting reduced models such as preservation of symmetry (for
the FOM operators) or numerical stability [143] which can be reflected in our numerical
analysis of the benchmark problems. Hence, we concentrate on the empirical quadrature
procedure, which has demonstrated efficacy for finite element-based systems. By only
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requiring assembly over a tiny area of the mesh, as specified by an extremely sparse vector
of element weights generated as the solution of an optimization problem, this method
returns computing efficiency [109].

Our goal in this chapter is to present a reduced-order modeling framework to deal with
all the above-mentioned points. First, we deal with the reduction of degrees of freedom
per spatial node in the ROM framework. By assuming divergence-free velocity space and
by static condensation of the unknown velocity gradient variable, we can easily eliminate
the pressure and the auxiliary velocity gradient dofs from the ROM. Second, we focus on
the stability of the ROM. The hypothesis that the solutions generated from a stabilized
high-fidelity solver will recover stable basis functions for a ROM construction, may not
always be true. Residual-based stabilization such as Galerkin Least Squares (GLS), Petrov
Galerkin (PG), and SUPG techniques have been widely used to tackle the stability issues
for convection-dominated problems in both FOM level and ROM level. The authors in
reference [144] have adopted both offline-only and offline-online strategies for advection-
dominated PDEs, parabolic PDEs, and even stochastic-based problems. In the offline-online
strategy, the same stabilized bilinear form is used in both stages and offline only consists
of stabilizing only in the offline phase, followed by classical Galerkin projection in the
online stage. In the article [145], the authors have extended such stabilization strategies to
Navier Stokes flow problems. In this work, we observe that an offline-only strategy, may
not always produce satisfactory results and can cause numerical noise along the boundary
layers, especially if there is complexity in the geometry or the presence of singularity. On
the other hand, the offline-online strategy aims to work in the same order of accuracy
as FOM which is expected but at the cost of the original system. Thus, we propose
an alternate offline strategy where the objective of establishing a stable system in the
reduced framework is achieved at a significantly lower cost than offline-online stabilization.
Hence, with hyper reduction and an offline stabilization strategy, a very stable ROM
at an exceptional computational speed up within a certain accuracy is achieved and is
demonstrated in this chapter.

Finally, the efficiency of the non-linear term computations in the online stage is
addressed by some hyper reduction techniques based on DEIM and a reduced quadrature
rule based on the FOCUSS algorithm [113].

We begin by presenting the FOM framework for viscoelastic fluid flows, followed by
a discussion on the computation of basis functions and construction of the surrogate
model. Finally, we demonstrate the proposed ROM methodology by solving two benchmark
problems: Flow past a sphere and 4:1 contract flow problem, followed by a discussion on
the numerical analysis.

3.2.2 Problem setting of a viscoelastic fluid flow

Governing Equations

The flow behavior of an inertialess viscoelastic fluid is governed by the momentum balance
and continuity equations given by (3.13). In this work, the flow is considered to be
incompressible and with no body forces.

∇ · (2ηsD + τe(S)− pI) = 0
∇ · u = 0

(3.13)

where u represents the velocity vector field, p is the scalar pressure field, D is the strain
rate tensor, and ηs is the solvent viscosity. τe(S) needs to be specified by choosing appro-
priate constitutive models which can relate τe with the velocity gradient or deformation
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history. In this work, the second-order Giesekus fluid is adopted to model the constitutive
equation, following the work of D’Avino et al. in [135]. The expression is given by,

∂S

∂t
+ u · ∇S − (∇u)⊤ · S − S · ∇u− g(S) = 0

g(S) = S − I

λ
+ α(S − I)2

λ

(3.14)

Nonetheless, this formulation can accommodate other constitutive models as well such
as Oldroyd-B, FENE-P, PTT, Pom-Pom model, and so on. Finally, the governing equations
(3.13) combined with constitutive model (3.14) forms a well-posed system in the unknowns
u, p and S specified with appropriate boundary conditions.

The boundary conditions are similar to the Stokes system

u = 0 on ΓDo

u = uD on ΓDg

−pn+ 2ηsD · n+ τe · n = tN on ΓN

where the boundary Γ = ΓDo ∪ ΓDg ∪ ΓN has been split into a homogeneous Dirichlet,
non-homogeneous Dirichlet and a Neumann part. Due to the hyperbolic nature of the
constitutive equation, an additional boundary condition is needed for S at the inflow
boundary:

S = Sin on Γin

where Γin is the inflow boundary, i.e. the part of Γ where u · n < 0, with n the outwardly
directed unit normal. Due to the assumption of an inertialess flow, only an initial condition
for S is required.

Finite element formulation

To obtain the variational equivalent of the strong form equations (3.13) and (3.14) in 2D
spatial dimension, we set the following finite element spaces: T N ′ = (L2(Ω))2×2, V N =(
H1

0 (Ω)
)2
, PN ′ = L2(Ω) G N ′ = (L2(Ω))2×2. Recall: L2(Ω) =

{
q,
∫

Ω q
2dΩ <∞

}
and

H1
0 (Ω) =

{
q ∈ L2(Ω),∇q ∈

(
L2(Ω)

)2 |q|∂Ω = 0
}

.
The weak forms for the FE formulation read as: find (uh, ph,Sh) ∈ V N ×PN ′ ×T N ′

such that:

−⟨∇ · vh, ph⟩+ ⟨(∇vh), 2ηsDh⟩ = ⟨vh,∇ · τhe⟩+ ⟨vh, tN ⟩ΓN
∀vh ∈ V N (3.15)

⟨qh,∇ · uh⟩ = 0 ∀qh ∈PN ′ (3.16)

⟨Eh,
∂S

∂t
+ u · ∇S − (∇u)⊤ · S − S · ∇u− g(S)⟩ = 0 ∀Eh ∈ T N ′ (3.17)

But experience shows that Galerkin FEM techniques are not very useful for viscoelastic
flows, as there is a compatibility issue between the velocity field and extra stress tensor
approximation spaces. So, techniques such as DEVSS-G proposed by Bogaerds et al. [146]
are used to stabilize the momentum equations in this work. An additional auxiliary variable,
velocity gradient tensor, Gh = ∇u⊤

h is added to the momentum equation which adds real
diffusion and stabilizes the term. For simple notation, we drop the ‘h’ from the superscript.
The stabilized weak form of the momentum equation is then given by,
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−⟨∇v, ηa(∇u−G⊤)⟩ − ⟨∇ · v, p⟩+ ⟨∇v, 2ηs∇D⟩ = ⟨v,∇ · τe⟩+ ⟨v, tN ⟩ΓN
∀v ∈ V N

(3.18)

⟨H,−∇u+G⊤⟩ = 0 ∀H ∈ G N ′ (3.19)

Remark: ηa is an artificial viscosity added to achieve numerical stability so that the
system matrix obtained is symmetric, and also the value is kept constant over the domain.
Here, in this work, ηa = ηp is chosen.

The presence of the convection term in the constitutive equation causes the numerical
scheme to be unstable in convection-dominated cases. So Galerkin projection cannot
produce good results, and stabilization techniques like SUPG are required where the
test function is modified [147] by adding artificial diffusion in the upwind direction. The
modified test function in the constitutive equation can be expressed as:

⟨E + τu · ∇E, ∂S
∂t

+ u · ∇S − (∇u)⊤ · S − S · ∇u− g(S)⟩ = 0 ∀E ∈ T N ′ (3.20)

Here, τ in eq. (3.20) is a scalar field of dimension time given by τ = βh
2||u|| where β is

a dimensionless constant that varies between (0,1) and is dependent on the local Péclet
number, h is a typical finite element mesh size in the direction of the velocity and ||u|| is
the characteristic flow velocity.

Discretization spaces: For the numerical tests presented in this work, the flow domain
Ω is discretized utilizing a certain triangulation T . Mixed FE discretization spaces are
employed for the fields (u, p,G,S). Taylor Hood P2− P1 (continuous) elements have been
used for discretizing velocity and pressure fields respectively, which are Ladyzhenskaya-
Babuska-Brezzi (LBB) stable [148]. Now for the other pair (G,S), the same discretization
space as used for the pressure field is used for discretizing the scalar components of S and
G which is P1−P1 (continuous) elements. The time integration of the governing equations
is performed using a variable step variable order (VSVO) Adams-Bashforth-Moulton PECE
solver, with orders ranging from 1 to 13 [149,150].

3.2.3 Model order reduction methodology

Parametrization of the complex fluid

In this section, a projection-based POD approach is discussed for the construction of the
ROM. In the POD formulation, a set of basis functions are constructed from a collection
of snapshots taken at different time instances or for any parameter from a discrete training
set, µ ∈ Ξtrain ∈ RN of the FOM. Assume that an already enriched dataset for velocity
field (u), pressure field (p), velocity gradient tensor (G), viscoelastic stress tensor (τe)
and log conformation tensor (S) is available. The snapshots can be obtained in the offline
stage by solving a high-fidelity solver for varying input parameters ranging from boundary
conditions to constitutive parameters like the relaxation time (λ), the polymer viscosity
(ηp) or the solvent viscosity (ηs), to geometrical and shape parameters.

Implementation of POD-ROM

There are certain assumptions made in the study of the models such as no shape variation
in the geometry is considered, therefore the mesh is fixed regardless of the choice of
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the parameters. As a consequence of this choice, the subspace for the velocity field is
automatically divergence-free as the reduced basis is extracted from divergence-free velocity
snapshots. For this reason, the pressure unknowns can be eliminated from the model
formulation. If pressure is needed, it can be determined separately in a post-processing
step once the ROM is solved. Following the same rationale, the velocity gradient unknowns
can also be eliminated using static condensation, that is, including an additional term in
the momentum equation resulting from the Schur complement of the velocity gradient
unknowns and ensuring DEVSS-G stabilization. It has to be noted that this operation
is in theory also possible in the FOM. However, due to the size of the resulting system
of equations, the Schur complement would result in a large dense matrix, making the
momentum equation intractable. In the ROM, on the other hand, this operation does
not affect the complexity of the reduced system of equations. The associated reduced
weak form of the problem now only includes the momentum balance equation and the
constitutive law counterpart to the FE statement (3.15), and (3.17). Its construction is
discussed in the following subsection.

Reduced form and related issues

The reduced weak form is obtained by replacing u and S in (3.15), and (3.17) by uPOD
and, SPOD which are expressed as:

uPOD(x, t;µ) =
r∑

j=1
ϕj(x)zj(t;µ) (3.21)

SPOD(x, t;µ) =
r′∑

j=1
Θj(x)wj(t;µ) (3.22)

where, the reduced basis functions {ϕj}rj=1 and {Θj}r′
j=1 are obtained by,

ϕj = POD
(
[u1,u2, . . . ,uN ]

)
∈ RN (3.23)

Θj = POD
(
[S1,S2, . . . ,SN ′ ]

)
∈ RN ′ (3.24)

{z1, . . . , zr}T and {w1, . . . , wr′}T represents the coefficients of the POD expansion of
the velocity field and log conformation tensor, respectively.

Projection-based reduction

In the second step, the weak forms are projected onto the properly selected low-dimensional
subspaces. For the momentum equation, we obtain the standard Galerkin approach, i.e.
selecting the test functions as the ϕi(x).

⟨∇ϕi, ηa∇uPOD + 2ηsDPOD⟩+ ⟨∇ϕi,S(uPOD)⟩ = ⟨ϕi,∇ · τe⟩+ ⟨ϕi, q̄⟩ΓN
∀i = 1, . . . , r

(3.25)
where S(uPOD) is the linear form associated with the Schur complement of the velocity

gradient unknowns.
The reduced weak form for the constitutive equation reads as:

⟨Ψ i,
∂SPOD

∂t
+ uPOD · ∇SPOD − (∇u⃗POD)⊤ · SPOD − sPOD · ∇uPOD⟩ = ⟨Ψ i, g(SPOD)⟩ ∀i = 1, . . . , r′

(3.26)
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Note that the terms in the left-hand side of the reduced momentum equation (3.25)
are affine with respect to the parameters ηa and ηs and can be efficiently reduced during
the offline stage. By way of example, we consider the reduction of the first term:

⟨∇ϕi, ηa∇uPOD⟩ = ηa

r∑
j=1
⟨∇ϕi,∇ϕj⟩zj , (3.27)

in which the (r × r) operator ⟨∇ϕi, ηa∇uPOD⟩ can be computed once and for all in
the offline stage. During the online stage, if new parameters ηa and ηs are prescribed,
the evaluation of the left-hand side operator of the momentum balance equation can be
done in reduced complexity (i.e. it does not depend on the original dimension N ) since
it only requires O(r × r) operations. This step is crucial for retaining the computational
efficiency of the ROM, however, the same idea cannot be straightforwardly applied to the
right-hand sides of the equations (3.25) and (3.26), as the nonlinearity of τe and g makes
the evaluation of the corresponding terms in the reduced weak form is dependent on the
number of quadrature points in the FOM since this operation cannot be performed offline.
Particular attention is due when dealing with non-linear terms for improving the efficiency
of the offline-online strategy. This will be discussed in the following section.

The second challenge to be addressed is the choice of the test functions Ψ i(x) on the
constitutive equation (3.26). This depends on the stability properties of the resulting
scheme that is applied in the online solution. As already mentioned in the introduction,
we discuss three possible choices in section 3.2.3.

Reduction of the non-linear terms

In this work, we experimented with the reduction of the nonlinear terms appearing in
(3.25) and (3.26) using two of the most commonly used and representative approaches:
DEIM [108] and reduced integration (or hyper-reduction) [113]. In DEIM, the non-linear
terms are approximated by using a low-rank interpolative basis in order to construct an
affine decomposition. The method not only specifies the way to construct the basis, but
it also determines the reduced set of optimal interpolation points at which the nonlinear
function must be evaluated. These can be selected either among the nodes of the grid
or the set of quadrature points. In this case, we chose to extract the optimal points
from the nodal points. To build the interpolation functions, first, we need to generate
snapshots of the non-linear terms. For instance, to apply this methodology to the nonlinear
term in the momentum balance (3.25), first we need to create snapshots of the extra-
stress tensor by computing τe as a function of S, and generate its set of basis vectors
{ξi}r′′

i=1 = POD
(
[τ 1

e , τ
2
e , . . . , τ

N
e ]
)
∈ N ′ . The POD expansion of the viscoelastic stress

tensor is then given by:

τe(x, t;µ) ≈
r′′∑

j=1
ξj(x)mj(t;µ), (3.28)

where the POD coefficients mj(t;µ) can be expressed as linear combination of values
of τe sampled at nodal points xp:

mj(t;µ) =
r′′∑

p=1
Ejpτe(xp, t;µ) j = 1, . . . , r′′ (3.29)

The interpolation points can be determined through the DEIM algorithm using the
greedy approach as explained in detail in chapter 2 2. Once the interpolation points are
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found, the operator E can be determined as the inverse of the linear operator ξj(xp), whose
rows corresponds to the evaluation of the basis functions, {ξj}r′′

j=1 at points xp.
Now in a discrete setting, the nonlinear function in the momentum balance (3.25) can

be represented as:

⟨ϕi,∇ · τe(x, t;µ)⟩ =
r′′∑

j,p=1
⟨ϕi,∇ · ξj⟩Ejpτe(xp, t;µ) i = 1, . . . , r (3.30)

Here, the operator ∑r′′
j,p=1⟨ϕi,∇ · ξj⟩Ejp can be computed once and for all during the

offline stage. In the online stage, now the right-hand side of the momentum balance eq.
(3.25) can be evaluated by computing τe at only xp points which has a single operation of
performing a matrix-vector product, whose complexity is now of the O(r × r′′) drastically
reduced from (N ×N ′). It has to be remarked that the term ⟨ϕi,∇ · ξj⟩ is linear when
the viscoelastic stress tensor τe(x, t;µ) is considered as the primary variable but in the
algebraic formulation, this term is computed from S which has a nonlinear relationship,
thus computing this term at fewer DEIM points can lead to increase in efficiency of the
ROM.
On the other hand, in the hyper reduction (HR) formulation, we seek for direct approxima-
tion of the integral

∫
Ω ϕ

i(x)∇ · τe(x, t;µ)dΩ, ∀i = 1, . . . r based on Gaussian quadrature
rule instead of finding an approximation of the vector projected onto the set of interpolative
basis functions. Given the classical quadrature rule we have:

⟨ϕi,∇ · τe(x, t;µ)⟩ =
Nq∑
k=1

ωkϕ
i(xk)∇ · τe(xk, t;µ) i = 1, . . . , r

(3.31)

The fundamental idea of the hyper reduced formulation is to approximate (3.31) as a
weighted sum of the integrand evaluated at a reduced set of quadrature points such that:

⟨ϕi(x),∇ · τe(x, t;µ)⟩ ≈ ⟨ϕi(x),∇ · τe(x, t;µ)⟩HR (3.32)

where,

⟨ϕi(x),∇ · τe(x, t;µ)⟩HR =
r′′∑

q=1
ωHR

q ϕi(xq)∇ · τe(xq, t;µ) r′′ << Nq (3.33)

The use of sparse or reduced quadrature rule implies that the points xq ⊂ Nq need to be
carefully selected from among those of the full quadrature points. Eq. (3.33) requires r′′

to be known a priori, so in fact we approximate:

⟨ϕi(x),∇ · τe(x, t;µ)⟩HR ≈
Nq∑
q=1

ωHR
q ϕi(xq)∇ · τe(xq, t;µ) i = 1, . . . , r

(3.34)

The approximation becomes exact if,

||ωHR||ℓ0 = r′′

where, the operator || · ||ℓ0 determines the number of non-zero elements in the vector
of integration weights, ωHR. The position of the reduced integration points xq and their
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associated positive weights ωHR can be determined by solving the following optimization
problem such that the volume of the physical domain is exactly integrated and also the
positive quadrature weights are retained:

(ωHR,xq) = arg min
ω

r∑
i=1

N∑
k=1

(
⟨ϕi(x)∇ · τ k

e (x, t;µ)⟩ − ⟨ϕi(xq)∇ · τ k
e (xq, t;µ)⟩HR

)2
+ γ||ω||ℓ0 ,

Nq∑
j=1

ωj = |Ω|,

ωj ≥ 0 ∀j

(3.35)
In the above minimization problem, the term γ||ω||ℓ0 is added explicitly to introduce

sparsity. γ is a regularization parameter that can be tuned as per the user’s requirements
to prioritize sparsity over accuracy when γ >> 1 or vice versa. As explained in chapter
2, solving ||ω||ℓ0 is a daunting task as it requires solving a non-negative least squares
minimization problem which can be very expensive for a large scale system as such and
time complexity of solving the above optimization problem becomes NP-hard. Another
alternative would be to replace ℓ0-norm with a surrogate norm, which oftentimes is ℓ1-norm.
But this choice is not consistent with the constraint expressed in the optimization problem
(3.35), since the sum of the quadrature weights is exactly equivalent to the ℓ1- norm, and
therefore cannot be minimized. Instead, we find sparse representation by using ℓp quasi
norm with 0 < p < 1, which is achieved with the FOCUSS algorithm as explained in detail
in chapter 2.

The major advantage of such a cubature-based reduction approach is that the quadrature
weights are guaranteed to be positive which is crucial for retaining the spectral properties
of the FE operators, which may not be the case in interpolation-based approaches like
DEIM. This may cause the numerical simulation to have some instability in the ROM,
which we will discuss shortly in the numerical test analysis.

Choice of the stabilization for the constitutive equation.

Offline only stabilization (POD-G): The first choice is to apply no stabilization for
the ROM, which is achieved by performing classical POD-Galerkin projection on the
constitutive law. So, the projection space is nothing but the same subspace spanned by
the reduced basis function of S given by:

{Ψ i}r′
i=1 = [Θ1,Θ2, . . . ,Θr′ ] ∈ RN ′×r′ (3.36)

The reason for not applying stabilization in the reduced model is based on the as-
sumption that the snapshots generated from a stabilized FOM will inherently reproduce
basis functions that are stable and noise-free. In theory, this is expected to be true for
the advection-diffusion equation even for small diffusion coefficients [144], but since our
constitutive law has no diffusion term at all it is not obvious that the basis functions
constructed could lead to a stabilized ROM.

Offline-online stabilization (POD-SUPG): In the second choice, we use the
same stabilization scheme (SUPG) that was used in the FOM i.e. performing reduced
approximation by POD-SUPG in the online stage. The only difference with the stabilization
term in ROM is that it is expressed in terms of the reduced basis function of S given by:

{Ψ i}r′
i=1 = [(Θ1+τuPOD(x, t;µ)·∇Θ1), . . . , (Θr′ +τuPOD(x, t;µ)·∇Θr′)] ∈ RN ′×r′ (3.37)
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However, this introduces further non-linear coupling because the projection operator
dependency on uPOD is non-affine (since τ = βh

2||uPOD||). Despite the projection subspace
being expressed in terms of the basis function {Θi}r′

i=1 which can be computed offline once
and all, the FOM operator has to be updated online for each time step and for all the
training samples, which are not cost-effective at all.

Offline only stabilization (POD-PG): In the third choice, the residual of the
constitutive equation is projected onto a subspace spanned by a fixed basis computed in
the offline step once and for all, similar to the first offline stabilization approach. The
only difference is in the generation of the reduced bases that are obtained by applying
dimensionality reduction to the set of snapshots from the FOM defined by:

{Ψ i}r′
i=1 = POD

(
[S1 + τu1 · ∇S1], . . . , [SN + τuN · ∇SN ]

)
∈ RN ′ (3.38)

Hence, in this offline stabilization, the reduction is performed by POD-PG approxi-
mation. Since now the rank of the test function subspace is unrelated to the one of the
subspace for, S we make sure the number of modes for the projection space is always at
least equal to or more than the number of modes we have in the basis for S. The reason
for choosing more number of modes for the test function subspace Ψ i is because of the
presence of a derivative term in the equation (3.38), and by enriching with additional
modes in the ROM can well capture the micro-scale change in the flows, thus providing an
accurate representation of the FOM. In case the resulting system is over-determined, we
proceed to solve it in the least-squares sense. A detailed comparison is made among the
above-mentioned stabilization approaches in the numerical analysis section 3.3.

3.3 Numerical analysis of two benchmark problems.

The above-discussed POD-ROM is herein assessed and validated for two classical benchmark
cases: Flow past a sphere and 4:1 contraction flow problem. In this work, the parameterized
complex fluid is analyzed and studied by varying a single input flow parameter which is
the relaxation time of the fluid (λ) or in this case the Deborah number (see for definition
(3.4)), while keeping the rest of the fluid parameters fixed.

Remark: Quantities like Deborah number (3.4) and Weissenberg number (3.6) can be
considered equivalent and result in identical definitions [122] when tc = γ̇−1

c , with γ̇c = U
lc

.
Here, ‘lc’ represents the characteristic length, and, ‘U ’ is the characteristic velocity scale
which is given by the inlet velocity for the investigated numerical tests. In benchmark 1,
the characteristic length is the radius of the sphere and in benchmark 2, it is given by the
width of the channel.

Finally, for every Deborah number in the training set, λ ∈ RNhf and for each time step
{tj}nj=0 the field variables u, p,S, τe including the nonlinear functions are computed and
assembled into different snapshot matrices. Using POD, the reduced basis functions are
obtained respectively as explained in the section 3.2.3. It should be noted that the same
time stepping scheme is used in the ROM as well with an equal tolerance limit in order to
produce a fair comparison when estimating the computational speed-ups. The tolerance
limit for the time discretization solver is set to 10−4. The error metrics for quantifying the
quality of the ROM are discussed in the subsequent section, followed by the discussion on
the geometrical, material, and numerical parameters for the benchmark cases.
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3.3.1 Posteriori error metrics

The reconstruction error or the ROM error is obtained by evaluating the maximum of L2
norm between the full order solution and reduced solution of log-conformation tensor S
over time and then finding the average value of the error among all the λ values from the
training set.

ROM error = 1
Nhf

max
tj

√
⟨S̃(tj), S̃(tj);λk⟩√
⟨S(tn),S(tn);λk⟩

j = 0, . . . , n
∀k=1,...,Nhf

(3.39)

⟨S̃(tj), S̃(tj);λk⟩ represents the sum of squared L2 norm error over the sampled Deborah
numbers, for each time step. The error is taken as the difference between FOM solution
{S (tj)}nj=0 ∈ RN ′ and ROM solution {SPOD(tj)}nj=0 ∈ RN ′ . Similarly, ⟨Sk(tn),Sk(tn)⟩
represents the sum of the squared of L2 norm of the FOM snapshots over λk at the final
nth time step. We choose to scale the error with respect to the fully developed L2 norm
of S since this value is more representative of the characteristic magnitude of the log
conformation tensor at steady state, which is our main quantity of interest. We also
evaluate the error between the snapshots and their orthogonal projection on a POD basis.
This POD error quantifies the low-rank approximation of the snapshots and serves as a
lower bound for ROM error given by,

POD error = 1
Nhf

max
tj

√
⟨Sproj(tj),Sproj(tj);λk⟩√
⟨S(tn),S(tn);λk⟩

j = 0, . . . , n
∀k=1,...,Nhf

(3.40)

where, Sproj(tj) = S(tj)− ⟨Θi,S(tj)⟩Θi, i = 1, . . . , r′.

3.3.2 Description of the problems

Flow past a sphere: A sphere of radius a is placed with its center on the axis of
the cylindrical tube of radius, R as shown in figure 3.4. This problem is axisymmetric
around the axis, thus the 3D geometry can be reduced to 2D. The sphere moves with a
constant velocity U along the axis of symmetry, or it is equivalent to moving the cylinder
with velocity −U by keeping the sphere fixed. External boundaries are represented by
Γ = ⋃5

i=1 Γi. For velocity field, Dirichlet conditions are applied, i.e. u = (−U , 0 ) on the
boundary Γ = 3 and Γ = 4. Symmetry on Γ = 1 and the no-slip condition is applied at
Γ = 2. At time t = 0, S = 0 on inlet and symmetry, i.e. at Γ = 3, and Γ = 1 respectively.
Since inertia is neglected, no initial condition is required for the velocity field.

Figure 3.4: (left)Schematics of the flow past a sphere benchmark, (bottom) computational domain.

4:1-Step flow problem: A sketch of this benchmark problem is shown in figure
3.6. This problem is also axisymmetric, thus the 3D geometry can be reduced to 2D.
External boundaries are represented by, Γ = ⋃8

i=1 Γi as shown in figure 3.7. The boundary
conditions applied are: Symmetry on Γ = 1 and Γ = 2. A constant velocity field, in the
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Geometrical parameter Dimension

Length of the domain 30.0

Height of the domain 2.0

Radius of the sphere a 1.0

Mid-position of the sphere 24.0

Table 3.1: Geometrical parameters

Figure 3.5: Mesh representation

x-direction, u = (U , 0 ) is applied on inlet Γ = 7 and Γ = 8 . Homogeneous Dirichlet
condition, u = (0, 0) is applied on walls Γ = 4, 5, and 6. At the time t = 0, S = 0 on inlet
and symmetry.

Nomenclature Value
L1 6
L2 6
R1 8
R2 2

Figure 3.6: Schematics of the step flow benchmark.

The physical domain and the mesh are built using the GMSH software [151]. The
region around the singular points where large gradients can be expected is further refined
than the rest of the geometry in both the benchmark problems, as shown in the figures 3.5
and 3.7. For all our experiments, we adopt a mobility coefficient α = 0.2 and a viscosity
ratio ηs

ηp+ηs
= 0.1. Simulations are run up to t = 20, which is enough to ensure that all

flows reach a steady state.
The snapshots are generated for input flow parameter λ lying in the range [0.1,1.5]

discretized in ten linear steps. The solutions are stored for 200-time steps for each λ
with a logarithmic spacing of the time samples. We use logarithmic spacing because we
want the dataset of snapshots to be more representative of the flow behavior during the
initial transient phase and avoid redundant information from oversampling the steady state
(during which most of the snapshots are almost identical). The training set consists of
2000 snapshots. The 2D velocity magnitude profile and log conformation tensor in axial
direction for both the benchmark cases are shown in figures 3.8 and 3.9 respectively for
λ = 0.5667. It can be observed from the velocity profile in fig. 3.8a that the boundary
conditions are satisfied, and the flow magnitude is highest between the no-slip spherical
surface and the top wall of the domain for the flow past the sphere problem, while the
re-entrant region for the 4:1 contraction flow problem as expected. For the log conformation
tensor profile, we observe that they are highest along the leading edge of the sphere (see
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Figure 3.7: (Top) Computational domain, (bottom) mesh representation

fig. 3.8b) as compared to the rest of the domain and along the incoming flow region and
the sharp corner for the contraction flow problem in figure 3.9b.

(a) ||u|| (b) Szz

Figure 3.8: (a) 2D velocity magnitude profile , and (b) log conformation tensor Szz profile in
axial direction for λ = 0.5667 for flow past the sphere benchmark.

(a) ||u|| (b) Szz

Figure 3.9: (a) 2D Velocity magnitude profile and (b) log conformation tensor Szz profile in axial
direction for λ = 0.5667 for 4:1-step flow benchmark.

3.3.3 Discussions

The constitutive equation in the FOM is solved using SUPG stabilization to obtain solutions
void of spurious oscillations and numerical instability. As explained previously, we construct
the ROM with three different stabilization techniques, upon which the residual of the
constitutive equation is projected, and make a comparative analysis in both the benchmark
cases. Figure 3.10 represents the ROM error of the log-conformation tensor and the
respective standard deviation of all the λ values from its mean error against the rank of the
solution for both the benchmark cases. It can be observed from the figure that the ROM
error obtained using offline stabilization (POD-PG), and online stabilization (POD-SUPG)
are in good agreement in both cases and has an accuracy of the same order O(10−2−10−3).
On the other hand, when ROM is constructed using no stabilization (POD-G), we observe
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a completely different trend for the two cases as seen on the left and center plots of figure
3.10. For flow past the sphere benchmark problem, the ROM error appears to have a
smooth decay with a slower convergence as compared to the other stabilization techniques
applied and might require more than 30 modes to achieve the same order of accuracy. On
the other hand, for the 4:1-step flow problem, the reconstruction error starts stagnating
from the 5th mode onwards and even further enrichment with POD modes does not improve
the ROM error. This could be due to the geometry of this benchmark problem, which has
a sharp entrant corner in the flow direction, producing pronounced singular effects. Hence,
the POD modes recovered from the FOM solutions may not be completely stable, which
could lead to stagnancy in the convergence plot.

To verify this assumption, we slightly change the geometry from a sharp corner to a
slightly rounded corner by maintaining the arc length at 1.6. We also changed the inlet
velocity from a constant value to a parabolic velocity profile, i.e. u = (1− z2

16 , 0) where z is
the direction perpendicular to the flow. By implementing this strategy in our work, we
observe a smooth decay of the reconstruction error as seen on the right side of the figure
3.10 for all three cases of stabilization.

Figure 3.10: ROM error of the solution S for the benchmark cases: flow past a sphere (left), step
flow with sharp corner (middle) and step flow with rounded corner (right).

We can therefore infer from our observation that the ROM built with no stabilization
may not always produce stable numerical solutions, especially for problems that are mesh
sensitive or which have a singularity in the geometry, but the proposed offline strategy
retains numerically stable solution and comparable results as with the online stabilization
at least in the range of O(10−2) to O(10−3) within the 25 modes even in the complex
geometry. By projecting the residual of the constitutive equation on the offline reduced
bases, we avoid computation of the additional non-linear function online at each time step,
reducing the computational time by, O(10) as will be discussed below.

Reduction for non-linear terms: So far, we have discussed the ROM without consid-
ering non-linear reduction. As already mentioned, using only linear reduction techniques
for non-linear systems is not viable as there is no significant reduction in the CPU time,
in such scenarios the essence of model order reduction is lost. Our next step is to take
into consideration the reduction of non-linear terms present in both the momentum and
constitutive equation, as explained in the section 3.2.3. First, we begin with the reduction of
only the momentum balance non-linear term (3.25) using DEIM for the sphere benchmark
case. We obtain a set of 31 optimal DEIM points based according to the truncated rank of
the input basis of τe. Finally, in the ROM, we evaluate the non-linear term ⟨∇ϕ, τe(x, t;µ)⟩
only at the selected interpolation points. The right side of the figure 3.11 represents the
location of DEIM points, and it can be seen that the points are located mostly near the
spherical region, which is quite natural as the flow behavior is expected to change in that
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Figure 3.11: ROM error of the solution S for different rank of τe (left), location of DEIM points
and its nature of corresponding weights (right).

area. The left side of the figure 3.11 shows the ROM error of the solution S and the
respective standard deviation of all the λ values from its mean error for three different
truncated modes of τe. It can be observed, that the reconstruction error blows up after a
certain rank of the ROM is reached i.e. after 6 modes only, the error starts diverging in
all three cases. This could be due to the reason that interpolation-based approaches like
DEIM cannot preserve the stability properties of the original numerical scheme used for
the FOM. To confirm this assumption, we evaluate the integration weights corresponding
to the DEIM points obtained. We draw parallels to the integration weights because the
approximation of the non-linear term using DEIM can be considered equivalent to an
integral scheme solved using the quadrature rule. Hence, the integrals of the interpolative
basis functions are equivalent to the Gaussian weights. The nature of the integration
weights is shown in the plot of figure 3.11. Negative weights are represented with a red ‘×’
symbol, and blue ‘+’ represents the positive nature of the weights. It can be seen that
DEIM cannot retain the positive nature of the integration weights for certain points, which
is very crucial for preserving the positive definiteness of the finite element matrices. We
do not exceed DEIM points by enriching with more than 31 modes because as observed
the integration weights are negative in nature and going beyond 31 would not improve
the solution and produce a similar kind of divergence. Since DEIM failed to produce an
accurate result for the flow past the sphere benchmark case, we do not test further for the
step flow problem.

In the next step, we approach the non-linear reduction of both the terms in the
momentum equation and constitutive equation with a reduced quadrature rule using the
FOCUSS algorithm. By tuning the regularization parameter γ and the norm power p in
the minimization problem for the sparse quadrature recovery rule as shown in 3.2.3, we can
reduce or increase the quadrature points while maintaining a strict tolerance limit. In this
work, we choose to keep p fixed at p = 0.5, and by fine-tuning γ values to γ = 10−8 and
γ = 10−10 while setting tolerance limit for accuracy at ϵtol = 10−10 , we obtain different
quadrature points respectively shown in table 3.2.

The total quadrature points in the flow past the sphere problem is 50475 and the
contraction flow problem is 74913. From the data in the table 3.2, it can be seen that the
quadrature points have been reduced to less than 10% of the total quadrature points in
both the benchmark cases. Finally, in the ROM, we evaluate the non-linear terms present
in both equations at the selected set of quadrature points. Figure 3.12 and 3.13 represent
the location of these reduced set of Gaussian points and are mostly located in the region
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where flow gradients are expected to change. For example, in the flow past the sphere
problem, the reduced points are mostly located near the spherical region and toward the
leading edge of the sphere. While, for the step flow benchmark problem, the points are
mostly located near the incoming flow direction and sharp re-entrant region. The positivity
of weights is ensured while solving the minimization problem, which leads to a stable hyper
ROM.

Table 3.2: Reduced quadrature points

Benchmark 1
Constitutive Momentum

γ = 10−8 2718 4638
γ = 10−10 2943 4830

Benchmark 2
Constitutive Momentum

γ = 10−8 4479 4746
γ = 10−10 5586 5772

Figure 3.12: (left) ROM error of the solution S using reduced quadrature rule for varying γ
values of Benchmark 1, (right) location of reduced quadrature points.

This is realized from the plot shown in figure 3.12 and 3.13 where the ROM error of
the solution S is shown against the rank for different values of regularization parameter
γ. A smooth decay of ROM error is observed when γ = 10−10, for both the benchmark
cases with an accuracy of O(10−2 − 10−3), which is the same as the order of accuracy
when no hyper reduction is applied. It should be noted that these results are achieved
using offline stabilization only. When γ = 10−8, the accuracy is of the same order up to
at least 26 modes for the sphere benchmark and after that, it starts stagnating, on the
other hand for the contraction flow problem the convergence is a bit slower for γ = 10−8

and may require more than 30 modes to achieve same order of accuracy as obtained with
γ = 10−10. These results are observed for the rounded geometry case and may not have the
same consistency when the geometry has a sharp corner. Further, a comparative plot of
ROM error with POD projection error is shown in figure 3.14 and as expected POD error
decreases monotonically and is lower than ROM achieving an order of accuracy O(10−3)
serving as a lower bound for ROM error. With the hyper reduction, we also achieve an
excellent computational speed-up of almost twice the order of the reduced solution obtained
without hyper reduction as shown in figure 3.15 or in other words, it can be said that it is
O(104) times faster than the solution obtained using FOM.
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Figure 3.13: (left) ROM error of the solution S using reduced quadrature rule for varying γ
values of Benchmark 2, (right) location of reduced quadrature points.

Figure 3.14: POD projection error and ROM error of S with offline stabilization only (POD-PG)
with and without hyper reduction for both the benchmark cases.

Figure 3.15: Computational speed ups obtained without hyper reduction using POD-PG ROM
and POD-SUPG ROM, and POD-PG ROM with hyper reduction for both the benchmark cases.
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3.4 Conclusions
We introduced a hyper reduction framework for the dimensionality reduction of complex
fluids like viscoelastic flows, and a thorough analysis has been conducted. The algebraic
problem is greatly simplified in the ROM formulation. By construction of the reduced
basis for the velocity field, the incompressibility constraint is automatically satisfied, thus
removing the pressure degrees of freedom. We intrinsically removed DEVSS-G stabilization
from the momentum equation, thereby removing the extra velocity gradient degrees of
freedom from the system. Stabilization of the advection term in the constitutive equation
can be simplified through an offline stabilization procedure instead of an expensive SUPG.
We observed that the use of interpolation techniques such as DEIM in the reduction of
the nonlinear terms can cause a systematic loss of accuracy of the ROM. This can be
avoided using a sparse quadrature approach and ensuring the non-negativity of the resulting
quadrature weights. Even if the number of nonlinear function evaluations is in general
higher in this case, this approach still achieves (104)× speed-ups with ROM average errors
in the range of O(10−2 − 10−3). In the benchmark analyzed, the POD-PG stabilization
strategy combined with the hyper reduction of the non-linear terms appears to be the
trade-off between accuracy and complexity while avoiding the need for online stabilization.
Since stabilization concerns the offline stage only, the complexity of the ROM is freed
from the dimension of the original FOM, therefore it is reasonable to expect even more
significant speed-ups for 3D flows using the proposed approach. In this work, we considered
only one input parameter and assumed the dataset of snapshots to be sufficiently rich for
achieving a good quality ROM but for a multidimensional parametric system, the sampling
space has to be sufficiently rich to accurately represent the large-scale system, and large
sample space means the computation of high fidelity models for each sample point. Even
though it only has an offline cost, it still is expensive and needs to be minimized. Therefore,
the next chapter is dedicated to an adaptive sampling strategy for achieving an optimal
set of parametric points for dealing with complex problems with efficiency and robustness.
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Chapter 4

Iterative multi-fidelity modeling for
multi-dimensional input parametric
PDE systems

Abstract

In this chapter, we propose a parametric sampling strategy for the reduction of large-
scale PDE systems with multi-dimensional input parametric spaces, and also present
its applicability to an inertialess flow of parameterized viscoelastic fluid for the first
time. By leveraging models of different fidelity, the design of this methodology allows
a user to adaptively sample points ad hoc from a discrete training set with no prior
requirement of residual-based error estimators. It is achieved by exploiting low-fidelity
models throughout the parametric space to sample points using an efficient sampling
strategy, and at the sampled parametric points, high-fidelity models are evaluated to
recover the reduced basis functions. Since the proposed methodology leverages the use
of low-fidelity models to assimilate the solution database, it significantly reduces the
computational cost in the offline stage. The highlight of this chapter is to present the
construction of the low-fidelity model, and a sampling strategy based on the discrete
empirical interpolation method (DEIM).

4.1 Introduction

4.1.1 Motivation and background

The convergence and efficiency of a ROM for approximation of the solutions of a large-scale
PDE system depends heavily on the choice of the elements that constitute the "reduced
basis" [152], or in other words, the input parameter selection has to be appropriate for which
the snapshots are generated. It needs to be rich enough to adequately cover important
regions of the parametric space. There are discretization schemes commonly used for
sampling the parametric space, such as uniform sampling, and random sampling. But both
sampling has certain drawbacks, for example, an extensive grid search in uniform sampling
would become expensive in a multi-dimensional parametric system while random sampling
would miss some crucial parts of the function in the parametric space. On the other
hand, another sampling technique, known as Latin Hypercube Sampling (LHS) [153,154]
provides a compromise between uniformity and size of the sample, which makes it more
efficient than uniform sampling and gives often better accuracy than random sampling.
Some statistically-based sampling methods like Monte Carlo methods are also among other
popularly used techniques [155]. Even with efficient sampling techniques, the complexity can
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grow exponentially with the increase in the dimensionality of the parametric space, which is
the case for many engineering applications. Therefore, the reduced basis modeling (RBM)
based on greedy sampling emerged as a promising tool for reducing the computational
cost of FOM by generating high-fidelity snapshots at only a select few optimal parametric
points.

The basic idea in RBM is to adaptively choose sample points by finding the location at
which the estimated error of the reduced model is maximum in the offline phase, thanks to
rigorous error estimators. The greedy RBM was a subject of research for a very long time,
first applied to find reduced models for the parameterized steady incompressible Navier–
Stokes equations [49] and then further developed for a variety of parameterized parabolic
PDEs [54,55,156] and also applied to several optimal control and inverse problems [157,158].
During the past two decades, RBM had a significant contribution to the development of
rigorous error bounds for Stokes flow problems, with a special focus on the inf sup stability
conditions that can be referred to in the articles [48,53,59].

Even though, the RBM methods are not completely void of bottlenecks; it requires
sharp, and rigorous error estimators that are problem specific for ensuring the reliability of
the method. Additionally, the error is estimated over a discrete training set, which must
be a good surrogate of the continuous parametric space. Inefficient greedy sampling could
yet occur from this, particularly for high dimensional parametric PDEs. To mitigate this
issue, the authors in the article [159] have performed the greedy algorithm on random
training sets of small sizes in every iterative cycle instead of estimating the error over the
entire training set. The authors have successfully demonstrated a 16-parametric dimension
system for a diffusion equation problem. Wilcox et al. in their research work [160],
solved a sequence of optimization problems on a parametric space which is not a discrete
set but rather continuous, to find optimal points adaptively in a greedy manner using
both error estimator or residual error indicator. The authors demonstrated the proposed
methodology on a thermal problem for the design of a fin based on two input parameters
Biot number and conduction coefficient for 11, and 21 parametric dimensions respectively.
The papers [161–163] also provide references to quite a few literary works on goal-oriented
sampling methods. Numerous other studies have examined the use of subspace angles to
assess the model’s sensitivity to parameter changes [164–166] or sensitivity analysis to
sample adaptively from the parametric space [167].

4.1.2 Overview of the idea: Iterative multi-fidelity model order
reduction

In this work, we suggest a sampling strategy that uses a multi-fidelity modeling approach
as an alternative to the conventional greedy sampling technique that is driven by error
estimators. Multi-fidelity modeling employs models of varied accuracy to estimate the
same output quantity at a considerably faster convergence rate than using a single model
with a higher approximation quality [168]. For instance, in optimization problems, an
optimizer is constructed to supply the input design variables at each iteration, and the
model then assesses the value of the related objective function, its corresponding gradients,
and the value of the constraint. Typically, high-fidelity models are retained in the loop to
establish accuracy and convergence guarantees on the low-fidelity models, which are used to
determine the best design parameters while taking advantage of computing speedups [169].
Low-fidelity model estimates are cheaper model approximations that can be a coarse-
discretized model, a ROM, or even a simplified physics model that can approximate the
same output as the high-fidelity model but with lower accuracy. Figure 4.1 represents a flow
of the multi-fidelity approach applied to an optimization problem. Multi-fidelity methods
have been successfully applied in optimization problems based on co-kriging models [169],
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uncertainty analysis [170], Monte Carlo simulations [171,172] to name a few. Such methods
have also been extended to the machine learning and Physics-Informed Neural Network
(PINN) domain, which can be referred to in [173,174]. The authors in [173] have presented
the connection of fidelity of different accuracy with neural networks by manipulating the
width and depth of the network architecture. A comprehensive review of the past works
and recent advances in the area of multi-fidelity modeling can be found in the survey [168].

Outer-loop result

Parameter set

Low fidelity model
approximation Optimization filtering process High fidelity model

approximation

Check for
convergence

Optimization correction/
adaptation process

Multiple cheaper

solutions

Optimal design

parameters

Accurate solutions

NO YES

Figure 4.1: Multi-fidelity for outer loop applications

Recently, in the work of Kast et al. [175], a multi-fidelity setup is exploited in the
context of reduced-order modeling by solving a nonlinear structural dynamic problem based
on three input parametric dimensions. First, an appropriate sampling set is exploited in the
parametric space by leveraging a collection of low-fidelity models, followed by multi-fidelity
Gaussian Process Regression (GPR) for approximation of the reduced coefficients in the
online stage, therefore allowing an efficient decoupling of offline-online strategy. Another
work based on a multi-fidelity adaptation strategy can be found in the work [90] where
the authors combined data-driven models with projection-based ROM and adapted the
ROM for any change in the input parameter by low-rank updates to the reduced operators
without rebuilding the FE operators from scratch. This work is focused on addressing the
complexities of cases when the underlying properties of the PDE system are not static, but
undergo dynamic changes due to the change in the latent variables.

Motivated by the multi-fidelity modeling approach, we conjunct the multi-fidelity
method with physics-based reduced order modeling for deriving low-cost ROMs efficiently
without the need for problem-specific error estimators. Our approach is based on a "learn
and adapt" framework. In the first step, a low-fidelity model learns to sample points from
a large input parametric space, and in the second step, the low-fidelity model improves
by adapting to the current ROM approximation and the procedure continues until the
low-fidelity model is a good representation of a FOM. By keeping a high-fidelity solution in
the loop, not only accuracy and convergence is achieved, the requirement of error estimators
or upper bounds is not a pre-requisite. The details are explained in section 4.2. The
goal of this chapter is to explore the parametric space efficiently and generate appropriate
snapshots for a multi-dimensional parametric system irrespective of the problem definition,
the underlying discretization techniques used for solving the problem such as the finite
element method (FEM), or finite volume method (FVM), or for cases when posteriori error
estimators are unavailable or difficult to obtain as in the case of a complex viscoelastic
fluid flow problem.

In fact, we evaluate the max norm error between the high-fidelity solution and reduced-
order solution at the computed parametric points until it establishes the acceptable accuracy,
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hence our sampling process is adhoc based on heuristics. The greedy selection of points can
also be tuned as per the user’s requirements for the efficient performance of the algorithm,
which will be reflected in the numerical examples. We first introduce the algorithm on a
2D heat conduction problem with 2 input parameters and make a qualitative comparison
with the existing greedy RBM. Next, we study a 2D advection-diffusion reaction problem
in a parametric space of 9 dimensions and further experiment this methodology to an
inertialess flow past a sphere benchmark problem obeying Giesekus constitutive model,
which is detailed in chapter 3.

We focus on two main aspects in this chapter: first, is the construction of an initial
low-fidelity model explained in section 4.2.1 and the second is the sampling strategy using
the DEIM technique explained in 4.2.2. The idea of using DEIM in iterative multi-fidelity
modeling is not related to the approximation of the nonlinear term, but only to the notion
of greedy selection of "optimal" parametric points.

4.2 Iterative multi-fidelity modeling (IMF) for building
PODG-ROM

The proposed sampling methodology is unrelated to any particular PDE definition, but in
order to compare it to the examples presented in the numerical analysis section 4.3 and
4.4, we adhere to a linear elliptic parameterized PDE. Denoting with µ as a set of input
parameters with its variation over the parametric domain D ∈ RP , p ≥ 1, x ∈ Ω being the
spatial coordinates, the problem is to find solution u(µ) in some finite-dimensional discrete
space VN ⊂ V where N = dim(VN ) such that

a (u, v;µ) = f (v;µ) ∀v ∈ VN (4.1)

In this work, we used finite elements to obtain the discrete solution to (4.1), however,
the proposed method is also applicable to other numerical discretization solvers. After
spatial discretization, the FE solution of the field variable ‘u’, can be approximated as:

u ≈ uh(x;µ) =
N∑

i=1
Ni(x)(uh(µ))i (4.2)

Ni are the shape functions of choice, and (uh(µ))i represent the scalar values of the
field uh at discretization points xi ∈ Rd, d = 1, 2, 3 and i = 1 . . .N .

Traditionally, if {uk
HF(µ)}Nk=1 ∈ RN represents the high-fidelity snapshots of the PDE

problem 4.1 at distinct parameter values µ ∈ Ξtrain ⊂ D, of cardinality |Ξtrain| = N , that
can be suitably well approximated in a low-dimensional manifold, then the solution can be
represented in a separated form as,

uHF(x;µ) ≈
r∑

i=1
ϕi

HF(x)ψi
LF(µ) (4.3)

Here, {ϕi
HF}ri=1 ∈ RN represents the high-fidelity basis functions which spans the low

dimensional subspace, i.e. VR = span{ϕ1
HF, . . . ,ϕ

r
HF} ⊂ VN , and ψLF(µ) : D −→ R are

parametric functions that span the parametric space. It is true that high-fidelity models can
capture the intricacies of complex PDE systems, but they are also equally expensive to train
and the offline cost to recover the basis functions is quite high. If the parametric functions
ψi

LF(µ) were previously known, we could easily extract a set of points µP ⊂ Ξtrain where
P ⊂ {1, . . . , N} using any efficient sampling technique. The optimal basis functions might
then be recovered by generating high-fidelity snapshots at the computed set of points.
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However, ψi
LF(µ) are not known a priori, but we can reasonably assure that if a low-

fidelity model is instead used for approximation, then by similar expression as given in
eq.(4.3) we have,

uLF(x;µ) ≈
r∑

i=1
ϕi

LF(x)ψi
LF(µ)) (4.4)

where ψi
LF(µ) have similar features as the ψi

HF(µ). Therefore, we can use those to
recover the high-fidelity snapshots at computed points uHF(µP ). The process can be made
iterative, as the newly computed µP can effectively result in the reconstruction of the
high-fidelity basis functions. This subsequently leads to the enrichment of the reduced
basis subspace, which causes an improvement in the low-fidelity model approximation.

Therefore, step 1 of the proposed method is to obtain a poor or inexpensive approxi-
mation to the FOM using a low-fidelity (lo-fi) model, f init

LF : Ω ×D → R that maps all the
parameters belonging to a given training set µ ∈ Ξtrain ⊂ D to produce the same output
with lower accuracy. The flow is shown in figure 4.2 and details on the construction of the
initial low-fidelity model are explained in section 4.2.1.

Training set,
Validation set,
Lo-Fi model
Hi-Fi model

Step 1
Solve the lo-fi model on training set

STOP Step 2
Estimate parametric modes

Step 3
Select new point(s) in para-
metric space using DEIM

on parametric modes

Step 4
Solve hi-fi model on selected points

and enrich the model’s basis functions

Step 5
Solve a physics-based reduced
problem on the training set

Step 6
Check training

and validation error
on select points

< tol

Update lo-fi
with ROM

> tol

Figure 4.2: Flow of the iterative multi-fidelity modeling approach.

In step 2, we compute parametric functions {ψi
LF}ri=1 ∈ RN from the low-fidelity model

approximation by primarily using POD, and then in step 3, we recover "optimal sampling
points" using interpolation strategy over these parametric functions to sample optimal
points in a greedy procedure, µP ⊂ Ξtrain. The details are discussed in section 4.2.2.

Next, in step 4, using a high-fidelity (hi-fi) model we generate snapshots on the select
sample points µP to recover the high-fidelity basis functions ϕi

HF ∈ VR and therefore,
enrich the reduced basis subspace, VR = span({ϕi

HF}r
′′

i=1) ∈ RN where r′′ ≤ #(µP ),
the construction is properly explained in the section 4.2.3. A high-fidelity model is
mathematically defined as fHF : Ω ×D → R that maps all the selected points µP ⊂ Ξtrain

to estimate the output with the accuracy that is needed for the task.
In step 5, we then solve a POD-G ROM for all µ ∈ Ξtrain. The functions ψi

LF obtained
during the first approximation are likely to not generate exactly the same space as the
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ψi
HF i.e span(ψi

LF) ̸= span(ψi
HF). Therefore, recovery of the high-fidelity basis functions

ϕi
HF may not be accurate, and reliable to represent the large-scale PDE system, hence the

procedure has to undergo certain iterations.
Finally, in step 6, we evaluate the error between the high-fidelity model and reduced

basis model approximation at the computed discrete points using the error metrics that
are discussed in 4.2.5. If it is below a certain prescribed tolerance level, we terminate
the algorithm, else we adapt the low-fidelity model with the current ROM approximation
(refer section 4.2.4) and repeat the procedure until the ROM constructed represents the
FOM adequately. To measure the overall performance of the algorithm, we also check for
validation error by computing the error on another set of parameters belonging to a given
validation set Ξval ⊂ D.

The sample points that are obtained provide a locally optimal choice at each stage
of the iterative cycle, however as iteration continues and new points are added in each
iteration the algorithm converges towards the global solution with certain accuracy in very
reduced complexity.

4.2.1 Construction of the initial low-fidelity model

We propose two types of sketch models for the construction of an initial low-fidelity model,
depending on the availability of either of the two conditions:

1. No database of high-fidelity solutions is present a priori,

2. A database of high-fidelity solutions is available

Coarse sketch model: When no database of solutions is present a priori, the initial
low-fidelity model is built using a derefined version of a high-fidelity model, which is nothing
but a coarse finite element model. We refer to it as a "coarse sketch model" for future
discussions. Snapshots generated using this coarse sketch appear to be a wide matrix,
denoted by S LF = [u1

LF,u2
LF, . . . ,uN

LF] ∈ Rm×N , where uLF = uh(µ) at discretization
points x ∈ Rm, such that m << N .

POD-G ROM: Now, let us assume the case when we already have some solutions of
the large-scale PDE system available to us, be it experimental or numerical data. This is
materialized in our work by solving a high-fidelity model for any random training parameters,
X = [u1

HF(µk),u2
HF(µk), . . . ,uK

HF(µk)] ∈ RN ×K with N >> K, and k ⊂ {1, . . . , N} and
term it here as a random sketch model. Then the initial low-fidelity model is a ROM
approximation, which is constructed by Galerkin projection of the PDE system onto the
reduced basis functions computed from this sketch model.

Remark: Although the selection parameters for a random sketch model are entirely user-
dependent, it is advised to start by building the reduced bases with just a few snapshots.
For the primary purpose of lowering the offline cost of MOR, the low-fidelity model
approximation from such a random sketch must remain a less expensive approximation to
the FOM at the initial stage of the method. Then, as the iteration advances, the quality of
the low-fidelity model improves and converges to the FOM accurately.

4.2.2 Parametric point selection

As previously mentioned, sampling points are extracted from the parametric modes of
the low-fidelity model approximation. This is based on the heuristic assumptions that
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the low-fidelity model, although a poor approximation to the high-fidelity model, may
nonetheless accurately reflect the essential features of the high-fidelity model’s parametric
dependence. A brief description of how the parametric points are sampled from a given
training set, µP ⊂ Ξtrain using DEIM is explained in the algorithm 2. DEIM finds the
sample points in a greedy way from an input basis which is given here by the parametric
functions computed by performing SVD on the low-fidelity model approximation,

SLF = ΦLFΣLFΨ
T
LF (4.5)

where, ΦLF = [ϕ1
LF ,ϕ

2
LF , . . . ,ϕ

r
LF ] ∈ Rm×r with m << N , and r ≤ N are poorly

approximated POD modes while ΨLF = [ψ1
LF,ψ

2
LF, . . . ,ψ

r
LF] ∈ RN×r denotes the parametric

modes that span the parametric subspace. The rectangular diagonal matrix ΣLF ∈ Rr×r

contains the corresponding non-negative singular values, σ1 ≥ . . . ≥ σr ≥ 0 accounting to
the information content of the low-fidelity model solution data. The process of sampling
starts by selecting the index with the largest magnitude, corresponding to the first entry
of the input basis {ψi

LF}ri=1. The remaining points are selected by finding the location at
which the residual of the current approximation is maximum (refer to the algorithm 2).
The points that are computed are unique due to the linear independence of the input basis,
which guarantees that the indices are hierarchical and non-repetitive in nature.

Algorithm 2 DEIM sampling adopted from [108]
1: INPUT: Parametric functions ΨLF ∈ RN×r

2: OUTPUT: Sampled parametric points µP =
[
µ(1), . . . ,µ(r)

]T
⊂ Ξtrain

3: µ(1) = max
{∣∣∣ψLF(·,1)

∣∣∣}
4: µP = [µ(1)]
5: for l = 2 : r do
6: Solve c = [ΨLF(1:l−1,1:l−1)]−1ψLF(1:l−1,l)
7: r = ψLF(·,l) − ΨLFc

8: µ(l) = max{|r|}
9: µP = [µP , µ(l)]T

10: end for

This sampling procedure is resumed after every iteration of the proposed algorithm
and is not restarted from the beginning. As a result, instead of oversampling the same
points from the training set, we are able to sample distinct points from it. The parametric
functions obtained in ith iteration of the multi-fidelity algorithm are orthogonalized with
respect to the parametric functions obtained in (i− 1)th iteration through Gram-Schmidt
orthonormalization in order to prevent repetition and picking up points closer to pre-
viously calculated points. This step is crucial for finding the best and most distinctive
points throughout each iteration cycle, enabling us to explore the parametric space more
thoroughly.

Remark: A general note to take into account while selecting parametric points is that
it’s always a better choice to pick from the first ‘r’ truncated parametric functions due
to its content of the highest energy or information of the system, arranged in descending
order.

It is noteworthy that the proposed methodology doesn’t necessarily perform like a
classical greedy sampling procedure due to the nature of the selection of points from the
parametric functions. Hence, depending on the available computing resources, the level of
"greediness" can be fine-tuned. In other words, since DEIM will generate the same number
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of points as the rank of parametric functions, the user can decide to select all the sample
points at once, or also has the option to select one parametric point per iteration. This
is one of the advantages of this approach, where the selection of points per iteration is
completely user-dependent, which can be assimilated for parallel computations. A general
remark has to be made, incorporating such a step can also lead to the selection of excess
sample points than required which deviates from the main objective of selecting a few
optimal points and hence needs to be taken care of.

4.2.3 Recovery of the reduced basis functions

The high-fidelity basis function in the first iteration of the proposed method is recovered
by performing SVD on the select snapshots, SHF = {uHF(µP )} for all µP ⊂ Ξtrain.

svd(SHF) = ΦHFΣHFΨ
T
HF (4.6)

where, ΦHF = [ϕ1
HF,ϕ

2
HF, . . . ,ϕ

r′′
HF] ∈ RN ×r′′ with r′′ ≤ #(µP ) contains the high-fidelity

reduced bases that span the low-dimensional subspace VR and ΨHF = [ψ1
HF,ψ

2
HF, . . . ,ψ

r′′
HF] ∈

RN×r′′ denotes the parametric modes. Similarly, the rectangular diagonal matrix ΣHF ∈
Rr′′×r′′ contains the corresponding non-negative singular values, σ1 ≥ . . . ≥ σr′′ ≥ 0
accounting for the information content of the high-fidelity model solution data. At (i+ 1)th

iteration of the algorithm, the reduced subspace VR is updated through the Gram-Schmidt
procedure (refer algorithm 3).

Algorithm 3 Gram-Schmidt orthonormalization at the (i+ 1)th iteration of the proposed
method

1: for l = 1 : dim(SHF) do
2: ϕl

HF = Sl
HF −Φi

HF⟨Φi
HF,S

l
HF⟩

3: if ||ϕl
HF||

||Sl
HF|| > ϵg then

4: Φi+1
HF = Φi

HF
⊕ ϕl

HF
||ϕl

HF||
5: end if
6: Update, Φi

HF = Φi+1
HF

7: end for

4.2.4 Updating low-fidelity model

In this part, we demonstrate how the current POD-G ROM approximation can be used to
update the low-fidelity model for each iteration of the algorithm until convergence, i.e. we
approximate the solution uLF : Ω ×D → R with a function uR ∈ VR defined by,

uR(x;µ) =
r′′∑

i=1
ϕi

HF(b(µ))i = ΦHFb(µ) (4.7)

where, the POD expansion coefficients b(µ) = (b1, b2, . . . , br′′)T can be calculated
by Galerkin projection of the PDE system onto the basis functions ϕi

HF. The initial
low-fidelity snapshots data is now updated with the current reduced solution, such that
SLF = [uR

1 , u
R
2 , . . . , u

R
N ] ∈ RN ×r′′ .

Remark: To improve the efficiency of the method, one can also approximate the low-
fidelity data with the coefficients of the POD expansion instead of the reduced solution itself
and replace SLF with B where B = [b1, b2, . . . , bN ] ∈ Rr′′×N . Here bi = (b1, b2, . . . , br′′)T
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represents the POD coefficients from eq. (4.7). This process can reduce the cost of
exploration of the parametric space using low-fidelity approximation from O(N ) to O(r′′).

By performing SVD on B we have,

B = φςψ̂T (4.8)

Rewriting eq. (4.7) we have,

ũR(x;µ) ≈ uR(x;µ) = ΦHFφ︸ ︷︷ ︸
Φ̃HF

ςψ̂T (4.9)

The original high-fidelity basis functions can now be replaced by the approximate left
singular vectors by the expression shown in eq. (4.9). This scaling factor is committed to
improving the accuracy of the basis functions that could be lost if reduced coefficients are
used in place of reduced-order solutions for the parametric exploration.

The next section is dedicated to a discussion on error metrics which are used to test
the reliability of the approach.

4.2.5 Error metrics

If uHF(x;µP ) and uR(x;µP ) represents the FOM and ROM solution respectively at the
computed parametric points µP from the training set Ξtrain ⊂ D, then the max norm of
the relative error is estimated at the sample points such that

ϵtrain = max
µP

√√√√∑N
i=1 ||uHF(xi;µP )− uR(xi;µP )||22∑N

i=1 ||uHF(xi;µP )||22
(4.10)

In order to better understand the quality of the reduced model, the algorithm is
validated on another set of parameters, Ξval ⊂ D for the problem defined. By validating
on a different set of points, if the error estimation between the FOM and ROM solutions is
reduced as the cycle increases, it can be inferred that ROM well approximates the large-
scale system for any µ ∈ D. If the max norm error for both the training and validation set
is below a certain tolerance limit, the sketch model constructed can be considered to be
reliable.

ϵval = max
µ

√√√√∑N
i=1 ||uHF(xi;µ)− uR(xi;µ)||22∑N

i=1 ||uHF(xi;µ)||22
∀µ ∈ Ξval (4.11)

The error between all the snapshots and the ROM solutions obtained by the iterative
multi-fidelity approach is evaluated and can be viewed as a benchmark for the ROM error,
provided sufficient snapshots are generated:

ϵROM =

√√√√ N∑
i=1

||uHF(x;µ(i))− uR(x;µ(i))||22
||uHF(x;µ(i))||22

µ ∈ Ξtrain (4.12)

We also analyze POD projection error, which is given by the error between the snapshots
and their projection onto the recovered basis functions:

ϵPOD =

√√√√ N∑
i=1

||uHF(x;µ(i))−ΠuHF(x;µ(i))||22
||uHF(x;µ(i))||22

µ ∈ Ξtrain (4.13)
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4.3 Numerical example of a heat conduction problem

In order to assess the proposed methodology, we first begin by analyzing a simple steady-
state heat conduction problem in a 2D domain, Ω = (0, 1)× (0, 1) as shown in figure 4.3.
This problem is reproduced from ( [9]) where it is solved using classical greedy RBM. The
boundary of the domain is split into three parts, the base, the top, and the sides, and Ω0
is a square block placed in the center of the domain. Let κ be the thermal conductivity
with κ|Ω0 = µ[1] and κ|Ω1 = 1 where Ω1 = Ω\Ω0.

Figure 4.3: Geometry of heat conduction problem

Two input parameters are considered for this problem µ = [µ[1], µ[2]], where µ[1] is the
conductivity in Ω0 the region, and the second parameter µ[2] is the constant heat flux over
the bottom boundary. The strong formulation for this parameterized problem is governed
by Poisson’s equation. For some parameter value µ ∈ D, find u(µ) such that

∇ · κµ∇u(µ) = 0 in Ω,

u(µ) = 0 on Γtop

κµ∇u(µ) · n = 0 on Γside

κµ∇u(µ) · n = µ[2] on Γbase

(4.14)

Here, u(µ) is the scalar temperature field variable, and κµ is given such that κµ =
φ1 +µ[1]φ0, where φ is the characteristic function with subscript donating the corresponding
domain. Defining VN =

{
v ∈ H1

0 (Ω)|v|Γtop = 0
}
, the weak parametrized formulation then

reads: for some parameter µ ∈ D, find u(µ) ∈ VN such that,

a(u(µ), v;µ) = f(v;µ) ∀v ∈ VN ,

a(w, v;µ) =
∫

Ω
κµ∇w · ∇v and f(v;µ) = µ[2]

∫
Γbase

v,
(4.15)

for all v, w ∈ VN . The selected range for the parameters is µ = [µ[1], µ[2]] ∈ D =
[0.1, 10]× [−1, 1]. A total of, 2050 sample points are generated in which the training set
Ξtrain compromises of 2000 points and the validation set Ξval consists of 50 points. For
µ[1], the points are generated using uniform discretization whereas for the second input
parameter µ[2], the points are generated using log space. The graphical representation of
the temperature field for two different sets of parameters is shown in figure 4.4.
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(a) µ[1] = 0.1, µ[2] = −1 (b) µ[1] = 0.4, µ[2] = 0.5

Figure 4.4: Two different representative solutions for the parameterized conductivity problem.

4.3.1 Results and discussions

We now perform the proposed algorithm based on two different initialization of the low-
fidelity model. The first analysis is based on the assumption that we already have some
random dataset of solutions of a FOM. Then the initial low-fidelity model is a ROM
constructed from this random sketch model. In this example, we initialize the random
sketch with 2 linearly independent snapshots from the training set. Since this is a low-rank
linear problem, we chose to select one sample point per iteration. With a target tolerance
set to ϵ = 10−6, 6 iteration cycles are required to achieve the desired accuracy, as shown in
figure 4.5a. Also, we show the convergence plot for parameters belonging to the validation
set, which decays smoothly until the target accuracy is achieved. This implies, that the
quality of ROM constructed with the proposed iterative multi-fidelity approach represents
well the large-scale PDE system for any parameter belonging to the parametric space D.

(a) Initial lo-fi model with a POD-G ROM (b) Initial lo-fi model with a coarse sketch model

Figure 4.5: Error ϵtrain and ϵval between FOM and reconstructed ROM solution

Figure 4.6 illustrates the parametric functions generated from low-fidelity model ap-
proximation during each iteration of the proposed algorithm, along with the computed
DEIM points. The initial rank of the random sketch is 2, so in iteration 1 of the iterative
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multi-fidelity algorithm, we have two parametric functions, as one can see in 4.6a. In
the rest of the plots 4.6b-4.6f, we show a single parametric function and its correspond-
ing DEIM point (since we pick only one point per iteration), instead of showing all the
modes generated during each iteration of the DEIM algorithm. The figures reflect the
unique sampling points obtained in every iteration, which is expected for preserving the
non-redundancy of the proposed algorithm.

The second analysis is for the cases when no database of solutions is available a priori,
we construct the initial low-fidelity model from a coarse sketch model as shown in figure
4.7a. Figure 4.7b represents a fine grid model used for generating the high-fidelity solution.
We observe that the same number of iterations are required as in the previous case to
achieve accuracy of O(10−6) for parameters belonging to both the training and validation
set, shown in figure 4.5b. This specific example has only a parametric dimension of 2
and also this problem is not mesh-dependent, so both the sketch models consisted of
sampling the same number of points. However, we will observe that the selection of points
is not consistent in a complex problem as the advection-diffusion problem in 9 dimensions
discussed in section 4.4 and more or fewer sampling points may be required depending on
the initialization of the low-fidelity model to retain the same target accuracy.

The parametric points sampled using both the sketch models are represented in figure
4.8a. We can notice that irrespective of the sketch model chosen to construct the low-fidelity
model, the proposed method in this example extracted almost exact points in both cases.
We also show a plot of the Gaussian distribution of the sampled points conducted over a
trial of 10 experiments using different random sketch models in figure 4.8b. In other words,
each experiment is initialized by different random snapshots without any repetition. The
figure reflects a very interesting behavior, showing that six out of seven sampled points are
nearly identical in every trial except for one point that may have a larger variance than
the other six, which was noticed when the third point was sampled.

We also plot the ℓ2 norm POD projection error (ϵPOD) and ROM error (ϵROM) against
the rank of the low-fidelity model using both the sketch models in figure 4.9a, as per the
definitions in section 4.2.5. We can observe both the POD and ROM error decays as the
rank of the system is increased. Also, the POD error curve is observed to be lower than
the ROM error as expected, which is represented by the decay of singular values. Now we
make a comparison by solving the same problem using the greedy RBM algorithm, the
lower bound is computed using the min theta approach [9]. The convergence plot for the
relative ℓ2-norm ROM error (ϵROM) for all the parameters in the training set and the error
bound is shown in figure 4.9a. It is observed that the ROM error has a smooth exponential
decay and is lower than the max norm error as expected.

For the target accuracy set to O(10−6), the rank of the low-fidelity model achieved is 7,
implying that 7 parametric points were sampled to recover the basis functions similar to
the findings of our proposed method. Thus, it is evident that the qualitative performance
of the proposed method is comparable with the greedy RBM. We also show an illustration
of sampled points obtained by greedy RBM in figure 4.9b. We notice that the parametric
points picked in the proposed method are not completely comparable to greedy RBM,
however, the sampled points in both cases follow a logarithmic trend which could be due to
the reason how we discretize our training set, where we chose to discretize µ[2] using a log
space and a uniform discretization for µ[1]. If we apply DEIM on the parametric functions
obtained by POD on high-fidelity snapshots for all µ ∈ Ξtrain and plot the sampled points
in the same figure 4.9b, we observe that the selection of points is comparable with the
proposed method and lie on the same logarithmic trend.
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

Figure 4.6: Parametric modes represented by blue and red curves along with its residual represented
by black dotted lines, and DEIM points obtained during each loop of the proposed method.

4.4 Numerical example of an advection-diffusion problem
In this section, we study a 2D advection-diffusion problem with a source term for a 9
parametric dimension. As it can be seen in figure 4.10, the domain is divided into 9
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(a) Coarse grid (# Nodes =62 ) (b) Fine grid (# Nodes =895)

Figure 4.7: (a) a coarse discretized mesh for an initial low-fidelity model, and (b) a fine discretized
mesh for high-fidelity model approximations.

(a) (b)

Figure 4.8: Sampled parametric points using two sketch models (a), Gaussian distribution of
sampling points over 10 trials (b).

subdomains where each region has a different diffusivity coefficient which serves as the
input parameter.

4.4.1 Problem setting

The strong form of the parameterized advection-diffusion reaction equation is governed by
the elliptic PDE. For some parameter value, µ ∈ D find u(µ) such that:

b · ∇u(µ)−K(µi)∆u(µ) + σ = 0 ∀Ωi i = 1, . . . , 9
u(µ) = 0 at Γinlet

∇u(µ) · n̂ = 0 at Γwalls

σ = 1 at Ω5

(4.16)
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(a) (b)

Figure 4.9: Error ϵPOD of the classical POD projection, posteriori error bound by greedy RBM
and error ϵROM of the solution of the reduced order model obtained by the proposed method (a),
and sampled parametric points using the proposed method, classical POD and greedy RBM (b).

Figure 4.10: (left) Geometrical set up of advection-diffusion problem in a 9 block system and
(right) advective flow field.

where, u(µ) is the unknown field for a spatial domain Ω = [0, 1] × [0, 1]. The diffusion
coefficient is given by K(µ) = µ for the input parameter µ ∈ D = [0.01, 10]9 and σ is the
constant reaction term. b is a given advected flow field which is obtained by solving a
potential flow problem in the same bounded domain such that ∇.b = 0. We consider a low
permeability zone in Ω5, and relatively higher permeability over the rest of the domains,
and with a constant velocity at the inlet, we obtain the streamlines as shown in figure 4.10.

The weak parameterized formulation using SUPG then reads as: for some parameter
µ ∈ D, find u(x;µ) ∈ VN where VN =

{
v ∈ (H1

0 (Ω))2|v|Γinlet = 0
}
,

⟨v+τ∇v, b ·∇u⟩+⟨∇v,K(µ)∇u⟩−⟨τ∇v,K(µ)∆u⟩+⟨v+τ∇v, σ⟩ = 0 ∀v ∈ VN (4.17)
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Here τ = βh
2||b|| , where h is the element size in the direction of the advected velocity and

||b|| is the (local) characteristic velocity. The parameter β depends on the Péclet number
that varies between (0,1). Note that the third term in the equation (4.17) is zero if linear
elements are used for domain discretization [148].

The reduced weak form of eq. (4.17) can be obtained by replacing u by, uPOD which
can be expressed as:

uPOD(x;µ) =
r∑

j=1
ϕj(x)zj(µ) (4.18)

where, z = {z1, . . . , zr}T represents the coefficients of the POD expansion and the
reduced basis function {ϕj}rj=1 is obtained by,

ϕj = POD
(
[u1,u2, . . . ,uN ]

)
∈ RN (4.19)

In the second step, the weak form is projected onto the properly selected low-dimensional
subspace such that,

⟨ϕk +τ∇ϕk, b·∇uPOD⟩+⟨∇ϕk,K(µ)∇uPOD⟩+⟨ϕk +τ∇ϕk, σ⟩ = 0 ∀k = 1, . . . , r (4.20)

Note that only the diffusion term in the equation (4.20) is affine with respect to the
input parameter K(µ) and can be efficiently reduced during the offline stage,

⟨∇ϕk,K(µ)∇uPOD⟩ = K(µ)
r∑

j=1
⟨∇ϕk,∇ϕj⟩zj , (4.21)

in which the (r × r) operator ⟨∇ϕk,K(µ)∇uPOD⟩ can be computed once and for all
in the offline stage. During the online stage, if new parameter K(µ) is prescribed, the
evaluation of the diffusion operator of eq. (4.20) can be done in reduced complexity (i.e. it
does not depend on the original dimension N ) since it only requires O(r × r) operations.
This step is crucial for retaining the computational efficiency of the ROM, however, the
same idea cannot be straightforwardly applied to the convective and source term of the
equation (4.20) as the projection operator dependency on the input parameter i.e. diffusion
coefficient is non-affine. However, the non-affineness is not addressed in this study; instead,
the application of the suggested approach to a multi-dimensional PDE system is the main
focus.

4.4.2 Results and discussions

The input parameter µ is discretized using the LHS technique with 2500 sample points,
from which the training set Ξtrain ⊂ D consist of 2000 points and the remaining 500
samples are used for the validation set Ξval ⊂ D to certify the quality of reduced basis
approximation. Figure 4.11 represents the unknown field with different combinations of
diffusion coefficients for each of the 9 blocks.

Similar to the previous numerical example, we perform the algorithm based on two
different initialization of the low-fidelity model. First, the discussion is presented for the
low-fidelity model approximation by a POD-G ROM built using a random sketch. Three
studies are conducted to evaluate the computational performance: the first two examined
the impact of the random sketch on the qualitative performance of the suggested method,
while the third examined the quantitative performance of the algorithm by adjusting the
greedy parameter for sampling. This algorithm is conducted over 10 trials for the first
two cases, the convergence plot is shown in figure 4.12. In the first case study, the initial
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Figure 4.11: Three different representative solutions for the advection-diffusion problem shown
(below) by varying nine different combinations of diffusion coefficient K(µ) in all the three domains
(top).

rank of the random sketch for constructing a ROM is chosen to be 100, and during every
iteration cycle, 10 points are added incrementally to update the low-fidelity model. With
a target tolerance set to ϵ = 10−6, we can observe that 13 iteration cycles are required
to achieve the desired accuracy in each of the 10 trials, refer to figure 4.12a. A total
count of 100 + (10 ∗ 12) = 220 parametric points are sampled out of 2000 points from the
training set. It is to be noted that the rank of the low-fidelity model is also enhanced
by 10 which implies that all the points sampled are unique which is expected and as a
consequence, the recovered basis functions by construction are linearly independent. In the
second case study, the random sketch is initialized with 10 linearly independent snapshots
from the training set instead of 100 and in each iteration, 10 points are sequentially added
to recover the basis functions. It is observed from figure 4.12b, that in 22 iterations the
target accuracy is achieved with a total sampling of 220 points out of 2000 points from the
training parametric set, similar to the first case. Thus, it is evident that irrespective of
the size of the random sketch chosen for the initial construction of the low-fidelity model,
the algorithm performed well in both scenarios and the final enrichment of the low-fidelity
model converged towards the FOM model accurately within the prescribed tolerance. The
computational time required to achieve the target accuracy is O(103) in seconds in both
cases, while having comparable computational performance.

In the third case, the study is conducted by sampling 2 parametric points per iteration
instead of 10 points. Figure 4.12c reflects 54 iteration cycles required to achieve the same
target accuracy, with a total sampling of (100+54*2=208) points, unlike in the previous two
cases where 220 points were selected from the parametric space. The CPU time required
in this case is O(104) seconds, which is one order higher than the previous cases. This
implies adding a few points per iteration can minimize the risk of sampling excess points
while maintaining the same order of accuracy, but at the cost of higher CPU time. Due to
the discrete nature of error evaluation, the relative training error is observed to be noisy,
but with the validation error plot, we can see a smooth decay of the curve as the error is
evaluated over the entire validation set rather than at select discrete points.

For the second analysis, the initial low-fidelity model is built using a very coarse sketch
model, as shown in figure 4.13a. For recovering the high-fidelity solution, a fine discretized
model is used in figure 4.13b. The points are added sequentially by incrementing with 10
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(a) initial rank 100, incremented by 10 points
every iteration

(b) initial rank 10, incremented by 10 points
every iteration

(c) initial rank 100, incremented by 2 points every
iteration

Figure 4.12: (a,b) Mean of error ϵtrain and ϵval between FOM and ROM solution obtained using
different random sketch models over 10 trials and its std. deviation. (c) Error ϵtrain and ϵval

between FOM and ROM solution for one trial.

every iteration. The target accuracy is achieved in 23 iterations (total count of sampled
points is 230) as shown in figure 4.14a, which is more by 10 points compared to the random
sketch model. As is already discussed, such types of PDE problems face numerical stability
issues in case of high Peclet number (advection-dominated cases) and can be resolved by
applying artificial diffusion in the upwind direction. It is also important to note that the
amount of artificial diffusion added to the system depends on the mesh size. So coarser the
mesh size, the more diffusion is required, which may affect the solution significantly. Hence,
to accurately capture the physical properties of the PDE system, it is very important to
consider that the initial grid takes into account all the physical aspects of the problem such
that there is no loss of information. This could be the plausible explanation for a higher
number of points needed when a coarse sketch model is used, as compared to POD-G ROM
for the initial construction of the low-fidelity model. Nevertheless, our main objective to
guarantee convergence is achieved irrespective of the initial size of the coarse mesh used
and can be confirmed further from the decay of the validation error curve seen in figure
4.14b. The CPU time taken is of the O(103) seconds, same as the first and second case.

Figure 4.14b shows the plot for ℓ2 norm POD projection error and ROM error for all
the parameters belonging to the training set using both sketch models. Both the POD and
ROM errors decay as the rank of the system increases, with the POD error serving as a
lower bound to the ROM error. This proves the reliability of the proposed method on the
quality of ROM constructed such that irrespective of the initial design of the low-fidelity
model, the ROM error displays similar decay properties as the POD error.
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(a) Coarse grid (# Nodes=575) (b) Fine grid (# Nodes=3492)

Figure 4.13: (a) Coarse discretized mesh for initial low-fidelity model, and (b) fine discretized
mesh for high-fidelity model approximations.

(a) (b)

Figure 4.14: Error ϵtrain and ϵval between FOM and ROM solution using coarse sketch model
(a). Error ϵPOD of the classical POD projection, and error ϵROM of the solution of the reduced
order model obtained by the proposed method (b).

4.5 Numerical example of flow past a sphere problem

The third example investigated is the classical benchmark inertialess flow past a sphere
problem obeying the Giesekus constitutive model, discussed thoroughly in section 3.3.2 of
chapter 3. The quantity of interest is to analyze the variable log conformation tensor S for
different values of relaxation time of the fluid (λ) lying in the range [0.1, 0.5] while keeping
the rest of the fluid parameters fixed. The input parameter λ is discretized using the
logarithmic scale with 15 sample points from which the training set Ξtrain ∈ D consist of
initial 10 points and the remaining 5 are used for the validation set Ξval ∈ D. The training
error is obtained by evaluating the maximum of ℓ2-norm error over the sampled λk values
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from the training set between the high-fidelity and low-fidelity model approximation of the
log-conformation tensor obtained at a fully developed steady state, which is given by,

ϵtrain = max
λk

√√√√∑N ′
i=1 ||SHF(xi, tn;λk)− SR(xi, tn;λk)||22∑N ′

i=1 ||SHF(xi, tn;λk)||22
λk ∈ Ξtrain (4.22)

where SHF(x, tn;λk) represents the high fidelity solution at the final nth time step
obtained by solving the constitutive eq. (3.20) at the computed parametric points λk

and SR(x, tn;λk) represents the equivalent reduced solution as obtained by solving the
expression in (3.26).

(a) Initial lo-fi model with a POD-G ROM (b) Initial lo-fi model with a coarse sketch model

Figure 4.15: Error ϵtrain and ϵval between FOM and reconstructed ROM solution.
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(a) Coarse grid (# Nodes =239 )
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(b) Fine grid (# Nodes =1381)

Figure 4.16: (a) a coarse discretized mesh for an initial low-fidelity model, and (b) a fine
discretized mesh for high-fidelity model approximations.
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The first analysis is predicated on the idea that we already have a random dataset of the
FOM solutions. As mentioned previously, the initial low-fidelity model is then a POD-G
ROM created from this random sketch model. In this illustration, we considered the
random sketch to be comprised of two linearly independent snapshots from the training set.
During each iteration of the algorithm, we increment by one parametric point to update the
low-fidelity model. Figure 4.15a illustrates how 4 iteration cycles are required to reach the
acceptable precision when the target tolerance is set to ϵ = 10−2. This suggests that the
low-fidelity model’s rank is increased by a factor of 5 while achieving an accuracy of order
O(10−3 − 10−4). Additionally, we also show the convergence plot for parameters belonging
to the validation set, which in 4 iterations achieves an accuracy of order O(10−1 − 10−2).

Figure 4.17: Sampled parametric points in each iteration.

For the second case, we initialize the low-fidelity model using the coarse sketch model
as shown in figure 4.16a. For recovering the high-fidelity solutions, the fine mesh model
as illustrated in figure 4.16b is used. Likewise, we increment by one parametric point to
update the low-fidelity model during each iteration of the algorithm. The target accuracy
is achieved in 3 iterations (total count of sampled points is 4) as shown in figure 4.15b. We
also show an illustration of sampled points obtained by both the sketch models in figure
4.17. It is clear that the points chosen are not repetitious because the computed points do
not exactly correspond to the same location in each iteration. However, the points are not
being extracted from the same location when both sketch models are used as was observed
in the first numerical example, and the reason could be due to the way the algorithm
operates and its dependency on the initial point selection. This needs further investigation
to come to a definitive conclusion. We also show plots of the POD modes recovered using
the proposed method via random sketch model and by classical SVD in figure 4.18. We
observe that the modes generated in both the cases have identical representations, but
not in the same order. A thorough study is required for cases where the sampling space
comprises larger values of the Deborah number, which may present numerical challenges in
contrast to smaller values of the Deborah number. By means of this numerical test, we
demonstrated that sampling appropriate parametric points is possible regardless of the
PDE formulation, however it may be difficult to construct error estimators, which was the
major goal of this methodology.
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(a) (b)

Figure 4.18: POD modes obtained by classical SVD (a) and by proposed IMF approach (b).

4.6 Conclusions
In this chapter, we presented the feasibility of a multi-fidelity approach in reduced basis
approximation for a multi-dimensional parametric PDE system in an iterative procedure.
The parametric sampling is adhoc and extracted from low-fidelity model approximations
based on heuristic assumptions. Such approximations of low-accuracy low-fidelity models
over high-fidelity models enhance the computational performance in the offline stage
significantly. Not to mention, this approach proved to be adequate when a posteriori error
estimator is unavailable or difficult to obtain for complex PDEs, which is an essential
ingredient for efficient greedy sampling. The greedy selection is user dependent, i.e. one
can select a single point or multiple points for each iteration. However, attention is to be
given as excess parametric points might be sampled than required to achieve the same
target accuracy but at a higher CPU cost. So a compromise can be made on the trade-off
between computational efficiency and accuracy. Overall, the construction of reduced basis
subspace required less high-fidelity snapshot generation in the proposed method. We also
presented two different ways of initializing a low-fidelity model in this work and irrespective
of the initial quality of the low-fidelity model approximation, the method is shown to be
reliable and stable by converging towards the FOM approximation within the prescribed
tolerance.

This methodology is successfully demonstrated on a 2D steady-state advection-diffusion
problem for 9 input parametric dimensions. A qualitative comparison is also presented for
a simple steady-state heat conduction problem between the proposed method and greedy
RBM, in which both cases had comparable computational performance. Last but not
least, the algorithm was tested on the flow past sphere benchmark problem suspended in
Giesekus fluid with relaxation time as the input fluid parameter. It was demonstrated that
regardless of the PDE definition, the methodology allowed optimal parametric sampling in
the absence of problem-specific error estimators.

In our current work, we have only performed linear reduction, but we can further
embed hyper reduction in our current framework "on the fly" i.e. during the multi-fidelity
iterations for treating non-affine problems. This step can alleviate the cost of low-fidelity
model approximations significantly. For some of the current research work one can refer to
the articles [176,177] on adaptive hyper reduction techniques which allows enrichment of
the reduced integration domain during the online stage as the simulation progresses.
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Additionally, during the multi-fidelity iterations, we may also evaluate the low-fidelity
model solely on a portion of the randomly chosen parametric points as opposed to the
complete training set. This procedure could drastically improve the computational per-
formance of the methodology, specially for nonlinear PDEs. However, there are certain
implications to it such as there will be missing information in the parametric subspace and
as suggested in the methodology, to sample points using the DEIM strategy, one needs
to orthogonalize the current parametric functions in relation to the previous ones. As a
possible solution to this problem, Gappy-POD may be used to reconstruct the missing
data in the updated parametric functions and can be implemented into this technique for
future research work.
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Chapter 5

POD-ROM for spatially adapted
snapshots

Abstract

This chapter is dedicated to reduced basis construction for spatially adapted
snapshots that are generated by resolving the underlying parametric PDE system using
adaptive finite elements. This work is set up in two parts: Firstly, a projection-based
POD-G ROM is derived by employing a multi-fidelity approach. This method will
allow picking appropriate space-adapted snapshots belonging to a given training set
via low-fidelity model approximation and using that information we recourse to a
high-fidelity model to recover the POD modes that will be vectors of the same size.
In the second part of the work, we propose a technique for the recovery of spatially
adaptive reduced basis functions that are representative of select adaptive snapshots.

5.1 Introduction

Standard model order reduction techniques are applied on static snapshots, meaning all the
snapshots use one and the same finite element mesh. Some fundamental problems that often
appear in physical or mechanical applications are high gradient solutions in boundary layers,
shock waves [178], edge singularities, scale heterogeneity such as in porous media [179],
composite structures, and so on that demands very fine numerical resolution to accurately
capture the such phenomenon. Indeed, the cost of resolving such physical characteristics
with a fine uniform mesh becomes so significantly overwhelming that instead adaptive
mesh refinements are employed, which can essentially capture such features with great
accuracy while reducing the degrees of freedom profusely. There are numerous techniques
developed for the mesh adaptation and can be referred to in the literature [180–184].

The inclusion of spatial adaptivity in the model order reduction framework is quite
advantageous from two perspectives: utilizing adaptive finite elements for snapshot genera-
tion can greatly reduce the offline computational cost in comparison to the use of a fine
uniform mesh. On the other hand, surrogate modeling can guarantee computational speed
up as compared to FOM which we have discussed thoroughly in the previous chapters.
However, applying classical model order reduction methods on space-adapted snapshots is
not feasible. In a discrete setting, the adaptive snapshots are vectors of different lengths,
and hence constructing a single snapshot matrix is not possible. This leads to the problem
that the usual POD employed by SVD on the snapshot matrix cannot be carried out.

There are different concepts published in the articles [74,76,77,185,186] where MOR
is considered by projection onto the reduced space generated from both space and time
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adapted snapshots. In the recent publication of 2019 [76], the authors proposed a POD-
Galerkin ROM by defining the reduced basis functions implicitly as a linear combination
of original space-adapted snapshots. By doing so, the creation of a common finite element
space of all the snapshots is avoided, but this requires evaluation of bi-linear forms for
all pairs of snapshots. Parallel to this research work, the authors in the article [77] also
proposed to build a POD-ROM for evolving PDE equations for any arbitrary discretization
by expressing reduced basis functions in terms of snapshots in a continuous setting that
eliminates the requirement of creating a common mesh but at the expense of computing
the inner product of the intersections of the finite element ansatz functions. In the context
of reduced basis methods [185,187], the authors derived residual bounds with respect to
infinite dimensional truth solution. An adaptive wavelet discretization scheme is used for
snapshots generation in the offline phase that allows to numerically approximate dual norm
infinite dimensional residual and, in contrast, [74] the authors derive an error bound with
mixed finite element formulation. In the article [188], an interpolation approach is outlined
to eliminate spatial discretization of the snapshots. The idea is rather to interpolate
given snapshots of arbitrary spatial discretization by piecewise polynomials. In another
work, [189] the authors performed POD on an ocean model which is discretized using a
dynamic spatial adaptive mesh model. A fixed reference mesh is utilized for interpolating
all the snapshots so that snapshots at each time level are vectors of the same size, and then
the usual POD approximation on this reference mesh is carried out. In fact, in this work
as well, we construct a fixed reference mesh and the snapshots from their own mesh are
interpolated onto this fixed reference mesh upon which the basis functions are computed
via POD approximation. The novelty of this work is we do not interpolate all the snapshots
belonging to the training set, rather only a few picked snapshots are interpolated onto the
reference mesh.

To materialize the idea, we employ the multi-fidelity modeling approach discussed
in the previous chapter combined with POD-ROM approximation for high dimensional
parametric PDE systems. We leverage low-fidelity models for parametric space exploration
iteratively, and only the selected adaptive snapshots are represented as members of a
high-fidelity model for recovery of the basis functions. The high-fidelity model in this case
is the fine, uniform reference mesh. The ROM is built by the usual Galerkin projection
onto the subspace enriched by the computed RB functions. The procedure is repeated
until the reduced subspace is spanned by a set of orthogonal RB functions that are a good
representation of the entire set of snapshots. Additionally, in this work, we also present a
technique for recovering adaptive reduced basis functions, in a discrete setting, that can be
expressed as a linear combination of the select adaptive snapshots computed in the first
part.

The overview of this chapter is: We first discuss the problem definition in section
1, followed by a brief explanation of mesh adaptation using in-house IciTech libraries
[184,190,191] in section 2. Next, we present the framework of the proposed methodology
in section 3, while discussing the design of both low-fidelity and high-fidelity models, and
finally, in section 4, we demonstrate the methodology on a 2D diffusion-reaction PDE
problem utilizing adaptive meshes for a varying range of reaction coefficient.

5.2 Problem description

Let us consider a 2D steady-state diffusion reaction problem in a bounded domain Ω =
[0, 1]× [0, 1] which satisfies the following equation,

−∆u+ λu = 1 + λ on Ω u = 0 on ∂Ω (5.1)
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Here "u" is the concentration variable, and we are interested to solve the problem
for different values of the reaction coefficient λ. An approximate solution uh ∈ VN ⊂ V
is sought by Galerkin finite element formulation. By multiplying with a test function
vh ∈ VN , the weak form of the equation can be written as:∫

Ω
∇uh.∇vhdΩ +

∫
Ω
λuhvhdΩ = (1 + λ)

∫
Ω
vhdΩ ∀vh ∈ VN (5.2)

where,

uh(x;λ) =
N∑

k=1
Nk(x)uk(λ)

Nk are the shape functions of choice and uk(λ) represent the scalar values of the field
uh at discretization points xk, k = 1 . . .N . The equation (5.1) in algebraic form can be
written as,

(K + λM)u(λ) = (1 + λ)f (5.3)

K =
{
kij =

∫
Ω
∇Ni · ∇NjdΩ

}
∈ RN ×N

M =
{
mij =

∫
Ω
NiNjdΩ

}
∈ RN ×N

f =
{
fi =

∫
Ω
NidΩ

}
∈ RN

The high fidelity snapshots {ui}Ni=1 ∈ RN are generated for all the reaction coefficient
parameters lying in the training set, λ ∈ Ξtrain ⊂ D and N = card(|Ξtrain|). Now, the
reduced weak form can be obtained by replacing uh in eq. (5.2) by, uR

h which is expressed
as:

uR
h (x;λ) =

r∑
k=1

ϕk(x)ak(λ) = Φa r << N (5.4)

where, a = (a1, . . . , ar)⊤ are the POD expansion coefficients and Φ = [ϕ1,ϕ2 . . . ,ϕr]
are the POD modes.

By Galerkin projection, equation (5.3) in reduced form is given by,

( Φ⊤KΦ︸ ︷︷ ︸
pre-computed

+λ Φ⊤MΦ︸ ︷︷ ︸
pre-computed

)a = (1 + λ) Φ⊤f︸ ︷︷ ︸
pre-computed

(5.5)

The above equation is now a system of order O(r× r) greatly reduced from O(N ×N ).

5.2.1 Numerical analysis

We solve for the unknown field variable u for a parameter λ in the range of [101, 103]
which is spaced logarithmically with 100 points. This problem in particular has a wide
range of variations in the solution field, so in order to represent well enough the entire
parametric space, we first produce results with a very fine uniform mesh of mesh size
h = 0.002 illustrated in figure 5.1. Figure 5.2 illustrates the diffusion profile for λ =
10, 102, 497 and 1000.

Now, let us look carefully at the solution profile for λ = 10 and 1000. We observe that
for λ = 10, the diffusion is concentrated in the center as expected (fig. 5.2a), and as the
lambda value gets higher the solution becomes more saturated that it almost forms like a
cube shape as can be seen in figure 5.2d. Steep gradients are observed along the boundaries
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Figure 5.1: Uniform fine mesh representation (#Nodes = 316714)

(a) λ = 10 (b) λ = 102

(c) λ = 497 (d) λ = 1000

Figure 5.2: Solution profile for different values of λ

for λ = 1000, therefore it demands a very fine mesh to accurately capture the behavior
in that region, whereas for smaller lambda values for example λ = 10 the mesh can be
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relatively coarser as the gradient change is rather gradual than steep.
Hence, we can deduce that it is not computationally efficient to apply a uniform fine

mesh across the domain for all the lambda values, for there is little to no variation in values
in the center of the mesh and drastic changes on the boundary for the snapshots where
the λ values are large. Thus, this problem can be justified as a classic example of utilizing
adaptive meshes to suit the model accordingly and our final aim is to apply POD-ROM
on the generated adaptive snapshots. The next section is dedicated to mesh adaptation
discussions.

5.3 Mesh adaptation
The most commonly used mesh adaptation techniques are h, p, r adaptation, and hp
adaptation [180–184]. In h-adaptation, mesh refinement is typically done in a specific
location by altering the mesh size, while in p-adaptation the polynomial order of the
shape function is increased. It involves enhancing the degrees of interpolation for local
elements. On the other hand, in r-adaptation, the nodes are re-positioned especially near
the interfaces without changing their topology. The framework of hp-adaptation is a
combination of both h- and p-adaptation.

The mesh refinement in the numerical work presented in this work is h-adaptation,
using the ICITech library. It is built on a mesh topology optimization generator by
executing local operations to incrementally enhance an initially inadequate mesh. In
ICITech, an automatic anisotropic mesh adaptation technique is used based on metric
tensors [190, 192, 193]. The Riemannian metric space and the unit mesh, rather than
Euclidean space, are the foundations of the metric-based approach (for example, equilateral
triangles in a 2D mesh or regular tetrahedrons in 3D meshes). In other words, the
components that make up the mesh in Euclidean space can be of any shape (unit or
not), and they will be converted into unit elements in the corresponding metric tensor
space. Since the refinement is carried out in a particular direction [194] in anisotropic
mesh adaptation and the metric fields are computed using a posteriori estimator [195],
the execution of anisotropic meshing is more challenging and complex than the generation
of an isotropic mesh. However, a substantial number of nodes are reduced in anisotropic
mesh adaptation, providing a lower, computational time and less memory capacity. In
practice, the most well-established error analysis enables the calculation of a metric tensor
on an element basis, however, in the IciTech library, the metric field is calculated directly
at the nodes of the mesh for direct use in the meshing tools.

Before detailing the methodology, let us first present some notations, properties, and
definitions of mesh topology.

5.3.1 Mesh topology

Let N be a finite set of nodes in Ω, and T denote a set of T elements, T being a d-simplex
whose vertices belong to N . Let F(T ) be the set of faces of T ’s elements, while a face is
designated by F . A basic property is

1 ≤ card(T (F )) ≤ 2,∀F ∈ F

and the faces belonging to the boundary of T are:

∂T = {F ∈ F , card(T (F )) = 1}

Each face F ∈ F(T ) shares no more than two elements, and only the boundary faces
have one element.
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Figure 5.3: Illustration of the edge vector xij of the edge joining nodes i and j, and the edge
solution, uij joining the solution at the nodes i and j.

Theorem: (N , T ) is a mesh of Ω if and only if the elements of T are non-degenerated
and

∑
T ∈T
|T | = |Ω| (5.6)

That is, among all mesh topologies, valid meshes are those that satisfy the minimal
volume criterion [193, 194]. In addition to satisfying the minimal volume property, one
must ensure the topology is unique. This is achieved by checking the geometrical quality
of elements. The evaluation of the quality of each element of the mesh topologies is done
by computing the shape factor,

c(T,x) = |ΩT |
h(T )d

(5.7)

where, h(T,x) = ∑
i,j∈T ||xi − xj || such that x : N → Rd. This shape factor varies

between 0 and 1, with 1 being the best quality representing the equilateral simplex, and 0
being the flat element.

The operation of the local modification of the mesh topology is done by simply cut-
and-paste operation:

T ← T − a+ b (5.8)

a being the subset of elements to be deleted chosen in T and b a new set of elements to
be inserted. a, b must have the same boundary, i.e. ∂b = ∂a. Although, this operation is
valid only if the result is still a mesh topology and follows the above-mentioned criteria.
Details on the selection procedure of a and b can be referred to in [184].

5.3.2 Mesh optimization

Let us recall that xi ∈ Rd, i = 1, · · · ,N is the set of nodes of the mesh and that the vector
xij connects nodes i and j, and xij = xj − xi, as illustrated in figure 5.3. Let Z(i) be the
patch associated with the vertex xi of the mesh shared by several edges.

The problem of finding a unitary metric Mi associated with the ith node can be
formulated as the least squares problem [190]. Recall, uh is the numerical solution
approximated on a given mesh, and let ‘K’ be the desired number of edges for the mesh.
The aim is to create the "best" mesh (N , T ), or in other words, construct an optimal metric
field tensor M such that the interpolation error |uh −Πuh| is minimized in ℓ1-norm. Πuh

is the linear interpolation of the solution uh on the mesh, T i.e Πuh(xi) = uh(xi)∀i ∈ N .
The local interpolation error distributed over the edge can be written as,
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ẽ(s) = 1
2
∑
ij

s2
ijeij = 1

2
∑
ij

s2
ij |gij · xij | (5.9)

where sij stands for mesh scaling factor, eij is the calculated error, and gij represents
the gradient along and in the direction of the edge xij . For the desired number of edges K,
the following minimization problem is solved:

min ϵ(s) = min
∫

Ω
|ẽ(s)| dΩ

s.t.,
∑
ij

nij = K
(5.10)

where nij is the evaluation of the number of created edges in relation to the scaling
factor sij . The resulting optimal metric solution of the equation (5.10) defined at the mesh
nodes is then given by,

Mi =

1
d

∑
j∈Z(i)

s2
ijxij ⊗ xij

−1

(5.11)

where,

sij =
(
λ

eij

)1/p

and,

λ =

∑i

∑
j∈Z(i) e

p
p+2
ij

K


p+2

p

p ∈ [1, d] is the penalty factor. Moreover, when sij = 1, ∀i,∀j ∈ Z(i) then the mesh is
optimal. The recovered edge gradient gij is reconstructed from the numerical solution uh

by solving the following minimization problem:

gij = argmin
g

∑
j∈Z(i)

|(g −∇uh) · xij |2

= argmin
g

∑
j∈Z(i)

| g · xij −
(
uh (xi)− uh (xi)) |2

(5.12)

Also, we are seeking a unitary metric tensor where each transformed edge vector is
almost equal to 1, so that the sum of the transformed edge vectors in Z(i) is,

∑
j∈Z(i)

(
Mixij ,xij

)
=

∑
j∈Z(i)

1 = |Z(i)| (5.13)

From equations (5.12), (5.13) and (5.10) an approximation of the optimal metric tensor
is derived. The volume is adapted by local mesh modification of the previous mesh using
local mesh operations such as node insertion, deletion, edge and face swap, collapse, and
node displacement while satisfying the minimum volume theorem [194]. Finally, on the
new mesh, the field solutions are linearly interpolated. The process is considered converged
when the difference between the computed metrics in the current and previous iteration is
small.
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5.3.3 Extension to parametric field adaptation

The error metric discussed above has been built taking into consideration only one field
variable. The work has been further extended to construct a unique metric directly from a
multi-component vector field containing velocity, pressure, or other field variables [192]. In
the considered diffusion-reaction problem, a unique metric is built taking into consideration
all the snapshots generated for different values of reaction coefficient λ belonging to the
training set Ξtrain, u = {u1, u2, . . . , uN}. The error vector for all these snapshots is then
defined as, eij = {e1

ij , e
2
ij , . . . , e

N
ij }. Then, the stretch factor is

sij =
(
∥λij∥
∥eij∥

) 1
p

The norm can be ℓ2, ℓ1 or ℓ∞. In the numerical example presented, we used the ℓ2
norm to compute the error,

∥eij∥ℓ2
=
(

N∑
k=1

(
ek

ij

)2
) 1

2

5.4 Part 1: Iterative multi-fidelity modeling (IMF) for
building PODG-ROM for spatially adapted snapshots

Traditionally, if {ui
h(x;λ)}Ni=1 ∈ RN represents the FOM solutions of the PDE problem

(5.1) that belong to a single and same finite element space VN , and can be suitably well
approximated in a low-dimensional manifold (definition refer 2.2), then the solution can be
represented in a separated form as,

uh(x;λ) =
r∑

i=1
ϕi(x)(ψ(λ))i (5.14)

Here, {ϕi}ri=1 ∈ RN represents the reduced basis functions which spans the low
dimensional subspace, i.e. VR = span{ϕ1, . . . ,ϕr} ⊂ VN and ψ(λ) : D −→ R are
parametric functions that span the parametric space.

However, in this work we consider that the snapshots belong to different subspaces
u1

h ∈ V
N1
1 ,u2

h ∈ V
N2
2 , . . . ,uN

h ∈ V
NN
N where VN1

1 ,VN2
2 . . .VNN

N ⊂ V and N1,N2, . . . ,NN are
the dimensions of the respective spaces. Hence, constructing the basis functions ϕi(x) and
ψi(λ) with traditional POD is impossible unless all the snapshots are interpolated onto
a reference mesh such that the snapshots are the representative solution of the reference
mesh.

Similar to the approach of multi-fidelity methods as explained in the previous chapter
is extended to RB construction of spatially adapted snapshots. Although the idea remains
the same, the framework is slightly different in this case. The flow of the proposed method
is shown in figure 5.4.

We have divided the flow diagram into two parts: the first part shows the steps for
the initialization of a low-fidelity model, and the second part reflects the steps of the
methodology. To create a low-fidelity model approximation, first, we need to generate
adaptive snapshots which are done using the procedure explained in section 5.3, followed by
the construction of a reference mesh. A reference mesh can be of two types: a uniform fine
mesh, or also it could be a commonly adapted mesh which is a good representative mesh
for all the snapshots (sec. 5.3.3). In the numerical example presented, the reference model
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Training set
Step 1

Generate snapshots
on adaptive meshes

Step 2
Create a reference mesh
(High fidelity model)

Step 3
Draw random collocation

points from the reference mesh
(Low fidelity model)

Training set,
Space adapted snapshots,

Lo-Fi model
Hi-Fi model

Step 1
Interpolate the space adapted
snapshots onto the lo-fi model

STOP Step 2
Estimate parametric modes

Step 3
Select new point(s) in the

parametric space using
DEIM on parametric modes

Step 4
case I Interpolate the adaptive
snapshots onto the hi-fi model

( case II Solve hi-fi
model on select snapshots)

Step 5
Compute the basis functions

Step 6
case I Compute new

collocation points using
DEIM on spatial modes

( case II Derive a POD-G ROM)

Step 7
Check convergence error

< tol ( ( if case I )

Update lo-fi
with ROM model

< tol ( if case II )

> tol

Figure 5.4: Flow of the proposed method

(N+, TM+) is represented by a uniform fine mesh, with x̂i, i = 1 . . .N+ denoting its spatial
coordinates. We introduce a space VN+ ⊂ V such that VN1

1 + VN2
2 + . . .VNN

N ⊂ VN+ .
A low-cost, low fidelity model approximation mathematically can then be defined as

a function that maps all the solutions lying in different finite element spaces to a set of
randomly drawn collocation points of the reference mesh,

f init
LF : ui

h(x)→ ui
LF(x̂g), i = 1 . . . N (5.15)

Here, x̂g = randsample(N+, ‘m’) ⊂ x̂, m << N+. randsample is a matlab
function that returns ‘m’ values sampled uniformly at random without repetition. Note
that collocation points in this work are given either by nodal points or integration points.

In step 2, parametric functions are computed from this low fidelity model approximation
that spans the parametric subspace, D = span{ψi}Ni=1 ∈ RN . Followed by parametric
sampling in step 3 which is obtained by applying DEIM over these parametric functions.
The detailed steps are explained in the algorithm 5

Next, in step 4, two choices are proposed: The first choice is to interpolate the selected
adaptive snapshots onto the reference mesh. A high-fidelity model approximation can then
be mathematically defined as a function that maps all the picked adaptive snapshots onto
the nodal (integration) points of the reference mesh,

fHF : uh(x;λk)→ uHF(x̂;λk), ∀k ∈ (1, N), uHF ∈ RN+ (5.16)
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The second choice is to directly solve the PDE system (5.1) for the select sampled
points using the fine uniform grid.

In step 5, high fidelity basis functions ϕi
HF ∈ VR

+ are then recovered with usual POD
procedure and therefore enriching the reduced basis subspace, VR

+ = span({ϕi
HF}ki=1) ∈ RN+

where R = dim(VR
+), the construction is properly explained in the algorithm 4.

Since the first approximation for the parametric functions is likely to have some error,
the recovery of high-fidelity basis functions may not be accurate and reliable to represent
the large-scale PDE system, hence the procedure is an iterative one.

Now, in step 6, we construct two types of ROM. The first choice is an updated collocation
model (a similar procedure used for approximating the initial low fidelity model), except
the points drawn, are not random but rather are computed using DEIM on the recovered
spatial basis functions. The second choice is a physics-based reduced order model by
Galerkin projection, as derived in eq. (5.5).

Finally, in step 7, the accuracy of the low-fidelity model is evaluated. If the ℓ2 norm
error between the reduced bases of the current and the previous iteration of the loop is
below a certain prescribed tolerance, the algorithm is terminated. Else, we update the
low-fidelity data with the current ROM approximation, either by interpolation of the
snapshots onto the collocation points or by POD-G ROM approximation. The above
procedure is repeated until the low-fidelity model constructed can approximate all the
adaptive snapshots from the training set lying in different finite element spaces adequately.

Algorithm 4 POD procedure for basis computation.
1: Φ← POD(S, Φ, δg)
2: if Φ = [ ] then
3: [ϕk, σk,ψk] = svd(S)
4: Φ← [ϕ1, . . . ,ϕk]
5: end if
6: for l = 1 : dim(S) do
7: ϕl = Sl − Φ⟨Φ,Sl⟩
8: if ||ϕl||

||Sl|| > δg then

9: Φ← [Φ, ϕl

||ϕl|| ]
10: end if
11: end for

Algorithm 5 DEIM Algorithm adopted from [108]
1: Ξg ← DEIM(Ψ)
2: λ(1) = max {|ψ1|} , Ξg = [λ(1)]
3: for l = 2 : dim(Ψ) do
4: Solve c = [Ψ(1:l−1,1:l−1)]−1ψ(1:l−1,l)
5: r = ψl − Ψc
6: λ(l) = max{|r|}
7: Ξg ← [Ξg, λ

(l)]⊤
8: end for

5.5 Part 2: Recovery of the adaptive basis functions
In this section, we expand the above-discussed methodology into the construction of spatially
adaptive reduced basis functions that can be explicitly defined as a linear combination of
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‘K’ selected parameters such that K = card(λk) and k ∈ (1, N). Since the picked snapshots
lie in different finite element spaces, it is important to construct a common finite element
space of subsets of select snapshots. Let us define a new finite element space corresponding
to the linear combination of the adaptive meshes that corresponds to the selected snapshots,
V1..K with the properties such that,

1. ∑K
n=1 αnVNk

k ⊂ V1...K ∀k ∈ (1, N)

2. V1...n is of the same type as VNk
k with n = 1 . . .K

Finally, the adaptive reduced basis functions can be expressed as,

ϕ̃n =
K∑

n=1
ûn

h(·;λk)αn ∀k ∈ (1, N), (5.17)

where, {ûn
h}Kn=1 ∈ V1..K are snapshots belonging to the new commonly adapted mesh.

First, we need to compute the coefficients αn. Once the selected adaptive snapshots have
been identified at the end of the proposed algorithm, QR decomposition is applied to the
high-fidelity snapshot matrix consisting of the selected snapshots interpolated onto the
high-fidelity model. It follows:

SHF = QHFR (5.18)

Where QHF = [ϕ1
HF,ϕ

2
HF, . . .ϕ

r
HF] ∈ RN+ and R is an upper triangular matrix with

diagonals elements as positive that can be obtained by, R = Q⊤
HFSHF. Since QHF is a

orthogonal matrix, and Q⊤QHF = I, we can obtain Q−1
HF = Q⊤

HF. The coefficients αn is
then given by the coefficients of the R matrix.

Let us assume that the number of picked adaptive snapshots is three, then the basis
functions are given by,

ϕ̃1 = û1
hα1 ∈ V1

ϕ̃2 = û1
hα1 + û2

hα2 ∈ V12

ϕ̃3 = û1
hα1 + û2

hα2 + û3
hα3 ∈ V123

(5.19)

5.6 Results and discussions

5.6.1 Numerical analysis on mesh adaptation

In this section, we present the FOM solutions of the diffusion-reaction problem explained
in section 5.2 generated using adaptive finite elements, and compare the computational
performance with the results that are obtained utilizing uniform fine mesh.

Figures 5.5a, 5.5b, 5.5c, and 5.5d represents adaptive FOM solutions for λ = 10, 102, 497
and λ = 1000 respectively. We can clearly see the difference in the mesh topology among
the four different lambdas. The number of nodes to construct the mesh representing λ = 10
is 380, for λ = 102 is 1030, for λ = 497 is, and for λ = 1000 is 1284. On the other hand,
the uniform fine mesh consisted of order O(105) nodes, which is 2 orders of magnitude
higher than the adaptive mesh representing λ = 1000. Also, the time taken to generate
snapshots utilizing uniform fine mesh is of order O(103) seconds, while using the spatially
adaptive mesh takes almost equal to O(102) seconds. This clearly states the benefit of
using adaptive meshes for snapshot generation as compared to using uniform fine mesh for
all ranges of lambda values.
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(a) λ = 10 (b) λ = 102

(c) λ = 497 (d) λ = 1000

Figure 5.5: Representative solution with adaptive meshes

For λ = 10, one can observe from the figure 5.5a, that the mesh is almost uniform across
the domain except in the corners and edges which are relatively stretched as compared to
the elements in the center which are almost isotropic with minimum mesh size h = 0.01
(see figure 5.6a). On the other hand, for λ = 102 (fig. 5.5b), elements in the center are
coarser compared to λ = 10 and fine across the corners to capture the gradual rising of
the slope accurately and stretched elements in the edges. Figure 5.7a-5.7c illustrates the
quality of the element given by the stretch factor. The quality of each element is mapped
with different colors. The quality is measured by the ratio of the longer edge and the
shorter edge, the more stretched an element is, the poorer quality it has.

For lambda values that are rather large, for example with λ = 1000 (fig. 5.5d) the mesh
representation is drastically uneven since there is very little variation observed in the center,
allowing the mesh in the center to be represented by very coarse elements. In contrast,
drastic changes are observed along the boundaries causing the mesh size to get minimal
in the corners with minimum mesh size h = 0.002 (see figure 5.6c), and very stretched
elements along the edges of the domain. One can see from figure 5.7c, that the elements
on the diagonals and in the center have good quality elements with almost identical being
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isotropic, whereas the elements on the edges are highly stretched out with a ratio as large
as 217.

(a) λ = 10 (b) λ = 102 (c) λ = 1000

Figure 5.6: Illustration of element size for different lambda values.

(a) λ = 10 (b) λ = 102 (c) λ = 1000

Figure 5.7: Illustration of the stretch factor of mesh elements for different lambda values.

To visualize the stretch on the edges of the mesh representing λ = 1000, we plot
a zoomed version along the left and bottom edge of the mesh in figures 5.8a and 5.8b
respectively. If we look carefully at the solution plot in figure 5.2c at the same spot as
a zoomed version (figure 5.8a), it can be observed that the slope is very steep along the
x-direction while remaining almost static in the y-direction. Hence, according to the
mesh adaptation criteria, it naturally adds more elements in the x-direction, while greatly
stretching out the elements in the y-direction(5.8a). The opposite is true for the zoomed
version in the bottom edge of the mesh (figure 5.8b). Hence, the advantage of using
anisotropic mesh adaptation that accurately captures the sharp gradient behavior with
very few elements, as small as O(103) all by stretching the elements at a great length along
the direction where no change is observed. One needs to recognize that the mesh is well
adapted and efficient for this particular lambda, the quality of elements might not be a
good representation for other lambda values.

If we were to perform POD in a usual procedure, we would require to interpolate all
the snapshots onto the uniform fine mesh that is built by taking into consideration the
same fineness as the finest triangle in the adaptive meshes. To overcome this problem,
one can interpolate all the snapshots onto a commonly adapted mesh, such that it need
not be a super-fine uniform mesh, but a mesh fine enough to represent all the snapshots
without losing too many features. Figure 5.9a shows the commonly adapted mesh that is a
good representation of all the snapshots belonging to the training set and has 18598 nodes
which is smaller by one order of magnitude compared to the uniform mesh. Also, notice
the quality of the elements on the boundary is drastically improved after performing the
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(a) Zoom along the left edge of the mesh
in x-direction

(b) Zoom along the bottom edge of the
mesh in y-direction

Figure 5.8: Zoom in on the edge of the mesh representing λ = 1000.

mesh adaptation of the snapshots onto this commonly adapted mesh, see figure 5.9b. The
stretch factor of the mesh elements is shown in figure 5.10.

(a) (b)

Figure 5.9: (a) Illustration of commonly adapted mesh (#Nodes = 18598) and (b) zoom in on
the left edge of the mesh.

Even if we interpolate the adaptive snapshots onto a commonly adapted mesh and
conduct the usual POD procedure to generate basis functions, it still is not cost-effective,
especially if the input parametric space is high-dimensional. In such scenarios, the proposed
method is indeed quite beneficial as it allows us to sample only the important parametric
points without needing to construct any sharp error bounds while maintaining the desired
accuracy, and only on the select points, the adaptive snapshots are mapped onto the
reference mesh. Note, the objective is to focus on the qualitative performance of the
algorithm that can sample points efficiently to build a ROM, so the results that are
produced are based on a uniform reference mesh instead of a commonly adapted mesh.
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Figure 5.10: Stretch factor of the mesh elements of the commonly adapted mesh.

5.6.2 Numerical analysis on iterative multi-fidelity reduced-order
modeling

Next, we produce results obtained with the proposed iterative multi-fidelity methodology,
as explained in section 5.4. As mentioned previously, we have two ways to update the
low-fidelity model approximation:

1. by interpolation of select spatial adaptive snapshots onto a set of computed collocation
points of a given reference mesh,

2. by solving a physics-based ROM.

In both cases, the initial low-fidelity model is constructed by interpolating all the
adaptive snapshots onto 4 randomly drawn collocation points of the given reference mesh,
as shown in figure 5.11a. In other words, the initial rank of the low-fidelity model in
both cases is set as four. Since this is a low-rank linear problem, a single parametric
point is picked per iteration. Figure 5.11a-5.11d illustrates the current and old collocation
points computed during each iteration of the algorithm for case 1. We can observe that
as iteration proceeds, the size of collocation points is improved by one. This is due to
the enrichment of reduced basis functions, which are also updated by rank one in each
iteration. If the ℓ2-norm error between the reduced basis functions obtained in the previous
and current iteration is below a certain tolerance, the algorithm is converged. So, with a
target tolerance set to ϵ = 10−4, 4 cycles are required to achieve the desired accuracy in
both cases, therefore the total rank achieved is 4. We also plot the parametric points that
are sampled using both approaches in figure 5.12a and observe that the sampled points are
distributed across the parametric space in both cases and none of them lie closer to each
other. Thus, we are able to successfully construct the reduced subspace that is spanned by
linearly independent basis functions.

In order to verify the accuracy of the algorithm, we plot the POD and ROM error
in figure 5.12b for case 2 and compare it with the classical POD and ROM error when
evaluated on a fine uniform grid without spatial adaptation. Recall, the POD error is given
by the error between the high-fidelity snapshots and their orthogonal projection on the
computed POD modes,

ϵPOD =
∑N

i=1
∥∥ui

HF − ⟨ΦHF,ui
HF⟩ΦHF

∥∥2
2∑N

i=1
∥∥ui

HF
∥∥2

2
(5.20)
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

Figure 5.11: Illustration of collocation points generated at every iteration of the proposed method.

On the other hand, the ROM error is given by the ℓ2-norm error between the high-fidelity
snapshots and the solution of the POD-Galerkin ROM model,

ϵROM =
∑N

i=1
∥∥ui

HF − uR(λi)
∥∥2

2∑N
i=1

∥∥ui
HF
∥∥2

2
(5.21)

We observe that both ϵPOD and ϵPOD have a smooth decay as the rank increases in
both the classical POD-ROM without spatial adaptation and iterative multi-fidelity ROM
approach with adaptation. The error decays by an order of magnitude O(10−6) in both
cases, while the convergence is attained faster in the regular grid case.

5.6.3 Numerical analysis on adaptive reduced basis

Next, we produce results for adaptive basis functions that are generated based on the
methodology discussed in 5.5. Since four parametric points are sampled based on the
targeted accuracy, we have four sets of commonly adapted meshes represented in figure
5.13. It can be inferred from the plots that each of the meshes is unique and cannot be
represented by one another, hence are linearly independent. The minimum size of the
element of the first mesh is h = 0.002 (fig. 5.13a) and is a good enough representation for
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(a) (b)

Figure 5.12: (a) Sampled parametric points and (b) Error ϵPOD of the POD projection, and error
ϵROM of the solution of the reduced order model without space adaptation (classical) and with
space adaptation (IMF).

λ = 1000. On the other hand, if we look at figure 5.13b, the mesh size is uniform across
the domain with an average minimum size of 0.01, which is a good representative mesh
for λ = 10. Similarly, if we observe figure 5.13c and 5.13d, the mesh has more elements in
the boundaries and edges respectively, which are essential to capture the different slope
behavior for other select lambda values. Figures 5.14a-5.17a illustrates the static POD
modes that are recovered by the classical approach without mesh adaptation, and figures
5.14b-5.17b represents the POD modes that are recovered by the iterative multi-fidelity
approach, and one can observe that the POD modes recovered in both the cases are
identical. While figures 5.14c-5.17c represent the spatially adaptive reduced bases obtained
by the procedure as explained in section 5.5 and have comparable representation with the
previous two.

5.7 Conclusions

We have extended the framework of the iterative multi-fidelity reduced order modeling
approach applied for the high dimensional parametric systems to snapshots that are
obtained with adaptive finite elements. The proposed method allows the selection of
appropriate space-adapted snapshots from the training set using a low-fidelity model
approximation without the requirement of a prior error estimator, and the select snapshots
are either mapped onto a fine uniform reference mesh, also termed a high-fidelity model
(case 1), or we can directly solve the concerned PDE system using this high fidelity model
for the select parameters (case 2).

We proposed a technique to construct an initial low-fidelity model which is a set of
collocation points that are randomly drawn from the set of nodes of a given reference
mesh, and approximated by mapping the entire snapshots from the training set onto this
low-fidelity model. In addition, we presented two ways to update the low-fidelity model
approximation.

If case 1, the methodology can be treated as a black box, and we can simply update
the low-fidelity model approximation by computing new collocation points using the DEIM
strategy. If case 2, we can solve a physics-based ROM with the computed basis functions
that are representative of the reference mesh, and therefore update the low fidelity model
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(a) V1 (b) V12

(c) V123 (d) V1234

Figure 5.13: Illustration of commonly adapted finite element meshes that are representative of a
linear combination of 4 different adaptive snapshots.

(a) (b) (c)

Figure 5.14: Mode 1 obtained by classical POD (a), and (b) by iterative multi-fidelity approach.
(c) represents spatially adaptive mode 1.

approximation with the computed reduced coefficients. In both cases, we showed the
feasibility of the methodology to sample appropriate parametric points. Our findings are
underlined with a numerical example of the diffusion-reaction PDE problem. The POD
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(a) (b) (c)

Figure 5.15: Mode 2 obtained by classical POD (a), and (b) by iterative multi-fidelity approach.
(c) represents spatially adaptive mode 2.

(a) (b) (c)

Figure 5.16: Mode 3 obtained by classical POD (a), and (b) by iterative multi-fidelity approach.
(c) represents spatially adaptive mode 3.

(a) (b) (c)

Figure 5.17: Mode 4 obtained by classical POD (a), and (b) by iterative multi-fidelity approach.
(c) represents spatially adaptive mode 4.

projection error of our method along with the reduced order modeling error between the
high-fidelity snapshots and the POD-G reduced solution is shown to converge when the
dimension of the POD is increased.

We also presented a methodology to recover adaptive basis functions that are linear
combinations of the select adaptive snapshots. The advantage of this approach is that we
need not map all the snapshots lying in the training set to the reference mesh, but rather
a select few. Also, the initial low-fidelity model can be of very poor approximation and
improve its quality as iteration proceeds until the basis functions obtained are linearly
independent.

The mesh adaptation in this work is performed using the IciTech library which is based
on an anisotropic framework by h-adaptation, but the proposed method is also applicable
to the p-adaptive finite element discretization technique. In addition, we also presented the

87



benefits of using an anisotropic mesh adaptation technique which may help capture details,
to perfectly describe complex issues with the smallest computational cost and computing
time.

The future work is to construct a spatially adaptive ROM and combine the dynamic
adaptation of the reduced basis with spatially adaptive reduced basis functions within the
same framework. By doing so, we can automate the creation of a spatially adaptive ROM
for an efficient model order reduction of PDE systems which are discretized using adaptive
finite elements.
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Chapter 6

Conclusions and perspectives

Three important things have been incorporated into this manuscript:

1. Advanced hyper reduction technique based on sparse approximations applied to a
complex problem such as parameterized viscoelastic fluid flows of second order,

2. Sampling strategy applied to a multi-dimensional parametric elliptic PDE problem
and extended to the complex fluid flow problem without the presence of error
estimators,

3. Setting up a POD-ROM on a set of spatially adaptive snapshots, and recovery of
spatially adaptive reduced bases.

Firstly, a hyper-reduced framework is successfully implemented to alleviate the per-
formance of model order reduction for inertialess viscoelastic fluid flows. We presented
two numerical experiments: flow past a sphere and a 4:1-step flow problem. The algebraic
problem is considerably simplified in the ROM formulation. By creating divergence-free
velocity approximation spaces, the incompressibility constraint is automatically satisfied
in the ROM, which therefore eliminates the pressure degrees of freedom. We also created
an intrinsic stabilization of the ROM by including the Schur complement of the velocity
gradient unknowns into the reduced momentum balance, which entails ensuring DEVGSS-G
stability in the ROM. This step removes the auxiliary velocity gradient unknown from the
system. Overall, we reduce the unknowns in the ROM from 4(u, p,G,S) to only 2(u,S).
Nevertheless, the field variables can be always computed in the post-processing step. We
also proposed two offline stabilization strategies for online computation of ROM i.e. POD-G
and POD-PG to stabilize the advection term in the constitutive equation, and we observed
that POD-PG offered a stable ROM of the same accuracy as the expensive offline-online
stabilization (POD-SUPG) but at a much reduced computational cost, with a gain in the
computational speed-up by a factor of 10. We also noticed that the accuracy of the ROM
can be consistently lost when nonlinear terms are reduced using interpolation techniques like
DEIM. By adopting a sparse quadrature technique and ensuring the generated quadrature
weights are non-negative, this can be prevented. Even though there are more nonlinear
function evaluations overall in this approach, this strategy still achieves computational
speed up by a factor of (104) as compared to FOM with ROM average errors in the range
of O(10−2 − 10−3). Combining the POD-PG stabilizing approach and the hyper-reduction
of the non-linear elements in the benchmark under consideration seemed to strike the right
balance between accuracy and complexity without the requirement for online stabilization.
Because stabilization concerns the offline stage only, the ROM’s complexity is thus released
from the constraints of the original FOM, it is plausible to anticipate even greater speedups
for 3D flows when adopting the suggested method.
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In the problem discussed above, we considered only one input parameter to study the
viscoelastic flows and also assumed the dataset to be rich enough to build a stable and
accurate ROM. But in engineering applications, we have to deal with multiple parameters,
such as changing shape parameters, different geometry, varying shear rates, boundary
conditions, etc. It goes without saying that we have to analyze a wide range of parameters to
get an accurate ROM to replicate the large-scale system. The computation of high-fidelity
models for each sample point is required due to the large sample space. Despite merely
having an offline cost, it is nevertheless expensive and should be maintained to a minimum.
Thus, we concentrate on achieving our secondary objective, which is to develop an adaptive
sampling method that will allow us to find the appropriate set of parametric points for
solving complex problems effectively and robustly while greatly reducing the offline cost.
So, using an iterative process, we implemented a multi-fidelity approach for reduced basis
approximation of a multi-dimensional PDE system. Ad hoc parametric sampling is created
from low-fidelity model approximations using the DEIM approach and is based on heuristic
assumptions. The reduced bases are then reconstructed using a high-fidelity model.

In terms of implementation, we recommended using either a ROM approximation
or solving the PDE with a coarse discretized model to initialize the low-fidelity model
approximation. According to the numerical results, the approach has proven to be reliable
and stable by converging toward the FOM approximation within the specified tolerance,
regardless of the initial quality of the low-fidelity model approximation. Not to mention,
this method worked well when the necessary component for effective greedy sampling—an
a posteriori error estimator—was not available. The user can choose a single point or
multiple points per iteration in the greedy selection. However, care must be taken because
it may over-sample parametric points than necessary to obtain the same result. Overall,
the proposed strategy needed less high-fidelity snapshot generation compared to classical
POD to construct the reduced basis subspace. On a 2D steady-state advection-diffusion
problem with 9 input parametric dimensions, this methodology is successfully shown.
The suggested approach and the greedy RBM are compared qualitatively for a steady-
state heat conduction problem, where both solutions exhibited comparable computational
performance. Finally, the algorithm was tested on the flow past sphere benchmark problem
suspended in Giesekus fluid with relaxation time as the input fluid parameter, and it was
demonstrated that regardless of the PDE definition, the methodology allowed optimal
parametric sampling in the absence of problem-specific error estimators.

Lastly, we have included adaptive finite element snapshots in the framework of the
iterative multi-fidelity reduced order modeling approach used for the multi-dimensional
parametric systems. Without the need for a prior error estimator, the suggested method
enabled the selection of appropriate parameters from the training set using a low-fidelity
model approximation. We suggested a novel method for creating this low-fidelity model,
which is a collection of collocation points selected at random from a set of nodes or
integration points of the reference mesh, and then we approximate it by interpolating all
the training set’s snapshots onto it. The adaptive snapshots corresponding to the selected
parameters are then either mapped onto a fine uniform reference mesh, also known as a
high-fidelity model (case 1), or the relevant PDE system is solved using this high-fidelity
model for the selected parameters (case 2) to recover the reduced bases. We provided
two methods for updating the low-fidelity model approximation. If scenario 1, we can
compute new collocation points using the DEIM strategy over the reduced bases and update
the low-fidelity model approximation by interpolating all the snapshots onto these newly
computed collocation points, therefore treating the methodology as a black box. If scenario
2, we can update the low fidelity model with a physics-based ROM using the computed
basis functions and approximate it by solving for the reduced coefficients. In each of the
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scenarios, we demonstrated the viability of the methodology to sample suitable parametric
points. A numerical illustration of the diffusion-reaction PDE problem highlights our
conclusions. The iteration is continued until linear independence between the generated
basis functions is achieved. We also showed that the POD projection error of our method
converges as the POD basis dimension is increased. The benefit of this method is that just
a handful of the space-adapted snapshots from the training set need to be mapped into
the reference mesh. In addition, we also presented a methodology in this manuscript for
recovering spatial adaptive basis functions, which are just linear combinations of selected
adaptive snapshots.

Perspectives: By extending the framework presented in this manuscript to three-
dimensional flows, where we can also take configurational properties (i.e. position, orienta-
tion, and shape of the particle) into account as other variable parameters in the ROM, we
hope to lay the groundwork for future research into integrating model order reduction in
the full-scale simulations of particle suspensions in complex fluids. Full-scale simulation of
DNS is currently not feasible because it requires the flow equations around the particle
to be solved at each time step for which the modeling is simplified and conducted on a
representative volume with few suspended particles. However, the proposed framework of
ROM of viscoelastic fluid flows might allow for a full-scale simulation of the viscoelastic flow
without using up all the resources of HPCs while creating a bridge for efficient multi-scale
level modeling. We should be able to simplify the computations of microscale modeling
for effectively computing the particle kinematics (ẋ, ṗ) as functions of flow conditions
suspended in viscoelastic medium with an online efficient ROM. From this information,
the second-order orientation tensor aDNS (tn) can be computed at time tn for ‘Np’ number
of particles via its discrete definition,

aDNS (tn) = 1
Np

Np∑
i=1

pn
i ⊗ pn

i

On the other hand, this can be incredibly useful for developing an HPC database
by researching the fluid dynamics and particle kinematics at a significantly lower offline
cost for various aspect ratios of particle shape, different particle orientations, varying flow
behavior, and so on.

Current limitations: In the current ROM framework for viscoelastic flows, we are able
to construct divergence-free approximation spaces for velocity field with inhomogeneous
Dirichlet data, however, this approximation ceases to exist for cases when the mesh is not
kept fixed or geometrical and shape parameterization is taken into consideration because
then each snapshot would be divergence-free in its corresponding configuration.

In particular, let us assume the solution of the velocity field of eq. 3.16 now lie in different
approximation space for each λ ∈ Ξtrain ⊂ D parameter, i.e. uj

h ∈ V
Nj

j , j = 1, . . . , N . It
can fulfill divergence-free property only with respect to the corresponding pressure space
qj :

⟨q,∇ · uj
h⟩ = 0 ∀qh ∈Pj , j = 1 . . . N

However, uj
h is not necessarily divergence-free with respect to the other spaces P i

for i ̸= j. As a consequence, no divergence-free property can be ensured for arbitrary
linear combinations of snapshots. There are two directions we can go: a modified velocity
POD basis that is weakly divergence free with respect to a reference mesh can be built.
This should enable the cancellation of the pressure term in the flow equation, and the
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continuity equation is automatically fulfilled by construction. Alternatively, we can add
POD pressure space with the velocity POD space which is augmented by supremizer
functions in order to achieve stability in the ROM, which has been studied extensively in
the past for Newtonian flows [196,197]. Additionally, extending the recommended sampling
approach to time-dependent PDE systems, which would include time as an additional
input parameter, is another area of research that may prove helpful in the future.
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Appendix A

Lower bound estimation of the
coercivity constant

As mentioned in the chapter 2 subsection 2.2.4, the fundamental feature of a certified
RBM is the availability of a rigorous error estimator. This step requires the computation
of the residual and an estimation of the lower bound for the coercivity or inf-sup constant.
Here, we discuss two approaches to estimate the lower bound using multi min-θ and min-θ
methods [9] for the heat conduction problem discussed in 4.3. Before, let us first recall the
definition of the discrete coercivity constant, which is given by,

α(µ) = inf
v∈VN

a (v, v;µ)
∥v∥2VN

(A.1)

The coercivity constant α(µ) can then be computed as the smallest eigenvalue of a
generalized eigenvalue problem: find (λ,w) ∈ R× VN such that,

a (w, v;µ) = λ (w, v)VN , ∀v, w ∈ VN (A.2)

The affine decomposition of the bilinear term in the eq. 4.15 can be expressed as,

a(w, v;µ) =
Qa∑
q=1

θq
a(µ)aq(w, v)

with Qa = 2 with θ1
a(µ) = 1, θ2

a(µ) = µ[1]. Since, θq
a(µ) > 0, ∀µ ∈ D, q = 1, . . . , Qa,

the PDE defined is parametrically coercive, and also, aq(·, ·) : VN×VN → R is semi-positive
definite for all q = 1, ., , Qa, i.e., the bilinear form is a convex combination of semi-positive
bilinear forms. Under this assumption and further assuming that the stability α (µ′) has
been computed for a single parameter value µ′, we observe the following identity holds
true,

α(µ) = inf
v∈VN

Qa∑
q=1

θq
a(µ)aq (w, v)

∥v∥2VN

= inf
v∈VN

Qa∑
q=1

θq
a(µ)

θq
a (µ′)θ

q
a
(
µ′) aq (w, v)
∥v∥2VN

(A.3)

The lower bound for the min-θ approach can then be derived as,
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Figure A.1: Illustration of the estimated lower bounds for the coercivity constant, for example
presented in section 4.3.

α(µ) ≥ inf
v∈VN

min
q=1,...,Qa

θq
a(µ)

θq
a (µ′)

Qa∑
q=1

θq
a
(
µ′) aq (v, v)
∥v∥2VN

= min
q=1,...,Qa

θq
a(µ)

θq
a (µ′) inf

v∈VN

Qa∑
q=1

θq
a
(
µ′) aq (v, v)
∥v∥2VN︸ ︷︷ ︸

α(µ′)

= α
(
µ′) min

q=1,...,Qa

θq
a(µ)

θq
a (µ′) =: αLB(µ).

(A.4)
Note, we can efficiently compute α(µ′) in the offline stage by computing the lowest

eigenvalue of A.2. Although this method gives a positive lower bound for the value of α(µ),
it is often not a sharp bound, which could lead to error bounds that are too conservative.

On the other hand, in the multi min-θ technique, we discover the highest value over
a range of multi-parameter values rather than estimating the lower bound based on
a single parameter. By defining, α

(
µ′

p

)
for a set of ‘p’ multi-parameter values µ′

p =
{µ1

[1], µ
2
[1], . . . µ

p
[1]} ∈ D and by following the same approach as min-theta, the lower bound

is derived as,

α(µ) ≥ max
µ′

p

(
min

q=1,...,Qa

θq
a(µ)

θq
a
(
µ′

p

) inf
v∈VN

Qa∑
q=1

θq
a

(
µ′

p

) aq (w, v)
∥v∥2VN︸ ︷︷ ︸

α(µ′
p)

)

= max
µ′

p

(
α
(
µ′

p

)
min

q=1,...,Qa

θq
a(µ)

θq
a
(
µ′

p

)) =: αLB(µ).

(A.5)

In the offline phase, we can easily compute the term α(µ′
p) for all p by finding the

smallest eigenvalue from equation A.2. Then in the online stage, we can compute the lower
bound αLB(µ) for any µ. While this approach is a relatively accurate one, but it requires
more solutions to eigenvalue problems.

So, now let us assume the multi-parameter values be {µ1
[1], . . . , µ

5
[1]} = {0.1000, 0.2508, 0.6303,

1.5837, 3.9796}. Then the lower bound by multi min-θ approach is given by,

αLB(µ) = max
p=1,...,5

(
α
(
µ′

p

)
min

(
1, µ
µ′

p

))
.

94



and for min-θ, we assume µ′ = 0.6303, then the lower bound is,

αLB(µ) =
(
α
(
µ′)min

(
1, µ
µ′

))
.

The results of the estimated lower bounds and the value of the exact coercivity constant
are illustrated in figure A.1. In particular, we see that the exact discrete coercivity constant
is recovered by lower bounds at the sampled points.
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Titre :  Modélisation avancée d'ordre réduit et échantillonnage paramétrique pour les écoulements 
de fluides non-Newtonian 

Mots clés :  hyper-réduction, stabilisation hors ligne , modèles multi-fidélité, snapshots adaptés à 
l'espace 

Résumé : Le sujet de cette thèse porte sur la 
réduction d'ordre de modèle (MOR) de 
problèmes d'écoulement non-Newtonian 
paramétrés qui ont des applications 
industrielles importantes. Les méthodes 
traditionnelles de réduction de l'ordre des 
modèles limitent les  performances de 
calcul de ces problèmes hautement non 
linéaires, nous suggérons donc une technique 
d'hyper-réduction avancée basée sur une 
approximation sparse de l'évaluation des 
termes non linéaire à complexité reduite. 
Nous proposons également une stratégie de 
stabilisation hors ligne pour stabiliser le modèle 
constitutif dans le modèle d'ordre réduit qui 
est moins cher à calculer tout en maintenant la 
précision du modèle d'ordre complet. La  
combinaison des deux réduit drastiquement le 
coût du processeur, augmentant  

inévitablement les performances du MOR. Ce 
travail est validé sur deux problèmes de 
benchmark. En outre, une stratégie 
d'échantillonnage adaptatif est également 
présentée dans ce manuscrit, qui est réalisée 
en tirant parti de l'approximation des modèles 
multi-fidélité. Vers la fin de la thèse, nous 
abordons un autre problème qui est 
généralement observé dans les cas où des 
maillages d'éléments finis adaptatifs sont 
déployés. Dans de tels cas, les méthodes MOR 
ne parviennent pas à produire une 
représentation de faible dimension car les 
snapshots ne sont pas des vecteurs de même 
longueur. Par conséquent, nous suggérons une 
méthodologie qui peut générer des fonctions 
de base réduites pour des snapshots 
adaptative. 

 

Title :  Advanced reduced-order modeling and parametric sampling for non-Newtonian fluid flows 

Keywords :  hyper-reduction, offline stabilization, multi-fidelity models, adaptive parametric 
sampling, adaptive  snapshots 

Abstract : The subject of this thesis concerns 
model-order reduction (MOR) of parameterized 
non-Newtonian flow problems that have 
significant industrial applications. Traditional 
MOR methods constrain the computational 
performance of such highly nonlinear problems, 
so we suggest a state-of-the-art hyper-reduction 
technique based on a sparse approximation to 
tackle the evaluation of nonlinear terms at much 
reduced complexity. We also provide offline 
stabilization strategy for stabilizing the 
constitutive model in the reduced order model 
framework that is less expensive to compute 
while maintaining the full order model's (FOM) 
accuracy. Combining the two significantly 
lowers  the CPU cost as compared to the FOM 

evaluation which inevitably boosts MOR 
performance. This work is validated on two 
benchmark flow problems. Additionally, an 
adaptive sampling strategy is also presented in 
this manuscript which is achieved by 
leveraging multi-fidelity model approximation. 
Towards the end of the thesis, we address 
another issue that is typically observed for 
cases when adaptive finite element meshes 
are deployed. In such cases, MOR methods fail 
to produce a low-dimensional representation 
since the snapshots are not vectors of same 
length. We therefore, suggest an alternate 
method that can generate reduced basis  
functions for database of space-adapted 
snapshots. 
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