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Résumé

Les voix sont omniprésentes dans notre quotidien, essentielles pour communiquer et
véhiculant des informations non verbales telles que l'identité, le genre ou lI'émotion de
nos congéneéres. De nombreuses espéces manifestent des aptitudes vocales sophistiquées.
L'étude des mammiferes, notamment des primates non humains, révele des traits
communs de traitement vocal. L'objectif de cette theése est d'approfondir notre
compréhension des mécanismes de traitement de la voix, en employant des méthodes
computationnelles, y compris l'apprentissage profond, pour mieux comprendre
I'encodage vocal et la communication vocale. L'introduction offre une vue d’ensemble des
primates, leur évolution et communication, et introduit les concepts clés et méthodologies
pour les chapitres suivants. Le premier chapitre présente une analyse comparative
approfondie du cortex vocal chez les primates, et défini les limites de notre connaissances
du traitement de l'information vocal par le cerveau. Le deuxiéme chapitre traite de
l'utilisation de méthodes computationnelles pour construire une base de données de
vocalisations de primates non humains, offrant une ressource précieuse pour les futures
études en neuroéthologie. Enfin, le troisieme chapitre examine la corrélation entre
I'activité cérébrale liée a l'identité vocale, mesurée a l'aide de techniques de
neuroimagerie, et les représentations issues de I'apprentissage profond via I'encodage et
le décodage. Associant neuroimagerie, modélisation computationnelle et base de
vocalisations, cette these enrichit notre compréhension du traitement vocal des primates,
éclairant les origines du langage humain et offrant de nouvelles perspectives en

neurosciences auditives.

Mots-clés : aires vocales, perception vocale, apprentissage profond, IRMf, base de

vocalisations.



Abstract

Voices are ubiquitous in our daily surroundings, essential for communication, and rich
in non-verbal information, such as the identity, gender, or emotional state of our
conspecifics. Various forms of vocal communication are evident across species, with many
demonstrating sophisticated vocalization capabilities. An examination of mammals,
particularly non-human primates, indicates shared voice processing traits. This thesis
aims to deepen our understanding of voice processing mechanisms, employing
computational methods, including deep learning, to shed light on voice encoding and
vocal communication. The introduction provides an overview of primates, their evolution,
and communication methods, as well as introduces the fundamental concepts and
methodologies to provide the necessary knowledge for understanding the subsequent
chapters. The first chapter delivers an in-depth comparative analysis of the vocal cortex
in primates and draws the limits of our current knowledge on voice processing in the
brain. The second chapter addresses the employment of computational methods to build
a dataset of non-human primate vocalizations, providing a valuable resource for future
studies in neuroethology. Lastly, the third chapter examines the correlation between
brain activity related to voice identity, as measured using neuroimaging techniques, and
representations derived from deep learning through encoding and decoding. This thesis
significantly augments our grasp of primate auditory vocal processing by combining
neuroimaging tools, computational modeling, and a comprehensive vocalization
database. The insights gained offer a deeper understanding of the evolutionary
precursors of human vocal communication and present new opportunities for auditory

neuroscience research.

Keywords: voice areas, voice perception, deep learning, fMRI, vocalization database.
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Preface

Voices permeate our daily lives, presenting in diverse forms such as speech, song,
laughter, and emotional expressions. Voices are the carrier of speech, yet they convey
extensive non-verbal information, hinting at aspects like the speaker's species, age,
gender, emotions, and personality traits. Such vocal channels, transcending mere human
speech, are common across numerous species. Many species excel in generating intricate
vocalizations and decoding the information they convey. Given the emphasis on the neural
underpinnings of vocal communication in recent theories, understanding voice

processing's computational and evolutionary aspects in the auditory cortex is crucial.

The main goal of my thesis is to deepen our understanding of voice processing
mechanisms. It emphasizes studying the vocal cortex in primates, touching on its
functional and anatomical dimensions, and leveraging computational techniques, notably

deep learning, to shed new light on voice encoding and vocal communication mechanisms.

This thesis is organized into four chapters, each investigating a specific facet of voice
cerebral processing in primates. The introduction overviews primates, their evolutionary
trajectory, and communication modalities. It also introduces the fundamental concepts
and methodologies to provide the necessary knowledge for understanding the
subsequent chapters. The second chapter delivers an in-depth comparative analysis of the
vocal cortex in primates. The third chapter employs computational methods to build a
large dataset of non-human primates' vocalizations. In the third chapter, | examine the
correlation between brain activity related to voice identity—captured through
neuroimaging—and the representations derived from deep learning. Finally, I synthesize

established literature with the novel findings from my research in a general discussion.
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Introduction

1. Motivation

Voices are a constant feature in our everyday environments. We encounter the voices
of others in various forms, whether speaking, singing, laughing, or expressing emotions
in other vocal ways. For most people, the primary function of the voice is to facilitate
speech and language, one of the most advanced forms of interpersonal communication.
Beyond this, voices convey extensive non-verbal information. They can hint at the
speaker's species and identity attributes such as gender and age, emotional states like joy
or sorrow, and even personality nuances. Unlike unique human speech, many of these
channels of vocal communication are shared across various species. Numerous species
have refined their ability to produce complex vocalizations and have developed the
cognitive and neural capabilities to interpret the information in these vocal signals. Non-
human primates, our closest evolutionary relatives, show comparable patterns in
processing vocal information, both at the behavioral and neurological levels. A
comparative approach, in which data from humans and non-human primates inform each
other, is particularly promising, as it yields valuable information about the evolution of

communication systems.

Although the anatomical-functional pathway supporting sound processing across
primate species is well understood (see Evolution of primates), our knowledge of how the
brain transforms species-specific vocal signals into meaningful semantic representations
needs to be better defined. In particular, how is voice identity encoded in the brain? This
primary question has guided my thesis, aiming to deepen our understanding of the
intricacies of voice processing mechanisms. In Chapter 1, I first draw upon prior research
on comparative voice perception to pose the question, what is the functional role of each
unit within the “voice patch” system in the primate brain when processing vocal
information? Reviewing older and recent literature on voice processing in humans and
non-human primates (macaque, marmoset) (Belin et al,, 2018; Bodin & Belin, 2020), I

propose a synthesized functional model for voice information processing.
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Introduction

Nevertheless, it is still being determined how they process identity information
and whether or not voice patches across the primate species share similar coding
principles. | address this challenge within the neuroimaging paradigm, which consists of
scanning humans and non-human primates while listening to conspecific vocalizations to
model the relationship between voice signal properties and vocal brain activity using
computational models (Figure 1). Merging our insights on conspecific voice processing
with these computational models offers a new path to understanding how the brain
represents and transforms the voice. With the rise of theories emphasizing the neural
foundation for vocal communication, a deep exploration of the computational and
evolutionary perspectives of voice processing in the auditory cortex becomes essential to
understand better how the brain processes vocal communication. Building on research
that models neural representations of speech or language with deep neural networks
(DNNs) (Kell et al., 2018; Millet et al., 2022; Caucheteux et al., 2022; Caucheteux & King,
2022; Caucheteux et al., 2023; Giordano et al, 2023), I ask, would DNNs provide
reasonable approximations of cerebral representations? — in particular regarding the
processing of voice identity. To investigate this question across primate species, one
would need to feed DNNs with a sufficient number of conspecific vocalizations (100,000s
of samples) — a class of models that excel at learning high-level representations
proportionally to the dataset size (LeCun et al., 2015) — as well as a sufficient number of
corresponding vocal brain responses (10,000s of samples) to reliably span the voice space
and reduce the notoriously high signal-to-noise ratio in neuroimaging techniques (e.g. in

fMRI: Welvaert & Rosseel, 2013).

Humans and
non-human Voice areas
primates

Conspecific
vocalizations
LH

) —>

Mshi}fwm’w.f

MRI
scanner

Computational models

12



Introduction

Figure 1: General paradigm used in this manuscript. The neuroimaging paradigm consists
of scanning humans and non-human primates while listening to conspecific vocalizations to model
the relationship between voice properties and voice areas. For example, the brain activity is
recorded using functional magnetic resonance imaging (fMRI), and the voice areas are estimated
by computing the contrast ‘Voc. vs. Other’, i.e., conspecific vocalizations brain activity vs. other

vocalizations and sounds brain activity.

My Ph.D. project focuses on two aspects of this paradigm. There is yet to be a large and
labeled dataset of monkey vocalizations. To fill this gap, [ describe in Chapter 2 an end-to-
end pipeline for processing vocalizations from raw recordings of marmoset monkeys,
resulting in a large vocalization dataset. This dataset will be the first milestone in future
studies to train efficient computational models, such as DNNs, to learn high-level
representations of monkey vocalizations. In humans, though, although we already have
access to large datasets of voice samples (e.g.,, Common Voice dataset, Ardila et al., 2020),
there are no existent neuroimaging datasets addressing the question of voice identity
with sufficient data. To address this void, I conducted an extensive neuroimaging
campaign to build a suitable dataset: numerous voice stimuli (10,000s) to leverage the
link between the computational model and the brain activity in response to voice identity;
stimuli balanced in several voice identity features: speaker’s gender, age and identity;
short stimuli duration (250 ms) to reduce the focus on speech content. In Chapter 3, I
examine the correlation between brain activity evoked by voice identity and

representations derived from deep learning.

2. Functional neuroimaging

Neuroimaging, or brain imaging, uses various techniques to visualize the central
nervous system's structure, function, or pharmacology. Researchers use functional
neuroimaging to explore how certain brain areas relate to specific mental functions. In
these studies, participants carry out tasks while their brain activity is recorded using tools
like electroencephalography (EEG), magnetoencephalography (MEG), or functional
magnetic resonance imaging (fMRI). The collected data is then analyzed to identify
patterns and correlations between specific brain activities and the tasks undertaken. fMRI

technique is depicted in Figure 2.
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Figure 2: Neuroimaging technique used in this manuscript. a, fMRI maps of voice-selectivity
highlighting the “temporal voice areas” (TVAs). Figure extracted from Pernet et al. (2015). b,
Example of BOLD signal in response to one stimulus. ¢, A person about to undergo an MRI. Boxes
around the ERF components of interest indicate the +15 ms time window statistically tested (*P

< 0.05; n. s., not significant). Figure extracted from Capilla et al. (2013).

Since its inception in the early 1990s, functional magnetic resonance imaging (fMRI)
has emerged as a favored method for examining human brain function. This non-invasive
technique does not necessitate injecting tracers or exposure to X-rays, making it suitable
for a broad spectrum of participants, including children, who can undergo multiple scans
if needed. While fMRI boasts a high spatial resolution (approximately 2 mm), its temporal

resolution remains relatively low, around 2 seconds (Poldrack et al., 2011).
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2.1. Blood flow and neuronal activity

When participants engage in particular tasks or are exposed to certain stimuli, the
neurons responsible for processing these stimuli become active, necessitating an
increased oxygen supply for neuronal activity. The fMRI captures this signal by
monitoring changes in blood flow, termed the blood-oxygen-level-dependent (BOLD)
signal. Though the neuronal activity initiated by a brief stimulus is fleeting (measured in
milliseconds), the subsequent BOLD response, referred to as the hemodynamic response
function (HRF), is more protracted. An illustration of HRF is presented in Figure 3. As
depicted, the hemodynamic response takes roughly 5 seconds to reach its maximum. This
peak is due to the surge of oxygen-rich blood, which heightens the local concentration of
oxyhemoglobin. The magnetic attributes of oxyhemoglobin induce local field uniformities,
culminating in an uptick in the T2*-weighted MRI signal. As blood circulation stabilizes,
the hemodynamic response's pinnacle subsides, and a reduction in oxyhemoglobin
concentration triggers a subsequent dip in the fMRI signal. Roughly 15-20 seconds post-

stimulus, the hemodynamic response reverts to its initial state (Glover, 1999).

Model HRF

——=- Baseline

0.2 A

BOLD signal

T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time from activity onset (s)

Figure 3: Hemodynamic response function.

2.2, Experiment designs for fMRI

During an fMRI experiment, participants are given a specific task, for instance, to
localize the “temporal voice areas” (TVAs) within the human auditory cortex (Pernet et

al., 2015). To achieve this, subjects passively listen to a sequence of both vocal and non-
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vocal stimuli as their brain activity gets recorded. Various stimuli categories are typically
presented to the participant at distinct times, with the fMRI data being captured
concurrently. For example, if the repetition time (TR) is set at two seconds, an fMRI scan
that reveals the current state of brain activity is procured every two seconds. To extract
brain activity linked to a distinct stimulus, two primary experimental setups are examined

in fMRI studies: block and event-related designs.

In the block design approach, stimuli are presented continuously for several seconds,
which is then succeeded by a resting or baseline period of a similar duration. As the BOLD
signal arising from a stimuli block is the aggregate of numerous individual responses, its
amplitude is significantly larger than the signal produced by a singular, brief stimulus. An
illustration of this block design can be seen in Figure 4. Such a design amplifies the
nuanced differences between diverse experimental scenarios, making them more
discernible. However, the BOLD signal derived from the block design represents a
collective response of accumulated stimuli, offering limited insight into estimating the

HREF associated with an individual stimulus.

Simulated block design
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Figure 4: BOLD signal resulting from a block design. This simulation showcases a block design
where a 20-second stimulus block is succeeded by a 20-second rest period. Notably, the amplitude
of the BOLD signal in this design exceeds the amplitude of the HRF elicited by an individual

stimulus.

An event-related design offers an alternative to the block design. In this setup, rather

than showcasing several stimuli over an extended period, individual, short-duration
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stimuli are presented with intervals in between, known as inter-stimulus intervals (ISI)
(as depicted in Figure 5). The signals resulting from the event-related design typically
have a smaller amplitude in comparison to the block design. Depending on the length of

the ISI, event-related designs can be classified into either slow or rapid categories.

A slow event-related design utilizes an ISI that exceeds the HRF's duration, ensuring
there is no overlap of individual hemodynamic responses. Considering the post-stimulus
delay inherent to the BOLD signal, this design allows the hemodynamic response from a
singular stimulus to peak and revert to the baseline. This design's advantage is that it
facilitates estimating individual hemodynamic responses. However, its extended ISI can

be seen as inefficient, leading to longer scanning times.

A quicker ISI is adopted to mitigate this inefficiency and fit more stimuli within a
restricted timeframe, giving rise to the rapid event-related design. This framework
sequences various stimuli in either a fixed or randomized order. The ISI is deliberately
varied to yield a more consistent stimulus-response, meaning the time between stimuli is
not constant. Due to the rapid event-related design's characteristic short ISI, the HRF

duration sees overlapped individual responses within the BOLD signal.
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Figure 5: BOLD signal resulting from an event-related design. This simulated example
presents three distinct stimuli, each separated by an inter-stimulus interval (ISI) of five seconds.
Notably, the amplitude of the BOLD signal in this scenario is almost equivalent to the amplitude

of the hemodynamic response function (HRF) elicited by a solitary stimulus.

2.3. fMRI data analysis

An fMRI dataset from an MRI scanner comprises a chronological series of three-
dimensional volumes. Each volume comprises numerous small cubes, commonly known
as voxels. Figure 6 illustrates fMRI volumes. To detect the specific brain functions linked
to cognitive processes, e.g., pinpointing voxels associated with certain tasks, the

responses from each experimental condition need to be estimated from the fMRI data.
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Figure 6: Example of 3D fMRI volumes. Schematic representation illustrating the differences in

tissue structure between human and macaque brains as captured in MRI. Figure adapted from

Wang et al. (2022).

Nonetheless, fMRI data can be contaminated with noise and may have various artifacts.

A sequence of operations, commonly known as preprocessing, is applied to the fMRI data

to address these issues. Typically, preprocessing of fMRI data encompasses the following

steps (Poldrack et al., 2011):

Quality control: MRI scanners can produce numerous artifacts. For example,
electrical instabilities might result in spikes, while the heartbeat or respiratory
patterns of the subject may lead to ghosting. Techniques like principal components
analysis (PCA) and independent components analysis (ICA) are utilized to
eliminate such artifacts and ensure data integrity (Bodin et al., 2021).

Distortion correction: Echo-planar imaging (EPI) is frequently employed for fMRI
data acquisition. However, magnetic field inconsistencies in EPI can introduce
spatial distortions that may misalign subjects or displace activation sites. Methods,
such as using magnetic field maps to determine the distortion extent, can help
correct these distortions (Holland et al., 2010).

Motion correction: Any head movements by participants during the scan can cause

discrepancies in the position of the brain in consecutive images. This misalignment
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can be mitigated by motion correction or realignment, where each fMRI image in
the series is synchronized to a reference scan (Kim et al,, 1999).

e Slice timing correction: Capturing an fMRI volume involves securing several two-
dimensional slices and assembling them to create a three-dimensional structure. As
these slices are captured sequentially, they have a time discrepancy. This
discrepancy is managed by designating a slice as the reference and synchronizing
the timings of the remaining slices to it (Sladky et al., 2011).

e Spatial normalization: Variances in individual brains pose challenges for
population-wide brain function studies. To identify consistent patterns across
participants, data from multiple subjects must be harmonized into a standard
template, like the Montreal Neurological Institute (MNI) template (Cox & Hyde,
1997).

e Spatial smoothing: Enhancing the signal-to-noise ratio (SNR) is crucial, and to
achieve this, high-frequency details are filtered out to diminish minuscule
fluctuations in the image. Furthermore, spatial smoothing minimizes individual

disparities (Mikl et al., 2008).

Once preprocessing is completed, the fMRI data exhibits reduced noise and an
enhanced SNR. However, the intensity of the signal triggered by the task remains faint.
For instance, task-activated voxels' percent signal change (PSC) typically ranges from
0.4% to 1% in block design. The PSC is even more subtle in event-related design, hovering
around 0.1% (Mikl & Gajdos, 2014). Due to this, statistical models are employed to
estimate the signal and evaluate differences across experimental conditions. Both

univariate and multivariate approaches are utilized for data analysis from participants.

2.4. General linear model

The traditional statistical approach to analyzing fMRI data employs a univariate
method. This technique operates independently on each voxel using the general linear
model (GLM) (Friston et al., 1994). It is then applied iteratively across all brain regions to

identify areas where the time-course is correlated with specific tasks.

Estimating the GLM parameters
The GLM is defined as follows:
Y=Xf+¢€ (D
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where Y = [y, ...,yy]7 denotes the BOLD signal time series for a specific voxel,
representing the dependent variable with N observations at that particular location. The
N X k design matrix, denoted as X, comprises k regressors; each serves as an explanatory
variable; The vector 8 = [By, ..., Bx]T is a column vector of k dimensions that needs to be
estimated, corresponding to the i-th regressor of X. The error vector € = [€4, ..., €y]" of size
N, captures the discrepancy for each observation that not covered by the weighted sum of

explanatory variables. Figure 7 provides a visual representation of the GLM.

To estimate the parameter [, the squared differences between Y and its estimate Y are

minimized, ¥ = Xf. B is obtained by

g =X"x)"1xTy )
Observed — __  Activation _
Y = SOLD X — Design Matrix ﬁ = coeffidents £ = Nolse
C 1 XX Xp o Xe g - -
> — . '6]_ -’;_
B2
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Figure 7: Illustration of the GLM. The GLM depicts the observed BOLD signal Y as a linear blend
of regressors complemented by an error term (€). Each regressor in the design matrix arises from
convoluting a reference HRF with the stimulus function, set to 1 during stimulus presence and 0
otherwise (X). Every component of the undetermined activation coefficients signifies the relative

magnitude of a specific condition (f). Figure reproduced from F. Pedregosa-Izquierd’s thesis
(2015).

Hypothesis testing

After estimating 3, hypothesis tests are carried out on contrasts (e.g. voice vs non-voice

sounds for a voice localizer; Pernet et al., 2015). The null hypothesis is articulated as
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Hy: cf = 0, where c is either a vector or matrix of constants symbolizing one or multiple

contrasts. As an example, if f = [,[?1, ,[?Z]T and the null hypothesis is expressed as Hy: f; =
f3,, which can also be conveyed as Hy: 5; — B, = 0, the contrast for testing if 3, differs

from S, will be ¢ = [1,—1]. To verify the authenticity of the null hypothesis, a t-test is

executed, yielding a t-value and its corresponding p-value.

Beyond just conducting a single t-test, it is possible to evaluate multiple contrasts using

.
the F-test. For instance, when § = [f;, ;] , to concurrently test the null hypotheses

Hy: B, = B, = 0, c would be represented as a matrix:

lp 8

Following this, an F-test is conducted using c and the estimate f to deduce the statistic

value and its p-value.

3. Evolution of primates

3.1. Primate phylogeny

3.1.1. Definition of primates and classification

Primates, derived from the Latin root "primas atis," are closely related to humans and
boast a vast diversity, making them a prime focus for understanding the nuances of
human evolution. Linné categorized them in 1758 as a part of the order of placental
mammals. This group encompasses over 500 species found in various regions worldwide.
Distinctive features of primates encompass an opposable thumb, flat nails, forward-facing
eyes that grant stereoscopic vision, a limited number of teats, and a notable brain-to-body

mass ratio.

Historically, primatology specialists employed the "Linnaean" method to divide the
primate order into two sub-orders. This bifurcation labeled prosimians (comprising
lemurs, lorises, and tarsiers) as the more rudimentary primates and the anthropoids
(encompassing monkeys, great apes, and humans with larger brains) as the advanced
group. However, this categorization has been critiqued for perpetuating a "species

hierarchy" concept and lacking adaptability. Research indicates that tarsiiforms, a
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subgroup within prosimians, share a closer kinship with the anthropoids, underscoring

the call for a revamped classification system.

The adoption of the cladistic phylogenetic classification in the early 1970s brought
about a shift towards the use of the phylogenetic tree for classification. Within this system,
groups, or clades, are considered monophyletic: they encompass a theoretical ancestor
and all of its subsequent descendants. Consequently, the primate order's taxonomy has
been restructured to align, as closely as feasible, with these clades. This has led to a new
division of the order into two suborders: the Strepsirrhinians (which were previously
classified as prosimians, barring the tarsiers) and the Haplorrhinians (previously known

as anthropoids).

Haplorrhinians, distinguished by the absence of a rhinarium (nose) and the presence
of vibrissae (tactile whiskers), are further segmented into Tarsiiformes and Simiiformes.
These further branch out into Platyrrhinians (or 'New World' monkeys, also called
American monkeys) and Catarrhinians ('Old World' monkeys and hominoids, sometimes
European and Asian monkeys). While Platyrrhines are recognized by their broad nostrils
and elongated, prehensile tails, Catarrhines exhibit closely set nostrils that face
downward and often do not have a tail. The graphical representation of this refined

primate classification can be viewed in Figure 8.

3.1.2. Models in neuroscience

The predominant species utilized in neuroscience, collectively termed "Non-Human
Primates," span both New World and Old World primate categories. Their varied
morphological features, behavioral traits, and ecological niches enable researchers to
select the most fitting model for their investigative pursuits. For instance, the common
marmoset has been a staple in biomedical studies since the 1960s, while the macaque,
due to its closer phylogenetic ties to humans, is frequently employed in foundational
research. Neuroscientific exploration of great apes is infrequent, primarily because of
logistical and ethical constraints; most research revolves around post-mortem anatomical
analyses. Ethological investigations into these primates are indispensable, offering
insights into human evolutionary trajectories. The macaque, with its thoroughly mapped
anatomy and functions, stands out as the preferred model, particularly for neuroimaging

techniques. Macaques belong to the old-world monkeys, sharing a common ancestor with
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humans from about 28 million years ago (Steiper & Seiffert, 2012). However, the
marmoset is seeing renewed attention, especially in auditory neuroscience, given its
intricate vocal interactions (Miller et al., 2016; Okano et al., 2016). Marmosets belong to
the platyrrhine lineage, sharing a common ancestor with humans from about 49 million

years ago (Steiper & Seiffert, 2012), emphasizing their significance in studies (Figure 8).
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Figure 8: The evolutionary relationship of extant primates. Blue line highlights the superior
temporal sulcus, present in the majority of primate species. Red line highlights the inferior
temporal sulcus, present in hominids (chimpanzees and humans). Divergence date estimates are

from Steiper & Seiffert (2012). Figure reproduced from Bryant & Preuss (2018).
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3.2. Auditory cortex

3.2.1. Evolution

Depicting primary cortical regions in mammals through a phylogenetic tree to
underscore organizational homologies facilitates determining the hypothetical homology
of their last common ancestor (Figure 9). This representation reveals that the broad
spatial relationships among primary sensory areas remain consistent across mammalian
species. In primates, these primary zones are particularly constrained in size, giving way
to expansive higher-level associative regions (Krubitzer & Kahn, 2003; Buckner &
Krienen, 2013). The primary auditory cortex in primates is situated within the temporal
lobe, adjacent to the lateral sulcus. Of note, only this specific region has been identified
across all the studied species, whereas secondary regions prove more elusive in their

characterization and frequently bear varying nomenclature.
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Figure 9: Phylogenetic representation of the cortex and primary sensorimotor areas. The
primary auditory cortex is highlighted in yellow. Dark blue represents the primary visual area
(V1); light blue indicates the secondary visual area (V2); green portrays the middle temporal area

(MT); red signifies the primary somatosensory area (S1); and orange marks the secondary
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somatosensory area (S2). The visual cortex is shaded in blue hues, while the sensorimotor cortex
is depicted in red. The visual movement (VM) region is illustrated in green. Figure adapted from

(Krubitzer & Kahn, 2003; Buckner & Krienen, 2013).

The extent of cortical myelination can serve as an indicator for pinpointing primary
regions. Myelination is the process of forming a myelin sheath around select nerve fibers.
This sheath, formed by the coiled wrapping of glial cells around the axon, facilitates faster
nerve signal transmission. In Figure 10, areas with high myelination are marked in red for
humans, chimpanzees, and macaques. The primary auditory cortex is visible along the

lateral sulcus, though a segment is obscured behind the parietal operculum.

HUMAN CHIMPANZEE MACAQUE

Figure 10: Localization of the primary auditory cortex in humans, chimpanzees, and
macaques (maps depicted are not to scale). Myelination map illustrates the distinction
between primary regions (with high myelination) and associative areas (with low myelination).

Data provided by the Human Connectome project, WU-Minn Consortium.

3.2.2. Anatomy

Figure 11 presents a transverse section of the auditory cortex, offering a clearer view
of its location and the medial-to-lateral gradient of primary and secondary subregions in

three primate species: humans, chimpanzees, and macaques.
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Macaque Chimpanzee Human

Figure 11: Auditory cortex across various primate species. A coronal illustrative view
showcasing the location of the primary (Al in black) and secondary (light grey and white)

auditory regions. Scale bar 5 mm. Figure extracted from Hackett (2015).

In humans, the primary auditory cortex (Al) aligns with Brodmann's area 41,
positioned between the Sylvian fissure and the superior temporal gyrus (STG). It is
specifically believed to be situated along, and even matching the contour of, Heschl's gyrus
(Da Costa et al., 2011). Multiple interpretations of the subdivisions of the human auditory
cortex are available. Given the challenges of applying invasive tracing and
electrophysiological methods in humans, this might account for the variances in such
classifications. However, a general structural arrangement becomes evident, with the
primary cortex (or core) encircled by the secondary auditory cortex—initially, the belt,
followed by the parabelt stretching radially towards the extremities of the STG. It is
essential to underscore that only the primary Al region has been consistently identified
across all primate lineages, with the subsequent regions necessitating further

comparative research.

The hierarchical arrangement of the core, belt, and parabelt areas was first influenced
by studies in non-human primates, especially the rhesus macaque, which serves as the
primary model, but also research in the marmoset monkey (Eliades & Tsunada, 2019).
Electrophysiological and fMRI examinations reveal that the medial and lateral belts of the
marmoset auditory cortex house neurons responsive to vocalizations (Kajikawa et al,,

2008; Rajan et al., 2013; Toarmino et al.,, 2017).

The auditory cortex (AC) in primates is structured in a hierarchical sequence of parallel

fields. The primary core fields are encompassed by secondary belt and parabelt fields.
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These secondary and tertiary regions process signals over extended durations,
demonstrating increased sensitivity to specific intricate attributes and their combinations
(Morel et al., 1993; Rauschecker, 1998; Hackett et al., 1998, 2007; Formisano et al., 2003;
de la Mothe et al., 2006; Upadhyay et al., 2007; Bendor & Wang, 2008; Moerel et al., 2014;
Cammoun et al., 2015; Schonwiesner et al.,, 2015; Tani et al., 2018; Besle et al., 2019). The
core typically embodies two or three fields organized tonotopically, as depicted in Figure

12.

It remains ambiguous whether the A1 in humans aligns precisely with the Al in other
species (Ruthig & Schonwiesner, 2022). While cytoarchitectonic divisions have been
identified in humans (Morosan et al, 2001), studies examining its structure have
identified parallels with monkeys (Sweet et al., 2005; Fullerton & Pandya, 2007; Smiley et
al., 2013). However, whether these regions share homology with non-human primate
fields A1, R, and RT remains to be determined (Brewer & Barton, 2016; Besle et al., 2019).
Active debates persist regarding the specific tonotopic map of the human auditory cortex
and how it relates to the tonotopy in non-human primate auditory cortices (Baumann et

al., 2013; Schonwiesner et al,, 2015; Besle et al.,, 2019).

(a) Mouse (b) Marmoset

C.

(c) Macaque

“jf— .
B\

Figure 12: Schematic comparison of early auditory fields and adjacent voice-selective
regions across various species. The auditory core, depicted in dark grey, and the surrounding
belt fields, in light grey, exhibit a similar layout and tonotopic patterns in these mammals, though
direct homologies remain unconfirmed. (a) Represents the mouse AC based on Stiebler et al.
(1997). (b) Portrays the marmoset AC referencing Tani et al. (2018) and voice-selective zones

from Sadagopan et al. (2015). (c) Illustrates the macaque AC per Hackett and colleagues (2001),
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with voice-selective areas derived from Petkov et al. (2008, 2009). (d) Depicts human auditory
fields as per Glasser et al. (2016) and voice-selective zones from Belin et al. (2000). Labels include
A1, primary auditory cortex (termed auditory field 1 in humans); A2, secondary auditory cortex;
AAF, anterior auditory field; AL, anterolateral belt; CL, caudolateral belt; CM, caudomedial belt;
CPB, caudal parabelt; DP, dorsoposterior field; LB, lateral belt; MB, medial belt; ML, mediolateral
belt; PB, parabelt; R, rostral field; RM, rostromedial belt; RPB, rostral parabelt; RT, rostrotemporal
field; RTL, rostrotemporal lateral belt; RTM, rostrotemporomedial belt; V, voice selective areas.

Figure reproduced from Ruthig & Schéonwiesner (2022).

In summary, both in humans and monkeys, the auditory cortex structure reveals a
functional hierarchy. Here, information primarily flows from the core region to more
advanced regions (core > belt > parabelt > auditory related), moving from the lateral
sulcus towards the ventral areas of the temporal lobe and then to associative regions
beyond the temporal lobe. The discussed rostrocaudal connection gradient suggests a
broader cortical division into dorsal and ventral streams for processing intricate sounds
akin to what is observed in the visual system (Figure 13). The ventral stream, which links
the rostral temporal lobe to the prefrontal cortex, likely plays a role in sound
identification, whereas the dorsal stream seems to handle spatial localization and the
sensorimotor representation of sounds (Kaas & Hackett, 2000; Rauschecker & Tian, 2000;

Rauschecker & Scott, 2009; Rauschecker, 2012).

Balezeau et al. (2020) leverage a common MRI technique called diffusion-tensor
imaging (DTI) to estimate the axonal (white matter) organization of the brains of
macaques, chimpanzees, and humans. They echoed key findings from prior studies, in
particular, a more dominant dorsal pathway - the arcuate fasciculus (AF) - in humans
(Anwander et al., 2007; Rilling et al., 2012; Eichert et al., 2019), a more pronounced
ventral pathway in chimpanzees (Rilling et al., 2012), a significant ventral pathway in
macaques (Rilling et al., 2008), and a balanced ventral pathway (Figure 13, highlighted in
green) observed across all three species (Rilling et al., 2008; Rilling et al., 2012). Insights
into AF evolution drawn from functionally defined auditory regions show homologous
ventral (depicted in dark green) and dorsal (in purple) pathways stemming from the AC
in all three species. Notably, the AF segment appears left-lateralized in humans, a
characteristic not as pronounced in nonhuman primates. These observations lend

credence to the “primate auditory prototype hypothesis” proposed by the authors,
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suggesting that the common ancestors of humans, apes, and monkeys may have had
symmetrical dorsal pathways that linked auditory areas in the temporal lobes with the

inferior frontal cortex (IFC).

Macaque

Right

Figure 13: Comparative representation of auditory dorsal and ventral pathway strength
and lateralization in macaques, chimpanzees, and humans. A visual summary of the dorsal
(in purple) and ventral (in dark green) pathways for each species juxtaposed with earlier findings
(represented in light yellow and light green). Figure extracted from Balezeau et al. (2020).
Abbreviations: AF, arcuate fasciculus; IFG, inferior frontal gyrus; AC, auditory cortex; STG,

superior temporal gyrus; LS, lateral sulcus; STS, superior temporal sulcus; MTG, middle temporal

gyrus.
3.3. Vocal production

3.3.1. Source-filter theory

Vocal production encompasses actions executed by organs responsible for generating
sound, including the lungs, larynx, nose, and mouth. The process initiates with generating
a sound source, which subsequently experiences filtering by the organs specialized for

this task. Initially recognized and detailed in humans, this mechanism has been termed
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the "source-filter theory of voice production” (Fant, 1960; Fitch, 2000; Taylor & Reby,
2010).

The sound production mechanism is bifurcated into two primary phases (Figure 14).
The initial phase is the "source", distinct for every individual, encompassing the larynx
and all sub-laryngeal and laryngeal structures. The subsequent phase is the "filter",
denoting the supra-laryngeal vocal tract that links the larynx to the mouth and nose

openings, facilitating sound emission.
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Figure 14: Illustration of the source-filter model of voice production. (a) Vocal sounds
emerge from a sound source within the larynx, subsequently shaped by the vocal tract. (b)
Formants arise from bandpass filters, operating as a frequency “window” to filter specific

frequencies selectively. Figure reproduced from Fitch (2000).

During the initial source stage, the lungs provide the necessary airstream, and the
larynx modulates this by governing the vocal fold movements. Anchored at the front by
the thyroid cartilage and at the rear by the arytenoid cartilage, the vocal folds' actions are
intricate (Fitch & Hauser, 1995). As the lungs expel air, biomechanical forces separate and
converge the vocal folds. Such forces encompass the Bernoulli force, generated by the
airstream moving between the folds, and the inherent elasticity of the folds themselves
(van den Berg et al., 1957). The fluctuating air pressure in the larynx stems from the
alternating opening and shutting of the folds. This movement rate sets the fundamental
frequency, termed FO (Fitch & Hauser, 1995; Taylor & Reby, 2010). The FO is a pivotal
acoustic metric influencing the pitch perception of a vocal sound. The source signal also

yields other features, including rhythm, length, and volume.

31



Introduction

The vocal tract, spanning from the larynx to the mouth and nasal cavity openings, is the
site of the filtering process. Upon sound generation at the source, the vocal tract functions
as a selective filter, either amplifying or attenuating specific frequencies from the source
signal (Figure 14). These particular frequencies align with resonant frequencies,
commonly termed formants. The final emitted signal is a composite of these formants

(Fant, 1960).

3.3.2. Application of the source-filter theory to monkeys

While the "source-filter theory" was initially posited for human speech production,
many studies have endorsed its relevance in explaining the vocal production of non-
human primates (Rendall et al, 1998, 1999; Fitch, 2000). Research has shown that
distinct acoustic structures of primate vocalizations are multifunctional. They not only
distinguish between various call types but also relay information about the caller's
identity, gender, and social affiliation (Rendall et al., 1998). For instance, one investigation
highlighted the ability of macaque vocal tracts to uniquely alter the spectral structure of
coo calls. Such modifications facilitate individual identification based on acoustic

variations (Rendall et al., 1998).

Comparative anatomical examinations of larynx structures have revealed that both
human infants and non-human primates possess a high-positioned larynx. This
positioning suggests a shared inability to articulate until later in childhood when the
larynx descends. However, it is widely believed that such descent does not occur in non-
human primates (Negus, 1950). However, recent research has challenged the
longstanding belief that larynx position directly correlates with vocal flexibility (Boé et
al., 2017; Fitch et al,, 2016). The "peripheral” hypothesis, predominantly propagated by
Lieberman (Lieberman et al., 1972; Lieberman et al., 1969), is central to this discussion.
This theory posits that the constrained nature of non-human primate vocalizations is a
direct consequence of their vocal tract anatomy. Specifically, the pharynx cavity, which
varies based on the larynx's vertical position, is thought to influence the diversity of
achievable sounds significantly. Contrary to this, recent studies conducted on macaques
(Fitch et al,, 2016) and baboons (Boé et al., 2017) dispute the "peripheral” hypothesis,

suggesting that, anatomically speaking, non-human primates have the potential to
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produce a sound range comparable to humans. For example, marmosets possess a rich

array of vocalizations, which will be explored further in the subsequent section.

3.3.3. Human vocal repertoire

Humans employ vocal communication as a primary mode of interaction, crucial for
establishing and maintaining social relationships, exchanging information, and
expressing emotions and intentions (Zhang et al, 2016). Their sophisticated
communication system has evolved to cater to the multifaceted demands of social

coordination, collective action, and cultural transmission (Smith et al., 2010).

Speech is the most recognized form of human vocalization, exhibiting a complex
structure with varied rhythm, pitch, and timbre. This is organized into phonemes,
morphemes, words, and sentences that convey different meanings in varied contexts.
While speech can be broken down into numerous languages worldwide, its elemental

features, like syllables and tonal variations, are universally present (Everett, 2005).

Besides speech, socially relevant information in voices, vocalizations, and voice
perception is thus one of the significant sources of non-verbal and paraverbal auditory
communication (Belin et al.,, 2004; Belin et al., 2011). For instance, laughter serves as a
social bonding tool and a method to signify amusement or relief (Figure 15) (Scott, 2014).
Crying, starting from infancy with basic hunger or discomfort signals, matures into a
broader emotional expression spectrum in adulthood, from sorrow to joy (Figure 15)
(Bell & Ainsworth, 1972). Furthermore, unlike uniquely human speech, these more basic
channels of vocal communication are shared among many species (Nielsen & Rendall,
2018). This arguably makes the nonverbal channel of vocalization an even more powerful

medium of social communication.
Singing is another distinct human vocalization, transcending mere speech by

combining linguistic content with musical elements. It plays a pivotal role in cultural

expression, religious rituals, and emotional self-expression (Welch et al., 1994).
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Infants exhibit a unique set of vocalizations called babbling, which precedes speech.
This babbling consists of repetitive, speech-like syllables and is a universal phenomenon,

setting the foundation for later language development (Oller & Eilers, 1988).

Humans display an array of vocal modifications based on the situation and audience.
For instance, in environments with increased background noise, humans instinctively
raise their voices, known as the Lombard effect, to enhance speech intelligibility (Lane &
Tranel, 1971). Humans also exhibit turn-taking in conversations (Sacks et al., 1978), with
coordinated timing to avoid overlap and ensure a fluid exchange of ideas, echoing the

antiphonal calls of marmosets (Miller et al., 2009).
The human vocal repertoire is diverse and adaptive, shaped by both evolutionary

pressures and cultural nuances, enabling intricate communication within their complex

social structures.
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Figure 15: Examples of human voices. Waveforms and spectrograms demonstrating acoustic
features of infant cry, infant laugh, and adult (female) cry sounds. While all types of vocalizations
presented here have similar frequency ranges, the fundamental frequency (F0) of the infant cry
(522 Hz) and infant laugh (562 Hz) is higher than that of the adult female cry (403 Hz). Patterns
of burst duration also vary across sound types. Figure reproduced from Friihholz and Belin

(2018).

3.3.4. Macaque vocal repertoire

In their natural environment, macaques utilize vocalizations to manage and harmonize
group activities, employing various calls. Their vocal sounds can be grouped into 12 to 16
categories, varying according to the situation and emotional drive (see Figure 16 for
examples) (Rowell etal,, 1962; Hauser et al.,, 1991; Hauser et al., 1993). Field studies using

the head-turning method to play back sounds have shown preferences in macaques for
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conspecific (CV) and heterospecific vocalizations (HV) (Ghazanfar et al., 2001; Hauser et
al,, 1994), though these conclusions have faced some contention (Fitch et al., 2006; Teufel

etal., 2010).

Early studies in Japanese macaques revealed their ability to discriminate various
conspecific vocalizations (CV), especially from the “coo” class, more efficiently than other
species (Beecher et al., 1979; Zoloth et al., 1979). However, later research suggested a
nuanced transition between different CVs within the “coo” and “screams” classes (Rowell
& Hinde, 1962; May, Moody, et Stebbins, 1988). The variability in each class may convey
distinct information (Christison-Lagay et al., 2014). Macaques can discern identity from
CV (Gouzoules et al., 1984; Hauser, 1991) and are sensitive to changes in formant
frequency, which may relate to perceived body size (Fitch & Fritz, 2006; Fitch, 1997;
Ghazanfar et al., 2007). While macaques exhibit a modest difference in body size between

sexes, it is uncertain if they can discern gender based on conspecific vocalizations (CV).
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Figure 16: Examples of macaque vocalizations. Figure extracted from Averbeck and

Romanski (2006).

3.3.5. Marmoset vocal repertoire

Marmosets, along with other primates, employ vocal communication in diverse
situations, including predator evasion, self-defense, group travel, and food foraging
(Tomasello & Zuberbiihler, 2002). Additionally, they vocalize for territorial reasons and
specific contexts tied to social interactions, play, and sustenance (Seyfarth & Cheney,
2003). Given the dense vegetation in which marmosets reside, their visual communication
is restricted. They have honed a sophisticated vocal system to communicate effectively

across distances and through visual barriers to overcome this.

Among the various calls, marmosets produce trills, and chirps are the most prevalent.

Trills, characterized as extended whistled calls with sinusoidal frequency modulation,
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function as intragroup contact calls (Bezerra & Souto, 2008). In contrast, chirps consist of
short sequences of evenly spaced notes. Distinctively, the phee call is a prolonged
intragroup contact call with a steady tone. It varies in form, such as the small phee, the
long phee, and the loud shrill (Agamaite et al., 2015; Epple, 1968). The latter is emitted
when marmosets are either separated from their group or marking territory (Bezerra &
Souto, 2008; Miller & Wang, 2006). Another call, the twitter, is a succession of open-
mouthed notes with ascending frequency, often used during encounters with other

groups (Bezerra & Souto, 2008).

Additionally, marmosets have a range of alarm calls for atypical situations,
encompassing sounds like tsiks, see or seep calls, screams, and chatters or cackles. They

also generate non-melodic vocalizations, such as coughs, indicative of their anxious state.

Marmoset infants possess a unique vocalization known as the infant cry or nga, which
evolves into mature sounds like phee call. Notably, marmosets can fuse vocalizations,
creating combinations like cough-eks and trill-phees. Mirroring humans, they adjust their
call's volume based on the perceived proximity of their audience (Choi et al., 2015) and
tweak certain sonic properties in their reciprocal calls, termed antiphonal calls. These
dialogic calls between members of the same species resemble human conversational

patterns (Figure 17) (Miller et al., 2009).
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Figure 17: Example spectrograms of mammalian vocal communication. Spectrograms show
acoustic features of (a) human speech, (b) a marmoset call, and (c) mouse ultrasonic vocalizations.
All panels show longer vocalizations consisting of phonemes of varying acoustic complexity.
Different acoustic components are highlighted (sweeps, harmonics, etc.). Figure reproduced from

Ruthig & Schonwiesner (2022).

3.4. Vocal perception

Human and non-human primates utilize vocalizations to convey diverse information
about external situations, such as threats, or to interact with others in various scenarios,
including aggression, maternal actions, bonding exchanges, and beyond. Additionally,
they heavily depend on these sounds to discern details about the vocalizer's identity,
including aspects like gender, age, how well they are known, and other traits. Hence,
precisely interpreting species-specific calls is vital for correctly understanding their social

surroundings, even when visual indicators might be missing.

Perceiving vocal sounds has been a pivotal part of communication for numerous
species long before the evolution of contemporary language. This positions it as a
significant avenue to delve into the links between animal communications and the origins

of human speech. Evidence suggests that humans and other primates share similarities in
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perceiving voices, gleaning essential data from these sounds. Voice perception
encompasses the ability to extract details from conspecific (from the same species) and
heterospecific (from different species) vocalizations, including identifying the species,
recognizing individual identities, and determining gender, along with interpreting the
underlying emotions and intentions. While the ability to process spoken language is a
human-specific trait, the perception of voice spans multiple species. Voice and spoken
language are separate entities; the voice acts as the vessel transmitting speech details.
Even without speech, the voice alone can relay much social and individual-specific

information (Belin, 2018).

Humans have an exceptional ability to extract a broad range of information from vocal
sounds (Belin et al., 2004; Belin et al,, 2017). Through these auditory cues, one can
identify speech, ascertain the identity, detect emotions, and even infer personality traits.
As quoted, “We are all experts in voice” (Latinus et al.,, 2011). Research indicates that
humans can effortlessly distinguish voices amid a sea of sounds. Even in brief sound
intervals as short as 4 milliseconds, listeners have the aptitude to differentiate voices from
other auditory stimuli, with their competence greatly exceeding mere guesswork (Suied
et al.,, 2014). Intriguingly, this acumen in voice recognition does not transpose to other
sound classifications within analogous durations; here, success rates merely hover
around chance. When tasked to pinpoint specific auditory elements amidst distractors,
individuals exhibit an amplified proficiency when the sought-after sounds are vocal
(Isnard et al., 2016). This consistent pattern across diverse test conditions emphasizes

voices' distinctive role in our auditory discernment.

This behavioral inclination towards the human voice finds its reflection in the neural
pathways. The human auditory cortex, particularly the regions in the superior temporal
gyrus (STG) and the superior temporal sulcus (STS), both anteriorly and posteriorly
aligned with the primary auditory cortex, contains specialized zones termed “temporal
voice areas” (TVA) (Belin et al., 2000; Belin et al., 2002; von Kriegstein et al., 2004; Pernet
et al, 2015). These regions exhibit an augmented fMRI reaction to vocal stimuli,
irrespective of their association with speech, in contrast to non-vocal auditory categories
such as environmental sounds or heterospecific vocal utterances (HVs) (Belin et al., 2000;

von Kriegstein et al., 2004; Fecteau et al., 2004; Agus et al., 2017).
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The TVAs, the auditory equivalents to the visual cortex's “face areas” (Kanwisher et al.,
1997; Haxby et al., 2000; Tsao et al., 2006; Freiwald et al., 2009; Hesse et Tsao, 2020),
exhibit intricate structuring. Their precise anatomical positioning can fluctuate among
individuals. However, certain research posits that they can be delineated by three “vocal
patches” along the bilateral STG/STS: aTVA, mTVA, and pTVA (Pernet etal., 2015) (Figure
18a). Even though the overall activity in the TVAs is largely bilateral, some individuals
manifest an asymmetry, with the right side of the temporal lobe displaying a heightened
voice sensitivity in 33% of cases, compared to the left's 13% (Pernet et al., 2015).
Additionally, the cerebral processing of voice extends beyond the auditory cortex,
encompassing various prefrontal regions, notably the bilateral inferior frontal gyrus

(Fecteau et al., 2005; Pernet et al,, 2015; Aglieri et al., 2018) (Figure 18b).

-
E

Figure 18: The human cerebral ‘voice patches’. a, The TVAs in the human temporal lobe. Figure
extracted from Pernet et al. (2015). b, The FVAs in the human frontal lobe. Figure extracted from
Aglieri et al. (2018).

The auditory cortex of macaques has been extensively explored using a variety of
techniques (Kaas et al., 1999; Rauschecker, 1998; Ghazanfar et al.,, 2004; Hackett, 2011;
Romanski et al, 2009; Rauschecker et al, 2009; Ghazanfar et al, 2014).
Electrophysiological recordings from awake animals indicate that neurons in the belt and
parabelt areas of the secondary auditory cortex exhibit strong sensitivity to CVs (Tian et
al, 2001), with increasing latencies and selectivity progressing in the caudo-rostral

direction toward the temporal pole (Kikuchi et al., 2010; Fukushima et al., 2015). The
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pronounced sensitivity of temporal lobe regions to CVs has been corroborated using
whole-brain metabolic imaging techniques (Poremba et al.,, 2004; Gil-da-Costa et al,,
2006;). With the advancement of fMRI in macaques, comprehensive cerebral estimates of
CV sensitivity have been obtained using scanning protocols similar to those employed in
humans. A macaque vocal area demonstrating responses analogous to human TVAs, i.e,,
favoring macaque CVs over other natural or control sound categories, has been identified
(Petkov et al.,, 2008) (Figure 19). Employing fMRI-guided electrophysiology in the vocal
area, it was shown that this region contains vocal cells, meaning individual neurons

displaying vocal selectivity, akin to observations in facial patches of the visual cortex.
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Figure 19: Vocal areas in the macaque brain. a, Functional MRI of the macaque reveals at least
one vocal area (yellow arrow) with a preference for CVs in the anterior temporal lobe. b, The
macaque's vocal area appears to be situated in a location not anticipated when drawing an analogy

with human activation patterns.

A recent study by Bodin et al. (2021) unveiled a striking functional parallel between
humans and macaques concerning the organization of the auditory cortex, especially
within high-level areas dedicated to voice processing (Figure 20). Employing a uniform
experimental procedure, humans and conscious macaques were examined through 3T
fMRI scanning as they passively listened to an array of auditory stimuli, including human
voices, macaque calls, marmoset calls, and other non-vocal sounds. The study found that
both species possess voice-selective regions within the anterior temporal lobe that
resonate specifically with vocalizations of their kind. Across 16 stimulus categories, A1l
exhibited robust response patterns in both species. Notably, the correlation between
hemispheres was particularly pronounced in humans, while it was barely significant in

macaques.
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Figure 20: Functional homology in the cerebral processing of vocalizations by macaques
and humans. fMRI data suggests that humans and macaques possess bilateral voice-specific
regions in the anterior temporal lobe that favor conspecific vocalizations and process them

similarly. Figure reproduced from Bodin et al. (2021).

Recently, marmosets have become increasingly popular subjects for neuroimaging
studies. Their small stature allows for the use of high-field rodent MRI systems, providing
enhanced signal and spatial precision. In a 2015 study involving six anesthetized
marmosets, researchers explored the potential for voice-sensitive regions that prefer
conspecific vocalizations. They utilized three types of stimuli: conspecific vocalizations
(CVs), phase-scrambled CVs, and vocalizations from different animal species (Sadagopan

etal., 2015).

To produce the phase-scrambled vocalizations, they derived the power spectrum from
marmoset calls across six logarithmically spaced bands and randomized the phases of
these bands. Subsequently, they merged them to create the final scrambled sounds. The
data revealed that areas along the lateral sulcus, close to the temporal pole, displayed a
particular affinity for CVs. Notably, the utmost rostro-lateral section demonstrated the

strongest preference, as highlighted in Figure 21.
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This pattern aligns with observations in macaques, hinting at a similar structure-
function link in both species concerning the interpretation of conspecific vocalizations.
This suggests that the cortical specialization for vocalization processing might have

evolved roughly 40 million years ago in a shared ancestor.

V>N

Figure 21: A caudal-rostral gradient for vocalization selectivity in the auditory cortex. The
map displaying the differential response is projected back into anatomical coordinates, showing
the gradient from caudal to rostral regions and indicating the location of the most selective area
for vocalizations within the gradient. The green arrow and orange regions correspond to regions

most selective for conspecific vocalizations. Figure reproduced from Sadagopan et al. (2015).

Another recent study by Stefan Everling, with ultrahigh field fMRI in awake marmosets,
found a frontotemporal network, including subcortical regions, activated by conspecific
vocalizations in marmosets (Jafari et al.,, 2023). They used three categories of auditory
stimuli: CVs, time-scrambled CVs, and non-vocal sounds, including natural sounds,
artificial sounds, and other animals. According to their findings in Figure 22, the
activations did not show a caudal-rostral gradient (Figure 21) but rather atleast 3 patches

that may be homologs of the human voice patches.
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Figure 22: Comparison of marmoset and human networks. Left: Volumetric probabilistic
functional map for vocal > scrambled vocalizations and vocal > nonvocal in marmosets overlaid
on slices of anatomical MR images. Vp, vocal posterior, Vm, vocal medial, Va, vocal anterior. Right:
Similar layout but for probabilistic functional human atlas for the voice and language localizer.

TVAs, temporal voice areas. Figure extracted from Jafari et al. (2023).

These studies demonstrate a consistent functional organization of higher-level
auditory cortex among various primate species. According to Belin and colleagues, this
suggests the existence of a 'primate voice patch system' that specializes in processing

conspecific vocalizations in primates (Belin et al., 2018; Bodin & Belin, 2020).

4. Representation learning with
autoencoder-based models

In machine learning (ML), representation learning (RL) encompasses techniques that
transform raw input signals into meaningful representations. When RL systems deploy
multiple intermediate representations, it is termed deep learning (DL). RL is sometimes
utilized purely for extracting features, and a subsequent machine learning system is
employed for predictions, known as feature learning (Lee et al.,, 2009). In other scenarios,
the RL system directly conducts inferences. Deep neural networks (DNNs) have recently
surpassed other techniques in tasks like speech recognition (Hinton et al., 2012), visual
object recognition (Krizhevsky et al., 2012), and natural language processing (Collobert &
Weston, 2008), amplifying research and interest in this domain. Much of RL's foundation,
particularly the principles derived from artificial neural networks (ANNs), drew
inspiration from initial computational neuroscience models focused on neurons and their
networks. Consequently, RL systems offer a more biologically grounded perspective than

other machine learning systems (Bengio et al., 2014).
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Autoencoder (AE) models in machine learning serve a dual purpose: firstly, they
encode input data into a condensed latent vector, and subsequently, they decode it back
to its original dimensionality. This process can be split into the encoder and the decoder,
each offering many variations. In this section, I will delve into the diverse AE models we
explored to extract a comprehensive yet compact representation from a dataset of vocal

signals.

4.1. Principal component analysis

Principal component analysis (PCA) is a fundamental method for representation
learning. Simply put, PCA determines the primary directions in which a dataset varies the
most. It works by computing a linear transformation;

h=f(x)=WTx+b (4)
where x is the input data. Here, the columns of matrix W represent the main orthogonal

directions of maximum variance in the dataset.

The new features or “principal components” are uncorrelated. This transformation
allows the data to be represented in terms of these principal components. Less significant
components—explaining the most minor variance—are typically discarded to reduce
dimensionality. The resultant representation, often with fewer dimensions, can be more

practical than the original data.

In Chapter 3 of our fMRI study, we established a baseline by investigating using PCA as
a linear encoder to reduce the dimensionality of the input vector x. This approach was
chosen because it has been demonstrated that a linear autoencoder with a d-dimensional
hidden layer projects data in the same subspace as the one spanned by the d-first

eigenvectors of a PCA (Plaut et al., 2018).

4.2. Autoencoder
Autoencoders (AEs), a specific category of Deep Neural Networks (DNNs), are

formulated to learn a non-linear transformation that maps data from the signal domain
into a reduced latent space during the encoding phase. Subsequently, they employ an

inverse non-linear transformation through the decoding phase to reconstruct the latent
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coefficients within their original domain (Vincent et al., 2010). This process is illustrated

in Figure 23a.

Predominantly, they have been leveraged as an unsupervised method for reducing data
dimensions. For instance, in the study by Hinton & Salakhutdinov (2006), AEs were tested
on the grayscale images sourced from the Olivetti faces dataset. They juxtaposed the
images reconstructed via AE with those achieved through the PCA, and they evaluated
based on the same compression metric: the count of principal components in PCA versus
the neuron count in AEs' bottleneck layer. Their findings highlighted that AEs
substantially surpassed PCA for the datasets in question, generating images from latent
descriptors that were profoundly analogous to the originals in quality and mean squared

error (MSE) metrics (Figure 23b).

The encoder captures the input data x and maps it to a latent space representation z.
The decoder then uses z to reconstruct the input, denoted as X.

Given an input x, the encoder function, parameterized by weights ¢, maps it to a latent

space z:
z = fg(x) (5)
The decoder, parameterized by weights 6, then tries to generate X from z:
X =go(z) (6)

The training objective of an autoencoder is to adjust the parameters ¢ and 8 to minimize

the reconstruction error:

L@ = Y - @

where x; € {x4, ..., xy}and N is the total number of training examples.
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Figure 23: Shallow and deep AE. a, General architecture of shallow and deep autoencoders. The

PCA can be seen as a shallow linear AE. Figure extracted from Fanny Roche’s thesis (2023). b, Top
to bottom: Random samples from the test data set; reconstructions by the autoencoder;
reconstructions by the PCA. PCA gave much worse reconstructions. Figure extracted from Hinton
& Salakhutdinov (2006).

4.3. Variational autoencoder
Variational autoencoder (VAE), introduced by Kingma and Welling (2014), represents

a powerful approach in deep learning that uses neural networks for unsupervised
representation learning from intricate data. Models of this nature have been widely
employed for the synthesis of a diverse range of images: digits from the previously
mentioned MNIST dataset (Kingma & Welling, 2014; Salimans et al.,, 2014), facial
representations (Kingma & Welling, 2014; Rezende et al., 2014; Kulkarni et al., 2015;
Higgins et al, 2017), compact images of tangible objects from the CIFAR dataset
(Krizhevsky, 2009; Gregor et al., 2015), and even 3D renditions of chairs (Kulkarni et al.,,
2015; Higgins et al., 2017). They have also been used in forecasting subsequent sequences
in static images (Walker et al., 2016). While VAEs are good at producing high-resolution

images, they occasionally exhibit a mild blur. Their capacity to define a representation
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space with notable characteristics, mainly due to the constraints imposed on the latent
dimensions leading to a degree of decorrelation, positions them as promising tools for

discerning valuable control parameters for synthesis.

Similar to their use in image synthesis, VAEs have recently gained traction in the audio
domain. Initially, they were employed for the modeling, transformation, and synthesis of
speech signals (Blaauw & Bonada, 2016; Hsu et al., 2017; Akuzawa et al.,, 2018). In a
somewhat related context, VAEs have been utilized to model clean speech signals to
enhance speech in noisy environments (Bando et al., 2018; Leglaive et al., 2018).
Moreover, these models have applications in synthesizing musical sounds (Esling et al,,

2018; Roche et al., 2021).

VAEs can be seen as a probabilistic/generative extension of standard AEs as, instead of
deterministically mapping the input vector x to a unique latent vector z as done in AEs,
the VAE encoder network maps x into the parameters of a conditional distribution
q¢(z|x) of z. Similarly, the decoder network maps a vector of latent coefficients z into the
parameters of a conditional distribution pg(x|z) of x (Figure 24a). VAEs are thus
considered as generative models as they try to capture the probability distribution of the
data. Importantly, in a VAE, a prior can be placed on the distribution of the latent variables
z so that they are well-suited for the control of the generation of new data, as exemplified

by the speech interpolation in Figure 24b.

Given an input x, the encoder function parameterized by ¢, ascertains the parameters
(mean u and variance ¢2) of the distribution over the latent variables z:
z ~ fp(x) (8)
Here, f4(x) is often modeled as a multivariate normal distribution using # and a2
The decoder, characterized by 6, reconstructs X from the sampled z:
X =ge(2) 9
The training objective for the VAE combines the reconstruction loss (difference between

x and X) and a regularization term:
N

L@.60,X)= ) (1xi= g0 (fo0)) 1P+ Dy (D)  (10)
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Here, x; € {xy,...,xy}; N is the total number of training examples; Dy, (fy(x) |l p(2))
represents the Kullback-Leibler divergence, which measures the difference between our

latent space distribution and a standard normal distribution p(z).

This loss function bears a clear interpretation. Since the KL divergence is always non-
negative, L(¢, 8, x) can be considered as a lower bound on the data likelihood (Doersch,

2021). This is often called the “Evidence Lower Bound” or ELBO.

For training VAEs, one can use gradient-based optimization techniques, especially
when f4(x) represents a multivariate normal distribution with parameters u and o?
(Kingma & Welling, 2014). The Adam optimizer, proposed by Kingma and Ba (2015), is a

popular choice in this context.
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Figure 24: Variational autoencoder. a, VAE's general architecture with grey dotted arrows
denoting the sampling process. Figure reproduced from Roche et al. (2021). b, 200 ms segment
interpolation from a male /ey/ to a female /ay/ using both VAE and AE. The VAE transition
highlights pitch and formant contour changes, whereas AE demonstrates a more direct feature

space interpolation. Figure extracted from Hsu et al. (2017).
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Chapter 1
Comparative study of the vocal cortex in

primates

Voices play a pivotal role in communication among humans and other primates, encoding
essential information such as gender, identity, and emotion. The ability to interpret these
vocal cues is supported by a specialized brain system comprising interconnected cortical
areas. These regions work together to form increasingly abstract representations of vocal
sounds. Despite recognizing the significance of this system, our understanding of the specific
contributions of each component still needs to be completed. This chapter aims to compile
recent discoveries regarding the structure and function of these cortical areas in primate
brains. By synthesizing these findings, we aim to construct a refined model of vocal
processing, highlighting the distinct roles played by various brain regions in interpreting

vocal signals.
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Chapter 1
Comparative study of the vocal cortex in primates

1. Abstract

It has been suggested that the primate brain processes vocal information through a “voice
patch system” (Belin et al., 2018) consisting of discrete, interconnected cortical areas
supporting increasingly abstract vocal input representations. In a subsequent review,
Bodin and Belin (2020) provided further evidence supporting the cerebral basis of
conspecific voice (CV) in human and non-human primates. Their findings highlighted a
conserved voice patch system in the temporal lobe, called the “temporal voice areas”
(TVAs). Additional neuroimaging studies have identified extra-temporal regions with
varying degrees of sensitivity to CV. Three bilateral regions in the human frontal cortex
have been labeled as the “frontal voice areas” (FVAs) (Aglieri et al., 2018), showing greater
sensitivity to vocal compared to non-CV stimuli. While it is clear that vocal information
passes through these voice areas, the specific functions of each area are not yet fully
understood. This chapter is dedicated to exploring the current understanding of this

intricate system and identifying the gaps in our knowledge of it.

2. Understanding voice perception

Voices, crucial for communication in various species, especially primates (human and
non-human primates), necessitate focused research on mammalian vocal patterns and the
neural bases in voice-sensitive areas, known as voice areas (VA). These regions are
defined by their higher responses to voices than to other auditory stimuli using functional
brain-imaging studies. These studies indicate that distinct cortical brain regions show
robust responses to voices after basic sensory processing in the primary auditory cortex
(A1). While the processing of basic sound features in primates is well-established, there
still needs to be more understanding regarding how the brain, especially within the
temporal and frontal VA, converts intricate vocal signals into meaningful high-level
representations. We present below a series of questions aimed at evaluating the state of
knowledge within both recent and past literature to shed light on the limitations of the

current literature in the field:

e What is the functional role of each unit within the “voice patch” system in
the human brain when processing vocal information?
e How do voice patches connect within the brain, what are their processing

stages, and are there distinct temporal dynamics in voice processing?
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e How is voice identity encoded in the brain?
e Isthere a shared voice coding principle across primate species?
e What are the voice recognition mechanisms?

e Which computational models align with the VA representations?

This review chapter first overviews current evidence, focusing on human anatomical,
functional, and neural aspects. Next, we examine voice processing in other primates to
find common patterns or homologies. Finally, we investigate the principles behind voice
recognition, explore how computational modeling can reveal these principles, and discuss
why combining these insights is essential for a unified understanding of voice perception

and processing.

3. Anatomical organization of the voice
processing system

The anatomical organization of the auditory cortex is thought to reflect a functional
hierarchy where information mainly flows from primary regions to more secondary
regions, along the superior temporal gyrus (STG) and sulcus (STS), and all the way to
extra-temporal associative areas. Figure 1.1a illustrates the brain regions in both the left
and right hemispheres involved in decoding semantic, identity, and emotion-related
information from vocal cues. Regions are color-coded, with lighter shades indicating areas
likely involved in post-perceptual processing —integrating initial sensory input with

memories or broader knowledge.

The temporal voice areas (TVAs) are arranged bilaterally along the Superior Temporal
Sulcus and Gyrus (STS/STG). The frontal voice areas (FVAs) are primarily located within
the inferior frontal gyrus, spanning regions from the pars orbitalis to the junction of the
precentral and middle frontal gyrus. The limbic system is an aggregation of brain
structures generally located lateral to the thalamus, underneath the cerebral cortex, and

above the brainstem.

A portion of the inter-individual variability in the occurrence and position of the
TVAs/FVAs could be related to the high inter-individual variability in the anatomy of sulci

patterns. Indeed, correspondence between the location of functional activations and
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anatomy has been observed in multiple cases, such as for the location of the TVAs relative
to the superior temporal asymmetrical pit of the superior temporal sulcus (Bodin et al,,
2018) and for the location of the FVAs relative to the individual sulcal anatomy of the

prefrontal cortex (Cordeau et al., 2023).

Temporal Lole The anterior temporal pole (aTP) is situated in the most anterior part
of the temporal lobe (BA 38). The anterior temporal voice area (aTVA) is in the anterior
superior temporal sulcus. On the left hemisphere, LaTVA is found in the superior temporal
gyrus (STG) according to the Anat toolbox and as the STG anterior division in the Oxford
atlas. On the right hemisphere, RaTVA is identified in the temporal pole using the Anat
toolbox and is also labeled as the STG anterior division in the Oxford atlas. The left
(LmTVA) and right (RmTVA) mid-temporal voice areas, as defined by Pernet etal. (2015),
are located in the middle superior temporal gyrus and sulcus/gyrus, respectively. Both
are identified in the superior temporal gyrus (STG) by the Anat toolbox and labeled as the
STG posterior division in the Oxford atlas. The posterior temporal voice area (pTVA) plays
a crucial role in auditory-motor integration. Anatomically, both the left (LpTVA) and right
(RpTVA) sections are identified in the middle/posterior superior temporal gyrus by
Pernet et al. (2015). The Anat toolbox places them in the superior temporal gyrus (STG),

with the Oxford atlas categorizing both as the STG posterior division.

Frontal Lobe The anterior frontal voice area (aFVA) is most closely associated with
the horizontal ascending ramus of the lateral fissure (half), which separates the pars
triangularis (area 45) from pars orbitalis (area 47/12) in the anterior inferior frontal
gyrus (Sprung-Much et al., 2020). It is located at the more anterior part of the inferior
frontal sulcus (ifs), forming the dorsal border of area 45 (Frey et al., 2014). Last, it is also
related to the anterior ascending ramus of the lateral fissure (aalf), which forms the caudal
border of area 45, with area 44 located posteriorly (Sprung-Much et al., 2020). As such,
aFVA is likely located in area 45 in the anterior part of Broca’s speech region. The mFVA
is often found close to the ifs, at the posterior part of the inferior frontal cortex (i.e., close
to the aalf and diagonalis sulcus (ds)) relative to the aFVA. The main neighboring sulci of
the mFVA form the boundaries of area 44 of the pars opercularis with ifs dorsally, aalf
anteriorly, and inferior precentral sulcus iprs posteriorly, while the ds is known to be an

axial sulcus within area 44 (Loh etal., 2017, 2020; Sprung-Much et al., 2018). However, in
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some participants, the mFVA notably extends into the area 45 territory (i.e., near half and
ifs-anterior). We propose that mFVA occupies pars opercularis, i.e., area 44. The pFVA is
consistently located close to the iprs, which delimits area 44 anteriorly and ventral
premotor area 6 posteriorly. It is sometimes found close to the cs, where the primary
motor area 4 is found, and close to the ifs, which separates the middle frontal gyrus
dorsally from the inferior frontal gyrus. Based on these neighboring sulci, the pFVA is in

ventral premotor area 6 at the most caudal part of the inferior frontal cortex.

Limbic System The limbic system is crucial in processing emotional and social
nuances embedded in vocal stimuli. It is an aggregation of brain structures generally
located lateral to the thalamus, underneath the cerebral cortex, and above the brainstem.
The anterior cingulate cortex (ACC) is situated in the frontal part of the cingulate gyrus,
stretching from the corpus callosum's anterior segment to the cingulate sulcus's genu. The
posterior cingulate cortex (PCC) is located posteriorly on the cingulate gyrus, extending
from the cingulate sulcus's splenium to its isthmus. The amygdala is nestled within the
medial temporal lobe, anterior to the hippocampus, and lateral to the thalamus. The
insula, concealed by the lateral sulcus, lies between the temporal and frontal lobes, with
its anterior part neighboring the frontal operculum and its posterior part adjoining the

parietal operculum.

4. The fronto-temporal-limbic network of
voice processing

Voice perception can be viewed from different angles. Some focus on how the brain
functions when processing voices, looking at the cognitive processes and components of
voice perception at a theoretical level (Belin et al., 2004). Others look at brain structure,
studying the regions and pathways involved in recognizing voices (Belin et al., 2000; Staib
& Frihholz, 2023). From a functional viewpoint, voices have mainly been studied as a
multimodal neural network. This broader view comes from the analogous mechanisms by
which the brain processes voice and face information, giving rise to the term “auditory
face” (Campanella & Belin, 2007; Perrodin et al., 2015; Young et al., 2020). However, this
term has its limits. Focusing only on the similarities between voice and face might miss

some specific details about how voices are processed.
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Studies over the past two decades have established via complementary neuroimaging
techniques that the cerebral processing of voice information involves a set of temporal
voice areas (TVAs) in secondary auditory cortical regions of the human (fMRI: Belin et al,,
2000; von Kriegstein & Giraud, 2004; Pernet et al., 2015; EEG, MEG: Charest et al., 2009;
Capilla etal, 2013; Barbero et al., 2021; Electrophysiology: Zhang et al., 2021; Rupp etal,,
2022). The TVAs respond more strongly to sounds of voice — with or without speech
(Pernet et al,, 2015; Rupp et al.,, 2022; Trapeau et al., 2022)— and categorize voice apart
from other sounds (Bodin et al., 2021).

Recent research indicates that while the TVAs are primarily associated with the
auditory experience of voice through a general voice processing (Staib & Friihholz, 2021;
Bestelmeyer & Miihl, 2022; Morillon et al., 2022; Staib & Friihholz, 2023), the frontal voice
areas (FVAs) play a pivotal role in behaviorally significant voice processing tasks. These
tasks include recognizing familiar voices, guided by focused attention and control. This
underscores the importance of FVAs in models of voice perception (Aglieri et al., 2021;
Roswandowitz et al., 2021; Bestelmeyer & Miihl, 2022). Another crucial facet of voice
perception is emotional discernment. A growing body of recent studies underscores the
integral role of the limbic system in voice processing, particularly in decoding emotional
valence, reacting to voices, and modulating arousal and attention (Frithholz et al., 2019;
Dominguez-Borras et al, 2019; Giordano et al, 2021; Steiner et al, 2022). These
additional areas —“the extended voice perception system”— are analogous to the

extended network for face processing (Hesse & Tsao, 2020).

What is the functional role of each unit within the “voice patch” system in the
human brain when processing vocal information? One leading theory about how we
process sound suggests that the left side of the brain is better at handling quick changes
in sounds, while the right side is better with slower changes (Zatorre & Belin, 2001;
Flinker et al., 2019; Hamilton et al., 2019; Albouy et al., 2020; Morillon et al., 2022). This
idea is supported by research showing speech processing happens mainly in the left
hemisphere (Albouy et al., 2020) and recognizing who is speaking happens more in the
right hemisphere (Mathias & von Kriegstein, 2014; Andics et al., 2010; von Kriegstein et
al., 2003; Myers & Theodore, 2017; Hickok & Poeppel, 2007; Belin & Zatorre, 2003). This

suggests that each side of the brain could be specialized for processing different aspects
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of sound. Drawing from a range of studies —including behavioral, fMRI, M/EEG, and
single-unit experiments (i.e., recording of spiking activity from a single neuron) — we put
forth a synthesized functional model for voice. This model incorporates findings from
previous studies suggesting that the right side of the brain predominantly processes voice
identity information. In contrast, the left side focuses on deciphering voice semantic
content and processing voice emotion bilaterally. Moreover, the model integrates the
system responsible for processing vocal emotions. Furthermore, our model attempts to
map these functions with the underlying neural networks involved in voice processing

(Figure 1.1b).

How do voice patches connect within the brain? Blank et al. (2011) identified
structural connectivity between voice-sensitive regions in the temporal lobe using
diffusion-weighted imaging (DWI). More recently, Zhang et al. (2021) utilized ECoG
electrode grids (i.e., placing electrodes directly on the exposed surface of the brain to
record electrical activity, which provides a more direct and higher resolution
measurement of brain activity than scalp EEG) and latency analyses and described dual
voice processing pathways. In this proposal, information originates from the mTVA
patches and bifurcates: one pathway leads from mTVA to aTVA, while the other extends
from mTVA to pTVA. We hypothesize the existence of effective connectivity (EC, i.e., the
causal link between different brain areas, that is, if the signal in one area influences the
signal in another) among these patches, i.e., directional, causal neural interactions flow
from mTVA to aTVA and pTVA. Aglieri et al. (2018) investigated functional connectivity
(FC; i.e., the statistical association between neuronal activations in different regions of the
brain, which helps understand how different parts of the brain communicate and work
together during various tasks or at rest) within the voice perception network, defined by
three frontal and three temporal regions of interest in each hemisphere, based on group
voice-specific activation (the so-called temporal and frontal “voice patches”). They found
that the TVAs and FVAs networks are functionally interconnected. Notably, in the right

hemisphere, this connection proved significant for voice recognition performances.

What are the temporal dynamics of voice processing? Several studies employing
MEG/EEG and intracranial recordings have illustrated that the mTVA exhibits selective

responsiveness to voice commencing around 150-200 ms (Charest et al., 2009: 164 ms;
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Capilla et al,, 2013: 150 ms; Zhang et al., 2021: ~150 ms; Lowe et al. 2021: ~200 ms;
Norman-Haignere etal.,, 2022: <200 ms; Rupp etal.,, 2022: ~150 ms). Additionally, several
studies reported that the pTVA and aTVA manifest a longer response time compared to
the mTVA, suggesting their position at a subsequent stage in the voice processing
hierarchy (Schall et al., 2015: ~200 ms; Zhang et al,, 2021: >200 ms; Norman-Haignere et
al,, 2022: >200 ms). Within the limbic system, the right amygdala and the right insula play
arole in deciphering general emotional attributes. The right amygdala shows heightened
activation during emotional state processing at a later stage, specifically post ~500 ms. In
comparison, the right insula demonstrates increased activation post ~700 ms, marking a

staggered temporal engagement in processing emotional states (Giordano et al., 2021).
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Figure 1.1: Schematic of the state-of-the-art knowledge of voice processing in humans. a,
Brain regions responsive to voices in humans. Components shown in blue involve the

vocal/motor processing axis in the left hemisphere. Components shown in pink involve the voice
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identity processing axis in the right hemisphere. Lower-level analyses are indicated by more
intense colors, determined approximately based on the literature. Black lines are used to indicate
a structural connection. Fronto-temporal and fronto-limbic functional connections are indicated
with orange lines. Plain and dotted red arrows indicate effective connectivity or hypothetical
effective connectivity between two areas. Abbreviations: L/R, left/right hemisphere; A1, primary
auditory cortex; a/m/pTVA, anterior/mid/posterior temporal voice area; aTP, anterior temporal
pole; a/m/pFVA, anterior/mid/posterior frontal voice area. b, Functional model of voice
perception in humans. The model shows components that involve unimodal responses to voices.
Same colors as in a. Components in green involve the vocal emotion processing axis, bilaterally.
Yellow indicates a general voice processing to behaviorally relevant voice processing gradient.

Adapted from Belin et al. (2004), Maguinness et al. (2018), and Morillon et al. (2022).

5. General voice processing

A voice heard by a listener first undergoes general low-level auditory analyses, such as
spectro-temporal filter analysis (Belin et al., 2000; Zatorre et al., 2002; Hickock et
Poeppel, 2004; Hickok & Poeppel, 2007; Bodin et al., 2021; Rupp et al., 2022; Giordano et
al.,, 2023), in subcortical areas and primary auditory cortex (A1l). Then, a finer voice
structural analysis (Staib & Frithholz, 2021) begins in the mid-temporal voice areas
(“mTVA - Voice Structural Analysis”). Functionally, mTVA - bilaterally (Belin et al., 2000)
- appears to perform a template matching to detect and match voices (or “norm-based
coding”; Latinus et al, 2013) to an internal ‘voice prototype’ (Figure 1.2). In this
perspective, neural responses do not mirror the stimulus directly; instead, they indicate
its congruence with an internal template, a norm that could encapsulate the average of

our personal voice experiences within our social context (Rupp et al., 2022).

Functionally, several recent studies have investigated the neuronal responses to voice
stimuli in human nonprimary areas using intracranial recordings, either through ECoG
electrode grids (Zhang et al., 2021) or sEEG recordings (Rupp et al., 2022). Their findings
support the idea of a hierarchical organization of voice patches in the temporal lobe,
where the information flow starts from the mTVA patches and moves in two directions:
one from mTVA to the anterior TVA (aTVA) and the other one from mTVA to posterior
TVA (pTVA).
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Temporarily disrupting neuronal activity in the right mTVA using repetitive
transcranial magnetic stimulation (rTMS; i.e., a non-invasive procedure that uses
magnetic fields to stimulate nerve cells in the brain) impairs performance in voice
detection tasks but not in broader auditory tasks (Bestelmeyer et al., 2011). This not only
suggests a direct causal relationship with voice processing but also underscores RmTVA's

higher hierarchical role in this process.
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Figure 1.2: Schematic of the general voice processing in humans. A voice heard by a
listener first undergoes general low-level auditory analyses in subcortical areas and primary
auditory cortex (A1). Then, a finer voice structural analysis begins in the mid-temporal voice areas
(mTVA - Voice Structural Analysis). Functionally, mTVA -bilaterally- appears to perform a
template matching to detect and match voices to an internal ‘voice prototype’. Recent findings
support the idea of a hierarchical organization of voice patches in the temporal lobe, where the
information flow starts from the mTVA patches and moves in two directions: one from mTVA to
the anterior TVA (aTVA) and the other one from mTVA to posterior TVA (pTVA). Components
shown in blue involve the vocal/motor processing axis in the left hemisphere. Components shown
in pink involve the voice identity processing axis in the right hemisphere. Lower-level analyses
are indicated by more intense colors, determined approximately based on the literature. Black
lines are used to indicate a structural connection. Fronto-temporal functional connections are
indicated with orange lines. Plain and dotted red arrows indicate effective connectivity or
hypothetical effective connectivity between two areas. Yellow indicates a general voice processing
to behaviorally relevant voice processing gradient. Abbreviations: L/R, left/right hemisphere; A1,

primary auditory cortex; a/m/pTVA, anterior/mid/posterior temporal voice area.
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6. Vocal motor/semantic processing axis

This axis is primarily left-lateralized, encompassing regions in both the temporal and
frontal lobes, which play vital roles in vocal and semantic processing. The left TVAs might
first realize a general vocal motor/semantic processing, while the left FVAs might

integrate this information via frontotemporal connections (Figure 1.3).

Left TVAs: General Vocal Motor/Semantic Processing Tsapkini et al. (2011)
emphasized the potential role of the anterior temporal pole (aTP) as a semantic hub for
semantic knowledge. Based on assessments of acute strokes and infarct volumes, they
found that both the right and left aTP are involved in processing and understanding
meanings and concepts, such as words. Functionally, the left anterior temporal voice area
(LaTVA) might be involved in semantic processing (Patterson et al., 2007; Perrodin et al.,
2015; Zhang et al., 2021) and correlates with motor areas (Aglieri et al., 2018). It also
contributes to formant tracking (Latinus et al,, 2013). Cope et al. (2020) proposed that
LaTVA is crucial for the efficient lateralized processing of spoken word identity. The
posterior temporal voice area (pTVA) might play a crucial role in auditory-motor
integration. Functionally, the pTVA encodes phonetic features (von Kriegstein et al., 2010;
Mesgarani etal,, 2014; Zhang et al., 2021) and exhibits high latency and sparseness (Zhang
et al, 2021). The LpTVA, often termed “motor speech”, correlates with motor regions

during speech processing (von Kriegstein et al., 2010; Zhang et al,, 2021).

Left FVAs: Auditory Motor/Semantic Integration In the left hemisphere, the aFVA
connects to (1) Higher-order processed semantic and multimodal inputs from the
anterior and middle parts of the temporal lobe through the extreme capsule fasciculus
(Frey et al.,, 2008; Petrides & Pandya, 2009), forming the ventral speech pathway (Hickok
& Poeppel, 2007); (2) Auditory inputs processed from the posterior temporal cortex via
the arcuate fasciculus (Frey et al,, 2014); (3) Speech output areas such as area 44 and the
ventral premotor areas positioned more posteriorly. This connectivity implies that the
LaFVA might retrieve and integrate higher-order semantic and auditory aspects of voice
information. It then might guide speech motor actions via the posterior inferior frontal
cortex (Loh et al.,, 2020). Non-human primates likely share this functionality, given the
consistent connectivity of area 45 across both species. The mFVA might then be part of
the dorsal stream of speech perception (Erickson et al., 2017) and could be connected
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with social cognition processes (Hamzei et al., 2016). In humans and monkeys, this region
communicates with the posterior temporal cortex via the arcuate fasciculus and the
supramarginal gyrus through the superior longitudinal fasciculus III. In the left
hemisphere, this network comprises the dorsal speech pathway (Hickok & Poeppel,
2007), which is implicated in the phonological processing of speech. Area 44, where
LmFVA resides, associates closely with the speech motor output region in the ventral
premotor cortex (Petrides et al, 2014). Thus, the LmFVA might process phonological
aspects of voice and modulate control over speech/vocal motor production via the ventral
premotor area. This functionality is backed by studies showing area 44's involvement in
selecting orofacial and vocal motor (Loh etal., 2020). Non-human primates exhibit similar
attributes, with area 44 involved in auditory-driven vocal motor control (Aboitiz, 2018;
Hage & Nieder, 2013). The pFVA, known for high-level motor speech and voice identity
representation, might house speech-motor representations (Conant et al, 2014).
Guenther et al. (2017) suggested that the left ventral premotor area might offer a top-
down perception of speech by formulating predictive models of speech motor plans.
These models then juxtapose with perceived auditory-vocal inputs in the temporal cortex.
Given its anatomical ties to the posterior parietal and temporal cortices and its position
in the dorsal speech pathway in the left hemisphere described by Hickok and Poeppel
(2007), the LpFVA's role in voice processing probably involves a top-down influence on

speech-vocal perception.
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Figure 1.3: Schematic of the vocal motor/semantic processing axis. Components shown in
blue involve the vocal/motor processing axis in the left hemisphere. Components in green involve
the vocal emotion processing axis, bilaterally. Lower-level analyses are indicated by more intense
colors, determined approximately based on the literature. Black lines are used to indicate a
structural connection. Fronto-temporal and fronto-limbic functional connections are indicated
with orange lines. Plain and dotted red arrows indicate effective connectivity or hypothetical
effective connectivity between two areas. Yellow indicates a general voice processing to
behaviorally relevant voice processing gradient. Abbreviations: L, left hemisphere; A1, primary
auditory cortex; a/m/pTVA, anterior/mid/posterior temporal voice area. aTP, anterior temporal

pole; a/m/pFVA, anterior/mid/posterior frontal voice area.

7. Voice identity processing axis

How is voice identity encoded in the brain? Again, this axis is primarily right-
lateralized, with the temporal and frontal lobes as the main regions. The right TVAs might

62



Chapter 1
Comparative study of the vocal cortex in primates

first realize general voice identity processing, while the left FVAs might integrate this
information via frontotemporal connections into higher-level representations, as well as
influence the temporal representations during active voice identity recognition (Figure

1.3).

Right TVAs: General Voice Identity Processing Several studies have explored the
involvement of the anterior temporal pole (aTP) in voice identity processing. Belin and
Zatorre (2003) demonstrated adaptation to a speaker's voice in the right hemisphere.
Antics et al. (2010) suggested bilateral identity processing, whereas Latinus et al. (2011)
discussed learning-induced changes in the cerebral processing of voice identity in the
right hemisphere. Additionally, Luzzi et al. (2018) observed selective associative
phonagnosia (a condition where an individual has difficulty recognizing familiar voices
despite having normal hearing and speech perception abilities) following a right anterior
temporal stroke, emphasizing familiar identity representation. Drawing on the studies
above, it can be inferred that the right hemisphere of the anterior temporal pole (aTP)
could correspond to the supramodal person identification stage as proposed in the
functional model of Belin et al. (2004). Zhang et al. (2021) noted that the aTVA possesses
high latency and sparse activations compared to mTVA, indicating the information
transfer from mTVA. Functionally, the left aTVA is involved in semantic processing
(Patterson etal,, 2007; Perrodin et al., 2015; Zhang et al., 2021) and correlates with motor
areas (Aglieri et al., 2018). It also contributes to formant tracking (Latinus et al., 2013).
The right aTVA might primarily represent human voice identity (Maguinness et al., 2018;
Zhang et al,, 2021) and is associated with identity adaptivity (Kriegstein & Giraud, 2004),
timbre discernment (Pernet & Belin, 2012; Allen et al., 2017), and f0 tracking (Schuller,
2013). Sometimes referred to as a “person identity node”, the right pTVA has strong
connections with the anterior facial voice areas (aFVAs). This connectivity might assist in

determining who is speaking (Aglieri et al., 2018).

Right FVAs: Top-down Influence on Voice Identity Processing The RaFVA has been
associated with the processing of vocal attractiveness (Bestelmeyer et al., 2012) and the
representation of voice gender (Charest etal.,, 2013). RmFVA has been associated with the
processing of vocal attractiveness (Bestelmeyer et al., 2012). In the right hemisphere, the

pFVA is associated with perceiving voice identity despite acoustic variability, especially
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after familiarization with previously unfamiliar voices (Latinus et al., 2011; Antics et al,,

2013). This supports the idea of top-down influences in voice identity processing.

Limbic System The anterior insulae were involved in the higher-level representation
of identity. This supports the hypothesis that in tandem with the medial superior frontal
region, it supports person identity recognition (Bestelmeyer & Miihl, 2022). The left
cingulate gyrus has been found to be sensitive to changes in perceived voice identity,
suggesting its role in storing and retrieving familiar voices (Latinus et al.,, 2011). Both the
cingulate gyrus's left and right anterior portions demonstrate activations in response to
familiar voices (von Kriegstein & Giraud, 2004). The anterior and posterior left areas are
associated with voice gender processing, especially in perceived ambiguous voices
(Charest et al., 2013). Blank et al. (2014) found that the left anterior region is involved in
recognizing well-known voices, while the right anterior region is associated with
recognizing familiar voices. The bilateral insula is associated with voice gender
recognition tasks (Charest et al., 2013). The left amygdala is involved in processing voice
identity (Andics et al., 2010). The anterior insulae were involved in higher-level
representation of identity, supporting the hypothesis that it supports person identity
recognition in tandem with the medial superior frontal region (Bestelmeyer & Miihl,

2022).
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Figure 1.4: Schematic of the voice identity processing axis. Components shown in pink
involve the voice identity processing axis in the right hemisphere. Components in green involve
the vocal emotion processing axis, bilaterally. Lower-level analyses are indicated by more intense
colors, determined approximately based on the literature. Black lines are used to indicate a
structural connection. Fronto-temporal and fronto-limbic functional connections are indicated
with orange lines. Plain and dotted red arrows indicate effective connectivity or hypothetical
effective connectivity between two areas. Yellow indicates a general voice processing to
behaviorally relevant voice processing gradient. The question mark indicates an undefined
functional role for the corresponding region. Abbreviations: L, left hemisphere; A1, primary
auditory cortex; a/m/pTVA, anterior/mid/posterior temporal voice area. aTP, anterior temporal

pole; a/m/pFVA, anterior/mid/posterior frontal voice area.
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8. Vocal emotion processing axis

aFVA: High-level Semantic and Voice Information Processing The RaFVA has been
associated with detecting emotional tones in voices (Friithholz et al.,, 2012). Furthermore,

this area is involved with representing emotional states (Giordano et al., 2021).

Limbic System: Vocal Emotion Processing The limbic system drives, provides, and
identifies emotional and attitudinal elements in the voice (Robinson, 1976). Specifically,
the amygdala plays a crucial role in processing vocal emotional information in humans
(Frithholz et al., 2015; Friihholz & Grandjean, 2013). The left and right anterior cingulate
gyri participate in vocal emotion processing (Ceravolo et al., 2021). In the insula, the
correct region is involved in processing general emotional attributes and demonstrates
increased activation during emotional state processing after about 700 ms (Giordano et
al., 2021). Additionally, both sides of the insula are engaged in vocal emotion processing
(Ceravolo et al.,, 2021). In voice processing, the amygdala has mainly been associated with
the processing of emotional information in the voice in humans (Friithholz et al,, 2015;
Frithholz & Grandjean, 2013) or acoustic cues like roughness (Arnal et al.,, 2015). The right
amygdala is involved in representing dimensions of emotion (more than specific
categories) and processing emotional states after ~500 ms (Giordano et al.,, 2021). The
left amygdala is involved in emotional cues in speech (Steiner et al., 2022; Friihholz,
Hofstetter, et al., 2015; Anderson & Phelps, 2001). Bilaterally, the amygdala processes
emotional voices, particularly distinguishing between fearful and neutral tones
(Dominguez-Borras et al., 2019; Friihholz et Grandjean, 2013).

However, it should be noted that some studies reported responses to neutral stimuli
(i.e., no emotional content, no task related to identity recognition) in both the left and

right amygdala regions (Pernet al.,, 2015; Aglieri et al.,, 2018).

FVAs

Top-down influence
| on voice identity
Limbic System processing
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Figure 1.5: Schematic of the vocal emotion processing axis. Components shown in blue
involve the vocal/motor processing axis in the left hemisphere. Components shown in pink
involve the voice identity processing axis in the right hemisphere. Components in green involve
the vocal emotion processing axis, bilaterally. Lower-level analyses are indicated by more intense
colors, determined approximately based on the literature. Fronto-limbic functional connections
are indicated with orange lines. Light yellow background color indicates behaviorally relevant
voice processing. Abbreviations: L/R, left/right hemisphere; Al, primary auditory cortex;

a/m/pFVA, anterior/mid/posterior frontal voice area.

9. Voice patch system across primate brains

Is there a shared voice coding principle across primate species? Voices play a crucial
role in the social dynamics of many species. For a complete understanding of various
social behaviors, it is essential to scrutinize vocal behavior, especially in mammals. Non-
human primates, our closest evolutionary relatives, show comparable patterns in
processing vocal information, both at the behavioral and neurological levels. By studying
various primate species, we can investigate the origins of vocal perception. This enables
us to trace changes since our last common ancestor and explore vocal perception
mechanisms over time. Belin et al. (2018) suggested that the primate brain processes
vocal information through a “voice patch system”. We gather insights from voice
processing in other primates to identify shared functional patterns or homologies, as

outlined in Figure 1.6.
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Figure 1.6: Brain regions responsive to voices in humans and non-human primates.
Components shown in black involve conspecific vocalizations (CV) sensitivity. Components
shown in blue involve the vocal/motor processing axis in the left hemisphere. Components shown
in pink involve the voice identity processing axis in the right hemisphere. Components shown in
dotted lines are hypothetical. Abbreviations: L/R, left/right hemisphere; Al, primary auditory
cortex; a/m/pTVA, anterior/mid/posterior temporal voice area; aTP, anterior temporal pole;
a/m/pFVA, anterior/mid/posterior frontal voice area; ACC, anterior cingulate cortex. Black and

orange lines are used to indicate a structural or a functional connection, respectively.

Functional Responses to Conspecific Vocalizations (CVs) The initial step in
identifying homologies in the voice patch system across primate brains is determining
areas sensitive to CVs. The temporal lobe is central to vocalization processing in both
macaques and marmosets. Early fMRI studies determined that the anterior temporal pole
(aTP), along with patches resembling pTVA and mTVA in macaques, exhibit a clear
preference for CVs (Petkov et al., 2008; Joly et al., 2012; Ortiz-Rios et al,, 2015). The voice
patch in the anterior temporal lobe (aTVA) has been consistently observed bilaterally and
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demonstrates pronounced voice selectivity (Petkov et al., 2008; Perrodin et al,, 2011;
Ortiz-Rios et al.,, 2015; Bodin et al., 2021). The only two groups that investigated the
activity of single neurons in macaque TVAs confirmed the leading role of aTVA in the
processing of CVs (Perrodin et al., 2011; Giamundo et al., submitted). Using an fMRI-
guided electrophysiological technique, these studies reported the existence of neurons
selective to CVs that categorize CVs apart from other sounds. However, Giamundo et al.
(submitted) also observed a population of aTVA neurons exhibiting selectivity towards
human voices (sounds of paramount relevance in laboratory macaques' auditory
environment), suggesting that aTVA neuronal activity can also represent vocalizations
from other species with which primates have developed expertise. Similarly, marmosets
show bilateral responsiveness to vocalizations in aTVA, mTVA, and pTVA, which might be
analogous to human counterparts (Sadagopan et al., 2015; Jovanic et al., 2022; Jafari et al.,
2023). An “extended voice system” also appears present in non-human primates. In
macaques, the prefrontal cortex is notably sensitive to their vocalizations (Cohen et al,,
2009; Romanski et al., 2005). This is reflected in marmosets where vocalizations activate
the primary motor cortex, somatosensory cortex, and various prefrontal areas such as
8aV, 6DR, and 6M (Jafari et al., 2023; Jovanovic et al., 2022; Miller et al., 2015). However,
marmosets do not exhibit strong selectivity in the human language network's inferior
frontal cortex, highlighting potential evolutionary divergences in primate vocal

processing (Jafari et al., 2023).

Functional Roles Several studies leverage intracranial recordings in macaques to
explore the hierarchical organization of vocalization processing. Fukushima et al. (2014)
described a progression in the neural coding of vocalizations along the ventral auditory
pathway. In this pathway, rostral areas require the amalgamation of spectral and
temporal features. Similarly, Kikuchi et al. (2010) identified a hierarchically organized
auditory processing stream in the supratemporal plane (STP) that spans from the primary
auditory area to the temporal pole, showcasing an increased stimulus specificity. It
suggests that, like humans, macaques process CVs hierarchically along the rostral
direction of the auditory cortex. Jafari et al. (2023) observed the presence of a voice
processing network in marmosets, particularly within the rostral sections of the anterior
cingulate cortex (ACC). In humans, this region has been associated with various voice-

processing tasks, including voice learning (Latinus et al., 2011), recognizing familiar
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voices (von Kriegstein & Giraud, 2004; Blank et al,, 2014), discerning voice gender
(Charest et al.,, 2013), and interpreting vocal emotions (Ceravolo et al.,, 2021). Given that
the auditory stimuli in this study were familiar conspecific vocalizations, there might be
a connection to the same processes observed in humans. This notion hints at an
evolutionarily conserved processing mechanism, warranting further investigation in both
macaques and marmosets. In the same study by Jafari et al. (2023), it was observed that
the marmosets' pTVA had robust connectivity with the motor and somatosensory
cortices, akin to humans (Frey et al, 2014). This similarity hints that the pTVA in
marmosets might be involved in auditory-motor integration, as suggested in humans (von

Kriegstein et al., 2010).

Functional Homologies Understanding the functional roles of voice units in the
primate brain is more limited than in humans. Bodin, Trapeau, et al. (2021) employed
comparative fMRI, highlighting that humans and macaques have bilateral voice areas in
the anterior temporal lobe (aTVA). These areas show a preference for conspecific
vocalizations and demonstrate a representational geometry that distinctly categorizes
them from other sounds. This species-specific but homologous manner of categorization
confirms earlier findings regarding speaker adaptation in the right aTP (Petkov et al,,

2008).

Neural Connectivity Connectivity patterns in the primate brain support the idea of
homologies. The frontotemporal network plays a role in vocal communication (Balezeau
etal, 2020; Rocchi et al,, 2021). It has two main pathways: the postero-dorsal and antero-
ventral, comparable to the dorsal and ventral streams in the visual system (Rauschecker
& Scott, 2009). The posterodorsal pathway, connecting the caudal belt of the auditory
cortex to the dorsolateral PFC (dIPFC), is associated with the spatial processing of
auditory signals. The anteroventral pathway, which connects the anterior belt of the
auditory cortex to the ventrolateral PFC (vIPFC), is implicated in encoding different call
types (Rauschecker & Scott, 2009). While evidence for these pathways exists in rhesus
macaques, research on marmosets is limited. Some studies suggest marmosets may have
a similar system (Grijseels et al., 2023), but more research is needed. In their 2023 study,
Jafari et al. employed functional connectivity (FC) and tracer-based cellular connectivity

(atechnique used to study the pathways and connections between neurons) to investigate
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marmosets' functional and structural links. They discovered that the three temporal voice
patches were functionally interconnected and connected to the anterior cingulate cortex,
especially area 32. The mTVA demonstrated functional connectivity with frontal areas
8aD, 8aV, and 47L, while pTVA exhibited robust connections with the motor and
somatosensory cortices, a pattern also observed in humans. Their tracer-based findings
further revealed that the anterior cingulate's area 32 maintained strong structural and
functional ties with other cortical and subcortical vocalization-processing regions in

marmosets.

10. Voice recognition mechanisms

In 2008, Tsao and Livingstone proposed a face recognition model involving three main
computational steps. Firstly, there is a detection phase where we recognize something as
a face. Then, we analyze the face to pinpoint its unique features. Lastly, using these
features, we categorize the face based on identity, gender, age, race, and expression. In
this model, detecting a face and identifying its specifics are distinct. To identify a face, we
focus on what makes it different from others, even though all faces have general
similarities. However, we are primarily concerned with the shared features of all faces for
detection. This means a system efficient at detection might not excel in detailed

identification, and vice versa.

What are the voice recognition mechanisms? We hypothesize that voice recognition
operates on a similar principle: first, there is the detection of a voice, followed by an
analysis of its distinctive characteristics, and then its categorization, e.g., based on the
speaker’s identity or emotional state. This is a complex task due to varying factors like
pitch, tone, volume, and background noise. As with faces, we can segment voice

recognition into these three main computational phases.

Detection At the most basic level, detection involves recognizing the presence of a
voice by identifying shared auditory features. Common characteristics of voices, such as
pitch and timbre, are crucial here. The challenges of detecting a voice and identifying its
unique traits are separate in voice recognition. We focus on the differences in individual
voice identification, even as all voices have commonalities. Conversely, detection is about

pinpointing shared characteristics. If a system is good at simple detection, it might
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struggle with detailed identification and vice versa (Tsao & Livingstone, 2008). Moreover,
detection serves as a filter, activating detailed voice recognition processes only when a
sound qualifies as a voice. This domain-specific gating may be one reason for the brain's
anatomical segregation of voice processing. Another advantage of this detection step is
that it distinguishes the voice from any background noise, aligning it for further analysis.
Several voice recognition algorithms depend on this initial separation, especially when
faced with irregular backgrounds (Singh et al., 2018). Computer algorithms of voice
activity detection (VAD) mainly relied on cepstral-based algorithms—such as Mel-
frequency cepstral coefficients (MFCCs)—as they exhibit a high degree of independence
to levels of background noise (Haigh & Mason, 1993; Wang et al., 2011). Recently, end-to-
end deep neural networks (DNNs) have been utilized to map acoustic inputs directly to
predefined semantic categories—such as human voice, music, and natural sounds—by
leveraging large datasets, ranging from thousands to hundreds of thousands of hours
annotated with human labels (Gemmeke et al., 2017; Hershey et al., 2017). This
advancement renders voice detection more realistic in natural and noisy environments.
We identified above (see General Voice Processing) that in the brain, the bilateral mTVAs
in the human brain could act as a template matching to detect and match voices (Latinus
et al.,, 2013). Their causal link with voice detection has been established by transiently
interfering with neuronal activity in the right TVAm via transcranial magnetic stimulation
(TMS) interferes with performance at a voice detection task but not at a more general

auditory task (Bestelmeyer et al., 2011).

Measurement Upon detection of a voice, it requires measurement in a way that
enables accurate, efficient identification. The measurement process should not be so
coarse that it misses the subtle features differentiating one voice from another.
Alternatively, it should yield a set of values that can be efficiently juxtaposed with stored
templates for identification purposes. A zero-sum game exists between measurement and
categorization: the more streamlined the measurement, the simpler the classification;
conversely, less efficient measurement renders the classification process more
demanding (Tsao & Livingstone, 2008). Deep Neural Networks (DNNs)-based classifiers
(LeCun etal., 2015) exemplify this: the input undergoes a long hierarchical series of highly
nonlinear transformations (measurements), while the final classification layer is often a

simple linear transformation (categorization). During the vocal processing, once a voice
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has been detected and undergone a preliminary general preprocessing by mTVA, the
information bifurcates: one pathway leads from mTVA to aTVA, while the other extends
from mTVA to pTVA (Schall et al,, 2015; Zhang et al., 2021). Depending on the domain of
required expertise, different parts of the information will be processed by different brain
regions. The general processing of speaker identity begins in the right pTVA and aTVA
(see voice identity axis), the general semantic processing begins in the left pTVA and aTVA
(see motor/semantic axis), and the vocal emotion processing is mainly in the limbic
system, bilaterally. Simultaneously, the TVAs of each respective axis guide the general
processing with top-down influence, especially in behaviorally relevant voice processing
(e.g., speaker recognition). As the information is processed along this hierarchical stream,
the representations associated with the different axes— the motor/semantic
representations, the speaker identity representations, and the emotional
representations—become of increasingly higher orders and are stored at different
locations. The right pTVA might be responsible for establishing identity patterns, while
the right aTVA has been suggested to encode higher-order representations compared to
the other temporal VA. Indeed, Luzzi et al. (2018) observed selective associative
phonagnosia following a right anterior temporal stroke, with the correct part potentially
corresponding to the supramodal person identification stage as proposed in Belin et al.
(2004) functional model. In contrast, the left encodes high-level semantic information,

such as auditory object naming.

Categorization Separating the measurement process from the classification process
gives a computational system maximum flexibility because different categorizations (e.g.,
speech, speaker’s identity, or emotional state) can all operate from the exact
representation. Based on the evidence we gathered in our synthesized model, the
categorization step might be performed in the “extended voice perception system” (Antics
etal, 2010; Latinus et al,, 2011; Charest et al., 2013; Antics et al,, 2013; Blank et al., 2014;
Frihholz, Hofstetter, et al., 2015; Zaske et al., 2017; Luzzi et al., 2018; Ceravolo et al., 2021;
Aglieri et al,, 2021; Giordano et al., 2021; Bestelmeyer & Miihl, 2022; Steiner et al., 2022).
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11. Using deep networks to probe
representations in voice patches

Which computational models align with the VA representations? In the previous
section (Voice recognition mechanisms), we identified deep neural networks (DNNs). A
prevailing notion is that the brain learns largely unsupervised, constructing
representations that elucidate the structure implicit in the raw sensory input (Lillicrap et
al., 2020). Autoencoders are one example of learning such kinds of representations for
voice—after that, they are named the ‘voice latent space’ (VLS). It learns to compress
voice stimuli with high dimensionality into a lower-dimensional space that allows
reconstruction of the original voice stimuli via an inverse transformation learned by the
second part of the network called the decoder. Once such a lower-dimensional
representation of voice is learned, we could linearly map it with the brain responses to

voice stimuli.

12. Conclusion

This chapter reviewed both older and recent literature on voice processing in human
and non-human primates to determine the potential role of each voice-sensitive area. We
proposed a synthesized voice processing model based on brain studies in primates that
outlines a pathway with three stages: detection, measurement, and categorization for
voice recognition. The model tentatively underscores the roles of the fronto-temporal-
limbic network and the hemispheric specialization, where the right predominantly
handles voice identity, the left manages semantic deciphering, and the limbic system, the

vocal emotion, bilaterally.

However, several key questions remain to be elucidated. How is voice identity
encoded in the brain? Although we identified a potential voice identity processing axis
with a candidate functional role and a tentative degree of abstractness of the
representations (Figure 1.4), the exact computations performed in these representations
are still unknown, particularly regarding voice identity information. We propose to
explore this question by mapping the brain responses to voice stimuli recorded in the VA
with the representations learned by DNNs, as demonstrated in Chapter 3. Besides, other

important information is still missing, e.g, what are the structural/functional
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connections within the frontal areas? Potential future research is discussed in the
Discussion (Section Evolutionary origins of voice perception).

Is there a shared voice coding principle across primate species? To extend my
proposal to use DNNs, and in general Al, as a model to probe the representations in the
vocal brain (Chapter 3), one would need sufficient vocal samples to train this kind of
model. In the next chapter (Chapter 2), I show how to use Al as a tool to build a large

dataset of non-human primate vocalizations in a semi-supervised fashion.
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communication systems with deep learning

In this chapter, I propose an end-to-end pipeline for processing vocalizations from raw
recordings of marmoset monkeys. This includes detection, segmentation, and labeling. This
dataset will be the first milestone in future studies to train efficient computational models,

such as DNNs, to learn high-level representations of monkey vocalizations.
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1. Abstract

As our closest relatives, non-human primates use a wide range of complex vocal signals
for communication within their species. Previous research on marmoset (Callithrix
jacchus) vocalizations has been limited by recording setups with low sampling rates and
insufficient labeling for advanced analyses using Deep Neural Networks (DNNs). Here, we
provide a database of common marmoset vocalizations, continuously recorded with a
sampling rate of 96 kHz from a stabulation room housing ~20 marmosets in three cages
simultaneously. The dataset comprises over 800,000 files, amounting to 253 hours of data
collected over 40 months. Each recording lasts a few seconds and captures the
marmosets' social vocalizations, encompassing their entire known vocal repertoire
during the experimental period. Around 215,000 calls are annotated with the vocalization
type. The dataset presented here contributes to our understanding of voice phylogeny by
providing a more detailed characterization of the acoustic properties of the marmoset
vocal repertoire. These data hold the potential for shedding light on the origins of syntax,
semantics, and the evolution of vocal communication systems. Furthermore, we offer a

trained classifier to assist future investigations.

2. Introduction

Non-human primates, the closest evolutionary relatives to humans, exhibit various complex
behaviors, including the extensive use of acoustically diverse vocal signals for
communication within conspecifics. By conducting comparative research on non-human
primates, valuable insights can be gained into the evolutionary development of speech and
language. For example, studying their vocal communication can provide clues about the
origins of syntax and semantics. Although non-human vocalizations can be complex for
humans to decipher, large acoustic datasets may make it possible to identify essential nuances
critical to animal communication but imperceptible to the human ear. There has been
considerable interest recently in the common marmoset (Callithrix jacchus) as a
neuroscientific model organism (Miller et al., 2016), and many attempts have been made to
study and characterize its vocal repertoire (Epple, 1968; Pistorio et al., 2006; Bezerra et al.,
2008; Agamaite et al., 2015; Zhang et al., 2018; Zhao et al., 2019). However, among the past
and recent literature, the audio recording setups did not allow recording above a sampling rate
of 48 kHz which would allow the entire frequency range of marmoset vocalizations,
corresponding to their hearing range from 125 Hz to 36 kHz (Osmanski & Wang, 2011), to be
recorded.

Furthermore, the existing datasets do not provide a sufficient number of labeled vocalizations
to leverage advanced analytical methods. Fine-grained statistical analyses, such as those
based on Deep Learning for decoding animal communication, require substantial data (Rutz et
al., 2023).
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Here, we present an extensive collection of vocalizations of marmosets. We have
acquired and segmented over 800,000 vocalizations with a sampling rate of 96 kHz from
a stabulation room containing 3 cages (~20 marmosets) over three years. Marmosets are
capable of producing a diverse array of vocalizations, including trills, phees, twitters, tsiks,
seeps, and infant cries, even when kept in captivity (Bezerra & Souto, 2008; Epple, 1968;
Remington et al.,, 2012; Rylands, 1993). Identifying the pertinent voiced segments within
arecorded audio track is frequently the primary hurdle in audio data analysis. To address
this, we made use of signal processing and deep learning tools to segment automatically
and cluster vocalizations based on the methods described in the recent computational
neuroethology literature (Sainburg et al., 2020; Sainburg & Gentner, 2021; Best et al,,
2023). The comprehensive dataset we present has the potential to improve our
comprehension of voice phylogeny by better characterizing the acoustical properties of
the marmoset vocal repertoire, e.g., by comparing the sequential organization of acoustic

elements across species (Sainburg et al.,, 2019).

3. Results

3.1. Data records

The data consist of:

1. 869,556 recorded audio files (253 hours; FLAC format, sampling rate: 96 kHz,
depth: 32 bit).

2. One annotation file: Annotations.tsv, with 869,556 annotations. These annotations
were obtained from the semi-automatic labeling (see above) and include details
such as the predicted vocalization type. The content of each column in the
annotation file is described in Table 2.1. Each annotation corresponds to a single
vocalization in one file. Most files include a single detection, though some files
contain several vocalizations. 215,000 (72 hours) of these annotations were
identified as a specific type of vocalization (see Figure 2.1 for the latent projection of
all the vocalizations, colored by label).

3. One metadata file: Metadata.pdf, details the subjects and annotation definitions
(Table 2.1, Supplementary Table S1).

4. An example of a raw audio file that is 5 minutes long.

5. Asetof audio example files.
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6. A sample Python code exemplifies data loading and plotting of vocalization

spectrograms.

7. A sample Python code is exemplifying classifier loading and vocalization type

prediction.

Column name

Description

filename Name of the .wav file containing the vocalization, using the format
Type_ID.wav

folder Name of the folder containing the vocalization file, using the format
YYYY_MM folder ID

year Start year of vocalization.

month Start month of vocalization.

day Start day of vocalization.

hour Start hour of vocalization (since 2022)

minute Start minute of vocalization (since 2022)

second Start second of vocalization (since 2022)

millisecond Start millisecond of vocalization (since 2022)

duration Length of the vocalization file in seconds

recording file

onset

Vocalization start time in the recording file (seconds)

recording file

Vocalization end time in the recording file (seconds)

offset

type Type of vocalization as classified by the model: Phee, Trill, Seep,
Twitter, Tsik, Infant cry, or Vocalization by default

confidence Confidence of the model in its type attribution (between 0 and 1)

Table 2.1: Annotation details. Descriptions of each column of the annotation file.
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The recorded audio files are divided into folders by month of recording, with no more
than 10,000 files per folder. The annotation and metadata files are in tabular separated-
value format (TSV) to ease their use with automatic tools and allow direct upload into
spreadsheet software. The metadata file includes descriptions of all identifiers in the
annotation file. The example files contain several audio recordings that illustrate different
recorded sounds. They are provided to help users become more familiar with the
recorded data. These examples include Phee calls, Twitter calls, Infant cries, and examples

of background noises.

Infant cry
Phee
Seep
Trill

Tsik
Twitter

Figure 2.1: Latent projections of vocalizations. For each segmented vocalization, we computed
a spectrotemporal representation. Using the trained encoder, we transformed these
representations into a 16-dimensional space. We employed the UMAP technique from there to
map the data into latent feature spaces. The colored points denote the predictions where the

classifier assigned a high confidence score.

Since the dataset captures the specific times each vocalization was uttered, it paves the
way for future research into the sequential organization of the marmoset vocal repertoire
(see Figure 2.2 for a visual representation of the vocalization's temporal distribution; see

Supplementary Table S4 for the distribution by label).
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Figure 2.2: Temporal distribution of vocalizations over time. Distribution over time of
215,000 labeled vocalizations (72 hours in total). Each month, the proportion of vocalization type
is indicated in thousands of vocalizations and hours. The proportion of labeled/labeled

vocalization is 25/75% (unlabeled omitted here).

3.2. Code availability

The code is available on https://github.com/swasun/MarmAudioDataset.

3.3. Usage notes
First, you need to decompress the FLAC files:

python marmaudio/decompress_flac.py --folder_path=audios_compressed

Below is a short Python example that demonstrates how to load a wavefile based on some

annotations found in ‘Annotations.tsv’:

from marmaudio.utils import read_waveform, denoise_waveform
import pandas as pd
import os

df = pd.read_csv('Annotations.tsv', sep="\t')
print(df.prediction_type.value_counts())

random_row = df.sample(n=1)
file path = os.path.join('marmaudio', 'audios',
f'{random_row["year"]}/{random_row[ "month"]}/{random_row["folder id"]}",

f'{random_row["file id"]}.wav')

signal, sampling rate = read waveform(file path)
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denoised signal = denoise waveform(signal)

Below is a short Python example that demonstrates how to load our pre-trained

classifier and run it to predict the vocalization type of a loaded waveform:

from marmaudio.classifier import load classifier, prediction_to_str

clf = load _classifier()
prediction = clf(signal)
print(prediction to str(prediction))

4. Methods

4.1. Animal retrievals and cares

This study involved a total of thirty-five common marmosets (Callithrix jacchus)
belonging to a colony of three families. Not all animals were present during the same
period. The monkeys were not present for the entire data collection, notably due to
conflicts or deaths. For more details on the periods of inclusion of each monkey, refer to

Supplementary Table S1.

All animals included are the offspring of parents and grandparents born and raised in
captivity for research purposes. All experimental procedures were in compliance with the
European directive (2010/63/UE) and were approved by the Ethics Board of Institut de
Neurosciences de la Timone (reference 2019010911313842).

4.2, Experimental setup

Acoustic recorders were set up in a lab with captive marmosets (Figure 2.3). The
recordings were made using one microphone (C-100, Sony Corporation, Japan) placed
directly in the room of three marmoset families (e.g., Supplementary Table S1) housed in
cages (1.05 m long x 0.85 m wide x 2 m high). The mixing desk (RME Fireface UFX I, RME,
Germany) and the computer allowing the recording via Adobe Audition (Adobe, CA, USA)
were located in an adjacent room. Husbandry and technical rooms are soundproofed from
the rest of the laboratory animal facility. Audio data was recorded from December 2019

to April 2023, consisting of 997 hours of data recording.
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Figure 2.3: Schematic of the recording system. The diagram shown here is a schematic drawing
of the recording setup, and the relative sizes and positions of the components are not to scale. The
husbandry room (1) contained three cages (only one visible here, (2)) and two microphones (3).
The technical room (4) was separated by a wall and contained a mixing desk (5) and a computer
(6), allowing the recording. Husbandry and technical rooms were soundproof thanks to

specialized insulation (7).

4.3. Segmentation and labeling

To build a dataset of marmoset vocalizations annotated by type, we followed the

pipeline shown in Figure 2.4. Each step is described in this section.

To isolate vocalizations from background noise, we used a stationary noise reduction
algorithm relying on spectral gating (noisereduce Python package; Sainburg et al., 2020).
We then partially identified (recordings from 2019-2020) the vocalization sound events
using a dynamic-thresholding segmentation algorithm (Sainburg et al., 2020), leading to

100,000 segmented audio events. The elements were partitioned in a spectro-temporal
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manner, allowing for temporal overlap but ensuring frequency exclusivity between two

elements (Figure 2.4, blue panel; see hyperparameters in Supplementary Table S2).

Given the large number of utterances to label, we opted for a semi-automated
procedure leveraging unsupervised and self-supervised machine learning strategies to
explore the sound event space and label the vocalization types, as well as filter out the
noisy sound events (Figure 2.4, orange panel). A convolutional autoencoder (network
architecture and particularities of the training procedure are detailed in Best et al., 2023)
was trained on segmented time-frequency representations of 0.5 seconds to encode them
into a 16-dimensional latent space allowing the measurement of vocalization similarity
(Sainburg et al.,, 2020; Best et al,, 2023). The representations were Mel-spectrograms
(short-time Fourier Transform (STFT) with a Hann window of 1,024, no FFT padding, and
a hop size of 368), with Mel filterbank of 128 bands between 1 kHz and 48 kHz. The Mel
scale is a popular choice of center frequencies aiming to mimic pitch perception
characteristics of the human auditory system. These representations were subsequently
treated as points in a feature space after applying the dimensionality reduction algorithm
UMAP (Mclnnes et al., 2018). We then clustered vocalizations close to one another in
feature space, using a density-based algorithm (Mclnnes et al., 2017), allowing the
annotation of vocalizations by type (Figure 2.4, orange panel, ‘Clustered sound events’).
Clusters, which encompass hundreds to thousands of sound events, were meticulously
examined by experts. They associated these clusters with specific call types and filtered
out any misclassifications. For each cluster, an expert reviewed a folder of spectrogram
images, discarding any that did not align with the cluster's general trend. Subsequently,
these cluster sounds were categorized by ‘vocalization’ type or as 'noise.' This process
yielded a partially labeled database, essential for the subsequent iterative label

refinement procedure.
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Figure 2.4: Pipeline for the creation of the published database.

After compiling the initial database, we engaged in an iterative process: We trained a
classifier and then improved its predictions by visually inspecting and manually
correcting multiple spectrograms displayed simultaneously. These spectrograms were
sampled based on mislabels with high confidence (Figure 2.4., green panel). We continued
this process until the classifier's performance met a threshold of 0.7, which was found
empirically. We introduced custom thresholds for each label type to refine the classifier's

decisions based on the prediction confidence, thus optimizing the label assignments.
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These thresholds were identified based on the empirical observations from our dataset
and reflect the distinctive nature of each label type (Phee = 0.7; Seep = 0.86; Trill = 0.86;
Tsik = 0.7; Twitter = 0.7). Any vocalization with prediction confidence below these label-
specific thresholds was accordingly re-labeled as 'Vocalization' (i.e., a vocalization of
unknown type). We adjusted each sound event's start and end times based on its

predicted label post-classification (Supplementary Table S3).

4.4. Technical validation

The annotation types were defined by Dr. Manon Obliger-Debouche and Dr. Sabrina
Ravel. The recordings were annotated semi-automatically by myself and Dr Paul Best.
These observers were certified after annotating a few recording days, which were then
validated by an expert (Manon Obliger-Debouche or Sabrina Ravel). In annotating the
recordings, we adopted a conservative approach, in which we designated as ‘unknown’
any data for which we had any doubt. Despite the training of the observers, some noise
might have been introduced during the manual annotations and by the annotating
algorithms. Thus, we estimated an error rate by a post-hoc quality test (procedure from
Pratetal, 2017): 700 annotated recordings (100 per label type) were sampled randomly
and were then carefully re-annotated by Manon Obliger-Debouche, myself, Paul Best, and
Sabrina Ravel. Errors were counted when there was a discrepancy between the post-hoc
and the original annotations or when the post-hoc examination concluded that some
doubt still existed (e.g., if only 3 out of the 4 confirm it, itis considered an error). The error
rates were, on average, 9.43% (90.57% Confidence-Interval [CI]: 86.00-95.00%) for the

vocalization type identification (see Table 2.2 below for scores per label type).

Label Error rate (%) | Accuracy (%) | CIlower (%) | CI upper (%)
Infant cry 1.00 99.00 97.00 100.00

Phee 0.00 100.00 100.00 100.00

Seep 21.00 79.00 71.00 87.00

Trill 18.00 82.00 74.00 90.00
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Tsik 16.00 84.00 77.00 91.00
Twitter 2.00 98.00 95.00 100.00
Vocalization | 8.00 92.00 87.00 97.00
Average 9.43 90.57 86.00 95.00

Table 2.2: Vocalization type error rates. 700 recordings (100 per label type) were re-

reviewed by 4 experts. Errors were noted for inconsistencies or lingering uncertainties.

5. Conclusion

This chapter addressed the utilization of computational methods in studying the
evolution of vocal communication among primates. We highlighted the need for more
comprehensive datasets for primate vocalizations, specifically for macaque and
marmoset monkeys. We underscored its significance in understanding the coding

principles in voice patches across primate species.

We presented an end-to-end pipeline for extracting and analyzing vocalizations from
marmoset monkey recordings, continuously recorded with a sampling rate of 96 kHz from
a stabulation room housing ~20 marmosets in three cages simultaneously. The dataset
comprises over 800,000 files, amounting to 253 hours of data collected over 40 months.
Each recording lasts a few seconds and captures the marmosets' social vocalizations,
encompassing their entire known vocal repertoire during the experimental period.
Around 215,000 calls were annotated with the vocalization type. The provided dataset,
source code, and pre-trained classifier offer a resource for future research in this domain.
Moving forward, it is crucial to expand upon this foundational work by incorporating
more species-specific vocal datasets and refining computational methodologies to further
our understanding of the evolution of vocal communication. This point and others are

discussed in Section 3 of the Discussion chapter.
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human auditory cortex

Chapter 1 discussed the cerebral processing of voice information in humans and non-
human primates. It is established that conspecific vocalizations preferentially activate the
“temporal voice areas” (TVAs). However, how these areas represent voice identity
information—such as speaker gender and specific identity—remains unclear. This chapter
examines the correlation between brain activity and voice identity, as measured using
neuroimaging techniques and representations derived from deep learning. We conduct
computational experiments—including neural encoding, neural decoding, and
representational similarity analysis (RSA)—to bridge the deep learning-based voice

representation with the fMRI responses to voice stimuli.
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1. Abstract

The cerebral processing of voice information is known to engage, in human as well as
non-human primates, “temporal voice areas” (TVAs) that respond preferentially to
conspecific vocalizations. However, how voice information is represented by neuronal
populations in these areas, particularly speaker identity information, remains poorly
understood. Here, we used a deep neural network (DNN) to generate a high-level, small-
dimension representational space for voice identity—the ‘voice latent space’ (VLS)—and
examined its linear relation with cerebral activity via encoding, representational
similarity, and decoding analyses. We find that the VLS maps onto fMRI measures of
cerebral activity in response to tens of thousands of voice stimuli from hundreds of
different speaker identities and better accounts for the representational geometry for
speaker identity in the TVAs than in Al. Moreover, the VLS allowed TVA-based
reconstructions of voice stimuli that preserved essential aspects of speaker identity as
assessed by both machine classifiers and human listeners. These results indicate that the
DNN-derived VLS provides high-level representations of voice identity information in the

TVAs.

2. Introduction

In recent years, deep neural networks (DNNs) have emerged as a powerful tool for
representing complex visual data, such as images (LeCun et al., 2015) or videos (Liu et al,,
2020). In the auditory domain, DNNs have been shown to provide valuable
representations—so-called feature or latent spaces—for modeling the cerebral
processing of sound (brain encoding) (speech: Kell et al, 2018; Millet et al., 2022;
semantic content: Caucheteux et al., 2022; Caucheteux et King, 2022; Caucheteux et al,,
2023; Giordano et al, 2023; music: Gugli et al., 2016), or reconstructing the stimuli
listened by a participant (brain decoding) (Akbari et al., 2019). They have not yet been
used to explain cerebral representations of identity-related information due in part to the

focus on speech information (von Kriegstein, 2003; Morillon et al., 2022).

Here, we addressed this challenge by training a ‘Variational autoencoder’ (VAE;
Kingma et Welling, 2014) DNN to reconstruct voice spectrograms from 182,000 250-ms
voice samples from 405 different speaker identities in 8 different languages from the

CommonVoice database (Ardila et al., 2020). Brief (250 ms) samples were used to
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emphasize speaker identity-related information in voice, already available after a few
hundred milliseconds (Schweingerger et al, 1997; Lavan, 2023), over linguistic
information unfolding over longer periods. While a quarter of a second is admittedly short
compared to standards of, e.g., computational speaker identification that typically uses 2-
3s samples, this short duration is sufficient to allow near-perfect gender classification and
performance levels well above chance for speaker discrimination (Figure 3.5). This brief
duration allowed the presentation of many more stimuli to our participants in the scanner

while preserving acceptable behavioral and classifier performance levels.

State-of-the-art studies have primarily relied on task-optimized neural networks (i.e.,
DNN trained using supervised learning to classify a category from the input) to study
sensory cortex processes (Yamins et DiCarlo, 2016; Schrimpf et al., 2018). They can reach
high accuracies in brain encoding (Khaligh-Razavi & Kriegeskorte, 2014; Schrimpf et al.,
2018; Han etal., 2019). However, there is increasing evidence that unsupervised learning,
such as that used for the VAE, also provides plausible computational models for
investigating brain processing (Higgins et al,, 2021; Zhuang et al,, 2021; Millet et al.,, 2022;
Orhan et al, 2022). Thus, the VAE-derived VLS, exploited within encoding,
representational similarity, and decoding frameworks, offers a potentially promising tool
for investigating the representations of voice stimuli in the secondary auditory cortex
(Naselaris et al., 2011). Autoencoders learn to compress stimuli with high dimensionality
into a lower-dimensional space that nonetheless allows reconstruction of the original
stimuli via an inverse transformation learned by the second part of the network called the
decoder. Figure 3.1a shows the architecture of the VAE, with its encoder that reduces an
input spectrogram to a highly compressed, 128-dimension voice latent space (VLS)
representation and its decoder that reconstructs the spectrogram from this VLS
representation. Points in the VLS correspond to voice samples with different identities
and phonetic content. A line segment in the VLS contains points corresponding to
perceptual interpolations between its two extremities (Figure 3.1b; Supplementary Audio
S1). VLS coordinates of samples presented to the participants averaged by speaker
identity suggest that a major organizational dimension of the latent space is voice gender

(Figure 3.1b) (colored by age or language in Supplementary Figure S1).
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In order to test whether VLS accounts well for cerebral activity in response to voice
stimuli, we scanned three healthy volunteers using fMRI to measure an indirect index of
their cerebral activity across 10+ hours of scanning each in response to ~12,000 of the
voice samples, denoted BrainVoice in the following, used to train the DNN. The small
number of participants does not allow for generalization at the general population level
as in standard fMRI studies. However, it allows testing for replicability as in comparable
studies involving 10+ hours of scanning per participant (VanRullen & Reddy, 2019).
Different stimulus sets were used across participants to provide a stringent test of
replicability based on subject-level analyses. Stimuli consisted of randomly spliced 250-
ms excerpts of speech samples from the CommonVoice database (Ardila et al., 2020) by
119 speakers in 8 languages. For assessing generalization performances of decoding
models and brain-based reconstruction, six test stimuli were repeated more often (60
times) for each participant to provide robust estimates of their induced cerebral activity
(see Methods). We first modeled these responses to voice using a general linear model
(GLM) (Friston et al., 1994) with several nuisance regressors as an initial denoising step
(Supplementary Figure S4), then used a second GLM modeling cerebral responses to the
different speaker identities (Supplementary Figure S3a), resulting in one voxel activity
map per speaker (Supplementary Figure S3b). We independently localized in each
participant several regions of interest (ROIs) on which subsequent analyses were focused:
the anterior, middle and posterior TVAs in each hemisphere (individually localized via an
independent ‘voice localizer scan’ and MNI coordinates provided in Pernet et al., 2015;
Supplementary Figure S3c) as well as primary auditory cortex (A1) (using a probabilistic

map in MNI space (Penhune et al., 1996; Supplementary Figure S3d).

We first asked how the VLS could account for the brain responses to speaker identities
(encoding) measured in Al and the TVAs compared to a linear autoencoder’s latent space
(LIN). This approach was chosen because it has been demonstrated that a linear
autoencoder with a d-dimensional hidden layer projects data in the same subspace as the
one spanned by the d first eigenvectors of a principal component analysis (PCA) (Plaut et
al., 2018). We used a general linear model (GLM) of fMRI responses to the speaker
identities, resulting in one voxel activity map per speaker (Supplementary Figure S3).
Then, we computed the average VLS coordinates of the fMRI voice stimuli for each speaker

identity, which may be seen as a speaker representation in the VLS (see Identity-based and
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stimulus-based representations section). Next, we trained a linear voxel-based encoding
model to predict the speaker voxel activity maps from the speaker VLS coordinates. As
VAE achieves compression through a series of nonlinear transformations (Wetzel, 2017),
we contrast its results with a linear autoencoder’s latent space. This method has
previously been applied to fMRI-based image reconstructions (Cowen et al., 2014;

VanRullen & Reddy, 2019; Mozafari et al., 2020).

The extent to which the VLS allows linearly predicting the fMRI recordings does not
provide insight into the representational geometries, i.e., the differences between the
patterns of cerebral activity for speaker identity. We addressed this question by using
representational similarity analysis (RSA; Kriegeskorte et al., 2008) to test which model
better accounts for the representational geometry for voice identities in the auditory
cortex. Using RSA as a model comparison framework is relevant to examining the brain-
model relationship from complementary angles (Diedrichsen et al, 2017). We built
speaker x speaker representational dissimilarity matrices (RDMs) capturing pairwise
differences in cerebral activity or model predictions between all pairs of speakers; then,
we examined how well the LIN and VLS-derived RDMs correlated with the cerebral RDMs
from A1 and the TVAs.

A robust test of the adequacy of models of brain activity, and a long-standing goal in
computational neurosciences, is the reconstruction of a stimulus presented to a
participant from the evoked brain responses. While reconstruction of visual stimuli
(images, videos) from cerebral activity has been performed by a number of groups
(VanRullen et Reddy, 2019; Mozafari et al., 2020; Le et al., 2022; Gaziv et al., 2022; Dado
et al, 2022; Chen et al.,, 2023), validating the DNN-derived representational spaces,
comparable work in the auditory domain is scarce, almost exclusively concentrated on
linguistic information (Santoro et al,, 2017). Akbari et al. used a DNN to reconstruct
speech stimuli based on ECoG recording of auditory cortex activity, an invasive method
compared to techniques like fMRI. They obtained a good phonetic recognition rate but
chance-level gender categorization performance from reconstructed spectrograms and

no evaluation of speaker identity discrimination.
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Here, we built on the linear relationship uncovered in our encoding analysis between
the VLS and the fMRI recordings to invert it and try to predict VLS coordinates from the
recorded fMRI data; then, using the decoder, we reconstructed the spectrograms of
stimuli presented to the participants (Wu et al., 2006; Naselaris et al., 2011). The voice
identity information available in the reconstructed stimuli was finally assessed by human

listeners using both machine learning classifiers and behavioral tasks (Figure 3.4).

3. Results

3.1. Voice Information in the Voice Latent Space
(VLS)

In order to probe the informational content of the VLS, linear classifiers were trained
to categorize the voice stimuli from 405 speakers by gender (2 classes), age (2 classes) or
identity (119 classes, cf Methods) based on VLS coordinates, or their LIN features as
control (Figure 3.1c,d,e; we aggregated the stimuli from the 3 participants; for each model
computed the latent space of each stimulus and averaged the latent spaces by speaker
identity, leading to 405 128-dimensional vectors. We then trained linear classifiers using
a 5-fold cross-validation scheme, see Characterization of the autoencoder latent space).
The mean of the distribution of accuracies obtained for 100 random classifier
initializations (as to account for variance; Bouthillier et al., 2021) was significantly above
chance level (all ps < 1e-10) for all classifications (LIN: gender (mean accuracy * s.d.) =
97.64+1.77%, t(99)=266.94; age: 64.39+4.54%, t(99)=31.53; identity: 40.52+9.14%,
t(99)=39.37; VLS: gender: 98.59+1.19%, t(99)=406.47; age: 67.31+4.86%, t(99)=35.41;
identity: 38.40£8.75%, t(99)=38.73). We then evaluated the difference in performance at
preserving identity-related information between the VLS and LIN via one-way ANOVAs.
Results showed a significant effect of Feature (LIN/VLS) in categories (all Fs(1, 198) >
225.15, all ps<.0001) but not in identity. Post-hoc paired t-tests showed that the VLS was
better than the LIN at encoding information related to voice identity, as evidenced by a
significant difference in means for gender (t(99)=-6.11, p<.0001), age (t(99)=-6.10,
p<.0001) but not for identity classifications (t(99)=1.71).
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Figure 3.1: DNN-derived Voice Latent Space (VLS). a, Variational autoencoder (VAE)
Architecture. Two networks learned complementary tasks. An encoder was trained using 182K
voice samples to compress their spectrogram into a 128-dimension representation, the voice
latent space (VLS), while a decoder learned the reverse mapping. The network was trained end-
to-end by minimizing the difference between the original and reconstructed spectrograms. b,
Distribution of the 405 speaker identities along the first 2 principal components of the VLS
coordinates from all sounds, averaged by speaker identity. Each disk represents a speaker's
identity colored by gender. PC2 largely maps onto voice gender (ANOVAs on the first two
components: PC1: F(1,405)=0.10, p=.74; PC2: F(1,405)=11.00, p<.001). Large disks represent the
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average of all male (black) or female (gray) speaker coordinates, with their associated
reconstructed spectrograms (note the flat fundamental frequency (fo) and formant frequencies
contours caused by averaging). The bottom of the spectrograms illustrates an interpolation
between stimuli of two different speaker identities: spectrograms at the extremes correspond to
two original stimuli (A, B) and their VLS-reconstructed spectrograms (A’, B’). Intermediary
spectrograms were reconstructed from linearly interpolated coordinates between those two
points in the VLS (red line) (cf. Supplementary Audio S1). ¢,d e, Performance of linear classifiers
at categorizing speaker gender (chance level: 50%), age (young/adult, chance level: 50%), or
identity (119 identities, chance level: 0.84%) based on VLS or LIN coordinates. Error bars indicate
the standard error of the mean (s.e.m) across 100 random classifier initializations. All ps<1e-10.

The horizontal black dashed lines indicate chance levels. ****: p<0.0001.

Thus, despite its low number of dimensions (each input spectrogram has
401x21=8421 parameters and is summarized in the VLS by a mere 128 dimensions), the
VLS appears to meaningfully represent the different sources of voice information
perceptually available in the vocal stimuli. This representational space, therefore,
constitutes a relevant candidate for linearly modeling voice stimulus representations by

the brain.

3.2. Brain Encoding

We used a linear voxel-based encoding model to test whether VLS linearly maps onto
cerebral responses to speaker identities measured with fMRI in the different ROIs. A
regularized linear regression model (cf. Methods) was trained on a subset of the data (5-
fold cross-validation scheme) to predict the voxel maps for each speaker identity. For each
fold, the trained model was tested on the held-out speaker identities (Figure 3.2a). The
model's performance was assessed for each ROI using the Pearson correlation score
between each voxel's actual and predicted responses (Schrimpf et al.,, 2021). Similar
predictions were tested with features derived from LIN (cf. Methods). Figure 3.2b shows
the distribution of correlation coefficients obtained for each of the ROIs for the 2 sets of

features across voxels, hemispheres, and participants.

One-sample t-tests showed that the means of Fisher z-transformed coefficients for both
LIN features and VLS were significantly higher than zero (LIN: A1 t(197)=7.25, p<.0001,
pTVA t(175)=4.49, p<.0001, mTVA t(164)=9.12, p<.0001 and aTVA t(147)=6.81, p<.0001;
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VLS: Al t(197)=4.76, p<.0001, mTVA t(164)=10.12, p<.0001 and aTVA t(147)=5.52,
p<.0001 but not pTVA t(175)=-1.60) (Supplementary Tables 2-3).

A mixed ANOVA performed on the Fisher z-transformed coefficients with Feature (VLS,
LIN) and ROI (A1, pTVA, mTVA, aTVA) as factors showed a significant effect of Feature
(F(3, 683)=56.65, p<.0001), a significant effect of ROI (F(3, 683)=18.50, p<.0001), and a
moderate interaction Feature x ROI (F(3, 683)=5.25, p<.01). Post-hoc comparisons
revealed that the mean of correlation coefficients was higher for LIN than for VLS in A1
(t(197)=4.02, p<.0001), pTVA (t(175)=6.64, p<.0001), aTVA (t(147)=3.78, p<.001) but
not in mTVA (t(164)=0.58) (Supplementary Table 4); and that the voxel patterns are
better predicted in mTVA than in Al for both models (LIN: t(361)=2.36, p<.05); VLS:
t(361)=4.91, p<.0001) (Supplementary Table 5). However, inspecting the distribution of
model-voxel correlations, we found that both models account for different parts of the

voice identity responses and differ across ROIs (Figure 3.2c).
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Figure 3.2: Predicting brain activity from the VLS. a, Linear brain activity prediction from VLS
for ~135 speaker identities in the different ROIs. We first fit a GLM to predict the BOLD responses
to each voice speaker identity. Then, using the trained encoder, we computed the average VLS
coordinates of the voice stimuli presented to the participants based on speaker identity. Finally,
we trained a linear voxel-based encoding model to predict the speaker voxel activity maps from
the speaker VLS coordinates. The cube illustrates the linear relationship between the fMRI
responses to speaker identity and the VLS coordinates. The left face of the cube represents the

activity of the voxels for each speaker's identity, with each line corresponding to one speaker. The
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right face displays the VLS coordinates for each speaker's identity. The cube's top face shows the
encoding model's weight vectors. b, Encoding results. For each region of interest, the model's
performance was assessed using the Pearson correlation score between the true and the
predicted responses of each voxel on the held-out speaker identities. Pearson’s correlation
coefficients were computed for each voxel on the speakers’ axis and then averaged across
hemispheres and participants. Similar predictions were tested with the LIN features. Error bars
indicate the standard error of the mean (s.e.m) across voxels. *p < 0.05; **p < 0.01; **p < 0.001;
**kp < 0.0001. ¢, Venn diagrams of the number of voxels in each ROI with the LIN, the VLS, or
both models. For each ROI and each voxel, we checked whether the test correlation was higher
than the median of all participant correlations (intersection circle), and if not, which model (LIN

or VLS) yielded the highest correlation (left or right circles).

3.3. Representational Similarity Analysis

For RSA, we built speaker x speaker representational dissimilarity matrices (RDMs),
capturing for each ROI the dissimilarity in voxel space between each pair of speaker voxel
maps (‘brain RDMs’; cf. Methods) using Pearson’s correlation (Walther et al., 2016). We
compared these four bilateral brain RDMs (A1, aTVA, mTVA, pTVA) to two ‘model RDMs’
capturing speaker pairwise feature differences predicted by LIN and the VLS (Figure 3.3a)
built using cosine distance (Xing et al., 2015; Bhattacharya et al., 2017; Wang et al., 2018).
Figure 3.3b shows for each ROI the Spearman correlation coefficients between the brain
RDMs and the two model RDMs for each participant and hemisphere (Kriegeskorte et al.,

2008; Figure 3.3c for an example of brain-model correlation).

These brain-model correlation coefficients were compared to zero using a ‘maximum
statistics’ approach based on random permutations of the model RDMs’ rows and
columns (Maris & Oostenveld, 2007; cf. Methods; Figure 3.3b). For the LIN model, only
one brain-model RDM correlation was significantly different from zero (one-tailed test):
in mTVA, right hemisphere in S3 (p=.0500). For the VLS model, in contrast, 5 significant
brain-model RDM correlations were observed in all four ROIs: in A1, right hemisphere in
S3 (p=.0142); pTVA: right hemisphere in S3 (p=.0160); mTVA: left hemisphere in S3
(p=.007); aTVA: left hemispheres in S1 (p=.0417) and S3 (p=.0001) (Supplementary Table
6).
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A two-way repeated-measures ANOVA with Feature (VLS, LIN) and ROI (A1, pTVA,
mTVA, aTVA) as factors performed on the Fisher z-transformed correlation coefficients
showed a tendency towards a significant effect of Feature (F(1, 2)=22.53, p=.04), and no
ROI (F(3, 6)=1.79, p=.30) or interaction effects (F(3, 6)=1.94, p=.22). We compared the
correlation coefficients between the VLS and LIN models within participants and
hemispheres using one-tailed tests, based on the a priori hypothesis that the VLS models
would exhibit greater brain-model correlations than the LIN models (cf. Methods). The
results revealed two significant differences in one of the three participants, both favoring

the VLS model (S3: right pTVA, p=.0366; left aTVA, p=.00175) (Supplementary Table 7).
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Figure 3.3: The VLS better explains representational geometry for voice identities in the
TVAs than the linear model. a, Representational dissimilarity matrices (RDMs) of pairwise
speaker dissimilarities for ~135 identities (arranged by gender, cf. sidebars), according to LIN

and VLS. b, Spearman correlation coefficients between the brain RDMs for A1, the 3 TVAs, and the
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2 model RDMs. Error bars indicate the standard error of the mean (s.e.m) across brain-model
correlations. ¢, Example of brain-model RDM correlation in the TVAs. The VLS RDM and the brain
RDM yielding one of the highest correlations (LaTVA) are shown in the insert.

3.4. Decoding and Reconstruction
We finally inverted the brain-VLS relationship to predict linearly VLS coordinates

based on fMRI measurements (Figure 3.4a; see ‘Brain decoding’ in Methods) and
reconstructed via the trained decoder the spectrograms of 18 Test Stimuli (3 participants
x 6 stimuli per participant; see Figure 3.4b, and Supplementary Audio S2; audio estimated

from spectrogram through phase reconstruction).

> Linear
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Voice stimuli
contrast maps

Trained Decoder

b Brain-reconstructed
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(RaTVA)
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Figure 3.4: Reconstructing voice identity from brain recordings. a, A linear voxel-based
decoding model was used to predict the VLS coordinates of 18 Test Stimuli based on fMRI
responses to ~12,000 Train stimuli in the different ROIs. To reconstruct the audio stimuli from
the brain recordings, the predicted VLS coordinates were then fed to the trained decoder to yield
reconstructed spectrograms, synthesized into sound waveforms using the Griffin-Lim phase

reconstruction algorithm (Griffin & Lim, 1983). b, Reconstructed spectrograms of the stimuli
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presented to the participants. The left panels show the spectrogram of example original stimuli
reconstructed from the VLS, and the right panels show brain-reconstructed spectrograms via LIN

and the VLS (cf Supplementary Audio S2).

We first assessed the nature of the reconstructed stimuli by using a DNN trained to
categorize natural audio events (Howard et al., 2017): all reconstructed versions of the 18
Test Stimuli were categorized as 'speech’' (1 class out of 521 - no ‘voice’ classes). To
evaluate the preservation of voice identity information in the reconstructed voices, pre-
trained linear classifiers were used to classify the speaker gender (2 classes), age (2
classes), and identity (17 classes) of the 18 reconstructed Test Stimuli. The mean of the
accuracy distribution obtained across random classifier initializations (20 per ROI) used
on the stimuli reconstructed from the induced brain activity was significantly above
chance level for gender (LIN: pTVA (mean accuracy * s.d.): 72.08+5.48, t(39)=25.15; VLS:
Al: 61.11+2.15, t(39)=32.25; pTVA: 63.89+2.78, t(39)=31.22), age (LIN: pTVA:
54.58+4.14, t(39)=6.90; aTVA: 63.96%12.55, t(39)=6.94; VLS: pTVA: 65.00+7.26,
t(39)=12.89; aTVA: 60.42+5.19, t(39)=12.54) and identity (LIN: Al: 9.20+9.23,
t(39)=2.24; pTVA: 9.48+4.90, t(39)=4.59; aTVA: 9.41+6.28, t(39)=3.51; VLS: pTVA:
16.18+7.05, t(39)=9.11; aTVA: 8.23%4.70, t(39)=3.12) (Figure 3.5a-c; Supplementary
Tables 8-10).

Two-way ANOVAs with Feature (VLS, LIN) and ROI (A1, pTVA, mTVA, aTVA) as factors
performed on classification accuracy scores (gender, age, identity) revealed for gender
classifications significant effects of Feature F(1, 312)=12.82, p<.0005) and ROI (gender:
F(3, 312)=245.06, p<.0001; age: F(3, 312)=64.49, p<.0001; identity: F(3, 312)=14.49,
p<.0001), as well as Feature x ROI interactions (gender: F(3, 312)=56.74, p<.0001; age:
F(3, 312)=4.31, p<.001; identity: F(3, 312)=8.82, p<.0001). Post-hoc paired t-tests
indicated that the VLS was better than LIN in preserving gender, age and identity
information in at least one TVA compared with Al (gender: aTVA: t(39)=5.13, p<.0001;
age: pTVA: t(39)=9.78, p<.0001; identity: pTVA: t(39)=4.01, p<.0005) (all tests in
Supplementary Table 11). Post-hoc two sample t-tests comparing ROIs revealed
significant differences in all classifications, in particular with pTVA outperforming other
ROIs in gender (LIN: pTVA vs Al: t(78)=22.40, p<.0001; pTVA vs mTVA: t(78)=10.92,
p<.0001; pTVA vs aTVA: t(78)=31.47, p<.0001; VLS: pTVA vs Al: t(78)=4.94, p<.0001;
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pTVA vs mTVA: t(78)=13.96, p<.0001; pTVA vs aTVA: t(78)=22.06, p<.0001), age (LIN:
pTVAvs A1:t(78)=7.26, p<.0001; pTVAvs mTVA: t(78)=10.11, p<.0001; VLS: pTVAvs Al:
t(78)=5.71, p<.0001; pTVA vs mTVA: t(78)=10.11, p<.0001; pTVA vs aTVA: t(78)=3.21,
p<.005) and identity (LIN: pTVA vs mTVA: t(78)=2.27, p<.05; VLS: pTVA vs Al:
t(78)=6.45, p<.0001; pTVA vs mTVA: t(78)=6.62, p<.0001; pTVA vs aTVA: t(78)=5.85,
p<.0001) (Supplementary Table 12).

We further evaluated voice identity information in the reconstructed stimuli by testing
human participants (n=13) in a series of 4 online experiments assessing the reconstructed
stimuli on (i) naturalness judgment, (ii) gender categorization, (iii) age categorization,
and (iv) speaker categorization (cf Methods). The naturalness rating task showed that the
VLS-reconstructed stimuli sounded more natural compared to LIN-reconstructed ones, as
revealed by a two-way repeated-measures ANOVA (factors: Feature and ROI) with a
strong effect of Feature (F(1, 12)=53.72, p<.0001) and a small ROI x Feature interaction
(F(3,36)=5.36, p<.005). Post-hoc paired t-tests confirmed the greater naturalness of VLS-
reconstructed stimuli in both Al and the TVAs (all ps<.0001) (Figure 3.5g).
For the gender task, one-sample t-tests showed that categorization of the reconstructed
stimuli was only significantly above chance level for the VLS (A1l: (mean accuracy * s.d.)
55.77410.84, t(25)=2.66, p<.01; pTVA: 61.75+7.11, t(25)=8.26, p<.0001; aTVA:
55.13+9.23, t(25)=2.78, p<.01). Regarding the age and speaker categorizations, results
also indicated that both the LIN- and VLS-reconstructed stimuli yielded above-chance
performance in the TVAs (age: LIN: aTVA, 55.77+14.95, t(25)=1.93, p<.05; VLS: aTVA,
63.14+11.82, t(25)=5.56, p<.0001; identity: LIN: pTVA: 54.38+9.34, t(17)=1.93, p<.05;
VLS: pTVA: 63.33%6.75, t(17)=8.14, p<.0001) (Supplementary Tables 13-15). Two-way
repeated-measures ANOVAs revealed a significant effect of ROI for all categories (gender:
F(3, 27)=5.90, p<.05; age: F(3, 36)=14.25, p<.0001; identity: F(3, 24)=38.85, p<.0001),
and a Feature effect for gender (F(1, 9)=43.61, p<.0001) and identity (F(1, 8)=14.07,
p<.001), but not for age (F(1, 12)=4.01, p=0.07), as well as a ROI x Feature interaction for
identity discrimination (F(3, 24)=3.52, p<.05) (Supplementary Tables 16-17 for the

model and ROI comparisons).
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Figure 3.5: Behavioural and machine classification of the reconstructed stimuli.
a,b,c, Decoding voice identity information in brain-reconstructed spectrograms. Performance of
linear classifiers at categorizing speaker gender (chance level: 50%), age (chance level: 50%), and
identity (17 identities, chance level: 5.88%). Error bars indicate s.e.m across 40 random classifier
initializations per ROI (instance of classifiers; 2 hemispheres x 20 seeds). The horizontal black
dashed line indicates the chance level. The blue and yellow dashed lines indicate the LIN and VLS
ceiling levels, respectively. *p < .05; **p < .001, **p < .001; ****p < .0001. d,e,f, Listener
performance at categorizing speaker gender (chance level: 50%) and age (chance level: 50%), and
at identity discrimination (chance level: 50%) in the brain-reconstructed stimuli. Error bars
indicate s.e.m across participant scores. The horizontal black dashed line indicates the chance
level, while the red, blue, and yellow dashed lines indicate the ceiling levels for the original stimuli,
the LIN-reconstructed and the VLS-reconstructed, respectively. *p < .05; **p < .01; ***p < .001,
***p < .0001. g, Perceptual ratings of voice naturalness in the brain-reconstructed stimuli’ as

assessed by human listeners. *p < .05, ***p <.0001.

4. Methods

4.1. Experimental procedure overview

Three participants attended 13 MRI sessions each. The first session was dedicated to
acquiring high-resolution structural data and identifying each participant's voice-
selective areas using a ‘voice localizer’ based on different stimuli than those in the same

experiment (Pernet et al., 2015; see below).
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The next 12 sessions began with the acquisition of two fast structural scans for inter-
session realignment purposes, followed by six functional runs, during which the main
stimulus set of the experiment was presented. Each functional run lasted approximately
12 minutes. Participants 1 and 2 attended all scanning sessions (72 functional runs in

total); due to technical issues, Participant 3 only performed 24 runs.

Participants were instructed to stay in the scanner while listening to the stimuli. To
maintain participants’ awareness during functional scanning, they were asked to press an
MRI-compatible button each time they heard the same stimulus two times in a row, a rare
event occurring 3% of the time (correct button hits (median accuracy * s.d.):

§$1=96.67+7.10, S2=100.00+0.89, S3=95.00£3.68).

Scanning sessions were spaced by at least two days to avoid possible auditory fatigue
due to the exposure to scanner noise. To ensure that participants' hearing abilities did not
vary across scanning sessions, hearing thresholds were measured before each session
using a standard audiometric procedure (Martin & Champlin, 2000; ISO, 2004) and

compared with the thresholds obtained prior to the first session.

4.2. Participants

This study was part of the project 'Réseaux du Langage' and was promoted by the
National Center for Scientific Research (CNRS). It was given approval by the local ethics
committee (Comité de Protection des Personnes Sud-Méditerranée) on 13th February
2019. The National Agency for Medicines (ANSM) has been informed of this study,
registered under 2017-A03614-49. Three native French human speakers (all females, 26-
33 years old) were scanned. Participants gave written informed consent and received a
compensation of 40€ per hour for their participation. All were right-handed, and no one
had a hearing disorder or neurological disease. All participants had normal hearing

thresholds of 15 dB HL for octave frequencies between 0.125 and 8 kHz.

4.3. Stimuli

The auditory stimuli were divided into two sequences. One ‘voice localizer’ sequence
to identify the voice-selective areas of each participant (Pernet et al., 2015) and main

voice stimuli.
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Voice localizer stimuli. The voice localizer stimuli consisted of 96 complex sounds of
500 ms grouped into four categories: human voice, macaque vocalizations, marmoset

vocalizations, and complex non-vocal sounds (more details in Bodin et al., 2021).

Main voice stimuli. The main stimulus set consisted of brief human voice sounds
sampled from the Common Voice dataset (Ardila et al., 2020). Stimuli were organized into
four main category levels: language (English, French, Spanish, Deutch, Polish, Portuguese,
Russian, Chinese), gender (female/male), age (young/adult; young: teenagers and
twenties; adult: thirties to sixties included) and identity (S1: 135 identities; S2: 142
identities; S3: 128 identities; ~44 samples per identity). Throughout the manuscript, the
term ‘gender’ rather than ‘sex’ was utilized in reference to the demographic information
obtained from the participants of the Common Voice dataset (Ardila et al., 2020), as it was
the terminology employed in the survey (‘male/female/other’). Stimulus sets differed for
each participant, and the number of stimuli per set also varied slightly (number of unique
stimuli: Participant 1, N=6150; Participant 2, N=6148; Participant 3, N=5123). For each
participant, six stimuli were selected randomly among the sounds having high energy (as
measured with the amplitude envelope) from their stimulus set and were repeated
extensively (60 times) to improve the performance of the brain decoding (VanRullen et
Reddy, 2019; Horikawa & Kamitani, 2017; Chang et al., 2019); these will be called the
“repeated” stimuli hereafter, the remaining stimuli were presented twice. The third
participant attended 5 BrainVoice sessions instead of 12, one BrainVoice session
corresponding to 1030 stimuli (1024 unique stimuli and 6 ‘test’ stimuli). Specifically,
5270 stimuli were presented to the third participant instead of ~12,000 for the two
others. Among these 5270 stimuli, 5120 unique stimuli were presented once, and for the
two other participants, 6 ‘test’ stimuli were presented 25 times (150 trials). The stimuli
were balanced within each run according to language, gender, age, and identity to avoid

any potential adaptation effect. In addition, identity was balanced across sessions.

All stimuli of the main set were resampled at 24414 Hz and adjusted in duration (250
ms). For each stimulus, a fade-in and a fade-out were applied with a 15 ms cosine ramp to
their onset and offset and were normalized by dividing the root mean square amplitude.
During fMRI sessions, stimulus presentations were controlled using custom Matlab

scripts (Mathworks, Natick, MA, USA) interfaced with an RM1 Mobile Processor (Tucker-
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David Technologies, Alachua, USA). The auditory stimuli were delivered pseudo-
randomly through MRI-compatible earphones (S14, SensiMetrics, USA) at a comfortable

sound pressure level that allowed clear and intelligible listening.

4.4. Computational models

We used two computational models to learn representational space for voice signals:
linear autoencoder (LIN) and deep variational autoencoder (VAE; Kingma et al.,, 2014).
Both are encoder-decoder models that are learned to reproduce their input at their output
while going through a low dimensional representation space usually called latent space
(that we will call voice latent space since they are learned on voice data). The
autoencoders were trained on a dataset of 182K sounds from the Common Voice dataset
(Ardila et al., 2020), balanced in gender, language, and identity to reduce the bias in the
synthesis (Gutierrez et al., 2021). Both models operate on sounds, which are represented
as spectrograms that we describe below. These representations were tested in all the

encoding/decoding and RSA analyses.

4.5. Spectrograms

We used amplitude spectrograms as input for the models that we describe below.
Short-term Fourier transforms of the waveform were computed using a sliding window
of 50 ms with a hop size of 12.5 ms (hence an overlap of 37.5 ms) and applying a Hamming
window of size 800 samples before computing the Fourier transform of each slice. Only
the magnitude of the spectrogram was kept, and the phase of the complex representation
was removed. In the end, a 250 ms sound is represented by a 21x401 matrix with 21-time

steps and 401 frequency bins.

We used a custom code based on numpy. f ft package (Harris et al., 2020). The size and
the overlap between the sliding windows of the spectrogram were chosen to conform
with the uncertainty principle between time and frequency resolution. The main
constraint was finding a trade-off between accurate phase reconstruction with the Griffin

& Lim algorithm (1983) and a reasonable spectrogram size.

We standardized each of the 401 frequency bands separately by centering all the data
corresponding to each frequency band at every time step in all spectrograms, which

involved removing their mean and dividing by their standard deviation. This separate
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standardization of frequency bands resulted in a smaller reconstruction error compared

to standardizing across all the bands.

4.6. Deep neural network
We designed a deep variational autoencoder (VAE; Kingma & Welling, 2014) of 15

layers with an intermediate hidden representation of 128 neurons that we refer to as the
voice latent space (VLS). In an autoencoder model, the two sub-network components, the
Encoder and the Decoder, are jointly learned on complementary tasks (Figure 3.1a). The
Encoder network (noted Enc hereafter; 7 layers) learns to map an input, s (a spectrogram
of a sound) onto a (128-dimensional) voice latent space representation (z; in blue in the
middle of Figure 3.1a), while the Decoder (noted Dec hereafter; 7 layers) aims at
reconstructing the spectrogram s from z. The learning objective of the full model is to
make the output spectrogram Dec(Enc(s)) as close as possible to the original one s. This
reconstruction objective is defined as the L2 loss, ||Dec(Enc(s)) — s||?. The parameters
of the Encoder and of the Decoder are jointly learned using gradient descent to optimize
the average L2 loss computed on the training set Y; crrqining ser ~ ||1Dec(Enc(s)) — s| 2.
We trained this DNN on the Common Voice dataset (Ardila et al., 2020) according to VAE
learning procedure (as explained in Kingma et Welling., 2019) until convergence
(network architecture and particularities of the training procedure are provided in

Supplementary Table 1), using the PyTorch python package (Paszke etal., 2019).

4.7. Linear autoencoder

We trained a linear autoencoder on the same dataset (described above) to serve as a
linear baseline. Both the Encoder and the Decoder networks consisted of a single fully
connected layer without any activation functions. Similar to the VAE, the latent space
obtained from the Encoder was a 128-dimensional vector. The parameters of both the
Encoder and the Decoder were jointly learned using gradient descent to optimize the

average L2 loss computed on the training set.

4.8. Neuroimaging data acquisition

Participants were scanned using a 3 Tesla Prisma scanner (Siemens Healthcare,
Erlangen, Germany) equipped with a 64-channel receiver head-coil. Their movements
were monitored during the acquisition using the software FIRMM (Dosenbach et al,,

2017). The whole-head high-resolution structural scan acquired during the first session
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was a T1-weighted multi-echo MPRAGE (MEMPRAGE) (TR = 2.5 s, TE = 2.53, 4.28, 6.07,
7.86 ms, TI=1000 ms flip angle: 8°, matrix size = 208 x 300 x 320; resolution 0.8 x 0.8 x
0.8 mm3, acquisition time: 8min22s). Lower resolution scans acquired during all other
sessions were T1-weighted MPRAGE scans (TR=2.3 s, TE = 2.88 ms, TI=900ms, flip angle:
9°, matrix size = 192 x 240 x 256; resolution 1 x 1 x 1 mm?3, sparse sampling with 2.8 times
undersampling and compressed sensing reconstruction, acquisition time: 2min37).
Functional imaging was performed using an EPI sequence (multiband factor =5, TR =462
ms, TE = 31.2 ms, flip angle: 45°, matrix size = 84 x 84 x 35, resolution 2.5 x 2.5 x 2.5 mm3).
Functional slices were oriented parallel to the lateral sulci with a z-axis coverage of 87.5
mm, allowing it to fully cover both the TVAs (Pernet et al., 2015) and the FVAs (Aglieri et
al., 2018). The physiological signals (heart rate and respiration) were measured with

Siemens' external sensors.

4.9. Pre-processing of neuroimaging data and
general linear modeling

Tissue segmentation and brain extraction were performed on the structural scans
using the default segmentation procedure of SPM 12 (Ashburner et al, 2012). The
preprocessing of the BOLD responses involved correcting motion, registering inter-runs,
detrending, and smoothing the data. Each functional volume was realigned to a reference
volume taken from a steady period in the session that was spatially the closest to the
average of all sessions. Transformation matrices between anatomical and functional data
were computed using boundary-based registration (FSL; Smith et al., 2004). The data
were respectively detrended and smoothed using the nilearn functions clean_img and
smooth_img (kernel size of 3mm) (Abraham et al., 2014), resulting in the matrix Y €

RS>V with S the number of scans and V the number of voxels.

Afirst general linear model (GLM) was fit to regress out the noise by predictingY from
a “denoised” design matrix, composed of R = 38 regressors of nuisance (Supplementary
Figure S4). These regressors of nuisance, also called covariates of no interest, included: 6
head motion parameters (3 variables for the translations, 3 variables for the rotations);
18 ‘RETROICOR’ regressors (Glover et al., 2000) using the TAPAS PhysIO package (Kasper
et al, 2017) (with the hyperparameters set as specified in Snoek et al.) were computed

from the physiological signals; 13 regressors modeling slow artifactual trends (sines and
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cosines, cut frequency of the high-pass filter = 0.01 Hz); and a confound-mean predictor.
The design matrix was convolved with a hemodynamic response function (HRF) with a
peak at 6 s and an undershoot at 16 s (Glover et al., 1999); we note the convolved design
matrix as X; € RS*R. The “denoise” GLM’s parameters 3; € RR*V were optimized to

minimize the amplitude of the residual By = argmingegrxv || Y —Xq B [|?. We used

alag-1 autoregressive model (ar(1)) to model the temporal structure of the noise (Friston
et al,, 2002). The denoised BOLD signal Y; was then obtained from the original one
accordingto Yy =Y — (X4 B4) € RS ™.

A second “stimulus” GLM model was used to predict the denoised BOLD responses for
each stimulus using a design matrix X, € RS*®s*1 (which was convolved with an
hemodynamic response function, HRF as above) and a parameters matrix 8, € R (s+DxV
where Ns stands for the number of stimuli. The last row (resp. column) of S (resp. Xs)
stands for a silence condition. Again, f; was learned to minimize the residual

Bs = argmingeg (Vs+)xv [| Y, — Xs B ||* .Oncelearned, each of the first N, line of B was

corrected by subtracting the (N, +1)t line, yielding the contrast maps for stimuli S, €
RNs*V. We note hereafter S[i,:] € R" the contrast map for a given stimulus, it is the i ¢

line of ..

A third “identity” GLM was fit to predict the BOLD responses of each voice speaker
identity, using a design matrix §; € R Wi*D*V and a design matrix X; € R S*Wi*1 (which
was again convolved with an hemodynamic response function, HRF) where N, stands for
the number of unique speakers. Again the last row/column in B; and X; stands for the
silent condition. f; is learned to minimize the residual g; = argminﬁER wnxv || Yg —
X; B ||* (Supplementary Figure S3a). Again, the final speaker contrast maps were
obtained by contrasting (i.e., subtracting) the regression coefficients in a row of f8; with
the silence condition (last row; Supplementary Figure S3a), yielding 8; € RMs XV, Here the
jth row of B;, Bi[j,:] € R” ,represents the amplitude of the BOLD response of the contrast

map for speakerj (i.e., to all the stimuli from this speaker).

A fourth “localizer” GLM model was used to predict the denoised BOLD responses of

each sound category from the Voice localizer stimuli presented above. The procedure was
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similar to that described for the two previous GLM models. Once the GLM was learned, we
contrasted the human voice category with the other sound categories in order to localize
for each participant the posterior Temporal Voice Area (pTVA), medial Temporal Voice
Area (mTVA), and anterior Temporal Voice Area (aTVA) in each hemisphere. The center
of each TVA corresponded to the local maximum of the voice > nonvoice t-map whose
coordinates were the closest to the TVAs reported (Pernet et al.,, 2015). The analyses were

carried out for each region of interest (ROI) of each hemisphere.

Additionally, we defined for each participant the primary auditory cortex (A1) as the
maximum value of the probabilistic map (non-linearly registered to each participant
functional space) of Heschl’s gyri provided with the MNI152 template (Penhune et al,,

1996), intersected with the sound vs silence contrast map.

4.10. Identity-based and stimulus-based
representations

We performed analyses either at the stimulus level, e.g., predicting the neural activity
of a participant listening to a given stimulus (B’s lines) from the voice latent space
representation of this stimuli, or at the speaker identity level, e.g., predicting the average
neural activity in response to stimuli of a given speaker identity (8;’s lines) from this
speaker’s voice latent space representation. The identity-based analyses were used for the
characterization of the voice latent space (Figure 3.1), the brain encoding (Figure 3.2), and
the representational similarity analysis (Figure 3.3), while the stimulus-based analyses

were used for the brain decoding analyses (Figure 3.4, 5).

We conducted stimulus-based analyses to examine the relationship between stimulus
contrast maps in neural activity (f;) and the encodings of individual stimulus
spectrograms computed by the encoder of an autoencoder model (either linear or deep
variational autoencoder) on the computational side. We will note z,/™ € RNsx128
encodings of stimuli by the LIN model and z,"*¢ € RMs*128 the encodings of stimuli

computed by the VAE model. The encoding of the kth stimuli by one of these models is the

kth row of the corresponding matrix, and it is noted as z,™°%¢![k, : ].
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For identity-based analyses, we studied relationships between identity contrast maps
in B; on the neural activity side and an encoding of speaker identity in the VLS
implemented by an autoencoder model (LIN or VAE) on the computational side, e.g., we
note z;"%¢[j] the representation of speaker j as computed by the vae model. We chose to
define a speaker identity-based representation as the average of a set of sample-based
representations  for  stimuli from this speaker, eg, z™°%![j] =1/

S| 2k es; z;™°%![k,:] where S; stands for the set of stimuli by speaker j and model

stands for vae or lin. Averaging in the voice latent space is expected to be much more
powerful and relevant than averaging in the input space spectrograms (VanRullen &

Reddy, 2019).

4.11. Characterization of the autoencoder latent
space
We characterized the organization of the voice latent space (VLS) and of the features
computed by the linear autoencoder (LIN) by measuring through classification
experiments the presence of information about the speaker’s gender, age, and identity in

the representations learned by these models.

We first computed the speaker's identity voice latent space representations for each of
the 405 speakers in the main voice dataset (135+142+128 see Stimuli section) as

explained above.

Next, we used these speakers' voice latent space representation to investigate if
gender, age, and identity were encoded in the VLS. To do so, we divided the data into
separate train and test sets and learned classifiers to predict gender, age, or identity from
the train set. The balanced (to avoid the small effects associated with unbalanced folds)
accuracy of the classifiers was then evaluated on the test set. The higher the performance
on the test set, the more confident we are that the information is encoded in the VLS. More
specifically, for each task (gender, age, identity), we trained a Logistic Regression
classifier (linear regularized logistic regression; L2 penalty, tol=0.0001,
fit_intercept=True, intercept_scaling=1, max_iter=100) using the scikit-learn python

package (Pedregosa et al., 2018).
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In order to statistically evaluate the significance of the results and to avoid potential
overfitting, the classifications were repeated 20 times with 20 different initializations
(seed), and the metrics were then averaged for each voice category (gender, age). More
specifically, we repeated the following experiment 20 times with 20 different random
seeds. For each seed, we performed 5 train-test splits, with 80% of the data in the training
and 20% in the test set. For each split, we used 5-fold cross-validation on the training set
to select the optimal value for the regularization hyperparameter C (searching between
10 values logarithmically spaced on the interval [-3, +3]). We then computed the
generalization performance on the test set of the model trained on the full training set
with the best hyperparameter value. Reported results were then averaged over 20
experiments. Note that data were systematically normalized with a scaler fitted on the
training set. We used a robust scaling strategy for these experiments (removing the
median, then scaling to the quantile range, 25th quantile, and 75th quantile), which occurs

to be more relevant with a small training set.

To investigate how speaker identity information is encoded in the latent space
representations of speakers' voices, we computed speaker identity voice latent space
representations by averaging 20 stimulus-based representations in order to obtain a
limited amount of data per identity that could be distributed across training and test

datasets.

We first tested whether the mean of the distribution of accuracy scores obtained for 20
seeds was significantly above the chance level using one-sample t-tests. We then
evaluated the difference in classification accuracy between the VLS and LIN via one-way
ANOVAs (dependent variable: test balance accuracy; between factor: Feature) for each
category (speaker gender, age, identity). We performed post-hoc planned paired t-tests
between the models to test the significance of the VLS-LIN difference.

4.12. Brain encoding
We performed encoding experiments on identity-based representations for each of the
three participants (Figure 3.2). For each participant, we explored the ability to learn a
regularized linear regression that predicts a speaker-based neural activity, e.g. the jt

speaker’s contrast map f;[j] € R”, from this speaker’s voice latent space representation,
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that we note z;°%¢![j] € R'?® (Figure 3.2a). We carried out these regression analyses for

each ROI (A1, pTVA, mTVA, aTVA) in each hemisphere and participant, independently.

The regression model parameters W,,.,q € R'?®*V were learned according to the

following:

Wencoa = argminy, . . .er128xv Z (2] X Wencoa = BiliD* + M Wencoall?
Jj=1.N;

where 1 is a hyperparameter tuning the optimal tradeoff between the data fit and the

penalization terms above. We used the ridge regression with built-in cross-validation as

implemented as RidgeCV in the scikit-learn library (Pedregosa et al., 2018).

The statistical significance of each result was assessed with the following procedure.
We repeated the following experiment 20 times with different random seeds. Each time,
we performed 5 train-test splits, with 80% of the data in the training and 20% in the test
set. For each split, we used RidgeCV (relying on leave-one-out) on the training set to select
the optimal value for the hyperparameter A (searching between 10 values logarithmically
spaced on the interval [1071; 108]). Following standard practice in machine learning, we
then computed the generalization performance on the test set of the model trained on the
full training set with the best hyperparameter value. Reported results are then averaged
over 20 experiments. Note that here again, with small training sets, data were

systematically normalized in each experiment using robust scaling.

The evaluation relied on the ‘brain score’ procedure (Schrimpf et al.,, 2018), which

evaluates the performance of the ridge regression with a Pearson’s correlation score.

Correlations between measured neural activities 8; and predicted ones Zlm‘ﬁel\* Wencod
were computed for each voxel and averaged over repeated experiments (folds and seeds),
yielding one correlation value for every voxel and for every setting. The significance of the
results was assessed with one-sample t-tests for the Fisher z-transformed correlation
scores (3 x participants x 2 hemispheres x V voxels). For each region of interest, the scores
are reported across participants and hemispheres (Figure 3.2b). The exact same

procedure was followed for the LIN modeling.
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In order to determine which of the two feature spaces (VLS, LIN) and which of the two
ROI (A1, TVAs) yielded the best prediction of neural activity, we compared the means of
distributions of correlations coefficients using a mixed ANOVA performed on the Fisher
z-transformed coefficients (dependent variable: correlation; between factor: ROI;

repeated measurements: Feature; between-participant identifier: voxel).

For each ROI, we then used t-tests to perform post-hoc contrasts for the VLS-LIN
difference in brain encoding performance (comparison tests in Figure 3.2b;
Supplementary Table 4). We finally conducted two-sample t-tests between the brain
encoding model's scores trained to predict A1 and those trained to predict temporal voice

areas to test the significance of the A1-TVAs difference (Supplementary Table 5).

The statistical tests were all performed using the pingouin python package (Vallat,

2018).

4.13. Representational similarity analysis
The RSA analyses were carried out using the package rsatoolbox (Schiitt et al., 2021;

https://github.com /rsagroup/rsatoolbox). For each participant, region of interest, and
hemisphere, we computed the cerebral Representational Dissimilarity Matrix (RDM)
using Pearson’s correlation between the speaker identity-specific response patterns of
the GLM estimates f3; (Walther et al.,, 2016) (Figure 3.3a). The model RDMs were built
using cosine distance (Xing et al., 2015; Bhattacharya et al,, 2017; Wang et al., 2018),
capturing speaker pairwise feature differences predicted by the computational models
LIN and the VLS (Figure 3.3a). The GLM estimates, and the computational models’ features
were first normalized using robust scaling for greater comparability with the rest of the
analyses described here. We computed the Spearman correlation coefficients between the
brain RDMs for each ROI and the two model’s RDMs (Figure 3.3b). We assessed the
significance of these brain-model correlation coefficients within a permutation-based
‘maximum statistics’ framework for multiple comparison correction (one-tailed
inference; N permutations = 10,000 for each test; permutation of rows and columns of
distance matrices, see Giordano et al.,, 2023 and Maris & Oostenveld, 2007; see Figure
3.3b). We evaluated the VLS-LIN difference using a two-way repeated-measures ANOVA

on the Fisher z-transformed Spearman correlation coefficients (dependent variable:
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correlation; within factors: ROI and Feature; participant identifier: participant
hemisphere pair). The same permutation framework was also used to assess the

significance of the difference between the RSA correlation for the VLS and LIN models.

4.14. Brain decoding

Brain decoding was investigated at the stimulus level. The stimuli’s voice latent space
representations z,™°%¢! € RN*128 and voice samples’ contrast maps 5, € RN XV were
divided into train and test splits, normalized across voice samples using robust scaling,
then fit to the training set. For every participant and each ROI, we trained a L,-regularized
linear model W € RV * 128 model to predict the voice samples’ latent vectors from the
voice samples’ contrast maps (Figure 3.4a). The hyperparameter selection and
optimization were done similarly to the brain encoding scheme. Training was performed
on non-repeated stimuli (see Stimuli section). We then used the trained models to predict
for each participant the 6 repeated stimuli that were the most presented. Waveforms
were estimated starting from the reconstructed spectrograms using the Griffin-Lim phase

reconstruction algorithm (Griffin & Lim, 1983).

We then used classifier analyses to assess the presence of voice information (gender,
age, speaker identity) in the reconstructed latent representations (i.e., the latent
representation predicted from the brain activity of a participant listening to a specific
stimulus) (Figure 3.5a, b, c). To this purpose, we first trained linear classifiers to
categorize the training voice stimuli (participant 1, N = 6144; participant 2, N = 6142;
participant 3, N =5117; total, N = 17403) by gender (2 classes), age (2 classes) or identity
(17 classes) based on VLS coordinates. Secondly, we used the previously trained
classifiers to predict the identity information based on the VLS derived from the brain
responses of the 18 Test voice stimuli (3 participants x 6 stimuli). We first tested using
one-sample t-tests that the mean of the distribution of accuracy scores obtained across
random classifier initializations of classifiers (2 hemispheres x 20 seeds = 40) was
significantly above the chance level for each category, ROI, and model. We then evaluated
the difference in performance at preserving identity-related information depending on
the model or ROI via two-way ANOVAs (dependent variable: accuracy; between factors:

Feature and ROI). We performed post-hoc planned paired t-tests between each model pair
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to test the significance of the VLS-LIN difference. Two-sample t-tests were finally used to

test the significance of the A1-TVAs difference.

4.15. Listening tests

We recruited 13 participants through the online platform Prolific (www.prolific.co) for

a series of online behavioral experiments. All participants reported having normal
hearing. These experiments aimed to evaluate how well voice identity information and
naturalness are preserved in fMRI-based reconstructed voice excerpts. In the main
session, participants carried out 4 tasks, in the following order: ‘speaker discrimination’
(~120 min), ‘perceived naturalness’ (~30 min), ‘gender categorization’ (~30 min), ‘age
categorization’ (~30 min). The experiment lasted 3 hours and 35 minutes, and each

participant was paid £48.

Prior to the main experiment session, participants carried out a short loudness-change
detection task to ensure they wore headphones, were attentive, and were correctly set up
for the main experiment (Woods et al., 2017). On each of the 12 trials, participants heard
3 tones and were asked to identify which tone was the least loud by clicking one of 3
response buttons: ‘First’, ‘Second’, or ‘Third’. Participants were admitted to the main
experiment only if they achieved perfect performance in this task. We refined the

participant pool by excluding those who performed poorly on the original stimuli.

The following three tasks were each carried out on the same set of 342 experimental
stimuli, each presented on a different trial: 18 original stimuli, 36 stimuli reconstructed
directly from the LIN and the VLS models, and 18 stimuli x 2 models x 4 regions of interest
x 2 hemispheres= 288 brain-reconstructed stimuli. In the ‘perceived naturalness’ task,
participants were asked to rate how natural the voice sounded on a scale ranging from
‘Not at all natural’ to ‘Highly natural’ (i.e., similar to a real recording) and were instructed
to use the full range of the scale. During the ‘gender categorization’ task, participants
categorized the gender by clicking on a ‘Female’ or ‘Male’ button. Finally, in the ‘age
categorization’ task, participants categorized the speaker’s age by clicking on a ‘Younger’
or ‘Older’ button. In the ‘speaker discrimination’ task, participants carried out 684 trials

(342 experimental stimuli x 2) with short breaks in between. In each trial, they were
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presented with 2 short sound stimuli, one after the other, and participants had to indicate

whether they were from the same speaker.

To evaluate the participants' performance, we first conducted one-sample t-tests to
examine whether the mean accuracy score calculated from their responses was
significantly higher than the chance level for each model and ROI. Next, we used two-way
repeated-measures ANOVAs to assess the variation in participants’ performances in
identifying identity-related information (dependent variable: accuracy; between-
participant factors: Feature and ROI). To determine the statistical significance of the VLS-
LIN difference, we carried out post-hoc planned paired t-tests between each model pair.
Finally, we employed two-sample t-tests to evaluate the statistical significance of the A1-

TVAs difference.

5. Conclusion

In this Chapter, we examined to what extent the cerebral activity elicited by brief voice
stimuli can be explained by machine-learned representational spaces, specifically
focusing on identity-related information. We trained a linear model and a DNN model to
reconstruct 100,000s of short voice samples from 100+ speakers, providing low-
dimensional spaces (LIN and VLS), which we related to fMRI measures of cerebral
response to thousands of these stimuli. We find: (i) that 128 dimensions are sufficient to
explain a sizeable portion of the brain activity elicited by the voice samples and yield
brain-based voice reconstructions that preserve identity-related information; (ii) that the
DNN-derived VLS outperforms the LIN space, particularly in yielding more brain-like
representational spaces and more naturalistic voice reconstructions; (iii) that different
ROIs have different degrees of brain-model relationship, with marked differences

between A1l and the a, m, and pTVAs.

Low-dimensional spaces generated by machine learning have been used to approximate
cerebral face representations and reconstruct recognizable faces based on fMRI
(VanRullen et Reddy, 2019; Dado et al., 2022). In the auditory domain, however, they have
mainly been used with a focus on linguistic (speech) information, ignoring identity-
related information (but see Akbari et al.,, 2019). Here, we applied them to brief voice

stimuli-with minimal linguistic content but already rich identity-related information-and
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found that as little as 128 dimensions account reasonably well for the complexity of
cerebral responses to thousands of these voice samples as measured by fMRI (Figure 3.2).
LIN and VLS both showed brain-like representational geometries, particularly the VLS in
the aTVAs (Figure 3.3). They made possible what is, to our knowledge, the first fMRI-
based voice reconstructions to preserve voice-related identity information such as
gender, age, or even individual identity, as indicated by above-chance categorization or
discrimination performance by both machine classifiers (Figure 3.5a-c) and human
listeners (Figure 3.5d-f). Note that LIN and VLS also represent the limited linguistic
content of the brief stimuli, as indicated by high language classification performance

(Supplementary Figure S2).

Estimation of fMRI responses (encoding) by LIN yielded correlations largely comparable
to those by VLS (Figure 3.2b), although many voxels were only explained by one or the
other space (Figure 3.2c). However, in the RSA, VLS yielded higher overall correlations
with brain RDMs (Figure 3.3), suggesting a representational geometry closer to that
instantiated in the brain than LIN. Further, VLS-reconstructed stimuli sounded more
natural than the LIN-reconstructed ones (Figure 3.5g) and yielded both the best speaker
discrimination by listeners (Figure 3.5f) and speaker classification by machine classifiers
(Figure 3.5c). Unlike LIN, which was generated via linear transforms, VLS was obtained
through a series of nonlinear transformations (Wetzel, 2017). The fact that the VLS
outperforms LIN in decoding performance indicates that nonlinear transformation is
required to better account for the brain representation of voices (Naselaris et al., 2011;

Cowen et al,, 2014; Han et al., 2019).

Comparisons between ROIs revealed important differences between Al and the a, m, and
pTVAs. For both LIN and VLS, fMRI signal (encoding) predictions were more accurate for
the mTVAs than for Al, and for A1 than for the pTVAs (Figure 3.2b). The aTVAs yielded
the highest correlations with the models in the RSA (Figure 3.3). Stimulus reconstructions
(Figure 3.4) based on the TVAs also yielded better gender, age, and identity classification
than those based on A1, with gender and identity best preserved in the pTVA-, and to a
lesser extent, in the aTVA-based reconstructions (Figure 3.5). These results show that the
a and pTVAs not only respond more strongly to vocal sounds than A1, but they also

represent identity-related information in voice better than mTVA, which was previously
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anticipated in some neuroimaging studies (Latinus etal., 2011; Charest etal., 2013; Aglieri

etal,, 2021).

Overall, this chapter shows that a DNN-derived representational space provides an
interesting approximation of the cerebral representations of brief voice stimuli that can
preserve identity-related information. We find it remarkable that such results could be
obtained to explain sound representations despite the poor temporal resolution of fMRI.
Future work combining more complex architectures to time-resolved measures of
cerebral activity, such as magneto-encephalography (Défossez et al., 2023) or ECoG
(Pasley et al., 2012), will likely yield better models of the cerebral representations of voice

information.
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In this thesis, we employed artificial intelligence (AlI) in two distinct yet

complementary ways: Al as a computational model and Al as a tool.

In Chapter 1, we proposed a synthesized model for human voice processing. We
reviewed older and recent studies on human voice processing, suggesting a potential role
for each voice patch within each hemisphere. Based on this model, we explored the voice

patch system across primate brains, including humans, macaques, and marmosets.

In Chapter 2, we created a large-scale dataset of marmoset vocalizations. We employed
Al as a tool to detect, segment, and label marmoset vocalizations from raw recordings.
The dataset and the trained classifier will be publicly available for future research in vocal

communication.

In Chapter 3, we employed Al as a computational model to demonstrate that voice
representations derived from deep neural networks constitute interesting
approximations of cerebral representations and can significantly predict brain activity in
response to voice, as recorded with fMRI. Additionally, we reconstructed the
spectrograms of stimuli presented to the participants. We retrieved voice identity
information from the reconstructed stimuli using machine learning classifiers and

behavioral tasks performed by human listeners.

Overall, our findings underscore the potential of Al in shedding light on the brain’s

voice processing mechanisms, serving both as a computational model and as a tool.

1. Evolutionary origins of voice perception

What is the functional role of each unit within the “voice patch” system in the primate

brain when processing vocal information?
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In Chapter 1, we reviewed older and recent literature on voice processing in humans
and non-human primates to determine the potential role of each voice-sensitive area. We
proposed a synthesized voice processing model based on brain studies in primates that
outlines a pathway with three stages: detection, measurement, and categorization for
voice recognition. The model tentatively underscores the roles of the fronto-temporal-
limbic network and the hemispheric specialization, where the right predominantly
handles voice identity, the left manages semantic deciphering, and the limbic system, the
vocal emotion, bilaterally. Differentiating computational phases—detection,

measurement, and categorization—offer a granular understanding of voice perception.

However, I have identified several essential questions in Chapter 1 that need to be

answered, which I will discuss in the following subsections.

1.1. Investigating voice cell coding

Standard methods for exploring the neural mechanisms of voice processing can
identify broad neural substrates but often offer limited insight into the overlapping,
segregation, and form of neuronal representations involved in processes like identity
recognition (Perrodin et al, 2015). This limitation arises because neuroimaging
techniques typically measure either surrogate markers of neuronal activity or large-scale
neural responses (such as fMRI; see Functional neuroimaging in the Introduction).
Therefore, there is a need for direct measures of localized neuronal computations. Direct
neuronal recordings, such as depth electrode recordings or electrocorticography, in
human patients undergoing monitoring for neurosurgery brought critical insights into
neuronal functions within localized auditory regions of the human brain (Zhang et al,,
2021; Rupp et al, 2022). Meanwhile, research in animal models allows for the
examination of neuronal processes at multiple scales directly within the regions of
interest and provides more specificity in neuronal manipulation (activation and/or
inactivation) (fMRI-guided electrophysiology, Perrodin et al, 2011; Giamundo et
al., submitted). However, the advancements in animal research have not kept pace

(Perrodin et al., 2015).

Within the ventral visual stream of humans and non-human primates, faces seem to be

represented within a system known as the face patch system, which shares many
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similarities with the voice patch system (Belin, 2017). However, the visual domain has
benefited from a larger number of fMRI-guided studies investigating the neural codes of
the face patch system. Within these patches, faces are represented using low-dimensional
neural codes, where each neuron encodes an orthogonal axis of variation in face space
(Chang & Tsao, 2017). A recent study built upon this finding using self-supervised
generative models (Higgins et al., 2021). Their model succeeded in “disentangling” face
images into meaningful factors of variation (e.g., hair length, gender) and establishing a
one-to-one correspondence between these factors and the responses of face single units.
A significant avenue for future research in brain-based voice processing would be to
explore the neural code of the voice patch system, especially to determine if it employs

similar low-dimensional codes as observed for faces.

1.2. Mapping voice patch connections and
processing stages

How do voice patches connect within the brain, what are their processing stages,
and are there distinct temporal dynamics in voice processing? Various studies have
provided insights into the temporal dynamics of voice processing in the temporal voice
areas, predominantly in humans (Charest et al., 2009; Capilla et al., 2013; Schall et al,,
2015; Zhang et al, 2021; Norman-Haignere et al, 2022; Rupp et al, 2022). In our
synthesized model, we highlighted a key finding: voice processing initiates bilaterally in
the mid-temporal voice areas and then proceeds to both the posterior and anterior voice
areas in parallel (Figure 1.1). However, only a handful of studies have shed light on the
dynamics of the frontal voice areas (Lowe et al., 2021) and the vocal emotion responses
in the limbic system (Giordano et al., 2021). Further research targeting these areas is

required to enhance our understanding of their temporal dynamics in voice processing.

1.3. Employing DNNs as a computational model

How accurately do DNNs approximate human processes, especially in the temporal
and frontal voice areas? With DNNs emerging as promising models for voice processing,
we suggest in Chapter 3 to employ DNNs to computationally simulate (1) the processes of
voice detection, measurement, and categorization; (2) the presumed functional roles of
the voice areas, especially focusing on the motor/semantic, voice identity, and vocal

emotion processing axes. By training DNNs on extensive voice datasets, one could mimic
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the hierarchical processing of voice information, ranging from basic detection to high-

level categorization.

Can combining bio-inspired DNNs with hierarchical voice models provide deeper
insights into primate voice processing? Another potential pathway is to examine
various architectures and biases to discern what contributes to the similarities between
the brain and DNNs. One straightforward method might be to pre-map the cortical areas
in the model’s architecture (Kubilius, Schrimpf, et al., 2018) or to train the model to
emulate the brain’s statistical properties (Cadena et al., 2019; Federer et al., 2020), or
even to amalgamate these strategies with an additional training objective that aligns the
pre-mapped cortical areas with their corresponding brain responses. Although these
methods have been explored in the visual domain, they have yet to be applied in the

auditory domain.

2. Encoding and decoding of voice identity

Would DNNs provide reasonable approximations of cerebral representations? —
in particular regarding the processing of voice identity. In Chapter 3, we tried to address
this question by applying representation learning to model the voice signal in a
representation that might correlate with the brain activity associated with different voice
stimuli. In particular, we tried to answer where this representation exhibits the
strongest alignment with actual cerebral voice-related activity within the auditory
cortex. We found that the voice latent space (VLS) derived from deep neural networks
captures key aspects of voice stimuli and performs better than traditional linear methods
like PCA in decoding voice-related brain activity. This indicates the advantage of using
nonlinear models to understand brain representations of voices. Moreover, the
relationship between VLS and TVAs was stronger than that with A1, highlighting the
importance of TVAs in voice identity processing. There was also evidence of right-
hemispheric lateralization for speaker identity processing. Our findings demonstrate that
deep learning-derived representations provide an effective representation of voice

identity information in the voice-selective areas of the auditory cortex.

However, future research in the field would benefit from several key improvements,

which I will discuss in the following subsections.
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2.1. Incorporating the extended voice system

In Chapter 3 and the preceding section, we investigated the most famous voice-
sensitive areas within the temporal lobe (TVAs). However, as emphasized in Chapter 1,
the extended voice system plays a crucial role in processing higher-level information
regarding voice identity (within the frontal lobe, FVAs) and voice emotions (within the
limbic system). For a comprehensive understanding of the post-perceptual processing of
high-level voice information, future research should include these regions of interest in

spatially and temporally specific experiments.

2.2 Developing better models and evaluations

Even with the recent progress in building more powerful models using DNNs, brain
activity prediction is not perfect, with correlation scores far from 1. This could be partly
because of the intrinsic noise in functional neuroimaging data (fMRI, MEG), but a big part
of the variability in brain activity still is not explained. In this section, we introduce

different ways to address this challenge.

2.2.1. Learning better representations

In our work, we employed a two-stage procedure to align our computational model
with brain activity: (i) initially, we utilized representation learning, specifically
unsupervised learning, by training autoencoder models to compress and then reconstruct
voice spectrograms; (ii) subsequently, we employed a regularized linear regression
model to map the autoencoder’s representations of the stimuli with the brain responses
to the same stimuli. While this methodology underscored the similarities between voice
representation and brain responses, newer techniques present interesting avenues to

explore, mainly in the visual domain literature.

Chen etal. (2023) suggested initially learning a self-supervised representation of fMRI
data using mask modeling in a large latent space. By enhancing a latent diffusion model
with conditioning, they demonstrated that their model could reconstruct highly plausible
images with semantically matching details from brain recordings, using only a few paired

annotations.
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Alternatively, replacing the regression objective with a contrastive objective has also
shown promise in brain decoding (Scotti, Banerjee, et al.,, 2023, preprint; Défossez et
al., preprint). Lee, Lee, et al. (2023, preprint) recently utilized EEG and a generative model
to decode imagined speech using EEG. In these three approaches, a key step was to train
their model or part of their model directly with the brain responses, contrasting with our

two-stage approach.

2.2.2. Improving model interpretability

Even with better similarity scores between the model and brain responses, the
question remains: What insights do we gain regarding brain function? One possible
approach is to interpret the learned model. However, the challenge of making sense of
DNNs, especially when applied to complex stimuli, is significant. In our work, we were
able to identify certain properties within the autoencoder’s voice latent space, e.g., a major
organizational dimension of the latent space is along voice gender (Figure 3.1b). However,
a representation is only considered interpretable when separated into subcomponents,
with each subcomponent originating from independent factors (Higgins et al., 2017) and
corresponding to a real-world concept without containing information related to the
others. For example, one dimension could encode gender, another the speaker’s identity,
age, etc. Higgins et al. (2021) leveraged disentangled representations through self-
supervised generative models. The model they developed effectively “disentangled” face
images into meaningful factors of variation, such as hair length and gender, and
established a direct correspondence between these factors and the responses of face
single units. This approach would benefit future research to develop interpretable

computational models for cerebral voice processing.

2.2.3. Leveraging better brain recording techniques

Many studies currently depend on brain recording techniques that possess high spatial
resolution with compromised temporal resolution (e.g., fMRI) or vice versa (e.g.,, M/EEG).
As noted in Chapter 1, the most impactful studies highlighted in our literature review take
advantage of intracranial recordings, which offer both high spatial and temporal
resolutions (e.g., Zhang et al., 2021; Rupp et al., 2022). A recent advancement in non-
invasive brain recording techniques is the development of optically pumped

magnetometers (OPM)-MEG, a novel type of MEG equipment that offers multiple benefits
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over traditional scanners (Brookes et al., 2022). These advantages include enhanced
signal sensitivity, improved spatial resolution, and the freedom for participants to move
during scanning. The OPM-MEG represents a significant stride towards overcoming the
limitations of existing brain recording techniques and holds promise for garnering more

precise insights into brain activity and its correlation with various cognitive functions.

3. Computational neuroethology of vocal
communication

Chapter 2 looked at the use of computational methods to better understand the
evolution of vocal communication. A remaining question from our review (Chapter 1)
is: Do voice patches across the primate species share similar coding principles? To
explore this, we suggest using the methodologies outlined in Chapter 3 — specifically,
applying deep learning-based vocal representations and correlating them with brain
responses to vocal stimuli in non-human primates. This task requires training a deep
neural network with a large set of vocal signals specific to the species. Currently, such

datasets for both macaque and marmoset monkeys are unavailable in the literature.

To address this gap, we presented a complete pipeline for extracting and analyzing
vocalizations from marmoset monkey recordings, continuously recorded at a sampling
rate of 96 kHz from a room housing about 20 marmosets in three cages. The dataset
includes over 800,000 files, totaling 253 hours of data collected over 40 months. Each
recording lasts a few seconds and captures the marmosets' social vocalizations, covering
their entire known vocal repertoire during the experimental period. Around 215,000 calls
were annotated with the vocalization type. The provided dataset, source code, and pre-
trained classifier are valuable resources for future research in this field. Moving forward,
itis essential to build on this initial work by including more species-specific vocal datasets
and improving computational methodologies to further our understanding of the

evolution of vocal communication.

Our dataset is a valuable resource for future research, enabling investigations into the
functions, contexts, and variations within the marmoset vocal repertoire. Moreover, it
offers opportunities for comparative studies with other primate species, including

humans, to discover shared and unique aspects of vocal communication across
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evolutionary lineages. Below, I will outline some suggested research directions in
marmosets, but similar investigations can be carried out with other non-human primate
species. We have recorded a similar dataset of macaque vocalizations and are currently
employing the same methodology to compile a large-scale dataset. This will enable us to
leverage a comparative approach to examine the communication systems of different
primate species, thereby enriching our understanding of the evolution of vocal

communication.

3.1. Characterize the acoustical properties of the
marmoset vocal repertoire

Recently, there has been increased interest in the common marmoset (Callithrix
jacchus) as a neuroscientific model organism (Miller et al., 2016), leading to many
attempts to study and characterize their vocal repertoire (Bezerra & Souto, 2008; Pistorio
et al,, 2006; Zhao et al., 2019). However, both past and recent literature show that
recording setups were limited to a sampling rate of 48 kHz. Benefiting from a higher
sampling rate compared to previous studies, and with hundreds of thousands of samples
available instead of a few thousand, a new opportunity arises to better characterize the
acoustic properties of the marmoset vocal repertoire. This includes analysis of
fundamental frequency (FO0), length statistics per vocalization type, frequency, number of
harmonics, and characterizing the formants within the marmoset vocalization repertoire
(Fukushima et al., 2015; Pistorio et al.,, 2006; Zhao et al., 2019; Norcross & Newman,
1993).

3.2. Investigate the conversational patterns of the
marmoset vocal repertoire

Recently, there has been increased interest in the common marmoset (Callithrix
jacchus) as a neuroscientific model organism (Miller et al., 2016), leading to many
attempts to study and characterize their vocal repertoire (Bezerra & Souto, 2008; Pistorio
et al, 2006; Zhao et al.,, 2019). However, both past and recent literature show that
recording setups were limited to a sampling rate of 48 kHz. Benefiting from a higher
sampling rate compared to previous studies, and with hundreds of thousands of samples
available instead of a few thousand, a new opportunity arises to better characterize the

acoustic properties of the marmoset vocal repertoire. This includes analysis of
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fundamental frequency (F0), length statistics per vocalization type, frequency, number of
harmonics, and characterizing the formants within the marmoset vocalization repertoire
(Fukushima et al., 2015; Pistorio et al.,, 2006; Zhao et al., 2019; Norcross & Newman,
1993).

3.3. Study the changes in marmoset vocalizations
during aging
Newborn marmosets have a distinct vocalization known as infant cry or nga, which
gradually changes into adult vocalizations like phee over time. By monitoring the
vocalizations of the same individual over time, we can observe how marmoset
vocalizations evolve as they age, such as how an infant cry slowly transitions into a phee.
This could enhance our understanding of their communication system. Such a study
would necessitate isolating certain individuals and recording their call types and/or

behaviors to identify their vocalizations within our dataset.

3.4. Linking vocalization with behavior

Establishing a causal link between vocal communication and behavior is a significant
step toward comprehensively understanding a species' social interactions (Prat, 2019;
Fischer et al.,, 2021). Can we predict an individual's behavior based on the vocalization
sequences of the group or individuals? Several studies have explored this question in
marmosets (Bezerra & Souto, 2008; Miller et al., 2009; Miller et al., 2010). Another
intriguing aspect is to examine the adaptability of vocalizations in response to different
social events - do vocalizations evolve as new social events, such as births, occur
within the group? (Gultekin and Hage, 2017, Gultekin and Hage, 2018; Gultekin et al.,
2021) However, the studies mentioned above were limited by a small number of
vocalizations and behavior examples. The automatic estimation of multiple animals'
poses (Mathis et al., 2018) has been shown to be a successful approach for marmosets
(Lauer et al, 2022). I hypothesize that merging this approach with our extensive

marmoset detection and labeling pipeline could effectively address these questions.

3.5. Neural encoding and decoding with deep
learning for vocalization processing

In the previous section (Evolutionary origins of voice perception), I explored future

research paths to understand better how vocal perception has evolved. I suggested
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extending the methods from Chapter 3, which focused on how the human brain processes
voice, to study marmosets and macaques. This leads to the question: Would DNNs
provide reasonable approximations of non-human primates' cerebral
representations? In Chapter 2, we introduced a comprehensive dataset of marmoset
vocalizations, which will be shared publicly. To effectively map these vocalizations onto
cerebral representations in non-human primates, we would need sufficient brain
recordings to perform brain encoding and decoding studies. However, the current
datasets of brain recordings from marmosets (Jafari et al., 2023) and macaques (Bodin et
al., 2021) in response to vocalizations likely contain too few stimuli. Further research is

needed to overcome this limitation in the field.

4. Conclusion

To conclude, this thesis has employed artificial intelligence (Al) to investigate voice
processing across primates. The synthesized model of voice processing highlights the
current state-of-the-art knowledge of the workings of voice areas —and draws the limits

of our knowledge.

The use of Al as a computational model has shown potential for predicting brain
activity in response to voice, emphasizing the valuable role of Al in auditory neuroscience.
Additionally, employing Al as a tool has aided in creating a large dataset of marmoset
vocalizations, which may support future research in vocal communication and

neuroethology.

Combining these multidisciplinary approaches has not only contributed to our
understanding of primate auditory vocal processing but also provided some insight into
the evolutionary beginnings of vocal communication. This effort has laid the groundwork
for further research in auditory neuroscience, highlighting the supportive role of Al in

modern neuroscience and the study of primate vocal communication.
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1. Towards studying the evolution of vocal
communication systems with deep learning

Marmoset |Mother [Father |Date of Date of Date of Date of Sex
ID ID ID birth death entrance exit

1 - - 2013-12-13 |- 2019-06-22 - F
2 - - 2013-09-23 |2020-06-26 |2019-06-22 2020-06-26(M
3 1 2 2018-10-22 |- 2019-06-22 - M
4 1 2 2019-03-29 |- 2019-06-22 2021-08-20(F
5 - - 2016-04-04 |2022-03-07 |2019-06-22 2022-03-07(M
6 - - 2012-08-27 (2020-06-18 |2019-06-22 2020-06-18|F
7 6 5 2018-11-01 |- 2019-06-22 - F
8 6 5 2019-03-30 |- 2019-06-22 2021-05-03(F
9 6 5 2019-03-30 |- 2019-06-22 2021-05-03|F
10 - - 2011-10-11 |- 2019-06-22 - F
11 - - 2013-04-09 (2020-01-29 |2019-06-22 2020-01-29|M
12 10 11 2018-08-08 |- 2019-06-22 - F
13 10 11 2019-01-11 |- 2019-06-22 - F
14 10 11 2019-01-11 |- 2019-06-22 - F
15 1 2 2019-09-06 |- 2019-09-06 2021-08-11|M
16 6 5 2019-09-06 |- 2019-09-06 2021-05-03|F
17 10 11 2019-11-21 |- 2019-11-21 - M
18 10 11 2019-11-21 |- 2019-11-21 - F
19 1 2 2020-02-23 |- 2020-02-23 2021-08-11|M
20 1 2 2020-02-23 |- 2020-02-23 2021-09-03|M
21 1 2 2020-08-03 |- 2020-08-03 2021-09-03|M
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22 7 3 2020-12-07 |- 2020-12-07 2023-02-03|M
23 7 3 2020-12-07 |- 2020-12-07 2023-03-17|M
24 1 5 2021-02-13 |- 2021-02-13 2023-01-06(F
25 1 5 2021-02-13 |- 2021-02-13 - F
26 1 5 2021-07-21 |- 2021-07-21 - F
27 1 5 2021-07-21 |- 2021-07-21 - M
28 7 3 2021-10-04 |- 2021-10-04 - M
29 7 3 2021-10-04 |- 2021-10-04 2023-02-03|F
30 1 5 2022-01-26 |- 2022-01-26 - M
31 1 5 2022-01-26 |- 2022-01-26 - F
32 7 3 2022-05-02 |- 2022-05-02 - M
33 7 3 2022-05-02 |- 2022-05-02 - M
34 7 3 2022-11-04 |- 2022-11-04 - F
35 7 3 2022-11-04 |- 2022-11-04 - F

Supplementary Table S1: Description of recorded subjects. The date of entrance and exit

corresponds to the period when the subject was inside the room and then recorded. Sex codes

correspond to F for females and M for males.

Hyperparameter Value
Sampling rate (Hz) 96,000
FFT window size 1,024
Number of frames between STFT columns (ms) 1
Reference level (dB) 20
Coefficient for pre emphasis filter 0.97
Spectral range [125;

48,000]
Std above median to threshold out noise 1
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Size in time of neighborhood-continuity filter (ms) 50

Longest distance at which two elements should be considered one (ms) | 100

Smallest expected element size (in ms and Hz) [300; 125]
Size of FFT window (ms) 4

Default dB minimum of spectrogram -70
Threshold for spectrogram to consider noise as silence (s) 0.01
Shortest expected length of silence (s) 0.01
Longest expected vocalization (s) 5.1
Shortest expected length of syllable (s) 0.01
Threshold number of neighborhood time-frequency bins above 0 to 0.25

consider a bin not noise

Size of neighborhood-continuity filter (Hz) 2,000

Proportion of temporal overlap to consider two elements one 0.25

Supplementary Table S2: Hyperparameters of the dynamic-thresholding segmentation
algorithm. This algorithm is detailed in Sainburg et al, 2020 and can be accessed at

https://github.com /timsainb/vocalization-segmentation.

Type Pre-onset (s) Post-offet (s)
Infant cry 0.1 0.3
Phee 0.15 0.5
Seep - 0.1
Trill - 0.4
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0.2

Twitter

0.5

0.5

Supplementary Table S3: Description of post-classification time adjustments.

Date Infant cry | Phee | Seep | Trill | Tsik | Twitter
Type
2019-12 | 10.03 11.14 [ 5.85 | 0.84 |13.65|58.50
2020-01 | 36.53 19.03 (191 (398 |2.94 |35.62
2020-02 | 2.91 11.61 [ 3.52 |5.57 |14.36|62.02
2020-03 | 3.72 14.13 [ 6.40 |7.52 |38.41|29.82
2020-05 | 2.16 15.11 ({12.95(22.30 | 9.35 |38.13
2020-06 | 6.45 12.90 [ 6.45 |40.320.00 |33.87
2020-07 | 16.44 25.63 |2.44 [19.19 | 25.56 | 10.74
2020-09 | 7.01 1492 | 2.18 |29.34|30.51|16.04
2020-10 | 18.73 11.31 (1.52 |19.34|30.10 | 19.00
2020-11 | 9.41 10.45 (2.09 |20.02|36.30|21.74
2020-12 | 3.36 8.30 |1.49 |20.25(50.51(16.10
2021-01 | 17.52 10.09 | 1.14 |11.31|28.45|31.49
2021-09 | 20.97 30.24 | 1.52 (471 [7.29 |35.26
2022-01|1.80 21.79(2.73 [9.49 |[17.55|46.65
2022-02 | 9.26 13.24 | 2.62 |15.17 | 30.88 | 28.84
2022-03 | 32.28 13.60 | 2.14 |12.12|14.21 | 25.65
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2022-04 | 7.33 15.58 | 1.68 |[27.13 | 24.59 | 23.69
2022-09 | 0.16 23.7311.25 |24.0217.79 | 33.06
2022-10 | 0.25 2424 11.54 |27.59|16.86 | 29.53
2022-12 | 26.72 12.7312.39 |[13.88]22.45(21.83
2023-02 | 28.40 2412 11.08 |554 [9.09 |31.78
2023-03 | 6.74 27.29 237 |845 |16.62|38.54
2023-04 | 4.52 29.8512.29 [9.75 |14.65|38.93
Average | 13.78 17.66 | 2.17 |[14.35|21.69 | 30.36

Supplementary Table S4: Temporal distribution of vocalizations by label over time.
Distribution of 215,000 labeled vocalizations (72 hours in total). For each month, the proportion
of vocalization type is indicated in %. The proportion of labeled /unlabeled vocalization is 25/75%
(unlabeled omitted here).

2. Encoding and decoding of voice identity
in human auditory cortex

Supplementary Figure S1: Projections of the DNN-derived Voice Latent Space
(VLS). Distribution of the 405 speaker identities along the first 2 principal components of the VLS
coordinates from all sounds, averaged by speaker identity. Each disk represents a speaker's
identity colored by either gender (as in Figure 3.1b), age, or language. a, Large disks represent the
average of all male (black) or female (gray) speaker coordinates. ANOVAs on the first two
components: PC1: F(1, 405)=0.10, p=.74; PC2: F(1, 405)=11.00, p<.001. b, Same for speaker age.
ANOVAs on first two components: PC1: F(1,405)=4.12, p<.01; PC2: F(1,405)=3.99, p<.01. ¢, Same
for speaker language. ANOVAs on the first two components: PC1: F(1, 405)=8.46, p<.0001; PC2:
F(1, 405)=6.09, p<.0001.
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Language classification Confusion matrix of VLS-
based language classification
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Supplementary Figure S2: Language classification based on model representation. a,
Performance of linear classifiers in categorizing speaker language (chance level: 12.5%) using VLS
or LIN coordinates. Error bars represent the standard error of the mean (s.e.m.) across 100
random classifier initializations. All p-values are less than 1e-10. The horizontal black dashed line
indicates the chance level. ****: p < 0.0001. b, Confusion matrix representing the predictions from

classifiers trained on VLS features, averaged over 100 iterations.
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Voice identity GLM Identity vs silence
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Supplementary Figure S3: Brain activity in response to voice measured by fMRI. a, A GLM is
used to model fMRI activity in response to each speaker's identity. b, The fMRI activity in response
to each speaker's identity is mapped into dedicated voxel maps by contrasting the speaker's
identity with the silence, resulting in ~135 voxel maps. ¢, The voice-sensitive ROIs used for
subsequent analyses, identified in each participant via an independent Voice Localizer: the
anterior, middle, and posterior Temporal Voice Areas (TVAs). d, The Primary Auditory Cortex
(A1) is defined as the intersection between a probabilistic map of Heschl’s gyri and the sound vs

silence contrast map.
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Supplementary Figure S4: Denoising of the fMRI BOLD responses. A general linear model
(GLM) was fit to regress out the noise by predicting Y from a “denoising” design matrix X; ,
composed of R = 38 regressors of nuisance 6 head motion parameters (3 variable for the
translations, 3 variables for the rotations); 18 ‘RETROICOR’ regressors (Glover et al., 2000) using
the TAPAS PhyslO package (Kasper et al,, 2017) with the hyperparameters set as specified in
(Snoek et al., 2021); 13 regressors modeling slow artifactual trends (sines and cosines, cut-off
frequency of the high-pass filter = 0.01 Hz); an intercept. The design matrix was convolved with
an hemodynamic response function (HRF) with a peak at 6s sec and an undershoot at 16s sec
(Glover et al., 1999), we note the convolved design matrix as X; € RS *® where S = number of

scans. The “denoise” GLM’s parameters 8; € RR*V were optimized to minimize the amplitude of

the residual Bq = argmingegrxv || Y —Xg B ||?, where V = number of voxels. The denoised

BOLD signal Y; was then obtained from the original one according to Y; =Y — (X4 B4)-
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Name Layer #Filters  [Filter size [Stride Activation
Conv2D + BN2D 64 6x3 2x2 RelLU
Conv2D + BN2D 128 6x2 2x2 RelLU

Encoder Conv2D + BN2D 256 6x2 2x1 RelLU
Conv2D + BN2D 512 6x2 2x1 RelLU
Conv2D 7 6x2 1x1 -

Bottleneck  |FC 256 - - -
ConvTrans2D + BN2D 512 27T%3 1x1 RelLU
ConvTrans2D + BN2D 256 4x2 2x1 RelLU

Decoder ConvTrans2D + BN2D 128 4x2 2x1 RelLU
ConvTrans2D + BN2D 64 4x2 2x2 RelLU
ConvTrans2D 1 4x2 2X2 -

Batch size 64

Loss function MSE + KL divergence

Optimizer Adam, learning rate = 0.00005
betas = (0.5, 0.999)

Supplementary Table S5: Architecture of the VAE network. The architecture of the VAE
consists of 15 layers with an intermediate hidden representation of 128 neurons that will stand
for the VLS. The Encoder network (Enc; 7 layers) learns to map an input, s (a spectrogram of a
sound), onto the (128-dimensional) VLS, while the Decoder (Dec; 7 layers) aims at reconstructing
the spectrogram s from z. The learning objective of the full model is to make the output
spectrogram Dec(Enc(s)) as close as possible to the original one s. BN: batch normalization; FC:

fully connected; ReLU: Rectified Linear Unit.
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Subject ROI Correlation s.e.m. T dof p-val unc. sig. CI95% cohen-d BF10 power
sl LAl 0.13 £ 0.15 0.03 4.78E+00 32 1.91E-05  skxx [0.08, inf] 8§.30E-01 1.22E+03 1.00
RA1 0.21 £ 0.14 0.03 8.08E+00 32 1.57E-09  skuxx [0.16, inf] 1.41E+00 7.74E+06 1.00
LmTVA 0.32 £ 0.13 0.02 1.34E+01 32 5.25E-15  *kikx [0.28, inf] 2.34E+00 1.27E+12 1.00
RmTVA 0.16 # 0.07  0.01 1.11E+01 26 1.21E-11  *k¥x [0.13, inf] 2.13E+00 7.53E+08 1.00
LpTVA 0.07 # 0.13  0.02 3.15E+00 32 1.76E-03  *x [0.03, inf] 5.50E-01 2.14E+01 0.92
RpTVA 0.04 % 0.08 0.02 2.66E+00 31 7.82E-03 *x* [0.01, inf] 4 50E-01 6.05E+00 0.80
LaTVA 0.27 £ 0.15 0.03 1.00E+01 30 2.30E-11 ks [0.23, inf] 1.80E+00 4.20E+08 1.00
RaTVA 0.11 + 0.10 0.02 5.26E+00 25 9.42E-06  *k%*x [0.07, inf] 1.03E+00 2.42E+03 1.00
Al 0.17 £ 0.15 0.02 8.80E+00 65 5.58E-13  *k¥x [0.14, inf] 1.08E+00 1.48E+10 1.00
mTVA 0.25 £ 0.14 0.02 1.38E+01 59 1.71E-20  sokxx [0.22, inf] 1.79E+00 2.85E+17 1.00
pTVA 0.06 £ 0.11 0.01 4.02E+00 64 T.84E-05  ***xx [0.03, inf] 5.00E-01 2.81E+02 0.99
aTVA 0.20 £ 0.156 0.02 9.63E+00 56 8.92E-14  ***x% [0.16, inf] 1.28E+00 8.76E+10 1.00
TVAs 0.16 £ 0.16 0.01 1.39E+01 181 8.43E-31 kkx* [0.14, inf] 1.03E+00 3.76E+27 1.00
s2 LAl 0.04 £ 0.11 0.02 2.16E+00 32 1.94E-02 =* [0.01, inf] 3.80E-01 2.83E+00 0.68
RA1 -0.01 £ 0.11 0.02 n/a n/a n/a n/a n/a n/a n/a n/a
LmTVA -0.02 £ 0.09 0.02 n/a n/a n/a n/a n/a n/a n/a n/a
RmTVA 0.03 £ 0.11 0.02 1.17E+00 21 1.27E-01 ns [-0.01, inf] 2.50E-01 8.20E-01 0.31
LpTvA -0.01 + 0.10 0.02 n/a n/a n/a n/a n/a n/a n/a n/a
RpTVA 0.04 # 0.10  0.03 1.38E+00 16  9.37E-02 ns [-0.01, inf] 3.30E-01 1.11E+00 0.37
LaTVA -0.05 + 0.12 0.02 n/a n/a n/a n/a n/a n/a n/a n/a
RaTVA 0.03 £ 0.12 0.03 1.18E+00 19 1.26E-01 ns [-0.01, inf] 2.60E-01 8.56E-01 0.31
Al 0.02 £ 0.11 0.01 1.19E+00 65 1.19E-01 ns [-0.01, inf] 1.50E-01 5.31E-01 0.32
mTVA 0.00 £ 0.10 0.02 5.00E-02 46 4.81E-01 ns [-0.02, inf] 1.00E-02 3.17E-01 0.06
pTVA 0.01 £ 0.10 0.02 5.10E-01 45 3.07E-01 ns [-0.02, inf] 7.00E-02 3.61E-01 0.13
aTVA -0.02 £ 0.12 0.02 n/a n/a n/a n/a n/a n/a n/a n/a
TVAs -0.00 £ 0.11 0.01 n/a n/a n/a n/a n/a n/a n/a n/a
83 LAl 0.04 # 0.08 0.01 2.89E+00 32  3.39E-03 *x [0.02, inf] 5.00E-01 1.21E+01 0.88
RA1 0.03 £ 0.13  0.02 1.48E+00 32  7.39E-02 ns [-0.00, inf] 2.60E-01 1.01E+00 0.42
LmTVA 0.04 £ 0.09 0.02 2.43E+00 28 1.10E-02 =* [0.01, inf] 4 50E-01 4.72E+00 0.76
RmTVA 0.07 £ 0.09 0.02 4.38E+00 28 T.48E-05  #*%xx [0.04, inf] 8.10E-01 3.64E+02 1.00
LpTVA 0.03 + 0.12 0.02 1.48E+00 28 7.45E-02 ns [-0.00, inf] 2.80E-01 1.06E+00 0.42
RpTVA 0.04 * 0.08 0.01 2.83E+00 35 3.87E-03 *x* [0.02, inf] 4.70E-01 1.06E+01 0.87
LaTVA 0.09 + 0.13 0.03 3.15E+00 23 2.24E-03 *x* [0.04, inf] 6.40E-01 1.91E+01 0.92
RaTVA 0.07 + 0.12 0.03 2.41E+00 17 1.38E-02 =* [0.02, inf] 5.70E-01 4.61E+00 0.75
Al 0.04 £ 0.11 0.01 2.80E+00 65 3.38E-03  *x* [0.01, inf] 3.40E-01 9.50E+00 0.87
mTVA  0.06 * 0.09 0.01 4,76E+00 57  6.83E-06 #*xx [0.04, inf] 6.30E-01 2.76E+03 1.00
pTVA  0.04 +# 0.10  0.01 2.92E+00 64  2,40E-03 *% [0.02, inf] 3.60E-01 1.29E+01 0.89
aTVA  0.08 # 0.13  0.02 4.00E+00 41 1.28E-04 *#*x* [0.05, inf] 6.20E-01 2.05E+02 0.99
TVAs 0.06 £ 0.11 0.01 6.62E+00 164 2.46E-10 ***xx [0.04, inf] 5.20E-01 3.49E+07 1.00
all LAl 0.07 £ 0.12 0.01 5.58E+00 98 1.0BE-07 sk [0.05, inf] 5.60E-01 1.21E+05 1.00
RA1 0.08 £ 0.16 0.02 4.82E+00 98 2.60E-06 *k%x [0.056, inf] 4.80E-01 5.85E+03 1.00
LmTVA 0.13 + 0.19 0.02 6.37E+00 86 4.4B5E-09  *k¥x [0.10, inf] 6.80E-01 2.55E+06 1.00
RmTVA 0.09 + 0.10 0.01 7.55E+00 77 3.72E-11 ok [0.07, inf] 8§.50E-01 2.55E+08 1.00
LpTvAa 0.03 * 0.12 0.01 2.66E+00 90 4 .59E-03 *x* [0.01, inf] 2.80E-01 6.39E+00 0.84
RpTVA 0.04 +# 0.09 0.01 4.01E+00 84  6.63E-05 #*xx [0.02, inf] 4,30E-01 3.00E+02 0.99
LaTVA 0.11 # 0.19  0.02 5.07E+00 83 1.20E-06  *¥%x [0.07, inf] 5.50E-01 1.27E+04 1.00
RaTVA 0.07 # 0.12  0.01 5.01E+00 63  2.34E-06 *kx* [0.05, inf] 6.30E-01 7.30E+03 1.00
Al 0.07 £ 0.14 0.01 7.25E+00 197 4.67E-12 **%xx [0.06, inf] 5.20E-01 1.54E+09 1.00
mTVA 0.11 £ 0.16 0.01 9.12E+00 164 1.30E-16 ***x [0.09, inf] 7.10E-01 4.40E+13 1.00
pTVA 0.04 £ 0.11 0.01 4 .49E+00 175 6.53E-06 kkikx [0.02, inf] 3.40E-01 2.00E+03 1.00
aTVA 0.09 £ 0.17 0.01 6.81E+00 147 1.14E-10 sokk [0.07, inf] 5.60E-01 7.58E+07 1.00
TVAs 0.08 £ 0.15 0.01 1.18E+01 488 9.58E-29 skkx [0.07, inf] 5.30E-01 2.93E+25 1.00

Supplementary Table S6: Assessing the significance of brain encoding performance with

LIN features. This table reports the significance of the brain encoding performance with LIN

features. We compared the distribution of Pearson's correlation coefficients to the chance level of

0.0 by conducting one-sample t-tests. Using a linear model, we calculated the correlation between

the voxels in the speaker activity maps and the predicted voxels from the LIN features. s.e.m. =

standard error of the mean. all = we combined the scores of all participants before computing the

test. Here are reported the results of the statistical tests, t-value, degree of freedom (dof), p-value,

degree of significance (unc. sig.), 95% confidence interval (CI95%), effect size (Cohen-d), Bayes

Factor (BF10), and statistical power (power) for each participant and ROL.
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Subject ROI Correlation s.e.m. T dof p-val unc. sig. CI95% cohen-d BF10 power
s1 LAl 0.03 £ 0.11 0.02 1.46E+00 32 7.71E-02 ns [-0.00, inf] 2.50E-01 9.75E-01 0.41
RAl 0.13 £ 0.09 0.02 8.06E+00 32 1.67E-09  skxx [0.10, inf] 1.40E+00 7.28E+06 1.00
LmTVA 0.25 * 0.16 0.03 8.95E+00 32 1.58E-10  *#ux [0.20, inf] 1.56E+00 6.77E+07 1.00
RmTVA 0.08 # 0.09  0.02 4.89E+00 26  2.24E-05 *k%x [0.05, inf] 9.40E-01 1.09E+03 1.00
LpTVA -0.03 = 0.12 0.02 n/a n/a n/a n/a n/a n/a n/a n/a
RpTVA -0.06 + 0.11 0.02 n/a n/a n/a n/a n/a n/a n/a n/a
LaTVA 0.15 * 0.16 0.03 5.34E+00 30 4.43E-06  dkkx [0.10, inf] 9.60E-01 4.70E+03 1.00
RaTVA 0.03 = 0.11 0.02 1.55E+00 25 6.70E-02 ns [-0.00, inf] 3.00E-01 1.19E+00 0.44
Al 0.08 £ 0.11 0.01 5.65E+00 65 1.93E-07  kxk [0.06, inf] 7.00E-01 7.57E+04 1.00
mTVA 0.17 £ 0.15 0.02 8.69E+00 59 1.91E-12 k%% [0.14, inf] 1.12E+00 4.57E+09 1.00
pTVA -0.04 £ 0.12 0.02 n/a n/a n/a n/a n/a n/a n/a n/a
aTVA 0.10 = 0.15 0.02 4.94E+00 56 3.68E-06  k¥x [0.07, inf] 6.50E-01 4.93E+03 1.00
TVAs 0.07 £ 0.17 0.01 5.79E+00 181 1.B52E-08 ***x [0.05, inf] 4.30E-01 6.37E+05 1.00
s2 LAl 0.04 £ 0.14 0.02 1.51E+00 32 7.01E-02 ns [-0.00, inf] 2.60E-01 1.05E+00 0.43
RA1 0.01 £ 0.12 0.02 3.60E-01 32 3.59E-01 ns [-0.03, inf] 6.00E-02 3.96E-01 0.10
LmTVA 0.04 * 0.07 0.01 3.07E+00 24 2.61E-03 *x% [0.02, inf] 6.10E-01 1.66E+01 0.91
RmTVA 0.08 * 0.10 0.02 3.95E+00 21 3.64E-04 ek [0.05, inf] 8.40E-01 ©9.46E+01 0.99
LpTvA -0.01 + 0.10 0.02 n/a n/a n/a n/a n/a n/a n/a n/a
RpTVA 0.02 # 0.13  0.03 7.30E-01 16  2.39E-01 ns [-0.03, inf] 1.80E-01 6.29E-01 0.17
LaTVA -0.01 + 0.08 0.02 n/a n/a n/a n/a n/a n/a n/a n/a
RaTVA 0.02 += 0.08 0.02 1.00E+00 19 1.64E-01 ns [-0.01, inf] 2.20E-01 7.26E-01 0.25
Al 0.02 £ 0.13 0.02 1.38E+00 65 §.61E-02 ns [-0.00, inf] 1.70E-01 6.66E-01 0.39
mTVA 0.06 £ 0.09 0.01 4.92E+00 46 5.72E-06  *%xx* [0.04, inf] 7.20E-01 3.43E+03 1.00
pTVA  -0.00 * 0.11 0.02 n/a n/a n/a n/a n/a n/a n/a n/a
aTVA 0.00 £ 0.08 0.01 4.10E-01 48 3.43E-01 ns [-0.02, inf] 6.00E-02 3.36E-01 0.11
TVAs 0.02 £ 0.10 0.01 2.65E+00 141 4.46E-03 *x* [0.01, inf] 2.20E-01 5.41E+00 0.84
83 LAl 0.01 £ 0.09 0.02 3.60E-01 32 3.66E-01 s [-0.02, inf] 6.00E-02 3.94E-01 0.10
RA1 0.03 £ 0.11  0.02 1.62E+00 32 5.78E-02 ns [-0.00, inf] 2.80E-01 1.21E+00 0.48
LmTVA 0.05 # 0.14  0.03 2.03E+00 28  2.61E-02 * [0.01, inf] 3.80E-01 2.34E+00 0.63
RmTVA 0.09 + 0.08 0.02 5.64E+00 28 2.41E-06  %k#¥x [0.06, inf] 1.05E+00 8.29E+03 1.00
LpTVA 0.00 * 0.10 0.02 2.20E-01 28 4.12E-01 ns [-0.03, inf] 4.00E-02 4.04E-01 0.08
RpTVA 0.01 = 0.11 0.02 4.50E-01 35 3.30E-01 ns [-0.02, inf] 7.00E-02 3.93E-01 0.11
LaTVA 0.04 + 0.12 0.03 1.60E+00 23 6.16E-02 ns [-0.00, inf] 3.30E-01 1.31E+00 0.46
RaTVA 0.11 * 0.12 0.03 3.65E+00 17 9.96E-04  **x [0.06, inf] 8.60E-01 4.13E+01 0.97
Al 0.02 £ 0.10 0.01 1.49E+00 65 7.09E-02 ns [-0.00, inf] 1.80E-01 7.69E-01 0.43
mIVA  0.07 + 0.11  0.02 4.68E+00 57  9.11E-06 *kk* [0.05, inf] 6.10E-01 2.12E+03 1.00
pTVA  0.01 #£ 0.11  0.01 4.90E-01 64  3.14E-01 ns [-0.02, inf] 6.00E-02 3.05E-01 0.12
aTVA  0.07 £ 0.13  0.02 3.53E+00 41  5.14E-04 **x [0.04, inf] 5.50E-01 5.87E+01 0.97
TVAs 0.05 £ 0.12 0.01 4.87E+00 164 1.32E-06 kkx* [0.03, inf] 3.80E-01 9.31E+03 1.00
all LAl 0.02 £ 0.11 0.01 2.04E+00 98 2.19E-02 =* [0.00, inf] 2.10E-01 1.62E+00 0.65
RA1 0.06 £ 0.12 0.01 4.67E+00 98 4.87E-06  *%xx [0.04, inf] 4.70E-01 3.24E+03 1.00
LmTVA 0.12 + 0.16 0.02 7.09E+00 86 1.77E-10 k%% [0.09, inf] 7.60E-01 5.59E+07 1.00
RmTVA 0.09 * 0.09 0.01 8.47E+00 77 6.43E-13  *k¥x [0.07, inf] 9.60E-01 1.27E+10 1.00
LpTvA -0.01 #+ 0.11 0.01 n/a n/a n/a n/a n/a n/a n/a n/a
RpTVA -0.02 + 0.12 0.01 n/a n/a n/a n/a n/a n/a n/a n/a
LaTVA 0.07 + 0.14  0.02 4.23E+00 83  2.96E-05 #kxx [0.04, inf] 4.60E-01 6.36E+02 0.99
RaTVA 0.05 # 0.11 0.01 3.57E+00 63 3.50E-04 k% [0.03, inf] 4.50E-01 7.23E+01 0.97
Al 0.04 £ 0.12 0.01 4.76E+00 197 1.89E-06  *kkx* [0.03, inf] 3.40E-01 6.19E+03 1.00
mTVA 0.11 £ 0.13 0.01 1.01E+01 164 2.66E-19 *k*x* [0.09, inf] 7.90E-01 1.88E+16 1.00
pTVA  -0.01 * 0.12 0.01 n/a n/a n/a n/a n/a n/a n/a n/a
aTVA 0.06 £ 0.13 0.01 5.52E+00 147 7.61E-08 #x%x [0.04, inf] 4.50E-01 1.46E+05 1.00
TVAs 0.06 £ 0.14 0.01 7.88E+00 488 1.05E-14 *wkx [0.04, inf] 3.60E-01 4.33E+11 1.00

Supplementary Table S7: Assessing the significance of brain encoding performance with

VLS features. This table reports the significance of the brain encoding performance with VLS

features. We compared the distribution of Pearson's correlation coefficients to the chance level of

0.0 by conducting one-sample t-tests. Using a linear model, we calculated the correlation between

the voxels in the speaker activity maps and the predicted voxels from the VLS features. s.e.m. =

standard error of the mean. all = we combined the scores of all participants before computing the

test. Here are reported the results of the statistical tests, t-value, degree of freedom (dof), p-value,

degree of significance (unc. sig.), 95% confidence interval (CI95%), effect size (Cohen-d), Bayes

Factor (BF10), and statistical power (power) for each participant and ROL.
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Appendix

Correlation Correlation s.e.m. sS.e.m. T
Subject ROI VLS LIN VLS LIN VLS vs LIN dof p-val unc. sig. CI95% cohen-d BF10 power
sl LA1 0.03 + 0.11 0.13 + 0.15 0.02 0.03 -4 .43E+00 32 1.03E-04 k% [-0.14, -0.05] 7.30E-01 2.47E+02 0.98
RA1 0.13 + 0.09 0.21 £ 0.14 0.02 0.03 -3.7BE+00 32 T7.0TE-Q4 *x# [-0.11, -0.03] 6.00E-01 4.39E+01 0.92
LmTVA 0.25 £ 0.16 0.32 £ 0.13 0.03 0.02 -3.80E+00 32 4.61E-04 **# [-0.11, -0.03] 4.80E-01 6.43E+01 0.76
RmTVA 0.08 + 0.09 0.16 £ 0.07 0.02 0.01 -5.48E+00 26 9.54E-08 ***x [-0.10, -0.05] 9.20E-01 2.24E+03 1.00
LpTVA -0.03 + 0.12 0.07 + 0.13 0.02 0.02 -6.49E+00 32 2.6BE-07 k%% [-0.13, -0.07] 7.60E-01 §5.95E+04 0.99
RpTVA -0.06 + 0.11 0.04 £ 0.08  0.02 0.02 -5.09E+00 31 1.67E-05 *x*# [-0.14, -0.06] 1.01E+00 1.31E+03 1.00
LaTVA 0.15 £ 0.16 0.27 £ 0.15 0.03 0.03 -7 .34E+00 30 3.5BE-08 k#** [-0.15, -0.09] 7.70E-01 3.95E+05 0.99
RaTVA 0.03 # 0.11 0.11 + 0.10 0.02 0.02 -4 . 24E+00 25  2.65E-04 #x# [-0.11, -0.04] 7.10E-01 1.11E+02 0.93
Al 0.08 + 0.11 0.17 # 0.15 0.01 0.02 -5.81E+00 65 2.02E-07 #k&x [-0.12, -0.06] €.30E-01 6.96E+04 1.00
mTVA  0.17 +£ 0.15  0.25 £ 0.14 0.02 0.02 -6.24E+00 59 5.16E-08 *¥#x [-0.10, -0.05] b5.00E-01 2.58E+05 0.97
pTVA -0.04 £ 0.12 0.06 £ 0.11 0.02 0.01 -8.06E+00 64 2.58E-11 kk** [-0.12, -0.08] 8.60E-01 3.62E+08 1.00
aTVA 0.10 + 0.15 0.20 £ 0.15 0.02 0.02 -8.11E+00 56 5.09E-11 &% [-0.13, -0.08] 6.60E-01 1.91E+08 1.00
TVAs 0.07  0.17 0.16 + 0.16 0.01 0.01 -1.29E+01 181 1.8BE-27 ***% [-0.11, -0.08] ©5.60E-01 1.89E+24 1.00
52 LA1 0.04 £ 0.14 0.04 £ 0.11 0.02 0.02 -2.70E-01 32 T7.93E-01 ns [-0.03, 0.02] 3.00E-02 1.92E-01 0.05
RA1 0.01 + 0.12 -0.01 £ 0.11 0.02 0.02 6.20E-01 32 5.38E-01 ns [-0.03, 0.06] 1.30E-01 2.23E-01 0.11
LmTVA 0.04 + 0.07 -0.02 £ 0.09 0.01 0.02 3.52E+00 24 1.77E-03 *x [0.03, 0.11] 8.10E-01 2.11E+01 0.97
RmTVA 0.08 # 0.10 0.03 £ 0.11  0.02 0.02 3.T4E+00 21 1.22E-03 *x [0.02, 0.09] 5.20E-01 3.01E+01 0.65
LpTVA -0.01 £ 0.10 -0.01 *# 0.10 0.02 0.02 -4.20E-01 28 6.78E-01 ns [-0.04, 0.02] 6.00E-02 2.14E-01 0.06
RpTVA 0.02 £ 0.13  0.04 £ 0.10 0.03 0.03 -4.10E-01 16 6.88E-01 ns [-0.07, 0.05] 1.00E-01 2.68E-01 0.07
LaTVA -0.01 # 0.08 -0.05 # 0.12 0.02 0.02 2.78E+00 28 9.51E-03 *x [0.01, 0.08] 4.70E-01 4.75E+00 0.68
RaTVA 0.02 + 0.08 0.03 £ 0.12  0.02 0.03 -4.30E-01 19 6.69E-01 ns [-0.07, 0.05] 1.20E-01 2.53E-01 0.08
Al 0.02 £ 0.13 0.02 £ 0.11 0.02 0.01 4.00E-01 65 6.87E-01 ns [-0.02, 0.03] 5.00E-02 1.46E-01 0.07
mTVA 0.06 + 0.09 0.00 £ 0.10 0.01 0.02 5.08E+00 46 T.24E-06 #k#% [0.04, 0.09] 6.40E-01 2.82E+03 0.99
pTVA -0.00 # 0.11 0.01 # 0.10 0.02 0.02 -5.90E-01 45 5.57E-01 ns [-0.04, 0.02] 8.00E-02 1.89E-01 0.08
aTVA 0.00 + 0.08 -0.02 £ 0.12 0.01 0.02 1.50E+00 48 1.40E-01 ns [-0.01, 0.06] 2.20E-01 4.43E-01 0.33
TVAs 0.02 * 0.10 -0.00 £ 0.11 0.01 0.01 3.06E+00 141  2.64E-03 ** [0.01, 0.04] 2.40E-01 8.00E+00 0.83
s3 LA1 0.01 + 0.09 0.04 + 0.08 0.02 0.01 -2.32E+00 32 2.68E-02 % [-0.07, -0.00] 4.20E-01 1.91E+00 0.64
RAL 0.03  0.11 0.03 £ 0.13 0.02 0.02 -1.00E-01 32 9.17E-01 ns [-0.04, 0.03] 1.00E-02 1.87E-01 0.05
LmTVA 0.05 %+ 0.14 0.04 £ 0.09 0.03 0.02 T.20E-01 28 4.79E-01 ns [-0.02, 0.04] 8.00E-02 2.50E-01 0.07
RmTVA 0.09 # 0.08 0.07 £ 0.09 0.02 0.02 9.30E-01 28 3.59E-01 ns [-0.02, 0.05] 1.80E-01 2.94E-01 0.16
LpTVA 0.00 + 0.10 0.03 + 0.12 0.02 0.02 -1.82E+00 28 7.91E-02 ns [-0.06, 0.00] 2.50E-01 8.47E-01 0.26
RpTVA 0.01 # 0.11  0.04 £ 0.08 0.02 0.01 -2.26E+00 35 3.03E-02 = [-0.06, -0.00] 3.10E-01 1.67E+00 0.44
LaTVA 0.04 £ 0.12 0.09 £ 0.13 0.03 0.03 -3.7T1E+00 23 1.15E-03 ** [-0.07, -0.02] 3.70E-01 3.10E+01 0.40
RaTVA 0.11 # 0.12  0.07 £ 0.12  0.03 0.03 2.79E+00 17 1.25E-02 = [0.01, 0.07] 3.00E-01 4.41E+00 0.23
Al 0.02 # 0.10 0.04 + 0.11 0.01 0.01 -1.60E+00 65 1.14E-01 ns [-0.04, 0.00] 1.80E-01 4.55E-01 0.29
mTVA 0.07 + 0.11 0.06 £ 0.09 0.02 0.01 1.18E+00 67 2.40E-01 ns [-0.01, 0.03] 1.20E-01 2.79E-01 0.156
pTVA 0.01 + 0.11 0.04 £ 0.10 0.01 0.01 -2.92E+00 64 4.88E-03 ** [-0.05, -0.01] 2.80E-01 6.36E+00 0.61
aTVA 0.07 + 0.13 0.08 £ 0.13 0.02 0.02 -9.50E-01 41 3.49E-01 ns [-0.03, 0.01] 8.00E-02 2.54E-01 0.08
TVAs 0.05 + 0.12 0.06 £ 0.11 0.01 0.01 -1.54E+00 164 1.25E-01 ns [-0.02, 0.00] 9.00E-02 2.77E-01 0.20
all LAL 0.02 + 0.11 0.07 £ 0.12 0.01 0.01 -4 .25E+00 98 4.92E-05 %% [-0.07, -0.02] 3.80E-01 3.57E+02 0.97
RAL 0.06 + 0,12 0.08 + 0.16 0.01 0.02 -1.64E+00 98 1.04E-01 ns [-0.04, 0.00] 1.40E-01 4.06E-01 0.29
LmTVA 0.12 + 0.16 0.13 + 0.19 0.02 0.02 -4.10E-01 86 6.80E-01 ns [-0.03, 0.02] 3.00E-02 1.29E-01 0.06
RmTVA 0.09 & 0.09 0.09 £ 0.10 0.01 0.01 -4.00E-01 77 6.87E-01 ns [-0.03, 0.02] 4.00E-02 1.35E-01 0.07
LpTVA -0.01 £ 0.11 0.03 + 0.12 0.01 0.01 -4 .81E+00 90 5.96E-06 e** [-0.07, -0.03] 4.00E-01 2.64E+03 0.96
RpTVA -0.02 = 0.12 0.04 £ 0.09 0.01 0.01 -4.60E+00 84 1.51E-05 #*#x [-0.08, -0.03] 5.10E-01 1.13E+03 1.00
LaTVA 0.07 + 0.14 0.11 + 0.19 0.02 0.02 -3.42E+00 83 9.61E-04 k% [-0.07, -0.02] 2.40E-01 2.46E+01 0.59
RaTVA 0.05 + 0.11 0.07 £ 0.12 0.01 0.01 -1.81E+00 63 7.58E-02 ns [-0.05, 0.00] 2.10E-01 6.31E-01 0.37
Al 0.04 + 0.12 0.07 £ 0.14 0.01 0.01 -4 .02E+00 197 8.19E-05 ##** [-0.05, -0.02] 2.50E-01 1.70E+02 0.94
mTVA  0.11 # 0.13  0.11 £ 0.16  0.01 0.01 -5.80E-01 164 5.64E-01 ns [-0.02, 0.01] 3.00E-02 1.02E-01 0.07
pTVA -0.01 + 0.12 0.04 + 0.11 0.01 0.01 -6.65E+00 175 3.68E-10 *k*% [-0.06, -0.04] 4.50E-01 2.27E+07 1.00
aTVA  0.06 + 0.13  0.09 + 0.17 0.0l 0.01 -3.79E+00 147 2.23E-04 x*xx [-0.05, -0.02] 2.30E-01 7.55E+01 0.78
TVAs 0.06 + 0.14 0.08 £ 0.15 0.01 0.01 -6.28E+00 488 T7.44E-10 kkk* [-0.04, -0.02] 2.10E-01 7.90E+06 1.00

Supplementary Table S8: Comparing the performance of brain encoding models. This table

reports the significance of the VLS-LIN difference in the brain encoding performance. We

conducted paired t-tests between the brain encoding model's scores trained with the VLS features

to predict the speaker activity maps' voxels and those trained with the LIN features. s.em. =

standard error of the mean. all = we combined the scores of all participants before computing the

test. Here are reported the results of the statistical tests, t-value, degree of freedom (dof), p-value,

degree of significance (unc. sig.), 95% confidence interval (CI95%), effect size (Cohen-d), Bayes

Factor (BF10), and statistical power (power) for each participant and ROL.
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Correlation Correlation s.e.m. s.e.m. T

Subject Model ROI ROT ROT Al ROI vs A1 dof p-val unc. sig. CI95% cohen-d BF10 power
sl LIN mTVA 0.26 £ 0.14 0.17 = 0.16 0.02 0.02 3.070000 124 2.62E-03 #x [0.03, 0.13] 5.60E-01 1.25E+01 0.86
pTVA 0.06 = 0.11 0.17 £ 0.15 0.01 0.02 -4.710000 129 6.34E-06 ##x% [-0.16, -0.06] 8.20E-01 2.60E+03 1.00

aTVA 0.20 £ 0.15 0.17 £ 0.156 0.02 0.02 1.150000 121 2.53E-01 ns [-0.02, 0.09] 2.10E-01 3.50E-01 0.21

TVAs 0.16 = 0.16 0.17 £ 0.15 0.01 0.02 -0.130000 246 8.93E-01 ns [-0.05, 0.04] 2.00E-02 1.57E-01 0.05

VLS mIVA 0.17 £ 0.15 0.08 £ 0.11 0.02 0.01 3.860000 124 1.81E-04 #%x* [0.05, 0.14] 6.90E-01 1.28E+02 0.97

pTVA -0.04 + 0.12 0.08 = 0.11 0.02 0.01 -6.020000 129 1.68E-08 #*xx [-0.17, -0.08] 1.05E+00 6.23E+05 1.00

aTVA 0.10 £ 0.15 0.08 £ 0.11 0.02 0.01 0.750000 121 4.53E-01 ns [-0.03, 0.07] 1.40E-01 2.49E-01 0.12

TVAs  0.07 # 0.17 0.08 £ 0.11 0.01 0.01 -0.350000 246 7.25E-01 ns [-0.05, 0.04] 5.00E-02 1.65E-01 0.06

52 LIN mIVA 0.00 £ 0.10 0.02 £ 0.11 0.02 0.01 -0.760000 111 4.48E-01 ns [-0.06, 0.03] 1.50E-01 2.62E-01 0.12
pTVA 0.01 # 0.10 0.02 £ 0.11 0.02 0.01 -0.430000 110 6.70E-01 ns [-0.05, 0.03] 8.00E-02 2.21E-01 0.07

aTVh -0.02 = 0.12 0.02 = 0.11 0.02 0.01 -1.580000 113 1.16E-01 ns [-0.08, 0.01]  3.00E-01 6.15E-01 0.35

TVvAs -0.00 + 0.11 0.02 £ 0.11 0.01 0.01 -1.220000 206 2.22E-01 ns [-0.05, 0.01) 1.80E-01 3.24E-01 0.23

VLS mTVA 0.06 £ 0.09 0.02 £ 0.13 0.01 0.02 1.810000 111 7.29E-02 ns [-0.00, 0.08] 3.50E-01 8.70E-01 0.43

pIVA  -0.00 # 0.11 0.02 £ 0.13 0.02 0.02 -0.960000 110 3.41E-01 ns [-0.07, 0.02] 1.80E-01 3.06E-01 0.16

aTVA 0.00 = 0.08 0.02 £ 0.13 0.01 0.02 -0.810000 113 4.20E-01 ns [-0.06, 0.03] 1.50E-01 2.69E-01 0.13

TVAs 0.02 £ 0.10 0.02 £ 0.13 0.01 0.02 -0.020000 206 9.87E-01 ns [-0.03, 0.03] 0.00E+00 1.62E-01 0.05

53 LIN mIVA 0.06 £ 0.09 0.04 £ 0.11 0.01 0.01 1.170000 122 2.43E-01 ns [-0.01, 0.08] 2.10E-01 3.57E-01 0.21
pTVA 0.04 # 0.10 0.04 £ 0.11 0.01 0.01 -0.040000 129 9.71E-01 ns [-0.04, 0.03] 1.00E-02 1.87E-01 0.056

aTVA 0.08 = 0.13 0.04 £ 0.11 0.02 0.01 1.940000 106 5.55E-02 ns [-0.00, 0.09] 3.80E-01 1.09E+0Q0 0.48

TVAs 0.06 = 0.11 0.04 £ 0.11 0.01 0.01 1.190000 229 2.3B5E-01 ns [-0.01, 0.05] 1.70E-01 3.06E-01 0.22

VLS mTVA 0.07 £ 0.11 0.02 £ 0.10 0.02 0.01 2.700000 122 7.97E-03 =## [0.01, 0.09] 4.90E-01 4.89E+00 0.76

pIVA  0.01 + 0.11 0.02 £ 0.10 0.01 0.01 -0.650000 129 5.16E-01 ns [-0.05, 0.02] 1.10E-01 2.27E-01 0.10

aTVA 0.07 = 0.13 0.02 £ 0.10 0.02 0.01 2.340000 106 2.11E-02 = [0.01, 0.10] 4.60E-01 2.32E+00 0.864

TVAs 0.05 £ 0.12 0.02 £ 0.10 0.01 0.01 1.610000 229 1.08E-01 ns [-0.01, 0.08) 2.30E-01 5.30E-01 0.36

all LIN mTVA 0.11 *= 0.16 0.07 £ 0.14 0.01 0.01 2.360000 361 1.86E-02 = [0.01, 0.07] 2.50E-01 1.69E+00 0.65
pIVA 0.04 £ 0.11 0.07 £ 0.14 0.01 0.01 -2.850000 372 4.57E-03 *x [-0.06, -0.01] 3.00E-01 5.59E+00 0.81

aTVA 0.08 # 0.17 0.07 £ 0.14 0.01 0.01 1.200000 344 2.29E-01 ns [-0.01, 0.05] 1.30E-01 2.40E-01 0.22

TVAs 0.08 £ 0.15 0.07 £ 0.14 0.01 0.01 0.410000 685 6.79E-01 ns [-0.02, 0.03] 3.00E-02 1.02E-01 0.07

VLS mTVA 0.11 £ 0.13 0.04 £ 0.12 0.01 0.01 4.910000 361 1.40E-06 #%*x [0.04, 0.09] 5.20E-01 9.29E+03 1.00

pTVA -0.01 = 0.12 0.04 * 0.12 0.01 0.01 -4.450000 372 1.13E-05 ##*x [-0.08, -0.03] 4.60E-01 1.31E+03 0.99

aTVh 0.06 = 0.13 0.04 £ 0.12 0.01 0.01 1.410000 344 1.58E-01 ns [-0.01, 0.05]) 1.60E-01 3.13E-01 0.29

TVAs 0.05 = 0.14 0.04 £ 0.12 0.01 0.01 0.750000 685 4.56E-01 ns [-0.01, 0.03) 6.00E-02 1.23E-01 0.12

Supplementary Table S9: Comparing the performance of brain encoding ROIs. This table

reports the significance of the A1-TVAs difference in the brain encoding performance. We

conducted two-sample t-tests between the brain encoding model's scores trained to predict A1l

and those trained to predict temporal voice areas. s.e.m. = standard error of the mean. all = we

combined the scores of all participants before computing the test. Here are reported the results of

the statistical tests, t-value, degree of freedom (dof), p-value, degree of significance (unc. sig.),

95% confidence interval (CI95%), effect size (Cohen-d), Bayes Factor (BF10), and statistical

power (power) for each participant and model.
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Subject Model ROI Correlation p-unc p-corr corr. sig.
sl LIN LAl 0.07 1.39E-02 1.79E-01 ns
RA1 0.08 4.20E-03 1.04E-01 nns
LmTVA 0.08 1.92E-02 3.80E-01 nmns
RmTVA 0.06 7.14E-02 5.51E-01 ns
LpTVA 0.04 2.05E-01 6.53E-01 ns
RpTVA 0.03 3.16E-01 7.66E-01 ns
LaTvA 0.12 1.40E-03 b5.04E-01 ms
RaTVA 0.07 4.26E-02 6.61E-01 ns
VLS LAl 0.09 6.52E-02 6.53E-02 ns
RA1 0.08 7.47E-02 7.49E-02 ns
LmTVA 0.11 1.28E-01 1.28E-01 ns
RmTVA 0.10 1.39E-01 1.3%E-01 ns
LpTVA 0.09 1.94E-01 1.94E-01 ns
RpTVA 0.11 1.18E-01 1.18E-01 ms
LaTVA 0.19 4.17E-02 4.17E-02 *
RaTVA 0.13 1.30E-01 1.30E-01 mns
s2 LIN LAl -0.01 5.03E-01 6.27E-01 ns
RA1 -0.00 1.87E-01 4.95E-01 ms
LmTVA 0.01 4.72E-01 7.19E-01 ns
RmTVA -0.01 7.98E-01 9.03E-01 ns
LpTVA -0.01 7.21E-01 8.13E-01 nmns
RpTVA 0.00 4.07E-01 6.00E-01 ns
LaTVA -0.02 8.62E-01 9.22E-01 ns
RaTVA -0.02 7.69E-01 T7.92E-01 ns
VLS LA1 0.02 2.36E-01 2.52E-01 ns
RA1 0.03 1.12E-01 1.12E-01 ns
LmTVA 0.06 2.29E-01 2.29E-01 s
RmTVA -0.01 8.59E-01 9.26E-01 ns
LpTvA -0.02 8.89E-01 9.85E-01 mns
RpTVA 0.01 4.22E-01 4.54E-01 ns
LaTVA 0.03 3.37E-01 3.38E-01 nns
RaTVA 0.00 2.76E-01 3.23E-01 nns
s3 LIN LAl -0.00 5.71E-01 6.66E-01 ns
RA1 0.05 3.00E-04 5.00E-02 =
LmTVA 0.05 4.10E-03 2.04E-01 ns
RmTVA 0.05 2.20E-03 1.16E-01 ns
LpTVA 0.05 5.80E-03 1.73E-01 ns
RpTVA 0.04 2.66E-02 4.60E-01 ns
LaTvA 0.12 0.00E+00 7.70E-02 mns
RaTVA 0.03 3.35E-02 3.26E-01 ns
VLS LAl 0.02 1.78E-01 2.10E-01 ns
RA1 0.07 1.42E-02 1.42E-02 =
LmTVA 0.11 7.20E-03 7.20E-03 *x*
RmTVA 0.05 1.23E-01 1.23E-01 ns
LpTVA 0.08 5.82E-02 5.82E-02 s
RpTVA 0.13 1.56E-02 1.56E-02 =
LaTVA 0.23 1.00E-04 1.00E-04 s
RaTVA 0.04 2.34E-01 2.34E-01 s
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Supplementary Table S10: Assessing the significance of the RSA brain-model
correlation. This table reports the significance of the RSA brain-model performance. The brain-
model correlation coefficients were computed between the ranked representational dissimilarity
matrices. The correlation was compared to 0 using a ‘maximum statistics’ approach in which they
are compared to a distribution of correlation coefficients drawn from a large number of random
permutations of the model RDMs’ rows and columns while controlling for the number of
comparisons performed (cf. Methods) (Maris & Oostenveld, 2007), for each participant, model
and ROL.
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Correlation Correlation

Subject ROI VLS LIN p-corr p-unc corr. sig.
s1 LAl 0.09 0.07 4.45E-01 2.99E-01 ns
RA1 0.08 0.08 8.30E-01 b5.0BE-01 ns
LmTVA 0.11 0.08 4 .63E-01 4.51E-01 ns
RmTVA 0.10 0.06 3.98E-01 3.97E-01 ns
LpTVA 0.09 0.04 2.86E-01 2.84E-01 nms
RpTVA 0.11 0.03 1.11E-01 1.11E-01 s
LaTVA 0.19 0.12 3.94E-01 3.94E-01 ns
RaTVA 0.13 0.07 3.48E-01 3.48E-01 ns
s2 LAl 0.02 -0.01 3.25E-01 1.65E-01 s
RA1 0.03 -0.00 1.58E-01 1.41E-01 ns
LmTVA 0.06 0.01 1.78E-01 1.72E-01 ns
RmTVA -0.01 -0.01 1.00E+00 8.15E-01 ns
LpTVA -0.02 -0.01 1.00E+00 8.72E-01 nmns
RpTVA 0.01 0.00 7.13E-01 4.47E-01 ns
LaTVA 0.03 -0.02 1.20E-01 1.19E-01 s
RaTVA 0.00 -0.02 3.94E-01 1.13E-01 s
s3 LAl 0.02 -0.00 3.22E-01 1.05E-01 ns
RA1 0.07 0.05 4.83E-01 3.22E-01 ns
LmTVA 0.11 0.05 6.61E-02 6.25E-02 ns
RmTVA 0.05 0.05 1.00E+00 5.38E-01 ns
LpTVA 0.08 0.05 4.30E-01 3.08E-01 ns
RpTVA 0.13 0.04 3.66E-02 3.66E-02
LaTVA 0.23 0.12 1.75E-02 1.75E-02
RaTVA 0.04 0.03 7.67E-01 6.08E-01 ns

Supplementary Table S11: Comparing the performance of the RSA models. This table reports
the significance of the RSA brain-model difference. We compared the correlation coefficients
between brain RDM and VLS RDM with those from the brain RDM and LIN RDM within
participants and hemispheres using one-tailed tests, based on the a priori hypothesis that the VLS

models would exhibit greater brain-model correlations than the LIN models (cf. Methods).
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Model ROI

LIN LAl
RA1
LmTVA
RmTVA
LpTVA
RpTVA
LaTVA
RaTVA
Al
mTVA
pTVA
aTVA
TVAs

VLS LAl
RA1
LmTVA
RmTVA
LpTVA
RpTVA
LaTVA
RaTVA
Al
mTVA
pTVA
aTVA
TVAs

Accuracy (%)
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44,
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.51
.46
.00
.28
.00
.28
.00
.00
.69

81

.88
.00
.28
.46
.46
.00
.00
.00
.00
.46
.28
.34
.89
.44
.60
.76

.m.

T

n/a
1.83E+00
n/a
4.10E+01
4.59E+03
9.90E+01
n/a
n/a
n/a
8.00E-02
2.51E+01
n/a
4. 35E+00
2.62E+01
2.26E+01
1.53E+03
n/a
4.59E+03
3.06E+03
1.83E+00
n/a
3.22E+01
n/a
3.12E+01
n/a
4, 97E+00

dof

n/a
19
n/a
19
19
19
n/a
n/a
n/a
39
39
n/a
119

n/a

119

p-val

n/a
4.14E-02
n/a
2.61E-20
3.32E-59
1.51E-27
n/a
n/a
n/a
4 .70E-01
5.18E-26
n/a
1.47E-05
1.08E-16
1.73E-15
3.86E-50
n/a
3.32E-59
7.36E-56
4.14E-02
n/a
4.92E-30
n/a
1.65E-29
n/a
1.14E-06

unc.

n/a

n/a
*kA K
*k Ak
Hokkk
n/a
n/a
n/a
ns

Hokok ok
n/a
*xk K
Hok kK
*okok ok
*ok ok ok
n/a
*ok kK
*ok Ak

n/a
dokok ok
n/a
ook ok ok
n/a
Hokkk

sig.

CI95%

n/a

[50.

n/a

[60.
[66.
.02,

[77
n/a
n/a
n/a

[47

n/a

[63.
[61.
[59.
[55.

n/a

[66.
[61.
[50.

n/a

[60.

n/a

[63.

n/a

[52.

05,

91,
66,

.09,
[70.

60,
44,
16,
49,
55,
66,
10,
05,
53,
14,

53,

inf]

inf]
inf]
inf]

inf]
inf]

inf]
inf]
inf]
inf]
inf]
inf]
inf]
inf]
inf]

inf]

cohen-d

n/a
4.10E-01
n/a
9. 17E+00
1.03E+03
2.21E+01
n/a
n/a
n/a
1.00E-02
3.98E+00
n/a
4.00E-01
5.87E+00
5.05E+00
3.42E+02
n/a
1.03E+03
6.85E+02
4.10E-01
n/a
5.10E+00
n/a
4.94E+00
n/a
4.50E-01

BF10

n/a
1.89E+00
n/a
1.04E+17
6.88E+33
7.38E+23
n/a
n/a
n/a
3.42E-01
5.89E+22
n/a
1.08E+03
3.93E+13
2.88E+12
4 .95E+33
n/a
6.88E+33
6.53E+33
1.89E+00
n/a
4 .78E+26
n/a
1.47TE+26
n/a
1.20E+04

power

n/a
0.55
n/a
1.00
1.00
1.00
n/a
n/a
n/a
0.06
1.00
n/a
1.00
1.00
1.00
1.00
n/a
1.00
1.00
0.55
n/a
1.00
n/a
1.00
n/a
1.00

Supplementary Table S12: Assessing the significance of speaker gender decoding

performance using VLS and LIN models based on voxel activity. This table reports the

significance of the speaker's gender decoding performance. Linear classifiers were pre-trained to

detect speaker gender (2 classes) from either the VLS or the LIN models. The speaker gender of

the 18 Test Stimuli (3 participants x 6 stimuli per participant) was classified using either the VLS

coordinates, or the LIN features with these classifiers. We used one-sample t-tests to compare the

mean of the accuracy distribution across 20 random classifier initializations (20 classifiers trained

with a different initialization seed) with a chance level of 50%. s.e.m. = standard error of the mean.

Here are reported the results of the statistical tests, t-value, degree of freedom (dof), p-value,

degree of significance (unc. sig.), 95% confidence interval (C195%), effect size (Cohen-d), Bayes

Factor (BF10), and statistical power (power) for each model and ROL.
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Model ROI

LIN LAl
RA1
LmTVA
RmTVA
LpTVA
RpTVA
LaTVA
RaTVA
Al
mTVA
pTVA
aTVA
TVAs

VLS LAl
RA1
LmTVA
RmTVA
LpTVA
RpTVA
LaTVA
RaTVA
Al
mTVA
pTVA
aTVA
TVAs

Accuracy (%)

50.42 + 4.15
10.83 £ 3.82
44.17 + 3.82
50.42 * 6.71

52.50 + 3.82
56.67 + 3.33
52.50 + 3.82
75.42 = 6.17
30.62 = 20.19
47.29 + 6.29
54.58 + 4.15
63.96 * 12.55
55.28 + 10.86
66.67 + 0.02
8.33 £ 0.00

49.17 + 12.61
41.67 = 0.00
58.33 + 0.02
71.67 + 4.08
56.67 + 3.33
64.17 + 3.82
37.50 + 29.17
45.42 = 9.67
65.00 = 7.26
60.42 + 5.19
56.94 + 11.30

.e

.95
.88
.88
.54
.88
.76
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.66
.01
.00
.00
.00
.89
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n/a
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6.94E+00
5.30E+00
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2.30E+03
2.31E+01
8.72E+00
1.62E+01
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n/a
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1.25E+01
6. 7T0E+00
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19
n/a
n/a
19
19
19
19
19
n/a
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119

n/a

p-val

3.33E-01
n/a
n/a
3.95E-01
5.08E-03
2.29E-08
5.08E-03
1.11E-13
n/a
n/a
1.45E-08
1.28E-08
2.69E-07
3.32E-59
n/a
n/a
n/a
1.74E-53
1.11E-15
2.29E-08
7.29E-13
n/a
n/a
6.05E-16
1.46E-15
3.59E-10

unc.
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n/a
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kK kK
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n/a
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n/a
n/a
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n/a
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n/a
n/a
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n/a
n/a
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[53.
[66.

n/a
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n/a

[58.
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[62.

n/a
n/a
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[55.
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76,
99,
a4,
99,
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46,
57,
63,
66,

33,
05,
34,
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04,
02,
23,

inf]

inf]
inf]
inf]
inf]
inf]

inf]
inf]
inf]
inf]

inf]
inf]
inf]
inf]

inf]
inf]
inf]

cohen-d

1.00E-01
n/a
n/a
6.00E-02
6.40E-01
1.95E+00
6.40E-01
4. 02E+00
n/a
n/a
1.09E+00
1.10E+00
4.80E-01
1.03E+03
n/a
n/a
n/a
5.14E+02
5.17E+00
1.95E+00
3.62E+00
n/a
n/a
2.04E+00
1.98E+00
6.10E-01

BF10

5.07E-01
n/a
n/a
4 .80E-01
1.01E+01
6.13E+05
1.01E+01
5.71E+10
n/a
n/a
9.41E+05
1.06E+06
4.69E+04
6.88E+33
n/a
n/a
n/a
6.07E+33
4.36E+12
6.13E+05
9.69E+09
n/a
n/a
1.05E+13
4,51E+12
2.64E+07

power

0.11
n/a
n/a
0.08
0.87
1.00
0.87
1.00
n/a
n/a
1.00
1.00
1.00
1.00
n/a
n/a
n/a
1.00
1.00
1.00
1.00
n/a
n/a
1.00
1.00
1.00

Supplementary Table S13: Assessing the significance of speaker age decoding performance

using VLS and LIN models based on voxel activity. This table reports the significance of the

speaker age decoding performance. Linear classifiers were pre-trained to detect speaker age (2

classes) from either the VLS or the LIN models. The speaker age of the 18 Test Stimuli (3

participants x 6 stimuli per participant) was classified using either the VLS or LIN coordinates

with these classifiers. We used one-sample t-tests to compare the mean of the accuracy

distribution across 20 random classifier initializations (20 classifiers trained with a different

initialization seed) with a chance level of 50%. s.e.m. = standard error of the mean. Here are

reported the results of the statistical tests, t-value, degree of freedom (dof), p-value, degree of

significance (unc. sig.), 95% confidence interval (CI95%), effect size (Cohen-d), Bayes Factor

(BF10), and statistical power (power) for each model and ROI.

147



Appendix

Model ROI Accuracy (%) s.e.m. T dof p-val unc sig. CI95% cohen-d BF10 power

LIN LAl 0.29 + 1.28 0.29 n/a n/a n/a n/a n/a n/a n/a n/a
RA1 18.09 £ 3.26 0.75 1.63E+01 19 6.14E-13 sk [16.80, inf] 3.65E+00 1.14E+10 1.00
LmTVA 11.18 # 4.01 0.92 5.75E+00 19 7.61E-06  sxkx [9.59, inf] 1.29E+00 3.01E+03 1.00
RmTVA 2.35 £ 3.03 0.69 n/a n/a n/a n/a n/a n/a n/a n/a
LpTVA 12.21 £ 3.39 0.78 §.13E+00 19 6.54E-08  xxxx [10.86, inf] 1.82E+00 2.32E+05 1.00
RpTVA 6.76 = 4.66 1.07 §.30E-01 19 2.10E-01 ns [4.92, inf] 1.80E-01 6.29E-01 0.20
LaTVA 11.47 = 1.28 0.29 1.90E+01 19 4.04E-14  AHx%x% [10.96, inf] 4.25E+00 1.48E+11 1.00
RaTVA 7.35 = 8.29 1.90 7.70E-01 19 2.25E-01 ns [4.06, inf] 1.70E-01 6.07E-01 0.18
Al 9.19 = 9.24 1.48 2.24E+00 39 1.55E-02 =* [6.70, inf] 3.50E-01 3.1BE+00 0.71
mTVA 6.76 £ 5.67 0.91 9.70E-01 39 1.68E-01 ms [5.24, inf] 1.50E-01 5.30E-01 0.25
pTVA 9.49 +£ 4.90 0.78 4 .59E+00 39 2.24E-05 ek [8.16, inf] 7.30E-01 1.01E+03 1.00
aTVA 9.41 = 6.28 1.01 3.51E+00 39 5.75E-04  *%* [7.72, inf] 5.50E-01 5.39E+01 0.96
TVAs 8.65 = 5.78 0.53 5.04E+00 119 8.44E-07 skk*k [7.68, inf] 4.60E-01 1.59E+04 1.00

VLS LA1 0.15 = 0.64 0.15 n/a nfa n/a n/a n/a n/a n/a n/a
RA1 11.47 £ 5.09 1.17 4_.79E+00 19 6.37E-05  ***x% [9.45, inf] 1.07E+00 4.49E+02 1.00
LmTVA 11.47 =+ 4.73 1.09 5.1BE+00 19 2.87E-05  *doxk [9.59, inf] 1.15E+00 9.13E+02 1.00
RmTVA 0.59 = 1.50 0.34 n/a n/a n/a n/a n/a n/a n/a n/a
LpTVA 9.71 = 3,37 0.77 4.95E+00 19  4.44E-05 #¥xx [8.37, inf) 1.11E+00 6.19E+02 1.00
RpTVA 22.65 * 2.10 0.48 3.48E+01 19 5.69E-19  #x¥x% [21.81, inf] 7.78E+00 5.62E+15 1.00
LaTVA 10.29 = 4.51 1.03 4.27E+00 19 2.09E-04  *x* [8.51, inf] 9.50E-01 1.57E+02 0.99
RaTVA 6.18 = 3.94 0.90 3.30E-01 19 3.74E-01 nms [4.62, inf] 7.00E-02 4.88E-01 0.09
Al 5.81 = 6.72 1.08 n/a n/a n/a n/a n/a n/a n/a n/a
mTVA 6.03 = 6.48 1.04 1.40E-01 39 4.44E-01 ns [4.28, inf] 2.00E-02 3.44E-01 0.07
pTVA 16.18 £ 7.056 1.13 9.12E+00 39 1.65E-11  #¥x*x* [14.27, inf] 1.44FE+00 b5.8BE+08 1.00
aTVA  8.24 = 4.71 0.75 3.12E+00 39 1.69E-03 *x [6.97, inf] 4.90E-01 2.09E+01 0.92
TVAs 10.15 £ 7.55 0.69 6.17E+00 119 4.96E-09 #¥xx [9.00, inf] 5.60E-01 2.12E+06 1.00

Supplementary Table S14. Assessing the significance of speaker identity decoding

performance using VLS and LIN models based on voxel activity. This table reports the

significance of the speaker age decoding performance. Linear classifiers were pre-trained to

detect speaker age (2 classes) from either the VLS or the LIN models. Linear classifiers were pre-

trained to detect speaker identity (17 classes) from either the VLS or the LIN models. The speaker

identity of the 18 Test Stimuli (3 participants x 6 stimuli per participant) was classified using

either the VLS or LIN coordinates with these classifiers. We used one-sample t-tests to compare

the mean of the accuracy distribution across 20 random classifier initializations (20 classifiers

trained with a different initialization seed) with a chance level of 5.88%. s.e.m. = standard error

of the mean. Here are reported the results of the statistical tests, t-value, degree of freedom (dof),

p-value, degree of significance (unc. sig.), 95% confidence interval (CI95%), effect size (Cohen-d),

Bayes Factor (BF10), and statistical power (power) for each model and ROI.
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Accuracy Accuracy $.9.0. $.9.0. T
Category ROI VLS (¥) LIN (%) VLS LIN VLS wvs LIN dof p-val unc. sig. CI95Y cohen-d  BF10 pover
Gender LA1 61.94 + 1.98 43.33 £ 2.22 0.46 0.51 3.06E+01 19  1.24E-17  skkx [17.34, 19.88] 8.610000 2.94E+14 1.00
RA1 60.28 £ 1.98 50.83 £ 1.98 0.46 0.46 1.62E+01 19 1.46E-12 skxx* [8.22, 10.67] 4.640000 4.85E+09 1.00
LmTVA 55.56 + 0.02 38.89 £ 0.02 0.00 0.00 INF 18 0.00E+00 sowxs [nan, nan] 1027.400000 nan 1.00
RmTVA 44.44 + 0.02 61.39 + 1.21 0.00 0.28 -6.10E+01 19 2.91E-23 #kxx* [-17.83, -16.36] 19.290000 6.23E+19 1.00
LpTVA 66.67 + 0.02 66.67 £ 0.02 0.00 0.00 nan 19 nan ns [nan, nan] 0.000000 nan 0.05
RpTVA 61.11 * 0.02 T7.50 + 1.21 0.00 0.28 -5.90E+01 19 5.4TE-23 #%*x [-16.97, -15.81] 18.660000 3.43E+18 1.00
LaTVA 50.83 + 1.98 44.44 £ 0.02 0.46 Q.00 1.41E+01 18  1.65E-11 woeks [5.44, 7.34] 4.440000 4.96E+08 1.00
RaTVA 44.17 + 1.21 44 .44 + 0.02 0.28 0.00 -1.00E+00 19 3.30E-01 ns [-0.86, 0.30] 0.320000 3.61E-01 0.27
Al 61.11 + 2.15 47.08 + 4.30 0.34 0.69 1.66E+01 39 2.67E-19 ks [12.32, 15.73] 4.070000 1.78E+16 1.00
mTVA 50.00 + 5.56 50.14 + 11.28 0.89 1.81 -5.00E-02 39 9.59E-01 ns [-5.59, 5.31] 0.020000 1.71E-01 0.05
pTVA 63.89 £ 2.78 72.08 £ 5.48 0.44 0.88 -6.21E+00 38 2.64E-07 xxx [-10.86, -5.53] 1.860000 5.92E+04 1.00
aTVvA 47.50 + 3.72 44 .44 + 0.01 0.60 0.00 5.14E+00 39 B.0BE-08 %% [1.85, 4.26] 1.150000 2.45E+03 1.00
TVAs 53.80 %+ 8.33 55.56 £ 13.94 0.76 1.28 -1.60E+00Q 118 1.12E-01 ns [-3.94, 0.42] 0.150000 3.49E-01 0.38
Age LAl 66.67 + 0.02 50.42 + 4.15 0.00 0.95 1.71E+01 19 B5.58E-13 *xx** [14.26, 18.24) £5.400000 1.20E+10 1.00
RA1 8.33 # 0.02 10.83 + 3.82 0.00 0.88 -2.85E+00 19 1.03E-02 = [-4.34, -0.66] 0.900000 5.02E+00 0.97
LmTVA 49.17 + 12.61 44.17 + 3.82 2.89 0.88 1.71E+00 19 1.04E-01 ns [-1.12, 11.12] 0.520000 7.97E-01 0.60
RmTVA 41.67 * 0.02 50.42 £ 6.71 0.00 1.54 -5.69E+00 19 1.76E-05 ks [-11.97, -5.53] 1.800000 1.32E+03 1.00
LpTVA 58.33 £ 0.02 52.50 + 3.82 0.00 0.88 6.67E+00 19 2.24E-06 ***x [4.00, 7.66] 2.110000 8.58E+03 1.00
RpTVA 71.67 * 4.08 56.67 # 3.33 0.94 0.76 1.16E+01 19 4.80E-10 kkx [12.29, 17.71] 3.920000 2.12E+07 1.00
LaTVA 56.67 + 3.33 52.50 + 3.82 0.76 0.88 3.88E+00 19 1.58E-03 % [1.80, 6.53] 1.130000 2.46E+01 1.00
RaTVA 64.17 * 3.82 75.42 £ 6.17 0.88 1.41 -6.90E+00 19 1.40E-06 #x** [-14.66, -7.84] 2.140000 1.31E+04 1.00
Al 37.50 + 29.17 30.62 + 20.19 4.67 3.23 4.21E+00 39 1.43E-04 %% [3.58, 10.17] 0.270000 1.75E+02 0.39
mTVA 45.42 £ 9.67 47.29 + 6.29 1.55 1.01 -9.50E-01 39 3.47E-01 ns [-5.86, 2.11] 0.230000 2.60E-01 0.29
pTVA 65.00 + 7.26 54.58 + 4.15 1.18 0.66 9.78E+00 39 4.83E-12  #kks [8.26, 12.57] 1.740000 1.83E+09 1.00
aTVA 60.42 * 5.19 63.96 £ 12.55 0.83 2.01 -2.25E+00 33 3.03E-02 = [-6.73, -0.35] 0.360000 1.61E+00 0.861
TVAs 56.94 + 11.30 55.28 + 10.86 1.04 1.00 1.56E+00 118 1.22E-01 ns [-0.45, 3.78] 0.150000 3.28E-01 0.37
Identity LAl 0.15 + 0.64 0.20 £ 1.28 0.15 0.29 -4.40E-01 19 6.66E-01 ns [-0.85, 0.56] 0.140000 2.53E-01 0.09
RA1 11.47 + 5.09 18.09 + 3.26 1.17 0.75 -4, 58E+00 19 2.05E-04 k% [-9.64, -3.59] 1.510000 1.47E+02 1.00
LmTVA  11.47 + 4.73 11.18 £ 4.01 1.09 0.92 2.10E-01 18 8.39E-01 ns [-2.70, 3.29] 0.070000 2.37E-01 0.06
RmTVA 0.59 + 1.50 2.36 £ 3.03 0.34 0.69 -2.11E+00 18 4.86E-02 «x [-3.52, -0.01] 0.720000 1.42E+00 0.86
LpTVA 9.71 * 3.37 12.21 £ 3.39 0.77 0.78 -2.43E+00 19 2.53E-02 =* [-4.65, -0.35] 0.720000 2.39E+00 0.86
RpTVA 22.65 + 2.10 6.76 + 4.66 0.48 1.07 1.31E+01 19 5.99E-11 skkx [13.34, 18.42] 4.280000 1.48E+08 1.00
LaTvA 10.29 £+ 4.51 11.47 £ 1,28 1.03 0.29 -1.00E+00 19 3.30E-01 ns [-3.64, 1.29] 0.350000 3.61E-01 0.31
RaTVA 6.18 + 3.94 7.36 £ 8.29 0.90 1.80 -7.50E-01 18 4.64E-01 ns [-4.47, 2.12] 0.180000 2.98E-01 0.12
Al 5.81 + 6.72 9.19 £ 9.24 1.08 1.48 -3.77E+00 39 5.40E-04 xx*x [-5.20, -1.57] 0.410000 5.30E+01 0.72
mTVA 6.03 + 6.48 6.76 + 5.67 1.04 0.91 -8.80E-01 39 3.83E-01 ns [-2.42, 0.95] 0.120000 2.45E-01 0.11
pTVA 16.18 + 7.05 9.49 + 4,90 1.13 0.78 4.01E+00 39 2.65E-04 *xx [3.32, 10.07] 1.090000 1.00E+02 1.00
aTvA 8.24 £ 4,71 9.41 £ 6.28 0.75 1.01 -1.21E+00 38 2.32E-01 ns [-3.14, 0.79] 0.210000 3.37E-01 0.25
TVAs 10.15 £ 7.556 8.56 £ 5.78 0.69 0.53 2.07E+00 119 4.06E-02 = [0.07, 3.12] 0.240000 7.94E-01 0.73

Supplementary Table S15: Comparing the performance of the models decoding speaker
identity-related information. This table reports the significance of the speaker identity
decoding VLS-LIN difference. Paired t-tests were conducted between the mean scores of linear
classifiers pre-trained to detect gender (2 classes), age (2 classes), and identity (17 classes) from
the VLS features and those trained with the LIN features. These scores were obtained after
classifying the VLS or LIN coordinates of the 18 Test Stimuli (3 participants x 6 stimuli per
participant). s.e.m. = standard error of the mean. Here are reported the results of the statistical
tests, t-value, degree of freedom (dof), p-value, degree of significance (unc. sig.), 95% confidence
interval (CI195%), effect size (Cohen-d), Bayes Factor (BF10), and statistical power (power) for

each speaker information and ROI.
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Accuracy Accuracy s.e.m. S.e.m. T

Category Model ROI ROI () A1 R ROI A1l ROI vs Al dof p-val unc. sig. CI95Y cohen-d  BF10 power
Gender LIN mIVA 50.14 + 11.28 47.08 + 4.30 1.81 0.69 1.58E+00 78 1.20E-01 ns [-0.79, 6.90] 3.50E-01 6.83E-01 0.35
pTVA 72.08 £ 5.48 47.08 = 4.30 0.88 0.69 2.24E+01 78 0.00E+00  ##+* [22.78, 27.22] 5.01E+00 1.30E+32 1.00

aTvA 44.44 £ 0.00 47.08 + 4.30 0.00 0.69 -3.83E+00 78 0.00E+00 *#*# [-4.01, -1.27] 8.60E-01 9.78E+01 0.97

TVAs 55.56 = 13.94 47.08 = 4.30 1.28 0.69 3.76E+00 168 O0.00E+00 ##** [4.02, 12.92] 6.90E-01 9.90E+01 0.96

VLS mTVA 50.00 * 5.56 61.11 * 2.15  0.89 0.34 -1.17E+01 78 0.00E+00  ##** [-13.01, -9.21] 2.60E+00 3.45E+15 1.00

pTVA 63.89 + 2.78 61.11 + 2.15  0.44 0.34 4.94E+00 78 0.00E+00 ik [1.66, 3.90] 1.10E+00 3.59E+03 1.00

aTVA 47.50 + 3.72 61.11 = 2.15  0.60 0.34 -1.98E+01 78 0.00E+00  #k* [-14.98, -12.24] 4.43E+00 4.08E+28 1.00

TVAs 53.80 £ 8.33 61.11 = 2.15 0.76 0.34 -5.46E+00 158 0.00E+00 #**# [-9.96, -4.67] 1.00E+00 6.55E+04 1.00

Age LIN mTVA 47.29 £ 6.29 30.62 = 20.19 1.01 3.23 4 .92E+00 78 0.00E+00  #**#* [9.93, 23.41] 1.10E+00 3.41E+03 1.00
pTVA 54.58 * 4.15 30.62 = 20.19 0.66 3.23 7 .26E+00 78 0.00E+0Q  ***+* [17.39, 30.53] 1.62E+00 3.02E+07 1.00

aTVA 63.96 = 12.556 30.62 = 20.19 2.01 3.23 8.76E+00 78  0.00E+0Q  #wkk [25.75, 40.91] 1.96E+00 1.68E+10 1.00

TVAs ©55.28 £ 10.86 30.62 £ 20.19 1.00 3.23 9.72E+00 168 0.00E+00  #wxx [19.65, 29.66] 1.78E+00 4.556E+14 1.00

VLS mIVA 45.42 + 9.67 37.50 + 29.17 1.55 4.67 1.61E+00 78 1.10E-01 ns [-1.88, 17.71] 3.60E-01 T7.10E-01 0.36

pTVA 65.00 £ 7.26 37.50 £ 28.17 1.16 4.67 5.T1E+00 T8 0.00E+00  ##+* [17.92, 37.08] 1.28E+00 6.21E+04 1.00

aTVA 60.42 £ 5.19 37.50 = 29.17 0.83 4.67 4.83E+00 78 0.00E+00  ##*+* [13.47, 32.36] 1.08E+00 2.48E+03 1.00

TVAs 56.94 = 11.30 37.50 + 29.17 1.04 4.87 6.03E+00 158 0.00E+00 %% [13.07, 25.82] 1.10E+00 8.88E+05 1.00

Identity LIN mIVA 6.76 * 5.67 9.19 = 9.24 0.91 1.48 -1.40E+00 78 1.70E-01 ns [-5.88, 1.03] 3.10E-01 5.42E-01 0.28
PIVA 9.49 + 4.90 9.19 + 9.24 0.78 1.48 1.80E-01 78 8.60E-01 ns [-3.04, 3.63] 4.00E-02 2.36E-01 0.05

aTVA 9.41 £ 6.28 9.19 + 9.24 1.01 1.48 1.20E-01 78 9.00E-01 ns [-3.34, 3.78] 3.00E-02 2.34E-01 0.05

TVAs 8.55 = 5.78 9.19 + 9.24 0.53 1.48 -6.10E-01 158 6.10E-01 ns [-3.11, 1.83] 9.00E-02 2.19E-01 0.08

VLS wIVA 6.03 = 6.48 5.81 £ 6.72 1.04 1.08 1.50E-01 78 8.80E-01 ns [-2.76, 3.20] 3.00E-02 2.35E-01 0.05

pTVA  16.18 £ 7.05 5.81 £ 6.72 1.13 1.08 6.65E+00 78 0.00E+00 #*++ [7.26, 13.47] 1.49E+00 2.43E+06 1.00

aTVh 8.24 = 4.71 5.81 * 6.72 0.75 1.08 1.85E+00 78 T7.00E-02 ns [-0.19, 5.04] 4.10E-01 1.01E+00 0.45

TVAs 10.15 * 7.55 5.81 = 6.72 0.69 1.08 3.21E+00 158 0.00E+00 #* [1.67, 7.00] 5.90E-01 1.91E+01 0.89

Supplementary Table S16: Comparing the performance of the models decoding speaker

identity-related information by ROI. This table reports the significance of the speaker identity

decoding A1-TVAs difference. Two-sample t-tests were conducted for each model to determine if

there was an A1-TVAs difference between the mean scores of linear classifiers pre-trained to

detect gender (2 classes), age (2 classes), and identity (17 classes). These scores were obtained

by classifying the VLS coordinates or LIN features, reconstructed by different ROIs, for the 18 Test

Stimuli (3 participants x 6 stimuli per participant). s.e.m. = standard error of the mean. Here are

reported the results of the statistical tests, t-value, degree of freedom (dof), p-value, degree of

significance (unc. sig.), 95% confidence interval (CI95%), effect size (Cohen-d), Bayes Factor

(BF10), and statistical power (power) for each speaker information and model.
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Model ROI Accuracy (%) s.e.m. T dof p-val unc. sig. CI96% cohen-d BF10 power

LIN LAl 44 .87 £ 7.99 2.31 n/a n/a n/a n/a n/a n/a n/a n/a
RA1 51.28 £ 10.02 2.89 4.40E-01 12 3.33E-01 mns [46.13, inf] 1.20E-01 6.06E-01 0.11
LmTVA 51.71 # 10.76 3.11 5.60E-01 12  2.96E-01 ns [46.17, inf] 1.50E-01 6.35E-01 0.13
RmTVA 43.59 + 8.40 2.42 n/a n/a n/a n/a n/a n/a n/a n/a
LpTVA 50.00 # 8.72 2.52 n/a n/a n/a n/a n/a n/a n/a n/a
RpTVA 52.99 # 10.36 2.99 1.00E+00 12 1.69E-01 ns [47.66, inf] 2.80E-01 8.49E-01 0.24
LaTVA 51.28 = 8.48 2.45 5.20E-01 12 3.05E-01 mns [46.92, inf] 1.50E-01 6.27E-01 0.13
RaTVA 45.30 = 9.71 2.80 n/a n/a n/a n/a n/a n/a n/a n/a
Al 48.08 = 9.62 1.92 n/a n/a n/a n/a n/a n/a n/a n/a
mTVA 47 .65 = 10.47 2.09 n/a n/a n/a n/a n/a n/a n/a n/a
pTVA 51.50 £ 9.69 1.94 7.70E-01 2B 2.24E-01 ms [48.18, inf] 1.50E-01 5.43E-01 0.19
aTVA 48.29 £ 9.59 1.92 n/a n/a n/a n/a n/a n/a n/a n/a
TVAs 49.16 = 10.07 1.156 n/a n/a n/a n/a n/a n/a n/a n/a

VLS LAl 50.00 + 11.32 3.27 n/a n/a n/a n/a n/a n/a n/a n/a
RA1 61.54 = 6.34 1.83 6.31E+00 12 1.96E-05  **%% [58.28, inf] 1.756E+00 1.31E+03 1.00
LmTVA 51.71 = 5.06 1.46 1.17E+00 12 1.32E-01 ms [49.11, inf] 3.20E-01 9.85E-01 0.29
RmTVA 45.73 = 8.76 2.563 n/a n/a n/a n/a n/a n/a n/a n/a
LpTVA 63.256 = 7.40 2.14 6.20E+00 12 2.20E-05  sdkx [59.44, inf] 1.72E+00 1.14E+03 1.00
RpTVA 60.26 = 6.48 1.87 5.48E+00 12 7.01E-05  sdkx [66.92, inf] 1.52E+00 4.30E+02 1.00
LaTVA 60.26 = 6.10 1.76 5.82E+00 12 4.10E-05  sdkx [67.12, inf] 1.61E+00 6.86E+02 1.00
RaTVA 50.00 * 8.98 2.59 n/a n/a n/a n/a n/a n/a n/a n/a
Al 55.77 + 10.84 2.17 2.66E+00 25 6.70E-03 ** [52.07, inf] 5.20E-01 7.39E+00 0.83
mTVA  48.72 £ 7.75 1.55 n/a n/a n/a n/a n/a n/a n/a n/a
pTVA 61.75 = 7.12 1.42 8.26E+00 25 6.56E-09  skxxk [59.32, inf] 1.62E+00 2.00E+06 1.00
aTVA 55,13 + 9.24 1.85 2.78E+00 25 5.13E-03 =** [61.97, inf] 5.40E-01 9.24E+00 0.85
TVAs 55,20 + 9.68 1.10 4,71E+00 77 5.20E-06  ®¥*x [63.36, inf] 5.30E-01 3.23E+03 1.00

Supplementary Table S17: Assessing the significance of the speaker gender categorization
task. This table reports the significance of the speaker's gender categorization performance. 342
voice stimuli were used in the experiments: the original stimuli (N = 18), directly reconstructed
stimuli using the LIN and the VLS models (N = 36), and brain-reconstructed stimuli (18 stimuli x
2 models x 4 regions of interest x 2 hemispheres, N = 288). The participants were tasked with
identifying the gender of the presented voice in each trial by clicking either the ‘Female’ or ‘Male’
button. To evaluate the accuracy of the binary responses, we computed the classification accuracy
for each participant and region of interest (ROI). We then utilized one-sample t-tests to compare
the mean accuracy distribution across all participants to the chance level of 50%. s.e.m. = standard
error of the mean. Here are reported the results of the statistical tests, t-value, degree of freedom
(dof), p-value, degree of significance (unc. sig.), 95% confidence interval (CI95%), effect size

(Cohen-d), Bayes Factor (BF10), and statistical power (power) for each model and ROI.
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Model ROI Accuracy (%) s.e.m. T dof p-val unc. sig. CI96% cohen-d BF10 power

LIN LAl 46.15 £ 14.48 4.18 n/a n/a n/a n/a n/a n/a n/a n/a
RA1 44.23 £ 11.50 3.32 n/a n/a n/a n/a n/a n/a n/a n/a
LmTVA 50.00 # 9.81 2.83 n/a n/a n/a n/a n/a n/a n/a n/a
RmTVA 57.69 + 12.85 3.71 2.07E+00 12  3.02E-02 = [61.08, inf] 5.80E-01 2.80E+00 0.62
LpTVA 50.00 # 10.34 2.98 0.00E+00 12  5.00E-01 ns [44.68, inf] 0.00E+00 5.56E-01 0.05
RpTVA 50.64 + 10.57 3.05 2.10E-01 12 4.19E-01 mns [45.20, inf] 6.00E-02 b5.67E-01 0.07
LaTVA 48.72 # 13.01 3.76 n/a n/a n/a n/a n/a n/a n/a n/a
RaTVA 62.82 £ 13.32 3.85 3.33E+00 12 2.98E-03 ** [55.97, inf] 9.20E-01 1.77E+01 0.93
Al 45.19 = 13.11 2.62 n/a n/a n/a n/a n/a n/a n/a n/a
mTVA 53.85 = 12.06 2.41 1.59E+00 25 6.17E-02 mns [49.73, inf] 3.10E-01 1.26E+00 0.46
pTVA 50.32 £ 10.46 2.09 1.50E-01 25 4. 40E-01 ns [46.75, inf] 3.00E-02 4.19E-01 0.07
aTVA  55.77 + 14.94 2.99 1.93E+00 25  3.24E-02 = [50.67, inf] 3.80E-01 2.06E+00 0.59
TVAs 53.31 £ 12.82 1.46 2.27E+00 77 1.31E-02 = [50.88, inf] 2.60E-01 2.77E+00 0.73

VLS LAl 54.49 * 10.65 3.07 1.46E+00 12 8.50E-02 mns [49.01, inf] 4_.00E-01 1.32E+00 0.39
RA1 50.00 = 8.01 2.31 0.00E+00 12 5.00E-01 ns [45.88, inf] 0.00E+00 b5.56E-01 0.05
LmTVA 51.28 + 10.26 2.96 4.30E-01 12 3.36E-01 ns [46.01, inf] 1.20E-01 6.04E-01 0.11
RmTVA 54.49 = 10.65 3.07 1.46E+00 12 8.50E-02 ns [49.01, inf] 4.00E-01 1.32E+00 0.39
LpTVA 45.51 = 11.14 3.22 n/a n/a n/a n/a n/a n/a n/a n/a
RpTVA 56.41 = 8.74 2.52 2.64E+00 12 1.30E-02 = [561.91, inf] 7.00E-01 5.38E+00 0.77
LaTVA 64.74 = 7.42 2.14 6.88E+00 12 8.46E-068  *¥kx [60.93, inf] 1.91E+00 2.74E+03 1.00
RaTVA 61.54 = 14.81 4.28 2.70E+00 12 9.68E-03 *x* [563.92, inf] 7.50E-01 6.79E+00 0.82
Al 52.24 + 9.68 1.94 1.16E+00 25 1.29E-01 ns [48.94, inf] 2.30E-01 7.57E-01 0.30
mTVA 52.88 + 10.58 2.12 1.36E+00 25 9.24E-02 ns [49.27, inf] 2.70E-01 9.47E-01 0.38
pTVA 50.96 + 11.40 2.28 4.20E-01 25 3.38E-01 mns [47.07, inf] 8.00E-02 4.50E-01 0.11
aTVA 63.14 + 11.82 2.36 5.66E+00 25  4.4BE-06 *¥** [69.10, inf] 1.09E+00 4.79E+03 1.00
TVAs 55.66 + 12.48 1.42 3.98E+00 77  T.72E-05 *¥** [63.29, inf] 4.50E-01 2.69E+02 0.99

Supplementary Table S18: Assessing the significance of the speaker age categorization
task. This table reports the significance of the speaker age categorization performance. 342 voice
stimuli were used in the experiments: the original stimuli (N = 18), directly reconstructed stimuli
using the LIN and the VLS models (N = 36), and brain-reconstructed stimuli (18 stimuli x 2 models
x 4 regions of interest x 2 hemispheres, N = 288). The participants were tasked with identifying
the approximate age of the presented voice in each trial by clicking either the ‘Younger’ or ‘Older’
button. To evaluate the accuracy of the binary responses, we computed the classification accuracy
for each participant and region of interest (ROI). We then utilized one-sample t-tests to compare
the mean accuracy distribution across all participants to the chance level of 50%. s.e.m. = standard
error of the mean. Here are reported the results of the statistical tests, t-value, degree of freedom
(dof), p-value, degree of significance (unc. sig.), 95% confidence interval (CI95%), effect size

(Cohen-d), Bayes Factor (BF10), and statistical power (power) for each model and ROI.
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Model ROI Accuracy (%) s.e.m. T dof p-val unc. sig. CI96% cohen-d BF10 power
LIN LA1 54.70 + 9.89 3.50 1.34E+00 8 1.08E-01 mns [48.20, inf] 4.50E-01 1.29E+00 0.34
RA1 57.41 = 8.69 3.07 2.41E+00 8 2.12E-02 = [51.70, inf] 8.00E-01 4.14E+00 0.71
LmTVA 57.04 £ 7.77 2.75 2.66E+00 8 1.68E-02 = [61.93, inf] 8.50E-01 4,94E+00 0.76
RmTVA 42.36 = 8.22 2.91 n/a n/a n/a n/a n/a n/a n/a n/a
LpTVA 57.78 # 7.70 2.72 2.86E+00 8 1.06E-02 =* [62.72, inf] 9.B50E-01 7.04E+00 0.83
RpTVA 50.98 * 9.61 3.40 2.90E-01 8 3.90E-01 mns [44.67, inf] 1.00E-01 6.67E-01 0.08
LaTVA 40.48 = 9.52 3.37 n/a n/a n/a n/a n/a n/a n/a n/a
RaTVA 40.52 = 7.04 2.49 n/a n/a n/a n/a n/a n/a n/a n/a
Al 56.056 = 9.41 2.28 2.65E+00 17  B8.3BE-03 ** [52.09, inf] 6.30E-01 6.92E+00 0.82
mTVA 49.70 + 10.85 2.63 n/a n/a n/a n/a n/a n/a n/a n/a
pTVA 54.38 = 9.34 2.27 1.93E+00 17 3.51E-02 = [60.44, inf] 4.60E-01 2.22E+00 0.58
aTVA 40.50 £ 8.37 2.03 n/a n/a n/a n/a n/a n/a n/a n/a
TVAs 48.19 +* 11.18 1.54 n/a n/a n/a n/a n/a n/a n/a n/a
VLS LAl 72.22 * 9.16 3.24 6.86E+00 8 6.48E-05  *%k¥k [66.20, inf] 2.29E+00 4.52E+02 1.00
RA1 48.33 = 5.77 2.04 n/a n/a n/a n/a n/a n/a n/a n/a
LmTVA 51.46 = 7.76 2.74 5.30E-01 8 3.04E-01 ns [46.36, inf] 1.80E-01 7.25E-01 0.12
RmTVA 41.11 * 6.57 2.32 n/a n/a n/a n/a n/a n/a n/a n/a
LpTVA 60.61 = 5.67 2.00 5.29E+00 8 3.68E-04 %k [66.88, inf] 1.76E+00 1.06E+02 1.00
RpTVA 66.05 = 6.65 2.35 6.83E+00 8 6.70E-05  sdkx [61.68, inf] 2.28E+00 4.40E+02 1.00
LaTVA 52.02 = 8.33 2.94 6.90E-01 8 2.56E-01 ns [46.54, inf] 2.30E-01 7.83E-01 0.15
RaTVA 50.00 £ 7.53 2.66 n/a n/a n/a n/a n/a n/a n/a n/a
Al 60.28 + 14.19 3.44 2.99E+00 17 4.14E-03  ** [54.29, inf] 7.00E-01 1.24E+01 0.89
mTVA  46.29 £ 8.86 2.15 n/a n/a n/a n/a n/a n/a n/a n/a
pTVA 63.33 * 6.75 1.64 8.14E+00 17 1.44E-07 %% [60.48, inf] 1.92E+00 1.11E+05 1.00
aTVA 51.01 + 8.00 1.94 5.20E-01 17  3.05E-01 ns [47.63, inf] 1.20E-01 5.49E-01 0.13
TVAs 53.54 + 10.69 1.47 2.41E+00 53  9.69E-03 =** [561.08, inf] 3.30E-01 4.15E+00 0.77
Supplementary Table S19: Assessing the significance of the speaker identity

discrimination task. This table reports the significance of the speaker identity discrimination

performance. The participants listened to 684 voice stimuli with short breaks in between. Each

trial contained 2 short sound samples, and the participants had to indicate whether the samples

were from the same speaker or different speakers. We then utilized one-sample t-tests to compare

the mean accuracy distribution across all participants to the chance level of 50%. s.e.m. = standard

error of the mean. Here are reported the results of the statistical tests, t-value, degree of freedom

(dof), p-value, degree of significance (unc. sig.), 95% confidence interval (CI95%), effect size

(Cohen-d), Bayes Factor (BF10), and statistical power (power) for each model and ROI.
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Accuracy Accuracy Le.m. s.e.m. T
Category ROI VLS (%) LIN (%) VLS LIN VLS vs LIN dof p-val unc. sig. CI95% cohen-d BF10 power
Gender LA1 48.33 £ 10.56 46.11 £ 6.60 3.52 2.20 4.70E-01 9 6.48E-01 ns [-8.41, 12.85] 0.240000 3.40E-01 0.10
RAL 60.00 £ 5.98 53.33 £8.31 1.99 2.77 1.86E+00 9 9.63E-02 ns [-1.46, 14.79] 0.870000 1.08E+00 0.69
LmTVA 51.87 = 5.58 50.56 £ 10.08 1.86 3.38 4.10E-01 9 6.93E-01 ns [-5.05, 7.27] 0.130000 3.32E-01 0.07
RmTVA 46.67 = 9.03 43.33 + 8.53 3.01 2.84 1.20E+00 9 2.60E-01 ns [-2.94, 9.60] 0.360000 b5.51E-01 0.18
LpTVA 63.89 + 7.95 49.44 + 9.44 2.65 3.15 3.03E+00 9 1.43E-02 = [3.65, 25.24] 1.570000 4.66E+00 0.99
RpTVA 62.22 + 4.84 53.33 £ 10.60 1.61 3.53 1.95E+00 9 B8.26E-02 ns [-1.41, 19.18] 1.020000 1.21E+00 0.82
LaTVA 60.00 + 5.44 50.56 + 8.77 1.81 2.92 2.68E+00 9 2.50E-02 = [1.49, 17.40] 1.230000 3.00E+00 0.93
RaTVA 50.00 = 9.94 45.56 + 9.88 3.31 3.29 1.15E+00 9 2.80E-01 nmns [-4.30, 13.19] 0.430000 5.26E-01 0.23
Al 54.17 + 10.37 49.72 + 8.33 2.38 1.91 1.52E+00 19 1.45E-01 ns [-1.67, 10.56] 0.460000 6.25E-01 0.50
mTVA 49.17 £ 7.91 46.94 £ 10.01 1.81 2.30 1.16E+00 19 2.58E-01 ns [-1.77, 6.21] 0.240000 4.21E-01 0.18
pTVA 63.06 + 6.64 51.39 £ 10.23 1.52 2.35 3.57E+00 19 2.06E-03 =** [4.82, 18.51] 1.320000 1.95E+01 1.00
aTvA 55.00 £ 9.44 48.06 £ 9.67 2.17 2.22 2.66E+00 19 1.54E-02 = [1.49, 12.40] 0.710000 3.59E+00 0.85
TVAs 56.74 + 9.88 45.80 £ 10.156 1.29 1.32 4.37E+00 59 B.05E-05 #&** [3.77, 10.12] 0.690000 4.08E+02 1.00
Age LA1 54.49 # 10.65 46.15 * 14.48 3.07 4.18 1.54E+00 12 1.50E-01 ns [-3.48, 20.14] 0.630000 7.18E-01 0.55
RA1 50.00 = 8.01 44.23 £ 11.50 2.31 3.32 1.24E+00 12 2.39E-01 =ns [-4.38, 15.92] 0.560000 5.25E-01 0.46
LmTVA 51.28 * 10.26 50.00 = 9.81 2.96 2.83 2.70E-01 12 7.94E-01 ns [-9.17, 11.73] 0.120000 2.87E-01 0.07
RmTVA 54.49 # 10.656 57.69 + 12.85 3.07 3.71 -7.20E-01 12 4.88E-01 =ns [-12.97, 6.55] 0.260000 3.47E-01 0.14
LpTVA 45.51 # 11.14 50.00 # 10.34 3,22 2.98 -1.17E+00 12 2.66E-01 ns [-12.87, 3.89] 0.400000 4.90E-01 0.27
RpTVA 56.41 + 8.74 50.64 £ 10.57 2.52 3.06 1.T4E+00 12 1.08E-01 ns [-1.47, 13.00] 0.570000 9.09E-01 0.47
LaTVA 64.74 + 7.42 48.72 + 13.01 2.14 3.78 5.25E+00 12 2.04E-04 *** [9.38, 22.68] 1.450000 1.55E+02 1.00
RaTVA 61.54 + 14.81 62.82 + 13.32 4.28 3.85 -2.50E-01 12 B8.08E-01 ns [-12.51, 9.95] 0.090000 2.86E-01 0.06
Al 52.24 + 9.68 45.19 + 13.11 1.94 2.82 2.01E+00 25 5.55E-02 ns [-0.18, 14.28] 0.600000 1.16E+00 0.84
mTVA 52.88 £ 10.58 53.85 + 12.06 2.12 2.41 -3.00E-01 25 7.70E-01 ns [-7.65, 5.72] 0.080000 2.16E-01 0.07
pTVA 50.96 + 11.40 50.32 + 10.46 2.28 2.09 2.40E-01 25 B8.14E-01 ns [-4.90, 6.19] 0.060000 2.13E-01 0.06
aTVA 63.14 + 11.82 55.77 + 14.94 2.36 2.99 2.16E+00 25 4.02E-02 =* [0.35, 14.39] 0.540000 1.50E+00 0.75
TVAs 556.66 £ 12.48 53.31 * 12.82 1.42 1.46 1.28E+00 77 2.03E-01 ns [-1.29, 6.00] 0.180000 2.74E-01 0.36
Identity LA1 72.22 £ 9.16 54.70 £ 9.89 3.24 3.50 3.64E+00 8 6.61E-03 ** [6.41, 28.63] 1.730000 8.84E+00 0.99
RA1 48.33 £ 5.77 57.41 £ 8.69 2.04 3.07 -1.97E+00 8 B8.49E-02 ns [-18.72, 1.57] 1.160000 1.23E+00 0.86
LmTVA 51.46 = 7.76 57.04 £ 7.77 2.74 2.75 -1.44E+00 8 1.87E-01 ns [-14.49, 3.34] 0.680000 7.08E-01 0.43
RmTVA 41.11 * 6.57 42.36 £ 8.22 2.32 2.91 -2.50E-01 8 B8.08E-01 ns [-12.72, 10.22] 0.160000 3.30E-01 0.07
LpTVA 60.61 = 5.67 B57.78 £ 7.70 2.00 2.72 1.05E+00 8 B3.23E-01 ns [-3.37, 9.02] 0.390000 5.02E-01 0.18
RpTVA 66.05 * 6.65 50.98 £ 9.61 2.35 3.40 4.37E+00 8 2.39E-03 ** [7.11, 23.03] 1.720000 2.01E+01 0.99
LaTVA 52.02 % 8.33 40.48 * 9.52 2.94 3.37 2.00E+00 8 8.02E-02 =ns [-1.75, 24.84] 1.220000 1.29E+00 0.89
RaTVA 50.00 # 7.53 40.52 = 7.04 2.66 2.49 2.60E+00 8 3.16E-02 = [1.07, 17.88] 1.230000 2.59E+00 0.89
Al 60.28 £ 14.19 56.05 + 9.41 3.44 2.28 9.20E-01 17 3.68E-01 ns [-5.42, 13.86] 0.340000 3.54E-01 0.28
mTVA 46.29 + 8.86 49.70 + 10.85 2.15 2.83 -1.10E+00 17 2.86E-01 ns [-9.96, 3.13] 0.330000 4.11E-01 0.27
pIVA 63.33 £ 6.75 54.38 £ 9.34 1.64 2.27 3.46E+00 17 3.02E-03 ** [3.49, 14.41] 1.070000 1.45E+01 0.99
aTVA 51.01 + 8.00 40.50 + 8.37 1.94 2.03 3.17E+00 17 5.62E-03 ** [3.51, 17.51] 1.250000 8.55E+00 1.00
TVAs 53.54 £ 10.69 48.19 + 11.18 1.47 1.54 2.80E+00 53 T.18E-03 == [1.51, 9.18] 0.480000 4.88E+00 0.94

Supplementary Table S20:

Comparing human listeners' performance in discriminating

speaker identity-related information decoded with VLS versus LIN. This table reports the

significance of the VLS-LIN difference in the speaker identity categorization and discrimination

performance. Paired t-tests were conducted between the scores of human listeners at

discriminating the speaker gender (2 classes), age (2 classes), and identity (17 classes) of the 18

Test Stimuli reconstructed from the VLS features with those from LIN features. s.e.m. = standard

error of the mean. Here are reported the results of the statistical tests, t-value, degree of freedom

(dof), p-value, degree of significance (unc. sig.), 95% confidence interval (CI195%), effect size

(Cohen-d), Bayes Factor (BF10), and statistical power (power) for each speaker identity

information and ROI.
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Accuracy Accuracy s.6.0. S.9.0. T

Category Model ROI ROI (%) AL (R ROI Al ROI wvs Al dof p-val unc. sig. CI95% cohen-d BF10 power
Gender LIN mTVA 46.94 * 10.01 49.72 * 8.33 2.30 1.91 -9.30E-01 38 3.60E-01 =ns [-8.83, 3.27] 2.90E-01 4.35E-01 0.15
PTVA 51.39 +£ 10.23 49.72 £ 8.33 2.36 1.01 5.50E-01 38 65.80E-01 ns [-4.46, 7.79] 1.70E-01 3.48E-01 0.08

aTVh 48.06 * 9.67 49.72 £ 8.33 2.22 1.91 -5.70E-01 38 b5.70E-01 =ns [-7.59, 4.26] 1.80E-01 3.51E-01 0.09

TVAs 48.80 = 10.15 49.72 * §.33 1.32 1.91 -3.60E-01 78 T.20E-01 ans [-5.99, 4.14] 9.00E-02 2.77E-01 0.06

VLS mTVA  49.17 + 7.91 54.17 + 10.37 1.81 2.38 -1.67E+00 38 1.00E-01 ns [-11.08, 1.08] 5.30E-01 9.19E-01 0.37

pTVA 63.06 + 6.64 54 .17 £ 10.37 1.52 2.38 3.15E+00 38 0.00E+00 =*x [3.17, 14.81] 8.90E-01 1.21E+01 0.87

aTVA 55.00 = 9.44 54.17 * 10.37 2.17 2.38 2.60E-01 38 8.00E-01 =ns [-5.68, 7.35] B8.00E-02 3.17E-01 0.06

TVAs 55.74 + 9.88 64.17 + 10.37 1.29 2.38 6.00E-01 78 b5.50E-01 =ns [-3.64, 6.78] 1.60E-01 3.05E-01 0.09

Age LIN mTVA 53.85 + 12.06 45.19 + 13.11 2.41 2.62 2.43E+00 50 2.00E-02 * [1.50, 15.81] 6.70E-01 2.95E+00 0.66
pPTVA 50.32 + 10.46 45.19 + 13.11 2.09 2.62 1.53E+00 50 1.30E-01 ns [-1.61, 11.87] 4.20E-01 7.23E-01 0.32

aTVh 55.77 + 14.94 45.19 + 13.11 2.99 2.62 2.66E+00 50 1.00E-02 * [2.59, 18.58] 7.40E-01 4.65E+00 0.74

TVAs 53.31 + 12.82 45.19 # 13.11 1.46 2.62 2.75E+00 102 1.00E-02 *x [2.27, 13.97] 6.20E-01 5.95E+00 0.78

VLS mTVA 52.88 + 10.58 52.24 + 9.68 2.12 1.94 2.20E-01 50 8.20E-01 ns [-6.12, 6.40] 6.00E-02 2.84E-01 0.06

pTVA 50.96 + 11.40 52.24 + 9.68 2.28 1.94 -4.30E-01 50 6.T0E-01 =ns [-7.29, 4.73] 1.20E-01 3.00E-01 0.07

aTVA 63.14 + 11.82 52.24 * 9.68 2.36 1.94 3.56E+00 50 0.00E+00  s*kk [4.76, 17.04] 9.90E-01 3.70E+01 0.94

TVAs 55.66 + 12.48 52.24 + 9.68 1.42 1.94 1.26E+00 102 2.10E-01 ns [-1.95, 8.79] 2.90E-01 4.67E-01 0.24

Identity LIN mTVA 49.70 £ 10.85 56.06 £ 9.41 2.63 2.28 -1.82E+00 34 B.00E-02 =ns [-13.43, 0.72] 6.10E-01 1.15E+00 0.43
pTVA 54.38 + 9.34 56.05 £ 9.41 2.27 2.28 -5.20E-01 34 6.10E-01 ns [-8.21, 4.86] 1.70E-01 3.B8E-01 0.08

aTVA 40.50 + 8.37 56.05 + 9.41 2.03 2.28 -5.09E+00 34  0.00E+00 okokok [-21.76, -9.35] 1.70E+00 1.25E+03 1.00

TVAs 48.19 = 11.18 56.05 * 9.41 1.54 2.28 -2.65E+00 70 1.00E-02 = [-13.79, -1.94] 7.20E-01 4.69E+00 0.74

VLS mTVA 46.29 = 8.86 60.28 # 14.19 2.15 3.44 -3.45E+00 34 0.00E+00 *x [-22.24, -5.75] 1.1BE+00 2.21E+01 0.92

PTVA 63.33 £ 6.75 60.28 £ 14.19 1.64 3.44 8.00E-01 34 4.30E-01 ns [-4.69, 10.79] 2.70E-01 4.13E-01 0.12

aTVh 51.01 = 8.00 60.28 £ 14.19 1.94 3.44 -2.35E+00 34 2.00E-02 =« [(-17.30, -1.24] T.80E-01 2.53E+00 0.63

TVAs 53.54 = 10.69 60.28 * 14.19 1.47 3.44 -2.09E+00 70 4.00E-02 = [-13.16, -0.31] 6&.70E-01 1.64E+00 0.54

Supplementary Table S21: Comparing the performance of the human listeners at
discriminating speaker identity-related information by ROI. This table reports the
significance of the A1-TVAs difference in the speaker identity categorization and discrimination
performance. Two-sample t-tests were conducted between the scores of human listeners at
discriminating the speaker gender (2 classes), age (2 classes), and identity (17 classes) of the 18
Test Stimuli that were reconstructed from the VLS features with those from LIN features. s.e.m. =
standard error of the mean. Here are reported the results of the statistical tests, t-value, degree of
freedom (dof), p-value, degree of significance (unc. sig.), 95% confidence interval (CI195%), effect
size (Cohen-d), Bayes Factor (BF10), and statistical power (power) for each speaker identity

information and ROI.
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Supplementary Audio S1: Voice latent space interpolation.

The audio files are two original voice samples (A, B); the synthesized voice samples
from the spectrograms of the autoencoder reconstructions of the original two voice
samples (A’, B'); the synthesized voice samples from the spectrograms of the linearly

interpolated voice latent space (VLS; A_to_B; Figure 3.1c).

A.wav: Original voice sample of a female Chinese speaker

A’.wav: Voice sample A.wav reconstructed by the autoencoder

B.wav: Original voice sample of a male French speaker

B’.wav: Voice sample B.wav reconstructed by the autoencoder
A_to_B_lx.wav: Reconstructed voice samples from the linear interpolation between

A and B VLS, where x is the interpolation step (0.2, 0.4, 0.6, 0.8).

Link:
https://drive.google.com/drive /folders /1IWQon0i0 FpQvi9mT3okVSasno rck u3?usp=

sharing

Supplementary Audio S2: Brain-based voice reconstructions.

The audio files are reconstructed voice samples from the fMRI responses in the
speakers' temporal voice areas (TVAs). These sounds were used in the quantitative and
subjective voice identity tests (Figure 3.4). The samples below are from a German and a
Spanish speaker. The sounds are reconstructed for each speaker using 2 models: LIN and

VLS.

examplel_orig.wav: Original voice sample of a male German speaker
example1l_VLS_RaTVA.wav: Reconstructed voice sample from fMRI activity in the
right anterior temporal voice area (RaTVA) using the VLS model
example1l_LIN_RaTVA.wav: Reconstructed voice sample from fMRI activity in the

right anterior temporal voice area (RaTVA) using the LIN model

example2_orig.wav: Original voice sample of a male Spanish speaker

exampleZ2_VLS_LmTVA.wav: Reconstructed voice sample from fMRI activity in the
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Appendix

left middle voice area (LmTVA) using the VLS model
exampleZ_LIN_LmTVA.wav: Reconstructed voice sample from fMRI activity in the

left middle voice area (LmTVA) using the LIN model

Link:
https://drive.google.com/drive/folders/1AwAV2zigRb9DxDt xhyea8sp13Zvxcuk?usp=s

hare link
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Abbreviations

Al
AF
ANN
DNN
BOLD
Ccv
CNN
EC
ECOG
EEG
ERP
FC
FVA
fMRI
IFC
IFG
MEG
rTMS
SEM
SPM
sEEG
STG
STS
TVA
VA

primary auditory cortex
arcuate fasciculus

artificial neural network
deep neural network
blood-oxygen-level dependent
conspecific vocalization
convolutional neural network
effective connectivity
electrocorticography
electroencephalography
event-related potential
functional connectivity

frontal voice area

functional magnetic resonance imaging

inferior frontal cortex
inferior frontal gyrus

magnetoencephalography

repetitive transcranial magnetic stimulation

standard errors of the mean
statistical parametric mapping
stereoelectroencephalography
superior temporal gyrus
superior temporal sulcus
temporal voice area

voice area
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