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Résumé 

Les voix sont omniprésentes dans notre quotidien, essentielles pour communiquer et 

véhiculant des informations non verbales telles que l'identité, le genre ou l'émotion de 

nos congénères. De nombreuses espèces manifestent des aptitudes vocales sophistiquées. 

L'étude des mammifères, notamment des primates non humains, révèle des traits 

communs de traitement vocal. L'objectif de cette thèse est d'approfondir notre 

compréhension des mécanismes de traitement de la voix, en employant des méthodes 

computationnelles, y compris l'apprentissage profond, pour mieux comprendre 

l'encodage vocal et la communication vocale. L’introduction offre une vue d’ensemble des 

primates, leur évolution et communication, et introduit les concepts clés et méthodologies 

pour les chapitres suivants. Le premier chapitre présente une analyse comparative 

approfondie du cortex vocal chez les primates, et défini les limites de notre connaissances 

du traitement de l’information vocal par le cerveau. Le deuxième chapitre traite de 

l'utilisation de méthodes computationnelles pour construire une base de données de 

vocalisations de primates non humains, offrant une ressource précieuse pour les futures 

études en neuroéthologie. Enfin, le troisième chapitre examine la corrélation entre 

l'activité cérébrale liée à l'identité vocale, mesurée à l'aide de techniques de 

neuroimagerie, et les représentations issues de l'apprentissage profond via l'encodage et 

le décodage. Associant neuroimagerie, modélisation computationnelle et base de 

vocalisations, cette thèse enrichit notre compréhension du traitement vocal des primates, 

éclairant les origines du langage humain et offrant de nouvelles perspectives en 

neurosciences auditives. 

 

Mots-clés : aires vocales, perception vocale, apprentissage profond, IRMf, base de 

vocalisations.  
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Abstract 

Voices are ubiquitous in our daily surroundings, essential for communication, and rich 

in non-verbal information, such as the identity, gender, or emotional state of our 

conspecifics. Various forms of vocal communication are evident across species, with many 

demonstrating sophisticated vocalization capabilities. An examination of mammals, 

particularly non-human primates, indicates shared voice processing traits. This thesis 

aims to deepen our understanding of voice processing mechanisms, employing 

computational methods, including deep learning, to shed light on voice encoding and 

vocal communication. The introduction provides an overview of primates, their evolution, 

and communication methods, as well as introduces the fundamental concepts and 

methodologies to provide the necessary knowledge for understanding the subsequent 

chapters. The first chapter delivers an in-depth comparative analysis of the vocal cortex 

in primates and draws the limits of our current knowledge on voice processing in the 

brain. The second chapter addresses the employment of computational methods to build 

a dataset of non-human primate vocalizations, providing a valuable resource for future 

studies in neuroethology. Lastly, the third chapter examines the correlation between 

brain activity related to voice identity, as measured using neuroimaging techniques, and 

representations derived from deep learning through encoding and decoding. This thesis 

significantly augments our grasp of primate auditory vocal processing by combining 

neuroimaging tools, computational modeling, and a comprehensive vocalization 

database. The insights gained offer a deeper understanding of the evolutionary 

precursors of human vocal communication and present new opportunities for auditory 

neuroscience research. 

 

Keywords: voice areas, voice perception, deep learning, fMRI, vocalization database.  
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Preface 

Voices permeate our daily lives, presenting in diverse forms such as speech, song, 

laughter, and emotional expressions. Voices are the carrier of speech, yet they convey 

extensive non-verbal information, hinting at aspects like the speaker's species, age, 

gender, emotions, and personality traits. Such vocal channels, transcending mere human 

speech, are common across numerous species. Many species excel in generating intricate 

vocalizations and decoding the information they convey. Given the emphasis on the neural 

underpinnings of vocal communication in recent theories, understanding voice 

processing's computational and evolutionary aspects in the auditory cortex is crucial. 

 

The main goal of my thesis is to deepen our understanding of voice processing 

mechanisms. It emphasizes studying the vocal cortex in primates, touching on its 

functional and anatomical dimensions, and leveraging computational techniques, notably 

deep learning, to shed new light on voice encoding and vocal communication mechanisms. 

 

This thesis is organized into four chapters, each investigating a specific facet of voice 

cerebral processing in primates. The introduction overviews primates, their evolutionary 

trajectory, and communication modalities. It also introduces the fundamental concepts 

and methodologies to provide the necessary knowledge for understanding the 

subsequent chapters. The second chapter delivers an in-depth comparative analysis of the 

vocal cortex in primates. The third chapter employs computational methods to build a 

large dataset of non-human primates' vocalizations. In the third chapter, I examine the 

correlation between brain activity related to voice identity—captured through 

neuroimaging—and the representations derived from deep learning. Finally, I synthesize 

established literature with the novel findings from my research in a general discussion.
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 Introduction 

1.   Motivation 
Voices are a constant feature in our everyday environments. We encounter the voices 

of others in various forms, whether speaking, singing, laughing, or expressing emotions 

in other vocal ways. For most people, the primary function of the voice is to facilitate 

speech and language, one of the most advanced forms of interpersonal communication. 

Beyond this, voices convey extensive non-verbal information. They can hint at the 

speaker's species and identity attributes such as gender and age, emotional states like joy 

or sorrow, and even personality nuances. Unlike unique human speech, many of these 

channels of vocal communication are shared across various species. Numerous species 

have refined their ability to produce complex vocalizations and have developed the 

cognitive and neural capabilities to interpret the information in these vocal signals. Non-

human primates, our closest evolutionary relatives, show comparable patterns in 

processing vocal information, both at the behavioral and neurological levels. A 

comparative approach, in which data from humans and non-human primates inform each 

other, is particularly promising, as it yields valuable information about the evolution of 

communication systems. 

  

Although the anatomical-functional pathway supporting sound processing across 

primate species is well understood (see Evolution of primates), our knowledge of how the 

brain transforms species-specific vocal signals into meaningful semantic representations 

needs to be better defined. In particular, how is voice identity encoded in the brain? This 

primary question has guided my thesis, aiming to deepen our understanding of the 

intricacies of voice processing mechanisms. In Chapter 1, I first draw upon prior research 

on comparative voice perception to pose the question, what is the functional role of each 

unit within the “voice patch” system in the primate brain when processing vocal 

information? Reviewing older and recent literature on voice processing in humans and 

non-human primates (macaque, marmoset) (Belin et al., 2018; Bodin & Belin, 2020), I 

propose a synthesized functional model for voice information processing.  
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Nevertheless, it is still being determined how they process identity information 

and whether or not voice patches across the primate species share similar coding 

principles. I address this challenge within the neuroimaging paradigm, which consists of 

scanning humans and non-human primates while listening to conspecific vocalizations to 

model the relationship between voice signal properties and vocal brain activity using 

computational models (Figure 1). Merging our insights on conspecific voice processing 

with these computational models offers a new path to understanding how the brain 

represents and transforms the voice. With the rise of theories emphasizing the neural 

foundation for vocal communication, a deep exploration of the computational and 

evolutionary perspectives of voice processing in the auditory cortex becomes essential to 

understand better how the brain processes vocal communication. Building on research 

that models neural representations of speech or language with deep neural networks 

(DNNs) (Kell et al., 2018; Millet et al., 2022; Caucheteux et al., 2022; Caucheteux & King, 

2022; Caucheteux et al., 2023; Giordano et al., 2023), I ask, would DNNs provide 

reasonable approximations of cerebral representations? — in particular regarding the 

processing of voice identity. To investigate this question across primate species, one 

would need to feed DNNs with a sufficient number of conspecific vocalizations (100,000s 

of samples) — a class of models that excel at learning high-level representations 

proportionally to the dataset size (LeCun et al., 2015) — as well as a sufficient number of 

corresponding vocal brain responses (10,000s of samples) to reliably span the voice space 

and reduce the notoriously high signal-to-noise ratio in neuroimaging techniques (e.g. in 

fMRI: Welvaert & Rosseel, 2013). 
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Figure 1: General paradigm used in this manuscript. The neuroimaging paradigm consists 

of scanning humans and non-human primates while listening to conspecific vocalizations to model 

the relationship between voice properties and voice areas. For example, the brain activity is 

recorded using functional magnetic resonance imaging (fMRI), and the voice areas are estimated 

by computing the contrast ‘Voc. vs. Other’, i.e., conspecific vocalizations brain activity vs. other 

vocalizations and sounds brain activity. 

 

My Ph.D. project focuses on two aspects of this paradigm. There is yet to be a large and 

labeled dataset of monkey vocalizations. To fill this gap, I describe in Chapter 2 an end-to-

end pipeline for processing vocalizations from raw recordings of marmoset monkeys, 

resulting in a large vocalization dataset. This dataset will be the first milestone in future 

studies to train efficient computational models, such as DNNs, to learn high-level 

representations of monkey vocalizations. In humans, though, although we already have 

access to large datasets of voice samples (e.g., Common Voice dataset, Ardila et al., 2020), 

there are no existent neuroimaging datasets addressing the question of voice identity 

with sufficient data. To address this void, I conducted an extensive neuroimaging 

campaign to build a suitable dataset: numerous voice stimuli (10,000s) to leverage the 

link between the computational model and the brain activity in response to voice identity; 

stimuli balanced in several voice identity features: speaker’s gender, age and identity; 

short stimuli duration (250 ms) to reduce the focus on speech content. In Chapter 3, I 

examine the correlation between brain activity evoked by voice identity and 

representations derived from deep learning. 

2.   Functional neuroimaging 
Neuroimaging, or brain imaging, uses various techniques to visualize the central 

nervous system's structure, function, or pharmacology. Researchers use functional 

neuroimaging to explore how certain brain areas relate to specific mental functions. In 

these studies, participants carry out tasks while their brain activity is recorded using tools 

like electroencephalography (EEG), magnetoencephalography (MEG), or functional 

magnetic resonance imaging (fMRI). The collected data is then analyzed to identify 

patterns and correlations between specific brain activities and the tasks undertaken. fMRI 

technique is depicted in Figure 2. 
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Figure 2: Neuroimaging technique used in this manuscript. a, fMRI maps of voice-selectivity 

highlighting the “temporal voice areas” (TVAs). Figure extracted from Pernet et al. (2015). b, 

Example of BOLD signal in response to one stimulus. c, A person about to undergo an MRI. Boxes 

around the ERF components of interest indicate the ±15 ms time window statistically tested (*P 

< 0.05; n. s., not significant). Figure extracted from Capilla et al. (2013). 

 

Since its inception in the early 1990s, functional magnetic resonance imaging (fMRI) 

has emerged as a favored method for examining human brain function. This non-invasive 

technique does not necessitate injecting tracers or exposure to X-rays, making it suitable 

for a broad spectrum of participants, including children, who can undergo multiple scans 

if needed. While fMRI boasts a high spatial resolution (approximately 2 mm), its temporal 

resolution remains relatively low, around 2 seconds (Poldrack et al., 2011). 
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2.1.   Blood flow and neuronal activity 
When participants engage in particular tasks or are exposed to certain stimuli, the 

neurons responsible for processing these stimuli become active, necessitating an 

increased oxygen supply for neuronal activity. The fMRI captures this signal by 

monitoring changes in blood flow, termed the blood-oxygen-level-dependent (BOLD) 

signal. Though the neuronal activity initiated by a brief stimulus is fleeting (measured in 

milliseconds), the subsequent BOLD response, referred to as the hemodynamic response 

function (HRF), is more protracted. An illustration of HRF is presented in Figure 3. As 

depicted, the hemodynamic response takes roughly 5 seconds to reach its maximum. This 

peak is due to the surge of oxygen-rich blood, which heightens the local concentration of 

oxyhemoglobin. The magnetic attributes of oxyhemoglobin induce local field uniformities, 

culminating in an uptick in the T2*-weighted MRI signal. As blood circulation stabilizes, 

the hemodynamic response's pinnacle subsides, and a reduction in oxyhemoglobin 

concentration triggers a subsequent dip in the fMRI signal. Roughly 15-20 seconds post-

stimulus, the hemodynamic response reverts to its initial state (Glover, 1999). 

 

Figure 3: Hemodynamic response function. 

2.2.   Experiment designs for fMRI 
 

During an fMRI experiment, participants are given a specific task, for instance, to 

localize the “temporal voice areas” (TVAs) within the human auditory cortex (Pernet et 

al., 2015). To achieve this, subjects passively listen to a sequence of both vocal and non-
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vocal stimuli as their brain activity gets recorded. Various stimuli categories are typically 

presented to the participant at distinct times, with the fMRI data being captured 

concurrently. For example, if the repetition time (TR) is set at two seconds, an fMRI scan 

that reveals the current state of brain activity is procured every two seconds. To extract 

brain activity linked to a distinct stimulus, two primary experimental setups are examined 

in fMRI studies: block and event-related designs. 

 

In the block design approach, stimuli are presented continuously for several seconds, 

which is then succeeded by a resting or baseline period of a similar duration. As the BOLD 

signal arising from a stimuli block is the aggregate of numerous individual responses, its 

amplitude is significantly larger than the signal produced by a singular, brief stimulus. An 

illustration of this block design can be seen in Figure 4. Such a design amplifies the 

nuanced differences between diverse experimental scenarios, making them more 

discernible. However, the BOLD signal derived from the block design represents a 

collective response of accumulated stimuli, offering limited insight into estimating the 

HRF associated with an individual stimulus. 

 

Figure 4: BOLD signal resulting from a block design. This simulation showcases a block design 

where a 20-second stimulus block is succeeded by a 20-second rest period. Notably, the amplitude 

of the BOLD signal in this design exceeds the amplitude of the HRF elicited by an individual 

stimulus. 

 

An event-related design offers an alternative to the block design. In this setup, rather 

than showcasing several stimuli over an extended period, individual, short-duration 



Introduction 

17 
 

stimuli are presented with intervals in between, known as inter-stimulus intervals (ISI) 

(as depicted in Figure 5). The signals resulting from the event-related design typically 

have a smaller amplitude in comparison to the block design. Depending on the length of 

the ISI, event-related designs can be classified into either slow or rapid categories. 

 

A slow event-related design utilizes an ISI that exceeds the HRF's duration, ensuring 

there is no overlap of individual hemodynamic responses. Considering the post-stimulus 

delay inherent to the BOLD signal, this design allows the hemodynamic response from a 

singular stimulus to peak and revert to the baseline. This design's advantage is that it 

facilitates estimating individual hemodynamic responses. However, its extended ISI can 

be seen as inefficient, leading to longer scanning times. 

 

A quicker ISI is adopted to mitigate this inefficiency and fit more stimuli within a 

restricted timeframe, giving rise to the rapid event-related design. This framework 

sequences various stimuli in either a fixed or randomized order. The ISI is deliberately 

varied to yield a more consistent stimulus-response, meaning the time between stimuli is 

not constant. Due to the rapid event-related design's characteristic short ISI, the HRF 

duration sees overlapped individual responses within the BOLD signal. 
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Figure 5: BOLD signal resulting from an event-related design. This simulated example 

presents three distinct stimuli, each separated by an inter-stimulus interval (ISI) of five seconds. 

Notably, the amplitude of the BOLD signal in this scenario is almost equivalent to the amplitude 

of the hemodynamic response function (HRF) elicited by a solitary stimulus. 

2.3.   fMRI data analysis 
An fMRI dataset from an MRI scanner comprises a chronological series of three-

dimensional volumes. Each volume comprises numerous small cubes, commonly known 

as voxels. Figure 6 illustrates fMRI volumes. To detect the specific brain functions linked 

to cognitive processes, e.g., pinpointing voxels associated with certain tasks, the 

responses from each experimental condition need to be estimated from the fMRI data. 
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Figure 6: Example of 3D fMRI volumes. Schematic representation illustrating the differences in 

tissue structure between human and macaque brains as captured in MRI. Figure adapted from 

Wang et al. (2022). 

 

Nonetheless, fMRI data can be contaminated with noise and may have various artifacts. 

A sequence of operations, commonly known as preprocessing, is applied to the fMRI data 

to address these issues. Typically, preprocessing of fMRI data encompasses the following 

steps (Poldrack et al., 2011): 

• Quality control: MRI scanners can produce numerous artifacts. For example, 

electrical instabilities might result in spikes, while the heartbeat or respiratory 

patterns of the subject may lead to ghosting. Techniques like principal components 

analysis (PCA) and independent components analysis (ICA) are utilized to 

eliminate such artifacts and ensure data integrity (Bodin et al., 2021). 

• Distortion correction: Echo-planar imaging (EPI) is frequently employed for fMRI 

data acquisition. However, magnetic field inconsistencies in EPI can introduce 

spatial distortions that may misalign subjects or displace activation sites. Methods, 

such as using magnetic field maps to determine the distortion extent, can help 

correct these distortions (Holland et al., 2010). 

• Motion correction: Any head movements by participants during the scan can cause 

discrepancies in the position of the brain in consecutive images. This misalignment 
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can be mitigated by motion correction or realignment, where each fMRI image in 

the series is synchronized to a reference scan (Kim et al., 1999). 

• Slice timing correction: Capturing an fMRI volume involves securing several two-

dimensional slices and assembling them to create a three-dimensional structure. As 

these slices are captured sequentially, they have a time discrepancy. This 

discrepancy is managed by designating a slice as the reference and synchronizing 

the timings of the remaining slices to it (Sladky et al., 2011). 

• Spatial normalization: Variances in individual brains pose challenges for 

population-wide brain function studies. To identify consistent patterns across 

participants, data from multiple subjects must be harmonized into a standard 

template, like the Montreal Neurological Institute (MNI) template (Cox & Hyde, 

1997). 

• Spatial smoothing: Enhancing the signal-to-noise ratio (SNR) is crucial, and to 

achieve this, high-frequency details are filtered out to diminish minuscule 

fluctuations in the image. Furthermore, spatial smoothing minimizes individual 

disparities (Mikl et al., 2008). 

Once preprocessing is completed, the fMRI data exhibits reduced noise and an 

enhanced SNR. However, the intensity of the signal triggered by the task remains faint. 

For instance, task-activated voxels' percent signal change (PSC) typically ranges from 

0.4% to 1% in block design. The PSC is even more subtle in event-related design, hovering 

around 0.1%  (Mikl & Gajdos, 2014). Due to this, statistical models are employed to 

estimate the signal and evaluate differences across experimental conditions. Both 

univariate and multivariate approaches are utilized for data analysis from participants. 

2.4.   General linear model 
The traditional statistical approach to analyzing fMRI data employs a univariate 

method. This technique operates independently on each voxel using the general linear 

model (GLM) (Friston et al., 1994). It is then applied iteratively across all brain regions to 

identify areas where the time-course is correlated with specific tasks. 

 

Estimating the GLM parameters 

The GLM is defined as follows: 

𝑌 = 𝑋𝛽 + 𝜖 (1) 
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where 𝑌 = [𝑦1, … , 𝑦𝑁]𝑇 denotes the BOLD signal time series for a specific voxel, 

representing the dependent variable with 𝑁 observations at that particular location. The 

𝑁 × 𝑘 design matrix, denoted as 𝑋, comprises 𝑘 regressors; each serves as an explanatory 

variable; The vector 𝛽 = [𝛽1, … , 𝛽𝑘]𝑇 is a column vector of 𝑘 dimensions that needs to be 

estimated, corresponding to the 𝑖-th regressor of 𝑋. The error vector 𝜖 = [𝜖1, … , 𝜖𝑁]𝑇 of size 

𝑁, captures the discrepancy for each observation that not covered by the weighted sum of 

explanatory variables. Figure 7 provides a visual representation of the GLM. 

 

To estimate the parameter 𝛽, the squared differences between 𝑌 and its estimate 𝑌̂ are 

minimized, 𝑌̂ = 𝑋𝛽̂.  𝛽̂ is obtained by 

𝛽̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 (2) 

 

 

Figure 7: Illustration of the GLM. The GLM depicts the observed BOLD signal 𝑌 as a linear blend 

of regressors complemented by an error term (𝜖). Each regressor in the design matrix arises from 

convoluting a reference HRF with the stimulus function, set to 1 during stimulus presence and 0 

otherwise (𝑋). Every component of the undetermined activation coefficients signifies the relative 

magnitude of a specific condition (𝛽). Figure reproduced from F. Pedregosa-Izquierd’s thesis 

(2015). 

 

Hypothesis testing 

After estimating 𝛽̂, hypothesis tests are carried out on contrasts (e.g. voice vs non-voice 

sounds for a voice localizer; Pernet et al., 2015). The null hypothesis is articulated as 
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𝐻0: 𝑐𝛽̂ = 0, where 𝑐 is either a vector or matrix of constants symbolizing one or multiple 

contrasts. As an example, if 𝛽̂ = [𝛽̂1, 𝛽̂2]
𝑇

 and the null hypothesis is expressed as 𝐻0: 𝛽̂1 =

𝛽̂2, which can also be conveyed as 𝐻0: 𝛽̂1 −  𝛽̂2 = 0, the contrast for testing if 𝛽̂1 differs 

from 𝛽̂2 will be 𝑐 = [1, −1]. To verify the authenticity of the null hypothesis, a t-test is 

executed, yielding a t-value and its corresponding p-value. 

 

Beyond just conducting a single t-test, it is possible to evaluate multiple contrasts using 

the F-test. For instance, when 𝛽̂ = [𝛽̂1, 𝛽̂2]
𝑇

, to concurrently test the null hypotheses 

𝐻0: 𝛽̂1 = 𝛽̂2 = 0, 𝑐 would be represented as a matrix: 

𝑐 = [
1 0
0 1

] (3) 

Following this, an F-test is conducted using 𝑐 and the estimate 𝛽̂ to deduce the statistic 

value and its p-value. 

3.   Evolution of primates 

3.1.   Primate phylogeny 

3.1.1.   Definition of primates and classification 

Primates, derived from the Latin root "primas atis," are closely related to humans and 

boast a vast diversity, making them a prime focus for understanding the nuances of 

human evolution. Linné categorized them in 1758 as a part of the order of placental 

mammals. This group encompasses over 500 species found in various regions worldwide. 

Distinctive features of primates encompass an opposable thumb, flat nails, forward-facing 

eyes that grant stereoscopic vision, a limited number of teats, and a notable brain-to-body 

mass ratio. 

 

Historically, primatology specialists employed the "Linnaean" method to divide the 

primate order into two sub-orders. This bifurcation labeled prosimians (comprising 

lemurs, lorises, and tarsiers) as the more rudimentary primates and the anthropoids 

(encompassing monkeys, great apes, and humans with larger brains) as the advanced 

group. However, this categorization has been critiqued for perpetuating a "species 

hierarchy" concept and lacking adaptability. Research indicates that tarsiiforms, a 
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subgroup within prosimians, share a closer kinship with the anthropoids, underscoring 

the call for a revamped classification system. 

 

The adoption of the cladistic phylogenetic classification in the early 1970s brought 

about a shift towards the use of the phylogenetic tree for classification. Within this system, 

groups, or clades, are considered monophyletic: they encompass a theoretical ancestor 

and all of its subsequent descendants. Consequently, the primate order's taxonomy has 

been restructured to align, as closely as feasible, with these clades. This has led to a new 

division of the order into two suborders: the Strepsirrhinians (which were previously 

classified as prosimians, barring the tarsiers) and the Haplorrhinians (previously known 

as anthropoids). 

 

Haplorrhinians, distinguished by the absence of a rhinarium (nose) and the presence 

of vibrissae (tactile whiskers), are further segmented into Tarsiiformes and Simiiformes. 

These further branch out into Platyrrhinians (or 'New World' monkeys, also called 

American monkeys) and Catarrhinians ('Old World' monkeys and hominoids, sometimes 

European and Asian monkeys). While Platyrrhines are recognized by their broad nostrils 

and elongated, prehensile tails, Catarrhines exhibit closely set nostrils that face 

downward and often do not have a tail. The graphical representation of this refined 

primate classification can be viewed in Figure 8. 

3.1.2.   Models in neuroscience 

The predominant species utilized in neuroscience, collectively termed "Non-Human 

Primates," span both New World and Old World primate categories. Their varied 

morphological features, behavioral traits, and ecological niches enable researchers to 

select the most fitting model for their investigative pursuits. For instance, the common 

marmoset has been a staple in biomedical studies since the 1960s, while the macaque, 

due to its closer phylogenetic ties to humans, is frequently employed in foundational 

research. Neuroscientific exploration of great apes is infrequent, primarily because of 

logistical and ethical constraints; most research revolves around post-mortem anatomical 

analyses. Ethological investigations into these primates are indispensable, offering 

insights into human evolutionary trajectories. The macaque, with its thoroughly mapped 

anatomy and functions, stands out as the preferred model, particularly for neuroimaging 

techniques. Macaques belong to the old-world monkeys, sharing a common ancestor with 
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humans from about 28 million years ago (Steiper & Seiffert, 2012). However, the 

marmoset is seeing renewed attention, especially in auditory neuroscience, given its 

intricate vocal interactions (Miller et al., 2016; Okano et al., 2016). Marmosets belong to 

the platyrrhine lineage, sharing a common ancestor with humans from about 49 million 

years ago (Steiper & Seiffert, 2012), emphasizing their significance in studies (Figure 8). 

 

 

Figure 8: The evolutionary relationship of extant primates. Blue line highlights the superior 

temporal sulcus, present in the majority of primate species. Red line highlights the inferior 

temporal sulcus, present in hominids (chimpanzees and humans). Divergence date estimates are 

from Steiper & Seiffert (2012). Figure reproduced from Bryant & Preuss (2018). 
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3.2.   Auditory cortex 

3.2.1.   Evolution 

Depicting primary cortical regions in mammals through a phylogenetic tree to 

underscore organizational homologies facilitates determining the hypothetical homology 

of their last common ancestor (Figure 9). This representation reveals that the broad 

spatial relationships among primary sensory areas remain consistent across mammalian 

species. In primates, these primary zones are particularly constrained in size, giving way 

to expansive higher-level associative regions (Krubitzer & Kahn, 2003; Buckner & 

Krienen, 2013). The primary auditory cortex in primates is situated within the temporal 

lobe, adjacent to the lateral sulcus. Of note, only this specific region has been identified 

across all the studied species, whereas secondary regions prove more elusive in their 

characterization and frequently bear varying nomenclature. 

 

 

Figure 9: Phylogenetic representation of the cortex and primary sensorimotor areas. The 

primary auditory cortex is highlighted in yellow. Dark blue represents the primary visual area 

(V1); light blue indicates the secondary visual area (V2); green portrays the middle temporal area 

(MT); red signifies the primary somatosensory area (S1); and orange marks the secondary 
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somatosensory area (S2). The visual cortex is shaded in blue hues, while the sensorimotor cortex 

is depicted in red. The visual movement (VM) region is illustrated in green. Figure adapted from 

(Krubitzer & Kahn, 2003; Buckner & Krienen, 2013). 

 

The extent of cortical myelination can serve as an indicator for pinpointing primary 

regions. Myelination is the process of forming a myelin sheath around select nerve fibers. 

This sheath, formed by the coiled wrapping of glial cells around the axon, facilitates faster 

nerve signal transmission. In Figure 10, areas with high myelination are marked in red for 

humans, chimpanzees, and macaques. The primary auditory cortex is visible along the 

lateral sulcus, though a segment is obscured behind the parietal operculum. 

 

 

Figure 10: Localization of the primary auditory cortex in humans, chimpanzees, and 

macaques (maps depicted are not to scale). Myelination map illustrates the distinction 

between primary regions (with high myelination) and associative areas (with low myelination). 

Data provided by the Human Connectome project, WU-Minn Consortium. 

3.2.2.   Anatomy 

Figure 11 presents a transverse section of the auditory cortex, offering a clearer view 

of its location and the medial-to-lateral gradient of primary and secondary subregions in 

three primate species: humans, chimpanzees, and macaques. 
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Figure 11: Auditory cortex across various primate species. A coronal illustrative view 

showcasing the location of the primary (A1 in black) and secondary (light grey and white) 

auditory regions. Scale bar 5 mm. Figure extracted from Hackett (2015). 

 

In humans, the primary auditory cortex (A1) aligns with Brodmann's area 41, 

positioned between the Sylvian fissure and the superior temporal gyrus (STG). It is 

specifically believed to be situated along, and even matching the contour of, Heschl's gyrus 

(Da Costa et al., 2011). Multiple interpretations of the subdivisions of the human auditory 

cortex are available. Given the challenges of applying invasive tracing and 

electrophysiological methods in humans, this might account for the variances in such 

classifications. However, a general structural arrangement becomes evident, with the 

primary cortex (or core) encircled by the secondary auditory cortex—initially, the belt, 

followed by the parabelt stretching radially towards the extremities of the STG. It is 

essential to underscore that only the primary A1 region has been consistently identified 

across all primate lineages, with the subsequent regions necessitating further 

comparative research. 

 

The hierarchical arrangement of the core, belt, and parabelt areas was first influenced 

by studies in non-human primates, especially the rhesus macaque, which serves as the 

primary model, but also research in the marmoset monkey (Eliades & Tsunada, 2019). 

Electrophysiological and fMRI examinations reveal that the medial and lateral belts of the 

marmoset auditory cortex house neurons responsive to vocalizations (Kajikawa et al., 

2008; Rajan et al., 2013; Toarmino et al., 2017). 

 

The auditory cortex (AC) in primates is structured in a hierarchical sequence of parallel 

fields. The primary core fields are encompassed by secondary belt and parabelt fields. 



Introduction 

28 
 

These secondary and tertiary regions process signals over extended durations, 

demonstrating increased sensitivity to specific intricate attributes and their combinations 

(Morel et al., 1993; Rauschecker, 1998; Hackett et al., 1998, 2007; Formisano et al., 2003; 

de la Mothe et al., 2006; Upadhyay et al., 2007; Bendor & Wang, 2008; Moerel et al., 2014; 

Cammoun et al., 2015; Schönwiesner et al., 2015; Tani et al., 2018; Besle et al., 2019). The 

core typically embodies two or three fields organized tonotopically, as depicted in Figure 

12. 

 

It remains ambiguous whether the A1 in humans aligns precisely with the A1 in other 

species (Ruthig & Schönwiesner, 2022). While cytoarchitectonic divisions have been 

identified in humans (Morosan et al., 2001), studies examining its structure have 

identified parallels with monkeys (Sweet et al., 2005; Fullerton & Pandya, 2007; Smiley et 

al., 2013). However, whether these regions share homology with non-human primate 

fields A1, R, and RT remains to be determined (Brewer & Barton, 2016; Besle et al., 2019). 

Active debates persist regarding the specific tonotopic map of the human auditory cortex 

and how it relates to the tonotopy in non-human primate auditory cortices (Baumann et 

al., 2013; Schönwiesner et al., 2015; Besle et al., 2019). 

 

 

Figure 12: Schematic comparison of early auditory fields and adjacent voice-selective 

regions across various species. The auditory core, depicted in dark grey, and the surrounding 

belt fields, in light grey, exhibit a similar layout and tonotopic patterns in these mammals, though 

direct homologies remain unconfirmed. (a) Represents the mouse AC based on Stiebler et al. 

(1997). (b) Portrays the marmoset AC referencing Tani et al. (2018) and voice-selective zones 

from Sadagopan et al. (2015). (c) Illustrates the macaque AC per Hackett and colleagues (2001), 
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with voice-selective areas derived from Petkov et al. (2008, 2009). (d) Depicts human auditory 

fields as per Glasser et al. (2016) and voice-selective zones from Belin et al. (2000). Labels include 

A1, primary auditory cortex (termed auditory field 1 in humans); A2, secondary auditory cortex; 

AAF, anterior auditory field; AL, anterolateral belt; CL, caudolateral belt; CM, caudomedial belt; 

CPB, caudal parabelt; DP, dorsoposterior field; LB, lateral belt; MB, medial belt; ML, mediolateral 

belt; PB, parabelt; R, rostral field; RM, rostromedial belt; RPB, rostral parabelt; RT, rostrotemporal 

field; RTL, rostrotemporal lateral belt; RTM, rostrotemporomedial belt; V, voice selective areas. 

Figure reproduced from Ruthig & Schönwiesner (2022). 

 

In summary, both in humans and monkeys, the auditory cortex structure reveals a 

functional hierarchy. Here, information primarily flows from the core region to more 

advanced regions (core > belt > parabelt > auditory related), moving from the lateral 

sulcus towards the ventral areas of the temporal lobe and then to associative regions 

beyond the temporal lobe. The discussed rostrocaudal connection gradient suggests a 

broader cortical division into dorsal and ventral streams for processing intricate sounds 

akin to what is observed in the visual system (Figure 13). The ventral stream, which links 

the rostral temporal lobe to the prefrontal cortex, likely plays a role in sound 

identification, whereas the dorsal stream seems to handle spatial localization and the 

sensorimotor representation of sounds (Kaas & Hackett, 2000; Rauschecker & Tian, 2000; 

Rauschecker & Scott, 2009; Rauschecker, 2012). 

 

Balezeau et al. (2020) leverage a common MRI technique called diffusion-tensor 

imaging (DTI) to estimate the axonal (white matter) organization of the brains of 

macaques, chimpanzees, and humans. They echoed key findings from prior studies, in 

particular, a more dominant dorsal pathway – the arcuate fasciculus (AF) – in humans 

(Anwander et al., 2007; Rilling et al., 2012; Eichert et al., 2019), a more pronounced 

ventral pathway in chimpanzees (Rilling et al., 2012), a significant ventral pathway in 

macaques (Rilling et al., 2008), and a balanced ventral pathway (Figure 13, highlighted in 

green) observed across all three species (Rilling et al., 2008; Rilling et al., 2012). Insights 

into AF evolution drawn from functionally defined auditory regions show homologous 

ventral (depicted in dark green) and dorsal (in purple) pathways stemming from the AC 

in all three species. Notably, the AF segment appears left-lateralized in humans, a 

characteristic not as pronounced in nonhuman primates. These observations lend 

credence to the “primate auditory prototype hypothesis” proposed by the authors, 
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suggesting that the common ancestors of humans, apes, and monkeys may have had 

symmetrical dorsal pathways that linked auditory areas in the temporal lobes with the 

inferior frontal cortex (IFC). 

 

Figure 13: Comparative representation of auditory dorsal and ventral pathway strength 

and lateralization in macaques, chimpanzees, and humans. A visual summary of the dorsal 

(in purple) and ventral (in dark green) pathways for each species juxtaposed with earlier findings 

(represented in light yellow and light green). Figure extracted from Balezeau et al. (2020). 

Abbreviations: AF, arcuate fasciculus; IFG, inferior frontal gyrus; AC, auditory cortex; STG, 

superior temporal gyrus; LS, lateral sulcus; STS, superior temporal sulcus; MTG, middle temporal 

gyrus. 

3.3.   Vocal production 

3.3.1.   Source-filter theory 

Vocal production encompasses actions executed by organs responsible for generating 

sound, including the lungs, larynx, nose, and mouth. The process initiates with generating 

a sound source, which subsequently experiences filtering by the organs specialized for 

this task. Initially recognized and detailed in humans, this mechanism has been termed 
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the "source-filter theory of voice production" (Fant, 1960; Fitch, 2000; Taylor & Reby, 

2010). 

 

The sound production mechanism is bifurcated into two primary phases (Figure 14). 

The initial phase is the "source", distinct for every individual, encompassing the larynx 

and all sub-laryngeal and laryngeal structures. The subsequent phase is the "filter", 

denoting the supra-laryngeal vocal tract that links the larynx to the mouth and nose 

openings, facilitating sound emission. 

 
Figure 14: Illustration of the source-filter model of voice production. (a) Vocal sounds 

emerge from a sound source within the larynx, subsequently shaped by the vocal tract. (b) 

Formants arise from bandpass filters, operating as a frequency “window” to filter specific 

frequencies selectively. Figure reproduced from Fitch (2000). 

 

During the initial source stage, the lungs provide the necessary airstream, and the 

larynx modulates this by governing the vocal fold movements. Anchored at the front by 

the thyroid cartilage and at the rear by the arytenoid cartilage, the vocal folds' actions are 

intricate (Fitch & Hauser, 1995). As the lungs expel air, biomechanical forces separate and 

converge the vocal folds. Such forces encompass the Bernoulli force, generated by the 

airstream moving between the folds, and the inherent elasticity of the folds themselves 

(van den Berg et al., 1957). The fluctuating air pressure in the larynx stems from the 

alternating opening and shutting of the folds. This movement rate sets the fundamental 

frequency, termed F0 (Fitch & Hauser, 1995; Taylor & Reby, 2010). The F0 is a pivotal 

acoustic metric influencing the pitch perception of a vocal sound. The source signal also 

yields other features, including rhythm, length, and volume. 
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The vocal tract, spanning from the larynx to the mouth and nasal cavity openings, is the 

site of the filtering process. Upon sound generation at the source, the vocal tract functions 

as a selective filter, either amplifying or attenuating specific frequencies from the source 

signal (Figure 14). These particular frequencies align with resonant frequencies, 

commonly termed formants. The final emitted signal is a composite of these formants 

(Fant, 1960). 

3.3.2.   Application of the source-filter theory to monkeys 

While the "source-filter theory" was initially posited for human speech production, 

many studies have endorsed its relevance in explaining the vocal production of non-

human primates (Rendall et al., 1998, 1999; Fitch, 2000). Research has shown that 

distinct acoustic structures of primate vocalizations are multifunctional. They not only 

distinguish between various call types but also relay information about the caller's 

identity, gender, and social affiliation (Rendall et al., 1998). For instance, one investigation 

highlighted the ability of macaque vocal tracts to uniquely alter the spectral structure of 

coo calls. Such modifications facilitate individual identification based on acoustic 

variations (Rendall et al., 1998). 

 

Comparative anatomical examinations of larynx structures have revealed that both 

human infants and non-human primates possess a high-positioned larynx. This 

positioning suggests a shared inability to articulate until later in childhood when the 

larynx descends. However, it is widely believed that such descent does not occur in non-

human primates (Negus, 1950). However, recent research has challenged the 

longstanding belief that larynx position directly correlates with vocal flexibility (Boë et 

al., 2017; Fitch et al., 2016). The "peripheral" hypothesis, predominantly propagated by 

Lieberman (Lieberman et al., 1972; Lieberman et al., 1969), is central to this discussion. 

This theory posits that the constrained nature of non-human primate vocalizations is a 

direct consequence of their vocal tract anatomy. Specifically, the pharynx cavity, which 

varies based on the larynx's vertical position, is thought to influence the diversity of 

achievable sounds significantly. Contrary to this, recent studies conducted on macaques 

(Fitch et al., 2016) and baboons (Boë et al., 2017) dispute the "peripheral" hypothesis, 

suggesting that, anatomically speaking, non-human primates have the potential to 
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produce a sound range comparable to humans. For example, marmosets possess a rich 

array of vocalizations, which will be explored further in the subsequent section. 

3.3.3.   Human vocal repertoire 

Humans employ vocal communication as a primary mode of interaction, crucial for 

establishing and maintaining social relationships, exchanging information, and 

expressing emotions and intentions (Zhang et al., 2016). Their sophisticated 

communication system has evolved to cater to the multifaceted demands of social 

coordination, collective action, and cultural transmission (Smith et al., 2010). 

 

Speech is the most recognized form of human vocalization, exhibiting a complex 

structure with varied rhythm, pitch, and timbre. This is organized into phonemes, 

morphemes, words, and sentences that convey different meanings in varied contexts. 

While speech can be broken down into numerous languages worldwide, its elemental 

features, like syllables and tonal variations, are universally present (Everett, 2005). 

 

Besides speech, socially relevant information in voices, vocalizations, and voice 

perception is thus one of the significant sources of non-verbal and paraverbal auditory 

communication (Belin et al., 2004; Belin et al., 2011). For instance, laughter serves as a 

social bonding tool and a method to signify amusement or relief (Figure 15) (Scott, 2014). 

Crying, starting from infancy with basic hunger or discomfort signals, matures into a 

broader emotional expression spectrum in adulthood, from sorrow to joy (Figure 15) 

(Bell & Ainsworth, 1972). Furthermore, unlike uniquely human speech, these more basic 

channels of vocal communication are shared among many species (Nielsen & Rendall, 

2018). This arguably makes the nonverbal channel of vocalization an even more powerful 

medium of social communication. 

 

Singing is another distinct human vocalization, transcending mere speech by 

combining linguistic content with musical elements. It plays a pivotal role in cultural 

expression, religious rituals, and emotional self-expression (Welch et al., 1994). 

 



Introduction 

34 
 

Infants exhibit a unique set of vocalizations called babbling, which precedes speech. 

This babbling consists of repetitive, speech-like syllables and is a universal phenomenon, 

setting the foundation for later language development (Oller & Eilers, 1988). 

 

Humans display an array of vocal modifications based on the situation and audience. 

For instance, in environments with increased background noise, humans instinctively 

raise their voices, known as the Lombard effect, to enhance speech intelligibility (Lane & 

Tranel, 1971). Humans also exhibit turn-taking in conversations (Sacks et al., 1978), with 

coordinated timing to avoid overlap and ensure a fluid exchange of ideas, echoing the 

antiphonal calls of marmosets (Miller et al., 2009). 

 

The human vocal repertoire is diverse and adaptive, shaped by both evolutionary 

pressures and cultural nuances, enabling intricate communication within their complex 

social structures. 
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Figure 15: Examples of human voices. Waveforms and spectrograms demonstrating acoustic 

features of infant cry, infant laugh, and adult (female) cry sounds. While all types of vocalizations 

presented here have similar frequency ranges, the fundamental frequency (F0) of the infant cry 

(522 Hz) and infant laugh (562 Hz) is higher than that of the adult female cry (403 Hz). Patterns 

of burst duration also vary across sound types. Figure reproduced from Frühholz and Belin 

(2018). 

3.3.4.   Macaque vocal repertoire 

In their natural environment, macaques utilize vocalizations to manage and harmonize 

group activities, employing various calls. Their vocal sounds can be grouped into 12 to 16 

categories, varying according to the situation and emotional drive (see Figure 16 for 

examples) (Rowell et al., 1962; Hauser et al., 1991; Hauser et al., 1993). Field studies using 

the head-turning method to play back sounds have shown preferences in macaques for 
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conspecific (CV) and heterospecific vocalizations (HV) (Ghazanfar et al., 2001; Hauser et 

al., 1994), though these conclusions have faced some contention (Fitch et al., 2006; Teufel 

et al., 2010). 

 

Early studies in Japanese macaques revealed their ability to discriminate various 

conspecific vocalizations (CV), especially from the “coo” class, more efficiently than other 

species (Beecher et al., 1979; Zoloth et al., 1979). However, later research suggested a 

nuanced transition between different CVs within the “coo” and “screams” classes (Rowell 

& Hinde, 1962; May, Moody, et Stebbins, 1988). The variability in each class may convey 

distinct information (Christison-Lagay et al., 2014). Macaques can discern identity from 

CV (Gouzoules et al., 1984; Hauser, 1991) and are sensitive to changes in formant 

frequency, which may relate to perceived body size (Fitch & Fritz, 2006; Fitch, 1997; 

Ghazanfar et al., 2007). While macaques exhibit a modest difference in body size between 

sexes, it is uncertain if they can discern gender based on conspecific vocalizations (CV). 

 

 

Figure 16: Examples of macaque vocalizations. Figure extracted from Averbeck and 

Romanski (2006). 

3.3.5.   Marmoset vocal repertoire 

Marmosets, along with other primates, employ vocal communication in diverse 

situations, including predator evasion, self-defense, group travel, and food foraging 

(Tomasello & Zuberbühler, 2002). Additionally, they vocalize for territorial reasons and 

specific contexts tied to social interactions, play, and sustenance (Seyfarth & Cheney, 

2003). Given the dense vegetation in which marmosets reside, their visual communication 

is restricted. They have honed a sophisticated vocal system to communicate effectively 

across distances and through visual barriers to overcome this. 

 

Among the various calls, marmosets produce trills, and chirps are the most prevalent. 

Trills, characterized as extended whistled calls with sinusoidal frequency modulation, 
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function as intragroup contact calls (Bezerra & Souto, 2008). In contrast, chirps consist of 

short sequences of evenly spaced notes. Distinctively, the phee call is a prolonged 

intragroup contact call with a steady tone. It varies in form, such as the small phee, the 

long phee, and the loud shrill (Agamaite et al., 2015; Epple, 1968). The latter is emitted 

when marmosets are either separated from their group or marking territory (Bezerra & 

Souto, 2008; Miller & Wang, 2006). Another call, the twitter, is a succession of open-

mouthed notes with ascending frequency, often used during encounters with other 

groups (Bezerra & Souto, 2008). 

 

Additionally, marmosets have a range of alarm calls for atypical situations, 

encompassing sounds like tsiks, see or seep calls, screams, and chatters or cackles. They 

also generate non-melodic vocalizations, such as coughs, indicative of their anxious state. 

 

Marmoset infants possess a unique vocalization known as the infant cry or nga, which 

evolves into mature sounds like phee call. Notably, marmosets can fuse vocalizations, 

creating combinations like cough-eks and trill-phees. Mirroring humans, they adjust their 

call's volume based on the perceived proximity of their audience (Choi et al., 2015) and 

tweak certain sonic properties in their reciprocal calls, termed antiphonal calls. These 

dialogic calls between members of the same species resemble human conversational 

patterns (Figure 17) (Miller et al., 2009). 
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Figure 17: Example spectrograms of mammalian vocal communication. Spectrograms show 

acoustic features of (a) human speech, (b) a marmoset call, and (c) mouse ultrasonic vocalizations. 

All panels show longer vocalizations consisting of phonemes of varying acoustic complexity. 

Different acoustic components are highlighted (sweeps, harmonics, etc.). Figure reproduced from 

Ruthig & Schönwiesner (2022). 

3.4.   Vocal perception 
Human and non-human primates utilize vocalizations to convey diverse information 

about external situations, such as threats, or to interact with others in various scenarios, 

including aggression, maternal actions, bonding exchanges, and beyond. Additionally, 

they heavily depend on these sounds to discern details about the vocalizer's identity, 

including aspects like gender, age, how well they are known, and other traits. Hence, 

precisely interpreting species-specific calls is vital for correctly understanding their social 

surroundings, even when visual indicators might be missing. 

 

Perceiving vocal sounds has been a pivotal part of communication for numerous 

species long before the evolution of contemporary language. This positions it as a 

significant avenue to delve into the links between animal communications and the origins 

of human speech. Evidence suggests that humans and other primates share similarities in 
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perceiving voices, gleaning essential data from these sounds. Voice perception 

encompasses the ability to extract details from conspecific (from the same species) and 

heterospecific (from different species) vocalizations, including identifying the species, 

recognizing individual identities, and determining gender, along with interpreting the 

underlying emotions and intentions. While the ability to process spoken language is a 

human-specific trait, the perception of voice spans multiple species. Voice and spoken 

language are separate entities; the voice acts as the vessel transmitting speech details. 

Even without speech, the voice alone can relay much social and individual-specific 

information (Belin, 2018). 

 

Humans have an exceptional ability to extract a broad range of information from vocal 

sounds  (Belin et al., 2004; Belin et al., 2017). Through these auditory cues, one can 

identify speech, ascertain the identity, detect emotions, and even infer personality traits. 

As quoted, “We are all experts in voice” (Latinus et al., 2011). Research indicates that 

humans can effortlessly distinguish voices amid a sea of sounds. Even in brief sound 

intervals as short as 4 milliseconds, listeners have the aptitude to differentiate voices from 

other auditory stimuli, with their competence greatly exceeding mere guesswork (Suied 

et al., 2014). Intriguingly, this acumen in voice recognition does not transpose to other 

sound classifications within analogous durations; here, success rates merely hover 

around chance. When tasked to pinpoint specific auditory elements amidst distractors, 

individuals exhibit an amplified proficiency when the sought-after sounds are vocal 

(Isnard et al., 2016). This consistent pattern across diverse test conditions emphasizes 

voices' distinctive role in our auditory discernment. 

 

This behavioral inclination towards the human voice finds its reflection in the neural 

pathways. The human auditory cortex, particularly the regions in the superior temporal 

gyrus (STG) and the superior temporal sulcus (STS), both anteriorly and posteriorly 

aligned with the primary auditory cortex, contains specialized zones termed “temporal 

voice areas” (TVA) (Belin et al., 2000; Belin et al., 2002; von Kriegstein et al., 2004; Pernet 

et al., 2015). These regions exhibit an augmented fMRI reaction to vocal stimuli, 

irrespective of their association with speech, in contrast to non-vocal auditory categories 

such as environmental sounds or heterospecific vocal utterances (HVs) (Belin et al., 2000; 

von Kriegstein et al., 2004; Fecteau et al., 2004; Agus et al., 2017). 
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The TVAs, the auditory equivalents to the visual cortex's “face areas” (Kanwisher et al., 

1997; Haxby et al., 2000; Tsao et al., 2006; Freiwald et al., 2009; Hesse et Tsao, 2020), 

exhibit intricate structuring. Their precise anatomical positioning can fluctuate among 

individuals. However, certain research posits that they can be delineated by three “vocal 

patches” along the bilateral STG/STS: aTVA, mTVA, and pTVA (Pernet et al., 2015) (Figure 

18a). Even though the overall activity in the TVAs is largely bilateral, some individuals 

manifest an asymmetry, with the right side of the temporal lobe displaying a heightened 

voice sensitivity in 33% of cases, compared to the left's 13% (Pernet et al., 2015). 

Additionally, the cerebral processing of voice extends beyond the auditory cortex, 

encompassing various prefrontal regions, notably the bilateral inferior frontal gyrus 

(Fecteau et al., 2005; Pernet et al., 2015; Aglieri et al., 2018) (Figure 18b). 

 

Figure 18: The human cerebral ‘voice patches’. a, The TVAs in the human temporal lobe. Figure 

extracted from Pernet et al. (2015). b, The FVAs in the human frontal lobe. Figure extracted from 

Aglieri et al. (2018). 

 

The auditory cortex of macaques has been extensively explored using a variety of 

techniques (Kaas et al., 1999; Rauschecker, 1998; Ghazanfar et al., 2004; Hackett, 2011; 

Romanski et al., 2009; Rauschecker et al., 2009; Ghazanfar et al., 2014). 

Electrophysiological recordings from awake animals indicate that neurons in the belt and 

parabelt areas of the secondary auditory cortex exhibit strong sensitivity to CVs (Tian et 

al., 2001), with increasing latencies and selectivity progressing in the caudo-rostral 

direction toward the temporal pole (Kikuchi et al., 2010; Fukushima et al., 2015). The 
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pronounced sensitivity of temporal lobe regions to CVs has been corroborated using 

whole-brain metabolic imaging techniques (Poremba et al., 2004; Gil-da-Costa et al., 

2006;). With the advancement of fMRI in macaques, comprehensive cerebral estimates of 

CV sensitivity have been obtained using scanning protocols similar to those employed in 

humans. A macaque vocal area demonstrating responses analogous to human TVAs, i.e., 

favoring macaque CVs over other natural or control sound categories, has been identified 

(Petkov et al., 2008) (Figure 19). Employing fMRI-guided electrophysiology in the vocal 

area, it was shown that this region contains vocal cells, meaning individual neurons 

displaying vocal selectivity, akin to observations in facial patches of the visual cortex. 

 

Figure 19: Vocal areas in the macaque brain. a, Functional MRI of the macaque reveals at least 

one vocal area (yellow arrow) with a preference for CVs in the anterior temporal lobe. b, The 

macaque's vocal area appears to be situated in a location not anticipated when drawing an analogy 

with human activation patterns. 

 

A recent study by Bodin et al. (2021) unveiled a striking functional parallel between 

humans and macaques concerning the organization of the auditory cortex, especially 

within high-level areas dedicated to voice processing (Figure 20). Employing a uniform 

experimental procedure, humans and conscious macaques were examined through 3T 

fMRI scanning as they passively listened to an array of auditory stimuli, including human 

voices, macaque calls, marmoset calls, and other non-vocal sounds. The study found that 

both species possess voice-selective regions within the anterior temporal lobe that 

resonate specifically with vocalizations of their kind. Across 16 stimulus categories, A1 

exhibited robust response patterns in both species. Notably, the correlation between 

hemispheres was particularly pronounced in humans, while it was barely significant in 

macaques. 
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Figure 20: Functional homology in the cerebral processing of vocalizations by macaques 

and humans. fMRI data suggests that humans and macaques possess bilateral voice-specific 

regions in the anterior temporal lobe that favor conspecific vocalizations and process them 

similarly. Figure reproduced from Bodin et al. (2021). 

 

Recently, marmosets have become increasingly popular subjects for neuroimaging 

studies. Their small stature allows for the use of high-field rodent MRI systems, providing 

enhanced signal and spatial precision. In a 2015 study involving six anesthetized 

marmosets, researchers explored the potential for voice-sensitive regions that prefer 

conspecific vocalizations. They utilized three types of stimuli: conspecific vocalizations 

(CVs), phase-scrambled CVs, and vocalizations from different animal species (Sadagopan 

et al., 2015).  

 

To produce the phase-scrambled vocalizations, they derived the power spectrum from 

marmoset calls across six logarithmically spaced bands and randomized the phases of 

these bands. Subsequently, they merged them to create the final scrambled sounds. The 

data revealed that areas along the lateral sulcus, close to the temporal pole, displayed a 

particular affinity for CVs. Notably, the utmost rostro-lateral section demonstrated the 

strongest preference, as highlighted in Figure 21. 
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This pattern aligns with observations in macaques, hinting at a similar structure-

function link in both species concerning the interpretation of conspecific vocalizations. 

This suggests that the cortical specialization for vocalization processing might have 

evolved roughly 40 million years ago in a shared ancestor. 

 

Figure 21: A caudal-rostral gradient for vocalization selectivity in the auditory cortex. The 

map displaying the differential response is projected back into anatomical coordinates, showing 

the gradient from caudal to rostral regions and indicating the location of the most selective area 

for vocalizations within the gradient. The green arrow and orange regions correspond to regions 

most selective for conspecific vocalizations. Figure reproduced from Sadagopan et al. (2015). 

 

Another recent study by Stefan Everling, with ultrahigh field fMRI in awake marmosets, 

found a frontotemporal network, including subcortical regions, activated by conspecific 

vocalizations in marmosets (Jafari et al., 2023). They used three categories of auditory 

stimuli: CVs, time-scrambled CVs, and non-vocal sounds, including natural sounds, 

artificial sounds, and other animals. According to their findings in Figure 22, the 

activations did not show a caudal-rostral gradient (Figure 21) but rather at least 3 patches 

that may be homologs of the human voice patches. 
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Figure 22: Comparison of marmoset and human networks. Left: Volumetric probabilistic 

functional map for vocal > scrambled vocalizations and vocal > nonvocal in marmosets overlaid 

on slices of anatomical MR images. Vp, vocal posterior, Vm, vocal medial, Va, vocal anterior. Right: 

Similar layout but for probabilistic functional human atlas for the voice and language localizer. 

TVAs, temporal voice areas. Figure extracted from Jafari et al. (2023). 

 

These studies demonstrate a consistent functional organization of higher-level 

auditory cortex among various primate species. According to Belin and colleagues, this 

suggests the existence of a 'primate voice patch system' that specializes in processing 

conspecific vocalizations in primates (Belin et al., 2018; Bodin & Belin, 2020). 

4.   Representation learning with 

autoencoder-based models 
In machine learning (ML), representation learning (RL) encompasses techniques that 

transform raw input signals into meaningful representations. When RL systems deploy 

multiple intermediate representations, it is termed deep learning (DL). RL is sometimes 

utilized purely for extracting features, and a subsequent machine learning system is 

employed for predictions, known as feature learning (Lee et al., 2009). In other scenarios, 

the RL system directly conducts inferences. Deep neural networks (DNNs) have recently 

surpassed other techniques in tasks like speech recognition (Hinton et al., 2012), visual 

object recognition (Krizhevsky et al., 2012), and natural language processing (Collobert & 

Weston, 2008), amplifying research and interest in this domain. Much of RL's foundation, 

particularly the principles derived from artificial neural networks (ANNs), drew 

inspiration from initial computational neuroscience models focused on neurons and their 

networks. Consequently, RL systems offer a more biologically grounded perspective than 

other machine learning systems (Bengio et al., 2014). 
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Autoencoder (AE) models in machine learning serve a dual purpose: firstly, they 

encode input data into a condensed latent vector, and subsequently, they decode it back 

to its original dimensionality. This process can be split into the encoder and the decoder, 

each offering many variations. In this section, I will delve into the diverse AE models we 

explored to extract a comprehensive yet compact representation from a dataset of vocal 

signals. 

4.1.   Principal component analysis 
Principal component analysis (PCA) is a fundamental method for representation 

learning. Simply put, PCA determines the primary directions in which a dataset varies the 

most. It works by computing a linear transformation; 

ℎ = 𝑓(𝑥) = 𝑊𝑇𝑥 + 𝑏 (4) 

where 𝑥 is the input data. Here, the columns of matrix 𝑊 represent the main orthogonal 

directions of maximum variance in the dataset. 

 

The new features or “principal components” are uncorrelated. This transformation 

allows the data to be represented in terms of these principal components. Less significant 

components—explaining the most minor variance—are typically discarded to reduce 

dimensionality. The resultant representation, often with fewer dimensions, can be more 

practical than the original data. 

 

In Chapter 3 of our fMRI study, we established a baseline by investigating using PCA as 

a linear encoder to reduce the dimensionality of the input vector x. This approach was 

chosen because it has been demonstrated that a linear autoencoder with a d-dimensional 

hidden layer projects data in the same subspace as the one spanned by the d-first 

eigenvectors of a PCA (Plaut et al., 2018). 

4.2.   Autoencoder 
Autoencoders (AEs), a specific category of Deep Neural Networks (DNNs), are 

formulated to learn a non-linear transformation that maps data from the signal domain 

into a reduced latent space during the encoding phase. Subsequently, they employ an 

inverse non-linear transformation through the decoding phase to reconstruct the latent 
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coefficients within their original domain (Vincent et al., 2010). This process is illustrated 

in Figure 23a. 

 

Predominantly, they have been leveraged as an unsupervised method for reducing data 

dimensions. For instance, in the study by Hinton & Salakhutdinov (2006), AEs were tested 

on the grayscale images sourced from the Olivetti faces dataset. They juxtaposed the 

images reconstructed via AE with those achieved through the PCA, and they evaluated 

based on the same compression metric: the count of principal components in PCA versus 

the neuron count in AEs' bottleneck layer. Their findings highlighted that AEs 

substantially surpassed PCA for the datasets in question, generating images from latent 

descriptors that were profoundly analogous to the originals in quality and mean squared 

error (MSE) metrics (Figure 23b). 

 

The encoder captures the input data 𝑥 and maps it to a latent space representation 𝑧. 

The decoder then uses 𝑧 to reconstruct the input, denoted as 𝑥̂. 

Given an input x, the encoder function, parameterized by weights 𝜙, maps it to a latent 

space 𝑧: 

𝑧 = 𝑓𝜙(𝑥) (5) 

The decoder, parameterized by weights 𝜃, then tries to generate 𝑥̂ from 𝑧: 

𝑥̂ = 𝑔𝜃(𝑧) (6) 

The training objective of an autoencoder is to adjust the parameters 𝜙 and 𝜃 to minimize 

the reconstruction error: 

𝐿(𝜙, 𝜃, 𝑋) =  ∑ ∣∣ 𝑥𝑖 − 𝑥̂𝑖 ∣∣2
𝑁

𝑖=1
(7) 

where 𝑥𝑖 ∈ {𝑥1, … , 𝑥𝑁} and 𝑁 is the total number of training examples. 
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Figure 23: Shallow and deep AE. a, General architecture of shallow and deep autoencoders. The 

PCA can be seen as a shallow linear AE. Figure extracted from Fanny Roche’s thesis (2023). b, Top 

to bottom: Random samples from the test data set; reconstructions by the autoencoder; 

reconstructions by the PCA. PCA gave much worse reconstructions. Figure extracted from Hinton 

& Salakhutdinov (2006). 

4.3.   Variational autoencoder 
Variational autoencoder (VAE), introduced by Kingma and Welling (2014), represents 

a powerful approach in deep learning that uses neural networks for unsupervised 

representation learning from intricate data. Models of this nature have been widely 

employed for the synthesis of a diverse range of images: digits from the previously 

mentioned MNIST dataset (Kingma & Welling, 2014; Salimans et al., 2014), facial 

representations (Kingma & Welling, 2014; Rezende et al., 2014; Kulkarni et al., 2015; 

Higgins et al., 2017), compact images of tangible objects from the CIFAR dataset 

(Krizhevsky, 2009; Gregor et al., 2015), and even 3D renditions of chairs (Kulkarni et al., 

2015; Higgins et al., 2017). They have also been used in forecasting subsequent sequences 

in static images (Walker et al., 2016). While VAEs are good at producing high-resolution 

images, they occasionally exhibit a mild blur. Their capacity to define a representation 
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space with notable characteristics, mainly due to the constraints imposed on the latent 

dimensions leading to a degree of decorrelation, positions them as promising tools for 

discerning valuable control parameters for synthesis. 

 

Similar to their use in image synthesis, VAEs have recently gained traction in the audio 

domain. Initially, they were employed for the modeling, transformation, and synthesis of 

speech signals (Blaauw & Bonada, 2016; Hsu et al., 2017; Akuzawa et al., 2018). In a 

somewhat related context, VAEs have been utilized to model clean speech signals to 

enhance speech in noisy environments (Bando et al., 2018; Leglaive et al., 2018). 

Moreover, these models have applications in synthesizing musical sounds (Esling et al., 

2018; Roche et al., 2021). 

 

VAEs can be seen as a probabilistic/generative extension of standard AEs as, instead of 

deterministically mapping the input vector 𝑥 to a unique latent vector 𝑧 as done in AEs, 

the VAE encoder network maps 𝑥 into the parameters of a conditional distribution 

𝑞𝜙(𝑧|𝑥) of 𝑧. Similarly, the decoder network maps a vector of latent coefficients 𝑧 into the 

parameters of a conditional distribution 𝑝𝜃(𝑥|𝑧) of 𝑥 (Figure 24a). VAEs are thus 

considered as generative models as they try to capture the probability distribution of the 

data. Importantly, in a VAE, a prior can be placed on the distribution of the latent variables 

𝑧 so that they are well-suited for the control of the generation of new data, as exemplified 

by the speech interpolation in Figure 24b. 

 

Given an input 𝑥, the encoder function parameterized by 𝜙, ascertains the parameters 

(mean 𝜇 and variance 𝜎2) of the distribution over the latent variables 𝑧: 

𝑧 ∼ 𝑓𝜙(𝑥) (8) 

Here, 𝑓𝜙(𝑥) is often modeled as a multivariate normal distribution using 𝜇 and 𝜎2. 

The decoder, characterized by 𝜃, reconstructs 𝑥̂ from the sampled 𝑧: 

𝑥̂ = 𝑔𝜃(𝑧) (9) 

The training objective for the VAE combines the reconstruction loss (difference between 

𝑥 and 𝑥̂) and a regularization term: 

𝐿(𝜙, 𝜃, 𝑋) =  ∑ (∣∣ 𝑥𝑖 − 𝑔𝜃 (𝑓𝜙(𝑥𝑖)) ∣∣2+ 𝐷𝐾𝐿(𝑓𝜙(𝑥𝑖) ∣∣ 𝑝(𝑧𝑖)))
𝑁

𝑖=1
(10) 
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Here, 𝑥𝑖 ∈ {𝑥1, … , 𝑥𝑁}; 𝑁 is the total number of training examples; 𝐷𝐾𝐿(𝑓𝜙(𝑥) ∣∣ 𝑝(𝑧)) 

represents the Kullback-Leibler divergence, which measures the difference between our 

latent space distribution and a standard normal distribution 𝑝(𝑧). 

 

This loss function bears a clear interpretation. Since the KL divergence is always non-

negative, 𝐿(𝜙, 𝜃, 𝑥) can be considered as a lower bound on the data likelihood (Doersch, 

2021). This is often called the “Evidence Lower Bound” or ELBO. 

 

For training VAEs, one can use gradient-based optimization techniques, especially 

when 𝑓𝜙(𝑥) represents a multivariate normal distribution with parameters 𝜇 and 𝜎2 

(Kingma & Welling, 2014). The Adam optimizer, proposed by Kingma and Ba (2015), is a 

popular choice in this context. 

 

Figure 24: Variational autoencoder. a, VAE's general architecture with grey dotted arrows 

denoting the sampling process. Figure reproduced from Roche et al. (2021). b, 200 ms segment 

interpolation from a male /ey/ to a female /ay/ using both VAE and AE. The VAE transition 

highlights pitch and formant contour changes, whereas AE demonstrates a more direct feature 

space interpolation. Figure extracted from Hsu et al. (2017). 
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 Chapter 1 

Comparative study of the vocal cortex in 

primates 
Voices play a pivotal role in communication among humans and other primates, encoding 

essential information such as gender, identity, and emotion. The ability to interpret these 

vocal cues is supported by a specialized brain system comprising interconnected cortical 

areas. These regions work together to form increasingly abstract representations of vocal 

sounds. Despite recognizing the significance of this system, our understanding of the specific 

contributions of each component still needs to be completed. This chapter aims to compile 

recent discoveries regarding the structure and function of these cortical areas in primate 

brains. By synthesizing these findings, we aim to construct a refined model of vocal 

processing, highlighting the distinct roles played by various brain regions in interpreting 

vocal signals. 
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1.   Abstract 
It has been suggested that the primate brain processes vocal information through a “voice 

patch system” (Belin et al., 2018) consisting of discrete, interconnected cortical areas 

supporting increasingly abstract vocal input representations. In a subsequent review, 

Bodin and Belin (2020) provided further evidence supporting the cerebral basis of 

conspecific voice (CV) in human and non-human primates. Their findings highlighted a 

conserved voice patch system in the temporal lobe, called the “temporal voice areas” 

(TVAs). Additional neuroimaging studies have identified extra-temporal regions with 

varying degrees of sensitivity to CV. Three bilateral regions in the human frontal cortex 

have been labeled as the “frontal voice areas” (FVAs) (Aglieri et al., 2018), showing greater 

sensitivity to vocal compared to non-CV stimuli. While it is clear that vocal information 

passes through these voice areas, the specific functions of each area are not yet fully 

understood. This chapter is dedicated to exploring the current understanding of this 

intricate system and identifying the gaps in our knowledge of it. 

2.   Understanding voice perception 
Voices, crucial for communication in various species, especially primates (human and 

non-human primates), necessitate focused research on mammalian vocal patterns and the 

neural bases in voice-sensitive areas, known as voice areas (VA). These regions are 

defined by their higher responses to voices than to other auditory stimuli using functional 

brain-imaging studies. These studies indicate that distinct cortical brain regions show 

robust responses to voices after basic sensory processing in the primary auditory cortex 

(A1). While the processing of basic sound features in primates is well-established, there 

still needs to be more understanding regarding how the brain, especially within the 

temporal and frontal VA, converts intricate vocal signals into meaningful high-level 

representations. We present below a series of questions aimed at evaluating the state of 

knowledge within both recent and past literature to shed light on the limitations of the 

current literature in the field: 

• What is the functional role of each unit within the “voice patch” system in 

the human brain when processing vocal information? 

• How do voice patches connect within the brain, what are their processing 

stages, and are there distinct temporal dynamics in voice processing? 
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• How is voice identity encoded in the brain? 

• Is there a shared voice coding principle across primate species? 

• What are the voice recognition mechanisms? 

• Which computational models align with the VA representations? 

This review chapter first overviews current evidence, focusing on human anatomical, 

functional, and neural aspects. Next, we examine voice processing in other primates to 

find common patterns or homologies. Finally, we investigate the principles behind voice 

recognition, explore how computational modeling can reveal these principles, and discuss 

why combining these insights is essential for a unified understanding of voice perception 

and processing. 

3.   Anatomical organization of the voice 

processing system 
The anatomical organization of the auditory cortex is thought to reflect a functional 

hierarchy where information mainly flows from primary regions to more secondary 

regions, along the superior temporal gyrus (STG) and sulcus (STS), and all the way to 

extra-temporal associative areas. Figure 1.1a illustrates the brain regions in both the left 

and right hemispheres involved in decoding semantic, identity, and emotion-related 

information from vocal cues. Regions are color-coded, with lighter shades indicating areas 

likely involved in post-perceptual processing —integrating initial sensory input with 

memories or broader knowledge. 

 

The temporal voice areas (TVAs) are arranged bilaterally along the Superior Temporal 

Sulcus and Gyrus (STS/STG). The frontal voice areas (FVAs) are primarily located within 

the inferior frontal gyrus, spanning regions from the pars orbitalis to the junction of the 

precentral and middle frontal gyrus. The limbic system is an aggregation of brain 

structures generally located lateral to the thalamus, underneath the cerebral cortex, and 

above the brainstem. 

 

A portion of the inter-individual variability in the occurrence and position of the 

TVAs/FVAs could be related to the high inter-individual variability in the anatomy of sulci 

patterns. Indeed, correspondence between the location of functional activations and 
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anatomy has been observed in multiple cases, such as for the location of the TVAs relative 

to the superior temporal asymmetrical pit of the superior temporal sulcus (Bodin et al., 

2018) and for the location of the FVAs relative to the individual sulcal anatomy of the 

prefrontal cortex (Cordeau et al., 2023). 

 

Temporal Lole The anterior temporal pole (aTP) is situated in the most anterior part 

of the temporal lobe (BA 38). The anterior temporal voice area (aTVA) is in the anterior 

superior temporal sulcus. On the left hemisphere, LaTVA is found in the superior temporal 

gyrus (STG) according to the Anat toolbox and as the STG anterior division in the Oxford 

atlas. On the right hemisphere, RaTVA is identified in the temporal pole using the Anat 

toolbox and is also labeled as the STG anterior division in the Oxford atlas. The left 

(LmTVA) and right (RmTVA) mid-temporal voice areas, as defined by Pernet et al. (2015), 

are located in the middle superior temporal gyrus and sulcus/gyrus, respectively. Both 

are identified in the superior temporal gyrus (STG) by the Anat toolbox and labeled as the 

STG posterior division in the Oxford atlas. The posterior temporal voice area (pTVA) plays 

a crucial role in auditory-motor integration. Anatomically, both the left (LpTVA) and right 

(RpTVA) sections are identified in the middle/posterior superior temporal gyrus by 

Pernet et al. (2015). The Anat toolbox places them in the superior temporal gyrus (STG), 

with the Oxford atlas categorizing both as the STG posterior division. 

 

Frontal Lobe The anterior frontal voice area (aFVA) is most closely associated with 

the horizontal ascending ramus of the lateral fissure (half), which separates the pars 

triangularis (area 45) from pars orbitalis (area 47/12) in the anterior inferior frontal 

gyrus (Sprung-Much et al., 2020). It is located at the more anterior part of the inferior 

frontal sulcus (ifs), forming the dorsal border of area 45 (Frey et al., 2014). Last, it is also 

related to the anterior ascending ramus of the lateral fissure (aalf), which forms the caudal 

border of area 45, with area 44 located posteriorly (Sprung-Much et al., 2020). As such, 

aFVA is likely located in area 45 in the anterior part of Broca’s speech region. The mFVA 

is often found close to the ifs, at the posterior part of the inferior frontal cortex (i.e., close 

to the aalf and diagonalis sulcus (ds)) relative to the aFVA. The main neighboring sulci of 

the mFVA form the boundaries of area 44 of the pars opercularis with ifs dorsally, aalf 

anteriorly, and inferior precentral sulcus iprs posteriorly, while the ds is known to be an 

axial sulcus within area 44 (Loh et al., 2017, 2020; Sprung-Much et al., 2018). However, in 
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some participants, the mFVA notably extends into the area 45 territory (i.e., near half and 

ifs-anterior). We propose that mFVA occupies pars opercularis, i.e., area 44. The pFVA is 

consistently located close to the iprs, which delimits area 44 anteriorly and ventral 

premotor area 6 posteriorly. It is sometimes found close to the cs, where the primary 

motor area 4 is found, and close to the ifs, which separates the middle frontal gyrus 

dorsally from the inferior frontal gyrus. Based on these neighboring sulci, the pFVA is in 

ventral premotor area 6 at the most caudal part of the inferior frontal cortex. 

 

Limbic System The limbic system is crucial in processing emotional and social 

nuances embedded in vocal stimuli. It is an aggregation of brain structures generally 

located lateral to the thalamus, underneath the cerebral cortex, and above the brainstem. 

The anterior cingulate cortex (ACC) is situated in the frontal part of the cingulate gyrus, 

stretching from the corpus callosum's anterior segment to the cingulate sulcus's genu. The 

posterior cingulate cortex (PCC) is located posteriorly on the cingulate gyrus, extending 

from the cingulate sulcus's splenium to its isthmus. The amygdala is nestled within the 

medial temporal lobe, anterior to the hippocampus, and lateral to the thalamus. The 

insula, concealed by the lateral sulcus, lies between the temporal and frontal lobes, with 

its anterior part neighboring the frontal operculum and its posterior part adjoining the 

parietal operculum. 

4.   The fronto-temporal-limbic network of 

voice processing 
Voice perception can be viewed from different angles. Some focus on how the brain 

functions when processing voices, looking at the cognitive processes and components of 

voice perception at a theoretical level (Belin et al., 2004). Others look at brain structure, 

studying the regions and pathways involved in recognizing voices (Belin et al., 2000; Staib 

& Frühholz, 2023). From a functional viewpoint, voices have mainly been studied as a 

multimodal neural network. This broader view comes from the analogous mechanisms by 

which the brain processes voice and face information, giving rise to the term “auditory 

face” (Campanella & Belin, 2007; Perrodin et al., 2015; Young et al., 2020). However, this 

term has its limits. Focusing only on the similarities between voice and face might miss 

some specific details about how voices are processed. 
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Studies over the past two decades have established via complementary neuroimaging 

techniques that the cerebral processing of voice information involves a set of temporal 

voice areas (TVAs) in secondary auditory cortical regions of the human (fMRI: Belin et al., 

2000; von Kriegstein & Giraud, 2004; Pernet et al., 2015; EEG, MEG: Charest et al., 2009; 

Capilla et al., 2013; Barbero et al., 2021; Electrophysiology: Zhang et al., 2021; Rupp et al., 

2022). The TVAs respond more strongly to sounds of voice — with or without speech 

(Pernet et al., 2015; Rupp et al., 2022; Trapeau et al., 2022)— and categorize voice apart 

from other sounds (Bodin et al., 2021). 

 

Recent research indicates that while the TVAs are primarily associated with the 

auditory experience of voice through a general voice processing (Staib & Frühholz, 2021; 

Bestelmeyer & Mühl, 2022; Morillon et al., 2022; Staib & Frühholz, 2023), the frontal voice 

areas (FVAs) play a pivotal role in behaviorally significant voice processing tasks. These 

tasks include recognizing familiar voices, guided by focused attention and control. This 

underscores the importance of FVAs in models of voice perception (Aglieri et al., 2021; 

Roswandowitz et al., 2021; Bestelmeyer & Mühl, 2022). Another crucial facet of voice 

perception is emotional discernment. A growing body of recent studies underscores the 

integral role of the limbic system in voice processing, particularly in decoding emotional 

valence, reacting to voices, and modulating arousal and attention (Frühholz et al., 2019; 

Domínguez-Borràs et al., 2019; Giordano et al., 2021; Steiner et al., 2022). These 

additional areas —“the extended voice perception system”— are analogous to the 

extended network for face processing (Hesse & Tsao, 2020). 

 

What is the functional role of each unit within the “voice patch” system in the 

human brain when processing vocal information? One leading theory about how we 

process sound suggests that the left side of the brain is better at handling quick changes 

in sounds, while the right side is better with slower changes (Zatorre & Belin, 2001; 

Flinker et al., 2019; Hamilton et al., 2019; Albouy et al., 2020; Morillon et al., 2022). This 

idea is supported by research showing speech processing happens mainly in the left 

hemisphere (Albouy et al., 2020) and recognizing who is speaking happens more in the 

right hemisphere (Mathias & von Kriegstein, 2014; Andics et al., 2010; von Kriegstein et 

al., 2003; Myers & Theodore, 2017; Hickok & Poeppel, 2007; Belin & Zatorre, 2003). This 

suggests that each side of the brain could be specialized for processing different aspects 
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of sound. Drawing from a range of studies —including behavioral, fMRI, M/EEG, and 

single-unit experiments (i.e., recording of spiking activity from a single neuron) — we put 

forth a synthesized functional model for voice. This model incorporates findings from 

previous studies suggesting that the right side of the brain predominantly processes voice 

identity information. In contrast, the left side focuses on deciphering voice semantic 

content and processing voice emotion bilaterally. Moreover, the model integrates the 

system responsible for processing vocal emotions. Furthermore, our model attempts to 

map these functions with the underlying neural networks involved in voice processing 

(Figure 1.1b). 

 

How do voice patches connect within the brain? Blank et al. (2011) identified 

structural connectivity between voice-sensitive regions in the temporal lobe using 

diffusion-weighted imaging (DWI). More recently, Zhang et al. (2021) utilized ECoG 

electrode grids (i.e., placing electrodes directly on the exposed surface of the brain to 

record electrical activity, which provides a more direct and higher resolution 

measurement of brain activity than scalp EEG) and latency analyses and described dual 

voice processing pathways. In this proposal, information originates from the mTVA 

patches and bifurcates: one pathway leads from mTVA to aTVA, while the other extends 

from mTVA to pTVA. We hypothesize the existence of effective connectivity (EC, i.e., the 

causal link between different brain areas, that is, if the signal in one area influences the 

signal in another) among these patches, i.e., directional, causal neural interactions flow 

from mTVA to aTVA and pTVA. Aglieri et al. (2018) investigated functional connectivity 

(FC; i.e., the statistical association between neuronal activations in different regions of the 

brain, which helps understand how different parts of the brain communicate and work 

together during various tasks or at rest) within the voice perception network, defined by 

three frontal and three temporal regions of interest in each hemisphere, based on group 

voice-specific activation (the so-called temporal and frontal “voice patches”). They found 

that the TVAs and FVAs networks are functionally interconnected. Notably, in the right 

hemisphere, this connection proved significant for voice recognition performances. 

 

What are the temporal dynamics of voice processing? Several studies employing 

MEG/EEG and intracranial recordings have illustrated that the mTVA exhibits selective 

responsiveness to voice commencing around 150-200 ms (Charest et al., 2009: 164 ms; 
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Capilla et al., 2013: 150 ms; Zhang et al., 2021: ~150 ms; Lowe et al. 2021: ~200 ms; 

Norman-Haignere et al., 2022: <200 ms; Rupp et al., 2022: ~150 ms). Additionally, several 

studies reported that the pTVA and aTVA manifest a longer response time compared to 

the mTVA, suggesting their position at a subsequent stage in the voice processing 

hierarchy (Schall et al., 2015: ~200 ms; Zhang et al., 2021: >200 ms; Norman-Haignere et 

al., 2022: >200 ms). Within the limbic system, the right amygdala and the right insula play 

a role in deciphering general emotional attributes. The right amygdala shows heightened 

activation during emotional state processing at a later stage, specifically post ~500 ms. In 

comparison, the right insula demonstrates increased activation post ~700 ms, marking a 

staggered temporal engagement in processing emotional states (Giordano et al., 2021). 

 

 

Figure 1.1: Schematic of the state-of-the-art knowledge of voice processing in humans. a, 

Brain regions responsive to voices in humans. Components shown in blue involve the 

vocal/motor processing axis in the left hemisphere. Components shown in pink involve the voice 



Chapter 1 
Comparative study of the vocal cortex in primates 

58 
 

identity processing axis in the right hemisphere. Lower-level analyses are indicated by more 

intense colors, determined approximately based on the literature. Black lines are used to indicate 

a structural connection. Fronto-temporal and fronto-limbic functional connections are indicated 

with orange lines. Plain and dotted red arrows indicate effective connectivity or hypothetical 

effective connectivity between two areas. Abbreviations: L/R, left/right hemisphere; A1, primary 

auditory cortex; a/m/pTVA, anterior/mid/posterior temporal voice area; aTP, anterior temporal 

pole; a/m/pFVA, anterior/mid/posterior frontal voice area. b, Functional model of voice 

perception in humans. The model shows components that involve unimodal responses to voices. 

Same colors as in a. Components in green involve the vocal emotion processing axis, bilaterally. 

Yellow indicates a general voice processing to behaviorally relevant voice processing gradient. 

Adapted from Belin et al. (2004), Maguinness et al. (2018), and Morillon et al. (2022). 

5.   General voice processing 
A voice heard by a listener first undergoes general low-level auditory analyses, such as 

spectro-temporal filter analysis (Belin et al., 2000; Zatorre et al., 2002;  Hickock et 

Poeppel, 2004; Hickok & Poeppel, 2007; Bodin et al., 2021; Rupp et al., 2022; Giordano et 

al., 2023), in subcortical areas and primary auditory cortex (A1). Then, a finer voice 

structural analysis (Staib & Frühholz, 2021) begins in the mid-temporal voice areas 

(“mTVA – Voice Structural Analysis”). Functionally, mTVA – bilaterally (Belin et al., 2000) 

– appears to perform a template matching to detect and match voices (or “norm-based 

coding”; Latinus et al., 2013) to an internal ‘voice prototype’ (Figure 1.2). In this 

perspective, neural responses do not mirror the stimulus directly; instead, they indicate 

its congruence with an internal template, a norm that could encapsulate the average of 

our personal voice experiences within our social context (Rupp et al., 2022). 

 

Functionally, several recent studies have investigated the neuronal responses to voice 

stimuli in human nonprimary areas using intracranial recordings, either through ECoG 

electrode grids (Zhang et al., 2021) or sEEG recordings (Rupp et al., 2022). Their findings 

support the idea of a hierarchical organization of voice patches in the temporal lobe, 

where the information flow starts from the mTVA patches and moves in two directions: 

one from mTVA to the anterior TVA (aTVA) and the other one from mTVA to posterior 

TVA (pTVA). 
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Temporarily disrupting neuronal activity in the right mTVA using repetitive 

transcranial magnetic stimulation (rTMS; i.e., a non-invasive procedure that uses 

magnetic fields to stimulate nerve cells in the brain) impairs performance in voice 

detection tasks but not in broader auditory tasks (Bestelmeyer et al., 2011). This not only 

suggests a direct causal relationship with voice processing but also underscores RmTVA's 

higher hierarchical role in this process. 

 

Figure 1.2: Schematic of the general voice processing in humans. A voice heard by a 

listener first undergoes general low-level auditory analyses in subcortical areas and primary 

auditory cortex (A1). Then, a finer voice structural analysis begins in the mid-temporal voice areas 

(mTVA – Voice Structural Analysis). Functionally, mTVA –bilaterally– appears to perform a 

template matching to detect and match voices to an internal ‘voice prototype’. Recent findings 

support the idea of a hierarchical organization of voice patches in the temporal lobe, where the 

information flow starts from the mTVA patches and moves in two directions: one from mTVA to 

the anterior TVA (aTVA) and the other one from mTVA to posterior TVA (pTVA). Components 

shown in blue involve the vocal/motor processing axis in the left hemisphere. Components shown 

in pink involve the voice identity processing axis in the right hemisphere. Lower-level analyses 

are indicated by more intense colors, determined approximately based on the literature. Black 

lines are used to indicate a structural connection. Fronto-temporal functional connections are 

indicated with orange lines. Plain and dotted red arrows indicate effective connectivity or 

hypothetical effective connectivity between two areas. Yellow indicates a general voice processing 

to behaviorally relevant voice processing gradient. Abbreviations: L/R, left/right hemisphere; A1, 

primary auditory cortex; a/m/pTVA, anterior/mid/posterior temporal voice area. 
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6.   Vocal motor/semantic processing axis 
This axis is primarily left-lateralized, encompassing regions in both the temporal and 

frontal lobes, which play vital roles in vocal and semantic processing. The left TVAs might 

first realize a general vocal motor/semantic processing, while the left FVAs might 

integrate this information via frontotemporal connections (Figure 1.3). 

 

Left TVAs: General Vocal Motor/Semantic Processing Tsapkini et al. (2011) 

emphasized the potential role of the anterior temporal pole (aTP) as a semantic hub for 

semantic knowledge. Based on assessments of acute strokes and infarct volumes, they 

found that both the right and left aTP are involved in processing and understanding 

meanings and concepts, such as words. Functionally, the left anterior temporal voice area 

(LaTVA) might be involved in semantic processing (Patterson et al., 2007; Perrodin et al., 

2015; Zhang et al., 2021) and correlates with motor areas (Aglieri et al., 2018). It also 

contributes to formant tracking (Latinus et al., 2013). Cope et al. (2020) proposed that 

LaTVA is crucial for the efficient lateralized processing of spoken word identity. The 

posterior temporal voice area (pTVA) might play a crucial role in auditory-motor 

integration. Functionally, the pTVA encodes phonetic features (von Kriegstein et al., 2010; 

Mesgarani et al., 2014; Zhang et al., 2021) and exhibits high latency and sparseness (Zhang 

et al., 2021). The LpTVA, often termed “motor speech”, correlates with motor regions 

during speech processing (von Kriegstein et al., 2010; Zhang et al., 2021). 

 

Left FVAs: Auditory Motor/Semantic Integration In the left hemisphere, the aFVA 

connects to (1) Higher-order processed semantic and multimodal inputs from the 

anterior and middle parts of the temporal lobe through the extreme capsule fasciculus 

(Frey et al., 2008; Petrides & Pandya, 2009), forming the ventral speech pathway (Hickok 

& Poeppel, 2007); (2) Auditory inputs processed from the posterior temporal cortex via 

the arcuate fasciculus (Frey et al., 2014); (3) Speech output areas such as area 44 and the 

ventral premotor areas positioned more posteriorly. This connectivity implies that the 

LaFVA might retrieve and integrate higher-order semantic and auditory aspects of voice 

information. It then might guide speech motor actions via the posterior inferior frontal 

cortex (Loh et al., 2020). Non-human primates likely share this functionality, given the 

consistent connectivity of area 45 across both species. The mFVA might then be part of 

the dorsal stream of speech perception (Erickson et al., 2017) and could be connected 
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with social cognition processes (Hamzei et al., 2016). In humans and monkeys, this region 

communicates with the posterior temporal cortex via the arcuate fasciculus and the 

supramarginal gyrus through the superior longitudinal fasciculus III. In the left 

hemisphere, this network comprises the dorsal speech pathway (Hickok & Poeppel, 

2007), which is implicated in the phonological processing of speech. Area 44, where 

LmFVA resides, associates closely with the speech motor output region in the ventral 

premotor cortex (Petrides et al., 2014). Thus, the LmFVA might process phonological 

aspects of voice and modulate control over speech/vocal motor production via the ventral 

premotor area. This functionality is backed by studies showing area 44's involvement in 

selecting orofacial and vocal motor (Loh et al., 2020). Non-human primates exhibit similar 

attributes, with area 44 involved in auditory-driven vocal motor control (Aboitiz, 2018; 

Hage & Nieder, 2013). The pFVA, known for high-level motor speech and voice identity 

representation, might house speech-motor representations (Conant et al., 2014). 

Guenther et al. (2017) suggested that the left ventral premotor area might offer a top-

down perception of speech by formulating predictive models of speech motor plans. 

These models then juxtapose with perceived auditory-vocal inputs in the temporal cortex. 

Given its anatomical ties to the posterior parietal and temporal cortices and its position 

in the dorsal speech pathway in the left hemisphere described by Hickok and Poeppel 

(2007), the LpFVA's role in voice processing probably involves a top-down influence on 

speech-vocal perception. 
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Figure 1.3: Schematic of the vocal motor/semantic processing axis. Components shown in 

blue involve the vocal/motor processing axis in the left hemisphere. Components in green involve 

the vocal emotion processing axis, bilaterally. Lower-level analyses are indicated by more intense 

colors, determined approximately based on the literature. Black lines are used to indicate a 

structural connection. Fronto-temporal and fronto-limbic functional connections are indicated 

with orange lines. Plain and dotted red arrows indicate effective connectivity or hypothetical 

effective connectivity between two areas. Yellow indicates a general voice processing to 

behaviorally relevant voice processing gradient. Abbreviations: L, left hemisphere; A1, primary 

auditory cortex; a/m/pTVA, anterior/mid/posterior temporal voice area. aTP, anterior temporal 

pole; a/m/pFVA, anterior/mid/posterior frontal voice area. 

7.   Voice identity processing axis 
How is voice identity encoded in the brain? Again, this axis is primarily right-

lateralized, with the temporal and frontal lobes as the main regions. The right TVAs might 
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first realize general voice identity processing, while the left FVAs might integrate this 

information via frontotemporal connections into higher-level representations, as well as 

influence the temporal representations during active voice identity recognition (Figure 

1.3). 

 

Right TVAs: General Voice Identity Processing Several studies have explored the 

involvement of the anterior temporal pole (aTP) in voice identity processing. Belin and 

Zatorre (2003) demonstrated adaptation to a speaker's voice in the right hemisphere. 

Antics et al. (2010) suggested bilateral identity processing, whereas Latinus et al. (2011) 

discussed learning-induced changes in the cerebral processing of voice identity in the 

right hemisphere. Additionally, Luzzi et al. (2018) observed selective associative 

phonagnosia (a condition where an individual has difficulty recognizing familiar voices 

despite having normal hearing and speech perception abilities) following a right anterior 

temporal stroke, emphasizing familiar identity representation. Drawing on the studies 

above, it can be inferred that the right hemisphere of the anterior temporal pole (aTP) 

could correspond to the supramodal person identification stage as proposed in the 

functional model of Belin et al. (2004). Zhang et al. (2021) noted that the aTVA possesses 

high latency and sparse activations compared to mTVA, indicating the information 

transfer from mTVA. Functionally, the left aTVA is involved in semantic processing 

(Patterson et al., 2007; Perrodin et al., 2015; Zhang et al., 2021) and correlates with motor 

areas (Aglieri et al., 2018). It also contributes to formant tracking (Latinus et al., 2013). 

The right aTVA might primarily represent human voice identity (Maguinness et al., 2018; 

Zhang et al., 2021) and is associated with identity adaptivity (Kriegstein & Giraud, 2004), 

timbre discernment (Pernet & Belin, 2012; Allen et al., 2017), and f0 tracking (Schuller, 

2013). Sometimes referred to as a “person identity node”, the right pTVA has strong 

connections with the anterior facial voice areas (aFVAs). This connectivity might assist in 

determining who is speaking (Aglieri et al., 2018). 

 

Right FVAs: Top-down Influence on Voice Identity Processing The RaFVA has been 

associated with the processing of vocal attractiveness (Bestelmeyer et al., 2012) and the 

representation of voice gender (Charest et al., 2013). RmFVA has been associated with the 

processing of vocal attractiveness (Bestelmeyer et al., 2012). In the right hemisphere, the 

pFVA is associated with perceiving voice identity despite acoustic variability, especially 
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after familiarization with previously unfamiliar voices (Latinus et al., 2011; Antics et al., 

2013). This supports the idea of top-down influences in voice identity processing. 

 

Limbic System The anterior insulae were involved in the higher-level representation 

of identity. This supports the hypothesis that in tandem with the medial superior frontal 

region, it supports person identity recognition (Bestelmeyer & Mühl, 2022). The left 

cingulate gyrus has been found to be sensitive to changes in perceived voice identity, 

suggesting its role in storing and retrieving familiar voices (Latinus et al., 2011). Both the 

cingulate gyrus's left and right anterior portions demonstrate activations in response to 

familiar voices (von Kriegstein & Giraud, 2004). The anterior and posterior left areas are 

associated with voice gender processing, especially in perceived ambiguous voices 

(Charest et al., 2013). Blank et al. (2014) found that the left anterior region is involved in 

recognizing well-known voices, while the right anterior region is associated with 

recognizing familiar voices. The bilateral insula is associated with voice gender 

recognition tasks (Charest et al., 2013). The left amygdala is involved in processing voice 

identity (Andics et al., 2010). The anterior insulae were involved in higher-level 

representation of identity, supporting the hypothesis that it supports person identity 

recognition in tandem with the medial superior frontal region (Bestelmeyer & Mühl, 

2022). 
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Figure 1.4: Schematic of the voice identity processing axis. Components shown in pink 

involve the voice identity processing axis in the right hemisphere. Components in green involve 

the vocal emotion processing axis, bilaterally. Lower-level analyses are indicated by more intense 

colors, determined approximately based on the literature. Black lines are used to indicate a 

structural connection. Fronto-temporal and fronto-limbic functional connections are indicated 

with orange lines. Plain and dotted red arrows indicate effective connectivity or hypothetical 

effective connectivity between two areas. Yellow indicates a general voice processing to 

behaviorally relevant voice processing gradient. The question mark indicates an undefined 

functional role for the corresponding region. Abbreviations: L, left hemisphere; A1, primary 

auditory cortex; a/m/pTVA, anterior/mid/posterior temporal voice area. aTP, anterior temporal 

pole; a/m/pFVA, anterior/mid/posterior frontal voice area. 
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8.   Vocal emotion processing axis 
aFVA: High-level Semantic and Voice Information Processing The RaFVA has been 

associated with detecting emotional tones in voices (Frühholz et al., 2012). Furthermore, 

this area is involved with representing emotional states (Giordano et al., 2021). 

 

Limbic System: Vocal Emotion Processing The limbic system drives, provides, and 

identifies emotional and attitudinal elements in the voice (Robinson, 1976). Specifically, 

the amygdala plays a crucial role in processing vocal emotional information in humans 

(Frühholz et al., 2015; Frühholz & Grandjean, 2013). The left and right anterior cingulate 

gyri participate in vocal emotion processing (Ceravolo et al., 2021). In the insula, the 

correct region is involved in processing general emotional attributes and demonstrates 

increased activation during emotional state processing after about 700 ms (Giordano et 

al., 2021). Additionally, both sides of the insula are engaged in vocal emotion processing 

(Ceravolo et al., 2021). In voice processing, the amygdala has mainly been associated with 

the processing of emotional information in the voice in humans (Frühholz et al., 2015; 

Frühholz & Grandjean, 2013) or acoustic cues like roughness (Arnal et al., 2015). The right 

amygdala is involved in representing dimensions of emotion (more than specific 

categories) and processing emotional states after ~500 ms (Giordano et al., 2021). The 

left amygdala is involved in emotional cues in speech (Steiner et al., 2022; Frühholz, 

Hofstetter, et al., 2015; Anderson & Phelps, 2001). Bilaterally, the amygdala processes 

emotional voices, particularly distinguishing between fearful and neutral tones 

(Domínguez-Borràs et al., 2019; Frühholz et Grandjean, 2013). 

However, it should be noted that some studies reported responses to neutral stimuli 

(i.e., no emotional content, no task related to identity recognition) in both the left and 

right amygdala regions (Pernet al., 2015; Aglieri et al., 2018). 
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Figure 1.5: Schematic of the vocal emotion processing axis. Components shown in blue 

involve the vocal/motor processing axis in the left hemisphere. Components shown in pink 

involve the voice identity processing axis in the right hemisphere. Components in green involve 

the vocal emotion processing axis, bilaterally. Lower-level analyses are indicated by more intense 

colors, determined approximately based on the literature. Fronto-limbic functional connections 

are indicated with orange lines. Light yellow background color indicates behaviorally relevant 

voice processing. Abbreviations: L/R, left/right hemisphere; A1, primary auditory cortex; 

a/m/pFVA, anterior/mid/posterior frontal voice area. 

9.   Voice patch system across primate brains 
Is there a shared voice coding principle across primate species? Voices play a crucial 

role in the social dynamics of many species. For a complete understanding of various 

social behaviors, it is essential to scrutinize vocal behavior, especially in mammals. Non-

human primates, our closest evolutionary relatives, show comparable patterns in 

processing vocal information, both at the behavioral and neurological levels. By studying 

various primate species, we can investigate the origins of vocal perception. This enables 

us to trace changes since our last common ancestor and explore vocal perception 

mechanisms over time. Belin et al. (2018) suggested that the primate brain processes 

vocal information through a “voice patch system”. We gather insights from voice 

processing in other primates to identify shared functional patterns or homologies, as 

outlined in Figure 1.6. 
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Figure 1.6: Brain regions responsive to voices in humans and non-human primates. 

Components shown in black involve conspecific vocalizations (CV) sensitivity. Components 

shown in blue involve the vocal/motor processing axis in the left hemisphere. Components shown 

in pink involve the voice identity processing axis in the right hemisphere. Components shown in 

dotted lines are hypothetical. Abbreviations: L/R, left/right hemisphere; A1, primary auditory 

cortex; a/m/pTVA, anterior/mid/posterior temporal voice area; aTP, anterior temporal pole; 

a/m/pFVA, anterior/mid/posterior frontal voice area; ACC, anterior cingulate cortex. Black and 

orange lines are used to indicate a structural or a functional connection, respectively. 

 

Functional Responses to Conspecific Vocalizations (CVs) The initial step in 

identifying homologies in the voice patch system across primate brains is determining 

areas sensitive to CVs. The temporal lobe is central to vocalization processing in both 

macaques and marmosets. Early fMRI studies determined that the anterior temporal pole 

(aTP), along with patches resembling pTVA and mTVA in macaques, exhibit a clear 

preference for CVs (Petkov et al., 2008; Joly et al., 2012; Ortiz-Rios et al., 2015). The voice 

patch in the anterior temporal lobe (aTVA) has been consistently observed bilaterally and 
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demonstrates pronounced voice selectivity (Petkov et al., 2008; Perrodin et al., 2011; 

Ortiz-Rios et al., 2015; Bodin et al., 2021). The only two groups that investigated the 

activity of single neurons in macaque TVAs confirmed the leading role of aTVA in the 

processing of CVs (Perrodin et al., 2011; Giamundo et al., submitted). Using an fMRI-

guided electrophysiological technique, these studies reported the existence of neurons 

selective to CVs that categorize CVs apart from other sounds. However, Giamundo et al. 

(submitted) also observed a population of aTVA neurons exhibiting selectivity towards 

human voices (sounds of paramount relevance in laboratory macaques' auditory 

environment), suggesting that aTVA neuronal activity can also represent vocalizations 

from other species with which primates have developed expertise. Similarly, marmosets 

show bilateral responsiveness to vocalizations in aTVA, mTVA, and pTVA, which might be 

analogous to human counterparts (Sadagopan et al., 2015; Jovanic et al., 2022; Jafari et al., 

2023). An “extended voice system” also appears present in non-human primates. In 

macaques, the prefrontal cortex is notably sensitive to their vocalizations (Cohen et al., 

2009; Romanski et al., 2005). This is reflected in marmosets where vocalizations activate 

the primary motor cortex, somatosensory cortex, and various prefrontal areas such as 

8aV, 6DR, and 6M (Jafari et al., 2023; Jovanovic et al., 2022; Miller et al., 2015). However, 

marmosets do not exhibit strong selectivity in the human language network's inferior 

frontal cortex, highlighting potential evolutionary divergences in primate vocal 

processing (Jafari et al., 2023). 

 

Functional Roles Several studies leverage intracranial recordings in macaques to 

explore the hierarchical organization of vocalization processing. Fukushima et al. (2014) 

described a progression in the neural coding of vocalizations along the ventral auditory 

pathway. In this pathway, rostral areas require the amalgamation of spectral and 

temporal features. Similarly, Kikuchi et al. (2010) identified a hierarchically organized 

auditory processing stream in the supratemporal plane (STP) that spans from the primary 

auditory area to the temporal pole, showcasing an increased stimulus specificity. It 

suggests that, like humans, macaques process CVs hierarchically along the rostral 

direction of the auditory cortex. Jafari et al. (2023) observed the presence of a voice 

processing network in marmosets, particularly within the rostral sections of the anterior 

cingulate cortex (ACC). In humans, this region has been associated with various voice-

processing tasks, including voice learning (Latinus et al., 2011), recognizing familiar 
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voices (von Kriegstein & Giraud, 2004; Blank et al., 2014), discerning voice gender 

(Charest et al., 2013), and interpreting vocal emotions (Ceravolo et al., 2021). Given that 

the auditory stimuli in this study were familiar conspecific vocalizations, there might be 

a connection to the same processes observed in humans. This notion hints at an 

evolutionarily conserved processing mechanism, warranting further investigation in both 

macaques and marmosets. In the same study by Jafari et al. (2023), it was observed that 

the marmosets' pTVA had robust connectivity with the motor and somatosensory 

cortices, akin to humans (Frey et al., 2014). This similarity hints that the pTVA in 

marmosets might be involved in auditory-motor integration, as suggested in humans (von 

Kriegstein et al., 2010). 

 

Functional Homologies Understanding the functional roles of voice units in the 

primate brain is more limited than in humans. Bodin, Trapeau, et al. (2021) employed 

comparative fMRI, highlighting that humans and macaques have bilateral voice areas in 

the anterior temporal lobe (aTVA). These areas show a preference for conspecific 

vocalizations and demonstrate a representational geometry that distinctly categorizes 

them from other sounds. This species-specific but homologous manner of categorization 

confirms earlier findings regarding speaker adaptation in the right aTP (Petkov et al., 

2008). 

 

Neural Connectivity Connectivity patterns in the primate brain support the idea of 

homologies. The frontotemporal network plays a role in vocal communication (Balezeau 

et al., 2020; Rocchi et al., 2021). It has two main pathways: the postero-dorsal and antero-

ventral, comparable to the dorsal and ventral streams in the visual system (Rauschecker 

& Scott, 2009). The posterodorsal pathway, connecting the caudal belt of the auditory 

cortex to the dorsolateral PFC (dlPFC), is associated with the spatial processing of 

auditory signals. The anteroventral pathway, which connects the anterior belt of the 

auditory cortex to the ventrolateral PFC (vlPFC), is implicated in encoding different call 

types (Rauschecker & Scott, 2009). While evidence for these pathways exists in rhesus 

macaques, research on marmosets is limited. Some studies suggest marmosets may have 

a similar system (Grijseels et al., 2023), but more research is needed. In their 2023 study, 

Jafari et al. employed functional connectivity (FC) and tracer-based cellular connectivity 

(a technique used to study the pathways and connections between neurons) to investigate 
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marmosets' functional and structural links. They discovered that the three temporal voice 

patches were functionally interconnected and connected to the anterior cingulate cortex, 

especially area 32. The mTVA demonstrated functional connectivity with frontal areas 

8aD, 8aV, and 47L, while pTVA exhibited robust connections with the motor and 

somatosensory cortices, a pattern also observed in humans. Their tracer-based findings 

further revealed that the anterior cingulate's area 32 maintained strong structural and 

functional ties with other cortical and subcortical vocalization-processing regions in 

marmosets. 

10.   Voice recognition mechanisms 
In 2008, Tsao and Livingstone proposed a face recognition model involving three main 

computational steps. Firstly, there is a detection phase where we recognize something as 

a face. Then, we analyze the face to pinpoint its unique features. Lastly, using these 

features, we categorize the face based on identity, gender, age, race, and expression. In 

this model, detecting a face and identifying its specifics are distinct. To identify a face, we 

focus on what makes it different from others, even though all faces have general 

similarities. However, we are primarily concerned with the shared features of all faces for 

detection. This means a system efficient at detection might not excel in detailed 

identification, and vice versa. 

  

What are the voice recognition mechanisms? We hypothesize that voice recognition 

operates on a similar principle: first, there is the detection of a voice, followed by an 

analysis of its distinctive characteristics, and then its categorization, e.g., based on the 

speaker’s identity or emotional state. This is a complex task due to varying factors like 

pitch, tone, volume, and background noise. As with faces, we can segment voice 

recognition into these three main computational phases. 

  

Detection At the most basic level, detection involves recognizing the presence of a 

voice by identifying shared auditory features. Common characteristics of voices, such as 

pitch and timbre, are crucial here. The challenges of detecting a voice and identifying its 

unique traits are separate in voice recognition. We focus on the differences in individual 

voice identification, even as all voices have commonalities. Conversely, detection is about 

pinpointing shared characteristics. If a system is good at simple detection, it might 
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struggle with detailed identification and vice versa (Tsao & Livingstone, 2008). Moreover, 

detection serves as a filter, activating detailed voice recognition processes only when a 

sound qualifies as a voice. This domain-specific gating may be one reason for the brain's 

anatomical segregation of voice processing. Another advantage of this detection step is 

that it distinguishes the voice from any background noise, aligning it for further analysis. 

Several voice recognition algorithms depend on this initial separation, especially when 

faced with irregular backgrounds (Singh et al., 2018). Computer algorithms of voice 

activity detection (VAD) mainly relied on cepstral-based algorithms—such as Mel-

frequency cepstral coefficients (MFCCs)—as they exhibit a high degree of independence 

to levels of background noise (Haigh & Mason, 1993; Wang et al., 2011). Recently, end-to-

end deep neural networks (DNNs) have been utilized to map acoustic inputs directly to 

predefined semantic categories—such as human voice, music, and natural sounds—by 

leveraging large datasets, ranging from thousands to hundreds of thousands of hours 

annotated with human labels (Gemmeke et al., 2017; Hershey et al., 2017). This 

advancement renders voice detection more realistic in natural and noisy environments. 

We identified above (see General Voice Processing) that in the brain, the bilateral mTVAs 

in the human brain could act as a template matching to detect and match voices (Latinus 

et al., 2013). Their causal link with voice detection has been established by transiently 

interfering with neuronal activity in the right TVAm via transcranial magnetic stimulation 

(TMS) interferes with performance at a voice detection task but not at a more general 

auditory task (Bestelmeyer et al., 2011). 

  

Measurement Upon detection of a voice, it requires measurement in a way that 

enables accurate, efficient identification. The measurement process should not be so 

coarse that it misses the subtle features differentiating one voice from another. 

Alternatively, it should yield a set of values that can be efficiently juxtaposed with stored 

templates for identification purposes. A zero-sum game exists between measurement and 

categorization: the more streamlined the measurement, the simpler the classification; 

conversely, less efficient measurement renders the classification process more 

demanding (Tsao & Livingstone, 2008). Deep Neural Networks (DNNs)-based classifiers 

(LeCun et al., 2015) exemplify this: the input undergoes a long hierarchical series of highly 

nonlinear transformations (measurements), while the final classification layer is often a 

simple linear transformation (categorization). During the vocal processing, once a voice 
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has been detected and undergone a preliminary general preprocessing by mTVA, the 

information bifurcates: one pathway leads from mTVA to aTVA, while the other extends 

from mTVA to pTVA (Schall et al., 2015; Zhang et al., 2021). Depending on the domain of 

required expertise, different parts of the information will be processed by different brain 

regions. The general processing of speaker identity begins in the right pTVA and aTVA 

(see voice identity axis), the general semantic processing begins in the left pTVA and aTVA 

(see motor/semantic axis), and the vocal emotion processing is mainly in the limbic 

system, bilaterally. Simultaneously, the TVAs of each respective axis guide the general 

processing with top-down influence, especially in behaviorally relevant voice processing 

(e.g., speaker recognition). As the information is processed along this hierarchical stream, 

the representations associated with the different axes— the motor/semantic 

representations, the speaker identity representations, and the emotional 

representations—become of increasingly higher orders and are stored at different 

locations. The right pTVA might be responsible for establishing identity patterns, while 

the right aTVA has been suggested to encode higher-order representations compared to 

the other temporal VA. Indeed, Luzzi et al. (2018) observed selective associative 

phonagnosia following a right anterior temporal stroke, with the correct part potentially 

corresponding to the supramodal person identification stage as proposed in Belin et al. 

(2004) functional model. In contrast, the left encodes high-level semantic information, 

such as auditory object naming. 

  

Categorization Separating the measurement process from the classification process 

gives a computational system maximum flexibility because different categorizations (e.g., 

speech, speaker’s identity, or emotional state) can all operate from the exact 

representation. Based on the evidence we gathered in our synthesized model, the 

categorization step might be performed in the “extended voice perception system” (Antics 

et al., 2010; Latinus et al., 2011; Charest et al., 2013; Antics et al., 2013; Blank et al., 2014; 

Frühholz, Hofstetter, et al., 2015; Zäske et al., 2017; Luzzi et al., 2018; Ceravolo et al., 2021; 

Aglieri et al., 2021; Giordano et al., 2021; Bestelmeyer & Mühl, 2022; Steiner et al., 2022). 
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11.   Using deep networks to probe 

representations in voice patches 
Which computational models align with the VA representations? In the previous 

section (Voice recognition mechanisms), we identified deep neural networks (DNNs). A 

prevailing notion is that the brain learns largely unsupervised, constructing 

representations that elucidate the structure implicit in the raw sensory input (Lillicrap et 

al., 2020). Autoencoders are one example of learning such kinds of representations for 

voice—after that, they are named the ‘voice latent space’ (VLS). It learns to compress 

voice stimuli with high dimensionality into a lower-dimensional space that allows 

reconstruction of the original voice stimuli via an inverse transformation learned by the 

second part of the network called the decoder. Once such a lower-dimensional 

representation of voice is learned, we could linearly map it with the brain responses to 

voice stimuli. 

12.   Conclusion 
This chapter reviewed both older and recent literature on voice processing in human 

and non-human primates to determine the potential role of each voice-sensitive area. We 

proposed a synthesized voice processing model based on brain studies in primates that 

outlines a pathway with three stages: detection, measurement, and categorization for 

voice recognition. The model tentatively underscores the roles of the fronto-temporal-

limbic network and the hemispheric specialization, where the right predominantly 

handles voice identity, the left manages semantic deciphering, and the limbic system, the 

vocal emotion, bilaterally. 

 

However, several key questions remain to be elucidated. How is voice identity 

encoded in the brain? Although we identified a potential voice identity processing axis 

with a candidate functional role and a tentative degree of abstractness of the 

representations (Figure 1.4), the exact computations performed in these representations 

are still unknown, particularly regarding voice identity information. We propose to 

explore this question by mapping the brain responses to voice stimuli recorded in the VA 

with the representations learned by DNNs, as demonstrated in Chapter 3. Besides, other 

important information is still missing, e.g., what are the structural/functional 
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connections within the frontal areas? Potential future research is discussed in the 

Discussion (Section Evolutionary origins of voice perception). 

Is there a shared voice coding principle across primate species? To extend my 

proposal to use DNNs, and in general AI, as a model to probe the representations in the 

vocal brain (Chapter 3), one would need sufficient vocal samples to train this kind of 

model. In the next chapter (Chapter 2), I show how to use AI as a tool to build a large 

dataset of non-human primate vocalizations in a semi-supervised fashion.  
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 Chapter 2 

Towards studying the evolution of vocal 

communication systems with deep learning 

In this chapter, I propose an end-to-end pipeline for processing vocalizations from raw 

recordings of marmoset monkeys. This includes detection, segmentation, and labeling. This 

dataset will be the first milestone in future studies to train efficient computational models, 

such as DNNs, to learn high-level representations of monkey vocalizations. 
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1.   Abstract 
As our closest relatives, non-human primates use a wide range of complex vocal signals 

for communication within their species. Previous research on marmoset (Callithrix 

jacchus) vocalizations has been limited by recording setups with low sampling rates and 

insufficient labeling for advanced analyses using Deep Neural Networks (DNNs). Here, we 

provide a database of common marmoset vocalizations, continuously recorded with a 

sampling rate of 96 kHz from a stabulation room housing ~20 marmosets in three cages 

simultaneously. The dataset comprises over 800,000 files, amounting to 253 hours of data 

collected over 40 months. Each recording lasts a few seconds and captures the 

marmosets' social vocalizations, encompassing their entire known vocal repertoire 

during the experimental period. Around 215,000 calls are annotated with the vocalization 

type. The dataset presented here contributes to our understanding of voice phylogeny by 

providing a more detailed characterization of the acoustic properties of the marmoset 

vocal repertoire. These data hold the potential for shedding light on the origins of syntax, 

semantics, and the evolution of vocal communication systems. Furthermore, we offer a 

trained classifier to assist future investigations. 

2.   Introduction 
Non-human primates, the closest evolutionary relatives to humans, exhibit various complex 

behaviors, including the extensive use of acoustically diverse vocal signals for 

communication within conspecifics. By conducting comparative research on non-human 

primates, valuable insights can be gained into the evolutionary development of speech and 

language. For example, studying their vocal communication can provide clues about the 

origins of syntax and semantics. Although non-human vocalizations can be complex for 

humans to decipher, large acoustic datasets may make it possible to identify essential nuances 

critical to animal communication but imperceptible to the human ear. There has been 

considerable interest recently in the common marmoset (Callithrix jacchus) as a 

neuroscientific model organism (Miller et al., 2016), and many attempts have been made to 

study and characterize its vocal repertoire (Epple, 1968; Pistorio et al., 2006; Bezerra et al., 

2008; Agamaite et al., 2015; Zhang et al., 2018; Zhao et al., 2019). However, among the past 

and recent literature, the audio recording setups did not allow recording above a sampling rate 

of 48 kHz which would allow the entire frequency range of marmoset vocalizations, 

corresponding to their hearing range from 125 Hz to 36 kHz (Osmanski & Wang, 2011), to be 

recorded. 

  

Furthermore, the existing datasets do not provide a sufficient number of labeled vocalizations 

to leverage advanced analytical methods. Fine-grained statistical analyses, such as those 

based on Deep Learning for decoding animal communication, require substantial data (Rutz et 

al., 2023). 
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Here, we present an extensive collection of vocalizations of marmosets. We have 

acquired and segmented over 800,000 vocalizations with a sampling rate of 96 kHz from 

a stabulation room containing 3 cages (~20 marmosets) over three years. Marmosets are 

capable of producing a diverse array of vocalizations, including trills, phees, twitters, tsiks, 

seeps, and infant cries, even when kept in captivity (Bezerra & Souto, 2008; Epple, 1968; 

Remington et al., 2012; Rylands, 1993). Identifying the pertinent voiced segments within 

a recorded audio track is frequently the primary hurdle in audio data analysis. To address 

this, we made use of signal processing and deep learning tools to segment automatically 

and cluster vocalizations based on the methods described in the recent computational 

neuroethology literature (Sainburg et al., 2020; Sainburg & Gentner, 2021; Best et al., 

2023). The comprehensive dataset we present has the potential to improve our 

comprehension of voice phylogeny by better characterizing the acoustical properties of 

the marmoset vocal repertoire, e.g., by comparing the sequential organization of acoustic 

elements across species (Sainburg et al., 2019). 

3.   Results 

3.1.   Data records 
The data consist of: 

1. 869,556 recorded audio files (253 hours; FLAC format, sampling rate: 96 kHz, 

depth: 32 bit). 

2. One annotation file: Annotations.tsv, with 869,556 annotations. These annotations 

were obtained from the semi-automatic labeling (see above) and include details 

such as the predicted vocalization type. The content of each column in the 

annotation file is described in Table 2.1. Each annotation corresponds to a single 

vocalization in one file. Most files include a single detection, though some files 

contain several vocalizations. 215,000 (72 hours) of these annotations were 

identified as a specific type of vocalization (see Figure 2.1 for the latent projection of 

all the vocalizations, colored by label). 

3. One metadata file: Metadata.pdf, details the subjects and annotation definitions 

(Table 2.1, Supplementary Table S1). 

4. An example of a raw audio file that is 5 minutes long. 

5. A set of audio example files. 
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6. A sample Python code exemplifies data loading and plotting of vocalization 

spectrograms. 

7. A sample Python code is exemplifying classifier loading and vocalization type 

prediction. 

Column name Description 

filename Name of the .wav file containing the vocalization, using the format 

Type_ID.wav 

folder Name of the folder containing the vocalization file, using the format 

YYYY_MM_folder ID 

year Start year of vocalization. 

month Start month of vocalization. 

day Start day of vocalization. 

hour Start hour of vocalization (since 2022) 

minute Start minute of vocalization (since 2022) 

second Start second of vocalization (since 2022) 

millisecond Start millisecond of vocalization (since 2022) 

duration Length of the vocalization file in seconds 

recording file 

onset 

Vocalization start time in the recording file (seconds) 

recording file 

offset 

Vocalization end time in the recording file (seconds) 

type Type of vocalization as classified by the model: Phee, Trill, Seep, 

Twitter, Tsik, Infant cry, or Vocalization by default 

confidence Confidence of the model in its type attribution (between 0 and 1) 

Table 2.1: Annotation details. Descriptions of each column of the annotation file. 
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The recorded audio files are divided into folders by month of recording, with no more 

than 10,000 files per folder. The annotation and metadata files are in tabular separated-

value format (TSV) to ease their use with automatic tools and allow direct upload into 

spreadsheet software. The metadata file includes descriptions of all identifiers in the 

annotation file. The example files contain several audio recordings that illustrate different 

recorded sounds. They are provided to help users become more familiar with the 

recorded data. These examples include Phee calls, Twitter calls, Infant cries, and examples 

of background noises. 

 

Figure 2.1: Latent projections of vocalizations. For each segmented vocalization, we computed 

a spectrotemporal representation. Using the trained encoder, we transformed these 

representations into a 16-dimensional space. We employed the UMAP technique from there to 

map the data into latent feature spaces. The colored points denote the predictions where the 

classifier assigned a high confidence score. 

 

Since the dataset captures the specific times each vocalization was uttered, it paves the 

way for future research into the sequential organization of the marmoset vocal repertoire 

(see Figure 2.2 for a visual representation of the vocalization's temporal distribution; see 

Supplementary Table S4 for the distribution by label). 
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Figure 2.2: Temporal distribution of vocalizations over time. Distribution over time of 

215,000 labeled vocalizations (72 hours in total). Each month, the proportion of vocalization type 

is indicated in thousands of vocalizations and hours. The proportion of labeled/labeled 

vocalization is 25/75% (unlabeled omitted here). 

3.2.   Code availability 
The code is available on https://github.com/swasun/MarmAudioDataset. 

3.3.   Usage notes 
First, you need to decompress the FLAC files: 

python marmaudio/decompress_flac.py -–folder_path=audios_compressed 

Below is a short Python example that demonstrates how to load a wavefile based on some 

annotations found in ‘Annotations.tsv’: 

from marmaudio.utils import read_waveform, denoise_waveform 
import pandas as pd 
import os 
 
df = pd.read_csv('Annotations.tsv', sep='\t') # Read the annotations 
print(df.prediction_type.value_counts()) # Display the labels distribution 
 
random_row = df.sample(n=1) # Randomly sample a line for example purpose 
 
file_path = os.path.join('marmaudio', 'audios', 
f'{random_row["year"]}/{random_row["month"]}/{random_row["folder_id"]}', 
f'{random_row["file_id"]}.wav') 
 
signal, sampling_rate = read_waveform(file_path) # Read the vocalization 
waveform and store it as 'signal' 
 

https://github.com/swasun/MarmAudioDataset
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denoised_signal = denoise_waveform(signal) # Denoise the signal if needed 

 

Below is a short Python example that demonstrates how to load our pre-trained 

classifier and run it to predict the vocalization type of a loaded waveform: 

from marmaudio.classifier import load_classifier, prediction_to_str 
 
# signal = ... code to load a signal 
clf = load_classifier() 
prediction = clf(signal) 
print(prediction_to_str(prediction)) 

4.   Methods 

4.1.   Animal retrievals and cares 
This study involved a total of thirty-five common marmosets (Callithrix jacchus) 

belonging to a colony of three families. Not all animals were present during the same 

period. The monkeys were not present for the entire data collection, notably due to 

conflicts or deaths. For more details on the periods of inclusion of each monkey, refer to 

Supplementary Table S1. 

 

All animals included are the offspring of parents and grandparents born and raised in 

captivity for research purposes. All experimental procedures were in compliance with the 

European directive (2010/63/UE) and were approved by the Ethics Board of Institut de 

Neurosciences de la Timone (reference 2019010911313842). 

4.2.   Experimental setup 
Acoustic recorders were set up in a lab with captive marmosets (Figure 2.3). The 

recordings were made using one microphone (C-100, Sony Corporation, Japan) placed 

directly in the room of three marmoset families (e.g., Supplementary Table S1) housed in 

cages (1.05 m long x 0.85 m wide x 2 m high). The mixing desk (RME Fireface UFX II, RME, 

Germany) and the computer allowing the recording via Adobe Audition (Adobe, CA, USA) 

were located in an adjacent room. Husbandry and technical rooms are soundproofed from 

the rest of the laboratory animal facility. Audio data was recorded from December 2019 

to April 2023, consisting of 997 hours of data recording. 
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Figure 2.3: Schematic of the recording system. The diagram shown here is a schematic drawing 

of the recording setup, and the relative sizes and positions of the components are not to scale. The 

husbandry room (1) contained three cages (only one visible here, (2)) and two microphones (3). 

The technical room (4) was separated by a wall and contained a mixing desk (5) and a computer 

(6), allowing the recording. Husbandry and technical rooms were soundproof thanks to 

specialized insulation (7). 

4.3.   Segmentation and labeling 
To build a dataset of marmoset vocalizations annotated by type, we followed the 

pipeline shown in Figure 2.4. Each step is described in this section. 

 

To isolate vocalizations from background noise, we used a stationary noise reduction 

algorithm relying on spectral gating (noisereduce Python package; Sainburg et al., 2020). 

We then partially identified (recordings from 2019-2020) the vocalization sound events 

using a dynamic-thresholding segmentation algorithm (Sainburg et al., 2020), leading to 

100,000 segmented audio events. The elements were partitioned in a spectro-temporal 
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manner, allowing for temporal overlap but ensuring frequency exclusivity between two 

elements (Figure 2.4, blue panel; see hyperparameters in Supplementary Table S2). 

 

Given the large number of utterances to label, we opted for a semi-automated 

procedure leveraging unsupervised and self-supervised machine learning strategies to 

explore the sound event space and label the vocalization types, as well as filter out the 

noisy sound events (Figure 2.4, orange panel). A convolutional autoencoder (network 

architecture and particularities of the training procedure are detailed in Best et al., 2023) 

was trained on segmented time-frequency representations of 0.5 seconds to encode them 

into a 16-dimensional latent space allowing the measurement of vocalization similarity 

(Sainburg et al., 2020; Best et al., 2023). The representations were Mel-spectrograms 

(short-time Fourier Transform (STFT) with a Hann window of 1,024, no FFT padding, and 

a hop size of 368), with Mel filterbank of 128 bands between 1 kHz and 48 kHz. The Mel 

scale is a popular choice of center frequencies aiming to mimic pitch perception 

characteristics of the human auditory system. These representations were subsequently 

treated as points in a feature space after applying the dimensionality reduction algorithm 

UMAP (McInnes et al., 2018). We then clustered vocalizations close to one another in 

feature space, using a density-based algorithm (McInnes et al., 2017), allowing the 

annotation of vocalizations by type (Figure 2.4, orange panel, ‘Clustered sound events’). 

Clusters, which encompass hundreds to thousands of sound events, were meticulously 

examined by experts. They associated these clusters with specific call types and filtered 

out any misclassifications. For each cluster, an expert reviewed a folder of spectrogram 

images, discarding any that did not align with the cluster's general trend. Subsequently, 

these cluster sounds were categorized by ‘vocalization’ type or as 'noise.' This process 

yielded a partially labeled database, essential for the subsequent iterative label 

refinement procedure. 
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Figure 2.4: Pipeline for the creation of the published database. 

 

After compiling the initial database, we engaged in an iterative process: We trained a 

classifier and then improved its predictions by visually inspecting and manually 

correcting multiple spectrograms displayed simultaneously. These spectrograms were 

sampled based on mislabels with high confidence (Figure 2.4., green panel). We continued 

this process until the classifier's performance met a threshold of 0.7, which was found 

empirically. We introduced custom thresholds for each label type to refine the classifier's 

decisions based on the prediction confidence, thus optimizing the label assignments. 
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These thresholds were identified based on the empirical observations from our dataset 

and reflect the distinctive nature of each label type (Phee ≥ 0.7; Seep ≥ 0.86; Trill ≥ 0.86; 

Tsik ≥ 0.7; Twitter ≥ 0.7). Any vocalization with prediction confidence below these label-

specific thresholds was accordingly re-labeled as 'Vocalization' (i.e., a vocalization of 

unknown type). We adjusted each sound event's start and end times based on its 

predicted label post-classification (Supplementary Table S3). 

4.4.   Technical validation 
The annotation types were defined by Dr. Manon Obliger-Debouche and Dr. Sabrina 

Ravel. The recordings were annotated semi-automatically by myself and Dr Paul Best. 

These observers were certified after annotating a few recording days, which were then 

validated by an expert (Manon Obliger-Debouche or Sabrina Ravel). In annotating the 

recordings, we adopted a conservative approach, in which we designated as ‘unknown’ 

any data for which we had any doubt. Despite the training of the observers, some noise 

might have been introduced during the manual annotations and by the annotating 

algorithms. Thus, we estimated an error rate by a post-hoc quality test (procedure from 

Prat et al., 2017):  700 annotated recordings (100 per label type) were sampled randomly 

and were then carefully re-annotated by Manon Obliger-Debouche, myself, Paul Best, and 

Sabrina Ravel. Errors were counted when there was a discrepancy between the post-hoc 

and the original annotations or when the post-hoc examination concluded that some 

doubt still existed (e.g., if only 3 out of the 4 confirm it, it is considered an error). The error 

rates were, on average, 9.43% (90.57% Confidence-Interval [CI]: 86.00–95.00%) for the 

vocalization type identification (see Table 2.2 below for scores per label type). 

 

Label Error rate (%) Accuracy (%) CI lower (%) CI upper (%) 

Infant cry 1.00 99.00 97.00 100.00 

Phee 0.00 100.00 100.00 100.00 

Seep 21.00 79.00 71.00 87.00 

Trill 18.00 82.00 74.00 90.00 
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Tsik 16.00 84.00 77.00 91.00 

Twitter 2.00 98.00 95.00 100.00 

Vocalization 8.00 92.00 87.00 97.00 

Average 9.43 90.57 86.00 95.00 

Table 2.2: Vocalization type error rates. 700 recordings (100 per label type) were re-

reviewed by 4 experts. Errors were noted for inconsistencies or lingering uncertainties. 

5.   Conclusion 
This chapter addressed the utilization of computational methods in studying the 

evolution of vocal communication among primates. We highlighted the need for more 

comprehensive datasets for primate vocalizations, specifically for macaque and 

marmoset monkeys. We underscored its significance in understanding the coding 

principles in voice patches across primate species. 

  

We presented an end-to-end pipeline for extracting and analyzing vocalizations from 

marmoset monkey recordings, continuously recorded with a sampling rate of 96 kHz from 

a stabulation room housing ~20 marmosets in three cages simultaneously. The dataset 

comprises over 800,000 files, amounting to 253 hours of data collected over 40 months. 

Each recording lasts a few seconds and captures the marmosets' social vocalizations, 

encompassing their entire known vocal repertoire during the experimental period. 

Around 215,000 calls were annotated with the vocalization type. The provided dataset, 

source code, and pre-trained classifier offer a resource for future research in this domain. 

Moving forward, it is crucial to expand upon this foundational work by incorporating 

more species-specific vocal datasets and refining computational methodologies to further 

our understanding of the evolution of vocal communication. This point and others are 

discussed in Section 3 of the Discussion chapter. 
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 Chapter 3 

Encoding and decoding of voice identity in 

human auditory cortex 

Chapter 1 discussed the cerebral processing of voice information in humans and non-

human primates. It is established that conspecific vocalizations preferentially activate the 

“temporal voice areas” (TVAs). However, how these areas represent voice identity 

information—such as speaker gender and specific identity—remains unclear. This chapter 

examines the correlation between brain activity and voice identity, as measured using 

neuroimaging techniques and representations derived from deep learning. We conduct 

computational experiments—including neural encoding, neural decoding, and 

representational similarity analysis (RSA)—to bridge the deep learning-based voice 

representation with the fMRI responses to voice stimuli. 
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1.   Abstract 
The cerebral processing of voice information is known to engage, in human as well as 

non-human primates, “temporal voice areas” (TVAs) that respond preferentially to 

conspecific vocalizations. However, how voice information is represented by neuronal 

populations in these areas, particularly speaker identity information, remains poorly 

understood. Here, we used a deep neural network (DNN) to generate a high-level, small-

dimension representational space for voice identity—the ‘voice latent space’ (VLS)—and 

examined its linear relation with cerebral activity via encoding, representational 

similarity, and decoding analyses. We find that the VLS maps onto fMRI measures of 

cerebral activity in response to tens of thousands of voice stimuli from hundreds of 

different speaker identities and better accounts for the representational geometry for 

speaker identity in the TVAs than in A1. Moreover, the VLS allowed TVA-based 

reconstructions of voice stimuli that preserved essential aspects of speaker identity as 

assessed by both machine classifiers and human listeners. These results indicate that the 

DNN-derived VLS provides high-level representations of voice identity information in the 

TVAs. 

2.   Introduction 
In recent years, deep neural networks (DNNs) have emerged as a powerful tool for 

representing complex visual data, such as images (LeCun et al., 2015) or videos (Liu et al., 

2020). In the auditory domain, DNNs have been shown to provide valuable 

representations—so-called feature or latent spaces—for modeling the cerebral 

processing of sound (brain encoding) (speech: Kell et al., 2018; Millet et al., 2022; 

semantic content: Caucheteux et al., 2022; Caucheteux et King, 2022; Caucheteux et al., 

2023; Giordano et al., 2023; music: Güçlü et al., 2016), or reconstructing the stimuli 

listened by a participant (brain decoding) (Akbari et al., 2019). They have not yet been 

used to explain cerebral representations of identity-related information due in part to the 

focus on speech information (von Kriegstein, 2003; Morillon et al., 2022). 

  

Here, we addressed this challenge by training a ‘Variational autoencoder’ (VAE; 

Kingma et Welling, 2014) DNN to reconstruct voice spectrograms from 182,000 250-ms 

voice samples from 405 different speaker identities in 8 different languages from the 

CommonVoice database (Ardila et al., 2020). Brief (250 ms) samples were used to 
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emphasize speaker identity-related information in voice, already available after a few 

hundred milliseconds (Schweingerger et al., 1997; Lavan, 2023), over linguistic 

information unfolding over longer periods. While a quarter of a second is admittedly short 

compared to standards of, e.g., computational speaker identification that typically uses 2-

3s samples, this short duration is sufficient to allow near-perfect gender classification and 

performance levels well above chance for speaker discrimination (Figure 3.5). This brief 

duration allowed the presentation of many more stimuli to our participants in the scanner 

while preserving acceptable behavioral and classifier performance levels. 

  

State-of-the-art studies have primarily relied on task-optimized neural networks (i.e., 

DNN trained using supervised learning to classify a category from the input) to study 

sensory cortex processes (Yamins et DiCarlo, 2016; Schrimpf et al., 2018). They can reach 

high accuracies in brain encoding (Khaligh-Razavi & Kriegeskorte, 2014; Schrimpf et al., 

2018; Han et al., 2019). However, there is increasing evidence that unsupervised learning, 

such as that used for the VAE, also provides plausible computational models for 

investigating brain processing (Higgins et al., 2021; Zhuang et al., 2021; Millet et al., 2022; 

Orhan et al., 2022). Thus, the VAE-derived VLS, exploited within encoding, 

representational similarity, and decoding frameworks, offers a potentially promising tool 

for investigating the representations of voice stimuli in the secondary auditory cortex 

(Naselaris et al., 2011). Autoencoders learn to compress stimuli with high dimensionality 

into a lower-dimensional space that nonetheless allows reconstruction of the original 

stimuli via an inverse transformation learned by the second part of the network called the 

decoder. Figure 3.1a shows the architecture of the VAE, with its encoder that reduces an 

input spectrogram to a highly compressed, 128-dimension voice latent space (VLS) 

representation and its decoder that reconstructs the spectrogram from this VLS 

representation. Points in the VLS correspond to voice samples with different identities 

and phonetic content. A line segment in the VLS contains points corresponding to 

perceptual interpolations between its two extremities (Figure 3.1b; Supplementary Audio 

S1). VLS coordinates of samples presented to the participants averaged by speaker 

identity suggest that a major organizational dimension of the latent space is voice gender 

(Figure 3.1b) (colored by age or language in Supplementary Figure S1). 
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In order to test whether VLS accounts well for cerebral activity in response to voice 

stimuli, we scanned three healthy volunteers using fMRI to measure an indirect index of 

their cerebral activity across 10+ hours of scanning each in response to ~12,000 of the 

voice samples, denoted BrainVoice in the following, used to train the DNN. The small 

number of participants does not allow for generalization at the general population level 

as in standard fMRI studies. However, it allows testing for replicability as in comparable 

studies involving 10+ hours of scanning per participant (VanRullen & Reddy, 2019). 

Different stimulus sets were used across participants to provide a stringent test of 

replicability based on subject-level analyses. Stimuli consisted of randomly spliced 250-

ms excerpts of speech samples from the CommonVoice database (Ardila et al., 2020) by 

119 speakers in 8 languages. For assessing generalization performances of decoding 

models and brain-based reconstruction, six test stimuli were repeated more often (60 

times) for each participant to provide robust estimates of their induced cerebral activity 

(see Methods). We first modeled these responses to voice using a general linear model 

(GLM) (Friston et al., 1994) with several nuisance regressors as an initial denoising step 

(Supplementary Figure S4), then used a second GLM modeling cerebral responses to the 

different speaker identities (Supplementary Figure S3a), resulting in one voxel activity 

map per speaker (Supplementary Figure S3b). We independently localized in each 

participant several regions of interest (ROIs) on which subsequent analyses were focused: 

the anterior, middle and posterior TVAs in each hemisphere (individually localized via an 

independent ‘voice localizer scan’ and MNI coordinates provided in Pernet et al., 2015; 

Supplementary Figure S3c) as well as primary auditory cortex (A1) (using a probabilistic 

map in MNI space (Penhune et al., 1996; Supplementary Figure S3d). 

  

We first asked how the VLS could account for the brain responses to speaker identities 

(encoding) measured in A1 and the TVAs compared to a linear autoencoder’s latent space 

(LIN). This approach was chosen because it has been demonstrated that a linear 

autoencoder with a d-dimensional hidden layer projects data in the same subspace as the 

one spanned by the d first eigenvectors of a principal component analysis (PCA) (Plaut et 

al., 2018). We used a general linear model (GLM) of fMRI responses to the speaker 

identities, resulting in one voxel activity map per speaker (Supplementary Figure S3). 

Then, we computed the average VLS coordinates of the fMRI voice stimuli for each speaker 

identity, which may be seen as a speaker representation in the VLS (see Identity-based and 
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stimulus-based representations section). Next, we trained a linear voxel-based encoding 

model to predict the speaker voxel activity maps from the speaker VLS coordinates. As 

VAE achieves compression through a series of nonlinear transformations (Wetzel, 2017), 

we contrast its results with a linear autoencoder’s latent space. This method has 

previously been applied to fMRI-based image reconstructions (Cowen et al., 2014; 

VanRullen & Reddy, 2019; Mozafari et al., 2020). 

  

The extent to which the VLS allows linearly predicting the fMRI recordings does not 

provide insight into the representational geometries, i.e., the differences between the 

patterns of cerebral activity for speaker identity. We addressed this question by using 

representational similarity analysis (RSA; Kriegeskorte et al., 2008) to test which model 

better accounts for the representational geometry for voice identities in the auditory 

cortex. Using RSA as a model comparison framework is relevant to examining the brain-

model relationship from complementary angles (Diedrichsen et al., 2017). We built 

speaker x speaker representational dissimilarity matrices (RDMs) capturing pairwise 

differences in cerebral activity or model predictions between all pairs of speakers; then, 

we examined how well the LIN and VLS-derived RDMs correlated with the cerebral RDMs 

from A1 and the TVAs. 

  

A robust test of the adequacy of models of brain activity, and a long-standing goal in 

computational neurosciences, is the reconstruction of a stimulus presented to a 

participant from the evoked brain responses. While reconstruction of visual stimuli 

(images, videos) from cerebral activity has been performed by a number of groups 

(VanRullen et Reddy, 2019; Mozafari et al., 2020; Le et al., 2022; Gaziv et al., 2022; Dado 

et al., 2022; Chen et al., 2023), validating the DNN-derived representational spaces, 

comparable work in the auditory domain is scarce, almost exclusively concentrated on 

linguistic information (Santoro et al., 2017). Akbari et al. used a DNN to reconstruct 

speech stimuli based on ECoG recording of auditory cortex activity, an invasive method 

compared to techniques like fMRI. They obtained a good phonetic recognition rate but 

chance-level gender categorization performance from reconstructed spectrograms and 

no evaluation of speaker identity discrimination. 
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Here, we built on the linear relationship uncovered in our encoding analysis between 

the VLS and the fMRI recordings to invert it and try to predict VLS coordinates from the 

recorded fMRI data; then, using the decoder, we reconstructed the spectrograms of 

stimuli presented to the participants (Wu et al., 2006; Naselaris et al., 2011). The voice 

identity information available in the reconstructed stimuli was finally assessed by human 

listeners using both machine learning classifiers and behavioral tasks (Figure 3.4). 

3.   Results 

3.1.   Voice Information in the Voice Latent Space 

(VLS) 
In order to probe the informational content of the VLS, linear classifiers were trained 

to categorize the voice stimuli from 405 speakers by gender (2 classes), age (2 classes) or 

identity (119 classes, cf Methods) based on VLS coordinates, or their LIN features as 

control (Figure 3.1c,d,e; we aggregated the stimuli from the 3 participants; for each model 

computed the latent space of each stimulus and averaged the latent spaces by speaker 

identity, leading to 405 128-dimensional vectors. We then trained linear classifiers using 

a 5-fold cross-validation scheme, see Characterization of the autoencoder latent space). 

The mean of the distribution of accuracies obtained for 100 random classifier 

initializations (as to account for variance; Bouthillier et al., 2021) was significantly above 

chance level (all ps < 1e-10) for all classifications (LIN: gender (mean accuracy ± s.d.) = 

97.64±1.77%, t(99)=266.94; age: 64.39±4.54%, t(99)=31.53; identity: 40.52±9.14%, 

t(99)=39.37; VLS: gender: 98.59±1.19%, t(99)=406.47; age: 67.31±4.86%, t(99)=35.41; 

identity: 38.40±8.75%, t(99)=38.73). We then evaluated the difference in performance at 

preserving identity-related information between the VLS and LIN via one-way ANOVAs. 

Results showed a significant effect of Feature (LIN/VLS) in categories (all Fs(1, 198) > 

225.15, all ps<.0001) but not in identity. Post-hoc paired t-tests showed that the VLS was 

better than the LIN at encoding information related to voice identity, as evidenced by a 

significant difference in means for gender (t(99)=-6.11, p<.0001), age (t(99)=-6.10, 

p<.0001) but not for identity classifications (t(99)=1.71). 
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Figure 3.1: DNN-derived Voice Latent Space (VLS). a, Variational autoencoder (VAE) 

Architecture. Two networks learned complementary tasks. An encoder was trained using 182K 

voice samples to compress their spectrogram into a 128-dimension representation, the voice 

latent space (VLS), while a decoder learned the reverse mapping. The network was trained end-

to-end by minimizing the difference between the original and reconstructed spectrograms. b, 

Distribution of the 405 speaker identities along the first 2 principal components of the VLS 

coordinates from all sounds, averaged by speaker identity. Each disk represents a speaker's 

identity colored by gender. PC2 largely maps onto voice gender (ANOVAs on the first two 

components: PC1: F(1, 405)=0.10, p=.74; PC2: F(1, 405)=11.00, p<.001). Large disks represent the 
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average of all male (black) or female (gray) speaker coordinates, with their associated 

reconstructed spectrograms (note the flat fundamental frequency (f0) and formant frequencies 

contours caused by averaging). The bottom of the spectrograms illustrates an interpolation 

between stimuli of two different speaker identities: spectrograms at the extremes correspond to 

two original stimuli (A, B) and their VLS-reconstructed spectrograms (A’, B’). Intermediary 

spectrograms were reconstructed from linearly interpolated coordinates between those two 

points in the VLS (red line) (cf. Supplementary Audio S1). c,d e, Performance of linear classifiers 

at categorizing speaker gender (chance level: 50%), age (young/adult, chance level: 50%), or 

identity (119 identities, chance level: 0.84%) based on VLS or LIN coordinates. Error bars indicate 

the standard error of the mean (s.e.m) across 100 random classifier initializations. All ps<1e-10. 

The horizontal black dashed lines indicate chance levels. ****: p<0.0001. 

 

Thus, despite its low number of dimensions (each input spectrogram has 

401x21=8421 parameters and is summarized in the VLS by a mere 128 dimensions), the 

VLS appears to meaningfully represent the different sources of voice information 

perceptually available in the vocal stimuli. This representational space, therefore, 

constitutes a relevant candidate for linearly modeling voice stimulus representations by 

the brain. 

3.2.   Brain Encoding 
We used a linear voxel-based encoding model to test whether VLS linearly maps onto 

cerebral responses to speaker identities measured with fMRI in the different ROIs. A 

regularized linear regression model (cf. Methods) was trained on a subset of the data (5-

fold cross-validation scheme) to predict the voxel maps for each speaker identity. For each 

fold, the trained model was tested on the held-out speaker identities (Figure 3.2a). The 

model's performance was assessed for each ROI using the Pearson correlation score 

between each voxel's actual and predicted responses (Schrimpf et al., 2021). Similar 

predictions were tested with features derived from LIN (cf. Methods). Figure 3.2b shows 

the distribution of correlation coefficients obtained for each of the ROIs for the 2 sets of 

features across voxels, hemispheres, and participants. 

  

One-sample t-tests showed that the means of Fisher z-transformed coefficients for both 

LIN features and VLS were significantly higher than zero (LIN: A1 t(197)=7.25, p<.0001, 

pTVA t(175)=4.49, p<.0001, mTVA t(164)=9.12, p<.0001 and aTVA t(147)=6.81, p<.0001; 
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VLS: A1 t(197)=4.76, p<.0001, mTVA t(164)=10.12, p<.0001 and aTVA t(147)=5.52, 

p<.0001 but not pTVA t(175)=-1.60) (Supplementary Tables 2-3). 

  

A mixed ANOVA performed on the Fisher z-transformed coefficients with Feature (VLS, 

LIN) and ROI (A1, pTVA, mTVA, aTVA) as factors showed a significant effect of Feature 

(F(3, 683)=56.65, p<.0001), a significant effect of ROI (F(3, 683)=18.50, p<.0001), and a 

moderate interaction Feature x ROI (F(3, 683)=5.25, p<.01). Post-hoc comparisons 

revealed that the mean of correlation coefficients was higher for LIN than for VLS in A1 

(t(197)=4.02, p<.0001), pTVA (t(175)=6.64, p<.0001), aTVA (t(147)=3.78, p<.001) but 

not in mTVA (t(164)=0.58) (Supplementary Table 4); and that the voxel patterns are 

better predicted in mTVA than in A1 for both models (LIN: t(361)=2.36, p<.05); VLS: 

t(361)=4.91, p<.0001) (Supplementary Table 5). However, inspecting the distribution of 

model-voxel correlations, we found that both models account for different parts of the 

voice identity responses and differ across ROIs (Figure 3.2c). 
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Figure 3.2: Predicting brain activity from the VLS. a, Linear brain activity prediction from VLS 

for ~135 speaker identities in the different ROIs. We first fit a GLM to predict the BOLD responses 

to each voice speaker identity. Then, using the trained encoder, we computed the average VLS 

coordinates of the voice stimuli presented to the participants based on speaker identity. Finally, 

we trained a linear voxel-based encoding model to predict the speaker voxel activity maps from 

the speaker VLS coordinates. The cube illustrates the linear relationship between the fMRI 

responses to speaker identity and the VLS coordinates. The left face of the cube represents the 

activity of the voxels for each speaker's identity, with each line corresponding to one speaker. The 
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right face displays the VLS coordinates for each speaker's identity. The cube's top face shows the 

encoding model's weight vectors. b, Encoding results. For each region of interest, the model's 

performance was assessed using the Pearson correlation score between the true and the 

predicted responses of each voxel on the held-out speaker identities. Pearson’s correlation 

coefficients were computed for each voxel on the speakers’ axis and then averaged across 

hemispheres and participants. Similar predictions were tested with the LIN features. Error bars 

indicate the standard error of the mean (s.e.m) across voxels. *p < 0.05; **p < 0.01; **p < 0.001; 

****p < 0.0001.  c, Venn diagrams of the number of voxels in each ROI with the LIN, the VLS, or 

both models. For each ROI and each voxel, we checked whether the test correlation was higher 

than the median of all participant correlations (intersection circle), and if not, which model (LIN 

or VLS) yielded the highest correlation (left or right circles). 

3.3.   Representational Similarity Analysis 
For RSA, we built speaker x speaker representational dissimilarity matrices (RDMs), 

capturing for each ROI the dissimilarity in voxel space between each pair of speaker voxel 

maps (‘brain RDMs’; cf. Methods) using Pearson’s correlation (Walther et al., 2016). We 

compared these four bilateral brain RDMs (A1, aTVA, mTVA, pTVA) to two ‘model RDMs’ 

capturing speaker pairwise feature differences predicted by LIN and the VLS (Figure 3.3a) 

built using cosine distance (Xing et al., 2015; Bhattacharya et al., 2017; Wang et al., 2018). 

Figure 3.3b shows for each ROI the Spearman correlation coefficients between the brain 

RDMs and the two model RDMs for each participant and hemisphere (Kriegeskorte et al., 

2008; Figure 3.3c for an example of brain-model correlation). 

 

These brain-model correlation coefficients were compared to zero using a ‘maximum 

statistics’ approach based on random permutations of the model RDMs’ rows and 

columns (Maris & Oostenveld, 2007; cf. Methods; Figure 3.3b). For the LIN model, only 

one brain-model RDM correlation was significantly different from zero (one-tailed test): 

in mTVA, right hemisphere in S3 (p=.0500). For the VLS model, in contrast, 5 significant 

brain-model RDM correlations were observed in all four ROIs: in A1, right hemisphere in 

S3 (p=.0142); pTVA: right hemisphere in S3 (p=.0160); mTVA: left hemisphere in S3 

(p=.007); aTVA: left hemispheres in S1 (p=.0417) and S3 (p=.0001) (Supplementary Table 

6). 
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A two-way repeated-measures ANOVA with Feature (VLS, LIN) and ROI (A1, pTVA, 

mTVA, aTVA) as factors performed on the Fisher z-transformed correlation coefficients 

showed a tendency towards a significant effect of Feature (F(1, 2)=22.53, p=.04), and no 

ROI (F(3, 6)=1.79, p=.30) or interaction effects (F(3, 6)=1.94, p=.22). We compared the 

correlation coefficients between the VLS and LIN models within participants and 

hemispheres using one-tailed tests, based on the a priori hypothesis that the VLS models 

would exhibit greater brain-model correlations than the LIN models (cf. Methods). The 

results revealed two significant differences in one of the three participants, both favoring 

the VLS model (S3: right pTVA, p=.0366; left aTVA, p=.00175) (Supplementary Table 7).

 

Figure 3.3: The VLS better explains representational geometry for voice identities in the 

TVAs than the linear model. a, Representational dissimilarity matrices (RDMs) of pairwise 

speaker dissimilarities for ~135 identities (arranged by gender, cf. sidebars), according to LIN 

and VLS. b, Spearman correlation coefficients between the brain RDMs for A1, the 3 TVAs, and the 
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2 model RDMs. Error bars indicate the standard error of the mean (s.e.m) across brain-model 

correlations. c, Example of brain-model RDM correlation in the TVAs. The VLS RDM and the brain 

RDM yielding one of the highest correlations (LaTVA) are shown in the insert. 

3.4.   Decoding and Reconstruction 
We finally inverted the brain-VLS relationship to predict linearly VLS coordinates 

based on fMRI measurements (Figure 3.4a; see ‘Brain decoding’ in Methods) and 

reconstructed via the trained decoder the spectrograms of 18 Test Stimuli (3 participants 

x 6 stimuli per participant; see Figure 3.4b, and Supplementary Audio S2; audio estimated 

from spectrogram through phase reconstruction). 

 

Figure 3.4: Reconstructing voice identity from brain recordings. a, A linear voxel-based 

decoding model was used to predict the VLS coordinates of 18 Test Stimuli based on fMRI 

responses to ~12,000 Train stimuli in the different ROIs. To reconstruct the audio stimuli from 

the brain recordings, the predicted VLS coordinates were then fed to the trained decoder to yield 

reconstructed spectrograms, synthesized into sound waveforms using the Griffin-Lim phase 

reconstruction algorithm (Griffin & Lim, 1983). b, Reconstructed spectrograms of the stimuli 
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presented to the participants. The left panels show the spectrogram of example original stimuli 

reconstructed from the VLS, and the right panels show brain-reconstructed spectrograms via LIN 

and the VLS (cf Supplementary Audio S2). 

 

We first assessed the nature of the reconstructed stimuli by using a DNN trained to 

categorize natural audio events (Howard et al., 2017): all reconstructed versions of the 18 

Test Stimuli were categorized as 'speech' (1 class out of 521 - no ‘voice’ classes). To 

evaluate the preservation of voice identity information in the reconstructed voices, pre-

trained linear classifiers were used to classify the speaker gender (2 classes), age (2 

classes), and identity (17 classes) of the 18 reconstructed Test Stimuli. The mean of the 

accuracy distribution obtained across random classifier initializations (20 per ROI) used 

on the stimuli reconstructed from the induced brain activity was significantly above 

chance level for gender (LIN: pTVA (mean accuracy ± s.d.): 72.08±5.48, t(39)=25.15; VLS: 

A1: 61.11±2.15, t(39)=32.25; pTVA: 63.89±2.78, t(39)=31.22), age (LIN: pTVA: 

54.58±4.14, t(39)=6.90; aTVA: 63.96±12.55, t(39)=6.94; VLS: pTVA: 65.00±7.26, 

t(39)=12.89; aTVA: 60.42±5.19, t(39)=12.54) and identity (LIN: A1: 9.20±9.23, 

t(39)=2.24; pTVA: 9.48±4.90, t(39)=4.59; aTVA: 9.41±6.28, t(39)=3.51; VLS: pTVA: 

16.18±7.05, t(39)=9.11; aTVA: 8.23±4.70, t(39)=3.12) (Figure 3.5a-c; Supplementary 

Tables 8-10). 

 

Two-way ANOVAs with Feature (VLS, LIN) and ROI (A1, pTVA, mTVA, aTVA) as factors 

performed on classification accuracy scores (gender, age, identity) revealed for gender 

classifications significant effects of Feature F(1, 312)=12.82, p<.0005) and ROI (gender: 

F(3, 312)=245.06, p<.0001; age: F(3, 312)=64.49, p<.0001; identity: F(3, 312)=14.49, 

p<.0001), as well as Feature x ROI interactions (gender: F(3, 312)=56.74, p<.0001; age: 

F(3, 312)=4.31, p<.001; identity: F(3, 312)=8.82, p<.0001). Post-hoc paired t-tests 

indicated that the VLS was better than LIN in preserving gender, age and identity 

information in at least one TVA compared with A1 (gender: aTVA: t(39)=5.13, p<.0001; 

age: pTVA: t(39)=9.78, p<.0001; identity: pTVA: t(39)=4.01, p<.0005) (all tests in 

Supplementary Table 11). Post-hoc two sample t-tests comparing ROIs revealed 

significant differences in all classifications, in particular with pTVA outperforming other 

ROIs in gender (LIN: pTVA vs A1: t(78)=22.40, p<.0001; pTVA vs mTVA: t(78)=10.92, 

p<.0001; pTVA vs aTVA: t(78)=31.47, p<.0001; VLS: pTVA vs A1: t(78)=4.94, p<.0001; 
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pTVA vs mTVA: t(78)=13.96, p<.0001; pTVA vs aTVA: t(78)=22.06, p<.0001), age (LIN: 

pTVA vs A1: t(78)=7.26, p<.0001; pTVA vs mTVA: t(78)=10.11, p<.0001; VLS: pTVA vs A1: 

t(78)=5.71, p<.0001; pTVA vs mTVA: t(78)=10.11, p<.0001; pTVA vs aTVA: t(78)=3.21, 

p<.005) and identity (LIN: pTVA vs mTVA: t(78)=2.27, p<.05; VLS: pTVA vs A1: 

t(78)=6.45, p<.0001; pTVA vs mTVA: t(78)=6.62, p<.0001; pTVA vs aTVA: t(78)=5.85, 

p<.0001) (Supplementary Table 12). 

 

We further evaluated voice identity information in the reconstructed stimuli by testing 

human participants (n=13) in a series of 4 online experiments assessing the reconstructed 

stimuli on (i) naturalness judgment, (ii) gender categorization, (iii) age categorization, 

and (iv) speaker categorization (cf Methods). The naturalness rating task showed that the 

VLS-reconstructed stimuli sounded more natural compared to LIN-reconstructed ones, as 

revealed by a two-way repeated-measures ANOVA (factors: Feature and ROI) with a 

strong effect of Feature (F(1, 12)=53.72, p<.0001) and a small ROI x Feature interaction 

(F(3, 36)=5.36, p<.005). Post-hoc paired t-tests confirmed the greater naturalness of VLS-

reconstructed stimuli in both A1 and the TVAs (all ps<.0001) (Figure 3.5g). 

For the gender task, one-sample t-tests showed that categorization of the reconstructed 

stimuli was only significantly above chance level for the VLS (A1: (mean accuracy ± s.d.) 

55.77±10.84, t(25)=2.66, p<.01; pTVA: 61.75±7.11, t(25)=8.26, p<.0001; aTVA: 

55.13±9.23, t(25)=2.78, p<.01). Regarding the age and speaker categorizations, results 

also indicated that both the LIN- and VLS-reconstructed stimuli yielded above-chance 

performance in the TVAs (age: LIN: aTVA, 55.77±14.95, t(25)=1.93, p<.05; VLS: aTVA, 

63.14±11.82, t(25)=5.56, p<.0001; identity: LIN: pTVA: 54.38±9.34, t(17)=1.93, p<.05; 

VLS: pTVA: 63.33±6.75, t(17)=8.14, p<.0001) (Supplementary Tables 13-15). Two-way 

repeated-measures ANOVAs revealed a significant effect of ROI for all categories (gender: 

F(3, 27)=5.90, p<.05; age: F(3, 36)=14.25, p<.0001; identity: F(3, 24)=38.85, p<.0001), 

and a Feature effect for gender (F(1, 9)=43.61, p<.0001) and identity (F(1, 8)=14.07, 

p<.001), but not for age (F(1, 12)=4.01, p=0.07), as well as a ROI x Feature interaction for 

identity discrimination (F(3, 24)=3.52, p<.05) (Supplementary Tables 16-17 for the 

model and ROI comparisons). 
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Figure 3.5: Behavioural and machine classification of the reconstructed stimuli. 

a,b,c, Decoding voice identity information in brain-reconstructed spectrograms. Performance of 

linear classifiers at categorizing speaker gender (chance level: 50%), age (chance level: 50%), and 

identity (17 identities, chance level: 5.88%). Error bars indicate s.e.m across 40 random classifier 

initializations per ROI (instance of classifiers; 2 hemispheres x 20 seeds). The horizontal black 

dashed line indicates the chance level. The blue and yellow dashed lines indicate the LIN and VLS 

ceiling levels, respectively. *p < .05; **p < .001, ***p < .001; ****p < .0001.  d,e,f, Listener 

performance at categorizing speaker gender (chance level: 50%) and age (chance level: 50%), and 

at identity discrimination (chance level: 50%) in the brain-reconstructed stimuli. Error bars 

indicate s.e.m across participant scores. The horizontal black dashed line indicates the chance 

level, while the red, blue, and yellow dashed lines indicate the ceiling levels for the original stimuli, 

the LIN-reconstructed and the VLS-reconstructed, respectively. *p < .05; **p < .01; ***p < .001, 

***p < .0001. g, Perceptual ratings of voice naturalness in the brain-reconstructed stimuli’ as 

assessed by human listeners. *p < .05, ****p < .0001. 

4.   Methods 

4.1.   Experimental procedure overview 
Three participants attended 13 MRI sessions each. The first session was dedicated to 

acquiring high-resolution structural data and identifying each participant's voice-

selective areas using a ‘voice localizer’ based on different stimuli than those in the same 

experiment (Pernet et al., 2015; see below). 
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The next 12 sessions began with the acquisition of two fast structural scans for inter-

session realignment purposes, followed by six functional runs, during which the main 

stimulus set of the experiment was presented. Each functional run lasted approximately 

12 minutes. Participants 1 and 2 attended all scanning sessions (72 functional runs in 

total); due to technical issues, Participant 3 only performed 24 runs. 

  

Participants were instructed to stay in the scanner while listening to the stimuli. To 

maintain participants’ awareness during functional scanning, they were asked to press an 

MRI-compatible button each time they heard the same stimulus two times in a row, a rare 

event occurring 3% of the time (correct button hits (median accuracy ± s.d.): 

S1=96.67±7.10, S2=100.00±0.89, S3=95.00±3.68). 

  

Scanning sessions were spaced by at least two days to avoid possible auditory fatigue 

due to the exposure to scanner noise. To ensure that participants' hearing abilities did not 

vary across scanning sessions, hearing thresholds were measured before each session 

using a standard audiometric procedure (Martin & Champlin, 2000; ISO, 2004) and 

compared with the thresholds obtained prior to the first session. 

4.2.   Participants 
This study was part of the project 'Réseaux du Langage' and was promoted by the 

National Center for Scientific Research (CNRS). It was given approval by the local ethics 

committee (Comité de Protection des Personnes Sud-Méditerranée) on 13th February 

2019. The National Agency for Medicines (ANSM) has been informed of this study, 

registered under 2017-A03614-49. Three native French human speakers (all females, 26-

33 years old) were scanned. Participants gave written informed consent and received a 

compensation of 40€ per hour for their participation. All were right-handed, and no one 

had a hearing disorder or neurological disease. All participants had normal hearing 

thresholds of 15 dB HL for octave frequencies between 0.125 and 8 kHz. 

4.3.   Stimuli 
The auditory stimuli were divided into two sequences. One ‘voice localizer’ sequence 

to identify the voice-selective areas of each participant (Pernet et al., 2015) and main 

voice stimuli. 
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Voice localizer stimuli. The voice localizer stimuli consisted of 96 complex sounds of 

500 ms grouped into four categories: human voice, macaque vocalizations, marmoset 

vocalizations, and complex non-vocal sounds (more details in Bodin et al., 2021). 

  

Main voice stimuli. The main stimulus set consisted of brief human voice sounds 

sampled from the Common Voice dataset (Ardila et al., 2020). Stimuli were organized into 

four main category levels: language (English, French, Spanish, Deutch, Polish, Portuguese, 

Russian, Chinese), gender (female/male), age (young/adult; young: teenagers and 

twenties; adult: thirties to sixties included) and identity (S1: 135 identities; S2: 142 

identities; S3: 128 identities; ~44 samples per identity). Throughout the manuscript, the 

term ‘gender’ rather than ‘sex’ was utilized in reference to the demographic information 

obtained from the participants of the Common Voice dataset (Ardila et al., 2020), as it was 

the terminology employed in the survey (‘male/female/other’). Stimulus sets differed for 

each participant, and the number of stimuli per set also varied slightly (number of unique 

stimuli: Participant 1, N=6150; Participant 2, N=6148; Participant 3, N=5123). For each 

participant, six stimuli were selected randomly among the sounds having high energy (as 

measured with the amplitude envelope) from their stimulus set and were repeated 

extensively (60 times) to improve the performance of the brain decoding (VanRullen et 

Reddy, 2019; Horikawa & Kamitani, 2017; Chang et al., 2019); these will be called the 

“repeated” stimuli hereafter, the remaining stimuli were presented twice. The third 

participant attended 5 BrainVoice sessions instead of 12, one BrainVoice session 

corresponding to 1030 stimuli (1024 unique stimuli and 6 ‘test’ stimuli). Specifically, 

5270 stimuli were presented to the third participant instead of ~12,000 for the two 

others. Among these 5270 stimuli, 5120 unique stimuli were presented once, and for the 

two other participants, 6 ‘test’ stimuli were presented 25 times (150 trials). The stimuli 

were balanced within each run according to language, gender, age, and identity to avoid 

any potential adaptation effect. In addition, identity was balanced across sessions. 

  

All stimuli of the main set were resampled at 24414 Hz and adjusted in duration (250 

ms). For each stimulus, a fade-in and a fade-out were applied with a 15 ms cosine ramp to 

their onset and offset and were normalized by dividing the root mean square amplitude. 

During fMRI sessions, stimulus presentations were controlled using custom Matlab 

scripts (Mathworks, Natick, MA, USA) interfaced with an RM1 Mobile Processor (Tucker-
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David Technologies, Alachua, USA). The auditory stimuli were delivered pseudo-

randomly through MRI-compatible earphones (S14, SensiMetrics, USA) at a comfortable 

sound pressure level that allowed clear and intelligible listening. 

4.4.   Computational models 
We used two computational models to learn representational space for voice signals: 

linear autoencoder (LIN) and deep variational autoencoder (VAE; Kingma et al., 2014). 

Both are encoder-decoder models that are learned to reproduce their input at their output 

while going through a low dimensional representation space usually called latent space 

(that we will call voice latent space since they are learned on voice data). The 

autoencoders were trained on a dataset of 182K sounds from the Common Voice dataset 

(Ardila et al., 2020), balanced in gender, language, and identity to reduce the bias in the 

synthesis (Gutierrez et al., 2021). Both models operate on sounds, which are represented 

as spectrograms that we describe below. These representations were tested in all the 

encoding/decoding and RSA analyses. 

4.5.   Spectrograms 
We used amplitude spectrograms as input for the models that we describe below. 

Short-term Fourier transforms of the waveform were computed using a sliding window 

of 50 ms with a hop size of 12.5 ms (hence an overlap of 37.5 ms) and applying a Hamming 

window of size 800 samples before computing the Fourier transform of each slice. Only 

the magnitude of the spectrogram was kept, and the phase of the complex representation 

was removed. In the end, a 250 ms sound is represented by a 21×401 matrix with 21-time 

steps and 401 frequency bins. 

 

We used a custom code based on 𝑛𝑢𝑚𝑝𝑦. 𝑓𝑓𝑡 package (Harris et al., 2020). The size and 

the overlap between the sliding windows of the spectrogram were chosen to conform 

with the uncertainty principle between time and frequency resolution. The main 

constraint was finding a trade-off between accurate phase reconstruction with the Griffin 

& Lim algorithm (1983) and a reasonable spectrogram size. 

 

We standardized each of the 401 frequency bands separately by centering all the data 

corresponding to each frequency band at every time step in all spectrograms, which 

involved removing their mean and dividing by their standard deviation. This separate 
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standardization of frequency bands resulted in a smaller reconstruction error compared 

to standardizing across all the bands. 

4.6.   Deep neural network 
We designed a deep variational autoencoder (VAE; Kingma & Welling, 2014) of 15 

layers with an intermediate hidden representation of 128 neurons that we refer to as the 

voice latent space (VLS). In an autoencoder model, the two sub-network components, the 

Encoder and the Decoder, are jointly learned on complementary tasks (Figure 3.1a). The 

Encoder network (noted 𝐸𝑛𝑐 hereafter; 7 layers) learns to map an input, 𝑠 (a spectrogram 

of a sound) onto a (128-dimensional) voice latent space representation (𝑧; in blue in the 

middle of Figure 3.1a), while the Decoder (noted 𝐷𝑒𝑐 hereafter; 7 layers) aims at 

reconstructing the spectrogram 𝑠 from 𝑧. The learning objective of the full model is to 

make the output spectrogram 𝐷𝑒𝑐(𝐸𝑛𝑐(𝑠)) as close as possible to the original one 𝑠. This 

reconstruction objective is defined as the L2 loss, ||𝐷𝑒𝑐(𝐸𝑛𝑐(𝑠)) − 𝑠||². The parameters 

of the Encoder and of the Decoder are jointly learned using gradient descent to optimize 

the average L2 loss computed on the training set ∑𝑠 ∈𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑆𝑒𝑡 ||𝐷𝑒𝑐(𝐸𝑛𝑐(𝑠)) − 𝑠||². 

We trained this DNN on the Common Voice dataset (Ardila et al., 2020) according to VAE 

learning procedure (as explained in Kingma et Welling., 2019) until convergence 

(network architecture and particularities of the training procedure are provided in 

Supplementary Table 1), using the PyTorch python package (Paszke et al., 2019). 

4.7.   Linear autoencoder 
We trained a linear autoencoder on the same dataset (described above) to serve as a 

linear baseline. Both the Encoder and the Decoder networks consisted of a single fully 

connected layer without any activation functions. Similar to the VAE, the latent space 

obtained from the Encoder was a 128-dimensional vector. The parameters of both the 

Encoder and the Decoder were jointly learned using gradient descent to optimize the 

average L2 loss computed on the training set. 

4.8.   Neuroimaging data acquisition 
Participants were scanned using a 3 Tesla Prisma scanner (Siemens Healthcare, 

Erlangen, Germany) equipped with a 64-channel receiver head-coil. Their movements 

were monitored during the acquisition using the software FIRMM (Dosenbach et al., 

2017). The whole-head high-resolution structural scan acquired during the first session 
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was a T1-weighted multi-echo MPRAGE (MEMPRAGE) (TR = 2.5 s, TE = 2.53, 4.28, 6.07, 

7.86 ms, TI=1000 ms flip angle: 8°, matrix size = 208 × 300 × 320; resolution 0.8 × 0.8 × 

0.8 mm3, acquisition time: 8min22s). Lower resolution scans acquired during all other 

sessions were T1-weighted MPRAGE scans (TR = 2.3 s, TE = 2.88 ms, TI=900ms,  flip angle: 

9°, matrix size = 192 × 240 × 256; resolution 1 × 1 × 1 mm3, sparse sampling with 2.8 times 

undersampling and compressed sensing reconstruction, acquisition time: 2min37). 

Functional imaging was performed using an EPI sequence (multiband factor = 5 , TR = 462 

ms, TE = 31.2 ms, flip angle: 45°, matrix size = 84 × 84 × 35, resolution 2.5 × 2.5 × 2.5 mm3). 

Functional slices were oriented parallel to the lateral sulci with a z-axis coverage of 87.5 

mm, allowing it to fully cover both the TVAs (Pernet et al., 2015) and the FVAs (Aglieri et 

al., 2018). The physiological signals (heart rate and respiration) were measured with 

Siemens' external sensors. 

4.9.   Pre-processing of neuroimaging data and 

general linear modeling 
Tissue segmentation and brain extraction were performed on the structural scans 

using the default segmentation procedure of SPM 12 (Ashburner et al., 2012). The 

preprocessing of the BOLD responses involved correcting motion, registering inter-runs, 

detrending, and smoothing the data. Each functional volume was realigned to a reference 

volume taken from a steady period in the session that was spatially the closest to the 

average of all sessions. Transformation matrices between anatomical and functional data 

were computed using boundary-based registration (FSL; Smith et al., 2004). The data 

were respectively detrended and smoothed using the nilearn functions 𝑐𝑙𝑒𝑎𝑛_𝑖𝑚𝑔 and 

𝑠𝑚𝑜𝑜𝑡ℎ_𝑖𝑚𝑔 (kernel size of 3mm) (Abraham et al., 2014), resulting in the matrix 𝑌 ∈

𝑅𝑆 × 𝑉, with 𝑆 the number of scans and 𝑉 the number of voxels. 

 

A first general linear model (GLM) was fit to regress out the noise by predicting 𝑌 from 

a “denoised” design matrix, composed of 𝑅 = 38 regressors of nuisance (Supplementary 

Figure S4). These regressors of nuisance, also called covariates of no interest, included: 6 

head motion parameters (3 variables for the translations, 3 variables for the rotations); 

18 ‘RETROICOR’ regressors (Glover et al., 2000) using the TAPAS PhysIO package (Kasper 

et al., 2017) (with the hyperparameters set as specified in Snoek et al.) were computed 

from the physiological signals; 13 regressors modeling slow artifactual trends (sines and 
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cosines, cut frequency of the high-pass filter = 0.01 Hz); and a confound-mean predictor. 

The design matrix was convolved with a hemodynamic response function (HRF) with a 

peak at 6 s and an undershoot at 16 s (Glover et al., 1999); we note the convolved design 

matrix as 𝑋𝑑 ∈ 𝑅𝑆 × 𝑅. The “denoise” GLM’s parameters 𝛽𝑑 ∈ 𝑅𝑅 ×𝑉   were optimized to 

minimize the amplitude of the residual  𝛽𝑑 =  𝑎𝑟𝑔𝑚𝑖𝑛𝛽∈𝑅𝑅 ×𝑉 ||  𝑌 − 𝑋𝑑 𝛽 ||2 . We used 

a lag-1 autoregressive model (ar(1)) to model the temporal structure of the noise (Friston 

et al., 2002). The denoised BOLD signal 𝑌𝑑  was then obtained from the original one 

according to 𝑌𝑑 = 𝑌 − (𝑋𝑑 𝛽𝑑) ∈ 𝑅𝑆 ×𝑉. 

 

A second “stimulus” GLM model was used to predict the denoised BOLD responses for 

each stimulus using a design matrix 𝑋𝑠 ∈ 𝑅 𝑆×(𝑁𝑆+1)  (which was convolved with an 

hemodynamic response function, HRF as above) and a parameters matrix 𝛽𝑠 ∈ 𝑅 (𝑁𝑠+1)×𝑉  

where 𝑁𝑆 stands for the number of stimuli. The last row (resp. column) of 𝛽𝑠 (resp. 𝑋𝑠) 

stands for a silence condition. Again, 𝛽𝑠  was learned to minimize the residual 

𝛽𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽∈𝑅 (𝑁𝑠+1)×𝑉 || 𝑌𝑑 − 𝑋𝑠 𝛽 ||2 . Once learned, each of the first 𝑁𝑠 line of 𝛽𝑠 was 

corrected by subtracting the (𝑁𝑠+1)th line, yielding the contrast maps for stimuli 𝛽𝑠 ∈

𝑅 𝑁𝑆×𝑉.  We note hereafter 𝛽𝑠[𝑖, : ] ∈ 𝑅 𝑉 the contrast map for a given stimulus, it is the i th 

line of 𝛽𝑠. 

 

A third “identity” GLM was fit to predict the BOLD responses of each voice speaker 

identity, using a design matrix 𝛽𝑖 ∈ 𝑅 (𝑁𝑖+1)×𝑉  and a design matrix 𝑋𝑖 ∈ 𝑅 𝑆×(𝑁𝑖 +1)  (which 

was again convolved with an hemodynamic response function, HRF) where  𝑁𝑠 stands for 

the number of unique speakers. Again the last row/column in 𝛽𝑖 and 𝑋𝑖 stands for the 

silent condition. 𝛽𝑖 is learned to minimize the residual  𝛽𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽∈𝑅 (𝑁𝑖+1)×𝑉  ||𝑌𝑑 −

𝑋𝑖 𝛽 ||2  (Supplementary Figure S3a). Again, the final speaker contrast maps were 

obtained by contrasting (i.e., subtracting) the regression coefficients in a row of 𝛽𝑖  with 

the silence condition (last row; Supplementary Figure S3a), yielding 𝛽𝑖 ∈ 𝑅𝑁𝑠 × 𝑉. Here the 

jth  row of 𝛽𝑖,  𝛽𝑖[𝑗, : ] ∈ 𝑅𝑉 , represents the amplitude of the BOLD response of the contrast 

map for speaker j  (i.e., to all the stimuli from this speaker). 

 

A fourth “localizer” GLM model was used to predict the denoised BOLD responses of 

each sound category from the Voice localizer stimuli presented above. The procedure was 
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similar to that described for the two previous GLM models. Once the GLM was learned, we 

contrasted the human voice category with the other sound categories in order to localize 

for each participant the posterior Temporal Voice Area (pTVA), medial Temporal Voice 

Area (mTVA), and anterior Temporal Voice Area (aTVA) in each hemisphere. The center 

of each TVA corresponded to the local maximum of the voice > nonvoice t-map whose 

coordinates were the closest to the TVAs reported (Pernet et al., 2015). The analyses were 

carried out for each region of interest (ROI) of each hemisphere. 

 

Additionally, we defined for each participant the primary auditory cortex (A1) as the 

maximum value of the probabilistic map (non-linearly registered to each participant 

functional space) of Heschl’s gyri provided with the MNI152 template (Penhune et al., 

1996), intersected with the sound vs silence contrast map. 

4.10.   Identity-based and stimulus-based 

representations 
We performed analyses either at the stimulus level, e.g., predicting the neural activity 

of a participant listening to a given stimulus (𝛽𝑠’s lines) from the voice latent space 

representation of this stimuli, or at the speaker identity level, e.g., predicting the average 

neural activity in response to stimuli of a given speaker identity (𝛽𝑖’s lines) from this 

speaker’s voice latent space representation. The identity-based analyses were used for the 

characterization of the voice latent space (Figure 3.1), the brain encoding (Figure 3.2), and 

the representational similarity analysis (Figure 3.3), while the stimulus-based analyses 

were used for the brain decoding analyses (Figure 3.4, 5). 

 

We conducted stimulus-based analyses to examine the relationship between stimulus 

contrast maps in neural activity (𝛽𝑠) and the encodings of individual stimulus 

spectrograms computed by the encoder of an autoencoder model (either linear or deep 

variational autoencoder) on the computational side. We will note 𝑧𝑠
𝑙𝑖𝑛 ∈ 𝑅𝑁𝑠×128 

encodings of stimuli by the LIN model and 𝑧𝑠
𝑣𝑎𝑒 ∈ 𝑅𝑁𝑠×128 the encodings of stimuli 

computed by the VAE model. The encoding of the kth stimuli by one of these models is the 

kth  row of the corresponding matrix, and it is noted as 𝑧𝑠
𝑚𝑜𝑑𝑒𝑙[𝑘, : ]. 
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For identity-based analyses, we studied relationships between identity contrast maps 

in 𝛽𝑖 on the neural activity side and an encoding of speaker identity in the VLS 

implemented by an autoencoder model (LIN or VAE) on the computational side, e.g., we 

note  𝑧𝑖
𝑣𝑎𝑒[𝑗] the representation of speaker j as computed by the vae model. We chose to 

define a speaker identity-based representation as the average of a set of sample-based 

representations for stimuli from this speaker, e.g., 𝑧𝑖
𝑚𝑜𝑑𝑒𝑙[𝑗]  = 1/

|𝑆𝑗| ∑𝑘 ∈𝑆𝑗
𝑧𝑠

𝑚𝑜𝑑𝑒𝑙[𝑘, : ] where 𝑆𝑗  stands for the set of stimuli by speaker j and model 

stands for vae or lin. Averaging in the voice latent space is expected to be much more 

powerful and relevant than averaging in the input space spectrograms (VanRullen & 

Reddy, 2019). 

4.11.   Characterization of the autoencoder latent 

space 
We characterized the organization of the voice latent space (VLS) and of the features 

computed by the linear autoencoder (LIN) by measuring through classification 

experiments the presence of information about the speaker’s gender, age, and identity in 

the representations learned by these models. 

 

We first computed the speaker's identity voice latent space representations for each of 

the 405 speakers in the main voice dataset (135+142+128 see Stimuli section) as 

explained above. 

 

Next, we used these speakers' voice latent space representation to investigate if 

gender, age, and identity were encoded in the VLS. To do so, we divided the data into 

separate train and test sets and learned classifiers to predict gender, age, or identity from 

the train set. The balanced (to avoid the small effects associated with unbalanced folds) 

accuracy of the classifiers was then evaluated on the test set. The higher the performance 

on the test set, the more confident we are that the information is encoded in the VLS. More 

specifically, for each task (gender, age, identity), we trained a Logistic Regression 

classifier (linear regularized logistic regression; L2 penalty, tol=0.0001, 

fit_intercept=True, intercept_scaling=1, max_iter=100) using the scikit-learn python 

package (Pedregosa et al., 2018). 
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In order to statistically evaluate the significance of the results and to avoid potential 

overfitting, the classifications were repeated 20 times with 20 different initializations 

(seed), and the metrics were then averaged for each voice category (gender, age). More 

specifically, we repeated the following experiment 20 times with 20 different random 

seeds. For each seed, we performed 5 train-test splits, with 80% of the data in the training 

and 20% in the test set. For each split, we used 5-fold cross-validation on the training set 

to select the optimal value for the regularization hyperparameter C (searching between 

10 values logarithmically spaced on the interval [-3, +3]). We then computed the 

generalization performance on the test set of the model trained on the full training set 

with the best hyperparameter value. Reported results were then averaged over 20 

experiments. Note that data were systematically normalized with a scaler fitted on the 

training set. We used a robust scaling strategy for these experiments (removing the 

median, then scaling to the quantile range, 25th quantile, and 75th quantile), which occurs 

to be more relevant with a small training set. 

 

To investigate how speaker identity information is encoded in the latent space 

representations of speakers' voices, we computed speaker identity voice latent space 

representations by averaging 20 stimulus-based representations in order to obtain a 

limited amount of data per identity that could be distributed across training and test 

datasets. 

 

We first tested whether the mean of the distribution of accuracy scores obtained for 20 

seeds was significantly above the chance level using one-sample t-tests. We then 

evaluated the difference in classification accuracy between the VLS and LIN via one-way 

ANOVAs (dependent variable: test balance accuracy; between factor: Feature) for each 

category (speaker gender, age, identity). We performed post-hoc planned paired t-tests 

between the models to test the significance of the VLS-LIN difference. 

4.12.   Brain encoding 
We performed encoding experiments on identity-based representations for each of the 

three participants (Figure 3.2). For each participant, we explored the ability to learn a 

regularized linear regression that predicts a speaker-based neural activity, e.g. the  jth 

speaker’s contrast map 𝛽𝑖[𝑗] ∈ 𝑅𝑉, from this speaker’s voice latent space representation, 
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that we note 𝑧𝑖
𝑚𝑜𝑑𝑒𝑙[𝑗] ∈ 𝑅128  (Figure 3.2a). We carried out these regression analyses for 

each ROI (A1, pTVA, mTVA, aTVA) in each hemisphere and participant, independently. 

 

The regression model parameters 𝑊̂𝑒𝑛𝑐𝑜𝑑 ∈ 𝑅128×𝑉  were learned according to the 

following: 

𝑊̂𝑒𝑛𝑐𝑜𝑑 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑊𝑒𝑛𝑐𝑜𝑑∈𝑅128×𝑉  ∑

𝑗=1..𝑁𝑖

(𝑧𝑖
𝑚𝑜𝑑𝑒𝑙[𝑗] × 𝑊𝑒𝑛𝑐𝑜𝑑  − 𝛽𝑖[𝑗])2 +  𝜆‖𝑊𝑒𝑛𝑐𝑜𝑑‖2 

where 𝜆 is a hyperparameter tuning the optimal tradeoff between the data fit and the 

penalization terms above. We used the ridge regression with built-in cross-validation as 

implemented as 𝑅𝑖𝑑𝑔𝑒𝐶𝑉 in the scikit-learn library (Pedregosa et al., 2018). 

 

The statistical significance of each result was assessed with the following procedure. 

We repeated the following experiment 20 times with different random seeds. Each time, 

we performed 5 train-test splits, with 80% of the data in the training and 20% in the test 

set. For each split, we used RidgeCV (relying on leave-one-out) on the training set to select 

the optimal value for the hyperparameter 𝜆 (searching between 10 values logarithmically 

spaced on the interval [10−1; 108]). Following standard practice in machine learning, we 

then computed the generalization performance on the test set of the model trained on the 

full training set with the best hyperparameter value. Reported results are then averaged 

over 20 experiments. Note that here again, with small training sets, data were 

systematically normalized in each experiment using robust scaling. 

 

The evaluation relied on the ‘brain score’ procedure (Schrimpf et al., 2018), which 

evaluates the performance of the ridge regression with a Pearson’s correlation score. 

Correlations between measured neural activities 𝛽𝑖 and predicted ones 𝑧𝑖
𝑚𝑜𝑑𝑒𝑙  ∗ 𝑊̂

𝑒𝑛𝑐𝑜𝑑 

were computed for each voxel and averaged over repeated experiments (folds and seeds), 

yielding one correlation value for every voxel and for every setting. The significance of the 

results was assessed with one-sample t-tests for the Fisher z-transformed correlation 

scores (3 x participants x 2 hemispheres x V voxels). For each region of interest, the scores 

are reported across participants and hemispheres (Figure 3.2b). The exact same 

procedure was followed for the LIN modeling. 
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In order to determine which of the two feature spaces (VLS, LIN) and which of the two 

ROI (A1, TVAs) yielded the best prediction of neural activity, we compared the means of 

distributions of correlations coefficients using a mixed ANOVA performed on the Fisher 

z-transformed coefficients (dependent variable: correlation; between factor: ROI; 

repeated measurements: Feature; between-participant identifier: voxel). 

 

 For each ROI, we then used t-tests to perform post-hoc contrasts for the VLS-LIN 

difference in brain encoding performance (comparison tests in Figure 3.2b; 

Supplementary Table 4). We finally conducted two-sample t-tests between the brain 

encoding model's scores trained to predict A1 and those trained to predict temporal voice 

areas to test the significance of the A1-TVAs difference (Supplementary Table 5). 

 

The statistical tests were all performed using the pingouin python package (Vallat., 

2018). 

4.13.   Representational similarity analysis 
The RSA analyses were carried out using the package rsatoolbox (Schütt et al., 2021; 

https://github.com/rsagroup/rsatoolbox). For each participant, region of interest, and 

hemisphere, we computed the cerebral Representational Dissimilarity Matrix (RDM) 

using Pearson’s correlation between the speaker identity-specific response patterns of 

the GLM estimates 𝛽𝑖 (Walther et al., 2016) (Figure 3.3a). The model RDMs were built 

using cosine distance (Xing et al., 2015; Bhattacharya et al., 2017; Wang et al., 2018), 

capturing speaker pairwise feature differences predicted by the computational models 

LIN and the VLS (Figure 3.3a). The GLM estimates, and the computational models’ features 

were first normalized using robust scaling for greater comparability with the rest of the 

analyses described here. We computed the Spearman correlation coefficients between the 

brain RDMs for each ROI and the two model’s RDMs (Figure 3.3b). We assessed the 

significance of these brain-model correlation coefficients within a permutation-based 

‘maximum statistics’ framework for multiple comparison correction (one-tailed 

inference; N permutations = 10,000 for each test; permutation of rows and columns of 

distance matrices, see Giordano et al., 2023 and Maris & Oostenveld, 2007; see Figure 

3.3b). We evaluated the VLS-LIN difference using a two-way repeated-measures ANOVA 

on the Fisher z-transformed Spearman correlation coefficients (dependent variable: 

https://github.com/rsagroup/rsatoolbox
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correlation; within factors: ROI and Feature; participant identifier: participant 

hemisphere pair). The same permutation framework was also used to assess the 

significance of the difference between the RSA correlation for the VLS and LIN models. 

4.14.   Brain decoding 
Brain decoding was investigated at the stimulus level. The stimuli’s voice latent space 

representations  𝑧𝑠
𝑚𝑜𝑑𝑒𝑙  ∈  𝑅𝑁 × 128 and voice samples’ contrast maps 𝛽𝑠 ∈ 𝑅𝑁 × 𝑉 were 

divided into train and test splits, normalized across voice samples using robust scaling, 

then fit to the training set. For every participant and each ROI, we trained a 𝐿2-regularized 

linear model 𝑊 ∈ 𝑅𝑉 × 128 model to predict the voice samples’ latent vectors from the 

voice samples’ contrast maps (Figure 3.4a). The hyperparameter selection and 

optimization were done similarly to the brain encoding scheme. Training was performed 

on non-repeated stimuli (see Stimuli section). We then used the trained models to predict 

for each participant the 6 repeated stimuli that were the most presented. Waveforms 

were estimated starting from the reconstructed spectrograms using the Griffin-Lim phase 

reconstruction algorithm (Griffin & Lim, 1983). 

 

We then used classifier analyses to assess the presence of voice information (gender, 

age, speaker identity) in the reconstructed latent representations (i.e., the latent 

representation predicted from the brain activity of a participant listening to a specific 

stimulus) (Figure 3.5a, b, c). To this purpose, we first trained linear classifiers to 

categorize the training voice stimuli (participant 1, N = 6144; participant 2, N = 6142; 

participant 3, N = 5117; total, N = 17403) by gender (2 classes), age (2 classes) or identity 

(17 classes) based on VLS coordinates. Secondly, we used the previously trained 

classifiers to predict the identity information based on the VLS derived from the brain 

responses of the 18 Test voice stimuli (3 participants x 6 stimuli). We first tested using 

one-sample t-tests that the mean of the distribution of accuracy scores obtained across 

random classifier initializations of classifiers (2 hemispheres x 20 seeds = 40) was 

significantly above the chance level for each category, ROI, and model. We then evaluated 

the difference in performance at preserving identity-related information depending on 

the model or ROI via two-way ANOVAs (dependent variable: accuracy; between factors: 

Feature and ROI). We performed post-hoc planned paired t-tests between each model pair 
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to test the significance of the VLS-LIN difference. Two-sample t-tests were finally used to 

test the significance of the A1-TVAs difference. 

4.15.   Listening tests 
We recruited 13 participants through the online platform Prolific (www.prolific.co) for 

a series of online behavioral experiments. All participants reported having normal 

hearing. These experiments aimed to evaluate how well voice identity information and 

naturalness are preserved in fMRI-based reconstructed voice excerpts. In the main 

session, participants carried out 4 tasks, in the following order: ‘speaker discrimination’ 

(~120 min), ‘perceived naturalness’ (~30 min), ‘gender categorization’ (~30 min), ‘age 

categorization’ (~30 min). The experiment lasted 3 hours and 35 minutes, and each 

participant was paid £48. 

  

Prior to the main experiment session, participants carried out a short loudness-change 

detection task to ensure they wore headphones, were attentive, and were correctly set up 

for the main experiment (Woods et al., 2017). On each of the 12 trials, participants heard 

3 tones and were asked to identify which tone was the least loud by clicking one of 3 

response buttons: ‘First’, ‘Second’, or ‘Third’. Participants were admitted to the main 

experiment only if they achieved perfect performance in this task. We refined the 

participant pool by excluding those who performed poorly on the original stimuli. 

  

The following three tasks were each carried out on the same set of 342 experimental 

stimuli, each presented on a different trial: 18 original stimuli, 36 stimuli reconstructed 

directly from the LIN and the VLS models, and 18 stimuli x 2 models x 4 regions of interest 

x 2 hemispheres= 288 brain-reconstructed stimuli. In the ‘perceived naturalness’ task, 

participants were asked to rate how natural the voice sounded on a scale ranging from 

‘Not at all natural’ to ‘Highly natural’ (i.e., similar to a real recording) and were instructed 

to use the full range of the scale. During the ‘gender categorization’ task, participants 

categorized the gender by clicking on a ‘Female’ or ‘Male’ button. Finally, in the ‘age 

categorization’ task, participants categorized the speaker’s age by clicking on a ‘Younger’ 

or ‘Older’ button. In the ‘speaker discrimination’ task, participants carried out 684 trials 

(342 experimental stimuli x 2) with short breaks in between. In each trial, they were 

http://www.prolific.co/
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presented with 2 short sound stimuli, one after the other, and participants had to indicate 

whether they were from the same speaker. 

  

To evaluate the participants' performance, we first conducted one-sample t-tests to 

examine whether the mean accuracy score calculated from their responses was 

significantly higher than the chance level for each model and ROI. Next, we used two-way 

repeated-measures ANOVAs to assess the variation in participants’ performances in 

identifying identity-related information (dependent variable: accuracy; between-

participant factors: Feature and ROI). To determine the statistical significance of the VLS-

LIN difference, we carried out post-hoc planned paired t-tests between each model pair. 

Finally, we employed two-sample t-tests to evaluate the statistical significance of the A1-

TVAs difference. 

5.   Conclusion 
In this Chapter, we examined to what extent the cerebral activity elicited by brief voice 

stimuli can be explained by machine-learned representational spaces, specifically 

focusing on identity-related information. We trained a linear model and a DNN model to 

reconstruct 100,000s of short voice samples from 100+ speakers, providing low-

dimensional spaces (LIN and VLS), which we related to fMRI measures of cerebral 

response to thousands of these stimuli. We find: (i) that 128 dimensions are sufficient to 

explain a sizeable portion of the brain activity elicited by the voice samples and yield 

brain-based voice reconstructions that preserve identity-related information; (ii) that the 

DNN-derived VLS outperforms the LIN space, particularly in yielding more brain-like 

representational spaces and more naturalistic voice reconstructions; (iii) that different 

ROIs have different degrees of brain-model relationship, with marked differences 

between A1 and the a, m, and pTVAs. 

  

Low-dimensional spaces generated by machine learning have been used to approximate 

cerebral face representations and reconstruct recognizable faces based on fMRI 

(VanRullen et Reddy, 2019; Dado et al., 2022). In the auditory domain, however, they have 

mainly been used with a focus on linguistic (speech) information, ignoring identity-

related information (but see Akbari et al., 2019). Here, we applied them to brief voice 

stimuli–with minimal linguistic content but already rich identity-related information–and 
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found that as little as 128 dimensions account reasonably well for the complexity of 

cerebral responses to thousands of these voice samples as measured by fMRI (Figure 3.2). 

LIN and VLS both showed brain-like representational geometries, particularly the VLS in 

the aTVAs (Figure 3.3). They made possible what is, to our knowledge, the first fMRI-

based voice reconstructions to preserve voice-related identity information such as 

gender, age, or even individual identity, as indicated by above-chance categorization or 

discrimination performance by both machine classifiers (Figure 3.5a-c) and human 

listeners (Figure 3.5d-f). Note that LIN and VLS also represent the limited linguistic 

content of the brief stimuli, as indicated by high language classification performance 

(Supplementary Figure S2). 

  

Estimation of fMRI responses (encoding) by LIN yielded correlations largely comparable 

to those by VLS (Figure 3.2b), although many voxels were only explained by one or the 

other space (Figure 3.2c). However, in the RSA, VLS yielded higher overall correlations 

with brain RDMs (Figure 3.3), suggesting a representational geometry closer to that 

instantiated in the brain than LIN. Further, VLS-reconstructed stimuli sounded more 

natural than the LIN-reconstructed ones (Figure 3.5g) and yielded both the best speaker 

discrimination by listeners (Figure 3.5f) and speaker classification by machine classifiers 

(Figure 3.5c). Unlike LIN, which was generated via linear transforms, VLS was obtained 

through a series of nonlinear transformations (Wetzel, 2017). The fact that the VLS 

outperforms LIN in decoding performance indicates that nonlinear transformation is 

required to better account for the brain representation of voices (Naselaris et al., 2011; 

Cowen et al., 2014; Han et al., 2019). 

  

Comparisons between ROIs revealed important differences between A1 and the a, m, and 

pTVAs. For both LIN and VLS, fMRI signal (encoding) predictions were more accurate for 

the mTVAs than for A1, and for A1 than for the pTVAs (Figure 3.2b). The aTVAs yielded 

the highest correlations with the models in the RSA (Figure 3.3). Stimulus reconstructions 

(Figure 3.4) based on the TVAs also yielded better gender, age, and identity classification 

than those based on A1, with gender and identity best preserved in the pTVA-, and to a 

lesser extent, in the aTVA-based reconstructions (Figure 3.5). These results show that the 

a and pTVAs not only respond more strongly to vocal sounds than A1, but they also 

represent identity-related information in voice better than mTVA, which was previously 
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anticipated in some neuroimaging studies (Latinus et al., 2011; Charest et al., 2013; Aglieri 

et al., 2021). 

  

Overall, this chapter shows that a DNN-derived representational space provides an 

interesting approximation of the cerebral representations of brief voice stimuli that can 

preserve identity-related information. We find it remarkable that such results could be 

obtained to explain sound representations despite the poor temporal resolution of fMRI. 

Future work combining more complex architectures to time-resolved measures of 

cerebral activity, such as magneto-encephalography (Défossez et al., 2023) or ECoG 

(Pasley et al., 2012), will likely yield better models of the cerebral representations of voice 

information. 
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 Discussion 

In this thesis, we employed artificial intelligence (AI) in two distinct yet 

complementary ways: AI as a computational model and AI as a tool. 

        

In Chapter 1, we proposed a synthesized model for human voice processing. We 

reviewed older and recent studies on human voice processing, suggesting a potential role 

for each voice patch within each hemisphere. Based on this model, we explored the voice 

patch system across primate brains, including humans, macaques, and marmosets. 

  

In Chapter 2, we created a large-scale dataset of marmoset vocalizations. We employed 

AI as a tool to detect, segment, and label marmoset vocalizations from raw recordings. 

The dataset and the trained classifier will be publicly available for future research in vocal 

communication. 

  

In Chapter 3, we employed AI as a computational model to demonstrate that voice 

representations derived from deep neural networks constitute interesting 

approximations of cerebral representations and can significantly predict brain activity in 

response to voice, as recorded with fMRI. Additionally, we reconstructed the 

spectrograms of stimuli presented to the participants. We retrieved voice identity 

information from the reconstructed stimuli using machine learning classifiers and 

behavioral tasks performed by human listeners. 

  

Overall, our findings underscore the potential of AI in shedding light on the brain’s 

voice processing mechanisms, serving both as a computational model and as a tool. 

1.   Evolutionary origins of voice perception 
What is the functional role of each unit within the “voice patch” system in the primate 

brain when processing vocal information? 
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In Chapter 1, we reviewed older and recent literature on voice processing in humans 

and non-human primates to determine the potential role of each voice-sensitive area. We 

proposed a synthesized voice processing model based on brain studies in primates that 

outlines a pathway with three stages: detection, measurement, and categorization for 

voice recognition. The model tentatively underscores the roles of the fronto-temporal-

limbic network and the hemispheric specialization, where the right predominantly 

handles voice identity, the left manages semantic deciphering, and the limbic system, the 

vocal emotion, bilaterally. Differentiating computational phases—detection, 

measurement, and categorization—offer a granular understanding of voice perception. 

  

However, I have identified several essential questions in Chapter 1 that need to be 

answered, which I will discuss in the following subsections. 

1.1.   Investigating voice cell coding 
Standard methods for exploring the neural mechanisms of voice processing can 

identify broad neural substrates but often offer limited insight into the overlapping, 

segregation, and form of neuronal representations involved in processes like identity 

recognition (Perrodin et al., 2015). This limitation arises because neuroimaging 

techniques typically measure either surrogate markers of neuronal activity or large-scale 

neural responses (such as fMRI; see Functional neuroimaging in the Introduction). 

Therefore, there is a need for direct measures of localized neuronal computations. Direct 

neuronal recordings, such as depth electrode recordings or electrocorticography, in 

human patients undergoing monitoring for neurosurgery brought critical insights into 

neuronal functions within localized auditory regions of the human brain (Zhang et al., 

2021; Rupp et al., 2022). Meanwhile, research in animal models allows for the 

examination of neuronal processes at multiple scales directly within the regions of 

interest and provides more specificity in neuronal manipulation (activation and/or 

inactivation) (fMRI-guided electrophysiology, Perrodin et al., 2011; Giamundo et 

al., submitted). However, the advancements in animal research have not kept pace 

(Perrodin et al., 2015). 

  

Within the ventral visual stream of humans and non-human primates, faces seem to be 

represented within a system known as the face patch system, which shares many 
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similarities with the voice patch system (Belin, 2017). However, the visual domain has 

benefited from a larger number of fMRI-guided studies investigating the neural codes of 

the face patch system. Within these patches, faces are represented using low-dimensional 

neural codes, where each neuron encodes an orthogonal axis of variation in face space 

(Chang & Tsao, 2017). A recent study built upon this finding using self-supervised 

generative models (Higgins et al., 2021). Their model succeeded in “disentangling” face 

images into meaningful factors of variation (e.g., hair length, gender) and establishing a 

one-to-one correspondence between these factors and the responses of face single units. 

A significant avenue for future research in brain-based voice processing would be to 

explore the neural code of the voice patch system, especially to determine if it employs 

similar low-dimensional codes as observed for faces. 

1.2.   Mapping voice patch connections and 

processing stages 
How do voice patches connect within the brain, what are their processing stages, 

and are there distinct temporal dynamics in voice processing? Various studies have 

provided insights into the temporal dynamics of voice processing in the temporal voice 

areas, predominantly in humans (Charest et al., 2009; Capilla et al., 2013; Schall et al., 

2015; Zhang et al., 2021; Norman-Haignere et al., 2022; Rupp et al., 2022). In our 

synthesized model, we highlighted a key finding: voice processing initiates bilaterally in 

the mid-temporal voice areas and then proceeds to both the posterior and anterior voice 

areas in parallel (Figure 1.1). However, only a handful of studies have shed light on the 

dynamics of the frontal voice areas (Lowe et al., 2021) and the vocal emotion responses 

in the limbic system (Giordano et al., 2021). Further research targeting these areas is 

required to enhance our understanding of their temporal dynamics in voice processing. 

1.3.   Employing DNNs as a computational model 
How accurately do DNNs approximate human processes, especially in the temporal 

and frontal voice areas? With DNNs emerging as promising models for voice processing, 

we suggest in Chapter 3 to employ DNNs to computationally simulate (1) the processes of 

voice detection, measurement, and categorization; (2) the presumed functional roles of 

the voice areas, especially focusing on the motor/semantic, voice identity, and vocal 

emotion processing axes. By training DNNs on extensive voice datasets, one could mimic 
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the hierarchical processing of voice information, ranging from basic detection to high-

level categorization. 

 

 Can combining bio-inspired DNNs with hierarchical voice models provide deeper 

insights into primate voice processing? Another potential pathway is to examine 

various architectures and biases to discern what contributes to the similarities between 

the brain and DNNs. One straightforward method might be to pre-map the cortical areas 

in the model’s architecture (Kubilius, Schrimpf, et al., 2018) or to train the model to 

emulate the brain’s statistical properties (Cadena et al., 2019; Federer et al., 2020), or 

even to amalgamate these strategies with an additional training objective that aligns the 

pre-mapped cortical areas with their corresponding brain responses. Although these 

methods have been explored in the visual domain, they have yet to be applied in the 

auditory domain. 

2.   Encoding and decoding of voice identity 
Would DNNs provide reasonable approximations of cerebral representations? — 

in particular regarding the processing of voice identity. In Chapter 3, we tried to address 

this question by applying representation learning to model the voice signal in a 

representation that might correlate with the brain activity associated with different voice 

stimuli. In particular, we tried to answer where this representation exhibits the 

strongest alignment with actual cerebral voice-related activity within the auditory 

cortex. We found that the voice latent space (VLS) derived from deep neural networks 

captures key aspects of voice stimuli and performs better than traditional linear methods 

like PCA in decoding voice-related brain activity. This indicates the advantage of using 

nonlinear models to understand brain representations of voices. Moreover, the 

relationship between VLS and TVAs was stronger than that with A1, highlighting the 

importance of TVAs in voice identity processing. There was also evidence of right-

hemispheric lateralization for speaker identity processing. Our findings demonstrate that 

deep learning-derived representations provide an effective representation of voice 

identity information in the voice-selective areas of the auditory cortex. 

  

However, future research in the field would benefit from several key improvements, 

which I will discuss in the following subsections. 
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2.1.   Incorporating the extended voice system 
In Chapter 3 and the preceding section, we investigated the most famous voice-

sensitive areas within the temporal lobe (TVAs). However, as emphasized in Chapter 1, 

the extended voice system plays a crucial role in processing higher-level information 

regarding voice identity (within the frontal lobe, FVAs) and voice emotions (within the 

limbic system). For a comprehensive understanding of the post-perceptual processing of 

high-level voice information, future research should include these regions of interest in 

spatially and temporally specific experiments. 

2.2.   Developing better models and evaluations 
Even with the recent progress in building more powerful models using DNNs, brain 

activity prediction is not perfect, with correlation scores far from 1. This could be partly 

because of the intrinsic noise in functional neuroimaging data (fMRI, MEG), but a big part 

of the variability in brain activity still is not explained. In this section, we introduce 

different ways to address this challenge. 

2.2.1.   Learning better representations 

In our work, we employed a two-stage procedure to align our computational model 

with brain activity: (i) initially, we utilized representation learning, specifically 

unsupervised learning, by training autoencoder models to compress and then reconstruct 

voice spectrograms; (ii) subsequently, we employed a regularized linear regression 

model to map the autoencoder’s representations of the stimuli with the brain responses 

to the same stimuli. While this methodology underscored the similarities between voice 

representation and brain responses, newer techniques present interesting avenues to 

explore, mainly in the visual domain literature.  

  

Chen et al. (2023) suggested initially learning a self-supervised representation of fMRI 

data using mask modeling in a large latent space. By enhancing a latent diffusion model 

with conditioning, they demonstrated that their model could reconstruct highly plausible 

images with semantically matching details from brain recordings, using only a few paired 

annotations.  
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Alternatively, replacing the regression objective with a contrastive objective has also 

shown promise in brain decoding (Scotti, Banerjee, et al., 2023, preprint; Défossez et 

al., preprint). Lee, Lee, et al. (2023, preprint) recently utilized EEG and a generative model 

to decode imagined speech using EEG. In these three approaches, a key step was to train 

their model or part of their model directly with the brain responses, contrasting with our 

two-stage approach. 

2.2.2.   Improving model interpretability 

Even with better similarity scores between the model and brain responses, the 

question remains: What insights do we gain regarding brain function? One possible 

approach is to interpret the learned model. However, the challenge of making sense of 

DNNs, especially when applied to complex stimuli, is significant. In our work, we were 

able to identify certain properties within the autoencoder’s voice latent space, e.g., a major 

organizational dimension of the latent space is along voice gender (Figure 3.1b). However, 

a representation is only considered interpretable when separated into subcomponents, 

with each subcomponent originating from independent factors (Higgins et al., 2017) and 

corresponding to a real-world concept without containing information related to the 

others. For example, one dimension could encode gender, another the speaker’s identity, 

age, etc. Higgins et al. (2021) leveraged disentangled representations through self-

supervised generative models. The model they developed effectively “disentangled” face 

images into meaningful factors of variation, such as hair length and gender, and 

established a direct correspondence between these factors and the responses of face 

single units. This approach would benefit future research to develop interpretable 

computational models for cerebral voice processing. 

2.2.3.   Leveraging better brain recording techniques 

Many studies currently depend on brain recording techniques that possess high spatial 

resolution with compromised temporal resolution (e.g., fMRI) or vice versa (e.g., M/EEG). 

As noted in Chapter 1, the most impactful studies highlighted in our literature review take 

advantage of intracranial recordings, which offer both high spatial and temporal 

resolutions (e.g., Zhang et al., 2021; Rupp et al., 2022). A recent advancement in non-

invasive brain recording techniques is the development of optically pumped 

magnetometers (OPM)-MEG, a novel type of MEG equipment that offers multiple benefits 
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over traditional scanners (Brookes et al., 2022). These advantages include enhanced 

signal sensitivity, improved spatial resolution, and the freedom for participants to move 

during scanning. The OPM-MEG represents a significant stride towards overcoming the 

limitations of existing brain recording techniques and holds promise for garnering more 

precise insights into brain activity and its correlation with various cognitive functions. 

3.   Computational neuroethology of vocal 

communication 
Chapter 2 looked at the use of computational methods to better understand the 

evolution of vocal communication. A remaining question from our review (Chapter 1) 

is: Do voice patches across the primate species share similar coding principles? To 

explore this, we suggest using the methodologies outlined in Chapter 3 — specifically, 

applying deep learning-based vocal representations and correlating them with brain 

responses to vocal stimuli in non-human primates. This task requires training a deep 

neural network with a large set of vocal signals specific to the species. Currently, such 

datasets for both macaque and marmoset monkeys are unavailable in the literature. 

  

To address this gap, we presented a complete pipeline for extracting and analyzing 

vocalizations from marmoset monkey recordings, continuously recorded at a sampling 

rate of 96 kHz from a room housing about 20 marmosets in three cages. The dataset 

includes over 800,000 files, totaling 253 hours of data collected over 40 months. Each 

recording lasts a few seconds and captures the marmosets' social vocalizations, covering 

their entire known vocal repertoire during the experimental period. Around 215,000 calls 

were annotated with the vocalization type. The provided dataset, source code, and pre-

trained classifier are valuable resources for future research in this field. Moving forward, 

it is essential to build on this initial work by including more species-specific vocal datasets 

and improving computational methodologies to further our understanding of the 

evolution of vocal communication. 

  

Our dataset is a valuable resource for future research, enabling investigations into the 

functions, contexts, and variations within the marmoset vocal repertoire. Moreover, it 

offers opportunities for comparative studies with other primate species, including 

humans, to discover shared and unique aspects of vocal communication across 
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evolutionary lineages. Below, I will outline some suggested research directions in 

marmosets, but similar investigations can be carried out with other non-human primate 

species. We have recorded a similar dataset of macaque vocalizations and are currently 

employing the same methodology to compile a large-scale dataset. This will enable us to 

leverage a comparative approach to examine the communication systems of different 

primate species, thereby enriching our understanding of the evolution of vocal 

communication. 

3.1.   Characterize the acoustical properties of the 

marmoset vocal repertoire 
Recently, there has been increased interest in the common marmoset (Callithrix 

jacchus) as a neuroscientific model organism (Miller et al., 2016), leading to many 

attempts to study and characterize their vocal repertoire (Bezerra & Souto, 2008; Pistorio 

et al., 2006; Zhao et al., 2019). However, both past and recent literature show that 

recording setups were limited to a sampling rate of 48 kHz. Benefiting from a higher 

sampling rate compared to previous studies, and with hundreds of thousands of samples 

available instead of a few thousand, a new opportunity arises to better characterize the 

acoustic properties of the marmoset vocal repertoire. This includes analysis of 

fundamental frequency (F0), length statistics per vocalization type, frequency, number of 

harmonics, and characterizing the formants within the marmoset vocalization repertoire 

(Fukushima et al., 2015; Pistorio et al., 2006; Zhao et al., 2019; Norcross & Newman, 

1993). 

3.2.   Investigate the conversational patterns of the 

marmoset vocal repertoire 
Recently, there has been increased interest in the common marmoset (Callithrix 

jacchus) as a neuroscientific model organism (Miller et al., 2016), leading to many 

attempts to study and characterize their vocal repertoire (Bezerra & Souto, 2008; Pistorio 

et al., 2006; Zhao et al., 2019). However, both past and recent literature show that 

recording setups were limited to a sampling rate of 48 kHz. Benefiting from a higher 

sampling rate compared to previous studies, and with hundreds of thousands of samples 

available instead of a few thousand, a new opportunity arises to better characterize the 

acoustic properties of the marmoset vocal repertoire. This includes analysis of 
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fundamental frequency (F0), length statistics per vocalization type, frequency, number of 

harmonics, and characterizing the formants within the marmoset vocalization repertoire 

(Fukushima et al., 2015; Pistorio et al., 2006; Zhao et al., 2019; Norcross & Newman, 

1993). 

3.3.   Study the changes in marmoset vocalizations 

during aging 
Newborn marmosets have a distinct vocalization known as infant cry or nga, which 

gradually changes into adult vocalizations like phee over time. By monitoring the 

vocalizations of the same individual over time, we can observe how marmoset 

vocalizations evolve as they age, such as how an infant cry slowly transitions into a phee. 

This could enhance our understanding of their communication system. Such a study 

would necessitate isolating certain individuals and recording their call types and/or 

behaviors to identify their vocalizations within our dataset. 

3.4.   Linking vocalization with behavior 
Establishing a causal link between vocal communication and behavior is a significant 

step toward comprehensively understanding a species' social interactions (Prat, 2019; 

Fischer et al., 2021). Can we predict an individual's behavior based on the vocalization 

sequences of the group or individuals? Several studies have explored this question in 

marmosets (Bezerra & Souto, 2008; Miller et al., 2009; Miller et al., 2010). Another 

intriguing aspect is to examine the adaptability of vocalizations in response to different 

social events – do vocalizations evolve as new social events, such as births, occur 

within the group? (Gultekin and Hage, 2017, Gultekin and Hage, 2018; Gultekin et al., 

2021) However, the studies mentioned above were limited by a small number of 

vocalizations and behavior examples. The automatic estimation of multiple animals' 

poses (Mathis et al., 2018) has been shown to be a successful approach for marmosets 

(Lauer et al., 2022). I hypothesize that merging this approach with our extensive 

marmoset detection and labeling pipeline could effectively address these questions. 

3.5.   Neural encoding and decoding with deep 

learning for vocalization processing 
In the previous section (Evolutionary origins of voice perception), I explored future 

research paths to understand better how vocal perception has evolved. I suggested 
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extending the methods from Chapter 3, which focused on how the human brain processes 

voice, to study marmosets and macaques. This leads to the question: Would DNNs 

provide reasonable approximations of non-human primates' cerebral 

representations? In Chapter 2, we introduced a comprehensive dataset of marmoset 

vocalizations, which will be shared publicly. To effectively map these vocalizations onto 

cerebral representations in non-human primates, we would need sufficient brain 

recordings to perform brain encoding and decoding studies. However, the current 

datasets of brain recordings from marmosets (Jafari et al., 2023) and macaques (Bodin et 

al., 2021) in response to vocalizations likely contain too few stimuli. Further research is 

needed to overcome this limitation in the field. 

4.   Conclusion 
To conclude, this thesis has employed artificial intelligence (AI) to investigate voice 

processing across primates. The synthesized model of voice processing highlights the 

current state-of-the-art knowledge of the workings of voice areas —and draws the limits 

of our knowledge. 

  

The use of AI as a computational model has shown potential for predicting brain 

activity in response to voice, emphasizing the valuable role of AI in auditory neuroscience. 

Additionally, employing AI as a tool has aided in creating a large dataset of marmoset 

vocalizations, which may support future research in vocal communication and 

neuroethology. 

  

Combining these multidisciplinary approaches has not only contributed to our 

understanding of primate auditory vocal processing but also provided some insight into 

the evolutionary beginnings of vocal communication. This effort has laid the groundwork 

for further research in auditory neuroscience, highlighting the supportive role of AI in 

modern neuroscience and the study of primate vocal communication.  
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 Appendix 

1.   Towards studying the evolution of vocal 

communication systems with deep learning 
Marmoset 

ID 

Mother 

ID 

Father 

ID 

Date of 

birth 

Date of 

death 

Date of 

entrance 

Date of 

exit 
Sex 

1 
- - 2013-12-13 - 2019-06-22 - F 

2 - - 2013-09-23 2020-06-26 2019-06-22 2020-06-26 M 

3 1 2 2018-10-22 - 2019-06-22 - M 

4 1 2 2019-03-29 - 2019-06-22 2021-08-20 F 

5 - - 2016-04-04 2022-03-07 2019-06-22 2022-03-07 M 

6 - - 2012-08-27 2020-06-18 2019-06-22 2020-06-18 F 

7 6 5 2018-11-01 - 2019-06-22 - F 

8 6 5 2019-03-30 - 2019-06-22 2021-05-03 F 

9 6 5 2019-03-30 - 2019-06-22 2021-05-03 F 

10 - - 2011-10-11 - 2019-06-22 - F 

11 - - 2013-04-09 2020-01-29 2019-06-22 2020-01-29 M 

12 10 11 2018-08-08 - 2019-06-22 - F 

13 10 11 2019-01-11 - 2019-06-22 - F 

14 10 11 2019-01-11 - 2019-06-22 - F 

15 1 2 2019-09-06 - 2019-09-06 2021-08-11 M 

16 6 5 2019-09-06 - 2019-09-06 2021-05-03 F 

17 10 11 2019-11-21 - 2019-11-21 - M 

18 10 11 2019-11-21 - 2019-11-21 - F 

19 1 2 2020-02-23 - 2020-02-23 2021-08-11 M 

20 1 2 2020-02-23 - 2020-02-23 2021-09-03 M 

21 1 2 2020-08-03 - 2020-08-03 2021-09-03 M 
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22 7 3 2020-12-07 - 2020-12-07 2023-02-03 M 

23 7 3 2020-12-07 - 2020-12-07 2023-03-17 M 

24 1 5 2021-02-13 - 2021-02-13 2023-01-06 F 

25 1 5 2021-02-13 - 2021-02-13 - F 

26 1 5 2021-07-21 - 2021-07-21 - F 

27 1 5 2021-07-21 - 2021-07-21 - M 

28 7 3 2021-10-04 - 2021-10-04 - M 

29 7 3 2021-10-04 - 2021-10-04 2023-02-03 F 

30 1 5 2022-01-26 - 2022-01-26 - M 

31 1 5 2022-01-26 - 2022-01-26 - F 

32 7 3 2022-05-02 - 2022-05-02 - M 

33 7 3 2022-05-02 - 2022-05-02 - M 

34 7 3 2022-11-04 - 2022-11-04 - F 

35 7 3 2022-11-04 - 2022-11-04 - F 

Supplementary Table S1: Description of recorded subjects. The date of entrance and exit 

corresponds to the period when the subject was inside the room and then recorded. Sex codes 

correspond to F for females and M for males. 

 

Hyperparameter Value 

Sampling rate (Hz) 96,000 

FFT window size 1,024 

Number of frames between STFT columns (ms) 1 

Reference level (dB) 20 

Coefficient for pre emphasis filter 0.97 

Spectral range [125; 

48,000] 

Std above median to threshold out noise 1 



Appendix 

132 
 

Size in time of neighborhood-continuity filter (ms) 50 

Longest distance at which two elements should be considered one (ms) 100 

Smallest expected element size (in ms and Hz) [300; 125] 

Size of FFT window (ms) 4 

Default dB minimum of spectrogram -70 

Threshold for spectrogram to consider noise as silence (s) 0.01 

Shortest expected length of silence (s) 0.01 

Longest expected vocalization (s) 5.1 

Shortest expected length of syllable (s) 0.01 

Threshold number of neighborhood time-frequency bins above 0 to 

consider a bin not noise 

0.25 

Size of neighborhood-continuity filter (Hz) 2,000 

Proportion of temporal overlap to consider two elements one 0.25 

Supplementary Table S2: Hyperparameters of the dynamic-thresholding segmentation 

algorithm. This algorithm is detailed in Sainburg et al., 2020 and can be accessed at 

https://github.com/timsainb/vocalization-segmentation. 

 

Type Pre-onset (s) Post-offet (s) 

Infant cry 0.1 0.3 

Phee 0.15 0.5 

Seep - 0.1 

Trill - 0.4 

https://github.com/timsainb/vocalization-segmentation
https://github.com/timsainb/vocalization-segmentation
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Tsik - 0.2 

Twitter 0.5 0.5 

Supplementary Table S3: Description of post-classification time adjustments. 

 

Date 

Type 

Infant cry Phee Seep Trill Tsik Twitter 

2019-12 10.03 11.14 5.85 0.84 13.65 58.50 

2020-01 36.53 19.03 1.91 3.98 2.94 35.62 

2020-02 2.91 11.61 3.52 5.57 14.36 62.02 

2020-03 3.72 14.13 6.40 7.52 38.41 29.82 

2020-05 2.16 15.11 12.95 22.30 9.35 38.13 

2020-06 6.45 12.90 6.45 40.32 0.00 33.87 

2020-07 16.44 25.63 2.44 19.19 25.56 10.74 

2020-09 7.01 14.92 2.18 29.34 30.51 16.04 

2020-10 18.73 11.31 1.52 19.34 30.10 19.00 

2020-11 9.41 10.45 2.09 20.02 36.30 21.74 

2020-12 3.36 8.30 1.49 20.25 50.51 16.10 

2021-01 17.52 10.09 1.14 11.31 28.45 31.49 

2021-09 20.97 30.24 1.52 4.71 7.29 35.26 

2022-01 1.80 21.79 2.73 9.49 17.55 46.65 

2022-02 9.26 13.24 2.62 15.17 30.88 28.84 

2022-03 32.28 13.60 2.14 12.12 14.21 25.65 
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2022-04 7.33 15.58 1.68 27.13 24.59 23.69 

2022-09 0.16 23.73 1.25 24.02 17.79 33.06 

2022-10 0.25 24.24 1.54 27.59 16.86 29.53 

2022-12 26.72 12.73 2.39 13.88 22.45 21.83 

2023-02 28.40 24.12 1.08 5.54 9.09 31.78 

2023-03 6.74 27.29 2.37 8.45 16.62 38.54 

2023-04 4.52 29.85 2.29 9.75 14.65 38.93 

Average 13.78 17.66 2.17 14.35 21.69 30.36 

Supplementary Table S4: Temporal distribution of vocalizations by label over time. 

Distribution of 215,000 labeled vocalizations (72 hours in total). For each month, the proportion 

of vocalization type is indicated in %. The proportion of labeled/unlabeled vocalization is 25/75% 

(unlabeled omitted here). 

2.   Encoding and decoding of voice identity 

in human auditory cortex 

 

Supplementary Figure S1: Projections of the DNN-derived Voice Latent Space 

(VLS). Distribution of the 405 speaker identities along the first 2 principal components of the VLS 

coordinates from all sounds, averaged by speaker identity. Each disk represents a speaker's 

identity colored by either gender (as in Figure 3.1b), age, or language. a, Large disks represent the 

average of all male (black) or female (gray) speaker coordinates. ANOVAs on the first two 

components: PC1: F(1, 405)=0.10, p=.74; PC2: F(1, 405)=11.00, p<.001. b, Same for speaker age. 

ANOVAs on first two components: PC1: F(1, 405)=4.12, p<.01; PC2: F(1, 405)=3.99, p<.01. c, Same 

for speaker language. ANOVAs on the first two components: PC1: F(1, 405)=8.46, p<.0001; PC2: 

F(1, 405)=6.09, p<.0001.  
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Supplementary Figure S2: Language classification based on model representation. a, 

Performance of linear classifiers in categorizing speaker language (chance level: 12.5%) using VLS 

or LIN coordinates. Error bars represent the standard error of the mean (s.e.m.) across 100 

random classifier initializations. All p-values are less than 1e-10. The horizontal black dashed line 

indicates the chance level. ****: p < 0.0001. b, Confusion matrix representing the predictions from 

classifiers trained on VLS features, averaged over 100 iterations.  
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Supplementary Figure S3: Brain activity in response to voice measured by fMRI. a, A GLM is 

used to model fMRI activity in response to each speaker's identity. b, The fMRI activity in response 

to each speaker's identity is mapped into dedicated voxel maps by contrasting the speaker's 

identity with the silence, resulting in ~135 voxel maps. c, The voice-sensitive ROIs used for 

subsequent analyses, identified in each participant via an independent Voice Localizer: the 

anterior, middle, and posterior Temporal Voice Areas (TVAs). d, The Primary Auditory Cortex 

(A1) is defined as the intersection between a probabilistic map of Heschl’s gyri and the sound vs 

silence contrast map.  
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Supplementary Figure S4: Denoising of the fMRI BOLD responses. A general linear model 

(GLM) was fit to regress out the noise by predicting 𝑌 from a “denoising” design matrix 𝑋𝑑  , 

composed of 𝑅 = 38 regressors of nuisance 6 head motion parameters (3 variable for the 

translations, 3 variables for the rotations); 18 ‘RETROICOR’ regressors (Glover et al., 2000) using 

the TAPAS PhysIO package (Kasper et al., 2017) with the hyperparameters set as specified in 

(Snoek et al., 2021); 13 regressors modeling slow artifactual trends (sines and cosines, cut-off 

frequency of the high-pass filter = 0.01 Hz); an intercept. The design matrix was convolved with 

an hemodynamic response function (HRF) with a peak at 6s sec and an undershoot at 16s sec 

(Glover et al., 1999), we note the convolved design matrix as 𝑋𝑑 ∈ 𝑅𝑆 × 𝑅 where 𝑆 = number of 

scans. The “denoise” GLM’s parameters 𝛽𝑑 ∈ 𝑅𝑅 × 𝑉   were optimized to minimize the amplitude of 

the residual  𝛽𝑑 =  𝑎𝑟𝑔𝑚𝑖𝑛𝛽∈𝑅𝑅 ×𝑉 ||  𝑌 − 𝑋𝑑  𝛽 ||2 , where 𝑉 = number of voxels. The denoised 

BOLD signal 𝑌𝑑  was then obtained from the original one according to 𝑌𝑑 = 𝑌 − (𝑋𝑑  𝛽𝑑).  



Appendix 

138 
 

 

Supplementary Table S5: Architecture of the VAE network. The architecture of the VAE 

consists of 15 layers with an intermediate hidden representation of 128 neurons that will stand 

for the VLS. The Encoder network (𝐸𝑛𝑐; 7 layers) learns to map an input, 𝑠 (a spectrogram of a 

sound), onto the (128-dimensional) VLS, while the Decoder (𝐷𝑒𝑐; 7 layers) aims at reconstructing 

the spectrogram 𝑠 from 𝑧. The learning objective of the full model is to make the output 

spectrogram 𝐷𝑒𝑐(𝐸𝑛𝑐(𝑠)) as close as possible to the original one 𝑠. BN: batch normalization; FC: 

fully connected; ReLU: Rectified Linear Unit. 
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Supplementary Table S6: Assessing the significance of brain encoding performance with 

LIN features. This table reports the significance of the brain encoding performance with LIN 

features. We compared the distribution of Pearson's correlation coefficients to the chance level of 

0.0 by conducting one-sample t-tests. Using a linear model, we calculated the correlation between 

the voxels in the speaker activity maps and the predicted voxels from the LIN features. s.e.m. = 

standard error of the mean. all = we combined the scores of all participants before computing the 

test. Here are reported the results of the statistical tests, t-value, degree of freedom (dof), p-value, 

degree of significance (unc. sig.), 95% confidence interval (CI95%), effect size (Cohen-d), Bayes 

Factor (BF10), and statistical power (power) for each participant and ROI. 
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Supplementary Table S7: Assessing the significance of brain encoding performance with 

VLS features. This table reports the significance of the brain encoding performance with VLS 

features. We compared the distribution of Pearson's correlation coefficients to the chance level of 

0.0 by conducting one-sample t-tests. Using a linear model, we calculated the correlation between 

the voxels in the speaker activity maps and the predicted voxels from the VLS features. s.e.m. = 

standard error of the mean. all = we combined the scores of all participants before computing the 

test. Here are reported the results of the statistical tests, t-value, degree of freedom (dof), p-value, 

degree of significance (unc. sig.), 95% confidence interval (CI95%), effect size (Cohen-d), Bayes 

Factor (BF10), and statistical power (power) for each participant and ROI. 
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Supplementary Table S8: Comparing the performance of brain encoding models. This table 

reports the significance of the VLS-LIN difference in the brain encoding performance. We 

conducted paired t-tests between the brain encoding model's scores trained with the VLS features 

to predict the speaker activity maps' voxels and those trained with the LIN features. s.e.m. = 

standard error of the mean. all = we combined the scores of all participants before computing the 

test. Here are reported the results of the statistical tests, t-value, degree of freedom (dof), p-value, 

degree of significance (unc. sig.), 95% confidence interval (CI95%), effect size (Cohen-d), Bayes 

Factor (BF10), and statistical power (power) for each participant and ROI. 
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Supplementary Table S9: Comparing the performance of brain encoding ROIs. This table 

reports the significance of the A1-TVAs difference in the brain encoding performance. We 

conducted two-sample t-tests between the brain encoding model's scores trained to predict A1 

and those trained to predict temporal voice areas. s.e.m. = standard error of the mean. all = we 

combined the scores of all participants before computing the test. Here are reported the results of 

the statistical tests, t-value, degree of freedom (dof), p-value, degree of significance (unc. sig.), 

95% confidence interval (CI95%), effect size (Cohen-d), Bayes Factor (BF10), and statistical 

power (power) for each participant and model. 
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Supplementary Table S10: Assessing the significance of the RSA brain-model 

correlation. This table reports the significance of the RSA brain-model performance. The brain-

model correlation coefficients were computed between the ranked representational dissimilarity 

matrices. The correlation was compared to 0 using a ‘maximum statistics’ approach in which they 

are compared to a distribution of correlation coefficients drawn from a large number of random 

permutations of the model RDMs’ rows and columns while controlling for the number of 

comparisons performed (cf. Methods) (Maris & Oostenveld, 2007), for each participant, model 

and ROI.  
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Supplementary Table S11: Comparing the performance of the RSA models. This table reports 

the significance of the RSA brain-model difference. We compared the correlation coefficients 

between brain RDM and VLS RDM with those from the brain RDM and LIN RDM within 

participants and hemispheres using one-tailed tests, based on the a priori hypothesis that the VLS 

models would exhibit greater brain-model correlations than the LIN models (cf. Methods). 
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Supplementary Table S12: Assessing the significance of speaker gender decoding 

performance using VLS and LIN models based on voxel activity. This table reports the 

significance of the speaker's gender decoding performance. Linear classifiers were pre-trained to 

detect speaker gender (2 classes) from either the VLS or the LIN models. The speaker gender of 

the 18 Test Stimuli (3 participants x 6 stimuli per participant) was classified using either the VLS 

coordinates, or the LIN features with these classifiers. We used one-sample t-tests to compare the 

mean of the accuracy distribution across 20 random classifier initializations (20 classifiers trained 

with a different initialization seed) with a chance level of 50%. s.e.m. = standard error of the mean. 

Here are reported the results of the statistical tests, t-value, degree of freedom (dof), p-value, 

degree of significance (unc. sig.), 95% confidence interval (CI95%), effect size (Cohen-d), Bayes 

Factor (BF10), and statistical power (power) for each model and ROI.  
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Supplementary Table S13: Assessing the significance of speaker age decoding performance 

using VLS and LIN models based on voxel activity. This table reports the significance of the 

speaker age decoding performance. Linear classifiers were pre-trained to detect speaker age (2 

classes) from either the VLS or the LIN models. The speaker age of the 18 Test Stimuli (3 

participants x 6 stimuli per participant) was classified using either the VLS or LIN coordinates 

with these classifiers. We used one-sample t-tests to compare the mean of the accuracy 

distribution across 20 random classifier initializations (20 classifiers trained with a different 

initialization seed) with a chance level of 50%. s.e.m. = standard error of the mean. Here are 

reported the results of the statistical tests, t-value, degree of freedom (dof), p-value, degree of 

significance (unc. sig.), 95% confidence interval (CI95%), effect size (Cohen-d), Bayes Factor 

(BF10), and statistical power (power) for each model and ROI.  
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Supplementary Table S14. Assessing the significance of speaker identity decoding 

performance using VLS and LIN models based on voxel activity. This table reports the 

significance of the speaker age decoding performance. Linear classifiers were pre-trained to 

detect speaker age (2 classes) from either the VLS or the LIN models. Linear classifiers were pre-

trained to detect speaker identity (17 classes) from either the VLS or the LIN models. The speaker 

identity of the 18 Test Stimuli (3 participants x 6 stimuli per participant) was classified using 

either the VLS or LIN coordinates with these classifiers. We used one-sample t-tests to compare 

the mean of the accuracy distribution across 20 random classifier initializations (20 classifiers 

trained with a different initialization seed) with a chance level of 5.88%. s.e.m. = standard error 

of the mean. Here are reported the results of the statistical tests, t-value, degree of freedom (dof), 

p-value, degree of significance (unc. sig.), 95% confidence interval (CI95%), effect size (Cohen-d), 

Bayes Factor (BF10), and statistical power (power) for each model and ROI.  
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Supplementary Table S15: Comparing the performance of the models decoding speaker 

identity-related information. This table reports the significance of the speaker identity 

decoding VLS-LIN difference. Paired t-tests were conducted between the mean scores of linear 

classifiers pre-trained to detect gender (2 classes), age (2 classes), and identity (17 classes) from 

the VLS features and those trained with the LIN features. These scores were obtained after 

classifying the VLS or LIN coordinates of the 18 Test Stimuli (3 participants x 6 stimuli per 

participant). s.e.m. = standard error of the mean. Here are reported the results of the statistical 

tests, t-value, degree of freedom (dof), p-value, degree of significance (unc. sig.), 95% confidence 

interval (CI95%), effect size (Cohen-d), Bayes Factor (BF10), and statistical power (power) for 

each speaker information and ROI.  
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Supplementary Table S16: Comparing the performance of the models decoding speaker 

identity-related information by ROI. This table reports the significance of the speaker identity 

decoding A1-TVAs difference. Two-sample t-tests were conducted for each model to determine if 

there was an A1-TVAs difference between the mean scores of linear classifiers pre-trained to 

detect gender (2 classes), age (2 classes), and identity (17 classes). These scores were obtained 

by classifying the VLS coordinates or LIN features, reconstructed by different ROIs, for the 18 Test 

Stimuli (3 participants x 6 stimuli per participant). s.e.m. = standard error of the mean. Here are 

reported the results of the statistical tests, t-value, degree of freedom (dof), p-value, degree of 

significance (unc. sig.), 95% confidence interval (CI95%), effect size (Cohen-d), Bayes Factor 

(BF10), and statistical power (power) for each speaker information and model.  
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Supplementary Table S17: Assessing the significance of the speaker gender categorization 

task. This table reports the significance of the speaker's gender categorization performance. 342 

voice stimuli were used in the experiments: the original stimuli (N = 18), directly reconstructed 

stimuli using the LIN and the VLS models (N = 36), and brain-reconstructed stimuli (18 stimuli x 

2 models x 4 regions of interest x 2 hemispheres, N = 288). The participants were tasked with 

identifying the gender of the presented voice in each trial by clicking either the ‘Female’ or ‘Male’ 

button. To evaluate the accuracy of the binary responses, we computed the classification accuracy 

for each participant and region of interest (ROI). We then utilized one-sample t-tests to compare 

the mean accuracy distribution across all participants to the chance level of 50%. s.e.m. = standard 

error of the mean. Here are reported the results of the statistical tests, t-value, degree of freedom 

(dof), p-value, degree of significance (unc. sig.), 95% confidence interval (CI95%), effect size 

(Cohen-d), Bayes Factor (BF10), and statistical power (power) for each model and ROI. 
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Supplementary Table S18: Assessing the significance of the speaker age categorization 

task. This table reports the significance of the speaker age categorization performance. 342 voice 

stimuli were used in the experiments: the original stimuli (N = 18), directly reconstructed stimuli 

using the LIN and the VLS models (N = 36), and brain-reconstructed stimuli (18 stimuli x 2 models 

x 4 regions of interest x 2 hemispheres, N = 288). The participants were tasked with identifying 

the approximate age of the presented voice in each trial by clicking either the ‘Younger’ or ‘Older’ 

button. To evaluate the accuracy of the binary responses, we computed the classification accuracy 

for each participant and region of interest (ROI). We then utilized one-sample t-tests to compare 

the mean accuracy distribution across all participants to the chance level of 50%. s.e.m. = standard 

error of the mean. Here are reported the results of the statistical tests, t-value, degree of freedom 

(dof), p-value, degree of significance (unc. sig.), 95% confidence interval (CI95%), effect size 

(Cohen-d), Bayes Factor (BF10), and statistical power (power) for each model and ROI. 
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Supplementary Table S19: Assessing the significance of the speaker identity 

discrimination task. This table reports the significance of the speaker identity discrimination 

performance. The participants listened to 684 voice stimuli with short breaks in between. Each 

trial contained 2 short sound samples, and the participants had to indicate whether the samples 

were from the same speaker or different speakers. We then utilized one-sample t-tests to compare 

the mean accuracy distribution across all participants to the chance level of 50%. s.e.m. = standard 

error of the mean. Here are reported the results of the statistical tests, t-value, degree of freedom 

(dof), p-value, degree of significance (unc. sig.), 95% confidence interval (CI95%), effect size 

(Cohen-d), Bayes Factor (BF10), and statistical power (power) for each model and ROI. 
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Supplementary Table S20: Comparing human listeners' performance in discriminating 

speaker identity-related information decoded with VLS versus LIN. This table reports the 

significance of the VLS-LIN difference in the speaker identity categorization and discrimination 

performance. Paired t-tests were conducted between the scores of human listeners at 

discriminating the speaker gender (2 classes), age (2 classes), and identity (17 classes) of the 18 

Test Stimuli reconstructed from the VLS features with those from LIN features. s.e.m. = standard 

error of the mean. Here are reported the results of the statistical tests, t-value, degree of freedom 

(dof), p-value, degree of significance (unc. sig.), 95% confidence interval (CI95%), effect size 

(Cohen-d), Bayes Factor (BF10), and statistical power (power) for each speaker identity 

information and ROI. 
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Supplementary Table S21: Comparing the performance of the human listeners at 

discriminating speaker identity-related information by ROI. This table reports the 

significance of the A1-TVAs difference in the speaker identity categorization and discrimination 

performance. Two-sample t-tests were conducted between the scores of human listeners at 

discriminating the speaker gender (2 classes), age (2 classes), and identity (17 classes) of the 18 

Test Stimuli that were reconstructed from the VLS features with those from LIN features. s.e.m. = 

standard error of the mean. Here are reported the results of the statistical tests, t-value, degree of 

freedom (dof), p-value, degree of significance (unc. sig.), 95% confidence interval (CI95%), effect 

size (Cohen-d), Bayes Factor (BF10), and statistical power (power) for each speaker identity 

information and ROI.  
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Supplementary Audio S1: Voice latent space interpolation. 

The audio files are two original voice samples (A, B); the synthesized voice samples 

from the spectrograms of the autoencoder reconstructions of the original two voice 

samples (A’, B’); the synthesized voice samples from the spectrograms of the linearly 

interpolated voice latent space (VLS; A_to_B; Figure 3.1c). 

 

A.wav:   Original voice sample of a female Chinese speaker 

A’.wav:   Voice sample A.wav reconstructed by the autoencoder 

B.wav:     Original voice sample of a male French speaker 

B’.wav:     Voice sample B.wav reconstructed by the autoencoder 

A_to_B_lx.wav:  Reconstructed voice samples from the linear interpolation between 

A and B VLS, where x is the interpolation step (0.2, 0.4, 0.6, 0.8). 

 

Link: 

https://drive.google.com/drive/folders/1WQonOiO_FpQvj9mT3okVSasno_rck_u3?usp=

sharing 

 

Supplementary Audio S2: Brain-based voice reconstructions. 

The audio files are reconstructed voice samples from the fMRI responses in the 

speakers' temporal voice areas (TVAs). These sounds were used in the quantitative and 

subjective voice identity tests (Figure 3.4). The samples below are from a German and a 

Spanish speaker. The sounds are reconstructed for each speaker using 2 models: LIN and 

VLS. 

 

example1_orig.wav:    Original voice sample of a male German speaker 

example1_VLS_RaTVA.wav:  Reconstructed voice sample from fMRI activity in the 

right anterior temporal voice area (RaTVA) using the VLS model 

example1_LIN_RaTVA.wav:  Reconstructed voice sample from fMRI activity in the 

right anterior temporal voice area (RaTVA) using the LIN model 

 

example2_orig.wav:    Original voice sample of a male Spanish speaker 

example2_VLS_LmTVA.wav: Reconstructed voice sample from fMRI activity in the 

https://drive.google.com/drive/folders/1WQonOiO_FpQvj9mT3okVSasno_rck_u3?usp=sharing
https://drive.google.com/drive/folders/1WQonOiO_FpQvj9mT3okVSasno_rck_u3?usp=sharing
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left middle voice area (LmTVA) using the VLS model 

example2_LIN_LmTVA.wav: Reconstructed voice sample from fMRI activity in the 

left middle voice area (LmTVA) using the LIN model 

 

Link: 

https://drive.google.com/drive/folders/1AwAV2zigRb9DxDt_xhyea8sp13Zvxcuk?usp=s

hare_link  

 

 

https://drive.google.com/drive/folders/1AwAV2zigRb9DxDt_xhyea8sp13Zvxcuk?usp=share_link
https://drive.google.com/drive/folders/1AwAV2zigRb9DxDt_xhyea8sp13Zvxcuk?usp=share_link
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Abbreviations 

A1     primary auditory cortex 

AF arcuate fasciculus 

ANN artificial neural network 

DNN deep neural network 

BOLD blood-oxygen-level dependent 

CV conspecific vocalization 

CNN           convolutional neural network 

EC                effective connectivity 

ECOG electrocorticography 

EEG electroencephalography 

ERP event-related potential 

FC  functional connectivity 

FVA frontal voice area 

fMRI functional magnetic resonance imaging 

IFC inferior frontal cortex 

IFG inferior frontal gyrus 

MEG  magnetoencephalography 

rTMS repetitive transcranial magnetic stimulation 

SEM standard errors of the mean 

SPM statistical parametric mapping 

sEEG stereoelectroencephalography 

STG superior temporal gyrus 

STS superior temporal sulcus 

TVA temporal voice area 

VA  voice area 
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