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Préface

Les protéines membranaires (PMs) sont des constituants essentiels de toutes les
cellules vivantes. Localisées a l'interface entre le cytosol et le milieu extracellulaire,
elles sont la porte d’entrée des cellules et elles constituent des intermédiaires cruciaux
dans la transmission des signaux. Ainsi, elles sont impliquées dans des processus
biologiques clés et dans un large panel de dysfonctionnements associés. Elles
représentent donc des voies thérapeutiques de choix, avec plus de 60% des

médicaments actuellement sur le marché ciblant ces PMs.

Deux familles de protéines membranaires présentent un intérét particulier. Les
récepteurs couplés aux protéines G (RCPG) représentent la plus grande famille de
protéines membranaires, avec plus de 800 membres identifiés chez 'Homme. Les
RCPG sont exprimés de facon ubiquitaire dans |'organisme, ou ils sont activés par des
ligands tres variés. Ils constituent donc une cible thérapeutique majeure, comme en
témoigne le large nombre de médicaments sur le marché agissant sur cette classe de
protéines. Les canaux ioniques représentent également une large famille de protéines
membranaires, avec plus de 300 membres. lls sont exprimés dans tous les tissus et
tous les types de cellules et ils ont des fonctions physiologiques variées. Les canaux

ioniques constituent ainsi la 2°™ cible des médicaments aprés les RCPG.

La compréhension de la structure atomique et du fonctionnement a I'échelle
moléculaire de ces protéines revét donc un intérét scientifique majeur, a la fois sur le
plan fondamental mais aussi médical. L'obtention de telles données est cependant
fortement ralentie par de nombreuses difficultés expérimentales inhérentes a la
nature de ces protéines et a la nécessité de les maintenir dans un environnement
hydrophobe. En particulier, les étapes d’extraction, de purification et de maintien des
PMs en solution font traditionnellement intervenir des molécules amphiphiles de type
détergent dont le choix est critique pour allier capacité d’extraction, stabilité des
protéines et compatibilité avec les méthodes d’analyses structurales et fonctionnelles.
Le développement récent de polymeres amphiphiles capables d'isoler des
nanoparticules lipidiques directement a partir de membranes biologiques présente
une alternative particulierement attrayante a I'utilisation de détergents pour I'étude
de protéines membranaires en solution. Ce travail de thése a précisément pour
objectif d'évaluer I'efficacité de ces polymeres et la qualité des particules générées a

partir d'échantillons modéles étudiés au laboratoire.
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INTRODUCTION



1. Les protéines membranaires intégrales comme cible privilégiée des

médicaments

1.1. Généralités

Selon I'article L. 5111.1 du Code de la santé publique, un médicament est défini
comme une « substance ou composition présentée comme possédant des propriétés
curatives ou préventives a I'égard des maladies humaines ou animales, ainsi que tout
produit pouvant[...] corriger ou modifier les fonctions physiologiques [de I'hnomme et
de l'animal] en exercant une action pharmacologique, immunologique ou
métabolique »*. Parmi les milliers de médicaments sur le marché, il existe a I'heure
actuelle environ 1 200 molécules actives qui se partagent environ 330 cibles parmi
lesquelles des enzymes ciblées par 25 % des molécules actives, des récepteurs
nucléaires visés par environ 10 % des molécules mais surtout des protéines

membranaires ciblées par environ 55% des molécules actives'?.

Il n'est pas surprenant que les protéines membranaires soient des cibles
thérapeutiques si importantes. Elles sont en effet impliquées dans de nombreux
processus physiologiques et pathologiques incluant le cancer, les maladies auto-
immunes, respiratoires, neurologiques, métaboliques, etc. Les familles de protéines
membranaires présentant le plus grand intérét comme cible thérapeutique

comportent les récepteurs, les pompes et transporteurs ainsi que les canaux ioniques.

Parmi les récepteurs, les récepteurs couplés aux protéines G (RCPG) sont sans
aucun doute la plus grande famille avec plus de 800 membres et représentent a eux
seuls la cible de pres de 30% des médicaments®“. Ils seront présentés plus en détail
dans une partie a part entiére ci-aprés (paragraphe 1.2. Les RCPG, cible n°1 des
médicaments). Les canaux ioniques constituent également une cible thérapeutique
majeure puisqu’ils représentent la deuxiéme cible des médicaments, apres les RCPG.

Ils font I'objet d'une partie détaillée au paragraphe 1.3. Les canaux ioniques.

2 https://www.legifrance.gouv.fr/codes/article_|c/LEGIARTIO00006689867/
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1.2. Les RCPG, cible n°1 des médicaments

1.2.1. Généralités

Les RCPG, également appelés récepteurs a 7 domaines transmembranaires au
vu de leur topologie commune, représentent sans équivoque, avec plus de 800
membres, la plus grande famille de récepteurs chez 'Homme. Les RCPG ont été
nommés ainsi de par leur capacité a s'associer avec les protéines G hétérotrimériques
(Ga,B,y) et ainsi transmettre un signal a l'intérieur de la cellule via I'activation ou
I'inhibition d'effecteurs intracellulaires (Figure 1°). Les stimuli capables d'activer ces
récepteurs sont extrémement variés et incluent des photons, des molécules
odorantes ou gustatives, des ions, des neurotransmetteurs, des acides aminés, des
nucléotides, des peptides, des protéines, des lipides, des acides gras, des stéroides

ou encore des hormones®.

Odeurs Petites molécules .
Phéromones - acides aminés, amines
- nucléotides, nucléosides
Ions proslgglandlnes .
ti .
“RepvRes Protéines
Photon lnterleukines
chemokines,
hormones

Effecteur
(enzyme,
canal, etc) [osuesos

Protéine G

. Messager
intracellulaire

Figure 1. Représentation de la fonction générale des RCPG. Figure modifiée d'apres®.

1.2.2. Généralités structurales

Les RCPG ont été regroupés dans cette grande famille car ils possedent tous
une topologie commune (Figure 2). lls sont constitués d'une extrémité N-terminale
(N-ter) extracellulaire, plus ou moins longue selon les récepteurs, de sept hélices a
hydrophobes transmembranaires, communément appelées TM 1 a 7, trés conservées,

et d'une extrémité C-terminale (C-ter) intracellulaire.

Les domaines transmembranaires, organisés dans le sens antihoraire si I'on se

place du c6té extracellulaire, sont reliés par trois boucles intracellulaires (ICL1, ICL2
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et ICL3) et trois boucles extracellulaires (ECL1, ECL2 et ECL3) de tailles variables. Deux
cystéines sont retrouvées dans la plupart des RCPG dans les boucles ECL1 et ECL2,

formant un pont disulfure stabilisant.

Enfin, la majorité des RCPG ont également une quatrieme boucle intracellulaire
ou hélice H8 du coté C-ter apres le TM7, positionnée parallélement a la surface

interne de la membrane plasmique’, avec une cystéine palmitoylée s'ancrant dans la

membrane.

JJ‘)_JJQ ; Figure 2. Topologie générale, .des
JJJ)) JJJ JJJ \JJJJ_JJ) Jj))' .RC_PG., LempllacemenF des résidus
J ) JJQ JJJJ JJJ o o indiqués est basé sur le récepteur CXCR4;
JJJ‘)&JJ JJJ.) JJJ JFJJ-)JJJ ij) en gras sont représentés les résidus les
JJ) J‘)@ @ JJ)'” Jp)J Jy) m_)) MEWICIERE plus conservés dans chaque TM. ECL:
JJJJJJ')J;)J),) J‘)) J_,JJJngJSJ!'J boucle extracellulaire, ICL : boucle
JJ” JU‘) JJ).) B JJD E#.) intracellulaire, ™ : domaine
,)JJJ‘) i{) JJJ j)j)JJ_;)‘)JYJ}) transmembranaire, H8 : hélice 8. Figure
,——~er \ - )—-J,‘) ' modifiée d'aprées®
4 JJ) v @ J{é
& N g ® i . JJJD .
B\ N
ICL1 o b ~° -

1.2.3. Classification

Malgré la large diversité de ces protéines, certaines possédent des points de
similitude ayant permis de les regrouper en plusieurs familles. Bien que plusieurs
systemes de classification aient été proposés - certains basés sur I'homologie de
séquence’, la phylogénie ou le mode de liaison du ligand® - c’est le systéme établi en
1994 par Kolakowski™ qui est aujourd’'hui le plus fréquemment utilisé pour classer les
RCPG.

Cette classification, basée sur I'homologie de séquence et la similarité
fonctionnelle des différents récepteurs, définit six classes de récepteurs, de Aa F. La
classe A, regroupant les récepteurs « rhodopsin-like », constituent la plus vaste et la
plus diverse classe de récepteurs®'®' avec 719 membres'? soit plus de 90 % des
RCPG. Cette famille est sous-divisée en 3 catégories qui se distinguent selon la

localisation de leur site d'interaction avec le ligand: entre les hélices
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transmembranaires pour le premier groupe (Figure 3A1), au niveau de |'extrémité N-
ter, ECL1 et ECL2 pour le deuxieme groupe (Figure 3A2) et au niveau de |'extrémité

N-ter pour le troisieme groupe (Figure 3A3).

La classe B est divisée en 2 sous-familles : les récepteurs apparentés a celui de

sécrétine ou « secretin-like » (B1) et la famille des récepteurs d’adhésion (B2).

Les membres « secretin-like », au nombre de 15 chez 'Homme, sont caractérisés
par une extrémité N-ter d’environ 60 a 80 acides aminés (AA), sur lesquels les ligands
(principalement de grosses hormones peptidiques comme le glucagon ou I’hormone
parathyroidienne) vont se lier (Figure 3B). Les cystéines conservées formant des ponts
disulfures sont d‘ailleurs particulierement importantes pour la liaison de leurs

ligands?®'3.

Les RCPG appartenant a la famille des récepteurs d’adhésion sont au nombre
de 33. lls constituent donc la 2°™ plus grande famille de récepteurs mais sont
relativement peu décrits dans la littérature. Nombre de ces récepteurs sont d'ailleurs
toujours orphelins et seule la structure du récepteur AGRG3 (Adhesion G protein-
coupled receptor G3, aussi appelé GPR97) a été résolue en 2021™. Les points
communs de ces récepteurs d’adhésion résident dans leur longue mais toutefois
diverse extrémité N-terminale qui est probablement hautement glycosylée et qui
formerait une structure rigide a la surface des cellules. De méme, ces récepteurs
joueraient un role dans I'adhésion et la migration cellulaire car ils contiennent des
domaines aussi retrouvés dans des protéines d'adhésion, de reconnaissance ou de
migration comme la cadhérine, la lectine, la laminine, les immunoglobulines ou

I'olfactomédine’.
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Figure 3. Représentation schématique des structures de RCPG selon leur famille. (A1-
A3) Structures des différents sous-groupes de la famille des récepteurs similaires a la
rhodopsine. (B) Structure des récepteurs de la famille des récepteurs de la sécrétine et
d'adhésion. (C) Structure des récepteurs métabotropiques. Figure modifiée d'apres®
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La classe C comprend les récepteurs du glutamate et contient 22 membres dont
les récepteurs du glutamate (mGIuR) et les récepteurs gabaergiques de type B
(GABAgR), les récepteurs au calcium ainsi qu'un groupe de récepteurs de
phéromones. Ces récepteurs possédent tous un trés grand domaine extracellulaire
d’environ 600 AA constitué de deux lobes, séparés par une région charniére. La liaison
du ligand induit la fermeture des lobes par un mécanisme comparé a celui de la Vénus

tue-mouche® (Figure 3C).

La classe D comprend des récepteurs de phéromones fongiques (non humains)*

et la classe E des récepteurs a I'’AMPc (non humains)*®.

Enfin, la classe F comprend les récepteurs Frizzled et Smoothened (24 membres)
impliqués dans le développement embryonnaire chez les animaux. Ces récepteurs
contiennent un domaine extracellulaire composé d’un domaine riche en cystéines et
d'un domaine de liaison, en plus des 7 TM et du domaine intracellulaire’. Leur
identité de séquence avec les autres RCPG est toutefois relativement faible, et la

classification des récepteurs SMO comme RCPG reste controversée.

1.2.4. Mécanisme d’activation des RCPG

Les mécanismes d’activation des RCPG sont complexes et impliquent de

nombreux effecteurs.

Les protéines G représentent les principaux effecteurs des RCPG. Elles sont
composées de 3 sous-unités Ga, GB et Gy. Lorsque le récepteur n'est pas activé, la
sous-unité Ga du trimeére afy, qui comprend un domaine GTPasique, lie une molécule
de GDP. Lors de la liaison d'un agoniste sur le récepteur, Iaffinité du GDP va diminuer
entrainant sa dissociation, et va rapidement étre remplacé par une molécule GTP,
présent en grande concentration dans la cellule. Le changement de conformation de
la sous-unité Ga induit par la fixation du GTP va entrainer la dissociation des sous-
unités GBy. Les sous-unités Ga, classées selon leur similarité de séquences en 4
familles (Gs, Gio, Ggn1, Gi213), et GBy vont moduler I'activité de différentes protéines
effectrices, comme l'adénylate cyclase (AC) ou la phospholipase C, et donc induire
des réponses cellulaires différentes (Figure 4). Ces différentes voies ne seront

volontairement pas développées ici mais sont accessibles dans différentes revues' .
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Figure 4. Voies de signalisation des RCPG. Les mécanismes d'activation des RCPG
impliquent deux voies de signalisation majeures, I'une médiée par les protéines G et |'autre
indépendante des protéines G. La signalisation des GPCR est initiée par la liaison d'un
agoniste sur le récepteur qui va induire des changements conformationnels dont un
mouvement extérieur du TMé (en bleu foncé). L'activation du récepteur va induire le
recrutement d’une protéine G hétérotrimérique composée des sous-unités Go, GB et Gy (en
orange), I"échange du GDP pour le GTP, puis la dissociation de la sous-unité Ga d'une part
et de la sous-unité GPBy d'autre part. Les 2 sous-unités peuvent interagir avec différents
effecteurs. Selon I'isoforme, la sous-unité Ga peut activer (Gas) ou inhiber (Gaiis) I'adénylate
cyclase (AC), activer la phospholipase C (PLC) B (Gag) ou le Rho guanine exchange factor
(RhoGEF) (Gouzns). La sous-unité GPy peut interagir avec les canaux GIRK, la
phosphatidylinositol 3-kinase (PI3K), et certaines PLCs ou encore I'AC. Le cycle est terminé
par I'hydrolyse du GTP et la réassociation du trimére Go/GBy inactif. Dans la voie
indépendante aux protéines G, 'activation du RCPG va induire le recrutement des GRK qui
vont stimuler le recrutement et I'activation de |'arrestine. Le couplage de I"arrestine conduit a
I"activation d'autres effecteurs cellulaires comme les MAP kinases ainsi qu’a I'internalisation
du récepteur en vue de sa dégradation dans les lysosomes ou de son recyclage a la
membrane. ATP, adenosine triphosphate; cAMP, AMP cyclique; PIP2, phosphatidylinositol
4,5-bisphosphate; IP3, inositol triphosphate; DAG, diacylglycérol. Figure modifiée d'apres'™™
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L'autre voie d'activation des RCPG, indépendante des protéines G, va impliquer
des kinases couplées aux RCPG (GRK, G protein-coupled receptor kinases). Ces
protéines cytosoliques, comprenant 7 membres chez les mammiféres - GRK1 a 7 -,
sont recrutées au niveau de la membrane plasmique et vont phosphoryler les RCPG
au niveau de leur extrémité C-ter et de leurs boucles intracellulaires. Cette
phosphorylation va favoriser I'interaction des RCPG a l'arrestine. Les arrestines sont
des protéines cytosoliques d’environ 45 kDa dont il existe quatre isoformes
différentes : I'arrestine 1 et 4, impliquées dans la vision et présentes principalement
dans les yeux, et |'arrestine 2 et 3 (aussi nommé B-arrestine 1 et B-arrestine 2),
exprimées de fagon ubiquitaire. La liaison de |'arrestine cause la désensibilisation du
récepteur, 'activation de kinases et d'autres protéines intracellulaires comme les MAP
kinases (MAPK, mitogen-activated protein kinases), |'internalisation des récepteurs en
vue de leur dégradation ou leur recyclage. Plus de détails sur cette voie de

signalisation médiée par |'arrestine sont disponibles dans différentes revues'®®.

Bien que l'activation des RCPG ait été longtemps établie comme un simple
mode on/off avec un état conformationnel inactif et un état actif, les données de
biologie structurale ont permis d’établir que la dynamique conformationelle des
RCPG était finalement bien plus complexe. Les RCPG sont des protéines hautement
dynamiques avec de multiples états conformationnels. De nombreux RCPG ont un
seuil d'activité basal, c’est-a-dire qu’ils sont capables d'induire un certain niveau de
signalisation intracellulaire en I'absence de ligand?'?2. Ensuite, la nature du ligand lui-
méme va influencer I'état conformationnel du récepteur a |'état actif, favorisant ainsi
certaines voies de signalisation. Les agonistes totaux (full agonist), qui sont capables
d’induire une réponse maximale du RCPG, sont opposés aux agonistes partiaux qui
vont induire un niveau de réponse intermédiaire. Les agonistes inverses vont quant a
eux diminuer |'activité basale du récepteur. Enfin, certains ligands sont connus comme
agonistes « biaisés » c’est-a-dire qu’ils vont préférentiellement activer soit la voie des

protéines G soit la voie des arrestines (Figure 4)*24,

1.2.5. Importance thérapeutique

La grande diversité des RCPG et les nombreux membres faisant partie de cette
famille permettent facilement d’expliquer que ces récepteurs sont des acteurs
centraux dans |'élaboration des réponses cellulaires, et ce dans une large variété de
processus physiologiques telle la neurotransmission, la vision, la prolifération et

différentiation cellulaire, la douleur, l'inflammation, etc. De nombreuses maladies sont
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Tableau 1. Exemples de polymorphismes ou de maladies associées a la mutation
d'un RCPGZ.

Récepteur Maladie

CXCR4 Syndrome WHIM

Récepteur au peptide N-formyl (FPR) 1 Parodontite juvénile

Récepteur de I'hormone de libération des Hypogonadisme hypogonadotrope
gonadotrophines (GnRH)

GPR54 Hypogonadisme hypogonadotrope
Récepteur a I'hormone folliculo-stimulante (FSHR)  Infertilité féminine

Récepteur f1 adrénergique (B1AR) Insuffisance cardiaque

Récepteur B2 adrénergique (B2AR) Hypertension, asthme

Récepteur $3 adrénergique (B3AR) Obésité

Récepteur a la chimiokine CC 5 (CCR5) Progression du SIDA

Récepteur a la dopamine 2 (D2DR) Dépression, anxiété

Récepteur a la dopamine 3 (D3DR) Schizophrénie

Récepteur a la vasopressine (V,R) Diabeéte insipide néphrogénique
Récepteur a la rhodopsine Rétinopathie pigmentaire
Récepteur a la mélanocortine 4 Obésité

VLGR1/MASS1 Syndrome d'Usher

Récepteur au neuropeptide S Asthme

Récepteur purinergique P2Y12 Diathése hémorragique
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donc associées a |'altération du fonctionnement d'un RCPG. Le Tableau 1 en recense

quelques-unes.

Les estimations pour déterminer la contribution des RCPG comme cible des
médicaments sur le marché varient selon les références, mais une étude récente a
estimé, d'apres l'analyse de diverses banques de données, qu'il y a environ 700
médicaments approuvés par la Food and Drug Administration (FDA) dont la cible est
un RCPG soit environ 35 % de I'ensemble des médicaments”. Les principales familles
de RCPG ciblées incluent les récepteurs adrénergiques, histaminiques,
dopaminergiques, acétylcholinergiques, les récepteurs aux opioides et les récepteurs
a la sérotonine. De méme, les maladies les plus fréquemment traitées sont I'obésité,
le diabéte, les maladies du systéme nerveux central (Alzheimer, la dépression, la
schizophrénie, Parkinson), les allergies, I'asthme ou I'hypertension. Des revues plus

détaillées sont disponibles dans la littérature®*.

Pour autant, les cibles actuelles ne représentent qu’une faible partie des cibles
potentielles. En effet une centaine de récepteurs sont toujours orphelins, c’est-a-dire
que leur ligand naturel n'a pas été identifié a ce jour. Leur role physiologique est
souvent peu voire pas connu, le potentiel en termes de santé publique est donc
majeur. De méme, l'intérét pour la production d'anticorps monoclonaux en tant que
médicament grandit® et les récepteurs d'adhésion, avec leur longue extrémité N-

terminale, pourraient étre des cibles intéressantes.
1.3. Les canaux ioniques

1.3.1. Généralités

Les canaux ioniques sont des protéines formant des pores qui permettent le
passage d'ions a travers la membrane plasmique ainsi que les membranes des
organelles. lls peuvent étre sélectivement perméables a un ion ou bien a plusieurs
ions a la fois. A l'inverse des pompes membranaires, un canal ne peut pas transporter
un ion contre le gradient électrochimique (résultant de la différence de concentration
et du champ électrique), il ne fait qu'accélérer le passage des ions du milieu le plus

concentré vers le moins concentré.

Les canaux ioniques représentent une large famille de protéines membranaires,
avec plus de 300 membres. Ils sont nommés majoritairement selon les

recommandations de I'lUPHAR (International Union of Basic and Clinical
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Pharmacology). Ici, nous traiterons des principaux canaux ioniques selon I'lUPHAR, ce

qui n‘inclut pas les canaux anioniques ou les aquaporines et les connexines.

Dans la majorité des cas, les canaux ioniques sont classés selon 2 critéres

principaux :

- selon le mécanisme d'ouverture, et dans ce cas on distingue les canaux
dépendants du potentiel électrique (ou voltage-dépendants) des canaux activés par
la liaison d'un médiateur (ou canaux ligand-dépendants), ou dautres canaux ne
rentrant dans aucune de ces deux catégories (comme les aquaporines ou les

connexines).

- selon leur sélectivité a un ion (canaux sodiques, potassiques, chlorures,

calciques ou non sélectifs).

Un canal existe dans 3 états : ouvert, fermé et inactif (Figure 5). Dans le cas des
canaux ligand-dépendants, ils vont subir des changements conformationnels a la suite
de la liaison d'une molécule pour switcher entre I'un des trois états en quelques
millisecondes. Les canaux dépendants du potentiel vont eux changer de conformation

a la suite d'une modification de potentiel de membrane.

Rest Figure 5. Transition entre les différents états

aaa a Gating | d'un canal ionique.
bbb b
bb

Inactive —— Open®

aa
Inactivation

1.3.2. Membrane et potentiel de repos

La distribution des ions de part et d'autre de la membrane plasmique, qui est
imperméable, est inégale (Tableau 2). Les ions Na*, Ca*, Cl et Mg?" sont plus
concentrés a |'extérieur de la cellule tandis que les ions K* et H* sont plus concentrés
a l'intérieur de la cellule. Cette différence peut exister si elle est compensée par une
différence de potentiel électrique propre a chaque ion (Tableau 2). Le potentiel

électrochimique de chaque composé ionique est défini par I'équation de Nernst.

24



Tableau 2. Concentration et potentiel électrochimique des principaux ions localisés
de part et d'autre de la membrane plasmique.

Na+ 14 140 + 58 mV
K+ 160 3 -84 mV
Caz2+ {0 1 + 116 mV
Cl- 14 150 -58 mV

Le potentiel électrochimique de membrane d'une membrane plasmique lorsque
la cellule est au repos est appelé potentiel de repos (Vn). Il varie entre - 20 et - 90 mV
suivant le type cellulaire mais il est plus généralement compris entre - 40 et - 60 mV'.
Les canaux ioniques ont une contribution majeure dans le maintien du potentiel de
repos de la cellule. Les systémes de transport actif agissent pour la formation et le
maintien des gradients de concentration mais contribuent peu au maintien du

potentiel de repos.

Le potentiel de repos joue un réle essentiel pour les cellules excitables telles
que les neurones ou les cellules cardiaques. L'activation des canaux voltage-
dépendants initie un potentiel d'action. L'entrée de cations et la sortie d’anions vont
entrainer une dépolarisation de la cellule, le potentiel de membrane V,, va augmenter
par rapport au potentiel de repos, tandis que la sortie de cations et |'entrée d’anions
vont entrainer une hyperpolarisation ; le potentiel de membrane V., va diminuer. Si
I'on prend les cellules neuronales en exemple, on observe une phase de
dépolarisation liée a I'entrée massive d'ions Na*, puis une phase de dépolarisation
liée a la sortie d'ions K* suite a l'inactivation des canaux sodiques et enfin une phase
d’hyperpolarisation plus longue qui correspond au temps nécessaire pour que les
canaux potassiques se referment. L'action de la pompe Na'/K*-ATPase permet

également le retour au potentiel de repos’.
1.3.3. Les canaux voltage-dépendants

1.3.3.1. Les différents membres

Les canaux voltage-dépendants constituent une large famille de protéines (Figure 6).
lls sont généralement répartis en 7 sous-familles parmi lesquelles les canaux sodiques

Nav, les canaux potassiques répartis en 4 sous-familles, le canal calcique dépendant
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du voltage Cay, les canaux Transient Receptor Potential (TRP), les canaux CatSper et
les canaux a deux pores (Two Pore channels, TPC), les canaux régulés par les
nucléotides (CNG/HCN) et le canal a proton voltage dépendant Hv:?’. Au vu de la
diversité de cette famille de protéines, nous nous focaliserons ici sur celles dont
I'intérét thérapeutique est le plus important a savoir les canaux sodiques et les canaux

potassiques, ainsi que les canaux TRP#.

Les canaux sodiques Nav ont été découverts en 1953 par Hodgkin et Huxler?.
A ce jour, on dénombre, chez les mammiferes, 9 canaux Nay1 nommés Na, 1.1 a Na,
1.9. Une nouvelle famille de canaux Nav2 a été découverte plus récemment®* mais est

peu étudiée.

Depuis le clonage du premier canal potassique de la drosophile en 1987%, de
nombreux autres génes codant pour les canaux potassiques ont été identifiés. Ils
représentent ainsi la plus grande famille de canaux et sont exprimés de facon
ubiquitaire. Les canaux potassiques sont trés nombreux avec une structure et des
mécanismes de régulation plus complexes que les canaux sodiques. Nous ne
traiterons que des 4 principales familles, classées selon des criteres génétiques et

structuraux. On distingue :

- les canaux potassiques dépendants du voltage Kvqui constituent la plus grande
famille de canaux potassiques avec une quarantaine de membres classés dans 12
familles différentes (Kv1 a Ky12)

- les canaux potassiques activés par les Ca** ou Na* cytosoliques Kc. et Kna qui
sont séparés en 5 familles (Kc.1.1, Kea2 avec 3 membres, Ke.3.1, Kea5.1 et Kna1 avec 2

membres)

- les canaux potassiques de rectification entrante Ki qui comptent 15 membres

divisés en 4 sous-familles selon leur régulation et les protéines qui leur sont associées

- les canaux potassiques a 2 domaines P Kz, plus récemment identifiés, qui
comprennent 15 membres (plus connus sous leur anciens noms TWIK, TREK, TASK,
TALK, TRESK, etc) regroupés en 6 sous-familles selon leur homologie de séquence,

leurs propriétés électrophysiologiques ou leur régulation.

Les canaux TRP sont issus chez 'homme de 27 geénes et sont divisés en 6
familles : TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPML
(mucolipin), TRPP (polycystin). Une septieme famille (TRP NOMPC-like) est retrouvée

uniquement chez les invertébrés et les poissons. Les canaux TRP sont exprimés dans
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presque tous les types cellulaires, aussi bien dans les tissus excitables que non
excitables. La majorité des canaux TRP présente une perméabilité cationique non
sélective permettant des flux de Na*, K*, Ca?*, seuls certains sont hautement sélectifs
pour le calcium. lls sont activés par le voltage, le calcium intracellulaire, le pH,
I'osmolarité ou I'étirement mécanique. De fait de leur faible sensibilité a la
dépolarisation de la membrane et de leur activation par d'autres molécules, ils sont

parfois classés dans la catégorie des canaux dépendants des ligands®.

1.3.3.2. Motifs structurels et fonctionnels

Malgré leur diversité, les canaux voltage-dépendants ont de fortes similarités dans
leurs structures (Figure 6): des sous-unités o, comprenant un nombre variable
d’hélices transmembranaires selon les familles de canaux, associées a une ou plusieurs

sous-unités régulatrices transmembranaires ou cytosoliques.

Les canaux sodiques Na, sont constitués d'une grande sous-unité principale a

de 260-280 kDa associée a une ou deux petites sous-unité B de 30-40 kDa. La sous-
unité o est composée de 4 domaines homologues (I-IV) comprenant chacun 6
domaines transmembranaires (nommés segments S1-S6) ainsi qu‘une boucle
réentrant dans la membrane entre le S5 et le S6, le tout formant ainsi un motif
structural commun pour la famille des canaux voltage-dépendants (Figure 6A). Le
génome des mammiféres contient 4 génes qui encodent pour 5 sous-unités B (B1,
B1B, B2, B3 et B4). Les sous-unités B consistent en un domaine extracellulaire similaire
aux immunoglobulines en N-ter, un unique segment transmembranaire et un court
domaine intracellulaire. Elles modulent I'activité des sous-unités o et servent de
molécules d'adhésion®. Le port est formé au centre d'un réseau pseudo-symétrique
des 4 domaines. Les segments S1-4 forment un domaine sensible au voltage (VSD)
qui est un module important dans la régulation de I'ouverture du canal lors de la
dépolarisation de la membrane. Plus de détails mécanistiques sur les canaux sodiques
voltage-dépendants sont disponibles dans la revue®. Les canaux calciques Cav ont

une structure trés similaire (Figure 6B).

Les canaux potassiques Kv sont composés d'un domaine homologue (semblable
a ceux des canaux Nay et Cay) et s'assemblent en tétraméres. Plusieurs autres canaux
ont une structure similaire comme les canaux Kca, CNG, et certains canaux TRP. Les
canaux Kir ont I'architecture structurale la plus simple de la superfamille des canaux
ioniques. lls sont formés de 4 sous-unités composées chacune de 2 segments

transmembranaires nommés M1 et M2, ayant une structure et une fonction analogue
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K, TRP
(40) (32)

Figure 6.Topologie générale des canaux-voltage dépendants. (A) Canaux sodiques Nay.
(B) Canaux calcique Cav. (C) Autres canaux dont les canaux potassiques dépendant du voltage

CNG, HCN Kea1.5 Kes2i3
(10) @) @)

»
U
+H 3N\J m +HyN U m
o, o,
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(15) (15)

KV, les canaux TRP, les canaux CNG et HNG, les canaux potassiques activés par les Ca

cytologiques Kc,, canaux potassiques de rectification entrante K; et les canaux potassiques a
2 domaines P KzP. En rouge sont représentés les segments S5-S6 formant le pore, en vert le
domaine sensible au voltage chargé positivement, en jaune les segments S1 a S3. R: domaine
de régulation qui lie les messagers secondaires intracellulaires. Le nombre de membres de la

famille dans le génome humain est indiqué entre parenthéses. Figure modifiée d'apres®.

Tableau 3. Les différentes familles de canaux ioniques ligand-dépendants.

Ligand

Récepteur

Sélectivité

Neurotransmetteurs

Acétylcholine

AChR (musculaires et neuronaux)

Cation non sélectif

Glutamate AMPA, kainate, NMDA Cation non sélectif
GABA GABA,R Cl
Glycine GlyR Cl

Sérotonine

Récepteur 5-HT,

Cation non sélectif

ATP

Récepteur P2X

Cation non sélectif

Ligands intracellulaires

Calcium

Canaux dépendant du calcium

K, Cl, non sélectif

Nucléotides cycliques

Récepteurs au cGMP et cAMP

Cation non sélectif

ATP

Canaux dépendant de |'ATP

K

IP3

Canaux libérant du calcium

(récepteur de la ryanodine, RyR)

Ca
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avec les segments S5 et S6 des canaux sodiques, calciques et potassiques. Ce motif
est répété 2 fois pour former les canaux Kzp, comme leur nom l'indique (Figure 6C)*.

Ces différentes familles de protéines sont régulées par divers mécanismes qui
ne seront que brievement abordés ici mais qui sont détaillés dans diverses revues®.
A titre d’exemple, les canaux Nay, Cav et Ky sont activés par le changement de
potentiel de la membrane. Ils répondent au voltage grace au segment S4 chargé
positivement car riche en résidus arginines et lysines. Cette hélice se déplace vers
I'extérieur sous l'influence du champ électrique de la membrane pour initier un
changement de conformation qui ouvre le port. Il est admis que le changement
conformationnel s’effectue dans le module sensible au voltage. Ce mouvement
extérieur exerce une torsion sur les segments Sé a |'extrémité intracellulaire, forgant

le port a s’ouvrir.
1.3.4. Les canaux ligand-dépendants

1.3.4.1. Les différents membres

Les canaux ligand-dépendants (ou LGICs pour ligand-gated ion channels) sont
des canaux activés/régulés par la liaison de molécules extra ou intracellulaires. La
liaison de ces ligands sur des sites de liaison spécifiques va induire un changement
conformationnel du canal qui va passer d'un état fermé a ouvert (Figure 5). Ces canaux
sont présents en grande quantité dans le systéme nerveux central, leur ligand étant

logiquement et majoritairement des neurotransmetteurs comme |'acétylcholine, le
glutamate, la sérotonine ou l'acide y-amino-butyrique (GABA). Souvent, un méme

neurotransmetteur peut agir sur certains RCPG ainsi que sur un LGIC comme
I'acétylcholine qui agit via les récepteurs muscariniques (mAchR) et via les récepteurs
nicotiniques a l'acétylcholine (NAChR). Les ligands intracellulaires sont, quant a eux,
dans la majorité des cas, des seconds messagers comme l'inositol triphosphate (IP3),
I’ATP ou le calcium (Tableau 3). Ces canaux sont impliqués dans de nombreuses
fonctions comme I'anxiété, I'excitabilité des neurones, la mémoire et I'apprentissage

ou la douleur®??,

Les LGICs activés par des ligands extracellulaires sont généralement classés en
différentes familles, selon leur séquence en acides aminés et leur structure®=*?. On

distingue :
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Figure 7. Structure schématique générale des récepteurs a |'acétylcholine nAChR. (A)
Vue latérale. (B) Vue du haut du récepteur. M1 a M4 : domaine transmembranaire 1 a 4. Les
nAChR sont formés de 5 sous-unités et les segments transmembranaires sont organisés de
telle sorte que le domaine M2 de chaque sous-unité borde le canal®.

Tétramere Glu2A

Domaine amino-
terminal (ATD)

Domaine de
liaison au ligand
(LBD)

extracellulaire

Domaine

transmembranaire [T—— T™D
(TMD) ececccces CiMecccccces
Domaine intracellulaire
ccarboxy-terminal
(CTD) ' 150A

Figure 8. Structure et organisation des domaines des récepteurs ionotropiques au
glutamate. (A) Représentation schématique de la topologie des sous-unités des récepteurs
du glutamate, présentant une structure modulaire composée de deux grands domaines
extracellulaires, I’ATD en vert et le LBD en bleu, d'un TMD en orange qui fait partie du pore
du canal ionique et d'un CTD intracellulaire. Le LBD est défini par deux segments d'acides
aminés appelés S1 et S2. Le module TMD contient trois hélices qui traversent la membrane
(M1, M3 et M4) et une boucle rentrant dans la membrane (M2). (B) Structure cristalline résolue
a 3,6 Adu récepteur Glu2A (code PDB 3KG2) qui forme un tétramere. Figure modifiée
d'apres*’.
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- la superfamille des « Cys-loop» qui inclut le nAChR, le récepteur 5-
hydroxytryptamine (5-HTs) ou récepteur a la sérotonine, les récepteurs GABA, le

récepteur a la glycine (GlyR)*

- la famille des récepteurs ionotropiques du glutamate (iGIuR) qui inclut le
récepteur AMPA (a-amino-3-hydroxy-5-méthylisoxazol-4-propionate), le récepteur
kainate et le récepteur NMDA (acide N-méthyl-D-aspartique), ce dernier étant le

mieux connu?!

- les canaux purinergiques P2X activés par I'ATP*.

1.3.4.2. Motifs structurels et fonctionnels

Pour la famille des récepteurs Cys-loop, nous prendrons ici I'exemple du nAChR.
Les nAChR sont localisés soit sur les muscles striés squelettiques ou sur les neurones
centraux et périphériques. Tous les NAChRs sont formés de 5 sous-unités homologues
organisées autour d'un canal central. Il existe 17 sous-unités : a1-10, B1-4, vy, & et €.
Chaque sous-unité est constituée de 4 hélices transmembranaires nommées M1 a M4,
d'une longue extrémité N-terminale extracellulaire d’environ 210 AA qui contient un
pont disulfure formant une boucle, la « cys-loop», qui est caractéristique des
récepteurs de cette famille, d'une courte boucle intracellulaire entre M1 et M2, d'une
longue boucle (entre 110 et 270 AAs) intracellulaire entre M3 et M4 et d'une courte
extrémité C-terminale de 10-20 AAs extracellulaire (Figure 7A)*. Le site de liaison de
I’ACh est localisé vers le milieu du domaine extracellulaire. L'ouverture du canal se
produirait a la suite de petits changements de conformation globaux de la protéine
ACh, qui impliqueraient de légers changements conformationnels des sous-unités

conduisant a |'ouverture du canal*.

Le canal cationique est bordé par des acides aminés provenant des domaines
transmembranaires M2 (Figure 7B). La sélectivité ionique du canal est garanti par
plusieurs anneaux d'acides aminés polaires ou chargés, certains de ces AAs étant
essentiels pour le passage des cations a travers le canal de tous les membres de la

famille des récepteurs Cys-loop™®.
Tous les iGIuR ont une structure tres similaire (Figure 8)*'. lls contiennent :

- un domaine amino-terminal (ATD) extracellulaire ayant des réles variés dont

I'assemblage du récepteur,
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- un domaine de liaison au ligand (LBD) extracellulaire ayant une architecture

similaire a deux coquilles de palourdes (« clamshell-like »),

- un domaine transmembranaire (TMD) composé de 3 hélices M1, M3 et M4 qui
contribuent a la formation du noyau du canal ionique et d'une boucle M2 rentrant

dans la membrane,

- un domaine carboxy-terminal (CTD) intracellulaire dont la séquence et la
longueur est variable selon le récepteur et qui aurait un réle dans I'adressage a la
membrane, la stabilisation et |'adressage pour la dégradation du récepteur (Figure
8A).

Les premieres structures obtenues par cristallographie ont permis d’observer
une symétrie rotationnelle interne double et indiquent que les récepteurs du
glutamate s'assemblent comme un dimére de dimeéres (Figure 8B). Cette symétrie
differe de la symétrie observée dans les structures d'autres canaux ioniques, tel que
le récepteur nicotinique pentamérique de |'acétylcholine. Les récepteurs non-NMDA
vont former des homotétrameres tandis que les récepteurs NMDA forment des
hétérotétrameres*#3. L'étape initiale d'activation des récepteurs au glutamate est la
liaison au LBD d'un agoniste comme la glycine, le D-sérine, |'aspartate ou les
analogues au glutamate. Cela va induire la fermeture de la coquille du LBD, ce qui
prévient la dissociation de I'agoniste, et qui va exercer des contraintes mécaniques
sur les liaisons entre le LBD et le TMD résultant par 'ouverture du pore du canal
ionique. De méme, la dimérisation du LBD joue également un réle clé dans |'ouverture

du canal®'.

Enfin, les canaux purinergiques P2X sont des canaux ioniques trimériques. I
existe sept sous-unités P2X différentes (P2X1-7) chez les mammiféres, qui
s'assemblent de maniére homomérique et/ou hétéromérique. Chaque sous-unité
présente plusieurs caractéristiques structurales communes : des extrémités C- et N-
ter intracellulaires reliées par deux segments membranaires (TM1 et TM2) et un grand

domaine extracellulaire (ectodomaine), ot sont localisés les sites de liaison a I'ATP*.

La forme générale de chaque sous-unité est semblable a celle d'un dauphin,
avec un corps — I'ectodomaine organisé en feuillets B - sur lequel s'articule une téte,
une nageoire dorsale et des nageoires gauche et droite — qui sont des parties plus

flexibles et une queue - les domaines transmembranaires (Figure 9).
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En réponse a la liaison de I'ATP extracellulaire, des réarrangements structuraux
s'effectuent au niveau du site de fixation, du corps et des domaines
transmembranaires, faisant passer le récepteur d'un état fermé, de repos, a un état
ouvert, conducteur (Figure 9B), permettant le flux de Na*, K* et Ca?" a travers la

membrane®244,

Resting

A

Figure 9. Structure d'une sous-unité des récepteurs P2X en forme de dauphin. (A)
Chaque partie du corps du dauphin est représenté d’une couleur : en doré la téte, en bleu et
en violet le corps, en orange la nageoire dorsale, en rouge la nageoire droite, en jaune la
nageoire gauche et en vert la queue. (B) Superposition d'une sous-unité de P2X a |'état de
repos (vert) et ouvert (rouge). Les fleches grises représentent les changements
conformationnels s'opérant a la suite de la liaison de I'ATP. Figure modifiée d'aprés**.

1.3.5. Intérét thérapeutique des canaux ioniques

Les canaux ioniques constituent la 2°™ cible des médicaments apres les RCPG,
ce qui s'explique par leur large diversité, une expression dans tous les tissus et tous
les types de cellules et des fonctions physiologiques variées. Ils sont en effet
impliqués dans de nombreux processus comme la relaxation nerveuse et musculaire,
la cognition, la régulation de la pression sanguine, la prolifération cellulaire, etc.
L'attribution du Prix Nobel de Médecine 2021 a David Julius pour ses travaux sur le
canal TRPV1 et a Ardem Patapoutian pour ses travaux sur le canal mécanosensible

Piezo1 témoigne d’ailleurs bien de l'intérét thérapeutique majeur de ces protéines.

Le lien de cause a effet entre le dysfonctionnement d’un canal ionique et d'une
maladie a été établi la premiere fois en 1989 avec l'identification du canal CFTR (cystic
fibrosis conductance regulaton®, impliqué notamment dans la mucoviscidose.
Depuis, plus de 60 maladies- souvent des maladies neuronales ou cardiaques-
associées a des mutations dans ces canaux (« canalopathies ») ont été identifiées chez

I'Homme. Le Tableau 4 en recense quelques-unes.
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Tableau 4. Canalopathies provenant de la dégradation de la fonction d’un canal.
Tableau modifié d'apres?®.

Kir Kir1.1 Syndrome de Bartter (rénale)
Kir2.1 Syndrome d’Andersen (cardiaque)
Kir6.2 Hyperinsulinisme congénital ; Diabéte néonatal
Ky SUR2 Cardiomyopathie
Kv1.1 Ataxie de type |
Kv7.1 Syndrome du QT long/court
Kv7.2 Encéphalopathie épileptique
Kv7.4 Surdité
Kv11.1 (hERG) Syndrome du QT long/court
TRP TRPP2 Polykystose rénale
TRPA1 Douleurs épisodiques intenses
TRPC6 Sclérose glomérulaire segmentaire focale
CNG CNGA1 Rétinite pigmentaire
Kea BK Epilepsie
Nay Nay1.1 Epilepsie
Nay1.5 Syndrome du QT long
Nay1.6 Ataxie cérébrale
Erythromélalgie, syndrome de douleur extréme
Neyle paroxystique ; insensibilité congénitale a la douleur
Nay2.1 Epilepsie néonatale
Cay Cay1.2 Syndrome de Timothy (cardiaque)
Cay2.1 Ataxie de type 2
IRécep'Feur . GLRA1 Maladie des sursauts exagérés (ou hyperekplexie)
a glycine
GABA GABA, Epilepsie juvénile
AchR CHRNA4 Epilepsie nocturne du lobe frontal
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Les canaux ioniques ont la particularité d'étre la cible de nombreuses toxines
naturelles comme la tétrodotoxine (toxine de divers poissons, grenouilles, crabes, etc)
qui inhibent certains canaux Nav (Nay1.1, Na,1.2, Nay1.3, Nay1.4 Na,1.6 et Na,1.7) ou

comme la batrachotoxine (toxine de grenouille) qui va les activer, comme la w-

conotoxine GVIA (toxine du coéne géographe) qui cible les canaux Cav2.1 ou la
charybtoxine, une toxine de scorpion, qui va bloquer certains canaux potassiques Kec..
L'étude de la fixation de ces molécules sur les canaux ioniques a permis de mieux
comprendre leur fonctionnement et a permis d’identifier des sites d'action potentiels

pour développer des médicaments susceptibles de modifier leur activité®.

Les canaux sont des cibles thérapeutiques importantes des anesthésiques
locaux, comme la lidocaine (Xylocaine®), qui vont bloquer des canaux voltage-
dépendants comme certains canaux potassiques ou calciques. De nombreux canaux
sont localisés dans le systeme nerveux central ou périphérique, ou ils ont notamment
été identifiés comme des acteurs majeurs dans la signalisation de la nociception et
de la douleur®. Un certain nombre de médicaments a donc été développé pour cibler
ces maladies associées (dépression, épilepsie, maladies d’Alzheimer et de Parkinson,
etc). Enfin, les canaux ioniques sont également ciblés pour le traitement de maladies

cardiaques, comme le canal Ky11.1 (plus connu sous le nom de hERG)?3.

Les canaux ioniques restent toutefois largement sous exploités dans I'industrie
du médicament, le nombre de canaux ciblés étant relativement faible si on considere
le nombre de membres de cette large famille. Il existe donc un vivier important de
cibles potentielles. De plus, de nombreuses molécules existantes sont faiblement
sélectives et ont des niveaux de toxicité importants et une efficacité sub-optimale. De

nombreuses nouvelles perspectives thérapeutiques sont donc envisageables.

Il apparait donc que les RCPG et les canaux ioniques sont deux familles de
protéines tres importantes. De par le fort potentiel thérapeutique qu’elles présentent,
elles intéressent largement la recherche et les industries pharmaceutiques ou elles
sont trés étudiées. La partie suivante présente le processus et les différentes

techniques associées a |'étude de protéines membranaires a des fins thérapeutiques.

35



2. L'intérét de |'étude des PMs en solution

L'étude des PMs en solution sur du matériel purifié permet de simplifier les
systemes d'étude qui permettent d'apporter des informations complémentaires a
celles obtenues par les tests de criblage « classiques » utilisés par la recherche
pharmaceutique et réalisés le plus souvent sur des systémes complexes (comme des
cellules entiéres). Ce point est développé dans une premiere partie. De méme,
I'utilisation de protéines purifiées est nécessaire pour la mise en ceuvre de
nombreuses techniques biochimiques et biophysiques permettant d'obtenir des
informations précieuses sur la protéine elle-méme (cet aspect fait I'objet d'une
seconde partie), ouvrant alors de nouvelles opportunités d'abord pour la
compréhension du fonctionnement de ces protéines et in fine pour la découverte de

nouveaux médicaments.

2.1. La recherche pharmaceutique sur les PMs

Le développement d’un médicament est un processus long (de 10 a 15 ans) et
extrémement couteux (plus d'un milliard d’euros?). Historiquement, la recherche de
nouveaux composés reposait sur le criblage d'un petit nombre de molécules dérivées
de composés naturels actifs comme les ligands endogenes ou les molécules
naturelles, sur des systémes complexes (organes isolés ou animaux entiers). Depuis
les années 80-90, cette approche a été abandonnée en faveur d'une approche a plus
haut débit, plus moderne et rationnelle, basée sur des cibles moléculaires bien

caractérisées®.

2.1.1. Le processus de découverte de médicament

Le processus de découverte de médicament (ou drug discovery) est
classiquement découpé en trois grandes phases: la recherche amont, le

développement préclinique et le développement clinique®.

La recherche amont couvre de nombreux aspects impliqués aux premiers stades
de la recherche de médicament. Cette phase va de la conception du projet et du
choix de la cible moléculaire ou cellulaire, au développement des essais nécessaires
au criblage (décrits plus en détail dans le paragraphe suivant), au criblage de
chimiothéques permettant l'identification de molécules actives (« hit») puis a
I'optimisation de ce hit en téte de série (« lead »). Ces leads montrent une meilleure
sélectivité pour la cible, de meilleures propriétés pharmacocinétiques et une toxicité

réduite par rapport aux hits initialement identifiés.
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Le développement préclinique consiste en des études approfondies de
pharmacodynamiques, pharmacocinétiques et d’ADMETox (absorption, distribution,
métabolisme, excrétion, toxicité) des leads sélectionnés. Ces tests sont réalisés in
vitro, sur des lignées cellulaires adaptées et in vivo, chez au moins 2 especes animales
dont un non-rongeur. Ces études permettent d'évaluer les marges de sécurité du
médicament résultant de la balance entre la détermination des doses toxiques ou
induisant des effets secondaires et les doses ayant un effet thérapeutique. Cette
étape inclut également |'optimisation des processus industriels pour la production a
grande échelle, la vectorisation et la formulation du candidat médicament en vue des

étapes cliniques.

Le développement clinique consiste a tester les candidats médicaments
sélectionnés chez 'Homme selon 3 phases : la phase |, conduite chez des volontaires
sains qui vise a déterminer la tolérance et la pharmacocinétique générale, la phase |l
qui est réalisée sur un petit groupe de patients et qui est destinée a évaluer I'efficacité
de la molécule et a déterminer la dose thérapeutique optimale et enfin la phase I
réalisée sur plusieurs milliers de patients, qui confirmeront la dose thérapeutique ainsi

que la survenue d'éventuels effets indésirables.

Le succes dans les phases cliniques est trés faible, de I'ordre de 5%, il est donc
crucial d'optimiser les différentes étapes du processus. La Figure 10 reprend ces
différentes étapes, en indiquant leur durée moyenne ainsi que le nombre de

molécules impliquées.

Drug discovery Pré-clinique Eva'lxtzaon/ Phase IV

Tests invitro Testsinvivo ~ Phase |:20 - 80 volontaires sains  Jusqua |5”i"i a
lc”:"age ‘t’zm:ft‘“'es sur des Phase Il : 100 - 200 patients 2ans :h"agrr:fa':)e
solement de « hits » A “ -
Chimie - déRnition modeéles Phase Il : 1000 - 10 000 patients vigilance

o e de laboratoire
« »

1 médicament
approuvé

>10 000

composés §
par les autorités

de santé

testés

2 4 6 8 10 12 Années
1

Figure 10. Le processus de développement d'un nouveau médicament. Source :
https://www.synergielyoncancer.fr/les-enjeux/le-parcours-du-medicament
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2.1.2. Les techniques de criblage des molécules

Le processus du drug discovery repose souvent sur l'identification de composés
se liant sur une cible biologique. Plusieurs outils sont actuellement utilisés par les
acteurs de la recherche pharmaceutique: le criblage a haut débit (HTS, high
throughput screening) et les approches assistées par ordinateur ou approches
computationnelles incluant le développement de médicaments basé sur des données

structurales (SBDD, structure-based drug design).

2.1.2.1. Le High Throughput Screening appliqué aux RCPG

Apparu au milieu des années 80, le criblage a haut débit n'a cessé d'évoluer
depuis et est aujourd’hui encore une étape incontournable dans le processus de drug
discovery. Les avancées scientifiques et technologiques majeures des années 80-90
comme |"émergence de la biologie moléculaire, la cristallographie des protéines ainsi
que les avancées dans les équipements des laboratoires et en particulier les
équipements automatisés de fluidique ont largement contribué a I'essor du HTS. |l
fallait travailler plus vite, avec des colts réduits et en augmentant la qualité des
candidats médicaments pour étudier les multiples nouvelles cibles identifiées grace a

la biologie moléculaire.

Les éléments les plus critiques pour le succes d'une campagne de HTS sont le
test mis en jeu et la qualité de la banque de composés testés. Un des challenges de
I"évolution du HTS a donc été le développement de tests robustes, a haut débit et
reproductibles. C'est notamment la miniaturisation des tests qui a permis de travailler
dans des plaques 384, 1536 voire 3456 puits, réduisant ainsi le colt (moins de volume
de réactif et moins de composés a tester par puit). Un grand nombre de tests
différents sont disponibles pour les campagnes de HTS : des approches de liaisons
de ligands, des tests d'activité enzymatique, |'étude d'interactions protéine-protéine,
le transport d’ions ou de ligands ; le tout avec différents modes de détection :
fluorescence, absorbance, luminescence, radioactivité, etc*”. Quant aux banques de
composés, elles n‘ont cessé de se développer au fur et a mesure des années, avec
des banques de plus de 2 millions de composés a I'heure actuelle. De nombreuses
séries de directives et recommandations ont toutefois été éditées pour sélectionner
des composés de qualité. Le concept de la « regle des cing » publiée en 1997 par
Lipinski et al.*® a d"ailleurs été, et est toujours a I'heure actuelle, largement suivie pour
inclure dans les banques des composés pouvant un jour devenir des médicaments

actifs sur la base de critéres pharmaco-chimiques (moins de 5 donneurs et moins de
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10 accepteurs de liaisons hydrogénes, masse molaire inférieure a 500 g/mol et un

logP (coefficient de partage octanol/eau) inférieur a 5).

Aujourd’hui, la majorité des approches HTS sur les RCPG sont basées sur des
tests réalisés sur des cellules entieres exprimant le récepteur de fagon hétérologue.
lls reposent majoritairement sur la mesure de la concentration intracellulaire de
messagers secondaires comme |I"’AMPc ou le calcium, qui traduit de I'activation des

protéines G ou sur des tests indépendants des protéines G comme le recrutement de

la B-arrestine>’. Ces tests présentent toutefois des inconvénients et/ou limites comme
I'identification de faux positifs ou de faux négatifs liés a I'environnement cellulaire
complexe, pour ne citer qu'un exemple. Les tests de HTS sur récepteurs purifiés sur
les RCPG sont basés majoritairement sur le criblage de ligands marqués par des
molécules fluorescentes ou sur de la spectrométrie de masse d’affinité (Figure 11).
Les tests in vitro restent toutefois compliqués et peu exploités a I'heure actuelle a

cause de la faible stabilité des RCPG purifiés.

j:ji * .- R ] I.‘.
* ' "I“ Denature
i = i I ||||||| = x*
Florescently | Mlxture of . ¢ 1 Yy Elute *

labelled potential ""I" “l"ll ligands

ligand ligands

Figure 11. Tests in vitro de HTS sur des RCPG. (A) Essais basés sur des ligands marqués
par un fluorophore activé lors de la liaison du ligand au récepteur. (B) Essais basés sur la
spectrométrie de masse par affinité, ou le RCPG est incubé avec des centaines de ligands
potentiels. Les ligands liés au RCPG vont étre élués et analysés par chromatographie
liquide/spectrométrie de masse. Figure modifiée d'apres>’.

En plus des stratégies traditionnelles cellulaires ou in vitro, les études in silico se
développent de plus en plus. Ces approches de docking permettent de cribler
virtuellement des millions de composés — 150 millions de molécules ont par exemple
récemment été testées virtuellement sur le récepteur a la mélatonine 1 (MT1)*? — pour
en sélectionner un plus petit nombre pour les tests cellulaires ou biochimiques. Ces
approches virtuelles sont toutefois plus efficaces lorsque la structure du RCPG est
connue, ce qui est un facteur limitant étant donné que la structure de seuls 113
récepteurs a été résolue a ce jour (https://gpcrdb.org/structure/statistics, consulté la
derniére fois le 12/11/2021).
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I Strategies for the implementation of multiple assay platforms in ion channel drug discovery

f ¥
Nonelectrophysiological assays Automated EP

« High-throughput (96/384/1536 well) » Medium throughput (16/48/96/384 well)
« HTS and hit-to-lead optimization » HTS and hit-to-lead optimization
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« Intermediate content and quality
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Figure 12. Les différentes méthodes employées pour la découverte de médicaments
ciblant des canaux ioniques>:.
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Figure 13. Comparaison entre le patch clamp conventionnel et le patch clamp
automatisé. (A) Schéma de I'enregistrement de patch clamp manuel (gauche). Une cellule
est enregistrée a I'aide d'une pipette de verre. Les composés a tester peuvent étre appliqués
dans la solution extracellulaire (en bleu). A droite : réponse représentative du canal Nay1.7
soumis a une impulsion de tension. (B) Schéma d'une expérience d'électrophysiologie
automatisée basée sur un réseau planaire. Un signal est enregistré sur une cellule unique a
travers un micropore dans un seul puit (a gauche) d'une puce contenant 384 puits (a droite).
Les solutions extracellulaires (bleu) et intracellulaires (vert) peuvent étre changées par
perfusion. Figure modifiée d'apres®
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2.1.2.2. High Throughput Screening, les défis liés aux canaux ioniques

Si les criblages a haut débit sont bien établis pour les RCPG, ils sont moins
développés pour les canaux ioniques. La méthode traditionnelle d'étude des canaux
est basée sur une approche manuelle dite de « patch clamp », une procédure
d’électrophysiologie développée dans les années 70 par Neher et Sakmann®> qui
permet de mesurer le courant a travers un canal unique. Cette méthode est toutefois
techniquement trés pointue, couteuse et longue, ce qui la rend incompatible avec
des approches haut-débit. Deux stratégies majeures ont donc émergé pour cribler les
canaux a plus haut débit (Figure 12). La premiére est basée sur des approches non-
électrophysiologiques. Elles incluent les techniques mesurant les flux d'ions
radioactifs puis remplacés au profit d'ions non radioactifs comme le rubidium Rb* afin
de mesurer l'activité des canaux potassiques ou le lithium Li* pour les canaux
sodiques. On trouve également les tests basés sur la spectroscopie de fluorescence
ou le transfert d'énergie (FRET) avec des colorants sensibles au potentiel de la
membrane ou encore par spectroscopie d'absorption atomique. Plus de détails sur
ces différentes techniques sont disponibles dans la revue de Terstappen et
collegues®. La deuxiéme stratégie est basée sur des approches
électrophysiologiques automatisées et non plus manuelles. Les méthodes
d'enregistrement basées sur des matrices planaires utilisant des enregistrements
paralléles en format plaque ou puce (Figure 13), en combinaison avec des instruments
permettant une automatisation complete, ont considérablement augmenté le débit
et de multiples essais validés sur ces systémes ont été intégrés avec succes dans les
programmes de découverte de médicaments pour les canaux ioniques. Le patch
clamp automatisé est largement appliqué aux tests de sécurité des médicaments
contre les canaux hERG notamment. Ces techniques automatisées et
I'instrumentation associée sont décrites dans diverses revues® . Malgré les progres
technologiques, les plateformes actuelles de patch clamp automatisé n'offrent pas un
débit suffisant pour étre utilisées comme outils primaires pour le criblage a tres haut
débit de millions de composés, I'ordre de grandeur du nombre de composés testé
se situant plutot autour de la centaine de milliers de composés (200 000 dans une
étude ciblant les canaux Kv2*), et le co(t des instruments et des consommables reste
élevé>*. Le patch clamp automatisé est donc souvent utilisé en seconde intention,

pour confirmer les hits trouvés lors des criblages primaires (Figure 12).
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2.1.2.3. Les méthodes computationnelles

Afin d'accélérer le processus de découverte de médicaments, de réduire les
colts du HTS et le taux d'échecs, les techniques assistées par ordinateur (CADD,
computer-aided drug discovery) ont intéressé les chercheurs et les entreprises
pharmaceutiques. Au cours des dernieres décennies, les technologies de
détermination de structure comme la cristallographie aux rayons-X, la résonnance
magnétique nucléaire (RMN) et plus récemment la cryo-microscopie électronique
(cryo-EM) ont progressé rapidement, ouvrant ainsi une nouvelle ére dans la
conception de médicament basée sur la structure (SBDD). C'est dans les années 90
que le développement de composés basés sur la structure (structure-based) est
apparu avec les projets portant sur le virus d'immunodéficience humaine®®. Cette
technologie n'a pu étre appliquée aux protéines membranaires que plus tard, avec la
résolution des premieres structures, en 1998 pour la premiére structure d'un canal

ionique- le canal bactérien potassique KcsA>*- et pour les RCPG en 2000 pour celle

de la rhodopsine®, puis en 2007 pour celle du récepteur B2 adrénergique (B2AR) *'.

Malgré les récentes avancées technologiques majeures en matiere de
cristallisation et de cryo-EM, seule une petite fraction de structures est disponible a
ce jour (par exemple 113 structures® seulement sont résolues sur les 800 RCPG
humains identifiés). Deux méthodes computationnelles majeures sont utilisées pour
la modélisation des protéines et la prédiction de structure : la modélisation par
homologie et la modélisation de novo. La modélisation comparative (également
connue sous le nom de modélisation homologique) découle de I'observation selon
laquelle les protéines ayant des séquences d'acides aminés similaires ont tendance a
adopter des structures 3D similaires. Par conséquent, il est possible de prédire la
structure 3D d'une protéine en se basant uniquement sur sa séquence d'acides
aminés et les structures 3D de protéines ayant des séquences similaires®?. Il faut
toutefois que l'identité de séquence soit d’au moins 30 % a 40 % pour que
I'alignement soit fiable et la structure prédite de la protéine modele correcte. Les
exemples de structures 3D élucidées grace a la modélisation comparative sont
nombreux. Les plus souvent cités sont les modéles des canaux TRPV1¢* ou TRPM8#
ou le canal Kv1.5¢*, tous établis sur la base de la structure du canal potassique Kv1.2.

Cette méthode est également largement utilisée pour les RCPG®**’. L'approche de

® https://gpcrdb.org/structure/statistics, consulté pour la derniére fois le 12 décembre 2021
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novo consiste quant a elle a créer de nouveaux composés chimiques se liant au site

de liaison de la cible avec de bonnes affinités.

L'une des applications les plus courantes du SBDD pour lidentification
d’interactions protéine-ligand est le docking moléculaire, qui prédit les conformations
les plus probables d'un complexe ligand/cible. De méme, I'identification de nouveaux
ligands se base beaucoup sur le criblage virtuel reposant sur la structure (structure-
based virtual screening) qui implique le docking de larges banques de composés
virtuels sur des structures résolues ou des modeles d’'homologie®. A l'inverse, il est
également possible de se baser sur la structure du ligand et non sur celle de la
protéine ciblée. Cette stratégie est couramment appliquée dans la découverte de
médicaments, notamment lorsque les informations structurales sur la protéine cible
ne sont pas disponibles. Le criblage virtuel basé sur le ligand (ligand-based virtual
screening) utilise les informations sur les composés précédemment connus pour étre
actifs, en générant des pharmacophores, une compilation 3D de caractéristiques
fonctionnelles ou structurelles associées a des activités biologiques®®. De méme, les
méthodes basées sur le ligand incluent également la relation quantitative structure-
activité (quantitative structure activity relationship) qui est une méthode de
modélisation informatique ou mathématique visant a révéler les relations entre les
activités biologiques et les propriétés structurales des composés chimiques. Enfin les
approches in silico comprennent également la modélisation moléculaire (molecular
dynamics, MD) qui est une technique permettant d'inclure la flexibilité des protéines,
ce qui est particulierement intéressant pour les RCPG et les canaux ioniques qui sont
connus pour étre hautement dynamiques. L'application des simulations de MD reste

toutefois limitée dans la plupart des programmes de découverte de médicaments®.

Etant donné la prévalence des structures cristallines de RCPG parmi I'ensemble
des classes de protéines membranaires, le SBDD est le plus avancé pour cette famille.
Le relugolix est d'ailleurs le premier médicament oral, utilisé contre le cancer de la
prostate, ayant été inventé sur la base d'études de docking en utilisant un modeéle
d’homologie du récepteur de I'hormone de libération des gonadotrophines (GnRH)
basé sur la structure de la rhodoposine®. Pour les canaux ioniques et les
transporteurs, le nombre de structures résolues plus faible limite le SBDD a la
modélisation homologique. Avec I'essor des études structurales des derniéres années
(voir plus bas), il est toutefois raisonnable de penser que de nombreux médicaments

dérivés du SBDD vont arriver en clinique dans les prochaines années.
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2.1.2.4. Fragment-based drug design

Mélant HTS et méthodes in silico, le drug design basé sur les fragments (FBDD,
fragment-based drug discovery) est apparu plus récemment comme une méthode
intéressante pour identifier de nouveaux hits de petites tailles (typiquement entre 100
et 250 Da) permettant de couvrir plus efficacement 'espace chimique. Les grosses
molécules comprennent de nombreux groupes fonctionnels qui peuvent présenter
plus d'obstacles stériques ou de conflits électrostatiques dans le site de liaison que le
fragment (Figure 14). Le FBDD pourrait donc atteindre des taux de réussite plus élevés

que ceux du HTS conventionnel™.

Figure 14. Comparaison
entre HTS et FBDD. Les
fragments (en vert) couvrent
plus efficacement I'espace
chimique que le ligand (en

rouge)’".

La mise en ceuvre de cette approche de FBDD repose sur des méthodes de
criblage adaptées a l'identification de ces fragments de faible affinité (uM-mM). Les
molécules identifiées, ne présentant qu'une tres faible affinité pour la cible
thérapeutique, sont ensuite liées entre elles ou modifiées pour aboutir a des
candidats médicaments, plus complexes et de meilleure activité et spécificité. Le
FBDD est également fréquemment utilisé en combinaison avec le SBDD°. Une
bibliothéeque de fragments peut étre congue et criblée a l'aide d'une approche

virtuelle, généralement le docking moléculaire.

Si cette approche est bien établie pour les protéines solubles et en particulier
pour les protéases et les kinases - le vemurafenib, le premier médicament dérivé d'un
fragment a d'ailleurs été approuvé en 2012 pour le traitement du mélanome’? — elle
est nettement moins développée a I'heure actuelle pour les protéines membranaires
mais cette technique se développe rapidement’. Une méthode miniaturisée basée
sur le screening de composés de basse affinité a d'ailleurs récemment été
développée, en utilisant le récepteur a I'adénosine A,A, un RCPG, pour faire la preuve

de concept’.
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2.2. L'étude des PMs par des méthodes biophysiques

Les techniques biophysiques constituent des éléments clés dans I'étude des
protéines et notamment des protéines membranaires, ainsi que dans les processus
de développement de médicaments pour de nombreuses entreprises
pharmaceutiques et laboratoires académiques’. Nous ne traiterons ici que d'un petit
nombre de techniques, celles généralement les plus utilisées pour 'étude de PMs.
Ces techniques sont souvent complémentaires et permettent d’obtenir des jeux de

données les plus compléetes possibles en fonction des besoins du chercheur.

L'une des méthodes la plus fréquemment utilisées pour évaluer I'homogénéité,
la stabilité, la taille et I'état d’oligomérisation d'une protéine en solution est la
diffusion dynamique de la lumiére (DLS, dynamic light scattering). Récemment, une
technique de DLS a haut débit a été développée, basée sur I'utilisation de plaques
multi-puits permettant de cribler de nombreuses conditions de détergents en
paralléle pour évaluer la stabilité de la protéine dans le temps’®. La DLS a également
été utilisée pour cribler et optimiser les conditions de reconstitution en nanodisques

du récepteur A,A”.

L'état de repliement d'une protéine peut étre évalué par dichroisme circulaire

(CD). Le spectre de CD va en effet donner des informations sur la structure secondaire
des protéines, c'est a dire la composition en hélices a, feuillets B et repliements

aléatoires. Le CD utilisant le rayonnement synchrotron (SRCD, synchrotron radiation
circular dichroism) a par exemple permis de déterminer la structure compléte, résidu

par résidu, du domaine C-terminal du canal sodique bactérien NaChBac’®.

La thermostabilité d'une protéine peut étre mesurée par la méthode du thermal
shift assay (TSA), aussi connue sous le nom de differential scanning fluorimetry (DSF).
Les protéines sont soumises a des températures croissantes, et leur dénaturation est
suivie a |'aide d'une sonde fluorescente, ce qui permet de mesurer leur point de fusion
(Tm), c’est-a-dire la température pour laquelle la moitié de la protéine est dénaturée.
Les principales applications de cette technique sont d’améliorer les conditions de
purification en testant la stabilité selon le tampon, le pH, la quantité de sel, le
détergent, etc (comme Alexandrov et collegues l'ont fait pour I'apeline’”® par
exemple), de comparer la stabilité de protéines mutantes (cette stratégie est trés

utilisée pour stabiliser les RCPG, comme cela a été fait pour le récepteur A2A%8, le

récepteur B1-adrénergique (B1AR)® ou le récepteur a la neurotensine NTS1%), de
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mesurer |'interaction avec des substrats, mais aussi la recherche et le criblage de
ligands®. Cette méthode peut en effet étre utilisée pour estimer |'affinité (Kp) du

ligand pour la protéine selon I'augmentation du Tm.

La composition, la masse moléculaire, la taille et I'état oligomérique d'une
protéine membranaire en solution peuvent également étre déterminées par la
technique de chromatographie d’exclusion stérique couplée a la diffusion multi-
angles de la lumiére (SEC-MALS, size exclusion chromatography multi-angle light
scattering). Dans cette méthode, la SEC sert a séparer les molécules selon leur volume
hydrodynamique. Toutefois, contrairement a la SEC classique, le poids moléculaire
n‘est pas déterminé selon le temps de rétention mais grace au systtme MALS. |l
implique un module de diffraction de la lumiére et des détecteurs de l'indice de
réfraction qui vont analyser les signaux regus pour quantifier les propriétés physiques
de la protéine. Une étude en SEC-MALS sur la protéine A;A a révélé que cette
protéine forme différentes especes d'oligomeéres®, mais relativement peu d’autres
exemples sont disponibles sur des protéines membranaires eucaryotes par rapport

aux protéines membranaires procaryotes®¢#’.

Bien que I'ensemble de ces techniques puisse théoriquement s'appliquer a
n‘importe quelle protéine membranaire, elles sont nettement plus utilisées dans
I'étude des RCPG que dans celle des canaux ioniques. Ces derniers sont plutot
étudiés par électrophysiologie (voir le paragraphe «2.1.2.2. High Throughput

Screening, les défis liés aux canaux ioniques »).
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2.3. Les études structurales

Le travail a partir de protéines purifiées permet d'obtenir de cruciales
informations en termes de données structurales. Ces études ouvrent en effet la porte
a une meilleure compréhension des mécanismes moléculaires et cellulaires dans
lesquels les protéines membranaires sont impliquées. Ce type d'études, tout comme
les études par des méthodes biophysiques, était beaucoup plus ardu que pour les
protéines solubles du fait de nombreux facteurs comme la complexité liée a la nature
hydrophobes de ces protéines, leur faible taux d’expression dans les tissus natifs ou
dans les systemes hétérologues de production ou la difficulté pour les extraire et
surtout leur manque de stabilité en solution. Toutefois, de nombreuses stratégies et

avancées technologiques se sont développées pour faire face a ces difficultés.

Les premiéres structures obtenues ont été celles pour lesquelles les protéines
sont naturellement abondantes : le canal potassique KcsA de Streptomyces lividans
en 1998%, I'ATP synthase purifiée en 1999 des membranes de mitochondries de
Saccharomyces cerevisiae®, |la rhodopsine bovine purifié¢e en 2000 des yeux de
bovins®® ou encore I'ATPase calcique extraite des muscles des pattes arrieres du lapin
en 2000%. La large majorité des protéines membranaires sont toutefois exprimées a
de trés faibles concentrations dans les tissus. Il a donc été nécessaire de développer
des systémes de production robustes et compatibles avec I'expression de protéines
membranaires de mammiferes qui ont permis la production de protéines
recombinantes a des rendements compatibles avec les études structurales. Les
systemes qui utilisent des cellules d'insectes comme Spodoptera frugiperda (519,
Sf21) ou Trichoplusia ni (Hi5) sont particulierement utilisés et ont par exemple permis
la détermination de 85% des structures résolues de RCPG™. Les avantages et
inconvénients des divers systemes de production incluant les bactéries, les levures,
les cellules de mammiferes, les cellules d'insecte ou encore les systémes acellulaires

sont décrits dans diverses revues récentes®’ 901,

2.3.1. La cristallographie et les méthodes pour stabiliser les protéines

La méthode de choix pour la résolution de structures de protéines membranaires
a longtemps été la cristallographie aux rayons X. Cette technique a été utilisée dans
la résolution d'environ 80 % des structures disponibles. Ce succés peut s'expliquer
par deux raisons principales : un développement technologique d’'une nouvelle forme

de cristallographie, la cristallographie en phase lipidique cubique (LCP, Lipidic Cubic
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Phase) et le développement de différentes stratégies qui ont permis de faciliter

I'obtention de cristaux en stabilisant les protéines membranaires.

2.3.1.1. La cristallographie par diffusion de vapeur et la LCP

La méthode traditionnelle la plus répandue pour cristalliser des protéines est la
diffusion de vapeur. A I'heure actuelle, cette technique a été utilisée dans plus de
60% des structures de protéines membranaires, principalement par les techniques de
gouttes suspendues (hanging drop) ou gouttes assises (sitting drop) ou la
cristallisation est médiée par |'équilibre de la vapeur entre la goutte de protéine et la
solution de cristallisation. Pour essayer de pallier aux problemes liés a la cristallisation
de protéines membranaires solubilisées par des détergents et en particulier pour
augmenter la stabilité de la protéine et donc le processus de formation des cristaux,
la LCP ou cristallisation in meso a été développée en 1996 par Landau et
Rosenbusch?. Cette méthode est basée sur la reconstitution de la protéine
membranaire dans une bicouche lipidique continue (souvent constituée de
monoacylglycérols) avant la cristallisation. La LCP a permis d’obtenir la structure a
haute résolution de nombreux RCPG comme le B2AR%, le récepteur AA™, le
récepteur CXCR47, ou le récepteur a |'histamine H1%. Bien qu’elle soit utilisée
majoritairement pour I'étude des RCPG, cette technique se répand peu a peu pour
I'étude d'autres protéines membranaires comme les transporteurs (comme le
transporteur du glucose GLUT3’) mais reste peu utilisée pour I'étude des canaux

ioniques.

2.3.1.2. Les différentes méthodes pour stabiliser les protéines

En paralléle du développement de la LCP, différentes méthodes ont été
employées pour stabiliser les protéines membranaires en solution et ainsi faciliter leur
utilisation pour déterminer leur structure. L'une des solutions qui a démontré son
efficacité est l'insertion de séquences stabilisatrices comme le lysozyme T4 (T4L) ou
I'apocytochrome bss:RIL (BRIL). L'insertion du T4L a la place de la boucle intracellulaire
3 a d'ailleurs permis la résolution en 2007 de |'une des premieres structures d'un
GPCR non-rhodopsinien, le B2AR humain? puis de nombreuses autres structures
depuis?™®'%. Si cette stratégie est surtout utilisée pour la famille des RCPG, l'insertion
de la séquence BRIL a trés récemment été utile pour la résolution de la structure de
quelques canaux ioniques comme le nAChR et le canal KcsA'" ou le canal aux ions
chlorures du poisson-globe TMEM206'%2. En 2007, le laboratoire de Christopher Tate
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met au point une technologie stabilisatrice appliquée aux RCPG, StaR™ (Stabilised
Receptor)?''%, basée sur la mutation de quelques AAs dans la séquence de la protéine
qui améliore considérablement sa thermostabilité (le Tm) sans changer ses propriétés
de fixation de ligands des récepteurs. Cette technologie a été a I'origine de la création
de la société Heptares Therapeutics (maintenant Sosei Heptares) et a connu un succes
majeur ayant permis la résolution de la structure de nombreux récepteurs. A I'heure
actuelle, on estime qu’un tiers de toutes les structures de RCPG publiées sont issues
de mutants thermostabilisés’. De méme, I'une des possibilités pour stabiliser une
protéine est |'ajout d'un ligand agoniste ou antagoniste. Cette stratégie est beaucoup
utilisée, aussi bien pour I'obtention de cristaux de RCPG'®* que de canaux ioniques,
en particulier pour les canaux ligands-dépendants'®'%”. Enfin |'ajout d’anticorps ou de

fragments d'anticorps comme agents stabilisants se développe de plus en plus'®.

Si la cristallographie est depuis des années la méthode de référence pour la
détermination de structures de protéines membranaires, elle est en phase d'étre

détronée au profit de la cryo-EM.

2.3.2. L’essor de la cryo-microscopie électronique

Depuis 2013, la cryo-EM connait un essor sans précédent grace a l'invention du
détecteur a électron direct et a des avancées dans le traitement des images'®. Avant
ces avancées technologiques, la cryo-EM péchait par des niveaux de résolution assez
faibles, peinant a passer sous la dizaine d’Angstrom, ne permettant donc pas d'études
de SBDD. Ces derniéres années marquent donc un tournant majeur dans la biologie
structurale, avec un nombre de structures résolues par cryo-EM qui augmente de
fagon exponentielle (Figure 15). En 2020, le nombre de structures uniques résolues
par cryo-EM représentait d'ailleurs les trois-quarts des structures des protéines
membranaires, avec également une forte augmentation du nombre de structures de
protéines de mammiferes''®. Ces récents progrés ont particulierement profité aux
canaux ioniques dont le nombre de structures uniques a explosé (plus de 100
structures). Un des exemples les plus frappants concerne la famille des TRP dont la
quasi-totalité des structures a été obtenue par cryo-EM (Figure 16), dont de

nombreuses structures récentes'!

. La structure du récepteur TRPV1 est d'ailleurs la
premiere structure de protéine membranaire a avoir été résolue a basse résolution en
2013213 De méme, les transporteurs et les RCPG font partie des familles de

protéines dont le nombre de structures résolues par cryo-EM est le plus important
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avec notamment plus de 45 structures uniques de RCPG en moins de 5 ans®. Cette
expansion majeure dans le domaine est d'autant plus importante qu'il s'agit de
structures de complexes de signalisation associant ligands agonistes, récepteurs et
protéines G, donnant acces aux détails moléculaires des interfaces entre les différents
partenaires, et permettant également d'affiner la compréhension des mécanismes

d’activation des protéines G hétérotrimériques'™.

La cryo-EM présente toutefois deux limites principales : la taille des protéines
analysables et les niveaux de résolution. Il est effectivement admis que le seuil limite
pour résoudre une structure de protéine membranaire est aujourd’hui d’environ 100
kDa sans quoi les images deviennent trop difficiles a aligner. De méme, les niveaux
de résolution sont moins bons que ceux obtenus par cristallographie : en 2019 la
moyenne des structures uniques de protéines membranaires obtenue par cryo-EM
était de 3,6 + 0,7 A contre 2,7 + 0,5 A par cristallographie'. Les développements
technologiques sont toutefois perpétuels et ont d'ailleurs récemment permis de
descendre sous la barre symbolique des 2 A pour une protéine membranaire
humaine- le récepteur B3 GABAA'é- et on espére pouvoir rapidement atteindre la

taille limite de 40 kDa, comme pour les protéines solubles.

2.3.3. Les autres techniques

Nous ne pouvons pas parler de résolution de structures 3D sans évoquer la
résonnance magnétique nucléaire (RMN). La spectroscopie RMN est un outil puissant
pour étudier les interactions atome-atome et, contrairement a la cristallographie qui
ne donne qu’une image figée, elle peut apporter des informations sur la dynamique
des protéines en enregistrant en temps réel les spectres d'échantillons, ainsi que sur
la dynamique des interactions protéine-protéine et protéine-ligand. La RMN a
toutefois été assez peu utilisée pour la résolution de structures de protéines
membranes eucaryotes en raison de plusieurs contraintes. D'une part, la RMN n’est
adaptée qu’a |'étude de protéines de petite taille, au maximum 100 kDa. De méme,
les temps de mesure sont longs et a des températures relativement hautes ce qui
déstabilise trés rapidement les protéines. De plus, il faut produire des protéines
recombinantes uniformément marquées, typiquement au *C et/ou au "N, ce qui
signifie donc de les produire dans un milieu minimum supplémenté en atomes lourds.

Cela est possible dans les systémes bactériens, mais beaucoup moins adapté aux

cwww.GPCRdb.org
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systéemes de productions eucaryotes comme les cellules d'insectes ou les cellules de
mammiféres. Toutefois, cette stratégie de production en milieu minimum marqué est
possible chez la levure, et elle a été utilisée avec succés au laboratoire pour produire
une protéine membranaire humaine, le transporteur de cuivre CTR1 (Publication 2).
De méme, la RMN en phase solide et particulierement la RMN a l'angle
magique (MAS-NMR, Magic Angle Spinning NMR) se développe pour I'étude de
protéines membranaires'’'"® et notamment de protéines eucaryotes (voire la
Publication 2), en particulier gréace a la miniaturisation des rotors qui permettent a la
fois de consommer moins de matériel biologique et d’augmenter les vitesses de

rotations et donc les niveaux de résolution.

De plus, I'étude de la structure, de la dynamique et des interactions des
protéines membranaires peut également étre réalisée par spectrométrie de masse
(MS). En particulier, la MS native (qui est basée sur l'utilisation de conditions
d'ionisation non dénaturante) a récemment émergé comme une approche
intéressante et complémentaire aux méthodes biophysiques et structurales
classiques. Cette technique présente de nombreux avantages : elle est compatible
pour I'étude de protéines de petite taille comme de gros complexes multiprotéiques,
elle ne requiert que quelques microlitres de protéines a des concentrations de |'ordre
de la dizaine de nanomolaires et elle ne nécessite pas de marquage des protéines ni
de tags particuliers, permettant I'étude de protéines dans des conditions les plus

natives possibles®*.

Enfin, le développement de I'intelligence artificielle et de logiciels de prédiction
de structures comme AlphaFold développé par la société Deepmind'’®, pourraient
révolutionner le milieu de la biologie structurale et notamment des protéines

membranaires.

A T'heure actuelle, on dispose de 1371 structures uniques de protéines
membranaires'®. Bien que ce chiffre soit en expansion, il reste toutefois assez faible
au vu du nombre de protéines totales de la PDB (environ 2%) et la structure de
nombreuses protéines membranaires reste encore non-résolue. Cela illustre bien le
fait que, malgré les récents progrés technologiques, des études et des
développements méthodologiques sont encore nécessaires pour faciliter la

manipulation de protéines membranaires en solution.
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2.4. Les études d'interaction

Aprés avoir identifié des partenaires d'interactions, protéines ou ligands, lors
des tests de HTS par exemple, il est idéalement indispensable de réaliser des études
plus approfondies afin de déterminer les différents paramétres de liaison. Différentes
techniques nécessitant de travailler sur des objets purifiés peuvent étre employées,
chacune apportant des informations différentes et/ou complémentaires. Loin d'étre
exhaustives, nous ne traiterons ici que des techniques les plus fréquemment

employées.

Des tests de fixation de ligands radioactifs (ou radioligands) constituent une
technique trés utilisée pour étudier les interactions protéine-ligand gréce a sa grande
sensibilité. Différents formats de tests permettent d'évaluer différents paramétres
comme l'affinité d'un ligand ou sa nature agoniste ou antagoniste (en particulier pour
les RCPG). Pour les canaux, les flux d'ions radioactifs comme le #Rb étaient trés
utilisés dans les années 2000 pour évaluer les capacités de transport ionique des
canaux. De méme la technique de SPA (Scintillation Proximity Assay) est une
technique polyvalente, basée sur la proximité entre un récepteur couplé a une bille
et un radioligand qui va permettre la scintillation de la bille lorsqu’il va venir se fixer a
son récepteur. Au laboratoire, cette technique a été utilisée pour évaluer la stabilité
de nanodisques lipides de la protéine AA a température ambiante’. Toutefois, les
contraintes liées a la manipulation d’éléments radioactifs (habilitation, gestion des
déchets, colts importants) font que cette méthode est de moins en moins utilisée et
est de plus en plus remplacée par d'autres techniques. Par ailleurs, elle nécessite de
disposer de ligands radioactifs ce qui la limite a un petit nombre de protéines

membranaires.

Les techniques basées sur la fluorescence sont I'une des alternatives les plus
fréquemment employées pour étudier les protéines membranaires. Anisotropie de
fluorescence, mesure de la fluorescence intrinseque basée sur les AAs aromatiques,
utilisation de fluorophores extrinséques (sonde Bimane ou NBD), spectroscopie REES

(red edge excitation shift), etc, ces techniques sont nombreuses'

mais la plus
répandue est certainement le FRET (Férster Resonance Energy Transfer) (ou son
alternative le BRET (Bioluminescence Resonance Energy Transfer), employée aussi
bien pour I'étude des RCPG que des canaux ioniques. Cette technique est basée sur
le transfert d’énergie entre deux partenaires, un donneur qui, une fois excité et s'il y

a interaction entre les partenaires, va transmettre son énergie a un accepteur qui va
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émettre de la fluorescence. Bien que ces techniques soient principalement utilisées
dans des systéemes cellulaires pour suivre les interactions intra- et intermoléculaires,
I'oligomérisation des protéines, les changements conformationnels ou encore la
dynamique de l'interaction protéine-protéine, elles peuvent aussi étre employées in
vitro. Dans le cas des RCPG, les applications du FRET/BRET sont variées. Cette
technique est utilisée aussi bien pour identifier des ligands, étudier les changements
de conformation liés a leur liaison, ainsi que la cinétique de liaison, que pour étudier
I'interaction entre RCPG/protéines G, RCPG/arrestine ou les protéines G individuelles
ou encore pour étudier la dimérisation des récepteurs'?'2. Le FRET est également
largement utilisé pour |'étude des canaux ioniques notamment pour |'étude de la
stoechiométrie et la composition des complexes protéiques. De plus, I'activation des
canaux ioniques implique toujours des changements conformationnels complexes et
le FRET s’est avéré étre un outil tres utile qui a permis d'obtenir des informations
mécanistiques sur de nombreux canaux comme les récepteurs NMDA, les canaux
Kv2.1, Cav1.2, P2X, etc''®. Le FRET/BRET a aussi été employé sur des protéines

purifiées reconstituées en liposomes (cf paragraphe «3.2.1. Les vésicules

lipidiques »).
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Figure 17. Principe de la SPR. La fixation d'un analyte (plus communément appelé ligand
pour les biochimistes) sur la protéine immobilisée va induire un changement de masse
mesuré par une différence dans I'angle de réfraction de la lumiére'?.
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La résonnance plasmonique de surface (SPR) est une technique ne nécessitant
pas de marquage qui permet de mesurer en temps réel les constantes de liaisons d'un
couple ligand/récepteur, mais apporte aussi des informations sur la cinétique de la
réaction avec les constantes d'association et de dissociation. Cette technique
nécessite I'immobilisation d'un des deux partenaires sur une puce tandis que |'autre
partenaire est injecté a travers le systeme microfluidique. La liaison va étre détectée
a I'aide d'une méthode optique qui mesure les changements d'indice de réfraction a
la surface du capteur lié au changement de masse induit par la liaison du deuxieme

partenaire (Figure 17).

Au vu de ses avantages indéniables — sa sensibilité, la faible quantité de matériel
purifié requise - cette technique est beaucoup utilisée pour étudier les interactions
protéine-ligand, aussi bien pour les RCPG que pour les canaux ioniques. A titre
d'exemples, la SPR a été utilisée pour cribler des ligands de CCR5 et CXCR4 et
déterminer leur cinétique et stoechiométrie d'interaction'’, pour tester des RCPG

thermostabilisés comme le récepteur A;A ou le B:AR™, mais aussi pour étudier

I'interaction entre la S-nitroso-L-cystéine et les canaux potassiques Ky'#?, pour

identifier le motif responsable de la liaison de certaines toxines de scorpion aux

canaux calcique Nay'°

, ou encore pour étudier la liaison de dinucléotides cycliques
sur les canaux HCN4 et HCN2™'. D'autres exemples sont décrits dans la revue de

Patching'®.

La SPR est toutefois une technique parfois compliquée a mettre en ceuvre pour
I'étude des protéines membranaires car de nombreux ligands sont des petites
molécules dont le poids moléculaire est inférieur a 1000 Da. Les changements de
masse a la surface de la puce et donc d’angle de réfraction sont infimes et parfois tres

difficiles a détecter et/ou a analyser.

L'obtention d’informations sur le site d'interaction protéine-protéine ou
protéine-ligand est possible par spectrométrie de masse par échange
hydrogéne/deutérium (HDX-MS). Cette technique est basée sur |'échange de protons
d'une protéine avec les atomes de deutérium de la solution deutérée dans laquelle
celle-ci est placée. Le taux d’échange hydrogéne-deutérium traduit donc |'exposition
au solvant de la protéine et permet ainsi de déduire précisément une conformation
donnée d'une protéine ainsi que le site de liaison d'un ligand. Cette technique a été
employée avec succés pour |'étude d'une protéine membranaire en 2011 pour la

premiere fois, avec |'étude des changements de conformation du B.AR selon
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différents ligands'®. Depuis elle est de plus en plus utilisée, pour |'étude d'autres

RCPG comme le récepteur au glucagon'™® par exemple, mais aussi de divers

134 129

transporteurs'** ou canaux ioniques

Toutes les techniques décrites ci-dessus, mais aussi les autres non détaillées
comme la SAXS, qui donne des informations sur la taille et la forme des
macromolécules et sur les changements conformationnels a grande échelle liés a la
liaison d'un ligand, ou encore I'ITC, qui permet de mettre en évidence une interaction
et d'en donner les parametres thermodynamiques, permettent donc d’obtenir des
informations robustes et intéressantes sur les protéines et leur partenaire d'interaction
(ligand, petite molécule, protéine). Un des points critiques pour obtenir des données
exploitables repose toutefois sur la stabilité et I'intégrité de la protéine membranaire
étudiée durant le temps de I'analyse. Ce paramétre est d'ailleurs |'un des challenges
actuels lié a I'étude des PMs. La partie suivante traite des différentes stratégies
développées par les chercheurs pour faciliter I'étude des protéines membranaires,

leur compréhension et in fine la découverte de nouveaux médicaments.

Bl Maltoside
50— Em Maltoside + CHS
= Glucoside
= I GDN/Digitonin
§ Neopentyl Glycol
o 3 Neopentyl Glycol + CHS
s 3 Amine Oxide
> Bl Poly Oxyethylene
Bl Sulfobetaine
Bl Fos-Choline
= CYMAL = Lipid
Bl Triton Bl Other

Figure 18. Tendances dans |'utilisation des détergents pour la solubilisation de PMs
dont les structures uniques ont été résolues entre 2010 et 2019. Figure modifiée
d'apres'™.



3. Les systemes mimétiques de membranes pour I'étude des PMs

Afin de pouvoir étre étudiées en solution, les protéines membranaires ont
besoin d'étre extraites de leur membrane native tout en étant maintenues en solution
par des systémes mimétiques de membranes. Nous présentons ici les systemes les

plus répandus.
3.1. Les détergents comme composés mimétiques de la membrane

3.1.1. Une méthode plébiscitée depuis de nombreuses années ...

Afin de solubiliser une protéine membranaire intégrale, la bicouche lipidique
doit étre rompue, classiquement gréace a l'action de détergents- Les détergents sont
des molécules amphipatiques composées d'une téte hydrophile et d'une queue
hydrophobe formant des micelles dans une solution aqueuse au-dela d'une certaine
concentration définie comme la concentration micellaire critique (CMC). Différentes
catégories de détergents ont été développées au fil des années. La sélection d'un
détergent en particulier dépend de nombreux parametres dont les propriétés de la
protéine d'intérét, le systeme d’expression, la nature des lipides environnant et

I'organisation de la membrane ou encore les analyses prévues.

Un certain nombre de détergents dont la structure et les propriétés physico-
chimiques varient ont été développés. Ils constituent trois familles majoritaires : les

détergents ioniques, les détergents non ioniques et les détergents zwiterrioniques'.

Les détergents ioniques contiennent une téte avec une charge qui peut étre
cationique ou anionique, comme pour le sodium dodécylsulfate (SDS). S'ils sont
extrémement efficaces pour la solubilisation des protéines membranaires, ils sont
presque toujours dénaturants. Les détergents non ioniques contiennent une téte
polaire non chargée constituée de groupes polyoxyéthylene ou sucre. Ces détergents
doux, qui ont moins tendance a dénaturer les protéines, sont les plus utilisés pour
extraire les PMs. Les détergents zwiterrioniques, dont font partis le CHAPS et le
CHAPSO, portent une charge positive et une charge négative et combinent les
propriétés des détergents ioniques et non-ioniques mais sont généralement plus

dénaturants que ces derniers'.

Parmi tous les systémes mimétiques de membranes, les détergents sont de loin

les molécules les plus utilisées, notamment pour les études structurales des protéines

(Figure 18). Ce sont les maltosides, et en particulier le N-Dodecyl-B-D-Maltoside
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(DDM), qui ont été les plus plébiscités ces 10 derniéres années pour solubiliser des
protéines membranaires, dans prés de 60 % des cas, et notamment largement dans
le cadre des études par cristallographie aux rayons-X'"". Pour les études par RMN en
solution, ce sont les phosphocholines qui ont été largement plebsitées'*. Enfin, pour
les études par cryo-EM, c’est la digitonine qui est le détergent le plus populaire, suivie
par le DDM'. || est également intéressant de noter que, pour l'extraction de
protéines membranaires eucaryotes en particulier, l'utilisation de maltosides est
souvent combinée avec l'ajout d'un dérivé de cholestérol, le CHS (cholesteryl
hemisuccinate) qui aiderait a la stabilisation de certaines PMs'¥. Au total, environ un
tiers des PMs ont été solubilisées en présence de CHS et cela concerne
particulierement les RCPG et les canaux'® . Enfin, un certain nombre de détergents
de nouvelle génération sont régulierement développés, comme des détergents

138

contenant des atomes de fluor'*® ou encore la famille des maltoses néopentyl glycol

dont fait partie le LMNG'.

3.1.2. ... mais qui a des limites

Bien que I'utilisation de détergents soit la méthode la plus commune a I'heure
actuelle pour |'étude de PMs en solution, des limites majeures se posent. Ftant donné
la grande variété de détergents actuellement disponibles, l'identification d'un
détergent (ou d'un groupe de détergents) qui répond aux exigences spécifiques des
protéines, en termes de stabilité et de fonctionnalité, peut étre un processus laborieux
d'essais et d'erreurs. De plus, la compatibilité d'un détergent pour maintenir la
fonction d’une protéine ou plus simplement encore pour |'extraire des membranes

doit étre examinée au cas par cas, le détergent universel n’existant pas.

Qui plus est, la micelle de détergent est un systéme mimétique de la membrane
assez éloigné de la membrane native. Par exemple, de nombreuses protéines
membranaires ont besoin de la pression latérale présente dans la membrane qu’elles
ne retrouvent pas dans les micelles'. De plus, pendant le processus d’'extraction de
la membrane, les détergents détachent les lipides membranaires des protéines, on
parle de délipidation, ce qui peut impacter leur stabilité voire mener a leur
inactivation. En effet, de plus en plus d’études pointent le réle crucial des lipides a la

fois dans la structure et dans la fonction d’un grand nombre de PMs™1-143,

D'autre part, il est nécessaire de toujours travailler avec des tampons ou la
présence de détergent est maintenue au-dessus de sa concentration micellaire

critique (CMC). Elle correspond a la concentration de détergent a laquelle la transition
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entre les molécules de détergent libre et la structure micellaire s’effectue. En dessous
de la CMC, les micelles se désassemblent menant a I'agrégation des protéines. La
présence de détergents dans les tampons est toutefois incompatible avec certaines
méthodes utilisées pour I'étude et la caractérisation des protéines en raison de leurs

propriétés optiques ou de leur capacité a partitionner les autres substrats.

Enfin et non des moindres, la stabilité des protéines a moyen et long terme dans
les micelles de détergent est généralement assez mauvaise, les détergents finissant
par déstabiliser la protéine en perturbant les interactions internes de cette derniére,

conduisant souvent a son agrégation et/ou dénaturation.
3.2. Le développement d'approches « native-like »

3.2.1. Les vésicules lipidiques (liposomes)

Comme le remplacement des lipides biologiques par d'autres surfactants est
généralement préjudiciable a la stabilité des protéines membranaires, une alternative
évidente a consisté a les réintroduire dans un environnement lipidique aprés
purification. Deux stratégies majeures se distinguent: l'insertion des protéines

membranaires dans des vésicules lipidiques (liposomes) et la formation de bicelles.

Les vésicules lipidiques ou liposomes sont des systemes utilisés depuis le début
des années 1970"*'% pour |'étude des protéines membranaires et de la dynamique
des membranes. L'équipe de Racker a reconstitué et démontré l'activité de la
cytochrome oxydase des mitochondries du coeur de bovin et de I'’ATPase calcium-
dépendante du réticulum sarcoplasmique. Des années plus tard, a la fin des années
90, Rigaud et ses collegues ont poursuivi le développement du systéme et ont
introduit un certain nombre de concepts qui constituent encore a I'heure actuelle la

marche a suivre pour reconstituer des protéines dans des liposomes'8147.

On distingue plusieurs types de liposomes. Des structures avec de multiples
bicouches concentriques se forment spontanément lors de la mise en suspension d’un
film de phospholipides dans un tampon aqueux; on parle de vésicules multi-
lamellaires (MLVs). Les MLVs sont généralement peu utilisées pour les études
biophysiques a cause de leur structure en forme d’oignon qui leur confere une grande
hétérogénéité et donne peu acces aux couches lipidiques présentes au coeur de ces
structures. On leur préfere souvent des liposomes plus uniformes, unilamellaire
(ULVs), obtenus a partir des MLVs principalement par sonication ou par extrusion. La

taille finale des ULVs dépend de la méthode de formation et de la composition en
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phospholipides et varie entre les petites vésicules (SUVs) de 20 a 100 nm, les larges
vésicules (LUVs) de 100 a 1000 nm et les vésicules géantes (GUVs) supérieures a 1000
nm. La reconstitution de protéines membranaires dans une bicouche lipidique a
facilité I'étude d'un grand nombre d’entre elles, particulierement pour les canaux
ioniques, les transporteurs mais aussi les RCPG. La reconstitution du récepteur NTS'
dans des liposomes a par exemple permis de mettre en évidence |'importance de
I'environnement lipidique et le réle du cholestérol pour les propriétés de liaison de

150

ligands du récepteur™. Cette méme équipe a également étudié par FRET la

dimérisation du NTS1R en fonction de la composition en lipides'™’

. De plus, la
reconstitution du récepteur muscarinique M2 sous forme de tétrameéres a permis de
mettre en évidence que la signalisation par la voie des protéines G de ce récepteur a
lieu lorsqu’il est sous forme d'oligoméres plutdt que de monomeres'™?2. Enfin le
compartiment interne aqueux permet d’encapsuler des composants solubles, ce qui
a par exemple permis de reconstituer une voie de signalisation entiere dans |'étude
sur le récepteur muscarinique M1 co-reconstitué dans des liposomes avec la protéine

Gg1 et la sous unité By ainsi que la phospholipase C'*3.

La compartimentation de la phase aqueuse par la bicouche hydrophobe permet
également aux liposomes de maintenir un potentiel de membrane, comme dans une
cellule native, ce qui est particulierement intéressant pour 'étude des canaux
ioniques. Le flux ionique médié par les canaux a travers la membrane peut étre
détecté comme des changements des conditions ioniques dans I'espace intra ou
extra-liposomal, fournissant des informations qualitatives sur le comportement des
canaux. Les essais de flux sur liposomes (LFA, liposome flux assay) permettent
d'obtenir des informations sur les propriétés fonctionnelles fondamentales des
canaux, telles que la sélectivité ionique et les réponses aux activateurs ou aux
inhibiteurs. Le développement d'un test de LFA par Su et collegues a par exemple
permis d'identifier les premiers inhibiteurs de TRAAK et de nouveaux activateurs de
Slo1™4. Ces essais permettent également de déterminer I'implication des lipides dans

la régulation des canaux ioniques'>

. De méme des études par FRET ont permis
I"évaluation en temps réel de la dynamique conformationelle du canal KirBac1.1
reconstitué en liposomes'™®. Les liposomes sont également tres utiles pour mesurer
les flux de rubidium et de sodium radioactif’™ ou les flux de potassium’>. Enfin les
liposomes, généralement des GUVs, sont des outils intéressants pour faire du patch
clamp. Un certain nombre de protocoles™ ">? et de revues'®®'®" ont été publiés a ce

sujet. Si ces méthodes ont d'abord été employées sur des canaux ioniques bactériens,
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elles se répandent aussi pour I'étude de canaux eucaryotes comme pour le canal

TRPV1'3 ou encore les canaux potassiques humains Kir2.1 et 2.2,

De par leur grande taille, les protéoliposomes s'avérent compatibles avec
I"étude structurale et dynamique des protéines par RMN et en particulier par RMN du
solide. La encore, les protéines étudiées sont principalement bactériennes, avec

notamment |'étude de la protéorhodopsine’®

, du canal potassique KcsA'¢*'¢> ou
encore de plusieurs tonneaux B comme AlkL™¢¢'¢’ VDAC'"® ou KpOmpA'¢’. D'autres
exemples sont décrits dans la revue de Schubeis et colléegues’®. Une des publications
majeures au niveau des protéines eucaryotes concerne la structure du récepteur a la
chimiokine  CXCR1  obtenu en 2012 dans des liposomes de
dimyristoylphosphatidylcholine  (DMPC)"%""'. De méme, une stratégie de
reconstitution d'un transporteur de cuivre humain CTR1 en MLVs s’est tres récemment
montrée efficace pour obtenir des spectres par MAS-RMN (Publication 2). L'analyse
des spectres est en cours et devrait permettre d'obtenir une structure a haute
résolution de cette protéine. De plus, cette méme stratégie a été appliquée au
récepteur A2A ce qui a également permis d’obtenir des spectres du récepteur (travaux

en cours au laboratoire).

Les liposomes présentent de nombreux avantages mais aussi certaines limites,
comme notamment la difficulté de contréler I'orientation de la protéine dans la
bicouche lors de la reconstitution, ce qui peut s'avérer parfois critique dans certaines

applications.

3.2.2. Les bicelles

Lorsque l'on mélange certains lipides et détergents, dans une certaine
proportion, la distribution ne se fait pas de maniere aléatoire pour former des micelles
mixtes mais les lipides s'organisent en plaques de bicouches lipidiques entourées et
saturées par le détergent. Dans les années 1990, des biophysiciens exploitent cette
structure particuliere en jouant sur le rapport lipide/détergent et sur la nature des
lipides, formant ainsi des disques appelés bicelles qui pourraient fournir un
environnement de type bicouche lipidique aux protéines membranaires. Les bicelles
sont obtenues en mélangeant un ou plusieurs lipides et le tensioactif. Les lipides
utilisés sont généralement du DMPC ou du diC6PC et le détergent le plus
fréquemment utilisé est le CHAPSO (Figure 19).
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Figure 19. Composition et représentation schématique de bicelles. En haut,
représentation d'une bicelle de DHPC/DMPC. En bas, représentation d'une bicelle de
CHAPSO/DMPC contenant un protéine membranaire intégrale (en vert)'”2.

L'une des propriétés les plus intéressantes des bicelles et exploitée pour les
études RMN découle du fait qu’elles sont suffisamment grandes pour s'aligner dans
le champ magnétique. Les bicelles ont donc été largement utilisées pour étudier
I'interaction entre des molécules comme des médicaments ou des peptides qui
interagissent avec la membrane, par RMN en solution et par RMN du solide'’#'"3, mais
cela n'a conduit a la résolution que d’un faible nombre de structures®. De méme, les
bicelles ont été exploitées pour la résolution de structures par cristallographie et la
premiere structure d'une protéine membranaire en bicelles de DMPC/CHAPSO, la
bactériorhopsine, fut obtenue en 2002'4. Cette approche a ensuite été étendue a
d’autres types de protéines membranaires, comme le B,AR®' en 2007, ou encore des
canaux ioniques, des transporteurs, des enzymes et des tonneaux B (voir la revue de

Poulos et collegues, 2015"7%).

Toutefois, du fait de certaines contraintes techniques et du développement
d'autres alternatives compatibles avec plus d'applications, I'étude de protéines

membranaires dans des bicelles est relativement peu répandue a I'heure actuelle.

dvoir http://www.drorlist.com/nmr/MPNMR.htm|
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3.2.3. Les amphipols (APols)

3.2.3.1. Propriétés générales des APols et des complexes PMs/APols

Afin d'améliorer la stabilité des PMs solubilisées, le laboratoire de Jean-Luc
Popot a développé en 1996 une famille de courts polymeres amphipathiques
nommés amphipols (APols)'’¢. L'idée initiale du concept des APols était de concevoir
des molécules qui auraient une affinité si élevée pour la surface de la protéine qu'il
ne serait plus nécessaire de maintenir la concentration de détergent au-dessus de sa
CMC et que seules des traces de tensioactif libre dans la solution suffiraient a
maintenir la protéine soluble. Une protéine membranaire transférée dans un tel
environnement retiendrait donc plus facilement ses lipides, cofacteurs et/ou sous-

144 || a méme été

unités associés et, par conséquent, devrait étre fortement stabilisée
montré que les lipides ont tendance a se lier a nouveau a la protéine apres qu’elle ait
été transférée de sa micelle de détergents a I'’APol"”178. De par leurs nombreux points
de contact avec la surface transmembranaire des protéines, les APols ont,

contrairement aux détergents, un faible taux de désorption spontanée’.

Les propriétés en solution des APols ont été extensivement étudiées et sont
décrites dans diverses revues*'7?'  Parmi la série d'amphipols initialement
développés’, le membre le plus étudié et le plus utilisé est de loin I'’A8-35. Il est
composé d'une courte chaine de polyacrylates sur laquelle certains des carboxylates
ont été greffés de maniere aléatoire avec un groupement octylamine et d'autres avec
un groupement isopropylamine (Figure 20), pour une taille moyenne d’environ 4,3
kDa''. lls sont hautement solubles dans |'eau et la concentration critique d'association
a laquelle les molécules individuelles d'A8-35 s'associent est tres faible - 0, 002 g/L'#2
— permettant ainsi de travailler avec des tampons qui présentent des concentrations

d’amphipols libres tres faibles, voire sans surfactants'’”.

—(CHZ-—CH);(----(CHZ-—(l:H))-,----(CHZ——(l:H)z—

Figure 20. Représentation schématique de
I'amphipol A8-35 et de ses dérivés. (A)
CHar CH(CHs), Représentation de ['’A8-35 composé de trois

c c
coNa® T o w7 Do

roupes différents répartis au hasard le long de la
—(CHz—?H)w---(CHz—CH);----(CHz—T“)r--(CHz—TH)z— 9 Ap L., P \ , 9 R
& & ! chaine. (B) Dérivés de I'APol basés sur la méme
N o coyNat N o N o o 180
| | | structure chimique'®.
R CgHyz CH(CH3),

Isotopically-labeled APols: (DAPol)
+2H (PerDAPol)
Radiolabeled APols:
14
Functionalized APols: R
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L'utilisation des amphipols est basée sur 2 stratégies distinctes : comme les
APols n‘ont pas ou peu de pouvoir solubilisant et n’extraient donc pas les protéines
des membranes, ils sont utilisés soit pour piéger les PMs aprés qu'elles aient été
solubilisées par des détergents afin de les stabiliser, soit pour replier correctement
des protéines produites sous forme d'agrégats, principalement sous forme de corps
d’inclusion, et solubilisées par du SDS. Le repliement de PMs médié par I'APol a été
démontré pour la premiere fois en utilisant comme modéles OmpA et FomA
solubilisées dans |'urée, deux protéines de type tonneaux B de la membrane externe
provenant d’Escherichia coli et de Fusobacterium nucleatum et la bactériorhodposine

extraite de la membrane pourpre d’'Halobacterium salinarum':.

Quelle que soit la stratégie mise en oeuvre, les particules obtenues sont de
petite taille, d'une dizaine de nanometres, avec une couche assez fine de 1,5-2 nm
d'amphipols, et ont été étudiées par différentes techniques. Les différentes
applications des APols sont disponibles dans plusieurs revues'*'?% nous traiterons
ici brievement des études fonctionnelles et de liaison de ligands, et les études

structurales.

3.2.3.2. Etudes fonctionnelles et de liaison de ligands

L'un des avantages majeurs des amphipols est qu'il existe de nombreux dérivés
fonctionnalisés:  APols non ioniques, APols sulfonate, Apols marqués
radioactivement, APols fonctionnalisés par des fluorophores ou par divers tags
comme la biotine ou polyhistidine, etc. De nombreux APols ont ainsi été développés
et sont listés dans la revue de Le Bon et collegues™. lls offrent donc de larges
possibilités d'études, notamment pour fixer les PMs sur des supports solides pour

diverses applications dont les études d'interaction ligand/protéine.

Différentes études de liaison de ligands et de détermination de propriétés
fonctionnelles de différentes PMs reconstituées en APol ont été menées. Une des
premieres études est celle portant sur la Ca?*-ATPase du réticulum sarcoplasmique
(SERCA1a), dans laquelle les auteurs ont montré que le complexe SERCATa/APol
n'interfére pas avec la liaison du calcium et de I'ATP'® mais que I'activité ATPasique
de la pompe est réversiblement inhibée par les APols si on compare a ce qui est
observé dans les fragments de membranes ou en micelles de détergents'>'®. De
méme, la liaison d’'analogues de I'acétylcholine a montré que le nAChR piégé en A8-
35 présente des transitions allostériques similaires a celles observées dans la
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membrane'®. Enfin, l'intérét des amphipols pour faciliter I'étude des RCPG a été
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largement étudié'®, aussi bien pour la stabilisation de récepteurs purifiés par des
détergents puis piégés en amphipols, comme pour le récepteur a la vasopressine V2
(V2R)'®*, que pour le repliement de protéines produites sous forme de corps
d’inclusion, par exemple pour les récepteurs 1 et 2 au leukotriéne B4 (BLT1 et BLT2),
le récepteur a la sérotonine 5-HT4a ou le récepteur cannabinoide 1 (CB1)'®8. Tous ces
récepteurs sont capables de lier leurs ligands avec des affinités similaires a celles des

récepteurs natifs.

189

Toutefois, bien qu’une étude' ait permis de montrer par FRET et GTPYS que le

récepteur a la ghreline GHS1a (GHSR1a) replié grace a un amphipol non ionique est
capable de lier plusieurs ligands, de recruter |'arrestine-2 et d'activer la protéine Gag,
elle a aussi mis en lumiére le fait que les APols chargés comme I'’A8-35 générent des
fortes liaisons non spécifiques ce qui interfere avec les études sur la liaison des
ligands. De méme, la cinétique d'interaction des protéines G avec les RCPG activés

est ralentie en présence d’A8-35 (J-L Banéres, données non publiées).

3.2.3.3. Etudes structurales et analytiques des complexes PMs/APol

Les complexes PMs/APols ont été utilisés dans différentes études structurales,
notamment par RMN en solution et par cryo-EM. Parmi les premiéres études par
RMN, on trouve celles réalisées sur OmpA™° et OmpX'?''%2, des tonneaux B d’E. coli,
qui ont permis de démontrer que I'’A8-35 interagit spécifiquement avec la surface
transmembranaire hydrophobe des PMs. De facon intéressante, des études réalisées
par RMN sur la bactériorhodopsine ont montré des différences dans la structure et la
dynamique des boucles extramembranaires selon que la protéine ait été solubilisée
en détergent (DDM), reconstituée en A8-35 ou reconstituée en nanodisques’,
suggérant que l‘environnement dans lequel se trouve la protéine influe sur sa
flexibilité. Parmi la famille des RCPG, le repliement et la stabilisation de BLT2 par un
dérivé deutéré de I'A8-35 (le DAPol) ont permis la détermination de la structure 3D

de deux agonistes, le LTB4 et le 12-HHT, en interaction avec le récepteur'.

Le coté stabilisant qu'ils apportent aux protéines rend les complexes PMs/APols
particulierement adaptés a des études par cryo-EM (pour une revue récente, voir
Popot 2018, chapitre 12" ou Le Bon et collegues, 2021'"). L'utilisation d’APols a été
rapportée dans plus de 100 études de microscopie électronique dont une soixantaine
avec une résolution inférieure a 5 A'°. Les APols ont été particuliérement utilisés pour

I"étude des canaux TRP"™. L'utilisation de I’A8-35 a d"ailleurs permis la résolution des
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premieres structures a haute résolution du canal TRPV1, les auteurs ayant montré que
les classes d'images des particules colorées négativement étaient d'une forme
générale beaucoup plus homogéne pour les canaux piégés en A8-35 que les canaux
en micelles de DDM, suggérant la encore une stabilisation des protéines''#'3. Parmi
les autres canaux de cette famille dont la structure est inférieure a 5 A, on pourra
également citer le canal PC2 (polycustin-2), stabilisé en A8-35 et résolu a 4,2 A, le
canal humain TRPV6 récemment étudié reconstitué en nanodisque ou en amphipol,
avec des structures respectivement a 3,6 A et 4,0 A% ou encore le canal TRPAT. Le
canal TRPAT a été étudié d'abord par EM a coloration négative en A8-35, ces travaux
ayant conduit & une structure & une résolution d'environ 16 A révélant I'arrangement
de ses sous-unités et débouchant sur des hypotheéses sur les changements de
conformation qui conduisent a |'activation du canal'”. Plus récemment, ce canal a été
étudié par cryo-EM en amphipol PMAL-C8 en liaison avec un agoniste et a un ou deux
antagonistes, et ayant donné des structures a 4,24 A 39Aetd,7A respectivement’”’.
Les exemples pour lesquels le transfert de la protéine membranaire de sa micelle de
détergent a un amphipol a permis d'obtenir une structure a une meilleure résolution

sont nombreux. Divers exemples sont décrits dans les revues citées précédemment.

Certains exemples de PMs stabilisées dans ['’A8-35 ou dans d'autres
198

amphipols'® et étudiées par spectrométrie de masse par ionisation par désorption
laser assistée par matrice (MALDI, Matrix Assisted Laser Desorption lonization)'?2%
ou par ionisation par électronébulisateur (ESI, electron spray ionization)®®' sont
également disponibles dans la littérature. Toutefois, les complexes protéines/APols

semblent peu adaptés a la résolution de structures par cristallographie aux rayons-
X179,195

Il apparait donc que la gamme d’applications qui peuvent tirer des bénéfices de
I'utilisation d'APols est large : faciliter la production de PMs correctement repliées,
stabiliser les PMs en comparaison aux détergents pour les études fonctionnelles et
structurales mais aussi assister la production en systeme acellulaire ou encore pour
des applications biomédicales (ces deux derniers points sont détaillés dans plusieurs
revues'’?'%%). De méme, les propriétés intrinséques des APols, ou celles qui peuvent
leur étre conférées par marquage ou fonctionnalisation, ouvrent la voie a une tres
large gamme d'applications originales, hors de portée ou peu pratiques avec les

micelles de détergents.
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Si les avantages des APols sont donc nombreux, ce systéme présente toutefois
quelques limites. Tout d'abord, les amphipols n'ont que peu d’avantages par rapport
aux détergents au niveau de la représentation physiologique de la bicouche lipidique,
par 'absence, par exemple, de la courbure de la membrane (comme pour d'autres
systemes) ou des effets électrostatiques des phospholipides. Outre le recrutement
des protéines G parfois altéré dans les protéines reconstituées en amphipols (J-L
Baneres, données non publiées), il a été observé dans les structures du canal ionique
TRPV2 que les amphipols resserraient la structure globale en empéchant les
changements de conformation dans le domaine transmembranaire®®?. Cela suggeére
donc que l'utilisation de ces amphipols pourrait interférer avec des études de
dynamique des protéines membranaires. Enfin, les amphipols n’ayant peu ou pas de
pouvoir de solubilisation, |'utilisation de détergents reste obligatoire, aussi bien pour
extraire les protéines des membranes que les replier a partir de corps d'inclusion par
du SDS.

3.2.4. Les nanodisques

3.2.4.1. Propriétés générales des nanodisques

C'est en 2002 que Sligar et ses collegues décrivent pour la premiere fois la
reconstitution d'une protéine membranaire intégrale dans des phospholipides, le tout
ceinturé par une protéine dérivée de l'apolipoprotéine A1 (ApoA-1), la protéine
d'échafaudage membranaire  MSP (membrane scaffold protein) formant une

203

nanoparticule nommée nanodisque Les nanodisques ont généralement un

diamétre de 8 a 16 nm?*

et sont composés d'une bicouche phospholipidique
discoidale entourée d'une ceinture constituée de deux molécules de MSP (Figure 21).
Les séquences initiales des MSP étaient basées sur |'apolipoprotéine A1 du sérum
humain, composant des particules de lipoprotéines de haute densité (HDL),
typiquement constituées de répétitions hélicales de 22 résidus. Les protéines
membranaires a l'intérieur des nanodisques sont stables grace a la forte interaction
entre les résidus hydrophobes de la MSP et les chaines acyles des lipides. La trés
faible solubilité des lipides dans |'eau permet un échange lipidique lent entre les
nanodisques en solution. Par ailleurs, la stabilité de I'hélice amphipathique de la MSP
liée aux lipides contribue a la résistance des nanodisques a |'agrégation dans des

conditions ambiantes.
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Figure 21. Représentation schématique d'un
nanodisque. La protéine membranaire (en vert)
est encerclée par une bicouche de lipides (en
rouge). Le tout est ceinturé par deux molécules de
MSP dont les différentes hélices sont représentées
en bleu.

De nombreux protocoles détaillant la reconstitution d'une protéine
membranaire dans des nanodisques sont disponibles dans la littérature?®>2%. Dans la
plupart des cas, la protéine est d'abord extraite et purifiée en détergent avant d'étre
reconstituée en nanodisques. La reconstitution fait intervenir plusieurs paramétres
spécifiques comme le rapport stoechiométrique entre la MSP, les lipides et la protéine
cible ou encore la taille de la MSP qui influe sur la taille du nanodisque. En effet, le
choix de la MSP et donc de sa longueur définit le diametre du disque, qui peut étre
diminué ou augmenté en supprimant ou en insérant des hélices amphipatiques,
comme démontré par gel filtration et par SAXS?®. Les lipides les plus couramment
utilisés sont des lipides synthétiques dérivés de la phosphatidylcholine (PC) comme
le DMPC, le DPPC ou le POPC ainsi que des phospholipides chargés comme la
phosphatidylsérine (PS), le phosphatidylglycérol (PG), le phosphatidyléthanolamine
(PE) ou le phosphatidylinositol (PIP). Il est également possible d'utiliser des lipides
venant de sources naturelles comme les lipides totaux d’E. coli, ou des lipides de soja

et d'ceuf de poulet.

Les nanodisques présentent de nombreux avantages : ils offrent la stabilité, la
pression latérale et la présence d'un arrangement de bicouche lipidique, par rapport
a I'environnement plus hétérogéne que I'on trouve dans les micelles de détergents et
les bicelles. La taille des nanodisques est monodisperse, ce qui est avantageux pour
les études spectroscopiques des protéines cibles. De plus, les nanodisques peuvent
étre fonctionnalisés par I'intermédiaire de la MSP, par des biotines par exemple,
permettant leur immobilisation sur des supports, en tirant profit de l'interaction
biotine-streptavidine par exemple’. Ainsi, les deux cotés de la protéine sont
accessibles, ce qui est intéressant pour les études de liaison de ligands. De méme, le

choix des lipides composant le nanodisque est assez libre, et peut permettre de
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réaliser des études d’interaction entre certains lipides spécifiquement et la protéine
d'intérét. Enfin, les protéines reconstituées ont une stabilité et une durée de vie
prolongée, ce qui a permis de réaliser de nombreuses études fonctionnelles et
structurales. En 2020, pres de 1200 publications traitaient des nanodisques et de leurs

utilisations?®’.

Nous ne donnerons ici qu'un trés bref apercu des applications
fonctionnelles et structurales décrites. Des revues abordent de fagon beaucoup plus

exhaustive ce sujet?94210.211,

3.2.4.2. Les études fonctionnelles

La communauté scientifique a largement exploité le potentiel des nanodisques
dans 'étude de nombreuses familles de protéines dont les RCPG. La preuve de
concept de la reconstitution d'un RCPG a été établie avec 2 études en 2006 et 2007
sur le B2AR, reconstitué dans le premier cas dans un nanodisque de POPC et MSP12'2
et dans le deuxieme cas dans un nanodisque de POPC/POPG avec I'apoA-1 native?'.
Dans les deux cas, le récepteur était fonctionnel au regard de sa liaison de ligands et
de I"échange de nucléotides au niveau de la protéine G¢.Depuis, un grand nombre
de RCPG ont pu étre reconstitués avec succés et ont été étudiés par diverses
méthodes biochimiques et biophysiques. La revue récente de Lavington et Watts

211 Dans l'ensemble, la

compile dans un tableau les publications les plus notables
littérature montre que les RCPG reconstitués sont capables de lier leur ligand, comme
étudié par diverses techniques (radioactivité, SPR ou SPA) pour le récepteur au
glutamate mGluR22™, le GHSR?™, le récepteur A2A?'® ou encore le récepteur mu aux
opoides pOR?"”. lls sont également capables de recruter leur protéine G, comme
montré pour le mGIluR2#%, le pOR?”, le NTSR1?'8, le GHSR?"> ou le récepteur
muscarinique M2'>?, et/ou l'arrestine?'>?’?. De méme, de nombreuses études ont été
réalisées pour évaluer la modulation des lipides sur le couplage aux protéines G ou
sur la liaison de ligands, comme pour le NTSR122%2" ou le B,AR?*%?%, Outre les RCPG,
I'importance de la présence de lipides autour de la protéine cible a pu étre évaluée
pour d'autres protéines comme le transporteur TAP?* ou le transporteur ABC
MsbA?%. Les nanodisques se révelent également trés utiles dans les études de liaisons
par SPR car ils peuvent étre immobilisés sur la surface de la puce en utilisant les tags
d'affinité contenus sur la MSP. On peut par exemple citer |'étude de la cinétique

226

d’interaction entre la toxine cholérique et le récepteur glycolipidique Gwmi?* ou le

criblage entre le cytochrome P4503A4 et diverses molécules?®”, ou contre un

anticorps?®.
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3.2.4.3. Etudes structurales et analytiques

La reconstitution de PMs a permis la réalisation de nombreuses études

biophysiques et structurales sur diverses protéines par des méthodes variées.

Si les nanodisques se prétent assez peu a la cristallographie aux rayons X, leur
homogénéité de taille a permis d'obtenir de nombreuses structures de haute
résolution par microscopie électronique. En effet, plus d’une centaine de structures a
moins de 5 A ont été obtenues & partir de nanodisques. En 2019 et 2020, les
nanodisques ont d'ailleurs été le systeme le plus utilisé pour |'étude de particules
uniques par cryo-EM™% Parmi les familles de protéines pour lesquelles les
nanodisques ont été les plus utilisés lors de ces études structurales, on retrouve les
canaux, les transporteurs ABC, les ATPases, les récepteurs Cys-loop et les membres
de la famille TMEM16™'°. Parmi les canaux, il est intéressant de noter la prévalence de
I'utilisation de nanodisques dans la famille des TRPs, avec plus de 20 % de structures
obtenues a partir de ce systeme'. Un des exemples fréquemment cités est
également celui du récepteur de la ryanodine qui a révélé |'ordre des hélices
transmembranaires?”. Quelques structures de RCPG en nanodisques ont également
été obtenues assez récemment a partir de récepteurs en complexe avec leur protéine
G comme pour le D2DR dont la structure a été obtenue avec la protéine G**, ou avec
I'arrestine comme pour le B1AR?" ou le récepteur muscarinique M2%2 ou encore a

partir de dimeres de récepteurs pour la rhodopsine®:.

Les nanodisques sont également analysables par RMN en solution ou RNM du
solide comme cela a été montré pour la premiére fois dés 2006 sur des nanodisques
vides, permettant ainsi de déterminer la conformation adoptée par la MSP#%. Ces
deux techniques ont été plus largement adoptées ces derniéres années pour étudier
des nanodisques et révéler des détails sur la structure des protéines mais surtout pour
donner des informations sur leur dynamique conformationelle. Si ces stratégies ont
été assez répandues dans |'étude d’un certain nombre de protéines, comme pour le
récepteur de la famille du récepteur au Tumor Necrosis Factor p75NTR**, pour le

cytochrome P450 en complexe avec le cytochrome bs**

ou encore pour un certain
nombre de protéines bactériennes?®’=?*, des optimisations dans la préparation des
nanodisques ont parfois été nécessaires, notamment pour les RCPG. Par exemple, le
récepteur BLT2 a été marqué isotopiquement et assemblé dans des nanodisques
composés de DMPC partiellement deutéré et de CHS protoné ainsi que de MSP

protonée?®. De plus, les changements de conformations liés a la fixation d'un ligand
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par exemple ont pu étre déterminés pour différentes protéines comme un

transporteur de maltose?"

d’interaction entre le CCR1 et CCRS5 et leur ligand MIP-1a?%.

ou encore pour le B,AR?*?, de méme que le domaine

Sans rentrer dans les détails, les complexes protéines/nanodisques ont
également pu étre analysés par d'autres techniques incluant le FRET sur particule
unique?*, la spectroscopie de force sur molécule unique?®, la SAXS?*¢-%%, ou encore
les spectroscopies par résonance de spin électronique comme la résonance
paramagnétique électrique (EPR)** ou la spectroscopie DEER (double electron-

electron resonance)®°2°" .

Ainsi, il apparait que les nanodisques présentent de nombreux avantages qui
permettent d'étudier les protéines membranaires par des méthodes variées.
Toutefois, les procédures de reconstitution des protéines en nanodisques nécessitent
I'utilisation de détergent pour extraire les protéines des membranes. De méme,
I'environnement lipidique de la nanoparticule, bien que controlé, n'est pas une
imitation exacte de la bicouche lipidique native et l'interaction avec les lipides
exogenes peut différer de celle avec les lipides natifs. Enfin, la structure de la MSP

peut interférer avec celle de la protéine pour les expériences d’'EPR et de RMN#2,

3.2.5. Les copolyméres de styréne et acide maléique

C'est en 2009 que I'utilisation de copolyméres de styréne et d'acide maléique
(SMA) pour I'extraction des protéines membranaires a été rapportée pour la premiere
fois?*3, avec comme modele d'étude la bactériorhodopsine et le tonneau B PagP,
solubilisés a partir de membranes pourpres de H. salinarum fusionnée a de la DMPC
et de MLV reconstituées respectivement. Les copolymeres de SMA sont des
polymeres amphipathiques comprenant des groupements de styrene hydrophobe et
des groupes d'acide maléique hydrophile, généralement dans un rapport
styréne/acide maléique de 2:1 ou 3:1, les plus connus et utilisés étant le SMA 2000 et
le SMA 3000. Le SMA s'insére dans les membranes et forme des petits disques de
membrane entourés par le polymeére, appelés particules lipidiques de SMA
(SMALPs)®*, plutét que de perturber les interactions hydrophobes entre la protéine
membranaire et les lipides membranaires comme le font les détergents. On les
retrouve aussi parfois sous 'appellation de lipodisques®*, de nanodisques natifs®*¢ ou
de PoLiPa®’. Les protéines membranaires extraites dans les SMALPs conservent donc
leur environnement natif de bicouche lipidique, tout en étant dans petites particules

solubles compatibles avec de nombreuses techniques de caractérisation en aval®®.
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Un des autres avantages majeurs des SMALPs est qu'ils ne nécessitent pas que les
tampons soient complétés par du SMA libre, contrairement aux détergents dont la

concentration doit étre maintenue au-dessus de la CMC pour toutes les analyses.

Quelques modéles déterminant le mécanisme moléculaire de la solubilisation
des protéines par les SMA ont été proposés®?%'. Scheidelaar et collégues ont décrit
en 2015 un modeéle en trois étapes pour expliquer le mode d'action des SMA,
cependant sur une bicouche lipidique artificielle ne contenant pas de protéines. Dans
un premier temps, le SMA se lie a la surface de la membrane lipidique par son
groupement styréne hydrophobe, ce qui est modulé par la présence de sels et de
lipides chargés négativement qui vont induire des forces de répulsion avec le
polymere également chargé négativement. Dans un deuxieme temps, le SMA va
s'insérer dans le cceur hydrophobe de la membrane. La pression latérale exercée par
les lipides, la fluidité et I'épaisseur de la membrane auraient un effet important sur ce
phénoméne. De méme, ils ont montré que la composition en lipides des SMALPs
reflete celle de la membrane initiale. Enfin, |'étape finale est la solubilisation effective
de la bicouche et la formation simultanée de nanoparticules lipides. Plus tard, Xue et

collegues®!

, d’apres des simulations par dynamisme moléculaire dans le modele
Martini, donnent des informations plus détaillées sur 'insertion, la pénétration et la
formation de pores par les polyméres, montrant notamment comment ils menent a la

déstabilisation compléte de la membrane lipidique et a la formation de nanodisques.

Les SMA se sont avérés efficaces pour la solubilisation des protéines
membranaires de diverses familles produites a partir de différents systemes
d'expression, principalement des bactéries, mais aussi les cellules d'insectes, les
levures, les cellules de mammiferes et les cellules végétales. Ces polymeéres
constituant le coeur de mon projet de these, leur utilisation fera |'objet d'une partie a

part entiere plus développée ci-apres.

L'utilisation de polymeres de SMA présente toutefois quelques désavantages.
En raison de leur synthése par polymérisation radicalaire, les polyméres sont de
longueur et de composition différentes, ce qui entraine une certaine hétérogénéité
dans les particules formées. De méme, les SMA sont sensibles a des concentrations
faibles de cations divalents comme le magnésium et le calcium, ce qui est
problématique pour certaines protéines qui nécessitent ces ions comme cofacteur
pour la liaison de ligands ou pour leur activité enzymatique comme les ATPases. De

plus, les SMA sont également sensibles au pH et ne sont solubles que dans une
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fenétre assez réduite (autour de pH 7,5-8). Des polyméres dérivés ont toutefois été
développés pour faire face a ces deux dernieres limitations (cf paragraphe « 4.1. Le
panel de SMA et polymeéres dérivés décrits »). Une autre limitation potentielle est la
taille des disques formés. Contrairement aux nanodisques qui peuvent former des
disques plus gros en utilisant une MSP plus longue, les SMALPs font une taille de 10
a 12 nm, trop petits pour certains complexes protéiques, mais cette taille dépend des
ratios polyméres/lipides utilisés. Enfin, bien que les SMALPs conférent une meilleure
stabilité aux protéines, il n‘est pas encore clairement établi que les polymeéres

n'apporterait pas une contrainte trop importante sur la protéine®®.

3.2.6. Les méthodologies plus récentes

Plus récemment, d’autres technologies permettant I'extraction de protéines
membranaires ont également été décrites. Elles incluent les nanoparticules de
saposine, les Peptidiscs ou encore une nouvelle génération d'amphipols capables

d’extraire les protéines des membranes, les CyclAPols.

En 2016, Frauenfeld et collegues ont décrit un systéme basé sur |'utilisation
d'une lipoprotéine, la Saposine A (SapA), utilisée pour reconstituer les protéines
membranaires dans des nanoparticules en utilisant un canal mécanosensible d'archée
(T2) et un transporteur de peptide bactérien (POT1)*2. De facon similaire a la MSP, la
SapA sert de protéine d'échafaudage qui entoure la nanoparticule contenant des
lipides et la protéine. L'un des avantages est que la SapA s'ajuste a la taille de la
protéine facilitant ainsi l'incorporation de protéines membranaires de taille et
structure variées. Les particules obtenues ont pu étre étudiées par diverses techniques
biochimiques et biophysiques comme la cryo-EM pour la protéine SERCA1%3 ou pour
I'uniporter mitochondrial calcique NfMCU?*, la RMN en solution pour le récepteur
B2AR%>, des analyses par SAXS#¢ ou SANS?’, des analyses de thermostabilité par
DSF#¢%7  des études fonctionnelles de liaison de ligands par microscale
thermophoresis  (MST)?**¢, de flux de «calcium®*, ou encore des essais
enzymatiques®”’#%. Plus récemment, la technologie a été améliorée et les protéines
sont directement reconstituées en nanoparticules en paralléle de leur extraction par
des détergents. La preuve de concept de cette méthodologie a été réalisée sur un

récepteur aux chimiokines??.

De maniére assez similaire aux nanoparticules de saposine, une méthode
nommée Peptidisc est décrite par Carlson et collegues en 2018. Il s'agit de multiples

copies d'un peptide amphipatique nommé NSPr ayant la capacité de s'enrouler
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autour de la protéine cible. La encore, les protéines sont reconstituées dans le
Peptidisc aprés avoir été extraites et purifiées en détergent. Les auteurs ont testé
I'efficacité du systeme sur différentes protéines, comme les tonneaux B OmpF ou
FhuA ou le transporteur ABC MalFGK?°.

Enfin trés récemment, des amphipols de nouvelle génération, nommés
CyclAPols, ont été développés et sont décrits comme étant efficaces pour extraire

directement les protéines des membranes?’!

. lls se différencient des amphipols
traditionnels, et notamment de I’A8-35, par le remplacement de la chaine carbonée
linéaire par un groupement cyclique hydrophobe de huit carbones (Figure 22).
L'efficacité de ces nouveaux polyméres a été testée sur différentes protéines (la
bactériorhodopdine extraite de membranes pourpres de H. salinarum et YidC-GFP
extraite de membrane d’E. coli), ou ils se sont révélés plus efficaces que les polymeéres

SMA.

-’>CH2—CH‘]- co -I-CHz—CH-}- = r—
z Figure 22. Structure chimique
\'V\/W A8-50
Na*O HT des CyclAPols.””
R ;—/_O C-C-50
Composition (mol %) )
X 50 i Cy-Cy-50
y: 50

Il apparait donc qu’au cours de ces 30 derniéres années, les chercheurs ont
développé divers systemes mimétiques de membranes, présentant chacun des
avantages et des inconvénients, pouvant étre utilisés de maniére complémentaire afin
d'obtenir des données les plus complétes possibles. Parmi ces systemes, les
polymeres de styréne et d'acide maléique semblent particulierement intéressants car
ils ne nécessitent pas I'utilisation de détergents et ils permettent de conserver les
lipides natifs de la membrane. La prochaine partie traite de l'utilisation de ces
polyméres dans diverses études fonctionnelles et structurales de protéines

membranaires.
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Dérivés de copolymeres de SMA Analogues des copolymeéres de SMA
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Figure 23. Les différents types de polyméres utilisés pour extraire des protéines
membranaires et leurs caractéristiques associées. Une description de chaque polymére
et les références associées sont disponibles dans le texte principal. Figure modifiée

d'apres?’?
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4. L'utilisation de copolyméres SMA et dérivés pour |'étude de PMs

4.1. Le panel de SMA et polyméres dérivés décrits

La découverte en 2009 dévoilant que le SMA 2000 pouvait étre utilisé pour

extraire des protéines membranaires®?

représente une avancée majeure dans le
domaine de la biochimie. Ce polymeére reste d‘ailleurs a ce jour le plus utilisé pour
I'extraction et I'étude in vitro de PMs. Une variété d'autres polyméres (Figure 23) a
été développée pour investiguer sur les lipides et les interactions protéine-lipide mais
également pour essayer de faire face aux problémes liés a ce polymere, comme la

sensibilité aux variations de pH ou aux ions divalents.

Plusieurs polymeres ont été modifiés ou fonctionnalisés au niveau de la chaine
polaire, notamment avec un groupement éthanolamine (SMA-EA)?3, éthylénamine
(SMA-ED)?* (ou sa version déshydratée, le SMAd-A), taurine (SMA-Tau)?”> ou encore
avec une fonction thiol (SMA-SH)?¢ qui permet d'attacher différents tags d'affinité ou
fluorescent. De méme des groupements ammonium tertiaires et quaternaires ont
permis d'obtenir respectivement le SMI?7 et le SMA-QA?’8. Ces polyméres sont plus
tolérants aux ions divalents et solubles dans une gamme de pH plus large. De méme,
des disques plus grands peuvent étre obtenus a partir de SMA portant un
groupement phosphatidylcholine (zZSMA)??, ou méthylamine (SMA-MA)*®, éthylamine
(SMA-EtA)?®° ou encore de propylamine (SMA-PA)*®, et permettent de solubiliser les

protéines dans des plus larges gammes de pH.

Enfin, des analogues au polymére de styréne et d'acide maléique ont également
été synthétisés. Dans les polyméres DIBMA#', le groupement styréne qui interfere
avec la détection des protéines a 280 nm a été remplacé par des chaines aliphatiques
qui sont plus compatibles pour I'analyse par CD. Des dérivés du DIBMA ont
également été synthétisés avec des groupements glycérol et glucosamine pour
augmenter leur solubilité (Cube Biotech). Des polyméres de polyméthacrylate
(PMA)?? avec différents ratios de chaines latérales de butyle et d'acétylcholine ainsi
qu’un ensemble de copolymeres APAA a base de d'alkyle (butyle, pentyle ou hexyle)
et d'acide polyacrylique ont également été développés®:. L'un des inconvénients des
polymeres de SMA, en particulier pour les études structurales, concerne leur
polydiversité en matiére de longueur de la chaine. C'est dans cette optique que des
polymeres de styrene et d'acide acrylique (AASTY) présentant une dispersité plus

proche de 1 ont été développés?®*. De méme, des polyméres de stilbenes avec un
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groupement méthyle en position 2 ou 4 et d’anhydride maléique (2-STMA et 4-STMA)

ont également permis d’obtenir des particules de tailles et formes plus homogenes®®.

Si cette croissance dans le développement de nouveaux polyméres permet
d’envisager la solubilisation d'une plus grande diversité de membranes et de
protéines, la majorité de ces polyméres ne sont pas disponibles commercialement,
ou ne le sont que depuis tres récemment, comme pour les SMA-EA, SMA-ED et SMA-

QA commercialisés par Anatrace depuis fin 2021.

4.2. Complexes protéine/SMA et les études fonctionnelles associées

De nombreuses études portant sur des protéines bactériennes produites en
systéme procaryote (souvent E. coli) sont décrites dans la littérature. Des revues
récentes traitent d'ailleurs de ces travaux de facon assez exhaustive?’22%, Ici, nous
nous concentrerons principalement sur les études portant sur des protéines
eucaryotes voire humaines en essayant d’en faire une analyse critique. De méme, nous
ferons un distinguo entre les articles parus avant 2019 et depuis 2019, afin de bien
mettre en lumiére |'état de I'art au moment de I"élaboration de ce projet puis de
donner un apercu plus complet des études parues ces trois derniéres années. Le
Tableau 5 donne une vue d'ensemble des différentes protéines eucaryotes étudiées
par des polymeres de SMA ou dérivés et qui sont décrites dans les paragraphes ci-

dessous.

4.2.1. Les informations disponibles avant 2019

Cing transporteurs ABC eucaryotes, la glycoprotéine-P humaine ou ABCBI1, le
CFTR murin ou ABCC7, la protéine MRP1 (multidrug-resistance protein 1) ou ABCC1,
la protéine ABCG2 et la protéine MRP4 ou ABCC4 furent parmi les premiéres
protéines eucaryotes a étre extraites a I'aide de polymere SMA, a partir de différents
systemes de production (cellules d'insectes High Five et Sf9, cellules HEK (human
embryonic kidney) et Saccharomyces cerevisiae). Une purification en une seule étape
de chromatographie d'affinité a permis d'obtenir de bons rendements pour la
glycoprotéine-P, permettant ainsi sa caractérisation par des tests de liaison de ligands
par méthode fluorescente, par I'étude de sa thermostabilité, par I'étude de sa
structure 2D par CD et par I'étude de son comportement en solution par
ultracentrifugation analytique (AUC). Toutefois dans cette étude, les auteurs n'ont pas
essayé de démontrer |'activité ATPase des protéines purifiées ni I'activité de transport

de substrat, qui nécessiteraient leur reconstitution dans des protéoliposomes®’. Un
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autre transporteur, 'ENT1/SLC29A1 a également été purifié a partir de cellules
d'insectes Sf9. Cette étude a montré que les SMALPs peuvent étre purifiées par le
tag FLAG de la protéine. Une caractérisation des SMALPs-ENT1 a été réalisée par des
tests radioactifs de liaison de ligand et par une analyse de la thermostabilité de la
protéine en comparaison avec les membranes et avec la protéine purifiée en DDM ou
en DM. De méme, une analyse par ESI-MS a permis d'identifier les lipides contenus

dans la particule?®®.

Le premier RCPG ayant été solubilisé a I'aide de SMA est le récepteur AZA,
exprimé dans Pichia pastoris et en cellules HEK, extrait par le SMA 2000 en 2015. Les
protéines ont été purifiées par une étape de chromatographie d‘affinité suivie d'une
étape de gel filtration puis les SMALPs ont été caractérisées par CD, par AUC et selon
leur capacité a fixer des ligands. Si cette publication semble trés intéressante au
premier abord, quelques détails expérimentaux semblent toutefois questionnables.
Par exemple, il est assez étrange que la protéine, dont la taille est d’environ 30 kDa,
élue a 14 mL d'une colonne de gel filtration Superdex 200 10/300. Pour une protéine
de cette taille, et ce sans tenir compte de la contribution du polymere et d’éventuels
lipides associés, on s'attendrait plutét a trouver un volume d’élution d’environ 10 a
12 mL au maximum. De méme, lors de la caractérisation pharmacologique des
protéines purifiées, il n’est jamais fait mention des niveaux de fixation de ligands (Bmax)
mais seulement de valeurs normalisées en pourcentage. Alors que cette publication
fait office de référence dans le milieu des SMA et a été citée a de nombreuses
reprises, nous ne possédons finalement que de peu d'informations concrétes sur |'état
de repliement et fonctionnel des récepteurs parmi I'ensemble du pool de protéines
purifiées®*. Plus récemment, deux études ont utilisé des SMALPs-AA, |'une pour
développer une méthode de liaison d'un ligand par spectroscopie de corrélation de
fluorescence (FSC, fluorescence correlation spectroscopy)®®, et I'autre pour étudier

les changements conformationnels induits par la liaison de ligands?®.

D'autres RCPG ont également été extraits et étudiés par des SMA. C’est par
exemple le cas du récepteur MT1 et du récepteur GHSR1a#". Les auteurs ont utilisé
deux systéemes différents pour extraire les protéines a l'aide des SMA, des
protéoliposomes pour le GHS-R1a et des membranes de la levure Pichia pastoris pour
le MT1R. Des essais de liaison de ligand par compétition ont été réalisés par FRET
pour le GHS-R1a et par radioactivité pour le MT1R et ont montré dans les deux cas
une affinité de liaison de différents ligands similaires a celle de membranes. De plus,

des essais de GTSyS et de recrutement de |'arrestine ont été réalisés pour évaluer la
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fonctionnalité des récepteurs. Le GHS-R1a s’est montré plus stable dans des SMALPs
extraites de liposomes que dans des micelles de détergents, capable de favoriser
I'échange GDP/GTP comme pour les protéines reconstituées en nanodisques et
capable de recruter l'arrestine lorsqu'il est activé par des agonistes. Enfin une
caractérisation structurale du GHS-R1a a l'aide d'un test basé sur la fluorescence de
la bimane a montré différents états conformationnels du récepteur a la suite de la
liaison de ligands. La purification du MT1R (apres extraction par le SMA2000 a partir
de membranes de levures) par chromatographie d'affinité puis par chromatographie
d’exclusion par la taille montre que |'échantillon contient une grosse partie de gros
agrégats et/ou de fragments de membranes non solubilisés qui éluent dans le volume
mort de la colonne. Les rendements de protéines obtenues a partir de membranes
sont donc nettement plus faibles que ceux obtenus pour |'extraction a partir de
liposomes, suggérant que les SMA sont plus efficaces sur des modéles lipidiques plus
simples. Les SMALPs-MT1R sont toutefois capables d'activer les protéines G et
recrutent l'arrestine comme dans les cellules CHO. Au vu des nombreuses
expériences réalisées pour caractériser les propriétés pharmacologiques et
fonctionnelles des SMALPs purifiés, cette étude est sans doute |'une des plus
compleétes publiée sur I'étude de deux RCPG purifiés par un SMA. Il aurait toutefois
été intéressant que les valeurs de pKi traduisant l'affinité des ligands pour leur
récepteur respectif soient également comparées avec les valeurs que l'on peut
obtenir avec des protéines purifiées en détergent ou reconstituées en nanodisques

et pas seulement avec les membranes des systemes d’expression.

Dans une autre étude, I'hétérodimérisation du GHSR avec le D2DR a été étudiée
en solubilisant les protéines a I'aide de SMA a partir de protéoliposomes. Les
complexes obtenus étaient fonctionnels d’un point de vue de la liaison de ligands, de
I'activation des protéines G et du recrutement de |'arrestine. Des études de FRET ont

pu étre réalisées a partir des hétéromeéres en SMALPs#2.

Dans leur papier décrivant le développement d'un polymere dérivé des SMA, le
SMI, Hall et collegues ont testé |'efficacité de ce nouveau polymere pour extraire les
récepteurs humains A2A et le récepteur a la vasopressine 1a (V1aR) exprimés dans des
cellules HEK293T?”". Les récepteurs extraits en particules lipidiques de SMI (SMILPs)
sont caractérisés par leur capacité a lier un ligand radioactif. Toutefois, il ne s'agit pas
de protéines purifiées mais des membranes solubilisées avec le SMI contenant les
SMILP de RCPG. De méme, les valeurs de la liaison spécifique sont exprimées en

pourcentage de la liaison totale, ne permettant donc pas d’évaluer la proportion de
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protéines capable de lier un ligand parmi le pool de protéines. De méme, ces résultats
ne sont pas mis en perspective avec les valeurs que 'on peut obtenir a partir de
membranes, voire a partir de protéines purifiées en détergent ou reconstituées en

nanodisques.

Un autre RCPG de classe A, le récepteur CB1 a été extrait par le SMA 2000 a
partir de cellules d'insectes Sf9. Les protéines purifiées par une étape unique de
chromatographie d‘affinité ont été évaluées par DLS et leur thermostabilité a été
testée en comparaison avec celle en micelles de détergent. Dans cette publication,
les auteurs ont caractérisé la capacité du SMALP-CB1 a interagir avec un anticorps
anti-CB1 par cytométrie en flux et par SPR en immobilisant |'anticorps sur la surface
et en injectant le SMALP-CB1. Toutefois, la liaison non-spécifique (mesurée a |'aide
d'un SMALP-KcsA contréle) est importante, de 'ordre de 35 %, ce qui n'a pas permis
la détermination des constantes de liaisons. De plus, aucune liaison spécifique n'a pu
étre détectée lorsque le SMALP-CB1 a été immobilisé sur la surface de SPR et que

I'anticorps CB1 a été injecté?”.

Bien qu'il y ait globalement assez peu d'études effectuées sur des protéines
membranaires eucaryotes au regard du nombre d'études sur des protéines
procaryotes, ou qu’elles manquent parfois d‘informations, ces papiers laissent
toutefois penser que les SMA sont efficaces pour extraire des protéines eucaryotes

produites dans des systémes eucaryotes, y compris a partir du systeme Pichia pastoris.

4.2.2. Les études parues apres 2019

Des études supplémentaires ont été publiées en 2019 et les années suivantes
sur I'isolement de protéines membranaires a I'aide de polymeres de SMA. Parmi ces
protéines, on trouve des transporteurs, comme le MPR4/ABCC4%*, |'ABCG2%7,
I'antiporteur SOS1 de la plante Arabidopsis thaliana**

humain de la sérotonine SERT?7, des canaux ioniques humains (KVNH5 et KCNQ1)#,

ou encore le transporteur

des récepteurs comme le récepteur a la glycine GlyRa 1% ou le récepteur tyrosine
kinase EphA23® et des RCPG comme le B.AR avec deux différentes études®3%, |e
NTSR13% ou le récepteur a la dopamine D1 (D1DR)*** ou encore la protéine de la

famille des tétraspanines CD813%.

Les systémes d’expression de ces protéines sont assez variés, allant de cellules
d'insecte Sf? pour MRP4 et NTSR1, en passant par les cellules de mammiféres COS-
1 pour les canaux KCNGQ1 et KCNH5 ou HEK pour D1DR, ABCG2 et le B.AR, ou
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encore la levure Pichia pastoris pour SOS1, CD81 et SERT. Le récepteur EphA2 a,
quant a lui, été extrait de protéoliposomes. Les SMA utilisés sont souvent le SMA
2000 (pour les protéines MRP4, SOS1, CD81, ABCG2 et SERT) et le SMA 3000
(KCNGQ1, KCNH5 et D1DR) mais aussi d'autres polymeéres comme le DIBMA pour
SERT et le B2AR, le SZ25010 pour MPR4 et CD8, le XIRAN SL25010 P20 (ratio
styréne/acide maléique de 3 :1) et XIRAN SL 30010 P20 (ratio styrene/acide maléique
de 2.3 :1) pour le B2AR ou encore un polymere de PMA pour NTS1R.

Les protéines sont purifiées soit par une étape unique de chromatographie
d'affinité pour MRP4, KCNGQ1, KCNHS5 et ABCG2, soit par une double
chromatographie d'affinité (chromatographie d'affinité sur métal immobilisé (IMAC)
puis chromatographie d'affinité anti-FLAG) pour le NTS1R, ou encore une
chromatographie d'affinité suivie d'une gel filtration pour SOS1, CD81 et SERT. D'une
maniere plus surprenante, le D1DR a été purifié d'abord par gel filtration puis par
chromatographie d‘affinité. Il en est de méme pour la purification des SMALP- 3,AR,
réalisée par chromatographie liquide bidimensionnelle, dans laquelle la SEC et
I'IMAC ont été combinées par I'intermédiaire d'une vanne de commutation. Dans ces
deux papiers, les auteurs indiquent qu’une premiére étape de SEC permet de séparer
des larges fractions membranaires et des SMA libres. Ce concept est toutefois assez
étonnant alors que, dans les deux cas, les colonnes utilisées sont des Superdex 200

10/300, pour lesquelles les volumes d’injection sont habituellement de 500 pL.

Différentes techniques ont été utilisées pour évaluer les SMALPs purifiées : des
études de thermostabilité (MPR4), des études pour évaluer la taille et I'homogénéité
des particules par DLS (KCNGQ1 et KCNH5, CD81, ABCG2, SERT, et le B.AR), des
analyses par CD (CD81 et SERT) ou par microscopie électronique a coloration
négative (KCNGQ1 et KCNH5), des analyses par spectrométrie de masse pour évaluer
la présence de contaminants (SOS1, CD81) ou encore des essais de liaison de ligands
par radioactivité (D1DR et SERT) ou par MST (D1DR). De méme, une analyse de
I'environnement lipidique du SMALP-CB81 a été réalisée par spectrométrie de masse.
Aussi, le transporteur SOS1 et le transporteur SERT ont été reconstitués en
protéoliposomes pour évaluer leur activité de transport. Des analyses par FSC ont été
mises au point pour démontrer la liaison de ligands pour ABCG2 et pour A2A%’. La
capacité du NTSR1 a stimuler les protéines Gq et Gii a été évaluée par un test
d'échange du GTP, réalisé toutefois directement sur les membranes solubilisées par
le polymeére et pas sur les protéines purifiées a cause de rendements trop faibles.

Enfin, un nouveau test de FRET en temps résolu a été établi pour étudier si le B.AR
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reste fonctionnel lorsqu’il est extrait des membranes de cellules HEK dans les
particules de DIBMA.

Si certaines études sont tres completes comme celles sur la protéine CD81, le
transporteur ABCG2 ou encore le transporteur SERT avec diverses informations sur le
repliement ou la fonctionnalité des protéines a lier des ligands et a effectuer leur
mission de transport, d’autres études manquent parfois d'informations quant a la
fonctionnalité des SMALPs purifiées, voire présentent des données parfois
questionnables. A titre d’exemple, dans I'étude sur le D1DR, les auteurs relatent un
rendement de 0,255 mg/L de culture, pourtant les bandes correspondant aux
protéines purifiées sont trés peu visibles sur un gel SDS PAGE coloré au nitrate
d'argent (pourtant plus sensible qu’une coloration au bleu de Coomassie). De plus,
dans les données supplémentaires, on peut voir que la liaison du D1DR pour son
ligand dans les membranes est évaluée a 7,7 pmol/mg de protéine totale contre 590
fmol/mg apres purification dans les SMALPs, soit un enrichissement d’un facteur 0,1...
De méme, si la fonctionnalité des canaux KCNGQ1 et KCNH5 a été validée par
électrophysiologie sur cellule unique dans les cellules COS, il n’est pas fait mention
de ce type d'étude sur des SMALPs reconstituées en protéoliposomes par exemple.
Pour MPR4, peu d’informations sont disponibles quant a la conformation de la
protéine (seulement évaluée par des gels natifs) et aucune information n’est

disponible quant a sa fonctionnalité.
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4.3. Etudes structurales des SMALPs

4.3.1. L'état de 'art avant le commencement du projet

Au commencement de ce projet, les études structurales sur des protéines
purifiées en SMA sont rares. Elles incluent une structure obtenue par cristallographie
aux rayons-X et des structures obtenues par cryo-EM, sans doute la méthode la plus

efficace pour déterminer des structures de protéines membranaires en SMALPs.

En 2017, Broecker et collégues rapportent la premiére structure & 2,0 A obtenue
par LCP de la rhodopsine de Haloquadratum walsbyi*® isolée en SMALP. Depuis,

aucune autre structure de SMALPs n'a été déterminée par cristallographie.

A l'inverse, plusieurs études par microscopie électronique étaient déja publiées
avant le commencement de ce projet. La preuve de concept de la compatibilité des
SMALPs avec des études par cryo-EM fut publiée en 2014 avec la structure de la P-
glycoprotéine/ABCB1, & une résolution toutefois assez faible (35 A)?%¥’. Dans la foulée,
une structure du transporteur d'E. coli AcrB a 23 A fut déterminée par coloration
négative®”. Une autre structure de cette méme protéine fut ensuite résolue par cryo-
EM en 2018 par une autre équipe & de meilleurs niveaux de résolution (3,2 A)*%, Cette
étude a d'ailleurs permis de montrer pour la premiére fois que les SMA était capables
de retenir des lipides de la bicouche, du fait de la présence de 24 lipides dans la
particule. Une des avancées majeures dans |'étude des SMALPs par cryo-EM fut la
résolution pour la premiére fois du Complexe Alternatif lll (ACIIl) de Flavobacterium
johnsoniae, en 2018, a un niveau de résolution de 3,4 A, donnant des informations

sur les interactions protéine-protéine du complexe.

Ainsi, lors de I"élaboration de ce projet de thése aucune étude structurale a

basse résolution n’était disponible sur une protéine membranaire eucaryote.

4.3.2. Depuis 2019

Depuis ces 3 derniéres années, un plus grand nombre de structures de protéines
membranaires ont été publiées, mais toujours assez peu de structures de protéines
eucaryotes. Parmi les structures des protéines procaryotes étudiées en SMALPs par
microscopie électronique, on trouve par exemple |'étude sur ZipA, une protéine d'E.
coli, en interaction avec la protéine FtsZ*”, I'étude sur KimA, un transporteur de la
famille des KUP, dont une structure & 3,7 A a permis de proposer un modeéle pour le

mécanisme du transport du potassium?®?, |'étude sur le canal d'E. coli Ynal, extrait
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avec le polymere DIMBA soit des membranes de bactéries soit de protéoliposomes
et dont la structure a été résolue a 3,0 A3, |a premiere structure du transporteur AcrB
de la salmonelle résolue a 4,6 A3, |'étude de la cible antibactérienne PBP1b extraite
et purifiée en DDM puis reconstituée en SMA30010P et dont la structure a été résolue
43,3 A33, I'étude structurale du cytochrome bos; d’E. coli, résolu a 2,55 A, qui a montré
la présence de phospholipides et de d'ubiquinone-8 dans le site de liaison du
substrat®'*, ou encore |'étude du canal bactérien dépendant des ligands ELIC dont la
structure résolue 3 2,5 A a permis de révéler des détails inédits sur l'interface lipide-

protéine®™>.

Les structures de protéines membranaires eucaryotes incluent, par ordre
chronologique, la structure du canal de poulet ASIC1 (Acid-sensing ion channel 1) en
2020%¢, du canal humain TRPM43", du capteur mécanosensible de levure Wsc13'8, du

récepteur du poisson-zébre de la glycine?”? et du canal de plante SLAC1 en 20213".

La protéine ASIC1 du poulet a été exprimée dans des cellules de mammiféres
(HEK293S) et deux structures correspondant a deux états conformationnels du canal
(au repos et désensibilisé) ont été résolues par cryo-EM a 2,8 Aet3,7 A. Les données
obtenues sur |'architecture générale du canal sont similaires a celles précédemment
obtenues en détergent. Toutefois, pour la premiere fois, des données sur la partie N-
ter intracellulaire ont été découvertes grace a cette protéine purifiée en SMALP, ce
qui donne des renseignements sur la contribution de cette partie aminée dans les
mécanismes de perméabilité ionique de ce canal. De plus, les auteurs ont observé
des densités pouvant correspondre a des lipides autour du domaine
transmembranaire du canal, ce qui suggére que les SMA ont préservé les interactions
protéine-lipide, probablement importantes pour préserver la structure compléete de

cette protéine®'®.

Smith et collégues ont synthétisé des polymeéres de styrene et d’acide acrylique
nommés AASTY (polyacrylic acid co-styrene). Dans leur étude de 2020, ils montrent
que ce polymeére est efficace pour extraire le récepteur humain TRPM4, fusionné a la
GFP et produit en cellules de mammiferes (HEK293) pour former des nanodisques
natifs, a des niveaux d'efficacité comparables a ceux obtenus par |'extraction en
DDM/CHS. Toutefois, malgré la haute pureté aprés purification, I'échantillon s’est
révélé assez hétérogéne avec peu de particules a la morphologie attendue par
micrographe et la structure obtenue par cryo-EM est a une résolution assez faible

d’environ 18 A. Les classes 2D des particules les plus uniformes ont cependant montré
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de hautes similarités avec celles précédemment obtenues sur le canal reconstitué en

nanodisques®'’.

Le capteur de la paroi cellulaire Wsc1, crucial pour le maintien de I'intégrité des
levures et des champignons, a été étudié en solution pour la premiére fois apres avoir
été produit dans Saccharomyces cerevisiae et extrait par le SMA3000. Les
concentrations de protéines purifiées sont toutefois trés faibles car en dessous de la
limite de détection par Western-Blot et trop faible pour avoir des données de DLS
exploitables. De plus, les données structurales obtenues par coloration négative sont
de faible résolution et des parties entieres de la protéine restent sans structure
définie?'e.

Une étude parue en 2021 s’est focalisée sur une caractérisation structurale du
canal SLAC1 de la plante Brachypodium distachryon. La protéine a été produite chez
la levure Schizosaccharomyces pombe puis purifiée a I'aide de SMA. Les auteurs ont
obtenu une structure & 2,97 A ayant permis de mieux comprendre le mécanisme de
I'activation du canal par la phosphorylation de certains résidus. Les auteurs ont
également réalisé une caractérisation fonctionnelle par électrophysiologie du canal
d’'Arabidopsis thaliana exprimé dans des oocytes de Xenopus. Comme les auteurs le
soulignent dans leur papier, il aurait été intéressant que les études fonctionnelles aient

été réalisées sur le canal de la méme espéce que les études structurales®”.

Enfin les données structurales les plus completes obtenues a partir de SMALPs
sont sans doute celles publiées récemment sur le récepteur a la glycine. Les auteurs
ont étudié la structure de ce canal lorsqu'il est lié avec différents ligands, la glycine,
le GABA ou la taurine, et selon qu'il ait été directement extrait et purifié en SMALPs
ou reconstitué en nanodisques. De facon intéressante, cette étude montre que les
SMALPs permettent de voir, en présence de glycine, trois conformations différentes
du canal (ouvert, désensibilisé et ouvert-étendu) - ce qui est conforme aux données
d’électrophysiologie — a d'assez bons niveaux de résolutions de 2,9 A, 31Aetd4,0A
respectivement. A l'inverse, une seule structure du canal lié a la glycine a été obtenue,
celle a I'état désensibilisé du canal, suggérant que les lipides ou le nanodisque lui-
méme induisent un changement dans I"équilibre conformationnel du canal vers I'état
désensibilisé. De plus, les structures obtenues en présence d'agonistes partiels ont
montré une nouvelle conformation partiellement fermée du récepteur. Ainsi ces
différents états conformationnels de la protéine obtenus par I'étude des SMALPs

permettent de mieux comprendre le mécanisme de fonctionnement du récepteur®”.
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5. Présentation du projet

5.1. En quelques mots

Comme nous avons pu le mettre en évidence dans les différentes parties, de
nombreuses méthodes biochimiques, biophysiques et structurales nécessitent de
travailler avec des protéines purifiées. Les principaux facteurs clés de la réussite de
ces études sont la stabilité de la protéine et un état de repliement le plus natif
possible, dans un environnement le plus proche possible de la membrane native.
C'est dans cette optique que des alternatives aux détergents, qui répondent assez
mal aux criteres évoqués, se sont développées au fil des années. Parmi ces
alternatives, les copolyméres de styrene et d'acide maléique apparaissent comme
particulierement intéressants car ils permettent de s'affranchir totalement de
I'utilisation de détergents, a l'inverse d'autres techniques comme la reconstitution en
amphipols ou en nanodisques, et ils permettent d'isoler les protéines dans un

environnement lipidique natif.

L'utilisation de polymeéres de SMA pour I'étude de protéines membranaires est
en plein essor depuis une douzaine d'années mais se limite principalement a I'étude
de protéines procaryotes. Si quelques études sur des protéines eucaryotes sont
toutefois disponibles dans la littérature, elles sont parfois incomplétes ou avec des

données questionnables.

Le but de ce projet de thése est donc d'évaluer la capacité des polyméres de
SMA 3 extraire deux protéines membranaires eucaryotes modeles, produites dans le
systeme d’'expression Pichia pastoris et de mettre au point un protocole de
purification permettant d'obtenir un échantillon homogeéne. Par comparaison avec les
résultats obtenus pour la préparation de ces protéines modeles en présence de
détergents, il a ensuite pour objectif de caractériser finement la qualité des particules
purifiées (pureté, homogénéité, fonctionnalité) par différentes techniques
biochimiques et biophysiques avec, le cas échéant, des études structurales par cryo-

microscopie électronique.

5.2. La levure Pichia pastoris comme systéme d’expression

La levure Pichia pastoris est un systeme d’expression trés polyvalent*®, ayant

déja démontré son intérét pour la production de protéines membranaires eucaryotes.
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En effet, un grand nombre de protéines ont pu étre extraites des membranes de P.
pastoris, a des niveaux de quantité et de qualité compatibles avec de nombreuses
études moléculaires. On citera par exemple des études de criblage et de

caractérisation fonctionnelle des composés®*

-2 d'interactions avec et par d'autre
protéines??232-327 et lipides®?®3??, des études mesurant I'impact de mutations®¥33,
ainsi que de multiples études structurales et mécanistiques impliquant diverses

méthodes333-341,

Ce systeme d’expression est utilisé depuis plusieurs années sur la plateforme
IMPReSs, ou il a permis |'expression et la purification d'un large panel de protéines
membranaires ; de nombreux RCPG3**? comme le récepteur a I'adénosine A2A¥'343, le

récepteur a la mélatonine MT13%, |e récepteur a la dopamine D,*%

, le récepteur aux
opoides kappa®**, les récepteurs B2AR et CNR23% ; des canaux ioniques comme le
canal hERG** ou le canal potassique Kir2.1 (Zuniga et al., en préparation), en passant
par d'autres protéines membranaires comme le transporteur de cuivre hCTR1
(Publication 2) ; mais aussi des protéines secrétées comme des VHH*, des petits

peptides ou des enzymes (travaux non publiés).
5.3. Les protéines modéles
5.3.1. Le récepteur a I'adénosine A:A

5.3.1.1. L’adénosine et ses récepteurs

L'adénosine est un nucléoside purique endogene ubiquitaire qui module de
nombreux processus physiologiques comme |'activité neuronale — avec des fonctions
importantes telles que la modulation de la libération des neurotransmetteurs, la
plasticité synaptique, ou la neuroprotection lors d'évenements ischémiques,
hypoxiques et de stress oxydatif -, la fonction vasculaire ou 'adénosine produit soit
une vasoconstriction soit une vasodilatation des veines et des arteres, |'agrégation

347 Retrouvée sous

plaquettaire ou encore la régénération des cellules sanguines
différentes formes, notamment associée a un, deux ou trois phosphates pour former
I’AMP, I'ADP et I'ATP, elle est impliquée dans les voies clés du métabolisme

énergétique cellulaire. Sous forme d’AMPc, elle joue un réle clé de second messager.
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Figure 24. Structure chimique des ligands agonistes et antagonistes du récepteur A;A
utilisés au cours de ce projet. NECA : 5'-N-Ethylcarboxamidoadenosine, DPCPX :
Dipropylcyclopentylxanthine, XAC : Xanthine amine congener
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L'adénosine est produite a la fois de maniere intra et extracellulaire, par la
dégradation de I'ATP et de I'AMP en extracellulaire, et par conversion de la S-
adénosylhomocystéine ou de I'AMP en intracellulaire (Figure 25). Dans des conditions
physiologiques normales, les niveaux extracellulaires d’adénosine se situent entre 20
et 300 nM et peuvent s'élever a des niveaux micromolaires faibles dans des situations
physiologiques extrémes comme un exercice physique intense ou des faibles taux
d’oxygene voire des niveaux encore plus élevés dans des conditions pathologiques

comme |'ischémie3*8,

ADA
ATP 5-AMP Adenosing se—=p Inosine

Ji Figure 25. Métabolisme de
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La signalisation cellulaire par I'adénosine est médiée par l'intermédiaire de
quatre sous-types de RCPG : les récepteurs a I'adénosine A, A2A, A:B et Az, exprimés
dans plusieurs cellules et tissus de I'organisme. Ils se distinguent entre eux par leur
localisation en réponse a I'administration de molécules agonistes comme |'adénosine
et ses analogues ou antagonistes comme la caféine et autres méthylxantines (Figure
24). lls sont trés conservés chez les mammiferes ou ils ont des homologies de
séquence importantes, de 'ordre de 90 a 95 % entre les récepteurs de souris, du
cochon d’Inde, du chien et de 'Homme**. Dans le cadre de ce projet, nous

travaillerons sur le récepteur AZA.
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5.3.1.2. Localisation et réles physiopathologiques du récepteur A-A

Les récepteurs A2A sont présents dans de nombreux tissus a la fois au niveau
central et au niveau périphérique, majoritairement dans le striatum, le tubercule
olfactif et le systeme immunitaire, et a des niveaux plus faibles dans le cortex cérébral,
I'hippocampe, le cceur, les poumons et les vaisseaux sanguins. C'est d’abord en raison
de son réle clé dans l'inflammation que le récepteur A,A a suscité l'intérét de
I'industrie pharmaceutique. L'utilisation de différents agonistes a démontré
d'importants effets anti-inflammatoires sur les cellules impliquées dans les maladies
respiratoires comme |'asthme ou la bronchopneumopathie chronique obstructive
(BPCO)*?, sans toutefois qu'aucun médicament ne soit finalement approuvé®'. De
méme, le récepteur A2A jouent un réle dans les maladies cardiaques, notamment les

%2 Le regadenoson, un

arythmies, l'ischémie et I'hypoxie ou les crises cardiaques
agoniste sélectif du récepteur AA, a d'ailleurs été autorisé en 2008 comme
vasodilatateur coronaire pour la réalisation de scintigraphies myocardiques®:. Dans
le cerveau, le récepteur A;A co-localise avec d'autres RCPG, avec lesquels ils
s'associent pour former des hétérodimeres. lls sont en effet impliqués dans les
systémes dopaminergique, cannabinoide et glutamatergique, par leurs associations
avec le D,DR**, le CB1R** et le mGlus**. Ces récepteurs sont directement impliqués
dans des pathologies neurologiques comme la schizophrénie, I'hyperactivité ou la
maladie de Parkinson. Les récepteurs A;A sont donc des cibles thérapeutiques
majeures et de nombreuses molécules agonistes et antagonistes ont été
développées®*”. Une molécule, l'istradefylline, a d'ailleurs été approuvée au Japon en
association avec la L-DOPA dans le traitement de la maladie de Parkinson®*’. Elle a
toutefois été refusée par la FDA en raison d'un manque d’efficacité thérapeutique.
Enfin, les récepteurs sont surexprimés dans plusieurs lignées de cellules cancéreuses,
et ont été montrés comme stimulant la prolifération cellulaire, induisant I'angiogenese
en favorisant la prolifération des cellules endothéliales ou encore en inhibant les

lymphocytes T anti-tumoraux?>®.
Il apparait donc que le récepteur A,A est impliqué dans de nombreuses maladies
et que leurs potentiels thérapeutiques restent largement sous-exploités.
5.3.1.3. Le récepteur A2A comme modeéle d’étude

La structure du récepteur A2A a été résolue en 2008™ (Figure 26), il fait donc partie
des premiers RCPG étudiés par cristallographie aux rayons X aprés les récepteurs f3;

et B2 adrénergiques. La dynamique conformationelle du récepteur A,A est d'ailleurs,
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avec le récepteur adrénergique B2, I'une des plus étudiées de tous les RCPG, sans
doute grace a de nombreuses structures obtenues en conformation active ou
inactive® 3> Des détails de son mécanisme moléculaire d’activation sont
disponibles dans la revue'. Cette protéine a fait I'objet de nombreuses études in
vitro, notamment parce qu’elle a pu étre produite dans divers systémes d’expression

360

comme les cellules d'insecte Sf9%, la levure Saccharomyces cerevisiae®® ou encore

la levure Pichia pastoris (Publication 12%). Sa purification en détergents®, en

361

254 ou en liposomes®', a

ou reconstituée en nanodisques lipidiques®®

polymeres
permis de réaliser différentes études biochimiques, notamment de fixation de ligands
par radioactivité, SPR ou SPA ; biophysiques comme par spectrométrie de masse, ITC,
SAXS ou CD*?; ou encore le criblage de fragments par RMN-STD (résonance
magnétique nucléaire de différence de transfert de saturation)®' ou par

chromatographie frontale de faible affinité’.

Lipids (1-5)
ZM241385

.......

Membrane
bilayer

}
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Figure 26. Structure cristalline du récepteur a I'adénosine A2A en complexe avec le
ZM241385. La partie transmembranaire de la protéine est coloré en marron; les boucles
extracellulaires (ECL) en vert, les boucles intracellulaire (ICL) en bleu foncé, le domaine de
fusion T4L en bleu clair, le pont disulfure en jaune, le ZM241385 en bleu et les lipides en
rouge.”
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5.3.2. Le canal calcique TRPV4

5.3.2.1. Généralités sur les canaux TRPV

L'une des six sous-familles des canaux TRP inclut les canaux TRPV, au nombre
de 6 (TRPV1 a TRPVé). lls contiennent sept domaines hydrophobes dont six traversent
la membrane plasmique (S1-S6), le septieme domaine ainsi que les extrémités N- et
C-terminales étant situés de maniére intracellulaire. Les canaux TRPV ont été
largement étudiés en raison de la sensibilité a la chaleur et a la capsaicine (une
molécule similaire a la vanilline, que I'on retrouve dans les piments) de son membre
fondateur, le canal TRPV1, qui a d'ailleurs donné son nom a la famille. Les canaux
TRPV1 a 4 sont des canaux cationiques non sélectifs tandis que les canaux TRPV5 et

6 sont hautement sélectifs pour le calcium.

5.3.2.2. Localisation et réles physiopathologiques du canal TRPV4

A l'image de I'ensemble des canaux TRP, TRPV4 est exprimé dans de nombreux
organes et types cellulaires comme le systeme nerveux central et périphérique, le
ceeur, le foie, les reins, la vessie, les testicules, la peau, les os, les vaisseaux sanguins,
ou encore la cochlée. Ce canal est donc impliqué dans un large nombre de processus
physiologiques et pathologiques dont nous donnerons ici quelques exemples. TRPV4
joue un réle important dans la détection et la réponse aux changements osmotiques
et dans la mécanosensation. De méme, comme les autres canaux de sa famille, TRPV4
est impliqué dans la sensation de la chaleur. Il répond a des températures chaudes
non nocives (supérieures a 27°C) ce qui laisse penser qu'il pourrait jouer un réle dans
la thermorégulation normale. Comme d’autres canaux TRP, TRPV4 est impliqué dans
la douleur et I'inflammation. Différentes molécules inflammatoires peuvent affecter
I'expression et la signalisation de TRPV4. Son réle dans l'inflammation a beaucoup
été lié a la protéine PAR2 (Protease-activated Receptor 2) mais aussi a I'histamine et
la sérotonine. Ce phénomeéne inflammatoire serait également impliqué dans les
maladies gastro-intestinales, alors que TRPV4 est largement exprimé dans |'ensemble
du tractus gastro-intestinal. De méme, TRPV4 est retrouvé dans les tissus des voies
respiratoires et dans plusieurs types de cellules immunitaires qui jouent un réle
important dans la fonction pulmonaire. Ainsi, TRPV4 est impliqué dans un large
éventail de fonctions et de processus pathologiques des poumons et des voies
respiratoires comme la toux, I'asthme, la BPCO ou encore la mucoviscidose. Enfin,

TRPV4 a un réle clé dans la fonction de la vessie, ou il est exprimé dans |'urothélium
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et dans le muscle détrusor. Des revues plus détaillées sur les différents réles

363,364

physiopathologiques de TRPV4 sont disponibles dans la littérature

Ainsi, le potentiel thérapeutique de TRPV4 dans un grand nombre de maladies
semble assez probant. Alors qu’une molécule, l'inhibiteur GSK2798745, administrée
chez des patients souffrant d'insuffisance cardiaque et deux autres molécules contre
I'cedéme pulmonaire sont en phase d'étude clinique, aucun médicament ciblant
TRPV4 n’est a ce jour disponible. En effet, en raison de son expression tres répandue
et de la multitude d'effets dans tout I'organisme, son activation ou son inhibition

peuvent poser des problemes en matiere de sécurité.

5.3.2.3. Etudes fonctionnelles et structurales de TRPV4

Le canal TRPV4 a été décrit en détail des 2000. Il a été caractérisé comme un
canal régulé par le volume en raison de sa sensibilité osmotique et de sa sensibilité
au gonflement cellulaire®*>. D'un point de vue fonctionnel, de nombreuses études ont
été réalisées sur des souris, notamment des souris knock-out pour TRPV43¢33¢4 et ont
permis d'identifier le role de ce canal dans divers processus physiologiques décrits
plus haut. Ce canal est activé par divers stimuli comme le gonflement des cellules, les
forces de cisaillement, la chaleur modérée ou encore diverses molécules chimiques
comme les dérivés d’esters de phorbol et endogénes comme I'acide arachidonique,
les métabolites dérivés du cytochrome P450, ou les endocannabinoides®*¢. Comme
tous les canaux ioniques, TRPV4 peut étre étudié par électrophysiologie. A titre
d'exemple, une étude par voltage-clamp sur des spermatozoides entiers associée a
des études sur la sensibilité a la température ont permis de montrer que TRPV4 est
exprimé de maniere fonctionnelle dans les spermatozoides et assure la dépolarisation

de la membrane dans le sperme humain®’.

D'un point de vue structural, TRPV4 est un canal cationique non sélectif,
modérément perméable au calcium. Il s'assemble en un tétramére homo-dimérique,
avec six segments transmembranaires par monomere, comme tous les canaux TRPV.
Ce canal, comme les autres TRPVs, est caractérisé par la répétition de six motifs
d'ankyrine du c6té N-terminal, qui sont essentiels pour le fonctionnement du canal et
pour les interactions protéine-protéine. La structure de TRPV4 du Xenopus tropicalis
a été résolue en 2018 & une résolution de 3,8 A par cryo-EM?**? comme la majorité des
canaux TRP (Figure 27). La structure a été obtenue a partir d'un construit tronqué au

niveau des extrémités C- et N-terminale, construit permettant toutefois |'activation du
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canal par un agoniste spécifique, comme des expériences de flux de rubidium et de

patch clamp I'ont montré.

Cette structure a révélé que les domaines S1 a S4 sont organisés différemment
par rapport aux canaux TRPV1, TRPV2 et TRPVé6, dont les structures avaient
préalablement été obtenues. La réorientation de ces domaines géneére une interface
unique entre les domaines S1-S4 et le pore central du canal, suggérant des

mécanismes d’'ouverture du canal distincts.

TRPV4 apparait donc comme un bon candidat modele pour la réalisation

d’'études structurales, notamment par cryo-EM.

5.4. La stratégie mise en ceuvre

Pour ce projet, nous avons donc décidé de travailler a |'aide de deux protéines
modéles, 'une comme modéle d’'étude fonctionnelle des SMALPs — AA — et 'autre
pour des études structurales — TRPV4, en comparaison avec des données obtenues

en détergent.

Dans un premier temps, il s'agit d'établir des procédures de purification en
détergent robustes pour les deux protéines. Si de telles procédures sont déja bien
établies et maitrisées au laboratoire dans le cas du récepteur A;A, ce n’est pas le cas
pour la protéine TRPV4. Une premiére partie du travail a donc consisté a prendre en
main le protocole de purification de A;A, en y apportant quelques modifications afin
d’augmenter les rendements, et a mettre au point un protocole robuste de
purification pour TRPV4. Ce dernier sera étudié par des approches structurales, plus

particulierement par cryo-EM.

Ensuite, la seconde partie du projet consiste a tester différents polymeres afin
d'évaluer leur efficacité a extraire ces deux protéines des membranes de la levure.
Les polymeéres les plus efficaces seront utilisés pour purifier les protéines en mettant

au point un protocole de purification.

Enfin, la derniére partie du projet se consacre a |'évaluation des propriétés des
SMALPs purifiés en comparaison avec les protéines en détergent. Dans le cas de AzA,
du fait des nombreux ligands disponibles et d'une caractérisation pharmacologique
déja bien établie dans différents systemes mimétiques de membranes (détergents et
nanodisques), le travail se focalisera sur une caractérisation fonctionnelle des
récepteurs et plus particulierement sur la capacité du récepteur a lier différents

ligands agonistes et antagonistes. Pour TRVP4, la caractérisation des particules sera
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effectuée plutdt par des approches structurales, en comparaison avec celles

effectuées sur la protéine en détergent.

Les procédures de production et de purification développées au laboratoire et
au cours de cette thése ont fait I'objet de la publication d’un article de protocoles
(Publication 1), annexé a partir de la page 179. De méme, j'ai été associée a la mise
au point d'un protocole de purification et de reconstitution en liposomes d'un
transporteur de cuivre pour lequel un article de protocoles est sous presse et devrait
étre disponible trés prochainement (Publication 2), annexé a partir de la page 181.
Enfin, sans lien avec ce travail de thése, j'ai analysé des complexes protéiques par gel
filtration analytique dans le cadre d'une collaboration avec une chercheuse de I'UMR
7242 et les résultats obtenus ont été intégrés dans un article de recherche (Publication

3, annexée a partir de la page 183).
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1. Préparation des protéines membranaires

1.1. Expression des PMs dans la levure Pichia pastoris

Les séquences codant pour les protéines d'intérét a surexprimer sont clonées
dans le plasmide pPICK (Invitrogen) selon le protocole déja décrit**2. La souche de
Pichia pastoris SMD1163 (his4, pep4, prb1)® est transformée de maniére stable par
transformation intégrative. Les clones recombinants sont sélectionnés de par leur
résistance a la généticine et la restauration de |'auxotrophie de I'histidine ainsi que
selon leur niveau d'expression de la protéine d'intérét, comme décrit
précédemment®*%3?. Les clones recombinants sont stockés a — 80°C dans un milieu
YEP glycérolé (10 g/L extrait de levure, 20 g/L peptone, 20 g/L glucose avec 20 %
(v/v) de glycérol).

Les clones sont déstockés stérilement sur un milieu gélosé YPG agar sans
antibiotique (10 g/L extrait de levure, 20 g/L peptone, 20 g/L glucose, 20 g/L agar)
puis incubés 24 h a 30 °C. Une colonie est ensuite repiquée sur un milieu gélosé YPG
agar additionné de 50 pg/mL de généticine pendant 48h a 30 °C. Les levures sont
utilisées pour inoculer 500 mL de milieu BMGY (10 g/L extrait de levure, 20 g/L
peptone, 13,4 g/L source d'azote YNB sans acides aminés, 10 % (v/v) glycérol, 0,1 M
tampon phosphate KPi a pH 6) dans un erlenmeyer a ailettes de 2,5 L. La préculture
est incubée toute la nuit a 30 °C sous agitation (220 rpm). Le lendemain, la préculture
est diluée dans du BMGY pour atteindre une densité optique a 600 nm (ODso) de 2,5
puis est incubée a nouveau a 30 °C sous agitation jusqu’a atteindre une ODeoo
d’environ 10. Les cellules sont alors récupérées stérilement par centrifugation (4 000
g pendant 5 min, température ambiante). Les culots sont resuspendus dans 2 fois le
volume initial de milieu BMMY (10 g/L extrait de levure, 20 g/Lpeptone, 13,4 g/LYNB,
0,5 % (v/v) méthanol, 0,1 M tampon phosphate KPi a pH 6), soit une ODeoo d’environ
5, afin d'induire la production de protéines. Dans le cas de la protéine AA, le milieu
BMMY est additionné de 2,5 % (v/v) DMSO et de 1 uM de ZM-241385 (ligand
antagoniste). La culture est incubée a 22 °C sous agitation (220 rpm) pendant 18 a 20
h. Les cellules sont récoltées par centrifugation (4000 g, 5 min a température
ambiante) puis lavées 2 fois dans du tampon PBS (1,37 M NaCl, 27 mM KCI, 100 mM

¢ Cette souche est auxotrophe pour ['histidine (le gene his4 codant pour ['histidinol
déshydrogénase présente une mutation) et est déficiente pour les protéases endogénes codées par
les génes pep4 et prb'
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Na,HPO,, 17,6 mM KH,PO4). Chaque culot d’environ é a 7 g correspondant a 250 mL
de culture est stocké dans un tube de 50 mL a - 80 °C ou est utilisé directement pour

procéder a la préparation des échantillons membranaires.

1.2. Préparation des membranes totales de levures de Pichia pastoris

Afin de limiter l'action des protéases, I'ensemble des manipulations sont
réalisées dans la glace. Chaque culot (6 a 7 g) est resuspendu dans 25 mL de tampon
de TNGE (50 mM Tris pH 7,4, 0,5 M NaCl, 10 % glycérol, 1 mM EDTA, 1 mM PMSF
ajouté extemporanément) puis additionné de 10 mL de microbilles de verre de 0,5
mm (Sigma). Les cellules sont lysées mécaniquement avec un homogénéiseur
(FastPrep 24, MP Biomedicals), par 3 cycles alternant 40 secondes d'agitation a vitesse
maximale (6 m/s) et 40 secondes de refroidissement sur glace. Le lysat contenant les
membranes est récupéré par une centrifugation a 4 000 g pendant 5 min a 4°C tandis
que les cellules non lysées et débris cellulaires sont repris dans 15 mL de tampon
TNGE pour un nouveau cycle de lyse. Au total 3 cycles sont nécessaires pour lyser les
levures de maniére optimale. Les lysats obtenus a chaque cycle sont ensuite
regroupés, centrifugés 5 min a 4 000 g a 4 °C pour enlever les derniers débris puis
ultracentrifugés 30 min a 100 000 g a 4 °C. Les culots contenant les fractions
membranaires totales sont pesés afin de déterminer la masse membranaire, puis ils
sont récupérés et resuspendus par homogénéisation au potter dans du tampon TNG
(50 mM Tris pH 7,4, 0,5 M NaCl, 10 % glycérol, 1 mM PMSF ajouté extemporanément)
a raison de 45 mL de tampon pour 4 culots de levures (soit I'équivalent d'1 L de
culture). Les préparations de membranes sont aliquotées par 10 mL dans des tubes
de 15 mL puis stockées a -80 °C.

On distinguera la concentration massique en membranes qui correspond a la
masse de membranes, de la concentration protéique, qui correspond a la quantité de
protéines totales dans les préparations de membranes. Les volumes indiqués
permettent d'obtenir des préparations de membranes dont la concentration
protéique est d’environ 10 mg/mL et dont la concentration massique en membranes

est d’environ 150 mg/mL.

103



1.3. Extraction et purification des protéines a |'aide de détergents

Les procédures préalablement développées au laboratoire pour la solubilisation
et la purification de la protéine A2A ont été légérement modifiées afin d’améliorer le
rendement de protéines purifiées. Le récepteur est extrait et purifié dans des micelles
mixtes de détergent et de CHS (Anatrace) dans un ratio massique 10 : 1, en présence
d'un ligand antagoniste, le DPCPX, non maintenu lors de la purification pour ne pas

interférer dans les études d’interaction ligand/récepteur réalisées ensuite.

Contrairement a la protéine A2A, aucun protocole de référence n’était établi au
laboratoire pour la purification de la protéine TRPV4. Un criblage de quelques
détergents les plus fréquemment utilisés a donc été réalisé et différentes conditions
de tampons, de détergents et de leur concentration ont été testés pendant la

purification afin d’optimiser les résultats obtenus par microscopie électronique.

1.3.1. Criblage de détergents

La solubilisation de TRPV4 est testée en présence de différents détergents a une
concentration finale de 1 % (w/v). Le tampon de solubilisation est composé de 50 mM
Tris HCl pH 7,4 et de 500 mM NacCl, le tout dans un volume réactionnel de 1 mL pour
une concentration finale en protéines de 2 mg/mL. Le mélange est incubé 30 minutes
a température ambiante sur un dispositif rotatif puis les protéines solubilisées sont
récupérées dans le surnageant apres ultracentrifugation pendant 30 min a 100 000 g
et a 4 °C. Le culot résiduel est resuspendu dans 1 mL de tampon de solubilisation
sans détergent. Des fractions de 15 pL d’extrait soluble et du culot resuspendu sont
déposées sur un gel SDS-PAGE, transférés sur membrane de nitrocellulose et révélés
comme décrit au paragraphe « 2.2 Electrophorése en condition dénaturante (SDS-

PAGE) et immunodétection ».

1.3.2. Solubilisation

La composition des tampons utilisés pour la totalité de la procédure de

purification est détaillée dans le Tableau 6.

Les préparations membranaires sont diluées a 2 mg/mL dans un tampon de
solubilisation. La suspension est incubée pendant 30 minutes a température ambiante
sous agitation douce puis les protéines solubilisées sont récupérées apres

ultracentrifugation pendant 30 minutes a 100 000 g, a 4°C. Le surnageant est
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additionné de 25 mM (TRPV4) ou 30 mM (AzA) d'imidazole puis est filtré sur un filtre

de 0,22 ym avant d'étre chargé sur une colonne de nickel.

Tableau 6. Composition des tampons de purification en détergent pour A2A et
TRPVA4.

50 mM HEPES pH 7,4, 500 mM NaCl, 0,5 %/ 0,05 %
Solubilisation DDM/CHS, 1 uM DPCPX, 0.3 mM EDTA, 1 tablette de
cocktail d'inhibiteur de protéases/100 mL de tampon
50 mM HEPES pH 7,4, 500 mM NaCl, 0,05 %/ 0,005 %

Tampon A DDM/CHS, 30 mM imidazole
Tampon B 50 mM HEPES pH 7,4, 500 mM NaCl, 0,05 %/ 0,005 %
DDM/CHS, 500 mM imidazole
50 mM HEPES pH 7,4, 150 mM NaCl, 0,02 %/ 0,002 %
Tampon GF

DDM/CHS

50 mM Tris HCl pH 7.4, 500 mM NaCl, détergent (DDM ou
Solubilisation LMNG) 0,5%/0,05 % CHS, 1 tablette de cocktail
d'inhibiteur de protéases/100 mL de tampon.

50 mM Tris HCl pH 7,4 500 mM NaCl, détergent, 25 mM

T A
ampon imidazole
50 mM Tris HCl pH 7,4, 500 mM NaCl, détergent, 500 mM
Tampon B e
imidazole

Tampon GF 50 mM Tris HCI, 150 mM NaCl, détergent

1.3.3. Chromatographie d’affinité sur nickel

Les protéines sont purifiées grace a leur tag histidine sur une colonne de nickel
(HisTrapHP 1 mL, Cytiva) montée en série sur un automate de purification (AKTA Pure,
Cytiva). La colonne est préalablement équilibrée avec 10 volumes de colonne (CV) de
tampon A puis le solubilisat est chargé sur la colonne a un débit de 1 mL/min. Aprés
le chargement, la colonne est lavée avec 10 CV de tampon A pour éliminer les
protéines non ou faiblement retenues sur la colonne. Pour A2A, les protéines sont
éluées par une stratégie mélant un gradient de 0 a 24 % de tampon B pendant 6 CV
puis un plateau a 24 % de tampon B pendant 5 CV suivi d'un palier a 100 % de tampon
B pendant 10 CV. Pour TRPV4, différents détergents a différentes concentrations ont
été testés pour optimiser la purification. lls seront précisés au cas par cas. Pendant la
purification, les protéines sont éluées par un premier palier a 30 % de tampon B

pendant 10 CV puis un palier a 100 % de tampon B pendant 10 CV. De plus, dans
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certains cas, les tampons ont été additionnés de lipides (0,1 mg/mL POPC:POPG a
un ratio 3 :2) et/ou de ligand (1 uM GSK2193874).

Les fractions d'intérét de 500 pL sont soit rassemblées et concentrées par
centrifugation sur filtre (Vivaspin, seuil de coupure (MWCO) 50 kDa, Sartorius) a une
vitesse maximale de 2 000 g, soit directement purifiées par chromatographie

d’exclusion stérique.

1.3.4. Chromatographie d’exclusion stérique

Les échantillons issus de chromatographie d'affinité sont purifiés par
chromatographie d’exclusion stérique sur une colonne Superdex 200 Increase 10/300
GL, (Cytiva) montée sur un automate de purification (AKTA FPLC, Cytiva). La colonne
est équilibrée avec 30 mL de tampon GF puis I'échantillon est injecté sur la colonne
par une boucle d'injection et les protéines sont éluées dans le méme tampon a un
débit de 0,3 mL/mL. Des fractions de 0,5 mL sont récoltées par le collecteur

automatique et I'absorbance a 280 nm est suivie tout au long de la purification.

1.4. Extraction et purification des protéines a l'aide de polyméres

amphiphiles

1.4.1. Préparation des polyméres

Les SMA et dérivés proviennent d'un don de Cray Valley. lls sont hydrolysés a
NovAliX selon le protocole décrit®”°. lls sont resuspendus dans un tampon 25 mM Tris
pH 8 juste avant d'étre utilisés. Le SMA-ED est synthétisé a NovAliX a partir du SMA

2000 selon le protocole décrit par Ravula et collegues?*.

Les CyclAPols proviennent du Laboratoire de Biologie Physico-Chimique des
Protéines Membranaires (Paris) ou ils sont préparés selon le protocole décrit?’. lls sont

resuspendus dans de I'eau a 20 mg/mL juste avant d'étre utilisés.

1.4.2. Criblage des polymeres

Différents types de polymeres ont été testés lors de ce projet : des polymeéres
de SMA et dérivés (les SMA 2000, SMA 3000, SMA 1440, SMA-ED, DIBMA, et XIRAN)
et des amphipols de nouvelle génération (les CyclAPols C¢-C5-50 et Cs-Co-50).

La solubilisation des protéines est testée en présence de différents SMA et
dérivés a une concentration finale de 2,5 % (w/v). Le tampon de solubilisation est
composé de 20 mM Tris HCl pH 8 et de 500 mM NaCl (150 mM NaCl pour le SMA
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1440, qui précipite a 500 mM de NaCl), le tout dans un volume réactionnel de 1 mL

pour une concentration massique finale en membranes de 30 mg/mL.

Pour les CyclAPols, les tests de solubilisation sont effectués dans le méme
tampon, avec différents ratios protéines : polyméres (m/m), le tout dans un volume

réactionnel de 1 mL avec une concentration protéique finale de 2 mg/mL.

Dans chaque cas, le mélange est incubé 1 h a température ambiante sur un
dispositif rotatif puis les protéines solubilisées sont récupérées dans le surnageant
apres ultracentrifugation pendant 30 min a 100 000 g et a 4 °C. Le culot résiduel est
resuspendu dans 1 mL de tampon de solubilisation sans polymeére additionné de 1 %
de SDS pour aider a la resuspension du culot. Des fractions de 15 pL d’extrait soluble
et du culot resuspendu sont déposées sur un gel SDS-PAGE, transférées sur
membrane de nitrocellulose et révélées comme décrit au paragraphe « 2.2

Electrophorése en condition dénaturante (SDS-PAGE) et immunodétection ».

1.4.3. Solubilisation par les SMA

La composition des tampons pour la totalité de la procédure de purification par

les polymeres est détaillée dans le Tableau 7.

Tableau 7. Composition des tampons pour la purification des protéines par les
polymeres.

50 mM HEPES pH 8, 500 mM NaCl, 2,5 % (m/v) SMA, 1 uM
DPCPX, 0.3 mM EDTA, 1 tablette de cocktail d'inhibiteur de
protéases/100 mL de tampon

50 mM Tris-HCI pH 8, 500 mM NaCl, 2,5 % (m/v) SMA, 1

Solubilisation
ALA

Solubilisation

tablette de cocktail d'inhibiteur de protéases/100 mL de

TRPV4

tampon
Tampon A 50 mM HEPES/Tris pH 8, 500 mM NaCl, 25 mM imidazole
Tampon B 50 mM HEPES/Tris pH 8, 500 mM NaCl, 500 mM imidazole

Solubilisation

50 mM HEPES pH 8, 500 mM NaCl, 2 mg/mL C¢-C2-50, 1 uM
DPCPX, 0.3 mM EDTA, 1 tablette de cocktail d'inhibiteur de
protéases/100 mL de tampon.

Tampon A 50 mM HEPES pH 8, 500 mM NaCl, 25 mM imidazole
Tampon B 50 mM HEPES pH 8, 500 mM NaCl, 500 mM imidazole
Tampon A 50 mM HEPES pH 8, 150 mM NaCl

Tampon B 50 mM HEPES pH 8, 150 mM NaCl, 100 ug/mL peptide flag
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Les préparations membranaires sont diluées a 30 mg/mL (concentration
massique) dans un tampon de solubilisation soit un volume final de 30 mL pour une
expérience type ou 100 mg de protéines totales sont mises en jeu. La suspension est
incubée pendant 1 h a température ambiante sous agitation douce puis les protéines
solubilisées sont récupérées apres ultracentrifugation pendant 30 minutes a 100 000
g, a 4 °C. Le surnageant est additionné de 25 mM d'imidazole puis est filtré sur un

filtre de 0,22 uym avant d'étre chargé sur une colonne de nickel.

1.4.4. Solubilisation par le CyclAPol C6-C2-50

Les préparations membranaires sont diluées a 2 mg/mL (concentration
protéique) dans un tampon de solubilisation soit un volume final de 50 mL pour une
expérience type ou 100 mg de protéines totales sont mises en jeu. La suspension est
incubée pendant 1 h a température ambiante sous agitation douce puis les protéines
solubilisées sont récupérées apres ultracentrifugation pendant 30 minutes a 100 000
g, a 4 °C. Le surnageant est additionné de 25 mM d’imidazole puis est filtré sur un

filtre de 0,22 ym avant d'étre chargé sur une colonne de nickel.

1.4.5. Chromatographie d’affinité sur nickel (IMAC)

Comme décrit précédemment, les protéines sont purifiées grace a leur tag
histidine sur une colonne de nickel (HisTrapHP 1 mL, Cytiva) montée en série sur un
automate de purification (AKTA Pure, Cytiva). La colonne est préalablement
équilibrée avec 10 volumes de colonne (CV) de tampon A puis le solubilisat est chargé
sur la colonne a un débit de 0,5 mL/min. Aprés le chargement, la colonne est lavée
avec 10 CV de tampon A pour éliminer les protéines non ou faiblement retenues sur
la colonne. Les protéines sont éluées par un premier palier a 4 % (A2A) ou 8 % (TRPV4)
de tampon B pendant 10 CV puis un palier a 100 % de tampon B pendant 10 CV. Les
fractions d'intéréts de 500 pL sont ensuite soit analysées directement ou purifiées par
une 2°™ étape de purification sur un gradient de glycérol, par gel filtration ou par une

chromatographie sur une résine anti-flag.

1.4.6. Chromatographie d’affinité sur résine anti-flag

Une deuxiéme chromatographie d'affinité sur une résine anti-flag est réalisée
quand cela est mentionné. 1 mL de résine M2 anti-flag est lavé avec 10 mL d’eau puis
avec 3 fois 10 mL de tampon A avant d’étre conditionné dans une colonne Tricorn
5/50 (Cytiva). La colonne est ensuite montée en série sur un automate de purification

(AKTA Pure). Les protéines purifi¢es issues de I'lMAC sont injectées sur la colonne. La
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fraction non retenue (flow-through, FT) est collectée dans des fractions de 1 mL et la
colonne est lavée avec 10 CV de tampon A. Les protéines sont ensuite éluées avec
du tampon B dans des fractions de 500 pL. Les différentes fractions d'intérét sont

analysées par SDS-PAGE et Western-Blot.

1.4.7. Séparation sur gradient de glycérol

Pour améliorer la pureté de |'échantillon apres la chromatographie d'affinité, une

stratégie de séparation des particules sur un gradient de glycérol a été envisagé.

Les tampons sont constitués de 50 mM Tris-HCI pH 8, 150 mM NaCl et de
différentes concentrations décroissantes de glycérol déposées successivement dans
un tube adapté de maniere a former un gradient de composition choisie. Environ 450
uL d’échantillon sont chargés en haut du gradient. Les tubes sont ultracentrifugés
pendant 16 h a 4 °C dans un rotor SW 60 ou SW 41, a 40 000 rpm. Apres
I'ultracentrifugation, des fractions de 1 mL ou de 200 pL sont récupérées délicatement
a la pipette en partant du haut du tube. Ces fractions sont analysées par SDS-PAGE.
Les plus intéressantes sont rassemblées, éventuellement flash-congelées dans |'azote

liquide et conservées a -80°C, pour étre analysées plus tard.

1.4.8. Dialyse et concentration des échantillons

Quand cela est précisé, les échantillons sont chargés dans une cassette de
dialyse Slide A Lyzer 10 000 MWCO (Thermo Fisher) préalablement hydratée pendant
5 min dans du tampon. Ils sont ensuite dialysés contre 750 mL de tampon 50 mM Tris
pH 8, 150 mM NaCl pendant 2 h a RT puis pendant 16 h a 4°C contre 1 L de tampon
renouvelé. Les échantillons sont ensuite concentrés sur un concentrateur Vivaspin 500
10 000 MWCO (Sartorius).
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2. Analyses biochimiques

2.1. Dosage protéique/Quantification des protéines

La concentration en protéines des membranes est déterminée par un dosage
colorimétrique basé sur une réaction a l'acide bicinchoninique (BCA ; BCA Protein
Assay Kit, Pierce). L'échantillon, dilué au 20°™ dans du tampon TNG, est dosé contre
une gamme étalon de BSA (7 points de 0 pg a 20 pg de protéines). 1 mL de réactif
est ajouté a 50 pyL d'échantillon dilué et le tout est incubé 30 min a 37 °C avant lecture
a 562 nm. La concentration protéique des membranes est calculée par rapport a la

gamme étalon de BSA.

Pour les protéines purifiées en détergent, la concentration est déterminée par
mesure de |'absorbance a 280 nm par un NanoDrop™ 2000 (Thermo-Fisher). La
concentration est ensuite calculée selon la loi de Beer-Lambert: A,gonm =
€ X I X C, oU Aygonm est I'absorbance a 280 nm, ¢ est le coefficient d'extinction
molaire en L/mol/cm, [ est la longueur du trajet optique en cm et C la concentration

molaire en mol/L.

Pour les protéines purifiées en SMA, la concentration est déterminée par analyse
densitométrique de l'intensité des bandes sur un gel SDS-PAGE. Une droite
d’'étalonnage est réalisée a partir de protéines purifiées en détergent et dont la
concentration est connue (déterminée par mesure a 280 nm). Les analyses de

densitométrie sont réalisées grace au logiciel ImageJ.

2.2. Electrophorése en condition dénaturante (SDS-PAGE) et

immunodétection

Les échantillons protéiques sont mélangés dans un volume équivalent dans du
tampon de charge (100 mM Tris HCI pH 6,8, 25 % glycérol, 8 % SDS, 0,2 g/L Bleu
brillant de Coomassie G250, 200 mM DTT) puis chargés dans un gel de
polyacrylamide Tris-Tricine a 10 %. Le gel de séparation est composé de 10 % (v/v)
d'acrylamide:bisacrylamide 29:1, 0,8 M Tris HCl pH 8,45 - 0,08 % (v/v) SDS, 10 % (v/v)
de glycérol, 0,15 % (m/v) d’APS et 0,06 % (v/v) de TEMED et le gel de concentration
est composé de 4 % (v/v) d'acrylamide:bisacrylamide 29:1, 0,8 M Tris-HC| pH 8,45 -
0,08 % SDS, 0,15 % (m/v) d'APS et 0,09 % (v/v) de TEMED. Les protéines sont
séparées par un courant électrique a 100 V pendant environ 1h30 dans un tampon de
migration Tris-Tricine (100 mM Tris HCl pH 8,3, 100 mM Tricine, 0,1 % SDS). La taille
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apparente des protéines est déterminée grace a un marqueur de poids moléculaire
coloré et déposé en paralléle des échantillons (PageRuler™ Prestained Protein
Ladder, Thermo Scientific). Les protéines sont alors colorées au bleu de Coomassie
(Quick Coomassie Stain, Generon) ou transférées sur une membrane de nitrocellulose
(0,45 pm Protran, Amersham) pour une révélation par immunodétection. Dans ce cas,
le transfert des protéines est réalisé pendant environ 1Th30 par |'application d’un
courant de 100 V dans un tampon Tris-glycine (25 mM Tris base, 200 mM glycine,
0,02 % SDS, 20 % éthanol). La membrane est ensuite incubée pendant 1 h dans un
tampon de blocage (PBS, 0,02 % Tween 80, 5 % (m/v) lait) puis incubée pendant 1 h
avec |'anticorps primaire approprié (cf Tableau 8 pour les anticorps utilisés) dilué dans
le tampon de blocage. Apres trois lavages de 5 min dans du tampon PBST (PBS, 0,02
%, Tween 80), la membrane est incubée pendant 1 h dans |'anticorps secondaire
couplé au fluorochrome DyLight® 488. Les protéines biotinylées sont révélées gréace
a une heure d'incubation avec de I'ExtrAvidin-HRP diluée a 1/1000 (v/v) dans du
tampon de blocage. La membrane est lavée 3 fois pendant 5 min dans du tampon
PBST avant d'étre révélée, selon le couplage de I'anticorps secondaire, soit sur un
scanner Odyssey (Li-Cor) pour les anticorps couplés au fluorochrome, soit par

chimiluminescence pour les anticorps couplés a la HRP (kit SuperSignal™ West Pico

PLUS Chemiluminescent Substrate, Thermo Scientiﬁcm) et visualisées sur une caméra
Amersham Imager 680 (GE Healthcare).

Tableau 8. Liste et caractéristiques des anticorps utilisés

Anti-HIS Mouse Penta-his antibody 1:10000 Qiagen

Anti-FLAG Mouse monoclonal Anti-FLAG® M2 1:2000 Sigma-Alrich

Anti-souris-Dylight 488 Goat anti-mouse antibody DyLight® 1:10000 Bethyl Laboratories
488 Conjugated

Avidine-HRP ExtrAvidin®-Peroxidase 1:1000 Sigma-Alrich
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2.3. Test de liaison de radioligand (récepteur A2A)

2.3.1. Courbes de saturation

Les courbes de saturation sont réalisées a |'aide d'une gamme de concentration,
généralement de 5 & 150 nM ou 200 nM, du ligand antagoniste tritié [*H]-ZM241385
(American Radiolabeled Chemicals). Une concentration de 10 uM de ligand froid
CGS15943 (Tocris) est utilisée pour mesurer la liaison non spécifique. Les échantillons
sont dilués a une quantité finale de 100 ng par puits pour les protéines purifiées et 10
ug par puit pour des échantillons membranaires dans un tampon 50 mM Tris-HCI pH
8,2 mM MgCl;, 1 mM EDTA pour les SMALPs purifiés et dans un tampon 50 mM Tris-
HCl pH 8, 10 mM MgClz, 1 mM EDTA, 0,05%/0,005% DDM/CHS pour les protéines
purifiées en détergent. Dans une plaque 96-puits, 80 pL d’échantillon additionnés de
10 pL de tampon et 10 pL de radioligand sont distribués en triplicats dans les puits
destinés a évaluer la liaison totale (spécifique et non spécifique) du ligand radioactif.
Pour les puits servant a mesurer la liaison non spécifique, 80 pL d'échantillon sont
distribués par puits et additionnés de 10 pL de ligand froid et 10 pL de radioligand,
également en triplicats. Aprés 1 h d’incubation a RT sous agitation, lorsque I'on
travaille avec des protéines purifiées, 100 pL de y-globuline 0,1 % et 100 pL de PEG
6000 a 25 % (m/v) sont ajoutés dans chaque puits. Les échantillons sont mélangés et
incubés pendant 15 min a RT avant d'étre filtrés a I'aide d'un appareil de filtration de
microplaques (Unifilter-96 Cell Harvester, Packard) sur un filtre GF/B (96-well UniFilter
GF/B plates, Perkin Elmer) pré-incubé dans un tampon 50 mM Tris pH 8, 0,5 % (v/v)
PEI. Le filtre est ensuite lavé 3 fois avec 1 mL de tampon de lavage froid (50 mM Tris,
8 % (m/v) PEG 6000). Apres séchage de la plaque a RT, 30 pL de cocktail de
scintillation (Microscint 20, Perkin Elmer) sont ajoutés dans chaque puit puis la
radioactivité est mesurée dans un compteur a scintillation TopCount (Perkin Elmer)
apres une heure d'incubation a |'obscurité. Les données sont analysées par le logiciel
Prism version 4.0c (GraphPad) en ajustant a une hyberbole a un site de liaison. Les
valeurs du nombre de sites de liaison (Bmax) et la constante de dissociation a I'équilibre

(Kp) sont déterminées selon I'équation :

Bmax : nombre total de sites de liaison (pmol/mg)
Bmax X X

Kp+X

Y =

Ko : constante de dissociation a I"équilibre (mol/L)
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2.3.2. Courbes de déplacement

Des courbes de déplacement sont réalisées pour évaluer la capacité de
différents ligands du récepteur A2A a déplacer une concentration fixe du ligand
antagoniste radioactif [*H]-ZM241385, typiquement 10 nM (10 pL). Les protéines
purifiées sont diluées a une quantité finale de 100 ng par puit ou 10 pg pour les
préparations de membranes dans le tampon approprié (Tableau 9) (80 uL). Le
radioligand est chassé par des concentrations croissantes de ligands froids (10 pL).
Sept a huit concentrations comprises entre 103 et 10" M sont testées et chaque
condition est réalisée en duplicata. Les ligands testés sont le ZM241385, le XAC, le
CGS15943, le DPCPX, I'adénosine et le NECA. Les échantillons sont ensuite traités
de la méme fagon que pour les courbes de saturation, a I'exception des membranes
qui ne sont pas précipitées par le PEG et la y-globuline avant d'étre filtrées. Les
données sont analysées par le logiciel Prism version 4.0c (GraphPad). Les valeurs de

constante d’inhibition (Kj) de chaque ligand sont calculées selon I"équation :

Ki : constante d'inhibition a I"équilibre du compétiteur (mol/L)
IC50

K; = m IC50 : concentration inhibitrice médiane (mol/L)
+ Lr 1

[RL] : concentration de radioligand mise en jeu (mol/L)

Ko : constante de dissociation a I"équilibre du radioligand (mol/L)

Tableau 9. Composition des tampons de liaison pour les expériences de
déplacement

Membranes 50 mM Tris-HCI pH 8, 10 mM MgCl;, 1 mM EDTA

Protéines en 50 mM Tris-HCI pH 8, 10 mM MgCl;, 1 mM EDTA, 0,05 %/0,005 %
détergent DDM/CHS

SMALPs 50 mM Tris-HCI pH 8, 2 mM MgCl;, 1 mM EDTA
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3. Analyses biophysiques
3.1. Microscopie électronique a transmission

3.1.1. Coloration négative

Les échantillons sont analysés sur la plateforme de microscopie de NovAliX.
Brievement, une grille Quantifoil avec un film de support en carbone est effluvée
(glow-discharge) afin de rendre la surface du carbone hydrophile puis 4 pL
d’'échantillons y sont déposés pour étre adsorbés pendant 1 minute et colorés
négativement avec du colorant Nano-W (Nanoprobes) pendant 1 minute. L'excés de
liquide est enlevé avec du papier-filtre Wattman. Les échantillons sont ensuite
observés avec un microscope électronique Glacios (Thermo Scientific) sous une
tension de 200 kV. Les images sont enregistrées a un grossissement de 120 000 fois

avec une caméra Falcon lll.

3.1.2. Cryo-microscopie

4 pL de la protéine purifiée a environ 1 mg/mL sont déposés sur une grille
effluvée Quantifoil R1,2/1,3 mesh 200. Le temps d'absorption est ajusté a 3,5
secondes a une force de O puis les grilles sont vitrifiées dans de I'éthane liquide a
I'aide d'un Vitrobot Mark IV (FEI) dont la température a été réglée a 4°C et a un taux
d’humidité de 100 %. Les grilles sont ensuite stockées dans I'azote liquide avant d'étre

observées au microscope.

Les grilles sont observées avec un microscope électronique Glacios sous une
tension de 200 kV. Pour la structure présentée dans la partie résultats, 4000
micrographes ont été enregistrés avec une caméra Falcon Ill, & un grossissement
calibré de 190 000 fois, soit une taille de pixel de 0,75 A, sur une plage de
défocalisation de -0,8/-2,8. Vingt images de films ont été enregistrées a une dose
finale d'électrons de 58 e/A? par film pour un temps d'exposition de 2,5 sec. Au total,
820 000 particules sont analysées et classées dans des classes 2D. 86 000 particules
sont sélectionnées pour reconstituer des classes 3D et 62 000 particules sont
finalement gardées pour la reconstruction 3D finale. Les images sont traitées par le

logiciel RELION et les refinements sont réalisées a 'aide du logiciel CryoSPARC.
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3.2. Résonance plasmonique de surface

Les études par résonance plasmonique de surface ont été réalisées au sein de
NovAliX sur un Biacore T200 (Cytiva). Toutes les expériences sont réalisées a 18°C sur
une puce SA (Cytiva) qui présente une surface de streptavidine fixée de maniére
covalente a une matrice de carboxyméthyldextrane. La puce est conditionnée en
faisant passer un tampon 1 M NaCl, 50 mM NaOH pendant 3 fois 60 secondes a un
débit de 10 pl/min puis la puce est équilibrée en injectant du tampon
d'immobilisation (30 mM HEPES pH 8, 150 mM NaCl, 2 % DMSO). Les protéines sont
injectées sur la puce test a 2 yl/min afin d'atteindre un niveau d'immobilisation

d’environ 4000 RU. La puce de référence est laissée vide.

Les expériences d'interactions sont ensuite effectuées en injectant des
concentrations croissantes de différents ligands, selon une cinétique multi-cycles. Les
ligands testés sont le XAC, le ZM241385, le DPCPX, le CGS15943, |I'adénosine et le
NECA. Les ligands sont a des concentrations stocks de 1 a 10 mM dans du DMSO et
ils sont dilués selon une gamme de concentration de 3,2 - 10 - 31,7 - 100 - 317 -
1000 - 3160 - 10000 — 31600 - 100000 nM dans un tampon 30 mM HEPES pH 8, 150
mM NaCl, additionné de 2 % DMSO (qui est également le tampon de course), afin de
limiter les artefacts liés a I'indice de réfraction élevé du DMSO. Une correction du
solvant (solvent correction) est incluse pour cela. Des concentrations croissantes de
ligands sont injectées successivement a un débit de 30 pL/min, avec un temps de
contact de 90 sec et un temps de dissociation de 180 sec. Chaque expérience est
réalisée en duplicata. Les données sont ensuite analysées a I'aide du logiciel Biacore
T200 Evaluation Software (Cytiva). Les courbes de SPR sont corrigées par la
soustraction du signal dans la piste de référence et du signal sans composés. Les
constantes d’'affinité et de cinétique sont déterminées par corrélation avec des
courbes de référence, en se basant sur le postulat selon lequel la liaison s’effectue a

un ratio molaire 1 : 1, selon un modéle de Langmuir.
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flag10HTev

an2a M3 N{ s T | AA2A | 48,7 kDa

]
AA2A_Rant21_MP3 N{ ss ], L Aa2a C 48.6 kDa
AA2A_MP2 N-[ ss AA2A —C 58,9 kDa

Figure 28. Représentation schématique des construits recombinants de la protéine
A-A exprimée dans la levure Pichia pastoris. SS : séquence de sécrétion du facteur a de
Saccharomyces cerevisiae ; flag : étiquette flag ; 10H : étiquette décahistidine ; Tev : site de
clivage de la protéase TEV ; Biotag : domaine de biotinylation. Le nom de la construction est
indiqué a gauche et sa taille a droite. Les 4 étoiles rouges symbolisent les 4 mutations
introduites dans la séquence de la protéine, elles sont placées de fagon aléatoire sur ce
schéma.
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1. Purification du récepteur A;A par des polyméres amphiphiles et

caractérisation par des études de liaison ligand/récepteur

Le récepteur a l'adénosine A;A est une protéine modele trés étudiée et
fréquemment utilisée lors du développement de nouvelles technologies. Les
conditions de production et de purification en détergent développées au laboratoire
ont déja été décrites a plusieurs reprises*#31372 seules quelques optimisations ont

été apportées au cours de ce travail afin d’améliorer les rendements de purification.

1.1. Constructions recombinantes du récepteur et clonage dans la levure

Nous disposons au laboratoire de plusieurs constructions recombinantes du
récepteur A2A, dont principalement trois ont été utilisées dans le cadre de ce projet
(Figure 28). La version la plus proche de la version sauvage du récepteur est nommée
AA_MP3. Cette construction contient du coté N-ter une étiquette FLAG et une
étiquette décahistidine permettant respectivement sa détection par Western-Blot et
sa purification par chromatographie d'affinité. En amont de ces étiquettes, on trouve
une séquence de sécrétion provenant du facteur a de Saccharomyces cerevisiae pour
favoriser |'adressage des protéines a la membrane plasmique, séquence qui va étre
clivée de maniere endogéne lors de la maturation de la protéine dans |'appareil de
Golgi. Enfin, un site de clivage par la protéase TEV est présent, permettant, si
nécessaire, de se débarrasser des différentes étiquettes. Une seconde construction,
AA_Rant21_MP3, est une version dans laquelle plusieurs mutations ont été
introduites afin d’améliorer la thermostabilité du récepteur®. Il faut également noter
que la protéine est stabilisée dans une conformation dite inactive, c’est-a-dire qu’elle
est toujours capable de lier les ligands antagonistes mais plus les agonistes. La mise
au point des conditions expérimentales de solubilisation par les polyméres a été
effectuée sur ce construit. Enfin, la version utilisée pour toutes les caractérisations
pharmacologiques et biophysiques est nommée AA_MP2. Elle a les mémes
caractéristiques que A:A_MP3 du coté N-ter mais possede une séquence de
biotinylation du coté C-ter. Cette séquence correspond au domaine de biotinylation
de la transcarboxylase de la bactérie Propionibacterium shermanii. Elle est reconnue
par la biotine ligase endogene de P. pastoris qui va biotinyler in vivo les récepteurs
produits®’3. Enfin, un site de clivage par la protéase TEV est présent de part et d'autre
du géne codant le récepteur, permettant si nécessaire de se débarrasser des

différentes étiquettes.
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Figure 29. Purification du récepteur AA_Rant21_MP3 en DDM/CHS. (A)
Chromatographe d’élution de la colonne d'affinité au nickel. L'élution s’effectue au moyen un
gradient de tampon B (vert) entre 0 et 24 % de tampon B, puis d'un palier a 24 % de tampon
B et enfin d'un dernier palier a 100 % de tampon B. Les fractions d'élutions du deuxiéme pic
sont assemblées pour former le pool M. (B) Chromatographe de gel filtration du pool M. Les
fractions 22, 23, 24 et 25 sont matérialisées par les fleches. (C) Analyse SDS-PAGE des
fractions par coloration au Bleu de Coomassie. Migration de 10 pL d’échantillon par piste.
MW : marqueur de poids moléculaire. La fleche rouge correspond a la forme entiére du
récepteur, la fleche orange correspond a la forme tronquée du récepteur.
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Toutes ces constructions sont clonées dans un vecteur pPIC9K, sous le contréle
du promoteur P.., inductible au méthanol. Chaque vecteur est ensuite intégré dans le
génome de la levure de maniere stable par transformation intégrative. Pour chaque
construit un clone présentant des niveaux d’expression intéressants de la protéine
d'intérét est sélectionné et stocké a -80°C dans du glycérol afin d’étre utilisé

régulierement lors des différentes productions.

1.2. Production et préparations membranaires de levures

Chaque lot de production représente généralement des volumes de 2a 4 L. Les
levures sont d'abord cultivées a 30°C, leur température de croissance optimale, dans
un milieu contenant du glycérol, ce qui permet d’augmenter rapidement la biomasse.
La production de protéine est ensuite induite pendant 18 h environ en changeant de
milieu pour introduire du méthanol. La baisse de température a 22°C, I'ajout de
ligand, de DMSO et dans le cas de A;A_MP2 de biotine, sont réalisés car ces
conditions ont préalablement été identifiées comme favorisant |'expression
fonctionnelle de ce récepteur**?. Un litre de culture permet de récolter environ 28 g
de cellules (poids humide du culot) qui générent en moyenne 500 mg de préparations
membranaires (quantité de protéines totales dosées par un dosage BCA)
généralement resuspendues avant stockage a une concentration protéique de 10
mg/mL. Ces clones sont utilisés de longue date au laboratoire et donnent des
résultats trés reproductibles en termes de rendement et de qualité des protéines

produites.

1.3. Purification en détergent

La solubilisation et la purification en détergent des différents construits
s'effectuent de la méme facon. Aprés avoir été extraites de leur environnement
membranaire initial par un mélange de DDM et de CHS, les protéines sont purifiées
selon un protocole standard en deux étapes. La premiere consiste en une
chromatographie d'affinité au nickel : les protéines sont retenues sur la colonne via
leur étiquette poly-histidine. Le protocole d'élution a été optimisé afin de bien séparer
2 sous-populations distinctes du récepteur ayant des affinités différentes avec la
résine (Figure 29A et Figure 30A). Le premier pic qui est décroché lors du gradient
d'imidazole correspond exclusivement a des protéines contaminantes, les bandes
révélées sur le gel coloré au bleu de Coomassie n’étant pas immunodétectées sur le

Western-Blot (données non présentées). La quantité de protéines contaminantes est
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Figure 30. Purification du récepteur A2A_MP2. (A) Chromatographe d’élution de la
colonne d'affinité au nickel. L'élution s’effectue au moyen un gradient de tampon B (vert)
entre 0 et 24 % de tampon B, puis d'un palier a 24 % de tampon B et enfin d'un dermier palier
a 100 % de tampon B. Les fractions d'élutions du deuxieme pic sont assemblées pour former
le pool M. (B) Chromatographe de gel filtration du pool M. Les fractions 22, 23, 24 et 25 sont
matérialisées par les fleches. (C) Analyse SDS-PAGE des fractions par coloration au Bleu de
Coomassie. Migration de 10 pL d’échantillon par piste. (D) Western Blot anti-flag. Migration
de 5 pL d'échantillon par piste. MW : marqueur de poids moléculaire. La fleche rouge
correspond a la forme entiére du récepteur, la fleche orange correspond a la forme tronquée
du récepteur.
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plus ou moins importante selon les lots de préparations de membranes. Le deuxieme
et le troisieme pic contiennent tous les deux la protéine d'intérét mais dans le dernier
pic, celle-ci est majoritairement sous forme agrégée et non fonctionnelle (ne liant que
trés peu le [*H]-ZM241385, données préalablement obtenues au laboratoire). Les
fractions du deuxiéme pic sont poolées et concentrées jusqu'a 500 pL pour la suite

de la purification.

La deuxieme étape de purification consiste en une étape de polissage sur une
colonne de gel filtration (Superdex200 10/300-GL). Pour A,A_Rant21_MP3, cette
chromatographie d’exclusion par la taille révele un pic de faible intensité qui élue a
partir du volume mort de la colonne (environ 8 mL) correspondant a des contaminants
de plus hauts poids moléculaires ou a des récepteurs sous forme d'oligoméres ou
d'agrégats puis un deuxieme pic largement majoritaire qui élue vers 12 mL (Figure
29B). L'analyse des fractions sur un gel SDS PAGE coloré au bleu de Coomassie révele
la présence de deux bandes majoritaires, dans la fraction issue de I'lMAC comme
dans les fractions 24 a 26 issues de la gel filtration. On distingue une bande autour
de 45 kDa (matérialisée par la fleche rouge) et une bande juste en dessous, aux
alentours de 40 kDa (matérialisée par la fleche orange) (Figure 29C). On constate
également la présence de deux autres bandes de plus bas poids moléculaire dans les

fractions 25 et 26 qui correspondent a des versions dégradées de la protéine.

Pour A,A_MP2, on distingue 3 pics lors de la chromatographie d’exclusion par
la taille : un premier de faible intensité a partir du volume mort de la colonne (fractions
17 a 19), un deuxiéme entre 10 et 11 mL (fraction 22) et le dernier a partir de 11 mL
(fractions 23 a 25) (Figure 30B). Dans la fraction 22, on retrouve une bande majoritaire
autour de 55 kDa ainsi qu’une bande de tres faible intensité vers 40 kDa. Dans la
fraction 23, I'intensité des 2 bandes est quasiment identique et enfin dans les fractions
24 et 25, on trouve majoritairement la bande a 40 kDa et des bandes de plus bas
poids moléculaire, correspondant a des versions dégradées du récepteur (Figure 30C
et D). Une analyse protéomique de ces différentes bandes préalablement réalisée au
laboratoire®* a permis de démontrer que la premiére bande (& 45 kDa pour
AA_Rant21_MP3 et a 55 kDa pour A;A_MP2) correspond a la version complete de la
protéine. La bande a 40 kDa, que |'on retrouve dans les deux purifications, correspond
quant a elle a une version tronquée du récepteur du c6té C-terminal, aprées la lysine
422. Le tag de biotinylation de la construction A;A_MP2 est donc clivé pour les
protéines tronquées. De plus, il a préalablement été montré au laboratoire, par des

tests de fixation de radioligand, que le clivage de la protéine du c6té C-terminal n'a
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Figure 31. Courbe de saturation de la protéine A,A_MP2 par le ligand radioactif [*H]-
ZM241385. La liaison totale représente la fixation spécifique et non-spécifique du ligand sur
I"échantillon. La liaison non-spécifique est mesurée en présence d'un large exces du ligand
antagoniste compétiteur CGS15943. Elle permet de déterminer la liaison spécifique du [3H]-
ZM241385 sur le récepteur A,A et d'en calculer les parameétres Brax et Ko.
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pas d'impact sur la fixation de divers ligands, aussi bien des antagonistes que des

agonistes.

Le rendement moyen de purification de la protéine AA_Rant21_MP3 est
d'environ 1,5 & 2 mg/mL. Le rendement moyen de purification de la protéine
AA_MP2 est d'environ 0,8 a 1 mg/mL si on prend en compte les fractions 22 et 23 et

de 0,5 mg/mL si on prend en compte la forme compléte uniquement.

1.3.1. Caractérisation de I'activité du récepteur par radiobinding (courbes

de saturation)

La qualité des protéines produites est évaluée au moyen d’un test de fixation de
radioligand a I'équilibre, ou des concentrations croissantes du composé antagoniste
[*H]-ZM241385 sont mises en jeu afin d'atteindre une concentration saturante. Il est
ainsi possible de déterminer le nombre de sites capables de lier ce ligand (Bmay) ainsi
que son affinité (Kp). L'affinité mesurée du récepteur purifié en DDM/CHS pour le [*H]-
ZM241385 est de I'ordre de 20 nM, du méme ordre de grandeur que les valeurs
publiées dans la littérature®'. De méme, Singh et collégues ont calculé un Ko de 9 +

0,2 nM avec une construction protéique proche de la notre®>

, ce qui reste dans le
méme ordre de grandeur que les valeurs que nous obtenons. Le B« peut atteindre,
selon les expériences et les lots de protéines, environ 12 000 pmol/mg (Figure 31).
Les valeurs théoriques du Bmax que I'on doit obtenir dans le cas ou 100 % des
récepteurs A>A seraient purs et actifs sont d’environ 17 000 pmol/mg pour la forme
compléte de la protéine et environ 22 000 pmol/mg pour la forme tronquée. Dans les
conditions expérimentales utilisées ici, il apparait donc qu’une large partie du pool
de protéines purifiées est capable de lier un ligand. Des résultats similaires ont été

obtenus avec la protéine A;A_Rant21_MP3, aussi bien au niveau du Ko que du Bmax.
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Figure 32. Test de solubilisation de A,A_MP2 avec différents polyméres. (A)
Solubilisation par des polyméres de SMA ou dérivés. 1,8 mg de protéines totales (30 mg de
membranes) sont solubilisées par 2,5 % (m/v) de polymeres pendant une heure ou trois
heures. (B) Solubilisation par des CyclAPols. 2 mg de protéines totales sont solubilisées avec
différentes quantités de polymere, soit 2 mg pour le ratio 1:1, 4 mg pour le ratio 1:2 et 10 mg
pour le ratio 1:5. Pour contréle, les protéines sont également solubilisées avec 1% de
DDM/CHS et avec 2,5 % de SMA 2000. Anticorps anti-flag. MW : marqueur de poids
moléculaire, T : total avant ultracentrifugation, S : surnageant, C : culot
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1.4. Mise au point d'un protocole de purification a partir de polymeéres

amphiphiles sur le récepteur a I'adénosine A2A

Afin de mettre au point le protocole de purification de la protéine A:A, nous
avons travaillé dans un premier temps avec la construction thermostabilisée,
A>A_Rant21_MP3. Une fois le protocole de purification en partie validé, nous |'avons
appliqué a la protéine A;A_MP2. En effet, cette version de la protéine capable de lier
a la fois ses ligands agonistes et antagonistes s'avére, a ce stade, plus adaptée a des
caractérisations biochimiques et biophysiques plus poussées. De méme, le tag biotine
présent a l'extrémité C-terminale de la protéine permet d'envisager différentes
stratégies d'immobilisation des objets purifiés. Dans un souci de clarté, et parce qu'ils
sont trés similaires a8 ceux obtenus avec AA_Rant21_MP3, seuls les résultats de

AA_MP2 sont présentés ici, sauf mention contraire.

1.4.1. Criblage de différents polyméres

Nous avons disposé de différents polymeéres de SMA ou dérivés pour ce projet :
le SMA 2000, le SMA 3000, le DIBMA, le XIRAN, le SMA 1440. Par ailleurs, en cours
de projet, une équipe de chimistes de NovAliX a synthétisé un SMA avec une fonction
amine, le SMA-ED, en suivant la procédure décrite dans la publication de Ravula et

collegues?.

L'efficacité de solubilisation de ces différents polymeéres a été évaluée sur les
deux constructions A;A_Rant21_MP3 et AA_MP2. Les protocoles décrits dans la

littérature3’°

se basent sur la solubilisation d'une certaine masse de membranes par
une certaine masse de polymeres (classiquement 1 g de SMA pour 10 g (poids
humide) de membranes). Dans ce test, nous avons mis en jeu 30 mg de membranes
et 2,5 % (m/v) de SMA dans un volume final de 1 mL, comme le préconise le protocole.
Pour cette quantité de membranes, la quantité de protéines est d’environ 1,8 mg. Les
conditions de solubilisation sont donc similaires a celles que I'on effectue lors des
criblages en détergent ou les protéines sont diluées a une concentration protéique

d’environ 2 mg/mL.

Nous avons décidé de tester un temps de solubilisation d'une heure mais
certaines études solubilisent les protéines pendant des temps plus longs, c’est
pourquoi nous avons également testé un temps de solubilisation de 3h. En paralléle
des différents polymeéres, une condition contréle de solubilisation avec le mélange

DDM/CHS est également réalisée.
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Dans un premier temps, il faut noter qu’il est beaucoup plus difficile de travailler avec
le SMA 1440 qu'avec les SMA 2000 et 3000. En effet, ce SMA semble particuliérement
sensible aux variations de pH et des précipités se forment lorsqu’il est mis en contact
avec les membranes. Dans I'ensemble, nous pouvons constater que I'efficacité de
solubilisation de tous les polymeéres testés est tres faible si on compare a |'efficacité
du DDM/CHS (Figure 32A). Une faible partie de récepteurs est solubilisée par les SMA
3000 et SMA 1440 (et ce malgré la précipitation du polymére) mais surtout par le SMA
2000. Les polymeres XIRAN et DIBMA étaient inefficaces pour solubiliser
A>A_Rant21_MP3 (données non présentées), c'est pour cette raison qu'ils n‘ont pas
été testés sur A;A_MP2. De méme, I'augmentation du temps de solubilisation a 3h
n'a pas permis d'améliorer les rendements d’extraction. Enfin, le SMA-EQ s’est révélé
étre tres difficile a solubiliser dans un tampon HEPES/NaCl. Il a précipité
instantanément lorsqu'il a été ajouté aux membranes et, logiquement, ce SMA s’est
montré inefficace pour solubiliser les protéines. Les SMA 2000 et SMA 3000
apparaissent comme étant les plus intéressants pour solubiliser la protéine AA. lls

sont sélectionnés pour les tests de purification.

Enfin, au cours du projet, nous avons également pu tester de nouveaux
polymeres amphipatiques, nommés CyclAPols. Deux amphipols différents ont pu étre
testés, le Ce-C2-50 et le Cg-Co-50 (cf partie « 3.2.6. Les technologies plus récentes »
de l'introduction), a différents ratios protéine:polymeére (m/m) (Figure 32B). Dans un
premier temps, il faut noter que les CyclAPols sont tres solubles et se remettent en
suspension beaucoup plus facilement que les polymeres SMA. De plus, il apparait
que ces 2 amphipols sont capables d’extraire A2A des membranes avec une efficacité
équivalente. De méme, il semblerait que le ratio mettant en jeu le moins de polymeéres
(1:1) soit le plus efficace dans les deux cas. Enfin, I'efficacité de solubilisation des
CyclAPols est supérieure a celle obtenue avec le SMA, bien que toutefois inférieure a
celle obtenue avec le détergent. Pour les expériences de purification, nous garderons
le ratio protéine:polymere de 1:1 car c’est celui qui permet d'utiliser moins de matériel

a chaque essai.

129



A B

AU B11 B12 MW kDa
To = | Inig | =
£ s CONd | w100
= - 70
€ 100! s CONC B od
c t [ ——

o 00 - 55
Q

« { - 40
A0 00

Q t ¥ s 35
Q (

1001
g . 25
0
o of s7.11
] }

_g il 15

>oo‘ R

FEmEAT EAs siii ez ess =ds eshl 10

o O 0 i ) G G

4 a8 s0 52 54 56 58 60 -

Volume (mL)

Figure 33. Purification de A,A_MP2 avec le SMA 2000. (A) Purification IMAC sur une
colonne HisTrapHP 1mL. Les protéines sont éluées par un palier a 100 % de tampon B (500
mM). (B) SDS PAGE coloré au bleu de Coomassie des fractions issues de I'IMAC. (C) Cliché
de microscopie électronique par coloration négative de la fraction B12 issue de 'lMAC. MW
: marqueur de poids moléculaire.
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Figure 34. Purification de A,A_MP2 avec le SMA 3000. (A) Purification IMAC sur une
colonne HisTrapHP 1mL. Les protéines sont éluées par un palier a 100 % de tampon B (500
mM). (B) SDS PAGE coloré au bleu de Coomassie de la fraction B12 issue de I'lMAC. MW :
marqueur de poids moléculaire.
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1.4.2. Solubilisation et purification en SMA 2000 et SMA 3000

1.4.2.1. Solubilisation et IMAC

Comme pour les tests a petite échelle, les membranes sont diluées a une
concentration massique d’environ 30 a 40 mg/mL et solubilisées avec 2,5 % de SMA
pendant 1h. Aprés ultracentrifugation, le surnageant est chargé sur une colonne de
chromatographie d'affinité. Le débit de chargement est fix¢é a 0,5 mL/min pour
favoriser l'interaction des protéines avec les ions nickel de la résine. On ne détecte
pas de protéines d'intérét dans le flow-through (données obtenues avec
AA_Rant21_MP3), ce qui indique que cette méthode d'immobilisation est efficace.
Une premiére étape d'élution permet de décrocher quelques contaminants (en
quantité plus ou moins importante selon les purifications) puis les protéines sont
entierement éluées de la colonne par 500 mM d'imidazole (Figure 33A pour le SMA
2000 et Figure 34A pour le SMA 3000). D'apres le résultat des gels de SDS PAGE, les
fractions d'élution contiennent bien le récepteur A;A mais aussi de nombreux autres
contaminants (Figure 33B et Figure 34B). De méme, l'analyse par microscopie
électronique a coloration négative montre un certain degré d'hétérogénéité de
I"échantillon, avec la présence notamment d'agrégats (Figure 33C). Enfin, des tests
de liaison de radioligand réalisés sur A,A_Rant21_MP3 ont montré une faible activité
de liaison spécifique (données non présentées). Pour ces raisons, il nous a donc

semblé indispensable d'introduire une deuxiéme étape de purification.

1.4.2.2. Optimisation d’une 2°™ étape de purification

Le schéma classique de purification d'une protéine membranaire inclut une
étape de chromatographie d’exclusion par la taille. Toutefois, I'injection sur une
colonne Superdex200 10/300 Increase des échantillons de SMALPs-AA purifiés par
IMAC s’est traduit par la détérioration de la colonne qui s’est bouchée, la rendant
ensuite inutilisable. Nous avons donc décidé d’adopter une stratégie alternative
basée sur la séparation des objets selon leur taille par un gradient de glycérol, afin
d’éliminer les agrégats visibles sur les images de microscopie électronique. Plusieurs
essais avec différentes compositions de gradient ont été testés (Figure 35A). Les
expériences ont été réalisées a partir de protéines A2A_Rant21_MP3 dans un premier

temps puis A2A_MP2, protéines purifiées avec le SMA 2000.
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Figure 35. Mise au point d'un protocole de gradient de glycérol a partir de protéines
purifiées en SMA 2000. (A) Schéma des différents gradients testés. (B) Exemples de
gradient n’ayant pas permis une séparation optimale des protéines. SDS PAGE coloré au Bleu
de Coomassie. A droite, le résultat du gradient a, obtenu avec AA_Rant21_MP3, a gauche
le gradient b. (C) Résultat du gradient e obtenu a partir d’'une purification avec le SMA 2000.
A gauche SDS PAGE coloré au Bleu de Coomassie (10 pL par piste), a droite Western-Blot
anti-flag (5 pL par piste). (D) Clichés de microscopie électronique a coloration négative
obtenus a partir des fractions 12 (gauche) et 14 (droite). L'échelle représente 50 nm.
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Gradient a: Les protéines ont été déposées sur un gradient discontinu
contenant 6 couches de 1,9 mL de solution a 5, 10, 15, 20, 25 et 30 % de glycérol
respectivement dans un tube de 14 mL. Des fractions de 1 mL ont été récupérées
apres l'ultracentrifugation dans un rotor SW41 et déposées sur un gel de SDS PAGE.
Toutefois aucune bande n’était visible dans aucune des fractions, témoignant sans

doute d'une dilution des protéines trop importante.

Gradient b : Afin de limiter la dilution des protéines, le tube de 14 mL a été
remplacé par un tube de 4 mL et chaque couche de glycérol a été réduite a 600 pL.
Le tube est ultracentrifugé dans un rotor SW60 et des fractions de 200 pL sont ensuite
récupérées par le haut du tube. Les différentes couches de glycérol étant toutefois
proches dans leur composition en glycérol, elles ont tendance a se mélanger entre
elles, entrainant donc une dilution de I'échantillon que l'on retrouve dans de

nombreuses fractions (Figure 35B).

Gradients ¢, d et e : Afin de concentrer les protéines dans un volume plus
restreint, le nombre de couches de gradient a été réduit. Différentes autres stratégies
ont été testées : 3 couches de 1,2 mL a 10, 20 et 30 % de glycérol, 2 couches de 1,8
mL a 5 et 30 % de glycérol, 2 couches a 5 et 45 % de glycérol. Les résultats n'ont pas
été concluants, comme montré avec le résultat du gradient a 3 couches (Figure 35B),
ou les protéines sont retrouvées majoritairement dans les derniéres fractions. Le
gradient offrant le meilleur compromis entre séparation des contaminants et des
particules de différentes tailles, le tout sans trop diluer les échantillons, est finalement
présenté sur le schéma e (Figure 35A). En effet, on remarque nettement sur le gel de
SDS PAGE (Figure 35C) une différence dans le profil de migration entre les fractions
10 a 13 et les fractions suivantes. On peut voir que les fractions 14 et 15 notamment
contiennent plus de protéines de bas poids moléculaire que I'on ne retrouve pas dans
les fractions 10 a 13 (fleches de couleur rouge), laissant penser que le contenu de ces
fractions est plus hétérogéne. Cette observation a été confirmée a l'aide d'analyses
par microscopie électronique par coloration négative (Figure 35D) ou l'on peut
observer que la fraction 12 contient des objets de taille assez homogéne, pouvant
correspondre a la taille attendue de SMALPs-AA, tandis que la fraction 14 semble

beaucoup hétérogene.
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Figure 36. Application du protocole de gradient de glycérol a des protéines A;A_MP2
purifiées par le SMA 3000. (A) SDS PAGE coloré au Bleu de Coomassie. Migration de 10
pL d'échantillon par piste. (B) Western-Blot anti-flag. Migration de 5 pL d’échantillon par piste.
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Figure 37. Détermination de la concentration des SMALPs purifiées. (A) SDS PAGE
coloré au Bleu de Coomassie. La gamme est faite a partir de protéines purifiées en détergent
(B) Courbe d'étalonnage de la densitométrie en fonction de la quantité de protéines purifiées
en détergent. L'analyse densitométrique est faite sur la somme des 2 bandes (C) Tableau
illustrant I'utilisation de cette méthode pour déterminer la concentration des SMALPs.
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Ce protocole a ensuite été testé pour séparer des protéines A,A_MP2 purifiées
avec le SMA 3000. Sur le SDS PAGE (Figure 36), on constate que la séparation des
particules se fait de fagon similaire aux SMALPs 2000. On peut également remarquer
que, d'une maniere générale, il y a moins de contaminants dans les différentes

fractions.

Ce protocole de séparation de gradient de glycérol a donc été validé et
appliqué systématiquement lors des purifications des SMALP-A;A pour les études
d’interaction protéine-ligands. Ces expériences ont été réalisées a partir du pool des
fractions 11, 12 et 13 pour les purifications en SMA 2000 et des fractions 12 et 13
pour les purifications en SMA 3000.

1.4.3. Détermination de la concentration des fractions de SMALPs purifiées

Il est nécessaire de connaitre la concentration des protéines purifiées, pour avoir
une idée des rendements, mais surtout en vue des expériences de caractérisation des
interactions ligands-protéine. Déterminer la concentration de protéines en SMALPs
est toutefois plus contraignant que pour les protéines en micelles de détergent. En
effet, a cause des groupements styrenes qui les composent, les SMA interferent avec
le signal d'absorbance a 280 nm. Calculer la concentration en se basant sur une
détermination UV au Nanodrop entrainerait donc une surestimation de la
concentration protéique. Dans le protocole publié par Lee et collegues, les auteurs
décrivent toutefois qu'apres les différentes étapes de purification, la majorité des
SMA libres sont retirés et que la concentration protéique peut étre estimée par une
méthode de détection a 280 nm. Comme nous ne pouvons pas estimer la quantité
de SMA formant la particule et leur contribution au signal UV, nous avons fait le choix
de ne pas utiliser cette méthode pour déterminer la concentration protéique. De
méme, les SMA interférent avec un dosage par la méthode de Bradford. Enfin, il n"est
pas possible de faire un dosage BCA a cause de la présence de glycérol dans les
échantillons. La concentration protéique est donc déterminée par une analyse
densitométrique sur un gel de SDS PAGE contre une gamme étalon de protéines A2A
purifiées par des détergents et dont la concentration a été précisément déterminée
(Figure 37A). Deux volumes différents (typiquement 5 et 10 plL) de protéines purifiées
en SMALP sont également déposés sur le méme gel. L'intensité des bandes est
ensuite analysée par le logiciel ImageJ puis la concentration des SMALPs est

déterminée grace a |'équation obtenue par la courbe d'étalonnage (Figure 37B et C).
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Figure 38. Courbes de saturation du [*H]-ZM241385 de la protéine A2A_MP2 purifiée
en SMALPs 2000 et SMALPs 3000. La liaison non spécifique est mesurée par I'ajout d'un
large excés de CGS15943.
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A titre indicatif, les protéines ont également été dosées par une mesure UV a 280 nm

et les concentrations obtenues sont le double de celles obtenues par I'analyse sur le
gel.

Pour les protéines purifiées avec le SMA 2000, les rendements obtenus sont
compris entre 510 et 750 ug de protéines par litre de culture avec une moyenne de
620 pg/L (n=4). Pour les protéines purifiées avec le SMA 3000, les rendements
obtenus sont plus faibles. Ils sont de I'ordre de 150 pg par litre de culture (n=3). Ces
rendements sont donc plus faibles que ceux que I'on obtient a partir de protéines
AA_MP2 purifiées en DDM/CHS. A titre de comparaison, les quantités de récepteurs
reconstitués en nanodisques lipidiques que nous obtenons a partir des mémes
échantillons de départ sont de I'ordre de 400 pg (efficacité de reconstitution d’environ
50 % a partir du récepteur purifié en détergent). Ainsi, si on compare les procédures
et rendements pour préparer des SMALPs ou préparer des nanodisques, objets
comparables sur certains points, il est plus rapide de préparer des SMALPs que des

nanodisques et ce avec des rendements plus importants pour le SMA 2000.

1.4.4. Test de saturation par radiobinding

Avant de réaliser les expériences de caractérisation pharmacologique du
récepteur, la qualité des protéines produites est évaluée au moyen d'un test de
fixation de radioligand a I|'équilibre, ou des concentrations croissantes de [*H]-
ZM241385 sont mises en jeu afin d'atteindre une concentration saturante permettant
ainsi de déterminer le nombre de sites capable de lier un ligand (Bma) ainsi que
I"affinité du SMALP-A2A pour le ligand (Kp).

L'affinité mesurée du récepteur purifié en SMALPs 2000 et 3000 pour le [*H]-
ZM241385 est généralement comprise entre 20 et 25 nM (n>10), soit des valeurs
proches de celles obtenues dans des micelles de détergent et proche de la
littérature®’. Les valeurs de Br.x obtenues sont assez variables d’'un lot a I'autre de
protéines mais aussi lors de réplicats effectués sur le méme lot de protéines. lls varient
entre environ 1000 pmol/mg et 5000 pmol/mg. La Figure 38 montre des courbes de
saturation classiquement obtenues avec les SMALPs 2000 et SMALPs 3000.
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Figure 39. Purification du récepteur A2A_MP2 par le CyclAPol C¢-C2-50. (A) Purification
IMAC de A;A_MP2 sur une colonne HisTrapHP 1 mL. (B) Purification par gel filtration sur une
colonne Superdex 200 10-300 Increase. (C) SDS PAGE coloré au Bleu de Coomassie des
fractions de purification. Migration de 10 pL par piste. L'étoile rouge correspond a une
protéine contaminante. (D) Western-Blot anti-flag. Migration de 5 pL par piste. MW :
marqueur de poids moléculaire, FT : flow through.
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Ces variations peuvent étre expliquées de différentes maniéres. D’'une part, il
est assez difficile d'évaluer la concentration des SMALPs de maniére trés précise, or
la détermination du Brnax est basée sur une quantité exacte de protéines,
théoriquement 100 ng, mise en jeu dans chaque puits, donc si la concentration est
sur ou sous-estimée, la valeur de B« calculée I'est également. De méme, il existe une
variabilité intrinseque au format des expériences de liaison de radioligand. En effet,
le protocole expérimental inclut la précipitation des échantillons testés par |'ajout de
PEG et de y-globuline avant leur filtration. On ne peut donc pas exclure un
déplacement de I"équilibre réactionnel et il est également probable qu’une partie des
particules contenant les récepteurs ne soit pas retenue sur le filtre. Enfin, cet essai a
été mis au point au laboratoire pour des protéines purifiées en détergent. Il est
possible que ces conditions expérimentales ne soient pas optimales pour des
protéines en SMALPs. Par exemple, le tampon classique de liaison de A;A contient
10 mM de Mg?*, or cette concentration n'est pas compatible avec les SMA qui
précipitent en présence d'ions divalents. Ainsi, les valeurs de Bm.x obtenues ne sont
pas des valeurs absolues et sont probablement sous-évaluées. Elles sont difficilement
comparables aux valeurs que I'on peut obtenir a partir de protéines purifiées en
détergent, mais donnent des indications quant au nombre minimum de protéines

capables de lier un ligand.

1.4.5. Solubilisation et purification par le CyclAPol C¢-C2-50

La protéine AA_MP2 a également été extraite et purifiée par le CyclAPol C¢-Co-
50. Les préparations membranaires sont diluées a une concentration protéique
d’environ 2 mg/mL et solubilisées avec 2 mg/mL de CyclAPols pendant 1 h (soit un
ratio protéine:polymere de 1:1). Aprés ultracentrifugation, le surnageant est chargé
sur une colonne de chromatographie d‘affinité. Le protocole de purification et
d’élution appliqué est le méme que celui mis en ceuvre pour les SMA. Les protéines
sont éluées de la colonne (Figure 39A) dans un volume de 1 mL. Dapres le résultat
des gels de SDS PAGE, les fractions d’élution contiennent bien le récepteur A2A mais
aussi d'autres contaminants (Figure 39C et D). Les protéines ont donc ensuite été
purifiées en paralléle sur une colonne de gel filtration (500 pL) (Figure 39B). Le tampon
de course de la gel filtration ne contient pas de détergent. Dans un premier temps,
on constate que la protéine est éluée de la colonne de gel filtration dans le volume
mort (fraction 18) de la colonne, ce qui suggére que les objets purifiés sont d'une

taille importante. Le pic s'étale ensuite jusqu’a la fraction 24, ce qui suggére que
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Figure 40. Purification anti-flag du récepteur A2A_MP2 par le CyclAPol C¢-C2-50. (A)
Chromatographe de purification anti-flag. (B) SDS PAGE coloré au Bleu de Coomassie des
fractions de purification. Migration de 10 pL par piste. Les étoiles rouges et noires
correspondent a une protéine contaminante. (C) Western-Blot anti-flag. Migration de 5 pL par
piste. MW : marqueur de poids moléculaire, FT : flow through.
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I"échantillon contient des particules de tailles assez hétérogenes. De plus, sur le SDS
PAGE (Figure 39C et D), il apparait que toutes ces fractions ne sont pas pures, avec
notamment la présence d'une bande vers 130 kDa, matérialisée par une étoile rouge,
qui semble étre un contaminant. En effet, cette bande qui est bien visible dans toutes
les fractions, y compris dans les fractions 23 et 24 n’est pas révélée sur le Western-
Blot pour ces 2 fractions. Il est plus difficile de conclure pour les autres fractions, étant
donné les nombreuses bandes révélées par le Western Blot, a des poids proches de
130 kDa, qui correspondent probablement a des formes oligomériques de AA
résistantes au SDS. Au laboratoire, nous retrouvons un contaminant migrant a 130
kDa lors de la purification de nombreuses autres protéines membranaires produites a
partir de la levure P. pastoris. Dans le cadre d'un autre projet, cette bande a été
identifiée par des analyses protéomiques comme étant PMA1, une pompe a proton
de la levure. Il faudrait toutefois faire une analyse des bandes de cette purification

afin d'identifier formellement ce contaminant.

Une deuxieme stratégie de purification a donc été envisagée afin d'essayer
d'éliminer ce contaminant. Celle-ci est basée sur une premiére étape de
chromatographie d’affinité aux ions métal suivie d’'une chromatographie d’affinité
anti-flag. Le profil de la chromatographie anti-flag est présenté sur la Figure 40A. Sur
le SDS PAGE et le Western-Blot (Figure 40B), on peut voir que si la protéine
contaminante est en partie éliminée dans le flow through (étoile rouge), elle est

toutefois encore présente dans les fractions d'élution (étoile noire).

Il apparait donc que le CyclAPol C¢-C2-50 permet d’extraire A;A des membranes
de levures mais une protéine contaminante est co-purifiée avec A2A, et ce malgré les
différentes stratégies de purification testées. Ce contaminant n’est pas retrouvé
lorsque AA est purifiée avec des détergents ou avec les polyméres SMA. Au vu du
manque de pureté de la protéine, les expériences de caractérisation n’‘ont pas été

poussées plus loin pour ce complexe CyclAPol-AzA.
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Figure 41. Etude de la stabilité du récepteur A.A purifié en SMALPs 2000 ou en

SMALPs 3000. La liaison spécifique a été déterminée par des courbes de saturation du [*H]-
ZM241385. La valeur Braca été normalisée a 100 % au premier jour de |'expérience.
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1.5. Caractérisation fonctionnelle des SMALPs-AA

Les SMALPs-A2A ont été caractérisées de plusieurs fagons. Tout d'abord, leur
stabilité a été évaluée selon leur capacité a lier le [*H]-ZM241385. Ensuite, une
caractérisation pharmacologique des récepteurs a été réalisée en déterminant les
constantes d'inhibition (Ki) de différents ligands. Enfin, |'affinité de ces mémes ligands

a été mesurée par SPR.

1.5.1. Etude de la stabilité de la liaison dans le temps

Une fois purifiées par chromatographie d'affinité et sur le gradient de glycérol,
les SMALPs sont congelées rapidement dans |'azote liquide et stockées a -80 °C. Leur
stabilité est évaluée par des tests des saturation par radiobinding a différents jours
apres la purification, selon le méme principe que décrit plus haut. Quand cela est
possible, une mesure est réalisée le jour méme de la purification (JO) sur un échantillon
frais, non congelé. Ensuite toutes les autres mesures sont réalisées sur des aliquots
ayant été flash congelés a JO et stockés a -80 °C. Un aliquot différent est décongelé
pour chaque nouvelle mesure. La valeur de Bm.c obtenue le premier jour de I'essai est

normalisée a 100 %. Les résultats sont présentés dans la Figure 41.

Si I'affinité pour le ligand ne varie pas, il apparait que le nombre de protéines
purifiées en SMA 2000 capables de fixer le [*H]-ZM241385 ne cesse de diminuer au
cours du temps. Cela semble donc indiquer que I'échantillon se détériore au cours du
temps, avec une dénaturation et/ou |'agrégation des protéines. Ces résultats ont été
confirmés lors d'un second essai effectué pendant 30 jours sur un autre lot de SMALPs
purifiées. Au bout de 30 jours, la liaison spécifique s'élevait a environ 35 % de la
liaison initiale. Les résultats obtenus pour les SMALPs 3000 sont similaires. Si I'affinité
du ligand pour le récepteur ne varie pas au cours du temps, les valeurs de Bm.x ont
tendance a diminuer. Au bout d'un mois, on observe une diminution de 60 % de la

liaison spécifique (Figure 41).
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Figure 42. Caractérisation pharmacologique du récepteur AA_MP2 par des tests de
compétition. Courbes de compétition entre 10 nM de [*H]-ZM241385 et des concentrations
croissantes de différents ligands froids. Différents systémes membranaires ou mimétique de
membranes sont évalués.

Ligand Membranes DDM/CHS SMALP 2000 SMALP 3000 Nanodisque Littérature

XAC 270 nM 2,7 nM 25,3 nM 35,4 nM 500 nM 1nM
ZM241385 76.9 nM 22 nM 208nM  23,3nM 48 nM 80 nM
CGS  289nM  3,0nM 3,5 nM 4,6 nM 27 nM 4,2 nM
/ 129 nM
NECA  40uM  022pM  435uM 46,2 uM / 20 nM*

Adénosine 31,5 uM 0,53 uM 133 uM 79,3 uM 1,4 uM 0,18 uM

Tableau 10. Constantes d'inhibition (Ki) de différents ligands sur la protéine AzA. Les
valeurs pour les membranes, les protéines purifiées en DDM/CHS et en SMALPs 2000 et 3000
ont été obtenues sur la construction d’AA_MP2 et les valeurs des nanodisques sur A;A_MP3.
Les valeurs de la littérature sont issues de Fredholm et collegues®®. *valeur obtenue par une
courbe de saturation.
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1.5.2. Caractérisation pharmacologique par des tests de compétition

Une caractérisation pharmacologique des SMALPs purifiées est réalisée en
déterminant I'affinité de plusieurs ligands par des tests de compétition. Cet essai est
basé sur la mise en jeu d'une concentration fixe du radioligand antagoniste [*H]-
ZM241385 déplacé par des concentrations croissantes de ligands non radiomarqués
(Figure 42). Six ligands non radiomarqués sont testés, quatre antagonistes (XAC,
CGS15943, ZM241385 et DPCPX) en nuances de rouge sur le graphique, et deux
agonistes (adénosine et NECA) en nuances de bleu. Ces expériences sont réalisées
en paralléle sur des membranes de levures exprimant la protéine A,A_MP2 et sur des
protéines purifiées en micelles de détergents afin de comparer les valeurs obtenues.
Les constantes d'inhibition (K)) déterminées par ces expériences et reflétant |'affinité
de la protéine pour ces ligands, sont présentées dans le Tableau 10. Lorsque la
protéine est purifié¢e en SMA, on constate que l'affinité du XAC et du DPCPX est
diminuée d'un facteur d'environ 10 et 15 respectivement en comparaison avec les
protéines purifiées en détergent. De méme, la diminution de I'affinité est encore plus
marquée pour les deux agonistes, d'un facteur d’environ 200. Des courbes de
compétition avaient préalablement été obtenues au laboratoire sur la protéine
AA_MP3 reconstituée en nanodisques et on remarque que les affinités des ligands
antagonistes sont légérement meilleures dans les SMALPs que dans les nanodisques.
Pour I'adénosine (le NECA n'ayant pas été testé sur des nanodisques), I'affinité est
meilleure dans les nanodisques d'un facteur 95 par rapport au SMALPs 2000 et d'un
facteur 55 par rapport au SMALPs 3000. Ces expériences sont toutefois a reproduire,

de préférence sur le construit A;A_MP2.

Il semble donc que I'affinité des ligands est plus faible dans les SMALPs que
dans les autres systémes mimétiques de membranes testés et cela en particulier pour
les agonistes. L'affinité des ligands agonistes est également plus faible en SMA que

dans les membranes de levures.

Afin de confirmer ces résultats, nous avons réalisé des expériences de liaison de

ligands par SPR sur les SMALPs purifiées.
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Figure 43. Immobilisation de la protéine A,A_MP2 purifiée en SMALP 2000 sur une
puce de SPR. (A) Membrane de Western-Blot révélée en présence d'Extravidin-HRP. Ct+ : 3
pug BSA-biot (Thermo), MW : marqueur de poids moléculaire. (B) Sensorgramme de
I'immobilisation de la protéine. Immob : niveau d'immobilisation. RU : relative unit

146



1.5.3. Etude par résonance plasmonique de surface

1.5.3.1. Capture du récepteur sur une puce SPR

La stratégie mise en ceuvre consiste a immobiliser le récepteur A,A_MP2 par le
groupement biotine du cété C-ter sur une puce de SPR couverte de streptavidine.
Sachant que le site de fixation des ligands est localisé sur la face du récepteur
opposée a celle de l'extrémité C-terminale, on peut penser que ce type
d'immobilisation permet d'orienter les récepteurs de facon a favoriser I'accessibilité
du site. Préalablement a ces expériences, la biotinylation effective du récepteur
AA_MP2 a été vérifiée par Western-Blot révélé en présence d'un réactif se liant a la
biotine. Cette analyse confirme que seule la forme compléte de la protéine est
biotinylée (Figure 43A), qui est donc la seule forme de la protéine immobilisée sur la
puce de SPR.

La protéine purifiée en SMALP 2000 et en SMALP 3000 a été immobilisée avec
succes sur la puce jusqu'a un niveau d'environ 4 000 RU. La Figure 43B montre le
sensorgramme de l'immobilisation des SMALPs 2000-A,A (niveau d'immobilisation =
4168 RU). Des résultats similaires ont été obtenus avec les SMALPs 3000-AzA (niveau
d'immobilisation = 3989 RU). Dans le cas d'une interaction de stoechiométrie 1:1, il
est habituellement possible de calculer le signal maximum d'interaction (Rma) en
tenant compte du niveau d'immobilisation et des masses moléculaires des ligands
injectés et du récepteur immobilisé. En revanche, si nous connaissons la masse de la
protéine seule (58 kDa), nous ne connaissons pas la contribution des polymeéres et
des éventuels lipides pour déterminer la masse exacte de la particule. Nous ne
pouvons donc pas calculer avec certitude la réponse maximale attendue dans le cas

ou 100 % des protéines seraient capables de fixer un ligand.

1.5.3.2. Etude cinétique en multi-cycles de I'interaction de ligands

Nous avons ensuite étudié l'interaction des SMALPs 2000 et des SMALPs 3000
avec le ZM241385, le XAC, le CGS15943, le DPCPX, I'adénosine et le NECA. Pour
cela, nous avons réalisé une étude cinétique en multi-cycles (multi-kinetics cycles). Les
courbes obtenues pour chaque ligand sur les SMALPs 2000 sont montrées dans la
Figure 44 (les résultats obtenus avec les SMALPs 3000 sont trés similaires). On peut
observer une liaison sur le récepteur pour les composés antagonistes XAC, ZM241385

et CGS15943. Les niveaux de réponses sont assez bas, ce qui était attendu compte
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Figure 44. Sensorgrammes de |'étude cinétique de l'interaction de différents ligands
avec le récepteur A;A purifié en SMA 2000.

Ko (nM)

SMALP SMALP

2000 3000
XAC 51,9 42,9
ZM241385 1,3 4,2
CGES 4,2 8,0
DPCPX NA NA
Adénosine NA NA
NECA NA NA

Tableau 11. Valeurs des constantes de dissociation a I'équilibre (Ko) obtenues par SPR
sur les SMALPs purifiés. NA : non applicable
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tenu des masses faibles de ces molécules, mais on observe une liaison dose-
dépendante. En faisant correspondre des courbes théoriques de liaison (en noir), le
logiciel a pu déterminer les constantes de linteraction pour ces ligands. Ces
expériences ont été répétées sur les SMALPs 3000-A2A, montrant des résultats trés
similaires en termes de niveau des réponses obtenues et de Ko mesurés (Tableau 11).
Les niveaux de réponse (en RU) et les constantes de ces composés pour la protéine
sont du méme ordre de grandeur que celles que nous avions précédemment
obtenues au laboratoire sur des nanodisques de AA_MP3 (données non publiées).
De méme, dans leur étude réalisée sur la protéine A;A_Rant21 reconstituée en
nanodisques, Bocquet et collegues ont déterminé un Ko de 0,14 £ 0,16 nM pour le
ZM241385 et de 9,9 £ 2,13 nM pour le XAC lorsque la protéine est immobilisée sur
une puce?'®. Ainsi, les valeurs de Ko que nous obtenons sur les SMALPs-A,A_MP2 sont

similaires a celles de la littérature.

Aucune liaison n’est significativement détectée pour le DPCPX, ce qui est
cohérent avec la valeur d'affinité faible obtenue par les courbes de compétition. De
méme, le format expérimental utilisé ne permet de détecter aucune liaison pour
aucun des deux ligands agonistes, I'adénosine et le NECA, en SMALP 2000 comme
en SMALP 3000.

Il apparait donc que les ligands antagonistes (a |I'exception du DPCPX) sont
capables de lier le récepteur avec des affinités similaires a celles précédemment
obtenues sur des nanodisques. De méme, les valeurs d'affinités obtenues par SPR
sont du méme ordre de grandeur que celles obtenues par radiobinding. Toutefois, la

liaison des agonistes sur les SMALPs n'a pas été mesurée par SPR.
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Figure 45. Représentation du construit recombinant de la protéine TRPV4 exprimée
dans la levure Pichia pastoris. L'étoile rouge symbolise la mutation N647Q. 10 : étiquette
décahistidine.
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Figure 46. Test de solubilisation de TRPV4 par différents détergents. 2 mg de protéines
totales sont solubilisées par 1 % (v/v) de détergent pendant 30 minutes. Migration de 10 pL
d’'échantillon par puits. Anticorps anti-his. MW : marqueur de poids moléculaire, C: culot, S :
surnageant, @ det : absence de détergent, Ct- : levure SMD1163 non transformée, Ct+ :

échantillon membranaire initial.
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2. Etudes structurales du canal TRPV4 purifié par des polyméres
amphiphiles

Si le récepteur a I'adénosine A2A est une protéine modele tres fréquemment
utilisée au laboratoire depuis plusieurs années, il n'en est pas de méme pour le canal

TRPV4 pour lequel nous n'avions aucune expérience préalable au laboratoire.

2.1. Constructions recombinantes du récepteur et clonage dans la levure

Nous disposons d’une unique construction recombinante du canal TRPV4,
obtenue au laboratoire juste avant le début de ce projet de thése. Il s'agit de la
séquence du TRPV4 de Xenopus tropicalis incluant les résidus 144 a 797 et en
remplagant I'arginine en position 647 par une glutamine, telle qu’elle a été décrite
dans la publication de Deng et colléegues®**. Cette construction contient du coté C-
ter une étiquette décahistidine permettant sa purification par chromatographie
d'affinité et sa détection par Western-Blot (Figure 45), en revanche nous n‘avons pas

intégré de tag GFP a la différence du construit décrit dans cette publication.

Comme pour les protéines A2A, cette construction est introduite dans un vecteur
PPIC9K, sous le contréle du promoteur Paoxi. Aprés que le vecteur ait été intégré dans
le génome de la levure, deux clones, exprimant le canal a des niveaux satisfaisants,

ont été sélectionnés et stockés a -80°C en milieu glycérolé.

2.2. Production et préparations membranaires de levures

La production de TRPV4 se fait de maniére tres similaire a celle des protéines
A:A, avec une phase de culture a 30 °C puis une induction de la production de la
protéine d'intérét a 22 °C pendant 18 h. Ces productions permettent de récolter
environ 28 g de cellules (poids humide du culot) par litre de culture, générant en
moyenne 500 mg de préparations membranaires (quantité de protéines totales
dosées par BCA) resuspendues dans 50 mL de tampon (soit une concentration

d’environ 10 mg/mL).
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Figure 47. Purification du canal TRPV4 en DDM. (A) Chromatographe d’élution de la
colonne d'affinité au nickel. L'élution s’effectue au moyen d'un palier a 30 % de tampon B
(vert) puis un palier a 100 % de tampon B. (B) Chromatogramme de gel filtration de la fraction
C2. Les fractions 18, 19, 21 et 22 sont matérialisées par les fleches. (C) Analyse SDS-PAGE
des fractions par coloration au Bleu de Coomassie. Migration de 10 pL déchantillon par piste.
(D) Western Blot anti-his. Migration de 5 pL d'échantillon par piste. MW : marqueur de poids
moléculaire. Sol : solubilisat apres |'ultracentrifugation, FT : flow through, W : wash.
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2.3. Purification en détergent

2.3.1. Criblage de détergents

Une premiéere étape avant la purification a consisté a effectuer un criblage d'un
petit nombre de détergents (DM, DDM, LMNG et foscholine 14) pour identifier ceux
permettant la meilleure extraction de TRPV4 a partir des membranes de levure. Les
membranes sont solubilisées dans 1 mL a une concentration de 2 mg/mL par 1 % de
détergent pendant 30 minutes. La solution est ultracentrifugée a 100 000 g pour
séparer le culot et le surnageant contenant les protéines solubilisées. Les différentes
fractions ont été analysées sur un gel de SDS PAGE transféré sur une membrane de
nitrocellulose, puis exposées a un anticorps anti-His (Figure 46). Le DM, le DDM et le
LMNG sont efficaces d’une maniére similaire pour extraire TRPV4 des membranes de
levures. Si la Foscholine-14 semble plus efficace pour solubiliser TRPV4, ce détergent
s'est déja avéré trop dénaturant pour les protéines. Comme nous ne disposons pas

de test d'activité pour cette protéine, nous avons préféré écarter ce détergent.

2.3.2. Solubilisation et purification en détergent

De nombreux essais de purification ont été réalisés afin d'en optimiser les
conditions et d’obtenir un échantillon homogéne analysable par microscopie
électronique. Seuls les résultats les plus significatifs sont présentés ici.

A la suite des résultats obtenus par le criblage et parce que ce détergent a déja

fait ses preuves dans une précédente étude’*

, nous avons choisi d’extraire et purifier
TRPV4 en présence de DDM. Apres quelques essais préliminaires pour optimiser
I"élution lors de I'lMAC, nous avons obtenu les résultats présentés dans la Figure 47.
Lors de I'MAC (Figure 47A), un premier palier a 30 % de tampon B (150 mM
d'imidazole) permet de décrocher de nombreux contaminants (fraction A6, Figure
47A, C et D). Puis la protéine est éluée lors d'un palier a 500 mM d'imidazole. Le canal
TRPV4 est bien visible sur gel de SDS PAGE a la taille attendue de 70 kDa, les
protéines de plus haut poids moléculaire observées (Coomassie et Western-Blot)
correspondant trés probablement a des dimeres ou des tétrameres de TRPV4 ayant
résisté a 'action du SDS (Figure 47C et D). La fraction C2 de I'IMAC est purifiée par
gel filtration (Figure 47B). On constate toutefois que les protéines sont éluées

majoritairement dans le volume mort de la colonne (fractions 18/19), ce qui suggére
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Figure 48. Purification du canal TRPV4 en LMNG/CHS. (A) Chromatogramme d'élution
de la colonne d'affinité au nickel. L'élution s’effectue au moyen d'un palier a 30 % de tampon
B (vert) puis un palier a 100 % de tampon B. (B) Chromatogramme de gel filtration de la
fraction C2. Les fractions 18, 19, 21 et 22 sont matérialisées par les fleches. (C) Analyse SDS-
PAGE des fractions par coloration au Bleu de Coomassie. Migration de 10 pL d’échantillon
par piste. (D) Western Blot anti-his. Migration de 5 pL déchantillon par piste. (E) Cliché de
microscopie électronique par coloration négative. (F) Classes 2D. MW : marqueur de poids
moléculaire. Sol : solubilisat apres |'ultracentrifugation, FT : flow through.
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la présence de formes oligomériques ou agrégées du canal, mais trés peu sous forme

fonctionnelle tétramérique.

D'autres tests, réalisés en présence de LMNG associé au CHS s'inspirant de

conditions de purification d’autres canaux'"

, se sont montrés plus concluants. Les
protéines ont ainsi été extraites en présence de LMNG/CHS (0,5% / 0,05%) maintenus
dans tous les tampons de purification a raison de 0,05 %/0,005%. Le profil d'IMAC
obtenu est identique a celui que |'on obtient lors de la purification en DDM, avec un
premier pic contenant exclusivement des contaminants et un second pic contenant
les canaux TRPV4 (Figure 48A). La chromatographie d’exclusion par la taille montre
que ce mélange de détergent permet de séparer les protéines dans la gamme de
résolution de la colonne. En effet, alors qu’elles étaient éluées autour de 8-9 mL en
DDM, en LMNG/CHS on observe un premier pic de protéines non résolu a partir de
8 mL, puis un pic entre 9 et 10 mL qui peut correspondre a une protéine tétramérique
d’environ 280 kDa (Figure 48B). Les profils de migration sur le gel SDS PAGE coloré
au bleu de Coomassie (Figure 48C) et le Western-Blot (Figure 48D) sont similaires a
ceux obtenus lors de la purification en DDM, avec une bande majoritaire a 70 kDa,
une bande au-dessus du marqueur de 170 kDa qui pourrait correspondre a une forme
trimérique ou tétramérique de TRPV4 non dénaturée par le SDS. On observe
également une bande de plus faible intensité vers 130 kDa qui nest pas révélée sur
Western-Blot et qui correspond a une protéine contaminante. Comme nous |'avons
mentionné pour la purification de A2A_MP2 avec le CyclAPols Cs-C;-50, nous pensons
que ce contaminant pourrait étre la protéine PMA1de Pichia pastoris. Au vu de sa
faible proportion par rapport a la bande majoritaire de TRPV4, ce contaminant ne
devrait pas trop interférer avec les études structurales envisagées. La fraction 20 issue
de la gel filtration a été analysée par microscope électronique a coloration négative
(Figure 48E). On constate que I'échantillon est relativement hétérogene, avec des
particules de taille et de forme qui correspondent au canal tétramérique (comme le
montrent les classes 2D obtenues sur la Figure 48F) mais aussi de plus gros agrégats
et des particules de plus petites tailles, qui peuvent correspondre a des monomeéres
ou des diméres de protéines. Toutefois, lorsque ces échantillons ont été analysés par
cryo-EM, les classes obtenues ne s'alignaient pas bien, avec un rapport signal sur bruit

ne permettant pas d’obtenir une structure 3D (données non présentées).
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0,005 %/0,0005 % LMNG/CHS

0,05 % LMNG @ CHS

0,01%/0,001% LMNG/CHS Fraction 18

Figure 49. Clichés de microscopie électronique a coloration négative obtenus selon

différentes conditions de purification. Les tampons de purification contiennent (A) 0,05%
LMNG sans CHS, (B) 0,005%/0,0005% de LMNG/CHS ou (C) 0,01%/0,001% de LMNG/CHS.
(D) Fraction 18 issue de la GF. Sous les clichés, sont montrées les classes 2D sélectionnées.
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Ces conditions expérimentales ont été utilisées pour réaliser différents essais
d’'analyse par spectrométrie de masse native, en collaboration avec I'équipe de Sarah
Cianférani (LSMBO, Strasbourg). Ces essais n'ont toutefois pas permis de détecter le
canal, le LMNG interférant avec |'analyse (données non présentées). Si des stratégies
d'échange de détergents pendant la purification ont été testées pour remplacer la
micelle de LMNG par du DDM, ces stratégies n’ont pas non plus permis d’obtenir des
résultats probants car la multiplication des étapes de purification a trop dilué la
protéine, rendant impossible les analyses par spectrométrie de masse native. De
méme, il est assez difficile de contréler I'échange du détergent, surtout si |I'on prend
en compte que le LMNG a une CMC assez basse (0,001 %) et qu’il est donc assez

difficile de I"échanger completement.

Plusieurs optimisations dans la composition des tampons et la préparation des
échantillons ont été réalisées afin d'améliorer I'homogénéité des échantillons
observés par microscopie électronique a coloration négative. Ces modifications ont
inclus des variations dans la concentration en détergents, |'effet de |'absence de CHS,
I'effet de la congélation de la protéine, la stabilisation du tétramere par des approches
de crosslinking des sous-unités ou par l'ajout d'un ligand antagoniste pendant
I'extraction et la purification, I'ajout d'une étape de séparation sur un gradient de
glycérol inverse a un gradient de LMNG permettant d'éliminer les micelles de LMNG
vides tout en stabilisant la protéine (stratégie GraDeR?*¢). Toutes ces conditions ont
été évaluées par microscopie électronique en coloration négative pour lesquelles des
classes 2D ont été acquises. Quelques exemples sont présentés sur la Figure 49. On
peut par exemple voir que I'absence de CHS conduit a une forte hétérogénéité de
I"échantillon et que sa présence semble donc importante pour purifier TRVP4 (Figure
49A). Par ailleurs, le fait de diminuer le LMNG d’un facteur 10 réduit le nombre de
classes 2D analysables (Figure 49B). La réduction de la concentration en LMNG/CHS
a 0,01%/0,001% semblait prometteuse (Figure 49C), avec un nombre de classes
analysables similaires au résultat précédent (Figure 48F), mais cette condition n'a pas
donné de résultats probants en cryo-EM, du fait d’'une haute flexibilité et instabilité
des particules (données non présentées). La fraction 18, quant a elle, correspond bien

a des agrégats (Figure 49D).

Les meilleurs résultats en microscopie électronique (décrits dans le paragraphe

suivant) ont été obtenus en purifiant TRPV4 avec un mélange de LMNG/CHS a
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Figure 50. Cryo-microscopie électronique sur le canal TRPV4 purifié en détergent. (A)
Micrographe de cryo-EM. (B) Classes 2D. En rouge les classes non retenus pour la
reconstruction 3D et en vert les classes sélectionnées. (C) Classes 3D. En vert, les classes
servant a la reconstruction finale, en rouge les classes écartées. (D) Différentes orientations
du volume 3D final. (E) Courbes de corrélation de Fourrier. (F) Interaction entre deux
domaines ankyrines.
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0,05%/0,005% et en présence de lipides (POPC:POPG a un ratio de 3:2) et d'un ligand
antagoniste (le GSK2193874 a 1 pM) dans les tampons de purification. Les profils de
purification obtenus avec ces conditions sont identiques a ceux montrés sur la Figure
48A et B.

2.3.3. Caractérisation structurale par microscopie électronique

La fraction 21 de la purification en présence de lipides et de ligand a été
analysée par cryo-EM (Figure 50). Le micrographe présenté sur la Figure 50A montre
que I"échantillon est assez homogéne et présente une concentration et un contraste
de bonne qualité. 4000 micrographes ont été traités pour obtenir 820 000 particules
classées en différentes classes 2D (Figure 50B) dont certaines ont été écartées
(encadrées en rouge) (Figure 50C). Une petite partie de ces classes (encadrées en
vert) a servi a obtenir des classes 3D (86 000 particules). Au final, 62 000 particules,
soit moins de 10 % du nombre initial de particules, ont servi a obtenir la structure 3D
présentée (Figure 50D). Les courbes de corrélation de Fourrier (FSC) montrent un
niveau de résolution proche de 6,3 A (Figure 50E). Le B-factor obtenu par le plot de
Guinier’’ est plutét élevé, 388,8, ce qui traduit un haut dynamisme du complexe, et
ce qui explique pourquoi la résolution n’est pas meilleure. Si le niveau de résolution
n‘est pas aussi haut qu'espéré, la structure obtenue permet toutefois d'observer
certains détails et notamment l'interaction entre deux domaines ankyrines (Figure

50F), ce qui confirme bien que le canal est structuré.

Si la structure obtenue est d’'une résolution qui pourrait étre améliorée, elle
constitue toutefois un bon point de départ pour les études structurales envisagées en

purifiant le canal par des polyméres.
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Figure 51. Test de solubilisation du canal TRPV4 avec différents polyméres. 2 mg de
protéines totales (environ 40 mg de membranes) sont solubilisées par 2,5 % (m/v) de
polyméres SMA et dérivés, 2 mg de CyclAPols ou 0,5%/0,05% de LMNG/CHS pendant une
heure. Anticorps anti-his. MW : marqueur de poids moléculaire, T : total avant
ultracentrifugation, S : surnageant, C : culot
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2.4. Purification en polyméres amphiphiles

2.4.1. Criblage de polymeres

Tout comme pour le récepteur A2A, nous avons testé différents polymeéres pour
extraire TRPV4 des membranes de levures, des polyméres de SMA et dérivés et les
CyclAPols. Les polymeéres testés incluent le SMA 2000, le SMA 3000, le DIBMA, le
XIRAN, le SMA 1440, le SMA-ED, le Cs-C»-50 et le Cg-Co-50 (Figure 51). Les protéines
ont été solubilisées pendant 1 h avec 2,5 % (m/v) de SMA et dérivés ou 2 mg de
CyclAPols (ratio protéine:polymeére de 1:1), dans un format de test mettant en jeu 2
mg de protéines totales. En paralléle des différents polyméres, une condition contréle

de solubilisation avec du LMNG/CHS a également été réalisée.

Dans I'ensemble, nous pouvons constater que I'efficacité de solubilisation de
tous les polymeéres testés est plus faible que celle du LMNG/CHS. Le SMA 2000
semble le polymeére le plus efficace pour extraire le canal des membranes. Le
polymere DIBMA semble également capable d’extraire une faible proportion de
protéines. Ce résultat nécessite toutefois d'étre confirmé car d'autres tests de
solubilisation ont montré un résultat opposé. Les autres SMA testés semblent
inefficaces. Enfin, contrairement aux résultats obtenus avec la protéine A;A, les deux
CyclAPols sont également inefficaces pour solubiliser le canal dans les conditions

testées. Ainsi, seul le SMA 2000 a été utilisé dans les essais de purification du canal.

2.4.2. Purification par le SMA 2000

Les membranes sont d'abord diluées a une concentration massique d’environ
40 mg/mL et les protéines sont solubilisées avec 2,5 % de SMA 2000 pendant 1h.
Aprés ultracentrifugation, le surnageant est chargé sur une colonne de
chromatographie d'affinité. Malgré un débit de chargement diminué a 0,5 mL/min,
une partie non négligeable de I'échantillon n’interagit pas avec la résine et est
retrouvée dans le flow-through. Les protéines sont entierement éluées de la colonne
par 500 mM d'imidazole (Figure 52A). D'apres le résultat des gels de SDS PAGE
colorés au bleu de Coomassie et révélés par Western-Blot, les fractions d'élution
contiennent bien la protéine TRPV4, a un niveau de pureté relativement élevé (Figure
52B). Toutefois, il faut noter que la bande correspondant @ TRPV4 a un aspect
« smeareux » que |'on n'observe pas lors de purification en détergent, suggérant ainsi

que des objets de tailles plus ou moins homogénes ne sont pas complétement
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Figure 52. Purification du canal TRPV4 par le SMA 2000 par IMAC. (A) Chromatographe
de I'IMAC. (B) SDS PAGE coloré au Bleu de Coomassie et Western-Blot anti-his associés a la
purification. FT : flow through, W : lavage de la colonne avec du tampon A, MW : marqueur
de poids moléculaire. (C) Cliché de microscopie électronique a coloration négative de la
fraction B12. En jaune, les particules caractéristiques de TRPV4.
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Figure 53. Purification du canal TRPV4 sur un gradient de glycérol. Les différentes
fractions issues du gradient (8 a 20) sont déposées sur un gel de SDS PAGE coloré au Bleu
de Coomassie ou analysé par Western Blot (anti-his). B3 : fraction issue de I'lMAC, MW :

marqueur de poids moléculaire.
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dénaturés par le SDS. Enfin, I'analyse par microscopie électronique a coloration
négative montre que I'échantillon est trés hétérogene, avec la présence notamment
de nombreux gros agrégats (Figure 52C). Les échantillons ne sont pas exploitables en
tant que tels par des approches de microscopie électronique. De ce fait, une
deuxieme étape de purification sur un gradient de glycérol est indispensable pour

améliorer I'homogénéité de |'échantillon.

L'optimisation du gradient réalisée pour A’A a été appliquée a TRPV4. Les
particules ont donc été séparées sur un gradient discontinu d'environ 4 mL contenant
trois couches différentes de glycérol, la premiére a 5 %, une seconde a 20 % pour
concentrer les particules et une derniere a 50 % de glycérol. Apres ultracentrifugation,
des fractions de 200 pL ont été récupérées par le haut du gradient et leur contenu a
été analysé sur un gel SDS PAGE (Figure 53). Il n'y a pas de différence marquée dans
le profil de migration des différentes fractions, contrairement a la protéine A,A dont
les fractions 14 et 15 contenait de nettes bandes de protéines contaminantes. Ainsi
plusieurs de ces fractions ont été utilisées pour réaliser des analyses par microscopie
électronique sur des SMALPs-TRPV4.
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Figure 54. Clichés de microscopie électronique a coloration négative de SMALPs-
TRPV4. (A) Images des différentes fractions du gradient de glycérol. (B) Images du pool
dialysé avant (gauche) et aprés concentration (droite).
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2.5. Analyse des SMALPs-TRPV4 par microscopie électronique

Aprés purification des SMALPs-TRPV4 par chromatographie d'affinité puis sur un
gradient de glycérol, différentes fractions issues du gradient de glycérol ont été
analysées par microscopie électronique a coloration négative. Il faut noter que le
contraste des images n’est pas tres bon, probablement a cause de la présence de
glycérol, ce qui ne facilite pas I'analyse. Aussi, on ne distingue pas de différences
majeures en termes d’homogénéité des échantillons entre les différentes fractions
analysées (Figure 54A). Les fractions 13, 14 et 15 ont donc été poolées, soit un volume
final d’environ 600 pL, en vue des études par cryo-EM. La présence de glycérol dans
I"échantillon est toutefois incompatible avec la vitrification des protéines. Les
échantillons ont donc été dialysés pendant 18 h contre un tampon ne contenant pas
de glycérol. La concentration des protéines dialysées a ensuite été évaluée par une
mesure UV a 280 nm (I'aspect « smeareux » des SMALPs-TRPV4 ne permet en effet
pas de réaliser une analyse densitométrique fiable). La concentration du pool dialysé
est de 0,140 mg/mL, soit une concentration étant trop faible pour une analyse par
cryo-EM. Les échantillons ont donc été concentrés jusqu’a environ 0,650 mg/mL. Si
I'hnomogénéité de I'échantillon dialysé n’est déja pas idéale (Figure 54B), il apparait
clairement que la concentration a eu un effet délétere majeur sur la qualité de
I"échantillon (Figure 54C). Ainsi, nous n'avons pas pu réaliser les études de cryo-EM

qui étaient initialement envisagées.
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3. Discussion générale des résultats et perspectives

3.1.1. Purification des protéines par des détergents

Le premier objectif de ce projet était de mettre au point des protocoles de
purification robustes des protéines A2A et TRPV4 en détergent afin d’obtenir un point

de comparaison solide en vue des études avec des polyméres amphiphiles.

3.1.1.1. A2A

L'utilisation du systeme d’expression Pichia pastoris permet d'obtenir aisément
une quantité satisfaisante du récepteur A,A purifié en DDM/CHS, de plusieurs
centaines de microgrammes pour la construction A2A_MP2 a plus d'un milligramme
pour la construction thermostabilisée A;A_Rant21_MP3. Dans les deux cas, la levure
produit une version du récepteur clivé du coté C-terminal mais une étude réalisée au
laboratoire®* avait précédemment montré que les capacités de liaison de ligands du
récepteur ne sont pas impactées par cette troncature. Avec un nombre de sites
capables de lier un ligand pouvant atteindre 12 000 pmol par milligramme de
protéine purifée, la majorité des protéines isolées selon la procédure que nous avons
établie se trouvent dans un état conformationnel fonctionnel selon ce critere
d'activité. Si des valeurs de B obtenues sont parfois plus faibles, cela est
probablement lié a la variabilité intrinseque du format expérimental des tests de
radiobinding effectués. En effet, il a préalablement été montré au laboratoire, pour
des protéines A2A_MP3 reconstituées en nanodisques, des différences dans le taux
de protéines capables de fixer un ligand selon la méthode de mesure utilisée (environ
40 % par radiobinding®’® contre environ 90 % par SPR (données non publiées) ou par
chromatographie de faible affinité’?). Il parait donc important de souligner que les
résultats obtenus par cette technique de liaison de ligand radioactif a I'équilibre

correspondent toujours a une estimation minimale.

Ainsi, nous obtenons des protéines a des colts réduits (si I'on compare aux co(ts
de production en cellules d'insectes ou en cellules de mammiféeres®”), avec des
rendements et des niveaux de pureté satisfaisants, et étant probablement
correctement repliées car capables de fixer un ligand. Ces protéines purifiées en
détergent ne sont toutefois pas trés stables, d'autant plus a température ambiante®’s,
ce qui limite leur durée d'utilisation et ne permet pas d’envisager certaines méthodes
d'analyse telles que la SPR par exemple. Nous disposons ainsi d'un protocole de

purification robuste, qui constitue un point de comparaison solide pour le
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développement d'un protocole de purification alternatif, basé sur I'utilisation de

polymeres.

3.1.1.2. TRPV4

La protéine TRPV4 est également produite a des niveaux relativement
importants dans la levure Pichia pastoris. Apres plusieurs essais et plusieurs conditions
testées, nous avons pu mettre au point un protocole de purification basé sur un
mélange de LMNG/CHS et sur |'ajout de lipides et d'un ligand lors de la purification,
nous permettant d'obtenir de bons rendements, d’environ 1 a 1,3 mg de protéines
par litre de culture. Cette condition a permis |'obtention d'une structure d'une
résolution de 6,3 A. Le B factor témoigne d'une haute flexibilité de la protéine, ce qui
explique que la résolution ne soit pas plus basse. Bien que le niveau de résolution
puisse étre amélioré, cette étude nous permet toutefois de confirmer que nous
obtenons bien un canal tétramérique et que la protéine est structurée, comme le
montre l'interaction entre deux domaines ankyrines (Figure 50F). Différentes
stratégies pourraient étre envisagées pour stabiliser davantage le complexe et ainsi
obtenir une meilleure résolution de la structure. On pourrait ainsi optimiser les
conditions de production et de purification, notamment en affinant le choix du
détergent et la composition des tampons. La digitonine ou son dérivé glyco-
diosgenin (Anatrace) sont par exemple les détergents les plus utilisés (un tiers de

toutes les structures résolues au cours des dix derniéres années)'

notamment pour
leur capacité apparente a établir des interactions hydrophobes plus stables avec les

protéines membranaires en solution.

Si nous disposons d'informations structurales sur la protéine purifiée, nous
n'avons toutefois pas de données nous permettant d’'évaluer sa fonctionnalité. Nous
avions essayé de mettre au point un test de fixation du rouge de ruthénium (ruthenium
red) sur TRPV4, en nous inspirant d’un test spectrophotométrique décrit par Charuk

et collegues®®

, Mais a cause d'une sensibilité du test trop faible, nous n"avons pas pu
obtenir des conditions compatibles avec la mise en ceuvre d'expériences de liaison.
Pour évaluer la fonctionnalité des canaux, il faudrait donc réaliser, a travers une
collaboration, des études d'électrophysiologie, en reconstituant par exemple les

protéines purifiées dans les liposomes géants.
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3.1.2. Criblage et purification par des polymeres amphiphiles

Au cceur de ce projet de thése, I'objectif de cette deuxiéme phase était
d’évaluer le pouvoir solubilisant d'une sélection de polyméres amphiphiles sur nos
systemes modeles, puis de mettre au point des protocoles de purification a I'aide des

polymeres les plus performants.

Différents polymeres de différentes natures ont pu étre testés au cours de cette
étude, tels que les co-polymeres de styrene et d'acide maléique, dont les plus utilisés
SMA 2000 et SMA 3000, mais aussi d'autres SMA comme le SMA 1440, ayant fait
I'objet de peu d’études dans la littérature. Le SMA-ED synthétisé par NovAliX a partir
du SMA 2000 s’est malheureusement révélé trés difficilement soluble. Ce SMA
présente l'intérét de posséder une fonction amine libre, avec laquelle nous avions
envisagé de faire réagir des réactifs biotinylés tel que I'EZ-Link-Sulfo-NHS-LC-Biotin
(Thermo) afin de fonctionnaliser le polymere pour développer des stratégies
d'immobilisation des SMALPs généralisables a toute protéine d'intérét. Nous avons
également pu tester les CyclAPols, une nouvelle génération d’amphipols trés
récemment décrite dans la littérature. Contrairement aux APol précédents, ces
polyméres ont la capacité de déstabiliser les membranes et d'en extraire les
protéines. Si les premiéres études ont été menées sur des protéines bactériennes

271, nous avons pu mettre en évidence qu'ils

produites dans des systemes bactériens
sont également capables d’extraire une protéine eucaryote, le récepteur A2A, produit
dans le systeme Pichia pastoris, un systéme eucaryote. Il est intéressant de noter que
ces polyméres sont efficaces a des quantités largement inférieures a celles utilisées
pour les SMA. En effet, lorsque les protéines sont solubilisées avec 2,5 % de SMA,

30 et utilisée dans la large majorité

concentration recommandée dans les protocoles
des publications, 750 mg de polyméres sont nécessaires pour solubiliser 100 mg de
protéines totales, soit un ratio 1:7,5 contre un ratio de 1:1 pour les CyclAPols. En
revanche, ces amphipols n’ont pas permis d’extraire TRPV4 des membranes a un ratio
de 1:1. A I'heure actuelle, I'efficacité des CyclAPols a principalement été testée sur
des protéines globalement de petite taille (moins d'une centaine de kDa) (a
I'exception de la protéine AcrB qui fait plus de 300 kDa et dont la structure a pu étre
résolue®®’) et il serait donc intéressant d’augmenter la quantité de polyméres mis en
jeu a des concentrations proches de celles utilisées pour les SMA afin de voir si ces
conditions sont plus favorables pour solubiliser des complexes plus gros tel qu'un

canal de prés de 300 kDa.
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Lors de la purification des protéines par les SMA (SMA 2000 et SMA 3000), il est
apparu que, contrairement a ce qui est publié dans la littérature, il n’est pas forcément
nécessaire d'incuber la résine dans le surnageant de purification pendant plusieurs
heures (incubation souvent décrite sur la nuit*’?, voire pendant 20 h a 24 °C**). Les
SMALPs sont également capables d'interagir avec des résines pré-coulées dans des
colonnes, réduisant ainsi le temps nécessaire pour |'expérience mais limitant
également des phénoménes éventuels de dégradation protéique pouvant survenir
lors de longs temps de solubilisation. L'aspect des bandes correspondant aux
SMALPs-TRPV4 est toutefois « smeareux ». L'analyse de la bande du gel par des
techniques de protéomique pourrait permettre de déterminer si on retrouve
uniquement la protéine TRPV4 ou si d'autres protéines interagissent ou sont co-

purifiées avec les SMALPs, expliquant ce phénoméne de smear.

Si des protocoles de purification par chromatographie d‘affinité ont pu étre
adaptés au récepteur A2A et au canal TRPV4, il n‘en est pas de méme pour la
chromatographie d’exclusion par la taille. Dans les conditions testées, il s'est avéré
impossible voire délétere pour la colonne de faire une étape de SEC apres I'MAC.
De méme, nous avons également essayé d'injecter les SMALPs-A2A apres |'étape de
purification sur gradient de glycérol mais aucune protéine n'a été détectée en sortie
de colonne (données non présentées). Nous pouvons donc nous interroger quant a
la nature et a I'hétérogénéité des polymeéres de SMA, et leur capacité a interagir avec
ce type de colonne. Pour autant, cette stratégie de purification a été utilisée dans
plusieurs études®®32, y compris dans I'étude sur A2A%*, sans que les auteurs ne
mentionnent ce type de probleme. Par ailleurs, dans leur étude sur le SERT, les
auteurs indiquent ajouter 0,2 M d’arginine dans le tampon de GF pour réduire les

297 Dans d'autres études, les auteurs ne réalisent toutefois

liaisons non spécifiques
qu’une étape unique de purification par IMAC#*2>2% |aissant |égitimement spéculer

sur les raisons de |'absence d'analyse par SEC.

Au vu de I'hétérogénéité des échantillons obtenus aprés IMAC, aussi bien pour
A2A que pour TRPV4 ou cela est encore plus visible, il s'avére toutefois nécessaire
d’effectuer une deuxiéme étape de purification. Lors de ce projet, nous avons pu
mettre en place un protocole de purification basé sur la séparation des particules sur
gradient de glycérol. La procédure établie a été répétée plus d'une dizaine de fois
pour A2A et a donné des résultats trés reproductibles a chaque essai. Les particules
ainsi purifiées ont pu étre caractérisées de différentes fagcons. Pour TRPV4, la

procédure de purification ne semble pas encore tout a fait optimale car les fractions
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les plus concentrées manquent d’homogénéité d'apres les résultats obtenus sur les
grilles de microscopie. En partant du postulat selon lequel les fractions 14 et 15
contiennent probablement des objets de grosses tailles (Figure 53), nous aurions pu
analyser uniquement les fractions 12 et 13 comme pour A2A, mais leurs concentrations

étaient bien trop faibles pour envisager des analyses structurales.

Il est également intéressant de noter que, bien que ce probléme ne soit
quasiment jamais évoqué dans les publications, il n'est pas aussi simple de doser des
SMALPs purifiées que des protéines purifiées en détergent, étant donné l'interférence
des SMA avec diverses techniques. L'estimation de la concentration des SMALPs
purifiées sur un gel de SDS PAGE s’avere étre une alternative intéressante, bien que
toutefois plus longue et moins précise, la courbe d'étalonnage n’étant jamais parfaite.
Cette méthode a toutefois été utilisée dans deux études récentes : pour le NTSR1, ou
les auteurs ont également déterminé la concentration des SMALPs-NTSR1 sur un gel
contre de la protéine purifiée en détergent’®, et pour la protéine A:A ou la
concentration des SMALPs-AzA a été déterminée par SDS PAGE contre des protéines
standards®?. Cette technique n’a toutefois pas pu étre utilisée pour les SMALPs-
TRVP4 & cause de l'aspect « smeareux» des bandes qui fausse l'analyse. La
concentration a donc été déterminée par une mesure a 280 nm tout en étant

conscient d'une certaine surestimation liée a I'absorbance du styrene a 280 nm.

Enfin, le CyclAPol Cs-C3-50 s’est montré plus efficace que le SMA 2000 pour
extraire A;A des membranes de levure et la nature des particules obtenues apres une
étape de purification par chromatographie d'affinité s'est révélée tout a fait
compatible avec une étape de SEC, contrairement au SMA 2000. Toutefois deux
problemes majeurs ont été rencontrés. Tout d'abord, les protéines sont éluées
majoritairement dans le volume mort de la colonne. Plusieurs hypotheses peuvent
expliquer ce résultat. On peut par exemple supposer que les CyclAPols ont solubilisé
une importante proportion de protéines oligomériques et/ou agrégées et donc non
fonctionnelles ou que les particules extraites sont de tailles importantes. Ces
hypothéses pourraient étre confirmées par des analyses par microscopie
électronique. De plus, un contaminant est co-purifié avec le récepteur AA. Ce
contaminant n'a d‘ailleurs pas pu étre totalement éliminé lors d'une étape
supplémentaire de purification anti-FLAG. Nous ne savons pas si le contaminant
interagit avec la protéine ou avec les polymeres CyclAPols, ou si une méme particule

pourrait contenir a la fois A2A et ce contaminant. A l'inverse des SMA, il serait
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intéressant d’augmenter la quantité de CyclAPols mis en jeu pour solubiliser les PMs

afin d'étudier si cela peut permettre de déstabiliser d'autres populations de protéines.
3.1.3. Caractérisations fonctionnelle et structurale des particules purifiées

3.1.3.1. A2A

Les particules de AA purifiées par le SMA 2000 et le SMA 3000 ont été
caractérisées par différentes techniques. Dans un premier temps, la stabilité des
protéines lors du stockage a -80°C a été évaluée par des tests de radiobinding. Des
courbes de saturation ont été réalisées a intervalles de temps réguliers afin d’évaluer
I"éventuelle évolution du Bmax et du Ko. Si I'affinité du ligand pour le récepteur reste
inchangée dans le temps, il n"en est pas de méme pour le nombre de sites disponibles
pour la liaison du ligand qui tend a diminuer au cours du temps. Toutefois, au vu de
la variabilité intrinséque de I'expérience, il serait intéressant de confirmer ces résultats
par une autre technique comme la SPR par exemple qui permettrait de vérifier si les
niveaux de réponse obtenus sont stables et si on retrouve les mémes constantes de
liaisons. A ce propos, il est intéressant de souligner que les résultats tout a fait
exploitables de SPR ont été obtenus sur des échantillons conservés pendant 10 a 15
jours a -80 °C. Ainsi, si les SMALPs semblent moins stables a -80°C que des
nanodisques (résultats préalablement obtenus au laboratoire®s), on peut toutefois
raisonnablement affirmer que les SMALPs restent utilisables au moins 1 mois apres
leur purification pour des tests de caractérisation pharmacologique tels que ceux que

nous avons réalisés.

La fonctionnalité des SMALPs-AA a ensuite été évaluée par des tests de liaisons
de différents ligands agonistes et antagonistes du récepteur. Deux formats de tests
différents ont été mis en ceuvre: des courbes de compétitions basées sur le
déplacement d'un radioligand antagoniste et des études d’interactions directes par
SPR. Ces deux techniques ont permis d’obtenir des résultats similaires : I'affinité des
ligands antagonistes pour les SMALPs-AA est globalement similaire a celle que |'on
obtient sur des protéines purifiées en détergent ou sur des protéines reconstituées
en nanodisques. La différence de Ki que nous observons pour le XAC et le DPCPX
nécessiterait d'étre confirmée par des réplicats expérimentaux, d'autant plus
qu’aucune différence de Kp n'a été observée en SPR pour le XAC entre les SMALPs
et les nanodisques. Les résultats sont plus tranchés pour les agonistes. En effet, la

diminution de I'affinité est trés nette entre les SMALPs, les protéines en détergent et
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la protéine en nanodisques pour |'adénosine. Nous n’avons toutefois pas
d'information sur Iaffinité du NECA sur des nanodisques, aussi bien pour les tests de
compétition que par SPR. De méme, il faudrait vérifier que nous arrivons a mesurer
une liaison par SPR entre |'adénosine et la protéine A:A reconstituée en nanodisques
afin d'avoir des données complétes. Il faut également noter que l'affinité de la
protéine pour différents ligands, obtenue sur des échantillons membranaires, est plus
faible que lorsque les protéines sont purifiées en détergent. Enfin, si on compare les
valeurs d'affinité de la littérature obtenues sur des membranes de cellules de
mammiféres (cellules CHO ou HEK)3# & celles obtenues sur des membranes de Pichia
pastoris, on constate que |'affinité de la protéine est globalement plus faible dans les

membranes de levures.

De ces constats, nous émettons deux hypotheses majeures pour expliquer la
baisse d'affinité des ligands agonistes. Au vu des différences d’affinité observées
entre des cellules de mammiféres et les membranes de Pichia pastoris, la premiere
hypothése tient a I'environnement lipidique des membranes de Pichia pastoris et
donc des SMALPs. En effet, les membranes de levures ont une composition lipidique
différente de celle des cellules de mammiferes. Hormis les phospholipides, les acides
gras et les sphingolipides classiquement retrouvés chez tous les mammiféres, la
membrane plasmique des levures contient de I'ergostérol comme stérol majoritaire
et non du cholestérol*®. || est établi depuis plusieurs années que le cholestérol joue
un role crucial dans la structure et dans la fonction de nombreux RCPG3*4, y compris
le récepteur AA. Par exemple, Liu et collegues ont montré que ['hélice
transmembranaire VI est stabilisée par le cholestérol, ce qui pourrait jouer un role
fonctionnel dans la fixation des ligands dans le site de liaison®®. Une étude récente
montre que le cholestérol serait un modulateur allostérique faible du récepteur A,A%%.
Enfin, dans une autre étude, les auteurs ont étudié I'impact de la déplétion du
cholestérol par des cyclodextrines dans des cellules HEK sur I"activité du récepteur
A2A et ils ont montré une réduction de la production d’AMPc bien que la liaison de
différents ligands radioactifs ou fluorescents soit inchangée®’. De méme, |'ajout de
CHS lors de la purification de A2A en détergent permet de stabiliser la protéine, ce
qui peut également expliquer les différences d'affinités observées entre les SMALPs

et les protéines en détergent.

Pour tester cette hypothese, dans un premier temps, il serait intéressant
d’'évaluer la composition des lipides présents dans les SMALPs purifiées. Ce type

d'analyse a été menée par diverses méthodes comme la chromatographie gazeuse
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ou la spectrométrie de masse sur différents types de protéines purifiées*2. Routledge
et colléegues ont montré par LC-MS/MS que les profils des phospholipides présents
dans les SMALPs-AA sont généralement similaires a ceux de la membrane totale®”.
Le contenu en stérols n'a toutefois pas été analysé. De fagon intéressante, dans cette
méme étude, les auteurs décrivent que le récepteur montre peu de changements
conformationnels en réponse a I'agoniste NECA, contrairement aux changements
observés lors de la liaison du ZM241385. Dans un deuxieme temps, nous
souhaiterions évaluer I'impact du cholestérol en utilisant une souche de Pichia pastoris
qui a été modifiée pour synthétiser non plus de |'ergostérol mais du cholestérol3®.
Nous souhaitons évaluer les propriétés pharmacologiques des SMALPs-AA isolées a
partir de cette souche en comparaison avec les résultats obtenus avec la souche

SMD1163 utilisée lors de ce projet.

La deuxieme hypothése que nous émettons serait que le polymeére de SMA
exerce une pression trop importante sur les protéines, ce qui modifierait leur
conformation et donc les affinités de liaison de ligands. Pour tester cette hypothese,
nous souhaiterions évaluer la capacité de fixation de ligands d'autres récepteurs. Dans
cette optique, des expériences préliminaires ont été menées au laboratoire sur le
récepteur a la dopamine D2DR. Les résultats de purification obtenus avec le SMA
2000 sont trés encourageants (données non présentées) et il s'agit maintenant de
poursuivre ces essais de purification et d'étudier la capacité des protéines purifiées a

lier des ligands.

Enfin si nous disposons dun faisceau d'indices sur la capacité du récepteur a
fixer ces ligands, une des critiques que nous pouvons faire vis-a-vis de ce travail est
que nous ne disposons d'aucune information quant a la fonctionnalité de la protéine
a activer les protéines G ou a recruter l'arrestine. Il serait donc intéressant d’évaluer
I'efficacité de stimulation de la protéine Gs par un test d’'échange du GDP par

exemple.

3.1.3.2. TRPV4

Pour ce projet, la protéine TRPV4 était destinée a évaluer I'apport des SMA pour
la réalisation d'études structurales. Comme indiqué précédemment, les fractions les
plus concentrées issues du gradient de glycérol ne sont pas trés homogeénes. Les

fractions les plus en amont du gradient étaient quant a elles trop peu concentrées
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pour envisager des études structurales. De méme, la présence de glycérol dans les
échantillons n’est pas compatible avec la cryo-EM, nécessitant donc une étape
supplémentaire pour retirer le glycérol, ce qui va généralement diluer d'autant plus
les protéines. De plus, la concentration des SMALPs-TRPV4 a altéré la qualité de
I’échantillon, rendant impossible toute étude. Ainsi, il semble nécessaire de revoir la
procédure de purification pour TRPV4 avant d’'envisager des études structurales plus
approfondies. Si les tests de solubilisation avec le DIBMA ont donné des résultats
contradictoires, il serait toutefois intéressant de confirmer ces résultats afin de vérifier

si cela pourrait permettre d’améliorer 'homogénéité de |'échantillon.

De la méme fagon que nous I'avons soulignée pour les protéines purifiées en
détergent, nous ne disposons d'aucune information quant a la fonctionnalité des
SMALPs-TRPVA4. Le canal KcsA purifié en SMALPs a pu étre directement reconstitué
dans une bicouche de lipide planaire, ce qui a permis une caractérisation
fonctionnelle du canal par électrophysiologie sans priver au préalable la protéine de
son environnement natif®¢. Une stratégie similaire pourrait dont étre envisagée pour
les SMALPs-TRPV4. De méme il existe de nombreux ligands de TRPV4*¢¢. Nous
pourrions ainsi envisager des études de liaison de ligand par SPR en immobilisant le
SMALPs-TRPV4 par le tag histidine de la protéine, sur une puce NTA. Cette stratégie
n'a pour le moment pas encore été appliquée pour des protéines purifiées en SMA
mais elle a déja été mise en ceuvre pour cribler des fragments sur le récepteur 1AR"?
ou pour étudier l'interaction entre le récepteur CXCR4 et un fragment d’anticorps de

camélidés (nanobody)*’.
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CONCLUSION GENERALE

Le travail réalisé au cours de cette these donne des premiers éléments de
réponse quant a l|'évaluation de polyméres amphiphiles pour I'extraction, la
purification et la caractérisation de protéines membranaires produites a partir de la
levure Pichia pastoris, en comparaison avec les résultats obtenus a partir de protéines

purifiées en détergent.

Une procédure de purification robuste du récepteur a I'adénosine A,A a pu étre
mise au point a partir des SMA 2000 et SMA 3000, avec des rendements
particulierement significatifs. Cette procédure inclut une premiere étape de
chromatographie d'affinité sur ions métalliques immobilisés et une deuxiéme étape
de séparation sur un gradient de glycérol. Les propriétés pharmacologiques des
protéines ainsi purifiées ont été déterminées par deux techniques différentes, selon
des courbes de déplacement d'un ligand radioactif et par SPR. Si les SMALPs-AA
lient des ligands antagonistes de maniére relativement similaire lorsque I'on compare
SMALPs, protéines purifiées en détergent ou nanodisques, ce n’est pas le cas pour
les ligands agonistes pour lesquels l'affinité de la protéine semble nettement
diminuée. Ces résultats valident ainsi la capacité des polyméres testés a isoler des
particules contenant ce RCPG dans une conformation active, mais ils soulignent
également l'importance de I'environnement lipidique sur cette activité et en
particulier sur la modulation des interactions entre la protéine et ses ligands. Nos
données suggerent notamment que les lipides des membranes de la levure Pichia
pastoris avec lesquels le récepteur A,A a été isolé dans les SMALPs ne fournissent pas
les conditions idéales a un repliement optimal du récepteur. Il conviendra ainsi
d’'évaluer cette hypothese en comparant différentes SMALP-A,A préparées a partir de
différents systémes recombinants, tels que des souches de levure au profil lipidique

modifié, des cellules d'insectes et des cellules de mammiféres.

Ce travail a également porté sur I'étude d’'une autre protéine modeéle, le canal
TRPV4, pour lequel il a d'abord été nécessaire de sélectionner des clones de levures
ad hoc puis de mettre au point un protocole de purification a I'aide de détergent.
L'optimisation des conditions de purification a finalement permis d’‘obtenir une
structure du canal a 6,3 A par cryo-EM. Différentes conditions expérimentales sont
tout a fait envisageables pour améliorer ce niveau de résolution, méme si cela ne fait

pas partie des objectifs initiaux de ce projet de theése. Cette structure constitue en
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effet un point de départ intéressant pour pouvoir évaluer la performance et |'utilité
des SMA dans le cadre d'études structurales de protéines membranaires. La
procédure de purification par le polymeére SMA 2000 initialement mise au point sur le
récepteur A2A a ainsi été transposée a TRPV4 en vue de réaliser des études
structurales des SMALPs. Si TRPV4 a pu étre extrait efficacement par le SMA 2000,
montrant ainsi le potentiel intéressant de ce polymére comme moyen d'isoler ce canal
modele a partir des membranes de levure, la procédure de purification reste encore
a affiner pour pouvoir pleinement progresser vers les études structurales par cryo-EM

envisagees.

De maniere globale, les objectifs fixés au début de ce projet ont été relativement
atteints dans la mesure ol nous avons pu montrer que certains polyméres amphiphiles
ont la capacité de déstabiliser les membranes de levure de maniere relativement
efficace et d'en extraire des particules contenant les deux protéines eucaryotes
modeéles que nous avions sélectionnées. Méme si des investigations plus poussées
sont encore nécessaires pour pouvoir caractériser finement ces particules, ce travail a
néanmoins identifié un certain nombre de difficultés et de limites expérimentales qui
ne nous permettent pas pour le moment de conclure sur 'apport substantiel des SMA
comme alternative aux détergents pour |'étude de protéines membranaires en

solution.
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Pichia pastoris is a eukaryotic microorganism reputed for its ability to mass-
produce recombinant proteins, including integral membrane proteins, for vari-
ous applications. This article details a series of protocols that progress towards
the production of integral membrane proteins, their extraction and purifica-
tion in the presence of detergents, and their eventual reconstitution in lipid
nanoparticles. These basic procedures can be further optimized to provide inte-
gral membrane protein samples that are compatible with a number of structural
and/or functional investigations at the molecular level. Each protocol provides
general guidelines, technical hints, and specific recommendations, and is il-
lustrated with case studies corresponding to several representative mammalian
proteins. © 2020 by John Wiley & Sons, Inc.

Basic Protocol 1: Production of membrane proteins in a P. pastoris recombi-
nant clone using methanol induction

Basic Protocol 2: Preparation of whole-membrane fractions

Alternate Protocol 1: Preparation of yeast protoplasts

Basic Protocol 3: Extraction of membrane proteins from whole-membrane
fractions

Basic Protocol 4: Purification of membrane proteins

Alternate Protocol 2: Purification of membrane proteins from yeast proto-
plasts

Alternate Protocol 3: Simultaneous protoplast preparation and membrane sol-
ubilization for purification of membrane proteins

Basic Protocol 5: Reconstitution of detergent-purified membrane proteins in
lipid nanoparticles

Keywords: detergent e extraction e integral membrane proteins e lipid parti-
cles reconstitution e Pichia pastoris e protoplast e purification e recombinant
expression
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INTRODUCTION

As a methylotrophic yeast, Pichia pastoris combines the simplicity of manipulation
and genetic engineering of a unicellular organism with the sophisticated physiology
and cell organization of a eukaryotic host, as well as a peculiar and strongly regulated
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methanol-dependent metabolism (Ahmad, Hirz, Pichler, & Schwab, 2014; Gasser &
Mattanovich, 2018; Macauley-Patrick, Fazenda, McNeil, & Harvey, 2005). These fea-
tures make it ideally suited to mass production of a large variety of proteins and com-
pounds, fitting the quality, regulatory, and cost requirements of a number of industrial
fields, including the food, pharmaceutical, biotechnology, and chemical industries (Love,
Dalvie, & Love, 2018; Mattanovich, Sauer, & Gasser, 2014; Spohner, Miiller, Quitmann,
& Czermak, 2015; Zhu, Sun, Wang, & Li, 2019).

P. pastoris is also a system of choice for difficult-to-express proteins, particularly for
eukaryotic integral membrane proteins (IMPs) that are investigated in functional and
structural studies or for screening applications. IMPs assume a large panel of functions
that are essential for cellular homeostasis and integrity (e.g., sensing and transport of
molecules and ions, signal transduction, energy conversion, lipid metabolism, cell-to-
cell communication). As these biological processes are finely tuned, the corresponding
IMPs are generally poorly abundant in their natural environment and have to be recom-
binantly overexpressed in order to recover workable amounts. In addition, they neces-
sarily require the hydrophobic environment of a lipid bilayer (or a membrane mimic) to
achieve the proper spatial folding responsible for their specific function. Overall, these
critical aspects strongly contribute to the challenge in producing and studying IMPs at
the molecular level. As a strong illustration of the versatility and potency of P. pastoris,
hundreds of these demanding IMPs have been successfully produced using this system
(see numerous references in Alkhalfioui, Logez, Bornert, & Wagner, 2011, much more
since), dozens of them in qualities and quantities compatible with 3D structure resolution
(updated list available at https.//blanco.biomol.uci.edu/mpstruc/).

Complete general guidelines, detailed protocols, and optimization strategies can be found
for expression and production of IMPs with P. pastoris (Bornert, Alkhalfioui, Logez, &
Wagner, 2012; Hartmann, Kugler, & Wagner, 2016; Logez, Alkhalfioui, Byrne, & Wag-
ner, 2012; Singh et al., 2012a,b). The aim of this article is to detail a set of procedures we
routinely apply to generate a panel of IMP samples for further investigation. These pro-
tocols describe a series of preparative methods, ranging from whole-cell and membrane-
fraction preparations down to isolation of proteins maintained in detergents or reconsti-
tuted in lipid nanoparticles. Each protocol is exemplified with representative results we
obtained for a variety of eukaryotic IMPs.

Starting from a yeast clone of interest (see Bornert et al., 2012) for upstream cloning and
selection strategies, Basic Protocol 1 presents a standard and straightforward procedure
for production of a recombinant IMP in a 2-L baffled flask culture format accessible
to every commonly equipped biology lab. This culture volume often yields recombinant
IMPs in the low milligram range (i.e., amounts compatible with a number of biochemical
and biophysical analyses) and can be easily upscaled to 10-12 L.

Basic Protocol 2 details a robust method for efficiently disrupting the very resistant mem-
brane envelope of P. pastoris to generate whole-membrane preparations. In addition to
this rather classical protocol, Alternate Protocol 1 depicts a method employing treatment
with a Zymolyase enzyme mixture to form protoplasts, i.e., yeast cells devoid of the
surrounding cell wall.

Basic Protocol 3 focuses on the extraction of IMPs from membrane samples with de-
tergent compounds. The procedure is technically rather straightforward, but represents
a crucial step, as it aims at identifying the best experimental conditions leading to ef-
fective membrane solubilization without IMP destabilization, which is always a protein-
dependent process. When this procedure is set up, detergent-solubilized IMPs can then
be isolated following various chromatography purification approaches.
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Basic Protocol 4 details a two-step purification strategy that we routinely apply as a start-
ing point before IMP-specific optimizations and adjustments. In two subsequent proto-
cols, IMP solubilization and purification are achieved from yeast protoplasts, either se-
quentially (Alternate Protocol 2) or concomitantly (Alternate Protocol 3), with the double
aim of reducing procedure time and improving the quality of the purified sample.

Finally, a protocol aiming at replacing IMPs in a membrane-mimicking lipid environment
is exemplified with a human G protein—coupled receptor self-assembling into nanodiscs,
i.e., nanoscale phospholipid bilayers stabilized by membrane scaffold proteins.

The protocols presented in this article are mainly focused on preparative approaches. As
further discussed in the Commentary section, the various types of IMP samples generated
with these procedures are ready to be evaluated by a panel of analytical methods for qual-
ifying their activity, purity, homogeneity, topology, dynamics, and any other parameter,
allowing one to investigate their structure and function at the molecular level.

PRODUCTION OF MEMBRANE PROTEINS IN A P. pastoris RECOMBINANT
CLONE USING METHANOL INDUCTION

This production step presupposes an existing yeast clone expressing the IMP of inter-
est. If such a clone is not available, preliminary and substantial work must be done to
isolate a P. pastoris recombinant clone. The Current Protocols in Protein Science arti-
cle Bornert et al. (2012) and another recent report (Hartmann et al., 2016) are dedicated
to this issue. Briefly, this includes the design and cloning of the desired sequence in a
dedicated P. pastoris expression vector, the integrative transformation of P. pastoris, and
the phenotypic selection of recombinant clones. These clones are then screened under
expression-inducing growth conditions in a small-scale culture format in order to select
the most valuable clones. These ideally correspond to the best balance between high
protein production and properly folded/active proteins. Once the best clone and optimal
expression conditions are identified, production can start using the present protocol.

Although a number of alternative and valuable expression strategies have been described
(Fischer & Glieder, 2019), the immense majority of IMPs produced using P. pastoris
are expressed under a methanol-induced regimen based on the strongly regulated P4ox;
promoter (for detailed descriptions, see Logez et al., 2012; Ahmad et al., 2014). In these
conditions, yeast are first cultured in a glycerol-containing medium (where recombinant
protein expression is repressed) until an appropriate cell density is achieved. They are
then transferred to a methanol-containing medium to induce IMP production.

Baffled shaker flasks are the system of choice for producing significant amounts of IMPs
(in the milligram range) in reasonable culture volumes (usually 2-10 L). Importantly,
flasks designed to favor optimal gas exchange are highly recommended, such as Ultra
Yield flasks (Thomson) with AirOTop seals that include a 0.2-pum resealable and sterile
membrane barrier.

For larger production volumes, bioreactors can be adapted to optimize production and
proper folding. Parameters such as aeration, temperature, pH, and medium composition
can be tightly regulated with these systems, with a number of fed-batch and co-feeding
strategies available. Such approaches and their recent developments and applications for
heterologous protein production can be found in several references (Liu et al., 2019;
Singh et al., 2012b).

The procedure detailed below describes the standard conditions for inducing 2 L of cul-
ture in baffled shaker flasks and generating eight cell pellets that can be used immediately
or stored for later use. As outlined in Bornert et al. (2012), a number of parameters may
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be adjusted, such as the temperature and duration of the methanol induction phase, the
composition of the two media, and the addition of chemical chaperones such as DMSO
and/or specific ligands. These protein-dependent optimizations may have a critical im-
pact on the production outcome by increasing the proportion of properly folded and active
IMPs, as already shown (André et al., 2006).

Materials

Isolated recombinant clone on a freshly streaked YPD agar plate (see recipe for
plates)

BMGY medium (see recipe)

BMMY medium (see recipe)

Phosphate-buffered saline (PBS; e.g., Euromedex, cat. no. ET330)

2.5-L baffled flasks (e.g., Ultra Yield, Thomson, cat. no. 931136-B)
1-L sterile centrifuge bottle

50-ml conical tubes

30° and 22°C shaking incubators

Spectrophotometer

Centrifuge

1. Inoculate 500 ml freshly prepared BMGY medium in a 2.5-L baffled flask with a fresh
recombinant colony isolated on a YPD agar plate. Incubate overnight on a shaker at
250 rpm, 30°C.

This protocol can be applied to other culture formats, ranging from 50-ml conical tubes to
5-L baffled flasks. For optimal aeration during induction, it is important to maintain a 1:5
ratio between the volume of the yeast culture and the total volume of the vessel.

2. Measure the ODgg of the culture. Dilute cells in fresh BMGY medium to achieve a
volume of 1 liter with an ODggo of ~2.5 (~10® cells/ml). Split the culture into two
baffled flasks and incubate on a shaker at 250 rpm, 30°C, until the culture reaches an
ODggg of ~10 (~4-5 hr).

When measuring cell turbidity at ODgyy, be aware of the linearity limit of the
method/instrument. We usually fix this limit at 0.3 OD and dilute the measured sample
accordingly.

3. Pellet cells by centrifuging in a sterile 1-L bottle for 5 min at 2000 x g, room tem-
perature.

4. Decant supernatant and resuspend pellet in 2 L fresh BMMY medium to induce ex-
pression. Split into four baffled flasks and incubate 18-24 hr in a shaker at 22°C, 250

rpm.

5. Pool cultures in two 1-L centrifuge bottles and harvest cells by centrifuging for
10 min at 3000 x g, 4°C.

6. Decant supernatants and wash each cell pellet (corresponding to 1 L culture) with 200
ml PBS, pH 7.4. Split each into four 50-ml conical tubes and centrifuge for 10 min at
3000 x g, 4°C.

7. Discard supernatant and weigh cell pellets.

Pellets can be snap-frozen in liquid nitrogen and stored at —80°C or kept on ice to be
used directly for membrane (see Basic Protocol 2) or protoplast (see Alternate Protocol
1) preparations.

In this format, each conical tube content corresponds to 250 ml culture. The wet cell pellet
in each tube is expected to be between 6 and 8 g.
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PREPARATION OF WHOLE-MEMBRANE FRACTIONS

P. pastoris cells are surrounded by a thick protective cell wall containing $-1,3-glycan,
B-1,6-glycan, chitin, and mannoproteins (Cabib & Arroyo, 2013), so a robust cell lysis
method is required. Methods of choice usually include vigorous mechanical shaking with
microbeads because they are very efficient and compatible with various sample volumes
and tubes. The widest-known and simplest method is to lyse the cell membranes through
several cycles of vigorous shaking and ice-cooling phases. To achieve reproducible cell
lysis efficacy, programmable devices are recommended, such as the TissueLyser from
Qiagen or the FastPrep-24 from MP Biomedicals, which are suitable for volumes up to
50 ml, or the more sophisticated Dyno Mill agitators, which can handle larger sample
volumes. Besides mechanical shaking techniques, pressure-based instruments are also
efficient for lysing P. pastoris cells. In addition to the well-known French press, several
cells disruptors are available from Constant Systems that can handle samples from one
to hundreds of milliliters with pressure application from 1 to 2.7 kbar.

Whatever the lysis method, addition of protease inhibitors is strongly recommended to
prevent degradation of recombinant proteins by intracellular proteases released upon cell
disruption.

Following the cell lysis step, large debris and unbroken cells are removed by low-speed
centrifugation and the resulting supernatant is subsequently ultracentrifuged. The mem-
brane pellet is then recovered in an appropriate buffer with a Potter homogenizer to con-
stitute a whole-membrane preparation. Optionally, several steps of stringent washes and
ultracentrifugation may be applied to optimize the removal of membrane-associated pro-
teins, resulting in samples enriched with the IMP of interest; such a protocol is exempli-
fied in Bornert et al. (2012). Finally, the cell lysis efficacy can be evaluated by determining
the total protein concentration, typically by BCA (e.g., Thermo Scientific, cat. no. 23225)
or Bradford assay (e.g., BioRad cat. no. 5000006), and the expression and activity of the
protein of interest in the preparation can be determined by immunoblotting and a specific
activity assay, if available.

The protocol described below is a bead-based disruption method we routinely apply for
preparing membranes of P. pastoris overexpressing various IMPs of interest.

Materials

Yeast cell pellets from 1 L culture (four pellets, ~6-8 g each; see Basic Protocol 1)

TNGE buffer (see recipe)

TNG buffer (see recipe)

Acid-washed glass beads (425- to 600-iwm diameter; Sigma-Aldrich, cat. no.
G8772-1KG)

Cell breaking device (e.g., FastPrep-24 high-speed benchtop homogenizer, MP
Biomedicals)

Ultracentrifuge-compatible bottles

Ultracentrifuge equipped with an appropriate fixed-angle rotor

50-ml Potter homogenizer

15- and 50-ml conical disposable tubes

Additional reagents and equipment for BCA assays and immunoblot analysis (see
Current Protocols articles Olson & Markwell, 2007 [BCA]; Gallagher, 2012
[SDS-PAGE]; Goldman, Ursitti, Mozdzanowski, & Speicher, 2015
[electrotransfer]; Bornert et al., 2012 [immunoblotting of expressed IMPs])

1. Resuspend each of four 6- to 8-g yeast pellets with 25 ml ice-cold TNGE bufter.

Pellets corresponding to 1-5 L can be conveniently processed in one day.
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2. Add 10 ml acid-washed glass beads to each.

3. Place tubes on a cell breaking device and lyse cells by performing three cycles of
alternating shaking (40 s at 6 m/s on a FastPrep-24) and cooling (40 s on ice).

4. Centrifuge for 5 min at 5000 x g, 4°C. Transfer all four supernatants to a single
flask.

5. Dissolve each pellet in up to 25 ml ice-cold TNGE buffer and repeat steps 3-4 for
two additional rounds, adding all supernatants to the same flask.

6. Centrifuge supernatant in 50-ml tubes for an additional 5 min at 5000 x g, 4°C.

7. Transfer supernatant to appropriate bottles and separate by ultracentrifuging for 30
min at 100,000 x g, 4°C.

Carefully weigh the bottles and check that the rotor is properly balanced.

8. Discard supernatant and resuspend pelleted whole membranes in 45 ml ice-cold
TNG buffer using a 50-ml Potter homogenizer until the suspension is homogenous.

9. Split membrane preparation into five 15-ml conical tubes containing ~10 ml each.
Store at —80°C.

Membrane preparations can be used directly for further analyses and downstream pro-
cessing of the IMP of interest. When stored at —80°C, they are usually stable for several
months.

10. Determine protein concentration of the membrane preparation by BCA.

When using a FastPrep homogenizer under these conditions, protein concentrations are
usually ~10 mg/ml, (i.e., ~500 mg for four cell pellets obtained from 1 L culture).

11. Evaluate production of the IMP of interest by immunoblotting and a specific activity
assay, if available.

PREPARATION OF YEAST PROTOPLASTS

Although P. pastoris is a very efficient overexpression system, a variable but signifi-
cant proportion of misfolded and/or aggregated protein is often produced and co-purified
when using standard IMP protocols. This phenomenon is poorly characterized in the
context of membrane protein production, but it is widely recognized that overexpression
overwhelms cell biosynthesis and translocation machineries and often elicits improper
IMP folding (Vogl et al., 2014). Such events cause a number of stresses and responses,
with various outcomes including retention of misfolded proteins within the secretory
pathway and formation of protein aggregates before their eventual degradation (Buck
et al., 2015; Schlebach & Sanders, 2015).

In this context, we have found it strongly useful in some cases to preferentially purify spe-
cific membrane subfractions (in particular the plasma membrane) where properly folded
IMPs are the most often located. This strategy is highly valuable for extraction and purifi-
cation of a number of IMPs as presented in Alternate Protocols 2 and 3. This approach
requires cells compatible with such fractionation approaches, however, and further re-
quires the use of weaker yeasts devoid of their thick cell wall, such as protoplasts.

The procedure presented here is based on degradation of the P. pastoris cell wall using
glucanase enzymes (e.g., glucanases from snail digestive juice, Zymolyase or Lyticase
from microbial sources) to result in protoplast cells. These can then serve as a starting
material for several applications, including IMP activity assays performed on whole cells,
subcellular fractionation approaches (von Hagen & Michelsen, 2013), or direct extrac-
tion of IMPs using detergents (as further described in Alternate Protocols 2 and 3). The
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following proportions are given for a cell pellet of ~6-8 g, obtained from 250 ml induced
culture (see Basic Protocol 1), but can be upscaled proportionally.

Materials

Yeast cell pellet (see Basic Protocol 1)
Milli-Q-purified water

SED buffer (see recipe)

1 M sorbitol (Sigma-Aldrich, cat. no. S6021)

CG buffer (see recipe)

200 U/ml Zymolyase 20 T (Amsbio, ref. 120491-1)

50-ml conical disposable tubes
Centrifuge
Tube rotator

1. Resuspend cell pellet in 50 ml Milli-Q water. Split to two 50-ml conical tubes and
fill to 50 ml with Milli-Q water.

Centrifuge for 5 min at 5000 x g, 4°C.

Discard supernatant and wash pellet with 50 ml SED buffer.
Centrifuge for 5 min at 5000 x g, 4°C.

Discard supernatant and wash pellet with 50 ml of 1 M sorbitol.

Centrifuge for 5 min at 5000 x g, 4°C.

N R w

Discard supernatant and resuspend pellet in CG buffer to give a cell concentration
of ~80 g/L (~40 ml buffer).

8. Add 20 U Zymolyase per gram of initial cell pellet and incubate for 15-30 min at
room temperature under gentle agitation.

The amount of Zymolyase and/or duration of treatment may impact the integrity of pro-
teins and thus have to be adjusted to the IMP of interest.

9. Harvest protoplasts by centrifuging for 5 min at 750 x g, 4°C. Use minimal accel-
eration and deceleration to avoid rupturing the protoplasts.

10. Carefully discard supernatant using a pipette.

Protoplasts are ready for detergent solubilization and IMP purification (see Alternate
Protocols 2 and 3). They should not be stored.

EXTRACTION OF MEMBRANE PROTEINS FROM WHOLE-MEMBRANE
FRACTIONS

When planning the investigation of IMPs isolated in aqueous solutions, a critical chal-
lenge is determining the experimental conditions that allow efficient extraction from
membranes without destabilizing the protein’s structure or impairing its function. This
crucial step is realized by the use of amphiphilic molecules, most generally detergents,
although very recent detergent-free approaches using amphiphilic polymers are being de-
veloped (Bada Juarez, Harper, Judge, Tonge, & Watts, 2019; Overduin & Klumperman,
2019).

As often stated in biochemistry, selection of IMP solubilization methods and detergents
is regarded as an art rather than a science. Step-by-step guidelines and very useful tips
can be found in excellent comprehensive reviews and book chapters (Duquesne, Prima,
& Sturgis, 2016; Seddon, Curnow, & Booth, 2004; Tate, 2010) to help optimize condi-
tions for your IMP of choice. In particular, key concepts are detailed such as the critical

Current Protocols in Protein Science

BASIC
PROTOCOL 3

Guyot et al.

7 of 27



Guyot et al.

8 of 27

micellar concentration (CMC), which represents the concentration above which a given
detergent forms micelles. These concepts are important to understand because they de-
termine the way each detergent is used to extract IMPs and maintain them in solution.

If no information is available for solubilization of a targeted IMP, the initial step usually
consists in screening a panel of extraction conditions by varying a number of parame-
ters, such as the choice and concentration of detergent, the ionic strength, the membrane
protein concentration, and the addition of stabilizing compounds (Champeil et al., 2016;
Kotov et al., 2019). The ideal combination is hardly predictable, as it depends on the
nature of the IMP, its local lipid environment in the membrane, and the physicochemical
properties of the detergent. The choice of detergent is often guided by its efficient extrac-
tion capacity, which is frequently correlated with unfolding or instability issues for the
IMP of interest. Therefore, as far as a specific functional test is available, solubilization
conditions are evaluated in terms of both IMP yields and protein activity and stability.

Here we present a general protocol for IMP extraction from whole P. pastoris membranes.
In our experience, a simple initial screening using a small number of representative deter-
gents and conditions often leads to successful extraction for a panel of eukaryotic IMPs.
When a satisfying set of solubilization conditions is identified, it can be directly trans-
posed to a preparative scale.

Materials

Membrane suspension (see Basic Protocol 2)
Solubilization buffer SO (see recipe)
10x concentrated detergent solutions (Anatrace)

Benchtop tube rotator (e.g., RotoFlex tube rotator)
Benchtop ultracentrifuge with appropriate microtubes
Disposable pestle for microtubes

Additional reagents and equipment for BCA assays and immunoblot analysis (see
Current Protocols articles Olson & Markwell, 2007 [BCA]; Gallagher, 2012
[SDS-PAGE]; Goldman et al., 2015 [electrotransfer]; Bornert et al., 2012
[immunoblotting of expressed IMPs])

1. Inultracentrifuge-compatible microtubes, dilute membrane suspension to 2 mg/ml in
1 ml solubilization buffer SO supplemented with the selected 1 x detergent solutions.

For the detergents in Figure 1, the final 1x concentrations were 2% (w/v) for OG and 1%
(w/v) for all others.

Incubate for 30 min at room temperature on a benchtop tube rotator.
Ultracentrifuge for 30 min at 100,000 x g, 4°C.

Carefully transfer supernatant (containing solubilized material) to a new microtube.

ok »ee

Resuspend remaining membrane pellet in 1 ml solubilization buffer SO using a dis-
posable pestle.

6. Evaluate IMP solubilization efficiency by comparing the content of the supernatant
and resuspended pellet using standard immunoblotting and a specific activity assay,
if available.

Figure 1 shows a typical immunoblot analysis from a solubilization screening experiment
conducted on a human 4TM cell surface receptor expressed in P. pastoris. Membrane
preparations were incubated in the presence of seven representative detergents. The data
highlight the differential extraction potentials of the detergents tested, with yields of solu-
bilized receptor ranging from low (OG, OGNG) to medium (DM, DDM, LMNG) to high
(Fos12, Fosl4).
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Figure 1 Immunoblot analysis of a human 4TM cell surface receptor extracted with seven dif-
ferent detergents. Proteins were extracted with 2% (w/v) OG or 1% (w/v) of each other deter-
gent. Equal volumes (15 pl) of samples (S, supernatant; P, resuspended pellet) were loaded.
Proteins were separated by SDS-PAGE on a 10% (w/v) polyacrylamide gel and immunoblotted
with a mouse penta-His antibody (1/1000 v/v; Qiagen, cat. no. 34660). The secondary antibody
was donkey anti-mouse DyLight 800 (1/10,000 v/v; Euromedex, cat. no. A90-337D8). Molecular
masses (kDa) are indicated on the left. The band corresponding to the immunodetected pro-
tein of interest is indicated by an arrow on the right. MW: Molecular weight; Mb: membrane;
No det.: no detergent; OG: n-octyl-p-D-glucopyranoside; OGNG: 2,2-dihexylpropane-1,3-bis-
B-D-glucopyranoside; DM: n-decyl-g-D-maltopyranoside; DDM: n-dodecyl--D-maltopyranoside;
LMNG: 2,2-didecylpropane-1,3-bis-g-D-maltopyranoside; Fos12, n-dodecylphosphocholine (Fos-
choline 12); Fos14, n-tetradecylphosphocholine (Fos-choline 14).

Figure 2 illustrates the benefit of combining an immunodetection assay and an activity
assay when selecting optimized solubilization conditions. P. pastoris membranes express-
ing the human ADRA2B GPCR were solubilized with a selection of twelve detergents,
and the resulting solubilized fractions were analyzed by immunoblotting and a specific
radioligand-binding assay. In this representative example, the most efficient extraction
obtained with detergents from the Fos-choline series correlate with the complete loss of
detectable activity, suggesting a strong denaturing effect from these molecules. On the
other hand, the relatively low immunoblot signal observed with CHAPS corresponds to
the highest amount of ligand binding to solubilized ADRA2B.
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Figure 2 Detergent screening for the human ADRA2B receptor extraction. (A) Immunoblot anal-
ysis of membrane protein extracted with 1% (w/v) of various detergents. Equal volumes (15 wl)
of solubilized fractions were loaded. Proteins were separated by SDS-PAGE on a 10% polyacry-
lamide gel and immunoblotted with an M2 anti-flag antibody (1/8000 v/v; Sigma-Aldrich, F3165).
The secondary antibody was donkey anti-mouse DyLight 800 (1/10,000 v/v; Euromedex, cat. no.
A90-337D8). Molecular masses (kDa) are indicated on the left. The band corresponding to the im-
munodetected protein of interest is indicated by an arrow on the right. Bands of higher molecular
weight most likely correspond to SDS-resistant oligomeric forms of the receptor. (B) Specific ligand
binding activity determined by a radioligand-binding assay on 10 |.g of each solubilized fraction with
[®H]Rauwolscine (André et al., 2006). Lanes: 1, DDM; 2, OG; 3, n-undecyl-f-D-maltopyranoside
(UM); 4, DM; 5, digitonin; 6, lauryl-sucrose; 7, Fos12; 8, Fos14; 9, Fos16; 10, cyclohexyl-hexyl-
p-D-maltoside (CYMAL-6); 11, zwittergent 3-12; 12, 3-[(3-cholamidopropyl)dimethylammonio]-1-
propanesulfonate (CHAPS).

PURIFICATION OF MEMBRANE PROTEINS

Strategies for purification of membrane proteins are numerous and are roughly simi-
lar to those developed for soluble proteins. They rely mainly on fusion tag—based tech-
niques and/or methods exploiting the intrinsic properties of the protein, and are detailed
in several comprehensive reviews and book sections (Lérenz-Fonfria, Perdlvarez-Marin,
Padrés, & Lazarova, 2011; Pandey, Shin, Patterson, Liu, & Rainey, 2016; Smith, 2017).
One main concern for IMPs is related to the presence of the solubilizing detergent, which
may directly impact purification strategies and yields, and thus the choice of techniques
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to use (or not use). For instance, tag sequences that are spatially too close to a transmem-
brane domain may be buried in the detergent micelle after solubilization, and thus be
poorly accessible to the affinity chromatography support. Similarly, any ion exchange—
based chromatography may be inefficient if the IMP of interest is solubilized with a
charged detergent. The purpose of this section is not to list and detail the multitude of pu-
rification strategies and technique combinations available in the literature, especially be-
cause they are often tailored and optimized for each IMP of interest. Instead, we describe
a simple and standard two-step purification protocol that we routinely apply as a first
intention procedure, and that we refine further, if needed. It consists of an immobilized
metal affinity chromatography (IMAC) step exploiting the 10His tag N- or C-terminally
fused to the recombinant IMP, followed by a size-exclusion chromatography (SEC) step.

The protocol starts with solubilization of the membrane preparation obtained in Basic
Protocol 2. The relatively high concentration of detergent that is usually required at this
step to efficiently destabilize membranes and extract IMPs can affect the folding and
stability of proteins during purification and may interfere with the subsequent analyses.
Therefore, the detergent concentration is usually decreased in the running buffers dur-
ing purification. It is crucial, however, to maintain a minimum detergent concentration
(above the CMC) during all purification steps to avoid micelle dissociation and protein
precipitation. Furthermore, the addition of stabilizing compounds such as glycerol, spe-
cific ligands, or lipid derivatives during the purification process is often highly valuable.

When using IMAC resins, a number of options exists, including the choice of the im-
mobilization approach (batch incubation or flowing through packed resins), the binding
capacities and physicochemical properties of the resin (bead size and chemistry), the
metal ions that are grafted (Ni’* or Co?"), and the elution strategy (linear gradient or
fixed concentration steps of imidazole). Here again, the choices are important and are
dependent on the protein itself, the objective sought, and the optimizations that can be
achieved.

The following protocol is designed for automated purification on an FPLC instrument
(e.g., AKTA Purifier or AKTA Pure, GE Healthcare), which is particularly crucial for
the SEC step, where the flow rate and pressure need to be tightly controlled. In addition,
because the volume of the solubilized sample is often quite significant (from 50 ml to
several hundreds of ml when scaled up), the use of a sample pump connected to the
FPLC instrument is highly recommended.

Here we present a typical protocol for routine purification of TRPV4, a tetrameric cal-
cium channel that we extract and purify with the detergent LMNG in the presence of
cholesteryl hemisuccinate (CHS) as a stabilizing compound.

Materials

10 ml membrane preparation at ~10 mg/ml (see Basic Protocol 2)
Solubilization buffer S1 (see recipe)

Imidazole (Sigma-Aldrich, cat. no. 10250)

Buffer Al (see recipe)

Buffer B1 (see recipe)

SEC running buffer GF1 (see recipe)

Tube rotator
Ultracentrifuge with appropriate fixed-angle rotor and ultracentrifuge bottles
0.22-pm membrane filters and filter holder (e.g., Nalgene, cat. no. DS0320)

1-ml prepacked nickel affinity chromatography column (e.g., HisTrap HP, GE
Healthcare, cat. no. 17524701)
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SEC column (e.g., Superdex 200 Increase 10/300, GE Healthcare, cat. no.
28990944)

Automated FPLC purification system (e.g., AKTA Purifier, GE Healthcare)

Sample pump or superloop

Fraction collection tubes

Additional reagents and equipment for BCA assays and immunoblot analysis (see
Current Protocols articles Olson & Markwell, 2007 [BCA]; Gallagher, 2012
[SDS-PAGE]; Goldman et al., 2015 [electrotransfer]; Bornert et al., 2012
[immunoblotting of expressed IMPs])

Solubilize membrane preparation
1. Add 10 ml membrane preparation (~100 mg protein) to solubilization buffer S1 to
give a final protein concentration of 2 mg/ml.

2. Incubate for 30 min at room temperature with gentle agitation.
3. Separate the solubilized fraction by ultracentrifuging for 30 min at 100,000 x g at
4°C.

4. Take a 50-nl aliquot of solubilized IMPs (supernatant) and store at 4°C for further
analyses.

Perform IMAC purification
5. Add imidazole to solubilized IMPs at a final concentration of 25 mM.

6. Filter suspension using a 0.22-pwm membrane filter and keep on ice.

7. Equilibrate a 1-ml HisTrap HP column with at least 10 column volumes (CV) buffer
Al at 1 ml/min.

The same flow rate is used in the following steps.

8. Inject filtered solubilized IMPs onto the column using a sample pump or superloop,
depending on the volume.

9. Wash with 10 CV buffer Al.

10. Wash with 10 CV of 30% buffer B1 (150 mM imidazole) and collect 500-1 frac-
tions.

The imidazole concentrations applied here and in the following step are optimized for pu-
rification of our TRPV4 construct. When setting up an IMP purification for the first time,
we strongly recommend managing the elution by applying a linear gradient of imidazole
(over 25 CV, for instance) before optimizing the procedure to a multistep scheme.

11. Elute with 10 CV of 100% buffer B1 (500 mM imidazole) and collect 500-.1 frac-
tions.

12. Take a 50-p1 aliquot from each fraction of interest and analyze by SDS-PAGE with
Coomassie blue staining and by immunoblotting. Include the solubilized IMPs taken
in step 4. Select the appropriate fraction(s) for further purification.

Perform SEC purification
13. Equilibrate an SEC column with at least 2 CV SEC running buffer GF1 at 0.5 ml/min.

14. Inject the appropriate fraction(s) onto the column and run at a flow rate of 0.3 ml/min,
collecting 500-.1 fractions.

The maximum volume that can be injected on a Superdex 10/300 column is 500 pl. If
the volume of fractions from the IMAC step is greater, they can be concentrated with
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Figure 3 Two-step purification of a TRPV4 ion channel. (A) IMAC profile obtained using a HisTrap HP column.
The dashed trace represents the percentage of buffer B applied to the column. W1 (wash 1), 30% B, 150 mM
imidazole; E (elution), 100% B, 500 mM imidazole. The fraction indicated with a red arrow was injected on
the size-exclusion column. (B) SEC profile obtained on a Superdex 200 10-300 column. (C) SDS-PAGE with
Coomassie Blue staining. Equal volumes (10 wl) of analyzed fractions were loaded in each lane. MW, molecular
weight markers with masses (kDa) indicated on the left; H,oo, elution fractions from HisTrap HP; Sy, elution

fraction from Superdex 200.

appropriate centrifugal filters (e.g., Vivaspin concentrators from Sartorius or Amicon
concentrators from Merck).

15. Take a 50-pl aliquot from each fraction of interest and analyze as in step 12.

Figure 3 shows a typical purification profile for TRPV4 extracted from P. pastoris mem-
branes using this protocol. The data exemplify an optimized two-step IMAC/SEC elution
strategy that allows the separation of an almost pure and homogenous IMP.

PURIFICATION OF MEMBRANE PROTEINS FROM YEAST PROTOPLASTS

As mentioned in Alternate Protocol 1, the actual overexpression of IMPs with the P. pas-
toris system often yields properly folded, functional proteins and a variable proportion of
their misfolded and/or aggregated counterparts that are stacked in the membranes of in-
tracellular compartments. When preparing whole-membrane fractions for further solubi-
lization and purification purposes, these different populations of IMPs are mixed together
and are often co-purified in affinity chromatography approaches through the tag sequence
they have in common. The subsequent SEC step then separates these different popula-
tions according to size, but sometimes with limited success due to co-elution effects or to
amplified aggregation events during the purification process. In these cases, alternative
methods are needed to better isolate these unwanted aggregates. During IMAC purifi-
cation (see Basic Protocol 4), because the aggregated forms potentially interact more
strongly with the resin support due to their higher number of tags, finely tuned differen-
tial elution strategies may prove useful, but are often challenging to set up.

Another valuable option requires applying the solubilizing detergent solution to pro-
toplasts. Under these conditions, the detergent likely extracts IMPs according to
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Figure 4 Purification of a human TREK1 channel from P, pastoris protoplasts. (A) IMAC profile obtained with
a HisTrap HP column. The dashed trace represents the percentage of buffer B applied to the column. W1
(wash 1), 20 mM imidazole; W2, 50 mM imidazole; W3, 100 mM imidazole; E (elution), 500 mM imidazole.
Fractions between red lines were pooled (H,001), concentrated to 500 I, and injected on a size-exclusion column.
(B) SEC profile of Hpoo Obtained on a Superdex 200 10-300 Increase column. Arrows indicate fractions that were
further analyzed by SDS-PAGE. (C) SDS-PAGE (10% (w/v) polyacrylamide) with Coomassie Blue staining of
representative fractions from IMAC and SEC. SEC fractions were also immunoblotted with an M2 anti-flag
primary antibody (1/8000 v/v) and IRDye 800CW goat anti-mouse secondary antibody (1/10,000 v/v). MW,
molecular weight markers with molecular masses (kDa) indicated on the left.

relative accessibility and in a kinetic mode, favoring solubilization of proteins located
in the plasma membrane or in close proximity over those stacked in inner compartments.
This method has been successfully applied to several eukaryotic (mainly human) IMPs
we have expressed in P. pastoris, including GPCRs, ion channels, and enzymes (Hart-
mann, Metzger, Ottelard, & Wagner, 2017; Vasseur et al., 2019; unpublished data). This
technique is much faster than standard cell lysis and membrane preparation procedures.
In addition, a significantly reduced proportion of protein aggregates were released for
several of the IMPs investigated.

The following protocol describes the extraction of an engineered version of the TREK1
potassium channel from yeast protoplasts and its subsequent purification under condi-
tions similar to those in Basic Protocol 4.

Additional materials (also see Basic Protocol 4)

Yeast protoplast pellet (see Alternate Protocol 1)
Solubilization buffer S2 (see recipe)

Buffer A2 (see recipe)

Buffer B2 (see recipe)

SEC running buffer GF2 (see recipe)

1. Carefully resuspend freshly prepared yeast protoplasts in solubilization buffer S2 to
reach a cell concentration of ~80 g/L.

Guyot et al. 2. Incubate 30 min at room temperature under very gentle agitation.

14 of 27

Current Protocols in Protein Science



3. Ultracentrifuge for 30 min at 100,000 x g, 4°C.

4. Perform IMAC/SEC as described (see Basic Protocol 4, starting with step 4) with the
following adjustments:

a. Equilibrate a HisTrap HP column with 4% bufter B2 (20 mM imidazole).

b. Successively wash with 10 CV of 4% buffer B2 (20 mM imidazole), 10 CV of 10%
buffer B2 (50 mM imidazole), and 10 CV of 20% buffer B2 (100 mM imidazole).

c. Elute with 10 CV of 100% buffer B2 (500 mM imidazole).

d. Perform SEC using SEC running buffer GF2.

Figure 4 illustrates the purification profile obtained for an engineered TREKI channel. In
this example, the purification procedure starting from yeast protoplasts helped us to sig-
nificantly reduce the presence of aggregated channels compared to the standard protocol
starting from whole membrane preparations. Further mass spectrometry and in vitro pro-
cessing analyses performed on the final purified fraction (not shown here) reveal that the
three different bands visible on the SDS-PAGE correspond to differentially glycosylated
forms of the channel.

SIMULTANEOUS PROTOPLAST PREPARATION AND MEMBRANE
SOLUBILIZATION FOR PURIFICATION OF MEMBRANE PROTEINS

The present protocol is a very convenient variation of Alternate Protocol 2 in which
preparation of protoplasts and solubilization of IMPs are performed simultaneously. This
method avoids manipulation of the delicate and easily breakable protoplasts prior to sol-
ubilization and reduces the time required for the whole purification process. It has proven
very successful in our hands for several IMPs (unpublished work), and the procedure and
results presented here for a 1'TM human lipase are a typical illustration of its effective-
ness. In this example, the serine hydrolase activity of the IMP is irreversibly inhibited
by standard protease inhibitors, so their use is withheld during the purification process.
The present strategy is further adapted to this enzyme as the short lapse of time between
extraction and purification limits degradation events by proteases.

This particular example also provides a demonstrative illustration of how the choice of
resin support may be helpful. To further prevent proteolysis events, we have found that
adding 2 mM EDTA to the solubilization buffer is highly beneficial. Therefore, a special
Ni Sepharose resin bearing a chemistry designed for minimized Ni leakage (i.e., His-
Trap Excel, GE HealthCare) adapted well to this relatively high concentration of EDTA.
Finally, a preparative-grade Superdex 200 column is used in the SEC step in order to
accommodate the sample volume eluted from the HisTrap Excel.

Additional materials (also see Basic Protocol 4)

Yeast cell pellet (see Basic Protocol 1)
Milli-Q-purified water

SED buffer (see recipe)

1 M sorbitol (Sigma-Aldrich, cat. no. S6021)
Solubilization buffer S3 (see recipe)

200 U/ml Zymolyase 20 T (Amsbio, ref. 120491-1)
10% (w/v) DDM solution

Buffer A3 (see recipe)

Buffer B3 (see recipe)

SEC running buffer GF3 (see recipe)

1-ml prepacked nickel affinity chromatography column (e.g., HisTrap Excel, GE
Healthcare, cat. no. 17371205)

SEC column (e.g., HiLoad 16/600 Superdex 200 Increase PG, GE Healthcare, cat.
no. 28989335)
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Figure5 Purification profiles of a human lipase extracted from P, pastoris protoplasts. (A) IMAC profile obtained
with a HisTrap Excel column with absorbance measured at 280 nm. The dashed trace represents the percentage
of buffer B applied to the column. W1 (wash 1), 20 mM imidazole; W2, 50 mM imidazole; E (elution), 500 mM
imidazole. Fractions between red lines were pooled and concentrated to 2 ml prior to injection on a size-exclusion
column. (B) SEC profile obtained with a Superdex 200 HiLoad PG column. (C) SDS-PAGE with Coomassie Blue
staining. Equal volumes (10 pnl) of membrane proteins were loaded in each lane. MW, molecular weight markers
with molecular masses (kDa) indicated on the left. Hyo01, €lution fractions from HisTrap HP; Sxgo: elution fraction
from Superdex 200.

Resuspend yeast cell pellet in 40 ml Milli-Q water.

Centrifuge for 5 min at 5000 x g, 4°C.

Discard supernatant and wash pellet with 40 ml SED buffer.

Centrifuge for 5 min at 5000 x g, 4°C.

Discard supernatant and wash pellet with 40 ml of 1 M sorbitol.

Centrifuge for 5 min at 5000 x g, 4°C.

Discard supernatant and resuspend cell pellet in 40 ml solubilization buffer S3.

Place suspension in a standard bottle and gently agitate with a magnetic stirrer.

N A T R e

Add, in dropwise fashion, 10 U Zymolyase per gram of initial cell pellet.

The amount of Zymolyase and/or duration of digestion must be adjusted to the IMP of
interest.

10. Add, in dropwise fashion, DDM solution to reach a 1% final concentration.
11. Incubate for 30 min at room temperature under gentle agitation.

12. Ultracentrifuge for 30 min at 100,000 x g, 4°C.

13. Recover supernatant containing the solubilized fraction.

14. Perform IMAC/SEC as described (see Basic Protocol 4, starting from step 4) with

Guyot et al. the following adjustments:
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a. Equilibrate a 1-ml HisTrap Excel column with 4% buffer B3 (20 mM imidazole).

b. Successively wash with 10 CV of 4% buffer B3 (20 mM imidazole), 10 CV of
10% buffer B3 (50 mM imidazole), and 10 CV of 20% buffer B3 (100 mM imi-
dazole).

c¢. Elute with 10 CV of 100% buffer B3 (500 mM imidazole).

d. Perform SEC using a HilLoad 16/600 Superdex 200 column with SEC running
buffer GF3.
Figure 5 presents the classical IMAC, SEC, and SDS-PAGE profiles obtained for a hu-
man lipase enzyme purified with the present procedure. Of importance, only a very ho-
mogeneous peak of monomeric lipase is eluted from the SEC, whereas a significant
additional population of multimeric/aggregated forms of the protein can be observed
when starting from membrane preparations as described in Basic Protocol 4 (data not
shown).

RECONSTITUTION OF DETERGENT-PURIFIED MEMBRANE PROTEINS
IN LIPID NANOPARTICLES

A common challenge regarding IMPs isolated in detergent is keeping them stable in so-
lution for a reasonable period of time. Indeed, the hydrophobic environment engendered
by detergents significantly differs from the one of lipids in native membranes. In gen-
eral, the weaker hydrophobicity of detergents leads to more dynamic molecular inter-
actions with the IMP’s hydrophobic domains. This may result in looser packing of the
protein, which in turn facilitates insertion of detergent within its hydrocarbon core. Over-
all, this combination of events contributes to the structural destabilization of IMPs and
often to their denaturation (Chipot et al., 2018). In addition, during the manipulation of
membrane proteins, detergents may co-concentrate with the protein and then amplify
these phenomena. Strategies aimed at minimizing these instability issues are regularly
reported, including the development of better-adapted detergents (Breyton et al., 2019,
and references therein) and the engineering of more stable IMPs (deletion of unstructured
and flexible regions of the protein, introduction of stabilizing point mutations or fusion
sequences; Chun et al., 2012).

Alternatively, because the presence of free detergents and/or detergent micelles may
also interfere with a number of techniques and assay formats, trapping purified IMPs in
detergent-free lipid particles may prove highly beneficial for further analysis. A number
of strategies have been developed for isolating IMPs in lipid-based membrane mimetics,
including liposomes (Jgrgensen, Kemmer, & Pomorski, 2017), disc-shaped structures
such as bicelles (Diirr, Gildenberg, & Ramamoorthy, 2012), and lipid nanoparticles sta-
bilized with styrene maleic acid co-polymers (Overduin & Klumperman, 2019) or with
lipoproteins (Bayburt & Sligar, 2010; Frauenfeld et al., 2016). With different strengths
and limitations, these approaches have proven successful for stabilizing various IMPs
in aqueous solutions for a period of time compatible with a number of biochemical and
biophysical investigations.

We here describe a protocol allowing recovery of lipoprotein nanoparticles containing
the adenosine A2A receptor (AA2A), a prototypic class A GPCR. These so-called nan-
odiscs are obtained from a detergent-purified AA2A that, upon detergent removal, self-
assembles within a lipid bilayer encircled by two amphipathic membrane scaffold pro-
teins (MSPs).

Materials

25 mg/ml 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) in chloroform
(Avanti Polar, cat. no. 850457C)

25 mg/ml 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) in
chloroform (Avanti Polar, cat. no. 840457C)
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10.
11.

Argon (or nitrogen) gas

Lipid resuspension buffer (see recipe)

Membrane scaffold protein MSP1E3D1(-) (MSP) produced and purified as
described in Denisov, Grinkova, Lazarides, and Sligar (2004) in 20 mM HEPES,
pH 7.4, 100 mM NacCl, 0.5 mM EDTA

Detergent-purified AA2A (AA2A is produced as described in Basic Protocol 1;
membranes are prepared as described in Basic Protocol 2; AA2A is purified as
in Basic Protocol 3 using solubilizing buffer S4 [see recipe])

Polystyrene Bio-Beads SM-2 (Bio-Rad, cat. no. 1523920)

Buffer A4 (see recipe)

Buffer B4 (see recipe)

SEC running buffer G4 (see recipe)

5-ml glass tube

Vacuum desiccator

Fritted glass support

Benchtop tube rotator (e.g., RotoFlex tube rotator)
Benchtop centrifuge

Mix POPC and POPG at a 3:2 molar ratio in a 5-ml glass tube.

Evaporate chloroform under an argon (or nitrogen) stream to form a lipid film at the
bottom of the tube.

Let the lipid film dry thoroughly overnight in a vacuum desiccator.

Suspend the lipid mixture at a final concentration of 24 mM in lipid resuspension
buffer. Allow mixture to hydrate above the transition temperature of the lipids (typ-
ically at room temperature) for 30-60 min with regular vortexing.

Add purified MSP to lipid suspension at a 1:70 MSP/lipid molar ratio and incubate
on ice for 15 min.

Add detergent-purified AA2A receptor to the MSP/lipid mixture at a 1:10
AA2A/MSP molar ratio and incubate on ice for an additional 60 min.

Add 0.25 g dry Bio-Beads SM-2 per ml reconstitution mixture to initiate nanodisc
self-assembly.

Batches of dry Bio-Beads should be prepared in advance by three successive washes
with 20 ml methanol, then deionized-water, followed by vacuum filtration on a fritted
glass support.

Incubate overnight at 4°C on a tube rotator.
Decant Bio-Beads by centrifuging briefly at 3000 x g, room temperature.
Carefully recover supernatant with a syringe and 0.8-mm gauge needle.

Proceed to IMAC/SEC purification as described (see Basic Protocol 4) using buffers
A4 and B4 and SEC running buffer G4.

Figure 6 illustrates the IMAC, SEC, and SDS-PAGE profiles that we typically obtain for
isolation of AA2A-containing nanodiscs. Whereas the flowthrough (FT) fraction from
IMAC purification contains mainly free MSP or empty nanodiscs, the eluted fractions
correspond to homogeneous populations of AA2A-nanodiscs, as confirmed by SDS-PAGE
and by negative staining EM analyses (not shown). The two bands observed for AA2A
correspond to wild-type (upper band) and C-terminally truncated (lower band) popula-
tions of the receptor as determined by mass spectrometry analyses.
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Figure 6 Purification of nanodisc-reconstituted human AA2A receptor. (A) IMAC elution profile of self-
assembled nanodisc mixture (ND mix) on a HisTrap HP column. Elution was achieved with 500 mM imidazole
(100% B buffer, dashed line). Eluted fractions were pooled (Hpo01), concentrated to 500 wl, and injected on a
size-exclusion column. (B) SEC profile obtained on a Superdex 200 10-300 Increase column. Fractions 21,
23, and 25 were further analyzed by SDS-PAGE. (C) SDS-PAGE with Coomassie Blue staining of represen-
tative fractions. MW, molecular weight markers with molecular masses (kDa) indicated on the left. FT: IMAC

flowthrough.

REAGENTS AND SOLUTIONS

NOTE: Except where noted below, all buffers should be prepared fresh before use. See
Figures 1 and 2 for full names of detergents abbreviated below.

BMGY medium

For 1 L, prepare 700 ml YEP:

10 g yeast extract (e.g., Formedium, cat. no. YEAO3)

20 g peptone (e.g., Formedium, cat. no. PEP03)

Bring to 700 ml with deionized water

Sterilize by autoclaving

Just before use add the following filter-sterilized stock solutions:

100 ml 13.4% (w/v) yeast nitrogen base w/o amino acids (10x; Formedium, cat.
no. CYN0410)

100 ml 10% (v/v) glycerol (10x; Euromedex, cat. no. EU3550)

100 ml 1 M phosphate buffer, pH 6 (10x)

YEP and 10x stock solutions can be stored up to 1-2 months at 4°C.

BMMY medium

Prepare as for BMGY medium (see recipe), but replace glycerol with 100 ml of 5%
methanol (10x; Sigma-Aldrich, cat. no. 179957).

Buffer A1 (TRPV4)

50 mM HEPES, pH 7.4
500 mM NaCl (Euromedex, cat. no. 1112-A)
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0.05% (w/v) LMNG (Anatrace, cat. no. NG310)
0.005% (w/v) CHS (Anatrace, cat. no. CH210)
25 mM imidazole (Sigma-Aldrich, cat. no. 10250)

Buffer A2 (TREKI)

50 mM Tris-Cl, pH 7.4 (Euromedex, cat. no. 26-128-30-94-B)
150 mM KCI (Euromedex, cat. no. PO17-A)
0.01% (w/v) DDM (Anatrace, cat. no. D310S)

Buffer A3 (lipase)

50 mM Tris-Cl, pH 7.4
300 mM NaCl
0.1% (w/v) DDM

Buffer A4 (AA2A)

50 mM HEPES, pH 7.4

500 mM NaCl

0.05% (w/v) DDM

0.005% (w/v) CHS

1 uM DPCPX (Sigma-Aldrich, cat. no. C101)
25 mM imidazole

Buffer B1 (TRPV4)

Prepare as for buffer Al (see recipe), but increase imidazole to 500 mM.
Buffer B2 (TREK]I)

Prepare as for buffer A2 (see recipe), but add 500 mM imidazole.
Buffer B3 (lipase)

Prepare as for buffer A3 (see recipe), but add 500 mM imidazole.

Buffer B4 (AA2A)
Prepare as for buffer A4 (see recipe), but add 500 mM imidazole.

CG buffer

20 mM trisodium citrate (Euromedex, cat. no. 1126), pH 5.8
10% (v/v) glycerol
Before use add 1 mM PMSF (Sigma-Aldrich, cat. no. P7626)

Lipid resuspension buffer

50 mM HEPES, pH 7.4
150 mM NaCl
48 mM sodium cholate (Sigma-Aldrich, cat. no. C6445)

SEC running buffer GF1 (TRPV4)

50 mM HEPES, pH 7.4
150 mM NaCl

0.05% (w/v) LMNG
0.005% (w/v) CHS

SEC running buffer GF2 (TREKI)

50 mM Tris-Cl, pH 7.4
150 mM KClI
0.1% (w/v) DDM

Guyot et al. 1 mM EDTA (Euromedex, cat. no. EU0007)
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SEC running buffer GF3 (lipase)

50 mM Tris-Cl, pH 7.4
300 mM NaCl
0.1% (w/v) DDM

SEC running buffer GF4 (AA2A)

50 mM HEPES, pH 7.4
150 mM NaCl

0.02% (w/v) DDM
0.002% (w/v) CHS

1 uM DPCPX

SED buffer

1 M sorbitol (Sigma-Aldrich, cat. no. S6021)
25 mM EDTA
Before use, add 50 mM DTT (Euromedex, cat. no. EU0O0006-D)

Solubilization buffer SO

50 mM Tris-Cl, pH 7.4
500 mM NaCl
1 mM EDTA

Solubilization buffer S1 (TRPV4)

50 mM HEPES, pH 7.4

500 mM NaCl

0.5% (w/v) LMNG

0.05% (w/v) CHS

0.3 mM EDTA

Protease inhibitor cocktail (Roche cOmplete Ultra Tablets, Sigma-Aldrich, cat. no.
6538282001; one tablet per 50 ml solubilization volume)

Solubilization buffer S2 (TREKI)

50 mM Tris-Cl, pH 7,4

500 mM KCI

10% (v/v) glycerol

1% (w/v) DDM

20 mM imidazole

Protease inhibitor cocktail (one tablet per 50 ml solubilization volume)

Solubilization buffer S3 (lipase)

50 mM Tris-Cl, pH 7.4
300 mM NaCl

10% (v/v) glycerol

1% (w/v) DDM

2 mM EDTA

Solubilization buffer S4 (AA2A)

50 mM HEPES, pH 7.4

500 mM NaCl

0.5% (w/v) DDM

0.05% (w/v) CHS

0.3 mM EDTA

1 uM DPCPX

Protease inhibitor cocktail (one tablet per 50 ml solubilization volume)
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TNG buffer

50 mM Tris-Cl, pH 7.4
0.5 M NaCl

1 mM PMSF

10% (v/v) glycerol
Prepare fresh

TNGE buffer

Prepare as for TNG buffer (see recipe), but add 1 mM EDTA.

YPD agar plates

Dissolve 70 g YPD agar (e.g., Formedium, cat. no. CCM0110) in water to give a final
volume of 1 L. Autoclave to sterilize. Allow solution to cool to ~50°C and pour into
Petri dishes using sterile technique. Store up to 1 month at 4°C.

COMMENTARY

Background Information

IMPs comprise about one third of all
proteomes, where they are in charge of vi-
tal functions for cell life, including fluxes
of solutes and information, energy conver-
sion, enzymatic activities, cell shape and
integrity, and intra- and intercellular contacts
and communication. As key players in these
essential physiological processes, they are
also involved in a large number of associated
disorders, and they consistently represent the
largest class of targets for the pharmaceutical
industry, representing more than 60% of com-
mercialized drugs (Santos et al., 2017). In this
context, obtaining a detailed understanding
of how IMPs function at the molecular level
is crucial for both fundamental knowledge
and biomedical applications. Such investiga-
tions are complicated, however, by the low
abundance of IMPs in native membranes, ne-
cessitating effective recombinant expression
systems to generate the amounts of biological
material required for these studies. Over the
years, P. pastoris has proven to be one of
these best-performing systems, not only for
the wide number of eukaryotic IMPs that have
been successfully produced with this host, but
also because these IMPs are representative
of a large panel of membrane functions from
different organisms, of various membrane-
spanning topologies and protein sizes, and of
diverse molecular assemblies, including het-
eromultimeric protein complexes (Alkhalfioui
et al., 2011, and references therein).

Applying preparative procedures similar to
those described in this article, a large number
of IMPs can be extracted from P. pastoris
membranes and isolated in quantity and qual-
ity levels compatible with thorough charac-
terization at the molecular level. A rapid, far-

from-exhaustive survey of literature from the
last decade retrieved an abundance of infor-
mation on a variety of IMPs produced under
these conditions, covering screening and func-
tional characterization of compounds (Dekki-
Shalaly et al., 2015; Igonet et al., 2018; Logez
etal., 2014; Scalise et al., 2014; Westh Hansen
et al., 2016; Wohri et al., 2013; Zehnpfen-
ning, Wiriyasermkul, Carlson, & Quick, 2015;
Zollmann et al., 2015); interactions with and
regulation by proteins (Bornert et al., 22013;
Damian et al., 2018; Doshi et al., 2017; Rosell
et al., 2014) and lipids (Brohawn, Su, &
MacKinnon, 2014; Schoélz et al., 2011); func-
tional impact of critical mutations (Ampah-
Korsah et al., 2017; Christenson, Gallegos,
& Banerjee, 2018; Kapri-Pardes et al., 2011;
Yang et al., 2017); as well as structural in-
sights and mechanistic details observed at the
atomic level (Deng et al., 2018; Eddy et al.,
2018; Fan, Shi, Ladizhansky, & Brown, 2011;
Garaeva, Guskov, Slotboom, & Paulino, 2019;
Hino et al., 2012; Kodan et al., 2014; Lolicato
et al., 2017; Vinothkumar, Montgomery, Liu,
& Walker, 2016; Wang, Schoebel, Schmitz,
Dong, & Hedfalk, 2020; Wang, Touhara, Weir,
Bean, & MacKinnon, 2016; Ye et al., 2018).
The wealth of data described is these papers
was obtained from investigations involving
a wide array of biochemical and biophysical
techniques and analyses. These include radio-
metric and fluorescent assays in various for-
mats, thermal shift assays, circular dichroism
spectroscopy, isothermal titration calorimetry
and differential scanning calorimetry, elec-
trophysiology, surface plasmon resonance,
frontal affinity chromatography, mass spec-
trometry in native and denaturing conditions,
transmission electron microscopy, cryoelec-
tron microscopy, X-ray crystallography, and
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solid- and solution-state NMR with various
probes and formats. Overall, this diversity of
studies and their major achievements highlight
the strong potential of IMP samples generated
from P. pastoris membranes, as well as the
flexibility of the preparative procedures to
comply with various demanding applications
and their specific technical requirements.

Critical Parameters and
Troubleshooting

A number of technical parameters and
hints are specifically presented within each of
the protocols, together with some anticipated
results. Following are additional general
guidelines and recommendations that may be
helpful for readers.

As indicated in the protocols and their
illustrative figure examples, each step from
overexpression to extraction and purification
is a protein-dependent exercise. In addition,
the formulation and quality/grade require-
ments for each generated sample vary with
the type of biochemical and/or biophysical
analyses planned. Accordingly, the param-
eters that are critical for the preparation of
one given IMP for a given study are rarely
transposable to another IMP and must be
determined on a case-by-case basis.

Whatever the IMP, the main issue is
the ability to properly assess the quality of
samples at every step of the production and
preparation process: while yield is often a
serious concern for a number of biochemical
or biophysical investigations, proper folding
of functional IMPs is obviously a requisite.
Whenever possible, this characterization
should be achieved with a specific activity
assay that provides information on both the
yield and functionality of the IMP. Such tests
are highly beneficial, not only to monitor the
production of functional IMPs (André et al.,
2006; Singh et al., 2012a,b; Logez et al., 2014;
Vasseur et al., 2019), but also to help optimize
subsequent extraction and purification proce-
dures. As mentioned and exemplified in Basic
Protocol 3, this may be particularly valuable
when screening for solubilizing detergents
and conditions. In an illustrative study, a
ligand-binding assay was notably key to the
identification of a particular Fos14/CHAPS
detergent mixture that allowed extraction and
maintenance of the human melatonin MT1
receptor in an active form (Logez et al., 2014).
Similarly, specific activity assays are a means
of choice to evaluate the stability of IMP
in solution. As an example, a time-resolved
scintillation proximity assay was developed
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in a comparative analysis of the human kappa
opioid receptor solubilized in various environ-
ments, and showed that receptor stability was
dramatically improved in nanodiscs compared
to detergent (Westh Hansen et al., 2016).

For many IMPs, however, activity assays
are not readily available, or at least not at ev-
ery step of the process. This is typically the
situation, for example, for transporters or ion
channels, which require structured compart-
mentation to assess their functionality. In this
case, activity is evaluated only after the re-
constitution of IMPs in lipid vesicles or pla-
nar bilayers (Brohawn et al., 2014; Christen-
son et al., 2018; Wang et al., 2016; Zollmann
et al., 2015), and other quality control cri-
teria are performed during the preceding ex-
traction and purification steps. These criteria,
which should be investigated for any recombi-
nant IMP, include evaluation of the purity, in-
tegrity, and homogeneity of the samples and
are measured by a number of suitable tech-
niques, such as denaturing and native elec-
trophoresis, size-exclusion chromatography,
UV-visible spectroscopy, mass spectrometry,
dynamic light scattering, circular dichroism,
transmission electron microscopy, and more.

Time Considerations

The development of a complete procedure
leading to the production and isolation of
a functional membrane protein in solution
is usually not a straightforward process.
As already stated, it is always protein-
dependent and may vary from few weeks to
several months, with often no guarantee of
success.

That said, once the parameters for produc-
tion, solubilization, and purification are set
and validated, obtaining pure protein in solu-
tion is not very time consuming. In a typical
scheme, the whole procedure may be planned
as follows:

IMP production

Starting from a freshly streaked colony,
preculture is begun at the end of Day 1,
methanol induction is carried out on Day 2,
and yeast cells are collected on Day 3. Cell
pellets can be processed directly or stored at
—80°C for several months before the mem-
brane preparation step.

Membrane preparation

The equivalent of 1 to 5 L of culture can
be easily processed, including determination
of protein concentration, in a single day (Day
4). Membrane preparations can be stored at
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—80°C for several months and do not need to
be prepared fresh prior to protein extraction
and purification.

IMP extraction and purification

Once proteins are extracted from the
membrane, all subsequent steps should be
performed as quickly as possible and with-
out interruption. Starting from membrane
preparations (Basic Protocol 4) or yeast cells
(Alternate Protocol 2 or 3), the extraction
and purification of IMPs under the conditions
described requires one day (Day 5). Analyses
are performed on the following day (Day 6).

IMP reconstitution in lipid nanodiscs

Nanodisc self-assembly is usually per-
formed overnight immediately following ex-
traction and purification (end of Day 5). Nan-
odiscs are purified and analyzed the following
after (Day 6).

Overall, the minimal amount of time re-
quired to produce, prepare, and isolate recom-
binant IMPs from a yeast clone is approxi-
mately 2 weeks.
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Chapter 11

Production and Preparation of Isotopically Labeled Human
Membrane Proteins in Pichia pastoris for Fast-MAS-NMR
Analyses

Lina Barret, Tobias Schubeis, Valéerie Kugler, Lucile Guyot,
Guido Pintacuda, and Renaud Wagner

Abstract

Membrane proteins (MPs) comprise about one-third of the human proteome, playing critical roles in many
physiological processes and associated disorders. Consistently, they represent one of the largest classes of
targets for the pharmaceutical industry. Their study at the molecular level is however particularly challeng-
ing, resulting in a severe lack of structural and dynamic information that is hindering their detailed
functional characterization and the identification of novel potent drug candidates.

Magic Angle Spinning (MAS) NMR is a reliable and efficient method for the determination of protein
structures and dynamics and for the identification of ligand binding sites and equilibria. MAS-NMR is
particularly well suited for MPs since they can be directly analysed in a native-like lipid bilayer environment
but used to require aggravating large amounts of isotope enriched material. The frequent toxicity of human
MP overexpression in bacterial cultures poses an additional hurdle, resulting in the need for alternative (and
often more costly) expression systems. The recent development of very fast (up to 150 kHz) MAS probes
has revolutionized the field of biomolecular solid-state NMR enabling higher spectral resolution with
significant reduction of the required sample, rendering eukaryotic expression systems cost-effective.

Here is presented a set of accessible procedures validated for the production and preparation of eukary-
otic MPs for Fast-MAS 'H-detected NMR analysis. The methodology is illustrated with the human copper
uptake protein hCTRI recombinantly produced and '*C-'*N uniformly labeled with the versatile and
affordable Pichia pastoris system. Subsequent purification procedures allow the recovery of mg amounts
that are then reconstituted into liposome formulations compatible with solid-state NMR handling and
analysis.

Keywords Pichin pastoris, Yeast, Membrane protein, Isotopic labeling, Multilamellar vesicles, MAS-
NMR

1 Introduction

In the last two decades, major progress in sample preparation and in
biophysical methods specifically developed for membrane proteins

Isabelle Mus-Veteau (ed.), Heterologous Expression of Membrane Proteins: Methods and Protocols , Methods in Molecular Biology,
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(MPs) has tremendously boosted the structural comprehension of
vital functions at biological membranes [ 1-3]. While a large major-
ity of structural data has been obtained through X-ray diffraction
and cryo-EM observation of static objects, complementary infor-
mation on dynamic has been gathered with dedicated analytical
methods such as XFEL [4], EPR [5], HS-AFM [6], and NMR
spectroscopy [7-9].

Among these techniques, solid-state NMR is gaining an
increasing interest with the recent advent of fast Magic Angle
Spinning (MAS) probes. This critical technical development has
considerably broadened the scope of proton-detected NMR tech-
niques with direct consequences on the structural and dynamic
characterization of proteins [10-12], including MPs [13-
16]. The increase in MAS speed (probes spinning to 60 kHz and
above) correlates not only with a dramatic improvement of "H
spectral resolution but also with a significant reduction of sample
amount required (0.5 mg or less), which is a major concern for
MPs, for which expression yields are usually low. Most importantly,
MAS-NMR interrogates conformations of MPs floating in native or
native-like lipid bilayers. This technique is thus particularly well
adapted to reveal molecular events occurring at the protein-lipid
interface [ 16—18], but also to investigate the influence of lipids on
MP structures and functions [19, 20], which is a key issue in
molecular membrane biology [21, 22].

In such MAS-NMR studies of MPs, a variety of labeling
schemes, experimental sequences and resonance assignment meth-
ods have been developed and are reported in very comprehensive
reviews [9, 14, 23]. All of them rely on highly purified proteins
selectively or uniformly labeled with **C and/or '°N isotopes for
investigating the structure and conformational dynamics of the
whole protein or of particular domains or residues. As a requisite,
these methods thus require robust recombinant expression systems
compatible with labeling-associated issues and performant enough
to produce mg amounts of labeled MPs in a functional form. With
various degrees of operability, performance, specificities and limita-
tions, several cellular and cell-free systems have been developed to
this end in the very recent years (see refs. 23-26 and references
therein).

One of these robust expression systems emerging for the pro-
duction of MPs for MAS-NMR is the methylotrophic yeast Koma-
gataelln phaffi, best known under the name Pichia pastoris in
applied sciences [27]. This eukaryotic microorganism already
proved highly efficient in producing many eukaryotic MPs repre-
sentative of various functions (receptors, channels, transporters,
enzymes), topologies and assemblies [28, 29]. A large number of
them could be further isolated for molecular investigations, in
quantity and quality levels compatible with a wide panel of bio-
chemical and biophysical techniques (see reterences in [30]).
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The power of P. pastorislargely relies on its particular methanol
utilization metabolism that endows it with promoters tightly regu-
lated upon culturing conditions: fully repressed in presence of
preferential carbohydrates (i.e., sugars, glycerol), they are strongly
induced when methanol is the sole carbon source [31]. With regard
to protein production for NMR studies, expression of recombinant
genes placed under the control of such promoters is thus particu-
larly well adapted to various labeling strategies, bringing chosen
isotopically labeled substrates to the culture during the induction
phase [32]. Accordingly, several studies have reported on the suc-
cessful implementation of this system to deliver labeled MPs for a
number of NMR analyses [33-35], including MAS-NMR
approaches [24, 36, 37]. In these studies, uniform I5N-13C-label-
ing schemes mainly relied on '*N-ammonium salts and '*C-meth-
anol supplementation during induction, combined to the fine
tuning of a number of parameters before or during induction
(addition of noninducing '*C-carbohydrates—glucose or sorbitol;
cell density, temperature, and time scale settings; initial 13C-meth-
anol and '°N-ammonium salt concentrations, supplementation
during the process, etc.).

We here present a detailed procedure for the preparation of
uniformly '°N- and '°N-'3C-labeled recombinant MPs from
P. pastoris tor their subsequent Fast-MAS-NMR handling and anal-
ysis. It includes the description of culturing conditions in isotope-
enriched minimal media designed to optimize MP production
yields, labeling efficiency, and cost concerns. This is achieved by
tavoring short growth and induction times, thus limiting cell death
and degradation events, and by reducing the '*C-methanol sub-
strate to its lowest efficient concentration in order both to limit its
toxicity effect and to maximize the cost issue. The procedure also
describes each of the following steps leading from MP extraction
and purification in detergents to their reconstitution in multilamel-
lar vesicles (MLVs) and packing in Fast-MAS rotors for their NMR
analysis. The whole process has been validated with two human
MPs, a G protein-coupled receptor and the high-affinity copper
transporter hCTRI. This homotrimeric MP is involved in the fine
regulation of Cu homeostasis and in the uptake of platinum-based
compounds employed in cancer chemotherapy [38—40], and is
used throughout the chapter to illustrate the whole procedure.

2 Materials

2.1 MP Production in
Labeling Conditions

1. A recombinant clone expressing the MP of interest freshly
streaked on a YPD agar plate with antibiotic (typically 50 pg/
ml geneticin).
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2.2 Yeast Cell Lysis
and Membrane
Preparation

. YPD agar: 1% (w/v) yeast extract, 2% (w/v) peptone, 2% (w/V)

dextrose, 2% (w/v) agar.

Sterile milli-Q water.

4. 1 M KPi phosphate sterile buffer, pH 6: 3.1% (w/v) dipotas-

10.

11.
12.
13.
14.
15.

1.
. TNG bufter: 50 mM Tris—HCl pH 7.4, 0.5 M NaCl, 10% (v/v)

sium hydrogen phosphate trihydrate (K,HPOy4, 3 H,0),
11.81% (w/v) potassium dihydrogen phosphate (KH,POy).
Filter-sterilize.

. BMG liquid minimal medium: 700 ml sterile milli-Q water,

100 ml 1 M KPi phosphate buffer, pH 6 (10x solution, filter
sterilized), 100 ml 13.4% (w/v) yeast nitrogen base (YNB)
without amino acid (10x solution, filter sterilized), 100 ml
10% (v/v) glycerol (10x solution, filter sterilized) (see Note 1).

. '*N-labeled BMM liquid minimal medium: 800 ml sterile

milli-Q water, 100 ml 1 M KPi phosphate buffer pH 6 (10x
solution), 2 g YNB without amino acid and ammonium sulfate,
lg 'SN-ammonium chloride, 100 ml 5% (v/v) methanol (10 x
solution). Homogenize and filter sterilize.

. 15N-13C-labeled BMM liquid minimal medium: 900 ml sterile

mQ water, 100 ml 1 M KPi phosphate buffer pH 6 (10x
solution), 2 g YNB without amino acid and ammonium sulfate,
1 g '*N-ammonium chloride, 2 ml 100% *C-methanol (see
Note 2). Homogenize and filter-sterilize.

. Phosphate-butffered saline (PBS): 137 mM NacCl, 2.7 mM KCl,

10 mM Na,HPOy, 1.76 mM KH,POy4, pH 7 to 7 4.
2.5 1 baffled flasks (e.g., Ultra Yield™ flasks, Thomson).

AirOTop™ seals (Thomson) with 0.2 pm resealable and sterile
membrane barrier.

1 | sterile centrifuge bottles.

50 ml conical disposal tubes.

30 °C and 22 °C shaking incubators.
Spectrophotometer (e.g., Biophotometer, Eppendort).
Centrifuge equipped with a rotor suitable for 1 1 bottles.

Yeast cell pellets from 4 1 culture (four pellets, around 8 g each).

glycerol, 1 mM PMSF (added extemporaneously).

. TNGE bufter: 50 mM Tris—HCI pH 7.4, 0.5 M NaCl, 10%

(v/v) glycerol, 1 mM EDTA, 1 mM PMSF (added
extemporaneously).

. Acid-washed glass beads (425-600 pm diameter, Sigma-

Aldrich).

. High-speed benchtop homogenizer suitable for volumes up to

50 ml (e.g., FastPrep-24, MP biomedicals).
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2.3 Extraction of MPs

from Membrane
Preparation

2.4 Purification of
Solubilized MPs

2.4.1  Immobilized
Affinity Chromatography
(IMAC)

2.4.2 Size Exclusion
Chromatography (SEC)

2.5 SDS-PAGE and
Western Blot
Immunodetection

2.5.1 SDS-PAGE

6.

1.

Centrifuge equipped with a rotor suitable for 50 ml conical
tubes.

Ultracentrifuge with an appropriate fixed-angle rotor and
adapted polycarbonate bottles.

. 50 ml Potter homogenizer.
. 14 and 50 ml conical disposable tubes.
10.

Protein assay kit for the determination of protein concentra-
tion (e.g., Pierce BCA Protein Assay Kit, Thermo Scientific).

Solubilization buffer: 50 mM Hepes pH 7.4, 300 mM NaCl,
1% n-Decyl-p-p-Maltopyranoside (DM), inhibitor protease
cocktail (added extemporaneously, i.e., cOmplete™ EDTA-
free, Roche).

2. Membrane preparation.

Ultracentrifuge with an appropriate fixed-angle rotor and
adapted polycarbonate bottles.

. Automated protein purification system (AKTA Pure or Purifier,

Cytiva, or equivalent) equipped with a sample pump.

. 1 ml prepacked cobalt affinity chromatography column (e.g.,

Talon Crude 1 ml Cytiva).

. 0.22 pm filter and filter holder (e.g., reusable bottle top filter

from Nalgene).

4. Buffer A: 50 mM Hepes pH 7.4, 300 mM NaCl, 0.1% DM.

AN AN N T

. Buffer B: 50 mM Hepes pH 7.4, 300 mM NaCl, 300 mM

Imidazole, 0.1% DM.

. Automated protein purification system (e.g., AKTA Pure or

Purifier, Cytiva, or equivalent).

0.22 pm filter and filter holder (e.g., reusable bottle top filter
from Nalgene).

. SEC running buffer: 50 mM Hepes pH 7.4, 150 mM NaCl,

0.1% DM.
SEC column (e.g., Superdex 200 Increase 10,300, Cytiva).

40% acrylamide-bis-acrylamide 29:1 solution.
3 M Tris—HCI pH 8.45, 0.3% (v/v) SDS.
80% (v/v) glycerol.

10% (w/v) ammonium persulfate (APS).
Tetramethylethylenediamine (TEMED).

Gel casting stand and electrophoresis chamber (e.g., SureCast
system, Invitrogen).
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2.5.2 Western Blotting 1.
and Immunodetection
2.
3.
4.
5.
6.
7.
8
9.
10.
2.6 Reconstitution 1.
in MLVs

Lina Barret et al.

7. MP samples.

10.
11.

12.

. Protein ladder (e.g., PageRuler prestained protein ladder,

Thermo).

. Tris-Tricine-SDS cathode running buffer: 1 M Tris-HCI

pH 8.2, 1 M Tricine, 1% (v/v) SDS.
Tris anode running bufter: 1 M Tris-HCI pH 8.9.

2 x Tricine Sample Buffer (SB 2x): 100 mM Tris—HCI pH 6.8,
25% (v/v) glycerol, 8% (v/v) SDS, 0.02% (w/v) Coomassie
blue G250, 200 mM DTT.

Coomassie blue staining solution (e.g., Quick Coomassie
Stain, Neo Biotech).

Tris-Glycine transfer buffer: 25 mM Tris, 200 mM glycine,
0.02% (v/v) SDS, 20% (v/v) ethanol.

0.45 pm nitrocellulose blotting membrane (e.g., Amersham
Protran 0.45 nitrocellulose membrane, Cytiva).

Whatman paper.

Electroblotting system (e.g., Mini Trans-Blot Cell, Bio-Rad).
PBST: PBS, 0.02% (v/v) Tween 80.

Blocking bufter: PBST with 5% (w/v) nonfat dry milk.

Primary anti-protein or anti-tag antibody (here a monoclonal
anti-HA antibody from mouse, Sigma).

. Secondary anti-mouse IgG antibody linked to a reporter sys-

tem (here an IRDye 800-coupled antibody, LiCor).

Reagent and detection device adapted to the reporter system
selected (here an Odyssey™ imaging system, LiCor).

Orbital shaker.

1-Palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine  (POPC)
(e.g., 16:0-18:1 PC in chloroform, Avanti).

2. Cholesterol (Avanti).

w

® N ook

Rotary evaporator (e.g., Rotavapor R-100, Buchi) or Argon
stream.

Vacuum chamber and pump.

Liposome buffer: 50 mM Hepes pH 7.4, 150 mM NaCl.
Purified MPs in detergent micelles.

10% (w/v) DM.

Dialysis cassettes with appropriate MWCO (e.g., Slide-A-
Lyzer™, Thermo Scientific).

Ultracentrifuge with an appropriate fixed-angle rotor and
adapted polycarbonate bottles.
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2.7 Sample Packing

1. Filling tool for ultracentrifuge (e.g., spiNpack, Giotto

in Fast-MAS Rotors Biotech).
2. Ultracentrifuge with swing-out rotor (e.g., SW32, SW28
rotors for Beckman centrifuges).
3. Fast MAS NMR rotor (e.g., Bruker 1.3 or 0.7 mm, JEOL
1 mm or 0.75 mm) with appropriate caps and inserts.
3 Methods

3.1 Production of
MPs in Isotope-

Labeling Conditions
with Pichia pastoris

The present procedure starts with an already existing yeast clone
expressing the MP of interest. If such a clone is not available, the
reader is referred to published extensive protocols [41, 42 ] detail-
ing the preliminary work required to generate and isolate a
P. pastoris recombinant clone.

The production of a recombinant MP is based on the over-
expression of its corresponding gene placed under the control of
the Pyox; promoter [41] which is strongly regulated upon a
methanol-induced regimen. In a first step, MP expression is fully
repressed as yeasts are cultured in a glycerol-containing medium.
When an appropriate cell density in a chosen culturing volume is
reached in the exponential growth phase, the medium is then
replaced by a methanol-containing one that will progressively dere-
press and then strongly induce the MP gene overexpression. As no
expression leakage is detected before the medium exchange, '°N-
and /or *C-labeled substrates are added only during the induction
phase to ensure a uniform labeling and MP production at once, and
at reduced cost.

Here we describe an optimized protocol for the production of
hCTRI either in *N-labeling alone or combined with '*C-labeling
conditions, using 2.5 | baffled shake-flasks (sce Note 3).

1. Generously inoculate 500 ml of extemporaneously prepared
BMG medium in a 2.5 | baffled flask (see Note 4) with a
clone freshly streaked on an antibiotic supplemented YPD
agar plate (e.g., 50 pg/ml geneticin). Incubate overnight on
a shaker at 220 rpm, 30 °C.

2. On the next day, measure ODgq of the culture. Dilute the cells
in 2 1 of fresh BMG to an ODggy around 5 (about
2.5 x 10% cells/ml, se¢ Note 5). Incubate on a shaker at
220 rpm, 30 °C.

3. When the culture reaches an ODggo between 10 and 15 (gen-
eration time in BMG ~ 3.5 h, see Note 1), pellet the cells by
centrifugation in sterile 1 I bottles for 5 min at 5000 x g4, 22 °C.

4. Discard the supernatant and resuspend the cell pellets with 4 |
of freshly prepared BMM medium complemented with '°N
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3.2 VYeast Cell Lysis
and Whole Membrane
Preparation

ammonium chloride only or combined with '*C methanol.
Split into eight baffled 2.5 I flasks and incubate for an optimal
period of time, here 22 h, in a shaker at 22 °C, 220 rpm.

5. After induction, harvest the cells by centrifugation in 1 1 bottles
for 5 min at 5000 x g, 4 °C.

6. Discard the supernatants and wash each cell pellet
(corresponding to 1 | of culture) with 200 ml PBS, pH 7 4.
Pool the equivalent of two pellets into one bottle and centri-
fuge the suspension for 5 min at 5000 x g, 4 °C.

7. Discard the supernatant and wash each cell pellet
(corresponding to 2 | of culture) with 100 ml PBS, pH 7 4.
Split into 4 x 50 ml conical tubes and centrifuge the suspen-
sion for 5 min at 5000 x g4, 4 °C.

8. Discard the supernatants and weigh the cell pellets.

9. The yeast pellets can either be directly utilized kept on ice for
membrane preparation or snap-frozen in liquid nitrogen and
stored at —80 °C.

In this format, each of the four 50 ml conical tube contains
about 8 g of wet cell pellets corresponding to 1 1 of culture (i.e.,
about 32 g of cells for 4 1 of culture in labeling conditions).

Yeast cells are surrounded by a thick cell wall that protects them
from most of the nonmechanical cell disrupting approaches such as
enzyme-, heat-, or detergent-based techniques. Methods relying
on mechanical shear forces (bead- or pressure-based) are thus
required to efficiently achieve P. pastoris cell lysis. One of these
robust and accessible procedures uses glass beads and vigorous
mechanical shaking for an efficient lysis, ideally monitored with a
programmable device (e.g., the FastPrep-24 homogenizer from
MP Biomedicals used here) for a better reproducibility. To prevent
degradation of recombinant proteins by protease during the cell
lysis, addition of protease inhibitors is strongly recommended.
After the cell lysis, unbroken cells and large debris are removed by
centrifugation and the supernatant is further submitted to ultracen-
trifugation. A final homogenization of the pellet with a Potter
device allows the recovery of the whole membrane fraction. The
resulting membrane preparation is further analyzed in order to
evaluate its total protein concentration (typically with a BCA or a
Bradford assay) and the expression level of the recombinant MP
through a western blot immunodetection and via an appropriate
activity assay when available.

The following protocol illustrates how we proceed for the
whole membrane preparation of cells producing hCTRI1 in
isotope-labeling conditions (Subheading 3.1).
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3.3 Extraction of MPs
from Membrane
Preparation

1. Thaw the four yeast pellets in conical tubes previously obtained

(about 8 g each) and resuspend each of them in 25 ml ice-cold
TNGE butffer.

2. Add 10 ml acid-washed glass beads.

3. Place the tubes in the cell breaker device (here the FastPrep-24)
and proceed to cell lysis by alternating shaking and cooling
steps (3 cycles of 40 s shaking at 6.5 m/s and 40 s on ice).

4. Centrifuge for 5 min at 5000 x g, 4 °C, collect the supernatant
and store at 4 °C.

5. Resuspend the pellet in up to 25 ml of ice-cold TNGE bufter.

6. Repeat steps 3-5 for two additional rounds (or until the
supernatant is clear).

7. Centrifuge all the collected supernatants for 5 min at 5000 x g,
4 °C.

8. Proceed to ultracentrifugation of the supernatants for 30 min
at 100,000 x g, 4 °C in appropriate tubes.

9. Discard the supernatant and resuspend the membrane pellet
with a Potter homogenizer in 70 ml of ice-cold TNG bufter
until the suspension is homogenous. Split the membrane prep-
aration in about 8x 10 ml in 14 ml conical tubes. These
membrane preparations can be used directly for further use
and analyses, or can be stored for several weeks at —80 °C.

10. Determine the protein concentration of membrane prepara-
tion using a BCA assay kit following the manufacturer’s
recommendations.

In the experimental conditions presented above, we usually
recover about 100 mg of membrane proteins per 10 ml of suspen-
sion, that is, about 200 mg per initial cell pellet corresponding to 11
of culture.

A first critical step toward the isolation of MPs in aqueous solutions
is to identity the best adapted experimental condition driving their
efficient extraction from the lipid bilayer while preserving their
structural and functional integrity. This task is principally based
on the careful selection of an appropriate amphiphilic molecule,
mainly a detergent, used to destabilize the lipid—lipid interactions of
biological membranes. It also relies on a number of other para-
meters, such as detergent and protein concentrations, ionic
strength, addition of cofactors and stabilizing compounds and
finally temperature and incubation time. The optimal condition is
most generally protein-dependent and should ideally be screened
and adjusted for each MP of interest [30, 43—45]. The extraction
procedure presented here with DM as a detergent has been opti-
mized for hCTRI.
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3.4 Purification of
Solubilized MPs

3.4.1

IMAC

1. Add 10 ml of membrane preparation (about 100 mg of total
membrane proteins) in the solubilization buffer in order to
reach a final protein concentration of 2 mg,/ml.

2. Incubate for 30 min at RT under gentle agitation.

3. Proceed to ultracentrifugation for 30 min at 100,000 x g at
4 °C in appropriate tubes to separate the nonsolubilized (pel-
let) from the solubilized fractions (supernatant).

4. Filter the solubilized MPs using a 0.22 pm membrane filter.
Imidazole can be added at this stage if needed. Keep on ice.

5. The MP solubilization efficiency can be evaluated by immuno-
detection and activity assay if available.

Once MPs are solubilized, a panel of strategies and techniques may
be considered to purify them to homogeneity, mainly depending on
the biochemical properties of the protein itself, on the affinity tags
it may present, and on the composition of the buffer it has been
solubilized in [30, 46]. Here we describe a two-step purification
protocol specifically designed for hCTRI.

A first immobilized metal affinity chromatography (IMAC)
exploits the natural ability of hCTRI to bind divalent ions, here
cobalt grafted on the resin. Besides the invaluable advantage of
immobilizing the correctly folded, Co®*-binding, homotrimer
populations of hCTRI1 [47, 48], the strategy presents the addi-
tional benefit of working with a wild-type protein with no artificial
fused tag and with no need to eventually cleave this tag afterward. It
is however very specific to hCTRI1 and for other MPs, the IMAC
step should rely on tag-based techniques by exploiting a N- or C-
terminally fused 10His tag and using nickel or cobalt resins. The
IMAC protocol described here is designed for an automated purifi-
cation on an FPLC instrument (e.g., Akta protein purification
systems) using a prepacked column, and with a specific flow rate,
sequential washing and elution strategy optimized for hCTRI. In
this format, the use of a sample pump is warmly recommended as
the volume of the solubilized sample loaded on the column may be
significant (one or several hundred milliliters). Alternative immobi-
lization (such as batch incubation), washing and elution (linear
gradient or other fixed concentrations of imidazole) strategies
may be applied and optimized depending on the MP of interest.

The second purification step of the procedure consists in a
classical Size Exclusion Chromatography (SEC) using a Superdex
200 Increase column (Cytiva). This step is also designed for an
automated purification using a FPLC instrument, which is a crucial
point as the flow rate and pressure need to be tightly controlled.

1. Equilibrate a 1 ml prepacked cobalt column with at least 10 col-
umn volumes (CVs) buffer A at 1 ml/min.
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34.2 SEC

3.5 SDS-PAGE and
Western Blot
Immunodetection

3.5.1 10% SDS Tricine
Polyacrylamide Gel
Preparation

2.

1.

Inject the solubilized MPs onto the column with a sample
pump at 0.5 ml/min.

. Proceed to a washing step with 10 CVs of buffer A at 1 ml/min

(same flow rate in the following steps).

. Proceed to a second washing step with 5 CVs of 1.6% of buffer

B (5 mM imidazole) and collect 500 pl fractions.

. Proceed to the elution step with 10 CVs of 100% bufter B

(300 mM imidazole) and collect 500 pl fractions.

. Spare 20 pl of every fractions of interest and proceed to SDS-

PAGE analysis with Coomassie blue staining and
immunoblotting.

. Equilibrate the SEC column (e.g., Superdex 200 Increase

10,/300, Cytiva) with 2 CVs of SEC running buffer at
0.5 ml/min.

. Depending on the results of the SDS-PAGE analysis from the

IMAC purification, inject the appropriate fraction onto the
SEC column at 0.3 ml/min and collect 500 pl fractions (see
Note 6).

. Store 20 pl of each fractions of interest for SDS-PAGE analysis.
. The purified MPs obtained can be used directly for reconstitu-

tion in MLVs or can be snap frozen and stored at —80 °C.

In the format presented here, 100 mg of initial membrane

preparation yields about 0.4 mg of DM-purified hCTRI1 on aver-
age, that is, about 0.8 mg/liter of culture. Figure 1 illustrates a
typical SEC chromatography and the corresponding SDS-PAGE
(see Subheading 3.5) profiles obtained in these conditions.

The following protocol has been originally published in [49] for
the immunodetection of tagged MPs in membrane preparation
samples. It is here updated with minor adjustments and focused
on the analysis of purified MPs samples, either in detergent micelles
or in proteoliposomes. The proportions are given for casting two
gels of 1 mm thickness in a SureCast gel system from Invitrogen.

Prepare the separating gel by mixing 3.75 ml of acrylamide
solution (40% 29:1), 3.95 ml of Tris—-HCI SDS butffer, 1.9 ml
of 80% (v/v) glycerol, 4.35 ml H,O, 135 pl of APS and 9 pl of
TEMED. Mix and immediately cast the gel, allowing space for
the stacking gel.
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Fig. 1 Purification profile of hCTR1 obtained with the presented procedure

(@) SEC elution profile obtained on a Superdex 200 10-300 column (Cytiva). Representative fractions are
indicated with black arrows. (b) SDS-PAGE (10% (w/v) polyacrylamide Tris—Tricine gels) of the SEC represen-
tative fractions analyzed by Coomassie Blue staining (left panel) and Western Blot (right panel). Purified hCTR1
appears in fractions 24—26 as a major band corresponding to its monomeric form (22 kDa, black triangle) and
as an SDS-resistant dimer (44 kDa, white triangle). An additional band of lower molecular weight is also
detected on the Coomassie blue stained gel. Immunoblotting with a monoclonal anti-HA antibody from mouse
(Sigma, 0.4 pg/ml). Molecular weight markers are PageRuler from Thermo, with masses (kDa) indicated in
between
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3.5.2 Gel Electrophoresis
and Coomassie Staining

3.5.3 Protein Transfer
and Western Blot
Immunodetection

2.

Prepare the stacking gel by mixing 0.6 ml of acrylamide solu-
tion (40% 29:1), 1.6 ml of Tris—-HCI SDS bufter, 4.1 ml H,O,
90 pl of APS and 6 pl of TEMED. Mix and cast carefully with a
pipet over the separating gel (no need to wait for the polymer-
ization of the separating gel which density is increased by the
presence of glycerol, thereby permitting the stacking gel to
layer on top of it without mixing). Insert a gel comb immedi-
ately without introducing air bubbles.

. Let the gel polymerize for about 30 min.

. Preincubate 20 pl of the fractions of interest with 20 pl of SB

2 x for about 10 min at room temperature (sec Note 7).

. Load in parallel two 10% SDS—polyacrylamide gels respectively

with 20 pl and 5 pl of each sample. Add also one well with 4 pl
of protein ladder in each gel. The first gel will be used for total
protein staining with Coomassie blue, the second one will be
transferred onto a nitrocellulose membrane for the immuno-
detection of the MP of interest.

. Proceed to electrophoresis using Tris-Tricine-SDS cathode

running buffer and Tris-anode running buffer in a tank unit.
Run for about 1 h 30 at 100 V.

. Stain the first gel with Coomassie blue following manufac-

turer’s instructions.

. Transfer the proteins from the second gel onto a nitrocellulose

membrane by electroblotting in Tris-glycine transfer buffer for
about 1 h 30 at 100 V. An ice pack can be added into the
electroblotting device to mitigate the heat produced.

. Incubate the membrane in 30 ml blocking buffer for 1 h at

room temperature on an orbital shaker. Alternatively, incubate
the membrane overnight at 4 °C.

. Remove the blocking solution and incubate the membrane

with the selected antibody diluted in blocking buffer (for
hCTRI we use a monoclonal anti-HA antibody at 0.4 pg/ml
final concentration) for 1 h at room temperature on an orbital
shaker, or alternatively overnight at 4 °C.

Wash the membrane three times with 50 ml of PBST on an
orbital shaker for 5 min at room temperature.

. Remove the PBST and incubate the membrane with the

adapted anti-IgG antibody diluted in blocking buffer (here an
IRDye 800-coupled anti-mouse antibody at 0.4 pg/ml final
concentration) for 1 h at room temperature on an orbital
shaker, or alternatively overnight at 4 °C.

. Wash the membrane three times 50 ml of PBST on an orbital

shaker for 5 min at room temperature.
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3.6 Reconstitution
in MLVs

7. Remove the PBST and wash the membrane with 50 ml of PBS
on an orbital shaker for 5 min at room temperature.

8. Store the membrane in PBS until revelation.

9. Proceed to the membrane revelation according to the reporter
system selected and following the manufacturer’s recommen-
dations (here the membrane is scanned and analyzed with an
Odyssey Infrared Imager from LiCor).

As underlined in the introduction section, one of the major advan-
tages of the MAS-NMR approach resides in its invaluable capacity
to study MPs within a lipid bilayer and to evaluate how this mem-
brane environment may influence its structure, conformation and
function. Although detergent micelles are essential to solubilize
MPs, their biochemical and structural properties are very far from
those of biological membranes, and their liquid-phase state is obvi-
ously not compatible with solid-state NMR. Necessarily, detergent-
purified MPs have thus to be reconstituted in membrane mimicking
systems for MAS-NMR studies, among which liposomes are the
primary model of choice [9, 50].

Liposomes or lipid vesicles are spherical lipid bilayer structures.
They form spontaneously upon lipids hydration, constituting large
multilamellar vesicles (MLVs) of up to 1 pm of diameter and a
dozen of stacked bilayers [50, 51]. Thanks to their low curvature
close to local constraints of the cell, their size and bilayer organiza-
tion, they are considered as good membrane mimics. They also
offer the great advantage to be easily tunable in term of lipid
composition, and they can also be supplemented with other com-
ponents such as MP cofactors or protein interactants. Depending
on well-defined preparation protocols [52], MLVs can further be
processed into unilamellar vesicles of different sizes, ranging from
giant (GUVs) to large (LUVs) and small unilamellar vesicles
(SUVs), sizing respectively around 10 pm, 100 nm, and 20 nm.

This section presents a protocol optimized for the reconstitu-
tion of hCTRI in MLVs, with a formulation adapted to sample
filling into fast-MAS rotors (see Subheading 3.6) and compatible
with solid-state NMR analyses.

The procedure basically consists in mixing hCTR1 in DM
micelles with preformed liposomes saturated in detergent before-
hand. The detergent is subsequently removed by a dialysis step (see
Note 8), upon which the MPs progressively and spontaneously
integrate into the lipid vesicles. Here again, the experimental con-
ditions are protein-dependent with a number of parameters to be
adjusted, including the choice of lipid(s) and the lipid-to-protein
ratio, as well as the dialysis format, device, and duration.
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Fig. 2 Visualization of hCTR1 reconstituted in MLVs by cryo-TEM. MLV sample
was blotted on a Lacey carbon filmed grid with a Vitrobot MARK IV instrument
(FEIl). Image (28,000x magnification) was acquired at 200 kV on a Glacios
microscope (ThermoFisher)

1.

Using glass pipettes and vessels, mix lipids from stock solutions
in chloroform, here POPC and cholesterol with a 10:1 (mol:
mol) ratio.

. Remove the chloroform by processing the solution in a rotary

evaporator. Alternatively, chloroform may also be vaporized by
blowing a gentle stream of nitrogen or argon over the solution.
A visible dry lipid film is formed on the wall of the glass vessel.

. Traces of chloroform are further removed by placing the con-

tainer on a vacuum system overnight, especially if chloroform
has been evaporated under a gas stream.

. Hydrate the lipid mixture in the liposome buffer to get a

concentration of 10 mg/ml by pipetting up and down, and at
a temperature above the phase transition of the lipids (here
4 °C or higher). Multilamellar vesicles form spontaneously.

. Add the detergent to saturate the MLVs, here 1% DM. Mix

gently by pipetting up and down. Incubate for 1 h at RT.

. Add the purified MPs (here hCTR1 in DM) to the detergent

saturated MLVs at the desired lipid-to-protein ratio (LPR).
Here a LPR of 2:1 (w/w) is used. Mix gently by pipetting up
and down. Incubate for 1 h at RT.
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3.7 Sample Packing
in Fast-MAS NMR
Rotors

7. Start dialysis by transferring the sample in a dialysis system
(cassette or bag) with the appropriate molecular weight cutoft
(10 kDa MWCO for hCTR1). Plunge the dialysis tool in an
adapted volume of the liposome buffer, here a ratio of 1 ml of
sample for 250 ml of liposome buffer for hCTRI.

8. Run dialysis at 10 °C with a gentle agitation (beware to keep
the mixture above the transition phase temperature of the
lipids) and change the dialysis buffer every 24 h.

9. When the solution become milky (after about 24 h for
hCTR1), transfer the mixture in appropriate tubes for
ultracentrifugation.

10. Ultracentrifuge at 100,000 x g, 4 °C for 30 min and remove
the supernatant.

11. Resuspend the pellet in 1 ml of liposome buffer by gently
pipetting up and down. Spare 20 pl of this resuspended pellet
and 20 pl of the supernatant for further analyses (see Note 9).

12. The proteoliposome mixture obtained (Fig. 2) can be directly
used for Fast-MAS-NMR analysis.

Since NMR spectroscopy is generally a rather insensitive method,
efficient sample packing is crucial to maximize the detectable signal.
MLV preparations are viscous and cannot be handled and packed
like a dry powder. Traditional protocols involve ultracentrifugation
in a tube and subsequent transfer of the compressed sample into
4 or 3.2 mm NMR rotors using a spatula or a tabletop microcen-
trifuge. Rotors of smaller size (e.g., 1.3 mm) for Fast-MAS render
this methodology impractical and we highly recommend using a
designated filling tool for direct ultracentrifugation of the MLV
sample into the rotor [53, 54 ] (see Fig. 3a). As the time and force
required vary slightly between samples, we generally start with 1 h
at 100,000 x g and only increase the centrifugal force and time if
found necessary.

1. Assemble the filling tool according to the user instructions and
load it with an appropriate amount of sample to achieve com-
plete filling.

2. Fill a regular ultracentrifuge tube with water and balance out
the filling tool.

3. Centrifuge for 1 h at 100,000 x gand 10 °C.

4. Remove the supernatant and access sample, use inserts if
desired, close rotor with the appropriate caps.

Figure 3b exemplifies 1D NMR spectra obtained in few min-
utes at 60 kHz MAS on an 800 MHz spectrometer. Spectra filtered
through '*C (grey line) or N (black line) report respectively on
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filling tool

1.3 mm rotor
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Fig. 3 Fast-MAS-NMR analysis of hCTR1 in MLVs. (@) 1.3 mm solid-state NMR rotor and filling tool. (b)
One-dimensional amide-1H (1D 1H-15N CP-HSQC) and aliphatic-1H (1D 1H-13C CP-HSQC) spectra. (c)
Two-dimensional TH-15N CP-HSQC spectrum of 13C,15N labeled hCTR1 in POPC-Cholesterol MLVs recorded
on an 800 MHz spectrometer with 60 kHz MAS

aliphatic and amide 1Hs, demonstrating efficient isotope incor-
poration. By sampling of the heteronuclear chemical shift evolu-
tion, 2D fingerprints are acquired in ~0.5-1 h (Fig. 3c) and can be
used to evaluate the impact of different reconstitution conditions
and the overall homogeneity of the preparation.

4 Notes

1. In nonlabeling conditions, Pichia pastorisis classically cultured

in rich media supplemented with yeast extract and meat pep-
tone, that is, BMGY for the growth phase and BMMY for the
induction phase. In the corresponding defined BMG and
BMM media described here, the generation time is significantly
increased, from about 2 h to 3.5 h in the case of BMGY
vs BMG.

. 0.5% (v/v) methanol is usually added during the induction

phase. Following an optimization study, we found that a con-
centration reduced to 0.2% methanol was yielding similar
amounts of purified MPs, thereby substantially diminishing
the cost issue for labeling with **C-methanol.

The culturing conditions presented here were specifically
adjusted for an optimal production of hCTR1. A number of
parameters may indeed influence the production yields of func-
tional MPs in a protein-dependent manner and their optimiza-
tion is often beneficial. Those notably include the adjustment
of the induction temperature and time, the addition of
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stabilizing compounds or the modulation of cell density and
pH among others [55, 56].

4. It is recommended to maintain a 1 to 5 ratio between the
volume of the yeast culture and the total volume of the baffled
flask for an optimal aeration of the culture.

5. It is important to recall that the linear correlation between
ODgpo measurement and cell density is limited and instrument
dependent. After a standard calibration of the Eppendorf Bio-
photometer we use, we determined that one ODgg unit cor-
responds to approximately 5 x 10”7 P. pastoris cells /ml with this
instrument. We also identified 0.3 ODgqq as the linearity limit
and we dilute our samples accordingly.

6. A maximum of 500 pl can be injected onto a Superdex
200 10/300 column. If the fractions of interest for the
IMAC have a greater volume, they can be injected successively.
Alternatively, they may be concentrated to the final desired
injection volume, but we do not recommend this option with
hCTRI as this leads to oligomerization /aggregation events.

7. We do not recommend boiling MP-containing samples prior to
electrophoresis. Boiling often leads to the aggregation of MPs
that eventually get stuck in the concentrating gel.

8. The dialysis efficacy is strongly depending on the properties of
the detergent to be removed, and on its critical micelle concen-
tration (CMC) in particular: the higher the CMC, the easier
the detergent is removed during the reconstitution step. When
working with detergent with low CMC, they may require a
longer time for dialysis, which may be detrimental to the MP
structure and activity. To overcome this issue, the use or addi-
tion of polystyrene beads adsorbing the detergent may be a
helpful option [57, 58].

9. A rough estimate of the reconstitution efficiency can be
achieved with an SDS-PAGE analysis of the supernatant and
the pellet after ultracentrifugation. If the detergent removal is
not complete and proteins are still in detergent micelles, they
are detected in the supernatant. Ideally, an activity evaluation
may be performed if an adapted assay is available.
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ABSTRACT: Immunotoxins are emerging candidates for cancer
therapeutics. These biomolecules consist of a cell-targeting protein
combined to a polypeptide toxin. Associations of both entities can
be achieved either chemically by covalent bonds or genetically
creating fusion proteins. However, chemical agents can affect the
activity and/or stability of the conjugate proteins, and additional
purification steps are often required to isolate the final conjugate
from unwanted byproducts. As for fusion proteins, they often suffer
from low solubility and yield. In this report, we describe a
straightforward conjugation process to generate an immunotoxin
using coassociating peptides (named K3 and E3), originating from
the tetramerization domain of pS53. To that end, a nanobody
targeting the human epidermal growth factor receptor 2 (nano-
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HER2) and a protein toxin fragment from Pseudomonas aeruginosa exotoxin A (TOX) were genetically fused to the E3 and K3
peptides. Entities were produced separately in Escherichia coli in soluble forms and at high yields. The nano-HER2 fused to the E3 or
K3 helixes (nano-HER2-E3 and nano-HER2-K3) and the coassembled immunotoxins (nano-HER2-K3E3-TOX and nano-HER2-
E3K3-TOX) presented binding specificity on HER2-overexpressing cells with relative binding constants in the low nanomolar to
picomolar range. Both toxin modules (E3-TOX and K3-TOX) and the combined immunotoxins exhibited similar cytotoxicity levels
compared to the toxin alone (TOX). Finally, nano-HER2-K3E3-TOX and nano-HER2-E3K3-TOX evaluated on various breast
cancer cells were highly potent and specific to killing HER2-overexpressing breast cancer cells with ICs, values in the picomolar
range. Altogether, we demonstrate that this noncovalent conjugation method using two coassembling peptides can be easily
implemented for the modular engineering of immunotoxins targeting different types of cancers.

B INTRODUCTION

The human epidermal growth factor receptor 2 (HER2) is a
cell surface receptor overexpressed in about 15—20% of breast
cancers. The amplification of HER2 is associated with tumor
invasion and metastasis. The introduction of an anti-HER2
therapy using the humanized monoclonal antibody trastuzu-
mab targeting specifically the extracellular domain of HER2
has largely improved patient care.' However, intrinsically or
acquired resistance has restricted the success of the
trastuzumab.”® For two decades, new anti-HER2 therapies
have been under investigation. One emerging therapeutic is
immunotoxins, which combine the specific targeting of
antibodies with the high cytotoxic properties of bacterial or
plant protein toxins.*® Upon specific binding to extracellular
receptors and receptor-mediated endocytosis, immunotoxins
get internalized into target cells, where the toxin domain
unfolds its effect. These therapeutic biomolecules have
demonstrated excellent anticancer properties at very low
concentrations due to the enzymatic activity of the toxin
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fragment, which lowers the amount of molecules needed to kill
the cancer cells.”® One of the most widely used toxin
fragments originates from Pseudomonas aeruginosa exotoxin A.
It contains separate activities: a domain II for intracellular
trafficking and a catalytic domain (domain III) inactivating the
eukaryotic translation elongation factor 2 (eEF-2) by ADP-
ribosylation.”

Immunotoxins can be produced as chimeric proteins. For
instance, an affibody, an antibody mimetic molecule, directed
against HER2 genetically fused to a modified exotoxin A
fragment PE38 showed elevated cytotoxicity toward HER2-
overexpressing cells.'”'" However, the weaknesses of such an
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Figure 1. Representations of heterotetrameric immunotoxins. Schematic representation of either nano-HER2-K3E3-TOX (A) or nano-HER2-
E3K3-TOX (B) coassembled immunotoxins with coding sequences of each module, as indicated. Theoretical oligomerization states of the
corresponding proteins and the resulting coassembled immunotoxins are depicted.
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Figure 2. Physicochemical analysis of the K3 and E3 constructs. (A) Preparative gel filtration of purified nano-HER?2 derivatives (above) and TOX
constructs (below). The column was precalibrated with standard proteins as indicated (IgG, BSA, ovalbumin, and cytochrome C). A sample of each
peak was analyzed by SDS—PAGE and by Coomassie blue staining. (B) Far-UV circular dichroism spectra of the indicated assemblies were
recorded for samples at a monomeric concentration of 69 uM in phosphate saline buffer and are presented as an average of 10 successive scans. The
CD signal is expressed in mean residue ellipticity (deg-cm*dmol™"). Data were collected in the 185—270 nm range at 20 °C.

approach are the expression level and the solubility issue of the
recombinant immunotoxins. To overcome these problems,
both the targeting and toxin moieties can be produced
separately and are then chemically conjugated.'”'® For
example, the scFv (single chain variable fragment) of
trastuzumab and a minimal exotoxin A fragment (PE24) that
were expressed independently and conjugated via a disulfide
bond-containing linker had strong cytotoxic effects on HER2

breast cancer cells.'> However, the drawback of such an
approach is the use of reducing agents, leading to improper
protein folding and therefore lowering solubility and/or
activities of the conjugate proteins. Moreover, additional
purification steps are required to isolate the desired conjugate
from the byproducts present in the conjugation mixture. These

additional purification steps often result in low yields and make
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the chemical conjugation a time-consuming and cost-
ineffective process.

In this study, we report a novel straightforward conjugation
procedure based on the coassembly of a single chain antibody
(nanobody or VHH) targeting HER2 receptor and a truncated
variant of the exotoxin A from Pseudomonas aeruginosa via two
peptides (named E3 and K3), originating from the
tetramerization domain of p53 (residues 325—355)."" These
peptidic domains consist of a B-strand followed by an a-helix.
The a-helical charged interface involving lysine and acid
glutamic residues (E343, E346, and K351) modulates tetramer
stability through salt bridges. Thus, charge-reversal mutations
at positions 343, 346, and 351 were previously shown to favor
heterotetramerization.'* While E3 (variants E343, E346, and
E351) associates solely into dimers through pf-strand
interactions, K3 (variants K343, K346, and K351) forms
tetramers with low stability. However, when mixed together in
equimolar amounts, these peptides associate exclusively into
the dimer of primary dimers. This noncovalent interaction
between E3 and K3 peptides was demonstrated to be strong
and specific enough to allow the heterotetramerization of
macromolecules inside Iiving cells for the engineering of
bifunctional biomolecules.™® Using this technology to
coassemble a nanobody anti-HER2 with a truncated optimized
fragment of the exotoxin A from Pseudomonas aeruginosa, we
generate extremely stable heterotetrameric immunotoxins
having a specific cytotoxic activity on HER2 positive breast
cancer cells.

B RESULTS

Design of the Immunotoxin. We designed novel
immunotoxins able to coassemble via E3 and K3 peptides
(Figure 1A and B).'"® We choose a nanobody targeting the
extracellular domain of HER2 (henceforth referred to as nano-
HER2)."”"® The nano-HER2 sequence was genetically fused
to the N-terminal part of the K3 sequence (Figure 1A).'® The
selected toxin module derives the Pseudomonas exotoxin A
variant PE24,"%?° where the intracellular trafficking domain has
been replaced by a furin cleavage site (FCS) described
elsewhere,”" and the B-cell epitopes and the protease-sensitive
regions have been removed.”” This toxin part (hereinafter
referred to as TOX) was then genetically fused to the C-
terminal part of the E3 peptide (Figure 1A). The design of the
immunotoxin was also carried out to obtain the opposite
configuration, namely nano-HER2-E3 combined with K3-
TOX, giving rise to nano-HER2-E3K3-TOX (Figure 1B).

Production, Yield, and Oligomeric States of the
Recombinant Proteins. Recombinant VHH and TOX
moieties were produced at high levels in Escherichia coli
(Figures S1A and S2A) and purified by immobilized metal
affinity chromatography (IMAC) followed by preparative size
exclusion chromatography (SEC) (Figure S1B and C and
Figure S2B and C). Typical elution profiles revealed that the
unfused nano-HER2 displayed a single peak with an apparent
molecular weight of 21 kDa corresponding to a theoretical
molecular weight of a monomer, while nano-HER2-E3 and
nano-HER2-K3 behaved like a 63 kDa dimer and a 105 kDa
tetramer, respectively (Figure 2A and Table S1). TOX
constructs gave the same results in terms of oligomeric states,
namely a homodimer of 68 kDa for E3-TOX and a
homotetramer of 152 kDa for K3-TOX, respectively (Figure
2A). In all cases, single peaks were observed indicating an
oligomerization state of nearly 100%. The final yields of the

recombinant proteins after the two purification steps (Figures
S1C and S2C) were around 100 mg/L for the nano-HER2-E3
and nano-HER2-K3 and in the range of 7—10 mg/L for the
E3-TOX and K3-TOX (Table S2).

The secondary structure content of the recombinant
proteins was next explored using far-UV circular dichroism
(CD) spectroscopy, and the content of the secondarz structure
elements was estimated using CDPro suite software.”” The far-
UV CD spectra of the tagged E3 and K3 constructs are highly
similar (Figure 2B). The nano-HER2-E3 and the nano-HER2-
K3 folded in 18% =+ 1 and 16% = 1 of the a-helix, compared to
5% + 2% for the parental nano-HER2, indicating a rough
increase of 27—32 amino acids in an a-helix conformation per
monomer (Figure 2B and Table 1). These predictions are in

Table 1. Secondary Structure Contents of the Constructs”

alpha beta others

% aa % aa % aa
nano-HER2 S+2 7 41 =8 61 54+9 79
nano-HER2-E3 19+1 39 30+3 64 52 +2 110
nano-HER2-K3 16 + 1 34 33+3 70 S1+£3 109
TOX 7+2 20 39+3 114 54+ 4 156
E3-TOX 20 £ 2 61 28 £ 2 88 S53+3 166
K3-TOX 17 + 1 53 31 +2 98 52 +2 164

“aa refers to the numbers of amino acids determined considering the
percentage of each secondary structure content and assuming a single
element.

agreement with previous results where adding E3 or K3
peptide to a conl construct leads to an increase of almost 30
amino acid residues in the a-helix.'® Regarding the TOX
proteins, the a-helix portions increased in a similar way as for
the nanobody constructs when compared to the parental TOX
(Figure 2B and Table 1). Thus, secondary structures following
the addition of the E3 or K3 peptides stayed almost constant
regardless of the constructs.

Finally, the thermal stability evaluation of the nano-HER2
recombinant proteins was performed using a fluorescence-
based thermal shift assay (Figure S3). The melting profiles of
the recombinant proteins were highly similar, indicating that
the fusion of the tagged constructs did not compromise the
intrinsic stability of the VHH domain.

In Vitro Formation of the Heterotetramer Complexes.
Following the two purification steps, we studied the efficiencies
of coassociation between the nanobody and toxin modules in
various conditions. The evaluation of the modularity and
efficiency of heteromerization was first analyzed in phosphate
saline buffer at pH 7.4 using size exclusion chromatography
(SEC). When equimolar amounts of either nano-HER2-E3
and K3-TOX or nano-HER2-K3 and E3-TOX proteins were
mixed together and analyzed by SEC, an apparent 125 kDa
complex was produced, which was compatible with the
theoretical molecular weight of the heterotetramer (Figure
3A and B and Table S1). Thus, both elution profiles confirmed
that the homotetramer dissociates to the benefit of a more
stable heterotetrameric complex. As the extracellular micro-
environment of a solid tumor is acidic,”” the stability of the
coassembled immunotoxin nano-HER2-K3E3-TOX was as-
sessed at low pH. Equimolar amounts of nano-HER2-K3 and
E3-TOX were mixed together and run on the size exclusion
chromatography in PBS pH 6. As shown in Figure 3C, the
nano-HER2-K3E3-TOX complex runs exactly at the same
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Figure 3. Coassociation of the immunotoxins. Gel filtration of (A) purified nano-HER2-K3 (blue), E3-TOX (red), and a mixture of equimolar
amounts of nano-HER2-K3 and E3-TOX (green), (B) purified nano-HER2-E3 (red), K3-TOX (blue), and a mixture of equimolar amounts of
nano-HER2-E3 and K3-TOX (green), and analysis by SDS-PAGE and Coomassie blue staining of the peak fractions. (C) Gel filtration of
coassembled nano-HER2-K3/E3-TOX immunotoxin run at pH 6 (dotted green line) and SDS-PAGE and Coomassie staining analysis of the peak

fraction.

apparent molecular weight as the complex formed at pH 7.4.
Thus, the nano-HER2-K3E3-TOX is stable at pH 6.

The quality of the protein assemblies with regard to the
colloidal stability was monitored by dynamic light scattering
analysis (DLS) (Figure S4). All complexes, including the
heterotetramers, display apparent hydrodynamic diameters of
size below 14 nm with a low polydispersity index (PDI) in the
range of 0.20, with the complete absence of unwanted protein
aggregates.

The Nanobodies and the Coassociated Immunotox-
ins Retain Cell-Binding Properties. To assess whether the

formation of heterodimers via E3 and K3 helixes does not
affect the binding of the nano-HER2, the binding efficiencies of
the nanobodies and coassembled immunotoxins were then
measured on HER2-positive HCC1954 cells to determine
relative binding constants. Thus, the recombinant proteins
were randomly conjugated to NHS-Alexa488 dye via lysine
residues and compared to the labeled parental nano-HER2
(Figure 4A and Figure SSA). Following incubation with
HCC1954 cells, fluorescence signals were measured using
fluorescence-activated cell sorting (FACS). As shown in Figure
4B, monovalent nano-HER2 displayed an apparent binding
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Figure 5. Cytotoxicity of the TOX modules. (A) Toxins and immunotoxins inhibit protein translation. Recombinant proteins were tested in an in
vitro transcription/translation assay using rabbit reticulocyte lysate and the luciferase activity. This assay was performed in triplicate. Sigmoidal
curve fitting was performed using R software. (B) TOX and E3-TOX-purified proteins were electrotransferred into various cell lines. After 72 h, the
cell viability was estimated as a percentage relative to cells transduced with PBS buffer. Analysis corresponds to at least an average of three
independent experiments. Error bars represent standard deviations. The student’s ¢ test was performed: *P < 0.05, **P < 0.01, ***P < 0.001.
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HER2-negative cells were treated for 72 h with the nano-HER2-K3E3-TOX, nano-HER2-K3, and E3-TOX alone (n > 10). (C) HER2-positive
HCC1954 cells were treated for 72 h with the nano-HER2-K3E3-TOX previously incubated in 80% serum at 37 °C for various times, as indicated.
The relative cell viability to untreated cells was plotted against antibody concentrations, and ICs, values were determined using sigmoidal fitting

with R software.

constant (ECs,) of 21.8 (+4.8) nM, somewhat lower than the
value previously described elsewhere on HER2-positive SKBR3
cells.'” The same experiment performed with the homodimer
nano-HER2-E3 and the homotetramer nano-HER2-K3 ex-
hibited relative binding efficiency values 1.0 (+0.1) and 0.2
(£0.1) nM, indicating an increased binding efficiency of
around 20- and 100-fold, respectively. These results pointed to
an avidity effect of the dimer and tetramer nanobodies for
improved binding to the HER2 receptor. However, labeling
either the E3- or K3-TOX module prior to assembly with the
respective nanobody counterpart resulted in a significant drop
in the binding constants (Figure SSB). This result was likely
due to a steric hindrance of the fluorophore preventing
association between the toxin and the VHH modules as shown
by analytical gel filtration (Figure SSC). Thus, labeling purified
immunotoxin complexes resolved this issue (Figure Ss).

Indeed, Alexa488-labeled immunotoxin complexes displayed
only a slightly lower binding efficiency than their respective
nanobody counterparts (Figure 4A and 4B). Nano-HER2-
K3E3-TOX immunotoxin exhibited an ECg; of 2.5 + 0.3 nM
and the nano-HER2-E3K3-TOX immunotoxin an ECg, of 3.7
+ 0.4 nM. No detectable binding was observed on HER2 low-
expressing cells MDA-DB-231 or on HER2-silenced HCC1954
cells using small-interfering oligonucleotides (Figure S6A and
S6B).

Overall, these results demonstrate the binding efficiency and
specificity of the coassociated immunotoxins on the HER2 cell
surface receptor.

Coassembly of the Toxin with the Nanobody via E3
or K3 Peptides Does Not Impair Its Cytotoxicity. Because
oligomerization may harm the structural and functional
integrity of the toxin, we evaluated the enzymatic activities
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Table 2. Cytotoxicity of the Immunotoxin on Target and Control Cells

biomolecule BT474 ICy, (pM) HCC1954 ICy, (pM)
nano-HER2-K3E3-TOX 30.0 + 4.0 39.0 £ 15
E3-TOX 5550 + 80 16710 + 150
nano-HER2-K3 NA NA
ratio ER 185 595

SKBR3 IC,, (pM) MDA-MB-231 ICy, (pM) MCF?7 ICy, (pM)

160 + 25 >300000 6250 + 150
10380 + 230 >300000 8020 + 150
NA NA NA
65 n.d. n.d.

of the toxins and the immunotoxins using an in vitro coupled
transcription/translation assay using rabbit reticulocyte lysate
and a luciferase reporter gene (Figure SA). Increasing
concentrations of either TOX, E3-TOX, K3-TOX, or the
coassembled immunotoxins were added to the lysate in the
presence of NADT, the essential cofactor for the ADP-
ribosylation of the eEF-2 elongation factor.”* Translation
efficiencies were monitored by measuring luciferase activities
(Figure SA). Determination of the inhibition dose—response
curve yielded a half-inhibition (ICy,) at 235 (+4S) pM for the
TOX comparable to the E3-TOX at 164 (+30) pM and both
coassembled immunotoxins, HER2-E3K3-TOX and HER2-
K3E3-TOX, with ICS0 of 160 (+15) and 260 (+20) pM,
respectively. The homotetramer K3-TOX showed a slightly
reduce inhibition activity with an ICS0 of 610 (£50) pM.
Thus, the addition of the helix and the coassembly of the
nanobody with the toxin via E3 or K3 peptides did not
compromise the enzymatic activity of the toxin.

The cytotoxic activities of all constructs were then also
assessed by electrotransferring the recombinant proteins and
complexes into various cell lines.”> Both TOX and E3-TOX
moieties yielded more than 90% of cell death after 72 h (Figure
5B). As a control, the transduced nano-HER2-E3 did not have
any cytotoxic effects.

Specific Cytotoxicity of the Immunotoxins on HER2-
Positive Breast Cancer Cells. Given the high binding affinity
of the nano-HER?2 for HER2 positive cancer cells and the high
cytotoxicity of the TOX modules, we sought to determine the
cytotoxicity of the coassembled immunotoxins.

Thus, the cytotoxic effect and the specificity of the
coassembled immunotoxin, nano-HER2-K3E3-TOX, were
evaluated on different breast cancer cell lines being either
HER2-positive or HER2-negative. Three HER2-positive
(HCC1954, BT474, and SBKR3), two HER2-negative
(MCF7 and MDA-MB-231), and a nonhuman myoblastic
cell line (H9C2(2—1) rat) were tested.”° The cells were
incubated for 72 h with increasing concentrations of either the
immunotoxin nano-HER2-K3E3-TOX or the nano-HER2-K3
or the E3-TOX complexes (Figure 6A and 6B). The nano-
HER2-K3E3-TOX revealed high cytotoxicity at picomolar
levels on the HER2-overexpressing cell lines, compared to the
toxin and to the VHH alone. The ICy, values for BT474,
HCC1954, and SKBR3 cells were 30 (+4), 39 (+15), and 160
(£25) pM, respectively (n > 10) (Figure 6 A and Table 2).
The toxin alone, E3-TOX, had lower cytotoxic effects, in the
range of 5—10 nM for HER2-positive cells and for MCF7 cells
(Table 2). Thus, the nano-HER2-K3E3-TOX immunotoxin
was 185-, 595-, and 65-fold more potent on HCC1954, BT474,
and SKBR3 cells, respectively, compared to the free toxin (E3-
TOX) (Figure 6A and Table 2). No significant differences
between the free toxin and the immunotoxin were noted in
HER2-negative cells, supporting the notion that HER2
overexpression increases the uptake of the immunotoxin
(Figure 6B and Table 2). In fact, MCF7, HER2-negative cell
line, was affected to the same extent by the free toxin and by

the immunotoxin with an ICg, from 8.02 to 6.20 nM (+0.15).
Of note, the viability of MDA-MB-231, as well as H9C2(2—1)
cell lines, was not affected by the immunotoxin (IC, > 300
nM) (Figure 6B and Table 2). Similarly, the opposite
configuration, namely the nano-HER2-E3K3-TOX, displayed
the same cytotoxicity as the nano-HER2-K3E3-TOX on
HER2-positive cell lines and no effects on MDA-MB-
231(Figure S7 and data not shown).

The proteolytic stability of the constructs was also assessed
by incubating both immunotoxins in 80% of serum (FBS) at
37 °C for 1, 5, 12, and 24 h. Immunotoxin cytotoxicity was
then tested on HER2-positive HCC1954 cells. Nano-HER2-
K3E3-TOX retained its full cytotoxic activity even after a 24 h
incubation in serum at 37 °C with an IC50 of 27.0 (+6.3) pM
(Figure 6C).

Altogether, these results indicate that the cytotoxicity of
both immunotoxins is dependent on the specific association
between the nano-HER2 and the toxin via the E3 and K3
helixes and correlates with the presence of the HER2 receptor
on the cell's surface. In addition, they show that the
immunotoxin complexes are very stable at pH 6.00 as well as
in serum.

B DISCUSSION

In this study, we developed a straightforward coassembly
technique to produce an immunotoxin combining a nanobody
directed against HER2 and a toxin via two peptides E3 and
K3.'° The noncovalent and highly specific pairing of the E3
and K3 peptides yielded the generation of heterotetrameric
immunotoxins, composed of two VHH and two toxin
molecules. We clearly demonstrate that the engineered
immunotoxins retain their specific binding and toxic proper-
ties, hence being specifically toxic for HER2-overexpressing
breast cancer cells.

Because the production of immunotoxins is impeded in
eukaryotic cells due to their high toxicity, most engineering
applications for their production rely on the design of chimeras
produced in E. coli.'”""*° However, fusion proteins often suffer
from low solubility and low yield.'”*” For example, an affibody
anti-HER2 fused to a PE38 fragment from the exotoxin A of
Pseudomonas aeruginosa was not soluble and was purified from
the inclusion bodies'® while a chimeric recombinant
immunotoxin composed of a VHH directed against the
vascular endothelial growth factor receptor 2 and the PE38
fragment was produced at a final yield of 9.2 mg/L.”” Another
strategy is to generate both moieties independently, which in
addition to improved yield and solubility makes it possible to
produce the antibody domain in eukaryotic cells. Different
protein conjugation strategies have been explored. For
instance, a HER2-scFv fragment has been chemically
conjugated to PE24 via N-succinimidyl-3-(2-pyridyldithio)-
propionate (SPDP)."” The HER2-(scFv)-PE24 end product
was then purified by size exclusion chromatography. However,
the highest yield of the obtained conjugation was only 58% and
required additional purification steps. An elegant protein trans-
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splicing (TPS) technology was also reported for the
conjugation of either the trastuzumab-targeted HER2 or two
VHHs targeting different epitopes of HER1 (EGFR) to the
PE24 fragment of the exotoxin A from Pseudomonas.'”
Coupling efficiencies in the range of 50—70% were achieved,
and it was not possible to distinguish molecules with a toxin/
antibody ratio of 2 from those with partial coupling. Finally, an
additional step was also required to remove the unconjugated
mAb.

The use of coassembling peptides offers several significant
advantages. Both moieties can be produced separately,
overcoming solubility and yield issues reported for the
chimeric immunotoxins. Indeed, the VHH was produced at a
yield of 100 mg/L, and the toxin module showed a high
solubility yield. In addition, neither reduction nor chemical
conjugation is required, thereby avoiding subsequent purifica-
tion steps, making it a very simple and convenient technology.
Following the assembly of the nano-HER2 and the toxin via E3
and K3, the heterotetramer immunotoxin complexes were able
to efficiently and specifically kill HER2-expressing breast
cancer cells. In addition, the bivalence format of the nanobody
can probably trigger an efficient cellular uptake through
receptor clustering.”**’ Upon endocytosis, the toxin part can
be cleaved from the immunotoxin by the furin protease at the
FCS in the early endosome, and the enzymatic domain can
reach the cytosol, where it finally inhibits translation.® The
cytotoxicity of the immunotoxins was highly specific to HER2-
overexpressing cells with an efficacy of more than 65-fold
compared to the toxin alone or to HER2 low-expressing or
HER2 negative cells.

The present study describes a very straightforward process
for generating an immunotoxin without chemical conjugation
and additional purification steps to remove unreacted
compounds and side products from the desired conjugation
product. The association between E3 and K3 helices ensures a
highly homogeneous end product. In addition, this fully
modular technology enables the replacement of the nano-
HER2 moiety with any other target-specific binding domain to
target other types of cancer cells. Finally, the possibility to
produce both entities separately overcomes the solubility and
yield issues of a full recombinant immunotoxin and offers the
possibility to express the target moiety in an eukaryotic
organism, to achieve post-translational modifications if needed,
for proper folding or activity.

B EXPERIMENTAL PROCEDURES

Cell Lines. HCC1954, MDA-MB-231, BT474, and HOC2
(2—1) cell lines were maintained as monolayers in RPMI
without Hepes, supplemented with 10% fetal calf serum (FCS)
and gentamycin. MCF7, Caski, HeLa, MRCS, and SBKR cell
lines were maintained as monolayers in Dulbecco’s modified
Eagle’s medium (DMEM) (1 g/L glucose) supplemented with
10% fetal calf serum (FCS) and gentamycin. For BT474 and
MCF?7, the medium was supplemented with 10 g/mL insulin.

Recombinant Plasmid Constructions. Nano-HER2
DNA sequences described elsewhere'® were amplified by
PCR using HER2-For GATATACCATGGAAGTT-
CAACTGG and HER2-Rev ATGTGCAC-
TAGTTGCGGCCGCAGAGCTAACCGTCACTTGGG-
TACC primers. The HER2 PCR fragment was digested with
Ncol-Spel and ligated into the pETOM-P40MI1-E3 or -K3
digested with Ncol-Spel to replace the P40M1 sequences. '
An optimized sequence encoding for the TOX used in this

study was synthesized by Integrated DNA Technologies (IDT)
and amplified by PCR using specific primers: for-TOX
TCTACTAGTGCAATGGGGTCTGGTGGCTGT and Rev-
TOX: GAGCTTAAGAATAATGTTAAGTAGAAAG. The
resulting PCR fragment digested with Spel-EcoRI with has
been then cloned into Spel-EcoRI of the pETOM-E3 and
pETOM-K3."® The E3 and K3 sequences were amplified by
PCR using Nhel-K3-For GCTCGCTAGCGGTAACAACAC-
CAGCTCCTCTC and HindIII-K3-Rev. GCTCAAGCTTT-
TAACCCCCTGGCTCCTTCCCAGCC oligonucleotides and
cloned into a pET6His-eGFP vector.

Expression and Purification of the Recombinant
Fusion Proteins. Briefly, E3 and K3 fusion proteins were
overexpressed in E. coli BL21 (DE3) pLysS with 0.5 mM
isopropyl thiogalactoside (IPTG). After 24 h at 20 °C, the cells
were harvested and resuspended in 20 mM phosphate buffer
pH 8, 250 mM NaCl, and 10 mM imidazole. Following lysis in
a cell disruptor (Constant Systems Ltd.), cell debris was
removed by ultracentrifugation, and the supernatant was
applied to IMAC chromatography charged with cobalt (GE
Healthcare Saclay, France). IMAC-purified proteins were
subsequently loaded on a HiLoad 16/60 Superdex 200 prep
grade column or on Superdex 200 Increased 10/300 (GE
Healthcare, Biosciences AB, Sweden) operating at a flow rate
of 0.5 mL/min. Fractions were separated on SDS-PAGE gels
and analyzed by Coomassie blue. The heterotetramers were
prepared by incubating together E3 and K3 targeted
recombinant proteins at a 1:1 molar ratio for S min at RT
followed in some experiments by a second purification on a
Superdex 200 Increased 10/300 GL size exclusion chromatog-
raphy. Complex formation between labeled recombinant
proteins was control by analytical chromatography on a
Superdex 200 Increased 5/150 GL.

Protein Labeling. Recombinant proteins were labeled with
NHS-Ester Alexa488 dye using a DyLight TM Microscale
Antibody Labeling Kit following the protocol as described by
the manufacturer (Thermo-Scientific, USA). Labeled proteins
are indicated as [*] in text and figures.

In Vitro Protein Transcription/Translation Inhibition
Assay. The inhibition of protein translation was performed
using rabbit reticulocyte lysate (RRL) (Promega) and by
measurement of luciferase activity. The assay was performed as
suggested by the manufacturer (Promega) in a total volume of
1S pL. Briefly, RRL was mixed with T7 expression plasmid
encoding for the firefly luciferase and incubated for 90 min at
30 °C with or without increasing the concentration of
recombinant TOX. Then S yL of each reaction was transferred
to a black 96-well plate and assayed for luciferase activity, as
previously described.”® A control without any protein added
served as a positive control and was set as the relative protein
translation of 100%. At least three independent experiments
were carried out.

Circular Dichroism. CD experiments were performed at
20.0 + 0.1 °C on a Jasco J-815 spectropolarimeter with 0.1
mm path-length quartz-Suprasil cells (JASCO Inc., Easton,
MD). Acquisition parameters as continuous scan rate, response
time, and bandwidth were 50 nm/min, 1.0 s, and 1 nm,
respectively. The absorbance of the buffer and the sample was
kept as low as possible to ensure good signal-to-noise ratio. All
spectra are systematically corrected by subtracting the solvent
spectrum obtained under identical conditions.

Thermal Shift Assay. TSA experiments were carried out
on real-time PCR systems (StepOnePlus; Applied Biosystems,
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Darmstadt, Germany). Purified nano-HER2, nano-HER2-E3,
and nano-HER2-K3 were mixed with diluted Sypro Orange
dye (final 2500-fold dilution from stock solution; Invitrogen,
Carlsbad, CA) in phosphate-buffered saline, pH 7.4 to a final
volume of 20 uL and a final protein concentration of 5 yM.
The samples were submitted to a denaturation kinetic from 25
to 95 °C at a rate of 1 °C/min. The fluorescence of Sypro
Orange dye was recorded in real time (excitation with a blue
LED source and emission filtered through a ROX emission
filter). The fluorescence profiles were fitted to a Boltzmann
sigmoid equation to determine the melting temperature. Each
experiment was repeated four times.

Dynamic Light Scattering Analysis (DLS). DLS was
performed at 25 °C using different protein concentrations on a
Malvern Zetasizer device (Malvernpanalytical). Results analysis
was performed using Zetasizer software.

Transient siRNA transfections. Transient siRNA trans-
fections were performed using Lipofectamine RNAiMAX
(Invitrogen, P/N 56532) according to the manufacturer’s
instructions. STARD3-targeting siRNAs and HER2-targeting
siRNAs were SMARTpool ON-TARGETplus obtained from
Dharmacon. For controls, siRNAs ON-TARGETplus non-
targeting pool from Dharmacon were used. siRNAs were used
at 10 nM final concentration, and cells were transfected 24—72
h prior to experiments.

Fluorescence-Activated Cell Sorting (FACS). Trypsi-
nized cells were incubated with a mixture of equimolar ratios of
recombinant proteins as indicated, for 30 min at 4 °C in PBS,
0.5% BSA, and 2 mM EDTA. Cells were washed twice in PBS,
0.5% BSA, and 2 mM EDTA and analyzed with BD Accuri C6
Plus flow cytometer (BD Bioscience). The relative mean
fluorescence intensities were normalized and plotted against
the concentration of the nano-HER2 at monomer concen-
tration. The data shown here are single point measurements.

Cytotoxicity Assay. Five thousand cells were seeded per
well in a 96-well plate and incubated for 24 h. Cells were then
treated with increased concentrations of toxin, VHH, or
immunotoxins. After 72 h, a crystal violet assay was
conducted.’” The absorbance was measured in a Tecan reader
(595 nm). ICg, values were calculated by fitting a sigmoidal
model with R software. Wells with cells treated with PBS were
set at 100% of cell viability.
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Protein sequences of nanobody and toxin fragments
nano-HER2 DNA sequences

ATGGAAGTTCAACTGGTGGAATCGGGCGGTGGTCTGGTTCAAGCGGGCGGCTCACTGC
GTCTGTCCTGTGCTACCTCGGGCATCACGTTTATGCGTTATGCACTGGGTTGGTACCGT
CAGAGCCCGGGTAAACAACGTGAAATGGTTGCAAGTATTAACTCCGGCGGTACCACGA
ATTATGCTGATTCAGTCAAAGGCCGTTTTACCATCTCGCGCGACAACGCAAAAAATACG
GTGTACCTGCAGATGAACAGTCTGAAACCGGAAGATACCGCGGTCTATTACTGCAATGC
CCGCTGGGTGAAACCGCAATTCATTGACAACAATTATTGGGGCCAGGGTACCCAAGTG
ACGGTTAGCTCT

nano-HER2

MEVQLVESGGGLVQAGGSLRLSCATSGITFMRYALGWYRQSPGKQREMVASINSGGTTNY
ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNARWVKPQFIDNNYWGQGTQVTVS
S

Nano-HER2-E3 DNA sequences

ATGGAAGTTCAACTGGTGGAATCGGGCGGTGGTCTGGTTCAAGCGGGCGGCTCACTGC
GTCTGTCCTGTGCTACCTCGGGCATCACGTTTATGCGTTATGCACTGGGTTGGTACCGT
CAGAGCCCGGGTAAACAACGTGAAATGGTTGCAAGTATTAACTCCGGCGGTACCACGA
ATTATGCTGATTCAGTCAAAGGCCGTTTTACCATCTCGCGCGACAACGCAAAAAATACG
GTGTACCTGCAGATGAACAGTCTGAAACCGGAAGATACCGCGGTCTATTACTGCAATGC
CCGCTGGGTGAAACCGCAATTCATTGACAACAATTATTGGGGCCAGGGTACCCAAGTG
ACGGTTAGCTCTGCGGCCGCAACTAGTGAACAAAAACTCATCTCAGAAGAGGATCTGAA
TGCTAGCACGCCACTGGGTGACACGACTCATACCAGCGGTAACAACACCAGCTCCTCT
CCCCAGCCAAAGAAGAAACCACTGGATGGAGAATATTTCACCCTTCAGATCCGTGGGC
GTGAGCGCTTCGAGATGTTCCGAGAGCTGAATGAGGCCTTGGAACTCGAGGATGCCCA
GGCTGGGAAGGAGCCAGGGGGTTCAGGCGGAGCTCCACATCACCATCATCACCATTAA
TAA

Nano-HER2-E3 protein

MEVQLVESGGGLVQAGGSLRLSCATSGITFMRYALGWYRQSPGKQREMVASINSGGTTNY
ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNARWVKPQFIDNNYWGQGTQVTVS
SAAATSEQKLISEEDLNASTPLGDTTHTSGNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMF
RELNEALELEDAQAGKEPGGSGGAPHHHHHH

Nano-HER2-K3 DNA sequences

ATGGAAGTTCAACTGGTGGAATCGGGCGGTGGTCTGGTTCAAGCGGGCGGCTCACTGC
GTCTGTCCTGTGCTACCTCGGGCATCACGTTTATGCGTTATGCACTGGGTTGGTACCGT
CAGAGCCCGGGTAAACAACGTGAAATGGTTGCAAGTATTAACTCCGGCGGTACCACGA
ATTATGCTGATTCAGTCAAAGGCCGTTTTACCATCTCGCGCGACAACGCAAAAAATACG
GTGTACCTGCAGATGAACAGTCTGAAACCGGAAGATACCGCGGTCTATTACTGCAATGC
CCGCTGGGTGAAACCGCAATTCATTGACAACAATTATTGGGGCCAGGGTACCCAAGTG
ACGGTTAGCTCTGCGGCCGCAACTAGTGAACAAAAACTCATCTCAGAAGAGGATCTGAA
TGCTAGCACGCCACTGGGTGACACGACTCATACCAGCGGTAACAACACCAGCTCCTCT
CCCCAGCCAAAGAAGAAACCACTGGATGGAGAATATTTCACCCTTCAGATCCGTGGGC
GTGAGCGCTTCGAGATGTTCCGAAAACTGAATAAGGCCTTGGAACTCAAGGATGCCCA



GGCTGGGAAGGAGCCAGGGGGTTCAGGCGGAGCTCCACATCACCATCATCACCATTAA
TAAG

Nano-HER2-K3 protein

MEVQLVESGGGLVQAGGSLRLSCATSGITFMRYALGWYRQSPGKQREMVASINSGGTTNY
ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNARWVKPQFIDNNYWGQGTQVTVS
SAAATSEQKLISEEDLNASTPLGDTTHTSGNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMF
RKLNKALELKDAQAGKEPGGSGGAPHHHHHH

TOX DNA sequences

AACTTTAAGAAGGAGATATACCATGGGGTCTGGTGGCTGTGGTGGCGGTGGTTCTCGT
CATCGTCAGCCGCGTGGTTGGGAACAACTGGGTGGCTGCGGTGGTTCTGGTGGCGGT
GGCTCTTACCCGACAGGCGCGGAGTTTTTGGGTGATGGCGGTGACGTGTCTTTCTCCA
CGCGTGGTACTCAAAATTGGACAGTCGAACGTCTGTTGCAGGCCCACGCGCAACTGGA
GGAACGTGGTTACGTATTCGTAGGCTATCACGGTACCTTTCTGGAGGCCGCGCAATCC
ATTGTTTTTGGTGGCGTTGCAGCGCGTTCTCAAGATCTGGCGGCAATCTGGGCAGGTTT
CTATATCGCTGGCGACCCCGCTCTGGCTTACGGCTATGCCCAAGATCAAGAACCCGAT
GCAGCCGGTCGTATTCGCAACGGTGCTTTGCTGCGTGTCTACGTTCCGGCATCTTCTCT
GCCGGGTTTCTATCGTACCGGTTTGACGCTGGCGGCACCGGAAGCGGCCGACGAGGT
TGAGCGTTTGATCGGTCACCCGTTGCCGCTGGCACTGGACGCAATTACAGGCCCGGAA
GAGGAAGGCGGCCGGCTGGAAACGATCTTGGGTTGGCCATTGGCGGAGCGGACAGTC
GTAATCCCTTCTGCCATTCCGACTGATCCGCGTAATGTGGGTGGTGACTTGGACCCTTC
TTCCATTCCTGATCAGGAGCAAGCTATCTCTGCTCTGCCGGATTACGCCTCTCAGCCTG
GCAAACCGCCGAAAGATGAATTGACTAGT

Protein TOX (FCS)

MGSGGCGGGGSRHRQPRGWEQLGGCGGSGGGGSYPTGAEFLGDGGDVSFSTRGTQN

WTVERLLQAHAQLEERGYVFVGYHGTFLEAAQSIVFGGVAARSQDLAAIWAGFYIAGDPAL
AYGYAQDQEPDAAGRIRNGALLRVYVPASSLPGFYRTGLTLAAPEAADEVERLIGHPLPLAL
DAITGPEEEGGRLETILGWPLAERTVVIPSAIPTDPRNVGGDLDPSSIPDQEQAISALPDYAS

QPGKPPKDEL

E3-TOX DNA sequences

ATGGCCCATCACCATCATCACCATAACAACACCAGCTCCTCTCCCCAGCCAAAGAAGAA
ACCACTGGATGGAGAATATTTCACCCTTCAGATCCGTGGGCGTGAGCGCTTCGAGATGT
TCCGAGAGCTGAATGAGGCCTTGGAACTCGAGGATGCCCAGGCTGGGAAGGAGCCAG
GGTCTACTAGTGCAATGGGGTCTGGTGGCTGTGGTGGCGGTGGTTCTCGTCATCGTCA
GCCGCGTGGTTGGGAACAACTGGGTGGCTGCGGTGGTTCTGGTGGCGGTGGCTCTTA
CCCGACAGGCGCGGAGTTTTTGGGTGATGGCGGTGACGTGTCTTTCTCCACGCGTGGT
ACTCAAAATTGGACAGTCGAACGTCTGTTGCAGGCCCACGCGCAACTGGAGGAACGTG
GTTACGTATTCGTAGGCTATCACGGTACCTTTCTGGAGGCCGCGCAATCCATTGTTTTT
GGTGGCGTTGCAGCGCGTTCTCAAGATCTGGCGGCAATCTGGGCAGGTTTCTATATCG
CTGGCGACCCCGCTCTGGCTTACGGCTATGCCCAAGATCAAGAACCCGATGCAGCCGG
TCGTATTCGCAACGGTGCTTTGCTGCGTGTCTACGTTCCGGCATCTTCTCTGCCGGGTT
TCTATCGTACCGGTTTGACGCTGGCGGCACCGGAAGCGGCCGACGAGGTTGAGCGTTT
GATCGGTCACCCGTTGCCGCTGGCACTGGACGCAATTACAGGCCCGGAAGAGGAAGG
CGGCCGGCTGGAAACGATCTTGGGTTGGCCATTGGCGGAGCGGACAGTCGTAATCCCT
TCTGCCATTCCGACTGATCCGCGTAATGTGGGTGGTGACTTGGACCCTTCTTCCATTCC
TGATCAGGAGCAAGCTATCTCTGCTCTGCCGGATTACGCCTCTCAGCCTGGCAAACCG
CCGAAAGATGAATTGTAA



E3-TOX protein

MAHHHHHHNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALELEDAQAGKEPGS
TSAMGSGGCGGGGSRHRQPRGWEQLGGCGGSGGGGSYPTGAEFLGDGGDVSFSTRGT
QNWTVERLLQAHAQLEERGYVFVGYHGTFLEAAQSIVFGGVAARSQDLAAIWAGFYIAGDP
ALAYGYAQDQEPDAAGRIRNGALLRVYVPASSLPGFYRTGLTLAAPEAADEVERLIGHPLPL
ALDAITGPEEEGGRLETILGWPLAERTVVIPSAIPTDPRNVGGDLDPSSIPDQEQAISALPDYA
SQPGKPPKDEL

K3-TOX DNA sequences

ATGGCCCATCACCATCATCACCATAACAACACCAGCTCCTCTCCCCAGCCAAAGAAGAA
ACCACTGGATGGAGAATATTTCACCCTTCAGATCCGTGGGCGTGAGCGCTTCGAGATGT
TCCGAAAACTGAATAAGGCCTTGGAACTCAAGGATGCCCAGGCTGGGAAGGAGCCAGG
GTCTACTAGTGCAATGGGGTCTGGTGGCTGTGGTGGCGGTGGTTCTCGTCATCGTCAG
CCGCGTGGTTGGGAACAACTGGGTGGCTGCGGTGGTTCTGGTGGCGGTGGCTCTTAC
CCGACAGGCGCGGAGTTTTTGGGTGATGGCGGTGACGTGTCTTTCTCCACGCGTGGTA
CTCAAAATTGGACAGTCGAACGTCTGTTGCAGGCCCACGCGCAACTGGAGGAACGTGG
TTACGTATTCGTAGGCTATCACGGTACCTTTCTGGAGGCCGCGCAATCCATTGTTTTTG
GTGGCGTTGCAGCGCGTTCTCAAGATCTGGCGGCAATCTGGGCAGGTTTCTATATCGC
TGGCGACCCCGCTCTGGCTTACGGCTATGCCCAAGATCAAGAACCCGATGCAGCCGGT
CGTATTCGCAACGGTGCTTTGCTGCGTGTCTACGTTCCGGCATCTTCTCTGCCGGGTTT
CTATCGTACCGGTTTGACGCTGGCGGCACCGGAAGCGGCCGACGAGGTTGAGCGTTT
GATCGGTCACCCGTTGCCGCTGGCACTGGACGCAATTACAGGCCCGGAAGAGGAAGG
CGGCCGGCTGGAAACGATCTTGGGTTGGCCATTGGCGGAGCGGACAGTCGTAATCCCT
TCTGCCATTCCGACTGATCCGCGTAATGTGGGTGGTGACTTGGACCCTTCTTCCATTCC
TGATCAGGAGCAAGCTATCTCTGCTCTGCCGGATTACGCCTCTCAGCCTGGCAAACCG
CCGAAAGATGAATTGTAA

K3-TOX protein

MAHHHHHHNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALELEDAQAGKEPGS
TSAMGSGGCGGGGSRHRQPRGWEQLGGCGGSGGGGSYPTGAEFLGDGGDVSFSTRGT
QNWTVERLLQAHAQLEERGYVFVGYHGTFLEAAQSIVFGGVAARSQDLAAIWAGFYIAGDP
ALAYGYAQDQEPDAAGRIRNGALLRVYVPASSLPGFYRTGLTLAAPEAADEVERLIGHPLPL
ALDAITGPEEEGGRLETILGWPLAERTVVIPSAIPTDPRNVGGDLDPSSIPDQEQAISALPDYA
SQPGKPPKDEL
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Figure S1: Expression and purification of nano-HER2-E3 and nano-HER2-K3 using IMAC followed by
size exclusion chromatography. (A) Expression levels of the nanobodies after IPTG induction ON at
20°C. SDS-PAGE and by Coomassie blue staining analysis of total extracts of control (lane 1), nano-
HER2-E3 (lane 2) and nano-HER2-K3 (lane3). (B) IMAC fractions of nano-HER2-E3 (lane 1 to 5) and
nano-HER2-K3 (lanes 6 to 8) were analyzed by SDS-PAGE and Coomassie blue staining. (C) SDS-
PAGE and Coomassie blue staining analysis of the gel filtration fractions of nano-HER2-E3 (lanes 1 to
5) and nano-HER2-K3 (lanes 6 to 9).
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Figure S2: Expression and purification of TOX constructs. (A) Total extracts from IPTG induction of
control (lane 1) and E3-TOX (lane 2) transformed BL21-LyS and, (B) IMAC fractions of E3-TOX (1 to
3) and K3-TOX (4 to 7) were analyzed by SDS-PAGE and Coomassie blue staining. (C) SDS-PAGE

and Coomassie staining analysis of the SEC fractions of E3-TOX (fractions 1 to 3) and K3-TOX (4 and
6).
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Figure S3. Melting temperatures of the nano-HER2, nano-HER2-K3 and nano-HER2-E3

purified proteins were determined using a fluorescence-based thermal shift assay.
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Figure S4. The apparent hydrodynamic diameters of the protein-assemblies were evaluated
by Dynamic Light Scattering analysis (DLS). DLS measurements were performed using a
Malvern NanoZS instrument and the data were treated with the Malvern software using the
automatic settings. All reported data compiled with the quality test standard of the software.
Measurements were performed three times for each sample at 25°C. Representative graphs

are shown. Z-Avergae is expressed in r.nm. Protein concentration in mg/ml is indicated as
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Figure S5. Binding of equimolar mixture of [E3-TOX]* and nano-HER2-K3 or of [K3-TOX]*
and nano-HER2-E3 on antigen-overexpressing cells. (A) Cartoon representing the steric
hindrance of the fluorophore on the co-association of nano-HER2 and TOX module. Labeled
proteins are indicated by [*].(B) HCC1954 cells were incubated with varying concentrations of
an equimolar mixture of labeled [E3-TOX]* with unlabeled nano-HER2-K3 or labeled [K3-
TOX]* with unlabeled nano-HER2-K3 and analyzed by flow cytometry. The relative number
of fluorescence cells expressed in percentage was plotted against nanobody concentration.
(n23) and SD. (C) Alexa-labeled purified immuntoxin complex and the mixture of labelled
[E3-TOX]* with unlabeled nano-HER2-K3 were run on an analytical size exclusion
chromatography Superdex 200 Increased 5/150 GL. Mixture of [E3-TOX]* (yellow dotted
line) with nano-HER2-K3 (blue dotted line) led to two overlapping peaks (green line), while

the purified co-assembled labeled immunotoxin complex gave only one peak.
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measured by fluorescence-activated cell sorting (FACS). (B) HCC1954 cells were treated
with either a HER2 siRNA or with a control siRNA for 42h, and then incubated with [nano-

HER2-K3]*. Fluorescence was measured by FACS.
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immunotoxins. Both show similar ICs, cytotoxicity over HER2-expressing cells, BT474. These

assays were performed in triplicates.

Table S1:
Number  Theoretical pl Oligomerization MW of the
of aa monomer state complex (kDa)
MW (kDa)

Nano-HER2 146 16.20 8.48 Mono 16.20
Nano-HER2-E3 213 23.50 6.88 Homodimer 47
Nano-HER2-K3 213 23.50 9.29 Homotetramer 94
TOX 290 30.20 4.63 Mono 30.2
E3-TOX 315 33.50 478 Homodimer 67
K3-TOX 315 33.50 5.57 Homotetramer 134
Nano-HER2- n.a n.a n.d Heterotetramer 114
E3/K3-TOX

Nano-HER2- Heterotetramer 114
K3/E3-TOX
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Table S2 : Final yields of recombinant protein preparations after the two purification steps

mg/L
Nano-HER2 114
Nano-HER2-E3 98
Nano-HER2-K3 103
TOX 6.9
E3-TOX 7.2

K3-TOX 9.1
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Evaluation de polyméres amphiphiles
pour I’extraction, la purification et la
caractérisation de protéines
membranaires d’intérét thérapeutique

Résumé

Au cours deux dernieres décennies, des approches alternatives a l'utilisation de détergents ont été
développées pour I'étude des protéines membranaires en solution, dans le but de reproduire un
environnement lipidique plus stable et plus proche des membranes biologiques. Récemment, de nouveaux
polyméres amphiphiles ont ainsi été décrits avec la capacité de déstabiliser les membranes biologiques et de
générer des nanoparticules lipidiques contenant les protéines d’intérét. Si cette approche semble
particulierement prometteuse, peu de données sont disponibles quant a I'obtention et a I'étude de telles
particules contenant des protéines membranaires eucaryotes produites dans des systemes d’expression
eucaryotes, et en particulier dans la levure Pichia pastoris.

L’objet de cette étude est d’évaluer I'efficacité de ce type de polymeres pour I'extraction et la purification de
deux protéines modeéles produites dans le systéeme P. pastoris, a savoir le récepteur a I'adénosine A;A (AAA)
et le canal perméable au calcium Transient Receptor Potential Vanilloid 4 (TRPV4). En comparaison avec des
approches basées sur les détergents, notre but est d’évaluer la performance de ces molécules dans le cadre
d’études fonctionnelles et structurales de ces protéines membranaires en solution.

Mots clés: protéines membranaires eucaryotes, Pichia pastoris, polymeéres amphiphiles, solubilisation,
purification, caractérisation moléculaire

Abstract

Within the last two decades, alternative approaches to detergent have been developed for the study of
membrane proteins in solution, with the goal to better mimic the natural lipidic environment of the membrane
and to improve the stability of the protein. Recently, new amphipathic polymers have been described for their
effective capacity to isolate membrane proteins of interest within nanolipidic particles. Although this approach
seems particularly promising, few data are available regarding the generation and the study of such particles
containing eukaryotic membrane proteins produced with eukaryotic expression systems, and in particular with
the yeast Pichia pastoris.

The aim of this study is thus to evaluate the performance of such polymers for the extraction and purification
of two model membrane proteins produced in the P. pastoris system, namely the adenosine A,A receptor
(AA2A) and the calcium permeant channel Transient Receptor Potential Vanilloid 4 (TRPV4). In comparison with
detergent-based approaches, we investigate the suitability of such molecules for the isolation and the
functional and structural characterization of these two membrane proteins.

Key words: eukaryotic membrane protein, Pichia pastoris, amphipathic polymers, solubilization, purification,
molecular characterization
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