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Abstract 

Global climate change and anthropogenic impacts lead to alterations in the water cycle, water 

resource availability and the frequency and intensity of floods and droughts. As a result, 

developing effective techniques such as hydrological modeling is essential to monitor and predict 

water storage changes. However, inaccuracies and uncertainties in different aspects of modeling, 

due to simplification of meteorological physical processes, data limitations and inaccurate climate 

forcing data limit the reliability of hydrological models. Satellite remote sensing datasets, 

especially Terrestrial Water Storage (TWS) data which can be obtained from Gravity Recovery 

and Climate Experiment (GRACE), provide a new and valuable source of data which can augment 

our understanding of the hydrologic cycle. Soil moisture retrievals from the Soil Moisture and 

Ocean Salinity (SMOS) also provide us with a great opportunity to understand changes in soil 

moisture. Merging these new observations with hydrological models which is called Data 

Assimilation (DA) can effectively enhance the model performance using advanced statistical and 

numerical methods, which is known as data assimilation. Assimilation of new observations 

constrains the dynamics of the model based on uncertainties associated with model and data, which 

can introduce missing water storage signals e.g., anthropogenic and extreme climate change 

effects. Assimilation of satellite remote sensing datasets into hydrological models is a challenging 

task as provision should be made for handling the errors and then merging them with hydrological 

models using efficient assimilation techniques.  

The main objective of this thesis is to provide multi-mission satellite data assimilation into the 

coupled surface-subsurface hydrological model for the first time to improve predictions of sub-

surface water storage, and shed light on the limitations and challenges of assimilating only one 

source of satellite data. We present a comprehensive data assimilation strategy including (i) 

GRACE-only (GRACE DA), (ii) SMOS-only (SM DA), and (iii) joint assimilation of GRACE 

and SMOS (multivariate DA) and how to work with GRACE TWS data errors e.g., the correlated 

noise of high-frequency mass variations and spatial leakage errors to use the potential of GRACE 

TWS data as much as possible. We provide benefits and limitations of different data assimilation 

strategies with emphasis on the capability of multi-mission satellite data for hydrological 

applications. In this thesis, multi-mission satellite data is assimilated into an integrated two-way 

coupled subsurface-surface hydrological model which is called ParFlow-CLM using the Ensemble 
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Kalman Filter (EnKF). Interaction between subsurface and surface water is a numerically 

challenging task and ParFlow-CLM can simulate the physical processes occurring at the interface 

between the deeper subsurface and the surface. Therefore, investigation of effect of the 

multivariate data assimilation on ParFlow-CLM model can challenge the capability of this model.  

To implement this objective, in the first step, an in-depth overview of recent studies on assimilating 

GRACE TWS data into hydrological models is provided and sheds light on their limitations, 

challenges and progress. In the second step, the capability of GRACE data in estimation of water 

budget is investigated and for doing this the central basin of Iran is selected. In the third step, an 

approach to improve soil moisture and groundwater-level predictions from ParFlow-CLM model 

using an objective scaling of Manning’s coefficient and saturated hydraulic conductivity is 

proposed and this approach has been tested over the Upper Rhine basin. A modification of model 

parametrization to take into account the impact of scale on hydrodynamic parameters should be 

done prior to multivariate assimilation approaches. And finally, multivariate data assimilation 

performance in the three assimilation methodologies is evaluated over a case study in Iran. 

Furthermore, multiple datasets including in-situ measurements of groundwater and different 

remotely sensed observations are used to examine the results. 
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Chapter I: Introduction 

1.1 Terrestrial Water Storage 

Since climate change and anthropogenic activities can influence the cycle of water and energy, 

which is followed by hazards such as floods and droughts (Stocker et al., 2013), monitoring and 

predicting water resource changes have become more important. Accurate quantification of water 

storage changes is one reliable approach to determine the availability and sustainability of water 

resources. As a result, it is essential to monitor hydrological processes, as well as water states and 

fluxes at various temporal and spatial resolutions. The hydrological processes are multifaceted and 

different hydrological models are applied to simulate the water cycle on various system sizes from 

small basins to global scales to quantify the different components of it (Sood and Smakhtin, 2015). 

These models strive to represent reality as much as possible, but there is always a degree of 

simplification involved, while the empirical model parameters and insufficient and imperfect 

climate input data are also subject to uncertainty (Van Dijk et al., 2014). Climate input data 

obtained from imperfect in situ measurements impede reliable simulation results from a 

hydrological model due to limitations in the spatiotemporal availability of in-situ data (Soltani et 

al., 2020). Alternatively, remote sensing technology with different spatiotemporal resolutions 

provides a unique opportunity not only to obtain hydrological parameters e.g., precipitation (e.g., 

Alazzy et al., 2017; Najmaddin et al., 2017), soil moisture (e.g., Ray et al., 2017), 

evapotranspiration (e.g., Liou and Kar, 2014) but also to improve a hydrological model’s 

performance. In particular, the Gravity Recovery and Climate Experiment (GRACE) and GRACE 

Follow-On  (GRACE-FO) missions which have been active since 2002, have an important role in 

representing surface and sub-surface physical processes related to water redistribution in the Earth 

system by estimating Terrestrial Water Storage (TWS)  (e.g., Kusche et al., 2012; Forootan et al., 

2014a; Wouters et al., 2014; Soltani et al., 2020). Some studies reviewed the application of 

GRACE data in monitoring of TWS due to its recent developments and popularity in hydrology 

(e.g., Frappart and Ramillien, 2018; Güntner, 2008; Jiang et al, 2014). Jiang et al (2014), Those 

have reviewed the hydrological application of GRACE data in some distinct categories including 

1) TWS change monitoring, 2) hydrological components evaluation, 3) drought analysis and 4) 

glacier mass balance detection. GRACE TWS data also can be used by advanced statistical and 

numerical methods to modify a hydrological model’s output to reduce the input climate data 
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uncertainty influence and mitigate the negative impact of using an improper model structure or 

model parameters. GRACE TWS data obtained by using strong filtering strategies is assumed as 

a model constraint based on uncertainties associated with both model and data, which helps to 

enhance flux and storage simulations. With the growth of satellite remote sensing products, 

GRACE data assimilation into hydrological models has attracted enormous interest in hydrology 

(e.g., Zaitchik et al., 2008; Su et al., 2010; Forman et al., 2012; Eicker et al., 2014; 

Tangdamrongsub et al., 2015; Reager et al., 2015; Eicker et al., 2016; Schumacher et al., 2016b; 

Schumacher et al., 2016a; Tangdamrongsub et al., 2017; Khaki et al., 2018b; Khaki et al., 2018c; 

Tangdamrongsub et al., 2018). In fact, the interaction of models and data is a reciprocal process in 

which data can serve the modeling purpose by supporting model discrimination, parameter 

refinement, uncertainty analysis, and in which models deliver a tool for data fusion (assimilation), 

interpretation, interpolation (Rajabi et al., 2018). Some studies provide a technical review of large-

scale hydrological models (Kauffeldt et al., 2016) and data assimilation techniques (Montzka et 

al., 2012; Lahoz and Schneider, 2014; Houtekamer and Zhang, 2016; Bannister, 2017). 

1.1.1 Application of GRACE Satellite Remote Sensing  

Investigating the interaction between TWS and other components of the water budget is very 

important in assessing the availability of freshwater resources (Van Dijk et al., 2014). To date, 

different tools have been used  to investigate water storages and their interactions with other 

components of the water balance that can be referred to ground measurements, hydrological 

models, and satellite remote sensing data. 

Hydrology benefits from the gravity data from GRACE satellite because a large portion of the 

changes in g is due to changes in water in the ocean, atmosphere and continental water storage 

(Ramillien et al., 2008). Climate and geophysical processes need an understanding of the water 

cycle across the continents which can be derived from the mass changes of the earth surface (Ilk 

et al., 2004). In order to isolate the hydrological part of the GRACE signal, Ramillien et al. (2004), 

Rodell and Famiglietti (1999), Seitz et al. (2010), Grippa et al. (2011), Awange et al. (2009) and 

Longuevergne et al. (2010) have presented various methods. They all mention that the water 

storage in the continents and its changes in time and space can be obtained from the gravimetry 

satellite observations (Schmidt et al., 2006). TWS across the globe first became available as a 

unified database with the application of GRACE. Many models that simulate the hydrological 
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cycle can be validated and improved with GRACE data (Schmidt et al., 2006). GRACE TWS has 

varying time resolutions of one day (Kurtenbach et al., 2009) to one month (the publicly available 

data) which is also dependent on the method of data analysis. The resolution in space is on the 

order a few hundred kilometers (Schmidt et al., 2006). GRACE TWS has found applications in 

geophysical applications as well as climate and hydrology studies (see Kusche et al., 2012; 

Famiglietti and Rodell, 2013; Wouters et al., 2014; Famiglietti et al., 2015; Chen et al., 2016; 

Soltani et al, 2020).  The monthly GRACE products have been compared to global hydrology 

models in terms of the terrestrial water storage variation by Wahr et al. (2004) and Schmidt et al. 

(2006). Seasonal GRACE data generally agree with the hydrological model’s output (Schmidt et 

al., 2006), although there are some errors. The problems in model description or parameters can 

be alleviated using GRACE. Syed et al. (2005), Yamamoto et al. (2007) and Winsemius et al. 

(2006) have stated that GRACE is not good for application in small basins (<150,000 km2) because 

of its resolution.  

GRACE cannot differentiate between TWS components such as subsurface or soil moisture. As a 

result, TWSA components separation of GRACE have been attempted for snow (e.g., Frappart et 

al., 2006; Niu et al., 2007 and Llubes et al., 2007), evapotranspiration (e.g., Rodell et al., 2004) 

and groundwater (e.g., Rodell et al., 2007). For this purpose, model outputs and ground 

measurements are used to separate known components, and the integral gravity signal of the 

GRACE is thus decomposed. Several methods exist for separation of the signals in recent studies. 

Inversion and statistical decomposition were applied by Rietbroek (2014), Schmeer et al. (2012) 

and Forootan (2014b) in order to separate GRACE TWS into different storage compartments.   

1.1.2 Hydrological Modeling 

Hydrological models are considered as an important and necessary tool for water and environment 

resource management. Hydrological models at the regional scale (e.g., Chiew et al., 1993; 

Wooldridge and Kalma, 2001; Christiansen et al., 2007; Huang et al., 2017) and global scale (e.g., 

Dӧll et al., 2003; Huntington, 2006; Coumou and Rahmstorf, 2012; Van Dijk et al., 2013) are 

important tools that are used for simulation of hydrological process. Hydrological models give us 

a better insight into the water cycle on the global and regional scale. Various hydrological models 

(Moradkhani and Sorooshian, 2008; Devia et al., 2015) have been applied with different levels of 

success to obtain water storage components e.g., water in ice, glaciers, snow caps, groundwater, 
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surface water and soil moisture and the rate of their changes (e.g., Chiew et al., 1993; Wooldridge 

and Kalma, 2001; Dӧll et al., 2003; Huntington, 2006; Van Dijk, 2010). Models are also used for 

information extraction, data assimilation, interpretation, generalization and interpolation, and 

identification of information-rich data (Ataie-Ashtiani et al., 2020).   

Models are still being developed to better simulate all available hydrological processes and the 

inclusion of all interactions between water cycle components e.g., interaction between runoff, 

precipitation and evapotranspiration (Simmons et al., 2019). In any case, uncertainties exist and 

the modeling remains imperfect. Data sets are still limited in time and space, and our knowledge 

about empirical parameters is still limited (Vrugt et al., 2013; Van Dijk et al., 2011, 2014). Danesh-

Yazdi and Ataie-Ashtiani (2019) argue that planning and management of hydrological systems 

“without appropriate data and model is gambling”, as for a consistent understanding of the system 

both are required. As a result, the simulation model results are imperfect and uncertain. Some of 

the model parameters are not easy to interpret, and the computational burden of the more complex 

models is higher. 

Another alternative is incorporating accurate observations into the model for handling these 

limitations (e.g., McLaughlin, 2002; Zaitchik et al., 2008; Van Dijk et al., 2014; El Gharamti et 

al., 2016). Since remotely sensed data for different quantities are becoming increasingly available 

in different coverages and resolutions, model reliability improvement can be achieved with these 

data. Satellite data assimilation specifically, GRACE into hydrological models can be used 1) to 

effectively separate TWS into its components and downscale the coarse resolution of it and 2) to 

constrain the models’ simulations and also their parameters through data assimilation.  

1.2 Data Assimilation Methodology 

Ocean, earth science and atmospheric studies employ numerical solution of DA with the 

advancement of high power computing systems and in hydrology with the emergence of state-of-

art satellite datasets, it has started to be applied in models for soil moisture (e.g., Brocca et al., 

2010; Renzullo et al., 2014; Kumar et al., 2014, 2015), runoff (e.g., Vrugt et al., 2006; Komma et 

al., 2008; Neal et al., 2009; Lee et al., 2011; McMillan et al., 2013; Li et al., 2015), water storage 

in surface reservoirs (e.g., Neal et al., 2009; Giustarini et al., 2011), evapotranspiration (e.g., 

Schuurmans et al., 2003; Pipunic et al., 2008; Irmak and Kamble, 2009) and TWS changes (e.g., 
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Landerer and Swenson 2012; Longuevergne et al. 2013; Awange et al. 2014; Forootan et al. 

2014a) . 

Based on these studies, it is obvious that assimilation of satellite remote sensing data into 

hydrological models, separately or simultaneously, provides a great opportunity to improve and 

calibrate hydrological models. Better results can be achieved by multi-satellite products when 

properly accounting for the measurement errors (see, e.g., Montzka et al. 2012; Renzullo et al. 

2014; Tian et al. 2017). 

With the availability of TWS from the GRACE, assimilation of GRACE TWS into hydrological 

models has been done in the past few years to update hydrological model estimates of various 

water compartments (e.g., Zaitchik et al., 2008; Van Dijk et al., 2014; Tangdamrongsub et al., 

2015; Kumar et al., 2016; Girotto et al., 2016, 2017; Khaki et al., 2017a; Schumacher et al., 2018). 

In addition to different datasets, different DA techniques have also been implemented and tested 

in hydrological studies as well as hydrologic operational systems.  

Various filtering techniques have been proposed and developed in various fields for  DA objectives. 

Among these, variational methods and sequential filtering  have gained a lot of attention during the 

past few decades. In the variational approach, the model solution is fitted to the data given a cost 

function that measures the error between the state variables and observations (Talagrand and 

Courtier, 1987). Computer coding of the adjoint system is necessary which needs a lot of time to 

write the code and also significant computer power to execute the code (Hoteit et al., 2005). Also, 

the variational methods have limited accuracy because of the DA process and the estimation 

statistics in this process (Kalnay, 2003; Courtier et al., 1994). 

1.2.1 Assimilation Strategy: Multivariate (joint) data assimilation 

With GRACE TWS data assimilation, the components of the water balance including soil moisture 

and groundwater storage can be quantified since errors are considered for both observations and 

the model. In addition, total water storage observation from GRACE can be spatially downscaled 

with the model, giving better resolution of water storage for the study area (see, e.g., Schumacher 

and Kusche, 2016). In addition, by using soil moisture data from satellite and assimilation of this 

dataset, soil moisture component becomes more accurate, thereby improving its updated estimates 

(e.g., Tian et al., 2017). It has been shown that using total water storage from GRACE and satellite 

soil moisture product is successful in constraining the hydrologic model outputs to more accurate 
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values (Tangdamrongsub et al., 2020). Soltani et al. (2021) reviewed several studies that indicate 

GRACE TWS (e.g., Zaitchik et al., 2008; Houborg et al., 2012; Li et al., 2012; Eicker et al., 2014; 

Reager et al., 2015; Girotto et al., 2016; Girotto et al., 2017; Khaki et al., 2018a; Khaki et al., 

2018b) and satellite soil moisture (e.g., Renzullo et al., 2014; Dumedah et al., 2015; Tian et al., 

2017; Kolassa et al., 2017) for data assimilation can successfully constrain the hydrological models 

simulations. 

Therefore, the main objective of this chapter is to use multi-mission satellite data products to 

improve predictions of sub-surface water storages in the hydrology model over a case study in 

Iran. As a result, GRACE-derived TWS and soil moisture observations from the SMOS are 

assimilated in the couple ParFlow-CLM hydrological model (or TerrSys-MP). TerrSys-MP 

coupled to the to the PDAF library (Parallel Data Assimilation Framework) (Kurtz et al., 2016; 

Nerger and Hiller, 2013). This is an efficient numerical tool which is capable of performing 

assimilation tasks in parallel, thereby making it attractive for applications at large spatial scales 

and high-resolution over long periods of time (Kurtz et al., 2016). This work uses the Ensemble 

Kalman Filter (EnKF) filter method (Whitaker and Hamill, 2002) in order to assimilate TWS from 

GRACE and soil moisture products from SMOS via the ensemble-based sequential technique into 

the Terrsys-MP. 

1.3 Scientific Context and Objectives of the Thesis 

Assimilating remotely-sensed data specially, GRACE data into hydrological models presents 

several challenges. The temporal and spatial (horizontal and vertical) resolution mismatch between 

simulated model states and observed remotely-sensed data requires the use of sophisticated 

strategies to connect them (Girotto et al., 2016). Furthermore, data assimilation requires 

information on uncertainties of model and observations. The model error is difficult to quantify as 

it depends on uncertainties in model structure, atmospheric forcings, and soil data sets. For 

example, GRACE TWS data are contaminated with correlated noise, which requires careful post-

processing of the GRACE solutions. Currently, no standard way exists for the assimilation of 

GRACE data into hydrological models. 

So far, only few groups have assimilated GRACE data into a hydrological model. Typically, the 

applied hydrological models have a spatial resolution between 0.5° (50 km) to 1° (100 km) and 
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run at daily time steps, whereas the resolution of climate data might be restricted (e.g., number of 

cloud-free days per month, precipitation averaging). One exception for assimilation experiments 

at higher spatial resolution is the assimilation of GRACE data into a lumped rainfall-runoff model 

set up for the Rhine catchment at 1km resolution, which however uses atmospheric forcing data 

resolved at 0.25° to 0.5° (Tangdamrongsub et al., 2015). Another example is the catchment-based 

land surface model running at a 1/8° grid with 15-minute time steps and daily atmospheric forcing 

data (Kumar et al., 2016). 

This thesis aims at assimilating GRACE-derived TWS variability into a fully coupled surface-

subsurface model (CLM-ParFlow) at 0.25° spatial resolution over a case study in Iran using 3- 

hourly atmospheric forcing data. CLM-ParFlow is a physics-based land-surface model, which has 

a more complex structure than conceptual models like WGHM, as several hydrological, bio 

geophysical, and biogeochemical processes are represented. Physical relationships between model 

variables cause particular challenges regarding a physically consistent update of the model states 

during assimilation. 

CLM-ParFlow is part of the Terrestrial Systems Modeling Platform (TerrSysMP), which also 

includes a groundwater component and an atmospheric model (Shrestha et al., 2014). Including 

the assimilation of GRACE data into CLM-ParFlow using TerrSysMP will allow for extending 

the experiments to the groundwater component, or even to simulations of the whole terrestrial 

water cycle, i.e., simulations with a fully coupled model that includes atmospheric, land-surface, 

and groundwater components. 

Previous studies investigated different strategies of assimilating GRACE data by varying 

governing parameters such as, the assimilation algorithm, correlated versus white observation 

noise (Schumacher et al., 2016), and the observation grid (Khaki et al., 2017a). This thesis goes 

further and provides a systematic study of the most important assimilation strategies including 

multivariate data assimilation of GRACE data and another remotely-sensed data like SMOS data 

at the same time, which results in better assimilation results. This thesis addresses two main issues: 

1. What is the optimal way of assimilating multivariate GRACE- SMOS data into a land-surface 

model in terms of an improved description of water storage variability? 
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2. What is the impact of the assimilation of multivariate GRACE-SMOS data on the performance 

of CLM-ParFlow in terms of the realism of simulated water storage compartments? 

For answering the first question, a detailed review on the findings from previous GRACE and 

SMOS assimilation studies is performed and, subsequently, different assimilation strategies are 

carried out. The second question is answered by validating water storage compartments of CLM-

ParFlow against independent observation-based datasets, both before and after data assimilation. 

Finally, this thesis provides a reanalysis of TWS and its components at 0.25° resolution and daily 

time steps over a case study for the time span 2015 to 2020. 

1.3 Contexte scientifique et objectifs de la these 

 L'assimilation de données à distance, en particulier les données GRACE, dans les modèles 

hydrologiques présente plusieurs défis.Le déséquilibre de résolution temporelle et spatiale 

(horizontale et verticale) entre les états de modèle simulés et les données télédétectées observées 

nécessite l'utilisation de stratégies sophistiquées pour les connecter (Girotto et al., 2016). De plus, 

l'assimilation de données nécessite des informations sur les incertitudes du modèle et des 

observations. L'erreur de modèle est difficile à quantifier car elle dépend des incertitudes dans la 

structure du modèle, des forçages atmosphériques et des jeux de données de sol. Par exemple, les 

données TWS de GRACE sont contaminées par un bruit corrélé, ce qui nécessite un post-

traitement minutieux des solutions GRACE. Actuellement, il n'existe pas de méthode standard 

pour l'assimilation de données GRACE dans les modèles hydrologiques. 

Jusqu'à présent, seuls quelques groupes ont assimilé les données GRACE dans un modèle 

hydrologique. Les modèles hydrologiques appliqués ont généralement une résolution spatiale entre 

0,5° (50 km) et 1° (100 km) et fonctionnent par pas de temps quotidien, alors que la résolution des 

données climatiques peut être restreinte (par exemple, nombre de jours sans nuages par mois, 

moyenne des précipitations). Une exception pour les expériences d'assimilation à plus haute 

résolution spatiale est l'assimilation de données GRACE dans un modèle pluie-débit regroupé mis 

en place pour le bassin versant du Rhin à une résolution de 1 km, qui utilise cependant des données 

de forçage atmosphérique résolues de 0,25° à 0,5° (Tangdamrongsub et al., 2015). Un autre 

exemple est le modèle de surface terrestre basé sur le bassin versant fonctionnant sur une grille de 
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1/8° avec des pas de temps de 15 minutes et des données de forçage atmosphérique quotidiennes 

(Kumar et al., 2016). 

Cette thèse vise à assimiler la variabilité de la TWS dérivée de GRACE dans un modèle surface-

sous-surface entièrement couplé (CLM-ParFlow) à une résolution spatiale de 0,25° sur une étude 

de cas en Iran en utilisant des données de forçage atmosphérique toutes les 3 heures. CLM-ParFlow 

est un modèle de surface terrestre basé sur la physique, qui a une structure plus complexe que les 

modèles conceptuels comme WGHM, car plusieurs processus hydrologiques, biogéophysiques et 

biogéochimiques sont représentés. Les relations physiques entre les variables du modèle posent 

des défis particuliers en ce qui concerne une mise à jour physiquement cohérente des états du 

modèle pendant l'assimilation. 

CLM-ParFlow fait partie de la plateforme de modélisation des systèmes terrestres (TerrSysMP), 

qui comprend également une composante d'eau souterraine et un modèle atmosphérique (Shrestha 

et al., 2014).  

Inclure l'assimilation des données GRACE dans CLM-ParFlow à l'aide de TerrSysMP permettra 

d'étendre les expériences au composant des eaux souterraines, voire aux simulations de l'ensemble 

du cycle de l'eau terrestre, c'est-à-dire à des simulations avec un modèle entièrement couplé qui 

comprend des composantes atmosphériques, de surface terrestre et des eaux souterraines. Des 

études antérieures ont examiné différentes stratégies d'assimilation des données GRACE en variant 

les paramètres gouvernants tels que l'algorithme d'assimilation, le bruit d'observation corrélé par 

rapport au bruit blanc (Schumacher et al., 2016), et la grille d'observation (Khaki et al., 2017a). 

Cette thèse va plus loin et propose une étude systématique des stratégies d'assimilation les plus 

importantes, y compris l'assimilation multivariée des données GRACE et d'autres données 

télédétectées telles que les données SMOS en même temps, ce qui donne de meilleurs résultats 

d'assimilation. Cette thèse aborde deux problèmes principaux: 

1. Quelle est la meilleure façon d'assimiler les données multivariées GRACE-SMOS dans un 

modèle de surface terrestre en termes d'amélioration de la variabilité du stockage d'eau? 

2. Quel est l'impact de l'assimilation des données multivariées GRACE-SMOS sur les 

performances de CLM-ParFlow en termes de réalisme des compartiments de stockage 

d'eau simulés?  
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Pour répondre à la première question, une revue détaillée des résultats des études antérieures sur 

l'assimilation de GRACE et de SMOS est effectuée, puis différentes stratégies d'assimilation sont 

mises en œuvre. La deuxième question est abordée en validant les compartiments de stockage d'eau 

de CLM-ParFlow par rapport à des ensembles de données indépendants basés sur l'observation, 

avant et après l'assimilation des données. Enfin, cette thèse fournit une réanalyse du TWS et de ses 

composantes à une résolution de 0,25° et avec des pas de temps quotidiens sur une étude de cas 

pour la période de 2015 à 2020. 

1.4 Organization of the Thesis 

The thesis starts with an introduction into the characteristics of the data assimilation (Chapter I). 

The structure of this thesis is organized based on the published papers in the peer-reviewed 

journals or international conferences, which are presented in different chapters. The primary 

objective of this thesis is to propose a joint data assimilation framework to integrate GRACE TWS 

data and satellite soil moisture products into a hydrological model. To implement this objective, 

several steps have been performed, which are summarized as follows (also see Error! Reference 

source not found.): 

1. A very detailed and in-depth study of challenges and limitations of data assimilation into a 

hydrological model. Chapter II discusses studies related to the validation of hydrological models 

using GRACE observations and aims at a complete survey of studies that assimilate GRACE data 

into hydrological models (Chapter II addresses this issue and discusses the advances and 

limitations of data assimilation). 

2. Evaluating the efficiency of GRACE TWS data in estimating the water budget in spatial basin-

scaled. To implement this objective, water budget is estimated in the Central Basin of Iran (CBI) 

over an 8 years period 2009–2016 (this issue is discussed in Chapter III). 

3. Improving soil moisture and groundwater-level predictions simulated by ParFlow-CLM model 

using an objective scaling of Manning’s coefficient and saturated hydraulic conductivity which 

emphasizes the need to reduce the uncertainty of hydrological modeling and the need for methods 

such as data assimilation. Finally, the real-case scenario, a 3-year (2012 to 2014) high resolution 

simulation run (at 12.5 km spatial resolution and hourly time step), is validated against independent 

observations (Chapter IV addresses this issue). 
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4. Implementing multivariate data assimilation with the objective of maximizing the effect of 

different remotely-sensed data including GRACE and SMOS data on limiting model dynamics 

and ultimately improving model’s outputs. In single-source data integration, the focus is on 

improving one hydrological flux or variable, and all water budget components may not improve, 

and it is important to propose a multivariate data assimilation framework that improves all or most 

of them. The different strategies for assimilating multivariate GRACE-SMOS data into CLM-

ParFlow, which were realized within this thesis for the first time, are explained in this Chapter. In 

this Chapter, the structure and setup of CLM-ParFlow are explained and the observation-based 

data sets that are used for model validation are introduced. Finally, the real-case scenario, a 5-year 

(2015 to 2020) assimilation run (at 0.25° spatial resolution and daily time step) is validated against 

independent observations (Chapter V deals with this issue and the details of its implementation).  

The thesis closes with a summary, followed by final conclusions and an outlook on future possible 

extensions of this work (Chapter VI). 

1.4 Organisation de la thèse  

La thèse commence par une introduction aux caractéristiques de l'assimilation de données (chapitre 

I). La structure de cette thèse est organisée en fonction des articles publiés dans des revues à comité 

de lecture ou des conférences internationales, présentés dans différents chapitres. L'objectif 

principal de cette thèse est de proposer un cadre d'assimilation de données conjoint pour intégrer 

les données TWS de GRACE et les produits de l'humidité du sol satellite dans un modèle 

hydrologique. Pour mettre en œuvre cet objectif, plusieurs étapes ont été réalisées, qui sont 

résumées comme suit (voir aussi Error! Reference source not found.) : 

1. Une étude très détaillée et approfondie des défis et des limites de l'assimilation de données 

dans un modèle hydrologique. Le chapitre II traite des études relatives à la validation de 

modèles hydrologiques à l'aide d'observations de GRACE et vise à effectuer une enquête 

complète sur les études qui assimilent les données de GRACE dans les modèles 

hydrologiques (le chapitre II aborde cette question et discute des avancées et des limites de 

l'assimilation de données). 

2. Évaluation de l'efficacité des données TWS de GRACE dans l'estimation du bilan hydrique 

à l'échelle du bassin spatial. Pour mettre en œuvre cet objectif, le bilan hydrique est estimé 
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dans le bassin central de l'Iran (CBI) sur une période de 8 ans de 2009 à 2016 (ce problème 

est discuté dans le chapitre III). 

3. Amélioration des prévisions d'humidité du sol et des niveaux d'eau souterraine simulés par 

le modèle ParFlow-CLM en utilisant une mise à l'échelle objective du coefficient de 

Manning et de la conductivité hydraulique saturée, qui souligne la nécessité de réduire 

l'incertitude de la modélisation hydrologique et le besoin de méthodes telles que 

l'assimilation de données. Enfin, le scénario réel, une simulation à haute résolution de 3 

ans (2012 à 2014) (à une résolution spatiale de 12,5 km et une fréquence horaire), est validé 

par rapport à des observations indépendantes (le chapitre IV aborde cette question). 

4. Mise en œuvre d'une assimilation de données multivariée dans le but de maximiser l'effet 

de différentes données télédétectées, notamment les données GRACE et SMOS, sur la 

limitation des dynamiques du modèle et l'amélioration des sorties du modèle. Dans 

l'intégration de données à source unique, l'accent est mis sur l'amélioration d'un flux ou 

d'une variable hydrologique, et toutes les composantes du budget en eau ne peuvent pas 

s'améliorer. Il est donc important de proposer un cadre d'assimilation de données 

multivariées qui améliore toutes ou la plupart d'entre elles. Les différentes stratégies 

d'assimilation de données multivariées GRACE-SMOS dans CLM-ParFlow, qui ont été 

réalisées pour la première fois dans cette thèse, sont expliquées dans ce chapitre. Dans ce 

chapitre, la structure et la configuration de CLM-ParFlow sont expliquées et les ensembles 

de données basées sur des observations utilisées pour la validation du modèle sont 

présentés. Enfin, le scénario réel, une exécution d'assimilation de 5 ans (de 2015 à 2020) 

(à une résolution spatiale de 0,25° et une période de temps quotidienne), est validé par 
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rapport à des observations indépendantes (le chapitre V traite de cette question et des 

détails de sa mise en œuvre). 

La thèse se conclut par un résumé, suivi de conclusions finales et d'une perspective sur les 

extensions possibles de ce travail dans le futur (Chapitre VI). 

 

Fig. 1.1 Outline of the thesis
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1.4.1 An overview of Chapter II: Review of Assimilating GRACE Terrestrial Water Storage 

Data into Hydrological Models:   Advances, Challenges and Opportunities 

Global climate change and anthropogenic impacts lead to alterations in the water cycle, water 

resource availability  and the frequency and intensity of floods and droughts. As a result, 

developing effective techniques such as hydrological modeling is essential to monitor and predict 

water storage changes. However, inaccuracies and uncertainties in different aspects of modeling, 

due to simplification of meteorological physical processes, data limitations and inaccurate climate 

forcing data limit the reliability of hydrological models. Satellite remote sensing datasets, 

especially Terrestrial Water Storage (TWS) data which can be obtained from Gravity Recovery 

and Climate Experiment (GRACE), provide a new and valuable source of data which can augment 

our understanding of the hydrologic cycle. Merging these new observations with hydrological 

models can effectively enhance the model performance using advanced statistical and numerical 

methods,  which is known as data assimilation. Assimilation of new observations constrain the 

dynamics of the model based on uncertainties associated with both model and data, which can 

introduce missing water storage signals e.g., anthropogenic and extreme climate change effects. 

Assimilation of GRACE TWS data into hydrological models is a challenging task as provision 

should be made for handling the errors and then merging them with hydrological models using 

efficient assimilation techniques. The goal of this chapter is to provide an in-depth overview of 

recent studies on assimilating GRACE TWS data into hydrological models and shed light on their 

limitations, challenges and progress. We present a comprehensive review of some challenges with 

GRACE TWS data assimilation into a hydrological model including GRACE TWS errors e.g., the 

correlated noise of high-frequency mass variations and spatial leakage errors, and how to work 

with GRACE TWS data errors to use the potential of GRACE TWS data as much as possible. We 

provide a review of the benefits and limitations of available data assimilation techniques with 

emphasis on the capability of sequential methods for hydrological applications. The topic is 

developed in chapter II. It has been the subject of a paper published in the Earth Science Reviews 

Journal (Soltani et al., 2021). 



Chapter I: Introduction 

--------------------------------------------------------------------------------------------------------------------- 

10 

 

1.4.1 Aperçu du chapitre II: Revue de l'assimilation des données de stockage d'eau terrestre 

GRACE dans les modèles hydrologiques: avancées, défis et opportunités 

Le changement climatique mondial et les impacts anthropiques entraînent des altérations dans le 

cycle de l'eau, la disponibilité des ressources en eau et la fréquence et l'intensité des inondations 

et des sécheresses. Par conséquent, le développement de techniques efficaces telles que la 

modélisation hydrologique est essentiel pour surveiller et prédire les changements de stockage 

d'eau. Cependant, les imprécisions et les incertitudes dans différents aspects de la modélisation, en 

raison de la simplification des processus physiques météorologiques, des limites des données et 

des données d'entraînement climatique inexactes, limitent la fiabilité des modèles hydrologiques. 

Les ensembles de données de télédétection par satellite, en particulier les données de stockage 

d'eau terrestre (TWS) qui peuvent être obtenues à partir de l'expérience de récupération de gravité 

et de climat (GRACE), fournissent une nouvelle et précieuse source de données qui peuvent 

augmenter notre compréhension du cycle hydrologique. La fusion de ces nouvelles observations 

avec des modèles hydrologiques peut améliorer efficacement les performances du modèle en 

utilisant des méthodes statistiques et numériques avancées, ce qui est connu sous le nom 

d'assimilation de données. L'assimilation de nouvelles observations contraint la dynamique du 

modèle en fonction des incertitudes associées à la fois au modèle et aux données, ce qui peut 

introduire des signaux de stockage d'eau manquants, tels que les effets anthropiques et les effets 

extrêmes du changement climatique. L'assimilation des données GRACE TWS dans les modèles 

hydrologiques est une tâche difficile car des dispositions doivent être prises pour gérer les erreurs 

et les fusionner ensuite avec les modèles hydrologiques en utilisant des techniques d'assimilation 

efficaces. L'objectif de ce chapitre est de fournir un aperçu approfondi des études récentes sur 

l'assimilation des données GRACE TWS dans les modèles hydrologiques et de mettre en lumière 

leurs limites, leurs défis et leurs progrès. Nous présentons une revue complète de certains défis liés 

à l'assimilation des données GRACE TWS dans un modèle hydrologique, notamment les erreurs 

de données GRACE TWS, telles que le bruit corrélé des variations de masse à haute fréquence et 

les erreurs de fuite spatiale, et comment travailler avec les erreurs de données GRACE TWS pour 

utiliser au maximum le potentiel des données GRACE TWS. Nous présentons une revue des 

avantages et des limites des techniques d'assimilation de données disponibles, en mettant l'accent 

sur la capacité des méthodes séquentielles pour les applications hydrologiques. Le sujet est 
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développé dans le chapitre II. Il a fait l'objet d'un article publié dans la revue Earth Science 

Reviews (Soltani et al., 2021).1.4.2 An overview of Chapter III: A probabilistic framework for 

water budget estimation in low runoff regions: A case study of Central Basin of Iran 

Utilizing ground-based measurements to obtain water budget components, especially in large scale 

basins, is challenging due to the limitation in the spatiotemporal availability of in-situ data. In this 

chapter, we propose a probabilistic framework for estimating water budgets in low runoff regions 

using remote sensing products. By studying water budgets in the Central Basin of Iran (CBI) over 

8 years period (2009–2016), we investigate the locations and time scales at which the water budget 

calculated from satellite products provides most closure. To this end, we use precipitation from 

the Tropical Rainfall Measuring Mission (TRMM), evapotranspiration from the Water 

Productivity Open Access Portal (WaPOR) and terrestrial water storage change from the Gravity 

Recovery and Climate Experiment (GRACE). The results show better closure and consistency of 

water budget in the center and South East of the basin at seasonal and annual time scales. Due to 

the uncertainty initiated from different data sources as well as the mismatch between the 

spatiotemporal resolutions of various satellite products, the validity of the results is examined 

through an innovative application of the First Order Reliability Method (FORM). Furthermore, the 

reliability sensitivity analysis also reveals that the failure probability of water budge closure is 

chiefly dependent on the accuracy of evapotranspiration estimations than the other components 

involved in the water budget equation.  

The topic is developed in chapter III. It has been the subject of a paper published in the Journal 

of Hydrology (Soltani et al., 2020). 

1.4.2 Aperçu du chapitre III: Un cadre probabiliste pour l'estimation du bilan hydrique dans les 

régions à faible ruissellement: Étude de cas du bassin central de l'Iran 

L'utilisation de mesures sur le terrain pour obtenir les composantes du bilan hydrique, en particulier 

dans les grands bassins, est difficile en raison de la limitation de la disponibilité spatiotemporelle 

des données in-situ. Dans ce chapitre, nous proposons un cadre probabiliste pour estimer les bilans 

hydriques dans les régions à faible ruissellement en utilisant des produits de télédétection. En 

étudiant les bilans hydriques du bassin central de l'Iran sur une période de 8 ans (2009-2016), nous 

étudions les emplacements et les échelles de temps auxquels le bilan hydrique calculé à partir de 
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produits satellitaires fournit la meilleure correspondance. À cette fin, nous utilisons les 

précipitations de la mission de mesure des pluies tropicales (TRMM), l'évapotranspiration du 

portail d'accès ouvert à la productivité en eau (WaPOR) et le changement de stockage d'eau 

terrestre de l'expérience de récupération de gravité et du climat (GRACE). Les résultats montrent 

une meilleure correspondance et une meilleure cohérence du bilan hydrique dans le centre et le 

sud-est du bassin à des échelles de temps saisonnières et annuelles. En raison de l'incertitude due 

aux différentes sources de données ainsi que du décalage entre les résolutions spatiotemporelles 

des différents produits satellitaires, la validité des résultats est examinée grâce à une application 

innovante de la méthode de fiabilité de premier ordre (FORM). De plus, l'analyse de sensibilité de 

la fiabilité révèle également que la probabilité de défaillance de la correspondance du bilan 

hydrique dépend principalement de l'exactitude des estimations de l'évapotranspiration plutôt que 

des autres composantes impliquées dans l'équation du bilan hydrique. Le sujet est développé dans 

le chapitre III. Il a fait l'objet d'un article publié dans la revue Journal of Hydrology (Soltani et al., 

2020).  

1.4.3 An overview of Chapter IV: Improvement of soil moisture and groundwater level estimations 

using a scale‐consistent river parameterization for the coupled ParFlow-CLM hydrological model: 

a case study of the Upper Rhine Basin 

Accurate implementation of river interactions with subsurface is critical in large-scale hydrologic 

models with a constant horizontal grid resolution which use the kinematic wave approximation for 

both hillslope and river channel flow. The size of rivers can vary greatly in the model domain, and 

the implemented grid resolution is too coarse to accurately account for river interactions. 

Consequently, flow velocity is estimated to be too small when the width of the rivers is much 

narrower than the selected grid size. This leads to inaccuracy and uncertainties in calculations of 

water quantities because flow velocities may be underestimated. In addition to, the rate of ex- and 

in-filtration between the river and the subsurface may be overestimated, since a larger surface area 

will exchange water with the subsurface than the real river. Therefore, the present study tests the 

approximation of subscale channel flow by a scaled roughness coefficient in the kinematic wave 

equation. For this purpose, a relationship between grid cell size and river width is used to correct 

flow velocity, which follows a simplified modification of the Manning-Strickler equation. The rate 

of ex- and in-filtration between subsurface and river, is also corrected across river beds by a scaled 

saturated hydraulic conductivity based on the grid resolution even though the grid size is relatively 
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large. The scaling methodology is implemented in a hydrological model coupling ParFlow 

(PARallel FLOW) and Community Land Model (CLM). The model is applied over the Upper 

Rhine Basin (between France and Germany) for a time period from 2012 to 2014 and at a spatial 

resolution of 0.055° (~6 km). The validity of the results is examined with satellite and in-situ data 

through an innovative application of the First Order Reliability Method (FORM). The scaling 

approach shows that soil moisture estimates have improved, particularly in the summer and 

autumn seasons when cross-validated with independent soil moisture observations provided by the 

Climate Change Initiative (CCI).  Fig. 1.2 shows the outline of this chapter. The results emphasize 

the use of a simple scaling procedure of the Manning coefficient and saturated hydraulic 

conductivity to account for the real infiltration/exfiltration rate in large-scaled hydrological models 

with constant horizontal grid resolution. The scaling procedure also shows overall improvements 

in groundwater level estimation, particularly where the groundwater level is shallow (less than 5 

meters from the surface). The topic is developed in chapter IV. It has been the subject of a paper 

published in Journal of Hydrology and presented in EGU General Assembly 2022 (Soltani et al., 

2022 a and b).  

1.4.3 Aperçu du chapitre IV: Amélioration des estimations de l'humidité du sol et du niveau de la 

nappe phréatique en utilisant une paramétrisation de la rivière cohérente à l'échelle pour le modèle 

hydrologique couplé ParFlow-CLM: étude de cas du bassin du Rhin supérieur 

L'implémentation précise des interactions entre la rivière et le sous-sol est cruciale dans les 

modèles hydrologiques à grande échelle avec une résolution de grille horizontale constante qui 

utilisent l'approximation de la vague cinématique pour l'écoulement sur les versants et dans les 

canaux de la rivière. La taille des rivières peut varier considérablement dans le domaine du modèle, 

et la résolution de grille implémentée est trop grossière pour prendre en compte de manière précise 

les interactions avec la rivière. Par conséquent, la vitesse d'écoulement est estimée être trop faible 

lorsque la largeur des rivières est beaucoup plus étroite que la taille de grille sélectionnée. Cela 

conduit à des inexactitudes et à des incertitudes dans le calcul des quantités d'eau, car les vitesses 

d'écoulement peuvent être sous-estimées. De plus, le taux d'exfiltration et d'infiltration entre la 

rivière et le sous-sol peut être surestimé, car une plus grande surface échangera de l'eau avec le 

sous-sol que la vraie rivière. Par conséquent, la présente étude teste l'approximation de 

l'écoulement du canal à sous-échelle par un coefficient de rugosité à échelle réduite dans l'équation 

de la vague cinématique. À cette fin, une relation entre la taille de la cellule de grille et la largeur 
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de la rivière est utilisée pour corriger la vitesse d'écoulement, qui suit une modification simplifiée 

de l'équation de Manning-Strickler. Le taux d'exfiltration et d'infiltration entre le sous-sol et la 

rivière est également corrigé sur les lits de rivière par une conductivité hydraulique saturée à 

échelle réduite en fonction de la résolution de grille, même si la taille de grille est relativement 

grande. La méthodologie de mise à l'échelle est mise en œuvre dans un modèle hydrologique 

couplant ParFlow (PARallel FLOW) et Community Land Model (CLM). Le modèle est appliqué 

sur le bassin du Rhin supérieur (entre la France et l'Allemagne) pour une période allant de 2012 à 

2014 et à une résolution spatiale de 0,055° (~6 km). La validité des résultats est examinée avec 

des données satellites et in situ par le biais d'une application innovante de la méthode de fiabilité 

du premier ordre (FORM). L'approche de mise à l'échelle montre que les estimations d'humidité 

du sol se sont améliorées, en particulier en été et en automne, lorsqu'elles sont validées croisées 

avec des observations indépendantes d'humidité du sol fournies par l'Initiative sur le changement 

climatique (CCI). La Fig. 1.2 montre le plan de ce chapitre. Les résultats mettent en évidence 

l'utilisation d'une procédure simple d'échelle du coefficient de Manning et de la conductivité 

hydraulique saturée pour prendre en compte le taux d'infiltration/exfiltration réel dans les modèles 

hydrologiques à grande échelle avec une résolution de grille horizontale constante. La procédure 

d'échelle montre également des améliorations globales dans l'estimation du niveau de la nappe 

phréatique, en particulier là où le niveau de la nappe phréatique est faible (moins de 5 mètres de 

la surface). Le sujet est développé dans le chapitre IV. Il a fait l'objet d'un article publié dans le 

Journal of Hydrology et présenté à l'Assemblée générale de l'EGU 2022 (Soltani et al., 2022 a et 

b). 
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Fig. 1.2 Outline of the chapter VI 

1.4.4 An overview of Chapter V: Multivariate satellite remote sensing data assimilation for 

improving the integrated subsurface-land surface hydrological model ParFlow-CLM: A case study 

of Iran 

In order to make an assessment of climate change and human effects, total water storage (TWS) 

should be monitored constantly. Therefore, it is essential to develop effective methods such as 

hydrological modeling to monitor and predict TWS. However, there is great uncertainty and 

inaccuracy in different aspects of modeling due to the simplification of meteorological physical 

processes, problems arising from data limitations, and imperfect atmospheric forcing. Observation 

datasets from satellite remote sensing provide a new source of data that can help us better 

understand hydrologic processes. Data Assimilation (DA) is the process of combining these new 

observations with hydrological models to improve model performance. 

In this study, the soil moisture from Soil Moisture and Ocean Salinity (SMOS) satellite and TWS 

from the Gravity Recovery and Climate Experiment (GRACE) is obtained, which assimilated into 

the fully coupled subsurface-surface hydrological model ParFlow-CLM using the Ensemble 

Kalman Filter (EnKF). Fig. 1.3 shows the outline of this chapter. The assimilation performance of 

different types of observations is evaluated in the three assimilation methodologies over a case 

study in Iran, (i) GRACE-only (GRACE DA) for the time period of 2015-2017, or (ii) SMAP (Soil 
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Moisture Active Passive)-only (SM DA for the time period of 2015-2020, or (iii) joint assimilation 

of GRACE and SMOS (multivariate DA) for the time period of 2015-2017. Results indicate that 

the performance of DA mainly depends on the type of observations that are assimilated. GRACE 

DA improves only the groundwater component, while SM DA improves top soil moisture but 

degrades groundwater storage estimations. When both observations are incorporated (multivariate 

DA), the accuracy of both soil moisture and groundwater storage estimates improves. These 

findings show how multivariate DA can help to improve many model states simultaneously, 

resulting in a more resilient DA system. The topic is developed in chapter V. It has been the subject 

of a presentation in the international conference "Groundwater, key to the Sustainable 

Development Goals". 

1.4.4 Vue d'ensemble du chapitre V: Assimilation de données de télédétection satellitaire 

multivariée pour améliorer le modèle hydrologique intégré de subsurface- surface ParFlow-CLM 

: une étude de cas en Iran. 

Pour évaluer les effets du changement climatique et des activités humaines, le stockage total d'eau 

(TWS) doit être constamment surveillé. Il est donc essentiel de développer des méthodes efficaces 

telles que la modélisation hydrologique pour surveiller et prédire le TWS. Cependant, il existe une 

grande incertitude et une grande imprécision dans différents aspects de la modélisation en raison 

de la simplification des processus physiques météorologiques, des problèmes liés aux limitations 

des données et de l'imperfection de la force atmosphérique. Les ensembles de données 

d'observation de la télédétection satellitaire fournissent une nouvelle source de données qui 

peuvent nous aider à mieux comprendre les processus hydrologiques. L'assimilation de données 

(DA) est le processus de combinaison de ces nouvelles observations avec des modèles 

hydrologiques pour améliorer les performances du modèle. 

Dans cette étude, l'humidité du sol provenant du satellite Soil Moisture and Ocean Salinity (SMOS) 

et le TWS provenant de la Gravity Recovery and Climate Experiment (GRACE) sont obtenus, qui 

sont assimilés dans le modèle hydrologique de subsurface-surface entièrement couplé ParFlow-

CLM à l'aide du filtre de Kalman de l'ensemble (EnKF). La Fig. 1.3 montre le plan de ce chapitre. 

Les performances d'assimilation de différents types d'observations sont évaluées dans les trois 

méthodologies d'assimilation sur une étude de cas en Iran, (i) GRACE seulement (GRACE DA) 

pour la période de 2015-2017, ou (ii) SMAP (Soil Moisture Active Passive) seulement (SM DA) 
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pour la période de 2015-2020, ou (iii) assimilation conjointe de GRACE et SMOS (DA 

multivariée) pour la période de 2015-2017. Les résultats indiquent que la performance de DA 

dépend principalement du type d'observations qui sont assimilées. GRACE DA améliore 

uniquement la composante de l'eau souterraine, tandis que SM DA améliore l'humidité du sol 

superficiel mais dégrade les estimations du stockage d'eau souterraine. Lorsque les deux 

observations sont incorporées (DA multivariée), la précision des estimations d'humidité du sol et 

de stockage d'eau souterraine s'améliore. Ces résultats montrent comment la DA multivariée peut 

aider à améliorer simultanément de nombreux états de modèle, ce qui entraîne un système de DA 

plus résilient. Le sujet est développé dans le chapitre V. Il a fait l'objet d'une présentation lors de 

la conférence internationale "Groundwater, key to the Sustainable Development Goals". 
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Fig. 1.3 Outline of the chapter V 
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Chapter II: Review of Assimilating GRACE Terrestrial Water Storage Data into 

Hydrological Models 

2.1. Introduction 

Since climate change and anthropogenic activities can influence the cycle of water and energy, 

which is followed by hazards such as floods and droughts (Stocker et al., 2013), monitoring and 

predicting water resource changes have become more important. Accurate quantification of water 

storage changes is one reliable approach to determine the availability and sustainability of water 

resources. As a result, it is essential to monitor hydrological processes, as well as water states and 

fluxes at various temporal and spatial resolutions. The hydrological processes are multifaceted and 

different hydrological models are applied to simulate the water cycle on various system sizes from 

small basins to global scales to quantify the different components of it (Sood and Smakhtin, 2015). 

These models strive to represent reality as much as possible, but there is always a degree of 

simplification involved, while the empirical model parameters and insufficient and imperfect 

climate input data are also subject to uncertainty (Van Dijk et al., 2014). Climate input data 

obtained from imperfect in situ measurements impede reliable simulation results from a 

hydrological model due to limitations in the spatiotemporal availability of in-situ data (Soltani et 

al., 2020). Alternatively, remote sensing technology with different spatiotemporal resolutions 

provides a unique opportunity not only to obtain hydrological parameters e.g., precipitation (e.g., 

Alazzy et al., 2017; Najmaddin et al., 2017), soil moisture (e.g., Ray et al., 2017), 

evapotranspiration (e.g., Liou and Kar, 2014) but also to improve a hydrological model’s 

performance. In particular, the Gravity Recovery and Climate Experiment (GRACE) and GRACE 

Follow-On  (GRACE-FO) missions which have been active since 2002, have an important role in 

representing surface and sub-surface physical processes related to water redistribution in the Earth 

system by estimating Terrestrial Water Storage (TWS)  (e.g., Kusche et al., 2012; Forootan et al., 

2014a; Wouters et al., 2014; Soltani et al., 2020). 

Some studies reviewed the application of GRACE data in monitoring of TWS due to its recent 

developments and popularity in hydrology (e.g., Frappart and Ramillien, 2018; Güntner, 2008; 

Jiang  et al, 2014). Jiang et al (2014). Those have reviewed the hydrological application of GRACE 
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data in some distinct categories including 1) TWS change monitoring, 2) hydrological components 

evaluation, 3) drought analysis and 4) glacier mass balance detection. 

GRACE TWS data also can be used by advanced statistical and numerical methods to modify a 

hydrological model’s output to reduce the input climate data uncertainty influence and mitigate 

the negative impact of using an improper model structure or model parameters. GRACE TWS data 

obtained by using strong filtering strategies is assumed as a model constraint based on uncertainties 

associated with both model and data, which helps to enhance flux and storage simulations. With 

the growth of satellite remote sensing products, GRACE data assimilation into hydrological 

models has attracted enormous interest in hydrology (e.g., Zaitchik et al., 2008; Su et al., 2010; 

Forman et al., 2012; Eicker et al., 2014; Tangdamrongsub et al., 2015; Reager et al., 2015; Eicker 

et al., 2016; Schumacher et al., 2016b; Schumacher et al., 2016a; Tangdamrongsub et al., 2017; 

Khaki et al., 2018b; Khaki et al., 2018c; Tangdamrongsub et al., 2018).  

In fact, the interaction of models and data is a reciprocal process in which data can serve the 

modeling purpose by supporting model discrimination, parameter refinement, uncertainty analysis, 

and in which models deliver a tool for data fusion (assimilation), interpretation, interpolation 

(Rajabi et al., 2018). Some studies provide a technical review of large-scale hydrological models 

(Kauffeldt et al., 2016) and data assimilation techniques (Montzka et al., 2012; Lahoz and 

Schneider, 2014; Houtekamer and Zhang, 2016; Bannister, 2017). 

The following reasons have motivated us to write this review on assimilation of GRACE TWS 

data into hydrological models: 

1) to address the lack of a comprehensive review of GRACE TWS data assimilation applications 

in hydrology and new opportunities in this subject. Although, Banerjee and Kumar (2019) have 

reviewed the application of GRACE TWS data into hydrological models,  challenges and advances 

of assimilating GRACE TWS data into hydrological models, have not adequately been discussed . 

 2) to investigate different aspects of capabilities of popular data assimilation filtering methods in 

hydrology applications that must be properly understood and addressed. 
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 3) to provide readers with an in-depth review of solutions of inconsistency between hydrological 

water fluxes, which refers one of the well-known challenges of data assimilation implementation 

in water budget systems. 

 The key objectives of this study can be categorized as follows: 1) to discuss the physics behind 

the acquisition of TWS data through GRACE satellites and the available data products, 2) to 

investigate the limitations of GRACE TWS data including coarse spatiotemporal resolution, the 

effect of the correlated GRACE TWS data errors on the data assimilation results and appropriate 

solutions for handling these errors during data assimilation procedures,  3) to highlight available 

data assimilation strategies to describe their benefits and limitations in the integration GRACE 

TWS data into hydrological models. Understanding these challenges and limitations can assist in 

proposing innovative assimilation filtering methods to merge GRACE TWS data with 

hydrological model’s outputs. 

The outline of the chapter is demonstrated in Fig. 2.1. In section 2.2, we describe the details of 

GRACE data including mathematical representation of gravity field changes and their conversion 

to equivalent water heights. In this section, we also provide detailed information on GRACE TWS 

data application in monitoring hydrology, GRACE  TWS data error with an emphasis on the 

problems that we are facing with assimilation of GRACE TWS data into hydrological models and 

their solution and an extended review of available GRACE TWS data filtering techniques. Section 

2.3 introduces different hydrological models which are often chosen and their important 

characteristics in data assimilation processes. Section 2.4 gives a thorough review of the existing 

assimilation filtering techniques for hydrological applications. Also, in this section, details of 

advances in assimilation and supplementary issues such as details of preserving water balance of 

models after data assimilation are given. Finally, concluding remarks and future prospects are 

summarized in sections 2.5 and 2.6, respectively.  
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Fig. 2.1 Outline of the chapter II 
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2.2. GRACE Data and Gravity Recovery 

 The Gravity Recovery and Climate Experiment (GRACE) mission which has been active since 

2002, has two satellites in polar orbit for monitoring the earth continuously (Tapley et al., 2004). 

GRACE uses geodesy to obtain global maps of the gravity field of the earth over time (Schmidt et 

al., 2006). National Aeronautics and Space Administration (NASA) of the USA and the Deutsches 

Zentrum fur Luft- und Raumfahrt (DLR) in Germany collaborate for the GRACE satellite mission 

(Tapley et al., 2005). The GRACE twin satellites are nearly identical and have tandem formation 

with a spacing of 220 km between each other in one orbital plane. Their altitude is 500 km (Mayer-

Gürr, 2008). The first satellite may reach a gravity anomaly of positive sign which will increase 

its attraction and thereby, the distance between the satellites increases. When the second satellite 

reaches the anomaly, it will be attracted to it, thereby reducing the inter-satellite distance. As a 

result, GRACE can demonstrate the mass changes in the earth surface in an aggregate form but 

cannot distinguish the components. GPS receivers inside the satellites allow them to accurately 

determine their positions. The K-band measurements are also time-tagged. Satellite laser ranging 

reflectors are used to determine the orbit location. Accelerometers are installed on the satellites 

which measure the surface forces from sources that are not due to gravity such as air drag. This 

influence is removed from the GRACE data (Mayer-Gürr, 2008). Finally, the relative and absolute 

satellite orientations are determined via two-star cameras (see more details in Inacio et al., 2015). 

The GRACE data are analyzed in three centers which are the CSR (Center for Space Research) in 

USA, the Geo-ForschungsZentrum (GFZ) in Germany, and the JPL (Jet Propulsion Laboratory) 

in USA. Other research centers that analyze the level-2 products are the University of Graz in 

Austria, the University of Bonn in Germany, NASA Goddard Space Flight Center in USA, Delft 

University of Technology in Netherlands, Space Geodesy Research Group in France, and The 

Ohio State University in the USA (Tapley et al., 2004; Güntner et al., 2008). GRACE data are 

presented in the form of Mass Concentration (mascons) potential spherical harmonic coefficients 

(Cnm and Snm) which are called the level 2 GRACE product. They should be converted to TWS 

which is the summation of different subsurface and surface of water compartments such as surface 

water storage, snow, soil moisture, vegetation and groundwater. 
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2.2.1 Formulation of Gravity Field Changes 

Laplace’s equation in the vacuum is satisfied by V which represents gravitational potential. V can 

be expressed as a sum of harmonic functions 
nY ( , )   in spherical coordinates because it is 

harmonic. In Eq. (2.2), ( , , r)  shows the geocentric location vector in spherical coordinates.  ,

  and r represent the geographical co-latitude (rad), longitude (rad) and the distance (m) to the 

origin of an Earth-fixed coordinate system, respectively (Heiskanen and Moritz, 1967).   

V 0 =                                                                                                                                                 (2.1) 

1
0

1
V( , , ) Y ( , )nn

n

r
r

   


+
=

=                                                                                                                   (2.2) 

 
0

Y ( , ) C ( , ) S ( , )
n

n nm nm nm nm

m

c s     
=

= +                                                                                        (2.3) 

nmc , 
nms and Cnm

, Snm
 are spherical harmonic coefficients and surface spherical harmonics of 

degree n and order m, respectively (Heiskanen and Moritz, 1967). Spherical harmonic coefficients 

introduce a complete orthogonal system on the surface of the sphere as Eq. (2.4) and Eq. (2.5). 

C P (cos )cos ( )nmnm m =                                                                                                                (2.4)
 

S P (cos )sin ( )nmnm m =                                                                                                                      (2.5) 

The normalized associated Legendre functions ( Pnm ) are often evaluated by using a new stable 

recursion formula (Heiskanen and Moritz, 1967). The potential field can be represented as Eq. 

(2.6) by regarding the radius (R) and the mass (M) of the Earth and Newton’s gravitational constant 

(G). 
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With choice of 
GM

R
 factor, 

nmc  and 
nms which are called Stokes’ coefficients, are dimensionless. 

Mass redistributions depend on time. Therefore, consideration of changes of the gravitational 

potential are represented in terms of changes of the Stokes’ coefficients 
nmc  and 

nms as Eq. (2.7). 
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The GRACE observation shows the distribution of the mass in the surface of the earth. This was 

studied by Wahr et al. (1998) using a thin surface layer. They used surface density change  (

2

kg

m
) instead of m (kg) or mass changes. The relationship between   and the gravity field of 

the earth is: 

1 0

( , ) ( , ) ( , )
n

nm nm nm nm

n m

c C s S      


 

= =

 =  +                                                                                         (2.8) 

The formula that relates the coefficients in the above formula with Stokes' coefficients is described 

by:  
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The surface density changes in Eq. (2.9) cause a change in direct gravity and an indirect attraction 

because of the loading and deformation of the crust of the earth (Wahr et al., 1998). The 

gravitational load Love numbers 
nk  represents the indirect effect (Farrell, 1972). 

The equivalent water height or E (m) of the density changes   can be obtained by converting 

the TWSA and dividing it by the seawater mean density
3
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Fig. 2.2 shows a summary of GRACE data processing steps and the TWS concept. This figure 

shows how level 2 GRACE data is processed and converted to GRACE TWS data. The low degree 

spherical harmonics coefficients e.g., degree 1 coefficients from Swenson et al. (2008) to account 

for the movement of the Earth’s centre of mass and degree 2 and order 0 (C20) coefficients from 

Satellite Laser Ranging solutions (e.g., Wilson and Rodell, 2006) are replaced with more accurate 

estimates. In order to extract hydrological mass variations from the observations, tidal and non-

tidal high frequency mass variations e.g., fast mass changes in the ocean and atmosphere, are 

removed using different gravity recovery techniques and different background models. The effect 

of glacial isostatic adjustment (GIA) is treated as a post-processing step in hydrological 

applications, as it is usually not reduced.  A detailed list of post-processing steps can be found in 

Mayer-Gürr et al. (2012).
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Fig. 2.2 The procedure of spherical harmonic coefficient post processing and conversion to GRACE TWS data (more details are 

available in section 2.2.1)
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2.2.2 GRACE Application for Hydrological Purposes  

Investigating the interaction between TWS and other components of the water budget is very 

important in assessing the availability of freshwater resources (Van Dijk et al., 2014). To date, 

different tools have been used  to investigate water storages and their interactions with other 

components of the water balance that can be referred to ground measurements, hydrological 

models, and satellite remote sensing data. 

Hydrology benefits from the gravity data from GRACE satellite because a large portion of the 

changes in g is due to changes in water in the ocean, atmosphere and continental water storage 

(Ramillien et al., 2008). Climate and geophysical processes need an understanding of the water 

cycle across the continents which can be derived from the mass changes of the earth surface (Ilk 

et al., 2004).  

In order to isolate the hydrological part of the GRACE signal, Ramillien et al. (2004), Rodell and 

Famiglietti (1999), Seitz et al. (2010), Grippa et al. (2011), Awange et al. (2009) and 

Longuevergne et al. (2010) have presented various methods. They all mention that the water 

storage in the continents and its changes in time and space can be obtained from the gravimetry 

satellite observations (Schmidt et al., 2006).  

TWS across the globe first became available as a unified database with the application of GRACE. 

Many models that simulate the hydrological cycle can be validated and improved with GRACE 

data (Schmidt et al., 2006). GRACE TWS has varying time resolutions of one day (Kurtenbach et 

al., 2009) to one month (the publicly available data) which is also dependent on the method of data 

analysis. The resolution in space is on the order a few hundred kilometers (Schmidt et al., 2006). 

GRACE TWS has found applications in geophysical applications as well as climate and hydrology 

studies (see Kusche et al., 2012; Famiglietti and Rodell, 2013; Wouters et al., 2014; Famiglietti et 

al., 2015; Chen et al., 2016; Soltani et al, 2020).  The monthly GRACE products have been 

compared to global hydrology models in terms of the terrestrial water storage variation by Wahr 

et al. (2004) and Schmidt et al. (2006). Seasonal GRACE data generally agree with the 

hydrological model’s output (Schmidt et al., 2006), although there are some errors. The problems 

in model description or parameters can be alleviated using GRACE. Syed et al. (2005), Yamamoto 
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et al. (2007) and Winsemius et al. (2006) have stated that GRACE is not good for application in 

small basins (<150,000 km2) because of its resolution.  

GRACE cannot differentiate between TWS components such as subsurface or soil moisture. As a 

result, TWSA components separation of GRACE have been attempted for snow (e.g., Frappart et 

al., 2006; Niu et al., 2007 and Llubes et al., 2007), evapotranspiration (e.g., Rodell et al., 2004) 

and groundwater (e.g., Rodell et al., 2007). For this purpose, model outputs and ground 

measurements are used to separate known components, and the integral gravity signal of the 

GRACE is thus decomposed. Several methods exist for separation of the signals in recent studies. 

Inversion and statistical decomposition were applied by Rietbroek (2014), Schmeer et al. (2012) 

and Forootan (2014b) in order to separate GRACE TWS into different storage compartments.  Fig. 

2.3-a shows the number of publications by the year which are available on Scopus website until 

April 17, 2020 with  ‘GRACE’ in the title or abstract or their keywords. The number of publications 

has declined slightly in 2017 and the beginning of 2018, likely because of the decommissioning 

of GRACE and the lack of data beginning in June 2017. GRACE-FO mission has started collecting 

data again in late summer 2018. Therefore, the number of publications on GRACE data on all 

topics is expected to rise again. Taking into consideration the year 2019, which had the highest 

number of publications on record with 219 that year, most papers were published on assimilation 

of GRACE data into hydrological models or on how to calibrate and analyze the hydrological 

models. The next most frequent topic of published papers on GRACE in that year is on glacier 

mass, ice melt, and isostatic adjustment, followed by papers on groundwater storage, and then 

papers on earthquakes or crustal deformation. There were also a significant number of papers on 

ocean currents, atmosphere, weather, and surface water storage. As Fig. 2.3-b depicts, American 

and Chinese researchers have published more papers in this field. Fig. 2.3-c shows the top ten 

journals which have published the largest number of papers on GRACE. 
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Fig. 2.3 Number of publications which are available on Scopus website until April 17, 2020 with" 

Recovery and Climate Experiment" or "GRACE" in the title, abstract or their keywords. a) Number 

of publications on GRACE per year b) Top ten countries in number of publications on GRACE c) 

Top ten journals in number of publications on GRACE. 

2.2.3 GRACE Data Errors 

Spherical harmonic coefficients of GRACE data have various error sources. Anisotropic spatial 

sampling of the satellite results in correlated or colored noise. The instruments such as GPS, K-

band ranging system, star cameras and accelerometers have noise. In order to generate error 

samples of TWS in data assimilation procedures, five scenarios might be used, three of them 

resulting in white noise and two of them resulting in correlated errors. Fig. 2.4 depicts all five 

scenarios to generate GRACE data errors. In the following, we explain how these five scenarios 

are generated. White noise error samples can be generated by (1) using standard deviations based 

on literature or (2) propagating errors from standard deviations of potential coefficients cnm and 

snm or (3) propagating errors from the full covariance matrix of potential coefficients cnm and snm 

to standard deviations of TWSA. Correlated error samples can be generated from (4) error 

propagation of standard deviations of potential coefficients cnm and snm or from (5) propagation of 

the full error covariance matrix of potential coefficients cnm and snm to a full error covariance matrix 

of TWSA (Schumacher et al., 2016b).  
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Fig. 2.4 Flowchart of GRACE data (TWSA and spherical harmonic coefficients) errors description  
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Models in post-processing do not completely reduce short-term mass changes which results in 

temporal aliasing (Dobslaw et al., 2016; Forootan et al., 2013, 2014b). This results in striping 

patterns in the north-south orientation in the spatial domain.  To smooth this artefact, smoothing 

kernels are used including the non-Gaussian kernel (Swenson and Wahr, 2006; Klees et al., 2008; 

Kusche, 2007) and isotropic Gaussian  kernel (Jekeli, 1981).  

Spatial averaging results in interference in the values of the anomalies such as leakage which may 

attenuate the signal power. Because of these errors, gravity anomalies are not perfectly separated 

in different parts of the world and between oceans and the land surface (Baur et al., 2009). To 

reduce spatial leakage, various filtering methods have been implemented which are categorized 

into the following three groups. 1) Estimation of in and out leakage with averaging kernels have 

been attempted by Seo and Wilson (2005(; Han et al. (2005); Baur et al. (2009); Swenson and 

Wahr (2002); and Longuevergne et al. ( 2010). 2) Some filtering techniques are based on scaling 

factors that are obtained from artificial data (e.g.,  Landerer and Swenson, 2012; Long et al., 2015). 

Forootan et al. (2014b); Frappart et al. (2011) and Frappart et al. (2016) have used inversion to 

separate the signal and reduce the leakage at the same time. Filters based on scaling factors have 

disadvantages such as the need for hydrological models to obtain the scale coefficient. The 

inversion method needs prior data for changes of mass for various components. GRACE TWSA 

accuracy is important in hydrological data assimilation fields at the basin scale when the basin is 

much smaller than the GRACE resolution (Longuevergne et al., 2010; Yeh et al., 2006). 3) To 

improve the consistency between various products, better post-processing techniques can be 

extremely helpful in studying the water cycle (Eicker et al., 2016). To achieve this, a strong filter 

method should be used to minimize the noise of the instruments and reduce the aliasing of high 

frequency changes in the mass data which is un-modelled, while simultaneously reducing the 

leakage. GRACE data after application of such filters is thus more suited for data assimilation. 

Kernel Fourier Integration (KeFIn) filter was introduced by Khaki et al. (2018a) to smooth noise 

in GRACE data (colored/correlated) and then decrease leakage effects. The KeFIn filtering method 

not only solves the existing problems such as sensitivity of other leakage filtering methods (e.g. 

scale factor approaches) but can also be effectively applied to a wide range of basins with differing 

shapes and sizes.  
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2.3. Hydrological Modeling; New Opportunities 

Hydrological models are considered as an important and necessary tool for water and environment 

resource management. Hydrological models at the regional scale (e.g., Chiew et al., 1993; 

Wooldridge and Kalma, 2001; Christiansen et al., 2007; Huang et al., 2017) and global scale (e.g., 

Dӧll et al., 2003; Huntington, 2006; Coumou and Rahmstorf, 2012; Van Dijk et al., 2013) are 

important tools that are used for simulation of hydrological process. Hydrological models give us 

a better insight into the water cycle on the global and regional scale. Various hydrological models 

(Moradkhani and Sorooshian, 2008; Devia et al., 2015) have been applied with different levels of 

success to obtain water storage components e.g., water in ice, glaciers, snow caps, groundwater, 

surface water and soil moisture and the rate of their changes (e.g., Chiew et al., 1993; Wooldridge 

and Kalma, 2001; Dӧll et al., 2003; Huntington, 2006; Van Dijk, 2010). Models are also used for 

information extraction, data assimilation, interpretation, generalization and interpolation, and 

identification of information-rich data (Ataie-Ashtiani et al., 2020).   

Models are still being developed to better simulate all available hydrological processes and the 

inclusion of all interactions between water cycle components e.g., interaction between runoff, 

precipitation and evapotranspiration (Simmons et al., 2019). In any case, uncertainties exist and 

the modeling remains imperfect. Data sets are still limited in time and space, and our knowledge 

about empirical parameters is still limited (Vrugt et al., 2013; Van Dijk et al., 2011, 2014). Danesh-

Yazdi and Ataie-Ashtiani (2019) argue that planning and management of hydrological systems 

“without appropriate data and model is gambling”, as for a consistent understanding of the system 

both are required. As a result, the simulation model results are imperfect and uncertain. Some of 

the model parameters are not easy to interpret, and the computational burden of the more complex 

models is higher. 

Another alternative is incorporating accurate observations into the model for handling these 

limitations (e.g., McLaughlin, 2002; Zaitchik et al., 2008; Van Dijk et al., 2014; El Gharamti et 

al., 2016). Since remotely sensed data for different quantities are becoming increasingly available 

in different coverages and resolutions, model reliability improvement can be achieved with these 

data. GRACE data assimilation into hydrological models can be used 1) to effectively separate 

TWS into its components and downscale the coarse resolution of it and 2) to constrain the models’ 

simulations and also their parameters through data assimilation.  
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 The list of commonly applied hydrological models for simulation of water storage compartments 

s given Table 2.1. Some aspects of a hydrological model in the assimilation process are 

summarized in the following: 

1. Availability of hydrological model code: Access to the code allows the user to edit and make 

changes. If there is a bug in the model, the open-source availability of the code will help the user 

to fix it faster. Many studies require a code change to implement a specific purpose. As a result, 

the availability of a hydrological model code is a special advantage for use in the assimilation 

process. 

2. Data requirements: The data and parameters required to run a hydrological model should be 

readily available to the user at different time and spatial resolutions. 

3. Flexibility of grid structure: Some hydrological models can be run on different spatial scales. 

However, a number of hydrological models do not have this capability and are implemented on a 

sub-basin scale. The flexibility of the input data grid is a very important parameter in the 

assimilation process. This is because it influences the choice of assimilation technique for coarse-

resolution satellite data. 

4. Flexibility in resolution: Models must provide the possibility of being run at different spatial 

resolution. If models are not run in a grid structure, flexibility in resolution of computational units 

should also be investigated. 

 

Table 2.1 Various characteristics and capabilities of popular hydrological models for simulation 

of water storage compartments (in this table, T: Air temperature, R: Rainfall, W: Wind, PET: 

Potential evapotranspiration, SR: Solar radiation, Q: Humidity, Tmin: Minimum air temperature, 

Tmax: Maximum air temperature, P: Precipitation, S: Snowfall, GR: Global radiation) 

Model 

Availability 

of model 

code 

Minimum 

forcing data 

Flexibility to 

grid structure 

Flexibility in 

resolution 
Ref 

CLM Open Source 
S, R, SR, LW, 

SP, Q, T, W 
✓  

Depends on 

input data 

Bonan et al. 

( 2002) 
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PCR-

GLOBWB 
Open Source 

P, T, W, PET, 

GR, Q 
✓  

0.5° Van Beek and 

Bierkens (2009) 

WaterGAP Not Available P, T, GR, LW ✓  
0.5° Dӧll et al. 

(2003) 

W3RA Open Source R, W, T, S, P ✓  
0.5° Van Dijk 

(2010) 

LISFLOOD Not Available P, PET, T ✓  
Depends on 

input dada 

Burek et al. 

(2013) 

VIC Open Source 
P, W, Tmin, 

Tmax 
✓  

Smaller than 6 

km should run 

carefully 

Liang et al. 

(1994) 

 

2.4. Data Assimilation Methodology for GRACE Data   

Data assimilation (DA) constrains the model dynamics and the flow of information using advanced 

statistical or numerical methods which relate prior  and posterior information so that the model 

results fit better to real world results (Hoteit et al., 2012; Bertino et al., 2003). Fig.2.5 Shows the 

concept of DA to incorporate new observations with their corresponding uncertainties into models. 

DA applies corrections based on the uncertainties  of simulations and observations at each 

assimilation  step whenever a new observation is available. In other words, the accuracy  of 

simulations and observations determine the  weight of observations and correspondingly the level 

of corrections to be applied  to the models by using the Bayesian approach (Hairer et al. 2005), 

which updates the probability distribution function (PDF) of each state variable which describes 

the model in the presence of observation and the model is run forward in time until new 

observations become available for the next update assimilation step. In reality, however, these 

computations are complex because it is not possible to analytically derive the PDF of the state 

anymore. When the system is either non-Gaussian or nonlinear  e.g., hydrological models, DA 

becomes more difficult and the posterior PDF is not analytically obtainable for the state variables 

(Vrugt et al., 2013; Hoteit et al. 2008). Therefore, the Bayesian estimation is numerically solved 

with sequential or variational filter techniques (Subramanian et al., 2012). 
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Fig. 2.5 Schematic of how the assimilation of satellite data into a hydrological model to improve 

a model’s outputs 

2.4.1 Advances in GRACE DA Techniques 

Ocean, earth science and atmospheric studies employ numerical solution of DA with the 

advancement of high power computing systems and in hydrology with the emergence of state-of-

art satellite datasets, it has started to be applied in models for soil moisture (e.g., Brocca et al., 

2010; Renzullo et al., 2014; Kumar et al., 2014, 2015), runoff (e.g., Vrugt et al., 2006; Komma et 

al., 2008; Neal et al., 2009; Lee et al., 2011; McMillan et al., 2013; Li et al., 2015), water storage 

in surface reservoirs (e.g., Neal et al., 2009; Giustarini et al., 2011), evapotranspiration (e.g., 

Schuurmans et al., 2003; Pipunic et al., 2008; Irmak and Kamble, 2009) and TWS changes (e.g., 

Landerer and Swenson 2012; Longuevergne et al. 2013; Awange et al. 2014; Forootan et al. 

2014a) . 

Based on these studies, it is obvious that assimilation of satellite remote sensing data into 

hydrological models, separately or simultaneously, provides a great opportunity to improve and 

calibrate hydrological models. Better results can be achieved by multi-satellite products when 

properly accounting for the measurement errors (see, e.g., Montzka et al. 2012; Renzullo et al. 

2014; Tian et al. 2017). 
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With the availability of TWS from the GRACE, assimilation of GRACE TWS into hydrological 

models has been done in the past few years to update hydrological model estimates of various 

water compartments (e.g., Zaitchik et al., 2008; Van Dijk et al., 2014; Tangdamrongsub et al., 

2015; Kumar et al., 2016; Girotto et al., 2016, 2017; Khaki et al., 2017a; Schumacher et al., 2018). 

In addition to different datasets, different DA techniques have also been implemented and tested 

in hydrological studies as well as hydrologic operational systems.  

Various filtering techniques have been proposed and developed in various fields for  DA objectives. 

Among these, variational methods and sequential filtering  have gained a lot of attention during the 

past few decades. In the variational approach, the model solution is fitted to the data given a cost 

function that measures the error between the state variables and observations (Talagrand and 

Courtier, 1987). Computer coding of the adjoint system is necessary which needs a lot of time to 

write the code and also significant computer power to execute the code (Hoteit et al., 2005). Also, 

the variational methods have limited accuracy because of the DA process and the estimation 

statistics in this process (Kalnay, 2003; Courtier et al., 1994). Fig. 2.6 shows the efficiency of 

variational methods as an example. Observation data ky  (green Rhombuses) improves the initial 

states of the model 0x  as well as original model states kx −
 (red circles and solid line). The modified 

initial states 0x +
 result in the best fit of the model states kx +

 (yellow squares and dashed line) and 

observations.   
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Fig. 2.6 Scheme of variational DA 

In sequential methods, the state's prior PDF is used to calculate the posterior PDF with Bayes' 

theorem (Koch, 2007). First, a forward run is performed with the time-dependent system with 

Monte Carlo method. Second, an analysis step is needed to adjust assimilation PDF via point-mass 

weight or particle filtering (see Fig. 2.7). Fig. 2.7   shows, when ky  which is represented in yellow 

squares, becomes available it is used to improve the current model states kx −
 which is represented 

in red circles. The best fit to the observations at the current time step k is achieved through the 

updated model states kx +
 which is represented in green rhombuses (Hoteit et al., 2012; Evensen, 

2009). 
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Fig. 2.7 Scheme of sequential DA 

Since Sequential DA techniques eliminate the requirement for preserving historical states in DA, 

they are more popular for high dimensional systems e.g., hydrologic systems. (Hoteit et al. 2002; 

Bertino et al. 2003; Robert et al. 2006). Two variants of the sequential filtering techniques 

including the Particle filter (PF) and Ensemble Kalman filters (EnKF) have been used widely in 

the literature (see, e.g., Moradkhani et al. 2005; Weerts et al. 2006; Zaitchik et al. 2008; Houborg 

et al. 2012; Moradkhani et al. 2012; Eicker et al. 2014; Renzullo et al. 2014; Tangdamrongsub et 

al. 2015). A summary of different sequential filtering techniques and their type which are used for 

hydrological applications is given in Table 2.02. 

 

Table 2.02 Different sequential filtering techniques for hydrological applications  

Filter Abbreviation Type Reference 

Ensemble Kalman Filter EnKF 
Stochastic Ensemble 

Kalman Filter 
Evensen (1994) 

Square Root Analysis SQRA 
Deterministic Ensemble 

Kalman Filter 
Evensen (2004) 
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Ensemble Transform Kalman 

Filter 
ETKF 

Deterministic Ensemble 

Kalman Filter 
Bishop et al. (2001) 

Ensemble Square-Root Filter EnSRF 
Deterministic Ensemble 

Kalman Filter 

Whitaker and Hamill 

(2002) 

Ensemble Optional Interpolation EnOI 
Deterministic Ensemble 

Kalman Filter 
Evensen (2003) 

Deterministic Ensemble 

Kalman Filter 
DEnKF 

Deterministic Ensemble 

Kalman Filter 
Sakov and Oke (2008) 

Particle Filter, Multinomial 

Resampling 
PFMR Particle Filter 

Arulampalam et al. 

(2002) 

Particle Filter, Systematic 

Resampling 
PFSR Particle Filter 

Arulampalam et al. 

(2002) 

 

Sequential methods have shown great promise for assimilation of individual hydrological 

components, as proven by the previous studies. In any case, assimilation filters' capabilities should 

be determined from various perspectives. This will help the modeler to properly choose the satellite 

DA objective. It is expected that DA filters should be able to enhance system state estimation while 

giving quantitative measures on model uncertainty. In addition, after applying the DA filter, the 

model should preserve its dynamic stability while the new data are added into the model. In 

sequential filtering techniques, one of the challenging aspects is observation covariance sampling 

which is not usually effectively performed (Whitaker and Hamill 2002). For deterministic EnKFs 

(Hoteit et al. 2015; Sun et al. 2009) and Systematic and Multinomial Resampling particle filtering 

(PF) (Whitaker and Hamill 2002) there are separate resampling techniques which were developed 

to solve this problem. This implies that selecting the correct DA filtering method is important and 

difficult at the same time. Khaki et al., 2018b have dedicated a section to satellite data DA for 

hydrological modeling and comprehensively describes various methods for differential sequential 

filtering. Based on Khaki et al. (2018b), prior to and after each assimilation step, it is important to 

decrease the diagonal values in the error covariance matrices and calculate their mean, min, and 
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max values. Fig. 2.8 shows that the best performances in terms of error reduction in the all-

diagonal elements of the error covariance matrices are found for EnSRF, SQRA.  

 

Fig. 2.8 Evaluation of the different sequential filtering techniques performance in terms of error 

reduction in the all-diagonal elements of the error covariance matrices (Khaki et al., 2018b). 

An overview of important studies that address the assimilation of GRACE TWS into hydrological 

models is given in Table 2.03. In Table 2.03, we extract some important characteristics of these 

papers including 1) error modeling and 2) chosen assimilation technique to merge GRACE data 

with hydrological models. The assumption that the observations are not correlated is only true 

when the observations have higher resolution than the model in reality (the resolution means the 

independent grid of neighboring points (Stewart et al. 2008; Berger and Forsythe 2004). When 

GRACE is used, which is typically coarser than other data sets in DA, the assumption that the 

observations are not correlated will not improve the end results (e.g., Liu and Rabier, 2003; Dando 

et al., 2007; Stewart et al., 2008). 

DA filtering should account for the limitations of GRACE (Schumacher et al., 2016 b). For inverse 

problems, DA uses the covariance matrix of model states and observations. The error correlations 

are used to obtain the covariance matrix, and these are typically ill conditioned in GRACE, which 

hinders the filtering in DA. There is information deficiency, the uncorrelated data is usually 

synthesized or Gaussian error is used instead. GRACE TWS DA (for basin averaged or grid-based 
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data) was undertaken previously by assuming that the observations are uncorrelated (white noise) 

(Zaitchik et al., 2008; Tangdamrongsub et al., 2015; Kumar et al., 2016; Tian et al., 2017). 

However, in basin-averaged instances, this is correct because averaging increases the non-

Gaussian distribution of the noise in the GRACE TWS observations and the result is close to the 

Gaussian distribution because of the central limit theorem (Stone, 2004). 
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Table 2.03 Studies on assimilating GRACE TWS into hydrological models 
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Component                      Model               Error          Case study Filter References 

Groundwater CLSM White Mississippi EnKS Zaitchik et al. (2008) 

Snow Water Equivalent CLM White North America EnKF, EnKS Su et al. (2010) 

Snow Water Equivalent CLSM White Mackenzie EnKS Forman et al. (2012) 

Groundwater, Soil moisture CLSM White Europe EnKS Li et al. (2012) 

TWS WGHM Colored Mississippi EnKF Eicker et al. (2014) 

Snow Water Equivalent, River Water 

Level, Subsurface Storage 
W3RA, GLDAS White Global EnKF van Dijk et al. (2014) 

Groundwater, Streamflow HBV-96 White Rhine EnKF 
Tangdamrongsub et al. 

(2015) 

Groundwater, Soil moisture CLSM White USA EnKS Girotto et al. (2016) 

Groundwater, Soil moisture, Snow 

depth, Streamflow 
CLSM White USA EnKS Kumar et al. (2016) 

Snow, Soil moisture, River, 

Groundwater, Surface Water 
WGHM White, Colored Mississippi 

EnKF, SQRA, 

SEIK 
Schumacher et al. (2016b) 

Groundwater WGHM Colored Murray Darling EnKF Schumacher et al. (2016a) 

Groundwater, Snow, Surface Water PCR-GLOBWB White Northern China EnKF 
Tangdamrongsub et al. 

(2017) 

Groundwater W3RA White, Colored Australia 

EnKF, SQRA, 

ETKF, EnSRF, 

EnOI, DEnKF, 

PFSR, PFMR 

 

Khaki, et al. (2017b) 

Groundwater PCR-GLOBWB Colored Australia, North China EnKS 
Tangdamrongsub et al. 

(2018) 

Groundwater, Soil moisture W3RA Colored Bangladesh SQRA Khaki et al. (2018b) 
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Groundwater, Soil moisture W3RA Colored Iran EnSRF Khaki et al. (2018c) 

Groundwater, Soil moisture W3RA White, Colored South America EnSRF Khaki et al. (2018d) 

Groundwater, Soil moisture W3RA Colored 
Murray Darling, 

Mississippi 

SQRA, Kalman 

Takens 
Khaki et al. (2019) 
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2.4.2 Challenges of GRACE DA 

Previous studies have shown that RS techniques (using satellite data) have the capability of 

augmenting hydrological models. However, there are some obstacles when applying observations 

from RS sources and assimilating them into hydrological models. One of the impediments in this 

regard is the mismatch in spatial and temporal resolutions between the satellite observations and 

the model. The model-observation systems are usually nonlinear and the observations have 

specific error properties. These factors result in problems for applying DA. Because of the complex 

error properties of GRACE TSW data, merging the dates requires complicated algorithms. Both 

data and model have uncertainties associated with them, and accurate estimation of the uncertainty 

properties with improving the DA process. DA process suffers if the uncertainties are either 

wrongly selected or grossly simplified. As a result, the observation errors should be considered in 

the model with realistic assumption to ensure that DA will perform satisfactorily using the 

available metadata and information. Furthermore, it should be noted that satellite DA is a two-

edged sword: it can degrade and produce artifacts in certain components of the hydrological model 

while improving the others. As an example, when performing DA for soil moisture data obtained 

from satellite readings, the user must be careful that the deep-zone soil moisture is not adversely 

affected (through wrong corrections or added errors). A central challenge of filtering in DA is 

upholding the consistency of the hydrological model in terms of closure between the evaporation, 

precipitation, runoff, and changes in storage. DA may result in the lack of a dynamic balance 

among the flux terms with the storage variations (Pan and Wood, 2006). 

The model structure and the governing equations preserve the changes in water storage consistency 

with respect to input and output fluxes. Assimilation of GRACE TWS and soil moisture data will 

result in the lack of model balance because the assimilated states do not have balance closure. As 

a result, each assimilation cycle may violate the dynamic between water fluxes and water storage 

changes. This issue needs to be addressed so that the water storage changes can be calculated 

correctly. Pan and Wood (2006) considered the enforcement of the water balance by using 

constrained ensemble Kalman filter (CEnKF) (Evensen, 1994). In their study, DA was performed 

in the southern Great Plains of the US, and an attempt to obtain closure in the water balance 

equation was made. Pan et al. (2012) and Sahoo et al. (2011) used data merging and CEnKF before 
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using data from different sources, such as ground measurements and satellite data, then performed 

DA. In this way, the imbalance for the method in a large river basin was mitigated (Zhang et al., 

2016). The overarching assumption was that the observations are perfect and enforced closure was 

attempted. Therefore, the water flux observation uncertainty was not considered in the assimilation 

process. The resulting strong constraint is not realistic and can lead to overfitting and errors of 

estimation in different water storage components (Tangdamrongsub et al., 2017). Water storage 

estimations can be improved by considering the errors in flux observations. To achieve this, the 

assimilation filter with two steps was performed based on the weakly-constrained ensemble 

Kalman filter (WCEnKF) (Khaki et al., 2017a). 

   2.4.3. Future Opportunities 

There are many future opportunities for assimilating GRACE TWS data into hydrological models. 

These are outlined below and in Fig. 2.9. 

1) The GRACE Follow-On (GRACE-FO) mission has some improvements as compared to 

GRACE data e.g., precise measurements of the satellites’ pitch and yaw angles and improved the 

spatial and temporal resolution of the Earth’s gravity field solutions. Therefore, the assimilation 

of GRACE-FO data into hydrological models can improve the performance of hydrological 

models.  

2) Since the accuracy of GRACE TWS data is very important, designing or proposing an efficient 

and powerful filtering method which should be applied to them in order to improve the data 

accuracy by removing some of their errors e.g., instruments noise, striping patterns and leakage 

errors before the assimilation process takes plan is still a challenge. The availability of new user-

friendly filters would likely increase the application of GRACE data to study water re-distribution 

in earth’s surface and subsurface in different disciplines e.g., hydrology, earth oceanic and 

atmospheric science.  

3) Separation of the GRACE TWS signals e.g., soil moisture, groundwater in recent studies is still 

an active research field and has many unresolved issues. Since inversion and statistical 

decomposition methods which were applied by Rietbroek (2014), Schmeer et al. (2012) and 

Forootan (2014) have some limitations in separating different GRACE TWS signals, assimilation 

of GRACE TWS data  into hydrological models by considering the physics of the problem and 
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climate input data provides   a unique opportunity to separate different GRACE TWS components. 

Another important product which is used in DA is satellite or radar soil  moisture products e.g., 

SMOS or AMSR-E, which usually measures top layer soil moisture (e.g., 0–5 cm). Applying 

different assimilation strategies e.g., simultaneous assimilating GRACE TWS data and soil 

moisture products, may improve all or some water storage states. The rate of improvement can 

vary depending on the structure of our chosen hydrological model. We present an example to 

illustrate the effect of structure of a hydrological model on assimilation results. Since in the 

structure of the Community Land Model (CLM) which can be coupled with ParFlow (Maxwell et 

al., 2009), the accuracy of estimation of soil moisture has a great impact on estimating 

groundwater, soil moisture data along with GRACE data may improve groundwater storage 

estimates made with hydrological models. It should be noted that we should not expect that all of 

the estimated water storage states improve significantly, and the improvement may occur for one 

water storage state. Therefore, designing different scenarios for merging other data with GRACE 

data, taking into account the climate of each region and the structure of chosen hydrological 

models, still remains a new and attractive issue for future researches. 

4) Several efforts have been made to study design of an innovative assimilation filter to not only 

improve the model estimation of the water storage states but also manage the dynamical water 

balances of the hydrological model ) Khaki et al., 2018e; Khaki et al., 2017c).   Continuing design 

of assimilation techniques is considered an active research topic. Designing a platform that 

combines different assimilation techniques with popular hydrological models would be valuable. 

It is worthy to note that a study has been done before which is called Parallel Framework (PDAF) 

(Nerger and Hiller, 2013) can be combined with different models e.g., CLM and ParFlow but this 

platform only provides EnKF and Local Ensemble Transform Kalman Filter (Hunt et al., 2007) 

for assimilation process. 

2.5. Conclusion 

Recent studies indicated that merging GRACE data with hydrological models can increase our 

knowledge regarding water distribution on earth’s surface and subsurface. It can also reduce  

uncertainties of hydrological models originated from the simplification of meteorological 
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processes, insufficient and imperfect climate input data and hydrological model inability to 

consider anthropogenic and extreme climate change effects. 

In this work, challenges and advances of a specific application of GRACE TWS data, which is 

related to merging them with hydrological models for improvement of a hydrological model’s 

output were reviewed. Important issues were classified to describe the limitations and challenges 

of GRACE TWS DA into hydrological models. Among the many challenges and limitations 

reviewed are:  1) application of GRACE TWS data for hydrological purposes. 2) reducing the 

GRACE TWS data error by using available filtering methods 3) reviewing all applications of 

different assimilation techniques with a special emphasis on the efficiency of different sequential 

DA methods. Introducing limitations of available assimilation techniques provides a deeper 

knowledge of importance of robustness in the DA framework which requires the design and 

implementation of an appropriate assimilation technique. 4) reviewing some important aspects of 

well- known hydrological models which are more often chosen in DA e.g., code availability, 

flexibility in grid structure and resolution. We have also scrutinized a few topics in this field as 

future opportunities. The coupling DA and GRACE data and hydrological models is a promising 

and important field for research work. 
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Fig. 2.9 Outline of the future prospects
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Chapter III: A probabilistic framework for water budget estimation 

 

3.1. Introduction 

Although water has been almost free for human use throughout the millennia, it is no longer an 

abundant commodity as more parts of the world  are struggling with water scarcity. Predictions 

witness that by 2025, 1.7 billion people will live in water-scarce locations while clean water supply 

will not be available to the two-thirds of the world's population (UN, 2015). Groundwater stores a 

vast amount of global freshwater resources, accounting for 96% of unfrozen freshwater reserves 

(Shiklomanov and Rodda, 2003). Lee et al. (2018) estimated that 42% of irrigation water, 36% of 

drinking water, and 24% of industrial water worldwide are supplied from groundwater. 

Accordingly, 20% of the aquifers globally have been overexploited in recent decades, which has 

been exacerbated under drought conditions (Gleeson et al., 2012). Water consumption above its 

sustainable extraction limit has pushed the environment to the extreme, leading to unforeseen 

outcomes such as subsidence, intrusion of saline water, and loss of environmental habitats 

(Gleeson et al., 2012).  

Asia is a large groundwater consumer (i.e., 72% of its water needs) due to intensive agricultural 

water demand and population growth in China, Bangladesh, India, Pakistan, and Iran (FAO, 2016). 

In Iran, for instance, with most of the country having an arid and semi-arid climate, (i.e., 90%) 

relies on groundwater withdrawal due to limited surface water resources. The total available water 

resources per capita has dropped by 65% in Iran since 1960 (Sarraf et al., 2005), which is expected 

to drop by a further 16% by 2025. Recent investigations on 609 study areas across Iran indicate 

that almost half of the country suffers high-stress condition while groundwater levels have been 

falling at remarkably high rates (Hossieni et al., 2019). The above pieces of evidence  highlight that 

groundwater depletion has imposed a serious challenge for managing water resources across the 

globe, requiring continuous monitoring as frequently and accurately as possible.  

Quantifying water budgets in a region is one reliable approach to determine the availability and 

assess the sustainability of water resources under the current imbalance between supply and 

demand. However, limited instrumentation and low-quality ground-based measurements impede 



Chapter III: A probabilistic framework for water budget estimation 

--------------------------------------------------------------------------------------------------------------------- 

51 

 

 

a reliable closure of a water budget, especially in large-scale and less-developed regions. 

Alternatively, remote sensing has played a key role in providing data relevant to the physical 

processes controlling the water budget in the form of products, individual quantities or aggregated 

estimates with varying degrees of spatial and temporal resolution at both global and regional scales 

(McCabe et al., 2008). In particular, the GRACE products have been successfully utilized since 

2003 to estimate changes in terrestrial water storage (TWS) that includes ice, snow, surface water, 

soil moisture, and groundwater storages (Tapley et al., 2004; Chen et al., 2009). For instance, Voss 

et al. (2013) showed that freshwater sources have diminished by 143.6 km3 of water in the north-

central region of the Middle East (covering vast portions of Tigris-Euphrates basin) between 2003 

and 2009. Also, Forootan et al. (2014) reported that water storage has been reduced by 

approximately 15 mm/year between 2002 and 2011 across Iran. 

In this study, we propose a remotely-sensed-based approach to estimate water budget elements in 

low runoff regions with limited climatologic and hydrometric data. In particular, the objectives of 

this study are to (1) investigate closure and consistency of the water budget using satellite products; 

(2) explore the correlation between non-closure and other water budget components to decipher 

the mutual causes and effects; (3) find the most reliable time scale for water budget closure while 

leveraging remotely sensed products; and (4) examine the sensitivity of the results to the 

uncertainty involved in each of the components closing the water budget. To this end, we use the 

satellite products of precipitation (P), evapotranspiration (ET), and TWS to estimate the spatial 

distribution of groundwater depletion in the Central Basin of Iran (CBI) at monthly, seasonal and 

annual time scales. Where there is a mismatch between the spatial and temporal resolutions of the 

aforementioned satellite products, we propose and implement a novel application of the First Order 

Reliability Method (FORM) to examine the failure probability of a Limit State Function (LSF) as 

a criterion to validate the reliability of the water budget closure. FORM has been proved to be a 

simple and efficient tool for such purposes, particularly in problems with small probabilities of 

failure (Lopez et all. 2015). 

The rest of this paper is organized as follows. In sections 2, we describe the geographical location 

of the case study with an emphasis on the long-term climatic condition and the availability of water 
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resources against water consumption. In section 3, we provide detailed information on the satellite 

products used to estimate the water budget components. Also, details on the implementation of the 

FORM frameworks are represented. Section 4 presents the results of the water budget estimation 

and discusses their validity using the reliability metrics computed from the FORM method. Finally, 

concluding remarks are summarized in section 5. 

3.2. Case Study 

Iran is located in the southwest of Asia (25-40°N and 44-64°E; Fig. 3.1) with an area of more than 

1.6 million km2, making it the second largest country in the Middle East. Recognized by a semi-

arid and arid climate, the average annual rainfall in Iran is 250 mm (ranging from 50 mm in the 

dry parts of the central basin to 2275 mm in the northern regions near the Caspian Sea), which is 

considerably smaller than the global annual average rainfall of 830 mm (FAO, 2009). A relatively 

small percentage of the country receives enough rainfall to allow unirrigated agriculture. In other 

regions, groundwater has been largely depleted over the past decades mainly for irrigation 

purposes. Analysis of groundwater consumption data separately from wells, springs and qanats 

(results not shown here) indicates that total groundwater consumption volume constituted 30% of 

total precipitation in 2011 (IWRMC, 2011). Fig 3.2 indicates that a remarkable portion of 

groundwater withdrawal, i.e., 90%, is used for agriculture as compared to industrial and drinking 

purposes. 

Iran encompasses six first-order (major) basins (Fig. 3.1, namely the 52,000 km2 Lake Urmia Basin 

located in the northwest of Iran, the 424,000 km2 Gulf of Oman and Persian Gulf Basin located in 

the south and west of Iran, the 825,000 km2 CBI located in the center of Iran, the 44,000 km2 Kara-

Kum or Sarakhs Basin located in the northeast of Iran, the 103,000 km2 Lake Hamoon Basin 

located in the east of Iran, and the 175,000 km2 Caspian Sea (Khazar) Basin located in the north 

of Iran. In contrast to the Gulf of Oman and Persian Gulf Basin which covers 25% and 50% of the 

country’s area and renewable water resources, respectively, (UN, 2004), CBI encompasses more 

than 50% of the area (and population) of the country while containing only 28% of renewable 

water resources (UN, 2004). The CBI water budget in the 2010-2011 water year indicates that 

precipitation as the only input is approximately partitioned between evaporation and infiltration 
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by 54% and 23%, respectively (IWRMC, 2011). CBI shares boundaries with the Zagros Mountain 

range in the West and South, as well as the Alborz Mountains range in the North (Fig. 3.1). These 

chains of mountains form a rain shadow in the so-called regions, making the CBI very dry. The 

central and southeast regions of CBI are mainly comprised of gypsum and limestone derived soils 

with high porosity, causing high infiltration rates and the absence of permanent flows in this basin. 

Water withdrawn for agricultural purposes is mostly supplied by groundwater due to the very 

limited surface water resources in this basin.  

 

Persian Gulf

Caspian Sea

Oman Sea

Iraq

Turkmenistan

Azarbaijan

Afghanistan

Russia

Turkey

Pakistan

Kazakhstan

Georgia

Azarbaijan

Armenia

Kuwait

Qatar

Syria

Bahrain

Central

Caspian Sea

Persian Gulf and Gulf of Oman

Hamoon

Sarakhs

Lake Urmia

Copyright:© 2013 National Geographic Society, i-cubed

63°0'0"E

63°0'0"E

60°0'0"E

60°0'0"E

57°0'0"E

57°0'0"E

54°0'0"E

54°0'0"E

51°0'0"E

51°0'0"E

48°0'0"E

48°0'0"E

45°0'0"E

45°0'0"E

4
2
°0

'0
"

N

4
2
°0

'0
"

N

3
9
°0

'0
"

N

3
9
°0

'0
"

N

3
6
°0

'0
"

N

3
6
°0

'0
"

N

3
3
°0

'0
"

N

3
3
°0

'0
"

N

3
0
°0

'0
"

N

3
0
°0

'0
"

N

2
7
°0

'0
"

N

2
7
°0

'0
"

N

2
4
°0

'0
"

N

2
4
°0

'0
"

N

®

0 475 950237.5 Kilometers

City

CBI

Provincial Boundaries

DEM (m a.s.l.)
High : 4483

Low : 511



Chapter III: A probabilistic framework for water budget estimation 

--------------------------------------------------------------------------------------------------------------------- 

54 

 

 

Fig. 3.1 Geographic location of Iran and its six major basins, overlaid by the Digital Elevation 

Model (DEM) of the CBI as well as the location of cities in the basin. Provincial boundaries are 

also depicted.  

 

Fig. 3.2 Groundwater consumption for drinking, industrial and agriculture purposes in the CBI in 

2011 (data from IWRMC). 

3.3. Methods and Data 

3.3.1 Water Budget Estimation 

In a simplified form, water budget equation can be written as  

S P ET = −                                                                                                                                   (3.1) 

where ∆S is the change in water storage [L], P is precipitation [L], ET is evapotranspiration [L]. 

This simplified equation holds if water transfer in the horizontal direction through runoff is 

relatively small (Rodell et al. 2004 and 2011). Under this assumption, the right and left side Eq. 

(3.1) can be estimated utilizing ground measurements and satellite products depending on the 

availability of such data for each term in the water budget equation. Due to the lack of ET and ∆S 

data and disqualified P data concerning the disperse distribution of gauging stations across the 

CBI, remote sensing data are merely used for the objectives of this study. 

7%
3%

90%

Drinking Industrial Agriculture
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3.3.2 Remote Sensing Data 

Several satellite data sources are available for obtaining various components of the water budget 

equation (McCabe et al., 2008). For P, these sources include gridded global rain gauge product 

supplied by the Global Precipitation Climatology Center (GPCC) and the Climate Anomaly 

Monitoring System (CAMS) produced by National Oceanic and Atmospheric Administration 

(NOAA). These independent estimates are incorporated in the Tropical Rainfall Measuring 

Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) 3B43 (Huffman et al., 1997 and 

2007). Here, we use TMPA 3B43 version 7 to retrieve data for P at 0.25°×0.25° spatial resolution 

and monthly temporal resolution.  TMPA products have been validated in many places around the 

world, such as Greece (Feidas, 2010), Africa (Adeyewa and Nakamura, 2003), Australia (Ebert et 

al., 2007; Fleming et al., 2011) and Iran (Katiraie-Boroujerdy et al., 2013; Javanmard et al. 2010). 

For ET estimates, we use the Water Productivity Openaccess portal (WaPOR) with 10 days and 

250 m temporal and spatial resolution, respectively. WaPOR products aggregate all data relevant 

to agricultural water in Near East and Africa and have have been validated in some countries such 

as Iran (Rahimpour et al., 2018). 

We obtain ∆S from the GRACE data with 1° spatial and monthly temporal resolution, which have 

been successfully applied in large scale hydrologic modeling (Awange et al., 2009; van Dijk et al., 

2011; Rodell and Famiglietti, 2001), e.g., for monitoring groundwater fluctuations (Henry et al. 

2011) and to tracking soil moisture dynamics (Niu et al., 2007; Forootan et al. (2017). The Gravity 

Recovery and Climate Experiment (GRACE) mission which has been active since 2002, has an 

important role in representing surface and sub-surface physical processes related to water 

redistribution in the Earth system (e.g., Kusche et al., 2012; Forootan et al., 2014). 

The satellite products for TMPA 3B43, WaPOR, and GRACE were used from December 2008 to 

January 2017 due to the availability of WaPOR evapotranspiration and GRACE data in this period. 

The gap in the GRACE data in a given month was filled with the average value of the previous 

and the following months. We obtain ET data with 10 days temporal resolution and aggregate them 

into monthly, seasonal and annual datasets, resulting in 96 months, 32 seasons and 8 years. About 

P and ∆S, we aggregate monthly data into seasonal and annual datasets.  Fig 3.3. shows the 
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procedure of convereting different temporal and spatial resolutions of water budget components 

together. 
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Fig 3.3. The procedure of convereting different temporal and spatial resolutions of water budget 

components (ET, P and ∆S) into one another 

3.3.3 Water Budget Implementation at Different Time Scales 

If a grid water storage thickness in a given month is denoted by m, and m  is the average thickness 

over the whole study period, i.e., between January 2009 to December 2016 GRACE gives the 

difference between these two quantities (G) that is expressed as 

j jG m m= −                                                                                                                                      (3.2) 

where the index j refers to a month number. By subtracting G values of two consecutive months, 

ΔS is obtained as 

1 1j j j j jS m m G G+ + = − = −                                                                                                     (3.3) 

Since G is not given at a definite time from one month to another, P and ET values in month j and 

j+1 are averaged and is expressed as 

1 1

1 1
( ) ( )

2 2
j j j j jW P P ET ET+ + = + − +                                                                                        (3.4) 

The inconsistency between different remote sensing products (water budget residual) in terms of 

the mismatch between their spatiotemporal resolutions contributes to the uncertainty in the water 

budget closure as  
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it it itW S =  −                                                                                                                          (3.5) 

where i is a pixel number, t is the tth month/season/year, and n is the total number of months/ 

seasons/years. Also, possible considerable runoff during heavy rain events might impose errors in 

the water budget expressed as Eq. (3.1). To evaulate the bias in the water budget equation, we 

estimate the relative residual of the water budget equation, rit, as 

1

1

1

n it

it nt

it

t

r

P
n

=

=


= 


                                                                                                                       (3.6) 

3.3.4 Probabilistic Assessment of the Water Budget Closure  

3.3.4.1 First Order Reliability Method (FORM) 

In this approach, a Limit State Function (LSF) is defined as the mathematical expression of a 

system state limit beyond which the criteria determining system reliability is no longer met 

(Abdelkhalak and Bouchaïb 2013). In analogy to the water budget of a hydrologic system, rij can 

be considered as the criterion to examine the reliability of the water budget closure by defining rij 

less than 30% as the state limit. Since the renewable water share of precipitation is 30 % in CBI 

(UN, 2004), rij is considered to be maximum 30% as the state limit. Based on the assumption that 

LSF is continuous and first-order differentiable, FORM uses a linear approximation (i.e., first order 

Taylor expansion) expressed as  

m m m( ) ( ) (y ) (y ) .( y )TG y L y G G y = +  −                                                                                        (3.7) 

where L(y) is the linearization of the LSF, 
1 2(y , ,..., )ny y y=  is the vector of n variables defining 

the G function, ym is the expansion point, and (y)G  is the first order gradient vector of G(y). In 

order to implement FORM, none-normally distributed variables should be transformed into 

standard normal variables (Madsen et al., 2006) via, e.g., the NATAF transformation (Nataf, 

1962).  

To minimize the loss of accuracy, LSF is expanded at a point which has the highest contribution 

to the probability of failure. This is equivalent to finding a point on the transformed LSF with the 

shortest distance to the origin in the uncorrelated standard normal space (Shinozuka, 1983). This 
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point is called the design point (or the most probable point) that can be obtained by solving the 

following constrained optimization problem. 

 * arg min (y) 0y y G=                                                                                                                     (3.8) 

Various approaches have been developed during the past decades to solve the constrained 

optimization problem described in Eq. (3.8). The iHLRF (Zhang and Kiureghian, 1997) is a state-

of-the-art method which can be used to obtain the point on the failure surface that is closest to the 

origin. In this approach, the design point is found by a generic search algorithm via the following 

iterative equation 

1m m m my y s d+ = +                                                                                                                                  (3.9) 

where m is the iteration number, s is the step length, and d is the direction of the search. Details on 

the method of determining dm and sm are described in Sudret and Der Kiureghian (2002) and Der 

Kiureghian (2005). Given y*, the reliability index, β, is computed as 

*y =                                                                                                                                                  (3.10) 

and the failure probability of β is given by 

( )fP =  −                                                                                                                                           (3.11) 

where   is the cumulative probability distribution function of β. Fig. 3.4 shows the general 

procedure of the FORM implementation.  
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Fig. 3.4 The procedure for the FORM implementation. 

3.3.4.2 Sensitivity Measures of the Reliability Analysis  

The sensitivity analysis discussed here yields the sensitivity of the reliability analysis to the 

changes in the input random variables, i.e., how sensitive G in Eq. (3.7) is with respect to the 

uncertainty involved in the P, ET, and ∆S. This analysis also determines the relative degree of 
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influence on G of the above random variables, which help understand how reliable each remote 

sensing product is for the estimation of water budget at the basin scale. To this end, importance 

vectors are employed to determine which variables should be modeled more accurately or are least 

effective on uncertainty. In problems with a large number of stochastic variables, this information 

helps to reduce the dimensions of the problem by disregarding the least effective variables. One 

importance vector is the alpha vector (α) expressed as 

*

*

y

y
 =                                                                                                                                     (3.12) 

whose components indicate the relative contribution of each random variable to the total variance 

of the G function in Eq. (3.7) (Der Kiureghian, 2005). The positive and negative sign of each 

component recognize it as the load and resistance variable, respectively. A larger absolute 

magnitude of a component in α implies a largest interference in the failure probability of the G 

function.  

In case the involving random variables of the G function are correlated, another importance 

measure, , is computed as Eq. (3.13) to rank the random variables in the original space (Der 

Kiureghian 2005).  

                                                                                                                       (3.13) 

where * *y ,x
J  is the Jacobian matrix and D̂  is a matrix wherein the diagonal elements are equal to 

the standard deviation of the input random variables (that is, equivalent normal). 

3.4. Results and Discussions 

3.4.1 Estimation of Water Budget 

Fig. 3.5  depicts the spatial mapping of average annual P, ET, ∆S, and ∆ from January 2009 to 

December 2016 in the CBI. P is seen to have a larger magnitude in the northern and western part 



* *

* *
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of the CBI, which appears to be similar to ∆. While ET does not show a considerable spatial 

variation across the CBI, the northern boundary as well as the western regions indicate higher ET 

rates in comparison to the eastern and central parts.  

The partitioning of P can be determined by the competition between available water and the 

available energy approximated by the potential evapotranspiration (PET) (Budyko, 1958). Fig. 3.6  

depicts the index ET/P and the index PET/P based on long term (10 years) average of PET, P and 

ET data which was obtained from available IWRMC data (Source online: http://wrbs.wrm.ir/), 

TRMM and WaPOR remote sensing data, respectively. Two points are noteworthy based on Fig. 

3.6 to provide a reference condition for the CBI. First, PET/P>>1 shows very dry conditions in 

the CBI which it is indicated on the available energy greatly exceeds the amount required to 

evaporate the entire annual precipitation. This evidence also illustrates which the assumption of 

negligible runoff in Eq. (3.1) the CBI is quite logical. Second, Fig. 3.6 shows the major variations 

of PET/P index across the CBI. The index PET /P is higher in central and eastern regions with low 

elevation (see Fig.3.1 and less precipitation (see Fig. 3.5), since the temperature is too high for 

generating higher PET /P. Conversely, PET/P is lower in western regions with more precipitation. 

http://wrbs.wrm.ir/
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Fig. 3.5 Spatial distribution of annual water budget components and residual in mm over the CBI. 

No data is shown in white color. 
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Fig. 3.6 Obtained Budyko curve from long-term (10 years) average of observations. The 1:1 limit 

expresses the limitation by available energy (PET/P <1), and the horizontal limit expresses the 

limitation by available water (PET/P >1). 

 

Fig. 3.7 shows the annual time series of P, ET, ∆S, and ∆ from 2009 to 2016. The Mann-Kendall 

trend analysis at the 0.05 significance level shows no significant trend in any of the above time 

series. Three points are noteworthy here. First, the retrieved ∆S of −6.5 mm from GRACE in 2011 

is in a close agreement with the results of former studies in this basin at the same year, i.e., −6.1 

mm (IWRMC, 2011). Second, the estimated ∆ at the same year from the water budget Eq. (3.5) 

shows an acceptable difference from precipitation data, highlighting that the applied remote 

sensing products for the water budget components are accurate enough to close the water budget 

appropriately. Third, the strong correlation between P and ∆  time series indicates a tight 

dependency of water budget closure on P. Also, the ratio between ∆S and P does not significantly 

change over the whole study period, pointing out that even in years with increased P (as compared 

to other water years), the same percentage of storage had taken place in the CBI which highlights 

uncontrolled management of water resources. 
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Fig. 3.7 Annual time series of water budget components from 2009 to 2016 over the CBI. 

 

Fig. 3.8 shows ∆ in northern and western regions of the CBI is greater than that in the eastern and 

central regions. We note that ∆ values are the byproducts of error integration of the three remote 

sensing products used in Eq. (3.1) to estimate the water budget. It should be noted that it is not 

necessarily true that the three datasets are inconsistent and inappropriate for water budget studies 

for areas with large residuals, because the non-closure may be ascribed to runoff due to a large 

amount of rainfall in those areas.  

Fig. 3.9 shows the spatial distribution of ∆/P in the CBI on the seasonal time scale. It also shows 

that ∆/P in summer and spring is greater than compared to autumn and winter. In Fig.3.8, red pixels 

with a negative value have a significant difference in value with their adjacent pixels and indicate 

that these regions receive water from neighboring cells. These pixels are assumed net water 

consumption regions which are generally the irrigated areas, lakes and reservoirs. Fig. 3.9 depicts 

differences in P and ET (∆W) at the annual time scale. It shows regions with net water production 

( 0W ) and regions with net water consumption ( 0W ). The pixels that produce water (

0W ) are discharge regions responsible for streamflow and groundwater recharge. These 

regions are located on the north and western regions of CBI. Areas with sparse vegetation and low 
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ET also have higher P than ET and are water producing areas. 40 % of the CBI comprise such 

areas.  

 

Fig. 3.8 Spatial distribution of the seasonal ∆/P in mm over the CBI. No data is shown in white 

color. 
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Fig. 3.9 Spatial distribution of the annual ∆W in mm over the CBI. No data is shown in white 

color . 

3.4.2 The relationship between residual and different water budget components 

To examine the relationship between residual and each water budget components, we calculated 

each of these at monthly and seasonal and annual time scales  across CBI. Fig. 3.10 depicts the 

relationship between residual and P, ET and ∆S at the annual time scale.  

Table 3.1, represents the correlation coefficient between ∆  and other components at monthly and 

seasonal time sale. Results show the correlation coefficient between ∆ and P is higher than other 

components such as ET and ∆S, which is consistent with previous studies (e.g., Wang et al., 2014; 
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Sheffield et al., 2009). Also, the results reveal that the correlation coefficient of ∆ with P, ET and 

∆S increase from monthly to annual time scales. 
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Fig. 3.10 Relationship between annual water budget residual and ET, P and ∆S over the CBI 

Table 3.1. Correlation coefficient between residual and other water budget components at 

monthly and seasonal time scales over the CBI 

 Seasonal Monthly 

∆ 

P ET ∆S P ET ∆S 

0.556 -0.472 -0.053 0.371 -0.279 -0.049 

 

To find the best time scale at which  the estimated water budget from applied satellite remote 

sensing provides most  closure, we investigated the relationship between ∆W and ∆S at monthly, 
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seasonal and annual time scales  across CBI. Table 3.2 shows the correlation coefficient between 

∆W and ∆S. Consequently, the estimation of water budget using applied remote sensing data is 

more consistent and provides better closure in terms of correlation coefficient on seasonal and 

annual time scales. However, whilst technical results are more reliable on seasonal and annual time 

scales, some of the water budget terms have high seasonal variations and this makes the annual 

time scale too long to be useful for water resources management. Therefore, the results show the 

seasonal scale is better for decision-making on water resources management which is analogues 

with Pearson (2008).  

Table 3.2. Correlation coefficient between ∆W and ∆S at monthly, seasonal and annual time 

scales over the CBI 

               ∆S                ∆W  

             Mean  
Correlation 

coefficient 

Monthly 5.7 0.4 0.62 

Seasonal 17.9 0.5 0.8 

Annual 70.5 1.8 0.55 

 

3.4.3 Evaluating of Uncertainty in Water Budget Estimation 

A novel application of the First Order Reliability Method (FORM)  is implemented to investigate 

the LSF failure probability as a criterion to validate the reliability of the water budget closure. In 

the water budget estimation of a hydrologic system, rij can be considered as the criterion to examine 

the reliability of the water budget closure by defining rij less than the renewable water share of 

precipitation. To this end, the first-order reliability method finds the reliability index (β) and failure 

probability (Pf) of water budget closure. Results of the FORM implementation show that β and Pf 

are 1.02035 and 0.153782, respectively. Since Pf is low, closure and consistency of water budget 

using applied remote sensing data is acceptable.  
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A sensitivity analysis is also implemented to measure the sensitivity of the reliability to changes 

in the input random variables and rank the importance order of the random variables of the water 

budget equation. The results of sensitivity analysis implementation are given in Table 3.3. The 

absolute magnitude of α importance vector shows that ET and then P are the most important 

parameters that are most likely to interfere with the failure of the LSF. In this study, according to 

α importance vector, ET is considered as a resistance variable and P and ∆S are considered as load 

variables. This means that increasing value of ET will increase the reliability index and decrease 

the LSF failure probability.   

Although α is considered as a good importance vector for the random variables in the standard 

normal space, it may not be an accurate importance measure for the random variables in the 

original space, when a correlation between different random variables is exist. Therefore, is 

employed to rank the importance of the random variables in the original space (Der Kiureghian, 

2005). importance vector shows that ET is the most important variable which influences greatly 

on the failure of the LSF (see Table 3.3). As a result, accurate modeling of ET increases the 

accuracy of water budget estimation. 

Table 3.3. The results of sensitivity analysis implementation 

 

 α γ 

ET -0.76908724 5.14671906e-08 

∆S 0.08818706 1.77928691e-08 

P 0.31212596 2.03410296e-08 

 

  




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Chapter IV: Improvement of soil moisture and groundwater level estimations using a scale‐

consistent river parameterization 

4.1.  Introduction 

Hydrological modeling is an important tool for managing both environmental and water resources 

especially when it incorporates both temporal and spatial variables (Soltani, et al., 2021). 

Hydrological models are designed and applied for the large global scale (e.g., Dӧll et al., 2003; 

Kollet and Maxwell, 2006; Van Dijk et al., 2013), or the smaller regional scales (e.g., Christiansen 

et al., 2007; Huang et al., 2017). Simulation of hydrological processes including the water cycle 

in both regional and global scales can be accomplished by these models. Models are still being 

developed to better simulate are generally better than their predecessors in simulations of the 

physical processes since they consider the interaction components of the water cycle e.g., the 

relationship between runoff, evapotranspiration, and precipitation is included in these models 

(Simmons et al., 2020). 

The interaction between subsurface and surface water is also important, particularly for studying 

rivers. However, these interactions are considered as a numerically challenging task. A common 

approach has been to use river-routing codes, like Hydrologic Engineering Center (HEC) codes, 

as well as MODFLOW and its River Package to determine head in the river, and then taking this 

as the upper boundary condition of the subsurface modeling. This approach does not consider the 

feedback between surface and subsurface models, and a better representation of the physical 

processes in these kinds of problems is still a key challenge for modelers (Kuffour et al., 2020). 

The interaction between surface and groundwater in a dynamic fashion is possible by the integrated 

approach. Integrated approach is possible either by fully integrated strong coupling where the 

surface and subsurface equations are solved simultaneously using a non-linear solver (Ababou et 

al. 2015), or by a two-way iterative coupling where the equations are solved sequentially.  Among 

the parallel integrated two-way coupled hydrologic models, ParFlow has a demonstrated potential 
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to simulate simultaneously surface and subsurface flow (saturated and unsaturated zone) in 3-D 

(Maxwell et al., 2009).  ParFlow has been extended to coupled surface-subsurface flow to enable 

the simulation of hillslope runoff and channel routing in a truly integrated fashion (Kollet and 

Maxwell, 2006). ParFlow simulates variably saturated groundwater flow in 3D using the Richard’s 

equation (Richards, 1931). Overland flow generated by Manning's equation and the kinematic 

wave formulations of the dynamic wave equation is considered as a boundary condition in the 

Richard’s equation (Kollet and Maxwell, 2006). This boundary condition connects the subsurface 

flow with land surface flow and removed the exchange flux term from the Richard’s equation and 

calculates the movement of ponded water's free surface at the land surface. The capacity of 

ParFlow in performing efficient 3-D simulations is relevant as in most existing models (i.e., MIKE 

SHE) the unsaturated flow is still calculated in 1-D (Graham and Butts, 2005). In addition to this 

capability, ParFlow is an open access integrated model. The documentation of ParFlow is 

relatively extensive and it has been tested on the various surface and groundwater problems in 

large domains (e.g., over 600 km2) (Ferguson and Maxwell, 2012), small basins (e.g., 

30 km2) (Kollet and Maxwell, 2006; Engdahl et al., 2016), and even subsurface–surface and 

atmospheric coupling (Williams et al., 2013; Shrestha et al., 2015). Since ParFlow cannot account 

for surface processes (e.g., evaporation) in integrated studies, ParFlow is often coupled with a land 

surface model and in particularly to Common Land Model (CLM) (Kollet and Maxwell, 2008).The 

coupling of a surface and subsurface model improves the model complexity, bringing potentially 

more realism regarding the physical processes occurring at the interface between the deeper 

subsurface and the surface (Sulis et al., 2017; Beisman, 2007). 

ParFlow is originally a grid based hydrogeological model, and it calculates overland flow usually 

at much larger grid scales than the width of the rivers (Schalge et al., 2019). On the other hand, 

other hydrological models usually employ routing schemes for separate channels which are not 

related to the grid resolution (Schalge et al., 2019). When performing realistic overland flow 

simulations, the high computational demands of increasing the spatial resolution limits such 

simulations (Clark et al.,2015; Wood et al., 2011). Therefore, using the sub-grid digital elevation 

model (DEM) was suggested for the ISBA–TRIP (Decharme et al., 2012) model which are run at 

relatively low resolution. Neal, et al. (2012) have studied the effect of sub-grid scale channel 
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routing on flood dynamics. They have shown the improvement of model performance by 

considering smaller channels. Therefore, applying coarse grids would increase the diffusion and 

hydrodynamic dispersion, which indirectly reduces the peaks in the surface flows. 

As an alternative to explicit sub-grid channel routing, one can consider the scaling of parameters 

when using grid-scale river routing models (Niedda, 2004). The sub-scale parametrization has 

been suggested based on the sub-grid scale topographic index by Niedda (2004). The sub-scale 

parametrization has been also used for flow in rivers and channels with the kinematic wave 

formulation (Schalge et al., 2019). Thus, an approximation of the sub-scale channel flow by scaling 

Manning’s roughness is used. The scaling coefficient is obtained using a relationship between the 

river width and the grid cell size. In order to compensate for the rate of ex- and in-filtration rate 

across the river beds, a grid resolution-aware scaling of saturated hydraulic conductivity is applied 

for the top layer (Schalge et al., 2019). By supposing a rectangular-shape river channel cross-

section, it is possible to scale both the roughness coefficient and the hydraulic conductivity. This 

method adds no computational cost to the model (Schalge et al., 2019). This method improves the 

overland-flow parametrization for the distributed hydrological models with constant horizontal 

grid resolution. When the sub-scale parametrization is not employed, the model output shows 

smaller river flow velocities when the streams are narrower than the horizontal grid resolution. 

Furthermore, the surface areas which exchange water with the subsurface in a model with wide 

rivers are usually larger, which causes the error of unrealistic vertical flows (Schalge et al., 2019). 

Scaling the roughness coefficients is appropriate when the surface water flow is governing by the 

open channel hydraulic performance and therefore, it does not address the challenge of the width 

of the ponded-area and subsequent exchanges. 

To our knowledge, the scaling approach has not been tested before to improve soil moisture and 

groundwater level simulations, though a similar approach with significant simplifications has been 

recently used to improve surface run-off over some idealized test cases (Schalge et al., 2019). In 

Schalge et al. (2019), ParFlow without coupling by any land surface the model has been used to 

investigate impact of scaling river parametrization. In this work, we investigate the impact of the 

scaling approach over the main components of the model’s water budget in a real case study. We 
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implement the scaling approach in  ParFlow (Ashby and Falgout, 1996; Jones and Woodward, 

2001; Kollet and Maxwell, 2006; Maxwell, 2013) version 3.5 (Kuffour, 2019) which has been 

coupled (Maxwell and Miller,2005; Kollet and Maxwell, 2008) with CLM (Dai et al., 2003) 

version 4.5 (Oleson et al., 2013). The model is used to simulate the subsurface flow with 0.055° (˷6 

km) spatial resolution over the Upper Rhine Basin between France and Germany. ParFlow and 

CLM have been coupled to better understand the physical processes that occur at the interface 

between the deeper subsurface and the surface. The basin studied is an important hydro system 

that exists in Western Europe. Alluvial hydro system such as this can store large quantities of 

water, although they are vulnerable to excessive abstraction and pollution.  

In the present work, the domain is constructed entirely of available data sets including topography, 

soil texture, and hydrogeology.  

The work is organized as follows: Section 2 describes the geographical location of the study area 

with an emphasis on  the long-term climate condition. Section 3 provides a brief overview of the 

equations used in the model with an emphasis on variably saturated groundwater flow, shallow 

overland flow and its integration in the fully coupled land surface-subsurface modelling 

framework, and the scaling approaches for Manning's coefficient and hydraulic conductivity. In 

addition, the land surface data and atmospheric forcing and evaluation dataset including CCI soil 

moisture data and in-situ groundwater level data are also presented. Section 4 provides details of 

the first-order reliability method (FORM) which is a novel probabilistic validation framework for 

validation purposes. Section 5 presents effect of applying of scaling approaches on model’s results 

including temporal and spatial pattern of soil moisture and groundwater level data which is cross-

validated with observations. A discussion of this paper’s results with previous studies is also 

presented in Section 5. Finally, concluding remarks are summarized in Section 6. 

4.2. Study Area: Geographical and climate condition  

A major part of the Upper Rhine Basin with area of 32.400 Km2 is located in the east of France 

and along the France-Germany border from Lauterbourg (north) to Basel (south) as shown in Fig. 

4.1. The basin is separated in the west by Vosges Mountains and in the east by the Black Forest. 

The Rhine alluvial aquifer is mostly made of Quaternary sands and gravels. This aquifer is 
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represented with high hydraulic conductivity from k=10-4 to 10-3 m/s (Majdalani and Ackerer, 

2011). The aquifer is 200 m thick at the center at the east of Colmar, however, it has a smaller 

thickness near the alluvial plain borders (Majdalani and Ackerer, 2011). The groundwater main 

flow is towards the north direction. In the north of the basin, the groundwater aquifer is shallow 

and the water surface is close to the surface. Water table depth varies between 0-20 m from the 

surface. In other words, the mid and north parts of the aquifer have a wetlands characteristic 

because of the shallow groundwater depth.  

Several of the river tributaries are fed by groundwater and the river network is very dense (see Fig. 

4.1), therefore, there is a great deal of water exchange between surface water and groundwater 

resources. The River Ill is the main Rhine tributary in a part of the basin, which origins from 

Sundgau, France (Thierion et al. 2012).  

Precipitation is highly variable over the basin, wherein the mountains of Vosges and Black Forest 

have over 2 meters per year of rainfall wherein in the annual plain average is 550 mm per year. 

The river changes are hugely affected by the snowfall and it is important to consider this 

component, both the snowfall and melting processes. The snowfall makes up to three percent of 

the total precipitation in the plain but it’s much higher near the mountain peaks (37%). Therefore, 

the groundwater recharge is very much affected by the mountain streams. In addition, the Alpine 

snow melt is a significant source of large quantities of water for Rhine River, especially during the 

end of spring.  
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Fig. 4.1. Geographic location of the Upper Rhine Basin, overlaid by the Digital Elevation Model 

(DEM) of the basin as well as the river network. 

4.3. Methods and Data 

4.3.1 Model Description 

In this study, the couple surface-subsurface ParFlow (v3.5)-CLM (v4.5) hydrological model is 

used. The CLM is a land surface model which represents the moisture, energy, and momentum 

balances at the land surface (Dai et al., 2003). ParFlow is a groundwater model which simulates 

variably saturated groundwater flow in 3D using the Richard’s equation (Richards, 1931). 

The coupling of a ParFlow and CLM improves the model complexity, bringing potentially more 

realism regarding the physical processes occurring at the interface between the deeper subsurface 

and the surface (Sulis et al., 2017). 

ParFlow cannot account for land surface processes (e.g., evapotranspiration and snow water 

equivalent) and CLM generally do not simulates deeper subsurface flows. Therefore, none of these 
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models cannot simulate the physical processes occurring at the interface between the deeper 

subsurface and the surface alone (Ren and Xue, 2004; Beisman, 2007; Shi et al., 2014).  

Here we provide a brief description of ParFlow (Ashby and Falgout, 1996; Maxwell, 2013). It is a 

groundwater flow model that considers both saturated and unsaturated flow. The surface water 

simulator is a 2D model (Kollet and Maxwell 2006) which uses the kinematic wave equation and 

the groundwater part is a 3D Richards equation solver. The Richards’ equation formulation 

implemented in ParFlow is equivalent to the one in (Kollet and Maxwell 2006) 

(
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Where Ss is the specific storage coefficient [L−1], Sw is the relative saturation [-], p is sub-surface 

pressure head of water [L], t is time [T], ϕ is porosity of the medium [-], q is the specific 

volumetric (Darcy) flux [LT−1] and qs is the general source/sink term (includes wells and surface 

fluxes, e.g., evaporation and transpiration) [T−1]. 
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 where sK is the saturated hydraulic conductivity depends on soil texture [LT−1], rK is the relative 

permeability [-], qs is the general source or sink term [T−1] (includes wells and surface fluxes, e.g., 

evaporation and transpiration), and z is depth below the surface [L].  

The van Genuchten relationships (Van Genuchten, 1980) relationships are utilized to define the 

relative saturation and permeability functions as follows: 
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 where ssat [–] is the relative saturated water content, sres [–] is the relative residual saturation,   

[L-1] and n [–] are soil parameters. Shallow overland flow is now represented in ParFlow by the 

kinematic wave equation. In two spatial dimensions, the continuity equation can be written as: 
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where  v is the depth-averaged velocity vector [LT−1],  s is the surface ponding depth [L], t is 

time [T] and qs is a general source/sink (e.g., rainfall) rate [LT −1]. If diffusion terms are neglected 

the momentum equation can be written as: 

, ,f i o iS S=                                                                                                                                          (4.6) 

which is commonly referred to as the kinematic wave approximation. In Eq. 6 So,i is the bed 

slope (gravity forcing term) [−], which is equal to the friction slope Sf,i [L]; i stands for the x- and 

y-direction. Manning’s equation is used to establish a flow depth-discharge relationship: 
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where n is the Manning roughness coefficient [TL−1/3]. In ParFlow, the overland flow equations 

are coupled directly to the Richards equation at the top boundary cell under saturated conditions. 

Conditions of continuity of pressure (i.e., the pressures of the subsurface and surface domains are 

equal right at the ground surface) and flux at the top cell of the boundary between the subsurface 

and surface systems are assigned. When coupled with ParFlow, the 1D soil column moisture 

prediction in CLM is replaced by the ParFlow approach (in 1D or 3D formulation). In the 

sequential information exchange procedure, ParFlow sends the updated relative saturation ( WS ) 

and pressure ( ) for the top 10 layers to CLM. In turn, CLM sends the depth-differentiated source 

and sink terms for soil moisture [top soil moisture flux (qrain), soil evapotranspiration (qe)] for the 

top 10 soil layers to ParFlow (see Fig. a). More details on the numerical aspects and other features 

of the model can be found in Kollet and Maxwell (2006).  

We run ParFlow for a long time (100 years) with a steady recharge force to establish the 

groundwater table until groundwater tables and groundwater storage stopped changing. Following 

that, we run ParFlow with CLM, performing a 5-year spin-up by simulating the time period from 

2012 to 2013 five times in order to acquire equilibrium initial state variables. We have to repeat it 
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until the differences between years are negligible (Ajamii et., al 20014; Seck et al., 2015) (here we 

consider differences between years to be less than 0.01 annual precipitation) to ensure that we are 

not gaining or losing substantial volumes of water to the subsurface over time before we start 

running test cases.  

4.3.2 Land surface data and atmospheric forcing 

The land surface input data include topography, land cover, soil characteristics, and physiological 

parameters of the canopy which are static variables. Global Multiresolution Terrain Elevation Data 

2010 (Danielson et al., 2011) was used as Digital elevation model (DEM) which has a resolution 

of 1km (see Fig. ). The Moderate Resolution Imaging Spectroradiomete\r (MODIS) satellite land-

use classification (Friedl et al., 2002) was also used, wherein it was converted to Plant Functional 

Types (PFT). In order to include the soil characteristics, the percentage of soil and clay were 

obtained using FAO/UNESCO Digital Soil Map of the World (Batjes, 1997) which has numerous 

soil classes consisting of 19 classes, which was based on Schaap and Leij (1998)’s pedotransfer 

functions. For hydraulic characteristics of soil such as saturated hydraulic conductivity and Van-

Genuchten parameters, the SoilGrids250m as well as the dataset aggregated to 1 km resolution 

(Hengl et al., 2017)  were using by utilizing the European pedotransfer functions (EU-PTFs; Tóth 

et al., 2015). For the manning’s coefficient, the proposed relationship between landcover type and 

manning’s coefficient is used (Asante et al., 2008). 

The atmospheric forcing of the coupled ParFlow model with CLM is provided from COSMO-

REA6 data, which has a spatial resolution of 0.055° (~6 km) and temporal resolution of daily, and 

covers the domain defined by CORDEX EUR-11(Gutowski et al., 2016). COSMO-REA6 dataset 

(Bollmeyer et al., 2015) which is a reanalysis with high resolution from the Hans-Ertel Center for 

Weather Research is used for the time period of 2012-2014 (HErZ; Simmer et al., 2016).  

German Weather Service data were used to obtain barometric pressure, wind speed, precipitation, 

specific humidity, downward shortwave and longwave radiations and air temperature near the 

surface. These meteorological data are available to download from the German Weather Service 

(DWD; ftp://ftp-cdc.dwd.de/pub/REA/). There are some uncertainties in COSMO-REA6 data 

especially, precipitation data which is used in this study Bollmeyer et al. (2015). They showed that 
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precipitation data from COSMO-REA6 has a relatively good performance when compared to 

Global Precipitation Climatology Centre data, however, it under-estimates precipitation in middle 

and southern Europe and over-estimates in Scandinavia, Russia, and beaches of Norway. 

Additionally, Springer et al. (2017) assessed the closure of the water budget in the 6km COSMO-

REA6 and compared it to global reanalysis (Interim ECMWF Reanalysis (ERA-Interim), Modern-

Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)) for major 

European river basins. In their study, Springer et al. (2017) found that the COSMO-REA6 closes 

the water budget within the error estimates whereas the global reanalysis underestimates the 

precipitation minus evapotranspiration deficit in most river basins. A more comprehensive 

assessment of the precipitation of the HErZ reanalysis can be found in Wahl et al. (2017), albeit 

based on the 2 km data product, only available for central Europe. The input data sets disused in 

this section, are summarized in Table 4.1. All model inputs were re-projected to have an equal cell 

size of 0.055° (~6 km). In this study, the model was directed at the Upper Rhine Basin for a total 

thickness of 100 m over 300 model layers with different thickness. The model was implemented 

with a horizontal resolution of 6 km with nx=31, ny=32 for a total model dimension of 186 km 

*192 km * 100 m and 35712 total compute cells. Since the hydraulic characteristics such as 

saturated hydraulic conductivity and Van-Genuchten parameters provided by the SoilGrids are 

available for the first two meters of soil, these hydraulic characteristics for the layers are located 

lower than 2m are the same as the layer is located at 2m under surface. Table 4. 2b shows a 

visualization of the model. The porosity and specific storage are constant and equal to 0.35 and 

10-5, respectively.  ParFlow allows the user to specify the permeability tensor. In this study, 

permeability is considered heterogeneous and symmetric in all directions (x, y, and z) and it is 

specified for the whole domain and considered as isotropic. There were two distinct boundary 

conditions that applied. 1)  in the south at Basel, the Rhine River discharge is subjected to temporal 

variation. 2) in the northern and southern boundaries, a constant piezometric head is applied. 
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Fig. 4.2 a) Schematic of the coupled ParFlow-CLM model from Kuffour et al. (2020). In the bottom rectangle, ParFlow depicts the root 

zone, deeper vadose zone, and saturated zone. The top rectangle depicts CLM's atmospheric forcing and land surface processes. It's 

worth noting the root zone, where the two models exchange information about fluxes and state variables at the conceptual boundaries 

of the respective compartment models. The downward and upward arrows represent the pathways of information transmission between 

models. b) Visualization of the model including dimensions of the domain and parametrization of the aquifer. Porosity and specific 

storage coefficient are constant and the hydraulic characteristics such as saturated hydraulic conductivity and Van-Genuchten parameters 

are isotopic and non- homogenous and as the same as layer 6 for the layers 7-300. 
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Table 4.1 The input data for ParFlow-CLM 

Input Data Data Source Download Link or Reference 

Atmospheric forcing (specific 

humidity, near surface air 

temperature, barometric pressure, 

wind speed, precipitation, longwave 

and shortwave radiation) 

COSMO-REA6 

dataset 
ftp://ftp-cdc.dwd.de/pub/REA/ 

Plant Functional Type, 
MODIS satellite (land-

use classification) 

https://lpdaac.usgs.gov/products/mcd12q1v0

06/ 

Soil Texture Data, Sand and Clay 

Percentage 

FAO/UNESCO 

Digital Soil Map of 

the World 

 (Batjes, 1997) 

Hydraulic conductivity 
European Soil Data 

Centre (ESDAC) 

https://esdac.jrc.ec.europa.eu/content/3d-

soil-hydraulic-database-europe-1-km-and-

250-m-resolution 

Van- Genuchten Parameters (n, α) 
European Soil Data 

Centre (ESDAC) 

https://esdac.jrc.ec.europa.eu/content/3d-

soil-hydraulic-database-europe-1-km-and-

250-m-resolution 

DEM 

 

Global Multiresolution 

Terrain Elevation Data 

2010 

https://earthexplorer.usgs.gov/ 

Manning’s coefficient 

Relationship between 

landcover type and 

manning’s coefficient 

(Asante et al., 2008) 

4.3.3. River Parametrization 

Since ParFlow does not address the flow condition (e.g., river network) for the river, ParFlow does 

not distinguish between hillslope runoff and river flow, and the same horizontal grid resolution 

applies to the subsurface and surface water domains. Forcing the same coarse horizontal grid 

resolution for the subsurface and surface water domains, results in an underestimation of the flow 

velocities while the rate of ex- and in-filtration between the river and the subsurface is 

overestimated. 
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Sub grid scaled river channel geometries, such as exchange fluxes with the subsurface, through 

the use of scaled grid scale parameters is incorporated in modeling to compensate this large rate 

of ex- and in-filtration between the river and the subsurface. As a result, to use the overland flow 

boundary condition in ParFlow, we use derived scaled Manning's coefficient (n) and saturated 

hydraulic conductivity (Ksat) by Schalge et al. (2019). 

4.3.3.1 Manning's Coefficient Scaling 

In order to correct the flow velocity (v) in the grid cell of model which is usually greater than river 

width (W1), a scaling of Manning’s coefficient is used. In an ideal high-resolution simulation, the 

width of river channel (W1) and Manning’s coefficient (norg), as well as the flow velocity (v1) are 

considered as the same as real river channel.  a. In a less resolution model, the width of the river 

is considered W2 which is equal to the width of the grid cell and greater than W1. In this less 

resolution model, if we consider the same norg the flow velocity (v2) is lower than flow velocity in 

river (v1). Because the water depth is smaller in the wider channel. Therefore, the flow velocity 

can be corrected using reducing norg to nscale. As a result, in a lower resolution simulation (grid cell 

is W2) flow velocity equals to v1(for more details refer to Schalge et al. (2019)). A simple equation 

is used to scale roughness coefficient as follows: 

 
2/31

2

.( ) .scale org org

W
n n n

W
= =                                                                                                         (4.9) 

Where 2/31

2

( )
W

W
 =  is the scaling coefficient for Manning's roughness coefficient, which corrects the 

river flow velocity in a lower resolution simulation which is independent of channel slope Sf and 

discharge Q.  

4.3.3.2 Hydraulic Conductivity Scaling 

Because the width of the model river is often larger than the actual river width, a larger surface 

area will exchange water with the subsurface than the real river. A scaled (lower) hydraulic 

conductivity can be used to correct this. In order to keep the infiltration/exfiltration fluxes in model 

equals the true rate in real river fluxes are preserved, by using scaled Ksat, resulting in 
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Where A2= W2 × W2 is the area of the river in model and A1 = W2 × W1 is the area of the real river. 

substitution the A2 and A1 in the equation above, results in  
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Ksat is homogeneous in each grid cell and by assuming a rectangular river channel cross section, 

the scaling coefficient is as 

1

2

.satscale satorg

W
K K

W
=                                                                                                                        (4.12) 

1

2

W

W
 = is the scaling coefficient for the hydraulic conductivity (for more details refer to Schalge 

et al. (2019)). 

4.3.4. Probabilistic Framework of the Validation: First Order Reliability Method (FORM) 

In this approach, a Limit State Function (LSF) is defined as the mathematical formulation of a 

system state limit beyond which the system reliability criteria are no longer satisfied in this method. 

(Abdelkhalak and Bouchaïb 2013). In analogy to the simulation results of a hydrological model, 

the standard deviation (SD) can be used as a criterion to examine the reliability of the model by 

defining LSF less than 10% as the state limit for simulated groundwater level and 25% for 

simulated soil moisture.  This criterion expresses as: 

                                                                                        

Model ( ) ( )
( ) 0.1

( )

Model ( ) ( )
( ) 0.25

( )

Estimation SM Observation SM
SD SM

Observation SM

Estimation Gr Observation Gr
SD Gr

Observation Gr

−
= 




− = 


                                             (4.13) 
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Based on the assumption that LSF is continuous and first-order differentiable, FORM uses a linear 

approximation (i.e., first order Taylor expansion) expressed as 

( ) ( ) ( ) ( ) .( )T

m m mG y L y G y G y y y= = +  −                                                                                    (4.14) 

where L(y) is the linearization of the LSF, 1 2 3( , , ,... )ny y y y y y=  is the vector of n variables 

defining the G function, ym is the expansion point, and ∇G(y) is the first order gradient vector of 

G(y).  

The two critical FORM requirements are explained in detail as follows paragraphs. (For more 

details refer to Soltani et al., 2020).  

1. First, project the variables X (in this case soil moisture or groundwater level) to the independent 

standard normal space Y. In order to implement FORM, non-normally distributed variables should 

be transformed into standard normal variables (Madsen et al., 2006) via, e.g., the NATAF 

transformation (Nataf, 1962). 

2. Next, finding a point on the transformed LSF with the shortest distance to the origin in the 

uncorrelated standard normal space (Shinozuka, 1983). This point is called the design point (or the 

most probable point) that can be obtained by solving the following constrained optimization 

problem. 

* arg min{ }y y=                                                                                                                   (4.15)                                                                        

*y  is the design point which has the shortest distance to the origin in the uncorrelated standard 

normal space. Various approaches have been developed during the past decades to solve the 

constrained optimization problem described in Eq. (10). The iHLRF (Zhang and Kiureghian, 1997) 

is a state-of-the-art method which can be used to obtain the point on the failure surface that is 

closest to the origin. In this approach, the design point is found by a generic search algorithm via 

the following iterative equation: 

1m m m my y s d+ = +                                                                                                                                (4.16) 
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where m is the iteration number, s is the step length, and d is the direction of the search. Let y* 

be the answer to this optimization problem, and β be the optimal point's distance from the origin. 

as a result, the estimated probability of failure is expressed as 

  ( )fP =  −                                                                                                                            (4.17) 

where Φ is the cumulative probability distribution function of β. The limitation of FORM is that it 

can only give an exact solution if the initial limit state is linear and the basic variables are normally 

distributed. The extent of error, on the other hand, is determined by the curvature of the limit state 

and the method of projecting X to Y. Fig. 4.3 shows the general procedure of the FORM  

implementation. 



Chapter IV: Improvement of soil moisture and groundwater level estimations using a scale‐

consistent river parameterization 

--------------------------------------------------------------------------------------------------------------------- 

87 

 

 

Select a starting point in the standard normal space

Transform into the original space

Evaluate the LSF

Evaluate the gradient of the LSF

Set the scaling factor for the first converge criterion

Check the convergence

Is convergence 

acheived?
No

YES
                                Compute  1m m m my y s d+ = + 

Compute    fP

 m=1

First Step

Second Step

The iHLRF 

Algorithm 

 

Fig. 4.3 Steps to implement the FORM algorithm. After defining LSF, the variables are 

transformed to the independent standard normal space in the first step and in the second step, a 

point on the transformed LSF with the shortest distance to the origin is found. The iHLRF (Zhang 

and Kiureghian, 1997) is used to obtain this point on the LSF. 
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4.3.5 Evaluation Dataset 

4.3.5.1 Groundwater Level Measurements 

Piezometric level data came from 190 observation wells sampled weekly, only a few of them 

giving daily data. These observation wells are managed mainly by the APRONA (Association 

pour la PROtection de laNappe d’Alsace) on the French side and by the LUBW-Baden-

Württemberg (Landesanstalt für Umwelt, Messungen und Naturschutz in Baden-Württemberg) on 

the German side. In this case study, the fluctuation of groundwater level is limited to less a few 

meters. However, this fluctuation is more where the groundwater table is deeper such as the eastern 

and western borders (Thierion et al. 2012). 

4.3.5.2 ESA CCI Microwave Soil Moisture  

ESA (European Space Agency)’s CCI program (Climate Change Initiative) provides Soil Moisture 

(SM) data from 1978 and on a spatial resolution of 0.25°. The CCI-SM data is daily soil moisture 

for the top milli/centimeters of the soil. The CCI-SM version 05.2 uses microwave wavelengths to 

obtain soil moisture data using data from several sensors (Dorigo et al., 2017; 

http://www.esaoilmoisture-  cci.org). CCI-SM uses passive microwave measurements  (i.e., DMSP 

SSM/I, TRMM TMI, Aqua AMSR-E, Coriolis WindSat, SMOS and SMAP). On the other hand, 

active data products are obtained using scatter meters in the C-band which are installed on ERS-

1, ERS-2 and ASCAT A-B satellites (Wagner et al., 2013). Cumulative density function matching 

was used to rescale the absolute soil moisture. For this purpose, the 0.25° resolution land surface 

soil moisture modeled data were used as a reference (GLDAS-NOAH, Rodell et al., 2004). In 

addition, both passive and active soil moisture products are merged herein which was better than 

either one alone (Liu et al., 2011). Resampling and re-gridding to the target resolution of 0.0275° 

were done on the SM values for matching of the spatial resolution. This was done via the 

conservative interpolation of first-order one (Jones, 1999). In this technique, the interpolation 

weights are based on the fractional area-overlap of the source and destination grid cells. The re-

gridding in the conservative scheme allows the preservation of flux fields of physical quantities 

between both the destination and source grids. The CCI-SM data reveals significant data gaps over 

the Upper Rhine Basin in all seasons. In the time period of 2012-2014, the temporal coverage (i.e., 

the ratio between the number of days with valid data and the number of total days) ranged from 

http://www.esaoilmoisture-/
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less than 10% (Southern regions) to over 60% (Northern regions) in Fig. 4.4. Finally, Fig. 4.5 

shows the overall scheme of this study that was given in methods and data section. 

 

Fig. 4.4 Fraction of days that ESA-CCI SM data was reported over the time period of 2012-2014. 
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Fig. 4.5 Overall scheme of this study. Overall scheme to identify the used land surface and 

atmospheric forcing, methodology of research and validation. Abbreviations: RMSE, root-mean-

square deviation; FORM, first order reliability method. 

4.3.5.3 Finding River Width 

By using the Hydro SHEDS river topology dataset (This database is available at 

http://gaia.geosci.unc.edu/rivers/) as well as geomorphic relationships between parameters such as 

area, discharge, width and depth of the river, a simple database containing the widths and depths 

http://gaia.geosci.unc.edu/rivers/
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of the rivers has been created, which can be used when there are no reliable measurements 

available to input the initial estimation for the hydrological models. The database does not intend 

to replace detailed estimations of the river width and depth, instead it maps the river characteristics 

with near-global coverage. However, this database provides estimations with 95% confidence 

interval which gives a reasonable estimate of the width and depth of the rivers. 

The spatial width of the river for the Upper Rhine Basin is shown in Fig. 4.6 a and it ranges from 

6.5 m to 325 m. In this simulation, narrow rivers with less than 10 m widths have not been 

considered, as they are only appearing during and after raining.  

Fig. 4.6 b and c show the resulting scaling parameter for saturated hydraulic conductivity and 

Manning's coefficient following Eq. (4.9) and Eq. (4.12) ranges from 0.01 to 0.16 and 0.001 to 

0.065 respectively. Fig. 4.6 d shows the scaling approach to which cells in the basin have been 

applied. In this figure, the effective cells whose rivers are more than 10 meters wide are blue in 

color, and these cells have been applied scaled manning’s coefficient and saturated hydraulic 

conductivity. The red color in this figure indicates cells in which the width of the river is less than 

10 meters. 
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Fig. 4.6 a) River width (W1) in unit of meter, b) scaling coefficient of saturated hydraulic 

conductivity, c) scaling coefficient of Manning’s coefficient and d) effective and non-effective 

cells in scaling approach over the Upper Rhine Basin 

4.4. Results  

4.4.1 Evaluation of Soil Moisture  

4.4.1.1 Seasonal Mean Comparison 

The seasonal volumetric soil water content (SWC) (mm3/mm3) from ParFlow-CLM without 

parameter scaling (ParFlow-CLM) and ParFlow-CLM with n and KSat scaling (ParFlow-CLM-S) 

is shown in Fig. 4.7 compared to the seasonal mean CCI-SM data. 

In general, the ParFlow-CLM simulation has higher SWC in all seasons (DJF, MAM, JJA, and 

SON) over most part of the Upper Rhine Basin than the ParFlow-CLM-S simulation. 

When comparing the ParFlow-CLM-S simulations to the CCI-SM observations, the spatial 

distribution of SWC in summer and autumn is better represented in the ParFlow-CLM-S 

simulations than in the ParFlow-CLM simulations (Fig. 4.7). Naz et al. (2018) assimilated the CCI-

SM data into CLM to improve soil moisture and runoff simulations. The assimilation results 

showed a slightly better agreement with the CCI-SM data in the summer and autumn seasons than 

the spring and winter seasons. In this regard, data assimilation, n and KSat scaling improve soil 

moisture simulations in similar seasonal patterns. 

  For the time period of 2012-2014, Fig. 4.8 compares the temporally averaged SWC simulated by 

ParFlow-CLM, ParFlow-CLM-S, to CCI-SM data over the Upper Rhine Basin. In general, the 

SWC values were overestimated by ParFlow-CLM in all seasons. This overestimation was 

decreased with scaled n and KSat, as shown using ParFlow-CLM-S. It is worthy of note that, the 

narrow spread of quartiles of ParFlow-CLM-S calculated SWC compared to ParFlow-CLM in Fig. 

4. indicates that scaling of n and KSat did not diminish spatial variability. Similarly, when validating 

models with CCI-SM data, the ParFlow-CLM improvements vary depending on the season. 

However, improvements were more noticeable for all seasons.
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Fig. 4.7 Seasonally averaged SM simulated by ParFlow-CLM and ParFlow-CLM-S for the upper soil layer (0-5 cm) and compared to 

CCI-SM data for the DJF (December, January, and February), MAM (March, April, May), JJA (June, July, and August), and SON 

(September, October, and November) seasons from 2012 to 2014. 
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Fig. 4.8 Boxplot of seasonally averaged SWC simulated by ParFlow-CLM, ParFlow-CLM-S, and 

CCI-SM data from 2012 to 2014. DJF (December, January, and February) represents winter; 

MAM (March, April, May) represents spring; JJA (June, July, and August) represents summer and 

SON (September, October, and November) represents autumn. The central, bottom, and top marks 

on each box represent the median and extreme values, respectively. 

Cross-validation with CCI-SM observations was undertaken to assess the skill of ParFlow-CLM-

S relative to ParFlow-CLM, and Root Mean Square Error (RMSE) and BIAS for soil moisture 

were calculated using daily values for the Upper Rhine Basin and all seasons, as shown in Fig. 4.9. 

Note, that model data was only utilized to calculate these statistics on days when satellite data was 

available. For all seasons in the Upper Rhine Basin, ParFlow-CLM-S had a consistently lower 

RMSE than ParFlow-CLM, with the exception of winter, when SWC benefits were relatively 

minor (Fig. 4.9 c and d). 

For all regions, the mean RMSE decreased from 0.03 mm3/mm3 (ParFlow-CLM) to 0.005 

mm3/mm3 (ParFlow-CLM-S). The BIAS shows a substantial overestimation of soil moisture in 

comparison to satellite CCI-SM observations (Fig. 4.9 a and b), while the BIAS for soil moisture 



Chapter IV: Improvement of soil moisture and groundwater level estimations using a scale‐

consistent river parameterization 

--------------------------------------------------------------------------------------------------------------------- 

96 

 

 

from ParFlow-CLM-S is considerably decreased (Fig. 4.9 a and b). For all regions, the mean BIAS 

decreased from 0. 17 mm3/mm3 (ParFlow-CLM) to 0. 1 mm3/mm3 (ParFlow-CLM-S). In addition, 

an innovative implementation of the FORM is used to examine the LSF failure probability as a 

criterion for verifying the model's results closure. By defining r less than 0.25, r can be used as a 

criterion to assess the reliability of the model's results. 

To this end, the first order reliability method finds failure probability (Pf) of the model’s results 

closure. Table 4. 2 Shows results of the FORM implementation for soil moisture simulations of 

ParFlow-CLM and ParFlow-CLM-S over all seasons. Since Pf in ParFlow-CLM-S is lower than 

ParFlow-CLM, closure and consistency of model’s results using scaling approach is acceptable. 

FORM results show that the probability of a substantial divergence between ParFlow-CLM-S soil 

moisture results and CCI-SM observation which is defined more than 0.25 percentage of CCI-SM 

observation value is 0.05, 0.11,0.15and 0.08 for autumn, winter, spring and summer, respectively. 

The failure probability of defined LSF in winter is a little more than other seasons. 
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Fig. 4.9 RMSE and BIAS for daily soil water content for the DJF (December, January, and February), MAM (March, April, May), JJA 

(June, July, and August), and SON (September, October, and November) seasons from 2012 to 2014. (a) BIAS for ParFlow-CLM and 

(b) BIAS for ParFlow-CLM-S (c) RMSE for ParFlow-CLM and (d) RMSE for ParFlow-CLM-S simulations over the years 2012-2014.
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Table 4. 2 The results of FORM implementation for soil moisture simulations of ParFlow-CLM 

and ParFlow-CLM-S over DJF (December, January, and February), MAM (March, April, May), 

JJA (June, July, and August), and SON (September, October, and November) seasons. 

 Pf  

Seasons ParFlow-CLM-S ParFlow-CLM 

SON 0.15 0.05 

DJF 0.25 0.11 

MMA 

JJA 

 

0.22 

0.19 

0.15 

0.08 

 

 

4.4.1.2 Daily Validation 

The daily SM averaged from January 2012 to December 2014 over the Upper Rhine Basin (Fig. 

4.1), as simulated by ParFlow-CLM and ParFlow-CLM-S, and observed by CCI-SM is presented 

in Fig. 4.10. 

In ParFlow-CLM-S, the scaling approach improved the simulations of SWC. The daily SWC 

patterns predicted by ParFlow-CLM-S are very similar to the CCI-SM data, with general 

agreement across the basin. 

When compared to the entire period, the CCI-SM observations show increased variability and drier 

soil moisture values during the summers. In general, the daily soil moisture predicted by the 

ParFlow-CLM-S agree with the CCI-SM data relatively better in the summer and autumn seasons 

than in the spring and winter seasons. 

Due to dense vegetation, frozen soil, and/or model errors associated to modeling soil moisture in 

colder climates, ParFlow-CLM-S perform worse in winter season (Oleson et al. 2008). At the 

beginning of the simulation, especially in the winter 2012, the simulated soil moisture pattern is 

very different from the moisture obtained from CCI-SM. One of the main reasons for this issue 

can be related to the limitations of the model in simulating SM in cold seasons, especially when 

water freezes in the surface layers of the soil. Another case can be related to the steady state 

conditions of the model used to start. 
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For the time period of 2012-2014, Table 4.3 compares some important statistical parameters such 

as mean and variance of the spatially averaged soil moisture simulated by ParFlow-CLM, 

ParFlow-CLM-S, to CCI-SM data over the Upper Rhine Basin. In general, the soil moisture of the 

first soil layer simulated by ParFlow-CLM is higher than CCI-SM data in all seasons. This 

overestimation was decreased by using scaled n and KSat, as shown using ParFlow-CLM-S. It is 

worthy of note that soil moisture simulated by ParFlow-CLM-S compared to ParFlow-CLM in 

Table 4.3 indicates that improvements were more noticeable for all seasons. 

1/1/2012 12/31/201410/1/20134/1/2012 7/1/2012 4/1/2013 7/1/20131/1/2013 10/1/2014

 

Fig. 4.10 Spatially averaged daily SWC simulated with ParFlow-CLM-S and ParFlow-CLM and 

compared to CCI-SM data for the Upper Rhine Basin from 2012 to 2014. 

Table 4.3 Some statistical parameters for soil moisture simulations of ParFlow-CLM and 

ParFlow-CLM-S and CCI-SM data over DJF (December, January, and February), MAM (March, 

April, May), JJA (June, July, and August), and SON (September, October, and November) 

seasons 

Season 
      CCI-SM ParFlow-CLM ParFlow-CLM-S 

Mean variance  Mean variance  Mean variance  

DJF 0.327 0.047  0.44 0.025  0.39 0.019  
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MMA 0.306 0.0253  0.417 0.022  0.357 0.02  

JJA 0.288 0.033  0.354 0.027  0.334 0.023  

SON 0.318 0.0247  0.384 0.023  0.354 0.023  

 4.4.2 Evaluation of Groundwater Level: Annual mean comparison 

Fig. 4.11 shows the groundwater level estimates of ParFlow-CLM and ParFlow-CLM-S, compared 

to groundwater level (from sea level) from well observations. ParFlow-CLM simulates higher 

magnitudes of groundwater level (on average 146m) over most parts of the basin compared to 

ParFlow-CLM-S (on average 143 m). 

The overestimation in the ParFlow-CLM simulations was more significant in the central regions 

of the basin (Fig. 4.11). Compared to ParFlow-CLM, regional groundwater level patterns 

simulated by ParFlow-CLM-S agree better with groundwater level observations. When compared 

to well data in the central and northern regions of the basin, the ParFlow-CLM-S performs better. 

As shown in Fig. 4.11, the scaling approach clearly resulted in an overall improvement in the 

simulated groundwater level for all regions. 

Averaged annual groundwater level improvements are especially noticeable over the central and 

northern regions, where ParFlow-CLM-S reduced the discrepancy between well data and model’s 

result from 6 m to 3m. Groundwater level from well observations were interpolated using the 

Kriging method (Krige, 1951). Some part of this difference is related to Kriging uncertainty. 

Several studies have addressed errors raised from uncertainty in random function estimation steps 

of the kriging methodology (Loquin and Dubois, 2010; Lloyd and Atkinson, 2001). As a result, 

uncertainty of the used model by using scaled parameters in groundwater level estimation is less 

than 3m.   

Where the groundwater table is not shallow (more than 5 meters), the improvements over other 

regions of the basin, such as the southern regions, were relatively small. These findings indicate 

on the potential of scaling approach to improve shallow groundwater where the surface-subsurface 

coupling is most impactful. 
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The failure probability of LSF is investigated as a criterion to assess the reliability of the model's 

results through using a novel application of the First Order Reliability Method (FORM). By 

specifying r smaller than 0.1, it can be used as a criterion to assess the reliability of model's results. 

 

 High:  445m 

Low: 98 m

Well Data ParFlow-CLM ParFlow-CLM-S
 

Fig. 4.11 Temporally averaged annual groundwater level from the sea level (m) simulated by 

ParFlow-CLM and ParFlow-CLM-S for the years 2012 – 2014 over the Upper Rhine Graben. 

Temporally averaged groundwater level from well data is shown for comparison. 

To achieve this, the FORM calculates the failure probability (Pf) of the model's results closure. 

The results of the FORM implementation show that failure probability of simulated annual 

groundwater level by ParFlow-CLM and ParFlow-CLM-S is 0.05 and 0.1, respectively. Since Pf 

in ParFlow-CLM-S is lower than in ParFlow-CLM, the scaling approach is sufficiently accurate 

for model closure and consistency. 

For the time period of 2012-2014, Table 4.4 compares some important statistical parameters such 

as mean, maximum and minimum of the temporally averaged groundwater level simulated by 

ParFlow-CLM, ParFlow-CLM-S, to well data over the Upper Rhine Basin. 

In general, the groundwater level values (from the see level) decreased by ParFlow-CLM in all 

seasons. This overestimation (being groundwater level close to the surface) was decreased with 

scaled n and KSat, as shown using ParFlow-CLM-S. It is worthy of note that groundwater level 
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simulated by ParFlow-CLM-S compared to ParFlow-CLM in Table 4.4 indicates that scaling of n 

and KSat did not diminish spatial variability. Improvements were more noticeable for all seasons. 

Table 4.4 Some statistical parameters for groundwater level simulations of ParFlow-CLM and 

ParFlow-CLM-S and well data over DJF (December, January, and February), MAM (March, 

April, May), JJA (June, July, and August), and SON (September, October, and November) 

seasons. 

Season 
Well data ParFlow-CLM-S ParFlow-CLM 

Mean Max Min Mean Max Min Mean Max Min 

DJF 165.1 708.64 99.98 170.3 713.84 105.18 175.1 718.64 109.98 

MMA 163.6 708.01 99.26 168.4 712.81 104.06 171.7 716.11 107.36 

JJA 163.09 707.95 99.78 166.99 711.85 103.68 169.89 714.75 106.58 

SON 164.46 708.86 99.84 168.96 713.36 104.34 173.46 717.86 108.84 

 

Fig. 4.12 depicts a weekly groundwater level time series that shows ParFlow-CLM greatly 

overestimates the magnitude of groundwater level. Over all regions, the ParFlow-CLM-S 

decreases these biases and groundwater level simulations with ParFlow-CLM-S are more 

consistent with the well observations. 
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Fig. 4.12 Spatially averaged weekly groundwater levels simulated with ParFlow-CLM-S and 

ParFlow-CLM and compared to CCI-SM data for the Upper Rhine Basin from 2012 to 2014. 

4.5. Discussion 

Foster and Maxwell (2019) have proposed a scaling method for effective hydraulic conductivity 

and Manning’s coefficient to compensate the loss of topographic gradients in coarse resolution 

simulations. In this study, simulations have been done using different hydraulic conductivity over 

four orders of magnitude in a real case study at 1-km and 100-m resolution.  These findings indicate 

that when simulations are done at a coarse resolution, effective hydraulic conductivity must be 

biased higher. This study is in a good agreement with our findings and shows that scaling of 

hydraulic properties such as hydraulic conductivity obviously improves results of ParFlow-CLM 

model in less resolution simulations. 

Other studies have also applied different hydrological models to estimate groundwater level in the 

Rhine-Meuse Basin. Sutanudjaja et.al (2011) used a MODFLOW transient groundwater model 

which was forced to recharge and the surface water level which was calculated by the land surface 

model. Absolute mean bias for some parts of the basin is higher than 50 m, while the maximum 

absolute mean bias is lower than 3 m in our study. This can be attributed to the use of offline 
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coupling technique in MODFLLOW that over-simplifies the dynamic feedback between surface 

water and groundwater loads, and between the moisture state of soil and groundwater level. In the 

coupled ParFlow-CLM approach we used the interaction between surface and subsurface is more 

suitable for the case study. It could also be due to differences in model parameters and calibration. 

Considering the model calibration, several studies investigated methods to improve the 

hydrological models’ predictions. Sutanudjaja et.al (2014) have investigated the possibility of 

calibrating the PCRaster Global Water Balance (PCR-GLOBWB) (Van Beek & Bierkens, 2009) 

which is coupled with MODFLOW (McDonald and Harbaugh, 1988)  (PCR-GLOBWB-MOD) 

model (Sutanudjaja et al. (2011) by using remotely sensed soil moisture data and in situ runoff 

observations. Calibration is performed by executing of the model for 3045 times with various 

parameter values that affect the dynamics of the groundwater level in the Rhine-Meuse Basin. 

Conversely, the suggested methodology based on FORM in our work does not require multiple 

runs of the ParFlow-CLM model which is computationally expensive. In fact, given the physics 

of the problem underlying the method used, we run the model only once, using the scaled n and 

Ksat parameters. In order to improve model performance, Tangdamrongsub et. al (2015) have 

assimilated total water storage (TWS) data obtained from the Gravity Recovery and Climate 

Experiment (GRACE) data into the OpenStreams wflow-hbv model which is a distributed version 

of the HBV-96 model (Schellekens, 2014) using an ensemble Kalman filter (EnKF) method over 

the Rhine River basin. Although their results highlighted the benefit of assimilating GRACE data 

into hydrological models, they could be improved if limitations such as the lack of sufficient 

constraints on the soil moisture component did not exist.  In the current implementation of 

ParFlow-CLM-S the enhancement did not rely on the use of additional spatial, but on the better 

parametrization and scale change which renders it robust as the inaccessibility to a specific dataset 

does not affect the results. Nevertheless, it would be of interest to test if the combined use of scale 

change and earth observation data would yield better predictions or reduction of uncertainties.  

Selecting the threshold value for effective width affects the number of cells used in the scaling 

process. If a large threshold value is considered for the effective width, the number of cells for 

which the scaling process is performed will decrease, and if this value is selected low, the number 

of these cells will increase. Depending on the climatic conditions of the study area and the density 
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of the river network, the simulation time period, and the resolution of the model, the effect of the 

threshold value on the model simulation results changes. For example, if the study area has an arid 

or semi-arid climate that has been experiencing drought for a long time or a seasonal river is 

flowing in the study area at a specific time of year, more care should be taken to select the threshold 

value.  Therefore, if a low threshold value is considered, the scaling process is performed for a 

period when the river is not flowing and thus affects the model simulation results. This is also 

important for regions that experience severe flooding during a specific time period. In these areas, 

if the threshold value is considered high, the number of pixels used during the flood and wet season 

decreases and influences the model simulation results. 

There is no a certain criterion for choosing this low limit; However, it is suggested that rivers that 

do not exist in more than 50% of the simulation time period and flow in a short time due to floods 

and seasonal variations in rainfall should not be considered in scaling operations. According to 

Schalge et al (2019) study, model resolution is one of the most critical factors, and the success of 

scaling process decreases when the river width is less than 1/10 th of the model resolution. 

However, our findings show that the success of the scaling process is acceptable even if the width 

of the rivers is less than 1/10 th of the model resolution. It might be related to high density of river 

network in our case study, which exchange much water between the surface and the subsurface. 

In this regard, it is suggested that a comprehensive study be done to investigate the effect of model 

resolution and the river network density on the success of the scaling process in improvement of 

model results. 

In this study, we used an integrated ParFlow-CLM model, which is a physic-based and requires 

the many input data. Calibration of these models, unlike concept models, Due to the huge 

computational cost, is not widely used. In addition, only the two parameters of porosity and 

specific storage are constant and for calibration we can only change the value of these two 

parameters and run the model for several scenarios. If the number of these scenarios is high, the 

computational load will increase  significantly. However, a calibration with a limited number of 

scenarios may help to improve the results.  
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Chapter V: Multivariate satellite remote sensing data assimilation 

5.1 Introduction 

Terrestrial water storage (TWS) is the sum of available GW (groundwater), surface and snow 

water, as well as soil moisture (SM). TWS is a crucial variable for monitoring water resources 

in each of the 3 main water sectors (namely agriculture, drinking and industry). TWS estimation 

is essential for understanding past climate changes as well as future forecast in the hydrology 

cycle, river flow prediction and available water (Hirschi et al., 2007). TWS estimation can be 

further analyzed to obtain patterns of floods and heat waves. Each TWS component has a 

special impact on the climate as a whole. For instance, a major source of atmospheric humidity 

is supplied by soil moisture (Jung et al., 2010), therefore it is a strong contributor to the climate 

system (Seneviratne et al., 2010). In order to obtain accurate seasonal forecasts, soil moisture 

shall be accurately predicted. This was demonstrated successfully as it improved air 

temperature predictions in Europe and North America (Koster et al., 2010; van den Hurk et al., 

2012). In addition, snowpack is an important variable especially for correction of the 

temperature near the surface mainly in higher latitudes on a monthly temporal scale (Orsolini 

et al., 2013). Soil moisture is affected by groundwater, which in turn influences 

evapotranspiration. As a result, this variable is linked to available water in the long term and it 

is also an important climate change driver (Bierkens and van den Hurk, 2007; Green et al., 

2011). 

Despite the importance of having reliable estimates of TWS, knowledge about the spatial and 

temporal variations of TWS and its components is generally lacking. This is particularly true at 

large scales, or less-developed countries due to the absence of global monitoring systems 

(Soltani et al., 2020). Ground-based measurements, while very accurate, only provide point-

wise estimates (Dorigo et al., 2011; Lettenmaier and Famiglietti, 2006).  

This is where hydrological models shine as they are able to fill this gap at high spatiotemporal 

resolutions (e.g., Koster and Suarez, 1999; Döll et al., 2003; van Dijk, 2010; De Paiva et al., 

2013; Getirana et al., 2014). This is specifically true for Iran which lacks a comprehensive 

climate measurement system. As a result, hydrological models are invaluable tools for 

sustainable management of water bodies and agriculture (e.g., Bharati et al., 2008; Yu et al., 

2015; Kourgialas and Karatzas, 2015). However, lack of reliable data often means that the 
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modeling process is somewhat a blind process and this problem is compounded by errors in 

modeling and model parameter uncertainties (van Dijk et al., 2011; Vrugt et al., 2013). 

As a result, simulation results can be weakened. Subsequently, models can be made more 

reliable by data assimilation (Bertino et al., 2003). For this purpose, additional information is 

supplied by means of new datasets which can constrain the estimators of state to more 

meaningful values (Bertino et al., 2003; Hoteit et al., 2012). 

Assimilation of satellite data has applications in magnetospheric (Garner et al., 1999), ocean 

(Bennett, 2005; Lahoz et al., 2006) and atmosphere (Elbern and Schmidt, 2001; Schunk et al., 

2004; Altaf et al., 2014) studies. It is also predominantly used in hydrological models wherein 

the accuracy of water components needs to be enhanced (e.g., Reichle, 2002; Alsdorf et al., 

2007; de Goncalves et al., 2009; Renzullo et al., 2014; Dillon et al., 2016; Khaki et al., 2018a; 

Khaki et al., 2018b). 

With GRACE TWS data assimilation, the components of the water balance including soil 

moisture and groundwater storage can be quantified since errors are considered for both 

observations and the model. In addition, total water storage observation from GRACE can be 

spatially downscaled with the model, giving better resolution of water storage for the study area 

(see, e.g., Schumacher and Kusche, 2016). In addition, by using soil moisture data from satellite 

and assimilation of this dataset, soil moisture component becomes more accurate, thereby 

improving its updated estimates (e.g., Tian et al., 2017). It has been shown that using total water 

storage from GRACE and satellite soil moisture product is successful in constraining the 

hydrologic model outputs to more accurate values (Tangdamrongsub et al., 2020). 

Soltani et al. (2021) reviewed several studies that indicate GRACE TWS (e.g., Zaitchik et al., 

2008; Houborg et al., 2012; Li et al., 2012; Eicker et al., 2014; Reager et al., 2015; Girotto et 

al., 2016; Girotto et al., 2017; Khaki et al., 2018a; Khaki et al., 2018b) and satellite soil moisture 

(e.g., Renzullo et al., 2014; Dumedah et al., 2015; Tian et al., 2017; Kolassa et al., 2017) for 

data assimilation can successfully constrain the hydrological models simulations. 

The main objective of this study is using to use multi-mission satellite data products to improve 

predictions of sub-surface water storages in the hydrology model over a case study in Iran. As 

a result, GRACE-derived TWS and soil moisture observations from the SMOS are assimilated 

in the couple ParFlow-CLM hydrological model (or TerrSys-MP). TerrSys-MP coupled to the 
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to the PDAF library (Parallel Data Assimilation Framework) (Kurtz et al., 2016; Nerger and 

Hiller, 2013). This is an efficient numerical tool which is capable of performing assimilation 

tasks in parallel, thereby making it attractive for applications at large spatial scales and high-

resolution over long periods of time (Kurtz et al., 2016). This study uses the Ensemble Kalman 

Filter (EnKF) filter method (Whitaker and Hamill, 2002) in order to assimilate TWS from 

GRACE and soil moisture products from SMOS via the ensemble-based sequential technique 

into the Terrsys-MP. 

Data assimilation efficacy is studied herein for missing signals of water storage especially 

extreme climate change and human effects. By utilizing satellite data assimilations, the model 

is constrained and the data and model uncertainties become limited. Therefore, the problem of 

missing signals of water storage can be somewhat alleviated. For this purpose, a case study in 

the west of Iran is selected, because this basin recently experienced a catastrophic flood which 

affected several provinces during the spring heavy rains. Unprotected ground by bushes and 

trees, the surface soil was washed away by the torrential rain, creating mud flow which 

inundated cities, urban areas and villages. Large scale damage to homes, infrastructures, 

farmlands and animal production units occurred, while other sectors suffered as well.  

It should be pointed out that other similar regions were also studied previously by the authors 

using different satellite products and hydrological models (e.g., Khaki et al., 2018a; Khaki et 

al., 2018b; Tangdamrongsub et al., 2020). However, the novelty and the difference between the 

previous studies and the current study is that for the first time, both soil moisture product from 

SMOS and TWS data from GRACE are simultaneously assimilated into the ParFlow-CLM 

hydrology model. 

In the remainder of this study, section 2 describes the geographical location of the study area 

with an emphasis on the long-term climate condition. Datasets and methodology including a 

brief overview of the equations used in the model and the data assimilation filtering scheme are 

presented in Section 3. In addition, the input variables and observational data sets used for 

model comparison are also presented. Results and discussions are provided in Sections 4 and 

5, respectively, and the study concluded in Section 6. 
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5.2 Case Study 

The case study is some of the most important sub-basins of the west and southwest of Iran 

including Karun, Jarahi and Karkheh with a total area of 158,000 km2, comprising ten percent 

of Iran’s surface area. These sub basins are bounded by [29°N 35° N] and [46° E and 53° E], 

in the west of Iran (Fig. 5.1). The northern neighbor is the Kordestan province, the north-

western neighbor is Ilam province, the southeastern neighbor is Bushehr province, the eastern 

neighbors are Markazi and Esfahan provinces, the southern neighbor is Persian Gulf, and the 

western neighbor is Iraq. 

The study area has a semi-arid climate zone based on the De Martonne aridity index and the 

average temperature in the summer and winter are 48° and 4°C, and the annual rainfall is 486.5 

mm. Deserts in this zone have an area of 1.3×106 ha, which is equal to two percent of the 

country’s area, which are predominantly located in the south and southwest arid and hyper-arid 

climatic zones (Ardebili and Khademalrasoulb, 2018). 

The important rivers that run through this basin are Jarahi, Karkheh, Karun, Zohreh and Dez, 

supplying 34×109 m3 of water, which is equal to 33% of the total water resources of the entire 

country. This basin is a center for crops and tree cultivation which are fed off the five big rivers, 

and grow on the suitable plains of the southwest for agriculture (Ardebili and Khademalrasoulb, 

2018).
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Fig. 5.1 The geographical location of the case study, located in West of Iran, overlaid by the Digital Elevation Model (DEM) of the basin as well 

as the river network.
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5.3 Methodology and Data 

5.3.1 Model Description: TerrSysMP 

TerrSysMP (Shrestha et al., 2014) is a new land based hydrologic models which is scale-

consistent and modular. It has three models for land surface, atmosphere and the groundwater 

which are well-known models. TerrSysMP’s land surface part is CLM v. 3.5 (Oleson et al., 

2004, 2008). The transfer of momentum, energy and the carbon cycle are calculated in CLM 

by considering 10 layers of soil with varying thicknesses, amounting to 3 meters in total. For 

calculating soil temperature and moisture dynamics, only the z-direction is considered. In other 

words, the grid cells do not communicate laterally in this regard. For snow deposition, five 

layers are used at most over the top of the soil. For plant representation, sixteen plants with 

various physiological characteristics are considered, each having different land surface flux, 

vegetative radiative transfer and carbon exchange values. There are prognostic parameters in 

CLM. These include soil moisture, temperature and water storage in the subsurface part; flow 

routing model, land fluxes including vegetation and soil evaporation, plant transpiration, and 

sensible heat flux from both the soil and plants; transfer through radiation via transmittance and 

adsorption of solar radiation, and emission and adsorption of short wavelength radiations as 

well as the exchange of carbon. 

TerrSysMP uses ParFlow (v3.5) which is the variably saturated finite-difference groundwater 

model (Ashby and Falgout, 1996; Jones and Woodward, 2001; Kollet and Maxwell, 2006; 

Maxwell, 2013). ParFlow employs the three-dimensional Richards equation and includes a 

surface water routing scheme, which is based on the kinematic wave approximation of overland 

flow coupling subsurface and overland flow in an integrated fashion (Kollet and Maxwell, 

2006). The Newton-Krylow scheme (Jones and Woodward, 2001) is used for solving the partial 

differential equations. In addition, discretization in the z direction is variable and the grid 

transform follows the terrain (Maxwell, 2013). Thereby, large topographic slopes are permitted 

for the groundwater flows. More details about this physic-based model can be found in Shrestha 

et al. (2014). 

5.3.1.1 Water Balance 

ParFlow can perform water balance calculations for the Richards' equation, overland flow, and 

CLM capabilities. There are two types of water balance storage: subsurface and surface, as well 

as two types of flux calculations: overland flow and evapotranspiration. The storage 



Chapter V: Multivariate satellite remote sensing data assimilation 

----------------------------------------------------------------------------------------------------------------- 

112 

 

components are measured in units [L3], whereas the fluxes can be instantaneous and measured 

in units [L3T−1] or cumulative over an output interval and measured in units [L3]. The water 

balance has the following form (Maxwell et al., 2016): 

/sink

[Vol Vol ]surface subsurface
overland evapotranspiration sourceQ Q Q

t

 +
= + +


                                                             (5.1) 

where Volsubsurface is the subsurface storage [L3], Volsurface is the surface storage [L3], Qoverland 

is the overland flux [L3T−1], Qevapotranspiration is the evapotranspiration flux passed from 

CLM [L3T−1], and Qsourc/esink are any other source or sink fluxes specified in the simulation 

[L3T−1]. 

Only the external fluxes passed from CLM are included in Qevapotranspiration, which needs to 

recorded in ParFlow as a variable in ParFlow. It is important to note that these volume and flux 

quantities, like any other quantity in ParFlow, are computed spatially across the entire domain 

and returned as array values. The subsurface storage is computed for all active cells in the 

domain, as follows (the outcomes represent as an array of balances by domain) (Maxwell et al., 

2016): 

Vol [S( )S S( )( ) ]subsurface s x y z x y z    


=    +                                                                       (5.2) 

The surface storage is determined using the continuity equation over the top surface boundary 

cells in the domain  ,as obtained by the mask. This is done on a cell-by-cell basis (resulting in 

an array of balances across the domain) like follows (Maxwell et al., 2016): 

Volsurface x y


=                                                                                                                                              (5.3) 

The following is a brief summary of the continuity equation. The kinematic wave equation is 

now used in ParFlow to represent shallow overland flow. The continuity equation in two spatial 

dimensions is written as (Maxwell et al., 2016): 

.(v ) q ( )s
s r x

t





=  +


                                                                                                        (5.4) 

where v represents the depth averaged velocity vector [LT −1], s represents the surface ponding 

depth [L], and qr(x) represents a general source or ink (e.g., rainfall) rate [LT −1]. Any cell at 

the top boundary with a slope that points out of the domain and is ponded will remove water 
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from the domain for the overland flow outflow. This is determined as a multiple of Manning's 

equations (which is used to build a flow depth-discharge relationship) and the area in the y-

direction (Maxwell et al., 2016): 

, 5/3f y

overland s

S
Q VA x

n
= = −                                                                                             (5.5) 

5.3.2. Data Assimilation Methodologies 

5.3.2.1 Data Assimilation Framework 

For assimilating satellite product into the ParFlow-CLM, the Parallel Data Assimilation 

Framework (PDAF) (Nerger and Hiller, 2013) was utilized. It provides data assimilation 

methods such as local ensemble transform Kalman filter (LETKF) (Hunt et al., 2007) and 

ensemble Kalman filters (EnKF) (Evensen, 2003; Burgers et al., 1998). EnKF is widely used in 

the previous studies due to its flexibility and simplicity of use in land surface models (e.g., 

Draper et al., 2012; Kumar et al., 2008, 2009; Crow and Wood, 2003). Model state ensembles 

are created for estimating error covariance matrix of the state variable. This allows optimal 

merging of observations and model prediction.  

The updated state variable  
tx+  in EnKF is ensemble of the model prediction of the state variable 

or 
tx   for time t, given by: 

 t t t t t tx x k l H X+ = + −                                                                                                                 (5.6) 

Here, the perturbed observation vector is 
tl . The Kalman gain vector 

tk  can be defined via: 

( )
1

T T

t t t t t t tk PH R H PH
−

= +                                                                                                           (5.7) 

Here, Rt is the observation error matrix (a priori assigned as the expected observation error of 

the soil moisture product from SMOS, T

tH  is the matrix of the observation model at time t 

(transposed), and 
tP is the error covariance matrix for the state variable related to model 

prediction, which is obtained from: 

( )( )
1

1

N
T

n n

n
t

x x x x

P
N

=

− −

=
−


                                                                                                          (5.8) 
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Here, x̅ is the ensemble mean soil moisture or head pressure vector that contains values for all 

of the grid cells. The number of ensemble members is given by N . 

Kurtz et al. (2016) recently proposed a framework that integrates PDAF with the land surface–

subsurface parts of the Terrestrial Systems Modelling Platform (TerrSysMP) (Shrestha et al., 

2014). They demonstrated how TerrSysMP-PDAF makes optimal use of parallel computational 

resources, which is necessary for simulating predicted states and fluxes over large geographic 

areas and for prolonged simulations. TerrSysMP-PDAF is used in this work, wherein the PDAF 

is combined with the ParFlow-CLM for pressure and/or soil moisture data assimilation. 

Technical explanations of coupling and model performance can be found in Kurtz et al. (2016).  

TerrSysMP-PDAF requires (i) filter algorithm parameters, (ii) observation files, and (iii) 

instructions for building an ensemble of model runs as input (Fig. 5.2). TWS data and error 

information were derived using GRACE level 2 data, and model input data were generated 

during pre-processing. Post-processing involves evaluating ParFlow-CLM output against 

independent data sets. We evaluated the results of simulations by a cross-validation with SMAP 

data and in-situ groundwater measurements as shown in Fig. 5.2. 
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Fig. 5.2 Flowchart showing the general set-up of the data assimilation experiments realized 

within 
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this study including (i) the pre-processing of model input and observations, (ii) the data 

assimilation framework TerrSysMP-PDAF, and (iii) the validation of the performance of the 

assimilated model. 

5.3.1.2 CLM-ParFlow-PDAF experimental design 

The assimilation tests were carried out from March 2015 to March 2020. To acquire equilibrium initial 

state variables, a ten-year spin up was undertaken by simulating the input data of 2015 ten times. We 

used ParFlow-CLM for a case study of Iran with a spatial resolution of 0. 25° in this work. The model 

was run with a 3-hour time step and a 5-day time window for soil moisture updates. 

Because assimilation observations have various temporal resolutions, such as monthly GRACE TWS 

and daily soil moisture measurements, soil moisture observation is temporally rescaled into a 5-day 

resolution for data assimilation and GRACE TWS data is assimilated into the model in monthly time 

scale. In this study, we assumed a spatially uniform observational error of 0.04 mm3/mm3 for SOMS 

(Colliander et al., 2017; Lievens et al., 2015; Liu et al., 2016 ) and a diagonal error covariance 

matrix for GRACE TWS data in the CLM-ParFlow-PDAF setup. 

Both atmospheric forcings and soil properties affect the results of a land surface model. Precipitation 

and soil texture (%sand and %clay) were disturbed in this study to account for uncertainty in atmospheric 

forcing and soil texture. Precipitation received multiplicative perturbations that were log-normally 

distributed, geographically homogenous, and temporally uncorrelated. The applied perturbation factors 

for precipitation had a mean and standard deviation of one and 0.10, respectively. A random noise with 

a standard deviation of 15% was used to disrupt the sand and clay content. The sand and clay content 

were confined to have a total of 100% in order to ensure the physical meaning of the soil parameters. 

In the simulation/assimilation experiment, the initial ensemble size for precipitation and soil texture was 

set to 16 to update the soil moisture of the top soil layer (0-5cm) and pressure head. The main experiment 

consists of four CLM-PDAF simulations: (a) SMOS data assimilation, (b) GRACE TWS data 

assimilation and (c) combined SMOS and GRACE data assimilation (Fig. 5.11). 
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Fig. 5.11 Three different DA scenarios, (a) SM DA, (b) GRACE DA, and (c) multivariate DA. 

The SM DA updates the state estimate using the time window of approximately five days (green 

rectangle in (a)) while the GRACE DA uses the time window of approximately one month 

(yellow rectangle in (b)). In the multivariate DA, the SM DA is first performed, and its updated 

states are used as the forecast state in the GRACE DA. 

5.3.3 Observation Operator 

GRACE observations pose particular challenges for the observation operator, which relates the 

model states to the observations. While GRACE observations are usually available as monthly 

solution with a spatial resolution of few hundred kilometers, CLM-ParFlow over a case study 

in Iran runs at 3-hourly time steps at a 0.25° grid. This temporal and spatial resolution mismatch 

has been addressed by previous studies.  

In the following subsections, an overview on different observation operators for GRACE 

observations is given along with the presentation of the observation operator implemented in 

this thesis. 
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5.3.3.1 Temporal Aggregation 

3-hourly simulation time steps of CLM-ParFlow have to be matched to monthly averages of 

TWSA from GRACE. This temporal resolution mismatch is addressed when setting up the state 

vector, computing the analysis increment, and applying the analysis increment to the model. 

Technically, the assimilation increment can be calculated at arbitrary points in time within the 

assimilation interval. In this thesis, the GRACE DA uses the time window of approximately 

one month. We have applied the whole monthly increment to the last day of the month, followed 

by the model integration over the next month. 

 5.3.3.2 Spatial Aggregation 

The model state vector holds temporally averaged compartments of TWS for each of the 0.25° 

* 0.25° model grid cells. The model state vector is transformed into observation space by the 

mapping operator, which includes (i) vertical aggregation of all TWS  compartments, and (ii) 

horizontal averaging of the model grid cells to the coarser observation  grid (which has a grid 

size of 1°). 

One challenge with respect to the horizontal averaging is that TWS from all model grid cells 

within a defined distance in longitude and latitude direction to a specific observation was 

summed up for each ’clump’ separately. (In the following, only observations grid cells were 

considered, which are supported by at least half of the number of possible model grid cells, i.e., 

in the case of a 1°*1°observation grid ((1°)2/ (0.25°)2)/2 =32 model grid cells (0.25° is the 

resolution of the CLM-ParFlow grid). 

5.3.4 Data 

5.3.4.1 Land surface data and atmospheric forcing 

The land surface input data include topography, land cover, soil characteristics, and 

physiological parameters of the canopy which are static variables. Global Multiresolution 

Terrain Elevation Data 2010 (Danielson et al., 2011) was used as Digital elevation model 

(DEM) which has a resolution of 1km (see Fig. 5.). The Moderate Resolution Imaging 

Spectroradiometer (MODIS) satellite land-use classification (Friedl et al., 2002) was also used, 

wherein it was converted to Plant Functional Types (PFT). In order to include the soil 

characteristics, the percentage of soil and clay were obtained using FAO/UNESCO Digital Soil 

Map of the World (Batjes, 1997) which has numerous soil classes consisting of 19 classes, 
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which was based on Schaap and Leij (1998)’s pedotransfer functions. For the manning’s 

coefficient, the proposed relationship between landcover type and manning’s coefficient is used 

(Asante et al., 2008). 

The atmospheric forcing of the coupled ParFlow model with CLM including barometric 

pressure, wind speed, precipitation, specific humidity, downward shortwave and longwave 

radiations and air temperature near the surface is provided from GLDAS-Noah Land Surface 

Model L4 V2.1 data (https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_3H_2.1), which 

has a spatial resolution of 0.25° (~27 km) and temporal resolution of 3-hourly, used for the time 

period of 2015-2020 (Beaudoing and Rodell., 2020; Rodell et al., 2004). All model inputs were 

re-projected to have an equal cell size of 0.25°. In this study, the model was directed for a total 

thickness of 300 m over 100 model layers with different thickness. The model was implemented 

with a horizontal resolution of 0.25° with nx=28, ny=24. The porosity and specific storage are 

constant and equal to 0.4 and 10-5, respectively.   

5.3.4.2 GRACE TWS 

The GRACE data release 05 (RL05) was received between March 2015 and June 2017 from 

the University of Texas at Austin's Center for Space Research (CSR) (Bettadpur, 2012). The 

monthly spherical harmonic coefficients (SHC) complete up to degree and order 96 is included 

in the package. The GRACE-derived TWS, as well as its uncertainty over the case study, are 

calculated as follows: First, the Swenson et al. (2008) degree 1 coefficients (SHC) are restored, 

and the C20 term is replaced by the value derived from the satellite laser range (Cheng and 

Tapley, 2004). Second, the mean (March 2015–June 2017) is calculated and subtracted from 

the monthly product to produce the SHC variations, then restriping (Swenson and Wahr, 2006) 

and 300-km radius Gaussian smoothing filters are applied to the SHC variations to reduce the 

high-frequency noise. Third, following the method outlined by Wahr et al. (1998), the TWS 

variation (TWS) is computed from the filtered SHC variations. The basin averaged TWS is 

employed in this study because the GRACE-derived TWS exhibits no substantial spatial 

variations over the study area. Finally, a signal restoration algorithm (e.g., Chen et al., 2014) is 

used to the computed TWS to restore the damped signal created by the filters used. The strategy 

iteratively searches for the true TWS using a forward model built entirely from GRACE data. 

To be consistent with the model estimate, the ParFlow-CLM estimate's temporal mean value of 
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TWS (March 2015–June 2017) is added to the GRACE-derived TWS to produce the absolute 

TWS prior to the assimilation procedure (Zaitchik et al., 2008). 

5.3.4.3 Error analysis 

The GRACE data release 05 (RL05) time series provide monthly means of the spherical 

coefficients and the associated error information as well. The full covariance matrix of the 

potential coefficients is available and will be used in the developed assimilation. The variances 

and covariances comprise the errors in the determination of the satellite’s positions, random 

errors in the measurement of the distance between the two satellites and the non-gravitational 

forces and random errors of the oscillator. The full error information of the coefficients is used 

for error propagation of equivalent water heights. Furthermore, the applied background models 

(atmosphere, ocean, earth tides, etc.) are not free of errors.  

Leakage due to filtering has not to be considered in the error propagation because the 

application of the Ensemble Kalman Filter involves that no filtering during the preprocessing 

of the GRACE data is required. For the assimilation of GRACE data into the hydrological 

model CLM-ParFlow the full covariance matrix Rt of the Stokes’ coefficients is used up to 

degree 96. The main diagonal of the matrix contains the variances of the coefficients. The other 

elements contain the inter-coefficient covariances. The structure of the m×m covariance matrix 

of the m potential coefficients is displayed below: 
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                                                                                      (5.9) 

5.3.4.4 SMOS 

This research relies on daily satellite soil moisture retrievals from the Soil Moisture and Ocean 

Salinity (SMOS, Kerr et al., 2012) and Soil Moisture Active Passive (SMAP, Entekhabi et al., 

2010) missions. The level 3 gridded product (Al Bitar et al., 2017) given by the centre Aval de 

Traitement des Données SMOS (CATDS, https://www.catds.fr) run by the French Research 

Institute for Exploitation of the Sea for the Centre National d'Etudes Spatiales (CNES) is used 

to collect SMOS data (IFREMER). On the Equal-Area Scalable Earth (EASE; Brodzik et al., 

2012) grid, data are accessible from January 2010 to present, with a spatial resolution of 25 km. 
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SMOS data with a daily temporal resolution are spatially rescaled from 25 km×25 km to 

0.25◦×0.25◦ resolution using the nearest neighbor interpolation to match CLM-ParFlow.  

5.3.4.5 Evaluation Dataset 

5.3.4.5.1 SMAP 

The National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC, 

https://nsidc.org/data/smap) supplied a grid product (SPL3SMP). The volumetric soil moisture 

obtained by the SMAP level 3 (version 4) passive microwave radiometer, available from 2015 

to the present, is included in this package. To match the observations with the model grid space, 

the data for both SMOS and SMAP are resampled to a 25 km regular grid. When more than one 

SM retrieval is available on a given day, the daily average is employed to assure model time 

step consistency. 

5.3.4.5.2 Groundwater Data 

 In-situ groundwater level data collected from the Iran Water Resources Management Company 

(IWRMC) for observation wells scattered across the case study is used (http://www.wrm.ir), to 

compare our findings with them across the case study. The size of each aquifer is used to convert 

the IWRMC volumetric groundwater change values to equivalent water height. The results are 

then evaluated using an area-averaged time series of groundwater changes for each aquifer. The 

modified in-situ groundwater time series are compared to the aquifer's average assimilation 

findings individually.  

5.3.5 Probabilistic Assessment of Different DA Strategies  

5.3.5.1 The First Order Reliability Method (FORM) 

The FORM is a frequently used approach for assessing a system's structural reliability (Zhao et 

al., 2020). In order to approximate the failure function of the examined system, the technique 

uses a Limit State Function (LSF) constructed via Taylor expansion in Eq. 5.9 (Soltani et al., 

2020).  

( ) ( ) ( ) ( ) .( )T

m m mG y L y G y G y y y= = +  −                                                                                                   (5.10) 

where G(y) is the water budget closure failure function of a hydrologic system, L(y) is the LSF 

linearization, 
1 2(y , ,..., )ny y y= is the vector of n variables in G(y) function, ym is the 

expansion point, and G is the first order gradient vector of G(y). 



Chapter V: Multivariate satellite remote sensing data assimilation 

----------------------------------------------------------------------------------------------------------------- 

122 

 

In this study, the FORM is used to validate the results of model used for assessing the accuracy 

of different DA. The failure function G(y) of hydrologic system is defined as follows: 

Model

1

( )
1

i iEstimation Observation

i n

i

G y r

P
n

−
= =


                                                                                                               (5.11) 

where i is a pixel number, and n is the total number of months. Since many current studies 

found out that the closure of different DA strategies is between 5% and 25% of corresponding 

average precipitation (Long et al., 2014, Sahoo et al., 2011). We considered that when ri of 

hydrologic system is less than 0.2, the model’s results from different DA strategies are 

satisfactory. 

The strategy is looking for to a point y* which is called the most probable failure point by 

calculating the shortest distance between the origin and failure surface with the constraint 

of (y) 0G  . This shortest distance is called the reliability index 
*y = ( see Soltani et al., 

2020 for point-by-point application forms of this strategy). 

The failure probability of a hydrologic system can be approximated using the reliability index 

β after it has been calculated as follows: 

( )fP =  −                                                                                                                                                         (5.12) 

Herein Pf is the hydrologic system's failure probability and ( ) − is the standard normal 

variate's cumulative distribution (Madsen et al., 1986). As a result, the smaller the value, the 

lower the uncertainties in model’s results and the higher the system reliability. 

5.4. Results 

5.4.1 DA impacts on Spatially-averaged of state variables 

5.4.1.1 Soil Moisture Variations  

The spatially averaged time series of the SM 0−5cm variations estimated from the model top layer 

open-loop and all DA strategies are presented in Fig. 5.4. The SMAP data is used for validation 

which shows that the application of data assimilation reduces misfits between the results and 

SMAP data compared to the open-loop. The validation is carried out in terms of correlation and 
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absolute error, with the estimated values presented in Fig. 5. and  Fig. 5.6, respectively. With 

an averaged correlation value of 0.67, ParFlow-CLM performs very well in the estimate of the 

SM 0−5cm and gives good agreement with SMAP data at all sites (see ensemble open loop in Fig. 

5.). The SMOS assimilation also minimizes erroneous peaks of the SM 0−5cm estimate, such as 

in November 2018 (Fig. 5.4) and May 2018 (Fig. 5.4), resulting in greater agreement with the 

SMAP data. Clearly, the SMOS data should be taken into account in the DA process in order 

to retain the accuracy (in terms of agreement with the SMAP data) of the SM 0−5cm estimate in 

the case study. The SM DA and multivariate DA increase the correlation value by 0.17 and 

0.22, respectively (from 0.67 to 0.84 and 0.89). Since satellite SM observation is employed in 

the SM DA and multivariate DA, an improved outcome is expected. The GRACE DA, on the 

other hand, appears to have a negative impact on the SM 0−5cm estimate (see, Fig. 5.5 and  Fig. 

5.6). The GRACE DA reduces the correlation by 0.08 when compared to the ensemble open 

loop. Poor performance is owing to sensitivity of GRACE data to the signal associated with the 

top soil component. The results of multivariate DA utilizing SMOS and GRACE data between 

March 2015 and June 2017 are compared to SMAP data (Fig. 5.4). The daily SM 0−5cm 

estimations of SMOS assimilation clearly show a greater agreement with SMAP data 

(comparing to the ensemble open loop) (see, Fig. 5.5 and  Fig. 5.6). 

 

Fig. 5.4 The monthly spatially-averaged of the soil moisture variations simulated for the first 

soil layer (0-5 cm) from different DA strategies (SM DA, GRACE DA, and multivariate DA). 

The SMAP observation and the ensemble open loop estimates are also shown for comparison. 
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Fig. 5.5 Average correlations between SM 0 –5 cm variations derived the SMAP and simulated 

by ParFlow-CLM before DA (open loop) and after different DA strategies (SM DA, GRACE 

DA, and joint DA).  

 

Fig. 5.6 Absolute error bars of the SM 0 –5 cm variations simulated by ParFlow-CLM before DA 

(open loop) and after different DA strategies (SM DA, GRACE DA, and joint DA) in 

comparison to the SMAP observations. 
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4.1.2 TWS Variations 

The basin-averaged time series of TWS variations from ParFlow-CLM before and after 

assimilating three different DA strategies is shown in Fig. 5.7. Fig. 5.7 shows larger amplitude 

of TWS variations for the data assimilation results compared to open-loop results. Also, Fig. 

5.8, shows the correlation with respect to GRACE observation. Assimilating SM not only has 

the least impact on the TWS variations but also results a negative impact. As a result, our 

findings show a lower level of agreement between the state estimate and the GRACE 

observation. The SM DA, reduces the averaged correlation value by ~0.07 (Fig. 5.8). 

In the GRACE DA, the constraint is applied to the entire water column, leading to an improved 

agreement between the TWS variation estimate and the GRACE observation. The constraint is 

applied to the full water column in the GRACE DA, resulting in better agreement between the 

TWS estimate and the GRACE observation. The averaged correlation value is increased by 

0.20 compared to open-loop results (Fig. 5.8). GRACE DA appears to be more useful for 

improving TWS estimations than SM DA, but it may be of reduced benefit for the estimation 

of the other components (see, Fig. 5.8 and  Fig. 5.9). The idea of incorporating the SM and 

GRACE observations into the model at the same time is motivated by the underlying strengths. 

Fig. 5.7 also shows the multivariate DA results using SMOS and GRACE data between March 

2015 and June 2017 are compared with GRACE data. TWS estimations derived joint clearly 

demonstrate better agreement with GRACE data (comparing to the ensemble open loop and 

GRACE DA). When compared to open-loop results, the averaged correlation value increases 

by 0.22 (Fig. 5.8). The SM 0 - 5cm and TWS variations components of the multivariate DA are 

modified toward the SMAP and GRACE observations, yielding in final state estimates that 

agree with both observations. TWS variations predicted with multivariate DA agree with 

GRACE observations by 0. 2 in cross-correlation (Fig. 5.8) while, at the same time, the SM 0 - 

5cm estimate has a better correlation with SMAP data by 0.17. (See Fig. 5.8). TWS correlation 

increased by more than a factor of 1.3 using the GRACE DA and multivariate DA (Fig. 5.8). 

The SM DA, as expected, cannot provide a reliable TWS estimate, as evidenced by the 

correlation, which is less than the GRACE DA and multivariate DA (Fig. 5.8). 
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Fig. 5.7 The monthly spatially-averaged of the total water storage variations simulated from 

different DA strategies (SM DA, GRACE DA, and multivariate DA). The GRACE observation 

and the ensemble open loop estimates are also shown for comparison. 

 

Fig. 5.8 Average correlations between the total water storage variations simulated from 

different DA strategies (SM DA, GRACE DA, and multivariate DA) and the GRACE data.  

4.1.3 Groundwater storage Variations 

Fig. 5.9 depicts time series of monthly-averaged of groundwater (GW) variations over the case 

study for the time period of 2015-2017. In-situ groundwater measurements is used to validate 
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assimilation results of the different DA strategies and the average correlation coefficients and 

their absolute error regarding to in-situ groundwater measurements are shown in Fig. 5.10 and 

Fig. 5.11, respectively. The application of the SM DA results in an inaccurate groundwater 

storage estimate in Fig. 5.9, with a considerable difference between the GW estimate and in-

situ groundwater measurements. The lack of groundwater information in the satellite SM 

observation can be attributed to the poor performance. When compared to the ensemble open 

loop estimate, the assimilation of GRACE data (in both GRACE DA and multivariate DA) 

boosts the correlation and decrease absolute error between the GW estimate and in-situ 

groundwater storage changes by a factor of more than two (see, Fig. 5.10 and Fig. 5.11). As a 

result, GRACE is more sensitive to the signal from the groundwater than the shallow storage 

component.  

When compared to assimilating GRACE-only, assimilating both GRACE and SMOS 

observations performs better in the GW variations estimate and delivers a 0.07 greater average 

correlation (Fig. 5.10). The GRACE DA updates GW variations in the multivariate DA after 

the SM DA is applied. The use of the SM DA (in the multivariate DA) likely reduces the 

uncertainty of the state estimate, which increases the contribution of GRACE in the GRACE 

DA. Groundwater trends are generally negative in all time period. Again, it can be concluded 

that without using assimilation, these correct negative trends are not captured. 
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Fig. 5.9 The monthly spatially-averaged of the groundwater variations simulated from different 

DA strategies (SM DA, GRACE DA, and multivariate DA). The in-situ groundwater 

measurements and the ensemble open loop estimate are also shown for comparison. 

 

Fig. 5.10 Average correlation coefficients of the groundwater variations simulated from 

different DA case studies (SM DA, GRACE DA, and multivariate DA) and the in-situ 

groundwater observation. 

-250

-200

-150

-100

-50

0

50

1
2

/2
7

/2
0

1
4

4
/6

/2
0
1
5

7
/1

5
/2

0
1

5

1
0

/2
3

/2
0

1
5

1
/3

1
/2

0
1

6

5
/1

0
/2

0
1

6

8
/1

8
/2

0
1

6

1
1

/2
6

/2
0

1
6

3
/6

/2
0

1
7

6
/1

4
/2

0
1

7

G
ro

u
n

d
w

a
te

r 
S

to
ra

g
e

V
a
ri

a
ti

o
n

 (
m

m
)

Time

Open Loop Joint DA GRACE DA

In-Situ SM DA

0.77

0.89

0.82

0.73

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Open Loop Joint DA GRACE DA SM DA

C
o
rr

el
a
ti

o
n



Chapter V: Multivariate satellite remote sensing data assimilation 

----------------------------------------------------------------------------------------------------------------- 

129 

 

 

Fig. 5.11 Absolute error bars of the groundwater variations simulated by ParFlow-CLM before 

DA (open loop) and after different DA strategies (SM DA, GRACE DA, and joint DA) in 

comparison to in-situ measurements. 

 

5.4.2 DA impacts on Temporally-averaged of state variables 

5.4.2.1 Observation impacts on state variables 

Fig. 5.12 shows temporally-averaged of the SM 0 - 5cm variation from the ParFlow-CLM 

experiments derived ensemble open loop and different DA strategies (SM DA, GRACE DA, 

and joint DA) and the SMAP data. Fig. 5.13 evaluates the performance of the DA in terms of 

BIAS error against the SMAP data to investigate the impact of different DA strategies on the 

SM 0 - 5cm estimates.  In comparison to the ensemble open loop, the SM DA and multivariate 

DA provide smaller BIAS error values (Fig. 5.13). This is to be expected, given that the SMOS 

data are incorporated into the state estimate via the SM DA and multivariate DA applications. 

The Kalman gain tries to statistically enhance the fit between the SM 0 - 5cm estimates and the 

SMAP observation, resulting in better agreement. 

GRACE DA, on the other hand, increases the BIAS error. The increase is most likely caused 

by low sensitivity of GRACE observations to top soil moisture. The top soil component is 

largely influenced by high-frequency meteorological forcing, but GRACE can only monitor 

monthly basin-averaged TWS changes, which are dominated by deep-water storage component 
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low-frequency variability. It is worthy to note that GRACE data alone cannot offer the high 

spatiotemporal variability required to simulate water storage in the top soil layer. The BIAS 

error (ensemble spread) of the SM 0 - 5cm estimate is reduced in all DA strategies (Fig. 5.13). 

The SM DA and multivariate DA reduce uncertainty when compared to the ensemble open 

loop, while the GRACE DA reduces uncertainty. Importantly, the SM DA and multivariate DA 

applications result in less uncertainty than the allocated SMAP uncertainty estimate. 

Furthermore, the uncertainty of the SM 0 - 5cm estimate is smaller in the south-eastern parts of 

the basin. 

Fig. 5.14 evaluates the performance of the DA in terms of absolute error against the in-situ 

groundwater measurements data to investigate the impact of different DA strategies on the 

groundwater variations estimates.  As it is shown in Fig. 5.14, the BIAS inaccuracy indicates 

bigger differences from north to south and the biggest BIAS error is evident in the southwest 

of the basin and a similar pattern may also be seen in all DA scenarios. The BIAS inaccuracy 

in Fig. 5.14 clearly demonstrates the effect of DA.  In SM DA, the biggest uncertainty is seen 

compared to other DA scenarios and ensemble open loop estimate, particularly in the central 

part of the basin. In GRACE DA and Joint DA, the uncertainty decreases and the lowest 

uncertainty is seen especially for the central part of the basin which extend north and west in 

Joint DA. 
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Fig. 5.12 Temporally averaged of soil moisture variations from different DA strategies (SM DA, GRACE DA, and multivariate DA) over the 

case study. The ensemble open loop estimates and SMAP data are also shown for comparison.
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Fig. 5.13 BIAS between temporally averaged of soil moisture variations from different DA 

strategies (SM DA, GRACE DA, and multivariate DA) and the SMAP data. The ensemble open 

loop estimate is also shown for comparison. 
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Fig. 5.14 BIAS between temporally averaged of groundwater storage variations from different DA 

approaches (SM DA, GRACE DA, and multivariate DA) and in-situ groundwater measurements. 
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5.4.2.2 Evaluating of Uncertainty of Different DA Strategies 

5.4.2.2.1The First Order Reliability Method (FORM) 

The failure probability of LSF is investigated as a criterion to assess the reliability of the model's results 

through using a novel application of the First Order Reliability Method (FORM). By specifying r smaller 

than 0.2 (see, section 3.4.1), it can be used as a criterion to assess the reliability of model's results. To 

achieve this, the FORM calculates the failure probability (Pf) of the model's results closure. The 

results of the FORM implementation in Table 5.1 show that failure probability of multivariate data 

assimilation is lowest value and the best solution was found to be multivariate data assimilation of 

both GRACE and SMOS data for improving soil moisture and groundwater estimates. Pf of 

groundwater estimate using SM DA is larger than all DA strategies, and Pf of groundwater estimate 

using GRACE DA and Joint DA is lower than all DA strategies. Pf of soil moisture estimate using 

SM DA is lower than all DA strategies, and Pf of soil moisture estimate using GRACE DA is larger 

than all DA strategies which indicates that the performance of DA mainly depends on the type of 

observations that are assimilated. 

Table 5.1 Evaluating of uncertainty in different DA strategies and ensemble open loop estimate 

of state variables 

DA Strategies Pf 

 Soil Moisture                     Groundwater 

Open Loop           7%                                               5% 

SM DA           3%                                                7% 

GRACE DA 9%                                                3% 

Joint DA 4%                                                2% 

 

5.5. Discussion 

Khaki et al. (2018b) included GRACE TWS into the World-Wide Water Resources Assessment 

(W3RA) model to individually examine different water budget components such as groundwater, 

soil moisture, and surface water storage over Iran's six major drainage divisions from 2002 to 2012. 

It has been discovered that using GRACE TWS data assimilation can considerably improve the 

performance of W3RA in order to better understand water availability in different locations. 
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Assimilation of GRACE TWS data successfully corrects for open-loop simulation variations 

which is especially important for groundwater storage which is in agreement with our results. 

Khaki et al. (2018b) found out that, the groundwater trend is negative in a major part of the western, 

and southern regions, representing a significant water availability challenge and Iran is becoming 

significantly dryer. 

Khaki and Awange (2019) used the Ensemble Square-Root Filter (EnSRF) to integrate multi-

mission satellite datasets such as TWS from the GRACE satellite mission and soil moisture 

products from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-

E) and SMOS into the W3RA model for estimating groundwater and soil moisture over South 

America. The use of joint data assimilation improves W3RA estimations when compared to 

groundwater in-situ measurements which is in a good agreement with our results. This effect was 

clearly seen for TWS estimations and, more critically, groundwater simulations, highlighting the 

potential for assimilating remotely sensed products to improve the W3RA hydrological model's 

reliability. 

Tangdamrongsub et al. (2020) have assimilated multi-mission remote sensing observations include 

soil moisture information from SMOS and SMAP missions, and TWS information from GRACE 

into the Community Atmosphere and Biosphere Land Exchange (CABLE) land surface model 

over Goulburn River basin in Australia to improve model’s results. They validated the 

performance of data assimilation by using in-situ soil moisture and groundwater level data. They 

found out that SMOS/SMAP assimilation improves the top soil moisture but degrades the 

groundwater storage estimates, whereas the GRACE assimilation improves only the groundwater 

component. They found out that SMOS/SMAP assimilation increases performance of the model 

in soil moisture estimates of first 5 cm of soil layer but decreases its performance in the 

groundwater storage estimates, whereas the GRACE assimilation improves only the groundwater 

component. 
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Chapter VI: Conclusions and Summary 

6.1 Conclusions  

A fundamental question regarding the assimilation of GRACE TWSA into hydrological models 

was “whether it has a benefit for simultaneously data assimilation strategy”. To answer the 

research question, different assimilation strategies including only GRCE TWSA data, SM DA and 

joint GRACE-SM DA were performed to test the efficiency of data assimilation strategies in 

subsurface water storage predictions. Since the main objective of assimilating data into a 

hydrological model is improving model’s outputs, this thesis investigated the application of 

methods for improving hydrological model performances from various perspectives. Special 

considerations were given to address the limitations in existing methods by proposing new 

techniques or strategies. The following summarizes the main outcomes of the thesis, which, to the 

best of the author knowledge, are new scientific contributions. 

• The accuracy of GRACE TWS estimation is very important for hydrological data 

assimilation. To this end, fully error covariance matrix for GRACE TWSA data was 

proposed. This is particularly important considering that previous studies mostly neglect 

the impact of GRACE error covariance matrix and existing correlation between grid points 

that can lead to inaccurate estimates. In other words, by assuming an uncorrelated constant 

error value, an important part of observations has not been used during data assimilation. 

• In addition to GRACE error and an appropriate assimilation technique, a robust data 

assimilation strategy was required. Various data assimilation strategies were tested to 

investigate their capabilities in improving model’s predictions. These include introducing 

new assimilation framework, examining various data assimilation strategies for 

assimilating GRACE TWS and SMOS data, developing techniques to use the full potential 

of different data source including GRACE and SMOS observations for improving model’s 

predictions. 

• This thesis also includes introducing new modeling strategies such as a scale‐consistent 

river parameterization for the coupled ParFlow-CLM hydrological model. This means, by 
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knowing the limitations of the model, including structural constraints, it is possible to 

suggest methods that help to overcome the limitations of modeling in order to improve the 

performance of the model.   

6.1.1 Benefit of GRACE Assimilation for the Representation of Extreme Events 

Assimilating GRACE TWS into CLM-ParFlow can be interpreted as downscaling of coarse 

monthly GRACE observations to daily high-resolution TWS with an added vertical stratification. 

When assessing extreme events, the high-resolution assimilated model adds information  on the 

evolution of TWS at smaller spatial and temporal scales than available from GRACE. 

6.1.2 Benefit of GRACE Assimilation for Reducing Artificial Trends and Phase Shifts of 

Modeled TWS 

Biases in fluxes cause trends in storages. Experiments with artificial biases in precipitation 

forcings showed that the assimilation of GRACE data corrects the resulting unrealistic trends in 

storage. In fact, trends from the assimilated model run with biased forcings were similar to trends 

from the assimilated model run with unbiased forcings. Phase shifts between model and 

observations were also reduced by data assimilation. Both aspects suggest that the assimilation of 

GRACE data might be beneficial in data sparse regions, where hydrological models suffer from 

low-quality and biased input data. 

6.2 Summary  

The following summarizes the main outcomes of this thesis step by step, which, to the best of the 

author knowledge, are new scientific contributions. 

1. Application of the satellite products for the water budget components estimation in the CBI 

gives a reasonable estimation of the maximum possible integrated error (∆) of the three commonly 

used satellite products (P, ET, ∆S). Since the uncertainty in satellite data sources, as well as the 

mismatch in the spatiotemporal resolution and time steps of various satellite products, may 

influence the accuracy of water budget estimation, this assessment needs further verification with 

other methods. Therefore, the closure and consistency of applied satellite products defining the 

simplified water budget equation were examined over the CBI using defining the mathematical 
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expression of a system state limit beyond which the criteria determining system reliability is no 

longer met. Our results show that  depending on the time scale as well as the  hydro-climatology 

patterns of large regions, using only satellite  products has the potential to close the water budget . 

This has been better demonstrated in some regions of the CBI (e.g., the central, southern and 

eastern parts of the CBI) having low latitude, little annual rainfall (50–150 mm) and high ratio of 

PET to P (~30), as these conditions hold the assumption of negligible runoff in the water budget 

calculation.  

Although the coarse temporal and spatial resolution (monthly and 1°) makes the data less 

informative for water resources management in small regions, the evaluation of consistency 

between the datasets using a novel and strong probabilistic framework, e.g., FORM can give us 

useful information for the analysis of hydrologic variations and modeling validation using these 

satellite products at large scales. Since the application of FORM to validate is not limited to 

specific research fields, it is implemented in all research fields by defining a suitable LSF. This 

probabilistic method is particularly useful for cases where statistical information tends to be 

incomplete, such as in some water budget components where only first and second statistical 

moments and marginal probability distributions are available or can be assumed with confidence. 

It is also worthy to mention that limited instrumentation and low-quality ground-based 

measurements of climate input data impede a reliable result of a water budget estimation, 

especially in large-scale and less-developed regions, remote sensing technology as a cost-effective 

tool aid in obtaining hydrological parameters. Therefore, the application of remotely sensed 

datasets and proposing of a reliable method to validate our estimation due to their uncertainty is 

very valuable in large-scale and less-developed regions. 

Since considering remote sensing data, particularly GRACE, along with hydrological models 

shows a promising potential in assessing the water storage at large scale, the assimilation of 

GRACE data into hydrological models, e.g., W3RA (Van Dijk, 2010) or ParFlow (Maxwell and 

Miller, 2005) for storage components estimation (e.g., groundwater or soil moisture) and 

implementing the reliability method, e.g., FORM and SORM depending on LSF condition (linear 

or non-linear) for validation purposes is strongly recommended. 
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2. We suggest an improvement of soil moisture and groundwater level predictions from a 

distributed hydrological model by an objective scaling of the Manning's coefficient and saturated 

hydraulic conductivity. This approach was applied for the Upper Rhine Basin at approximately 6 

km resolution for the years 2012 to 2014. Since the interaction between surface and subsurface is 

significant in this case study, because of the presence of shallow aquifers, an integrated surface-

subsurface model, ParFlow, was used.  ParFlow is a grid-scale model which calculates overland 

flow at a constant horizontal grid resolution and employ the kinematic wave approximation for 

both hillslope and river channel flow. Since the width of rivers is much narrower than the grid size 

of the model, the exchange between river and subsurface is approximated as higher than realistic 

rivers, resulting in an erroneously large infiltration/exfiltration rate. The scaling parameters 

approach is used to compensate this limitation. The impact of the scaling approach on soil moisture 

and groundwater level was evaluated and cross validated with the CCI-SM data and the 

groundwater level data from well observations at seasonal scales. Furthermore, the reliability of 

the used scaling approach is examined by a novel probabilistic framework (FORM). Using this 

scaling approach, the conclusions of this study are: 

• This study showed that scaling of the Manning's coefficient and saturated hydraulic 

conductivity, improved the soil moisture simulations and groundwater level over most 

parts of the Upper Rhine Basin relative to model’s simulations without parameter scaling. 

ParFlow-CLM simulations overestimated SM in most parts of the Upper Rhine Basin and 

in all seasons. Major improvements in ground water level have been made over most of the 

basin's regions, particularly in the central and northern regions. Our simulation results of 

ParFlow-CLM and ParFlow-CLM-S in these regions may show that scaling is more 

successful in shallow groundwater simulation. The average bias in soil moisture for the 

study domain was decreased from 0.017 mm3/mm3 in ParFlow-CLM simulations to 0.01 

mm3/mm3 in ParFlow-CLM-S simulations. 

• The ParFlow-CLM-S soil moisture simulations performed better in the summer and 

autumn seasons than in the winter and spring seasons on a seasonal time scale. FORM 

results show that the accuracy of ParFlow-CLM soil moisture simulations by using scaling 
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approach is more than 0.05, 0.11, 015 and 0.08 for autumn, winter, spring and summer, 

respectively. 

The ParFlow-CLM model simulations of soil moisture and groundwater level over the Upper 

Rhine Basin benefit from scaling of the Manning's coefficient and saturated hydraulic 

conductivity, as demonstrated in this work. However, there are a few limitations in this research. 

The spatial mismatch between our high-resolution land surface model and the coarser resolution 

CCI-SM was addressed by rescaling the CCI-SM data to the model resolution (6 km) without bias 

correction. In addition to inconsistencies at the spatial scale, data gaps in satellite soil moisture 

retrievals, which are limited in regions of pronounced topography, standing water, dense 

vegetation, snow-covered areas, and frozen soil, can cause inaccuracies in soil moisture 

estimations (Dorigo et al., 2017). 

When the width of a river is known with adequate accuracy, this concept can be simply used in all 

models that do not explicitly resolve the true river width for river routing. Only a preparation step 

is necessary in practice, which does not add to the computational load during runtime. No 

equivalent solutions have been tried to our knowledge because most approaches rely on dedicated 

channel parameterizations, which are far more difficult to implement. Finally, the results indicate 

that a modification of model parametrization to take into account impact of scale on hydrodynamic 

parameters should be done prior to multivariate assimilation approaches. 

3. We suggest to use multi-mission satellite data products to improve predictions of sub-surface 

water storages in the hydrology model over a case study in Iran. As a result, GRACE-derived TWS 

and soil moisture observations from the SMOS are assimilated in the couple ParFlow-CLM 

hydrological model (or TerrSys-MP). Based on the validation against SMAP data, the assimilation 

method was capable of estimating soil moisture when the proper observations were used. Soil 

moisture assimilation is only beneficial for estimation of the top 5 centimeters of the soil moisture, 

whereas groundwater storage variation estimate can be improved by assimilating GRACE data. 

By assimilation of both data, soil moisture is more accurately estimated, although in order to 

achieve the highest accuracy, single observation assimilation should be used. This highlights the 

importance of using SMOS data for data assimilation of soil moisture and increasing its accuracy. 
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For the top five centimeters of the soil, an increase of 0.22 in correlation coefficient with SMAP 

was achieved in this regard. In addition, the water storage uncertainty in the top layer of the soil 

can be reduced by assimilating soil moisture, although this does not improve the uncertainty of 

total water storage. However, it should be mentioned that even though soil moisture data 

assimilation improves the estimates for the top soil moisture, the accuracy for the whole water 

column may not necessarily increase. Various papers such as Kumar et al. (2019), Lievens et al. 

(2017) and Jasinski et al. (2019) have listed numerous benefits for multivariate soil moisture data 

assimilation. In order to avoid contaminating observation error matrix, one should be aware of 

systematic errors in the SMOS soil moisture data. 

The cross correlation of SMOS error should be analyzed in future studies and its effect on data 

assimilation should be quantified. Even though GRACE’s original resolution is larger than 100 

kilometers, it was shown that the groundwater storage estimation accuracy for Iran could be 

improved in the 25-kilometer resolution via assimilation of GRACE data. Nevertheless, the 

hydrological model did not benefit from GRACE assimilation for its estimation of surface soil 

moisture values, which agrees with the findings of Tian et al. (2017) and Li et al. (2012). The 

uncertainty of total water storage can be reduced by assimilation of GRACE data though its 

influence on reducing soil moisture uncertainty is marginal. Due to the fact that GRACE values 

depend on the whole water column especially deep groundwater, it is possible to misattribute deep 

groundwater into shallow groundwater through assimilation of GRACE data. 

For improving soil moisture estimate, the best solution was found to be multivariate data 

assimilation for both GRACE and SMOS data. Consequently, the high and low frequency values 

are adjusted by soil moisture and GRACE assimilation, respectively. As a result, correlation values 

for top 5 centimeters of soil moisture and change in groundwater storage experienced a 0.17 and 

0.12 increase in correlation coefficient with SMAP data and in-situ measurements. Nevertheless, 

it should be mentioned that multivariate data assimilation has a slightly poorer performance than 

either SM or GRACE data assimilation of their respective target zones (the top 5 centimeters of 

the soil and ground water surface change, respectively). For optimizing model states in the data 

assimilation, several cost functions were used for changes in both deep and shallow groundwater 
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storage. For this purpose, GRACE and SMAP residuals were minimized. After the calibration 

process, the optimal solution for multivariate optimization is different from the optimal solution 

for using either GRACE or SMAP alone as the objective function, but rather it is a compromise 

between the two data sources, which is in agreement with the work of Tian et al. (2017). As a 

result, the satellite data and measurements on the ground (subsurface water level data) can be 

effectively assimilated into the model in order to better represent the physical model. The 

multivariate data assimilation which was proposed in the current chapter can also be generalized 

to other data sources such as Sentinel-1 derived soil moisture (Lievens et al., 2017), the equivalent 

snow water using SnowEx (Kim, 2017) and change in total water storage using GRACE Follow-

On (as reported in Flechtner et al., 2014). 

6.3 Applications 

Data assimilation merges observations and numerical model simulations. In this thesis, data 

assimilation was used to generate a relatively high-resolution reanalysis of TWS over a case study 

in Iran. I found that modeled water fluxes and individual storages were also improved to some 

extent by assimilating GRACE/SMOS data in different assimilation strategies. Thus, the 

assimilated model provides interesting information on the evolution of different water cycle 

variables, which might be of use for early warning systems of natural hazards over different spatial 

domain. 

GRACE de-aliasing products aim at removing short-term (< one month) mass redistribution before 

computing monthly gravity field solutions. As the CLM-ParFlow model runs at hourly time steps, 

TWSA from the assimilated model provide an interesting option for the use as GRACE de-aliasing 

product. 

Current investigations showed evidence of daily hydrological loading signals in GPS time series 

(Springer et al., 2019). The GRACE/SMOS assimilating CLM-ParFlow model provides a 

promising option for removing hydrological-induced vertical deformation from daily GPS time 

series, thus, demasking geophysical processes such as land subsidence and tectonic or volcanic 

deformation. Indeed, TWSA from the assimilated CLM-ParFlow model might turn out as a great 
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tool for GPS applications, and it could also play a role in improving reference system 

computations. 

6.4 Outlook 

Within this thesis, a framework for assimilating GRACE observations into CLM3.5 was optimized 

regarding the assimilation strategy. However, several aspects can be addressed to further improve 

the results and to advance applications. The start of the GRACE Follow-On mission in May 2018 

ensures that the assimilation of remotely sensed TWSA is going to remain a relevant topic of 

research. 

6.4.1 Study area 

The multivariate assimilation framework developed within this thesis is transferable to different 

resolutions, so that GRACE/SMOS data could be disaggregated to a finer grid over Iran in future 

experiments. Furthermore, the data assimilation framework is easily transferable to other regions 

by changing atmospheric forcings and soil maps. The assimilation of GRACE/SMOS data might 

be particularly helpful in regions of sparse data coverage to obtain more realistic TWS estimates. 

 

6.4.2 Hydrological Model 

The land-surface model CLM (version 3.5)-ParFlow was used here as it is part of the TerrSysMP 

framework. 

However, more recent versions of CLM contain improved representations of soil and plant 

hydrology, snow processes, river modeling and surface water stores. The latest version is CLM5.0, 

but it is not yet part of TerrSysMP-PDAF. For future investigations, it would be interesting to 

transfer the data assimilation framework to a more recent CLM version and also to compare the 

impact of data assimilation on different model versions. 

 

Within this thesis, the CLM and ParFlow componentd of the Terrestrial Systems Modeling 

Platform (TerrSysMP) were applied. It is tempting to suggest the data assimilation framework 

should be extended also for coupled applications of CLM-ParFlow and the atmospheric component 

COSMO. Therefore, using TerrSysMP-PDAF, GRACE/SMOS data could be assimilated into a 
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fully coupled system consisting of ParFlow, CLM, and the atmospheric component COSMO 

together with observations of other key variables of the terrestrial water cycle. 

6.4.3 Validation Environment 

In this thesis, the performance of data assimilation was validated against in-situ and remotely 

sensed soil moisture observations. Soil moisture is validated against the remotely sensed soil 

moisture SMAP dataset which is relatively close to assimilated SMOS. Therefore, for future 

investigations, it would be interesting to compare simulated soil moisture to one or two more 

remotely-sensed datasets. It would be a great opportunity, if the performance of data assimilation 

is validated against in-situ measurement for other regions for which are available. 
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The following table describes the significance of various abbreviations and acronyms used 

throughout the thesis. 

Abbreviation Meaning 

CBI Central Basin of Iran 

CLM Community Land Model 

DA Data Assimilation 

DEnKF 
Deterministic Ensemble 

Kalman Filter 

DEnKF 

Deterministic 

Ensemble 

Kalman Filter 

EnKF 
Ensemble Kalman 

Filter 

EnOI 
Ensemble Optional 

Interpolation 

EnOI 
Ensemble Optional 

Interpolation 

EnSRF 
Ensemble Square-Root 

Filter 

EnSRF 
Ensemble Square-

Root Filter 

ESA CCI 

European Space Agency 

Climate Change 

Initiative 

ET Evapotranspiration 

ETKF 
Ensemble Transform 

Kalman Filter 

ETKF 
Ensemble Transform 

Kalman Filter 

FORM 
First Order Reliability 

Method 

GRACE 
Gravity Recovery and 

Climate Experiment 

GRACE-FO 

Gravity Recovery and 

Climate Experiment-

Follow On 

GW Ground Water 
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Iran Water Resources 

Management Company 

KeFIn 
Kernel Fourier 

Integration 

LSF Limit State Function 

P Precipitation 

ParFlow PARallel FLOW 

PCR-GLOBWB 
PCRaster Global Water 

Balance 

PDAF 
Parallel Data 

Assimilation Framework 

PDF 

Probability 

Distribution 

Function 

PF Particle Filter 

PFMR 
Particle Filter, 

Multinomial Resampling 

PFMR 

Particle Filter, 

Multinomial 

Resampling 

PFSR 
Particle Filter, Systematic 

Resampling 

PFSR 

Particle Filter, 

Systematic 

Resampling 

SM Soil Moisture 

SMAP 
Soil Moisture Active 

Passive 

SMOS 
Soil Moisture and Ocean 

Salinity 

SQRA 
Square Root 

Analysis 

TRMM 
Tropical Rainfall 
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TWSA 
Terrestrial Water Storage 

Anomaly 

W3RA 
World-Wide Water 

Resources Assessment 

WGHM 
WaterGAP Global 
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Assimilating remote sensing information into a distributed hydrological model for 

improving water budget predictions 

Résumé 

Cette thèse a étudié l'application de méthodes pour améliorer les performances des modèles 

hydrologiques terrestres sous différents angles. Des considérations particulières ont été accordées 

pour répondre aux limites des méthodes existantes en proposant de nouvelles techniques. Celles-

ci incluent l'introduction d'un nouveau cadre d'assimilation, l'examen de diverses stratégies 

d'assimilation de données pour assimiler les données GRACE TWS et SMOS, le développement 

de techniques pour utiliser le plein potentiel de différentes sources de données, y compris les 

observations GRACE et SMOS pour contraindre les états du système, et la proposition d'une 

nouvelle stratégie d'assimilation pour la mise à jour du sous-sol. états de stockage de l'eau, c'est-

à-dire l'équation fondamentale du bilan hydrique, sur leurs estimations. Cela comprend également 

l'introduction de nouvelles stratégies de modélisation telles qu'une paramétrisation de rivière 

cohérente à l'échelle pour le modèle hydrologique couplé ParFlow-CLM. Cela signifie qu'en 

connaissant les limites du modèle, y compris les contraintes structurelles, il est possible de 

proposer des méthodes qui aident à surmonter les limites de la modélisation afin d'améliorer les 

performances du modèle. 

Mots clés : Modélisation hydrologique, Assimilation de données multi-missions, Filtre de 

Kalman d'ensemble, GRACE, SMOS 

 

Abstract 
This thesis investigated the application of methods for improving land hydrological model 

performances from various perspectives. Special considerations were given to address the 

limitations in existing methods by proposing new techniques. These include introducing new 

assimilation framework, examining various data assimilation strategies for assimilating GRACE 

TWS and SMOS data, developing techniques to use the full potential of different data source 

including GRACE and SMOS observations for constraining system states, and proposing a new 

assimilation strategy for updating subsurface water storage states, i.e., the fundamental water 

balance equation, on their estimates. These also includes introducing new modeling strategies such 

as a scale‐consistent river parameterization for the coupled ParFlow-CLM hydrological model. 

This means, by knowing the limitations of the model, including structural constraints, it is possible 

to suggest methods that help to overcome the limitations of modeling in order to improve the 

performance of the model.  

Keywords : Hydrological Modeling, Multi-Mission Data Assimilation, Ensemble Kalman 

Filter, GRACE, SMOS 

 

 

 




