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Résumé

La circulation des fluides géophysiques (atmosphère, océans et hydrologie continentale) induit des redis-
tributions de masse en surface et donc des déformations pouvant être mesurées avec une grande précision
par les différentes techniques de géodésie spatiale. D’une part, les missions de gravimétrie spatiale GRACE
(Gravity Recovery And Climate Experiment) (2002 – 2017) et GRACE Follow-On (lancement début 2018)
permettent de déterminer les variations du contenu en eau du sol avec une résolution spatiale de l’ordre de
quelques centaines de kilomètres et temporelle de quelques semaines. D’autre part, les réseaux denses de
stations permanentes GNSS (Global Navigation Satellite System) permettent de mesurer les déformations
horizontales et verticale avec des résolutions spatiales de l’ordre de quelques kilomètres. Aux périodes saison-
nières, ces déformations sont principalement dues aux redistributions de masse dans le système climatique.

Il a été montré dans les zones où les redistributions saisonnières de masse sont importantes qu’il était pos-
sible d’inverser les déformations mesurées par GNSS pour en déduire les variations saisonnières du contenu
en eau du sol (neige, humidité du sol et nappes souterraines). Cela nécessite notamment l’utilisation d’un
modèle de Terre déformable régie par une théorie gravito-(an)élastique et requiert un réseau dense de sta-
tions GNSS. Cette approche permet d’accéder à des longueurs d’onde (quelques dizaines de kilomètres) et
des périodes (quelques jours) inférieures donc complémentaires à la gravimétrie spatiale.

Dans cette thèse, nous avons donc tiré profit de l’importante densité de stations GNSS en Europe afin
de reproduire et d’améliorer le processus d’inversion décrit précédemment et d’en déduire la charge hydrolo-
gique en zone tempérée. Nous avons donc calculé les solutions GNSS sur un réseau de plus de 1000 stations
en Europe avec la méthode la plus précise possible (Positionnement Précis Ponctuel avec résolution des
ambiguïtés entières) car le signal saisonnier dans ces zones tempérées est de l’ordre de seulement quelques
millimètres en déplacement. Nous avons également pris en compte le caractère visco-élastique de la réponse
de la Terre à une perturbation afin de pouvoir vérifier la sensibilité de la déformation aux paramètres rhéolo-
giques du modèle de Terre. Notamment, nous avons étudié, pour plusieurs modèles de Terre visco-élastiques,
les déformations associées aux forces de marée solide, au rebond post-glaciaire et à la fonte actuelle des
glaces aux pôles. Enfin, comme de nombreuses études antérieures à la nôtre, nous avons montré que l’effet
de la viscosité du manteau, quel que soit le modèle de Terre utilisé (Maxwell ou Burgers), est complètement
négligeable aux périodes annuelles et semi-annuelles auxquelles nous nous intéressons pour les redistributions
de masses hydrologiques et atmosphériques. Nous resterons donc dans le cas d’un modèle purement élastique.

Enfin, nous avons développé la méthode permettant d’inverser les déplacements GNSS dans le cadre du
formalisme des fonctions de Green, en appliquant une méthode d’inversion par moindres carrés régularisés.
La régularisation nécessite de trouver les paramètres de lissage dont nous nous sommes employés à trouver
plusieurs critères de détermination objectifs en testant l’inversion sur des déplacements GNSS synthétiques
calculés à partir de la solution de charge de GRACE. Nous avons finalement inversé la composante verticale
des déplacements annuels du GNSS pour retrouver le cycle saisonnier des variations de masses hydrologiques.
Plusieurs résultats d’inversion ont été comparés, dont certains combinant les données GNSS et les données
GRACE au sein d’une inversion conjointe.

Mots clés : géodésie spatiale, charges hydrologiques, GNSS, nombres de Love, visco-élasticité, régulari-
sation de Tikhonov
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Abstract

The circulation of geophysical fluids (atmosphere, oceans and continental hydrology) induces mass re-
distributions on the Earth surface and therefore deformations that can be measured with great accuracy by
various space geodesy techniques. On one hand, the space gravity missions GRACE (Gravity Recovery And
Climate Experiment) (2002 - 2017) and GRACE Follow-On (launch in early 2018) allow to determine the
variations of the continental hydrology with spatial resolutions of a few hundred kilometers and temporal
resolutions of a few weeks. On the other hand, dense networks of permanent GNSS (Global Navigation
Satellite System) stations allow to measure horizontal and vertical deformations with spatial resolutions of
a few kilometers. At seasonal periods, these deformations are mainly due to mass redistribution within the
climate system.

It has been shown that in areas where seasonal mass redistributions are important it is possible to invert
deformations measured by GNSS in order to deduce seasonal variations in soil water content (snow, soil mois-
ture and groundwater). This requires the use of a deformable Earth model governed by a gravito-(an)elastic
theory and requires a dense network of GNSS stations. This approach allows access to wavelengths (a few
tens of kilometers) and periods (a few days) that are shorter and therefore complementary to spatial gravi-
metry.

In this thesis, we have therefore taken advantage of the high density of GNSS stations in Western Europe
in order to reproduce and improve the inversion process described above and to derive the hydrological
loading in temperate regions. We then computed GNSS solutions over a network of more than 1000 stations in
Europe with the most accurate method possible (Precise Point Positioning with integer ambiguity resolution)
because the seasonal signal in these temperate regions generates displacements of only a few millimeters. We
have also taken into account the viscoelastic behaviour of the Earth’s response to a perturbation in order
to verify the sensitivity of the deformation to the rheological parameters of the Earth model. In particular,
we have studied, for several viscoelastic Earth models, the deformation due to solid Earth tides, post-glacial
rebound, and current polar ice melting. Finally, like many previous studies, we have shown that the effect
of mantle viscosity, whatever the Earth model used (Maxwell or Burgers), is completely negligible at the
annual and semi-annual periods we are interested in for hydrological and atmospheric mass redistributions.
We will therefore use an elastic Earth model.

Finally, we have developed the method for inverting GNSS displacements in the framework of the Green’s
function formalism by applying a regularized least squares inversion method. The regularization requires to
find the smoothing parameters for which we have tried to find several objective determination criteria by
testing the inversion on synthetic GNSS displacements computed from GRACE loading solution. We finally
inverted the vertical component of the annual GNSS displacements to recover the seasonal cycle of hydrolo-
gical mass variations. Several inversion results were compared, including some combining GNSS and GRACE
data within a joint inversion.

Keywords : spatial geodesy, hydrological loading, GNSS, Love numbers, visco-elasticity, Tikhonov regu-
larisation
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Introduction

La diversité des phénomènes se produisant au sein du système Terre est considérable tant d’un point de
vue des mécanismes physiques engagés que des échelles spatiales et temporelles sur lesquelles ils s’établissent.
On peut grossièrement décrire la Terre comme un système composite d’enveloppes solides et fluides en
constante interaction. Les enveloppes fluides de natures diverses (noyau liquide, océans, atmosphère) agissent
gravitationnellement sur la Terre solide engendrant des déformations et des redistributions de masse. D’autre
part, cette partie solide est elle-même le siège de mouvements intrinsèques comme la tectonique des plaques
ou les gigantesques mouvements de convection au sein du manteau. Enfin, une grande partie de la déformation
du système Terre provient de l’interaction gravitationnelle de ses masses avec les autres corps du système
solaire, notamment la Lune et le Soleil. La déformation de la Terre solide est également régie par la diversité
rhéologique de ses couches internes, c’est-à-dire la capacité qu’ont chacune d’elles à se déformer dans le temps
sous l’effet des différentes perturbations précédemment citées. La Figure A extraite de Rummel et al. (2003)
résume la majorité des événements géophysiques observés en les plaçant dans un diagramme spatio-temporel
reflétant à la fois l’empreinte spatio-temporelle de la perturbation elle-même et de la réponse rhéologique
induite par la Terre solide à cette perturbation.

Fig. A – Répartition en fonction des échelles temporelles et spatiales de divers phénomènes géophysiques
déformant directement ou indirectement la Terre. (extrait de Rummel et al. (2003))
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Aussi, on voit que la mesure des déformations de la Terre solide est un enjeu majeur pour la compréhen-
sion des phénomènes physiques qui les engendrent. La géodésie (qui étymologiquement signifie « mesure de la
Terre ») est de ce point de vue un domaine crucial qui a pour objet de mesurer le plus précisément possible
la forme géométrique de la Terre ainsi que son champ de pesanteur et ses paramètres d’orientation dans
l’espace. Face à des enjeux fondamentaux à la fois scientifiques et environnementaux, mais aussi sociétaux,
politiques et économiques, la communauté géodésique internationale s’est organisée au sein de l’IUGG (In-
ternational Union of Geodesy and Geophysics) en créant l’IAG (International Association of Geodesy) dont
l’une des composantes GGOS (Global Geodetic Observing System) est en charge de récolter, structurer, cal-
culer et diffuser l’ensemble des données et modèles géodésiques disponibles à la communauté internationale.
Ces tâches sont distribuées entre différents services d’observation (13 au total) dont les produits servent de
base fondamentale à la majorité des études du système Terre dans lesquelles les prévisions climatiques et
la prévention des risques naturels prennent une part importante. On note que la majorité de ces services
d’observation s’appuient aujourd’hui sur les missions spatiales, qui ont été d’un apport sans précédent dans
l’amélioration des modèles grâce à la couverture spatiale globale qu’elles permettent d’obtenir, associée à
une bonne résolution temporelle. À titre d’exemple, le GNSS (Global Navigation Satellite System), le SLR
(Satellite Laser Ranging) et DORIS (Doppler Orbitography by Radiopositionning Integrated on Satellite)
sont trois techniques de géodésie spatiale majeures qui, associées avec le VLBI (Very Long Base Interfero-
metry), ont entre autre contribué à la détermination de plus en plus précise d’un repère international de
référence terrestre (ITRF) (Altamimi et al., 2016). On peut également citer les missions altimétriques dont
l’objet est la mesure du niveau de la mer ou des hauteurs de glace par exemple, les missions gravimétriques
qui permettent la mesure précise du champ de pesanteur terrestre et de sa surface de référence, le géoïde,
ou encore les missions permettant de mesurer les déplacements de surface par interférométrie radar.

Le travail de thèse que nous présentons s’inscrit dans l’effort continu des dernières décennies pour amé-
liorer notre compréhension des déplacements de surface dont la redistribution des masses de fluide à grandes
et petites échelles est une des causes majeures. Le couplage important de ces masses d’eau et d’air au sein
des systèmes climatiques et anthropiques rendent leur modélisation d’autant plus difficile que ces proces-
sus d’interactions sont complexes et en constante évolution, à l’aune du dérèglement climatique qui touche
actuellement notre planète. La modélisation fine des variations de masse est particulièrement importante
car elle permet d’améliorer drastiquement la qualité des repères de références, la modélisation de l’orbite
des satellites ainsi que l’estimation du mouvement du géocentre. Il convient alors d’accroître notre compré-
hension de ces phénomènes en les mesurant précisément à la fois avec des mesures in-situ, très inégalement
réparties, parfois laborieuses à mettre en place et peu précises, et en utilisant les outils de la géodésie spatiale
permettant une couverture spatiale globale et plus homogène. Les années 2000 ont été particulièrement fruc-
tueuses pour la mesure indirecte de ces redistributions de masse par gravimétrie spatiale, avec le lancement
des satellites GRACE puis GRACE-FO. Ces deux missions ont révolutionné la connaissance des transferts
de masse à grande échelle en se basant sur des données gravimétriques quasi-continues pendant plus de 20
ans avec une résolution spatiale de l’ordre de 200 à 400 km et temporelle de l’ordre du mois.

C’est dans le but d’améliorer la résolution spatiale et temporelle acquise par ces missions gravimétrique
que nous avons choisi de travailler avec une approche basée sur la technique GNSS donnant directement
accès aux variations de la déformation avec lesquelles nous pouvons remonter aux variations de masse. L’ob-
jectif de la thèse est la détermination d’une solution régionale dont la résolution spatiale et temporelle soit
complémentaire et/ou concurrente par rapport à celle obtenue avec GRACE. Nous avons choisi de réaliser
cette étude sur l’Europe, zone tempérée où les variations de masses sont faibles, afin de montrer que le GNSS
devenait compétitif dans ce domaine grâce notamment à la forte densité de stations géodésiques existantes,
à la longévité de leur période d’acquisition (plus de 25 ans) ainsi qu’à l’amélioration continue de la qualité
des traitements et à l’effort de reprocessing complet des produits orbite/horloge réalisés régulièrement par
les centres d’analyse de l’IGS (International GNSS Service, faisant partie de GGOS) en vue des réalisations
successives de l’ITRF. C’est dans le but d’obtenir des solutions les plus précises possibles, sur un réseau
dense de stations, que nous avons calculé nos propres solutions GNSS avec le logiciel GINS développé par
le Centre National d’Études Spatiales (CNES) et partagé au sein du Groupe de Recherche en Géodésie
Spatiale (GRGS), en utilisant les produits orbite/horloge des satellites GNSS fournis par le centre d’analyse
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CNES-CLS. Ces produits offrent la possibilité d’un traitement préservant la nature entière des ambiguïtés de
phase dans les observables GPS, ce qui participe à l’amélioration substantielle de la qualité et de la précision
des solutions. Ces étapes ainsi que l’analyse détaillée des déplacements obtenus sont l’objet de la Partie II.

Ensuite, nous nous sommes intéressés à la manière dont la Terre se déforme (géométriquement et gravi-
tationnellement) sous l’effet d’une perturbation de quelque nature qu’elle soit. Nous avons donc redéveloppé
dans les Parties III & IV la théorie de Love et des fonctions de Green décrite dans Farrell (1972) pour des
modèles de Terre élastiques. Nous y avons inclus une méthode innovante utilisant la transformée de Fourier
pour permettre la prise en compte de modèles de Terre contenant des couches de rhéologie visco-élastique.
En modifiant des modèles initialement élastiques comme PREM pour y inclure des couches visco-élastiques,
nous avons pu ensuite tester l’impact de ces différents modèles visco-élastiques sur les déformations induites
par quelques perturbations de longue période : la fonte des glaces à la fin du Pléistocène il y a environ
12 000 ans (responsable du rebond post-glaciaire encore visible aujourd’hui), la fonte actuelle des calottes
polaires liée au réchauffement climatique et les forces de marée solide agissant aux longues périodes.

Enfin, dans le but de comparer les résultats issus de GRACE et du GNSS en ce qui concerne les varia-
tions hydrologiques saisonnières, nous avons mis en place dans la Partie V une méthodologie permettant de
retrouver la valeur de la perturbation de masse à partir de la déformation mesurée par GNSS en utilisant le
formalisme des fonctions de Green dans le cadre d’un problème inverse. Bien que nous nous soyons intéressés
pour cette thèse qu’aux variations hydrologiques, la méthodologie développée n’y est pas spécifique. Nous
avons finalement comparé différents processus d’inversion dont certains utilisent la combinaison des données
GNSS et GRACE/GRACE-FO afin de mettre en perspective la variabilité des solutions obtenues avec les
multiples modèles hydrologiques existants dans la littérature.

Avant toutes choses, nous consacrons la Partie I à une brève introduction sur la notion de charges et
les moyens qui permettent de les modéliser et de les mesurer. Nous y dressons aussi un état des lieux de
la manière dont on étudie actuellement les déformations induites par ces charges et en expliquant comment
notre travail s’inscrit au sein de ces différentes études.
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PREMIÈRE PARTIE | Contexte de l’étude

1 Différents types de charge

Il existe de nombreuses sources de déformation de la Terre solide. Dans la plupart des cas, ce sont les
parties externes de la Terre comme la croûte et plus généralement la lithosphère qui sont les plus déformées
tandis que les couches internes dans le manteau subissent des déformations de plus grande échelle mais
d’intensité moindre. Parmi les déformations les plus importantes, on compte la déformation de la Terre
solide induite par les évènements tectoniques (séismes) et volcaniques qui engendrent des déformations de
l’ordre de plusieurs mètres ainsi que les forces de marée lunisolaire dont l’amplitude verticale peut atteindre
30 cm (Agnew, 2015).

Il existe ensuite des déformations de la Terre solide liées à la redistribution de la matière mobile extérieure
(que sont notamment les océans, l’atmosphère, l’hydrosphère et la cryosphère) pesant directement sur la
surface solide. De manière générique, toute masse pesante externe à la Terre solide sera appelée charge. Ces
charges génèrent des déformations extrêmement variables (de quelques mm pour l’atmosphère à plusieurs
centaines de mètres pour la cryosphère) qui dépendent également des propriétés rhéologiques des différentes
couches de la Terre comme nous le développerons dans les Parties III et IV. Nous donnons un éventail non
exhaustif des principaux effets de charges (ainsi que leurs modélisations) dont les déformations sous-jacentes
sont mesurées à l’heure actuelle par les techniques géodésiques.

1.1 Charges de marée océanique et atmosphérique

Les déformations liées aux charges sont facilement modélisables dans le cas où les causes des redistribu-
tions de masse sont bien connues. C’est notamment le cas des forces de marée, qui redistribuent les masses
océaniques engendrant des déformations particulièrement visible près des côtes ou sur les îles de petite taille
et pouvant aller jusqu’à 10 cm de déformation verticale. D’autre part, le réchauffement périodique de l’at-
mosphère lié au Soleil induit des fluctuations de la pression de surface engendrant des déformations bien
plus faibles d’environ 3mm en vertical à l’équateur où elles sont les plus importantes. Dans les deux cas,
ce sont les effets diurnes et semi-diurnes qui dominent d’où l’appellation de charges de marée océanique et
atmosphérique (ou « TOAL » pour Tidal Oceanic and Atmospheric Loading). Dans ces cas particuliers, des
modèles précis des déformations induites par ces redistributions de masses sont adoptés dans les conventions
internationales fixées par l’IERS (International Earth Rotation and Reference Systems Service) (Petit &
Luzum, 2010), qui est un des 13 services faisant partie de GGOS. Ces conventions ont pour but de fournir les
modèles et conventions scientifiques qui doivent être utilisés par la communauté internationale dans un soucis
de cohérence des traitements et des résultats. Il existe donc toujours une sorte de séparation de principe entre
les charges de marée (ou charges maréales) dont les modèles précis sont adoptés dans les conventions IERS
et les charges non-maréales pour lesquels l’obtention d’un modèle qui fait consensus est plus difficile à cause
de la plus grande variabilité des phénomènes. On note que la prise en compte des ondes de marée de plus
faible amplitude que les ondes de marée principales dans le calcul des charges de marée océanique (comme les
ondes non-linéaires générant des déformations très localisées et les ondes de longues périodes) permettent de
raffiner les modèles de déformation notamment si l’on souhaite atteindre une précision millimétrique. Dans
toute la suite, nous suivrons les conventions IERS en utilisant le modèle FES (Finite Element Solution)
2014b (Carrere et al., 2015; Lyard et al., 2021) pour calculer les charges de marée océanique et les données
de l’ECMWF (European Center for Medium-Range Weather Forecasts) pour modéliser les charges de marée
solaire atmosphérique (Ray & Ponte, 2003).

1.2 Charges océaniques et atmosphériques non-maréales

Les courants océaniques, les surpressions ou dépressions atmosphériques, les vents de surfaces peuvent
également induire des déformations de la surface de la Terre solide. Ces effets sont classés dans une catégorie
à part que sont les charges océaniques et atmosphériques non-maréales (ou « NTOAL » pour Non-Tidal
Oceanic and Atmospheric Loading) afin de marquer la différence avec les charges qui suivent les périodes
des marées (voir Section 1.1). Les déformations engendrées sont généralement inférieures au centimètre en
vertical et sont susceptibles de varier énormément spatialement et temporellement en fonction des conditions
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1. Différents types de charge

climatiques. Seuls des modèles météorologiques et océanographiques complexes permettent la prise en compte
de ces effets au niveau local.

Pour les charges atmosphériques, on a accès directement à la déformation des continents en utilisant un
modèle qui donne la pression de surface. On peut par exemple retrouver des variations annuelles de l’ordre de
5mm sur l’Asie centrale liées à l’anticyclone sibérien. Au niveau des océans, on applique un modèle statique
dit de baromètre inversé (ou « IB » pour Inverse Barometer) dans lequel les courants sont négligés et pour
lequel l’intégralité des variations de pression atmosphérique sont compensées par des variations de hauteur
d’eau. La pression au fond des océans est alors inchangée mais peut être corrigée pour inclure une partie
variable dans le temps (Petrov & Boy, 2004). Ce modèle étant statique, il est typiquement valable pour des
effets dont les réponses sont attendues à des périodes supérieures à 1 mois. On peut y associer des modèles de
circulation océanique baroclines forcés uniquement par les flux thermiques, les flux d’eau douce (évaporation
et précipitation) et les vents. On en compte plusieurs dont ECCO (Estimating the Circulation and Climate
of the Ocean) (Wunsch et al., 2009) ou GLORYS (Global Ocean ReanalYsis and Simulation) (Ferry et al.,
2012). Ces modèles sont également valables pour des variations supérieures ou égales à un mois.

Pour des échelles de temps inférieures, l’altimétrie et la gravimétrie spatiale ont démontré qu’il était
impératif de prendre en compte la réponse dynamique des océans à la pression et aux vents. C’est dans ce but
qu’à été conçu le modèle TUGO-m (Toulouse Unstructured Grid Ocean model) (Carrère & Lyard, 2003), qui
modélise les variations rapides de hauteur d’eau d’un océan barotrope forcées par la pression atmosphérique
et les vents (mais non forcées par les flux thermiques) avec une résolution spatiale de 0,125° 1 et une résolution
temporelle de quelques heures. Comme à la fois TUGO-m et les modèles baroclines classiques utilisent un
forçage par les vents de surface, il n’est pas possible de les associer pour en faire un modèle complet de charge.
L’étude de nombreux modèles complets de charges océaniques et atmosphériques d’origine non-maréale a
été proposée dans Mémin et al. (2020). Il y est notamment montré que TUGO-m rend de bons résultats sur
l’ensemble du spectre fréquentiel de charge, y compris aux longues périodes, malgré le fait qu’il ne prend pas
en compte les flux thermiques et d’eau douce.

Enfin, il existe le modèle opérationnel AOD1B (Atmosphere and Ocean De-Aliasing Level-1B) prenant en
compte l’ensemble des forçages, mais dont la résolution spatiale relativement faible liée au temps de calcul du
modèle le rend moins efficace que TUGO-m pour les hautes fréquences. Ce modèle est néanmoins utilisé dans
la modélisation des effets rapides de l’atmosphère dans le calcul des solutions GRACE (voir Section 2.1.2).

1.3 Charges hydrologiques

Les charges hydrologiques comprennent généralement la masse des eaux douces s’écoulant en surface
sous diverses formes (précipitation, bassins, rivières, etc.). Les grands bassins fluviaux (Amazonie et Congo
entre autres) et les régions équatoriales soumises aux moussons possèdent de fortes déformations saisonnières
(principalement de période annuelle) pouvant aller jusqu’à 2 cm en vertical (Nahmani et al., 2012; Nicolas
et al., 2021). La plupart des déformations liées aux charges hydrologiques ont une empreinte annuelle forte.
Il existe néanmoins quelques régions où des phénomènes de sécheresse, de pompage, de fonte, etc., donnent
lieu à des déformations séculaires. La difficulté pour bien modéliser ces charges réside dans l’interaction
existante avec des phénomènes complexes et fortement variables mettant en jeu des aspects météorologiques,
les propriétés du sol, de la végétation, de l’activité humaine, etc. Par exemple, un sol de nature étanche
va s’affaisser sous une accumulation d’eau en surface, alors qu’un sol poreux va se gonfler et présenter
une surrection (effet poro-élastique (Fleitout & Chanard, 2018)). Nous utiliserons trois modèles de charges
hydrologiques dans la suite : GLDAS-2.1/Noah (Global Land Data Assimilation System) (Rodell et al., 2004),
MERRA2 (Modern Era Retrospective-Analysis) (Gelaro et al., 2017) et le modèle ERA5 de l’ECMWF
(Hersbach et al., 2020). Le premier est un modèle basé sur l’assimilation de plusieurs modèles (pression
atmosphérique, température, contenu en eau du sol, etc.) et forcé par le modèle atmosphérique assimilé
tandis que les deux autres modélisent simultanément l’atmosphère, l’hydrosphère et leurs interactions. Les
trois modèles hydrologiques incluent l’humidité du sol et la neige (non permanente) et GLDAS-2.1/Noah
possède en plus le contenu en eau de la végétation. On notera dans la suite simplement GLDAS2 (pour
GLDAS-2.1/Noah).

1. La résolution spatiale est en fait variable (grossière en plein océan et raffinée proche des côtes) puis les résultats sont
interpolés/extrapolés sur une grille régulière de résolution 0,125°

7



PREMIÈRE PARTIE | Contexte de l’étude

La Figure 1.1 permet d’attester de l’importance des signaux de charge atmosphériques et hydrologiques
en représentant leurs amplitudes annuelles issues du modèle ERA5. On y voit notamment l’importance de la
variation de charge atmosphérique sur l’Asie et les variations de charge hydrologique sur les grands bassins
comme l’Amazonie, le Congo ou l’Asie du Sud-Est.

Fig. 1.1 – Amplitudes saisonnières des charges issues du modèle ERA5 : (a) atmosphériques (pression de
surface convertie en hauteur d’eau équivalente) et (b) hydrologiques.

1.4 Charges cryologiques

Les charges cryologiques sont principalement dues aux glaciers et calottes polaires qui déforment la surface
à cause de leurs poids. Nous nous intéressons ici à deux phénomènes de déformation observables actuellement
dont la cause est une modification de la charge cryosphérique.

Rebond post-glaciaire − Le rebond post-glaciaire est un phénomène observé dans les régions polaires et
jusqu’aux régions de moyennes latitudes (dans l’hémisphère Nord). La formation d’immenses calottes de
glace lors du dernier âge glaciaire a constitué une charge énorme déformant les différentes couches terrestres
de manière importante. La fonte de ces calottes il y a environ 12 000 ans à la fin du Pléistocène, a ainsi libéré
les contraintes en surface de sorte que l’on assiste à un « rebond » des différentes couches de la Terre solide qui
reprennent leur état initial. Le caractère visco-élastique de certaines couches de la Terre (le haut du manteau
supérieur notamment) est la raison pour laquelle on observe encore ce rebond de nos jours dans certaines
régions de hautes latitudes comme la baie d’Hudson (Canada) et la Scandinavie à hauteur de 1 à 2 cm·an−1.
Nous développons ces aspects dans un article (Michel & Boy, 2021) présenté dans la Partie IV. On notera
GIA (Glacial Isostatic Adjustment) les modèles permettant de rendre compte du rebond post-glaciaire. On
en compte plusieurs dont ICE-6G_D (Peltier et al., 2015), ainsi que d’autres qu’on trouvera dans les études
de Whitehouse et al. (2012), A et al. (2013) et Caron et al. (2017).

Fonte des glaces actuelle − On peut de la même manière décrire la fonte des calottes polaires à l’heure
actuelle comme une perte de charge, amenant donc à une relaxation de la surface. Si le phénomène est bien
plus récent et de moins grande ampleur que la fonte des calottes à la fin du Pléistocène, il est néanmoins im-
portant sur le Groenland et l’Antarctique où on atteint localement des surrections allant jusqu’à 1,5 cm·an−1

(Luthcke et al., 2013; Shepherd et al., 2018, 2020). Devant l’accélération de la fonte ainsi que sa durée de
plus en plus importante, il devient légitime de traiter le phénomène de décharge en prenant en compte le
caractère visco-élastique des couches supérieures du manteau. Ce point est également traité dans l’article
présenté dans la Partie IV.

2 Estimation du signal de charge

L’objet de cette thèse est de se focaliser sur la détermination du signal de charge hydrologique grâce aux
données géodésiques. Nous détaillons dans cette section comment on peut estimer le signal de charge grâce
aux missions spatiales gravimétriques GRACE (Gravity Recovery And Climate Experiment) et GRACE
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Follow-On et nous dressons l’état de l’art de l’utilisation du GNSS dans la mise en évidence des charges
hydrologiques à l’échelle régionale.

2.1 Missions GRACE et GRACE-FO

2.1.1 Présentation

La mission spatiale GRACE a été lancée en 2002 et constitue une avancée majeure dans l’estimation
du champ de gravité statique et de ses variations temporelles sur une large gamme de fréquence (de la
semaine à la dizaine d’années) (Tapley et al., 2004, 2019). Deux satellites (Tom et Jerry) se suivent à une
distance d’environ 220 km. On mesure la vitesse de variation de cette distance inter-satellites au micromètre
par seconde près grâce au lien KBRR (K-Band Range Rate) qui est un lien radioélectrique de longueur
d’onde centimétrique. Un traitement orbitographique associé à cette mesure KBRR permet d’estimer la
masse intégrée du centre de la Terre au satellite (dans la ligne de visée de chaque satellite). On peut alors
remonter au champ de gravité et à ses variations temporelles. On note que des accéléromètres présents
dans les deux satellites permettent de mesurer les accélérations non gravitationnelles subies par les satellites
(notamment les frottements atmosphériques et la pression de radiation solaire). L’orbite des satellites étant
basse à environ 450 km et quasi-polaire, on peut atteindre une résolution temporelle d’un mois pour environ
300 km de résolution spatiale (les deux étant intimement liées par la trace de l’orbite sur la surface). GRACE
est sensible à la totalité du champ gravitationnel terrestre (seuls les degrés 2 et 3 étant mal résolus) auquel
on peut retirer les modèles hautes fréquences d’océan et d’atmosphère dit de dealiasing afin d’avoir accès
aux variations saisonnières du champ de gravité principalement dues aux variations de la teneur en eau de la
surface et du sol. On convertit donc usuellement ces variations de gravité en variations de masse accumulée
à la surface que l’on exprime en hauteur d’eau équivalente. Nous utiliserons l’unité cmwe pour exprimer la
hauteur d’eau équivalente en centimètres (centimeter water equivalent). Devant la longévité de la mission
GRACE (2004-2018) et ses succès notamment en matière de climat, la communauté scientifique a poussé les
agences à renouveler la mission sur un concept identique sous le nom de GRACE-FO (GRACE Follow-On)
mais possédant en plus un interféromètre LRI (Laser Range Interferometer) permettant la mesure de la
distance inter-satellite. Les premières mesures de la mission GRACE-FO ont été obtenues début 2019 soit
quelques mois seulement après l’arrêt de la mission initiale, assurant ainsi le suivi temporel quasi parfait des
variations du champ sur plus de 18 ans actuellement.

2.1.2 Solutions mascons

Il existe deux grands types de solutions donnant les variations de masse issues de GRACE. L’une consiste
en une décomposition en harmoniques sphériques suivie d’un filtrage spatial de la solution pour supprimer les
aberrations longitudinales (Lemoine et al., 2019). L’autre consiste à décomposer la Terre en petits éléments
de surface (hexagonaux ou rectangulaires) appelés « mascons », sur lesquels on réparti de la masse pour
ajuster au mieux les données. Si l’une et l’autre possèdent des avantages et des défauts (Rowlands et al.,
2010), nous choisissons ici d’utiliser les solutions mascons qui permettent d’introduire naturellement des
contraintes spatiales sur la répartition de la masse lors de l’estimation de la solution 2. Parmi les solutions
mascons existantes, nous choisissons les solutions du CSR (Center for Space Research de l’Université du
Texas à Austin) (Save et al., 2016) et du GSFC (Goddard Space Flight Center de la NASA) (Loomis et al.,
2019a) dont les solutions sont toutes deux obtenues par un processus de régularisation (de type Tikhonov)
sans filtrage ou lissage et appliquant les mêmes corrections standards aux solutions : correction du degré 1
utilisant le modèle du JPL (Sun et al., 2016), remplacement des C20 et C30 par ceux obtenus avec le SLR
(Loomis et al., 2019b, 2020), correction des contributions de l’océan et de l’atmosphère à haute fréquence 3

grâce au modèle AOD1B, correction du GIA avec le modèle ICE-6G_D (Peltier et al., 2015) et utilisation
du champ statique GGM05C dans la modélisation des orbites. Une des différences importante concerne
les incertitudes qui à défaut d’être données dans la solution CSR, sont fournies dans la solution GSFC en

2. Les contraintes spatiales sont bien plus approximatives et dures à implémentées sur les coefficients de Stokes dans le cas
d’une solution utilisant la décomposition en harmoniques sphériques.

3. Ces contributions rapides peuvent en effet induire des problèmes de repliement de spectre (aliasing)
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considérant les biais liés au processus de régularisation, au bruit de mesure et à la fuite de masse inter-
mascons (leakage). On peut noter que la solution CSR fournit une interpolation des tuiles hexagonales des
mascons sur une grille régulière longitude/latitude ou en harmoniques sphériques tandis que la solution GSFC
fournit directement les mascons calculés sur une grille irrégulière de tuiles rectangulaires et l’interpolation
de cette grille sur une grille régulière longitude/latitude (voir Figure 1.6 plus loin). L’utilisation de ces deux
solutions permettra de mettre en avant la différence importante existante entre les solutions GRACE, malgré
un processus de détermination quasi-similaire. La différence majeure réside dans le fait que la solution du
GSFC est itérée jusqu’à ce qu’elle converge en dessous d’un certain critère au sens de la minimisation des
résidus.

2.2 Utilisation du GNSS

L’utilisation massive du GNSS dans l’étude des charges a été facilitée par l’augmentation constante du
nombre de stations de qualité géodésique et par la densification des réseaux déjà existants. On compte
maintenant plus de 15 000 stations GNSS dont les données peuvent être utilisées pour des applications géo-
désiques. La répartition des stations est néanmoins assez inégale comme on peut le voir sur la Figure 1.2 issus
du traitement massif du NGL (Nevada Geodetic Laboratory) d’une grande partie des stations géodésiques
GNSS actuellement disponibles (Blewitt et al., 2018).

Fig. 1.2 – Stations géodésiques GNSS dont les solutions ont été calculées au NGL. (extrait de Blewitt et al.
(2018))

Les régions très denses (Europe, États-Unis, Japon) contrastent avec les moins denses (Afrique, Asie cen-
trale). La précision actuelle des traitements GNSS permet d’atteindre une résolution de l’ordre du millimètre
en déplacement ce qui permet de détecter des effets de plus en plus fins. Notamment, s’il est évident que les
effets de charge comme les charges hydrologiques sont principalement visibles sur la composante verticale du
déplacement, ils peuvent maintenant aussi être résolus en horizontal permettant de mieux contraindre les
modèles (Chanard et al., 2018a). Selon les conventions IERS (Petit & Luzum, 2010), les signaux de marée
sont corrigés en amont du traitement GNSS (marée solide, charge de marée océanique et atmosphérique et
charge de marée polaire). Les séries temporelles contiennent donc la signature des mouvements tectoniques
et le déplacement majoritairement saisonnier dû aux charges hydrologiques et aux charges non-maréales
océaniques et atmosphériques.

À titre d’exemple, nous présentons sur la Figure 1.3 les déplacements calculés à partir de la modélisation
des effets de charge non-maréaux et hydrologiques distribués par l’IERS GGFC (Global Geophysical Fluid
Center) via le site http://loading.u-strasbg.fr/GGFC/itrf2020.php en vue de l’ITRF2020. La défor-
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mation est calculée pour un modèle de Terre SNREI basé sur PREM (voir Partie IV), à partir des champs
ERA5 de résolution 1 heure et 0,25° et des variations barotropes de hauteur d’eau du modèle TUGO-m forcé
par la pression et les vents de ERA5 et disponible à une résolution de 1 heure et 0,125° (interpolé/extrapolé
à partir d’une grille aux éléments finis). On y voit l’apport de TUGO-m sur les déplacements des stations à
proximité de l’océan par rapport à un modèle IB, les forts signaux saisonniers hydrologiques dans la bande
équatoriale et la variabilité atmosphériques importantes aux moyennes et hautes latitudes.

Fig. 1.3 – Amplitude annuelle, tendance et variabilité (représenté par l’écart-type) des déplacements induits
par différents modèles de charge distribués par le GGFC en vue de l’ITRF2020. Ces modèles ont été calculés
en utilisant les champs fourni par la réanalyse ERA5 de l’ECMWF et le modèle TUGO-m. On note que
l’échelle de couleur pour la tendance est pseudo-logarithmique pour des raisons de visibilité des déplacements
induits par les NTAOL.

Il faut être néanmoins très prudent quant à considérer le déplacement saisonnier GNSS comme étant
dû en totalité aux effets de charge. Comme le rapportent Dong et al. (2002) et plus récemment Chanard
et al. (2020), il existe de nombreuses sources de déplacement à l’origine du signal annuel dans les séries
GNSS dont les amplitudes varient spatialement et temporellement. Si l’on peut néanmoins corriger par des
modèles certaines contributions de ces autres effets (thermo-dilatation du sol notamment), il reste toujours
des contributions dont il est difficile de s’affranchir (périodes draconitiques, multi-trajet, instabilités de
monumentation de la station, mouvement des antennes). Nous reviendrons en détail sur ces considérations
dans la Partie II.

Sachant cela, on peut néanmoins comparer prudemment les séries GNSS aux résultats donnés par des
modèles de charge ou par GRACE et GRACE-FO. Cela a été fait massivement durant de nombreuses années,
la prise en compte des charges hydrologiques et non-maréales dans les observations GNSS étant une piste
sérieuse pour l’amélioration de l’ITRF (International Terrestrial Reference Frame) (Altamimi et al., 2016)
et permettant de réduire drastiquement les erreurs sur la détermination des vitesses GNSS (Klos et al.,
2019b). Deux approches sont possibles, l’une étudiant le problème direct de transformation de la charge
en déplacement (comme sur la Figure 1.3), l’autre nécessitant une inversion du déplacement permettant
d’obtenir une cartographie de la charge à partir de données géodésiques.
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2.2.1 Problème direct

Résoudre le problème direct c’est passer d’une carte de charge à des mesures de déplacement localisées.
Pour cela, il est nécessaire de connaître la capacité du sol à se déformer sous une certaine contrainte (ce qu’on
appelle la rhéologie) et de savoir comment cette contrainte est propagée à l’intérieur de la Terre à travers les
différentes couches. En fonction du type de rhéologie mais aussi de la valeur des paramètres rhéologiques,
une même distribution de charge ne rendra pas compte du même déplacement. Nous renvoyons à la Partie III
pour plus de détails sur le traitement du problème rhéologique. On peut alors schématiser la situation de la
manière suivante : au premier ordre, on peut relier linéairement le déplacement et la charge via une matrice
qui dépend des paramètres rhéologique du sol sur lequel s’applique la charge. Mathématiquement, cela donne

Vecteur déplacement −→ D = GM ←− Vecteur charge, (1.1)

où G est la matrice de Green dépendant du modèle de Terre utilisé et de sa rhéologie. Résoudre le problème
direct est donc mathématiquement trivial puisqu’il consiste en un simple produit matriciel entre G et M . Il
existe de nombreuses études ayant utilisé le problème direct pour comparer les déplacements GNSS avec ceux
obtenus en appliquant l’Éq. (1.1) aux modèles de charge ou à GRACE. Avant le lancement de GRACE (donc
avant 2004), on pouvait comparer les déplacements mesurés par GNSS sur un réseau global (peu fourni) avec
les déplacements reconstitués à partir des modèles de charges (Mangiarotti et al., 2001; van Dam et al., 2001).
Cela pouvait permettre la mise en évidence de nouveaux modes de déformation de la Terre notamment à
l’échelle globale (Blewitt et al., 2001). Plus tard, d’autres études ont permis de comparer des réseaux globaux
plus denses (Klos et al., 2019b), notamment en associant au GNSS, d’autres techniques géodésiques comme le
VLBI (Very Long Base Interferometry) et le SLR (Satellite Laser Ranging) (Roggenbuck et al., 2015). Depuis
2004, on a obtenu des cartes de charge grâce aux missions GRACE et GRACE-FO. De nombreuses études
ont alors voulu réconcilier les déplacements reconstitués à partir de GRACE, les modèles hydrologiques et
les déplacements GNSS, tant d’un point de vue global (Tregoning et al., 2009; Chanard et al., 2018b) que
d’un point de vue régional avec des études sur les grands bassins hydrologiques équatoriaux (Nahmani et al.,
2012; Fu et al., 2013; Nicolas et al., 2021), sur des zones montagneuses comme le Népal (Fu & Freymueller,
2012; Chanard et al., 2014), sur des zones soumises à l’enneigement comme l’Islande (Grapenthin et al.,
2006; Drouin et al., 2016) ou le Sud de l’Alaska (Fu et al., 2012), mais aussi sur des zones où le réseau de
stations GNSS est dense et le signal de charge relativement faible comme en Europe (van Dam et al., 2007;
Tregoning et al., 2009) ou au Japon (Heki, 2004). Le point commun de toutes ces études est que l’on suppose
la Terre comme étant élastique pour déterminer les déplacements issus des charges. Ce postulat est vérifié
pour des phénomènes dont les périodes caractéristiques sont inférieures à quelques années (incluant donc
la majeure partie des variations liées aux charges hydrologiques) pour lesquels les propriétés visqueuses du
manteau ne se manifestent quasiment pas.

L’avantage majeur du problème direct est la facilité avec laquelle on peut arriver aux déplacements à
partir d’une carte de charge et en postulant une rhéologie particulière. Néanmoins, il peut être à l’inverse
intéressant de contribuer à la diversité de modèles de charge existants, en utilisant le déplacement GNSS pour
estimer la charge d’un point de vue global ou régional. On dit qu’on résout le problème inverse, cette méthode
fournissant au même titre que GRACE, une carte de charge issue uniquement de données géodésiques et non
de modèles.

2.2.2 Problème inverse

La difficulté du problème réside dans le processus d’inversion nécessaire à la détermination du pseudo-
inverse de la matrice de Green G. Une méthode connue depuis l’époque de Gauss qui est encore particulière-
ment utilisée aujourd’hui est la méthode des moindres carrés, permettant de trouver une solution optimale
M∗ minimisant les résidus ‖D − GM‖2 au sens de la norme 2 pour le produit matriciel. On peut alors
calculer le pseudo-inverse de G noté F tel que

Vecteur charge −→ M∗ = FD ←− Vecteur déplacement. (1.2)

La détermination de F peut être compliquée notamment quand le problème est dit « mal posé »(voir
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Partie V), c’est-à-dire lorsque le nombre d’équations indépendantes du système est plus faible ou plus im-
portant que le nombre d’inconnues à déterminer. Il convient alors d’ajouter des contraintes sur les inconnues
permettant d’augmenter le nombre d’équations indépendantes les reliant. Le type et le nombre de contraintes
est propre à l’utilisateur, donc subjectif, et il est alors préférable de rester prudent lors de l’interprétation
de la solution obtenue.

On compte peu d’études, comparativement au cas précédent, qui ont traité le problème inverse en partant
des déplacements GNSS pour accéder à la charge. On peut citer en premier lieu Wu et al. (2003) et Wu et al.
(2006) qui au lieu d’inverser directement les déplacements de stations réparties sur toute la surface terrestre,
ont traduit les déplacements en harmoniques sphériques afin de retomber sur un problème « bien posé »c’est-
à-dire autant d’harmoniques sphériques de déplacement indépendantes que d’harmoniques sphériques de
charge à déterminer. Il faut néanmoins garder à l’esprit que dans un tel schéma d’inversion, les harmoniques
sphériques de déplacement déterminées à partir des solutions GNSS ne sont pas indépendantes car le réseau
n’est pas homogène spatialement (Collilieux et al., 2009). De plus, la résolution (donc le degré maximum
d’harmoniques sphériques) est conditionnée par la densité du réseau utilisé. On doit donc jongler habilement
entre l’homogénéité du réseau et sa densité qui sont deux paramètres incompatibles au vu de l’inégale
répartition des stations GNSS (Figure 1.2). On observe alors des différences majeures avec GRACE sur
l’amplitude des charges notamment au niveau des zones équatoriales, en Asie centrale et aux États-Unis
(Figure 1.4). Ces différences peuvent s’expliquer à la vue des incertitudes importantes de GRACE dans la
zone équatoriale et du GNSS dans les zones peu ou pas couvertes par le réseau (Amazonie, Afrique). De
plus, le signal de charge important issu du GNSS aux États-Unis, peut être dû à un artefact lié au poids
relatif que cette zone géographique possède par rapport à d’autres en terme de densité de stations GNSS.
Par exemple, il n’est pas cohérent de voir un signal si fort aux États-Unis (zone tempérée) et si faible en
Amazonie (zone équatoriale). On aperçoit ici un des effet de l’inhomogène répartition des stations au sein
du réseau dont nous parlions ci-dessus.

Fig. 1.4 – Amplitude annuelle des signaux en phase (COS) et en quadrature (SIN) déterminées par l’inversion
des déplacements GNSS d’une part et avec GRACE d’autre part. Les données sont filtrées à 800 km et les
coefficients du degré 1 et de l’harmonique zonale de degré 2 sont dans les deux cas remplacés par ceux
déterminés dans une inversion conjointe du GPS et de GRACE. (extrait de Wu et al. (2006))

On peut aussi choisir de traiter le problème régionalement en choisissant une région où la densité de
stations est importante. C’est ce qui a été fait par Argus et al. (2014) sur la Californie. Il n’est alors plus
possible d’utiliser la décomposition en harmoniques sphériques. On passe alors directement par l’inversion
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des amplitudes saisonnières issues du modèle de déplacement ajusté sur les séries temporelles GNSS. Si
l’on décompose la région en une grille régulière dont la résolution correspond à la distance moyenne inter-
stations, les éléments de grille étant tous indépendants les uns des autres, on peut arriver à un problème
sous-déterminé : le nombre de cases indépendantes sur lesquelles on ajuste la charge (sur lesquels on inverse
le déplacement) est alors plus important que le nombre de stations GNSS. La méthode utilisée par Argus
et al. (2014) est alors d’ajouter des contraintes sous la forme d’une fonction de lissage (de type Laplacien)
permettant d’atténuer les différences trop importantes de charge entre cases voisines. Ceci n’est pas sans
conséquences puisqu’il faut alors choisir la valeur des paramètres de lissage de manière objective ce qui
est souvent difficile. On a alors recours à des arguments très subjectifs qu’il ne faut pas omettre dans
l’interprétation des résultats obtenus, sous peine de cacher une source de variabilité pouvant être importante.
La carte de déplacement annuel ainsi que la carte de charge obtenue après cette méthode d’inversion sont
représentées sur la Figure 1.5. On voit que la charge et le déplacement vertical (compté positivement vers
le haut) sont globalement en opposition de phase : lorsqu’une charge est présente le déplacement se compte
négativement et inversement. Comme pour le cas précédent, on voit que l’inégale répartition des stations ne
permet pas de contraindre suffisamment certaines régions comme le bassin de Tulare dans le cas présent. Il
est donc nécessaire de continuer à développer et densifier les réseaux de stations GNSS. Aussi, on pourrait
penser à inverser les déplacements sur une grille de charge adaptative, sur laquelle la résolution spatiale
serait plus importante dans les régions où la densité de stations est forte. On développera ce point dans la
Partie V.

Fig. 1.5 – (à droite) Surrection mesurée par GPS pendant le printemps et l’été. Les stations GPS sont
cerclées et le fond de carte est obtenu par triangulation de ces valeurs. (à gauche) Charge appliquée en
automne et hiver inversée à partir des déplacements GPS du panel de droite (sauf dans le bassin de Tulare).
(extrait de Argus et al. (2014))

3 Présentation de la situation en Europe

L’Europe est une zone intéressante à étudier d’un point de vue géophysique. On y rencontre de nombreux
événements sismiques notamment sur le pourtour méditerranéen, des régions volcaniques (en Italie), des
zones de fortes marées (dans la Manche) et une surrection post-glaciaire (Scandinavie). D’un point de vue
des charges, on trouve généralement les zones les plus impactées dans les grandes chaînes montagneuses
et les pays au climat fortement continental où les variations saisonnières sont très marquées. Nous allons
finalement voir que cette région est également riche d’un réseau GNSS dense permettant de mener des études
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intéressantes notamment sur l’Ouest et le Nord du continent.

3.1 Estimation du signal de charge avec GRACE

Dans un premier temps, nous cherchons une estimation du signal de charge en Europe avec GRACE
et GRACE-FO. Nous comparons les amplitudes annuelles de deux solutions déterminées par la méthode
« mascons » (voir Section 2.1.2). Ces amplitudes ont été générées par l’ajustement des tuiles par la fonction
suivante

y(t) = y0 + v(t− t0) + a1 cos(2πt) + b1 sin(2πt) + a2 cos(4πt) + b2 sin(4πt), (1.3)

où (y0, v, a1, b1, a2, b2) sont 6 paramètres ajustables, t est le temps exprimé en années civiles et t0 = 2000.
L’amplitude du signal annuel est donc donnée par A =

√
a21 + b21 et sa phase par φ = arctan 2(b1/a1). On

les a toutes deux représentées sur la Figure 1.6 pour la solution RL06v1.0 du GSFC, l’interpolation de cette
même solution sur une grille régulière de 0,5° × 0,5° et la solution RL06v2.0 du CSR. Là encore, comme
dans toute la suite, les amplitudes des termes saisonniers sont exprimées en centimètres de hauteur d’eau
équivalente.

Fig. 1.6 – Amplitude annuelle exprimée en centimètres de hauteur d’eau équivalente (cmwe) de la solution
GRACE/GRACE-FO RL06 du GSFC (a), son interpolation sur une grille régulière (b), et celle du CSR (c)
ainsi que les phases respectives (d), (e) et (f) qui désignent le moment de l’année où la charge est la plus
importante.

On voit que la solution du GSFC possède des problèmes de fuite de masse au niveau des côtes notamment
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car les mascons sont à cheval sur les continents et les océans. Ce problème disparaît sur la solution interpolée
[REG] notamment car l’interpolation a été réalisée de manière à placer la masse de ces tuiles côtières sur le
continent. Cet effet est très visible sur la Manche et sur la côte atlantique norvégienne où toute la masse en
mer a été redistribuée sur les côtes créant des zones de forte charge. En revanche, la solution du CSR possède
l’avantage d’avoir une fonction masque adaptée sans avoir à redistribuer la masse lors de l’interpolation (il
reste de la charge sur les océans notamment en Mer du Nord et dans la Mer Baltique). Attention, la résolution
n’est pas pour autant meilleure dans la solution CSR puisque les tuiles hexagonales ont à peu près la même
surface moyenne Smascon � 12 321 km2 (à latitude et longitude équivalente) que les mascons rectangulaires
du GSFC. D’autre part, on voit sur les panels (b) et (c) les réminiscences des formes géométriques des tuiles
initialement utilisées pour calculer la solution.

La répartition de la masse peut varier fortement d’une solution à l’autre. En plus de cela, on constate
qu’il existe des zones où la solution est mal définie comme sur le Sud de l’Italie, le Danemark ou la Grande-
Bretagne. On peut donner la limite de résolution de GRACE en donnant la longueur caractéristique des
tuiles sur lesquelles on calcule les mascons qui est d’environ 111 km (∼

√
Smascon). La longueur d’onde de

GRACE au sol est donc d’environ 200 km, ce qui en pratique ne permet pas de résoudre les zones de largeurs
inférieures à cette limite. Le signal est alors dilué dans les mascons environnantes et on perd en précision sur
la charge. Il est donc primordial avant d’utiliser des données GRACE, de vérifier que la zone étudiée n’est
pas de taille caractéristique inférieure à 200 km sous peine de voir les résultats entachés d’une incertitude
importante. Notamment, l’utilisation de GRACE dans des régions continentales ou océaniques morcelées
(Nord du Canada, Océanie, Grèce, etc.) ne fournira que des données peu précises pour cette même raison.

3.2 Potentiel du GNSS

3.2.1 Réseaux de stations

Nous allons voir dans cette partie en quoi le GNSS peut être un atout en Europe afin de palier au
manque de résolution de GRACE dans certaines régions. Le choix de l’Europe comme zone d’étude est
notamment appuyé par le fait que le réseau de stations GNSS y est très dense et installé depuis longtemps.
Ainsi plus de 100 stations possèdent des données sur des périodes de plus de 20 ans, en continu. On peut
aussi souligner l’effort important des organismes nationaux et internationaux pour fournir gratuitement les
données brutes des stations que ce soit les fichiers d’observations (fichiers au format RINEX) ou les fichiers de
suivi de stations (changement de matériels, logiciels, etc.) appelés aussi logfiles. Malheureusement, certains
pays comme la Suisse, continuent de monnayer l’accès à leur réseau national de stations, ce qui nuit fortement
à l’homogénéité de notre réseau régional. Une carte du réseau de stations que nous utiliserons dans cette
thèse, et dont les données sont libres est présentée sur la Figure 1.7a.

On voit notamment que les pays de l’Ouest européen sont particulièrement denses en stations : France,
Grande-Bretagne, Espagne, Italie. Le réseau devient de moins en moins dense à mesure que l’on s’éloigne vers
l’Est. La liste des organismes et réseaux fournissant les données RINEX journalières des stations représentées
sur la Figure 1.7 est donnée ci-dessous :

• IGN/RGP (Institut Géographique National/Réseau GNSS permanent, http://rgp.ign.fr),

• RENAG (Réseau National GNSS, http://webrenag.unice.fr),

• SONEL (Système d’Observation des variations du Niveau de la mEr à Long terme, https://www.
sonel.org),

• EUREF (EUREF Permanent GNSS Network, https://www.epncb.oma.be),

• RING (Rete Integrata. Nazionale GPS, http://ring.gm.ingv.it),

• BIGF (British Isles continuous GNSS Facility, http://www.bigf.ac.uk),

• CDDIS (Crustal Dynamics Data Information System, https://cddis.nasa.gov),

• NOA (National Observatory of Athens, http://www.gein.noa.gr),

• NIEP (National Institute for Earth Physics, http://gps.infp.ro),

• DGPA (Dutch Permanent GNSS Array, http://gnss1.tudelft.nl/dpga/),

• ERGNSS (Red Geodésica Nacional de Estaciones de Referencia GNSS, https://www.ign.es/),
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• ITACYL (Red de estaciones GNSS de Castilla y León, http://gnss.itacyl.es),

• BKG (Bundesamt für Kartographie und Geodäsie, https://igs.bkg.bund.de).

La densité du réseau européen est un atout pour la résolution spatiale des charges. En effet, plus le réseau
est dense, plus l’on peut raffiner la grille sur laquelle on inverse le déplacement. Si la densité est suffisam-
ment importante, on peut donc largement surpasser la résolution spatiale de GRACE et ainsi apporter une
information complémentaire grâce au GNSS. Nous verrons dans la Partie V que l’on peut même inverser la
charge sur une grille au pas adaptatif en fonction de la densité de stations. Ainsi, on ne perd ni ne gagne
d’information par rapport au réseau existant. Le problème majeur sera alors d’interpréter les zones de notre
étude où la couverture GNSS est pauvre mais où le signal de charge est en théorie important (Chaîne des
Balkans, Turquie : voir Figure 1.6). Pour cela, on verra qu’il est possible de contraindre ces régions avec le
signal de GRACE lui-même.

Fig. 1.7 – (a) Réseau du réseau non exhaustif des stations dont les données sont en libre accès en Europe.
(b) Sous réseau (en bleu) du réseau principal du panel (a) (en rouge) sélectionnant les stations selon les
différents critères mentionnés dans la Section 3.2.2.

3.2.2 Sélection des stations

Parmi les stations du réseau de la Figure 1.7, certaines ne possèdent que quelques mois de données,
certaines possèdent des trous de plusieurs mois voire de plusieurs années et ne permettent donc pas un
ajustement correct du signal annuel (Blewitt & Lavallée, 2002). Il existe aussi (1) des clusters de stations
(stations se trouvant dans un environnement très proche typiquement de l’ordre de la trentaine de mètres),
(2) des stations dont le nom a changé au cours de l’acquisition des données et (3) des réattribution d’anciens
noms de stations à de nouvelles stations. L’ensemble de ces problèmes (qui ne sont quasiment pas référencés),
rendent difficile la sélection des « bonnes » stations. Par bonnes stations, on entend ici les stations possédant
une durée minimale d’acquisition et une complétude (de la série temporelle) suffisante. Les critères que
nous choisissons sont reportés dans le Tableau 1.1 et le sous-réseau sélectionné contenant 1077 stations est
représenté en bleu sur la Figure 1.7b. On voit que la densité du réseau n’est peu ou pas dégradée sauf
en Irlande et au Nord de la France. On peut calculer la distance moyenne inter-stations en faisant une
triangulation de Delaunay et en déterminant la longueur de chaque vertex. Cette distance peut fortement
varier spatialement. Elle vaut par exemple 97 km en moyenne sur l’ensemble du réseau, mais 73 km en Europe
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de l’Ouest (France, Grande-Bretagne, Espagne, Italie) et 193 km en Europe de l’Est et en Scandinavie. On
voit qu’on arrive avec ce réseau GNSS à atteindre globalement une résolution meilleure que celle de GRACE,
ce qui justifie que l’on puisse améliorer la qualité de la solution de charge par rapport à celle de GRACE dans
cette région. Avant tout, il est nécessaire d’obtenir des déplacements GNSS de qualité, c’est-à-dire ayant un
bon rapport signal sur bruit, et étant les moins biaisés possible. Nous les calculons à l’aide du logiciel GINS,
selon la procédure détaillée dans la Partie II.

Critères Sélection 1 Sélection 2
Fin de la série 2005 ≤ · · · ≤ 2019 2019 ≤ · · · ≤ 2021
Durée de la série ≥ 5 ans ≥ 4 ans
Complétude de la série (%) ≥ 50% ≥ 70%

Tab. 1.1 – Critères de sélection des stations du réseau bleu de la Figure 1.7b.
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1 Généralités sur le GNSS

Le GNSS (Global Navigation Satellite System) est une technique de positionnement par satellite utilisée
depuis les années 80 dans le domaine militaire et le domaine civil pour la navigation en temps réel. À partir
des années 90, le GNSS a également été utilisé dans la recherche scientifique, notamment en géodésie car
elle permet dans certaines conditions d’avoir accès à des positions très précises (subcentimétriques voire
millimétriques) compatibles avec les besoins de la géodésie dont l’objectif est actuellement d’atteindre des
précisions millimétrique pour la position et de l’ordre de 0,1mm·an−1 pour les vitesses des stations géodé-
siques (Altamimi et al., 2016, 2017). Le principe général réside dans le calcul de la distance entre le satellite
et le récepteur afin de déterminer la position de ce dernier, connaissant initialement la position du satellite.
Celle-ci est soit donnée par le satellite lui-même à travers un signal appelé « Message de navigation » pour
une utilisation en navigation peu précise (la précision est ici de l’ordre de quelques mètres), soit donnée
par l’IGS (International GNSS Service) qui fournit gratuitement depuis 1994 des orbites précises pour les
applications scientifiques. En tant que service international, l’IGS a pour but d’unifier les efforts de la com-
munauté internationale en calculant et fournissant une solution d’orbites précises, en plus d’être un support
pour de nombreux groupes de réflexion et de travail sur l’amélioration de ces produits et l’avenir du GNSS
au niveau mondial.

Grâce notamment au faible coût d’installation des stations au sol, le GNSS est une technique aujourd’hui
massivement employée pour le positionnement précis que ce soit en mode statique pour des stations géo-
désiques de référence ou en mode cinématique pour le suivi d’objets (notamment en temps quasi-réel). La
densité inégalée de son réseau de récepteurs de type géodésiques au sol (voir Figure 1.2) est un atout pour
de nombreuses applications (liste non exhaustive) : système de référence terrestre (Altamimi et al., 2016),
mouvements tectoniques (Calais et al., 2006; Nocquet, 2012), sismologie (Klein et al., 2018), variations sai-
sonnières hydrologiques (Argus et al., 2014), synchronisation d’horloges et transfert de temps (Lombardi
et al., 2001), contenu en électron de l’ionosphère lié à des événements géophysiques (Dautermann et al.,
2009) et en vue de la prévention des risques sismiques (Heki, 2011; Eisenbeis & Occhipinti, 2021). La mesure
GNSS étant incontournable pour de nombreux enjeux majeurs de la géophysique, la qualité des traitements
a systématiquement été améliorée depuis des années et continue encore d’être un sujet actif de recherche
dans la communauté géodésique, notamment à l’IGS.

Il existe plusieurs constellations de satellites GNSS pleinement ou partiellement opérationnelles à l’heure
actuelle (2022). Les États-Unis ont été les premiers à se doter d’une constellation de satellites GNSS appelée
GPS (Global Positionning System). La Russie a également développé sa propre constellation GNSS appelée
GLONASS, pleinement opérationnelle depuis 2011 et dont les plans orbitaux sont plus inclinés que ceux des
satellites GPS pour pouvoir augmenter la précision dans les zones de hautes latitudes. Enfin, l’ESA (Agence
Spatiale Européenne) a lancé son projet de constellation GNSS appelée Galileo, pleinement compatible avec
le système GPS, délivrant un « service initial » depuis fin 2016 et qui devrait être pleinement opérationnel
d’ici 2024. D’autres systèmes de navigation existent dont Beidou/Compass développé par la Chine, ainsi
que des systèmes régionaux comme QZSS pour le Japon ou IRNSS pour l’Inde. Le Tableau 2.1 résume les
caractéristiques principales des constellations GPS, GLONASS, Galileo et Beidou.

Caractéristiques GPS GLONASS Galileo Beidou
Pays États-Unis Russie Europe Chine
Opérationnel (pleinement) 1995 2011 2016 (2024) 2020
Altitudes des satellites (km) 20 183 19 130 23 222 21 150
Nombre de satellites 31 24 24(+6) 27(+8)
Nombres de plans orbitaux 6 3 3 3
Inclinaison des plans orbitaux 55° 64,8° 56° 55°

Fréquences utilisées (MHz)

L1 (1575,42) G1 (1600,99) E1 (1575,42) B1 (1575,42)
L2 (1227,60) G2 (1248,06) E5b (1207,14) B2b (1207,14)
L5 (1176,45) G3 (1202,03) E5a (1176,45) B2a (1176,45)

E6 (1278,75) B3 (1268,52)

Tab. 2.1 – Caractéristiques des constellations GNSS majeures.
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Pour atteindre des solutions de haute précision, il est nécessaire de modéliser avec soin l’ensemble des
phénomènes et biais impactant la mesure GNSS. Nous décrivons brièvement dans la suite l’équation de
mesure utilisée en vue d’un traitement précis utilisant les produits orbite/horloge de l’IGS ou d’un de ses
centres d’analyse. Les mesures précises avec GLONASS n’étant possible que depuis la fin des années 2000
et les mesures avec Galileo n’étant possible qu’à partir de fin 2016, nous nous sommes limités à utiliser
la constellation GPS seule dans le cadre de notre traitement de séries temporelles longues (allant jusqu’à
2001). Nous nous limiterons donc également au GPS et à ses fréquences « historiques » L1 et L2 dans les
considérations théoriques que nous étudions dans la suite de cette partie.

2 Détermination de l’équation de mesure

2.1 Émission, propagation et réception du signal

Comme tout les signaux GNSS, le signal GPS est construit à partir d’un oscillateur atomique se trouvant
à bord. Pour le GPS, il génère une fréquence fondamentale de 10,23MHz permettant de générer par la
suite plusieurs signaux ayant leur propre fonction comme cela est montré sur la Figure 2.1 : les signaux de
codes, les signaux de phases et le message de navigation. Le message de navigation comporte des éléments
d’information sur le satellite comme son numéro, son état de fonctionnement, son orientation, sa position
approximative, la date d’envoi du signal dans son temps propre et son biais d’horloge approximatif par
rapport au temps GPS. Les phases sont deux ondes sinusoïdales de haute fréquence typiquement de l’ordre
du GHz donc de longueur d’onde décimétrique, appelée L1, L2 et L5 dans le cas du GPS et permettent
une mesure de position subcentimétrique. Le code (C/A) et le code précis (noté souvent P ou Y) sont des
signaux binaires (i.e. en créneau) pseudo-aléatoires dont la longueur caractéristique est de 1023 bits (chip)
soit une longueur d’environ 30m pour le code P, permettant d’atteindre des précision de l’ordre de 30 cm sur
la position. Chaque satellite possède un chip propre de sorte qu’il constitue une sorte de carte d’identité du
satellite. Les chips choisis ont l’avantage d’être bien décorrélés entre eux pour pouvoir différencier facilement
les satellites. L’ensemble de ces signaux est modulé selon le schéma représenté sur la Figure 2.1, avant d’être
émis en direction de la Terre.

Fig. 2.1 – Schéma de la structure des différents signaux générés par les satellites GPS et leur modulation
en vue de l’envoie de l’onde. (modifié à partir de García Fernández (2004))

Entre le satellite et le récepteur, la propagation des signaux dans l’atmosphère est perturbée par la
nature du milieu. L’ionosphère est un milieu dispersif de type plasma (les molécules sont ionisées sous l’effet
des rayons solaires) dans lequel il existe une différence entre la vitesse de phase et la vitesse de groupe
du signal. En première approximation, dans l’ionosphère, la porteuse est avancée d’autant que l’enveloppe

21



DEUXIÈME PARTIE | Solutions GNSS en Europe calculées avec le logiciel GINS

est retardée. Une autre propriété d’un milieu dispersif est la propagation différente entre des signaux de
fréquences différentes : le retard de l’enveloppe (respectivement l’avance de la porteuse) est proportionnel
à 1/f2 en se limitant au premier terme d’ordre non nul. On peut alors corriger cet effet de dispersion
en combinant les signaux de deux ondes de fréquences différentes, par exemple L1 et L2 (combinaison
« ionosphere-free »).

Il convient ensuite d’étudier la propagation de l’onde dans la troposphère. Ce milieu est transparent, non
dispersif mais possède un indice optique n pouvant fortement varier dans le temps et l’espace notamment
à cause de la composition de l’atmosphère et en premier lieu sa teneur en vapeur d’eau. L’onde se propage
alors à une vitesse c/n ce qui induit un retard qui dépend de l’épaisseur de troposphère traversée donc de
l’élévation du satellite par rapport au récepteur. En effet, plus le satellite est proche de l’horizon, plus la
couche de troposphère traversée sera grande (donc potentiellement variable) et plus le délai correspondant
augmentera. On passe de quelques mètres de délai troposphérique au zénith, à quelques dizaines de mètres
à basse élévation.

En suivant les recommandations des conventions de l’IERS (International Earth Rotation Service), on
modélise le délai troposphérique en considérant que le délai calculé au zénith du récepteur (ZTD) peut être
projeté à d’autres élévation en utilisant des fonctions de projection comme la Global Mapping Function
(GMF) (Boehm et al., 2006a) ou la Vienna Mapping Function (VMF) (Boehm et al., 2006b). Le délai
troposphérique pour une élévation quelconque est ainsi décrit par les contributions zénithales sèches (ZHD) et
humides (ZWD) de l’atmosphère qui sont projetées à la bonne élévation grâce à la fonction de projection. On
peut également y inclure des gradients qui permettent d’induire une anisotropie Nord-Sud et Est-Ouest dans
la projection zénithale. Les paramètres intervenant dans les expressions des fonctions de projection doivent
donc être estimés de sorte à éviter toute mauvaise modélisation et/ou délai résiduel liés aux variations du
délai troposphérique. Aussi, étant donnée la difficulté de connaître précisément les conditions météorologiques
notamment l’humidité autour de la station, le ZWD et les paramètres du gradient sont le plus souvent
estimés comme inconnues supplémentaires. La difficulté réside dans le fait que ces paramètres sont souvent
très corrélés aux biais d’horloges et à la composante verticale du déplacement de la station.

Le signal capté par l’antenne du récepteur est démodulé selon la procédure inverse de la modulation. Le
signal de code reçu est alors comparé aux chips disponibles dans la base de données des récepteurs et une
fonction de corrélation calculée entre le signal reçu et le signal de la base de données permet d’identifier le
satellite et de déduire le temps de parcours de l’onde. C’est la précision avec laquelle on arrive à corréler les
deux signaux qui limite la précision de la mesure. Pour les signaux de phase, qui sont sinusoïdaux, on ne
peut mesurer l’écart de phase entre l’onde reçue et l’onde générée qu’à un nombre entier de cycles près. Nous
avons donc simplement accès à un déphasage compris entre 0 et 2π mais le nombre de cycle entier N s’étant
écoulé en plus de ce déphasage ne peut pas être déterminé a priori. Cette inconnue est appelée ambiguïté.
Elle peut être résolue sous la forme d’un nombre réel mais identifier le nombre entier correspondant améliore
sensiblement la solution de l’ensemble des paramètres. Nous verrons dans la Section 3 qu’il existe différentes
techniques pour déterminer les ambiguïtés entières.

2.2 Équation de mesure de code et phase

Nous dressons ici une liste des phénomènes qui biaisent la mesure GPS, ainsi que la manière dont on
peut les modéliser ou dont on doit les déterminer lors du calcul de la solution. La nature de ces biais et les
corrections qui y sont apportées peuvent varier selon les traitements, la constellation et le matériel utilisé.
Nous exposons ici seulement des généralités.

Effets relativistes : Le décalage en fréquence lié aux effets de relativité restreinte (dilatation du temps) et
de relativité générale (redshift généré par la différence entre le potentiel moyen au niveau du satellite et celui
au niveau du géoïde) ont été corrigés préalablement au lancement des satellites en modifiant légèrement la
fréquence de l’oscillateur embarqué. Les effets de dilatation et de redshift restant à corriger sont ceux liés au
déplacement du satellite hors de l’orbite circulaire moyenne (donc lié à l’excentricité de l’orbite) ainsi que
ceux liés à la propagation du signal dans un référentiel tournant avec la Terre (effet Sagnac).

Biais d’horloge : L’horloge satellite et l’horloge récepteur ne peuvent être parfaitement synchronisées avec
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l’échelle de temps GPS ce qui induit un biais supplémentaire à déterminer. Les biais d’horloge satellite sont
soit fournis par l’IGS, soit éliminés du problème tandis que les biais d’horloge récepteur doivent être estimés
ou éliminés 1. On note que cet écart au temps de référence est indépendant de la fréquence utilisée (L1 ou L2).

Biais hardware : Ces biais, aussi appelés biais instrumentaux, sont liés au temps de parcours du signal
électrique au sein du satellite et au sein du récepteur. Dans le satellite c’est le temps de trajet entre la
sortie de l’oscillateur et le lieu d’émission du signal et dans le récepteur, c’est le temps de trajet entre la
réception de l’onde et l’acquisition. Ces biais dépendent non seulement du type de signal (code ou phase)
mais également de la fréquence (Inter Frequency Bias, IFB), de la méthode d’acquisition du signal dans le
récepteur (Differential Code Bias, DCB) et de la constellation (Inter System Bias, ISB). Étant difficilement
modélisables, ils peuvent être éliminés des mesures ou bien être estimés (voir Section 3.2). Ils induisent gé-
néralement des variations pouvant aller jusqu’au mètre.

Phase center offset (PCO) : Ce terme est lié au fait que les antennes émettrices ne sont pas au centre
de masse des satellites et que les antennes réceptrices ne sont pas exactement sur les marqueurs géodésiques
qui définissent le point de mesure au sol par convention 2. Ainsi, il est nécessaire de corriger la mesure pour
prendre en compte ces deux distances qui peuvent être assez importantes. Les valeurs des PCO des satellites
GPS n’ayant pas été rendues publiques, elles ont été estimées par méthode inverse par les centres d’analyse
de l’IGS.

Phase center variations (PCV) : Ce terme permet de positionner précisément le centre de phase d’une
antenne, qui dépend de l’azimut et de l’élévation du signal ainsi que de sa fréquence. Toutes les antennes
géodésiques ont fait l’objet de calibration pour les signaux GPS L1 et L2. L’ensemble des informations de
PCV et PCO sont données dans des fichiers ANTEX délivrés régulièrement par l’IGS au profit des utilisa-
teurs et utilisatrices (ftp.aiub.unibe.ch/users/villiger/igsR3_2077.atx).

Windup : Cet effet est lié aux variations de l’orientation relative de l’antenne du satellite par rapport à
l’antenne du récepteur. Par exemple, si le satellite effectue une rotation complète selon son axe de lacet,
la phase du signal est modifiée d’un cycle alors que la distance à la station n’a pas changée. Au cours du
passage d’un satellite sa loi d’attitude peut produire des rotations allant jusqu’à un demi-tour et donc un
signal de windup d’une dizaine de centimètres dans le cas du GPS. Cet effet doit être modélisé par un des
modèles de référence décrits dans Wu et al. (1992) ou Kouba (2009) afin d’être retiré des observations.

Multi-trajet : Ce biais est très difficile à prendre en compte car il est propre à chaque situation. Le si-
gnal arrivant sur l’environnement proche d’un récepteur (végétation ou habitations sur quelques dizaines de
mètres) peut être réfléchi et capté par le récepteur. Ce signal parasite (dans le cas du calcul de position
précis) augmente la dispersion du signal et peut aussi créer des erreurs spectrales (recouvrement de spectre
notamment) sur le signal mesuré si il est capté de manière permanente. Le multi-trajet est en pratique plus
important sur les mesures de code que les mesures de phase et peut être drastiquement réduit en appliquant
un filtre en élévation pour éliminer du calcul les mesures de basse élévation qui sont les plus sujettes à ces
réflexions.

Ambiguïté : Ce biais sur la mesure de phase est une inconnue supplémentaire dans le problème. En effet,
le déphasage complet de l’onde entre l’émission du signal par le satellite et la réception par l’antenne est
φ = Φ + N , où φ est un nombre réel de cycle, Φ est le déphasage mesuré par le récepteur (donc modulo 1
cycle) et N est le nombre de cycles entiers s’étant écoulés (inconnu). On peut remarquer que tant que l’on
possède une mesure continue du signal de phase Φ (il faut pour cela un système de boucle à verrouillage de
phase) durant le passage d’un satellite, la valeur de N ne change pas.

Étant donné l’ensemble de ces phénomènes, les équations de mesure de code P et de phase Φ pour les

1. L’élimination est possible en combinant différentes observations (voir Section 3.1).
2. On utilise ces marqueurs géodésique pour que la station soit compatible avec d’autres techniques que l’on rapporte elles

aussi à ce marqueur.
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deux fréquences f1 et f2, entre un satellite a et un récepteur r à un temps t sont données par (Teunissen &
Kleusberg, 2012)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

P1 = (ρ+ ρcorr1 )P + c[(dtP1)
a − (dtP1)r] + I1 + T +MP1 + εP1

P2 = (ρ+ ρcorr2 )P + c[(dtP2)
a − (dtP2)r] + I2 + T +MP2 + εP2

λ1Φ1 = (ρ+ ρcorr1 )Φ + c[(dtΦ1)
a − (dtΦ1)r]− I1 + T − λ1N1 + λ1w +MΦ1 + εΦ1

λ2Φ2 = (ρ+ ρcorr2 )Φ + c[(dtΦ2)
a − (dtΦ2)r]− I2 + T − λ2N2 + λ2w +MΦ2 + εΦ2

, (2.1)

où P est la pseudodistance (en mètres) mesurée grâce à la fonction de corrélation appliquée sur la mesure de
code P, Φ ∈ [0, 2π[ est le déphasage (en cycles) sur la phase, λ est la longueur d’onde de la phase (L1 ou L2),
ρ la distance géométrique entre le satellite et le récepteur, ρcorr les corrections liées aux effets relativistes
et aux PCO/PCV (dépendants tout deux de la fréquence), dta le biais d’horloge du satellite a (comprenant
le biais instrumental), dtr le biais d’horloge du récepteur r (comprenant le biais instrumental), I le délai
ionosphérique, T le délai troposphérique, N l’ambiguïté entière, w l’effet windup, M le terme de multi-trajet
et ε l’ensemble des termes non modélisés et sources de variabilité comprenant notamment le bruit thermique
(blanc) et le bruit de scintillation (en loi de puissance) (Teunissen & Kleusberg, 2012).

Il existe de nombreuses manières de combiner ces équations (Teunissen & Montenbruck, 2017), ce qui
permet de s’affranchir de certains termes en fonction de l’utilisation qu’on souhaite faire des mesures GNSS.
Dans la prochaine section, on s’intéressera aux méthodes permettant d’obtenir le positionnement précis d’une
station et notamment de la résolution des ambiguïtés entières.

3 Positionnement précis

Dans cette section, nous donnons un aperçu du traitement nécessaire pour calculer la position précise
d’une station en utilisant le modèle donné par l’Éq. (2.1). Dans un premier temps, il faut déterminer quels
sont les paramètres que l’on modélise (donc qui ne seront pas estimés), quels sont les paramètres que l’on
élimine par combinaisons et quels sont les paramètres qu’il reste à estimer.

Dans le cas du positionnement précis, les paramètres que l’on modélise sont les corrections incluses dans
le terme ρcorr, l’effet windup w et la position a priori des stations. Nous verrons dans la Section 3.2.2
qu’il est nécessaire que cette position soit finement modélisée (typiquement avec une erreur inférieure à
5 cm) pour pouvoir estimer correctement les ambiguïtés entières sur les mesures de phase non différentiées.
Les conventions IERS (Petit & Luzum, 2010) recommandent les modèles de déplacement de la station liés
aux marées solides et polaires ainsi qu’aux charges de marée océanique et atmosphérique. Les charges non-
maréales décrites dans la Section 1 sont systématiquement omises de la modélisation car les corrections
induites sont assez faibles pour être négligées compte tenu de la précision demandée ici. Les coordonnées des
satellites et leurs biais d’horloge respectifs sont donnés quant à eux par les produits précis de l’IGS (combinés
ou d’un centre d’analyse en particulier).

On élimine systématiquement les délais ionosphériques grâce à la combinaison ionosphere-free et un mo-
dèle pour la correction de troisième ordre. Afin de simplifier la combinaison des équations faisant disparaître
la contribution ionosphérique, on écrit le délai ionosphérique en fonction du seul terme à la fréquence f1 et
du facteur γ = λ2

2/λ
2
1 qui sert de conversion entre les corrections ionosphériques du second ordre aux fré-

quences f1 et f2. On divise également les biais d’horloge en deux termes distincts : l’un contenant les écarts
des horloges au temps GPS h, l’autre étant lié aux biais instrumentaux ou biais hardware τ . Les termes
décrivant l’écart des horloges au temps GPS ne dépendent que de la nature du signal (code ou phase) tandis
que les termes de biais sont à la fois dépendant de la nature du signal, mais également de sa fréquence 3. On
peut modéliser cette dépendance en fréquence des biais comme ayant la même nature que la dépendance en
fréquence du délai ionosphérique (propagation dans les câbles coaxiaux notamment). Ainsi, les biais hard-
ware des signaux de fréquences f1 et f2 seront reliés par le facteur γ. Cette écriture est particulièrement
intéressante lorsque l’on écrit une combinaison ionosphere-free(Laurichesse et al., 2009; Loyer et al., 2012).

3. En réalité, si une partie des biais hardware est indépendante de la fréquence, alors elle sera absorbée dans le terme d’écart
à la référence h, ce qui ne pose pas de problème en soit.
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On réécrit les Éqs. (2.1) avec les nouvelles notations ce qui donne⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P 1 = (ρ+ T )P + cΔa

rhP + cΔa
rτP + I1 + εP1

P 2 = (ρ+ T )P + cΔa
rhP + γcΔa

rτP + γI1 + εP2

λ1Φ1 = (ρ+ T )Φ + cΔa
rhΦ + cΔa

rτΦ − I1 − λ1N1 + λ1w + εΦ1

λ2Φ2 = (ρ+ T )Φ + cΔa
rhΦ + γcΔa

rτΦ − γI1 − λ2N2 + λ2w + εΦ2

, (2.2)

avec P (resp. Φ) la mesure de code (resp. de phase) contenant les corrections PCO/PCV et relativistes, ρ
la distance satellite-récepteur contenant les modèles IERS pour la station et l’orbite précise satellite, T le
modèle de troposphère contenant une fonction de projection, w le modèle de l’effet windup, Δa

rh (resp. Δa
rτ)

la différence des biais d’horloge de référence (resp. des biais hardware) entre le satellite et le récepteur et εP
(resp. εΦ) l’ensemble des termes non modélisés contenant le multi-trajet pour le code (resp. la phase).

Pour le calcul d’une solution statique par jour, on estime le reste des paramètres présents dans les
Éqs. (2.2) : les coordonnées résiduelles de la station (3 paramètres par jour), le biais d’horloge récepteur
dtrec (1 paramètre par époque - généralement toute les 30 s), les ambiguïtés entières N (1 paramètre par
passage de satellite - chaque saut de cycle rajoute un paramètre supplémentaire), les paramètres troposphé-
riques contenus dans T (1 paramètre toute les 2 heures pour le délai ainsi que 2 paramètres par jour pour le
gradient car on différencie le gradient Nord-Sud et le gradient Est-Ouest). On rappelle que l’ajustement de T

est en fait l’ajustement des paramètres dont dépend la fonction de projection. Les délais liés au multi-trajet
sont négligeables pour les mesures de phase et le cas échéant sont absorbés dans le terme ε ne contribuant
qu’aux erreurs sur les paramètres estimés.

Pour obtenir une précision subcentimétrique sur la position mesurée, il est essentiel de résoudre l’équation
de phase, le problème majeur étant la résolution de l’ambiguïté entière (non présente dans la mesure de
code) fortement corrélée aux biais hardware. L’ambiguïté perd alors son caractère d’entier et la solution
se trouve entachée d’une erreur pouvant être importante. Il existe dès lors deux techniques distinctes pour
résoudre correctement les ambiguïtés en préservant leur caractère entier. La première consiste à différencier les
observations afin d’éliminer les biais hardware et les biais d’horloge. La seconde consiste à modéliser/estimer
les biais hardware grâce à des combinaisons astucieuses des équations de mesure. Nous présentons les deux
démarches de résolution en développant d’avantage la seconde que nous avons effectivement utilisée pour
notre traitement.

3.1 Solution différenciée

La méthode différentielle consiste à former des différences entre les mesures afin d’éliminer certains
paramètres et éviter ainsi d’avoir à les estimer. Elle est résumée dans la Figure 2.2 pour une simple (SD),
double (DD) ou triple (TD) différence entre observables. En formant les simples différences entre les mesures
reliant deux récepteurs à un satellite, on élimine le biais d’horloge et le biais hardware satellite. En double
différence, c’est-à-dire entre deux récepteurs et deux satellites, on élimine en plus le biais d’horloge et le biais
hardware des récepteurs. Les biais hardware satellites et récepteurs étant éliminés, l’ambiguïté retrouve un
caractère entier et peut être estimée. Enfin, si l’on différentie en plus les mesures entre deux époques, on
élimine l’ambiguïté quand bien même on n’obtient que des mesures temporelles relatives.

Pendant de nombreuses années, la méthode DD a été largement utilisée faute de pouvoir estimer les biais
hardware satellites et récepteurs. Elle souffre cependant de multiples inconvénients. Elle nécessite un calcul
réseau, c’est-à-dire la résolution simultanée d’un ensemble de stations. En cela, ajouter une station au réseau
initial nécessite de refaire le calcul entièrement. Si le nombre de stations est trop important, on doit traiter
des sous-réseaux du réseau initial pour éviter un temps de calcul trop long. Également, ce traitement ne
donne accès qu’aux positions relatives des stations les unes par rapport aux autres et l’on doit alors recaler
la solution réseau sur un repère au moyen de stations de référence, pour pouvoir obtenir la position absolue
de toutes les stations dans ce repère. Enfin, le traitement est sensible aux problèmes isolés, notamment le cas
d’une « mauvaise » station qui peut affecter l’ensemble de la solution. La longueur de la ligne de base entre les
stations est aussi un paramètre contraignant car les paramètres que l’on élimine peuvent varier spatialement
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Fig. 2.2 – Schéma de combinaison des signaux de phase (notés p ici) en simple, double ou triple différence
afin de s’affranchir des biais d’horloge et de l’ambiguïté de phase. Le schéma de droite résume comment on
peut s’affranchir de l’ambiguïté entière en différenciant deux mesures dans le temps. (extraits de Van Sickle
(2008))

et doivent donc être éliminés entre stations proches (typiquement les paramètres de troposphère).
Devant ces problèmes, l’objectif de la communauté a été d’essayer de développer une technique permet-

tant de traiter les stations indépendamment les unes des autres (en mode zéro-différence), tout en restant
compétitif sur la précision obtenue.

3.2 Solution Zéro-différence

3.2.1 Mode PPP

Devant les problèmes posés par le calcul différencié, on a cherché à calculer directement la position
absolue d’une station sans avoir besoin de combiner les observations de plusieurs récepteurs et surtout sans
avoir besoin d’une station de référence (Zumberge et al., 1997; Blewitt, 1998). Ce mode de calcul en zéro-
différence, appelé PPP pour Positionnement Ponctuel Précis (ou Precise Point Positionning en anglais), est
particulièrement recherché pour le suivi cinématique de balise GNSS ou même de mesures temps réel de
stations de campagne, pour lesquels il n’existe pas forcément de stations de référence proches.

La résolution en mode PPP nécessite de modéliser ou d’estimer chaque terme de l’Éq. (2.2) plutôt que de
chercher à les éliminer comme en mode différentiel. Le nombre de paramètres à estimer pour chaque station
est donc bien plus important qu’en mode DD et le temps de convergence de la solution peut être plus long
et cela peut devenir un handicap pour le positionnement en temps réel (Choy et al., 2017; Perosanz, 2019).
Néanmoins, les progrès dans la modélisation des différents termes de l’équation de mesure, a permis à cette
méthode de devenir incontournable et a rendu toujours plus anecdotique la résolution en DD, sans pour
autant supprimer l’intérêt de ce mode de calcul dans certains cas particuliers. Un des problèmes majeur du
PPP est la présence des biais hardware dans les équations de mesure qui font perdre leur caractère entier aux
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ambiguïtés de phase lors de l’ajustement des paramètres. La position estimée des stations est alors entachée
d’une erreur importante liée à la corrélation entre les paramètres. La qualité des solutions est de ce fait
dégradée et les précisions obtenues moins bonnes qu’en mode différencié.

À titre d’exemple, Fund et al. (2012) ont modélisé les cartes de corrélation entre paramètres pour un
traitement cinématique en mode PPP. La Figure 2.3 extraite de leurs travaux montre que les biais d’horloge
récepteur, de troposphère et la composante verticale du déplacement sont particulièrement (anti)corrélés avec
des valeurs supérieures à 80%. En effet, lorsque le satellite est au zénith de la station, ces trois paramètres
traduisent tous un allongement ou une réduction directe du temps de trajet de l’onde dans la ligne de visée
du satellite.

U hrec
NE

%

hrec

U

N

ZWD

Fig. 2.3 – Cartes de corrélation (en pourcentage) entre les paramètres estimés pour un traitement cinéma-
tique en mode PPP. (extrait de Fund et al. (2012))

On remarque également une forte corrélation (plus de 40%) sur les zones polaires entre la composante
Nord et la composante verticale. Cet effet est lié à la géométrie de constellation. Les satellites GPS couvrent
parfaitement toutes les longitudes mais sont limités en latitude par l’inclinaison de leurs orbites à 55° (Cap-
derou, 2011). Ainsi, la composante Nord qui est contrainte par le trajet Nord-Sud du satellite, est fortement
dégradée au delà de ces valeurs extrêmes et devient corrélée avec la composante verticale. Le jeu des corréla-
tions induit également une corrélation entre la composante Nord et l’horloge récepteur, et dans une moindre
mesure entre la composante Nord et le délai troposphérique. On peut faire une remarque sur l’apport du
multi-GNSS sur cette question. Les satellites de la constellation GLONASS ont une inclinaison plus élevée
(64,8°) justement pour des raisons de couverture de la zone septentrionale russe. La composante Nord y est
alors moins corrélée avec les autres paramètres. De la même manière, les satellites Galileo qui possèdent à peu
près la même inclinaison que les satellites GPS (56°) mais orbitent plus de 3000 km au dessus, couvriraient
d’avantage les zones polaires. Enfin, on remarque que la composante Est est particulièrement bien définie
dans le sens où la corrélation avec les autres paramètres est faible.

3.2.2 Résolution des ambiguïtés entières

Depuis la fin des années 2000 cependant, plusieurs méthodes ont permis de déterminer ces ambiguïtés
entières (Collins, 2008; Laurichesse et al., 2009; Ge et al., 2008; Bertiger et al., 2010; Geng et al., 2010)
en prenant en compte le fait que certains biais hardware satellites sont stables dans le temps. Ils sont
donc modélisables et éliminés du problème, ce qui lève en partie l’indétermination sur la nature entière de
l’ambiguïté (il reste les biais hardware récepteurs). Nous allons décrire ici brièvement les grandes étapes de

27



DEUXIÈME PARTIE | Solutions GNSS en Europe calculées avec le logiciel GINS

l’estimation de ces ambiguïtés entières dans le cadre développé par Laurichesse et al. (2009) et Loyer et al.
(2012) où nous renvoyons lecteurs et lectrices pour plus de détails. Le calcul d’une solution PPP en résolvant
les ambiguïtés entières est appelé mode PPP-AR (pour PPP with Ambiguity Resolution) ou plus simplement
IPPP (pour Integer-PPP).

Les quatre équations du système (2.2) sont combinées entre elles pour donner un nouveau système de
quatre équations en partie découplées. On utilise la combinaison Melbourne-Wübbena (Melbourne, 1985;
Wübbena & Hannover, 1985) qui combine les quatre équations du système (2.2) pour créer une équation
geometry-free et ionosphere-free avec un bruit de mesure faible comparé à la longueur d’onde associée (Loyer
et al., 2012). Puis, on construit la combinaison ionosphere-free pour la phase d’une part et le code d’autre
part. La seule équation restante pour fermer le système est l’équation ionosphérique donnant le modèle choisi
pour I1, mais qui est inutile ici. Le système se réécrit donc

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λWL(Φ1 − Φ2)− λNL(P 1/λ1 + P 2/λ2) = λWLNWL + λWLcΔ
a
rτWL

γP 1 − P 2

γ − 1
= (ρ̄+ T̄ )R + cΔa

rhR

γλ1Φ1 − λ2Φ2 − λ2NWL

γ − 1
= (ρ̄+ T̄ )L + cΔa

rhL − λNLN1 + λNLw̄

I1 = ?

, (2.3)

où λWL = λ1λ2/(λ2−λ1) � 86,19 cm est la longueur d’onde Wide-Lane, λNL = λ1λ2/(λ2+λ1) � 10,69 cm la
longueur d’onde Narrow-Lane, NWL = N2−N1 l’ambiguïté entière Wide-Lane et Δa

rτWL = f(hP−hΦ, τP , τΦ)

la combinaison Wide-Lane des biais hardware satellite (WSB) et récepteur (WRB). La première équation
(combinaison Melbourne-Wübbena) est très avantageuse car elle permet de mettre en évidence à partir
d’une combinaison de mesures de code et de phase (et sans modèle de mesure) les biais hardware satellite
et récepteur ainsi que la différence des ambiguïtés. Pour décorréler les deux types de biais, l’astuce réside
dans ce qu’on montré Laurichesse et al. (2009) sur la stabilité dans le temps des biais satellite Wide-Lane
(WSB). Ils peuvent donc être modélisés par une valeur τaWL0 en vue d’être retirés des observations. Il ne
reste donc que le biais récepteur et l’ambiguïté WL à estimer. Le biais récepteur est le terme commun aux
données de tous les passages de satellites sur la période d’acquisition et qui, une fois retiré, permet d’aligner
les ambiguïtés WL associées sur des valeurs entières. Ce résultat est représenté sur la Figure 2.4 qui illustre
les différentes étapes du processus.
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Fig. 2.4 – Schéma de la résolution des ambiguïtés WL à partir de la combinaison Melbourne-Wübbena (a) et
de la modélisation des biais WL satellites (b) pour la station MCM4 (Île de Ross, Antarctique) le 22/01/2009.
A partir de (c), on applique une méthode de bootstrap pour fixer les ambiguïtés entières et estimer ainsi le
biais WL récepteur (d). Les résidus montrés sur (e) reflètent le caractère entier des ambiguïtés WL obtenues
par ce processus. (modifié à partir de Vaubrun (2009))
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Une fois les ambiguïtés WL fixées sur des entiers, on réajuste les biais récepteur et les corrections au biais
satellite à partir de l’équation réduite (c’est-à-dire dont on soustrait l’ambiguïté trouvée précédemment) pour
améliorer le modèle de départ. On peut désormais former les quantités ionosphere-free (deuxième et troisième
équations du système (2.3)) afin de déterminer N1. On estime la position de la station, les paramètres
troposphériques, les biais d’horloges et l’ambiguïté dans une inversion non contrainte : l’ambiguïté trouvée
n’est donc pas entière. On va alors soustraire aux observations tous les paramètres que l’on vient d’ajuster
sauf l’ambiguïté. En traçant ces résidus en nombre de cycles NL pour chaque passage de satellite en fonction
du temps, les ambiguïtés devraient être proches de valeurs entières si la précision des modèles utilisés est
inférieure à 0.5 cycle NL 4 soit environ 5 cm. Nous voyons sur la Figure 2.5 que ce critère est bien vérifié
(les valeurs réelles sont proches de valeurs entières). On peut alors fixer les ambiguïtés à des valeurs entières
séquentiellement (méthode appelée bootstrapping) sur un critère de variance-covariance. Les observations
ionosphere-free de phase sont ensuite corrigées des ambiguïtés et une nouvelle solution peut être calculée
(sans les mesures de code qui n’apportent rien à ce niveau).

Fig. 2.5 – Ambiguïtés réelles N1 estimées à partir de la combinaison ionosphere-free des mesures de code
et de phase. (extrait de Loyer et al. (2012))

La méthode présentée ici est utilisable uniquement si l’on dispose des horloges satellites « entières »,
c’est-à-dire des horloges satellites déterminées sur les mesures de phase non ambiguës. Le centre d’analyse
CNES-CLS fournit ces produits aux utilisateurs.ices de sorte que le mode IPPP est utilisable avec la solution
GRGS. En revanche, l’IGS ne fournit que des produits combinés issus de traitements différents (entre les
différents CA) et avec lesquels il n’est pas encore possible de préserver le caractère « entier » des horloges
lors de la combinaison, et donc de traiter des solutions en mode IPPP.

On note aussi que l’ensemble de la méthode présentée ici et dans Loyer et al. (2012) pour le GPS est reprise
et validée dans Katsigianni et al. (2019b) pour Galileo, ce qui permet notamment de calculer les positions des
stations en utilisant plusieurs constellations (typiquement GPS/GLONASS/Galileo) pour améliorer encore
la qualité des solutions.

À précision équivalente, un avantage du traitement IPPP par rapport au traitement en DD est le temps
de calcul de la solution. Prenons un exemple pour un réseau de m stations. On aura un temps de calcul
en O

(
m2

)
pour un traitement en DD car on doit former m(m − 1)/2 lignes de base inter-stations (pour

chaque époque), au lieu d’un temps de calcul en O(m) en mode zéro-différence. En ordre de grandeur, un
traitement journalier statique en mode DD d’un réseau de 100 stations prend presque 25 fois plus de temps
qu’un traitement en IPPP et 50 fois plus qu’un traitement en PPP.

4 Utilisation de GINS pour le calcul précis de positions GNSS

Le calcul des positions précises GNSS et la manipulation des mesures GNSS en général (notamment
la détermination des produits orbite/horloge satellites au centre d’analyse CNES-CLS) peut être réalisée
à l’aide du logiciel GINS (Géodésie par Intégrations Numériques Simultanées) développé et maintenu par
le CNES (Marty et al., 2011). Ce logiciel est notamment utilisé dans le cadre du Groupe de Recherche en

4. Valeur théorique haute ne permettant pas en pratique d’assurer la détermination évidente des ambiguïtés.
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Géodésie Spatiale (GRGS) pour des activités de recherche variées comme le positionnement mais aussi le
champ de gravité, la dynamique orbitale, la planétologie, etc. (voir https://grgs.obs-mip.fr/recherche/
logiciels/gins/). Nous utilisons GINS dans le cadre de cette thèse pour pouvoir calculer notre propre
solution GNSS sur le réseau de station donné sur la Figure 1.7. Le logiciel GINS permet, entre autre, de
calculer les solutions GNSS en mode DD et en mode PPP en utilisant les produits orbite/horloge satellites
fournis par l’IGS ou directement avec les produits GRG fournis par le centre d’analyse CNES-CLS. Ces
derniers possèdent l’avantage de contenir des produits d’horloges compatibles avec la fixation des ambiguïtés
entières et permettent donc une résolution en mode IPPP.

Nous décrivons comment fonctionne la chaîne de traitement pour un.e utilisateur.ice souhaitant calculer
des solutions PPP ou IPPP dans GINS et notamment la manière dont nous l’avons modifiée pour la faire
fonctionner dans son intégralité à Strasbourg. En premier lieu, l’utilisateur.ice doit installer le logiciel GINS
sur son ordinateur local, c’est-à-dire les exécutables, les scripts, des TP-exemples de familiarisation avec les
outils ainsi qu’une documentation complète des fonctionnalités des scripts, des options disponibles et des
fichiers paramétrés par l’utilisateur.ice.

Nous décomposons la chaîne de traitement en trois étapes qui se succèdent : d’abord le prétraitement,
puis le module PREPARS qui récolte les informations du prétraitement pour les convertir dans un format
lisible par GINS et enfin le module GINS qui calcule et renvoie la solution. Ces étapes sont schématisées
sur la Figure 2.6. Nous nous intéresserons ici principalement au prétraitement et aux multiples options
qui y sont proposées, plutôt que sur le fonctionnement des modules PREPARS et GINS qui pourront être
trouvés dans la documentation algorithmique de GINS (Marty et al., 2018). Le prétraitement comprend 3
fichiers fondamentaux : le fichier RINEX (Receiver Independant EXchange Format) qui contient toutes les
observations du récepteur dont on souhaite déterminer la position, le fichier station qui référence l’ensemble
des caractéristiques de la station (nom, numéro de DOMES, changements de matériel/logiciel sur le récepteur
ou l’antenne, etc.) et le fichier directeur qui contient toutes les options que l’on peut paramétrer pour
modifier le traitement de la station par GINS. Grâce à des scripts inclus dans le logiciel, on peut créer le
fichier directeur et le fichier station à partir des informations présentes dans l’en-tête du fichier RINEX. Dès
lors, il suffit de paramétrer le fichier directeur avec les paramètres souhaités (voir plus bas), puis de lancer
le script exe_ppp qui contient le lancement coordonné de l’ensemble des scripts de la chaîne de traitement

Fig. 2.6 – Schéma de la chaîne de traitement utilisée dans le cas d’un traitement GNSS avec le logiciel
GINS.
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à partir du fichier RINEX. Il est cependant courant que les en-têtes de RINEX soient mal renseignés ou ne
contiennent pas les éléments nécessaires à la création de ces deux fichiers. Il est alors possible de créer le
fichier station à partir des logfiles qui contiennent les informations à jour de la station considérée.

Le fichier directeur est créé et stocké sur la machine utilisateur, puis il est envoyé avec le fichier RINEX sur
le serveur tite au CNES. Cette procédure délocalisée est justifiée par le fait que le module PREPARS nécessite
une base de données très lourde contenant notamment les produits orbite/horloge satellites (GRG, IGS), les
modèles (modèles météorologiques, bulletins du BIPM, éphémérides planétaires, macromodèles des satellites,
etc.) et les corrections d’antennes. Également, le module prairie permet de pré-traiter les données notamment
de calculer les WRB par époque, d’estimer les ambiguïtés WL entières pour chaque passage et de détecter les
sauts de cycles. L’exécution est réalisée sur la machine délocalisée pour que l’utilisateur.ice n’ait pas besoin
des WSB et des éphémérides de satellites. Le module PREPARS renvoie donc un fichier qui contient toutes
les informations liées à cette base de donnée pour le transmettre sur la machine utilisateur afin que GINS
puisse s’exécuter en local et délivrer les fichiers de sortie directement sur la machine utilisateur. L’avantage de
ce fonctionnement délocalisé est qu’il permet une installation très légère de GINS sur la machine utilisateur
mais nécessite en contrepartie un temps de calcul plus long lié aux échanges de fichiers (en connexion ssh)
entre la machine utilisateur et tite. Pour traiter un très grand nombre de RINEX comme dans notre étude
(environ 1000 stations× 20 ans× 365,25 jours � 7 000 000 fichiers RINEX), cette solution n’est pas optimale
et il convient alors de transférer entièrement la base de donnée sur la machine utilisateur pour ne plus avoir
besoin de passer par tite. On peut ainsi bénéficier d’une capacité de traitement en parallèle de ces RINEX
(ce qui n’est pas possible avec tite) et donc améliorer considérablement le temps de calcul. Nous avons donc
pu récupérer l’ensemble des données, des scripts et des exécutables nécessaires à ce fonctionnement et avons
pu tester avec succès cette installation sur les modes PPP et IPPP. Ce transfert de l’infrastructure complète
du logiciel GINS n’avait jamais été réalisée auparavant.

La paramétrisation du fichier directeur est l’étape clé pour choisir les modèles, les produits, etc. Nous
donnons à titre d’exemple un extrait du fichier directeur que nous avons utilisé pour le traitement de la sta-
tion STJ9 (Strasbourg, France) au 1er janvier 2020 avec les produits orbite/horloge MG3 du centre d’analyse
CNES-CLS. Les mentions en rouge décrivent les lignes importantes du fichier notamment sur le choix des
paramètres et modèles utilisés pour le traitement.

date :

arc_start : [25567, 19.0000000] « date début traitement

arc_stop : [25567, 86389.0000000] « date fin traitement

model :

environment :

earth_orientation_parameters : pole/nominal_NRO

gnss_antenna : ANTEX/igsR3_2077.atx « fichier ANTEX

gnss_clock : horloges/MG3/defaut « produits d’horloge

ionex_files : ionosphere/igs/defaut « modèle ionosphère

apriori_parameters : EXE_PPP/valap_static

gnss_preprocessing_options : EXE_PPP/options_prairie_static « options pour prairie

macromodel : macromod/nominal_MG3 « macromodèle

gravity : unused

ocean_tides : unused

inverse_barometer : unused

atmospheric_pressure : unused

mean_sea_surface : unused

solar_activity : unused

thermosphere : unused

albedo_ir : unused

temporal_nutation : unused

trigonometric_nutation : unused

planet_ephemerides : lunisolaires/de405bdlf.ad
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natural_satellite : unused

atmospheric_s1s2_loading_model : charge/s1s2/s1_s2_def_cm.dat « charges de marée

atmosphérique

center_of_mass_correction : unused

mean_pole :

compute_c21_s21_from : potential_model

iers_model : 2018.0

object :

station :

station_coordinates : XYZ_stj9_10014M001.sta « fichier station

ocean_tide_loading : /data/gin/data/charge/ocean/load_fes2014b_cf « charges de marée

océanique

atmosphere_loading : unused

constellation :

- name : GNSS_GPS

gnss_center_of_mass : [corrected, corrected, corrected, corrected]

force :

gravity_field_maximum_degree : not_computed

gravity_from_sun_and_planet : not_computed

integration_reference_frame : inertial_j2000

atmospheric_drag : not_computed

thermospheric_wind : no

solar_pressure : not_computed

solid_tide : iers_2010_conventions « marée solide

gravity_from_ocean_tides : not_computed

relativistic_acceleration : not_computed

gravity_from_atmospheric_pressure_variations : not_computed

satellite_emission : not_computed

accelerometer_attitude_thrust : not_computed

observation :

removal :

minimum_gnss_data_per_pass : 0

nsigma_threshold : 5

first_iteration_residual_threshold : 0

minimum_elevation_threshold : 0

simulation_stepsize : 120

minimum_laser_raw_data : 0

minimum_doppler_data_per_pass : 0

interobject_data :

- file : orbites/MG3 « produits d’orbites

name : GNSS_ephemeris

objects : [GNSS_GPS, unknown]

type : fixed_ephemeris

use_earth_ephemerides : yes

- file : stj90010.20o « fichier RINEX

name : GNSS_measurement

objects : [GNSS_GPS, station]

type : undifferentiated_gnss « mode Zero-difference

tropospheric_correction : [wet, vmf1, gpt2] « modèle troposphère

nb_adjusted_biases_per_day_per_station : 12 « 1 biais tropo/2h

min_elevation_phase : 10 « coupe les mesures à basse élévation

min_elevation_range : 10 « coupe les mesures à basse élévation
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apriori_obs_stddev : 0.05

apriori_model_stddev : 5.0

gps_phase_ponderation_law : [0.0035, 0.15, 1.0] « pondération GPS

gps_code_ponderation_law : [0.6000, 0.15, 1.0] « pondération GPS

glo_phase_ponderation_law : [0.0350, 0.15, 1.0]

glo_code_ponderation_law : [2.0000, 0.15, 1.0]

gal_phase_ponderation_law : [0.0350, 0.15, 1.0]

gal_code_ponderation_law : [1.0000, 0.15, 1.0]

gnss_options :

phase_observations_process : yes « inclure les mesures de phases

clock_parameters_globally_solved : no

observation_options : [initialize_from_clock_file,

constellation_as_time_reference]

phase_nsigma_threshold : 0

code_nsigma_threshold : 0

max_iter_gps_removal : 3

phase_rms_threshold_after_iter_max : 0

code_rms_threshold_after_iter_max : 0

minimum_number_observations_per_pass : 0

parameter :

algorithm :

allow_elim_at_convergence : yes

nb_iter_min_max : [1, 20]

convergence_criterion : 0.1

adjustment_parameters :

stations :

adjustment_type : [geodetic_marker_at_suppl_iter, geocenter, all_stations] « les

solutions sont calculées sur le

marqueur géodésique et pas à l’ARP

coordinates : cartesian_xyz « coordonnées XYZ

adjustment_frequency : [1, 0, 0, 0] « 1 solution / jour

velocity : not_adjusted

label_output : middle_of_period

pole :

adjustment_x_y_t : [not_adjusted, not_adjusted, not_adjusted]

love_h2_h2_tilde : [not_adjusted, not_adjusted]

love_k2_k2_tilde : [not_adjusted, not_adjusted]

nutation_longitude_obliquity : [not_adjusted, not_adjusted]

user_extension :

userext_addition :

- "PRINT_SOLUTION_FILE"

- "GPS__HAUTE_FREQ STJ9"

- "GRADIENTS_TROPO 1" « 1 gradient tropo/jour

Nous remarquons que les modèles utilisés notamment pour modéliser le déplacement de la station sont
bien les modèles IERS pour les marées solides (Petit & Luzum, 2010), le modèle FES2014b (Lyard et al.,
2021) pour les déplacements liés aux charges de marée océanique et le modèle de Ray & Ponte (2003) pour les
charges de marée atmosphérique S1 et S2. L’ensemble de ces corrections permettent de modéliser au mieux
la distance satellite-station afin de permettre la fixation des ambiguïtés entières comme mentionné dans la
Section 3.2.2. Nous portons l’attention sur le fait que les corrections apportées sont bien dans le CF (Centre
de Figure) lorsqu’elles sont faites sur la position de la station et dans le CM (Centre de Masse) lorsqu’elles
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sont appliquées sur l’orbite des satellites. En effet, les orbites sont bien calculées dans le référentiel lié au
CM, tandis que les produits d’horloges GNSS contiennent la contribution du passage entre CM et CF afin
que la position des stations estimées en utilisant les produits soit bien dans le CF (donc dans l’ITRF). Le CF
est défini par le barycentre des positions d’un réseau hypothétique infiniment dense à la surface de la Terre
tandis que le CM est le barycentre de l’ensemble des masses du système Terre (atmosphère, hydrosphère et
océans inclus). On pourra se reporter à Blewitt (2003) pour plus de détails sur les liens entre les différents
référentiels utilisés en géodésie.

Aussi on note que GINS permet désormais les traitements utilisant les fichiers ORBEX décrivant la loi
d’attitude du satellite, dont une description détaillée ainsi qu’une analyse sur les déplacements PPP sont
données dans Loyer et al. (2021).

Nous allons maintenant décrire l’analyse du traitement du réseau entier et les différences existantes entre
les produits orbite/horloge que nous avons utilisés au cours de la thèse.

5 Solution GR2/GRG

Le premier traitement entier du réseau a été réalisé avec les produits orbite/horloge GR2/GRG délivrés
par le centre d’analyse CNES-CLS. Ces produits sont nécessaires au traitement IPPP car ils contiennent les
horloges satellites estimées avec les ambiguïtés entières fixées. Les produits GR2 sont issus du traitement
pour la deuxième campagne de reprocessing de l’IGS REPRO2, qui a eu lieu fin 2013 et qui avait pour objet
de recalculer l’ensemble des produits depuis 1994 jusqu’en 2014 en utilisant les derniers modèles et méthodes
en date. Après 2014, les produits appelés simplement GRG, sont issus du traitement opérationnel du centre
d’analyse, fournis ensuite à l’IGS pour le calcul de la solution combinée. Il faut bien noter que les produits
GRG sont susceptibles d’être modifiés au cours du temps en fonction des erreurs trouvées, des corrections
de modèles ou simplement des changements dans le calcul (multi-GNSS par exemple). Il est donc normal
d’y trouver des discontinuités bien qu’elles soient le plus souvent absorbées dans les paramètres des modèles
avec lesquels on ajuste les séries temporelles. Ce sont les données qui étaient à notre disposition et que nous
avons utilisé jusqu’à la distribution des produits MG3 (voir Section 6) début 2021. Pour des raisons évoquées
plus loin, nous n’avons fait qu’un traitement de ces données en mode PPP.

5.1 Analyse des séries temporelles et mode commun

Les séries temporelles issues du traitement PPP ont fait l’objet de plusieurs analyses. La première a été
de détecter les sauts dans les séries en essayant d’abord plusieurs méthodes répandues comme les moyennes
et écart-types glissant, avant de se résoudre à regarder les séries une à une. Nous avions également corroboré
notre détection visuelle avec un catalogue des événements sismiques et des changements de matériels sur la
station. Puis, nous avons décidé d’ajuster les séries temporelles avec le modèle usuel suivant

y(t) = y0 + v(t− t0) + a1 cos(2πt) + b1 sin(2πt) + a2 cos(4πt) + b2 sin(4πt) +

N∑
k=0

pkH(t− tk) + ε(t), (2.4)

où (y0, v, a1, b1, a2, b2, pk) sont les paramètres du modèle, H est la fonction de Heaviside et ε(t) est le modèle
de bruit (comprenant uniquement un bruit blanc ici). Nous n’avons dans un premier temps pas ajusté les
fréquences draconitiques qui ont pour période fondamentale 351 jours pour la constellation GPS. Ce choix a
été motivé par le fait que les résidus des séries temporelles après ajustement du modèle de l’Éq. (2.4), ont été
décomposées en composante principale (PCA) pour détecter les signaux communs sur les grandes longueurs
d’onde spatiales, auxquels les signaux draconitiques peuvent appartenir.

L’analyse des résidus des séries temporelles et des modes communs obtenus par PCA a mis en évidence
des anomalies communes à toutes les stations sur certaines périodes de temps précises et ne semblant pas
correspondre à des signaux géophysiques. Ces anomalies apparaissent sur les composantes Est et Nord comme
on le voit sur la Figure 2.7 représentant les séries temporelles des stations ONSA (Sud de la Suède) et STJ9
(Strasbourg, France), sur les années 2013 et autour de 2016. Après des tests sur quelques stations, nous
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avons pu remarquer que ces problèmes étaient toujours présents en IPPP. Nous ne nous sommes donc pas
lancé dans le calcul du réseau entier en IPPP avant d’avoir réglé ce problème.

Fig. 2.7 – Résidus des séries temporelles GR2/GRG des stations ONSA (a) et STJ9 (b), après la soustraction
du modèle de l’Éq. (2.4) et le rajout des termes annuels et semi-annuels (en trait plein noir).

Fig. 2.8 – Histogrammes des résidus cumulés par année, de 20 stations réparties sur l’Europe, pour la
solution combinée IG2/IGS (rouge) et la solution GR2/GRG (bleu), pour les composantes Est (a) et Nord
(b).

Le fait que ces signaux soient assez localisés temporellement mais qu’ils aient une large empreinte spatiale
(plusieurs milliers de kilomètres) nous a conduit sur la piste d’une erreur sur les produits orbite/horloge.
Une analyse supplémentaire a montré que ces anomalies n’étaient effectivement pas présentes sur les résidus
des séries calculées avec les produits combinés de l’IGS comme le montre la Figure 2.8, confortant ainsi notre
intuition. Cette Figure montre que la distribution des résidus des solutions IGS reste centrée pour toutes les
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années, ce qui diffèrent des solutions GRG. Nos recherches communes avec le centre d’analyse CNES-CLS
ont permis de mettre en évidence le fait que les solutions calculées avec les produits GR2/GRG n’étaient en
réalité pas correctement alignées sur l’ITRF, ce qui pouvait expliquer les problèmes dans nos solutions.

Ce problème de mise en référence des solutions, n’était alors que partiellement résolu par le centre
d’analyse qui fournissait des paramètres de transformation (au sens de Helmert) permettant de réaligner
les solutions sur l’ITRF sur la période 2016-2019 seulement. Nous avons donc entrepris de calculer l’inté-
gralité des paramètres d’alignement depuis 2000, afin de pouvoir réaligner les solutions (qui étaient alors
inexploitables compte tenu de la précision recherchée) que nous avions calculées sur l’ITRF et de fournir ces
paramètres aux utilisateurs.ices de GINS.

5.2 Mise en référence et calcul des paramètres de Helmert

La mise en référence des solutions est un calcul qui nécessite le calcul de deux solutions sur le même
réseau de stations à l’échelle globale : la solution de référence et la solution correspondante aux produits que
l’on veut aligner. Ces deux solutions forment ainsi deux référentiels « de figure » (au sens défini par Blewitt
(2003) et Wu et al. (2012)). Ces deux référentiels sont alors comparés et ajustés l’un sur l’autre grâce à un
jeu de paramètres appelés paramètres de Helmert. Ces paramètres permettent de faire coïncider les centre
de figure des deux référentiels (3 paramètres de translation), leur rayon moyen par rapport à leur centre de
figure respectifs (1 paramètre de facteur d’échelle) et les écarts angulaires existants entre eux (3 paramètres
de rotation). Si on nomme Xref les positions des stations du réseau pour la solution de référence et X leur
positions pour la solution à aligner, on a

Xref = T + S R ·X, (2.5)

avec T le vecteur translation, S le facteur d’échelle et R la matrice de rotation dépendant des trois angles
(θ1, θ2, θ3) associés aux rotations selon chacun des trois axes (Ox), (Oy) et (Oz). En considérant les para-
mètres θ1, θ2 et θ3 petits (quelques dixièmes de milliseconde d’arc en pratique), on peut écrire au premier
ordre en ces paramètres

R = R1R2R3,

=

⎛⎜⎝1 0 0

0 cos(θ1) − sin(θ1)

0 sin(θ1) cos(θ1)

⎞⎟⎠
⎛⎜⎝ cos(θ2) 0 sin(θ2)

0 1 0

− sin(θ2) 0 cos(θ2)

⎞⎟⎠
⎛⎜⎝cos(θ3) − sin(θ3) 0

sin(θ3) cos(θ3) 0

0 0 1

⎞⎟⎠ ,

=

⎛⎜⎝1 0 0

0 1 0

0 0 1

⎞⎟⎠+

⎛⎜⎝ 0 −θ3 θ2
θ3 0 −θ1
−θ2 θ1 0

⎞⎟⎠+ o(θ1, θ2, θ3) ,

= Id + R + o(θ1, θ2, θ3) .

On peut également écrire S = 1+S où S est la différence de facteur d’échelle entre les deux solutions. Cette
différence est très petite en pratique, S atteignant au plus quelques ppb (partie par milliard). En se limitant
maintenant au premier ordre en S, θ1, θ2 et θ3, on obtient

Xref = T + S R ·X,

= T + (1 + S + o(S))(Id +R+ o(θ1, θ2, θ3)) ·X,

= T +X + SX +R ·X + o(S, θ1, θ2, θ3) .

(2.6)

Ces 7 paramètres permettent donc d’ajuster les degrés 1 et 2 d’harmoniques sphériques du déplacement entre
les deux référentiels.
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Fig. 2.9 – (a) Réseau de stations utilisé pour la mise en référence des solutions GR2/GRG avec l’IGb14.
(b) Paramètres de Helmert issus du calcul CATREF pour la mise en référence des produits GR2/GRG.

Nous avons donc calculé la solution GR2/GRG sur la période 2000-2019 sur un réseau de 179 stations
appartenant au réseau IGS le plus homogène possible (Figure 2.9a) pour réaliser au mieux la notion de
référentiel de Figure et éviter les problèmes inhérents aux inhomogénéités de réseau sur la détermination de
ces paramètres (Collilieux et al., 2009). Ces solutions ont été converties au format SINEX (Solution INde-
pendent EXchange format) afin qu’elles puissent être comparées avec les fichiers SINEX correspondant issus
de la solution de l’IGb14 (solution IGS du réseau de stations GNSS utilisées pour l’ITRF14). L’ajustement
des paramètres de Helmert a été réalisé par Sylvain Loyer (CLS) grâce au logiciel CATREF développé par
l’IGN, qui est utilisé notamment pour le calcul de l’ITRF (Altamimi et al., 2007). Les paramètres calculés
sont représentés sur la Figure 2.9b. On retrouve sur les translations Tx et Ty les anomalies que l’on avait
sur la composante Est en 2013 et sur la quasi totalité des paramètres l’anomalie Nord autour de 2016.
En réalité, ces signaux ne viennent pas du mauvais alignement avec l’ITRF mais sûrement d’un problème
de modélisation dans le calcul des produits. Ayant une signature globale (degré 1 et 2 au moins), ils sont
néanmoins bien capturés par les paramètres d’alignement des solutions qui permettent après ajustement de
réduire fortement l’impact de ces anomalies sur les séries temporelles comme le montre la Figure 2.10.

La forte signature annuelle et la tendance visible sur la translation Tz et le facteur d’échelle S, ainsi que
les variations long terme des paramètres Ty et Ry, indiquent que la solution GR2/GRG possède en effet un
écart significatif avec l’ITRF. La variation du facteur d’échelle est néanmoins problématique car sous-entend
un gonflement régulier d’un réseau par rapport à l’autre ce qui n’est physiquement pas acceptable. Il est
probable que ce signal provienne d’un effet de réseau notamment du déséquilibre entre le nombre de stations
dans l’hémisphère Nord et l’hémisphère Sud. Le couplage entre S et Tz est alors important d’autant que ce
dernier paramètre capture une partie du signal de charge de degré 1 majoritairement saisonnier (Collilieux
et al., 2012). Ces réflexions ont alimenté le débat pour savoir s’il fallait ou non appliquer ce facteur d’échelle
pour réaliser la mise en référence 5. Dans le doute, il nous a paru plus raisonnable d’attendre les nouveaux
produits délivrés dans le cadre de la campagne REPRO3 de l’IGS, plutôt que de se livrer à des interprétations
douteuses de nos résultats sur la solution GR2/GRG.

6 Solution MG3 (REPRO3)

Une première solution de la campagne de reprocessing REPRO3 de l’IGS a été livrée par le centre
d’analyse CNES-CLS en Octobre 2020. L’échéance du contrat de thèse étant proche, nous avons décidé de

5. On peut aussi voir ce paramètre comme un paramètre de contrôle sur la qualité de la mise en référence.
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lancer immédiatement le traitement sur notre réseau de stations. Deux mois après, l’IGS et le centre d’analyse
faisaient savoir que cette solution souffrait en réalité d’un problème de modélisation de marée polaire que
nous avons essayé de corriger a posteriori sans succès.

6.1 Validation de la qualité des produits utilisés

Les efforts du centre d’analyse pour fournir une nouvelle solution REPRO3 a permis d’aboutir à la solu-
tion Multi-GNSS MG3 en Février 2021. Cette solution étant cette fois-ci validée par le centre d’analyse et
l’IGS, nous avons une fois de plus lancé le traitement sur le réseau complet. Nous avons décidé de calculer
cette solution non pas en mode IPPP mais simplement en mode PPP, pour plusieurs raisons. La première
est scientifique, l’IPPP n’apportant pas d’amélioration majeure sur la composante verticale, qui est celle que
nous utiliserons principalement dans l’inversion (Partie V). La deuxième raison est une question de temps :
l’échéance du contrat de thèse approchant, et le traitement PPP étant environ deux fois plus rapide que le
traitement IPPP, il nous a paru raisonnable de traiter le réseau en mode PPP (dont le traitement parallélisé
prend tout de même 2 mois et demi) pour avoir le temps nécessaire à l’analyse de ces solutions et à leur
utilisation dans l’inversion. Les produits MG3 ont été conçus de sorte à être directement alignés sur l’ITRF 6.
Par mesure de précaution, nous avons analysé les paramètres de transformation entre MG3 et l’IGSR3_2077
calculés par le centre d’analyse pour vérifier qu’ils étaient bien du même ordre que la variabilité des solutions
- soit de quelques mm (Figure 2.11a). On voit que les paramètres calculés avant 2002 sont très bruités notam-
ment dû au faible nombre de stations utilisées pour la mise en référence, à leur mauvaise répartition spatiale
et à la qualité dégradée des produits satellites en général. On voit qu’il y a toujours un signal saisonnier sur
le facteur d’échelle mais plus sur les autres paramètres. On peut mettre en cause ici la répartition inégale des
stations entre le Nord/Sud comme dans le cas de l’alignement des produits GR2/GRG. Les variations des
autres paramètres restant faibles comparé au bruit de mesure, nous pouvons affirmer que l’alignement sur
l’ITRF est bien réalisé. Nous avons aussi vérifié la qualité des solutions calculées avec les produits MG3 par
rapport à celles calculées avec les produits GR2/GRG. La Figure 2.11b montre que les séries temporelles PPP
MG3 sont d’une qualité bien meilleure que les séries PPP GR2/GRG sur l’exemple de la station STJ9, no-
tamment car les problèmes sur les composantes Est et Nord présents sur les solutions GR2/GRG ont disparus.

6. En réalité, seules les horloges contiennent la part liée à l’alignement car elles seules font le lien entre les orbites exprimées
dans le CM et les positions des stations exprimées dans CF comme discuté dans la Section.4.

Fig. 2.10 – Séries temporelles GR2/GRG des station ONSA et STJ9 avant (en bleu ciel, rouge et vert
clair) et après alignement (en bleu foncé, orange et vert foncé) sur l’ITRF en utilisant les paramètres de
transformation de la Figure 2.9b.
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Fig. 2.11 – (a) Paramètres de Helmert issus du calcul CATREF pour la mise en référence des produits MG3
(données fournies par S. Loyer). (b) Comparaison des séries temporelles utilisant les produits GR2/GRG et
MG3 en mode PPP ou IPPP pour la stations STJ9.

On a également tracé les séries temporelles MG3 en IPPP (« iMG3 ») pour montrer l’apport de la fixation
des ambiguïtés entières sur la réduction de variabilité des solutions. L’apport de l’IPPP est très visible sur les
solutions cinématiques (Fund et al., 2012) mais également sur le mode statique (Katsigianni et al., 2019a),
bien qu’il soit soumis aux mêmes limitations que le PPP (modélisation de la troposphère et corrélations avec
les autres paramètres notamment). La précision obtenue est d’ailleurs comparable à celle obtenue en DD
(Fund et al., 2012). On remarque que le mode IPPP est particulièrement efficace pour réduire la variabilité
de la solution sur la composante Est. Cet apport se traduit par une réduction de variabilité allant de 10-20%
aux hautes latitudes à 50% proche de l’équateur. Ceci est lié au fait que la composante Est est certes la moins
corrélée aux autres paramètres présentés dans la Figure 2.3 mais reste la plus corrélée aux biais sur la mesure
de phase à cause de la trace Nord-Sud des satellites GNSS aux basses et moyennes latitudes (Melbourne,
1985; Blewitt, 1989). Avec l’amélioration de la détermination de ces biais sur une mesure de phase non
ambiguë, on améliore sensiblement la précision sur cette composante, d’autant plus que cette précision n’est
pas dégradée par les corrélations avec les autres paramètres estimés. Si l’IPPP permet également un gain de
précision sur les composantes Nord et verticale, ce gain est atténué par la mauvaise estimation des autres
paramètres lié à l’absence de passages de satellites aux hautes latitudes (> 55°). Pour la composante verticale,
la précision est de toutes manières bien moins bonne qu’en horizontal que ce soit en PPP ou en IPPP à
cause de la brisure de symétrie des mesures sur l’axe vertical (les mesures ne viennent que du « haut » et
pas du « bas ») alors que cette symétrie spatiale existe pour les axes horizontaux (les mesures peuvent venir
de satellites au Nord, au Sud, à l’Est et à l’Ouest de la station).

6.2 Analyse des déplacements et comparaisons aux modèles hydrologiques

L’analyse des solutions obtenues avec les produits MG3 a été publiée dans l’article Michel et al. (2021)
dont le contenu est exposé dans cette section. Nous donnons dans cet article les détails sur la réalisation des
produits MG3 et nous comparons divers modèles d’ajustement des séries temporelles. Il sera notamment ques-
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tion de l’apport de l’ajustement des fréquences draconitiques et de l’apport d’un modèle stochastique complet.
Nous comparons ensuite les cycles annuels issus des séries temporelles GNSS avec ceux issus des modèles hy-
drologiques GLDAS2 et MERRA2 ainsi que ceux dérivés des données gravimétriques GRACE/GRACE-FO.
Nous comparons aussi leurs signaux dans la bande de fréquences interannuelle grâce à une décomposition en
composantes principales. L’ensemble des résultats fait l’objet d’une discussion en fin d’article tandis qu’un
résumé graphique de l’article est présenté sur la Figure 2.12.

Fig. 2.12 – Résumé graphique de la méthodologie et des principaux résultats de l’article Michel et al. (2021).
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Abstract: Thanks to the increasing number of permanent GNSS stations in Europe and their long
records, we computed position solutions for more than 1000 stations over the last two decades using
the REPRO3 orbit and clock products from the IGS CNES-CLS (GRGS) Analysis Center. The velocities,
which are mainly due to tectonics and glacial isostatic adjustment (GIA), and the annual solar cycle
have been estimated using weighted least squares. The interannual variations have been accounted
for in the stochastic model or in the deterministic model. We demonstrated that the velocity and
annual cycle, in addition to their uncertainties, depend on the estimation method we used and that
the estimation of GPS draconitic oscillations minimises biases in the estimation of annual solar cycle
displacements. The annual solar cycle extracted from GPS has been compared with that from loading
estimates of several hydrological models. If the annual amplitudes between GPS and hydrological
models match, the phases of the loading models were typically in advance of about 1 month compared
to GPS. Predictions of displacements modelled from GRACE observations did not show this phase
shift. We also found important discrepancies at the interannual frequency band between GNSS,
loading estimates derived from GRACE, and hydrological models using principal component analysis
(PCA) decomposition. These discrepancies revealed that GNSS position variations in the interannual
band cannot be systematically interpreted as a geophysical signal and should instead be interpreted
in terms of autocorrelated noise.

Keywords: GNSS; IGS REPRO3; tectonic velocity; hydrological loading; principal component analysis

1. Introduction

Time series of station coordinates derived from global navigation satellite systems
(GNSS) have been used for decades to investigate various geophysical phenomena. Hor-
izontal components have mostly been used to estimate tectonic activity (plate motion (
Nocquet, 2012; Masson et al., 2019) or seismic events (Kouba, 2003; Klein et al., 2016)), and
vertical components have been used for seasonal signals due to mass redistribution (hydro-
logical loading (van Dam et al., 2001; Argus et al., 2014; Chanard et al., 2018), atmospheric
loading (Martens et al., 2020), nontidal ocean and atmospheric loading (Mémin et al., 2020),
and ice–snow loading (Johansson et al., 2002; Grapenthin et al., 2006)). All components
are also used to determine reference frames, such as the International Terrestrial Refer-
ence Frame (ITRF) (Altamimi et al., 2016). Aside from these signals, GNSS position time
series also contain large broadband variations of unknown origin, typically represented
by the combination of power-law (PL) and white noise (WH) models (Mao et al., 1999),
which impacts the determination and interpretation of other parameters, especially the ve-
locity and its uncertainty (Williams, 2003; Santamaría-Gómez et al., 2011; Klos et al., 2018),
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but also possibly the seasonal signal (Dong et al., 2002). The origin of PL noise in GNSS
position time series may have several sources: orbit mismodelling (Griffiths and Ray,
2009), tropospheric delay (Tregoning and Watson, 2009), instability of the station mon-
umentation (Johnson and Agnew, 1995; King and Williams, 2009), and multipath (King
and Watson, 2010), etc. Moreover, (Santamaría-Gómez and Ray, 2021) shows that the
assessment of noise content in GNSS position series is heavily impacted by the estima-
tion of position discontinuities, which make the interpretation even more difficult and
compromise the validity of long station records. Taking into account that the broadband
noise variations are also correlated spatially (Williams et al., 2004; Amiri-Simkooei, 2013),
the proper interpretation of the interannual variations in GNSS position time series and
their common modes across a region remains a challenging task. The deformations that are
observed in GNSS position time series may depend not only on the geological nature of
the crust (karst aquifers (Silverii et al., 2016)) and its thermal deformation (Fang et al., 2014;
Xu et al., 2017) but also on human activities (groundwater pumping (Argus et al., 2017)
and mining (Gourmelen et al., 2007; Muntean et al., 2016)). We can suspect some apparent
deformation related to the stability of the station monument. Finally, in Ray et al. (2008),
the authors show that the power spectral density (PSD) from GNSS position time series
contains harmonics of 1.04 cpy (cycle per year), known as the GPS draconitic oscillation.
The origin of the draconitic oscillation and its harmonics in GNSS time series is still not well
established but is most likely due to satellite orbit mismodelling (Ray et al., 2008; Guo et al.,
2021). The first draconitic harmonic is very close to the annual solar cycle (1 cpy), so the
estimated amplitudes of these two waves are strongly correlated. Thus, the interpretation of
the seasonal signal, and especially the annual signal, is highly dependent on the draconitic
signal estimation.

In this study, we used specific IGS REPRO3 GNSS satellite orbit and clock products
computed by the CNES-CLS team on behalf of the Groupe de Recherche en Géodésie
Spatiale (GRGS, https://grgs.obs-mip.fr/ (accessed on 7 November 2021) ) in France.
They were used to calculate station positions in precise point positioning (PPP) mode
using the GINS software developed by CNES (Loyer et al., 2012). We computed the daily
position solutions of more than one thousand stations mainly located in Western Europe
and Scandinavia. We extracted the linear velocity and seasonal signals together with their
uncertainties to validate the accuracy of the estimation of the new products using different
methods. We also assessed the spectral contents of the time series, especially in terms of
the noise level at the interannual band.

Among the current techniques used for determining the parameters of the model,
we can cite the weighted least squares method (WLS), Kalman filtering, (multi-) singular
spectrum analysis (M-SSA), and the Wiener filter, all reported and analysed in Klos et al. (
2019). We demonstrated the importance of the contribution of the interannual variation in
GNSS time series by using two different methods of estimation.

The first method is based on a WLS fit using an optimized covariance matrix obtained
from an MLE (maximum likelihood estimation) of a PL noise model (Williams, 2008). The
interannual signal is considered as time-correlated noise by the estimator and is directly
propagated in the parameter uncertainties given by the WLS.

The second method is a WLS method where only white noise is accounted for in the
covariance matrix, but in which we modified the classic deterministic model (linear velocity
and seasonal signal) to account for interannual variation as polynomials. Adding polynomials
in the estimated model should reduce the parameter uncertainties given by WLS as it should
better fit the data. However, given these polynomials, we can compute the instantaneous
velocity and deduce a statistical uncertainty on the linear velocity, which reflects the variability
of the instantaneous velocity around its average value. This method should provide a more
realistic empirical velocity uncertainty than that directly given by the WLS in the case which
is known to be far too small when only WH noise is accounted for (Santamaría-Gómez et al.,
2011; Santamaría-Gómez and Ray, 2021).
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Then, the fundamental difference between these two approaches (respectively, WLS +
MLE and WLS + polynomials + WH) is the presumed nature of the interannual variation
(respectively, stochastic and deterministic) and, consequently, the estimation of the parame-
ter uncertainties. Moreover, we highlight the need to estimate both draconitic and solar
periods to prevent biasing estimates of the annual cycle. Finally, in order to search for
the true geophysical signals in interannual variations, the extraction of spatial common
modes from the signal is usually carried out (He et al., 2017). This can be conducted using
different techniques: principal component analysis (PCA) (Serpelloni et al., 2013; Shen
et al., 2014; Wu et al., 2019), independent component analysis (ICA) (Liu et al., 2015), or
robust statistical methods (Kreemer and Blewitt, 2021). Since the sources are not necessarily
independent, it is reasonable to choose PCA in order to compare the interannual signal
from GNSS with the signals derived from hydrological models, GRACE (Gravity Recovery
and Climate Experiment), and the GRACE Follow-On time variable gravity field (Tapley
et al., 2019). Although recent studies on interannual variations show correlations between
GNSS and some global hydrology models (Elia et al., 2021), we show here that models can
also differ significantly from each other and that the interannual signal from GNSS should
be interpreted very carefully.

2. Materials and Methods

2.1. CNES-CLS Multi-GNSS Orbits and Clock Products

The GNSS satellite orbit and clock files used in this study were generated as part
of the GRGS participation in the third International GNSS Service (IGS) reprocessing
campaign effort (REPRO3) to contribute to the realisation of ITRF2020. These products
(referenced here as MG3) are the result of a homogeneous reprocessing of multi-GNSS
data (GPS, GLONASS, and Galileo) between 2000 and 2020 using the zero difference
with integer ambiguity fixing method described in Loyer et al. (2012) and Katsigianni
et al. (2019). We used up-to-date models listed in Table 1, following the IGS recom-
mendations (http://acc.igs.org/repro3/repro3.html (accessed on 7 November 2021)).
The MG3 reference frame solutions were first evaluated and then preliminarily com-
bined by the IGS (Rebischung, 2021). The station network includes a set of about 300
selected IGS stations that are distributed over the globe (Figure 1). The number of avail-
able satellites for each constellation and the daily number of available stations varied
over the observing period as shown in Figure 2. The CNES-CLS MG3 products are
available in the CDDIS (Crustal Dynamic Data Information System) archive at https:
//cddis.nasa.gov/archive/gnss/products/wwww/repro3/GRG6RE3FIN*.gz (accessed
on 7 November 2021).

Table 1. Dynamical and loading models used for MG3 products.

MG3 Products

Gravity field EIGEN-GRGS.RL04.MEAN-FIELD (Lemoine et al., 2019)
Ocean tides (gravity) FES2014b (Finite Element Solution) (Lyard et al., 2021)
Planet ephemerides de421bdlf.ad (Folkner et al., 2009)
Relativistic acceleration Schwarzschild and geodetic precession and Lense–Thirring
Antex IGSR3.atx (Villiger and Dach, 2020)

Mean pole (C21/S21) IERS conventions (from geopotential model) (Petit and Luzum,
2010)

Subdaily EOP model (Desai and Sibois, 2016)
Atmospheric tides (S1/S2) (Ray and Ponte, 2003)
Ocean tide loading FES2014b (Lyard et al., 2021)
Centre of mass correction FES2014b (Lyard et al., 2021)
Solid tides (station) IERS conventions (Petit and Luzum, 2010)
Reference frame IGS_R3 [IGSMAIL-8026]
Galileo ponderation 3.5 cm/1 m
GPS ponderation 3.5 mm/60 cm
GLONASS ponderation 3.5 cm/2 m
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Figure 1. GNSS station network used for MG3 product computation.

Figure 2. (a) Number of satellites and (b) number of stations used in MG3 product computation as a function of time.

2.2. Time Series Analysis
2.2.1. Selection of Stations

We computed the GNSS position time series of 1077 stations over Europe using the
MG3 products and the GINS software in PPP mode. We used the same models as the
ones listed in Table 1 in order to maintain consistency between the products used and the
individual station processing. For the tropospheric delays, we use the global mapping
function (GMF) (Boehm et al., 2006) tropospheric model and the global pressure and tem-
perature empirical function GPT2 (Lagler et al.). The numerous agencies and organisations
providing the raw GNSS data in RINEX format are listed in the acknowledgements section.

The selected stations have a minimum time span of five years and a completeness of
50%. Some exceptions of a time span between three and four years have been considered
for recent stations (ending after 2019) but with a more selective completeness criterion
(minimum 70%). The distribution of stations and the statistics of the time series are shown
in Figure 3. The analysed network is homogeneous and dense in Great Britain, France,
Spain, and Italy, while in the remaining European countries, the station distribution is not
as dense but still spatially homogeneous.
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2.2.2. Parameter Estimation

For each time series, we determined different parameters corresponding to the classical
model used in GNSS position adjustment:

y(t) = y0 + v(t − t0)

+
2

∑
m=1

am cos(mωat) + bm sin(mωat)

+
8

∑
n=1

cn cos(nωdt) + dn sin(nωdt)

+
n

∑
k=1

skH(t − tk) + ε(t),

(1)

where y0 and v are, respectively, the intercept (at epoch t0) and the linear velocity of the
station; ωa/2π = 1 cpy is the solar frequency; and ωd/2π = 1.04 cpy is the draconitic
frequency. The offsets in the time series, which can be linked to known events (earthquakes
and antenna or receiver changes) but are also mostly of an unknown origin (Williams,
2003), were modelled with a Heaviside function H. Although automatic methods exist for
offset detection (Bruni et al., 2014), we chose to do it manually for all the stations using
an initial seismic database and monumentation change data provided by sitelog files. We
calculated the residuals of the time series by removing the linear trend and offsets from
this preliminary database. We first removed major outliers from these residual time series
using automatic detection of the largest outliers with a criterion of 5 σ, where σ is the
standard deviation. Then, we visually checked the precleaned residual time series in order
to validate the outliers/offsets removed during the first step and refine the database if
needed (adding or removing offset positions and outliers). The manual detection of offsets
and outliers is essential even after applying any automatic procedure. Indeed, regardless

Figure 3. (a) GNSS station network and some characteristics in terms of (b) station time span, (c) station availability over
time, and (d) daily solution in each station.
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of its robustness, the automatic process could eliminate data, especially those corresponding
to unmodelled geophysical signals. However, manual checking remains a subjective
method that depends on the criteria set by each analyst. The term ε(t) is the stochastic part
of the model that has to be modelled and then estimated.

We used the CATS software developed by Williams (2008), which uses WLS estimation
of the deterministic parameters of Equation (1) along with MLE determination of the
stochastic component. We worked with week-averaged time series in order to obtain a
good compromise between the computation time and time resolution of the series. We
modelled the stochastic part using white noise (WH) and power-law noise (PL), where
the spectral index was also estimated using CATS. Nevertheless, for some stations, we
used only PL noise without WH noise in the stochastic part since the downsampling to
weekly time series removes a large part of the WH noise contribution that can no longer be
estimated properly by the software. We computed one solution with the complete model of
Equation (1), called cats_d, and one without the estimation of the draconitic periods, simply
called cats.

2.2.3. Interannual Polynomial Model

Since interannual variations play an important role in the determination of the model
parameters and their uncertainties (Santamaría-Gómez and Mémin, 2015), especially in
GNSS, instead of capturing these variations in the stochastic model, we alternatively
chose to directly model most of the interannual variation within the deterministic model
function. In addition to the different terms in Equation (1), we added degree 2 and degree 3
polynomial terms. This model is called tiasd (for trend interannual (semi-)annual steps
draconitic). The low degree polynomial function was used to fit the long-term (relative
to the length of the time series) interannual signal. We adjusted the model with the WLS
method using the least squares algorithm of Moré (1978) implemented in the Python
programming language. The stochastic term ε(t) was then reduced to a simple WH noise
estimation. We first obtained the optimal parameters of the model and calculated the
residuals of the time series. These residuals could still have contained a faster interannual
signal (between a year and a decade, depending on the length of the time series) and
were then modelled by a polynomial of degree 4 to 11. The degree of the adjusting
polynomial was chosen such that it is always inferior to the time series length (in year).
For time series with a low completeness (<70%) and high standard deviation (beyond
7 mm in the vertical component), we determined the polynomial degree by analysing each
time series individually while verifying that the polynomial did not overfit the series.
The polynomial fitting procedure in these two steps (low degrees first and then high
degrees on residuals) was decided upon to avoid the strong correlation that could have
occurred between high-degree polynomials and the sinusoidal and offset terms. In order
to reconstruct the full interannual variations, we added the slow and fast polynomial
contributions. We calculated the instantaneous velocity by taking the first derivative of the
resulting polynomial function and deducing a value of linear velocity by taking the mean
of instantaneous velocities. The uncertainty on this definition of linear velocity should
reflect the magnitude of the interannual variation. Then, in addition to considering only
the dispersion of the positions in the calculation of the velocity uncertainty, as in the case
of WH-only WLS estimation without polynomial adjustment, we also took into account
the dispersion of the instantaneous velocity, which should give a more realistic uncertainty
on the linear velocity. Thus, we define the uncertainty as the standard deviation of the
instantaneous velocity divided by the square root of the time series length (Collectif Jolidon,
2021).

2.3. Hydrological Loading Computations

We computed surface displacements due to continental water storage variations using
two state-of-the-art global hydrological models, GLDAS-2.1 (Global Land Data Assimila-
tion System)/Noah (Rodell et al., 2004) and MERRA-2 (Modern-Era Retrospective Analysis
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for Research and Applications) (Gelaro et al., 2017) land component, and estimates de-
rived from the latest (RL06v1.0) GRACE and GRACE Follow-On iterated global mascons
from the NASA Goddard Space Flight Center (Loomis et al., 2019). Among other differ-
ences, the GLDAS-2.1 model includes soil moisture and snow and canopy water, whereas
MERRA2 only includes soil moisture and snow.

We used the classical Green’s function approach (Farrell, 1972), assuming a spherically
symmetric nonrotating elastic isotropic (SNREI) Earth model, using PREM (Dziewonski
and Anderson, 1981) rheological parameters. More details of the loading computations can
be found in Petrov and Boy (2004) and Mémin et al. (2020). In particular, we ensured the
total water mass conservation of the hydrological models by adding/removing a uniform
ocean layer to compensate for any lack/excess of water over land.

All the loading time series are available at the EOST loading service (http://loading.
u-strasbg.fr (accessed on 7 November 2021)).

3. Results

In this section, we present the parameters that we obtained for three different estimated
solutions described in the previous section (i.e., cats_d, cats, and tiasd) along with further
analysis of the results. The properties of these three models are summarized in Table 2.
Then, we can compare the effect of draconitic adjustment by comparing cats_d and cats,
and we can compare the modelisation of interannual variations and stochastic parts by
comparing cats_d and tiasd.

Table 2. Estimation properties of the three models considered in this article.

cats_d cats tiasd

Draconitic frequencies adjustment Yes No Yes
Interannual variation – – polynomials
Stochastic model WH + PL noise WH + PL noise WH noise

3.1. Tectonic Velocity

The velocity maps of cats_d are presented in Figure 4. We used two scales (red and
green arrows) in the horizontal map to distinguish the largest velocities in Greece and
Turkey, while the yellow dots represent the stations with horizontal velocities lower than

Figure 4. Velocity field of cats_d in (a) horizontal and (b) vertical direction, along with ICE-6G_D GIA model of Peltier et al.
(2015). The yellow dots in (a) are stations for which the horizontal velocity is lower than 1 mm/y.
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1 mm/y. In order to provide the horizontal velocity field relative to the Eurasian plate, we
removed the rotation of the Eurasian plate with the Euler pole coordinates estimated in Al-
tamimi et al. (2017) (lonp = −99.094(7)°E, latp = 55.070(4)°N, ω = 0.261(1)× 10−6 deg/y).
This enabled us to compare our solution with previous regional studies (Nocquet, 2012)
or the EPOS (European Plate Observing System) solution available at http://doi.osug.
fr/data/public/GNSS_products/Europe/ (accessed on 7 November 2021). The vertical
velocity map is represented together with the ICE-6G_D GIA model developed by Peltier
et al. (2015, 2018). In general, there is a good match between the two, although some
differences are noticeable, especially in Southern Italy, where other non-GIA geophysical
signals may occur.

In Figure 5, we provide the velocity differences between cats_d and cats, cats_d and
tiasd, and cats_d and epos. We observe that there are no significant differences between the

Figure 5. (a,b) Difference in velocity field between cats_d and cats. The panel (c) represents the number
of stations where the vertical velocity was, respectively, overestimated (red) or underestimated (blue)
by cats_d compared to cats. (d–f) are the same for the difference between cats_d and tiasd, and (g–i),
between cats_d and the EPOS solution.
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velocity values of the two CATS estimations, while tiasd slightly underestimated the vertical
velocities compared to cats_d. The distribution shown by the histogram remained Gaussian
for both vertical velocity differences. Moreover, we do not observe any preferential direction
in the horizontal maps, such that we can make two assumptions. The first is that none of the
estimation methods seem to be biased with respect to the others. The second is that we can
consider the velocity differences as a random field. In order to compare our GNSS solution
to other published GNSS solutions, we chose to compute the difference between cats_d and
the EPOS solution for the common stations, as both networks are slightly different. We
see that there are some systematic effects on both components, especially for the vertical
component, whose distribution is shifted near 0.5 mm/y. These effects, being visible at
large spatial scales, probably indicate a difference in reference frame realisation. In fact,
the reference frames of the two solutions are obviously different since the IGS_R3 reference
frame is specifically used in REPRO3 products. Nevertheless, when we removed this mean
shift, the distribution seemed to follow the same behaviour as cats_d−tiasd (cats_d slightly
overestimates the velocity compared to tiasd and epos).

The uncertainties of the three estimated solutions are plotted in Figure 6. They are
greater for cats since the remaining draconitic signal in the time series contributes to a
greater dispersion of the series, increasing the uncertainty estimated by CATS. In addition,
tiasd underestimated both horizontal and vertical uncertainties by a factor varying from 3
to 4 compared to cats_d. Consequently, evaluating interannual variations with a complete
stochastic model (WH + PL noise) rather than with WH noise only + the polynomials
model provides more realistic uncertainties on velocity. Indeed, the strong correlation
between the estimated coefficients of the polynomials used to model the interannual signal
could lead to a significant underestimation of the instantaneous velocity dispersion and,
therefore, to an underestimation of the linear velocity uncertainty.

Figure 6. Uncertainty of (a–c) horizontal and (d–f) vertical velocity field for cats_d, cats, and tiasd.
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3.2. Annual Signal

We now focus on the annual solar cycle of the time series derived from the three
estimated solutions. Among the known sources of seasonal variations in GNSS position
time series, we can cite the hydrological loading of amplitude ∼4 mm in Europe (van
Dam et al., 2007), thermoelastic deformation of the crust of amplitude ∼1 mm (Fang et al.,
2014; Xu et al., 2017), nontidal loading of amplitude < 1 mm in Europe (Mémin et al., 2020),
and thermal dilation of the GNSS monumentation with variable amplitudes.In addition to
the velocity field, the annual cycle recovery also depends on the choice of the estimation
method. Figure 7 represents the phase and amplitude of cats_d for the vertical component
with their uncertainties. The horizontal components are not shown here because their
amplitudes were at the level of the resolution of the technique (the uncertainties had
the same order of magnitude as the signal) and could have been dominated by GNSS
monument motion, which makes the interpretation very difficult.

Figure 7. (a) Phase and (b) amplitude of cats_d along with their respective uncertainties (c,d) estimated using CATS software.
The colour bar of the phase map indicates the month of maximum displacement towards the up direction.
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In spite of spatial variations in both amplitude and phase from Figure 7, the results
are coherent with the expectations of finding maximum displacement in the mid-summer
or beginning of fall, with 3 to 4 mm of mean amplitude. We can observe some typical
patterns: for example, a gradient of amplitude over Great Britain and larger amplitudes in
Eastern Europe and Scandinavia due to important snow covering (compared to Western
Europe) and atmospheric loading signals caused by Siberian anticyclones, both in winter.
In addition, the uncertainties are mostly below 1 month for the phase and 1 mm for the
amplitude, which make the results suitable for proper interpretation.

As for velocities, we compared the results of cats and tiasd with respect to cats_d in
Figure 8. The phase differences are coloured in red when the tested model is delayed
compared to cats_d and in blue when it is in phase advance. Note that we computed
the difference in amplitudes (resp. phase) and not the amplitude (resp. phase) of the
differences. We will evaluate both the effects of the interannual estimation method and
draconitic adjustment in the annual solar cycle recovery.

Figure 8. (a–d) Difference in annual solar cycle between cats_d and cats. Panels (b,d) represent, respectively, the number of
stations where cats is in phase advance (blue) or delay (red) with respect to cats_d and the number of stations with larger
(blue) or smaller (red) amplitude than cats_d. (e–h) are the same for the difference between cats_d and tiasd.

For the difference between cats_d and cats, there are two distinct effects resulting from
the estimation of the draconic frequencies which affect the amplitude and phase of the
annual solar cycle. The first is the small phase delay of cats, which has also a smaller
amplitude compared to cats_d. This is consistent with the fact that the draconitic cycles
can disrupt the solar cycle and that the modulation between the draconitic first harmonic
and the annual solar oscillation can bias the estimation of the latter. We also remark
that the distribution of the differences in the histograms reflects the spatial variability
of the draconitic terms. For the difference between cats_d and tiasd, there are also two
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distinct effects resulting from the estimation method of interannual variations which
affect the amplitude and phase of the annual solar cycle. We observe that estimating the
interannual variations with polynomials seems to increase the amplitude of the annual
cycle and to create a slight advance of phase. The distribution of the differences in the
histograms is tighter than in the previous case since the spatial variability of the difference
is less important.

The estimation of the interannual polynomials has opposite consequences on the solar
cycle amplitude/phase determination than the estimation of draconitic frequencies, but the
differences remain small and near the uncertainty level observed in Figure 7: the majority
of stations show differences shorter than a month for the phase and smaller than 1 mm
for the amplitude. There are also some isolated and randomly distributed stations with
large anomalies (phase or amplitude), meaning that the choice of a particular solution
significantly impacts the results very locally. These stations should be considered as outliers
or studied individually to determine the cause of these differences.

3.3. Comparison with Hydrological Models and GRACE

Taking into account that a large part of the solar annual cycle in GNSS time series
in Europe is likely due to hydrological loading, we compared it with loading estimates
computed from hydrological models and GRACE/GRACE Follow-On-derived continental
water storage variations. The site displacements that we computed with the GLDAS2.1,
MERRA2, and GRACE models are expressed in the centre of figure (CF) reference frame for
SNREI Earth. The time series of loading models were adjusted according to Equation (1),
excluding offsets and draconitic harmonics but adding the interannual polynomials. Since
the hydrological models and EOST loading service do not provide uncertainties, we
adjusted the models with the nonweighted least squares method (LS). We show in Figure 9
the differences between the amplitude and phase of the cats_d annual solar cycle with
those of each loading model. Important differences compared with centred Gaussian
distribution are shown by the histograms, especially in the phase shift, where we see that
the centre of the distribution is systematically shifted towards negative phase shifts. In other
words, hydrological loading models are systematically in advance of phase compared to
GNSS. Concerning the amplitudes, the GLDAS2.1 and MERRA2 amplitudes are slightly
larger than those for GNSS, even if the distribution is well centred on zero. For GRACE,
the amplitude seems to be quite underestimated compared to GNSS. Figure 9 highlights
the presence of a coherent spatial pattern, suggesting the existence of disparate common
modes between the GNSS solution and the models. Nevertheless, some stations with high
signal intensity have the same values for every model so that they simply indicate the
difference existing locally between the GNSS solution and the models.

3.4. Principal Component Analysis of the Interannual Signal

The interannual signals derived from GNSS and derived from loading models are
compared using PCA decomposition. All the time series were previously detrended (using
the trend estimate from cats_d for GNSS) and resampled to nearly every 10 days by taking
the mean of the successive intervals of the year (01/01–10/01, 11/01–20/01, 21/01–31/01,
01/02–10/02, 11/02–20/02, 21/02–28/02, . . . ). The intervals that contained no data were
left empty. Then, we completed the time series using linear interpolation. We chose to treat
GRACE time series by keeping the original sampling of one month before interpolation.
We finally removed the mean seasonal signal in the same way as Elia et al. (2021). We
obtained this cycle by calculating the mean of the collection of the same dates within years:
for example, taking the mean of every 05/01, the mean of every 15/01, and so on. This is
arguably the best way to filter the mean seasonal cycle compared to a sinusoidal fit. We
choose to select stations only based on the following completeness criterion. The selected
stations have available data between 2010 and 2020, which have accumulated gaps no
longer than 60 days, the largest of which is less than 30 days, and have 90% completeness
such that the interpolation should not distort the signal too much. Implementing these
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Figure 9. Differences in phase and amplitude of annual solar cycle and the associated histograms as described in Figure 8
between cats_d and GLDAS2.1 (a–d), MERRA2 (e–h), and GRACE (i–l).

criteria left 268 stations from the initial network presented in Figure 3. We call EOFs
(empirical orthogonal functions) the spatial function and PCs (principal components) the
temporal associated time series of the PCA output. The first three principal components
(also called modes) of the residual time series are presented in Figure 10, where we report
the variance fraction of the total variance associated with each mode in each panel. We see
that the variance fraction of the GNSS is equal to or lower than the models for each mode
and that the GNSS’s first PCs are much noisier than the ones from the model, even after
resampling the data (which removes a part of the GNSS white noise). The first mode is
spatially quite homogeneous. The associated PCs are very different between GNSS and the
loading models. Among the three models, we can find some common temporal patterns,
but also some differences that can be important, especially with GRACE. The second and
third modes are under 15% of the variance fraction but show common spatial patterns
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Figure 10. PCA (EOFs and associated PCs) of GNSS and the three loading models’ (including GRACE) residual time series
between 2010 and 2020, where the trend and the seasonal signal have been removed: (a–d) first component, (e–h) second
component, and (i–l) third component. The percentage of the total variance corresponding to each mode is given in each
plot. The PCs are scaled to unit variance and plotted for the period 2010 to 2020, while the corresponding EOFs are given in
terms of the correlation between the initial time series and the PCs.
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between the solutions. It seems that the two modes have to be interpreted simultaneously
since PCs and EOFs belonging to both appear to be very similar. For example, the PCs and
EOFs of panels (i), (f), (g), and (l) seem to be consistent when they belong to two different
modes (the same is the case for (j), (k), and (h)).

3.5. Frequency Content and Interannual Variations

The frequency content of the detrended and 10-day-resampled loading models, along
with the GNSS MG3 solution, is provided in Figure 11. The mean Lomb–Scargle (Lomb,
1976; Scargle, 1982) periodograms showing the amount of variance per frequency band were
computed with Python using the algorithm described in Townsend (2010). Before stacking,
the individual periodograms were un-normalized from the length of the time series in order
to compare all the periodograms in a consistent manner. Moreover, the frequency range we
used was the same for every time series (GNSS and models). The GNSS has a higher noise
level than the loading models (the GNSS periodogram shows a larger amount of variance
than the loading models), which is quite understandable if we consider the multiple sources
of noise for the GNSS techniques that were listed in the Introduction section of this article.
The estimation of the spectral index delivered by CATS for cats_d and cats is reported in
Table 3. In cats_d, the spectral index seems to be overestimated when WH noise is taken
into account and estimated. Moreover, since for PL noise only, cats_d and cats provide quite
different results, we conclude that the index estimation is also greatly affected by the choice
of the estimation model (namely including or not the draconitic cycle). As the spectral
indices estimated by CATS impact the uncertainties calculation, it is important to confirm
the order of magnitude of these values with the profiles of periodograms of Figure 11. First,
the GNSS periodogram is well described by simple PL noise at any frequencies (a slope
of constant value). This means that the PL noise contribution dominates the WH noise
contribution in the plotted range of frequencies. This can be the reason why CATS fails
to estimate a WH noise component in the weekly series while it is robust in estimating
only PL noise. The periodograms of loading models seem to be closer to a Gauss–Markov
process with a very strong annual signal. They also seem to have the same global behaviour
as GNSS (especially the slope) in the interannual band, even if they have a lower variance
signal. However, for frequencies greater than 1 cpy, the slopes of periodograms correspond
to spectral indexes around −2 for hydrological models, while this remains around −0.7 for
GNSS. The origin of this change of slope remains unknown, but we can argue that if the
models do not contain WH noise, then we only see the coloured noise dominating at high
frequencies. As MERRA2 and GLDAS2.1 had initial samples shorter than a day (1 and
3 hours, respectively), we further investigated to search for WH noise in the model time
series. We computed the stacked periodograms of the raw model time series in order to
reach frequencies around 300 cpy, where there was still no WH noise, which corroborated
our previous assumption.

Table 3. PL noise mean spectral index for the each of the two CATS-estimated solutions with or
without WH noise estimation along PL noise.

East North Up

cats_d (WH + PL) −0.89 −1.03 −0.77
cats_d (PL) −0.69 −0.84 −0.63
cats (PL) −0.86 −0.99 −0.75
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Figure 11. Lomb–Scargle periodograms for the three loading models and the detrended MG3 GNSS
solution. The periodograms of all stations were stacked and then divided by the number of stations
in order to obtain mean periodograms for each solution. The vertical black lines indicate the solar
cycle harmonics, and the vertical green lines indicate the draconitic harmonics.

4. Discussion

4.1. Interannual Signal in GNSS Time Series

Concerning the difference between the deterministic (tiasd) and stochastic (cats_d)
accounting of interannual variations, we can point out some key elements. Even if our
statistical method using the dispersion of instantaneous velocity provides more realistic
uncertainties (more than 10 times larger) than that directly given by the WLS method, we
also observe in Figure 6 that the uncertainties for tiasd are three to four times smaller than
those for the WSL + MLE method, which contain a complete stochastic part (WH + PL
noise). Moreover, these small uncertainties are accompanied by important differences in
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the velocity values compared to that estimated by CATS: the differences are nested in an
interval of ±1.5 mm/y, which is quite important considering the precision requirement on
the terrestrial reference frame (such as ITRF) of 0.1 mm/y (Altamimi et al., 2016).

Even if it is mathematically correct to fit the time series with polynomials, this is
clearly not suitable for geophysical interpretation. Interannual signals in GNSS time series
are due to geophysical deformations in only few special cases: regions with melting ice
caps or tectonic activity such as slow slip events (Klein et al., 2016; Laxon et al., 2003;
Klein et al., 2018; Tobita, 2016). If some GNSS interannual variations have been related to a
geophysical origin (Elia et al., 2021), several previous studies demonstrate that there is a
limitation in interpreting this type of signal in terms of geophysics at large spatial scales (
Rosat et al., 2021). Interannual variations in GNSS time series are properly captured by
a spatially consistent PL noise model with a relatively large amplitude, regardless of the
GNSS station location or the geophysical phenomena affecting them. Therefore, to avoid
a misleading interpretation of the interannual signal as a deterministic signal, we do not
recommend the use of polynomials in GNSS time series adjustment models. It still remains
very difficult to distinguish the true geophysical signal from the noise contribution in the
residual time series.

4.2. Importance of Draconitic Adjustment

Although it is very common to see GNSS time series adjusted with only the trend
and solar cycle, we emphasise here the importance of additionally fitting draconitic har-
monics. The differences can be larger than the uncertainty level. The horizontal velocity
uncertainties for a large number of stations almost doubled when the draconitic harmonics
are not adjusted (Figure 6 and (Santamaría-Gómez et al., 2011)). Even if the numerical
estimations of velocity are close in cats_d and cats, estimating the draconitic periods, or not,
could statistically affect the estimated velocity. The vertical component is less affected
since the relative power of the draconitic oscillations is lower than that for the horizontal
component, as can be seen in the periodograms in Figure 11. If we look at the annual cycle
determination, the draconitic signals influence not only the uncertainties but also the values
of the phase and amplitude. Even though these differences and the parameter uncertainties
are of the same order of magnitude for the majority of stations, there are several stations
for which the annual cycle is strongly affected by the draconitic adjustment. In fact, the sep-
aration between the solar annual and first draconitic frequencies in the estimation process
is conditioned by the length of the time series. The minimum theoretical length for good
separation is 25 years. Even though some of the GNSS time series are close to this duration
criterion, we are still not able to properly separate the two components for the majority
of stations. Moreover, there is actually no evidence that both solar and draconitic signals
are stationary. There are potential amplitude variations over time, especially because of
their relation to environmental changes, orbit calculation, and the contribution of local
effects such as multipath, which is closely related to the time-variable antenna environment
and observation geometry. A clean separation of the two signals could then be even more
difficult, even for the longest records. To evaluate the correlation between these two terms,
we plot the correlation coefficient values depending on the length of the time series, shown
in Figure 12. We represent only the correlation coefficient for the annual/draconitic cosine
and sine terms of tiasd that we extracted from PYTHON’s WLS estimation function. We
chose to only represent the correlation coefficient for the vertical component of GNSS since
we previously verified that it was extremely similar for the East and North components.

The correlation between the solar and draconitic cycles increases when the time series
length increases from 4 to 10 y. For longer time spans, the correlation decreases slowly
and linearly.

The correlation coefficients of the low time span stations (<10 y) are impacted by a
large dispersion. The low values of these coefficients are then relatively not significant and
should not be misinterpreted. As we suggested before, the parameters of the longest time
span stations (19 y) are still correlated (around 0.4). Extrapolating a decorrelation slope



Remote Sens. 2021, 13, 4523 18 of 20

(−0.02 y−1) for longer time spans, we found that the total decorrelation between the two
cycles should happen beyond a 25-year time span (the theoretical limit), which confirms
the difficulty of separating these signals, as they can change with time. In conclusion,
even though the correlation between the solar annual and the first draconitic term is quite
important, it is strongly recommended to include draconitic frequencies in the fit model
in order to reduce the uncertainties, to avoid a joint beat frequency (which can create
the illusion of no stationary annual amplitude) being unmodelled, and to try not to mix
geophysical signals (mostly at solar frequency) and signals coming from orbital errors.

Figure 12. Coefficient of correlation between annual solar wave and draconitic first harmonic for
cosine and sine terms of tiasd as a function of the length of the time series.

4.3. Model Phase Advance over GNSS Seasonal Signal

The phase advance of the loading models over GNSS displacement could be linked to
a single shortcoming of most global hydrology models: the misrepresentation of horizontal
fluxes. In general, vertical fluxes are well modelled within each individual cell of the
model, but any horizontal runoff often immediately disappears in the oceans. In reality,
this water is still stored for a certain time over land and flows through rivers. Examples
of the importance of the surface water runoff when computing hydrological loading can
be found in Nicolas et al. (2021) and Nahmani et al. (2012). Figure 9 shows that the spatial
distribution of this phase advance is not compatible with such a hypothesis because there
are no long rivers in Great Britain, but it can play a role in other regions of the world (the
Amazon basin, for example, (Nicolas et al., 2021)) and has to be carefully investigated.
Globally, there is a good match between the models and the GNSS, as the differences
between them for the majority of stations are of the same order of magnitude as the GNSS
uncertainties (Figure 7). Nevertheless, the differences in phase values confirm that the
GNSS annual cycle actually contains signals other than just those from hydrology. If we
consider that the agreement between GNSS and the models is good when the histogram of
the difference is close to a centred Gaussian distribution (which should indicate random
errors), the agreement between GNSS and GLDAS2.1 seems worse than the agreement
between GNSS and MERRA2, which seems worse than the agreement between GNSS and
GRACE. This result shows the importance of dedicated gravity missions, such as GRACE
and GRACE-FO, in helping to improve the modelling of continental water storage varia-
tions. The stations where the difference is similar for each loading model are stations where
the GNSS annual term contains phenomena other than just the hydrological signature.
For example, we did not take into account the nontidal ocean and atmospheric loading (
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Mémin et al., 2020; Williams and Penna, 2011; van Dam et al., 2012) in the loading models
that we used here. Indeed, the associated annual cycle is quite small in Europe (∼0.5 mm)
but could explain some local differences that we see in Figure 9, mostly along the coast.
Given the amplitude of the differences, they could also be due to the nature of the ground
(karst aquifers (Silverii et al., 2016) and mining (Gourmelen et al., 2007; Muntean et al.,
2016)), but also to the thermal deformation of the surface and antenna monuments (Fang
et al., 2014; Xu et al., 2017). A meticulous study of each station time series should provide
initial intuition into the sources of these differences, but this goes far beyond the goal of
this study. In any case, we can observe that groups of stations at large spatial scales that
have similar differences are expected to be more likely affected by a geophysical signal,
while anomalies on isolated stations are expected to be more likely due to monumentation
deformation or a multipath effect. Unlike the thin peaks corresponding to the annual solar
frequency in the loading model periodograms of Figure 11, the large peaks centred on the
annual solar cycle in the GNSS periodograms are another important piece of evidence for
the multiplicity of annual signal content in GNSS.

4.4. Common Mode Estimation in GNSS

Since Europe has had weak tectonic activity and a stable climate over the years
without great meteorological events such as El Nino or ice melting, we expected a quite
low interannual signal. The PCA decomposition of GNSS in Figure 10a confirms this
hypothesis since the PCs seem to be dominated by noise. Loading models have a much
lower noise level than the GNSS observations and exhibit significant differences due to
different estimates of continental water storage variations. By analysing the second and
third modes together in Figure 10, we can find similarities between the EOFs and PCs
of (i), (f), (g), and (l), on the one hand, and (j), (k), and (h), on the other hand. However,
considering the discrepancies between the models themselves, it seems inadequate to
indicate the superiority of any model over another. The choice of one model rather than
another in the comparison with GNSS should then be particularly justified, especially if the
interpretation is only based on PCA results. The difference in the total variance fraction of
the first mode between GNSS and the loading models is most likely due to the difference
in noise content (Figure 11).

We qualitatively compared our PCA results with those of Elia et al. (2021) who per-
formed PCA of the UNR/NGL (University of Nevada Reno/Nevada Geodetic Laboratory)
GNSS solutions (Blewitt et al., 2018) over the same region and the same time span as in
our study and removed the seasonal signal with the same method as the one presented in
Section 3.4. We note that the second mode of MG3 GNSS (Figure 10e) does not appear in
Elia et al. (2021), and we can speculate about the origin of such a uniform signal over Great
Britain associated with this singular time signature. This mode could be associated with
the correlated noise of the MG3 time series. As this noise component could differ from one
GNSS analysis centre to another, it could be very different for NGL products.

Moreover, we would like to emphasise the importance of the choice of the GNSS
network for performing PCA (Wu et al., 2019). The choice of a homogeneous network is
wise in order to equally distribute the signal across the entire region. However, the stations
selected for the PCA also need to meet a completeness criterion during a time interval,
which, most of the time, results in an inhomogeneous network. There are then two options.
The first is to keep this inhomogeneous network unchanged, knowing that PCA could
over-represent the regions with a denser station distribution. This could be the reason
why the modes that had the largest variance fraction in our study corresponded to an
important signal over the most dense regions (north of Spain, Great Britain, and France).
The second option is to select specific stations in order to produce a homogeneous network,
asking for subjective criterion selection. For example, what would be the criterion for
choosing between two stations, both reaching the completeness criterion, being 50 km
away but showing different time series? The choice of particular stations for producing
the homogeneous network should thus also impact the PCA results. In conclusion, as the
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choice of the network has such an impact on the PCA results, and as the GNSS noise could
be specific to each GNSS solution, the discrepancies or similarities of the interannual signal
given by PCA between models and GNSSs should then be considered and interpreted
very carefully.
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6.3 Comparaison du mode commun avec d’autres solutions

La recherche de modes communs entre les stations géodésiques est un enjeu important notamment pour
comprendre et déterminer l’origine de certains signaux présents dans les séries GNSS. Il existe de nombreuses
méthodes dont la décomposition en composantes principales que nous avons utilisé dans l’article Michel
et al. (2021) pour comparer le contenu de la bande interannuelle de plusieurs modèles avec le GNSS, ou
la décomposition en composantes indépendantes (moins bien adapté au problème du GNSS). Récemment,
Kreemer & Blewitt (2021) ont mis au point une nouvelle technique permettant d’extraire le mode commun
d’un réseau dense de stations GNSS quelque soit la durée et la complétude des séries temporelles ce qui est
un pas en avant considérable dans l’étude des modes communs. Leur méthode repose sur une estimation
des corrélations inter-stations calculées avec des méthodes statistiques robustes en faisant d’abord intervenir
les meilleures stations (en terme de complétude et de longueur de la série temporelle) puis en ajoutant au
fur et à mesure le reste des stations. Ce schéma itératif est donc très coûteux en temps de calcul car en
grande partie non parallélisable. Nous avons codé cette méthode afin de pouvoir comparer quantitativement
les écarts entre les modes communs détectés sur des solutions GNSS issues de différents centres d’analyse.
Ceci est notamment motivé par le fait que les biais sur les produits orbite/horloge impactent généralement
les grandes longueurs d’onde spatiales. Elles peuvent donc être visibles sur les modes communs que nous
déterminons et peuvent surtout différer d’un centre d’analyse à un autre. D’autre part, nous souhaitions
comparer ces modes communs avec ceux issus de GRACE et interpréter les différences en terme de signaux
non-géophysiques.

Dans un premier temps, nous avons validé le code que nous avons implémenté en comparant les résultats
de l’article de Kreemer & Blewitt (2021) avec les résultats issus de notre traitement. Cette validation passe
notamment par les cartes des coefficients de corrélation inter-stations représentés sur la Figure 2.13, qui sont
identiques à ceux donnés dans l’article. Pour chaque station, nous avons calculé les coefficients de corrélations
(Shevlyakov & Smirnov, 2011) entre les résidus de la série temporelle (obtenus après soustraction du modèle
de l’Éq. (2.4)) et les résidus de toutes les autres stations puis avons tracés ces coefficients en fonction de la
distance inter-station séparant les stations de la station considérée. Pour chaque station, on créée donc un
graphique de la corrélation des séries temporelles des résidus en fonction de la distance à la station. Nous
ajustons une fonction affine sur chacun de ces graphiques puis nommons ccs la pente de cette fonction et
cci son ordonnée à l’origine. Ce sont ces deux quantités qui sont représentés sur la Figure 2.13. On peut
interpréter le coefficient cci comme la limite du coefficient de corrélation aux environs immédiats de la station
considérée et le coefficient ccs comme la perte de corrélation avec la distance en chaque station.

Après avoir validé l’implémentation de la méthode, nous avons extrait un réseau commun entre les données
fournies par le NGL et notre réseau européen. Nous avons à ce titre démontré que la méthode employée est

Fig. 2.13 – Ordonnée à l’origine cci (la corrélation est un nombre sans dimension) et pente de la courbe de
corrélation ccs (variation de la corrélation par tranche de 1000 km) de chaque station avec le réseau pour la
solution NGL utilisée par Kreemer & Blewitt (2021).
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Fig. 2.14 – Ordonnée à l’origine cci et pente de la courbe de corrélation ccs de chaque station avec le réseau
considéré pour (a & b) la solution MG3, (c & d) la solution NGL et (e & f) la solution GRACE.

peu sensible au changement de réseau : les cci/ccs trouvés pour le réseau complet du NGL de la Figure 2.13
sont très proches de ceux trouvés dans les panels (b) et (e) de la Figure 2.14 pour le sous-réseau commun à
notre réseau. Nous représentons les cci/ccs issus du traitement des séries temporelles MG3, NGL et GRACE 7

sur la Figure 2.14 pour le même réseau. Nous observons que la perte de décorrélation est similaire dans les
deux solutions GNSS mais qu’il existe des différences avec la solution GRACE. Ces différences révèlent donc
probablement une différence inter-technique. Nous voyons que la solution MG3 possède un cci moyen plus
faible que la solution NGL. Cela peut laisser penser que les résidus issus de la solution NGL (ne possédant
a priori que le bruit de mesure et les erreurs systématiques liés à la solution) possèdent un signal spatial
plus cohérent que les résidus des séries temporelles MG3. Les valeurs de cci extrêmement hautes de GRACE
sont le reflet du lissage de la solution sur environ 300 km. Ce lissage implique que les abords immédiats des
stations possèdent un signal quasi-identique au signal de la station ce qui n’est pas le cas pour le GNSS à
cause notamment des effets de station (monumentation, type de sol, multi-trajet, etc.).

Les cci/ccs sont utilisés finalement pour déterminer le mode commun en chaque station grâce à la méthode
statistique décrite dans l’article de Kreemer & Blewitt (2021) auquel nous renvoyons pour plus de détails.
Nous avons représenté sur la Figure 2.15 le mode commun sur la composante verticale pour trois stations
et pour les solutions MG3, NGL et GRACE. Nous avons ajouté le mode commun issu du traitement MG3
mais auquel nous avons enlevé les fréquences draconitiques des résidus avant le calcul des corrélations. Nous

7. Les séries temporelles de déplacements de GRACE sont issues du même calcul que dans Michel et al. (2021), via le service
de charge de l’EOST http://loading.u-strasbg.fr/.
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Fig. 2.15 – Mode commun pour les stations DELF (Pays-Bas), STJ9 (France) et SULD (Danemark) obtenus
à partir des quatre solutions NGL, MG3, MG3 auquel on a préalablement retiré les fréquences draconitiques
et GRACE.

voyons que les différentes solutions ne montrent pas de différences notables et sont la plupart du temps en
accord avec le mode commun de GRACE pour les variations au long terme. Cette observation amène donc à
penser que ces signaux sont bien une signature de phénomènes géophysiques car communs à la fois au GNSS
et à GRACE.

Le bruit important qui compose ces séries temporelles de mode commun est néanmoins propre à chaque
solution comme le témoigne la Figure 2.16 sur laquelle nous avons représenté les périodogrames de Lomb-
Scargle (Lomb, 1976; Scargle, 1982) des séries temporelles des résidus dont on a ôté ou non le mode commun
déterminé précédemment. Cette figure est très instructive sur les différences spectrales existantes entre la
solution MG3 et la solution NGL notamment le niveau globale de bruit à haute fréquence (plus faible pour
NGL que MG3) et le contenu de la bande de fréquences interannuelle. Dans tout les cas, nous retrouvons la
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signature d’un bruit coloré à basse fréquence et d’un bruit blanc à plus haute fréquence qui ne sont ni l’un ni
l’autre captés entièrement par le mode commun. En revanche, retirer le mode commun aux séries temporelles
permet de réduire drastiquement les multiples pics à haute fréquence (qui sont notamment présents sur
les séries NGL) et de réduire, en partie seulement, les pics des fréquences draconitiques particulièrement
importants sur la solution MG3. La réduction du contenu fréquentiel des signaux draconitiques est forte de
sens puisqu’elle signifie qu’une bonne partie de ces signaux sont captés par le mode commun. Il possèdent
donc des variations spatiales de grande longueur d’onde et se mélangent ainsi à certains signaux géophysiques.
Sur la solution MG3 dont les fréquences draconitiques ont été ajustées 8, la réduction apportée par le mode
commun est comparable à ce qu’on obtient pour les séries NGL. Le fait qu’une partie du bruit ait été absorbée
par le mode commun et que l’autre partie subsiste dans les résidus, permet d’affirmer que les sources de
bruit sont divisées en deux partie : les sources dont l’origine est globale donc liées à l’orbite ou aux produits
(qui sont contenues dans le mode commun) et celles d’origine locale donc liées à la station qui subsistent
dans les résidus des séries temporelles. Si extraire chaque source de bruit est une tâche difficile, notre étude
permet néanmoins de quantifier la part liée à chaque type de source (globale ou locale).

Fig. 2.16 – Périodogrammes de Lomb-Scargle cumulés des résidus (RES) et des résidus corrigés du mode
commun (RES-CMC) pour les solutions MG3, NGL et MG3 auquel on a préalablement retiré les fréquences
draconitiques.

Enfin, nous pourront conclure sur l’apport d’une telle méthode sur la réduction de l’incertitude sur
les paramètres déterministes et stochastiques des modèles d’ajustement utilisés sur les séries temporelles.
Cette notion a été en partie abordée dans Kreemer & Blewitt (2021) en ce qui concerne la diminution de
l’incertitude calculée avec MIDAS (Blewitt et al., 2016) sur les vitesses des stations, mais mériterait un
traitement plus complet sur les autres paramètres. Aussi, il serait intéressant de compléter cette étude avec
des solutions utilisant les produits d’autres centres d’analyse (ou même directement les produits IGS) et sur
d’autres régions du monde, afin de pouvoir dissocier la part de variabilité liée aux produits en eux-même
et celle liée aux signaux communs à toutes les solutions dont l’origine serait soit géophysique soit lié à une
erreur systématique propagée par tout les centres d’analyse. Il resterait alors à donner une interprétation de
ces signaux, ce qui s’avère être une tâche particulièrement délicate.

8. Nous n’avons ajusté que les 6 premiers termes d’où le fait que l’on voit encore des pics draconitiques aux hautes fréquences.
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Dans cette partie, nous nous intéressons à la notion de rhéologie des matériaux et plus particulièrement
aux rudiments de la théorie de l’élasticité (Landau & Lifchitz, 1967). Les propriétés élastiques d’un maté-
riau lui confèrent uniquement une capacité à se déformer instantanément en réponse à une contrainte. Or
pour expliquer qu’une déformation puisse aussi évoluer longtemps après l’application ou le retrait d’une
perturbation, il est nécessaire de faire intervenir en plus des propriétés élastiques du matériau, ses propriétés
visqueuses. Nous nous pencherons aussi sur la manière dont on peut modifier la théorie élastique pour y
inclure une composante visqueuse dans la relation entre contrainte et déformation. Nous donnerons les bases
pour établir les équations de plusieurs modèles visco-élastiques (Maxwell, Kelvin et Burgers) dans le but de
les utiliser par la suite dans la théorie gravito-(an)élastique que nous décrirons dans la Partie IV.

1 Déformations et contraintes dans un matériau

1.1 Vecteur déplacement et tenseur des déformations

Pour quantifier la déformation d’un matériau, on définit le vecteur déplacement u comme la différence
entre la position initiale x d’un point M appartenant au solide et sa position après la déformation notée x′

tel que

ui = x′
i − xi, ou dui = dx′

i − dxi, (3.1)

si l’on considère un élément de longueur dx déformé en un élément dx′. L’indice i représente une composante
spatiale dans n’importe quel système de coordonnées. On peut déterminer entièrement le vecteur déplacement
en connaissant sa dépendance en xk. Pour cela, on écrit la différentielle de ui en fonction de xk comme

dui =
∂ui

∂xk
dxk.

Dès lors, on peut évaluer la déformation d’un élément de longueur dl2 = dx2
1 + dx2

2 + dx2
3 en un élément de

longueur dl′2 = dx′2
1 + dx′2

2 + dx′2
3 grâce à la relation précédente 1 (Landau & Lifchitz, 1967)

dl′2 = dx′2
i ,

= (dxi + dui)
2
,

= dl2 + 2dxidui + du2
i ,

= dl2 + 2
∂ui

∂xk
dxidxk +

∂ui

∂xl

∂ui

∂xm
dxldxm,

(3.2)

où les indices i, k, l et m sont muets ce qui permet de réécrire la dernière égalité comme

dl′2 = dl2 + 2

[
1

2

(
∂ui

∂xk
+

∂uk

∂xi

)]
dxidxk +

∂ul

∂xi

∂ul

∂xk
dxidxk, (3.3)

où le second terme a été remplacé par son symétrique

∂ui

∂xk
dxidxk =

∂uk

∂xi
dxkdxi.

On définit alors le tenseur des déformations ε d’ordre 2 et de dimension 3 par

dl′2 = dl2 + 2εikdxidxk, (3.4)

où εik s’exprime en fonction de ui

εik =
1

2

(
∂ui

∂xk
+

∂uk

∂xi
+

∂ul

∂xi

∂ul

∂xk

)
. (3.5)

1. Dans toute la suite, nous utiliserons la notation de sommation implicite d’Einstein.
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Nous remarquons que le tenseur des déformations est symétrique (εik = εki) ce qui signifie qu’il ne possède
donc que 6 composantes indépendantes et qu’il peut être diagonalisé dans une base particulière. Dans la
suite, on négligera le troisième terme de l’Éq. (3.5) qui est d’ordre 2 en ui.

1.2 Tenseur des contraintes

On considère désormais un système constitué d’un volume V de matériau déformé. Cette déformation
de la structure cristalline initiale induit donc des forces internes dans le volume du matériau. On écrit la
résultante des forces dans le volume considéré comme

ˆ
V

FdV, ou

ˆ
V

FidV, (3.6)

si l’on considère la ième composante de la force. Dans un solide, la cohésion entre les molécules est assurée
par les forces moléculaires à l’échelle microscopique. Pour que la cohésion soit encore assurée dans le solide
déformé, ces forces internes doivent être compensées par les forces appliquées par des molécules voisines par
principe d’action-réaction. Ces forces sont donc compensées de proche en proche, de molécule en molécule
dans le volume, jusqu’aux molécules de surface pour lesquelles seulement une partie des forces s’y appliquant
peuvent être compensées à cause de la dissymétrie de l’environnement qui les entoure (il y a des molécules
à l’intérieur du solide mais il n’y en a pas à l’extérieur du solide) (Landau & Lifchitz, 1967). Ainsi, seule
une force extérieure s’appliquant sur la surface peut annuler le bilan de force sur ces molécules de surface.
La déformation de l’élément de volume dV est ainsi entièrement gouvernée par l’application de contraintes
sur sa surface et non par le bilan des forces internes qui s’y appliquent. Ces considérations peuvent être
traduite mathématiquement en stipulant que F est un champ vectoriel continu dans le solide tel qu’il existe
un tenseur d’ordre 2 que l’on note σ et qu’on appelle tenseur des contraintes défini par

Fi =
∂σik

∂xk
. (3.7)

En utilisant le théorème d’Ostrogradsky dans l’Éq. (3.6), on obtient
ˆ
V

FidV =

ˆ
V

∂σik

∂xk
dV =

˛
S

σikdSk, (3.8)

où dSk est la kème composante du vecteur dS orienté conventionnellement depuis le volume vers l’extérieur.
On peut noter qu’on intègre sur les anciennes coordonnées xi et non les nouvelles x′

i étant donné que les
déplacements sont petits et que l’on travaille à l’ordre 1. Le terme σikdSk est la ième composante de la force
que l’on applique sur la surface perpendiculaire à dS tandis que σik est la ième composante de la force que
l’on applique sur la surface perpendiculaire à l’axe k. On peut signaler de plus que pour respecter l’équilibre
des moments appliqués sur un volume infinitésimal du solide, la ième composante de la force que l’on applique
sur la surface perpendiculaire à l’axe k est égale à la kème composante de la force que l’on applique sur la
surface perpendiculaire à l’axe i. On en déduit que le tenseur des contraintes est symétrique car σik = σki

et ne possède donc que 6 composantes indépendantes.
Lorsque l’on retire la contrainte, le matériau peut retourner dans son état initial ou conserver une dé-

formation rémanente. Le comportement de chaque matériau sous l’effet d’une force est appelé rhéologie
et est entièrement déterminé par la relation contrainte-déformation. Les matériaux possèdent de nombreux
comportements différents qui définissent autant de rhéologies à étudier, la plus simple étant la rhéologie
élastique donnant une relation linéaire entre la contrainte et la déformation.

2 Élasticité et viscosité

2.1 Loi de Hooke

Dans le cas élastique, le tenseur des contraintes et le tenseur des déformations sont reliés linéairement.
Cela signifie que chacune des 9 composantes du tenseur des contraintes est reliée à une combinaison linéaire
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des 9 coefficients du tenseur des déformations. On a donc en tout 9 × 9 = 81 coefficients reliant les deux
tenseurs que l’on peut écrire dans un tenseur d’ordre 4 noté C tel que

σij = Cijklεkl. (3.9)

Cette équation constitue la loi de Hooke générale pour n’importe quel matériau élastique. Les coefficients
du tenseur dépendent des propriétés du matériau notamment des micro-structures et de l’organisation mo-
léculaire impliquée dans la cohésion du solide. Nous avons vu dans les sections précédentes que les tenseurs
des déformations et des contraintes étaient symétriques c’est-à-dire qu’ils ne possèdent chacun que 6 com-
posantes indépendantes. Cela implique que seules 6 composantes du tenseur des contraintes sont liées à une
combinaison linéaire des 6 composantes indépendantes du tenseur des déformations. On a donc par symétrie
uniquement 6 × 6 = 36 coefficients indépendants dans le tenseur C. Dans la théorie de Landau, on peut
également prouver que le tenseur des contraintes dérive de l’énergie interne U par rapport au tenseur des
déformations à entropie constante (ou de l’énergie libre à température constante), ce qui permet d’écrire
(Landau & Lifchitz, 1967)

σij =
∂U

∂εij

∣∣∣∣
S

=⇒ Cijkl =
∂2U

∂εij∂εkl

∣∣∣∣
S

=
∂2U

∂εkl∂εij

∣∣∣∣
S

= Cklij . (3.10)

Le nombre de coefficients indépendants est donc réduit à 21. Enfin, si l’on fait l’hypothèse que le matériau
est isotrope, la relation contrainte déformation n’est désormais entièrement définie que par deux coefficients
indépendants. Il existe de multiples couples de coefficients que l’on utilise en fonction des applications. On
pourra citer les plus courants que sont le module de Young et le coefficient de Poisson (E, ν), le coefficient
de compression et le coefficient de cisaillement (K,G) ou encore les coefficients de Lamé (λ, μ) 2. Si l’on écrit
la relation contrainte déformation en terme de (λ, μ), le tenseur C s’écrit simplement

Cijkl = λδijδkl + μ (δikδjl + δilδjk) , (3.11)

ce qui donne,

σij = λεkkδij + 2μεij , ou σ = λTr(ε)Id + 2με. (3.12)

Cette relation simple sera largement utilisée dans la suite de cette étude. En remarquant que εkk = σkk/(3λ+

2μ), on peut également la renverser en exprimant le tenseur des déformations en fonction du tenseur des
contraintes

εij =
1

2μ
σij − λ

2μ(3λ+ 2μ)
σkkδij . (3.13)

2.2 Hypothèse d’incompressibilité

Les contraintes sont généralement divisées en deux grands types : les contraintes de compression et les
contraintes cisaillantes. Les contraintes de compression sont définies comme étant la partie du tenseur des
contraintes impliquant une variation de volume du matériau. À l’inverse, les contraintes cisaillantes déforment
le matériau sans en changer le volume. Cette dichotomie est primordiale dans la modélisation d’une rhéologie
car elle permet de distinguer le cas compressible du cas incompressible. Nous allons décrire en détail dans la
suite la prise en compte ou non de l’hypothèse d’incompressibilité.

On s’intéresse d’ores et déjà à la variation de volume d’un matériau que l’on note ΔV/V . Soit un élément
infinitésimal de longueur dl =

√
dx2

1 + dx2
2 + dx2

3 qui devient après déformation dl′ =
√
dx′2

1 + dx′2
2 + dx′2

3 .
Selon l’Éq. (3.4) écrite au premier ordre en ε on obtient,

dl′ = dx′2
i = dx2

i + 2εkldxkdxl = (δkl + 2εkl)dxkdxl. (3.14)

2. On note que le coefficient de Lamé μ est défini comme étant égal strictement au coefficient de cisaillement et est donc
parfois noté G.
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Profitant du caractère symétrique du tenseur des déformations, on le diagonalise dans une base orthonormée
pour le réduire à ses composantes principales, ce qui permet d’écrire sans perte de généralité

dl′2 = (1 + 2ε11)dx
2
1︸ ︷︷ ︸

dx′2
1

+(1 + 2ε22)dx
2
2︸ ︷︷ ︸

dx′2
2

+(1 + 2ε33)dx
2
3︸ ︷︷ ︸

dx′2
3

. (3.15)

Cela implique toujours au premier ordre en ε que

dx′
i = (1 + 2εii)

1
2 dxi � (1 + εii)dxi. (3.16)

Le volume infinitésimal initial s’écrit dans la nouvelle base orthonormée dV = dx1dx2dx3 et devient après
déformation

dV ′ = dx′
1dx

′
2dx

′
3,

= (1 + ε11)dx1(1 + ε22)dx2(1 + ε33)dx3,

= (1 + ε11)(1 + ε22)(1 + ε33)dV,

= (1 + ε11 + ε22 + ε33 + o(ε))dV,

= (1 + Tr(ε) + o(ε))dV.

(3.17)

On en déduit donc la variation relative de volume au premier ordre en ε

ΔV

V
=

dV ′ − dV

dV
= Tr(ε) = ∇ · u. (3.18)

La divergence du champ de déplacement représente donc la variation relative de volume du matériau. Grâce
à cette équation on peut dorénavant séparer le tenseur des déformations comme une somme de deux tenseurs
indépendants : l’un noté ε, engendrant les variations de volume (sa trace est égale à celle de ε), et l’autre
noté ε′, de trace nulle, qui contient les déformations cisaillantes. On peut alors définir ε comme étant la
partie compressible et ε′ comme étant la partie incompressible du tenseur des déformations tel que

ε =
1

3
Tr(ε)Id︸ ︷︷ ︸
ε

+

(
ε− 1

3
Tr(ε)Id

)
︸ ︷︷ ︸

ε′

. (3.19)

La loi de Hooke (Éq. (3.12)) se réécrit alors en terme de ε et ε′

σ = λTr(ε)Id + 2με,

= 3λε+ 2μ (ε+ ε′) ,

= (3λ+ 2μ)ε+ 2με′.

(3.20)

On peut dès lors faire une remarque sur le coefficient (3λ + 2μ) qui n’est autre que 3 fois le coefficient de
compression K introduit dans la Section 2.1. Étant donné le coefficient de cisaillement G, on en déduit la
loi de Hooke en fonction du couple (K,G)

σ = 3Kε+ 2Gε′, (3.21)

avec K = λ + 2/3μ associé à la partie compressible et G = μ associé à la partie incompressible, d’où leur
noms.

D’autre part, il découle de l’Éq. (3.20), que le tenseur des contraintes possède également une décompo-
sition en une somme de tenseurs avec trace et sans trace que l’on notent respectivement σ et σ′ tel que
σ = σ + σ′ avec
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⎧⎪⎨⎪⎩
σ =

1

3
Tr(σ)Id = (3λ+ 2μ)ε

σ′ = σ − 1

3
Tr(σ)Id = 2με′

. (3.22)

On appelle couramment σ le tenseur volumétrique et σ′ le déviateur des contraintes. Ces deux termes
proviennent du fait que 1

3Tr(σ) n’est autre qu’une pression lithostatique p engendrant des variations de
volume du matériau et σ′ le terme associé au cisaillement. Ce système de deux équations indépendantes
permet de résoudre séparément la déformation associée au caractère compressible et incompressible d’un
matériau sous l’effet de la contrainte σ. Attention, cette séparation est purement artificielle : si le matériau
possède une partie compressible (K �= ∞) et incompressible (G), on le qualifiera de compressible ; si le
matériau possède uniquement une partie incompressible, on le qualifiera d’incompressible. Ainsi, l’hypothèse
d’incompressibilité revient à prendre la limite ΔV −→ 0. En utilisant l’Éq. (3.18) et la première équation du
système (3.22), on en déduit que cette limite est équivalente à

Tr(ε) = Tr(ε) =
p(

λ+
2

3
μ

) =
p

K
−→ 0 ∼ K −→ ∞. (3.23)

On note que cette limite est également atteinte si le coefficient de Lamé λ tend aussi vers l’infini. Dans
cette approximation, la première équation du système (3.22) n’est plus définie et le système n’est déformé
que par des contraintes cisaillantes σ′ régies par la seconde équation du système (3.22). Attention, en aucun
cas l’approximation incompressible n’impose que p = 1

3Tr(σ) ne soit nulle ! Seulement, cette contrainte
lithostatique, si elle est appliquée, n’a aucun effet sur la déformation du matériau et il convient alors de
considérer σ′ comme la grandeur d’intérêt. La loi de Hooke régissant le système prend alors sa forme la plus
simple

σ′ = 2με′. (3.24)

On note qu’on fait généralement un abus de notations en écrivant que dans le cas incompressible σ = 2με

dans le sens où, comme la contrainte volumétrique n’a aucun effet, on peut tout aussi bien considérer qu’on
n’en applique pas. Dès lors on aurait σ = 0 et ε = 0 3.

2.3 Modélisation d’une rhéologie élastique

Le caractère élastique d’un matériau est défini par deux propriétés importantes. La première est le
caractère atemporel de la loi rhéologique de Hooke qui donne la propriété instantanée de la déformation
élastique. La seconde est la propriété linéaire qui a permis d’écrire la relation générale (3.9) dont on a
déduit un certain nombre de relations dans des hypothèses simplificatrices. Ces deux propriétés définissent
entièrement le caractère élastique. Dans le cas d’un cristal isotrope et incompressible, la loi de Hooke est
réduite à l’Éq. (3.24). Cette relation simple a des équivalents en mécanique et en électricité et on pourra
alors faire un parallèle entre ces différents domaines.

En mécanique, on peut considérer la force appliquée sur un ressort de raideur k, F = k(l − l0) = kd où
d est le déplacement de l’extrémité du ressort par rapport à sa position à vide l0. La norme de la force F

joue le rôle de la contrainte déformant le système, d la réponse du système sous l’effet de cette force et k

la capacité du système à se déformer sous l’effet d’une force. Il est très courant de représenter un module
rhéologique élastique par un ressort dans un schéma comme sur la Figure 3.1 représentant une rhéologie
élastique dans les cas compressible et incompressible.

On peut également faire un parallèle entre la rhéologie élastique incompressible et la loi de Joule en
électricité U = RI. En effet, dans ce cas le courant électrique I joue le rôle de la contrainte, la tension U joue
le rôle de la déformation car elle est elle-même la différence entre deux potentiels comme la déformation est
la différence de deux positions et la conductance G = 1/R joue le rôle du module élastique. Cette analogie
sera notamment utile lorsqu’il s’agira de réaliser des associations de modules rhéologiques en série ou en
parallèle (voir Section 3).

3. 0 est ici prit au sens du tenseur nulle.
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(λ, μ) μ

Fig. 3.1 – Représentation par un ressort d’un module rhéologique élastique compressible (à gauche) et
incompressible (à droite). Les coefficients λ et μ sont les paramètres de Lamé.

2.4 Modélisation de la viscosité

Pour expliquer la dépendance temporelle de la déformation d’un milieu, il est nécessaire d’introduire des
modules non-élastiques dans le modèle rhéologique pour obtenir des rhéologies à caractère non-instantanée.
C’est par exemple le cas de la viscosité que l’on connaît généralement de la mécanique des fluides, et qui ici
relie la contrainte à la dérivée temporelle de la déformation appelée taux de déformation. Si l’on exprime
la force cisaillante dans un écoulement laminaire selon (Ox), on obtient

Fx = ηSy
dvx
dy

+ ηSz
dvx
dz

, (3.25)

où Fx est la norme de la force dirigée dans le sens de l’écoulement, η est le coefficient de viscosité dynamique
cisaillante, Sy (resp. Sz) est la surface de contact entre deux feuillets de fluide, d’épaisseur infinitésimale et

parallèles au plan (Oxz) (resp. (Oxy)), et
dvx
dy

(resp.
dvx
dz

) est le taux de cisaillement c’est-à-dire le gradient

de la vitesse des feuillets de fluide dans la direction perpendiculaire au plan (Oxz) (resp. (Oyz)) contenant
le vecteur vitesse v = vxex. Il est plus aisé d’écrire cette relation en terme de contrainte et de déformation
matriciel

σ = ηε̇, (3.26)

où ε̇ est le taux de déformation qui correspond ici au taux de cisaillement. S’il est commun de considérer la
viscosité comme une force cisaillante en mécanique des fluide, c’est parce qu’on néglige la force de volume
qui lui est associée dans une approximation dite de Stokes, valable pour les milieux peu denses et que l’on
propage généralement aux milieux denses. En toute généralité, il convient donc de considérer une viscosité de
volume notée χ associée à la composante non cisaillante de la force que l’on rajoute dans l’expression (3.26)

de Fx : (χSi
dvi
dxi

+ 2ηSx
dvx
dx

). Cette seconde viscosité intervient exactement de la même manière que le

coefficient de Lamé λ dans la loi de Hooke (Ranalli, 1995; Landau & Lifchitz, 1988), donnant ainsi la relation
linéaire complète pour un fluide isotrope

σ = χTr(ε̇)Id + 2ηε̇. (3.27)

Le coefficient 2 devant le second terme provient du fait qu’une partie de la contrainte cisaillante est contenue
dans le premier terme tout comme une partie de la déformation élastique de volume était présente dans
le premier terme de l’Éq. (3.12) pour le cas élastique. Pour cela nous préférerons généralement mettre un
coefficient 2 dans l’Éq. (3.26) pour la cohérence des notations lorsque nous parlerons d’un cas visqueux
exclusivement cisaillant

σ = 2ηε̇. (3.28)

Nous pouvons désormais appliquer tout les résultats de la Section 2 au cas visqueux, notamment la
séparation des termes compressibles et incompressibles en suivant le schéma des Éq. (3.19) et (3.20)

σ = χTr(ε̇)Id + 2ηε̇,

= 3χε̇+ 2η
(
ε̇+ ε̇′

)
,

= (3χ+ 2η)ε̇+ 2ηε̇′,

= 3ξε̇+ 2ηε̇′,

(3.29)
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avec ξ = χ + 2/3η appelée seconde viscosité analogue du coefficient de compression K. On peut alors
séparer les études des cas compressibles et incompressibles en séparant le tenseur des contraintes en sa partie
volumétrique σ et sa partie cisaillante σ′

⎧⎪⎨⎪⎩
σ =

1

3
Tr(σ)Id = (3χ+ 2η)ε̇

σ′ = σ − 1

3
Tr(σ)Id = 2ηε̇′

. (3.30)

Tout comme on modélise la loi de Hooke par un ressort, nous modélisons mécaniquement un module
visqueux par un piston dont la loi d’évolution est identique à celle d’un phénomène visqueux (Figure 3.2).

(χ, η) η

Fig. 3.2 – Représentation par un piston d’un module rhéologique visqueux compressible (à gauche) et
incompressible (à droite). Les coefficients χ et η sont les viscosités respectivement de volume et dynamique
du matériau.

Dans la pratique, il est particulièrement difficile de mesurer expérimentalement la valeur de la viscosité
de volume. Aussi, et ce malgré le fait que les conditions d’applications de l’hypothèse de Stokes ne sont pas
forcément réunies, il est commun que ce terme soit négligé permettant alors de décrire le fluide comme un
fluide newtonien (Ranalli, 1995).

3 Association de plusieurs modèles rhéologiques

Pour expliquer le comportement de certains matériaux il faut parfois que l’on couple plusieurs modèles
simples de rhéologie afin de représenter au mieux les observations. Si l’on utilise les analogies faites avec
l’électricité, cela signifie que l’on peut associer des modèles rhéologiques en série et/ou en parallèle. Nous
présentons les résultats pour des associations de modèles rhéologiques incompressibles, bien qu’ils soient
également valable pour des modèles compressibles. Chacune des parties compressible et incompressible d’un
modèle possède donc son propre schéma mécanique équivalent, de sorte que l’on peut les analyser indépen-
damment l’un de l’autre.

Dans la Figure 3.3, on représente une association de deux modèles élastiques incompressibles de coeffi-
cients μ1 et μ2 en série et en parallèle. On détermine alors le coefficient élastique équivalent pour chaque cas
en se rappelant de l’analogie avec l’électricité : en parallèle, on additionne les conductances donc μ = μ1+μ2,

tandis qu’en série on additionne les inverses des conductances donc μ =
1

1

μ1
+

1

μ2

=
μ1μ2

μ1 + μ2
. Plus géné-

ralement on respectera toujours les règles d’additivité/égalité des contraintes et déformations pour chaque
association de modèles qui sont résumées dans le Tableau. 3.1.
Ici nous avons couplé uniquement des modèles élastiques ce qui n’a a priori aucun intérêt en pratique
puisque ces associations sont toujours équivalentes à un modèle élastique dont on a simplement changé la
valeur des coefficients. L’intérêt du couplage est de faire interagir deux (ou plusieurs) modèles rhéologiques de
nature différente afin de donner au matériau les propriétés spécifiques issues de chacun des modèles utilisés.
Nous allons voir dans les sections qui suivent que l’association de modèles rhéologiques élastiques et visqueux
permet d’établir une équation différentielle temporelle régissant la déformation dans le matériau, qu’il s’agira
de résoudre. Une exposition de plusieurs autres modèles visco-élastiques est donnée dans Spada (2008).

contraintes (σ) déformations (ε)
en série égales sommées

en parallèle sommées égales

Tab. 3.1 – Règles d’additivité ou d’égalité des contraintes et des déformations des modèles associés en série
ou en parallèle.
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μ1 μ2

≡
μ = μ1 + μ2

μ1

μ2

≡

μ = μ1μ2/(μ1 + μ2)

Fig. 3.3 – Modèles élastiques de coefficients μ1 et μ2 installés en série (à gauche) et en parallèle (à droite)
ainsi que leur modules équivalents en bas.

3.1 Principe de correspondance

L’association de plusieurs modèles rhéologiques linéaires (comme c’est le cas de l’élasticité et de la vis-
cosité), est soumis à la résolution d’une équation différentielle, elle aussi linéaire. La résolution de ce type
d’équations différentielle est facilitée si l’on passe dans le domaine fréquentiel, car se réduit à une équation
polynomiale en la fréquence. La résolution de cette équation fréquentielle a amené à émettre ce qu’on ap-
pelle le principe de correspondance. Ce principe énonce simplement la capacité que nous avons d’écrire
la relation contrainte-déformation régissant n’importe quelle rhéologie linéaire d’un matériau isotrope, dans
le domaine fréquentiel, sous la forme de la loi de Hooke dite « généralisée »

σ̃ = λ(ω)Tr(ε̃)Id + 2μ(ω)ε̃. (3.31)

Les tildes symbolisent le passage des tenseurs dans le domaine fréquentiel dont la variable courante est ω. Ce
principe a été introduit pour la première fois par Lee (1955) et Lee et al. (1959) en utilisant la transformée
de Laplace. Nous utiliserons plutôt la transformée de Fourier (TF) car elle est plus simple à manipuler
mathématiquement malgré le fait qu’elle possède a priori un champ d’application plus restreint notamment
à cause des difficultés à traiter les signaux à supports temporels bornés (Tobie et al., 2005). Néanmoins, le
principe de correspondance utilisant la TF se retrouve dans certaines études récentes portant sur le calcul
des déformations visco-élastiques saisonnières (Chanard et al., 2018a) ou à long terme (Caron et al., 2017).
Ce changement d’outils dans le principe de correspondance, sera une des contributions majeures de ce travail
sur la détermination des déformations visco-élastiques engendrées par les modèles linéaires que l’on présente
dans la suite.

3.2 Modèle de Maxwell

Le modèle de Maxwell est défini par une association série d’un modèle élastique (E) et d’un modèle
visqueux (V). C’est l’association visco-élastique la plus simple et elle est représentée sur la Figure 3.4 pour le
cas le plus général. C’est un modèle encore largement employé dans les modèles géophysiques (Peltier, 1974;
Wu & Peltier, 1982; Vermeersen et al., 1996; Spada, 2013).

(λ, μ) (χ, η)

Fig. 3.4 – Modèle rhéologique de Maxwell représenté par l’association série d’un modèle élastique compres-
sible de coefficients (λ, μ) et d’un modèle visqueux compressible de coefficients (χ, η).

Les parties compressible et incompressible de ce modèle peuvent être résolues indépendamment. On s’inté-
resse d’abord à la partie incompressible. Grâce aux règles établies dans le Tableau 3.1, nous pouvons écrire
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les grandeurs globales σ′ et ε′ (valables pour la partie incompressible uniquement) en fonction des grandeurs
dans chaque modèle constitutif ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

σ′ = σ′
E = σ′

V

ε′ = ε′E + ε′V
et

σ′
E = 2με′E

σ′
V = 2ηε̇′V

. (3.32)

En dérivant par rapport au temps la relation liant les déformations visqueuses et élastiques, on obtient

ε̇′ = ε̇′E + ε̇′V,

=
σ̇′
E

2μ
+

σ′
V

2η
,

(3.33)

puis en utilisant la relation des contraintes, on obtient l’équation différentielle suivante

σ̇′

2μ
+

σ′

2η
= ε̇′. (3.34)

Pour résoudre une équation différentielle de la sorte, on peut utiliser la transformée de Fourier (TF ou
FT dans la suite). On passe alors dans le domaine fréquentiel tel que pour une fonction f , on note f̃ sa
transformée de Fourier définie par ⎧⎪⎪⎨⎪⎪⎩

f̃(ω) =
1√
2π

ˆ
R

f(t)e−iωtdt

f(t) =
1√
2π

ˆ
R

f̃(ω)e+iωtdω

, (3.35)

où ω est une pulsation. Écrire l’équation différentielle (3.34) dans le domaine fréquentiel permet de la
linéariser et de donner ainsi une relation polynomiale entre les transformées de Fourier des tenseurs σ et ε

σ̃′
(
iω

2μ
+

1

2η

)
= iωε̃′,

σ̃′
(
iω

2η

2μ
+ 1

)
= iω2ηε̃′,

σ̃′ =
iω2η(

iω
2η

2μ
+ 1

) ε̃′,

σ̃′ = 2μ

iω
2η

2μ(
iω

2η

2μ
+ 1

) ε̃′,

σ̃′ = 2μ

⎡⎢⎢⎣1− 1(
iω

η

μ
+ 1

)
⎤⎥⎥⎦ ε̃′,

σ̃′ = 2μ

⎡⎢⎢⎣1− 1(
i
ω

ω′
m

+ 1

)
⎤⎥⎥⎦ ε̃′,

(3.36)

où l’on définit la pulsation caractéristique ω′
m = μ/η. Dans le domaine fréquentiel on a donc une relation

linéaire entre les contraintes et les déformations avec un terme élastique (le 1 dans le crochet) et un terme
supplémentaire que l’on note m′(ω) dû à la présence du piston et à son interaction avec le ressort
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σ̃′ = 2μ

⎡⎢⎢⎣1− 1(
i
ω

ω′
m

+ 1

)
⎤⎥⎥⎦ ε̃′ = 2μ [1−m′(ω)] ε̃′. (3.37)

Prenons la limite sans viscosité η −→ +∞ c’est à dire quand le piston se comporte comme un fil dans
l’analogie électrique et où la contrainte est totalement transmise au module élastique. Alors m′(ω) −→ 0 et
on retrouve la relation pour un module élastique incompressible σ′ = 2με′. Si on prend par contre la limite
du fluide parfait avec η −→ 0 alors le piston se comporte comme un interrupteur ouvert et la contrainte
cisaillante ne peut être transmise au travers du fluide : on a bien m′(ω) −→ 1 et donc σ′ = 0. Dans ce
cas, le déplacement peut prendre des valeurs arbitrairement grandes. La dépendance de m′ en ω est celle
d’un filtre passe-bas de pulsation de coupure ω′

m. Dès lors, on retrouve que lorsque ω tend vers l’infini, seule
la contrainte élastique est transmise (m′(ω) = 0) alors que lorsque ω tend vers 0, la contrainte cisaillante
s’annule (m′(ω) = 1) car le système a le temps de retrouver l’équilibre à chaque instant. Le déphasage
maximal est atteint en ω/ωm = 1.

Pour la partie compressible, la résolution est tout à fait semblable. Il suffit de remplacer les variables
primées par les variables barrées, le coefficient 2μ par (3λ+ 2μ) et le coefficient 2η par (3χ+ 2η) car on a

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

σ = σE = σV

ε = εE + εV

et

σE = (3λ+ 2μ)εE

σV = (3χ+ 2η)ε̇V

. (3.38)

On obtient donc aussi une équation différentielle de la même forme que l’Éq. (3.34) dont la solution dans
l’espace de Fourier s’écrit

σ̃ = (3λ+ 2μ) [1−m(ω)] ε̃, (3.39)

où l’on définit m(ω) = 1/ (iω/ωm + 1) et ωm = (λ+2/3μ)/(χ+2/3η) = K/ξ. Si l’on recombine les solutions
compressibles et incompressibles que l’on vient d’obtenir, on peut donner la contrainte globale en fonction
de la déformation telle que

σ̃ = σ̃ + σ̃′,

= (3λ+ 2μ) [1−m(ω)] ε̃+ 2μ [1−m′(ω)] ε̃′,

= (3λ+ 2μ) [1−m(ω)]
1

3
Tr(ε̃)Id + 2μ [1−m′(ω)]

(
ε̃− 1

3
Tr(ε̃)Id

)
,

= (3λ+ 2μ) [1−m(ω)]− 2μ [1−m′(ω)]
1

3
Tr(ε̃)Id + 2μ [1−m′(ω)] ε̃,

= λ [1−m(ω)] + 2/3μ [m′(ω)−m(ω)]︸ ︷︷ ︸
λm(ω)

Tr(ε̃)Id + 2μ [1−m′(ω)]︸ ︷︷ ︸
2μm(ω)

ε̃.

(3.40)

On retrouve alors la forme générale de la loi de Hooke dans le domaine fréquentiel où l’on a simplement
changé les coefficients λ et μ par des fonctions de ω qui dépendent des paramètres du modèle rhéologique.
C’est la notion de principe de correspondance que nous avons vu dans la Section 3.1. Cependant, étant
donné ce qui a été dit dans la Section 2.4, la viscosité de volume χ est négligée dans la grande majorité
des cas. Le modèle visqueux est donc réduit simplement à sa partie incompressible de sorte que m(ω) = 0 :
l’équation compressible se réduit à l’équation élastique σ̃ = (3λ+ 2μ)ε̃.

On peut déterminer la solution dans le domaine temporel en prenant la transformée de Fourier inverse
des Éqs. (3.37) et (3.39). Par linéarité de la transformée de Fourier, on aura alors la somme de deux fonctions
temporelles telles que
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

TF−1(1) =
√
2πδ(t)

TF−1

⎛⎜⎜⎝ 1(
i
ω

ω′
m

+ 1

)
⎞⎟⎟⎠ =

√
2πω′

mH(t)e−ω′
mt

, (3.41)

où H(t) est la fonction de Heavyside ou fonction « marche »valant 0 pour t < 0 et 1 pour t � 0. On obtient
donc ⎧⎨⎩σ′(t) =

√
2π 2μ

[
δ(t)− ω′

mH(t)e−ω′
mt

]
ε′(t)

σ(t) =
√
2π (3λ+ 2μ)

[
δ(t)− ωmH(t)e−ωmt

]
ε(t)

. (3.42)

3.3 Modèle de Kelvin

Le modèle de Kelvin est défini par une association en parallèle d’un modèle élastique (E) et d’un modèle
visqueux (V). Cette association est représentée sur la Figure 3.5 pour le cas le plus général.

(λ, μ)

(χ, η)

Fig. 3.5 – Modèle rhéologique de Kelvin représenté par l’association en parallèle d’un modèle élastique (λ, μ)
et d’un modèle visqueux (χ, η).

Là encore, on peut résoudre indépendamment les parties compressible et incompressible. Les deux parties
ayant des modèles rhéologiques similaires, on résoudra pour l’une des deux puis nous donnerons simplement
le résultat pour l’autre. Pour la partie incompressible on a pour une association parallèle (voir Tableau 3.1)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

σ′ = σ′
E + σ′

V

ε′ = ε′E = ε′V
et

σ′
E = 2με′E

σ′
V = 2ηε̇′V

. (3.43)

En remplaçant les expressions des contraintes dans la première équation on obtient l’équation différentielle
pour le modèle de Kelvin

σ′ = 2με′ + 2ηε̇′. (3.44)

Nous passons alors encore une fois dans le domaine fréquentiel pour obtenir une relation linéaire simple entre
la transformée de Fourier de σ′ et celle de ε′.

σ̃′ = [2μ+ iω2η] ε̃′,

= 2μ

[
1 + iω

2η

2μ

]
ε̃′,

= 2μ

[
1 +

iω

ω′
k

]
ε̃′,

= 2μ [1 + k′(ω)] ε̃′,

(3.45)
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où nous avons introduit le paramètre ω′
k =

μ

η
et la fonction k′(ω) = iω/ω′

k. Pour la partie compressible on

obtient un résultat similaire en appliquant la même démarche

σ̃ = (3λ+ 2μ)
[
1 + k(ω)

]
ε̃, (3.46)

avec ωk = (λ + 2/3μ)/(χ + 2/3η) = K/ξ et k(ω) = iω/ωk. Les modules étant en parallèle, le cas limite
où la contrainte est intégralement transmise au module élastique est atteint lorsque le module visqueux se
comporte dans la limite du fluide parfait tel que η −→ 0 (interrupteur ouvert). On obtient alors k′(ω) −→ 0

et σ′ = 2με′. À l’inverse, si η −→ +∞, le module visqueux se comporte comme un fil c’est-à-dire en limite
infiniment rigide : même une contrainte infinie ne suffit pas à générer le moindre déplacement.

Si l’on combine désormais les deux parties entre elles pour exprimer la contrainte globale en fonction de
la déformation, on obtient les fonctions λk(ω) et μk(ω) telles que

σ̃ = σ̃ + σ̃′,

= (3λ+ 2μ)
[
1 + k(ω)

]
ε̃+ 2μ [1 + k′(ω)] ε̃′,

= (3λ+ 2μ)
[
1 + k(ω)

] 1
3
Tr(ε̃)Id + 2μ [1 + k′(ω)]

(
ε̃− 1

3
Tr(ε̃)Id

)
,

= λ
[
1 + k(ω)

]
+ 2/3μ

[
k(ω)− k′(ω)

]︸ ︷︷ ︸
λk(ω)

Tr(ε̃)Id + 2μ [1 + k′(ω)]︸ ︷︷ ︸
2μk(ω)

ε̃.

(3.47)

Les fonctions λk(ω) et μk(ω) permettent alors d’exprimer la relation contrainte-déformation fréquentielle
sous la forme de la loi de Hooke grâce au principe d’équivalence.

3.4 Modèle de Burgers

On peut se pencher sur un modèle plus complexe appelé modèle de Burgers, dans lequel on associe un
modèle de Maxwell et un modèle de Kelvin en série. On adoptera les notations de la Figure 3.6 dans la suite.
On prend cette fois-ci uniquement une partie élastique compressible, le reste étant composé de modèles
incompressibles.

(λe, μe) ηm
μk

ηk

Fig. 3.6 – Modèle rhéologique de Burgers représenté par l’association série d’un modèle de Maxwell semi-
compressible (λe, μe) ; (ηm) et d’un modèle de Kelvin incompressible (μk) ; (ηk).

On obtient directement une relation élastique pour la partie compressible puisqu’il n’y a qu’elle qui est
présente : σ = (3λe + 2μe)ε. En revanche la partie incompressible est plus longue à résoudre mais sans
difficultés. Il suffit d’appliquer les règles du Tableau 3.1⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ′ = σ′m
E = σ′m

V = σ′k = σ′k
E + σ′k

V

ε′ = ε′mE + ε′mV + ε′k

ε′k = ε′kE = ε′kV
et

σ′m
E = 2μeε′mE

σ′m
V = 2ηmε̇′mV
σ′k
E = 2μkε′kE

σ′k
V = 2ηkε̇′kV

. (3.48)
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On dérive alors deux fois temporellement la déformation et on utilise ensuite toutes les relations dispo-
nibles

ε̈′ = ε̈′mE + ε̈′mV + ε̈′k,

=
σ̈′m
E

2μe
+

σ̇′m
V

2ηm
+

σ̇′k
V

2ηk
,

=
σ̈′

2μe
+

σ̇′

2ηm
+

σ̇′ − σ̇′k
E

2ηk
,

=
σ̈′

2μe
+ σ̇′

(
1

2ηm
+

1

2ηk

)
− 2μk

2ηk
(ε̇′ − ε̇′mE − ε̇′mV ) ,

=
σ̈′

2μe
+ σ̇′

(
1

2ηm
+

1

2ηk

)
− 2μk

2ηk

(
ε̇′ − σ̇′

2μe
− σ′

2ηm

)
,

(3.49)

soit

σ̈′ + σ̇′
(
μe

ηm
+

μe

ηk
+

μk

ηk

)
+

μkμe

ηkηm
σ′ = 2μeε̈′ +

2μeμk

ηk
ε̇′. (3.50)

Cette équation différentielle du second ordre peut être linéarisée en utilisant la transformée de Fourier
des fonctions σ′ et ε′.

−ω2σ̃′ + iωσ̃′
(
μe

ηm
+

μe

ηk
+

μk

ηk

)
+

μkμe

ηkηm
σ̃′ = −ω22μeε̃′ + iω

2μeμk

ηk
ε̃′,

σ̃′
[
−ω2 + iω

(
μe

ηm
+

μe

ηk
+

μk

ηk

)
+

μkμe

ηkηm

]
= 2μe

[
−ω2 + iω

μk

ηk

]
ε̃′,

σ̃′ = 2μe
ω2 − iω

μk

ηk

ω2 − iω

(
μe

ηm
+

μe

ηk
+

μk

ηk

)
− μkμe

ηkηm

ε̃′,

(3.51)

Plutôt que d’exprimer le résultat sous la forme σ̃′ = 2μe [1 + b′(ω)] ε̃′, nous allons le décomposer en utilisant
les fonctions définies dans les modèles de Maxwell et de Kelvin. Nous allons isoler dans un premier temps le
terme correspondant au modèle de Maxwell

σ̃′ = 2μe iωηm/μe

iωηm/μe + 1︸ ︷︷ ︸
[1−m′(ω)]

⎡⎢⎢⎣
(
ω2 − iω

μk

ηk

)(
iω

ηm

μe
+ 1

)
(
ω2 − iω

(
μe

ηm
+

μe

ηk
+

μk

ηk

)
− μkμe

ηkηm

)(
iω

ηm

μe

)
⎤⎥⎥⎦ ε̃′,

σ̃′ = 2μe [1−m′(ω)]

⎡⎢⎢⎣
(
−iω − μk

ηk

)(
iω +

μe

ηm

)
ω2 − iω

(
μe

ηm
+

μe

ηk
+

μk

ηk

)
− μkμe

ηkηm

⎤⎥⎥⎦ ε̃′,

σ̃′ = 2μe [1−m′(ω)]

⎡⎢⎢⎣
(
iω +

μk

ηk

)(
iω +

μe

ηm

)
(
iω +

μk

ηk

)(
iω +

μe

ηm

)
+ iω

μe

ηk

⎤⎥⎥⎦ ε̃′,
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σ̃′ = 2μe [1−m′(ω)]
1

1 +

⎡⎢⎢⎣ iω
μe

ηk(
iω +

μk

ηk

)(
iω +

μe

ηm

)
⎤⎥⎥⎦

︸ ︷︷ ︸
b(ω)

ε̃′,

σ̃′ = 2μe [1−m′(ω)]
[

1

1 + b(ω)

]
ε̃′.

(3.52)

On arrive donc à un produit de deux termes entre crochets correspondant respectivement au terme de
Maxwell et au terme dû à l’ajout du modèle de Kelvin. Nous allons faire une étude asymptotique pour
vérifier les comportements aux limites du modèle de Burgers. En premier lieu, on essaye de retrouver le
modèle de Maxwell seul lorsque l’on court-circuite le modèle de Kelvin. Pour cela nous avons vu dans la
partie précédente en considérant ηk −→ +∞ que le piston tend alors vers le comportement d’un fil. Dès lors,
toute la contrainte est transmise au modèle de Maxwell et la fonction b(ω) −→ 0. On obtient bien la relation
de la Section 3.2 : σ̃′ = 2μe [1−m′(ω)] ε̃′. De même si l’on fait tendre la viscosité du piston du modèle de
Maxwell vers l’infini (dans la limite d’un fil), on obtient un modèle dit de Kelvin généralisé avec un ressort
en série avec un modèle de Kelvin simple ayant pour expression linéarisée

σ̃′ = 2μe iω + μk/ηk

iω +

(
μe + μk

ηk

) ε̃′ =
iω + μk/ηk

iω

2μe
+

1

2ηk
+

μk

2μeηk

ε̃′. (3.53)

La dernière expression est alors propice à effectuer un dernier cas limite où l’on enlève en plus le ressort de
Maxwell pour ne garder que le modèle de Kelvin simple. On prend donc μe −→ +∞ pour que le ressort se
comporte comme un fil et on obtient alors dans l’expression précédente

σ̃′ =
μe→+∞

iω + μk/ηk

1

2ηk

ε̃′ =
[
2ηkiω + 2μk

]
ε̃′ = 2μk

[
1 + iω

2ηk

2μk

]
ε̃′ = 2μk [1 + k′(ω)] ε̃′, (3.54)

où l’on retrouve bien l’équation de la Section 3.3. Enfin, si on prend ηm, ηk −→ +∞ ou ηm, μk −→ +∞ dans
l’Éq. (3.52), on retrouve bien le modèle élastique pur.

On peut encore une fois rassembler les termes incompressibles et compressibles afin d’obtenir une formu-
lation linéaire du problème de Burgers total

σ̃ =

(
λe +

2

3
μe

[
m′(ω) + b(ω)

1 + b(ω)

])
︸ ︷︷ ︸

λb(ω)

Tr(ε̃)Id + 2μe [1−m′(ω)]
[

1

1 + b(ω)

]
︸ ︷︷ ︸

2μb(ω)

ε̃, (3.55)

et obtenir les fonctions de Lamé λb(ω) et μb(ω) du modèle de Burgers dans le cadre du principe de corres-
pondance.

3.5 Récapitulatif

Le Tableau 3.2 récapitule les résultats de cette partie en donnant l’expression des fonctions m(ω), b(ω),
λ(ω) et μ(ω) pour les rhéologies de Maxwell, de Kelvin et de Burgers. Attention toutefois, ces modèles ne sont
compressibles que sur la composante élastique principale (λe, μe) ce qui diffèrent légèrement des résultats
obtenus dans les Sections 3.2 et 3.3.
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Maxwell Kelvin Burgers

Modèle rhéologique (λe, μe) ηm
(λe, μe)

ηk
(λe, μe) ηm

μk

ηk

Relation fréquentielle σ̃′ = 2μe [1−m′(ω)] ε̃′ σ̃′ = 2μe [1 + k′(ω)] ε̃′ σ̃′ = 2μe [1−m′(ω)]
[

1

1 + b(ω)

]
ε̃′

Fonction m′(ω) =
1(

i
ωηm

μe
+ 1

) k′(ω) = i
ωηk

μe
b(ω) =

iωμm/ηk(
iω +

μk

ηk

)(
iω +

μm

ηm

)

λ(ω) λe +
2

3
μem′(ω) λe − 2

3
μek′(ω) λe +

2

3
μe

[
m′(ω) + b(ω)

1 + b(ω)

]

μ(ω) μe [1−m′(ω)] μe [1 + k′(ω)] μe [1−m′(ω)]
[

1

1 + b(ω)

]
Tab. 3.2 – Tableau récapitulatif des différents modèles rhéologiques visco-élastiques traités dans cette partie
avec une base incompressible et une partie compressible uniquement sur le module élastique principal.
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Nous établissons ici la théorie permettant de modéliser les déformations de la Terre solide sous l’effet
d’une perturbation quelconque incluant les effets de surcharge. Dans cette modélisation, nous considérerons
la Terre comme étant constituée de couches ayant chacune certaines propriétés rhéologiques décrites par
les modèles linéaires que nous avons développés dans la Partie III. Nous avons donc dû adapter la théorie
gravito-élastique de Alterman et al. (1959) de sorte à pouvoir décrire les déformations visco-élastiques de
certaines couches de la Terre engendrées par des perturbations agissant sur de longues durées.

Les résultats de cette partie ont été publiés dans l’article Michel & Boy (2021) que l’on a reporté en
annexe. Néanmoins, nous avons fait le choix d’ajouter des explications et quelques résultats en plus de ce
qui est présenté dans cet article, afin d’en permettre une meilleure compréhension. Nous avons donc choisi
d’inclure certaines parties de l’article (directement en anglais) au sein des différentes sections qui suivent,
car elles s’inscrivent dans la suite logique du propos tenu.

1 Théorie de la gravito-élasticité pour une Terre SNREI

On établit en premier lieu la déformation d’une Terre sphérique, statique (hypothèse de non-rotation),
élastique et isotrope (SNREI : Spherical Non-Rotating Elastic Isotropic Earth) sous l’effet d’une perturbation.
Cette perturbation peut prendre diverses formes : une contrainte en surface, un potentiel extérieur ou bien
les deux à la fois. Elle induit donc une redistribution des masses internes qui dépend de la rhéologie de
la Terre. C’est pourquoi nous utilisons une théorie mêlant la gravitation et la théorie de l’élasticité de la
Partie III pour déterminer la déformation engendrée par la perturbation (Longman, 1962, 1963).

1.1 Équations constitutives de la gravito-élasticité

Nous exposons d’abord les lois de conservation du système gravito-élastique dans le but d’établir un
système d’équation complet permettant la résolution du problème. On notera ρe la masse volumique, v

la vitesse, g le champ gravitationnel et Φ le potentiel gravitationnel défini par la convention usuelle en
géophysique g = ∇Φ.

1.1.1 Conservation de la masse

Pour démontrer l’équation de conservation de la masse, on utilise l’équivalence entre la description la-
grangienne et eulérienne de la déformation d’un milieu continu (fluide ou solide). La première décompose le
matériau remplissant l’espace en points matériels ou particules p, pour lesquelles on mesure les grandeurs
physiques locales le long de leurs trajectoires. Ces grandeurs dépendent donc à la fois des variations locales
mais également des variations liées au mouvement de la particule. La seconde décompose l’espace lui-même
en points géométriques x non liés aux points matériels, et fixes par rapport à un observateur extérieur au
repos. Le milieu étant continu en chaque instant, il y a donc toujours un point matériel p en un unique
point de l’espace x ou de manière équivalente un point x est occupé par un unique point p. Cette bijection
permet de répertorier les particules p autrement que par un indice, mais par exemple par leur position géo-
métrique à un instant donné. On utilise souvent l’instant initial de sorte que p corresponde à une position
géométrique unique x0p. Si on s’intéresse à la variation de la grandeur physique « densité », l’équivalence
des deux descriptions permet d’écrire ρe(x, t) = ρl(x0p, t), où les indices e et l décrivent respectivement les
descriptions eulériennes et lagrangiennes. Nous définissons ensuite le Jacobien J(t) comme le déterminant de
la transformation qui relie le volume Vp(t) d’une particule p de matériau à un instant quelconque au volume

V0p de cette particule à l’instant initial. On a donc J(t) =

∣∣∣∣∂xi(t)

∂x0p,j

∣∣∣∣. En utilisant le résultat démontré dans

l’Éq. (3.18) sur la variation relative de volume, on peut donc écrire
dJ

dt
= J∇ · v où v =

du

dt
. Étant données

toutes ces considérations, nous pouvons écrire la conservation de la masse d’un point de vue eulérien à un
instant t quelconque sous la forme :

dM

dt
=

d

dt

ˆ
Vp(t)

ρe(x, t)dV,

82



1. Théorie de la gravito-élasticité pour une Terre SNREI

où Vp(t) est le volume occupé par la particule p à l’instant t. L’échange des opérations dérivée et intégrale
n’est justifié que si le volume d’intégration ne dépend pas du temps. Pour remédier à cela, nous pouvons
utiliser l’équivalence entre les deux descriptions pour effectuer la transformation (changement de variables)
entre les variables x et x0p au moyen du jacobien J telle que

dM

dt
=

d

dt

ˆ
Vp(t)

ρe(x, t)dV,

=
d

dt

ˆ
V0p

ρl(x0p, t)JdV0p,

=

ˆ
V0p

(
∂ρl

∂t
(x0p, t)J + ρl(x0p, t)

∂J

∂t

)
dV0p,

=

ˆ
V0p

(
dρl

dt
(x0p, t)J + ρl(x0p, t)J∇ · v

)
dV0p,

=

ˆ
Vp(t)

(
dρe

dt
(x, t) + ρe(x, t)∇ · v

)
dV,

(4.1)

On obtient donc l’équation locale de conservation de la masse dans la description eulérienne en annulant le
terme sous l’intégrale

dρe

dt
+ ρe∇ · v = 0. (4.2)

Le changement de variable correspondant au changement de point de vue entre description eulérienne
et lagrangienne fait l’objet d’un théorème connu sous le nom de théorème de transport de Reynolds per-
mettant d’échanger la dérivée et l’intégrale dans une formulation eulérienne au prix de l’ajout d’un terme
supplémentaire lié au transport de la quantité eulérienne le long de la trajectoire physique de la particule.

1.1.2 Conservation de l’impulsion

Comme précédemment, on considère un volume Vp(t) d’une particule p de matériau. En ne considérant
que la force de gravité et les contraintes appliquées sur la surface Sp(t) délimitant le volume Vp(t) modélisées
par le tenseur σ, le principe fondamental de la dynamique donne pour les variables eulériennes

d

dt

ˆ
Vp(t)

ρevdV =

ˆ
Vp(t)

ρegdV +

˛
Sp(t)

σ · dS,

d

dt

ˆ
Vp(t)

ρevdV =

ˆ
Vp(t)

ρegdV +

ˆ
Vp(t)

∇ · σdV,
ˆ
Vp(t)

[
d(ρev)

dt
+ (ρev)∇ · v

]
dV =

ˆ
Vp(t)

ρegdV +

ˆ
Vp(t)

∇ · σdV,

ˆ
Vp(t)

⎡⎢⎢⎣(dρe

dt
+ ρe∇ · v

)
︸ ︷︷ ︸

=0

v + ρe
dv

dt

⎤⎥⎥⎦ dV =

ˆ
Vp(t)

ρegdV +

ˆ
V (t)

∇ · σdV.

(4.3)

Nous avons successivement utilisé le théorème de transport de Reynolds défini précédemment puis l’équation
de conservation de la masse. Le terme ∇ · σ est un vecteur appelé divergence du tenseur σ et qui s’écrit

pour la coordonnée i : (∇ · σ)i =
∂σik

∂xk
. L’Éq. (4.3) étant valable pour un volume quelconque, on en déduit

l’équation locale de conservation de l’impulsion fournissant trois équations scalaires au système

ρe
dvi
dt

= ρegi +
∂σik

∂xk
. (4.4)
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1.1.3 Équation de Poisson

L’équation de Poisson relie le potentiel gravitationnel Φ, défini conventionnellement en géophysique par
g = ∇Φ, à la densité de masse ρe par l’équation

∇2Φ = −4πGρe. (4.5)

1.1.4 Système total

Le système complet est résumé ci dessous. On y a ajouté l’Éq. (3.12) régissant la rhéologie d’un milieu
élastique homogène et isotrope puisqu’on a vu que cette forme d’équation permettait en réalité d’inclure
toutes les rhéologies linéaires en passant dans l’espace de Fourier. Toutes les expressions, exceptée cette
dernière, sont données dans le point de vue eulérien.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρe

∂t
+∇ · (ρev) = 0

ρe
dv

dt
= ρeg +∇ · σ

∇2Φ = −4πGρe

σ = λ(∇ · u)Id + 2με

. (4.6)

1.2 Système perturbé

1.2.1 Perturbation à l’ordre 1

Les variables correspondantes au système au repos (i.e. sans perturbation) sont notées avec un indice
0. La vitesse v0 est nulle car on considère le système initialement au repos. On considère que l’application
d’une perturbation change peu l’état du système et qu’il reste proche de son état au repos. Dès lors, on
peut écrire la solution du système perturbé comme un développement à l’ordre 1 des Éqs. (4.6), où le terme
d’ordre 0 correspond au système non perturbé et le terme d’ordre 1 aux « petites » modifications liées à la
perturbation. On notera donc avec un indice 1 les variables d’ordre 1 à l’exception du terme de déplacement
que l’on note u pour être cohérent avec les notations utilisées dans la Section 1.1⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x0 + u

v =��v0 + v1 =
∂u

∂t

ρe = ρ0 + ρ1

σ = σ0 + σ1

Φ = φ0 + φ1 + V︸ ︷︷ ︸
ordre 1

, ou g = g0 + g1

. (4.7)

Si la perturbation est une source gravifique, elle crée donc elle-même un potentiel extérieur V qui s’ajoute
au potentiel φ1 dont les causes physiques sont différentes de celles à l’origine de V . En effet, φ1 est seulement
associé aux modifications du potentiel terrestre liées aux variations des lignes de densité induites par la
perturbation (déplacements des masses internes au système).

1.2.2 Système d’équation perturbé

En reportant les notations de la partie précédente dans le système (4.6), on obtient
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂(ρ0 + ρ1)

∂t
+∇ · ((ρ0 + ρ1)v1) = 0

(ρ0 + ρ1)
dv1

dt
= (ρ0 + ρ1)(g0 + g1) +∇ · (σ0 + σ1)

∇2(φ0 + φ1 + V ) = −4πG(ρ0 + ρ1)

σ0 + σ1 = σ0 + λ(∇ · u)Id + 2με

. (4.8)

On sépare alors le système en un système d’ordre 0 et un système d’ordre 1 en négligeant les ordres supérieurs

ordre 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ0
∂t

+∇ · (ρ0v0) =
∂ρ0
∂t

= 0

ρ0
dv0

dt
= 0 = ρ0∇φ0 +∇ · σ0

∇2φ0 = −4πGρ0

σ0 = σ0

, ordre 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ1
∂t

+∇ · (ρ0v1) =
∂ρ1
∂t

+∇ · (ρ0 ∂u
∂t

) = 0

ρ0
∂2u

∂t2
= ρ1∇φ0 + ρ0∇(φ1 + V ) +∇ · σ1

∇2(φ1 + V ) = −4πGρ1

σ1 = λ(∇ · u)Id + 2με

.

On remarque qu’à l’équilibre, le tenseur des contraintes σ0 est non nul mais sans intérêt. A l’ordre 1, les
déplacements induits contribuent à la modification du tenseur via les équations élastiques (3.12)

∂jσ1,ij = λ∂i∂kuk + μ (∂i∂juj + ∂j∂jui) ,

= λ∂i∂juj + μ (∂i∂juj + ∂j∂jui) ,

= (λ+ μ) ∂i∂juj + μ∂j∂jui,

∇ · σ1 = (λ+ μ)∇ (∇ · u) + μ∇2u.

(4.9)

Le tenseur précédent est donné d’un point de vu lagrangien et il est nécessaire d’écrire son équivalent eulérien
pour utiliser son expression dans l’équation de conservation de l’impulsion. Au premier ordre,

σl
1 = σe

1 + (u ·∇σe
0)Id,

= σe
1 − (u · ρ0∇φ0)Id.

(4.10)

où l’on a utilisé la conservation de l’impulsion à l’ordre 0 dans la deuxième ligne. On peut ensuite réécrire
la conservation de la masse à l’ordre 1 telle que

∂ρ1
∂t

+∇ · (ρ0 ∂u
∂t

) = 0,

∂

∂t
(ρ1 +∇ · (ρ0u)) = 0,

ρ1 +∇ · (ρ0u) = 0,

(4.11)

en utilisant l’équation d’ordre 0
∂ρ0
∂t

= 0 et en considérant qu’à l’instant initial, il n’y a pas de perturbation
(ρ1 = 0 et u = 0). On reporte les deux expressions déterminées précédemment dans l’équation de conservation
de l’impulsion pour un régime variable. On se place alors dans l’espace de Fourier en notant ω la pulsation
mais sans changer les notations afin de ne pas alourdir le propos 1

1. En régime statique, on aurait bien sûr la dérivée temporelle seconde de u valant zéro et donc ω = 0.
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ρ0
∂2u

∂t2
= −ρ0ω

2u = (λ+ μ)∇(∇ · u) + μ∇2u+∇(ρ0u ·∇φ0)− (∇ · (ρ0u))∇φ0 + ρ0∇(φ1 + V ). (4.12)

L’équation précédente étant la contribution de la conservation de la masse, de l’impulsion et la loi de
Hooke, la seule équation restante pour compléter le système est l’équation de Poisson. Le système complet se
résume donc à quatre équations différentielles du second ordre sur quatre inconnues que sont les composantes
horizontales et verticale de u et le potentiel φ1

{
∇2(φ1 + V ) = 4πG∇ · (ρ0u)
(λ+ μ)∇(∇ · u) + μ∇2u+∇(ρ0u ·∇φ0)− (∇ · (ρ0u))∇φ0 + ρ0∇(φ1 + V ) = −ρ0ω

2u
. (4.13)

Le terme dynamique en ω2 est nul si on se place dans le cas élastique car la réponse du système est par
définition instantanée, mais peut être non négligeable lorsque le modèle rhéologique contient de la viscosité
et qu’on l’excite à une fréquence non nulle.

1.3 Décomposition en harmoniques sphériques

1.3.1 Décomposition et polynôme de Legendre

Le modèle de Terre considéré étant sphérique, on peut décomposer les variables en harmoniques sphé-
riques afin de faciliter la résolution du système (4.13). La décomposition d’une fonction scalaire en har-
moniques sphériques est justifiée sur une surface sphérique ou s’en approchant. La décomposition d’une
fonction vectorielle en harmoniques sphériques fait intervenir les modes sphéroïdaux et toroïdaux (Alterman
et al., 1959; Dahlen & Tromp, 1998). Les modes toroïdaux sont des modes de torsion tangentiels de la Terre
s’appliquant à la surface qui n’engendrent pas de variations de volume. Les modes sphéroïdaux quand à eux
peuvent avoir une composante verticale et horizontale et impliquer une variation de volume. On se place
désormais dans un système de coordonnées sphériques (r, θ, ϕ) où θ est la colatitude et ϕ la longitude. Si
l’on considère que la perturbation (même externe) s’applique en un point C de la surface, de coordonnées
(a, θC , ϕC) (le problème est donc axisymétrique par rapport à la perturbation), alors on peut découpler les
deux types de modes et les traiter indépendamment. En rajoutant les hypothèses statique et d’isotropie,
nous pouvons nous contenter de résoudre le système uniquement pour les modes sphéroïdaux. Si l’on note M

le point où l’on calcule la solution et (θM , ϕM ) ses coordonnées sur la sphère, l’hypothèse d’isotropie assure
alors que la solution ne dépend pas de la position absolue de C et M sur la sphère mais simplement de leur
distance relative. L’angle d’arc mesurant cette distance relative est noté ψ (voir la Figure 4.1) et est fonction

M

C

ϕM ϕC
θC

θM

a

P

ψ

Fig. 4.1 – Définition de l’angle ψ sur la sphère terrestre entre deux points : C(θC , ϕC) représentant le point
d’application de la perturbation et M(θM , ϕM ) le point où l’on mesure l’effet de cette perturbation sur le
système.
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des couples de variables (θM , ϕM ) et (θC , ϕC) tel que

cos(ψ) = cos(θC) cos(θM ) + sin(θC) sin(θM ) cos(ϕM − ϕC).

Dès lors, le point C devient un point de référence (le pôle de la décomposition en harmoniques sphériques)
et le système (4.13) ne possède plus que 3 équations indépendantes. Le vecteur déplacement ne possède en
effet plus que deux composantes que l’on note ur pour le déplacement vertical et uψ pour le déplacement
horizontal tel que u = urer + uψeψ. De plus, les modes sphéroïdaux n’auront qu’une dépendance en le
degré n et pas en l’ordre m étant donné l’axisymétrie de la réponse par rapport à la perturbation (ceci est
équivalent à ne considérer que les harmoniques zonales centrées sur la perturbation). Pour la décomposition,

on utilise la base des polynômes de Legendre Pn(cos(ψ)) et leur dérivées
∂Pn(cos(ψ))

∂ψ
qui dépendent du

degré n et de l’angle ψ. Les expressions de ces polynômes sont données pour le degré 0 et 1 par

⎧⎪⎨⎪⎩
P0(cos(ψ)) = 1

∂P0

∂cos(ψ)
(cos(ψ)) = 0

,

⎧⎪⎨⎪⎩
P1(cos(ψ)) = cos(ψ)

∂P1

∂cos(ψ)
(cos(ψ)) = − sin(ψ)

, (4.14)

puis pour n’importe quel degré n > 1 par les formules de récurrence

⎧⎪⎪⎨⎪⎪⎩
Pn(cos(ψ)) =

(2n− 1)

n
cos(ψ)Pn−1(cos(ψ))− (n− 1)

n
Pn−2(cos(ψ)),

∂Pn

∂cos(ψ)
(cos(ψ)) = − n

sin2(ψ)

(
cos(ψ)Pn(cos(ψ))− Pn−1(cos(ψ))

)
.

(4.15)

La dérivée des polynômes en fonction de ψ et non de cos(ψ) est donnée simplement par

∂Pn

∂ψ
(cos(ψ)) =

∂Pn

∂cos(ψ)
(cos(ψ))

∂cos(ψ)

∂ψ
= − sin(ψ)

∂Pn

∂cos(ψ)
(cos(ψ)).

Les polynômes et leurs dérivées calculés pour les 5 premiers degrés sont tracés sur la Figure 4.2 en fonction
de cos(ψ)

−1.0 −0.5 0.0 0.5 1.0

cosψ

−1.0

−0.5

0.0

0.5

1.0

(a) Polynômes de Legendre

−1.0 −0.5 0.0 0.5 1.0

cosψ

−2

−1

0

1

2

(b) Dérivée des Polynômes de Legendre

degré 0

degré 1

degré 2

degré 3

degré 4

Fig. 4.2 – Les polynômes de Legendre et leur dérivée première pour les 5 premiers degrés.

1.3.2 Système des yi

On décompose les variables u et φ1 sur la base des harmoniques sphériques dont on note les coefficients
yin où i varie de 1 à 6
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u(r, ψ) =

+∞∑
n=0

(
y1n(r)Pn(cos(ψ))er + y3n(r)

∂Pn(cos(ψ))

∂ψ
eψ

)
,

φ1(r, ψ) + V (r, ψ) =

+∞∑
n=0

y5n(r)Pn(cos(ψ)).

(4.16)

Si l’on transforme le système de trois équations d’ordre 2 en un système de six équations d’ordre 1, on doit
définir les dérivées des variables précédentes comme de nouvelles variables indépendantes dans le nouveau
système. La dérivée du déplacement est reliée aux composantes du tenseur des contraintes par la relation

σij = λ
∂uk

∂xk
δij + μ

(
∂ui

∂xj
+

∂uj

∂xi

)
. Ainsi, on peut définir les nouvelles variables liées au déplacement comme

les composantes du vecteur traction T à la surface. Le vecteur traction est un vecteur défini comme la
projection du tenseur des contraintes sur la direction normale à une surface S dont le vecteur de projection
est noté dS. On a donc pour la traction normale à la surface de la Terre, T = σer = σrrer + σrψeψ. On
décompose alors chaque composante de ce vecteur en harmoniques sphériques

T (r, ψ) =

+∞∑
n=0

⎛⎜⎜⎜⎝y2n(r)Pn(cos(ψ))︸ ︷︷ ︸
σrr,n

er + y4n(r)
∂Pn(cos(ψ))

∂ψ︸ ︷︷ ︸
σrψ,n

eψ

⎞⎟⎟⎟⎠ . (4.17)

De plus, on définira une nouvelle variable q associée à la dérivée du potentiel φ1 telle que

q(r, ψ) =

+∞∑
n=0

y6n(r)Pn(cos(ψ)), avec y6n(r) =
∂y5n
∂r

(r)− 4πGρ0y1n(r). (4.18)

Si on écrit les Éqs. (4.13) en utilisant les décompositions définies ci-dessus, on obtient des équations différen-
tielles du premier ordre reliant les coefficient des harmoniques sphériques yin et leur dérivées. On utilisera
pour cela des relations entre les dérivées des polynômes de Legendre que l’on trouvera dans (Arfken & Weber,
2005). Pour plus de clarté, on enlèvera le n des notations en gardant toujours à l’esprit que l’on résout le
système pour un degré d’harmonique et on notera ẏ la dérivée droite de y par rapport à r (yi ne dépendant
que de r). L’obtention du système des yi est donné en détail dans (Alterman et al., 1959; Longman, 1962;
Martens, 2016).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ1 = − 2λ

(λ+ 2μ)

y1
r

+
1

(λ+ 2μ)
y2 +

λn(n+ 1)

(λ+ 2μ)

y3
r

ẏ2 =

(
−ω2ρ0r − 4ρ0g0 +

4μ(3λ+ 2μ)

(λ+ 2μ)r

)
y1
r

− 4μ

λ+ 2μ

y2
r

+ n(n+ 1)

(
ρ0g0 − 2μ(3λ+ 2μ)

(λ+ 2μ)r

)
y3
r

+ n(n+ 1)
y4
r

− ρ0y6

ẏ3 = −y1
r

+
y3
r

+
y4
μ

ẏ4 =

(
ρ0g0 − 2μ(3λ+ 2μ)

(λ+ 2μ)r

)
y1
r

− λ

λ+ 2μ

y2
r

+

(
−ω2ρ0r +

2μ
(
λ(2n2 + 2n− 1) + 2μ(n2 + n− 1)

)
(λ+ 2μ)r

)
y3
r

− 3y4
r

− ρ0
y5
r

ẏ5 = y6 + 4πGρ0y1
ẏ6 = −4πGρ0n(n+ 1)

y3
r

+
n(n+ 1)

r

y5
r

− 2y6
r

.(4.19)

On a noté g0(r) la norme du champ de gravité et ρ0(r) la masse volumique à l’ordre 0.
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1.4 Conditions aux limites

Le système précédent est défini pour n ≥ 1 bien que le cas n = 1 soit plus subtil. En effet, la solution
dépend du référentiel dans lequel on veut l’exprimer (Blewitt, 2003). Le cas n = 0 est inintéressant pour
notre étude puisqu’il correspond simplement à une déformation radiale uniforme de la Terre, donc à une
variation de la masse totale qui violerait la conservation de la masse. Pour résoudre ce système de 6 équations
à 6 inconnues pour n ≥ 1, il est nécessaire d’obtenir 6 conditions aux limites indépendantes. On se place
au départ dans un référentiel lié au centre de masse de la Terre solide (CE) où par définition, le centre de
masse y est immobile et le potentiel gravitationnel au centre est nul. On peut alors donner trois conditions
aux limites prises en r = 0 pour tout n ≥ 1

y1(0) = 0, y3(0) = 0, et y5(0) = 0. (4.20)

Nous regardons ensuite les conditions imposées par la perturbation en surface (r = a). Il existe en fonction
du type de perturbation, différentes conditions aux limites à la surface que nous explicitons ci-dessous.

1.4.1 Effet d’un potentiel extérieur

La Terre se déforme sous l’attraction gravitationnelle induite par le potentiel perturbateur U 2. Cette
perturbation crée un excès de masse en surface appelé couramment bourrelet, modélisé par une masse
surfacique δms qui vaut au premier ordre δms = ρ0y1(a). On écrit les relations de passage au travers d’une
surface, décrivant la discontinuité du champ gravitationnel liée à la présence d’une masse surfacique de la
même manière que l’on écrit celles du champ électrique E en électromagnétisme à la traversée d’une surface
chargée de charge surfacique σe

3. En faisant l’analogie entre les deux, on obtient

(E+ −E−) · n =
σe

ε0
↔ (

g+ − g−
) · n = −4πGδms. (4.21)

Le vecteur n est ici le vecteur normal sortant à la surface c’est-à-dire le vecteur er et la relation précédente
permet alors de relier δms à φ1

∂φ1n

∂r
(a+)− ∂φ1n

∂r
(a−) = −4πGρ0y1(a), avec φ1n = y5 − Un, (4.22)

où Un est le coefficient de degré n de la décomposition en harmoniques sphériques du potentiel perturba-

teur U =

∞∑
n=0

UnPn(cos(ψ)) pouvant être prolongé sous la surface de la Terre par continuité sous la forme

U int
n ∝

( r
a

)n

. De même, le potentiel φ1 peut être prolongé par continuité à l’extérieur de la Terre avec une

dépendance telle que φext
1n ∝

(a
r

)n+1

. Ces deux prolongements permettent de calculer chacun des termes
présents dans l’équation ci-dessus. On exprime également ẏ5 avec la cinquième équation du système des yi
prise en r = a− ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂φ1n

∂r
(a+) =

∂φext
1

∂r

∣∣∣∣
a

= − (n+ 1)

a
(y5(a)− Un)

∂φ1n

∂r
(a−) =

∂

∂r

(
y5 − U int

n

)∣∣∣∣
a

= ẏ5(a)− n

a
Un

ẏ5 = y6 + 4πGρ0y1

. (4.23)

De plus pour un effet de potentiel, les contraintes normale et tangentielle en surface sont nulles ce qui donne

2. C’est typiquement le cas lorsque la perturbation est induite par un corps extérieur comme la Lune ou le Soleil. Plus
généralement, on résout le système dans cette configuration lorsque l’on calcule les effets de marées sur la Terre ou ses paramètres
de rotation comme le mouvement du pôle ou la longueur du jour.

3. Ces relations de passages viennent du théorème de Gauss
‹

S
g · dS = −4πGMint intégré sur un cube ou un pavé droit

englobant la frontière. On rappelle que le théorème de Gauss provient de l’équation locale du champ ∇ · g = −4πGρ0.
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finalement ⎧⎪⎪⎪⎨⎪⎪⎪⎩
y2(a) = 0

y4(a) = 0

y6(a) +
n+ 1

a
y5(a) =

2n+ 1

a
Un

. (4.24)

1.4.2 Effet de pression/traction

Dans ce cas, la Terre est simplement soumise à une contrainte normale p dirigée vers le centre de la Terre
et/ou une contrainte tangentielle τ . C’est typiquement le cas lorsque l’on résout le problème pour des effets
atmosphériques anticycloniques ou dépressionnaires (si on néglige la masse de l’atmosphère, ce qui n’est pas
forcément réaliste) ou plus rarement pour des effets tectoniques. Si on décompose la pression et la contrainte

tangentielle en harmonique sphérique, on obtient p =

∞∑
n=0

pnPn(cos(ψ)) et τ =

∞∑
n=0

τn
∂Pn(cos(ψ))

∂ψ
ce qui

conduit aux conditions y2(a) = −pn et y4(a) = τn. Comme il n’y a pas de potentiel perturbateur extérieur,
on obtient les conditions aux limites suivantes⎧⎪⎪⎪⎨⎪⎪⎪⎩

y2(a) = −pn

y4(a) = τn

y6(a) +
n+ 1

a
y5(a) = 0

. (4.25)

1.4.3 Effet de surcharge

Cette perturbation induit à la fois un effet de pression sur la surface mais aussi une attraction gravitation-
nelle sur la Terre. On utilise beaucoup ce cas notamment pour calculer les effets des charges hydrologiques,
cryologiques ou atmosphériques. On modélise la charge appliquée sur la surface par une masse surfacique

ζ que l’on décompose en harmoniques sphériques telle que ζ =

+∞∑
n=0

ζnPn(cos(ψ)). Cette masse surfacique

applique une contrainte normale sur la surface que l’on peut assimiler à une pression pn = geζn, où ge est
la valeur du champ de pesanteur à la surface de la Terre. En plus de cette pression, elle a aussi un effet
gravitationnel et peut être vue comme un corps extérieur dont le potentiel gravitationnel V agit sur la Terre.
Nous sommes alors dans les mêmes conditions que pour un potentiel extérieur, et on peut appliquer au po-
tentiel V les conditions aux limites déterminées précédemment. Le potentiel φ1 est alors le potentiel lié à la
déformation des lignes d’isodensité et dont la discontinuité en surface est lié à la présence d’un bourrelet. Le
potentiel V joue quant à lui le rôle du potentiel extérieur créé par la charge elle-même et dont la discontinuité
en surface est liée à ζ. On peut alors écrire les conditions aux limites à la surface⎧⎪⎪⎪⎨⎪⎪⎪⎩

y2(a) = −geζn

y4(a) = 0

y6(a) +
n+ 1

a
y5(a) =

2n+ 1

a
Vn

. (4.26)

Le potentiel V étant généré par ζ, on peut relier leurs coefficients en écrivant la discontinuité de V à la surface.

En notant V =

+∞∑
n=0

VnPn(cos(ψ)), où Vn est prolongé de chaque côté de l’interface par les dépendances (r/a)n

et (a/r)n+1, on obtient

∂Vn

∂r
(a+)− ∂Vn

∂r
(a−) = −4πGζn,

− (n+ 1)

a
Vn − n

a
Vn = −4πGζn,

Vn =
4πGa
2n+ 1

ζn.

(4.27)
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On peut donc réécrire les conditions aux limites en fonction du seul potentiel V⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y2(a) = − (2n+ 1)ge

4πGa Vn

y4(a) = 0

y6(a) +
n+ 1

a
y5(a) =

2n+ 1

a
Vn

. (4.28)

1.4.4 Bilan

Ainsi, on peut résumer les différentes conditions aux limites (dont on trouvera un descriptif plus exhaustif
dans Hinderer & Legros (1989)) en écrivant le système général suivant,⎧⎪⎪⎪⎨⎪⎪⎪⎩

y2n(a) = −geζn − pn = − (2n+ 1)ge
4πGa Vn − pn

y4n(a) = τn

y6n(a) +
n+ 1

a
y5(a) =

2n+ 1

a
Un + 4πGζn =

2n+ 1

a
(Un + Vn)

. (4.29)

qui dépend uniquement de n et du quadruplet de variables (Un, ζn, pn, τn) ou (Un, Vn, pn, τn).

1.5 Choix du modèle de Terre

Nous devons en premier lieu choisir un modèle de Terre élastique ou visco-élastique, à symétrie sphérique
et isotrope. Il a souvent été utilisé en première approximation des modèles de Terre homogènes et incom-
pressibles à une ou deux couches dont la solution a l’avantage d’être analytique et ne nécessite donc pas
de calcul numérique (Greff-Lefftz et al., 2005). Ces modèles étant néanmoins peu réalistes, il est préférable
de faire varier continûment les variables le long de la direction radiale. C’est le cas notamment du modèle
élastique PREM (Dziewonski & Anderson, 1981) (Preliminary Reference Earth Model) que nous décrivons
et utilisons dans la suite.

1.5.1 Modèles élastiques

Comme de nombreux autres (par exemple STW105 aussi connu sous le nom de REF (Kustowski et al.,
2008)), le modèle PREM a été calculé à partir des signaux sismiques se propageant au travers de la Terre et
excitant certains modes sismiques. L’étude des réflexions et de la réfraction de ces ondes sismiques (que l’on
considère élastiques) aux interfaces entre les différentes couches ainsi que certaines contraintes astrométriques
et/ou géodésiques permettent ensuite d’inverser les données pour déterminer la densité et la vitesse de
propagation des ondes P et S dans chaque couche. Ces vitesses sont directement reliées aux coefficients de
Lamé dans l’équation de propagation des ondes élastiques 4 par

VP =

√
λ+ 2μ

ρ
, VS =

√
μ

ρ
. (4.30)

Tout les paramètres sont inversés sous la forme de polynômes de degré 3 dont la variable est r et où seuls
les coefficients possédant les valeurs les plus grandes ont été conservés. Nous listons ci-dessous les différentes
couches de la Terre incluses dans PREM ainsi que leurs propriétés mécaniques et/ou géologiques.

1.5.1.1 Croûte

La croûte terrestre est la partie la plus externe de la Terre solide et est par conséquent la partie qui a été la
plus étudiée et mesurée, notamment par les géologues au cours des siècles. Elle est limitée en dessous par une
surface de discontinuité de première espèce appelée surface de Mohorovičić ou plus communément « Moho ».
Cette discontinuité est notamment une discontinuité de vitesse des ondes élastiques que l’on observe en
réalisant des études sismiques. La croûte ne possède pas la même épaisseur et la même composition chimique
et minéralogique au niveau des continents et des océans. En moyenne, l’épaisseur de la croûte océanique

4. Cette équation dérive de la conservation de l’impulsion en régime variable sans inclure les termes de gravité.
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avoisine les 6 à 7 km tandis que la croûte continentale, bien plus épaisse, est de l’ordre de 35 km. La croûte
continentale possède de fortes variations d’épaisseur (notamment dues aux effets d’isostasie sous les chaînes
montagneuses) et l’on peut trouver des épaisseurs allant jusqu’à 60 km. D’un point de vue minéralogique,
on trouve majoritairement du basalte dans la croûte océanique tandis que la croûte continentale peut être
subdivisée en deux couches dont la couche supérieure serait composée majoritairement de granite (densité de
2,6× 103 kg·m−3 en moyenne selon PREM) et la couche inférieure, de basaltes mais différents des basaltes
océaniques (densité de 2,9× 103 kg·m−3 en moyenne selon PREM). Lorsque l’on regarde un modèle de croûte
anisotrope comme CRUST2.0, il existe des régions continentales et océaniques possédant des couches de
roches sédimentaires dans lesquelles les comportements rhéologiques et physico-chimiques sont extrêmement
variables et difficiles à décrire. Néanmoins, étant donné la faible proportion de la croûte dans l’ensemble des
couches de la Terre (0,8% du volume et 0,4% de la masse), un modèle moyen est tout à fait acceptable pour
une étude de géodynamique globale. De plus, étant données sa faible épaisseur relative et sa position externe,
l’effet des hétérogénéités de la croûte (que ce soit en densité, en composition ou en épaisseur) n’affecteront
que les degrés d’harmoniques sphériques les plus élevés : au dessus du degré n = 400 pour des variations
spatiales de l’ordre de 200 km. La croûte fait partie de la lithosphère c’est à dire de la partie rigide de la
Terre et on considérera donc une rhéologie élastique.

1.5.1.2 Manteau supérieur

Cette partie est souvent décrite comme la partie la plus ductile de la Terre. Le manteau supérieur est com-
posé de cinq zones qui s’étendent du Moho jusqu’à environ 670 km de profondeur. La zone mitoyenne de la
croûte est une couche rigide appelée LID (Layer at Intermediate Depth) qui complète, avec la croûte, la litho-
sphère. Cette partie est associée au manteau car elle ne possède pas les mêmes caractéristiques structurelles
que la croûte (elles sont séparées par le Moho). La lithosphère est globalement élastique et possède une forte
résistance à la déformation. Elle est donc très cassante et concentre la plupart des foyers sismiques naturels
ressentis en surface. Elle est de plus morcelée en plaques dont le mouvement relatif est appelé tectonique des
plaques et est connu depuis les années 60. En dessous de la lithosphère on trouve une discontinuité de seconde
espèce qui marque la frontière avec une zone où la résistance mécanique est beaucoup plus faible et où les
vitesses des ondes élastiques diminuent fortement avec la profondeur. On appelle cette zone asthénosphère.
Elle s’étend jusqu’à la limite avec le manteau inférieur. Cette diminution de la résistance mécanique est due
au fait que l’augmentation de la température avec la profondeur l’emporte sur l’augmentation de pression
et permet ainsi d’atteindre les températures de fusion de certaines roches. La fusion partielle de ces roches
fait diminuer largement la valeur des modules élastiques et changent le comportement rhéologique. Les 4
couches constituant l’asthénosphère sont la LVZ (Low Velocity Zone) 5 et trois zones dites de « transition ».
En géomécanique, une diminution aussi marquée de la vitesse correspond à une dissipation de l’énergie élas-
tique ce qui n’est possible qu’en considérant un modèle visco-élastique. Dès lors, on considérera dans ces
zones un modèle de Maxwell ou de Burgers. Seuls ces deux modèles sont considérés (et pas le modèle de
Kelvin) car ils permettent d’expliquer à la fois les comportements élastiques observés à des échelles de temps
courtes (marées diurne, surcharges) et les comportements visqueux observés sur les échelles de temps beau-
coup plus longues (rebond post-glaciaire notamment). Les observations et données géologiques du rebond
post-glaciaire, permettent d’encadrer les valeurs de viscosité du modèle de Maxwell dans l’asthénosphère
entre η ∼ 1018 et 1023 Pa·s. Lithosphère et asthénosphère sont donc des appellations géomécaniques et non
des appellations géodynamiques permettant de différencier les comportements rhéologiques et mécaniques
des couches, des compositions minéralogiques et des discontinuités de structure.

1.5.1.3 Manteau inférieur

Plus l’on s’enfonce à l’intérieur de la Terre, plus les effets de pression tendent à l’emporter sur les effets
de température. Le manteau inférieur débute lorsque la résistance mécanique redevient forte mais tout de
même moins que dans la lithosphère (partie froide). Le manteau inférieur est divisé en trois couches que l’on
considérera soit élastiques, soit possédant une partie visqueuse expliquant leur faible mais tangible ductabi-
lité. Il s’étend jusqu’à une discontinuité de première espèce et majeure dans la structure terrestre : l’interface

5. Ce terme n’est pas très bien adapté puisqu’il s’agit d’une zone de diminution de la vitesse et non d’une zone où la vitesse
y est uniformément faible.
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noyau-manteau (ou CMB en anglais pour Core-Mantle Boundary) que l’on nomme aussi discontinuité de
Gutenberg.

1.5.1.4 Noyau liquide

L’interface noyau-manteau est un lieu où localement se déroulent des phénomènes de turbulence dans le
noyau et dont la structure n’est pas une ligne arrêtée mais probablement une sorte de transition visqueuse. Le
noyau liquide sera la plupart du temps considéré comme un fluide parfait c’est à dire possédant un module de
cisaillement nul (la contrainte tangentielle y4 dans un fluide parfait est nulle). Ce fluide est principalement
constitué de fer et de nickel (éléments métalliques) et grâce à ses propriétés conductrices, serait le siège
de courants électriques volumiques importants. Les lois de la magnétohydrodynamique (MHD) permettent
d’expliquer que le noyau liquide serait en grande partie responsable du phénomène de dynamo qui entretient
le champ magnétique terrestre. Les modèles de dynamo utilisés font intervenir des phénomènes chaotiques
qui sont en accord avec les variations du champ à long terme et qui permettent d’expliquer notamment
les phénomènes d’inversion du champ magnétique. La limite lorsque le module de cisaillement μ tend vers
0 dans les Éqs. (4.19) n’est pas définie mathématiquement et a amené à un paradoxe appelé paradoxe de
Longman (Longman, 1963; Smylie & Mansinha, 1971; Dahlen, 1971). L’article de Chinnery (1975) contient les
informations principales pour traiter le cas du noyau liquide rigoureusement et on détaillera ces considérations
dans la section suivante.

1.5.1.5 Graine

La limite entre le noyau liquide et le noyau solide (aussi appelé « graine ») est appelée discontinuité de
Lehmann ou ICB (Inner Core Boundary). En dessous de cette limite, on trouve un matériau solide à l’instar
du manteau et de la croûte, constitué en grande majorité de fer et de nickel sous forme solide, et possédant
donc une densité extrêmement élevée (autour de 1× 104 kg·m−3). La graine se serait formée à cause de la
précipitation progressive du noyau liquide gouvernée par les effets de température et de gravité. Néanmoins,
les conditions de sa formation sont toujours à l’étude dans la communauté scientifique. On prendra ici une
rhéologie élastique du fait de la grande résistance mécanique probable à l’intérieur de la graine.

Fig. 4.3 – Schéma d’une coupe de la Terre où son indiquées les différentes couches et discontinuités
(d’après http://www2.ggl.ulaval.ca/personnel/bourque/img.communes.pt/str.interne.terre.html). Le
schéma n’est pas à l’échelle.

93



QUATRIÈME PARTIE | Détermination de la déformation visco-élastique

On représente l’ensemble de ces couches dans le schéma de la Figure 4.3 où sont détaillées d’une part
les couches structurales et d’autres part les couches vues en terme de géomécanique. On pourra réaliser
plusieurs modifications de PREM dans la résolution du système, notamment le remplacement de l’océan par
une couche élastique rigide. En effet, si le milieu en surface est un fluide parfait, il y a une indétermination
sur le déplacement tangentiel et donc pas de résolution possible de la composante y3 et du système en
général 6. Les conditions aux limites en surface décrites dans la Section 1.4 doivent être appliquées sur un
milieu solide. On remplacera donc l’océan par le prolongement de la partie supérieure de la croûte jusqu’à
la surface en r = a = 6371 km, tout en prenant soin de remplacer la valeur de la densité donnée par PREM
pour cette couche, par une densité (plus faible) permettant de conserver la masse de la Terre pour le modèle.
On réalise cela en prenant la densité moyenne de la couche de croûte supérieure et de l’océan pondérées par
leurs épaisseurs respectives dans le modèle PREM initial. Par abus de langage, quand nous parlerons du
modèle PREM, nous parlerons de ce modèle sans océan.

1.5.2 Calcul des paramètres de Terre

Dans un premier temps, nous devons implémenter des fonctions continues VP (r), VS(r) et ρ(r) prenant en
compte les équations polynomiales fournies par PREM (Dziewonski & Anderson, 1981) dans chaque couche.
Cela permet ensuite de définir les fonctions des coefficients élastiques grâce aux Éqs. (4.30)

λ(r) = ρ(r)(V 2
P (r)− 2V 2

S (r)), et μ(r) = ρ(r)V 2
S (r). (4.31)

Nous devons également implémenter une fonction calculant le champ gravitationnel non perturbé g0(r) telle
que

g0(r) =
4πG
r2

ˆ r

0

r′2ρ(r′)dr′. (4.32)

Dès lors, nous avons toutes les fonctions nécessaires (représentées sur la Figure 4.4) pour l’intégration du
système (4.19) pour une Terre PREM élastique et isotrope.

1.6 Résolution pour une Terre SNREI non homogène avec noyau liquide

Pour une Terre non homogène, le calcul nécessite une intégration numérique. Nous allons décrire les
différentes étapes de cette résolution numérique ainsi que les ajustements nécessaires à l’intégration d’une
couche liquide (noyau externe) dans le système.

1.6.1 Cas du noyau liquide

Les premiers résultats pour établir les équations de propagation de la solution dans le noyau liquide ont
été donnés par Longman (1962) qui a simplement pris la limite des équations du système (4.19) pour μ −→ 0.
La troisième équation portant sur la dérivée de y3 donne alors y4 −→ 0 ce qui est cohérent pour un fluide
parfait. On obtient alors un système réduit de 5 équations qui sont consistantes si la condition suivante est
vérifiée [

ρ0
ρ̇0

+
λ

ρ0g0

]
y2 = 0. (4.33)

Cette relation est vérifiée seulement dans deux cas particuliers distincts. Si le terme entre crochets est nul,
le fluide est alors supposé en équilibre hydrostatique et homogène. De plus, la compression est adiabatique
c’est-à-dire que la température n’influe pas sur les variations de densité. Cette condition est appelée condition
« d’Adams-Williamson ». Il est très peu probable que cette condition soit vérifiée et on doit alors envisager
l’autre cas qui est que y2 = 0. Dans ce cas, on impose des contraintes normales nulles et donc une compression
nulle ce qui n’est pas raisonnable en réalité. Les deux cas n’étant pas physiquement concevables, cette
situation a longtemps été décrite comme un paradoxe (« le paradoxe de Longman »).

6. Il y a une constante supplémentaire à déterminer ce qui ne permet pas de résoudre le système en l’état.
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Fig. 4.4 – Paramètres de Terre du modèle PREM.

Néanmoins, l’article de Chinnery (1975) suggère que l’on adopte une approche en terme de lignes de
niveau d’égales potentiel gravifique (1), pression (2), densité (3) et une ligne de niveau matérielle (4). Si
le noyau est stratifié, on peut affirmer que toutes ces lignes sont égales et que les particules de fluides se
déplacent sur ces lignes librement (tant qu’il n’y a pas de viscosité, le déplacement tangentiel n’est absolument
pas contraint). Ainsi on peut établir le système suivant (Smylie & Mansinha, 1971; Chinnery, 1975).⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

z1 =
z5
g0

ż5 = z6 +
4πGρ0
g0

z5

ż6 =

[
−2

r
− 4πGρ0

g0

]
z6 +

[
−16πGρ0

rg0
+

n(n+ 1)

r2

]
z5

. (4.34)

en définissant z1(r) comme le coefficient de degré n associé à la décomposition en harmonique sphérique
de la fonction donnant la position de l’équipotentielle (ou l’isobare ou l’isodensité car toutes ces lignes
sont les mêmes.), z5(r) le coefficient de degré n du potentiel gravitationnel et z6(r) défini (comme y6) par
z6 = ż5 − 4πGρ0z1. L’emploi des fonctions zi plutôt que yi permet de souligner la différence physique
fondamentale entre les deux systèmes.

Les conditions aux limites pour une interface solide-solide impliquent la continuité de toutes les fonctions
yi et les conditions pour une interface liquide-liquide impliquent la continuité de toutes les fonctions zi
(Chinnery, 1975). Pour une interface solide-liquide en revanche, les conditions aux limites sont modifiées.

• On ne requiert pas que z1 soit continue avec y1 à l’interface puisque z1 ne représente pas un déplacement
de particule comme y1 mais bien la déformation de lignes équipotentielles (ou isobares ou d’équidensité).
Ces lignes peuvent donc être traversées par la frontière physique du CMB. Néanmoins, les degrés n ≥ 1

ne modifiant pas le volume du noyau, ces chevauchements du CMB sur les équipotentielles se font de
telle manière que le fluide est redistribué dans les cavités créées par la déformation du CMB au niveau
de ces lignes équipotentielles. Il n’y a donc aucune cavitation possible à la frontière. La condition
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obtenue est
y1(b

+) = z1(b
−) +K1.

• Le déplacement tangentiel n’est absolument pas contraint dans un fluide parfait. Pour un fluide stra-
tifié, c’est comme si des couches de fluide infiniment minces glissaient les unes sur les autres sans
frottement (c’est-à-dire sans viscosité). Cela implique donc qu’à l’interface, le déplacement tangentiel
fasse intervenir une constante arbitraire telle que

y3(b
+) = K2.

• La contrainte normale doit être continue à l’interface ce qui donne

y2(b
+) = K1ρ0(b

−)g0(b).

• La contrainte tangentielle est nulle dans le noyau car on a supposé le fluide parfait. La continuité de
la contrainte donne alors

y4(b
+) = 0.

• Le potentiel gravitationnel est continu à l’interface

y5(b
+) = z5(b

−).

• Étant donnée la discontinuité du déplacement radial à l’interface, la fonction y6 ne sera pas continue
et on aura une différence associée à la constante K1 telle que

y6(b
+) = z6(b

−)− 4πGK1ρ0(b
−).

La donnée de l’ensemble de ces équations et conditions aux limites permettent de réaliser l’intégration
totale du système en propageant la solution à travers toutes les couches de la Terre. Dans la suite, nous
donnons les détails de la manière dont nous avons procédé pour l’intégration numérique du système Terre
en prenant en compte un noyau liquide.

1.6.2 Intégration numérique

Nous intégrons le système des yi depuis le centre de la Terre jusqu’à la surface. On écrit le système des
yi vectoriellement en posant Y = (y1, y2, y3, y4, y5, y6).

dY

dr
= S(r)Y (r), (4.35)

Étant données les conditions initiales au centre de la Terre (Section 1.4), il existe trois solutions indépendantes
Y 0
A, Y 0

B et Y 0
C issues pour chacune d’une condition initiale définie à une constante arbitraire près. On peut

alors écrire la solution totale en r = 0 en sommant les trois solutions

Y (r = 0) = AY 0
A +BY 0

B + CY 0
C = A

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

1

0

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
A

+B

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

1

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
B

+ C

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
C

, (4.36)

On intègre le système (4.35) jusqu’à l’ICB pour chacun des vecteurs initiaux indépendamment (Y 0
A, Y 0

B et
Y 0
C) en utilisant par exemple un intégrateur de type Runge Kutta du second ordre 7. La solution à l’ICB est

notée Y ICB dans la graine et est la somme des trois solutions Y ICB
A , Y ICB

B et Y ICB
C issues de l’intégration des

vecteurs initiaux

7. On peut aussi raffiner l’intégration et utiliser un intégrateur de type Runge-Kutta d’ordre 4 mais l’intégration est plus
longue et l’amélioration du résultat est marginale.
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Y ICB = AY ICB
A +BY ICB

B + CY ICB
C . (4.37)

Les conditions aux limites à l’interface solide-liquide donnent alors⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yICB
1 = AyA1 +ByB1 + CyC1 = zICB

1 +K1

yICB
2 = AyA2 +ByB2 + CyC2 = K1ρ

+
0 g0

yICB
3 = AyA3 +ByB3 + CyC3 = K2

yICB
4 = AyA4 +ByB4 + CyC4 = 0

yICB
5 = AyA5 +ByB5 + CyC5 = zICB

5

yICB
6 = AyA6 +ByB6 + CyC6 = zICB

6 − 4πGK1ρ
+
0

. (4.38)

On note ici le fait que la densité ρ+0 est bien celle prise à l’ICB mais dans le noyau liquide. On peut alors
établir deux relations entre les constantes A, B et C permettant de déterminer les conditions aux limites à
une constante près. La première équation est très simple à obtenir puisqu’elle est directement donnée par les
conditions aux limites : yICB

4 = 0. Elle permet d’écrire

C = A
yA4
yC4︸︷︷︸
kA

+B
yB4
yC4︸︷︷︸
kB

. (4.39)

En utilisant la première, la seconde et la cinquième équation du système (4.38), ainsi que la relation
z5 = g0z1 dans le fluide, on obtient une seconde relation

yICB
1 = zICB

1 +K1,

= zICB
1 +

yICB
2

ρ+0 g0
,

=
zICB
5

g0
+

yICB
2

ρ+0 g0
,

=
yICB
5

g0
+

yICB
2

ρ+0 g0
,

(4.40)

qui permet d’écrire une relation entre B et A telle que

g0
[
AyA1 +ByB1 + CyC1

]
=

[
AyA5 +ByB5 + CyC5

]
+

1

ρ+0

[
AyA2 +ByB2 + CyC2

]
,

B = −
g0

(
yA1 + yA4

yC1
yC4

)
−

(
yA5 + yA4

yC5
yC4

)
− 1

ρ+0

(
yA2 + yA4

yC2
yC4

)
g0

(
yB1 + yB4

yC1
yC4

)
−

(
yB5 + yB4

yC5
yC4

)
− 1

ρ+0

(
yB2 + yB4

yC2
yC4

)
︸ ︷︷ ︸

k′

A.
(4.41)

Les conditions aux limites sont alors données en fonction des 3 seules constantes indépendantes A, K1 et K2⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A[yA1 + k′yB1 + (kA + k′kB)yC1 ] = zICB
1 +K1

A[yA2 + k′yB2 + (kA + k′kB)yC2 ] = K1ρ
+
0 g0

A[yA3 + k′yB3 + (kA + k′kB)yC3 ] = K2

A[yA4 + k′yB4 + (kA + k′kB)yC4 ] = 0

A[yA5 + k′yB5 + (kA + k′kB)yC5 ] = zICB
5

A[yA6 + k′yB6 + (kA + k′kB)yC6 ] = zICB
6 − 4πGK1ρ

+
0

. (4.42)

La partie de gauche entre crochets est connue car comporte les solutions précédemment intégrées et les
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facteurs kA, kB et k′ déterminés précédemment. La quatrième équation n’apporte aucune information et
on a donc 5 équations pour déterminer les 6 inconnues (zICB

1 , zICB
5 , zICB

6 ,K1,K2, A). On va donc obtenir la
solution dans le noyau à une constante près notée A′ que l’on propagera ensuite jusqu’à l’interface noyau-
manteau (CMB). En redéfinissant les constantes A′ = 1/A, K ′

1 = K1/A et K ′
2 = K2/A, on obtient

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[yA1 + k′yB1 + (kA + k′kB)yC1 ] = A′zICB
1 +K ′

1

[yA2 + k′yB2 + (kA + k′kB)yC2 ] = K ′
1ρ

+
0 g0

[yA3 + k′yB3 + (kA + k′kB)yC3 ] = K ′
2

[yA5 + k′yB5 + (kA + k′kB)yC5 ] = A′zICB
5

[yA6 + k′yB6 + (kA + k′kB)yC6 ] = A′zICB
6 − 4πGK ′

1ρ
+
0

=⇒ donneA′zICB
1 ,

=⇒ donneK ′
1,

=⇒ donneK ′
2,

=⇒ donneA′zICB
5 ,

=⇒ donneA′zICB
6 .

(4.43)

On intègre cette fois les équations différentielles dans le noyau (c’est à dire les deux dernières équations
du système (4.34) car z1 et z5 sont reliées linéairement par une équation non différentielle) à partir des
conditions initiales (A′zICB

1 , A′zICB
5 , A′zICB

6 ). On intègre jusqu’au CMB et on obtient alors les solutions

A′zCMB
5 et A′zCMB

6 puis A′zCMB
1 =

A′zCMB
5

g0
. Les conditions aux limites sont les mêmes ici pour une interface

liquide-solide, que celles énoncées dans l’Éq. (4.38) en notant cette fois L1 et L2 les constantes dans le fluide

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yCMB
1 = A′zCMB

1 + L1

yCMB
2 = L1ρ

−
0 g0

yCMB
3 = L2

yCMB
4 = 0

yCMB
5 = A′zCMB

5

yCMB
6 = A′zCMB

6 − 4πGL1ρ
−
0

. (4.44)

On note que les fonctions zCMB
i sont définies au CMB côté noyau liquide tandis que les fonctions yCMB

i sont
définies côté manteau. En prenant en compte l’indétermination des solutions zCMB

i liée la constante A′, on
obtient un système de trois solutions indépendantes α, β et γ à propager dans le manteau via le système des
yi (4.19)

⎛⎜⎜⎜⎜⎜⎜⎜⎝

yCMB
1

yCMB
2

yCMB
3

yCMB
4

yCMB
5

yCMB
6

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= L1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

g0ρ
−
0

0

0

0

−4πGρ−0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
α

+ L2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

0

1

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
β

+A′

⎛⎜⎜⎜⎜⎜⎜⎜⎝

zCMB
1

0

0

0

zCMB
5

zCMB
6

⎞⎟⎟⎟⎟⎟⎟⎟⎠
γ

. (4.45)

La résolution finale en fonction des conditions aux limites en surface se fait en résolvant un système de
Cramer, afin de déterminer les 6 inconnues du systèmes que sont (L1, L2, A

′, y1(a), y3(a), y5(a)) en fonction
des solutions α, β et γ propagées dans le manteau et des 3 conditions aux limites générales décrites par le
système (4.29) sur y2, y4 et y6. Il suffit d’inverser le système suivant

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yα1 (a) yβ1 (a) yγ1 (a) −1 0 0

yα2 (a) yβ2 (a) yγ2 (a) 0 0 0

yα3 (a) yβ3 (a) yγ3 (a) 0 −1 0

yα4 (a) yβ4 (a) yγ4 (a) 0 0 0

yα5 (a) yβ5 (a) yγ5 (a) 0 0 −1

yα6 (a) yβ6 (a) yγ6 (a) 0 0
n+ 1

a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

L1

L2

A′

y1(a)

y3(a)

y5(a)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

−pn − (2n+ 1)ge
4πGa Vn

0

τn
0

2n+ 1

a
(Un + Vn)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.46)

On trouve une unique solution par valeur de quadruplet (Un, Vn, pn, τn), ce qui détermine entièrement le
déplacement vertical, horizontal et la perturbation du potentiel en surface.
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1. Théorie de la gravito-élasticité pour une Terre SNREI

1.7 Remarques complémentaires sur l’intégration numérique

1.7.1 Adimentionnement du système

Il peut être très agréable et beaucoup plus rapide en terme de calcul numérique, d’adimentionner les
variables que l’on manipule. On pourra alors effectuer les changements de variables suivants décrits dans
Longman (1963)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

r′ = r/a

ρ′0 = ρ0/ρ0(0)

λ′ = λ/λ(0)

μ′ = μ/λ(0)

g′0 = g0/ge

, et

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′1 = y1/a

y′2 = y2/λ(0)

y′3 = y3/a

y′4 = y4/λ(0)

y′5 = y5/(age)

y′6 = y6/ge

z′1 = z1/a

z′5 = z5/(age)

z′6 = z6/ge

. (4.47)

Les variables r′, ρ′, λ′, μ′, g′0, y′i et z′i sont alors sans dimension et les systèmes d’équations (4.19) et (4.34)
sont modifiés. Il apparaît alors dans les nouveaux systèmes, des constantes d’adimentionnement dépendant
de a, ρ0(0), λ(0), ge et G. Et si les conditions aux limites sont également modifiées, les résultats sont quant
à eux indépendants de l’adimentionnement ou non du système.

1.7.2 Intégration en r = 0

Le système (4.19) n’est pas défini en r = 0 ce qui pose problème pour l’intégration au centre de la Terre.
En pratique, deux options sont envisageables pour palier à ce problème. On peut d’une part commencer
l’intégration depuis un r légèrement supérieur à 0 (typiquement 5 à 10 km) en appliquant les conditions (4.20).
À ces profondeurs, seul le degré 1 est susceptible d’être impacté. On peut également raffiner l’intégration
en considérant d’autre part une couche de Terre sphérique et homogène entre r = 0 et r = 10 km. On
intègre alors analytiquement grâce à la méthode présentée par Greff-Lefftz et al. (2005). Les trois solutions
indépendantes des yi obtenues à la surface de cette couche sont alors les trois conditions initiales à considérer
pour l’intégration numérique. On peut voir la différence entre les deux approches sur les Figures 4.6c & d.

1.7.3 Intégration numérique sans noyau liquide

Si on ne considère pas de noyau liquide, alors la Terre est entièrement solide et répond au système (4.19)
sur toute sa profondeur. Dès lors on peut intégrer directement de r � 0 à r = a puis appliquer les conditions
aux limites à la surface en inversant le système (4.46). Les solutions notées yαi , yβi et yγi sont alors directement
les solutions issues de l’intégration des 3 conditions initiales de l’Éq. (4.36) au centre de la Terre. On peut se
placer dans ce cas pour le modèle PREM si on veut éviter d’implémenter les équations du noyau liquide. On
définit alors un coefficient de cisaillement μ �= 0 mais faible dans le noyau qu’on pourra désormais intégrer
avec le système des yi « solide ». Avec μnoyau = 108 Pa, on limite déjà l’écart sur les nombres de Love à
seulement quelques dixièmes de pourcents sur les bas degrés 8 par rapport à un modèle PREM contenant un
noyau liquide (cf Figure 4.5b).

1.7.4 Intégration pour les hauts degrés

Nous savons que plus le degré d’harmoniques sphériques augmente, plus la surface de la Terre est subdivi-
sée en un nombre de zones important et donc plus les échelles spatiales concernées sont petites. Or, plus l’on
descend en profondeur, plus la surface de ces zones diminue (l’ouverture angulaire reste constante). Ainsi,
une perturbation possédant une certaine extension spatiale en surface influera sur des degrés plus hauts en
surface que dans le manteau ou dans le noyau. Cela signifie que plus le degré de la perturbation augmente

8. Les artefacts autour du degré 100 n’ont pour l’instant pas pu être expliqués.
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(a) Intégration depuis le [centre/CMB] pour n � 1000

Δh′
n

Δl′n
Δk′

n

100 101 102 103 104

Degré
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Fig. 4.5 – (a) Différence entre une intégration commençant au centre ou au CMB (seulement pour les degrés
au dessus de 1000) et (b) Différence entre une intégration avec et sans noyau liquide. Dans le cas sans noyau
liquide, le noyau liquide est remplacé par un noyau solide de coefficient de cisaillement μ � 0,1GPa très
faible.

(donc plus l’extension spatiale de la perturbation diminue), moins les couches les plus internes de la Terre
seront impactées par cette perturbation. On peut donc dans une très bonne approximation commencer l’in-
tégration à la CMB pour les hauts degrés (typiquement au dessus de n = 1000), comme si le noyau liquide
et la graine n’avait pas d’influence sur des perturbations d’aussi courte longueur d’onde. Cela permet de
simplifier largement l’intégration car le système considéré est alors entièrement solide. On applique alors les
conditions initiales (4.20) à la CMB et les conditions (4.29) à la surface. De plus, les hauts degrés font peu
à peu diverger les quantités du système (4.19) : une intégration sur une profondeur plus courte permet donc
en plus de limiter cet effet pouvant poser des problèmes numériques. La différence entre l’intégration totale
et l’intégration depuis la CMB pour les hauts degrés, qu’on montre sur la Figure 4.5a, est de l’ordre des
erreurs numériques donc négligeable.

2 Nombres de Love

2.1 Définition

Les conditions aux limites (4.29) permettent d’accéder aux solutions du système (4.19). On peut alors
déterminer en surface les deux composantes de la déformation (y1n(a), y3n(a)) ainsi que la composante
de potentiel générée par la perturbation y5n(a). Il est d’usage d’utiliser dès lors le formalisme développé
dans la théorie de Love (1911), permettant d’exprimer ces solutions à l’aide de nombres sans dimension
appelés nombres de Love, qui dépendent notamment du modèle de Terre utilisé (structure, rhéologie, etc.)
et du type de perturbation que l’on applique. On définit ces nombres de sorte qu’ils soient la solution du
problème pour une valeur unitaire de la perturbation. Ainsi il existe trois nombres de Love pour chaque
type de perturbation : (h, l, k) pour un potentiel extérieur, (h̄, l̄, k̄) pour une pression, (h∗, l∗, k∗) pour un
cisaillement, (h′, l′, k′) pour une surcharge. Ils sont tous définis dans le Tableau 4.1. On peut alors comparer
aisément la réponse de différents modèles de Terre à une perturbation en ne comparant que leurs nombres
de Love. On peut aussi vouloir exprimer la solution pour r < a, auquel cas on définit des nombres de Love
dépendant de r. Néanmoins lorsque ce n’est pas précisé, la convention établie voudrait qu’ils soient donnés
à la surface c’est à dire en r = a.

Avec une telle écriture de la solution on dissocie l’effet de la perturbation d’une part et de la rhéologie
(incluse dans les nombres de Love) d’autre part. On a utilisé ge = Gme/a

2 et ρ̄, respectivement la norme du
champ gravitationnel à la surface de la Terre et la masse volumique moyenne de la Terre, pour adimentionner
les nombres de Love. Les expressions donnant le potentiel comportent un 1 en plus du nombre de Love de
potentiel car y5 décrit l’harmonique sphérique lié à la somme φ1n + Un telle que φ1n = Unkn.
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2. Nombres de Love

Potentiel Pression Cisaillement Surcharge

⎡⎢⎢⎢⎢⎣
y1n(a)

y3n(a)

y5n(a)

⎤⎥⎥⎥⎥⎦ = Un

⎡⎢⎢⎢⎢⎢⎢⎢⎣

hn

ge

ln
ge

(1 + kn)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
pn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h̄n

ρ̄ge

l̄n
ρ̄ge

(1 + k̄n)

ρ̄

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
τn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h∗
n

ρ̄ge

l∗n
ρ̄ge

(1 + k∗n)
ρ̄

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Vn

⎡⎢⎢⎢⎢⎢⎢⎢⎣

h′
n

ge

l′n
ge

(1 + k′n)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Tab. 4.1 – Nombres de Love (sans dimension) de déplacement et de potentiel définis pour chaque type de
perturbation.

2.2 Cas élastique

On utilise dans la suite uniquement les nombres de Love de potentiel (TLN) et les nombres de Love de
surcharge (LLN). Les LLN de plusieurs modèles de Terre élastiques on déjà été comparés dans les études
de Wang et al. (2012) et de Na & Baek (2011). Les LLN et TLN calculés avec la procédure décrite dans
la Section 1.6.2 pour une Terre PREM contenant un noyau liquide sont représentés sur la Figure 4.6. Les
valeurs sont en accord avec celles trouvées par le programme LoadDef développé par Martens et al. (2019)
ce qui valide la méthode d’intégration utilisée ici. Les valeurs asymptotiques pour les hauts degrés (Farrell,
1972; Martens et al., 2019) peuvent varier en fonction du modèle de croûte utilisé pour remplacer la couche
océanique de PREM (nous avons utilisé ici la même que dans LoadDef ). Comme Farrell (1972), on notera
la valeur de palier à hauts degrés (h′

∞, l′∞, k′∞) = lim
n−→+∞(h′

n, nl
′
n, nk

′
n).

Les bas degrés sont quant à eux sensibles aux conditions d’intégration au centre de la Terre (Section 1.7)
qui peuvent varier entre les deux programmes et ainsi expliquer les différences observées notamment sur les
LLN (ne dépassant pour autant jamais les 0.5%). Rappelons que les nombres de Love ont été calculés dans
le référentiel du CE c’est à dire lié au centre de masse de la Terre solide (Blewitt, 2003). Nous n’avons pas
trouvé de raisons pour expliquer les différences que l’on voit sur le TLN ln autour du degré 100 et pour les
degrés > 1000.
On peut donner également l’évolution des nombres de Love en fonction de la profondeur pour différents
degrés. Il suffit pour cela d’arrêter l’intégration des solutions α, β et γ en profondeur, puis de les multiplier
respectivement par les constantes L1, L2 et A′ obtenues au préalable en résolvant le système (4.46) à la
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Fig. 4.6 – LLN (a) et TLN (b) pour une Terre PREM avec noyau liquide obtenus avec le schéma d’intégration
exposé dans la Section 1.6. (c) et (d) sont respectivement les différences des LLN et TLN avec ceux obtenus
par le logiciel LoadDef développé par Martens et al. (2019). (extrait de Michel & Boy (2021))
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surface. La Fig. 4.7 représente cette évolution pour les LLN jusqu’au CMB. Au delà, les nombres de Love ne
sont plus définis car on se trouve dans la couche du noyau liquide. On voit que plus les degrés augmentent,
plus la déformation en profondeur est petite car (h′

n, l
′
n, k

′
n+1) −→ (0, 0, 0). La déformation en surface prend

quant à elle des valeurs de plus en plus importantes.
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Fig. 4.7 – Évolution avec la profondeur des nombres de Love de surcharge (LLN) pour une Terre PREM.

2.3 Cas visco-élastique (basé sur Michel & Boy (2021))

Le modèle PREM fournit également des coefficients d’atténuation (QK et Qμ) liés à un comportement
anélastique dissipant de l’énergie dans les différentes couches. Néanmoins, ces coefficients sont le résultat
d’une inversion pour seulement deux périodes d’excitation données (1 s et 200 s) qui sont en dessous des
périodes considérées pour nos déformations d’intérêt (supérieures à 10 jours). Nous construisons donc des
modèles visco-élastiques sur la base des modèles présentés dans la Section 3 permettant de prendre en compte
n’importe quelle fréquence de forçage. Ces considérations ont été publiées dans Michel & Boy (2021). La
partie introductive de l’article ayant fait l’objet d’un traitement très détaillé dans les sections précédentes,
nous ne reportons ici que certaines parties de l’article original. Nous les avons enrichies de la Figure 4.8
représentant les paramètres λ et μ associés à une rhéologie de MAXWELL 21-23 (voir ci-dessous pour la
signification) en fonction de la profondeur et de la période.

2.3.1 Viscoelastic models

In the following, we choose to construct viscoelastic models keeping the base of PREM (radial structure
and variables) but considering Maxwell or Burgers models in some layers of the mantle. We do not choose
continuous viscosity profiles existing in the litterature Vermeersen & Sabadini (1997); Kaufmann & Lambeck
(2002); Steffen & Kaufmann (2005) because they have been computed from deformations of specific data and
models. Since we aim to compare several independant geophysical processes in this study considering different
viscoelastic models, the choice of non adjusted viscosity profile (i.e. not derived from specific geophysical
data) is more suitable. On the other hand, dealing with continous radial viscosity function is equivalent to set
an arbitrary large number of thin sublayers of constant viscosity which creates unnumerable normal modes.
The normal mode approach using the Laplace transform (LT) is thus very difficult to numerically handle
because of the complex poles integration. If some mathematical tricks exist to overpass these difficulties
Tanaka et al. (2006); Spada & Boschi (2006), the Fourier transform (FT) provides the possibility to directly
deal with these large amount of modes with a simple resampling of the discrete Fourier transform to include
all the generated decay timescales. Finally, the parameters of the viscoelastic models used in this study obey
the following constraints.

• The density ρ and the elastic moduli λe and μe are set to the PREM values.

• The viscosity profile (either ηm and ηk) is divided in four main layers : Core(s) from r = 0 to 3480 km,
lower mantle (LM) from r = 3480 to 5701 km, upper mantle (UM) including transition zones from
r = 5701 to 6346,6 km and lithosphere from r = 6346,6 km to the surface.
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Fig. 4.8 – Paramètres rhéologiques du modèle de MAXWELL 21-23 (voir ci-dessous) en fonction du rayon
et de la période. Les paramètres ρ et g (non représentés) sont identiques au cas PREM élastique de la
Figure 4.4.

• The viscosities can only take constant value within each of these four layers (constant piecewise func-
tions) and the viscosities in the Core(s) and the lithosphere are always infinite (purely elastic layers).

• We set Maxwell models both in LM and UM.

• We can choose to set Burgers model only in UM and in that case, μk = μe/10.

The notations for the rheological models used in this article are explained in the Tab. 4.2.

Notation Explanation
MAXWELL log(ηm) Maxwell homogeneous model in

the whole mantle of viscosity ηm

MAXWELL log(ηmUM)− log(ηmLM) Maxwell model of viscosity ηmLM
in the lower mantle and ηmUM in
the upper mantle

MAXWELL log(ηmUM)− log(ηmLM) BURGER log(ηkUM) Maxwell model of viscosity ηmLM
in the lower mantle and Burgers
model of viscosities ηmUM and ηkUM

in the upper mantle

Tab. 4.2 – Notations for viscoelastic rheologies used in this study where all viscosities are in Pa.s. We keep
the compressible elastic moduli (λe, μe) from PREM in every layers of the Earth model, we use viscoelastic
model only in the mantle and we set μk = μe/10 if Burgers rheology is used in the UM.

2.3.2 Frequency and degree dependence

Taking advantage of the correspondence principle stated in Sec. 3.1, viscoelastic Love numbers are cal-
culated in the Fourier domain for a given viscoelastic model. As a consequence, the Lamé functions λ(ω)

and μ(ω) are frequency and radial dependent complex functions given in the Tab.3.2. On the other hand,
ρ0 and g0 remain real and depend only on r. Solving the system in the Fourier domain does not change the
fundamental physical concepts neither the integration and interface conditions. We can then compute the
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Love numbers applying the same integration scheme than for elastic case resolving the gravito-elastic system
at a given degree n and a given frequency ω0. We note that unlike the elastic case, the inertial term propor-
tional to ρω2 coming from the impulsion conservation equation is no longer neglected even if its contribution
is small. The computed Love numbers are also complex values such that the imaginary part indicates the
possible temporal delay (or phase delay) of the system response compared to the perturbation. This delay
is entirely induced by the viscous behavior of the system. The system can then be resonant in particular
frequencies called modes depending on the viscoelastic model Alterman et al. (1959); Wu & Peltier (1982).
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Fig. 4.9 – (a) Difference between LLN of visco-elastic Maxwell models and PREM in percent (real part
above, imaginary part below). Maxwell models have respective viscosity of 1018, 1019, 1021, 1023 Pa·s for
upper mantle and 1023 Pa·s for lower mantle. The black dotted line marks the mean cutoff frequency of the
equivalent low-pass filter for each model.
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LLN computed for four viscoelastic Maxwell models of fixed LM viscosity (ηmLM = 1023 Pa·s), are re-
presented in Fig. 4.9 in function of degree and frequency. Fig. 4.9a shows the difference between the real
part of viscoelastic LLN with respect to elastic ones while Fig. 4.9b represents the imaginary part of vis-
coelastic LLN. Since we introduce viscosity only for intermediate mantle layers, the high degrees are barely
affected by the changes in the Earth model. For lower degrees, we see the behavior of low-pass filter of
the Maxwell function m(ω) defined in Sec.3.2 : for periods shorter than the cutoff period, the viscoelastic
LLN equals the elastic LLN and for periods longer than the cutoff period, the difference between the two
increases. The cutoff period increases linearly with the UM viscosity in agreement with the theoretical for-
mula Tm = 2πηm/μe of Sec.3.2. Taking the mean value of the PREM UM shear modulus μ̄e = 1011 Pa,
we find Tm = 2, 20, 2000 & 200 000 years for the successive represented Maxwell models. These values
reported in black dotted lines are roughly consistent with the observed transition periods on the Fig. 4.9.
For the imaginary part, the effects of viscosity seems to be bounded in a particular period interval. We also
notice that the main pattern in lower UM viscosity panels are unaffected as the viscosity increases except
for downward shift towards higher periods. This behavior comes from the simple rescaling of frequency ω

to ηmω/μe such that m(ω) remains invariant as ηm increases if ω decreases. The frequency dependence of
gravito-elastic equations being only in the m(ω) function (the intertial term is neglectible), the results are
simply shifted of the value of the scaling factor. Such behavior should not occur in Burgers models as the
frequency dependence is much more complicated. As discussed in Sec. 3, the behavior of high viscosity rheo-
logy (beyond ηm = 1023 Pa·s) MAXWELL 18-23 tends to the elastic case for a large range of the spectrum
such that only the larger periods (non visible on the Figure) still change. We also notice that some artefacts
appears in the lower viscosities at high degrees and long periods. It corresponds to a zone where the values
of viscosities, periods and degrees are unrealistic for a physical use and for which the numerical integration
becomes unstable.

2.3.3 Viscosity model dependence
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Fig. 4.10 – Real and imaginary part of vertical displacement LLN h′ under an excitation of period T =
11 000 years, for several Maxwell and Burgers models of different UM and LM mantle viscosities. We also
represent h′ from PREM which is a real function. Points A to F indicate the main discrepancies between
models.

To compare the response of different viscoelastic models at a given frequency, we represent the vertical
displacement LLN h′ for some Maxwell and Burgers rheologies in Fig. 4.10. This representation is interesting
to highlight the different degree ranges delimited by the markers A to F, corresponding to the preponderance
of particular viscoelastic parameters in the mantle. The period is fixed to 11 000 years, in order to have
significative effects of viscoelasticity on the LLN (Fig.4.9). It is important to keep in mind that the results
presented in this paragraph are applicable only at this particular frequency.

Since degree 1 (A) is mainly dependent of the Inner Core and liquid Core structure, we do not see any
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differences between all the models. For low degrees, we see a strong deviation of MAXWELL 21 model from
the others, which is due to the differences in their LM viscosity profiles which have an impact starting from
degree 2. At point B, we see the shift between models with 1020 Pa·s and models with 1021 Pa·s UM viscosity.
This means that the UM structure have an influence starting from degree 3. Then from point C (degree 4),
Maxwell and Burgers models with same Maxwell parameters diverge from each other. This point is the lower
limit where the presence of transient viscosity in Burgers model infers on LLN. The value of the transient
viscosity does not impact significantly the real part of LLN, but has a little influence in their imaginary
part from C to E. The point D is the reconnection point for MAXWELL 21 and MAXWELL 21-23 models,
defining the upper limit where LM has no more influence on LLN and from which only the UM structure
infers. At point E, there are no more differences between Burgers and Maxwell models which have equal
ηm while only MAXWELL 20-23 still differs from the other viscoelastic models. Finally, the point F set the
limit where the mantle structure has no more influence such that LLN are impacted by the crust structure
only. Consequently, modified PREM including refined crust models as CRUST1.0 should present differences
beyond F.

3 Déformation visco-élastique utilisant la TF (basé sur Michel &
Boy (2021))

Dans cette section, nous nous basons également sur les résultats publiés dans l’article Michel & Boy (2021),
qui décrivent la méthode de détermination de la déformation d’une perturbation qu’elle soit sinusoïdale ou
non, en utilisant les nombres de Love visco-élastique que l’on a calculés en utilisant la méthode présentée dans
la Section 2.3 à l’aide de la TF. Grâce à la méthode employée, nous sommes alors en mesure de calculer les
déformations de différents phénomènes de longue période pour lesquels l’aspect visco-élastique du manteau
est mesurable. Nous avons exploré dans Michel & Boy (2021), les déformations liées aux marées solides de
longue période, au rebond post-glaciaire et à la fonte des glaces récente.

3.1 Computation of viscoelastic deformation with FT

3.1.1 Sinusoidal perturbation

The complex Love numbers obtained after the integration at ω = ω0 correspond to the frequency response
of the system to a time sinusoidal unit perturbation oscillating at the frequency ω0 (ω0 can take any value).
Then it is easy to compute the viscoelastic deformation of a sinusoidal perturbation (such as tidal waves
for example) by just multiplying the complex admittance of the perturbation derived from its sinusoid
caracteristics (amplitude and phase) with the associated complex viscoelastic Love number. The resulting
deformation is also a sinusoid caracterized by the obtained complex number.

3.1.2 Non-sinusoidal perturbation

We consider now the time series of the harmonic degree n of a non-sinusoidal perturbation. To solve the
problem in the frequency domain, we have to compute the Discrete Fourier Transform (DFT) of this signal
to obtain the frequency perturbation spectrum. Then, the Earth frequency response can be computed easily
by calculating the nth degree Love number for the different frequencies ω0 of the frequency set given by the
DFT. Eventually, we need to multiply the two spectra which corresponds to the convolution of the Earth
response with the perturbation in the time domain. We obtain the temporal deformation after taking the
inverse DFT. However, in order to avoid the calculation of Love number each time that the frequency set
changes, it is easier to previously calculate the Love numbers at some well-distributed values within a large
frequency range. The frequency range must include the caracteristic timescales of the different geophysical
phenomena that we could treat. The collection of these Love number values at these different frequencies
corresponds to a good approximation of the Fourier transform of a unit impulse perturbation (temporal
Dirac function). We can then linearly interpolate this Love number spectrum to the frequency set given by
the DFT of any kind of perturbation.
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We generally use the Fast Fourier Transform algorithm (FFT) to implement numerically the DFT. This
algorithm is optimized for samples of 2N epochs regularly spaced. Then we need to resample the initial
temporal perturbation signal, especially if it is initially not regularly sampled. The resampling depends
mostly on the interpolation function especially the type of spline used (linear, quadratic, cubic, etc.). For
high order splines (beyond cubic), the interpolated signal should create some artefacts in the frequency
domain at high frequencies especially if N is too large. For linear spline, the interpolated signal could have
jerky variations which create non neglectible high frequency content which can aliased the DFT if N is not
large enough (Nyquist criterion). A compromise can be made by choosing a cubic spline interpolation which
should not create high frequency content because of its smoothness. Finally, we choose N in an intermediate
range of values such that 2N is large enough to avoid aliasing and not too large to avoid issues on temporal
resampling. A good compromise is to choose N such that 2N−2 is the superiorly closest value to the number
of samples in the initial series. For example if there are 500 samples in the initial time series, the closest
power of two is 29 = 512 so that we choose N = 11. This choice of N prevents aliasing in the spectrum
calculation. If the samples are initially not regularly spaced, we should first resampling at the shortest
timestep, then determine the closest power of two of the resampled time series and finally choose the optimal
N . Examples are given in Sec. 3.2.2 & 3.2.3. Another trick in the computation of FFT is to artificially
increase the resolution of the spectrum using zero-padding. The addition of zeros on the time series is not
without effects (windowing) on the spectrum such that we advise to not employ this technique in most cases.
The spectrum is less impacted by this technique if the beginning and the end of the true time series tend to
zero. Therefore, we prefer to use neither zero-padding nor windowing in this study but to compute the FFT
with the same number of points (2N ) as the resampled time series. We add a remark on the fact that since
the viscoelastic Love numbers are not computed for the zero frequency, a special attention should be given
to the corresponding coefficient in the DFT (leading to permanent deformation). If we only want relative
values of deformations, the coefficient could simply be set to zero (the mean of the signal is then removed).

3.1.3 Global perturbation

The majority of perturbation signal have a non trivial spatio-temporal repartition on the Earth surface
(especially loading signals). We decompose for each time step, the spatially-dependant perturbation into
Spherical Harmonics (SH) to match the decomposition of our Love number calculation. We then obtain the
amplitude time series of each SH coefficient. Then we apply to each SH coefficient time series representing
the amount of signal in a given spatial configuration the procedure described in the previsous section to
obtain the associated deformation SH coefficient. The recomposition of the spatio-temporal deformation is
done by the recombinaison of all SH coefficient for each time step. We note that since the Love numbers are
degenerate in the order m for a SNREI model, every (n,m) Love numbers are equal to the zonal (n, 0) Love
number.

This general procedure is capable of handling a large number of geophysical signals while being fairly easy
to implement and numerically fast. Moreover, it is still possible in the viscoelastic case to use Green function
formalism developed in Farrell (1972) to deal with local sinusoidal deformations. The main difference is that
the Green functions will be complex and calculated for a single frequency choosen to correspond to the
perturbation signal frequency.

3.2 Applications

The viscoelastic Love numbers are used in several classical applications. We consider some particular
examples : long period tidal deformations, glacial isostatic adjustment and the secular signal deduced from
GRACE/GRACE-FO (Gravity Recovery And Climate Experiment - Follow-On) Tapley et al. (2004); Flecht-
ner et al. (2014), mainly due to present-day ice mass loss in Antarctica, Greenland and Alaska Luthcke et al.
(2013). We compare the elastic and several viscoelastic responses to these pertubation signals in order to
evaluate the impact of slightly different rheologies. This can be useful to further investigate the usual models
of deformation considering the actual experimental constraints. In particular, the viscoelastic long period
tidal deformations are compared to the results of current IERS convention model Petit & Luzum (2010).
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3.2.1 Solid Earth tides

Solid Earth tides, especially their long-period zonal constituents, are particularly interesting to investigate
the Earth’s rheology, as the tidal potential can be computed with high precision (Hartmann & Wenzel, 1995).
Among other studies (Dehant & Zschau, 1989; Walterová & Běhounková, 2017), Benjamin et al. (2006)
investigated the anelasticity in the Earth response to the long-period tides using C20 observations from
Satellite Laser Ranging, and Polar Motion. However, their approach is based on the absorption band process
as it is commonly done in seismology but not on a consistent viscoelastic model. We propose to calculate the
direct response of several viscoelastic models based on PREM with the method developed in this study to
evaluate the differences with the IERS conventions (Petit & Luzum, 2010), which are classically used in the
processing of geodetic data. The solid Earth tidal displacement calculation described in IERS conventions is
based on Wahr (1981) and Mathews et al. (1995) Love number definitions and consists of several disparate
contributions to each Love numbers and displacement terms that are computed in a two steps procedure.
In addition, the non-sphericity of the Earth and the Free Core Nutation resonance have been taken into
account in the IERS conventions, leading to both degree and order dependence of Love numbers, and to
frequency-dependant Love numbers in the diurnal band.

Since the effect of viscoelasticity in the mantle becomes significant at long periods (Fig. 4.9), we focus on
the zonal long period tidal waves. Moreover, we will only consider the predominant zonal contribution (2, 0),
since the higher zonal terms are several orders of magnitude lower. We propose to represent the vertical
displacements induced by these (2, 0) tidal constituents for some viscoelastic models and to compare the
results with the IERS conventions.

We use the catalogue corresponding to the harmonic decomposition of tidal constituents given by Dood-
son (1921), in the theoretical frame developed by Hartmann & Wenzel (1995). We compute the complex
admittance of each wave that we then multiply with the corresponding complex degree 2 TLN to obtain
the Fourier transform of the deformation as described in the Sec. 3.1.1. We compute the deformation for
all the (2, 0) tidal waves at their respective frequencies. The degree 2 TLN associated to the main waves
are reported in Tab. 4.3 where we see that the major impact is for the longest period waves and the lowest
viscous models. The total deformation spectrum is given by the collection of all Dirac peaks which is none
that a Fourier series as described in Beuthe (2015). At last in the time domain, the resulting time serie
deformation is multiplied with the associated (2, 0) Legendre polynomials to get latitude dependence.

Wave [Nodal] [Ssa] [Mm] [Mf]
Frequency (cycle·yr−1) 0.0537 2.0000 13.2555 26.7371
MAXWELL 18 1.668203− 0.318953i 0.647748− 0.186672i 0.604599− 0.030164i 0.603753− 0.014975i
MAXWELL 19 0.929106− 0.437636i 0.603970− 0.020013i 0.603487− 0.003022i 0.603479− 0.001498i
MAXWELL 20 0.610220− 0.073787i 0.603481− 0.002003i 0.603476− 0.000302i 0.603476− 0.000150i
MAXWELL 21 0.603545− 0.007458i 0.603476− 0.000200i 0.603476− 0.000030i 0.603476− 0.000015i
MAXWELL 22 0.603477− 0.000746i 0.603476− 0.000020i 0.603476− 0.000003i 0.603476− 0.000001i
MAXWELL 23 0.603476− 0.000075i 0.603476− 0.000002i 0.603476− 0.000000i 0.603476− 0.000000i
MAXWELL 18-23 0.612103− 0.025199i 0.603842− 0.002128i 0.603485− 0.000335i 0.603478− 0.000166i
MAXWELL 19-23 0.606343− 0.005692i 0.603480− 0.000224i 0.603476− 0.000034i 0.603476− 0.000017i
MAXWELL 20-23 0.603529− 0.000895i 0.603476− 0.000024i 0.603476− 0.000004i 0.603476− 0.000002i
MAXWELL 21-23 0.603476− 0.000156i 0.603476− 0.000004i 0.603476− 0.000001i 0.603476− 0.000000i
MAXWELL 19-23 BURGER 17 0.609618− 0.003846i 0.608544− 0.001500i 0.604968− 0.002329i 0.603970− 0.001499i
MAXWELL 19-23 BURGER 19 0.608745− 0.005928i 0.603497− 0.000444i 0.603476− 0.000067i 0.603476− 0.000033i
MAXWELL 19-23 BURGER 21 0.606374− 0.005720i 0.603480− 0.000226i 0.603476− 0.000034i 0.603476− 0.000017i
MAXWELL 21-23 BURGER 17 0.608966− 0.000157i 0.608529− 0.001391i 0.604959− 0.002305i 0.603967− 0.001484i
MAXWELL 21-23 BURGER 19 0.607071− 0.002575i 0.603486− 0.000226i 0.603476− 0.000034i 0.603476− 0.000017i
MAXWELL 21-23 BURGER 21 0.603479− 0.000239i 0.603476− 0.000006i 0.603476− 0.000001i 0.603476− 0.000000i

Tab. 4.3 – Complex degree 2 TLN for the four main tidal waves and for each of the considered viscoelastic
models.

The PREM vertical deformation without the permanent tide is shown in Fig. 4.11. This displacement
is a reference such that the real displacement is obtain by multiplying the reference with the Legendre
polynomials. The deformation waves are contained in a 18,6 years (Nodal tide) and a 4,5 years envelope,
which is itself modulated by the semi-annual wave (Ssa). The smaller periods especially Mm (27,55 days)
and Mf (13,66 days) are visible on the red zoom inset of Fig.4.11.

We then compute the tidal deformations for several viscoelastic rheologies. Fig. 4.12 represents the
residual vertical displacement of several viscoelastic models after PREM signal was removed. The permanent
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Fig. 4.11 – Elastic PREM vertical displacement of (2, 0) tidal waves from Doodson catalogue. This dis-
placement have to be multiplied by the associated Legendre polynomials to obtain the real displacement in
function of latitude. The red inset in (a) is a 6 months zoom to see the high frequencies.

tide is then automatically discarded and the signal is zero mean. The amplitude of the residuals and the
corresponding normalized time series are represented separately in order to compare properly the phase shift
and the frequency content of the signal. We also include the residuals calculated from the difference between
the IERS conventions Petit & Luzum (2010) and PREM. We choose to compute the residuals for the reference
displacement (without multiplying by the Legendre polynomial) because the choice of a particular latitude
does not matter to compare the different models since every models are modulated by the same Legendre
polynomial value at a given latitude. The reference amplitude have then to be considered as real amplitude
with Legendre polynomials is equal to one (equivalent to latitude ±36,5 °N). The maximum amplitude is
obtain by multiplying the reference amplitude by a factor 2,24.
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Fig. 4.12 – Residuals of the total vertical displacement generated by the (2, 0) tidal waves from Doodson
catalogue, for several viscoelastic rheologies and the model given in the IERS conventions Petit & Luzum
(2010). The residuals have been computed according to PREM displacement time series. We plotted the
amplitudes (left) and the normalized time series (right).
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The amplitude for the residuals of MAXWELL 18 and MAXWELL 19 models are ten times greater than
the ones reported in the Figure, reflecting the important discrepancy between these models and PREM. The
amplitude decreases when the viscosity increases for homogeneous viscoelastic Maxwell models. The same
behavior is observed when we set the LM viscosity at 1023 Pa·s and that only the UM viscosity varies. Again
the amplitude of Burgers models decreases as the transient viscosity ηk increases.

On the other hand, the right panel indicates that the main component of the difference between PREM
and the viscoelastic models is the Lunar nodal wave at 18,6−year period. Indeed, as we saw in Fig. 4.9
for LLN, TLN are more impacted by the viscoelasticity as the period increases. The largest tidal period
computed being the Nodal wave, it is the most likely one to be affected. We also see that this wave is subject
to a phase shift as the viscosity changes. We can measure it by locating the maximum displacement positions
on the time series. The phase shift exists for all tidal waves but is more important for the longest periods
(as they are the most likely to be impacted by the viscosity).

As every model is associated to a low pass filter with one or several cutoff frequencies, changing the
viscosity model is also changing its cutoff frequencies. If the range of cutoff frequencies contains one or
several of the main tidal wave, then changing even slightly the viscosity models can significantly impact the
displacement of the Earth at this tidal wave frequency. We can see this effect in the Fig. 4.12 especially
when we change the value of transient viscosity for Burgers models, but also as the global mantle viscosity
increases.

We show the high dependence of the Earth viscoelastic parameters to the response of long-period tides.
The objective should then to refine the determination of these parameters to provide optimal parameters for
a realistic viscoelastic Earth model. The use of such model in the tidal deformation computation should be
able to replace the actual IERS conventions two-steps procedure which does not correspond to a consistent
physical model. In particular, the differences in the 18,6−year tide deformation between the actual IERS
conventions and a more realistic viscoelastic model can exceed 2mm (after multiplying by degree 2 Legendre
polynomial), which is twice the desired accuracy in position for terrestrial reference frame (Altamimi et al.,
2016).

3.2.2 GIA / Post-glacial rebound

Glacial Isostatic Adjustment (GIA) is another important proof of the viscoelasticity of the Earth and has
already been largely studied (Peltier et al., 1981; Lambeck et al., 1998). A GIA solution (displacement rates
and ice history) is generated for a given rheology and Earth structure. We want to evaluate the sensitivity of
actual deformation rates observed with a slight change in viscoelastic parameters from a GIA model (Steffen
& Kaufmann, 2005; Roy & Peltier, 2015). In the same way, Caron et al. (2017) used a bayesian approach to
realize such sensitivity tests on GIA models parameters. We compute the displacements given by the ICE-6G
model supplied by Peltier et al. (2015) to validate our methodology on non-periodic perturbations. Taking
the ice history derived from ICE-6G, we can compare the predicted actual vertical displacement rate for
several Maxwell rheologies since they generally are the best to fit the GIA observed deformations.

First, we decompose the ice history into SH using the Python library SHTools (Wieczorek & Meschede,
2018). We consider the ocean as an homogeneous reservoir and determine an homogeneous sea level at each
time in order to enforce the global mass conservation. As described in Sec. 3.1.2 & 3.1.3, we then compute
the DFT of each SH coefficient using FFT algorithm on the time series previously resampled to 211 = 2048

epochs by cubic interpolation. We choose N = 11 because the initial number of sample in the ice history is
122, extended to 489 taking the minimum timestep of 250 years, and which the closest power of two is 29.
Some coefficients and an example of their Fourier spectrum estimation are given in Fig. 4.13 where we see
that choosing too small N can create aliasing and can slightly shift in the y direction the FFT results (panel
(b)). Since the input time series are real, the FFT is computed only between f = 0 and f = fs/2 where
fs = 0,0042 cycle·yr−1 is the sampling frequency. The rest of the spectrum is useless and redondant since it
is symetric. The frequency precision δf = 1,03× 10−6 cycle·yr−1 of the FFT is given by the inverse of the
total period of the ice history signal (duration of 122 kyr). It is also the most little non zero frequency to be
calculated by the FFT algorithm. After multiply coefficients and LLN spectrum and take the inverse FFT,
we have the temporal deformation SH coefficients which we combine with Legendre polynomials to obtain
the deformation field.
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Fig. 4.13 – Cubic interpolation of time evolution and the associated FFT of (2, 0), (2, 1) and (2, 2) SH
coefficients of the ICE-6G ice history. The black dotted lines in FFT plots are the Nyquist frequences for
the two choices of N where 2N is the number of time and frequency samples used, while the black segment
are the frequency span of the inset zoom plots.

The ice history model in ICE-6G already assumes a particular rheology which was determined by the
global inversion of the surface displacements and sea level data (Peltier et al., 2015). It is then interesting
to evaluate the importance of a slight change in rheological parameters when we compute the vertical
surface displacement. The results are shown in the Fig. 4.14, where we test five different Maxwell viscoelastic
rheologies for the mantle. Their parameters have been chosen to explore the parameter space close to ICE-6G
results and to be coherent with the values obtain in Kaufmann & Lambeck (2002), Steffen & Kaufmann
(2005) and Caron et al. (2017) to recover the UM and LM viscosities. The amplitudes of the vertical rate are
very similar to the one found in the viscoelastic prospections led in Marotta (2003). The amplitudes could
significantly differ from ICE-6G showing the strong dependence in rheological parameters.

In order to compare the spatial repartition of the deformation between the different models and ICE-
6G, we compute for each case, the normalized map (with unity maximum amplitude), and then define a
correlation coefficient C as

C =

∑
i,j

(
Mij −M ij

) (
Pij − P ij

)
√∑

i,j

(
Mij −M ij

)2√∑
i,j

(
Pij − P ij

)2 , (4.48)
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Fig. 4.14 – Actual vertical displacement rate (in cm·yr−1) computed with ice history of the model ICE-
6G (Peltier et al., 2015) for several viscoelastic rheologies. The ICE-6G actual rate map is also shown as
a reference. Colored meridians in (d) refer to slices shown in Fig.4.15. The spatial correlation coefficients
(0 ≤ C ≤ 1) between the normalized maps and the reference are (from (b) to (f)) : [0,57, 0,93, 0,93, 0,79, 0,87].

such that P is the normalized ICE-6G map and M one of the normalized tested rheology map. All the
models presented in the Fig. 4.14 have C > 0,55. The rheologies with the best spatial correlation to ICE-6G
are MAXWELL 21-22 and MAXWELL 21-23 reaching 0,93. The optimal parameter between amplitude and
spatial pattern should be 1021 Pa·s < ηmUM < 1022 Pa·s and 1022 Pa·s < ηmLM < 1023 Pa·s. If these values
are in a good agreement with the ICE-6G model, they have to be used with precaution and maybe locally
modified or refined to integrate other timescale phenomena such as post-seismic deformations or Chandler
wobble. Besides, A et al. (2013) show that the determination of optimal viscosity parameters based on local
studies cannot be properly generalized in global models. Then, the 3D structure of the Earth model especially
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Fig. 4.15 – Vertical actual deformation rate (a) and actual steady state deformation (b,c) in the deep
interior of the Earth until the CMB, along longitudinal slices pointed out by the respective colored lines in
Fig.4.14d. Panels (a,b) are related to MAXWELL 21-23 rheology and (c) to PREM.

the viscosity profile, should play an important role in the observed uplift of specific regions Wu (2006); Spada
et al. (2006); Wu et al. (2013).

The optimal viscosity parameters correspond to a cutoff period of 2000 or 20 000 years for LM and of
200 years for UM. The deformation rate in the LM should then be much slower than in the UM where
the timescale is much shorter. To investigate this, we calculated the LLN in the deep interior of the Earth
from the CMB to the surface. They have been computed by saving the three unscaled propagating solutions
throughout the mantle and then multiply by scaling constants determined within the LLN at the surface.
The deep deformation rates have then been computed for MAXWELL 21-23 model using the same scheme
than described above (with FFT) at all depth but with a zero frequency LLN taken as elastic LLN. We
reported in the Fig. 4.15(a) these deformation rates, for the three longitude slices drawn in the Fig. 4.14(d).
The choice of [−80 °E, −45 °E, 20 °E] longitudes has been done to cross the areas of largest deformation :
Canada, Greenland, Scandinavia and Antartica. We see that the localization of the deformation rate is
mainly in the UM. This result is not surprising considering the time scales previously estimated for LM
and UM. Nevertheless, this does not imply that the actual steady state deformation is null in the LM, as
shown in Fig. 4.15(b). The actual steady-state deformation spreads in the whole mantle under the loading of
actual and past ice sheets, especially in Antarctica where the actual ice thickness is the largest. Also, we see
the formation of a positive deformation bulge beside the ice sheet subsidences. This is the signature of an
internal redistribution of matter to reach the global deformation equilibrium state. We compare the actual
steady state deformation from MAXWELL 21-23 with PREM (Fig. 4.15c) and see that in PREM, we only
see actual ice-covered regions creating deformation since the elastic constraint in other regions (Hudson Bay,
Scandinavia, etc.) has already been released thousand years ago.

3.2.3 Present-day ice melting

In addition to Pleistocene deglaciation, the Earth is experiencing present-day ice melting at high latitudes
(Shepherd et al., 2018, 2020) but also of mountainous glaciers at mid latitude (Jacob et al., 2012) which can
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be measured with various space techniques, such as altimetry (Helm et al., 2014) and gravimetry (Velicogna
et al., 2020). For the smallest timescale of deformation, the impact of viscosity should be lower considering
the values of η in the mantle. For example, Chanard et al. (2018a) studied the impact of similar viscoelastic
Maxwell and Burgers models to those used in this study, on the annual loading signal. They compare GNSS
displacements to site displacements recovered in solving the direct problem for several rheologies applied
on GRACE data. They show that the choice of rheological models does not significantly affect the annual
signal in vertical time series, but could affects the horizontal time series. This is consistent with the previous
results in this paper, as shown in Fig. 4.9. However, the loading signal extracted from GRACE and GRACE-
FO also contains long period signal variations, which can be due to secular climate changes (ice melting
on Antarctica, Greenland and Alaska (Luthcke et al., 2013)) or to long period meteorological phenomena
exceeding a decade (Trenberth, 1990). The effects of visco-elasticity should then be more important and we
choose to focus on these long periods.

Then, we use the surface mass variations deduced from GRACE and GRACE-FO during the time
span 2004-2020 to access intermediate frequencies of deformation, additionally to the seasonal hydrologi-
cal cycles. We use the CSR RL06 Mascons solution downloaded from http://www2.csr.utexas.edu/ gra-
ce/RL06_mascons.html. This solution has been improved since the RL05 release (Save et al., 2016) espe-
cially in term of resolution of the supplied regular grid which allow a proper resolution of the coastlines. As
a mascons technique, the RL06 solution is free of any empirical filtering and is moreover corrected from the
GIA ICE6G-C from Peltier et al. (2015). Its low degree zonal coefficients C20, C30 have also been replaced
by those derived from Satellite Laser Ranging (Loomis et al., 2019b). We use the same scheme than in
Sec. 3.1.3 & 3.2.2 to compute the displacements choosing a sampling of 2N = 1024 which gives a sampling
frequency of fs = 56,38 cycle·yr−1 and a frequency precision δf = 0,055 cycle·yr−1.

We fit the deformation in order to only get the secular linear trend, which is the more likely to be affected
by the viscoelastic rheology. This signal should denote the actual ice melting average velocity on the polar
regions. We represent the associated secular displacement for different rheologies in polar regions in Fig. 4.16.
To be consistent with the previous section, we choose to represent the displacements computed from PREM
and patchy viscoelastic models. We choose first the MAXWELL 21-23 model consistent with GIA (Sec. 3.2.2)
and with recent studies (Whitehouse et al., 2012; Peltier et al., 2015; Caron et al., 2017). Then we choose
MAXWELL 18-23 to provide a model of low UM viscosity as Nield et al. (2014) suggested studying the
Antartic Peninsula. Finally we choose to represent a Burgers model with low transient viscosity.

The spatial pattern does not seem to radically change between the different viscoelastic rheologies and
PREM except for the MAXWELL 18-23 rheology where we see higher deformation of the Antartic Peninsula
(Nield et al., 2014) and the Greenland coastside. As we explore extremely long periods (a trend is considered
as an nearly infinite period signal), the displacements computed for all rheologies are close from each other
and the differences are only comming from the interannual variations of the ice mass loss. In particular,
the subduction zone in south Alsaka between Pacific and North American plate, is not very sensitive to any
particular viscosity of the UM in the range proposed by the model of Jadamec et al. (2013) : ηUM is from 1019

to 1021 Pa·s. In any case, it seems not reasonable to choose global value of viscosity by extrapolating from
some localized subduction zones (A et al., 2013) or local studies (Nield et al., 2014; Bos et al., 2015). The
main difference between models is the maximum value of the slope going from 1,3 cm·yr−1 for elastic and
MAXWELL 21-23 until 1,8 cm·yr−1 adding a BURGER 17 and reaching 2,0 cm·yr−1 for the MAXWELL
18-23. It was predictible regarding Fig. 4.9, that the low viscosity models impact the most the deformation
rate observed. The maximum vertical rates derived from ICESat in the Greenland are close to the one of
PREM and MAXWELL 21-23, according to previous studies (Spada et al., 2012; Groh et al., 2014; Wang
et al., 2018). These maximum rates are very localized in the west and south-east coasts but close to zero in
the north east. Concerning Antarctica, we find the well-known ice melting uplift on the Pine Island Bay, the
Byers Peninsula and the Budd coast while the west Antarctica subsides upon a thicker ice cap.

The great similarity between all of the presented models, for these range of frequencies, are maybe due
to the fact that the model does not take into account the longitudinal and latitudinal dependence of the
viscoelastic parameters, which can change the local uplift models such as the subduction zone of South Alaska
(Jadamec et al., 2013). Also, taking into account time dependent velocities in polar ice melting should have
an effect in the recovery of shorter period displacements even if the importance of viscoelasticity decreases
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with the period (Fig. 4.9). Despite, the global isotropic layered model provides interesting results, since we
can compute deformations for very low degrees, along with local deformations that are consistent with (but
not as precise as) local laterally heterogeneous models.

We finally compared the uplift rate of several ITRF2014 geodetic stations (Altamimi et al., 2016) shown

Fig. 4.16 – Actual vertical displacement rate (in cm·yr−1) from the GRACE/GRACE-FO CSR data mainly
due to ice melting, for several viscoelastic rheologies and PREM.
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ITRF site PALV CRAR ROB4 CAS1 MAW1 SYOG VESL
DOMES 66005M002 66001M004 66063M002 66011M001 66004M001 66006S002 66009M001
Lon. (°E) 295.949 166.668 163.190 110.520 062.871 039.584 357.158
Lat. (°N) −64.775 −77.848 −77.034 −66.283 −67.605 −69.007 −71.674
ITRF Up rate +5.865 −0.338 +1.076 +0.892 −0.546 +0.857 +0.782

Rates for GIA models
ICE-6G +2.469 +1.010 +0.995 +1.052 +0.414 +0.871 +1.381
MAXW21 +2.758 +2.781 +1.602 +1.996 +0.631 +1.201 +1.314
MAXW21-22 +3.330 +4.525 +3.229 +2.895 +1.493 +2.099 +2.293
MAXW21-23 +3.081 +3.765 +2.592 +2.783 +1.348 +2.005 +2.096
MAXW21-23

+2.938 +3.608 +2.506 +2.694 +1.331 +1.952 +2.034BURGER 17

Rates for GRACE data (without ICE-6G)
PREM +1.230 −0.027 −0.063 +0.750 −0.868 −1.311 −1.568
MAXW21 +1.499 +0.335 +0.300 +1.059 −0.532 −0.967 −1.222
MAXW21-22 +1.498 +0.334 +0.300 +1.059 −0.532 −0.967 −1.222
MAXW21-23 +1.498 +0.334 +0.300 +1.059 −0.532 −0.967 −1.222
MAXW21-23

+2.058 +0.267 +0.231 +1.478 −0.634 −1.254 −1.675BURGER 17

Tab. 4.4 – Rates (mm·yr−1) of several ITRF stations in Antarctica calculated for ITRF14 solution (Alta-
mimi et al., 2016) and for different rheologies in GIA models and GRACE deformations.

ITRF site CHUR NAIN QIKI ALRT THU3 KELY QAQ1 KULU SCOR
DOMES 40128M002 40164M001 40166M001 40162M001 43001M002 43005M002 43007M001 43003M001 43006M002
Lon. (°E) 265.911 298.311 295.966 297.660 291.175 309.055 313.952 322.851 338.050
Lat. (°N) +58.759 +56.537 +67.559 +82.494 +76.537 +66.987 +60.715 +65.579 +70.485
ITRF Up rate +10.96 +4.491 +4.073 +6.194 +6.240 +2.415 +4.684 +7.110 +4.055

Rates for GIA models
ICE-6G +8.588 +2.012 −1.448 +3.877 −0.116 +0.674 +2.497 −0.516 +1.592
MAXW21 +0.952 +1.441 −4.574 +5.211 −3.489 +1.168 +1.993 −0.546 +1.944
MAXW21-22 +14.775 +5.127 −1.080 +4.513 −2.261 +2.473 +1.572 −0.752 +0.918
MAXW21-23 +8.508 +2.989 −2.761 +4.759 −2.916 +2.508 +2.071 +0.153 +1.630
MAXW21-23

+8.557 +2.967 −2.655 +4.578 −2.884 +2.483 +1.873 +0.113 +1.512BURGER 17

Rates for GRACE data (without ICE-6G)
PREM +0.692 +0.941 +3.029 +2.945 +7.105 +7.929 +6.492 +6.881 +2.263
MAXW21 +0.374 +0.572 +2.521 +2.454 +6.556 +7.340 +5.983 +6.314 +1.769
MAXW21-22 +0.374 +0.572 +2.521 +2.453 +6.556 +7.340 +5.982 +6.313 +1.768
MAXW21-23 +0.374 +0.572 +2.521 +2.453 +6.556 +7.340 +5.982 +6.313 +1.768
MAXW21-23

+0.320 +0.424 +2.557 +2.742 +8.032 +9.331 +7.813 +7.963 +1.647BURGER 17

ITRF site NYAL KOD1 KEN1 AC15 EYAC 7277 7225 AB42 WHIT
DOMES 10317M001 40419S001 49995S001 49397M001 49402M001 40416M001 40408S002 49377M001 40136M001
Lon. (°E) 011.865 207.807 208.650 210.276 214.250 217.514 212.502 221.101 224.778
Lat. (°N) +78.930 +57.618 +60.675 +60.481 +60.549 +60.081 +64.978 +59.340 +60.751
ITRF Up rate +6.813 +7.608 +11.24 +7.026 +1.325 +24.59 +1.595 +17.52 +1.551

Rates for GIA models
ICE-6G +0.635 −0.289 +0.311 +0.361 +0.524 +0.485 −0.661 +0.461 +1.572
MAXW21 −0.130 +0.504 +1.425 +1.077 +0.315 −0.224 −0.442 −0.119 +1.180
MAXW21-22 +0.729 −1.212 −0.170 −0.443 −0.790 −0.716 −1.826 +0.392 +3.567
MAXW21-23 +0.676 −0.547 +0.336 −0.043 −0.731 −0.974 −1.716 −0.243 +2.336
MAXW21-23

+0.650 −0.562 +0.292 −0.075 −0.741 −0.971 −1.703 −0.254 +2.282BURGER 17

Rates for GRACE data (without ICE-6G)
PREM +2.470 +0.835 +2.265 +2.998 +4.472 +5.745 +0.989 +5.698 +1.848
MAXW21 +2.017 +0.537 +1.936 +2.662 +4.118 +5.382 +0.652 +5.336 +1.492
MAXW21-22 +2.017 +0.537 +1.937 +2.663 +4.118 +5.383 +0.652 +5.337 +1.493
MAXW21-23 +2.017 +0.537 +1.937 +2.663 +4.118 +5.383 +0.652 +5.337 +1.493
MAXW21-23

+2.366 +0.518 +2.529 +3.512 +5.584 +7.290 +0.590 +7.129 +1.861BURGER 17

Tab. 4.5 – Rates (mm·yr−1) of several ITRF stations around the North pole calculated for ITRF14 solution
(Altamimi et al., 2016) and for different rheologies in GIA models and GRACE deformations.
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Fig. 4.17 – ITRF Stations positions for which we computed the vertical rate values in the Tab. 4.4 & 4.5.

in Fig. 4.17 at high latitude (Arctic and Antarctica) with the rates of some viscoelastic models (GIA and
present-day ice melting) evaluated in this study (Tab. 4.4 & 4.5). The differences between the observed
and modeled rates are quite sensitive to the localization of the stations and moreover to the rheological
parameters for the GIA part. As discussed before, we see that the GRACE long term signal is less affected
by changing rheological parameters. To recover a consistent rate derived from GIA and present-day ice
melting, present-day ice melting rates have to be combined with the ICE-6G rates, to be consistent with
the models removed from the GRACE data used in this study. The difference of rates between ITRF and
models can be explained by the interpolation of station position on the rough 1×1 degree grids of the models,
especially for stations on the seashore. The differences between elastic and viscoelastic modeled deformations
due to present-day ice melting always exceed 0,1mm·yr−1, which is the desired accuracy of the terrestrial
reference frame (Altamimi et al., 2016). In Greenland, these differences reach more than 0,5mm·yr−1. We
notice a systematic deviation from the elastic case for Maxwell models of mean −0,4mm·yr−1 in north pole
and 0,3mm·yr−1 in south pole. This signal could be, among others, the signature of odd low degrees zonal
deformations (including degree 1 along the Z axis) and highlights the great dependence of the low degrees
to viscosity of the mantle (Fig. 4.10).

3.3 Discussion

We notice an inconsistency in the choice of an Earth rheological model between solid Earth tides in the
IERS Convention (Petit & Luzum, 2010), deformation due to Glacial Isostatic Adjustment and present-day
ice melting. We compute the viscoelastic deformation for these three geophysical effects using consistent Earth
models, based on PREM model (Dziewonski & Anderson, 1981), in which we added anelastic parameters in
the mantle layers.

For the vertical displacement, we show that the differences between the IERS Convention and more
realistic viscoelastic models could exceed 1mm for the 18,6−year Lunar node tide. Such models should be
tested in the processing of geodetic techniques (GNSS, DORIS, VLBI and SLR) long record (more than
20 years), in order to improve the realization of terrestrial reference frame.

We also show that the mantle anelasticity is no longer negligible in the vertical displacements due to
present-day ice melting in polar regions (see also Métivier et al. (2020)). Indeed, the characteristic timescales
(20-30 years) are comparable to the Lunar node tide. If the spatial patterns are not very different between
the elastic and viscoelastic models, the differences always exceed 0,1mm·yr−1 in polar areas, and sometimes
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more than 0,5mm·yr−1 in Greenland. Similarly to the tidal deformations, we observe that the introduction of
mantle viscosity affects mostly the low degrees. In particular, the Fig. 4.9 shows that degree 1 is significatively
affected by the viscosity profile. As it is important to accurately study the geocenter motion (Blewitt, 2003;
Métivier et al., 2010; Wu et al., 2012), which is particularly affected by present-day ice melting (Métivier
et al., 2020), a viscoelastic approach should then be adopted in future models and characterization.

However, including mantle anelasticity for the present-day ice melting raises some issues about the consis-
tency of the estimation of displacements along with the GIA. In order to properly isolate the two contribu-
tions, the same viscoelastic model should be employed for both determination of long term ice history and
recent ice melting, which can be measured with altimetry (Helm et al., 2014) and gravity (Luthcke et al.,
2013; Velicogna et al., 2020) missions. This requires a great effort of computation since any GIA model
should then be produced in a self-consistent manner with a present-day ice melting model. Moreover, the
great variability of deformation measured with geodetic techniques between nearby stations (Tab. 4.5 & 4.4)
suggests inhomogeneous values of viscoelastic parameters in the mantle at various spatial scales (Métivier
& Conrad, 2008; Nield et al., 2014; Bos et al., 2015) which was already included in different tomographic
models of the mantle (Simmons et al., 2012; French & Romanowicz, 2014). This could largely influence past
and present ice models and make their determination more complex. Unfortunately, the theoretical frame
used to calculate Love numbers is for now not suited to take into account the spatial heterogeneities of the
Earth structure, and should then be reviewed. This have already been done partially when we consider the
ellipticity of the Earth like in Métivier et al. (2005) for example.

3.4 Résumé

Les effets visqueux des déformations n’étant visibles que pour les phénomènes dont l’extension temporelle
est grande (typiquement au-delà de la décennie), nous nous sommes intéressés dans cette partie qu’aux
déformations engendrées par quelques phénomènes longue période : les marées solides, le rebond post-glaciaire
et la fonte des glaces actuelle. Nous avons donc en premier lieu, proposé une modification de la théorie
élastique de Love pour y inclure la possibilité de modéliser des rhéologies visco-élastiques au moyen de la
transformée de Fourier, plus simple mathématiquement que ce qui est fait habituellement avec la transformée
de Laplace. Nous avons ensuite montré que les déformations liées aux phénomènes longue période cités
précédemment, étaient fortement dépendantes des paramètres rhéologiques visqueux et du type de rhéologie
visco-élastique choisie pour modéliser le manteau terrestre (type Maxwell ou Burgers). Ces couches visco-
élastiques ont été introduites au sein du modèle élastique PREM. Nous avons montré une bonne concordance
entre les déformations liées aux marées solides fournies par l’IERS et modélisées par une rhéologie de type
Burgers. Cependant, les nombres de Love données dans les conventions IERS sont issus de traitements
différents en fonction de s’ils sont utilisés pour certains phénomènes plutôt que d’autres. Il nous a donc
paru important de signaler qu’une approche cohérente pour traiter toutes les perturbations, et ce quelles
qu’en soient la fréquence, était possible en utilisant le formalisme que nous avons développé dans l’article.
Nous avons également testé différents modèles visco-élastiques pour décrire la déformation engendrée par les
phénomènes de fontes à la fin du Pléistocène et actuelle des calottes polaires. Là encore, nous avons montré
que la sensibilité aux paramètres visqueux était relativement importante pour le rebond post-glaciaire et que
les phénomènes visqueux commençaient à entrer en jeu dans le soulèvement induit par les fontes actuelles
de glace imputées au réchauffement climatique. L’ensemble de ces résultats a permis de mettre en évidence
la possibilité de traiter l’ensemble des phénomènes longue période en utilisant une approche basée sur les
modèles rhéologiques de type Maxwell ou Burgers, ce qui est difficilement faisable en utilisant l’approche
des modèles dissipatifs. L’enjeu serait alors la détermination des paramètres rhéologiques optimaux au sens
de l’ensemble des phénomènes observés dans le cadre d’une inversion globale des observations géodésiques
et géophysiques disponibles. Cet effort de grande ampleur aurait ainsi le mérite d’aboutir enfin à un modèle
de Terre cohérent avec tout les phénomènes que l’on souhaite modéliser au sein et en marge des conventions
IERS.

Certaines limitations aux modèles présentés demeurent toutefois comme leurs caractères isotropes et
sphériques. En effet il existe de nombreuses inhomogénéités notamment sur les zones actives comme les zones
de subduction (Marotta, 2003). Des modèles de Terre complets incluant la topographie, les inhomogénéités
de densité et de paramètres élastiques ainsi que l’ellipticité ont été proposés dans Métivier et al. (2005)
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et Métivier & Conrad (2008). La difficulté de prendre en compte les inhomogénéités nécessite notamment
de passer par une décomposition en éléments finis et non plus en harmoniques sphériques. On pourrait
aussi s’interroger sur la nécessité pour les perturbations de bas degrés, à inclure une viscosité dans le noyau
liquide, sous réserve d’en trouver une estimation adéquate. Enfin il faut garder à l’esprit que l’on extrapole
un modèle de Terre défini actuellement à des dizaines de milliers d’années auparavant, ce qui reste une
hypothèse forte de la modélisation des phénomènes longue période, la variabilité temporelle des paramètres
rhéologiques étant relativement peu connue. Outre l’amélioration des modèles de Terre, il est aussi crucial
de pouvoir décorréler les paramètres de charge et de viscosité qui sont intimement liés dans les inversions
globales, par exemple pour la modélisation du GIA (Peltier et al., 2015). Cela revient en partie à contraindre
le plus possible ces paramètres avec des observations spécifiques en combinant les mesures sols et les mesures
spatiales d’où l’importance de la continuité des acquisitions qui permettent de jouir de séries temporelles
d’observation de plus en plus longues et précises.

4 Déformation locale avec la fonction de Green

Pour les déformations liées à des surcharges, une approche alternative à celle consistante à décomposer
la perturbation en harmoniques sphériques est celle utilisant le formalisme des fonctions de Green développé
par Farrell (1972). Cette seconde approche est utilisée notamment lorsque l’on connaît la charge sur une
surface restreinte de la Terre ou lorsque l’on souhaite une approche locale, sur une zone en particulier. Une
fonction de Green est définie comme étant une fonction reliant la fonction d’intérêt (ici ur, uψ ou φ1) à la
perturbation de masse m′ telle que ⎧⎪⎪⎨⎪⎪⎩

ur(a, ψ) = Gr(a, ψ)m
′

uψ(a, ψ) = Gψ(a, ψ)m
′

φ1(a, ψ) = Gφ(a, ψ)m
′
. (4.49)

Cette fonction dépend donc d’une part de la rhéologie et du modèle de Terre, mais aussi de la dépendance
spatiale (la géométrie) de la surcharge que l’on considère. En notant la surcharge surfacique ζ dont le potentiel
associé est V (on rappelle que Vn(r) est le coefficient de la décomposition en harmoniques sphériques du
potentiel excitateur V (r, ψ)), on peut écrire à partir des Éqs. (4.16)

ur(a, ψ) =

+∞∑
n=0

y1n(a)Pn(cos(ψ)) =

+∞∑
n=0

h′
n

ge
VnPn(cos(ψ)),

uψ(a, ψ) =

+∞∑
n=0

y3n(a)
∂Pn(cos(ψ))

∂ψ
=

+∞∑
n=0

l′n
ge

Vn
∂Pn(cos(ψ))

∂ψ
,

φ1(a, ψ) =

+∞∑
n=0

(y5n(a)− Vn)Pn(cos(ψ)) =

+∞∑
n=0

k′nVnPn(cos(ψ)).

(4.50)

Désormais, il faut se préoccuper de ce que vaut la perturbation Vn ou ζn. On distinguera deux situations où
Vn est analytiquement déterminée : le cas d’une calotte sphérique surfacique d’extension angulaire α et le
cas d’une masse de Dirac appliquée en un point de la surface.

4.1 Pour une calotte sphérique surfacique d’extension angulaire α

Nous allons considérer dans un premier temps le cas d’une calotte sphérique surfacique de masse m′ et
d’extension angulaire α, où α est l’angle entre les rayons terrestres passant respectivement par le centre de
la calotte et par un point de son extrémité. Les coefficients d’harmoniques zonaux d’une telle distribution de
masse sont déterminés usuellement pour une masse unitaire et pour n ≥ 1 (Longman, 1962; Farrell, 1972).
Pour une masse m′, on a
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ζn = m′ [Pn−1(cos(α))− Pn+1(cos(α))]

4πa2(1− cos(α))
=

(2n+ 1)m′

4πa2

[
− 1 + cos(α)

n(n+ 1) sin(α)

∂Pn(cos(α))

∂α

]
. (4.51)

Dès lors on peut définir le potentiel Vn en fonction de l’expression de ζn et de l’Éq. (4.27)

Vn =
Gm′

a

[
− 1 + cos(α)

n(n+ 1) sin(α)

∂Pn(cos(α))

∂α

]
. (4.52)

Étant donné que ge = Gme/a
2, on en déduit les expressions des déplacements et du potentiel en fonction

des nombres de Love. On donne donc Gα
r , Gα

ψ et Gα
φ , les fonctions de Green permettant de relier la masse

appliquée m′ aux déformations

ur(a, ψ) = m′ a

me

+∞∑
n=0

h′
n

[
− 1 + cos(α)

n(n+ 1) sin(α)

∂Pn(cos(α))

∂α

]
Pn(cos(ψ))︸ ︷︷ ︸

Gα
r (a, ψ)

,

uψ(a, ψ) = m′ a

me

+∞∑
n=0

l′n

[
− 1 + cos(α)

n(n+ 1) sin(α)

∂Pn(cos(α))

∂α

]
∂Pn(cos(ψ))

∂ψ︸ ︷︷ ︸
Gα

ψ(a, ψ)

,

φ1(a, ψ) = m′ gea
me

+∞∑
n=0

k′n

[
− 1 + cos(α)

n(n+ 1) sin(α)

∂Pn(cos(α))

∂α

]
Pn(cos(ψ))︸ ︷︷ ︸

Gα
φ(a, ψ)

.

(4.53)

Grâce au formalisme des fonctions de Green, on peut donc relier les déplacements et le potentiel d’une Terre
perturbée, à sa perturbation de surcharge m′.

4.2 Pour une masse de Dirac

En utilisant la même démarche que précédemment, on peut déterminer les fonctions de Green pour une
masse m′ dite « de Dirac », c’est-à-dire appliquée en un point de la surface terrestre. Pour cela, on peut
prendre la limite quand α −→ 0 des expressions précédentes de ζn sans avoir de problèmes de convergence
(Farrell, 1972)

lim
α−→0

[
− 1 + cos(α)

n(n+ 1) sin(α)

∂Pn(cos(α))

∂α

]
=

2J1(nα)

nα
−→ 1, (4.54)

avec J1 la fonction de Bessel de première espèce et d’ordre 1. Ainsi, on obtient des fonctions de Green Gr,
Gψ et Gφ bien plus simples et dépendantes uniquement des nombres de Love et des polynômes de Legendre

ur(a, ψ) = m′ a

me

+∞∑
n=0

h′
nPn(cos(ψ))︸ ︷︷ ︸

Gr(a, ψ)

,

uψ(a, ψ) = m′ a

me

+∞∑
n=0

l′n
∂Pn(cos(ψ))

∂ψ︸ ︷︷ ︸
Gψ(a, ψ)

,

φ1(a, ψ) = m′ gea
me

+∞∑
n=0

k′nPn(cos(ψ))︸ ︷︷ ︸
Gφ(a, ψ)

.

(4.55)
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4.3 Calcul numérique de la fonction de Green

Pour calculer numériquement la fonction de Green, on ne peut pas sommer jusqu’à des degrés infinis et
il est nécessaire de tronquer la série à un degré N . Pour le cas d’une calotte surfacique d’extension α, le
terme général de la série tronquée possède une dépendance en n−3/2 ce qui ne pose donc pas de problèmes
de convergence quand on somme. Par contre pour une masse de Dirac, le problème de convergence se pose
et on peut avoir des problèmes numériques. Pour éviter cela, on utilise la méthode de Kummer donnée dans
Farrell (1972) consistant à séparer la somme infinie en deux sommes convergentes : une somme infinie calculée
analytiquement et l’autre, tronquée, calculée numériquement. On utilisera pour cela les nombres de Love
asymptotiques (h′

∞, l′∞, k′∞) définis dans la Section 2. Pour la fonction de Green verticale Gr, on obtient

Gr(a, ψ) =
a

me

+∞∑
n=0

h′
nPn(cos(ψ)),

=
a

me

+∞∑
n=0

(h′
n − h′

∞ + h′
∞)Pn(cos(ψ)),

=
ah′

∞
me

+∞∑
n=0

Pn(cos(ψ)) +
a

me

+∞∑
n=0

(h′
n − h′

∞)Pn(cos(ψ)),

=
ah′

∞
2me sin(ψ/2)

+
a

me

+∞∑
n=0

(h′
n − h′

∞)Pn(cos(ψ)),

=
ah′

∞
2me sin(ψ/2)

+
a

me

N∑
n=0

(h′
n − h′

∞)Pn(cos(ψ)).

(4.56)

La première somme fait intervenir une somme usuelle de polynômes de Legendre, tandis que la seconde
converge bien vers 0 si l’on choisi l’ordre de troncature tel que h′

∞ = h′
N . On obtient des résultats similaires

pour la fonction de Green horizontale Gψ

Gψ(a, ψ) =
a

me

+∞∑
n=1

l′n
∂Pn(cos(ψ))

∂ψ
,
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me
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1
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n
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1

n
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∂ψ
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=
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me
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1

n
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∂ψ
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a

me
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1
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1
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∂Pn(cos(ψ))
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,

= −al′∞
me

cos(ψ/2) (1 + 2 sin(ψ/2))

2 sin(ψ/2) (1 + sin(ψ/2))
+

a

me

N∑
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1

n

∂Pn(cos(ψ))
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(4.57)

Les fonctions de Green verticale et horizontale sont présentées sur la Figure 4.18 pour le cas d’une masse
de Dirac et d’une calotte surfacique de masse totale m′ = 1Gt (1 gigatonne) mais d’extension spatiale
variable. Le panel (a) montre la fonction de Green de Dirac multipliée par l’angle ψ. Sans ce coefficient
multiplicatif, on observerait une divergence de la fonction de Green en d = 0km due à la singularité de la
distribution de Dirac. La Figure 4.18a est comparable à celles qui sont présentées dans les articles de Wang
et al. (2012) et Dill et al. (2015).
Les panels (b) et (c) présentent respectivement les fonctions de Green Gα

r et Gα
ψ pour différentes extensions

angulaires α et pour une masse m′ = 1Gt. On remarque que la singularité en zéro n’existe plus et il n’est
donc pas nécessaire de multiplier la fonction de Green par ψ. On peut comparer ces figures à celles données
dans Argus et al. (2014), permettant de valider nos calculs numériques. On observe tout de même que les
déplacements horizontaux, de l’ordre du mm pour une masse d’une gigatonne, sont environ 10 fois moins
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importants que les déplacements verticaux. On remarque aussi que ces fonctions de Green possèdent un palier
inférieur à partir de laquelle la déformation est uniforme. En effet, la dimension de la calotte contraint un
déplacement vertical uniforme sur la zone (ce qui ne créé donc pas de déplacement horizontal). On remarque
aussi que plus l’extension angulaire est faible, plus la masse est concentrée dans une zone spatiale restreinte
et donc plus le palier de la fonction Gα

r possède un déplacement vertical important. Pour la fonction Gα
ψ,

on observe que la déformation est la plus importante sur les bords de la calotte et est négative. Au vu des
conventions adoptés dans la Section 1.3, on en déduit que la matière est attirée horizontalement vers le centre
de la distribution de masse, ce qui est cohérent avec l’intuition physique. La fonction se comporte en fait
comme une pseudo-dérivée du déplacement vertical. Cette propriété découle principalement du fait que le
déplacement horizontal est liée à la dérivée des polynômes de Legendre. On observe dans tout les cas que la
déformation s’annule logiquement à mesure que d augmente.
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Fig. 4.18 – Fonctions de Green verticales et horizontales en fonction de la distance au centre de la distribution
de masse pour (a) une masse de Dirac et pour (b & c) une calotte sphérique surfacique d’extension angulaire
α.
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1 Problème inverse régularisé

Le problème qui consiste à retrouver la charge à partir du déplacement est un problème inverse classique.
Il nécessite de savoir relier le déplacement à la charge au moyen de la fonction de Green vue dans la
Partie IV. Nous avions alors considéré le cas d’une surcharge localisée (de Dirac ou en calotte) engendrant
un champ de déplacement autour d’elle et régit par la fonction de Green. Néanmoins, comme nous l’avions
dit précédemment, le formalisme des fonctions de Green permet aussi de gérer les surcharges s’appliquant à
un niveau régional.

1.1 Inversion par moindres carrés

Par exemple, nous voulons ici relier l’ensemble des déplacements relevés sur les stations en Europe à
l’ensemble des points sur lesquelles nous voulons connaître la charge qui a engendré ces déplacements. Nous
définissons alors un premier vecteur D dit de déplacement, de dimension n, qui contient les positions des
stations considérées. On définit aussi le vecteur ε de dimension n qui contient les erreurs sur les déplacements
que l’on considérera distribuées selon une loi normale de moyenne nulle et de covariance W tel que ε ∼
N (0,W ). On considérera que les erreurs sur les déplacements sont indépendantes les unes des autres de
sorte que W soit diagonale. D’autre part, nous définissons le vecteur M , de dimension m, qui est inconnu
et contient la charge en chacun des points de l’espace 1. L’ensemble de ces points sur lesquels on calcule la
charge est appelé la grille de charge et le choix de cette grille sera discuté dans la Section 2.3. Enfin, nous
définissons la matrice de Green G de dimension n×m que l’on explicitera dans la Section 2.2. Le problème
peut donc s’écrire avec l’équation

D = GM + ε. (5.1)

L’existence de la solution au problème (5.1) dépend du rang r de la matrice [D,G] de dimension n ×
m+1, qui donne le nombre d’équations linéairement indépendantes pour un système linéaire non homogène.
De manière équivalente, on peut lister le nombre d’information redondante dans le problème en calculant
min(n,m+ 1)− r. Comme r � min(n,m+ 1), nous pouvons distinguer plusieurs cas

• n > m : Le problème est dit sur-déterminé car il y a plus d’équations que d’inconnues. Néanmoins,
la donnée importante est celle de r car c’est elle qui quantifie le nombre d’équations indépendantes.

— r = m+1 : le nombre d’équations indépendantes est supérieur strictement au nombre d’inconnues.
On ne trouve alors aucune solution. Néanmoins, on peut appliquer ici le la méthode des moindres
carrés classique pour trouver une solution qui minimise Φ(M). Attention, dans ce cas, la fonction
Φ(M) peut admettre des minima locaux.

— r = m : Le nombre d’équations indépendantes est égal au nombre d’inconnues. On peut alors
résoudre le système pour obtenir une unique solution si et seulement si le vecteur D est linéaire-
ment relié à un des vecteurs de G. On utilisera également la méthode des moindres carrés ici qui
fournira une unique solution lorsque Φ(M) est minimale (ce minimum est unique et il n’existe pas
de minima locaux). Dans le cas où ce sont deux vecteurs de G qui sont linéairement dépendants,
il n’existe aucune solution au problème. On doit alors ajouter des informations a priori sur les
inconnues pour se placer dans le cas r = m+ 1 : on dit alors qu’on procède à une régularisation
du système. On peut alors le résoudre par une méthode des moindres carrés régularisée.

— r < m : le nombre d’équations indépendantes est inférieur strictement au nombre d’inconnues.
Si D fait partie des vecteurs linéairement indépendants des autres, il n’existe pas de solution. Si
D est par contre linéairement dépendant d’un ou de plusieurs vecteurs de G, alors le système
possède une infinité de solutions. Dans les deux cas, une régularisation du système est nécessaire
pour pouvoir résoudre le système par moindres carrés.

• n = m : Le problème est dit de bien déterminé, mais pas forcément bien posé : là encore, la recherche
de solutions dépend de r.

1. Cet espace est approximativement restreint à l’espace délimité par l’empreinte spatial du réseau de stations.
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— r = m : Le nombre d’équations indépendantes est égal au nombre d’inconnues. Le système est
alors dit « de Cramer », G est carrée et inversible et l’unique solution est donnée par M = G−1D.

— r < m : le nombre d’équations indépendantes est inférieur strictement au nombre d’inconnues.
Si D fait partie des vecteurs linéairement indépendants des autres, il n’existe pas de solution. Si
D est par contre linéairement dépendant d’un ou de plusieurs vecteurs de G, alors le système
possède une infinité de solutions. Dans les deux cas, une régularisation du système est nécessaire
pour pouvoir résoudre le système par moindres carrés.

• n < m : Le problème est dit sous-déterminé car les informations ne sont pas assez nombreuses
pour déterminer toutes les inconnues (r sera toujours strictement inférieur à m). Si D fait partie
des vecteurs linéairement indépendants des autres, il n’existe pas de solution. Si D est par contre
linéairement dépendant d’un ou de plusieurs vecteurs de G, alors le système possède une infinité de
solutions. Dans les deux cas, une régularisation du système est nécessaire pour pouvoir résoudre le
système par moindres carrés.

La solution optimale du problème inverse au sens des moindres carrés est le vecteur M qui minimise la
fonction Φ(M) = ‖D−GM‖2W = (D−GM)TW−1(D−GM), où ‖.‖W est la norme associée à la distance de
Mahalanobis pour la matrice de covariance W (Mahalanobis, 1936) et où on a noté AT la transposée de la
matrice A. Autrement dit, on cherche le point d’annulation du gradient de Φ(M). Sous réserve d’inversibilité
de la matrice normale N = GTW−1G, cette solution optimale notée M∗ s’écrit

M∗ = (GTW−1G︸ ︷︷ ︸
N

)−1 GTW−1D. (5.2)

La mention concernant l’inversibilité de la matrice normale N est primordiale car elle conditionne l’existence
même de la solution des moindres carrés. On note qu’en utilisant la formule de propagation des erreurs, on
trouve que la matrice N−1 est la matrice de covariance de la solution M∗.

1.2 Régularisation de Tikhonov

Dans le cas où N n’est pas inversible, nous nous retrouvons dans le cas où il y a une déficience de rang
et où nous devons régulariser le système pour pouvoir obtenir une solution. C’est le cas pour notre problème
car le nombre de station GNSS dans le réseau n’est pas aussi important que le nombre de d’inconnues et
surtout car la répartition des stations au sein du réseau est inhomogène. Il existe donc des endroits où il n’y
a aucune information pour déterminer la charge et le problème est donc mal posé. Une manière courante de
régulariser le système est la régularisation dite de Tikhonov, qui permet de non plus minimiser Φ(M) mais
une nouvelle fonction Ψ(M) = ‖D−GM‖2W +‖ΓM‖2V . Le second terme, qui contient la matrice de Tikhonov
Γ, traduit les nouvelles équations de contraintes que l’on a ajoutées au système sous la forme suivante

ΓM = 0 + e, (5.3)

où e est le vecteur des erreurs aléatoires sur ces contraintes, suivant une loi de distribution normale de
moyenne nulle et de covariance V : e ∼ N (0, V ). On peut alors écrire la solution au sens de la minimisation
de Ψ comme

M = (GTW−1G+ λ ΓTV −1Γ︸ ︷︷ ︸
P

)−1 GTW−1D, (5.4)

où nous notons l’apparition du paramètres scalaire λ (souvent appelé hyperparamètre), permettant de fixer
arbitrairement l’importance ou le poids donné aux contraintes par rapport aux données dans l’inversion. Si
λ −→ 0, on retrouve le résultat de l’inversion par moindres carrés classique de l’Éq. (5.2).

Dans le cas le plus simple la matrice P est choisie égale à l’identité tel que le paramètre λ joue le rôle
de multiplicateur de Lagrange. On peut aussi choisir des formes de Γ plus complexes comme une matrice
passe-haut (donc une contrainte qui supprime les hautes fréquences et a tendance à lisser la solution). C’est
ce dernier choix que nous ferons en le justifiant dans la Section 2.4. Dans tout les cas, la matrice N + λP

(comme la matrice N) est symétrique et on joue sur les paramètres de régularisation pour qu’elle devienne
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symétrique définie positive (et donc inversible). L’ajout du terme de régularisation induit un biais et une
variance plus importante dans la détermination de l’inconnue M . Le rang de la matrice P sera noté p. Au
même titre que N−1 est la matrice de covariance de M∗, la formule de propagation des erreurs implique que
c’est désormais la matrice (N + λP )−1N(N + λP )−1 qui joue le rôle de matrice de covariance de la solution
régularisée M . La matrice de covariance a priori sur le vecteur inconnu M est, elle, donnée par la matrice
P−1.

Nous ajoutons enfin une remarque sur la possibilité d’utiliser une inversion bayésienne. Cela permettrait
notamment de déterminer la distribution de probabilité des valeurs que peut prendre la solution en fonction
de la distribution de probabilité des données initiales (donc des erreurs sur ces données). Or si les données au
départ sont entachées d’une erreur suivant une distribution gaussienne, la distribution de probabilité de la
solution sera, elle aussi, une distribution gaussienne. Il n’est donc pas nécessaire de passer par une méthode
bayésienne ici : la méthode des moindres carrés nous donne exactement la solution gaussienne du problème
bayésien.

2 Mise en équation

2.1 Vecteur déplacement D

Nous souhaitons déterminer les charges qui sont à l’origine du déplacement GNSS que l’on observe sur
l’Europe. Or ces charges, principalement d’origine hydrologique, ont un signal saisonnier très fort notamment
à une fréquence annuelle. On va donc utiliser les coefficients sinusoïdaux a1 et b1 du modèle que nous avons
ajusté sur les séries temporelles GNSS (Michel et al., 2021) de sorte qu’ils constituent le vecteur déplacement.
Le vecteur M contiendra donc les coefficients annuels sinusoïdaux de la charge à l’origine de ceux qu’on a
ajusté sur le déplacement. Les coefficients de M sont calculés sur une grille qui pave la surface d’intérêt
appelée grille de charge, dont on parlera dans les Sections 2.2 et 2.3.

2.2 Matrice de Green G

Pour constituer la matrice de Green il faut répondre à la question : Pour un point donné où l’on a
calculé le déplacement, quelle est la contribution de chaque élément de charge dans la zone autour de ce
point. On considère donc une distribution de charge quelconque m′(ϕc, θc) sur une surface S, dépendante
de la longitude ϕc et de la colatitude θc. Le déplacement en un point A(ϕ, θ), est obtenu en convoluant la
distribution de charge avec la fonction de Green sur toute la surface S. Pour le déplacement vertical, cela
donne

ur(a, ϕ, θ) = Gr � m
′ =
¨

S

Gr(a, ψ(ϕ, θ, ϕc, θc))dm
′(ϕc, θc). (5.5)

Dans la pratique, la charge n’est pas donnée sous la forme d’une fonction spatiale continue. Elle est
discrétisée sur une grille spatiale (régulière ou non), où la charge est uniforme au sein de chaque élément
de grille mais varie d’un élément à un autre. Les éléments de grille centrés sur les point Ci de coordonnées
(ϕi

c, θ
i
c) ont des surfaces élémentaires si de sorte que la relation

∑
si = S soit vérifiée (la grille pave la

surface d’intérêt) et supportent chacun une certaine charge de masse m′(si) (que l’on notera aussi m′
i). Dans

la pratique, la masse m′
i qui s’applique sur si est donnée en terme d’une hauteur d’eau équivalente répartie

de manière homogène sur la surface si. Cette hauteur notée hw(i) varie pour chaque surface si et on a
donc : m′

i = ρwsihw(i). Le déplacement total au point A(ϕ, θ) est donné par la somme des contributions de
déplacement induites par chaque élément de la grille de charge. Le calcul de la convolution se fait alors en
discrétisant l’intégrale sur la surface S selon la grille de charge et l’Éq. (5.5) devient

ur(a, ϕ, θ) =
∑
i

¨
si

Gr(a, ψ(ϕ, θ, ϕ
i
c, θ

i
c))ρwhw(i)dsi,

=
∑
i

(¨
(ϕc,θc)∈si

Gr(a, ψ(ϕ, θ, ϕ
i
c, θ

i
c))ρwdsi(ϕc, θc)

)
hw(i),
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=
∑
i

(¨
(ϕc,θc)∈si

Gr(a, ψ(ϕ, θ, ϕ
i
c, θ

i
c))ρwa

2 sin(θic)dθcdϕc

)
hw(i),

=
∑
i

(
Gr(a, ψ(ϕ, θ, ϕ

i
c, θ

i
c))ρwa

2 sin(θic)

¨
(ϕc,θc)∈si

dθcdϕc

)
hw(i),

=
∑
i

(
Gr(a, ψ(ϕ, θ, ϕ

i
c, θ

i
c))ρwa

2 sin(θic)ΔθicΔϕi
c

)︸ ︷︷ ︸
gi(ϕ, θ, ϕ

i
c, θ

i
c)

hw(i),

(5.6)

où Δθic et Δϕi
c sont les dimensions de si respectivement en latitude et longitude 2. Ils sont aussi égaux à

la résolution en latitude et longitude de la grille si elle est régulière. On donne aussi les expressions du
déplacement horizontal pour lequel il est important de prendre en compte la fonction de projection le long
des axes Est et Nord respectivement, pour être compatible avec le repère local utilisé pour exprimer les
déplacements obtenus avec le GNSS.(

uψ,E(a, ϕ, θ)

uψ,N (a, ϕ, θ)

)
=

∑
i

(
Gψ(a, ψ(ϕ, θ, ϕ

i
c, θ

i
c))ρwa

2

(
sin(β)

− cos(β)

)
sin(θic)ΔθicΔϕi

c

)
hw(i), (5.7)

où on donne cos(β) et sin(β) en fonction de θ, θic, ϕ, ϕi
c et ψ via les relations dans un triangle sphérique⎧⎪⎪⎨⎪⎪⎩

cos(β) =
sin(θ) cos(θic)− sin(θic) cos(θ) cos(ϕ− ϕi

c)

sin(ψ)

sin(β) =
sin(θic) sin(ϕ− ϕi

c)

sin(ψ)

. (5.8)

Nous pouvons utiliser les deux modèles de fonctions de Green que nous avons déterminés dans la Partie IV.
Avec la fonction de Green pour une masse d’extension spatiale α non nulle, nous pouvons choisir
α telle que 2πa2(1− cos(α)) � π(aα)2 = dsi. Le calcul sera alors équivalent au modèle d’une masse s’étalant
de manière homogène sur la surface si

3. L’avantage d’utiliser une extension spatiale non nulle est que la
fonction de Green ne diverge pas lorsque ψ −→ 0, et nous pouvons calculer le déplacement en n’importe quel
point A de S (i.e. pour n’importe quel ψ).

En revanche, si on choisi d’utiliser la fonction de Green pour une masse de Dirac, cela revient à
concentrer la masse m′

i au centre de chaque surface si, c’est-à-dire en Ci. Dès lors, se pose le problème de
l’intégration de la fonction de Green lorsque le point A se trouve proche de Ci, c’est-à-dire proche de la
singularité induite par la distribution de Dirac. Une astuce consiste alors à subdiviser les cellules si voisines
de A en plusieurs sous-cellules que l’on note δsij telles que

∑
j

δsij = si. Chacune des sous-cellules δsij est

traitée comme si elle possédait elle-même une masse de Dirac en son centre égale à une fraction de la masse
m′

i : m′
ij = ρwδsijhw(i). De cette manière, en choisissant des subdivisions de plus en plus fines à mesures

que l’on s’approche de A, on peut atténuer en grande partie la singularité en Ci en la subdivisant en de
multiples singularités plus faibles. Il y a cependant une limite numérique à la subdivision et cette méthode
ne peut qu’approximer grossièrement le cas réel d’une fonction de Green d’extension spatiale non nulle. On
donne ici la formule considérant une subdivision supplémentaire j de si

ur(a, ϕ, θ) =
∑
i

⎛⎝∑
j

Gr(a, ψ(ϕ, θ, ϕ
ij
c , θ

ij
c )ρwa

2 sin(θijc )Δθijc Δϕij
c

⎞⎠hw(i) =
∑
i

gi(ϕ, θ, ϕ
i
c, θ

i
c)hw(i).

Nous choisissons de travailler avec la fonction de Green pour une masse d’extension non nulle. On peut alors
exprimer le déplacement attendu en chaque station du réseau de stations GNSS en fonction de la distribution
de charge m′(ϕ, θ) grâce aux Éqs. (5.6) et (5.7). Ces relations étant linéaires entre le déplacement et la charge,
on obtient un système linéaire possédant autant d’équations qu’il y a de stations. On peut écrire ce système

2. Attention, θic est bien la colatitude du point de charge ; si à la place on choisi de travailler avec des latitudes, on doit
échanger les fonctions cos par sin et les fonctions sin par cos dans toutes les formules de cette partie.

3. Attention, ce modèle présente tout de même un inconvénient puisque la charge est souvent répartie sur une grille au
pavage rectangulaire alors que le modèle de fonction de Green suppose sa répartition sur un disque. Cette erreur géométrique
est d’autant plus petite que la résolution de la grille est fine.
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sous forme matricielle pour obtenir le système (5.1). Le vecteur D contient les déplacements ur(ϕ, θ), la
matrice G les fonctions gi(ϕ, θ, ϕ

i
c, θ

i
c) et le vecteur M les charges en hauteur d’eau équivalente hw(ϕ

i
c, θ

i
c).

2.3 Choix de la grille de charge

Nous allons désormais nous pencher sur le choix d’une grille de charge (ou grille d’inversion) per-
tinente pour l’inversion des déplacements. Du choix de la grille de charge, dépend également le calcul de la
fonction de Green car la discrétisation de S change. Nous avons plusieurs choix possibles mais nous resterons
dans le cadre de grille dont les éléments sont rectangulaires mais sans être forcément réguliers. Nous pouvons
donc appliqué les formules de la Section 2.2.

Pour créer une grille régulière angulairement parlant, de résolution res en degrés, il suffit de diviser la
zone en surfaces rectangulaires d’aire Δϕi

c × Δθic = res × res. Il est évident que plus res est faible, plus le
nombre d’inconnue m est grand et donc plus les dimensions des matrices Γ et G seront importantes. Pour
des valeurs extrêmes de résolution, il est même possible que l’inversion de la matrice normale N soit trop
lourde numériquement.

Nous avons aussi fait le choix de créer une grille adaptative qui permet de mieux résoudre la charge, là
où la densité de stations (donc l’information sur le déplacement) est importante. En se basant sur une grille
régulière de res = 1°, nous avons donc subdivisé les éléments de grilles se trouvant dans les zones de forte
densité de stations en 4 (res = 0,5°) ou 16 (res = 0,25°) sous-éléments en fonction de la densité de stations.
Nous avons aussi choisi de raffiner la grille au niveau des côtes notamment pour que l’on puisse voir des
effets océaniques locaux éventuels non-modélisés lors du traitement GNSS.

Une grille adaptative se basant sur le réseau de stations de la Figure 1.7 et une grille régulière de résolution
1° × 1° sont représentées sur la Figure 5.1. Elles contiennent respectivement 8812 et 2310 éléments.

Fig. 5.1 – (a) Grille de charge adaptative (8812 points) basée sur le réseau GNSS de la Figure 1.7 que l’on
n’a pas représenté ici pour ne pas surcharger la figure. (b) Grille de charge régulière de résolution 1° × 1°
(2310 points).
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2.4 Matrice de régularisation

La matrice de Tikhonov que l’on choisit pour régulariser le problème est une matrice passe-haut permet-
tant de lisser le problème. On choisi l’opérateur différence qui pour chaque couple de points de grille, associe
la différence des hauteurs d’eau contenues dans M

Γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
...

. . .
...

. . .
...

. . .
1 −1

0 1 −1
...

...
. . .

...
...

. . .
0 1 −1

0 0 1 −1
...

...
...

. . .
0 0 1 −1

...

0 . . . . . . 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.9)

Cette matrice est de dimension m(m− 1)/2×m. L’Éq. (5.3) contraint alors la charge à être homogène sur
toute la surface. Cette contrainte est pondérée par la matrice de covariance V qui indique à quelle point
la contrainte peut être lâche. Plutôt que de construire V , nous donnons directement la matrice de poids
V −1 qui est diagonale de dimension m(m − 1)/2. Nous évaluons la rigidité de la contrainte en fonction de
la distance entre les points de la grille de charge : plus ils sont proches, plus la contrainte doit être forte
car plus la valeur de charge est sensée être similaire, donc plus V −1 doit être grande. La grille de charge
possède aussi des points dans l’océan qui sont complètement non contraints par les données car il n’y a pas de
stations dans l’océan. Nous contraignons alors d’autant plus les couples dont les deux points appartiennent
à l’océan que les couples dont les points appartiennent au continent. Pour les couples mixtes (un point dans
l’océan, l’autre sur le continent), nous appliquons soit une contrainte la plus lâche possible (poids nul) pour
indiquer que ces points sont complètement décorrélés, soit un poids non nul mais faible qui permet de faire
« fuiter » de la charge continentale dans l’océan. Ce dernier processus est important pour prendre en compte
l’étalement des effets de charge dans les zones côtières. Nous suivons la même démarche que dans Sabaka
et al. (2010), qui dérive des méthodes utilisées dans Luthcke et al. (2008) et Wu et al. (2009), pour définir
la matrice de poids V −1. Les coefficients diagonaux (qui sont les seuls non nuls) sont donnés par

V −1
kk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

exp

(
1− dij

Rc

)
, si (Ci,Cj) ∈ Continent

exp

(
1 + o− dij

Ro

)
, si (Ci,Cj) ∈ Océan

0 ou exp

(
1− dij

Roc

)
, si Ci ∈ Continent,Cj ∈ Océan

(5.10)

où Ci et Cj sont les centres des éléments de grille dont on fait la différence à la kème ligne de Γ (voir Éq. (5.9)).
Les distances caractéristiques de lissage sur les continents, les océans et les côtes sont notées respectivement
Rc, Ro et Roc. Le terme o est fixé à 1 dans notre étude et permet d’augmenter le poids moyen relatif de la
contrainte sur les océans par rapport au continent. Si les contraintes sont définies de la sorte, il reste une
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incertitude sur la masse absolue (seule la masse relative entre les points de grille est contrainte). En effet,
comme cela est décrit dans Sabaka et al. (2010), ajouter un vecteur constant M0 à la solution, ne changera
pas les équations de contraintes. Pour le cas d’une résolution à l’échelle du globe, il est facile d’ajouter une
contrainte stipulant que la somme des charges est globalement nulle (conservation de la masse totale). Pour
le cas d’une inversion régionale, la valeur absolue de la charge est complètement inconnue a priori et il est
alors préférable de se baser sur une solution de charge pré-existante. On note que sans cette contrainte sur
la valeur absolue, la matrice de régularisation P de dimension m×m, n’est que de rang m− 1.

2.5 Résumé

On peut détailler le système matriciel (5.1) avec l’équation suivante

2× n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

asta11
...

astan1

bsta11
...

bstan1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gload1sta1 . . . gloadmsta1 0 . . . 0
...

...
...

...
gload1stan . . . gloadmstan 0 . . . 0

0 . . . 0 gload1sta1 . . . gloadmsta1
...

...
...

...
0 . . . 0 gload1stan . . . gloadmstan

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aload11
...

aloadm1

bload11
...

bloadm1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
2×m. (5.11)

On peut donc décomposer la solution en deux sous systèmes indépendants (l’un pour les coefficients a1,
l’autre pour les coefficients b1) et/ou utiliser la notion de matrice par blocs afin de simplifier les opérations
matricielles à venir. On note que la matrice de Green est la même que l’on considère les déplacements a1
ou b1, car elle ne dépend que des positions des stations et des positions des éléments de la grille d’inversion.
Pour la détermination de M (et seulement pour cela), il est même possible d’utiliser la notation complexe
a1 + ib1 afin de n’inverser qu’un système de taille n×m mais possédant des valeurs complexes. On retrouve
alors les mêmes résultats que ceux donnés par l’Éq. (5.11).

3 Inversion de déplacements GNSS synthétiques

Nous allons tester ici l’impact de l’hyperparamètre λ et des différents paramètres de lissage introduits
dans la Section 2.4. Pour cela nous procédons à l’inversion de déplacements Dgrace calculés en résolvant le
problème direct Dgrace = GMgrace à partir d’une solution de charge GRACE. Nous pouvons alors comparer
la solution de l’inversion avec la charge originale de GRACE notée Mgrace, qui joue le rôle de valeur de
contrôle. Nous utilisons la solution GRACE du GSFC (RL06_v1) car elle contient les incertitudes sur les
charges GRACE permettant de définir la matrice W .

En prévision de l’inversion des déplacements GNSS (voir Section 6), nous choisissons de déterminer ces
déplacements sur les positions des stations GNSS du réseau. Nous recréons donc le problème de l’inhomogé-
néité du réseau à travers ces déplacements GNSS synthétiques, pouvant introduire des biais particulièrement
importants comme nous ne verrons dans la suite.

Comme cela est expliqué dans la Section 2.1, nous avons extrait les amplitudes des termes sinusoïdaux
annuels de la solution GRACE et nous les avons interpolé sur une grille d’inversion régulière ou adaptative
pour former le vecteur Mgrace. On réalise alors l’inversion des déplacements synthétiques sur la même grille
que celle utilisée pour Mgrace, tout en faisant varier les hyperparamètres utilisés dans la régularisation. On
représente de manière équivalente l’écart entre la solution de l’inversion M et Mgrace grâce à l’une des deux
méthodes proposées ci-dessous.

• La première consiste à tracer sur une carte la valeur de M et la comparer directement à Mgrace.

• La seconde est moins visuelle mais plus riche en information. Elle consiste à remplacer Dgrace dans
l’Éq. (5.4) par son expression en fonction de Mgrace. On a alors l’équation suivante
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M = (GTW−1G+ λP )−1 GTW−1Dgrace,

= (GTW−1G+ λP )−1 GTW−1GMgrace,

= FMgrace.

(5.12)

Représenter la matrice F , permet d’avoir une idée de la relation matricielle qui relie la solution calculée
et le modèle d’origine. Par exemple, nous voyons que si λ = 0 (i.e. il n’y a pas de régularisation), la
matrice F est réduite à l’identité. Par contre si λ �= 0, il sera intéressant de voir à quel point F

s’écarte de l’identité en fonction de la valeur que nous donnons aux hyperparamètres. Par rapport à
la représentation cartographique précédente, la représentation de F permet aussi d’avoir accès aux
corrélations spatiales entre les éléments de la grille de charge induites par le processus d’inversion. Ces
informations sont données par les éléments hors diagonale. Une ligne de la matrice F peut donc être
vue comme la fuite (ou le leackage) de la masse depuis la tuile qui est sur la diagonale, vers les autres
tuiles de la grille d’inversion.

Nous donnons dans un premier temps le résultat d’une inversion de ces déplacements synthétiques issus de
GRACE sur une grille adaptative (Figure 5.2), dont le choix des paramètres sera justifié dans la Section 4.
L’amplitude du signal annuel est donné en centimètres de hauteur d’eau équivalente (cmwe) et la phase
correspond au mois de l’année où la charge est maximale. Nous avons choisi d’inverser la charge sur une
région bien plus large que celle définie par l’empreinte spatiale du réseau de stations pour éviter les effets de
bords. En effet, les déplacements des stations les plus à l’Est sont fortement impactés par la charge annuelle
importante en Russie liée au climat continental fort et à l’anticyclone Sibérien. Ne pas inverser la charge sur
la zone russe pourrait alors amener toute cette charge à se concentrer sur le bord de la grille ou dans des
zones mal contraintes. Nous avons fait de même pour la Turquie et l’Afrique du Nord, qui possèdent elles
aussi un signal de charge relativement fort. On veille toutefois à ne pas trop étendre la grille dans les zones
non couvertes par le réseau car le manque d’information croissant pourrait induire de fortes erreurs sur le
résultat, et ce même dans les zones denses en stations. Ces problèmes de bords disparaissent complètement
si l’on inverse la charge sur toute la Terre (Wu et al., 2003, 2006).

Fig. 5.2 – Cycle annuel de la charge déterminé par l’inversion des déplacements synthétiques issus de
GRACE avec la solution GSFC RL06_v1 sur une grille adaptative. Les paramètres d’inversion ont été
choisis arbitrairement et sont reportés sur la figure. La carte de phase représente le mois de l’année où la
charge est la plus importante.

Nous pouvons également représenter les données sous la forme de la matrice F − Id (Figure 5.3), pour
voir quels sont les écarts de chaque point de grille à la solution originale. Pour une grille adaptative, il est
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difficile d’organiser efficacement les points de grille en fonction de leur position spatiale sur le vecteur M .
C’est le désavantage de cette représentation des résultats avec laquelle l’organisation spatiale de la grille
n’est pas visible explicitement. Nous lisons cette matrice ligne par ligne. Une ligne correspond aux facteurs
multiplicatifs par lesquels on multiplie la solution originale Mgrace pour arriver à la solution issue de l’inversion
M . On s’attend à ce que les coefficients diagonaux soient inférieurs à 0 car la régularisation implique que de la
masse ait été prélevée à la solution originale (éléments diagonaux) pour être dispersée sur les autres éléments
de grille environnants (éléments hors-diagonale) qui présentent donc des valeurs légèrement supérieures à
0. Plus on donne d’importance au lissage (donc aux contraintes) dans l’inversion, plus cette fuite de masse
entre les éléments de grille à partir de la solution originale est importante.

Fig. 5.3 – Cycle annuel de la charge déterminé par l’inversion des déplacements synthétiques issus de
GRACE avec la solution GSFC RL06_v1, représentés sous la forme matriciel de l’écart à l’identité de F .

Nous allons maintenant étudier comment varie la solution si l’on change la grille d’inversion utilisée dans
l’inversion ou que l’on change les valeurs des hyperparamètres.

3.1 Influence de la grille d’inversion

Nous voulons voir quel est l’impact d’une modification de la grille d’inversion sur la solution. Pour cela, on
fixe les paramètres d’inversion aux valeurs qui seront justifiées dans la Section 4 (λ = 1× 10−6, Rc = 120 km,
Ro = 300 km et Roc = 40 km) et on calcule l’inversion sur la grille adaptative présentée sur la Figure 5.1a
(notée ADP), la grille régulière de résolution 1° présentée sur la Figure 5.1b (notée REG_1.0) et une grille
régulière de résolution 0,5° (notée REG_0.5). Les résultats obtenus sont présentés sur la Figure 5.4. On
constate que plus la résolution de la grille régulière augmente, plus la solution obtenue est lisse mais plus les
dimensions du système grandissent et donc plus le temps de calcul est long (on multiplie par 4 les dimensions
des vecteurs et des matrices en divisant par 2 la résolution). L’inversion sur la grille REG_1.0 possède des
fuites importantes entre continent et océan et la résolution ne permet pas de résoudre correctement les
régions continentales de faible étendue spatiale comme l’Italie, le Sud de la Grèce et les îles (Baléares, Sicile,
Crête, etc.). Les inversions sur les grilles ADP et REG_0.5 sont proches malgré le fait que la première semble
mieux résolue localement (Espagne et France).
Étant données les différences observées, il semble clair que les paramètres optimaux d’inversion seront diffé-
rents en fonction de la grille d’inversion utilisée. Dès lors, il convient de se tenir à une seule grille et établir
les résultats en fonction de celle-ci. Nous choisissons la grille adaptative ADP dans toute la suite car elle a
l’avantage de concentrer la précision là ou l’information est dense, d’être performante sur le rapport [pré-
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Fig. 5.4 – Cycle annuel de la charge déterminé par l’inversion des déplacements synthétiques issus de
GRACE sur la grille adaptative de la Figure 5.1a (a & d), sur une grille régulière de résolution 0,5° (b & e),
et de résolution 1° (c & f). Les paramètres d’inversion sont fixés à λ = 1× 10−6, Rc = 120 km, Ro = 300 km
et Roc = 40 km.

cision maximale/temps de calcul] et d’être particulièrement bien adaptée à la technique du lissage variable
que nous développerons dans la Section 5.

3.2 Influence des paramètres de lissage

Nous avons représenté sur la Figure. 5.5 les cartes d’inversion des déplacements synthétiques issus de
GRACE sur la grille ADP, dont les paramètres λ et Rc varient et les autres sont fixés à Ro = 300 km et
Roc = 40 km.

On observe d’une part que plus λ est petit, plus la valeur globale de la charge est importante. On retrouve
cela mathématiquement car M est quasiment proportionnel à λ−1. Nous voyons aussi que plus Rc augmente,
plus la charge est lissée et donc plus la solution est homogène spatialement. Les hyperparamètres optimaux
se situent quelque part dans les intervalles de valeurs donnés sur la Figure 5.5, mais il est néanmoins difficile
à ce stade d’en extraire une solution optimale. Si ces intervalles de valeurs sont relativement large (on est
dans un rapport de 1 à 5 pour Rc et sur 4 ordres de grandeur pour λ), c’est pour donner une idée de la
variabilité de la solution et pouvoir restreindre notre recherche des paramètres optimaux à des valeurs pour
lesquelles les solutions sont à première vue « acceptables ».

Nous représentons également la variation de Roc en fonction de celle de Rc sur la Figure 5.6 pour
Ro = 300 km et λ = 1× 10−6 fixés. On voit que le paramètre de fuite de masse sur l’océan agit surtout sur
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Fig. 5.5 – Amplitudes du cycle annuel de la charge déterminées par l’inversion des déplacements synthétiques
issus de GRACE avec la solution GSFC RL06_v1,. Les paramètres Ro = 300 km et Roc = 40 km sont fixés,
tandis que λ et Rc varient respectivement entre 1× 10−8 et 1× 10−4, et 50 km et 250 km.
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Fig. 5.6 – Amplitudes du cycle annuel de la charge déterminées par l’inversion des déplacements synthétiques
issus de GRACE avec la solution GSFC RL06_v1,. Les paramètres λ = 1× 10−6 et Ro = 300 km sont fixés,
tandis que Roc et Rc varient respectivement entre 10 km et 70 km, et 50 km et 250 km.
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l’Est de l’Europe et en particulier sur le bassin de la Mer Noire et ses environs (Turquie, Roumanie). Les
changements ne sont par contre que peu visibles sur l’océan Atlantique ou la Mer Méditerranée à cause de
leurs dimensions importantes : l’effet de fuite est dilué spatialement à cause du fort lissage sur l’océan. Ce
paramètre a aussi de l’influence sur les régions de faible étendue spatiale comme la péninsule scandinave,
l’Italie et la Grande-Bretagne, dont la charge continentale diminue sensiblement à mesure que le paramètre
Roc augmente.

Les variations des paramètres de lissage (on y inclut le paramètre λ) induisent donc des variations
importantes de la solution obtenue et il convient de trouver des critères objectifs permettant de trouver
les paramètres optimaux pour réaliser l’inversion et donner un sens à l’interprétation des cartes de charge
obtenues.

4 Critères objectifs pour le choix des hyperparamètres

Déterminer simultanément les 4 hyperparamètres de manière objective est difficile car cela requiert d’uti-
liser un critère qui vaut pour tous et d’appliquer ce critère pour trouver le bon jeu de paramètres dans
un espace à 4 dimensions ce qui demande un temps de calcul conséquent. Il est par contre très courant
dans la littérature de considérer comme primordiale la détermination de l’hyperparamètre λ car c’est à tra-
vers lui que l’on modifie le poids relatif entre les données et les contraintes. Pour cela, diverses méthodes
ont été développées complémentairement (Matthews & Segall, 1993; Hansen, 1998; Fukuda et al., 2008),
de sorte à établir des critères objectifs dans la détermination de λ. Nous allons développer les trois plus
connues (ABIC, Generalized Cross-validation et Trade-Off curve) dont deux se basent sur la minimisation
de fonctions scalaires adaptées.

Pour déterminer λ, nous devons d’abord fixer les autres paramètres. Comme cela a été évoqué dans la
Partie I, La distance inter-stations varie entre 70 et 190 km. Nous choisissons donc un compromis en fixant
Rc à 120 km. Dans l’océan, où les variations annuelles de la charge sont faibles, l’absence de stations nous
impose de lisser beaucoup. Nous choisissons donc Ro = 300 km. Enfin, nous faisons fuiter la masse entre le
continent et l’océan grâce à un rayon de lissage Roc de 40 km pour tenir compte du fait que la longueur
caractéristique des échanges entre bassin continental et océanique sur la grille ADP est compris entre la taille
d’une tuile de résolution 0,25° (� 25 km) et celle d’une tuile de résolution 0,5° (� 50 km).

Enfin, nous verrons qu’il est possible de faire varier les paramètres de lissage Rc, Ro et Roc en se basant
sur la grille adaptative sur laquelle nous inversons les données. Le lissage devient alors dépendant de la
quantité d’information locale et permet donc d’augmenter la précision dans les zones de forte densité de
stations, et de la diluer dans les zones où il y a peu de données.

4.1 Fonction ABIC

La fonction ABIC (Akaike Bayesian Information Criterion) (Akaike, 1980) a été utilisée dans l’inversion
des problèmes de glissements ou de déplacements le long des failles lors d’événements sismiques (Yabuki &
Matsu’Ura, 1992; Fukuda et al., 2008). Elle permet de choisir les hyperparamètres de l’inversion en utilisant
une méthode pseudo-bayésienne. Le résultat optimal est le paramètre maximisant la probabilité de retrouver
les données initiales D après inversion. On note cette probabilité P(D|λ). On considère alors la fonction
ABIC (Akaike, 1980)

ABIC(λ) = −2 log[P(D|λ)] + 2Nh, (5.13)

où Nh est le nombre d’hyperparamètres considérés (ici 1). Pour maximiser P(D|λ), il faut alors minimiser
ABIC. Pour un problème ne faisant intervenir que des distributions de la probabilité gaussiennes, on a

P(D|λ) ∝ λ2(m−1)/2|GTW−1G+ λP |−1/2 exp

(
−1

2
f(M)

)
, (5.14)

où le terme λ2(m−1)/2 vient du facteur de normalisation dans lequel
√
λ est prit à la puissance p = 2(m− 1)
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où p est le rang de la matrice P 4. On définit aussi

f(M) = (D −GM)TW−1(D −GM) + λM
T
PM. (5.15)

La fonction ABIC peut donc s’écrire

ABIC(λ) = −2(m− 1) log(λ) + log(|GTW−1G+ λP |) + f(M) + C, (5.16)

avec C une constante. Il est courant dans les études bayésiennes de rajouter un hyperparamètre jouant le
rôle de facteur d’échelle multipliant la matrice des poids W (Fukuda et al., 2008). Ce nouveau paramètre
permet en effet de pondérer la matrice de covariance de la distribution de probabilité associée au résultat
de l’inversion bayésienne M . Ce paramètre n’a par contre aucun effet sur la solution M car il multiplie et
divise à la fois l’Éq. (5.4).

D’un point de vue technique, le calcul du déterminant peut être difficile numériquement et il peut être
nécessaire de faire appel à des fonctions permettant directement le calcul du logarithme du déterminant
(numpy.linalg.slogdet sur Python). Nous représentons la fonction ABIC pour l’inversion des déplacements
synthétiques issus de GRACE sur la Figure 5.7. On peut alors déterminer le minimum de la courbe, c’est-à-
dire le paramètre λ optimal du point de vue de ce critère : λABIC = 2,51× 10−6. On remarque que pour les
petites valeurs de λ, la courbe possède une asymptote de pente négative. Comme l’axe des abscisses est tracé
en échelle logarithmique, on peut en déduire que la fonction ABIC est dominée par le terme proportionnel
à − log(λ). Pour les grandes valeurs de λ, la fonction ABIC possède une asymptote horizontale, et on peut
en déduire que c’est le terme non logarithmique f(M) qui domine. Dans la zone intermédiaire où se situe le
minimum, la contribution des différents termes est plus dure à déterminer.

Fig. 5.7 – (a) Fonction ABIC en fonction de λ avec un zoom (b) sur la zone autour du minimum de la
courbe correspondant à λABIC = 2,51× 10−6.

4.2 Generalized Cross Validation (GCV)

La méthode GCV est une méthode employée par beaucoup d’études qui impliquent l’inversion de données
sismiques et de déplacements pour retrouver la distribution de glissement le long de failles (Matthews &
Segall, 1993; Freymueller et al., 1994; Hreinsdóttir et al., 2003; Fukuda et al., 2008). L’étude de Bazán
(2015) propose une méthode dérivée plus complète mais plus complexe à appréhender et à mettre en œuvre.
La méthode GCV consiste à réaliser l’inversion du système en fixant λ, mais en enlevant une donnée du
vecteur D. On peut ensuite calculer les données prédites par le modèle que l’on vient d’inverser et calculer
un résidu entre les données vraies et les données prédites. On refait le processus en enlevant une autre donnée
à la place de la précédente, et on réitère l’opération en enlevant tour à tour chacune des données de D. Cette
méthode, appelée Jackknife, a été particulièrement utilisée en machine learning pour tester la robustesse
de l’apprentissage, bien qu’elle soit maintenant largement remplacée par des méthodes de type bootstrap.

4. Attention la matrice P est une matrice par bloc (comme G dans l’Éq. (5.11)) et est donc de dimension 2m× 2m.
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On considère alors la fonction qui prend en argument la somme de la norme des résidus au carré, qui doit
donc être minimisée dans le sens où l’on veut que la méthode nous donne le paramètre λ qui permet prédire
au mieux les déplacement que l’on a tour à tour retirés du jeu de donnée. On définit donc

GCV(λ) =

n∑
i=1

‖D −D(i)(λ)‖2 =
n∑

i=1

‖D −GM (i)(λ)‖2, (5.17)

où M (i) est le vecteur de charge estimé par la méthode des moindres carrés régularisés à partir du vecteur
déplacement auquel on a enlevé la ième donnée (ou ligne), et D(i) le vecteur déplacement complet prédit par
cette inversion. On doit donc répéter l’inversion n fois pour chaque paramètre λ choisi et trouver ensuite
le minimum de la fonction GCV. Une telle méthode étant très coûteuse en ressource, on pourra utiliser
le résultat démontré par Wahba (1990). En notant Dpred le déplacement prédit par l’inversion régularisée
« totale » (i.e. avec D complet), et ei = Di −Dpred,i, la ième composante de l’erreur entre la vraie donnée et
la donnée prédite par l’inversion, on peut écrire

GCV =
∑
i

(
ei(λ)

1−Hii(λ)

)2

, (5.18)

où la matrice H est la matrice de prédiction des données, définie telle que

Dpred = GM,

= G(GTW−1G+ λP )−1GTW−1D,

= HD,

(5.19)

qui dans le meilleur des cas doit être égale à l’Identité. Elle joue le même rôle que la matrice F , non plus
pour la prédiction de la charge, mais des données. Grâce à ce lemme astucieux, on passe de n inversions à
calculer, à une seule. Plus le paramètre λ est proche du paramètre optimal, plus le terme ei est faible. Aussi,
on contrebalance cela avec le terme au dénominateur qui donne de l’importance aux coefficients diagonaux de
Id−H uniquement. Nous représentons la fonction GCV pour l’inversion des déplacements synthétiques issus
de GRACE sur la Figure 5.8. On peut alors déterminer le minimum de la courbe, c’est-à-dire le paramètre
λ optimal du point de vue de ce critère : λGCV = 3,55× 10−8.

Fig. 5.8 – (a) Fonction GCV en fonction de λ avec un zoom (b) sur la zone autour du minimum de la courbe
correspondant à λGCV = 3,55× 10−8.

4.3 Trade-off curve

La Trade-off curve (ou en français « courbe de compromis ») est une méthode décrite par Hansen (1998),
qui minimise à la fois la norme de l’erreur entre les données et les données prédites par l’inversion ‖D−GM‖2W ,
et à la fois la norme de l’erreur induite sur les contraintes imposées lors de l’inversion ‖ΓM‖2V . Chaque
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inversion réalisée pour un hyperparamètre différent correspondra à un nouveau point dans l’espace défini par
ces deux normes, comme on le voit sur la Figure 5.9. Ainsi la courbe est une fonction continue du paramètre
λ. Si la solution est sous-régularisée (λ petits), on aura tendance à avoir une bonne correspondance avec
les données mais des contraintes moins bien respectées (‖D − GM‖2W est petit et ‖ΓM‖2V est grand) : on
est sur la partie quasi-verticale de la courbe. A l’inverse, la solution est sur-régularisée si λ est grand donc
si les contraintes sont bien respectées mais que les données sont mal prédites (‖D − GM‖2W est grand et
‖ΓM‖2V est petit) : on est sur la partie quasi-horizontale de la courbe. Au carrefour de ces deux situations,
on rencontre une zone où les deux normes semblent toutes les deux minimisées, correspondant à la zone où
la courbe forme un « coude ». Les paramètres λ correspondants à cette zone seront donc de bons compromis
pour que l’on retrouve correctement à la fois les équations de contraintes et les données. Cette méthode a le
désavantage d’être assez subjective dans la détermination de λ et n’est employée que pour donner au mieux
des ordres de grandeurs (Fu et al., 2015). Nous obtenons une estimation de λ égale à (3± 1)× 10−7 par la
construction géométrique que l’on a représentée sur la Figure 5.9b.

Fig. 5.9 – (a) Trade-off curve et un zoom (b) autour de la zone formant un « coude » , correspondant à
λT−O = (3± 1)× 10−7.

4.4 Résultats

Nous représentons sur la Figure 5.10 les résultats des inversions correspondantes aux valeurs de λ que l’on
a déterminé au moyen des trois critères précédemment expliqués. Nous voyons que les trois critères donnent
des solutions relativement proches alors que les paramètres peuvent différer de deux ordres de grandeurs. On
observe tout de même des différences localisées sur l’amplitude du signal. La solution correspondante au juste
milieu entre les trois est proche de celle donnée par la méthode du Trade-Off. Sur cette dernière, la région
scandinave est assez bien résolue tandis que la zone occidentale n’est pas trop bruitée. La Grande-Bretagne
garde un signal d’amplitude quasi-nulle et on voit à l’Est un signal correspondant à l’anticyclone Sibérien.
Par contre, la charge sur le Sud des Balkans est clairement surestimée par rapport à la solution GRACE
originale. La régularisation dans cette zone pauvre en stations a en effet induit une fuite de charge depuis
la Turquie sur les Balkans. La Turquie se trouve donc dépossédée d’une partie de son signal notamment
à l’Est. L’Afrique du Nord n’est absolument pas contrainte et joue le rôle de tampon d’où les variabilités
importantes que l’on observe mais qui n’ont pas de sens physique si ce n’est qu’elles proviennent du lissage.

5 Lissage variable

Les techniques précédentes nous ont permis d’ajuster au mieux l’hyperparamètre λ, en fixant les autres
paramètres de lissage. Étant donnée la disparité d’information qui existe entre les régions riches et pauvres
en stations, on pourrait aussi penser à faire varier ces paramètres en fonction de la densité de stations. Par
exemple, il serait pertinent de moins lisser la solution, là où il y a beaucoup d’information et à l’inverse, de
lisser d’avantage les régions pauvres en stations. Pour cela, il est nécessaire de déterminer l’échelle spatiale et
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Fig. 5.10 – Cycle annuel de la charge déterminé par l’inversion des déplacements synthétiques issus de
GRACE avec les paramètres λ optimaux déterminés par les différents critères énoncés dans la Section 4.

l’amplitude des variations des paramètres d’un point de vue objectif. On peut postuler simplement que c’est
la résolution de la grille (dont la résolution dépend en effet de la densité de station) qui fixera la longueur
caractéristique du lissage. On va pouvoir ainsi moduler les paramètres en modifiant l’Éq. (5.10). On définit
la matrice de poids diagonale V ′−1 telle que :

V ′−1
kk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min(resi, resj)× exp

(
1− dij

Rc min(resi, resj)

)
, si (Ci,Cj) ∈ Continent

min(resi, resj)× exp

(
1 + o− dij

Ro min(resi, resj)

)
, si (Ci,Cj) ∈ Océan

min(resi, resj)× exp

(
1− dij

Roc min(resi, resj)

)
, si Ci ∈ Continent,Cj ∈ Océan

(5.20)

où Ci et Cj sont les centres des éléments de grille qui sont comparés (i.e. dont on fait la différence via
l’opérateur Γ). Le fait que l’on multiplie l’exponentielle par la résolution permet de faire varier la valeur de λ

en fonction des éléments de grille qui sont considérés. Le fait que l’on multiplie les distances caractéristiques
de lissage par la résolution permet de les diminuer lorsque la résolution est bonne et de les augmenter lorsque
la résolution est mauvaise. Le facteur de variabilité est choisi comme le minimum des résolutions des deux
éléments de grille pour favoriser le lissage moindre de la solution. D’autres versions de ce lissage variable
ont néanmoins été testées (notamment sans la multiplication de l’exponentielle par la résolution, ou alors en

140



5. Lissage variable

multipliant par le maximum des résolution plutôt que le minimum) mais c’est celle que nous avons présentée
dans l’Éq. (5.20) qui nous paraît la plus légitime pour la démarche que nous avons choisie.

Nous avons donc pris dans un premier temps les mêmes valeurs que précédemment pour Rc = 120 km,
Ro = 300 km et Roc = 40 km. Nous avons également testé de modifier ces valeurs car le lissage variable permet
plus de flexibilité sur le choix des paramètres, grâce au fait que l’on lisse seulement là où c’est nécessaire.
Nous pouvons choisir des rayons de lissage bien plus petits, par exemple : Rc = 50 km Ro = 100 km et
Roc = 25 km. Nous avons pris 50 km pour modéliser la demi-distance inter-station moyenne et 25 km qui
correspond environ à la plus petite résolution spatiale de la grille adaptative que nous utilisons. Dans les deux
cas, nous choisissons λ en appliquant les mêmes critères que ceux que l’on a décrit précédemment (ABIC,
GCV, Trade-off curve) de manière à comparer ces valeurs avec celles que l’on a obtenues en considérant un
lissage « fixe 5 ».

5.1 Comparaison des techniques de lissage

Nous résumons dans le Tableau 5.1 les résultats sur la détermination des hyperparamètres par les différents
critères ABIC, GCV, Trade-off curve, pour une inversion au lissage fixe (régit par l’Éq. (5.10)) et une
inversion au lissage variable (régit par l’Éq. (5.20)). L’indice (1) correspond au trio de valeurs [Rc = 120 km,
Ro = 300 km, Roc = 40 km] et l’indice (2) à [Rc = 50 km Ro = 100 km, Roc = 25 km].

Méthode λABIC λGCV λT−O

(1) Lissage fixe (Éq. (5.10)) 2,51× 10−6 3,55× 10−8 (3± 1)× 10−7

(1) Lissage variable (Éq. (5.20)) 2,24× 10−4 3,55× 10−6 (5± 1)× 10−5

(2) Lissage variable (Éq. (5.20)) 3,16× 10−3 3,54× 10−5 (2,5± 1,0)× 10−4

Tab. 5.1 – Valeurs optimales de l’hyperparamètre λ au vu des différents critères décrit dans cette section,
en fonction de la méthode de lissage et pour des paramètres de base valant : (1) Rc = 120 km, Ro = 300 km,
Roc = 40 km et (2) Rc = 50 km, Ro = 100 km, Roc = 25 km.

On remarque que la valeur optimale de λ (que l’on notera aussi λopt) se situe dans un intervalle de 2
ordres de grandeurs entre les différents critères tel que λABIC < λT−O < λGCV et tel que ces 3 paramètres
soient systématiquement espacés d’environ un ordre de grandeur.

On remarque aussi que les valeurs de λ varient de plusieurs ordres de grandeurs entre les différentes
techniques de lissage. La différence entre les cas de lissage variable (1) et (2) confirme le fait que le paramètre
λopt est fortement dépendant des autres paramètres de lissage qui ont été fixés (en l’occurrence Rc, Ro et
Roc). Nous voyions déjà ce résultat apparaître dans les Figures 5.5 et 5.6, où plus Rc et Roc diminuent,
plus la valeur de λ doit augmenter pour compenser la perte de lissage sous-jacente à la diminution des deux
paramètres précédents. Étant donnée l’importance des variations de λopt avec les autres paramètres, nous
avons décidé de chercher une approche objective permettant la détermination d’une configuration optimale
de l’ensemble des paramètres conjointement en utilisant les critères de la Section 4.

5.2 Détermination conjointe de λ, Rc et Roc

La fonction ABIC a été établie uniquement pour chercher le paramètre λ et ne peut donc être utilisée.
La Trade-Off curve pourrait être utilisée mais la méthode de détermination des paramètres optimaux par
la méthode graphique est très chronophage et non-automatisable ce qui est problématique pour le nombre
important de configurations différentes à tester. Nous utilisons donc la méthode GCV, car elle constitue
un choix objectif pour n’importe quel paramètre de lissage et qu’elle est facilement automatisable pour un
grand nombre de tests dans l’espace des paramètres. Nous avons testé 36 × 14 × 14 = 7056 combinaisons
pour les trois paramètres λ, Rc et Roc, en fixant une première fois le paramètre Ro à une valeur de 300 km

et une seconde fois à une valeur de 100 km. Nous obtenons les paramètres optimaux au sens de GCV dans
chacun des cas et nous appelons respectivement ces deux lots de paramètres (1′) (pour Ro = 300 km) et (2′)
(pour Ro = 100 km). Ces paramètres sont reportés dans le Tableau 5.2 et comparés avec ceux obtenus par
la méthode GCV dans les cas (1) et (2).

5. Il faut comprendre l’adjectif fixe par opposition à variable.
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Hyperparamètres
(1) (2) (1′) (2′)(lissage variable)

λGCV 3,55× 10−6 3,54× 10−5 3,98× 10−7 5,62× 10−6

Rc 120 km 50 km 275 km 125 km
Roc 40 km 25 km 70 km 35 km
Ro 300 km 100 km 300 km 100 km

Tab. 5.2 – Hyperparamètres optimaux au sens de la GCV des 4 lots utilisés pour une inversion avec lissage
variable. Les seuls paramètres qui ont été optimisés dans chaque cas sont reportés en rouge, les autres ayant
été fixés arbitrairement.

On remarque que les rayons de lissage déterminés dans les cas (1′) et (2′) sont systématiquement supé-
rieurs à ceux des cas (1) et (2), allant jusqu’à plus que doubler pour Rc, tandis que les valeurs de λ sont, à
l’inverse, toujours plus faibles d’environ un ordre de grandeur. Le critère GCV étant un critère se basant sur
la bonne prédictibilité des déplacements, il n’est pas étonnant de voir cette méthode privilégier globalement
les faibles valeurs de λ qui font apparaître des effets de charge très localisés au niveau des emplacements des
stations comme on le voit sur la Figure 5.5, tandis que les hautes valeurs de Rc servent à diminuer l’impact
des effets de bord conséquents.

5.3 Résumé

Nous représentons sur la Figure 5.11 les amplitudes des cycles annuels de charge issues des inversions
pour un lissage variable correspondant aux différentes situations que nous avons explorées pour ajuster les
hyperparamètres. On représente en premier lieu la carte de charge originale de la solution GRACE du GSFC,
puis les inversions des déplacements synthétiques issus de GRACE obtenues pour les lots de paramètres (1′)
et (2′) déterminées par GCV. Enfin, nous donnons les résultats des inversions utilisant les lots (1) et (2)

dont les valeurs optimales de λ ont été obtenues par chacun des trois critères énoncés dans la Section 4.
On voit que la qualité des solutions varie substantiellement entre les différents lots de paramètres. Les

deux solutions issues de la détermination conjointe des paramètres λ, Rc et Roc par la méthode GCV sont
proches et ne diffèrent que sur les mers intérieures comme la Mer Noire, la Mer Égée, l’Adriatique ou la
Mer Baltique. Ceci est bien-entendu lié à la différence importante des valeurs de Ro entre les deux. On
retrouve clairement le fait que les solutions calculées avec les paramètres optimaux au sens de la GCV
possèdent des signaux forts et isolés au niveau des stations, ce qui s’explique par la nature du critère comme
nous l’avons discuté plus haut. Les résultats les plus proches de la solution originale sur le continent sont
ceux obtenus avec la méthode ABIC, bien qu’elle possède des failles notamment sur la Scandinavie ou la
Turquie. Malgré un lissage faible, les solutions obtenues par GCV s’avèrent être plus réalistes dans les régions
cités précédemment où ABIC échoue à restituer la solution originale. Enfin la solution issue des courbes de
Trade-Off semble être un bon compromis entre la solution ABIC et la solution GCV, tout en restant proche
de la solution originale. On remarque aussi que les inversions obtenues avec le jeu de paramètres (2) sont
quasiment identiques aux solutions (1) sur le continent mais sont globalement meilleures sur la charge des
mers intérieures quasi-fermées (sauf la Méditerranée) grâce à la faible valeur de Ro. Au vu de la variabilité
des résultats, nous testerons par la suite l’ensemble de ces lots de paramètres pour l’inversion du cycle annuel
extrait des séries temporelles de déplacement GNSS.

6 Inversion des déplacements GNSS

Après avoir testé le processus d’inversion ainsi que les différentes manières de rechercher les hyperpara-
mètres optimaux de régularisation et de lissage, nous inversons le cycle annuel extrait des séries temporelles
de déplacement GNSS afin d’obtenir la carte de charge correspondante. Dans un premier temps, nous estime-
rons la carte de charge issue des déplacements GNSS uniquement. Puis nous verrons que les résultats obtenus
avec le GNSS peuvent être améliorés en contraignant la charge avec celle de GRACE et ainsi donner une
solution plus générale en tenant compte des apports -notamment locaux- du GNSS. Enfin nous réaliserons
une inversion conjointe avec GRACE afin de pouvoir pondérer les deux techniques en amont du processus
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Fig. 5.11 – Résumé des résultats sur l’inversion des déplacements annuels synthétiques issus de GRACE
pour différents lots de paramètres optimaux donnés dans les Tableaux 5.1 et 5.2. Les paramètres optimisés
ont été annotés avec le symbole (*). Nous avons représenté en (a) la carte de charge originale de la solution
GRACE utilisée.

d’inversion de manière plus rigoureuse. Néanmoins pour le cas que nous étudierons ici, l’inversion conjointe
sera en fait dérivée non pas des données brutes de GRACE (lien KBRR et orbite) mais simplement des
déplacements reconstitués comme dans la Section 3. Il s’agit donc plutôt de greffer facilement GRACE dans
le processus de détermination d’une solution GNSS.
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6.1 Inversion des déplacements verticaux GNSS seuls

Nous comparons dans un premier temps les inversions avec lissage variable dont les paramètres ont été
établis dans la Section 5. Nous considérerons les situations (1′), (2′) et les situations (1) et (2) pour chacune
des trois méthodes d’estimation des paramètres (ABIC, GCV, Trade-Off). Nous obtenons donc 8 cartes de

Fig. 5.12 – Amplitudes du cycle annuel de la charge déterminées par l’inversion des déplacements GNSS
seuls pour les différents lots de paramètres optimaux considérés dans la Section 5.3. Nous avons représenté
en (a) la carte de charge originale de la solution GRACE du GSFC.
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charges dont les amplitudes annuelles sont représentées sur la Figure 5.12 6. On remarque que le haut niveau
de bruit spatial existant sur les déplacements GNSS est reporté sur les solutions de charge. Et ce, malgré le
fait d’avoir déterminé les hyperparamètres optimaux en utilisant le même réseau de stations que le réseau
GNSS. L’estimation des paramètres par la méthode GCV résulte en une solution à la variabilité spatiale plus
forte que les solutions issues des optimisations par ABIC ou Trade-Off, car c’est pour GCV que le paramètre
λ possède systématiquement la valeur la plus basse. Comme nous l’avons remarqué plus haut, les différences
entre les jeux de paramètres (1) et (2) ne se situent que sur les mers intérieures. L’interprétation des résultats
obtenus est néanmoins rendue difficile par les différences importantes qui existent lorsque l’on fait varier λ.
Pour tenter de réduire la sensibilité de la solution à ce paramètre, on peut contraindre l’ensemble de la carte
de charge avec la solution GRACE afin de fixer la valeur d’amplitude et de phase aux grandes longueurs
d’onde et de raffiner cette valeur grâce aux données GNSS. Le paramètre λ n’est alors pas contraint par la
valeur de charge aux longues distances mais seulement par l’importance donnée au GNSS localement.

6.2 Inversion contrainte par GRACE

Les données GNSS étant assez bruitées spatialement comme nous venons de le voir, il peut être intéressant
de contraindre ces variations abruptes par la solution GRACE. On peut alors tirer profit à la fois de la
couverture spatiale uniforme et lisse de GRACE et des données locales et précises du GNSS. Cela revient
en réalité à prendre la solution GRACE en a priori dans l’inversion et de ne calculer que l’écart entre
cette solution relativement lisse et la solution issue de l’inversion des déplacements GNSS apportant la
contribution plus locale. On change alors légèrement le problème régularisé, et l’on cherche désormais à
minimiser la fonction

Ψ(M) = ‖D −GM‖2W + ‖M −Mgrace‖2U . (5.21)

La matrice U , symétrique de taille m, permet de quantifier la fermeté que l’on donne aux contraintes mises
en place sur M . Elle joue donc le rôle de matrice de covariance de la charge a priori. Les coefficients de
son inverse, la matrice de poids, peuvent être définis par la même fonction (5.20) que celle qui donne les
coefficients diagonaux de V ′−1 de sorte que l’on fait toujours correspondre une corrélation entre les éléments
de grille par l’intermédiaire des rayons de lissage. Les coefficients de la matrice de poids U−1 s’écrivent donc

U−1
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min(resi, resj)× exp

(
1− dij

Rc min(resi, resj)

)
, si (i, j) ∈ Continent

min(resi, resj)× exp

(
1 + o− dij

Ro min(resi, resj)

)
, si (i, j) ∈ Océan

min(resi, resj)× exp

(
1− dij

Roc min(resi, resj)

)
, si i ∈ Continent, j ∈ Océan

(5.22)

et la solution au problème

M = (GTW−1G+ λQ)−1 (GTW−1D + λQMgrace),

= Mgrace + (GTW−1G+ λQ)−1 GTW−1(D −GMgrace),

= Mgrace + (GTW−1G+ λQ)−1 GTW−1(D −Dgrace).

(5.23)

où l’on voit que la matrice P de l’Éq (5.4) a été remplacée par la matrice Q = U−1, de sorte que Q−1

joue désormais le rôle de la matrice de covariance de M . On a donc juste à réaliser une inversion dont les
données sont les déplacements GNSS moins les déplacements synthétiques issus de GRACE, puis d’ajouter
la solution obtenue à la charge originale de GRACE. Pour les mêmes ensembles de paramètres que dans la
section précédente, nous calculons les cartes de charge dont les amplitudes annuelles sont représentées sur la
Figure 5.13.

6. La phase annuelle étant relativement lisse sur l’Europe, on se restreint ici à ne montrer et ne comparer que les amplitudes
pour ne pas encombrer le propos.

145



CINQUIÈME PARTIE | Détermination de la charge par inversion des déplacements

Fig. 5.13 – Amplitudes du cycle annuel de la charge déterminées par l’inversion des déplacements GNSS en
prenant la solution GRACE du GSFC (panel a) en a priori pour les différents lots de paramètres optimaux
considérés dans la Section 5.3.

On retrouve la forte variabilité spatiale des inversions utilisant les paramètres optimaux GCV, et le fait que
cette variabilité diminue fortement lorsque l’on augmente λ, et ce quelque soient les valeurs de Rc, Ro et
Roc. Les inversions utilisant les paramètres optimaux ABIC et Trade-Off ne diffèrent quasiment pas de la
solution GRACE (sauf le cas du Trade-Off (1)) car leurs valeurs de λ sont trop grandes, ce qui induit un
lissage trop fort de la contribution GNSS qui se retrouve noyée dans la solution GRACE. Il serait alors bon
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de pouvoir pondérer la solution GRACE par rapport au GNSS autrement qu’avec λ qui ne joue que sur le
lissage global. Cette pondération peut être amenée par une inversion GNSS non plus contrainte par GRACE
mais conjointe avec GRACE.

6.3 Inversion conjointe avec GRACE

Si la solution GRACE est utilisée non plus comme contrainte mais dans une inverse conjointe avec les
déplacements GNSS, on peut introduire un paramètre supplémentaire pour pondérer les deux jeux de don-
nées l’un par rapport à l’autre. On utilise pour cela les déplacements induits par la solution de charge issue
de GRACE obtenus en résolvant le problème direct comme dans la Section 3. Cependant, contrairement à
la Section 3, ces déplacements ne sont plus calculés sur les emplacements des stations GNSS car la redon-
dance d’information n’améliorerait en rien le problème d’inhomogénéité du réseau et nécessiterait donc des
paramètres de lissage identiques. Nous choisissons à la place de calculer ces déplacements sur une grille de
points régulièrement espacés (tout les 0,5°) qui pavent de manière homogène la région d’inversion, y compris
les océans. Le réseau de stations GNSS avec l’ajout des stations fictives de GRACE est représenté sur la
Figure. 5.14. On voit bien que les zones continentales mal contraintes par le GNSS ainsi que les océans sont
rattrapés par la couverture de GRACE, ce qui permet en théorie de réduire l’importance du lissage.

Fig. 5.14 – Carte des stations GNSS (ronds bleus) et des stations fictives où l’on a calculé le déplacement
qu’engendrerait la charge issue de GRACE (points rouges).

Pour une inversion conjointe, on accumule les déplacements GNSS et les déplacements calculés à partir
de GRACE dans un nouveau vecteur D. Puis on accumule également les matrices de Green avant de définir
le poids relatif de chaque technique permettant de donner plus ou moins d’importance aux déplacements
GNSS par rapport à ceux de GRACE. On note ce poids b, qui multiplie directement la matrice de poids des
données GRACE de sorte que le problème s’écrive(

DGNSS

DGRACE

)
=

(
GGNSS

GGRACE

)
M, et W−1 =

(
W−1

GNSS 0

0 bW−1
GRACE

)
, (5.24)

où W−1
GNSS et W−1

GRACE sont les matrices des poids associées respectivement aux données GNSS et GRACE.
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On choisira un poids b < 1 pour que les données GRACE soient légèrement sous pondérées par rapport au
GNSS et un poids b > 1 pour retrouver les données GRACE au détriment des déplacements GNSS.

Malgré l’ajout des données supplémentaires de GRACE, il est toujours nécessaire de régulariser mathé-
matiquement le problème. La couverture spatiale étant plus homogène que dans le cas du GNSS seul, il
est néanmoins possible de choisir un lissage plus faible en diminuant les valeurs des hyperparamètres. On
note que le lissage induit par la régularisation est important également d’un point de vue physique puisqu’il
permet de « mélanger » les informations issues des deux jeux de données.

Fig. 5.15 – Amplitudes du cycle annuel de la charge déterminées par l’inversion conjointe des déplacements
GNSS et des déplacements calculés à partir de GRACE en appliquant différents poids b sur les déplacements
GRACE. Le lot de paramètres utilisé (issue de la méthode Trade-Off (1)) est le même pour les panels (b) à
(f). La solution GRACE du GSFC avec laquelle on a calculé les déplacements est montrée en (a).

La Figure 5.15 donne les résultats des inversions conjointes utilisant les paramètres optimaux issus de la
méthode du Trade-Off pour le jeu de paramètres (1) et pour plusieurs poids b différents. On retrouve le fait
que plus b est grand, plus le résultat de l’inversion est proche de la solution GRACE. À l’inverse, plus le
paramètre b est petit, plus on donne de poids (relatif) aux données GNSS et donc plus l’on s’écarte de la
solution GRACE. Cependant, on note que même dans ce cas de figure, la présence des données GRACE
dans l’inversion permet de restituer les zones faiblement peuplées en stations GNSS comme le Maghreb, la
Turquie ou encore la Russie. En effet, on peut comparer la carte d’inversion donnée dans le panel (f) de la
Figure 5.12 qui résulte de l’inversion du GNSS seul avec la carte du panel (f) de la Figure 5.15 ci-dessus.
Les deux utilisent le même jeu de paramètres issus de la méthode du Trade-Off dans le cas (1). Dans les
deux cas, le poids du GNSS dans l’inversion est important, conséquence du fait qu’on observe des similarités
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sur les zones denses en stations comme la France, l’Espagne, l’Italie et la zone de faible amplitude sur les
Alpes orientales centrales. Il existe malgré tout des différences majeures sur la Grande-Bretagne ainsi que la
Scandinavie malgré une densité de stations relativement importante. Dans les zones faiblement peuplées en
stations (Russie, Maghreb et bien sûr les océans), les deux solutions diffèrent radicalement, ce qui montre
l’apport de GRACE sur l’inversion. On remarque également que plus le poids de GRACE diminue, plus les
amplitudes sur les zones océaniques comme la Mer du Nord diminuent au profit d’une charge transférée sur
le continent (Pays-Bas et Royaume-Uni). Ceci est biensûr la conséquence du manque de donnée croissant
sur le océans à mesure que l’apport de GRACE diminue.

6.4 Comparaison avec les modèles de charge

Nous comparons les résultats obtenus dans cette partie avec différents modèles de charge rendant compte
de la charge hydrologique et de la charge atmosphérique. Cette dernière est alors convertie en hauteur d’eau
équivalente afin de pouvoir être additionnée avec la charge hydrologique. À la fréquence annuelle, seuls ces
signaux de charges sont a priori présents dans les observations GRACE et GNSS et sont susceptibles d’ex-
pliquer les observations. Nous comparons trois modèles : les composantes hydrologiques et atmosphériques
des réanalyses ERA5 (Hersbach et al., 2020) et MERRA2 (Gelaro et al., 2017), et le modèle d’assimilation
GLDAS2/Noah (Rodell et al., 2004). Les deux modèles de réanalyse ERA5 et MERRA2 diffèrent par leurs
modèles et données atmosphériques ainsi que sur les modèles utilisés pour la circulation et le stockage de

Fig. 5.16 – Amplitude annuelle et phase des modèles de charge [hydrologie+atmosphère] ERA5, MERRA2
et GLDAS2.
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l’eau dans le sol, l’atmosphère, la végétation, etc. À la différence des modèles obtenus par réanalyse qui
contiennent une solution cohérente des variables d’intérêt (pression, teneur en vapeur d’eau et température
atmosphérique, teneur en eau et température du sol, etc.) issues du traitement unifié de modèles composites,
le modèle d’assimilation GLDAS2, compile un ensemble de données (atmosphère, sol, végétation, neige, etc.)
qui sont assimilés pour forcer uniquement le modèle hydrologique. Dans GLDAS2, le modèle atmosphérique
influe donc sur le modèle hydrologique mais la rétroaction n’existe pas (puisque l’atmosphère n’est réduite
qu’à un forçage).

Nous présentons dans la Figure 5.16, les amplitudes et phases des signaux annuels extraits des trois
modèles de charges précédemment cités. Ces signaux comprennent la charge hydrologique (neige, contenu en
eau du sol) et la charge atmosphérique (pression). Pour GLDAS2, nous avons calculé la charge atmosphérique
à partir du modèle de forçage utilisé dans le modèle. Il existe une forte variabilité entre ces trois modèles
notamment sur la phase globale et l’amplitude de l’Est européen (Balkans, Russie, Scandinavie). On remarque
que les amplitudes sur le Sud de l’Europe pour les deux solutions issues des réanalyses sont cohérentes entre
elles bien que ERA5 semble avoir une amplitude globalement moins élevée que MERRA2. Leurs phases
diffèrent par contre d’environ 2 mois sur l’ensemble de l’Europe, ce qui constitue une différence considérable,
vu la précision que l’on recherche. La solution GLDAS2 est quelque peu à part notamment car elle ne présente
qu’une solution sur les continents. Pour l’amplitude, on retrouve des similitudes avec les solutions MERRA2
et ERA5 en fonction des zones géographiques : proche d’ERA5 sur le Maghreb, la France, l’Allemagne,
l’Irlande et le Bénélux et proche de MERRA2 sur l’Espagne, la Grande-Bretagne, la Russie et une partie de
la Scandinavie. La phase, en revanche, reste très proche de celle de ERA5.

Nous proposons une comparaison prudente entre ces modèles et les précédentes inversions que nous

Fig. 5.17 – Amplitude annuelle et phase de la solution GRACE du GSFC (a & e), et des inversions
des déplacements GNSS seuls (b & f), contraints par la charge de GRACE (c & g) et conjoints avec les
déplacements issus de GRACE (d & h). Nous avons choisis les inversions utilisant les paramètres optimaux
au sens de la méthode Trade-Off soit [λ = 5× 10−5 ; Rc = 120 km ; Ro = 300 km ; Roc = 40 km], et un poids
relatif GNSS/GRACE de 4/1 dans l’inversion conjointe. Cela correspond aux cartes d’amplitudes présentées
dans les panels (f) des Figures 5.12 5.13 et 5.15.
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reportons sur la Figure 5.17. Les différences majeures entre les modèles et les inversions se situent au niveau
de la phase où des écarts de plusieurs mois sont observés sur la Scandinavie et le Maghreb, ainsi que des
disparités de l’ordre du mois sur l’Europe continentale. Sur l’amplitude, certaines similitudes entre les modèles
et les inversions ressortent comme le fort gradient Est/Ouest sur la péninsule ibérique, le fort signal localisé
sur l’Italie ou encore la zone de faible amplitude sur les Alpes orientale. Ces signaux sont absents ou très
peu marqués sur GRACE, ce qui est probablement lié à la faible résolution spatiale des solutions.

Les variations spatiale des charges atmosphériques étant majoritairement à grande échelle, les différences
localisées montrent l’apport d’une technique comme le GNSS sur la détermination des charges hydrologiques
au niveau local. À cause de la multiplicité des phénomènes contribuant au signal annuel des séries GNSS,
on peut comprendre que le GNSS ait une si grande variabilité, même à un niveau « très local ». En effet
comme cela est discuté dans la Partie II, il est très difficile de séparer le signal annuel dû aux effets de charge,
des autres signaux (thermo-élasticité, porosité, thermo-dilatation des antennes, repliement de spectre d’un
éventuel signal multi-trajet à la période annuelle, période draconitique). Cependant, les mesures GRACE
peuvent elles aussi être entachées de biais liés au bruit de mesure (lien KBRR, accéléromètres, etc.) ou
aux choix de paramétrisation (solution en harmoniques sphériques ou en mascons, solution contrainte ou
non contrainte, etc.) par exemple. Le GNSS constitue donc une alternative dans le sens où il peut servir
de validation indépendante des résultats obtenus avec GRACE. Pour aller plus loin que l’idée de validation
pour laquelle on utilise les données GNSS seules, l’inversion conjointe GRACE/GNSS nous paraît être ici une
alternative innovante intéressante à mettre en avant pour permettre à chacune des deux mesures d’apporter sa
plus-value à la solution. Nous avons prouvé que ce type d’inversion était possible et donnait de bons résultats
notamment en ce qui concerne l’apport de GRACE dans les zones peu denses en stations et l’apport local
du GNSS dans les zones enclavées ou sur les régions de faible étendue spatiale.

6.5 Conclusion

D’un point de vue méthodologique, les différents types d’inversion proposés dans cette partie pourraient
être étendus à d’autres signaux que les seuls signaux annuels. En effet, il pourrait par exemple être intéressant
de retrouver avec le GNSS des données de charge submensuelles inaccessible avec GRACE, sous forme de
cartes d’inversion comme celles que nous avons déterminées ici. Si l’on réussi à déceler puis s’affranchir des
éventuels signaux non-géophysiques résiduels dans les séries temporelles, le GNSS serait alors en mesure de
compléter les mesures GRACE à la fois en terme de résolution spatiale et en terme de résolution temporelle
pour des régions bien choisies, suffisamment fournies en stations.

Étant donnée la diversité des solutions que nous obtenons, notamment en fonction des paramètres de
lissage, il est difficile de trancher pour une solution optimale. Cependant, la diversité des solutions pourrait
permettre le calcul d’une incertitude statistique (de type A) et ainsi permettre de quantifier le niveau
d’incertitude d’un modèle de charge estimé avec cette méthode. La prise en compte de ces incertitudes passe
également par le fait que les données GNSS et GRACE en entrée sont elles-même entachées d’une incertitude
que l’on peut propager au cours du processus d’inversion. Il faut néanmoins garder à l’esprit que la part
d’incertitude liée à la propagation des erreurs formelles des données au cours du processus sera probablement
moins importante que la part de l’incertitude statistique issue de la variabilité des paramètres de lissage.

Des différentes méthodes d’inversion utilisées pour retrouver la charge annuelle, c’est bien l’inversion
conjointe de GRACE et du GNSS qui donne le plus de satisfaction. D’une part cette méthode permet de
choisir aisément à travers le paramètre b, un compromis entre les différents jeux de données. En choisissant
une distribution de stations fictives différente de celle de la Figure 5.14, on peut également modifier l’apport
spatial de GRACE par rapport au GNSS. On peut par exemple penser à un réseau homogène auquel on
aurait retiré les positions des véritables stations GNSS afin de ne pas mettre le signal de GRACE là où il
y a du signal GNSS. On pourrait aussi penser à ne couvrir que les océans avec GRACE et ne laisser que
les données GNSS agir sur les continents. Ce schéma d’inversion conjointe rend également envisageable une
inversion sur l’ensemble du globe, et ce quelque soit la densité de stations GNSS et l’homogénéité du réseau.
On pourrait en effet compléter le réseau GNSS existant par des stations fictives GRACE qui couvriraient
l’ensemble de la planète de manière la plus homogène possible. On pourrait aussi par ce procédé, conserver
exactement le même réseau de station réelle+fictive au cours du temps et ainsi éviter les problèmes soulevés
par Collilieux et al. (2009) : cela revient à compléter la série temporelle GNSS en remplaçant les époques
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sans solution par des stations fictives GRACE dont on aurait le cas échéant ré-échantillonné les données.
Par rapport à l’inversion seule des données GNSS, cette méthode d’inversion conjointe permet aussi de
s’affranchir d’une zone tampon pour la charge comme c’est le cas de l’Est européen sur le panel (b) de la
Figure 5.17. Enfin, elle permet d’éviter le phénomène de sur-échantillonnage spatial que l’on peut voir sur
les cartes de l’inversion contrainte par GRACE (panel (c) de la Figure 5.17), et ce pour des paramètres de
lissage identiques.
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Conclusion

L’objectif du travail que nous avons présenté est l’étude des déformations liées aux charges en Europe,
et la détermination de la charge saisonnière à partir des déplacements GNSS d’un réseau dense de stations.
Comme nous avons cherché à extraire le déplacement saisonnier des séries GNSS dont l’amplitude est re-
lativement faible en Europe, ces séries GNSS devaient avoir un rapport signal sur bruit élevé. Enfin, nous
devions adopter un modèle de déformation de la Terre solide bâti sur la théorie gravito-élastique et les fonc-
tions de Green, permettant de prendre en compte n’importe quel type de rhéologie linéaire afin de pouvoir
l’utiliser sur d’autres phénomènes que les variations saisonnières de charge, notamment des phénomènes à
plus longues périodes nécessitant la prise en compte du caractère visco-élastique de la Terre.

Cette thèse a d’abord été l’objet d’un traitement GNSS massif. Nous avons en effet calculé trois solutions
complètes sur notre réseau européen de stations (qui en compte plus de 1000) en fonction des produits orbi-
te/horloge des satellites GNSS qui étaient à notre disposition au fur et à mesure de la thèse : une première
solution avec les produits GR2/GRG qui souffrait de problèmes de mise en référence, une solution avec les
premiers produits REPRO3 GR3 qui s’est avérée inexploitable à cause d’un problème de modélisation et
enfin la solution avec les produits MG3 que nous avons pu exploiter et dont nous avons présenté certains
résultats issus de l’article Michel et al. (2021). L’utilisation de différentes méthodes d’estimation des para-
mètres modélisant les séries temporelles GNSS (tendance, termes saisonniers, bruit de mesure, etc.) a permis
de mettre en exergue la sensibilité de ces paramètres à la méthode d’estimation, notamment en rajoutant
dans l’ajustement les fréquences draconitiques et un modèle de bruit corrélé. Ces résultats nous ont permis
de trancher en faveur d’une méthode optimale pour estimer les paramètres d’ajustement des séries tem-
porelles GNSS. Notamment, nous avons montré que l’ajustement des signaux draconitiques permettait un
gain de précision sur les paramètres de vitesse, bien qu’ils soient toujours fortement corrélés avec les termes
saisonniers annuels et semi-annuels pour les séries temporelles les plus longues (environ 20 ans). La compa-
raison entre les déplacements saisonniers extraits des séries GNSS et ceux reconstitués à partir de modèles
hydrologiques et de la mission spatiale GRACE ont montré une forte variabilité spatiale et temporelle, dont
plusieurs mois d’écart sur la phase du signal annuel. Cette variabilité importante a aussi été confirmée sur les
signaux de la bande interannuelle grâce à une décomposition en composantes principales. Cette variabilité
entre modèles et GNSS est la raison pour laquelle il est nécessaire d’être prudent sur l’interprétation des
différences ou ressemblances entre les solutions GNSS et les modèles hydrologiques Chanard et al. (2020).
Nous avons aussi entamé une étude sur la détermination et la comparaison du mode commun observé en
Europe entre les séries temporelles GNSS de plusieurs centres d’analyse de l’IGS et la solution GRACE.
Ces analyses préliminaires permettent notamment de réduire la variabilité à haute fréquence des solutions
en captant une partie du bruit sur l’ensemble du spectre et de faire émerger les éventuels signaux de grande
longueur d’onde spatiale propres à chaque solution et donc propres à chaque produit orbite/horloge. Dans
une future étude, il pourra également être intéressant de tester l’application de modèles haute fréquence de
charges non-maréales directement dans le calcul d’orbite/horloge du centre d’analyse pour étudier quel serait
son apport sur la diminution de variabilité des solutions journalières ou subjournalières.

Ce travail de thèse a aussi été l’occasion de mettre en place un nombre important d’outils pour permettre
le traitement massif en local d’un réseau de stations GNSS avec le logiciel GINS. Ces outils ont permis
en premier lieu de sélectionner automatiquement les stations dont les données sont de bonne qualité, de
gérer toujours automatiquement le rapatriement des fichiers log correspondants (changements de matériels,
installations et informations générales sur la station et son environnement) et de lancer le calcul en prenant
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soin de le paralléliser pour gagner en efficacité. Enfin, nous avons également développé l’ensemble des outils
pour l’analyse des séries temporelles : la détection des sauts et points aberrants, l’ajustement des modèles
déterministes et stochastiques, l’étude du contenu fréquentiel, etc. L’ensemble de ces outils constitue un
socle important dont la vocation sera à terme de participer à la mise en place d’un service opérationnel
de distribution des solutions GNSS calculées en mode PPP à partir des produits GRG (voir IGS) sur un
réseau de station important. Ce genre de service existant déjà pour des milliers de stations dont les solutions
sont calculées en PPP avec les produits orbite/horloge du JPL (Blewitt et al., 2018), il sera ici l’occasion de
proposer des solutions d’un centre d’analyse différent ainsi que d’avoir un contrôle qualité et un suivi accru
des solutions calculées, à la manière dont cela a été fait récemment par le JPL (Heflin et al., 2020). Dans le
souci de donner aux utilisateurs et utilisatrices des solutions qui répondent à différentes demandes, un effort
pourra aussi être fait quant au calcul de solutions en mode cinématique et/ou en temps quasi-réel, en mode
multi-GNSS et en mode IPPP (en fixant les ambiguïtés entières). En ce qui concerne les solutions PPP déjà
calculées sur l’Europe qui ont été utilisées dans ce travail, elles sont mises à disposition de la communauté
car elles constituent un apport conséquent sur l’élaboration de solutions régionales et globales. Grâce au
nombre important de stations et à la longueur des séries calculées, elles ont par exemple été incluses dans
le jeu de données utilisé par Alvaro Santamaría-Gómez en vue de la combinaison des champs de vitesse au
niveau régional par l’IAG (Santamaría-Gómez, comm. personnelle).

Dans un second temps, nous avons mis en évidence la variabilité des déformations visco-élastiques en-
gendrées par des phénomènes longues périodes comme les marées solides ou les épisodes de fontes de glaces
dans l’article Michel & Boy (2021). Nous avons testé une grande diversité de modèles visco-élastiques de
Maxwell et de Burgers dans le calcul des déformations engendrées par ces phénomènes et avons réaffirmé
la pertinence d’utiliser de tels modèles pour l’estimation des déformations de longue période. Les conven-
tions IERS proposent pour chaque phénomène des valeurs pour les nombres de Love issus de traitements
différents. Il serait plus cohérent d’utiliser des nombres de Love issus d’un seul et même traitement utilisant
par exemple un modèle rhéologique comme ceux que nous avons présentés. Les modèles de Burgers sont
particulièrement adaptés pour couvrir de nombreux phénomènes géophysiques de temps caractéristiques dif-
férents. Ils donnent d’ailleurs des résultats proches des déformations modélisées par les conventions IERS
actuelles pour les déformations liées aux marées solides. Nous avons aussi montré qu’en utilisant ces modèles
visco-élastiques pour calculer la déformation liée à la fonte actuelle des calottes polaires, nous trouvions
des différences notables avec le cas élastique. Encore une fois, les modèles de Burgers semblent donner des
résultats plus proches des observations géodésiques que les modèles de Maxwell.

Les outils développés dans la Partie IV, qui ont justement permis de prendre en compte les déforma-
tions visco-élastiques de certaines couches des modèles de Terre à l’aide de la transformée de Fourier et de
retrouver la déformation à partir de la décomposition de la charge en harmoniques sphériques ou de ma-
nière équivalente en utilisant le formalisme des fonctions de Green, peuvent donc être appliqués aux fontes
massives ayant lieu dans les zones polaires. Dans la même lignée que l’étude de Mémin et al. (2014), nous
avons d’ores et déjà réalisé des tests sur l’archipel du Svalbard pour mettre en évidence la sensibilité des
déformations visco-élastiques au petit âge glaciaire. Une étude plus approfondie des différents modèles rhéo-
logiques, notamment ceux de Burgers, pourrait amener à pouvoir séparer la contribution à la déformations
des différents âges glaciaires, en comparant les modèles avec les données gravimétriques d’une part (Mé-
min et al., 2011) et avec les séries GNSS d’autre part. D’autres méthodes comme l’altimétrie ont aussi été
utilisées pour contraindre les déformations liées à la fonte actuelle (Mazzolo, 2021). La possibilité que nous
avons de calculer des nombres de Love visco-élastiques en profondeur est également intéressante pour étudier
les déformations intérieures et particulièrement à la CMB. Les différents modèles, incluant au besoin une
certaine viscosité du noyau fluide, pourraient amener à estimer la sensibilité nécessaire aux observations en
surface pour mesurer des variations de densité au niveau de la CMB. Ces études sont actuellement en cours
dans le travail de thèse d’Hugo Lecomte à l’ITES, qui permet l’assimilation des données gravimétriques,
géodésiques et géomagnétiques pour contraindre la dynamique du noyau fluide, et pour lequel nous avons
mis à disposition nos outils. Enfin, il est également possible d’utiliser ces modèles dans le cadre de l’inversion
des données géodésiques pour déterminer les paramètres rhéologiques. Récemment, Ding et al. (2021) ont par
exemple déterminé de cette manière les paramètres d’un modèle de dissipation visco-élastique en inversant
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les déplacements longue période observés dans les séries GNSS. Dans cette même logique, nous étudions
actuellement la possibilité de discriminer les différents types de modèles en se basant sur les données longue
période de gravimètres au sol.

Enfin, nous avons montré qu’il était possible d’inverser les déplacements saisonniers issus des séries tem-
porelles GNSS pour retrouver la charge correspondante. Nous avons utilisé pour cela une inversion par
moindres carrés régularisés dont les hyperparamètres gouvernant le lissage de la solution ont été déterminés
par diverses méthodes basées sur des critères objectifs. L’une d’entre elle est issue d’un cadre pseudo-bayésien
très utilisé depuis plus d’une dizaine d’années pour retrouver les déformations et contraintes à l’origine de
glissements le long de failles (Yabuki & Matsu’Ura, 1992; Matthews & Segall, 1993; Fukuda & Johnson,
2008). La variabilité sur ces hyperparamètres est tout de même importante et constitue la première source
d’incertitude sur les résultats obtenus. Pour diminuer l’impact de ces hyperparamètres sur la solution, no-
tamment dans les zones peu couvertes par le GNSS, nous avons entrepris d’ajouter dans l’inversion des
contraintes issues directement des variations de charge dérivées de GRACE et GRACE-FO. En ajoutant les
déplacements induits par la solution de charge issue de GRACE aux déplacements GNSS dans une inversion
conjointe, nous avons sensiblement amélioré la qualité (en terme de variabilité à lissage égal) de l’inversion
par rapport au cas où l’on inverse que les déplacements GNSS et au cas où l’on ne fait que contraindre
l’inversion avec GRACE.

Dès lors, il serait particulièrement intéressant de vérifier ce qu’apporte systématiquement l’ajout de don-
nées d’origines différentes dans l’inversion (données météorologiques ou données InSAR (Cavalié et al., 2013;
Mathey et al., 2021)). On pourrait aussi ajouter les données issues des déplacements GNSS horizontaux
malgré le fait qu’ils possèdent un faible signal saisonnier. En effet, le rapport signal sur bruit sur ces compo-
santes peut être largement augmenté en utilisant un traitement en IPPP. Tout en restant prudent quant au
contenu saisonnier de ces déplacements, et même si la distribution spatiale des données resterait identique,
cela pourrait permettre de mieux contraindre localement la charge et donc de diminuer son incertitude.
D’autre part, il semble envisageable de réaliser l’inversion conjointe non pas en utilisant les déplacements
induits par la solution de charge issue de GRACE comme nous l’avons fait, mais en utilisant directement
les mesures du lien KBRR entre les satellites GRACE. L’inversion des données issues du lien KBRR au
niveau régional a d’ailleurs fait l’objet de récents développements méthodologiques sur des zones possédant
un fort signal (Ramillien et al., 2021). D’autres questions restent ouvertes comme l’utilisation du GNSS pour
augmenter la résolution temporelle des solutions de charge issues de GRACE et GRACE-FO, ou la faisabilité
d’une inversion conjointe globale utilisant GRACE et le GNSS sur plus de 15 ans pour délivrer une solution
de charge à l’échelle mondiale. Également, la possibilité de changer la méthode d’inversion en travaillant
non plus sur une régularisation par contrainte externe mais en ajoutant directement ces contraintes (sous la
forme de paramètres de modèles) dans la matrice de covariance peut être une piste sérieuse d’amélioration
de la variabilité des solutions.

La détermination des charges et particulièrement des charges hydrologiques reste un objectif primordial
dans un contexte de réchauffement planétaire car elles participent à l’observation des redistributions d’eau
au sein du système climatique. Les variations du contenu en eau des grands bassins hydrologiques comme
l’Amazonie, le bassin du Nil, du Gange ou du Congo, l’augmentation des zones arides ou en cours de
désertification pour des raisons anthropiques ou naturelles, les variations de la couverture neigeuse aux
hautes latitudes, sont autant d’indicateurs des changements climatiques importants en cours ou à venir.
Cependant, la détermination des charges reste aussi un objectif scientifique dans les zones tempérées où la
corrélation forte avec les autres observables géodésiques les rendent encore difficile à prédire et à mesurer.
C’est dans cet effort de détermination des charges à l’aide des seules observations géodésiques que s’inscrivent
nos travaux qui appréhendent le problème globalement et ouvrent de nouvelles perspectives d’études.
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S U M M A R Y

Long term deformations strongly depend on the earth model and its rheological parameters,
and in particular its viscosity. We give the general theory and the numerical scheme to
compute them for any spherically non-rotating isotropic earth model with linear rheology,
either elastic or viscoelastic. Although the Laplace transform (LT) is classically used to
compute viscoelastic deformation, we choose here instead, to implement the integration with
the Fourier transform (FT) in order to take advantage of the fast FT algorithm and avoid some
of the LT mathematical difficulties. We describe the methodology to calculate deformations
induced by several geophysical signals regardless of whether they are periodic or not, especially
by choosing an adapted time sampling for the FT. As examples, we investigate the sensitivity
of the displacements due to long period solid Earth tides, glacial isostatic adjustment and
present-day ice melting, to anelastic parameters of the mantle. We find that the effects of
anelasticity are important for long period deformation and relatively low values of viscosities
for both Maxwell and Burgers models. We show that slight modifications in the rheological
models could significantly change the amplitude of deformation but also affect the spatial
and temporal pattern of the signal to a lesser extent. Especially, we highlight the importance
of the mantle anelasticity in the low degrees deformation due to present-day ice melting and
encourage its inclusion in future models.

Key words: Elasticity and anelasticity; Fourier analysis; Loading of the Earth; Tides and
planetary waves; Satellite gravity.

1 I N T RO D U C T I O N

The deformation of the Earth or other planets induced by surface loading processes or tidal forces have been largely studied through the
formalism first developed by Love (1911) for spherically symmetric non-rotating elastic isotropic (SNREI) bodies. Dimensionless numbers
called Love numbers characterize the perturbation applied on the body and its interior rheological parameters. Among the different Love
numbers, tidal Love numbers (TLN) are computed for an external potential perturbation and are especially used for tidal forces. In the other
hand, load Love numbers (LLN) are computed for mass load laid on the body surface and are mainly used for external circulation of oceanic,
hydrological and atmospheric masses. Several tools have already been developed to compute elastic Love numbers (Martens et al. 2019)
and anelastic Love numbers (Spada 2008; Kachuck & Cathles 2019) using, respectively, the historical normal modes approach (Peltier 1974;
Vermeersen & Sabadini 1997) and the propagator approach (Sabadini et al. 1982).

The main sources of deformation observed by the different geodetic measurements are the solid Earth tides (Agnew 2015) and ocean
tidal loading (Carrere et al. 2016; Martens et al. 2016a) reaching, respectively, an amplitude of 30 and 10 cm. The circulation of global
geophysical fluids induces continuous loading deformations from daily and subdaily periods, to seasonal cycles (Argus et al. 2014a, 2017)
and longer period such as the postglacial rebound (Peltier et al. 1981).

Solid Earth tides and ocean tidal loading are usually modelled using the IERS (International Earth Rotation and Reference Systems
Service) conventions (Petit & Luzum 2010) which provide the different Love numbers to be used. Those Love numbers vary not only with
the harmonic degree, but also with the order, to include the Earth’s ellipticity and rotation. The anelasticity is taken into account at long
periods based on the absorption band process classically used in seismology (Dehant & Zschau 1989; Benjamin et al. 2006) which may be
not appropriate for the very long periods timescales (beyond Chandler wobble period), compared to a consistent viscoelastic model with
Maxwell or Burgers rheologies.

Several long time geophysical signals suggest to take into account the anelasticity of the mantle to explain the observed displacement
rates (Caron et al. 2017). The most common example is the glacial isostatic adjustment (GIA, Spada et al. 2011; Argus et al. 2014b;
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Peltier et al. 2015). However, some other signals such as Earth tides (especially the Moon’s node of 18.6 yr period) or present-day ice melting
(Spada et al. 2012; Luthcke et al. 2013), could also be affected by viscoelastic rheologies. In most studies (Zhang et al. 2019; Li et al. 2020),
the anelasticity of the Earth’s response to surface loading processes, including present-day ice mass loss, is still neglected but should be
considered to provide a unique consistent frame of study within other long period loading deformation signals such as GIA (Métivier et al.
2020).

To compute viscoelastic deformations, we use the correspondence principle which allows to search solution of the gravito-elastic system
in the frequency domain, using the Laplace or Fourier transforms of the time dependent variables. Most of studies use the Laplace transform
(LT) which allows to handle perturbations with finite or infinite temporal extensions (Peltier 1974; Spada 2008; Sabadini et al. 2016). To avoid
the mathematical difficulties of the LT related to the residues integration using normal modes approach (Tanaka et al. 2006; Spada & Boschi
2006), another option is to use the Fourier transform (FT) which is much more suitable for numerical computation thanks to algorithms such
as fast-Fourier transform (FFT). The mathematical issue using the last one is that FT resolution theoretically only works with periodic signals
(which have an infinite temporal extension) such as tides but not a priori with deformations generated by singular events such as post-seismic
deformations (PSD), or secular signals such as GIA and ice melting. Dealing with finite temporal signal could create apodization phenomena
which can affect the nature of the FT. In this study, we show that all the issues related to the FT including aliasing and apodization, can be
overpassed with appropriate resampling of non-periodic geophysical signals.

The aim of the paper is to revisit the computation of surface deformations due to various geophysical effects, for example solid Earth
tides, GIA and present-day ice mass loss, with a special attention paid to the Earth’s Mantle anelasticity, using a consistent rheology model.
In Section 2, we describe the different rheological models used in this study, for example elastic, and the anelastic Maxwell and Burgers
rheology and provide Hooke’s law in the time and frequency domain. We present the integration of the system and its variant for viscoelastic
case, respectively, in Sections 3, 3.3 and 5 is devoted to the investigation of the anelastic rheology on displacements for three classical long
period examples: solid Earth tides, GIA and present-day ice mass loss. Discussion and concluding remarks are finally given in Section 6.

2 R H E O L O G I C A L M O D E L S

2.1 Elastic rheology

Hooke’s law for an elastic medium and its equivalent for an isotropic viscous fluid are given by the stress–strain relations{
σ = λeTr(ε)I + 2μeε

σ = χTr(ε̇)I + 2ηε̇
, (1)

where σ is the stress tensor, ε is the strain tensor, (λe, μe) are the Lamé elastic coefficients, η and χ are, respectively, the first and second
viscosity, Tr() is the trace of the tensor, I the identity tensor and we note with upper dot the derivative with time. The second viscosity χ

is related to the volume viscosity which is zero for an incompressible medium. Considering the difficulty of measuring χ experimentally, it
is very common to neglect it in dense media like a fluid or a solid (which is the usual Stokes hypothesis), and to consider the medium as
Newtonian (Ranalli 1995). We will adopt this hypothesis in the following, in which the second equation of eq. (1) is limited to its second term.

It is convenient to separate the compressible and incompressible part of each equation and solve both independently. We write each tensor
(generic notation τ is used) as the direct sum of a full trace τ = 1/3Tr(τ )I and a null trace τ ′ = τ − 1/3Tr(τ )I tensor. The tensor ε represents
an homogeneous and isotropic compression of the material—equivalent to an hydrostatic pressure—while ε′ contains the remaining shear
deformation. Applying this decomposition in the elastic equation of eq. (1), we obtain{

σ = (3λe + 2μe)ε = 3K ε

σ ′ = 2μeε′ , (2)

where K is the bulk modulus. This decomposition provides to the user the possibility to choose independently the compressible and the
incompressible models as parts of a global rheological model.

2.2 Maxwell rheology

Spada (2008) provides a complete synthesis of several viscoelastic models. The most used and widely studied viscoelastic model for the Earth
mantle is Maxwell rheology (Peltier 1974; Wu & Peltier 1982; Vermeersen et al. 1996; Spada 2013). A Maxwell material is modelled by the
association of a spring and a damper in series (Fig. 1). It behaves then like an elastic medium for short timescale and like a viscous fluid for
long timescale. The elastic part is compressible of moduli λe and μe, and the viscous part is incompressible (see Section 2.1) of viscosity
ηm. The compressible relation is then directly given by eq. (2) : σ = (3λe + 2μe)ε, while the incompressible part is given by the differential
equation

σ̇ ′

2μe
+ σ ′

2ηm
= ε̇′. (3)
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(a) (λe, μe) ηm

(b) (λe, μe) ηm
μk

ηk

Figure 1. Maxwell (a) and Burgers (b) rheological models with a compressible elastic modulus λe.

We choose to find solutions of this equation in the Fourier domain, using the FT σ̃ ′(ω) and ε̃′(ω) of, respectively, σ ′ and ε′, where ω =
2π f is the angular frequency. The differential equation (eq. 3) then becomes

σ̃ ′ = 2μe

⎡⎢⎢⎣1 − 1(
iω

ηm

μe
+ 1

)
⎤⎥⎥⎦ ε̃′ = 2μe [1 − m(ω)] ε̃′. (4)

The supplementary term m(ω) induced by the presence of the damper is characteristic of a first order low-pass system of cut-off frequency
ωem = μe/ηm. The total stress vanishes if either ω or ηm tends to 0, but the system is elastic (m(ω) = 0) if ηm tends to infinity.

2.3 Burgers rheology

In order to introduce further relaxation timescales, we can associate an incompressible Kelvin model in series with the Maxwell block in
a global model known as Burgers model (Fig. 1). We note, respectively, μk and ηk the shear and viscous moduli of the Kelvin part. Since
the Kelvin block is incompressible, the compressible equation is reduced to its elastic part as in Section 2.2. The differential equation of the
incompressible part is now a second-order equation:

σ̈ ′

2μeμk
+ σ̇ ′

(
1

2μkηm
+ 1

2μkηk
+ 1

2μeηk

)
+ σ ′

2ηmηk
= ε̈′

μk
+ ε̇′

ηk
. (5)

This equation is quite general and we can recover several simpler models by taking the limit cases when parameters tends to infinity. Taking
ηk or μk infinite, reproduces the Maxwell model (the Kelvin part is then equivalent to a wire transmitting all the stress but not the strain).
Taking ηm infinite reproduces the general Kelvin model (SLS-V in Spada 2008) while additionally taking μe infinite returns the simple Kelvin
model. Finally, we find the elastic limit behaviour with ηk, ηm −→ +∞ or μk, ηm −→ +∞.

Again as a linear rheology, the solution in the Fourier domain gives a linear relation between the FT of stress and strain

σ̃ ′ = 2μe ω2 − iωωkk

ω2 − iω (ωem + ωek + ωkk) − ω2
r

ε̃′, (6)

where ωij =μi/ηj and e, m and k means, respectively, elastic, Maxwell and Kelvin moduli. We also define the resonant frequency ωr = √
ωemωkk .

Removing the pure elastic part from this equation, it also returns the expression of a low-pass filter but of order two, with several characteristic
timescales. First, we find the Maxwell frequency ωem which establishes the intersection between the low and high frequencies characteristic
behaviours. A second order system can also resonates if the excitation is close to the resonant frequency ωr and the quality factor is large. If the
second condition is not satisfied (which is the case for reasonable values of parameters) the system is no longer resonant. Then, from the high
frequency asymptotic straight line the Bode diagram reaches a first plateau in medium frequencies before reaching later its final horizontal
asymptote at low frequencies. The length of the intermediate plateau and the shape of the diagram between it and the low frequencies
asymptote is controlled, respectively, by the frequency ωkk and the frequency ωek. As the Kelvin viscosity increases, the intermediate plateau
shrinks and we tend to a pure Maxwell response.

The eq. (6) can be rewritten as the product of the Maxwell term defined in eq. (4) and an additional contribution due to the addition of
the Kelvin modulus:

σ̃ ′ = 2μe [1 − m(ω)]

[
1

1 + b(ω)

]
ε̃′, (7)

with

b(ω) = iωωek

(iω + ωkk) (iω + ωem)
. (8)

The eq. (7) is very convenient to numerically implement the stress function depending if we consider either elastic [b(ω) = 0; m(ω) = 0],
Maxwell [b(ω) = 0] or Burgers rheologies which are the most commons used models in the literature.
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1194 A. Michel and J.-P. Boy

Table 1. Summary of the different viscoelastic models developed in this article with an elastic compressible part.
We also computed the equivalent frequency-dependent Lamé parameters for each model.

Rheological model Elastic Maxwell Burgers

Frequential relation σ̃ ′ = 2μẽε′ σ̃ ′ = 2μe [1 − m(ω)] ε̃′ σ̃ ′ = 2μe [1 − m(ω)]

[
1

1 + b(ω)

]
ε̃′

(incompressible part)

Specific function definition – m(ω) = 1

(iω/ωem + 1)
b(ω) = iωωek(

iω + ωkk
)

(iω + ωem )

λ(ω) λe λe + 2

3
μem(ω) λe + 2

3
μe

[
m(ω) + b(ω)

1 + b(ω)

]
μ(ω) μe μe[1 − m(ω)] μe [1 − m(ω)]

[
1

1 + b(ω)

]

2.4 Generalized Hooke’s law

The combination of the two linear solutions of the differential equations (compressible and incompressible part) in the Fourier domain, gives
the general stress–strain expression. This general solution can be written as a Hooke’s law with new frequential functions λ(ω) and μ(ω)
defined such that

σ̃ = λ(ω)Tr(̃ε)I + 2μ(ω)̃ε. (9)

For any linear time-dependent rheological model we can use the above expression in the frequency domain instead of the usual Hooke’s
law (eq. 1) used for an elastic medium. This is known as the correspondence principle firstly mentioned in Lee (1955) and Lee et al. (1959)
with the LT. We use here the FT which is numerically easier to deal with but has an a priori more restricted area of applications (Tobie et al.
2005). Nevertheless, we show later that the calculation of time Love numbers derived from LT like in Spada (2008) or Kachuck & Cathles
(2019) is not necessary for usual geophysical cases. Those can be treated in the Fourier domain with a special attention given to the sampling
and the numerical computation of FT. The Table 1 gives the equivalent functions m(ω), b(ω), λ(ω) and μ(ω) for elastic, Maxwell and Burgers
compressible models in order to use the correspondence principle in viscoelastic earth models.

3 L OV E N U M B E R S C O M P U TAT I O N

3.1 Self gravitating elastic system

Either elastic or generalized Hooke’s law, completes the gravito-elastic deformation system of equation already including the Poisson
equation, the mass conservation and the momentum conservation. The solution of displacement and perturbed potential produced by a small
perturbation can be calculated for an spherically symmetric non-rotating elastic isotropic (SNREI) Earth considering a decomposition in
spherical harmonics (SH). The resulting system widely known as yin system (Alterman et al. 1959; Longman 1962) contains 6 spheroidal
independent equations in radial and tangential displacement (y1n, y3n), radial and tangential traction vector components (y2n, y4n), on potential
(y5n) and modified gravity function (y6n). For stratified earth models with a liquid core like preliminary reference earth model (PREM,
Dziewonski & Anderson 1981) or STW105 also known as reference earth model (REF, Kustowski et al. 2008), the density ρ0 and the
rheological parameters λ and μ depends on r which require to perform the integration numerically. Several studies already dealt with the
inclusion of a liquid core by taking the limit of the equations with no shear (μ → 0). This led to the Longman paradox fully explained and
solved in Chinnery (1975) for a stratified liquid core. We use its results to propagate our solution throughout the liquid core.

The yin system can be solved applying boundary conditions at the centre (null displacements and potential) and at the surface. The latter
conditions are dependent of the perturbation as fully explained by Hinderer & Legros (1989). For the general case, if we note P an external
pressure, ζ a surface mass load, U an external potential and τ a tangential component of traction we can write the general boundary conditions
for a given nth degree⎧⎪⎪⎨⎪⎪⎩

y2n(a) = −geζn − Pn

y4n(a) = τn

y6n(a) + n + 1

a
y5(a) = 2n + 1

a
Un + 4πGζn

, (10)

where ge is the norm of surface gravity. Farrell (1972) and Longman (1962) already showed that the surface mass load could also be written
as an external potential U ′ such that ζn = (2n + 1)/4πGaU ′

n . The complete resolution scheme is reported in the Appendix.

3.2 Love numbers definition

It is commonly accepted to give the solution of the displacement and the perturbed potential at the Earth surface in function of the perturbation
potential (Un or U ′

n) and dimensionless numbers first introduced by Love (1911) depending on the earth model and its rheological behaviour.
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Table 2. Tidal Love numbers (TLN) (hn, ln, kn) definition for an external
potential perturbation U and load Love numbers (LLN) (h′

n , l ′n, k′
n) definition

for an equivalent surface mass load potential U ′.

External potential Surface loading⎡⎢⎢⎢⎢⎣
y1n(a)

y3n(a)

y5n(a)

⎤⎥⎥⎥⎥⎦ = Un

⎡⎢⎢⎢⎢⎣
hn/g0(a)

ln/g0(a)

(1 + kn)

⎤⎥⎥⎥⎥⎦ , U ′
n

⎡⎢⎢⎢⎢⎣
h′

n/g0(a)

l ′n/g0(a)

(1 + k′
n)

⎤⎥⎥⎥⎥⎦

Figure 2. LLN (a) and TLN (b) for PREM with a liquid core obtained with presented integration scheme. Panels (c) and (d) are, respectively, the difference
of LLN and TLN with those calculated with LoadDef program from Martens et al. (2019).

Love numbers are the response of a system to a unit perturbation potential and are then very convenient to compare solutions from different
earth models. We will only use in the following, the TLN corresponding to the case of an external potential perturbation U and the LLN
computed for a surface mass load perturbation ζ or equivalently a potential U ′. They can be directly determined setting, respectively (U, U ′,
τ , P) to (1,0,0,0) for TLN and (0,1,0,0) for LLN in system (A8) and in Table 2.

Several remarks on the numerical integration in order to perform high degree integration and avoid some numerical issues are given in
the Appendix. LLN for several elastic models have already been compared in Wang et al. (2012) and in Na & Baek (2011). The elastic LLN
and TLN computed with PREM containing a liquid core and following our integration scheme are given in Fig. 2. The values are consistent
with those of Martens et al. (2019) calculated from LoadDef program, especially the asymptotic behaviour for high degrees (Farrell 1972;
Martens et al. 2019). The low degrees are quite sensitive to the integration in the centre of the Earth which may be not exactly the same for
both studies (see the Appendix) and could explain the differences observed especially for LLN (nonetheless never exceeded 0.5 per cent).

3.3 Integration for viscoelastic models

3.3.1 Viscoelastic models

In the following, we choose to construct viscoelastic models keeping the base of PREM (radial structure and variables) but considering
Maxwell or Burgers models in some layers of the mantle. We do not choose continuous viscosity profiles existing in the literature (Vermeersen
& Sabadini 1997; Kaufmann & Lambeck 2002; Steffen & Kaufmann 2005) because they have been computed from deformations of specific
data and models. Since we aim to compare several independent geophysical processes in this study considering different viscoelastic models,
the choice of non-adjusted viscosity profile (i.e. not derived from specific geophysical data) is more suitable. On the other hand, dealing
with continuous radial viscosity function is equivalent to set an arbitrary large number of thin sublayers of constant viscosity which creates
unnumerable normal modes. The normal mode approach using LT is thus very difficult to numerically handle because of the complex poles
integration. If some mathematical tricks exist to overpass these difficulties (Tanaka et al. 2006; Spada & Boschi 2006), the FT provides the
possibility to directly deal with these large amount of modes with a simple resampling of the discrete FT to include all the generated decay
timescales. Finally, the parameters of the viscoelastic models used in this study obey the following constraints.

(i) The density ρ and the elastic moduli λe and μe are set to the PREM values.
(ii) The viscosity profile (either ηm and ηk) is divided in four main layers : Core(s) from r = 0 to 3480 km, lower mantle (LM) from r =

3480 to 5701 km, upper mantle (UM) including transition zones from r = 5701 to 6346.6 km and lithosphere from r = 6346.6 km to the
surface.
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Table 3. Notations for viscoelastic rheologies used in this study where all viscosities are in Pa·s. We
keep the compressible elastic moduli (λe, μe) from PREM in every layers of the earth model, we use
viscoelastic model only in the mantle and we set μk = μe/10 if Burgers rheology is used in the UM.

Notation Explanation

MAXWELL log (ηm) — Maxwell homogeneous model in
the whole mantle of viscosity ηm

MAXWELL log(ηm
UM) − log(ηm

LM) — Maxwell model of viscosity ηm
LM

in the lower mantle and ηm
UM in

the upper mantle

MAXWELL log(ηm
UM) − log(ηm

LM) BURGER log(ηk
UM) — Maxwell model of viscosity ηm

LM
in the lower mantle and Burgers
model of viscosities ηm

UM and ηk
UM

in the upper mantle

(iii) The viscosities can only take constant value within each of these four layers (constant piecewise functions) and the viscosities in the
Core(s) and the lithosphere are always infinite (purely elastic layers).

(iv) We set Maxwell models both in LM and UM.
(v) We can choose to set Burgers model only in UM and in that case, μk = μe/10.

The notations for the rheological models used in this paper are explained in the Table 3.

3.3.2 Frequency and degree dependence

Taking advantage of the correspondence principle stated in Section 2.4, viscoelastic Love numbers are calculated in the Fourier domain for a
given viscoelastic model. As a consequence, the Lamé functions λ(ω) and μ(ω) are frequency and radial dependent complex functions given
in the Table 1. On the other hand, ρ0 and g0 remain real and depend only on r. Solving the system in the Fourier domain does not change the
fundamental physical concepts neither the integration and interface conditions. We can then compute the Love numbers applying the same
integration scheme than for elastic case resolving the gravito-elastic system at a given degree n and a given frequency ω0. We note that unlike
the elastic case, the inertial term proportional to ρω2 coming from the impulsion conservation equation is no longer neglected even if its
contribution is small. The computed Love numbers are also complex values such that the imaginary part indicates the possible temporal delay
(or phase delay) of the system response compared to the perturbation. This delay is entirely induced by the viscous behaviour of the system.
The system can then be resonant in particular frequencies called modes depending on the viscoelastic model (Alterman et al. 1959; Wu &
Peltier 1982).

LLN computed for four viscoelastic Maxwell models of fixed LM viscosity (ηm
LM = 1023Pa·s), are represented in Fig. 3 in function of

degree and frequency. Fig. 3(a) shows the difference between the real part of viscoelastic LLN with respect to elastic ones while Fig. 3(b)
represents the imaginary part of viscoelastic LLN. All the LLN presented have been computed using the integration scheme presented in
Section 3 and the Appendix, and its variant for viscoelastic rheologies described above. Since we introduce viscosity only for intermediate
mantle layers, the high degrees are barely affected by the changes in the earth model. For lower degrees, we see the behaviour of low-pass filter
of the Maxwell function m(ω) defined in Section 2.2 : for periods shorter than the cut-off period, the viscoelastic LLN equals the elastic LLN
and for periods longer than the cut-off period, the difference between the two increases. The cut-off period increases linearly with the UM
viscosity in agreement with the theoretical formula Tm = 2πηm/μe of Section 2.2. Taking the mean value of the PREM UM shear modulus
μ̄e = 1011 Pa, we find T m = 2, 20, 2000 and 200 000 yr for the successive represented Maxwell models. These values reported in black
dotted lines are roughly consistent with the observed transition periods on the Fig. 3. For the imaginary part, the effects of viscosity seems to
be bounded in a particular period interval. We also note that the main pattern in lower UM viscosity panels are unaffected as the viscosity
increases except for downward shift towards higher periods. This behaviour comes from the simple rescaling of frequency ω to ηmω/μe such
that m(ω) remains invariant as ηm increases if ω decreases. The frequency dependence of gravito-elastic equations being only in the m(ω)
function (the intertial term is neglectible), the results are simply shifted of the value of the scaling factor. Such behaviour should not occur in
Burgers models as the frequency dependence is much more complicated. As discussed in Section 2, the behaviour of high viscosity rheology
(beyond ηm = 1023 Pa.s) MAXWELL 18–23 tends to the elastic case for a large range of the spectrum such that only the larger periods
(non-visible on the figure) still change. We also note that some artefacts appears in the lower viscosities at high degrees and long periods.
It corresponds to a zone where the values of viscosities, periods and degrees are unrealistic for a physical use and for which the numerical
integration becomes unstable.

3.3.3 Viscosity model dependence

To compare the response of different viscoelastic models at a given frequency, we represent the vertical displacement LLN h′ for some
Maxwell and Burgers rheologies in Fig. 4. This representation is interesting to highlight the different degree ranges delimited by the markers
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Viscoelastic Love numbers 1197

Figure 3. (a) Difference of LLN real parts in per cent between PREM and viscoelastic Maxwell models based on PREM with respective viscosity of 1018,
1019, 1021, 1023 Pa·s for upper mantle and 1023 Pa·s for lower mantle. (b) LLN imaginary part of the models previously mentioned. The black dotted line
marks the mean cut-off frequency of the equivalent low-pass filter for each model.

A to F, corresponding to the preponderance of particular viscoelastic parameters in the mantle. The period is fixed to 11 000 yr, in order to
have significative effects of viscoelasticity on the LLN (Fig. 3). It is important to keep in mind that the results presented in this paragraph are
applicable only at this particular frequency.

Since degree 1 (A) is mainly dependent of the Inner Core and liquid Core structure, we do not see any differences between all the
models. For low degrees, we see a strong deviation of MAXWELL 21 model from the others, which is due to the differences in their LM
viscosity profiles which have an impact starting from degree 2. At point B, we see the shift between models with 1020 Pa·s and models with
1021 Pa·s UM viscosity. This means that the UM structure have an influence starting from degree 3. Then from point C (degree 4), Maxwell
and Burgers models with same Maxwell parameters diverge from each other. This point is the lower limit where the presence of transient
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Figure 4. Real and imaginary part of vertical displacement LLN h′ under an excitation of period T = 11 000 yr, for several Maxwell and Burgers models of
different UM and LM mantle viscosities. We also represent h′ from PREM which is a real function. Points A to F indicate the main discrepancies between
models.

viscosity in Burgers model infers on LLN. The value of the transient viscosity does not impact significantly the real part of LLN, but has a
little influence in their imaginary part from C to E. The point D is the reconnection point for MAXWELL 21 and MAXWELL 21–23 models,
defining the upper limit where LM has no more influence on LLN and from which only the UM structure infers. At point E, there are no more
differences between Burgers and Maxwell models which have equal ηm while only MAXWELL 20–23 still differs from the other viscoelastic
models. Finally, the point F set the limit where the mantle structure has no more influence such that LLN are impacted by the crust structure
only. Consequently, modified PREM including refined crust models as CRUST1.0 should present differences beyond F.

4 C O M P U TAT I O N O F V I S C O E L A S T I C D E F O R M AT I O N W I T H F T

4.1 Sinusoidal perturbation

The complex Love numbers obtained after the integration at ω = ω0 correspond to the frequency response of the system to a time sinusoidal
unit perturbation oscillating at the frequency ω0. Then it is easy to compute the viscoelastic deformation of a sinusoidal perturbation (such as
tidal waves for example) by just multiplying the complex admittance of the perturbation derived from its sinusoid characteristics (amplitude
and phase) with the associated complex viscoelastic Love number. The resulting deformation is also a sinusoid characterized by the obtained
complex number.

4.2 Non-sinusoidal perturbation

We consider now the time-series of the harmonic degree n of a non-sinusoidal perturbation. To solve the problem in the frequency domain, we
have to compute the discrete Fourier transform (DFT) of this signal to obtain the frequency perturbation spectrum. Then, the Earth frequency
response can be computed easily by calculating the nth degree Love number for the different frequencies ω0 of the frequency set given by the
DFT. Eventually, we need to multiply the two spectra which corresponds to the convolution of the Earth response with the perturbation in the
time domain. We obtain the temporal deformation after taking the inverse DFT. However, in order to avoid the calculation of Love number
each time that the frequency set changes, it is easier to previously calculate the Love numbers at some well-distributed values within a large
frequency range. The frequency range must include the characteristic timescales of the different geophysical phenomena that we could treat.
The collection of these Love number values at these different frequencies corresponds to a good approximation of the FT of a unit impulse
perturbation (temporal Dirac function). We can then linearly interpolate this Love number spectrum to the frequency set given by the DFT of
any kind of perturbation.

We generally use the FFT algorithm to implement numerically the DFT. This algorithm is optimized for samples of 2N epochs regularly
spaced. Then we need to resample the initial temporal perturbation signal, especially if it is initially not regularly sampled. The resampling
depends mostly on the interpolation function especially the type of spline used (linear, quadratic, cubic, ...). For high order splines (beyond
cubic), the interpolated signal should create some artefacts in the frequency domain at high frequencies especially if N is too large. For linear
spline, the interpolated signal could have jerky variations which create non-neglectible high frequency content which can aliased the DFT if
N is not large enough (Nyquist criterion). A compromise can be made by choosing a cubic spline interpolation which should not create high
frequency content because of its smoothness. Finally, we choose N in an intermediate range of values such that 2N is large enough to avoid
aliasing and not too large to avoid issues on temporal resampling. A good compromise is to choose N such that 2N − 2 is the superiorly closest
value to the number of samples in the initial series. For example if there are 500 samples in the initial time-series, the closest power of two is
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29 = 512 so that we choose N = 11. This choice of N prevents aliasing in the spectrum calculation. If the samples are initially not regularly
spaced, we should first resampling at the shortest time-step, then determine the closest power of two of the resampled time-series and finally
choose the optimal N. Examples are given in Sections 5.2 and 5.3. Another trick in the computation of FFT is to artificially increase the
resolution of the spectrum using zero-padding. The addition of zeros on the time-series is not without effects (windowing) on the spectrum
such that we advise to not use this technique in most cases. The spectrum is less impacted by this technique if the beginning and the end
of the true time-series tend to zero. Therefore, we prefer to use neither zero-padding nor windowing in this study but to compute the FFT
with the same number of points (2N) as the resampled time-series. We add a remark on the fact that since the viscoelastic Love numbers are
not computed for the zero frequency, a special attention should be given to the corresponding coefficient in the DFT (leading to permanent
deformation). If we only want relative values of deformations, the coefficient could simply be set to zero (the mean of the signal is then
removed).

4.3 Global perturbation

The majority of perturbation signal have a non-trivial spatio-temporal repartition on the Earth surface (especially loading signals). We
decompose for each time step, the spatially dependant perturbation into SH to match the decomposition of our Love number calculation. We
then obtain the amplitude time-series of each SH coefficient. Then we apply to each SH coefficient time-series representing the amount of
signal in a given spatial configuration the procedure described in the previous section to obtain the associated deformation SH coefficient. The
recomposition of the spatio-temporal deformation is done by the recombination of all SH coefficient for each time step. We note that since
the Love numbers are degenerate in the order m for a SNREI model, every (n, m) Love numbers are equal to the zonal (n, 0) Love number.

This general procedure is capable of handling a large number of geophysical signals while being fairly easy to implement and numerically
fast. Moreover, it is still possible in the viscoelastic case to use Green’s function formalism developed in (Farrell 1972) to deal with local
sinusoidal deformations. The main difference is that the Green’s functions will be complex and calculated for a single frequency chosen to
correspond to the perturbation signal frequency.

5 A P P L I C AT I O N S

The viscoelastic Love numbers are used in several classical applications. We consider some particular examples: long period tidal deformations,
GIA and the secular signal deduced from GRACE/GRACE-FO (Gravity Recovery And Climate Experiment - Follow-On, Tapley et al. 2004;
Flechtner et al. 2014), mainly due to present-day ice mass loss in Antarctica, Greenland and Alaska (Luthcke et al. 2013). We compare the
elastic and several viscoelastic responses to these perturbation signals in order to evaluate the impact of slightly different rheologies. This can
be useful to further investigate the usual models of deformation considering the actual experimental constraints. In particular, the viscoelastic
long period tidal deformations are compared to the results of current IERS convention model (Petit & Luzum 2010).

5.1 Solid Earth tides

Solid Earth tides, especially their long-period zonal constituents, are particularly interesting to investigate the Earth’s rheology, as the tidal
potential can be computed with high precision (Hartmann & Wenzel 1995). Among other studies (Dehant & Zschau 1989; Walterova &
Behounkova 2017), Benjamin et al. (2006) investigated the anelasticity in the Earth response to the long-period tides using C20 observations
from Satellite Laser Ranging, and Polar Motion. However, their approach is based on the absorption band process as it is commonly done
in seismology but not on a consistent viscoelastic model. We propose to calculate the direct response of several viscoelastic models based
on PREM with the method developed in this study to evaluate the differences with the IERS conventions (Petit & Luzum 2010), which are
classically used in the processing of geodetic data. The solid Earth tidal displacement calculation described in IERS conventions (Petit &
Luzum 2010) is based on Wahr (1981) and Mathews et al. (1995) Love number definitions and consists of several disparate contributions to
each Love numbers and displacement terms that are computed in a two steps procedure. In addition, the non-sphericity of the Earth and the
Free Core Nutation resonance have been taken into account in the IERS conventions, leading to both degree and order dependence of Love
numbers, and to frequency-dependant Love numbers in the diurnal band.

Since the effect of viscoelasticity in the mantle becomes significant at long periods (Fig. 3), we focus on the zonal long period tidal waves.
Moreover, we will only consider the predominant zonal contribution (2,0), since the higher zonal terms are several orders of magnitude lower.
We propose to represent the vertical displacements induced by these (2,0) tidal constituents for some viscoelastic models and to compare the
results with the IERS conventions.

We use the catalogue corresponding to the harmonic decomposition of tidal constituents given by Doodson (1921), in the theoretical frame
developed by Hartmann & Wenzel (1995). We compute the complex admittance of each wave that we then multiply with the corresponding
complex degree 2 TLN to obtain the FT of the deformation as described in the Section 4.1. We compute the deformation for all the (2,0) tidal
waves at their respective frequencies. The degree 2 TLN associated to the main waves are reported in Table 4 where we see that the major
impact is for the longest period waves and the lowest viscous models. The total deformation spectrum is given by the collection of all Dirac
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Table 4. Complex degree 2 TLN for the four main tidal waves and for each of the considered viscoelastic models.

Wave [Nodal] [Ssa] [Mm] [Mf]
Frequency (cycle·yr–1) 0.0537 2.0000 13.2555 26.7371

MAXWELL 18 1.668203 − 0.318953i 0.647748 − 0.186672i 0.604599 − 0.030164i 0.603753 − 0.014975i
MAXWELL 19 0.929106 − 0.437636i 0.603970 − 0.020013i 0.603487 − 0.003022i 0.603479 − 0.001498i
MAXWELL 20 0.610220 − 0.073787i 0.603481 − 0.002003i 0.603476 − 0.000302i 0.603476 − 0.000150i
MAXWELL 21 0.603545 − 0.007458i 0.603476 − 0.000200i 0.603476 − 0.000030i 0.603476 − 0.000015i
MAXWELL 22 0.603477 − 0.000746i 0.603476 − 0.000020i 0.603476 − 0.000003i 0.603476 − 0.000001i
MAXWELL 23 0.603476 − 0.000075i 0.603476 − 0.000002i 0.603476 − 0.000000i 0.603476 − 0.000000i
MAXWELL 18−23 0.612103 − 0.025199i 0.603842 − 0.002128i 0.603485 − 0.000335i 0.603478 − 0.000166i
MAXWELL 19−23 0.606343 − 0.005692i 0.603480 − 0.000224i 0.603476 − 0.000034i 0.603476 − 0.000017i
MAXWELL 20−23 0.603529 − 0.000895i 0.603476 − 0.000024i 0.603476 − 0.000004i 0.603476 − 0.000002i
MAXWELL 21−23 0.603476 − 0.000156i 0.603476 − 0.000004i 0.603476 − 0.000001i 0.603476 − 0.000000i
MAXWELL 19−23 BURGER 17 0.609618 − 0.003846i 0.608544 − 0.001500i 0.604968 − 0.002329i 0.603970 − 0.001499i
MAXWELL 19−23 BURGER 19 0.608745 − 0.005928i 0.603497 − 0.000444i 0.603476 − 0.000067i 0.603476 − 0.000033i
MAXWELL 19−23 BURGER 21 0.606374 − 0.005720i 0.603480 − 0.000226i 0.603476 − 0.000034i 0.603476 − 0.000017i
MAXWELL 21−23 BURGER 17 0.608966 − 0.000157i 0.608529 − 0.001391i 0.604959 − 0.002305i 0.603967 − 0.001484i
MAXWELL 21−23 BURGER 19 0.607071 − 0.002575i 0.603486 − 0.000226i 0.603476 − 0.000034i 0.603476 − 0.000017i
MAXWELL 21−23 BURGER 21 0.603479 − 0.000239i 0.603476 − 0.000006i 0.603476 − 0.000001i 0.603476 − 0.000000i

1980 1990 2000 2010 2020

−25
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25
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Figure 5. Elastic PREM vertical displacement of (2,0) tidal waves from Doodson catalogue. This displacement have to be multiplied by the associated Legendre
polynomials to obtain the real displacement in function of latitude. The red inset is a 6 months zoom to see the high frequencies.

peaks which is none that a Fourier series as described in Beuthe (2015). At last in the time domain, the resulting time-series deformation is
multiplied with the associated (2,0) Legendre polynomials to get latitude dependence.

The PREM vertical deformation without the permanent tide is shown in Fig. 5. This displacement is a reference such that the real
displacement is obtain by multiplying the reference with the Legendre polynomials. The deformation waves are contained in a 18.6 yr (Nodal
tide) and a 4.5 yr envelopes, which is itself modulated by the semi-annual wave (Ssa). The smaller periods especially Mm (27.55 d) and Mf
(13.66 d) are visible on the red zoom inset of Fig. 5.

We then compute the tidal deformations for several viscoelastic rheologies. Fig. 6 represents the residual vertical displacement of several
viscoelastic models after PREM signal was removed. The permanent tide is then automatically discarded and the signal is zero mean. The
amplitude of the residuals and the corresponding normalized time-series are represented separately in order to compare properly the phase
shift and the frequency content of the signal. We also include the residuals calculated from the difference between the IERS conventions
(Petit & Luzum 2010) and PREM. We choose to compute the residuals for the reference displacement (without multiplying by the Legendre
polynomial) because the choice of a particular latitude does not matter to compare the different models since every models are modulated by
the same Legendre polynomial value at a given latitude. The reference amplitude have then to be considered as real amplitude with Legendre
polynomials is equal to one (equivalent to latitude ±36.5◦N). The maximum amplitude is obtain by multiplying the reference amplitude by a
factor 2.24.

The amplitude for the residuals of MAXWELL 18 and MAXWELL 19 models are ten times greater than the ones reported in the
figure, reflecting the important discrepancy between these models and PREM. The amplitude decreases when the viscosity increases for
homogeneous viscoelastic Maxwell models. The same behaviour is observed when we set the LM viscosity at 1023 Pa·s and that only the UM
viscosity varies. Again the amplitude of Burgers models decreases as the transient viscosity ηk increases.

On the other hand, the right-hand panel indicates that the main component of the difference between PREM and the viscoelastic models
is the Lunar nodal wave at 18.6-yr period. Indeed, as we saw in Fig. 3 for LLN, TLN are more impacted by the viscoelasticity as the period
increases. The largest tidal period computed being the Nodal wave, it is the most likely one to be affected. We also see that this wave is subject
to a phase shift as the viscosity changes. We can measure it by locating the maximum displacement positions on the time-series. The phase
shift exists for all tidal waves but is more important for the longest periods (as they are the most likely to be impacted by the viscosity).

As every model is associated to a low pass filter with one or several cut-off frequencies, changing the viscosity model is also changing its
cut-off frequencies. If the range of cut-off frequencies contains one or several of the main tidal wave, then changing even slightly the viscosity
models can significantly impact the displacement of the Earth at this tidal wave frequency. We can see this effect in the Fig. 6 especially when
we change the value of transient viscosity for Burgers models, but also as the global mantle viscosity increases.
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Figure 6. Residuals of the total vertical displacement generated by the (2,0) tidal waves from Doodson catalogue, for several viscoelastic rheologies and the
model given in the IERS conventions (Petit & Luzum 2010). The residuals have been computed according to PREM displacement time-series. We plotted the
amplitudes (left-hand panel) and the normalized time-series (right-hand panel).

We show the high dependence of the Earth viscoelastic parameters to the response of long-period tides. The objective should then to
refine the determination of these parameters to provide optimal parameters for a realistic viscoelastic earth model. The use of such model in
the tidal deformation computation should be able to replace the actual IERS conventions two-steps procedure which does not correspond to
a consistent physical model. In particular, the differences in the 18.6-yr tide deformation between the actual IERS conventions and a more
realistic viscoelastic model can exceed 2 mm (after multiplying by degree 2 Legendre polynomial), which is twice the desired accuracy in
position for terrestrial reference frame (Altamimi et al. 2016).

5.2 GIA/postglacial rebound

GIA is another important proof of the viscoelasticity of the Earth and has already been largely studied (Peltier et al. 1981; Lambeck et al.
1998). A GIA solution (displacement rates and ice history) is generated for a given rheology and Earth structure. We want to evaluate the
sensitivity of actual deformation rates observed with a slight change in viscoelastic parameters from a GIA model (Steffen & Kaufmann
2005; Roy & Peltier 2015). In the same way, Caron et al. (2017) used a Bayesian approach to realize such sensitivity tests on GIA models
parameters. We compute the displacements given by the ICE-6G model supplied by Peltier et al. (2015) to validate our methodology on
non-periodic perturbations. Taking the ice history derived from ICE-6G, we can compare the predicted actual vertical displacement rate for
several Maxwell rheologies since they generally are the best to fit the GIA observed deformations.

First, we decompose the ice history into SH using the Python library SHTools (Wieczorek & Meschede 2018). We consider the ocean
as an homogeneous reservoir and determine an homogeneous sea level at each time in order to enforce the global mass conservation. As
described in Sections 4.2 and 4.3, we then compute the DFT of each SH coefficient using FFT algorithm on the time-series previously
resampled to 211 = 2048 epochs by cubic interpolation. We choose N = 11 because the initial number of sample in the ice history is 122,
extended to 489 taking the minimum time-step of 250 yr, and which the closest power of two is 29. Some coefficients and an example of
their Fourier spectrum estimation are given in Fig. 7 where we see that choosing too small N can create aliasing and can slightly shift in the
y-direction the FFT results (panel b). Since the input time-series are real, the FFT is computed only between f = 0 and f = fs/2, where fs =
0.0042 cycle·yr–1 is the sampling frequency. The rest of the spectrum is useless and redundant since it is symmetric. The frequency precision
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Figure 7. Cubic interpolation of time evolution and the associated FFT of (2,0), (2,1) and (2,2) SH coefficients of the ICE-6G ice history. The black dotted
lines in FFT plots are the Nyquist frequencies for the two choices of N where 2N is the number of time and frequency samples used, while the black horizontal
segments are the frequency span of the inset zoom plots.

δf = 1.03 × 10−6 cycle·yr–1 of the FFT is given by the inverse of the total period of the ice history signal (duration of 122 kyr). It is also the
most little non-zero frequency to be calculated by the FFT algorithm. After multiply coefficients and LLN spectrum and take the inverse FFT,
we have the temporal deformation SH coefficients which we combine with Legendre polynomials to obtain the deformation field.

The ice history model in ICE-6G already assumes a particular rheology which was determined by the global inversion of the surface
displacements and sea level data (Peltier et al. 2015). It is then interesting to evaluate the importance of a slight change in rheological
parameters when we compute the vertical surface displacement. The results are shown in the Fig. 8, where we test five different Maxwell
viscoelastic rheologies for the mantle. Their parameters have been chosen to explore the parameter space close to ICE-6G results and to be
coherent with the values obtain in Kaufmann & Lambeck (2002), Steffen & Kaufmann (2005) and Caron et al. (2017) to recover the UM and
LM viscosities. The amplitudes of the vertical rate are very similar to the one found in the viscoelastic prospection led in Marotta (2003).
The amplitudes could significantly differ from ICE-6G showing the strong dependence in rheological parameters.

In order to compare the spatial repartition of the deformation between the different models and ICE-6G, we compute for each case, the
normalized map (with unity maximum amplitude), and then define a correlation coefficient C as

C =

∑
i, j

(
Mi j − Mi j

) (
Pi j − Pi j

)
√∑

i, j

(
Mi j − Mi j

)2
√∑

i, j

(
Pi j − Pi j

)2
, (11)

such that P is the normalized ICE-6G map and M one of the normalized tested rheology map. All the models presented in the Fig. 8 have
C > 0.55. The rheologies with the best spatial correlation to ICE-6G are MAXWELL 21–22 and MAXWELL 21–23 reaching 0.93. The
optimal parameter between amplitude and spatial pattern should be 1021 < ηm

UM < 1022 and 1022 < ηm
LM < 1023. If these values are in a good

agreement with the ICE-6G model, they have to be used with precaution and maybe locally modified or refined to integrate other timescale
phenomena such as PSD or Chandler wobble. Besides, Geruo et al. (2013) show that the determination of optimal viscosity parameters based
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Figure 8. Actual vertical displacement rate (in cm·yr–1) computed with ice history of the model ICE-6G (Peltier et al. 2015) for several viscoelastic rheologies.
The ICE-6G actual rate map is also shown as a reference. Coloured meridians in (d) refer to slices shown in Fig. 9. The spatial correlation coefficients (0 ≤ C
≤ 1) between the normalized maps and the reference are (from (b) to (f)) : [0.57,0.93,0.93,0.79,0.87].

on local studies cannot be properly generalized in global models. Then, the 3-D structure of the earth model especially the viscosity profile,
should play an important role in the observed uplift of specific regions (Wu 2006; Spada et al. 2006; Wu et al. 2013).

The optimal viscosity parameters correspond to a cut-off period of 2000 or 20 000 yr for LM and of 200 yr for UM. The deformation
rate in the LM should then be much slower than in the UM where the timescale is much shorter. To investigate this, we calculated the LLN
in the deep interior of the Earth from the CMB to the surface. They have been computed by saving the three unscaled propagating solutions
throughout the mantle and then multiply by scaling constants determined within the LLN at the surface. The deep deformation rates have
then been computed for MAXWELL 21–23 model using the same scheme than described above (with FFT) at all depth but with a zero
frequency LLN taken as elastic LLN. We reported in the Fig. 9(a) these deformation rates, for the three longitude slices drawn in the Fig. 8(d).
The choice of [−80◦E, −45◦E, +20◦E] longitudes has been done to cross the areas of largest deformation: Canada, Greenland, Scandinavia
and Antartica. We see that the localization of the deformation rate is mainly in the UM. This result is not surprising considering the time
scales previously estimated for LM and UM. Nevertheless, this does not imply that the actual steady state deformation is null in the LM, as
shown in Fig. 9(b). The actual steady-state deformation spreads in the whole mantle under the loading of actual and past ice sheets, especially
in Antarctica where the actual ice thickness is the largest. Also, we see the formation of a positive deformation bulge beside the ice sheet
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Figure 9. Vertical actual deformation rate (a) and actual steady state deformation (b, c) in the deep interior of the Earth until the CMB, along longitudinal
slices pointed out by the respective coloured lines in Fig. 8(d). Panels (a, b) are related to MAXWELL 21–23 rheology and (c) to PREM.

subsidences. This is the signature of an internal redistribution of matter to reach the global deformation equilibrium state. We compare the
actual steady state deformation from MAXWELL 21–23 with PREM (Fig. 9c) and see that in PREM, we only see actual ice-covered regions
creating deformation since the elastic constraint in other regions (Hudson Bay, Scandinavia, ...) has already been released 1000 yr ago.

5.3 Present-day ice melting

In addition to Pleistocene deglaciation, the Earth is experiencing present-day ice melting at high latitudes (Shepherd et al. 2018, 2020) but
also of mountainous glaciers at mid latitude (Jacob et al. 2012) which can be measured with various space techniques, such as altimetry
(Helm et al. 2014) and gravimetry (Velicogna et al. 2020). For the smallest timescale of deformation, the impact of viscosity should be
lower considering the values of η in the mantle. For example, Chanard et al. (2018) studied the impact of similar viscoelastic Maxwell and
Burgers models to those used in this study, on the annual loading signal. They compare GNSS displacements to site displacements recovered
in solving the direct problem for several rheologies applied on GRACE data. They show that the choice of rheological models does not
significantly affect the annual signal in vertical time-series, but could affects the horizontal time-series. This is consistent with the previous
results in this paper, as shown in Fig. 3. However, the loading signal extracted from GRACE and GRACE-FO also contains long-period signal
variations, which can be due to secular climate changes (ice melting on Antarctica, Greenland and Alaska (Luthcke et al. 2013)) or to long
period meteorological phenomena exceeding a decade (Trenberth 1990). The effects of viscoelasticity should then be more important and we
choose to focus on these long periods.

Then, we use the surface mass variations deduced from GRACE and GRACE-FO during the time span 2004–2020 to access intermediate
frequencies of deformation, additionally to the seasonal hydrological cycles. We use the CSR RL06 Mascons solution downloaded from
http://www2.csr.utexas.edu/grace/RL06 mascons.html. This solution has been improved since the RL05 release (Save et al. 2016) especially
in term of resolution of the supplied regular grid which allow a proper resolution of the coastlines. As a mascons technique, the RL06
solution is free of any empirical filtering and is moreover corrected from the GIA ICE6G-C from Peltier et al. (2015). Its low degree zonal
coefficients C20, C30 have also been replaced by those derived from Satellite Laser Ranging (Loomis et al. 2019). We use the same scheme
than in Sections 4.3 and 5.2 to compute the displacements choosing a sampling of 2N = 1024 which gives a sampling frequency of fs = 56.38
cycle·yr–1 and a frequency precision δf = 0.055 cycle·yr–1.

We fit the deformation in order to only get the secular linear trend, which is the more likely to be affected by the viscoelastic rheology.
This signal should denote the actual ice melting average velocity on the polar regions. We represent the associated secular displacement for
different rheologies in polar regions in Fig. 10. To be consistent with the previous section, we choose to represent the displacements computed
from PREM and patchy viscoelastic models. We choose first the MAXWELL 21–23 model consistent with GIA (Section 5.2) and with recent
studies (Whitehouse et al. 2012; Peltier et al. 2015; Caron et al. 2017). Then we choose MAXWELL 18–23 to provide a model of low UM
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Figure 10. Actual vertical displacement rate (in cm·yr–1) from the GRACE/GRACE-FO CSR data mainly due to ice melting, for several viscoelastic rheologies
and PREM.

viscosity as Nield et al. (2014) suggested studying the Antartic Peninsula. Finally, we choose to represent a Burgers model with low transient
viscosity.

The spatial pattern does not seem to radically change between the different viscoelastic rheologies and PREM except for the MAXWELL
18–23 rheology where we see higher deformation of the Antartic Peninsula (Nield et al. 2014) and the Greenland coast side. As we explore
extremely long periods (a trend is considered as an nearly infinite period signal), the displacements computed for all rheologies are close
from each other and the differences are only coming from the interannual variations of the ice mass loss. In particular, the subduction zone
in south Alsaka between Pacific and North American Plate, is not very sensitive to any particular viscosity of the UM in the range proposed
by the model of Jadamec et al. (2013): ηUM is from 1019 to 1021 Pa·s. In any case, it seems not reasonable to choose global value of viscosity
by extrapolating from some localized subduction zones (Geruo et al. 2013) or local studies (Nield et al. 2014; Bos et al. 2015). The main
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Figure 11. ITRF Stations positions for which we computed the vertical rate values in the Tables 5 and 6.

Table 5. Rates (mm·yr–1) of several ITRF stations in Antarctica calculated for ITRF14 solution (Altamimi et al. 2016) and for different rheologies
in GIA models and GRACE deformations.

ITRF site PALV CRAR ROB4 CAS1 MAW1 SYOG VESL
DOMES 66005M002 66001M004 66063M002 66011M001 66004M001 66006S002 66009M001
Lon. (◦E) 295.949 166.668 163.190 110.520 062.871 039.584 357.158
Lat. (◦N) −64.775 −77.848 −77.034 −66.283 −67.605 −69.007 −71.674

ITRF Up rate +5.865 −0.338 +1.076 +0.892 −0.546 +0.857 +0.782

Rates for GIA models
ICE-6G +2.469 +1.010 +0.995 +1.052 +0.414 +0.871 +1.381
MAXW21 +2.758 +2.781 +1.602 +1.996 +0.631 +1.201 +1.314
MAXW21–22 +3.330 +4.525 +3.229 +2.895 +1.493 +2.099 +2.293
MAXW21–23 +3.081 +3.765 +2.592 +2.783 +1.348 +2.005 +2.096
MAXW21–23 +2.938 +3.608 +2.506 +2.694 +1.331 +1.952 +2.034
BURGER 17

Rates for GRACE data (without ICE-6G)
PREM +1.230 −0.027 −0.063 +0.750 −0.868 −1.311 −1.568
MAXW21 +1.499 +0.335 +0.300 +1.059 −0.532 −0.967 −1.222
MAXW21–22 +1.498 +0.334 +0.300 +1.059 −0.532 −0.967 −1.222
MAXW21–23 +1.498 +0.334 +0.300 +1.059 −0.532 −0.967 −1.222
MAXW21–23 +2.058 +0.267 +0.231 +1.478 −0.634 −1.254 −1.675
BURGER 17

difference between models is the maximum value of the slope going from 1.3 cm·yr–1 for elastic and MAXWELL 21–23 until 1.8 cm·yr–1

adding a BURGER 17 and reaching 2.0 cm·yr–1 for the MAXWELL 18–23. It was predictable regarding Fig. 3, that the low viscosity models
impact the most the deformation rate observed. The maximum vertical rates derived from ICESat in the Greenland are close to the one of
PREM and MAXWELL 21–23, according to previous studies (Spada et al. 2012; Groh et al. 2014; Wang et al. 2018). These maximum rates
are very localized in the west and southeast coasts but close to zero in the north east. Concerning Antarctica, we find the well-known ice
melting uplift on the Pine Island Bay, the Byers Peninsula and the Budd coast while the west Antarctica subsides upon a thicker ice cap.

The great similarity between all of the presented models, for these range of frequencies, are maybe due to the fact that the model does not
take into account the longitudinal and latitudinal dependence of the viscoelastic parameters, which can change the local uplift models such as
the subduction zone of South Alaska (Jadamec et al. 2013). Also, taking into account time dependent velocities in polar ice melting should
have an effect in the recovery of shorter period displacements even if the importance of viscoelasticity decreases with the period (Fig. 3).
Despite, the global isotropic layered model provides interesting results, since we can compute deformations for very low degrees, along with
local deformations that are consistent with (but not as precise as) local laterally heterogeneous models.

We finally compared the uplift rate of several ITRF2014 geodetic stations (Altamimi et al. 2016) shown in Fig. 11 at high latitude (Arctic
and Antarctica) with the rates of some viscoelastic models (GIA and present-day ice melting) evaluated in this study (Tables 5 and 6). The
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Table 6. Rates (mm·yr–1) of several ITRF stations around the North Pole calculated for ITRF14 solution (Altamimi et al. 2016) and for different rheologies
in GIA models and GRACE deformations.

ITRF site CHUR NAIN QIKI ALRT THU3 KELY QAQ1 KULU SCOR
DOMES 40128M002 40164M001 40166M001 40162M001 43001M002 43005M002 43007M001 43003M001 43006M002
Lon. (◦E) 265.911 298.311 295.966 297.660 291.175 309.055 313.952 322.851 338.050
Lat. (◦N) +58.759 +56.537 +67.559 +82.494 +76.537 +66.987 +60.715 +65.579 +70.485

ITRF Up rate +10.96 +4.491 +4.073 +6.194 +6.240 +2.415 +4.684 +7.110 +4.055

Rates for GIA models
ICE-6G +8.588 +2.012 −1.448 +3.877 −0.116 +0.674 +2.497 −0.516 +1.592
MAXW21 +0.952 +1.441 −4.574 +5.211 −3.489 +1.168 +1.993 −0.546 +1.944
MAXW21–22 +14.775 +5.127 −1.080 +4.513 −2.261 +2.473 +1.572 −0.752 +0.918
MAXW21–23 +8.508 +2.989 −2.761 +4.759 −2.916 +2.508 +2.071 +0.153 +1.630
MAXW21–23 +8.557 +2.967 −2.655 +4.578 −2.884 +2.483 +1.873 +0.113 +1.512
BURGER 17

Rates for GRACE data (without ICE-6G)
PREM +0.692 +0.941 +3.029 +2.945 +7.105 +7.929 +6.492 +6.881 +2.263
MAXW21 +0.374 +0.572 +2.521 +2.454 +6.556 +7.340 +5.983 +6.314 +1.769
MAXW21–22 +0.374 +0.572 +2.521 +2.453 +6.556 +7.340 +5.982 +6.313 +1.768
MAXW21–23 +0.374 +0.572 +2.521 +2.453 +6.556 +7.340 +5.982 +6.313 +1.768
MAXW21–23 +0.320 +0.424 +2.557 +2.742 +8.032 +9.331 +7.813 +7.963 +1.647
BURGER 17

ITRF site NYAL KOD1 KEN1 AC15 EYAC 7277 7225 AB42 WHIT
DOMES 10317M001 40419S001 49995S001 49397M001 49402M001 40416M001 40408S002 49377M001 40136M001
Lon. (◦E) 011.865 207.807 208.650 210.276 214.250 217.514 212.502 221.101 224.778
Lat. (◦N) +78.930 +57.618 +60.675 +60.481 +60.549 +60.081 +64.978 +59.340 +60.751

ITRF Up rate +6.813 +7.608 +11.24 +7.026 +1.325 +24.59 +1.595 +17.52 +1.551

Rates for GIA models
ICE-6G +0.635 −0.289 +0.311 +0.361 +0.524 +0.485 −0.661 +0.461 +1.572
MAXW21 −0.130 +0.504 +1.425 +1.077 +0.315 −0.224 −0.442 −0.119 +1.180
MAXW21–22 +0.729 −1.212 −0.170 −0.443 −0.790 −0.716 −1.826 +0.392 +3.567
MAXW21–23 +0.676 −0.547 +0.336 −0.043 −0.731 −0.974 −1.716 −0.243 +2.336
MAXW21–23 +0.650 −0.562 +0.292 −0.075 −0.741 −0.971 −1.703 −0.254 +2.282
BURGER 17

Rates for GRACE data (without ICE-6G)
PREM +2.470 +0.835 +2.265 +2.998 +4.472 +5.745 +0.989 +5.698 +1.848
MAXW21 +2.017 +0.537 +1.936 +2.662 +4.118 +5.382 +0.652 +5.336 +1.492
MAXW21–22 +2.017 +0.537 +1.937 +2.663 +4.118 +5.383 +0.652 +5.337 +1.493
MAXW21–23 +2.017 +0.537 +1.937 +2.663 +4.118 +5.383 +0.652 +5.337 +1.493
MAXW21–23 +2.366 +0.518 +2.529 +3.512 +5.584 +7.290 +0.590 +7.129 +1.861
BURGER 17

differences between the observed and modelled rates are quite sensitive to the localization of the stations and moreover to the rheological
parameters for the GIA part. As discussed before, we see that the GRACE long-term signal is less affected by changing rheological parameters.
To recover a consistent rate derived from GIA and present-day ice melting, present-day ice melting rates have to be combined with the ICE-6G
rates, to be consistent with the models removed from the GRACE data used in this study. The difference of rates between ITRF and models
can be explained by the interpolation of station position on the rough 1◦ × 1◦ grids of the models, especially for stations on the seashore. The
differences between elastic and viscoelastic modelled deformations due to present-day ice melting always exceed 0.1 mm·yr–1, which is the
desired accuracy of the terrestrial reference frame (Altamimi et al. 2016). In Greenland, these differences reach more than 0.5 mm·yr–1. We
note a systematic deviation from the elastic case for Maxwell models of mean −0.4 mm·yr–1 in north pole and +0.3 mm·yr–1 in south pole.
This signal could be, among others, the signature of odd low degrees zonal deformations (including degree 1 along the Z-axis) and highlights
the great dependence of the low degrees to viscosity of the mantle (Fig. 4).

6 D I S C U S S I O N

We note an inconsistency in the choice of an Earth rheological model between solid Earth tides in the IERS Convention (Petit & Luzum
2010), deformation due to GIA and present-day ice melting. We compute the viscoelastic deformation for these three geophysical effects
using consistent earth models, based on PREM model (Dziewonski & Anderson 1981), in which we added anelastic parameters in the mantle
layers.
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For the vertical displacement, we show that the differences between the IERS Convention (Petit & Luzum 2010) and more realistic
viscoelastic models could exceed 1 mm for the 18.6-yr Lunar node tide. Such models should be tested in the processing of geodetic techniques
(GNSS, DORIS, VLBI and SLR) long record (more than 20 yr), in order to improve the realization of terrestrial reference frame.

We also show that the mantle anelasticity is no longer negligible in the vertical displacements due to present-day ice melting in polar
regions (see also Métivier et al. 2020). Indeed, the characteristic timescales (20–30 yr) are comparable to the Lunar node tide. If the spatial
patterns are not very different between the elastic and viscoelastic models, the differences always exceed 0.1 mm·yr–1 in polar areas, and
sometimes more than 0.5 mm·yr–1 in Greenland. Similarly to the tidal deformations, we observe that the introduction of mantle viscosity
affects mostly the low degrees. In particular, the Fig. 3 shows that degree 1 is significatively affected by the viscosity profile. As it is important
to accurately study the geocentre motion (Blewitt 2003; Métivier et al. 2010; Wu et al. 2012), which is particularly affected by present-day
ice melting (Métivier et al. 2020), a viscoelastic approach should then be adopted in future models and characterization.

However, including mantle anelasticity for the present-day ice melting raises some issues about the consistency of the estimation of
displacements along with the GIA. In order to properly isolate the two contributions, the same viscoelastic model should be used for both
determination of long term ice history and recent ice melting, which can be measured with altimetry (Helm et al. 2014) and gravity (Luthcke
et al. 2013; Velicogna et al. 2020) missions. This requires a great effort of computation since any GIA model should then be produced
in a self-consistent manner with a present-day ice melting model. Moreover, the great variability of deformation measured with geodetic
techniques between nearby stations (Tables 6 and 5) suggests inhomogeneous values of viscoelastic parameters in the mantle at various spatial
scales (Métivier & Conrad 2008; Nield et al. 2014; Bos et al. 2015). This could largely influence past and present ice models and make their
determination more complex. Unfortunately, the theoretical frame used to calculate Love numbers is for now not suited to take into account
the spatial heterogeneities of the Earth structure, and should then be reviewed. This have already been done partially when we consider the
ellipticity of the Earth (Métivier et al. 2005) for example.
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Kustowski, B., Ekström, G. & Dziewoński, A.M., 2008. Anisotropic shear-
wave velocity structure of the Earth’s mantle: a global model, J. geophys.
Res., 113, doi:10.1029/2007JB005169.

Lambeck, K., Smither, C. & Johnston, P., 1998. Sea-level change, glacial re-
bound and mantle viscosity for northern Europe, Geophys. J. Int., 134(1),
102–144.

Laske, G., Masters, G., Ma, Z. & Pasyanos, M., 2013. Update on
CRUST1.0—a 1-degree Global Model of Earth’s Crust, Geophys. Res.
Abstracts, 15, Abstract EGU2013-2658.

Lee, E.H., 1955. Stress analysis in visco-elastic bodies, Quart. Appl. Math.,
13(2), 183–190.

Lee, E.H., Radok, J.R. M. & Woodward, W.B., 1959. Stress analysis for
linear viscoelastic materials, Trans. Soc. Rheol., 3(1), 41–59.

Li, W., Shum, C.K., Li, F., Zhang, S., Ming, F., Chen, W. & Zhang, Q., 2020.
Contributions of Greenland GPS observed deformation from multisource
mass loading induced seasonal and transient signals, Geophys. Res. Lett.,
47(15) , doi:10.1029/2020GL088627.

Longman, I.M., 1962. A Green’s function for determining the deformation
of the Earth under surface mass loads: 1. Theory, J. geophys. Res., 67(2),
845–850.

Longman, I.M., 1963. A Green’s function for determining the deformation
of the Earth under surface mass loads: 2. Computations and numerical
results, J. geophys. Res., 68(2), 485–496.

Loomis, B.D., Rachlin, K.E. & Luthcke, S.B., 2019. Improved Earth oblate-
ness rate reveals increased ice sheet losses and mass-driven sea level rise,
Geophys. Res. Lett., 46, 6910–6917.

Love, A.E. H., 1911. Some Problems of Geodynamics, Cambridge Univ.
Press.

Luthcke, S.B., Sabaka, T.J., Loomis, B.D., Arendt, A.A., McCarthy, J.J. &
Camp, J., 2013. Antarctica, Greenland and Gulf of Alaska land-ice evolu-
tion from an iterated GRACE global mascon solution, J. Glaciol., 59(216),
613–631.

Marotta, A.M., 2003. Benefits from GOCE within solid Earth geophysics,
Space Sci. Rev., 108, 95–104.

Martens, H.R., Simons, M., Owen, S. & Rivera, L., 2016. Observations of
ocean tidal load response in South America from subdaily GPS positions,
Geophys. J. Int., 205(3), 1637–1664.

Martens, H.R., Rivera, L., Simons, M. & Ito, T., 2016. The sensitivity of
surface mass loading displacement response to perturbations in the elastic
structure of the crust and mantle, J. geophys. Res., 121(5), 3911–3938.

Martens, H.R., Rivera, L. & Simons, M., 2019. LoadDef: a Python-based
toolkit to model elastic deformation caused by surface mass loading on
spherically symmetric bodies, Earth Space Sci., 6(2), 311–323.

Mathews, P.M., Buffett, B.A. & Shapiro, I.I., 1995. Love numbers for a ro-
tating spheroidal Earth: new definitions and numerical values, Geophys.
Res. Lett., 22(5), 579–582.

Métivier, L., Greff-Lefftz, M. & Diament, M., 2005. A new approach to
computing accurate gravity time variations for a realistic earth model
with lateral heterogeneities, Geophys. J. Int., 162(2), 570–574.

Métivier, L. & Conrad, C.P., 2008. Body tides of a convecting, later-
ally heterogeneous, and aspherical Earth, J. geophys. Res., 113(B11),
doi:10.1029/2007JB005448.

Métivier, L., Greff-Lefftz, M. & Altamimi, Z., 2010. On secular geocenter
motion: the impact of climate changes, Earth planet. Sci. Lett., 296(3–4),
360–366.

Métivier, L., Rouby, H., Rebischung, P. & Altamimi, Z., 2020. ITRF2014,
earth figure changes, and geocenter velocity: Implications for GIA
and recent ice melting, J. geophys. Res., 125, e2019JB018333,
doi:0.1029/2019JB018333.

Na, S.H. & Baek, J., 2011. Computation of the load Love number and the
load Green’s function for an elastic and spherically symmetric earth, J.
Korean Physic. Soc., 58(5), 1195–1205.

Nield, G.A. et al., 2014. Rapid bedrock uplift in the Antarctic Peninsula
explained by viscoelastic response to recent ice unloading, Earth planet.
Sci. Lett., 397, 32–41.

Peltier, W.R., 1974. The impulse response of a Maxwell Earth, Rev. Geo-
phys., 12(4), 649–669.

Peltier, W.R., Wu, P. & Yuen, D.A., 1981. The viscosities of the Earth’s
mantle, Anelast. Earth, 4, 59–77.

Peltier, W.R., Argus, D.F. & Drummond, R., 2015. Space geodesy constrains
ice age terminal deglaciation: The global ICE-6G C (VM5a) model, J.
geophys. Res., 120(1), 450–487.

Petit, G. & Luzum, B., 2010. IERS conventions (2010) (No. IERS-TN-36),
Bureau International Des Poids Et Mesures, Sèvres (FRANCE).
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A P P E N D I X : I M P L E M E N TAT I O N O F N U M E R I C A L I N T E G R AT I O N

Considering the yin system derived in Longman (1962), we can write the matricial equivalent

dY

dr
= S(r, ω)Y (r ), (A1)

where Y(r) is a 6 vector containing the yi and S(r, ω) is a 6 × 6 matrix depending on the density ρ0, the downward gravity field g0, the
Lamé parameters λ and μ and the radius r for a stratified Earth. Different Earth models can be used (making sure that they are spherically
symmetric elastic and isotropic) like PREM (Dziewonski & Anderson 1981) or STW105 also known as REF (Kustowski et al. 2008). Such
models are generally computed from seismological data. Several other models exist and can also be used as shown in Na & Baek (2011),
especially refined crust models such as CRUST1.0 (Laske et al. 2013). Note that for simplest stratified cases, we can find analytical solutions
using power series decomposition (Wu & Peltier 1982; Greff-Lefftz et al. 2005).

A1 Centre boundary conditions

In the centre of the Earth, we write that there are no displacements and the perturbed potential is null : y1(0) = 0, y3(0) = 0, y5(0) = 0. There
are consequently only three independent normalized initial conditions noted Y 0

A, Y 0
B and Y 0

C to propagate from r = 0 until the ICB (inner core
boundary) using the solid system (A1)⎧⎪⎨⎪⎩

Y 0
A = (0, 1, 0, 0, 0, 0)

Y 0
B = (0, 0, 0, 1, 0, 0)

Y 0
C = (0, 0, 0, 0, 0, 1)

. (A2)
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The global solution at the centre is Y (r = 0) = AY 0
A + BY 0

B + CY 0
C where A, B, C are undetermined constants. All the yi being continuous

through solid–solid interface, we can perform the integration of each Y 0
A,B,C straight to the ICB where the respective solutions are noted

Y ICB
A,B,C . Then, we need to precisely determine the continuity of the yi through solid–liquid interface and integrate the solution in the liquid

Core.

A2 Liquid core

The equations of propagation in a liquid core are given in Chinnery (1975) for n ≥ 1⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
z1 = z5

g0

ż5 = z6 + 4πGρ0

g0
z5

ż6 =
[
−2

r
− 4πGρ0

g0

]
z6 +

[
−16πGρ0

rg0
+ n(n + 1)

r 2

]
z5

, (A3)

where zi are the nth zonal harmonic of the deformation (i = 1), of the gravitational potential (i = 5) and such that z6 = ż5 − 4πGρ0z1, defined
in the same way than y6 for the solid system. We use the letter z to emphasize the conceptual difference between these variables and the one
used for solid material. All the new variables are continuous throughout a liquid–liquid interface which is convenient in a stratified core. In
the other hand, the solid–liquid interface conditions are (at the ICB for example) :⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

yICB
1 = Ay A

1 + ByB
1 + CyC

1 = zICB
1 + K1

yICB
2 = Ay A

2 + ByB
2 + CyC

2 = K1ρ
ICB
0 gICB

0

yICB
3 = Ay A

3 + ByB
3 + CyC

3 = K2

yICB
4 = Ay A

4 + ByB
4 + CyC

4 = 0
yICB

5 = Ay A
5 + ByB

5 + CyC
5 = zICB

5

yICB
6 = Ay A

6 + ByB
6 + CyC

6 = zICB
6 − 4πGK1ρ

ICB
0

, (A4)

where K1 and K2 are undetermined constants, ρICB
0 the density at the ICB in the liquid (the density should be discontinuous at the interface)

and gICB
0 the downward gravity field (continuous at the interface). Since z1 and z5 are linked by eqs (A3), we only need to find the expression

of zICB
5 and zICB

6 to fully determine the initial condition of the integration in the fluid. Combining eqs (A4), we find⎧⎨⎩
zICB

5 = A
[
y A

5 + k1 yB
5 + (k2 + k1k3)yC

5

]
zICB

6 = A

([
y A

6 + k1 yB
6 + (k2 + k1k3)yC

6

] + 4πG
gICB

0

[
y A

2 + k1 yB
2 + (k2 + k1k3)yC

2

]) . (A5)

with undetermined constant A and where k1, k2 and k3 are constants given by

k1 = ρICB
0

(
y A

5 + k2 yC
5

) + (
y A

2 + k2 yC
2

) − gICB
0 ρICB

0

(
y A

1 + k2 yC
1

)
ρICB

0

(
yB

5 + k3 yC
5

) + (
yB

2 + k3 yC
2

) − gICB
0 ρICB

0

(
yB

1 + k3 yC
1

) ,

k2 = y A
4

yC
4

,

k3 = yB
4

yC
4

. (A6)

From the normalized initial conditions
(
zICB

5 /A, zICB
6 /A

)
, we integrate the system (A3) until the CMB (core–mantle boundary), and

apply again the liquid–solid conditions (A4) to the system
(
zCMB

1 , zCMB
5 , zCMB

6

)
, giving⎛⎜⎜⎜⎜⎜⎜⎜⎝

yCMB
1

yCMB
2

yCMB
3

yCMB
4

yCMB
5

yCMB
6

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= L1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
gCMB

0 ρCMB
0

0
0
0

−4πGρCMB
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
α

+ L2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
β

+ 1

A

⎛⎜⎜⎜⎜⎜⎜⎜⎝

zCMB
1

0
0
0

zCMB
5

zCMB
6

⎞⎟⎟⎟⎟⎟⎟⎟⎠
γ

(A7)

where L1 and L2 are similar constants than K1 and K2 at the ICB and ρCMB
0 is the density in the liquid core at the CMB.

A3 Integration until the outer surface

We then integrate the solid system (A1) through the mantle and the crust for the three independent initial conditions (α, β, γ ). To obtain
the global solutions, we need to determine the three constants 1/A, L1 and L2 with the boundary conditions at the outer surface which are
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described in Section 3.1. The 6 unknown at the outer surface [y1(a), y3(a), y5(a), 1/A, L1, L2] can be obtained by solving the following Cramer
system with a right member vector containing the outer boundary conditions⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

yα
1 yβ

1 yγ

1 −1 0 0
yα

2 yβ

2 yγ

2 0 0 0
yα

3 yβ

3 yγ

3 0 −1 0
yα

4 yβ

4 yγ

4 0 0 0
yα

5 yβ

5 yγ

5 0 0 −1

yα
6 yβ

6 yγ

6 0 0
n + 1

a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

L1

L2

1/A
y1(a)
y3(a)
y5(a)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

−
(

(2n + 1)ge

4πGa
U ′

n + Pn

)
0
τn

0
2n + 1

a
(Un + U ′

n)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A8)

We note that the boundary conditions in the outer surface (eq. 10) are applicable only if the outer layer of the Earth is solid. In the case
of PREM, the outer layer is the ocean and is therefore liquid. Then it is common to replace this ocean layer by an extension of the last crustal
layer. If we do this, we actually increase the density of the outer layer such that the mass of the Earth is a little larger than in the original
PREM. In order to keep the original value for the mass of the Earth, we need to reassign the density of the outer crust layer as the average of
the density of the ocean and the crust, weighted by the corresponding thickness of these two layers. Finally, we found an average density of
2283.4 kg·m−3 which is less than the original density 2600 kg·m−3 of the top crust layer. The difference in the Love numbers can be important
especially in the high degrees asymptote. This difference reaches 15 per cent for k ′ (h′ and l ′ are not affected) and between 15 per cent and
45 per cent for the TLN. We choose here to replace the ocean by the crust using the modified value of the density as Martens et al. (2016) did.

A4 Remarks on numerical integration

A4.1 Integration in r = 0

The gravito-elastic system (A1) is not mathematically defined at the origin. There are two options in order to perform the integration. The
first is to begin the integration of the system from a small non-zero radius (for example R = 1 km) to avoid the singularity. The second is to
consider an homogeneous sphere of same radius R and determine the analytical solution of the homogeneous problem inside (Greff-Lefftz
et al. 2005). This gives three independent solutions multiple of three constants A, B and C which are the initial conditions of the numerical
integration replacing the conditions (A2). These two methods give similar results for degrees beyond 1 especially for small radii (R < 10 km).

A4.2 High degree integration

It is common to implement a dimensionless form of the system for computational convenience. The equations and the boundary conditions
at the surface are then divided by dimensional constants (Longman 1963). The major advantage is to perform the integration for high degrees
without numerical divergence issues. We used a Runge–Kutta integrator of order 2 with integration step as small as needed and a normalization
of the integration result (result is between −1 and 1). Of course, the constants 1/A, L1 and L2 are affected but there are no consequences in the
surface Love numbers as they are determined simultaneously to the three constants in the inversion of (A8). However, the integration function
to compute Love numbers in the deep interior presented in Section 5.2 have to be unnormalized since the constants are used to determine the
solutions in depth. For degrees n > 300, the Love numbers are no longer dependent in the inner core and liquid core structure and we can
perform the integration from the base of the mantle (at the CMB) as if we integrate from the centre, applying the initial conditions (A2). The
difference between a mantle and total integration for these degrees are around numerical errors (∼10−8 in relative values).
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Liste des stations GNSS utilisées

Ce tableau donne les résultats des tendances et des cycles annuels sinusoïdaux pour les composantes
de déplacement Est Nord et verticale ajustées sur les séries temporelles des 1077 stations du réseau de la
Figure1.7b. Ces ajustements ont été obtenus en utilisant le logiciel CATS (Williams, 2008) et en ajustant
par ailleurs les sauts, le cycle semi-annuel, les fréquences draconitiques, une amplitude de bruit blanc, une
amplitude de bruit coloré et son indice spectral.

Nom
Longitude Latitude Début Fin Tendance Annuel [cos] Annuel [sin]

(°E) (°N) (yyyyddd) (yyyyddd) (mm·an−1) (mm) (mm)

ABEA 52.7890 -4.7410 2005354 2009105
[Est] 0.7720 −0.5822 0.1500

[Nord] −0.1720 0.9466 −0.5956

[Vert] −0.5338 0.3928 −2.8109

ABEP 52.1394 -4.5713 2005214 2020365
0.0050 −0.1798 −0.1355

0.1630 −0.2487 0.1718

0.1725 −1.6680 −0.0774

ABYW 52.4241 -4.0044 1998099 2020365
0.7000 0.4184 0.8942

0.4480 −0.1685 −0.1293

−0.0368 −0.7698 0.3452

ACER 40.7867 15.9424 2007192 2020325
0.8600 −0.1784 −0.9933

4.3690 0.0917 0.3165

0.6340 −2.4329 −3.1611

ACNS 41.7001 -6.3521 2008049 2020366
−0.1260 −1.4322 0.3078

0.8130 −0.2046 0.9015

−0.5166 −4.0173 −2.8649

ACOM 46.5479 13.5149 2003186 2020304
0.2580 0.3003 −0.3239

1.1160 −0.1304 0.6801

1.1669 −0.4006 −1.6525

ACOR 43.3644 -8.3989 1998345 2020335
3.3640 0.4491 0.3211

0.2170 −0.1869 −0.2300

−2.6755 −1.7150 −0.6189

ADAR 52.7892 -4.7413 2009184 2020365
0.3530 −0.1476 −0.3073

0.3080 −0.8559 0.5276

0.1109 −0.8261 −1.3163

AFAL 46.5271 12.1745 2003173 2020333
−0.3340 0.5235 3.8857

0.8420 −0.2516 0.4267

1.4080 −0.8322 −2.7710

AGDE 43.2964 3.4664 2007185 2020366
0.0330 −0.6073 −1.4285

0.1580 −1.4952 1.2908

−0.3397 −1.3937 −1.4513

AGDS 43.3126 3.4743 2009104 2020366
0.2920 −0.4592 −0.3561

0.2420 −0.4691 0.5689
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−0.2370 −0.5027 −0.6154

AGEN 44.1725 0.6115 2012041 2020366
−0.4080 1.6610 −0.8254

0.1820 0.2609 −0.7486

0.6757 −2.8225 −0.2955

AICI 43.3336 -1.0144 2011049 2020366
0.3030 −0.6028 −0.1972

0.2500 −3.5877 −0.6263

0.2229 −0.2765 −1.9530

AIGL 44.1214 3.5813 2002252 2020366
0.2740 0.1685 0.3081

0.0760 −0.6091 0.0170

0.2439 −0.0942 −1.9127

AILT 47.8770 3.3559 2006296 2020366
0.3590 −0.7669 −0.4942

0.1110 −1.0025 0.2770

0.2203 −2.5786 −2.2319

AJAC 41.9275 8.7626 2000022 2020363
0.4330 −0.2328 0.2955

0.2140 0.0034 1.0398

1.6845 −0.4070 −0.6880

AJAL 41.2161 -2.2736 2007129 2020366
−0.3650 −0.3819 −1.2486

−0.1410 0.0821 1.1061

−0.5649 −0.6383 −1.8701

ALAC 38.3389 -0.4812 1998065 2020335
−0.6170 0.1631 0.0095

0.4110 0.5548 0.5747

0.2862 −1.4592 −0.6278

ALBA 38.9779 -1.8564 2002190 2020335
−1.3270 0.4834 0.3492

0.2090 0.4538 0.1414

−8.6620 −2.1960 −0.1702

ALBI 39.9458 16.4559 2012132 2018007
0.1620 2.5507 1.6659

4.5900 1.6243 8.2974

−0.0505 −0.4893 14.2970

ALBO 35.9398 -3.0342 2015325 2020335
−2.1070 −0.2803 −0.3296

1.6950 −1.8077 0.7192

−1.2284 1.7080 1.5477

ALC1 41.0579 -0.1453 2016231 2020335
1.3890 −0.7894 −0.1724

−0.2020 0.8223 0.9123

−0.8154 −0.6880 −0.9985

ALDB 52.1532 1.6028 2006187 2020365
0.0870 0.3800 0.0850

0.3610 −0.5094 −0.0013

0.7145 −4.1495 −0.7483

ALME 36.8525 -2.4594 1999338 2020335
−1.5430 0.7710 0.2693

0.0160 0.8759 0.3892

0.1359 −1.7083 −0.9091

ALMO 38.7055 -4.1803 2013177 2020335
−1.0360 1.1896 −0.1238

1.8000 −1.1252 −1.9090

0.2738 −1.4677 −1.7830

ALOR 39.9344 4.1401 2016097 2020344
−0.0860 0.8113 −0.2645

0.5340 −0.2531 1.0187

−0.4697 −1.2235 −0.2705

ALPA 41.7224 12.6114 2014265 2020366
−0.7090 0.2144 0.7153

1.4870 −0.2607 0.8752

1.6286 0.4935 −2.8808

ALPE 45.0866 6.0835 2006303 2020366
−0.6170 −0.4245 0.0081

0.0290 0.0273 0.7373
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0.2384 −0.4685 −3.1830

ALU2 47.0419 3.6268 2013051 2020366
0.4310 −0.5655 0.6367

0.2650 −0.1448 0.8854

0.0436 −1.8605 −3.6178

AMB2 45.5406 3.7501 2007255 2020366
0.5780 −0.1295 −0.1029

−0.1240 −0.9307 0.1896

0.3930 −1.4635 −2.0958

AMBL 54.4342 -2.9647 2004145 2009012
−0.1160 −0.1868 −0.1708

−0.6410 −0.4074 −0.7314

2.0230 −3.6440 0.6296

AMER 51.6772 -0.5594 2004223 2020365
0.5660 −0.6945 −0.2385

0.1430 −0.5959 −0.1227

−0.0520 −2.0255 −1.3926

AMIY 47.9650 2.7282 2015070 2020366
0.0710 0.8630 0.2225

0.2340 −1.2775 0.5744

−1.6067 −4.8508 −0.7850

AMNS 49.8588 2.2384 2012101 2020366
−0.5050 −1.1620 0.6421

−0.3270 −2.0954 −0.3760

−0.1523 −1.9392 −2.9816

AMUR 40.9073 16.6040 2005223 2020366
0.7990 0.2003 −0.4255

4.3900 −0.0511 0.5299

0.2733 −2.0167 −2.4870

ANAY 45.2403 4.6817 2012026 2020366
0.3280 0.0216 0.1485

−0.0100 −0.7037 0.6120

0.7011 −1.0991 −3.6069

ANCG 43.6028 13.5019 2012295 2016361
1.1580 −0.7643 0.5525

3.9000 1.2787 1.5165

1.4741 −1.5579 −0.9719

ANCN 43.6072 13.5316 2011214 2020366
0.7970 −0.7991 0.4023

2.5790 −1.7476 3.6962

0.2784 −1.4480 −2.0930

ANDE 69.3261 16.1348 2001008 2015168
−0.8710 −0.6621 0.3909

0.8890 −3.2729 −1.8399

2.3593 −2.5287 −3.4959

ANGE 47.4719 -0.5478 2004035 2020366
−0.0370 0.1684 −0.0975

0.2100 0.8433 0.1165

0.0619 −3.0791 −2.5565

ANGL 46.4056 -1.4061 2007081 2020366
0.1940 −0.4362 −0.0314

0.1360 −1.1978 0.0197

−0.1821 −1.4054 −1.5153

ANLX 51.6893 -5.0792 2009106 2020365
0.2820 0.0958 0.0936

0.1000 −0.4920 0.7040

−0.8836 −3.2183 −0.8087

APPL 51.0569 -4.1996 2004325 2020365
0.6800 −0.0510 0.0425

0.0070 0.1611 0.5728

−0.3074 −1.4677 −0.8362

APRC 41.7574 15.5428 2015113 2020366
1.4020 0.5231 −0.1812

4.2220 −1.4175 1.2634

−0.2386 0.5098 −2.9055

AQSA 39.7210 16.0837 2012130 2020366
0.2090 −0.9667 0.6452

3.9770 0.0238 0.8431
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0.7900 −0.6224 −3.0258

AQUI 42.3682 13.3502 1999165 2020216
−0.5310 −0.5798 0.4783

1.4040 −0.0113 0.8558

−0.1379 −1.6003 −3.1725

ARAC 37.8939 -6.5654 2017073 2020341
−1.0830 1.8128 0.3323

1.0030 −0.0511 0.7445

0.2220 −2.5085 −1.0373

ARAN 45.7152 5.4247 2011083 2020038
0.6200 −2.2790 1.1499

0.9930 −0.1865 1.1990

1.0695 1.1686 −1.8113

ARDL 51.9158 0.9619 2009006 2020365
0.0200 −0.2572 −0.7112

0.1780 −1.1235 −0.1159

−0.4852 −2.6389 −0.7848

ARDN 47.7783 1.8724 2011339 2020366
−0.1210 −2.0756 −0.5763

−0.3420 0.3208 −0.7976

0.3187 −4.0681 −2.7218

ARDU 41.6658 -3.7426 2009211 2020366
−1.5650 0.9836 2.6599

0.5770 −0.1935 0.9015

−0.6532 −0.1879 −1.2121

ARIS 56.9096 -5.8494 2009184 2020365
−0.0150 −0.7760 −0.1598

0.3450 −0.8148 0.3543

1.5538 0.0449 −0.9967

ARNA 47.9465 0.1809 2011049 2020366
0.4580 −0.8151 0.0608

0.4340 3.5221 0.5267

0.1448 −1.0429 −3.2702

ARQT 42.7550 13.1987 2016257 2020365
−1.3270 −2.0812 0.9239

4.9100 −0.1619 2.0424

−9.2528 4.2476 −4.5039

ARSP 40.2067 -5.0828 2008073 2020366
−0.2920 0.2183 −0.1505

−0.0380 −0.0855 0.4114

0.0564 −0.8430 −2.2106

ARUF 43.0995 -0.4311 2014072 2020366
0.2610 0.9358 1.4100

0.4410 −0.9040 0.2516

−0.6897 0.5460 −1.9690

ASAP 53.2513 -3.4801 2004330 2020365
0.2760 −0.9867 0.8983

0.1870 −0.6542 0.0853

0.6136 −4.4784 −0.7207

ASIA 45.8663 11.5254 2008100 2017286
0.0120 1.0214 −0.6306

0.8810 −0.4444 0.9846

0.7294 −1.9836 −2.8786

ASTO 42.4572 -6.0547 2008072 2020366
0.1210 0.2601 −0.4805

0.3270 −0.0545 0.4572

−0.0038 −0.9036 −1.6362

ATAL 38.6531 22.9994 2009086 2020366
−12.0420 −0.9885 −0.4962

−20.1060 −2.0988 1.3847

−0.1934 −3.2106 −5.5602

ATBU 43.4760 12.5478 2010118 2020361
2.6510 1.1572 −0.3747

3.5880 0.7925 0.9727

−1.2041 −1.8665 −2.5630

ATFO 43.3701 12.5671 2009190 2020366
1.0670 −0.5871 0.2590

3.8890 −0.3888 1.1444
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1.4868 −2.0134 −1.9641

ATLO 43.3151 12.4071 2010083 2020363
−0.2180 −0.0455 −0.4996

1.8700 −0.0058 1.1032

0.6990 −0.6670 −2.1074

ATMI 43.3340 12.2673 2012026 2020366
−0.8980 −0.2126 −1.4225

2.0100 0.0027 0.2613

0.6786 −0.6410 −2.4806

ATST 42.1683 9.3360 2010298 2020366
0.1610 0.5973 −0.5195

0.2720 −0.7057 0.7625

−0.0547 −1.6402 −2.3118

ATTE 43.1998 12.3505 2010084 2020190
−0.8690 0.2588 −0.4807

1.7130 −0.1676 0.6749

0.6398 −1.6017 −2.7257

ATTL 52.5168 0.9881 2006290 2020365
0.3140 0.7611 −0.5307

0.1590 −0.0217 0.3478

−0.9536 −2.8129 −0.0336

AUBG 48.4213 10.9213 2013015 2020335
−0.6820 −1.0231 0.1368

0.3300 −0.3808 0.7096

0.8758 0.0176 −3.4165

AUCH 43.6495 0.5807 2007081 2020366
0.1550 0.2242 −0.5802

0.0850 −0.1157 0.5503

0.0445 −2.5446 −2.0751

AUDR 58.4225 24.3137 2009004 2020366
0.0560 0.0718 0.5841

−0.5430 −0.6822 0.5260

2.8612 −2.7974 −3.2896

AUNI 46.1039 -0.9486 2011049 2020366
0.2190 0.1599 0.6115

0.2620 0.6023 0.8446

0.0418 −0.9115 −1.9579

AUT1 40.5668 23.0037 2005090 2020366
2.0330 −0.7065 −1.5211

−6.7760 −0.3292 0.4178

−1.3918 −2.9223 −1.8506

AUTN 46.9538 4.2890 2005105 2020366
0.3910 −0.7764 −0.5498

0.1480 −1.4727 0.4102

−0.6554 −1.7463 −2.0449

AVAL 47.4940 3.9153 2013261 2020366
0.3590 −0.4103 0.2770

0.3700 −1.2997 0.6468

0.5696 −2.7686 −3.0849

AVI2 40.6638 -4.6782 2014213 2020366
1.2660 3.0907 −0.2473

1.4950 −0.3620 1.5135

0.9306 −1.5524 −3.2159

AVIL 40.6511 -4.6793 2006019 2015342
−0.0700 0.4890 −0.1246

0.4640 0.3245 −0.1058

−0.2165 −3.0048 −2.0946

AVR1 44.9561 5.6532 2008150 2020350
0.0170 0.0555 −0.0931

0.0150 −0.2035 0.3646

−0.0233 −1.9926 −2.2889

AVRA 48.6818 -1.3630 2015085 2020366
0.1960 −0.1569 −0.6333

0.5410 −2.1110 0.2438

0.1991 −2.4040 −1.4627

AXPV 43.4912 5.3332 2002264 2020366
0.3390 0.3243 −0.1510

1.0710 0.2965 1.2330
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−0.4669 −2.5580 −1.9520

BACA 46.5621 26.9122 2006019 2020335
−0.6740 0.0981 0.3157

−0.1520 −0.2806 0.3352

0.4935 −3.0280 −4.3424

BACT 44.3877 6.6495 2007222 2020366
0.4220 0.1304 0.2915

−0.3620 0.4078 0.8149

0.0444 −1.4687 −3.1833

BADH 50.2280 8.6099 2005059 2020293
−0.0060 −0.3244 0.0545

0.1270 −0.4477 0.2358

0.0516 −3.5830 −2.3927

BADJ 38.8937 -6.9893 2009274 2019365
−0.9520 −3.1545 −1.2861

1.3780 0.7424 0.8041

−0.7752 −0.4289 −4.0018

BAIA 47.6518 23.5577 2006019 2020335
−0.1720 −0.0818 −0.0924

−0.2710 −0.2721 0.2655

0.4265 −3.4514 −4.0530

BAL2 47.9306 7.5407 2012197 2020366
−0.0390 −0.7141 −0.3190

0.4690 −0.4974 0.6813

−0.0584 0.7961 −2.1521

BANN 44.3692 4.1563 2003184 2020366
0.1060 0.1610 −0.0033

0.2240 0.1238 0.5005

0.1671 −1.0709 −2.1689

BARK 51.5154 0.0969 1997115 2019134
−0.1620 −1.4173 −1.3520

0.2710 1.1273 0.1179

1.5604 −7.6891 −3.5983

BARR 56.9544 -7.5005 2007196 2020365
0.1250 1.4961 −0.6127

0.0940 −0.4006 −0.1961

0.4207 −1.3204 −0.7837

BARY 43.0357 0.6719 2007081 2020366
0.2760 −0.6378 −0.0445

0.1560 −0.2021 0.4544

−0.1926 −1.3229 −2.5667

BAS2 42.0015 9.0488 2013351 2020366
−1.8930 0.6743 −0.6845

0.5860 −0.1064 0.7016

−0.6022 2.4468 −3.4917

BAUB 43.8769 3.9670 2007313 2013106
0.3010 −0.2194 −0.7775

−0.3530 1.2465 0.4743

−0.0402 −4.2151 −4.1555

BBYS 48.7518 19.1510 2003185 2020091
−0.4750 −0.2241 −0.5082

−0.1190 −0.3745 0.3263

0.1552 −1.4678 −2.4385

BCL1 41.3418 2.1657 2016012 2020343
0.5620 −0.7159 −0.2279

−0.1430 −0.0030 1.2473

−2.1052 −0.4562 −1.2272

BCLN 41.4054 2.0042 2012038 2020335
−0.0300 −0.4265 −0.6120

0.4160 −0.6703 1.0059

−0.6277 −0.9895 −1.3344

BEA2 42.5153 3.1367 2009313 2014136
0.9260 0.7980 0.0891

0.0590 −2.2038 −0.9093

−0.0554 −3.0721 −4.1922

BEAV 49.4461 2.1026 2014055 2020366
0.3610 −0.4147 −0.1652

0.1690 0.0366 −0.0503
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−0.0187 −2.1582 −2.1566

BELF 54.5772 -5.9319 2004153 2016099
−0.0320 −2.0196 0.0420

0.0620 −0.1151 −0.0461

1.2565 −2.4113 −0.1982

BELL 41.5996 1.4011 1998350 2020105
0.3900 −0.4598 −0.7896

−0.2580 −0.2106 −0.1211

0.4291 −1.7099 0.7978

BENB 57.4731 -7.3641 2007110 2020365
0.0690 0.0405 0.2746

0.4760 −0.8002 0.2437

0.1212 −2.7871 −0.0649

BFO1 48.3305 8.3249 2006318 2020334
0.2350 −0.2585 −0.4084

−0.0230 −0.3624 0.5045

0.7098 −2.3542 −1.8015

BGBC 48.4810 -4.4965 2016237 2020366
0.3120 0.7105 0.0756

0.0530 −3.2866 1.5215

−2.1427 −1.8724 −0.3245

BGDR 43.8891 11.8950 2012207 2020366
0.5800 0.1591 −0.4766

2.3270 −0.9211 −0.3805

1.8211 −0.9145 −4.2089

BIAZ 43.4720 -1.5369 2007235 2020366
0.4750 0.0517 −0.5392

0.6080 −0.2178 0.6142

0.2159 −1.1706 −0.4109

BIOG 41.2000 15.1326 2015238 2020366
0.8740 0.5071 0.3687

3.9720 −1.5757 0.6537

1.3157 −1.8331 −2.6701

BISK 50.2567 17.4286 2005068 2020335
−0.1610 0.4587 −0.1785

−0.1100 −0.8041 −0.0429

0.6366 −2.2004 −3.3129

BLAP 53.7769 -3.0350 2002002 2020365
0.0540 −0.2690 0.0926

−0.5230 1.0818 0.3203

0.3506 −2.0094 −0.4723

BLFT 47.6259 6.8585 2007134 2018353
0.2130 −0.0135 −0.5520

0.0590 −1.2412 0.4645

0.2599 −2.9934 −1.6011

BLG2 46.1718 5.5741 2013263 2020366
0.7680 0.4074 0.8033

0.3270 −0.9526 0.8357

0.3709 −2.5423 −3.3467

BLGN 44.5110 11.3506 2008126 2020366
0.3950 0.8369 0.4479

4.3850 −0.9562 0.2561

−3.6480 −5.7572 −2.3309

BLGU 42.9582 -0.8007 2016136 2020335
−0.1470 0.0098 0.5276

−0.0750 −0.9075 0.1339

0.0709 0.5266 −1.2561

BLIX 43.8735 6.3667 2009114 2020366
0.0340 0.3261 0.4694

0.1260 0.0453 1.5240

0.3074 0.3443 −2.2349

BLVR 47.3235 6.6113 2014322 2020366
0.0190 −0.1206 0.7062

0.7260 −1.1547 0.9906

1.1299 0.3916 −1.6736

BMHG 49.6592 -1.8296 2007081 2020366
−0.0000 −0.3530 −0.1060

0.3650 −0.5430 0.0494
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−0.1860 −1.7751 −1.2612

BMNT 43.8774 0.9773 2015120 2020366
0.3060 0.0875 −0.9592

0.1230 −1.8549 0.7266

−0.1988 −0.9627 −3.1177

BOGO 52.4759 21.0353 1996182 2020366
−0.6640 0.4124 −0.1074

0.0020 0.1177 0.1357

0.0520 −2.4396 −2.7981

BOLG 44.5002 11.3568 2000001 2020335
0.3320 1.6307 0.4884

4.1320 0.3428 −0.1071

1.3992 −5.2693 −0.1324

BOR1 52.2770 17.0735 1994271 2020366
−0.3840 0.3326 −0.2609

−0.5400 0.0934 −0.1179

0.4491 −2.4675 −2.6876

BOUG 47.1656 -1.6408 2013289 2020366
0.2480 −1.7027 1.2803

0.3730 −0.6706 0.9180

−0.3034 −2.0504 −2.7123

BOUS 46.2880 2.2357 2009011 2020366
−0.1540 0.2759 −0.0711

0.4180 −0.3773 0.3560

0.7188 −1.8545 −2.8221

BPDL 52.0353 23.1273 2008094 2020335
−0.1780 −1.6360 −0.0970

0.2260 −2.7744 −0.1425

0.1120 −3.3035 −3.7906

BRAE 57.0067 -3.3956 2005294 2020365
0.2170 0.4819 −0.2354

0.4540 0.9119 0.0549

1.4153 −1.7964 −0.8781

BRAS 44.1222 11.1131 2005060 2020366
0.5560 0.2356 −0.3965

1.8830 −0.0422 0.2992

0.6925 −2.9314 −2.8663

BRDO 42.7746 9.4749 2010314 2020366
0.3390 1.1158 0.1453

0.4370 0.2656 0.7186

−0.6433 −1.4256 −0.9959

BRE2 46.8397 -0.4736 2014319 2020366
0.0160 0.7778 0.0230

0.2150 −0.5098 0.8421

0.3228 −2.8705 −2.7505

BREC 51.9529 -3.3817 2005187 2020365
0.2820 −0.1141 0.2546

0.1210 −0.6187 0.0302

−0.2018 −1.8822 −0.9233

BRET 48.6103 2.3150 2004168 2020366
0.3290 −0.6236 −0.3912

−0.1760 −1.4339 −0.2102

0.0734 −2.1274 −2.6547

BRIS 44.2248 11.7660 2010146 2020366
1.2340 0.3685 −0.5284

3.7110 −0.3738 1.0303

1.0183 −2.4041 −3.2709

BRMF 45.7261 4.9384 2014056 2020366
0.2880 0.3766 0.4856

0.7550 −0.2013 0.2999

0.4946 −1.2917 −2.6105

BRMZ 48.0015 0.4775 2016111 2020366
0.4550 3.0557 2.3110

0.6160 −0.8526 0.7334

−0.5788 −2.3811 −1.9333

BRST 48.3805 -4.4966 1998304 2020366
−0.1050 0.4293 0.6950

0.7960 −0.0302 0.3668
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−0.5807 −2.3226 −1.3008

BRUX 50.7981 4.3586 1994114 2020366
−0.3560 0.4662 0.1853

0.1040 0.7272 0.2216

1.1323 −2.8163 −2.2424

BSCN 47.2469 5.9894 2001289 2020366
0.2740 −0.1448 −0.2760

−0.0310 1.1067 1.1034

0.3324 −2.1676 −1.8432

BSSO 41.5461 14.5943 2005014 2020366
0.5350 0.0179 −0.1597

3.0540 0.0523 0.9218

0.4753 −1.6796 −2.7513

BUAN 48.4861 5.3536 2007317 2018196
0.1680 −0.0689 0.0969

0.1920 −0.2721 0.5392

0.0542 −2.6415 −2.1332

BUCE 45.4132 25.4703 2012001 2020366
−0.1880 0.5499 1.6029

−0.1450 −0.4105 1.1604

0.1279 −1.7075 −4.1129

BUCK 57.6761 -2.9615 2005358 2020365
−0.3060 0.3825 0.1668

0.2310 −0.4721 0.0888

1.1521 −1.9197 −0.2735

BUCU 44.4639 26.1257 1999042 2020280
−0.5520 0.4340 −0.2729

−1.2610 −0.5348 −0.2517

2.5088 −4.1540 −4.0021

BUDP 55.7390 12.5000 2001001 2020366
−0.3550 0.1853 −0.2943

−0.4050 −0.0952 0.2857

1.5046 −2.2649 −1.2828

BUIT 41.0006 -3.6369 2016029 2020335
0.1670 0.9419 0.1613

0.6600 −0.9456 −0.2762

0.6412 0.1826 −1.8009

BULG 40.0782 15.3777 2006217 2020366
−0.2840 0.7294 −0.2049

2.4340 0.2770 1.0218

0.4380 −2.2396 −2.3007

BUOS 41.5881 -3.0680 2007117 2020366
−0.5310 −1.1831 −0.3884

−0.4730 −1.6501 0.6287

0.0207 −1.3680 −1.0139

BUT1 58.5156 -6.2609 2000142 2007212
−0.6600 −0.2238 1.3164

−0.5170 −2.3733 −0.1895

0.7589 0.8416 −0.1768

BUTE 47.4809 19.0565 2004264 2020335
0.2910 −1.5577 −0.9716

−0.0530 −0.0834 0.9127

0.2789 −3.7089 −4.2055

BUXT 53.2292 -1.9199 2009260 2020365
0.3180 −1.0241 −0.2318

0.2110 −0.0598 0.6355

0.1675 −0.0083 0.2754

BUZE 45.6191 21.6394 2012001 2020366
−0.3390 0.7362 −1.0454

−0.1310 0.1591 −0.5122

−1.1849 5.1632 −3.4242

BVOI 50.3695 2.2386 2012330 2020366
0.8510 1.7243 0.4799

0.1880 −0.0411 −0.1638

1.2590 −1.9994 −3.2993

BVSM 49.1842 5.3718 2011146 2017226
0.2810 −0.0512 −0.7627

0.3640 0.6331 1.3540
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1.3773 1.6935 −1.1104

BYDG 53.1346 17.9936 2008093 2020335
−0.1510 −0.3924 −0.1624

0.0720 −1.3418 0.0454

0.7777 −3.2221 −2.8929

BZRG 46.4990 11.3368 1998001 2020213
−0.4700 1.2714 −0.1345

0.7170 1.5637 0.8291

1.9388 −2.9034 −2.4729

CABW 51.9695 4.9262 2001218 2019136
−0.3640 −0.7919 0.5039

−0.7540 0.6484 0.0981

0.0832 −2.5388 −0.4582

CACE 39.4789 -6.3418 2000340 2020335
−0.4310 0.6816 0.5645

0.5090 0.1825 0.6426

−0.3197 −2.3929 −2.0057

CACI 47.0569 3.9328 2006340 2020366
0.4140 0.4615 −0.7554

0.0110 −0.4289 0.2197

−0.0627 −2.5358 −2.4033

CADM 41.0776 16.2737 2001001 2014039
1.0130 −0.7564 0.1333

4.3520 1.2791 1.2420

0.0465 −2.7374 −1.2898

CAEN 49.1827 -0.4571 2005314 2020366
−0.3490 −0.0110 0.2111

0.4670 −0.1991 0.0664

−0.3050 −2.2025 −1.0520

CAFE 41.0281 15.2366 2005318 2020366
0.1670 0.1031 −0.1447

3.3550 0.0672 0.7308

1.6310 −1.1939 −3.2181

CAFI 43.3292 11.9662 2007282 2020366
−0.2360 0.5979 0.3182

2.0240 0.2500 −0.1494

0.4448 −2.5215 −2.1935

CAGG 40.5573 15.5114 2015224 2020366
−0.9780 −0.8834 −1.1568

1.8430 −1.9467 0.8076

1.2806 0.9718 −2.9475

CAGL 39.1359 8.9728 1996001 2013262
−0.1850 −0.8054 −0.8117

0.1900 0.4277 0.7730

−0.0044 −1.7606 −0.5308

CAKO 46.3871 16.4391 2011263 2020340
0.9050 4.3649 1.4138

1.2440 −0.2939 1.0298

−0.0582 −1.7023 −3.6853

CAMA 43.3962 6.3327 2013075 2020366
0.0760 −0.2728 −0.2452

1.2470 −1.1054 0.0494

0.1078 0.1104 −1.6637

CAML 55.4252 -5.6019 2009009 2019254
−0.7540 2.1184 −0.8533

−0.3330 −0.3968 0.9340

−5.0937 −3.0952 1.9217

CAMO 50.2183 -5.3273 1998099 2020365
0.2520 0.3993 −0.1017

0.2720 −0.3016 0.2051

−0.3043 −0.8634 0.6818

CAMP 41.9182 8.7908 2010134 2020366
−0.0620 −0.5861 0.0013

0.6000 −0.3766 0.3646

−0.3379 −1.4876 −1.7807

CANE 43.5546 7.0157 2005150 2020366
0.3000 0.2257 −0.0931

0.5120 0.2196 0.9405
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−0.6137 −1.7715 −1.6245

CANT 43.4720 -3.7981 2000071 2020335
−0.0360 0.4441 0.2768

0.3260 −0.0578 −0.1171

−0.3856 −1.5944 −1.2128

CANV 46.0083 12.4350 2004141 2020333
0.0390 0.9541 0.4518

1.4940 −0.5939 −0.0761

0.1902 −1.8588 −1.6621

CAOC 42.2895 13.4844 2010271 2020366
−0.7740 −0.7650 −0.0699

2.5770 −1.6945 1.0469

0.4605 0.3811 −3.0434

CAPT 44.2952 -0.2567 2012081 2020366
0.2010 −0.9595 0.0099

0.4090 −0.6224 0.7038

−0.2259 −1.4934 −2.7018

CAR1 39.2534 16.2114 2009174 2020347
0.7620 −0.0454 −0.0785

3.6100 −0.1305 1.1904

0.4879 −2.1376 −3.3021

CARD 52.1000 -0.4170 2003012 2008274
0.4460 −1.1390 1.4980

0.0830 0.1999 −0.0030

0.1287 −0.7681 2.6004

CARG 37.5966 -0.9739 2014143 2020335
−0.6430 1.6251 0.3365

2.0380 −1.0386 0.6657

−0.0197 0.0636 −1.4933

CARI 51.5311 -3.1068 2004323 2020365
−0.1310 3.4500 0.7566

0.1500 −0.1444 −0.0432

−0.3191 −2.5041 −1.3573

CARL 54.8954 -2.9383 2000103 2020365
0.1230 −0.5837 −0.2608

0.0610 0.2317 0.0158

0.8915 −2.5165 −0.4169

CARM 51.8589 -4.3085 2000074 2005176
0.0490 0.4523 0.5223

−2.2990 0.5314 −0.2729

1.5982 −0.3814 −4.9137

CARO 39.2537 16.2113 2006244 2011186
0.4580 1.0026 0.0781

3.3590 0.7669 1.5140

−0.8555 −1.4200 1.4635

CARQ 47.2990 -1.5091 2007173 2020366
−0.1470 −1.0456 0.0705

0.3320 −0.0046 0.0351

0.3906 −3.6864 0.2091

CARV 38.0459 -1.9677 2015128 2020344
−0.5350 2.0586 −0.8138

0.0190 −1.2871 0.9631

0.9519 −1.3757 −2.1965

CASB 53.8507 -9.2873 2007079 2019339
0.2540 −0.3093 0.6342

−0.2350 0.1970 0.4500

2.0602 −2.6266 −0.7818

CASC 38.6934 -9.4185 1997200 2020194
−0.1460 −0.1358 0.2400

0.4490 0.6642 0.3007

−0.2922 −1.1771 −0.7237

CASP 42.7908 10.8652 2007163 2020366
−0.6210 0.4974 0.2113

0.9340 −0.3753 −0.1665

−0.0969 −1.6486 −1.4174

CATT 54.3727 -1.7163 2016168 2020365
0.0180 1.2452 −0.4829

0.4020 −0.6776 0.4233
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0.1628 −2.6234 −1.9116

CATU 38.7304 -5.5388 2009274 2019365
−0.7140 −0.2992 −0.5291

0.8080 −1.3123 1.0410

0.2227 −1.0895 −3.2955

CAUS 44.1816 1.6150 2008364 2020366
0.1860 0.9201 −0.1024

0.3790 −0.1738 0.7525

0.3860 −2.6719 −2.1415

CAVA 45.4794 12.5827 2001199 2011061
−0.1820 0.2062 −0.0954

2.3450 0.4909 0.7365

−1.2591 −3.9953 −1.8994

CAZA 37.9379 -5.7598 2017077 2020335
−0.6610 0.0339 −1.7664

0.7780 −2.9958 −0.3838

0.4812 −1.3709 0.2015

CBON 39.6137 3.3923 2016097 2020344
0.1610 0.1450 −0.6004

−0.6600 0.8408 1.1830

−0.1967 −0.8439 −0.8281

CBRY 45.5813 5.9092 2006296 2020366
0.1250 −0.3612 −0.1401

0.2210 0.6518 0.3829

0.4346 −2.3689 −2.4000

CCEX 39.4723 -6.3779 2009295 2019365
−1.1660 −0.7766 −0.7417

−0.8930 −0.5236 1.1628

0.3595 −2.6763 −4.4389

CDJ2 44.7288 -0.5299 2014070 2020366
0.2850 0.8059 0.7184

0.3310 −1.9209 −0.2782

−0.3266 −1.4827 −3.2533

CDRD 40.5900 -6.5381 2007038 2020366
−0.3340 −0.1672 0.0714

0.2520 0.8956 0.7768

−0.2327 −1.0948 −2.2804

CDRU 40.4897 15.3047 2005245 2020366
−0.4760 1.2290 0.2577

2.2760 0.8042 1.0269

0.9266 −1.7565 −2.8957

CEBR 40.4534 -4.3679 2007100 2020096
−0.3910 −0.5255 −0.6556

0.2020 −0.4409 −0.0187

0.3044 −0.7436 −1.6620

CELI 39.4027 16.5088 2011292 2020366
0.8980 0.0951 0.4175

3.5150 −0.1376 1.3735

0.7638 1.1150 −2.9485

CELL 38.2603 15.8939 2005250 2020196
−1.1130 −0.5726 −1.0887

3.9630 −1.1494 1.4401

0.4722 −0.8147 0.0002

CERA 41.5977 14.0180 2006201 2020366
0.0640 −1.3737 3.0730

2.3530 −0.5747 1.7732

0.5939 −2.2397 −1.6888

CERN 46.2570 6.0606 2011009 2020366
0.0380 −0.6257 0.3599

0.2980 −0.8201 0.6977

0.5126 −2.0179 −2.7128

CERT 41.9491 12.9818 2006093 2020186
−1.2250 1.1217 −0.3563

0.6360 0.0898 1.1502

0.5183 −2.0652 −2.7685

CESI 43.0050 12.9046 2007054 2020366
0.1320 0.7560 0.0341

2.8180 −0.4747 1.1028
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0.4176 −3.7218 −1.1916

CEU1 35.8920 -5.3064 2001236 2020335
−4.2690 −0.7895 −0.5625

1.2020 0.1415 0.3667

−0.9025 −1.1124 −1.2319

CEVY 49.2877 5.2871 2013036 2020366
0.0220 0.1826 1.1643

0.1460 −0.0949 0.5055

0.3271 −2.2115 −2.5010

CFRM 49.6848 18.3532 2009351 2020335
−1.1290 1.3513 0.2714

0.6080 −0.7591 0.7413

0.9147 −1.9139 −3.2557

CHAS 47.8627 4.5594 2006340 2020366
0.3370 0.1564 −0.5221

0.0380 −0.5454 0.3884

0.0530 −2.6798 −2.4085

CHBL 48.9776 0.5567 2012069 2020366
0.1220 −0.2089 0.4091

0.5700 −0.6066 −0.3443

−0.1605 −4.5142 −4.3291

CHBR 47.7148 -1.3878 2008142 2020366
0.2280 0.1606 0.6669

0.1780 −1.0653 0.1962

−0.0646 −1.7221 −1.8306

CHBS 47.2506 1.6564 2008213 2020366
−0.0670 2.1564 0.5733

−0.0060 −0.7840 0.0998

−0.2252 −2.8528 −2.2406

CHE2 48.6672 2.8829 2006045 2020366
−0.2770 −0.7279 −1.2580

−0.1440 1.1280 0.0341

−1.3824 −2.7540 −2.4545

CHIO 51.1490 -1.4383 2009206 2020365
−0.1440 −0.3332 −0.2610

0.0360 −0.8542 0.6613

−0.3197 −1.2427 −1.4554

CHIZ 46.1335 -0.4077 2000293 2020366
0.0630 −1.7918 −0.3010

0.1870 −1.4233 −0.2314

−0.0342 −1.2345 −1.9813

CHLD 49.7121 4.7638 2016023 2020366
0.6720 1.1205 1.9872

0.6520 −0.8539 1.1237

−0.2309 −3.2711 −0.9094

CHLN 49.8097 2.8016 2009031 2020366
0.0700 −0.4343 −0.1059

0.0930 −0.6749 0.2988

−0.1919 −2.2770 −3.1794

CHMX 45.9262 6.8730 2007243 2020196
−1.2560 −0.4442 1.1040

−0.1230 0.9031 0.2739

0.6524 −3.0448 −4.4438

CHPH 48.4602 1.5009 2007168 2020366
−0.1900 −0.2105 −0.0608

0.4380 −0.6497 0.1583

−0.1205 −1.8767 −2.0696

CHRM 48.3718 6.2812 2007304 2019114
0.1520 0.5440 −0.7968

−0.0230 0.2604 0.7931

1.6370 −2.7121 −1.7722

CHRX 46.1281 0.4124 2016024 2020366
−0.0090 0.9155 0.9482

0.5870 0.4211 0.0843

0.1610 −2.1354 −2.2958

CHTL 45.3042 6.3588 1999104 2020366
−0.6490 −0.1451 0.0850

0.1200 0.8332 0.1953
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2.2090 −0.9842 −3.7368

CKS1 53.9438 -8.0899 2010330 2020347
0.3010 −0.7664 −0.4555

0.7120 −0.5310 0.5393

2.0796 −0.4433 −1.3999

CLAP 44.2485 6.9271 2003095 2020366
2.1810 −0.0398 0.6649

1.6510 0.3887 1.0891

−1.6676 −1.1815 −2.7245

CLAW 52.3588 -1.3315 2008346 2020365
0.7940 −0.9494 −0.1023

0.5970 −1.6196 0.2074

−0.6910 −1.6981 −0.6222

CLFD 45.7610 3.1111 2006310 2020366
0.3570 −0.5072 −0.6110

0.0860 −0.6808 0.3661

−0.1300 −3.9138 −2.2687

CLIB 50.7717 15.0599 2009351 2020335
−0.8170 −0.3089 −0.2471

−0.1640 −0.7139 0.5280

1.6045 −1.9977 −3.6356

CLMT 45.7751 3.1455 2009104 2020185
0.0900 0.5700 0.5053

0.3830 −1.6385 0.4685

−0.3296 −0.9559 −2.3307

CLN1 52.3550 -7.6954 2010330 2020347
0.4460 0.5333 −0.0387

0.2900 −0.5588 0.6800

0.4877 −1.0618 −0.2571

CLTA 37.1586 13.9627 2014015 2020366
0.0790 0.6298 1.7487

2.3080 −2.1305 0.7732

−2.6839 −0.6875 0.9008

CMPR 40.3179 15.3029 2005244 2020366
−0.3450 1.3362 0.2178

2.1800 −0.2094 1.1886

0.5850 −1.5391 −2.0949

CNNE 43.5692 6.9659 2014300 2020366
−0.2540 −0.1356 −0.8850

0.4530 −0.3347 0.9942

−0.5599 −1.3069 −2.4149

COAU 49.6436 3.5178 2012311 2020366
0.1820 −0.1153 0.6478

0.0760 −0.7708 0.6031

−0.0975 −2.4624 −1.8878

COBA 37.9156 -4.7211 2004105 2020344
−0.9020 0.0090 −0.3657

0.3190 0.4232 0.5628

0.5665 −1.3984 −1.0922

COCR 46.6108 0.9968 2015203 2020366
−0.5210 3.8472 0.9867

−0.1950 0.1737 1.4238

−0.8390 −2.6121 −1.8583

CODR 45.9585 12.9791 2007122 2020333
−0.3630 0.2496 −0.3527

2.2550 0.5902 0.9767

−0.4768 −2.9566 −2.0226

COLC 51.8944 0.8972 2000118 2007331
−0.2700 1.3024 −0.1109

−0.0720 −0.6411 0.7501

0.5918 −1.3728 −1.2484

COLR 40.1934 16.4222 2011256 2018198
0.6960 −0.0032 −0.3798

4.6570 0.1573 0.5799

1.1770 −1.2140 −1.2029

COMO 45.8022 9.0956 2002108 2020335
0.0370 −1.5417 −1.1152

0.1060 −0.0802 0.4969
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0.1049 −3.7204 −2.9593

CONI 42.4117 13.3932 2009098 2020366
0.0150 0.2639 −0.4083

1.7560 −0.5434 0.8915

−0.4748 −1.6510 −2.3598

CONN 48.7302 3.9178 2015267 2020366
0.5000 0.1622 −0.1341

−0.0120 2.1350 2.1376

−0.3632 −4.1461 −2.0015

CORI 39.9816 -6.5196 2009274 2019365
−0.4400 −0.4046 −0.1867

0.8140 0.9483 0.7704

0.0199 −0.3444 −2.3974

CORL 37.8944 13.3039 2006132 2020361
−1.2460 −0.4811 −1.0402

3.7370 −0.1539 0.7820

0.6672 −3.2178 −2.6527

CORT 42.2989 9.1529 2011175 2020366
0.1700 −0.2879 0.8468

0.4360 −1.2621 0.5429

0.0899 1.3840 −1.0180

CORZ 43.1824 -0.2398 2012025 2020366
0.2690 −1.0732 −0.0546

0.4910 0.7032 1.0694

0.1603 −0.0776 −2.8542

COST 44.1615 28.6575 2006001 2020366
−0.4750 −0.2331 0.4353

−0.5710 0.3175 1.0884

0.3812 −2.4044 −5.0985

COUD 51.0229 2.3741 2007222 2020366
−0.0510 0.2399 0.0203

−0.0120 −0.4259 −0.2549

−0.6526 −2.6325 −1.3532

COUT 45.0411 -0.1176 2007262 2020366
0.0980 −1.1227 0.0686

0.1540 −0.7670 −0.0785

−0.3627 −2.0894 −1.0992

CPAR 50.0395 15.7832 2009351 2020335
−0.2240 0.3103 −0.2721

0.1910 −1.1115 0.6567

1.0166 −2.1668 −3.0739

CRAC 40.3814 16.4352 2005349 2020366
0.8630 0.4412 0.1478

4.3050 0.3372 0.8681

0.9960 −1.8093 −1.6924

CRAK 50.1024 13.7292 2009351 2020335
−0.1390 0.2888 −0.2668

0.0600 −0.3275 0.6494

0.8616 −2.0056 −3.2372

CRAL 43.1284 0.3672 2010040 2020366
0.1210 0.1323 −0.3182

0.2790 −0.5219 0.8764

−0.2865 −1.5548 −0.9490

CRAU 43.1239 6.0760 2016347 2020366
−0.8830 0.9398 −1.2875

−0.1570 −0.6526 2.2862

−2.2883 −3.2610 0.8447

CRCL 45.1780 28.1363 2012119 2020366
0.3220 −0.5406 0.8230

1.2610 −0.8809 1.8956

−0.6584 0.5999 −5.2443

CREI 49.2629 2.5118 2003198 2018073
0.0590 −0.0597 0.1242

0.3280 −0.1754 0.1854

0.0360 −1.8635 −1.7871

CREU 42.3188 3.3156 1998350 2020105
0.6440 −0.0444 −0.1501

0.0220 0.1128 1.0354
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0.4256 −1.2777 −0.7433

CRK1 51.8849 -8.5330 2007079 2020347
0.2590 −0.4472 −0.2053

0.3610 −1.4921 0.2660

0.3434 −0.7072 −0.5591

CRMI 43.7956 10.9795 2006286 2020358
0.7310 −0.3430 0.1500

1.8020 −0.0169 0.7546

0.0985 −1.9015 −2.0488

CSOS 42.5119 0.4856 2016172 2020366
0.2090 1.0537 −1.1716

0.6890 0.1748 1.3509

−0.4777 −0.8812 −0.5574

CSSB 43.2093 12.2454 2006179 2020366
−0.5340 0.1169 −0.2350

1.7320 0.1127 0.6857

0.5199 −2.2371 −2.6456

CSTN 43.5278 1.5001 2009105 2020366
0.0800 0.3877 0.1144

0.6390 −1.3411 0.9279

−0.1560 −1.7881 −1.5105

CTAB 49.4098 14.6802 2009351 2020335
−0.2100 0.3245 −0.2041

0.0730 −0.3341 0.6315

0.8778 −1.6048 −2.6158

CTEL 42.8566 13.1880 2016319 2020366
2.4050 −1.1723 −1.7174

0.1010 0.7345 2.9080

−6.9286 1.1331 −1.4607

CUBX 44.8689 -0.5664 2002277 2020366
0.4830 0.2947 0.2748

−0.0790 −0.1997 −0.2298

0.1535 −2.8713 −2.0435

CUCC 39.9938 15.8155 2005249 2019035
−0.0780 1.0166 0.2198

3.1790 0.3493 0.8984

0.3863 −2.1149 −3.3978

CUEN 40.0728 -2.1397 2014104 2020335
−0.4770 0.7825 −0.0131

0.1810 −0.9839 0.9704

0.2156 −0.9586 −2.9336

CULA 46.5489 2.3474 2015242 2020366
0.3920 −0.3393 −0.2311

0.5330 −1.6860 0.4866

0.5041 −1.7206 −2.2864

CVN1 53.9935 -7.3648 2007079 2020347
0.5300 −0.1465 0.3236

0.4480 −0.6530 0.2736

1.3224 −1.3284 −0.2735

DARE 53.3448 -2.6405 2000101 2020335
0.1820 0.2128 −0.0645

0.1210 −0.3656 −0.2714

0.4132 −1.7875 −0.7182

DBMH 48.6038 6.3641 2016181 2020366
0.0870 −0.9282 1.3489

0.1070 −0.7769 1.5706

−0.1973 −3.3011 −2.6302

DEGE 60.0314 20.3845 2005271 2016310
0.2870 0.0530 −0.4385

−1.0840 −0.1604 0.1603

6.7438 −4.1136 −2.1782

DELF 51.9861 4.3876 1996005 2020366
−0.1820 −0.0079 0.1248

−0.3730 −0.6089 −0.4677

0.2472 −4.4590 −1.6855

DENT 50.9337 3.3997 1996001 2020366
−0.3380 0.7595 0.2310

−0.0130 0.1599 −0.0541
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−0.1633 −1.7230 −1.4069

DEVA 45.8784 22.9135 2006019 2020335
−0.6430 −0.6011 −0.0749

−1.3070 −0.9030 0.4308

0.9712 −4.6832 −4.0398

DGLG 50.9937 2.3448 2003012 2020366
0.1410 0.3180 0.1828

0.3270 1.2423 −0.3120

−0.5649 −2.5409 −1.1679

DHUI 48.3994 2.1766 2014266 2020366
0.1530 −0.4333 0.4809

−0.1500 −2.4846 0.4514

−2.0958 −4.0804 −0.0689

DIEP 52.5881 8.3422 2004350 2020335
0.0250 0.2298 0.1878

0.2470 −0.0853 0.0109

0.3561 −1.9869 −1.4822

DIJO 47.3106 5.0651 2009104 2018323
0.0910 0.0813 −0.3613

0.0500 −0.4935 0.4841

−0.3618 −0.9571 −2.1177

DILL 49.3716 6.6997 2004341 2020335
0.1820 −0.6121 −0.5532

−0.1730 −0.4280 0.2429

0.5137 −1.7601 −2.2634

DIPL 48.5899 -2.0760 2008213 2020366
0.2590 −0.3607 0.1666

0.2370 −1.6883 0.0406

−0.3037 −1.7258 −1.8277

DIPP 49.9292 1.0845 2015022 2020366
1.1000 −1.0904 −2.2467

−0.9750 0.1995 1.3942

−0.5740 −2.3846 −2.6175

DJON 47.3554 5.0450 2011183 2020366
0.3320 −0.5911 −0.2687

0.7520 −0.8298 0.3112

−0.2220 −1.3013 −3.0610

DNG1 54.6592 -8.0877 2010330 2020347
0.2450 −1.3155 −0.7625

0.5730 −0.8231 0.4394

0.8354 −1.4228 −0.6891

DOCO 49.1402 5.9345 2007234 2020366
0.1090 0.3287 −1.5889

0.0070 −0.4295 −0.0371

1.4825 −2.3405 0.6719

DOJX 48.3628 5.1605 2008206 2020366
0.1590 0.1929 −0.4125

0.2140 −0.2612 0.5844

1.0808 −1.9764 −2.2918

DOLB 48.5535 -1.7342 2016032 2020366
0.0530 −1.2962 0.5705

0.4090 −0.3540 0.8433

−0.2238 −2.6940 −1.2506

DOMP 48.6345 -0.5561 2015085 2020366
0.1690 0.8939 −0.5242

−0.0150 0.7995 0.8987

−1.5372 −5.2989 −0.8648

DOUL 50.1621 2.3521 2013024 2020366
0.1970 −1.1536 0.6331

0.3330 −1.5001 −0.0132

−0.5733 −2.4831 −1.5864

DOUR 50.0949 4.5950 1996001 2020366
0.0700 0.1634 −0.1289

−0.2890 0.5414 −0.3249

0.6898 −2.1497 −2.5590

DRES 51.0298 13.7297 1997297 2016252
−0.2570 −1.4822 −1.0876

−0.1830 −0.1197 0.1099
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−0.4172 −3.6148 −2.8735

DROW 52.2518 -2.1979 2000004 2020365
−0.0740 0.0722 −0.0338

0.3060 −0.5032 −0.1867

−0.5744 −0.8243 −0.8330

DRUM 55.6272 -3.7361 2004311 2020365
0.5490 0.1449 0.0322

0.3290 −0.4310 0.2067

1.2183 −0.9209 −0.3491

DRUS 48.7674 7.9507 2007133 2020366
0.5440 0.5239 −0.1239

0.2130 −0.8462 0.2395

1.0064 −2.9421 −1.8602

DUB2 42.6500 18.1104 2000266 2020366
1.5500 0.8238 0.5138

3.9640 −0.1134 −0.7096

−0.2177 −2.9748 −2.8425

DUDE 56.4639 -2.8773 2011273 2020365
−0.0400 −0.7419 0.0038

−0.1210 −1.4014 0.7236

−1.4124 1.7670 1.0426

DUNG 50.9266 0.9765 2004223 2020365
0.5220 −0.2675 −0.0993

0.0470 −0.4414 −0.2057

−1.3329 −3.2784 −0.4846

DUNK 50.8605 -3.2399 2000036 2020365
0.2690 0.0761 0.2846

−0.0540 −0.2151 −0.1300

0.0805 −1.9009 −0.9030

DUNQ 51.0481 2.3667 2015005 2020366
0.2530 0.3054 0.1599

1.1960 −1.4638 −4.1816

−1.1435 −0.4302 −4.8489

DUTH 41.1402 24.9168 2008257 2020335
0.9040 −0.4396 0.8192

−2.4200 −0.7704 0.1104

0.3761 −3.0752 −3.2679

DYNG 38.0786 23.9324 2011132 2020344
−16.5210 −0.5185 0.1607

−25.6010 0.2108 0.9453

0.6335 −1.7730 −4.0405

EASN 53.6490 0.1164 2004145 2020365
0.1560 −0.1196 −0.2514

0.1680 −0.3145 −0.1163

−0.1750 −2.7760 −0.2483

EAST 50.7774 0.3063 2004288 2009105
0.1330 0.3782 0.1836

−0.2420 0.7045 −0.3879

−0.3629 −0.8917 −0.8268

EBRE 40.8209 0.4923 1996029 2020105
0.2450 −0.8835 −0.9239

−0.0240 −0.2847 0.6954

−0.4015 −0.8887 −0.1701

ECNV 37.5956 14.7125 2007046 2014032
−2.0990 0.4772 0.3596

1.8160 −0.0162 3.8152

−0.5201 −4.8155 −3.0643

EDIN 55.9248 -3.2948 2000076 2020252
0.1140 0.1907 0.2364

0.2120 −0.6231 −0.1308

1.3477 −1.8423 −0.3196

EFBG 50.5253 6.8819 2002136 2020334
−0.1950 0.8930 0.3921

−0.0190 −0.1029 −0.0046

0.9792 0.1679 −1.0031

EGLT 45.4034 2.0520 2001286 2020366
−0.0330 −0.5836 −0.2369

−0.1250 0.1660 0.8005
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0.3201 −0.1012 −2.4143

EIIV 37.5136 15.0821 2006001 2020366
0.7350 0.1271 0.2377

0.7860 0.6054 1.2282

1.9133 −2.3446 −1.5697

EIJS 50.7582 5.6836 1996242 2020366
−0.3370 0.1223 0.0488

−0.1430 −0.5862 0.0509

1.4524 −3.0543 −2.0982

EIVI 38.9512 1.4069 2016097 2020344
1.3730 −0.4182 −1.9035

0.1330 0.8830 1.6619

0.1189 −0.1725 1.4639

ELBA 42.7529 10.2111 2000313 2020209
−0.4500 0.4142 −0.0666

0.2220 0.3272 0.6915

0.1800 −2.4789 −2.0303

ENAV 40.5823 14.3349 2003357 2020366
−0.7130 0.4351 0.4023

1.4060 0.6464 0.8343

0.2736 −1.6824 −1.3812

ENIS 54.3954 -7.6449 2008114 2020246
−1.3470 −0.3750 0.1084

0.6480 −0.9906 0.4008

0.2511 −0.9427 −0.5677

ENTZ 48.5494 7.6399 2004336 2020366
−0.0580 −0.2491 −0.2043

0.2350 0.4127 0.3302

−0.5054 −2.1817 −2.0820

EOST 48.5798 7.7625 2007102 2020366
0.1280 −0.3667 0.0827

−0.0200 −1.2357 0.7258

−0.3728 −3.3635 −2.3041

EPR2 49.2165 -0.3664 2015071 2020366
−0.0550 0.7502 −0.0973

0.4290 −1.4057 0.5293

−0.5802 −1.7676 −2.8898

EQHE 50.6804 1.5676 2011187 2019308
0.3250 −0.7769 0.1225

1.1180 0.0999 0.1664

0.2898 −0.2640 −2.1359

ERCK 48.8730 7.3642 2009077 2020366
−0.0410 −0.2061 −0.0202

0.2500 −0.4281 0.3900

0.2364 −1.9277 −3.1887

ERLA 49.5865 11.0046 1997216 2020334
0.3090 −0.0848 −0.3030

0.1200 0.4708 0.6502

0.3029 −2.3922 −2.2554

ESAB 45.3071 4.7979 2005045 2020366
0.5520 −2.6101 −3.2829

0.5790 −1.7506 −0.2679

0.2042 −3.7472 −3.4347

ESBC 55.4936 8.4568 2005041 2020366
−0.2340 −0.1236 0.4307

−0.2820 −0.5197 0.1742

0.5377 −2.0538 −1.2745

ESBH 55.4603 8.4398 2004317 2020366
−1.2370 0.7419 0.6912

0.6800 −0.2687 0.1060

−0.6827 −3.4467 −0.9060

ESCO 42.6936 0.9757 1999212 2020105
−0.1160 0.3362 1.1156

0.2350 0.1504 1.0860

0.1173 −3.0444 −4.5883

ESKD 55.3124 -3.2069 2005320 2020365
0.6220 0.0458 0.0971

0.0580 −0.3947 −0.0083
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1.4894 −1.7282 −0.6313

ETOI 48.5732 7.7523 2014319 2020366
−0.2370 1.1659 0.0069

−0.1030 −0.0662 1.3712

−0.0972 −3.4879 −4.5340

EUSK 50.6741 6.7635 1998092 2020294
−0.0720 0.3145 0.0966

0.5310 −0.2840 0.1412

−1.1812 −2.6780 −2.6031

EXMO 50.6134 -3.4100 2005138 2020365
0.0570 0.3371 0.3766

−0.3100 −1.0178 −0.3707

0.3319 −2.4789 0.1994

EZEV 43.7744 7.4973 2009058 2020366
0.3540 1.4102 0.7901

0.1070 −0.3448 0.6763

−0.3691 −0.9688 −1.8729

FAJP 43.2074 2.0258 2014106 2020366
0.0760 −0.2711 0.0557

0.4170 −0.8226 0.8211

−0.0624 −0.5568 −3.5102

FARB 51.2799 -0.7727 2004288 2020360
0.4740 −0.1732 −0.0792

0.6540 −0.1095 0.4252

−0.9614 −1.3253 −0.5959

FAUG 57.1357 -4.6885 2007196 2020365
0.2240 −0.0563 −0.4701

0.0140 −0.3479 0.0521

2.3389 −1.9387 −0.9880

FAYE 43.6208 6.6895 2014362 2020366
−0.4440 0.2127 −0.2940

0.1130 −0.0493 1.6814

−0.0571 −2.1938 −0.9645

FCLZ 45.6430 5.9857 1998155 2012004
−0.7780 0.0318 1.0450

−0.0070 −0.1406 0.4909

1.0922 0.1389 0.8066

FDET 47.4070 0.6228 2012355 2020366
1.0900 0.0157 0.0351

0.4950 −0.4675 0.6938

−1.2390 −2.4997 −1.8540

FERR 44.6460 -1.2488 2005147 2012044
0.5940 −0.3317 1.6972

−0.0770 0.8332 −0.5484

−1.0303 −8.2676 −4.6982

FETA 49.2008 3.5093 2006340 2020366
0.8430 0.6859 −0.0504

0.7550 0.1268 0.2805

0.9274 −1.7503 −1.8770

FEUR 45.7348 4.2292 2013165 2020366
0.6940 −0.7997 0.2324

0.2020 3.6923 0.7302

−0.9678 −0.2489 −2.7352

FFMJ 50.0906 8.6650 2002051 2020366
−0.3010 0.4691 −0.2385

0.0550 −0.9478 0.1829

−0.3567 −2.8163 −3.0826

FIED 46.7727 5.7149 2013263 2020354
−0.6090 0.6087 0.3874

0.8930 −2.3169 1.3996

0.2850 2.2205 −6.2786

FILF 42.5603 2.4171 2014255 2020366
0.4750 −1.1500 1.0976

0.3730 −1.1342 0.6647

−0.4072 3.0212 −3.8570

FINS 60.2291 19.9513 2014329 2020231
−0.1480 0.4326 0.4247

−0.7880 −0.4736 0.7924
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6.6456 −3.1353 −4.7938

FJC2 43.0482 2.7949 2002293 2020366
−0.6030 −0.1045 −0.2499

0.2240 0.1660 0.6193

0.7551 −0.3896 0.2023

FLDW 53.7186 8.3076 2008217 2020366
0.3850 0.3762 0.1462

−0.0020 −0.9078 0.1751

−0.3681 −5.1172 −2.0629

FLGY 47.0400 6.1262 2013222 2020182
0.5050 −0.3288 0.5427

0.6780 −0.1010 0.9634

1.0018 0.2802 −2.6647

FLRC 44.3253 3.5945 2009049 2020366
0.2460 −0.0402 −0.0770

−0.1950 −0.5910 0.8716

1.0238 −1.4792 −2.0641

FOUC 49.8420 1.5807 2007133 2018073
0.2230 0.1295 −0.3049

−0.0770 0.0247 0.2228

−0.1389 −2.5598 −1.2431

FOUG 47.8844 6.3654 2016151 2020366
0.6410 −0.2107 0.2992

0.4200 −0.2642 0.7967

−0.8827 −0.4644 −0.2115

FOYL 54.9838 -7.3367 2006259 2020246
0.4880 0.0595 −0.1201

0.5910 −1.6878 −0.4371

1.1665 0.4610 −1.4600

FRAG 41.5095 0.3242 2012031 2020334
0.0530 −0.9947 −0.2212

0.4960 0.7058 1.0965

−0.7208 −2.0965 −2.0883

FRAN 49.4768 0.1740 2013329 2020366
0.4720 −2.5569 1.0195

0.3960 −0.4860 −0.3645

−0.6658 −3.0291 −2.9659

FRES 41.9735 14.6693 2005259 2020045
1.0460 −0.2843 −1.0110

3.2950 −0.1327 1.0369

0.2274 −1.7834 −2.5926

FRGN 46.8203 4.8521 2016152 2020366
0.2150 −0.5007 0.4437

0.2360 −0.3836 2.1413

−0.5767 −3.6659 −0.5540

FROC 63.8652 8.6603 2007129 2020366
−1.1570 −0.0410 0.5294

0.4240 −0.1184 −0.0596

2.4517 −1.7284 −2.2299

FRRL 43.4614 -8.3382 2016113 2020341
3.0520 1.0770 −0.2967

1.4000 −0.2875 0.8661

−1.0597 0.2528 −0.9587

FRTT 47.6803 5.5663 2008206 2020366
−0.2860 0.7179 −0.9475

0.3120 0.3261 0.7904

−0.0001 −2.5931 −2.0459

FRUL 40.8779 14.2253 2007005 2020366
1.6060 −0.2325 −0.1471

3.7330 −0.5481 0.8200

1.7337 −2.2631 −2.9217

FUSE 46.4142 13.0011 2007253 2020333
0.0280 −0.1310 −0.6323

1.1110 −0.8700 0.6986

0.9723 −0.5661 −1.7712

GAIA 41.1060 -8.5891 2000002 2020194
−0.0090 0.0412 1.0925

0.0740 0.4292 0.7198
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0.0872 −1.3993 −1.4920

GALF 37.7107 14.5665 2006328 2020258
−2.6650 0.0337 2.4465

4.0900 1.2039 −1.3772

1.0632 −2.1352 −0.5784

GANP 49.0347 20.3229 2003286 2020285
−1.1150 −1.1945 −0.4841

−0.5880 −0.5697 −0.2833

0.4839 −0.0709 −3.0488

GATE 41.5131 14.9099 2009182 2020348
0.7690 −0.2313 −0.0517

3.7780 −0.5426 0.6665

1.1386 −1.3370 −3.4641

GBLM 37.9903 14.0261 2003047 2020366
−0.6810 −0.3845 −1.4817

5.9270 1.3435 0.5290

7.1388 −3.0382 2.3131

GDIJ 47.3327 5.0447 2010293 2020169
0.2770 0.7304 −0.2107

0.1940 −0.2176 0.9175

0.0441 −1.9829 −2.9775

GELL 53.4503 14.3212 2007313 2020335
−0.1770 0.4111 −0.2187

−0.4350 −0.3885 0.2192

0.0248 −2.4072 −2.8499

GENO 44.4194 8.9211 1998204 2020216
0.3780 0.6174 0.1107

−0.0810 0.2993 0.8393

0.0715 −2.2945 −2.3170

GESR 54.5744 11.9229 2004301 2020366
−0.2280 0.0475 0.0692

−0.3250 −0.2537 −0.1619

0.5932 −2.3690 −2.0289

GIBR 36.1482 -5.3650 2009159 2015286
−5.9410 −0.5109 −1.3808

−0.0230 −3.1880 1.6792

−0.2924 −0.0388 1.0439

GIE1 47.6130 2.7815 2011250 2020366
0.0410 −1.4464 −0.3820

0.0880 −1.1565 0.3882

0.2790 −0.3410 −3.0269

GIGG 54.0759 -2.3088 2004145 2020365
0.7610 −1.1627 −0.2492

0.2190 −0.4182 0.2359

0.2112 −1.4972 −0.6969

GINA 43.6755 5.7871 1998037 2020366
−0.0230 0.0479 −0.3098

0.1080 0.0829 0.5924

0.3997 −1.3330 −0.4987

GIRA 55.2434 -4.8576 2008346 2020365
0.1190 −0.3186 −0.1475

0.5440 −0.0469 0.0695

1.4272 −0.7326 −0.1715

GIRO 42.0416 2.8551 2012032 2020344
0.0030 1.7073 0.2683

1.1630 0.5583 0.8570

−0.8245 −1.1867 −0.9442

GLAS 55.8540 -4.2965 2000075 2020365
0.1720 0.5084 0.2838

0.5560 −0.8664 −0.2616

1.1885 −1.3902 −0.7200

GLRA 44.8393 4.5241 2008052 2020366
0.1800 0.5823 −0.3047

0.1660 −0.8039 0.4121

0.0557 −2.0380 −1.7501

GLW1 53.2807 -9.0607 2007079 2020347
−0.1160 −0.2907 −0.1395

0.6820 −0.1645 0.4319
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0.1336 −1.7280 −0.2324

GNAL 42.5837 13.5198 2010258 2020366
4.5530 −0.5089 −1.0160

3.6880 −0.0186 −1.9990

1.6364 −1.7212 −1.0177

GOET 51.5002 9.9506 2006347 2020334
−0.2720 0.1605 −0.2415

0.5900 −0.0592 0.8635

0.1145 −1.7471 −2.4249

GOPE 49.9137 14.7856 1995258 2020366
−0.5820 0.7665 −0.7655

0.2900 0.0846 0.1339

0.3648 −2.9694 −1.6856

GOR2 53.0497 11.3496 2008191 2020335
−0.4670 −0.0526 0.1957

−0.4040 −0.8465 −0.0915

0.2292 −2.5591 −3.7527

GORN 48.4129 -0.8075 2007081 2020366
0.2760 −0.3797 0.0745

0.3090 −0.3167 0.4096

−0.0746 −2.6372 −1.8224

GORS 52.5756 1.7319 2009032 2020365
0.2460 0.9650 −0.6406

0.3660 −0.8018 −0.0724

−0.7322 −2.2477 −1.5729

GRA1 37.1899 -3.5964 2017132 2020335
−1.2480 2.2316 0.1876

0.1570 1.8217 1.4283

−0.1493 0.0205 1.6095

GRAS 43.7547 6.9206 1995053 2020366
0.1080 0.4732 0.2786

0.2900 0.0368 1.0055

0.1990 −0.9546 −1.8065

GRAZ 47.0671 15.4935 1992189 2020366
0.7190 0.3835 −0.0304

0.5900 0.0441 0.3291

0.0958 −3.1507 −2.5688

GRIS 39.7405 15.8531 2015218 2020246
0.5700 0.7415 −0.6866

3.6140 −0.9722 0.9549

0.2318 −0.6396 −3.6283

GRO1 41.0670 15.1009 2008297 2020366
−0.0640 1.1904 0.5891

2.8790 0.1284 1.1241

1.5661 −0.8784 −2.2481

GROG 43.4263 9.8920 2005187 2018100
0.0410 0.2770 0.1881

0.4440 0.3861 0.9813

0.1828 −1.6889 −1.2445

GROI 47.6480 -3.5080 2002301 2014202
−1.0060 1.7688 0.5052

−0.5000 0.9267 0.2380

−0.0451 −1.8803 −0.4299

GRON 47.1067 2.7082 2008169 2020366
0.5190 0.5640 −0.0272

0.5760 −0.4479 0.1995

0.5016 −1.6679 −1.6893

GROT 41.0728 15.0599 2004145 2020366
0.0330 0.0210 −0.0674

2.6580 0.0791 0.7030

1.5449 −1.8214 −2.9748

GRZM 44.2648 11.1481 2008114 2020366
0.5290 1.0967 −0.3334

3.5700 0.9814 1.0950

0.0995 −1.5999 −1.5284

GSR1 46.0481 14.5437 2001026 2020091
−0.0180 −0.1798 −0.5164

2.1580 −0.4074 0.7021
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0.7759 −3.1138 −2.5349

GUAR 41.7944 13.3122 2006151 2020366
−0.7830 1.5697 0.0500

1.3930 0.3329 0.8868

0.1230 0.4209 −2.1544

GUDI 42.0591 -7.1250 2015068 2020335
−0.3470 0.5618 0.6344

0.8080 −2.0796 −0.1714

−0.4078 1.4480 −4.3089

GUIJ 40.5467 -5.6778 2007032 2020366
−0.2150 −0.9217 −0.5974

0.6080 0.2758 0.0028

−0.0850 −0.8195 −2.7858

GUIL 44.6622 6.6619 2007316 2020366
−0.1700 0.5876 0.7455

0.0070 −0.2559 1.0517

1.3430 2.9389 −2.1645

GUIP 48.4446 -4.4118 2002291 2020366
0.2430 0.2435 0.1322

0.2770 0.0926 0.0735

−0.2553 −2.1369 −0.0538

GUMA 43.0628 13.3352 2008100 2020366
2.0790 −0.4708 0.1131

3.7690 −0.8748 0.8170

−0.6235 −0.4003 −1.8572

GWWL 52.7380 15.2052 2008093 2020335
−0.2920 0.3108 0.1229

0.0500 −1.5658 −0.1567

0.9449 −2.1916 −2.0939

HAGA 37.2858 15.1550 2006111 2020366
−1.1460 0.4691 0.1433

4.6370 −0.3573 0.9761

−0.3001 −1.9727 −0.7067

HARD 50.9497 -0.5287 2004145 2020365
−0.2050 0.7762 0.6311

−0.1810 −0.6434 0.0846

0.5474 −2.6508 −1.8665

HAS6 56.0922 13.7180 2011167 2020118
−0.4280 0.0353 0.2327

−0.3410 −0.7110 0.4593

1.8686 −2.5380 −3.6481

HAVL 36.9598 15.1219 2006101 2020366
−1.5430 0.3833 −0.3086

4.6900 0.1868 1.1603

−0.4347 −2.5199 −1.6088

HEAU 49.5807 -1.7780 2002304 2014281
−0.0390 −0.5691 1.0240

−0.0400 0.5815 −0.0549

−0.4550 −1.9782 −1.3176

HELG 54.1745 7.8931 1999313 2020366
−0.2140 0.1995 0.4163

0.1780 0.3364 0.2795

0.0934 −3.0259 −0.9688

HERO 50.8675 0.3357 2009093 2020365
0.3300 −0.2929 −0.8377

0.2540 −0.8200 0.2091

0.2381 −0.7797 −2.3613

HERR 39.1814 -5.0500 2009338 2019365
−0.4790 −0.7311 −0.2583

0.3430 −0.9563 0.5016

0.2881 −1.0733 −3.2795

HERT 50.8675 0.3344 2003078 2020366
−0.2290 0.1848 0.4806

0.1370 −0.4607 −0.2497

0.1503 −2.3752 −1.7081

HETT 68.4067 23.6653 2014043 2020231
−0.6440 1.8855 0.3349

0.2710 0.3176 0.9645
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6.2003 −8.6255 −6.6254

HFL2 47.3129 11.3861 1995268 2011185
−0.4460 0.7386 1.0992

0.3600 1.7732 4.3974

1.9886 −0.4286 −4.3652

HIRS 57.5911 9.9675 2004315 2020366
−0.5790 0.0008 0.5807

−0.4070 −0.5110 0.1542

2.4496 −2.0554 −1.8668

HKBL 47.3773 13.7713 2000280 2017277
0.4750 0.9311 0.2276

1.4960 0.3164 0.7910

0.2852 −1.4289 −0.7881

HLNI 37.3486 14.8719 2010046 2020366
−1.4300 0.1154 −0.1574

4.1980 −0.2473 1.0902

0.4821 −1.6429 −1.0046

HMDC 36.9590 14.7831 2006159 2020366
−1.5560 −0.1301 −1.1385

4.4910 0.0536 0.6690

−0.5615 −2.7641 0.0680

HOBU 53.0506 10.4763 1997189 2020366
−0.3540 −0.2000 −0.1710

−0.2340 0.5516 0.1375

1.0147 −2.0993 −2.3362

HOE2 54.7587 8.2934 2005185 2015139
−0.3580 −0.0148 0.2538

0.0760 −0.0385 −0.0420

−0.4303 −3.7380 −0.9703

HOFJ 50.3129 11.8759 2007066 2020335
−0.0940 0.3519 −0.3287

0.4420 −0.4365 0.4637

−0.7029 −2.5008 −2.2224

HOL2 54.3729 10.1568 2005283 2020366
−0.6640 0.1606 0.0693

−0.1620 0.2428 0.1802

−0.0575 −2.5482 −1.8397

HOLA 43.9698 3.2216 2014259 2020366
0.1600 0.3415 0.3131

0.1110 −0.2529 0.8460

1.5300 −1.7409 −1.9134

HOLY 53.3177 -4.6421 2004331 2020365
0.1040 −0.0744 0.0870

0.0710 −0.1582 0.0267

−1.0690 −3.2403 −0.0467

HONS 70.9771 25.9649 2007044 2020366
−0.6170 0.3348 0.4622

−0.0110 −0.6202 −1.0288

2.7051 −1.3251 −3.6142

HOOB 53.4829 -1.3797 2004145 2020365
−0.2060 0.2350 −0.3930

−0.6340 −0.3940 0.0434

2.5591 −1.8460 −0.5304

HORT 51.5484 -4.2012 2005187 2010084
0.2360 0.2750 1.7495

−0.5150 0.4417 0.8876

−1.4226 −1.0111 1.2170

HRM1 51.4537 -1.2839 1999083 2011203
−0.1420 0.0923 1.2065

−0.3420 0.0930 0.6702

0.5585 −2.4229 −0.7336

HRSN 49.9254 4.0733 2007133 2020366
0.1110 −0.7459 −0.3918

0.0510 −0.9923 0.0602

0.3123 −2.6604 −2.3770

HUE1 37.1320 -6.8337 2017194 2020335
−2.3920 2.1111 0.5528

1.4760 0.3122 0.4393
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−0.6262 0.3117 0.6482

HUEG 47.8339 7.5962 2002049 2020366
0.1630 0.6187 −0.1675

0.3280 0.3591 0.6558

−0.1039 −1.9009 −2.3494

HUEL 37.2000 -6.9203 2003103 2020335
−1.6080 −0.9493 −0.6279

1.0180 1.0040 0.8398

0.2090 −3.0745 −1.8273

HUNG 51.4043 -1.5139 2010228 2020365
0.2440 0.2997 0.2536

0.1440 −0.4504 1.2248

0.0179 −0.7550 −2.5584

HVZN 37.1783 14.7155 2005365 2019271
−2.9200 3.0410 2.8099

4.1180 2.0454 2.2416

−0.8081 −0.3970 −0.7229

IACL 38.5339 14.3564 2007130 2020170
−0.9350 0.4616 −0.0950

4.3900 0.5036 0.8696

−0.5342 −2.0447 −0.4064

IBIZ 38.9112 1.4490 2004288 2020335
0.0440 0.2597 −0.1207

0.1190 0.5734 0.8484

−1.3559 −1.5783 −0.1079

IENG 45.0151 7.6394 2003338 2020366
0.4240 1.2110 0.3368

−0.3800 0.5534 0.0101

0.9665 −3.5090 −3.1658

IFIL 38.5642 14.5753 2007275 2020366
−0.0010 0.8597 −0.0126

3.4910 −0.0275 0.9245

−0.5463 −1.7947 −0.7418

IGEO 47.0304 28.8435 2007184 2020335
−1.0620 −1.4347 −0.2278

0.0600 −2.2395 0.1042

0.5600 −4.2628 −5.3305

IGMI 43.7956 11.2138 2006344 2020099
0.3830 0.0984 0.1175

2.0890 1.7251 1.5688

0.6291 −2.9900 −2.6838

IGNE 40.4458 -3.7095 2005335 2020336
−0.0330 0.3641 0.2869

−0.1960 −0.8626 −0.1899

1.4829 −1.7896 −0.9801

IJMU 52.4620 4.5561 2004365 2020366
0.4790 0.3276 0.1079

0.0330 −0.5728 −0.8539

−1.4702 −3.2462 −1.0111

ILBO 47.1246 0.4178 2007133 2020366
0.3960 −1.4429 −0.0168

0.2880 −0.7820 0.5042

−0.7813 0.1149 −2.5081

ILDX 46.0094 -1.1768 2012039 2020366
0.1330 0.2069 0.5361

0.1610 0.5498 1.0759

−0.5581 −1.6581 −1.8670

INGP 42.3825 13.3156 2003267 2020366
−0.2010 −0.1805 0.1944

1.7600 0.1286 0.6046

1.1278 −0.7148 −0.1055

INGR 41.8280 12.5147 2001002 2020366
−1.1920 2.2830 1.1548

1.1610 0.5665 0.6387

0.3584 −1.8191 −2.2889

INVR 57.4863 -4.2193 2000002 2020365
0.1390 −0.4638 0.2315

0.7410 0.4607 −0.0808
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−0.7102 −2.0271 0.0746

IOMN 54.3292 -4.3885 2001081 2006144
0.0990 −0.3639 0.5168

−0.2520 1.1319 −0.5393

1.4575 2.7723 −4.4068

IOMS 54.0867 -4.6345 2001079 2016248
0.2690 −0.5878 0.1451

0.0640 0.4198 0.1414

0.5493 −1.4723 −0.1306

IPRO 40.7651 14.0239 2005001 2018051
−3.5010 0.5246 0.1920

−0.1910 0.8493 1.1192

0.1497 −1.8790 −2.4365

IRBE 57.5544 21.8520 2016064 2020079
0.7610 0.3468 1.4704

−0.7550 −0.1757 −0.1598

2.4052 −6.8708 −3.1991

ISLA 49.1038 2.2064 2007255 2020366
0.5790 −0.6974 −0.2112

0.0110 −0.0555 0.1878

−0.3001 −2.3189 −1.6730

ISPS 43.3543 -2.5536 2016076 2020335
−0.1720 0.1274 0.5424

1.1770 −0.2723 0.8962

−0.6078 −0.9251 0.2676

ISTA 41.1044 29.0193 1999345 2020366
−0.4290 0.2522 0.1672

−1.4260 0.6538 0.7269

0.3999 −3.8116 −5.5914

IXSG 48.8994 2.0640 2015273 2020366
1.0050 −0.1485 0.6580

−0.0680 −0.8035 0.1368

1.1639 −2.0974 −2.1458

IZMI 38.3948 27.0818 2008223 2020366
−22.0870 −0.5652 −0.1391

−16.6000 −0.4474 0.7758

0.4311 −2.8655 −4.3874

JACA 42.5673 -0.7265 2011055 2020342
−0.1270 −0.6126 −0.1123

−0.0060 −0.0641 0.8261

0.2872 0.3082 −2.4972

JARG 47.8622 2.1206 2006296 2020366
0.2700 −0.4540 −0.0928

0.0320 0.6998 0.5221

−0.1343 −2.3891 −2.4393

JERE 38.3200 -6.7794 2009274 2019365
−1.0960 0.6666 0.2684

0.7880 1.5803 1.3621

0.0003 −0.9173 −3.7032

JOAN 46.1840 13.4161 2007179 2020333
−0.0890 0.0725 −0.4651

2.1560 −0.3150 0.5979

0.2940 −1.2192 −1.8247

JOEN 62.3912 30.0961 1996300 2020231
0.1660 0.1052 0.5161

−0.8340 −0.6317 −0.0985

4.0313 −1.2209 −3.1138

JON6 57.7454 14.0597 2011167 2020118
−0.5550 0.0095 −0.3987

−0.5740 −1.0365 0.9220

3.9042 −1.9549 −3.2595

JONZ 45.4414 -0.4466 2015343 2020366
0.1330 1.0656 −0.2584

0.3560 −1.9097 0.4217

−0.4898 −2.7176 −1.5300

JOPP 38.6068 15.8857 2006249 2020366
1.0140 0.4755 0.0164

3.2720 0.7767 1.2290
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0.3181 −1.4894 −1.6482

JOUX 46.5286 5.7960 2000110 2020366
−0.0120 −0.3694 −0.3874

0.4160 −0.0707 0.2135

0.3409 −0.8888 −2.0158

JOZE 52.0973 21.0315 1993215 2020366
−0.5750 0.9936 0.3977

−0.1340 0.0221 0.2634

−0.1920 −1.4338 −3.1999

KAD6 59.4441 13.5056 2011167 2020118
−0.6230 0.4091 −0.0615

−0.5300 −1.0029 0.8437

6.3363 −3.3855 −2.7780

KARL 49.0112 8.4113 1997180 2020366
0.0620 −1.0386 −0.3813

0.0910 −1.0621 0.0537

−0.0416 −2.9550 −2.8545

KASI 39.7464 19.9355 2007091 2017126
−3.8550 2.2043 0.7480

−0.0750 1.1609 1.1810

−0.5779 −3.1145 −4.1110

KATC 35.9515 27.7808 2005278 2019350
−8.9310 1.6847 0.9321

−29.1420 −0.7942 0.2090

0.0476 0.5618 0.0654

KATO 50.2533 19.0356 2003204 2020366
0.3950 −0.5945 0.0448

−3.0170 0.8154 0.9308

−0.5640 −2.6507 −3.1909

KELO 55.5956 -2.4401 2006134 2020365
0.0070 0.7397 0.3183

0.1830 −0.0024 0.2721

0.9622 −3.3115 −0.7882

KEV2 69.7559 27.0071 2014043 2020231
−0.3970 0.5266 0.6063

0.4560 0.0016 0.0823

4.1899 0.0251 −3.5515

KEYW 52.8790 -1.0781 2007196 2020365
0.0470 0.1229 −0.4805

−0.3440 −0.5425 0.0824

0.0658 −2.1109 −1.2879

KILN 56.4549 -4.3207 2009007 2020365
0.9950 −0.5936 0.3223

0.0930 −0.1720 0.2759

1.7542 −2.1081 −2.9181

KILP 68.9416 20.9141 2014043 2020231
−0.8090 0.2133 0.6375

0.5950 −0.1623 0.5461

5.1502 0.2028 −3.7939

KING 52.7514 0.4015 2000002 2020365
−0.5910 0.0390 −0.3048

−0.2990 0.1546 −0.4536

−0.8178 −3.0006 −1.1212

KINL 58.4588 -5.0523 2007196 2020365
−0.0590 −0.4696 0.1640

−0.2780 −1.0597 0.1494

1.7803 −1.1702 −0.8778

KINT 57.2453 -2.3286 2010008 2020365
0.1970 0.2193 −0.1865

0.2290 −0.6783 0.3498

1.2309 −2.0825 −0.8934

KIR0 67.8776 21.0602 1996310 2020169
−0.7960 0.1958 −0.1881

0.5330 −1.0317 −0.0050

7.4891 −6.6530 −4.0392

KIRK 54.8395 -4.0474 2005294 2020365
−0.1150 1.6645 −0.3790

−0.7500 −1.2175 0.6280
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−0.7266 −1.6609 −0.4344

KIRU 67.8574 20.9685 1993189 2020096
−0.6860 0.6061 −0.0656

0.1940 0.0888 0.4029

7.0454 1.2249 −3.4731

KIRW 58.9534 -2.9016 2007196 2020365
−0.1250 0.1298 −0.2266

0.4670 −0.4924 0.2960

0.5773 −1.2484 −0.0918

KIV2 62.8199 25.7019 2014043 2020231
0.7730 0.2851 0.5710

−1.0310 −0.0930 0.9753

7.3191 −2.0136 −2.4623

KLOK 39.5647 22.0144 2008199 2020366
−3.1400 0.1229 −0.6406

−8.2570 −0.2662 1.2255

−0.0811 −1.3917 −4.1477

KLOP 50.2198 8.7299 1997180 2020344
−0.0400 0.2634 −0.1580

0.1590 −0.0215 0.1979

0.6337 −1.8681 −2.5607

KLRE 54.9649 -6.6180 2004153 2020347
0.2740 −0.0625 −0.0165

0.9430 −0.3000 −0.0301

0.0077 −2.2886 −0.5068

KNJA 43.5665 22.2553 2012133 2020335
0.2520 −0.3339 1.7603

−1.2300 −0.1477 0.9943

0.2277 −0.7821 −5.1655

KOE2 46.6742 13.0093 2001152 2017277
0.1240 2.7436 −0.1676

0.8800 −0.1828 1.0193

1.8926 −1.7184 −2.6066

KONE 47.8658 -3.9024 2007304 2020366
0.2110 −0.6115 0.0922

0.3060 −1.1893 0.4160

−0.3360 −1.8713 −1.4847

KOPE 45.5481 13.7246 2006001 2020366
3.4000 0.8492 −0.3029

2.4480 0.6171 0.9652

0.5018 −1.7552 −1.7702

KOS1 52.1734 5.8182 1991022 2020366
1.2420 1.5255 0.4623

0.7030 −0.0988 −0.6658

0.6272 −3.1202 −2.1605

KRAW 50.0661 19.9205 2003016 2020335
−0.3720 0.0477 −0.3941

0.0400 −1.9998 −0.3934

0.5377 −3.5595 −3.0668

KRBG 47.1462 10.6268 2001330 2017277
0.0820 0.5452 −0.0251

0.8780 0.9250 0.3033

0.0562 −1.0842 −1.9690

KTZ2 47.4182 12.3595 2008001 2017277
−1.0920 0.0646 −0.3304

−0.3020 −0.3514 0.4236

−0.4361 −1.3076 0.9141

KUNZ 49.1073 15.2009 2005266 2020335
0.0600 0.0402 −0.0977

0.6480 −0.5582 0.3540

1.1342 −1.0157 −3.3572

KURE 58.2556 22.5101 2008091 2020105
0.0790 0.2578 0.2552

−0.8010 −0.3929 0.4705

2.8112 −3.4363 −2.0304

KUU2 65.9102 29.0336 2014043 2020231
0.1510 2.3274 0.3875

−0.7420 −0.7146 0.9609
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8.1412 −3.2517 −5.2263

LACA 43.6810 2.7276 2005365 2020160
0.1410 −0.0861 −0.2597

0.0730 −0.0687 0.5177

0.1593 0.3918 −1.9410

LAGO 37.0989 -8.6684 2000002 2020194
−1.1000 0.3483 0.3765

1.7730 1.0333 1.1584

−0.3152 −0.7592 −0.9053

LAMA 53.8924 20.6699 1994356 2020335
−0.5940 −0.1594 −0.0534

0.3620 −0.1009 0.1404

0.2958 −2.5043 −2.6969

LAMP 35.4995 12.6057 1999085 2020216
−2.3240 0.1151 −0.0106

2.3960 −0.3879 0.4066

−0.4000 −1.2914 0.0315

LARN 41.7281 12.8330 2016124 2020366
−1.0930 −1.0463 −0.5675

1.8360 0.3491 1.2444

−0.3436 −2.3819 −1.3540

LASP 44.0733 9.8397 2006001 2020366
0.2470 0.2241 −0.4182

0.6190 0.2483 0.3448

−0.0834 −1.7265 −1.7300

LAVL 48.0728 -0.7234 2011049 2020366
0.0750 −2.1637 −0.2943

0.3360 3.7802 1.3309

−0.0558 0.1888 −2.8506

LBRD 44.6814 -0.5278 2007262 2020366
0.3110 0.0583 0.0476

0.1420 −0.3750 0.3910

−0.3661 −2.0765 −2.7235

LBUG 44.9454 0.9211 2007235 2020366
0.7750 0.6451 −1.7974

0.2280 0.0514 0.3593

0.2449 −2.5790 −1.5951

LCAR 57.4203 -5.4641 2007287 2020365
0.0270 −0.8226 0.2097

0.4850 −1.5430 0.4489

1.2116 −0.7157 −1.2783

LCAU 44.9782 -1.0755 2006340 2020303
0.1340 −0.1318 0.2042

0.3710 0.0470 0.5062

−0.2698 −1.3881 −1.6534

LDB2 52.2091 14.1209 2005319 2020335
0.0800 0.1441 −0.4752

−0.0890 −0.5810 0.0334

0.4048 −3.0429 −2.8098

LEBE 45.9161 5.6247 2005141 2020366
0.1480 −0.2545 −0.2439

0.2100 −0.3753 0.2380

0.6100 −1.1542 −1.7305

LEED 53.8002 -1.6638 2000002 2020365
0.1740 0.1721 0.1249

−0.0200 1.0635 0.0616

0.2951 −2.1475 −0.7647

LEEK 53.1278 -1.9813 2004145 2020365
0.1050 −1.4347 −0.2557

0.0980 −0.1845 −0.0978

0.1511 −0.4745 −0.2304

LEIJ 51.3540 12.3741 2001290 2020366
−0.2670 −0.7495 −0.1437

−0.2030 −0.2677 −0.0568

−0.0529 −3.1744 −3.1516

LEK6 60.7222 14.8771 2011167 2020118
−0.7730 0.2218 0.3990

−0.3420 −0.5664 0.9077
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7.8735 −3.4490 −2.2992

LENE 49.1493 0.9070 2007133 2020366
0.1310 0.1852 0.2297

0.1430 −0.5196 0.0190

−0.1823 −2.2856 −2.6109

LEON 42.5884 -5.6510 2007085 2020366
−0.4590 −0.3227 −1.7734

0.3400 −0.5874 −1.4281

−0.3757 −0.6785 −0.6090

LERM 42.0267 -3.7568 2008067 2020366
1.1680 −0.7700 −0.4632

0.3360 −0.1230 0.2405

−0.0965 −0.8878 −1.5906

LETO 50.5139 1.6191 2007358 2020366
0.0540 −0.1245 −0.0559

0.3160 −0.4402 0.2681

0.0052 −1.3664 −1.8000

LFAZ 45.1166 5.3985 2005010 2020366
0.4500 −0.3086 0.0761

0.1520 0.2599 0.3951

0.3726 −0.2797 −2.3719

LGAR 44.2974 0.3789 2007255 2020366
−0.2830 0.6255 0.6406

0.2430 −0.0390 0.7968

−0.2575 −1.8184 −3.0457

LGBO 45.3871 0.5879 2016151 2020366
−0.7110 1.1187 0.1099

1.1570 −2.5622 −1.4971

−0.4570 −2.4305 −0.6987

LGES 45.8177 1.2307 2012283 2020366
−0.0740 −0.1962 0.2807

0.1350 −0.3104 0.8725

0.4499 −2.8510 −2.6255

LI3D 38.6389 15.1141 2004132 2012366
−1.3710 0.1626 −1.4379

1.9700 0.1244 1.4779

−4.5473 0.5815 1.6691

LIAR 49.9692 -5.1878 2012019 2020365
−0.9480 0.8574 0.9937

0.6280 −0.2791 0.5467

−8.6078 −1.7473 −3.2639

LICF 52.7100 -1.8137 2004148 2020365
0.2960 −0.4755 0.0018

0.2150 −0.2312 −0.0912

0.4378 −1.8376 −1.4453

LICO 40.8764 14.0496 2004001 2020366
−4.0810 −0.8694 0.0551

3.6730 0.1849 0.6707

0.7593 −1.2054 −1.3673

LIL2 50.6135 3.1360 2001033 2020366
−0.0500 0.4350 0.5074

−0.1390 −0.0083 −0.1184

−0.0406 −2.1969 −1.5737

LINO 53.2503 -0.5201 2004145 2020365
0.1930 0.3876 0.2795

−0.0250 −0.1873 −0.1299

0.3199 −2.2942 −1.6058

LINZ 48.3098 14.2831 2000325 2020366
0.2240 −0.4314 −0.2721

0.3040 0.4938 0.4585

1.0568 −3.1382 −2.5717

LLER 38.2368 -6.0107 2009274 2019365
−1.1460 1.8276 −0.0952

0.6500 1.2341 1.4462

0.1089 −0.5870 −3.9089

LLIV 42.4784 1.9731 1999134 2020105
0.3780 0.5673 −0.2275

−0.0120 0.8868 0.9541
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0.2899 −0.8377 −1.9423

LMCU 50.6428 3.0768 2002144 2020350
−0.2690 −0.4749 0.1309

0.0150 0.5609 −0.0217

0.0378 −3.2463 −1.8338

LMDM 46.0691 3.6615 2015242 2020366
0.8850 0.3073 −0.8377

0.0280 1.0183 2.2259

−0.0105 −0.4906 −2.0412

LMR1 52.6740 -8.5757 2007079 2020347
0.6820 0.4848 0.3287

0.4750 −0.2395 0.2531

0.9398 −1.6603 −0.4135

LNGN 41.5005 14.2526 2006153 2016338
0.1480 0.5134 0.5667

2.5230 −1.5160 1.9677

0.6199 −1.1946 0.7821

LNSS 42.6028 13.0402 2006150 2020366
−1.0520 −0.3957 0.2835

1.8500 −0.1450 0.8042

0.3749 −1.3825 −2.6500

LOCG 56.0135 -5.4461 2005070 2020365
0.2370 0.0399 0.4406

0.1800 −0.6948 −0.0616

−3.1604 −2.8219 1.8187

LODZ 51.7787 19.4595 2008093 2020335
−0.0700 −0.1361 0.2976

0.0460 −0.0105 0.8037

0.4102 −2.0520 −2.7431

LOFT 54.5629 -0.8634 2005294 2020365
1.6830 −0.3664 0.0157

0.5820 0.0147 −0.0110

−1.5028 −2.2041 −0.4786

LOND 51.4894 -0.1199 2000002 2007104
0.2230 4.0141 1.3103

−0.5210 2.5780 −0.1554

−0.6259 −3.0187 −3.2949

LONS 46.6785 5.5570 2015223 2020366
0.0850 −0.1938 0.7684

0.2430 −0.1897 0.4994

0.3464 −2.2662 −1.5734

LOSV 38.4457 14.9482 2006003 2020366
−0.5230 0.3265 −0.0019

6.2010 0.9646 1.0107

−7.8434 −0.8906 −0.9816

LOV6 59.3379 17.8289 2011236 2020366
−0.1820 0.6980 0.0660

−0.6320 −0.5938 0.7495

6.1617 −4.1154 −3.0370

LOVJ 67.8910 34.6159 2010335 2020366
−0.1040 0.6430 −1.9163

0.3860 −0.6263 −2.4532

2.7918 −1.7370 −4.7792

LPAS 47.3414 -3.1742 2014270 2020366
−0.3200 0.1202 0.4639

0.2870 0.1687 0.7079

−1.1212 −1.8685 −0.7163

LPEL 42.0469 14.1832 2008102 2020366
2.0140 −0.1444 0.0805

3.1820 0.4379 0.7355

−1.5972 −0.7513 −2.1711

LPPZ 48.4463 -4.7604 2007234 2020366
0.3960 0.2039 0.1687

0.4410 −0.2675 0.1767

−0.2869 −0.6839 −0.5682

LROC 46.1589 -1.2193 2001327 2020366
0.0720 −0.1654 0.4673

0.0570 1.1798 0.6012
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−0.0795 −1.8498 −2.1218

LRTZ 48.6905 6.1915 2007309 2020366
−0.2990 0.8915 0.8791

−0.2500 0.4836 0.7402

−0.1144 −0.1600 −3.2492

LSIE 49.1497 0.2607 2013171 2020366
−0.4100 0.4101 0.9404

0.3020 0.2557 0.7795

−0.2882 −3.1291 −2.8485

LUCE 47.4383 7.2682 2007304 2020366
0.1010 0.2206 0.4463

0.3900 −0.3218 0.6801

0.3360 −0.8059 −1.5595

LUGO 42.9931 -7.5447 2011160 2020335
0.0690 −0.4875 0.2574

0.6700 −0.2221 0.2695

1.5412 2.4401 −5.7551

LUMI 42.6029 8.8274 2010134 2020366
−0.1490 −0.1474 −0.1824

0.5870 0.2823 0.8171

0.1881 −0.3440 −1.5605

LURI 42.8884 9.4759 2010168 2020366
−0.2760 −1.2692 −0.0733

0.7750 −0.4422 0.8175

−0.0567 −0.7139 −1.3928

LUZZ 39.4460 16.2878 2006315 2018044
0.6120 −0.2736 0.0231

3.4170 0.4530 0.8612

1.3796 −1.5864 −4.2014

LYN1 53.4163 -4.2892 2000142 2005176
0.5320 −0.2881 0.7377

−1.2050 −0.3694 1.2623

0.6715 −0.0049 −1.7276

M0SE 41.8931 12.4933 2004289 2020135
−1.6220 1.3167 0.4594

0.6270 0.6962 1.1602

0.3476 −2.7439 −3.3717

MACY 52.5889 -3.8518 2008346 2020365
0.2050 −0.1418 0.4102

0.2130 −0.5819 0.0548

0.3559 −0.6751 −1.6991

MAD2 40.4292 -4.2497 1997188 2020366
−0.4680 1.1630 0.2033

0.0060 2.0396 0.3703

1.0267 −1.1178 −1.6091

MAGA 45.7754 10.6291 2006130 2020366
−0.3000 0.4811 −0.2313

0.6330 −0.0886 0.8181

0.5098 −1.7230 −1.7548

MAGR 48.1869 3.3224 2015242 2020366
0.3130 1.0397 0.0562

0.2970 −0.6965 0.8216

−0.0395 −3.2968 −0.6960

MAID 51.2727 0.5129 2007264 2013212
0.2820 1.9691 0.1451

−0.0210 −1.1896 −0.2724

−0.0777 −3.9666 −2.1378

MAIS 51.3037 0.4834 2014204 2020365
0.0270 0.3525 −0.0480

0.0860 −0.7677 0.4994

0.0395 −1.5707 −2.6457

MAKS 47.9230 7.0315 2007121 2020366
0.3490 0.0054 0.0366

0.1090 −0.0885 0.4135

0.5133 −1.4880 −2.8977

MALA 36.7261 -4.3935 2000089 2020335
−2.3050 −0.4878 −0.8079

−0.8740 0.6361 0.6709
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0.8260 −1.4533 −1.1302

MALG 57.0061 -5.8284 2000152 2009027
−0.1630 0.0452 0.2334

0.1290 0.4590 −0.0764

1.5966 −0.2031 0.7624

MALL 39.5526 2.6246 2000133 2020344
−1.3240 −0.6388 −0.0911

−0.1110 0.9155 0.6825

0.0840 −2.8412 −0.4946

MALT 35.8380 14.5262 2006157 2019221
−1.7680 −0.0695 0.0468

4.5450 0.2110 1.0062

−0.3375 −2.1035 −0.8129

MAN2 48.0186 0.1553 1998111 2020366
0.1180 −0.7462 −0.2899

0.2210 0.3342 −0.4932

0.4767 −2.2308 −1.4826

MANR 53.5116 -2.2350 2004145 2020365
0.2770 0.2815 0.5797

0.0980 0.1634 0.3873

0.3103 0.0446 −1.4787

MAON 42.4282 11.1307 2005118 2020366
−0.5940 0.2531 −0.2167

0.5140 0.0552 0.5111

−0.0676 −1.9081 −1.5129

MAR6 60.5951 17.2585 1996300 2020118
−0.4830 0.2333 0.0360

−0.7390 −0.2126 −0.0260

8.0015 −4.1540 −2.2089

MARJ 50.3569 12.8935 2005068 2015247
−0.2870 0.6320 −0.6140

−0.0180 −0.3889 0.1359

0.5014 −3.7517 −1.4497

MARS 43.2788 5.3538 1998197 2020366
−0.3980 −0.0555 0.4148

0.2070 0.9980 1.1179

−0.4905 −1.8426 −1.3021

MART 51.3917 1.3829 2004288 2020365
−0.9040 −0.2315 −0.3057

0.6870 0.1342 0.0403

−1.0152 −1.9214 −0.9527

MATC 46.2892 1.6048 2015242 2020366
0.1040 1.1402 0.5802

0.4420 0.2672 0.9112

0.1222 −3.0261 −1.2394

MATE 40.6491 16.7045 1992097 2020216
0.4710 0.9077 0.1573

4.4320 0.4704 0.5440

0.5485 −2.3180 −2.4517

MAUP 48.5239 0.5374 2011049 2020366
0.4360 0.5338 0.4082

0.2330 −0.1687 0.3696

0.0287 −1.9349 −2.3422

MAZE 45.5717 -0.5924 2015048 2020366
−0.2230 2.0698 0.8543

0.3830 3.2182 1.9454

−1.9329 −4.3215 0.8891

MCEL 40.3255 15.8015 2006215 2020366
0.3810 0.1220 0.0734

4.3090 −0.1558 0.9455

0.5117 −1.5673 −2.7472

MCHA 51.9977 -2.9996 2009198 2015333
−0.3460 −0.3999 0.5344

−0.1010 −0.5710 −0.0388

0.5465 −3.0390 −0.1458

MCRV 40.7826 15.1681 2005202 2020366
−0.8610 −1.9412 0.6597

2.1670 −0.5993 0.9156
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1.1693 −3.2153 −2.8021

MCSR 38.0646 15.2301 2010257 2020366
2.4260 0.5234 −0.1726

6.8100 −0.3113 1.0760

0.1418 −0.9576 −0.9864

MDEA 45.9245 13.4356 2003024 2020333
−0.4590 0.2528 −0.0622

2.6240 −0.1668 0.6187

−0.0524 −1.7694 −2.2626

MDOR 45.7990 4.8090 2002267 2013346
0.6730 −0.4352 −0.0830

0.1940 0.0844 0.5520

−0.1532 −1.3374 −3.5704

MDPM 42.9413 -3.4836 2007068 2020366
0.1930 −0.4128 −0.2475

0.4160 0.7492 0.5943

−0.1650 1.0060 −2.0971

MEDA 38.9163 -6.3486 2009274 2019365
−0.8210 −1.3437 −0.5406

1.1290 2.8272 2.2122

−0.4558 −2.1772 −4.3346

MEDI 44.5200 11.6468 1996001 2020216
1.2770 −0.1367 0.7396

2.3690 0.2523 −0.4659

−1.5417 −2.4921 −2.9251

MELA 41.7060 15.1271 2008009 2020366
0.8920 1.1128 0.3179

4.3060 −0.3648 1.3709

0.0749 −1.6260 −3.0373

MELI 35.2812 -2.9516 2011348 2020335
−3.0040 −1.1114 −0.4641

2.9440 0.7643 1.0845

−0.2124 −2.3067 −1.5332

MELN 48.5395 2.6725 2007081 2020366
0.0770 0.1630 0.1330

−0.3080 −0.6437 0.2076

0.7819 −2.5086 −1.9857

MENC 40.0006 3.8312 2016097 2020344
0.1770 1.4322 −0.1703

0.5800 0.0749 1.7307

−1.1114 −1.5236 2.0918

MERY 48.5145 3.8869 2006340 2020366
−0.0280 0.4299 −0.6919

0.6320 −0.4594 0.2634

0.2376 −2.5238 −2.2930

METS 60.2172 24.3953 1991125 2020231
0.1040 −0.4975 0.2060

−1.2620 −0.4719 0.0972

5.1490 −4.1939 −3.6138

MFUS 41.0579 14.8340 2011322 2020366
−0.8290 0.8529 0.6909

2.3350 0.8063 0.9936

0.5660 −0.6074 −2.6058

MGAB 42.9130 12.1114 2008094 2020366
−1.6580 0.9163 −0.2344

1.5450 −0.7147 0.3885

0.3136 −0.7456 −1.6476

MGIS 47.9758 2.7138 2010332 2020366
0.2520 0.3710 0.0337

0.1270 0.5624 0.8716

0.6626 −2.4142 −2.4472

MGRD 45.9753 12.0151 2009253 2020366
−0.1420 0.4599 0.3581

1.1970 −0.1476 0.2350

0.8111 −0.0402 −0.8087

MIBR 42.6803 -2.9384 2011176 2020366
−0.0360 0.0882 0.7005

0.4560 −0.4004 0.5086
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0.4735 −1.4748 −4.5670

MICH 43.9241 5.7176 1998196 2020366
−0.0790 0.2307 0.3712

0.0380 −0.0468 0.2153

0.1787 −1.2147 −1.7306

MIK3 61.5741 27.1028 2014043 2020231
0.1810 0.0393 0.8309

−0.8280 −0.4890 0.4837

4.9759 −1.6996 −3.3087

MILA 38.2706 15.2307 2005334 2020179
0.0410 0.1652 0.1796

5.1280 0.1962 0.3121

0.3363 −0.5824 −1.3788

MILO 38.0082 12.5843 2001278 2012082
−0.6560 −1.5481 −2.6043

2.7340 0.9835 1.3191

0.5315 −2.1591 −0.8151

MILT 52.0242 -0.7718 2007330 2013143
0.5240 1.1710 0.8934

−0.2330 0.6099 −0.3222

−0.2449 −1.4388 −2.1301

MIMZ 44.2006 -1.2283 2007133 2019307
0.3200 0.5956 −0.2084

0.6820 0.2359 0.2319

1.2082 −0.9459 −1.9167

MIRE 48.2949 6.1213 2009104 2020366
−0.0070 0.4334 0.3817

0.1260 0.1263 0.7952

0.0458 −2.0804 −2.4944

MLAG 43.4309 12.7787 2012216 2020366
1.0560 −0.1108 0.9923

3.3790 −0.3718 1.0488

1.1271 −0.9135 −2.2674

MLVL 48.8411 2.5873 1999334 2020366
0.2070 1.0772 0.1222

−0.1440 0.4398 −0.0148

0.3681 −2.0433 −2.4354

MMME 37.9352 15.2540 2005135 2012137
1.6000 −0.4252 −1.1190

6.1210 0.9634 0.3869

0.5111 −3.0080 −0.5458

MMNO 39.8700 15.9721 2011258 2020366
−0.6000 1.2668 −0.4608

2.5960 −0.5848 0.9612

0.5359 −1.0232 −2.6082

MNBL 47.4958 6.8061 2009105 2020366
−0.2310 −0.2115 −0.1315

0.1730 −0.2909 0.9149

0.2752 −0.7478 −2.3742

MNGM 43.8162 28.5876 2012264 2020366
1.2440 −2.2546 2.2594

2.2430 0.1394 −0.9572

−3.1994 −1.0330 −3.2515

MNOV 38.0286 15.1356 2010132 2019356
−0.6750 −0.6879 0.2453

6.8920 0.0842 0.0381

−0.1224 2.2561 1.3020

MNTP 43.6462 3.8691 2015258 2020366
−0.0040 0.3137 −0.3719

0.2060 0.0602 0.7177

−0.2029 −2.4344 −2.3754

MOCO 41.3712 15.1586 2005308 2020366
0.8710 −0.0319 0.1185

3.8870 0.2922 1.2349

0.6828 −2.1239 −2.8463

MODA 45.2138 6.7101 1998290 2020366
−0.1580 0.3956 0.1435

−0.3740 1.4684 0.7059
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2.0815 −1.7388 −3.1596

MODE 44.6290 10.9487 2006068 2020366
0.7110 −0.6917 −0.3730

3.8950 −1.0192 0.9074

−3.0873 −4.3787 −2.8875

MODR 41.1461 13.8808 2006193 2020055
−0.9250 0.0688 −0.8488

1.8920 0.2664 0.0656

0.5465 −1.1598 −1.4702

MOFA 49.6547 0.5982 2015202 2020366
0.3970 0.3321 0.3201

0.5720 −2.6221 0.0193

−0.6825 −2.4622 −1.2289

MOFR 37.1207 -5.4624 2014275 2020335
−1.9180 0.0273 1.0046

0.6920 1.5974 0.8914

1.4560 −0.9682 −0.3453

MOGN 46.1483 4.8029 2004336 2020366
0.4000 −0.3051 −0.3101

0.1070 0.2539 0.5941

−0.8347 −1.3010 −1.4765

MOLI 40.8412 -1.8793 2013338 2020335
1.6880 0.1715 −0.3391

−2.6260 0.7182 0.8253

−1.3424 −1.2960 −0.9099

MONA 42.8968 13.3371 2016314 2020366
2.0390 −0.4899 −0.5615

5.2780 −0.4010 −0.0289

0.4040 0.2737 −5.4930

MONC 45.0739 7.9272 2005133 2020366
0.2410 0.3570 −0.5254

0.1230 −0.9942 0.7138

−0.4195 0.6445 −0.7123

MONS 46.5486 3.2856 2015259 2020366
0.0800 −1.2074 −0.1599

0.5690 −2.3734 0.1089

0.7768 −2.8736 −1.4522

MOPI 48.3727 17.2739 1996162 2020097
0.0760 −0.3628 −0.1467

0.2450 0.9255 0.6113

0.8793 −2.8852 −5.3942

MOPS 44.6294 10.9492 2007095 2020366
1.2830 −0.6264 −1.0257

3.7890 0.0899 0.5608

−2.8798 −3.7660 −3.1633

MORN 45.6939 0.2725 2008038 2020366
0.1100 1.0237 −0.0958

0.1550 0.2744 0.4221

−0.3589 −1.3396 −2.7948

MORO 55.2129 -1.6855 2008350 2020365
−0.0400 0.4523 0.2177

0.1270 −0.4173 0.3575

0.6058 −0.6070 −1.0976

MOTA 39.5032 -2.8700 2013193 2020335
−0.9570 −0.3937 −0.3185

−0.1090 1.2830 0.8613

0.6292 −1.6651 −1.5979

MOX2 50.6422 11.6162 2003084 2020334
−0.0470 0.1408 −0.2219

0.2460 −0.2079 0.0079

0.2771 −1.3675 −0.9382

MPAZ 37.9531 16.0067 2006290 2020366
1.7040 −0.3960 −0.2437

2.7730 0.6841 1.4328

1.1187 −2.2413 −1.6131

MPNC 38.1465 15.3529 2010020 2020366
0.6840 0.9947 2.4441

5.1230 −1.1063 −1.4292
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0.9139 1.1709 2.2519

MPRA 46.2408 12.9877 2002221 2020333
−0.2910 −0.2448 −0.3611

1.7080 −0.3828 0.1418

0.0865 −1.9854 −1.9166

MPRV 46.1724 0.5255 2011285 2020366
−0.1740 0.4157 −0.3439

0.0270 1.3484 0.6744

1.1288 −2.6261 −3.9044

MRGE 45.7698 7.0611 2005251 2020366
−0.2750 0.3219 −0.5162

−0.4800 0.7527 1.2776

1.8095 −0.6425 −3.3025

MRKT 54.2371 -6.5035 2006258 2020347
0.6760 −0.1200 0.1639

0.1470 −0.6464 0.1506

0.8959 −1.9944 −0.4283

MRLC 40.7564 15.4887 2004328 2020366
0.5740 −0.3733 0.1333

3.6380 −0.3895 0.4197

1.3400 −1.2791 −3.5054

MRON 46.7472 6.3524 2013276 2020366
−0.0850 −0.7938 0.7963

0.7960 −0.8376 0.9732

1.0504 −1.2611 −3.0559

MRVN 41.0609 16.1959 2006137 2020366
0.8810 0.3682 −0.2701

4.3840 0.0481 0.2698

0.1895 −2.4838 −1.4748

MSAG 41.7121 15.9097 2006145 2020366
0.9720 0.3085 −0.2259

4.0530 0.4762 0.6840

0.3893 −2.3536 −2.6145

MSGT 42.8796 1.6294 2007326 2020366
−0.0500 −0.0318 −0.6123

0.1030 0.0920 0.7166

1.2801 0.2367 −2.3052

MSMM 43.8107 6.1998 2009328 2020366
0.1520 0.4623 0.1742

0.2980 0.5577 1.1626

0.1452 −0.6392 −3.0854

MSRT 45.5414 1.5214 2008142 2020366
0.4710 −0.2401 −0.1709

0.3080 −0.3180 0.7208

0.1590 −1.7073 −2.4328

MSRU 38.2638 15.5083 2006001 2020366
0.2330 0.6875 −0.1761

4.2150 0.2294 0.7661

−0.0240 −1.3220 −1.4878

MT01 45.7487 12.2006 2008289 2020366
−0.3480 −0.3644 −0.3540

2.0720 0.3697 0.6591

0.5831 −1.3924 −2.7384

MT06 45.8313 12.1364 2014281 2020366
−0.1150 0.7430 0.1545

2.1720 −0.0619 0.1104

−0.4808 −0.2757 −2.2322

MT10 45.8882 11.8989 2015183 2020366
0.3200 −0.3481 −0.9699

1.3520 0.2527 1.1066

0.4301 −2.2943 −1.2567

MTBG 47.7379 16.4042 1998302 2012292
−0.1150 1.8994 −0.3390

0.7170 −1.1672 0.0486

0.6184 −3.8806 −3.8918

MTBT 48.4903 4.5640 2016111 2020366
0.8910 0.0831 2.0837

0.1760 −1.1178 0.5711
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0.9516 −2.6569 −2.5166

MTDM 43.8828 -0.4849 2007247 2020366
0.1640 0.8416 0.4825

0.2770 0.6937 0.3884

0.3318 −1.2399 −2.9710

MTER 42.5088 13.2143 2010258 2020366
−0.5810 0.3314 −0.3920

1.7670 −0.6099 0.4568

0.4660 −0.3950 −1.8965

MTMN 46.4294 0.8791 2007133 2020366
0.0840 0.1794 0.2571

0.0750 −0.9873 0.1148

0.1398 −1.9085 −3.0003

MTMR 40.9184 15.0026 2015224 2020366
−0.8570 0.7778 −0.0689

2.2510 0.1059 0.9656

0.6425 2.0212 −3.3893

MTP2 43.6388 3.8641 1999121 2020366
0.1150 0.1267 −0.0667

−0.0080 0.5111 0.5475

0.2024 −2.0261 −2.0013

MTRZ 44.3128 11.4250 2008273 2020366
1.2560 −0.7056 −1.9575

5.2870 1.0863 0.2205

0.1763 −1.8825 −3.2415

MTSN 40.2662 15.7512 2006215 2018331
−0.0910 0.2301 −0.1334

3.4790 −0.1934 0.8454

0.9050 −1.4891 −3.0176

MTTG 38.0031 15.6999 2006010 2020338
1.0580 0.6680 −0.4684

2.8710 0.1614 1.0621

0.9058 −1.0942 −1.0357

MTTO 42.4555 12.9927 2005195 2020366
−1.1210 0.9602 −0.2346

0.9550 0.7031 0.6473

1.0582 −3.0876 −4.3698

MUCR 38.0430 14.8739 2011124 2020366
−1.1950 0.4130 0.9282

8.3740 −0.0615 0.4290

0.5665 −0.1426 −0.7512

MUEJ 48.1490 11.5682 2003098 2018270
0.0540 0.8967 0.2230

0.0560 0.3511 0.7576

−0.6351 −1.0858 −1.2915

MUR1 43.2632 12.5247 2004177 2020366
0.7330 0.5692 −0.9967

0.7140 0.3052 2.5083

0.8213 −1.8772 −1.6941

MVAL 43.3821 12.4066 2006179 2020365
−0.3990 0.4240 −0.4993

1.8460 0.5547 1.2617

1.2156 −1.2618 −2.0793

MYRG 42.1684 -5.2635 2008146 2020366
0.1970 −0.3607 −0.7538

0.7050 0.4584 0.6162

0.0380 −2.5598 −1.4387

NARB 43.1983 2.9726 2010346 2020366
0.1130 0.3199 0.0022

0.2400 0.2650 0.9746

0.2410 −0.9918 −1.9150

NAS1 51.4008 -3.5513 2000142 2005176
1.0710 0.5487 −4.0302

−0.3710 0.2087 0.7036

0.8704 −2.5955 −3.6106

NAVA 39.8949 -5.5451 2009274 2019365
−0.6320 1.3494 0.2061

0.3610 0.0500 0.3896
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−0.6878 −0.8090 −2.3716

NAYC 46.6979 0.3973 2012331 2020366
0.2090 −0.0489 1.2080

0.2000 0.4122 1.4571

−0.0144 −1.5998 −2.6206

NCAS 54.9791 -1.6166 2000002 2020365
−0.3990 −0.2408 −0.1894

0.0750 −0.2998 −0.2739

1.3652 −2.3977 −0.8959

NEAB 36.5092 23.0603 2012227 2020366
−17.3920 −0.0275 −0.2577

−26.9050 0.3989 0.7442

0.1655 0.4061 −0.1683

NEMI 41.7177 12.7176 2016075 2020366
−0.5170 1.4485 0.4573

−1.1230 −0.3527 1.3144

0.7743 −2.6204 −3.7881

NEWR 52.2668 0.4153 2008168 2020365
0.1740 −0.1258 0.0378

0.1540 −0.4461 0.3174

−0.0533 −1.5498 −1.6147

NFO1 51.3745 1.4445 2000148 2005176
−0.7420 1.9422 −1.4206

−0.5620 −0.3772 0.6402

0.8350 −2.0164 −4.9368

NGER 47.4720 -0.5478 2015202 2020366
−0.0160 0.6180 0.1718

0.3150 0.0445 0.5394

−0.1902 −3.3346 −2.4011

NICA 43.7033 7.2273 2002350 2020285
0.2290 0.4795 0.0405

0.4160 0.4732 0.8837

0.5054 −1.3657 −2.1048

NICE 43.7255 7.3000 2000350 2020366
0.1690 −0.2813 −0.1640

0.0090 0.2977 0.2971

−0.2217 −1.0761 −1.3564

NJOE 59.4607 28.0413 2015170 2020366
−0.0210 −0.8130 0.4708

−0.4000 −0.9113 0.6210

2.4646 −3.7648 −5.1481

NMCU 47.2192 -1.5986 2010074 2020366
0.0250 0.4048 0.6746

0.1780 −1.2502 0.1691

−0.2549 −2.4291 −3.1588

NOA1 38.0471 23.8640 2006072 2020366
−16.1410 −1.5554 −1.0886

−25.9620 −0.5561 −0.1072

0.7047 −0.1782 −0.8477

NOCI 40.7888 17.0644 2005208 2020366
0.9670 −0.2079 0.0641

4.2210 −0.0821 0.5082

0.4223 −1.7614 −2.6027

NOGT 48.0353 5.3480 2012293 2020366
−0.0860 −0.6937 −0.2229

−0.0790 0.7185 0.5016

0.7728 −2.0999 −1.5389

NOMI 36.4217 25.4286 2006129 2016019
−8.2250 0.7352 0.4763

−29.9430 0.3705 1.1295

11.2055 −2.4269 −2.3755

NOR7 58.5901 16.2464 2011173 2020118
−0.4590 0.6648 −0.1172

−0.5240 −0.4719 0.5670

4.7572 −2.7845 −2.4702

NORT 52.2516 -0.9125 2000002 2005082
−0.5310 −1.0917 0.7083

−1.0790 0.0045 0.1854
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1.0702 −1.1273 −4.8420

NOT1 36.8761 14.9898 2000259 2020216
−1.6890 −0.2224 0.2209

4.7200 0.2345 0.7874

−0.6803 −2.0767 −0.0120

NOYL 48.1046 -1.5065 2014257 2020366
−0.1760 1.3845 0.9748

0.2140 0.2956 0.8959

−2.5736 −3.7744 0.2099

NPAZ 43.1396 20.5193 2011252 2020335
0.5790 −0.7189 0.4276

−0.4430 −0.3717 0.7220

0.5852 1.8955 −4.0051

NPLD 51.4210 -0.3396 2001004 2007349
0.1130 0.2965 1.1632

−0.6590 0.2358 0.8316

0.6388 −0.3766 −0.8996

NSLG 55.0090 -1.4323 1998074 2020357
0.0590 −2.1517 0.9934

−0.0590 2.4317 0.3818

2.2054 −3.1411 −1.0971

NTZ1 53.3297 13.0726 1998304 2018304
−0.7690 −0.5891 −0.8956

−0.2970 −0.0695 −0.3487

−0.8138 −3.0538 −3.2812

NVPT 46.6800 0.2651 2011187 2020366
0.0790 −0.6782 −0.2447

0.3830 0.3198 0.8737

0.1767 −0.7870 −2.2553

NVRK 41.3369 23.8698 2007194 2013187
−0.9780 9.7908 −9.2526

−2.9760 −3.4472 6.3426

0.9818 −8.4681 0.5565

NWR1 52.3895 -6.9303 2007079 2020347
0.2660 0.4824 0.3757

0.3050 0.2141 0.1059

0.7390 −2.9819 −1.0373

OAK1 51.1176 -0.9051 2015315 2020366
−0.0210 0.1481 0.1699

0.2890 −0.7727 0.2502

−0.4209 −3.9501 −3.8921

OBAN 56.4513 -5.4408 2007110 2020365
0.0580 0.2208 0.1591

−0.8420 −0.6262 0.1406

−0.7001 −1.0762 −1.3268

OBE4 48.0848 11.2779 2001217 2020008
−0.7710 0.3441 1.5455

−0.2890 0.0156 1.0475

2.6678 −3.1684 −2.8395

OGAG 44.7878 6.5397 2011200 2020366
0.3880 0.1076 0.2350

0.1440 0.5074 0.6109

1.5704 0.3205 −4.4175

OISO 48.1376 1.9697 2016088 2020366
−0.7130 1.5715 2.2794

−0.9610 1.4919 2.7773

0.2808 −2.5694 −1.0415

OLK2 61.1910 21.5058 1997001 2020231
0.0030 −0.1478 0.5282

−1.0100 −0.4286 −0.1203

7.6203 −2.3000 −2.0316

OLME 41.2855 -4.6839 2006114 2018192
−0.2850 −0.4328 −1.3408

0.2720 0.1290 0.8925

−0.0456 −0.7468 0.7604

OMGH 54.6162 -7.2559 2004153 2020347
0.2590 −0.2476 0.1892

0.4440 −0.2483 0.0232
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1.0990 −0.6327 −0.8229

ONSA 57.3953 11.9255 1991182 2020169
−0.7020 0.0216 0.3191

−0.6870 0.0359 0.5275

3.1675 −2.9502 −1.3609

OOST 51.2254 2.9223 2003124 2020013
−0.1670 −0.2056 −0.2029

−0.0620 −0.7899 −0.7980

−0.1591 −2.7940 −1.5885

OPMT 48.8359 2.3349 2002020 2020366
0.1120 −0.8563 −0.1371

−0.1780 0.3988 0.0826

0.3545 −2.3175 −2.5634

ORIV 61.6163 24.2117 2014043 2020231
0.0420 −0.2077 0.6728

−0.7850 −0.2830 0.4756

6.6022 −1.9265 −3.2231

OROS 46.5550 20.6710 2001324 2020335
−0.0180 −0.2058 −0.0268

0.0140 0.3385 0.4953

−0.6809 −3.8928 −3.0722

OSAN 42.3242 8.6324 2011110 2019177
−0.3370 −0.4600 0.7512

0.5470 −0.0479 −0.3463

−0.0280 0.5556 −1.4554

OSK6 57.0657 15.9969 2011169 2020118
−0.2980 0.3870 −0.3174

−0.5430 −0.6376 1.0293

2.5879 −3.3310 −1.7667

OSLS 59.7366 10.3678 2000304 2020366
−0.8410 0.1963 0.1724

−0.2050 0.0034 0.1689

4.6578 0.8778 −1.8708

OST6 63.4428 14.8580 2011189 2020118
−1.3350 −0.0246 0.3908

0.2090 −0.2745 0.6235

8.6874 −3.6276 −3.3426

OTER 46.9149 1.0381 2012256 2020366
0.1070 −0.8828 0.5966

0.2810 1.1871 0.8603

−0.2283 −1.0549 −3.0235

OUL2 65.0864 25.8925 2014043 2020231
0.1990 0.5374 0.4001

−0.3300 −0.2849 0.6728

9.5903 −3.1546 −4.5292

OVE6 66.3178 22.7734 2011223 2020118
−0.3350 −1.2644 −1.0116

0.1610 −0.4197 0.8590

9.4828 −5.3896 −2.8979

OXFR 51.8240 -1.2885 2005046 2020365
0.6550 −0.3557 0.1253

0.0910 0.0962 0.0075

−0.2817 −2.4093 −0.8631

PACA 40.8705 14.5564 2003121 2019033
−1.1360 −0.0909 −0.0968

1.6990 −0.4014 0.5098

−0.9878 −1.6448 −2.2597

PADT 50.5411 -4.9368 2009064 2020365
0.2680 −0.0214 0.2870

0.8810 −0.0332 1.1296

−0.6611 −1.8961 −1.6477

PALI 43.3757 4.8105 2007341 2020366
−0.1840 0.3528 0.3696

0.4280 −0.3295 0.6941

−1.0480 −1.2538 −1.6225

PALZ 40.9439 15.9601 2006220 2020366
1.0190 0.3268 −0.6620

4.4660 0.2047 0.6975
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0.6853 −1.4453 −2.6693

PAMO 46.4668 4.1176 2015242 2020366
0.3210 1.7175 0.2947

0.7050 −1.9185 0.8874

0.3729 −3.2964 −2.2370

PAOL 41.0312 14.5675 2009272 2020366
−0.4680 0.6312 −0.3441

2.1660 −0.1529 0.8784

−0.4783 −1.0695 −2.1462

PARD 43.4314 2.8235 2007201 2020366
0.5410 0.5113 0.0616

0.2000 −0.0955 0.6919

−0.3412 −0.6092 −1.6714

PARM 44.7646 10.3122 2005289 2020366
0.9620 0.0434 −0.8184

1.8660 1.4571 1.6534

−0.2045 −5.4859 1.6502

PASA 43.3218 -1.9315 2007043 2020366
0.0910 0.3506 0.3166

0.2620 −0.1965 0.3740

0.3543 −0.3626 −1.8850

PAT0 38.2837 21.7867 2009026 2020366
−16.9140 −0.2900 −0.5097

−20.8420 0.1387 0.8457

0.0080 −0.6407 −2.3358

PAYR 43.5514 2.3397 2009084 2020366
0.3180 0.2037 0.3706

0.9650 −3.3003 −0.4166

0.2224 −1.0240 −2.6783

PAZO 45.8057 13.0526 2007340 2020333
0.1030 1.0978 −0.6022

2.1680 0.3233 0.6525

0.7048 −3.2561 −1.7903

PBIL 50.5218 -2.4575 2004330 2020365
0.2920 −0.1291 0.3402

−0.4320 0.1018 0.2339

−1.7556 −1.8314 −1.1050

PDBC 40.8998 -5.2001 2007269 2018185
0.0670 0.6351 0.4554

−0.5770 0.6528 0.5461

0.3545 −1.9102 −0.6146

PDOM 45.7721 2.9646 2013084 2020366
−0.1590 0.9502 −0.0015

0.1910 0.5288 0.6664

0.7489 1.4169 −0.0269

PENA 41.5922 -4.1196 2006114 2018199
0.2530 −0.4019 −0.6996

0.0530 −0.3981 0.1545

−0.7076 −1.4316 −1.7526

PENC 47.7896 19.2815 1996063 2020366
0.1340 0.3986 0.2263

0.3960 −0.1920 0.5477

−0.1033 −3.4024 −2.8578

PENI 40.3957 0.3589 2012135 2020333
0.1320 −0.0553 0.1854

−0.0080 0.2496 0.2063

0.2402 −1.5103 −0.3385

PERP 42.6892 2.8821 2007081 2020366
0.5170 −0.2739 −1.2788

0.1190 −0.5947 0.2607

0.4612 −1.8454 −1.6638

PERX 46.9601 6.4562 2013193 2020366
0.1530 3.3618 1.4924

0.5050 0.9650 1.5619

0.8505 −1.6249 −1.9047

PESR 43.9410 12.8405 2006180 2017364
1.3320 −3.8062 −5.2010

8.3210 2.2815 −5.6258
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−3.7255 −10.4356 4.2457

PETE 52.5838 -0.2632 2004145 2020365
0.1060 0.2323 0.1002

0.1160 0.6759 0.7002

0.5037 −2.3093 −1.6553

PEVL 50.5044 3.1097 2008142 2016274
−0.0490 0.3743 −0.3947

0.1000 0.0224 0.4245

0.0759 −2.1829 −1.3426

PEYR 43.6313 0.2157 2011311 2019210
−0.4170 −1.5376 −0.8538

0.5050 −0.2603 0.7837

−0.0367 0.6327 −2.9484

PFA2 47.5153 9.7847 1997100 2020335
0.5960 0.2920 0.0418

0.4210 −0.0123 0.2668

1.3131 −2.1627 −2.3396

PIAA 42.2350 8.6293 2010299 2020366
−0.3210 1.5113 0.2818

0.4100 −0.0351 0.9632

1.1620 −3.0226 −1.9500

PIET 43.4507 12.4019 2006180 2020365
−0.0610 0.4233 −0.4335

1.9930 0.4226 0.5729

1.1176 −2.3164 −2.7185

PIGN 41.2000 14.1799 2011223 2020366
−0.5200 0.4811 0.2007

2.9480 0.7450 0.8653

0.9937 −0.1142 −1.9933

PING 38.1618 13.3142 2009122 2020366
−1.2460 0.7375 0.1990

3.8580 −1.4915 0.2833

0.1408 −1.9939 −1.1268

PIOB 43.6075 12.5261 2012216 2020366
1.2000 0.4969 −0.3260

3.2620 −0.3476 0.8319

1.3506 −0.2242 −3.0701

PIPA 39.4851 16.8158 2007108 2020366
1.2060 0.7328 0.3165

3.5990 −0.2595 1.1789

1.0601 −1.8534 −3.2515

PLAC 38.4494 16.4383 2005258 2020366
1.4480 0.2317 −0.3058

2.9450 0.4474 0.9822

1.3064 −3.0476 −2.1704

PLEM 48.1710 -2.5980 2007081 2020366
−0.1090 −0.2677 0.6043

0.2020 −0.4059 −0.1861

−0.3756 −2.0981 −1.8683

PLOE 47.7461 -3.4273 2006338 2020366
0.1240 −0.3313 −0.8130

0.2580 0.3457 2.0892

−0.6555 −2.1476 0.9959

PMCO 41.5440 15.1291 2015124 2020274
5.0040 0.3084 0.6912

0.1470 0.8621 0.8038

−0.5852 0.2927 −4.0916

PMTG 50.8023 -1.1112 2001268 2016283
0.5160 0.7615 1.2374

0.3670 1.5065 −0.5393

0.0415 −1.6357 −0.9397

PMTH 50.4165 -4.1262 2004044 2020366
0.0570 0.0577 0.3055

0.2040 −0.2692 0.0049

0.2387 −2.3349 −0.4546

PNDB 48.2972 -4.0922 2002264 2014223
0.9610 −0.1085 0.1091

−0.3800 0.5183 0.0742
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−0.3683 −1.4544 −0.1524

PNTV 48.0545 -2.9322 2016111 2020366
−0.5030 0.8967 0.8939

−0.1330 −0.3105 0.8958

−0.3607 −2.5609 −1.8392

POBU 46.3828 4.1603 2008010 2020366
0.7050 0.7909 0.2706

0.2740 −0.4677 0.5559

−0.0231 −1.5265 −2.2091

POFI 41.7174 13.7119 2007087 2020366
−0.5440 0.9429 0.1141

2.3250 1.0883 1.0164

0.4774 −2.2149 −2.7657

PONF 42.5511 -6.5818 2007024 2020366
0.2770 −0.7396 −0.6132

−2.4200 −0.1449 0.4506

0.0301 −0.8308 −2.2919

PONT 38.6190 20.5852 2007046 2020366
−5.1640 0.8267 0.2106

−8.1890 0.3961 0.6832

−0.2654 −2.7950 −2.2673

POOL 50.7759 -1.9106 2004280 2020365
0.2020 −0.2587 0.2539

−0.4550 0.7202 0.6541

0.3945 −1.7399 −1.3965

PORE 45.2260 13.5950 2011263 2020366
−0.4520 0.6667 0.3712

2.9970 0.3234 0.6610

0.0310 −0.8024 −1.4085

PORK 54.8419 -5.1199 2005320 2009105
0.4930 −1.2938 0.5631

−0.7940 0.4296 −0.1893

1.0183 −1.8742 −1.1617

POTS 52.3793 13.0661 1994275 2020008
−0.4300 0.0374 0.1082

−0.0010 −0.2318 0.0228

1.2336 −3.3173 −3.1069

POUS 50.1384 12.2979 2005068 2020335
−0.6680 0.0551 0.1519

−0.2100 −0.0789 0.2384

0.1760 −2.2460 −2.3018

POZE 45.3328 17.6755 2011263 2020340
0.9790 −0.1938 0.4830

1.1780 −0.3271 1.0937

0.3640 −1.5137 −2.6175

PQRL 42.9833 6.2061 2003260 2016217
0.0210 −0.9865 −0.5027

0.2910 0.8950 1.7120

−0.2922 −1.5272 −0.8257

PRAE 50.2029 -3.7203 2005308 2020365
−0.0230 0.0915 0.1248

0.1260 −0.2751 0.1824

−1.3951 −1.5654 −0.7168

PRAT 43.8856 11.0991 1998127 2020366
0.2380 0.3273 0.4686

1.9330 −0.4414 0.1301

0.2885 −2.5229 −2.4934

PREC 42.8453 13.0399 2016319 2020366
−1.3540 2.5438 1.9657

1.7560 0.5154 1.7606

−0.9523 −3.6085 −4.5322

PRIE 43.2768 5.3727 2007234 2020366
0.1430 0.2008 −0.1585

0.2470 −1.1175 0.0955

−0.0776 −1.6637 −2.0944

PRIS 51.7191 -0.8286 2017221 2020365
−0.2370 1.3756 0.3189

−0.3770 −1.0750 1.4098
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−0.3466 −2.5715 −2.2801

PRKV 39.2457 26.2650 2007181 2020366
−19.8800 0.0990 0.7517

−13.9030 −0.1664 0.9032

0.8915 −2.4078 −4.6608

PRNY 46.9049 6.3383 2007304 2020366
−0.1770 −1.6768 −2.1783

0.2420 −0.4919 0.4503

0.2454 −0.1302 −1.0760

PRRS 49.1898 -1.4170 2016032 2020020
0.2800 −1.5593 −1.7975

0.2690 0.0569 −0.4756

−0.6693 −1.7252 −2.7665

PRT2 53.0382 -7.3140 2007079 2020347
1.0860 −0.1131 0.1881

0.3850 −0.4939 0.3971

1.5854 −1.5865 −0.9932

PSB1 41.2234 14.8107 2006086 2020366
−0.1210 0.0783 0.4183

2.5050 −0.4560 0.6998

0.9493 −0.9694 −3.5031

PSBR 42.0512 -6.6369 2007304 2020366
0.2890 −0.2162 −0.5017

0.6420 −0.3896 −0.2701

0.2224 −0.4721 −2.8379

PTBB 52.2962 10.4597 2000090 2020366
−0.2190 0.4472 −0.0225

0.0610 −1.1382 −0.3893

0.5898 −0.7524 −1.4382

PTRC 47.2740 0.3056 2011285 2020366
0.5580 1.0568 0.8153

0.1220 −0.0982 0.8130

1.0828 0.6847 −3.4201

PTRJ 41.3643 14.5289 2006199 2020366
−0.1990 −0.0874 0.3331

2.3140 −0.0603 0.2584

0.6765 −2.0764 −3.4078

PTRP 40.5320 16.0608 2007184 2020366
0.5710 0.7131 −0.9457

4.2700 −0.2068 −0.0552

1.1595 −1.4816 −3.1299

PUIG 42.4157 1.8705 2016162 2020335
−1.4480 2.1993 1.3244

3.7630 −2.4369 0.7227

−2.6912 1.9580 −0.7026

PUYA 44.8577 6.4793 2005335 2020366
0.2240 −1.2036 −0.8843

0.0580 0.2964 1.0698

1.5886 −1.8486 −3.1494

PUYO 43.5270 -0.9135 2015344 2020366
−0.0250 −0.1170 0.6152

0.2570 −0.5622 0.5268

0.4088 −1.3582 −0.6864

PUYV 45.0436 3.8789 2004256 2020366
−0.0270 0.0892 −0.1377

0.3830 −0.5397 −0.1146

−0.3276 −0.5297 −1.5576

PYHA 64.4976 24.2376 2014317 2020231
0.3620 −0.5044 0.5898

−0.7780 −0.2461 0.7495

9.7541 −2.7281 −3.7093

PYLO 36.9142 21.6953 2011236 2020366
−21.5170 0.5700 0.3349

−27.0180 0.4467 1.3559

−0.7987 −1.2257 −2.6051

PYRK 59.0066 23.5213 2014243 2020366
−1.3740 0.6361 −0.9714

1.0210 −1.0918 1.1315

252



3.4296 −3.0597 −2.5790

PZNA 43.4477 3.4133 2008169 2020366
0.0610 0.5474 −0.1219

0.3190 0.2923 0.9203

0.1361 −1.8391 −2.1715

QINT 41.9853 -3.0338 2007302 2020366
0.0530 0.3228 0.0908

−0.0680 0.9544 0.9654

−0.0436 −1.2395 −2.1745

RABU 44.2678 6.9771 2003289 2020366
0.2230 2.3872 2.2915

−0.0400 0.4222 2.7321

0.7198 −1.6567 −3.7700

RAFF 37.2226 14.3624 2006011 2018231
−1.8510 0.0611 0.5445

4.3020 0.4029 0.4032

−0.0262 −1.3921 −0.7493

RAT0 63.9856 20.8956 2006160 2020366
−0.2950 0.8675 0.0289

−0.2940 −0.1197 1.2388

10.3933 −2.8584 −3.7008

RDPI 41.7604 12.7103 2006254 2020265
−0.9650 0.3785 −0.1844

0.8300 0.3963 1.3735

1.3944 −1.5748 −2.2697

REDU 50.0015 5.1449 2003128 2020096
−0.1570 0.4265 0.0875

−0.0720 −0.1569 −0.4033

0.5610 −0.8234 −1.1054

REDZ 54.4724 17.1175 2008093 2020366
−0.3350 −0.0261 0.3234

−0.0900 −0.4634 0.5313

1.0647 −2.6973 −2.1749

RENN 48.1086 -1.6673 2002075 2020366
0.0300 −0.1880 0.2337

0.1990 −0.7195 −0.0872

−0.0762 −2.1545 −2.2612

RESU 37.6468 14.0568 2008071 2020366
−0.5600 0.1402 0.2271

2.5810 0.0059 1.0639

0.5117 −1.7136 −1.9682

REUS 41.1700 1.1685 2007001 2018070
0.0630 0.0863 −0.2858

0.4300 −1.0234 −0.3633

−0.7377 0.7965 1.4444

RG00 41.5588 8.7939 2001065 2020365
0.1690 0.0278 −0.0289

0.2060 0.6176 0.7947

0.3943 −0.8244 −1.3261

RGNC 47.2180 0.9083 2012293 2020366
0.3670 −1.0216 0.5421

0.1080 1.4316 0.5669

0.6219 −1.2421 −3.0292

RIA1 41.2787 -3.4803 2008064 2020366
−0.0940 −0.8433 −0.6261

0.1910 0.7199 0.7908

0.3220 −1.5259 −1.9216

RIAN 42.9758 -5.0061 2007058 2020366
0.2890 −0.9459 0.1743

0.5740 −0.0482 −0.2074

0.3196 2.8060 −5.0131

RICM 54.4129 -1.7364 2004145 2016018
0.2750 0.1424 −0.0565

−0.0340 0.6796 −0.0840

0.6033 −1.3457 −0.5958

RIGA 56.9486 24.0588 1996300 2020366
−0.1860 −0.1447 0.4034

−0.6200 −0.1376 −0.1034
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1.4030 −3.7665 −3.3192

RIO1 42.4642 -2.4261 2001226 2020335
0.2060 0.2768 −0.0849

−0.4050 −0.2312 0.0355

0.4875 −2.3319 −1.0009

RIOS 41.8887 -5.0487 2006114 2016071
−0.0240 −0.1230 −0.0123

0.4880 1.3492 0.0919

−0.3601 −1.4704 −1.5708

RIXH 47.7333 7.3780 2011070 2020366
0.0970 −0.2231 0.1009

0.3920 −0.5001 0.6197

0.3389 −0.7498 −2.9638

RLSO 38.0558 21.4647 2009070 2020366
−14.3940 −0.2822 −1.2936

−23.9400 −0.0520 1.6191

−0.9198 −0.4956 −1.5953

RMPO 41.8111 12.7032 2006172 2020366
−1.0290 0.7297 0.0540

0.9200 −0.0200 0.8639

0.6466 −0.8699 −1.7719

RNI2 41.7035 14.1527 2004223 2020366
0.5270 −0.0617 0.5820

2.7390 0.2010 0.7598

1.2512 −0.8334 −2.5712

ROM2 64.2174 29.9318 2014043 2020231
0.4670 1.0487 0.4907

−0.6390 −0.0925 0.3683

5.9259 −3.3870 −3.7329

ROMY 49.1738 3.7687 2015259 2020366
−0.2320 0.5901 0.5739

−0.0460 −0.1995 1.1903

0.1919 −2.1245 −0.8605

ROPI 42.3320 13.3372 2009097 2020366
−0.3650 0.0078 0.2208

1.8610 −0.3936 0.5998

−0.4673 −0.5826 −2.8958

ROPR 41.7945 12.7636 2015001 2020366
−0.3620 0.4891 −1.0909

1.6520 −0.5906 −0.1097

0.2946 0.1274 −3.7124

ROSD 45.6915 6.6286 2005349 2020359
−0.2030 −0.7752 2.6358

0.5520 0.1052 −0.5058

1.1778 −1.0756 −0.9217

ROSI 45.6252 6.8558 2011320 2020366
−3.0610 0.1053 0.2933

−7.1830 2.9675 1.9082

−1.3192 −3.6478 −5.5020

ROSP 46.3169 23.1385 2012001 2020366
−0.6120 0.5402 0.6425

0.0090 −0.4738 0.3854

0.4805 0.0880 −3.7258

ROSU 45.4905 25.9439 2012179 2020366
0.3100 −1.2237 −0.0845

−0.6540 0.3910 0.6594

0.0158 0.0373 −5.6372

ROTG 48.7184 -3.9657 2009238 2020289
−0.0750 0.7032 1.6381

0.4170 0.7765 1.1202

−1.0634 −0.9120 −2.3406

ROVE 45.8935 11.0421 2005248 2020366
−0.2170 0.2106 −0.5602

1.2360 −1.1627 0.3588

0.8908 0.5169 −1.3749

ROVI 45.0866 11.7828 2004322 2017285
−0.0210 −0.4301 −0.2646

1.9380 0.1400 0.2118
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−0.8680 −3.2755 −1.2456

ROVR 45.6469 11.0721 2008171 2020009
−0.2160 0.6520 0.6482

1.1400 −0.0937 1.2349

0.5001 −0.8383 −1.9593

ROYA 45.6386 -1.0244 2007081 2020366
−0.0720 −0.1304 0.1756

0.0340 0.7353 0.4543

0.2117 −1.2745 −1.9551

RSMN 43.9335 12.4507 2004331 2020366
1.4710 0.6153 0.6974

3.4500 0.2450 1.1230

1.3554 −1.1859 −2.6530

RSPX 45.1482 7.2651 2006138 2020366
0.1600 0.6232 −0.1983

−0.2910 0.8879 0.5077

1.0421 −1.2591 −2.1187

RST2 43.9415 5.4713 2007341 2020366
0.6060 −0.3054 −0.2189

0.2270 0.5550 1.3432

0.5537 −0.6095 −2.4987

RSTO 42.6584 14.0015 2001257 2020366
1.8730 0.3843 0.2515

3.2670 0.4960 1.3057

−0.1826 −1.6173 −1.7175

RYON 46.6932 -1.4289 2011049 2020366
−0.0090 −0.4518 0.8510

0.0740 −0.4912 −0.1608

0.4927 0.4197 −1.4054

SABA 44.7596 19.6967 2011252 2020335
2.0960 −3.3573 0.8135

−0.0770 0.3538 0.1021

−0.0098 −2.2518 −3.7617

SABL 46.5300 -1.8058 2002298 2014213
0.1860 −0.9701 1.6844

−0.4370 −0.9726 0.9464

0.0899 0.3454 −0.7029

SABS 55.8989 -2.1286 2004303 2020365
0.7860 −0.1459 −0.1746

0.2390 0.0414 0.5383

−2.3602 −0.7899 0.2501

SACR 41.3975 14.7058 2004155 2020331
−0.6020 2.6834 3.5536

2.5670 −2.2704 −3.2265

0.5427 −0.5271 4.3414

SACS 42.8490 11.9097 2006016 2020366
−1.5640 0.2869 −1.2839

1.1730 −1.2972 0.7110

1.0232 −1.3202 0.4416

SALA 40.9451 -5.4959 2006222 2020366
0.0110 −0.5025 −0.3464

0.4720 0.2876 0.1262

−0.2762 −1.8377 −2.0035

SALB 39.8770 16.3460 2009181 2018217
0.8780 0.5761 0.4659

4.4530 −0.1388 0.5336

1.5132 −2.4364 −3.3101

SALD 42.5198 -4.7429 2007205 2020366
0.3810 −1.1448 −0.4367

−0.6100 0.9185 −0.1569

−0.7027 0.7234 −1.7330

SALV 39.6715 16.2816 2015218 2020366
0.7540 0.7146 0.0743

3.7950 −0.3008 1.3111

1.1738 −0.8355 −3.2254

SANO 50.6503 -1.2130 2009069 2020365
−0.5900 2.5115 0.5009

−0.6990 3.9197 0.4788
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−0.5075 −1.5159 −0.8579

SARI 41.8583 9.4025 2010134 2020266
−0.2140 0.7020 0.5474

0.4540 0.3426 1.2959

−0.5439 −0.3160 −2.1312

SARL 49.0025 7.0313 2007234 2020366
0.0500 −0.3243 −0.0880

−0.4500 −0.4752 0.5883

0.3244 −2.7033 −2.2678

SARZ 47.5245 -2.7698 2007133 2020366
0.1270 0.4751 0.1937

0.1830 −0.5688 0.3487

−0.1803 −1.4441 −0.9816

SAS2 54.5110 13.6431 2003027 2020366
0.1420 0.6016 0.2622

−0.2040 −0.3965 −0.1517

1.3148 −2.8993 −2.3722

SAUN 47.5813 0.9317 2011285 2020366
0.0220 0.6084 0.8775

0.2360 −0.3127 −0.3135

−0.1593 −0.1085 −1.6176

SAUV 44.2555 4.4669 1999321 2020366
−0.0870 −0.3571 −0.1766

0.1000 0.4702 0.6420

0.2187 −2.4602 −2.4204

SAVU 67.9608 28.9558 2014043 2020231
−0.2970 1.5395 0.7355

0.2380 0.3725 1.3977

6.3481 −6.5103 −3.2890

SBG2 47.8034 13.1104 1998357 2020335
0.3440 0.6936 −0.1928

0.6550 −0.0555 0.1319

0.4703 −0.9148 −2.0100

SBLS 47.8447 -0.3302 2007330 2020366
0.2160 0.3348 0.5413

0.1000 −2.0231 0.9211

0.1605 −2.1613 −2.6159

SBPO 45.0510 10.9198 2005143 2020366
0.1260 0.0679 −0.2201

1.0660 −0.0978 0.4553

−0.5041 −2.1318 −1.8470

SCAO 54.2525 -0.3800 2003005 2017090
0.5830 0.3669 −0.1182

−1.1190 0.4876 −0.3686

0.3936 −2.9373 −0.8191

SCAU 54.2525 -0.3800 2017116 2020365
0.7430 2.6263 −1.2816

1.1700 0.7918 0.8926

−0.6652 −7.3624 −0.6382

SCDA 44.7945 3.2675 2007140 2020366
0.0610 0.1220 −0.5073

0.4610 −0.0577 0.5636

0.6745 −0.4740 −1.9101

SCHR 40.1902 16.0853 2005258 2020366
0.2340 −0.9593 0.0265

4.0530 −0.0282 0.7843

0.9984 −3.0061 −2.6330

SCIL 49.9145 -6.2958 2010231 2020366
0.3970 −0.0943 0.1981

0.5950 −0.2283 0.5626

0.5439 −0.2478 −0.4123

SCOA 43.3952 -1.6817 2005348 2020366
−0.0660 −0.0992 0.0714

0.2340 0.1154 0.9154

−1.2796 −1.8642 −2.0510

SCOP 41.7541 9.1009 2011089 2020366
−0.2240 −0.5608 −1.1051

0.4940 0.6904 0.7627
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0.1619 0.2679 0.5030

SCTE 40.0723 18.4672 2006033 2020366
0.5710 0.1404 0.0879

3.8690 0.0553 0.6879

−0.0684 −1.7076 −3.2297

SEES 48.5932 0.1712 2009092 2020366
0.0530 −0.7628 0.4141

0.2400 −0.6663 0.1924

0.0651 −2.8591 −2.8968

SERS 39.0359 16.6885 2005260 2020366
1.4510 0.2017 −0.1978

3.1490 0.5254 0.9036

1.2098 −1.6906 −2.1895

SETE 43.3976 3.6991 2007299 2020366
0.0300 −0.9048 −0.3954

0.1280 0.2088 0.7943

−0.2587 −1.3066 −1.8011

SEUR 46.9943 5.1515 2006340 2020366
0.1560 0.1308 0.0226

0.1640 −0.1267 0.4681

0.1099 −2.3355 −3.0151

SFER 36.4643 -6.2056 1996082 2020124
−4.1760 −0.3727 −0.7815

0.3730 0.2487 0.0487

1.2631 −2.0624 −1.9195

SG02 60.2002 25.0465 2001344 2005256
−0.3320 1.1112 2.1834

−1.2270 1.5893 1.5219

2.4673 −3.8084 −2.9313

SG40 60.2039 24.9611 2005262 2012038
0.6510 0.2704 0.0843

−1.4950 0.0368 −0.3137

4.6947 −4.8720 −3.5952

SGIL 43.6770 4.4337 2006341 2020366
0.1830 −0.4132 −0.2951

0.3930 0.2801 0.9342

−0.7635 −2.4637 −2.4091

SGIP 44.6355 11.1827 2005140 2020366
0.8110 0.6993 −0.1628

2.6950 0.5268 1.0364

−5.0837 −1.8435 −1.1994

SGRE 42.3362 13.5011 2009105 2020366
−1.1790 −0.2692 0.2983

2.6710 −0.2000 0.6810

−0.8943 0.2227 −2.7126

SGRT 41.7546 15.7439 2006145 2020366
0.9310 −0.1373 −0.1700

3.9890 −0.2469 0.6043

0.1452 −2.9243 −1.7325

SGTA 41.1356 15.3653 2005357 2020366
0.7640 0.3586 −0.4365

3.8940 0.3869 1.6894

1.0385 −2.2134 −2.6499

SGVA 40.9493 -4.1203 2007030 2020366
−0.1190 −0.0796 −0.4099

−0.0060 0.3732 0.3924

0.5697 −0.3927 −1.5914

SHAP 54.5019 -2.6852 2015281 2020365
−0.0310 0.2726 1.6264

0.1760 −1.1017 0.6376

0.8667 −3.4106 −1.0453

SHEE 51.4457 0.7434 1997085 2019341
−1.2960 −0.3795 −0.3489

1.4690 5.0067 0.9306

2.5832 −2.5079 −0.8785

SHOB 52.2429 -2.8858 2005017 2015169
−0.6440 −0.0099 0.5050

0.6530 0.2517 0.0643
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−0.1434 −2.3001 −0.9088

SHOD 52.2430 -2.8859 2015175 2020365
0.3640 0.1440 0.3393

0.3960 −0.8522 0.0841

0.2643 −1.8831 −1.8122

SHOE 51.5548 0.8270 2005230 2020366
0.4320 −0.1363 0.0675

−0.1390 −0.0490 0.2238

−0.0436 −2.0284 −0.7375

SHRE 52.7179 -2.7164 2004145 2020365
0.2810 −0.1997 −0.0786

0.2130 −0.2811 −0.1969

0.1276 −1.1245 −0.9649

SINE 39.6459 3.0153 2016097 2020344
−0.3730 −0.2908 −1.4403

0.9560 −1.3478 1.5024

−7.1624 −2.4499 0.0877

SIRI 40.1835 15.8664 2006214 2020366
1.1830 0.4277 0.4168

4.2050 −0.1408 0.4007

−0.0276 −1.6622 −2.3643

SJDV 45.8791 4.6766 1997287 2020366
0.1070 0.1769 0.2392

0.3160 −0.1236 0.2552

0.0747 −1.7437 −2.5635

SJOR 39.3149 2.9982 2016097 2020344
0.1280 0.6320 −0.3474

0.4890 −0.0186 1.2755

−0.5572 −0.5773 −0.5503

SJPL 45.6632 2.6896 2008287 2020366
0.1320 0.1940 −0.3952

0.4050 −0.3212 0.3629

0.6794 −0.5432 −2.5744

SKE0 64.8792 21.0483 1996185 2020366
−0.5030 0.0975 −0.1474

0.2580 0.1610 0.1728

10.5374 −3.4621 −3.4111

SKEE 53.1419 0.3468 2009076 2020365
0.7290 0.2979 −0.2437

−0.2540 −1.2596 −0.2584

−1.6918 −2.5728 −1.1612

SKYR 38.9044 24.5646 2012333 2020366
−14.4210 −0.1073 1.1723

−23.6810 −0.2886 0.8362

0.7113 −0.0321 −2.9367

SLCN 40.3911 15.6330 2005151 2020366
−0.6810 −0.2249 0.5689

2.7510 0.0846 0.7172

1.4395 −1.1692 −2.8164

SLGO 54.2741 -8.4632 2007079 2020347
0.5870 0.0389 0.2343

0.3040 −0.2890 0.3651

1.0476 −1.2755 −1.4097

SLVT 43.9198 3.2683 2007213 2020366
0.0160 0.0605 −0.7229

0.1870 −0.1889 0.2543

0.3713 −1.2491 −0.8395

SMDV 40.3583 -4.3763 2016350 2020335
−0.3920 0.1053 −1.7400

0.3790 −1.2244 1.0095

0.2364 −4.6664 −0.8315

SMID 55.6406 9.5593 2001001 2020335
−0.7950 −0.3403 0.5185

−0.3880 −0.6907 0.1899

0.9421 −1.9095 −1.4395

SMLE 46.4112 -0.2219 2007133 2020366
0.1720 0.2904 −0.0386

0.2320 −0.0346 0.4567
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0.1831 −1.6627 −2.5631

SMNE 48.8444 2.4250 2000321 2020366
0.1950 0.1616 0.0195

−0.1920 0.7631 0.4509

0.3550 −2.9840 −2.6697

SMSP 49.1152 4.5814 2007081 2020366
0.2830 0.3794 −0.4076

−0.0630 −0.6703 −0.0887

0.2531 −2.9645 −2.3168

SMTG 48.6411 -2.0275 2010048 2020366
−2.4980 −0.7018 −0.6230

−0.7850 0.3476 0.7314

−0.8058 −2.7484 −3.0216

SNAL 40.9255 15.2095 2004232 2020366
0.1000 −0.7263 −0.2365

2.8500 −0.5547 0.1824

0.0327 4.6612 −0.0276

SNEO 52.1854 -0.1125 2009184 2020365
−0.0280 0.3757 0.1235

0.0260 −0.3617 0.5573

−0.0746 −1.2031 −1.5776

SNTG 42.8854 -8.5517 2013353 2020335
−0.0430 0.4001 0.6403

0.6790 0.0179 −0.4008

0.5238 −0.9067 −2.8490

SODA 67.4300 26.3669 1996300 2020230
−0.5680 1.2929 0.6860

−0.1910 0.0461 0.2470

7.3918 −0.1594 −3.3835

SOFI 42.5561 23.3947 1997155 2020366
0.0860 −0.3433 −0.0789

−1.7310 −0.4166 0.5799

−0.2295 −3.4953 −3.7644

SONS 39.6754 -3.9640 2000350 2020344
−0.3390 −0.5748 −1.1825

−0.0300 −0.8242 −0.8313

−0.0037 −1.5517 −1.6331

SOPH 43.6114 7.0541 2001013 2020366
0.1120 0.5831 −0.2253

0.0750 −0.1066 0.7822

−0.0064 −1.6158 −1.5525

SOPU 43.2769 -3.1542 2013181 2020366
0.2350 −0.8311 0.7611

0.6810 −0.3092 −0.2553

−0.9819 0.3612 −2.3765

SORI 41.7622 -2.4705 2008157 2020366
0.1140 0.4300 −0.0194

−0.1160 0.6299 0.7846

0.3803 −1.6413 −3.5845

SOTN 50.9377 -1.4704 2000002 2020365
−0.1290 0.3505 0.3528

0.8550 0.4156 0.2095

−0.5574 −2.2068 −1.0740

SOUS 44.8746 2.0271 2007133 2020366
0.0660 0.2990 −0.1679

0.1870 −0.2726 0.5750

−0.0222 −2.5708 −1.8058

SPAN 38.7813 20.6736 2007142 2020366
−4.0830 −0.9353 1.2608

−11.6570 −0.7459 2.0056

−0.3804 −1.3573 −0.9353

SPT0 57.7150 12.8913 1996169 2020118
−0.6800 −0.2441 0.1956

−0.6410 0.0009 0.2517

4.5340 −2.0732 −1.6454

SRJV 43.8679 18.4139 1999165 2020366
0.6280 0.7530 0.5955

1.1250 0.5137 1.0608
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0.9475 −1.0203 −3.7754

SSYX 37.1576 15.0764 2005133 2020366
−1.4040 0.0065 −0.2938

4.4300 0.2308 0.9695

−0.0519 −1.4155 −1.4281

STAS 59.0177 5.5986 2000304 2020366
−0.6270 0.1038 0.6515

−0.3310 0.0789 0.4176

1.8385 −1.9095 −1.6915

STBE 54.4909 -3.6066 2005244 2020365
0.4600 −0.3061 0.5469

−0.4360 −0.4595 0.1937

0.4275 −1.3383 −0.2549

STBR 48.5068 -2.7533 2012299 2020366
0.0650 −0.3749 0.6191

0.3210 0.4592 0.4951

0.1551 −1.8910 −2.0994

STBX 44.2594 4.1969 2012079 2020366
−0.1500 0.2953 0.1054

0.4020 0.1231 0.8603

0.2122 −1.9323 −2.6898

STEE 51.9015 -0.1785 2009006 2020365
0.2510 0.2164 0.2937

0.0710 −0.3271 0.2165

0.1683 −1.5612 −2.0134

STEY 45.2352 5.7618 2003147 2020366
−0.2650 0.5099 0.4739

0.1360 −0.1166 0.0508

0.8115 −0.8360 −2.8635

STFE 45.5267 3.7270 2014269 2020366
0.0470 −4.3998 −1.5675

0.1630 0.6237 0.4282

0.4303 0.5201 −0.7617

STGN 45.4186 2.7277 2014267 2020366
0.0520 0.5316 0.5614

0.3480 −0.4939 0.3406

−2.0447 −1.5101 1.0538

STJ9 48.6217 7.6838 1999313 2020366
0.0560 −0.0293 −0.1570

0.0670 −0.0395 0.2507

0.0906 −1.9660 −2.2447

STLO 49.1173 -1.0550 2007133 2020366
0.1610 −0.5478 0.0901

0.2930 0.5695 0.0695

−0.2244 −1.6560 −1.9062

STMA 46.8223 1.6557 2011221 2020366
0.0850 −3.0004 −0.4781

1.3190 2.4705 1.1384

0.4102 −0.3986 −3.0460

STMR 43.4492 4.4216 2008100 2020366
−0.1640 0.0151 −0.5460

0.1950 1.1805 1.2389

−2.0744 −3.1008 −2.2784

STNA 47.2706 -2.2028 2013276 2020366
0.2550 0.4460 0.8092

0.3920 1.1778 0.6276

−0.0938 −1.6831 −2.2685

STOR 58.2031 -6.3754 2007287 2020365
−0.2250 −0.1321 0.1913

0.5900 −0.3895 0.1619

0.1105 −1.6666 −0.6477

STPO 48.2031 15.6329 1999167 2017277
0.3770 1.0502 0.9829

0.3600 0.5724 0.6305

−0.1900 −2.4149 −2.5421

STPS 46.3084 3.2940 2006340 2020366
0.0490 0.9400 −0.0112

0.1240 −0.6664 0.3085
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0.8780 −2.2948 −2.5791

STRA 51.5446 0.0095 2007264 2020365
0.2800 0.6570 0.4160

0.0960 0.1277 0.5661

−0.4843 −2.6959 −1.9808

STRN 54.8666 -4.7124 2009184 2020365
0.0940 0.4037 −0.1650

0.2630 −0.6039 0.3624

1.2572 −1.0156 −0.6512

STRU 51.7396 -2.3014 2006020 2020365
0.5860 −0.1158 0.4686

0.3320 −0.4290 0.1892

−0.5214 −1.7446 −0.7780

STUE 46.4722 9.3473 2005326 2017317
2.4060 1.6173 3.9916

2.8660 0.3312 0.5760

0.7967 0.4587 −0.9741

STV2 44.5669 6.1062 2008350 2020366
−0.0050 −0.1714 −0.1148

0.0270 2.5602 1.4281

1.1738 −0.6811 −2.4473

STVA 46.8879 -0.2327 2015203 2020366
0.4520 0.2626 0.1968

0.1290 −0.5625 0.5873

0.1933 −1.5536 −1.5212

STVD 42.0740 -6.0143 2007290 2020366
0.7080 0.4748 −2.0183

−0.5670 −0.8010 2.0927

−1.1491 −0.5063 −1.1420

SULD 56.8418 9.7422 2001001 2020335
−0.6800 0.0790 0.2867

−0.5420 −0.4075 0.0336

1.5900 −2.2606 −1.3196

SULP 49.8356 24.0145 2001169 2020366
−0.8770 0.0049 −0.2479

0.0870 −0.7977 0.1603

0.6294 −3.6061 −4.1873

SUME 46.9643 17.2918 2005096 2013324
0.3040 −0.1006 −0.4090

0.3790 0.0154 0.7895

1.3667 −3.8505 −3.0929

SUN6 62.2325 17.6598 2011270 2020118
−0.7500 0.7382 −0.0902

−0.1970 −0.1333 1.2889

9.7080 −3.0324 −1.4244

SUNB 51.3999 -0.4175 1997099 2012341
−0.5170 3.2035 1.0808

0.1800 −1.4389 −0.0523

−0.2295 −2.4890 −1.3068

SUR4 59.4636 24.3803 1998272 2020105
0.0340 0.3564 0.9966

−1.1140 0.0451 −1.1552

3.4887 −4.3415 −3.4397

SURF 44.4809 6.8117 2017012 2020366
−2.5010 1.8668 2.6401

−4.8020 1.5410 3.0957

−3.6281 −0.6900 −6.1624

SVE6 62.0174 14.7001 2011189 2020118
−0.9050 0.8229 0.5612

0.3870 −0.3509 1.9715

8.4173 −5.0266 −4.9656

SVIN 38.8028 15.2342 2006046 2020366
−0.2200 0.5676 −0.0093

3.1490 −0.2273 0.4113

−1.0815 0.3236 −2.1310

SVTL 60.5328 29.7809 1996075 2020366
0.2910 −0.6090 0.4424

−1.1310 −0.9258 0.1777
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3.6305 −2.0754 −3.2169

SVTO 40.6044 16.4405 2006233 2020366
0.7750 0.4350 0.1568

4.2330 0.9290 0.7095

0.8586 −1.8370 −2.5960

SWAN 53.7365 -0.5050 2004145 2020365
0.3010 0.4797 −0.0052

0.2780 0.5950 0.1248

−0.0540 −2.5599 −0.4190

SWAS 51.5655 -3.9818 2010057 2020365
0.1450 −0.0462 0.1568

0.3020 −0.4795 0.4530

0.0594 −1.4549 −0.9012

SWKI 54.0986 22.9282 2008093 2020335
−0.5520 0.6252 0.2990

−0.0770 −0.4031 0.2979

−0.4867 −2.5799 −2.4565

SWR1 53.4591 -6.2190 2007079 2020347
1.3130 −0.1746 0.8657

0.8870 −0.3322 0.2480

0.7686 −1.7745 −1.3095

SWTG 58.2076 -6.3889 2005245 2020365
1.1520 −0.3310 0.7848

0.5400 −0.4291 0.0313

0.3965 −1.4538 −0.2678

TALR 39.0351 -5.2354 2014211 2020335
−0.8060 −0.9875 −0.2656

0.6800 −0.1066 −0.0099

1.7282 −3.8381 −2.3690

TANC 49.4733 0.4545 2013329 2020366
−0.2280 0.4755 0.0334

0.3220 −0.4340 0.0240

0.2700 −2.1017 −2.5660

TAR0 36.0086 -5.6024 2010135 2020335
−4.3420 0.0866 −0.5229

1.5600 0.6279 0.2228

0.0632 0.4152 −1.3919

TARR 41.6574 1.1660 2017178 2020335
0.1420 −0.6261 −0.7242

−0.4190 1.1171 1.5180

−1.0778 −2.2945 −0.9416

TAUT 51.0234 -3.0787 2002041 2019150
0.1900 0.7968 0.6356

−0.0970 −0.4730 −0.1185

0.2908 −2.7234 −0.3594

TBSB 51.4948 0.0373 2012120 2020244
0.2460 1.2732 1.3717

0.1770 −3.6952 0.8635

−0.1768 −1.9476 −1.9124

TEDD 51.4253 -0.3435 2007236 2020365
0.0440 0.4242 0.1448

−0.3490 0.5575 0.4087

0.2662 −1.4543 −1.7059

TEJH 55.2484 14.8393 2015309 2020366
−0.3860 0.1794 0.2350

0.1500 −0.3782 0.3799

0.9945 −4.2058 −2.2448

TERS 53.3627 5.2194 1996304 2020366
0.7610 0.3262 0.7258

−1.0270 0.1550 −0.1943

0.1978 −2.8829 −1.4610

TERU 40.3505 -1.1243 2008066 2020344
0.0940 0.4176 −0.5594

−0.2980 0.4485 0.9009

−0.3426 −0.4541 −1.1089

TETN 35.5616 -5.3630 2000143 2020366
−4.8210 0.9413 −0.6559

0.4640 −0.0469 −0.7660
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0.4071 −2.2109 −0.7567

TGBF 53.5574 6.7479 2000306 2020366
−0.0850 0.2373 0.1827

−0.6070 −0.4093 0.0920

−0.0407 −2.4995 −1.5473

TGBU 54.1217 8.8592 2009138 2020366
−0.7780 −4.2603 −0.3028

0.6290 1.1053 1.2150

−0.1630 −3.1942 −1.9430

TGCU 53.8677 8.7175 2008345 2020366
−1.0250 0.8301 1.3410

0.1700 1.5665 1.0931

0.5958 −2.6900 −1.4884

TGDA 54.7305 8.6871 2009140 2020366
−1.5040 8.8308 3.1978

−0.1540 −0.6490 0.1390

−0.1540 −2.8817 −1.5171

TGDE 58.0064 7.5548 2002079 2020366
−0.7970 −0.5544 0.0159

−0.1620 0.0378 0.5487

2.0896 −1.7444 −1.4833

TGEM 53.3368 7.1863 2009287 2020366
−1.2060 3.5458 4.5888

−0.0100 1.4914 1.4779

0.0438 −2.1009 −1.8533

TGF3 55.1950 7.1582 2010054 2020233
1.1780 −0.8328 −1.1038

−0.0420 0.1303 −0.2522

0.0752 −4.3827 −2.9753

TGKN 53.3272 7.0307 2008150 2018248
−2.1430 0.4172 −0.6618

−0.5260 −0.0324 0.1876

−2.2131 −4.0295 −1.2495

TGME 53.7717 8.0926 2009209 2020366
−0.0540 −0.6196 −0.1275

−0.2760 −0.4688 0.4508

0.3969 −3.2577 −2.7173

TGPA 53.1082 7.3656 2009288 2020366
−3.3720 −0.0462 −0.5382

1.9350 0.3523 0.6066

−0.0743 −2.9070 −1.6147

TGRI 48.8414 1.9489 2015258 2020366
0.2240 0.2607 0.4978

0.2290 0.5033 0.5596

0.7042 −3.6964 −2.9365

THNV 49.3639 6.1703 2011251 2020366
−0.2550 −0.3705 0.2053

−0.1040 0.4483 0.5690

0.3213 −1.9099 −3.8434

THOR 46.2916 -0.2479 2004079 2020366
0.0540 1.0979 0.9755

−0.2870 0.1733 0.4793

−0.0463 −1.6871 −2.3345

THUS 58.5816 -3.7250 2007146 2020365
−0.1040 −0.0045 0.0181

0.1030 −0.4705 0.0242

1.0118 −1.3207 −0.7565

TILO 36.3804 27.3937 2005182 2016228
−12.4810 −0.8139 −0.2451

−29.8890 0.3326 1.1151

−0.4334 −1.8931 −2.1316

TIRE 56.5000 -6.8807 2010333 2020365
−0.0440 0.1262 0.3600

0.1050 −0.5033 0.4189

−1.1620 −0.7475 0.7525

TIRG 44.4573 28.4123 2012001 2020366
−0.1550 −0.6948 0.3118

−0.2360 −0.1553 1.3833
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0.9560 −0.5568 −4.7723

TIT2 51.0352 6.4316 2001298 2020366
−0.3560 −0.1599 −0.0952

−0.3510 0.0694 0.1134

1.0365 −1.7197 −2.0809

TITO 40.6013 15.7237 2002001 2020366
0.5110 0.0466 0.1072

4.3710 0.0271 0.6435

−1.2476 −1.6990 −2.3153

TLIA 43.5614 1.4806 2007290 2020366
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Alexandre MICHEL

Détermination des variations saisonnières de la charge
en Europe par inversion des déplacements GNSS

calculés avec le logiciel GINS

Résumé :

Cette étude porte sur la détermination des charges hydrologiques saisonnières en Europe. L’objectif
est d’autant plus difficile que les zones tempérées possèdent un signal hydrologique saisonnier par-
ticulièrement faible, compte tenu du bruit des mesures géodésiques. L’utilisation du GNSS permet
d’améliorer sensiblement la résolution spatiale avec laquelle nous calculons ces charges localement
grâce à la forte densité de station, par rapport aux solutions issues de la gravimétrie spatiale (mis-
sions GRACE). Nous avons mis en place une méthodologie permettant d’inverser les déplacements
saisonniers GNSS pour retrouver la charge équivalente, et ce en utilisant les déplacements de plus
de 1000 stations GNSS dont les solutions ont été calculées avec le logiciel GINS. Dans un même
temps, nous avons développé une méthode permettant le calcul des déformations visco-élastiques
de la Terre solide, dans un nouveau formalisme utilisant la transformée de Fourier.

Mots clés : géodésie spatiale, charges hydrologiques, GNSS, nombres de Love, visco-élasticité,
régularisation de Tikhonov

Abstract :

This study focuses on the determination of seasonal hydrological loads in Europe. The objective
is all the more difficult as temperate zones have a particularly weak seasonal hydrological signal,
given the noise of geodetic measurements. The use of GNSS allows us to significantly improve
the spatial resolution with which we compute these loads locally thanks to the high density of
stations, compared to solutions derived from space gravimetry (GRACE missions). We have set up
a methodology to invert the GNSS seasonal displacements to find the equivalent seasonal loading,
using the displacements of more than 1000 GNSS stations whose solutions have been computed
with the GINS software. At the same time, we have developed a method allowing the calculation
of viscoelastic deformations of the solid Earth, in a new formalism using the Fourier transform.

Keywords : spatial geodesy, hydrological loading, GNSS, Love numbers, visco-elasticity, Tikhonov
regularisation


