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Abstract

Protein cavities are the heart of molecular interactions that trigger and regulate biological processes in
living organisms. Supported by the constant augmentation of characterized pockets in three-dimensional
protein structures, methods to assess the similarity between protein cavities have multiple applications
in drug design but face many challenges. This thesis proposes new algorithms based on three-
dimensional (3D) image processing to compare global and subtle patterns in different protein (sub-)
pockets represented by point clouds. Through prospective applications validated by in vitro biological
experiments, we showed how these methods can predict a secondary target at the proteome scale and
design a target-focused library for faster small molecule hit identification. In the next stages, better
characterization of the cavities for pharmacophore elaboration and the development of virtual screening
methods were investigated.

Keywords: protein subpocket comparison, point cloud, 3D alignment, secondary target prediction,
focused library, virtual screening, pharmacophore, graph matching, machine learning, drug design,

structure-based, Cheminformatics.

Résumeé (Abstract in French)

Les cavités de protéines sont au cceur d’interactions moléculaires nécessaires aux fonctions biologiques
du vivant. Grace a I’augmentation incessante des données structurales, les méthodes de comparaison de
cavités protéiques offrent diverses applications en conception de molécules bioactives mais doivent
relever plusieurs défis. Cette thése propose de nouveaux algorithmes basés sur le traitement d’images
tridimensionnelles pour comparer les motifs globaux et locaux de (sous-) cavités protéiques,
représentées en nuages de points. Leurs applications concrétes, validées par des essais biologiques in
vitro, illustrent leurs utilisations pour prédire des cibles secondaires a 1’échelle du protéome structural
et pour générer des chimiothéques focalisées permettant d’augmenter le taux de touches en criblage
virtuel. A partir de la caractérisation des cavités, 1’élaboration de pharmacophores et le développement

de méthodes de criblage virtuel ont été investigués.

Mots-Clés : comparaison de sites de protéines, nuage de points, alignement 3D, prédiction de cible
secondaire, chimiothéque focalisée, criblage virtuel, pharmacophore, alignement de graphe, intelligence

artificielle, conception de molécules bioactives, structure, Chémoinformatique.
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Résumé en Francais

1. Introduction

Un des problémes fondamentaux de la conception de candidat-médicaments reste 1’identification de
molécules bioactives ayant de bonnes propriétés pharmacologiques, ou du moins optimisables aux
mémes fins. Expérimentalement, des banques de molécules de masse molaire allant de 200 & 800 g.mol
! (chimiotheques) sont évaluées dans des essais biologiques a haut-débit afin d’identifier des touches.
Cette approche requiert des infrastructures particulieres, en plus de la mise en place des essais
biologiques, et est par conséquence codteuse. Au contraire, la conception assistée par ordinateur (CAO)
offre ’avantage d’étre rapide et beaucoup moins onéreuse, mais s’applique lorsque certaines données
sont connues : par exemple, la structure tri-dimensionnelle (3D) de la cible, les structures chimiques
d’inhibiteurs, etc. Une approche populaire de la CAO est ’arrimage moléculaire ou « docking »! dont
le principe est de prédire 1’affinité de molécules a la cible, par proposition de potentiels modes de liaison
et évaluation des contributions énergétiques a des fins de classement, avant de tester expérimentalement
les meilleures propositions. Classiqguement, un programme de docking commence par le choix de la
chimiothéque a cribler, étape cruciale car les chercheurs partent d’un ensemble fini de molécules et
esperent y trouver, sans garantie, des touches pour une protéine particuliére. Méme si les chances
d’identifier des molécules bioactives augmentent avec la taille de la chimiothéque,? il reste la question
de la priorisation des touches. Le criblage de chimiothéques focalisées, congues pour étre enrichies en
touches pour une cible donnée, s’avére avantageux.® Il existe donc un besoin de méthodes alternatives
au docking classique, comme la comparaison de poches protéiques, en tirant profit de 1’augmentation

incessante des données structurales publiques de cavités de complexes protéine-ligand.*

Les petites molécules interagissent avec une protéine en se liant a des cavités compatibles avec leurs
formes et propriétés physicochimiques. La comparaison de cavités de protéines a pour but d’estimer la
similarité entre des sites de liaison de différentes protéines. Cette approche est utilisée en CAO a
plusieurs fins selon le principe de similarité : générer des hypothéses de touches et identifier des cibles
secondaires. Quelques applications réussies de prédictions, d’explications d’observations
expérimentales ou de confirmation ont été rapportées dans la littérature.> Depuis la création de la banque
de données structurales Protein Data Bank ou PDB, permettant la caractérisation des sites de liaison
protéiques, plusieurs méthodes de comparaison de cavités ont vu le jour. Cependant, elles se
différencient par la combinaison des quatre principales étapes d’une comparaison : la détection de la
cavité, la sélection et représentation de motifs pertinents du site, 1’algorithme de comparaison
(alignement de graphe ou de motifs géométriques, comparaison d’empreintes ou d’histogrammes de
distances, apprentissage automatique) et I’estimation du degré de ressemblance (scoring). La
comparaison de site, reste une tache difficile, non directement mesurable expérimentalement mais
sensible & la précision de chacune des étapes énumérées ci-dessus. La délimitation du site peut étre

suggérée par un ligand en complexe avec la protéine, lorsqu’il est présent. Toutefois les algorithmes



Résumé en Francais

opérant par détection de cavité de novo offre I’avantage de s’appliquer a de nouvelles cavités pour
lesquelles aucune information n’est connue. Aussi, observons-nous que la majorité des méthodes
existantes effectuent des comparaisons globales des sites, alors qu’une comparaison locale pourrait

mettre en évidence des similarités cachées expliquant la liaison du ligand a une cible secondaire.®

Notre laboratoire a préalablement développé une représentation en nuage de points des sites de protéines
(IChem VolSite, Figure 1).” L’objectif de cette thése est de développer des méthodes basées sur la vision
par ordinateur pour traiter et comparer les nuages de points de cavités protéiques puis d’évaluer leurs

usages dans la conception de molécules bioactives.
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Figure 1. Example de nuage de points de cavité de protéine calculé par VolSite. Chaque point, est
associé a une propriété pharmacophorique complémentaire a celle de 1’atome protéique le plus proche :
en bleu, donneur de liaison hydrogene, positivement ionisable, en rouge accepteur ou accepteur/donneur
de liaison hydrogene, négativement ionisable, en blanc hydrophobe, aromatique et nul. La surface

transparente du nuage est déterminée par Pymol 2.1 (Schrédinger, New York, USA), code PDB: 5HBH.

2. Traitements et comparaisons de cavités protéiques

La comparaison de cavités protéiques repose sur une représentation des propriétés importantes du site.
Généralement, il s’agit d’encoder les relations spatiales et pharmacophoriques des atomes du site
protéique, mais celle-ci peut prendre la forme d’une surface continue, d’un graphe, d’une empreinte ou
de nuages de points. Mes travaux se basent sur cette derniére représentation car elle offre plusieurs
avantages : les points occupent I’espace discrétisé 3D du ligand, encodent les courbures et les propriétés
pharmacophoriques du site. Cependant cette discrétisation a pour inconvénient d’introduire du bruit dans
la représentation, un défi pour les algorithmes de comparaison. En vision par ordinateur et robotique,
des procédures particulieres d’alignement de nuages de points sont utilisées pour superposer des images

3D bruitées® mais elles n’avaient jamais été adaptées pour aligner des cavités protéiques. Le principe

10
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d’un de ces I’algorithmes le rend intéressant pour notre probléme car il permettrait une comparaison
locale tout en étant robuste aux bruits. A partir des données de la sc-PDB, une base de données de
complexes de protéines-ligands non-redondants, plusieurs stratégies CAO et leurs applications concrétes

ont été élaborées (Figure 2).

Nuages de points de cavités protéiques Représentations de ligands

| —

Prédiction de points Comparaison locale et globale Comparaison de ligands a des
pharmacophoriques de cavités protéiques cavités protéiques
Détection de Conception de

cible secondaire chimiothéques focalisées

[ | Développements méthodologiques

Applications prospectives

Figure 2. Stratégies CAO par traitement de nuages de points élaborées dans cette thése.

2.1. ProCare : développement d’une nouvelle méthode de comparaison

locale de cavités protéiques

ProCare est une méthode codée en C++ et en Python permettant de comparer deux nuages de points de
cavités protéiques.® Elle est basée sur la librairie de traitement d’image Open3D,° adaptée et optimisée
pour traiter nos représentations des cavités protéiques. La comparaison de deux cavités se déroulent en
cing étapes : (1) calcul des descripteurs de chaque point, (2) échantillonnage aléatoire d’au moins trois
points de la premiére cavité et associations avec des points de la deuxiéme cavité les plus similaires dans
I’espace des descripteurs et par leur topologie commune, (3) alignement grossier a partir des points
associés, (4) raffinement de 1’alignement par la méthode itérative du point le plus proche (« iterative
closest point ») qui associe naivement les points les plus proches dans 1’espace Euclidien et enfin (5)

quantification de la similarité.

Du fait que Open3D ait été développé originellement pour une autre application, nous avons dans un
premier lieu optimisé les parametres géométriques en évaluant 157 465 conditions d’alignement

couvrant 15 parametres. Ensuite, le descripteur représentant la forme locale autour de chaque point a été

11
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modifié en y introduisant I’information pharmacophorique, ce qui a amélioré les comparaisons. Enfin,
plusieurs fonctions de score ont été développées, implémentées, optimisées et finalement, un score
symétrique comptant les points ayant un équivalent de méme propriété dans ’autre cavité a été défini

comme score principal.

Afin d’évaluer les performances de la méthode, nous avons assemblé 8 jeux de données, de taille allant
de dix paires a deux millions de paires d’entrées, représentant différents scénarios de similarité de cavités
(classification fonctionnelle, reconnaissance de mémes ligands, comparaison de sous-poches de
fragments avec des cavités entiéres de protéines différentes, sensibilités aux variations de coordonnées)

et permettant la détermination statistique d’un seuil de similarité.

ProCare a montré une performance de similarité globale équivalente aux méthodes de 1’état de I’art et
supérieure en ce qui concerne la détection de similarité locale. Elle est sensible aux déformations
globales du squelette de la cavité d’environ 2.5 A et indique une similarité significative a partir d’un
score de 0.47, la zone grise étant estimée a 0.39. Tout en reconnaissant que ces valeurs peuvent étre
biaisées par la composition des jeux de données, elles forment néanmoins une base de comparaison a
haut-débit. Le principe de comparaison locale a été appliqué pour comparer des sous poches de protéines
a des cavités entieres de protéines dont les structures venaient d’étre nouvellement résolues.
L’alignement ainsi obtenu a été appliqué aux fragments issus de ces sous-poches afin de suggérer des

blocs de construction de ligands (Figures 3). Ce protocole sera exploité dans les parties 2.2 et 2.3.

FraglD:1ZZ1_SHH_1_1
Rank = 11, FragScore = 1.10

FragID: 5CXV_OHK_1_1 FragID: 3A0S_JH2_1_1 W
Rank = 1, FragScore = 1.61 Rank = 10, FragScore =1.10

FragID: 4KZ0_1UJ_1_1
Rank =1, FragScore = 1.48

FragID:3R04_UNQ_1_1 FragID: 3N6U_TSU_1_1
Rank = 7, FragScore = 1.28 Rank = 45, FragScore =1.16
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FraglD: 1Q43_CMP_1_1 FragID: 3QCH_NX2_1_2
Rank = 22, FragScore = 1.15 Rank = 7, FragScore = 1.25

FragID: IRUO_CMP_1 1
Rank = 1, FragScore = 1.43

FraglD: 3F9M_MRK_1_1 FraglD: 3DT1_P40_1_3
Rank =2, FragScore = 1.38 Rank = 10, FragScore = 1.21

Figure 3. Positionnement de fragments de la sc-PDB dans de nouvelles cavités protéiques par
alignement de sous-poches avec ProCare. Code couleur des atomes (azote : bleu ; oxygene : rouge;
souffre : jaune ; carbone du fragment: cyan / jaune vif / rose orangé / vert ; carbone du ligand, blanc).
Les codes PDB, HET, le site sc-PDB et le numéro du fragment sont indiqués. Cibles : A-B) récepteur
muscariniqgue M5 (PDB : 60L9), C-E) facteur de nécrose tumorale alpha (PDB: 600Y), F-G)
Récepteur des cystéinyl-leucotriénes 2 (PDB : 6RZ8).

A lasuite de ces évaluations rétrospectives concluantes, nous avons évalué ProCare dans les applications

prospectives en drug design.

2.2. Prédiction de cible secondaire par comparaison de sous-poches de

proteines

La capacité de ProCare a effectuer des alignements locaux le rend prometteur pour détecter des
similarités non-évidentes mais suffisantes pour favoriser la reconnaissance d’un méme ligand/fragment.
Nous avons compar¢ la poche a I’interface de la protéine homotrimérique du facteur de nécrose tumorale

TNF-a!! a une collection de 31 000 sous-poches, correspondant a diverses protéines. ProCare a prédit
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une similarité locale avec des sous-poches du site non-nucléosidique de la transcriptase inverse du virus-
1 de immunodéficience humain (HIV1-RT) de maniére significative!?: les scores sont élevés et
statistiquement indépendants de la structure 3D utilisée, I’alignement des points de cavités résulte en un
alignement pertinent des résidus protéiques délimitant les deux cavités, les alignements des fragments

correspondent a des propositions de docking (Figure 4).
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Figure 4. Comparaison des cavités de TNF-a et HIVI-RT avec ProCare. A) Distribution des scores de
similarité. B) Résidus alignés de TNF-a (chaine A: cyan, chaine B: bleu, chaine C: bleu ciel; code PDB:
6002Z) sur ceux de HIV1-RT (orange, code PDB: 1FKOQ) aprés rotation et translation résultant de
I’alignement des cavités par ProCare. C) Alignement correspondant du fragment principal d’efavirenz
(orange clair) dans la poche de TNF-a, superposé a une solution de docking (orange foncé transparent).
L’interaction aromatique avec TYRS59-TNF-a et la liaison hydrogene avec TYR151-TNF-o sont

représentées par le trait en pointillé bleu.

Nous donc avons émis 1’hypothése que des ligands HIV1-RT peuvent se lier au TNF-a. Afin de vérifier
ou de réfuter cette hypothese, 3 inhibiteurs commercialisés (delavirdine, efavirenz et nevirapine) du site
non-nucléosidique du HIV1-RT ont été testés in vitro pour leur capacité a se lier au TNF-a (Figure 5).
L’efavirenz et la delavirdine se lient au TNF-a avec une constante de dissociation a 1’équilibre Kp de
24+8 UM et 39+9 uM respectivement, de méme ordre de grandeur que de celle du fragment co-cristallisé
avec TNF-a (UCB-6876 Kp = 22 uM).! Cette similarit¢ non évidente entre des protéines
fonctionnellement et structuralement différentes n’a pu étre détectée par les méthodes existantes de

comparaison de cavités protéiques, ou de similarités bi- et tri-dimensionnelles de ligands.
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Figure 5. L’essai biophysique par thermophorese (MST) démontre une liaison directe entre deux
inhibiteurs non-nucléosidiques du HIV1-RT et le TNF-a. A) efavirenz (Kp = 24 + 8 uM); B) delavirdine
(Kp =39 £ 9 uM); C) nevirapine (pas de liaison).

Nous avons ainsi validé I’'usage de ProCare a déterminer des similarités non-évidentes et locales entre

sous-poches de protéines de différentes familles.

2.3. Conception de chimiotheque focalisée

Une chimiothéque focalisée est une petite collection de molécules, enrichie en touches pour la cible
choisie, permettant ainsi un criblage rapide et un taux de touches plus élevé.®> De nombreuses approches
publiées requierent des ligands connus pour élaborer une chimiothéque focalisée, ce qui les rend
inutilisables pour les cibles dont la seule information connue est structure protéique. Nous avons donc
congu une approche (POEM, Pocket-Oriented Elaboration of Molecule ou élaboration de molécules
focalisés sur les caractéristiques de la cavité protéique, Figure 6) qui, a partir de la cavité de la cible,
positionne des fragments obtenus de complexes protéine-ligand sur la base de la similarité de leurs
microenvironnements protéiques avec la cavité cible. Les fragments sont filtrés, annotés selon zone de
la cavité cible qu’ils occupent, puis liés par un algorithme d’apprentissage profond génératif** pour
énumérer des molécules compleétes. Les molécules sont ensuite vérifiées et filtrées selon leurs propriétés

physico-chimiques et leur accessibilité synthétique.**
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Fragments/sous-poches (cavité) sc-PDB (n = 31 384)

Alignement a la cavité de CDK8
ProCare

Fragments connectables

Sélection de sous-poches
ProCare score > 0.39

Alignment des fragments

Définition de pairs sous-poches, Annotation par « zone CDK8 »

de pairs d'atomes connectables

Conception de molécules Filtrage des molécules générées

(cycle #1) Validité
Génération de linkers avec Druggabilité
DeLinker et énumeration des Acces synthétique

molécules (SMILES) Innovation

Essais de liaison a CDKS8 In vitro
des molécules disponibles sur le
marché

Sélection de touche
% liaison a CDK8

Conception de molecules Essais de liaison a CDK8 In vitro
(cycle #2) Touche optimisée (affinité)
Croissance de touche, synthése

Figure 6. La méthode POEM (Pocket-Oriented Elaboration of Molecule) pour concevoir une
chimiothéque focalisée. La preuve de concept a été appliquée a la protéine kinase dépendante des
cyclines 8 (CDKS8).

L’application de POEM a la protéine kinase dépendante des cyclines 8§ (CDKS8) a conduit a
I’identification de molécules similaires a des inhibiteurs connus, mais surtout a de nouveaux inhibiteurs
d’affinité micromolaire, voire nanomolaire pour les meilleurs d’entre eux (Figure 7), avec un taux de
touches de 16%.
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Figure 7. Inhibition de CDK8 par 7 molécules générées par POEM. Les courbes dose-réponse sont
dérivées de trois expériences de compétition (TR-FRET, Fluorescence en temps résolu) indépendantes
avec duplicatas par expérience. Les molécules 12 (issu du cycle #1, Figure 6) et 49 (cycle #2) ont

respectivement une affinité (1Cso) de 376 nM et 6.4 nM.

Ces molécules ont été générées a partir de fragments aussi bien dérivés de complexes avec des protéines
kinases que de complexes avec des protéines non-kinases, démontrant la capacité de la méthode a
transposer des fragments pertinents en opérant dans tout le protéome structural connu. L’application a
d’autres cibles thérapeutiques (quinolinate synthase NadA, domaine WD40 de la leucine rich-repeats
kinase 2 LRRK?2) a permis d’améliorer le protocole (positionnement et regroupement des fragments,
atomes connectables) mais aussi d’identifier les limites de 1’approche. Les résultats des essais

biologiques de ces deux derniéres applications sont attendus prochainement de nos collaborateurs.

2.4. Alignement de petites molécules a des cavités de proteines

La comparaison des nuages de points de cavités a des petites molécules, sur la base de regles
pharmacophoriques et topologiques simples peut étre une alternative intéressante au docking si elle
génére des hypothéses orthogonales. Nous avons exploré et développé différentes approches pour
superposer des petites molécules & des nuages points de cavités protéiques, puis les classer (scoring) par
complémentarité decroissante : (1) implémentation d’un modéle pharmacophorique des molécules afin
de les rendre comparables aux points de cavités, (2) développement de modéles de nuage de points des
petites molécules pour une utilisation avec ProCare, (3) développement d’algorithmes d’alignement de

graphes cavité-molécule, (4) développement d’une autre représentation de la cavité afin de contourner
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les bruits des cavités VolSite, tout en respectant les contraintes de temps de calculs pour rester compétitif
avec les méthodes existantes. Les résultats suggerent que la recherche et I’estimation d’alignement rigide
telle qu’implémentée ne sont pas efficaces pour résoudre ce probleme, les performances restant
inférieures a celles de méthodes de docking (Figure 8).1° Cependant, ils montrent également que les
jeux de représentations de cavités protéiques et de ligands contiennent parfois des informations riches,

exploitables a des fins de classification.
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Figure 8. Alignement de 176 ligands de la sc-PDB sur leurs cavités correspondantes par comparaison
de nuages de points. Trois descripteurs FPFH (forme), c-FH (forme et propriétés pharmacophoriques)
et c-FPFH (hybride des deux précédents) sont utilisés. A) Pourcentage cumulatif de ligands alignés en
deca d’un certain seuil de déviation (RMSD) par rapport a la position du ligand déterminé par rayons X.
B) Distribution en tracé de violon, montrant une RMSD médian d’environ 6 A. C) RMSD des ligands
en fonction du nombre de points dans la cavité protéique. D) Example d’alignement de 1’entrée PDB
2FPT donnant une RMSD de 0.94 A.
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2.5. Apprentissage automatique des points de cavités pertinents

Identifier les points de cavités pertinents permettrait plusieurs applications directes en CAO :
amélioration des comparaisons/alignements des petites molécules/cavités proteiques, priorisation de
touches en criblage virtuel, interprétation de résultats d’activités. Nous avons congu des modéles
d’apprentissage pour discriminer les points pertinents des points non-pertinents, capable d’opérer sur de
larges nuages de points de cavités, méme en 1’absence de ligands connus. Les descripteurs représentent
la densité pharmacophorique dans des sphéres concentriques, 1’enfouissement et la distance au
centroide. Les points sont annotés en deux classes, selon leur distance et la compatibilité
pharmacophorique avec les atomes du ligand qui interagissent avec la cible : les points importants
(classe positive) sont situés a moins de 2 A d’un atome du ligand de méme propriété pharmacophorique,
tout autre point est de classe négative. Les données sont ensuite équilibrées en jeux d’apprentissage
(~450 000 points), d’évaluation externe (~150 000 points), puis d’application externe (1000 cavités).
Les résultats préliminaires montrent que les modéles individuels pour chaque type pharmacophorique
se généralisent mieux qu’un modéle global et permettent d’élaguer 60% des points négatifs tout en
conservant les points positifs (Figure 9). Ces résultats sont encourageants pour des études plus
approfondies.
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Figure 9. Prédiction des points importants des cavités protéiques. Les deux premiers exemples montrent

une bonne délimitation des points autour des ligands, le dernier exemple une mauvaise délimitation.
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3. Conclusion générale

A travers les travaux présentés dans cette thése, nous avons propose de nouvelles approches
computationnelles pour la conception de molécules bioactives, en exploitant les cavités protéiques
disponibles et représentées sous forme de nuage de points. Les projets ont été progressivement construits
pour résoudre plusieurs problémes : (1) estimation de la similarité des cavités protéiques a I'échelle du
protéome structural et leurs applications prospectives a (2) la prédiction de cibles secondaires et (3) la
conception de chimiothéques focalisées, (4) la comparaison de ligands aux cavités protéiques, (5) la
prédiction des points de cavité en interaction (Figure 2).

La revue des méthodes existantes a révélé les difficultés de la comparaison des cavités protéiques et le
besoin de méthodes permettant la comparaison de micro-environnements protéiques. En développant
ProCare a cette fin, nous avons montré que traitement de nuages de points basé sur I'échantillonnage,
appliqué a l'origine a d'autres taches de la vision par ordinateur, peut identifier des motifs communs
entre des sous-poches de protéines non apparentées. A partir des premiéres validations rétrospectives,
nous avons procédé a I'évaluation de notre méthode en confrontant les prédictions computationnelles
aux validations expérimentales. Ainsi, nous avons pu identifier une similarité locale entre les sites de
liaison de deux protéines fonctionnellement et structurellement différentes, la cytokine facteur de
nécrose tumorale alpha (TNF-a) et la transcriptase inverse (RT) du VIH-1. La mesure directe de la
liaison in vitro a montré que deux inhibiteurs non nucléosidiques du RT-VIH-1 interagissent avec le
trimere TNF-a avec une affinité comparable a un résultat de criblage a haut débit. De plus, nous avons
développé une méthode, POEM, pour concevoir une chimiothéque focalisée de petites molécules, basée
sur la prédiction de similarité de sous-poches. En appliquant POEM a la kinase dépendante des cyclines
8 (CDKS8), nous avons réussi a concevoir un nouveau ligand nanomolaire en seulement deux étapes.
Enfin, I'évaluation de POEM sur des cibles orphelines (quinolinate synthase, domaine WD40 de la
leucine-rich repeat kinase 2), pour lesquelles aucun ligand pharmacologique n'est connu a ce jour,
permet d'améliorer le workflow tout en proposant un défi a 1’aveugle et en permettant d’identifier les

limites de I’approche.

La représentation des cavités protéiques sous forme de nuages de points occupant tout I'espace des
ligands offre l'avantage de développer des méthodes informatiques pour le criblage de petites molécules.
Dans cette lancée, nous avons étudié 1’alignement des nuages de points et de graphes des ligands aux
cavités protéiques. Les informations contenues dans les nuages de la cavité se sont avérées riches pour
étre comparées a de petites molécules mais insuffisante pour générer de bons alignements, c'est pourquoi
des modeles d'apprentissage automatique ont été développés pour prédire les points importants
correspondant aux pharmacophores des ligands. Ces résultats sont encourageants et ont suggéré d'autres
analyses pour approfondir ces études. Enfin, nous sommes intrigués par I'application de ces concepts a

d'autres classes cibles.
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Pour conclure, nous espérons que les nouvelles contributions de cette these par rapport a I'état de I'art

ont fourni des informations utiles dans le cadre général de la conception de molécules assistée par

ordinateur. Les diverses évaluations entreprises dans ces travaux de recherche nous ont suggéré des

pistes d’améliorations, qui feront 1’objet de travaux futurs.
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General introduction

In our contemporary era, designing a drug molecule to treat a particular disease is a long and costly
process from the earlier generation of hypotheses to the distribution on the market. It takes on average
20 years, two billion US dollars,* thousands of scientists, operators, and participants, many failures? and
one success to safely bring solutions to patients. In the early stages of the pharmaceutical industry, drugs
were extracted from natural sources according to prior observations to treat symptoms or have been
discovered accidentally.® The technological progress together with the accumulation of knowledge have
enabled to adopt various strategies to characterize targets and find starting bioactive molecules on a
rational basis while controlling the safety and costs. Many of these targets are proteins, one of the major
building blocks that compose living organisms.* Proteins regulate biological processes by interacting
with other molecules at specific areas on their surfaces.® Thus, it was discovered that inhibiting or
activating key proteins involved in biological pathways relevant to a particular disease could restore a
heathier function.® For more than a century, this was largely achieved by small molecular weight

molecules. In 2021, 72% of FDA-approved drugs were new chemical entities.’

Before they ever reach clinical trials, drug candidates go through tedious “design-make-test-analyze”
(DMTA) cycles to meet desired pharmacological and non-toxicity profiles, but the very beginning of
this process is the identification of hit molecules that sufficiently interact with the target.® By accessing
models of proteins three-dimensional structures thanks to advances in genomics and structural biology,
it was shown that small molecules preferentially bind to buried cavities.® From then on, computational
methods to model protein-small molecule interactions have flourished. The most popular, docking,*
supports the screening of millions of molecules from well-thought virtual libraries to propose a few that
have higher chances to bind in experimental assays.'* Alternatively, methods which focus on assessing
the resemblance of protein interaction sites quickly emerged and gain popularity in the first decade of
this century.? This strategy is notably relevant now as the structural data on diverse proteins and the
binding information on several molecules are constantly increasing.'® Pure protein cavities comparison
operates in the target space only, therefore is thought to provide at least a different perspective, at best
an advantage against the combinatorial complexity of protein-ligand information and scoring problems
known to docking.’® When cavities of different targets are found similar, binding knowledge are
hypothetically transferred to identify secondary targets, to design ligands or focused libraries for virtual

screening.'*

My host laboratory has contributed to the state-of-the-art binding site detection and comparison methods
in the past two decades.®>” One of these methods (\VolSite)!’ detects pockets in proteins irrespective of
prior bound ligand coordinates and represents them as a cloud of points featuring a negative image of
the cavity. Thus, it enables to reach previously non-characterized pockets, or those which prove to be

difficult for classical approaches (small or large cavities). Then, another tool (Shaper) is used to compare
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these clouds to estimate the similarity between two protein cavities.!” Shaper is based on a commercial
and proprietary toolkit from OpenEye Scientific Software (Santa Fe, USA), which performs global
shape and property matching of two cavity clouds. Shaper have achieved good performance in
evaluations, which validated the information carried by VolSite cavities. However, two aspirations have

led to my dissertation:

e the access to a non-proprietary method to estimate the similarity of VVolSite cavities,

o the exploration of pattern recognition methods used in image processing.

In Chapter 1, a review of previously published methods showed a diversity in how protein cavities are
represented, compared and the similarity scored. Yet, the majority perform global searches for
resemblance which might hinder the detection of subtle but relevant similarities at times. Therefore, the
first part of my work consisted in identifying and implementing suitable algorithms to compare VolSite
clouds, while striving for the following specifications:

o the possibility to estimate both global and local similarities,
e acomputing time compatible with screening large databases on a daily basis,

e the interpretability of the results.

This led to the development and retrospective evaluation of a novel tool (ProCare), presented in Chapter
2. During the evaluation of ProCare on the tumor necrosis factor-alpha (TNF-a) protein, | observed a
common pattern between the TNF-a trimer interface and the cavity of reverse transcriptase non-
nucleoside inhibitors. The resulting similarity hypothesis was investigated in Chapter 3. In the same
pursuit of providing a realistic assessment to the ProCare method, | designed a workflow for generating
target-focused libraries using fragment moieties bound to subpockets that were locally estimated similar
to the target cavity (Chapter 4). Finally, as a continuation of my laboratory goal to find alternative
screening methods, | have explored the search of common patterns between VolSite cavities and small

molecules in Chapter 5.

28



General introduction

References

1. Wouters, O. J.; McKee, M.; Luyten, J. Estimated Research and Development Investment Needed
to Bring a New Medicine to Market, 2009-2018. JAMA 2020, 323, 844.

2. Kola, I.; Landis, J. Can the Pharmaceutical Industry Reduce Attrition Rates? Nat. Rev. Drug
Discov. 2004, 3, 711-716.

3. Pina, A. S.; Hussain, A.; Roque, A. C. A. An Historical Overview of Drug Discovery. In Methods
in Molecular Biology; 2010; Vol. 572, pp 3-12.

4, Santos, R.; Ursu, O.; Gaulton, A.; Bento, A. P.; Donadi, R. S.; Bologa, C. G.; Karlsson, A.; Al-
Lazikani, B.; Hersey, A.; Oprea, T. I.; Overington, J. P. A Comprehensive Map of Molecular
Drug Targets. Nat. Rev. Drug Discov. 2017, 16, 19-34.

5. Alberts, B.; Johnson, A.; Lewis, J.; Walter, P.; Raff, M.; Roberts, K. Molecular Biology of the
Cell 4th Edition; Routledge, 2002.

6. Drews, J. Drug Discovery: A Historical Perspective. Science 2000, 287, 1960-1964.

7. de la Torre, B. G.; Albericio, F. The Pharmaceutical Industry in 2021. An Analysis of FDA Drug
Approvals from the Perspective of Molecules. Molecules 2022, 27, 1075.

8. Hughes, J.; Rees, S.; Kalindjian, S.; Philpott, K. Principles of Early Drug Discovery. Br. J.
Pharmacol. 2011, 162, 1239-1249.

9. Liang, J.; Woodward, C.; Edelsbrunner, H. Anatomy of Protein Pockets and Cavities:
Measurement of Binding Site Geometry and Implications for Ligand Design. Protein Sci. 1998,
7, 1884-1897.

10. Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J. Docking and Scoring in Virtual Screening
for Drug Discovery: Methods and Applications. Nat. Rev. Drug Discov. 2004, 3, 935-949.

11. Rognan, D. The Impact of in Silico Screening in the Discovery of Novel and Safer Drug
Candidates. Pharmacol. Ther. 2017, 175, 47-66.

12. Kellenberger, E.; Schalon, C.; Rognan, D. How to Measure the Similarity Between Protein
Ligand-Binding Sites? Curr. Comput. Aided-Drug Des. 2008, 4, 209-220.

13. Bhagavat, R.; Sankar, S.; Srinivasan, N.; Chandra, N. An Augmented Pocketome: Detection and
Analysis of Small-Molecule Binding Pockets in Proteins of Known 3D Structure. Structure 2018,
26, 499-512.e2.

14. Ehrt, C.; Brinkjost, T.; Koch, O. Impact of Binding Site Comparisons on Medicinal Chemistry
and Rational Molecular Design. J. Med. Chem. 2016, 59, 4121-4151.

15.  Schalon, C.; Surgand, J. S.; Kellenberger, E.; Rognan, D. A Simple and Fuzzy Method to Align
and Compare Druggable Ligand-Binding Sites. Proteins Struct. Funct. Genet. 2008, 71, 1755—
1778.

16. Weill, N.; Rognan, D. Alignment-Free Ultra-High-Throughput Comparison of Druggable
Protein-Ligand Binding Sites. J. Chem. Inf. Model. 2010, 50, 123-135.

17.  Desaphy, J.; Azdimousa, K.; Kellenberger, E.; Rognan, D. Comparison and Druggability

Prediction of Protein—Ligand Binding Sites from Pharmacophore-Annotated Cavity Shapes. J.

29



General introduction

Chem. Inf. Model. 2012, 52, 2287-2299.

30



CHAPTER 1

On the quest for estimating the similarity
between protein pockets

31



32



Chapter 1. On the quest for estimating the similarity between protein pockets

This Chapter was adapted and published in:

Merveille Eguida and Didier Rognan. Int. J. Mol. Sci. 2022, 23, 12462.
1.1. Introduction

In living organisms, biological processes are regulated through specific molecular recognition at local
surfaces. Proteins, one of the major biomolecules composing our cells, interact with different partners:
other proteins, peptides, nucleic acids, small molecules, transition metals. Proteins are made of amino
acids chains, which spatially fold into particular shapes. To explore the proteome, sequence-based
studies benefit from the boom of genomics since the early 2000, but their scope are quickly limited by
the conservation of structure in proteins sharing less than 30% sequence homology.! Progress in
molecular and structural biology have enabled to solve the three-dimensional (3D) structure of proteins,
either by X-ray diffraction,* nuclear magnetic resonance (NMR)® or more recently cryo-electron
microscopy (cryo-EM) at atomic scale.®° Characterizing the binding cavities for small molecules have
bolstered the rise of structure-based drug design.'®*2

With the exponential increase of publicly-available protein structures,*** coupled to the development
of methods able to detect cavities,*>!® the comparison of protein binding sites emerged naturally as a
scientific topic to explain observations or generate hypothesis for ligand design or target fishing in drug
design.’* Possible applications span biological function prediction in bioinformatics to
polypharmacology in medicinal chemistry.”*® Supported by the outlooks and successful case studies,
many methods have been developed in the last three decades. The bottleneck of protein cavity
comparison is common to all similarity estimation problems—similarity is a relative quantity which
depends on the aspects considered. Therefore, generalizing a similarity quantification on different pairs

of entries, without prior knowledge of the key points to compare is delicate.

Similarity is not directly measurable experimentally. Instead, derived hypotheses (e.g. function, ligand
binding) are further evaluated. This presents many challenges for benchmarking methods and highlights
the importance of carefully designing datasets in retrospective studies. For users as well as developers,
knowing where we start from and what has been done in the field would enable realistic expectations

and spot limitations to be addressed by future developments.

Structure-based algorithms for protein site comparison emerged after the 1970s, a decade marked by the
establishment of the Protein Data Bank (PDB) and the deposit of a few structures.*>41° Initially, efforts
were made to compare protein 3D structural motifs independently of sequence order and gaps. Computer
vision approaches? were applied in structural biology for similar substructure identification even in the
absence of sequence homology via rigid body alignments.?*-?” Protein functions could be predicted from
a database of known 3D templates, by querying or inferring protein active sites.?®-*2 Beyond functional

annotations, cavity alignment and comparison quickly appeared promising for rational design of proteins
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and ligands, since similar 3D arrangement of surface motifs may be similarly involved in molecular

recognition.3%-33

The path from the earlier to the current site comparison methods involved several implementations. It
was common for the user to define researched features (e.g. set of atom/residues distances defining a
motif: catalytic triads, similar ligands) from prior knowledge to initialize the search.?%30:34% Subsequent
advantages are a better control of the comparison, easier selection of relevant matches, and the reliability
of the solutions. Progressively, methods enabling automatic identification of pockets®*-“° and of relevant
patterns that are matching opened the doors to the analysis of the relationship between evolutionally and
structurally remote members of an entire database, without any a priori judgment.*:#> Such predictions
led to unexpected findings with implications for drug design.’®46 Screening large databases require
effective computing time. Together with the progress of computing technologies, fast methods were

introduced but often at the cost of interpretability.4-°

The repertoire of possible comparison algorithms is tailored to the representation made of the pocket.*
Pocket representation is a way to provide structured information to the algorithm, for exploration. Once
delimited in the protein, a pocket can be modeled as list of residues, graphs, or unconnected pseudo
atoms among other possibilities. Geometry constraints of alpha carbon tuples were extensively used to
identify equivalenced areas.®»>® Other cavity descriptors further encode the chemical properties of
atoms or residues, hence reducing redundancy in the possible matches.****%® The intricacy of the
representation lays in finding a good balance between fuzziness with a risk of false positive matches and
preciseness with a risk of missing on remote similarities. In any case, similarity can only be properly
reported with a fair scoring function. The scoring scheme aims at quantifying how two pockets resemble
or differ. Often, a score threshold is applied in screening campaigns for decision making. How to assign
the value of that threshold and assess the significance of that similarity is a genuine question raised by

earlier studies.*"56:57

In practice, the variability of the pocketome (ensemble of all protein pockets) in terms of size, solvent
accessibility, flexibility constitute obstacles to the performance of binding site comparison methods, as
it is for other structure-based approaches.!! It is perceived that comparing subpockets, instead of entire
cavities might better handle the conformational variations, typically induced by ligand binding.4>58-60

Noteworthy, the ability to detect local or global similarities is suitable for different purposes.

As the reader will notice, different parameters entail the success of protein cavity comparison, as
discussed by previous articles.'®5-%* In this review, we will provide a most recent and broad overview
of all stages involved in pockets comparison, from the prediction of ligand binding sites, to the

evaluation and prospective applications in drug design.
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1.2. Pocket detection and druggability estimation

Identification of potential interaction sites is crucial to structure-based approaches and constitute the
very first step of binding site comparison. Proteins can specifically bind to different classes of molecule
(proteins, peptides, nucleic acids, small molecules, transition metals). Contact surfaces exhibit different
geometric and physicochemical characteristics according to the nature of the binding partner. For
examples, small molecule interaction sites are buried clefts while protein-protein interaction interfaces
are rather flat and hydrophobic.'265-% Although available methods for binding site detection covers the
different applications above, they majorly concern small molecule pocket identification as a testimony
of efforts to structure-based drug design of small chemical entities in the last decades. Accessibility to
binding site identification is possible via standalone tools,®® webservers,” or databases of precomputed

sites.”

Methods can be classified at three levels: (i) the genomic or 3D structure nature of the input, (ii) the
dependency to bound ligands and (iii) the class of the algorithm (Figure 1.1). Template or sequence-
based methods such as ConSeq,’? available from the ConSurf server™” identifies functionally important
residues in protein sequences by searching for evolutionary relations with other proteins.’*"’
3DLigandSite is another approach which can take a protein sequence input, although it relies on
homology models or de novo structure predictions.’ Structure-based pocket identification uses only the

3D coordinates of structures as input and benefits from the augmentation of structural data*.

Ligand-centric methods are restricted to protein-ligand complexes and is rather a site delimitation than
prediction. Noticeably, the analysis of crystallization additives binding sites might suggest potential
allosteric pockets.” Typically, a site is defined as all residues within a certain distance cutoff to the
partner's heavy atoms, ca. 6 A for protein-small molecule complexes. Alternatively, the set of residues
can be restricted to those properly oriented and toward the ligand, with the particularity that the distance
cutoff varies according to the interaction type. These approaches are available through integrated
environments enabling to manipulate protein structure coordinates and interactions such as Molecular
Operating Environment (Chemical Computing Group, Montreal, Canada), IChem®, independent tools

for parsing protein 3D structure data.
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Methods to predict
binding sites in proteins

I
| I

Sequence 3D structure-based
template-based blind prediction

Ligand-based Ligand-free

Geometric Energetic Data-driven

Figure 1.1. Classification of binding site detection methods.

Ligand-free approaches can operate on a larger range of structures, enabling the discovery of
unprecedented sites. According to their search algorithm, they can be classified as geometric, energetic,
or data-driven (Table 1.1). At first glance, all geometric methods aim at identifying sufficiently buried
zones unoccupied by protein atoms, but differ in strategies to search for these areas. Grid-based methods
place the protein into a cartesian grid and identify grid cells likely to be in a cleft by analyzing their
neighborhood.*¢3781-% POCKET?® and LIGSITE®, two of the earliest methods, keep cells that
correspond to a ‘protein-solvent-protein’ event by scanning respectively in three and seven directions.
Such algorithms are sensitive to grid resolution and orientation but are powerful to detect cavities of

different sizes and curvatures.
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Table 1.1. Common structure-based methods to predict ligand binding pocket in proteins.

Category Search approach Methods
CAVIAR,® PROcket, KVFinder,® VolSite®?,
_ DoGSite,®2  McVol,**  ghecom,®  VICE,®
e PocketDepth,*  PocketPicker,”®  LIGSITE®,
CAVER,® LIGSITE,* VOIDOO,*” POCKET?®
Geometric Alpha-shape Fpocket,*® CASTp,*% CAST,'®* APROPOS,*’
DEPTH,* Roll,*® HOLLOW,® PHECOM,! Xie
Spherical probes and Bourne,’®? SURFNET-ConSurf,1%® PASS, 104
HOLE,'% SURFNET®®
Other MSPocket,'% SplitPocket?’
FTSite,%® SiteMap,%® SITEHOUND,?
_ AutoLigand,** Q-SiteFinder,’? PocketFinder,'®
e DrugSite,!** pocket-finder (Surflex protomol),!*®
Energetic
GRID6
Spherical probes dPredGB,!’ Morita et al.*®
Other Gaussian Network Model**
Classical machine GRaSP,'* P2Rank,*®* MCSVMBs,*?' PRANK,%
learning SCREEN!#
Data-driven PoinSite,?* DeepPocket,'? PUResNet,*2
Deep learning DeepSurf,’?” BiteNet,'?® Jiang et al.,'*® DeepSite,
ISMBLab-LIG*

Contrarily, other methods process the protein coordinates directly and are not affected by the grid
initialization phenomena. Based on the alpha-shape concept introduced by Edelsbrunner et al.,*! they
circumvent protein cavities by connecting adequate adjacent Delaunay triangles via the ‘discrete flow’
method,%%5-°7197 or by clustering alpha spheres to satisfy pocket descriptors (e.g. Fpocket).*° Alternative
purely geometric approaches fill or coat the protein with spherical probes to delimit cavity void.®99-105

Finally, other concepts such as monitoring the direction of surface normal vectors were implemented.'%
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The second category of ligand-free methods estimate favorable surfaces for protein-ligand contacts by
calculating the potential energy of probes at different positions. Generally, the Lennard-jones
potentials®*21* are used with hydrophobic probes. The nature and number of probes vary from a simple
carbon probe in DrugSite!!* to 16 different in FTSite!%®, Potentials are either mapped to grid positions®®-
116 or to probe coating the protein surface.!*”1® GRID, a very popular grid-based approach, has
implemented an empirical force field to estimate van der Waals, electrostatic and hydrogen-bonding
energies for 6 different probes with predefined parameters.!'® Obviously, the outputs of energy based

methods are influenced by the force field, in addition to the initialization for grid-based ones.

The final class of methods use supervised models, trained on the features of well characterized ligand
binding sites. Hence, they differ in the features representation, training models, set of parameters and
datasets. P2ZRANK is one of the examples based on classical machine learning models. The protein
solvent-exposed atoms are processed into a topological and physicochemical feature vector which serve
as input to a Random Forest classifier.®® Recently, many deep learning methods, majorly based on 3D-
convolutional neural networks were introduced. PointSite is an example of point clouds segmentation
using sparse convolution.'® While these methods need to be challenged by prospective usages, recent

advances on 3D point cloud deep learning®** offers some long perspectives for this type of problem.

All in all, these methods have been evaluated on their performance to accurately predict binding pockets
by comparing predictions on unbound proteins to true ligand locations in their corresponding bound
structures. Not only the accuracy of the location, but also the delimitation or overlap with respect to the
ligand are analyzed.®® Indeed, all identified clefts do not forcibly correspond to the ability to
accommodate a drug-like ligand (druggability). Detected pockets might be too large, or too small where
a clustering is required. Thus, it might be convenient to post-process the results of other approaches.**®
Cleverly, meta-methods (e.g., MetaPocket) thrive to find consensus from different algorithms to
increase the chances of correct predictions.t®13” However, consensus might not always yield the right

solution.

The concept of structural druggability®*®-24! arose from observing the characteristics of pockets bound
to pharmacological ligands: average volume between 200 to 800A3, a good balance of hydrophobic and
polar atoms enabling some binding specificity, sufficient buriedness. A few methods were developed to
predict target druggability.3882142-146 Consistently, topological and physicochemical characteristics of
the pockets sites are encoded into descriptors and trained on curated datasets to generate classification
models (Support Vector Machines, linear regression).382144145 Since pocket druggability does not
guarantee that the bound ligand will also be druggable, the term may be replaced by ligandability**’ or
bindability.!* For more information, we refer the reader to a recent review.'*! Interestingly, some of the
methods previously described have implemented a rule-based druggability prediction enabling to hit

two targets with one bullet.38210° \/o|Site, the tool developed in my host laboratory, is one of them.
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Zoom on VolSite

In VolSite,® (Figure 1.2) grid points are sampled by projecting 120 rays of equally-spaced solid angle
and 8 A length. Positions that yield at least 80 rays overlapping with cells close to or occupied by a
protein atom are further considered. Points having a protein atom within 4 A are labeled with a
pharmacophoric feature complementary to the physicochemical property of the closest protein atom (h-
bond acceptor, h-bond donor, h-bond acceptor/donor, negative ionizable, positive ionizable,
hydrophobic and aromatic), otherwise a dummy property. Isolated points, i.e., having less than three
adjacent grid points are discarded. Later, VVolSite was adapted so that at least three hydrophaobic protein
atoms are required in the neighborhood to assign that property to a grid point.®° While hydrophobic and
aromatic features happen to cluster in patches, in reality, the rarest features (e.g. negative ionizable) are

diluted among other features.
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Figure 1.2. VolSite pocket detection. A) Grid initialization. B) Grid points can have one of the eight
possible pharmacophoric points: h-bond acceptor HBA, h-bond donor HBD, h-bond acceptor and donor
OG, negative ionizable A-, positive ionizable D+, hydrophobic H, aromatic Ar, dummy DU. C) Example
of pockets detected in a kinase protein (PDB: 5HBH) by VolSite (molecular surface is depicted with
PyMol 2.1, red points: HBA, A-, blue: HBD, D+, white: H, Ar, DU). A) and B) are adapted from
Desaphy et al.®
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VolSite has the particularity to output a cloud of points, occupying the volume of the cavity and not just
the surface, therefore mimicking an ideal ligand (negative image of the cavity). It is therefore applicable
to many structure-based scenarios ranging from ligand-binding site comparisons® (Chapter 2),
secondary target identification®” (Chapter 3), structure-based pharmacophore perception'*® (Chapter 5)

and fragment-based library-design (Chapter 4).

In conclusion, we have seen in this section that methods to predict ligand pockets are diverse in the way
they search and the features they consider. Predictions are subjected to uncertainties about the true
delimitation of a ligand area and druggability, with implications for subsequent applications. In practice,
some tools are specialized for predicting interaction sites with particular molecule classes: protein-
protein interfaces,®”1*° nucleic acids, %! peptides,'®? pores/channels,'>*1> phosphates.’> In all cases,
the output serves to delineate cavity-lining residues, and a few are directly processed by site comparison
tools (e.g. DoGSite, LIGSITE, VolSite).

1.3. Steps for comparing cavities in proteins

Methods comparing protein cavities operate in three steps: the representation of the cavity
characteristics, the comparison of these representations and finally a scoring or classification.>06162
Hence, successful results reside in a coordinated performance of each of these tasks. Yet, cavity
representation, which is the first step of the procedure is crucial as it influences the later steps.
Principally, a poor representation where relevant characteristics are missing cannot be compensated by
the most efficient algorithm. State-of-the art methods to compare protein cavities are summarized in

Table 1.2. In the following sections, we will discuss these different algorithms to achieve this end.
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Table 1.2. Methods to compare protein cavities.

Year Name Detection? Principle Scoring Evaluation datasets
. .. rl f surf ri ints, factor sites, kin ,
2002 CavBase* LIGSITE Clique detection in graphs of pseudoatoms Overlap of surface grid points Co_ac S S, LSS
RMSD serine proteases
. les Ligand Clique detection in graph of surface normal NorrrTallz.ed and weighed Phosphate sites, antibodies,
2002 eF-site . . contributions of vectors
Databases vectors and electrostatic potentials ) . PROSITE classes
angles, potentials, distances
. Count of matches, RMSD -
. Incremental match of triplets of . . ' Protease catalytic sites,
2003 SuMo®’ Ligand P composite of euclidian and ease cataly
pseudocenters . lectine sites
density distances
Hierarchical scoring: count of  Cofactors, steroids, fatty
2004  SiteEngine* Ligand Match of triplets of points by hashing matches, RMSD, overlap of acid sites, catalytic triad in
patches, local shape proteases
Brakoulias et al. . . . .
2004 (SiteBase)!s® Ligand Match of triplets of points Count of matches, RMSD Cofactors, phosphate sites
2007 Ramensky et al.>® Ligand Clique detection in graph of atoms Dice similarity of matches Diverse
. S Kolmogorov-Smirnov .
. . = CAST Comparison of pairwise distance . Cofactor sites, HIV
2008 Binkowski et al. . . divergence, overlap of volume,
Ligand histograms proteases

RMSD

2The site detection approaches used in the reference studies were reported. However, ligand-free methods might be employed depending on the input for the

site comparison method.

41



Chapter 1. On the quest for estimating the similarity between protein pockets

Table 1.2. Methods to compare protein cavities (continued).

Year Name Detection? Principle Scoring Datasets

2008 PocketMatch*? Ligand Comparison of sorted pairwise distances Normalized count of matches ~ Diverse, SCOP*® classes
Normalized distances of Functional groups,

2008 SiteAlign* Ligand Alignment of polyhedron fingerprints ) . proteases, estrogen
fingerprints

receptors, GPCRs
. . . Composite weighted by Cofactor sites, SCOP
2 IPPAS! L I hs of . .
008 SO igand Clique detection in graphs of atoms e, PR fenrees s

Gaussian densities from

2009 SMAP® Ligand Cligue detection in graphs of atoms distances, angles of normal Cofactor sites
vectors, BLOSSUM weights

2010 BSSF® PASS Comparison of fingerprints of binned Canberra distances of Diverse, synthetic data,

Ligand distances and properties fingerprints SCOP classes
i P ial i . .

2010 Feldman et al.%® Ligand Match of subsets of Co. atoms otential based on distances Diverses, kinases
between matches

2010 FuzCav¥ Ligand Fingerprints of triplets of atom features Maximal proportion of D|v_er_se, functional groups,
matches 8 difficult cases

Comparison of 3 concentric spheres Composite of fingerprint
A 162 ) . . . . . .
2010 Milletti et al. Ligand fmgerpr_mts encgdmg nelghbgrhood for distances and RMSD ATP sites, kinases
each point, solving linear assignment
P.A.R.1.5 . Initial alignment optimized by gradient . .
2010 Ligand Ial alg o ptimiz oY grad Gaussian kernel Cofactor sites
(sup-CK) ascent to maximize a Gaussian kernel
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Table 1.2. Methods to compare protein cavities (continued).

Year Name Detection? Principle Scoring Datasets
. . L factor/metal sites,
- . Maximum clique detection in graphs of Count of Matches, RMSD, Co ac_: or/me ? .SI e
2010 ProBIS Ligand protein-protein interfaces,
surface atoms angle between vectors .
protein-DNA complexes
. . Initial pairs from sorted i f atom f r sites, P
2011 PocketAlign'® Ligand _|t|a pairs from sorted lists of ato Count of matches, RMSD Cofactor sites, SCO
distances, then extend classes
Comparison of 7 concentric spheres Normalized Tanimoto
2011 PocketFEATU-RE'  Ligand fingerprints encoding neighborhood for L . . Kinases
. . similarity of fingerprints
each microenvironment
i ) . . Modified Tanim f Di , h of
2012 KRIPO* Ligand Fingerprints of triplets of pharmacophore .Odl qu animoto o IVEISE, Search o
fingerprints bioisosteric substructures
Comparison of 3D Zernike of surface .
5 LIGSITE > . . - Composite of surface match :
2012 Patch-Surfer . patches solving a weighted bipartite . . Cofactor sites
Ligand . distances and size differences
matching
. Comparison of cloud of points by Gaussian . .
2012  Shaper®? VolSite P i P y Tanimoto, Tversky of matches Diverse, GPCRs, proteases
shapes matching
2012 TIPSAL Ligand Match of quadruplets of points, iterative Tanimoto of matches, overlap Cofactor sites

refinement by Hungarian algorithm

of volume, normalized RMSD
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Table 1.2. Methods to compare protein cavities (continued).

Year Name Detection? Principle Scoring Datasets
AVITA- . . .
¢ 5 Seed alignment by comparing secondary Composite of vector . T
= TOR, . S . . . Diverse, similar ligand
2013  Apoc structures, optimized by solving linear orientation, distance, e
LIGSITE assignment problem roperties recognition sites
Ligand g P prop
. Composite of matches count, Diverse, 8 difficult cases,
168 . Search for common shape and triplets of
2013  TrixP DoGSite . . . . angle between vectors, protease, estrogen receptor,
points by bitmap indexing . .
mismatches penalty HIV reverse transcriptase
. s Template-based alignment optimized b Machine learning score: -
2014 eMatchSite® eFindSite!® P 419 P y arning : Cofactors, steroid sites
Hungarian algorithm RMSD, residue, properties
2014 RAPMAD® LIGSITE C_omparlson of 14 pairwise distance J(?nsen-Shannon divergence of Qofactor sites, proteases,
histograms, one for each property histograms diverse
li ionin hs of interaction Tani f ri f -
2015  IsoMIEY GetClefit C ique _detectlon in graphs of interactio animoto of descriptors o S, ST S
grid points matched points
Feature-weighted count of Diverse, Ca+ sites, similar
2016 G-LoSA®® Ligand Clique detection in graphs of atoms matches g ligands recognition sites,
protein-protein interfaces
2016  SiteHoppert7i72 Ligand Comparison of surface atoms by Gaussian ~ Weighted combination of Diverse using binding

shapes matching

Shape and color Tanimoto

affinities
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Table 1.2. Methods to compare protein cavities (continued).

Year Name Detection? Principle Scoring Datasets
. . . factors, steroids sites,

2019 DeepDrug3D*? Ligand Convolutional neural network model Binary classification ;%g;;; steroids sites
2020 DeeplyTough®® Fpocket Convolutional neural network model Binary classification quactqr S|_tes, D|_V(_er_s e and

Ligand using binding affinities
2021  PocketShape!™ L Imtla_l alignment optimized by Hungarian C(?mpos_lte of ma_tches, leerse SCOP classes,

algorithm orientation of residues kinases

2021 Site2Vect Ligand Machine learning (random forest) on Binary classification Cofactors, steroid sites,

autoencoder-generated descriptor

diverse
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1.3.1. Pocket representation

Once pockets are delimited, features are selected by considering different aspects. This step aims at
focusing on the relevant characteristics that explain ligand recognition, while decreasing the so
considered “unnecessary” information. Our brains will perform the same exercise on everyday life's
objects, for example if we are asked to compare two cars: we might decompose the information into
major aspects such as the brand, design, color, motor, etc. Interestingly, different people will focus on
different combinations of these aspects resulting in different decision-making. For pocket modeling,
there is the general knowledge that the attributes (size, physicochemical properties, flexibility) of
residues flanking the site and their relative 3D location explain the specific recognition of
ligands.313350176  Therefore, site comparison methods approximate these residues into various
representations which differ at three levels: (i) the discretization of the residues, (ii) the viewpoint and
(iii) the chemical features.

Firstly, possible representations (Table 1.3), from coarse-grained to more detailed, are an atom
(typically the Ca or CP) describing an entire residue (e.g., Apoc), a group of pseudocenters or vectors
associated to residue fragments (e.g., CavBase), 3D voxels or surface grid points (e.g., DeepDrug3D)
and all atoms cloud (e.g., Ramensky et al.). The resolution of the representation determines how local
the subsequent comparison can be. For example, rigid matching of atoms which are 7 A apart in a query
pocket can only be associated to similarly spaced atoms in the reference pocket, therefore excluding a
pertinent association of smaller areas. Resolution also influences sensitivity to chemical and coordinates
variations (Figure 1.3). Coarse-grained representations are less sensitive to variations in atomic
coordinates but are more perceptive of changes in chemical properties such as single residue mutations.
They offer a better signal to noise ratio at the cost of information. In grid/polyhedron-based approaches,
the grid resolution (often 0.5 to 1.5 A)/number of triangles are adjusted to capture the shape of the site
while compromising between precision and computing.821’® Although small changes of residues are
reflected in detailed representations, they can be perceived to a lesser extent since drowned in many
other information. Detection of such details are highly influenced by the assignment of chemical features
and the performance of the search algorithm. Noticeably, some methods have adopted a mix
representation scheme, where gross representations are used for a faster search and whereas finer

representations are involved in the scoring.*

46



Chapter 1. On the quest for estimating the similarity between protein pockets

Table 1.3. Discretization of the residues to represent a protein cavity

Representation Illustration® Methods

Vs
[ N \ APoc, eMatchSite

O
Single points </O p \\\\\ \ Feldman et al. (PSILO®),
4 ~N

(e.g. alpha carbon) FuzCav, G-L0SA,

g/ o=/ PocketAlign®, SiteAlign®,
N SMAP, SOIPPA
N
‘ BSSF, CavBase?, KRIPO,
2 PocketAlign®,
Pseudocenters
N PocketMatch, RAPMAD,
Site2Vec, SiteEngine,
N SuMo, TrixPP
N
o\ @ o CavBase®, DeepDrug3D,
Surface points, surface 0 ® ® DeeplyTough, IsoMiF,
patches, volume points, 0000 o )N Patch-Surfer, Shaper,
polyhedron N ® . N SiteAlign®, TrixP®,

o -
VolSite

All atoms &Q N\j} Binkowski et al.,
(non-hydrogen) 5 N Brakoulias et al., Milletti
etal., P.A.R.I.S, ProBiS,
V&/ SiteHopper, TISPA

2The protein cavity is delimited by a few residues (hydrogen atom are not shown). Representative points
at different resolutions are depicted as colored spheres. ® Some methods use mixed representations; in

PocketAlign, several schemes are proposed.
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Sensitivity to... Coarse-grained ‘All atoms’

+ +++
Variations of

shape

Variations of
chemical features

+++ +

Possibilities of

local comparison ’
+ +++

Figure 1.3. Sensitivity of coarse-grained or ‘all atoms’ cavity representations to variations in atomic

coordinates, chemical features and subsequent applications (+: low, +++: high).

Secondly, most methods adopt the protein perspective by considering atoms or pseudocenters at the
protein surface (e.g. FuzCav, SMAP). A few stand out by projecting these protein patterns into the ligand
space, where polyhedron, voxels or points are annotated with the properties of nearest or well-oriented
protein features (e.g., IsoMIF, SiteAlign) (Figure 1.4). Such discretization aims at offering a good
balance between information completeness while handling variations in atomic coordinates and features.
However, it is important to recall that grid-based representations are affected by the centroid location
and axes orientation during the grid initialization. As a result, the distribution of feature types might
change between different 3D models of the same protein (a pharmacophoric feature might move in
adjacent voxels or not represented at all), particularly when a voxel is associated to only one feature at

a time.

o) N
[ — \L\—\
/
O & \
¢ "
/\,‘/ - —N
N
N
k -
/
°

Protein viewpoint

Figure 1.4. Protein cavity representation according to the protein or the ligand perspective.

Representation of the protein side occupy larger surface to compare.
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Finally, besides the two aspects described above, methods differ in their definition of chemical and
geometric features. For example, Binkowski et al. do not consider the chemical type of atoms but
showed that the relative position of the surface atoms describing the shape of the pocket already contain
some discriminative information.™®1’” However, shape only information is insufficient, hence it is not
surprising that almost all the state-of-the-art site comparison methods annotate surface coordinates
atoms with pharmacophoric features to improve discrimination between redundant areas. In coarse-
grained representations, Co/CP atoms are annotated according to the chemical groups of their residues.
For instance, APoc defined eight exclusive chemical groups, allowing a residue to belong to only one.%!
Searching for identity of chemical features between the query and reference pockets with such
representations do not account for the interchanging role that fragments in different amino acids can
perform: the hydroxyl group of serine and tyrosine are h-bond donor or acceptor whereas tyrosine
additionally displays an aromatic feature as a phenylalanine; yet serine and tyrosine belong to different
classes. To correct this effect, residues are assigned multiple classes (e.g. Feldman et al., SiteAlign).*452
Alternatively, single or group of atoms defining pseudocenters are annotated according to their
interaction capacities (e.g. a histidine side chain is represented by h-bond donor-acceptor and aromatic
pseudocenters in CavBase). Commonly, five to eight pharmacophoric features are defined (KRIPO,
SiteEngine, VolSite),**>®2 up to more than 40 atom types (Ramensky et al., PocketFEATURE).5%165
Other possible chemical attributes are partial charges used in P.A.R.I.S (sup-CK) or SiteEngine
scoring,*>183 atomic density in SuMo®" or atom types in Brakoulias et al.**® Definition of many feature
types might improve the description of the site with precision but might at the same time hinder remote
similarity detection by narrowing the applicability domain of the method. Aside chemical features,
geometrical patterns are sometimes considered: CavBase and RAPMAD indicate the directionality of
polar features by vectors,**® SuMo considers the directionality of the patterns toward the cavity by
scalar triple product,'s” SOIPPA assign normal vectors to local surfaces,'®* TrixP and SiteAlign consider

distances to fixed points.*+168

In a nutshell, there are various ways to represent a protein cavity. Challenges reside in finding a good
balance between comprehensive representation of features to ensure reliability and loose representation
enabling to detect remote similarities. While the absence of pocket attributes cannot be recovered at the
later comparison step, too many attributes may constitute difficulties to the search algorithm in

separating the signal from the noise.
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1.3.2. Search algorithms

Following the selection of features characterizing the cavities, similarity is estimated by algorithms that
search for common patterns shared between two sites. First, representations of the protein cavities are
converted or organized into comparable and computer-friendly objects that can be processed
automatically. There are a variety of search algorithms to this end, which can be categorized according

to their inputs, procedure, and visual interpretability (Figure 1.5).

PocketMatch Similar ?
APoc
Brakoulias et al.
eMatchSite [ | Alignment-free — Score
Feldman et al.
Milletti et al. Alighment — » + Score
P.A.R.I.S
Patch-surfer CavBase
PocketAlign . BSSF
PocketShape eF-site FuzCav
Shaper G-LoSA PocketFEATURE
SiteEngine IsoMIF RAPMAD
SiteHopper ProBiS
SuMo Ramenskyetal.  Binkowskiet al. DeepDrug3D
TIPSA SMAP KRIPO DeeplyTough
TrixP SOIPPA SiteAlign Site2Vec
Geometric Graph Fingerprint/ Machine
matching matching histogram learning

Figure 1.5. Classification of state-of-the-art methods for protein pockets comparison. Alignment-based
methods (colored background) compute a transformation (rotation, translation) to superpose the query
to the target site whereas alignment-free methods (white background) do not provide visual

superposition.

The first category of algorithms searches for geometric (e.g. pairwise distances, angles, shape) and
chemical (identical or compatible types) constraints to match. It is not sound to be expecting a perfect
match, given the errors in 3D structure resolution, the flexibility nature of proteins, the aim to find
unobvious similarities. Therefore, a certain margin of geometric errors is always tolerated. PocketMatch
compares set of distances belonging to 90 combinations of atom types and properties to establish
correspondences between two pockets and keep the solution maximizing the number of
correspondences.*® Global alignment methods (P.A.R.1.S, SiteHopper, Shaper) try to maximize the

overlap between two cavities. A seed alignment is initialized, for example by superposing centroids or
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principal axes of the two sites, then optimized.8216171 SiteHopper and Shaper rely on the OpenEye tool
ROCS (OpenEye Scientific Software, Santa Fe, USA), where atoms/points are represented by smooth
Gaussians to enable fuzzy shape comparison.82™* A different approach for global optimization is to
establish seed correspondences—APoc compares local protein fragments, secondary structures, Milletti
et al. associate points based on their circular fingerprints’ similarity, eMatchSite relates Ca according to
seven residue-level scores, Patch-Surfer compares the patch surface properties by 3D functions—then
solves assignment problems by the Hungarian or other combinatorial optimization algorithms,51:52162.166
PocketAlign is based on a similar approach using BLOSSUMG62 weights when generating local seed

alignments, that are later extended to the full structures.'**

Alternatively, some methods partition the pocket by considering a few points each time. Given that at
least three points are necessary to superpose two objects without ambiguity, those methods enumerate
triplets (Brakoulias et al., Feldman et al., SiteEngine, SuMo, TrixP) or quadruplets (TIPSA) of feature
points in the query to iteratively search for equivalent cliques in the target.#253157.158.167.168 The formation
of the n-tuples can be customized to avoid promiscuous sets. In TrixP, triangles solely made of
hydrophobic features are not considered. A match can signify a simple correspondence of identical
chemical types and pairwise distances (SiteEngine, TIPSA) or of additional properties such as vector
angles, local shape (TrixP). Aligning all possible combinations is costly in time, hence SiteEngine and
TrixP respectively employ hashing and bitmap indexing allowing a ‘search IN” for faster identification

of similar patterns.

In the second category, selected points form the nodes of a graph. According to the cavity representation,
each node is annotated by a property and the edges by their lengths. Comparing two cavities results in
comparing two graphs to extract the (maximum) common subgraphs. To achieve this end, a product
graph is built, by associating similar nodes (property comparison) and edges of almost equal distances,
tolerating a certain deviation. Cliques are identified in this association graph to derive pairs of equivalent
points that can be used to superpose the two cavities. CavBase, G-LoSA, ProBiS, etc. (Figure 1.5) are
based on this principle. Differences between methods arise from the graph construction (minimal and
maximal distances to consider adjacent nodes), distance tolerances, and the definition of a property
match (identity or compatibility). For example, G-LoSA tolerates three different distance deviations
(1.5, 2.0 and 2.5 A) and further evaluates the alignment of local triangles within each clique of more
than four nodes.®® Clique detection is computationally expensive, particularly with dense graphs (e.g.
0.5 A grid spacing in IsoMIF).1® Therefore, it requires practically efficient solutions such as the Bron—

Kerbosch algorithm and improved variants.*"87

Methods in the third category generally adopt a global vision of the protein sites. They consider a pocket
as a fixed-length fingerprint or histograms, where comparing two pockets is calculating the similarity

or distances between their fingerprints/histograms. BSSF, FuzCav and KRIPO respectively compute
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couple or triplets of pharmacophoric features separated by binned distances. While the two former count
the number of occurrences of each combination, bits are activated in KRIPO when a combination occurs.
Later, KRIPO fuzzifies its fingerprints to account for the neighborhood phenomena.*® SiteAlign also
compare fingerprints, but contrarily to the other methods, the fingerprint of the query pocket is
iteratively generated, as it derives from properties of the cavity projected on a rotated/translated 80-face
polyhedron.** Since the site is discretized and a finite number of geometric transformations are sampled,
the performance of the search depends on the resolution of the steps, at the cost of the computing time.
Finally, Binkowski et al. and RAPMAD compare distributions of pairwise distances between the pocket
features.**1%® RAPMAD generates 14 histograms, one for each of the seven pharmacophoric features,
considering two centroids. The idea behind these implementations is that similar binding sites will
exhibit similar set of distances. However, these methods may suffer from matching redundant distances
that do not superpose geometrically. The advantage of fingerprints/histograms is to enable faster
comparison, without the computationally expensive alignment. Still, KRIPO and Binkowski et al.
generate an alignment independently of the comparison procedure for visual inspections, SiteAlign as
part of its search procedure.

Finally, the recent regain of interest for deep neural networks on chemical information favors the
emergence of data-driven methods for binding site comparison. Typically, binary classification models
are created to discriminate between similar and dissimilar pairs of pockets. Site2Vec transform the
features representing a cavity into a fixed-length vector that can feed a random forest classifier.
DeepDrug3D and DeeplyTough discretize the 3D space of the pocket as voxels, and logically train a
convolutional neural network (CNN) model.>>!” Besides the dependency to sufficiently diverse training
datasets for a generalized model, these approaches suffer from interpretability of the predictions.
Interestingly, DeepDrug3D exploits the activation map to visually highlight areas that largely contribute

to the classification.

The above-summarized methods use only the protein information for comparison. Provided the pocket
is delimited, they have a larger scope that reaches deorphanization of targets. When bound ligands are
available, comparing the protein-ligand interactions can be an efficient alternative, particularly when
the goal is to reproduce existing binding modes. Likewise, dedicated methods are based on graph

alignment (e.g.Grim) or fingerprints comparison (e.g. TIFP).1%

1.3.3. Local comparison of protein cavities

Looking for an average match that maximizes the overlap between entire cavities is not forcibly the
right solution to similarity estimation. Local comparison is a popular term, often used to differentiate

full protein structural comparison from protein site comparison. Here, we refer to truly local comparison
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of protein pockets (Figure 1.6), i.e. subpockets of approximately 3-to-4 A radius (for reference,
approximately the shortest distance between a chain of four atoms connected by simple bonds). Enabling
local similarity detection is relevant for drug design applications since a few similar subpockets between
two targets may suffice for a same ligand to bind. This observation was applied to explain the binding

of cyclooxygenase type 2 inhibitors to carbonic anhydrase.*®

Logically, methods that can operate locally have implemented detailed site representation and/or
adequate algorithms that partition the cavity during the search. In the G-LoSA example, global matches
are decomposed into local subsites to generate other solutions. Local comparison can also be achieved
by providing subpockets as input to the search algorithm. KRIPO enables to compare subpockets
delimited by fragmented ligands.* While the search algorithms are a major factor in detecting subtle
common motifs, how pocket similarities are quantified is equally important, since generalizing the score

over the full pockets might hinder any local similarity as well.

Query Target
@ @ Py @ ®
o @ g/
o N e e

N

Similar subpocket

>
-

T

Global matching Low similarity score

- -
—)
% i
Local matching High similarity score

Figure 1.6. Global versus local pattern comparison.

Local comparison is notably suitable to handle cases of conformational change upon ligand binding.®
By analogy to ligand versus fragment promiscuity, comparing smaller cavity regions is likely to be more
redundant at the proteome scale than comparing full cavities, enabling to catch similarities between
remote proteins but at the same time yielding possible unspecific matches. Finally, successful

discrimination requires a robust scoring scheme.
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1.3.4. Scoring functions

Scoring functions serve two purposes. They quantify the final output generated by the search algorithm.
In many cases (e.g., alignment-based), they are also used to guide the search and prioritize one among
several possible solutions. It is not uncommon to use distinct scoring functions for the search and final
quantification.*? Consequently, a method may implement an accurate representation and efficient search
algorithm but fail to accurately predict similarity levels if the scoring functions are incorrect. Some
analogy can be made with the problem of pose sampling and ranking in docking, leading to rescoring
efforts.’8! Aspects to consider when defining a scoring function for site comparison are (i) the
discriminative potential, (ii) the minimal and maximal boundaries, (iii) the broadness, (iv) the sensitivity
to the size of the cavities, (v) the interpretability. The very simple and intuitive scoring scheme counts
the number of common patterns between two pockets (Brakoulias et al.).*>® However, bigger sites would
tend to score higher as the chances for a match increase. To avoid this bias, methods account for the
size of the pockets using metrics such as the proportion of aligned features with respect to the
query/target size (FuzCav, PocketMatch), Tanimoto indices (IsoMIF, KRIPO, TIPSA, Shaper) and
Tversky indices (Shaper). SiteHopper adopts a linear combination of Tanimoto measures for shape and
chemical features matching. Almost all alignment-based geometric matching methods aim at
minimizing the root mean square deviation (RMSD) of superposition candidates or with respect to a
cutoff (Brakoulias et al., SuMo, etc.). In some cases, the RMSD is also a composite of the final score
(Milletti et al., PocketAlign). In the same way, CavBase R2 score accounts for the RMSD of
peudocenters when scoring the overlap of the surface grid points. Implementing successive scores
(Binkowski et al., ProBiS) enables the user to apply a custom filter according to the desired application.
For instance, SiteEngine proposes a hierarchical workflow where a gross evaluation allows to quickly
filter out bad solutions before applying a finer rescoring on promising matches. Instead of reporting
similarities, some methods rather measure the distances between pockets (SiteAlign)—the lower, the
better. BSSF and RAPMAD, which compare histograms, respectively report the Kolmogorov-Smirnov
and the Jensen-Shannon divergences. Scoring functions can be more complex, often at the cost of
interpretability (Feldman et al., eMatchSite, P.A.R.L.S).

Weights are used to give more or less importance to different variables (types of features, geometric
patterns) but their assignment are at best subjective 0166168 intuitive such as inverse of feature
frequency, or adapted from sequence alignment methods (BLOSSUM, PSSM).161.164.182183 proportioning
penalties of mismatches with respect to the positive contributions of the matches as in TrixP is tricky
and might better or worsen the discrimination performance in noisy representations. Fingerprint
comparison is delicate, when bins are counts or integer descriptors with variable ranges, or when
comparing two pockets of different sizes. Descriptors are normalized,* or the scores are corrected to

account for the increase of activated bits with respect to the size of the cavity.”® Finally, the
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commutativity of the score should be regarded, to ensure a consistent output whatever the

reference/query order.

A few studies*4751545682161 haye assessed the significance (Z-score, P-values) of their scoring by
analyzing random distributions or robustness to variations in the cavities (simulated data, molecular
dynamic simulations). While these studies offer a certain overview on possible scoring thresholds in
screening settings, we draw attention to their biases to used datasets.

1.4. Retrospective evaluations and datasets

To demonstrate their applicability, methods for comparing protein pockets have been evaluated for their
ability to (i) discriminate between similar and dissimilar binding sites (classification), (ii) retrieve similar
pairs seeded in decoys (enrichment), or (iii) cluster proteins belonging to the same families according
to other classifications (e.g. SCOP, functional annotations).6%184185 The availability of structural data

impacts the design of evaluation datasets.

As for any benchmarking study, the quality of the dataset is instrumental to the reliability of the
conclusions. Popular computational approaches such as molecular docking benefit from well-
established standards and datasets.'®®8” Predicting the binding affinity of molecules to a target can be
directly verified by experimental measures in many circumstances. Contrarily, pocket similarity cannot
be measured experimentally. Instead, similarity prediction suggests hypotheses such as the recognition
of similar ligands or the catalysis of the same reaction, which are then confronted to in vitro experiments.
What is conveyed here is that there is not a straight line between predictions and verifications since
ligand recognition involves other parameters likely not evaluated by site comparison methods, such as
the pocket flexibility, the influence of disregarded parts of the protein (residues outside the cavity), the
ligand conformations and energetics. Indeed, the ligand may bind to different proteins in different

conformations and using different interaction patterns.®

Nevertheless, many available datasets are used with the assumption that similar pockets are those
binding to identical or similar ligands, and vice versa (APoc set, Kahraman et al., TOUGH-M1,
TOUCH-C1, Barelier et al., Table 1.4).51.173177.188,189

These include proteins belonging to the same family for the easiest ones, and unrelated proteins for the
most difficult datasets. In these cases, unrelated proteins are predicted by other computational
approaches (sequence alignment, global structural comparison). Besides the discussions above, one
issue encountered with these definitions is how to set the similarity cutoff to group proteins and ligands.

Chen et al. (Vertex) dataset defines similar pairs as pockets in PDB proteins sharing at least three

55



Chapter 1. On the quest for estimating the similarity between protein pockets

submicromolar ligands according to ChEMBL while dissimilar pairs share at least three ligands with
large affinity variations going from one target to the other.!”* Although giving a different perspective,
this dataset is imbalanced as the similar pairs (n = 6598) largely outnumbered the dissimilar pairs (n =
379). Still, the main concern is the ChEMBL ligands used for annotation not necessarily be targeting
the PDB binding sites that are finally compared. Generally, datasets relying on ligand binding
information suffer from data incompleteness.’®*! Dissimilar pairs are based on limited
available/accessible binding information, because all ligands have not been tested against all targets.

Otherwise, some pairs labeled as ‘dissimilar’ might have fallen into the ‘similar’ classes.

Given the bias in the PDB data towards some protein-cofactors complexes and well-studied protein
families, methods have been extensively evaluated on nucleotide-binding pockets. Similarly, intrafamily
retrieval of proteases, kinases or steroid-binding sites were widely studied.**1621%2 Alternatively, other
datasets proposed pairs of similar and dissimilar sites based on their functional annotations (UniProt,
Enzyme Classification number)®® and fold (SCOP,%® CATH!84) starting from the non-redundant sc-

PDB database to reduce these biases.*47193

The ProSPECCTs benchmarking work intended to propose guidelines for methods evaluation while
revealing common issues.® Many datasets are too easy or do not correspond to realistic challenges.
Compilation of difficult cases, drawn from experimental observations are provided but such examples

are rare.**471%8 Finally, the most effective evaluations are prospective applications in research.

Table 1.4. Common datasets used in benchmarking studies for pocket comparison.

Purpose Name Content # Positive
(# Negatives)
Various 38 066
51
APOC set (38 066)
i 188 Various 62
Pairs of cavities from dissimilar Barelier et al.
proteins binding identical or similar | Homogeneous!®® Various 100
ligands (positives) and dissimilar
ligands (negatives) Kahraman et al. / Cofactor sites 100/ 972
extended®3.177
Vertex: positives are pairs of sites in Various 505 116
189
proteins sharing 3 high affinity TOUGH-M1 (556 810)
ligands (potency < 100 nM) vs. pairs ;
of sites in proteins sharing 3 ligands - Nucleotldes_, 2218
with divergent affinities TOUGH-C1 h'eme, steroid
sites
Various 6598
171
Vertex (379)
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Pairs of cavities associated to the Various 769
same (positives) or different sc-PDB-derived*’ (769)
(negatives) functions and fold class
. e Proteases, kinases, GPCRs, Estrogen -
Intra-family classification receptors* 4482162192
Diverse from 8
Difficult cases Difficult cases®®*" | experimental
validations
Diverse from 115
Successful applications ProSPECCTs D7% | experimental (56 284)
validations
Various 13430
ProSPECCTs D1
o (92 846)
Structures of identical sequences
ProSPECCTs Various 241
D1.2% (1784)
Various 7729
NMR structures ProSPECCTs D2%
(100 512)
Synthetic set: random mutations PrOSPECCTSs D3 Various 13430
y ' and D463 (67 150)

1.5. Applications in medicinal chemistry and practical

considerations

Protein cavities comparison have been used alongside with other computational methods to predict or
explain the binding of small molecules to different targets. Many of these success stories are described
in a recent review.® Following secondary targets prediction, structural information (e.g. bound ligands)
are used as hints to efficiently explore the chemical space for faster hit identification. Proposed putative
hits are directly tested experimentally or serve for designing focused screening libraries. The most
striking examples involve unrelated targets. For example, the graph matching method CavBase was
successful in detecting the subpockets similarity between cyclooxygenase type 2 (COX-2) and human
carbonic anhydrase (CA), supporting the nanomolar inhibition of CA by COX-2 inhibitors.*® Other
literature examples involving diverse methods are summarized Table 1.5. Practically, inspection of
aligned features or manual selection, in addition to the high similarity scores and rankings were carried
out, highlighting the advantage of alignment-based methods. Other computational studies by docking
and molecular dynamics simulations are used complementarily.’® Ligand induced fit of the protein

might hinder the detection of hidden similarity, hence the exploration of several query and target
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structures when available.'%% Although several studies are rather explanation of in vitro/clinical

observations*1®” than fully blind predictions or involve targets that were already known to share

common characteristics (evolutionary conservation,

cofactor ATP or NAD sites, kinases

polypharmacology),!%1%8-201 the detected similarities/divergences were to be proved and provided new

insights. Strikingly, pocket comparison has enabled new discoveries with limited to no preliminary

information. All together, these case studies demonstrated how the analysis of cavity similarities can

benefit drug design.

Table 1.5. Examples of binding site comparison applications relevant to medicinal chemistry.®

(SERCA, putative)

Year | Methods Primary target Secondary target Compound / affinity to
(Study)? secondary target
o
O=¢
CavBase Cyclooxygenase type | Human carbonic HN O‘N\ A
-
2004 1 ¢y 2 (COX-2) anhydrase (CA) A F
Celecoxib
|C50 =21nM
Querying SARS-Cov MP to a database of Design of a focused
CavBase ) ) ) ) )
2006 () amino acids-bound subpockets for peptide library of peptides
design ~7-20 uM
Sarcoplasmic
SOIPPA Estrogen receptor Reticulum (SR) Ca2+
2007 i Tamoxifen
(E)*’ alpha (ERa) ion channel ATPase

Inhibits thapsigargin
(SERCA inhibitor)

effects
Brakoulias et ~O~< HH@
Rationalization of cross-reactivity of kinase ' Hm@
2009 | al. o e @
oy inhibitors /
© Imatinib

2 Type of study: (C) confirmation, (E) explanation of experimental or clinical observations, (P)

prediction of new findings.
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Table 1.5. Examples of binding site comparison applications relevant to medicinal chemistry.

(continued)

Year | Methods Primary target Secondary target Compound / affinity to
(Study)? secondary target
O/
S. typhimurium ¢ O / ©
o
2009 CPASS?% Bcl-2 apoptosis type Il Secretion Q
(P) protein Bel-xL System Needle Chelerythrine
Protein (Prgl) 2D NMR binding
analysis
O¢|<|,O’
N
. Il CH
Catechol-O- M. tuberculosis enoyl- \
SOIPPA . . S e o
2009 Py methyltransferase acyl carrier protein OH
o]
(COMT) reductase (InhA)
Entacapone
MICgg = 260 M

SiteAlign ) ) )
2010 Pim-1 kinase Synapsin |
(P)199

Quercetagetin
ICso = 0.15 pM

)
Epidermal growth HN’Q:N
2011 SMAP HIV-1 protease factor receptor ;:\< OHO HN °
(p)204 HO X
(EGFR)
Nelfinavir

High micromolar

F
F o)
Lysine-specific Fo
PSSC2% Monoamine oxidase y P cl
2012 demethylase 1 & h

+ O
(Py>® (MAO) °
(LSDI) Namoline
ICso = 51 pM
. . Template ubiquitin Discovery of new Ub-
SiteEngine o o . ALIX-V:mono-Ub
2013 (Ub)-binding binding domain:
(P)® . MST Kd =119 uM
interfaces ALIX-V
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Table 1.5. Examples of binding site comparison applications relevant to medicinal chemistry.

(continued)

Year | Methods Primary target Secondary target Compound / affinity to
(Study)? secondary target
|
/NT\]
Epidermal growth (NN
SMAP B-secretase o/ HN, o~
2014 factor receptor @
(P)e (BACE-1) F
(EGFR) Gefitinib
|C50 =20 |J.M
HN
a Q My, N
o Q
2015 | KRIPO Cannabinoid receptor | Adenine nucleotide O “
(E)28 1 (CB1R) translocase 1 (ANT1) | Ibipinabant
Inhibition of ADP/ATP
exchange
NH,
(@] F
PocketFEA- F%O N cl
S.aureus FtsZ 2hnid
2015 | TURE L<SI@/
E 196,209 (SaFtSZ) ..
(B) Selectivity of PC190723 to SaFtsZ vs. other
species FtsZ and mutants SaFtsZ
Serotonin "
. NN
metabotropic Ionotropic a7 ~ hig fj
PocketMatch HOTeP _ N\j o I |
2015 (o receptors: nicotinic acetylcholine N
5-HT2R receptor (NAChR) SB-206553
5-HT.cR ECSO =15 |J.|V|
Peroxisome 0'07%0-
2015 PSIM?2 proliferator-activated | Cyclooxygenase type 3 °
(P):2 receptor gamma 1 (COX-1) Fenofibric acid
(PPARY) 1Cs50 = 950 uM
=
P
_ Tyrosine kinase _ -Q‘NH
TM-align?’ ) Acetylcholinestera-se | HN g B
2015 family members g o N
(P)*® (AchE) ‘
Pazopanib
1Cs0=0.93 uM
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Table 1.5. Examples of binding site comparison applications relevant to medicinal chemistry.8

(continued)

Year | Methods Primary target Secondary target Compound / affinity to
(Study)? secondary target

VolSite- cvel .
clooxygenase type
2019 | Shaper Y Y9 yP Cinnamoylesterase
P) 1 (COX-1) Flurbiprofen

Allosteric inhibition
(IC50 ~400 uM)

2 Type of study: (C) confirmation, (E) explanation of experimental or clinical observations, (P)
prediction of new findings.

1.6. Conclusions

This chapter have presented the current state of protein site comparison applied to small molecule drug
design. As one of the computer-aided drug design strategies, assessing the similarity of protein pockets
constitutes a unique way to analyze structural information, hence complement other well-spread
approaches. The repertoire of available methods is diverse with respect to the detection and
representation of cavities, the search algorithms, the scoring functions. All of these aspects must
somehow be coordinated to achieve the best performance. Still, limitation of experimental data and bias
in datasets constitute major obstacles to properly evaluate such methods. In reality, estimating protein
site similarity is context-dependent for different considered pairs, and for different studies. The
importance of matched features is influenced by the chemical context and physicochemical
considerations of the targets, making it hard to predict subtle and specific similarities from generalized
principles. One holy grail of computational chemists is to repurpose existing drugs proposed by
structure-based experiments. Although this pursuit appears at best hardly probable due to the
optimization of drugs to their targets,?2*?'> protein sites comparison have demonstrated its effective
contribution to medicinal chemistry projects, from the elucidation of previous biological observations
to generation of new hypotheses supported by experimentally validation. The majority of the-state-of-
the-art methods are based on superposition of the compared structures. Alignment allows visual
inspection and increase the possibilities of applications. Typically, pocket-bound ligands in the reference

frame can be transposed to the target pocket and serve as starting point for ligand generation.
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Improvement of the algorithmic efficiency of methods alongside with technological progress would

enable to better follow the current growth of publicly-available protein structures.

e
o :
& geometric
N matching

pattern =
signature
_ _ Scoring: subtle Local or
Ingredients ? Processing ? or pronounced ? global?
,-00(“J case-study #1 case study #2 case study #3

For each case study (meal), might correspond a different combination of methods (recipe).
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2.1. Scope, motivations, and novelty

In the previous chapter, we learned why protein pocket comparisons are useful and important in drug
design. We navigated through a broad range of state-of-the-art methods, which differ in how they
simultaneously represent, compare pockets and score their similarity. We think that the variety of
methods is an asset with respect to the difficulty in estimating pocket similarities and the quite different
applicability domains. The current work was initiated with this in mind. We strikingly observed the
underrepresentation of local comparison algorithms, which to our perspective, are suitable for
comparing pockets of different sizes. Thus, small protein areas that can bind fragment-sized moieties
(subpockets) can be appropriately compared to an entire pocket. The subsequent possibilities for drug
design looked promising.

By building on a previous work in our lab where a protein pocket is represented as a three-dimensional
(3D) cloud of annotated points (VolSite,' see Chapter 1), we aimed at exploring image recognition
approaches. Computer vision algorithms have been used in the field for decades, particularly in

alignment-based approaches.>”’

Herein, we introduced for the first time the application of sampling-based point cloud registration (PCR)
to the binding site comparison problem. PCR is originally applied to millions of points which represent
the surface of any kind of objects (tables, buildings, scenes, etc.). More information is given in section
2.2. We later found that at the time of this study, PCR only started being applied to ligand surfaces
comparison® while the shape descriptor has been used for classification of entire protein structures.®°
Independently, the choice of this algorithm was motivated by the resemblance between the standard 3D
image inputs and our pocket representation. Both are ensemble of 3D points with annotations: RGB
color for the first and distinct pharmacophoric properties for the second. However, the small-size (a few
hundred of points), sparseness, grid regularity, volumetric nature of the pocket clouds instead of

surfaces, and the definition of pocket edges questioned the applicability of PCR to our problem.

To delineate the two problems, common tasks of PCR would superpose objects which are known to
share overlapping areas. In the binding site comparison case, whether there is any overlapping area is

an additional variable to be estimated.

In this chapter, we have prototyped, optimized, and benchmarked a point cloud registration algorithm
to compare protein pockets. The open-source method has been publicly released at

https://github.com/kimeguida/ProCare.
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2.2. Previous work

This section only aims at summarizing the knowledge relevant to this chapter. For more details, we refer

the reader to the original papers.

2.2.1. Source of druggable protein-ligand complexes

The screening Protein Data Bank (sc-PDB)!! is a public database of curated protein-ligand complexes,
compiled by our laboratory. It was first released in 2006 and updated along the years.!* 3 It aims at
providing a non-redundant subset of the PDB, useful to find relevant starting data for structure-based
screening. Structures are selected according to several filtering rules: structure resolution, consistency
of annotations from different sources, nature of amino acids, the presence of pharmacological and buried
ligands. A careful treatment (e.g. ionization and protonation states of both protein and ligand atoms,
keeping bound water molecules) finally yields protein chain and ligand structures available in MOL2
formats, offering the advantage of atom type information and connectivity table. The database actually
provides more materials and services than stated. The 2016 archive consisted of ~16,000 unique protein-
ligand X-ray structures made of 4755 unique proteins, and 6326 unique ligands. The recent 2022 archive
(Bret et al., unpublished data) consists of ~37,000 unique protein-ligand complexes (X-ray, NMR, cryo-
EM), 7105 unique proteins and 13993 unique ligands. We draw attention to the fact that protein-ligand
redundancy was removed by binding mode analysis. In other words, only a representative protein-ligand
complex is kept out of the available PDB copies, even when residues slightly deviate due to local
flexibility. Outcomes for binding site comparison may be a loss of information. Nonetheless, this

database is a sufficient data source to evaluate and apply our method.

2.2.2. Point cloud registration

In computer vision, point cloud registration is the process of finding a transformation, i.e., the rotation,
translation and scaling that adequately superpose two overlapping clouds. It falls within the general
registration problem, whose applications span object reconstruction in robotics, medical imaging,
photography, cinematography, etc. Objects are modeled as two-dimensional (2D) or three-dimensional
(3D) color images when associated with a depth (RGB-D).* The depth information is the distance
between each pixel and a fixed reference, the camera. Hence, the 3D shapes of objects are characterized.
These data points are collected via range imaging techniques such as LIDAR (light detection and
ranging), tomography scanning, structured-light 3D scanners, time of flight 3D scanners, and
represented as point clouds, or processed into meshes and voxels by appropriate methods (Figure 2.1).

It is interesting to note that point clouds are unstructured and unordered data, without neighborhood
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information, and describing the surface of objects (i.e. what the camera can see). Contrarily, the point
clouds of protein cavities are volumetric data (i.e. any position in the cavity is independent of the

viewpoint), obtained first via voxelization.

B C D

Figure 2.1. Examples of different 3D representations. The Stanford Bunny model in A) voxel, B) sparse
voxel octree, C) point cloud, and D) mesh. Adapted from Fahim et al (2021).%

There are two scenarios of (point cloud) registration. In the first case, a set of correspondences between
the two models is known. In that respect, the registration task consists of finding the best alignment that
minimizes the superposition error. Estimating a transformation is a non-trivial exercise, influenced by
the presence of noise and the planarity of the sets.’® This is to account for when developing alignment-
based binding site comparison methods, where scoring and chances to detect similarity rely on proposed
superposition. In linear algebra, solutions to various definitions of the orthogonal Procrustes problem
are searched.'®'” The Kabsch algorithm is popular in the structural biology field to estimate a proper
rotation.>8 Translation is estimated by alignment of centroids. This singular value decomposition-based
solution was first introduced by Schénemann (1966), later proposed by Arun et al. (1987) and other
studies.’®® In 1991, Umeyama refined the Arun’s solution to handle noisy data.?® This implementation
is used in our method. Other solutions have been reported, based on orthonormal matrices, or

quaternions where both rotation and translation are calculated.?2

In the second registration scenario, there is no prior knowledge of equivalent points. It is a variable to
be estimated. Correspondence estimation is one of the fundamental problems in computer vision. The
iterative closest point (ICP)?*2 is a well know algorithm which repeatedly, associates the closest points
in the Euclidian space as correspondences and estimates a transformation until convergence. This
solution is not efficient and is sensitive to the initial guess, i.e. a good alignment is obtained provided a
good initial orientation. Also, ICP is prone to be trapped in a local minimum. To solve this issue, other
methods were implemented for global optimization of the alignment.?-2 Alternatively, shape
descriptors were developed to systematically recognize similar local areas in objects, including machine-
learning-based approaches.’>?°2 In our studies, data-driven approaches were first disregarded due to
the amount of data available and the quest for interpretability. Geometry-based approaches seemed
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suitable for our goals and were therefore investigated. Major open source and maintained packages for

point cloud processing and registration are listed Table 2.1.

Table 2.1. Community open-source packages for point cloud processing and registration

Name Source Language

CloudCompare cloudcompare.org C++

Open3D www.open3d.org C++, Python

OpenCV opencv.org C++, Python, Java, MATLAB
Point Cloud Library PCL pointclouds.org C++

At the time of this study, PCL has not been maintained for a while whereas its reimplementation Open3D
was being actively improved and offered two programming language interfaces. Hence, Open3D was

prioritized for our method development.
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2.3. A computer vision approach to align and compare protein

cavities: Application to fragment-based drug design

This section was integrally published in:
Merveille Eguida and Didier Rognan. J. Med. Chem. 2020, 63, 13, 7127-7142.

The open source code is available at: https://github.com/kimeguida/ProCare
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A Computer Vision Approach to Align and Compare Protein
Cavities: Application to Fragment-Based Drug Design

Merveille Eguida and Didier Rognan*

Cite This: J. Med. Chem. 2020, 63, 7127-7142 Read Online

ACCESS | |l Metrics & More | Article Recommendations | @ Supporting Information

ABSTRACT: Identifying local similarities in binding sites from distant
proteins is a major hurdle to rational drug design. We herewith present a
novel method, borrowed from computer vision, adapted to mine fragment
subpockets and compare them to whole ligand-binding sites. Pockets are
represented by pharmacophore-annotated point clouds mimicking ideal
ligands or fragments. Point cloud registration is used to find the
transformation enabling an optimal overlap of points sharing similar
topological and pharmacophoric neighborhoods. The method (ProCare)
was calibrated on a large set of druggable cavities and applied to the
comparison of fragment subpockets to entire cavities. A collection of
33,953 subpockets annotated with their bound fragments was screened
for local similarity to cavities from recently described protein X-ray
structures. ProCare was able to detect local similarities between remote
pockets and transfer the corresponding fragments to the query cavity
space, thereby proposing a first step to fragment-based design approaches targeting orphan cavities.
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2.3.1. Abstract

Identifying local similarities in binding sites from distant proteins is a major hurdle to rational drug
design. We herewith present a novel method, borrowed from computer vision, adapted to mine fragment
subpockets and compare them to whole ligand-binding sites. Pockets are represented by pharmacophore-
annotated point clouds mimicking ideal ligands or fragments. Point cloud registration is used to find the
transformation enabling an optimal overlap of points sharing similar topological and pharmacophoric
neighborhoods. The method (ProCare) was calibrated on a large set of druggable cavities, and applied
to the comparison of fragment subpockets to entire cavities. A collection of 33,953 subpockets annotated
with their bound fragments was screened for local similarity to cavities from recently described protein
X-ray structures. ProCare was able to detect local similarities between remote pockets and transfer the
corresponding fragments to the query cavity space, thereby proposing a first step to fragment-based

design approaches targeting orphan cavities.
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2.3.2. Introduction

Three-dimensional (3D) structures of protein-ligand complexes are the corner stones of structure-based
rational approaches to ligand design.! Among the many computational methods? to infer putative
relationships between ligand and target spaces, detection and pairwise comparison of protein-ligand
binding sites have gained considerable popularity in the last decade.®>® Potential cavities can be first
detected at the surface of macromolecules using a myriad of computational tools,® classically grouped
in three categories: geometry-based (e.g. CavBase,® VolSite,” Fpocket?), energy-based (e.g. GRID,® Q-
SiteFinder'®) and evolutionary-based (e.g. SURFNET-ConSurf!t), although some methods may
combine different approaches (e.g. Ligsitecsc®?, SiteMap*®). Whereas geometry-based approaches rely
on the prior calculation of the target's molecular surface to identify accessible pockets, energy-based
methods compute interaction energies on a 3D lattice between the target protein and several probe atoms.
Last, evolutionary-based tools require a multiple sequence or structural alignment of targets from the
same family to pinpoint evolutionary conserved motifs that can be linked to the recognition of specific
ligand structures. Interestingly, structural druggability or ligandability,'* the propensity to accommodate
high-affinity drug-like ligands, can be computed on the fly using machine-learning models® ” trained on
sets of known druggable and undruggable sites. Once pockets have been detected, they can be
systematically compared at a high-throughput to detect global similarities even in absence of fold
conservation.® Many descriptors (fingerprints, distance counts, pharmacophoric triplets, grid points,
point clouds, graphs, and shapes) of protein-ligand binding pockets can be used by geometric hashing®®
or clique detection® algorithms to find the most prominent shared features guiding the structural

alignment of protein cavities.

Following the basic principle that similar cavities recognize similar ligands, protein-ligand binding site
comparison methods have been successfully used in many drug discovery scenarios: (i) assigning a
function from a target's 3D structure,®*8 (ii) finding hits for a novel target,® (iii) prioritizing compound
library design,® (iv) repurposing ancient drugs for new targets,?® (v) explaining the
poypharmacological profile of known drugs,? (vi) predicting unexpected off-targets?>-?8 and extending
potential binding sites to new areas of target space.?=° A practical guide to navigate across all available

methods and benchmarking data sets has been recently described.3

Most of above-described methods consider pocket similarity from a global and not a local point of view.
In other words, current methods usually estimate the similarity between whole 3D objects (pockets)
without specifically rewarding the microenvironments (subpockets) responsible for that similarity. For
related protein pairs (e.g. serine/threonine protein kinases, aminergic G protein-coupled receptors), a
good alignment and similarity estimate will be found. However, current methods will generally fail to
find correspondences between binding pockets from totally unrelated proteins. The consequences are

two-fold. First, the proposed initial 3D alignment of both pockets will prioritize global properties (e.g.
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molecular shape, principle axes and moments of inertia) over particular microenvironments. A wrong
preliminary misalignment will therefore not be corrected after refinement and will lead to erroneous
similarity estimates. Second, inferring ligand information from pocket similarity searches (e.g. merging
ligand coordinates from one reference pocket to a target cavity) will address the entire ligand structure
as a whole, without any obvious clues about which ligand substructure ideally fits which subpocket.
Therefore, most existing computational methods are well suited to repurpose existing ligands for new
pockets,?2 but not to prioritize ligand fragments for specific protein subsites, a very important process

in fragment-based drug discovery.*

Fewer examples of subpocket comparisons are available to date.® **4° Existing approaches follow a
common flowchart made of four steps: (i) fragmentation of protein-bound PDB ligands into smaller
pieces; (ii) registration of protein-ligand non covalent interactions; (iii) definition of protein
microenvironments interacting with above-reported ligand chemical moieties; (iv) mathematical
representation of the microenvironment into a graph, pharmacophore or fingerprint; (v) pairwise

similarity calculation between a reference and a query microenvironment.

Reported methods differ in the level of ligand fragmentation (few connected atoms,® chemical group,3*
fragment®-39), the atomic definition of protein microenvironments (atom® or residue® based, surface
feature pseudoatoms?: 3" %) the computational representation of the subpocket (graph,3 3638
fingerprint®* %), the alignment method (clique detection,® rigid-body transformation,®* rmsd
alignment®) and the scoring function (simple Tanimoto or cosine metric,%3°  shape and/or
pharmacophore overlap,®*3* 3 rmsd of key atoms®) to estimate pairwise pocket similarity. To the best
of our knowledge, only retrospective validation of subpocket comparisons have been proposed, one of
the most impressive being the a posteriori molecular explanation to the unexpected cross-reactivity of
cyclooxygenase-2 inhibitors with human carbonic anhydrase.?! Moreover, most approaches are focusing
on fragment-bound sub-cavities and cannot easily predict local similarities between the whole of a novel
cavity and a collection of microenvironments. Last, the lack of availability of most methods (KRIPO3*

being a noticeable exception) hampers the usage of above-described tools.

There is therefore still a need for novel computational methods, notably those relying on novel cavity
representations and alternative alignment methods, applicable at a high throughout to compare entire
cavities to fragment-annotated protein microenvironment collections. Following the above guidelines,
we herewith present a novel pocket comparison method (ProCare: Protein Cavity registration),
particularly adapted to detect local similarity between entire cavities and fragment subpockets, that
significantly differs from existing computational tools. ProCare utilizes the concept of point cloud
registration, widely used in computer vision to compare and align 2D/3D images. We first describe the
implementation of the method to align and compare entire cavities. After parameter optimization and

fine-tuning a scoring function to evaluate pocket similarity, we then apply the new method to the
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comparison of fragment subpockets to full cavities, thereby enabling to fill new binding pockets with

complementary fragments.

2.3.3. Results and discussion

In computer vision, pattern recognition, and robotics, point cloud registration**424® is the process of
finding the best spatial transformation (e.g., scaling, rotation and translation) that aligns two point clouds
(Figure 1).

Cloud 1 Point Cloud :
Registration .

Overlay

Figure 1. Schematic representation of point cloud registration. The red cloud is rotated and translated

along its three main axes until the optimal alignment to the green cloud is found.

Since this concept may not be familiar to medicinal chemists, we here provide a brief summary of the
underlying principles and algorithms. The basic principle behind registration of two clouds of points
(cloud 1 and cloud 2) requires to first identifying pairs of equivalent points. Two points, respectively in
cloud 1 and cloud 2, will be considered equivalent if they are sharing a similar microenvironment, in
other words a similar topological arrangement of their neighboring points. Because the aim is to match
two geometrical shapes, the environment of a point is herein described by a histogram of angular values
called fast point feature histogram or FPFH (see Computational methods). For example, one can imagine
discriminating between carbon atoms in 2D representations of cyclobutyl and cyclohexyl moieties, as
we would do for the corners of a square and a hexagon, respectively. Since each descriptor of the FPFH
is a “count” of a certain angle value range, the similarity of two FPFHs can be estimated via a simple
Euclidian distance. However, the FPFH although complex, cannot avoid ambiguities in detecting
correspondences, especially when there exist irrelevant points (called outliers) that should not be
considered. A solution to rule out outlier points is the Random Sample Consensus (RANSAC)

algorithm**45, At each RANSAC iteration, a few points are randomly sampled in cloud 1, their
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corresponding points in cloud 2 are assigned, the relevance of these correspondences is verified by
comparing the topological distances and finally a rotation/translation is estimated to align the sampled
sets. This preliminary alignment, based on only a few points, is then refined with an iterative closest
point (ICP) method. ICP is an iterative algorithm® that minimizes the overall root-mean square deviation

between corresponding points in both clouds.

Interestingly, point cloud registration has rarely been used to overlay molecular surfaces of proteins*-3
and ligands.*® With respect to previous approaches using recognition algorithms to compare protein
cavities, 5! we here take advantage of our previous work describing a protein pocket by a point cloud
located in ligand space.” The cloud is described as an ensemble of 3D points regularly filling the pocket,
each point having a specific pharmacophoric property (“color”) complementary to that of the nearby
protein environment.” The cloud is therefore bigger (200-300 points), regular and complementary in
shape and pharmacophoric properties to flanking protein residues. We will first demonstrate the proof-
of-concept of applying this computational method to the problem of protein cavity alignments, next fine
tune a set of parameters enabling an optimal performance on a large dataset of known cavities, and then
propose a physicochemically relevant score to quantify the alignment and pocket similarity. Last, we
will apply the optimized method to the specific problem of finding local similarities between fragment

subpockets and whole cavities.

ProCare implementation and parameter optimization

Preliminary attempts suggested that many parameters of point cloud registration strongly influence the
quality of the alignment. We therefore systematically studied 15 key parameters (Table 1,
Computational methods) by enumerating 157,465 parameter combinations in order to consider their
effect of as well as their interdependencies. To test all these conditions, a very simple data set of five
similar pairs completed by five dissimilar cavity pairs (EASY1 set; Table S1, Computational methods)
was designed, just to filter out those parameter combinations that failed in either producing any kind of
alignment (fitness = 0), or could not perfectly discriminate similar from dissimilar pairs (ROC AUCs <
1). These two simple filters enabled to decrease the number of potential combinations from 157,465 to
20,181 (Figure 2).
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Alignment conditions 157465

Fitness >0 Filtered with EASY1 set
79698 I Filtered with BO1 set

ROC AUC=1

20181
RMSD
<2A

314
\ 4

Best alignment condition:
Top 5 ROC AUC, manual inspection

Figure 2. Selection procedure to determine the best alignment parameters. 157,465 different conditions
(a set of parameters) were initially enumerated and non-relevant conditions filtered-out with the EASY1
set. The 314 remaining alignment conditions were evaluated with the BO1 set and the best one selected
by its discrimination performance (high ROC AUC) and manual inspection.

For the remaining possibilities, the output transformation matrices were applied to the protein
coordinates of the similar pairs to ensure whether the corresponding protein structures were correctly
aligned (rmsd on backbone heavy atoms < 2 A) or not. A total number of 314 combinations (0.2 % of
the total number) still fulfilled the above-described requirements. In order to benchmark the 314
remaining alignment conditions, we designed a larger and much more diverse data set (BO1 set, Tables
S2 and S3, see Computational methods) of similar pairs and dissimilar pairs of cavities starting from
the sc-PDB archive of 16,034 druggable-protein-ligand complexes.> The BO1 data set consists of 766
pairs of non-redundant VolSite cavities (383 similar pairs, 383 dissimilar pairs) covering 507 different
proteins (460 in the set of similar, 178 in the set of dissimilar), 62 different sets of Uniprot functional

annotations for similar pairs and 38 for dissimilar pairs (Figure S1).

The 314 pre-selected conditions were used to align cavity pairs from the BO1 set. The area under the
ROC curve (ROC AUC) of a binary classification (similar, dissimilar) was calculated to rank each
condition using three possible scoring functions (ph4-strict, ph4-rules and ph4-ext) differing by the
fuzziness of allowed pharmacophoric matches (see Computational methods). We finally selected the
best alignment condition (see parameters in Table S4) that yielded a ROC AUC value of 0.87 (CI =
[0.85;0.89]), based on the ph4-ext scoring. Although the current approach was successful in aligning
and ranking cavity pairs from a large and diverse data set, we observed that some pairs of similar cavities
still remained misaligned (see example in Figure S2). Constraining the alignment to consider both shape
and color might solve the problem. However, the existing colored-ICP algorithm®® which aims at

optimizing both geometric (shape) and photometric (colors) terms is not suited here for two reasons: (i)
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ICP requires a starting point close to the optimal solution, meaning that ICP would not rescue initial
FPFH feature-based misalignments; (ii) the meaning and assignment of color in a pharmacophoric
context do not correspond to that utilized in image processing (RGB primary colors). Using the optimal
set of parameters on the BOL1 set, but refining the rough RANSAC alignment with the FPFH-colored-
icp method confirmed our initial hypothesis, as the corresponding AUC (ROC AUC = 0.83; CI =
[0.81;0.86]) was inferior to that reported above. We have therefore implemented a new descriptor to

improve the correspondences estimation during the feature-based alignment.

Improvement of the method with histograms encoding shape and pharmacophoric properties

In light of the interesting results we previously obtained with the FPFH-icp routine and regarding the
misalignment issues that arose, we have modified the FPFH descriptor implemented by default
(Computational methods). Similarly to the way that shape information is binned to form a normalized
33-bin histogram, we encoded the distribution of eight pharmacophoric features (Table 2;
Computational methods) in the neighborhood of a point into an eight-bin histogram, each bin
corresponding to one of the eight pharmacophoric features. The final 41-bin histogram, termed c-FPFH
(see Computational methods) was next utilized to improve RANSAC preliminary alignments of BO1
cavity pairs. Obtained results were compared to that obtained using the standard FPFH descriptor and
to the alignments obtained our previously-reported Shaper’ tool that uses a smooth Gaussian function to
optimize the shape overlap of cavity points. Using the ph4-ext scoring function to score alignment of
BO1 cavity pairs, the novel c-FPFH appears clearly superior to the standard one (c-PFPH, ROC AUC=
0.93, CI =[0.91;0.94]; FPFH, ROC AUC = 0.87) in discriminating similar from dissimilar pairs (Figure
3). The performance of the novel descriptor was almost similar to that obtained with the state-of-the art
Shaper alignment tool (ROC AUC = 0.92, CI = [0.90; 0.93]) on the same data set. The Shaper method’
was used here as a baseline alignment method for two reasons: (i) it has been favorably evaluated by
independent groups® 5 on different benchmarking datasets featuring various applicability domains and
comparison scenarios®®, (ii) it is the only tool that can unambiguously be compared to ProCare because
they use an identical input (two point clouds) for generating and scoring cavity alignments. Observed
differences are therefore directly explained by different alignment qualities, the scoring function used

by both methods remaining comparable.
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Figure 3. Evaluation of ProCare scoring in comparing cavities from the BO1 set. A) Receiver operating
characteristics (ROC) plot in ranking BO1 cavity pairs with the ph4-ext scoring function, using ProCare
(standard FPFH descriptor, new c-FPFH descriptor) and Shaper; B) Distribution of ph4-ext scores after
ProCare overlay with FPFH-icp refinement; C) Distribution of ph4-ext scores after ProCare overlay

with c-FPFH-icp refinement; D) Distribution of scores after Shaper overlay.

The improvement of the discrimination with c-FPFH descriptors is due to the correction of alignment
errors previously reported, which are consequently reflected on scores. Differences in the ranking
between methods is partially explained by misalignment of some similar pairs, and by the different
fuzziness level of the utilized scoring functions. In quite a few cases, alignments of similar cavities were
well approximated when evaluating the consequent alignment of the corresponding proteins, while the
scores were inferior to the median score obtained for similar pairs. For those misaligned pairs, we did

not find any correlation between alignment scores and chemical similarity of the cavity-bound ligands
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(Tversky on Morgan fingerprint and MCS uniformly ranged from O to 1). Another reason for
misalignments is the difference in shape (globular vs. planar) observed between the two cavities,
rendering neighborhood similarities of randomly sampled points difficult to catch. Of course, we cannot
exclude the possibility to have wrongly annotated BO1 pairs, particularly those predicted dissimilar.
However, observing a similarity between binding sites of functionally unrelated proteins is a very rare

event® so that, even if present in the data set, such cases are negligible.

Statistical evaluation of ProCare score distributions

The ability of the method combining c-FPFH descriptors for aligning and ph4-ext for scoring, was first
assessed by its ability to discriminate similar and dissimilar cavities of the BO1 set, using incremental
variations of the ph4-ext score (from here on ProCare score). The optimal discriminative power (recall
= precision = F-measure = 0.85) is obtained at a threshold value of 0.39 for the investigated data set
(Figure 4A). To check whether this threshold value is data set-dependent, we next generated a
background distribution of 2.5 million alignments (510 non-redundant BO1 cavities vs. 4,223 sc-PDB
cavities). 100 statistically representative samples of 100,000 values each, could be fitted to a generalized
extreme value (GEV) distribution (Figure 4B) according to the Kolmogorov-Smirnov test (D = 0.046,
P-value = 0.0292, a =0.02) with a probability density function of the type:

f(x) = exp(—(1 + kz)"Y*) (1 + kz)~*=Vk  k+0 1)

Jf(x)= exp(-z-exp(-2)) k=0
with k = -0.15024, s = 0.08338, m = 0.24475, z = %

The significance level p of the detected similarity represents the probability of obtaining the same or

higher similarity score Z >z by chance is:

p(Z>z)=1—-exp(—(1+ kz)_%) k#0 (2)
p(Z >z)=1—exp (—exp(—2)) k=0

From the background distribution, a statistically significant threshold for the ProCare score was set at a
value of 0.47, which corresponds to a p-value of 0.05. At this threshold, the classification of the previous
BO1 set yields to a lower recall (0.72) but a much better precision (0.95). From here on, ProCare will
be used with the above-reported best set of parameters, combining c-FPFH descriptors for aligning and

ph4-ext for scoring pocket alignments.
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Figure 4. Statistical evaluation and sensitivity of ProCare to variations in atomic coordinates. A)
Variation of statistical parameters (recall, precision, F-measure) of a binary classification model
(similar/dissimilar) of BO1 cavity pairs for increasing ProCare similarity score thresholds; B) Fitting
randomly sampled ProCare scores to a generalized extreme value (GEV) distribution. Repeated random
samples (n = 100) showed to be representative of the whole population of scores (Scipy combined p-
value for the 100 Kolmogorov-Smirnov p-values with Fisher’s method: 0.90). GEV parameters were

estimated with EasyFit.%

Benchmarking ProCare versus state-of-the art methods in a medicinal chemistry context

A fair comparison of a novel algorithm to state-of-the art competing methods is a difficult exercise
because of the many sources of possible biases that can directly influence pocket similarity
assessments:3! data set assembly, pocket definition, scoring metrics, purpose (e.g. off-target prediction,
polypharmacology, drug repurposing, target's function assessment). We herewith made the choice of a
classical medicinal chemistry scenario: Do two pockets bind to the same ligands (chemotypes) or not?
For that purpose, we revisited the recently published Vertex dataset®® comprising 6,598 positive and 379
negative protein pairs defined from 6,029 protein structures. Interestingly, pairs were chosen depending
on the availability (or not) of common high-affinity ligands (potency < 100 nM). However, the published
data set was strongly imbalanced (positive pairs >> negative pairs) and required some filtering (see
Computational methods) to reach an equivalent numbers of 338 positive and 338 negative pairs (Table
S5). Six publicly available methods (FuzCav,* Kripo,* PocketMatch,* ProBiS,* Shaper,’ SiteAlign®;
see Computational methods for more details), considered as state-of-the art cavity comparison tools by
independent groups,®!** were compared to the herein presented method for their ability to discriminate
positive from negative pairs by the simple estimation of their ligand-binding pocket similarity (Figure.
5).

As a general trend, methods mapping physicochemical and/or pharmacophoric properties onto binding
site atoms (FuzCav, PocketMatch, SiteAlign, KRIPO) outperformed the two methods (ProCare, Shaper)
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relying on descriptors mapped onto pseudoligand atomic coordinates. This observation is easily
explained by the design of the Vertex dataset that assigns positive pairs to very similar proteins of the
same target family (e.g. Ser/Thr protein kinase, protease) sharing high sequence and structure
homologies. However, these tools exhibit at least one drawback that does not exists with ProCare. First,
alignment-independent methods (FuzCav, PocketMatch) are very fast and accurate but produce results
that are hard to interpret since no protein overlay is generated. From a medicinal chemistry perspective,
the absence of protein alignment prevents transferring a ligand from a reference pocket to another one
and thereby hinders a structure-based hit to lead optimization. Second, the SiteAlign technology,
although very precise, is very slow (ca 30 sec./comparison) and presents a limited applicability domain
to short lists of proteins, unless executed in a distributed parallel computing environment. ProBiS allows
a precise classification of positive and negative pairs but at the cost of a low completeness (only 64% of
pairs could be treated, Figure 5).

True Positive Rate

FuzCav (0.831, 100%)
P Kripo (0.862, 95.2 %)
e PocketMatch (0.895, 99.4 %)

0.2 4 s ProBiS (0.896, 64.2%)
! ProCare (0.811, 99.7%)
1 d Shaper (0.774, 99.7%)
SiteAlign (0.858, 100%)

00 02 04 06 08 1.0
False Positive Rate

Figure 5. Receiver operating characteristics (ROC) plot for ranking 676 protein pairs (Vertex set: 338
positive, 338 negative) by decreasing pocket similarity, according to six different methods. Area under
the ROC curve and completeness (% of successfully processed pairs) are indicated in brackets for each

method.

Last, the KRIPO method that relies on known-protein ligand interactions to generate binding site
descriptors failed in producing results for 5% of test cases and cannot be used for apo-proteins. ProCare
therefore constitutes a widely applicable, robust approach to detect binding site similarity, as it is the

only method cumulating high speed (a few sec/comparison), good precision (ROCAUC = 0.81),
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interpretability (aligned proteins, list of distances between matched residues) and large applicability

domain (ligand-bound and ligand-free protein structures).

Detecting similarity between fragment subpockets and whole protein cavities

As demonstrated in the previous section, point cloud registration can be successfully applied to align
and compare entire protein cavities. Is it still applicable to smaller objects (fragment-binding sites), a
notoriously difficult problem in cavity comparisons?® To answer this question, we systematically
aligned cavity pairs from the Frag-Lig set®* (Table S6; Computational methods) in which the same
protein is bound to either a drug-like ligand or a substructural fragment of the later ligand (see
Computational Methods). A correct subpocket to full cavity alignment can therefore be easily deduced
after applying the ProCare transformation matrix to the corresponding protein-fragment complex and
computing two properties: (i) the rmsd of the fragment-bound protein to the full ligand-bound target,
(ii) the similarity of interactions observed between the full cavity and either the merged fragment or the
reference full drug-like ligand.

Examination of pocket sizes, expressed as the number of points in the corresponding clouds, confirmed
that the fragment-bound subpockets are much smaller than the entire cavities to which the corresponding
full ligands bind to (Figure S3). In 91% of the cases, a structural alignment of both protein structures,
performed by the combinatorial extension (CE) method,®? yields to a rmsd on C-alpha atoms below 2
A illustrating that no major conformational changes occurs at the protein level upon ligand binding,
when compared to the original fragment-bound protein structure (Figure 6A). In this context, ProCare
clearly outperforms Shaper in proposing reliable alignments (rmsd of protein backbone atoms <2 A) in
42% of cases vs. 34% for the Gaussian-based Shaper method (Figure 6A). For those structurally well-
aligned pockets, the ProCare score was higher than the previously defined threshold (score 0.47, p-value
= 0.05) in 98% of the cases, suggesting that scores obtained by aligning full cavities can be translated
to the comparison of pockets of very different sizes.

We next looked whether the better alignments proposed by ProCare, corresponds to a better positioning
of the fragments after rotation/translation to the full cavity. Since fragments were not always real
substructures of the full drug-like ligand counterpart (but sometimes just bioisosteric substructural
parts), we could not compute rms deviations on fragment atomic coordinates. We therefore estimated
the similarity of interactions between the fragment subpocket and either the ProCare-aligned fragment
or the native drug-like ligand, using a Tanimoto coefficient calculated on molecular interaction
fingerprints (1FP).%3
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Figure 6. Evaluation of ProCare alignment of fragment supockets to full cavities. A) Proportion of pairs
of proteins poses yielding rmsd on main chain atoms falling into the following intervals (A) [0;2[, [2;4],
[4;6], [6;10[, [10;00[ after applying the transformation matrix derived from ProCare and Shaper
alignments. The values were compared to the original structural alignments of the proteins obtained by
the CE algorithm;®2 B) Proportion of pairs of fragment poses yielding IFP similarity with their paired
ligands which falls into the following intervals [0;0.2], ]0.2;0.4], 10.4;0.6], 10.6;0.8], 10.8;1.0]; C)
Example of Shaper misalignment of cavities from cytochrome P121 bound to fragment 1G9 (PDB ID
41Q7) and ligand YTT (PDB ID 3G5H; rmsd of proteins backbone heavy atoms: 22 A; rmsd of ligands
matching substructure: 5.4 A): D) ProCare correct alignment of the same cavity pair (rmsd of proteins

backbone heavy atoms: 0.45 A; rmsd of ligands matching substructure: 0.59 A).
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Considering a conserved binding mode for IFP similarities higher than 0.6,%® the CE structural alignment
indicates that the fragment binding mode is conserved in the full ligand in 53% of cases (Figure 6B).
Provided with this baseline, ProCare succeeded in correctly positioning the fragment in the full pocket
in 35% of cases whereas Shaper was only successful in 28% of cases (Figure 6B), thereby confirming
that the better cavity alignments provided by ProCare also translates into better poses of the
corresponding fragment. In many examples, Shaper misalignments were indeed rescued by the herein

described point cloud registration (Figures 6C, D).

Virtual screening of fragment subpockets to assist fragment-based drug design: a first proof-of-

concept

We next extended the concept of fragment positioning inferred from binding sites alignments, to pairs
of unrelated proteins. In this fragment-based drug design exercise, we took high-resolution X-ray
structures of protein-ligand complexes recently disclosed for the first time in the Protein Data Bank, and
checked whether screening a collection of fragment subpockets for similarity to the novel query cavities
(Table 3), could help reconstitute, even partly, the masked query-bound ligands.

Table 3. Binding site comparison of three protein-ligand complexes recently released in the PDB.

Target PDB Ligand® Resolution, A Release date  Cavity size®
ID

M5 muscarinic receptor 60L9 OHK 2.5 2019-12-11 99

TNF-alpha trimer 600Y ATM 2.5 2019-12-25 208

Cysteinyl leukotriene receptor 2 6RZ8 KNZ 2.7 2019-12-11 241

2Ligand chemical component HET code
b number of cavity points. The volume of cavity (in A%) is the number of points x 3.375 (third power of

the grid resolution in A)

A collection of 33,953 fragment subpockets was obtained by fragmenting all sc-PDB-bound ligands (sc-
PDB fragment set, Computational methods) using a previously reported protocol,®* while keeping
protein-bound 3D coordinates. The fragment subpocket collection was then screened for ProCare
similarity to the three novel cavities whose structure had recently been disclosed and therefore not
present in the sc-PDB archive. After point cloud registration, the corresponding fragments were merged
into the coordinate frame of the query cavity using the optimal transformation matrix, and filtered
according to two criteria: (i) compliance to the fragment rule-of-three® (hence, our fragmentation
protocol may find no possible fragmentation of the sc-PDB ligand), (ii) ProCare score > 0.47.

Remaining fragments hits were then ranked by a composite score (FragScore, eg. 3) taking into account
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both pocket similarity and interaction fingerprint similarity when comparing selected fragments with

the masked ligand co-crystallized with the target query.

1
FragScore = Procaregcore + IF Py + EIF P_polargy,

where IFPsin is the similarity of full interaction fingerprints

and IFP_polarsim is similarity of polar interaction fingerprints

The first query cavity is small-sized (335 A3) and was retrieved from the recently published muscarinic

®3)

M5 receptor structure bound the tiotropium inverse agonist.® It is intended to be an easy challenge since

the same ligand bound to three related muscarinic receptor subtypes (M1, M3 and M4) in five sc-PDB

entries. Therefore, this first query was meant as a quality control of the ProCare alignment protocol and

subsequent scoring function. Hence, three tiotropium-based fragments are ranked among the top 33"

fragments (Table S7) and nicely posed with respect to the true M5-bound tiotopium pose (Figure 7A,

Table 4). Interestingly, highly ranked fragments derived from ligands bound to unrelated proteins (e.g.

Hemolymph juvenile hormone binding protein, PDB ID: 3A0S, Ligand HET: JH2; Histone deacetylase-
like amidohydrolase, PDB ID: 1271, Ligand HET: SHH; Figure 7B, Table 4) nicely overlaps M5-
bound tiotropium and suggest suitable starting points for fragment growing and/or linking.

FraglD: 5CXV_OHK_1_1
Rank = 1, FragScore = 1.61

FraglD: 3A0S_JH2_1_1
Rank = 10, FragScore =1.10

FraglD: 1271 SHH_1_1
Rank =11, FragScore = 1.10

FraglD: 4KZ0_1UJ_1_1
Rank =1, FragScore = 1.48

FraglD: 3R04_UNQ_1_1
Rank = 7, FragScore = 1.28

FraglD: 3N6U_TSU_1_1
Rank = 45, FragScore = 1.16
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FraglD: 1Q43_CMP_1_1 FragID: 3QCH_NX2_1_2
Rank = 22, FragScore = 1.15 Rank =7, FragScore = 1.25

FraglD: 1IRUO_CMP_1 1
Rank =1, FragScore = 1.43

FraglD: 3F9M_MRK_1_1 FraglD: 3DT1_P40_1 3
Rank =2, FragScore = 1.38 Rank = 10, FragScore = 1.21

Figure 7. ProCare positioning of sc-PDB fragments in novel cavities. Atoms are colored using a cpk
color-coding (nitrogen: blue; oxygen: red; sulfur; yellow; carbon of fragment: cyan/rosy salmon, green;
carbon of true ligand, white). A-B) Placing a fragment derived from a muscarinic M1 receptor-bound
ligand (PDB ID: 5CXV; HET: OHK), and a hemolymph juvenile hormone binding protein-bound ligand
(PDB ID: 3A0S; HET:JH2) in the muscarinic M5 receptor cavity (PDB ID 60L9); C-E) Placing a
fragment derived from a phosphatidylinositol 4,5-bisphosphate 3-kinase-bound ligand (PDB ID: 4KZ0;
HET: 1UJ), a protein kinase Piml-bound ligand (PDB ID: 3R04; HET: UNQ), and a LysR type
regulator-bound ligand (PDB ID: 3N6U; HET: NSU) in the TNF-alpha trimer cavity (PDB 1D 600Y);
F-G) Placing fragments derived from a catabolite gene activator protein-bound ligand (PDB ID: 1RUO;
HET: CMP), a potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 2-bound
ligand (PDB ID: 1Q43; HET: CMP), a receptor-type tyrosine-protein phosphatase gamma-bound ligand
(PDB ID: 3QCH; HET: NX2), a glucokinase-bound ligand (PDB ID: 3F9M; HET: MRK) and a MAP
kinase 14-bound ligand (PDB ID: 3DT1; HET: P40) in the cysteinyl leukotriene receptor 2 cavity (PDB
ID 6RZ8).
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Of course, visual inspection of the merged fragments into the query cavity space remains necessary to
optimize fragment hits (e.g. JH2 fragment lacks the necessary ammonium group for zt-cation interaction
to Tyr481) for the intended cavity. The second query cavity (681 A3) is present at the interface of an
asymmetrical tumor necrosis factor-alpha (TNF-alpha) trimer. This unique inhibitor-bound TNF
conformation has very recently been reported®” and has no comparable structure in the sc-PDB archive.
Nevertheless, several sc-PDB fragments (e.g. 4KZ0_1UJ, 3R04_UNQ; see list of top 100 scorers in
Table S8) selected from unrelated proteins, appear among the top ProCare scorers, and are true
bioisosteres of the benzimidazole moiety of the TNF-alpha inhibitor (Figure 7C-D, Table 4). The
ProCare poses of the selected fragments nicely overlaps that of the true ligand, and recapitulates
aromatic interactions exhibited by the bicyclic benzimidazole ring and a hydrogen bond to Tyr151 side
chain of the TNF-alpha cavity. Likewise, the disubstituted aromatic substituent of the true TNF-alpha
inhibitor is also mimicked by one of the top scoring aromatic fragment (3N6U_NSU, Figure 7E, Table
4).

Table 4. Selection of top-scoring fragments for three novel cavities.

Target? Fragment
Name® Rank FragScore® Procare  p-value IFPsim  IFP_polarsim
60L9 5CVX OHK 11 1 1.61 0.82 2.04e-12  0.53 0.50
3A0S JH2 11 10 1.10 0.57 0.006 0.53 0.00
1ZZ1 SSH 1 1 11 1.10 0.56 0.008 054  0.00
600Y 4Kz0 1UJ 1 1 1 1.48 0.57 0.006 0.67 0.50
3R04_ UNQ 1 1 7 1.28 0.65 1.63e-04 0.46 0.33
3N6U_TSU 1 1 45 1.16 0.64 7.8%-04  0.36 0.33
6RZ8  1RUO-CMP_11 1 1.43 0.55 0.010 043 050
3FOM_ MRK 1 1 2 1.38 0.57 0.006 0.64 0.00
3QCH_NX2 1 2 7 1.25 0.52 0.020 0.73 0.00
3DT1 P40 1 3 10 1.21 0.57 0.006 0.64 0.00
1043 CMP_1 1 22 1.15 0.47 0.054 0.43 0.50

2 Targets are named according to their PDB identifier (60L9, M5 muscarinic receptor; 600Y, TNF-
alpha trimer, 6RZ8, Cysteinyl leukotriene receptor 2)

b Fragment name (PDB_HET _C_M) is inferred from the cognate target PDB identifier (PDB), the
corresponding ligand chemical component (HET), the target cavity identifier (C), and the fragment
number (N).

¢ The Fragscore is computed according to eq. 3

98



Chapter 2. Development of a new method for local comparison of protein pockets

The last query used for this preliminary proof-of-concept comes from the structure of an antagonist-
bound cysteinyl leukotriene type 2 receptor (CysLTR2, PDB ID 6RZ8).% Again, this structure has no
similar homologue in the sc-PDB archive, such that the ProCare search for potential subpocket matching
has no obvious bias. The CysLTR2 pocket is wider (813 A%) than the two previous ones, and is fully
occupied by a high molecular weight ligand (ONO-2080365, HET: KNZ) filling three separate subsites,
thereby challenging ProCare for finding local similarity to each of the three subpockets and finding
appropriate fragments. The benzoxazine dicarboxylic acid-binding subpocket in CysLTR2 is found
similar to that of two adenosine-3',5'-cyclic-monophosphate (CAMP) pockets from unrelated proteins
(catabolite gene activator protein, PDB ID: 1RUO; Potassium/sodium hyperpolarization-activated
cyclic nucleotide-gated channel 2, PDB ID: 1Q43) with the cyclic phosphate group mimicking each of
the two carboxylic acids of the CysLTR2 antagonist (Figure 7F, Table 4) and interacting with a basic
residue (Arg82 for LRUO, Arg591 for 1Q43) that drives the subpocket similarity to the CysLTR2 cavity
(Figure S4). Local similarity to the central phenoxy-binding subsite is also found in a subpocket from
a receptor tyrosine phosphatase (PDB ID: 3QCH, Figure 7F, Table 4) with a nice overlap of the
corresponding dichlorophenyl fragment to the fluorophenyl substructure of the CysLTR2 ligand.
Another fragment mimicking both the benzoxazine and the central fluophenyl CysLTR2 antagonist is
selected by ProCare from remote pocket similarity to that of a glucokinase pocket (PDB ID 3F9M,
Figure 7G, Table 4). Last the hydrophobic CysLTR2 subsite accommodating the terminal
difluorophenyl ring of the bound inhibitor is found similar to that of a MAP kinase 14 subpocket (PDB
ID: 3DT1) with a nice overlap of the cognate phenyl fragment to the terminal aromatic ring of the
CysLTR2 ligand (Figure 7G, Table 4). Altogether, ProCare managed to find subpocket similarity
between each of the three CysLTR2 subsites with totally unrelated subpockets and proposes reliable
fragments for a structure-based fragment linking strategy (see the list of 100 top fragments in Table S9).
Importantly, subpocket similarity and fragment posing were found for very different reasons ranging

from salt bridge mimicry to the conservation of hydrogen bonds and hydrophobic/aromatic interactions.

We acknowledge that the empirical FragScore, used in the present exercise, can only be used in case the
query cavity is already filled with a ligand. It enables to retrieve either apolar/aromatic fragments
exhibiting a high interaction fingerprint similarity score (IFP), or polar/charged fragments with a high
polar interaction fingerprint similarity value (IFP_polar). Cavity pairwise similarity, expressed by the
ProCare score remains however the main driver for fragment selection, and can be used to query cavities
in the apo-state. The accompanying p-value gives a statistical support to the predictions and can be used

as a surrogate to the ProCare similarity value.
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2.3.4. Conclusions

We herewith present a novel computational method, inspired from computer vision, to align and
compare protein cavities. Cavities are represented as 3D point clouds annotated by pharmacophoric
properties mimicking that of an ideal ligand, and aligned by the point cloud registration. Importantly,
ProCare takes advantage of a novel point feature histogram to encode cavity microenvironments, thereby
favoring the overlay of supockets sharing similar geometrical and physicochemical properties. The new
method is able to align either entire pockets, subpockets, and compares subsites to full cavities. It
exhibits a comparable performance to state-of-the-art methods when tested across a variety of
benchmarking data sets. A key feature of ProCare is its unique ability to detect local similarities and
thereby compare cavities of quite different sizes (e.g. fragment-bound subpockets vs. full ligand-bound
cavities). We herewith provide the proof-of-concept of its application in a fragment-based drug design
scenario in which cavities from recently described X-ray structures have been compared to a collection
of fragment-bound subpockets. Local similarities undetectable with standard cavity comparison tools
are found by ProCare, and enable after cavity overlay, to directly locate the corresponding fragments in
the query cavity. Interestingly, proposed fragments are derived from remote targets that are totally
different from the query, and proved to be identical or bioisosteric to susbtructures of the unmasked
query cavity-bound ligand. Of course, designing a full ligand still requires to either grow and/or link
ProCare-aligned fragments with any of existing computational fragment linking tool.®®"2 Nevertheless,
the novel method enables to elaborate a fragment-based drug design strategy from the simple knowledge
of a cavity 3D structure, by simple detection of local similarities to a large collection of fragment-bound

subpockets.

In its current implementation, ProCare can still be optimized with respect to speed and completeness. A
pairwise similarity search can be achieved in a couple of seconds, but the cpu cost could be significantly
reduced by optimizing the nearest neighbor search and excluding irrelevant points in the preliminary
RANSAC alignment procedure. Moreover, usage of the RANSAC algorithm does not guarantee to find
the best possible solution to the registration. Deterministic algorithms able to find the absolute minimum
have recently been proposed” and should be tested further on. Last, the method could also be applied
to align ligands to cavity points, and propose a computer vision approach to the protein-ligand docking

problem. ProCare is freely available upon request to authors.
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2.3.5. Computational methods

Data Sets

EASY1 set. This data set consists of five pairs of known similar cavities and five pairs of known
dissimilar cavities (Table S1). Protein-ligand X-ray structures were extracted from the sc-PDB database
(http://bioinfo-pharma.u-strasbg.fr/scPDB)%2. Cavities were computed from ligand-free sc-PDB protein
input (mol2 file format) with using default parameters of the VolSite’ algorithm within the IChem v.
5.2.9 toolkit.” Cavity points, located on a 1.5-A three-dimensional (3D) lattice and annotated by
pharmacophoric properties,” were placed within 6 A of heavy atoms of the corresponding hidden ligand,
and visually checked with Pymol v.2.1.0.7

BO1 diverse set. Starting from all 16,034 sc-PDB protein-ligand complexes, unique proteins were
retrieved and clustered according to UniProt” keywords. Proteins without keywords (cluster “No
Keywords”) and singletons were discarded. For each cluster, the proteins sequences in fasta format were
retrieved from the UniprotKB API and gathered to form a multi-fasta alignment file of the cluster. In
case several isoforms were available for one protein, only the first one (default) has been considered.
Then, multiple sequence alignments were performed with Clustal Omega’” via the EMBL-EBI web
services REST API78using default parameters, and outputted in ClustalW format. The Percent Identity
Matrix (PIM) files were processed to retrieve pairs of proteins having different Uniprot AC and a
sequence identity between 50 and 100%. For enzymes (Function-Keywords containing one of the 6
enzyme classes), the Enzyme Classification (E.C.) number was fetched from UniprotKB and additional
filtering was performed to discard pairs having different E.C. numbers and pairs in which at least one
partner is not annotated with E.C. number (e.g. TTEMBL entries). At this stage, PDB atomic coordinates
of ligand-bound protein chains were extracted and structurally aligned with Sybyl-X 2.1.17°
("biopolymer align_structure" method, default parameters). Pairs of proteins for which the root-mean
square deviation (rmsd) of main chain coordinates is higher than 5 A were discarded. For 30 pairs, a

manual structural alignment was performed with Maestro v.11.9.0117° to rescue SYBYL misalignments.

For each of the remaining 643 pairs, corresponding cavities were computed from the position of their
bound ligands, as described above for the EASY1 set. The transformation matrix used to align the
proteins was applied to their corresponding cavities using the realign module of the IChem toolkit. Pairs
of cavity points were next analyzed for co-localization, by measuring all possible pairwise distances. A
pair was kept if three conditions were verified: (i) at least 45% of all pairwise distances are lower than
10 A, (ii) any cavity point in one pair member has more than 50 unique neighbors (d < 1.5 A) in the
cognate pair member; (iii) bound ligands according to Morgan fingerprints (radius = 2)% were not
identical (Tanimoto coefficient Tc # 1). Finally, a set of 383 pairs (Table S2) was annotated as "similar".

An equally-sized set of dissimilar pairs (Table S3) was defined from the above described clustering of
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UniprotKB keywords, as protein pairs sharing no single functional keyword and different ligands HET
codes with a chemical similarity, expressed by a Tanimoto coefficient on Morgan fingerprints (radius =
2), below 0.4. Finally, an equivalent number of 383 dissimilar pairs was retrieved randomly from that
list, with the constraint that the distribution of differences in cavity volumes between dissimilar pairs

matches that of similar pairs.

Vertex Set. The dataset was retrieved from the original publication® and comprises 6,598 positive and
379 negative protein pairs defined from 6,029 protein structures. Positive and negative labels were
originally assigned as whether the pair share high affinity common ligands (potency < 100 nM) or not.
The full dataset provides a total of 1,564,605 putative matches, considering multiple structures (e.g. 5
PDB entries for human CDKD5) and all possible bound ligands for a single protein structure. Since the
dataset is very imbalanced, a post-processing step was conducted to achieve an equivalent number of
positive and negative labels. For each possible protein pair, the chemical 2D similarity of their ligands
was computed from RDKit Morgan fingerprints (radius = 2) and the pair with the highest ligand
similarity saved as representative sample (for positive pairs, 0.4 < ligand similarity < 0.7). For each
remaining pair, the corresponding pockets were identified with the VolSite module of IChem, leading
to a final set of 338 negative and 841 positive pairs out of which 338 were randomly retrieved to achieve

an equivalent number of positive and negative samples (Table S5).

Frag-Lig set. This data set is a subset of the previously reported PDBmob data set,! and consists of 578
pairs of cavities from the same protein (same Uniprot AC), bound to a drug-like ligand and a
substructural fragment of the latter ligand. The data set provides already aligned protein-ligand/fragment
complexes for each target set. For each unique protein of the PDBmob data set, all possible pairs of
protein-fragment and protein-druglike ligand were formed. The Tversky similarity of the paired
fragments and ligands were calculated using RDKit Morgan fingerprints (radius = 2) and maximum
common substructures (RDKit FindMCS default parameters). A first selection conserved pairs with both
similarity metrics superior to 0.6. The corresponding cavities were computed with IChem VolSite using
default parameters. For fragment-bound structures, only the close vicinity (4 A) of the fragment was
considered for cavity detection (VolSite CAVITY_4 output). For ligand-bound structures, the entire
cavity (VolSite CAVITY_ALLoutput) was retrieved. This preliminary list was then filtered to remove
drug-like-bound cavities of smaller volume that that of the fragment counterpart. Then, fragment/ligand
occupancy in their cognate cavities was inspected to ascertain that any heavy atom has a cavity point
within a 2 A distance. Last cavity overlap (fragment-bound vs. ligand-bound) was computed by
estimating the number of fragment-bound cavity points with a close neighbor (< 2A) in druglike-bound

cavity points. Only pairs with 100% overlap were finally retained to yield 578 pairs (Table S6). For
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each pair, atomic coordinates of the fragment-protein complex were randomly translated by 10 A along
the three axes x-y-z and rotated by 180° along the x-axis, in order to put reference and target complexes

in different coordinate frames.

sc-PDB fragment set. For each of the 16,034 entries of the sc-PDB data set,* the corresponding 3D
structure of the ligand was fragmented using a previously-described protocol® in three steps. First, a
ring perception algorithm is used to detect aromatic and aliphatic rings of the ligand. Second, acyclic
atoms are then parsed to assign either a linker or substituent label, as whether to the corresponding bonds
are connecting two rings or not. Linker atoms are left unchanged. In case of substituent atoms, single
bonds involving the closest apolar carbon (in terms of bond distance) to any ring are later cleaved at the
condition that the cleaved bond is at least three bonds away from the cyclic root atom. Third, fragments
are kept at the condition that they make at least 4 interactions (including >1 polar or aromatic) with the
target. The fragment set contains 33,953 fragments out of which 7,294 are unique. For each of the 33,953
protein-bound fragments, the 4 A-surrounding cavity was computed in 1Chem VolSite as described

above.

Point Cloud registration

The herein described method relies on Open3D v.0.5.0,% a library for point cloud processing. The library
is available in C++ programming language but provides a python interface with pybind11, and allows
parallel computing via the OpenMP environment. For the sake of efficiency, Open3D was compiled and
installed from source in conda environment following the provided guidelines. Protein cavity files
computed with VolSite (mol2 format) were converted into PCD (Point Cloud Data) file format version
0.7. The Header was kept as default unless the “WIDTH” and “POINT” sections that were updated with
the cavity size (number of cavity points). The “DATA ascii” section contained the x, y, z coordinates of
the mol2 file and a fourth column assigning a color to each of the eight VolSite pharmacophoric
properties.” Normal vectors and fast point feature histograms (FPFH)®? were computed for the source
cloud and the target cloud. A first rough alignment was performed based on FPFH descriptors with the
Random Sample Consensus (RANSAC) method*® in an iterative way
(registration_ransac_based_on_feature_matching function). The rough alignment was subsequently
refined with an Iterative Closest Point algorithm*® (registration_icp function) starting from the
transformation matrix of the rough alignment. Alternative to registration_icp is
registration_colored_icp, which is a function considering the color of points to compute transformation
matrices. We further implemented a new descriptor, the colored-FPFH (c-FPFH). c-FPFH consists of
41 bins: the 33 FPFH bins, with eight additional normalized bins accounting for the distribution of the

eight colors (pharmacophoric properties) in the neighborhood of the point (Figure 8).
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Figure 8. Fast point feature histogram (FPFH) and colored fast point feature histogram (c-FPFH)
computation. A) Simplified schematic representation of a cloud of points. The neighborhood is
perceived without considering the points colors. Considering a point P4 (green) whose FPFH is to be
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computed, its neighbor points P* = {1, 2, 3} within a radius r are determined (green circle). For each
neighbor in P, their respective neighbors are also determined within the radius r; B) Between a point
and each of its neighbor, an ensemble of 0, a and ¢ angular values are computed to reflect the local
environment of each point; C) Each of the 0, a and ¢ computed values for the point Pq and its normal
nq are respectively binned into 11-bin histograms with regular intervals deduced from minimal and
maximal distances. The resulting 33-bin histogram forms the simplified point feature histogram (SPFH)
of the point Pq. Similarly, the SPFH is computed for each point in P¥; D) The FPFH of the point Pq is
the sum of its SPFH and the distance-weighted average of its neighbors’ SPFHs; E) Simplified
schematic representation of a cloud of points with perception of point colors. Considering a point Pq
(green) whose c-FPFH is to be computed, its neighbor points P* = {1, 2, 3} within a radius r are
determined (green circle). For each neighbor in P¥, their respective neighbors are also determined within
radius r; F) The 33-bin histogram SPFH is computed for the point Pg, in addition to eight bins coding
for the eight pharmacophoric features respectively, encompassing the percentage of each
pharmacophoric feature in P¥. The final 41-bin histogram forms the c-SPFH of the point Pq. Similarly,
the c-SPFH is computed for each point in P¥; G) The c-FPFH of the point Pq is the sum of its c-SPFH
and the distance-weighted average of its neighbors’ ¢c-SPFHSs.

ProCare parameters

A set of values were rationally defined for 15 Open3D parameters (Table 1). A combination of these
values led to 157,464 different alignment conditions.

All possible combinations were tested on the EASY1 data set and their performance evaluated in three
steps. First, parameter sets having rough and refined alignment fitness values higher than 0 were
retrieved and their corresponding alignments were rescored with the above-described ph4-strict scoring

scheme.

Table 1. Open3D parameters values for ProCare alignment (default values are underlined)

Parameter Tested values

RANSAC cycle number of validations, rn 2;4;5

RANSAC maximum number of validations, rv 50; 500

RANSAC maximum number of iterations, ri 50,000; 100,000; 4,000,000

Rough alignment transformation estimation type, gt TransformationEstimationPointToPoint
Rough alignment distance threshold in A, gd 0.75; 1.20; 1.50

Checkers similarity threshold, cs 0.90; 0.96; 1.00
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ICP alignment transformation estimation type, it TransformationEstimationPointToPoint;
TransformationEstimationPointToPlane

ICP alignment distance threshold in A, id 0.75; 1.50; 3.00; 6.00

ICP maximum iterations, ii 30; 100; 500

ICP relative fitness threshold, if 107; 10°%; 10°

ICP relative RMSE threshold, ir 107; 10°%; 10°

Nearest neighbor search radius for normals in A, nr 1.6;3.1; 10

Maximum number of neighbors for normal, nm 30; 4718

Nearest neighbor search radius for FPFH in A, r 2:3.1;4.6

Maximum neighbors for FPFH, fm 100; 1352

2Theoretical maximal value for 1.5 A-regularly spaced point sets.

Second, the area under the receiver operating characteristic (ROC) curve was assessed using either the
Tanimoto or the Tversky metric to rank alignment similarity values. Corresponding parameter sets were
conserved only if the ROC AUC was equal to 1. Finally, the target protein structures were aligned with
UCSF Chimera v.1.12% using the cavity transformation matrix previously generated by ProCare for
three EASY1 pairs (HIV protease: residues 1-99, 100-198; beta-2 adrenergic receptor: residues 1-202,
363-44; cyclin-dependent kinase 2: 2c6t-residues 1-35, 45-148; 1dm2 residues 1-35, 36-139, 140-272).
Only parameter sets leading to a mean rmsd (backbone heavy atoms) below 2 A were kept for further

analysis on the BO1 data set.

ProCare scoring

The quality of the alignment was estimated by two scores (fitness, RMSE) in Open3D. The fitness score
(eq. 4) measures the overlap of source and target clouds as the ratio of the number of inlier
correspondences (points in the source cloud that are fitted to the target cloud, based on a nearest neighbor

search on coordinates after transformation) to the total number of points in the source cloud.

Number of inlier correspondences (4)

itness =
f Total number of points in source cloud

RMSE (eg. 5) is the root-mean square error between corresponding pairs of points in source and target

clouds.
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N
1
RMSE = NZ(Psi —Pt)?,  Ps € Pyurce, Pt € Prgrger
i=1

®)

We then implemented 3 additional scoring functions (ph4-strict, ph4-rules, ph4-ext) to evaluate the

alignment of pharmacophoric properties. The ph4-strict scoring method, relies on the ball-tree algorithm

implemented in scikit-learn,® and searches for the nearest neighbor point in the largest cavity for each

point of the smallest cavity, within a maximum distance d ( d = 1.5 A by default). Three similarity

indices (Tanimoto, Tversky, Wei) are computed for each alignment (eq. 6-8).

¢ (6)
a+b

Tversky(a,B) =

Tanimoto =

c

a(a—c) + f(b—c)+c’ (¢=0.95, 6=0.05) (7)

properties (8)

C.
£%, i€ {CAC2,0,N,001,N7,06,00)
i

Where c is the number of fitted points of identical pharmacophoric properties,

Wei =

a and b are number of points of the smallest and the largest cavity, respectively,
ci is the number of points of property i aligned,

fi is the average frequency of points with property i in all sc-PDB cavities.

The ph4-rules scoring function is defined as the ph4-strict, with ¢ equal to the number of fitted points

of similar pharmacophoric properties (Table 2). The ph4-ext scoring function is defined as the ph4-

strict, with ¢ as the number of points in the smallest cloud which has a point of the same property of any

of its neighbors in the target cloud. As for the ph4-strict scoring method, the Tanimoto, Tversky and

frequency-weighted metrics are calculated.

Table 2. Pharmacophoric matching rules used by the ph4-rules scoring function.

Property Definition Compatible pharmacophoric properties
CA Hydrophobic CA,Cz

Cz Aromatic Cz,CA

N H-bond donor N, NZ, OG

NZ Positive NZ, N, OG

0] H-bond acceptor 0O, OD1, OG

OoD1 Negative OD1, O, OG

oG H-bond acceptor & donor OG, N, O, OD1, NZ

DU Dummy atom DU
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Shaper comparisons

Starting the from the same set of point clouds, Shaper’ relies on the OpenEye ShapeTK toolkit®® and a
smooth Gaussian function to maximize the overlap of both cavity shapes and colors (pharmacophoric
properties). The alignment between cavities A and B was scored as the higher of two Tversky metrics
(eg. 9-10).

S. = O 9)
4870951, +0.0515 + 0
OuB (10)

Sip =
48 7 0.051, + 09515+ Oy

where Oag is the overlap between colors of cavities A and B, and | non-overlapped colors of each entity

A and B.

FuzCav comparisons

FuzCav is an alignment-independent ultra-fast pocket similarity tool®” relying on generic 4833-integer
vector registering counts of all possible pharmacophoric triplets from the C-o. atomic coordinates of
binding site-lining residues. The code was retrieved from authors' website®® and used with default
parameters on binding sites (mol2 file format) deduced from atomic coordinates of the bound ligand,
selecting any amino acid for which one heavy atom is present in a 6.5-A radius sphere centered on the
geometric barycenter of ligand heavy atoms. Similarity between two pockets was estimated from the

Hamming distance between the two compared fingerprints.

KRIPO comparisons

KRIPO discretizes protein- bound ligands into small fragments and further describe their binding
subpockets by 3-point pharmacophore fuzzy fingerprints.®® Similarity between two fingerprints is
estimated by a modified Tanimoto coefficient taking into account the mean density of each bit string.
The code (version 1.0.1, released date: 2018-03-28) was downloaded from https://github.com/3D-e-
Chem/kripo. For purposes of comparing to other methods, default parameters were used to compute
fingerprints without fragmentation using ligand expo sdf files.®” Lastly, fingerprints similarities were

computed with Kripodb using default parameters and setting the score cutoff to 0.

108



Chapter 2. Development of a new method for local comparison of protein pockets

PocketMatch comparisons

PocketMatch®® describes a binding pocket as a set of 90 lists of sorted distances between three sets of
critical atoms (Ca, CPB and centroid of the side chain) of any cavity-lining residue classified in five
groups according to their physicochemical properties. Similarity between two binding sites is scored as
the net average of the number of matching distances in the 90 lists as a fraction of the total number of
distance elements in the bigger set. The program (version 2.1) was retrieved from authors' website® and
used with default parameters from ligand-binding sites in regular PDB file format. Similarity between
two pockets was estimated using the P_max_OP score.

ProBiS comparisons

ProBiS detects structurally similar sites on protein surfaces by local surface structure alignment using a
fast maximum clique algorithm.*® The program (version 2.4.7) was downloaded from the authors' web
site.® Starting from protein-ligand PDB files, default settings were used at the exception of the distance
used to define binding site atoms from ligand atomic coordinates which was raised from 3.0 (default

value to 6.5). Similarity between two pockets was estimated using the alignment score.

SiteAlign comparisons

SiteAlign® is an alignment-dependent algorithm describing a pocket by eight topological and
physicochemical attributes, projected from the Ca-atom of cavity-lining residues to an 80 triangle-
discretized polyhedron placed at the center of the binding site, thus defining a cavity fingerprint of 640
integers. 3-D alignment is performed by moving the sphere within the target binding site while keeping
the query sphere fixed. After each move, the distance of the newly described cavity descriptor is
compared to that of the query, the best alignment being that minimizing the distance between both cavity
fingerprints. The program (version 4.0) was retrieved from authors' website® and used with default
parameters from ligand-binding sites in regular mol2 file format. Similarity between two pockets was

estimated as 1 minus the d2 score.

ProCare running times

Cavity alignments were run on a 64-bit Intel Core i5-4590 @ 3.30 GHz processor with 4 threads, 16 Go

RAM. Average running time of a pair-wise comparison is 2.17 s.
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Statistical analysis

Data analysis was performed with in-house python scripts. The 90 % confidence intervals Cl = [iypper
» Liower] Tor area under the ROC curve were obtained with 5,000 bootstrap samples, where i, and
i1ower Were calculated with the NumPy®°package to be the 95" and the 5™ percentiles. Sampling fitting
to the generalized extreme value (GEV) distribution and statistical tests were performed with EasyFit*®

and Scipy.*

2.3.6. Associated content

Supporting Information

The supporting information is available free of charge on the ACS Publications website at DOI:
https://dx.doi.org/10.1021/acs.jmedchem.0c00422.

Properties of the BO1 data set of 766 protein-ligand cavity pairs; Example of misalignment for a pair of
similar cavities from the BO1 set; Distribution of pocket size for fragments (light blue) and full cavities
(dark blue); ProCare overlay of cavities from unrelated targets; EASY1 set of similar and dissimilar
pairs; List of BO1 similar pairs; List of BO1 dissimilar pairs; Optimal parameters to align cavities from
the BOL1 set; Revised Vertex dataset of 338 positive and 338 negative pairs; Frag-Lig set of 578 pairs of
protein-fragment and related protein-ligand and complexes; Fragment hits for the muscarinic M5
receptor (PDB ID 60L9); Fragment hits for the TNF-alpha (PDB ID 600Y); Fragment hits for the
cysteinyl leukotriene receptor 2 (PDB ID 6RZ8).
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2.3.8. Supporting information for A computer vision approach to align and

compare protein cavities: Application to fragment-based drug design

Figure S1. Properties of the BO1 data set of 766 protein-ligand cavity pairs
Figure S2. Example of misalignment for a pair of similar cavities from the BO1 set.

Figure S3. Distribution of pocket size for fragments (light blue) and full cavities (dark blue). Size is
expressed as the number of points (voxel centers) encompassing the pocket placed in a 2 A-regular 3D

lattice.

Figure S4. ProCare overlay of cavities from unrelated targets.

Table S1. EASY1 set of similar and dissimilar pairs

Table S2. List of BO1 similar pairs

Table S3. List of BO1 dissimilar pairs

Table S4. Optimal parameters to align cavities from the BO1 set.

Table S5. Revised Vertex dataset of 338 positive and 338 negative pairs

Table S6. Frag-Lig set of 578 pairs of protein-fragment and related protein-ligand and complexes.
Table S7. Fragment hits for the muscarinic M5 receptor (PDB ID 60L09).

Table S8. Fragment hits for the TNF-alpha (PDB ID 600Y).
Table S9. Fragment hits for the cysteinyl leukotriene receptor 2 (PDB ID 6RZ8).
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Figure S1. Properties of the BO1 data set of 766 protein-ligand cavity pairs (383 similar, 383
dissimilar). Because the notion of similarity and dissimilarity of protein pockets is context-dependent,
we defined two similar cavities as deriving from pairs of different proteins (different Uniprot accession
numbers) that are similar in terms of sequence (50-100% identity), structure (rmsd on backbone atoms
<5 A) and functions (Uniprot keywords annotation). No constraint was applied on the bound-ligand
chemical similarity, so that different cases are represented (0 < chemical similarity < 1; see
Computational methods for similarity calculation). Conversely, pairs of dissimilar cavities were formed
from the same target space, but need to be different in terms of function and bound ligands (0 < chemical
similarity < 0.4) in order to rule out potential wrong class annotations. The final sets of similar and
dissimilar cavities have comparable distribution of size (i.e. number of points) difference between
members of each pair, with the aim of eliminating possible biases in results due to alignment of

differently-sized objects.
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A) Protein-bound ligand similarity (Tanimoto coefficient from Morgan fingerprints) vs. protein
sequence identity (PIM of Clustal Omega alignment with default parameters) for similar (blue) and
dissimilar pairs (redbrick); B) Distribution of the difference in the size of cavity point clouds for

dissimilar pairs; C) Distribution of the difference in the size of cavity point clouds for similar pairs.

Figure S2. Example of misalignment for a pair of similar cavities from the BO1 set. A) ProCare FPFH-
icp alignment of 3-(4,5,6,7-tetrabromo-1H-benzotriazol-1-yl)propan-1-ol cavity in casein kinase Il
subunit alpha’ (PDB ID: 30FM, HET: 4B0) to phosphoaminophosphonic acid-adenylate ester cavity in
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casein kinase Il subunit alpha (PDB ID: 3U87, HET:ANP). The ProCare transformation matrix was
applied to ligand and protein atomic coordinates and showed misalignment of proteins (rmsd of protein

backbone heavy atoms: 43 A); B) ProCare c-FPFH-icp correct alignment (rmsd of proteins backbone
heavy atoms: 3.1 A) of the same pair.

[ Fragment pockets
Il Entire cavities

Frequency (%)
P
o

0 100 200 300 400 500 600
Size (nb. of points)

Figure S3. Distribution of pocket size for fragments (light blue) and full cavities (dark blue). Size is

expressed as the number of points (voxel centers) encompassing the pocket placed in a 1.5 A-regular
3D lattice.
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A

K194

Figure S4. ProCare overlay of cavities from unrelated targets. A) Alignment of a phosphoribosyl-
binding subpocket in catabolite activator protein CAP (PDB ID: 1RUO, HET: CMP) to full ONO-
2080365 binding site in cysteinyl leukotriene receptor 2 CYSTLR2 (PDB ID: 6RZ8, HET: KNZ). The
derived transformation matrix was applied to the corresponding fragments and protein atomic
coordinates. In both proteins, basic residues (K194 in CYSTLR2 and R82 in CAP) interacting with
acidic groups in ligands were matched. Hydrogen-bond acceptors (Y119 in CYSTLR2 and E72 in CAP),
aliphatic hydrophobic residues (L190 in CYSTLR2 and A84 in CAP) are also matched; B) Alignment
of N-(1,3-thiazol-2-yl)benzamide moiety binding environment in glucokinase (PDB ID: 3FOM, HET:
MRK) to full ONO-2080365 binding site in cysteinyl leukotriene receptor 2 CYSTLR2 (PDB ID: 6RZ8,
HET: KNZ). The derived transformation matrix was applied to the corresponding fragments and protein
atomic coordinates. In both proteins, aromatic residues (Y97, Y119, Y123in CYSTLR2 and Y61, Y214,
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Y215 in glucokinase), basic residues (K194 in CYSTLR2 and H156 in glucokinase), acidic residues
(E97 in CYSTLR2 and D158 in glucokinase), aliphatic hydrophobic residues (L198 in CYSTLR2 and
V452 in CAP) were matched.
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Table S1. EASY1 set of five similar and five dissimilar pairs

[2-adrenergic Estrogen Cyclin-dependent | HIV-1 protease Glutamate
receptor receptor o kinase 2 receptor 2
2RH1 5D6L | 20UZ 3ERT | 2C6T 1DM2 | 1C6X 2B7Z | 1FTL 1LB9

5D6L

3ERT

2C6T -

1DM2

1C6X

2B7Z

1FTL -

1LB9

Five targets are represented by two protein-ligand complexes, each (PDB identifiers given as column
and row names). The pairs of similar and dissimilar cavities are displayed by green and red boxes,
respectively.
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Table S2. List of BO1 similar pairs

The list of the 383 pairs of similar cavities is available as supporting information at:
https://doi.org/10.1021/acs.jmedchem.0c00422: jm0c00422_si_001.pdf

Table S3. List of BO1 dissimilar pairs

The list of the 383 pairs of dissimilar cavities is available as supporting information at:
https://doi.org/10.1021/acs.jmedchem.0c00422: jm0c00422_si_001.pdf

Table S4. Optimal Open3D parameters to align cavities from the BO1 set.

Parameter Value
RANSAC cycle number of validations, rn 4
RANSAC maximum number of validations, rv 500
RANSAC maximum number of iterations, ri 4,000,000

Rough alignment transformation estimation type, gt
Rough alignment distance threshold in A, gd
Checkers similarity threshold, cs

ICP alignment transformation estimation type, it
ICP alignment distance threshold in A, id

ICP maximum iterations, ii

ICP relative fitness threshold, if

ICP relative RMSE threshold, ir

Nearest neighbor search radius for normals in A, nr
Maximum number of neighbors for normal, nm
Nearest neighbor search radius for FPFH in A, fr

Maximum neighbors for FPFH, fm

TransformationEstimationPointToPoint
15

0.9
TransformationEstimationPointToPoint
3

100

10-6

10-6

3.1

471

3.1

135
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Table S5. Revised Vertex dataset of 338 positive and 338 negative pairs

The list of the pairs of similar and dissimilar cavities is available as supporting information at:
https://doi.org/10.1021/acs.jmedchem.0c00422: jm0c00422_si_001.pdf

Table S6. Frag-Lig set of 578 pairs of protein-fragment and related protein-ligand and complexes.
The list of the pairs of cavities is available as supporting information at:
https://doi.org/10.1021/acs.jmedchem.0c00422: jm0c00422_si_001.pdf

Table S7. Fragment hits for the muscarinic M5 receptor (PDB ID 60L09).

FraglD? Protein name Rank ProCaRe” IFP¢ IFP_polar? FragScore®
5CXV_OHK_1 1  Muscarinic acetylcholine receptor m1 1 0.82 0.54 0.50 1.61
IN43 BTN_1 1 Streptavidin 2 0.48 054 0.50 1.27
1UMK_FAD 1 1 Nadh-cytochrome b5 reductase 3 0.60 042 0.50 1.26
1YRO_GDU_2 2  Alpha-lactalbumin 4 0.48 0.46 0.50 1.19
1CO0I_ BE2 2 1 D-amino acid oxydase 5 0.63 0.27 0.50 1.16
4U16_OHK_1 1 Muscarinic acetylcholine receptor m3 6 0.72 0.43 0.00 1.15
3HV6 R39 1 1 Mitogen-activated protein kinase 14 7 0.56 0.33 0.50 1.14
3RPE_FAD_1 1 Modulator of drug activity b 8 0.62 0.25 0.50 1.12
3U2L_FAD 11 Fad-linked sulfhydryl oxidase alr 9 0.61 0.25 0.50 1.11
3A0S JH2 11 Hemolymph juvenile hormone binding 10 0.57 0.53 0.00 1.10
rotein
1771 SHH 1 1 Izistone deacetylase-like amidohydrolase 11 0.56 0.54 0.00 1.10
4BMZ_MTA_1_1 Mta/sah nucleosidase 12 0.47 0.36 0.50 1.08
2YG3_FAD 2 3 Putrescine oxidase 13 0.49 0.33 0.50 1.07
1S3V_TQD 1 2 Dihydrofolate reductase 14 0.53 0.54 0.00 1.07
3HZG FAD 1 1  Thymidylate synthase thyx 15 0.48 0.33 0.50 1.07
1QJX_Wo02_1 3 None 16 0.58 0.45 0.00 1.04
2EIX_FAD_2 1 Nadh-cytochrome b5 reductase 17 0.47 0.31 0.50 1.03
3QCI_NX3 1 2 Receptor-type tyrosine-protein phosphatase 18 0.64 0.38 0.00 1.03
gamma
3G5E Q74 1 1 Aldose reductase 19 0.52 0.50 0.00 1.02
4U15 OHK 1 1 Muscarinic acetylcholine receptor m3 20 0.67 0.36 0.00 1.02
3VLN_ASC 11  Glutathione s-transferase omega-1 21 0.54 0.23 0.50 1.02
4H96 14Q 1 3 Dihydrofolate reductase 22 0.55 0.31 0.33 1.02
4B11_A8P_1 2 Poly(adp-ribose) glycohydrolase 23 0.52 0.25 0.50 1.02
3VTB_TKA_1 1  Vitamin d3 receptor 24 0.52 0.50 0.00 1.02
3ETE_NDP_11 3  Glutamate dehydrogenase 25 0.48 0.29 0.50 1.01
2BF4_FAD_1_1 Nadph-cytochrome p450 reductase 26 0.51 0.25 0.50 1.01
4)JJU_1MB 2 1 Genome polyprotein 27 0.51 0.50 0.00 1.01
2PDG 47D 1 1 Aldose reductase 28 0.62 0.38 0.00 1.01
4AA0 AAO0 1 3 Mitogen-activated protein kinase 14 29 0.48 0.27 0.50 1.01
1VOT HUP_1 1  Acetylcholinesterase 30 0.54 0.47 0.00 1.00
10E0 TTP 2 2 Deoxyribonucleoside kinase 31 0.60 0.15 0.50 1.00
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3PX3.T3Q 2 1 N-methyltransferase 32 0.49 0.25 0.50 0.99
4U14 OHK 1 1 Muscarinic acetylcholine receptor m3 33 0.56 0.43 0.00 0.99
4GCA 2X9 1 2 Aldose reductase 34 0.61 0.38 0.00 0.99
2G27_4LG_2 1 Renin 35 0.56 0.42 0.00 0.98
3GHR _LDT 1 2  Aldose reductase 36 0.59 0.38 0.00 0.98
2PDX_ZST_1 2 Aldose reductase 37 0.54 0.44 0.00 0.98
4KNI_E1E 1 2 Carbonic anhydrase 2 38 0.54 0.43 0.00 0.97
1LCZ BH7_2_1 Streptavidin 39 0.55 0.42 0.00 0.97
4GDA _BTN_1_1  Streptavidin 40 0.52 0.45 0.00 0.97
3E93 19B 1 4 Mitogen-activated protein kinase 14 41 0.64 0.33 0.00 0.97
3PX2 T3Q 2 1 N-methyltransferase 42 0.48 0.23 0.50 0.96
30U7_SAM 2 1  Sam-dependent methyltransferase 43 0.52 0.44 0.00 0.95
2BAB_FAD_1 3  Putative aminooxidase 44 0.52 0.43 0.00 0.95
2PDB_ZST 1 2 Aldose reductase 45 0.49 0.46 0.00 0.95
5PAH_LDP_1_1 Phenylalanine 4-monooxygenase 46 0.55 0.15 0.50 0.95
1QIW_DPD_2 2  Calmodulin 47 0.55 0.40 0.00 0.95
3G70_A5T_1 3 Renin 48 0.56 0.38 0.00 0.95
3LBO_LDT_1 2  Aldose reductase 49 0.56 0.38 0.00 0.95
4A6D_SAM 1 1  Hydroxyindole o-methyltransferase 50 0.48 0.47 0.00 0.94
4GBD_MCF_1 2  Methylthioadenosine deaminase 51 0.47 0.47 0.00 0.94
4XUG F9F 1 1 Tryptophan synthase alpha chain 52 0.47 0.47 0.00 0.94
3G72_A6T_1_3 Renin 53 0.48 0.46 0.00 0.94
1AH4 _NAP_1 3  Aldose reductase 54 0.48 029 0.33 0.94
2PD9 FID_1 1 Aldose reductase 55 0.50 0.44 0.00 0.94
2HVO_ZST_1 2  Aldose reductase 56 0.51 0.43 0.00 0.94
3N7H_DE3 1 1 Odorant binding protein 57 0.51 0.43 0.00 0.94
2HNZ_PCO_1 2 Reverse transcriptase/ribonuclease h 58 0.47 0.46 0.00 0.93
4JUA TZD 11 Benzoylformate decarboxylase 59 0.63 0.14 0.33 0.93
4BFP_SWY_2 4  Tankyrase-2 60 0.48 0.45 0.00 0.93
3T7R_6PP_1 1 Putative methyltransferase 61 0.48 0.29 0.33 0.93
2CND_FAD_1 1  Nadh-dependent nitrate reductase 62 0.62 0.31 0.00 0.93
2FZ9 7ZST 1 2 Aldose reductase 63 0.50 0.43 0.00 0.93
3LCC_SAH 11 Putative methyl chloride transferase 64 0.50 0.43 0.00 0.93
1T64 TSN_2 1 Histone deacetylase 8 65 0.51 0.41 0.00 0.92
4EMD_C5P_1 2  4-diphosphocytidyl-2-c-methyl-d-erythritol 66 0.59 0.08 0.50 0.92
kinase
4R5W XAV 2 1  Poly [adp-ribose] polymerase 1 67 0.56 0.36 0.00 0.92
2PD5 ZST 1 2 Aldose reductase 68 0.49 0.43 0.00 0.92
21Uu8_UD1 1 2 Udp-3-0-[3-hydroxymyristoyl] glucosamine 69 0.59 0.08 0.50 0.92
n-acyltransferase
2165_NAD 21 Adp-ribosyl cyclase 1 70 0.62 0.30 0.00 0.92
3UFL_508 1 2 Beta-secretase 1 71 0.65 0.27 0.00 0.92
4UM3 _09R _17 2  Acetylcholine binding protein 72 0.61 0.31 0.00 0.92
1G3M_PCQ_1_1  Estrogen sulfotransferase 73 0.58 0.33 0.00 0.92
3L8S BFF_ 1 2 Mitogen-activated protein kinase 14 74 0.49 0.43 0.00 0.92
1IM51 TSX 1 2 Phosphoenolpyruvate carboxykinase 75 0.58 0.33 0.00 0.91
4YFY_OFX 1 3 Viof 76 0.70 0.21 0.00 0.91
2A8Y_MTA 7 1  5-methylthioadenosine phosphorylase 77 0.48 0.43 0.00 0.91
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3QCL_NXV_1 2  Receptor-type tyrosine-protein phosphatase 78 0.49 0.42 0.00 0.91
gamma
3NJQ_NJQ_ 2 1 ORF 17 79 0.52 0.38 0.00 0.91
4A79 P1B 2 1 Amine oxidase [flavin-containing] B 80 0.66 0.25 0.00 0.91
4BU9 08C_2 2 Tankyrase-2 81 0.54 0.36 0.00 0.91
1IHQT_NAP_1_3  Aldehyde reductase 82 0.56 022 0.25 0.91
2FZ8 7ST 11 Aldose reductase 83 0.53 0.38 0.00 0.91
205D _VR1 2 1 HCV 84 0.48 0.18 0.50 0.90
3GIO RF1 .11 Transcriptional regulatory repressor protein 85 0.50 0.40 0.00 0.90
(tetr-family) ethr
3NWE_662 1 3 Catechol o-methyltransferase 86 0.54 0.36 0.00 0.90
2JGS BTN 3 1 Circular permutant of avidin 87 0.55 0.35 0.00 0.90
105P_CHR_1_2 Neocarzinostatin 88 0.56 0.33 0.00 0.90
1IKV_EFZ_ 1 2 Pol polyprotein 89 0.65 0.25 0.00 0.90
1SM4_FAD_2_3  Chloroplast ferredoxin-nadp+ 90 0.48 0.25 0.33 0.89
oxidoreductase
3W2E_FAD_1 1  Nadh-cytochrome b5 reductase 3 91 0.56 0.33 0.00 0.89
2Q96_Al18 1 2 Methionine aminopeptidase 92 0.66 0.23 0.00 0.89
3QCM_NXW_1_3 Receptor-type tyrosine-protein phosphatase 93 0.53 0.36 0.00 0.89
amma
415X _FLF 1 1 %\Ido-keto reductase family 1 member b10 94 0.50 0.39 0.00 0.89
1FRB_ZST_ 1 2 Fr-1 protein 95 0.51 0.38 0.00 0.89
2V8P_CDP_3_1 4-diphosphocytidyl-2-c-methyl-d-erythritol 96 0.56 0.08 0.50 0.88
kinase
4AM7V_RAR_1_3  Dihydrofolate reductase 97 0.48 0.40 0.00 0.88
3TVX_PNX_1 1  Camp-specific 3' 98 0.53 0.36 0.00 0.88
1PAX_DHQ_1 1  Poly(adp-ribose) polymerase 99 0.52 0.36 0.00 0.88
308H_O8H_1 1 Transcriptional regulatory repressor protein 100 0.48 0.23 0.33 0.88

(tetr-family) ethr

2 Fragment name (PDB_HET_C_M) is inferred from the cognate target PDB identifier (PDB), the corresponding
ligand chemical component (HET), the target cavity identifier (C), and the fragment number (N).

b cavity similarity score, computed by ProCare, between the fragment-bound subpocket and the query target
cavity

¢ Interaction fingerprint similarity, computed with IChem, between the subpocket-fragment interaction
fingerprint and the query target-ligand interaction fingerprint

d Interaction fingerprint similarity (polar interactions only), computed with IChem, between the subpocket-
fragment interaction fingerprint and the query target-ligand interaction fingerprint

¢ FragScore =ProCare + IFP + 0.5*(IFP_polar)

127



Chapter 2. Development of a new method for local comparison of protein pockets

Table S8. Fragment hits for the TNF-alpha (PDB 1D 600Y).

FraglD? Protein name Rank ProCaRe? IFP¢ IFP_polar? FragScore®
4KZ0_1UJ_1 1 Phosphatidylinositol 4,5-bisphosphate 3- 1 0.57 0.67 0.50 1.48
kinase
4CCB_OFG_1 4  Alktyrosine kinase receptor 2 0.72 0.67 0.00 1.39
4NQM_Y1Z 1 3  Bromodomain-containing protein 4 3 0.60 0.57 0.33 1.34
3K3K_A8S 1 1 Abscisic acid receptor pyrl 4 0.51 0.64 0.33 1.32
1VRT_NVP_1 2 HIV-1 reverse transcriptase 5 0.63 0.50 0.33 1.30
3K90 A8S 11 Abscisic acid receptor pyrl 6 0.55 0.57 0.33 1.29
3R04 UNQ 1 1 Proto-oncogene serine/threonine-protein 7 0.65 0.46 0.33 1.28
kinase pim-1
1LWO_NVP_1_2  HIV-1 reverse transcriptase 8 0.61 0.50 0.33 1.27
41WC_1GV_2 1 Estrogen receptor 9 0.73 0.55 0.00 1.27
40TY_LUR 2 1  Prostaglandin g/h synthase 2 10 0.62 0.64 0.00 1.26
3UMW 596 1 2  Proto-oncogene serine/threonine-protein 11 0.70 0.56 0.00 1.25
kinase pim-1
ILWE_NVP_1_2  HIV-1 reverse transcriptase 12 0.58 0.50 0.33 1.25
2L85 L85 1 1 Creb-binding protein 13 0.58 0.50 0.33 1.25
3TUC_FPW_1 2  Tyrosine-protein kinase syk 14 0.67 0.57 0.00 1.24
ANYW_203_1_2  Creb-binding protein 15 0.53 0.54 0.33 1.24
3BTO SSB 1 1 Liver alcohol dehydrogenase 16 0.63 0.60 0.00 1.23
1YDT_IQB_1 1 C-AMP-dependent protein kinase 17 0.61 0.50 0.25 1.23
4HXM_1A8 1 1  Bromodomain-containing protein 4 18 0.57 0.53 0.25 1.23
INDE_MON_1 3 Estrogen receptor beta 19 0.63 0.60 0.00 1.23
4F9W _LM4 3 3 Mitogen-activated protein kinase 14 20 0.67 0.56 0.00 1.22
4DFL_OKO_ 1 1 Tyrosine-protein kinase syk 21 0.56 0.50 0.33 1.22
1Q3E_PCG 2 1 Potassium/sodium hyperpolarization- 22 0.57 0.40 0.50 1.22
activated cyclic nucleotide-gated channel 2
3RR3 FLR 3 2 Prostaglandin g/h synthase 2 23 0.68 0.54 0.00 1.22
41V2_1GR_2 1 Estrogen receptor 24 0.64 0.57 0.00 1.21
1LJLQ_SBN_1 1 HIV-1 reverse transcriptase 25 0.59 0.62 0.00 1.21
3EVC_SAH 11 RNA-directed rna polymerase ns5 26 0.49 0.38 0.67 121
2NNL_ERD 1 1  Dihydroflavonol 4-reductase 27 0.54 0.50 0.33 1.20
4CFL_8DQ 1 1 Brd4 protein 28 0.57 0.47 0.33 1.20
3RIN_ 120 1 2 Mitogen-activated protein kinase 14 29 0.61 0.43 0.33 1.20
3K3J 146 2 1 Mitogen-activated protein kinase 14 30 0.73 0.46 0.00 1.20
3CX5_SMA_2 1  Cytochrome b-c1 complex subunit 1 31 0.62 0.41 0.33 1.19
3GB2_G3B_1 2 Glycogen synthase kinase-3 beta 32 0.57 0.46 0.33 1.19
1SIX_NVP_1 2 HIV-1 reverse transcriptase 33 0.60 0.43 0.33 1.19
4G1W_GIW_1 1 Mitogen-activated protein kinase 8 34 0.58 0.62 0.00 1.19
3Vv49 PKO 1 1 Androgen receptor 35 0.56 0.47 0.33 1.19
4F9Y_GG5_1 3 Mitogen-activated protein kinase 14 36 0.77 0.42 0.00 1.18
2X0W_XO0W_1 1  Cellular tumor antigen p53 37 0.55 0.47 0.33 1.18
2X1Z2_Xl1Zz_1_1 Proto-oncogene serine/threonine protein 38 0.68 0.50 0.00 1.18
kinase pim-1
4ANG5 PFB 4 1 Alcohol dehydrogenase e chain 39 0.55 0.64 0.00 1.18
3Q7D_NPX 11 Prostaglandin g/h synthase 2 40 0.67 0.50 0.00 1.17
4PWD_NVP_1 2  HIV-1 reverse transcriptase 41 0.58 0.43 0.33 1.17
2JJ3 113 2 1 Estrogen receptor beta 42 0.64 0.53 0.00 1.17
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2L1IR SXK_ 1 2 Troponin ¢ 43 0.71 0.46 0.00 1.17
3K14 535 1 1 2-c-methyl-d-erythritol 2 44 0.50 0.67 0.00 1.17
3N6U _TSU 1 1 Lysr type regulator of tsambcd 45 0.64 0.36 0.33 1.16
2XIY_XIY_ 11 Proto-oncogene serine/threonine protein 46 0.70 0.46 0.00 1.16
kinase pim-1
415H_G17_1 2 Mitogen-activated protein kinase 1 47 0.60 0.56 0.00 1.16
4ZHX C1V_1 2  5-amp-activated protein kinase catalytic 48 0.71 0.44 0.00 1.16
subunit alpha-2
2CLF F6F 1 1 Tryptophan synthase alpha chain 49 0.54 0.62 0.00 1.15
40KT 198 1 1 Androgen receptor 50 0.48 0.67 0.00 1.15
3MSS_MS7_4 2 Tyrosine-protein kinase ABL1 51 0.60 0.55 0.00 1.15
3LP1_NVP_2 2 HIV-1 reverse transcriptase 52 0.55 0.43 0.33 1.15
2WUZ_TPF_2_1  Lanosterol 14-alpha-demethylase 53 0.52 0.63 0.00 1.15
2WMW_ZYW _1 1 Serine/threonine-protein kinase chkl 54 0.65 0.50 0.00 1.15
5DQ8_FLF 2 1 Transcriptional enhancer factor tef-4 55 0.57 0.57 0.00 1.14
4F4P 0SB 1 2 Tyrosine-protein kinase syk 56 0.64 0.50 0.00 1.14
3I0R_ RT3 1 1 Reverse transcriptase/ribonuclease h 57 0.60 0.55 0.00 1.14
4EH4 0OL 2 1 Mitogen-activated protein kinase 14 58 0.48 0.67 0.00 1.14
10UK 084 1 3 Mitogen-activated protein kinase 14 59 0.70 0.44 0.00 1.14
4PH9 IBP_1 1 Prostaglandin g/h synthase 2 60 0.53 0.62 0.00 1.14
2UZT SS3 1 2 Camp-dependent protein kinase 61 0.71 0.43 0.00 1.14
2RTP_IMI_1 1 Streptavidin 62 0.51 0.46 0.33 1.14
4ANQ_VGH_1 2  Alk tyrosine kinase receptor 63 0.69 0.44 0.00 1.14
2Q2Y_MKR_2_1  Kinesin-like protein kifl1l 64 0.52 0.62 0.00 1.14
1BDB_NAD_1_3  Cis-biphenyl-2 65 0.51 0.50 0.25 1.14
41U1_1GQ_1 2 Estrogen receptor 66 0.49 0.64 0.00 1.14
3SRS M23 1 2 Dihydrofolate reductase 67 0.60 0.54 0.00 1.14
40JB_198 1 1 Androgen receptor 68 0.64 0.50 0.00 1.14
3IW2_EKO_1 1 XAA-PRO Dipeptidase 69 0.55 0.58 0.00 1.13
3IW7_IPK_1 1 Mitogen-activated protein kinase 14 70 0.70 0.43 0.00 1.13
4KQK PCR_1 1  Nicotinate-nucleotide-- 71 0.56 0.57 0.00 1.13

dimethylbenzimidazole
phosphoribosyltransferase

1IPMU 9HP_ 1 1 Mitogen-activated protein kinase 10 72 0.67 0.46 0.00 1.13
3NC2_QUZ_11  Ketohexokinase 73 0.53 0.60 0.00 1.13
4GE7 0K5 1 1 Kynurenine/alpha-aminoadipate 74 0.53 0.43 0.33 1.13
aminotransferase
2I0v_6C3 1 1 Cfms tyrosine kinase 75 0.50 0.63 0.00 1.13
40LM_198 1 1 Androgen receptor 76 0.57 0.56 0.00 1.13
3ZSI1_52P_1 1 Mitogen-activated protein kinase 14 77 0.63 0.50 0.00 1.13
41IVY_1GT_1 1 Estrogen receptor 78 0.62 0.50 0.00 1.12
3F8C HT1 1 3 Transcriptional regulator 79 0.65 0.31 0.33 1.12
4ERF_OR3_1_3 E3 ubiquitin-protein ligase mdm2 80 0.62 0.50 0.00 1.12
3PVW_QRX_1 1  Beta-adrenergic receptor kinase 1 81 0.49 0.46 0.33 1.12
2ITP_AEE_1_1 Epidermal growth factor receptor precursor 82 0.62 0.33 0.33 1.12
3BOR_4RB 1 1 Death-associated protein kinase 3 83 0.72 0.40 0.00 1.12
4CFK LY2 1 1 Brd4 protein 84 0.55 0.40 0.33 1.12
2YFE_YFE 2 1 Peroxisome proliferator-activated receptor 85 0.48 0.64 0.00 1.12
gamma
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3KDT_7HA 2 3 Peroxisome proliferator-activated receptor 86 0.59 0.36 0.33 1.12
alpha
3ZLS 92P 1 1 DEaI specificity mitogen-activated protein 87 0.58 0.54 0.00 111
kinase kinase 1
20HN 582 1 1 Serine/threonine-protein kinase chkl 88 0.48 0.47 0.33 111
4EOS 1RO 1 3 Cyclin-dependent kinase 2 89 0.64 0.31 0.33 111
3KPK_FAD 1 3  Sulfide-quinone reductase 90 0.54 0.40 0.33 1.11
3C5U P41 2 1 Mitogen-activated protein kinase 14 91 0.57 0.54 0.00 111
2M56 CAM_1 1  Camphor 5-monooxygenase 92 0.53 0.58 0.00 111
4FJ2_NAP_3 3 17beta-hydroxysteroid dehydrogenase 93 0.48 0.47 0.33 111
1UUM_AFI 2 2 Dihydroorotate dehydrogenase 94 0.67 0.44 0.00 1.11
2A4Z BYM_1_1  Phosphatidylinositol-4 95 0.55 0.56 0.00 1.11
2X2K_X2K_1 1 Proto-oncogene tyrosine-protein kinase 96 0.54 0.57 0.00 1.11
receptor ret
2YIS_146_2_ 1 Mitogen-activated protein kinase 14 97 0.69 0.42 0.00 1.11
1CO0T_BM1 1 1 HIV-1 reverse transcriptase 98 0.60 0.50 0.00 1.10
3Q95 ESL 11 Estrogen receptor 99 0.57 0.53 0.00 1.10
3L8S_BFF_1_2 Mitogen-activated protein kinase 14 100 0.60 0.50 0.00 1.10

2Fragment name (PDB_HET_C_M) is inferred from the cognate target PDB identifier (PDB), the corresponding
ligand chemical component (HET), the target cavity identifier (C), and the fragment number (N).

b cavity similarity score, computed by ProCare, between the fragment-bound subpocket and the query target
cavity

¢ Interaction fingerprint similarity, computed with 1Chem, between the subpocket-fragment interaction
fingerprint and the query target-ligand interaction fingerprint

d Interaction fingerprint similarity (polar interactions only), computed with IChem, between the subpocket-
fragment interaction fingerprint and the query target-ligand interaction fingerprint

¢FragScore =ProCare + IFP + 0.5*(IFP_polar)
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Table S9. Fragment hits for the cysteinyl leukotriene receptor 2 (PDB ID 6RZ8)

FraglD? Protein name Rank ProCaRe® IFP¢ IFP_polar® FragScore®
1RUO_CMP_1 1 Catabolite gene activator protein 1 055 0.38 1.00 1.43
3FOM_MRK_1_1 Glucokinase 2 0.57 0.56 0.50 1.38
2XBJ_XBJ 1 2  Serine/threonine-protein kinase chk2 3 0.64 0.67 0.00 1.30
4FCQ _2N6_1 1  Heat shock protein hsp 90-alpha 4 052 0.78 0.00 1.30
2RHT_C1E_1 1  2-hydroxy-6-oxo0-6-phenylhexa-2 5 051 0.27 1.00 1.29
3UIV_308_1 1 None 6 061 0.64 0.00 1.25
Receptor-type tyrosine-protein
3QCH_NX2_1 2 phosphatase gamma 7 052 0.73 0.00 1.25
1YW2 PGJ 1 2 Mitogen-activated protein kinase 14 8 0.67 0.55 0.00 1.22
3MTF_A3F_2 1  Activin receptor type-1 9 0.55 050 0.33 1.22
3DT1 P40 1 3 Mitogen-activated protein kinase 14 10 0.57 0.64 0.00 1.21
2ZB3_NDP_1 3  Prostaglandin reductase 2 11 049 0.32 0.80 1.20
1YC3 4BC_1 3  Heat shock protein hsp 90-alpha 12 0.54 0.42 0.50 1.20
2Q2Y_MKR_2_1 Kinesin-like protein kif11l 13 047 071 0.00 1.19
IMX5 HTQ_ 3 1 None 14 0.58 0.36 0.50 1.19
3FL9 TOP_2 2  Dihydrofolate reductase (dhfr) 15 0.53 0.40 0.50 1.18
4735 ON7_1 1 Lysophosphatidic acid receptor 1 16 0.51 0.67 0.00 1.18
1E06_IPB 2.1 None 17 051 0.67 0.00 1.17
1HPZ_AAP_1 2  Pol polyprotein 18 047 0.70 0.00 1.17
AMF1_29Y_1 2  Tyrosine-protein kinase itk/tsk 19 0.60 0.57 0.00 1.17
3CW9 01A_2 3  4-chlorobenzoyl coa ligase 20 0.52 0.47 0.33 1.16
3VRY_B43_1 3  Tyrosine-protein kinase hck 21 0.62 0.54 0.00 1.15
Potassium/sodium hyperpolarization-
activated cyclic nucleotide-gated channel
1Q43 CMP_ 1.1 2 22 0.47 043 0.50 1.15
1EET BFU_1 2  Hiv-1 reverse transcriptase 23 0.48 0.67 0.00 1.15
Serine/threonine-protein kinase mrck
3TKU M77_1.1 beta 24 0.48 0.41 0.50 1.15
2C31_1Yz_1 3 Pimtide 25 054 0.60 0.00 1.14
2YI15_YI5 1 2 Heat shock protein hsp 90-alpha 26 049 0.40 0.50 1.14
41IWQ_1FV_1 2  Serine/threonine-protein kinase thk1 27 0.52 0.62 0.00 1.14
1RD4 L08_1 2 Integrin alpha-I 28 051 0.62 0.00 1.13
3IW7_IPK 1 1 Mitogen-activated protein kinase 14 29 0.63 0.50 0.00 1.13
3L8S BFF 1 2 Mitogen-activated protein kinase 14 30 059 054 0.00 1.13
3ULE_C69 1 1  Actin-related protein 3 31 0.56 0.44 0.25 1.12
30AF_OAG_1 1 Dihydrofolate reductase 32 0.53 0.58 0.00 1.12
Proto-oncogene tyrosine-protein kinase
4ALGH_0IJN_2 2  src 33 0.62 0.50 0.00 1.12
3HQ5_GKK_ 1 2 None 34 0.57 055 0.00 1.12
3CX5_SMA_2 1 Cytochrome b-c1 complex subunit 1 35 0.55 0.56 0.00 1.10
3Z2SG T75 1 3 Mitogen-activated protein kinase 14 36 0.52 0.58 0.00 1.10
2I0K_IOK_1_3  None 37 0.60 0.50 0.00 1.10
3MSS MS7_4 1 None 38 054 0.56 0.00 1.10
4LH7_1X8 1 1  Dnaligase 39 051 0.33 0.50 1.09
2RTF_BTN_1_1 Streptavidin 40 0.48 0.62 0.00 1.09
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3N4AM_CMP_1 1 Catabolite gene activator 41 051 042 0.33 1.09
5'-methylthioadenosine phosphorylase
3T94 MTA 4 1 (mtap) 42 0.62 0.6 0.00 1.08
4L4B_CAM_1 1 Camphor 5-monooxygenase 43 048 0.60 0.00 1.08
3GL2_ D3M_2_1 Ddmc 44 051 057 0.00 1.08
ANG5_PFB_4 1  Alcohol dehydrogenase e chain 45 0.58 0.50 0.00 1.08
30ZU_X89 1 3 None 46 054 054 0.00 1.08
3VS4 VSF 1 3  Tyrosine-protein kinase hck 47 051 057 0.00 1.08
3GC7_B45 1 1  Mitogen-activated protein kinase 14 48 0.54 0.55 0.00 1.08
4H38 0YX_ 1 2  Undecaprenyl pyrophosphate synthase 49 0.62 0.45 0.00 1.08
4F4P_0SB 1 2 Tyrosine-protein Kinase syk 50 049 0.58 0.00 1.08
1VRU_AAP_1 1 Hiv-1 reverse transcriptase 51 0.62 045 0.00 1.07
2EXC JNK_ 1 1 Mitogen-activated protein kinase 10 52 0.54 0.53 0.00 1.07
4734 ON7_1 2  Lysophosphatidic acid receptor 1 53 0.53 0.55 0.00 1.07
1ZUC_T98 1 1  Progesterone receptor 54 0.64 0.43 0.00 1.07
4C66_H4C 1 2 Bromodomain-containing protein 4 55 0.57 050 0.00 1.07
40TY_LUR 2 1 Prostaglandin g/h synthase 2 56 0.53 0.3 0.00 1.07
3RUK_AER_3_2 Steroid 17-alpha-hydroxylase/17 57 056 0.50 0.00 1.06
1CR6_CPU_1 2 None 58 047 0.42 0.33 1.06
4G27_PHU_1_1 None 59 0.60 0.45 0.00 1.06
2ZDT 46C_1 1  Mitogen-activated protein kinase 10 60 052 054 0.00 1.06
Proto-oncogene tyrosine-protein kinase
4LGG_VGG_1 2 src 61 055 0.50 0.00 1.05
2G76_NAD_1 3 D-3-phosphoglycerate dehydrogenase 62 049 0.23 0.67 1.05
3SRS_M23 1 2  Dihydrofolate reductase 63 0.60 0.45 0.00 1.05
1VRT_NVP_ 1 2 None 64 059 0.6 0.00 1.05
1JHV_PCR_1_1 None 65 0.60 0.45 0.00 1.05
1IKY_MSD_1_1 Pol polyprotein 66 0.55 0.50 0.00 1.05
3v66_D3A_1 1 None 67 055 0.50 0.00 1.05
2XAE_2XA_3_3 Kinesin-like protein kif1l 68 059 046 0.00 1.05
2UZT SS3 1 1  Camp-dependent protein kinase 69 0.56 0.23 0.50 1.04
Geranyl diphosphate 2-c-
4F84 SAM_1 1  methyltransferase 70 0.50 0.29 0.50 1.04
Mitogen-activated protein kinase kinase
4BIE_IE6 1 2 kinase 5 71 0.63 0.42 0.00 1.04
2J7Y_E30 11 Estrogen receptor beta 72 051 053 0.00 1.04
2XYX_Z00_1 2  None 73 0.68 0.36 0.00 1.04
5KCP_PFB 2 1  Alcohol dehydrogenase e chain 74 050 054 0.00 1.04
2ZB1_GK4_ 1 2  Mitogen-activated protein kinase 14 75 0.54 0.50 0.00 1.04
4G21_0VQ_ 1 1  Vitamin d3 receptor 76 0.54 0.50 0.00 1.04
3TQ9 MTX_1 2 Dihydrofolate reductase 77 0.57 0.46 0.00 1.04
3CD2_MTX_1 2 Dihydrofolate reductase 78 0.66 0.38 0.00 1.04
2Q0BM_CAM_1 1 Cytochrome p450-cam 79 0.50 0.54 0.00 1.04
401Y_NLA 1.1 None 80 050 054 0.00 1.04
5DP2_NAP_1 3 Curf 81 048 0.35 0.40 1.04
Enoyl-[acyl-carrier-protein] reductase
1GUF_NDP_1 2 [nadph 82 053 0.17 0.67 1.03
Bifunctional dihydrofolate reductase-
1J3J_CP6 1 2 thymidylate synthase 83 0.53 0.50 0.00 1.03
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Macrophage colony-stimulating factor 1

4HW7_64M_1 3 receptor 84 059 044 0.00 1.03
3DXM _N24 1 1 Actin-related protein 3 85 0.62 042 0.00 1.03
2AYR_L4G_1 2 Estrogen receptor 86 0.58 0.45 0.00 1.03
Proto-oncogene tyrosine-protein kinase
2ZM4 KSM_1 2 Ick 87 057 045 0.00 1.03
21ZI_BTN_1 1 Streptavidin 88 0.53 0.50 0.00 1.03
Peroxisome proliferator activated
U71_AZ2 11 receptor gamma 89 0.53 0.50 0.00 1.03
1LWO_NVP_1_2 None 90 049 054 0.00 1.03
1C1C 612 1 2 Hiv-1 reverse transcriptase (a-chain) 91 0.52 050 0.00 1.02
3EEL 53T 2 3 Dihydrofolate reductase 92 0.57 045 0.00 1.02
3SR5 Q12 1 2  Dihydrofolate reductase 93 052 0.50 0.00 1.02
3Q2A_PAB_2 1 None 94 057 0.44 0.00 1.02
4BBE_304_2 2  Tyrosine-protein kinase jak2 95 052 0.50 0.00 1.02
3EWK _FAD_1 3 Sensor protein 96 050 0.35 0.33 1.02
3wWi16 P9J 1 1 Aurora kinase a 97 055 047 0.00 1.01
2CF6_NAP_1 3  Cinnamyl alcohol dehydrogenase 98 0.52 0.29 0.40 1.01
Ribosomal rna large subunit
4FAK_SAM_1 1 methyltransferase h 99 0.47 054 0.00 1.01
4MEO _25V_1 1 Bromodomain-containing protein 4 100 0.60 042 0.00 1.01

2 Fragment name (PDB_HET_C_M) is inferred from the cognate target PDB identifier (PDB), the
corresponding ligand chemical component (HET), the target cavity identifier (C), and the fragment
number (N).

b cavity similarity score, computed by ProCare, between the fragment-bound subpocket and the query target
cavity

¢ Interaction fingerprint similarity, computed with IChem, between the subpocket-fragment interaction
fingerprint and the query target-ligand interaction fingerprint

d Interaction fingerprint similarity (polar interactions only), computed with IChem, between the subpocket-
fragment interaction fingerprint and the query target-ligand interaction fingerprint

¢FragScore =ProCare + IFP + 0.5*(IFP_polar)
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2.4. Critical evaluation of ProCare

2.4.1. ProCare algorithm

Several implementations of ProCare were attempted to improve the method, although incremental. We
quickly remind the comparison procedure to serve a basis for discussion here: (1) N (with N > 2) points
are randomly sampled in pocket #1 and associated with their nearest neighbor in pockets #2 according
to the Euclidian distance their descriptors; (2) conservation of pairwise distances between all points in
#1 versus #2 is checked (topological verification); (3) an initial alignment is estimated on the N pairs of
points, (4) the alignment is refined with ICP and (5) the final alignment is scored.

First, it was intriguing that when optimizing the set of alignment parameters, we found that sampling
N=4 points was yielding better alignment and discrimination, compared to sampling three and five
points. This value is consistent with what Open3D authors experienced on their image inputs. Our
hypothesis is that although sampling three points is sufficient to estimate a transformation, it is more
permissive and yields to false-positive topological verification. Contrarily, comparing five points would
impose more constraints, so that the topological verification is harder to pass. In this sense, we
implemented two variants to study this effect and avoid the non-deterministic aspect of the algorithm.
In the first variant, all the points in pocket #1 are sampled simultaneously. This variant was unsuccessful
unless identical pockets are compared, therefore useless. In the second variant, the set of equivalent
points is progressively increased by adding a pair of points that satisfies the topological verification of
the set. This variant was successful only for very similar pockets (e.g. different PDB structures of the
same protein), therefore unapplicable for detecting remote similarities. These studies shed light on the

importance of the initial correspondences.

Since points are associated to their nearest neighbor in the descriptor space, a point is always associated
to another, even if the similarity of the descriptors is meaningless. Applying a distance cutoff is not a
systematic solution and is prone to be dependent on the dataset. In a new version where the sampled
points are tracked, we observed that the distance ranges leading to a good alignment is hardly

distinguishable from the distance ranges leading to a bad alignment (Figure 2.2).
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Figure 2.2. Euclidian distance between descriptors of RANSAC-sampled and topologically valid points
(N = 4 pairs) leading to good and bad alignments. ~31,000 sc-PDB subpockets were translated and
realigned on their corresponding pockets. The transformation matrix was applied to the co-crystal ligand
and the RMSD between the original position and the new position after alignment is reported. A good
alignment refers to RMSD < 0.5 A, a bad alignment to RMSD >4 A. Alignments were proposed using
two sets of pocket descriptors (c-FPFH and c-FH).

Analysis of the RANSAC-equivalenced pairs showed that sometimes, redundant pairs of points are
sampled whereas a proper rotation requires three different pairs. Not surprisingly, sampling less than
three different pairs led to more misalignments (Figure 2.3). As a result, redundancy of the
correspondences during the procedure should be used as quality filter to decrease the chances of

misalignment.
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Figure 2.3. RANSAC correspondences used for transformation estimation. Sampling four different

pairs increase the chances of a good alignment. sc-PDB subpockets were translated into different

coordinate frames and realigned to their corresponding pockets. A good alignment (success) refers to

RMSD < 0.5 A with respect to cocrystal coordinates, a bad alignment (failure) to RMSD >4 A.
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The grid-based arrangement of points implies a fixed number of possible pairwise distances. Therefore,
it is also possible that random matches verify topological constraints and serve as wrong initial
alignment. Our hypothesis is that points occupying the core of the cavity are hard to differentiate due
the regular repartition of neighbor points around them. Possible improvements pertain to the metric (e.g.
using L1 distance), optimizing the weights of the shape and color bins in the descriptor, evaluating other
descriptors. In this regard, later applications showed that the color part of the c-FPFH descriptor (c-FH),
encoding the relative distribution of pharmacophoric features around each point, showed equivalent
discrimination performance as c-FPFH. Interestingly, c-FH alignments tend to be more refined than c-
FPFH alignments, when comparing pocket to pocket or subpocket to pocket. In future prospective
applications, a ‘divide and conquer’ mode is possible, by performing shape-only, color-only and hybrid

descriptor-based alignments.

VolSite cavity descriptions are noisy with respect to pharmacophoric annotation. Statistics on the sc-
PDB revealed that the hydrophobic points (CA) are present in a large proportion (ca. 40%), compared
to the other pharmacophoric features.® Thus, it was not surprising that they also contribute more to the
proposed alignments and might erroneously increase the similarity score. However, not considering the
CA feature is not applicable for highly hydrophobic pockets and generally led to poor discrimination.
The same conclusions were derived for the dummy (DU) feature. Contrarily, some features such as
negatively ionized OD1 are rare (ca. 5% of all annotations). Given that only one pharmacophoric feature
is assigned to a point, a residue might be present in the site, yet not represented in the cavity cloud if a
different residue is closest to the point. For example, this was observed in the hinge area of some protein

kinase structures. Some features clusters in patches, others are isolated—but important points.

Scoring is the final step of the comparison. At that stage, it is not possible to rescue an alignment solution
that has not been previously explored. The scoring scheme should be robust enough to discriminate
relevant from noisy similarity estimates. Several scoring schemes were evaluated, some of them are
alignment-free. We showed that pairwise comparison of point descriptors in the two pockets can
discriminate similar from dissimilar pairs in the BO1 dataset (Figure 2.4) and can be used as an

additional filter.
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Figure 2.4. Scoring scheme optimization. The receiver operating characteristics curve of (left)
alignment-based and (right) alignment-free scoring on the BO1 dataset. The ph4-strict, ph4-rules and
ph4-ext were previously described. The ph4-soft is the ph4-strict without distance cutoff. ph4-strict_pl,
phd-ext_pl, ph4-ext_pl are the piece-wise linear implementation of their counterparts (intervals are
below 0.75 A, between 0.75 and 1.5 A, beyond 1.5 A). Alignment-free scoring are the mean pairwise
points descriptor distances in the compared pockets, with the idea that similar pockets would share more
similar points in the descriptor space, lowering the average distance; ‘all’, ‘q2’ and ‘q3’ denote the use

of all, above median and above third quartile distances.

In future developments to rescue wrong initializations, we suggest the generation of multiple alignment
solutions during the sampling and the use of a pharmacophoric scoring as a convergence criterion instead

of current color-agnostic fitness score.

2.4.2. Sensitivity to protein fold and coordinate deviations

Finding the right balance between detection of subtle changes in a cavity while enabling remote

similarity detection is one of the challenges to binding site comparison tools.

The dependency of ProCare to the protein structure/fold has been assessed on the radical SAM
superfamily (RSS) of proteins, described by Holliday et al.*® This family of proteins covers 63785
different sequences, 1500 protein architectures, and 150 folds, all of them having converged to form a

catalytic site using S-adenosylmethionine (SAM) in a radical enzymatic mechanism. The RSS dataset
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used here is composed of 15 representative proteins of known X-ray structures describing nine different
classes varying in folds and catalyzing different enzymatic reactions. Pairwise comparison of SAM
binding cavities was achieved with the current method and compared to that obtained with 6 other cavity
comparison tools (FuzCav, KRIPO, PocketMatch, ProBiS, Shaper, SiteAlign) representative of the
current state of a recent review from an independent group.®* Seven RSS subgroups (L1, L2, L11, L13,
L15, L16, L19) are represented by a single protein structure whereas two subgroups (L6 and L17) are
described by five and three different proteins, respectively. Using default parameters and developer-
suggested thresholds for distinguishing similar from dissimilar cavities, we first derived a 15*15 cavity
similarity matrix and computed the proportion of cavity pairs still considered similar by each of the

investigated tool (Figure 2.5).
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Figure 2.5. Pairwise binding site comparison of 15 Radical SAM Superfamily entries. Nine subgroups
are represented: L1 (PDB ID: 4NJK), L2 (PDB ID: 10LT), L6 (PDB IDs: 1R30, 311X, 3T7V, 4R34,
4RTB), L11 (PDB ID: 4U0P), L13 (PDB ID: 3RFA), L15 (PDB ID: 3CB8), L16 (PDB ID: 2A5H), L17
(PDB IDs: 1TV8, 4K37, 4MT7T), L19 (PDB ID: 4FHD). Score* is a normalized score: score* =
(score_method -min_score_method) / (max_score_method - min_score_method). Self-comparisons

(diagonal of the matrix) were automatically assignhed a maximum score of 1. L6 and L17 subgroups are
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encircled in yellow and red respectively. A) FuzCav. B) KRIPO. C) PocketMatch. D) ProBiS;
alignment_score was used when z-score is higher than the default 1 or was set to 0 when no alignment
was produced. E) ProCare with cavity detected at 4 A. F) ProCare with cavity detected at 6 A. G) Shaper
with cavity detected at 4 A. H) Shaper with cavity detected at 6 A. 1) SiteAlign; distances d were

normalized to d” and converted into a similarity score 1-d’.

Obtained results are hardly interpretable because very much dependent of pocket definition and
threshold values to estimate pairwise similarities. ProCare estimates that 55% of all pairs are still similar
despite the very different protein folds and structures, a proportion higher than that obtained by three
tools (FuzCav, ProBiS, SiteAlign), almost similar to KRIPO (63%), but lower than the performance
reached by the two best tools (Shaper, PocketMatch; 91% for both methods). The latter two tools
outperforming ProCare in this benchmarking exercise might however be too promiscuous and not
specific enough. We then examined whether all compared cavity comparison tools were equally able to

predict higher similarity values for intra-class than for inter-class comparisons.

Indeed, some tools are not well suited for finer comparisons. On the one hand, PocketMatch (C) is not
specific enough to discriminate among RSS classes. On the other hand, ProBiS (D) fails in detecting
inter-class pocket similarities. KRIPO (B), although partially clustering entries for L6 and L17
subgroups did not succeed in finding any similarity between one entry (4UOP) and the 14 others.
Altogether, ProCare (E, F) as well as two other tools (FuzCav (A), SiteAlign (1)) provide the best
compromise between selectivity and precision. It affords high similarity values throughout the matrix
but enables a clear distinction of the two subclasses represented by more than one entry. As to be
expected, pocket definition (size of the binding site) has a clear impact on the heat maps produced by a
single tool. Since this definition varies from a method to another one and cannot always be homogenized,
a truly unbiased comparison of all methods presented here remains difficult, notably for this dataset for

which no experimental data can support (or not) the predicted similarity estimation.

To be robust, methods need to be insensitive to variations in atomic coordinates of the pocket, frequently
observed upon ligand binding and experimental details of the structural determination method (e.g. X-
ray diffraction, single-particle cryo-electron microscopy, homology modeling). We therefore designed
two data sets (MD-PLAZ2, Holo-Apo) to assess ProCare robustness to align and score identical cavities
exhibiting small to large variations in atomic coordinates. In the first set (MD-PLAZ2), the phospholipase
A2-atropine complex was subjected to a 10 ns molecular dynamics (MD) simulation in explicit water,
and 1000 MD snapshots of the atropine-bound cavity were retained for pairwise similarity calculations.
The second set (Holo-Apo) is composed of 10 pairs of pockets in a ligand-bound (holo) and ligand-free
(apo) form, showing from small (rmsd < 1.0 A) to large (rmsd > 4.0 A) variations in the atomic

coordinates of cavity-lining heavy atoms.
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For both sets, ProCare still detected cavity similarity up to variations in atomic coordinates located in a
grey zone around 2.5-3.0 A RMSD of heavy atoms (Figure 2.6), which is in line with the usually
admitted 2.0 A RMSD in posing ligands by molecular docking.
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Figure 2.6. Sensitivity of the ProCare score to variations in atomic coordinates. A) Atomic coordinates
variations of the pocket (RMSD on heavy atoms to the first snapshot), induced by molecular dynamics
simulation of phospholipase A2 in complex with atropine (PDB ID: 2ARM). A score of 0.47 (dotted
line) corresponds a statistically significant threshold (p-value = 0.05) to discriminate similar from
dissimilar cavities; B) Sensitivity of the ProCare score to ligand-induced variations in atomic
coordinates of pockets (RMSD on heavy atoms) of the Holo-Apo set (cell division protein Kinase 2,
CDK2, PDB IDs: 1DM2, 2)JGZ; HIV-1 protease, HIVP1, PDB IDs: 1QBS, 1HHP; estrogen-related
receptor gamma, ERRy, PDB IDs: 2ZKC, 2ZBS; aldose reductase, AR, PDB IDs: 1ADS, 2NVD;
hexokinase, Hexo, PDB IDs: 2E20, 2E2N; alginate-binding protein, ALGI, PDB IDs:1Y3N, 1Y3Q;
Osmo-protection protein, OSMO, PDB IDs: 1SW2, 1SW5; D-allose binding protein, ALLO, PDB
IDs:1RPJ, 1GUD; guanylate kinase, GUA, PDB IDs: 1EX7, 1EX6; 5-enolpyruvylshikimate-3-
phosphate synthase, ESP, PDB IDs:1RF4, 1RF5). A score of 0.47 (dotted line) corresponds a statistically

significant threshold (p-value = 0.05) to discriminate similar from dissimilar cavities.

2.4.3. Local comparisons

Local comparison of cavities is desired for unobvious similarity detection. Herein, there are three levels
of definition. Firstly, local comparison denotes the specific positioning of a small pocket (subpocket)
with respect to a larger pocket. Secondly, when comparing two cavities independently of their sizes,
locality refers to specific partial alignment when applicable. Finally, the third level pertains the scoring

scheme. ProCare allows the three levels of local comparison by local description around each point,
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point-to-point correspondences, and a symmetrical scoring scheme accounting for the size of the

pockets.

We however draw attention to the fact that detection of partial overlapping areas relies on the positions
of sampled points. When the alignment is constrained on sampled points that are spread in large cavities,
the resulting comparison can only be global. Contrarily, sampling a few clustered points would enable
partial alignment when applicable.

2.4.4. Computing time

The ProCare algorithm can be optimized with respect to the alignment speed. ProCare was implemented
based on existing package that allows multithreading. Interestingly, compilation of a non-parallelized
version improved the alignment time by a factor two. This is not surprising, given the number of points
treated. The alignment time is largely dominated by the number of RANSAC iterations until
convergence. Implementing the different improvement proposals discussed above might yield a quicker
convergence. Finally, ProCare core is available in both C++ and Python, but the execution tools were

provided in Python only. Developing a full C++ tool might also speed up the comparisons.
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3.1. Unexpected similarity between HIV-1 reverse transcriptase
and tumor necrosis factor binding sites revealed by computer

vision
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Abstract

Rationalizing the identification of hidden similarities across the repertoire of druggable protein cavities remains a
major hurdle to a true proteome-wide structure-based discovery of novel drug candidates. We recently described a
new computational approach (ProCare), inspired by numerical image processing, to identify local similarities in frag-
ment-based subpockets. During the validation of the method, we unexpectedly identified a possible similarity in the
binding pockets of two unrelated targets, human tumor necrosis factor alpha (TNF-a) and HIV-1 reverse transcriptase
(HIV-1 RT). Microscale thermophoresis experiments confirmed the ProCare prediction as two of the three tested and
FDA-approved HIV-1 RT inhibitors indeed bind to soluble human TNF-a trimer. Interestingly, the herein disclosed simi-
larity could be revealed neither by state-of-the-art binding sites comparison methods nor by ligand-based pairwise
similarity searches, suggesting that the point cloud registration approach implemented in ProCare, is uniguely suited
to identify local and unobvious similarities among totally unrelated targets.

Keywords: Binding sites, Similarity, Point cloud registration
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3.1.1. Abstract

Rationalizing the identification of hidden similarities across the repertoire of druggable protein cavities
remains a major hurdle to a true proteome-wide structure-based discovery of novel drug candidates. We
recently described a new computational approach (ProCare), inspired by numerical image processing,
to identify local similarities in fragment-based subpockets. During the validation of the method, we
unexpectedly identified a possible similarity in the binding pockets of two unrelated targets, human
tumor necrosis factor alpha (TNF-a) and HIV-1 reverse transcriptase (HIV-1 RT). Microscale
thermophoresis experiments confirmed the ProCare prediction as two of the three tested and FDA-
approved HIV-1 RT inhibitors indeed bind to soluble human TNF-a trimer. Interestingly, the herein
disclosed similarity could be revealed neither by state-of-the-art binding sites comparison methods nor
by ligand-based pairwise similarity searches, suggesting that the point cloud registration approach
implemented in ProCare, is uniquely suited to identify local and unobvious similarities among totally

unrelated targets.

Keywords: binding sites, similarity, point cloud registration
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3.1.2. Introduction

Among the many possible approaches to structure-based drug design [1, 2], inferring novel ligand
properties from the large-scale comparison of their possible binding pockets gains popularity as the
repertoire of protein cavities of known three-dimensional (3D) structures (pocketome) is constantly
increasing, thereby offering unique opportunities to design ligands while simultaneously considering
multiple targets [3]. The term 'pocketome' was first coined in 2004 by An et al. [4] to describe the
universe of cavities located at the surface of macromolecules and capable of binding low molecular-
weight ligands. A systematic survey of currently available three-dimensional structures [5], suggests
that its size is estimated to ca. 250,000 pockets [6] out of which 10-15% are accommodating true drug-
like compounds [7, 8]. Pocket locations can be inferred from the position of already-bound molecules
or predicted on the fly, by one of the many available cavity detection methods [3, 9]. The pockeome
space can then be searched by numerous computational tools [10] for similarity to any query cavity to
predict evolutionary relationships and protein-ligand interactions [3]. The later application is notably of
paramount importance to the drug discovery field as it may reveal hidden relationships for guiding the
design of safer drug candidates with a precise control of selectivity [3] with respect to either on-targets
(polypharmacology approach) [11] or off-targets (side effects mitigation) [12], in a time and cost-
effective manner [13].

Currently available methods are generally able to detect global similarities between two druggable
pockets from different proteins, and therefore permit to transfer drug-like compounds from one target
space to another [3]. ldentifying more subtle local similarities at the level of fragment-bound pockets
remains a much more difficult problem [14] as it requires a searchable archive of fragment-bound
subpockets [15-17] and a computational method focusing on local subpocket descriptors. Consequently,
there are still very few reports of experimentally verified subpocket similarity examples that have
enabled the transfer of chemical fragments across unrelated proteins [18]. To fill the need for local
similarity searching methods while comparing pockets of different sizes, we developed a novel method
(ProCare) [17] relying on point cloud registration, a numerical image processing to find a spatial
transformation (e.g., scaling, rotation and translation) that aligns two point clouds [19, 20]. ProCare uses
as input a point cloud representation of the protein pocket or subpockets, where each point is annotated
by eight possible pharmacophoric features (hydrophobic, aromatic, H-bond donor, H-bond acceptor, H-
bond donor and acceptor, positive, negative, dummy) complementary to that of the pocket
microenvironment [21]. Since ProCare uses local descriptors to compare and align binding subpockets,
the method is particularly suited to fragment-based design strategies aimed at positioning fragments in

subpockets of any druggable cavity.

While validating the method by focused benchmarking studies [17], we noticed some unexpected local

similarity between subpockets from two unrelated proteins with 23% sequence identity: human tumor
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necrosis factor alpha (TNF-a) trimer [22] and human immunodeficiency virus type 1 reverse
transcriptase (HIV-1 RT) [23]. On the one hand side, TNF-o is a homotrimeric pro-inflammatory
cytokine involved in autoimmune disorders such as rheumatoid arthritis and Crohn's disease [24]. It is
currently targeted by monoclonal antibodies preventing its recognition by TNF-a receptors (TNFR1 and
TNFR2). To date, no small molecule TNF-a inhibitor has reached the market [22]. On the other side,
HIV-1 RT is an enzyme used by the HIV virus to replicate its genome by first generating a
complementary DNA from the viral RNA template. HIV-1 RT can be blocked by many marketed drugs
[25] binding to either the catalytic site (hucleoside inhibitors, e.g. zidovudine) or a remote allosteric

pocket (non-nucleoside inhibitors, e.g. efavirenz).

To exclude potential artifacts or biases and provide a strong statistical support to this initial prediction,
we here systematically compared the inner cavity of three inhibitor-bound TNF-a trimer structures with
122 non-nucleoside inhibitor-bound HIV-1 RT X-ray structures. In a large majority of pairwise
comparisons, the corresponding subpockets were deemed similar, a prediction that could be confirmed
by biophysical experiments evidencing a direct micromolar binding of non-nucleoside HIV-1 RT
inhibitors to human soluble TNF-o. Interestingly, this unexpected similarity could not be recovered by
state-of-the-art cavity comparisons tools suggesting the unique ability of ProCare to delineate subtle

local relationships between unrelated target cavities.

3.1.3. Results and discussion

Identifying similarity between pockets from different proteins suggests that the latter might bind to
similar molecules. Although molecular recognition is a dynamic and complex process, the above
hypothesis is worth investigating in drug design for hit discovery or for potential off-targets detection.
We previously described ProCare [17], a novel computational method relying on a point cloud
registration algorithm [19, 20] to assess the similarity between protein pockets. ProCare computes and
uses local descriptors, which makes it particularly suitable for detecting local similarities among cavities
of different sizes. Typically, ProCare aligns the cavities, described by a cloud of 3D points labeled with
pharmacophoric features, by comparing the point descriptors and then derives a similarity score. In the
current study (see flowchart in Figure 1), ProCare was used to detect local similarities between the full
cavity of the target protein (here the inner core of the TNF- a trimer) and a collection of 31,570
subpockets from the sc-PDB dataset [8], a repository of 16,034 protein-ligand complexes of known
three-dimensional structure for which the ligand is a pharmacological agent bound to a druggable cavity.
First, the full cavity of the target protein is computed with the in-house VolSite algorithm [21] and

represented by a cloud of pharmacophore-annotated points (Figure 1). In parallel, the collection of
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subpocket point clouds is generated after fragmentation of each protein-bound sc-PDB ligand and
consideration of the immediate vicinity (4 A) of generated fragments. Last, the ProCare method aligns
and computes the pairwise similarity between the target point cloud, and that from subpockets from the
sc-PDB archive (Figure 1). When a statistically significant similarity is found between a subpocket and
the target cavity, the transformation matrix used for the previous alignment is then applied to the
corresponding and hidden bound fragment that is directly positioned in the target cavity. In absence of
major clashes, the corresponding fragment can therefore be used for a fragment growing or linking

strategy or even directly tested for binding to the target.

While benchmarking the ProCare method, we noticed unexpected high similarities (ProCare score >
0.47; p-value < 0.05) between the core pocket at the interface of an inhibitor-bound asymmetric human
TNF-a trimer (PDB ID 600Y) [22], and several non-nucleoside binding sites of inhibitor-bound HIV-
1 RT (Supporting Table S1). Notably, seven subpockets from the HIV-1 RT were ranked among the
100 top scoring subpockets, with high ProCare similarity scores (ranging from 0.67 to 0.72)

corresponding to very low p-values (from 2.5x10* to 2.1x10°®).

TNF-a trimer X-ray | compute pocket
structure pharmacophoric points l

comparison of
pharmacophoric

points with )
ProCare

TNF-a pocket

° ®e ° sc-PDB
subpockets database
N =31,570

compute subpocket
sc-PDB protein-ligand| | 3D fragmentation | _ pharmacophoricpoints —
X-ray structures of ligands | around fragments

Fig. 1 Virtual screening of sc-PDB subpockets for similarity to the core cavity TNF-a. The inner
pocket of TNF-a (PDB ID 600Y) is converted as a cloud of points with pharmacophoric properties
(orange: hydrophobic and aromatic, blue: H-bond donor and positive ionizable, red: H-bond acceptor,
H-bond donor and acceptor, and negative ionizable, white: dummy) and compared to the corresponding

point clouds originating from fragment-bound subpockets of sc-PDB ligands.
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To assess that the predicted similarity between these unrelated binding sites was not fortuitous, we
computed the Receiver-Operating Characteristic (ROC) curve of a binary classifier for which all cavities
of a single sc-PDB target (Table 1) are artificially annotated as positives, the rest being defined as
negatives. For each target, the ROC curve was defined from the full list of sorted ProCare similarity
scores by plotting the true positive rate versus the false positive rate at different threshold settings
(Supporting Figure S1). The area under the ROC curve (ROCAUC) provides a statistical estimation
of the accuracy of the classifier to discriminate positives from negatives and therefore predict whether

the samples from one particular target are similar (or not) to the TNF-a cavity (Table 1).

Table 1 Area under the ROC curve of pairwise ProCare similarity scores.?

Target Site Number of subpockets® ROCAUC
HIV-1RT non-nucleoside 195 (122) 0.84

B2 adrenergic receptor orthosteric 14 (14) 0.35
Carbonic anhydrase 1l catalytic 183 (137) 0.38
Cyclin-dependent kinase catalytic 461 (274) 0.63

2

Heat shock protein 900, catalytic 214 (117) 0.64
Thrombin catalytic 253 (126) 0.35

2 For each target, the similarity scores of the corresponding subpockets (actives) and decoys (any other
subpocket) to the TNF-a query (PDB ID 600Y) are used to compute the area under the ROC curve.
b Total number of subpockets for the corresponding target. The number of PDB entries are in brackets.

Making the hypothesis that the HIV-1 RT non-nucleoside binding pocket is similar to that of TNF-a,
the ProCare score nicely discriminates positives (HIV-1 RT) from decoys (all other sc-PDB cavities)
with a ROCAUC value (0.84) well above the threshold corresponding to a random classification,
ROCAUC=0.50). Repeating the same exercise with five randomly picked targets (B2 adrenergic
receptor, carbonic anhydrase |1, cyclin-dependent kinase 2, heat shock protein 90a, and thrombin) lead
to much poorer ROC AUC values close or even inferior to random classifications (Table 1). To further
exclude a potential bias in the ProCare alignment/scoring method due to the reference TNF-a structure
(PDB ID 600Y) and give a stronger statistical support to our prediction, we systematically compared
two additional binding sites (PDB IDs 600Z, 60P0) from available asymmetric human TNF-o X-ray
structures [22] to that of 122 HIV-1 RT structures bound to non-nucleoside inhibitors.

Exhaustive comparison of TNF-a trimer and HIV-1 reverse transcriptase binding sites. A ProCare
similarity matrix was built by comparing cavities of three asymmetric TNF-a structures (PDB identifiers
600Y, 600Z and 60P0) co-crystallized with benzimidazole inhibitors to the 195 subpockets from 122
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non-nucleoside HIV-1 RT inhibitors binding sites (Supporting Table S2; Figure 2) available in the sc-
PDB. We observed that 76% of all pairwise comparisons were scored higher than the previously

statistically determined ProCare similarity score threshold of 0.47 [17] (Figure 2A).

A 80 1

Frequency
B o))
o o

N
o

Fig. 2 Comparison of TNF-a trimer and HIV-1 RT binding sites with ProCare. (A) Distribution of
pairwise similarity scores (n = 195 x 3). Entries scoring above 0.47 (p-value=0.05; threshold marked by
the red dashed line) are considered similar according to a previous statistical analysis of 2 million
pairwise alignments [17]. (B) Aligned residues of TNF-a (chain A: cyan, chain B: dark slate blue, chain
C: cornflower blue; PDB code: 600Z) to HIV-1 RT (orange, PDB code: 1FKO) after rotation and
translation of HIV-1 RT protein with the resulting ProCare alignment matrix. (C) ProCare alignment of
efavirenz main fragment (light orange) in the TNF-a trimer pocket and PLANTS docking (transparent
orange) in the TNF-a trimer pocket (PDB code: 600Z). Edge-to-face aromatic interaction with TYR59
of TNF-a chain A and hydrogen bond with TYR151 of TNF-a chain C are depicted by blue dashed

lines.

To exclude the possibility that the predicted similarity is caused by peculiar mutations of the HIV-1 RT

non-nucleoside biding site, we also compared pairwise similarities for both wild type and mutated HIV-
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1 RT pockets, but did not observe significant differences in the percentage of HIV-1 RT pockets
predicted similar to that of TNF-a (74% and 82% of similar pockets for wild type and mutants,
respectively). We thus conclude that the predicted similarity between pockets from these two unrelated
targets is independent on the chosen PDB structures and is not biased by mutations in the HIV-1 RT
binding site. Since ProCare yields a transformation matrix to align the compared objects (subpockets
onto the target pockets), we herein provided the visual analysis for one entry (efavirenz-bound
subpocket) aligned to the TNF-a structure 600Z. Pairs of residues of equivalent interaction properties
(aromatic, hydrogen bond donor and acceptor, hydrophobic) respectively in TNF-a and HIV-1 RT were
nicely matched (Figure 2B) demonstrating that the similarity caught with the point clouds is truly
present at the residue level. Matched TNF-o/HIV-1 RT residues were: LEU57.A/LEU100;
TYR59.A/TYR318; ILE155.A/LEU234; LEU157.A/TRP229; LEU57.B/PHE227; LEU57.C/TYR188;
TYR59.C/TYR181 and TYR151.C/TYR181. Inspection of the matched pharmacophoric points that are
contributing to the ProCare score showed a mixed contribution of aromatic, hydrogen bond donor and
hydrophobic points (Supporting Figure S2) in agreement with the aligned residues (Figure 2B) and
the statistics of the contributions of the eight pharmacophoric features to the detected similarity
(Supporting Figure S3). Furthermore, efavirenz was docked into TNF-a binding site 600Z with
PLANTS [26] after validation of the docking protocol by self-docking of the cocrystallized ligand UCB-
5307 in 600Z (RMSD of top-ranked pose by ChemPLP to crystal coordinates: 0.47 A, ChemPLP score
of -124.79). The ProCare-aligned efavirenz fragment (Figure 3B) in TNF-a fitted well with one of the
PLANTS docking solutions (ranked 3'/10 with a ChemPLP score of -79.32), corresponding to a RMSD
of 1.8 A of efavirenz main fragment heavy atoms to the ProCare pose (Figure 2C). Aside the potential
hydrophobic interactions in the TNF-a binding site, efavirenz docking pose displayed an edge-to-face
aromatic interaction with residue TYR59.A and a hydrogen bond with TYR151.C. Interestingly,
efavirenz bound to HIV-1 RT protein structure (1FKO) exhibits an edge-to-face aromatic interaction
with residue TYR318 [27] (Supporting Figure S4A) that was matched by ProCare to TYR59.A in
TNF-a (Figure 2B). Both TYR59.A and TYR151.C are key residues [22] involved in the micromolar
and nanomolar binding of the co-crystallized ligands UCB-6876, UCB-5307 and UCB-9260 (Figure 3)
in the TNF-a structures 600Y, 600Z, 60P0; the interaction between TYR151.C residue and the
benzimidazole moiety being a hydrogen bond (Supporting Figure S4B). Altogether, these observations
are strongly suggesting that subpockets in the non-nucleoside binding site of HIV-1 RT are similar to

the TNF-a trimer cavity.
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Fig. 3 Structures of TNF-a and HIV-1 RT non-nucleoside inhibitors. (A) TNF-a inhibitors and (B)
HIV-1 RT non-nucleoside inhibitors (PDB entries between brackets). Red substructures indicate the
main fragment binding to the HIV-1 RT subpocket found similar to the TNF-a. cavity.

Assuming that similar binding sites should accommodate similar ligands, HIV-1 RT non-nucleoside
inhibitors should therefore bind to TNF-a. In order to prioritize HIV-1 RT inhibitors for experimental
validation of our hypothesis, we checked which inhibitors were bound to the HIV-RT subpockets that
are predicted by ProCare as the most similar to the TNF-a, cavity (Table 2).

Among the corresponding inhibitors, two compounds (Q27097507, TNK6-51) are not commercially
available and were not considered. However, two easily purchasable FDA-approved drugs (efavirenz,
nevirapine; Figure 3) are almost entirely buried in the HIV-1 RT subpockets found similar to the TNF-
a cavity, exhibit a size and molecular volume similar to that of two TNF-a inhibitors (UCB-6876 and
UCB-5307; Figure 3) and were therefore selected for biological evaluation. In addition, we also
considered a third marketed inhibitor (delavirdine; Table 2, Figure 3) whose pocket was found much

less similar to that of TNF-a, although just above the 0.47 ProCare similarity threshold.
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Table 2 Bound inhibitors of the HIV-1 reverse transcriptase cavities found similar to TNF-a. cavities.

HIV-RT HIV1-RT PDB TNF-a PDB entry ProCare score Rank
Inhibitor? entry

NNI (Q27097507) 2VG7 600Z 0.810 1
EFZ (Efavirenz) 1FKO 600Z 0.773 2
NVP (Nevirapine) 1LWC 600Z 0.737 3
TNK (TNK-651)  1S1V 600Z 0.731 4
NVP (Nevirapine) 2HNY 600Z 0.729 5
SPP 1KLM 600Z 0.484 408

(Delavirdine)®

2 PDB chemical component identifier (Name in brackets).

b After manual fragmentation, a higher ProCare score (0.599) was obtained for the subpocket of
delavirdine's fragment #2 (Supporting Figure S5) against 600Y pocket (Supporting Table S3).

Non-nucleoside HIV-1 RT inhibitors bind to human TNF-a. Three different non-nucleoside FDA-
approved drugs (nevirapine, efavirenz and delavirdine) were tested for direct binding to a fluorescent-
labelled TNF-a trimer by microscale thermophoresis (MST), a robust and sensitive biophysical method
to detect and quantify molecular interactions in solution [28, 29]. The MST signal is based on ligand-
dependent temperature-induced changes (thermophoresis, temperature-related fluorescence intensity) of
the fluorescence emission of the labelled protein target. The 17.3 kDa homotrimeric TNF-o that
spontaneously assemble in solution [30, 31] was therefore labelled by a RED-fluorescent probe for MST

experiments in presence of increasing concentrations of the three HIV-1 RT inhibitors (Figure 4).

MST traces in presence of efavirenz and delavirdine showed distinct states (from bound to unbound),
indicating a direct interaction of these two inhibitors with TNF-a (Figure 4A, B). Dissociation constants
(Kp) could be derived for the two corresponding complexes and estimated to 24 + 8 UM (Efavirenz) and
39 £ 9 uM (Delavirdine), respectively (Figure 4A, B). The measured dissociation constants for the two
HIV-1 RT inhibitors are in the same range of magnitude than that of UCB-6876 (Kp= 22 uM) [22], one

of the three TNF-a inhibitors used as a reference for this study.
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Fig. 4 Microscale thermophoresis (MST) demonstrates a direct interaction between HIV-1 RT
inhibitors and RED fluorescent-tagged TNF-a. For analysis, the change in thermophoresis is
expressed as the change in the normalized fluorescence (AFnom), Which is defined as Fno/Fcold (F-values
correspond to average fluorescence values between defined areas marked by the red and blue cursors).
Titration of the non-fluorescent ligand results in a gradual change in thermophoresis, which is plotted
as AFnom to yield a binding curve, which can be fitted to derive binding constants. (A) Experimental
MST traces of efavirenz (Kp = 24 £ 8 uM); (B) Experimental MST traces of delavirdine (Kp =39+ 9
pMM); (C) Experimental MST traces of nevirapine. Only the best MST traces (highest signal to noise
ratio) are shown here. Values for all experiments conducted according to different experimental

protocols are listed in Supporting Table S4.

Contrarily to our prediction, no thermophoresis signal could be detected in presence of nevirapine
(Figure 4C) indicating no binding of this inhibitor to TNF-a, at least in our experimental settings. The
herein observations were insensitive to experimental protocols (buffer composition, solubilizing agents,

incubation time, MST power; Supporting Table S4).

In absence of X-ray structures of TNF-a bound to efavirenz and delavirdine, we cannot rule out the
possibility that both inhibitors bind to a different pocket than that highlighted in the current
computational study. This hypothesis is however very unlikely for two reasons: (i) no other cavity than
that occurring at the inner core of the multimeric TNF-a could be detected among the currently existing
33 structures available in the Protein Data Bank; (ii) all non-covalent small molecular weight inhibitors
co-crystallized with TNF-o dimeric or trimeric forms [32—-35] are exactly bound at the central pocket

examined in this study.
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We should recall here that none of the HIV-1 RT inhibitors has been optimized for binding to TNF-a
and is directly repurposable for treating TNF-a -dependent autoimmune disorders. However, we do think
that efavirenz may be optimized to a much more potent HIV-1 RT inhibitor by following a strategy
similar to that reported to modify the 22 UM TNF-a inhibitor UCB-6876 to a 9 nM lead (UCB-5307;
Figure 3) by just occupying a side pocket formed by the three TYR199 side chains of the TNF-a
homotrimer with a pyridyl ring [22]. Structure-guided efavirenz optimization for TNF-a binding is
therefore possible by appropriate trimming of unnecessary cyclopropylethynyl substituent and

occupation of the above-described potency subpocket.

The similarity between TNF-a trimer and HIV-1 reverse transcriptase binding sites is not obvious.
To demonstrate whether the herein disclosed similarity between the human TNF-a trimer and the HIV-
1 RT non-nucleoside binding sites is obvious, we performed the same set of pairwise binding site
comparisons, as that previously reported for ProCare (Figure 2), with state-of-the-art methods [10]
developed either in-house (FuzCav [36], Shaper [21] and SiteAlign [37]) or by third parties (G-LoSA
[38], KRIPO [15] and ProBiS [39]). The binding site perception, comparison algorithm and scoring
function is specific to each method. Some methods (FuzCav, SiteAlign) consider entire cavities while
some others utilize either fragment-bound subpockets (KRIPO, Shaper) or local protein descriptors (G-
LoSA). To make the comparison consistent, the same set of atomic coordinates were compared, a
binding site being defined by the protein PDB identifier, the ligand PDB HET record (three
alphanumeric character describing non-standard PDB residues), chain identifiers and list of amino acids
lining the cavity. The only exception was for the KRIPO method, which used all the chains available in
the PDB entry, but still corresponding to the same tuple (PDB, HET) as for the other methods. For each
method, the distribution (Figure 5) and percentage of pairwise comparisons scored above the

developer's recommended similarity threshold (Table 3) were reported.

Table 3 Comparison of three TNF-o and 122 HIV-1 RT non-nucleoside binding sites by state-of-the-

art cavity comparison methods.

Method Score threshold? Metric Success rate®
G-LoSA 0.59 GA-score 35.2
KRIPO 0.50 Modified Tanimoto coefficient 5.8
Shaper 0.44 ColorRefTversky 1.4
SiteAlign 0.6,0.2 dl1 and d2 distances® 0.3
FuzCav 0.16 Tanimoto coefficient 0
ProBiS 2 Z-scored 0
ProCare 0.47 ProCare score 76.6

2 Developer's recommended similarity/distance threshold for estimating two binding sites similar
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b Percentage of pairwise comparisons scored above the threshold.
¢ For SiteAlign comparisons, pairs are considered similar when the two distances (d1, d2) are below the
score threshold value [37].

4 The Z-score indicates the statistical relevance of ProBiS binding site alignments.

Strikingly, only the G-LoSA method relying on a graph-based local alignment of cavity-lining amino
acids, managed to find some similarity between the two sets of binding sites, however with reduced
success rate (35.2%) when compared to the ProCare algorithm (76.6 % success rate; Table 3). We
acknowledge that the developer's recommended thresholds may be biased toward peculiar datasets.
However, all methods compared herein were subjected to the same protocol and we do think that the
threshold scores are appropriate indicators in a virtual screening setting where there is no room for a

one-by-one case study of each pairwise comparison.
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Fig. 5 Score distribution of pairwise comparisons between binding sites of TNF-a trimer and HIV-
1 reverse transcriptase. Binding sites in asymmetric structures of TNF-a trimer (n=3) were compared
to binding sites of non-nucleoside inhibitors in HIV-1 reverse transcriptase (sc-PDB set, n=122). Pairs

with similarity measures scored above each method-specific threshold (red dashed line) were considered
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similar. For SiteAlign comparisons, pairs are considered similar in case the two distances (distance 1,
distance 2) are below the recommended cut-off. For ProBiS, the threshold above which an alignment is

considered significant is marked by the blue dashed line.

The herein reported binding of some HIV-1 RT non-nucleoside inhibitors to human TNF-o remains
unobvious to many binding site comparison algorithms. Would this unexpected feature be better
captured by remote ligand similarities? To investigate this question, we compared 2D and 3D descriptors

of the corresponding inhibitors (Figure 6).
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Fig. 6 Pairwise similarity between inhibitors of TNF-a trimer and non-nucleoside inhibitors of
HIV-1 reverse transcriptase. Recently described TNF-a trimer inhibitors (n=3) were compared to non-
nucleoside inhibitors of HIV-1 RT (sc-PDB set, n=122). Pairs with similarity measures scored above
each descriptor-specific threshold (red dashed line) were considered similar. (Top left) 2D similarity
estimated by a Tanimoto metric using Morgan2 circular fingerprint, (Top right) 2D similarity estimated
by a Tanimoto metric using 166 MACCS public keys. (Bottom) 3D shape comparison (ROCS)

estimated by the TanimotoCombo metric.

Neither comparing 2D fingerprints nor 3D shapes would have confidently suggested possible binding
of HIV-1 RT inhibitors to TNF-a trimer (Figure 6) since none of the considered ligand pairs exhibit a
pairwise similarity above an acceptable threshold (Morgan2 circular fingerprint: 0.30 [40]; 166 public
MACCS keys: 0.65 [40], TanimotoCombo ROCS 3D similarity: 1.5 [41, 42]). We should precise here
that 3D similarities were inferred from PDB protein-bound ligand X-ray structures and that alternative

conformations might be selected by the two targets, although the very rigid efavirenz does indeed bind
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to the two proteins of interest albeit with different affinities (TNF-a, Kp=24 uM; HIV-1RT, ChEMBL
median 1Cso= 20 nM). Extending 2D fingerprint comparisons to additional 2,361 HIVV-1 RT inhibitors
(Supporting Table S5) from the ChEMBL database [43], did not change our conclusion since only
0.71% and 0.09% of the corresponding pairs were found similar using Morgan2 and 166 public MACCS

keys, respectively (data not shown).

3.1.4. Conclusions

Herein, we describe a systematic comparison of fragment-bound subpockets from a priori unrelated
targets (TNF-a, HIVV-1 RT) but predicted to share local similarities according to our recently-developed
ProCare point cloud registration method. The computational prediction was verified by microscale
thermophoresis experiments evidencing the micromolar binding of some but not all HIV-1 RT non-
nucleoside inhibitors to human soluble TNF-a. Interestingly, the ProCare prediction could not be
revealed by other state-of-the-art cavity or ligand similarity search methods. Point cloud registration, a
computational method frequently used for digital image processing in robotics and medical imaging,
enables the detection of subtle and local protein similarities thanks to a powerful description of
subpocket microenvironments. The ProCare method appears as a promising idea generator for drug
repurposing and fragment-based ligand design since it is able to pick starting ligands at a proteomic

scale.
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3.1.5. Methods

Preparation of protein and ligand structures

TNF-a structures. The recently described asymmetric structures of the human TNF-a trimer bound to
different inhibitors were retrieved from the RCSB Protein Data Bank (PDB) homepage
(https://www.rcsh.org) [44] using the following identifiers: 600Y, 60P0, 600Z [22]. The PDB
structures were protonated with Protoss [45] v.4.0, then split into protein, ligands and water molecules
and finally converted into mol2 format with Sybyl-X v.2.1.1 (Certara USA, Inc., Princeton, NJ 08540).
The binding sites (‘SITE’) were defined as any protein residue with at least one heavy atom closer than
6.5 A from any ligand heavy atom and saved in mol2 and pdb formats. The ligands were converted into
sdf format with OpenEye Python toolkits v.2020.0.4 (OpenEye Scientific Software, Santa Fe, U.S.A.).
Cavities were detected with IChem v.5.2.9 VolSite utility [21] (cavity_all output) using default
parameters. The cavity points are labeled with eight possible pharmacophoric features (hydrophobic,
aromatic, H-bond donor, H-bond acceptor, H-bond donor and acceptor, positive, negative, dummy) that
are complementary to the features of the nearest protein atom. If no protein atom is found within a 4 A
distance of a cavity point, the latter is assigned a dummy property.

HIV-1 reverse transcriptase PDB structures. Starting from the PDB structure 1VRT as a reference, a
search was performed in the RCSB PDB (https://www.rcsh.org) [44] to retrieve all structures with strict
matching (“Structure Similarity” query in the PDB). After visual check, 122 entries already available in
the sc-PDB repository (http://bioinfo-pharma.u-strasbg.fr/scPDB) [8] and for which the ligand is a non-
nucleoside inhibitor were kept. The remaining PDB structures were protonated with Protoss [45] v4.0.
The list of the PDB identifiers and Uniprot accession numbers is reported Supporting Table S2.
According to the sc-PDB preparation rules, the binding sites (‘SITE”) were defined as described above.
Protein, ligand and binding site ‘SITE’ structures were directly retrieved in mol2 file format from the
sc-PDB archive. The corresponding 122 ligands were 3D-fragmented with the IChem v.5.2.9 [49]
fragmentation utility [47] and the complementary VolSite [21] cavity points, computed at 4 A around

each fragment were finally saved. The ligands were converted into sdf format as described above.

Preparation of HIV-1 reverse transcriptase ChEMBL ligands

Bioassay information were first retrieved from the ChEMBL [43] dataset (Release 28;
https://www.ebi.ac.uk/chembl) by querying the general keyword 'reverse transcriptase’ and retaining
ChEMBL target identifiers (CHEMBL247, CHEMBL4296301, CHEMBL2366516) corresponding to
HIV-1 RT. Ligands with a measured sub-micromolar half-maximal inhibitory concentration (IC50)

against the HIV1-RT single target were defined here as inhibitors (Supporting Table S5). The
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corresponding SMILES strings were retrieved and further processed with RDKit (Open-source

cheminformatics; http://www.rdkit.org) v.2019.03.4.0 to remove redundancy.

Preparation of sc-PDB fragments and subpockets

Ligands coordinates from the sc-PDB (http://bioinfo-pharma.u-strasbg.fr/'scPDB) [46] v.2016 archive
were fragmented in 3D with the IChem v.5.2.9 fragmentation utility [47]. Fragmentations occurs in the
binding sites so that only the main fragments interacting sufficiently (four interactions of which at least
one is polar) with their target proteins were kept. Finally, the cavity pharmacophoric points cloud were
computed at 4 A from the fragments center to describe the protein subpocket, using the IChem v.5.2.9
VolSite utility ("cavity_4" output). VolSite cavities exhibiting less than three points were removed. A

total of 31,570 valid fragment-bound subpockets were finally obtained.

Cavity similarities

ProCare. ProCare [17] v.0.1.1 pairwise comparison were performed on cavities computed with the
VolSite module [21] in IChem v5.2.9 [49]. Entire cavities ("cavity_all" output) were calculated for TNF-
o structures whereas only cavity points closer than 4.0 A from any fragmented ligand center (“"cavity 4"
output) were considered for sc-PDB subpockets. VolSite cavity points were directly used for point cloud
registration staring with determination of colored fast point feature histograms (c-FPFH) as previously
described [17]. Finally, the respective set of c-FPFH descriptors for the two cavities were compared to
each other using a RANSAC algorithm [19, 20] followed by refinement with default parameters [17].
Alignments results were scored with the default ProCare scoring function [17] which evaluates with a
Tversky metric the proportion of aligned points of the same pharmacophoric features. In agreement with
our previous study [17] where the similarity threshold of 0.47 (p-value of 0.05) was statistically

determined, pockets scoring above 0.47 were considered similar.

FuzCav. FuzCav [36], an alignment-free method, was used to compare the binding site ‘SITE’ (mol2
format) entries of TNF-a dataset to the binding sites of HIVV-1 RT sc-PDB dataset. Each binding site
was tagged to compute a 4,833 bit-string that count all possible pharmacophoric triplets based on the
atomic coordinates of Ca atoms lining the binding cavity. The pairwise comparisons of the fingerprints
were evaluated with the default similarity score, with a threshold set at a value of 0.16 to distinguish

similar from dissimilar binding sites.
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G-LoSA. G-L0oSA [38] v.2.2 is an alignment tool that was used with the binding sites *SITE’ pdb files.
G-LoSA computes a set of inter-structural Ca pair distances to derive a graph, which will later be
subjected to maximum clique search. The default G-LoSA score (GA-score) was used to evaluate the
alignments. A threshold value of 0.59, recommended by the authors [38] and corresponding to a p-value

of 0.05, was used to distinguish similar from dissimilar binding sites.

KRIPO. PDB ligands structural information were downloaded from Ligand Expo (http://ligand-
expo.rcsb.org/) and prepared according to the KRIPO procedure (https://github.com/3D-e-Chem/kripo).
Then KRIPO [15] v.1.0.1 was used with the list of prepared PDB structures for the pharmacophore fuzzy
fingerprints calculations, using default parameters (fragmentation procedure activated). The pairwise
similarities of the fingerprints were estimated with kripodb (v.3.0.0) using the modified Tanimoto
coefficient as similarity metric. A threshold value of 0.50 was used to distinguish similar from dissimilar

binding sites.

ProBiS. In a first place, the surface information (srf files) was computed for each prepared PDB
structures with the default parameters referenced in the manual (3.0 A to the ligand). ProBiS [39]
requires a list of ligand HET code and residue number for each PDB entries. That list was provided to
ensure that the ligands/sites considered are the same as in the binding site datasets used for other
methods. Then, the alignment and comparison of the srf files were executed with default parameters,
except for the Z-score that was set to a high negative value (-9999) as suggested by the authors to enforce
the output of all results. Similarity between two binding sites was evaluated by the alignment score and
Z- score. A threshold Z-score value of 2.0 was used to distinguish significant from irrelevant binding

site alignments.

SiteAlign. For each entry, the list of natural amino acids in the ‘SITE’ mol2 files were provided as input.
SiteAlign [37] v.4.0 describes a binding site by a polyhedron of 80 discretized triangles annotated with
eight possible pharmacophoric features projected from cavity-lining C-a atoms. This results in a
fingerprint of 640 integers. The pairwise comparisons imply aligning the corresponding polyhedron and
computing the d1 and d2 distances of the fingerprints. The distance thresholds of d1=0.6 and d2=0.2

were applied respectively, to discriminate similar from dissimilar binding sites.

Shaper. Shaper [21] v.1.0 uses the same input files (VolSite cavities in mol2 file format) as ProCare.

Shaper is an alignment method based on the OpenEye ShapeTK toolkit (OpenEye Toolkits 2020.2.0,
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OpenEye Scientific Software, Santa Fe) to maximize the overlap of shape and pharmacophoric features
of the two compared cavities, thanks to a smooth Gaussian function. The alignments were realized with
default settings and scored with a Tversky metric putting more weight on the reference cavity (RefTve).
A threshold RefTve value of 0.44 (p-value = 0.005) was used to distinguish similar from dissimilar

binding sites.

Ligand similarities

Ligand 2D similarity. Morgan fingerprints on the one hand, and 166 public MACSS keys on the other
hand were computed on the PDB ligands (sdf format) and ChEMBL ligands (SMILES strings) with
RDKit (Open-source cheminformatics; http://www.rdkit.org) python package v.2019.03.4.0 using
default parameters (radius = 2 A for the Morgan fingerprints). The Tanimoto coefficients of the pairwise
TNF-a ligands/HIV-1 RT ligands fingerprints comparison were reported. Cut-off values of 0.30
(Morgan fingerprints) and 0.65 (MACCS keys) were used to discriminate chemically similar from

dissimilar ligands.

Ligand 3D similarity. sc-PDB HIV-1 RT inhibitors were compared to TNF-a inhibitors with OpenEye
ROCS v.3.2.0.4 and scored by decreasing Tanimoto similarity metric accounting for both shape and
chemical features overlap (TanimotoCombo). A TanimotoCombo cut-off value of 1.5 was used to

discriminate chemically similar from dissimilar ligands.

Docking

TNF-0 X-ray structure 600Z was prepared as described above (see TNF-a structures). 600Z co-
crystallized ligand on the one hand, delavirdine, efavirenz and nevirapine as well as their main fragments
on the other hand were drawn with MarvinSketch v.16.10.17 (ChemAxon Ltd, 1031 Budapest, Hungary)
and saved into 2D sdf format. They were ionized with Filter v.2.5.1.4 (OpenEye Scientific Software,
Santa Fe, U.S.A.) using customized parameters (Supporting Table S6). Then Corina v.3.40 (Molecular
Networks GmbH, 90411 Nurnberg, Germany) was used to generate a starting 3D conformation for each
inhibitor. The prepared molecules were docked into the target 600Z with PLANTS v.1.2 [26] using the
following configuration: the grid was set at 13 A from the binding site center; poses were searched
‘speed]” settings to generate a maximum of 10 poses per ligand using a clustering rmsd of 2 A. Solutions
were scored with the default ChemPLP scoring function [26]. The docking protocol was validated by
computing the rmsd between of the docked 600Z ligand coordinates and the X-ray coordinates. Results

were processed and rescored by computing the interaction fingerprint (IFP) similarity (Tanimoto metric)
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[48] between X-ray and docking poses. The IFPs were computed with IChem v.5.2.9 IFP module. All
poses were visually inspected using Maestro v.2019-3 (Schrédinger, New York, NY 10036-4041).

Chemicals and biologicals

Nevirapine (catalog #S1742), efavirenz (catalog #S4685) and delavirdine mesylate (catalog #S6452)
were purchased from Selleck Chemicals (https://mwww.selleckchem.com/). Soluble human TNF-a

(catalog # 201001) was purchased from GenScript (http://www.genscript.com).

Binding of HIV-1 RT inhibitors to human TNF-a (Microscale thermophoresis)

Human TNF-a was labeled using the RED-NHS 2nd generation labeling kit (NanoTemper Technologies
GmbH) using a protein concentration of 10 uM and a molar dye-to-protein ratio ~ 3:1. A label/protein
ratio of 0.4 was determined using photometry at 650 and 280 nm. Compounds efavirenz, delavirdine
and nevirapine were initially dissolved in DMSO to afford stock solutions of 10 mM. These were then
diluted to initial concentrations of 260 uM into 20 mM K-phosphate pH 7.4, 150 mM NaCl ensuring a
final concentration of DMSO of 2.6 %. These compounds were serially diluted 2:1 in buffer 20 mM K-
phosphate pH 7.4, 150 mM NacCl, 2.6 % DMSO producing ligand concentrations ranging from 260 uM
to 594 nM (16 titration points). For MST measurements, each ligand dilution was mixed with 1 volume
of fluorescently-labelled TNF-a at 680 nM in 20 mM K-phosphate pH 7.4, 150 mM NaCl, 0.02%
Tween-20, which leads to a final concentration of TNF-a of 340 nM and final ligand concentrations at
half of the ranges above. The final buffer is 20 mM K- phosphate pH 7.4, 150 mM NaCl, 0.01% Tween-
20 and 1.3 % DMSO. After a 15-min incubation at room temperature in the dark, followed by
centrifugation at 13,000 g for 3 min, each solution was filled into Monolith NT Premium capillaries
(NanoTemper Technologies GmbH). Thermophoresis was measured at 25°C with 40% LED power and
20%, 40% and 80% MST power using a Monolith NT.115 (NanoTemper Technologies GmbH). Data

were analyzed in the NT Analysis software version 1.5.41 (NanoTemper Technologies GmbH).
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3.1.6. Associated contents

List of abbreviations

2D: two-dimension PDB: Protein Data Bank

3D: three-dimension RANSAC: Random Sample Consensus
AUC: Area Under the Curve RMSD: Root Mean Square Deviation
c-FPFH: colored Fast Point Feature Histogram ROC: Receiver Operating Characteristics
DMSO: Dimethyl Sulfoxide RT: Reverse Transcriptase

HIV: Human Immunodeficiency Virus TNF: Tumor Necrosis Factor

MST: Microscale Thermophoresis

Supplementary information

Figure S1: Receiver operating characteristic (ROC) curves derived from ProCare similarity scores.
Figure S2: ProCare alignment of efavirenz main fragment subpocket onto TNF-a trimer pocket. Figure
S3: Contributions of the eight pharmacophoric features to the ProCare similarity score between HIV-1
RT and TNF-a. Figure S4: Non-covalent interactions between efavirenz and HIV-1 RT, and between
UCB-5307 and TNF-a trimer. Figure S5: Manual fragmentation of delavirdine in three fragments (#1
to #3). Table S1: sc-PDB subpockets sorted by decreased ProCare similarity to the inner cavity of
human TNF-a. Table S2: PDB entries describing non-nucleoside inhibitors bound to HIV-1 reverse
transcriptase. Table S3: Comparison of delavirdine subpockets, resulting from manual fragmentation,
with TNF-o trimer pockets. Table S4: Dissociation constant (KD) of three HIV-1 RT inhibitor binding
to human soluble TNF-a, according to MST experimental conditions. Table S5: CHEMBL entries
describing HIV-1 RT non-nucleoside inhibitors. Table S6: Customized rules for OpenEye Filter

ionization.

Availability of data and materials
Data. Input and results data are available at https://github.com/kimeguida/ProCare_TNF.

Software. ProCare, version 0.1.1 and 0.1.0, https://github.com/kimeguida/ProCare; Fuzcav,
http://bioinfo-pharma.u-strasbg.fr/labwebsite/downloads/FuzCav.tgz; G-LoSA,  version 2.2,
https://compbio.lehigh.edu/GL0oSA; KRIPODB, version 3.0.0, http://3d-e-chem.github.io/kripodb;
KRIPO, wversion 1.0.1, https://github.com/3D-e-Chem/kripo; ProBiS, http://insilab.org/probis-
algorithm/; SiteAlign, version 4.0, http://bioinfo-pharma.u-strasbg.fr/labwebsite/downloads/SiteAlign-
4.0.tgz; Shaper, version 1.0, http://bioinfo-pharma.u-strashg.fr/labwebsite/downloads/Shaper.tgz;
RDKit python package, version 2019.03.4.0, https://www.rdkit.org/; ROCS, version 3.2.0.4,

https://www.eyesopen.com/rocs; IChem, version 5.2.9, http://bioinfo-pharma.u-
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strashg.fr/labwebsite/downloads/IChem_v.5.2.9.tgz: Python OpenEye toolkits version 2020.0.4;
FILTER, version 2.5.1.4, https://www.eyesopen.com/filter; PLANTS version 1.2, http://www.tcd.uni-
konstanz.de/plants_download; Python package Matplotlib version 3.0.2; Maestro vesion 2019-3,
https://www.schrodinger.com/products/maestro; Pymol version 2.1, https://pymol.org/2; Sybyl-X
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3.1.8. Supplementary information for Unexpected similarity between HIV-1
reverse transcriptase and tumor necrosis factor binding sites revealed by

computer vision

Figure S1. Receiver operating characteristic (ROC) curves of ProCare similarity scores.

Figure S2. ProCare alignment of efavirenz main fragment subpocket onto TNF-a trimer pocket.
Figure S3. Contributions of the eight pharmacophoric features to the ProCare similarity score between
HIV-1 RT and TNF-a.

Figure S4. Non-covalent interactions between efavirenz and HIV-1 RT; and between UCB-5307 and
TNF-o trimer.

Figure S5. Manual fragmentation of delavirdine in three fragments (#1 to #3).

Table S1. sc-PDB subpockets sorted by decreased ProCare similarity to the inner cavity of human
TNF-a.

Table S2. PDB entries describing non-nucleoside inhibitors bound to HIV-1 reverse transcriptase.
Table S3. Comparison of delavirdine subpockets, resulting from manual fragmentation, with TNF-a

trimer pockets.

Table S4. Dissociation constant (Kp) of three HIVV-1 RT inhibitor binding to human soluble TNF-a,

according to MST experimental conditions.

Table S5. CHEMBL entries describing HIV-1 RT non-nucleoside inhibitors.

Table S6. Customized rules for OpenEye Filter ionization.
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Figure S1. Receiver operating characteristic (ROC) curves derived from ProCare similarity scores
between sc-PDB subpockets and three TNF-a cavities (600Y, 600Z, 60P0). For each target (HIV-1
RT, HIV-1 reverse transcriptase; ADRB2, 2 adrenergic receptor; CAH2, carbonic anhydrase; CDK2,
cyclin-dependent kinase 2; HSP90A, heat shock protein 90a; THRB, thrombin), the hypothesis is made
that its cavity is similar to that of TNF-o and the area under the ROC curve of the corresponding
classification is computed. The diagonal black dashed line corresponds to the performance of a random
classifier (ROCAUC = 0.50). Number of subpockets for each target is given in brackets. (A) 600Y
query, (B) 600Z query and (C) 60P0 query.
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@ Aromatic
@ Hydrophobic
@ H-bond donor

TNF-a | HIV-1RT

Figure S2. ProCare alignment of efavirenz main fragment subpocket (PDB code: 1FKO, HET code:
EFZ) onto TNF-a trimer pocket (PDB code: 600Z, HET code: A6Y). Matched pharmacophoric points
are depicted with dark-colored (TNF-a) and light-colored (HIV-1 RT) large spheres. Small spheres

represent pharmacophoric points not considered by the best ProCare alignment.
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Figure S3. Contributions of the eight pharmacophoric features to the ProCare similarity score between
HIV-1 RT (PDB ID 1FKO) and TNF-a (PDB ID 600Z). CA: hydrophobic, CZ: aromatic, O: h-bond
acceptor, N: h-bond donor, OD1: negative, OG: h-bond acceptor and donor, NZ: positive, DU: dummy.
(A) Aromatic pharmacophoric features are contributing more to the similarity between TNF-a trimer
pockets (N=3) and HIV-1 RT subpockets (N = 195) although they are less frequent in the HIV-1 RT
subpockets than hydrophobic points (B).
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Figure S4. Non-covalent interactions between (A) efavirenz and HIV-1 RT (PDB ID 1FKO, HET code:
EFZ) and (B) UCB-5307 and TNF-a trimer (PDB ID 600Z, HET code: A6Y).
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Figure S5. Manual fragmentation of delavirdine (PDB code: 1KLM, HET code: SPP) in three

fragments (#1 to #3).

Table S1. sc-PDB subpockets sorted by decreased ProCare similarity to the inner cavity of human
TNF-a (PDB code: 600Y)

Cavity ID? Protein name (Uniprot) Score® Rank
4f9y GG5 1 3 mitogen-activated protein kinase 14 0.7679 1
1mz9_VDY_2_1 cartilage oligomeric matrix protein 0.7673 2
lozl FPH 1 2 mitogen-activated protein kinase 14 0.7634 3
3g9n J88 1 2 mitogen-activated protein kinase 10 0.7527 4
4fyn OVE_1 2 tyrosine-protein kinase syk 0.7504 5
4kb8 1QN_3 1 casein kinase i isoform delta 0.7358 6
3k3j_146 2 1 mitogen-activated protein kinase 14 0.7338 7
2xj1_XJ1_1 2 serine/threonine-protein kinase pim-1 0.7303 8
4tuv_CPZ 1 1 cytochrome p450 119 0.7303 9
1mr9_ACO_3_2 streptogramin a acetyltransferase 0.7301 10
2fze APR 1 1 alcohol dehydrogenase class-3 0.728 11
diwc_1GV_2_1 estrogen receptor 0.726 12
lncr W11 1 2 human rhinovirus 16 0.7256 13
2ykm_YKN_1 2 HIV-1 reverse transcriptase 0.7242 14
d4a7c E46 1 1 serine/threonine-protein kinase pim-1 0.7234 15
4wm7_W11_ 1 2 capsid protein vp0 0.7216 16
toluene-4-monooxygenase system, hydroxylase

302a_PAB 2 1 component subunit alpha 0.7209 17
3bgr 4RB_1 1 death-associated protein kinase 3 0.7193 18
4cch OFG 1 4 alk tyrosine kinase receptor 0.7191 19
3fcl 52P 1 1 mitogen-activated protein kinase 14 0.7137 20
2uzt SS3 1 2 camp-dependent protein kinase catalytic subunit alpha 0.7126 21
dewq_MWL_2 3 mitogen-activated protein kinase 14 0.7122 22
4zhx_C1V_1 2 5'-amp-activated protein kinase catalytic subunit alpha-2 ~ 0.7122 23
40gi_R78 2 2 bromodomain-containing protein 4 0.7115 24
3roc_29A_1 2 mitogen-activated protein kinase 14 0.7093 25
211r SXK 1 2 troponin c, slow skeletal and cardiac muscles 0.7071 26
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4h98_14Q 2 3
1lwe_ NVP 1 1
3iw7_IPK_1_1

2prh_238 2 2
3hll_145 1 1
2vg7_NNI_1 1
llwc_NVP_1 2
louk 084 1 3
2xiy XIY_ 1 1
4k33_ACP_1 2
3umw_596 1 2
4nkw_PLO_4 1
2iok_IOK_1_3
20d9_LGF 1 2
2hnd_ NVP_1 1
Sav4d GEN_1 2
4zth_ GG5_1 2
3vs2_VSB 2 3
4r3c_GG5 1 3
4g5h_ANP_1 2
S5awm_ANP_1 2
4anq_VGH_1 2
1Imp0_NAD_2 2

4anv_751 11
2bxo_OPB_1_2
lnav_IH5_1 1
3fyw_XCF_1_3
3Ip0_NVP_2 1
ladc_PAD_1 2
2yis_146_2 1
4uun_NAI_ 2 2
4f12_ANP_1_2
4kb8_1QN_3 2
1pjc_NAD_1 2
3nl7_147_1 2
410g_NAD_1 2
4loo_SB4 1 2
3g06_ADP_1_2
3wze BAX 1 1
2xiz X1Z_1 1

3rsr_N5P_1 1
1jkI_ANP_1 2
3bxz_ADP_2 2

dihydrofolate reductase
HIV-1 reverse transcriptase
mitogen-activated protein kinase 14

dihydroorotate dehydrogenase (quinone), mitochondrial

mitogen-activated protein kinase 14
HIV-1 reverse transcriptase

HIV-1 reverse transcriptase
mitogen-activated protein kinase 14
serine/threonine-protein kinase pim-1
fibroblast growth factor receptor 3
serine/threonine-protein kinase pim-1
steroid 17-alpha-hydroxylase/17,20 lyase
estrogen receptor

mitogen-activated protein kinase 14
HIV-1 reverse transcriptase
death-associated protein kinase 1
mitogen-activated protein kinase 14
tyrosine-protein kinase hck
mitogen-activated protein kinase 14
protein Kinase ospg

stress-activated protein kinase jnk
alk tyrosine kinase receptor

alcohol dehydrogenase class-3

phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic

subunit gamma isoform

albumin

thyroid hormone receptor alpha
dihydrofolate reductase

HIV-1 reverse transcriptase

alcohol dehydrogenase e chain
mitogen-activated protein kinase 14
I-lactate dehydrogenase
tyrosine-protein kinase syk

casein kinase i isoform delta

alanine dehydrogenase
mitogen-activated protein kinase 14
alcohol dehydrogenase class-3
mitogen-activated protein kinase 14
ribokinase

vascular endothelial growth factor receptor 2
serine/threonine-protein kinase pim-1

ribonucleoside-diphosphate reductase large chain 1
death-associated protein kinase 1
protein translocase subunit seca

0.7059
0.7024
0.7024

0.7023
0.7023
0.7022
0.6985
0.6981
0.6981
0.698

0.6978
0.6975
0.6969
0.6967
0.6964
0.6964
0.6961
0.6951
0.6951
0.6939
0.6936
0.6933
0.6922

0.6918
0.6914
0.6905
0.6903
0.6897
0.6892
0.689

0.6882
0.6876
0.6874
0.687

0.687

0.6864
0.6864
0.6833
0.6833
0.6822

0.6816
0.6807
0.6807

27
28
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
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3uyt 0OCK_3 3 casein kinase i isoform delta 0.6807 70
1lgiw_DPD 2 2 calmodulin 0.6806 71
4mbl_26L_1 2 serine/threonine-protein kinase pim-1 0.6802 72
4kbc 1QJ 1 1 casein kinase i isoform delta 0.6797 73
1vru_AAP_1 2 HIV-1 reverse transcriptase 0.6791 74
1foy_NAD_2 2 hydroxyacyl-coenzyme a dehydrogenase, mitochondrial 0.6786 75
4hds_IPH 1 1 n(1)-alpha-phosphoribosyltransferase 0.6786 76
4mzu_COA_22 2 wxcm-like protein 0.6786 77
3gc7_B45 1 1 mitogen-activated protein kinase 14 0.6782 78
39f9_NM8_1_2 serine/threonine-protein kinase pim-1 0.678 79
3rr3_ FLR_3 2 prostaglandin g/h synthase 2 0.678 80
4ix6_ADP_1_2 protein kinase domain-containing protein 0.6771 81
1pf9_ADP 2 2 60 kda chaperonin 0.6761 82
[pyruvate dehydrogenase (acetyl-transferring)] kinase

2bu7_TF3_1 2 isozyme 2, mitochondrial 0.6761 83
bani ES4 1 1 cyclin-dependent kinase 2 0.6761 84
ltuv_VK3_1 1 probable quinol monooxygenase ygin 0.6754 85
2zml KSF 1 2 tyrosine-protein kinase lck 0.6752 86
3bea IXH 1 3 angiopoietin-1 receptor 0.6752 87
4hur_ACO_3 1 virginiamycin a acetyltransferase 0.6752 88
5dr2_ATP 1 2 aurora kinase a 0.6752 89
5dgz_L20 1 1 serine/threonine-protein kinase pim-1 0.674 90
4iu7_1GM_1 1 estrogen receptor 0.6736 91
2pnu_ENM_1 1 androgen receptor 0.6736 92
3hve_GG5_1 3 mitogen-activated protein kinase 14 0.6736 93
3wwm_ADP_1 2 [lysw]-aminoadipate kinase 0.6736 94
3znr_NU9 1 3 histone deacetylase 7 0.6736 95
3q7d_NPX 1 1 prostaglandin g/h synthase 2 0.6726 96
3fkn_FKN_1_1 mitogen-activated protein kinase 14 0.6723 97
4dgm_AGI 1 1 casein kinase ii subunit alpha 0.6721 98
4i5h_G17_1 1 mitogen-activated protein kinase 1 0.6721 99
3t9i 3T9 1 1 serine/threonine-protein kinase pim-1 0.6715 100
5je3_SAH_2 2 class | sam-dependent methyltransferase 0.0000 31570

aCavity ID (PDB_HET_C_M) is inferred from the cognate target PDB identifier (PDB), the
corresponding ligand chemical component (HET), the target cavity identifier (C), and the fragment
number (N).

bProCare similarity score. A value above 0.47 corresponds to statistically significant similarity (p-

value < 0.05) between the pair of pockets under investigation [17].
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Table S2. PDB entries describing non-nucleoside inhibitors bound to HIV-1 reverse transcriptase

The list of the 122 HIV-RT entries is available as supporting information at:
https://doi.org/10.1186/s13321-021-00567-3: 13321 2021 567 MOESM1_ESM.pdf

Table S3. Comparison of delavirdine subpockets, resulting from manual fragmentation, with TNF-a
trimer pockets.

PDB/HET code  Fragment # TNF-a PDB entry ProCare score Rank?
1KLM/SPP 1 600Y 0.328 588
1KLM/SPP 2 600Y 0.599 113
1KLM/SPP 3 600Y 0.283 593
1KLM/SPP 1 600z 0.361 581
1KLM/SPP 2 600Z 0.570 174
1KLM/SPP 3 600z 0.416 549
1KLM/SPP 1 60P0 0.342 586
1KLM/SPP 2 60P0 0.534 272
1KLM/SPP 3 60P0 0.130 594

aRank after adding delavirdine fragment scores to the ProCare screening results that yielded a total of

594 pairwise scores.

Table S4. Dissociation constant (Kp) of three HIV-1 RT inhibitor binding to human soluble TNF-a, according
to MST experimental conditions.

HIV-1RT TNF DMSO Tween-20 Incubation  MST Koz CI?
Inhibitor concentration  concentration  concentr time power UM
nM (%) ation min %
in MST buffer  in MST
buffer

efavirenz 220 5.0 0.05 5 40 45+ 9
efavirenz 220 5.0 0.05 5 80 47 £12
efavirenz 220 5.0 0.01 5 80 26+5
efavirenz 220 5.0 0.01 30 80 27+6
efavirenz 220 2.5 0.01 30 80 11+3
efavirenz 170 13 0.01 20 40 175
efavirenz 170 1.3 0.01 20 80 24+ 4
efavirenz 340 1.3 0.01 15 40 24+ 8°
efavirenz 340 13 0.01 15 80 385
delavirdine 220 5.0 0.05 5 40 203 + 143
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delavirdine 220 5.0 0.01 5 40 84 + 57
delavirdine 170 1.3 0.01 5 40 90+£50
delavirdine 170 1.3 0.01 60 20 8131
delavirdine 170 1.3 0.01 15 20 69 + 23
delavirdine 340 1.3 0.01 15 20 39+9°
delavirdine 340 1.3 0.01 120 20 56 + 20
nevirapine 220 5.0 0.05 5 40 no signal
nevirapine 340 13 0.01 20 40 no signal

2 Cl: 68.3% confidence interval
b MST measure with the highest signal to noise ratio

Table S5. CHEMBL entries describing HIV-1 RT non-nucleoside inhibitors.

Available at https://github.com/kimeguida/ProCare_ TNF

Table S6. Customized rules for OpenEye Filter ionization.

MIN_MOLWT 1 "Minimum molecular weight"

MAX_MOLWT 15000 "Maximum molecular weight"

MIN_NUM_HVY 0 "Minimum number of heavy atoms"

MAX_NUM_HVY 2500 "Maximum number of heavy atoms"

MIN_RING_SYS 0  "Minumum number of ring systems"

MAX_RING_SYS 50 "Maximum number of ring systems"

MIN_RING_SIZE 0  "Minimum atoms in any ring system"

MAX_RING_SIZE 200 "Maximum atoms in any ring system"

MIN_CON_NON_RING 0  "Minimum number of connected non-ring atoms"
MAX_CON_NON_RING 190 "Maximum number of connected non-ring atoms"
MIN_FCNGRP 0  "Minimum number of functional groups"

MAX_FCNGRP 70  "Maximum number of functional groups"

MIN_UNBRANCHED 0  "Minimum number of connected unbranched non-ring atoms"
MAX_UNBRANCHED 130 "Maximum number of connected unbranched non-ring atoms"
MIN_CARBONS 0  "Minimum number of carbons"

MAX_CARBONS 410 "Maximum number of carbons"

MIN_HETEROATOMS 0  "Minimum number of heteroatoms"

MAX_HETEROATOMS 140  "Maximum number of heteroatoms"

MIN_Het C Ratio 0.04 "Minimum heteroatom to carbon ratio"

MAX_Het C Ratio 40.0 "Maximum heteroatom to carbon ratio"
MIN_HALIDE_FRACTION 0.0 "Minimum Halide Fraction"
MAX_HALIDE_FRACTION 0.99 "Maximum Halide Fraction"

#count ring degrees of freedom = (#BondsInRing) - 4 - (RigidBondsInRing) - (BondsSharedWithOtherRings)
#must be >= 0, from JCAMD 14:251-265,2000.

ADJUST _ROT_FOR _RING true "BOOLEAN for whether to estimate degrees of freedom in rings"
MIN_ROT_BONDS 0  "Minimum number of rotatable bonds"

MAX ROT_BONDS 160 "Maximum number of rotatable bonds"

MIN_RIGID _BONDS 0 "Minimum number of rigid bonds"
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MAX_RIGID_BONDS 550 "Maximum number of rigid bonds"
MIN_HBOND_DONORS 0  "Minimum number of hydrogen-bond donors"
MAX_HBOND_DONORS 90 "Maximum number of hydrogen-bond donors"
MIN_HBOND_ACCEPTORS 0  "Minimum number of hydrogen-bond acceptors”

MAX HBOND_ACCEPTORS 130 "Maximum number of hydrogen-bond acceptors”

MIN_LIPINSKI_DONORS 0  "Minimum number of hydrogens on O & N atoms"
MAX_LIPINSKI_DONORS 60 "Maximum number of hydrogens on O & N atoms"
MIN_LIPINSKI_ACCEPTORS 0  "Minimum number of oxygen & nitrogen atoms"

MAX_LIPINSKI_ACCEPTORS 140 "Maximum number of oxygen & nitrogen atoms

MIN_COUNT_FORMAL_CRG 0 "Minimum number formal charges"
MAX_COUNT_FORMAL_CRG 40 "Maximum number of formal charges"
MIN_SUM_FORMAL_CRG -20  "Minimum sum of formal charges"
MAX_SUM_FORMAL_CRG 20 "Maximum sum of formal charges"
MIN_CHIRAL_CENTERS 0 "Minimum chiral centers"”
MAX_CHIRAL_CENTERS 100 "Maximum chiral centers"

MIN_XLOGP  -30.0 "Minimum XLogP"

MAX_XLOGP 60.85 "Maximum XLogP

#choices are insoluble<poorly<moderately<soluble<very<highly
MIN_SOLUBILITY insoluble "Minimum solubility"

PSA_USE_SandP false "CountS and P as polar atoms"

MIN_2D_PSA 0.0 "Minimum 2-Dimensional (SMILES) Polar Surface Area"
MAX_2D_PSA  2050.0 "Maximum 2-Dimensional (SMILES) Polar Surface Area"
AGGREGATORS false  "Eliminate known aggregators"

PRED_AGG false  "Eliminate predicted aggregators”

#secondary filters (based on multiple primary filters)

GSK_VEBER false "PSA>140 or >10 rot bonds"

MAX_LIPINSKI 5 "Maximum number of Lipinski violations"

MIN_ABS 0.01  "Minimum probability F>10% in rats"

PHARMACOPIA false "LogP >5.88 or PSA > 131.6"
ALLOWED_ELEMENTS H,C,N,O,F,P,S,CI,Br,1,B

ELIMINATE_METALS Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Y,Zr,Nb,Mo, Tc¢,Ru,Rh,Pd,Ag,Cd
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3.2. Scope and critical evaluation of the study

In Chapter 2, we presented ProCare and its possible applications. Whereas benchmarking via
retrospective studies is necessary to validate an approach, it is important to delineate the actual
applicability in real-life cases—what the method was developed for in the first place. This study aimed
at evaluating whether ProCare can predict similarity between structurally and functionally remote
pockets and transfer a binding fragment from one pocket to the other. The choice of the target, human
tumor necrosis factor-alpha (TNF-o),2 was motivated by its unavailability in the sc-PDB database and

its importance in human diseases.

TNF-a is a pro-inflammatory cytokine, released by the immune system for infection signaling. It binds
to and activate one of its two receptors, TNF receptor 1 (TNFR1).! Targeting TNF-a has been a
successful strategy to treat autoimmune diseases such as rheumatoid arthritis, psoriasis, or inflammatory
Bowel disease such as Crohn's disease or ulcerative colitis. Approved and commercialized inhibitors are
monoclonal anti-human TNF-a antibodies (e.g. Infliximab) or chimeric proteins mimicking TNFR (e.g.
Etanercept).? Due to the challenges of biologics regarding administration, immunogenicity and other
side effects, drug design efforts are made to develop small molecule inhibitors.> Among the strategies,
some small molecules in the clinical phases disrupt TNF-o pathways (e.g. p38 inhibitors). Others
directly target the trimeric interface (Table 3.1). We should recall that, among published inhibitors
accessible in ChEMBL (https://www.ebi.ac.uk/chembl) for instance, not all were co-crystallized with
TNF-a or released in the Protein Data Bank (PDB).**®

Out of the 35 TNF-a homotrimer, dimer and monomer structures in the PDB, one third were released in
the last two years, after the generation of the hypothesis leading to this work. Some of these structures
are complexes with small molecules inducing some asymmetric shape of the trimeric TNF-a and
disrupting its downstream effects. The most recent asymmetric trimeric complexes (PDB ID 600QY,
600Z, 60P0) at the time of the study were selected.

Table 3.1. Small molecules binding TNF-a trimer interface and available in the PDB (on 06/27/2022).

PDB ID Ligand Binding Affinity in | Release date
(Resol.) nM
(assay, measure)
O = | 2 700 2021-01-13
N (SPR Kp)’

6X81
(2.81 A) O
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TNF-a pocket is highly hydrophobic (55 % of IChem cavity points are hydrophobic) and might falsely
match with other hydrophobic pockets. For example, high similarity was predicted for estrogen receptor
subpockets without further investigations. Interestingly, ProCare aligned four polar features as well,
associated to a triangle of distinct TNF-o/HIVRT protein residues, hence excluding the possibility of
unspecific matches. Subpocket-based alignment of corresponding HIVRT fragments (derived from
nevirapine and efavirenz) superposed to docking solutions encouraged us to continue the study whereas
the nevirapine butterfly shape nicely matched the benzimidazole ligands of TNF-a. As discussed in the
previous chapters, there is no experimental measure and not one definition of pocket similarity. Herein,
‘similar’ subpockets means ‘capable of binding the same molecules, by exhibiting some features that
can result in favorable energetic contributions. As binding occurs due to contributions other than
enthalpy, absence of experimental binding data would have resulted in limited to no conclusions in our
experimental design. Other factors are the assay settings or solubility problems. Contrarily, identifying
at least one example is enough to prove the above proposition as it is a matter of possibility instead of
systematic observation. Accordingly, we made no effort to evaluate TNF-a inhibitors on HIVRT.

Prior to the direct binding microscale thermophoresis (MST) experiments, efavirenz and delavirdine
showed to interact in vitro with TNF-a in differential scanning fluorimetry (nanoDSF) assays while the
nevirapine hypothesis failed. We note that intact (and not the corresponding fragments) efavirenz and
nevirapine were tested whereas the hypothesis was derived from comparing their fragments subpockets.
The additional moieties might perturb predicted interactions or rather add positive contribution to the
binding. Nonetheless, a global a posteriori comparison with whole HIVRT pocket enclosing efavirenz
yielded scores above the similarity threshold, albeit with a different alignment. Several attempts to
access the SPR assay and have a basis for direct comparison with UCB TNF-a inhibitors® by contacting

the authors remained unsuccessful.

Given the importance of TNF-a, we further assessed the effects of the three HIVRT inhibitors on the
ability of TNF-a to binds to its receptor TNFR1. While the detected signals were consistent with the
MST results (signal for delavirdine and efavirenz, no effect with nevirapine), they were weak (< 30%
inhibition at 100 uM, Figure 3.1). Further investigations with or without crystal structure of complexes,

which are out of the scope of this thesis, would provide more insights.
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Figure 3.1. Inhibition of 0.1 nM [*%1]-TNF-o. binding to human TNF receptor type 1 (TNFR1) in U-
937 cells,™ by three HIV-1 reverse transcriptase inhibitors (Eurofins Discovery assay #76). Results are

mean £ SEM of two experiments.

What did we learn about the method? Visualization of aligned features in the protein pockets provides
additional insights. When prioritizing pocket matches, attention must be paid on the size and feature
composition of the subpockets to decrease the chances of false positives. Because ProCare score was
made symmetrical and adapted to compare pockets of different sizes, smallest pockets would tend to
have higher scores when the latter are highly hydrophobic. Additional experiments such as docking or

molecular dynamic simulations might be useful to provide different perspectives.

3.3. References
1. Kalliolias, G. D.; Ivashkiv, L. B. TNF Biology, Pathogenic Mechanisms and Emerging
Therapeutic Strategies. Nat. Rev. Rheumatol. 2016, 12, 49-62.

2. Palladino, M. A.; Bahjat, F. R.; Theodorakis, E. A.; Moldawer, L. L. Anti-TNF-a Therapies: The
next Generation. Nat. Rev. Drug Discov. 2003, 2, 736—746.

3. Domling, A.; Li, X. TNF-a: The Shape of Small Molecules to Come? Drug Discov. Today 2022,
27, 3-1.

4, Mouhsine, H.; Guillemain, H.; Moreau, G.; Fourati, N.; Zerrouki, C.; Baron, B.; Desallais, L.;
Gizzi, P.; Ben Nasr, N.; Perrier, J.; Ratsimandresy, R.; Spadoni, J. L.; Do, H.; England, P.;

187



Chapter 3. ProCare validation: fragment repurposing and secondary target prediction

10.

11.

12.

13.

Montes, M.; Zagury, J. F. Identification of an in Vivo Orally Active Dual-Binding Protein-
Protein Interaction Inhibitor Targeting TNFa through Combined in Silico/in Vitro/in Vivo
Screening. Sci. Rep. 2017, 7, 1-10.

Chen, S.; Feng, Z.; Wang, Y.; Ma, S.; Hu, Z.; Yang, P.; Chai, Y.; Xie, X. Discovery of Novel
Ligands for TNF-a and TNF Receptor-1 through Structure-Based Virtual Screening and
Biological Assay. J. Chem. Inf. Model. 2017, 57, 1101-1111.

Sun, W.; Wu, Y.; Zheng, M.; Yang, Y.; Liu, Y.; Wu, C.; Zhou, Y.; Zhang, Y.; Chen, L.; Li, H.
Discovery of an Orally Active Small-Molecule Tumor Necrosis Factor-a Inhibitor. J. Med.
Chem. 2020, 63, 8146-8156.

Dietrich, J. D.; Longenecker, K. L.; Wilson, N. S.; Goess, C.; Panchal, S. C.; Swann, S. L;
Petros, A. M.; Hobson, A. D.; lhle, D.; Song, D.; Richardson, P.; Comess, K. M.; Cox, P. B,;
Dombrowski, A.; Sarris, K.; Donnelly-Roberts, D. L.; Duignan, D. B.; Gomtsyan, A.; Jung, P.;
Krueger, A. C.; Mathieu, S.; McClure, A.; Stoll, V. S.; Wetter, J.; Mankovich, J. A.; Hajduk, P.
J.; Vasudevan, A,; Stoffel, R. H.; Sun, C. Development of Orally Efficacious Allosteric Inhibitors
of TNFa via Fragment-Based Drug Design. J. Med. Chem. 2021, 64, 417-429.

Lightwood, D. J.; Munro, R. J.; Porter, J.; McMillan, D.; Carrington, B.; Turner, A.; Scott-
Tucker, A.; Hickford, E. S.; Schmidt, A.; Fox, D.; Maloney, A.; Ceska, T.; Bourne, T.;
O’Connell, J.; Lawson, A. D. G. A Conformation-Selective Monoclonal Antibody against a
Small Molecule-Stabilised Signalling-Deficient Form of TNF. Nat. Commun. 2021, 12.

Xiao, H.-Y. Y.; Li, N.; Duan, J. J. W,; Jiang, B.; Lu, Z.; Ngu, K.; Tino, J.; Kopcho, L. M.; Lu,
H.; Chen, J.; Tebben, A. J.; Sheriff, S.; Chang, C. Y.; Yanchunas, J.; Calambur, D.; Gao, M.;
Shuster, D. J.; Susulic, V.; Xie, J. H.; Guarino, V. R.; Wu, D.-R. R.; Gregor, K. R.; Goldstine,
C. B.; Hynes, J.; Macor, J. E.; Salter-Cid, L.; Burke, J. R.; Shaw, P. J.; Dhar, T. G. M. M.
Biologic-like in Vivo Efficacy with Small Molecule Inhibitors of TNFa Identified Using
Scaffold Hopping and Structure-Based Drug Design Approaches. J. Med. Chem. 2020, 63,
15050-15071.

O’Connell, J.; Porter, J.; Kroeplien, B.; Norman, T.; Rapecki, S.; Davis, R.; McMillan, D.;
Arakaki, T.; Burgin, A.; Fox Ill, D.; Ceska, T.; Lecomte, F.; Maloney, A.; Vugler, A,
Carrington, B.; Cossins, B. P.; Bourne, T.; Lawson, A. Small Molecules That Inhibit TNF
Signalling by Stabilising an Asymmetric Form of the Trimer. Nat. Commun. 2019, 10, 5795.

Blevitt, J. M.; Hack, M. D.; Herman, K. L.; Jackson, P. F.; Krawczuk, P. J.; Lebsack, A. D.; Liu,
A. X.; Mirzadegan, T.; Nelen, M. |.; Patrick, A. N.; Steinbacher, S.; Milla, M. E.; Lumb, K. J.
Structural Basis of Small-Molecule Aggregate Induced Inhibition of a Protein—Protein
Interaction. J. Med. Chem. 2017, 60, 3511-3517.

He, M. M.; Smith, A. S.; Oslob, J. D.; Flanagan, W. M.; Braisted, A. C.; Whitty, A.; Cancilla,
M. T.; Wang, J.; Lugovskoy, A. A.; Yoburn, J. C.; Fung, A. D.; Farrington, G.; Eldredge, J. K;
Day, E. S.; Cruz, L. A.; Cachero, T. G.; Miller, S. K.; Friedman, J. E.; Choong, I. C,;
Cunningham, B. C. Small-Molecule Inhibition of TNF-a. Science. 2005, 310, 1022-1025.

Brockhaus, M.; Schoenfeld, H. J.; Schlaeger, E. J.; Hunziker, W.; Lesslauer, W.; Loetscher, H.
Identification of Two Types of Tumor Necrosis Factor Receptors on Human Cell Lines by
Monoclonal Antibodies. Proc. Natl. Acad. Sci. 1990, 87, 3127-3131.

188



CHAPTER 4

Pocket-focused library design

189



190



Chapter 4. Pocket-focused library design

4.1. Scope and motivations

Compound library compilation is among the very first steps in a structure-based virtual screening
campaign. Classically, lists of compounds from chemical vendors of choice are merged and filtered
according to the project specifications. The size of such libraries can range from a few thousands to
billions. Yet, a finite number of molecules are to be screened, and it is at best hoped that the library
covers areas in the chemical space where potential hits are. This assumption is a necessary condition for
the success of the screening, even before considering the performance of the methods to prioritize the
best compounds. Among the possible strategies to efficiently explore the chemical space, the brute force
approach consists of screening the largest possible diverse library, acknowledging the computing
resources and prioritization efforts it demands.! Alternative ways use available information on the target,
like pharmacophore of known ligands or deconstruction-recombination of inhibitors to build a target-
focused library of smaller size, faster to screen and with expected higher hit rate.? We herein propose a
semi-automatic workflow to generate molecule ideas for a given target by borrowing and linking bound
fragments from available protein-bound ligands when their protein subpockets are locally similar to the
target cavity. Accordingly, the POEM (Pocket-Oriented Elaboration of Molecule) computational
workflow was developed. It is applicable even when only the apo structure of the target (without known
binding ligand) is available.

The research questions raised by this methodology lays in combining two approximations: (i) the
fragment still binds to the same subpocket as the corresponding substructure in the fully enumerated
molecule; (ii) the fragment pose is not altered by linking to another fragment. Fragment-based drug
design efforts demonstrated that linking two fragments does not always ensure conservation of their
initial binding mode in the newly formed ligand; reversely, it has been shown experimentally that ligands
deconstruction generates fragments that do not necessarily bind to the same pocket as in the original
ligands.® Therefore, POEM rationally relies on the proportion that escape these considerations. This
study does not aim at answering the binding mode conservation questions in themselves but rather to
propose a reasonable and useful tool to support hit discovery.

POEM was evaluated on three targets (Table 4.1): (1) cyclin-dependent kinase 8 (CDKS8) for which
ligands are known, allowing both retrospective and prospective studies, (2) the quinolinate synthase
(NadA), a metalloprotein with Fe/S cluster in a narrow binding site for which no inhibitors are known
and (3) the WD40 domain of leucine-rich repeat kinase 2 (LRRK2) whose pocket appears hardly
druggable with no available ligands. With these applications, we aspire to validate and show the

capacities and the limits of the approach.
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Table 4.1. Characteristics of targets in POEM case-studies.

Target Pocket Volume (A3)? Pharmacological ligands Prosthetic group
CDK8 catalytic 891 yes No

NadA catalytic 213 No [4Fe-4S]
LRRK2 WDR  scaffold 1411 No No

2 Pocket volume measured by the VolSite module of IChem v.5.2.9.
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4.2. Target-focused library design by pocket-applied computer

vision and fragment deep generative linking

This project was pursued as a collaboration with Pr M. Hibert who, together with his team, were
investigating the protein CDKS8 inhibitors.

4.2.1. Biological relevance of CDKS8 in drug discovery and structural aspects

Cyclin-dependent kinase 8 (CDKS8) is serine/threonine protein kinase (EC 2.7.11.22) which catalyzes
the transfer of the gamma phosphate of ATP to hydroxyl groups of specific serine or threonine residues
in peptide substrates. Many human diseases are associated with kinases as phosphorylation is a post-
translational modification involved in several cellular processes. CDK8 belongs to the cyclin-dependent
kinase (CDK) family whose members are conserved in eucaryotes and were originally known to play a
role in the regulation of the cell cycle (CDK1, CDK2, CDK4 and CDK®6). As part of the coactivator
Mediator complex, CDK8 however regulates the transcription activities of RNA polymerase Il, the
multiprotein complex that transcribes deoxyribonucleic acid (DNA) into ribonucleic acid (RNA).
Consequently, disrupting CDK8 functions would affect RNA polymerase I1-dependent genes expression
required for cell life. The CDK8 gene is located on chromosome 13q, a large portion of which was
identified as overexpressed in colon cancers.*® Studies have demonstrated that inhibition of CDK8
activity through CDK8 gene silencing or small molecule inhibitors decreased proliferation of B-catenin-
dependent colon cancer cell lines.*” CDK8 oncogenic role was also shown in other cancers (melanoma,
gastric, breast, and ovarian cancers),® ! positioning CDK8 as a potential drug target.

Recently, a few selective CDKS8 inhibitors have been positioned as potential therapeutics for the
Diamond-Blackfan anemia'>'®* (DBA, ORPHA code: 124), a rare orphan disease. DBA is a
ribosomopathy that affects the bone marrow which fails to produce mature and fully functional red blood
cells in sufficient quantity. While the incidence is estimated to 1:150,000 in Europe, patients usually
rely on red blood cells transfusion and/or corticosteroid treatments and are subjected to the related
consequences (iron chelation therapy to prevent hemochromatosis, steroids adverse effects).* Although
the underlying mechanisms are not well known and the potential drug targets are still to be fully
validated,'® some doors are open for exploration.

CDKa8 is composed of 464 amino acids and exists as two possible isoforms by alternative splicing. These
isoforms differ by deletion of residue K370 in isoform 2
(https://www.uniprot.org/uniprot/P49336#expression). The sequence adopts the protein kinase-like
(PKL) fold, mostly-B-stranded N-lobe connected to the mostly-a-helical C-lobe via the hinge region
(Supporting information). Structural motifs of kinases are well characterized and shared by all

eucaryotic/eucaryotic-like protein kinases (ePK/ELK).X The ATP site sits between the N-lobe and the
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C-lobe, flanked by the glycine-rich loop (G-loop or P-loop) in the top, the catalytic loop containing the
HRD motif and the activation loop (A-loop or T-loop) in the bottom, the aC-helix on the right, while
the adenine head interacts with the hinge.'” An important pattern is the DFG (DMG in CDK8) motif of
the A-loop whose open conformation (Phe/Met making hydrophobic contact with aC-helix) indicates
the active state of the kinase, while the close conformation marks the inactive state.'” Kinase inhibitors
are classified according to the their binding site and bound-kinase state (Type I to VI). Type | inhibitors
bind to the catalytic site in active conformation, while type Il inhibitors bind to the inactive DMG-out
conformation.’® More information about kinase domains and their regulations are available in the
literature.® To be active, kinases of the CDK family associates with other protein partners, mainly
cyclins. CDKS interacts with cyclin C. To this date (17/04/2022), only 31 structures of CDK8-CyclinC
are available in the Protein Data Bank (PDB) in contrast to some other CDKs (e.g. 427 CDK2 entries in
the PDB). Among these structures, one PDB entry corresponds to the apo-protein, 20 relates to
complexes with type I inhibitors (DMG ‘in”), and ten with type 11 inhibitors binding to the back pocket
(DMG °‘out’) (Supporting information).
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The following section (4.2.2 — 4.2.9) has been revised and published in:

Merveille Eguida, Christel Schmitt-Valencia, Marcel Hibert, Pascal Villa, and Didier Rognan. J. Med.

Chem. 2022, 65, 13771-13783.

The open source code is available at: https://github.com/kimeguida/POEM
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ABSTRACT: We here describe a computational approach (POEM: Pocket Oriented Elaboration of Molecules) to drive the
generation of target-focused libraries while taking advantage of all publicly available structural information on protein—ligand
complexes. A collection of 31 384 PDB-derived images with key shapes and pharmacophoric properties, describing fragment-bound
microenvironments, is first aligned to the query target cavity by a computer vision method. The fragments of the most similar PDB
subpockets are then directly positioned in the query cavity using the corresponding image transformation matrices. Lastly, suitable
connectable atoms of oriented fragment pairs are linked by a deep generative model to yield fully connected molecules. POEM was
applied to generate a library of 1.5 million potential cyclin-dependent kinase 8 inhibitors. By synthesizing and testing as few as 43

compounds, a few nanomolar inhibitors were quickly obtained with limited resources in just two iterative cycles.
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4.2.2. Abstract

Choosing the most appropriate chemical space is key to successfully screen compound libraries for early
drug discovery. We here describe a novel computational approach, inspired from fragment-based design,
to drive the generation of target-focused libraries while taking advantage of all publicly available
structural information on protein-ligand complexes. The query target cavity, represented by an image
with key shape and pharmacophoric properties, is first aligned by a computer vision method to a
collection of 31 384 images describing fragment-bound microenvironments (subpockets) from the
Protein Data Bank. The fragments of the most similar PDB subpockets are then directly positioned in
the query cavity using the corresponding image transformation matrices. Last, suitable connectable
atoms of oriented fragment pairs are linked by a deep generative model to yield fully connected
molecules. As a first proof of concept, the method was applied to generate a library of 1.5 million
potential cyclin-dependent kinase 8 (CDKS8) inhibitors. After appropriate filtering, as few as 43
compounds were purchased or synthesized, and tested for in vitro competitive CDK8 inhibition. Several
nanomolar inhibitors were quickly obtained with limited resources in just two iterative cycles. The
approach is applicable to any druggable cavity of known three-dimensional structure, irrespective of

prior ligand information.
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4.2.3. Introduction

Fragment-based drug design (FBDD)! has gain considerable popularity in the last 20 years for
identifying new lead compounds and guiding the optimization towards drug candidates, even up to the
market with four recently approved drugs.? Common FBDD programs starts by screening libraries of
low molecular weight compound (fragments)®by multiple biophysical methods such as nuclear magnetic
resonance spectroscopy (NMR), surface plasmon resonance (SPR), isothermal titration calorimetry
(ITC) or mass spectroscopy (MS) to cite just a few.* Key advantages of FBDD with respect to
biochemical high-throughput screening (HTS) are the sampling of a much larger chemical space as well
as higher hit rates, even for difficult targets for which other approaches failed. Despite low affinities,
fragment hits can be progressed to leads by linking, merging or growing approaches.® Although not
necessary, it is usually advisable to start from high quality X-ray diffraction data to position fragment
hits in their cognate target.® Even if FDBB is now widely used for hit identification, not all targets and
fragments are suitable to X-ray diffraction. One the one hand, some targets still proved to be hard to
isolate, purify in large scale and produce high-quality crystals for X-ray diffraction. On the other hand,
some fragments cannot be detected by the latter technique because of poor physicochemical properties
or too low affinities. In such cases, computational approaches are the only alternatives to predict the
most viable positions of fragment hits identified experimentally” or to identify new hits by in silico

screening.®

Three computational approaches can be used to predict the relative orientation of a fragment in a target
cavity: molecular docking, functional group mapping and deconstruction-reconstruction. Molecular
docking® is by far the most popular structure-based approach and aims at identifying both the bound
conformation and the orientation of the ligand in a target cavity from their respective stereochemical
and topological complementarities. Although it has mostly been applied to drug-like compounds,
docking can be used to pose fragments with an accuracy comparable to that of lead-like compounds.®
11 Docking is the computational method that is the closest to experimental fragment screening, and can
be directly applied to any fragment library. In addition to potential hit identification, the fragment
position in the target cavity is also predicted. Unfortunately, scoring weak-binding fragments remains a
challenge and requires an efficient post-processing, e.g. knowledge-based protein-ligand interaction

rescoring.'?14

Functional group mapping® uses probe atoms or groups to map a protein cavity at their preferential
location. Probes can be positioned according to protein-ligand interaction energies at regular points of a
three-dimensional (3D) lattice®*’ or by molecular dynamics (MD) sampling.® Interestingly, exhaustive
all-atom MD better captures protein flexibility and solvation issues, and may also unmask transient

cavities hidden to conventional docking protocol. Key drawback is the computational burden limiting a
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wide applicability for virtual screening. Moreover, reconstructing a fully connected ligand from several

discontinuous propensity maps is not straightforward.

Last, deconstruction-reconstruction approaches®® aim at computationally splitting protein-bound ligand
X-ray structures into fragments according to well-known retrosynthetic organic chemistry rules.?%-2
Resulting fragments can then be recombined into new chemical entities while taking into account the
protein environment. The method still suffers from the tricky recombination step (linking, merging,
scaffold hopping)?? that may disturb the original fragment binding modes or generate conformational
strains. Interestingly, deep generative models®2 for linking disconnected fragments have shown some
promises as they learn from millions of existing bioactive ligands. Deconstruction-reconstruction is
mainly target-specific and applicable to targets for which numerous co-crystallized ligands are already
available, although docking poses may be used in principle.

None of the above-reported method really takes profit of the increasing amount of structural data on
protein-ligand complexes and their druggable pockets.?® Since low molecular weight fragments have
been shown to bind to preferential protein microenvironments regardless of their evolutionary
relationship,?” a FBDD approach considering the whole universe of druggable ligands and pockets is
desired. Capitalizing on our recent numerical image processing tool to describe and align protein
cavities,”® we here propose to pose fragments according to the local similarity of their respective
subpockets to the target cavity. Applying the transformation matrix leading to the optimal subpocket-
cavity alignment, the corresponding fragments are directly positioned into the target cavity and
connected, under topological constraints, by a deep generative linker to yield fully connected molecules.
Applying the method to the catalytic site of human cyclin dependent kinase 8 (CDK8), a focused library
of 1.5 million chemical entities could be quickly generated. Interestingly, most newly generated
compounds exhibited unprecedented structures. In vitro biological evaluation of 43 carefully selected
compounds identified several nanomolar inhibitors within just two design iterations and limited

experimental efforts.
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4.2.4. Results and discussion

Setting the scene

We herein present a novel method to design target cavity-focused libraries based on predicted

similarities between the target cavity and a library of PDB fragment-bound subpockets (Figure 1). The

underlying idea is to locate the most complementary fragments in the target cavity based on the

estimated similarity of their corresponding subpockets, and then to link the prepositioned fragments into

drug-like compounds using a deep generative linker. Accordingly, this approach can be implemented

even in the absence of known ligands for the target protein. To assess its applicability and limits in a

real-life drug design project, the method is here applied to CDKS, a target of pharmaceutical interest?

and known X-ray structure.® In the following sections, we will describe, step by step, each part of the

workflow until the experimental validation of newly generated inhibitors.

sc-PDB fragment-bound subpockets (31 384)

Alighment to the CDKS8 cavity
ProCare

Connectable fragments
Connectable atoms definition
Subpockets pairs definition

Library design (round 1)
Fragments linking with DeLinker
Enumeration of SMILES

Hit selection
% of CDK8 inhibition

Library design (round 2)
Hit growing
Custom synthesis

Subpocket hits selection
ProCare score > 0.39

Bound fragments alignment
CDK8 subpocket annotation

Filtering of designed molecules
Validity

Drug-likeness

Synthetic accessibility

Novelty

In vitro CDK8 inhibition
Commercially available
compounds

In vitro CDK8 inhibition
Optimized hits

Figure 1. Overall workflow of the computational method including in vitro experimental validation.
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Alignment of fragments to the target cavity

Subpockets, defined as the immediate protein environment around bound fragments of druggable
protein-ligand complexes (sc-PDB dataset),®! were compared and aligned to the ATP pocket of CDK8
with the aim to use the hidden bound fragments for library design. The rationale of this implementation
is that according to the similarity principle, fragments originating from similar subpockets are likely to
reproduce favorable interactions with the target pocket. The term ‘fragment’ here refers to the molecular
moieties obtained after interaction-aware 3D fragmentation of ligands bound to proteins so that each
fragment exhibits at least one polar interaction and at least four interactions with its target.®> The query
CDKS pocket and the sc-PDB subpockets are represented as a cloud of 1.5 A-spaced points annotated
by eight pharmacophoric properties (hydrophobic, aromatic, H-bond acceptor, H-bond donor, H-bond
acceptor and donor, positive ionizable, negative ionizable, null).®® The term 'pocket' describes the full
druggable cavity available at the surface of the protein while a subpocket is defined from its bound
fragment. Since we aimed at targeting the ATP binding site in its type-I1 ‘DMG in’ conformation, the
druggable pockets were first detected from 19 available CDK8 structures (Table S1). The largest pocket
(830.3 A%) selected as representative was retrieved from the SHBH PDB entry (Figure 2). This pocket
incorporates regions around the hinge, the gatekeeper F97, whereas on the opposite side extends to a
solvent exposed area near the aD helix. It covers the DMG motif and reaches the aC-helix (Figure 2A).
It thus spans several already described kinase subpockets: the adenine pocket, the front pockets FP-1 and
FP-I1, the back pockets BP-1-A and BP-1-B in the gate area.>* The 31 384 sc-PDB subpockets were
compared and aligned to the CDKS8 cavity with the in-house ProCare method (Figure S1).28 Briefly,
ProCare finds the best possible local alignment of cavity-defining points using a point cloud registration
algorithm?®5-% and scores the alignment according to the overlap of pharmacophoric properties of the
aligned points. According to a preliminary study on the set of CDK8 structures, the original ProCare
alignment fingerprint was modified to account only for the spatial distribution of pharmacophoric
features (Figure S2-S3), a modification leading to a better alignment of CDK8 subpockets and

fragments to the corresponding full cavities.
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Figure 2. Seed fragments selection to fill the CDK8 query cavity. A) Description of the reference CDK8
pocket (PDB ID: 5HBH). Cavity points (grey dots, 246 points) delineate a ligand-accessible envelope
(solid surface, 830.3 A%) and areas (hinge, H; gate area 1, GA1; gate area 2, GA2; solvent-exposed area
1, SE1; solvent-exposed area 2, SE2; aC area, AC) according to the distance to key CDK8 atoms
(spheres). B) Fragments selection workflow. (1) A list of cofactors (PDB HET code) is provided in the
sc-PDB database. (2) Fragments buriedness is approximated as the percentage of heavy atoms within
1.5 A of one CDKS cavity point. (3) fragment rule-of-three:3” molecular weight < 300 g.mol-1, logP <
3, H-bond donor count < 3 and H-bond acceptor count < 3. (4) ambiguous annotation denotes assignment
of two or more incompatible areas (Methods section) out of the six possible areas. (5) All annotated

fragments from H, GA1, SE2 areas and a random sampling of 100 fragments from GA2 were selected.

Once transformation matrices of the alignment of sc-PDB subpockets to the target cavity were obtained,
the same rotation/translation matrices were applied to the corresponding sc-PDB fragments to position
them in the CDK8 cavity. Posed fragments were then filtered according to five criteria (Figure 2B).
Fragments originating from subpockets exhibiting a similarity score to the CDK8 pocket above a

threshold value of 0.39 (previously shown to optimally discriminate known similar from known

201



Chapter 4. Pocket-focused library design

dissimilar binding sites)? were first selected, leading to a set of 12 661 fragments. Remaining fragments
were further pruned according to three criteria: (i) belonging to a cofactor (therefore avoiding purine-
base fragments), (ii) insufficient buriedness in the target cavity, (iii) no compliance to the fragment rule-
of-three.>” Remaining fragments were then annotated by one of the six CDK8 areas in which they were
positioned: hinge (H), gate (GA1, GA2), solvent-accessible (SE1, SE2), aC helix (AC) (Table 1, Figure
3). 4 152 fragments could be unambiguously assigned to one CDKS8 area: H (1.4%), GAL (2.7%), GA2
(22.5%), SE1 (61.9%), SE2 (2.8%) and AC (8.7%) (Figure 3A).

Table 1. Annotation of the CDK8 target cavity by key pharmacophoric atoms.

Area Label Key CDK8 atoms KLIFS subpockets?
Hinge area H Asp98.0, Alal00.N, Alal00.0 AP

Gate area 1 GAl  Phe97.CA (gatekeeper residue) AP, BP-I-A, BP-I-B
Gate area 2 GA2 Lys52.NZ AP, FP-1, FP-11

Solvent-accessible areal  SE1 Arg366.CZ -
Solvent-accessible area2 ~ SE2 His106.CE1 -

oC helix area AC Ser62.CA -

aFull or partial overlap with KLIFS®* subpockets: AP: adenine pocket, BP: back pocket, FP: front pocket

A B

SE1: 61.9%

CDK8 Kinase Other

GA2: 8.7%

p— | ] 4%

' SE2: 2.8%

Proportion (%)
~N Sy
 —_2

o
=

o
=)

H GA1l GA2 SE1 SE2 AC

Figure 3. CDK8 subpocket occupancy of sc-PDB fragments. A) Assignment of CDK8 pocket areas to
4 152 sc-PDB fragments. B) Origin of sc-PDB fragments per area.

We next analyzed the origin of the sc-PDB ligands these fragments were derived from. As to be

expected, 70% of fragments assigned to the hinge area (H) come from protein kinase inhibitors, the

202



Chapter 4. Pocket-focused library design

remaining 30% originating from a ligand co-crystallized with a protein that belong to a non-kinase
family (Figure 3B). However, it should be noted that fragments from known CDKS8 inhibitors were not
selected as occupying the hinge region. Two simple reasons explain this absence: (i) the seven CDK8
ligands in the sc-PDB dataset are type Il inhibitors binding to a DMG-out conformation and occupy the
back pocket, (ii) the only CDKS8 ligand (3RGF) that binds to the hinge could not be fragmented by our
protocol and therefore did not pass our filters. The other areas (GAL, GA2, SE1, SE2, AC) were assigned
fragments from both kinase (~25%) and non-kinase ligands (~75%). While the initial sc-PDB subpocket
database contains 16% of entries from protein kinases, the enrichment observed for hinge-selected
fragments (4.4) is logically due to the specific stereoelectronic features of the hinge area, notably the
hydrogen bonding capacity of Asp98 and Alal00 backbone heteroatoms imposing complementary
features on the ligand side. To limit the size of the library, all fragments were not considered for full
enumeration of complete molecules. Whereas all fragments bound to H (n=57), GA1 (n=111) and SE2
(n=117) subpockets were selected, only 100 GA2-bound fragments were randomly chosen. Duplicates,
in other words 2D identical fragments were kept as they do not originate from the same 3D subpocket,
therefore resulted in different alignments that may differently impact molecules design. Comprehensive
statistics of the pairwise fragment similarity (Figure S4) and the observed distribution of their
physicochemical properties (Figure S5) clearly evidence their chemical diversity. 385 fragments were
selected at this stage for the next linking stage.

Round-1 library generation

The DeLinker deep generative model? was used to link the above-selected fragments. Briefly, DeLinker
uses a graph-based deep generative model, trained on the ZINC®* or PDBbind*® databases, to expand
bond by bond the two fragments to be connected until final SMILES strings are generated by a
variational autoencoder while keeping 3D constraints through a set of distances and angles between
connectable atoms.?® In the current work, all possible connectable atoms of hinge-annotated fragments
(H) were used as seeds to find potential connectable atoms in fragments filling three remaining
subpockets (GA1, GA2, SE2) (Figure S6).

An atom is considered connectable if it is a heavy atom covalently bonded to a hydrogen, that bond
being used as exit vector for the linking. Pairs of atoms belonging to different fragments are then
associated by restricting the angle between the exit vectors and distances between the corresponding
heavy atoms (see Methods) in order to avoid pointless connections and lower the number of
combinations (Figure S7). Starting from 385 fragments, 1 517 488 SMILES strings were generated by
linking fragment pairs with DeLinker. 15% of the proposed solutions were discarded since they
correspond to uncomplete molecules where the SMILES consisted of a linker moiety attached to only

one of the two fragments (Figure 4).
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Figure 4. Focused library design via linking selected fragments. Fragments aligned in the H area were
paired with fragments from GAL, GA2 and SE2 areas. SMILES were generated by linking fragment
pairs with DeLinker?® and filtered to compose the first-round library R1. (1) Successful linking signifies
that both fragments have been attached to the linker whereas cases where only one of the fragments was
linked were considered unsuccessful. (2) Druglikeness is defined by customized OpenEye Filter rules
available in Table S2. (3) Synthetic accessibility score.*® (4) Filter to remove unwanted aliphatic linkers.

The remaining molecules were filtered for drug-likeness (Table S2) resulting in 566 989 unique
SMILES. Although the redundant SMILES per pair of connectable atoms were removed during the
linking process, duplicated molecules still arose when connecting the same 3D fragments via equivalent
exit atoms (symmetry cases) or connecting the same duplicated fragments originating from different
subpockets. After keeping only molecules that are likely to be synthesized (SAscore® < 3), only those
having a linker compliant with defined rules (Figure S8) were finally kept. The remaining 141 125
molecules composed the first-round R1 library (Figure 4). A majority of the generated molecules arose
from combining the hinge and the solvent-exposed SE2 fragments which account for more than 50% of

the sets (Figure 5).
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Figure 5. Protein origin of fragments pairs in newly generated molecules. From left to right, the full set
after cleaning unsuccessful generation out (GEN), the drug-like subset (DL) and round-1 library (R1).
The distribution is given for the combinations annotated by the targeted CDK8 area (H, hinge; GA1,
gate area 1; GA2, gate area 2, SE2, solvent-exposed area 2) and color-coded according to the protein
origin (co-crystallized target) of the two connected fragments (K, protein kinase; O, other; K-K, both
fragments were derived from a protein kinase structure; K-O, H-fragment derived from a protein kinase
and the other fragment from a non-kinase protein structure; O-K, H-fragment derived from a non-protein
kinase and the other fragment from a kinase protein structure; O-O, both fragments were derived from

a non-kinase protein structure).

Indeed, the average number of generated SMILES strings per pair of H-SE fragments is higher than for
the two other areas, a consequence of having more pairs of connectable atoms and more generated
linkers per connectable atoms for the H-SE subpockets. While it was expected that kinase-derived
fragments would contribute to most of the generated molecules, only 14% of SMILES strings were
generated by linking two kinase-bound fragments. Interestingly, around 26% of the molecules were
made of two fragments originating from a non-kinase protein. Interestingly, the observed proportions
do not vary between the full set, the drug-like subset and the R1 set (Figure 5). Most of the generated
molecules (> 90 %) were already compliant with the Lipinski’s rule of five (Figure S9). Albeit two
fragments were assembled, many generated molecules still remained in the fragment space with around
10 % of SMILES strings being compliant with the fragment rule-of-three®” (Figure S9). Filtering the
designed molecules to R1 library members did not bias our selection towards molecules with particular
properties as the distribution of the molecular properties, although reported individually, remained
comparable among the sets (full, drug-like and R1; Figure S9). To give insights on the chemical space
covered by R1 library members, we further assessed its overlap with either a broad purpose bioactive
chemical space*! (1.7 million ChEMBL compounds) or a recently described kinase-focused ligand space
(6.7 million KinFragLib library members).*? 259 unique R1 library molecules were exactly found in
ChEMBL among which only a few have been assayed against protein kinases, while only five R1 library
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compounds were identical to KinFragLib molecules. Considering similarity, only 0.85% and 13% of R1
library members were found similar to KingFragLib and ChEMBL molecules, respectively, according
to a Tanimoto coefficient, computed from Morgan2 fingerprints higher than 0.60. The herein proposed
computational workflow is therefore able to generate really new chemical entities, the chemical diversity
of the generated molecules stemming from the diversity of the seed fragments pool, the connectivity and

the possible linkers.

As a first validation of the structure-based workflow, we verified whether the drug-like subset contains
molecules highly similar to 302 submicromolar human CDKS inhibitors retrieved from the ChEMBL
database. Using the similarity search protocol described in the methods section, we found 44 molecules
that matched with 35 unique known CDKS inhibitors (representing three series of congeneric
molecules). While these molecules were built with fragments from all possible areas, most of them were
assembled from hinge-fragments originally co-crystallized with protein kinases, linked to fragments
originally co-crystallized with non-kinase proteins.

The round-1 library contains novel and potent CDKS8 inhibitors

To identify chemically novel hits, we filtered first-round R1 library members by dissimilarity (Tanimoto
coefficient < 0.5, RDKit7 fingerprints) to all CDK8 compounds available in ChEMBL* and to all seed
sc-PDB fragments. Hits were then searched for availability among 8.2 million commercially available
drug-like compounds (Table S3) to select 37 compounds that are identical or very similar (Tanimoto
coefficient > 0.90, RDKIit7 fingerprints) to their queries (Table S4). These compounds were purchased
and tested for CDK8 inhibition in a homogeneous time-resolved fluorescence (HTRF) assay aimed at
measuring the FRET signal between a fluorescent-labelled ATP competitive inhibitor and the
fluorescent-tagged CDKS soluble kinase (see Methods). Six out of the 37 tested molecules (compounds
9,11, 12, 29, 32, 37) inhibited the CDKS8 kinase by more than 50% at the single concentration of 10 uM
(Figure 6). Notably two related compounds (12 and 37), exhibiting more than 80% inhibition were
assembled from the same pair of 3D fragments by just inverting the ester linkage (Figure 6). They differ
from the original R1 library members by just a carbon atom (methoxy for ethoxy substitution, Table
S4).
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Figure 6. CDK8 inhibition (LanthaScreen Eu kinase competitive binding assay) by 37 commercially
available compounds identical or very similar to R1 library members. Results are expressed as mean +
SEM of two independent experiments using a 10 M concentration of competitor (STA, staurosporine

control).

Round-2 library design by fragment hit growing

The most potent hit (12) from round-1 library , generated by linking a H-area pyridine fragment to a
GA2-area methoxyphenyl fragment, is still a fragment-like compound (MW = 229 g.mol™) that can be
optimized by growing towards the nearby and yet unexploited SE2 and GA1 subpockets. We thus
explored the possible connections between the hinge-binding fragment of 12 and all remaining SE2 or
GAl-anchored fragments, to generate a second-round library R2 of 5 700 compounds. R2 library
members were filtered by physicochemical properties (number of rotatable bonds < 6, no chiral centers)
and synthetic accessibility (SAscore < 3) to yield a final set of 151 candidates (Table S5). Six
representative compounds (Table 2) were chosen for their ease of synthesis (i.e. availability of building
blocks, costs of goods, number of synthetic steps) and predicted buriedness upon preliminary docking
to CDKS8. Three linkers (urea, piperidine, pyrazole) were chosen for their capacity to connect the H-
anchoring pyridine ring to a SE2-anchored phenyl fragment. Two positions of the pyridine ring (ortho
and meta position to the benzoyl ester) were predicted compatible, therefore leading to six possible

analogs (Table 2).
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Table 2. Round-2 library of optimized hits and their CDKS inhibitory potency.
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CDKS8 measured in a LanthaScreen Eu kinase competitive binding assay. Results are expressed as mean

+ SEM of three independent experiments. ¢ confidence interval at a 95% confidence level
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The six compounds were synthesized (Scheme S1), checked for purity (Figures S10-S15) and tested
for in vitro CDKS inhibition using the same HTRF assay as described above, to build concentration-
response curves (Figure 7). Out of the six round-2 library compounds, three molecules (41, 47, 51) are
weak CDKS inhibitors, one compound (39) is equipotent to the primary hit 12, and two analogues (44,
49) exhibit a higher potency than the parent compound 12 (Table 2, Figure 7). 3,4-disubstituted
pyridines (39, 44, 49) were systematically more potent than their 3,5-disubstituted congeners (41, 47,
51). Noteworthy, the single-digit nanomolar inhibitor 49 could be obtained from scratch within just two

design iterations and limited experimental efforts.
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Figure 7. Inhibition of human CDKS by six selected round-2 library compounds. Concentration-

response curves are derived from three independent experiments with duplicates per experiment.

Its putative binding mode, deduced form molecular docking, suggests that the pyridine nitrogen atom h-
bonds to the hinge backbone atoms (E98, A100) while the ethoxyphenyl and the newly introduced
pyrazole moieties exhibit n- & interactions to H106 (SE2 subpocket) and the gatekeeper F97 (GA1
subpocket). Last, the terminal phenyl ring is oriented towards K52 (GA2 subpocket) for a putative 7-
cation interaction (Figure 8). While the parent hit 12 showed two possible docking poses (ethoxyphenyl
towards GA2 or SE2), growing by a pyrazole prioritized the SE2 orientation, still with exhibited

interactions compatible with the rationale of the initial fragment alignments.
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\H106

Figure 8. PLANTS docking pose of compound 49 (green sticks) to the catalytic site of CDKS8 (PDB ID
SHBH, solid surface). H-bond to the hinge (E98, A100) and nt- 7 interactions to F97, H106 are displayed
by yellow broken bonds.

At this point, we should recall that neither early safety (e.g. kinase selectivity) nor pharmacokinetic
properties (e.g. metabolic stability) have been considered in either generating or post-processing the
target-focused library members. Although technically feasible, target selectivity assessment requires
applying the same workflow to different cavities and prioritizing compounds generated only for the
target of interest. This approach is feasible for a comparing a few targets but is rapidly impracticable at
a larger scale (e.g. whole kinome). It has not been applied in the current study aimed at demonstrating

the proof-of-concept of the structure-based workflow.
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4.2.5. Conclusions

We herewith propose a novel fragment-based library design method to generate target-focused
compound libraries. The originality of the approach is that seed fragments are chosen from a large
repertoire of protein-bound fragmented ligand X-ray structures, and positioned in the target according
to the local similarity of their protein subpocket to the target cavity. This ligand-agnostic posing protocol
does not require scoring protein-ligand interactions and is fuzzy enough to transfer ligand information
across unrelated target spaces. Once fragments have been posed, they are linked by a deep generative
model to enumerate full molecules which are later post-processed to account for drug-likeness and
synthetic accessibility. The linking step still deserves improvement, notably to enumerate candidate
molecules directly in the original target 3D coordinate frame. Hence, the variational autoencoder used
here generates SMILES strings and just accounts for the target binding site topology in the form of
topological relationships between fragment atoms to be connected. A true 3D deep generative model*
considering complementarity to the binding site shape and the ligand conformational freedom would be
highly desirable to link subpocket-selected seed fragments. It would avoid a tedious post-processing of
unrealistic solutions and the necessary docking of candidates to verify whether the starting binding

hypothesis of the seed fragments is conserved.

When applied to the test case of the CDKS8 kinase, the method was able to quickly suggest potential
inhibitors. Within two iterations and 43 compounds, a single digit nanomolar inhibitor could be
identified thereby demonstrating a first proof-of-concept of the underlying methodology. Interestingly,
the method is applicable to any target of known 3D structure and does not require prior ligand

knowledge.
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4.2.6. Material and methods

CDKS8 cavity detection

All publicly available X-ray structures of human CDK8 (UniProt accession number P49336; Table S1)
were downloaded from the Protein Data Bank**®. Type I structures (DMG-in, a-C helix-out) were put
in the same coordinates frame by subsequent structural alignment to the 4F7S reference with Maestro
v.2019-3 (Schrddinger, New York, NY 10036, U.S.A.) and refinement to ensure that the hinge residue
Alal00 heavy atoms were fitted. Aligned structures (proteins, co-factors, ligands) were then protonated
with Protoss v.4.0,% while optimizing the intra and inter-molecular hydrogen bond network. After
discarding crystallization additives, each PDB entry was split to afford a protein (no water molecules)
and a ligand in separate mol2 files using SYBYL-X 2.1.1 (Certara USA, Inc., Princeton, NJ 08540,
U.S.A)). For each protein file, entire cavities ("CAVITY_ALL" output) were next computed with the
VolSite** module of the IChem v.5.2.9 package,*’ using default parameters and saved as point clouds
annotated by pharmacophoric features. Only cavities corresponding to the catalytic site were retained
for the next steps. Upon visual inspection, the corresponding three clouds for PDB entry 5SHBH were

merged into a single cavity in mol2 file, yielding the reference pocket for CDKS8.

sc-PDB subpocket-fragment database

16 034 drug-like ligands in their protein-bound X-ray structure were retrieved from the sc-PDB
database® of druggable protein-ligand complexes and fragmented in three dimensional (3D) space
within their protein binding site using the IChem fragmentation tool.32 Only fragments exhibiting at least
4 non-covalent interactions®? (out of which one is polar, hydrogen-bond or electrostatic interaction) with
the protein target were retained. The fragments exit bonds (dummy atoms ‘Z’) were converted into
hydrogen atoms. The immediate protein environment of each selected fragment was considered to
compute VolSite point clouds, keeping only those with at least 3 points, each being closer than 4.0 A
from any fragment heavy atom (“CAVITY_4” output), thereby defining a subpocket point cloud in mol2
file format for 31 384 fragments.

CDKB8-focused library design

In the first stage, 31 384 sc-PDB subpocket point clouds (Figure S1) were aligned to the reference
5HBH CDKS cavity point clouds with ProCare?® v.0.1.1 using default parameters and the c-FH color-
based descriptor (Figure S2) corresponding to the eight terminal bins of the c-FPFH descriptor.? For

each subpocket-cavity pair, the optimal alignment matrix was used to position the corresponding sc-
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PDB fragment into the CDK8 cavity. The comparison protocol was validated by successful cross-
comparison of CDK8 subpockets from type | PDB entries (Figure S3).

In the second stage, aligned sc-PDB fragments were filtered according to their subpocket similarity to
the CDKS8 cavity (ProCare score > 0.39), their compliance to the fragment rule-of-three,3” and their
embedding into the CDKS8 cavity such that at least half of the fragment atoms are less than 1.5 A away
to the closest CDK8 cavity point. Fragments originating from the sc-PDB list of cofactors were
excluded. Resulting fragments were further annotated with the CDK8 cavity area to which they have
been aligned based on their distance (closest heavy atom should be within 6 A) to subpocket-specific
preliminary defined atom centers (hinge H area, Asp98 O atom and Alal00 N and O atoms; gate area 1
GA1, Phe97 CA atom; gate area 2 GA2, Lys52 NZ atom; solvent-exposed area 1 SE1, Arg356 CZ atom;
solvent-exposed area 2 SE2 subpocket, His106 CE1 atom; aC area AC, Ser62 CA atom). For selecting
hinge-binding fragments, hydrogen bonds to Asp98 O or Alal00 N or O was mandatory. Since a few
fragments were assigned to multiple subpockets, the following prioritization scheme was applied: H
annotation takes precedence over all the other annotations, therefore a fragment interacting with the
hinge centers is only annotated as such. SE1 and SE2 were defined compatible so that fragments
annotated as from both areas were automatically assigned only SE2. Similarly, fragments annotated as
from both AC and GA2 areas were automatically assigned only GA2. In any other case of combination
(e.g. fragments annotated as from GA2 and SE1), the annotations were considered ambiguous and the

fragments were discarded.

In the third stage, H fragments were defined connectable to either GA1, GA2 or SE2 fragments (in the
current work, although other connections are possible). Selected fragments were converted into sdf
format with OpenEye v.2.5.1.4. toolkit.*® For each pair of fragments with hydrogen atoms connected,
pairs of connectable atoms were searched based on their respective orientation as follows. A right
circular cone (half-angle=n/4) is projected along the bond axis between any heavy atom A; and a bound
hydrogen atom H;. A connectable atom pair A:A: is selected if heavy atoms A; and A: are located in the

projection cone of their counterpart (Figure S7).

In the fourth stage, the recently-described DeLinker? deep learning method was employed to generate
linkers between above-described connectable atom pairs using the default model distributed with the
package and a batch size of 1. Input data were prepared as ZINC atom types features to be ready for
DeLinker using the 'prepare data' module and by setting the ‘test’ parameter of the ‘preprocess’ function
to ‘“True’ as molecules are to be found. The linker length was set to a minimum of on and a maximum
of six heavy atoms. Other parameters were kept by default. Generated molecules were saved as SMILES
strings and further processed to remove redundancy for each connectable atom pair. In the final stage,
unsuccessful linking attempts where only a single fragment is attached to the linker were removed using

the function ‘get linker’ in the ‘frag utils’ utility. The remaining SMILES were filtered to keep only
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drug-like compounds according to in-house rules (Table S2). Next, the synthetic accessibility scores
were computed with the the SAscore®® method distributed with RDKit* to remove molecules with
SAscore higher that three. Finally, molecules made of long flexible linkers were discarded according to

our in-house filtering workflow (Figure S8), resulting in the first-round library (R1).

Comparison with ChEMBL and KinFraglib ligands

Standardized ChEMBL (1.7 million compounds) and KinFragLib (6.7 million) data were retrieved from
the KinFragLib website.® Pairwise 2D fingerprint similarity to R1 molecules were assessed with

RDK:it* Morgan (radius = 2) topological fingerprint (default parameters, maximum path = 7).

Comparison to known CDKS8 inhibitors

A search in the ChEMBL database® #* for human CDK8 target assays resulted in three target report
cards (CHEMBL3038474, CHEMBL5719 and CHEMBL3885556) from which bioassay data were
joined and processed to keep compounds with a half maximal inhibitory concentration 1Cso inferior or
equal to 1 uM. Duplicates were then removed according to and the SMILES were standardized with
OpenEye Filter v.3.0.1.2 (OpenEye Scientific Software, Santa Fe, NM 87508, U.S.A.). The final list of
302 inhibitors was searched in the generated drug-like subset described above for substructure 2D
similarity using both RDKit Morgan (radius = 2) and topological (maximum path = 7) fingerprints and
a combination of Tanimoto (Tc) and Tversky (Tv) metrics. Pairs were reported when morgan2 Tc > 0.6

or morgan2 Tv > 0.8 or RDKit7 Tc > 0.75 or RDKit7 Tv > 0.9.

Search for new potential CDK8 inhibitors

R1 library members were considered as potentially new at the condition that their similarity to any of
946 unique human CDKS8-tested compounds (both active and inactive) reported in ChEMBL (target card
reports CHEMBL3038474, CHEMBL5719 and CHEMBL3885556) and any of the 31 384 sc-PDB
fragment is inferior to 0.50 (Tanimoto coefficient from RDK:it topological fingerprints). Last, the
subsequent list was searched for substructure similarity (RDKit topological fingerprint Tanimoto > 0.90)
to an in-house library of 8 280 193 commercially available drug-like compounds (Supporting Table
S3).
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Molecular docking

Virtual hits were drawn as 2D sketches with ChemAxon MarvinSketch v.16.10.17, (ChemAxon Ltd.,
1031 Budapest, Hungary) saved in sdf file format, ionized at physiological pH with OpenEye Filter
v.2.5.1.4 and finally converted in 3D structures (mol2 file) with Corina v.3.40 (Molecular Networks
GmbH, 90411 Nurnberg, Germany), generating all possible stereoisomers and ring conformers
simultaneously. The prepared molecules were docked into the above-described CDK8 cavity using
PLANTS® v.1.2 The search space was set at 13 A from the binding site center with a search speed of 1
(highest accuracy). 10 poses were generated per ligand, scored by the ChemPLP scoring function and
clustered using a root-mean square deviations (RMSD) of 2 A on ligand heavy atoms. The
flipped/rotated side chains were reconstructed in the protein structure for each corresponding PLANTS
pose when applicable.

Molecular data analysis

Molecular descriptors (molecular weight (g.mol™), the count of heavy atoms (non-hydrogen atoms),
logP, polar surface area (A), count of H-bond acceptor, count of H-bond donor, count of rotatable bonds,
count of ring systems, count of heteroatoms, bonds) were computed with RDKit. Data were processed
with Python v.3.7.

Data visualization

Molecules were drawn in 2D with RDKit and MarvinSketch v.16.10.17, (ChemAxon Ltd., 1031
Budapest, Hungary). Three-dimensional structures were analyzed with Maestro v.2019-3 (Schrodinger,
New York, NY 10036, U.S.A.) and Pymol v.2.1 (Schrédinger, New York, NY 10036, U.S.A.). Plots
were generated with Matplotlib v3.0.2% in Python v.3.7.

Chemistry

All reactions were carried out under usual atmosphere unless otherwise stated. Chemicals and solvents
were purchased from Enamine (LV-1035 Riga, Latvia) and were used without further purification.
Yields refer to isolated compounds, estimated to be >95% pure as determined by 1H NMR or HPLC.
1H NMR spectra were recorded at 298 K on Bruker Avance 111 Spectrometer operating at 400 MHz. All
chemical shift values 6 and coupling constants J are quoted in ppm and in Hz, respectively; multiplicity

(s = singulet, d = doublet, t = triplet, g = quartet, quin = quintet, sex = sextet m = multiplet, br = broad).

215



Chapter 4. Pocket-focused library design

Preparative HPLC was performed using two methods: Method A) 2-10 min 30-70% acetonitrile, 30
ml/min ((loading pump 4 ml acetonitrile); column: YMC-ACTUS TRIART (C18; 100 mm x 20 mm; 5
pum); Method B) 2-10 min 0-50% acetonitrile, 30 ml/min ((loading pump 4 ml acetonitrile); column:
SunFire C18; 100 mm x 19 mm; 5 um)

Analytical RP-HPLC-MS was performed using Agilent Technologies 1260 Infinity LC/MSD system
with DAD\ELSD Alltech 3300 and Agilent LC\MSD G6120B mass-spectrometer using the following
acquisition parameters: column, Agilent Poroshell 120 SB-C18 4.6x30mm 2.7 pm with UHPLC Guard
Infinity Lab Poroshell 120 SB-C18 4.6x 5mm 2.7 um; Temperature 60° C; Mobile phase A —acetonitrile
: water (99:1%), 0.1% formic acid, B — water (0.1% formic acid); Flow rate 3 ml/min; Gradient : 0.01
min —99% B, 1.5 min — 0% B, 1.73 min - 0% B, 1.74 min - 99% B; Injection volume 0.5ul; Tonization
mode Electrospray ionization (ESI); Scan range m/z 83-600; DAD 215 nm, 254nm, 280 nm. Purities of
all tested compounds used in the biological assays were determined by HPLC/MS using the area
percentage method on the UV trace recorded at a wavelength of 254 nm. All compounds were found to
have >95% purity.

1-(3-hydroxypyridin-4-yl)3-phenylurea (38). To a stirred solution of phenylisocyanate (0.4 g, 3.4 mmol)
in DMF (5 ml) was added a solution of 4-aminopyridin-3-ol hydrochloride (0.5 g, 3.4 mmol) in DMF
(5 ml) followed by the addition of triethylamine (1.4 ml, 10.2 mmol) at room temperature (r.t.). The
resulting mixture was stirred at room temperature overnight. The reaction mixture was concentrated
under reduced pressure and the crude residue was purified by HPLC to afford 50 mg (6%) of the 1-(3-
hydroxypyridin-4-yl)-3-phenylurea 38 as a white solid which was used for the next step without further
purification.

4-(3-phenylureido)pyridin-3-yl 4-ethoxybenzoate (39). To a stirred solution of 4-ethoxybenzoic acid (36
mg, 0.22 mmol) in DMF (2 ml), compound 38 (50 mg, 0.22 mmol), EDC (50 mg, 0.26 mmol) and
DMAP (27 mg, 0.22 mmol) were added. The resulting mixture was stirred at r.t. for 16 h. After
completion of the reaction, the mixture was diluted with water (7 ml) and extracted with chloroform
(3x7 ml). The combined organic layers were washed with saturated aqueous NaHCOs, dried over
anhydrous Na,SOs, and concentrated under reduced pressure. The residue was purified by HPLC
(method A) to afford compound 39 (40 mg, 49%) as a white solid. *H NMR (400 MHz, DMSO-d6) &
9.25 (s, 1H), 8.60 (s, 1H), 8.38 — 8.25 (m, 3H), 8.17 (d, J = 8.6 Hz, 2H), 7.43 (d, J = 8.1 Hz, 2H), 7.30
(t,J=7.7 Hz, 2H), 7.17 (d, J = 8.7 Hz, 2H), 7.01 (t, = 7.3 Hz, 1H), 4.18 (q, J = 7.0 Hz, 2H), 1.38 (t, J
= 7.0 Hz, 3H). LC-MS (ESI) m/z 378.2 [(M+H)", calcd. C21H20N304, 378.1].

1-(5-hydroxypyridin-3-yl)-3-phenylurea (40). Compound 40 was prepared as described above for
compound 38, starting from 5-aminopyridin-3-ol hydrobromide (0.65 g, 3.4 mmol). The reaction

mixture was concentrated under reduced pressure and the crude residue was purified by HPLC (method
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B) to afford 60 mg (8%) of 1-(3-hydroxypyridin-5-yl)-3-phenylurea 40 as a white solid which was used

for the next step without further purification.

5-(3-phenylureido)pyridin-3-yl 4-ethoxybenzoate (41). Compound 41 was prepared as described above
for compound 39, starting from 1-(5-hydroxypyridin-3-yl)-3-phenylurea 40 (60 mg, 0.264 mmol). The
residue was purified by HPLC (method B) to afford compound 41 (36 mg, 45%) as a white solid. *H
NMR (400 MHz, DMSO-d6). 6 9.01 (s, 1H), 8.83 (s, 1H), 8.46 (q, J = 2.7 Hz, 1H), 8.16 (d, J = 2.7 Hz,
1H), 8.08 (td, J = 5.5, 2.2 Hz, 2H), 7.99 (t, J = 2.5 Hz, 1H), 7.45 (d, J = 7.8 Hz, 2H), 7.28 (t, J = 8.0 Hz,
2H), 7.11 (dd, J=9.1, 2.3 Hz, 2H), 6.98 (t, J = 7.4 Hz, 1H), 4.16 (dt, J = 10.1, 6.6 Hz, 2H), 1.36 (td, J =
6.9, 2.4 Hz, 3H). LC-MS (ESI) m/z 378.2 [(M+H)*, calcd. C21H20N304, 378.1].

4-(1-phenyl-3,6-dihydro-2H-pyridin-4-y)pyridin-3-ol (42). To a stirred solution of 4-iodopyridin-3-ol
(0.63 g, 2.86 mmol, 1.1 eq.) and 1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydro-
2H-pyridine (0.74 g, 2.6 mmol, 1 eq.) in a mixture of 1,4-dioxane and water (20 ml, v/v=4:1), K,CO3
(1.8 g, 13 mmol, 5 eq.) was added and purged with argon for 30 min followed by the addition of
Pd(dppf)ClI. (0.1 g, 0.05 eq.) and stirred at 90°C overnight. After completion, the reaction mixture was
cooled to room temperature, diluted with ethyl acetate and water. The organic layer was washed with
water and brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure. The crude
product was purified by column chromatography on silica gel (hexane/EtOAC) to afford 42 (251 mg,
38%).

4-(1-phenyl-4-piperidyl)pyridin-3-ol (43). Compound 42 (251 mg, 1 mmol) was dissolved in MeOH (20
ml), followed by addition of Pd (10 wt % on activated carbon, 50 mg), and then the resulting suspension
was stirred at room temperature under 1 atm. hydrogen pressure overnight. The resulting reaction was
filtered, concentrated under reduced pressure, and dried under vacuum, to afford 43 (201 mg, 79%)

which was used for the next step without further purification.

[4-(1-phenyl-4-piperidyl)-3-pyridyl] 4-ethoxybenzoate (44). A solution of compound 43 (201 mg, 1 eq.),
4-ethoxybenzoic acid (131 mg, 1 eq.), EtsN (0.27 ml, 2.5 eq.) and HATU (360 mg, 1.2 eq.) in dry DMSO
(2 ml) was stirred at room temperature for 12h. The completion of the reaction was monitored by LCMS.
The mixture was purified by HPLC (Method A) to give compound 44 (120 mg, 38% vyield) as a white
solid. 1H NMR (400 MHz, DMSO-d6). & 8.46 (d, J = 5.4 Hz, 2H), 8.15 — 8.09 (m, 2H), 7.50 (d, J = 5.1
Hz, 1H), 7.22 — 7.10 (m, 4H), 6.93 (d, J = 8.2 Hz, 2H), 6.75 (t, J = 7.3 Hz, 1H), 4.16 (q, J = 6.9 Hz, 2H),
3.78 (d, J = 12.3 Hz, 2H), 2.87 — 2.79 (m, 1H), 2.63 (t, J = 10.0 Hz, 2H), 1.82 (t, J = 5.1 Hz, 4H), 1.37
(t, J=7.0 Hz, 3H). LC-MS (ESI) m/z 403.2 [(M+H)+, calcd. C2sH27N203, 403.2].

5-(1-phenyl-3,6-dihydro-2H-pyridin-4-yl)pyridin-3-ol (45). To a stirred solution of 5-iodopyridin-3-ol
(0.63 g, 2.86 mmol, 1.1 eq.) and 1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydro-
2H-pyridine (0.74 g, 2.6 mmol, 1 eq.) in a mixture of 1,4-dioxane and water (20 ml, v/iv=4:1), K,COs
(1.8 g, 13 mmol, 5 eq.) was added and purged with argon for 30 min followed by the addition of
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Pd(dppf)Cl, (0.1 g, 0.05 eq.) and stirred at 90 °C overnight. After completion, the reaction mixture was
cooled to room temperature, diluted with ethyl acetate and water. The organic layer was washed with
water and brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure. The crude
product was purified by column chromatography on silica gel (hexane/EtOAc) to afford compound 45
(326 mg, 49%).

4-(1-phenyl-4-piperidyl)pyridin-3-ol (46). Compound 45 (251 mg, 1 mmol) was dissolved in MeOH (20
ml), followed by addition of Pd (10 wt% on activated carbon, 50 mg), and then the resulting suspension
was stirred at room temperature under 1 atm. hydrogen pressure overnight. The resulting reaction was
filtered, concentrated under reduced pressure, and dried under vacuum, to afford compound 46 (220 mg,
86%) which was used for the next step without further purification.

[5-(1-phenyl-4-piperidyl)-3-pyridyl] 4-ethoxybenzoate (47). A solution of compound 46 (200 mg, 1 eq.),
4-ethoxybenzoic acid (131 mg, 1 eq.), EtsN (0.27 mL, 2.5 eg.) and HATU (360 mg, 1.2 eq.) in dry
DMSO (2 ml) was stirred at room temperature for 12h. The completion of the reaction was monitored
by LCMS. The mixture was purified by HPLC (Method B) to give compound 47 (140 mg, 44% yield)
as a white solid. 1H NMR (400 MHz, DMSO-d6) 6 8.48 (d, J = 1.8 Hz, 1H), 8.41 (d, J = 2.4 Hz, 1H),
8.12 -8.05 (m, 2H), 7.71 (t, J = 2.2 Hz, 1H), 7.21 (dd, J = 8.6, 7.1 Hz, 2H), 7.15 — 7.09 (m, 2H), 6.98
(d, J = 7.8 Hz, 2H), 6.76 (t, J = 7.3 Hz, 1H), 4.16 (q, J = 7.0 Hz, 2H), 3.82 (d, J = 12.1 Hz, 2H), 2.88 —
2.71 (m, 2H), 2.54 (d, J = 1.0 Hz, 1H), 1.92 (d, J = 11.8 Hz, 2H), 1.81 (qd, J = 12.4, 3.9 Hz, 2H), 1.37
(t, J =7.0 Hz, 3H). LC-MS (ESI) m/z 403.2 [(M+H)+, calcd. C2sH27N203, 403.2].

4-bromopyridin-3-yl 4-ethoxybenzoate (48). A solution of 4-bromopyridin-3-ol (300 mg, 1.7 mmol, 1
eq.), 4-ethoxybenzoic acid (310 mg, 1.87 mmol, 1.1 eq.), DIPEA (0.89 ml, 5.1 mmol, 3 eq.) and HATU
(760 mg, 2 mmol, 1.2 eq.) in DMF (10 ml) was stirred at 25°C for 16 h. The reaction mixture was poured
into 50 ml of water and extracted with ethyl acetate (3x15 ml). The combined organic layers were
washed with saturated ammonium chloride solution (50 ml) and brine (50 ml), dried over anhydrous
sodium sulfate, and concentrated under reduced pressure to afford compound 48 as a brown solid (320

mg, purity 85%), which was used in the next step without further purification.

4-(1-phenyl-1H-pyrazol-4-yl)pyridin-3-yl 4-ethoxybenzoate (49). A mixture of compound 48 (200 mg,
0.62 mmol, 1 eq.), 1-(phenylpyrazol-4-yl)boronic acid (130 mg, 0.68 mmol, 1.1 eq.), cesium carbonate
(400 mg, 1.24 mmol, 2 eq.) and Pd(dppf)Cl. (25 mg, 0.03 mmol, 0.05 eq.) in dioxane/water (5 ml, 10:1
v/v) was degassed and stirred at 105°C for 16 h under inert atmosphere. After cooling, the reaction
mixture was poured into 30 ml of water and extracted with ethyl acetate (4x10 ml). The combined
organic layers were washed with brine (20 ml), dried over anhydrous sodium sulfate, and concentrated
under reduced pressure. The crude material was purified by HPLC (Method A) to afford compound 49
as a white solid (235 mg, 36% yield after 2 steps). 'H NMR (400 MHz, DMSO-d6). § 9.06 (s, 1H), 8.61
—8.51 (m, 2H), 8.22 (d, J = 8.8 Hz, 2H), 8.14 (s, 1H), 7.88 (d, J = 5.1 Hz, 1H), 7.75 (d, J = 8.0 Hz, 2H),
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7.50 (t,J=7.8 Hz, 2H), 7.34 (t, J = 7.4 Hz, 1H), 7.16 (d, J = 8.8 Hz, 2H), 4.19 (q, J = 6.9 Hz, 2H), 1.38
(t, J=6.9 Hz, 3H). LC-MS (ESI) m/z 386.0 [(M+H)*, calcd. C21H20N304, 386.1].

5-bromopyridin-3-yl 4-ethoxybenzoate (50). Compound 50 was prepared as described above for
compound 48, starting from 5-bromopyridin-3-ol (300 mg, 1.7 mmol, 1 eq.) to afford a yellow solid
(260 mg, purity 90%), which was used in the next step without further purification.

5-(1-phenyl-1H-pyrazol-4-yl)pyridin-3-yl 4-ethoxybenzoate (51). Compound 51 was prepared as
described above for compound 49, starting from 5-bromopyridin-3-yl 4-ethoxybenzoate 50 (200 mg,
0.62 mmol, 1eq.). The crude material was purified by HPLC (method B) to afford compound 51 as a
white solid (50 mg, 8% yield after 2 steps). *H NMR (400 MHz, DMSO0-d6). § 9.21 (s, 1H), 8.95 (d, J
= 1.9 Hz, 1H), 8.44 (d, J = 2.6 Hz, 1H), 8.39 (s, 1H), 8.17 — 8.10 (m, 3H), 7.92 — 7.85 (m, 2H), 7.55 (t,
J=7.8Hz, 2H), 7.35 (t,J = 7.2 Hz, 1H), 7.18 — 7.11 (m, 2H), 4.17 (g, J = 6.8 Hz, 2H), 1.38 (t, ) = 6.8
Hz, 3H). LC-MS (ESI) m/z 386.0 [(M+H)*, calcd. C21H20N304, 386.1].

In vitro CDKS inhibition

Inhibitory activity of compounds was tested by using the LanthaScreen® Eu kinase binding assay
optimized for CDK®8/CyclinC (Invitrogen). This assay is based on the binding and displacement of an
Alexa Fluor® 647-labeled ATP-competitive kinase inhibitor scaffold (kinase tracer) to the kinase.
Binding of the tracer to the kinase is detected using a europium-labeled anti-tag antibody, which binds
to the tagged CDK&8/CyclinC. Simultaneous binding of both the tracer and antibody to the kinase results
in a close proximity suitable for a high degree of FRET (fluorescence resonance energy transfer) from
the europium (Eu) donor fluorophore to the Alexa Fluor® 647 acceptor fluorophore on the kinase tracer.
Binding of an inhibitor to CDK8/CyclinC competes for binding with the tracer, resulting in a loss of
FRET. Binding assay was performed into 384-well small volume plates (CORNING 3824) using kinase
buffer provided by supplier (HEPES 50mM pH7.5, MgCI2 10mM, EGTA 1mM, Brij-35 0.01%) in a
final volume of 15 uL. Briefly, 5pL of 3X compound (increasing concentrations from 3.10* to 3.10°
M) prepared in kinase buffer are added to 5pL of 3X kinase/Ab solution (15nM kinase, 6nM biotin anti-
His-tag antibody, 6nM Eu-streptavidin) and 5pL of 30nM kinase tracer236 (Kd 8 nM). The plate was
incubated 1h at room temperature before reading with a TRF-compatible multi-well plate reader
(Envision, PerkinElmer) using a classic TRF reading protocol (excitation at 337 nm; donor emission
measured at 620 nm; acceptor emission measured at 665 nm). The TR-FRET signal was collected both
at 665 and 620 nm, and TR-FRET ratios were calculated (acceptor signal value divided by donor signal
value). ICso and K values of the tested compounds were determined from competitive binding curves

using GraphPad Prism software (version 6.07) as follows:
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(Smax - Smin)

S = Smin + (1 + 10X-1091Cs0))

S is the TR-FRET ratio value

X is the compound concentration

[tracer])
=)

(logKl*(1+ Ky

loglCsy = log10
[tracer] is the tracer concentration used in the competition assay

Kg is the dissociation constant value of the tracer

4.2.7. Associated contents

Safety Statement

No unexpected or unusually high safety hazards were encountered. All experiments were conducted
under 1SO 9001 compliance.

Supporting information

Supplementary Methods section and additional figures and tables including the comparison and
alignment of sc-PDB subpocket and fragments to CDK8 ATP binding site, the colored feature histogram
(c-FH descriptor) used to align sc-PDB subpockets to the target cavity, the validation of the subpocket
comparison protocol, the pairwise similarity of selected fragments, the properties of selected fragments,
the definition of connectable fragments, the topological requirements to connect fragment atoms by a
linker, the filters for DeLinker-generated linkers, the properties of generated molecules, the LC-MS
analysis of compounds 39, 41, 44, 47, 49 and 51, the synthesis of round-2 library compounds, the list of
CDK8 X-ray structures, the filtering rules to select drug-like compounds, the in-house catalog of
commercially available drug-like compounds, the list of 37 commercially available compounds
structurally similar or identical to round-1 library members, the list of 151 round-2 library members
(PDF).

Molecular formula strings—SMILES codes (CSV)

This material is available free of charge on the ACS Publications website at http://pubs.cas.org
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Figure S1. Alignment of sc-PDB! subpockets and fragments to CDK8 ATP binding site. A) Overall
alignment flowchart, B) CDK8 areas hinge (H), gate area 1 (GA1), gate area 2 (GA2), solvent-exposed
area 1 (SE1), solvent-exposed area 2 (SE2), aC area (AC).
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Figure S2. Colored Feature Histogram (c-FH descriptor)? used to align sc-PDB subpockets to the target
cavity. A) Considering a point Pq (green) whose c-FH is to be computed, its neighbor points P¥ = {1, 2,
3} within a radius r are determined (green circle). For each neighbor in P, their respective neighbors
are also determined within the radius r. B) The percentage of each of eight pharmacophoric features
(hydrophobic, aromatic, H-bond donor, H-bond acceptor, H-bond acceptor and donor, positive
ionizable, negative ionizable, null) is then stored into a 8-bin histogram that forms the simplified colored
feature histogram (c-SFH) of the point Pq. C) The c-SFH is iteratively computed for each point in PX;
D) The c-FH of the point Pq is the sum of its c-SFH and the distance-weighted average of its neighbors’
c-FSHs.
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Figure S3. Validation of the subpocket comparison protocol. Cross-alignment of CDK8 subpockets and

corresponding fragments to CDK8 full cavities. The bound inhibitors of 20 structurally-prealigned
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(Maestro, Schrodinger, New York, NY 10036, U.S.A.) CDK8 PDB entries (19 type | and one apo
structures) were fragmented as described in the Methods section. The immediate protein environment
of each selected fragment defines the corresponding subpocket that is represented as a pharmacophore
feature-annotated point cloud. After translating and rotating the subpockets and their bound fragments
in a different coordinates frame, each subpocket from the 20 PDB entries was aligned to the 20 entire
CDKS8 cavities with ProCare using three different fingerprints: c-FPFH (colored Fast Point Feature
Histogram, violet) encoding both local shape and pharmacophoric properties distributions, c-FH
(colored Feature Histogram, pink) encoding local pharmacophoric properties distributions only and
FPFH (Fast Point Feature Histogram, green) encoding local shape only. The optimal transformation
matrix is next applied to the accompanying subpocket-bound fragment to pose each fragment into the
full cavities. A) Root-mean square deviation (RMSD) of ProCare-aligned subpockets from
corresponding protein structure-based prealigned subpocket with respect to the ProCare score. Green
dashed line: score default threshold (0.47, p-value: 0.05), grey dashed line: optimal score threshold used
in this study (0.39, corresponding to the maximum F-measure discriminating known similar and known
dissimilar cavities)16. B) RMSD of ProCare-aligned fragments from corresponding protein structure-
based prealigned fragments with respect to the ProCare score. C) Proportion of aligned subpockets with
a RMSD less than 2 A from the corresponding protein structure-based prealigned subpocket; D)
Proportion of aligned fragments with a RMSD of their heavy atoms less than 2 A from the corresponding
protein structure-based prealigned fragment.
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Figure S4. Pairwise similarity of the 385 selected fragments after removing 2D duplicates for each
CDKS8 area: H: hinge, GA1: gate area 1, GA2: gate area 2, SE2: solvent-exposed area 2. A) Tanimoto
and B) Tversky metrics on RDKit Morgan fingerprint (radius = 2). C) Tanimoto and D) Tversky metrics
on RDKit topological fingerprint (maximum path size: 7). Tversky similarity corresponds to the
maximum possible, applying the largest weight (0.95) to the smallest molecule and the smallest weight
(0.05) to the largest molecule. Outliers are computed to be outside the quartiles past 1.5 times the

interquartile range.
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Figure S5. Properties of selected fragments after removing 2D duplicates for each CDK8 area: H: hinge,

GAL: gate area 1, GA2: gate area 2, SE2: solvent-exposed area 2. From left to right, top to bottom, the

molecular weight (g.mol?), the count of heavy atoms (non-hydrogen atoms), calculated logP, polar
surface area (A), count of H-bond acceptor, count of H-bond donor, count of rotatable bonds. The seven

properties were calculated with RDKit. Outliers are computed to be outside the quartiles past 1.5 times

the interquartile range.

- SE2

—

=6A

113.4A

[ w
{i@ .
110A | W .76A 0
e

Figure S6. Connectable fragments are defined by

\ . connectable areas: hinge (H)-annotated fragments

o/
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are paired with fragments from the gate area 1
(GAL), the gate area 2 (GA2), and the solvent-
exposed area 2 (SE2). Spheres of 6 A radius

delineate each CDKS8 area. Distances between

area centers are reported in A.
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Figure S7. Topological requirements to connect
fragment atoms by a linker. A) A; and A; atoms
are connectable if they are bound to a hydrogen
atom, are located within the projected circular
cone (aperture = m/2) of their counterpart. B)
Example fragments to be linked with linking
atoms A and B for the first fragment (orange)
and linking atoms C and D for the second
fragment (green). Exit vectors are represented
by arrows. Only atoms B and C are connectable,
the connections A-C, A-D and B-D are not
considered in this study.
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Figure S8. Filters for DeLinker-generated linkers. To be kept, generated linkers must be small or

contain ring systems or be branched with unsaturated bonds or heteroatoms.
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Figure S9. Properties of generated molecules after removing 2D duplicates. GEN: full set after
removing unsuccessful generation (n=1 119 879), DL: drug-like set (=566 989), R1: first round library
(n=141 125). From left to right, top to bottom, the molecular weight (g.mol™), the count of heavy atoms
(non-hydrogen atoms), logP, polar surface area (A), count of H-bond acceptor, count of H-bond donor,
count of rotatable bonds, proportion compliant with Lipinski’s rule-of-5 and fragment rule-of-three. All
properties were calculated with RDKit. Outliers are computed to be outside the quartiles past 1.5 times

the interquartile range.
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Figure S10. LC-MS analysis of compound 39.
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Figure S11. LC-MS analysis of compound 41.
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Figure S12. LC-MS analysis of compound 44.
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Figure S13. LC-MS analysis of compound 47.
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Figure S14. LC-MS analysis of compound 49.
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Figure S15. LC-MS analysis of compound 51.

239



Chapter 4. Pocket-focused library design

N

ZoH > QOH » Q J\©\
@NH @
2, 2= QR L OB PO
a b
—
HN" 7 NoH NJ\N Z0oH NJ\N Z 0
H H H H
40 41 o™
# |N\ |N\ N\ o
0 c d e
Ao —» A Non T > |/ O)‘\©\
X
Kj ™
@ <N) : :

o}

O

42 43 44

*gﬂ oﬁ o*“@

/
N Nx
T e I8 (L
=
Br” 7 “oH Br OJ\©\ QN\ OJ\©\
50 O/\ N= 51 O/\

aReagents and conditions: (a) phenylisocyanate, DMF, EtsN, r.t., overnight; (b) 4-ethoxybenzoic acid,
EDC, DMAP, DMF, r.t., 16h; (c) 4-iodopyridin-3-ol, K»COs, Pd(dppf)Cl,, dioxane/water, 90°C,
overnight; (d) MeOH, Pd/C, H, (1 atm), r.t., overnight; (e) 4-ethoxybenzoic acid, EtsN, HATU, DSO,
rt., 12h; (f) 5-iodopyridin-3-ol, K;COs, Pd(dppf)Cl,, dioxane/water, 90°C, overnight; (g) 4-
ethoxybenzoic acid, HATU, DIPEA, DMF, 25°C, 16h; (h) 1(phenylpyrazol-4-yl)boronic acid, Cs;COs,
Pd(dppf)Cl;, dioxane/water, 105°C, 16h
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Scheme S1. Synthesis of round-2 library compounds®?
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Table S1. List of CDK8 X-ray structures (https://www.rcsh.org, accessed on June 7, 2020)

PDB*  Res®  Ligand®  Ligand SMILES Type®
3RGF 2.20 BAX CNC(=0)clcc(cenl)Oc2ccc(cc2)NC(=0)Nc3cee(c(c3)C(F)(F)F)CI I
CC12CC=C3C=C4C(C(C(Cc45Cccr3(c1ccclacbeecreecncc?c6)05 I
4CRL  2.40 C1l )N(C)C)0O)O
4F6S 2.60 JHK Cclece(ccl)n2c(ce(n2)C(C)(C)C)NC(=0)N I
4F6U  2.10 HK5 Cclece(cecl)n2c(ce(n2)C(C)(C)C)NC(=0)NCCCN3CCOCC3 I
Cclccee(ccl)n2c(cc(n2)C(C)(C)C)NC(=O)NCCN3CCN(CC3)C(=0) I
4F6W  2.39 0SS Nc4cc(nn4dc5cec(cc5)C)C(C)(C)C
4F70 3.00 0ST Cclccece(cel)n2ce(cc(n2)C(C)(C)C)NC(=O)NCCN3CCOCC3 I
4F7) 2.60 osuU Cclece(ccl)n2c(cec(n2)C(C)(C)C)NC(=0)NCCO I
4F7L 2.90 0sO Cclccec(cecl)n2c(cc(n2)C(C)(C)C)NC(=O)NCCCNC(=0)OC(C)(C)C I
4F7TN  2.65 oSV Cclece(ccl)n2c(cc(n2)C(C)(C)C)NC(=0)NCCCCCO I
4F7S 2.20 osw clcece(ccl)CCNce2c3cccee3nen?2 |
4G6L  2.70 0SO Cclece(ccl)n2c(ce(n2)C(C)(C)C)NC(=0)NCCCNC(=0)OCc(C)(C)C  N.A°
5BNJ 2.64 4TV Cnlcc(cnl)c2cec(cc2)c3encc(c3N4ACCC5(CCNC5=0)CC4)CI |
5CEI 50R CNC(=0)clcc2c(cncc2s1)Oc3ccec(ce3)l |
5FGK  2.36 5XG clcc2c(ccle3cencc(c3N4CCC5(CCNC5=0)CC4)Chn[nH]c2N |
5HBE  2.38 5Y6 CNZ1c2cce(cc2CS1(=0)=0)c3cncc(c3N4CCC5(CC4)CNC(=0)05)Cl |
CN1c2cce(cc2CS1(=0)=0)c3cncc(c3N4CCC5(CCCN5CCOC)CC4) I
5HBH  2.50 5Y7 Cl
5HBJ 3.00 5Y8 Cnlc2ccc(cc2enl)c3cenc(c(c3N4CCC5(CCNC5=0)CC4)CI)N |
5HNB  2.35 62M Cclccece(cl)Ce2c3cce(c(cc3[nH]n2)0)C(=0)N4CCC(C4)0 |
CNclncee(n1)N2CCC(C2)NC(=0)Nc3cee(c(c3)C(F)(F)F)CN4CCO I
5HVY  2.39 66X Ccc4
5152 2.60 68U CNC(=0)clccec2encce(c2nl)c3cecdc(c3)CS(=0)(=0)N4C |
51CP 2.18 69Z Cclncc2nlne(s2)C(=0)N3CCCC3c4ccce(cc4)Cl |
5IDN 2.26 6A7 Cclc2cc(enc2[nH]n1)C(=0)N3CCCC3c4ccc(cc4)Cl |
5IDP 2.65 6A6 clcc(ccclC2CCCCN2C(=0)c3cccac(c3)ec(n[nH]4)N)F |
5XQX  2.30 8ccC CNC(=0)clcc(c[nH]1)c2cencc2 |
5XS2 2.04 8D6 clcnceclc2c[nH]c(c2CHC(=0O)N |
6QTG  2.70 JH8 CN(C)C(=0)Cnlcc(cnl)c2cec(cc2)c3enccdc3ccecd |
6QTJ 2.48 JHK CN(C)C(=0)Cnlcc(cnl)c2cec(cc2)c3cenccdc3cnecd |
6R3S 2.19 JRE CC(clc(cneclCl)c2ce3c(nc2)N(CCC3)C(=0)N)O |
6T41 2.45 MFE clccc2c(cl)c(nen2)NCe3cec(ce3)Cl |

@ PDB identifier.

b Higher limit resolution, A.

¢ Chemical component three-letter code.

d Structure classification.

¢ not available (ligand-free structure)
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Table S2. Filtering rules to select drug-like compounds

/.
#In * * *kk * % * % *k*k * * %%k *k*k * % *

#Copyright (C) 2004-2020, 2020 by OpenEye Scientific Software, Inc.
#****************7\-******************************************************/
#This file defines the rules for filtering multi-structure files based on

#properties and substructure patterns.

MIN_MOLWT 200 "Minimum molecular weight"

MAX_MOLWT 600 "Maximum molecular weight"

MIN_NUM_HVY 15 "Minimum number of heavy atoms"
MAX_NUM_HVY 35 "Maximum number of heavy atoms"

MIN_RING_SYS 0  "Minumum number of ring systems"
MAX_RING_SYS 5  "Maximum number of ring systems"

MIN_RING_SIZE 0 "Minimum atoms in any ring system"
MAX_RING_SIZE 20 "Maximum atoms in any ring system"

MIN_CON_NON_RING 0  "Minimum number of connected non-ring atoms"
MAX_CON_NON_RING 15 "Maximum number of connected non-ring atoms"

MIN_FCNGRP 0  "Minimum number of functional groups"
MAX_FCNGRP 18  "Maximum number of functional groups”

MIN_UNBRANCHED 0 "Minimum number of connected unbranched non-ring atoms"
MAX_UNBRANCHED 6 "Maximum number of connected unbranched non-ring atoms"

MIN_CARBONS 7  "Minimum number of carbons"
MAX_CARBONS 35 "Maximum number of carbons”

MIN_HETEROATOMS 2  "Minimum number of heteroatoms"
MAX_HETEROATOMS 20 "Maximum number of heteroatoms™

MIN_Het C_Ratio 0.10 "Minimum heteroatom to carbon ratio"
MAX_Het C_Ratio 1.0 "Maximum heteroatom to carbon ratio"

MIN_HALIDE_FRACTION 0.0 "Minimum Halide Fraction"
MAX_HALIDE_FRACTION 0.5 "Maximum Halide Fraction"

#count ring degrees of freedom = (#BondsInRing) - 4 - (RigidBondsInRing) - (BondsSharedWithOtherRings)

#must be >= 0, from JCAMD 14:251-265,2000.

ADJUST_ROT_FOR_RING true "BOOLEAN for whether to estimate degrees of freedom in rings"

MIN_ROT_BONDS 0  "Minimum number of rotatable bonds"
MAX_ROT_BONDS 20 "Maximum number of rotatable bonds"

MIN_RIGID_BONDS 0  "Minimum number of rigid bonds"
MAX RIGID_BONDS 35 "Maximum number of rigid bonds"

MIN_HBOND_DONORS 0  "Minimum number of hydrogen-bond donors"
MAX_HBOND_DONORS 6 "Maximum number of hydrogen-bond donors"
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MIN_HBOND_ACCEPTORS 0  "Minimum number of hydrogen-bond acceptors"
MAX_HBOND_ACCEPTORS 8 "Maximum number of hydrogen-bond acceptors”

MIN_LIPINSKI_DONORS 0  "Minimum number of hydrogens on O & N atoms"
MAX_LIPINSKI_DONORS 5 "Maximum number of hydrogens on O & N atoms"

MIN_LIPINSKI_ACCEPTORS 0  "Minimum number of oxygen & nitrogen atoms"
MAX_LIPINSKI_ACCEPTORS 10 "Maximum number of oxygen & nitrogen atoms"

MIN_COUNT_FORMAL_CRG 0 "Minimum number formal charges"
MAX_COUNT_FORMAL_CRG 3 "Maximum number of formal charges"

MIN_SUM_FORMAL_CRG -2  "Minimum sum of formal charges"
MAX_SUM_FORMAL_CRG 2 "Maximum sum of formal charges"

MIN_CHIRAL_CENTERS 0 "Minimum chiral centers"”
MAX_CHIRAL_CENTERS 4 "Maximum chiral centers"

MIN_XLOGP  -5.0  "Minimum XLogP"
MAX_XLOGP 6.0 "Maximum XLogP"

#choices are insoluble<poorly<moderately<soluble<very<highly
MIN_SOLUBILITY  moderately  "Minimum solubility"

PSA_USE_SandP false "Count S and P as polar atoms"
MIN_2D PSA 0.0 "Minimum 2-Dimensional (SMILES) Polar Surface Area"
MAX_2D_PSA  150.0 "Maximum 2-Dimensional (SMILES) Polar Surface Area"

AGGREGATORS true  "Eliminate known aggregators"
PRED _AGG true "Eliminate predicted aggregators"

#secondary filters (based on multiple primary filters)

GSK_VEBER true  "PSA>140 or >10 rot bonds"
MAX_LIPINSKI 1 "Maximum number of Lipinski violations"
MIN_ABS 0.5 "Minimum probability F>10% in rats"
PHARMACOPIA true "LogP > 5.88 or PSA > 131.6"

ALLOWED_ELEMENTS H,C,N,O,F,S,Cl,Br
ELIMINATE_METALS Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Y,Zr,Nb,Mo, Tc¢,Ru,Rh,Pd,Ag,Cd

#acceptable molecules must have <= instances of each of the patterns below

#specific, undesirable functional groups

RULE 0 quinone RULE 0 RULE 0 phosphoranes
RULE 0 beta_carbonyl_quat_nitrogen RULE 0 imidoyl_chlorides
pentafluorophenyl_esters RULE 0 acylhydrazide RULE 0 nitroso

RULE 0 RULE 0 RULE 0 N_P_S Halides
paranitrophenyl_esters cation C ClL I P or S RULE 0 carbodiimide
RULE 0 HOBT esters RULE 0 phosphoryl RULE 0 isonitrile

RULE O triflates RULE 0 alkyl phosphate RULE 0 triacyloxime
RULE 0 lawesson_s_reagent RULE 0 phosphinic_acid RULE 0 cyanohydrins
RULE 0 phosphoramides RULE 0 phosphanes RULE 0 acyl_cyanides
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RULE 0 sulfonylnitrile RULE 0 N_methoyl RULE 3 lactam

RULE 0 phosphonylnitrile RULE 0 NS _beta_halothyl RULE 1 thioester

RULE 0 azocyanamides RULE 0 propiolactones RULE 1 carbonate

RULE 0 beta_azo_carbonyl RULE 0 iodoso RULE 0 carbamic_acid

RULE 0 polyenes RULE 0 iodoxy RULE 1 thiocarbamate

RULE 0 saponin_derivatives RULE 0 noxide RULE 0 triazine

RULE 1 RULE 1 malonic

cytochalasin_derivatives

RULE 4 #groups of molecules #other functional groups

cycloheximide_derivatives

RULE 1 RULE 0 dye RULE 2 alkyne

monensin_derivatives RULE 4 aniline

RULE 1 #functional groups which are RULE 4 aryl_halide

squalestatin_derivatives allowed, but may not be RULE 2 carbamate
wanted in high quantities RULE 3 ester

#functional groups which often #common functional groups RULE 5 ether

eliminate compounds from RULE 1 hydrazone

consideration RULE 6 alcohol RULE 0 nonacylhydrazone
RULE 4 alkene RULE 1 hydroxylamine

RULE 0 acid_halide RULE 4 amide RULE 2 nitrile

RULE 0 aldehyde RULE 4 amino_acid RULE 2 sulfide

RULE 0 alkyl_halide RULE 2 amine RULE 2 sulfone

RULE 0 anhydride RULE 4 primary_amine RULE 2 sulfoxide

RULE 0 azide RULE 4 secondary_amine RULE 0 thiourea

RULE 0 azo RULE 4 tertiary_amine RULE 1 thioamide

RULE 0 di_peptide RULE 2 carboxylic_acid RULE 0 thiol

RULE 0 michael_acceptor RULE 6 halide RULE 2 urea

RULE 0 beta_halo_carbonyl RULE 0 iodine

RULE 0 nitro RULE 2 ketone RULE 0O hemiketal

RULE 0 oxygen_cation RULE 4 phenol RULE 0 hemiacetal

RULE 0 peroxide RULE 1 imine RULE 0 Ketal

RULE 0 phosphonic_acid RULE 1 methyl_ketone RULE 1 acetal

RULE 0 phosphonic_ester RULE 1 alkylaniline RULE 0 aminal

RULE 0 phosphoric_acid RULE 4 sulfonamide RULE 0 hemiaminal

RULE 0 phosphoric_ester RULE 1 sulfonylurea

RULE 0 sulfonic_acid RULE 0 phosphonamide #protecting groups

RULE 0 sulfonic_ester RULE 0 alphahalo_ketone

RULE O tricarbo_phosphene RULE 0 oxaziridine RULE 0

RULE 0 epoxide RULE 1 cyclopropyl benzyloxycarbonyl_CBZ

RULE 0 sulfonyl_halide RULE 2 guanidine RULE 0

RULE 0 halopyrimidine RULE 0 sulfonimine t_butoxycarbonyl tBOC

RULE 0 perhalo_ketone RULE 0 sulfinimine RULE 0

RULE 0 aziridine RULE 1 hydroxamic_acid fluorenylmethoxycarbonyl_Fm

RULE 1 oxalyl RULE 0 sulfinylthio oc

RULE 0 alphahalo_amine RULE 0 disulfide RULE 1 dioxolane_ 5MR

RULE 0 halo_amine RULE 0 enol_ether RULE 1 dioxane_6MR

RULE 0 halo_alkene RULE 0 enamine RULE 1

RULE 0 acyclic NCN RULE 0 organometallic tetrahydropyran_THP

RULE 0 acyclic_NS RULE 0 dithioacetal RULE 1

RULE 0 SCN2 RULE 1 oxime methoxyethoxymethyl MEM

RULE 0O terminal_vinyl RULE 0 isothiocyanate RULE 2 benzyl_ether

RULE 0 hetero_hetero RULE 0 isocyanate RULE 2 t_butyl_ether

RULE 0 hydrazine RULE 3 lactone RULE 0O trimethylsilyl_TMS
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RULE 0

t_butyldimethylsilyl TBDMS

RULE 0

triisopropylsilyl_TIPS

RULE 0

t_butyldiphenylsilyl TBDPS
RULE 1 phthalimides PHT
RULE 2 arenesulfonyl

Table S3. In-house catalog of commercially available drug-like compounds.

Supplier Compounds? Cleaned® Unique®  Drug-liked
AbamaChem 1496 973 1389 444 1355715 1112527
Alinda 893 780 884 805 7064 2451
AnalytiCon 46 513 44 108 39726 23185
Aronis 26 848 26 757 45 21
Asinex 530 881 525110 525 102 342 471
AsisChem 2109738 2089 223 1720870 556 376
BCH Research 1496 546 1453617 1366 307 1118354
Bionet 208 417 207 322 196 734 84 429
Cayman 14 603 14 444 9225 2650
Chembridge 1250334 1242 437 1133887 883 008
ChemDiv 1601 806 1586112 1369 021 817 491
CNRS 75554 1777 63 942 30721
Enamine 2701170 2 660 152 2 565 862 1820949
ExiMed 60 872 60 708 3221 2484
InterBioScreen 555 658 545 481 348 868 174 137
Intermed 900 691 840 422 759 154 629 819
LifeChemicals 492 739 490 408 339 706 233 220
Maybridge 53 352 52 777 41920 17 408
Otava 263 238 261 029 65 402 32 567
PBMR_Labs 1532541 1505 095 427 795 208 920
Pharmeks 374 473 363 888 47 752 21 691
Specs 210228 206 727 176 871 94 270
Synthon_Lab 32 275 32 063 6374 2623
TimTec 994 852 972738 160 298 58 846
Vitas-M 1413073 1383087 19535 9575
Total 19 337 425 18 909 731 12 750 396 8280193

2 compounds downloaded on June 8" 2020 from supplier websites.

b removal of compounds with erroneous structures and more than 2 undefined chiral centers.

¢removal of salt-free duplicates according to canonical SMILES strings.

d drug-like compounds according to rules in Table S2.
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Table S4. List of 37 commercially available compounds, structurally similar or identical to round-1

library members.

Original® Commercial® # ID¢
©\f0
CLs LS
0 0
1 BAS00100999
(o] (o]
H H
N. No
N N
SAae! shael
OH o~ 2 BAS00127920
o
JOONH S NH 3 BAS03714607
@N” NH 4 BAS06103407
Qo Qo 5 AS-13577
X /N X /N
| |
N AR N AR 6 AS-57570
HO  — HO, /=
— N =\ / N\ N
N N\ / Ny Z
./ o 7 AS-65001
\
o] OH
K0 SO
° ° 8 BS-4424
—N —N
—\ \_/ \ \_/
OH OH 9 5238792
—N —N
N\ // N\ //
on oH 10 5238793
(o] (o]
©/S\)'LH XN /©/S\)'LH N
~ P 11 6387127
o] 6]
—\ \_/ \ \_/
o o 12 6736415
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71024584854
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H,N —N H,N —N
\ / \ /
26 7513796046
/N\/\o/© /N\/\o/© 27 754748481
, NC <
—S=0 —S=0
—0 (0] >: \_\*O O, >:
GNH GNH 28 7737854118

7 N 7 N 29 785517130
(6] OH
©/S\/\N)K/\©\ S\/\NJ\/\©
H
OH ©/ : 30 791149516
HoN HoN
el oD
(o] (o]
\ / \ /
(o] o]
—/ 5 / 5 31 6668547
ﬁﬁNj 7\ O@O -
Novay

=N 32 AE-848/02279007
H N
: fo) [ j (o]
OH O 33 AF-407/03092027
HNOCI
HNOCI QJ
:\< (]
o <
/ 34 AH-487/42191575

SO O
' 30 " 0
e a YA S oV,

35 AJ-292/42152689

36 AL-398/12677080

37 AN-652/05929028

2 Original R1 library compound. ° Closest commercial analogue. ¢ Commercial catalogue identifier.
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Table S5. List of 151 round-2 library members (SMILES strings)

CCOclcee(C(=0)0c2cncce(-c3cc(-c4cceced)c(C)s3)c2)ccl
CCOclcee(C(=0)0Oc2ccenc2Cc2c[nH]en2)ccl
CCOclcec(C(=0)0c2enccc2C(C)=Cc2ccc(C)c(CHCCO)c2)ccl
CCOclcec(C(=0)0c2encc(N3CC(cdcececd)C3)c2)ecl
CCOclcec(C(=0)0c2ence(-n3nnc(-c4cceccdO)n3)c2)ccl
CCOclcec(C(=0)0c2encc(C(N)=[NH+]C(=[NH2+])Nc3cccee3)c2)cecl
CCOclcee(C(=0)0c2cncecc2C=Cc2ccc(C)c(CHCCO)c2)ccl
CCOclcee(C(=0)0c2cnccc2N(CC)C(=0)N2CCc3cc(O)cee3C2)ccl
CCOclcee(C(=0)0Oc2cence(-c3nnc(-c4cn[nH]c4)nn3)c2)ccl
CCOclcee(C(=0)0c2encc(NC(=[NH2+])Nc3cccee3)c2)ccl
CCOclcee(C(=0)0c2encc(C(=0)NC(=0)Nc3cccee3)c2)ccl
CCOclcee(C(=0)0c2encecc2C2=CCN=C2c2ccc(C)c(C#CCO)c2)ccl
CCOclcec(C(=0)0c2cenccc2-c2cc(C)n(-c3ccece3)n2)ccl
CCOclcec(C(=0)0c2cenccc2N(C)C(=[NH2+])Oc2ccecc2)ccl
CCOclccc(C(=0)0c2cenccc2-c2¢c[nH]cc2-c2ccc(0)c(0)c2)ccl
CCOclcee(C(=0)0c2cenccc2NC(=0)c2ccccc20)ccl
CCOclcec(C(=0)0c2encc(NOC(=0)n3cenc3)c2)cecl
CCOclcce(C(=0)0c2cencce(-c3cc(-c4cceccd)co3)c2)ecl
CCOclcee(C(=0)0c2enccc2NC(=0)Nc2cceec20)ccl
CCOclcee(C(=0)0c2enccc2NC(=[NH2+])Oc2ccecc2)ccl
CCOclcee(C(=0)0c2cnccc2-c2ce(C)e(-c3cceece3)s2)cel
CCOclcee(C(=0)0c2cncecc20C(=0)c2ccc3c(=0)[nH]c(C)ne3c2)ccl
CCOclcec(C(=0)0c2cenccc2-c2[nH]cc(-c3cccce3)c2N)ccl
CCOclcec(C(=0)0c2cence(-n3nnc(N4CCC(O)CC4)n3)c2)ccl
CCOclcee(C(=0)0c2cencc(-c3cen(-c4cceeccd)n3)c2)ccl
CCOclcec(C(=0)0c2cenccc2-c2n[nH]nc2N2CCc3cc(O)ccec3C2)ccl
CCOclcee(C(=0)0c2cnccc2-c2cec(-c3ccecc3)o2)ccl
CCOclcee(C(=0)0c2encc(C(=0)Nc3cc(O)ccc3F)c2)ccl
CCOclcee(C(=0)0c2cncce(-c3cec(-c4cececd)s3)c2)cecl
CCOclcee(C(=0)0c2enccc2N(N)C(=0)0Oc2ccecc2)ccl
CCOclcee(C(=0)0c2cncc(C3CCN(c4cceecd)CC3)c2)ccl
CCOclcee(C(=0)0c2encc(OC(=0)0c3cc(0)ccc3F)c2)ccl
CCOclcee(C(=0)0c2cenccc2C(=0)0c2ccc(0)c(0)c2)cecl
CCOclcec(C(=0)0c2cenccc2C(C)=Cc2ccc(C#HCCO)c(C)c2)ccl
CCOclcee(C(=0)0c2encc(C(N)=[NH+]C(=0)Nc3cccce3)c2)ccl
CCOclcec(C(=0)0c2encecc2C(=0)N(O)c2ccec(C(C)(C)C)c2)ccl
CCOclcec(C(=0)0c2cncc(-c3[nH]cc(-c4cceeed)[nH+]3)c2)ccl
CCOclcec(C(=0)0c2cncec2-c2cc(-c3ccece3)sn2)ccl
CCOclcec(C(=0)0c2encc(NC(=0)C(=0)0c3ccece3)c2)cecl
CCOclccc(C(=0)0c2cence(-c3cc(C)n(-c4cceced)c3)c2)ccl
CCOclcee(C(=0)0c2cencec2-c2nn(N)cc2-c2cec(0)c(O)c2)ccl
CCOclcee(C(=0)0c2encc(C(=[NH2+])NC(=0)Nc3cccee3)c2)ccl
CCOclcee(C(=0)0c2cncc(CSC(=[NH2+])N3CCC(0O)CC3)c2)ccl
CCOclcee(C(=0)0c2cncc(C(=0)N(C)c3cc(O)cce3F)c2)ccl
CCOclcee(C(=0)0c2cnccc2-c2cen(-c3ccecee3)n2)ccl
CCOclcec(C(=0)0c2encc(NC3=[NH+]CC=C3c3cccce3)c2)ccl
CCOclcee(C(=0)0c2cnccc2-c2ceccc2-c2c(Cl)ceec2Clecl
CCOclccc(C(=0)0c2cence(-c3cnn(-c4cceeced)n3)c2)ccl
CCOclcec(C(=0)0c2enccc2NC(=[NH2+])c2cec(0)c(0O)c2)cecl
CCOclccc(C(=0)0c2encc(NC(=[NH2+])Nc3cccec30)c2)ccl
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CCOclcee(C(=0)0c2encec2-c2nc(C)e(-c3ceece3)s2)ccl
CCOclcee(C(=0)0c2ccenc2-c2ccecc2-c2cececcc20)ccl
CCOclcec(C(=0)0c2encec2-c2n[nH]c(N3CCC(O)CC3)n2)ccl
CCOclcec(C(=0)0c2encc(ON=C(S)n3ccnc3)c2)ccl
CCOclcee(C(=0)0c2encc(NC(=0)0c3ccccec3)c2)ccl
CCOclcec(C(=0)0c2enccc2NC(=0)Nc2cec(0)c(0)c2)ecl
CCOclcee(C(=0)0c2enccc2N2CC(c3cccce3)C2)ccl
CCOclcee(C(=0)0c2enccc20C(=0)Nc2ccecc20)ccl
CCOclcee(C(=0)0c2cnccc2N=C(0O)c2ccc(C)c(C#CCO)c2)ccl
CCOclcee(C(=0)0c2cncce(-c3cc(C)n(-cdcceccd)n3)c2)cecl
CCOclcee(C(=0)0Oc2encec2C(=0)N2CC(c3cnc[nH]3)C2)ccl
CCOclccc(C(=0)0c2encc(C3=NC(cdcccccd)=[NH+]C3)c2)ccl
CCOclcec(C(=0)0c2cencc(-c3sc(-c4cceeccd)ce3N)c2)ccl
CCOclcec(C(=0)0c2cnccc2Cc2ccc3c(=0)[nH]c(C)nc3c2)ccl
CCOclcec(C(=0)0c2cnccc2C2=CC(c3ccecc30)=CC2)ccl
CCOclcee(C(=0)0c2cenccc2-c2csc(-n3cenc3)n2)ccl
CCOclcee(C(=0)0c2encecc2C=C(C)c2cce(O)c(0)c2)ccl
CCOclcee(C(=0)0c2enccc20C(=0)0c2¢(0)cec3c20CO3)ccl
CCOclcee(C(=0)0c2encecc2C=Cc2ccc(CHCCO)c(C)ec2)ccl
CCOclcee(C(=0)0c2enccc2NC(=0)Nc2cceec2)ecl
CCOclcee(C(=0)0c2cenccc2-c2enn(-c3cccec30)c2C)ecl
CCOclcee(C(=0)0c2cenccc2C(N)=[NH+]C(=0O)Nc2ccccc2)ccl
CCOclcec(C(=0)0c2cnccc2C(C#N)=Cc2ccc(0)c(0)c2)ccl
CCOclcec(C(=0)0c2cenccc2NC(=0)NC(=0)c2ccccc2)cecl
CCOclcec(C(=0)0c2cenccc20C(=0)C(=0)Nc2c(0)cecc3c20C03)ccl
CCOclcee(C(=0)0c2cnccc20C(=0)0c2ccccc2)ccl
CCOclcee(C(=0)0c2cnccc2SOC(=0)N2CCC(O)CC2)ccl
CCOclcee(C(=0)0c2cncc(OC(=0)0c3cccec3)c2)ccl
CCOclcce(C(=0)0c2cencce(-c3cen(-cdcccecd)c3)c2)ccl
CCOclcee(C(=0)0c2cnccc2-c2cccc(N3CCC(0)CC3)c2)cecl
CCOclcee(C(=0)0c2cncecc2C(=0)NC(=0)c2cceec20)ccl
CCOclcec(C(=0)0c2cnccc2C(=0)Sc2cccec2)ccl
CCOclcec(C(=0)0c2cenccc2CSC(=[NH2+])N2CCC(0)CC2)ccl
CCOclcee(C(=0)0c2cencc(C=Cc3cceec30)c2)cecl
CCOclcec(C(=0)0c2cencc(NC(=0)Nc3ccccc30)c2)ccl
CCOclcec(C(=0)0c2cencec2-c2enn(-c3ccece3)c2)ccl
CCOclcec(C(=0)0c2cnce(-c3coc(-c4cecececd)n3)c2)ccl
CCOclcec(C(=0)0c2cenccc2-c2cc(C)n(-c3cccece30)n2)ccl
CCOclcee(C(=0)0c2enccc2C2=CCN=C2c2ccc(C#CCO)c(C)c2)ccl
CCOclcec(C(=0)0c2cncc(C=NC(=[NH2+])Nc3cccee3)c2)ccl
CCOclcec(C(=0)0c2cencec2-c2c¢sc(-c3cecece3)n2)ccl
CCOclcee(C(=0)0c2cncc(NC(=0)c3cc(O)cec3F)c2)ccl
CCOclcec(C(=0)0c2cncce2N(C)C(=[NH2+])N2CCc3cc(O)ccc3C2)ccl
CCOclcece(C(=0)0c2cnccc2C=Cc2cccec20)ccl
CCOclcee(C(=0)0c2ccenc2Cc2enc(C)nc2N)ecl
CCOclcee(C(=0)0c2cencc(NC(=0)Nc3ccceec3)c2)ccl
CCOclcee(C(=0)0Oc2cnccc2C2=NCC=C2c2ccc(O)c(0)c2)ccl
CCOclcee(C(=0)0c2encecc2C(=0)Nc2ccc3c(=0)[nH]c(C)nc3c2)ccl
CCOclccc(C(=0)0c2cence(-c3cc(-c4cceeecd)n[nH]3)c2)ccl
CCOclcec(C(=0)0c2cncec2-c2ccec(-c3c(0)cecc4c30C04)c2)ecl
CCOclccc(C(=0)0c2enccc2NC(=0)Nc2cc(O)ccc2F)ccl
CCOclcee(C(=0)0c2cnccc2-c2csc(-c3¢(0)cecdc30C04)n2)ccl
CCOclcee(C(=0)0c2ccenc2Cc2ccccc20)ccl
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CCOclcee(C(=0)0c2cncecc2C(=0)Nc2cecc(CH#CCO)c(C)c2)ccl
CCOclcec(C(=0)0c2cncecc2C2=NCC=C2C2CCCC2)ccl
CCOclcec(C(=0)0c2cnccc2CC(=[NH2+])N2CCc3cc(O)cce3C2)ccl
CCOclcec(C(=0)0c2encc(C(=0)NC(=0)Nc3cn[nH]c3)c2)ccl
CCOclcec(C(=0)0c2cence(-c3nc(-ndcencd)n[nH]3)c2)ccl
CCOclcec(C(=0)0c2encecc2C(=[NH2+])NC(=0O)Nc2cccec2)cecl
CCOclcee(C(=0)0c2cnccc2-c2ncec(-c3c(0)cccdc30C0O4)n2)ccl
C=C(C(=[NH2+])N1CCc2cc(O)ccc2Cl)cleencclOC(=0)clecc(OCC)ecl
CCOclcee(C(=0)0c2cnccc2-c2nc(-c3ccece3)sc2C)ecl
CCOclcee(C(=0)0c2cnccc20C(=0)Nc2cc(O)ccc2F)ecl
CCOclcee(C(=0)0c2cncce(-c3nc(-c4cceecd)cs3)c2)ccl
CCOclcec(C(=0)0c2ence(NC(=S)c3cceece3)c2)cecl
CCOclcee(C(=0)0c2cnccc2-c2nen(-c3ccccc3)n2)ccl
CCOclcec(C(=0)0c2encc(NNC(=0)n3cenc3)c2)ccl
CCOclcec(C(=0)0c2cenccc2C=Cc2ccc3c(=0)[nH]c(C)nc3c2)ccl
CCOclcee(C(=0)0c2ccenc2C(=[NH2+])Nc2cceec20)ccl
CCOclcee(C(=0)0c2encc(C(=[NH2+])Nc3cc(O)ccc3F)c2)ecl
CCOclcee(C(=0)0c2encc(SC(=0)0c3cecce3)c2)ccl
CCOclcee(C(=0)0c2cencec2-c2n[nH]cc2-c2cec(0)c(O)c2)ccl
CCOclcee(C(=0)0c2enccc2NC(=0)0c2cceec2)cecl
CCOclcee(C(=0)0c2cncce(-n3nc(-c4cceeced)[nH]3)c2)ccl
CCOclcee(C(=0)0c2encc(C(=[NH2+])N=Cc3ccccc30)c2)ccl
CCOclcec(C(=0)0c2cence(-c3ccc(NACCC(O)CC4)cee3)c2)cecl
CCOclcec(C(=0)0c2cenccc2-c2ccc(-c3c(0)cccdc30C0O4)02)ccl
CCOclcec(C(=0)0c2cenccc20C(=0)c2cec(CHCCO)c(C)e2)ecl
CCOclcec(C(=0)0c2cenccc2C(=0)Nc2cec(0)c(0)c2)cecl
CCOclcee(C(=0)0c2cncecc2C(=0)N2CC(n3cenc3)C2)ccl
CCOclcee(C(=0)0c2encecc2C=Cc2ccc(0)c(0)c2)ccl
CCOclcee(C(=0)0c2enccc2NC(=0)N2CCc3cc(0)ccc3C2)ccl
CCOclcee(C(=0)0c2cencec2-c2nnc(N3CCC(0)CC3)02)ccl
CCOclcce(C(=0)0c2cncecc2C(=0)Nc2cccec2)ccl
CCOclcee(C(=0)0c2cnccc2N(C)C(=0)0c2c(C)eccc2C)ecl
CCOclcec(C(=0)0c2cenccc20C(=0)c2cec(C)c(CHCCO)c2)ccl
CCOclcec(C(=0)0c2cenccc2C=C(C#N)c2cec(C#CCO)c(C)c2)ccl
CCOclcee(C(=0)0c2cencc(-c3cc(-cdcceec40)nnn3)c2)cecl
CCOclcec(C(=0)0c2cnccc2C(0)=Cc2ccc(C)c(C#CCO)c2)ccl
CCOclcee(C(=0)0c2cnce(-c3ccec(N4CCC(0)CC4)c3)c2)cecl
CCOclcec(C(=0)0c2cnccc2C(=0)NC(=0)c2ccecc2)cecl
CCOclcee(C(=0)0c2encc(OC(=0)Nc3ccccc30)c2)ccl
CCOclcee(C(=0)0c2cenccc2C(=[NH2+])Nc2cee(O)c(O)c2)ccl
CCOclcec(C(=0)0c2encecc2C(=0)N(C)c2cec3c(=0)[nH]c(C)nc3c2)ccl
CCOclcee(C(=0)0c2cnccc2-c2cccc(-c3cnc[nH]3)c2)ccl
CCOclcee(C(=0)0c2cncc(N=[SH]c3cccee3)c2)ccl
CCOclcee(C(=0)0c2cncecc2C=C(C#N)c2cce(C)ec(C#CCO)c2)ccl
CCOclcee(C(=0)0c2cnccc2NC(=0)0c2¢(C)ceecc2C)ecl
CCOclcee(C(=0)0c2enccc2-c2cc(C)n(-c3cc(O)cec3F)n2)ccl
CCOclcce(C(=0)0c2cenccc2-c2nc[nH]c2N2CCe3cc(O)ccc3C2)ccl
CCOclcec(C(=0)0c2cncc(C(=0)Nc3ceccee3)c2)ccl
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4.3. ldentifying the first inhibitors of a bacterial quinolinate

synthase

4.3.1. Project description and structural aspects

Quinolate synthase (NadA) is a mainly-prokaryotic enzyme that catalyzes the formation of quinolinic
acid (Figure 4.1), a precursor for the essential cofactor NAD.?° Because of its role and its absence in
eucaryotes, it appears as an interesting potential target for selective antibacterial design. To date, there
is no pharmacological inhibitor of this enzyme.?r Known ligands are either substrate analogs or
derivatives of reaction intermediates. This project was started in collaboration with a Biology team at
the Grenoble University (Dr. S. Ollagnier de Choudens, Laboratoire de Chimie et Biologie des Métaux,
UMR5249) with the goal of identifying selective pharmacological inhibitors of NadA. Previous studies
have characterized the structure of bacterial NadA. The catalytic site adopts an active open or close
conformation and contains a [4Fe-4S] cluster necessary for its activity.?? We thought that the small
cavity of NadA (< 300 A®) constitutes a challenge for classical virtual screening approaches and offers

a difficult case study to evaluate the POEM workflow.
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Figure 4.1. Structure of Thermotoga maritima quinolinate synthase. A) Cartoon and surface
representation (PDB ID: 4P3X). The [4Fe-4S] cluster is depicted by spheres in the catalytic pocket
(yellow circle). B) VolSite cavity represented by warm pink spheres annotated by one of eight possible
pharmacophoric features (hydrophobic, aromatic, h-bond acceptor, h-bond donor, h-bond acceptor or
donor, negative or positive ionizable, dummy). The envelope available for inhibitor binding is
represented by a solid surface, illustrating the narrowness of the pocket. C) 2D structure of quinolinic

acid.
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4.3.2. Materials and methods

We aimed at designing molecules that can bind to Helicobacter Pylori NadA (hpNadA) catalytic site.
Since no structure is available for that target, a homology model was built with Swiss-model® using an
open-conformation 3D structure of Thermotoga maritima MSB8 (PDB ID: 4P3X) as template. Although
sequence alignment with ClustalO yielded 35% identity, the binding site is generally conserved with a
few amino acid changes (Annex 4.1). The structure was protonated with Protoss v.4.2* The cavity points
were computed with IChem VolSite® v.5.2.9 and pruned to avoid areas behind the iron-sulfur cluster
(Figure 4.1).

The NadA cavity was compared to 31 384 sc-PDB subpockets and the cognate fragments were
transferred into the target cavity using ProCare?® v.0.1.2 with the three alignment descriptors (color c-
FH, shape FPFH and hybrid c-FPFH), as described in section 4.2.

4.3.3. Results and discussion

Following the subpockets comparison to the hpNadA pocket, we first observed that the number of
subpockets candidates decreases by two third in comparison with CDK8 but this is not surprising
knowing of overrepresented protein families in the PDB. However, it raises questions on the chances to
generate hit ideas. After removing a majority of cofactor-derived moieties, four to eight hundred
fragments (including 2D duplicates) were considered for each descriptor. Consistent with previous
observations, that shape-only descriptor yielded the fewest propositions. Given the small volume
occupied by the pocket points (~200 A%), it was not possible to join fragments occupying adjacent
subpockets as they often overlap. Fragments that could be subjected to linking were imidazole
derivatives and benzene. We then pursued a different strategy where transferred fragments that occupy
the entire cavity were directly considered as putative hits. To this end two selections were visually
checked: (i) consensus fragments whose subpockets scored over the previously validated similarity
threshold of 0.47 for all the three descriptors (n=186) and (ii) those who in addition to being compliant
with rule (i) exhibited a buriedness over 50% into the target cavity cloud (n=39) (Figure 4.2).
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Sc-PDB entries
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ProCare scores > 0.47
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fragment buriedness
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Visual selection
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Figure 4.2. Selection of NadA virtual hits.

It is important to note that a scoring-based consensus does not necessarily mean that the fragments adopt
the same alignment. Therefore, pose-based consensus (RMSD < 3 A) was used as additional filter.
Associated points of the same pharmacophoric features between the target pocket and the fragment
subpocket were computed and visually analyzed alongside the fragments. Preference was given to
fragments whose pharmacophoric features match that of cavity points. Fragments that orient lone pairs
toward the [4Fe-4S] cluster susceptible to coordinate the later (e.g., moieties containing nitrogen,
oxygen, sulfur atoms) were discarded, in order to increase NadA specific binding. Finally, after visual
check of all ProCare poses, six compounds identical or very similar (Morgan2 Tanimoto > 0.48) to

predicted hits were purchased for future in vitro evaluation (Table 4.2).

Table 4.2. Structure of six commercially available virtual hit selected for experimental validation.

Identifier Supplier Structure
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4.3.4. Conclusion

In this study, we attempted to design a focused library for identifying pharmacological ligands of
Helicobacter Pylori NadA catalytic site. As a second case study to validate POEM, the target pocket
was narrow and contains an iron-sulfur cluster, adding difficulty to the application. The dimensions of
the cavity did not facilitate linking fragments occupying adjacent subpockets but instead suggested to
use directly proposed fragments as putative hits. By not applying a generative linking, a lower number
of molecule ideas was expected, decreasing the chances to identify actual hits. In computational
screening, final selection of virtual hits is often subjective. The current study did not escape this rule. In
this scenario, mapping aligned cavity points to the fragment atoms offered a supplemental quality check
out of which six hits were prioritized to test their ability to inhibit in vitro the catalytic activity of the

enzyme (ongoing work).
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4.4. Hit prediction for the WD40 domain of leucine-rich repeats

kinase 2

4.4.1. Project description and structural aspects

This project was started as part of the CACHE (Critical Assessment of Computational Hit-finding
Experiments) international challenge.?’ It aims at publicly benchmarking computational methods ability
to predict hits for relevant targets by confronting predictions to experimental validations. For this first
round whose production phase occurred from March 9" to May 9" of 2022, the WD40 repeats (WDR)
domain of the human leucine-rich repeats kinase 2 (LRRK2) was chosen. Mutations in the LRRK2 gene
are commonly associated with Parkinson’s disease whether it was inherited or appeared sporadically.?®
To this current date, therapeutics in preclinical or more advanced phases against LRRK2 are either small
molecules inhibiting the kinase domain or biologics.?®* The WDR domain, a B-propeller of seven
blades (Figure 4.3), was shown to mediate LRRK2 protein-protein interactions with microtubules and
vesicles trafficking in neurons.* Therefore, it appears as a promising drug target.>> The goal of this
challenge is to target the core cavity (Figure 4.3) with small molecules. The first experimental results
of our predictions are expected no earlier than this fall, hence we will discuss here the problems and

solutions encountered by applying POEM to this target.

Figure 4.3. Structure of LRRK2 WD40 domain. Cartoon and surface representation of PDB entry
6DLO; (left) top view showing the core cavity, (right) side view.

4.4.2. Materials and Methods

Structures preparation
The dimeric structure of LRRK2 WDR (PDB ID: 6DLO, X-ray resolution: 2.7 A)® indicated as starting

structure was downloaded from the PDB (https://www.rcsb.org), as well as the monomeric full length
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cryo-EM structure 7LHT (3.5 A). The WDR chains were extracted, aligned to be in the same coordinates
frame with Maestro v.2019-3 (Schrédinger, New York, NY 10036, U.S.A.), protonated with Protoss
v.4% and converted into mol2 format with SYBYL-X v.2.1.1 (Certara USA, Inc., Princeton, NJ 08540,
U.S.A.). The pocket point clouds were generated with IChem VolSite v.5.2.9.%

sc-PDB fragments and subpockets v.2022

Starting from the latest sc-PDB v. 2022 release, IChem fragments and subpockets were prepared from
the protein-ligand complexes as described in section 4.2. Additionally, fragments originating from 3D
RECAP fragmentation®* (in-house implementation) were added, removing 3D duplicates with IChem
fragments—duplicates are the same fragments (by topological fingerprints) occupying the same
subpocket of the same PDB entry. Exit dummy atoms resulting from the fragmentation were converted
into hydrogen atoms with SYBYL-X v.2.1.1 (Certara Inc., Princeton, U.S.A.). Computed subpockets
with IChem VolSite® v.5.2.9 were filtered as previously, by discarding those with less than 3 points.
The new version (v.2022) of the sc-PDB subpocket-fragment database consists of 107 828 entries, three

times more than the previous 2016 version.®

Pocket comparison

sc-PDB subpockets were compared to the WDR cavity with ProCare? v.0.1.2, using the 3 descriptors
(color c-FH, shape FPFH and hybrid c-FPFH) and default scoring scheme. The alignment matrices
obtained were next applied to the corresponding fragments to pose them in the target cavity. Aligned

target/query cavity points were extracted with ProCare tools.

Interactions detection

Protein-fragment interactions (h-bond, ionic, aromatic, hydrophobic) were detected with IChem3
v.5.2.9 IFP module with default angle and distance parameters. Interaction triplets were detected with
INTS module.

Buriedness

Fragments buriedness in the WDR pocket were computed with the IChem 5.2.9 Utils module.

sc-PDB entries annotation

Protein annotations of sc-PDB* entries (name, Uniprot®’ accession, function keywords) were extracted
via the RCSB PDB application programming interface (API) with inhouse scripts. The chain identifier
associated to the ligand in the PDB (author chain) was corrected from the mmCIF file of the entry, to

finally assign the correct assembly ID.
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Target enrichment
For each target represented by their Uniprot accession (polyprotein are disregarded) the enrichment rate
was calculated as the proportion of their PDB entries for which a subpocket scored higher than the

selection threshold (Niwp) relative to the initial number in the sc-PDB database (Nota):

r (%) = 2 x 100 eq. 4.1

total

Search in commercial libraries

The Enamine REAL diverse set of 38 million molecules was downloaded
(https://enamine.net/compound-collections/real-compounds/real-compound-libraries, accessed on April
20th 2022) and filtered for druglikness (Section 4.2, Supporting Table S2) with OpenEye Filter
v.3.0.1.2 (OpenEye Scientific Software, Santa Fe, NM 87508, U.S.A.) yielding 24 million druglike
molecules. Similarly, the in stock list from MCULE database (https://mcule.com/database/) was
prepared as backup, yielding 2.3 million druglike molecules. These compounds were compared to the
designed molecules using RDKit v.2019.03.4.0 (http://www.rdkit.org) Morgan2 fingerprint. Pairs were

considered similar when the Tanimoto metric was higher than 0.7.

Docking

Hits candidates were ionized at physiological pH with OpenEye Filter v.3.0.1.2 and finally converted in
3D structures (mol2 file) with Corina v.3.40 (Molecular Networks GmbH, 90411 Niirnberg, Germany).
Possible stereoisomers and ring conformers were generated simultaneously. The prepared molecules
were docked into the WD40 cavity with PLANTS® v.1.2. The search space was set at 20 A from the
binding site center with a search speed of 1 (highest accuracy). Ten poses ranked by the ChemPLP
scoring function were generated per ligand. A root-mean square deviations (RMSD) of 2 A on ligand
heavy atoms was used to cluster solutions. The flipped/rotated side chains were considered in the protein

structure for each corresponding PLANTS pose.

Shape-based alignment of molecules

Commercial compounds found similar to potential hits were aligned with OpenEye ROCS v.3.0.1.2
(OpenEye Scientific Software, Santa Fe, NM 87508, U.S.A.) to the pair of seed fragments, optimizing
the shape and chemical features overlap by conformational search. The alignments were ranked with the

Tanimoto combo score.
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4.4.3. Results and discussions

Choice of the WDR structure

The starting WDR structure 6DLO is a dimer with missing loops at both the top and down sides of the
mouth surface (Figure 4.4). For this study, the chain A was selected over chain B as it was missing less
residues, after careful alignment and inspection. Contrarily, the low-resolution cryo-EM structure
(7LHT) was not missing residues. Consequently, VVolSite cavity points extended towards the loop region
modifying the shape of the cloud (Figure 4.4). We expected this to affect alignment of the subpockets.
Whether these extra cavity points are important is unknown, in the absence of any structure with bound
ligands. Unresolved loops due to high flexibility does not exclude that those residues might play a crucial
role for ligand binding. One particularity of these pockets is their high proportion of h-bond donor
features (30%). The two other most abundant features in similar proportions were hydrophobic and
undetermined dummy features. Although the pockets of these two structures were found similar (highest

ProCare Score: 0.70), the two pockets were kept for parallel library design.

Figure 4.4. Overlay of WDR-LRRK?2 protein structures and cavities. A) The 6DLO X-ray structure
(light blue) is missing loops (orange, red arrows) present in the cryo-EM structure 7LHT (dark blue). B)
The VolSite cavity points of 7LHT structure (warm pink) extended to the outer bottom region of the

core, compared to the 6DLO cavity (green).

Fragments selection

The first step for elaborating molecules is the selection of seed fragments. Distributions of ProCare
similarity scores showed similar trends for the color and hybrid histograms (c-FH and c-FPFH),
compared to the shape descriptor. This observation is in accordance with all previous studies. Given the
high proportion of polar features in the pockets, alignments by the color descriptor were chosen.
Consistently, only subpockets scoring over the similarity threshold of 0.47 were considered, yielding
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two lists (6DLO and 7LHT) of ~2 700 (2.5%) entries. No ligand is yet known for this target, therefore
co-factors were kept at this stage, since they can provide useful information. Four different analyses
were carried. Firstly, the 294 fragments common to the two lists were inspected. When considering the
coherence of the alignments, this count decreased to 64. It appeared that top or bottom sides of the cavity
were differently prioritized for alignment to the two templates. These differences are probably due to
the extension of the cavity points toward flexible loops in one of the pockets but might also be related
to the random sampling procedure in the ProCare method suggesting other alternatives for alignment.
Secondly, we checked for the fragments buriedness. Even if they were not optimally positioned, a clear
distinction between buried and accessible fragments is to be expected. However, the cylinder-shaped
cavity yielded poor buriedness, that could not be interpreted. The third source of information was
enrichment in certain targets. High rates were obtained by kinase-bound nucleotide-like fragments. The
fourth and final analysis to prioritize a few fragments for linking was to assess their likelihood to interact
with surrounding protein residues. Given the approximation in the fragments positioning regarding
interaction detection with the target, we did not initially consider interactions with target residues
according to strict angle/distance rules. Fragments atoms were converted into equivalent
pharmacophoric features (more description in Chapter 5) as the pocket. Keeping fragments having at
least half of their polar features identical to and within 3 A of an aligned cavity point in the target
(threshold set by retrospective analysis of the fragments in their original pockets) led to 389 non-cofactor
fragments for 6DLO, and 1016 for 7LHT. According to the previous conclusions, a few co-factor-
derived fragments were added by visual selection to compile two final lists of 412 and 1048 candidates
to be linked for 6DLO and 7LHT respectively.

Library enumeration and virtual hit selection

Linking fragments requires to cluster them by target areas and to identify connectable areas. To this end,
we defined a procedure to automatically identify areas where selected fragments were frequently aligned
(the consensus from the two templates were used). Target cavity points that were aligned by more than
25-30% of subpocket hits defined two main areas. The first area is located around residue Y2249
(bottom side) and curiously overlap with a hotspot detected by the fragment-hotspot tool*® of Cambridge
Crystallographic Data Centre (https://fragment-hotspot-maps.ccdc.cam.ac.uk). The second area lay at

the opposite side, around M2301 (top side), a conserved motif across species (Figure 4.5).%
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Figure 4.5. Frequently aligned areas of WDR-LRRK?2 to sc-PDB subpockets. Two areas were defined
for fragment annotation prior to linking: around M3201 on top side and Y2249 on bottom side. PDB
entry: 6DLO.

Fragments were assigned areas based on their distance to the consistent points, and those more or less
equally distant were assigned ‘middle’ area (Table 4.3). Given the high number of fragments in the
7LHT bottom area, we could apply additional filtering by keeping fragments that exhibit at least one
polar interaction (IChem IFP module®) with the target.

Table 4.3. Assignment of pocket areas to aligned fragments.

PDB reference top middle bottom
6DLO 134 34 244
7LHT 51 63 934 (195)2

2934 fragments were assigned to bottom area, a sampling based on detected polar interaction with WDR
reduced the list to 195 fragments.

It is not realistic that a high-affinity ligand would specifically bind right in the middle of the cylindric
pocket. However, to evaluate the automatic design, we did not bias the selection of the fragments. In the
current case, there is not a clear definition of the binding site. Available B-propeller structures showed
that molecular partners bind at the very outer surface3 (www.rcsh.org), but it is unclear whether the top
or bottom side should be prioritized. A few studies suggested that one side (top) might be more prone
to protein-protein interactions.334°

While investigating the two sides, four connectivity schemes were defined to generate molecules of
acceptable sizes: top-top, top-middle, bottom-bottom, bottom-middle (Figure 4.6). Identifying
connectable atoms among seed fragment pairs is not a simple combinatory problem because it also aims

at avoiding geometrically irrelevant connections while calibrating the size of the final library.
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In addition to rules implemented in the CDK8 study, pairs of connectable fragments must display a
cumulative size of 13 to 25 heavy atoms. This prevents from connecting two very small fragments. For
future applications, a filter can be applied to the fragments database prior to alignment. Almost colinear
and overlapping fragments planes are not desirable since that would require distorted linkers.
Subsequently, fragment pairs displaying a least 3 pairwise distances between 0 and 2 A were discarded.

Theses implementations clearly improved the list of fragments to be linked.

Allowed fragment pairs
top

’ @
@ niddle |
| @

bottom

Figure 4.6. POEM connectable areas in the WDR-LRRK2. PDB entry: 6DLO.

The DeLinker generative program* was applied to generate 900 k (7LHT) and 1.9 million (6DLO)
complete molecules, out of which 400 k and 123 k were druglike with decent linkers and synthetic
accessibility. The two lists shared 2316 molecules. To achieve a list of ca. 150 commercial compounds
(as requested by the CACHE challenge organizers), POEM 6DLO virtual hits were searched in the
druglike diverse set of Enamine REAL database (Morgan2 Tanimoto > 0.7) to retrieve similar
compounds and a backup list was compiled from MCULE in stock database using the 7LHT virtual hits
as queries (Morgan2 Tanimoto > 0.8). The most similar compounds were then subjected to a series of
filters (removing chiral compounds and molecules with more than six rotatable bonds) and last clustered
according to their Bemis-Murcko scaffolds (Agnes method, Pipeline Pilot, Dassault Systémes, France).

Finally, 100 compounds were prioritized for the synthesis costs, as estimated by Enamine (Figure 4.7).
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6DLO JLHT
POEM generation
1.9 M 900 k
Druglike
SAscore <3
Valid linker
400 k 123 k

Commercial®
REAL MCULE

552 318
No chiral center
NROT <3
273 228
Clustering

Synthesis costs

=

Figure 4.7. Library design and virtual hits selection for WD40-LRRK2. (1) Similar compounds to
generated molecules were retrieved with Morgan2 Tanimoto > 0.7 (6DLO vs. Enamine REAL diverse
set) and Morgan2 Tanimoto > 0.8 (7LHT vs. MCULE in stock set).

At this stage, docking of virtual hits showed no privileged subpockets (top/bottom/middle) and could
not be used for interpretation. Likewise, ROCS similarity searches could not be exploited as well since
shape and chemical property alignment of commercial compounds onto fragments showed that
generated conformers do not always overlap with the two original fragments when the linker induced

incompatible conformation.

4.4.4. Conclusion

The CACHE challenge offers a fully blind case study to the practicability and reliability of POEM to
generate pocket-focused molecule ideas. Starting from a hardly druggable target with very little
information, we adapted the workflow to assemble molecules thought to have chances to bind to the
target. The fragments selection and linking protocol included new steps to rule out unreasonable
fragment pair combination. Under different project constraints (e.g. timing), other studies such as
molecular dynamic simulations despite its limitations could have helped to model the shape of the

pocket, providing different starting structures for screening.
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4.5. Critical evaluation of the three POEM validation studies

In these projects, we aimed at validating POEM, a new workflow to generate a library of molecules
tailored to a target pocket, by linking pre-positioned 3D fragments from protein-ligand X-ray structures

according to their subpocket resemblance with the target pocket.

4.5.1. Novelty

Although the POEM idea falls within the concept of target-based de novo drug design since the 1990s,*
it differs from existing methods by a combination of several aspects: (1) no reference ligand is required
for the target while some methods (e.g., BREED®, KinFragLib*) rely on reference protein-ligand
complexes for molecular hybridization, (2) pairs of fragments are directly used for elaboration, as
opposed to (grid-based) sampling of atoms as in BUILDER,* CONCEPTS* or Ramensky et al.,*” (3)
the fragments templates are derived from existing protein-ligand complexes in their X-ray conformation,
instead of using a library of template fragments as in LUDI,*® LigBuilder,*® or FastGrow, (4) fragments
are positioned according to the similarity of their subpocket to the target cavity and are not scored by
any energy criteria (e.g., GroupBuild®, LUDI*), (5) the fragments linking is based on a 3D-constrained
variational autoencoder to generate potential linker graphs, instead of strict topological generators
guided by explicit bond and torsion angle ranges.>? The closest implementations to POEM are the work
by Moriaud et al.> and Durrant et al.,>* suggesting building block fragments to link on the basis of their
environment similarity with the target site, albeit with a different site representation and comparison
algorithm.* Moreover, the latter methods do not enumerate fully connected molecules from the position

of seed fragments.

4.5.2. Fragment database: ligand deconstruction

The ligand fragmentation protocol influences the content of the designed library in different manners:
the subpockets definition, alignment, and linker generation. To study these effects, a different 3D
fragmentation scheme based on RECAP retrosynthetic rules* was implemented in our lab as alternative
to IChem to reproduce the CDKS8 case study. The IChem fragmentation® method used here breaks single
bonds more or less around rings and discards acyclic structures. Substituents or linker groups are kept
attached to the core ring. To ensure that the fragments reflect the pharmacophoric features of the
subpocket, only those interacting with lining residues were used. However, we draw special attention to
the cases where the presence of some chemical groups on the fragments, not particularly involved in

interactions with the original target, may be rather making bad contacts once aligned to the target cavity.
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Clashes were also observed due to the subpocket only partially overlapping with the fragment, typically
a subpocket missing points in areas of low buriedness according to VolSite implementation. We solved
these issues by either computing clashes with the target upon alignment, or by estimating the embedding
of the fragments in the subpockets/pockets. As a solution to avoid useless fragments or substituents and
reduce the chances of bad contacts, the fragment-subpocket database can be improved by scoring the
matching between pharmacophoric features of the fragment atoms (more details in Chapter 5) and the
subpocket points. The high occurrence of certain fragments such as adenine (17% of IChem fragments)
prompts to analyze fragment-subpocket redundancy in the database. Finally, analysis of the fragment
space coverage with respect to commercial fragment databases or deconstructed compounds in public

repositories would provide useful information regarding prospective applicability.

4.5.3. Fragments positioning

We purposedly linked the direct ProCare-based alignment of the fragments to demonstrate it already
contained rich information across different target families for molecule design. However, the fragments
position can be optimized in the pocket prior to the linking procedure. For instance, we achieved this
goal using OpenEye Szybki energy refinement (OpenEye Scientific Software, Santa Fe, NM 87508,
U.S.A.). Indeed, on the CDKS8 case, 71% of selected fragments have deviated by more than 2 A upon
optimization, effect that can affect the linker generation. Another idea would be to redock the selected
fragments into the target pocket. In either case, only solutions close to the original subpocket-based
fragment positioning should be considered to not entirely lose the pocket comparison logic. We recall
that such optimizations are subjected to a force-field implementation and add complexity to the
workflow. While the binding of close conformations (RMSD-based) of a fragment to structurally distant
pockets still remains a rare event,®” we interestingly observed cases where the same fragments originally
bound to different proteins were closely aligned (fragments RMSD < 3 A) into the CDK8 pocket. On
the other hand, the same fragments from different protein subpockets were aligned at different locations
as well. We cannot computationally assess the accuracy of these predictions, but it can simply be
explained by the dissimilarity between these original subpockets. We underline that this is consistent
with the well-known promiscuity of fragments in experimental screenings.%®>° The issue observed was
when the same fragments from the same subpocket in the same protein align to different target pocket
areas. This highlights the noises in the subpocket definition and sampling effects in the comparison

algorithm discussed in Chapter 2.
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4.5.4. Fragments linking

The deep generative linking algorithm (DeLinker*') employed in the current version offers the advantage
of being flexible. Indeed, the positions of the fragment rely on the performance of the pocket alignment.
Even assuming that the pocket alignment is perfect (which is clearly not the case), it should not be
expected that the fragments would systematically adopt the exact pose nor the same conformation upon
binding in its new pocket. Therefore, it is not sound to use torsion-based linking approaches. Previous
attempts with stricter methods such as ReCore® (BioSolvelT GmbH, Sankt Augustin, Germany) on
carefully chosen examples led to unsuccessful linking. Although DeLinker attempts to propose linkers
likely to match inputs 3D constraints, final molecules are enumerated as SMILES strings, thereby losing
the initial target coordinates frame. To assess that the linking procedure is still compatible with the
initial fragment poses proposed by ProCare, each enumerated compound must be generated in 3D (using
the RDKit routine of DeLinker or other conformer generators) and docked or aligned to the cavity of
interest. This workaround being impractical at a high-throughput level, development a true 3D linking
method from ProCare fragment poses would constitute a true added value to the current POEM
workflow.

While pairing, all fragments were treated equally, without considering their relative buriedness and
solvent accessibility in the target. Given the enthalpic nature of fragments binding,®* connecting two
loosely buried fragments decreases the chances to observe the same binding mode in the obtained
molecules. The consistency between the poses of the fragments and that of the fully enumerated
molecule is a bottleneck for fragment based approaches.®®? The designed linker can as well induce
changes in the binding mode but these are hard to predict prior to complete enumeration of the molecule.
This effect was hypothesized by docking in the second round of the CDK8 study while docking first

round experimental hits showed consistent poses with predicted binding subpockets.

4.5.5. Synthetic accessibility

The synthetic accessibility is the most crucial characteristic of the library members as nice-looking
molecules predicted to interact with the target are useless unless they can be synthetized for experimental
assays. Although estimating synthesis hardness with the knowledge-based Ertl and Schuffenhauer
method,®® we were herein limited by available commercial compounds highly similar to designed
molecules, at least to evaluate the workflow as quickly as possible. In future production use, it is highly
desirable to increase the proportion of really synthesizable molecules via retrosynthetic rules even if
challenges regarding rewards and chemical conditions optimization still remain. To achieve this goal,

designed molecules can be fragmented and analyzed according to predefined reactions, availability and
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cost of building blocks. Another benefit of a such filtering is the reduction of the library size and easier

prioritization of virtual hits.

4.5.6. Chemical diversity

One of the important characteristics of a library are the diversity of the molecules. There are different
definitions of diversity but for the sake of simplicity, we will only refer to the Bemis-Murcko scaffolds.®*
Here, the diversity of the designed library is a consequence of both the diversity of the original fragments
pool, fragments connectivity and the diversity of the generated linkers. The problem is almost
combinatorial. Theoretically, starting from a pool of F different (two-dimensional based identity)
fragments, an average C connectable atoms per fragment and L possible linkers, the maximum size N

of the library is :
N=F?xC*xL eq. 4.2

In the CDKS8 study, around 200 different fragments representing a hundred scaffolds were used.
Interestingly, few fragments are shared between the four pocket areas, reducing the combinations. Not
surprisingly, the most promiscuous fragments were benzene and substituted phenols as a consequence

of practices in small molecule ligand design and the fragmentation approach.

4.5.7. Computing time

We report here the most time-consuming steps in the design process (Table 4.4). Filtering and data

processing were instantaneous to a few minutes-lasting.

Table 4.4. Running time of different POEM steps.

Step Resources Average time

Intel® Xeon® Silver 4114
Pocket-fragment alignment with CPU @ 2.20GHz
ProCare 1 thread, 4 Go

Computer cluster

1 s — per pair of fragments

Identification of connectable Intel® Core™ i5-4590 _
0.19 s — per pair of fragments
atoms 4 threads, 16 Go
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Local

Intel® Xeon® Silver 4114
CPU @ 2.20GHz

+
Linking with DeLinker 20 s — per pair of atoms
NVIDIA Tesla K80 GPU, 24
Go

Computer cluster

4.5.8. Towards a fully automated method?

This POEM approach is not fully automatized. The definition of ‘linkable fragments’ is left to the
appreciation of the user with respect to the pairs of subpockets to connect. The relative orientation of
fragments exit vectors is also a tunable parameter although an aperture of /2 have shown to be
consistent. The present workflow offers enough flexibility to adapt to the target specifications.
Throughout these three studies, the fragments selection was the most difficult step. We hope that these
studies, supported by experimental validation, as well as considerations for improvement discussed here

will provide a strong basis for decision making.
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Annex 4

Annex 4.1. Sequence alignment of Thermotoga maritima, Helicobacter Pylori and Mycobacterium leprae quinolate synthase.
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5.1. Context

At the earlier phases of drug discovery programs, structure-based virtual screening is one of the deployed
strategies if the target structure is available and a binding pocket characterized. It popularized since it
aims at identifying initial hits with minimal cost and experimental efforts.! Starting from a carefully
designed virtual library, a few-steps workflow is often implemented to progressively filter bad
propositions out and focus more computational resources on promising compounds. At the later stages,
heavier computational methods such as binding free energy calculations (e.g., MM-GBSA, FEP) which
consider the bound and unbound states of the receptor-ligand complexes in simulated dynamics can be
carried on a few candidates for final prioritization.? Contrarily, the initial steps of the workflow require
faster methods which can process many molecules in a comparatively short space of time.

Three-dimensional (3D) pharmacophore screening is adapted to this task, is intuitive to human
understanding and can be fuzzy enough to escape problems known to structure-based methods (target
flexibility, target-dependent parametrization, accuracy of scoring functions in ranking).> According to
the International Union of Pure and Applied Chemistry (IUPAC), a pharmacophore is “an ensemble of
steric and electronic features that is necessary to ensure the optimal supramolecular interactions with a
specific biological target and to trigger (or to block) its biological response”.” Pure ligand-based
pharmacophores are generated from a set of known ligands that exhibited the investigated biological
activity®® but are quickly limited by two factors: (i) diversity of the training set, (ii) absence of the
receptor constraints, (iii) inapplicability to apo target structures for which no bound ligand is available.
When protein-ligand complexes are available, 3D structure-based pharmacophore incorporate
interaction and hindrance information to select or exclude features but are concerned by the limitations
stated above in (i) and (iii).2° Still, orphan proteins would benefit from pharmacophore modelling that
relies on the protein structure only. The prediction of areas in apo proteins, that are favorable or that
would highly contribute to binding (hotspot) is performed by analyzing properties (molecular fields,
pharmacophoric features) at atomic level on 3D lattice (e.g., GRID,® SuperStar,!* VolSite!?), at
fragment level (e.g. FTMAP®) or processing predictions of other methods (Radoux et al. based on
GRID).1 Attributes are defined by interaction potentials with probes (e.g., FLAP*) or empirically by
analyzing the relative position of the cavity features (HS-Pharm,* Snooker,® VolSite'?). Some methods
integrate pharmacophoric patterns from molecular dynamics trajectories (GRAIL,!” MCSS,® SILCS®).
Following the pharmacophores definition, small molecules are screened by confronting the ligand to the
target space, either by fingerprint comparison (FLAP) or by 3D alignment (LigandScout,®® PHASE,*
Shaper22).2® In most cases, the generation of multiple conformations of the ligands are required prior
to the screening but some methods can generate them on the fly.® Strikingly, several of the available
methods to achieve pharmacophore modeling and screening are part of commercial software without
free academic license: e.g., Radoux et al.'* (The Cambridge Crystallographic Data Centre, Cambridge,
UK), FLAP* (Molecular Discovery, Borehamwood, UK), LigandScout® (Inte:Ligand, Vienna, Austria),
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Catalyst?* (Dassault Systemes Biovia, Velizy-Villacoublay, France), Molecular Operating Environment
(Chemical Computing group, Montréal, Canada), PHASE? (Schrodinger, New York, USA).
The idea that VolSite cavities? mimic some ligand features in the volumetric ligand space led to the
definition of pharmacophores and alignment-based screening in a recent study of my host laboratory.??
By default, VolSite cavities are dense (~300 points) but remain comparable to ligand atoms (~30). The
ideal method would be able to pick the relevant areas from these dense clouds and match them to
consistent ligand features. Previous attempts by global shape matching (Shaper) failed to reproduce
known X-ray poses.? Indeed, visual inspection of hundreds of cavities showed that VolSite points are
spread to areas not occupied by ligand atoms, which add complexity to the search. Reducing the cavity
by selecting or grouping points that would match with the ligand features led to: (i) a visually
interpretable pharmacophore that can serve for many purposes, and (ii) an improvement of the
subsequent alignments. However, we herein wished to overcome two limitations :
() theresulting VolSite-derived pharmacophores were defined by empirical rules parametrized
on a few cases and which might not generalize on certain targets,
(b) the alignments were optimized and scored in the receptor binding site by potential energy
minimization using the MMFF94 force field?® in OpenEye Szybki (OpenEye Scientific
Software, Santa Fe, USA).
As a continuation of our previous work? in Chapter 2 and inspired by the machine-learning-based
pharmacophore modelling method HS-Pharm,*® we herein aimed at developing a purely topological tool

for ligand-cavity alignment and a model for denoising VolSite cavities.
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5.2.

Materials and methods

Datasets

The sc-PDB database?’ of curated protein-ligand complexes were used in versions 2016 (16 150 entries)

and 2022 (37 922 entries, Bret et al., unpublished). Entries were protonated according to Protoss v.4

rules and saved into TRIPOS mol2 format.

The sc-PDB diverse set was compiled from the sc-PDB 2016.2? Following the pairwise comparisons of

the complexes interaction graphs using IChem Grim,?® the agglomerative clustering of the similarity

(GrimScore) matrix with a threshold of 0.70 was applied to obtain 176 protein-ligand complexes

exhibiting diverse and non-redundant interaction patterns.

Representations of protein cavities

Protein cavities were represented by four images (Figure 5.1):

VolSite cloud of points (‘cavity ALL’), the default VolSite implementation described in
Chapters 1-4.12%°

VolSite pharmacophores (‘cavity pharm') obtained by recently described post-processing
rules.? Briefly, a set of 213 protein-ligand complexes were used to learn the properties of an
ideal pharmacophore defined by the ligand atoms. The ‘cavity ALL’ points were then pruned
according to these rules and refined by considering the directionality of polar interactions and
sufficient hydrophobic neighborhood for this feature. Points not fulfilling these rules were
removed. In a later stage, the remaining points were hierarchically clustered to yield cavities of
less than 50 points (version used in this work). Contrarily to default VolSite cavities, ‘cavity
pharm’ are assigned seven possible VolSite properties (hydrophobic, aromatic, h-bond donor,
h-bond acceptor, h-bond acceptor, and donor, positive ionizable, negative ionizable) and an
additional ‘metal’ property.

Projected points (‘cavity projected’) obtained by projecting cavity-lining atoms into the ligand
space instead of sampling a grid. The ‘cavity projected* points were generated by first
delimitating the protein heavy atoms within 3.5 A from any ‘cavity ALL’ point, keeping track
of the residues they originate from. The centroid of the cavity was calculated as the center of
mass of these atoms. In a similar fashion to KRIPO pharmacophores,® these atoms were defined
as ‘root’ and projected (3.5 — 4 A from the root) into the cavity space by ensuring that the angle
point-root-centroid falls within 90°. Aromatic rings were represented by their center of mass.
Points were annotated by seven features to be complementary to the properties of the protein
atom they originate from according to VolSite rules (hydrophobic, aromatic, h-bond donor, h-

bond acceptor, h-bond acceptor, and donor, positive ionizable, negative ionizable).

281



Chapter 5. Perspectives: from cavities to ligands

o VolSite simplified cloud of points ('cavity pruned’) generated from the ‘cavity ALL’ by keeping
only points of identical features within d A, d € {1.5, 2} from the ligand interacting atoms.
Interactions were detected with IChem?. This representation mimics the ideal pharmacophoric
points that match the ligand features and geometry.
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Figure 5.1. Different representations of a protein cavity. Spheres represent the cavity points of eight
possible features: hydrophobic, aromatic, h-bond acceptor, h-bond donnor, h-bond acceptor or donor,
positive, negative, dummy. A) VolSite ‘cavity ALL’, B) VolSite ‘cavity pharm’, C) ‘cavity projected’,
D) VolSite ‘cavity pruned’ determined at 1.5 A from the ligand. PDB entry: 4CCB. For this entry, the
number of points were respectively 164, 38, 40, and 16 in cavities A) to D).

Representation of ligands

Ligands in TRIPOS (Certara, Princeton, USA) mol2 format were processed to assign pharmacophoric
features to atomic positions, according to their connectivity and atom types. Briefly aliphatic carbon,
sulfur, halogen atoms were assigned hydrophobic features if not bounded to any heteroatom. Aromatic

features were defined by aromatic atoms (C.ar and N.ar atom types). Aromatic-labelled points were by
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extension also annotated as hydrophobic. Nitrogen and oxygen atoms were assigned h-bond donor
feature if they are connected to hydrogen atoms, otherwise h-bond acceptor. Positions which satisfy both
h-bond donor and acceptor were additionally annotated ‘donor and acceptor’ features (e.g. sp3 oxygen
connected to a hydrogen atom). Positively charged heteroatoms were assigned ‘positive’ features and h-
bond donor if applicable, whereas negatively charged heteroatoms were annotated with ‘negative’
feature and H-bond acceptor. A particular treatment was applied to ring systems to cluster their atoms
of the same feature into their center of mass. Atoms that could not be assigned any feature were
disregarded. According to these rules, multiple features can be assigned to the same position. We later

refer to this representation as ‘lig pharm’ (Figure 5.2).
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Figure 5.2. Representations of a ligand. A) two-dimensional structure highlighting pharmacophoric
features by dots. B) X-ray conformation processed into 3D pharmacophoric representations: C) ‘lig
pharm’ and D) ‘ligvoxel+’. PDB entry: 4CCB. Red points correspond to h-bond acceptor or negative

ionizable, blue h-bond donor or positive, cyan aromatic or hydrophobic, white dummy.

An augmented representation of the ligands was generated by extending the ‘lig pharm’ points
(‘ligvoxel+’). The ‘lig pharm’ was put into a 3D grid of step r (r = 1 and 1.5 A). Then, each voxel of the
grid two-step away of a point (scanning through the x, y, z axes direction) was represented by its centroid
and annotated by the features of the closest point. If annotation is ambiguous, compatibility rules are
checked to prioritize one feature (e.g. aromatic will be preferred over hydrophobic, positive ionizable
over h-bond donor, negative over h-bond acceptor) or ‘dummy’ is assigned in case of incompatibility
(e.g., aromatic versus h-bond acceptor). In the version discussed here, only one feature is hence assigned

per position (Figure 5.2).
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Point cloud registration

Ligands and ‘ligvoxel+* were translated (10 A) and rotated (180° flip along the x axis) into different
coordinate frames. Then ProCare (default parameters)® was used to realign the ‘ligvoxel+’ to the
VolSite cavity for each entry. The resulting transformation matrices are applied to align the
corresponding ligands. The root mean square deviations (RMSD) to the ligand X-ray positions were

reported considering symmetry.

Graph matching

The protein cavity and ligand pharmacophoric points were represented as two separated graphs of all
pairwise connections. Points, annotated by the same sets of pharmacophoric features formed the nodes.
Edges were labelled by the Euclidian distance between these nodes. A product graph was built by
comparing all possible combinations of nodes and edges in the two graphs, while tolerating a distance
deviation of d = 2 A by default (d is an adjustable parameter) and a strict match of the nodes'
pharmacophoric features. Then using the Bron-Kerbosh algorithm,®! all maximal cliques were found in
the association graph. From the pairs of corresponding points between the cavity and the ligand
representation obtained, a transformation matrix was applied to align the ligand representation points
and atoms onto the cavity frame. The translation vectors were estimated by aligning the centroids of the
correspondence sets, and the rotation matrices by the Kabsch algorithm®* implemented in SciPy
v.1.7.2.3 Several scoring schemes were hierarchically implemented: the size of the clique nodes (eq
5.1), the root mean square error of the clique (eq 5.2), the coverage of the aligned ligand atoms (eq 5.3),

a pharmacophoric score (eq 5.4), and a combo score (eq 5.5).

S = |M| eq5.1

where M is the set of the maximal clique pairs of nodes.

N pC_ pLy2
RMSE = /Z(PTP) £q5.2

where Pf and P} are respectively the cartesian coordinates of the points in the cavity and aligned ligand

representation for each correspondence i.

[Ap|

coverage = m

eq5.3

where A, is the set of aligned ligand atoms buried in the cavity cloud within 2 A of any cavity points

and A is the set of all ligand atoms.
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Phéscore = ZF Wi eqs.4
where w; are the weights of the edges E of the maximal clique. w; is arbitrarily set to 1 when a pair of
polar features is involved, 0.5 when the edge connects hydrophobic nodes. In a different setting, w;

corresponds to the inverse of the frequency of the point feature in the sc-PDB.

PhégcoreX cOverage
RMSE

combOgcore = eq. 5.5

The RMSD of the aligned ligands to the X-ray pose were reported considering the symmetry.

Cavity point descriptors
Staring from the VolSite ‘cavity ALL’ of the sc-PDB v. 2022, a set of descriptors were computed for
each point:

(&) FP1is an 8-hit fingerprint which encodes the VolSite physicochemical features of the point
(hydrophobic, aromatic, h-bond donor, h-bond acceptor, h-bond acceptor and donor,
positive ionizable, negative ionizable, dummy). Additionally, some points can activate more
than one bit by compatibility rules: aromatic points are additionally considered
hydrophobic, negative are h-bond donor, positive are h-bond acceptors, acceptor-donor
additionally activates both the donor and acceptor bits.

(b) FP2 is the 12-bit fingerprint encoding the buriedness of the point. A set of 114 regular rays
of equally-spaced solid angles (22.5°) and 8 A length were projected from the point in focus.
Then, the buriedness is estimated as the number of rays that pass less than 1.5 A away from
any protein atom. The buriedness values were binned from the lowest value 0 to the highest
value 114 with an increment of 10 units. The corresponding bit of the point buriedness is
activated.

(c) FP3is a 24-position fingerprint counting each of the eight pharmacophoric features in three
concentric neighborhoods of 1.5, 3 and 4.5 A distance from the point.

(d) FP4 is a 288-bin histogram which encodes the proportion of points for each combination of
pharmacophoric features and buriedness intervals, in the three concentric neighborhoods.

(e) descriptor FP5 is the Euclidean distance of the point to the centroid of the cavity.

Accordingly, a total of 333 descriptors were obtained for each point.

Cavity point prediction
A thousand of ‘cavity ALL’ entries were randomly extracted from the sc-PDB as application test set.
Then, the remaining entries (36 922) were processed to positively label points within 1.5 A to a ligand

atom interacting with the protein according to IChem? and of the same pharmacophore feature (‘lig
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pharm’). Any other point is labeled as negative. Points from all cavities were pooled to generate a set
for each of the seven VolSite features (dummy points were disregarded) and the data was balanced by
randomly sampling the same number of negative and positive in each set. It was verified that the
sampling did not overrepresent particular PBD entries.

Random Forest models were trained to classify VolSite ‘cavity ALL’ points as interacting (positive
class) or non-interacting (negative class), using the 333 descriptors. The above-described data of
labelled points were split into a training (75%) and external test set (25%). The training set was subjected
to a five-fold cross-validation (CV) using the Scikit-learn classifier with 100 trees and a number of splits
equal to the square root of the number of descriptors. The final model trained on all the training set was
applied to the external test set. The prediction accuracy (eq 5.6) of the CV training, CV test and external
test sets, as well as the features importance were reported. The sensitivity, specificity and balanced
accuracy were reported on the application set (eq 5.7-5.9).

Acc = — TP eq 5.6

TN+TP+FN+FP

where TN is the number of true negatives, TP true positives, FN false negatives and FP false positives.

TP

sensitivity = —— eq>s.7
specificity = TNTJ]erp eqo.8
BA = sensitivity+specificity eq 59

2

The models were saved and applied to the 1000 cavities in the application test set to save the predicted
positive points for each cavity in mol2 files. A baseline model was implemented with the Gaussian naive

Bayes classifier in Scikit-learn, trained on the training set and evaluated on the external test set.

Scripts and packages

Inhouse scripts were used to process entries and analyze results in Python 3.7, using the following main
packages and their dependencies: Matplotlib v.3.0.2, NetworkX v.2.6.3, NumPy 1.16.2, ProCare v.0.1.2,
Scikit-learn v.0.24.2, SciPy v.1.7.2, maximal_clique (https://gist.github.com/abhin4v/8304062) after
validation on easy synthetic data. The RMSD of ligands were computed with OpenEye Python API

(OpenEye Scientific Software, Santa Fe, USA) when symmetry is considered.
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5.3. Discussions and perspectives

We herein present preliminary results and discuss future directions.

Being able to properly align ligand atoms to the VolSite cavities, by solely considering topological and
pharmacophoric features can offer an interesting alternative to the docking problem. A recent method
was proposed to achieve this goal, relying on Gaussian shape (OpenEye Shape TK) alignment of the
ligands on empirically-pruned VolSite pharmacophores, followed by energy minimization refinement
(OpenEye Szybki).?? Previous attempts of shape-only (topological and pharmacophoric) alignments
failed to propose solutions close the X-ray pose of the ligands. It was therefore considered to apply a
different algorithmic paradigm, such as discrete geometric pattern matching, instead of global shape
matching. The point cloud registration approach implemented in ProCare,?® and graph matching were
investigated. The success of an alignment depends on three factors: finding the right correspondences,
estimating a correct rotation and translation, top-scoring the right solutions. To evaluate the algorithms
in their initial developments, the X-ray conformation of the ligands were used.

5.3.1. Point cloud registration of ligands to protein cavities

VolSite cavities are grid-based sampled points which adopt a regular disposition and do not correspond
to mol2 atom types and relative positions in the ligand conformations. Contrary to the homogeneous
comparison of protein cavity clouds, the solid point-to-point comparison of ligand features to protein
cavity clouds requires a conversion into comparable objects, where the ligand space is similarly
represented as the target space. This was achieved at two levels: (i) the featurization of ligand atoms
into pharmacophoric types and (ii) a geometric transformation into grid voxels.

At step (i), ligand atoms were converted into seven possible VolSite features according to their atom
types (‘lig pharm’, see methods section). Since ProCare first searches for initial alignment by
associating the nearest neighbors according to the shape-pharmacophoric histograms (c-FPFH),?® we
first analyzed whether the c-FPFH of the ‘lig pharm’ and the cavities ‘cavity ALL’ (Figures 5.1, 5.2)
can establish good correspondences. A good correspondence is a pair of ligand and cavity point, which
are each other’s nearest neighbor in the c-FPFH descriptor space and are less than 2 A apart in the X-
ray pose. A minimum of three good correspondences are necessary to estimate a rotation. Analysis of
the 16,000 sc-PDB v.2016 entries showed that only 25 % of the ligands were assigned more than 3

correspondences to theoretically enable a good alignment (Figure 5.3).
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A X-ray pose Ligand atom Q
Cavity points round atom Q
(O Nearest neighbors in the c-FPFH space (L2 norm)

C 1 No theoretical solution exists
[ A theoretical solution exists

Good correspondence

Occurence

Bad correspondence 0 5 10 15
Number of good correspondences per ligand

Figure 5.3. Analysis of the chances to correctly align ligand atoms to VolSite cavities. A) Description
of a good c-FPFH-based correspondence, B) bad correspondence. C) Distribution of the count of good

correspondences for each sc-PDB ligands.

These results were still encouraging since some ligands already contain shape and feature information,
but not surprising as the few atoms of the ligand (10-30) could not properly describe a local shape and
property neighborhood experienced in the cavities of more than 100 points. To apply the ProCare
method, in step (ii) the ligand features were augmented in a grid by occupying the adjacent voxels of
each atom along the x, y and z axes (‘ligvoxel+’, Figure 5.2). Starting from a different coordinates
frame, the 176 ‘ligvoxel+’ of the sc-PDB diverse set were realigned to the cavities ‘cavity ALL’ with
ProCare default parameters and the resulting alignment matrices were used to align the corresponding
ligands. Figure 5.4 shows that 30 % of the ligands (53 entries) were aligned closed to their X-ray pose
(RMSD <2 A) using the FPFH3* descriptor. Increasing the grid resolution to 1 A to better sample shapes
did not improve the results. This posing approach is clearly less accurate than that achieved by state-of-

the-art docking tools that commonly pose ca. 75% of ligands within 2 A RMSD.33%
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Figure 5.4. Prediction of the X-ray pose of the 176 sc-PDB diverse ligands by point cloud registration
(ProCare)? to the target cavities. A) Cumulative percentage of ligands aligned within a threshold RMSD
to the X-ray pose. At a threshold of 2 A, 30%, 22% and 15% of the ligands were correctly aligned by
the respective descriptors: shape-only FPFH,3* hybrid c-FPFH?® and features-only c-FH.% B) Violin plot
distribution of the RMSDs showed a median value around 6 A. C) The distribution of the RMSDs with
respect of the size of the VolSite cavities does not show a size bias. D) Example (PDB ID: 2FPT) of c-
FPFH correct alignment of the ligvoxel+ (cyan cloud) to the target cavity (warm pink cloud, masked
ligand was shown for illustration but not used in the alignment) resulting in a good overlay with the
ligand X-ray pose (transparent dark cyan), RMSD: 0.94 A.
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In summary, this section described the first attempts to align ligands to VolSite cavities using point
cloud registration. Although originally skeptical about this approach, we showed that a minimal
information is encoded in the ligand atoms and cavity points to allow relevant matches. Contrarily to
the cavity-to-cavity comparison where the feature-only descriptor c-FH yielded equal to better results
in some cases, the shape information of the FPFH seem to be crucial for the ligand-to-cavity alignment.
Possible reasons for failure are:

Q) the assignment of the pharmacophoric features to the ligand atoms ‘lig pharm’,

(i) the accuracy of the ligand representation ‘ligvoxel+’,

(iii)  the presence of noise in VolSite cavities while features are more uniformly grouped and the

local shapes more rounded in the augmented ligands,

(iv) the inadequacy of the c-FPFH descriptors to properly capture resemblances in this setting.
The above-derived conclusions can also be biased by highly represented ligands (e.g., nucleotide
derivatives) in the sc-PDB diverse set. A proper study requires to compare the performances to other
methods such as shape alignment and docking, starting from multiple conformations on several datasets.
However, besides the poor performance, a practical limitation of this approach is the computing time. It
takes approximately 1 to 2 seconds to align a single ligand conformation to a cavity point cloud.
Therefore, its usage in large scale screening is hardly appealing, unless it would provide particular

solutions unseen by other methods.

To escape the reasons evoked above (ii and iv), we applied a graph matching algorithm to the problem.

5.3.2. Graph matching of ligands to protein cavities

Contrarily to the ProCare approach where the exploration of the solutions is partially related to the
transformation estimation (iterative closest point refinement), the search for common subgraph is
independent of alignment estimation. However, graph matching algorithms are known to be
computationally costly. Thus, we sequentially investigated the following aspects:

(1) the ligand to cavity alignment speed,

(i) the identification of correct correspondences,

(iii)  the top-scoring of good solutions, and

(iv)  the estimation of rotation/translation.
Graphs of the two ligand representations (‘lig pharm’ and ‘ligvoxel+’) were compared to the graphs of
the protein representations (‘cavity ALL’, ‘cavity pharm’ and ‘cavity projected’) following the
algorithm described in the Methods section. Initial tests on three entries (PDB IDs: 2RH1, 2FV9, 3DKC)
ruled out any comparison with the entire cavity ‘cavity ALL’ in a setting where all pairwise distances

were investigated (Table 5.1). Restricting the graph definition to a certain interval of distances (1.5 -
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4.1 A) and to the connection of a certain nodes (e.g., discard hydrophobic-hydrophobic connections)
would reduce the graph density and faster the search. This resulted in an acceptable running time (~1 s)
to compare the ‘lig pharm’ to the ‘cavity ALL’. We note that adjusting these parameters require an

extensive study to generalize to many cases.

Table 5.1. Computing time of protein cavity and ligand pharmacophore graphs comparison.

) Ligand
Representations . .
lig pharm ligvoxel+
cavityALL 9s(15s)? > 4 min
Protein cavity pharm 05s 29s
cavity projected 0.3s 0.3s

Green cells were considered acceptable time. The maximal time observed was reported.

2Reducing the graph density improved the running time.

In the next step, the performance of the algorithm to identify good correspondences (pairs of cavity and
ligand points of the same feature, within 2 A distance from the X-ray pose) was investigated on the 176
entries of the sc-PDB diverse set. Encouragingly, at least one good set of correspondences of more than
three pairs could be found for 151 entries (86 %). However, for a successful comparison, these cliques
must be top-ranked among many decoys (400 to 700 000 cliques). To this end, different scoring schemes
(eq 5.1-5.5) were tested unsuccessfully. It proved hard to discriminate the correct cliques from the
irrelevant ones by considering the size of the cliques and geometric constraints such as the coverage and
RMSE after alignment. Comparison of the ‘lig pharm’ to the ‘cavity pharm’ and ‘cavity projected’ led
to the same conclusions. Given that the RMSE and coverage are dependent on the alignment, we
investigated the accuracy of the transformation estimation. In this final step, the ligand ‘lig pharm’ were
transferred from their X-ray frame into a different coordinate frame and realigned to the ‘cavity ALL’
using the retrospectively known correspondences from the initial X-ray poses. Rotation and translation
were estimated and applied to the ligand atoms using the Kabsch® implementation in SciPy (see
Methods). The RMSD to the X-ray poses showed that even when knowing the pairs of points to
associate, the estimation of rotation and translation barely yielded alignments within 2 A from the X-
ray poses (median RMSD: 5.5 A), irrespective of the size of the ligands (Figure 5.5A-C). In contrast,
the quality of the cavity delimitation with respect to the ligand might affect the propension to obtain
good alignments in prospective searches where the cavity does not cover all the ligand substructures
(Figure 5.5D). Visualization of several entries showed sub-optimal rotation estimation (Figure 5.5E).
The reasons of these results are under investigation. Possible hypotheses are the planarity of the points,
the bijectivity of the correspondences, or the use of other optimization algorithms to find

correspondences. However, a spectacular improvement should not be expected: the topology of the
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cavity and the ligands are not identical; therefore, transformation estimation, which is a minimization

problem would always yield residuals that are not null, but rather the best compromises.
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Figure 5.5. Best alignments of ‘lig pharm’ to ‘cavity ALL’ obtained using the X-ray correspondences
for the 176 complexes in the sc-PDB diverse set. Obtained alignments were applied to the corresponding
ligands, to compare their poses to the X-ray coordinates. A) The ligand RMSDs correlates well with the
‘lig pharm’ RMSD (Pearson r = 0.98), therefore only the ligands were further analyzed. B) Distribution
of the ligands RMSDs: only 3% have a RMSD below 2 A. C) Ligand RMSD with respect to ligand size.
D) Ligands RMSD with respect to the quality of the cavity, defined as the percentage of ligand heavy
atoms within 2 A to a cavity point in the X-ray pose. E) Example of alignment estimation (PDB ID:
2RH1) showing the ‘lig pharm’ (light blue) superposed to the cavities (warm pink) using the
correspondences (big spheres). Sub-optimal rotation of the tail (red arrow) led to a RMSD of 2.83 A to
the X-ray pose.
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In a nutshell, this study revealed four key points:

e the ligand and cavity representations contain exploitable information for their point-to-point
comparison and superposition by graph matching,

o the graph definition should be optimized to allow millisecond comparison of ligand features to
entire VolSite cavities, otherwise other cavity representations should be used,

e the graph search can identify good point-to-point correspondences between the cavity and the
ligand,

e a robust scoring needs to be investigated to top-rank the correct poses and later for
discriminating between active and inactive molecules,

e the alignment estimation needs to be improved.

5.3.3. Prediction of pharmacophoric points from the apo target cavity

Predicting key points from the VolSite cavities can be valuable for different applications: better
definition of the binding site for cavity-to-cavity comparisons (Chapter 2), improvement of ligand-to-
cavity comparisons (sections 5.3.1 and 5.3.2 above), and rescoring of docking poses. By defining
important points as those that match with the interacting ligand features in proximity (modeled by
‘cavity pruned’), Random Forest (RF) models were trained to discriminate the important from the so
called unused points using a set of 333 descriptors. The datasets from the sc-PDB 2022 were prepared
and split into training, external test and application set as described in the Methods section. A sample
was used to train the model and a remaining sample which did not see the model was used for evaluation.
As the number of entries were balanced in the negative and positives classes, the accuracy was reported
in these earlier analyses. Initial models trained on a balanced ensemble of the seven features data
(randomly sampling 6120 from each feature data) yielded a poor accuracy below 0.7 on the external test
set. Contrarily, training a separate model for each feature (then using FP2 to FP5, Methods) improved

the accuracy on the external test set although the models clearly overfitted the training sets (Table 5.2).
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Table 5.2. Accuracy of pharmacophoric points predictions.
Feature? Dataset size® ACC = std (5-fold CV) ACC
(# unique PDB entries) Training (60 %) Test (15 %) Ext. test (25 %)

CA 254 416 (35 734) 1+0 0.742 + 0.003 0.740
CZ 14 856 (9124) 1+0 0.781 + 0.007 0.797
N 103 126 (30 550) 1+0 0.733 + 0.004 0.729
NZ 6120 (4312) 1+0 0.784 + 0.007 0.782
@) 158 094 (33 011) 1+0 0.734 +0.003 0.735
OD1 57 070 (19 098) 1+0 0.766 = 0.006 0.769
0G 69 346 (25 675) 1+0 0.694 + 0.004 0.699

2VolSite pharmacophoric features: CA: hydrophobic, CZ: aromatic, N: h-bond donor, NZ: positive, O:
h-bond acceptor, OD1: negative, OG: h-bond donor or acceptor.

b The number of points (positive and negative classes).

In contrast to the RF models, the baseline models obtained from the Bayesian classifier yielded lower
accuracy values (0.63) on the external test set. To verify the relevance of the predictions, randomly
shuffling the content of the descriptors and of the classes in the training set respectively led to an
accuracy of 0.5 on the external test set. Finally, the obtained models were applied to 1000 VolSite
‘cavityALL’ cavities from the application set. For each cavity, the seven RF models were applied, and
points predicted to be important were saved into a new cavity file. On average, more than two third of
the cavities’ points were trimmed independently of their original frequency (Figure 5.6A). Analysis of
the true positive rates showed that the few positive points are often kept (few loss) while improvements
are to be made on removing more negative points (Figure 5.6B-C). Still, the observed accuracy values
were encouraging. We pay careful attention to these metrics as negative points clearly outnumbered

positive points.
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Figure 5.6. Statistics of predicting interacting points in VolSite cavities from the application set. A)

Proportion of points kept (predicted as important) with respect to the number of points in the cavity. B)
Specificity (true negative rate, eq 5.8) of the predictions with respect to the sensitivity (true positive rate,

eq 5.7). C) Balanced accuracy (eg. 5.9).

Examples of predictions on three different proteins are shown in Figure 5.7. The first two examples

illustrate cases where the models restricted the cavity points to fit the X-ray ligand. In the last example,

the important points were not correctly defined (at least according to that ligand).
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Figure 5.7. Prediction of important points in VolSite cavities from the application set. Seven RF
machine learning models were trained and applied to classify interacting (kept) and non-interacting
(removed) points, taking as input the VolSite cavitied detected on the apo structures (clouds on the left)
and yielding a pruned cavity (cloud on the right). The masked X-ray ligand is illustrated in the

background (transparent blue).

In summary, the results presented herein were the first steps towards the development of a machine
learning model to discriminate between interacting and non-interacting cavity points. These initial
results are encouraging to pursue a thorough study. Due to the bias in the PDB towards certain protein
cavities (e.g., Adenine-binding, phosphate sites), the predictive models might achieve better results on
related cavities (e.g. protein kinases, ATP sites). The data splitting should account for the distribution
of the protein families instead of the PDB IDs. Other splitting scenarios are possible (e.g., time-split).
Different baseline models will be implemented for comparison, while assessing the sensitivity and
precision of the predictions. Finally, the applicability of the models should be assessed on proteins in
complex with different congeneric ligands that might exhibit different binding modes, as well as new

target structures.
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General conclusions

General conclusions

This thesis has proposed novel computational approaches for molecular design, by exploiting available
protein cavities represented as clouds of points. Starting from the idea to investigate the application of
image recognition approaches to compare protein cavities represented as point clouds, the projects were
progressively built to tackle several problems: (1) estimation of protein cavities similarity at the
structural proteome scale and their prospective applications to (2) secondary target prediction and (3)
target-focused library design, (4) comparison of ligands to protein cavities, (5) prediction of interacting
cavity points (Figure 6.1).
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Figure 6.1. Computational strategies based on point cloud processing implemented in this thesis and

their prospective applications.

Literature review of state-of-the-art methods revealed the intricacies of estimating the similarity between
protein cavities and the need for methods enabling subpockets comparison. By developing ProCare to
this end, we showed that sampling-based point cloud registration, originally applied to other computer
vision tasks can identify common motifs between subpockets of unrelated proteins. From the initial
retrospective validations, we went on to evaluating our method by confronting the computational
predictions to experimental validations. As a result, the similarity between the binding sites of two
functionally and structurally unrelated targets, the cytokine tumor necrosis factor-alpha (TNF-a) and the
HIV-1 reverse transcriptase (RT) could be identified for the first time. Direct in vitro binding
measurement showed two HIV-1 non-nucleoside inhibitors interacting with TNF-a trimer with an
affinity comparable to a high-throughput screening hit. Moreover, we developed a workflow, POEM, to

design a focused library of small molecules based on subpocket similarity prediction. Cognate fragments
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of the most similar subpockets were used as building blocks and linked to generate fully connected
molecules. By applying POEM to the cyclin-dependent kinase 8 (CDKS8), we successfully designed a
new nanomolar ligand in just two rounds. Finally, the application of POEM to orphan targets
(quinolinate synthase, WD40 repeats domain of leucine-rich repeat kinase 2), for which no
pharmacological ligand is known to this date enables to improve the workflow while providing a fully
blind challenge to delineate limitations regarding the fragments’ selection. The biological assays of the
predicted compounds are ongoing. The representation of the protein cavities as clouds of points
occupying the entire ligand space can be explored to develop computational methods for small
molecules screening. In this perspective, we studied point cloud registration and graph matching of
ligands to protein cavities. Although ligands pharmacophoric points alignment to protein cavities is a
difficult task since structurally different objects are being compared, the information contained in the
cavity clouds proved to be rich for comparison to small molecules and supported the investigation of
machine learning models to predict important cavity points corresponding to pharmacophores in the
ligands. Some of these preliminary results were encouraging and have suggested further analyses to
investigate these research questions, and have opened the perspective for other target classes.

The volumetric point-cloud representation of the protein pockets presented advantages and drawbacks.
By working around the latter, we showed a variety of applications of subpocket clouds comparison in
drug design under the constraint of experimental and collaborative resources available. We would have
liked to pursue some questions that arose from the results presented herein, even if they fall out of the
scope of this thesis. Finally, feedback from more prospective applications would be beneficial to

improve the implementations according to and beyond what has been already discussed in this thesis.

To conclude on the scientific level, we hope that the novel contributions of this thesis to the state-of-
the-art have provided useful insights as part of the general pursuit of computational drug design. The
different evaluations provided herein have suggested improvements and new research ideas, that will be

investigated by future work in our lab.

To conclude on the personal level, this thesis allowed me to learn at different levels: the process of
scientific research, from the identification of questions to the investigation and communication of results
in different formats, the flexibility to adjust to mishaps, collaborative multidisciplinary work, teaching,
supervision, gaining knowledge of concepts in related fields (computer science, geometry, medicinal
chemistry), while 1 was venturing out of my comfort zone as a dominantly trained biologist. The
exchange of scientific reflections with colleagues and my advisor have always filled me with wonder.
This experience came with its ups and downs; even so, | found that science is exciting and applies to
everyday life. | also had the chance to be involved in non-research activities such as representing my
fellow PhD students in our Doctoral School and lab committees, and volunteering in the ADDAL PhD

association, while helping with solving problems and developing important transversal skills.
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Résumé

Les cavités de protéines sont au coeur d’interactions moléculaires nécessaires aux fonctions
biologiques du vivant. Grace a 'augmentation incessante des données structurales, les méthodes de
comparaison de cavités protéiques offrent diverses applications en conception de molécules
bioactives mais doivent relever plusieurs défis.

Cette thése propose de nouveaux algorithmes basés sur le traitement d'images tridimensionnelles
pour comparer les motifs globaux et locaux de (sous-) cavités protéiques, représentées en nuages
de points. Leurs applications concrétes, validées par des essais biologiques in vitro, illustrent leurs
utilisations pour prédire des cibles secondaires a I'échelle du protéome structural et pour générer
des chimiothéques focalisées permettant d’augmenter le taux de touches en criblage virtuel. A partir
de la caractérisation des cavités, I'élaboration de pharmacophores et le développement de
méthodes de criblage virtuel ont été investigués.

Mots-Clés : comparaison de sites de protéines, nuage de points, alignement 3D, prédiction de cible
secondaire, chimiothéque focalisée, criblage virtuel, pharmacophore, alignement de graphe,
intelligence artificielle, conception de molécules bioactives, structure, Chémoinformatique.

Résumé en anglais

Protein cavities are the heart of molecular interactions that trigger and regulate biological processes
in living organisms. Supported by the constant augmentation of characterized pockets in three-
dimensional protein structures, methods to assess the similarity between protein cavities have
multiple applications in drug design but face many challenges.

This thesis proposes new algorithms based on three-dimensional (3D) image processing to compare
global and subtle patterns in different protein (sub-) pockets represented by point clouds. Through
prospective applications validated by in vitro biological experiments, we showed how these methods
can predict a secondary target at the proteome scale and design a target-focused library for faster
small molecule hit identification. In the next stages, better characterization of the cavities for
pharmacophore elaboration and the development of virtual screening methods were investigated.

Keywords: protein subpocket comparison, point cloud, 3D alignment, secondary target prediction,
focused library, virtual screening, pharmacophore, graph matching, machine learning, drug design,
structure-based, Cheminformatics.






