
THÈSE DE DOCTORAT DE

L’ÉCOLE CENTRALE DE NANTES

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Automatique, productique et robotique

Par

Imane HAUR
AUTOSAR compliant multi-core RTOS formal modeling and verifica-
tion

Thèse présentée et soutenue à l’École Centrale de Nantes, le 30/11/2022
Unité de recherche : UMR 6004, Laboratoire des Sciences du Numérique de Nantes (LS2N)

Rapporteurs avant soutenance :

Emmanuel GROLLEAU Professeur des universités, ISAE-ENSMA, Chasseneuil-du-Poitou
Patrick MARTINEAU Professeur des universités, Polytech Tours

Composition du Jury :

Président : Emmanuel GROLLEAU Professeur des universités, ISAE-ENSMA, Chasseneuil-du-Poitou
Examinateurs : Isabelle PUAUT Professeure des universités, Université de Rennes

Gaétan HAINS Professeur des universités, Université Paris-Est Créteil

Dir. de thèse : Olivier Henri ROUX Professeur des universités, École Centrale de Nantes
Co-encadrant de thèse : Jean-Luc BÉCHENNEC Chargé de recherche CNRS, École Centrale de Nantes

TABLE OF CONTENTS

1 Introduction 15
1.1 Motivations . 17
1.2 Scientific contribution . 19
1.3 Manuscript outline . 20

I General context 23

2 State of the art 24
2.1 Introduction . 24
2.2 Formal verification methods . 24

2.2.1 Theorem-based methods . 25
2.2.2 Model-based verification methods 26

2.3 Timed models . 28
2.3.1 Timed automata . 28
2.3.2 Petri nets and time . 29
2.3.3 Timed model with stopwatches . 29
2.3.4 Scheduling studies based on timed models 30

2.4 Formal methods for operating systems verification 31
2.5 Conclusion . 34

3 Trampoline real-time operating system 35
3.1 Introduction . 35
3.2 The OSEK/VDX standard . 35
3.3 The OSEK/VDX OS . 36

3.3.1 Operating system services . 37
3.3.2 Processing levels . 41
3.3.3 Conformance classes . 41

3.4 The AUTOSAR standard . 41
3.5 Trampoline RTOS . 42

3

TABLE OF CONTENTS

3.5.1 Mono-core Trampoline architecture 44
3.5.2 Multi-core Trampoline architecture 50

3.6 Conclusion . 53

II Contribution 55

4 High-level Colored Time Petri Nets for multi-core concurrency 56
4.1 Introduction . 56
4.2 Informal presentation . 56

4.2.1 Petri nets . 56
4.2.2 High-level Petri nets . 57
4.2.3 Colored Petri nets . 57
4.2.4 Time Petri Nets . 58
4.2.5 Colored Time Petri Nets . 58
4.2.6 Time Petri Nets with stopwatches 58

4.3 Formal definition . 59
4.3.1 High-level Colored Time Petri Net 59
4.3.2 High-level Colored Time Petri Net with stopwatches 69

4.4 Decidability, complexity and state space computation 72
4.5 Roméo tool . 73
4.6 Application . 74

4.6.1 Modeling the spinlocks mechanism 75
4.6.2 Verification of the system . 75

4.7 Conclusion . 77

5 Modeling with High Level Colored Petri Nets 79
5.1 Introduction . 79
5.2 Modeling rules . 79
5.3 Multi-core RTOS modeling . 81

5.3.1 API services modeling . 81
5.3.2 Kernel modeling . 82
5.3.3 Properties of the model . 87

5.4 Application modeling . 90
5.4.1 The GTL module . 91

4

TABLE OF CONTENTS

5.4.2 Modeling examples . 92
5.5 Conclusion . 93

6 Formal verification of the multi-core AUTOSAR OS compliance 95
6.1 Introduction . 95
6.2 Formal verification of AUTOSAR compliance 95

6.2.1 AUTOSAR OS tests . 96
6.2.2 AUTOSAR requirements observers 97
6.2.3 Model-checking with Roméo . 98

6.3 Compliance of the AUTOSAR Trampoline OS 100
6.3.1 mc_alarm_s1 application . 100
6.3.2 mc_spinlock_s1 application . 104
6.3.3 Discussion . 106

6.4 Formal verification of concurrency in multi-core implementation . . . 110
6.4.1 Case study 1 . 110
6.4.2 Correction of the error . 112
6.4.3 Case study 2 . 113
6.4.4 Correction of the error . 114
6.4.5 Scalability . 115

6.5 Conclusion . 116

7 Formal schedulability analysis based on multi-core RTOS model 117
7.1 Introduction . 117
7.2 Real-time schedulability analysis . 118
7.3 Formal verification of schedulability analysis 120

7.3.1 Schedulability observer . 120
7.3.2 Parameters synthesis . 121
7.3.3 Application of the scheduling analysis approach 122

7.4 Ad-hoc scheduling system . 125
7.4.1 Ad-hoc scheduler specifications 125
7.4.2 Ad-hoc scheduler implementation 126
7.4.3 Task parameters synthesis . 127
7.4.4 Response time analysis . 130

7.5 Conclusion . 130

5

TABLE OF CONTENTS

Conclusion and perspectives 133

Publications 136

Bibliography 137

A Requirements corresponding to multi-core OS 146

6

LIST OF FIGURES

1.1 Real-Time System (RTS) . 16
1.2 Formal verification approach . 20

2.1 Model-checking approach. 27

3.1 The three modules of the OSEK/VDX standard. 36
3.2 State model of a basic task. 38
3.3 State model of an extended task. 38
3.4 Tasks priority. 39
3.5 AUTOSAR architecture. 43
3.6 Trampoline application configuration. 44
3.7 Mono-core Trampoline architecture. 45
3.8 Flow of a service execution without context switching. 49
3.9 Flow of a service execution with context switching. 49
3.10 Multi-core Trampoline architecture. 50
3.11 The activation of a task 𝜏2 on core 1 by a task 𝜏0 running on core 0. 52
3.12 The activation of a task 𝜏2 on core 1 by a task 𝜏0 running on core 0 in

parallel with the termination of the task 𝜏1 on core 1. 54

4.1 Enabling transition . 61
4.2 High-level manipulation of variables. 63
4.3 HCTPN illustrating high-level manipulation of variables 66
4.4 HCTPN model illustrating colored multi-enableness 67
4.5 HCTPN model with stopwatches of two-task scheduling. 71
4.6 The GetSpinLock and RelSpinLock function models 77
4.7 The tasks models . 78

5.1 Function call mechanism. 81
5.2 GetAlarmBase service model. 83
5.3 Example of the ActivateTask service modeling. 84

7

LIST OF FIGURES

5.4 The kernel function tpl_terminate. 84
5.5 tpl_put_new_proc model. 86
5.6 GET_PROC_CORE_ID C-like function. N is the number of cores. 87
5.7 tpl_it_handler model. 88
5.8 tpl_get_alarm_base_service model. 89
5.9 Trampoline application configuration with the added GTL module. . . . 91
5.10 GTL module and the C-like output file. 92
5.11 Application task model. 93
5.12 Application model. 94

6.1 Verification approach. 96
6.2 mc_alarm_s1 test sequence.◦ represents the success of the system service

call and × the canceling of the alarm. 97
6.3 SWS_Os_00639 Observer model. 99
6.4 𝑇𝑎𝑠𝑘1 model of the 𝑚𝑐_𝑎𝑙𝑎𝑟𝑚_𝑠1 test sequence. 102
6.5 SWS_Os_00632 Observer model. 103
6.6 mc_spinlock_s1 test sequence. 105
6.7 𝐼𝑆𝑅2 model of the 𝑚𝑐_𝑠𝑝𝑖𝑛𝑙𝑜𝑐𝑘_𝑠1 test sequence. 107
6.8 SWS_Os_00650 and SWS_Os_00651 Observer models. 108
6.9 Three-tasks application model. 111

7.1 Task model. 118
7.2 Observer model (in yellow) linked to a task model. 121
7.3 Three-tasks application model considering time intervals and observers. 123
7.4 Schedule of tasks set with the WCET1. The symbols ↑ and ↓ indicate ac-

tivation and completion of tasks, respectively. 124
7.5 Schedule of tasks set with the BCET1. The symbols ↑ and ↓ indicate ac-

tivation and completion of tasks, respectively. Here job 1 of 𝑡𝑎𝑠𝑘3 misses
its deadline as indicated by the dashed red circle. 124

7.6 Model part tomodify for the ad-hoc scheduler implementation. The sym-
bol -> indicates a function call. 128

7.7 Schedule of tasks set with the BCET3. The symbols ↑ and ↓ indicate acti-
vation and completion of tasks, respectively. 129

7.8 Schedule of tasks set with Roméo. The symbols ↑ and ↓ indicate activa-
tion and completion of tasks, respectively. 129

8

LIST OF FIGURES

7.9 Schedule of tasks set with the WCET3. The symbols ↑ and ↓ indicate ac-
tivation and completion of tasks, respectively. Here job 1 of 𝑡𝑎𝑠𝑘3 misses
its deadline as indicated by the dashed red circle. 131

9

LIST OF TABLES

6.1 Computing time and memory used for verification - mc_alarm_s1. . . . 104
6.2 Computing time and memory used for verification - mc_spinlock_s1. . . 109
6.3 Computing time and amount of memory used. 113
6.4 Computing time and memory used after correction. 113
6.5 Computing time and memory used. 115
6.6 Computing time and memory used after correction. 115

7.1 Three-tasks application set characteristics. 122
7.2 Three-tasks application: Computing time and memory used. 125
7.3 Tasks set characteristics. 128
7.4 Response time computation using the parametric observer. 130

A.1 Subset of AUTOSAR OS requirements related to multi-core. 147

10

DEDICATIONS

11

To my parents, the love you have given me is priceless. All the words in the world cannot
express my gratitude. I place in your hands the fruit of long years of study, long months of
your love and tenderness, and long days of learning. Your support and encouragement have

always given me the strength to persevere in prospering in life.

To Sofia, I know I am not the best sister in the world, but I adore you. You will find a
modest testimony of my most sincere affection and deepest attachment in this work.

To my grandmother, you have always treated me as your daughter. I can never thank you
enough for that. May God bless you with health, long life, and prosperity.

To my aunts and uncles, I would have liked to thank you all one by one as you deserve,
but if I do, my dedications will fill more pages than the whole report.

To Imad, you have always supported me, and no words can describe my gratitude for your
encouragement.

To my friends and all the people who have, in one way or another, helped me to get here.
May you all be proud of me.

ACKNOWLEDGEMENT

This experience spent within Huawei Paris Research Lab andwithin the Real-Time Sys-
tems team of the LS2N (Laboratoire des Sciences du Numérique de Nantes) would
never have been so fruitful without the contribution of some people that I would like
to thank particularly:

First, Iwould like to thankmy three supervisors:OlivierH. ROUX, Jean-LucBÉCHEN-
NEC, and Gaétan HAINS, who knew how to play their roles perfectly. They ensured
this project’s good progress andmanaged to provide rigorous and professional serious-
ness in a friendly and relaxed climate with a disconcerting virtuosity. I am very grateful
for their trust and the wise advice they gave me. I am also very honored by the friend-
ship they have shown me, and it is a great opportunity and pleasure for me to work
with them during this period.

I want to take this opportunity to thank all the members of the RSD Grenoble team
and the Real-Time Systems team of the LS2N for their kindness and the technical and
financial resources they have given me to carry out this project in good condition. I
cannot forget to thank the members of the CSI Paris team for their welcome, help, and
sympathy.

I want to thank the jury members, Mr. Emmanuel GROLLEAU and Mr. Patrick
MARTINEAU, who honored me by being the reviewers of this manuscript and for hav-
ing accepted to evaluatemywork. I also thankMrs. Isabelle PUAUTandGaétanHAINS,
who agreed to examine this project and be a jury members.

Finally, I thank my family, friends, and colleagues who supported me during my
thesis years.

13

Chapter 1

INTRODUCTION

Embedded systems are now present in various contexts and applications in our every-
day lives. These systems have evolved and need to use increasingly complex hardware
and software architectures to achieve the required level of performance. In addition,
the demand for high-performance computing among applications has led to a rise in
the usage of multi-core chips. Embedded systems are required to implement all of the
desired functionalities and validate both the functional and temporal accuracy.

Considering the time, the embedded system is designed as a real-time system for
safety-critical reasons. A real-time system interacts with a complex external environ-
ment and should meet deadlines, guarantee timing constraints, and consider the cor-
rectness of the computation. The design of such a systemmust thus be predictable, i.e.,
its behavior must be expected concerning the time requirements. The real-time system
has three classifications:

• Hard real-time system: Failure to meet the deadline and time constraints in this
system has disastrous consequences;

• Soft real-time system: This system can occasionally miss its deadline without
severe consequences;

• Firm real-time system: The system allows infrequently missed deadlines with a
specification of which deadlines can be lost. If the system misses more deadlines
than defined in the specification, the system fails and can cause serious conse-
quences.

As software-based functions increase, Real-Time Operating Systems, also known as
RTOS, become extremely important. This system serves as an interface between soft-
ware and hardware and provides all necessary functionalities. The RTOS is thus re-
sponsible for managing hardware resources and scheduling application processes.

15

Introduction

In order to increase confidence and prevent unexpected behavior, system verifica-
tion is essential. It is crucial to perform time verification and validation to demonstrate
that the systemwill always be able to react according to its time constraints and that the
task scheduling sequences will always be appropriate.

The real-time system (RTS) architecture, as represented in Figure 1.1, is composed
of a software component, i. e. applications that interact with a Real-Time Operating
System (RTOS), and a hardware part that allows its execution.

Software components
Software application

Process1 Process3

Process2

RTOS architecture

Task Managment

Memory Managment

Kernel

MemoryCore1 Core2

Processor1

Processor2

Hardware

Real-Time System

Figure 1.1: Real-Time System (RTS)

Software components In the RTS software application, tasks communicate with each
other by exchanging messages or through synchronization mechanisms. The real-time
operating systemmanages the hardware resources andprovides a scheduler. The sched-
uler is in charge of the order in which tasks are executed to ensure the deadlines are
respected. The RTOS evolution is formalized with standards; In the avionics and auto-
motive industries, ARINC 653 [1], OSEK/VDX, and AUTOSAR [2, 3] standards propose
implementation rules for software and hardware independence and requirements that
an operating system must ensure. Thus, standards provide specifications for develop-
ing an RTOS with various features, including scheduling policy, memory, and timing
protection.

Hardware component TheRTShardware comprises processors,memories, input/out-
put devices, and additional components. The hardware architecture is often categorized
according to the number of processors and cores.

16

Introduction

Serious incidents can occur if errors are present in the real-time software system.
Therefore, developing a computer system that is free of errors is imperative. Testing is a
standard method for identifying software program errors. Because it is not exhaustive,
it does not guarantee the elimination of all errors. Furthermore, it is insufficient for
real-time critical systems where a failure could have disastrous consequences. Formal
verification is a solution to increase the implementation reliability of the system. It is a
technique that has been recommended as a safety verification method in the ISO-26262
standard for the automotive industry [4].

Verifying that the system’s specification properties are satisfied is required to estab-
lish that the system is accurate. Safety and liveness are the twomost significant types of
these properties [5]. While the safety property indicates that an unexpected event will
not occur, the liveness property typically implies that a program’s finite parts will com-
plete their execution if their input is correct. In addition, it is critical to ensure that the
operating system behaves as expected. In fact, the entire system’s reliability depends on
the operating system that handles its complexity. Therefore, RTOS must adhere to the
OS specification to ensure security and functional safety. That emphasizes the need to
use a formal approach to provide system verification.

Compliance verification of an OSEK/VDX and AUTOSAR operating system is typi-
cally carried out with a test suite consisting of multiple applications. The conformance
test suite is thus executed on the RTOS to obtain the standard certification. Contrary to
software testingmethods that analyze software behavior to reveal defects, formalmeth-
ods examine the behavior of the software to prove the presence or absence of defects.
Formal verification approaches have proven to be highly effective. They allow mathe-
matically proving a system’s specification.

1.1 Motivations

We have a double goal: i) Verifying the RTOS behavior by stimulating it with appli-
cation models such as those proposed for compliance with the OSEK/VDX [6] and
AUTOSAR [3] standards. Thus, determining whether or not the RTOS meets the re-
quirements of the standard ii) Verifying the application issues using this operating
system, such as real-time multi-core schedulability.

We have mainly three challenges in reasoning about multi-core RTOS behavior:
i)The operating system is susceptible to a variety of stimuli, and in particular, real-

17

Introduction

time stimuli, such as periodic interruptions generated by timers ii) Applications and
code blocks of the OS are executed concurrently on several cores iii) Some parts of the
OS code can be executed simultaneously by several cores (StartOS service, Spinlock
services).

Choice of themodel For this purpose,weuse formalmethods, particularly themodel-
checking technique. Model-checking [7] effectively deals with concurrency and inter-
action between parallel processes, which are the significant sources of error in the sys-
tems. These concurrency errors are subtle and complex to reproduce or find in tests be-
cause there are many possible interleavings in the parallel processes execution. How-
ever, model-checking is ideally suited to identify concurrency bugs and demonstrate
their absence in a system. It relies on the algorithmic exploration of the systemmodel’s
whole state space to verify the correctness of properties on the entire execution path.
We apply our approach to the real-time operating system Trampoline [8], a multi-core
RTOS compliant with OSEK/VDX and AUTOSAR standards.

As the RTOS we are dealing with is written in C, a model-checker running on con-
current C programs, such as [9], may seem usable, but the call to services goes through
assembly code whose formal analysis would require a complete hardware architecture
model, and which would not be portable. Furthermore, the goal is not to check only the
properties of a C program but to check behavioral properties against real-time stimuli
and manage the resulting interruptions. Therefore, we need a model-checker on timed
models as we consider the execution times of the application tasks. The execution times
of theOS instruction blocks are neglected for the genericity of the approach. The knowl-
edge of the execution time would apply only to a precise hardware target.

A product of timed automata as used in [10] can simulate concurrency and its in-
terleaving. However, it will not be able to model the simultaneous execution of a code
sequence on several cores unless the model of this code sequence is artificially dupli-
cated.Wewill therefore use time Petri nets for concurrency and timemodeling.Wewill
extend them with a particular notion of colors so that the same sequence of transitions
can be traversed by several tokens, each with a different color modeling the core on
which the code is executed.

18

Introduction

1.2 Scientific contribution

Our thesis work leads us to three main contributions to achieving the objectives pre-
sented in the previous section. The first contribution concerns the chosen formalism
for the modeling. Since the control of multi-core real-time systems often requires si-
multaneous access in true parallelism to shared resources and time Petri nets do not
capture these features directly,wepropose extending the formalismwith colored transi-
tions and high-level functionality, i.e., a predefined syntaxmanipulating different types
of expressions made up of variables. The High-Level Colored Time Petri Nets encom-
passes both timed multi-enableness of transitions and sequential pseudo code, and the
reachability problem is decidable for this model. We then use this extended formalism
tomodel the real-time application as a sequence of RTOS system calls in addition to the
multi-core RTOS that reproduces the control flow and uses the same variables as those
of the implementation.

The second contribution is composed of two parts. First, the formal verification of
the RTOS conformity to the AUTOSAR standard; we model the test suite that includes
several applications with High-Level Colored Time Petri Nets (HCTPN). Second, we
check the inter-core synchronization mechanism involved in concurrent OS service ex-
ecution. AUTOSAR conformance testing is based on requirements verification. We fo-
cus on multi-core operating system (OS) requirements, for which there are eighty.
Each specification is formalized by an observer that evaluates compliance. The observer
models are innocuous i.e. they do not interfere with system behavior. Cores are asso-
ciated with Petri net transition colors. Using the model-checking technique, we verify
the AUTOSAR specifications. The approach results conclude that the operating system
model respects the AUTOSAR requirements. As part of the AUTOSAR compliance ver-
ification of the multi-core RTOS and since the AUTOSAR test cases are synchronous;
they do not include concurrent situations, we are interested in verifying simultaneous
service calls execution on cores for the safety analysis. Specifically,we rely on themodel-
checking technique to formally verify multi-core RTOS synchronization mechanisms:
concurrent access to OS data structures, multi-core scheduling, and inter-core interrupt
handling. That automatically identified two possible errors in the simultaneous execu-
tion, proving insufficient data protection and faulty synchronization. Both errors have
been corrected and the updated model verified to satisfy AUTOSAR compliance.

Finally, we provide a verification approach to determine the schedulability of real-

19

Introduction

Software system model

Application model

System call interface model

Kernel functions model

Multi-core RTOS model

Observer models

calls

calls

User mode

Kernel mode

reads

Model-checker

True False + counter-example

Property specification
Temporal logic

Figure 1.2: Formal verification approach

time applications with dependent preemptive tasks on the detailed multi-core RTOS
model. It also allows determining under which temporal conditions the application is
schedulable using parameters on the firing intervals. Verification of real-time applica-
tion schedulability is usually performed using a very abstract system representation,
which poorly supports inter-task dependencies. We represent each application task by
a Petri net whose transitions carry Best-Case Execution Time andWorst-Case Execution
Time [𝐵𝐶𝐸𝑇,𝑊𝐶𝐸𝑇] firing intervals and make service calls to the OS. Preemption is
supported by means of stopwatches. We accurately analyze worst-case response time
computation for dependent preemptive tasks in multi-core systems.

Thus, our contribution is a complete approach to verifying the schedulability of a
real-time system, the AUTOSAR compliance of multi-core RTOS, and the inter-core syn-
chronizationmechanism involved in concurrent OS service execution usingHigh-Level
Colored Time Petri Nets (HCTPN). The approach steps are illustrated in Figure 1.2. We
rely on the Roméomodel-checker tool for the verification, available under a free license
[11].

1.3 Manuscript outline

The manuscript is structured in two parts:

• Part I introduces the general context of the thesis. It starts with a state-of-the-

20

Introduction

art in chapter 2 concerning the different formal methods and their application
to verifying real-time systems with an RTOS. Chapter 3 presents the Trampoline
operating system onwhichwe apply our formal approach. It shows its mono-core
and multi-core architectures;

• Part II concerns our contribution and is organized into four chapters: (i) Chap-
ter 4 presents the High-Level Colored Time Petri Nets (HCTPN), the extended
formalism used for modeling. (ii) Chapter 5 describes the formal model of the
RTOS and the application built with theHCTPN formalism using theRoméo tool.
(iii) Chapter 6 is dedicated to the verification approach of the operating system’s
compliance with the AUTOSAR specification based on its formal model. It also
includes verifying concurrent situations and the errors proving faulty synchro-
nization with the model-checker. (iv) Chapter 7 presents the schedulability veri-
fication of real-time application with dependent preemptive tasks.

The last part of this manuscript is a conclusion and some perspectives on our work.

21

Part I

General context

23

Chapter 2

FORMAL METHODS FOR REAL-TIME

SYSTEMS

2.1 Introduction

Formal approaches ensure system confidence, and the emergence of new software tools
has led to their usability. We examine in this chapter the existing formal verification
methods in the literature, focusing on their use for verifying the application’s schedu-
lability and real-time operating systems. We rely on the two most popular families of
formal methods: theorem proving and model-checking. In theorem proving, we exam-
ine infinite systems specified in an appropriate mathematical logic to verify the proper-
ties and provide proof. On the other hand, in model-checking, we examine whether the
desired property is satisfied by exploring the entire state space of the finite constructed
model. It is an automatic and efficient technique that can also cope with the problem
of state space explosion when the number of states grows to infinity with increasing
variables and their distinct values as well as components.

2.2 Formal verification methods

Testing is widely used in practice, although it is clearly impossible to use it in highly
critical systems where test data could cause damage if errors are made before actual
deployment. Another solution is to simulate the behavior of the system on a computer.
The simulation does not work directly on the real system but on a model. A model
represents an abstract representation of the real system, usually written using mathe-
matics or logic. Both testing and simulation are widely used in industrial applications,
and their use has proven to be very useful. A drawback, however, is that it is not usually
possible to simulate or test all possible scenarios or behaviors of a given system.

24

State of the art

Here are some examples where testing and simulation failed. The Air France Flight
447 crash in June 2009 caused the death of the people on board. When the plane was
flying fromRio de Janeiro to Paris, the storm caused the airspeed sensors to freeze, lead-
ing the autopilot to disconnect. The pilots misinterpreted the noise, leading the plane
to ram into the sea. The worst is knowing that the crash could have been prevented. In
August 2005, The Boeing 777-200 of Malaysia Airlines Flight 124 suddenly and without
warning climbed higher than expected. The crew faced a supposedly impossible situ-
ation where the stall and overspeed indicators turned on simultaneously. The aircraft
landed about 18 minutes into the flight, and the failure occurred in its air data inertial
reference unit. One of the two accelerators controlling the airspeed failed, and due to
a software anomaly, the second one used incorrect data from the first accelerator [12].
Another example is the failure of the Computer Aided Dispatch (CAD) in the London
ambulance service. The inquiry team’s investigations show that the system and the re-
silience of the hardware were not fully tested before implementation [13].

Formal verification, in contrast to testing and simulation, permits the exhaustive
investigation using static analysis based onmathematical models to verify the accuracy
of hardware or software behavior. Accidents can then be avoided if the systems are
verified and analyzed mathematically. Two categories exist, deductive methods based
on theorem proving [14] and automatic methods based on model-checking [15].

2.2.1 Theorem-based methods

Formal theorem proving is one of the fastest developing areas in recent years, that ver-
ifies the correctness of the system’s properties through mathematical reasoning. With
the new powerful tools of theorem provers, unsolvable problems several decades ago
are being treated today, and new challenges are emerging. Many fields, including com-
puter science [16], biomedical [17], economics [18], machine learning [19], and artifi-
cial intelligence [20], have successfully used theorem provers. It provides a statement
from a logical set of axioms or hypotheses to check a system’s properties defined with
mathematical logic. Theorem provers can be divided into two categories:

• Interactive Theorem Provers (ITPs), known as proof-assistants [21]: this ap-
proach allows proofs to be constructed with a reliance on user guidance. It in-
volves human interaction with the tool in the formal proof development process.
Coq [22] and Isabelle/HOL [23] are some of the most well-known existing tools.

25

State of the art

Their performance is outstanding, and they formalized and proved many theo-
rems in the first hundred theorems list 1.

• Automated Theorem Provers (ATPs) [24]: This type consists in building the
proofs automatically by the tool without user intervention based on a descrip-
tion of the system to be verified, a set of axioms, and inference rules. Current ATP
systems can solve non-trivial problems, such as the Robbins problem [25] solved
by the EQP automated theorem proving program for first-order equational logic
[26]. In practice, the complexity of most problems is enormous and cannot be
solved within resource limits. Thus a significant concern of ATP research is devel-
oping more powerful systems that can solve problems within the same resource
constraints.

Theorem-proving techniques have limitations, such as the slow process of building
proof, even with automatic provers. In addition, most theorems do not support graphi-
cal and visualization tools, and logic is not practical as a language. The process requires
a high-level of expertise on the user’s part, especially for ITPs that require heavy inter-
action and a lot of energy. These drawbacks are thus an obstacle to adopting theorem
proving when dealing with complex systems. However, future works in this direction
continue to improve faster and more efficient provers and make themmore suitable for
the industrial sector by attempting to combine different techniques.

2.2.2 Model-based verification methods

Among the formal methods, model-checking is an automated approach to verify that a
model of a system conforms to a specification expressed as a property. This specification
defines the requirements for the expected behavior of the system. The verification is
performed by exploring the model’s states with the help of algorithms and allows to
guarantee properties. Achieving the system abstraction and specification is a crucial
step that may require system mastery and expertise in the methods used. The model
must also be accurate and as close as possible to the system from a behavioral point
of view. Therefore, the property verification must be the same for the system and its
model.

The system is described by a model that abstracts the system, most often using state
machines such as automata, Petri nets, and process algebras. The choice of model de-

1. The first hundred theorems list is available at: http://www.cs.ru.nl/~freek/100/

26

http://www.cs.ru.nl/~freek/100/

State of the art

Mathematical Model

Formalization

RequirementsSystem

Model-checking

Properties

Figure 2.1: Model-checking approach.

pends on its expressiveness, i.e., its capacity to represent many system characteristics.
In general, the expressiveness of amodel can be opposed to its simplicity of verification.
As an expressive formalism can be very helpful in modeling, it can also be blocking in
the verification phase. The specification of the system is described by properties that
can be expressed in the form of observers of the model or using a particular logic such
as Linear Temporal Logic (LTL) [27] and Computation Tree Logic (CTL) or the tempo-
ral extension of the latter: TCTL [28]. In [29], L. Lamport decomposes the correctness
properties of a system into two categories: safety properties which express that an un-
desired situation will never happen, and liveliness properties which ensure that under
certain conditions, the desired situation will eventually occur. These two categories of
properties can also be reduced to a reachability verification that looks for a path where
the desired situation is met.

Once the model and its specification are built, an analysis of whether the model
satisfies the specification is performed. This analysis explores all possible executions of
the system from its initial state. The generation of a counter-example is automatic when
the property is false in the form of an execution trace starting from the initial state to
the state violating the property. Thus, the model-checking approach is performed on
two main phases (modeling and specification verification), as shown in Figure 2.1.

With model-checking, the user does not intervene in the verification process and

27

State of the art

easily identifies the states of the system causing its violation through counter-examples
generation. The main advantage is, therefore, its automatic character. However, the ap-
proach is limited by computing capacities. The problem of the combinatorial explosion
is due to the exhaustive exploration of the system’s state space. Several reduction stud-
ies are proposed to cope with this limitation of exhaustive approaches [30, 31].

2.3 Timed models

Time-based models allow the modeling and verification of real-time applications by
considering task execution times and synchronization mechanisms. Adding temporal
parameters to the application can restrict its behaviors, limiting the number of states
of its model. Moreover, it is necessary to check the quantitative temporal properties
to identify specific reasons for failure. The main families of models are extended with
time, such as timed automata [32] and time Petri nets [33].

2.3.1 Timed automata

A timed automaton [32] is an extended finite automatonwith clocks to consider time. A
finite automaton is an abstract machine with a limited number of states that accepts an
input alphabet to evolve its state. The values of the clocks increase during the execution
of the timed automaton and can be associated with constraints called invariants [34].
The invariants of the system control the duration for which the system can remain in a
given location and will leave it once the invariant is no longer satisfied. The clocks are
then reset to zero when the transition is fired, and the associated action is completed.

The formalism is supported by severalmodels checking tools [35–37]. Among them,
UPPAAL [35] is one of the best-known andmost efficient tools. The tool is conceived for
the modeling and formal verification of real-time systems using a network of a timed
extended finite automatonwith useful functions written in the UPPAAL language [38].
Kronos, proposed by S. Yovine [36], is a software tool that allows users to verify the
specifications of a real-time systemduring its design phase. T.Amnell et al. [37] propose
the TIMES tool as a scheduling analyzer based on timed automata and their extensions.
It supports simulation, formal verification and code generation of the model. TIMES
provides a graphical editor that allows the user to specify the parameters of a set of tasks
such as priority, deadline and execution time. Nevertheless, the tool does not allow the

28

State of the art

analysis of task sets with shared resources.

2.3.2 Petri nets and time

Petri nets have two main temporal extensions: Time Petri nets [39] and the timed Petri
nets [40]. Time Petri nets are an extension of the classical Petri net known as a place-
transition net, where each transition is associated with a time interval. This interval
specifies the possible firing dates. The second temporal extension of Petri Nets is Timed
Petri Nets[40] where transitions are fired as soon as possible while a transition can be
fired within a given interval for Time Petri Nets. Time is thus represented by minimum
(or exact) durations for Timed Petri nets. Time can also be associated to transitions (T-
time [41]), places (P-time [42, 43]) and arcs (A-time [44]). T-time Petri nets are the
most widely used in real-time systems and those used in our modeling in this thesis
project, and they have the same expressiveness as Turing machines [45], contrary to
Timed automata. We present the formalismwith its color extension in detail in Chapter
4.

Several software environments for analyzing Petri nets with temporal extensions are
developed2, allowing the users to edit the system graphically [46–48]. TiPNet [46] is a
tool supporting the analysis of Timed Petri Nets to simulate discrete systems. TINA
(TIme Petri Net Analyzer)3 [47] allows editing, simulation, and building state space
abstractions for time Petri nets. Roméo is the tool used in our research work [48], and
it allows the analysis of time Petri Nets with different extensions. Its representation is
given in Section 4.5.

2.3.3 Timed model with stopwatches

Timed models can be extended with stopwatches instead of clocks to model the tem-
poral interruption of actions and subsequent resumption. Indeed, for timed automata
(TA) and time Petri nets (TPN), time elapses at the same speed for all system compo-
nents. Hence they cannot abstract preemptive scheduling policies where the execution
of a task can be suspended and later resumed at the same point.

Several extensions of these models have been proposed to express the suspension

2. The database on http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html pro-
vides an overview of existing tools for Petri Nets.

3. http://www.laas.fr/tina

29

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html
http://www.laas.fr/tina

State of the art

and resumption of actions by adding the stopwatch notion [49–53]. Stopwatch automata
[49] is an extension that allows modeling preemptive real-time tasks. For TPNs, sev-
eral extensions are proposed: Scheduling-TPN [50, 51], Preemptive-TPN [52], and Time
Petri nets with inhibitor hyperarcs (IHTPN) [53]. The first extension [50] is based on
adding two new attributes associated with places: the allocation of the processor or
resource and the priority of the modeled task. The scheduling policy considered is pre-
emptive with fixed priorities. Preemptive time Petri nets [52] rely on a resource assign-
ment mechanism determining timer progress. IHTPN proposed in [53] controls stop-
watches associated with transitions using classical arcs and branch inhibitor hyperarcs.
However, modeling a real-time system with preemptive scheduling using timed au-
tomata, especially in a multi-core context, is not always simple. It requires an automa-
ton per core, and the application is described by an automata product. Extended Petri
nets with stopwatches include a semantic of the behavior of real-time schedulers and
can represent parallel or concurrent systems.

2.3.4 Scheduling studies based on timed models

The time verification of real-time systems consists in proving that the system will al-
ways be able to react according to its time constraints. Timing validation is, therefore,
a decision process that concerns task scheduling sequences. Many scheduling studies
are based on a representation by timed automata [54–57] or TPNs [58–60].

Timed automata and scheduling Several studies use timed automata for the real-
time system’s verification context and consider scheduling analysis. G. Behrmann et al.
propose in [54] a model of timed automata called Priced Timed Automata (PTA). Its
semantics is defined by associating to each transition and location a non-negative real-
valued cost. Their analysis consists in seeking optimal offline scheduling with minimal
cost using UPPAAL’s model-checker. The authors in [56] focuse on modeling multi-
tasking applications to verify the worst time execution of the tasks using timed au-
tomata. The modeled applications considered non-preemptive tasks and routine ser-
vice interrupts. The temporal and logical properties of these applications are verified in
theUPPAALmodel-checker. T. Zaharia and P.Haller [55] present a framework formod-
eling and verification of embeddedmicrosystems. The mini real-time applications run-
ning under a multitasking kernel are described through networks of timed automata,
and the properties are specified in UPPAAL’s CTL subset. They focused on preemptive

30

State of the art

and non-preemptive scheduling tasks with different priorities. Besides, source code is
automatically generated. The study presented by the authors in [57] proposes an ap-
proach to simulate preemptive scheduling using UPPAAL. They associate temporal di-
agrams with timed automata by mapping rules to check the time constraints and the
deadlock.

Time Petri nets and scheduling Several studies proposed modeling with time Petri
to verify complex real-time systems and analyze schedulability. E. Grolleau and A.
Choquet-Geniet present in [58] the modeling of complex systems with concurrent ac-
tions using colored PNs [61]. Their works, however, do not consider online schedulers,
and the PN generates an offline sequence to execute. The work proposed by the authors
in [60] shows a formal verification approach for real-time systems with a preemptive
scheduling policy, including Fixed Priority and Earliest Deadline First, with the possi-
bility to use Round-Robin for tasks with the same priority. The modeling is done with
scheduling time Petri nets and also allows the verification of temporal properties for
other scheduling policies. Dianxiang et al. analyze in [59] the scheduling of real-time
systems using time Petri nets. Behavioral properties are separated from temporal prop-
erties during verification. Behavioral specifications are verified by reachability proper-
ties, and temporal analysis is conducted based on absolute and relative trigger domains.

2.4 Formal methods for operating systems verification

Formal verification of real-time operating systems is helpful to guarantee the correct-
ness of the system and to provide proof that the system is well implemented. This is
possible nowadays thanks to several tools that have been developed in recent years.
Several works have been performed in this context that we mention in the following.
The list is not exhaustive, and other studies not discussed in our work may exist. Some
are based on formal methods to verify the same objectives as those we have for veri-
fying operating systems compliant with OSEK/VDX and AUTOSAR standards. Among
the studies, some do not focus on temporal verification when checking the OS and con-
sider other aspects of correction, such as the absence of deadlock or compliance with
standards. Other research works are more interested in verifying temporal properties
and schedulability analysis considering the RTOS.

31

State of the art

Deductive methods for operating systems verification Existing formal techniques
have been utilized in a number of research studies for operating system software using
deductivemethods. The authors in [62–66] use proof assistants to verify formally a real-
time operating system. M. Hohmuth and H. Tews in [62] propose a verification project
of the L4 compatible Fiascomicrokernel. The verification of the C++ sources of Fiasco is
performed by the general-purpose theorem prover PVS. Their approach handles type-
correctness and safety proof. The verification of seL4 microkernel in [63] is done inside
Isabelle/HOL. A complete verification process is performed independently of the ap-
plication, from the high-level specification of the kernel behavior to its safe execution.
Their proof, however, is limited to the validation of assumptions about the proper func-
tioning of the hardware and compiler. In [64], the Coq proof assistant is applied to the
formalized specification description of FreeRTOS - to verify the correctness of signifi-
cant properties expressed in Separation Logic. In [67], authors implemented an Earliest
Deadline First (EDF) real-time scheduling policy in seL4microkernel and provided the
time management and periodic task model. Fengwei et al. [65] propose a verification
framework for preemptive operating system kernels. The framework allows the defi-
nition of the model by a specification language and its verification by program logic.
All proofs are in Coq, and the verification of the functional correctness of the kernel is
performed. Gu et al. [66] develop a certified concurrent OS kernel mC2 using CertiKOS
and Coq proof assistant. They verify its correctness and system-call specification.

OSEK/VDX operating systems verification Several studies are conducted on operat-
ing systems compliant with OSEK/VDX standard [68–71] . Huang et al. [68] present
work on the verification of an operating system’s conformance with OSEK/VDX auto-
motive standard. They used process algebra CSP to describe and reason about the code-
level of the operating system. The model is implemented and validated in the model-
checker PAT. It is a CSP-based tool that supports arrays, variables, and other code-level
constructs. The specification conformity of the OSEK/VDX code-level operating system
is confirmed. However, not all OSEK/VDX specifications are verified; only those related
to task scheduling and resource management are proved. Using the model-checking
tool SPIN, Chen et al. [69] propose an exhaustive test generation technique to guarantee
conformance with the OSEK/VDX standard. Based on the OSEK/VDX OS design model
and the formal test specification, the authors constructed the test models in PROMELA
and built their test case generation tool through model-checking. Their approach was

32

State of the art

applied only to OSEK/VDXOS’s task and resource management functions. ORIENTAIS
[70] is an OSEK-compliant real-time operating system certified by the OSEK Certifica-
tion Group and installed in more than 1.38 million cars in China. The authors focus on
the correctness of the OS API and the behaviors of the entire system with CSP models.
Tigori et al. in [71] propose to check the conformity of the Trampoline RTOS model
to the OSEK/VDX standard through observers and the UPPAAL model-checker. They
first model the complete mono-core version of the Trampoline RTOS with extended
and timed automata in the UPPAAL tool. Then, they translate the OSEK/VDX confor-
mance test cases into observers that allow checking whether the RTOSmodel meets the
OSEK/VDX specification.

AUTOSAR operating systems verification AUTOSAR OS verification was the subject
of numerous studies [72–75]. The authors in [72] show a formalmodel-based approach
to improve the test coverage for AUTOSAR multi-core RTOS. They first defined the
concrete formal model conforming the requirement of AUTOSAR RTOS in PROMELA.
Then, with the model, they proposed a test program generator. Finally, they calculated
the optimal test sequence for every test case and translated it into an execution program.
Peng et al. in [73] use timed CSP to model AUTOSAR OS and the engine management
system (EMS) application. They verify some safety properties through Process Anal-
ysis Toolkit (PAT). The authors in [74] propose a formalization of the AUTOSAR OS
memory protection specification. They use the Event-B specification language and ver-
ify the consistency. Yan et al. in [75] focus on the AUTOSAR schedule table mechanism.
They formallymodel a schedule table using a transition system and analyze the schedu-
lability.

Trampoline operating system verification Several works are done on the Trampo-
line RTOS [10, 76–78]. In [76], the authors show an approach that converts the kernel
source code of the RTOS Trampoline to a formal model in PROMELA, the modeling
language of SPIN. The objective of this work is to verify the safety properties and the
exactness of the kernel model. Using model-checking, they were able to identify some
possible safety violation scenarios. The performance of this study is enhanced by Yunja
in [77] using embeddedC constructs in PROMELA. The number of states and transi-
tions is reduced, which leads to an improvement in verification costs. The authors in
[10] propose a complete model of the RTOS Trampoline in its mono-core version us-

33

State of the art

ing extended and timed automata with the UPPAAL tool. This model includes all the
functions and services of the OS. They perform a reachability analysis on the applica-
tion and OS model states to eliminate infeasible paths, and prune the model appro-
priately. From the pruned model, a source code configured for the application can be
produced. Based on the Trampoline formal model done by Tigori et al. in [10], Boukir
et al. [78] integrate the model of the global EDF scheduling and verify the scheduler
implementation. The conformity of the scheduler implementation is then checked for
a set of properties using synthetic application models. These models generate all pos-
sible scheduler excitation scenarios. However, the Tigori model does not represent the
accurate time aspect. Indeed, the execution time is discrete, expressed with invariant
and clock variables.

2.5 Conclusion

Many studies have beendone on the formal verification of operating systems. Theworks
cited in this chapter come close to our verification approach. Our objective remains
mainly different since we seek to propose a verification approach that aims to verify the
OS’s conformity to the AUTOSAR multi-core standard, the multi-core synchronization
mechanisms, and the application schedulability, considering their interaction with the
multi-core RTOS.

Among the studies, some do not focus on the temporal aspects of OS verification. It
is because some operating systems do not satisfy user requirements in real time. For ex-
ample, the SeL4 microkernel is based on a round-robin with 256 priority levels, and the
threads have no time attributes such as budget, period, or deadline. For some works,
the proofs cover neither application-specific properties nor the interaction of applica-
tions with the operating system. Other studies focus on verifying the correctness prop-
erties and compliance verification. However, research works on the formal verification
of multi-core AUTOSAR RTOS are limited.

34

Chapter 3

TRAMPOLINE REAL-TIME OPERATING

SYSTEM

3.1 Introduction

In this chapter, we first introduce the automotive standards OSEK/VDX and AUTOSAR
for implementing real-time operating systems. Then, we present the Trampoline real-
time executive on which our thesis work is based. This RTOS respects the OSEK/VDX
and AUTOSAR standards. We describe its mono-core and multi-core architecture and
present examples of operating system calls in both versions.

3.2 The OSEK/VDX standard

OSEK (Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug)
stands for "Open Systems and their corresponding Interfaces for the Electronics in Mo-
tor Vehicles". The standard was created in 1993 by a German automotive company con-
sortium (BMW, Bosch, DaimlerChrysler, Opel, Siemens, and Volkswagen Group) and
a department at the University of Karlsruhe. In 1994, the French car manufacturers Re-
nault and PSA joined the consortium, developing a similar project called VDX (Vehicle
Distributed eXecutive). OSEK/VDX is widely recognized in the automotive industry,
and several parts are proposed for the standard. The architecture shown in Figure 3.1,
page 36, shows the three elements in the list related to the code that runs on targets:

• Network Management (NM) for automotive embedded systems. The network
layer provides reliable communication between vehicle networks and services for
the segmented transfer of application messages. It has two types of management
mechanisms: direct NM, and indirect NM;

35

Trampoline real-time operating system

Software application

Hardware

OSEK Network manager OSEK Communication OSEK Operating system

Figure 3.1: The three modules of the OSEK/VDX standard.

• Communication stack and data exchange between control units. This Interaction
layer provides communication services for the transfer of application messages;

• Real-time operating system.

We will present the mono-core OSEK/VDX real-time operating system in the fol-
lowing.

3.3 The OSEK/VDX OS

The OSEK real-time operating system specification is a support that helps real-time
applications and the embedded software used by electronic control units meet their
execution requirements. It is a mono-processor operating system for distributed au-
tomotive control units. Its specification [2] describes a uniform environment for the
electronic control unit software application to efficiently use resources. The OSEK op-
erating system offers various services, processing levels, and conformance classes for
the portability of software applications and the reduction of development costs. For
the same purpose, OSEK defines an OSEK Implementation Language (OIL) for stan-
dardized configuration information. This language allows a portable description of all
OSEK-specific objects such as tasks, alarms, events, etc.

36

Trampoline real-time operating system

3.3.1 Operating system services

OSEK-OS offers several services that are statically defined at the compilation phase. The
task management and interrupt handling services are detailed below.

3.3.1.1 Task management

The task manager handles the activation, scheduling, and synchronization in addition
to the termination of the application’s tasks. In OSEK, two types of tasks can be defined:
basic and extended.

Basic tasks The basic tasks release the processor in two cases: When they complete
their execution or if they are pre-empted by other higher priority tasks. Thus, basic tasks
have three states: suspended, ready, and running, as shown in the state model in Figure
3.2, page 38:

• Suspended: This is the task’s passive state where it can be activated;

• Ready: Activated or preempted tasks are ready to run and waiting for processor
allocation. The scheduler chooses which task to execute;

• Running: Only one task can be in this state, executing its instructions.

Extended tasks The execution of an extended task can be waiting for an event when
using the operating system call WaitEvent. An event is an object defined by the appli-
cation and assigned to the extended tasks to communicate binary information or syn-
chronize tasks. The event mechanism induces the states of tasks to and from the wait-
ing state, as represented in Figure 3.3, page 38. That distinguishes extended from basic
tasks. Thus, when the state of the calling task is set to waiting, the task releases the CPU
and awaits an event. It can also wait for a resource or use a blocking instruction.

Task priority The priority of a task is defined by a numeric value, with 0 represent-
ing the lowest priority and greater values representing higher priorities. Different tasks
can share the same priority level; in this case, they can start considering their activation
FIFO order, and the oldest task on the same priority list is the first to be processed. Fig-
ure 3.4, page 39, shows several tasks of different priorities in the ready state. Depending

37

Trampoline real-time operating system

Ready

Running

Suspended

Activa
te

Preempt Start

Terminate

Figure 3.2: State model of a basic task.

Ready

Running

Suspended

Activa
te

Preempt Start

Terminate Release

Wait

Waiting

Figure 3.3: State model of an extended task.

38

Trampoline real-time operating system

...

n
Priority

1 0

FIFO queue

High low

Next task to be scheduled

Scheduler

Priority level

Figure 3.4: Tasks priority.

on the task’s priority, the scheduler selects the next task to be processed and decides
which ready task will become running.

Scheduling policy TheOSEK standard defines a fixed priority scheduling policy. The
tasks can be preemptive, non-preemptive, or belong to a task group; a task group is a set
of tasks that are non-preemptable by each other but can be preemptable by higher pri-
ority tasks in the application. Tasks in the group can share a common internal resource.
An internal resource is a resource that is automatically taken by a task when it enters
the running state, except if it has already taken the resource, and is released when the
task terminates. Priorities and preemption of tasks are statically assigned as attributes
of tasks. Therefore, the type of scheduling depends on the preemption attribute, regard-
less of the task type (basic or extended). Three possible scheduling types are defined
in OSEK.

• Full preemptive scheduling: The scheduler can preempt a running task to allo-
cate the CPU to a higher priority task;

• Non preemptive scheduling: The running task must complete its execution or be
waiting for an event to allow a higher priority ready task to start its execution;

• Mixedpreemptive scheduling: Scheduling can be both preemptive andnon-preemptive.
It depends on whether the task is defined as preemptable or non-preemptable.

API services The OSEK operating system provides several services; here are some
services grouped by category:

39

Trampoline real-time operating system

Tasks ActivateTask, TerminateTask, ChainTask, GetTaskState, GetTaskId;

Events synchronization between tasks. WaitEvent, SetEvent, ClearEvent, GetEvent;

Resources for single-core critical sections. GetResource and ReleaseResource;

Schedule table Similar to alarms but can only be bound to a counter assigned to the
same core. StartScheduleTableAbs, StartScheduleTableRel, GetScheduleTableSta-
tus, StopScheduleTable;

Application GetApplicationID, TerminateApplication, GetApplicationState.

Some of these OSEK operating system services ensure task management, such as:

• ActivateTask is used to activate a suspended or new task, setting its state to READY;

• TerminateTask allows terminating the running task, and its state is changed from
Running to Suspended;

• ChainTask activates a task after the termination of the calling task;

• Schedule permits the execution of the ready task with the highest priority. If the
calling task uses an internal resource, a rescheduling 1, occurs.

3.3.1.2 Interrupt handling

Interrupt processing is performedby an Interrupt ServiceRoutine (ISR),which is sched-
uled by the hardware and classified into two categories:

• ISR category 1: These interrupt service routines do not use any operating system
services, except services that enable or disable interrupts. The interrupt does not
influence task management. The program processing resumes at the instruction
where the interrupt occurred once the ISR is completed;

• ISR category 2: This ISR category can call operating system services with restric-
tions on their use. After the ISR category 2 has been terminated, rescheduling is
performed if a preemptable task has been interrupted and no other interrupt is
active.

1. Calling the scheduler another time.

40

Trampoline real-time operating system

3.3.2 Processing levels

OSEK-OSdefines three levels of processing: (i) interrupts, (ii) scheduler, and (iii) tasks.
The processing of interrupts has the highest priority, and the scheduler, defined as a
logical level, has a higher priority than the tasks. At the task level, tasks are scheduled
according to the user’s statically assigned priority and the interrupt processing can con-
sist of several interrupt priority levels.

3.3.3 Conformance classes

The Conformance Classes (CC) define multiple real-time executive versions to meet
application requirements. The OSEK operating system has four conformance classes
that allow it to be compatible with diverse applications and hardware. They depend on
themultiple requests of task activation, task types (basic or extended), and the number
of tasks per priority. The following are the four distinct levels:

• BCC1: This class contains only basic tasks with one task per priority and one ac-
tivation request per task;

• BCC2: Like BCC1, it allows multiple task activations and the possibility of more
than one task per priority level;

• ECC1: Like BCC1, it also supports extended tasks;

• ECC2: Like ECC1, it is possible to have multiple activations of a task andmultiple
tasks per priority level.

3.4 The AUTOSAR standard

AUTOSAR(AUtomotive Open System ARchitecture) is an industrial standard for auto-
motive software architecture, created in 2003. The objectives include scalability to differ-
ent vehicles, software portability, and the product’s lifecycle maintainability. AUTOSAR
is an evolution ofOSEK/VDX standard for the specification of operating systems [3]. Un-
like OSEK/VDX, it defines amulti-core design that implements a partitioned scheduling
policy with fixed priority. Partitioning is obtained by assigning the objects managed by

41

Trampoline real-time operating system

the OS (tasks, ISR, alarms, schedule tables, events, resources, ...) to an OS-Application2,
and the operating system module schedules processor resources for OS-Applications
bounded to cores. Partitioned scheduling involves statically allocating tasks to a ready
list per core before being scheduled and cannot migrate.

AUTOSAR architecture

The architecture proposed by AUTOSAR consists of three software layers that are exe-
cuted on a microcontroller, as shown in Figure 3.5, page 43:

• Application Layer: This layer includes the various software components of the
application that interact with the runtime environment and contain the functions
to be executed;

• Runtime Environment: It is a middleware that supports abstract communication
between the different application software components and between the Basic
Software and the applications;

• Basic Software Layer: It provides the necessary services to the upper software
layer and consists of several sublayers. The service layer is the highest sublayer and
contains various functions such as the Autosar OS, vehicle network communica-
tions, and management memory service. The Microcontroller Abstraction Layer
(MCAL) accesses the peripheral modules of the hardware. The ECU Abstraction
Layer is an interface to theMCAL and provides access to peripherals and devices.
The complex Drivers layer can access the microcontroller directly, and are used
mainly for complex functions not found on other layers.

3.5 Trampoline RTOS

Trampoline is a Real-Time Operating System (RTOS) developed by the STR (Real Time
Systems) group of the LS2N laboratory in Nantes, France. This operating system is
OSEK/VDX 2.2.3 and AUTOSAR 4.0 compliant [8]. Trampoline is mostly written in C

2. An OS-Application is an object allowing to gather tasks, ISR, ... to assign them to a computing
core but also to restrict interactions between objects belonging to different OS-Applications in order to
improve security and safety.

42

Trampoline real-time operating system

Runtime Environment (RTE)

Application Layer

Microcontroller

Service Layer

ECU Abstraction Layer

Microcontroller Abstraction
 Layer

Complex Drivers

Basic Software Layer

Figure 3.5: AUTOSAR architecture.

language with some parts, like context switching, written in assembly language be-
cause they depend on the Instruction Set Architecture (ISA) of the microcontroller.
The source code is over 20,000 lines long and includes 180 functions for the target-
independent part. The operating system occupies few resources, both memory and
CPU, and is suitable for both 8-bit and 32-bit targets. It offers the classic services:

• Management and scheduling of tasks according to a fixed priority scheduling pol-
icy;

• Synchronization between tasks via signaling (events) and mutual exclusion (re-
sources) mechanisms;

• Periodic execution of tasks or setting of events (alarms and schedule tables);

• Communication between tasks on the same Electronics Control Unit (ECU) or
running on different ECUs;

• Interrupt Service Routines (ISR) management.

43

Trampoline real-time operating system

Kernel sources
(.c/.h)

OS infrastructure
(.c/ .asm)

OIL application
description

Application
sources (.c / .h)

XML application
description

Templates
(.goilTemplate)

Static data
structures
(c/.h)

GOIL
Compiler

C compiler
+ linker

Executable
code

(binary)

Figure 3.6: Trampoline application configuration.

The OSEK/VDX and AUTOSAR OS are configured according to the application. The
objects necessary for the application, tasks, ISRs, alarms, ... are described with their re-
lations in the dedicated language OIL for OSEK/VDX and in XML for AUTOSAR. A ded-
icated compiler called GOIL reads this description and, using templates described in
a Goil template language (GTL), produces C data structures (task descriptors, alarms,
etc.) and code that is then compiled and linked with the OS and application code, as
shown in Figure 3.6, page 44.

3.5.1 Mono-core Trampoline architecture

The mono-core architecture of Trampoline consists of three components, as shown in
Figure 3.7, page 45, which are as follows:

1. The API (Application Programming Interface) includes the services defined by
OSEK/VDX and AUTOSAR standards. AUTOSAR OS adds services to OSEK/VDX,
limiting some configurations. The operating system manages several types of ob-
jects: tasks, Interrupt Service Routines (ISR), resources that are used to implement
critical sections using the IPCP protocol, a variant of PCP [79], or alarms that are
used to implement periodic tasks or to set an event;

2. The Kernel contains all the low-level functions on which the API services are

44

Trampoline real-time operating system

API
OSEK/VDX services AUTOSAR services

Task Event Alarm

OS Resource Interrupt

ISR Counter Application

Schedule
Table

Global
Time Communication

Kernel

Interrupt dispatcher Counter manager Task manager Scheduler

BSP

External
Interrupt
handler

Memory
protection
manager

System
call

handler

Context
switch

manager

Figure 3.7: Mono-core Trampoline architecture.

based. These C-language-implemented functions allow the management of tasks
and their scheduling and ensure the handling of counters and treatment of inter-
rupts;

3. The BSP (Board Support Package) is the low-level function part of the Tram-
poline that depends on the target machine. It contains modules that handle calls
to API services and context switch of tasks, implemented in assembler. In addi-
tion, there is a component to handle interrupts from external sources like a timer
and amemory protectionmodule tomanage access rights to the operating system
memory.

Start-up The OS starts with the StartOS service call in the AppModeID application
mode. The operating system first performs some hardware-specific and application ini-
tializations. Some tasks can be defined as AUTOSTART; if they exist, they are activated.
Autostart tasks are ready to be executed after the operating system’s start-up. Then
Trampoline calls the scheduler, and the CPUwill be allocated to the autostart task with
the highest priority. If no task is available, a particular idle task runs. Its priority is set

45

Trampoline real-time operating system

to 0 (i.e. the lowest priority in the system), while the application tasks have a priority
greater than or equal to 1.

Scheduling In OSEK/VDX, the scheduling policy uses a static priority assigned to
each task which can be in 4 states: suspended, waiting (if extended), ready, and run-
ning. In Trampoline, two extra states are used for internal management: Autostart and
ready_and_new. An autostart task is automatically activated when StartOS is called.
The ready_and_new state is used for a ready task, but its context is uninitialized. That
occurs when the task has just been activated for the first time.

The scheduler of Trampoline manages a ready task queue dynamically during the
execution of the application according to their priority and whether they are preempt-
able or not. This queue is a FIFO list table, as shown in Figure 3.4, page 39, where the
tasks are ordered by priority or activation order if their priorities are equal. The priority
and the preemptability of a task are set in the OIL task description using the PRIORITY

and the SCHEDULE attributes, respectively. The scheduler uses functions to handle the
ready list of tasks, such as tpl_put_new_proc, which puts a new process in a ready list,
tpl_put_preempted_proc to put a preempted process in a ready list, and tpl_remove_proc

for removing all the process instances in the ready queue.
The scheduler also manages a data structure called tpl_kern. This implemented

structure contains all the data about a task during its execution. It points to the static
and dynamic task descriptors represented in the C data structure file (Listing 3.1, page
46), storing all the information describing the task in memory (identifier, priority, type,
state, etc.). The static descriptor contains the data that is not susceptible to vary and
stored in the ROM(Read-OnlyMemory). The dynamic descriptor contains information
that is updated during execution and which can be stored in RAM (Random Access
Memory). tpl_kern thus gathers several pieces of information: the currently running
task, the task that has been selected to replace the currently running task (if any) after
a rescheduling, a flag indicating if a rescheduling shall be done (need_schedule), a flag
indicating if a context switch shall be done (need_switch) and, finally, a flag indicating
if a context save shall be done (need_save). The stored information is detailed below:

Listing 3.1: tpl_kern data structure
typedef struct
{

46

Trampoline real-time operating system

/* Pointer to the static descriptor of the running / elected task */
P2CONST (tpl_proc_static , TYPEDEF , OS_CONST) s_running ;
P2CONST (tpl_proc_static , TYPEDEF , OS_CONST) s_elected ;

/* Pointer to the dynamic descriptor of the running / elected task */
P2VAR(tpl_proc , TYPEDEF , OS_VAR) running ;
P2VAR(tpl_proc , TYPEDEF , OS_VAR) elected ;

/* The identifier of the task being executed / elected */
VAR(sint32 , TYPEDEF) running_id ;
VAR(sint32 , TYPEDEF) elected_id ;

/* This field indicates a context switch is needed after calling a service */
VAR(uint8 , TYPEDEF) need_switch ;

/* Boolean used to notify a rescheduling should be done */
VAR(tpl_bool , TYPEDEF) need_schedule ;

/* Boolean used to indicate a context save of the process that loses the
* CPU should be done */

VAR(tpl_bool , TYPEDEF) need_save ;

} tpl_kern_state ;

tpl_kern_state tpl_kern ;

The scheduler allows the manipulation of state transitions (Figure 3.3, page 38) via
the following functions:

• 𝑡 𝑝𝑙_𝑠𝑡𝑎𝑟𝑡 (): Start the highest priority ready job at the top of the ready list. Its in-
formation is copied into the elected attributes of the 𝑡 𝑝𝑙_𝑘𝑒𝑟𝑛 structure.

• 𝑡 𝑝𝑙_𝑝𝑟𝑒𝑒𝑚𝑝𝑡 (): Preempt the running process, and its state is switched from the
running state to the ready state.

• 𝑡 𝑝𝑙_𝑟𝑢𝑛_𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (): The elected process becomes the running process, and the run-
ning process is preempted. This function copies the elected attributes of 𝑡 𝑝𝑙_𝑘𝑒𝑟𝑛
into the running attributes.

All the above functions thatmanipulate the task states are called by the 𝑡 𝑝𝑙_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒_𝑠𝑒𝑟𝑣𝑖𝑐𝑒
function, which calls the principle scheduling function 𝑡 𝑝𝑙_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒_ 𝑓 𝑟𝑜𝑚_𝑟𝑢𝑛𝑛𝑖𝑛𝑔3

3. 𝑡 𝑝𝑙_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒_𝑠𝑒𝑟𝑣𝑖𝑐𝑒 calls 𝑡 𝑝𝑙_𝑠𝑡𝑎𝑟𝑡 () and 𝑡 𝑝𝑙_𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ()

47

Trampoline real-time operating system

and then performs a context switch to run the elected process.

Context switch The context switch is performed when the scheduler indicates that it
is necessary through the need_switch flag of the tpl_kern data structure. For example,
the context switch is performed when a task is preempted, its context is saved, and the
elected task’s context is restored. The scheduler updates the elected task in the tpl_kern

structure. In task termination, it is necessary to perform a context switchwithout saving
its context. Thus, the need_switch field takes the value NO_NEED_SWITCH when no context
switch is required and the NEED_SWITCH value when it is necessary to perform a context
switch. NEED_SAVE indicates the need to save the context of the process that loses theCPU
and restore the elected one. The context switch is done between the running and the
elected task when they are different. The elected attributes of the tpl_kern structure are
copied to the running ones in the tpl_run_elected function called at the context switch.

Calling operating system services In Trampoline, the call to an OS service is made
in a wrapping function through a dedicated instruction of the microcontroller4 which,
acting as a software interrupt, transfers the execution to a system call handler in super-
visor mode. The latter is in charge of calling the corresponding kernel function. In the
process, the interrupts are masked. That prevents an interrupt routine calling the OS
from running simultaneously and the internal data structures of the operating system
from being corrupted.

The execution of service without a context switch in the mono-core implementation
is shown in Figure 3.8, page 49. The execution of service when there is a context switch
to a newly activated task in the mono-core implementation is given in Figure 3.9, page
49. sc is the service call in the PowerPC instruction set and rfe is the return.

Two data structures are used to manage rescheduling and context switching: the list
of ready tasks and the tpl_kern structure. tpl_kern gathers several pieces of informa-
tion represented in Listing 3.1, and its flags are reset in the system call handler before
calling the kernel function in the call sequence shown in Figure 3.9, page 49. If the ker-
nel function performs an operation that adds a task to the list of ready tasks or if the
task being executed ends (TerminateTask or ChainTask services), need_schedule is set,
and the kernel function ends by performing a rescheduling. If the rescheduling leads
to a context switch, the need_switch flag is set, and the context switch is performed at

4. at least for the microcontrollers that have it

48

Trampoline real-time operating system

Task Wrapping
function

System call
handler

Kernel
function

tim
e

No context
switching

sc

rfe

Su
pe

rv
is
or

M
od

e
m
as
ke

d
in
te
rr
up

ts

Application Kernel

Figure 3.8: Flow of a service execution without context switching.

Task Wrapping
function

System call
handler

Kernel
function

tim
e

Context
switching

sc

rfe

Su
pe

rv
is
or

M
od

e
m
as
ke

d
in
te
rr
up

ts

Application Kernel

Figure 3.9: Flow of a service execution with context switching.

49

Trampoline real-time operating system

API
OSEK/VDX services AUTOSAR services

Task Event Alarm

OS Resource Interrupt

ISR Counter Application

IOC

Spinlock

Schedule
Table

Global
Time Communication

Kernel

Interrupt dispatcher Counter manager Task manager Scheduler

BSP

External
Interrupt
handler

Memory
protection
manager

System
call

handler

Context
switch

manager

Inter-core
interrupt
handler

Figure 3.10: Multi-core Trampoline architecture.

the end of the system call handler just before returning to the newly scheduled task.

3.5.2 Multi-core Trampoline architecture

The multi-core version of the Trampoline presents an extension of its mono-core archi-
tecture shown in Figure 3.10, page 50. Lock services and an inter-core interrupt handler
have been added to deal with the simultaneous execution of the kernel and services on
two or more different cores, as well as inter-core interactions and communication. The
IOC module provides communication between OS-Applications and transmits data
based on the RunTime Environment (RTE) configuration information.

Multi-Core start-up In the multi-core configuration of Trampoline, the cores are dis-
tinguished by their identifier and start with the master-slave system. The master core is
activated first, and then the slave cores are started. All cores are synchronized through
two barriers with the StartOS service call. The first synchronization point occurs before
the operating system is initialized, and the OS-application-specific StartupHooks are
executed on the core to which they are bound. The second barrier is after the end of

50

Trampoline real-time operating system

StartupHooks and before the scheduler starts.

The global lock In the multi-core implementation, interrupt masking is not enough.
Indeed, it is necessary to prevent the OS kernel from running simultaneously on two
or more cores if the called service can access data structures of the OS that are common
to the cores. For this purpose, the kernel can be executed on two different cores with
sequential access through a global lock. This lock protocol is called the Biglock in Tram-
poline. The kernel is locked during a system call, preventing more than one core from
entering the kernel mode or handling interrupts simultaneously. When a core calls a
service, it acquires the Biglock and only returns it at the end of its execution before leav-
ing kernel mode. Thus, the other cores wait for the lock to be released. Nevertheless,
spinlocks and startup services can run in parallel and simultaneously on several cores
with no Biglock.

Scheduling Trampoline implements a partitioned scheduling policy with fixed prior-
ities for its multi-core version. The tasks are statically allocated to each core that has its
ready list. This ready list is represented by a binary heapwhere each entry has a key for
sorting and the process ID. The key is the concatenation of the job 5 priority and the job
rank. The heap size is computed with the sum of the process activations. The head of
the queue contains the highest priority job. Thus the tpl_put_new_proc function inserts a
newly activated job into the heap according to its calculated priority (i.e., static priority
and activation rank), unlike themono-core version where the job is placed at the end of
the FIFO list corresponding to its priority. Scheduling is performed on the core where
it is triggered and can lead to preemption and context switching on another core. To
better separate the information for each core, the data structure tpl_kern (Listing 3.1),
managed by the scheduler, is duplicated according to the core number.

Executing a multi-core service call The entry in the multi-core critical section pro-
tected by the Biglock is made at the beginning, and then the exit at the end of the system
call handler.

When a service is called and results in a rescheduling, for example, if one task acti-
vates another, the rescheduling is performed on the core where the service call occurs.
Thus, when a task running on core 0 activates a task assigned to core 1, the task ac-

5. Each activation of a process is a job.

51

Trampoline real-time operating system

tivation service is performed on core 0 and modifies the list of ready tasks of core 1.
Additionnally, when this activation requires a context switch on core 1, it must neces-
sarily be performed on core 1 as well. To trigger this context switch, core 0 therefore
sends an inter-core interrupt request to core 1, and the interrupt routine which will ex-
ecute on core 1 will perform the context switch. This sequence is illustrated in Figure
3.11, page 52:

1. In AO, a rescheduling is performed by core 0 for core 1;

2. In BO, an inter-core interrupt is sent to notify core 1 that it must make a context
switch;

3. The interrupt is handled by core 1, which blocks on an active wait for the release
of the Biglock in CO;

4. Core 0 releases the Biglock in DO. The release of the Biglock allows core 1 to take it
and to enter the critical multi-core section;

5. Finally core 1 performs the context switch from task 𝜏1 to task 𝜏2.

tim
e

Core 0

Task Wrapping
function

System call
handler

Kernel
function

𝜏0

A B

D

𝜏0

ActivateTask(𝜏2)

Application Kernel

Su
pe

rv
is
or

m
od

e
M
as
ke

d
in
te
rr
up

ts
M
ul
ti-

co
re

cr
iti
ca
l

se
ct
io
n

Application Kernel

Core 1

Task Inter-core IT
handler

𝜏1

C
spin

ctx
switch

𝜏2

Su
pe

rv
is
or

m
od

e
M
as
ke

d
in
te
rr
up

ts

M
ul
ti-
co
re

cr
iti
ca
ls

ec
tio

n

Figure 3.11: The activation of a task 𝜏2 on core 1 by a task 𝜏0 running on core 0.

52

Trampoline real-time operating system

Having simultaneous service calls in parallel on several cores leads to a more com-
plex scheme, especially if a core is the target of an inter-core interrupt while executing
a service call that leads to a rescheduling. We can thus extend the example presented
in Figure 3.11, page 52, with task 𝜏1 making a service call on core 1, e.g. TerminateTask,
just after ActivateTask has been called by task 𝜏0 on core 0. This scenario is presented
in Figure 3.12, page 54:

1. In AO, a rescheduling is performed by core 0 for core 1 and in parallel, core 1 waits
for the Biglock in BO;

2. An inter-core interrupt is sent in CO to notify core 1 that it must make a context
switch, but since the interrupts are masked on core 1, it remains pending;

3. Core 0 releases the Biglock by DO. The release of the Biglock allows core 1 to take it
and to execute the TerminateTask() service;

4. The context switch to the 𝜏2 task is carried out, the Biglock is released, and core 1
returns to user mode to immediately take into account the inter-core interrupt by
EO;

5. The execution of this inter-core interrupt consists essentially in acknowledging the
interrupt and does not lead to a context switch because 𝜏2 is the highest priority
task on core 1;

6. We finally return to the execution of 𝜏2.

3.6 Conclusion

In this chapter,wefirst presented the two automotive standards,OSEK/VDX andAUTOSAR,
on which the Trampoline real-time operating system is based. Then, we presented the
mono-core and multi-core architectures of Trampoline, explaining the execution of the
operating system service calls in both versions. In the next chapter, we will present the
modeling formalism used to describe the Trampoline operating system in order to ap-
ply our formal verification approach.

53

Trampoline real-time operating system

tim
e

Core 0

Task Wrapping
function

System
call

handler

Kernel
function

𝜏0

A C

E

D

𝜏0

ActivateTask(𝜏2)

Su
pe

rv
is
or

m
od

e
M
as
ke

d
in
te
rr
up

ts
M
ul
ti-

co
re

cr
iti
ca
l

se
ct
io
n

Application Kernel

Core 1

Task Wrapping
function

System
call

handler

Kernel
function

𝜏1

spin
B

ctx
switch

ctx
switch

𝜏2

TerminateTask()

Su
pe

rv
is
or

m
od

e
M
as
ke

d
in
te
r-

ru
pt
s

M
ul
ti-

co
re

cr
iti
ca
l

se
ct
io
n

Su
pe

rv
is
or

m
od

e
M
as
ke

d
in
te
r-

ru
pt
s

M
ul
ti-
co
re

cr
iti
ca
ls

ec
tio

n

Application Kernel

Figure 3.12: The activation of a task 𝜏2 on core 1 by a task 𝜏0 running on core 0 in parallel
with the termination of the task 𝜏1 on core 1.

54

Part II

Contribution

55

Chapter 4

HIGH-LEVEL COLORED TIME PETRI

NETS FOR MULTI-CORE CONCURRENCY

4.1 Introduction

Implementing multi-core real-time systems requires concurrent access in true paral-
lelism to shared resources. Time Petri nets do not capture these features directly and
are unsuitable for modeling systems where data affects the system’s behavior. High-
level Petri nets [80] have been proposed for modeling scientific problems with com-
plex structures allowing the description of both system data and control. We propose
extending time Petri nets with color and high-level functionality in this chapter. We
present in detail the High-level Colored Time Petri Nets (HCTPN) used to describe the
Trampoline real-time operating system. HCTPN with stopwatches are used to model
preemptive real-time systems.

4.2 Informal presentation

4.2.1 Petri nets

Petri nets are a mathematical formalism and one of the manymodeling languages used
to describe distributed concurrent systems. A Petri net is a directed bipartite graph
whose vertices are places and transitions. A place can contain any number of tokens. A
marking 𝑀 of a Petri Net is a vector representing the number of tokens of each place. A
transition is enabled (it may fire) in 𝑀 if there are enough tokens in its input places for
the consumption to be possible. Firing a transition from a marking 𝑀 consumes tokens
from each of its input places and produces tokens in each of its output places.

56

High-level Colored Time Petri Nets for multi-core concurrency

4.2.2 High-level Petri nets

Petri nets can be classified into two classes: ordinary Petri nets and high–level Petri nets.
High-level Petri nets [80] are proposed for modeling scientific problems with complex
structures and manipulating different types of expressions made up of variables and
written in terms of a predefined syntax. In high-level nets, each token can carry complex
information which, e. g., may describe the entire state of a process or a database and
handle different expressions and data structures.

The precondition (guard) and postcondition (update) over a set of variables (𝑋)
are associated with transitions. A transition is enabled (it may fire) if there are enough
tokens in its input places and if the guard is true. When the transition fires, the cor-
responding updates are executed, modifying the values of the variables. The variables
take their values in a finite state (such as bounded integer or enumerate type...), guards
are boolean expressions over 𝑋 , and updates can be described as a sequence of imper-
ative code expressed in a programming language but whose execution is atomic from
the transition firing point of view.

4.2.3 Colored Petri nets

The colored extension of Petri nets allows the distinction between tokens.
Although the set 𝑋 of High-level Petri nets presented in the previous paragraph can

be of arbitrarily complex type, places in colored Petri nets contain tokens of one type.
This type noted 𝐶 is called the color set of the place.

An arc from a place to a transition (PT) specifies the color(s) that enabled the tran-
sition, and its firing will consume it. An arc from a transition to a place (TP) specifies
the token color produced in that place by the firing of the transition. A particular color
called any indicates in a PT arc that any color enabled the transition, and in a TP arc that
the color consumed in the input place will be the one produced in the output place.

A marking M of a colored Petri Net represents not only the number of tokens in
each place but also their respective colors. That is represented either by a multiset or
by a matrix.

57

High-level Colored Time Petri Nets for multi-core concurrency

4.2.4 Time Petri Nets

TimePetri nets (TPN) extendPetri netswith temporal intervals (such as [𝛼, 𝛽] or [𝛼, +∞[)
associated with transitions, specifying firing delay ranges for the transitions. Assuming
transition 𝑡 became last enabled at time 𝑑 and the endpoints of its firing interval are 𝛼
and 𝛽, then 𝑡 cannot fire earlier than 𝑑+𝛼 andmust fire no later than 𝑑+𝛽 unless disabled
by the firing of another transition. Firing a transition takes no time.

To describe the semantics of TPN, we usually consider that a clock is associatedwith
each transition. This clock is set to zero when the transition is newly enabled, and the
transition fires when the value of the clock is in the firing interval.

4.2.5 Colored Time Petri Nets

For real parallelism or with interleaving semantics of timed systems, the notion of mul-
tiple enableness is needed. It refers to the fact that a transition is enabled at least twice in
the same state, which implies a dynamic number of timers. Multiple enableness in time
Petri nets is a natural way for modeling paradigms like multiple servers and multiple
instances of codes [81].

For Colored Time Petri Nets, multiple enableness occurs when several combinations
of colors enable a transition at a given time. In this case, there can be at most one clock
per color and per transition.

4.2.6 Time Petri Nets with stopwatches

Time Petri nets with stopwatches, extend TPN by adding the notion of stopwatch: in-
stead of the clocks, a stopwatch is associated with each transition. The time derivative
of the stopwatch of a transition is in the set of rate {0, 1} and is given by a function
fromMarkings. Hence the time associated with a transition can be suspended and later
resumed at the same point. Moreover, transition with a 0 time derivative can not fired.

Since the clocks are replaced by stopwatches, in the case of Colored Time Petri Nets
with stopwatches, there is at most one stopwatch per color and per transition.

58

High-level Colored Time Petri Nets for multi-core concurrency

4.3 Formal definition

We consider a Petri Nets model which encompasses both colors, high-level functional-
ities and stopwatches. We now give the formal definition.

4.3.1 High-level Colored Time Petri Net

Notations The sets N, Q≥0, and R≥0 are respectively the sets of natural, non-negative
rational, and non-negative real numbers. An interval 𝐼 of R≥0 is a Q-interval iff its left
endpoint ↑𝐼 belongs to Q≥0 and its right endpoint 𝐼↓ belongs to Q≥0 ∪ {∞}. We denote
by I(Q≥0) the set of Q-intervals of R≥0.

𝐵𝐴 stands for the set of mappings from 𝐴 to 𝐵. If 𝐴 is finite and |𝐴| = 𝑛, an element
of 𝐵𝐴 is also a vector in 𝐵𝑛. The usual operators +,−, < and = are used on vectors of 𝐴𝑛

with 𝐴 = N,Q,R and are the point-wise extensions of their counterparts in 𝐴.

4.3.1.1 Definition and semantics

Colored Petri nets allow tokens to have a data value called the token color. In the ap-
plications we are considering, the color of a token actually represents the processor on
which the code is executed. We therefore consider token of integer type that designates
the processor number. Moreover we add a special color called any to specify that any
color can be used for enabling and firing a transition.

We consider a set𝐶 of colors. An arc is either associated with a color of𝐶 or can take
on the particular color called any. For the firing of a transition, all its arcs associatedwith
the any color must match to instantiate any at the same color taken from 𝐶.

If several values of any allow its enabling, the transition is multi-enabled, and in this
case, several clocks (one per color) are associated with the transition, allowing several
firing dates depending on the enabling date and the time interval.

The formal definition is as follows.

Definition 1 (High-level Colored Time Petri Net) AHigh-level ColoredTimePetriNet
(HCTPN) is a tuple N = (𝑃,𝑇, 𝑋, 𝐶,pre,post, (𝑚0, 𝑥0), 𝑔𝑢𝑎𝑟𝑑, 𝑢𝑝𝑑𝑎𝑡𝑒, 𝐼) where

• 𝑃 is a finite non-empty set of places,

• 𝑇 is a finite set of transitions such that 𝑇 ∩ 𝑃 = ∅,

59

High-level Colored Time Petri Nets for multi-core concurrency

• 𝑋 is a finite set of variables taking their value in the finite setX (such as bounded integer),

• 𝐶 is a finite set of colors and 𝐶𝑎𝑛𝑦 = 𝐶 ∪ {𝑎𝑛𝑦} where any is a variable that can be
instantiated to any value of 𝐶,

• pre : 𝑃 × 𝑇 → N𝐶𝑎𝑛𝑦 is the backward incidence mapping,

• post : 𝑃 × 𝑇 → N𝐶𝑎𝑛𝑦 is the forward incidence mapping,

• 𝑔𝑢𝑎𝑟𝑑 : 𝑇 × 𝑋 × 𝑃 ×𝐶• → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} is the guard function with 𝐶• = 𝐶 ∪ {•} where
• denotes the fact that no color is specified,

• 𝑢𝑝𝑑𝑎𝑡𝑒 : 𝑇 × 𝑋 × 𝑃 × 𝐶• → X𝑋 × N𝑃×𝐶 is the update function,

• (𝑚0, 𝑥0) ∈ N𝑃×𝐶 × X𝑋 → is the initial values 𝑚0 of the marking and 𝑥0 of the variables,

• 𝐼 : 𝑇 → I(Q≥0) is the static firing interval function.

4.3.1.2 Discrete behavior

For a marking 𝑚 ∈ N𝑃×𝐶 , 𝑚(𝑝) is a vector in N𝐶 , and 𝑚(𝑝) [𝑐] represents the number of
tokens of color 𝑐 ∈ 𝐶 in place 𝑝 ∈ 𝑃. A valuation of the set of variables 𝑋 is noted 𝑥 ∈ X𝑋 .
(𝑚, 𝑥) is a discrete state of HCTPN.

4.3.1.2.1 Enabling a transition. Informally, an arc is associated either with a color
𝑐 ∈ 𝐶 or with a particular color called any. To enable transition 𝑡, a place 𝑝 with an arc
from 𝑝 to 𝑡 must have enough tokens with the arc’s color. Moreover, all the arcs of 𝑡
associated with anymust agree on the color given to any. Therefore, we forbid an arc to
be associated with both any and a color 𝑐 ∈ 𝐶.

An arc pre(𝑝, 𝑡) ∈ N𝐶𝑎𝑛𝑦 is a vector such that pre(𝑝, 𝑡) [𝑐] is the number of tokens of
color 𝑐 ∈ 𝐶 in place 𝑝 needed to enable the transition 𝑡 and pre(𝑝, 𝑡) [𝑎𝑛𝑦] > 0 represents
the fact that any color can enable the transition. Let 𝑇𝑎𝑛𝑦 ∈ 𝑇 the set of transitions that
can be enabled by 𝑎𝑛𝑦 color: i.e.𝑇𝑎𝑛𝑦 = {𝑡 ∈ 𝑇, ∃𝑝 ∈ 𝑃, s.t. pre(𝑝, 𝑡) [𝑎𝑛𝑦] > 0 }.Moreover,
we define the set 𝑇𝑎𝑛𝑦 = 𝑇 \ 𝑇𝑎𝑛𝑦.

A transition 𝑡 ∈ 𝑇 is said to be enabled by a given marking 𝑚 ∈ N𝑃×𝐶 in two cases
depending on whether 𝑡 ∈ 𝑇𝑎𝑛𝑦 or not:

• if 𝑡 ∈ 𝑇𝑎𝑛𝑦, and ∀𝑝 ∈ 𝑃 and ∀𝑐 ∈ 𝐶, 𝑚(𝑝) [𝑐] ≥ pre(𝑝, 𝑡) [𝑐]. We denote en(𝑚, 𝑡) ∈
{𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}, the true value of this condition.

60

High-level Colored Time Petri Nets for multi-core concurrency

• if 𝑡 ∈ 𝑇𝑎𝑛𝑦, and ∃𝑐𝑎 ∈ 𝐶 such that ∀𝑝 ∈ 𝑃, 𝑚(𝑝) [𝑐𝑎] ≥ pre(𝑝, 𝑡) [𝑎𝑛𝑦] and ∀𝑐 ∈ 𝐶 \
{𝑐𝑎},𝑚(𝑝) [𝑐] ≥ pre(𝑝, 𝑡) [𝑐]. The corresponding set of color 𝑐𝑎 is noted colorSetany (𝑚, 𝑡) ⊆
𝐶

Finally, a transition 𝑡 ∈ 𝑇 is said to be enabled by a given marking 𝑚 ∈ N𝑃×𝐶 and a
valuation 𝑥 ∈ X𝑋 if en(𝑚, 𝑡) = 𝑡𝑟𝑢𝑒 and either colorSetany (𝑚, 𝑡) = ∅ and 𝑔𝑢𝑎𝑟𝑑 (𝑚, 𝑡, 𝑥, •) =
𝑡𝑟𝑢𝑒 or ∃𝑐𝑎 ∈ colorSetany (𝑚, 𝑡) ≠ ∅ and 𝑔𝑢𝑎𝑟𝑑 (𝑚, 𝑡, 𝑥, 𝑐𝑎) = 𝑡𝑟𝑢𝑒 .

We illustrate the enabling conditionwith two exampleswith two colors𝐶 = {𝑏𝑙𝑢𝑒, 𝑟𝑒𝑑}
For the HCTPN given in Figure 4.1.a, the transition 𝑇1 ∈ 𝑇𝑎𝑛𝑦.

We have pre(𝑇1) =
©­­­­­«

𝑟𝑒𝑑 𝑏𝑙𝑢𝑒 𝑎𝑛𝑦

𝑃1 0 1 0
𝑃2 1 0 0
𝑃3 0 1 0
𝑃4 0 0 0

ª®®®®®¬
. The initial marking is 𝑚0 =

©­­­­­«

𝑟𝑒𝑑 𝑏𝑙𝑢𝑒

𝑃1 1 1
𝑃2 1 0
𝑃3 0 1
𝑃4 0 0

ª®®®®®¬
that

enables the transition 𝑇1 and en(𝑚0, 𝑇1) = 𝑡𝑟𝑢𝑒.

𝑃1 𝑃2 𝑃3

𝑇1
[2, 3]

blue red blue

•• • •
𝑃1 𝑃2 𝑃3

𝑇1
[2, 3]

𝑃4

any any
blue

•• • •

𝑃4𝑃4

anyblue

4.1.a: 𝑇1 ∈ 𝑇𝑎𝑛𝑦 4.1.b: 𝑇1 ∈ 𝑇𝑎𝑛𝑦

Figure 4.1: Enabling transition

Now we consider the HCTPN given in Figure 4.1.b with the same initial marking
𝑚0 but where the transition 𝑇1 ∈ 𝑇𝑎𝑛𝑦 since at least one arc (here two) is associated with
the color 𝑎𝑛𝑦.

We have pre(𝑇1) =
©­­­­­«

𝑟𝑒𝑑 𝑏𝑙𝑢𝑒 𝑎𝑛𝑦

𝑃1 0 0 1
𝑃2 0 0 1
𝑃3 0 1 0
𝑃4 0 0 0

ª®®®®®¬
. The transition is enabled only if 𝑎𝑛𝑦 takes

the 𝑟𝑒𝑑 value then colorSetany (𝑚0, 𝑇1) = {𝑟𝑒𝑑}. If place 𝑃2 had two tokens with one
token per color, then the transition would be multi-enabled by the two colors leading
to colorSetany (𝑚0, 𝑇1) = {𝑏𝑙𝑢𝑒, 𝑟𝑒𝑑}.

61

High-level Colored Time Petri Nets for multi-core concurrency

4.3.1.2.2 The firing of a transition. An arc post(𝑝, 𝑡) ∈ N𝐶𝑎𝑛𝑦 is a vector such that
post(𝑝, 𝑡) [𝑐] is the number of tokens of color 𝑐 ∈ 𝐶 produced in place 𝑝 by the firing of
the transition 𝑡, and post(𝑝, 𝑡) [𝑎𝑛𝑦] gives the number of tokens produced in 𝑝 with the
color 𝑐 ∈ colorSetany (𝑚, 𝑡) used for the enabling and then for the firing of 𝑡.

Firing an enabled transition 𝑡 ∈ 𝑇𝑎𝑛𝑦 from (𝑚, 𝑥) such that en(𝑚, 𝑡) = 𝑡𝑟𝑢𝑒 and
𝑔𝑢𝑎𝑟𝑑 (𝑚, 𝑡, 𝑥, •) = 𝑡𝑟𝑢𝑒 leads to a newmarking 𝑚′ defined by ∀𝑐 ∈ 𝐶,∀𝑝 ∈ 𝑃, 𝑚′(𝑝) [𝑐] =
𝑚(𝑝) [𝑐] − pre(𝑝, 𝑡) [𝑐] + post(𝑝, 𝑡) [𝑐] and a new valuation 𝑥′ = 𝑢𝑝𝑑𝑎𝑡𝑒(𝑚, 𝑡, 𝑥, •). This
new marking is denoted 𝑚′ = firing(𝑚, 𝑡, •) where • denotes the fact that no any color
has to be instantiated for this firing.

Firing an enabled transition 𝑡 ∈ 𝑇𝑎𝑛𝑦 from (𝑚, 𝑥)with the any color 𝑐𝑎 ∈ colorSetany (𝑚, 𝑡)
leads to a new marking defined by ∀𝑐 ∈ 𝐶 \ {𝑐𝑎},∀𝑝 ∈ 𝑃, 𝑚′(𝑝) [𝑐] = 𝑚(𝑝) [𝑐] −
pre(𝑝, 𝑡) [𝑐]+post(𝑝, 𝑡) [𝑐] and∀𝑝 ∈ 𝑃,𝑚′(𝑝) [𝑐𝑎] = 𝑚(𝑝) [𝑐𝑎]−pre(𝑝, 𝑡) [𝑐𝑎]−pre(𝑝, 𝑡) [𝑎𝑛𝑦]+
post(𝑝, 𝑡) [𝑐𝑎] + post(𝑝, 𝑡) [𝑎𝑛𝑦] and a new valuation 𝑥′ = 𝑢𝑝𝑑𝑎𝑡𝑒(𝑚, 𝑡, 𝑥, 𝑐𝑎). This new
marking is denoted 𝑚′ = firing(𝑚, 𝑡, 𝑐𝑎).

We denote by newen((𝑚, 𝑥), 𝑡, 𝑐) the set of transitions that are newly enabled by the
firing of 𝑡 from (𝑚, 𝑥) with the color 𝑐 (𝑐 = • if 𝑡 ∈ 𝑇𝑎𝑛𝑦).

Let us go back to the HCTPN of Figure 4.1.a, the firing of 𝑇1 ∈ 𝑇𝑎𝑛𝑦 from 𝑚0 leads to

the marking 𝑚1 =

©­­­­­«

𝑟𝑒𝑑 𝑏𝑙𝑢𝑒

𝑃1 1 0
𝑃2 0 0
𝑃3 0 0
𝑃4 0 1

ª®®®®®¬
. It is noted 𝑚0

(𝑇1,•)−−−−→ 𝑚1.

Let us now consider theHCTPNof Figure 4.1.b, the firing of𝑇1 ∈ 𝑇𝑎𝑛𝑦 is possible only

for 𝑎𝑛𝑦 = 𝑟𝑒𝑑 and leads to the marking 𝑚2 =

©­­­­­«

𝑟𝑒𝑑 𝑏𝑙𝑢𝑒

𝑃1 0 1
𝑃2 0 0
𝑃3 0 0
𝑃4 1 0

ª®®®®®¬
. It is noted 𝑚0

(𝑇1,𝑟𝑒𝑑)−−−−−−→ 𝑚2.

If place 𝑃2 had two tokens with one blue and one red color, 𝑇1 is multi-enabled, and
the firing of 𝑇1 ∈ 𝑇𝑎𝑛𝑦 is possible for 𝑎𝑛𝑦 = 𝑟𝑒𝑑 or 𝑎𝑛𝑦 = 𝑏𝑙𝑢𝑒. For 𝑎𝑛𝑦 = 𝑏𝑙𝑢𝑒, it leads to

the following marking 𝑚3 from this new initial marking 𝑚′0. 𝑚′0 =
©­­­­­«

𝑟𝑒𝑑 𝑏𝑙𝑢𝑒

𝑃1 1 1
𝑃2 1 1
𝑃3 0 1
𝑃4 0 0

ª®®®®®¬
(𝑇1,𝑏𝑙𝑢𝑒)−−−−−−−→

62

High-level Colored Time Petri Nets for multi-core concurrency

𝑚3 =

©­­­­­«

𝑟𝑒𝑑 𝑏𝑙𝑢𝑒

𝑃1 1 0
𝑃2 1 0
𝑃3 0 0
𝑃4 0 1

ª®®®®®¬
.

4.3.1.3 High-level functionalities

We now illustrate the high-level functionalities. In the Figures, the guards are in green,
and the updates are in purple.

Themodel in Figure 4.2 is anHCTPNwith a set of three colors𝐶 = {𝑏𝑙𝑢𝑒, 𝑟𝑒𝑑, 𝑏𝑙𝑎𝑐𝑘}.
Several combinations of color usage, on guards and in updates, via the $𝑎𝑛𝑦 variable
are presented1.

𝑃1

$any ≥ 1
T1
[8, 8]
cpt[$any]=f($any,cpt)

𝑃2

𝑃3 blue

•••

typedef color {blue = 0, red = 1, black = 2};
int [3] cpt = {2 ,2 ,5};

int f(int firedColor , int [3] c) {
if (firedColor == red) {

return c[firedColor]*2;
}
else {

return c[firedColor] -1 ;
}

}

Figure 4.2: High-level manipulation of variables.

Transition 𝑇1 ∈ 𝑇𝑎𝑛𝑦 since at least one arc is associated with the color 𝑎𝑛𝑦. A fir-
ing of this transition produces a blue token in 𝑃3 and produce a token in 𝑃2 with the
color ($𝑎𝑛𝑦) used for the firing. Moreover, the value of $𝑎𝑛𝑦 is used in the precondi-
tion (guard) and the postcondition (update). Hence transition𝑇1 is not enabled by blue

1. In the example in this section and in the examples that follow we present models designed with
the tool Roméo. In this tool, $𝑎𝑛𝑦 is used instead of 𝑎𝑛𝑦 in guards and updates for syntactic reasons but
both have the same meaning.

63

High-level Colored Time Petri Nets for multi-core concurrency

token because of the guard $any ≥ 1. Moreover, the firing of 𝑇1 leads to the execution
of the update cpt[$any]=f($any,cpt). Then the transition 𝑇1 will be fired twice respec-
tively with a red and a black tokens leading to a marking with a red and a black tokens
in 𝑃2 and 2 blue tokens in 𝑃3. It remains a blue token in 𝑃1 and the final value of cpt is
{2,4,4}.

4.3.1.4 Time behavior

For any 𝑡 ∈ 𝑇𝑎𝑛𝑦, 𝑣(𝑡, 𝑐) is the valuation of the clock associated with 𝑡 and the color
𝑐 ∈ 𝐶. i.e., it is the time elapsed since the transition 𝑡 has been newly enabled by 𝑚 with
𝑐 ∈ colorSetany (𝑚, 𝑡). For other transitions 𝑡 ∈ 𝑇𝑎𝑛𝑦, 𝑣(𝑡, •) is the valuation of the clock
associated with 𝑡.

0̄ is the initial valuation with ∀𝑡 ∈ 𝑇 , ∀𝑐 ∈ 𝐶 ∪ {•}, 0̄(𝑡, 𝑐) = 0.
As an example, if we keep only the useful clocks, the initial valuation of the HCTPN

of Figure 4.1, is 𝑣0 =

(• 𝑟𝑒𝑑 𝑏𝑙𝑢𝑒

𝑇1 0
)
for Figure 4.1.a, 𝑣0 =

(• 𝑟𝑒𝑑 𝑏𝑙𝑢𝑒

𝑇1 0 0
)
for Fig-

ure 4.1.b, and 𝑣0 =
(• 𝑏𝑙𝑢𝑒 𝑟𝑒𝑑 𝑏𝑙𝑎𝑐𝑘

𝑇1 0 0
)
for Figure 4.2.

A state of the netN is a tuple ((𝑚, 𝑥), 𝑣) inN𝑃×𝐶×X𝑋×R≥0𝑇×𝐶 , where:𝑚 is a marking,
𝑥 is a variable valuation and 𝑣 is a valuation of the clocks.

Definition 2 (Semantics of a HCTPN) The semantics of a HCTPN is a timed transition
system (𝑄,𝑄0,→) where:

• 𝑄 ⊆ N𝑃×𝐶 × X𝑋 × R≥0𝑇×𝐶

• 𝑄0 = ((𝑚0, 𝑥0), 0̄)

• →∈ 𝑄 × ((𝑇 × 𝐶 ∪ {•}) ∪ R≥0) ×𝑄 consists of two types of transitions:

– discrete transitions (firing 𝑡 from ((𝑚, 𝑥), 𝑣)) iff:

∗ ((𝑚, 𝑥), 𝑣)
(𝑡∈𝑇𝑎𝑛𝑦 ,•)−−−−−−−−→ ((𝑚′, 𝑥′), 𝑣′) with

· en(𝑚, 𝑡) = 𝑡𝑟𝑢𝑒 and 𝑣(𝑡) ∈ 𝐼 (𝑡),
· 𝑚′ = firing(𝑚, 𝑡, •)

∗ ((𝑚, 𝑥), 𝑣)
(𝑡∈𝑇𝑎𝑛𝑦 ,𝑐)−−−−−−−→ ((𝑚′, 𝑥′), 𝑣′) with

· 𝑐 ∈ colorSetany (𝑚, 𝑡) and 𝑣(𝑡, 𝑐) ∈ 𝐼 (𝑡),

64

High-level Colored Time Petri Nets for multi-core concurrency

· 𝑚′ = firing(𝑚, 𝑡, 𝑐)
∗ 𝑔𝑢𝑎𝑟𝑑 (𝑡, 𝑥) = 𝑡𝑟𝑢𝑒 and 𝑥′ = 𝑢𝑝𝑑𝑎𝑡𝑒(𝑡, 𝑥)
∗ ∀𝑡′ ∈ 𝑇𝑎𝑛𝑦 s.t. en(𝑚′, 𝑡′) = 𝑡𝑟𝑢𝑒

· 𝑣′(𝑡′, •) = 𝑣(𝑡′, •) if 𝑡′ ∉ newen((𝑚, 𝑥), 𝑡, •),
· 𝑣′(𝑡′, •) = 0 otherwise

∗ ∀𝑡′ ∈ 𝑇𝑎𝑛𝑦 and ∀𝑐 ∈ colorSetany (𝑚′, 𝑡′)
· 𝑣′(𝑡′, 𝑐) = 𝑣(𝑡′, 𝑐) if 𝑡′ ∉ newen((𝑚, 𝑥), 𝑡, 𝑐),
· 𝑣′(𝑡′, 𝑐) = 0 otherwise

– time transitions: ((𝑚, 𝑥), 𝑣)
𝑑∈R≥0−−−−−→ ((𝑚, 𝑥), 𝑣′), iff:

∗ ∀𝑡 ∈ 𝑇𝑎𝑛𝑦 s.t. en(𝑚, 𝑡) = 𝑡𝑟𝑢𝑒,
· 𝑣′(𝑡, •) ≤ 𝐼 (𝑡)↓

· 𝑣′(𝑡, •) = 𝑣(𝑡, •) + 𝑑
∗ ∀𝑡 ∈ 𝑇𝑎𝑛𝑦 and ∀𝑐 ∈ colorSetany (𝑚, 𝑡),

· 𝑣′(𝑡, 𝑐) ≤ 𝐼 (𝑡)↓

· 𝑣′(𝑡, 𝑐) = 𝑣(𝑡, 𝑐) + 𝑑

We now illustrate the main features of HCTPN in an example. The guards are in
green in the Figures and the update in purple.

4.3.1.5 Examples of HCTPN

We give three examples. The first two examples illustrate the high-level functionalities,
and the third illustrates the notion of color and multi-enableness.

Example 1 Let’s go back to the HCTPN given in Figure 4.2, page 63.

The initial marking 𝑚0 =
©­­«
𝑏𝑙𝑢𝑒 𝑟𝑒𝑑 𝑏𝑙𝑎𝑐𝑘

𝑃1 1 1 1
𝑃2 0 0 0
𝑃3 0 0 0

ª®®¬ enables the transition 𝑇1. The val-

uations of the clocks are given by the matrix such that the initial valuation is 𝑣0 =(• 𝑏𝑙𝑢𝑒 𝑟𝑒𝑑 𝑏𝑙𝑎𝑐𝑘

𝑇1 0 0
)
. Since the set of variables is 𝑋 = {𝑐𝑝𝑡}, we note a state 𝑠 =

(𝑚, 𝑐𝑝𝑡, 𝑣).

65

High-level Colored Time Petri Nets for multi-core concurrency

The initial state is 𝑞0 = (𝑚0, {2, 2, 5}, 𝑣0). The transition 𝑇1 is enabled twice and can
fire after elapsing 8 time units for both enabling. After 8 time units 𝑇1 fires with either
the red or the black colors and then can fire again with the other one. Assume that we

first firewith the red color, the corresponding run is as follows:
(
𝑚0, {2, 2, 5},

(• 𝑏𝑙𝑢𝑒 𝑟𝑒𝑑 𝑏𝑙𝑎𝑐𝑘

0 0
)) 8−→

(
𝑚0, {2, 2, 5},

(• 𝑏𝑙𝑢𝑒 𝑟𝑒𝑑 𝑏𝑙𝑎𝑐𝑘

8 8
)) (𝑇1 ,𝑟𝑒𝑑)−−−−−−−→

(©­­«
𝑏𝑙𝑢𝑒 𝑟𝑒𝑑 𝑏𝑙𝑎𝑐𝑘

𝑃1 1 0 1
𝑃2 0 1 0
𝑃3 1 0 0

ª®®¬, {2, 4, 5},
(• 𝑏𝑙𝑢𝑒 𝑟𝑒𝑑 𝑏𝑙𝑎𝑐𝑘

8
)) (𝑇1 ,𝑏𝑙𝑎𝑐𝑘)−−−−−−−−−→

(©­­«
𝑏𝑙𝑢𝑒 𝑟𝑒𝑑 𝑏𝑙𝑎𝑐𝑘

𝑃1 1 0 0
𝑃2 0 1 1
𝑃3 2 0 0

ª®®¬, {2, 4, 4},
(• 𝑏𝑙𝑢𝑒 𝑟𝑒𝑑 𝑏𝑙𝑎𝑐𝑘))

.

Example 2 The HCTPN given in Figure 4.3, page 66, illustrates time behavior and
high-level manipulation of variables. This HCTPN has only one color and a single vari-
able 𝑐𝑝𝑡, and is part of a larger HCTPN.We assume that g() returns an integer between
1 and 10, handled by the other part of the net.

𝑃1

T1
[5, 7]
𝑐𝑝𝑡 = 𝑔()

𝑃2𝑐𝑝𝑡 <= 5
T2

[2, 3]
𝑐𝑝𝑡 = 0

𝑐𝑝𝑡 > 5
T3
[4, 6]
𝑐𝑝𝑡 = 𝑓 (𝑐𝑝𝑡)

𝑃3

•
int cpt =0;

int f(int x) {
return 2*x -1;

}

Figure 4.3: HCTPN illustrating high-level manipulation of variables

A marking is written by the matrix (|𝑃 |, |𝐶 |). Since there is only one color, the mark-

ing is a vector and the initial marking is then 𝑚0 =
©­­«

𝑃1 1
𝑃2 0
𝑃3 0

ª®®¬ and enables the transi-

66

High-level Colored Time Petri Nets for multi-core concurrency

tion 𝑇1. The valuations of the clocks are given by the matrix (here a vector) such that

the initial valuation is 𝑣0 =
©­­«

𝑇1 0
𝑇2 0
𝑇3 0

ª®®¬ . Since the set of variables is 𝑋 = {𝑐𝑝𝑡}, we note

a state 𝑠 = (𝑚, 𝑐𝑝𝑡, 𝑣). The initial state is 𝑞0 = (𝑚0, 0, 𝑣0). The transition 𝑇1 can fire
after elapsing 5 time units. We now consider the run where the function g() called
by the update of the firing of 𝑇1 returned the value 7. Then the transition’s guard 𝑇2
is false, and the transition 𝑇3 is enabled. We assume that the transition 𝑇3 took 4.6
time units for this run. The firing of the transition 𝑇3 executes the corresponding up-
date and calls the function 𝑓 that returns 13. The corresponding run is as follows:((1

0
0

)
, 0,

(0
0
0

)) 5−→
((1

0
0

)
, 0,

(5
0
0

)) (𝑇1 ,•)−−−−−→
((0

1
0

)
, 7,

(0
0
0

)) 4.6−−→
((0

1
0

)
, 7,

(0
0
4.6

)) (𝑇3 ,•)−−−−−→
((0

0
1

)
, 13,

(0
0
0

))

Example 3 Themodel given in Figure 4.4, page 67, is a HCTPNwith a set of two colors
𝐶 = {𝑟𝑒𝑑, 𝑏𝑙𝑢𝑒}. Several combinations of color usage, on guards and in updates, via the
$𝑎𝑛𝑦 variable are presented.

𝑃1

T1
[8, 8]

cpt[$any]==2
cpt[$any]=f($any,cpt)

𝑒𝑛𝑑

T2
[5, 5]

𝑃2

blue

red
•

•

𝑃3•
T3
[6, 6]
cpt[1]=2

blue

typedef color {red = 0, blue = 1};
int [2] cpt = {2, 1};

int f(int color , int [2] c) {
if (color == blue) {

return c[color] + 1;
}
else if (color == red) {

return c[color] * 2;
}

}

Figure 4.4: HCTPN model illustrating colored multi-enableness

In the sequel a marking is written by the matrix (|𝑃 |, |𝐶 |). The initial marking is

67

High-level Colored Time Petri Nets for multi-core concurrency

then 𝑚0 =

©­­­­­«

𝑟𝑒𝑑 𝑏𝑙𝑢𝑒

𝑃1 1 0
𝑃2 1 0
𝑃3 0 1
𝑒𝑛𝑑 0 0

ª®®®®®¬
and enables the transitions 𝑇1, 𝑇2 and 𝑇3. The variable 𝑐𝑝𝑡

of the model is an array indexed by the color. Its initial value is 𝑥0 =

(𝑟𝑒𝑑 𝑏𝑙𝑢𝑒

𝑐𝑝𝑡 2 1
)

The valuations of the clocks are given by the matrix such that the initial valuation is

𝑣0 =
©­­«
• 𝑟𝑒𝑑 𝑏𝑙𝑢𝑒

𝑇1 0 0
𝑇2 0
𝑇3 0

ª®®¬ (We omit the insignificant values). We note a state 𝑠 = (𝑚, 𝑥, 𝑣).

The initial state is 𝑞0 = (𝑚0, 𝑥0, 𝑣0). Since the time intervals are points, we have an unique
run:((

1 0
1 0
0 1
0 0

)
,

(
2 1

)
,

(
0 0

0
0

))
5−→

((
1 0
1 0
0 1
0 0

)
,

(
2 1

)
,

(
5 0

5
5

))
(𝑇2,•)
−−−−−→

((
1 1
0 0
0 1
0 0

)
,

(
2 1

)
,

(
5 0

0
5

))
1−→

((
1 1
0 0
0 1
0 0

)
,

(
2 1

)
,

(
6 0

0
6

))
(𝑇3,•)
−−−−−→((

1 1
0 0
0 0
0 0

)
,

(
2 2

)
,

(
6 0

0
0

))
2−→

((
1 1
0 0
0 0
0 0

)
,

(
2 2

)
,

(
8 2

0
0

))
(𝑇1,𝑟𝑒𝑑)
−−−−−−−→

((
0 1
0 0
0 0
1 0

)
,

(
4 2

)
,

(
0 2

0
0

))
6−→

((
0 1
0 0
0 0
1 0

)
,

(
4 2

)
,

(
0 8

0
0

))
(𝑇1,𝑏𝑙𝑢𝑒)
−−−−−−−−→((

0 0
0 0
0 0
1 1

)
,

(
4 3

)
,

(
0 0

0
0

))
The time elapses from the initial marking until reaching date 5. 𝑇2 is fired, and a

blue token is dropped in the place 𝑃1. The clock of 𝑇1 associated with the red color
has reached the value 5. The clock of 𝑇1 associated with the blue color cannot start yet
because the guard is false for this color. At date 6, 𝑇3 is fired, causing a change in the
variable cpt that makes the guard of 𝑇1 true for the blue color. The clock associated
with the blue color for 𝑇1 can therefore start. Both colors enable the transition 𝑇1, and
the corresponding clocks give the time from the two enabling. After two more time
units, 𝑇1 is fired for the red color; at this moment, the clock of 𝑇1 for the blue color has
reached 2. Finally, after 6-time units, 𝑇1 is fired for the blue color, ending the run.

Atomicity An update can be described as a sequence of imperative code expressed
in a programming language such as C. This code is evaluated sequentially w.r.t. the se-
mantics of theC language; however, its execution is considered atomic from theHCTPN
point of view.

Hence, if 𝑥 and 𝑥′ are respectively the values of the variables before and after the
execution of the code of an update of a transition 𝑡 from 𝑥, the firing of 𝑡 leads atomically

68

High-level Colored Time Petri Nets for multi-core concurrency

to 𝑥′ = 𝑢𝑝𝑑𝑎𝑡𝑒(𝑡, 𝑥).

4.3.2 High-level Colored Time Petri Net with stopwatches

We now consider stopwatches instead of clocks. Hence, for Colored Time Petri Nets
with stopwatches, there is at most one stopwatch per color and per transition.

When using stopwatches with the HCTPN formalism, the temporal behavior differs
and depends on the time derivative function ¤𝑣(𝑡, •) when transitions 𝑡 ∈ 𝑇𝑎𝑛𝑦 and ¤𝑣(𝑡, 𝑐)
for 𝑡 ∈ 𝑇𝑎𝑛𝑦.

The time associated with a transition can be suspended and later resumed at the
same point. Moreover, transition with a 0-time derivative can not be fired. The time
derivative of a stopwatch is in the rate set {0, 1} and is given by a function from Mark-
ings.

Definition 3 (High-level Colored Time Petri Net with stopwatches)
A High-level Colored Time Petri Net with stopwatches is a tuple
N = (𝑃,𝑇,pre(.),post(.), 𝑚0, 𝑔𝑢𝑎𝑟𝑑, 𝑢𝑝𝑑𝑎𝑡𝑒, 𝐼, ¤𝑣) where
(𝑃,𝑇,pre(.),post(.), 𝑚0, 𝑔𝑢𝑎𝑟𝑑, 𝑢𝑝𝑑𝑎𝑡𝑒, 𝐼) is defined in Definition 1 and
¤𝑣 : 𝑇 × N𝑃×𝐶 × X𝑋 → {0, 1} is the time derivative function.

4.3.2.1 Semantics

For the discrete transition of the semantics, the only difference with HCTPN is that a
transition cannot be fired if its time derivative is not 1. For the time transition, the value
of a stopwatch evolves according to its derivative as follows.

Definition 4 (Semantics of a HCTPN with stopwatches) The semantics of aHCTPNwith
stopwatches is a timed transition system (𝑄,𝑄0,→) where:

• 𝑄 ⊆ N𝑃×𝐶 × X𝑋 × R≥0𝑇×𝐶

• 𝑄0 = ((𝑚0, 𝑥0), 0̄)

• →∈ 𝑄 × ((𝑇 × 𝐶 ∪ {•}) ∪ R≥0) ×𝑄 consists of two types of transitions:

– discrete transitions (firing 𝑡 from ((𝑚, 𝑥), 𝑣)), as presented in Definition 2 with
¤𝑣(𝑡) = 1

– time transitions: ((𝑚, 𝑥), 𝑣)
𝑑∈R≥0−−−−−→ ((𝑚, 𝑥), 𝑣′), iff:

69

High-level Colored Time Petri Nets for multi-core concurrency

∗ ∀𝑡 ∈ 𝑇𝑎𝑛𝑦 s.t. en(𝑚, 𝑡) = 𝑡𝑟𝑢𝑒,
· 𝑣′(𝑡, •) ≤ 𝐼 (𝑡)↓

· 𝑣′(𝑡, •) = 𝑣(𝑡, •) + 𝑑 if ¤𝑣(𝑡, •) = 1 otherwise 𝑣′(𝑡, •) = 𝑣(𝑡, •)
∗ ∀𝑡 ∈ 𝑇𝑎𝑛𝑦 s.t. en(𝑚, 𝑡) = 𝑓 𝑎𝑙𝑠𝑒,

· 𝑣′(𝑡, •) = 0
∗ ∀𝑡 ∈ 𝑇𝑎𝑛𝑦 and ∀𝑐 ∈ colorSetany (𝑚, 𝑡),

· 𝑣′(𝑡, 𝑐) ≤ 𝐼 (𝑡)↓

· 𝑣′(𝑡, 𝑐) = 𝑣(𝑡, 𝑐) + 𝑑 if ¤𝑣(𝑡, 𝑐) = 1 otherwise 𝑣′(𝑡, 𝑐) = 𝑣(𝑡, 𝑐)
∗ ∀𝑡 ∈ 𝑇𝑎𝑛𝑦 and ∀𝑐 ∉ colorSetany (𝑚, 𝑡),

· 𝑣′(𝑡, 𝑐) = 0

We now illustrate the main features of HCTPN with stopwatches on an example.

4.3.2.2 Example of HCTPN with stopwatches

This example is the modeling of the preemptive scheduling of two tasks. The first task
𝑡𝑎𝑠𝑘1 is a periodic task running on core 0, assigned to blue color. The second task 𝑡𝑎𝑠𝑘2 is
also periodic but is executed only 10 times on core 1, assigned to red color. The particular
color any is used for enabling and firing all transitions. For the first two executions
of 𝑡𝑎𝑠𝑘2, the priority of 𝑡𝑎𝑠𝑘1 is higher than 𝑡𝑎𝑠𝑘2 priority, after which it becomes the
opposite.

The model in Figure 4.5 is a HCTPNwith stopwatches and has a single shared vari-
able 𝑐𝑝𝑡 and two colors. The initial value of 𝑐𝑝𝑡 is zero. Only the transition 𝑇2 has a
guard and an update that manipulate the 𝑐𝑝𝑡 variable. Hence the transition 𝑇2 is en-
abled if there is a token in its input place 𝑡𝑎𝑠𝑘2 and if 𝑐𝑝𝑡 < 10 modeling the fact that
the task 𝑡𝑎𝑠𝑘2 is executed only 10 times. The update that increments the value of 𝑐𝑝𝑡 is
executed each time the transition 𝑇2 is fired.

The scheduling is captured by the derivative function of the stopwatches associated
with 𝐶1 and 𝐶2 whose values are given by a function called isRunning shown in Fig-
ure 4.5.

In the sequel, a marking is written by the matrix 𝑚 = (|𝑃 |, |𝐶 |). The initial marking
enables the transitions 𝑇1 and 𝑇2. The valuations of the stopwatches are given by the

70

High-level Colored Time Petri Nets for multi-core concurrency

𝑇𝑎𝑠𝑘1

T1
[10, 10]

𝑅𝑒𝑎𝑑𝑦1

C1
[4, 6]

𝑇𝑎𝑠𝑘2

𝑐𝑝𝑡 < 10
T2
[15, 15]
𝑐𝑝𝑡 = 𝑐𝑝𝑡 + 1

𝑅𝑒𝑎𝑑𝑦2

C2
[1, 3]

• •

¤𝑣 = 1 ¤𝑣 = 1

¤𝑣 = 𝑖𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘1) ¤𝑣 = 𝑖𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘2)

typedef enum {task1 , task2 } id;
int cpt = 0;

int isRunning (id task) {
if (task == task1) {

if ((m(Ready2)==1) && (cpt >2)) return 0; else return 1;
} else if (task == task2) {

if ((m(Ready1)==1) && (cpt <3)) return 0; else return 1;
}

}

Figure 4.5: HCTPN model with stopwatches of two-task scheduling.

matrix 𝑣 = (|𝑇 |, |𝐶 |). Since all the transitions are in 𝑇𝑎𝑛𝑦, the bullet column of the stop-
watch valuations is not used. We will therefore omit it in the states of this example in
order to simplify the notation.

We note a state 𝑠 = (𝑚, 𝑐𝑝𝑡, 𝑣) and the initial state is 𝑞0 = (𝑚0, 0, 𝑣0), where:

𝑚0 =

©­­­­­«

𝑟𝑒𝑑 𝑏𝑙𝑢𝑒

𝑇𝑎𝑠𝑘1 0 1
𝑇𝑎𝑠𝑘2 1 0
𝑅𝑒𝑎𝑑𝑦1 0 0
𝑅𝑒𝑎𝑑𝑦2 0 0

ª®®®®®¬
, and 𝑣0 =

©­­­­­«

• 𝑟𝑒𝑑 𝑏𝑙𝑢𝑒

𝑇1 0 0 0
𝑇2 0 0 0
𝐶1 0 0 0
𝐶2 0 0 0

ª®®®®®¬
simply denoted 𝑣0 =

©­­­­­«

𝑟𝑒𝑑 𝑏𝑙𝑢𝑒

𝑇1 0 0
𝑇2 0 0
𝐶1 0 0
𝐶2 0 0

ª®®®®®¬
.

Assume that the execution times of the two tasks 𝑡𝑎𝑠𝑘1 and 𝑡𝑎𝑠𝑘2 are respectively
5.3 and 2.4. It means that the transitions 𝐶1 and 𝐶2 fire when their stopwatches reach
these values. Let us develop the corresponding run:

𝑞0 =

((
0 1
1 0
0 0
0 0

)
, 0 ,

(
0 0
0 0
0 0
0 0

))
10−−→

((
0 1
1 0
0 0
0 0

)
, 0 ,

(
0 10
10 0
0 0
0 0

))
(𝑇1 ,𝑏𝑙𝑢𝑒)−−−−−−−→ 𝑞1 =

((
0 1
1 0
0 1
0 0

)
, 0 ,

(
0 0
10 0
0 0
0 0

))
In 𝑞1, we have ¤𝑣(𝐶1, 𝑏𝑙𝑢𝑒) = 1 then

𝑞1
5−→ 𝑞2 =

((
0 1
1 0
0 1
0 0

)
, 0 ,

(
0 5
15 0
0 5
0 0

))
(𝑇2 ,𝑟𝑒𝑑)−−−−−−−→ 𝑞3 =

((
0 1
1 0
0 1
1 0

)
, 1 ,

(
0 5
0 0
0 5
0 0

))
In 𝑞3, we have ¤𝑣(𝐶1, 𝑏𝑙𝑢𝑒) = 1 and ¤𝑣(𝐶2, 𝑟𝑒𝑑) = 0 meaning that 𝑡𝑎𝑠𝑘2 is preempted

by 𝑡𝑎𝑠𝑘1. Then 𝑣(𝐶2, 𝑟𝑒𝑑) will keep its value 0 until the firing of 𝐶1 that will change
¤𝑣(𝐶2, 𝑟𝑒𝑑).

71

High-level Colored Time Petri Nets for multi-core concurrency

𝑞3
0.3−−→ 𝑞4 =

((
0 1
1 0
0 1
1 0

)
, 1 ,

(
0 5.3
0.3 0
0 5.3
0 0

))
(𝐶1 ,𝑏𝑙𝑢𝑒)−−−−−−−−→ 𝑞5 =

((
0 1
1 0
0 0
1 0

)
, 1 ,

(
0 5.3
0.3 0
0 0
0 0

))
In 𝑞5, we have ¤𝑣(𝐶2, 𝑟𝑒𝑑) = 1 hence

𝑞5
2.4−−→ 𝑞6 =

((
0 1
1 0
0 0
1 0

)
, 1 ,

(
0 7.7
2.7 0
0 0
2.4 0

))
(𝐶2 ,𝑟𝑒𝑑)−−−−−−−→ 𝑞7 =

((
0 1
1 0
0 0
0 0

)
, 1 ,

(
0 7.7
2.7 0
0 0
0 0

))
For the sake of conciseness, we do not detail the following run from 𝑞7

𝑞7
2.3−−→

(𝑇1 ,𝑏𝑙𝑢𝑒)−−−−−−−→ 6−→
(𝐶1 ,𝑏𝑙𝑢𝑒)−−−−−−−−→ 4−→

(𝑇1 ,𝑏𝑙𝑢𝑒)−−−−−−−→
(𝑇2 ,𝑟𝑒𝑑)−−−−−−−→ 6−→

(𝐶1 ,𝑏𝑙𝑢𝑒)−−−−−−−−→ 3−→
(𝐶2 ,𝑟𝑒𝑑)−−−−−−−→ 1−→

(𝑇1 ,𝑏𝑙𝑢𝑒)−−−−−−−→ 5−→
(𝑇2 ,𝑟𝑒𝑑)−−−−−−−→ 𝑞13

It leads to a state 𝑞13 that has exactly the same marking and the same value of stop-
watches than 𝑞3 but with 𝑐𝑝𝑡 = 3.

𝑞13 =

((
0 1
1 0
0 1
1 0

)
, 3 ,

(
0 5
0 0
0 5
0 0

))
then we have ¤𝑣(𝐶1, 𝑏𝑙𝑢𝑒) = 0 and ¤𝑣(𝐶2, 𝑟𝑒𝑑) = 1meaning that the

task 𝑡𝑎𝑠𝑘2 is not preempted by the task 𝑡𝑎𝑠𝑘1.
Hence we have :
𝑞13

2.4−−→ 𝑞14 =

((
0 1
1 0
0 1
1 0

)
, 3 ,

(
0 7.4
2.4 0
0 5
2.4 0

))
(𝐶2 ,𝑟𝑒𝑑)−−−−−−−→ 𝑞15 =

((
0 1
1 0
0 1
0 0

)
, 3 ,

(
0 7.4
2.4 0
0 5
0 0

))
.

4.4 Decidability, complexity and state space computation

Let us recall that a High-level Colored Time Petri Net (HCTPN) is a tuple
N = (𝑃,𝑇, 𝑋, 𝐶,pre,post, (𝑚0, 𝑥0), 𝑔𝑢𝑎𝑟𝑑, 𝑢𝑝𝑑𝑎𝑡𝑒, 𝐼) such that the set 𝐶 of colors is finite
and 𝑋 is a finite set of variables taking their value in a finite set X.

Theorem 1 Reachability problem for bounded High-level Colored Time Petri Net is decidable

Proof: FromHCTPN semantics, a transition can be multi-enabled a maximum of |𝐶 |
times at a given time. Hence, firing domains can be symbolically abstracted with state
classes using Difference BoundMatrix (DBM) over |𝐶 | ×𝑇 variables. As in [41, 82], the
number of DBM is finite. Moreover, the number of markings of a k-bounded Petri net
is bounded by (𝑘 + 1) |𝑃 | then the number of discrete states of a k-bounded HCTPN is
bounded by (𝑘+1) |𝑃 |×X𝑋 . Hence, computable finite abstractions of the state space exist,
and the reachability problem is decidable. □

State Space Computation A discrete state of the net N is a tuple ((𝑚, 𝑥), 𝑣) in N𝑃×𝐶 ×
X𝑋 ×R≥0𝑇×𝐶 , where: 𝑚 is a marking, 𝑥 is a variable valuation and 𝑣 is a valuation of the
clocks. Roméo computes the state-class graph (SCG) that preserve LTL properties of
bounded nets [41]. It performs translations from HCTPNs to Timed Automata (TAs)
that preserve the behavioural semantics (timed bisimilarity) of HCTPNs. Two distinct

72

High-level Colored Time Petri Nets for multi-core concurrency

methods are implemented: The state-class graph [41] and the zone-based graph [92].
The zone-based graph method is derived from the TA framework [92], while the state-
class graph method is based on the classical state class graph approach [93].

Temporal logics were introduced by Pnueli [83] as specification languages to ex-
press the behaviors of sequential and concurrent systems and TCTL (Timed Compu-
tation Tree Logic), introduced in [28], is a real-time extension of the branching-time
temporal logic CTL (Computation Tree Logic).

We can prove, as in [84] for bounded Time Petri Nets, that the theoretical complexity
of TCTL model-checking for bounded High-level Colored Time Petri Nets is PSPACE-
complete. However, as for Timed Automata and Time Petri Nets, no effective PSPACE
algorithm exists in practice, and real implementations are with exponential algorithms.

In practice, on-the-fly TCTL model-checking for bounded High-level Colored Time
Petri Nets is proposed in the Roméo tool, used to model the Trampoline RTOS and the
application in Section 4.6, page 74.

Moreover, as shown in the previous section, HCTPN can be extended with stop-
watches allowing the modeling of preemptive scheduling. In the stopwatch setting, the
reachability problem is undecidable but efficient semi-algorithms are implemented in
Roméo [85] that converges for almost all practical cases.

4.5 Roméo tool

The Roméo tool [86] is a free and open-source software developed by the real-time
systems team of LS2N at École Centrale de Nantes. It allows the modeling of complex
and preemptive real-time systems using the HCTPN formalism with stopwatches. It
consists of a Graphical User Interface GUI (written in TCL/Tk) to edit and design TPNs
and computation modules (written in C++). Roméo provides a variable 𝑎𝑛𝑦 that gives
the integer value of the color used for the transition firing. The requirements in Roméo
are expressed in a subclass of TCTL temporal logic [28] and verified with an on-the-
fly efficient algorithm over bounded HCTPN. It includes parameter synthesis for the
model-checking [48], allowing the computing of parameter values that guarantee the
satisfaction of the property and the addition of linear constraints on the parameters
to limit their domain. Roméo implements on-line simulation and reachability model-
checking of HCTPN with stopwatches.

73

High-level Colored Time Petri Nets for multi-core concurrency

Roméo has been used to model and analyze several interesting problems [87–89].
The authors in [87] used parametric time model-checking to verify the time behav-
ior of biological oscillatory systems. They focused on resilience properties which they
formalized in the TCTL logic and applied to the oscillatory system of the mammalian
circadian clock. Their verification is done in the Roméo tool where the properties are
represented using observers modeled as parametric time Petri nets.

4.6 Application

The application chosen as an example is the modeling of the spinlocks mechanism
present in the PowerPCMPC5643L dual-core microcontroller from NXP [94] and used
to build critical sections for parallel program executions. This mechanism is based on a
hardware unit, the SEMA4 for Semaphore Unit. For the software, this unit is materialized
as an array of 16 registers implementing 16 locks. The exclusive access to the bus reg-
ulates the concurrent accesses to one of these registers. If a register contains the value
0, the lock is available, and it is possible to write to it. If the value contained is different
from 0, the lock is occupied, and it is only possible to write the value 0 to it, and writing
any other value has no effect. Therefore, getting a lock consists in writing a value differ-
ent from 0 and releasing it consists in writing 0. Thus, using this unit requires respect of
a protocol, and an example of implementation is given on page 1322 of [94]. Algorithm
1 reproduces it.

Algorithm 1 Lock acquisition protocol. 𝑔𝑎𝑡𝑒 is one of the hardware registers of the
SEMA4 unit.
𝑐𝑛← core_number ⊲ (1 .. N)
do

𝑙𝑜𝑐𝑘 ← 𝑔𝑎𝑡𝑒

while 𝑙𝑜𝑐𝑘 ≠ 0
do

𝑔𝑎𝑡𝑒 ← 𝑐𝑛

𝑙𝑜𝑐𝑘 ← 𝑔𝑎𝑡𝑒

while 𝑙𝑜𝑐𝑘 ≠ 𝑐𝑛

74

High-level Colored Time Petri Nets for multi-core concurrency

4.6.1 Modeling the spinlocks mechanism

The modeling takes advantage of the possibilities of the HCTPN. The hardware part,
which by virtue of the exclusive access to the bus allows operations that are intrinsically
atomic, is modeled using functions. To simplify the presentation, only one register of
the SEMA4 unit, gate, is modeled but the model could just as well use an array to accu-
rately model the hardware. The listing 4.1, page 76, shows this part of the model. gate
is initialized to the UNLOCKED state (line 2) and is accessible through three functions.
lock (line 4) mimics the behavior of the hardware by only allowing writing to gate if its
value is UNLOCKED. The core number corresponding to a color and a color among N
being coded by an integer from 0 to N-1, a core locks by writing 𝑐𝑜𝑙𝑜𝑟 + 1 in gate. unlock
(line 10) simply writes the value UNLOCKED into gate. isLocked (line 14 returns 1 if the
gate is locked, 0 otherwise). Finally, isLockedBy (line 22) returns 1 if core holds the lock
and returns 0 otherwise.

Each function of the software ismodeled by anHCTPNreproducing the control flow
graph of the function. Two HCTPNs model the functions GetSpinLock and RelSpinLock
(see Figure 4.6, page 77).GetSpinLock corresponds to the algorithm 1, page 74, and $any
allows to represent on which core the function is executed. The call of a function mod-
eled by aHCTPN is done by dropping a token of the core color in the initial place. Thus,
“calling” the functionGetSpinLock is performed by the update GetSpinLock[color] = 1

on a transition of the HCTPN of the calling function. This is identical to drawing an arc
of the corresponding color between the transition and the initial place of GetSpinLock.
The function return requires a synchronization. This one is implemented by a variable
of type array and of size equal to the number of colors and indexed by the color, i.e. the
core on which the function call is made. We have therefore for our two function models
the two variables endOfGSL and endOfRSL, see listing 4.2, page 77.

4.6.2 Verification of the system

The spinlock model is completed by an application model. Two tasks, 𝜏0, running on
core 0 (red color) and 𝜏1, running on core 1 (blue color), are modeled as shown in
Figure 4.7, page 78. The task 𝜏0 takes then releases the spinlock while the task 𝜏1 has the
possibility to take it, as 𝜏0 does, or to reach the final state without taking the spinlock.
We want to check that 𝜏0 and 𝜏1 cannot occupy simultaneously and respectively the
places P12 and P22 by the CTL formula 𝐴□(¬(P12 [0] == 1∧P22 [1] == 1)). Here P12 [0]

75

High-level Colored Time Petri Nets for multi-core concurrency

Listing 4.1: Modeling of the SEMA4 hardware
1 const int UNLOCKED = 0;
2 int gate = UNLOCKED ;
3
4 void lock(int core , int & ioGate) {
5 if (ioGate == UNLOCKED) {
6 ioGate = core + 1;
7 }
8 }
9
10 void unlock (int & ioGate) {
11 ioGate = UNLOCKED ;
12 }
13
14 int isLocked (int & inGate) {
15 if (inGate == UNLOCKED) {
16 return 0;
17 } else {
18 return 1;
19 }
20 }
21
22 int isLockedBy (int core , int & inGate) {
23 if (inGate == core + 1) {
24 return 1;
25 } else {
26 return 0;
27 }
28 }

76

High-level Colored Time Petri Nets for multi-core concurrency

GetSpinLockT1
[1, 1]

isLocked(gate) T2
[1, 1]
! isLocked(gate)

P2

T3
[1, 1]
lock($any, gate)
P3

T4
[1, 1]

isLockedBy($any, gate) == 0 T5
[1, 1]
isLockedBy($any, gate) == 1
endOfGSL[$any] = 1;

RelSpinLock

T8
[1, 1]
unlock(gate);

P7

T3
[1, 1]
endOfRSL[$any] = 1;

Figure 4.6: The GetSpinLock and RelSpinLock function models

denotes the marking of P12 for the red color and P22 [1] denotes the marking of P22 for
the blue color. Roméo answers true for this CTL formula.

4.7 Conclusion

This chapter has presented High-level Colored Time Petri Nets. This formalism allows
to model complex systems and is well adapted to multi-core hardware and software
modeling, as shown in the case study. The high-level features allow the modeling of
the software, the timed transitions model the execution times, the colors specify the
hardware where the software is executed, and preemption is supported by means of
stopwatches. A timed transition enabled by more than one color allows true concur-
rency modeling. The model-checking of this extended formalism is implemented in
the Roméo tool. The next chapter focuses on using this formalism to model the RTOS.

Listing 4.2: Synchronization variables for the function return
1 int [2] endOfGSL = {0, 0};
2 int [2] endOfRSL = {0, 0};

77

𝜏0
•

T11
[2, 4]
GetSpinLock[red] = 1;

P11

T12
[0, 0]
endOfGSL[red] == 1;
endOfGSL[red] = 0;
P12

T13
[1, 5]
ReleaseSpinLock[red] = 1;

P13

T13
[0, 0]
endOfRSL[red] == 1;
endOfRSL[red] = 0;
P14

red

red

red

red

red

red

red

red

𝜏1
•

T21
[1, 4]
GetSpinLock[blue] = 1;

P21

T22
[0, 0]
endOfGSL[blue] == 1;
endOfGSL[blue] = 0;
P22

T23
[2, 2]
ReleaseSpinLock[blue] = 1;

P23

T23
[0, 0]
endOfRSL[blue] == 1;
endOfRSL[blue] = 0;
P24

T25
[1, 1]

blue

blue

blue

blue

blue

blue

blue

blue

blue

blue

Figure 4.7: The tasks models

Chapter 5

MODELING WITH HIGH LEVEL COLORED

PETRI NETS

5.1 Introduction

This chapter presents the Trampoline model built in its multi-core version with fixed
priority partitioned scheduling for the tasks. The model consists of the same variables
and data structures found in the Trampoline source code as well as a HCTPN repre-
senting the control flow. The source code that includes 180 functions for the target-
independent part is modeled by a systematic approach based on the HCTPN transla-
tion rules in Roméo tool 4.5. The model contains 115 Petri sub-networks that form a
single one. It includes 600 transitions, 550 places, 162 constants, and other data struc-
tures and variables generated automatically in the GOIL compilation phase, as shown
in figure 3.6, page 44, using a developed Goil Template Language (GTL) module.

5.2 Modeling rules

We apply the following modeling principles:

• Each Petri subnet describes a function of the operating system and faithfully de-
scribes its control flow;

• The variables and structures used in the model are the same as those of the oper-
ating system;

• Actions and conditions on variables in themodel are those of the operating system
control;

• The Petri net transitions include the same assignment instructions and other im-
perative operations as those present in the source code;

79

Modeling with High Level Colored Petri Nets

• Pointers are replaced by arrays in the model;

• The processor cores are represented one-to-one by the token colors in the model;

• All kernel transitions are fired in a time interval [0, 0] because (i) the time is not
necessary for the modeling of the kernel, (ii) the knowledge of the time would
apply only to a precise hardware target, and the genericity of the model would be
lost, (iii) it is necessary to capture all the possible interleavings and some of them
could be cancelled by real-time constraints;

• The application model is described by API function calls;

• Functions that do not require fine-grained modeling checking instruction by in-
struction (e.g., functions that initialize or increment variables or results and error
comparison functions) are written in the C-like Roméo language and are associ-
ated with single transitions in the model.

Function call The function call synchronization is done by tokens deposited in places,
indexed by the variable 𝑎𝑛𝑦 representing the core identifier on which the call is made.
The calling function drops a token in the initial place of the Petri subnet modeling the
called function. A guard on the token blocks the execution of the calling Petri subnet.
Once the called Petri subnet completes its execution, the calling Petri subnet is released.
The token is finally consumed to avoid accumulation in the last place, causing an un-
bounded Petri net. The Figure 5.1 presents the mechanism. Without changing the se-
mantics of HCTPN, it is possible to update the number of tokens in a place without ex-
plicitly drawing an arc between a transition and a place. This feature is used to lighten
the design of the model. The model is thus drawn in the form of Petri subnets which
appear independent but which, in reality, form only one.

Atomic modeling The code associated with a transition in a HCTPN is executed se-
quentially and considered atomic in the state space, i.e., if several variables are updated
on a transition, the intermediate state(s) are not present. This code can be one or a se-
quence of instructions, and it can also be a function call written in the C-like Roméo
language. In the modeling step, the association of an instruction sequence or a C-like
function call to a transition reduces the state space. The execution of the function call
associated with a transition is also considered atomic in the modeling. An update can

80

Modeling with High Level Colored Petri Nets

𝑓

[0, 0]
g[$𝑎𝑛𝑦]=g[$𝑎𝑛𝑦]+1

end_g[$𝑎𝑛𝑦]>0
[0, 0]

end_g[$𝑎𝑛𝑦]=end_g[$𝑎𝑛𝑦]-1
𝑒𝑛𝑑_ 𝑓

[0, 0]

𝑔

𝑒𝑛𝑑_𝑔

Figure 5.1: Function call mechanism.

read and/or write variables. When it is a variable of the modeled system, one must be
careful to reproduce the competition situations of the real system. Therefore the modi-
fication of a shared variable accessible in concurrency situations must be cut in two: the
reading on a transition and the writing on the following transition.

5.3 Multi-core RTOS modeling

The source code of Trampoline includes both the single-core and the multi-core ver-
sions. To unify the code of the two versions, a set of macros allows us to generate ade-
quate code according to whether we compile for multi-core or single-core.

The RTOS model is composed of the API services and the kernel. Each modeled
Trampoline source code function is described by a Petri subnet and, if needed, by a
Roméo function defined in a C-like syntax. Roméo tool allows using a variable 𝑎𝑛𝑦,
which gives the value of the color used for the transition firing.

A global lock prevents concurrent execution of the kernel by the cores in the multi-
core implementation of Trampoline. This lock is acquired when calling an OS service
by an application task. We represented it by a boolean variable serving as a guard on
the transitions modeling the service call. The transition is fireable if the variable is false,
and once the transition is fired, the variable is set to true when the transition is fired.

5.3.1 API services modeling

The API contains the various services available to the application. The API function
calls allow the application’s tasks to access the requested service in user mode. As we
presented in 3.5.2, a service is called on a core by entering kernel mode. The kernel

81

Modeling with High Level Colored Petri Nets

is locked during its execution → the global lock is then taken to prevent competitive
situations between the cores in the kernel.

All the services of the API layer are modeled with HCTPNs in the same manner.
The first transition of the model describes that when an API function is called to exe-
cute the requested service, the core switches from user mode to kernel mode using the
𝑘𝑒𝑟𝑛𝑒𝑙_𝑚𝑜𝑑𝑒 array. This passage is local to this core, hence the array 𝑘𝑒𝑟𝑛𝑒𝑙_𝑚𝑜𝑑𝑒 is
indexed by $𝑎𝑛𝑦. The variable $𝑎𝑛𝑦 gives the value of the color used for the transition
firing. Thus, the transition firing can be performed simultaneously for different cores.
The global lock variable 𝑙𝑜𝑐𝑘_𝑘𝑒𝑟𝑛𝑒𝑙 is a shared variable that prevents simultaneous
service calls by different cores. When the API function completes its execution, it un-
locks the kernel (𝑙𝑜𝑐𝑘_𝑘𝑒𝑟𝑛𝑒𝑙 = 0), and another service can then be called→ it finally
leaves the kernel mode (𝑘𝑒𝑟𝑛𝑒𝑙_𝑚𝑜𝑑𝑒[$𝑎𝑛𝑦] = 0). Let us consider the API GetAlarmBase

and ActivateTask services as examples.

GetAlarmBase service This service allows to obtain the requested information on the
alarm base and store it in a global variable. An error is returned if the alarm identifier
is invalid. This service call model is shown in Figure 5.2. GetAlarmBase calls the ker-
nel function tpl_get_alarm_base_service model1, represented in details in 5.3.2 (Fig-
ure 5.8).

ActivateTask service This API service allows the activation of a task. Figure 5.3 shows
its modeling. The Petri subnet’s first place represents the function’s initial location, and
each transition describes the execution state of the function. Upon calling this Petri sub-
net, it calls the kernel function tpl_activate_task_service to execute the requested ser-
vice. tpl_activate_task_service function is itself modeled by a Petri subnet.

5.3.2 Kernel modeling

The Kernel contains all the low-level functions on which the Trampoline services are
based as represented in 3.5.2. It ensures the start and shutdown of the OS and allows
the activation of tasks, their scheduling, and their synchronization. The kernel model

1. The two double dots (::) are equivalent to an arc in the model. This syntax proposed by Roméo
allows a clear and better organization of the Petri subnet in different XML files, which form only one
Petri net. Thus a function call is ensured by the following syntax: the XML file name of the Petri subnet::
the place name to which we want to send a token.

82

Modeling with High Level Colored Petri Nets

GetAlarmBase subnet
P1

kernel_mode[$𝑎𝑛𝑦] == 0
[0, 0]

kernel_mode[$𝑎𝑛𝑦] =1

lock_kernel ==0
[0, 0]

lock_kernel =1
tpl_tpl_get_alarm_base_service::P1[$𝑎𝑛𝑦] =
tpl_tpl_get_alarm_base_service::P1[$𝑎𝑛𝑦] +1

Call_tpl_get_alarm_base_service
tpl_tpl_get_alarm_base_service::End[$𝑎𝑛𝑦] >0

[0, 0]
lock_kernel =0

tpl_tpl_get_alarm_base_service::End[$𝑎𝑛𝑦] =
tpl_tpl_get_alarm_base_service::End[$𝑎𝑛𝑦] -1

[0, 0]
kernel_mode[$𝑎𝑛𝑦] = 0

Figure 5.2: GetAlarmBase service model.

contains four components that contain the functions required by the Trampoline ser-
vices (Figure 3.10, page 50). We explain each module in the following.

Taskmanager The taskmanager contains the functionmodels that manage the appli-
cation tasks’ activation, synchronization, and termination. They also perform schedul-
ing and context switches if necessary. All the functions contained in the task manager
are modeled. It includes the function models tpl_activate_task_service and
tpl_terminate_task_service, responsible for activating and terminating a task and set-
ting its state, respectively. To terminate the running task, the function
tpl_terminate_task_servicefirst performs some checks about interrupts, spinlocks, the
task’s level, and resource, then decrements the activation count, calls the kernel func-
tion tpl_terminate_task, performs the rescheduling and context switch andfinally ends
the task being executed.

The modeling of the task manager function tpl_terminate is shown in Figure 5.4.
This kernel function performs a release of the internal resource held by the task by

83

Modeling with High Level Colored Petri Nets

ActivateTask subnet
P1

kernel
_mode[$𝑎

𝑛𝑦]==
0

[0, 0]

kernel
_mode[$𝑎

𝑛𝑦]=1
lock_k

ernel=
=0
[0, 0]

lock_k
ernel=

1

tpl_act
ivate_t

ask_se
rvice::

P1[$𝑎𝑛
𝑦]++

Call_tpl_activate_task_service

tpl_activate_task_service::End[$𝑎𝑛𝑦]>0

[0, 0]lock_kernel=0tpl_activate_task_service::End[$𝑎𝑛𝑦]−−

[0, 0]kernel_mode[$𝑎𝑛𝑦] = 0

Figure 5.3: Example of the ActivateTask service modeling.

calling the tpl_release_internal_resource function. A guard on the activation counter
allows the running task state to be set either to READY_AND_NEW2 or SUSPENDED state. Also,
the events associated with the extended tasks are initialized.

tpl_terminate subnet
P1

[0, 0]
tpl_release_internal_resource[$𝑎𝑛𝑦]

tpl_kern[$𝑎𝑛𝑦].running. activate_count > 0
[0, 0]

tpl_kern[$𝑎𝑛𝑦].running.state = READY_AND_NEW

!(tpl_kern[$𝑎𝑛𝑦].running.activate_count > 0)
[0, 0]
tpl_kern[$𝑎𝑛𝑦].running.state = SUSPENDED

tpl_kern[$𝑎𝑛𝑦].running_id < EXTENDED_TASK_COUNT
[0, 0]

tpl_task_events_table[tpl_kern[$𝑎𝑛𝑦].running_id].evt_set =0
tpl_task_events_table[tpl_kern[$𝑎𝑛𝑦].running_id].evt_wait=0

!(tpl_kern[$𝑎𝑛𝑦].running_id <
EXTENDED_TASK_COUNT)
[0, 0]

Figure 5.4: The kernel function tpl_terminate.

Scheduler The scheduler model is the core module of the kernel; it is based on the
one proposed by the OSEK/VDX and AUTOSAR standards. The multi-core version of
Trampoline implements a fixed priority partitioned scheduler. The scheduler uses func-
tions to handle the list of ready tasks and ISRs of category 2. Among the functions,

2. The state READY_AND_NEW is identical to the state READY but the execution context of the task is
not yet initialized.

84

Modeling with High Level Colored Petri Nets

we can highlight the tpl_put_new_proc function, explained in 3.5.2. Its model is pre-
sented in Figure 5.5. The function starts its execution by calling some initialization func-
tions written in the Roméo language. GET_PROC_CORE_ID (Figure 5.6) initializes the vari-
able core_id_var with the core_id assigned to the process passed as an argument. The
core_id is obtained from the process static descriptor stored in a table. GET_CORE_READY_LIST

initializes the ready_list belonging to the core core_id. The structure ready_list is a
binary heap. Each element has two fields, the dynamic process priority (key) and the
process identifier (id). The key is the concatenation of the priority and the rank of the
job. Finally, GET_TAIL_FOR_PRIO initializes the tail_for_prio with the rank table of core
core_id. tail_for_prio stores the last rank used to store a process. The variable $𝑎𝑛𝑦
represents the core_id of the running core. The second transition represents the dy-
namic priority calculation, obtained by concatenating the static priority and an order
number per priority level. PRIORITY_SHIFT is used to shift the key part used to store its
priority and RANK_MASK to get the part of the key used to store its rank. Then the new
entry is added at the end of the ready list, and the tpl_bubble_up 3 subnet is called to
bubble the entry at the index place up in a heap.

Interrupt dispatcher The model of this component is built with a subnet, allowing
themanagement of software and hardware interrupts. To notify an interruption, a token
with a color corresponding to the target core is put in the tpl_it_handlerfirst place, rep-
resented in Figure 5.7. Then interrupts are masked on the core (kernel_mode[$any]=1),
the global lock is taken if possible (lock_kernel=1). The different requests from the in-
terrupts are not considered until the called services leave the kernel mode. The counter
manager is called when the interrupt source is the counter tick. The inter-core interrupt
manager is called to handle the interactions and communication between the cores. The
central interrupt handler is called to manage the ISR. Next, the interrupt handler inter-
acts with the scheduler and the context switchmanager if the triggered interrupt causes
the running task to lose the processor. Finally, the global lock is released, and the core
returns to user mode, unmasking interrupt consequently.

Countermanager The countermanagermodel handles any interruptions coming from
the timer. When an interrupt occurs, the action related to the set of expiring alarms is

3. The tpl_bubble_up function compares the added elementwith its parent; if they are in the correct
order, the operation stops. If not, the element is swapped with its parent, and the operation returned to
the previous comparison step.

85

Modeling with High Level Colored Petri Nets

tpl_put_new_proc subnet
P1

[0, 0]
GET_PROC_CORE_ID(proc_id, core_id_var[$𝑎𝑛𝑦])

GET_CORE_READY_LIST(ready_list[$𝑎𝑛𝑦])
GET_TAIL_FOR_PRIO(tail_for_priot[$𝑎𝑛𝑦])

index_var[$𝑎𝑛𝑦] = ++ ready_list[$𝑎𝑛𝑦][0].key
prio = tpl_stat_proc_table[proc_id[$𝑎𝑛𝑦]].base_priority

dyn_prio= (prio « PRIORITY_SHIFT) | (−−tail_for_prio_var[$𝑎𝑛𝑦][prio] & RANK_MASK)

[0, 0]
ready_list[$𝑎𝑛𝑦][index_var[$𝑎𝑛𝑦]].key = dyn_prio

ready_list[$𝑎𝑛𝑦][index_var[$𝑎𝑛𝑦]].id = proc_id[$𝑎𝑛𝑦]
tpl_dyn_proc_table[proc_id[$𝑎𝑛𝑦]].prior = dyn_prio

tpl_bubble_up::P1[$𝑎𝑛𝑦]++
tpl_bubble_up

tpl_bubble_up::End[$𝑎𝑛𝑦]>0
[0, 0]

tpl_bubble_up::End[$𝑎𝑛𝑦]−−

𝐸𝑛𝑑

Figure 5.5: tpl_put_new_proc model.

executed. The action of the alarm can correspond to the activation of a task, an event,
or a call-back function. The interrupt can also cause a rescheduling. Alarms and coun-
ters are defined statically according to theOSEK/VDX and AUTOSAR standards. In the
model, tpl_call_counter_tick increments the counter tick and checks the next alarm
date. tpl_raise_alarm model describes when an alarm time object is raised.

Alarm base information can be obtained through the tpl_get_alarm_base_service

kernel function called by theGetAlarmBaseAPI service (Figure 5.2). Figure 5.8 presents
this HCTPN model that provides information on the alarm base. The Petri subnet also
checks if the interrupts are not disabled by the user when calling an API service and
that the alarm_id is a valid alarm identifier using function calls written in the Roméo
language.

86

Modeling with High Level Colored Petri Nets

void GET_PROC_CORE_ID (tpl_proc_id a_proc_id, tpl_core_id &a_core_id)
{
 if (N == 1)
 {
 a_core_id = 0;
 }
 else
 {
 a_core_id = tpl_stat_proc_table[a_proc_id].core_id;
 }
}

Figure 5.6: GET_PROC_CORE_ID C-like function. N is the number of cores.

5.3.3 Properties of the model

In the absence of an application, the model of the OS kernel remains in its initial state.
We study the properties of OS kernel state space when it is called upon by any applica-
tion.

The variables and the code of the kernel are included in the model.
Let N = (𝑃,𝑇, 𝑋, 𝐶,pre,post, (𝑚0, 𝑥0), 𝑔𝑢𝑎𝑟𝑑, 𝑢𝑝𝑑𝑎𝑡𝑒, 𝐼) the HCTPN model of the

OS. The set 𝑋 is the set of variables of the OS. The state of program pointers is given by
themarking. An observable state 𝑠 = (𝑀, 𝑥) of themodel is amarking𝑀 and a valuation
𝑥 of 𝑋 .

All the states would be observable by modeling the OS kernel with an assembler
instruction per Petri net transition.Wewould get a perfectly equivalent net to the kernel
but at the cost of a state space explosion.

Atomicity avoids this explosion and allows conciseness of themodel, but this means
that all the states of the kernel are not observable and are not in the state space of the
model.

Recall that all the instructions associated with a transition 𝑡 ∈ 𝑇 are executed se-
quentially (as the real code of the kernel on a given core) and considered as atomic in
the state space. For observing a particular state enclosed in a sequence of instructions
associated with a transition 𝑡, you only need to add a place in the Petri Net at the point
you want to observe.

The use of colors allows the simultaneous enabling of transitions for different cores,
but the kernel access is sequenced thanks to a global lock, and atomicity is applied on

87

Modeling with High Level Colored Petri Nets

tpl_it_handler subnet
P1

(it_flag[$𝑎𝑛𝑦] != 0) && (kernel_mode[$𝑎𝑛𝑦]== 0)
[0, 0]

kernel_mode[$𝑎𝑛𝑦]=1

ENTER_KERNEL

local_kernel[$𝑎𝑛𝑦] == 0
[0, 0]

local_kernel[$𝑎𝑛𝑦] = 1

(TICK_IT_MASK & it_flag[$𝑎𝑛𝑦]) != 0
[0, 0]

tpl_call_counter_tick::P1[$𝑎𝑛𝑦] ++
it_flag[$𝑎𝑛𝑦]= it_flag[$𝑎𝑛𝑦]-TICK_IT_MASK

(Software_IT_MASK & it_flag[$𝑎𝑛𝑦]) != 0
[0, 0]
it_flag[$𝑎𝑛𝑦]= it_flag[$𝑎𝑛𝑦]-Software_IT_MASK
tpl_central_interrupt_handler::P1[$𝑎𝑛𝑦] ++

(INTERCORE_IT_MASK & it_flag[$𝑎𝑛𝑦]) != 0
[0, 0]
it_flag[$𝑎𝑛𝑦]= it_flag[$𝑎𝑛𝑦]- INTERCORE_IT_MASK

tpl_call_counter_tick::End[$𝑎𝑛𝑦] >0
[0, 0]

tpl_call_counter_tick::End[$𝑎𝑛𝑦] −−

(it_flag[$𝑎𝑛𝑦] != 0) && (kernel_mode[$𝑎𝑛𝑦]== 0)
[0, 0]

kernel_mode[$𝑎𝑛𝑦]=1

tpl_central_interrupt_handler::End[$𝑎𝑛𝑦]>0
[0, 0]
tpl_central_interrupt_handler::End[$𝑎𝑛𝑦] −−

[0, 0]
LOCAL_SWITCH_CONTEXT::P1[$𝑎𝑛𝑦] ++

CONTEXT_SWITCH

LOCAL_SWITCH_CONTEXT::End[$𝑎𝑛𝑦]>0
[0, 0]

LOCAL_SWITCH_CONTEXT::End[$𝑎𝑛𝑦] −−

LEAVE_KERNEL

[0, 0]
lock_kernel=0

kernel_mode[$𝑎𝑛𝑦]=0

it_flag[$𝑎𝑛𝑦]==0
[0, 0]

it_flag[$𝑎𝑛𝑦]!=0
[0, 0]

Figure 5.7: tpl_it_handler model.

88

Modeling with High Level Colored Petri Nets

tpl_get_alarm_base_service subnet
P1

[0, 0]
alarm_id_var[$𝑎𝑛𝑦] = alarm_var[$𝑎𝑛𝑦].stat_part.timeobj_id

result[$𝑎𝑛𝑦] = E_OK

[0, 0]
CHECK_INTERRUPT_LOCK(result[$𝑎𝑛𝑦])

CHECK_ALARM_ID_ERROR(alarm_id_var[$𝑎𝑛𝑦], result[$𝑎𝑛𝑦])
result[$𝑎𝑛𝑦] == E_OK

[0, 0]
alarm = tpl_alarm_table[alarm_id_var[$𝑎𝑛𝑦]]

info.ticksperbase = alarm.stat_part.counter.ticksperbase
info.maxallowedvalue = alarm.stat_part.counter.maxallowedvalue

info.mincycle = alarm.stat_part.counter.min_cycle

result[$𝑎𝑛𝑦]
!= E_OK
[0, 0]

[0, 0]
process_error(result[$𝑎𝑛𝑦])

𝐸𝑛𝑑

Figure 5.8: tpl_get_alarm_base_service model.

89

Modeling with High Level Colored Petri Nets

uninterruptible code executed in kernel mode in null time. Hence, the state space of
the complete model abstracts the state space of the kernel. We then have the following
proposition:
Proposition 1: Modulo atomicity, the formal model N and the RTOS kernel have the

same state space over the RTOS variables.
It means that as in [10], for any application, N contains all the paths that might be
traversed during the execution of the operating system program.
It is important to note that for another version of the OS kernel without global lock, it
would be necessary to ensure that the reading and writing of a global variable are not
on the same transition.
Property 1: The model N of the kernel is bounded.
Proof: The variables manipulated by the kernel (and then by the model N) take their
values in a finite set, i.e., either bounded integers (such as the value of task priority) or
enumerated types (such as the state of a task). Moreover, the program pointers have a
finite number of values; hence the markings are bounded and then also the model N .
□

5.4 Application modeling

To perform verifications, it is necessary to add an applicationmodel to the RTOSmodel.
An application contains a concurrent set of tasks that interact with the operating sys-
tem through system calls such as ActivateTask() or TerminateTask(), interspersedwith
execution times given as an interval [𝐵𝐶𝐸𝑇,𝑊𝐶𝐸𝑇] 4. Its model consists of two parts.
The first part is the set of data structures corresponding to the descriptors of the differ-
ent objects that appear in the application: task, alarms, spinlocks, etc. The attributes of
the objects constitute part of the model variables. These data structures are transposed
from the C language to Roméo’s language, the model-checker that we use, which in its
syntax is very close to the C language. The pointers sometimes used in these structures
are translated into indexes in arrays. In practice, we added a module to the Trampo-
line OIL compiler to automatically generate the structures used by Roméo from the OIL
description of the application, as shown in Figure 5.9.
The second part is a set of Petri subnets, one per task or ISR of the application. The

4. 𝑊𝐶𝐸𝑇 corresponds to the worst execution time of the code between two service calls, and 𝐵𝐶𝐸𝑇
to the best case execution time of the code between two service calls.

90

Modeling with High Level Colored Petri Nets

Roméo
Template Module
(.goilTemplate)

C-like
Roméo file

(.c)

Kernel sources
(.c/.h)

OS infrastructure
(.c/ .asm)

OIL application
description

Application
sources (.c / .h)

XML application
description

Templates
(.goilTemplate)

Static data
structures
(c/.h)

GOIL
Compiler

C compiler
+ linker

Executable
code

(binary)

Figure 5.9: Trampoline application configuration with the added GTL module.

network reproduces the control flow graph of the task or ISR. The fact that a task
runs in the model is controlled by the OS model by means of the derivative function
𝑖𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘𝑖) of the stopwatches associatedwith the transitions representing the ex-
ecution of the tasks between services calls. When the task 𝑡𝑎𝑠𝑘𝑖 is scheduled, and the
OS is not running, then the function 𝑖𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘𝑖) returns 1, allowing the time to
elapse; otherwise, it returns 0 and blocks the elapse of time.

5.4.1 The GTL module

Goil compiler includes a template interpreter for file generation. Figure 5.9 shows tem-
plates with the extension .𝑔𝑜𝑖𝑙𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒. These template files are created in the Goil
Template Language (GTL), which allows the application’s configuration data to be
combined with text to generate files. GTL supports types (struct, boolean, list, integer,
and string) and has readers to get variable information. The syntax of this language is
detailed in the Trampoline OS documentation in the git 5.
The addedGTLmodule is a set of template files that produces theRoméo file. A piece of
code from the GTLmodule and the generated output file tpl_init_romeo.c after compi-
lation are shown in Figure 5.10. The% character is used to switch from literal text mode

5. https://github.com/TrampolineRTOS/GTL/blob/master/documentation/GTL.pdf

91

https://github.com/TrampolineRTOS/GTL/blob/master/documentation/GTL.pdf

Modeling with High Level Colored Petri Nets

GTL module

 %
 write to "tpl_init_romeo.c":
%
 /*
 * NUMBER OF CORES
 */
const int N= % !exists OS::NUMBER_OF_CORES default (1) %;
 /*
 * Priority of RES_SCHEDULER
 */

const int RES_SCHEDULER_PRIORITY= %
!OS::RESSCHEDULERPRIORITY %;

 /*
 * PRIORITY_MASK and RANK_MASK
 */

const int PRIORITY_SHIFT =% !PRIORITY_SHIFT %;
const int PRIORITY_MASK =% !PRIORITY_MASK %;
const int RANK_MASK = % !RANK_MASK %;

/*
 * Definition and initialization of Task-related structures
 */
%
 do template task_descriptor_romeo
 end foreach

C-like output file

 /*
 * NUMBER OF CORES
 */
 const int N= 2;
 /*
 * Priority of RES_SCHEDULER
 */
 const int RES_SCHEDULER_PRIORITY= 2;
 /*
 * PRIORITY_MASK and RANK_MASK
 */
 const int PRIORITY_SHIFT =2;
 const int PRIORITY_MASK =12;
 const int RANK_MASK = 3;
 /*
 * Definition and initialization of Task-related structures
 */
 /* Static descriptor of task t2 */
 tpl_proc_static t2_task_stat_desc;
 t2_task_stat_desc.internal_resource=
 INTERNAL_RES_SCHEDULER; /* internal ressource */
 t2_task_stat_desc.id = t2_id; /* task id */
 t2_task_stat_desc.core_id = 1; /* core id */
 t2_task_stat_desc.base_priority = 1; /* task base priority */
 t2_task_stat_desc.max_activate_count = 1; /* max activation
 count */
 t2_task_stat_desc.type = TASK_BASIC; /* task type */
 t2_task_stat_desc.app_id=SlaveApplication_id; /* OS
 application id */

Figure 5.10: GTL module and the C-like output file.

to program mode. The module comprises descriptors templates in its root that output
the C-likeRoméo file. The write statement defines the output of the template processing
in the specified file. Thus, we automatically extract the data structures and constants
generated from the OIL description of the application and translate these structures
into C-like language. Once the configuration file is defined, we model the application’s
source code by a Petri subnet which describes all the system calls performed.

5.4.2 Modeling examples

An example of modeling an application task is shown in Figure 5.11. The task calls the
GetAlarmBase service,which provides information on the alarmbase. The 𝐼𝑠𝑅𝑒𝑎𝑑𝑦(𝑡𝑎𝑠𝑘𝑖)
guards on Act𝑡𝑎𝑠𝑘𝑖 means that the task model is ready for execution. The 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔()
derivative function associated with transitions returns 1 when the task 𝑡𝑎𝑠𝑘𝑖 is sched-
uled on the assigned core, and we are in the user mode (kernel_mode==0). The transi-
tionswith intervals of the form [𝐵𝐶𝐸𝑇,𝑊𝐶𝐸𝑇] allows checking the application schedu-
lability and temporal properties, as we will explain in chapter 7.
Figure 5.12 shows a modeling example of a two-tasks application. It represents a task

92

Modeling with High Level Colored Petri Nets

𝑇𝑎𝑠𝑘1

Run11
[𝐵𝐶𝐸𝑇,𝑊𝐶𝐸𝑇] ¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘1)

Run12
[0, 0]

GetAlarmBase[$𝑎𝑛𝑦]::P1=GetAlarmBase[$𝑎𝑛𝑦]::P1+1
alarm_var[$𝑎𝑛𝑦]=alarm_descriptor

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘1)

Run13
GetAlarmBase::End[$𝑎𝑛𝑦]>0

[0, 0]
GetAlarmBase::End[$𝑎𝑛𝑦]=GetAlarmBase::End[$𝑎𝑛𝑦]-1

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘1)

IsReady(𝑡𝑎𝑠𝑘1)
Act𝑡𝑎𝑠𝑘1
[0, 0]

•

Figure 5.11: Application task model.

activation on another core. 𝑡𝑎𝑠𝑘1 is automatically activated and runs on core 0, associ-
ated with the red color. 𝑡𝑎𝑠𝑘2 runs on core 1, which is associated with the blue color.
Applications aremodeledwith the same approach. The IsRunning()derivative function
checks that the task passed in the parameter is running in user mode, and its boolean
return allows the elapse of time when it is equal to 1; otherwise, it’s blocked. 𝑡𝑎𝑠𝑘1 is
running on core 0 and after a time in the range [2, 4], 𝑡𝑎𝑠𝑘1 activates 𝑡𝑎𝑠𝑘2 on core 1. In
this case, the Biglock is taken by core 0 when the ActivateTask service is called, and core
1 waits actively for its release to take over the interrupt and make the context switch.
In the model, handling the concurrency of service calls in parallel on different cores is
represented by the lock_kernel variable. It is set to 1 and reset to 0 at the end of the execu-
tion of each service call. Since the interrupts are masked and can not run concurrently,
a kernel_mode table is used, allowing simultaneous access through the $any variable.

5.5 Conclusion

At the end of our modeling work, we have a model of the Trampoline multi-core RTOS
thatwe can complementwith an applicationmodel. Thismodel is described byHCTPNs
and Roméo functions written in a syntax similar to the C language. The model is struc-

93

Modeling with High Level Colored Petri Nets

𝑇𝑎𝑠𝑘1

Run11
¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘1)

[2, 4]

Run12
¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘1)

[0, 0]
ActivateTask[$𝑎𝑛𝑦]::P1++

task_var[$𝑎𝑛𝑦]=task2_descriptor
caller_var[$𝑎𝑛𝑦]=task1_descriptor

Run13
¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘1)

[1, 1]

Run14
¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘1)

[0, 0]
TerminateTask[$𝑎𝑛𝑦]::P1++

caller_var[$𝑎𝑛𝑦]=task1_descriptor

IsReady(𝑡𝑎𝑠𝑘1)
Act𝑡𝑎𝑠𝑘1
[0, 0]

•

𝑇𝑎𝑠𝑘2

Run21
[1, 2] ¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘2)

Run22
[0, 0]

TerminateTask[$𝑎𝑛𝑦]::P1++
caller_var[$𝑎𝑛𝑦]=task2_descriptor

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘2)

IsReady(𝑡𝑎𝑠𝑘2)
Act𝑡𝑎𝑠𝑘2
[0, 0]

•

Figure 5.12: Application model.

tured to avoid state explosion with parts corresponding to a sequential code execution
treated as an atomic transition w.r.t. the higher-level net. The entire model will be used
in our verification approach presented in the following chapters.

94

Chapter 6

FORMAL VERIFICATION OF THE

MULTI-CORE AUTOSAR OS COMPLIANCE

6.1 Introduction

This chapter presents a formal process to verify multi-core OS compliance with the
AUTOSAR standard and the synchronization mechanisms involved in the concurrent
execution of OS services. AUTOSAR conformance testing is based on requirements ver-
ification by executing a test suite. The first part focuses on multi-core OS requirements,
of which there are 80. Each requirement is formalized by an observer that evaluates
compliance. The approach results conclude that the operating system model respects
the AUTOSAR specifications. The second part of the verification is based on rare situ-
ations with simultaneous service calls in parallel on several cores that are almost im-
possible to test on real implementation. However, errors can be automatically identified
with the model-checking method.

6.2 Formal verification of AUTOSAR compliance

Wepropose an approach based onmodel-checking to verify the conformity of the oper-
ating system to theAUTOSAR standard. Figure 6.1 shows the twomain stages of the pro-
cess. The first phase involves developing a complete model that includes all the OS and
application functions and services as represented in chapter 5. The verification phase is
based on two possible formalizations of properties with model-checking: (i) express-
ing them formally with temporal logic to be verified by the model-checker, and (ii)
adding Petri nets as external observers able to evaluate the respect of the requirements.
In the first case, the TCTL logic allows expressing requirements as properties in Roméo.
However, these requirements can easily become difficult to express by involving several

95

Formal verification of the multi-core AUTOSAR OS compliance

Complete system model

RTOS model

Application model
Model-checker

TCTL properties

Satisfied properties

Unsatisfied properties
Counter-example

Observer models

Figure 6.1: Verification approach.

parameters, leading to nested properties where one property is defined inside another.
The Roméo tool does not support this kind of formula, which motivates our choice to
use observers. Indeed, the expression of the requirements is systematically performed
through an observer. The verification is therefore achieved by a reachability test on a
given observer state. Observers are read-only processes that keep track of some invari-
ants in the execution of the Petri Net, and do notmodify the system state. TheAUTOSAR
requirements are thus translated into observers describing the expected behavior. Then,
with the help of reachability properties written in TCTL logic, we can verify by the
model-checker their satisfaction or generate, on the contrary case, a counter-example
trace.

6.2.1 AUTOSAR OS tests

The operating system compliancewith theAUTOSAR standard is determined at the end
of the test suite that comprises a set of applications. The application is a test sequence
containing a set of service calls, and each service call represents a test case. When all
test cases succeed, the test sequence is verified. Similarly, all test sequences completed
correctly lead to the success of the test suite, thus checking the conformance.
We rely on the set of multi-core test cases developed by the Trampoline project to verify
the OS compliance with the AUTOSAR standard. The project is available in the Trampo-
line repository1, and it contains 75 OS-specific tests, of which 18 are dedicated to multi-

1. They are available in the Trampoline repository: https://github.com/TrampolineRTOS/

96

https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional
https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional
https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional

Formal verification of the multi-core AUTOSAR OS compliance

t1

Core 0 Core 1

t2 activate_task_across_cores set_event_accross_cores should_not_expire

SetAbsAlarm(atac, 10, 0)

SetRelAlarm(seac, 20, 0)

SyncAllCores(sync) ActivateTask(t2)

SetAbsAlarm(sne, 15, 0)

CancelAlarm(sne)

SetRelAlarm(sne, 5, 0)

CancelAlarm(sne)

SetRelAlarm(sne, 5, 0)

GetAlarmBase(sne, alarmRef)/GetAlarm(sne, tickRef)

CancelAlarm(sne)

WaitEvent(t2_event)

SetEvent(t2, t2_event)

SyncAllCores(sync)

Figure 6.2: mc_alarm_s1 test sequence. ◦ represents the success of the system service
call and × the canceling of the alarm.

core. These included test sequences have been run on several hardware targets show-
ing Trampoline RTOS compliance. We illustrate the first AUTOSAR test sequence of the
Trampoline repository, 𝑚𝑐_𝑎𝑙𝑎𝑟𝑚_𝑠1, in Figure 6.2. This example contains a set of three
tasks 𝜏 = {𝑡1, 𝑡2, 𝑠ℎ𝑜𝑢𝑙𝑑_𝑛𝑜𝑡_𝑟𝑢𝑛} to be executed on two cores (Core 0 and Core 1), and
three alarms assigned toCore 0,Λ= {𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒_𝑡𝑎𝑠𝑘_𝑎𝑐𝑐𝑟𝑜𝑠𝑠_𝑐𝑜𝑟𝑒𝑠, 𝑠𝑒𝑡_𝑒𝑣𝑒𝑛𝑡_𝑎𝑐𝑐𝑟𝑜𝑠𝑠_𝑐𝑜𝑟𝑒𝑠,
𝑠ℎ𝑜𝑢𝑙𝑑_𝑛𝑜𝑡_𝑒𝑥𝑝𝑖𝑟𝑒}. Since the 𝑠ℎ𝑜𝑢𝑙𝑑_𝑛𝑜𝑡_𝑟𝑢𝑛 task does not run, it is not shown on the
figure 6.2. This sequence was developed to verify the AUTOSAR requirements from
𝑆𝑊𝑆_𝑂𝑠_00632 to 𝑆𝑊𝑆_𝑂𝑠_00640 in Table A.1, shown on page 147. We detail our veri-
fication approach on this application in 6.3.1.

6.2.2 AUTOSAR requirements observers

According to our approach, each AUTOSAR requirement is formalized by an observer
able to assess its compliance; therefore, the AUTOSAR specifications are individually
verified by model-checking on an application. The observer is modeled by a Petri net
that evolves according to the operating system evolution without altering its behavior.
The reachability of the observer’s states is examined to verify the satisfaction of the

trampoline/tree/master/tests/functional

97

https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional
https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional
https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional
https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional
https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional
https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional
https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional
https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional
https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional
https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional
https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional
https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional
https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional
https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional
https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional
https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional
https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional
https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional
https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional

Formal verification of the multi-core AUTOSAR OS compliance

requirement.

How an observer works in the model? The observer relies on functions written in
Roméo language, returning a boolean according to the satisfaction of the conditions
forming the requirement. The observer waits in its initial state containing a token until
the condition becomes true to evolve and fire its transitions. Thus, each requirement is
translated by a test function that returns 𝑡𝑟𝑢𝑒 for each satisfied condition. If the first con-
dition is true, the observer model moves to the next state to check the second condition
until reaching the final state. These functions are called in the RTOS model at locations
updating the data structures involved in the verification. Correct verification of future
states is ensured by resetting the rest of the conditions once the first one is true.

Requirement observermodel Let’s consider the observermodel of the 𝑆𝑊𝑆_𝑂𝑠_00639
requirement (Figure 6.3), which verifies that the𝐺𝑒𝑡𝐴𝑙𝑎𝑟𝑚𝐵𝑎𝑠𝑒 service shall also work
on an alarm that is bound to another core. This requirement is checked using two condi-
tions during the service call. First, we check whether the core to which the alarm is stat-
ically assigned differs from the core identifier on which the service is executed. Then,
we verify that the service call finalized its execution and exited the kernel mode. Thus,
the test function is called at the beginning and end of the service call using 𝑎𝑛𝑦 that
represents the 𝑐𝑜𝑟𝑒_𝑖𝑑. The final state of the observer is reached only if both conditions
are satisfied. All the observers used are based on the same structure. They contain only
committed transitions that are transitions with a priority to guarantee they are fired
before all the other system transitions. Thus, if there are several fireable transitions at a
given state of execution, the committed ones are fired first before all the others.

6.2.3 Model-checking with Roméo

Model-checking allows the exploration of the system’s state space from its initial state,
taking as input a logic formula to be verified. Requirement in Roméo are expressed in
a subclass of TCTL temporal logics [28] and verified with an on-the-fly efficient algo-
rithm as represented in 4.5. An execution trace is automatically generated as a counter-
example if the property violation is detected. The AUTOSAR requirement verification
is performed using the logical formula 𝐴𝐺 (𝑝) implies 𝐴𝐹 (𝑞), expressed by the syntax
(p)->(q). The formula (p)->(q) holds if and only if whenever p holds, eventually q will hold.
Thus, based on the observer model of the 𝑆𝑊𝑆_𝑂𝑠_00639 requirement (Figure 6.3), the

98

Formal verification of the multi-core AUTOSAR OS compliance

𝑆𝑊𝑆_𝑂𝑠_00639

boolean_639.condition1==1
[0, 0]

𝐶𝑜𝑟𝑒𝑖_𝑣𝑒𝑟𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛

boolean_639.condition2==1
[0, 0]

𝐾𝑒𝑟𝑛𝑒𝑙_𝑒𝑥𝑖𝑡

typedef struct {
bool condition1 ;
bool condition2 ;

} Requirement_conditions

Requirement_conditions boolean_639 ;

Requirement_conditions SWS_639_Observer (int core_id ,
Requirement_conditions boolean_639 , tpl_time_obj alarm_desc)
{

// core_id comparison
if (alarm_desc . core_id != core_id)
{

boolean_639 . condition1 =1;
// Erasing the past
boolean_639 . condition2 =0;

}
// Kernel exit if everything was OK
if ((alarm_desc . core_id != core_id)&&(kerne_mode [core_id]==0)
&&(result_var [core_id]== E_OK))
{

boolean_639 . condition2 =1;
}
return boolean_639 ;

}

Figure 6.3: SWS_Os_00639 Observer model.

99

Formal verification of the multi-core AUTOSAR OS compliance

corresponding verification formula is as follows: (SWS_Os_00639[0])->(Kernel_exit[0]). The to-
ken in the initial place of the model triggers the observer once the guard condition is
satisfied.

6.3 Compliance of the AUTOSAR Trampoline OS

The enriched model with observers allows checking AUTOSAR requirements on any
application, as each observer represents a specification. We focus on the set of multi-
core test sequences proposed by the Trampoline project to conduct a formal verification
with the Roméo model-checker. The observers are modeled following the procedure
detailed in the previous section.We illustrates the application of our formal verification
approach on the two applications 𝑚𝑐_𝑎𝑙𝑎𝑟𝑚_𝑠1 and 𝑚𝑐_𝑠𝑝𝑖𝑛𝑙𝑜𝑐𝑘_𝑠1 of the Trampoline
AUTOSAR test repositorywith the verification results obtained. These examples include
several test cases that verify the satisfaction of a set of requirements related to alarms
and spinlocks. The application model is constructed for each test sequence to verify the
whole multi-core requirements.

6.3.1 mc_alarm_s1 application

This part focuses on the first multi-core test sequence of the Trampoline repository,
𝑚𝑐_𝑎𝑙𝑎𝑟𝑚_𝑠1, represented in Figure 6.2. Tasks are partitioned such that 𝑡2 runs on Core
1, while 𝑡1 and 𝑠ℎ𝑜𝑢𝑙𝑑_𝑛𝑜𝑡_𝑟𝑢𝑛 run on Core 0 and task 𝑡1 has a lower priority than task
𝑠ℎ𝑜𝑢𝑙𝑑_𝑛𝑜𝑡_𝑟𝑢𝑛.
Initially, 𝑡1 is an autostart task that runs on Core 0 in the RTOS startup phase. This task
calls theAPI service 𝑆𝑒𝑡𝐴𝑏𝑠𝐴𝑙𝑎𝑟𝑚 and 𝑆𝑒𝑡𝑅𝑒𝑙𝐴𝑙𝑎𝑟𝑚. 𝑆𝑒𝑡𝐴𝑏𝑠𝐴𝑙𝑎𝑟𝑚(𝐴𝑙𝑎𝑟𝑚𝐼𝐷, 𝑠𝑡𝑎𝑟𝑡, 𝑐𝑦𝑐𝑙𝑒)
activates the task 𝑡2 assigned to alarm 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒_𝑡𝑎𝑠𝑘_𝑎𝑐𝑟𝑜𝑠𝑠_𝑐𝑜𝑟𝑒𝑠 when its absolute
value in 𝑠𝑡𝑎𝑟𝑡 ticks is reached. If the alarm is single, 𝑐𝑦𝑐𝑙𝑒 is equal to zero; otherwise,
the 𝑐𝑦𝑐𝑙𝑒 value is greater than 0 in the case of a cyclic alarm. Core 0 must then ac-
quire the kernel lock and set alarm 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒_𝑡𝑎𝑠𝑘_𝑎𝑐𝑟𝑜𝑠𝑠_𝑐𝑜𝑟𝑒𝑠. When it expires, the
rescheduling is done for Core 1, and as a result, a context switch notification is sent
with an inter-core interrupt to execute task 𝑡2. The 𝑆𝑒𝑡𝐴𝑏𝑠𝐴𝑙𝑎𝑟𝑚 service call will verify
the 𝑆𝑊𝑆_𝑂𝑠_00632 requirement, checking if an alarm can activate a task on a different
kernel. The 𝑠𝑒𝑡_𝑒𝑣𝑒𝑛𝑡_𝑎𝑐𝑟𝑜𝑠𝑠_𝑐𝑜𝑟𝑒𝑠 alarm activates the assigned event for task 𝑡2 con-
sidered as an extended task with the 𝑆𝑒𝑡𝑅𝑒𝑙𝐴𝑙𝑎𝑟𝑚(𝐴𝑙𝑎𝑟𝑚𝐼𝐷, 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡, 𝑐𝑦𝑐𝑙𝑒) service

100

Formal verification of the multi-core AUTOSAR OS compliance

call, after 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 ticks have elapsed. Once the interrupt sent by Core 0 is considered,
task 𝑡2 starts executing and calls the following services for the 𝑠ℎ𝑜𝑢𝑙𝑑_𝑛𝑜𝑡_𝑒𝑥𝑝𝑖𝑟𝑒 alarm:
𝑆𝑒𝑡𝐴𝑏𝑠𝐴𝑙𝑎𝑟𝑚,𝐶𝑎𝑛𝑐𝑒𝑙𝐴𝑙𝑎𝑟𝑚, 𝑆𝑒𝑡𝑅𝑒𝑙𝐴𝑙𝑎𝑟𝑚, and𝐺𝑒𝑡𝐴𝑙𝑎𝑟𝑚𝐵𝑎𝑠𝑒 (Figure 5.2), endingwith
the event waiting. Task 𝑠ℎ𝑜𝑢𝑙𝑑_𝑛𝑜𝑡_𝑟𝑢𝑛 assigned to alarm 𝑠ℎ𝑜𝑢𝑙𝑑_𝑛𝑜𝑡_𝑒𝑥𝑝𝑖𝑟𝑒will never
be executed on Core 1 as the alarm is canceled at the end of the test sequence. This ser-
vice calls set ensures that they work when an alarm occurs on a different core.

6.3.1.1 Application model

The developed application model precisely describes the life cycle of each task through
the performed system calls. Figure 6.4 shows the test sequence of task 𝑡1. This task
allows activating 𝑡2 through the expiration of alarm 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒_𝑡𝑎𝑠𝑘_𝑎𝑐𝑟𝑜𝑠𝑠_𝑐𝑜𝑟𝑒𝑠 and
setting its event by alarm 𝑠𝑒𝑡_𝑒𝑣𝑒𝑛𝑡_𝑎𝑐𝑟𝑜𝑠𝑠_𝑐𝑜𝑟𝑒𝑠. Alarm 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒_𝑡𝑎𝑠𝑘_𝑎𝑐𝑟𝑜𝑠𝑠_𝑐𝑜𝑟𝑒𝑠
is enabled by the 𝑆𝑒𝑡𝐴𝑏𝑠𝐴𝑙𝑎𝑟𝑚 system call, taking as parameters the required alarm and
the expected absolute value to reach for expiry through the alarm_var and start_var

variables, respectively. The 𝑡2 test sequence is modeled similarly based on the called
services.

6.3.1.2 Verification results

We apply our verification approach to check the requirements covered by this example.
We formalize each requirement by an observermodel as presented in 6.2.2. For example,
the first requirement 𝑆𝑊𝑆_𝑂𝑠_00632 is represented by the observermodel in Figure 6.5.
It verifies that an alarm can activate a task on a different core. Thus, we must check that
alarm 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒_𝑡𝑎𝑠𝑘_𝑎𝑐𝑟𝑜𝑠𝑠_𝑐𝑜𝑟𝑒𝑠 assigned to core 0 can activate task 𝑡2 on Core 1.
This alarm is set by the service 𝑆𝑒𝑡𝐴𝑏𝑠𝐴𝑙𝑎𝑟𝑚 that task 𝑡1 calls, as shown in the model in
Figure 6.4. We first verify that the alarm core ID and the task core ID are distinct, then
we ensure that the task is correctly activated on Core 1. Two states are observed by the
function: the ready state when the task is elected and the running state when it is in
execution. Finally, the kernel-mode exit condition is verified after the activation of the
task.
Table 6.1 shows the verification results of the requirements covered by this applica-
tion, listed in Table A.1. The column 𝑡𝑖𝑚𝑒 (s) refers to the time needed to obtain the
model-checker’s response. The 𝑚𝑒𝑚𝑜𝑟𝑦 (MB) column is the memory consumed when
checking the property (p)->(q) of the observer corresponding to a requirement. The result

101

Formal verification of the multi-core AUTOSAR OS compliance

𝑇𝑎𝑠𝑘1

Run11
[0, 0] ¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘1)

Run12
[0, 0]

SetAbsAlarm::P1[$𝑎𝑛𝑦]++
alarm_var[$𝑎𝑛𝑦]=activate_task_accross_cores_alarm_desc

starts_var[$𝑎𝑛𝑦]=activate_task_accross_cores_alarm_desc.date
cycle_var[$𝑎𝑛𝑦]=activate_task_accross_cores_alarm_desc.cycle

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘1)

Run13
SetAbsAlarm::End[$𝑎𝑛𝑦]>0

[0, 0]
SetAbsAlarm::End[$𝑎𝑛𝑦]−−

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘1)

Run14
[0, 0]

SetRelAlarm::P1[$𝑎𝑛𝑦]++
increment_var[$𝑎𝑛𝑦]=set_event_accross_cores_alarm_desc.date

cycle_var[$𝑎𝑛𝑦]=set_event_accross_cores_alarm_desc.cycle

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘1)

Run15
SetRelAlarm::End[$𝑎𝑛𝑦]>0

[0, 0]
SetRelAlarm::End[$𝑎𝑛𝑦]−−

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘1)

IsReady(𝑡𝑎𝑠𝑘1)
Act𝑡𝑎𝑠𝑘1
[0, 0]

•

Figure 6.4: 𝑇𝑎𝑠𝑘1 model of the 𝑚𝑐_𝑎𝑙𝑎𝑟𝑚_𝑠1 test sequence.

102

Formal verification of the multi-core AUTOSAR OS compliance

𝑆𝑊𝑆_𝑂𝑠_00632

boolean_632.condition1==1
[0, 0]

𝐶𝑜𝑟𝑒𝑖_𝑣𝑒𝑟𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛

boolean_632.condition2==1
[0, 0]

𝑡𝑎𝑠𝑘_𝑟𝑢𝑛𝑛𝑖𝑛𝑔
boolean_632.condition3==1

[0, 0]

𝐾𝑒𝑟𝑛𝑒𝑙_𝑒𝑥𝑖𝑡

Requirement_conditions boolean_632 ;

Requirement_conditions SWS_632_Observer (int core_id , tpl_time_obj
alarm_desc , Requirement_conditions boolean_632 , tpl_proc task)
{

// core_id comparison + task is ready
if ((alarm_desc . core_id != task. core_id) &&
(tpl_dyn_proc_table [task.id]. state_d == READY_AND_NEW)
or (tpl_dyn_proc_table [task.id]. state_d == READY))
{

boolean_632 . condition1 =1;
// Erasing the past
boolean_632 . condition2 =0;
boolean_632 . condition3 =0;

}

// task is running
if ((alarm_desc . core_id != task. core_id)&&
(tpl_dyn_proc_table [task.id]. state_d == RUNNING))
{

boolean_632 . condition2 =1;
}

// Kernel exit if everything was OK
if ((alarm_desc . core_id != task. core_id)&&
(kerne_mode [core_id]==0)
&&(result_var [core_id]== E_OK))
{

boolean_632 . condition3 =1;
}
return boolean_632 ;

}

Figure 6.5: SWS_Os_00632 Observer model.

103

Formal verification of the multi-core AUTOSAR OS compliance

column shows that the property is satisfied by themodel. The requirements verification
is performed in a similar time and memory. For all verifications, the result is true.

Table 6.1: Computing time and memory used for verification - mc_alarm_s1.

(𝑝) → (𝑞)
Memory used (MB) Computing time (s)

SWS_Os_00632 662.0 12.4
SWS_Os_00633 647.7 12.1
SWS_Os_00636 666.5 12.1
SWS_Os_00637 663.7 12.0
SWS_Os_00638 656.0 12.1
SWS_Os_00639 662.5 12.1
SWS_Os_00640 672.7 12.1

6.3.2 mc_spinlock_s1 application

The AUTOSAR standard defines the spinlock mechanism for tasks and ISR2s with sev-
eral lockingmethods. For example,with themethod 𝐿𝑂𝐶𝐾_𝑊𝐼𝑇𝐻_𝑅𝐸𝑆_𝑆𝐶𝐻𝐸𝐷𝑈𝐿𝐸𝑅,
the specific pre-declared resource 𝑅𝐸𝑆_𝑆𝐶𝐻𝐸𝐷𝑈𝐿𝐸𝑅 is obtained, and all other pro-
cesses will be prevented from preempting for the time that the resource is held. Fol-
lowing the methods 𝐿𝑂𝐶𝐾_𝐴𝐿𝐿_𝐼𝑁𝑇𝐸𝑅𝑅𝑈𝑃𝑇𝑆 or 𝐿𝑂𝐶𝐾_𝐶𝐴𝑇2_𝐼𝑁𝑇𝐸𝑅𝑅𝑈𝑃𝑇𝑆, all
interrupts or OS interrupts are suspended, respectively. Tasks and ISR2s can simulta-
neously access the kernel by calling spinlock services on different cores. Only one core
can acquire a specific spinlockwith the𝐺𝑒𝑡𝑆𝑝𝑖𝑛𝑙𝑜𝑐𝑘 or𝑇𝑟𝑦𝑇𝑜𝐺𝑒𝑡𝑆𝑝𝑖𝑛𝑙𝑜𝑐𝑘 API services.
𝐺𝑒𝑡𝑆𝑝𝑖𝑛𝑙𝑜𝑐𝑘 (𝑆𝑝𝑖𝑛𝑙𝑜𝑐𝑘 𝐼𝑑) allows the spinlock to be occupied by the calling core. If an-
other core had already taken the spinlock, the tasks or ISR2s wait in a loop, repeatedly
checking for the shared lock to become free. 𝑇𝑟𝑦𝑇𝑜𝐺𝑒𝑡𝑆𝑝𝑖𝑛𝑙𝑜𝑐𝑘 (𝑆𝑝𝑖𝑛𝑙𝑜𝑐𝑘 𝐼𝑑, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠)
is similar to 𝐺𝑒𝑡𝑆𝑃𝑖𝑛𝑙𝑜𝑐𝑘 , except the busy-waiting if a different core acquires the spin-
lock. Thus, TryToGetSpinlock returns without waiting for the spinlock release, setting
its return variable 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 to𝑇𝑅𝑌𝑇𝑂𝐺𝐸𝑇𝑆𝑃𝐼𝑁𝐿𝑂𝐶𝐾_𝑁𝑂𝑆𝑈𝐶𝐶𝐸𝑆𝑆. The spinlock pre-
viously taken by the 𝐺𝑒𝑡𝑆𝑝𝑖𝑛𝑙𝑜𝑐𝑘 and 𝑇𝑟𝑦𝑇𝑜𝐺𝑒𝑡𝑆𝑝𝑖𝑛𝑙𝑜𝑐𝑘 services is released using the
𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑆𝑝𝑖𝑛𝑙𝑜𝑐𝑘 (𝑆𝑝𝑖𝑛𝑙𝑜𝑐𝑘 𝐼𝑑) service.
We present in Figure 6.6 the𝑚𝑐_𝑠𝑝𝑖𝑛𝑙𝑜𝑐𝑘_𝑠1multi-core test sequence of the Trampoline
repository. The application contains four spinlocks handled by the services mentioned

104

Formal verification of the multi-core AUTOSAR OS compliance

t1

Core 0 Core 1

t2 ISR2 already_taken not_successor lock_task lock_isr

GetSpinlock(already_taken)

GetSpinlock(already_taken)

GetSpinlock(not_successor)

ReleaseSpinlock(already_taken)

GetSpinlock(not_successor)

ReleaseSpinlock(not_successor)

TryToGetSpinlock(lock_task, &success)

GetSpinlock(lock_isr, &success)

ActivateTask(t2)

TryToGetSpinlock(lock_task, &success)

GetSpinlock_IE(lock_task, &success)
ProtectionHook
and call the
core1’s ISR2

GetSpinlock(already_taken)

GetSpinlock(already_taken)

ReleaseSpinlock(already_taken)

TryToGetSpinlock(already_taken)

ReleaseSpinlock(already_taken)

TryToGetSpinlock(lock_isr, &success)

Figure 6.6: mc_spinlock_s1 test sequence.

above, 𝑎𝑙𝑟𝑒𝑎𝑑𝑦_𝑡𝑎𝑘𝑒𝑛, 𝑛𝑜𝑡_𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟, 𝑙𝑜𝑐𝑘_𝑖𝑠𝑟, and 𝑙𝑜𝑐𝑘_𝑡𝑎𝑠𝑘 , and defines the correct
nesting of spinlocks to avoid deadlocks. Task 𝑡1 runs on Core 0, task 𝑡2 and the Cat2
Interrupt Service Routine 𝐼𝑆𝑅2 run on Core 1 such that task 𝑡2 has a lower priority
than 𝐼𝑆𝑅2. Cat2 ISRs are supported by OSEK and can make OS calls that may cause a
rescheduling. Task 𝑡1 is an autostart task that begins automatically at system start-up.
It calls a set of spinlock API services as shown in Figure 6.6. First, it gets two times the
same spinlock 𝑎𝑙𝑟𝑒𝑎𝑑𝑦_𝑡𝑎𝑘𝑒𝑛with the𝐺𝑒𝑡𝑆𝑝𝑖𝑛𝑙𝑜𝑐𝑘 service and endswith the activation
of task 𝑡2 on core 1. Task 𝑡2 tries to get the spinlock 𝑙𝑜𝑐𝑘_𝑡𝑎𝑠𝑘 that Core 0 has. It has an
execution budget with protection time enabled. Once its execution budget is consumed,
the operating systemmodule calls the 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝐻𝑜𝑜𝑘 () function that sends a software
interrupt to the interrupt handler to enable the core1’s 𝐼𝑆𝑅2. This application verifies
the requirements from 𝑆𝑊𝑆_𝑂𝑠_00649 to 𝑆𝑊𝑆_𝑂𝑠_00661 listed in Table A.1.

105

Formal verification of the multi-core AUTOSAR OS compliance

6.3.2.1 Application model

The application model gathers the models of the two tasks and 𝐼𝑆𝑅2, which constitute
it. 𝐼𝑆𝑅2 is considered a process activated by the software interrupt sent at the end of
task t2 execution. Its detailed model is represented in Figure 6.7. It starts with calling
the 𝐺𝑒𝑡𝑆𝑝𝑖𝑛𝑙𝑜𝑐𝑘 service twice to acquire the same spinlock 𝑎𝑙𝑟𝑒𝑎𝑑𝑦_𝑡𝑎𝑘𝑒𝑛 and then
follows up with a set of service calls. Each service call represents a requirement check
scenario. For example, the error 𝐸_𝑂𝑆_𝐼𝑁𝑇𝐸𝑅𝐹𝐸𝑅𝐸𝑁𝐶𝐸_𝐷𝐸𝐴𝐷𝐿𝑂𝐶𝐾 is expected
on the second attempt to get the spinlock because it already belongs to the calling core.

6.3.2.2 Verification results

We conduct the verification on the elaborated application model by adding the ob-
servers. All the requirements tested by this application are formalized. Figure 6.8 shows
the observer models verifying the requirements SWS_Os_00650 and SWS_Os_00651.
Both requirements concern the ability to call𝐺𝑒𝑡𝑆𝑝𝑖𝑛𝑙𝑜𝑐𝑘 from tasks and ISR2s and are
checked through the same function 𝑆𝑊𝑆_650_651_𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑟 .
The first field of the 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_650_651 data structure, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛1, triggers the observer
of requirement SWS_Os_00650 when the task is running. Similarly, the second field,
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛2, triggers the observer of requirement SWS_Os_00651 when the 𝐼𝑆𝑅2 is exe-
cuted. The observers end their verification with the kernel-mode exit condition via the
third field 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛3, reset with the check of each trigger condition.
The description of the requirements from 𝑆𝑊𝑆_𝑂𝑠_00649 to 𝑆𝑊𝑆_𝑂𝑠_00661, verified by
this test sequence, are found in Table A.1. The property (p)->(q) is satisfied by the Roméo
model-checker for each requirement observer, such that 𝑝 represents the first place and
𝑞 the last place of the observer. The verification time in seconds and the memory con-
sumed in MB for each observer verification are included in Table 6.2. For all verifica-
tions, the result is true.

6.3.3 Discussion

In our verification process, the computer on which the verification is conducted has a
quad-core Intel Core i5 processor running at 2.4 GHz and a RAMof 16 GB.Wewere not
confronted with the combinatorial explosion problem of the state spaces. The combi-
natorial explosion can be induced by the multi-core interleaving scenarios such that all

106

Formal verification of the multi-core AUTOSAR OS compliance

𝐼𝑆𝑅2

Run11
[0, 0] ¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝐼𝑆𝑅2)

Run12
[0, 0]

GetSpinlock::P1[$𝑎𝑛𝑦]++
spinlock_id[$𝑎𝑛𝑦]=already_taken_id

spinlock_var[$𝑎𝑛𝑦]=already_taken_spinlock_desc

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝐼𝑆𝑅2)

Run13
GetSpinlock::End[$𝑎𝑛𝑦]>0

[0, 0]
GetSpinlock::End[$𝑎𝑛𝑦]−−

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝐼𝑆𝑅2)

Run14
[0, 0]

GetSpinlock::P1[$𝑎𝑛𝑦]++
spinlock_id[$𝑎𝑛𝑦]=already_taken_id

spinlock_var[$𝑎𝑛𝑦]=already_taken_spinlock_desc

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝐼𝑆𝑅2)

Run15
GetSpinlock::End[$𝑎𝑛𝑦]>0

[0, 0]
GetSpinlock::End[$𝑎𝑛𝑦]−−

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝐼𝑆𝑅2)

Run16
[0, 0]

ReleaseSpinlock::P1[$𝑎𝑛𝑦]++
spinlock_id[$𝑎𝑛𝑦]=already_taken_id

spinlock_var[$𝑎𝑛𝑦]=already_taken_spinlock_desc

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝐼𝑆𝑅2)

Run17
ReleaseSpinlock::End[$𝑎𝑛𝑦]>0

[0, 0]
ReleaseSpinlock::End[$𝑎𝑛𝑦]−−

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝐼𝑆𝑅2)

Run18
[0, 0]

TryToGetSpinlock::P1[$𝑎𝑛𝑦] ++
spinlock_id[$𝑎𝑛𝑦]=already_taken_id

spinlock_var[$𝑎𝑛𝑦]=already_taken_spinlock_desc

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝐼𝑆𝑅2)

Run19
TryToGetSpinlock::End[$𝑎𝑛𝑦]>0

[0, 0]
TryToGetSpinlock::End[$𝑎𝑛𝑦]−−

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝐼𝑆𝑅2)

Run20
[0, 0]

ReleaseSpinlock::P1[$𝑎𝑛𝑦] ++
spinlock_id[$𝑎𝑛𝑦]=already_taken_id

spinlock_var[$𝑎𝑛𝑦]=already_taken_spinlock_desc

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝐼𝑆𝑅2)

Run21
ReleaseSpinlock::End[$𝑎𝑛𝑦]>0

[0, 0]
ReleaseSpinlock::End[$𝑎𝑛𝑦]−−

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝐼𝑆𝑅2)

Run22
[0, 0]

TryToGetSpinlock::P1[$𝑎𝑛𝑦] ++
spinlock_id[$𝑎𝑛𝑦]= lock_isr_id

spinlock_var[$𝑎𝑛𝑦]=lock_isr_spinlock_desc

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝐼𝑆𝑅2)

Run23
TryToGetSpinlock::End[$𝑎𝑛𝑦]>0

[0, 0]
TryToGetSpinlock::End[$𝑎𝑛𝑦]−−

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝐼𝑆𝑅2)

IsReady(𝐼𝑆𝑅2)
Act𝐼𝑆𝑅2 [0, 0]
•

Figure 6.7: 𝐼𝑆𝑅2 model of the 𝑚𝑐_𝑠𝑝𝑖𝑛𝑙𝑜𝑐𝑘_𝑠1 test sequence.
107

Formal verification of the multi-core AUTOSAR OS compliance

𝑆𝑊𝑆_𝑂𝑠_00650

boolean_650_651.condition1==1
[0, 0]

𝑡𝑎𝑠𝑘_𝑟𝑢𝑛𝑛𝑖𝑛𝑔

boolean_650_651.condition3==1
[0, 0]

𝐾𝑒𝑟𝑛𝑒𝑙_𝑒𝑥𝑖𝑡

𝑆𝑊𝑆_𝑂𝑠_00651

boolean_650_651.condition2==1
[0, 0]

𝐼𝑆𝑅_𝑟𝑢𝑛𝑛𝑖𝑛𝑔

boolean_650_651.condition3==1
[0, 0]

𝐾𝑒𝑟𝑛𝑒𝑙_𝑒𝑥𝑖𝑡

Requirement_conditions boolean_650_651 ;

Requirement_conditions SWS_650_651_Observer (int core_id ,
tpl_proc task , tpl_proc isr , Requirement_conditions boolean_650_651)
{

// Task is running
if (tpl_dyn_proc_table [task.id]. state_d == RUNNING)
{

boolean_650_651 . condition1 =1;
// Erasing the past
boolean_650_651 . condition3 =0;

}

// ISR2 is running
if (tpl_dyn_proc_table [isr.id]. state_d == RUNNING)
{

boolean_650_651 . condition2 =1;
// Erasing the past
boolean_650_651 . condition3 =0;

}

// Kernel exit
if(kerne_mode [core_id]==0)
{

boolean_650_651 . condition3 =1;
}
return boolean_650_651 ;

}

Figure 6.8: SWS_Os_00650 and SWS_Os_00651 Observer models.

108

Formal verification of the multi-core AUTOSAR OS compliance

Table 6.2: Computing time and memory used for verification - mc_spinlock_s1.

(𝑝) → (𝑞)
Observer Memory used (MB) Computing time (s)

SWS_Os_00649 108.2 2.7
SWS_Os_00650 107.7 2.7
SWS_Os_00651 111.6 2.8
SWS_Os_00652 121.7 2.7
SWS_Os_00653 120.9 2.7
SWS_Os_00654 130.2 2.8
SWS_Os_00655 114.4 2.7
SWS_Os_00656 113.5 2.7
SWS_Os_00657 126.6 2.7
SWS_Os_00658 108.5 2.7
SWS_Os_00659 121.6 2.7
SWS_Os_00661 109.7 2.7

concurrent events are enumerated in the state space,whichmakes its size vary exponen-
tially. If this size exceeds the amount of computer memory, the exhaustive verification
fails. The response time of the model-checker represents the time needed to explore the
set of state spaces and check the property. All AUTOSAR multi-core operating system
specifications were met for the modeled test applications 2, and the verification time is
between 2.7 and 11 seconds consuming between 100 and 600 MB of memory. Several
factors helped prevent the exponential computation time or memory size explosion.
Among them are the model atomicity, the sequential access to the kernel through a
global lock, except for the spinlock services where the cores can access simultaneously,
the complexity of the application, and its small number of cores. The approach is effi-
cient for AUTOSAR compliance testing.

2. 𝑚𝑐_𝑎𝑙𝑎𝑟𝑚𝑠_𝑠1 to 𝑚𝑐_𝑡𝑎𝑠𝑘𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑠2 except 𝑚𝑐_𝑡𝑎𝑠𝑘𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑠1, 𝑚𝑐_𝑠𝑐ℎ𝑒𝑑𝑡𝑎𝑏𝑙𝑒𝑠_𝑠1,
and 𝑚𝑐_𝑎𝑢𝑡𝑜𝑠𝑡𝑎𝑟𝑡_𝑠3: https://github.com/TrampolineRTOS/trampoline/tree/master/tests/
functional

109

https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional
https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional

Formal verification of the multi-core AUTOSAR OS compliance

6.4 Formal verification of concurrency in multi-core im-
plementation

This section presents the formal verification of the Trampoline multi-core RTOS in con-
current situations using the model-checker Roméo. Since the test sequences derived
from the AUTOSAR requirements for Trampoline do not allow the testing of concur-
rency situations, they cannot be used as is. Indeed, the multi-core system call lets us
suppose that a problem could occur when services are called simultaneously on two
or more cores (3.5.2). We can verify that it is probably not enough to protect access to
the OS data structures (the list of ready tasks and the structure tpl_kern) through the
Biglock. Indeed, the structure tpl_kern allows communication between the core where
the rescheduling is performed and the core where the context switch is performed, and
the example of Figure 3.12 suggests that a problem could occurwhen services are called
concurrently on two ormore cores.We thus propose to usemodel-checking to verify the
communication and synchronizationmechanisms involved in the concurrent execution
of OS services by an application: concurrent accesses to OS data structures, multi-core
scheduling, and inter-core interrupt handling.
The application can implement, for example, a cruise control system in the vehicle. This
system consists of several runnables responsible for data acquisition, diagnostics, and
vehicle speed control. A task comprises runnables that must be performed according
to a priority level. Its non-termination can cause severe consequences and should be
avoided even in rare situations. Our goal is now to study situations with simultane-
ous service calls in parallel on several cores that are almost impossible to test on real
implementation but that we will be able to obtain by our model-checking approach.
Therefore, in order to prove that concurrent execution of services is error-free, we have
designed several case studies. In the following, we present two of them that led us to
identify two errors in the multi-core implementation of Trampoline.

6.4.1 Case study 1

To check for concurrent system calls on cores, we consider the system in Figure 6.9
which includes all possible interleaving by setting all transitions in the interval [0, 0]. It
represents an activation of a higher priority task 𝑃𝑟𝑖𝑜(𝑡𝑎𝑠𝑘1) < 𝑃𝑟𝑖𝑜(𝑡𝑎𝑠𝑘3) < 𝑃𝑟𝑖𝑜(𝑡𝑎𝑠𝑘2).
Once the autostart 𝑡𝑎𝑠𝑘1 is started on core 0 at system start-up time, it activates 𝑡𝑎𝑠𝑘2

110

Formal verification of the multi-core AUTOSAR OS compliance

𝑇𝑎𝑠𝑘1

Run11
¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘1)

[0, 0]

Run12
¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘1)

[0, 0]
ActivateTask[$𝑎𝑛𝑦]::P1++

task_var[$𝑎𝑛𝑦]=task2_descriptor
caller_var[$𝑎𝑛𝑦]=task1_descriptor

Run13
¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘1)

[0, 0]

Run14
¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘1)

[0, 0]
TerminateTask[$𝑎𝑛𝑦]::P1++

caller_var[$𝑎𝑛𝑦]=task1_descriptor

IsReady(𝑡𝑎𝑠𝑘1)
Act𝑡𝑎𝑠𝑘1
[0, 0]

• 𝑇𝑎𝑠𝑘2

Run21
[0, 0] ¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘2)

Run22
[0, 0]

TerminateTask[$𝑎𝑛𝑦]::P1++
caller_var[$𝑎𝑛𝑦]=task2_descriptor

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘2)

IsReady(𝑡𝑎𝑠𝑘2)
Act𝑡𝑎𝑠𝑘2
[0, 0]

•

𝑇𝑎𝑠𝑘3

Run31
[0, 0] ¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘3)

Run32
[0, 0]

TerminateTask[$𝑎𝑛𝑦]::P1++
caller_var[$𝑎𝑛𝑦]=task3_descriptor

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘3)

IsReady(𝑡𝑎𝑠𝑘3)
[0, 0]

•

Figure 6.9: Three-tasks application model.

on core 1, and terminates afterwards. Core 0 is associated with the red color. 𝑡𝑎𝑠𝑘2 and
𝑡𝑎𝑠𝑘3 run on core 1, which is associatedwith the blue color. The purpose is to check that
tasks will run and terminate their execution on cores, whatever the interleaving. 𝑡𝑎𝑠𝑘3,
which is an autostart task with a lower priority than 𝑡𝑎𝑠𝑘2, is assumed to be preempted
by 𝑡𝑎𝑠𝑘2.

Formal analysis We run a complete analysis of the system, the application, and the
RTOS, using Roméo. We check that all the application’s tasks complete their execution
in a concurrent context. We verify that the places 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑇𝑎𝑠𝑘𝑖 [𝑡𝑎𝑠𝑘𝑖 .𝑐𝑜𝑟𝑒_𝑖𝑑] are al-
waysmarked by a tokenwith the property: 𝐴𝐹 (𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑇𝑎𝑠𝑘1 [0] > 0 𝑎𝑛𝑑 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑇𝑎𝑠𝑘2 [1] >
0 𝑎𝑛𝑑 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑇𝑎𝑠𝑘3 [1] > 0). Roméo model-checker replies that the property is not
satisfied, and a counter-example execution trace is generated, proving that 𝑡𝑎𝑠𝑘2 never
ends its execution and the place 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑇𝑎𝑠𝑘2 [1] is never reached in a given case.
The trace provided by the Roméomodel-checker gives the following execution order:

1. StartOS:We start the operating system in the applicationmode. It firstmakes some

111

Formal verification of the multi-core AUTOSAR OS compliance

initializations, activates the autostart tasks and alarms, performs scheduling, and
executes the highest priority task. Thus, the autostart 𝑡𝑎𝑠𝑘1 and 𝑡𝑎𝑠𝑘3 are run in
this startup phase;

2. ActivateTask: The service is called by 𝑡𝑎𝑠𝑘1 running on core 0 in order to activate
𝑡𝑎𝑠𝑘2 on core 1. The rescheduling for core 1 is performed on core 0, where the
service call occurs. Core 0 sends an inter-core interrupt request to core 1 by setting
the variable it_flag. Figure 5.7 represents the interrupt handler model. The core
1 blocks on an active wait for the release of the local and global lock;

3. TerminateTask: The service is called by 𝑡𝑎𝑠𝑘3 running on core 1. 𝑡𝑎𝑠𝑘3 completes
its execution on core 1 and the context switch is performed to the 𝑖𝑑𝑙𝑒 task;

4. Handler: Core 1 enters the kernel to execute the inter-core interrupt and perform
the context switch (Figure 5.7). Since the need_switch flag of the tpl_kern struc-
ture is set to NO_NEED_SWITCH after the execution of the idle task on core 1, the
context switch is not achieved. Thus, we return to the execution of the 𝑖𝑑𝑙𝑒 task;

5. TerminateTask: The service is called by 𝑡𝑎𝑠𝑘1 running on core 0; 𝑡𝑎𝑠𝑘1 ends its
execution and the context switch is performed to the 𝑖𝑑𝑙𝑒 on this core.

The rescheduling performed by core 0 for core 1 in step 2, elects 𝑡𝑎𝑠𝑘2 and extracts
it from the ready_list. When the inter-core interrupt is executed, the context switch
is performed to the task extracted from the ready_list if the need_switch flag is true.
By calling the TerminateTask service in step 3 before executing the interruption, the
first element of the ready_list is extracted, which is the 𝑖𝑑𝑙𝑒 task. Thus the problem
occurs, and the context switch is made to 𝑖𝑑𝑙𝑒 task instead of 𝑡𝑎𝑠𝑘2. In other words, the
activation of 𝑡𝑎𝑠𝑘2 on core 1 is lost because the termination of task 𝑡𝑎𝑠𝑘3 on core 1 elects
task 𝑖𝑑𝑙𝑒 without checking that the already elected task (𝑡𝑎𝑠𝑘2) has a higher priority.
This scenario is obtained thanks to the model-checking. In the process, the other possi-
ble paths in this concurrent situation are also verified and the model-checker finds that
the property hold for these other paths.

6.4.2 Correction of the error

The ready list is modified when the executing OS call service leads to a rescheduling.
To fix the problem of this case study, we have to test before the extraction of the task at

112

Formal verification of the multi-core AUTOSAR OS compliance

the front of the ready list that it has a higher priority than the already elected one. If this
elected task has a priority equal to or higher than the one of the first task in the ready
list, then the rescheduling is correct, and the extraction is useless. This modification
guarantees a context switch to either the already elected task or the newly elected task
with the highest priority.

Computing time Table 6.3 shows the computing time and the amount of memory
used in this analysis. The second columngives the data for the applicationmodel shown
in Figure 6.9. The third column corresponds to an application running on three cores.
It is obtained by duplicating 𝑡𝑎𝑠𝑘3 and assigning it to the third core to evaluate the
model-checking computation time when increasing state space. Table 6.4 represents
the computing time after fixing the error in the model. The verification time is longer
because all possible interleavings are considered.

Table 6.3: Computing time and amount of memory used.
𝐴𝐹 (𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑇𝑎𝑠𝑘𝑖 [𝑡𝑎𝑠𝑘𝑖 .𝑐𝑜𝑟𝑒_𝑖𝑑] > 0)

Number of cores 2 3
Model-checker result false false

Memory used 96.0MB 174.9MB
Computing time 7.1s 10.7s

Table 6.4: Computing time and memory used after correction.
𝐴𝐹 (𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑇𝑎𝑠𝑘𝑖 [𝑡𝑎𝑠𝑘𝑖 .𝑐𝑜𝑟𝑒_𝑖𝑑] > 0)

Number of cores 2 3
Model-checker result true true

Memory used 117.6MB 127.8MB
Computing time 51.1s 2629.2s

6.4.3 Case study 2

Let us consider a modification of the application presented in figure 6.9 and obtained
by replacing the call to the TerminateTask service with a call to the GetTaskID service in
𝑡𝑎𝑠𝑘3. GetTaskID writes in the TaskID variable the identifier of the task currently run-
ning. If no task is running, for example if GetTaskID was called from an ISR (Interrupt
Service Routine), INVALID_TASK is returned. We want to verify if the Biglock is enough

113

Formal verification of the multi-core AUTOSAR OS compliance

to protect the OS data structures access when we have concurrent calls to ActivateTask

and GetTaskID services. Since GetTaskID is not a service that causes rescheduling, calling
it should have no influence.

Formal analysis In Trampoline, a system call handler performs the operating system
service call as explained in 3.5.1. During this process, the need_switch and need_save

fields of the tpl_kern data structure belonging to the core on which the service is per-
formed are reset before calling the kernel function.
We conduct the same reachability verification with the Roméo model-checker leading
to the detection of the following problem: When the GetTaskID service call is made in
concurrencewith the execution of the inter-core interrupt on core 1, the need_switch and
need_save flags are reset by the system call handler. The information is therefore lost for
the inter-core interrupt handler. The trace provided by the Roméo model-checker is as
follows:

1. StartOS: We start the operating system in the application mode, and the autostart
𝑡𝑎𝑠𝑘1, 𝑡𝑎𝑠𝑘3 and 𝑡𝑎𝑠𝑘4 are run;

2. ActivateTask: The service is called by 𝑡𝑎𝑠𝑘1 on core 0 to activate 𝑡𝑎𝑠𝑘2 on core 1.
Core 0 sends an inter-core interrupt request to core 1 after the rescheduling;

3. GetTaskID: The service is called by 𝑡𝑎𝑠𝑘3 on core 1. The need_switch and need_save

flags of the tpl_kern structure are reset (tpl_kern[1].need_switch=0);

4. Handler: The inter-core IT handler is called (Figure 5.7) to execute the inter-core
interrupt on core 1 and effect the context switch. The context switch is not per-
formed since the need_switch and need_save flags of the tpl_kern structure are
reset after the execution of the GetTaskID on core 1. Thus, 𝑡𝑎𝑠𝑘2 is never executed
on core 1.

6.4.4 Correction of the error

The error found here holds for any application, independently of the number of tasks
on two or more cores, as the system call handler always resets the kernel data structure
before calling the corresponding kernel function, resulting in a loss of information.
The solution we adopted is to move, inside the sc_handler, the reset of the need_switch

and need_save flag. Instead of resetting them before the kernel function is called, they

114

Formal verification of the multi-core AUTOSAR OS compliance

are reset when they are taken into account to perform the context switch. In this way,
services that do not cause a context switch leave need_switch and need_save unchanged,
and the information is not lost to the inter-core interrupt. This changewasmodeled, and
verification was performed by Roméo. It showed that the property is now satisfied. This
way, the right value is preserved in the concurrent cases, and the problem is solved.

Computing time The computation time and the amount of memory used in this anal-
ysis are given in Table 6.5. As in Case Study 1, the three-core system is obtained by
duplicating Task 3 and assigning it to a 3rd core. After error correction, property check-
ing requires exploring the entire state space, which involves more computing time, as
shown in Table 6.6.

Table 6.5: Computing time and memory used.
𝐴𝐹 (𝐺𝑒𝑡𝑇𝑎𝑠𝑘 𝐼𝐷2 [𝑡𝑎𝑠𝑘2.𝑐𝑜𝑟𝑒_𝑖𝑑] > 0)

Number of cores 2 3
Model-checker result false false

Memory used 56.6MB 114.0MB
Computing time 2.6s 3.7s

Table 6.6: Computing time and memory used after correction.
𝐴𝐹 (𝐺𝑒𝑡𝑇𝑎𝑠𝑘 𝐼𝐷2 [𝑡𝑎𝑠𝑘2.𝑐𝑜𝑟𝑒_𝑖𝑑] > 0)

Number of cores 2 3
Model-checker result true true

Memory used 96.7MB 150.1MB
Computing time 13.3s 914.8s

6.4.5 Scalability

The scalability of the approach is based on the number of cores, the number of tasks and
their time interval, and the number of system calls that can be simultaneous. All these
factors can increase the computation time during verification. Additional verifications
with four cores, more than what is currently found in automotive embedded systems,
each executing a taskmaking concurrent system calls, run in 1124.8 secondswith 1141.3
MB of usedmemory and show that the approach scales to realistic automotive systems.

115

Formal verification of the multi-core AUTOSAR OS compliance

6.5 Conclusion

This chapter presented an approach that determines the compliance of the AUTOSAR
multi-core real-time operating system (RTOS) from its formal model. The application
models constructed represent theAUTOSARmulti-core test sequences developed by the
Trampoline project. The Trampoline RTOS and the application models form a complete
model that allows performing verification. For each test sequence, the conformity of the
operating system is verified according to the AUTOSAR specifications. Each specifica-
tion is formalized with an observer connected to the model that proves the satisfaction
of its conditions. When its final state is reached, the specification they translate is well
respected by the operating system during its execution. Reachability verification is thus
performed through model-checking by exhaustively exploring the system’s state space
from its initial state.
AUTOSAR test cases do not test the kernel in concurrency situations and are therefore
unsuitable as a basis for verifying the correctness of the kernel’s mutual exclusion and
communication mechanisms. Consequently, we checked the rescheduling performed
by the cores and the inter-core interrupt, considering case studies with simultaneous
service calls on the cores. We found that the rescheduling and the context switching in
concurrent situations are not functional. Themodel-checker provided counter-example
traces. The problems have been reported to the developers, and solutions are proposed
to fix them formally in themodel. Verification showed the property satisfaction. A com-
plete research door is opened to find implementation errors with several multi-core
concurrent examples based on the verification approach.

116

Chapter 7

FORMAL SCHEDULABILITY ANALYSIS

BASED ON MULTI-CORE RTOS MODEL

7.1 Introduction

Verification of real-time application schedulability is usually performed using a very
abstract system representation, which poorly supports inter-task dependencies. This
chapter presents the schedulability analysis of the application running on the multi-
core operating system model using model-checking techniques. Verification is perfor-
med using observers and allows determining the multi-core application’s schedulabil-
ity. Using parameters on the firing intervals allows determining under which temporal
conditions the application is schedulable.
The multi-core has considerably complicated the scheduling problem, and a greater
confidence in new scheduling policies implementation would be achieved by verify-
ing them formally within the RTOS model. Simulation approaches quickly reach their
limit as there is parallelism, so model-checking is adapted to multi-core context con-
sidering the parallelism, concurrency, and preemption provided state space explosion
can be avoided. We show the possibility of verifying new partitionned scheduling poli-
cies within the multi-core RTOS using the HCTPN model. To illustrate this possibility
with an example, we modify the Trampoline scheduling policy with an ad-hoc sched-
uler and verify its specifications and the application schedulability. This approach can
be used not only to test new scheduling policies, but also to verify a scheduler for its
implementation.

117

Part II, Chapter 7 – Formal schedulability analysis based on multi-core RTOS model

job 1

C

T

 A, job 1 D

time

 A, job2

Figure 7.1: Task model.

7.2 Real-time schedulability analysis

The analysis of real-time systems seeks to ensure their temporal constraints. Thismeans
that the tasks that compose the system must respect the temporal deadlines according
to the criticality, classified into different categories (hard real-time systems, soft real-
time systems, firm real-time systems). These tasks can interact and share one or more
resources. They can be:

• Periodic and be activated regularly with a fixed period;

• Sporadic and be started irregularly with a minimum duration between two task’s
instance (job) activations;

• Aperiodic and be activated irregularly.

Liu and Layland present the first model of periodic tasks [95] and describe a task using
the parameters (𝐶,𝑇) shown in Figure 7.1, page 118. 𝐴 is the activation date of the
task’s job. 𝐶 corresponds to the 𝑊𝐶𝐸𝑇 , which is the worst-case execution time. It is
the duration considered the most in real-time scheduling analyses; in this study, we
also consider the Best Case Execution Time (𝐵𝐶𝐸𝑇) and the dependencies between
tasks in a multi-core context. 𝑇 represents its arrival period, and its deadline 𝐷 can be
implicit (𝐷 = 𝑇). Thus, a periodic task executes for 𝐶 time units every 𝑇 time units
without missing the deadline 𝐷. The response time is defined as the duration between
the arrival time of the task’s job and its completion.
In multi-processor real-time system scheduling, tasks are scheduled on each proces-
sor with a scheduling policy that defines the rules that choose the order and tasks to
be executed. These scheduling decisions can be made online or offline, i.e., during or
before execution. Since the founding work of Liu and Layland in 1973 [95], various

118

7.2. Real-time schedulability analysis

multi-processor (multi-core) scheduling policies have been proposed in three princi-
pal categories [96]: partitioned, global, and hybrid. Scheduling multi-core systems is
a two-dimensional problem, with a temporal organization on each core and a spatial
one that ensures the job is executed on which core. Partitioned scheduling consists in
treating each of the two dimensions separately. Thus the tasks assigned to a core are
scheduled with a mono-core scheduling policy and are not allowed to migrate to a
different core. Global scheduling treats both the temporal and spatial dimensions to-
gether. It then applies single scheduling for the whole multi-core system. Finally, hy-
brid scheduling combines partitioned and global scheduling and allows better control
of tasks’ migration.
Several research works have well-studied scheduling analyses in mono-core systems
[97–99], andmany studies illustrate the lack of guarantees for their analytical results by
finding flaws [100–102]. In themulti-core systems, the existingmethods for the schedu-
lability analysis are studied in different research works [103–105]. As multi-core sys-
tems are more complicated, the schedulability analysis is affected by significant com-
plexity andpessimism, especially for globalmulti-core fixedpriority analysis [106, 107].
This motivates the use of formal methods to provide confidence in these scheduling
analyses.
Most real-time operating systems in themulti-core case are based on partitioned sched-
ulers with fixed priorities, even though several scheduling policies exist in theory. In-
deed, scheduling policies are based on simplified assumptions and are sometimes de-
scribed abstractly. However, the real multi-core context considers several aspects, such
as parallelism, interrupt management, and possible interleaving due to concurrency.
It would be interesting to study and verify other scheduling policies considering the
RTOS. Model-checking is well adapted for verifying a scheduler within the RTOS that
needs to consider all these aspects to check its policy or eventually implement it. How-
ever, model-checking using theHCTPN formalismwith stopwatches is limited to parti-
tioned scheduling where the temporal and spatial organization is separated. Indeed, if
a task is preempted, the time associated with its stopwatch is frozen. Modeling the mi-
gration of this task to another core would lead to the color change and the stopwatch’s
reset, which explains the limitation of global and hybrid preemptive scheduling. We
only consider in this work the preemptive partitioned scheduling.

119

Part II, Chapter 7 – Formal schedulability analysis based on multi-core RTOS model

7.3 Formal verification of schedulability analysis

Formal verification with models for schedulability analysis of real-time systems has
been studied for several years, as presented in Section 2.3.4. This section presents our
method for verifying quantitative temporal properties for real-time applications with
preemptive scheduling based on the complete RTOSmodel built withHCTPN(Chapter
5). The defined scheduling policy of the AUTOSARmulti-core RTOS is based on a parti-
tioned scheduling policy with fixed priorities. Each task is statically assigned to a core,
can be preempted, and resumed at the same point later.
In our work, we propose a verification chain that includes the steps presented in Fig-
ure 6.1, page 96. The requirement expression can be simple through an observer mod-
eled by an additionalHCTPN associated in a non-intrusivewaywith the originalmodel
without altering its behavior. The satisfaction of the requirement is thus verified by a
reachability property of a particular state. We illustrate the observer model associated
with each task to check its respect or missing deadline. This process will be detailed in
the following for the schedulability analysis.

7.3.1 Schedulability observer

A classical method for schedulability analysis is to rely on the use of observers [108],
allowing to reduce the verification problem to a simpler model-checking problem such
as a simple reachability property. It is then necessary that every trace that contradicts
the schedulability property can be detected by the observer but also that the observer
is innocuous, meaning that it cannot interfere with the system under observation.
To analyze the schedulability of tasks, we use the classical observer represented in yel-
low in Figure 7.2, page 121 linked to each taskmodel. The delay 𝐷𝑖 represents the dead-
line of the task. The firing of transition 𝑜𝑘𝑖 means that the task terminates before its
deadline. The firing of transition 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖 means 𝑡𝑎𝑠𝑘𝑖 does not respect its deadline.
Hence the task meets its deadline iff for all state of the state space, there is no token
in place 𝑂𝑏𝑠𝑖. The place 𝑂𝑏𝑠𝑖 is emptied by transition 𝑒𝑚𝑝𝑡𝑦𝑖 to avoid the accumula-
tion of tokens that leads to an unbounded system. The schedulability property is then
written for this observer by the CTL logic formula 𝐴𝐺 (𝑂𝑏𝑠𝑖 < 1); if it is not satisfied, a
counter-example execution trace is generated.

120

7.3. Formal verification of schedulability analysis

𝑇𝑎𝑠𝑘𝑖

Run𝑖1
[𝐵𝐶𝐸𝑇𝑖 ,𝑊𝐶𝐸𝑇𝑖]

Run𝑖2
[0, 0]

TerminateTask(𝑡𝑎𝑠𝑘𝑖)

𝑖𝑛𝑖

IsReady(𝑡𝑎𝑠𝑘𝑖)
[0, 0]

𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖
[𝐷𝑖 , 𝐷𝑖]

𝑜𝑘𝑖
[0, 0]

𝑜𝑢𝑡𝑖

𝑂𝑏𝑠𝑖

𝑒𝑚𝑝𝑡𝑦𝑖
[0, 0]

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘𝑖)

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘𝑖)

Figure 7.2: Observer model (in yellow) linked to a task model.

7.3.2 Parameters synthesis

The parametric analysis ofHCTPNswith stopwatches usingRoméo allows synthesizing
the parameter values used in the time bounds of the transitions, such that the model
verifies the TCTL properties [48]. It also allows adding linear constraints on the pa-
rameters to restrict their domain. The reachability problem is undecidable for HCTPNs
with stopwatches and parametric HCTPNs with stopwatches, and semi-algorithms are
implemented in Roméo for these models with polyhedra using the Parma Polyhedra
Library [109]. For parametric models, the semi-algorithms are based on the parametric
state-class graph [110]. For a given formula, by computing the parametric state space,
Roméo synthesize a set of linear constraints over parameters which represents the val-
ues of the parameters for which the formula is verified.
Parameters can replace any interval bound, such as an offset, the BCET, or the WCET
of a task model. Given a property 𝜑, checking 𝜑 with Roméo will synthesize the set of
values of the parameters such that 𝜑 is true. For example, by parametrizing the BCET
and WCET of a task 𝑡𝑎𝑠𝑘𝑖 and by using the previous observer, checking 𝐴𝐺 (𝑂𝑏𝑠𝑖 < 1)
will synthesize all the linear constraints over the parameters BCET andWCET such that
𝑡𝑎𝑠𝑘𝑖 respects its deadline.

121

Part II, Chapter 7 – Formal schedulability analysis based on multi-core RTOS model

7.3.3 Application of the scheduling analysis approach

To illustrate the approach presented above, let us consider the system of Figure 7.3,
page 123, with the characteristics of Table 7.1, page 122. The example contains three
task models considering time intervals of runnable between [𝐵𝐶𝐸𝑇,𝑊𝐶𝐸𝑇]. 𝑡𝑎𝑠𝑘1 is
executed between 8 and 11-time units, activates 𝑡𝑎𝑠𝑘2 then runs for 2 time units be-
fore terminating. We consider the following priority relationship: 𝑡𝑎𝑠𝑘2 has the highest
priority, followed by 𝑡𝑎𝑠𝑘1 and finally 𝑡𝑎𝑠𝑘3. At start 𝑡𝑎𝑠𝑘1 and 𝑡𝑎𝑠𝑘3 are automatically
activated and run on core 0 and core 1 respectively. Core 0 is associated with the red
color. 𝑡𝑎𝑠𝑘2 is activated by 𝑡𝑎𝑠𝑘1 and runs on core 1, which is associated with the blue
color. Priorities and assignment of cores are done statically. Considering the execution
time of the first part of 𝑡𝑎𝑠𝑘1 is its WCET (i.e. 𝑊𝐶𝐸𝑇11 = 11), we got the chronogram
presented in Figure 7.4, page 124. In this case, the tasks meet their deadlines, and 𝑡𝑎𝑠𝑘2
starts its execution, whereas the first job of 𝑡𝑎𝑠𝑘3 is terminated on core 1. But we now
ask for the whole execution time interval of 𝑡𝑎𝑠𝑘1. Therefore, we apply our verification
approach to check the schedulability of the application over the whole time interval
[8, 11]. We run a full analysis of the application with the RTOS, performed in the first
time using no parameters to verify schedulability and in the second time with param-
eter synthesis to find the execution time interval of 𝑡𝑎𝑠𝑘1.

Table 7.1: Three-tasks application set characteristics.
𝐴𝑖 𝐷𝑖 𝑇𝑖 𝐶𝑖: [bcet,wcet] Transitions

𝑡𝑎𝑠𝑘1 0 32 32 [8,11] Run11
+ [2,2] Run12

𝑡𝑎𝑠𝑘2 0 32 32 [8,8] Run21
𝑡𝑎𝑠𝑘3 0 16 16 [10,10] Run31

Verification approach with observers Based on the application modeling approach
presented in Figure 5.4, page 90, we construct the task models of Figure 7.3, page 123
with the timing values of Table 7.1, page 122.We add one observer per task, as shown in
Figure 7.2, page 121. The schedulability analysis is conducted on the whole system con-
taining the application and RTOSmodels with Roméo. We check that the place𝑂𝑏𝑠𝑖 are
never marked by a token with the property: 𝐴𝐺 (𝑂𝑏𝑠1 < 1 𝑎𝑛𝑑 𝑂𝑏𝑠2 < 1 𝑎𝑛𝑑 𝑂𝑏𝑠3 < 1).
A counter-example execution trace is generated, proving this property is not satisfied,
and 𝑡𝑎𝑠𝑘3 may miss its deadline. Indeed, if the execution time of 𝑡𝑎𝑠𝑘1 is its BCET (i.e.

122

7.3. Formal verification of schedulability analysis

𝑇𝑎𝑠𝑘1

Run11
¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘1)
[𝐵𝐶𝐸𝑇11,𝑊𝐶𝐸𝑇11]

Run12
¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘1)

[0, 0]
ActivateTask[$𝑎𝑛𝑦]::P1++

task_var[$𝑎𝑛𝑦]=task2_descriptor
caller_var[$𝑎𝑛𝑦]=task1_descriptor

Run13
¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘1)
[𝐵𝐶𝐸𝑇13,𝑊𝐶𝐸𝑇13]

Run14
¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘1)

[0, 0]
TerminateTask[$𝑎𝑛𝑦]::P1++

caller_var[$𝑎𝑛𝑦]=task1_descriptor

IsReady(𝑡𝑎𝑠𝑘1)
Act𝑡𝑎𝑠𝑘1
[0, 0] to 𝑡𝑎𝑠𝑘1 observer

to 𝑡𝑎𝑠𝑘1 observer

•
𝑇𝑎𝑠𝑘2

Run21
[𝐵𝐶𝐸𝑇2,𝑊𝐶𝐸𝑇2] ¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘2)

Run22
[0, 0]

TerminateTask[$𝑎𝑛𝑦]::P1++
caller_var[$𝑎𝑛𝑦]=task2_descriptor

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘2)

IsReady(𝑡𝑎𝑠𝑘2)
Act𝑡𝑎𝑠𝑘2
[0, 0]

to 𝑡𝑎𝑠𝑘2 observer

to 𝑡𝑎𝑠𝑘2 observer
•

𝑇𝑎𝑠𝑘3

Run31
[𝐵𝐶𝐸𝑇3,𝑊𝐶𝐸𝑇3] ¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘3)

Run32
[0, 0]

TerminateTask[$𝑎𝑛𝑦]::P1++
caller_var[$𝑎𝑛𝑦]=task3_descriptor

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘3)

to 𝑡𝑎𝑠𝑘3 observer

IsReady(𝑡𝑎𝑠𝑘3)
[0, 0] to 𝑡𝑎𝑠𝑘3 observer

•

Figure 7.3: Three-tasks application model considering time intervals and observers.

𝐵𝐶𝐸𝑇11 = 8), 𝑡𝑎𝑠𝑘3, running on core 1 does not have the time to finish before its dead-
line as shown in Figure 7.5, page 124. The task 𝑡𝑎𝑠𝑘1 activates 𝑡𝑎𝑠𝑘2 at time 8, since 𝑡𝑎𝑠𝑘2
has a higher priority, 𝑡𝑎𝑠𝑘3 running on the same core as 𝑡𝑎𝑠𝑘2 is preempted. Then 𝑡𝑎𝑠𝑘2
terminates its execution at time 16, the deadline of 𝑡𝑎𝑠𝑘3. The tasks set is, therefore,
not schedulable under the partitioned fixed priority scheduling policy and the worst
temporal behavior of the system happens with the BCET of 𝑡𝑎𝑠𝑘1.

Task parameters synthesis To synthesize the 𝑡𝑎𝑠𝑘1 execution time interval that allows
the tasks system to meet their deadlines and then to be schedulable, we set the first
execution part (𝑅𝑢𝑛11) in the parametric interval [𝑎,𝑏], andwe bound 𝑏 by 11. Checking
the property 𝐴𝐺 (𝑂𝑏𝑠1 < 1 𝑎𝑛𝑑 𝑂𝑏𝑠2 < 1 𝑎𝑛𝑑 𝑂𝑏𝑠3 < 1) leads the parameter synthesis.
The result of Roméo synthesis is (10 < 𝑎 ≤ 11) ∧ (10 < 𝑏 ≤ 11) ∧ (𝑎 ≤ 𝑏), thus the
execution time of 𝑡𝑎𝑠𝑘1 must be in the interval]10, 11]. The computing time and used
memory for this analysis are shown in the table 7.2, page 125, and parametric model-

123

Part II, Chapter 7 – Formal schedulability analysis based on multi-core RTOS model

𝑡𝑎𝑠𝑘1

𝑡𝑎𝑠𝑘2

𝑡𝑎𝑠𝑘3

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

31 (job1) 31 (job2)

21 (job1)

11 (job1) 12

Partitioned FP scheduling 𝑡𝑖𝑚𝑒

C
or
e
0

C
or
e
1

Figure 7.4: Schedule of tasks set with the WCET1. The symbols ↑ and ↓ indicate activa-
tion and completion of tasks, respectively.

𝑡𝑎𝑠𝑘1

𝑡𝑎𝑠𝑘2

𝑡𝑎𝑠𝑘3

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

31 (job1) 31 (job2)

21 (job1)

11 (job1) 12

Partitioned FP scheduling 𝑡𝑖𝑚𝑒

C
or
e
0

C
or
e
1

Figure 7.5: Schedule of tasks setwith the BCET1. The symbols ↑ and ↓ indicate activation
and completion of tasks, respectively.Here job 1 of 𝑡𝑎𝑠𝑘3 misses its deadline as indicated
by the dashed red circle.

124

7.4. Ad-hoc scheduling system

checking ofHCTPNswith stopwatches consumesmore time andmemory than analysis
using no parameters.

Table 7.2: Three-tasks application: Computing time and memory used.
𝐴𝐺 (𝑂𝑏𝑠1 < 1 𝑎𝑛𝑑 𝑂𝑏𝑠2 < 1 𝑎𝑛𝑑 𝑂𝑏𝑠3 < 1)

Parameters no yes
Model-checker result false (10 < 𝑎) ∧ (𝑏 ≤ 11) ∧ (𝑎 ≤ 𝑏)

Memory used 55.1MB 99.5MB
Computing time 4.8s 17.3s

7.4 Ad-hoc scheduling system

The scheduler within Trampoline is kernel-based, which means there is no separation
between the kernel and scheduler codes. Therefore, modifying its implementation re-
quires expertise to identify the parts of the kernel that need to be replaced. Boukir et
al. have already modified the scheduling policy of Trampoline in Global EDF and EDF-
US[𝜉] based on the RTOS model built by Tigori in Uppaal [111]. Significant modifi-
cations have been done, making the subject of a Ph.D. thesis [112]. However, the task
execution time representation is considered discrete. The principal idea was in fact to
verify the implementations of the schedulers.
Ourmain idea of thiswork is to show the possibility of efficiently verifying new schedul-
ing policies within themulti-core RTOS, considering parallelism, concurrency, and pre-
emption in compact time. To study the feasibility of this schedulability verification, we
define an ad-hoc scheduler and modify the fixed priority partitioned scheduling of the
Trampoline RTOSmodel. In principle, the scheduler should be calledwhen an event oc-
curs and requires rescheduling, for example, a task that activates another or terminates,
as shown in Figure 3.12, page 54. This allowed us to determine the scheduler parts to
change and perform a schedulability check on the system, considering the stopwatches.
This section presents the specifications of the chosen ad-hoc scheduler, its implemen-
tation in the model, and the conducted verification using parameters synthesis.

7.4.1 Ad-hoc scheduler specifications

The scheduling policy consists of a four-tasks application: 𝑡𝑎𝑠𝑘1, 𝑡𝑎𝑠𝑘2, 𝑡𝑎𝑠𝑘3, and 𝑡𝑎𝑠𝑘4,
statically assigned to two cores, as shown below:

125

Part II, Chapter 7 – Formal schedulability analysis based on multi-core RTOS model

• 𝑡𝑎𝑠𝑘1 and 𝑡𝑎𝑠𝑘4 are assigned to run on core 0;

• 𝑡𝑎𝑠𝑘2 and 𝑡𝑎𝑠𝑘3 are assigned to run on core 1;

• 𝑃𝑟𝑖𝑜(𝑡𝑎𝑠𝑘1) < 𝑃𝑟𝑖𝑜(𝑡𝑎𝑠𝑘4);

• When 𝑡𝑎𝑠𝑘4 runs on core 0, 𝑃𝑟𝑖𝑜(𝑡𝑎𝑠𝑘2) < 𝑃𝑟𝑖𝑜(𝑡𝑎𝑠𝑘3) otherwise 𝑃𝑟𝑖𝑜(𝑡𝑎𝑠𝑘3) <
𝑃𝑟𝑖𝑜(𝑡𝑎𝑠𝑘2).

The requirements of this ad-hoc policy lead to the rescheduling of 𝑡𝑎𝑠𝑘2 and 𝑡𝑎𝑠𝑘3 on
core 1 once the activation or termination of 𝑡𝑎𝑠𝑘1 and 𝑡𝑎𝑠𝑘4 occur on core 0. When the
scheduler is called for core 0, it is based on the job currently running on that core (i.e.,
𝑡𝑎𝑠𝑘1 or 𝑡𝑎𝑠𝑘4) and calculates the priority of 𝑡𝑎𝑠𝑘2 or 𝑡𝑎𝑠𝑘3 jobs for core 1. It then de-
cides whether a context switch is required on a core and have to be achieved. Thus,
two events cause the rescheduling: (i) activation of new 𝑡𝑎𝑠𝑘1 and 𝑡𝑎𝑠𝑘4 jobs on core 0;
(ii) termination of these tasks jobs running on core 0. That means, for example, 𝑡𝑎𝑠𝑘2
continues to run on core 1 until 𝑡𝑎𝑠𝑘3 preempts because 𝑡𝑎𝑠𝑘4 is activated on core 0. The
priority of 𝑡𝑎𝑠𝑘2 and 𝑡𝑎𝑠𝑘3 are recalculated such that: 𝑃𝑟𝑖𝑜(𝑡𝑎𝑠𝑘2) < 𝑃𝑟𝑖𝑜(𝑡𝑎𝑠𝑘3). 𝑡𝑎𝑠𝑘3
starts thus running on core 1 until it is preempted when 𝑡𝑎𝑠𝑘4 terminates on core 0. We
only allow one possible activation of the job and use the Roméo model model-checker
to analyze the system.

7.4.2 Ad-hoc scheduler implementation

The scheduler implementation within Trampoline relies on functions and data struc-
tures that are manipulated and involved in making decisions as presented in Section
3.5.1, page 46. Among these functions, we find the internal scheduler function 𝑡 𝑝𝑙_𝑠𝑡𝑎𝑟𝑡,
called by the main scheduling function 𝑡 𝑝𝑙_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒_ 𝑓 𝑟𝑜𝑚_𝑟𝑢𝑛𝑛𝑖𝑛𝑔, that invokes the
scheduler,whether inmono-core ormulti-core. 𝑡 𝑝𝑙_𝑠𝑡𝑎𝑟𝑡 allowsupdating the 𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑖𝑑
attribute of the 𝑡 𝑝𝑙_𝑘𝑒𝑟𝑛 structure with the identifier value of the job elected to run on
the core. Since the two events that cause rescheduling are job activation and termina-
tion, ourmodificationwork focuses on the scheduler’s internal function 𝑡 𝑝𝑙_𝑠𝑡𝑎𝑟𝑡 called
in both cases, at activation by the function 𝑡 𝑝𝑙_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒_ 𝑓 𝑟𝑜𝑚_𝑟𝑢𝑛𝑛𝑖𝑛𝑔 and termination
by 𝑡 𝑝𝑙_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒_𝑠𝑒𝑟𝑣𝑖𝑐𝑒, as shown in Figure 7.6, page 128. This figure also illustrates
the other parts concerned with a change, presented in the following, to implement the
ad-hoc scheduler in the model. Once the scheduler modified, the four-tasks applica-

126

7.4. Ad-hoc scheduling system

tion is modeled based on the task model shown in Figure 7.2, page 121, linked with the
observer.

tpl_start We extend the model of this function with the modification of tasks’ dy-
namic priorities of core 1 according to the task currently elected on core 0. This means
that after electing a task on core 0 and copying its information into the elected attributes
of the 𝑡 𝑝𝑙_𝑘𝑒𝑟𝑛 structure, we rely on the identifier of this new elected task to compute
the new dynamic priorities of 𝑡𝑎𝑠𝑘2 and 𝑡𝑎𝑠𝑘3 assigned to core 1. The dynamic prior-
ity concatenates the base priority and the activation order number as explained in the
scheduling paragraph 3.5.2, page 51. The 𝑟𝑒𝑎𝑑𝑦_𝑙𝑖𝑠𝑡 of core 1 is then updated with the
new priorities, and the 𝑛𝑒𝑒𝑑_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 flag is set to 1.

tpl_schedule_from_running This function invokes the scheduler only on one core.
Since the scheduling decision on core 1 depends on the task running on core 0, we
need to call the 𝑡 𝑝𝑙_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒_ 𝑓 𝑟𝑜𝑚_𝑟𝑢𝑛𝑛𝑖𝑛𝑔 function for core 1. We replace it with the
𝑡 𝑝𝑙_𝑚𝑢𝑙𝑡𝑖_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 function,which loops its call over the cores. 𝑡 𝑝𝑙_𝑚𝑢𝑙𝑡𝑖_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 per-
forms several rescheduling when many tasks may be activated on multiple cores, indi-
cated by the 𝑛𝑒𝑒𝑑_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 flag of the core. Therefore, the rescheduling of core 1 from
core 0 can be done, and if needed, core 0 sends an inter-core interrupt request to core 1
to trigger the context switch and execute the task.

tpl_terminate_task_service In the case of task termination on core 0, the rescheduling
of core 1 from core 0 must be added explicitly by modifying the function
𝑡 𝑝𝑙_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒_𝑡𝑎𝑠𝑘_𝑠𝑒𝑟𝑣𝑖𝑐𝑒. For that, 𝑡 𝑝𝑙_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒_ 𝑓 𝑟𝑜𝑚_𝑟𝑢𝑛𝑛𝑖𝑛𝑔 is called by core 0 to
perform rescheduling for core 1, followed by a context switch to send the inter-core
interrupt to core 1 and execute the elected task.

7.4.3 Task parameters synthesis

Let us consider this ad-hoc scheduling system with the characteristics of Table 7.3,
page 128. The goal now is to synthesize the tasks execution time interval such that the
tasks meet their deadlines. We replace the interval bound [𝐵𝐶𝐸𝑇,𝑊𝐶𝐸𝑇] of the model
𝑡𝑎𝑠𝑘3, respectively 𝑡𝑎𝑠𝑘4, by the parametric interval [3,𝑏], respectively [𝑎,𝑎] (Table 7.3,
page 128). We bound the parameters 𝑎 and 𝑏 in the interval [3, 6]. We use the non-

127

Part II, Chapter 7 – Formal schedulability analysis based on multi-core RTOS model

tpl_schedule_from_runningTask activation:

TerminateTask service tpl_terminate_task_serviceTask termination:

ActivateTask service

Model part to modify

System call handler tpl_start

Figure 7.6: Model part to modify for the ad-hoc scheduler implementation. The symbol
-> indicates a function call.

parameterized observer andwe instantiate the 𝐷𝑖. Checking the property 𝐴𝐺 (𝑂𝑏𝑠3 < 1
𝑎𝑛𝑑 𝑂𝑏𝑠4 < 1) with Roméo model-checker returns two resulats:

• (3 ≤ 𝑎 ≤ 6) ∧ (3 ≤ 𝑏 < 5);

• (3 ≤ 𝑎 ≤ 6) ∧ (3 ≤ 𝑏 ≤ 6) ∧ 𝑎 − 𝑏 > −1.

To test these results, we use the simulator of Roméo tool that allows to run timed traces
(i.e. chronograms). The first result is verified with the chronogram of Figure 7.7, page
129, with the execution time of the 𝑡𝑎𝑠𝑘3 and 𝑡𝑎𝑠𝑘4 in the interval [3, 3] (i.e. 𝐵𝐶𝐸𝑇3 = 3).
In this case, 𝑡𝑎𝑠𝑘2 terminates its execution, whereas the first job of 𝑡𝑎𝑠𝑘3 is terminated.
Assuming that 𝑎 and 𝑏 are bounded in the parameter constraints in the interval [3,6].
The second result provides a relationship between 𝑎 and 𝑏 in this interval such that
𝑎 > 𝑏 − 1.This property is satisfied with 𝑎 = 𝑏 = 5.5. We thus set the intervals of 𝑡𝑎𝑠𝑘3
and 𝑡𝑎𝑠𝑘4 models in [5.5, 5.5]; the extracted timed trace is presented in the Figure 7.8,
page 129. The tasks set is, therefore, schedulable.

Table 7.3: Tasks set characteristics.
𝐴𝑖 𝐷𝑖 𝑇𝑖 𝐶𝑖: [bcet,wcet] HSwPN Transition

𝑡𝑎𝑠𝑘1 0 10 10 [4,4] Run11
𝑡𝑎𝑠𝑘2 1 20 20 [5,5] Run21
𝑡𝑎𝑠𝑘3 0 10 10 [3,6] [3,𝑏] Run31
𝑡𝑎𝑠𝑘4 2 20 20 [3,3] [𝑎,𝑎] Run41

128

7.4. Ad-hoc scheduling system

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

𝑡𝑎𝑠𝑘1 (job1) (job2)

𝑡𝑎𝑠𝑘4 (job1)

𝑡𝑎𝑠𝑘3 (job2)(job1)

𝑡𝑎𝑠𝑘2 (job1)

Ad-hoc scheduling 𝑡𝑖𝑚𝑒

C
or
e
0

C
or
e
1

Figure 7.7: Schedule of tasks setwith the BCET3. The symbols ↑ and ↓ indicate activation
and completion of tasks, respectively.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

𝑡𝑎𝑠𝑘1 (job1) (job2)

𝑡𝑎𝑠𝑘4 (job1)

𝑡𝑎𝑠𝑘3 (job2)(job1)

𝑡𝑎𝑠𝑘2 (job1)

Ad-hoc scheduling 𝑡𝑖𝑚𝑒

C
or
e
0

C
or
e
1

Figure 7.8: Schedule of tasks set with Roméo. The symbols ↑ and ↓ indicate activation
and completion of tasks, respectively.

129

Part II, Chapter 7 – Formal schedulability analysis based on multi-core RTOS model

7.4.4 Response time analysis

The response time analysis allows calculating the response time, which represents the
duration between the arrival time of the task’s instance (job) and its completion. This
analysis is performedusing parameters in the same task-related observer, taking into ac-
count the dependency between the tasks. To automatically compute the response time
of a 𝑡𝑎𝑠𝑘𝑖, we just replace 𝐷𝑖 with a parameter 𝑑𝑖 in its observer. Then the verification
of the property 𝐴𝐺 (𝑂𝑏𝑠𝑖 < 1) will synthesize all the values of 𝑑𝑖 such that the task ter-
minates before 𝑎 time units i.e. the time between the job activation and the end of its
execution. The smaller value of 𝑑𝑖 is the response time of 𝑡𝑎𝑠𝑘𝑖.
Based on the same system characteristics of Table 7.3, page 128, we instantiate the task
execution time with time intervals, and replace 𝐷𝑖 with a parameter 𝑑𝑖 in the task ob-
servers. Roméo synthesizes the values of the parameter 𝑑𝑖 and analyzes the response
time of 𝑡𝑎𝑠𝑘𝑖. Table 7.4, page 130, provides the results obtained by Roméo model-
checker with time computing and memory use. We instantiate the 𝐷𝑖 with their val-
ues (see the deadline values in Table 7.3, page 128) in the observers, and we verify the
property (𝐴𝐺𝑂𝑏𝑠𝑖 < 1). Roméo replies that the property is not satisfied and automat-
ically generates a timed trace as a counter-example represented by the chronogram in
Figure 7.9, page 131. In this case, 𝑅3 > 𝐷3, and 𝑡𝑎𝑠𝑘3 is preempted twice by 𝑡𝑎𝑠𝑘2. The
𝑡𝑎𝑠𝑘3 misses its deadline when its execution time is the WCET (i.e.𝑊𝐶𝐸𝑇3 = 6).

Table 7.4: Response time computation using the parametric observer.
Response time 𝐴𝐺 (𝑂𝑏𝑠𝑖 < 1) Memory Computing time

𝑡𝑎𝑠𝑘1 𝑅1 = 7, (𝑑1 > 7) 273.4MB 81.7s
𝑡𝑎𝑠𝑘2 𝑅2 = 8, (𝑑2 > 8) 254.8MB 72.2s
𝑡𝑎𝑠𝑘3 𝑅3 = 11, (𝑑3 > 11) 332.1MB 88.0s
𝑡𝑎𝑠𝑘4 𝑅4 = 3, (𝑑4 > 3) 260.6MB 70.6s

7.5 Conclusion

This chapter presented a method for efficiently analyzing real-time applications run-
ning on an RTOS with preemptive scheduling using the Roméo tool. Thanks to the ca-
pabilities of stopwatches, the application models include the possibility to block the
runnable’s elapsed time and to model the preemption. The complete model linked to

130

7.5. Conclusion

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

𝑡𝑎𝑠𝑘4 (job1)

𝑡𝑎𝑠𝑘3 (job1) (job2)

𝑡𝑎𝑠𝑘2 (job1)

𝑡𝑎𝑠𝑘1 (job1) (job2)

Ad-hoc scheduling 𝑡𝑖𝑚𝑒

C
or
e
0

C
or
e
1

Figure 7.9: Schedule of tasks set with the WCET3. The symbols ↑ and ↓ indicate acti-
vation and completion of tasks, respectively. Here job 1 of 𝑡𝑎𝑠𝑘3 misses its deadline as
indicated by the dashed red circle.

observers is used to check the schedulability of an application. The parameterized ver-
sion calculates the execution times required to guarantee schedulability or response
times.
We have also presented the possibility of changing the scheduling policy and efficiently
verifying the temporal properties of dependent and preemptive tasks. We detailed the
modifications required to support an ad-hoc scheduler and its verification with the
same approach.

131

CONCLUSION AND PERSPECTIVES

Conclusion

Multi-core real-time embedded systemsmust respect several constraints, and their ver-
ification must consider real-time and concurrency aspects to guarantee an error-free
system. Testing and simulation are methods to identify errors in software programs.
However, they are not exhaustive and do not guarantee the elimination of all errors.
Formal verification is a solution that uses a set of mathematical techniques to verify the
correctness of the system behavior. To apply this method to multi-core Real-Time Op-
erating Systems (RTOS), we focused on the model-checking approach, an automatic
process that exhaustively checks if the model respects specific properties. Two ques-
tions are asked: The first one is how to ensure that the behavior of the multi-core RTOS
conforms to its standard and requirements, taking into account concurrency and paral-
lelism aspects. The second one concerns verifying the scheduling of a real-time appli-
cation running on the RTOS, considering the preemptive aspect.
The thesis work proposed in this manuscript tries to answer these questions. First, we
have defined the model of High-level Colored Time Petri nets (HCTPN) in which we
can use temporal parameters on the transitions and consider parallelism and concur-
rency of cores. This formalism was used for modeling the multi-core RTOS, and the
colors specify the hardware where the software is executed. Preemption is supported
through stopwatches associated with timed transitions that can be activated by more
than one color, thus allowing true concurrency modeling. Then, we proposed a for-
mal verification approach where the RTOS model and the application are built with
HCTPN based on a number of translation rules. The model-checking of the HCTPN
formalism is implemented in the Roméo tool where we performed this approach. From
the elaborated model, the verification of the properties has been performed using ex-
ternal observers modeled by an additional HCTPN associated in a non-intrusive way
to the model without altering its behavior.
This approach has been applied to the Trampoline operating system, amulti-core RTOS
compliant with OSEK/VDX and AUTOSAR standards used in automotive embedded

133

systems. It allowed us to verify with the model-checking of the extended formalism in
Roméo:

• The multi-core RTOS conformity to the AUTOSAR standard;

• The inter-core synchronization mechanism involved in concurrent OS service ex-
ecution;

• The schedulability of real-time applications with dependent preemptive tasks.

These obtained results showed the feasibility of our approach and the power of RTOS
verification. It allowed the automatic identification of two possible OS errors in concur-
rent execution, considering simultaneous service calls on the cores. These errors illus-
trated that the rescheduling and the context switching in concurrent situations are not
functional. Thus, the data protection is insufficient, and the synchronization of the cores
is defective. The parametric analysis of the HCTPNs has also shown its effectiveness in
synthesizing the parameter values that satisfy the property. It allowed calculating the
necessary execution times to guarantee the scheduling or the response times.
However, some points remain to be discussed:

• The modeling work requires expertise and remains a heavy task that takes con-
siderable time and effort;

• The combinatorial explosion problem can limit the verification of complex exam-
ples.

It, therefore, leads to perspectives on future works that we explore in what follows.

Perspectives

After the proposed multi-core RTOS verification approach with extended time Petri
nets, one perspective of this work is to model the multi-core version that allows exe-
cuting the kernel code on different cores in parallel and handling interrupts simultane-
ously. The current approach considers a global lock that prevents this parallel execution.
Thanks to the formalism of HCTPN implemented in Roméo, modeling can be done us-
ing colors. The kernel can be executed simultaneously by the different cores, such as
one color corresponding to one core. However, the combinatorial explosion problem
must be examined as adding parallelism at the kernel level will considerably increase

134

the number of system states. One solution to this problem could be the abstraction of
the OS model with a new model that preserves the behavior as much as possible and
merges its states to reduce their number. This model abstraction must satisfy the same
properties of the initial model we want to conserve. Thus, additional verification can be
performed using a proof assistant, for example, and the approach would combine the
two formal verification methods.
A second perspective is to implement a Domain Specific Language (DSL) to facilitate
the modeling of the operating system and the construction of the model for several
levels of abstraction. The DSL will automatically build a model of the operating system
in HCTPN from its source code based on the rules proposed in Section 5.2, page 79.
We can also apply these rules in reverse to generate a verified OS code by applying a
reachability analysis on the model. The models built in Roméo are represented in XML
files; therefore, an XML parser and a code translator are needed to elaborate the DSL.
Finally, a third perspective would be verifying several scheduling policies based on the
RTOS model. A first approach would be to separate the scheduler code from the ker-
nel by adding an intermediate model. Thus, instead of having the scheduler code dis-
tributed in the kernel, the scheduler model will be isolated while communicating with
the system components. That will facilitate the modification of the scheduling policies
for their verification, minimizing the changes within the kernel. The implementation of
the DSL can also cover this perspective and describe the scheduler’s implementation
following a high-level-based approach. The DSLwill allow the description of its behav-
ior and the specification of the scheduler objects and parameters. Thus the language
can generate its code to be integrated within the OS.

135

PUBLICATIONS

International conferences

– Imane Haur, Jean-Luc Béchennec, Olivier H. Roux, Formal Schedulability Analy-
sis Based on Multi-Core RTOS Model in 29th International Conference on Real-
Time Networks and Systems (RTNS 2021) (Association for Computing Machin-
ery, Nantes, France, 2021), 216– 225.

– Imane Haur, Jean-Luc Béchennec, Olivier H. Roux, High-level Colored Time Petri
Nets for true concurrency modeling in real-time software in International Conference
on Control, Decision and Information Technologies (CODIT 2022) (IEEE, Istan-
bul, Turkey, May 2022). Best Paper Award.

– Imane Haur, Jean-Luc Béchennec, Olivier H. Roux, Formal verification of the inter-
core synchronization of a multi-core RTOS kernel in 23th International Conference on
Formal EngineeringMethods (ICFEM 2022) 13478 (Springer, Madrid, Spain, Oct.
2022).

International journals

– Imane Imane Haur, Jean-Luc Béchennec, Olivier H. Roux. Formal verification pro-
cess of the compliance of amulticoreAUTOSAROS. SoftwareQuality Journal (Springer,
2022). Under submission (Major revisions).

136

BIBLIOGRAPHY

1. ARINC Group, 653P1-5 Avionics Application Software Standard Interface, Part 1, Re-
quired Services 2019.

2. Group, O., OSEK/VDX Operating System Specification tech. rep. (2009).

3. AUTOSAR GbR, Specification of operating system 2009.

4. ISO, ISO 26262:2018 Road vehicles — Functional safety tech. rep. (2018).

5. Lamport, L., Proving the Correctness of Multiprocess Programs, IEEE Transac-
tions on Software Engineering (1977).

6. OSEK Group, OSEK/VDX OS Test Plan Version 2.0 1999.

7. Clarke, E. M., Henzinger, T. A., Veith, H. & Bloem, R.,Handbook of Model Checking
(Springer Publishing Company, Incorporated, 2018).

8. Béchennec, J.-L., Briday, M., Faucou, S. & Trinquet, Y., Trampoline an open source
implementation of the OSEK/VDX RTOS specification in Emerging Technologies and
Factory Automation, 2006. ETFA’06. IEEE Conference on (2006).

9. Gadelha, M. R. et al., ESBMC 5.0: An Industrial-Strength C Model Checker in Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated Software En-
gineering (2018).

10. Tigori, K. T. G., Béchennec, J.-L., Faucou, S. & Roux, O. H., Formal Model-Based
Synthesis ofApplication-Specific Static RTOS,ACMTransactions on EmbeddedCom-
puting Systems (TECS) (2017).

11. Roux, O. H. & Lime, D., Roméo: formal verification and synthesis for timed systems
http://romeo.rts-software.org.

12. Charette, R. N., Automated to death in IEEE Spectrum (2009).

13. Finkelstein, A. C. W., Report of the Inquiry into the London Ambulance Service
(1993).

14. Cook, S. A., The Complexity of Theorem-Proving Procedures in Proceedings of the Third
Annual ACM Symposium on Theory of Computing (1971).

137

15. Clarke, E. M., Filkorn, T. & Jha, S., Exploiting Symmetry In Temporal Logic Model
Checking in Proceedings of the 5th International Conference on Computer Aided Verifi-
cation (1993).

16. Gallier, J. H., Logic for Computer Science: Foundations of Automatic Theorem Proving,
Second Edition (Dover Publications, Inc., 2015).

17. Rashid, A., Hasan, O., Siddique, U. & Tahar, S., Formal reasoning about systems
biology using theorem proving, PLOS ONE (2017).

18. Kerber, M., Lange, C. & Rowat, C., An introduction to mechanized reasoning,
Journal of Mathematical Economics (2016).

19. Kaliszyk, C., Chollet, F. & Szegedy, C., HolStep: A Machine Learning Dataset for
Higher-order Logic Theorem Proving 2017.

20. Wang,H.,Computer TheoremProving andArtificial Intelligence in Computation, Logic,
Philosophy: A Collection of Essays (1990).

21. Harrison, J., Urban, J. & Wiedijk, F., History of Interactive Theorem Proving in Com-
putational Logic (2014).

22. Dowek, G. et al., The Coq proof assistant user’s guide : version 5.8 tech. rep. (1993).

23. Nipkow, T., Paulson, L. C. & Wenzel, M., Isabelle/HOL: a proof assistant for higher-
order logic (2002).

24. Sutcliffe, G. & Suttner, C., Evaluating general purpose automated theorem prov-
ing systems, Artificial Intelligence (2001).

25. Mccune,W., Solution of theRobbins Problem, Journal of AutomatedReasoning (1997).

26. Frege,G., Bynum, T.&Press,O.U.,ConceptualNotation, andRelatedArticles (Claren-
don Press, 1972).

27. Rozier, K. Y., Linear Temporal Logic Symbolic Model Checking, Computer Science
Review (2011).

28. Alur, R., Courcoubetis, C. & Dill, D., Model-Checking in Dense Real-time, Infor-
mation and Computation (1993).

29. Lamport, L., Proving the Correctness of Multiprocess Programs, IEEE Transac-
tions on Software Engineering (1977).

30. Godefroid, P.,Using Partial Orders to Improve Automatic Verification Methods in Pro-
ceedings of the 2nd International Workshop on Computer Aided Verification (1990).

138

31. Dhaussy, P., Roger, J.-C. & Boniol, F., Reducing State Explosion with Context Mod-
eling for Model-Checking in IEEE 13th International Symposium on High-Assurance
Systems Engineering (2011).

32. Alur, R. & Dill, D. L., A theory of timed automata, Theoretical Computer Science
(1994).

33. Merlin, P. M., A Study of the Recoverability of Computing Systems. Theses (1974).

34. Henzinger, T., Nicollin, X., Sifakis, J. & Yovine, S., Symbolic Model Checking for
Real-Time Systems, Information and Computation (1994).

35. Larsen, K. G., Pettersson, P. & Yi, W., Uppaal in a Nutshell, Int. J. Softw. Tools
Technol. Transf. (1997).

36. Yovine, S., Kronos: A Verification Tool for Real-Time Systems. (Kronos User’s
Manual Release 2.2), International Journal on Software Tools for Technology Transfer
(2001).

37. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P. & Yi, W., TIMES b— A Tool
for Modelling and Implementation of Embedded Systems in Tools and Algorithms for the
Construction and Analysis of Systems (2002).

38. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P. & Yi, W., UPPAAL — a tool
suite for automatic verification of real-time systems in Hybrid Systems III (1996).

39. Merlin, P. & Farber, D., Recoverability of Communication Protocols - Implications
of a Theoretical Study, IEEE Transactions on Communications (1976).

40. Ramchandani, C., ANALYSIS OF ASYNCHRONOUS CONCURRENT SYSTEMS
BY TIMED PETRI NETS tech. rep. (USA, 1974).

41. Berthomieu, B. & Diaz, M., Modeling and Verification of Time Dependent Sys-
tems Using Time Petri Nets, IEEE Trans. on Soft. Eng. (1991).

42. Calvez, S., Aygalinc, P. & Khansa, W., P-Time Petri Nets for Manufacturing Sys-
tems with Staying Time Constraints, IFAC Proceedings Volumes (1997).

43. Bonhomme, P., A symbolic schedulability technique of real-time systems modeled by
P-Time Petri nets in IEEE International Conference on Automation Science and Engi-
neering (2011).

139

44. Rakkay, H., Boucheneb, H. & Roux, O. H., Time Arc Petri Nets and Their Analy-
sis in Ninth International Conference on Application of Concurrency to System Design
(2009).

45. Jones, N. D., Landweber, L. H. & Edmund Lien, Y., Complexity of some problems
in Petri nets, Theoretical Computer Science (1977).

46. Liu, B. & Robbi, A., TiPNet: a graphical tool for timed Petri nets in Proceedings 6th
International Workshop on Petri Nets and Performance Models (1995).

47. Vernadat, F., Berthomieu, B., Vernadat, F. & Berthomieu, B., Time Petri Nets Anal-
ysis with TINA in Third International Conference on the Quantitative Evaluation of
Systems - (QEST’06) (2006).

48. Lime, D., Roux, O. H., Seidner, C. & Traonouez, L.-M., Romeo: A Parametric Model-
Checker for Petri Nets with Stopwatches in 15th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2009) (2009).

49. Cassez, F. & Larsen, K., The Impressive Power of Stopwatches in CONCUR 2000 —
Concurrency Theory (2000).

50. Roux, O. & Déplanche, A.-M., A T-time Petri net extension for real time-task
scheduling modeling, European Journal of Automation (2002).

51. Lime, D. & Roux, O. H., Expressiveness and analysis of scheduling extended time
Petri nets, IFAC Proceedings Volumes (2003).

52. Bucci, G., Fedeli, A., Sassoli, L. &Vicario, E., Time state space analysis of real-time
preemptive systems, IEEE transactions on software engineering (2004).

53. Roux, O. H. & Lime, D., Time Petri Nets with Inhibitor Hyperarcs. Formal Semantics
and State Space Computation in Applications and Theory of Petri Nets 2004 (2004).

54. Behrmann,G., Larsen, K.&Rasmussen, J., Optimal schedulingusingpriced timed
automata, SIGMETRICS Performance Evaluation Review (2005).

55. Zaharia, T. & Haller, P., Formal verification and implementation of real time operating
system based applications in 2008 4th International Conference on Intelligent Computer
Communication and Processing (2008).

56. Waszniowski, L. & Hanzálek, Z., Formal Verification of Multitasking Applica-
tions Based on Timed Automata Model, Real-Time Syst. (2008).

140

57. Pimkote, A. & Vatanawood, W., Simulation of Preemptive Scheduling of the Indepen-
dent Tasks Using Timed Automata in 2021 10th International Conference on Software
and Computer Applications (2021).

58. Grolleau, E. & Choquet-Geniet, A., Scheduling Real-Time Systems by Means of
Petri Nets, IFAC Proceedings Volumes (2000).

59. Xu, D., He, X. & Deng, Y., Compositional schedulability analysis of real-time sys-
tems using time Petri nets, IEEE Transactions on Software Engineering (2002).

60. Lime, D. & Roux, O., Formal Verification of Real-time Systems with Preemptive
Scheduling, Real-Time Systems (2009).

61. Jensen, K., Coloured petri nets and the invariant-method, Theoretical Computer
Science (1981).

62. Hohmuth, M. & Tews, H., The VFiasco approach for a verified operating system in 2nd
PLOS (2005).

63. Klein, G. et al., SeL4: Formal Verification of an OS Kernel in Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles (2009).

64. Espinosa, T.&Leon,G., Formal verification of a real-time operating system(2012).

65. Xu, F. et al., A Practical Verification Framework for Preemptive OS Kernels in Computer
Aided Verification (2016).

66. Gu, R. et al., Building Certified Concurrent OS Kernels, ACM (2019).

67. Xu, L. et al., Towards Fault-Tolerant Real-Time Scheduling in the seL4 Microkernel in
IEEE 18th International Conference on High Performance Computing and Communica-
tions; IEEE 14th International Conference on Smart City; IEEE 2nd International Con-
ference on Data Science and Systems (HPCC/SmartCity/DSS) (2016).

68. Huang, Y. et al., Modeling and Verifying the Code-Level OSEK/VDX Operating Sys-
tem with CSP in 2011 Fifth International Conference on Theoretical Aspects of Software
Engineering (2011).

69. Chen, J. &Aoki, T.,Conformance testing for OSEK/VDX operating system usingmodel
checking in Proceedings - Asia-Pacific Software EngineeringConference, APSEC (2011).

70. Shi, J. et al., ORIENTAIS: Formal Verified OSEK/VDX Real-Time Operating System
in IEEE 17th International Conference on Engineering of Complex Computer Systems
(2012).

141

71. Béchennec, J., Roux, O. H. & Tigori, T., Formal model-based conformance verification
of an OSEK/VDX compliant RTOS in 2018 5th International Conference on Control,
Decision and Information Technologies (CoDIT) (2018).

72. Fang, L., Kitamura, T., Do, T. B. N. & Ohsaki, H., Formal Model-Based Test for AU-
TOSARMulticore RTOS in 2012 IEEE Fifth International Conference on Software Test-
ing, Verification and Validation (2012).

73. Peng, Y., Huang, Y., Su, T. & Guo, J., Modeling and Verification of AUTOSAR OS
and EMS Application in International Symposium on Theoretical Aspects of Software
Engineering (2013).

74. Trinh, L. K., Chiba, Y. & Aoki, T., Formalization and Verification of AUTOSAR OS
Standard’s Memory Protection in International Symposium on Theoretical Aspects of
Software Engineering (TASE) (2018).

75. Yan, R. & Guo, J., Timing Modeling and Analysis for AUTOSAR Schedule Tables in
IEEE 19th International Symposium on High Assurance Systems Engineering (HASE)
(2019).

76. Choi, Y., Safety Analysis of Trampoline OS Using Model Checking: An Experience Re-
port in 2011 IEEE 22nd International Symposium on Software Reliability Engineering
(2011).

77. Choi, Y., Model Checking an OSEK/VDX-Based Operating System for Automo-
bile Safety Analysis, IEICE Transactions on Information and Systems (2013).

78. Boukir, K., Béchennec, J.-L.&Déplanche,A.-M.,Requirement Specification andModel-
Checking of a Real-Time Scheduler Implementation in Proceedings of the 28th Interna-
tional Conference on Real-Time Networks and Systems (2020).

79. Sha, L., Rajkumar, R. &Lehoczky, J. P., Priority inheritance protocols: an approach
to real-time synchronization, IEEE Transactions on Computers (1990).

80. Hillah, L., Kordon, F., Petrucci, L. & Trèves, N., PN Standardisation: A Survey in
Formal Techniques for Networked and Distributed Systems - FORTE 2006 (2006).

81. Boyer, M. & Diaz, M., Multiple Enabledness of Transitions in Petri Nets with Time in
Proceedings of the 9th International Workshop on Petri Nets and Performance Models,
PNPM 2001, Aachen, Germany, September 11-14, 2001 (2001).

82. Berthomieu, B. &Menasche, M.,An Enumerative Approach for Analyzing Time Petri
Nets in Information Processing: proceedings of the IFIP congress 1983 (1983).

142

83. Pnueli, A., The Temporal Logic of Programs in 18th Annual Symposium on Foundations
of Computer Science, Providence, Rhode Island, USA (1977).

84. Boucheneb, H., Gardey, G. & Roux, O. H., TCTL model checking of Time Petri
Nets, Journal of Logic and Computation (2009).

85. Lime, D., Roux, O. H., Seidner, C. & Traonouez, L.-M., Romeo: A Parametric Model-
Checker for Petri Nets with Stopwatches in 15th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2009) (2009).

86. Gardey, G., Lime, D., Magnin, M. & Roux, O. H., Romeo: A Tool for Analyzing Time
Petri Nets in Computer Aided Verification (2005).

87. Andreychenko, A.,Magnin,M.& Inoue, K., Analyzing resilience properties in os-
cillatory biological systems using parametric model checking, Biosystems (2016).

88. Parquier, B. et al., Applying Parametric Model-Checking Techniques for Reusing Real-
Time Critical Systems in Formal Techniques for Safety-Critical Systems (2017).

89. Coullon, H., Jard, C. & Lime, D., IntegratedModel-Checking for the Design of Safe and
Efficient Distributed Software Commissioning in Integrated Formal Methods (2019).

90. Sun, Y., Lipari, G. & André, É., Verification of Two Real-Time Systems Using Para-
metric Timed Automata in WATERS - International Workshop on Analysis Tools and
Methodologies for Embedded Real-Time Systems (2015).

91. André, É., A Benchmark Library for Parametric Timed Model Checking in Formal Tech-
niques for Safety-Critical Systems - 6th International Workshop, FTSCS 2018, Gold
Coast, Australia, November 16, 2018, Revised Selected Papers (2018).

92. Gardey, G., Roux, O. & Roux, O., State Space Computation and Analysis of Time
Petri Nets, TPLP (2006).

93. Lime, D. & Roux, O. H., State class Timed Automaton of a Time Petri Net in The 10th
International Workshop on Petri Nets and Performance Models, (PNPM’03) (2003).

94. Freescale Semiconductor,MPC5643LMicrocontroller ReferenceManualNXP(2013).

95. Liu, C. L. & Layland, J. W., Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment, J. ACM (1973).

96. Chéramy,M.,Hladik, P.-E.&Déplanche,A.-M.,Algorithmes pour l’ordonnancement
temps réelmultiprocesseur, Journal Européen des SystèmesAutomatisés (JESA) (2015).

143

97. Atlas, A. & Bestavros, A., Statistical rate monotonic scheduling in Proceedings 19th
IEEE Real-Time Systems Symposium (Cat. No.98CB36279) (1998).

98. Palencia, J. & Gonzalez Harbour, M., Schedulability analysis for tasks with static
and dynamic offsets in Proceedings 19th IEEE Real-Time Systems Symposium (Cat.
No.98CB36279) (1998).

99. Marti, P., Villa, R., Fuertes, J. & Fohle, G.,On real-time control tasks schedulability in
2001 European Control Conference (ECC) (2001).

100. Devillers, R. & Goossens, J., Liu and Layland’s schedulability test revisited, Infor-
mation Processing Letters (2000).

101. Davis, R., Burns,A., Bril, R.&Lukkien, J., ControllerAreaNetwork (CAN) schedu-
lability analysis: Refuted, revisited and revised, Real-Time Systems (2007).

102. Bletsas, K., Audsley, N. C., Huang, W.-H., Chen, J.-J. & Nelissen, G., Errata for
Three Papers (2004-05) on Fixed-Priority Schedulingwith Self-Suspensions, Leib-
niz Transactions on Embedded Systems (2018).

103. Bertogna, M., Cirinei, M. & Lipari, G., Schedulability Analysis of Global Schedul-
ingAlgorithms onMultiprocessor Platforms, IEEETransactions on Parallel andDis-
tributed Systems (2009).

104. Lee, J., Shin, K. G., Shin, I. & Easwaran, A., Composition of Schedulability Analy-
ses for Real-TimeMultiprocessor Systems, IEEE Transactions on Computers (2015).

105. Altmeyer, S. et al., A Generic and Compositional Framework for Multicore Response
Time Analysis in Proceedings of the 23rd International Conference on Real Time and
Networks Systems (2015).

106. Sun, Y. & Di Natale, M., Assessing the Pessimism of Current Multicore Global Fixed-
Priority Schedulability Analysis tech. rep. (2017).

107. Sun, Y. & Di Natale, M., Pessimism in multicore global schedulability analysis,
Journal of Systems Architecture (2019).

108. Dal-Zilio, S. & Berthomieu, B.,Automating the Verification of Realtime Observers Us-
ing Probes and the Modal mu-calculus in Topics in Theoretical Computer Science - The
First IFIP WG 1.8 International Conference, TTCS 2015, Tehran, Iran, August 26-28,
2015, Revised Selected Papers (2015).

144

109. Bagnara, R., Hill, P. M. & Zaffanella, E., The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hard-
ware and software systems, Sci. Comput. Program. (2008).

110. Traonouez, L.-M., Lime, D. & Roux, O., Parametric Model-Checking of Time Petri
Nets with Stopwatches Using the State-Class Graph in 6th International Conference on
Formal Modelling and Analysis of Timed Systems (FORMATS 2008 (2008).

111. Tigori, T. K. G., Méthode de génération d’exécutifs temps-réel Theses (2016).

112. Boukir, K., Mise en oeuvre de politiques d’ordonnancement temps réel multiprocesseur
prouvée Theses (2020).

145

Appendix A

REQUIREMENTS CORRESPONDING TO

MULTI-CORE OS

146

Table A.1: Subset of AUTOSAR OS requirements related to multi-core.

SWS_OS_00568 Execute a TASK on each core
SWS_OS_00569 Scheduling on each core
SWS_OS_00602 Possible to set an Event of another core if application has access
SWS_OS_00604 SetEvent’s call is synchronous
SWS_OS_00605 SetEvent’s error are handled in the calling core
SWS_Os_00622 WaitEvent returns E_OS_SPINLOCK if the calling core has spinlocks
SWS_Os_00624 Schedule returns E_OS_SPINLOCK if the calling core has spinlocks
SWS_Os_00625 GetCoreId callable before StartOs
SWS_Os_00626 GetNumberOfActivatedCores returns the number of activated cores
SWS_Os_00627 Macros OS_CORE_ID_0, OS_CORE_ID_1
SWS_Os_00628 Macros OS_CORE_ID_MASTER
SWS_Os_00632 An Alarm can activate a task on a different core
SWS_Os_00633 An Alarm can set an event on a different core
SWS_Os_00634 An Alarm is processed on the alarm’s core
SWS_Os_00635 An Alarm callback is executed on the alarm core (SC1 only)
SWS_Os_00636 SetRelAlarm work on an alarm on a different core
SWS_Os_00637 SetAbsAlarm work on an alarm on a different core
SWS_Os_00638 CancelAlarm work on an alarm on a different core
SWS_Os_00639 GetAlarmBase work on an alarm on a different core
SWS_Os_00640 GetAlarm work on an alarm on a different core
SWS_Os_00641 A schedtable can activate tasks bound on another core
SWS_Os_00642 A schedtable can set an event bound on another core
SWS_Os_00643 Schedtable be processed on its own core
SWS_Os_00644 StartScheduleTableAbs can start schedtable on another core
SWS_Os_00645 StartScheduleTableRel can start schedtable on another core
SWS_Os_00646 StopScheduleTable can stop schedtable on another core
SWS_Os_00647 GetScheduleTableStatus can get the status of a schedtable on another

core
SWS_Os_00648 OS Provides a Spinlock mechanisme
SWS_Os_00649 GetSpinlock service
SWS_Os_00650 GetSpinlock callable from Tasks
SWS_Os_00651 GetSpinlock callable from ISRS2
SWS_Os_00652 TryToGetSpinlock service
SWS_Os_00653 TryToGetSpinlock callable from Tasks
SWS_Os_00654 TryToGetSpinlock callable from ISRS2
SWS_Os_00655 ReleaseSpinlock service
SWS_Os_00656 ReleaseSpinlock callable from Tasks
SWS_Os_00657 ReleaseSpinlock callable from ISRS2
SWS_Os_00658 Error if trying to get a spinlock that already belongs to the calling

core from a task
SWS_Os_00659 Error if trying to get a spinlock that already belongs to the calling

core from an isrs2
SWS_Os_00661 Error if trying to get a spinlock that is not the successor of a spinlock

the core already occupies
SWS_Os_00668 All Autostart Tasks are activated
SWS_Os_00669 All Autostart Alarms are activated
SWS_Os_00670 All Autostart Schedule Tables are activated

147

Titre : Modélisation et vérification formelles d’un RTOS multicœur conforme à AUTOSAR

Mot clés : Vérification formelle, Model-checking, Réseaux de Petri colorés de haut niveau,

Systèmes d’exploitation temps réel, Exécution multi-cœurs, Vérification d’OS AUTOSAR.

Résumé : La vérification formelle est une
solution pour augmenter la fiabilité de l’im-
plémentation du système. Dans notre tra-
vail de thèse, nous nous intéressons à l’uti-
lisation de ces méthodes pour la vérifica-
tion des systèmes d’exploitation multi-cœurs
temps réel. Nous proposons une approche de
model-checking utilisant les réseaux de Petri
temporels, étendus avec des transitions co-
lorées et des fonctionnalités de haut niveau.
Nous utilisons ce formalisme pour modéliser
le système d’exploitation multi-cœur Trampo-
line, conforme aux standards OSEK/VDX et
AUTOSAR. Nous définissons dans un pre-
mier temps ce formalisme et montrons son
adéquation avec la modélisation de systèmes
concurrents temps reel. Nous utilisons en-

suite ce formalisme pour modéliser le sys-
tème d’exploitation multi-cœur Trampoline et
vérifions par model-checking sa conformité
avec le standard AUTOSAR. À partir de ce
modèle, nous pouvons vérifier des propriétés
aussi bien sur l’OS que sur l’application telles
que l’ordonnançabilité d’un système temps-
réel ainsi que les mécanismes de synchro-
nisation : accès concurrents aux structures
de données du système d’exploitation, ordon-
nancement multi-cœur et traitement des inter-
ruptions inter-cœur. À titre d’illustration, cette
méthode a permis l’identification automatique
de deux erreurs possibles de l’OS Trampoline
dans l’exécution concurrente, montrant une
protection insuffisante des données et une
synchronisation défectueuse.

Title: AUTOSAR compliant multi-core RTOS formal modeling and verification

Keywords: Formal verification, Model-checking, High-level Colored Time Petri Nets, Real-

Time Operating Systems (RTOS), Multi-core execution, AUTOSAR OS verification.

Abstract: Formal verification is a solution to
increase the system’s implementation relia-
bility. In our thesis work, we are interested
in using these methods to verify multi-core
RTOS. We propose a model-checking ap-
proach using time Petri nets extended with col-
ored transitions and high-level features. We
use this formalism to model the Trampoline
multi-core OS, compliant with the OSEK/VDX
and AUTOSAR standards. We first define this
formalism and show its suitability for mod-
eling real-time concurrent systems. We then
use this formalism to model the Trampoline

multi-core RTOS and verify by model-checking
its conformity with the AUTOSAR standard.
From this model, we can verify properties of
both the OS and the application, such as the
schedulability of a real-time system and the
synchronization mechanisms: concurrent ac-
cess to the data structures of the OS, multi-
core scheduling, and inter-core interrupt han-
dling. As an illustration, this method allowed
the automatic identification of two possible er-
rors of the Trampoline OS in concurrent execu-
tion, showing insufficient data protection and
faulty synchronization.

	Introduction
	Motivations
	Scientific contribution
	Manuscript outline

	I General context
	State of the art
	Introduction
	Formal verification methods
	Theorem-based methods
	Model-based verification methods

	Timed models
	Timed automata
	Petri nets and time
	Timed model with stopwatches
	Scheduling studies based on timed models

	Formal methods for operating systems verification
	Conclusion

	Trampoline real-time operating system
	Introduction
	The OSEK/VDX standard
	The OSEK/VDX OS
	Operating system services
	Processing levels
	Conformance classes

	The AUTOSAR standard
	Trampoline RTOS
	Mono-core Trampoline architecture
	Multi-core Trampoline architecture

	Conclusion

	II Contribution
	High-level Colored Time Petri Nets for multi-core concurrency
	Introduction
	Informal presentation
	Petri nets
	High-level Petri nets
	Colored Petri nets
	Time Petri Nets
	Colored Time Petri Nets
	Time Petri Nets with stopwatches

	Formal definition
	High-level Colored Time Petri Net
	High-level Colored Time Petri Net with stopwatches

	Decidability, complexity and state space computation
	Roméo tool
	Application
	Modeling the spinlocks mechanism
	Verification of the system

	Conclusion

	Modeling with High Level Colored Petri Nets
	Introduction
	Modeling rules
	Multi-core RTOS modeling
	API services modeling
	Kernel modeling
	Properties of the model

	Application modeling
	The GTL module
	Modeling examples

	Conclusion

	Formal verification of the multi-core AUTOSAR OS compliance
	Introduction
	Formal verification of AUTOSAR compliance
	AUTOSAR OS tests
	AUTOSAR requirements observers
	Model-checking with Roméo

	Compliance of the AUTOSAR Trampoline OS
	mc_alarm_s1 application
	mc_spinlock_s1 application
	Discussion

	Formal verification of concurrency in multi-core implementation
	Case study 1
	Correction of the error
	Case study 2
	Correction of the error
	 Scalability

	Conclusion

	Formal schedulability analysis based on multi-core RTOS model
	Introduction
	Real-time schedulability analysis
	Formal verification of schedulability analysis
	Schedulability observer
	Parameters synthesis
	Application of the scheduling analysis approach

	Ad-hoc scheduling system
	Ad-hoc scheduler specifications
	Ad-hoc scheduler implementation
	Task parameters synthesis
	Response time analysis

	Conclusion

	Conclusion and perspectives
	Publications
	Bibliography
	Requirements corresponding to multi-core OS

