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Introduction

Manufacturing parts in an environmentally sustainable way is the challenge aeronautics, auto-
motive and energy industries are facing with today. Increasing the stiffness-to-weight ratio of
parts and reducing material wastage while maintaining highly competitive manufacturing pro-
cess is a permanent issue for these industries. Fibre-reinforced composite materials have been
widely developed to tackle this challenge over the past decades. Unidirectional plies stacked
together to produce laminates or conventional textiles made by weaving, stitching or knitting
allow manufacturing parts with improved stiffness-to-weight ratio compared to their metallic
counter parts. However, with the emergence of additive manufacturing, topologically optimized
metallic structures have become very attractive for the industry by providing a higher degree
of design freedom. To further enhance topologically optimized structures, additive manufactur-
ing of continuous fibre-reinforced composites has also been developed. It allows manufacturing
parts having both optimized topology and material orientations, which again increases the
stiffness-to-weight ratio compared to metallic parts made by additive manufacturing.

Generally, additive manufacturing of continuous fibre-reinforced composites consists in deposit-
ing fibres only where needed (or desired) with the possibility to prescribe curvilinear paths.
There is a growing interest in these technologies due to the constant progress made in improving
productivity and design complexity. Manufacturing processes falling into this class differ from
the way they mix the fibres and the matrix as well as the deposition strategy. Continuous Fila-
ment Fabrication (CFF) technologies consist in depositing fibre tows which are pre-impregnated
or in-situ-impregnated. Automated Fibre Placement (AFP), Continuous Tow Shearing (CTS)
and Tailored Fibre Placement (TFP) can also be classified as additive manufacturing technolo-
gies. They differ from (CFF) by the width of deposited material. As AFP, CFF can directly
manufacture 3D parts. However, depositing fibres directly on complex doubly-curved parts
without defects can be challenging for these technologies. Another solution to manufacture
3D parts consists in a two-step approach where a flat preform is firstly produced before being
transformed into a 3D shape via forming. This solution enables lowering cost-production and
reduce defects. Forming of fibrous reinforcements is a widely used process to manufacture 3D
shell-like composite parts. This process has been widely studied by the scientific community
in case of conventional textiles. However, the forming of fibre-steered flat preforms received
relatively little attention compared to conventional textiles. Since fibre steered preforms are
more likely to provide a better mechanical solution, investigating the forming of such preforms
is a necessary step to proposed a reliable manufacturing solution of optimised 3D shell-like
composite part from flat fibre-steered preforms.

In this thesis, a hybrid solution combining the TFP technology and forming to manufacture
highly doubly-curved parts is proposed. The main objective of this work consists in developing
a numerical tool to predict the forming of flat TFP preforms. To validate this tool, full-scale
simulations of complex doubly-curved part along with their experimental forming are addressed.
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Since the TFP technology received little attention from the scientific community, this work also
aims at demonstrating the ability of the proposed hybrid solution to manufacture complex parts
with optimal final fibre orientations. This work was funded by IRT Jules Verne as part of the
Ph.D program PERFORM.

This thesis starts by an introductory chapter which gives the necessary background to under-
stand the challenges of the forming of fibrous reinforcements in general. It first introduces
forming of conventional textiles before focusing on fibre-steered technologies, and in particular,
the TFP technology. It highlights the capabilities of this technology as well as the missing
numerical tools to fully leverage its potential. It ends with the objectives and outline of this
work. The second chapter presents the modelling strategy adopted to address the forming of
flat TFP preforms. The latter is based on the Finite Element Method (FEM) and uses the
embedded element approach which assumes no-slip between the preform’s constituents. The
formulation, implementation and numerical validation of the modelling features are described.
The next chapter aims at validating the proposed modelling approach. To this end, two full-
scale simulations along with their experimental counter-parts are performed. They consists
in the forming of both hemisphere and tetrahedral parts from flat TFP preforms especially
designed to obtained orthotropic final orientations. The last chapter enhanced the proposed
modelling strategy with a mixed embedded-ALE (Arbitrary Eulerian-Lagrangian) formulation.
It allows to model fibre slippage in the TFP preform without modifying the initial ingredients
of the modelling approach. In particular, pull-out experiments are carried out to characterize
the friction behaviour.

v



Contents

Introduction iv

1 Forming of continuous fibre-reinforced composite materials : From regular fabrics to
fibre-steered preforms 1
1.1 Introduction to continuous fibre-reinforced composite materials and forming . . . 3

1.1.1 Composite materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Conventional textiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Forming processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Forming: features and challenges in numerical modelling and experimental char-
acterisation of conventional textiles . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Fabrics kinematics, process-induced defects and their treatments . . . . . 10
1.2.2 Modelling of conventional textiles in forming applications . . . . . . . . . 13
1.2.3 Characterisation of conventional textiles’ mechanical properties . . . . . . 17

1.3 Optimized FRC parts: towards fibre placement technologies . . . . . . . . . . . . 21
1.3.1 Expanding design possibilities: substituting conventional straight fibres

by curvilinear ones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.2 Introduction to the fibre placement technologies: AFP, CTS and TFP . . 23
1.3.3 Challenge in manufacturing FRC parts with optimal mechanical perfor-

mances using curvilinear fibres . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4 The Tailored Fibre Placement technology: A high degree of design freedom . . . 33

1.4.1 TFP preforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.4.2 A review of studied TFP applications for manufacturing 2D parts . . . . 39
1.4.3 Challenges in 3D optimized composite parts made by TFP preform forming 47

1.5 Objectives and outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 49
1.5.1 Forming modelling: a first step to understand the deformation mecha-

nisms of TFP preforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
1.5.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2 A first step towards the modelling of TFP preform forming 60
2.1 Modelling strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.1.2 Towards semi-discrete modelling of TFP preforms . . . . . . . . . . . . . 64
2.1.3 Introduction to the embedded element approach . . . . . . . . . . . . . . 67
2.1.4 Framework of the finite element solver . . . . . . . . . . . . . . . . . . . . 71

2.2 Modelling the fibre tows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.2.1 Formulation of a beam element . . . . . . . . . . . . . . . . . . . . . . . . 80
2.2.2 Implementation of the beam element . . . . . . . . . . . . . . . . . . . . . 85

vi



2.2.3 Numerical validation: Elementary and referenced test cases . . . . . . . . 87
2.3 Backing material model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

2.3.1 Formulation of an incompressible Neohookean membrane . . . . . . . . . 94
2.3.2 Implementation of the incompressible Neohookean membrane . . . . . . . 96
2.3.3 Numerical validation: Elementary test cases . . . . . . . . . . . . . . . . . 99

2.4 Modelling the stitching yarn as an embedding constraint . . . . . . . . . . . . . . 102
2.4.1 General formulation and implementation . . . . . . . . . . . . . . . . . . . 103
2.4.2 Generation of TFP preform models . . . . . . . . . . . . . . . . . . . . . . 107
2.4.3 Numerical validation: Elementary test cases . . . . . . . . . . . . . . . . . 111

3 Full-scale validation of the TFP preform modelling strategy: application to the forming
of high curved orthotropic parts 123
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.1.1 Objectives of the forming experiments . . . . . . . . . . . . . . . . . . . . 125
3.1.2 Choice of the targeted part geometries . . . . . . . . . . . . . . . . . . . . 125
3.1.3 TFP preform deformation mechanisms . . . . . . . . . . . . . . . . . . . . 126
3.1.4 TFP preform manufacturing and materials . . . . . . . . . . . . . . . . . 126

3.2 TFP preform forming on a hemispheric shape with orthotropic final orientations 129
3.2.1 Experimental forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.2.2 Forming simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.3 TFP preform forming on a tetrahedral shape with orthotropic final orientations . 137
3.3.1 Experimental forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.3.2 Forming simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

3.4 Discussion on the proposed models and perspectives . . . . . . . . . . . . . . . . 151
3.4.1 Using Model I to model locally TFP-reinforced conventional textiles . . . 151
3.4.2 Advantages of the proposed modelling strategy . . . . . . . . . . . . . . . 154
3.4.3 Possible improvement of the models . . . . . . . . . . . . . . . . . . . . . 156

4 Towards controlling fibre tow slippage to increase the formability of TFP preforms 160
4.1 Turning slippage defects in conventional textile into an additional degree of design

freedom in TFP preforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.1.2 A brief introduction to the Arbitrary-Eulerian description in continuum

mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
4.1.3 Modelling material flow in 1D elements . . . . . . . . . . . . . . . . . . . 170

4.2 Modelling fibre tow slippage in TFP preforms: formulation of ALE truss and
beam elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
4.2.1 Formulation of the ALE 1D elements . . . . . . . . . . . . . . . . . . . . . 176
4.2.2 Boundary conditions and degeneration of the 1D ALE elements into Eu-

lerian and Lagrangian elements . . . . . . . . . . . . . . . . . . . . . . . . 180
4.2.3 Numerical validation of the ALE truss . . . . . . . . . . . . . . . . . . . . 182
4.2.4 Numerical validation of the ALE beam . . . . . . . . . . . . . . . . . . . . 188

4.3 Characterisation of the fibre tow slippage in TFP preforms based on pull-out
experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
4.3.1 A short review of the pull-out experiments for conventional textiles . . . . 193
4.3.2 Design of the pull-out experiment . . . . . . . . . . . . . . . . . . . . . . . 195
4.3.3 Determination of an analytical friction model . . . . . . . . . . . . . . . . 202

4.4 Application of the mixed embedded-ALE element approach to TFP preforms and
extensions to conventional textiles . . . . . . . . . . . . . . . . . . . . . . . . . . 215
4.4.1 Integration of the 1D ALE element the TFP preform models . . . . . . . 215
4.4.2 Deploying the 1D ALE elements in conventional textile modelling . . . . 219

vii



Conclusions and Perspectives 233

viii



List of Figures

1.1 Discontinuous fibre-reinforced composites (left) vs continuous fibre-reinforced
composites (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Various reinforcements in polymer composites. From left to right: unidirectional
ply, triaxial braided fabric, biaxial woven fabric, stitched or noncrimp fabric,
chopped strand mat, continuous filament mat. (Akkerman and Haanappel, 2015) 5

1.3 Material scales in a composite part: (a) A fibre-reinforced composite part (Guil-
lon et al., 2016) (b) made from a fibrous reinforcement (c) obtained by assembling
fibre tows (d) containing thousands of fibres . . . . . . . . . . . . . . . . . . . . . 6

1.4 Stacking of unidirectional layers (UD laminate) . . . . . . . . . . . . . . . . . . . 6
1.5 Internal geometry of a 2 layer chain stitched NCF : (a) top view and (b) bottom

view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 2D and 3D weaving pattern examples . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 Internal geometry of a plain knit . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.8 Forming process: (a) Mould closing to conform the reinforcement to the mould

surface, (b) consolidation phase (or impregnation for RTM), (c) release of the
final part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.9 Deformation modes of conventional textiles (Reproduced from Creech and Pickett
(2006)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.10 Tow slippage in bias extension test of NCF (Creech and Pickett, 2006) . . . . . . 11
1.11 Shear deformation of a 2D plain woven cell . . . . . . . . . . . . . . . . . . . . . 12
1.12 Examples of defects in woven fabrics forming . . . . . . . . . . . . . . . . . . . . 12
1.13 Examples of discrete models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.14 Plain woven unit cell: (a) initial state and (b) deformed state (Charmetant et al.,

2011) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.15 Discrete models’ examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.16 Biaxial tensile tests of a twill 2 x 2 carbon textile reinforcement: tension vs strain

in the warp direction for different warp-to-weft tension ratio (Carvelli, 2011) . . . 18
1.17 (a) Picture frame test setup in starting position and (b) schematic representation

of the deformation of the picture frame (Schirmaier et al., 2016) . . . . . . . . . 18
1.18 Bias extension test: (a) the device (inset: weave structure of the fabric G1151) (b)

initial rectangular specimen with yarns oriented at ±45° (c) deformed specimen
(d) shear load curve for G1151 interlock fabric (Lomov et al., 2008) . . . . . . . . 19

1.19 Standard cantilever bending test device (Liang and Boisse, 2021) . . . . . . . . . 19
1.20 Phenomena occurring during fabric/fabric friction: yarn/yarn friction and shock

phenomenon caused by overhanging yarns (Allaoui et al., 2015) . . . . . . . . . . 20

ix



1.21 Removing stress concentration in tensioned plate with central circular hole: (a)
Stress concentration for isotropic material, (b) quasi-isotropic FRC design leading
to discontinuous plies and (c) anisotropic design using curvilinear fibre paths
removing stress concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.22 Examples of four types of variable stiffness composite panels (Ribeiro et al., 2014) 24
1.23 Simplified representation of an AFP head (Brasington et al., 2021) . . . . . . . . 24
1.24 AFP manufacturing defects (Harik et al., 2018) . . . . . . . . . . . . . . . . . . . 25
1.25 Difference of the tow arrangement and head rotation: (a) conventional AFP (tow

gap), (b) conventional AFP (tow overlap), and (c) CTS. (Kim et al., 2012) . . . 26
1.26 Schematic representation of Tailored Fibre Placement principle . . . . . . . . . . 26
1.27 Pin loaded laminate design for isotropic material: Trajectories for main stresses

and loading paths methods (adapted from Tosh and Kelly (2000)) . . . . . . . . 29
1.28 Cantilever beam with a point load applied at the free edge: (a) the optimized

topology for the cantilever case, (b) the fiber paths created by the Equally-Space
method, (c) the fiber paths created by the Offset method, (d) the fiber paths
created by streamline method (adapted from Papapetrou et al. (2020)) . . . . . . 30

1.29 Michell beam structure optimisation: (a) Initial domain and loading. (b) The
optimized Michell shape fiber-reinforced structure (adapted from Li et al. (2021)) 30

1.30 Graphical representation of closed loop AFP workflow (Harik, 2020) . . . . . . . 32
1.31 Stitching parameters: (a) Stitch length (ds), (b) stitch width (ws) and (c) stitch

tension (Ts) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.32 TFP in-plane bending induced defect (adapted from Kim et al. (2011)) . . . . . . 35
1.33 Snapshots of the TFP process (1–7) showing the placement of a third roving row

and the sewing with a zigzag stitch pattern while the roving pipe moves from
right to left. Details (left and top) with TFP process parameters and resulting
fiber waviness due to stitching (Uhlig et al., 2016) . . . . . . . . . . . . . . . . . 36

1.34 In-plane and out-of-plane waviness in TFP layer (adapted from Uhlig et al. (2016)) 37
1.35 Fractographic images of tested [+45/0/− 45]s specimens (a) TFP, (b) cyclic

preloaded TFP, (c) NCF, (d) cyclic preloaded NCF, (e) braids, (f), cyclic preloaded
braids (Uhlig et al., 2010) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.36 Different strategies to assemble conventional textile and TFP reinforcements
(Crothers et al., 1997) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.37 (a) Photograph of the plates with fracture (Gliesche, 2003), (b) Specimen profiles
created using tailored fiber placement and conventional drilling. (Koricho et al.,
2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.38 Fiber layouts for open-hole specimens: reference layout with equidistant and
parallel fibres (a), stiffness optimization (DFPO) (b), and principal stress design
(c). The TFP layer is placed on top of the base material(Bittrich et al., 2019) . . 41

1.39 (a) Initial design space of the unequally loaded tensile plate, (b) Topology and
fibre orientation results after sequential structural topology and fibre orientation
optimisations (adapted from (Spickenheuer et al., 2008)) . . . . . . . . . . . . . . 42

1.40 Manufacturing steps required for the bladed CFRP rotor developed (Uhlig et al.,
2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.41 Specific stiffness for all brake boosters investigated in (Almeida et al., 2019):
Quasi-Isotropic design (QI), Principal Stress design (PS), Topology Optimisa-
tion design (TO), Cross-Section Optimisation and Topology Optimisation design
(CSO-TO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.42 (a) A bicycle brake booster with a truss-like structure resulting from topology
optimization and two marked distinctive intersection point configurations: T- and
Y-shape-like geometries, (b) Illustration of the types of fibre patterns (adapted
from (Richter et al., 2019)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

x



1.43 (a) Derivation of the 2-dimensional stitching paths from the target structure
(left). Based on a numerical analysis a mesoscopic textile model is created (mid-
dle). A reverse draping simulation creates the flat pattern for the creation of
the 2-dimensional preform (right). (b) Pre-cut base material with manipulated
reinforcement yarn (dashed line) and final structure represented by the folded
base material and one exemplary manipulated reinforcement yarn (dashed line)
(adapted from Fial et al. (2018)) . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.44 FlexFlax Stool: (a) Stitch: A tailored natural fiber textile is designed and pro-
duced in its flat form. This textile is infused with resin to create a fiber compos-
ite; (b) Bend: The activated polymer is formed into shape, enabled by specific
fiber bending patterns; (c) Weave: This form becomes a permanent winding
frame, upon which natural fibers are placed through coreless filament winding.
Once cured, the TFP and CFW elements become a co-dependent functional and
structural system in the form of a stool. (d) Final prototype (adapted from
Costalonga Martins et al. (2020)) . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.45 Stitching of the legs (a) and forming of preform under self-weight (b). Closeup
photography of the stitched legs after curing (c) (Rihaczek et al., 2020) . . . . . 45

1.46 Initial (left) and folded states (right) for two samples with compliant curved
hinges (Rihaczek et al., 2020) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.47 Overview: (a) tessellation of the input surface into structured quadrilateral
patches (either in parametric or 3D space), (b) unfolding of these patches into
quads, (c) aligning the flattened quads in two ways, (d) one stroke tool path gen-
eration, (e) tow placement on the flattened surface using the TFP embroidery
machine to fabricate preforms, and (f) CFRP formation (Takezawa et al., 2021) . 46

1.48 Formability tool principle: The optimised 3D part resulting from topological
and material optimisations is numerically flattened and formed iteratively until
a compromised between structural stiffness and formability is achieved . . . . . . 48

2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.2 TFP preform’s constituents: role, behaviour and mutual interactions . . . . . . . 65
2.3 Overstitching increases cohesion between fibre tows . . . . . . . . . . . . . . . . . 66
2.4 TFP preform models: with (Model I) and without (Model II) backing material . 68
2.5 Examples of embedded element - host element combination with linear and

quadratic interpolations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.6 High-level flowchart of the numerical tool . . . . . . . . . . . . . . . . . . . . . . 73
2.7 OOP data structure of Femtran . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.8 Femtran workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.9 Initial and current configurations of a beam . . . . . . . . . . . . . . . . . . . . . 82
2.10 Definition of the Cartesian pseudo-vector ψ⃗ . . . . . . . . . . . . . . . . . . . . . 82
2.11 Definition of the physical (a) and parametric (b) domains of the beam element . 86
2.12 Cantilever beam tip moment (F = 106 N): Different configurations of the beam

and displacement field along the y-axis (m) . . . . . . . . . . . . . . . . . . . . . 90
2.13 Cantilever beam under two transverse loads: initial configuration and boundary

conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.14 Roll-up of a beam under tip moment (M = 20π): different configurations of the

beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
2.15 Cantilever bend of Bathe and Bolourchi: initial configuration and boundary con-

ditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2.16 Cantilever bend of Bathe and Bolourchi: different configurations of the beam . . 93
2.17 Biaxial tension test of an incompressible Neohookean membrane (initial configu-

ration (dotted line), final configuration (solid line) . . . . . . . . . . . . . . . . . 99

xi



2.18 Simple shear of an incompressible Neohookean membrane (initial configuration
(dotted line), final configuration (solid line) . . . . . . . . . . . . . . . . . . . . . 101

2.19 Pure shear of an incompressible Neohookean membrane (initial configuration
(dotted line), final configuration (solid line) . . . . . . . . . . . . . . . . . . . . . 102

2.20 Transfer of internal forces in Model I . . . . . . . . . . . . . . . . . . . . . . . . . 105
2.21 Transfer of internal forces in Model II . . . . . . . . . . . . . . . . . . . . . . . . 105
2.22 Femtran workflow under embedding constraints . . . . . . . . . . . . . . . . . . . 106
2.23 Meshing of 1D embedded elements in 2D host elements . . . . . . . . . . . . . . 107
2.24 Overview of the meshing procedure of Model I: (a) TFP preform design, (b) 2D

mesh of the backing material, (c) mesh of the 1D embedded elements . . . . . . . 108
2.25 Meshing principle of Model I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.26 Model I meshing algorithm workflow . . . . . . . . . . . . . . . . . . . . . . . . . 111
2.27 Biaxial tension of an incompressible Neohookean membrane reinforced with 2

orthogonal beam elements (initial configuration (dotted line), final configuration
(solid line)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

2.28 Checking the kinematic constraint: displacement along x-direction (left) and y-
direction (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

2.29 Biaxial tension of two orthogonal beams (initial configuration (dotted line), final
configuration (solid line) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

2.30 Checking the kinematic constraint: displacement along x-direction (a) and y-
direction (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

2.31 Pure shear-like behaviour of a membrane reinforced with two orthogonal beams
(initial configuration (dotted line), final configuration (solid line)) . . . . . . . . . 115

2.32 Checking free rotation of embedded beams: embed of displacement dofs (left),
full embedding (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

2.33 Free rotation between beams at their intersection (initial configuration (dotted
line), final configuration (solid line)) . . . . . . . . . . . . . . . . . . . . . . . . . 116

2.34 Checking the perfect hinge connection: displacement along x-direction (a) and
y-direction (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

2.35 Constrained rotation between beams at intersection in Model I (initial configu-
ration (dotted line), final configuration (solid line)) . . . . . . . . . . . . . . . . . 117

2.36 Constrained (blue color) vs unconstrained (orange color) rotation between em-
bedded beams at intersection (Model I) . . . . . . . . . . . . . . . . . . . . . . . 118

2.37 Constrained rotation between beams at intersection in Model II (initial configu-
ration (dotted line), final configuration (solid line)) . . . . . . . . . . . . . . . . . 118

2.38 Constrained (dark colors) vs unconstrained (light colors) rotation between beams
at their intersection (Model II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.1 TFP preform design process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.2 TFP machine used at IRT Jules Verne (TFP ZSK © CMCW 0200-900D-2500) . 127
3.3 Targeted orientations for the forming of a hemispheric part . . . . . . . . . . . . 129
3.4 Analytic flattening process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.5 Manufactured TFP preform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.6 Forming device for the hemisphere forming . . . . . . . . . . . . . . . . . . . . . 132
3.7 Forming of a TFP preform on a hemisphere: (a) initial configuration and (b)

final configuration (from top view), (c) final configuration from side view . . . . . 133
3.8 Mesh of the TFP preform for the hemispheric shape forming . . . . . . . . . . . 134
3.9 Qualitative comparison of the experimental and simulation results for the hemi-

spheric shape forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.10 Successive configurations of the TFP preform during the hemispheric shape form-

ing simulation: top (top) and side views (bottom) . . . . . . . . . . . . . . . . . 136

xii



3.11 Example of orthotropic design for a structural part with a triple point . . . . . . 137
3.12 Design of the TFP preform for the tetrahedral forming: (a) targeted 3D orienta-

tions, (b) projection of the 3D orientations along the axis of the tetahedral shape,
(c) flat TFP pattern, (d) first TFP layer and (e) second TFP layer . . . . . . . . 138

3.13 Tetrahedral forming device: CAO of the forming device (left) and real setup with
lights and a camera (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

3.14 TFP preform with red ink markers drawn manually . . . . . . . . . . . . . . . . 139
3.15 Flowchart of the post-processing for the computation of the 2D displacement field 141
3.16 Fibre tows drawn in Inskape: first layer (blue), second layer (red) . . . . . . . . . 141
3.17 Final configuration of tetrahedral forming . . . . . . . . . . . . . . . . . . . . . . 142
3.18 Angles between layers: (a) mesh build from triangulation of intersection points

displaying the angles and (b) distribution of the angles . . . . . . . . . . . . . . . 143
3.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
3.20 Force-displacement curve of the tetrahedral punch . . . . . . . . . . . . . . . . . 144
3.21 Tetrahedral shape forming: Mesh of the TFP preform . . . . . . . . . . . . . . . 146
3.22 Experimental preform contour (dotted line) and simulation (dashed line) (left)

and superposition of final configurations of experimental (picture) and simulation
(green wireframe mesh) (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

3.23 Qualitative comparison of the results . . . . . . . . . . . . . . . . . . . . . . . . . 148
3.24 Angles between layers: mesh built from triangulation of intersection points and

displaying the angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
3.25 Top and side views of the tetrahedral shape forming simulation at different instants150
3.26 Initial configuration of the bias extension test sample with a centred hole and an

additional continuous fibre tows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
3.27 Final configurations of the bias extension test sample without (left) and with

(right) hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
3.28 Final configurations of the bias extension test sample with (right) and without

(left) reinforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.1 Example of models for NCF taking into account fibre slippage . . . . . . . . . . . 164
4.2 Simulation result of a hemispheric shape forming by Bel et al. (2012) . . . . . . . 164
4.3 Simulation result of a hemispheric shape forming by Gatouillat et al. (2013) . . . 165
4.4 Woven fabric model including fibre tow slippage by Parsons et al. (2013) . . . . . 166
4.5 Representation of fibre tow slippage in the TFP models . . . . . . . . . . . . . . 167
4.6 Relations between the mapping functions in an ALE framework . . . . . . . . . . 169
4.7 Decomposition of the motion of a material point in an one dimensional ALE

framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
4.8 Representation of a cable-pulley system: real system (a), Lagrangian mesh (b),

ALE mesh (c), ALE mesh with for a small pulley (d) . . . . . . . . . . . . . . . . 171
4.9 Modelling approaches to include fibre tow slippage in Model I . . . . . . . . . . . 172
4.10 A modelling approach of cable-pulley element . . . . . . . . . . . . . . . . . . . . 173
4.11 Representation of the multi-sliding nodes model . . . . . . . . . . . . . . . . . . . 173
4.12 Configurations of the multi-sliding nodes model with one sliding node . . . . . . 174
4.13 Description of the dofs of the 1D ALE elements . . . . . . . . . . . . . . . . . . . 177
4.14 Friction law at a pulley node (from Kan et al. (2021)) . . . . . . . . . . . . . . . 180
4.15 Example of rigid body motions for the Eulerian and Lagrangian degenerated cases181
4.16 Simplifying the representation of the fibre tow extremities in Model I . . . . . . . 182
4.17 Pulling anchored rope with a pulley: rope configuration (left) and finite element

model (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
4.18 Pulling anchored rope with a pulley: frictionless case . . . . . . . . . . . . . . . . 183

xiii



4.19 Oscillating pulley: initial (solid line) and intermediary (dash line) system config-
urations (left) and finite element model (right) . . . . . . . . . . . . . . . . . . . 184

4.20 Frictionless oscillating pulley: displacements . . . . . . . . . . . . . . . . . . . . . 184
4.21 Oscillating pulley with friction: displacements . . . . . . . . . . . . . . . . . . . . 184
4.22 Cable with two fixed pulleys: system configuration (left) and finite element model

(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
4.23 Cable with two fixed pulleys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
4.24 Ten pulleys system with loaded cable end: system configuration (top) and finite

element model (bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
4.25 Ten pulleys system with symmetric boundary conditions: system configuration

(top) and finite element model (bottom) . . . . . . . . . . . . . . . . . . . . . . . 187
4.26 Static coulomb friction: system configuration (left) and finite element model (right)188
4.27 Static coulomb friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
4.28 Twisting and translation: system configuration (left) and finite element model

(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
4.29 Twisting and translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
4.30 Twisting angle: configuration at the end of step 1 (top) and step 2 (bottom) . . . 190
4.31 Cantilever beam under transverse tip load: system configuration (left) and finite

element model (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
4.32 Cantilever beam under transverse tip load: different configurations for the large

displacement case and slip displacement . . . . . . . . . . . . . . . . . . . . . . . 190
4.33 Cantilever beam under tip moment: system configuration (left) and finite element

model (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
4.34 Cantilever beam under tip moment: different configurations for the large dis-

placement case and slip displacement . . . . . . . . . . . . . . . . . . . . . . . . . 191
4.35 Example of single fibre tow pull-out device by Zhu et al. (2011b) . . . . . . . . . 193
4.36 Pull-out force vs displacement curve obtained for several pull-out devices by Zhou

et al. (2019) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
4.37 Pull-out force (N) vs displacement (mm) with parameter variation by Bohler

et al. (2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
4.38 Pull-out device designed in this study with a sample (left) and its corresponding

CAD (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
4.39 Extracted fibre tow’s surrounding configurations . . . . . . . . . . . . . . . . . . 196
4.40 Pull-out sample design: manufactured sample (left), numerical design using the

developed Python tool (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
4.41 Bonding between backing material and stitching yarn: manufactured sample (a),

isolation of the stitching yarn from the fibre tows (b), stitching yarn to backing
material bonding (c and d), final sample (e) . . . . . . . . . . . . . . . . . . . . . 198

4.42 Positioning of the sample in the pull-out device . . . . . . . . . . . . . . . . . . . 199
4.43 Mounting the pull-out device in the tensile machine . . . . . . . . . . . . . . . . 200
4.44 Checking camera positioning using real-time image processing drawing a frame

(green rectangle), a reference system (blue arrows) and a 2D grid (black lines) . . 200
4.45 Drawing of red-ink markers for optical displacement field measurement . . . . . . 201
4.46 Force-displacement curves for the 8 designs shown in Table 4.8 . . . . . . . . . . 209
4.47 Identifying curves’ features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
4.48 Comparison between the raw data, the curve obtained from IFFT and the curve

after additional fitting (Design 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
4.49 Fitting of the damped amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
4.50 Data and fitted model for each repetition of design 1 . . . . . . . . . . . . . . . . 213
4.51 Analytical model for each design and minimal-maximal values interval from the

repetitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

xiv



4.52 Finite element model of the pull-out experiments . . . . . . . . . . . . . . . . . . 216
4.53 Results of the pull-out simulation for each design . . . . . . . . . . . . . . . . . . 217
4.54 Result of the bias extension test with and without reinforcing fibre tows . . . . . 219
4.55 Shear angle for configuration B, E and F and slip displacement of the reinforcing

fibre tows (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
4.56 Area of observed slippage in bias extension test (Wang et al., 1998) . . . . . . . . 221
4.57 Mixed embedded-ALE beam model of woven fabric: (a) Texgen mesoscopic rep-

resentation of woven fabrics, (b) corresponding finite element model . . . . . . . 222
4.58 Bias extension test: Shear angle field (a) without slippage (Lagrangian beams),

(b) with slippage and slip displacement field (c) . . . . . . . . . . . . . . . . . . . 223
4.59 Principle of tufting (Huang et al., 2021) . . . . . . . . . . . . . . . . . . . . . . . 224
4.60 (a) Simplified model of the tufting (Model I) and (b) full-structure model of the

tufting (Model II) (Huang et al., 2021) . . . . . . . . . . . . . . . . . . . . . . . . 224
4.61 Proposed models based on mixed embedded-ALE elements: (a) Simplification of

the tufting Model I and (b) tufting Model II . . . . . . . . . . . . . . . . . . . . . 225
4.62 Test 1: (a) boundary condition, (b) Initial state, (c) 33% of the displacement,

(d) 66% of the displacement, (e) 100% of the displacement (Huang et al., 2021) . 225
4.63 Proposed tufting Model I: Slip displacement field of the thread with initial state

(light colors) and final state (dark colors) . . . . . . . . . . . . . . . . . . . . . . 226
4.64 Test 2: (a) boundary condition, (b) 50% of the displacement, (c) 100% of the

displacement (Huang et al., 2021) . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
4.65 Proposed tufting Model II: Slip displacement field of the thread with initial state

(light colors) and final state (dark colors) . . . . . . . . . . . . . . . . . . . . . . 227

4.66 Graphical abstract of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

xv



List of Tables

1.1 Advantages and drawbacks of fibre placement technologies . . . . . . . . . . . . . 27
1.2 Effect of stitching parameters on TFP preform and fibre tow characteristics . . . 37

2.1 Modelling hypothesis for the constituents of TFP preforms and their interactions 67
2.2 Linear shape functions and their derivatives for the beam element . . . . . . . . 86
2.3 Cantilever beam under transverse tip load F = 100 N: x-displacement, y-displacement

and rotation around z-axis for different number of elements and comparison with
Abaqus B31 element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.4 Cantilever beam under transverse tip load F = 106 N: x-displacement, y-displacement
and rotation around z-axis for different number of elements and comparison with
Abaqus B31 element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.5 Cantilever beam under tip momentM = 100 N/m: x-displacement, y-displacement
and rotation around z-axis for different number of elements and comparison with
Abaqus B31 element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.6 Cantilever beam under tip momentM = 5 105 N/m: x-displacement, y-displacement
and rotation around z-axis for different number of elements and comparison with
Abaqus B31 element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.7 Cantilever beam under two transverse loads: x-displacement, y-displacement and
rotation around z-axis for different number of elements and comparison with
Géradin and Cardona (2001) and analytical results . . . . . . . . . . . . . . . . . 91

2.8 Roll-up of a beam under tip moment (M = 2.5π): x-displacement and y-displacement
comparisons with Ibrahimbegović et al. (1995) and Ritto-Corrêa and Camotim
(2002) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2.9 Roll-up of a beam under tip moment (M = 2.5π) and perturbation force: dis-
placement components’ comparisons with Ritto-Corrêa and Camotim (2002) (Ref1)
and Ibrahimbegović et al. (1995) (Ref2) . . . . . . . . . . . . . . . . . . . . . . . 92

2.10 Cantilever bend of Bathe and Bolourchi: comparison of tip displacement compo-
nents with references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

2.11 Linear shape functions and derivatives of the triangle element . . . . . . . . . . . 96
2.12 Linear shape functions and derivatives of the quadrangle element . . . . . . . . . 96
2.13 Gauss point definition for the linear triangle element . . . . . . . . . . . . . . . . 98
2.14 Gauss point definition for the linear quadrangle element . . . . . . . . . . . . . . 98
2.15 Equibiaxial tensile test of an incompressible Neohookean membrane: values of

the Green-Lagrange strain tensor and Second Piola-Kirchhoff stress tensor . . . . 100
2.16 Biaxial tensile test of an incompressible Neohookean membrane: values of the

Green-Lagrange strain tensor and Second Piola-Kirchhoff stress tensor . . . . . . 100
2.17 Simple shear of an incompressible Neohookean membrane: values of the Green-

Lagrange strain tensor and Second Piola-Kirchhoff stress tensor . . . . . . . . . . 101

xvi



2.18 Pure shear of an incompressible Neohookean membrane: values of the Green-
Lagrange strain tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2.19 Beams’ material parameters for the following elementary test cases . . . . . . . . 112
2.20 Biaxial tension reinforced triangle: checking of internal forces transfer . . . . . . 112
2.21 Biaxial tension reinforced quadrangle: checking of internal forces transfer . . . . 113
2.22 Pure shear-like behaviour of a reinforced membrane: strain tensor components . 115
2.23 Pure shear-like behaviour of a reinforced membrane with embedded rotational

dofs: strain tensor components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.1 Beams’ material parameters for the forming simulation . . . . . . . . . . . . . . . 128
3.2 Material parameters for the model by Guzman-Maldonado et al. (2019) . . . . . 153

4.1 Motion and displacement definitions for the different descriptions: ALE, La-
grangian, Eulerian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

4.2 Comparison of different modelling approaches to take into account material flow
in 1D elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4.3 Ten pulleys system with loaded cable end: comparison of the slip displacements . 185
4.4 Ten pulleys system pulling cable end: comparison of the slip displacements . . . 188
4.5 Cantilever beam under transverse tip load: comparison of tip displacements and

rotation with the Lagrangian beam . . . . . . . . . . . . . . . . . . . . . . . . . . 191
4.6 Cantilever beam under tip moment: comparison of tip displacements and rotation

with the Lagrangian beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
4.7 Factors and levels of the parametric study . . . . . . . . . . . . . . . . . . . . . . 201
4.8 Designs of the parametric study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
4.9 Model parameters for all (8) designs . . . . . . . . . . . . . . . . . . . . . . . . . 205
4.10 Step-by-step identification of the model for the mean value A0 . . . . . . . . . . 206
4.11 Coefficients of the linear regression models of the friction model parameters . . . 207
4.12 Beam and torsional spring parameters . . . . . . . . . . . . . . . . . . . . . . . . 221

xvii



List of source codes

2.1 Fortran: Implementation of a derived type for the linear elastic 3D truss . . . . . 76
2.2 Fortran: Implementation of the abstract derived type which is the base to define

new mechanical behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.3 Fortran: Implementation of the procedure initialize for the linear elastic 3D truss 77
2.4 Fortran: Implementation of the procedure init_data for the linear elastic 3D truss 78
2.5 Fortran: Implementation of the procedure compute_Fint for the linear elastic

3D truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xviii



Chapter 1
Forming of continuous fibre-reinforced
composite materials : From regular fabrics to
fibre-steered preforms

Abstract
This introductory chapter begins with a general definition of composite materials before
focusing on continuous fibre-reinforced composites which is the class of composite mate-
rials this study is concerned with. The forming processes used to manufacture 3D parts
from flat continuous reinforcements are presented as well as some conventional textiles
which have been widely studied over the last decades. Section 1.2 is an insight of the
experimental aspects and the different modelling strategies developed so far in conven-
tional textiles’ forming as well as their limitations for manufacturing optimized 3D parts.
Although conventional textiles are not the subject of this study, this section provides the
necessary background for understanding the issues and challenges in forming. Besides, it
gives a general overview for the modelling strategy developed in chapter 2. In section 1.3,
after highlighting the limitations of regular fabrics to form optimized complex shapes,
fibre placement technologies allowing manufacturing optimised fibre-steered preforms are
presented. Existing fibre placement technologies are reviewed in particular the Tailored
Fibre Placement (TFP) technology which is the one of interest in this thesis. Section 1.4
focuses on the TFP technology. A detailed presentation of the preforming tool is followed
by a review of the main applications studied so far to benefit from the high degree of de-
sign freedom offered by the TFP technology in case of 2D parts manufacturing. Finally
the last section (section 1.5) presents challenges to be addressed to manufacture opti-
mized 3D composite parts through the forming of flat TFP preforms. The introductory
chapter ends with the presentation of the objectives and the outline of this thesis.
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1.1 Introduction to continuous fibre-reinforced composite materials and
forming

Introduction
This first section of the introductory chapter presents the general background of the
study. It begins by defining composite materials before introducing continuous fibre-
reinforced composites which are the ones discussed in this study. Next, some of the
conventional fibrous reinforcements most commonly used in the composite industry are
presented before describing some forming processes that allow 3D composite parts to be
manufactured from flat fibrous reinforcements.

1.1.1 Composite materials
1.1.1.1 General definition

Manufacturing light, high performance and low-cost parts is one of the main interest of industries
such as aerospace, automotive or energy industry. In this sense, composite materials have been
largely developed over the last decades since they offer specific properties higher than their
metallic counterparts.

Composite materials are formed by combining two or more materials which exhibit different
properties. By mixing different material, properties can be achieved that none of the raw
materials has on its own. It is an heterogeneous material since its constituents do not dissolve
or blend with each other. Concrete which is basically made of cement, stones, sand and water
is perhaps the best-known man-made example of what composite materials are. Concrete is
obtained by adding water to cement to form a paste that encapsulates the stones, sand and
possibly reinforcement steel. Each constituent has a special function in the final material.
Binding and reinforcing are the two main functionalities. The constituent which binds the

3



1.1. Introduction to continuous fibre-reinforced composite materials and forming

reinforcements together is defined as the matrix. Composite materials properties depends on
the intrinsic properties of the constituents as well as the interactions they create when mixed
together. The final properties also depend strongly on the processes used to form them.

In short, a composite material consists of a binder (the matrix) which surrounds a stronger
material (the reinforcement). Depending on the desired properties, other materials can be
added to modify properties such as electrical or thermal conductivity for example.

1.1.1.2 Classification of composites: Polymer Matrix Composites

Many composite materials have been developed or naturally exist such as wood. Engineered
composite materials can be classified into three main categories depending on the type of matrix
used which are Metal Matrix Composites (MMC), Ceramic Matrix Composites (CMC) and
Polymer Matrix Composites (PMC). This thesis focuses on PMC and more specifically on
composites made of polymer composites and called fibre-reinforced composites.

Two classes of polymer matrix exist. Thermoset polymers are liquid and need to be polymerized
with heat to become permanently rigid so that they cannot soften under high temperatures
whereas thermoplastics can be reversibly processed to become rigid at low temperatures or
soften at high temperatures. The reversibility of the process confers better recycling properties
to thermoplastic polymer composites. Fibres can be synthetic materials such as carbon and
glass which offer higher mechanical properties or natural fibres such as flax and hemp which
increase the recyclability of the composites when combined with thermoplastics.

1.1.1.3 Fibre-reinforced composites

Fibre-reinforced composites differs from the nature of polymer and fibre materials used but also
from the length of the fibres. On one hand, discontinuous fibre composite are made of short
or long fibres, i.e. from 1 mm to several centimetres. Sheet moulding compounds (SMCs) is
a class of low-cost chopped fibre composites intensively used by the automotive industry since
it provides moderate mechanical properties with very high production rates and the ability to
form complex shapes. Discontinuous fibre-reinforced composites mostly exhibit nearly isotropic
properties in case of randomly distributed orientations. Fibre distribution and orientations
strongly influence the final mechanical properties of the part Fu (1996). On the other hand,
continuous fibre-reinforced composites involve fibres as long as the part itself i.e. up to several
meters. The orientation distribution generally leads to one or more preferential directions
leading to highly anisotropic properties. Thousands of fibres can be assembled to form tows.
Fig. 1.1 shows schematic representations of short and continuous fibre-reinforced composite
materials. Discontinuous fibre-reinforced composites made of short fibres have better formability
than continuous fibre-reinforced composites and are therefore used for highly non-developable
3D parts.

Transition
This study focuses on continuous fibre-reinforced composites. The following section
presents some of the conventional fibrous reinforcements most commonly used in the
composite industry.

1.1.2 Conventional textiles
Conventional textiles are continuous fibre reinforcements which either have a well-defined struc-
ture or consist of an arbitrary arrangement of fibres. Fig. 1.3 shows the different material scales
of a composite part made from a conventional textiles. This type of fibrous reinforcement is
made of continuous fibre tows whose cohesion is ensured by its internal geometry. Weaving,
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Figure 1.1: Discontinuous fibre-reinforced composites (left) vs continuous fibre-reinforced com-
posites (right)

knitting, braiding or stitching are the main methods for assembling fibre tows. Due to its
architecture, this type of reinforcement contains one to three main fibre orientations in its ini-
tial state. Since fibre tows are quasi-inextensible, the fabric deformation is nearly null in these
directions. Fig. 1.2 from Akkerman and Haanappel (2015) shows different type of structured re-
inforcements as well as two non-structured reinforcements (chopped strand mat and continuous
filament mat).

Figure 1.2: Various reinforcements in polymer composites. From left to right: unidirectional
ply, triaxial braided fabric, biaxial woven fabric, stitched or noncrimp fabric, chopped strand
mat, continuous filament mat. (Akkerman and Haanappel, 2015)

1.1.2.1 Unidirectional reinforcements

A first method to create a reinforcement is to form a layer containing continuous fibres aligned
in a single orientation which are called unidirectional reinforcement (UD). However, fibres only
exhibit high resistance when loaded in that direction. Consequently, manufacturing a part by
stacking UD layers oriented in the same orientation would give very weak transversal properties
and an early failure of the matrix would occur in the transverse direction. UD layers of dif-
ferent orientations are stacked to create a composite part able to resist complex loading paths
(Fig. 1.4). The resulting composite laminate’s properties strongly depend on the different orien-
tations as well as the stacking sequence whose unbalance and asymmetry can lead to desired or
undesired couplings between the different deformation modes like between tension and bending.
A laminate usually contains from ten to one hundred layers to obtain the required properties
and part thickness.

1.1.2.2 Non-crimp fabrics

Non-crimp fabrics (NCF) are made of multiple unidirectional plies stitched together with
through-thickness stitching yarn. This reinforcement was developed to increase the in-plane
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Figure 1.3: Material scales in a composite part: (a) A fibre-reinforced composite part (Guillon
et al., 2016) (b) made from a fibrous reinforcement (c) obtained by assembling fibre tows (d)
containing thousands of fibres

Figure 1.4: Stacking of unidirectional layers (UD laminate)

tensile stiffness of composites and to improve formability compared to UDs thanks to the stitch-
ing which bonds the layers together and reduces wrinkling defects. However, the stitching yarn
leads to other defects. Different stitching points like chain stitch and tricot stitch can be used
for layer’s assembling. Fig. 1.5 shows a numerical model of the internal geometry of 0/90◦

chain stitched NCF created using TexGen (Brown and Long (2021)). The resulting internal
structure can be either formed of several plies with well-separated tows or with the stitching
yarn penetrating the tows.

1.1.2.3 Woven fabrics

In 2D or 3D woven fabrics, the cohesion is ensured by the interactions between adjacent and
crossing fibre tows which depends on the weaving pattern. 2D woven fabrics are made by
interweaving two networks of tows called weft and warp directions. 3D woven fabrics can be seen
as an extension of 2D woven fabrics to the through-the-thickness dimension in which warp and
weft yarns intertwine through several layers. Fig. 1.6 shows different weaving patterns for 2D and
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Figure 1.5: Internal geometry of a 2 layer chain stitched NCF : (a) top view and (b) bottom
view

3D woven fabrics. Due to the weaving, fibre tows are undulated compared to UDs or NCF. This
crimp has been shown to have a negative impact on the mechanical properties of the final part
(Lomov and Verpoest, 2005; Hivet and Boisse, 2008). 3D woven fabrics allow manufacturing
thick parts with better resistance to delamination compared to parts manufactured with 2D
woven fabric layers, which is a required property for blade rotor in jet aircraft engine for instance.

(a) 2D weaves: Plain weave (left) and 2x2 twill weave (right)

(b) 3D weaves: Orthogonal weave (left) and angle interlock weave (right)

Figure 1.6: 2D and 3D weaving pattern examples

Knitted fabrics

Knitted reinforcement is a technical textile used in parts like elastomeric hoses in the automotive
industry which require large deformation ability. Several knitting patterns exists. Fig. 1.7 shows
the internal geometry of a plain knit.
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Figure 1.7: Internal geometry of a plain knit

Transition
Conventional textiles encompass a broad category of fibrous reinforcement. To manufac-
ture 3D continuous fibre-reinforced composites from flat fibrous reinforcements, several
forming processes exist and differ according to the nature of the polymer and the nature
of the fibrous reinforcements.

1.1.3 Forming processes
1.1.3.1 General principle

Many processes exist to form fibre-reinforced composites. This study focuses on forming pro-
cesses allowing manufacturing 3D parts from initial flat fibrous reinforcements. The manu-
facturing of 3D fibre-reinforced composite parts is composed of three major steps which are
executed in different order depending on the involved process.

One of these steps is the mixing of the fibrous reinforcement with the polymer matrix and is
called impregnation. During this step, a liquid thermosetting polymer or melted thermoplastic
polymer flows within the reinforcement. Another step consists in transforming the flat rein-
forcement into a 3D surface and is generally named draping or forming. Finally, the last step is
the consolidation phase which removes residual porosities and allows obtaining the final thick-
ness and fibre content, followed by the solidification of the polymer matrix by crystallisation for
thermoplastics and by polymerization for thermoset resins. Concerning the relative order of the
impregnation and draping phases, if the impregnation phase is performed first, the fibrous rein-
forcement which already contains the polymer before being draped is named pre-impregnated
reinforcement (prepregs). After draping, an additional impregnation phase can be necessary
depending on the type of prepregs.

The forming process used depends on the nature of the fibrous reinforcement and the poly-
mer matrix. They can be subdivided into processes for thermosetting polymers and those for
thermoplastic polymers. The following briefly presents some of these forming processes.

1.1.3.2 Thermosetting processes

Hand lay-up of thermoset composites consists in manually placing the reinforcement layer on a
mould surface where a release agent has been applied before. Then the liquid resin is applied on
the reinforcement or the layer can be wet before being draped. This operation is repeated for
each layer constituting the part and the resin is then cured at ambient or elevated temperature
to consolidate the part. Vacuum bagging also consists in manually placing reinforcement layers
on a open mould. If pre-impregnated layers are used, once vacuum bagged, the mould is placed
inside an autoclave or oven where heat and pressure are applied for consolidation. For non-
impregnated layers, the resin is injected under pressure into the bag before curing. Hand lay-up
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Figure 1.8: Forming process: (a) Mould closing to conform the reinforcement to the mould
surface, (b) consolidation phase (or impregnation for RTM), (c) release of the final part

is a time-consuming operation and depends on the operator.

Resin transfer moulding (RTM) (Fig. 1.8) is a 2-step process which consists in forming fibrous
reinforcements in a matched die mould to manufacture the fibrous preform. The fibrous preform
is transferred into the injection tooling, where the thermoset resin is injected under low pressure
and low temperature. The resin flows within the reinforcement and is finally cured to obtain a
rigid part.

1.1.3.3 Thermoplastic processes

Hand lay-up of thermoplastic fibre-reinforced composites is also possible using prepregs which
are vacuum bagged after draping before being placed in an autoclave for consolidation.

Thermoforming (Fig. 1.8) starts with a heating phase allowing decreasing the matrix stiffness
in the prepreg reinforcements before being formed inside a pre-heated mould and then cooled
to become rigid.
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Conclusion
Composite materials are formed by combining two or more materials which exhibit differ-
ent but complementary properties. Among them, those combining a polymer matrix with
continuous reinforcing fibres are particularly well suited for structural engineering appli-
cations. Thermosetting or thermoplastic polymers together with synthetic continuous
fibres are largely used and developed in the composite industry. Continuous fibres gath-
ered into tows can then be assembled by weaving, stitching or knitting to form complex
conventional textiles used in forming applications. To manufacture 3D shell-like struc-
tures using continuous fibres, the forming process combined to impregnation of the fibres
by the polymer, consolidation and solidification of the polymer consists in transforming a
initially flat fibrous reinforcement into a 3D structure. The next section will present some
aspects and challenges in the numerical modelling and experimental characterisation of
this type of continuous fibre reinforcements.

1.2 Forming: features and challenges in numerical modelling and ex-
perimental characterisation of conventional textiles

Introduction
This second section of the introductory chapter aims at highlighting the main concepts
developed and used in the field of conventional textile forming. It gives a general overview
of the modelling strategies adopted in previous works. More details are available in
the following reviews (Pickett et al., 2005; Gereke et al., 2013a). This section begins
with a description of the fabric kinematics and forming defects a model has to provide
information about. To this end, deformation mechanisms in 2D woven fabrics, NCF or 3D
interlocks are first analysed. Then, some models are described and compared according
to the way they represent the fabric as well as the analysis scale they used. In the latter,
a distinction between continuous and discrete models is done before presenting a class of
model which takes benefits from both, namely, semi-discrete models. Afterwards, some
methods to characterize their mechanical properties which are required in the numerical
models are described.

1.2.1 Fabrics kinematics, process-induced defects and their treatments
1.2.1.1 Kinematics

Modelling the forming of fabrics requires knowing the deformation mechanisms a fabric can
undergo. 2D woven fabrics, NCF and 3D interlocks are made of a specific arrangement of uni-
directional fibre tows as shown in the previous section. Obviously, the deformation mechanisms
occurring in fabrics are directly related to their internal geometry. In such fibrous structures,
interactions between constituents are numerous and sometimes challenging to integrate in a
numerically efficient model. The typical interactions or deformation mechanisms are listed
hereafter for fabrics with some of them specific to stitched fabrics and illustrated in Fig. 1.9:

• Tow compaction

• In-plane shear

• Inter-tow slippage

• Cross-over point slippage

• Tow-to-stitch slippage
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• Stitch tension

• Stitch slippage

Figure 1.9: Deformation modes of conventional textiles (Reproduced from Creech and Pickett
(2006))

This list underlines the variety and complexity of the interactions in fabrics. Besides, coupling
between them exists. For instance, the tow compaction, which can result from interactions with
the forming tools, is also dependent on in-plane shearing, especially in woven fabrics where
shear locking phenomena appears once the compaction due to weft and warp yarns contact
is the preponderant deformation mode (Boisse et al., 2011). Another coupling example is the
asymmetric contribution of the stitch tension to in-plane shear in NCF demonstrated in bias
extension tests by Creech and Pickett (2006). Bias extension test is a characterization method
of conventional textiles which will be presented in the sequel. Contrary to woven fabrics in
which cross-overs ensure relatively strong bonds between the two tow directions, in NCF the
relative slippage between layers is more likely to happen and depends on the stitching. Creech
and Pickett (2006) observed fibre slippage during bias extension tests of NCF as illustrated in
Fig. 1.10.

1.2.1.2 Forming defects

Due to the quasi-inextensibility in the fibre directions, woven fabrics and NCF formability is
mainly driven by its ability to allow large in-plane shearing which is characterized by angle
changes between the warp and weft tows at crossovers in woven fabrics and between plies in
NCF. Fig. 1.11 shows a model of a plain weave in its initial state and after applying in-plane
shear of 15◦. In 2D woven fabrics, the weaving pattern plays a preponderant role since it is
directly related to the mechanical properties of the fabric. Huang et al. (2021b) investigated
both experimentally and numerically the forming of a glass plain weave and a carbon satin
weave on square box and hemisphere geometries. A high ratio of in-plane shear stiffness to
bending stiffness was shown to increase the tendency to wrinkles, which are forming defects
illustrated in Fig. 1.12 (a). 3D interlocks are less likely to wrinkle due to their higher bending
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Figure 1.10: Tow slippage in bias extension test of NCF (Creech and Pickett, 2006)

stiffness directly related to their higher thickness. The stitching pattern in NCF also influences
its formability (Steer, 2019).

(a) Initial state (b) 15◦ shearing

Figure 1.11: Shear deformation of a 2D plain woven cell

Fabrics’ kinematics is complex, coupled and have a strong impact on the forming process result.
Some of them have been related to the onset of defects as in Boisse et al. (2011) where shear
locking due to tow compaction was shown to be responsible for the onset of wrinkles in 2D woven
fabrics. A high load in the yarn direction can lead to relative slippages between the yarns of a
same ply or between the plies. The latter has been observed in prismatic shape forming of a
glass plain woven as shown in Fig. 1.12 (b) by Allaoui et al. (2014). In the latter reference and
in Ouagne et al. (2013), out of plane buckles in 2D woven fabrics which can be seen as wrinkles
at the scale of the fibre tows where shown to create inhomogeneity of the part thickness. Lee
et al. (2007) observed in-plane buckling of the tows in hemisphere shape forming of NCF.

Moreover, the impregnation and flow of polymer in the fibrous reinforcement can also create
defects. For instance, in forming processes like compression moulding the impregnation of
polymer generates high interaction forces with the fabrics. Hautefeuille et al. (2019) studied
in-plane movement of fibre tows induced by the hydrodynamics forces generated during the
compression of saturated fibrous reinforcement. Richardson and Zhang (2000) initially visual-
ized this phenomenon in RTM even with reduced injection pressure. The impregnation of the
fibrous reinforcement is another area of work in the field of fibre-reinforced composites which
is strongly related to the study of the mechanical behaviour of dry fibrous reinforcements. The
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(a) Wrinkles during tetrahedral shape double
diaphragm forming of 2 layer plain weaves
[+45/-45◦, 0/90◦] (Thompson et al., 2020)

(b) Tow slippage in prismatic shape forming of a
glass plain woven (Allaoui et al., 2014)

Figure 1.12: Examples of defects in woven fabrics forming

quality of the impregnation depends on the fibre orientations. Consequently, knowing the fi-
bre orientations after forming is necessary for determining the permeability properties of the
fibrous reinforcement and predict the result of the impregnation process. Voids formation is
a major defect appearing during the impregnation. The reader can refer to Mehdikhani et al.
(2019) for a review of their formation, characteristics and effects on the mechanical properties
of fibre-reinforced composites.

1.2.1.3 Correction of defects

To avoid defects, some forming tools have been developed. For instance, blank-holders that
apply tension in the fibre tows can reduce or eliminate wrinkles (Allaoui et al., 2011). However,
a wrong design of these tools can also result in tow slippage due to too high blank-holder forces
and also tow buckling. Capelle et al. (2014); Rashidi and Milani (2018) developed a specific
blank-holder system to remove wrinkles without creating tow buckling or excessive tension
strain or yarn slippage. Consequently, interactions with the forming tools has to be taken into
account in modelling.

Transition
The accuracy of a model will be evaluated from its ability to account for the deformation
mechanisms of conventional textiles since they are needed for predicting the onset of
defects during forming processes. Besides, a good prediction of the final fibre orientations
is required for computing the permeability properties as well as the final mechanical
properties of the manufactured part. The next section introduces some models which are
classified according to the way they represent the fabric as well as the analysis scale they
used.

1.2.2 Modelling of conventional textiles in forming applications
Models mainly differ from the number of scales introduced to describe the behaviour of fabrics
and the way they are considered. For the latter, two main options are possible. In the first
one, the fabric is viewed as a continuum whereas in the other one the modelling is based on the
detailed representation of its internal geometric features. In one hand, the concept of continuum
allows representing the fabric as an equivalent homogeneous material using computationally
efficient constitutive laws. This strategy is generally used at the industrial stage and assumes
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the fabric to have a periodic structure, which is a common assumption for thin fabrics like 2D
woven fabrics or NCF. On the other hand, the discrete approach allows a better description of
the fabric behaviour and is mainly developed at the research level due to higher computational
efforts. Between these two concepts, a third one, called semi-discrete representation, aims
at taking advantage from the previous approaches by superimposing discrete features on a
continuum. Models also differ from the constitutive law they used to describe the behaviour
of the fabric features or the whole fabric itself. Reviews of these different types of modelling
strategies can be found in (Syerko et al., 2012; Gereke et al., 2013b; Syerko et al., 2015; Bussetta
and Correia, 2018; Liang and Boisse, 2021).

1.2.2.1 Discrete models

In the discrete approach, Durville (Durville, 2005, 2010) studied the behaviour of the fabric
at the microscopic scale, by modelling all the fibres constituting the tows (Fig. 1.13 (a)). De-
formable section beam elements where used to represent the fibres and the contact between
them was modelled. This approach gave good results and highlighted the importance to con-
sider the fibrous nature of the fibre tows. However, such a degree of discretisation is not adapted
to the modelling of a whole piece of fabric due to its numerical cost. Moreover, modelling all the
interactions in fabrics require a geometrically realistic model. Most of these interactions arise
from contact between the constituents, namely tow-to-tow or tow-to-stitch or even fibre-to-fibre
contacts. Wang and Sun (2001) used a different approach to model fibre tows based on digital
rod elements pin-jointed to each other and forming a flexible chain as the length of the rod tends
to zero (Fig. 1.13 (b)). The size of the rod had to be small enough to preserve the physical
property, i.e. flexibility of the fibre tow.

(a) Plain weave sample after in-plane shear
(Durville, 2010)

(b) 3D preform braided by digital-element
simulation model (Wang and Sun, 2001)

Figure 1.13: Examples of discrete models

Fortunately, classic fabrics exhibit periodic structures from which a unit cell can be identified.
An example of woven fabric unit cell representation from Charmetant et al. (2011) is shown
in Fig. 1.14. Based on this property, mesoscopic models have been developed (Boisse et al.,
2005b; Charmetant et al., 2011; Gatouillat et al., 2013; Nguyen et al., 2013; Thompson et al.,
2018). They aim at modelling the behaviour of a unit cell of a fabric to capture the true
deformation mechanisms. Using this unit cell, the whole fabric behaviour can be modelled by
translating the unit cell and imposing appropriate periodic boundary conditions between the
unit cells. At this scale, tows are generally the smallest discrete features of the fabric and is
modelled as a continuum. The difference between the models developed at this scale mainly
lies is the constitutive law adopted to represent fibre tows which must take into account their
fibrous nature. The first models were based on a hypoelastic constitutive law (Boisse et al.,
2005a; Badel et al., 2008). The main drawback of this approach is the incomplete recovery
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of the strain deformation in a closing loading path. To bypass this issue, hyperelastic models
were used. For example, in Charmetant et al. (2011), the strain energy is considered as a sum
of the contribution of each deformation mode of the tow taken separately, namely, elongation,
compaction, distortion and longitudinal shear. In spite of the uncoupling between the strain
modes, this approach gave good results for biaxial tension test and picture frame test which
will be described in the next section. However, such constitutive law requires some additional
efforts to identify all the material parameters. Carrying out physical experiments on a unit
cell is not straightforward. To overcome this issue, standard macro scale tests were used and
simulated with the mesoscopic model to identify the material parameters as it will be shown in
the next section.

Figure 1.14: Plain woven unit cell: (a) initial state and (b) deformed state (Charmetant et al.,
2011)

Mesoscopic model’s interest is driven by its ability to model the interactions between the struc-
tural elements of fabrics. Representing fibre tows as a continuum is a compromise between
accuracy and simplicity whose admissibility depends on the constitutive law used to account for
their fibrous nature. This type of model requires material parameters to be identified as well as
a reliable reproduction of the unit cell geometry. It is generally time consuming, which explains
its limited use at the laboratory scale. However, discrete models at the mesoscopic scale provide
useful information about fabric deformations which are necessary for a clear understanding of
deformation mechanisms and for quantifying their relative importance. Their accuracy allows
replacing expensive and time consuming experimental tests by realizing them virtually (Boisse
et al., 2005a).

1.2.2.2 Continuous models

As opposed to discrete models, the continuous approach consists in representing the fabric as a
homogeneous material using computationally efficient constitutive laws. The fabric is considered
as a continuum with anisotropic properties as well as large shear and bending deformations. This
kind of model aims at representing the fabric behaviour at the macro scale since all the structural
features of fabrics are condensed in a constitutive law. Among them, rate dependent constitutive
models (Khan et al., 2010; Badel et al., 2009) as well as non-orthogonal rate independent models
(Peng and Cao, 2005) and hyperelastic models (Aimene et al., 2008; Charmetant et al., 2012)
were developed. This class of model generally assumes an uncoupling between tensile and
shear, and neglect biaxial effects in woven fabrics. They simplify the consideration of the
true deformation mechanisms but suffer from cumbersome homogenisation procedures with a
necessary update of the directions of anisotropy to accurately take into account the change
of fibre orientations (Dong et al., 2001). The continuous approach is not able to model the
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relative sliding of yarns within a ply or between plies. Consequently, this modelling strategy is
inappropriate to simulate defects like wrinkling, yarn fracture or slippage. However, (Zhu et al.,
2011) developed a wrinkling criterion based on the yarn elastic properties of a woven fabric able
to predict the onset of wrinkling.

The continuum approach is a computationally efficient numerical method usually used at the
industrial stage to simulate macro-scale problems. This approach can be enriched through the
use of discrete mesoscopic models in order to identify the main deformation modes or for realizing
virtual mechanical testing to identify numerous material parameters when using hyperelastic
constitutive laws.

1.2.2.3 Semi-discrete models

As an alternative to continuous and discrete modelling, the semi-discrete approach aims at
finding a trade-off between the computational simplicity of a continuum representation with
the accuracy of the discrete modelling of fabric features. These models superimposed discrete
fabric features to a continuum.

Hamila et al. used 2D stress resultant elements to model woven fabrics (Hamila and Boisse,
2007, 2008). They firstly used a membrane element to model tensions and in-plane shear
rigidities and then added the bending rigidities using neighbouring elements (Hamila et al.,
2009). This final shell element possesses only displacement degrees of freedom (Fig. 1.15 (a)).
The bending contribution was demonstrated to have a significant influence on the shape of the
wrinkles whereas in-plane shear locking was determined to be responsible for their onset (Boisse
et al., 2011). Each element represents several unit cells contrary to the discrete mesoscopic
approach considering a unit cell. This model allows arbitrary warp and weft orientations in
the shell element. The internal virtual work was considered as a sum of the independent
contribution of tension, in-plane shear and bending rigidities to take into account the fibrous
nature of the fabric. The simulations of the onset of wrinkling during forming and the shape
of the wrinkles in woven fabric were in agreement with experimental observations. This shell
element was also used in (Allaoui et al., 2011; Bel et al., 2012; Guzman-Maldonado et al.,
2019; Huang et al., 2021a). In Bel et al. (2012), NCF forming was modelled using the previous
shell element with a unidirectional anisotropy. The plies were represented separately with
contact interactions. The through-thickness stitch contribution was simply modelled using
bar elements connecting the plies (Fig. 1.15 (b)). Contrary to the mesoscopic approach in
(Creech and Pickett, 2006), they did not use a true representation of the stitch pattern geometry
but only took into account the through-thickness tension. They obtained forming simulation
results in accordance with experiments and were able to represent inter-ply sliding. De Luycker
et al. (2009) used a combination of hexahedral elements and truss to model the forming of 3D
interlocks (Fig. 1.15 (c)). An isotropic hypoelastic material was used in the hexahedral elements
to model the shear and transverse compression as well as all other yarn interactions in the
preform which were considered to be second order rigidities compared to yarn tension stiffness.
The truss elements allowed an explicit representation of the position of the yarns in the preform
and an efficient tracking of the orientation changes. Other models have been proposed based
on descriptions using a network of several springs types (shear, torsional, flexional, stretching)
(Ben Boubaker et al., 2007) or a network of pin-jointed trusses (Sharma and Sutcliffe, 2004) or
superposition of trusses and shell elements (Sidhu et al., 2001; Jauffres et al., 2010).

Transition
Semi-discrete modelling is particularly efficient to reflect the weakest deformation modes
using a continuum representation and add discrete features in it to take into account
preponderant deformation mechanisms. It is acknowledged to be a reliable trade-off
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(a) Tree node finite element of Hamila and
Boisse (2007) for woven fabrics (b) NCF model in (Bel et al., 2012)

(c) 3D interlock model made of trusses embedded in 3D solids: (a) initial and (b) deformed state
(De Luycker et al., 2009)

Figure 1.15: Discrete models’ examples

between the simplicity of the model representation and its accuracy in modelling the
main deformation mechanisms of fabrics. Whatever modelling technique is used, the
identification of the required material parameters has to be carried out. The next section
presents some of the main characterisation procedures for conventional textiles.

1.2.3 Characterisation of conventional textiles’ mechanical properties
Characterising the mechanical properties of conventional textiles which are non-linear materials
is necessary to provide the material parameters required in the numerical models. Uniaxial
and biaxial tensions, in-plane shear, out-of-plane bending and friction are the main deformation
modes and interactions studied in the literature. Depending on the complexity of the numerical
models presented in the previous section, material properties associated with the latter deforma-
tion modes have to be evaluated. Besides, depending on the material scale used in the numerical
model, the characterisations have to be carried out on single fibre, fibre tow or on a piece of
conventional textile. This section describes some of the main characterisation procedures devel-
oped to identify the mechanical properties of conventional textiles. They are classified according
to the studied deformation mode. The mechanical properties identified strongly depends on the
nature of the fibre, the fibre tow assembling and the internal structure of the reinforcement.
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(Gereke et al., 2013b; Liang and Boisse, 2021) reviewed these characterisation procedures.

1.2.3.1 Fibre direction tests

Characterisation carried out in the fibre direction are referred as axial tests and can be sub-
divided into tensile and compression modes. Generally, these tests provide information about
tensile/compression modulus as well as the strength and elongation at break. It is well-accepted
that fibres can be considered as quasi-inextensible whereas they easily break under compression.
Measuring the tensile modulus of a single fibre is difficult due to its slenderness, however it has
been carried out (Sinclair, 1950; Ilankeeran et al., 2012). Tensile tests can also be performed at
the scale of the fibre tow (Xue and Hu, 2013; Moothoo et al., 2014; Ou et al., 2016). Modelling
the tensile properties of fibre tows is not straightforward especially for natural fibre based tow
which are made of discontinuous elementary fibres implying more variability than synthetic
fibre bundles (Tham et al., 2019). For models which are not based on the modelling of fibres
or fibre tows, testing the tensile properties of the reinforcement is necessary. However, tests at
this material scale can also be used as validation test cases for lower scale models. From a single
fibre to a fibre tow to a reinforcement, the tensile behaviour is very different. For instance, 2D
woven fabrics exhibit strong linearities at the beginning of the uniaxial loading due to the crimp
created by the weaving structure which also leads to a coupling between the tensile behaviour
in the weft and warp directions (Buet-Gautier and Boisse, 2001; Launay et al., 2002). Biaxial
tests of 2D woven fabrics allows characterising this coupling as shown in Fig. 1.16. Coupling
between tensions in biaxial fabrics has also been studied for NCF (Lomov et al., 2005) and
knitted fabrics (Luo and Verpoest, 2002).

Figure 1.16: Biaxial tensile tests of a twill 2 x 2 carbon textile reinforcement: tension vs strain
in the warp direction for different warp-to-weft tension ratio (Carvelli, 2011)

1.2.3.2 In-plane shear

In-plane shear of fibrous reinforcement is the deformation mode that received the greatest
attention due to its predominance during forming. Two methods are mainly used, namely,
the picture-frame test and the bias-extension test. Cao et al. (2008) made a compilation of
the different experimental set-ups and their corresponding methods for interpreting results of
picture frame and bias-extension tests on 2D woven fabrics.

An example of experimental set-up of the picture-frame is given in Fig. 1.17 from Schirmaier
et al. (2016) which studied the forming behaviour of UD-NCF. Basically, a square sample of
fabric is clamped in a frame made of four pin-jointed rods which have the same size. When
loaded, the initial square frame turns into a rhombus generating rigid rotations between the two
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fibre directions. Due to its sample size dependency and the difficulty to place correctly the fabric
into the frame to avoid generating undesirable tension in the fibre direction, the bias-extension
test can be preferred over the picture frame test.

Figure 1.17: (a) Picture frame test setup in starting position and (b) schematic representation
of the deformation of the picture frame (Schirmaier et al., 2016)

In the bias-extension test, a rectangular sample of UD or biaxial fabric is clamped on its
smaller edges in a tensile device (Fig. 1.18 (a)). The rectangular shape is cut such that the
tensile direction is the bisector of the angle between the two fibre directions. Theoretically, if
the length-to-width ratio is greater than two, a constant shear angle is observed in the central
area (zone C in Fig. 1.18) which can be directly computed from the force-displacement curve.
However, to avoid biased results due to fibre slippage which are more likely to occur for high
bending stiffness fabrics,Lomov et al. (2008) showed that optical measurements such as Digital
Image Correlation (DIC) might give more reliable results for both bias-extension and picture
frame tests. The deformed shape showed in Fig. 1.18 (c) is typical to woven fabrics and differs
for other fibrous reinforcements. For examples, bias-extension tests were performed by Creech
and Pickett (2006) on biaxial NCF which showed the asymmetric contribution of the stitch
and by Schirmaier et al. (2016) on UD-NCF. Fig. 1.18 (d) shows the non-linear in-plane shear
behaviour of 2D woven fabrics. At low shear angle, the shear force is small since the warp and
weft tows are rotating. Once lateral contact and transverse compression between the tows occur,
the shear force starts increasing strongly until reaching the so-called locking angle. Among
the consequences of in-plane shear, lateral tow compression leads to local and inhomogeneous
increasing of the reinforcement thickness.

1.2.3.3 Out-of-plane bending

Firstly neglected, out-of-plane bending gained a lot of interest once revealed to be strongly
related to out-of-plane defects like wrinkles (Boisse et al., 2011; Hamila et al., 2009). Due
to the fibrous nature of fibre tows, bending properties cannot be determined from in-plane
properties as for continuum mediums. Two main tests have been used to characterize the
bending rigidities of fabrics, namely, the cantilever bending test (Peirce, 1930) shown in Fig. 1.19
and Kawabata bending test (Kawabata, 1980). The cantilever bending test allows determining
only elastic bending properties whereas the bending behaviour of fabrics showed to be non-
linear. de Bilbao et al. (2010) developed another device allowing measuring the non-linearities
of out-of-plane bending in fabrics.

19



1.2. Forming: features and challenges in numerical modelling and experimental characterisation of
conventional textiles

Figure 1.18: Bias extension test: (a) the device (inset: weave structure of the fabric G1151) (b)
initial rectangular specimen with yarns oriented at ±45° (c) deformed specimen (d) shear load
curve for G1151 interlock fabric (Lomov et al., 2008)

Figure 1.19: Standard cantilever bending test device (Liang and Boisse, 2021)

1.2.3.4 Friction

In addition to the characterisation of the fabrics’ deformation modes, investigating the friction
interactions with the forming tools and between layers is required. Gorczyca-Cole et al. (2007)
carried out pull-out tests of commingled woven fabric placed between friction plates to measure
the influence of the velocity, the polymer viscosity and the compaction pressure on the fabric-
to-tools friction behaviour in thermostamping applications. Najjar et al. (2014) also showed
the influence of the temperature and pressure on fabric-to-tools and fabric-to-fabric friction
coefficient for a epoxy powdered carbon woven fabric used in aeronautical applications. Allaoui
et al. (2015) studied dry fabric-to-fabric friction during ply-to-ply sliding which is due to the
shock phenomenon between the transverse overhanging yarns of each ply shown in Fig. 1.20 and
depends on the unit cell period of the woven fabric. Contrary to Gorczyca-Cole et al. (2007)
which observed the independence of the fabric orientation on the fabric-to-tool friction, they
showed its influence on the fabric-to-fabric friction behaviour.

For models representing explicitly tow-to-tow interactions, the friction behaviour between the
tows needs to be characterized. Mulvihill et al. (2017) and Tourlonias et al. (2019) studied tow-
to-tow friction and its dependency to normal loading. Mulvihill et al. (2017) investigated two
orientations cases, namely, 0◦ and 90◦ whereas Tourlonias et al. (2019) measured the friction
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coefficient between tows and between single fibres for different angle of intersection in this range.
The friction coefficient was shown to decrease when the angle increases. The maximal value
being obtained when fibres are almost parallel to each other.

Figure 1.20: Phenomena occurring during fabric/fabric friction: yarn/yarn friction and shock
phenomenon caused by overhanging yarns (Allaoui et al., 2015)

1.2.3.5 Some characterisation procedures for couplings

This overview of the characterisation methods developed for fibrous reinforcement was limited
to the determination of the mechanical properties related to single deformation modes except
for the biaxial tensile test. However, coupling exist between the deformation modes which
cannot be neglected for a deep understanding of the forming behaviour. For instance, Colman
et al. (2014) performed picture frame tests on pre-tensioned architecture fabrics to show the
influence of tension over the shear behaviour. Kashani et al. (2016) highlighted the two-way
coupling between tension and shear in woven fabrics by showing that fabric shear makes the
tension behaviour more compliant. Salem et al. (2020) studied the effect of the shear angle on
the pull-out force of single tow in a woven fabric.

Conclusion
Even if numerous experimental methods have been developed for fibrous reinforcement
mechanical properties’ characterisation, carrying them out still requires considerable ef-
forts. Besides, the non-standardisation of most of these characterisation procedures make
difficult the share of data within the scientific community. Due to the scale range covered
by the characterisation methods, some of these tests can either be used as characteri-
sation procedures or validation test cases. When developing a numerical model, it is
important to firstly figure out which of these characterisation methods and experimental
validation test cases will be used.
Despite major advances, the development of the numerical modelling and the experimen-
tal methods required to identify the material parameters is still in progress to understand
the forming of conventional textiles. Taking into account the deformation modes’ cou-
plings as well as representing more accurately the fabric-to-tools and layer-to-layer inter-
actions will be of first importance. However, even if a full understanding of conventional
textiles would be achieved, would conventional textiles be the best fibrous reinforcements
for manufacturing optimized 3D composite parts? The next section aims at highlighting
the limits of conventional textiles to design and produce lightweight structural 3D parts,
to bring to light fibre placement technologies that have been especially developed for
this purpose. The latter gained a growing interest due to the constant progress made in
improving productivity and design complexity.
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1.3 Optimized FRC parts: towards fibre placement technologies

Introduction
The previous section reviewed the manufacturing of 3D composite parts by forming con-
ventional textiles. This next section discusses the limitations of conventional textiles
to manufacture optimized FRC parts. Among these limitations, material wastage and
metal-like behaviour of the final part are highlighted. Then, existing fibre placement
technologies are introduced as a remedy to these limitations. Automated Fibre Place-
ment (AFP), Continuous Tow Shearing (CTS) and Tailored Fibre Placement (TFP) are
described. Finally, challenges to be addressed in the design, manufacturing and modelling
of fibre steered preforms are presented.

1.3.1 Expanding design possibilities: substituting conventional straight fibres by curvi-
linear ones

Fibre-reinforced composites have been initially developed to manufacture structures lighter than
metallic ones. However, one of the major contradiction in the manufacturing of FRC parts using
conventional textiles is that the final material often behaves quasi-isotropically as a result of
the stacking sequence of unidirectional plies or biaxial textiles. Despite this apparent deficit in
taking full advantage of the intrinsic anisotropy of fibres, isotropic FRC can save weight which
makes them attractive in the industry.

1.3.1.1 Quasi-isotropy of straight fibre designs

Considering a rectangular plate made of unidirectional layers and submitted to pure traction
might be the simplest example allowing to demonstrate this limitation in using conventional
textiles to manufacture optimized FRC parts. The following is a simple thought process allowing
determining the layers’ configuration which maximizes the resistance of the part. First, as
fibres are stronger when loaded in their direction, one may think about using only plies oriented
in the tensile direction which is called 0◦-direction. However, due to Poisson’s effect in the
orthogonal direction, namely 90◦-direction, the matrix which is softer than the fibres will break
long before reaching the maximal load capacity conferred by the fibres. Consequently, some
plies are required in 90◦-direction to counter Poisson’s effect. Considering a part submitted to
pure traction in real life applications is obviously very scarce. To prevent early breakage due to
shear deformation induced by fibre misalignment or asymmetry of the part due to manufacturing
defects or a slight deviation of the loading axis, a pair of ±45◦ ply is required. Consequently, the
final part is finally made of four different directions providing the part quasi-isotropic mechanical
properties, thereby loosing the intrinsic anisotropy of the elementary fibre.

1.3.1.2 First interest of curvilinear fibre designs

Hyer and Lee (1991) highlighted this point in FRC part by numerically comparing tensile and
buckling load-bearing capacities of plates with a central circular hole for laminates made of
straight and curvilinear fibre layers. A search gradient technique was used to determine the
fibre orientations by maximizing the buckling load. In previous studies Hyer (1987) shows that
16-layers laminate with [±45, C6]s configuration where "C" stands for curvilinear fibre layer
increases by 61% the tensile load-bearing capacity compared to a quasi-isotropic configuration
[±45, 90, 0]2s. Fig. 1.21 illustrates both designs. In this study, aligning the principal directions
of the fibrous material with the principal stress directions was assumed to give the part better
structural strength. Fibres in the curvilinear layers encompass the hole which makes the layer
continuous and removes high shear deformation due to initial high stress direction changes in
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an isotropic part. A configuration where the pair of ±45◦ layer is replaced by curvilinear layer
orthogonal to the "C-layers" forming an orthogonal curvilinear grid theoretically gives better
results but will suffer from any shear deformation introduced in the part by fibre misalignments
or a slight deviation of the traction’s axis. Holes in plates are common for assembling parts in
aeronautics. Removing stress concentrations at such geometric discontinuities using curvilinear
fibres was seen as a very attractive solution and has expanded the design freedom of FRC parts.

Figure 1.21: Removing stress concentration in tensioned plate with central circular hole: (a)
Stress concentration for isotropic material, (b) quasi-isotropic FRC design leading to discontin-
uous plies and (c) anisotropic design using curvilinear fibre paths removing stress concentration

1.3.1.3 Variable stiffness and variable angle tow composites

Using curvilinear fibre layers rather than straight fibre layers was shown to considerably in-
crease the mechanical performance of FRC by taking more advantage of the intrinsic anisotropy
of fibres. Laminates made of such curvilinear fibre layers have been called Variable Stiffness
Composite (VSC) or Variable Angle Tow (VAT). Ribeiro et al. (2014) reviewed the mechanical
behaviour of VSC. Despite VSC laminates can be obtained using techniques other than curvi-
linear fibres, as shown in Fig. 1.22, these other techniques introduce either abrupt changes in
thickness such as internal ply drops or major geometry variations such as stiffeners, which makes
the curvilinear fibre approach more attractive. VAT design is not restricted to the removal of
stress concentration at geometric discontinuities but it extends to the design of parts where
both topological and material orientations optimisation are performed. The pioneering concept
is to use fibre only where needed.
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Figure 1.22: Examples of four types of variable stiffness composite panels (Ribeiro et al., 2014)

Transition
Consequently, by maximizing the use of anisotropy in FRC parts, material weight can
be saved. Moreover, as discussed in the next section, fibre placement technologies allow
manufacturing nearly nets-shape FRC parts avoiding material wastage, which is inherent
in the use of conventional textiles. Nevertheless, by extending the design freedom, curvi-
linear fibre also complexify the characterisation of the mechanical properties of curvilinear
FRC and their modelling. Besides, the optimal design now lies in a wider space. In the
next section, different technologies for manufacturing curvilinear fibrous reinforcements
are presented.

1.3.2 Introduction to the fibre placement technologies: AFP, CTS and TFP
The development of technologies to place fibres in a curvilinear way has been driven by the
need to better take advantage of the anisotropy. Advances in robotics and computer aided
design have accelerated the integration of these automated technologies in the most advanced
industries. Among these technologies, Automated Fibre Placement (AFP), Continuous Tow
Shearing (CTS) which can be seen as an enhancement of AFP and Tailored Fibre Placement
(TFP) will be briefly presented. This section aims at describing the principle of each technology
as well as the advantages their offer and the shortcomings they have. Sobhani Aragh et al. (2021)
reviewed these fibre placement technologies.
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1.3.2.1 Automated Fibre Placement

Automated Fibre Placement machine is based on the Automated Tape Laying concept, which
was firstly developed to automate the hand lay-up of pre-impregnated materials on flat or
slightly curved surfaces, and the Filament Winding process dedicated to surface with positive
Gaussian curvature. AFP enhances those concepts by adding a mechanism to split the tape
into several parallel tows, which allows manufacturing parts with more complex curvatures.
The AFP machine consists in a robotised head, as illustrated in Fig. 1.23 including a roller to
compact and stack the tows on the mould surface while a heat source heals-up the polymer
contained in the incoming tapes creating cohesion with the mould’s surface or the previously
deposited layer. Flat or 3D surfaces can be used as forming tools. Lay-up speed, heat source
temperature, roller compaction pressure and tow tension are processing parameters that have
been studied and need precise adjustments for obtaining optimal part quality.

Figure 1.23: Simplified representation of an AFP head (Brasington et al., 2021)

AFP received the greatest attention from industry and in particular from aeronautics. The latter
could explain the greater deployment of this technology and the amount of research devoted
to it. In particular, many efforts have been undertaken since the 1980s to study the AFP
technology, which has led to an in-depth understanding of the numerous manufacturing defects
in AFP. Harik et al. (2018) classified these defects by describing their cause, explaining how
to identify and prevent them and giving the immediate future consequences on the structural
performances of the produced fibre-steered laminate. Among them tow gaps and overlaps as
well as wrinkles are easily recognizable as shown in Fig. 1.24. Zhang et al. (2020) and Brasington
et al. (2021) made a detailed review of the AFP process.

1.3.2.2 Continuous Tow Shearing

Continuous Tow Shearing is a relatively recent fibre placement technology based on the AFP
concept and developed by Kim et al. (2012). CTS has been designed to remove tow gaps
and overlaps present in VAT laminate manufactured using AFP. In this process, dry tows
are used to enable shearing of their section and in-situ impregnation is achieved. The shear
deformation avoids generating additional tension of the outer edge and compression of the inner
edge due to the path curvature as occurring with AFP. Fig. 1.25 shows the improvement on
the surface coverage by using the CTS technique over AFP. However, even if tow gaps and
overlaps are removed, due to the shear deformation, there are induced angle variation between
adjacent tows as well as thickness variation. Kim et al. showed that the thickness variation can
be directly computed from the shear angle by assuming isochoric transformation of the tow’s
section. CTS technique reduces the minimum curvature radius of 500 mm for AFP to a few
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(a) Tow gaps and overlaps (b) Tow wrinkles

Figure 1.24: AFP manufacturing defects (Harik et al., 2018)

tens of millimetres depending on the tow material (Kim et al., 2012). However, CTS is still
limited to the manufacturing of 2D parts and needs further development to be fully integrated
in the composite industry.

Figure 1.25: Difference of the tow arrangement and head rotation: (a) conventional AFP (tow
gap), (b) conventional AFP (tow overlap), and (c) CTS. (Kim et al., 2012)

1.3.2.3 Tailored Fibre Placement

AFP and CTS are based on the placement of pre-impregnated tows whose cohesion with previ-
ously deposited material or mould surface is ensure by the successive heating and solidification
of the polymer. In Tailored Fibre Placement whose principle is illustrated in Fig. 1.26, an em-
broidery head fixes a continuous tow on a flat backing material by realizing a zig-zag stitching.
The tow can be dry or commingled and the backing material can be any material tolerant to
stitching as thin plastic film or conventional thin textiles. The stitching yarn is generally made
of (but not limited to) polyester. Compared to AFP and CTS, higher curvature can be achieved
since U-turn are possible which makes TFP more attractive to manufacture small parts. Be-
sides, the stitching yarn bonding the layers together gives better out-of-plane properties and
higher deposition rate is achieved by using several heads working in parallel.
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Figure 1.26: Schematic representation of Tailored Fibre Placement principle

Transition
Table 1.1 summarizes the advantages and drawbacks for the fibre placement technologies
presented. They allow manufacturing either flat or 3D shell-like composite parts with
curvilinear fibre paths that enlarges the design possibilities. Among these designs, those
with the best mechanical performance are of interest to advanced industries. Therefore,
identifying the optimal mechanical design for a given application is required to fully take
advantage of the fibre placement technologies. The next section highlights this challenge.

1.3.3 Challenge in manufacturing FRC parts with optimal mechanical performances
using curvilinear fibres

1.3.3.1 Definition of the optimisation problem

The development of technologies allowing manufacturing VAT laminates expanded the design
freedom of FRC parts. However, determining the optimal composite part design for a given
structural application is not straightforward and requires satisfying multiple objectives simul-
taneously. Even if the optimal design in terms of mechanical efficiency can be determined, the
designer still has to deal with both manufacturing feasibility and production costs which have to
be taken into account in the optimisation process as additional constraints or design parameters.
Combining realistic simulations of mechanical performance analysis and manufacturability in a
single optimisation loop requires enormous computation time making it difficult to be integrated
at the industrial stage. To reduce computation cost of such optimisation process, Eck et al.
(2015) used a process estimator for determining impregnation quality in RTM rather than using
a complete process simulation in the main loop and finally checked the manufacturability of the
optimisation result using a more realistic RTM simulation. To achieve such an optimisation
process, reliable and fast simulation tools in the different steps of the process are required.

Curvilinear fibre layer design promised to outperform straight fibre layer design by taking more
advantage of the intrinsic anisotropy of fibres. However, determining the optimal fibre paths
giving the best mechanical performance for a given geometry with specific boundary conditions
is a very broad field of research. The first difficulty is to determine the properties to optimize.
Structural topology, strength or natural frequencies or a combination of them are some examples.
Moreover, the optimal design will strongly depends on the boundary conditions the part is
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Table 1.1: Advantages and drawbacks of fibre placement technologies

Fibre
placement
technology

Advantages Drawbacks

AFP

Studied over decades
Advanced process planning tools
Auto-generation of FE models
Well studied manufacturing
defects and correlation with
manufactruing parameters

Small curvature radius, gaps
and overlaps
Fibre discontinuities
Expensive forming tools
Limited to small surface
curvatures

CTS
Gaps and overlaps are removed
Fibre continuity
Smooth thickness variations

Recent technology
Small curvature radius
(but higher than AFP)
Thickness and fibre angle
variations due to cross-section
shearing

TFP

High curvature radius
Fibre continuity
3D reinforcement by stitching
Great variety of material combinations

Lack of numerical and
optimisation studies
Lack of control over
manufacturing parameters
Out-of-plane and in-plane
wrinkles, gaps and overlaps

submitted to and will have to take into account every possible loadings.

1.3.3.2 Principal stress directions and loading path principles

The first study focusing on determining the optimal fibre orientations in FRC parts considered
simple loading conditions for relatively simple 2D geometry (Hyer, 1987). Tosh and Kelly (2000)
also investigated the optimal fibre orientation in open hole tensile laminates. They demonstrated
that using principal stress directions, which correspond to tension and compression directions
for optimally placing fibres as done in Hyer (1987), is only reliable when boundary conditions
result in tension or compression dominant stress in the part. If both modes show equivalent
magnitude in a given area, indicating the presence of shear, following this rule of thumb might
not give the best mechanical performances unless using a ply for each main stress trajectory.
Therefore, they introduced the theory of loading path which can be seen as the trajectory where
a constant load can be observed from the point of application into the structure to the point
of reaction out of this structure. The computation of loading paths is based on the integration
of principal stresses though a section which gives a constant load along the trajectory. The
normal to this section is arbitrary and has to be given. One of the differences with the concept
of principal stress directions is that when following a loading path in the structure, the load to
be carried by the material particles in the given section is constant whereas stress magnitude
can change from a point to another. If only one deformation mode(tension or compression)
is present in the part, then the loading paths give similar results to those obtained with the
principal stress directions approach. A loading path only shows how a constant unit of load
is transferred through the structure and potentially alternates between tensile, compressive or
shear modes. It is worth noting that theoretically for the principal stress direction design, a
ply for each tension and compression trajectories is required while a single ply where fibres are
aligned with the loading paths is sufficient. In practice, to take into account any additional
shear deformation, a complementary set of loadings path is required. Fig. 1.27 summarizes
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the different main stresses and loading paths trajectories as well as trajectories obtained with
dominant main stress and hybridation between main tensile stress and X-direction loading path
for an isotropic material.

Figure 1.27: Pin loaded laminate design for isotropic material: Trajectories for main stresses
and loading paths methods (adapted from Tosh and Kelly (2000))

Tosh and Kelly (2000) also showed that using anisotropic material modifies the computed load-
ing paths. In other words, a loading path is dependent on the material orientations. Conse-
quently, when using anisotropic material like curvilinear fibres, an iterative procedure is required
to update the material orientations according to the loading path until changes between both
become negligible. Zhao et al. (2021) proposed a comparative study between stress-based load
path analysis and other non stress-based methods to determine load-path guided fibre trajec-
tories in composite panels for various load cases.

1.3.3.3 Examples of advanced structural topology and material orientations optimisations

Structural optimisation for orthotropic materials based on strain methods (Pedersen, 1989),
stress methods (Ma et al., 1994) and energy-based methods (Luo and Gea, 1998) were developed
and showed to be efficient for some simple cases but not in general. The difficulty is to find
a method which can be applied to any type of loading conditions. The latter works only
determined the optimal material orientations for an orthotropic material in a fixed part geometry
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to minimize the compliance. However, taking full advantage of the fibre placement technologies
required simultaneous optimisation of the structural topology and the fibre angle all together
with the manufacturing constraints which require the continuity and smoothness of the fibre
path as well as its morphology, namely the fibre volume, thickness and spacing. Recent works
were based on optimisation procedures for simultaneous structural topology and fibre orientation
which include the latter manufacturing constraints.

Papapetrou et al. (2020) developed an optimisation procedure where the structural topology
and fibre orientations are optimized simultaneously. To take into account the manufacturing
constraints, an infill pattern method is then applied either at the end or in-between iterations
which locally modifies the fibre orientations resulting from the current iteration to satisfy those
constraints. The compliance is modified by the infill pattern method which implies fibre orien-
tation’s changes. Consequently, better results are obtained when using the method in-between
iterations than at the end of the process since modifying the compliance also influences the
structural topology. They used different methods for the structural topology and fibre orienta-
tion optimisations as well as the infill pattern strategy. Fig. 1.28 shows the optimized design
obtained for these different methods for a cantilever beam study. The methods give different
results respecting more or less the path continuity and smoothness. If the streamlines infill
pattern method shows the best result in this case, it depends on the problem studied. It is also
worth noting that applying the infill pattern method can result in a reduction of the structural
compliance. This can be explained by the better continuity and smoothness of the path, which
is not necessarily achieved in the initial optimized topology.

Figure 1.28: Cantilever beam with a point load applied at the free edge: (a) the optimized
topology for the cantilever case, (b) the fiber paths created by the Equally-Space method, (c)
the fiber paths created by the Offset method, (d) the fiber paths created by streamline method
(adapted from Papapetrou et al. (2020))

Li et al. (2021) used a different method where the fibre path morphology is directly taken into
account in the structural topology and fibre orientation optimisation process. They used a
bi-material approach meaning that two density variables are required instead of one to identify
if the element is empty, contains matrix or contains fibre. By setting some global and local
constraints on the composite volume and local fibre fraction, the fibre path morphology is
automatically generated. Fig. 1.29 shows the result for the optimisation of a Michell beam
structure where the red lines correspond to the fibre and the blue color is the matrix.
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Figure 1.29: Michell beam structure optimisation: (a) Initial domain and loading. (b) The
optimized Michell shape fiber-reinforced structure (adapted from Li et al. (2021))

Conclusion
The aforementioned advances in structural topology and fibre orientation optimisation
allow the determination of optimal mechanical design for FRC 2D parts that can be
manufactured using curvilinear fibres. However, they are limited to 2D parts and need
further development to be adapted to the case of 3D shell-like structures. The construc-
tion of the fibre deposition path, called path planning, follows the determination of the
optimal design. Even if the morphology of the fibre path is given by an optimisation
tool, the designer still has to deal with some specific constraints of the fibre placement
process used. For instance, in AFP, the path has to obey a minimum cut length and
radius, while also avoiding some previously mentioned defects such as tow gaps, overlaps
and wrinkles. Moreover, the process parameters to produce a part without defects have
to be determined. Besides, simulating the deposition process is also required to ensure
the proper manufacturability of the part.
Finally, an efficient and complete tool for the manufacturing of mechanically optimized
FRC parts made with curvilinear fibres requires the following attributes:

• A fibre placement technology
• A structural topology and fibre orientation optimisation tool ensuring path conti-

nuity, smoothness and providing its morphology
• Multi-objectivity: applicable for any optimisation problem including structural

topology and strength, stiffness, buckling stability, failure load and natural fre-
quencies

• A path planning tool
• A manufacturing simulation tool
• A modelling approach to correlate manufacturing defects with manufacturing pa-

rameters
• An integrated on-line monitoring for detecting defects and accordingly correct the

manufacturing parameters
A graphical representation of the general workflow describing interactions between pro-
cess planning, design, manufacturing and inspection steps for the AFP technology is
presented in Fig. 1.30.
Many efforts have been undertaken to develop such a tool for the AFP technology but
other technologies such as TFP did not receive such attention. The next section provides
a detailed review of the work achieved herein for the TFP technology and will highlight
the missing critical tool that would make TFP technology as interesting as AFP is today.
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Figure 1.30: Graphical representation of closed loop AFP workflow (Harik, 2020)
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1.4 The Tailored Fibre Placement technology: A high degree of design
freedom
Introduction

Developed in the 1990s at Leibniz Institute of Polymer Research Dresden, TFP has
received less attention compared to the AFP process. It can be explained by the fact
that 3D composite parts cannot be manufactured directly by TFP contrary to AFP but
requires a forming step which complicates the determination of the optimal design as it
will be highlighted in this section. However, contrary to AFP which allows direct fibre
deposition on 3D mould surface, forming initially flat preform to obtain 3D shell-like
parts is still interesting especially when the complexity of the part generates to much
defects using AFP. In this sense, Sun et al. (2021) manufactured 3D shell-like parts with
small double curvature using a two-step approach consisting in AFP processing of flat
preforms followed by a forming process. They showed that using this two-step approach
rather than direct AFP processing onto complex 3D mould could provide easier and
better manufacturability. Moreover, it reduces the overall cost due to shorter cycle times
when depositing fibres on flat surface. Therefore, this two-step approach can also be used
to manufacture 3D shell-like parts with TFP that allows even higher rate deposition than
AFP on flat surfaces.
As mentioned earlier in section 1.2, in general, the forming of fibrous reinforcement
inevitably implies fibre motions for complex double-curvature parts where the modelling
is required to be used as a reliable process in the composite industry. However, as it will
be shown in this section, no model exists to simulate the forming of TFP preforms and
studies of VAT laminates made from TFP were mainly limited to 2D parts. Consequently,
this study can be considered the first contribution to the numerical modelling of TFP
preform forming. This section starts with a more detailed presentation of the TFP
principle than those given in section 1.3. Moreover, the morphology of the flat preform
and studies on the mechanical performances of flat laminates are presented. Next, a
review of the works concerning the TFP technology is made. These studies essentially
focused on demonstrating the potential of TFP in manufacturing optimal designs for
2D parts containing geometric discontinuities such as the well-known hole tension plate
laminate problem introduced in section 1.3. Finally, this section ends with presenting
the challenges to be addressed in the manufacturing of 3D optimized FRC parts made by
TFP preform forming. Among those challenges, the modelling of TFP preform forming
is of first importance and is the subject of this thesis whose objectives and outline are
finally presented.

1.4.1 TFP preforming
1.4.1.1 Principle

A flat TFP preform is made of a continuous tow laid down on a backing material that remains
in place thanks to double locked zig-zag stitching (Fig. 1.26). Rotation of the embroidery head
together with the in-plane displacement of the pantograph allows prescribing curvilinear paths
to the fibre tow with high precision. Similarly to additive manufacturing capabilities, variable
planar orientations and thicknesses can be achieved in the preform as well as net-shape design
avoiding costly and environmentally unsustainable material wastage. The tow direction can
vary sharply since a U-turn is achievable making this technology more efficient in designing
continuous and smooth fibre paths than AFP, where minimal radius might be to high for
manufacturing small to medium parts. Besides, TFP offers a large choice of combinations for
the backing material, fibre tows, and stitching yarn, which considerably enlarges the design
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space of flat preforms and makes them suitable for any desired consolidation process. A single
TFP preform can be made of several tow materials and the backing material can be a polymer
film or woven or non-woven fabrics for instance. Dry or commingled tow is used depending on
the consolidation process involved. The stitching yarn material is usually polyester although
higher performance materials such as aramid are possible options to provide better resistance
to delamination.

1.4.1.2 Processing parameters

Several parameters can be controlled to manufacture a TFP preform, they are listed hereafter.

• Stitch length

• Stitch width

• Upper-stitch tension

• Lower-stitch tension

• Incoming tow tension

• Stitching speed

Figure 1.31: Stitching parameters: (a) Stitch length (ds), (b) stitch width (ws) and (c) stitch
tension (Ts)

Firstly, two stitching parameters, namely, the stitch length and stitch width, illustrated in
Fig. 1.31, can be considered as design parameters because they are defined during the path
planning process. They influence the fibre tow placement and layer thickness. In this work, the
choice was made to define the stitch length as the characteristic distance of the stitching pattern
following the direction of the tow whereas the stitch width is the characteristic distance in the
orthogonal direction of the tow. Other authors like Uhlig et al. (2016) adopted the opposite
definition. Consequently when referencing results of other works with respect to these param-
eters, the names stitch length and stitch width will always referred to the definitions adopted
in this work. Small stitch distances are required to achieve better trajectory accuracy for high
in-plane curvatures or even a U-turn. The stitch width together with the tow morphology and
cross-section behaviour can affect the layer thickness, since the tow can be more or less flat-
tened on the backing material or compacted transversely, which makes it thicker and directly
influencing the fibre density. One limitation of the TFP technology is the current impossibility
to vary the stitch width at every point of the preform contrary to the stitch length. Another
parameter, which is not a built-in feature of TFP machines, is the control of the upper stitch
tension. An additional force sensor able to control the upper-stitch tension was added to the
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TFP machine used in this work at IRT Jules Verne. This is a manufacturing parameter since it
can be adjusted during the tow placement process, but is not remotely controlled and required
manual intervention by the operator. The lower-stitch tension can be set by measuring the
resistance of the delivery mechanism of the stitching yarn bobin. It can also be adjusted during
the manufacturing if necessary, but changes are made by hand. Then, the incoming tow tension
is ensured by the feeding tow mechanism. Finally the stitching speed is a manufacturing param-
eter that can be set through the machine controller, but cannot be specified in the placement
planning process to adjust the speed at specified locations.

1.4.1.3 Process-induced defects

Similarly to AFP, the TFP technology suffers from process-induced defects that are inherent
to placement processes requiring in-plane bending of fibre tows. As highlighted by Kim et al.
(2011), a high path curvature leads to cross-sectional deformation of the tow which modifies
the local fibre density (Fig. 1.32 (b)). Due to the tension applied to the incoming tow during
the placement, the neutral axis of the tow tends to move inwards the center of curvature rather
than being well distributed over the width of the stitching path, as it is the case in Fig. 1.32 (a),
and leads to wrinkles.

(a) Ideally placed fibre tow with small wrinkles

(b) High fibre tow wrinkling due to excessive incoming tow tension

Figure 1.32: TFP in-plane bending induced defect (adapted from Kim et al. (2011))

Moreover, due to the stitching pattern, the fibre tow has a slight in-plane undulation, making the
fibre not perfectly aligned in a straight path (Fig. 1.33). Uhlig et al. (2019) studied the waviness
and fibre volume content of continuous unidirectional carbon fibre reinforced plastics made by
TFP. They studied the influence of the stitching yarn material as well as the stitch length and
stitch width on the in-plane waviness of the tow using Fourier analysis and determined both
mean fibre volume content within the tow and within the layer from optical micrography of
the manufactured laminates. They showed that decreasing the stitch length and increasing the
stitch width leads to an increase of the tow and layer fibre volume contents. Concerning the in-
plane waviness, the higher the stitch length, the lower the waviness amplitude. In particular, the
wavelength was shown to be equal to the stitch length. In a previous study Uhlig et al. (2016)
modelled the geometry of an elementary cell in an unidirectional TFP laminate to describe the
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effect of the stitching pattern on the fibre volume content. They where able to represent the
in-plane and out-of plane waviness produced by the stitching yarn as shown in Fig. 1.34.

Figure 1.33: Snapshots of the TFP process (1–7) showing the placement of a third roving
row and the sewing with a zigzag stitch pattern while the roving pipe moves from right to left.
Details (left and top) with TFP process parameters and resulting fiber waviness due to stitching
(Uhlig et al., 2016)

Uhlig et al. (2016) also showed that the presence of the stitching yarn creates rich resin pocket
zone around the puncture point by locally displacing the tow. Providing more degree of freedom
over the TFP parameters would considerably enhancing the TFP technology by allowing greater
control over the fibre volume content in TFP layers. This also requires to develop models able
to predict the properties of the TFP layer according to the TFP parameters as the mentioned
studies did. Consequently, enabling the stitch width to be varied and assigned locally in the
path planning process as well as controlling the stitch tension and the incoming to tension are
improvements TFP machine designers should be concerned with.

The effects of increasing the stitching parameters on TFP preform and fibre tow characteristics
are summarized in Table 1.2. In this table, V tow

f stands for fibre volume content in tow, V layer
f

for fibre volume content in layer, Aip for in-plane waviness amplitude, Aop for out-of-plane
waviness amplitude and AT for tow’s cross section.

Another defect which is inherent to stitched fibrous reinforcements is the damage induced by
the tow puncture. In Crothers et al. (1997) before the zig-zag stitching was developed for TFP,
the fibre tow was punctured, which leads to fibre damage. Thanks to the zig-zag stitching,
the puncture points are located on each side of the tow instead of inside. However, when
manufacturing a multi-layer TFP preform in a single shot, the lower layers are punctured by
the stitching yarn of the upper layer. Besides, when TFP is used as local reinforcement of
another fibrous reinforcement, direct stitching on the fibrous reinforcement will damage its
fibres. Crothers et al. (1997) compared the performances of different assembling methods to
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(a) Representative unit cell (RUC), where different layers are visible. All layers are shown in the half
model (detail left). The stitching yarn is shown only in this illustration but is considered as resin

material in the simulation. On the right the RUC is graphically embedded in the textile preform during
the stitching process.

(b) Local fiber volume content of the CFRP volumes

Figure 1.34: In-plane and out-of-plane waviness in TFP layer (adapted from Uhlig et al. (2016))

bond the TFP reinforcement to the fibrous reinforcement without over-stitching it.

1.4.1.4 Mechanical performances

To demonstrate the potential of the TFP technology, it was necessary to investigate its mechan-
ical performances in comparison with conventional fabrics or tape laminates manufactured with
ATP. Besides, characterising the influences of the previously mentioned process-induced defects
on the mechanical properties of TFP parts is required to ensure that they did not counteract
the benefits resulting from optimal curvilinear fibre placement designs.

Mattheij et al. (1998) compared the static properties of glass and carbon UD-like TFP laminates
with those of tape laminates and 2D woven fabrics. They showed that tensile strength of UD

Table 1.2: Effect of stitching parameters on TFP preform and fibre tow characteristics
`````````````̀Effect of

Characteristics
V tow
f V layer

f Aip Aop AT

↗ ds ↘ ↘ ↘ ↘ x

↗ ws ↗ ↗ x x ↗ width
↘ height

↗ Ts ↗ ↗ ↗ ↗ ↘
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TFP was close to UD tape and higher than woven fabrics. However, the compressive strength
was significantly lower than tapes and thereby affected also the flexural strength. The latter was
attributed to the damage caused by the stitching process which splits apart single fibres inside
the tow and also creates in-plane and out-of-plane waviness. Moreover, the ultimate tensile,
compressive and flexural stresses of UD glass TFP are similar to those of UD tapes.

In the previously mentioned work by Uhlig et al. (2016), an elementary cell of unidirectional
TFP laminates was modelled using FEM to measure the impact of the in-plane and out-of-
plane waviness on the tensile strength of the laminate. They also performed experimental
measurements with tensile tests that showed good agreement. They obtained about 2% re-
duction compared to an ideal unidirectional laminate with no waviness, which agreed with the
observations of Mattheij et al. (1998).

Uhlig et al. (2010) compared several lay-up configurations of open-hole tension carbon fibre
laminates made from NCF, TFP and braids. They performed static tensile tests to measure
the strength as well as cyclic tensile tests to observed the damage behaviour of the different
laminates. They showed that in general, TFP and NCF specimens provided similar tensile
strength and damage behaviour during cyclic and tensile tests. Fig. 1.35 shows the failure mode
of the different reinforcements for the [+45/0/− 45]s lay-up configuration with and without
cyclic preloading.

Figure 1.35: Fractographic images of tested [+45/0/− 45]s specimens (a) TFP, (b) cyclic
preloaded TFP, (c) NCF, (d) cyclic preloaded NCF, (e) braids, (f), cyclic preloaded braids
(Uhlig et al., 2010)
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Transition
TFP is an effective tool to manufacture preform with curvilinear fibre paths. Process-
induced defects, such as in-plane and out-of-plane waviness, make UD TFP laminates
not exactly as mechanically efficient as conventional laminates especially in compressive
mode. TFP was not developed to manufacture straight fibre laminates. Manufacturing
curvilinear fibre laminates with TFP allows outperforming conventional laminates by
expanding the optimal design space. The next section reviews the main applications of
TFP, especially for 2D parts.

1.4.2 A review of studied TFP applications for manufacturing 2D parts
The major field of application of TFP is the manufacturing of small to medium size lightweight
composite structures in the aeronautic, automotive or energy industries. As reviewed by Mec-
nika et al. (2015) TFP can also be applied to the manufacturing of smart structures which
incorporate deformation sensors or heating components for instance. This section presents
some studies about the main applications of TFP for manufacturing lightweight composite
structures. Therefore, it will give an insight of the motivations behind the development of the
TFP technology and the expansion of its field of application.

1.4.2.1 Removing stress concentration at geometric discontinuities

As introduced in section 1.3, the first application of curvilinear fibres was the manufacturing of
composite laminates containing geometric discontinuities such as open holes that are required
for assembling structural components, especially in the aircraft industry. By using curvilin-
ear fibres, stress concentration in such area can be removed, which considerably increases the
structural strength of the part. Consequently, some studies investigated the ability of the TFP
technology in manufacturing stress concentration free part in notched laminates. Most of the
works presented hereafter used Finite Element Analysis (FEA) based on main stress directions
to determine the optimal fibre orientations around the hole.

Crothers et al. (1997) studied the combination of conventional textile reinforcements with local
TFP reinforcement around holes in single and double bolt loaded plates. A multi-axial warp
knitted (MWK) E-glass fabrics with [0/45/90/− 45] lay-up configuration was used as based
material and E-glass fibre tows (1x1200 tex and 2x1200 tex yarns) for the TFP reinforcement.
Vacuum Injection Moulding (VIM) and Resin Film Infusion (RIF) were used for impregnation.
The assembly of the MKW and the TFP reinforcement was performed differently to study the
effect of stitching directly on the conventional textile reinforcement or using adhesive or hand
stitching for assembling both components prepared separately by using another backing ma-
terial for manufacturing the TFP reinforcement as illustrated in Fig. 1.36. Specific strength
improvements varying between 15-55% were obtained depending on the assembling strategy
compared to a laminate without TFP reinforcement. The second assembly strategy using ad-
hesive to bond the impregnated conventional textile and TFP reinforcements shown the best
result. It was attributed to an effect known as interleafing, reducing interlaminar shear between
the bonded interfaces.

Gliesche (2003) also investigated the combination of multiaxial non-woven carbon fabrics with
[(−45/90/+ 45/0)2]s lay-up configuration and a TFP reinforcement made of Tenax HTA 5331
12K carbon fibre tows impregnated with Epoxy Rütapox VE 3966. They directly stitched
two TFP reinforcements on front and back side of the conventional textile around an open-
hole. During the tensile tests, they used optical deformation measurements using the Grating
Method to visualize the modification of the strain field when adding the TFP reinforcement.
The specific fracture load values for the reinforced plate reached 94% of that of the unnotched
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(a) (b) (c)

Figure 1.36: Different strategies to assemble conventional textile and TFP reinforcements
(Crothers et al., 1997)

plate (reference), while the notched plate without reinforcement only reached 61%. Beside, the
fracture occurred outside the reinforcement demonstrating their success in removing the stress
concentration at the edge of the hole (Fig. 1.37 (a)).

Koricho et al. (2015) compared 4-ply TFP open-hole laminates made of S2-glass fibre tows of
size 50K impregnated with SC-15 epoxy (Applied Poleramics Inc., CA) using vacuum assisted
resin transfer method. Among the specimens shown in Fig. 1.37 (b) small and large curvatures
around the hole were compared. The best curvilinear design (with small curvatures) reached
92.7% of no-hole specimen tensile strength.

(a) (b)

Figure 1.37: (a) Photograph of the plates with fracture (Gliesche, 2003), (b) Specimen profiles
created using tailored fiber placement and conventional drilling. (Koricho et al., 2015)

The latter works manufactured thermoset polymer composites. A more recent study made by
El-Dessouky et al. (2019) investigated the open-hole laminate problem using carbon/nylon 6
commingled fibre tows to study the properties of thermoplastic TFP laminates. They compared
two different TFP patterns to add a circular reinforcement around the hole based on main stress
directions principle. As Koricho et al., the laminates were produced only from TFP layers
(seven) and did not use a conventional textile reinforcement as backing material as Crothers
et al. (1997) and Gliesche (2003) did. The best design showed only 10% reduction in tensile
strength compared to the un-notched specimen also made entirely by TFP.

Katagiri et al. (2021) studied the same problem with carbon TFP laminates impregnated with
epoxy using Electrodeposition Resin Molding. They use this impregnation technology to show
improvement in avoiding void formation which is unavoidable in curvilinear fibre laminates
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produced by vacuum assist resin transfer moulding method (Koricho et al., 2015), due to the
modification of the resin flow compared to unidirectional laminates. They also observed an
improvement in tensile strength of TFP laminates with curvilinear fibres circumventing the
hole compared to conventional drilled TFP laminates.

The most recent study about optimisation of open-hole tensile plate laminate made by combining
a conventional reinforcement with TFP layers (Almeida et al., 2020) showed that using principal
stress directions do not give the optimal design. To obtain a manufacturable TFP layout, they
started with an arbitrary parametrisation of the initial TFP pattern. For this loading case,
fibres were initially placed parallel to the loading axis. Then, the parameters controlling the
pattern can be adjusted during the optimisation process and are constraint to an orthogonal
displacement of the fibres. The optimisation is driven by compliance minimisation and both the
thickness and the fibre orientation (through the parameters of the TFP pattern) are modified
during the iterations. This strategy allows obtaining a manufacturable layout with curvilinear
fibres placed only where needed. However, the required choice of an initial parametrisation can
limit the degree of freedom of the optimisation process. The optimal solution of the proposed
approach can be different from the true optimal design, especially for more complex geometries
and loadings. Details about their optimisation tool called Direct Fiber Path Optimization
(DFPO) can be found in Bittrich et al. (2019). Fig.1.38 shows the referenced fibre layout (a),
the result obtained with the DFPO tool (b) and the principal stress design (c).

(a) (b) (c)

Figure 1.38: Fiber layouts for open-hole specimens: reference layout with equidistant and
parallel fibres (a), stiffness optimization (DFPO) (b), and principal stress design (c). The TFP
layer is placed on top of the base material(Bittrich et al., 2019)

All the previously cited works agreed that TFP has a great potential for local reinforcement
applications in highly stressed regions due to the presence of geometric discontinuities such
as open-holes. Adding TFP on top of another conventional textile or manufacturing a whole
laminate with TFP both provide a considerable increase in tensile strength compared to no-
reinforced open-hole laminates.

1.4.2.2 Manufacturing optimized lightweight structures

In general, TFP has been used to manufacture small to medium sized lightweight structures
whose optimal design has been determined using structural topology and fibre orientation op-
timisations. For instance, Spickenheuer et al. (2008) studied the case of an unequally loaded
tensile plate. They firstly determined the shape of the part using structural topology opti-
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misation before determining the fibre orientation using an optimisation tool named Computer
Aided Internal Optimisation (CAIO) specifically design for this purpose. Fig. 1.39 shows the
initial design space (a) and the resulting design (b). CAIO was further enhanced to integrate
multi-layer design optimisation. Details about this tool can be found in Voelkl et al. (2020),
where they studied and discussed the efficiency of their method for multi-layer optimisation
using a notched plate, a mounting bracket and a B-pillar demonstrator. Spickenheuer et al.
pointed-out the simplicity of the studied case and the needs for investigating more complex
parts with complex loadings. Moreover, using sequential optimisations for the topology and
fibre orientations rather than a simultaneous method might be limited to this type of simply
loaded and simple geometry cases.

(a) (b)

Figure 1.39: (a) Initial design space of the unequally loaded tensile plate, (b) Topology and
fibre orientation results after sequential structural topology and fibre orientation optimisations
(adapted from (Spickenheuer et al., 2008))

Uhlig et al. (2013) manufactured a load-adapted bladed rotor made of carbon fibre reinforcement
using TFP and showed improvements in both burst rotational frequency and rotor mass. They
obtained an operational speed about 35% higher than that of part made of aluminium alloy
by combining tangential and radial TFP layers. However, they milled an initial disk shape
to create the 17 blades and thereby did not benefit from the net-shape capability of the TFP
technology. Fig. 1.40 summarizes the manufacturing process they used.

Figure 1.40: Manufacturing steps required for the bladed CFRP rotor developed (Uhlig et al.,
2013)
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Based on a sequential structural isotropic topology optimisation and a cross-section optimisa-
tion, Almeida et al. (2019) manufactured a brake booster with 330% enhancement of the specific
stiffness compared to an isotropic stacking sequence of conventional reinforcements. The cross-
section optimisation based on a genetic algorithm and performed after the structural topology
optimisation provided information about the optimal TFP pattern or morphology, namely the
roving orientation and spacing which ensured the manufacturability of the resulting fibre layout.
They also showed that the cross-section optimisation allows increasing by 22% the specific stiff-
ness of the brake booster compared to the structural topologically optimised design. Although
an anisotropic structural topology optimisation tool as those presented in section 1.3 might give
better results, since the fibre orientation influences the optimal topology, the specific stiffness
improvement compared to a conventional straight fibre design is convincing. They also studied
the specific stiffness of a brake booster design (PS) using 2-layer, following the main principal
stress (1st layer) and its transverse direction (2nd layer). Fig. 1.41 shows the results for the four
designs.

Figure 1.41: Specific stiffness for all brake boosters investigated in (Almeida et al., 2019):
Quasi-Isotropic design (QI), Principal Stress design (PS), Topology Optimisation design (TO),
Cross-Section Optimisation and Topology Optimisation design (CSO-TO)

The structural topology optimisation often leads to truss-like structure such as the optimal
shape of the bicycle brake booster shown in Fig. 1.42 (a). One potential issue with this type
of design is the determination of the TFP pattern at intersection points of branches. Richter
et al. (2019) investigated several way to design the TFP pattern at intersection points in such
truss-like structure. They studied a T-shape and Y-shape branching with tree different patterns
(straight, fanned out and merging) shown in Fig. 1.42 (b). They showed both experimentally
and numerically that the fanned-out design, where fibre tow spacing is increasing, leads to a
better structural stiffness than parallel or merging patterns.

1.4.2.3 Expanding TFP capabilities to the design of 3D FRC parts

The main applications of TFP developed herein focused on manufacturing optimised 2D parts
based on structural topology and fibre orientation optimisations. However, since a couple of
years, some works have shown interest in using the TFP technology to manufacture 3D parts.

The first study by Fial et al. (2018) focused on manufacturing a small 3D shell-like part via
TFP using folding mechanisms rather than true forming, which is known to eventually lead to
defects like wrinkles as shown in section 1.2. Once they determined the optimal fibre path on
the 3D structure, they used a numerical tool to determine the 2D TFP pattern (Fig. 1.43 (a)).
During forming, fibre orientation changes are unavoidable, thereby they decided to cut the glass
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(a) (b)

Figure 1.42: (a) A bicycle brake booster with a truss-like structure resulting from topology
optimization and two marked distinctive intersection point configurations: T- and Y-shape-like
geometries, (b) Illustration of the types of fibre patterns (adapted from (Richter et al., 2019))

fibre fabric that served as a backing material in the corner of the structure, which has double
curvature. However, cutting the fibre in the corner will considerably weaken the structure in
these regions. In order to reinforce those regions, they placed several fibre tows with the TFP
machine that span the cut regions. Then, these fibre tows are pulled-out during the forming
process and drove the folding of the backing material (Fig. 1.43 (b)). This way, they avoided
complication with design implying true forming on double curvature parts. The determination
of the stitching parameters allowing sufficient sliding of the fibre tows in the stitching path was
achieved in a previous study (Bohler et al., 2015).

(a)

(b)

Figure 1.43: (a) Derivation of the 2-dimensional stitching paths from the target structure (left).
Based on a numerical analysis a mesoscopic textile model is created (middle). A reverse draping
simulation creates the flat pattern for the creation of the 2-dimensional preform (right). (b)
Pre-cut base material with manipulated reinforcement yarn (dashed line) and final structure
represented by the folded base material and one exemplary manipulated reinforcement yarn
(dashed line) (adapted from Fial et al. (2018))

44



1.4. The Tailored Fibre Placement technology: A high degree of design freedom

More recent works were also based on designing 3D parts manufactured by TFP and used the
foldable property of the flax preform by adjusting the fibre orientations to tailor the bending
stiffness in regions to be bent to form the 3D shape. The fact that they did not need a mould to
form the flat reinforcement is one of the main advantages of their approach. Costalonga Martins
et al. (2020) manufactured a stool of 1 kg able to support a load of 80 kg using curved folding
principle and combined both TFP and Coreless Filament Winding (CFW) technologies. The flat
shape was determined using a relatively simple structural topology optimisation tool. After the
dry TFP preform has been created, the flat preform is infused before being folded into a spatial
object and cured. Then, fibre tows are manually added using filament winding techniques. The
manufacturing process and the final part are shown in Fig. 1.44.

(a) (b) (c) (d)

Figure 1.44: FlexFlax Stool: (a) Stitch: A tailored natural fiber textile is designed and produced
in its flat form. This textile is infused with resin to create a fiber composite; (b) Bend: The
activated polymer is formed into shape, enabled by specific fiber bending patterns; (c) Weave:
This form becomes a permanent winding frame, upon which natural fibers are placed through
coreless filament winding. Once cured, the TFP and CFW elements become a co-dependent
functional and structural system in the form of a stool. (d) Final prototype (adapted from
Costalonga Martins et al. (2020))

However, this multi-method manufacturing process, especially the filament winding, was time
consuming and labour-intensive. To simplify the manufacturing process, Rihaczek et al. (2020)
enhanced the stool design by using TFP only and integrating more functionalities in the flat
preform to be folded. They also developed a continuous parametric design to production work-
flow of curved folded Natural Fibre Reinforced Polymer (NFRP), namely bio-composites, to
automate the process. They studied two forming processes, one based on a minimal scaffolding
rods and the other by self-weight of the infused preform. The initially opened legs’ surface of
the stool were closed using additional manual stitching as shown in Fig. 1.45. They produced
stools with different number of legs. Moreover, they also manufactured small kinetic structures
enabling reversible transformation from flat to 3D structure. They made two samples to illus-
trate the concept of compliant curved hinges manufacturable using the TFP technology which
are shown in Fig. 1.46. Another work similar in terms of design to production approach can be
found in Sippach et al. (2020).

The last study which is worth noting, was done by Takezawa et al. (2021) who manufactured
an automobile hood and a marine propeller blade, which both are doubly-curved shell struc-
tures. To form a flat TFP preform on such non-developable surfaces, they divided surfaces into
developable strips by cutting the base material rather than cutting the reinforcing fibres, which
would have resulted in the weakening of the structures. They developed a flattening algorithm
able to flatten strips that have been determined on the initial 3D surface using sets of arbitrary
orthogonal curves. The latter theoretically allowed them to choose between Gaussian, principal
stress or stretch curves, which are all orthogonal sets of curves. The preform is made of two
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Figure 1.45: Stitching of the legs (a) and forming of preform under self-weight (b). Closeup
photography of the stitched legs after curing (c) (Rihaczek et al., 2020)

(a) Sample 1 (b) Sample 2

Figure 1.46: Initial (left) and folded states (right) for two samples with compliant curved hinges
(Rihaczek et al., 2020)

separated layers, one whose fibres are aligned in each strip with the first curve and another
one where fibres are aligned to the orthogonal curve. The whole manufacturing process from
flattening to production is illustrated in Fig. 1.47. Their cutting strategy allows keeping con-
nections between the strips which means that a continuous fibre path can be achieved between
adjacent strips.

Figure 1.47: Overview: (a) tessellation of the input surface into structured quadrilateral patches
(either in parametric or 3D space), (b) unfolding of these patches into quads, (c) aligning the
flattened quads in two ways, (d) one stroke tool path generation, (e) tow placement on the
flattened surface using the TFP embroidery machine to fabricate preforms, and (f) CFRP
formation (Takezawa et al., 2021)

Transition
The different applications which have been presented make TFP an attractive technology
for the manufacturing of FRC parts in the most advanced industries where reducing
weight while maintaining the structural stiffness of the parts is needed. TFP allows taking
more advantage of the intrinsic anisotropy of fibres by placing them only where needed
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with the optimal orientation. Besides, its net-shape preforming capability allows drastic
reduction of material wastage. Moreover, it has been shown that TFP can be used in
combination with other conventional textiles or as a whole preforming tool, which makes
it very versatile. The first development stage of TFP was focused on manufacturing
structural topology and fibre orientation optimised 2D parts. However, recent efforts
were undertaken to expand the applications of TFP to the manufacturing of optimised
3D parts by using either foldable preforms or forming with backing material cuts to
facilitate the transformation. Therefore, transforming a flat TFP preform into a 3D shell-
like structure without resorting to folding or backing material cuts is not straightforward.
The last section of the introductory chapter presents the challenges to de addressed to
fully exploit the TFP technology in the manufacturing of 3D FRC parts. This will lead
to the challenges this work is concerned with.

1.4.3 Challenges in 3D optimized composite parts made by TFP preform forming
This section aims at highlighting the challenge to address in the manufacturing of 3D optimised
composite parts made by TFP preform forming. Issues concerning the determination of optimal
structure topology and material orientation in 3D shell-like structures are firstly presented. The
second challenge specific to the manufacturing of 3D shell composites made by forming, is the
determination of the flat TFP preform from the targeted final 3D part known as flattening.

1.4.3.1 Topological and material optimisations of 3D parts

Some examples of simultaneous structural topology and fibre orientation optimisation tools have
been presented in section 1.3. Although these tools show promising results, they were applied
to single layered 2D parts. Expanding the TFP technology to the manufacturing of optimised
3D FRC parts requires other optimisation tools. In the previously cited works limited to 2D
parts, only in-plane properties where necessary to formulate the material model. However, for
3D surfaces, bending or torsional stiffness as well as their couplings with the in-plane properties
might be required for an accurate representation of the material and to find the optimal design.
Some of the previously cited works on manufacturing 3D parts did not necessarily investigated
the best fibre orientation in terms of structural stiffness but choose the ones ensuring the
formability of the part.

Safonov (2019) developed an algorithm for finding optimal density and fibre orientation dis-
tribution in 3D parts. They obtained promising numerical results for a 3D cube with vertical
central load and the bending of a 3D cantilever beam. However, this tool was designed for 3D
fibre printing technologies that manufacture 3D parts directly.

The previously mentioned tool CAIO (Voelkl et al., 2020) which was initially limited to single
layer part design, was extended to multi-layer part design. Multi-layered preforms are required
for parts submitted to multi-axial stress state. They studied a mounting bracket and a B-pillar
demonstrators. Although their tool showed promising results, the optimisation is based on fibre
angle changes only and do not modify the structural topology that is initially prescribed.

Determining the optimal geometry with the optimal fibre orientation of a FRC 3D parts man-
ufacturable through forming of a flat TFP preform is not the aim of this work. Consequently,
this required "virtual" tool is only supposed to exist or to be developed in the future.

1.4.3.2 Determination of the corresponding 2D TFP pattern: Flattening

The previous section 1.3 shows how challenging the manufacturing of optimised 2D parts using
fibre placement technology can be. The manufacturing process from design to production implies
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many challenges which have been summarized in the definition of the tool allowing taking full
advantage of fibre placement in the conclusion of section 1.3. However, to manufacture 3D parts
from flat TFP preforms an additional forming step is required, which in general (without using
folding or cuts), implies large fibre orientation changes in conventional textiles for the most
complex parts as shown in section 1.2. These changes are unavoidable since they are required
for formability purpose. However, the virtual optimisation process allowing determining the
geometry and fibre orientation is performed on the final 3D part, which will be formed from a flat
preform. Consequently, it is necessary to predict how the fibre orientations will change during
the forming process. Moreover, the 3D part design process has to include the formability of the
resulting part. To this end, considering the geometry and fibre orientation of this optimised
3D part as known, its flattening is necessary to obtain the flat TFP pattern. The flattening
simulation would allow checking the manufacturability of the 3D part by showing negligible
deformation in the fibres directions that are assumed quasi-inextensible.

The work previously mentioned by Takezawa et al. (2021) used an interesting flattening method
based on splitting a non-developable surface into developable patches determined by a given set
of orthogonal curves. However, they investigated the use of Gaussian curves which facilitate
the formability but did not determine the fibre orientation which gives the optimal structural
stiffness. Flattening of non-developable 3D shell-like structures has already been investigated,
especially in metallic sheet forming applications (Zhang et al., 2007; Zhu et al., 2013; Liu et al.,
2016; Zhang et al., 2018; Yi et al., 2018; Wang et al., 2019), clothing design (Wang et al., 2002,
2005; Zhong and Xu, 2006; Casati et al., 2016; Yi et al., 2018), texture mapping (Yi et al., 2018)
and also for 3D woven fabrics (Morioka et al., 2016) and CTS processing (Sun et al., 2021).
Contrary to forming, flattening consists in finding a mapping between the material points of the
3D final part and the position of those material points in a plane that minimizes the deformation
energy of the process.

1.4.3.3 Overview of the required tool to manufacture optimised 3D part by TFP

The tool required to manufacture optimised 3D shell-like structures through forming of flat
TFP preforms is not so different from the definition stated in the conclusion of section 1.3. In
addition to the listed attributes in this definition, the manufacturing step is now divided into
two steps: flat TFP preforming and forming. Therefore the optimisation tool that provides the
optimised 3D parts has to take into account another manufacturing constraint, which is the
formability of the preform. Consequently, an additional tool able to check the formability of
the optimised 3D parts is required. In this work, it is assumed to rely on an iterative approach
where successive flattening of the 3D parts and forming of the resulting 2D pattern allow to find
a compromise between optimal structural stiffness and formability. This approach is illustrated
in Fig1.48.

Conclusion
Developing a tool allowing determining the flat TFP pattern to be manufactured from the
3D optimised part will be a necessary step to fully take advantage of the TFP technology
in manufacturing 3D FRC parts. However, to the knowledge of the author, the forming
behaviour of flat TFP preforms and its numerical modelling has not been investigated
yet. Flattening which is the virtual reverse process of the physical forming process cannot
be investigated experimentally. To validate a flattening method, experimental forming
is required to verify that the flat preform allows obtaining the targeted 3D part after
forming. Consequently, to avoid using costly trial-error based methods to validate the
flattening method, developing a numerical tool to simulate the forming of TFP preforms
is of first importance.
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Figure 1.48: Formability tool principle: The optimised 3D part resulting from topological
and material optimisations is numerically flattened and formed iteratively until a compromised
between structural stiffness and formability is achieved

1.5 Objectives and outline of the thesis
This last section of the introductory chapter states the objectives of this thesis that focuses on
the forming of TFP preforms. Finally, an outline of the thesis is given.

1.5.1 Forming modelling: a first step to understand the deformation mechanisms of
TFP preforms

The section 1.4.2.3 presented some experimental studies on TFP preforms forming or folding.
However, there is no model to numerically simulate the forming of TFP preforms. Consequently,
as a first step to simulate the forming of TFP preforms, the deformation mechanisms of TFP
preforms during forming has to be taken into account in the numerical model. Besides, it has
been shown in the section 1.4.2 that TFP layers can be combined with conventional reinforce-
ments or TFP technology can be used to manufacture a whole flat preform. Therefore, the
modelling strategy to be developed requires describing both possibilities to take advantage of
the versatility of TFP preforms. Due to the complexity of TFP preforms, which are made by
stitching and combine several materials, a trade-off between accuracy and simplicity will be
necessary to allow developing this first numerical model of TFP preform forming in a limited
time.

The objectives of the thesis are summarised as follow:

• Develop a numerical model for the forming of TFP preforms able to address TFP layers
stitched on conventional reinforcements or a removable backing material.

• Implement this model in a robust numerical solver.

• Validate the model through elementary numerical tests and full-scale forming simulations
with experimental comparisons.

• Discuss the simulations’ results of this first modelling strategy and improve it.

This work can be considered as a first contribution in the development of a numerical model
for the forming of TFP preforms.

1.5.2 Outline of the thesis
Chapter 2 introduces the modelling strategy adopted to address the numerical forming of TFP
preforms. Starting from the general morphology of a TFP preform and its possible kinemat-
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ics, the motivations of the proposed approach are presented. In particular, it is based on an
embedded element formulation which assumes no-slip between the TFP preform constituents.
The numerical framework used for the simulation is presented before detailing the modelling
strategy. Two models, named Model I and Model II, which represent TFP preforms with and
without backing material respectively, are described. Their implementation features are given
before addressing some elementary test cases.

Chapter 3 aims at validating the proposed modelling strategy. To this end, full-scale forming
simulations based on hemispheric and tetrahedral punch geometries with curvilinear 0/90◦ fibre
orientation is performed and compared with experimental results. The final targeted fibre orien-
tations have been selected to demonstrate the potential of the TFP technology in manufacturing
3D shell-like structures with orthotropic final fibre orientations that cannot be achieved using
conventional reinforcements. These full-scale simulations address the forming of TFP preforms
without backing material (Model II). Model I, which represents TFP preforms with backing
material, is studied numerically and shows a very stiff and unrealistic behaviour due to the
no-slip condition of the fibre tows in the preform.

Chapter 4 presents the key features of an enriched modelling strategy to improve the models
presented in Chapter 2. The improvement, based on the Arbitrary Lagrangian Eulerian (ALE)
framework, aims at relaxing the no-slip assumption between the TFP preform constituents. The
models are not revisited but enhanced to take into account the relative motion between the fibre
tows and their surroundings. The ALE framework is firstly introduced. Then, some modelling
strategies to take into account material flow in 1D finite elements are described before choosing
the most suitable for enhancing the TFP preform models. Validation of the new feature with
elementary test cases is performed. Next, characterisation of the friction behaviour required
to feed the numerical models is carried out. It consists in a parametric study of pull-out
experiments to develop a friction law taking into account the effect of the stitching parameters.
Finally, the integration of the friction law into the TFP models is performed before extending the
proposed mixed embedded-ALE formulation to the modelling of fibre slippage in conventional
textiles.
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Chapter 2
A first step towards the modelling of TFP
preform forming

Abstract
This second chapter of the thesis is the core of the numerical developments. It focuses
on the modelling strategy adopted to represent TFP preforms and model their behaviour
during forming. Section 2.1 explains the choice of the modelling strategy among those
already presented in section 1.2.2 of the introductory chapter. The need for the devel-
opment of two semi-discrete models arises from the versatility of the TFP technology.
Next, the embedded element approach, which constitutes the main part of the modelling
approach, is introduced. Then, the numerical tool developed and used in this thesis is
briefly presented. The next three sections have the same outline. They begin with pre-
senting the formulation of a feature in the models, before describing and validating its
implementation using elementary test cases. Section 2.2 discusses the modelling of fibre
tows while section 2.3 focuses on the backing material. Finally, section 2.4 describes the
stitching yarn modelling as well as its application to the two semi-discrete models.
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2.1 Modelling strategy

Introduction
This section explains which modelling strategy was chosen to model TFP preforms.
Firstly, the objectives to be fulfilled by the modelling approach are described before
choosing one that is more likely to meet these objectives among the previously men-
tioned modelling strategies (Section 1.2.2), i.e. continuum, discrete and semi-discrete
approaches. Finally, the general principle of the chosen modelling strategy of TFP pre-
forms is presented as well as its fundamental hypothesis. This section aims at providing
the reader the necessary materials to understand the foundation of the modelling ap-
proach while the formulation details will be presented in the next sections.
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2.1.1 Introduction
2.1.1.1 Objectives

The modelling of TFP preform forming has to provide information about the fibre orientation
and distribution in the final 3D part obtained after forming. Besides, the onset of defects has
also to be predicted such as wrinkles observed in forming of conventional textiles in order to
ensure the proper formability of the preform. TFP inherently offers a high degree of freedom
for the design of tailored preforms. Therefore, the model has to take into account all the capa-
bilities of TFP such as the placement of curvilinear fibres and the inhomogeneity of fibre tows
distribution. Moreover, the backing material can be removed prior to forming. Consequently,
two configurations are possible for the TFP preforms. A first one, where the backing material
is still present during forming. This is the case if TFP is used to locally reinforced a conven-
tional textile for instance. A second one where the backing material only serves to manufacture
the preform. In this case, the TFP technology is used as a whole preforming method. To be
efficient, the modelling has to address both configurations and exploit their similarities to avoid
the development of two completely separated models.

2.1.1.2 Existing strategies

Various finite element models have been proposed that mainly differs from the scale used to
represent the fibrous reinforcement and its behaviour as shown in section 1.2.2. The current
task is to figure out which modelling strategy, among the continuum, discrete or semi-discrete
approaches, will be the more appropriate to fulfil the previously mentioned objectives.

On one hand, modelling all the features of a TFP preform using a continuum approach would
require a prior and deep understanding of the deformation mechanisms as well as the develop-
ment of a robust homogenisation procedure for this strongly non-homogeneous material. Since
this thesis is the first contribution to the numerical modelling of TFP preforms, condensing
the deformation modes of all the constituents and their interactions in a single constitutive law
seems too challenging at this stage. However, this approach could be suitable to model the
impregnation step or the mechanical behaviour of the final part, as proposed by Spickenheuer
et al. (2018), which used solid elements with variable material orientations and density.

On the other hand, adopting a full discrete approach would require modelling all the features
of TFP preforms: fibre tows, stitching yarn as well as the backing material if present and the
contact interactions between all these constituents, which would be extremely time consuming.
Fig. 2.1 shows a 3D representative model of the microscopic structure of TFP preform and
the interactions between its constituents with only one layer. Moreover, in general, numerical
models contain material parameters that have to be characterised using dedicated experiments,
which are often time consuming. The material parameters will be numerous if all the features
are taken into account.

Transition
Consequently, in order to develop a first model able to represent the forming of TFP
preforms, a trade-off between its accuracy, its efficiency and the simplicity of its devel-
opment, is required. With this philosophy in mind, the semi-discrete modelling strategy
is selected, where the modelling of some deformation modes or interactions is simplified.
The next section explains how this modelling strategy can be applied to the modelling
of TFP preforms.
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(a) 3D representative microstructure

(b) Interactions between the backing material, the fibre tows and the stitching yarn

Figure 2.1

2.1.2 Towards semi-discrete modelling of TFP preforms
The semi-discrete modelling strategy allows focusing on first order deformation modes while sim-
plifying or neglecting higher order deformation modes and interactions to reduce the complexity
of the underlying model. Therefore, more effort can be undertaken to study the predominant
deformation modes and interactions. After comparison with experiments, deformation modes
or interactions which have been firstly neglected but finally show to be important could be
incorporated. The first step to establish the model is to discriminate the weak from the pre-
ponderant deformation modes and interactions. To this end, the behaviour and role of each
constituent in the TFP preform is firstly described.

2.1.2.1 Role and mechanical behaviour of TFP preform components

Fig. 2.2 illustrates the role and behaviour of the constituents of TFP preforms as well as their
interactions.

Fibre tows are the main component of a TFP preform that constitutes the core of the reinforce-
ment or locally reinforce another fibrous reinforcement. Continuous fibre tows have preponder-
ant tensile stiffness and generally low bending stiffness. However, as mentioned in section 1.2,
the bending stiffness strongly influences the shape of wrinkles and is therefore required for a
good prediction of this forming defect.

The backing material is necessary for the stitching operation. It can be any thin material
tolerant to stitching. In-plane tension and shear as well as in-plane and out-of-plane bending
might be required to accurately modelled this thin material depending on its nature. A polymer
film allowing adding matrix in the final part can be soften during forming or a suitable backing
material such as a water soluble PVA film can be removed prior to forming. Moreover, as
mentioned is section 1.4.2, TFP layers can be stitched on top of another fibrous reinforcement.
Consequently, on one hand, if the backing material is removed prior to forming or in a melted
state during forming, its contribution might be neglected. On the other hand, if another fibrous
reinforcement is used, an accurate modelling of the backing material is required.
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Figure 2.2: TFP preform’s constituents: role, behaviour and mutual interactions

The stitching yarn ensures the fibre tows to be precisely placed and maintained on the backing
material during the manufacturing of the flat preform. It is responsible for the cohesion between
the fibre tows and the backing material as well as between the fibre tows within a layer or
between layers. The stitching parameters, i.e. stitch length, width and tension, and the fibre
tows spacing directly influence this cohesion. As shown in Fig. 2.3, overstiching increases the
cohesion of the TFP preform. The stitching yarn material can be a polymer, meaning that it
can be melted during the forming. In this case, it becomes very complex to control and predict
the motion of the fibre tows.

2.1.2.2 Fundamental hypothesis

According to the identification of the role and behaviour of the different constituents of TFP
preforms, the fundamental hypothesis of the modelling are given for each of them. Table 2.1
summarises the deformation modes and interactions that can occur in a TFP preform during
forming as well as their modelling.

Fibre tows Continuously varying orientations is the main feature of TFP preforms. Therefore,
it has been chosen to model explicitly the fibre tows using 1D finite elements to track these
orientations during forming. Beam elements are required to take into account both axial and
bending stiffness of fibre tows.

The Backing material is modelled using membrane or shell elements depending on its nature.

Stitching yarn Fibre tows either lie on a backing material or on top of the previously deposited
layer and remain on it thanks to the stitching yarn. The stitching yarn is the constituent most
likely to be difficult to model. In NCF, the contribution of the stitching yarn was shown
to strongly influences the shear behaviour (Creech and Pickett, 2006; Bel et al., 2012). When
stacking several layers in TFP preforms, the stitching yarn over-stitches the tows of the previous
layers. Consequently, considering the fibre tows as being fixed on the backing material seems
to be a reasonable assumption as a first step. In other word, the stitching yarn is considered to
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(a) Tow spacing without overstitching within
the layer

(b) Overstitching within the layer (c) Overstitching between layers

Figure 2.3: Overstitching increases cohesion between fibre tows

act as a bond between the tows and the backing material. This means that the sliding between
the tows and the backing material is neglected. Therefore, the stitching yarn is not modelled
explicitly but involves the transfer of forces between the tows and the backing material. If the
backing material has been removed prior to forming or is in a melted state during forming, the
stitching yarn is also assumed to act as a tight bond between layers. This means that their is no
sliding between fibre tows of different layers. The case where the stitching yarn is melted would
require modelling contacts between all the fibre tows and would be very expensive. Moreover,
the preform cohesion would be very low and might lead to many defects in case of complex
parts. Therefore, the stitching yarn is assumed to remain intact and ensures the preform
cohesion during forming.

Although the fibre tows between the layers experience interactions due to friction and over-
stitching, it is not realistic to consider them as perfectly bounded to each other. The rotation of
intersecting fibre tows, known as in-plane shear in conventional textiles, is not free. For simplic-
ity, a linear elastic torsional spring is added at each fibre tows intersection that only takes into
account the frictional resistance as well as the stitching yarn deformation due to the rotation
of the intersecting fibre tows. In conventional textiles’ models, the in-plane shear resistance
is generally non-linear to take into account the lateral compaction of fibre tows. In the TFP
preform models, this contribution due to fibre tows contact within layers is neglected.

2.1.2.3 Representation of the two semi-discrete models

Finally, two models will be developed, one with the backing material called Model I and the
second one without backing material called Model II. Table 2.1 reports the modelling choices
for the TFP preform’s constituents. In both models, the stitching yarn is assumed to ensure a
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Table 2.1: Modelling hypothesis for the constituents of TFP preforms and their interactions

Constituents and
interactions Characteristics Modelling

Fibre tows
Predominant tensile stiffness and
low bending stiffness (required for
modelling wrinkles)

Explicit discretisation using 3D beam
elements with undeformable cross-section

Backing material In-plane stiffness and potentially
bending stiffness

Explicit discretisation using 2D elements
(3D membrane or shell)

Stitching yarn Predominant tensile
stiffness and negligible bending stiffness

Implicit modelling considering
perfect bonding between tows
of different layers and/or between
tows and the backing material

Tow-to-backing
material interaction

Tows in contact with the backing material
exhibit friction if sliding

Forces in the fibre tows are fully
transferred to the backing material

Tow-to-tow
interaction

between layers

Frictional rotation at intersections
Lateral compaction and friction if sliding

Linear elastic torsional springs
Not modelled

Tow-to-
stitching yarn

interaction

The stitching yarn deforms
the tows’ section and involves
friction if sliding

Not modelled

Backing-material-to-
stitching yarn

interaction

The stitching yarn creates holes in
the backing material and may slide
through them

Not modelled

Tow-to-tow
interaction
within layer

Lateral compaction and friction
if sliding Not modelled

perfect cohesion either between the fibre tows and the backing material (Model I) or between
layers (Model II). Fibre tows are modelled using beam elements and the thin backing material
is modelled using 2D elements, which are either membrane or shell depending on its nature.
The stitching yarn is implicitly modelled by embedding the fibre tows in the backing material
(Model I) or by embedding the fibre tows of the next layer in the fibre tows of the previous
layer as illustrated in Fig. 2.4. The general principle of the embedding constraint is presented
in the next section.

Transition
Considering that the stitching yarn acts as a bond between the fibre tows and the backing
material (Model I) or between the fibre tows of adjacent layers (Model II) is the main
assumption of the TFP preform modelling strategy developed in this work. This assump-
tion greatly simplifies the modelling of the stitching yarn, which is implicit, by avoiding
the modelling of frictional contact interactions. The next section presents a method to
model the stitching yarn bonding.

2.1.3 Introduction to the embedded element approach
This section aims at presenting the general principle of the embedded element approach and
why it is appropriate for modelling TFP preforms. First the general principle is detailed before
reviewing its use in the literature. Then, its application to the TFP preform models is described.
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(a) Model I (b) Model II

Figure 2.4: TFP preform models: with (Model I) and without (Model II) backing material

2.1.3.1 Principle

Definition

The embedded element approach consists in embedding a body, called embedded body, in
another body of higher dimension, called host body. The embedding constraint means that the
material points constituting the embedded body are bound to the material points of the host
body. Therefore, when the host body deforms, the embedded body deforms accordingly. When
subjected to the same deformation, both bodies develop stress that adds up.

If these bodies are discretized using finite elements, then it consists in embedding elements in
other elements of higher dimension. Consequently, 1D elements (truss) can be embedded in
either 2D elements (membrane) or 3D solids. Similarly, 2D elements can be embedded in 3D
solids. Besides, nodes, which can be seen as 0D elements, can be embedded in 1D, 2D or 3D
elements. As a consequence of the compatibility between the deformation of the embedded
and host bodies, the embedded elements and host elements have the same interpolation order.
Fig. 2.5 illustrates some of the different options.

Kinematic constraint

If x⃗e is a material point of the embedded body Ωe, then it is associated to the virtual material
point x⃗h of the host body Ωh having the same coordinates. Consequently, in a finite element
representation, the position of a material point x⃗e is related to the position of the host nodes
by:
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Figure 2.5: Examples of embedded element - host element combination with linear and quadratic
interpolations

x⃗e =
∑
α

Nh
α (χ⃗e) x⃗hα (2.1)

where χ⃗e is the natural coordinates of x⃗e in the host element, Nh
v and x⃗hα are respectively the

shape function and position of the αth node of the host element. The number of components of
χ⃗e is equal to the dimension of the host element.

Computation of the natural coordinates

To apply the embedding constraint, the natural coordinates χ⃗e of the embedded nodes are
required. Therefore, the following equation must be solved for χ⃗e:

x⃗e −
∑
i

Nh
i (χ⃗e) x⃗hi = 0⃗ (2.2)

To simplify the notations, x⃗ea is defined as: x⃗ea (χ⃗e) =
∑
αN

h
α (χ⃗e) x⃗hα

In the general case, Eq 2.2 is nonlinear and can be solved iteratively using the Newton-Raphson
method. The method consists in minimizing the scalar function:

f (χ⃗e) = ∥x⃗e − x⃗ea∥2 (2.3)

At each iteration, the Newton-Raphson update is given by: χ⃗en+1 = χ⃗en + ∆χ⃗e

where ∆χ⃗e = −J−1 · R⃗ with J the Jacobian and R⃗ the residual of the function f :

R⃗
(nde×1)

= 1
2
∂f

∂χ⃗e
(2.4)

where nde is the dimension of the host element.
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The Jacobian is computed according to:

[J ]
(nde×nde)

=
[
∂R⃗
∂χ⃗e

]
(2.5)

Jij = ∂Ri
∂χej

= ∂g⃗i
∂χej

· (x⃗ea − x⃗e) + g⃗i · g⃗j (2.6)

where g⃗k is the kth vector of the covariant basis of the host element defined as:

g⃗k = ∂x⃗ea
∂χek

=
∑
α

∂Nh
α(χ⃗e)
∂χek

x⃗hα (2.7)

For a 2D element: χ⃗e

(2×1)
=
[
ξ η

]T
and:

R⃗
(2×1)

=
[
∂x⃗e

a
∂ξ · (x⃗ea − x⃗e)

∂x⃗e
a

∂η · (x⃗ea − x⃗e)
]T

[J ]
(2×2)

=


∂R1
∂ξ

∂R1
∂η

∂R2
∂ξ

∂R2
∂η


Once the natural coordinates are computed for the nodes of the embedded elements, the position
of each embedded element is perfectly defined from the position of its host element using Eq. 2.1.
For a linear line or a linear triangle element as host element, this method converges in one step
and the solution can also be computed analytically.

The algorithm to compute the natural coordinates of a point x⃗e in an element is given in Alg. 1.

Algorithm 1 Computation of the natural coordinates of a point in an element using Newton-
Raphson method

1: Initialize the natural coordinates χ⃗e
2: Compute the coordinates of the element in a local basis (X⃗el) using the covariant vectors
g⃗k defined in Eq. 2.7

3: Compute the objective function f using Eq. 2.3
4: Initialize i← 0
5: while f > tol & i < imax do
6: Compute the residual R⃗ at χ⃗e using Eq. 2.4
7: Compute the Jacobian J at χ⃗e using Eq. 2.5
8: Update χ⃗e as: χ⃗e ← χ⃗e − J−1R⃗
9: Compute f

10: i← i+ 1
11: Return: χ⃗e

2.1.3.2 A brief review of the embedded element approach

The embedded element approach has been used in different application fields and especially in
fibre-reinforced concrete modelling. Besides it was also applied to 3D interlocks modelling and
can be seen as a generalisation of some modelling techniques used for conventional textiles.
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Fibre-reinforced concrete The first field of application of the embedded element approach is
the modelling of fibre-reinforced concrete. Allwood and Bajarwan (1989) embedded steel bar
elements in 2D concrete elements. One of their motivation in using this technique was to dis-
sociate the concrete elements from the reinforcements. In fact, the reinforcement position used
to be limited to the edges of the concrete elements, creating a strong dependency between the
reinforcement layout and the concrete mesh. In other words, concrete and reinforcement shared
the same nodes. The embedded element approach allows placing the reinforcements anywhere
in the concrete elements and therefore was a major improvement to independently mesh the
concrete and reinforcements and eased the modelling of complex reinforcement layouts. Cunha
et al. (2012); Markou and Papadrakakis (2012) embedded reinforcing bars in 3D solid concrete
elements. Markou and Papadrakakis (2012) proposed a method to efficiently generate the data
associated with this modelling technique. In particular, the generation of the reinforcing ele-
ments with nodes required at the intersection with the concrete elements’ boundaries as well as
the computation of their natural coordinates.

3D interlocks De Luycker et al. (2009) embedded trusses in 3D solid elements to model 3D in-
terlocks in forming simulations. Contrary to fibre-reinforced concrete modelling, the embedded
elements and the host elements do not represent distinct physical domains as reinforcing bars
and concrete but are used to split the deformation modes of this complex material. In fact, the
trusses allow taking into account the tensile stiffness of the fibre tows as well as modelling ex-
plicitly their orientation in the 3D interlock. The other deformation modes such as compaction,
transverse shear and bending are modelled in the 3D solid elements. Consequently, they used
the embedded element approach to simplify the implementation of the mechanical behaviour
of this complex fibrous architecture by splitting its deformation modes into two types of finite
element, one embedded in the other.

Generalisation of some conventional textiles modelling Models where embedded elements have
to share the same nodes of the host elements can be seen as special cases of the embedded element
approach. Consequently, the embedded element approach can be considered as a generalisation
of methods that superimpose different element types, such as the discrete pantographic models
by (d’Agostino et al., 2015), which placed 1D elements (trusses and beams) along the diagonal
of quadrangle elements, or the woven fabrics model by Harrison (2016), which embeds beam
elements on the edge of membrane elements.

2.1.3.3 Application to the TFP preform models

As mentioned in the previous section, the embedded element approach has been used either to
model bonding between two distinct physical domains or to split the modelling of the deforma-
tion modes into different element types.

In the TFP preform models, the stitching yarn is supposed to bond the fibre tows to the backing
material (Model I) or the fibre tows of adjacent layers (Model II). Consequently, in Model I, the
embedded element approach can be used to embed fibre tows modelled with beam elements in
the backing material modelled with 2D elements. In Model II, the nodes of the beam elements
representing the fibre tows of a layer at intersection with the beam elements representing the
fibre tows of the previous layer can be embed in these beam elements. Consequently, in Fig. 2.4,
the hinge connection will be model using the embedded element method. Details about its
formulation and implementation will be given in section 2.4.
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Transition
The embedded element approach will be used to model the bonding function brought by
the stitching yarn. Its implementation will be detailed in a subsequent section. Before
presenting the finite element formulation of the different features of the TFP preform
models, the framework of the finite element solver used in this work is introduced.

2.1.4 Framework of the finite element solver
2.1.4.1 Global presentation

The finite element solver used in this thesis is based on the Fortran language. The generation of
inputs and the post-processing of the outputs of this solver are achieved in Python. Python is
widely used in the computation field and offer a large choice of open-source and reliable libraries
to facilitate I/O operations and visualisation of complex simulations’ results for instance. The
finite element solver, named Femtran (Finite Element Method in forTRAN) in the remainder of
this work, is based on previous in-house developments to simulate the forming of conventional
textiles. Fortran is an old but computationally efficient language whose standards have been
developed over the past decades. In particular, some effort were undertaken to better integrate
the Oriented-Object Programming (OOP) paradigm which constitutes the base of the most
widely used languages (C++, Python, Java). Consequently, in this work, the architecture of
Femtran has been largely modified to better use the OOP features, which considerably increases
the maintainability, reusability and readability of a code, especially when it is developed in-house
by different developers.

Input data for the finite element model The definition of a finite element model starts with
the creation of the bodies to be represented. These bodies are defined through their geometry
before being discretize into finite elements to create a mesh. Meshes are defined by a set of nodes
and a connectivity table describing their topology. Performing a mechanical analysis requires
to define the mechanical properties of the bodies by assigning a material to its elements. A
material section is also assigned to these bodies to define additional data such as the thickness for
surface-like bodies or orientation for truss-like ones. The boundary conditions, which constraint
the position or displacement of the bodies, is also required. Displacements, rotations, pointwise
forces, distributed loads are examples of boundary conditions and loads to be set-up when
defining a finite element model as well as contact interactions.

The OOP is particularly suited to represent the complexity of a finite element model which
encompasses several types of complex data interacting with each other. For instance, finite
elements are subdivided into different types according to their interpolation order or the num-
ber of integration points. However, all the finite element types share common attributes and
methods. This is particularly adapted to OPP using the polymorphism feature. Each finite
element belong to a given mesh which represent a body in the finite element model. This type
of relation can be represented using the encapsulation feature of OOP.

High-level workflow Fig. 2.6 illustrates the high level flowchart when performing a simulation
with the developed numerical tool. The creation of the geometry and the generation of the
mesh are performed using external commercial software Abaqus or open-source software such
as GMSH. The mesh information are parsed and added in a Model created from a Python
script. Additional data such as the materials or the boundary conditions are added to the
Model before writing the input file of the solver. Then, the simulation can be launched via the
Femtran executable. During the simulation, outputs are regularly written for future analysis
and display of the results.
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Figure 2.6: High-level flowchart of the numerical tool

Femtran data structure Fig. 2.7 displays the data structure of Femtran. The main entity is
a Model which brings together all the data of the finite element model. The Assembly entity
contains all the data concerning the topology of the model, which includes the nodes and the
elements, but also some sets of nodes or elements that have been created to specify the boundary
conditions for instance. The Step entity contains the data about the boundary conditions, the
time integration scheme, etc. Each entity is represented using a derived type, which is the
Fortran name for the concept of class in OOP.

In particular, the class Material elements is used to define the computation of the internal
forces for a given set of elements with a pre-defined material. A Material elements is defined
by a material and a type of element and is applied for a given set of elements. For instance, if
a linear elastic behaviour is defined on a set of membrane elements containing both triangles
and quadrangles, a Material elements is initialized for each element type. New classes defined
as extensions of the Material elements class can be implemented to add new finite element be-
haviours. This data structure eases the enrichment of the finite element solver without requiring
excessive changes elsewhere in the program.

2.1.4.2 Explicit solver

Equation of dynamic Femtran is an explicit solver. Explicit solvers are particularly efficient
to solve contact interactions between rigid and deformable bodies as in forming of fibrous
reinforcements. Moreover, implementing a new mechanical behaviour in such a solver only
requires the computation of internal forces.

Femtran solves the following dynamic equation:
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Figure 2.7: OOP data structure of Femtran

MÜ +CU̇ + Fint = Fext (2.8)

where M is the lumped mass matrix, C is the damping vector proportional to the lumped mass
matrix, Fint is the vector of internal forces and Fext is the vector of external forces. Ü , U̇ and
U are respectively the vectors of acceleration, velocity and displacement also called kinematic
variables.

Eq. 2.8 is solved using an explicit time integration scheme defined by:

Un+1 = Un + ∆tU̇n + 1
2∆t2Ün

U̇n+1 = U̇n + ∆tÜn + ∆tβ∆Ün

Ün+1 = Ün + ∆Ün

β is taken equal to 0.5. Therefore, the time integration scheme reduces to that of central
differences.

Computation of contact interactions The contact interactions are solved using a forward in-
crement Lagrangian multipliers method (Carpenter et al., 1991), which consists in a prediction-
correction algorithm of the displacement of the nodes in contact. Contact interactions are
defined by a contact pair and a contact law. The contact pair is made of two entities named
primary and secondary. The primary entity is a set of 2D elements (primary faces) defining a
surface while the secondary entity is a set of nodes (secondary nodes) which can come from a
surface or a set of 1D elements. At each iteration, the displacement of the nodes are predicted
by considering zero contact forces. Then, an algorithm iterates through each contact pair and
looks for penetration of the secondary nodes into the primary faces. If penetrations occur, a
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correction is applied to both the primary and secondary nodes’ displacement of each contact
pair iteratively until a criteria is reached. This criteria can be a minimal displacement correc-
tion which implies the convergence of the algorithm or a number of maximal iterations, which
means that the contact algorithm failed. Once the contact interactions have been solved, the
resulting contact forces are added to the external forces.

Femtran workflow Fig. 2.8 illustrates the workflow of Femtran. A Model entity is created by
reading the input file. Once the model has been initialized, the mass of the finite elements
is computed and lumped at the nodes. Then, the time stepping begins. First, the boundary
conditions are applied. Next, the contact interactions are solved. Once all the external forces
have been computed, the kinematic variables are computed using the time integration scheme.
Then, the internal forces can be computed at the element level and assembled before the next
iteration. Outputs are regularly saved throughout the simulation.

Start

Init Model Input file

Compute mass M =
∑
Mel

t = t+ ∆t

Apply boundary conditions Fext

Solve contact Fc; Fext += Fc

Perform time integration Ü ; U̇ ; U

Compute internal forces Fint =
∑
F el

int

Save Output file

no

yes
t = tend ?

Stop

read

define

define

define

define

define

write

Figure 2.8: Femtran workflow

2.1.4.3 Implementing a finite element: example of a linear elastic 3D truss

This last section aims at briefly illustrating how the implementation of a new finite element
mechanical behaviour is addressed. For simplicity, the example of a linear elastic 3D truss is
detailed.

Extent the abstract derived type To add a new Material elements in the solver, a new derived
type called Linear_elastic_truss_t is created using the source code 2.1. This new derived type
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is built upon an abstract derived type whose implementation is given in the source code 2.2.
The abstract derived type Base_material_element_t contains common attributes and methods
(called procedures in Fortran) for all defined finite element mechanical behaviours. In particular,
each finite element mechanical behaviour contains a set of elements (line 8) the mechanical
behaviour is defined to and a 2D array Fint_e (line 28) of size (nelements, ndofs), which is used
to store the values of the internal forces computed for all the elements in the element set. Among
the procedures defined in the abstract type (lines 37-47), initialize, init_data and compute_Fint
have to be overridden by the new derived type. Their role is described hereafter:

• initialize: it initializes the attributes of the derived type. In particular, it initializes the
additional attributes required for this finite element mechanical behaviour such as E and
S (line 3), which are 2D arrays storing the deformation and stress components for each
element having this mechanical behaviour.

• init_data: it initializes the geometric and mechanical properties of the elements

• compute_Fint: it calculates the internal forces for all the elements having this mechanical
behaviour.

Override the deferred procedures The implementation of the procedures to be overridden to
define the derived type Linear_elastic_truss_t is given in the source codes 2.3, 2.4 and 2.5.

Source code 2.1: Fortran: Implementation of a derived type for the linear elastic 3D truss
1 !> A 3D linear elastic truss
2 Type, extends(Base_material_element_t) :: Linear_elastic_truss_t
3 Type(Element_tensors_t) :: E, S
4 contains
5 procedure, pass :: initialize => init_linear_elastic_truss
6 procedure, pass :: init_data => init_linear_elastic_truss_data
7 procedure, pass :: compute_Fint => linear_elastic_truss_Fint
8 End Type Linear_elastic_truss_t

Source code 2.2: Fortran: Implementation of the abstract derived type which is the base to
define new mechanical behaviour

1 !> A abstract derived type (class) to handle material element data. Each material
element derived type is built from this class

2 Type, abstract :: Base_material_element_t
3 !> A pointer to the mesh
4 Class(mesh_t), pointer :: mesh => null()
5 !> The element type info
6 Type(Element_infos_t), pointer :: infos => null()
7 !> The element set
8 Type(Set_t) :: elements_set = Set_t()
9 !> A 2d array to store geometric data of the elements (like section profile

properties for beams)
10 double precision, dimension(:,:), allocatable :: geometry_data
11 !> A pointer to the material section derived type
12 Type(Material_section_t), pointer :: material_section => null()
13 !> A 2D array to store the material properties of the elements
14 double precision, dimension(:,:), allocatable :: properties
15 !> A 1d array derived type to store the thickness
16 Type(Nodal_scalars_t) :: tickness
17 !> A field container to set the fields available for outputs
18 Type(Fields_container_t) :: fields
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19 !> A logical to know if the element mass must be computed in the current
configuration

20 logical :: update_mass = .False.
21 !> A logical to know if the size of the element must be computed in the

current configuration
22 logical :: update_size = .False.
23 !> A logical to know if the internal force assembly is done with custom

parallelization
24 logical :: parallel_fint = .False.
25 !> A logical to know if the mass assembly is done with custom parallelization
26 logical :: parallel_mass = .True.
27 !> 2d arrays to store the internal forces and mass at the dofs of the elements
28 double precision, dimension(:,:), allocatable :: Fint_e, M_e
29 !> Dof mapping for vector assembly
30 Type(LocalToGlobalMapping_t) :: mapping
31 !> Internal forces assembly
32 Type(LocalToGlobalVector_t) :: Fint_assembly
33 !> Mass assembly
34 Type(LocalToGlobalVector_t) :: Mass_assembly
35 contains
36 !> A subroutine to initialize the global to local dof mapping for parallel

vector assembling
37 procedure, pass :: dof_mapping => default_dof_mapping
38 !> A subroutine to compute the size of the elements
39 procedure, pass :: compute_size => compute_elements_size
40 !> A subroutine to compute the mass at the dofs
41 procedure, pass :: compute_mass => compute_elements_mass
42 !> A subroutine to initialize the material element derived type
43 procedure(initialize_base_material_elements), pass, deferred :: initialize
44 !> A subroutine to initialize the properties of the material elements
45 procedure(init_base_material_elements_data), pass, deferred :: init_data
46 !> A subroutine to compute the internal forces at the element level
47 procedure(compute_internal_forces), pass, deferred :: compute_Fint
48 End Type Base_material_element_t

Source code 2.3: Fortran: Implementation of the procedure initialize for the linear elastic
3D truss

1 Subroutine init_linear_elastic_truss(self, mesh, elementInfos, materialSection,
elementsSet, integrationScheme)

2
3 integer, parameter :: dim=3, nComponents=1
4
5 ! Inputs
6 Class(Linear_elastic_truss_t), target, intent(inout) :: self
7 Class(Mesh_t), target, intent(in) :: mesh
8 Type(Element_infos_t), target, intent(in) :: elementInfos
9 Type(Material_section_t), target, intent(in) :: materialSection

10 Type(Set_t), intent(in) :: elementsSet
11 Type(Integration_scheme_t), target, intent(in), optional :: integrationScheme
12
13 ! Body
14 call init_base_material_element(self,&
15 mesh,& !> The Mesh_t derived type of the finite element

model
16 elementInfos,& !> A derived type representing the finite

element type
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17 materialSection,& !> A derived type representing a
material section

18 elementsSet,& !> The elements having this material
behaviour

19 1,& !> The number of geometric data
20 1,& !> The number of properties
21 2,& !> The number of fields
22 parallelFint=.True.)
23
24 ! initialize strain and stress fields
25 call init_field(self%E,&
26 Field_enum%e_tensors%E,&
27 nComponents,&
28 self%infos%n_gauss,&
29 self%elements_set%n_entities,&
30 self%elements_set,&
31 [XX_c])
32 call init_field(self%S,&
33 Field_enum%e_tensors%S,&
34 nComponents,&
35 self%infos%n_gauss,&
36 self%elements_set%n_entities,&
37 self%elements_set,&
38 [XX_c])
39 ! add the fields outputs in the container
40 call self%fields%set(1, self%E)
41 call self%fields%set(2, self%S)
42 call self%init_data()
43
44 End Subroutine init_linear_elastic_truss

Source code 2.4: Fortran: Implementation of the procedure init_data for the linear elastic
3D truss

1 Subroutine init_linear_elastic_truss_data(self)
2
3 ! Inputs
4 Class(Linear_elastic_truss_t), target, intent(inout) :: self
5
6 ! Body
7 ! area density
8 self%properties(1, :) = self%material_section%material%properties(1)*self%

material_section%geometric_data(1) ! rho
9 ! initial cross section

10 self%geometry_data(1, :) = self%material_section%geometric_data(1) ! A0
11
12 End Subroutine init_linear_elastic_truss_data

Source code 2.5: Fortran: Implementation of the procedure compute_Fint for the linear
elastic 3D truss

1 Subroutine linear_elastic_truss_Fint(self)
2
3 integer, parameter :: dim=3, elDim=1, nDofs=3, nComponents=1, iA0=1, iL0=2,

ilambda=2, imu=3
4
5 ! Inputs
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6 Class(Linear_elastic_truss_t), intent(inout) :: self
7
8 ! Locals
9 integer :: j, iNode, gElement, lNode, iElement, iDof, ldof

10 integer, dimension(:) :: dofs(nDofs), gDofs(nDofs), nodeDofs(nDofs)
11 double precision, dimension(:) :: g1(dim), e1(dim)
12 double precision :: lambda, mu, nu, l, E, A, V
13 !> 2D arrays of float
14 double precision, dimension(:,:) :: elementCoords(dim, self%infos%n_nodes), B(self

%infos%n_nodes),&
15 dU(nDofs, self%infos%n_nodes), dUg(self%infos%

n_nodes)
16 !> The derived type storing the varibales defined at the degrees of freedom
17 Type(Dof_variables_t), pointer :: var
18
19 ! Body
20 nodeDofs = [(j, j=1, nDofs)]
21 ! material properties
22 lambda = self%material_section%material%properties(ilambda)
23 mu = self%material_section%material%properties(imu)
24 ! compute Poisson’s ratio
25 nu = lambda/(2.d+00*(lambda + mu))
26 !calculate Young’s modulus
27 E = mu*(3.d+00*lambda + 2.d+00*mu)/(lambda + mu)
28 !$OMP PARALLEL PRIVATE(gElement, gdofs, iNode, lNode, elementCoords, idof, ldof,

dU, g1, l, e1, dUg, V, B)
29 !$OMP DO
30 !> loop over all elements in the set
31 do iElement=1, self%elements_set%n_entities
32 !> get the global id of the element in the finite element model
33 gElement=self%elements_set%entities(iElement)
34 !> get the element coordinates and the increment of displacement at dofs
35 do iNode=1,self%infos%n_nodes
36 !> get the global id of the node
37 lNode=self%mesh%elements%connectivity(iNode, gElement)
38 !> store the coordinates of the node
39 elementCoords(:, iNode) = self%mesh%nodes%coordinates(:, lNode)
40 !> get the global ids of the displacement dofs of the node
41 gDofs = nodeDofs + self%mesh%dofs%nodal_infos(2, lNode)
42 !> Loop over the displacement dofs of the node and store the increment of

displacement
43 do iDof=1, nDofs
44 var => self%mesh%dofs%variables(self%mesh%dofs%var_indx(self%mesh%dofs

%infos(gDofs(iDof), 3)))
45 ldof = self%mesh%dofs%infos(gDofs(iDof), 2)
46 dU(iDof, iNode) = var%at(ldof, var%indx(i_dU))
47 end do
48 end do
49 !> compute the covariante vector g1
50 g1 = matmul(elementCoords + 0.5d+00*dU, self%infos%dNi_gauss(:, 1, 1))
51 l = 2.d+00 * sqrt(sum(g1**2))
52 !> normalize g1
53 e1 = g1 / (0.5d+00*l)
54 !> compute B matrix
55 B = [-1.d+00, 1.d+00]
56 !> compute Cauchy strain (l-l_0)/l_0
57 self%E%at(1, 1, iElement) = (l-self%mesh%elements%size(1, gElement))/self%mesh

%elements%size(1, gElement)
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58 !> compute the stress
59 self%S%at(:, 1, iElement) = E*self%E%at(1, 1, iElement)
60 do iNode=1, self%infos%n_nodes
61 self%Fint_e((iNode-1)*nDofs + 1: iNode*nDofs, iElement) = self%S%at(1, 1,

iElement)*B(iNode)*self%geometry_data(1, iElement)*e1
62 end do
63 end do
64 !$OMP END DO
65 !$OMP END PARALLEL
66
67 End subroutine linear_elastic_truss_Fint

Conclusion
Due to its multi-material architecture, as well as its design freedom, a TFP preform
is inherently complex to model. In this thesis, a semi-discrete approach was developed
as it offers a good trade-off between modelling accuracy, efficiency and simplicity of
development. In order to take into account the possibility of removing the backing
material prior to forming, two semi-discrete models are proposed. Both take advantage
of the embedded element approach to simplify the modelling of the stitching yarn and
its underlying interactions. The latter is either assumed to bond the fibre tows modelled
by beam elements to the backing material modelled by 2D elements (Model I) or to the
fibre tows of an adjacent layer (Model II). This strategy allows developing two different
models from a common base, namely, the explicit discretisation of fibre tows, which was
considered as the most natural to take into account the capabilities of TFP preforming.
The next step consists in implementing the different features of the models, namely:

• A beam element to model the fibre tows in both models
• A 2D element to numerically investigates Model I
• An embedding constraint to model the stitching yarn in both models

These features are implemented in Femtran. Femtran is an explicit finite element solver
written in Fortran, which uses the OOP paradigm to ease the development, maintainabil-
ity, reusability and readability of the program developed in this thesis. Its architecture
allows implementing new finite element behaviours by simply adding new derived types
in the code that extend an abstract derived type. In explicit finite element solvers, a
new finite element mechanical behaviour requires the computation of internal forces of
the element. The subsequent sections deals with the formulation, implementation and
numerical validation of the different features of the TFP models.
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2.2 Modelling the fibre tows

Introduction
This section deals with the modelling of the fibre tows in the TFP preform models. As
mentioned previously in section 2.1, fibre tows can be considered as quasi-inextensible.
Although their bending stiffness is low compared to their high tensile stiffness, the bend-
ing stiffness has been related to wrinkling defects in conventional textiles forming as
mentioned in section 1.2. Therefore, it is taken into account for an accurate prediction
of the TFP preform formability.
Consequently, fibre tows are modelled with beam elements to include the different de-
formation modes and not only the high tensile stiffness. A 2-node shear-flexible beam
element, which has been widely studied (Ibrahimbegović et al., 1995; Géradin and Car-
dona, 2001; Ritto-Corrêa and Camotim, 2002), is formulated hereafter. The major key
points are presented and references for further computation details are also given.

2.2.1 Formulation of a beam element

2.2.1.1 Operators’ definitions and notations

In the followings:

◦ (•′) is equivalent to d•
dS where S is the curvilinear abscissa

◦ ṽ is a skew symmetric matrix such as ṽu⃗ = v⃗×u⃗. It is defined as [ṽ]
(3×3)

=

 0 v3 −v2
−v3 0 v1
v2 −v1 0


where v⃗

(3×1)
=
[
v1 v2 v3

]T
and vec(ṽ) = v⃗

2.2.1.2 Assumptions

This formulation includes two major assumptions:

• The beam cross sections remain plane and do not deform when subjected to elastic defor-
mations

• The strains are small and finite rotations are allowed.

The first assumption assumes no warping of the cross-section, which would be difficult to char-
acterise for a tow made of individual fibres. The small strain assumption is consistent with the
quasi-inextensibility of fibre tows, which will be achieved by assigning a high tensile stiffness.
The finite rotations allow for large displacements and rotations in the space, which is necessary
in forming simulations.

2.2.1.3 Kinematics

The position of a point in the initial and current configurations is defined as:
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X⃗
(3×1)

= SE⃗1 +X2E⃗2 +X3E⃗3 (Initial) (2.9)

x⃗
(3×1)

= ϕ⃗0(S) +X2e⃗2 +X3e⃗3 (Current) (2.10)

S is the curvilinear abscissa of the beam axis in the initial configuration and (X2,X3) are the
coordinates of the planar cross-section. As the cross-section does not deform (no warping), the
planar coordinates (X2,X3) are unchanged in the deformed configuration. ϕ0 corresponds to
the position of a point located on the neutral axis in the current configuration. E and e define
respectively the initial and current cross-section orientations (Fig.2.9):

[E]
(3×3)

=
[
E⃗1

(3×1)
E⃗2

(3×1)
E⃗3

(3×1)

]
(Initial cross-section orientation) (2.11)

[e]
(3×3)

=
[
e⃗1

(3×1)
e⃗2

(3×1)
e⃗3

(3×1)

]
(Current cross-section orientation) (2.12)

E⃗1 and e⃗1 are the cross-section normal vectors while (E⃗2, E⃗3) and (e⃗2, e⃗3) are the in-plane
vectors of the cross-section. Since transverse shear is allowed, the tangent vector to the centroid
line g⃗1 might be different from the cross-section normal e⃗1 as illustrated in Fig. 2.9.

Figure 2.9: Initial and current configurations of a beam

2.2.1.4 Finite rotation parameterization

The current cross-section orientation e is computed by applying the rotation operator R to the
initial cross-section orientation E (Eq. 2.13).

e = RE (2.13)

Several parametrization exist for the rotation operator R such as the Cartesian pseudo-vector
or the Quaternions. In this work, the Cartesian pseudo-vector parametrisation is used. It allows
defining R as a function of a pseudo-vector ψ⃗. ψ⃗ can be written as

ψ⃗
(3×1)

= ψn⃗ (2.14)
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where ψ is the rotation amplitude and n⃗ is the rotation axis. Fig. 2.10 illustrates the definition
of ψ⃗.

Figure 2.10: Definition of the Cartesian pseudo-vector ψ⃗

In addition to the rotation operator R, the tangent rotation operator T and its directional
derivative T ′ = DT

[
dψ⃗
dS

]
are required. These terms come into play when the differentiation

with respect to S is applied. R, T and T ′ are computed using the family of trigonometric
functions established in Ritto-Corrêa and Camotim (2002) and given hereafter.

Two families of trigonometric functions ai and bi are defined according to the following relations:

a1 (ψ) = sinψ
ψ

a2 (ψ) = 1− cosψ
ψ2 a3 (ψ) = ψ − sinψ

ψ3

(2.15)

b1 (ψ) = ψ cosψ − sinψ
ψ3 b2 (ψ) = ψ sinψ − 2 + 2 cosψ

ψ4 b3 (ψ) = 3 sinψ − 2ψ − ψ sinψ
ψ5

(2.16)

These function are singular when ψ = 0. To deal with this numerical issue, power expansion
series of these functions are used when ψ < 10−2.

ai (ψ) =
n∑
k=0

(−1)kψ2k

(2k + i)! bi (ψ) =
n∑
k=0

2(k + 1)(−1)k+1ψ2k

(2k + i+ 2)! (2.17)

n is equal to 13 for the computation of the power expansion series.

Using the trigonometric functions, the following definitions apply:

[R]
(3×3)

= I + a1ψ̃ + a2ψ̃
2 (2.18)

[T ]
(3×3)

= I + a2ψ̃ + a3ψ̃
2 (2.19)

DT [u⃗]
(3×3)

= a2ũ+ a3
(
u⃗⊗ ψ⃗ + ψ⃗ ⊗ u⃗

)
+ b1

(
ψ⃗ · u⃗

)
I + b2

(
ψ⃗ · u⃗

)
ψ̃ + b3

(
ψ⃗ · u⃗

)
ψ⃗ ⊗ ψ⃗ (2.20)
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2.2.1.5 Strain and curvature vectors

Strains and curvatures are computed from the displacement gradient D⃗, more precisely through
the difference between the deformation position gradient in the current dx⃗

dS and initial dX⃗
dS

configurations, brought back to the material frame by applying RT :

D⃗
(3×1)

(S,X2, X3) = RT dx⃗
dS −

dX⃗
dS

= RT

(
dϕ⃗0

dS − e⃗1

)
+RT dR

dS (X2e⃗2 +X3e⃗3)
(2.21)

From the definition of the displacement gradient D⃗, the strain and curvature vectors in the
material frame are identified:

Γ⃗
(3×1)

= RT

(
dϕ⃗0

dS − e⃗1

)

=

EΓ1
Γ2


K⃗

(3×1)
= vec

(
RT dR

dS

)
= T T

dψ⃗
dS

=

KT

K1
K2


(2.22)

In Eq. 2.22, E is the longitudinal strain component, Γ1 and Γ2 are the transverse shear compo-
nents. KT is the torsional strain of the neutral axis whereas K1 and K2 are the bending strains
along the cross-section axis. These curvatures can also be expressed using the cross matrix
expression:

K̃ = RT dR
dS (2.23)

The spatial counterparts of the strains and curvatures vectors are obtained by applying the
rotation operator:

γ⃗ = RΓ⃗ κ⃗ = RK⃗ (2.24)

2.2.1.6 Equilibrium equations, internal virtual work and strain-curvature variations

Equilibrium equations in the material frame in quasi-static regime are given hereafter for the
forces (Eq.2.25) and moments (Eq.2.26):

dF⃗
dS + K̃F⃗ +RT ⃗̄f = 0⃗ (2.25)

dM⃗
dS +

(
RT dϕ⃗0

dS

)
× F⃗ + K̃M⃗ +RT ⃗̄m = 0⃗ (2.26)

The forces and moments in the material frame are defined according to:

F⃗
(3×1)

=

NQ1
Q2

 M⃗
(3×1)

=

MT

M1
M2

 (2.27)
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N is the tensile force, Q1 and Q2 are the transverse shear forces of the cross-section. MT is
the torsional moment, M1 and M2 are the bending moments. ⃗̄f and ⃗̄m are external distributed
forces and moments in the spatial frame brought back to the material frame by applying RT .

Using the weak form of the equilibrium equations in the material frame, the internal virtual
work can be expressed as:

δWint =
∫ L

0
F⃗ δΓ⃗ + M⃗δK⃗dS (2.28)

where L is the initial length of the beam.

To compute the internal forces, the expression of the strain and curvature changes are required to
calculate the strain-displacement matrix B. These expressions can be derived by differentiating
the relationships for the strain and curvature vectors given in Eq.2.22:

[
δΓ⃗

δK⃗

]
(6×1)

=

RT 0 R̃T ϕ⃗0
′
T T

0 T T K̃T T + T ′


(6×9)︸ ︷︷ ︸
D

δϕ⃗0
′

δψ⃗′

δψ⃗


(9×1)

(2.29)

Then, the strain-displacement matrix B is given by:

[B]
(6×ndofs)

= [D]
(6×9)

[Q]
(9×ndofs)

(2.30)

where Q is an interpolation matrix that will be detailed in the next section concerning the
implementation of the beam element. ndofs is the number of degree of freedom of the beam
element.

Finally, the expression of the internal forces vector can be deduced:

[Fint]
(ndofs×1)

=
∫ L

0
BT

[
F⃗

M⃗

]
dS (2.31)

2.2.1.7 Constitutive law

Considering an linear elastic law, the force and moment vectors are related to the strain and
curvature vectors by the following equation:

[
F⃗

M⃗

]
(6×1)

= C

[
Γ⃗

K⃗

]
(6×1)

(2.32)

As a fibre tow is made of individual fibres, independent section stiffness are used. Moreover,
couplings between the deformation modes are neglected. Therefore, the constitutive matrix C
is a diagonal matrix given by:

[C]
(6×6)

=



CE 0 0 0 0 0
0 CΓ1 0 0 0 0
0 0 CΓ2 0 0 0
0 0 0 CK1 0 0
0 0 0 0 CK2 0
0 0 0 0 0 CK3


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CE is the axial stiffness, CΓ1 and CΓ2 are the transverse shear stiffness. CK1 is the torsional
stiffness, CK2 and CK3 are the flexural stiffness.

Transition
This section described the formulation of a shear-flexible linear beam element. In par-
ticular, the Cartesian pseudo-vector representation is used to deal with finite rotations.
Since fibre tows cannot be considered as a continuum medium, the relations between
the cross-section stiffnesses of the classical beam theory are not considered. Instead,
the cross-section stiffnesses are independent and uncoupling between the different de-
formation modes is assumed. In the following section, the implementation details are
given.

2.2.2 Implementation of the beam element

2.2.2.1 Interpolation

The beam element has two nodes and each of them has three displacement degree of freedom
(dofs) Uij and three rotation dofs ψij where i is the node number and j is the dof number.

U⃗i =
[
Ui1 Ui2 Ui3

]T
ψ⃗i =

[
ψi1 ψi2 ψi3

]T
(2.33)

Consequently, the beam element contains 12 dofs. Linear interpolation functions are used and
defined on the parametric domain ξ ∈ [−1; 1] according to Table 2.2 as well as their derivatives.

Table 2.2: Linear shape functions and their derivatives for the beam element

Node Ni
dNi
dξ

1 0.5 (1− ξ) −0.5ξ
2 0.5 (1 + ξ) 0.5ξ

Domain definition ξ ∈ [−1; 1]

The physical and parametric domains of the beam are illustrated in Fig. 2.11.

(a) Physical domain (b) Parametric domain

Figure 2.11: Definition of the physical (a) and parametric (b) domains of the beam element

The Cartesian derivative of the shape functions is given by:

N ′
i(ξ) = 1

J

dNi

dξ (2.34)
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where J = dS
dξ .

Using the interpolation functions, the current position of a point on the neutral axis of a beam
element and its derivative with respect to the curvilinear abscissa S are given by:

ϕ⃗0(ξ) = N1(ξ)ϕ⃗01 +N2(ξ)ϕ⃗02

ϕ⃗′
0(ξ) = N ′

1(ξ)ϕ⃗01 +N ′
2(ξ)ϕ⃗02

(2.35)

where J = L
2 .

Similarly, the Cartesian pseudo-vector ψ⃗ and its derivative with respect to S are computed from
the dofs of the beam elements:

ψ⃗(ξ) = N1(ξ)ψ⃗1 +N2(ξ)ψ⃗2

ψ⃗′(ξ) = N ′
1(ξ)ψ⃗1 +N ′

2(ξ)ψ⃗2

(2.36)

From Eq. 2.35 and 2.36 the relation between the variations of
(
ϕ⃗0

′
, ψ⃗′, ψ⃗

)
and the variations

of the nodal parameters (dofs) can be expressed using the interpolation shape functions of the
beam as well as their derivatives. The interpolation matrix Q is defined as follow:

δϕ⃗0
′

δψ⃗′

δψ⃗


(9×1)

=

N ′
1I 0 N ′

2I 0
0 N ′

1I 0 N ′
2I

0 N1I 0 N2I


(9×12)︸ ︷︷ ︸
Q


δϕ⃗01

δψ⃗1
δϕ⃗02

δψ⃗2


(12×1)

(2.37)

It can be noticed that using the current position of a point on the neutral axis of the beam ϕ⃗0

or its displacement U⃗ is equivalent since:

ϕ⃗0 = U⃗ + X⃗ ϕ⃗0
′
= U⃗ ′ (2.38)

2.2.2.2 Beam profile and shear locking

Depending on the beam profile, a correction factor k is applied to the transverse shear moduli.
k equals 0.89 for a circular profile and 5

6 for a rectangular one. Therefore, C2k
= k ∗ C2 and

C3k
= k ∗ C3.

Using the same interpolation functions for both the displacements and rotations leads to the
well-known shear-locking phenomenon. To alleviate this issue, two techniques are used:

• Reduced integration

• The transverse shear moduli are corrected by adding a residual bending rigidity

Taking into account the residual bending rigidity, the transverse shear moduli are given by:

C2k
=
(

1
C2k

+ L2

12C5

)−1

C3k
=
(

1
C3k

+ L2

12C6

)−1

(2.39)

87



2.2. Modelling the fibre tows

2.2.2.3 Algorithm

The algorithm to compute the internal forces of linear beam element is detailed in Alg.2. In
this algorithm ξ = 0.

Algorithm 2 Internal forces computation of the linear elastic beam element

1: Compute the covariant vector: g⃗ =
∑2
i=1

dNi(ξ)
dξ x⃗i

2: Compute Jacobian: J = L
2

3: Compute the derivative of the neutral axis position: ϕ⃗0
′
= 1

J g⃗

4: Compute the Cartesian pseudo-vector: ψ⃗ =
∑2
i=1Ni(ξ)ψ⃗i

5: Compute the Cartesian pseudo-vector derivative: ψ⃗′ =
∑2
i=1N

′
i(ξ)ψ⃗i

6: Compute the rotation operator R, the tangent operator T and its directional derivative
DT

[
ψ⃗′
]

using Eq. 2.18, 2.19 and 2.20.
7: Compute the current cross-section orientation: e = RE

8: Compute the strain vector: Γ⃗ = RT
(
ψ⃗0

′
− e⃗1

)
9: Compute the curvature vector: K⃗ = T T ψ⃗′

10: Compute the strain-displacement matrix: B =DQ

11: Compute the force and moment vectors:
[
F⃗

M⃗

]
= C

[
Γ⃗

K⃗

]

12: Compute internal forces:
[
Fint

]
= LBT

[
F⃗

M⃗

]

Transition
This section explained how to implement the linear elastic beam element in the finite
element solver. The next step consists in validating the implementation using elementary
test cases.

2.2.3 Numerical validation: Elementary and referenced test cases
The numerical validation of the implementation of the linear elastic beam element used to model
fibre tows is investigated. First, elementary tests are performed and the results are compared
with the B31 element of the commercial code Abaqus. Next, referenced tests are carried out.
The beam element is tested using a classical linear elastic constitutive law. Consequently, the
cross-section stiffnesses are perfectly defined from the Young’s modulus E, the Poisson’s ratio
ν, the shear moduli G and the geometry of the cross-section.

In the non-referenced elementary tests, the Young’s modulus equals 210 GPa, the Poisson’s
ratio is 0.33 and the density equals 7800N kg/m3. The beam has a circular cross-section of
radius 50 mm and a length of 1 m.

2.2.3.1 Elementary tensile test

Objectives This first elementary test case aims at testing the axial behaviour of the beam
element.
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Table 2.3: Cantilever beam under transverse tip load F = 100 N: x-displacement, y-displacement
and rotation around z-axis for different number of elements and comparison with Abaqus B31
element

Number
of elements

x-displacement (m) y-displacement (m) rotation around z-axis
Present B31 Present B31 Present B31

1 −5.272 10−10 −4.622 10−10 −3.252 10−5 −3.047 10−5 −4.850 10−5 −4.850 10−5

3 −6.172 10−10 −6.110 10−10 −3.252 10−5 −3.229 10−5 −4.850 10−5 −4.850 10−5

10 −6.299 10−10 −6.293 10−10 −3.252 10−5 −3.250 10−5 −4.850 10−5 −4.850 10−5

Analytic 0 −3.22 10−5 −4.85 10−5

Setup A single element is clamped at one end while an axial point load of 100 N is applied at
the other extremities.

Results The loaded-tip displacement equals 6.063 10−8m for the tested beam element as well
as for the B31 element. The analytical value also agrees with this result.

2.2.3.2 Elementary twisting test

Objectives This second elementary test case aims at testing the torsional behaviour of the
beam element.

Setup A single element is clamped at one end while a torsional moment of 100 N/m is applied
at the other end.

Results The loaded-tip rotation around the neutral axis of the beam equals 1.290 10−4 for the
tested beam element as well as for the B31 element. The analytical result also agree with this
result.

2.2.3.3 Cantilever beam under transverse tip load

Objectives This third elementary test case aims at testing the transverse behaviour of the beam
element when submitted to transverse load. Since a non-following force is applied, transverse
shear deformation appears contrary to a pure bending case. While the two previous test cases
where limited to small displacements and rotations, this test is performed with two load values,
namely 100 N and 106 N, to check the behaviour of the beam element when large displacements
and finite rotations occur.

Setup A beam is clamped at one end while a transverse point load is applied at the other end.
The number of elements as well as the load value are varied.

Results The results for the small displacements case are reported in Table 2.3. Values obtained
for the beam element are in good agreement with those of the B31 element and the analytical
values. The results for the large displacements and rotations are shown in Table 2.4. The results
of the beam element converge to the same values of the B31 element.

2.2.3.4 Cantilever beam tip moment

Objectives This last elementary test case aims at testing the bending behaviour of the beam
element when submitted to a moment. Contrary to the previous test case, no transverse shear
deformation appear due to the pure bending configuration. As for the previous test, this test is
also performed with two load values, namely 100 N/m and 5 105 N/m, to check the behaviour
of the beam element when large displacements and finite rotations occur.
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Table 2.4: Cantilever beam under transverse tip load F = 106 N: x-displacement, y-displacement
and rotation around z-axis for different number of elements and comparison with Abaqus B31
element

Number
of elements

x-displacement (m) y-displacement (m) rotation around z-axis
Present B31 Present B31 Present B31

1 -0.0479 -0.0423 -0.3065 -0.2883 -0.4612 -0.4653
3 -0.0529 -0.0523 -0.2967 -0.2948 -0.4503 -0.4507
10 -0.0537 -0.0537 -0.2959 -0.2956 -0.4493 -0.4493

Table 2.5: Cantilever beam under tip moment M = 100 N/m: x-displacement, y-displacement
and rotation around z-axis for different number of elements and comparison with Abaqus B31
element

Number
of elements

x-displacement (m) y-displacement (m) rotation around z-axis
Present B31 Present B31 Present B31

1 −1.176 10−9 −1.177 10−9 −4.850 10−5 −4.850 10−5 −9.701 10−5 −9.701 10−5

3 −1.524 10−9 −1.524 10−9 −4.850 10−5 −4.850 10−5 −9.701 10−5 −9.701 10−5

10 −1.564 10−9 −1.564 10−9 −4.850 10−5 −4.850 10−5 −9.701 10−5 −9.701 10−5

Analytic 0 −4.85 10−5 −9.70 10−5

Setup A beam is clamped at one end while a transverse point load is applied at the other end.
The number of elements as well as the load value are varied.

Results The results for the small displacement case are reported in Table 2.5 where good
agreement with the B31 elements and analytical results is shown. The results for the large
displacement and rotations are shown in Table 2.6.

Figure 2.12: Cantilever beam tip moment (F = 106 N): Different configurations of the beam
and displacement field along the y-axis (m)

Table 2.6: Cantilever beam under tip moment M = 5 105 N/m: x-displacement, y-displacement
and rotation around z-axis for different number of elements and comparison with Abaqus B31
element

Number
of elements

x-displacement (m) y-displacement (m) rotation around z-axis
Present B31 Present B31 Present B31

1 -0.0292 -0.0292 -0.2401 -0.2402 -0.4850 -0.4850
3 -0.0377 -0.0377 -0.2380 -0.2381 -0.4850 -0.4850
10 -0.0386 -0.0386 -0.2378 -0.2377 -0.4850 -0.4850
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Table 2.7: Cantilever beam under two transverse loads: x-displacement, y-displacement and
rotation around z-axis for different number of elements and comparison with Géradin and Car-
dona (2001) and analytical results

Number of
elements

x-displacement (m) y-displacement (m) rotation around z-axis
Present Ref Present Ref Present Ref

2 -31.298 -28.986 -69.685 -65.862 -1.076 -1.100
4 -30.872 -30.258 -67.310 -66.627 -1.048 -1.056
8 -30.877 -30.621 -67.210 -66.874 -1.047 -1.046

Analytic -30.75 -66.96 -

2.2.3.5 Referenced test: cantilever beam under two transverse loads

Objectives This first referenced test case aims at testing the bending and transverse behaviour
of the beam element when submitted to two transverse point loads.

Setup A beam is clamped at one end while two transverse point loadings are applied as
illustrated in Fig. 2.13. The material parameters have no specified units and does not correspond
to a known material. In particular, the Poisson’s ratio is negative and equals −0.931. The
Young’s modulus equals 1570796 and the density (ρ = 0.01) is chosen such as a reasonable
critical time step is obtained while the kinetic energy is low compared to the internal one.
The beam has a circular cross-section of radius 0.252 and a total length of 102.75. The first
transverse force is applied at a distance L1 = 52.03 with a magnitude of 0.85 while the second
is applied at the tip with the magnitude of 1.35. The number of elements is varied.

Figure 2.13: Cantilever beam under two transverse loads: initial configuration and boundary
conditions

Results The results are summarized in Table 2.7 and compared with those by Géradin and
Cardona (2001) as well as the analytical solution. The beam element behaviour is in good
agreement with both the reference’s results and the analytical ones.

2.2.3.6 Referenced test: roll-up of a beam under tip moment

Objectives This second referenced test case aims at testing the pure bending behaviour of the
beam element when submitted to a tip moment. It is similar to the elementary test case 2.2.3.4
but it features higher rotation and is documented in the literature.

Setup A beam is clamped at one end while a moment is applied at the other end. As the
previous test, the material parameters are given without specified units. The Young’s modulus
equals 79577, the Poisson’s ratio is null and the density equals 10. The beam has a circular
cross-section of radius 0.2 and a length of 10. 10 elements are used and two loading scenario
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Table 2.8: Roll-up of a beam under tip moment (M = 2.5π): x-displacement and y-displacement
comparisons with Ibrahimbegović et al. (1995) and Ritto-Corrêa and Camotim (2002)

Number of
elements

x-displacement (m) y-displacement (m)
Present Ref Present Ref

10 -0.9945 -0.9945 3.7302 3.7302

are considered. In the first one a moment of 2.5π is applied while in the second one a moment
of 20π is applied such as the beam finally forms a circle.

Results The results are summarized in Table 2.8. The beam element behaviour agrees perfectly
with the one described in Ibrahimbegović et al. (1995); Ritto-Corrêa and Camotim (2002) in
the first scenario. In the second scenario, the loaded tip of the beam finally coincides with
the clamped one which gives the beam a circle shape. The final position of the loaded tip is(
5.75716 10−5, 1.38638 10−6) in the xy-plane. Fig. 2.14 shows different configurations of the

beam for the second scenario.

Figure 2.14: Roll-up of a beam under tip moment (M = 20π): different configurations of the
beam

2.2.3.7 Referenced test: roll-up of a beam under tip moment and perturbation force

Objectives This third referenced test case is similar to the first scenario of the previous test
case. However, a perturbation force, namely an out-of-plane point load, is applied to test the
behaviour of the beam in a 3D loading case.

Setup The material parameters and geometry are those of test case 2.2.3.6 with an additional
point load applied at the free end along the z-axis. The load magnitude is 0.0625, which is
relatively small but sufficient to create a 3D configuration.

Results The results are reported in Table 2.9. The beam element behaviour agrees well with
the one described in Ibrahimbegović et al. (1995); Ritto-Corrêa and Camotim (2002).

92



2.2. Modelling the fibre tows

Table 2.9: Roll-up of a beam under tip moment (M = 2.5π) and perturbation force: displace-
ment components’ comparisons with Ritto-Corrêa and Camotim (2002) (Ref1) and Ibrahimbe-
gović et al. (1995) (Ref2)

Number of
element

x-displacement y-displacement z-displacement
Present Ref1 Ref2 Present Ref1 Ref2 Present Ref1 Ref2

10 -0.99644 -0.99618 -0.99619 3.72913 3.72853 3.72855 0.19170 0.19523 0.19507

Table 2.10: Cantilever bend of Bathe and Bolourchi: comparison of tip displacement components
with references

Present Bathe and Bolourchi Simo and Vu-Quoc Géradin and Cardona Ibrahimbegović et al. Ritto-Corrêa and Camotim
x-displacement -13.57 -13.4 -13.49 -13.74 -13.668 -13.668
y-displacement -23.53 -23.5 -23.48 -23.67 -23.697 -23.696
z-displacement 53.52 53.4 53.37 53.50 53.498 53.498

2.2.3.8 Referenced test: cantilever bend by Bathe and Bolourchi (1979)

Objectives This last referenced test case is another 3D test case that checks the ability of the
beam element to represent initially in-plane curved configurations.

Setup The beam lies in the xy-plane following a circle arc of radius 100. The length of the
beam is such as a 45° cantilever bend is formed as illustrated in Fig 2.15. The Young’s modulus
is 107, the Poisson’s ratio is null and the density is 100. The beam has a rectangular cross-
section of side-length one and is meshed with eight equal-length elements. A point load of 600
is applied to the free end in the z-direction.

Figure 2.15: Cantilever bend of Bathe and Bolourchi: initial configuration and boundary con-
ditions

Results The results are summarized in Table 2.10. The beam element behaviour is in good
agreement with the one reported in the literature by Bathe et al. Fig. 2.16 shows different
configurations of the beam.

Conclusion
A linear elastic beam element has been formulated and successfully implemented in the
finite element solver. It allows for small strains and finite rotations which is necessary in
forming simulation. Elementary and referenced test cases were performed to numerically
validate the implementation of this finite element. Constant and independent cross-
section stiffnesses will be used to model fibre tows with this beam element since fibre
tows are made of individual fibres.
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Figure 2.16: Cantilever bend of Bathe and Bolourchi: different configurations of the beam

2.3 Backing material model

Introduction
Model I requires the modelling of the backing material using 2D elements. Any 2D linear
finite element formulation can be used depending on the backing material to be modelled.
For instance, the finite element developed by Hamila et al. (2009) could be used to model
a woven fabric. In order to perform numerical elementary tests of Model I without
considering a specific backing material, a 2D hyperelastic membrane is formulated and
implemented in the finite element solver. This element allows for large deformations
and has isotropic properties. For the sake of clarity and brevity of the demonstration, an
incompressible Neohookean material, which is among the simplest hyperelastic materials,
is used. Consequently, only the major points of the formulation are detailed and some
elementary test cases are addressed.

2.3.1 Formulation of an incompressible Neohookean membrane
2.3.1.1 Assumptions

The membrane is supposed to be incompressible and plane-stress condition applies. Conse-
quently all the tensorial quantities are reduced to two dimensional tensors to simplify the
demonstration. Only the transverse component C33 of the right Cauchy-Green strain tensor
will be additionally required and computed from the plane-stress condition.

2.3.1.2 Kinematics

The transformation between the initial and current configuration is described by the plane
transformation gradient F :
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[F ]
(2×2)

= dx⃗e

dX⃗e
(2.40)

where X⃗e

(2×1)
and x⃗e

(2×1)
are respectively the planar coordinates in the initial (Ω0) and current (Ωt)

configuration of a point in the membrane defined by a local basis.

2.3.1.3 Strain measure and energy

The planar right Cauchy-green tensor is defined as:

[C]
(2×2)

= F TF (2.41)

The incompressibility condition imposing the Jacobian J equals 1 where J = detF3D (where
F3D is the three dimensional transformation gradient) leads to an analytic expression for the
transverse component of C33 of the three dimensional right Cauchy-Green tensor:

C33 = 1
C11C22 − C2

12
(2.42)

The strain energy of an incompressible neohookean material is defined as:

W (C) = µ

2 (I1 − 3) (2.43)

where I1 is the first main invariant: I1 = tr(C) and µ is a material parameter.

2.3.1.4 Stress tensors

The second Piola-Kirchhoff stress tensor S is computed from the strain energy for a nearly-
incompressible hyperelastic material by:

[S]
(2×2)

= 2dW (C)
dC + ρJC−1 (2.44)

In this expression, J is the determinant of the transformation gradient F as defined in the
previous section and equals 1 in the incompressible case. p is a penalty factor resulting from
the incompressibility condition and can be computed from the plane-stress condition imposing
S33 = 0. Using Eq. 2.44 and the plane-stress, it comes:

p = −µC33 (2.45)

The derivative of the deformation energy according to the right Cauchy-green tensor is defined
as: [

dW (C)
dC

]
(2×2)

= µ

2 I (2.46)

Consequently, the second Piola-Kirchhoff stress tensor is computed from:

S = µ
(
I − C33C

−1
)

(2.47)

The Cauchy stress tensor σ is obtained by the transformation of S:

[σ]
(2×2)

= 1
J
FSF T (2.48)
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Table 2.11: Linear shape functions and derivatives of the triangle element

Node Ni
∂Ni
∂ξ

∂Ni
∂η

1 ξ 1 0
2 η 0 1
3 1− ξ − η −1 −1

Domain definition (ξ, η) ∈ [0; 1]× [0; 1]

2.3.1.5 Internal forces

Finally the internal forces vector is derived from the weak form of the equilibrium equation:[
Fint

]
(ndofs×1)

=
∫
A
BTσds (2.49)

where A is the current area of the 2D element and B is the strain-displacement matrix com-
puted using the Cartesian derivatives of the 2D element shape functions as detailed in the
implementation section.

Transition
This section gave the major points of the formulation of an incompressible Neohookean
membrane. The next section will discuss its implementation in the finite element solver.
In particular, the interpolation order and the computation of the strain-displacement
matrix are detailed.

2.3.2 Implementation of the incompressible Neohookean membrane
This section discusses the implementation of an incompressible Neohookean membrane element.
Linear triangle and quadrangle element are implemented.

2.3.2.1 Interpolation

Triangle and quadrangle elements possess 3 displacement degrees of freedom per node:

U⃗i
(3×1)

=
[
Ui1 Ui2 Ui3

]T
where i is the node number.

A point x⃗ in the element is defined according to the coordinates of the element’s nodes x⃗i and
the element shape functions Ni evaluated at the natural coordinates (ξ, η) of x⃗:

x⃗ =
nnodes∑
i=1

Nix⃗i (2.50)

The linear shape functions defined in the parametric domain (ξ, η) are given for the triangle in
Table 2.11 and for the quadrangle in Table 2.12.

2.3.2.2 Local basis

The covariant basis G of the element is defined as:

[G]
(3×2)

=
[
g⃗1

(3×1)
g⃗2

(3×1)

]
(2.51)
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Table 2.12: Linear shape functions and derivatives of the quadrangle element

Node Ni
∂Ni
∂ξ

∂Ni
∂η

1 0.25 (1− ξ) (1− η) 0.25 (η − 1) 0.25 (ξ − 1)
2 0.25 (1 + ξ) (1− η) 0.25 (1− η) 0.25 (−1− ξ)
3 0.25 (1 + ξ) (1 + η) 0.25 (1 + η) 0.25 (1 + ξ)
4 0.25 (1− ξ) (1 + η) 0.25 (−1− η) 0.25 (1− ξ)

Domain definition (ξ, η) ∈ [−1; 1]× [−1; 1]

where the covariant vector g⃗j =
∑2
j=1

∂Ni
∂χj
x⃗i with χ1 = ξ and χ2 = η.

Next, a local orthonormal base e is required to compute the planar coordinates of the element
and can be defined from the vectors constituting the covariant base:

e⃗1 = 0.5 g⃗1 + g⃗2
∥g⃗1∥∥g⃗2∥

e⃗3 = g⃗1 × g⃗2
∥g⃗1∥∥g⃗2∥

e⃗2 = e⃗3 × e⃗1 (2.52)

The planar coordinates of the element’s nodes, named xei are obtained by projecting the node
coordinates x⃗i is the plane defined by (e⃗1, e⃗2):

x⃗ei
(2×1)

=
[
e⃗1

T

e⃗2
T

]
(2×3)

x⃗i
(3×1)

(2.53)

2.3.2.3 Strain-displacement matrix

Then, the Jacobian J of the transformation from the parametric to the physical domain is given
by: [

dx
dy

]
(2×1)

=
[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
(2×2)︸ ︷︷ ︸
J

[
dξ
dη

]
(2×1)

(2.54)

where x⃗e =
[
x
y

]
=
∑nnodes
i=1 Ni(ξ, η)x⃗ei .

Therefore, the Cartesian derivatives of the shape functions are defined as:∂Ni
∂x

∂Ni
∂y


(2×1)

= J−1

∂Ni
∂ξ

∂Ni
∂η


(2×1)

(2.55)

Finally, the strain-displacement matrix is defined from the Cartesian derivatives of the shape
functions as given by:

[B]
((3×3)×nnodes)

=
[
B1 . . . Bnnodes

]
(2.56)

where Bi is defined as:

[Bi]
(3×3)

=


∂Ni
∂x e⃗1

∂Ni
∂y e⃗2

∂Ni
∂x e⃗1 + ∂Ni

∂x e⃗2

 (2.57)
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Table 2.13: Gauss point definition for the linear triangle element

Gauss point ξ η wg

1 1
3

1
3

1
2

Table 2.14: Gauss point definition for the linear quadrangle element

Gauss point ξ η wg

1 − 1√
3 − 1√

3 1
2 1√

3 − 1√
3 1

3 1√
3

1√
3 1

4 − 1√
3

1√
3 1

2.3.2.4 Integration

The internal forces are integrated over the element using a Gauss point quadrature. Tables 2.13
and 2.14 define the position of the Gauss points as well as their weight for the triangle and
quadrangle elements.

2.3.2.5 Algorithm

The algorithm to compute the internal forces of the Neohookean linear membrane element is
detailed in Alg.3.

Algorithm 3 Internal forces computation of the Neohookean linear membrane

1: Initialize
[
Fint

]
= 0

2: for each Gauss point do
3: Compute the covariant vectors g⃗1 and g⃗2 defined in Eq. 2.51
4: Compute the local base e defined in Eq. 2.52
5: Compute the planar coordinates x⃗ei of the element’ nodes using Eq. 2.53
6: Compute the Jacobian J using: Jjk =

∑nnodes
i=1

∂Ni
∂χj

xeik where xeik is the kth component of
x⃗ei and χ1 = ξ, χ2 = η

7: Compute det(J)
8: Compute the Cartesian shape functions using Eq. 2.55
9: Set B from Eq. 2.56 and 2.57

10: Compute the planar transformation gradient F defined in Eq.2.40
11: Compute the planar right Cauchy-Green tensor C using Eq. 2.3.1.3
12: Compute the transverse component C33 from Eq. 2.42
13: Compute det(F3D) =

√
C33 det(F )

14: Update membrane thickness: t =
√
C33t0 where t0 is the initial thickness

15: Compute invariant I1 = tr(C) + C33
16: Compute Piola-Kirchhoff tensor S defined in Eq. 2.44
17: Compute Stress tensor σ using Eq. 2.48
18: Compute internal forces:

[
Fint

]
=
[
Fint

]
+ wgB

Tσ det(J)t where wg is the weight of
the current Gauss point.
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Transition
This section gave the needed materials to implement linear triangle and quadrangle el-
ements with an incompressible Neohookean behaviour. Numerical validation of the im-
plementation is carried out in the next section.

2.3.3 Numerical validation: Elementary test cases
In the following elementary test cases, the material parameters does not correspond to a known
material. The density of 0.01 is chosen such as the kinetic energy remains small to ensure
quasi-static analysis. In all test, µ equals 100 MPa. Besides, the analysed tensorial quantities
are the second Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor defined by:

EGL = 1
2 (C − I) (2.58)

2.3.3.1 Biaxial tensile test

Objectives This first elementary test case aims at testing the behaviour of the element when
submitted to biaxial tension. The imposed kinematic should result in zero shear deformation.

Setup The bottom edge of a single element is fixed along y-direction and the left edge is fixed
along y-direction. The right edge or node is translated in the x-direction with a value of ∆1 while
the top edge or node is translated in the y-direction with a value of ∆2. Fig. 2.17 illustrates
the initial and final configurations. The transformation gradient F describing this kinematic is
given by:

[F ]
(2×2)

=
[
1 + ∆1

L1
0

0 1 + ∆2
L2

]

According to the definition of the planar right Cauchy-Green strain tensor (Eq. 2.3.1.3):

[C]
(2×2)

=


(
1 + ∆1

L1

)2
0

0
(
1 + ∆2

L2

)2


And C33 = 1(

1+ ∆1
L1

)2(
1+ ∆2

L2

)2 using Eq. 2.42.

Figure 2.17: Biaxial tension test of an incompressible Neohookean membrane (initial configu-
ration (dotted line), final configuration (solid line)

The lengths L1 and L2 equal 1 mm. Two scenarios are analysed. The first one where both
displacements are equal (∆1 = ∆2 = 0.1 mm) and a second where ∆1 = 2∆2 with ∆2 = 0.1 mm
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Table 2.15: Equibiaxial tensile test of an incompressible Neohookean membrane: values of the
Green-Lagrange strain tensor and Second Piola-Kirchhoff stress tensor

Green-Lagrange strain tensor Second Piola-Kirchoff stress tensor (MPa)
Components E11 E22 E33 E12 S11 S22 S12

Triangle 0.105 0.105 -0.158493 0 61.4457 61.4457 0
Quadrangle 0.105 0.105 -0.158493 0 61.4457 61.4457 0

Analytic 0.105 0.105 -0.158493 0 61.4457 61.4457 0

Table 2.16: Biaxial tensile test of an incompressible Neohookean membrane: values of the
Green-Lagrange strain tensor and Second Piola-Kirchhoff stress tensor

Green-Lagrange strain tensor Second Piola-Kirchoff stress tensor (MPa)
Components E11 E22 E33 E12 S11 S22 S12

Triangle 0.22 0.105 -0.213039 0 77.126 72.7781 0
Quadrangle 0.22 0.105 -0.213039 0 77.126 72.7781 0

Analytic 0.22 0.105 -0.213039 0 77.126 72.7781 0

Results The values of the Green-Lagrange strain tensors and those of the second Piola-
Kirchhoff stress tensors as well as the analytic values are given in Table 2.15 for the first
scenario and in Table 2.16 for the second. The numerical results are in good agreement with
the analytic ones for both scenarios.

2.3.3.2 Simple shear test

Objectives This second elementary test case aims at testing the behaviour of the element when
submitted to simple shear. The imposed kinematics should result in zero through-the-thickness
deformation.

Setup As depicted in Fig. 2.18, the bottom edge of a single element is clamped while the top
edge (quadrangle) or the top point (triangle) is translated in the x-direction by the value ∆.
The bottom and top edges have an initial length of L1 while the side edges have a length of L2.
The plane transformation gradient associated with this kinematic is defined as:

[F ]
(2×2)

=
[
1 ∆

L2
0 1

]

According to the definition of the plane right Cauchy-Green strain tensor (Eq. 2.3.1.3):

[C]
(2×2)

=

1 ∆
L2

0 1 +
(

∆
L2

)2


And C33 = 1 using Eq. 2.42.

The lengths L1 and L2 are equal to 1 mm. A displacement ∆ = 0.1 mm is imposed.

Results The values of the Green-Lagrange strain tensors and those of the second Piola-
Kirchhoff stress tensors are given in Table 2.17 as well as the analytic values. The numerical
results are in good agreement with the analytic ones.
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Figure 2.18: Simple shear of an incompressible Neohookean membrane (initial configuration
(dotted line), final configuration (solid line)

Table 2.17: Simple shear of an incompressible Neohookean membrane: values of the Green-
Lagrange strain tensor and Second Piola-Kirchhoff stress tensor

Green-Lagrange strain tensor Second Piola-Kirchoff stress tensor (MPa)
Components E11 E22 E33 E12 S11 S22 S12

Triangle 0 0.005 ≈ 10−16 0.05 -1 ≈ −10−15 10
Quadrangle ≈ −10−15 0.005 ≈ 10−15 0.05 -1 ≈ −10−14 10

Analytic 0 0.005 0 0.05 -1 0 10

2.3.3.3 Pure shear test

Objectives This third elementary test case aims at testing the behaviour of the element when
submitted to pure shear. The imposed kinematic should result in zero shear deformation.

Setup As illustrated in Fig. 2.19, the bottom and top edges (or point) of a single element are
fixed in the y-direction while the right edge (quadrangle) or right point (triangle) is translated
in the x-direction by a value of ∆. The left edge is clamped in the x-direction. The edges have
an initial length of L. The plane transformation gradient associated with this kinematics is
defined as:

[F ]
(2×2)

=
[

1+∆
L 0
0 1

]

According to the definition of the planar right Cauchy-Green strain tensor (Eq. 2.3.1.3):

[C]
(2×2)

=

(1+∆
L

)2
0

0 1


And C33 = C−1

11 using Eq. 2.42.

The length L equals 1 mm. A displacement ∆ = 0.001 mm is imposed.

Results The values of the Green-Lagrange strain tensors are given in Table 2.18 as well as the
analytic values. The numerical results are in good agreement with the analytic ones.
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Figure 2.19: Pure shear of an incompressible Neohookean membrane (initial configuration (dot-
ted line), final configuration (solid line)

Table 2.18: Pure shear of an incompressible Neohookean membrane: values of the Green-
Lagrange strain tensor

Green-Lagrange strain tensor
Components E11 E22 E33 E12

Triangle 1.0005 10−3 0 −9.98502 10−4 0
Quadrangle 1.0005 10−3 ≈ −10−17 −9.98502 10−4 ≈ 10−18

Analytic 1.0005 10−3 0 −9.98502 10−4 0

Conclusion
This section presented the formulation and implementation details of an incompressible
Neohookean membrane chosen to model the backing material. This membrane will be
used to perform elementary test cases on Model I in the next section. Obviously, more
complex and specific mechanical behaviours could be implemented depending on the
nature of backing material. The simplicity of the implemented hyperelastic behaviour
allows for representing isotropic material with large deformations if necessary.

2.4 Modelling the stitching yarn as an embedding constraint

Introduction
As stated in section 2.1.2, the stitching yarn is supposed to act as a bond either between
the fibre tows and the backing material (Model I) or between fibre tows of adjacent layers
(Model II). To avoid an explicit and time consuming representation of the stitching yarn
as well as the contact interactions with their surroundings, an implicit modelling based
on the embedded element approach, which has been introduced in section 2.1.3, is used.
This section begins with presenting the general formulation of the embedded element
approach. In particular, the kinematic constraints applied to the embedded elements
from the host element and the transfer of the internal forces from the embedded elements
to the host one are explained. Next, the embedded element approach is successively
applied to Model I and Model II. Finally, some elementary test cases are addressed to
validate the implementation of the TFP preform models.
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2.4.1 General formulation and implementation
2.4.1.1 Kinematic constraint

The embed of a node into the host element is achieved by computing the position of the em-
bedded node from the position of the nodes of the host element as:

x⃗e =
∑
α

Nh
α (χe) x⃗hα

Consequently, the displacement dofs U⃗ek of the kth node of an embedded element is computed
from the displacement dofs U⃗hα of the nodes of its host element:

U⃗ek =
∑
α

Nh
α (χe) U⃗hα (2.59)

However, beam elements have also rotation dofs. Therefore, there is two options to embed
a beam element. The first one consists in embedding both displacement and rotational dofs.
This means that, similarly to the displacement dofs, the rotation dofs of a beam’s node k are
computed using:

ψ⃗ek =
∑
α

Nh
α (χe) ψ⃗hα (2.60)

where ψ⃗hα are the rotation dofs of the αth host node. With this option, the host element either
requires rotation dofs (using a shell formulation for instance) or they have to be computed from
geometric considerations as done by Markou (2011) where beams are embedded in 3D solid
elements. The embed of the rotation dofs implies a full transfer of the torques of the embedded
elements to the host element as if they were welded. However, as stated in section 2.1.2, in
the TFP preform models, there is a hinge connection between the embedded and host elements
to allow rotation at the fibre tows’ intersections. Moreover, the resistance to rotation due to
friction and deformation of the stitching yarn is taken into account using a linear elastic torsional
spring. Consequently, the second option, which only constraints the displacement dofs of the
embedded beam from those of the host element, is chosen here.

Harrison (2016), which embedded beams on the edges of membrane elements to model woven
fabrics, already noticed that the embed of the rotation dofs lead to an excessive and non-physical
in-plane shear stiffness.

2.4.1.2 Transfer of the internal forces to the host element

Since the embedded elements are kinematically constrained by the host element, the embedded
dofs qe are dependent on the dofs of the host element qh. As a consequence, the internal forces
of an embedded element are transferred to the host element. Therefore, the internal forces of
a host element F hint are composed of the internal forces F hb

int resulting from the host element
behaviour and the internal forces F he

int due to the embedded element (Eq. 2.61):

F hint = F hb
int + F he

int (2.61)

The contribution F he
int is easily computed from the internal forces of the embedded elements.

The kinematic constraint implies:

[qe]
(ne

d
×1)

= [Ne
h]

(ne
d
×nh

d
)

[
qh
]

(nh
d

×1)

(2.62)
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where ned is the number of embedded dofs of the embedded element and nhd is the number of
host dofs. Ne

h is the matrix of shape functions of the host element evaluated at the embedded
nodes so that Eq. 2.62 is a generalization of Eq. 2.59 to all the embedded dofs of the embedded
element.

Then, the variation of deformation of the embedded element ϵe is related to the variation of
the degrees of freedom by:

δϵe = Beδqe (2.63)

where Be is the strain-displacement matrix of the embedded element.

Introducing Eq. 2.62 into Eq. 2.63 gives:

δϵe = BeNe
h︸ ︷︷ ︸

Be
h

δqh (2.64)

where Beh is the strain-displacement matrix that relates the variation of deformation of the
embedded element to the variation of the host dofs.

Therefore the contribution of the embedded element to the internal forces of the host element
is defined as: [

F he
int

]
(nh

d
×1)

=
∫
ω
Beh

Tσedω (2.65)

where σe is the stress tensor of the embedded element.

Eq. 2.65 can also be written at the αth node of the host element as:

F he
intα =

∑
k

Nα(χk)F eintk
(2.66)

where F eintk
is the internal forces of the kth node of the embedded element.

Model I Fig. 2.20 illustrates the transfer of the internal forces from one 1D embedded element
to a 2D host element. The red solid arrows correspond to the internal forces of the embedded
nodes that are transferred to the host element’s nodes. The green arrows correspond to the
contribution from the embedded nodes and adds up to the internal forces of the host element’s
nodes (light blue arrows) to form the total internal forces at the host nodes (dark blue arrows).

Model II Fig. 2.21 illustrates the transfer of the internal forces from one embedded node to a
1D host element.

2.4.1.3 Mass contribution of embedded elements

The embedding constraint also involves a transfer of the mass of the embedded elements to the
host element. Regarding the computation of the mass matrix, the contribution of an embedded
element to a host element is computed according to Eq.2.67 established in Taylor et al. (2005).

Mhe
αβ =

∑
kl

Nα(χk)M e
klNβ(χl) (2.67)

In Eq. 2.67, Greek subscript refers to the nodes of the host element, whereas Latine superscript
refers to the nodes of the embedded element. As explicit time integration is performed in
the present study, a lumped mass matrix is used. Although lumping the mass matrix in the
presence of embedded elements is not straightforward, it is done by summing the columns of the
mass matrix (sum over the β index). In the case of quasi-static analyses, this approximation is
supposed to have minor effects on the results (Taylor et al., 2005).
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Figure 2.20: Transfer of internal forces in Model I

Figure 2.21: Transfer of internal forces in Model II

Model II For Model II, the mass contribution of an embedded node to a host element reduces
to:

Mhe
αβ = Nα(χk)M eNβ(χk) (2.68)

where M e is the mass of the embedded node.

2.4.1.4 Integration into Femtran

The standard workflow in Femtran was presented in Fig. 2.8. Fig 2.22 shows the workflow of
Femtran where embedding constraints are included. The green boxes describe the additional
steps to take into account embedding constraints. First, the transfer of mass from the embedded
dofs to the host dofs occurs after the computation of mass is achieved for all elements and
assemble into a vector at the dof level. Once the kinematic variables of the host elements are
computed in the time integration step, the kinematic constraint of the embed is applied. Finally,
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after computing the internal forces of all the elements and assembling the internal forces into a
vector at the dof level, the internal forces of the embedded dofs are transferred to the host dofs.

Start

Init Model Input file

Compute mass M =
∑
Mel

Transfer mass Eq. 2.67

t = t+ ∆t

Apply boundary conditions Fext

Solve contact Fc; Fext += Fc

Perform time integration Ü ; U̇ ; U

Apply
embeddding constraints Eq. 2.62

Compute internal forces Fint =
∑
F el

int

Transfer internal forces Eq. 2.61

Save Output file

no

yes
t = tend ?

Stop

read

define

use

define

define

define

use

define

use

write

Figure 2.22: Femtran workflow under embedding constraints

Transition
This section described the implicit modelling of the stitching yarn assumed to act as a
hinge between the fibre tows and the backing material (Model I) or between the fibre
tows of adjacent layers (Model II). The embedded element approach allows modelling
this bond. Only the displacement degrees of freedom are embedded since the rotation
between fibre tows of different layers is allowed. The resistance to this rotation is taken
into account through linear elastic torsional springs placed at the intersections between
fibre tows of adjacent layers. The kinematic constraint resulting from the embedding
element approach implies a transfer of the mass and internal forces from the embedded
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elements to the host elements. The next section explains how to generate the TFP
models.

2.4.2 Generation of TFP preform models
The embedding constraint requires knowing the natural coordinates of the finite element nodes
embedded into the host elements. The natural coordinates are computed using the procedure
described in section 2.1.3.1. Each model is generated from the trajectories of the fibre tows
which allows a fairly good representation of the preform design. The design process of the
TFP preforms will be presented in the next chapter. In the following, a fibre tow trajectory
is simply represented as a 2D array where each line corresponds to the plane coordinates of a
point describing the trajectory.

2.4.2.1 Meshing of Model I: 1D elements embedded in 2D elements

Model I is based on the embedding of 1D elements into 2D elements. It requires identifying
for each node of the embedded elements, its host element. Moreover, 1D embedded elements
cannot cross over the boundaries of the 2D host elements as shown in Fig 2.23. Consequently,
nodes are required at the intersections between a fibre tow trajectory and the boundaries of the
2D elements of the backing material. Identifying the host element of each embedded node as
well as the intersections with the boundaries of 2D elements can be extremely time consuming
if a basic search algorithm is used. The simplest algorithm would, for each embedded node,
iterate through each host element, compute the natural coordinates and check if the natural
coordinates are in the parametric domain of the element. To optimize the generation of the
model, a specific algorithm has been developed and will be detailed hereafter. It basically
consists in identifying the host element of the first point of a fibre tow trajectory and then pass
to the next points by using the topology information of the host element such as its neighbours.

(a) Correct mesh (b) Incorrect mesh

Figure 2.23: Meshing of 1D embedded elements in 2D host elements

Overview of the model generation process The generation of the model of a TFP preform
with backing material is represented in Fig 2.24. First, the geometry of the backing material
is meshed using 2D elements. Then, knowing the points describing the trajectories of the fibre
tows, the later are meshed by adding crossing points at the intersections with the boundaries
of the host elements. At the end of this step, the mesh of fibre tows contains the original
points that discretize the fibre path with additional crossing points at the intersections with the
backing material element boundaries. The mesh quality of the fibre tows can be improved by
removing some points. Points on host element boundaries cannot be removed.

Principle of the algorithm The principle of the algorithm is illustrated in Fig. 2.25.
Fig. 2.25 (a) represents a portion of the TFP preform design with some numbered backing

107



2.4. Modelling the stitching yarn as an embedding constraint

Figure 2.24: Overview of the meshing procedure of Model I: (a) TFP preform design, (b) 2D
mesh of the backing material, (c) mesh of the 1D embedded elements

material elements and the path of one fibre tow. Step 1 (Fig. 2.25 (b)) consists in identifying
the host element of the first point of the trajectory by iterating through all the backing material
elements, computing the natural coordinates of the first point and checking if it lies in the
parametric domain of the inspected element. In Fig. 2.25 (b), the pair (2; 1), where the first
argument of the pair is the element number and the second is the point number along the fibre
path, is appended in a list as well as the natural coordinates of the point in its host element.
This pair gives information about the current host element and point along the fibre path. The
next step (Step 2) is to find the host element associated to the next points by using the backing
material mesh topology. To this end, if the next point is not in the current host element, the
crossing between the segment formed by the current point and the next one (blue points in
Fig. 2.25 (c)) and the boundaries of the current host element is searched. The current host
element and the intersection point (green point in Fig. 2.25 (c)) are appended in the list as
a new pair (2; 2). If the intersection point is located on an edge of the current host element,
then the new current element is the neighbour sharing this edge. However, if the intersection
point is located on a node, the new current element is identified by considering a dummy point
located on the segment defined by the current point (those of the intersection) and the next
point along the path. This dummy point is chosen really close to the current point and its
natural coordinates are computed for each neighbour element sharing the node until finding the
neighbour element containing this dummy point. Then, if the next point is in the new current
element as illustrated in Fig. 2.25 (d)), this new pair (5; 3) is appended. Otherwise, Step 2 is
repeated until the host element of the next trajectory’s point is identified. The workflow of the
algorithm is detailed in Fig. 2.26.

Mesh quality At the end of the meshing process, some nodes representing the fibre tows can
be removed if they lie strictly inside an element and are placed along a straight line. Very small
elements might be generated depending on the backing material mesh topology and the fibre
path. When possible, meshing the backing material according to the direction of the fibre tows
considerably increases the element size of the fibre tows.
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Algorithm 4 Find first fibre tow trajectory’s point
1: Define: isIn← false
2: while not isIn do
3: Define the parametric domain of the current element: Dχ

4: Compute the natural coordinates χ⃗ of the first point in the current element using Alg. 1
5: if χ⃗ ∈ Dχ then
6: isIn← true
7: else
8: get next element
9: Return: current element and χ⃗

Algorithm 5 Identify new current host element
Inputs The crossing point x⃗int between fibre path and the host element boundaries, the

next point along the fibre path x⃗next
Outputs The new current element among the current neighbours

1: if x⃗int on an edge then
2: Return: Neighbour element sharing this edge
3: else
4: Compute: x⃗d ← x⃗int + t x⃗next−x⃗int

∥x⃗next−x⃗int∥ where t has a small value
5: Define: isIn← false
6: while not isIn do
7: Define the parametric domain of the current neighbour element: Dχ

8: Compute the natural coordinates χ⃗ of x⃗d in the current element using Alg. 1
9: if χ⃗ ∈ Dχ then

10: isIn← true
11: else
12: get next neighbour element
13: Return: neighbour element
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Figure 2.25: Meshing principle of Model I

2.4.2.2 Meshing of Model II: nodes embedded in 1D elements

The generation of Model II is easier. The first deposited layer is meshed and the second deposited
layer is mesh independently. Next, segment-to-segment intersection is performed between both
meshes. The crossing points are added as nodes in the second layer mesh. If the distance
between the appended nodes and their neighbours is smaller than half the minimal element
size of the initial mesh, the neighbour nodes are removed. This process is repeated with the
subsequent layers. The segment-to-segment intersection is a brute force algorithm looping over
each segment of each mesh. Using the sweep-line algorithm might considerably decrease the
time to create the model when large TFP preforms or high fibre tow density preforms are
modelled.
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Start

Find host element
of first point Alg. 4

no

end?

Next point on trajectory

Is trajectory’s point
in current host element?

Alg. 1

Compute intersection
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rent host element boundaries

(host;
trajectory’s point)

Identify new
current host element

Alg. 5

(host;
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use

use

append

use
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Figure 2.26: Model I meshing algorithm workflow

Transition
This section described the generation of the TFP preform models. Model I required
the development of a specific algorithm to meet the constraint of the embedded element
approach, namely, nodes are required at the intersections between the fibre path and
the boundaries of the backing material elements. Generation of Model II only requires
additional nodes at the intersections between adjacent layers. The algorithm that allows
to compute the crossing points could be improved. In the next section, numerical elemen-
tary tests are achieved to check the implementation of the embedded element approach
for both models.

2.4.3 Numerical validation: Elementary test cases
The aim of this section is to test the implementation of the embedding constraint for both
models. In particular, the kinematic constraint and the transfer of internal forces is checked.
Since only the displacement degrees of freedom of the beam are embedded, the embedding
constraint should be equivalent to a perfect hinge connection between the beam and membrane
elements or between the beams of adjacent layers. Simple configurations are considered to
facilitate the analysis of the results even if the models can handle complex fibre path. Moreover,
in the first elementary tests, the resistance to rotation due to friction and deformation of the
stitching yarn at the crossings of fibre tows is not considered. The linear elastic torsional
springs are taken into account in the last elementary tests. The material parameters of the
beam elements used for all the tests are given in Table 3.1.
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Table 2.19: Beams’ material parameters for the following elementary test cases

Material parameters CE CΓ1 CΓ2 CK1 CK2 CK3

Value 1.423 107 CE
2

CE
2 102 101 102

Unit N N N N.mm2 N.mm2 N.mm2

2.4.3.1 Biaxial tension of a reinforced membrane (Model I)

Objectives This first elementary test case aims at testing the behaviour of a reinforced mem-
brane element when subjected to biaxial tension. Displacements of the embedded beams are
checked as well as the total internal forces of the reinforced membrane that should contain the
beam’s contribution.

Setup The bottom edge of a single 2D element is fixed along the y-direction and the left edge
is fixed along y-direction. The right edge or node is translated along the x-direction with a
value of ∆ while the top edge or node is translated along the y-direction with a value of ∆ too.
A first beam is embedded, aligned with the x-direction and placed in the 2D element center. A
second beam is embedded in the orthogonal direction and crosses the first beam at its center.
Fig. 2.27 illustrates the initial and expected final configurations.

Figure 2.27: Biaxial tension of an incompressible Neohookean membrane reinforced with 2
orthogonal beam elements (initial configuration (dotted line), final configuration (solid line))

For the membrane, the coefficient µ = 1000 MPa and the density equals 0.5. The length L is
1 mm. A displacement ∆ = 10−3 mm is imposed in both directions.

Results The in-plane displacement field of the beam matches well those of the membrane
element, which validates the kinematic constraint as shown in Fig. 2.28. Table 2.20 and 2.21
show the values of the in-plane internal forces at the beam nodes (F⃗ e

inti
) as well as those

resulting from the membrane behaviour at membrane nodes (F⃗ hb
inti

) and the total internal forces
at the membrane node (F⃗ h

inti
). Therefore, the transfer of internal forces expressed in Eq. 2.61

is validated too.

Table 2.20: Biaxial tension reinforced triangle: checking of internal forces transfer

Internal forces F 1
int1 F 1

int2 F 2
int1 F 2

int2 F hbint1 F hbint2 F hbint3 F hint1 F hint2 F hint3

Fx -1423.53 1423.53 0 0 -0.49 0.49 0 -712.26 712.26 0
Fy 0 0 -1423.53 1423.53 -0.49 0 0.49 -712.26 0 712.26
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Table 2.21: Biaxial tension reinforced quadrangle: checking of internal forces transfer

Internal forces F 1
int1 F 1

int2 F 2
int1 F 2

int2 F hbint1 F hbint2 F hbint3 F hbint4 F hint1 F hint2 F hint3 F hint4

Fx −1423.53 1423.53 0 0 −0.49 0.49 0.49 −0.49 −712.26 712.26 712.26 −712.26
Fy 0 0 −712.26 1423.53 −0.49 −0.49 0.49 0.49 −712.26 −712.26 712.26 712.26

(a) Triangle (b) Triangle

(c) Quadrangle (d) Quadrangle

Figure 2.28: Checking the kinematic constraint: displacement along x-direction (left) and y-
direction (right)

2.4.3.2 Biaxial tension of two orthogonal beams (Model II)

Objectives This second elementary test case aims at validating the embedding constraint in
Model II. The consistency of the displacements of the embedded and host beams is checked.

Setup A horizontal beam made of two elements is embedded in a vertical beam made of
one element The node (Ne2) of the horizontal beam at the intersection with the other beam is
embedded. The bottom node (Nh1) is fixed along the y-direction and the left node (Ne1) is fixed
along the x-direction. The right (Ne3) and top (Nh2) nodes are translated in the beams’ axis
direction with a value of ∆. Fig. 2.29 illustrates the initial and expected final configurations.
The length L is 1 mm. A displacement ∆ = 10−3 mm is imposed in both directions.

Results The in-plane displacement field of the beam is consistent with the boundary condi-
tions. The displacement applied to the vertical host beam leads to a vertical translation of the
horizontal beam due to the embed of the node at the intersection. Similarly, the displacement
applied to the horizontal beam leads to a horizontal translation of the host beam due to the
transfer of the internal forces from the embedded node.
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Figure 2.29: Biaxial tension of two orthogonal beams (initial configuration (dotted line), final
configuration (solid line)

(a) (b)

Figure 2.30: Checking the kinematic constraint: displacement along x-direction (a) and y-
direction (b)

2.4.3.3 Pure shear-like behaviour of a reinforced membrane (Model I)

Objectives This third elementary test case aims at testing the perfect hinge connection result-
ing from the embed of the displacement degrees of freedom in Model I. The boundary conditions
should result in a pure shear-like behaviour, which means that the stiff embedded beams freely
rotate on the membrane. It should modify the kinematics observed in the pure shear test of the
membrane (2.3.3.3) and create a state of shear with through-the-thickness deformation due to
its incompressibility.

Setup The embedded beams have the same configuration as in Test 2.4.3.1. The first node of
the membrane is clamped while a displacement is applied on both directions on the third node.
The length L is 1 mm and the displacement ∆ equals 0.3 mm in both directions. Fig. 2.31
illustrates the initial and final expected configurations. For the membrane, the coefficient µ =
100 MPa and the density equals 0.5.

Results Table 2.22 shows the Green-Lagrange strain tensor components. The in-plane de-
formation along the beam directions (E11 and E22) are negligible and the membrane deforms
via shear (E12) and through-the-thickness (E33) as expected. For the beam elements, E11
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Figure 2.31: Pure shear-like behaviour of a membrane reinforced with two orthogonal beams
(initial configuration (dotted line), final configuration (solid line))

corresponds to the longitudinal component E of the strains vector defined in section 2.2.1.5.
Therefore, the results validate the free rotation of the embedded beams. Fig. 2.32 shows a
comparison of the results when the rotational degrees of freedom are embedded. The observed
kinematic is very different. The beams are welded and the rotation is not free, which leads
to the longitudinal deformation as shown in Table 2.23. This very stiff behaviour, which is
unrealistic to model the crossing of fibre tows, was observed by Harrison (2016).

Table 2.22: Pure shear-like behaviour of a reinforced membrane: strain tensor components

Elements E11 E22 E33 E12

Horizontal beam 10−6 0 0 0
Vertical beam 10−6 0 0 0

Membrane 10−6 10−6 0.45 0.34

Table 2.23: Pure shear-like behaviour of a reinforced membrane with embedded rotational dofs:
strain tensor components

Elements E11 E22 E33 E12

Horizontal beam 0.1 0 0 0
Vertical beam 0.1 0 0 0

Membrane 0.12 0.12 -0.13 0.2

2.4.3.4 Initial orthogonal beams’ rotation (Model II)

Objectives This fourth elementary test case aims at validating the perfect hinge connection
resulting from the embed of the displacement degrees of freedom in Model II. Negligible internal
forces (due to inertia forces) are expected to validate the free rotation between the connected
beams.
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Figure 2.32: Checking free rotation of embedded beams: embed of displacement dofs (left), full
embedding (right)

Setup The configuration of the orthogonal beams is the same as in Test 2.4.3.2. However, the
bottom node is free and the top node is translated along the x-direction while being free to
move along the y-direction as shown in Fig. 2.33. The length L equals 1 mm and the imposed
displacement ∆ is 0.3 mm.

Figure 2.33: Free rotation between beams at their intersection (initial configuration (dotted
line), final configuration (solid line))

Results The in-plane displacement field of the beams is consistent with the boundary condi-
tions. The horizontal displacement applied to the top node of the host beam leads to a rotation
around the intersection where the embedding constraint applies. The longitudinal deformation
of the beam elements is around 10−12 and therefore negligible as expected.
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(a) (b)

Figure 2.34: Checking the perfect hinge connection: displacement along x-direction (a) and
y-direction (b)

2.4.3.5 Effect of torsional spring in Model I

Objectives This elementary test case aims at validating the implementation of the linear elastic
torsional spring in Model I. This spring is added at the intersections between the beam elements
of adjacent layers to take into account the resistance to rotation due to the friction and stitching
yarn deformation. Combined together, the embedding constraint and the torsional spring model
the hinge connection with resistance to rotation in the local plane define by the intersected
beams.

Setup The configuration of the orthogonal beams is the same as in Test 2.4.3.4. However,
displacement on the third node is replaced by a point load of 100 N. A linear elastic torsional
spring with a stiffness of 20 N.mm−1 is added at the intersection between the embedded beams.
Fig. 2.35 shows the initial and final expected configurations.

Figure 2.35: Constrained rotation between beams at intersection in Model I (initial configuration
(dotted line), final configuration (solid line))

Results Fig. 2.36 superimposed the final shape and rotation with (blue color) and without
(orange color) the linear elastic torsional spring. Due to the torsional spring, the rotation angle
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is lower than those without the torsional spring, which is consistent.

Figure 2.36: Constrained (blue color) vs unconstrained (orange color) rotation between embed-
ded beams at intersection (Model I)

2.4.3.6 Effect of torsional spring in Model II

Objectives This elementary test case aims at validating the implementation of the linear elastic
torsional spring in Model II.

Setup The configuration of the orthogonal beams is the same as in Test 2.33. However, the
displacement on the top node is replaced by a punctual force of 0.5 N. A linear elastic torsional
spring with a stiffness of 0.1 N.mm−1 is added at the intersection between the beams. Fig. 2.35
shows the initial and expected final configurations.

Figure 2.37: Constrained rotation between beams at intersection in Model II (initial configura-
tion (dotted line), final configuration (solid line))

Results Fig. 2.38 shows the results with (dark colors) and without (light colors) the linear
elastic torsional spring. Due to the torsional spring, the horizontal beam rotates too since the
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left node is free to move along the y-direction. Since the left node is constrained along the
x-direction, the beams also slightly translate. Without the torsional spring, the vertical beam
rotates while the horizontal beam stays in place. This result validates the implementation of
the resistance to rotation through a linear elastic torsional spring.

Figure 2.38: Constrained (dark colors) vs unconstrained (light colors) rotation between beams
at their intersection (Model II)

Conclusion
This section gave the formulation and explained the implementation of the embedding
constraint in both models. The kinematic constraint is limited to the displacement dofs
of the embedded elements since the embed of the rotation dofs leads to very stiff and
unrealistic behaviour of crossing fibre tows. As a result of the kinematic constraint, the
internal forces of the embedded elements are transferred to the host elements. With this
formulation, the stitching yarn is modelled as perfect hinges between the backing material
and the fibre tows (Model I) or between crossing fibre tows of adjacent layers (Model II).
To take into account the resistance to rotation due to friction and the deformation of the
stitching yarn, linear elastic torsional spring are added at the intersections between the
fibre tows of adjacent layers. Finally, elementary test cases validated the implementation
of the proposed models.
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Chapter conclusion
This chapter presented the modelling strategy adopted to address the forming of TFP
preforms. The TFP technology can be used to locally reinforce another conventional
textile or as a whole preforming tool where the backing material is removed prior to
forming. The geometrical complexity of TFP preforms’ makes the semi-discrete approach
more suitable as a first step. Therefore, two semi-discrete models are considered to take
into account the possibility to retain or remove the backing material prior to forming.
Predicting the orientations of fibre tows in the final part as well as manufacturing
defects are the main objectives of the numerical model. With this philosophy in
mind, fibre tows are modelled explicitly using beam elements to take into account
the design freedom offered by the TFP. The proposed models are based on the strong
assumption which considers the stitching yarn to act as a hinge connection between the
backing material and the fibre tows in Model I or between the fibre tows of adjacent
layers in Model II. This hypothesis allows modelling implicitly the stitching yarn using
an embedded element approach where only the displacement degrees of freedom are
embedded. A beam element with independent cross-section stiffnesses is formulated
to model the fibre tows. Since no specific backing material is consider in this work,
an incompressible Neohookean membrane is implemented to investigate numerically
Model I. The embedding constraint to model the stitching yarn is implemented for both
models. In Model I, the beam elements of fibre tows are embedded in the 2D elements
of the backing material while in Model II the element nodes of fibre tows of a layer are
embedded in beam elements of fibre tows of the previous layer. Moreover, torsional linear
elastic springs are added at fibre tows intersections to take into account the resistance
to rotation due to friction and deformation of the stitching yarn. Elementary test cases
were successfully performed separately on the beam element and the incompressible
Neohookean membrane and finally on the embedding constraints.

Full-scale validation of the proposed modelling strategy is the next step in the
development of the numerical forming tool for TFP preforms. In the next chapter,
experimental forming of high doubly-curved parts is carried out as well as their numerical
simulation.
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Chapter 3
Full-scale validation of the TFP preform
modelling strategy: application to the
forming of high curved orthotropic parts

Abstract
This third chapter of the thesis aims at validating the numerical modelling approach
presented in the previous chapter (Chapter 2). To this end, experimental work has been
carried out about TFP preform forming to allow full-scale comparison with forming sim-
ulations. Moreover, the following work highlights the ability of 2-layer TFP preforms
to be formed on highly curved parts with orthotropic final orientations. Obtaining or-
thotropic composite parts from an initially flat preform represents a challenge in the
manufacturing of optimized 3D shell-like composite structures by forming. Section 3.1
is an introduction providing the objectives of this validation study, justifying the choice
of the formed geometries as well as presenting the TFP preform manufacturing process
and the materials used. The next two sections follow the same structure. They start
by presenting the experimental forming on a particular geometry and ends up with the
numerical simulation of the forming. In both sections, the specific TFP preform design
conducting to final orthotropic composites is explained and comparison between experi-
mental and numerical results is displayed. Section 3.2 presents the forming validation on
a hemispheric part, which is considered as a basic test case in conventional textile form-
ing. Only qualitative analysis is given for this example. Then, Section 3.3 investigates
TFP preform forming on a tetrahedral part, which has a direct industrial application
since it corresponds to corner brackets. Due to the difficulty in finding a suitable backing
material able to overcome large deformation, the two forming validations are performed
with Model II, meaning that the backing material is removed prior to forming. A simu-
lation with Model I is performed in the last section but no experimental work has been
performed. Consequently, this chapter focuses on one application of the TFP technology,
namely, its use as a whole preforming tool.
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3.1 Introduction
Introduction

This section is a short introduction of the experimental work achieved in this thesis about
forming of TFP preforms. It begins by presenting the objectives of the forming exper-
iments. In particular, the choice of the targeted 3D shapes is argued before presenting
the TFP preform manufacturing process and the materials used.

3.1.1 Objectives of the forming experiments
Only few works on the manufacturing of 3D parts using TFP preforms were reported in the
literature (Fial et al., 2018; Rihaczek et al., 2020; Takezawa et al., 2021). In these works, 3D
part manufacturing was achieved by folding (Fial et al., 2018; Rihaczek et al., 2020) or layer
by layer forming (Takezawa et al., 2021) with cuts in the backing material as presented in
Section 1.4.2.

The following experiments aim at demonstrating the ability of 2-layer TFP preforms to be
formed on doubly-curved shapes without defects and designed to provide orthotropic properties
to the final part. It is worth noting that obtaining orthotropic properties on doubly-curved
shapes cannot be achieved using conventional bi-axial textiles. Therefore, the forming of TFP
preforms will show great interest in improving the mechanical properties of structural parts.

These forming experiments aim to demonstrate the formability of TFP preforms and the ad-
vantage of the combination of the TFP technology and the forming to obtain peculiar fibre
orientations in the final part. However, they are limited to dry forming and this work does not
address the impregnation and consolidation steps.

Moreover, determining the flat TFP pattern leading to the targeted 3D orientations is not the
objective of this thesis. Consequently, the studied shapes have to allow an analytical or at least
intuitive flattening of the 3D orientations.

3.1.2 Choice of the targeted part geometries
The ability of 2-layer TFP preforms to be formed on doubly-curved shapes has been shown
using both hemispheric and tetrahedral punches.

On one hand, the hemisphere is a highly-curved shape with axial symmetry. It is a well-known
shape extensively used as bench mark for conventional textiles (De Luycker et al., 2009; Lin
et al., 2007; Bel et al., 2012; Labanieh et al., 2018; Guzman-Maldonado et al., 2019; Sun et al.,
2022). Although the hemisphere has double curvatures, conventional textiles can be formed
without defects quite easily since the maximal shear angle reached is close to 45°. Therefore,
this shape was deemed appropriate for as a first forming test. However, in this work the
TFP preforms are designed to obtain orthotropic orientations in the final configuration, which
maximizes the angle between the layers. Therefore, an improvement of the mechanical properties
is expected compared to conventional textiles.

On the other hand, the tetrahedral shape, which is also a doubly-curved shape, corresponds to
angle brackets. Therefore, it shows a great interest in industries using complex parts. Forming
such a shape is possible using conventional textiles such as woven fabrics or interlocks but
requires a specific design of the blank-holders and a control of the pressure applied on them
to avoid defects such as wrinkles (Allaoui et al., 2011; Capelle et al., 2014; Allaoui et al.,
2014). However, if wrinkles can be prevented in the functional area of corner brackets, they
cannot be avoided in the surrounding regions (Allaoui et al., 2011). Moreover, high shear
angles are inevitable and weaken the part in those regions. Consequently, forming of 2-layer
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TFP preforms with orthotropic orientations in the final tetrahedral part using basic blank-
holders will demonstrate significant improvements of the manufacturing process and the final
mechanical properties of the part.

3.1.3 TFP preform deformation mechanisms
As described in Section 1.4, a TFP preform is made of fibre tows placed on a backing material
and remained in place thanks to a zig-zag stitching (Fig.1.26). NCF might be the conventional
textile having the closest architecture from TFP preforms, since they are made of several UD
plies stitched together with a through-thickness stitching yarn as presented in Section 1.1.2.
TFP preform can be approximatively considered as a generalisation of NCF to multi-directional
plies with the difference that an additional backing material is necessary for the stitching.
Besides, this backing material can remain during forming, either for constituting polymer matrix
or because TFP is used to locally reinforce a conventional textiles for instance.

During forming, TFP preforms might show the same deformation mechanisms as those already
listed for conventional textiles in Section 1.2.1 and illustrated in Fig. 1.9. In addition to these
deformation mechanisms, interactions of the backing material with both the fibre tows and
the stitching yarn occur. The overall behaviour of TFP preforms will strongly depends on the
individual properties of the fibre tows, the backing material and the stitching yarn, as well as the
way they interact with each other. Moreover, the stitching parameters presented in Section 1.4.1
strongly influences the behaviour of the TFP preform. The shorter the stitch length, the higher
the friction between fibre tows and the backing material and the stiffer the preform. On one
hand, the influence of the stitching parameters over the whole preform behaviour allows varying
the stitching parameters inside the preform to overcome forming issues. On the other hand, it
increases the modelling complexity of these tailored preforms. Consequently, the mechanical
behaviour of TFP preforms is inherently complex.

3.1.4 TFP preform manufacturing and materials
3.1.4.1 Preform design

The design of the TFP preforms used in the forming experiment was computed with Python
scripts that generate the stitch coordinates. In a script, a list of TFP segments is defined.
Each TFP segment possesses basic geometric entities such as a line, a polyline, a circle arc and
a spirale as well as a stitching rule. This stitching rule prescribes the stitching length along
the curvilinear abscissa of the geometric entity of the TFP segment. Stitching rules such as
no-stitching, constant stitching length or linear stitching length can be defined for the TFP
segment. When defining a constant length stitching rule, either the stitching length or the total
number of stitches is given as input. The list of TFP segment has to be contiguous, which
means that the end of a TFP segment in the list has to be connected to the neighbouring TFP
segment. This list of contiguous TFP segments forms a TFP path. Fig. 3.1 illustrates the
TFP design process. If two layers are designed and a cut is required between the layers, then
two different TFP paths have to be defined. Otherwise, a single TFP path is sufficient. The
stitching width is defined in the TFP machine controller and therefore is constant in the input
file.

Once the TFP paths have been defined, virtual stitching is performed which generates the 2D
coordinates of the stitching points stored in an array. Then, an open source Python library
“pyembroidery” writes a “DST” file that can be opened in the commercial software EPC-WIN
of the TFP machine to check the design and convert the data to the format used by the TFP
machine. This method allows the TFP preform drawing to be set up and the stitch coordinates
to be accessed to create the corresponding digital model.
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Figure 3.1: TFP preform design process

3.1.4.2 Manufacturing

The TFP preforms used in these experiments have been manufactured at IRT Jules Verne using
the TFP ZSK © CMCW 0200-900D-2500 embroidery machine shown in Fig 3.2. A control
system for the tension of the upper stitching yarn has been added and the tension of the lower
stitching yarn is set via the bobbin’s mechanism. The stitching width is set via the machine
controller as well as the stitching speed.

Figure 3.2: TFP machine used at IRT Jules Verne (TFP ZSK © CMCW 0200-900D-2500)
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3.1.4.3 Materials

Both forming experiments, which are performed at room temperature, required high deforma-
tion of the TFP preforms. Rotation between the dry fibre tows of the different layers, known
as in-plane shear for conventional textiles, is the main deformation mode during forming. It
is therefore difficult to find a backing material able to deform accordingly without creating
defects. Consequently, in both forming experiments, the backing material has been removed
prior to forming. Even after removing the backing material, the stitching yarn still ensures a
strong cohesion between the layers. To this end, a PVA water soluble film was used as backing
material. After manufacturing, the TFP preforms were washed and then dried in an oven at a
temperature of 60°. The 2690 tex PET/E-glass continuous tow (from P-D- Glasseiden GMBH,
Oschatz, Germany) was stitched onto the PVA film (Gunold® Solvy film 80, Stecker) using a
24 tex PET stitching yarn (Serafil fine, Amman). The stitching length and width were set to
2.5mm and the stitching tension to 5 g for both TFP preform designs. The stitching length is
smaller in U-turns and highly curved paths.

The material properties of the fibre tow has not been measured. The material parameters
required in the finite element model for the beam elements have been estimated. Their values
are shown in Table 3.1. In particular, the tensile stiffness (CE) is estimated from the tensile
modulus of a E-glass fibre (72.5 GPa). The transverse shear stiffnesses (CΓ1 and CΓ2) are taken
as half the tensile stiffness. The torsional and bending stiffnesses have non-zero but low values
compared to the tensile stiffness. A circular cross-section of diameter 2.5 mm is used.

Table 3.1: Beams’ material parameters for the forming simulation

Material parameters CE CΓ1 CΓ2 CK1 CK2 CK3

Value 1.423 107 CE
2

CE
2 102 101 101

Unit N N N N.mm2 N.mm2 N.mm2

Conclusion
These forming experiments aim at demonstrating that this hybrid solution (flat TFP
preform + forming) is an attractive process to manufacture doubly-curved parts with
orthotropic final orientations. Due to the difficulty in finding a suitable backing material
allowing large deformations and valuable in the final part, a water soluble film is used
during stitching before being removed prior to forming. Consequently, this experimental
work investigates the use of the TFP technology as a whole preforming tool. Using the
TFP technology as a mean to locally reinforce a conventional textile is not carried out
experimentally.
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3.2 TFP preform forming on a hemispheric shape with orthotropic final
orientations
Introduction

This section deals with the dry forming of a hemispheric part from a flat TFP preform
without backing material. The main objective of the hemisphere forming is to obtain one
layer aligned with the parallel of latitudes (parallel layer) and a second layer aligned with
the meridian of longitudes (meridian layer) as illustrated in Fig 3.3. Such configuration
provides orthotropic mechanical properties to the part and has been numerically studied
in Muscat et al. (2017) to manufacture fibre reinforced composite pressure vessel heads
subject to external pressure. First, the determination of the design of the TFP preform to
obtain orthotropic final orientations is explained. Next, the forming device is presented
before analysing and discussing the results. Then, the finite element model is presented
before showing the simulation’s results and compare them with the experimental ones.

Figure 3.3: Targeted orientations for the forming of a hemispheric part

3.2.1 Experimental forming
3.2.1.1 TFP preform design: analytic flattening

The determination of the flat configuration of the TFP preform from the targeted 3D orien-
tations is based on the inextensibility of the fibre tows and the no-sliding condition between
the fibre tows of the two layers. Due to the axial symmetry of the hemisphere and those of
the targeted 3D orientations, the flat configuration can be determined analytically. For brevity
and clarity, an intuitive demonstration is illustrated in the following. For a strict mathematical
demonstration, the reader is referred to Sholl et al. (2021).

Fig. 3.4 (a) shows the hemispheric geometry and a projection plane whose normal is aligned with
the hemisphere’s revolution axis. The projection of the hemisphere’s basis is drawn as a circle
of radius rh on the plane. Three parallels of latitude are drawn in Fig. 3.4 (b). The curvilinear
distance along the meridians between the consecutive parallels is the same and named lc. This
configuration allows a better understanding of what follows while not limiting the case studied.
Because of the quasi-inextensibility of the fibre tows, the flattening of these parallels results in
circles whose radius is equal to the orthogonal distance between the parallels and the axis of
the hemisphere. The in-plane distance between the resulting consecutive circles decreases from
the projected centre of the hemisphere to the outer diameter. As a consequence of the non-slip
assumption between the tows, the parallel tows constrain the shape of meridian tows in their
flat configuration. The meridian-aligned tows begin from the projected centre of the hemisphere
and end at a distance of rh. Since there is the same portion of meridian lc between consecutive
concentric circles representing the flattened parallels of latitude, the meridian tows are curved
in the plane Fig. 3.4 (c). The curvilinear abscissa along the flattened meridian curve shown in
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Fig. 3.4 (d) has the following expression in polar coordinates of the projection plane:

s(r) = rh ∗ arcsin r

rh
(3.1)

The general expression of the curvilinear abscissa in a polar coordinates system is given by:

s(r) =
∫ a

0

√
r(θ)2 +

(
dr(θ)
dθ

)2
dθ (3.2)

Introducing Eq.3.1 into Eq.3.2, and differentiating with respect to θ and taking the square of
the expression leads to the following ordinary differential equation:

r(θ)2 +
(
dr(θ)
dθ

)2
1− 1

1− r(θ)2

r2
h

 = 0 (3.3)

The solution of Eq.3.3 yields the expression of the flattened meridian:

r(θ) = rh ∗ sin θ (3.4)

3.2.1.2 Final preform design

The fibre tows of the meridian layer converge towards the center of the hemisphere. To avoid
overlapping, the length of some of these fibre tows is shortened. Fig. 3.5 illustrates the man-
ufactured flat TFP preform. The outward extension of the meridian fibre tows is needed for
the clamping system as explained in the next section. Instead of circles, a spiral is used for the
parallel layer to avoid cutting operations and loosing the fibre continuity.

3.2.1.3 Forming device

The forming device shown in Fig 3.6 is composed of a hemispheric punch of radius 100 mm and
a blank-holder made of two parts. The pins located at the outer edge of the bottom part of the
blank-holder are used to constrain the meridian layer from sliding inwards. Extending the fibre
tows of the meridian layer to the outer edge of the blank-holder has been chosen to simplify the
design. However, the constraint applied to the meridian layer could be achieved differently to
minimize material wastage. To prescribe the hemispheric punch motion, a simplistic mechanism
was used based on a lift table. The TFP preform was clamped in the blank-holder that was
fixed on a frame and placed above the punch located on the middle of the lift table. The punch
was then moved upward using the lift table while a picture was taken every 2 mm from the top.

3.2.1.4 Results

The result of the hemisphere forming is shown in Fig. 3.7. Only qualitative analysis is given
for this example. The orientations of the layers are very close to the targeted ones. During the
forming, the TFP preform rotates along the hemisphere axis as illustrated by the red circular
arrow in Fig 3.7 (c). In fact, due to the inextensibility of the fibre tows, the fibre tows of the
meridian layer have to realign with the meridians of longitudes.

3.2.1.5 Discussion

The difference with the targeted orientations might be attributed to the manufacturing process
which generates a slight error on the curvature of the initial configuration, since the stitching
leads to a discretization of the true path. Moreover, the slight undulation of the fibre tows, as
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(a) The hemisphere and a projection plane (b) Flattening of parallels

(c) Flattening of meridians (d) Flat pattern

Figure 3.4: Analytic flattening process

observed in Uhlig et al. (2016), which is due to the stitching pattern, might lead to an extra
length of deposited material along the path, which can explain why the realignment is not
perfectly achieved. Although the flat TFP pattern can be improved to increase the density of
fibres and obtain a better realignment, this forming example demonstrates the ability to form
a hemispheric part with orthotropic properties from a flat TFP preform.

Transition
The experimental results of the hemispherical shape forming are promising. Obtaining
orthotropic final orientations from flat preforms with this geometry is a real challenge
impossible to address using conventional textiles. The forming simulation of this shape
is presented in the next section.
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Figure 3.5: Manufactured TFP preform

Figure 3.6: Forming device for the hemisphere forming

3.2.2 Forming simulation
3.2.2.1 Finite element model

General settings

Model II (without backing material) is used for this forming study because the backing ma-
terial would have to undergo a very large deformation to allow the realignment of the tows
along the targeted orientations. The material parameters of the beam elements are given in
Table 3.1. Due to the low fibre density, the resistance to rotation between crossing beams of the
meridian and parallel layers was neglected. Since only qualitative analysis have been carried out
experimentally, the choice of material parameters is supposed to have a minor impact on the ob-
served kinematics. If quantitative measurements were achieved, the punch force would strongly
depends on the material parameters for instance. Since fibre tows are quasi-inextensible, a
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Figure 3.7: Forming of a TFP preform on a hemisphere: (a) initial configuration and (b) final
configuration (from top view), (c) final configuration from side view

negligible longitudinal deformation of the beam elements in the simulation will demonstrate
the model consistency. The friction coefficient between the punch and the preform was set to
0.2. The simulation time period is 100 s meaning that the punch has a velocity of 1 mm/s.
This velocity allows to respect the quasi-static condition which imposes a low kinetic energy
compared to the internal one. In the meanwhile, this velocity minimizes the required time for
the simulation to run. A time step of 10−4 s is used to ensure the convergence of the contact
algorithm with a minimal number of iterations.

Mesh and boundary conditions

The beam elements have an approximate size of 2.5 mm. The parallel and meridian layers are
meshed independently. Next, the intersections between the beam elements of the two layers are
computed. Nodes are added at these intersections in the meridian layer that is embedded in the
parallel layer. Adjacent nodes to the newly added ones, which are closer than half the initial
element length, are removed to obtain a better mesh quality. Fig. 3.8 shows the mesh of the
TFP preform. The blue nodes represent the parallel layer while the green ones correspond to the
meridian layer. The red nodes are the meridian layer’s nodes that are embedded in the parallel
layer. The extensions of the meridian layer present in the TFP preform of the experimental
work are not represented. The clamping system is simplified in the simulation by fixing the
yellow nodes (ends of meridian fibre tows) to avoid representing the blank-holders. The parallel
layer is made of 3127 nodes and the meridian layer contains 1650 nodes.

3.2.2.2 Results and comparison with experimental forming

The simulation runs in approximately 1 hour using four cores of an Intel(R) Core(TM) i7-8750H
CPU 2.20GHz processor. Fig. 3.9 shows the experimental and simulation results side by side.
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Figure 3.8: Mesh of the TFP preform for the hemispheric shape forming

The simulation result matches the experimental one. Both results show some discrepancies
from the targeted orientations but are very encouraging. The longitudinal deformation of the
beam elements E is lower than 10−3. Therefore, the kinematics of forming is consistent with
the quasi-inextensibility of the fibre tows and validates the flat TFP preform design.

Fig. 3.10 shows different configurations of the TFP preform during the forming simulation from
top and side views. The clockwise rotation of the TFP preform as observed experimentally can
be noticed. This specific kinematics was observed by Sholl et al. (2021). They embedded cotton
fibres in a thin elastomer membrane to reinforce and control the deformation of soft-bodies.

3.2.2.3 Discussion on the orthotropic hemispheric part forming validation

The experimental and simulation results are in a good agreement and close to the targeted
fibre orientations. The forming of a hemispheric part is a basic test case for biaxial conventional
textiles where the fibre orientations are initially orthotropic. However, this study goes beyond
the validation of the numerical model by demonstrating the ability of 2-layer TFP preforms to
form an orthotropic final part. Therefore, these results are as important for the validation of
the numerical model and for highlighting the strength of TFP preform forming.
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3.2. TFP preform forming on a hemispheric shape with orthotropic final orientations

(a) Experimental (b) Simulation

Figure 3.9: Qualitative comparison of the experimental and simulation results for the hemi-
spheric shape forming

Since the numerical model does not take into account lateral contact between adjacent fibre
tows, the fibre tows density was chosen accordingly. Obviously, the fibre tow density can be in-
creased and beam contact interactions could be incorporated in the numerical model if needed.
Carrying out quantitative measurements in this experimental work would be a possible improve-
ment. However, this shape was used only as a first basic test case to observe the feasibility of
complex TFP preform design’s forming.

Conclusion
This section showed a first example of how the hybridisation of the TFP technology and
forming can be used to form orthotropic parts. The forming on a hemispherical shape
demonstrated the ability of 2-layer TFP preforms to be formed on a simple part with
double curvature. The axial symmetry and constant Gaussian curvature of this shape
made it a basic test case in conventional textiles forming. However, using a specific
TFP preform design made it even more attractive to investigate the realignment of
initially in-plane curved fibre tows. Even if the results do not exactly match the targeted
orientations, they are very close. Improvement of the preform design to take into account
the discrepancies introduced by the TFP preform manufacturing process might give the
expected result. Nevertheless, the numerical model gave result in agreement with the
experimental ones.

Further full-scale validations are required to confirm these observations. That is
why the next section, which follows the same structure as this one, focuses on another
shape which has a direct industrial application. Moreover, additional efforts were
undertaken to conduct quantitative measurements of the experimental forming.
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3.3 TFP preform forming on a tetrahedral shape with orthotropic final
orientations
Introduction

This section deals with the dry forming of a tetrahedral part from a flat TFP preform
without backing material. The forming on a tetrahedral shape of TFP preforms aims
at demonstrating the ability to obtain final orthotropic orientations in the whole part
without defect using a simple forming set-up. The 2D displacement field (orthogonal
to the punch displacement) and the final angles between the layers on one face of the
formed part have been measured for quantitative analysis of the results. This section
begins with the determination of the TFP preform design allowing obtaining orthotropic
final orientations and the presentation of the forming setup. Methods for quantitative
analysis are described before explaining and discussing the experimental results. Finally,
the finite element model is presented before showing the simulation’s results and compare
them with the experimental ones.

3.3.1 Experimental forming
3.3.1.1 TFP preform design

Fig 3.11 shows an example of structural part having a triple vertex and the desired orthotropic
fibre orientations. Some fibres are parallel to the corner’s edges while other are orthogonal to
them. As shown in Fig 3.12 (a), the angle between the edges of a face of the tetrahedral shape
is equal to 90°. Their projection in the plane, whose normal is parallel to the tetrahedral shape
axis, yields the angle of 120° (Fig 3.12 (b)). Consequently, placing fibres parallel to the edges
for each face leads to a TFP pattern shown in Fig 3.12 (c) whose fibre orientation will have to
rotate by 30° during forming. Fig 3.12 (d) and (e) illustrate a possible combination of two layers
to obtain the flat pattern depicted in Fig 3.12 (c). Therefore, this design should lead to the
targeted 3D orientation via the 30° in-plane shear of the flat TFP preform. Layer 1 is obtained
from a spiral equation with points placed every 60° to get a hexagonal shape. The number of
fibre tows from the center to the outer edge is equal to 50. Layer 2 is built by offsetting the
curve linking the edges of a face for each face with 50 fibre tows. In Fig. 3.12 (d) and (e), the
number of tows have been divided by a factor of two for the sake of clarity.

Figure 3.11: Example of orthotropic design for a structural part with a triple point
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Figure 3.12: Design of the TFP preform for the tetrahedral forming: (a) targeted 3D orienta-
tions, (b) projection of the 3D orientations along the axis of the tetahedral shape, (c) flat TFP
pattern, (d) first TFP layer and (e) second TFP layer

3.3.1.2 Forming device

The forming device, which is shown in Fig 3.13, is composed of a tetrahedral punch mounted
on an universal tensile machine (AG-Xplus by Shimadzu). Two square PMMA plates (550 mm
× 550 mm × 10 mm) were used as blank-holder. One plate is fixed on a metallic frame and
the other one is laid down directly onto the preform. A pin system constraints the movable
plate of the blank-holder in the plane. No external pressure is applied on the movable plate,
only its dead weight is distributed on the TFP preform over the contact surface. The punch
is composed of a tetrahedral part, 120 mm high with a 20 mm thick base. The punch motion
controlled by the tensile machine has a stroke of 140 mm with a velocity of 15 mm/min. The
velocity of the punch was chosen according to the capacity of the camera to take a picture every
5 secondes minimum.

3.3.1.3 Optical measurements and post-processing

Quantitative measurements were carried out by post-processing images taken from a single
camera positioned along the axis of the punch displacement. Pictures are taken every 2 mm of
punch displacement and allows visualizing the 2D displacement field orthogonal to the punch
direction. An EOS Canon Mark II camera was used with a constant focal length of 15 mm and
initially positioned at 52 mm from the TFP preform. At the end of the experiment, a picture
was taken after placing the camera according to the normal of one of the face of the tetrahedral
punch. This picture allows measuring the final angles between the two layers on a face.
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Figure 3.13: Tetrahedral forming device: CAO of the forming device (left) and real setup with
lights and a camera (right)

Measurements of the 2D displacement field

The objective is to measure the 2D displacement field of the TFP preform. Measuring the
displacement field of preforms during open-die forming has been performed in previous studies
on conventional textiles (Lomov et al., 2008). 3D image correlation is a popular technique to
measure 3D displacement fields. To measure a 2D displacement field, the marker tacking method
is efficient and easy to process. It consists in placing markers on the preform whose detection
and identification can be automatized using image post-processing tools. In this experiment,
red-ink markers were manually drawn onto the preform as shown in Fig 3.14. Then, a Python
script based on an open-source image-processing library OpenCV, was developed to detect and
identify the red markers from a frame to another.

Figure 3.14: TFP preform with red ink markers drawn manually
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Choice of the tracking method: optical flow algorithm Several methods are available to track
markers on successive frames. One of them consists in finding for each marker of the ith frame,
the closest marker on the (i+1)th frame. The Euclidean distance is used to identify the markers.
This method is efficient and robust when the markers’ displacement is small enough between
successive frames but implies to detect the markers in each frame. The reader is refereed to
Hautefeuille et al. (2019) for an example of application of this method to the measurement of
squeeze flow in a woven fabric during consolidation. Another method, which is the one used in
this work, consists in computing the optical flow between successive frames.

Definition of optical flow Optical flow is based on the per-pixel motion computation between
successive frames. It allows computing the relative displacement of objects in front of a camera.
Dense optical flow consists in computing the motion of each pixel while sparse optical flow only
track a set of predefined pixels. Therefore, sparse optical flow can be used to track markers.

This method is based on the pixel intensity, which is defined as a function of time t and of
the coordinates (x, y) of the pixel in the image: I(x, y, t). The theory of optical flow assumes
that intensity changes are negligible between two successive frames. Therefore, the following
equation holds:

I(x, y, t) = I(x+ δx, y + δy, t+ δt) (3.5)

Using a first order Taylor-series expansion gives:

Ixu+ Iyv = −It (3.6)

where Ix = ∂I
∂x , Iy = ∂I

∂y , It = ∂I
∂t , u = ∂x

∂t and v = ∂y
∂t . The two unknowns u and v give the pixel

motion and have to be solved.

Sparse optical flow with Lucas-Kanade method u and v cannot be solved from Eq. 3.6 only.
Therefore, additional information is necessary to identify the pixel motion. Lucas-Kanade
method assumes the local motion constancy, which means that neighbouring pixels have similar
motion. Therefore, by applying equation Eq. 3.6 to neighbouring pixels, which have the same
motion (same u and v), an over-determined system is obtained which is solved using the least
squares method. The advantage of using this method is that the home-made marker detection
algorithm is only used on the first frame where the TFP preform is flat. There is no need for
developing a robust marker detection algorithm able to detect all the markers in every frame.
Therefore, the difficult part of the work is performed with a time-tested and well-implemented
method of OpenCV.

Flowchart of the algorithm The post-processing was achieved using a Python script and the
open-source image-processing library OpenCV. Fig 3.15 presents the flowchart of the algorithm
for computing the 2D displacement field. The initialization of the post-processing consists in
identifying the markers on the first image (frame 0). From the identified markers, the pixel
located at the center of each marker is stored in the array p0 which is given as input of a
sparse optical flow algorithm and corresponds to the set of pixel to be tracked. For post-
visualisation of the result, a mesh is built from the triangulation of p0. Then, the function
"calcOpticalFlowPyrLK" from OpenCV, based on Lucas-Kanade method, is used. The array p1
represents the position of the pixel p0 in the ith frame given as second input of the sparse optical
flow algorithm. Then, the increment of displacement dU is simply computed as the difference
between the previous (p0) and the new position (p1). At the end of each iteration, p1 becomes
the new p0.
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Figure 3.15: Flowchart of the post-processing for the computation of the 2D displacement field

Measurements of inter-layer angles

An image of one face of the tetrahedral shape is taken at the end of the experiment. The
camera is positioned such as the face is parallel to the camera. From this image, the fibre tows
of the two layers are drawn as polylines in an open-source software named Inkscape as shown in
Fig. 3.16. Next, the fibre tows’ trajectories are saved as a svg file before being extracted using
a Python script. In this script each fibre tows corresponds to a list of points defining a polyline.
The script iterates over each fibre tows of a layer, and searches the intersection points with the
fibre tows of the other layer. At each intersection point, the tangents of the intersecting fibre
tows are computed as well as the angle, which defines the inter-layer angle. Finally, a mesh
is generated from a 2D Delaunay triangulation of the intersection points with the inter-layer
angles stored at the nodes for visualisation of the inter-layer angle field.

Figure 3.16: Fibre tows drawn in Inskape: first layer (blue), second layer (red)
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3.3.1.4 Results

Visual aspects

The final configuration of the TFP preform is shown in Fig 3.17. Neither wrinkle nor major
fibre tow slippage were observed in the formed part. The singularity observed in the middle
of each face where the angle between layers is 0° can be eliminated by modifying the flat TFP
pattern. This possibility has been noticed too late to be taken into account in this work.

(a) (b)

Figure 3.17: Final configuration of tetrahedral forming

Final angle between layers on a face

The angles between the layers on one face has been computed and are shown in Fig 3.18 (a).
Fig 3.18 (b) shows that the distribution of the angles are distributed around 90°. Considering
a normal distribution of the angles, a mean angle of 90.72° with a standard deviation of 4.31°
is obtained.

2D displacement field

The result of the post-processing of the marker tracking giving the 2D displacement field is shown
in Fig. 3.19 (b). The bottom part of the TFP preform slightly left the camera window during
the experiment. Consequently, the markers that are not present during the whole experiment
were not treated.

Punch force vs displacement curves

The punch force vs displacement is plotted in Fig. 3.20. A strong non-linear behaviour is
noticed. The force increases quite slowly until reaching the height of the tetrahedral shape (0
to 120 mm). Then the force increases rapidly due to the contact of the TFP preform with the
punch base (120 to 140 mm). The maximal effort required during forming is about 150 N which
is quite low. Moreover the movable part of the blank-holder stayed in place, meaning that the
self-weight of the plate was sufficient.

3.3.1.5 Discussion

The tetrahedral part was formed without defects using a TFP preform and a minimal blank-
holder setup. The design of the TFP preform allows obtaining nearly orthotropic properties
where angles are 90.72°±4.31 on the whole part except on the center of each face. However,
it has been noticed afterwards that a different deposition strategy can eliminate these defects
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(a)

(b)

Figure 3.18: Angles between layers: (a) mesh build from triangulation of intersection points
displaying the angles and (b) distribution of the angles

of orientation. Only 30° shear angle is necessary for the TFP preform to accommodate the
tetrahedral shape, which is quite low compared to forming of conventional textiles where shear
angle can reach 60°. Pressure control blank-holders are required to form this part without
defects with conventional textiles. In this study, only a minimal forming set-up is sufficient.
For this shape, measuring the 2D displacement field using markers gave satisfactory results. 3D
image correlation can be used for more complex parts.

Transition
The experimental results of the tetrahedral shape forming with orthotropic final orienta-
tions are unparalleled. Obtaining orthotropic final orientations from flat preforms with
this geometry is a real challenge that is impossible to address using conventional textiles.
The forming simulation of this shape is presented in the next section.
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(a) Final configuration of the tetrahedral forming (b) Mesh build from triangulation of the red
markers displaying the magnitude of the 2D

displacement field (mm)

Figure 3.19

Figure 3.20: Force-displacement curve of the tetrahedral punch

3.3.2 Forming simulation
3.3.2.1 Finite element model

General settings

Model II (without backing material) is also used for this forming simulation because the backing
material would have to undergo a large anisotropic shear deformation (around 30°). The mate-
rial parameters of the beam elements are the same as those of the hemispheric shape forming
given in Table 3.1. The stiffness of the torsional springs at intersection between beams of layer
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1 and layer 2 equals 1 N/mm. When smaller torsional spring stiffnesses are used, excessive
in-plane shear leading to lateral penetration between beams appears. The friction coefficient
between the fibre tows and the forming tools is equal to 0.2, even though it might be different
since the blank-holders are made of PMMA and the punch of PLA. The simulation time period
is 140 s meaning that the punch has a velocity of 1 mm/s. As previously mentionned, this
velocity allows to respect the quasi-static condition while it minimizes the required time for the
simulation to run. A time step of 10−4 s is also used to ensure the convergence of the contact
algorithm is a minimal number of iterations.

Mesh and boundary conditions

Layer 1 is first meshed with an element size of 2.5 mm. Then, layer 2 is meshed with the same
element size and nodes are appended at intersections with the first layer. These additional
nodes are embedded in the corresponding host elements of layer 1. The adjacent nodes of the
nodes located at the intersections are deleted if the element size is lower than half the initially
prescribed size. The total number of beam elements is 22190. Fig 3.21 shows the TFP preform
mesh. A displacement of 140 mm is imposed to the punch. Regarding the blank-holder, the
fixed part is clamped and the movable part can only move along the punch axis.

3.3.2.2 Results and comparison with experimental forming

The simulation runs in 12 hours using four cores of an Intel(R) Core(TM) i7-8750H CPU
2.20GHz processor.

Preform contour In Fig. 3.22, the final configuration of the simulation is superimposed on the
experimental result. The predicted contour matches well the experimental one. In the TFP
path of the simulation, the curved paths connecting the straight ones have been removed for
simplicity. It might contribute to the slight differences observed between the contours. Fig. 3.23
shows both simulation and experimental results.

Inter-layer angles Fig. 3.24 shows the final angles between the two layers on a face of the
tetrahedral shape. As for the experimental results, the angles are computed at the intersection
points of the fibre tows between layers. A 2D mesh is built from a triangulation of these points
to displayed a continuous field. The angles are very close to 90° at every position on the face
except in the center due to the layer deposition strategy as mentioned in the experimental
section.

Finally, Fig. 3.25 shows the configuration of the TFP preform at different times from top and
side views. The blue surface corresponds to a 2D mesh built from the triangulation of the
meshes’ nodes for a better visibility.

3.3.2.3 Discussion on the orthotropic tetrahedral part forming validation

The experimental and simulation results are in very good agreement and close to the targeted
fibre orientations. The numerical model (Model II) gives reliable results for this shape, which
supports the validity of the proposed modelling strategy. The computation time is acceptable
and could be reduced by implementing the given model in highly parallel finite element codes.
Even if a better layer deposition strategy is possible to eliminate the singularity at the center
of the faces of the tetrahedron, this modification is supposed to have no effect on the overall
forming behaviour of the TFP preform.
For this shape and this TFP preform design, the forming kinematics results in an increase of
the inter-layer angles from 60° to 90°. Consequently, the distance between adjacent fibre tows
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Figure 3.21: Tetrahedral shape forming: Mesh of the TFP preform

within a layer increases during the forming. Therefore, neglecting the lateral contact between
fibre tows of a same layer is valid.
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Figure 3.22: Experimental preform contour (dotted line) and simulation (dashed line) (left) and
superposition of final configurations of experimental (picture) and simulation (green wireframe
mesh) (right)
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3.3. TFP preform forming on a tetrahedral shape with orthotropic final orientations

(a) Simulation

(b) Experimental

Figure 3.23: Qualitative comparison of the results
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3.3. TFP preform forming on a tetrahedral shape with orthotropic final orientations

Figure 3.24: Angles between layers: mesh built from triangulation of intersection points and
displaying the angles
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3.3. TFP preform forming on a tetrahedral shape with orthotropic final orientations
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3.4. Discussion on the proposed models and perspectives

Conclusion
This section addressed a second example of TFP preform forming. Quantitative measure-
ments were undertaken to analyse the experimental results. The optical measurements,
namely, the 2D displacement fields and the inter-layer angles on a face of the shape,
allowed to compare the simulation results with the experimental ones. The comparison
validates the accuracy of Model I to simulate the forming of TFP preform without
backing material. As the case of the hemisphere, this study goes beyond the validation
of the numerical model (Model II) by evidencing the ability of 2-layer TFP preforms to
form a challenging orthotropic final part. Therefore, these results are as important for
the validation of the numerical model as for highlighting the potential of TFP preform
forming. While the forming of a hemispheric part is generally viewed as a basic test
case, the tetrahedral part has a direct industrial application. Therefore, forming such a
part without defects, using a minimalist blank-holder set-up and with orthotropic final
configuration represents important progress in the field of fibrous reinforcement forming.

Due to the difficulty in finding a suitable backing material which has to be toler-
ant to stitching, able to overcome large deformation and be valuable in the final part,
this study validates Model II only. In the next section, the use of Model I to model
locally TFP-reinforced convention textiles is investigating by simulating a bias extension
test on a woven fabric with a central hole.

3.4 Discussion on the proposed models and perspectives

Introduction
This last section discusses the validity of the proposed strategies. First, to complete the
previous study focused on Model II, the application of Model I to model TFP-reinforced
conventional textile is addressed though the simulation of a specific bias extension test.
Next, the advantages of the proposed modelling strategy are highlighted before listing
the missing features. Finally, one of the possible improvements is chosen and will be
developed in the last chapter.

3.4.1 Using Model I to model locally TFP-reinforced conventional textiles
The previous sections focused on the application of the TFP technology to design and manu-
facture flat preforms to be formed on highly double-curved shapes with orthotropic final ori-
entations. In this previous study, the TFP technology was considered as a whole preforming
tool and Model II was shown to be suitable to model TFP preforms without backing material.
The next step is to investigate the use of Model I to model conventional textiles reinforced with
continuous tows deposited using TFP. This work is based on numerical simulations only.

3.4.1.1 Local reinforcement of conventional textiles

Due to the intrinsic unidirectional orientation of layers, drilling operations used to create
holes in composite laminates made of conventional textiles result in stress concentrations around
these singularities. As shown in section 1.4.2, TFP is particularly attractive to remove stress
concentration around geometric singularities in 2D laminates. Notched laminate plates can be
manufacture entirely by TFP or TFP can be associated with another conventional textile to
save manufacturing time and benefit from well-approved composite materials. However, in case
of the manufacturing of 3D shell-like composite structures using forming, high deformation of
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3.4. Discussion on the proposed models and perspectives

the conventional textile is necessary to accommodate complex geometries. As mentioned in
section 1.2.1, biaxial textiles such as woven fabrics mainly deform via in-plane shearing due to
the inextensibility of fibres. Adding continuous and curvilinear fibre tows on biaxial textiles
using TFP might affect their initial behaviour and potentially create defects. Therefore, Model I
can be of interest to predict the effect of the local TFP reinforcement over the forming behaviour
of the reinforced preform.

3.4.1.2 Simulation of a bias extension test on a TFP-reinforced conventional textile with a
central hole

Choice of the simulation test To study the effect of adding TFP reinforcement on another
conventional textile, the simulation of a bias extension test has been preferred over a forming
simulation. This choice is justified by the fact that the bias extension test is a well-defined
method to characterize the in-plane shear behaviour of conventional textiles as described in
section 1.2.3. Therefore, this test will show the modification of the in-plane shear behaviour of
the conventional textile due to the TFP reinforcement. To this end, a rectangular sample with
a hole at its center is considered. A continuous fibre tows is deposited on the circumference of
the hole. The initial configuration is illustrated in Fig.3.26.

Figure 3.26: Initial configuration of the bias extension test sample with a centred hole and an
additional continuous fibre tows

Conventional textile model Modelling the behaviour of conventional textiles is an area of work
as evidenced in section 1.2.2. To avoid developing or implementing a new mechanical behaviour
in the finite element solver, the finite element developed by Hamila et al. (2009), which allows
modelling biaxial fabrics and that is already available in the code, is used. The 3-node semi-
discrete element is based on the description of an unit cell. The internal virtual work δWint is
defined as the sum of the independent contributions of the tensile δWt, in-plane shear δWs and
bending δWb behaviours:

δWint = δWt + δWs + δWb (3.7)

152



3.4. Discussion on the proposed models and perspectives

Table 3.2: Material parameters for the model by Guzman-Maldonado et al. (2019)

Material parameters Tension In-plane shear moment
C1 C2 K1 K2 K3

Value 1000 1000 0.37697 -0.41628 2.42827
Unit N/yarn N/yarn N.mm N.mm N.mm

The tensile and bending behaviour are assumed linear:

Tii = Ciϵii (3.8)
Mii = Biχii (3.9)

where Tii and ϵii are respectively the tensile stiffness and the longitudinal strain in the ith fibre
direction. Mii and χii are respectively the bending moment and the curvature in the ith fibre
direction.

The in-plane shear moment is non-linear and modelled using a five order polynomial law:

Mγ = K1γ +K2γ
3 +K3γ

5 (3.10)

where γ is the shear angle.

For simplicity the out-of-plane bending rigidity is neglected in the simulation of the bias-
extension test.

The material parameters required in the biaxial textile model are those given in Guzman-
Maldonado et al. (2019) for a plain weave reinforcement and shown in Table 3.2.

Simulation without hole and without reinforcement First, simulations without hole and with
hole but without reinforcement are performed. The shear angle field in the final configurations
is shown in Fig. 3.27. As expected, three zones of constant shear are present. When comparing
the simulations, the effect of the hole on the shear angle seems negligible.

Simulation with reinforcement A simulation is performed with an additional fibre tow de-
posited along the circumference of the hole. Model I is used for the simulation. To simplify the
analysis of the simulation, the fibre tow is modelled with a 1D linear elastic truss rather than
the beam element presented in section 2.2. This simplification allows focusing on the effect of
the quasi-inextensibility of the additional fibre tow without considering its bending behaviour
which is negligible and essentially required to model wrinkles. The tensile stiffness of the truss
elements has the same value than those used in the previous simulation for the beam element
(CE = 1.423 107 N). The result is shown in Fig. 3.28. The shear angle field is highly affected
by the presence of the reinforcing fibre tow. Due to its quasi-inextensibility and the assumption
of non-slip between the conventional textile and the fibre tow, a third fibre direction is added
that locks the shear deformation of the conventional textile around the reinforcement. If real,
this very stiff behaviour might compromise the formability of the TFP-reinforced conventional
textile by introducing defects such as wrinkles. On one hand, if this simulation is unrealistic,
it would mean that the no-slip assumption which assumes the stitching yarn to act as a hinge
connection is incorrect. On the other hand, if this very stiff behaviour is real, then it would
be necessary to allow for slippage by choosing appropriate stitching parameters. In both cases,
fibre tow slippage is required.
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3.4. Discussion on the proposed models and perspectives

Figure 3.27: Final configurations of the bias extension test sample without (left) and with
(right) hole

3.4.1.3 Discussion on Model I

In the previous sections of this chapter, the two forming cases were carried out successfully and
the assumption of no-slip between the fibre tows of adjacent layers was verified experimentally.
In case of Model I, the simulation of the reinforcement of the hole in a biaxial textile using TFP
shows a very stiff behaviour. As mentioned in section 1.4.2.3, Fial et al. (2018) showed that the
stitching parameters can be adjusted to allow slippage between the fibre tows and the backing
material. Since no-slip can lead to a very stiff behaviour, the formability of TFP-reinforced
conventional textile would benefit from allowing slippage.

3.4.2 Advantages of the proposed modelling strategy
3.4.2.1 Two models for two applications

This work considers two applications of the TFP technology, namely, its use as a preforming
tool or as a mean to locally reinforce another conventional textile. The TFP preform models
proposed herein have been developed to take into account the aforementioned versatility of the
TFP technology.

Model II can be used to model the forming of 2-layer TFP preforms without backing material
on doubly-curved shapes. It was demonstrated that this model helps the mechanical designer in
finding the appropriate flat TFP pattern to obtain the desired final orientations. In particular,
Model II was used to evidence the ability of forming orthotropic parts using a specific design of
the flat TFP preforms. Forming experiments on hemispheric and tetrahedral shapes validated
Model II.
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3.4. Discussion on the proposed models and perspectives

Figure 3.28: Final configurations of the bias extension test sample with (right) and without
(left) reinforcement

Model I can be used to model TFP-reinforced conventional textiles. However, as mentioned
previously, the no-slip assumption leads to a very stiff behaviour which is either unreal or not
desired. Moreover, experimental work would be required to confirm the observed behaviour.

3.4.2.2 A common basis based on a natural description

Even if two distinct models have been developed, the proposed modelling strategy offers a
common basis to both models. First, the fibre tows are modelled explicitly using beam elements.
Secondly, the stitching yarn is modelled implicitly using the embedded element approach. This
approach aims at tracking the fibre orientations while the modelling of other features such as
the stitching yarn are simplified. In particular, it simplifies the frictional contact interactions
between the constituents of the TFP preform. Moreover, this is a natural and direct approach
to take into account all the capabilities of the TFP technology.

3.4.2.3 Simplified characterisation procedures

The semi-discrete models split the behaviour of the TFP preform constituents into well-defined
contributions that can be characterized separately. This work did not address the experimental
characterisation procedures. However, the material parameters required in the model can be
identified from the characterisation of the TFP preform constituents alone, which considerably
simplified the procedure. For example, the tensile stiffness of the beam element can be identified
from a tensile test of a fibre tow while its bending properties can be measured using the cantilever
beam method. The characterisation of the backing material will depend on the 2D finite element
formulation used. Test at the preform scale, such as the bias extension test, can be used to
determine the stiffness of the linear elastic torsional spring.
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3.4.3 Possible improvement of the models
3.4.3.1 Interaction between adjacent fibre tows

In both models, the contacts between the fibre tows within a layer have been neglected. For
conventional textiles, the existence of a unit cell in the fibrous reinforcement allows taking into
account the lateral compaction of fibre tows in the constitutive law as in the previously used
model by Hamila et al. (2009). In the forming experiments, the fibre tows density was chosen
such as this interaction does not occur. However, for higher fibre density TFP preforms and for
different TFP preform designs, the modelling of this contribution can be required. Frictional
contact between adjacent beam elements can be explicitly added in the models.

3.4.3.2 Beam element with deformable cross-section

The beam element assumes no-warping and no transverse deformation of the cross-section.
Instead, a beam element based on a 3D constitutive law could be used for a better description
of the deformation of the fibre tows.

3.4.3.3 Non-linear torsional spring

The stitching yarn is implicitly model as a hinge connection. For the sake of simplicity, the
resistance to rotation of crossing fibre tows is taken into account using a linear elastic tor-
sional spring. This resistance is due to the friction between crossing fibre tows as well as the
longitudinal deformation of the stitching yarn. Therefore, using a non-linear torsional spring
would better reflect these complex underlying interactions. Carrying out bias extension test on
TFP-made samples would provide information about the real behaviour.

3.4.3.4 Fibre tow slippage

One of the most important improvement of the modelling strategy is the modelling of fibre tow
slippage. As shown in the previous section, the stiff behaviour of Model I would considerably
benefit from the fibre tow slippage. Even if fibre tow slippage was not observed in the forming
experiments based on Model II, taking it into account in the current models without changing
their initial features is a desirable improvement. In particular, conserving the embedded element
approach while modelling slippage would be an important enhancement since it would not
require to model the contact interactions explicitly. Moreover, as in Fial et al. (2018), taking
advantage of the fibre tow slippage, which is considered as a defect in conventional textile, to
improve the formability of preforms reinforced with TFP would be very attractive.

Conclusion
This last section started by giving an insight into the application of Model I. From simula-
tions of a bias extension test, it appears that the continuous tow reinforcing a conventional
textile leads to a very stiff behaviour that is neither realistic nor desired. In both cases,
it seems necessary to relax the non-slip assumption in the model. Next, the advantages
of the proposed modelling strategy were highlighted as well as possible improvements.
Among the latter, including fibre tow slippage in the models would represent a major
step towards turning a defect in conventional textiles into an advantage in TFP preforms.

156



3.4. Discussion on the proposed models and perspectives

Chapter conclusion
This chapter presented the experimental work on forming 2-layer TFP preforms without
backing material. Forming experiments on hemispheric and tetrahedral shapes were
carried out and demonstrated the ability of 2-layer TFP preforms to be formed on
doubly curved parts. Moreover, for this particular shapes, this work investigated the
determination of the flat TFP design leading to orthotropic fibre orientations in the final
part. While the hemispheric shape was used as a basic test case, the tetrahedral shape
has a direct industrial application as it corresponds to corner bracket. In this sense,
additional effort were undertaken to measure quantitative data as a 2D displacement
field and the final inter-layer angles on one face of the tetrahedron. In both cases, the
results are close to the targeted orientations. These forming experiments were used
as validation test cases of Model II. The simulation results are in agreement with the
experimental ones for both shapes. It should be noticed that the simulations were
performed prior to the experimental forming, as if the numerical tool was used by a
mechanical designer. To improve the analysis of the hemispherical forming results,
the optical methods used for the tetrahedron could be applied. In particular, this
would allow the rotation of the fibre tows around the hemisphere axis to be measured.
Concerning the shapes studied, they allowed analytical flattening of the targeted 3D
orientations. For more complex shapes, developing a numerical flattening tool might be
required. As mentioned in section 1.4.3.2, the development of a numerical forming tool
for TFP preforms was seen as a first step in the development of the full numerical chain
of design and manufacturing processes.

The validity of Model I, which is used to model TFP-reinforced conventional tex-
tile, was only addressed via simulations of a bias extension test. The very stiff behaviour
due to the non-slip assumption compromises the formability of these preforms. Conse-
quently, allowing and controlling fibre tow slippage is a major step to improve Model I.
Even if fibre tow slippage was not experimentally observed in case of Model II, adding
this feature in both models would be beneficial. Including fibre tow slippage in the
models without modifying their initial features is the challenge addressed in the next
chapter.
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Chapter 4
Towards controlling fibre tow slippage to
increase the formability of TFP preforms

Abstract
The validation of the TFP preform models addressed in the previous chapter showed
the limitation of the no-slip assumption for Model I. This chapter aims at improving
the modelling strategy without modifying its initial ingredients. Therefore, the models
are still based on the embedded element approach which simplifies the modelling of the
stitching yarn as well as the underlying contact interactions. The challenge lies in finding
a method to include fibre tows slippage while maintaining the kinematic constraints
imposed to the embedded elements or nodes. Section 4.1 recalls the motivations of
modelling fibre tow slippage in TFP preforms. It also gives an overview of the modelling
of fibre slippage in conventional textiles and describes the method required to include
fibre tow slippage in the TFP preform models without affecting its initial features. Next,
it briefly introduces the Arbitrary Lagrangian-Eulerian (ALE) description in continuum
mechanics. Finally, the formulation of a 1D element allowing material flow is given, based
on existing works achieved in the field of pulley-cable system modelling. Section 4.3
presents the characterisation method to determine the model of the friction law to be
implemented in the 1D ALE element. A parametric study based on pull-out experiments
is carried out to determine the material parameters of the proposed analytical friction
model. Finally, section 4.4 addresses the application of the 1D ALE element in the
TFP preform models. In particular, an update of the bias extension test simulated in
section 3.4.1 with the Model I is performed. Next, its application to Model II as well as the
possible enhancement of the 1D ALE element are presented. Finally, the application of
the 1D ALE element to the modelling of conventional textiles is addressed. In particular,
the modelling of fibre tow slippage in woven fabrics and a simplified approach to model
the tufting yarn of tufted preforms are proposed.
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4.1 Turning slippage defects in conventional textile into an additional
degree of design freedom in TFP preforms

Introduction
This section begins with explaining the reasons why controlling fibre tow slippage in
TFP preforms will be a major improvement to form complex TFP preforms. Next, it
shows some modelling strategy developed to take into account this forming defect in con-
ventional textiles before presenting how fibre tow slippage can be included in the TFP
preforms models without changing their initial ingredients. Then, a concise introduction
to the Arbitrary Lagrangian-Eulerian (ALE) description gives the necessary background
to understand the existing models allowing to describe material flow in 1D elements. Fi-
nally, among the possible models, the formulation of the one which best fits the framework
of an explicit solver is detailed before implementing and testing this 1D ALE element
with elementary test cases.
Therefore, the objectives of this section are:

• Examine existing modelling approaches taking into account fibre slippage
• Chose a method to add material flow in the TFP preform models without changing

their initial ingredients
• Give the necessary background to understand the formulation of 1D ALE finite

elements

4.1.1 Introduction
4.1.1.1 Motivations

Fibre slippage is a well-known manufacturing defect which can occur during the forming of
conventional textiles due to excessive tension in the fibre directions. However, in case of TFP
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preforms, the fibre tow slippage could be used as an additional degree of freedom to form
complex shapes with specific targeted orientations. As mentioned in section 1.4.2.3, Fial et al.
(2018) used fibre tow slippage in TFP preform to form a complex corner-like shape by folding
rather than forming, which reduces unformability issues while increasing the final part properties
(Fig.1.43).

Fibre tow slippage can be used to simplify the flat TFP pattern. For example, in the hemi-
spheric shape forming addressed in section 3.2, the flat TFP pattern design was obtained by
considering the no-slip assumption between the fibre tows. This strong hypothesis led to a TFP
pattern where the fibre tows of the meridian layer have a initial high curvature and end tangent
to the parallel layer. This initial configuration leads to high rotation of the TFP preform during
forming driven by the realignment of the meridian fibre tows with the meridians of longitude
of the hemisphere. If the fibre tows of the meridian layer could slip over the parallel layer, the
initial curvature of the meridian fibre tows could be reduced, which would improve the filling
of the TFP preform.

Moreover, as shown in section 3.4.1, the no-slip assumption between the fibre tows and the
backing material leads to a very stiff behaviour which considerably modifies the initial behaviour
of the backing material. Therefore, in case of TFP-reinforced biaxial textiles, absence of slippage
in the TFP reinforcement can result in the unformability of the preform due to the presence of
more than two inextensible directions.

Consequently, controlling fibre tow slippage in TFP preforms will allow to improve the forma-
bility of complex preforms on complex shapes and will increase the design freedom. The next
section is a brief review of the modelling of fibre slippage in conventional textiles.

4.1.1.2 Fibre slippage in conventional textiles and its modelling

The success of forming complex composite parts is mainly driven by the ability of the fibrous
reinforcement to accommodate the final shape. When conventional textiles cannot fit into the
mould, defects occur. Wrinkles, fibre breakage or large fibre slippage are the main defects
encountered during manufacturing of complex parts. Wrinkling in conventional textile has
been widely investigated by the scientific community using both numerical simulations and
experiments (Hamila et al., 2009; Allaoui et al., 2011, 2014; Chen et al., 2015; Sjölander et al.,
2016; Labanieh et al., 2018). The dependency between the size or occurence of wrinkles and the
mechanical properties of the dry textile has also been studied (Boisse et al., 2011). One solution
to prevent defects relies on the use of a system of independent pressure-control blank-holders
(Allaoui et al., 2011, 2014; Capelle et al., 2014; Labanieh et al., 2018). Fibre slippage also
known as inter-ply sliding or intra-ply sliding in conventional depends on the punch geometry,
the process parameters as well as the initial preform orientation with respect to the punch
geometry and the interactions between the plies for multi-layer preforms. A major difficulty in
avoiding defects is to understand the coupling between defects. For example, the induced tensile
forces resulting from the use of blank holders can lead to fibre slippage. Fibre slippage tends to
decrease the bending stiffness which in turn can facilitate the onset of wrinkles. Understanding
fibre slippage is a crucial step for the prediction of the forming behaviour of conventional but is
very challenging to model. Fibre slippage in NCF or woven fabrics relies on the same mesoscopic
interactions, namely the friction between the fibres. However, in NCF the resistance to fibre
slippage is due to the friction between the stitched layers and depends on the type of stitching
whereas in woven fabrics, the weave pattern plays a crucial role. Some modelling approaches
developed to study fibre slippage in NCF and woven fabrics are presented hereafter as an
introduction.
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NCF models Creech and Pickett (2006) modelled NCF using a discrete model where rows of
solid elements represent the yarns to take into account the inter-ply and intra-ply sliding using
contact friction interaction between the rows. Bar element modelling the stitching interconnect
the rows of solid elements as shown in Fig. 4.1 (a).
Bel et al. (2012) modelled inter-ply sliding in NCF using shell elements for each layer and used
trusses with anisotropic contact interactions to represent the stitch linking the layers Fig. 4.1 (b).
This modelling strategy showed good agreement with the experimental forming on a hemisphere
geometry (Fig 4.2).
While the model by Creech and Pickett (2006) takes into account inter-ply and intra-ply slip-
pages, the one by Bel et al. (2012) is limited to inter-ply slippage.

(a) NCF model by Creech and Pickett (2006)

(b) NCF model by Bel et al. (2012)

Figure 4.1: Example of models for NCF taking into account fibre slippage

Figure 4.2: Simulation result of a hemispheric shape forming by Bel et al. (2012)

Woven fabric models In woven fabrics intra-ply slippage is referenced as a loss of cohesion of
the woven fibre network. Gatouillat et al. (2013) modelled this loss of cohesion using a meso-
modelling approach. This model is based on a coarse description of a plain weave unit cell
where the fibre tows are straight and represented using 2D shell elements rather than 3D solid
elements. Isotropic Coulomb frictional contact is used to model the interactions between the
yarns constituting the unit cell. To validate the model, forming using a hemispherical punch
has been addressed (Fig 4.3).
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Figure 4.3: Simulation result of a hemispheric shape forming by Gatouillat et al. (2013)

The previous modelling approaches relies either on discrete models or a combination of macro-
modelling with some discrete fabric features. Moreover, they are based on a Lagrangian de-
scription which implies explicitly modelling the contact interactions to take into account fibre
slippage. The originality of the model presented in Parsons et al. (2010, 2013) is the use of a
continuum approach which takes into account the fibre slippage in woven fabric. However, this
model has not been used to study the forming process but was used in impact simulations. In
this model, a woven fabric is represented by a regular mesh of 2D elements where the nodes
correspond to the crossover points. Each node (crossover point) is associated with an internal
unit cell of the fabric depicted in Fig. 4.4 (a). This unit cell is made of two sets of two trusses
representing the warp and weft fibre tows and additional “locking” trusses connecting the fibre
tows to model the shear resistance and lateral fibre tow contact. In the unit cell a fibre tow is
represented by two trusses connected by a spring element to account for out-of-plane bending
stiffness. The fibre tows are also connected by a “cross-over spring” to model the resistance to
in-plane shear. Additional degrees of freedom quantify the change in crimp amplitude and are
used to compute the friction forces between the two fibre tows at the crossover point. Forces
computed for each unit cell are then homogenized through the boundaries of the continuum
(see Fig. 4.4 (b) for a schematic view of the modelling approach).

To take into account the fibre slippage, the mesh nodes have additional degrees of freedom (one
per fibre tow family) which quantify the displacement of a material point on a fibre tow with
respect to the crossover point and are denoted as slip displacements. Each additional degree of
freedom is driven by the gradient of tension in the portion of fibre tow it is associated with and
the friction forces resulting from the interactions with the other family. The originality of this
model comes from the use of an ALE description that considerably simplifies the modelling of
the contact interactions between the weft and warp fibre tows in woven fabrics. This attractive
description allows modelling material flow through a moving mesh. Its application to include
fibre tow slippage in the TFP preform models is discussed in the next section.

4.1.1.3 Including fibre tow slippage in the TFP preform models

Including fibre tow slippage in the proposed TFP preform models without changing the initial
ingredients is challenging. The method used by Parsons et al. (2013), which considers additional
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(a) Unit cell description

(b) Homogenisation process

Figure 4.4: Woven fabric model including fibre tow slippage by Parsons et al. (2013)

slip displacement degrees of freedom, is very attractive. However, it was applied to a 2D
continuum representation of fibrous reinforcement whereas the TFP preform models are based
on the explicit discretisation of the fibre tows using 1D elements. Consequently, it is necessary
to investigate the application of this method to model the material flow in 1D elements rather
than in 2D elements.

Fig. 4.5 illustrates the targeted TFP preform models. In these new models, all the initial
features of the TFP models remain. In this figure, a material point described by its curvilinear
coordinates Si is considered on the initial configuration of the ith fibre tow. Then, after slippage,
this material point moved to the curvilinear abscissa si. The fibre tow slippage or material flow
within the 1D elements is defined by the difference between these two curvilinear abscissa:

U islip = si − Si (4.1)

where U islip is the slip displacement on the ith material point, which is a scalar quantity.
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(a) Model I (b) Model II

Figure 4.5: Representation of fibre tow slippage in the TFP models

Transition
Taking into account the fibre tow slippage in the TFP preform models without modi-
fying the initial ingredients requires to quantify the slip displacement of the fibre tows.
Therefore, in the new models, material flow within the 1D elements representing the fibre
tows has to be modelled. The ALE description is a suitable framework to model relative
motion between a moving mesh and the matter it contains. The next section aims at
giving the necessary background to understand the ALE description and the formulation
of material flow in 1D elements.

4.1.2 A brief introduction to the Arbitrary-Eulerian description in continuum me-
chanics

This section introduces the basics of the Arbitrary Lagrangian Eulerian (ALE) framework in
continuum mechanics. Donea and Huerta (2003); Belytschko et al. (2013) can be referred for a
clear understanding of the underlying descriptions.

4.1.2.1 Origins

In composite forming modelling, the finite elements method is a well-established approach. Most
of the models developed rely on a Lagrangian description of the continuum or of the discrete
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features constituting fabrics. This is the standard approach when dealing with solid mechanics
as opposed to the Eulerian description mainly used in fluid mechanics. The Lagrangian descrip-
tion which enforces no relative movement between the spatial discretization (mesh) and the
material points of the continuum suffers from a lack of accuracy when very large deformations
occur. Burdensome adaptive remeshing techniques are required to overcome this defect. The
Eulerian description is able to track large movement of material points through a fixed spatial
discretization but it complicates the treatment of moving boundaries and interfaces. Conse-
quently, both approaches have their own field of application. However, a more general frame
referenced as ALE description has been developed to take advantage of both latter descriptions
while minimizing their drawbacks. In this description, the spatial discretization of the domain
is neither attached to the matter, nor fixed in space.

4.1.2.2 ALE reference configuration

In practice, the Lagrangian and Eulerian descriptions differ from the reference configuration
used to describe the equations of motion and the independent variables used. The motion
and deformation of a body is generally described using two configurations, namely, an initial
configuration referred as (Ω0) corresponding to a time variable t = 0 and a current configuration
(Ω) corresponding to an instant t. A point X⃗ in (Ω0) is generally referred as a material point
which does not vary in time. This point corresponds to a point x⃗ in (Ω) referred as a spatial
point. A one-to-one mapping ϕ exists between the reference and current configurations:

x⃗ = ϕ
(
X⃗, t

)
(4.2)

This mapping describes the body motion. In the Lagrangian description, (Ω0) is the reference
configuration. A finite element node in a Lagrangian mesh is associated to the same material
point during the body motion and deformation. In the Eulerian description, a fixed spatial
domain (Ω) is the reference configuration and the equations of motion track information at
the material points which are flowing through it. Therefore, in an Eulerian mesh, a node is
not associated to a unique material point. In the ALE mesh, the mesh moves independently
from the material points and this motion must be carefully chosen to avoid severe distortion
of the elements and allow tracking the moving material boundaries or solid/fluid interfaces for
example.
Consequently, another configuration (Ω̄), named referential configuration or ALE domain, must
be introduced to track the mesh motion independently from the material motion. Since the
mesh is generally created in this configuration it is also defined as the computational domain.
A point χ⃗ defined in (Ω̄) is related to a material point X⃗ in (Ω0) through the mapping ψ and
to a spatial point x⃗ in (Ω) through ϕ̄. The mapping ϕ is still defined between (Ω0) and (Ω)
and corresponds to the material motion.

In fact, the material motion can be decomposed into two steps, a first step where matter to
mesh motion occurs and second step where the mesh is fixed to the material and deforms
accordingly. The first step is described by ψ whereas the second step corresponds to ϕ̄. The
ALE description simply reduces to a Lagrangian description when ψ = I, and reduces to the
Eulerian description when ϕ̄ = I. Therefore, ϕ can be seen as a composition of an Eulerian
motion ψ and a Lagrangian motion ϕ̄. Expressions of the kinematic variables in the different
continuum descriptions are given in Table. 4.1. The relations between these three mapping
functions are illustrated in Fig. 4.6.

4.1.2.3 Illustrative example in one dimension

Before introducing some existing models to account for material flow in 1D elements, the map-
pings between the different configurations of the ALE framework are explained in an one di-

168



4.1. Turning slippage defects in conventional textile into an additional degree of design freedom in
TFP preforms

Figure 4.6: Relations between the mapping functions in an ALE framework

Table 4.1: Motion and displacement definitions for the different descriptions: ALE, Lagrangian,
Eulerian

Description ALE Lagrangian Eulerian

Motion Material x⃗ = ϕ
(
X⃗, t

)
x⃗ = ϕ

(
X⃗, t

)
x⃗ = ϕ

(
X⃗, t

)
Mesh x⃗ = ϕ̄ (χ⃗, t) x⃗ = ϕ

(
X⃗, t

)
x⃗ = I (x⃗)

Displacement Material u⃗ = x⃗− X⃗ u⃗ = x⃗− X⃗ u⃗ = x⃗− X⃗
Mesh υ⃗ = x⃗− χ⃗ υ⃗ = u⃗ υ⃗ = 0⃗

mensional domain. Fig. 4.7 (a) shows the initial configuration where one element of length L
defined by two nodes (black dots) is represented. In this element, a material point X is defined
as well as its parametric coordinates S in the element.
The referential configuration is represented in Fig. 4.7 (b). The referential point χ corresponding
to the material point X has moved through the mesh. Consequently, the parametric coordinates
S̄ of χ is different from S while the length L̄ equals L since the mesh does not deform in the
Eulerian step.
In the current configuration presented in Fig. 4.7 (c), the spatial point x of parametric coordi-
nates s has moved from χ in the physical domain but still coincides with χ in the parametric
domain which means that s equals S̄. In other words, between (Ω̄) and Ω (Lagrangian step),
the mesh deforms with the material and the length l is different from L̄.

Transition
Taking into account fibre tow slippage in the TFP preform models without modifying its
initial ingredients requires modelling material flow in the 1D elements representing the
fibre tows. The ALE description allows independent displacement of the material points
and the mesh. The next section describes some models which were developed in the field
of pulley-cable systems to simplify the contact interactions.
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Figure 4.7: Decomposition of the motion of a material point in an one dimensional ALE frame-
work

4.1.3 Modelling material flow in 1D elements
4.1.3.1 From pulley-cable system to TFP preform models

The section aims at finding the formulation of a 1D element which allows the matter to flow
through it. Modelling of the interactions between pulleys and cables has been widely addressed
(Aufaure, 1993, 2000; Zhou et al., 2004; Ju and Choo, 2005; Peng et al., 2017; Coulibaly et al.,
2018; Liu et al., 2018; Du et al., 2019; Zhang et al., 2019; Kan et al., 2019, 2021). The main
problem is to judiciously model the cable-pulley system to avoid modelling all the contact points
between the cable and the pulley. Fig. 4.8 (a) shows the representation of a cable lying on a
pulley. Using the Lagrangian description to model this system requires discretizing separately
the pulley and the cable. In this case, all the cable elements are prone to interact with the pulley
elements. Consequently, a fine discretisation of the cable is required (Fig. 4.8 (b)). Moreover,
a very fine mesh is generally needed to avoid spurious numerical oscillations in the contact
algorithm due to the lack in the representation of the real geometries. The model illustrated
in Fig. 4.8 (c) considerably simplifies the representation of the system. The portion of cable in
contact with the pulley shares the same nodes than the pulley. The shared mesh is made of
cable-pulley elements. When the cable slides, the material particles of the cable flow through
the cable-pulley elements which are fixed. This modelling allows a high reduction of the element
number and removes the spurious numerical oscillations of a contact algorithm. When the size
of the pulley is small, only one node is needed to model it (Fig. 4.8 (d)).

The representation of the system using cable-pulley elements is very attractive. Fig. 4.9 shows
two modelling approaches to include fibre tow slippage in Model I. In the Lagrangian approach
(Fig. 4.9 (a)), the embedding constraint is no longer possible and a very fine discretisation of
the fibre tows is required. Moreover, a contact law allowing slippage along the fibre tow axis
is needed as developed by Bel et al. (2012) to model slippage of the stitching yarn in NCF.
Therefore, this modelling approach requires higher computational effort and important changes
in the initial model. The mixed embedded element - ALE approach illustrated in Fig. 4.9 (b)
is still based on the embedded element approach and takes into account the fibre tow slippage
through material flow as for the cable-pulley system. The red dots represent the position of a
single material point due to material flow in the 1D element. The fibre tow discretisation is
the same than without including fibre tow slippage. In the following, three cable-pulley models
are briefly presented. Their advantages and drawbacks are reported and the one which is best
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Figure 4.8: Representation of a cable-pulley system: real system (a), Lagrangian mesh (b),
ALE mesh (c), ALE mesh with for a small pulley (d)

suited to fit into an explicit solver is chosen.

4.1.3.2 Multi-sliding nodes

One of the first modelling strategies developed is to consider a cable-pulley element composed
of 3 nodes (Aufaure, 1993, 2000; Zhou et al., 2004; Zhang et al., 2019). Two Lagrangian nodes
(N1, N2) represent the cable ends and an ALE node in between (N3) models the pulley as
depicted in Fig. 4.10 (a). The cable is assumed to be flexible, does not resist to compression
and its cross-section remains the same (small strains assumption). For a frictionless pulley, the
internal forces at the nodes are computed knowing that the tension in the segments N1-N3 and
N3-N2 must be equal. The derivation of the internal forces for explicit integration scheme or
the stiffness matrix for implicit scheme is then straightforward (see Aufaure (2000) for implicit
scheme and Zhou et al. (2004) for an explicit one). For this kind of modelling, a cable-pulley
system with several pulleys is modelled using a series of 3-nodes cable-pulley elements as shown
in Fig. 4.10 (b). The main issue with this modelling is the need to remesh when the cable flow
is such that one of the Lagrangian node of a cable-pulley element will pass through an ALE
node (Fig. 4.10 (c)). Another disadvantage is the frictionless pulley assumption which does not
allow an accurate modelling of the cable-pulley interaction. Zhang et al. (2019) extended the
work of Zhou et al. (2004) to account for pulley with friction.

To encompass the remeshing procedure Ju and Choo (2005); Coulibaly et al. (2018); Kan et al.
(2021) use a multi-sliding nodes approach where several ALE nodes (representing pulleys for
instance) can be cumulated along a cable without Lagrangian cable node in between every other
ALE node (Fig. 4.11). The ALE nodes are named sliding nodes in these models.

They used different approaches to solve the system of equations resulting from this model and
the remainder of this section elaborates further on the methods used by Coulibaly et al. (2018)
and Kan et al. (2021).
The model is driven by two systems of equations. The first one is the classical moment equilib-
rium and the second one is the conservation of mass. To model material flow through the sliding
nodes, the quantity of material exchanged on both side of such a node must be computed. The
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(a) Lagrangian approach

(b) Mixed embedded element-ALE approach

Figure 4.9: Modelling approaches to include fibre tow slippage in Model I

material flow at a sliding node is driven by an equilibrium between the tension in the adjacent
elements and the friction force at the sliding node. This friction force can be due to a pulley
or another sliding component along the cable but pulleys will be considered here for simplicity.
Fig. 4.12 illustrates the different configurations for one sliding node.

In Coulibaly et al. (2018), since an explicit time integration scheme is used, at each time step,
the current configuration (Ω) is known. To compute the strain and stress in the elements, the
material flow δL has to be computed to determine the ALE configuration (Ω̄). The strategy used
consists in a prediction-correction method. The unstretched lengths L̄i describe the referential
configuration in the ALE reference domain and constitute the unknowns. The mass conservation
equation yields: ∑

i

Li =
∑
i

L̄i (4.3)

where Li is the initial unstretched length of the ith element.
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(a) A 3-node cable-pulley element

(b) Assembly of 3-node cable-pulley elements

(c) Lagrangian node close to a sliding node implies remeshing

Figure 4.10: A modelling approach of cable-pulley element

Figure 4.11: Representation of the multi-sliding nodes model

Moreover, for each sliding node a friction law yields an equation linking the element tension on
both sides. For a pulley at sliding node i:

Ti+1 = λTi (4.4)

where Ti is the tension in the ith element and λ is the friction coefficient. If a multi-sliding nodes
composed of N elements is considered, the system of equations consists in N −1 equations from
the friction law (Eq. 4.4) at the N − 1 sliding nodes and an additional equation which is the
conservation of mass (Eq. 4.3). Therefore, the N unknown unstretched lenghts L̄i can be solved.
In case of one sliding node on a linear elastic cable element, the system of equations is:
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Figure 4.12: Configurations of the multi-sliding nodes model with one sliding node

L1 + L2 = L̄1 + L̄2 (Mass conservation) (4.5)
T1 = λT2 (Pulley friction law at sliding node) (4.6)

Using the Cauchy strain definition yields:

Ti = Eϵi = E
li − L̄i
L̄i

(4.7)

Where E is the tensile modulus of the cable material. L̄i can be expressed according to the
tension Ti using Eq. 4.7.

For one sliding node, the exchange of matter δL can be computed analytically. In the general
case, a Newton-Raphson method is used at each time step to solve for the tension equilibria
and the mass conservation. It is a prediction-correction method in the extent that the first
guess tensions are computed by considering no slip at the sliding nodes. In other words, the
previous ALE configuration is used as a first guess. The advantage of this method is the strict
respect of the mass conservation when a small convergence criterion is used. However, since
it requires the computation of the unstretched lengths from the tension, the constitutive law
must be inverted and consequently this function must be bijective disabling the use of softening
material. Besides the elements cannot resist longitudinal compression which is appropriate for
a cable but not necessarily for a fibre tow.

4.1.3.3 In implicit framework

Ju and Choo (2005); Kan et al. (2021) used a different approach. Their finite element solver
was based on an implicit framework. To be consistent with this framework, they formulated
the equations of mass conservation and friction at sliding nodes as an additional functional to
be minimized with the functional resulting from the principle of virtual work to solve for the
displacements. The difference between both resides in the fact that Ju and Choo (2005) used
the small strain assumption which considerably reduces the effort for the differentiation of this
additional functional. Since the friction law for a pulley involves non-smooth inequalities, a
special treatment must be applied to obtain a differentiable functional. Kan et al. (2021) used
the nonlinear complementary approach based on Kuhn-Tucker complementary theory and the
modified Fischer-Burmeister complementarity function to solve this issue. They firstly used
a linear complementary approach in Kan et al. (2019) but the linear method was limited to
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Table 4.2: Comparison of different modelling approaches to take into account material flow in
1D elements

Methods Prediction-correction
Coulibaly et al. (2018)

Complementary approach
Kan et al. (2021)

Additional dofs
Peng et al. (2017); Liu et al. (2018)

Integration scheme Explicit Implicit Explicit
ALE configuration Unknown Unknown Known

Current configuration Known Unknown Known

Implementation
Displacement dofs are time

integrated while material flow
is determined using N-R iterations

Displacement dofs and
material flow are determined

simultaneously using N-R iterations

Displacement dofs and
material flow are
time integrated

Advantages Mass conservation
is strictly respected

Mass conservation
is strictly respected

Can be implemented in a
standard implicit framework

Implementation is easy and
allows material flow

at every nodes even extremities

Drawbacks
Costly N-R iterations at each

time increment
Material behaviour restrictions

Cumbersome procedure to
determine the functional

terms of material flow

Mass conservation accuracy
depends on time step

explicit dynamic analysis. This is why they extended their work with a nonlinear complementary
approach. In fact this method considers the material flow at a sliding node as an additional
degree of freedom. The use of additional degrees of freedom to compute the material flow is
similar to the work by Parsons et al. (2013) but in an implicit framework with 1D elements.

4.1.3.4 Comparisons of the existing approaches

The functional established in Kan et al. (2021) could be used to take into account material
flow in the TFP preform models. However, minimizing the functional at every time step is
non-consistent with the explicit solver paradigm where the degrees of freedom are integrated
over time. The same applies for the model by Coulibaly et al. (2018) which requires an iterative
algorithm to converge at each time increment.
Nevertheless, Peng et al. (2017); Liu et al. (2018); Du et al. (2019) developed a 1D element with
additional degrees of freedom talking into account the material flow at both element boundaries.
They expressed the internal forces conjugated to the material flow degree of freedom. Peng et al.
(2017); Liu et al. (2018) used the curvilinear coordinates as additional degree of freedom to
describe the material flow and Du et al. (2019) directly used the material flow as an additional
degree of freedom. The advantages and drawbacks of the mentioned modelling approach are
reported in Table 4.2.

Conclusion
This section introduced the issue of fibre tow slippage in fibrous reinforcements. This de-
formation mode, which is a manufacturing defect in conventional textiles, can be turned
into an additional degree of freedom in TFP preforms. To exploit and control fibre tow
slippage in TFP preforms, its modelling is required. To add this feature in the TFP pre-
form models while keeping their initial ingredients, the modelling approaches developed
for conventional textiles are not suitable. However, existing models, initially developed
for cable-pulley systems, allow modelling material flow in 1D elements. Among these
modelling approaches, the formulation of the ALE truss element by Peng et al. (2017) as
well as the formulation of the ALE beam by Liu et al. (2018) are very attractive. In some
circumstances, the bending stiffness of reinforcing fibre tows might be neglected. There-
fore, to enhance the TFP preform models, both formulations are detailed, implemented
and numerically tested in the next section.
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4.2 Modelling fibre tow slippage in TFP preforms: formulation of ALE
truss and beam elements
Introduction

This section addresses the formulation of an ALE 2-node truss element (Peng et al., 2017)
and those of an ALE 2-node shear-flexible beam element (Liu et al., 2018). In particular,
the shear-flexible ALE beam element is an extension of the Lagrangian beam element
presented in section 2.2. Both formulations, which have the same outline, are given in
parallel. The differences rely on the presence of additional terms due to the rotation
degrees of freedom of the beam and also on the chosen strain measure. Next, some
numerical validation test cases are addressed to check the implementation in the finite
element solver Femtran. To this end, referenced test cases from cable-pulley systems are
achieved with the ALE truss element. Since, only one reference was found for the ALE
beam, only elementary test cases based on those in section 2.2 are addressed for this
element.
Therefore, the objectives of this section are:

• Describe the formulations of the ALE truss and beam elements
• Implement them in the finite element solver and address their numerical validation

4.2.1 Formulation of the ALE 1D elements
4.2.1.1 Kinematics

Both linear elements contains 3 displacement (positional) dofs per node. Due to the presence
of material flow in the 1D element, the curvilinear coordinates of a material point are no longer
fixed in time. Therefore, the 1D elements have an additional degree of freedom per node
corresponding to the curvilinear coordinates. The beam possesses 3 additional rotation dofs.
The dofs of the truss (qT ) and those of the beam (qB) are defined as:

[
qT
]

(8×1)

=


r⃗1

(3×1)
s1
r⃗2

(3×1)
s2


[
qB
]

(14×1)

=



r⃗1
(3×1)
ψ⃗1

(3×1)
s1
r⃗2

(3×1)
ψ⃗2

(3×1)
s2


(4.8)

where r⃗i is the current position of the ith node. It corresponds to ϕ⃗0i in section 2.2, which was
used to describe the beam node position on the neutral axis. si is the curvilinear coordinates
of the ith node. Fig. 4.13 depicts the dofs of the ALE elements.

The linear shape functions defined in section 2.2 are used:

N1(ξ) = 1
2 (1− ξ) N2(ξ) = 1

2 (1 + ξ) (4.9)

The parametric coordinates ξ is related to the curvilinear abscissa s by:

ξ(s) = 2s− s1 − s2
s2 − s1

(4.10)

Since the shape functions depends on the curvilinear coordinates si, they are time-varying.
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(a) 2-node ALE truss (b) 2-node shear-flexible ALE beam

(c) Definition of the curvilinear abscissa

Figure 4.13: Description of the dofs of the 1D ALE elements

Using the shape functions, the position of a point in the 1D elements r⃗ is given by:

r⃗T =
[
N1I3×3 03×1 N2I3×3 03×1

]
︸ ︷︷ ︸

NrT

qT (for a truss) (4.11)

r⃗B =
[
N1I3×3 03×3 03×1 N2I3×3 03×3 03×1

]
︸ ︷︷ ︸

NrB

qB (for a beam) (4.12)

where I3×3 and 03×3 (03×1) are respectively the identify and zero matrices (or vector).

For the beam element its cross-section is still defined by:

ψ⃗ =
[
03×3 N1I3×3 03×1 03×3 N2I3×3 03×1

]
︸ ︷︷ ︸

Nψ

qB (4.13)

4.2.1.2 Strains

The longitudinal deformation of the truss is defined using the Green-Lagrange strain:

ϵ = 1
2
(
r⃗T

′T r⃗T
′ − 1

)
(4.14)

The strain and curvature measures for the beam are those defined in Eq. 2.22 and recalled
hereafter:

Γ⃗
(3×1)

= RT (r⃗B ′ − e⃗1
)

K⃗
(3×1)

= T T ψ⃗′ (4.15)

4.2.1.3 Strain variations and strain-displacement matrix

The differentiation of the strain measures gives the strain-displacement matrix which is needed
to compute the internal forces at the dofs from the stress in the element.
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The differentiation of the longitudinal strain of the truss gives:

δϵ = r⃗T
′δ
(
r⃗T

′) (4.16)

and those of the strains and curvatures of the beam yields:

δΓ⃗ = RT δr⃗B
′ − R̃T r⃗B

′T T δψ⃗ δK⃗ = T δ
(
ψ⃗′
)

+
(
K̃T + T ′

)
δψ⃗ (4.17)

as defined in Eq. 2.29.

However, the terms δr⃗T ′, δr⃗B ′ and δψ⃗′, which only depend on the positional and rotation
dofs in the Lagrangian description, also depend on the curvilinear abscissa dofs in the ALE
description. Therefore, the variations will be perfectly defined once the terms δr⃗T ′, δr⃗B ′ and
δψ⃗′ will be expressed using the shape functions (or their derivatives) and all the dofs.

For the term δr⃗T
′:

δr⃗T
′ = δNrT qT +NrT δqT (4.18)

where:

δNrT = ∂NrT

∂qT
δqT (4.19)

= ∂NrT

∂r⃗1
δr⃗1 + ∂NrT

∂s1
δs1 + ∂NrT

∂r⃗2
δr⃗2 + ∂NrT

∂s2
δs2 (4.20)

which gives:
δr⃗T

′ =
[
N ′

1I3×3 − r⃗2−r⃗1
(s2−s1)2 N ′

2I3×3
r⃗2−r⃗1

(s2−s1)2

]
δqT (4.21)

The same procedure is applied for the term δr⃗B
′, which yields:

δr⃗B
′ =

[
N ′

1I3×3 03×3 − r⃗2−r⃗1
(s2−s1)2 N ′

2I3×3 03×3
r⃗2−r⃗1

(s2−s1)2

]
δqB (4.22)

Replacing r⃗ with ψ⃗ gives:

δψ⃗′ =
[
03×3 N ′

1I3×3 − ψ⃗2−ψ⃗1
(s2−s1)2 03×3 N ′

2I3×3
ψ⃗2−ψ⃗1

(s2−s1)2

]
δqB (4.23)

Therefore, the strain-displacement matrix of the ALE truss, linking the variation of strain with
the variation of the dofs (ϵ = BT qT ), is:

[BT ]
(1×8)

=
[
− r⃗2−r⃗1

(s2−s1)2 −∥r⃗2−r⃗1∥2

(s2−s1)3
r⃗2−r⃗1

(s2−s1)2
∥r⃗2−r⃗1∥2

(s2−s1)3

]
(4.24)

For those of the beam element, only the interpolation matrix Q defined in Eq. 2.37 is modified
as:

δr⃗B
′

δψ⃗′

δψ⃗


(9×1)

=


N ′

1I3×3 03×3 − r⃗2−r⃗1
(s2−s1)2 N ′

2I3×3 03×3
r⃗2−r⃗1

(s2−s1)2

03×3 N ′
1I3×3 − ψ⃗2−ψ⃗1

(s2−s1)2 03×3 N ′
2I3×3

ψ⃗2−ψ⃗1
(s2−s1)2

03×1 03×3 N1I3×3 03×3 N2I3×3 03×1


(9×14)︸ ︷︷ ︸
Q



δr⃗1
δψ⃗1
δs1
δr⃗2
δψ⃗2
δs2


(14×1)

(4.25)

with BB =DQ where D is defined in Eq. 2.29.
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4.2.1.4 Constitutive law

A linear elastic truss is considered. Consequently, the Cauchy stress is defined as:

σ = Eϵ (4.26)

where E is the Young’s modulus of the truss material.

The constitutive law of the ALE beam is defined in section 2.2.1.7.

4.2.1.5 Internal forces

For both elements, the internal forces are defined as:

[FintT ]
(8×1)

=
∫ L̄

0
BT
Tσds [FintB ]

(14×1)
=
∫ L̄

0
BT
B

[
F⃗

M⃗

]
ds (4.27)

where L̄ is the current unstretched length of the element defined through the mass conservation:

L̄ = s2 − s1 (4.28)

4.2.1.6 Additional inertia forces

Since the curvilinear abscissa are time-varying, the mass of the element varies too. This mass
variation implies additional inertia forces which are detailed in Peng et al. (2017) and Liu et al.
(2018). In particular, the equation of dynamics becomes:

MÜ + ṀU̇ −mU +CU̇ + Fint = Fext (4.29)

where ṀU̇−mU corresponds to the additional inertia forces. In this work, since TFP preform
forming is achieved under the quasi-static assumption, these inertia forces are neglected and
the equation of dynamics reduces to Eq. 2.8.

4.2.1.7 Material flow and friction forces

Finally, for better post-processing of the results, the curvilinear abscissa dofs can be replaced
by material flow dofs Us (without modification of the previous developments), which represent
the displacement of matter through the mesh. It is defined by:

Us = s− S (4.30)

where s is the current curvilinear abscissa and S is the initial curvilinear abscissa (This is
equivalent to using displacements or positions as dofs). This allows a direct visualisation of the
material flow in the mesh.

The material flow can be subjected to external forces arising from friction between cable and
pulley for instance. In case of a pulley-cable system, at the pulley node, the Capstan equation
applies: 

T2 = e−µθT1 if Vs > 0
e−µθ < T2

T1
< eµθ if Vs = 0

T2 = eµθT1 if Vs < 0
(4.31)

where Ti is the tension in the adjacent elements of the pulley node, µ is the friction coefficient
and θ the angle defined in Fig. 4.14. Vs is the velocity of the material through the mesh.
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Figure 4.14: Friction law at a pulley node (from Kan et al. (2021))

The advantage of the explicit formulation is the flexibility concerning the implementation of
friction laws. In Kan et al. (2021), the implicit formulation requires a specific method leading to
cumbersome computations to take into account the step-like friction law of a pulley. Therefore,
other friction laws such as static or dynamic Coulomb friction laws can be easily implemented
with the chosen formulations.

Transition
This section introduced the formulation of an ALE truss and an ALE beam element
which will be used to take into account fibre tow slippage in the TFP preform models.
However, before addressing some numerical elementary test cases and integrating these
finite elements in the TFP preform models, the degeneration of the proposed 1D ALE
element into Eulerian and Lagrangian elements is presented. This allows a better under-
standing of both the modelling and the boundary conditions which will be used in the
numerical validation.

4.2.2 Boundary conditions and degeneration of the 1D ALE elements into Eulerian
and Lagrangian elements

4.2.2.1 Example of rigid body motions

Before presenting elementary test cases, boundary conditions have to be explained. Since the
element has material flow dofs at both nodes, it allows more boundary conditions than the
3-node cable-pulley element by Aufaure (2000) or the multi-sliding node element by Coulibaly
et al. (2018). In this element the material flow, also named slip displacement, can be prescribed
at both nodes.

Eulerian degeneration In the Eulerian case, the nodes of a single element are fixed in space
(Uij are zeros) and a slip displacement c is applied on node 2 (Fig. 4.15 (a)). In this particular
case, since the mesh is fixed in space and the material flows through it, the nodes can be seen
as Eulerian nodes. If no external forces limit the slip displacement, then no deformation will
appear since both L̄ and l are kept constant (Us1 will equal Us2). If an external force limits the
flow at one node, then Us1 will be different from Us2 and consequently L̄ will change implying
longitudinal deformation of the element.

Lagrangian degeneration Now, if the slip displacement are set to zero and a spatial displace-
ment is imposed on node 2 while node 1 is free (Fig. 4.15 (b)), the element will simply translate
and the nodes can be seen as Lagrangian since they are attached to the material. If node 1
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is now fixed, by applying a spatial displacement on node 2, deformation will occur due to the
modification of l while L̄ is kept constant due to zero material flow.

(a) Eulerian rigid body translation

(b) Lagrangian rigid body translation

Figure 4.15: Example of rigid body motions for the Eulerian and Lagrangian degenerated cases

These rigid body motions illustrate the degeneration of the ALE element to either an Eulerian
or Lagrangian element. More generally, in models using 1D ALE elements, depending on the
boundary conditions, some nodes will behave like Eulerian nodes, some other as Lagrangian
nodes and others as ALE nodes.

4.2.2.2 Simplification

By using slip displacement degrees of freedom, a lot of flexibility is offered. For instance,
extremities of fibre tows, which do not need to be modelled explicitly, can be simplified to allow
the matter to flow in or out as illustrated in Fig. 4.16 in case of Model I.

Transition
This section gave an insight into the modelling possibilities and flexibility offered by the
1D ALE elements. Before integrating them into the TFP preform models, a numerical
validation is addressed in the next section.
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Figure 4.16: Simplifying the representation of the fibre tow extremities in Model I

4.2.3 Numerical validation of the ALE truss
Most of the 1D ALE element formulations found in the literature are based on a truss element
used in cable-pulley systems. Consequently, there are numerous validation test cases for the
truss element which are addressed in the following. In particular, the objectives of this validation
test cases is to check the consistency of the material flow and the absence of deformation when
the matter in the elements is not subjected to any constraint.

4.2.3.1 Cable with a fixed pulleys

Objectives This first test aims at showing the kinematics of a cable anchored at one end and
pulled at the other end. In this test, the material flow direction should not change and the
pulley node should behave as an Eulerian node. Cases with and without friction are analysed.

Set-up A cable is lying on a pulley. The left end is anchored while a point load is applied on
the other end. The left part of the cable is horizontal while the right part is vertical. Fig. 4.17
shows the configuration of the cable (left) and its finite element model (right). Both parts of
the cable have same length (L =1 m) and a point load of 100 N is applied along the y-direction.
The cable has a tensile modulus of 100 GPa. In the friction case, the coefficient µ of the pulley
is such that the tension in the vertical part of the cable equals twice those of the horizontal
part.

Results Fig. 4.18 shows the mesh and slip displacements for the frictionless case. The mesh
displacement of the horizontal part of the cable is null since both nodes are fixed while the
3rd node has a vertical displacement of 2 10−2 mm. The slip displacement of the pulley node
equals half the mesh displacement of the loaded node. Both elements have the same longitudinal
deformation (ϵ = 10−3) which means that the cable freely slips in the pulley node.
In case of friction, the vertical part has a deformation of 10−3 while the horizontal part has
a deformation of ϵ = 5 10−4. Therefore, the tension ratio between the vertical and horizontal
parts equals 2, which agrees with the selected friction coefficient of the pulley. Moreover the
displacement of the loaded node is smaller (1.5 10−2 mm) than the frictionless case which is
consistent with the dissipation of energy due to friction from the pulley.
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Figure 4.17: Pulling anchored rope with a pulley: rope configuration (left) and finite element
model (right)

(a) Mesh displacement (mm) (b) Slip displacement (mm)

Figure 4.18: Pulling anchored rope with a pulley: frictionless case

4.2.3.2 Pulley oscillating on a cable

Objectives This second test case aims at showing the kinematics of a pulley oscillating on a
cable due to gravity. Without friction, the pulley is supposed to oscillate continuously without
loss of energy while in case of a friction pulley, its movement is supposed to be damped until it
stops. In particular, the material flow direction will change.

Set-up The positions of the cable ends are fixed while a pulley is placed in a non equilibrium
position such that oscillations start due to gravity as shown in Fig. 4.19. The distance d equals
1 m, h is 0.15 m and v is 0.3 m. The cable has a tensile modulus of 100 GPa. In the friction
case, µ =0.05.

Results As shown in Fig. 4.20, in the frictionless case, the pulley is oscillating without energy
loss. Moreover the deformation of the elements oscillates around 10−6, which is negligible. With
friction, the pulley movement is damped as expected (Fig. 4.21)
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Figure 4.19: Oscillating pulley: initial (solid line) and intermediary (dash line) system configu-
rations (left) and finite element model (right)
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Figure 4.20: Frictionless oscillating pulley: displacements
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Figure 4.21: Oscillating pulley with friction: displacements

4.2.3.3 Cable passing through two fixed pulleys

Objectives In the previous test, material flow occurred in one node only. In this third test,
which is discussed in Kan et al. (2019), two pulleys are considered. Moreover, loading and
unloading steps are successively applied to check that the different possible status of a pulley
are modelled accurately.
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Set-up A cable is anchored at one end and passes through two fixed pulleys as illustrated in
Fig. 4.22. The lengths L1 and L3 equal 1 m and L2 is 0.4 m. A point load of 30 kN is applied
to the other end along the x-direction. The loading step is followed by unloading. The cable
has a tensile modulus of 115 GPa and the friction coefficient of the pulleys µ is 0.05.

Figure 4.22: Cable with two fixed pulleys: system configuration (left) and finite element model
(right)

Results The results are shown in Fig. 4.23. During the loading step, the tension in the element
2 is smaller than that of element 3 and the tension in element 1 is smaller than that of element
2 as a result of the friction at the pulleys (Fig. 4.23 (a)). When the unloading step starts, the
two pulleys stick. Therefore, only the tension in element 3 decreases. Then, once the tension
ratio between element 2 and element 3 overcomes the thresholds, slip starts again at the second
pulley. The same applies to the first pulley with an additional delay. When slip occurs in both
pulleys during the unloading step, the tension ratios are inverted compared to the loading step.
In Fig. 4.23 (b), the different states of the pulleys, as expressed in Eq. 4.31, are plotted. The
sticky state can be observed directly on the slip displacement curves (Fig. 4.23 (c)).

4.2.3.4 Ten pulleys system with loaded cable end (ALE truss)

Objectives This referenced test is similar to the first test, except that ten pulleys are involved
and that the results will be compared with those by Kan et al. (2021).

Set-up A cable passes through ten pulleys as depicted in Fig. 4.24. The curved arrows show
the positive direction of slip displacement. The pulleys are fixed in space. The left end is fixed
while a vertical displacement of -0.01 m is applied to the other end along the y-direction. The
length of each segment is 1 m and the cable has a tensile stiffness of 108 N.

Results The slip displacements at the pulleys reported in Table 4.3 show very good agreement
with the referenced results.

Table 4.3: Ten pulleys system with loaded cable end: comparison of the slip displacements

Slip displacement Us2 Us3 Us4 Us5 Us6 Us7 Us8 Us9 Us10 Us11

Present study 4.941 10−6 1.474 10−5 3.433 10−5 7.351 10−5 1.518 10−4 3.085 10−4 6.211 10−4 1.246 10−3 2.497 10−3 4.997 10−3

Kan et al. (2021) 4.877 10−6 1.463 10−5 3.414 10−5 7.315 10−5 1.512 10−4 3.072 10−4 6.192 10−4 1.243 10−3 2.490 10−3 4.981 10−3

4.2.3.5 Ten pulleys system with symmetric boundary conditions

Objectives This referenced test aims at checking the symmetry of the slip displacement in case
of symmetric boundary conditions.
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Figure 4.23: Cable with two fixed pulleys

Set-up This configuration is similar to the previous test (Fig. 4.25). However, both cable ends
are fixed and the 6th and 7th pulleys are displaced along the y-direction with a value of 0.01 m.

Results The slip displacements at the pulleys reported in Table 4.4 show very good agreement
with the referenced results and the symmetry is obtained.

4.2.3.6 Static coulomb friction

Objectives The last test for the ALE truss aims at showing that other friction laws can be
implemented. For instance, the static Coulomb friction law is tested.

Set-up The left end of a horizontal cable is free while a displacement of 10 mm is applied to the
right end along the x-direction. A smooth S-shape curve is used to imposed the displacement
rather than a ramp. The cable is meshed using 2 elements and a static Coulomb friction law is
applied at the middle node. The cable has a length of 1 m and a tensile modulus of 100 GPa.
A virtual normal force is applied on the middle node such that slip occurs when the tensile
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Figure 4.24: Ten pulleys system with loaded cable end: system configuration (top) and finite
element model (bottom)

Figure 4.25: Ten pulleys system with symmetric boundary conditions: system configuration
(top) and finite element model (bottom)

stiffness of the right element reaches 200 N.

Results The results are shown in Fig. 4.27. The tension of the second element increases
progressively due to the displacement of the right end until reaching the friction threshold of
the middle node (200 N) (Fig. 4.27 (a)). Then, the cable starts slipping in the middle node. Due
to the deformation of the second element, a difference is observed between the displacement of
the left (U3x) and right (U3x) end. The slip displacement Us2 and the left end displacement U1x
are equal, which is consistent.
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Table 4.4: Ten pulleys system pulling cable end: comparison of the slip displacements

Slip displacement Us2 Us3 Us4 Us5 Us6 Us7 Us8 Us9 Us10 Us11

Present study 2.857 10−4 8.571 10−4 1.999 10−3 4.285 10−3 −1.142 10−3 1.142 10−3 −4.285 10−3 −1.999 10−3 −8.571 10−4 −2.857 10−4

Kan et al. (2021) 2.852 10−4 8.554 10−4 1.995 10−3 4.272 10−3 −1.138 10−3 1.138 10−3 −4.272 10−3 −1.995 10−3 −8.554 10−4 −2.852 10−4

Figure 4.26: Static coulomb friction: system configuration (left) and finite element model (right)
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Figure 4.27: Static coulomb friction

Transition
This section addressed the numerical validation of the ALE truss. Since this element was
developed in the field of pulley-cable system, the Capstan friction law was mainly used
in the numerical test. However, other friction law can be implemented such as the static
Coulomb friction law. The next section addressed some elementary numerical tests to
validate the implementation of the ALE beam element.

4.2.4 Numerical validation of the ALE beam
For the ALE beam, only one reference (Liu et al., 2018) was found. Moreover, they used this
element to model beams running through tubes in drilling engineering and developed specific
validation test cases which are not really appropriate for the TFP preform models. Conse-
quently, only elementary test cases are addressed for the ALE beam element.

4.2.4.1 Twisting followed by translation

Objectives The first test aims at checking that the state of the cross-section in the beam is
not influenced by a translation implying a slip displacement.
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Set-up A two-step loading is applied on a horizontal beam represented using two elements
(Fig. 4.28). In the first step, the rotation along the axis of the beam is fixed at the left end of
the beam while a twisting moment is applied at the other end. This step will create a linear
field of twisting angle along the beam. In the second step, the beam is translated by applying
a displacement of 0.25 m along the x-direction to its right end. A slip displacement occurs in
the middle node, which is fixed in space (acts as a slider).

Figure 4.28: Twisting and translation: system configuration (left) and finite element model
(right)

Results The results are shown in Fig. 4.29. During the first step, the twisting angle of the
middle node equal half the value at the loaded node, which is consistent. Then, during the
translation step, due to the slip displacement, the twisting angle of the middle node decreases
until reaching the fourth of the left beam end value since the middle node is now located at
25% of the beam length (Fig. 4.29 (a)). Fig. 4.30 shows the twisting angle field at the end of
the two steps. This field stays constant during the slip displacement as expected. Fig. 4.29 (b)
shows that there is no deformation in the beam since the material displacement of the nodes
are equal.
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Figure 4.29: Twisting and translation

4.2.4.2 Cantilever beam under transverse tip load

Objectives This test is similar to Test 2.2.3.3 for the Lagrangian beam. The difference is that
the middle nodes are ALE nodes whose positions along the x-direction are fixed. This constraint
is supposed to lead to a material flow in the mesh to reproduce the kinematics observed for the
Lagrangian beam.
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Figure 4.30: Twisting angle: configuration at the end of step 1 (top) and step 2 (bottom)

Set-up Fig. 4.31 shows the initial configuration. The parameters are identical to those of
Test 2.2.3.3. The beam is meshed with 10 elements. Therefore, nodes 2 to 9 are ALE nodes
whose x-coordinates are fixed. Small and large displacements are considered too using loading
values of 100 N and 106 N respectively.

Figure 4.31: Cantilever beam under transverse tip load: system configuration (left) and finite
element model (right)

Results Fig. 4.32 shows different configurations of the large displacement case as well as the
slip displacement. The tip displacements and rotation are reported and compared with the
Lagrangian beam in Table 4.5. The values agree well for the small displacement case and
slightly differ in the large displacement case. Therefore, the flow of material generated by fixing
the x-coordinates of the middle nodes allows recovering the kinematics of the Lagrangian beam.

Figure 4.32: Cantilever beam under transverse tip load: different configurations for the large
displacement case and slip displacement

4.2.4.3 Cantilever beam under tip moment

Objectives This test is similar to Test 2.2.3.4 for the Lagrangian beam. As the previous test,
the difference lies in the fact that the middle nodes are ALE nodes whose positions along the
x-direction are fixed. Similarly, this constraint is supposed to lead to a material flow in the
mesh to reproduce the kinematics observed for the Lagrangian beam.
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Table 4.5: Cantilever beam under transverse tip load: comparison of tip displacements and
rotation with the Lagrangian beam

Loading case F = 100 N F = 106 N
Tip values Ux Uy ψz Ux Uy ψz

ALE beam −6.314 10−10 −3.251 10−5 −4.850 10−5 -0.0562 -0.302 -0.458
Lagrangian beam −6.299 10−10 −3.252 10−5 −4.850 10−5 -0.0537 -0.296 -0.449

Set-up Fig. 4.33 shows the initial configuration. The parameters are identical to those of
Test 2.2.3.4. The beam is meshed with 10 elements. Therefore, nodes 2 to 9 are ALE nodes
whose x-coordinates are fixed. Small and large displacements are considered too using loading
values of 100 N and 5 105 N respectively.

Figure 4.33: Cantilever beam under tip moment: system configuration (left) and finite element
model (right)

Results Fig. 4.34 shows different configurations of the large displacement case as well as the
slip displacement. The tip displacements and rotation are reported and compared with the
Lagrangian beam in Table 4.6. The values agree well for both cases. Moreover, for this pure
bending test, the longitudinal deformation of the beam elements is negligible (10−12), which
is consistent. Therefore, as the previous test, the flow of material generated by fixing the
x-coordinates of the middle nodes allows recovering the kinematics of the Lagrangian beam.

Figure 4.34: Cantilever beam under tip moment: different configurations for the large displace-
ment case and slip displacement
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Table 4.6: Cantilever beam under tip moment: comparison of tip displacements and rotation
with the Lagrangian beam

Loading case F = 100 N F = 5 105 N
Tip values Ux Uy ψz Ux Uy ψz

ALE beam −1.564 10−9 −4.850 10−5 −9.701 10−5 -0.0386 -0.2378 -0.4850
Lagrangian beam −1.564 10−9 −4.850 10−5 −9.701 10−5 -0.0386 -0.2378 -0.4850

Conclusion
This section presented the formulation of two 1D ALE elements, namely a 2-node elastic
truss and a 2-node shear flexible linear elastic beam. These elements can model material
flow, which will allow modelling fibre tow slippage in the enhanced TFP preform models.
Numerical tests were addressed for these two elements and validated their formulation
and implementation in the explicit finite element solver. Even if a beam element is used
in the TFP preform models to represent the fibre tows, an ALE truss is also considered
for cases where the bending contribution of the fibre tows might be negligible.
Fibre tow slippage in fibrous reinforcements is subjected to complex contact interac-
tions. The friction law, which constraints the material flow in the ALE elements of the
enhanced TFP preform models, is unknown. Consequently, carrying out the characteri-
sation of fibre tow slippage in TFP preforms is required. The next section addresses the
characterisation of the friction law when fibre tows slip over the backing material.

4.3 Characterisation of the fibre tow slippage in TFP preforms based
on pull-out experiments

Introduction
This section deals with the characterization of the friction behaviour between the fibre
tows and the two other constituents of TFP preforms, namely the stitching yarn and
the backing material. Experimental and numerical studies of the friction forces implied
during fibre slippage in conventional textiles have already been carried out. The pull-out
test is a well-established method to characterize the friction behaviour. In this work, a
literature review was made on the pull-out test used for woven fabrics. Next, the pull-out
device developed for the characterisation of the friction behaviour of the fibre tows in
TFP preforms with backing material is presented. The design and manufacturing of the
TFP samples are detailed. A developed image processing tool allows a real-time checking
of the camera settings before proceeding with the pull-out test. Finally, the parametric
study, which has been carried out to analyse the influence of the stitching parameters,
allows formulating an analytical friction law to model fibre tow slippage in TFP preforms
with backing material.
Therefore, the objectives of this section are:

• Characterize the friction forces applied to the fibre tows when slippage occurs due
to tow-tow, tow-backing material and tow-stitching yarn interactions

• Identify and propose an analytical friction model to be implemented in the finite
element solver for the ALE elements
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4.3.1 A short review of the pull-out experiments for conventional textiles
This section is an overview of the experimental studies concerning the pull-out method for
analysing fibre tow friction in fibrous reinforcements. Pull-out is a more general method but
this overview focuses on those which focus on the friction behaviour in dry conventional textiles.

4.3.1.1 Studied friction interactions

Analysing the required force to extract a single fibre tow from conventional textiles has been
widely addressed to study the fibre slippage properties. Several friction interactions are involved
when forming conventional textiles. Some works investigated tools-textile, textile-textile and
tow-tow friction behaviours (Allaoui et al., 2012; Najjar et al., 2014; Mulvihill et al., 2017).
For instance Tourlonias and Bueno (2016) and Tourlonias et al. (2019) studied the influence of
the tow-to-tow angle on the frictional response and showed that a difference exists essentially
when tows are almost parallel. Pull-out experiments are used to investigate the friction between
the fibre tows in textiles. In composite forming, fibre tow slippage is a defect to be predicted
in order to be avoided. However, in ballistic impact field, fibre tow slippage is a dissipation
phenomenon which has to be understood for improving the textile energy-absorption property
and enhancing ballistic armors for example (King et al., 2005; Parsons et al., 2010, 2013; Bai
et al., 2018). This is the reason why many pull-out studies concern Kevlar® woven fabrics
(Dong and Sun, 2009; Zhu et al., 2011b; López-Gálvez et al., 2016; Bai et al., 2018).

4.3.1.2 Standard device

For woven fabric, the experimental procedure mainly consists in clamping the opposite edges of
a rectangular sample of textile in either the warp or weft direction and then extracts a single
fibre tow in the other direction (Fig. 4.35). In woven fabrics, the pull-out force is strongly
dependent on the sample length and the transverse load applied (Zhu et al., 2011a; Bai et al.,
2018) but also on the number of yarn being pulled-out (Bilisik and Korkmaz, 2011). The
number of contacts for the yarn being pulled out increases with the sample length. A higher
transverse load reduces the crimp amplitude by compressing the tows on each other, which can
increase significantly the contact areas and normal force at the crossover points. Since pull-out
force increases with the transverse tension, this parameter can be used to increase the fabric
cohesion. The pull-out force vs slip displacement response strongly depends on the pull-out
setup as illustrated in Fig. 4.36.

In a recent study Salem et al. (2020) shows the dependence of the pull-out force on the woven
fabric shear angle by out-of-plane pull-out of a single fibre tow in in-plane sheared woven fabrics.
The woven fabric was clamped within a special picture frame system designed to avoid in-plane
bending. They firstly measured the tow-tow friction coefficient for several tow-tow angles using
tribological friction tests to analyse their out-of-plane pull-out experiments. They showed that
shear angles increase the fabric cohesion but only for high shear angles (higher than 15° for
plain weave and 30° for twill 2× 2 weave).

4.3.1.3 Existing study for TFP

In a TFP preform, tow-to-backing material, tow-to-stitching yarn and tow-to-tow interactions
contribute to the friction behaviour. In Bohler et al. (2015), single fibre tow pull-out of a TFP
sample was performed. They study the effect of the stitching parameters on the pull-out force.
A higher stitch length, stitch width and stitching yarn tension fraction leads to a higher pull-out
force. The stitching yarn tension fraction corresponds to the tension ratio between the upper
and lower stitching yarns. However, as shown in Fig. 4.37 the force-displacement curves they
obtained are difficult to interpret.
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Figure 4.35: Example of single fibre tow pull-out device by Zhu et al. (2011b)

Figure 4.36: Pull-out force vs displacement curve obtained for several pull-out devices by Zhou
et al. (2019)

As mentioned in the beginning of this chapter the fibre tow slippage in TFP preform can be
used to allow a new forming mode in the preform. Fial et al. (2018) manufactured a light-weight
structure using a new forming process. Instead of deforming the backing material, the process
is based on backing material folding and fibre tow slippage. Some fibre tows slip to span the
cut regions of the base material during the wet compression moulding (Fig. 1.43). They used
the previously cited study by Bohler et al. (2015) to determine the stitching parameters to be
used in the region where fibre tow slippage is needed and regions where tows must remain fixed
on the backing material.

Transition
The pull-out method has been widely use to characterize fibre tow slippage in conventional
textiles. The boundary conditions applied on the sample, its geometry and the number of
extracted fibre tows strongly affect the results. Consequently, all these set-up parameters
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Figure 4.37: Pull-out force (N) vs displacement (mm) with parameter variation by Bohler et al.
(2015)

have to be considered in the design of the pull-out experiment to characterize fibre tow
slippage in TFP preforms. The next section present the experimental principle adopted
in this work which is different from the device used by Bohler et al. (2015) for TFP.

4.3.2 Design of the pull-out experiment
A TFP preform is composed of three constituents, namely, the fibre tows, the backing material
and the stitching yarn, which ensures the preform cohesion as mentioned in section 1.4. Fibre
tow slippage in TFP preforms can be turned into an additional degree of freedom as demon-
strated by Fial et al. (2018) and can be used to develop new forming processes. Bohler et al.
(2015) argued about the dependence of the fibre tow slippage on the stitching parameters and
used pull-out tests to investigate this dependency. In the following, the objective of the pull-
out experiment and its design are presented. Then, the design and manufacturing of the TFP
sample is described before presenting the experimental methods adopted to quantity the fibre
tow slippage and the associated friction force.

4.3.2.1 Experiment setup and configurations

Device design The device used to perform pull-out tests on TFP samples is quite similar to
the one used for woven fabrics where no transverse tension is applied as in Bilisik and Korkmaz
(2011). The set-up used and shown in Fig. 4.38 is an updated version of the pull-out device
developed by Hautefeuille et al. (2019). It is mounted on an INSTRON 5584 tensile test machine
and a load cell of capacity 1 kN. The tests are performed with a velocity of 10 mm/min.

The stitching parameters , which have been depicted in Fig. 1.31, constraint the fibre tow
geometry. In particular, as mentioned in section 1.4.1.3, the zig-zag pattern generates in-plane
and out-of-plane waviness due to the local line contact between the stitching yarn and the
fibre tows. These wavinesses affect the mechanical performances of the final product since they
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Figure 4.38: Pull-out device designed in this study with a sample (left) and its corresponding
CAD (right)

locally modify the fibre volume fraction and in particular reduce the compression stiffness in
comparison with conventional textiles. The effect of the stitching yarn parameters is of interest
in this study.

Extracted fibre tow configurations In addition to the stitching parameters, the surroundings of
the fibre tows will be shown to have a major impact on the fibre tow slippage. When considering
a fibre tow in a TFP preform, three main configurations illustrated in Fig. 4.39 are considered.
On the left configuration (Fig 4.39 (a)), the fibre tows are only in contact with the backing
material and the stitching yarn. The middle and right configurations contain two layers. In
the middle configuration (Fig 4.39 (b)), the fibre tows being pulled-out are in contact with the
backing material, the stitching yarn, the fibre tows of the upper layer and on top of that they
are overstitched. In the right configuration (Fig 4.39 (c)), the fibre tows of the upper layer are
being pulled-out. This configuration is quite similar to the one in Fig 4.39 (a) except that the
pulled-out fibre tows lie on the first layer rather than on the backing material.

(a) Single layer (b) First layer fibre tow extraction (c) Second layer fibre tow
extraction

Figure 4.39: Extracted fibre tow’s surrounding configurations
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Due to inter-layer overstitching, the fibre tow slippage in the middle configuration can be quite
limited and difficult to interpret. Therefore, only the left configuration is considered. More-
over, since overstitching might compromise the interpretation of the pull-out results, intra-layer
overstitching, as represented in Fig. 2.3 (b), has to be avoided. Preliminary tests demonstrated
that intra-layer overstitching leads to high deformation of the backing material and considerably
jams fibre tow slippage.

4.3.2.2 Design, preparation of the samples and materials

Sample design Tested samples consist in a single layer made of well-spaced fibre tows. Since
a load cell of 1 kN capacity is used, the pull-out is achieved on multiple parallel fibre tows such
that the measured friction force is high enough compared to the load cell resolution. Moreover,
multiple fibre tows pull-out allows averaging measurement variations due to sample manufac-
turing, positioning or material variations. The friction force might depend on the trajectory of
the fibre tow. Moreover, this study is limited to unidirectional fibre tows. Consequently, the
effect of a curvilinear trajectory is not considered here.
The sample design is presented in Fig. 4.40 for the left configuration (1-layer). The area of
interest is a rectangle of 50 mm × 100 mm containing 10 fibre tows being pulled-out. An ex-
tra length of 100 mm at the top is necessary to clamp the fibre tows. The additional length
of 100 mm at the bottom will slip into the area of interest during the experiment. It allows
measuring the friction behaviour without decreasing the total frictional surface as observed in
woven fabric pull-out experiments when the number of fibre tow crossings decreases while the
fibre tow is being pulled-out. The right image in Fig. 4.40 is a display of the sample design
using the Python tool developed and introduced in section 3.1.4.1. For this experiment, this
design tool allows manufacturing TFP sample where the stitch points are placed identically for
every fibre tow.

Figure 4.40: Pull-out sample design: manufactured sample (left), numerical design using the
developed Python tool (right)
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Sample preparations The top and bottom parts of the pulled-out fibre tows have to be isolated
from the backing material and the stitching yarn. This is achieved by cutting the backing
material and the stitching yarn. However, simply cutting the stitching yarn removes its tension.
To maintain this stitching yarn tension, special care was taken to bond the stitching yarn
on the backing material before cutting. Fig. 4.41 (c and d) show the bonding between the
backing material and the stitching yarn (achieved before cutting and shown after cutting for
more visibility). The stitching yarn was first stuck with additional tapes of backing material on
the backing material using a thermally resistant adhesive tape to increase the bonding obtained
by melting in a bag sealing unit. In Fig. 4.41 (b) the stitching yarn is located between the
additional tapes of backing material and the backing material. In the sample design, one stitch
per fibre tow was placed in the cut area to facilitate the isolation between the fibre tows and
the stitching yarn.

Figure 4.41: Bonding between backing material and stitching yarn: manufactured sample (a),
isolation of the stitching yarn from the fibre tows (b), stitching yarn to backing material bond-
ing (c and d), final sample (e)

Materials The fibre tow and stitching yarn materials are the ones used in the forming exper-
iments in chapter 3. Besides, the same TFP machine is used to manufacture these samples.
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Concerning the backing material, since many other backing materials can be used depending
on the application, no specific choice was made. A non-woven polymer film was chosen for
simplicity. The nature of the backing material is supposed to only affect the overall amplitude
of the friction force without modifying the observed phenomena resulting from the interactions
between the fibre tows and the stitching yarn.

Positioning the sample in the pull-out device To position the TFP sample in the pull-out
device, both parts of the device are fixed on a rigid holding plate to ensure a perfect alignment
and provide stability while positioning the sample (Fig. 4.42 (a)). The top of the fibre tows
are firstly clamped. Due to the clamping jaw profile (Fig. 4.38), an additional length is needed
(Fig. 4.42 (b)). Consequently, the backing material of the sample cannot be clamped in the
sample-holders during this first operation otherwise an early stretch would be applied to the
fibre tows. Once the fibre tows are clamped, the backing material is fixed by the sample-holders.
This procedure allows a high reproducibility of the sample positioning.

(a) Holding plate

(b) Steps of the sample positioning procedure: placing top of the fibre tows
(a), screwing the top clamp (b), checking alignment (c), clamping the

backing material in the sample-holders(d)

Figure 4.42: Positioning of the sample in the pull-out device

Once the sample is positioned in the pull-out device, the latter can be easily handled and
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mounted in the tensile testing machine thanks to the rigid holding plate maintaining the two-
part device as a whole (Fig. 4.43). The rigid holding plate is then removed from the device
before the test proceeds. The white board in the background of Fig. 4.43 is used to better
contrast the sample and the device for further image processing.

To facilitate the camera positioning, four screws on the sample-holders have been painted green
to be detected by the image processing. They are used to check the parallelism between the
camera and the sample before every test (Fig. 4.44). Then, a real-time image processing allows
drawing a frame (green lines) with the corner angles, a reference system (blue arrows) and a
2D grid (black lines).

Figure 4.43: Mounting the pull-out device in the tensile machine

Figure 4.44: Checking camera positioning using real-time image processing drawing a frame
(green rectangle), a reference system (blue arrows) and a 2D grid (black lines)

4.3.2.3 Parametric study

The characterization of the friction behaviour is mainly based on the analysis of the force-
displacement data. Red-ink markers were drawn on the sample as shown in Fig. 4.45 to measure
a displacement field. Since the fibre tows are not perfectly straight in the area of interest
due to the TFP process induced waviness (section 1.4.1.3), measuring a displacement field
was supposed to be of interest. Due to the waviness, fibre tows might first straighten before
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slipping. Measuring the displacement field in the area of interest should allow highlighting
this first deformation mode during pull-out tests. However, the post-processing of the recorded
images has not been addressed in this work due to a lack of time. This measurement should have
been carried out by using the same method presented in the forming experiments of chapter 3.
Therefore, to characterize the effect of the stitching parameters, only the displacement-force
curves are analysed.

Figure 4.45: Drawing of red-ink markers for optical displacement field measurement

Design of experiments and factors’ levels The main objective of this experimental study is to
determine an analytical friction model to be implemented in the finite element solver to take
into account the fibre tow slippage in Model I. This friction model is supposed to depend on the
stitching parameters. That is why a parametric study has been designed. A full factorial design
with two levels is considered. The levels for each of the three stitching parameters (factors) are
reported in Table 4.7. The lower and upper values were chosen according to values reported in
the literature. Besides, care had to be taken to ensure that no stitching point are missed during
the manufacturing. In particular, the upper value of the stitching yarn tension was determined
for a stitching speed of 400 pts/min. Higher stitching yarn tension led to manufacturing defects
in the sample and requires reducing the stitching speed. It has to be noticed that the lower
stitching yarn tension cannot be measured. Therefore, all the samples were manufactured with
the same lower stitching yarn bobbin but the stitching yarn tension ratio is unknown. Adding
features to control the lower stitching yarn tension in the TFP machine would be beneficial.

Table 4.7: Factors and levels of the parametric study

Factors Stitch width Stitch length Stitch tension
Unit 1/10 mm 1/10 mm g

Level 1 50 50 4
Level 2 25 25 6

Sample designs The chosen design of experiments results in eight different sample designs
listed in Table 4.8. In particular, an image corresponding to 10 mm of a fibre tow is given for
each design which allows a visual comparison of the effects of the stitching parameters on the
fibre tow geometry. The id of the sample corresponds to the manufacturing order. Missing
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number from 1 to 28 shows that some samples were removed due to defects. The id from 1 to
3 corresponds to the testing order within each design.

Table 4.8: Designs of the parametric study

Design Stitch
width ws

Stitch
length ds

Stitch
tension Ts

Samples’ id Stitching pattern1 2 3

1 50 50 4 3 27 28

2 25 50 4 4 25 26

3 50 50 6 6 19 21

4 50 25 6 7 17 18

5 25 25 6 8 15 16

6 25 25 4 9 13 14

7 50 25 4 10 11 12

8 25 50 6 22 23 24

Transition
This section presented the pull-out experiments carried out to study the friction forces
applied to the fibre tows in a single layer TFP preform with backing material. The sample
design and manufacturing as well as the design of the parametric study were described.
In the next section, results are examined. The pull-out displacement-force curves are
analysed and an analytical friction model is proposed.

4.3.3 Determination of an analytical friction model
In this section, the force-displacement curves are firstly examined. Observations concerning the
shape of the curves and the physical phenomena associated with peculiar regions are made.
Next, the similarity between the curve shapes allows to propose a single analytical model to
describe the force-displacement curve for all designs. The parameters of the analytical model are
determined by fitting the experimental curve for each design. Finally, the relations between the
model parameters and the studied stitching parameters are determined using a linear regression
method.

4.3.3.1 Observations

General observations The results are shown in Fig 4.46 at the end of this section. The fourth
top graphs correspond to a stitch tension of 4 g and the fourth bottom to 6 g. From left to
right, the stitch width increases, while the stitch length increases from top to bottom. The
experiments 9 and 16 cannot be exploited. Their strong deviation from the other repetitions
is due to the presence of few overstiching points. In general, the curves for each design show
a high repeatability. The curves have a specific trend shape that is similar from one design to

202



4.3. Characterisation of the fibre tow slippage in TFP preforms based on pull-out experiments

another. The following features can be identified:

• A static regime until a maximum is reached

• Damped oscillations

To explain the shape of the curves, two results are examined in details. One with the maximal
stitching length (sample 4) and the other with the minimal stitch length (sample 14). In both
results, the pull-out force increases until reaching a maxima (F0, U0). This region is similar
to the static regime observed in pull-out of woven fabrics. Small deformation of the backing
material and initial straightening of the fibre tows might cause the shape of the curve during
this regime. Next, the pull-out force oscillates when fibre tow slippage really starts. For woven
fabrics, oscillations are also observed and are due to the crimping. For the TFP samples, it
seems that the oscillation period (T1) is exactly twice the stitch length, which corresponds to the
whole zig-zag pattern. Moreover these oscillations are damped. Assumed that the oscillations
are actually related to the stitching pattern, then the plastic deformation of the cross-section of
the fibre tows could cause the damping. When the fibre tow moves within the path prescribed
by the stitching yarn, interactions between the stitching yarn and the fibre tows might lead to
these oscillations. Therefore, the induced in-plane and out-of-plane wavinesses of the deposited
fibre tows might explain this phenomena.

Besides, it has to be noticed that a second oscillation period (T2) seems to be present as shown
in Fig. 4.47. It is more visible for the sample with minimal stitch length (sample 14). It is
difficult to see if damping occurs for this oscillation since only three periods can be observed.
However, as it will be shown in the analysis presented hereafter, this second oscillation might
be due to the fibre tow geometry.

4.3.3.2 Proposition of the analytical model and data fitting

Expression of the friction model Based on the observations of the force-displacement curves,
a model is proposed to fit the data. This model has to take into account the static regime and
the damped oscillations composed of two periods. For simplicity, the static regime is firstly
ignored and the following model is considered:

f(u) = A1d(u) cos(2πf1u+ ϕ1)︸ ︷︷ ︸
Oscillations due to stitching pattern

+ A2 cos(2πf2u+ ϕ2)︸ ︷︷ ︸
Oscillations due to fibre tow geometry

+ A0︸︷︷︸
mean value

(4.32)

where:

• A1 is the amplitude of the oscillations associated to the stitching pattern

• d(u) is a damping function

• f1 is the frequency linked to the period T1

• ϕ1 is a phase

• A2 is the amplitude of the oscillations due to the fibre tow geometry

• f2 is the frequency linked to the period T2

• ϕ2 is a phase

• A0 is the mean value

Fitting procedures based on minimisation algorithm require computing the raw data and the
model at the same displacement values. A Savitzky-Golay filter was used with a window length
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of 201 points and a polynomial degree of three to reduce the number of points and smooth the
raw data.

Fitting procedure Due to the oscillations, determining the model parameters by a direct data
fitting is not possible. Local minima are reached before the global one. Therefore, a step-by-step
procedure has been developed to accurately extract the information from the force-displacement
curves. The first step consists in identifying first guess values for the parameters associated with
the oscillations, namely: A1, f1, ϕ1, A2, f2, ϕ2. In this step, a FFT analysis is performed on
the force-displacement curve. The mean value of the curve is ignored to increase the accuracy
of the analysis. The FFT analysis gives values for the six parameters. However, when plotting
the model defined by:

h(u) = A1 cos(2πf1u+ ϕ1) +A2 cos(2πf2u+ ϕ2) (4.33)

against the data, the peaks in the model are slightly shifted from the data. This might be
due to the static regime. Therefore, an additional fitting using a minimisation algorithm with
the function h(u) is used to adjust the values of these parameters and obtain a better fit of
the data. Fig 4.48 shows the raw data (red) plotted against the curve resulting from the FFT
analysis (green) and the final one after the additional fitting step (blue). It is clear that a better
match with the local minima and maxima is obtained with this additional minimising step. The
amplitude of the curve does not match since damping is not taking into account in this first
fitting step.

The second step is to identify the damping function d(u) for the oscillations due to the stitching
pattern. Since the parameters of the oscillations (f1, ϕ1, A2, f2, ϕ2) are known, the local
maxima and minima can be extracted from the data. Next, a linear interpolation of the local
maxima and minima is performed, which gives the curves Fmin(u) and Fmax(u). The half of
the difference between the two interpolated curves gives the damped amplitude from the data:

Adata(u) = Fmax(u)− Fmin(u)
2 (4.34)

A decaying exponential function given by:

d(u) = exp
(
−
√
u

c

)
(4.35)

and multiplied by A1 was shown to give a good prediction of the damped amplitude Adata(u).
During this fitting step, A1 is adjusted from the value determined in the previous step. Fig. 4.49
shows the damped amplitude form the data (blue circles) and the fitted damping amplitude
function (red solid curve).

Final model For the static regime, which could include the straightening of the fibre tows, the
following expression is used:

Fstatic(u) = F0

√
sin
(
π

2
u

U0

)
(4.36)

where F0 and U0 corresponds to the coordinates of the first peak of the pull-out force-displacement
curve.

Therefore, the final analytic model is defined by:f(u) = F0

√
sin
(
π
2
u
U0

)
if u ≤ U0

f(u) = A1 exp
(
−
√

u
c

)
cos(2πf1u+ ϕ1) +A2 cos(2πf2u+ ϕ2) +A0 if u > U0

(4.37)
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Model parameters of each design Fig 4.50 shows the result of the fitting procedure applied for
each repetition of the design 1. In each case the analytical models are in good agreement with
the experimental data.

The model parameters of a design are computed as the average of the values obtained for each
repetition. Fig 4.51 shows the result of the fitting procedure for each design. The gray area
corresponds to the interval of minimal and maximal values obtained from the repetitions of the
raw data. In general, the model lies in the interval, which validates the fitting procedure for all
designs. Table 4.9 reports the values of the model parameters for each design.

Table 4.9: Model parameters for all (8) designs

Model
parameters

A1
(N)

c
(mm)

f1
(mm−1)

ϕ1
(radians)

A2
(N)

f2
(mm−1)

ϕ2
(radians)

A0
(N)

U0
(N)

F0
(N)

1 1.584 13.011 0.096 3.098 0.427 0.036 3.902 5.283 5.299 6.284
2 4.233 5.985 0.095 2.786 0.425 0.034 4.741 7.732 5.850 9.702
3 2.640 8.940 0.096 2.831 0.386 0.035 4.332 4.517 5.716 6.000
4 2.424 8.231 0.195 2.828 0.640 0.036 4.174 8.899 2.826 10.307
5 5.513 5.968 0.196 2.311 0.737 0.033 4.691 15.238 3.227 18.311
6 6.001 6.212 0.195 2.102 0.802 0.036 3.890 14.502 3.405 17.309
7 1.309 13.447 0.192 3.101 0.571 0.037 3.837 7.346 2.594 8.042
8 3.547 9.570 0.096 3.120 0.433 0.034 4.453 7.164 5.232 9.181

4.3.3.3 Determining the model parameters as function of the stitching parameters

The analytical model proposed fits accurately the data for each design. In this section, the values
of the model parameters are analysed according to the stitching parameters. In particular, the
hypotheses formulated during the first observations of the results are verified.

General observations As mentioned previously, the period of the oscillations due to the stitch-
ing pattern (T1 = 1

f1
) equals twice the stitch length. Moreover, the second frequency f2 is

constant across the designs, which means that this phenomena is due to the raw fibre tow speci-
ficities. Actually, when looking closely a fibre tow, an even undulation is visible and its period
seems in the range of the detected one. The exact period of the observed undulations could be
measured with a profilometer.
The mean value A0 and the peak force F0, increase as the stitching length and width decreases.
This result is consistent because decreasing the stitching length and width, increases the fixation
constraint on the fibre tow.

Linear regression The aim is to determine the dependency of the model parameters on the
stitching parameters. Two levels were used for each factor. Therefore, the model parameters are
a linear function of the stitching parameters at most. For each model parameter i, the following
function has to be identified:

pi(ds, ws, Ts) = a0 + a1ds + a2ws + a3Ts + b1dsws + b2dsTs + b3wsTs + c1dswsTs (4.38)

where:

• a0 is the overall mean

• a1, a2 and a3 are the main effects

• b1, b2 and b3 are the first order interactions
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• c1 is the second order interaction

To determine these coefficient, a linear regression is performed. It requires an equal number of
repetitions for each design. For some design, only two repetitions were valid. Therefore, the
linear regression is achieved using two repetitions. Due to the high repeatability observed during
the experiments, using two repetitions is deemed satisfying. The open tool Jamovi (Navarro
and Foxcroft, 2018) is used to perform the linear regression of each model parameter.

For each model parameter, the linear regression model is built step by step. In a linear regression,
the p-value tests the null hypothesis of a predictor, namely, if it can be considered as having no
effect. Therefore, a low p-value indicates that the predictor is meaningful. Therefore, the main
effects are added one by one and kept in the model if their p-value is lower than 0.05. Next, the
interactions between the factors whose main effect is meaningful are added and eliminated if
their p-value is greater than 0.05. The correlation coefficient R indicates if the model represents
accurately the data. This procedure, which is repeated for each model parameters, is detailed
hereafter for one model parameter.

Example: application to the mean value A0 Table 4.10 reports the results of the different steps
to build the model for A0. The predictor corresponds to a main effect or an interaction and the
estimate is the value of the associated coefficient in the model. First, the model (a) is built with
only the main effect ds (stitch length). Since the p-value of this predictor is lower than 0.05,
it is meaningful. This process is repeated by adding the main effect ws (stitch width) which is
also meaningful. It can be noticed that the correlation coefficient increases from 0.704 to 0.935
by adding the main effect ws. Next, the main effect Ts (stitch tension) is added but shows to
be insignificant since its p-value does not allow to reject the null hypothesis. Moreover, the
correlation coefficient was not increased by adding Ts. Therefore, the two main effects ds and
ws are significant. Then, only the interactions of the factors whose main effect is significant are
tested. Model (d) shows that the interaction ds ∗ ws is meaningful. The correlation coefficient
R is high and reaches a final value of 0.975.

Consequently, according to the linear regression, the mean value A0 depends on the stitching
length and width. More precisely, since the coefficient associated to the main effects is negative,
decreasing the stitching length or width increases the mean value. Their effect is similar since
their coefficients are close (-0.465 for ds and -0.438 for ws). Moreover, the interaction means
that a change in the stitching length or width has an effect which depends on the current value
of the stitching width or length respectively. Therefore, A0 is expressed as:

A0(ds, ws) = 33.238− 0.465ds − 0.438ws + 0.00672dsws (4.39)

The fact that the stitch tension has no effect on the mean pull-out force was not expected. As
it will be shown hereafter, for each model parameters, the effect of the stitch tension is not
detected. This might indicate that the two levels of stitch tension were to close to each other
to lead to significant changes in the model parameters. In other words, the effect of the stitch
tension might be hidden by the variations between repetitions. Therefore, the model parameters
will only be function of the stitch length and width.

Results The results of the linear regression applied to each model parameters are reported in
Table 4.11. In particular, the high value (> 0.90) of the correlation coefficient R shows that the
linear regression gives accurate models for A1, f1, A0, U0 and F0. As mentioned previously, f1 is
perfectly defined by the stitch length ds while f2 does not depend on the stitching parameters.
A1, A0, and F0 increases when the stitching length and width decreases, which is consistent.
Moreover, the effect of the stitching length and width is similar. The damping velocity c depends
only on ws but the correlation coefficient is low. However, increasing the stitch width increases
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Table 4.10: Step-by-step identification of the model for the mean value A0

(a) Model Coefficient - A0(ds) - R = 0.704
Predictor Estimate SE t p

Intercept 16.819 2.2682 7.41 <.001
ds -0.213 0.0574 -3.71 0.002

(b) Model Coefficient - A0(ds, ws)- R = 0.935
Predictor Estimate SE t p

Intercept 23.790 1.6235 14.65 <.001
ds -0.213 0.0298 -7.15 <.001
ws -0.186 0.0298 -6.24 <.001

(c) Model Coefficient - A0(ds, ws, Ts) - R = 0.935
Predictor Estimate SE t p

Intercept 23.193 2.5612 9.055 <.001
ds -0.213 0.0298 -6.892 <.001
ws -0.186 0.0298 -6.018 <.001
Ts 0.119 0.3861 0.309 0.762

(d) Model Coefficient - A0(ds, ws) - R = 0.975
Predictor Estimate SE t p

Intercept 33.238 2.417 13.75 <.001
ds -0.465 0.0612 -7.60 <.001
ws -0.438 0.0612 -7.16 <.001
ds ∗ ws 0.00672 0.0016 4.34 <.001

the damping velocity which is consistent since a higher stitch width reduces the stress applied
to the fibre tow and facilitates its slippage. The amplitude A2 associated to the oscillations
related to the fibre tow geometry only depends on the stitch length. Increasing the stitch length
increases this amplitude which is consistent since the induced in-plane and out-of-plane waviness
could interact with the initial fibre tow geometry undulation.

Table 4.11: Coefficients of the linear regression models of the friction model parameters

A1 c f1 ϕ1 A2 f2 ϕ2 A0 U0 F0

Intercept 13.63 2.96 0.295 1.635 0.953 0.0364 4.87 33.24 0.565 40.18
ds -0.24 - -0.0039 0.0149 -0.011 - - -0.465 0.0977 -0.558
ws -0.16 0.159 - 0.0154 - - -0.017 -0.438 - -0.547
ds ∗ ws 0.00338 - - - - - - 0.00672 - 0.00846

R 0.942 0.675 1 0.718 0.725 0.778 0.556 0.975 0.977 0.973
R2 0.886 0.456 1 0.516 0.25 0.606 0.309 0.951 0.943 0.946

Discussion The parametric study associated to the linear regression method allows to un-
derstand the influence of the stitch length and width on the friction force. Even if only two
levels were used per factor, numerous information has been extracted from these pull-out ex-
periments. This parametric study could be completed with an additional and complementary
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design of experiment to extend the observations out of the studied range.

Conclusion
This section presented the pull-out experiments carried out to characterize the frictional
contact interactions between the fibre tows, the backing material and the stitching yarn.
A specific test bench was designed based on previous works. Multiple fibre tows were
extracted simultaneously from a single layer TFP preform. A parametric study has been
performed to study the influence of the stitching parameters on the friction force. Next,
an analytical model was developed to fit the data of the eight sample designs. Finally,
the dependency of the model parameters on the stitching parameters was analysed using
a linear regression.
This experimental study showed that the features observed in the pull-out force-
displacement curves are related to the stitching design or the fibre tow nature. In particu-
lar, damped oscillations are associated to the stitching pattern. The developed analytical
model provides an accurate fit of the data for all designs. Moreover, the linear regression
models allow analysing the effect of the stitching parameters on the model parameters.
Therefore, the effect of the stitching parameters on the friction force has been charac-
terized. However, the difference between the two stitch tension levels in the parametric
study was too small to produce significant changes in the friction force. Consequently,
the effect of the stitch tension could not be distinguished from the data variations.
Nevertheless, this study gave a deep insight of the frictional behaviour of fibre tows in
single layer TFP preforms. Its complexity is well described by the proposed analytical
model. In the next section, the pull-out experiments will be simulated to address the
validation of the ALE elements to model frictional slippage in TFP preforms.
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Figure 4.46: Force-displacement curves for the 8 designs shown in Table 4.8
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Figure 4.50: Data and fitted model for each repetition of design 1
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repetitions
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4.4 Application of the mixed embedded-ALE element approach to TFP
preforms and extensions to conventional textiles

Introduction
This last section studies the benefits of integrating the 1D ALE element in the TFP
preform models. First, the pull-out experiments presented in the previous section are
simulated to evidence that the ALE elements can take into account complex frictional
behaviours. Next, its application to Model I is addressed using the bias extension test of
section 3.4.1. Finally, perspectives of application of the 1D ALE elements to the modelling
of slippage in conventional textiles are presented. In particular, modelling of the fibre tow
slippage in woven fabrics is achieved through the simulation of the bias extension test.
Besides, a simplified approach to model the tufting yarn of tufted preforms is proposed
and referenced elementary test cases are addressed.
Therefore, the objectives of this section are:

• Simulating the pull-out experiments
• Integrating the ALE elements in Model I
• Deploying the mixed embedded-ALE element formulation to the modelling of fibre

slippage in conventional textiles

4.4.1 Integration of the 1D ALE element the TFP preform models
4.4.1.1 Simulation of the pull-out experiments

To further validate the implementation of the ALE elements, the pull-out experiments presented
in the previous chapter are simulated. Since the pull-out force measured was rather low, the
deformation of the backing material can be neglected and is not represented in the finite element
model.

Finite element model The finite element model of the pull-out sample is shown in Fig. 4.52.
The element size is 5 mm. The red nodes are Eulerian nodes (fixed in space) while the blue
nodes are Lagrangian nodes. These Lagrangian nodes are kinematically driven by a reference
point (black node). The displacement is imposed on this reference point. Due to the constraint
imposed on the Lagrangian nodes, the pull-out force corresponds to the internal force of the
reference point along the y-direction. The bottom part of the sample is simplified. In fact,
the bottom part of the fibre tows are not represented but additional material flows through
the bottom Eulerian nodes. The ALE truss element is used since the bending contribution is
negligible in the pull-out configuration.

Implementation of the friction law The friction law is implemented at the node level. The
analytical model developed in the previous section allows representing the pull-out force dis-
placement curve at the sample scale. The static regime is the straightening of the fibre tows
or the deformation of the backing material. Therefore, it does not describe the local friction
behaviour on the fibre tows. Moreover, the phase parameter ϕ1 is related to the beginning of
the dynamic regime at the sample scale. Therefore, locally, the friction law reduces to:

f(u) = A1 exp
(
−
√
u

c

)
sin(2πf1u− π) +A2 cos(2πf2u+ ϕ2) +A0 (4.40)

The parameter of the analytical model have been determined for a whole sample. To implement
the law at the fibre tow scale, the pull-out force is divided by the total fibre tow length Ltot
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Figure 4.52: Finite element model of the pull-out experiments

in the area of interest of the sample, namely, 103 mm (100 mm × 10). Therefore, the friction
forces are distributed along the fibre tows.

At a finite element ALE node, the friction force is defined as:

FUs
ext(Us) = f(Us)

Ltot
∗ L (4.41)

where L equals Li+Li+1
2 if the node i is connected to elements i and i + 1 or Li

2 if it is an end
node.

No friction force is applied on the top Lagrangian nodes since the top elements are not in the
area of interest of the sample.

For each design, the model parameters A1, c, f1, A2, f2, ϕ2 and A0 are those of Table 4.9. A1,
A2, and A0 are divided by Ltot.

Results The simulation results are plotted in Fig 4.53 along the model for each design. The
simulations match the analytical model for each design. The slight horizontal shift visible
for some design (D6 and D5) can be attributed to the static regime which is not perfectly
represented since the fibre tows are already straight in the finite element model.
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Figure 4.53: Results of the pull-out simulation for each design
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4.4.1.2 Update of the simulation of a bias extension test with a TFP-reinforced conventional
textile

As demonstrated in section 3.4.1, Model I leads to a very stiff behaviour when it is used to
model the local reinforcement of another fibrous reinforcement. With the ALE elements, the
no-slip condition can be relaxed. To show the benefit of introducing fibre tow slippage in Model
I, the bias extension test performed in section 3.4.1 is addressed using the ALE elements to
model the reinforcing fibre tow.

General settings The simulation is performed with both the ALE truss and the beam element.
The material properties of the beam are the one used for the tetrahedral forming reported in
Table 3.1. When the truss element is used, its tensile stiffness is those of the beam element.
Scenarios with and without friction are considered. To simplify the friction behaviour, a static
Coulomb friction law is used instead of the complex friction law determined in the previous
section. The value chosen for the friction coefficient is 10−2 N/mm, which is in the same order of
magnitude of the mean value A0

Ltot
determined in the pull-out tests. The different configurations

are labelled as:

• A: No hole and no reinforcement

• B: Hole and no reinforcement

• C: Hole and truss elements

• D: Hole and beam elements

• E: Hole and ALE truss (no friction)

• F: Hole and ALE beam (no friction)

• G: Hole and ALE truss (friction)

• H: Hole and ALE beam (friction)

Results The force-displacement curves of the simulations are plotted in Fig. 4.54 (a) along
with the results of the simulations of section 3.4.1. Fig. 4.54 (b) shows the maximum force. For
the cases without friction, the force is close to the one without reinforcement. As expected, the
free slippage of the reinforcing fibre does not modify the behaviour of the conventional textile.
When introducing friction, the force does not change. An increase might be measurable with
more reinforcing fibre tows. The difference between the force required with a reinforcing truss
or beam element is negligible is this case.

Fig. 4.55 shows the shear angle field for the configurations without reinforcement, with ALE
trusses and ALE beams as well as the slip displacement of the fibre tow modelled with ALE
trusses. The shear angle field are nearly the same meaning that the reinforcing fibre tows does
not modify the behaviour of the conventional textile.

Discussion It has to be noticed that the out-of-plane bending mode has not been taken into
account. Adding this deformation mode might lead to the creation of wrinkles for the stiffest
solution and reduce the current shear angle. Nevertheless, relaxing the no-slip condition gives
results which are more realistic compared to the ones obtained previously.

Transition
The 1D ALE elements allow modelling the fibre tow slippage in TFP preforms. In par-
ticular, they have been integrated in Model I to relax the strict embedding constraint
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Figure 4.54: Result of the bias extension test with and without reinforcing fibre tows

which implied a no-slip condition between the fibre tows and the backing material. The
resulting mixed embedded-ALE element formulation is very attractive to take into ac-
count fibre tow slippage when the TFP technology is used to locally reinforce another
conventional textile. The next section discusses the extension of modelling strategy to
model fibre slippage in conventional textiles.

4.4.2 Deploying the 1D ALE elements in conventional textile modelling
The 1D ALE elements used to enhance the TFP preform models allow modelling fibre slippage
at the scale of the fibre tow without modelling explicitly the contact interactions. Moreover,
complex friction laws can be implemented. This last section aims at highlighting the fact that
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Figure 4.55: Shear angle for configuration B, E and F and slip displacement of the reinforcing
fibre tows (E)

these elements could be used to model fibre slippage in conventional textiles. To this end,
a model based on Model II is proposed to represent a woven fabric reinforcement. Then, a
model is proposed to represent the tufting thread in tufted preforms. Numerical examples are
addressed to demonstrate the potential of these models.

4.4.2.1 Modelling fibre tows slippage in woven fabrics

Objectives As mentioned in section 4.1.1.2, models of biaxial textiles taking into account the
fibre slippage are mainly based on a Lagrangian description which implies modelling explicitly
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the contact interactions between the fibre tows. Therefore, these models require a very fine
description of the reinforcement features and are very time consuming. To the author’s knowl-
edge, only the model by Parsons et al. (2013) allows modelling fibre slippage in a continuum
medium but was not used in forming applications. The model proposed here, which is based on
Model II, is very similar to the latter but does not embed woven fabric unit cells in a continuum
medium. Moreover, the effect of the crimp amplitude is not taken into account. A basic model
is considered for demonstration but additional features can easily be added. Fibre slippage is a
well-known deformation mode during bias extension test of textile reinforcement. Therefore, the
demonstration is based on the simulation of this test. The areas where slippage are susceptible
to happen are illustrated in Fig. 4.56.

Figure 4.56: Area of observed slippage in bias extension test (Wang et al., 1998)

Finite element model A representation of the model is shown in Fig 4.57. The warp and weft
fibre tows are represented using ALE beam elements. At the intersection of the warp and weft
fibre tows, either the warp or weft node is embedded by the weft or warp node respectively.
Contrary to Model II, both fibre tows have a node at the intersection. This allows to define the
friction law at the node level rather than at the element level. However, it is possible to mesh
independently the weft and warp fibre tows as in Model II. To take into account the resistance
to rotation at the crossover points, non-linear torsional springs are used. The torsional moment
is defined with the same law than the shear moment in the woven fabric model by Hamila et al.
(2009). Therefore, the non-linear behaviour due to the lateral contact between fibre tows at high
shear angles is taken into account. Since all nodes are located at crossover points, the friction
law is directly applied on all nodes. A static Coulomb friction is considered for simplicity. The
dependence of the friction force to the shear angle is not considered. This model is similar to
the mesoscopic model by Gatouillat et al. (2013) where the shell elements are replaced by beam
elements and the explicit contact interactions between the shell elements is managed by the
mixed embedded-ALE formulation. Therefore, this model is supposed to considerably decrease
the simulation time.

Bias extension test sample A sample of 250 mm length and 100 mm width is considered. The
fibre tow density dtow in each direction is set to 0.5 tow/mm. Therefore, the beam elements
have a length of 2 mm. The properties of the beam elements and the torsional springs are
reported in Table 4.12.

Table 4.12: Beam and torsional spring parameters

Beam Torsional spring

Parameters CE CΓ1 CΓ2 CK1 CK2 CK3 K1 K2 K3
Values 2880 1440 1440 0.2 0.2 0.2 6.44 10−4 5.95 10−2 1.07 10−1

Units N N N N.mm2 N.mm2 N.mm2 N.mm N.mm N.mm
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(a) (b)

Figure 4.57: Mixed embedded-ALE beam model of woven fabric: (a) Texgen mesoscopic repre-
sentation of woven fabrics, (b) corresponding finite element model

The maximal friction force before slip occurs at a crossover point is set to 0.5 N. To simplify
the model, the ends of the fibre tows are not represented explicitly. The crossover points on the
lateral sides of the sample corresponds to the last crossover points but the extra lengths of fibre
tow are not modelled. This simplification avoids considering remeshing when a Lagrangian node
(end of fibre tow) gets too close to an ALE node (crossover point). If the slip displacement at
the last crossover points does not exceed the space between adjacent fibre tows, namely, 2 mm,
then it will be appropriate.

Results Fig. 4.58 (a) and (b) shows the shear angle field with and without slippage. The
transition layer between the three zones of constant shear are modified by the fibre slippage.
Moreover, the shear angle in the central area is slightly smaller. As it is shown in Fig. 4.58 (c),
the localisation of fibre slippage coincides with the observed area depicted in Fig 4.56. The
maximal slippage value is 1.8 mm at the transition between the three shear zones. The fibre
slippage on the sides of the central area do not exceed 1 mm. Therefore, the simplification
concerning the fibre tows’ ends is appropriate for this example.

Discussion The proposed modelling strategy, which takes into account fibre slippage in woven
fabrics using a mixed embedded-ALE formulation, is very attractive. It considerably simplifies
the modelling of the contact interactions between the fibre tows. Addressing a full-scale vali-
dation based on forming of a complex part, which is known to produce fibre slippage, would
be the next step to develop this modelling strategy for biaxial textiles. However, a remeshing
procedure to take into account the separation of the fibre tows would be required. To this end,
the remeshing algorithm proposed by Liu et al. (2018) can be implemented.

4.4.2.2 A simplified approach to model the tufting thread in tufted preforms

Tufting principle and existing models Tufting is a through-the-thickness reinforcement tech-
nique of laminates. A thread, named tufting thread, passes totally or partially the thickness of
the fibrous reinforcement layers (Fig. 4.59). The forming of such preform is strongly affected by
the presence of the thread (Liu et al., 2015; Gnaba et al., 2021). A model has been proposed
by Huang et al. (2021) to simulate the forming of tufted preforms and predict the creation of
defects such as wrinkles. In this model, the interaction between the tufting thread and the
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Figure 4.58: Bias extension test: Shear angle field (a) without slippage (Lagrangian beams),
(b) with slippage and slip displacement field (c)

layers of reinforcement is modelled explicitly using a specific contact algorithm, which is able
to model the slippage of the thread elements through the virtual holes of the layers’ element
as illustrated in Fig. 4.60. Two models were proposed with or without the simplification of the
thread loop. The thread is modelled using 1D elements with tensile and bending stiffnesses and
the fibrous reinforcement is modelled with the finite element by Hamila et al. (2009) previously
used.

Due to the Lagrangian representation of the thread and the hole, a high number of elements
is required to model the thread and avoid numerical instabilities due to the contact algorithm.
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Figure 4.59: Principle of tufting (Huang et al., 2021)

Figure 4.60: (a) Simplified model of the tufting (Model I) and (b) full-structure model of the
tufting (Model II) (Huang et al., 2021)

The aim of this study is to show how the 1D ALE elements can be used to considerably simplify
the model proposed by Huang et al. (2021).

Proposed models To simplify the contact interactions between the thread and the layers, the
mixed embedded-ALE elements presented in this work and illustrated in Fig. 4.61 are used.
The thread passing through the holes is modelled by ALE elements whose nodes are embedded
in the element of the corresponding layer. Therefore, the thread material can flow through the
thickness of the layers without the need of a specific and time consuming contact algorithm. A
static Coulomb friction law can be considered at the nodes representing the holes. Moreover,
the number of elements to discretize the thread is considerably reduced.

Elementary tests To demonstrate the feasibility of the proposed models, the two elementary
tests performed by Huang et al. (2021) are addressed hereafter.

The first test concerns the tufting Model I. It consists of 4 reinforcement layers with a single
tufting thread. The top and bottom layers are fixed while the middle layers are translated
in the opposite direction. It results in a slippage of the tufting thread through the thickness.
The initial and final configurations as well as the results by Huang et al. (2021) are shown in
Fig. 4.62. They used 200 elements to model the tufting yarn. The proposed model used a single
element per layer, namely, 4 elements for the whole thread.

With the proposed mixed embedded-ALE element model, one element between layers is enough.
The slip dof of the node in the bottom layer is fixed (Lagrangian node). The extra length of
thread on the top layer is not modelled explicitly but additional material can flow through the
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Figure 4.61: Proposed models based on mixed embedded-ALE elements: (a) Simplification of
the tufting Model I and (b) tufting Model II

Figure 4.62: Test 1: (a) boundary condition, (b) Initial state, (c) 33% of the displacement, (d)
66% of the displacement, (e) 100% of the displacement (Huang et al., 2021)

top thread node. The result is shown in Fig 4.63. The slip displacement is linear from the
bottom to the top nodes. No friction was applied. The deformation in the thread is lower than
10−9 which is consistent with the free slippage. Therefore, this test is validated for the proposed
model.
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Figure 4.63: Proposed tufting Model I: Slip displacement field of the thread with initial state
(light colors) and final state (dark colors)

The second test is quite similar to the first one but the thread forms a loop (Model II). The
initial and final expected configurations as well as the results by Huang et al. (2021) are shown
in Fig. 4.64.

Figure 4.64: Test 2: (a) boundary condition, (b) 50% of the displacement, (c) 100% of the
displacement (Huang et al., 2021)
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In this second test, there is also one thread element between two layers. As shown in Fig. 4.65,
the thread slip through the hole. No friction was applied but a static Coulomb friction law can
be added.

Figure 4.65: Proposed tufting Model II: Slip displacement field of the thread with initial state
(light colors) and final state (dark colors)

Discussion Two elementary test cases have been addressed to show the potential of the mixed
embedded-ALE elements to model the tufting thread. A next step to continue deploying this
modelling strategy is to implement the deactivation of the embedding constraint of the hole
nodes when the thread loop goes out of the hole. Then, full-scale validations could be addressed.
The ALE truss element was used due to its simplicity. To take into account the bending rigidity
of the tufting thread, the slip displacement dof can be easily added to the free-rotation 1D
element used by Huang et al. (2021). If large slippage occurs, new Lagrangian nodes can be
added to the tufting thread between successive layers. Node-to-surface contact is required for
these additional Lagrangian nodes.

Conclusion
This section has presented the first validation of the mixed embedded-ALE element for-
mulation to model the local reinforcement of conventional textiles with TFP. First, the
pull-out experiments were successfully simulated. Next, the issue raised in section 3.4.1
concerning the very stiff behaviour of Model I has been addressed. The relaxation of the
no-slip condition gives realistic results. Further full-scale validations based on forming
are needed to validate the mixed embedded-ALE approach for Model I.
Moreover, this formulation can be used to model fibre slippage in conventional textiles.
As a demonstration, fibre slippage in a woven fabric sample during a bias extension test
has been simulated and gave consistent results. Addressing a forming simulation with this
model would reveal the potential of this approach. Finally, the mixed embedded-ALE el-
ement formulation was applied to the modelling of the tufting thread in tufted preforms.
Elementary tests were addressed. A full-scale forming simulation is required to demon-
strate the consistency of this approach, in particular, the reduction of the computation
time compared to the existing model.
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Chapter conclusion
This chapter addressed the challenge of incorporating fibre slippage into the TFP models
without modifying the initial ingredients introduced in Chapter 2. To this end, existing
approach to model fibre slippage in conventional textile were reviewed. Among them,
the use of the ALE description was deemed particularly attractive since it does not
require the explicit modelling of the contact interactions. However, the model by Parsons
et al. (2013) using the ALE description is only applicable to woven fabrics and uses
2D elements. Next, the ALE description was briefly introduced before presenting some
modelling strategies developed for pulley-cable system applications that allow modelling
material flow in 1D elements. Among them, the models by Peng et al. (2017) and Liu et al.
(2018), which uses an additional dof to represent relative displacement between the mesh
and the matter in truss and beam elements, have been deemed appropriate to enhance
the TFP models. Consequently, both ALE truss and beam element formulations were
detailed and numerical tests were addressed. These 1D ALE elements allow modelling the
relative displacement between the fibre tows and the backing material while keeping the
embedding constraint on the mesh of the fibre tows. To use this mixed embedded-ALE
element formulation in Model I, the friction law which drives the material flow, had to
be characterized. To this end, pull-out experiments have been carried out. A parametric
study was performed to quantity the effect of the stitching parameters on the friction
force. An analytical friction model has been proposed and its material parameters were
related to the stitching parameters using a linear regression method. Finally, the pull-out
experiments were simulated using the ALE elements to validate the implementation of
the friction law for Model I. Next, the simulations showing the stiff behaviour of the initial
Model I in the previous chapter were addressed using the mixed embedded-ALE element
formulation. The relaxation of the no-slip condition gave realistic results. Therefore, the
proposed mixed embedded-ALE element formulation allows facing the challenge raised
at the beginning of this chapter.
Besides, the extension of this modelling strategy to model fibre slippage in conventional
textiles has been addressed. In particular, fibre tow slippage in woven fabric was sim-
ulated through a bias extension test. Moreover, a solution has been proposed to more
efficiently model the tufting thread in tufted preforms. Further full-scale simulations are
required to validate and justify these extensions.
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Conclusions
Hybridization of the TFP technology with forming is an attractive solution to manufacture
3D shell-like composite parts with optimized mechanical properties. However, to the author’s
knowledge, a numerical tool to simulate the forming of TFP preform is still missing.

The overall objective of this thesis was to propose a first modelling strategy to predict the final
fibre orientations in the part obtained by forming of flat TFP preforms.

Chapter 1 provided the necessary background to understand the key features of forming as well
as the challenges associated with the numerical modelling of fibrous reinforcement. Numerical
and experimental aspects concerning conventional textiles were presented as an introduction
as they have been widely studied. This review of conventional textiles forming underlined the
limits of these fibrous reinforcements in manufacturing optimised 3D shell-like composite parts.
As a remedy, technologies based on fibre-steering were introduced. In particular, the TFP
technology, which is the technology this thesis is concerned with, was detailed. A review of the
literature highlighted both the capabilities and the potential of this technology as well as the
missing tools whose development is required to fully take advantage of the TFP technology in
combination with forming. This chapter ended with the objectives and the outline of the thesis.

Fig. 4.66 is the graphical abstract of the work achieved in this thesis illustrating the content of
each chapter summed up hereafter.

In Chapter 2, two numerical models have been proposed to represent TFP preforms with (Model
I) and without backing material (Model II) respectively. These models are based on the explicit
discretisation of the fibre tows to capture directly the fibre orientation changes. The stitching
yarn, which ensures the cohesion between the fibre tows and the backing material in Model I, or
between adjacent layers in Model II, was modelled implicitly through the use of an embedded
element formulation. In Model I, the 1D elements representing the fibre tows are embedded in
the backing material modelled with 2D elements. In Model II, the 1D elements representing the
fibre tows of a layer are embedded within those of the previous layer. The embedded element
formulation assumes no-slip between the constituents of the TFP preforms. The formulation,
implementation and elementary numerical testing of the models’ features was presented.

Chapter 3 addressed the full-scale validation of Model II. To this end, the numerical and ex-
perimental forming of complex doubly-curved parts from flat TFP preforms without backing
material was achieved. A hemisphere shape, which is a well-known case study, and a tetrahedral
shape, which has a direct industrial application, were selected. To validate Model II and at the
same time demonstrate the potential of this hybrid solution, specific flat TFP patterns were
designed to obtained orthotropic parts. The numerical and experimental results are in good
agreement and nearly orthotropic parts are obtained which validated Model II. Concerning
Model I, numerical simulations carried out to investigate the local reinforcement of a conven-
tional textiles using TFP showed an unrealistic stiff behaviour, which was attributed to the

233



no-slip condition.

Chapter 4 proposed a solution to the issue raised concerning Model I. It addressed the chal-
lenge of introducing fibre slippage in the TFP preform models developed in Chapter 2 without
modifying their initial ingredients. To this end, modelling of fibre slippage in conventional
textiles was firstly reviewed. The ALE description was deemed a suitable approach to include
fibre slippage. Based on the literature concerning the modelling of pulley-cable systems, ALE
truss and beam elements taking into account material flow were formulated, implemented and
numerically tested. Next, the friction law to be implemented in the enhanced Model I was
determined using pull-out experiments. A parametric study was performed to characterise the
effect of the stitching parameters on the friction force required to extract the fibre tows from
the TFP preform. This friction law was implemented in the ALE elements and the pull-out
experiments were simulated accurately. The mixed embedded-ALE formulation was used in
Model I to demonstrate the benefits of introducing fibre tow slippage. The very stiff behaviour
observed in the simulations of Chapter 2 was eliminated. Finally, the extension of the mixed
embedded-ALE formulation to the modelling of fibre slippage in woven fabrics and of the tufting
thread in tufted preforms was introduced.

Perspectives and future works
This work proposes a first numerical tool to model the forming of TFP preforms. It offers the
possibility to model TFP preforms with or without backing material. The mixed embedded-ALE
formulation allows to consider the local reinforcement of any type of 2D-like backing material
such as conventional textiles. Predicting the forming of TFP preforms allows to check the
manufacturability of a given part for a given flat TFP design. However, to fully exploit the TFP
technology, determining the flat TFP design from the targeted 3D part, known as flattening, is
also desirable. With this numerical forming tool in hands, it is possible to develop a flattening
tool whose results can be checked numerically by forming. Moreover, if the development of a
direct flattening algorithm is not possible, an iterative approach combining successive flattening
and forming with fibre orientation corrections can be achieved. The following points could serve
as interesting next steps in continuation of the achievements of this thesis:

• Addressing the full-scale validation of the mixed embedded-ALE formulation for Model
I and study its extension to Model II for cases where fibre tow slippage can increase the
preform formability.

• Improving the proposed TFP preform models. This could implies to use non-linear tor-
sional springs to model the stitching yarn contribution at fibre tow intersections and add
the lateral contact interactions between the fibre tows within the same layer. Moreover,
a beam element with deformable cross-section could be used. For thick TFP preforms,
enrichment of the embedded formulation to take into account the through-the-thickness
offset would be required.

• As demonstrated, the mixed embedded-ALE formulation can be used to model fibre slip-
page in woven fabrics or the tufting thread in tufted preforms. Addressing full-scale
simulations would allow to confirm the suitability of these models.

• Developing a numerical flattening tool to determine the flat TFP design from the targeted
3D parts has to be addressed to fully take advantage of the TFP technology. The numerical
forming tool develop in this work can either be used to numerically validate the flattening
tool or as part of the flattening algorithm in an iterative minimisation approach.
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Figure 4.66: Graphical abstract of the thesis
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par la technologie tailored fibre placement : une formulation mixte élément fini embarqué-ALE 
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Résumé : La technologie Tailored Fibre 
Placement (TFP) permet de fabriquer des 
préformes fibreuses planes à orientation et 
épaisseur continûment variables. L’hybridation 
du TFP et du formage est une solution attractive 
pour produire des pièces composites 3D 
optimisées. Au cours du formage de pièces 
complexes, les changements de trajectoires 
curvilignes des fibres sont inévitables. La 
prédiction de l’état final de la préforme TFP est 
nécessaire pour utiliser pleinement le potentiel 
de cette solution hybride dans le monde 
industriel.  
    Une première approche de modélisation est 
proposée pour simuler le formage de préformes 
TFP. Deux modèles semi-discrets basés sur des  
éléments finis embarqués sont développés pour 
représenter des préformes avec et sans 
matériau support. Dans ces deux modèles, les  

mèches de fibres sont représentées 
explicitement avec des éléments finis de poutre 
et le glissement entre les constituants de la 
préforme est d’abord négligé.  
    La validation du modèle sans matériau 
support est réalisée au travers du formage sur 
des poinçons hémisphérique et tétraédrique 
avec obtention d’orientations orthotropes. 
   Finalement, une formulation mixte d’éléments 
embarqués ALE (Lagrangienne-Eulérienne  
Arbitraire) est proposée pour introduire le 
glissement des mèches sans modifier les 
ingrédients initiaux des modèles. Une étude 
paramétrique expérimentale d’extraction de 
mèches est menée pour caractériser le 
comportement en friction à implémenter dans 
les modèles. La validation de cette stratégie de 
modélisation pour le TFP est réalisée et son 
extension pour le renforcement local des 
textiles conventionnels est abordée.  

 

Title : Numerical simulation and experimental investigation of the forming of tailored fibre placement 
preforms: a mixed embedded-ALE finite element formulation 
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Abstract: Tailored Fibre Placement (TFP) 
allows manufacturing flat, net shape fibrous 
reinforcements with continuously varying 
orientation and thickness. The hybridisation of 
TFP and forming is an attractive solution to 
manufacture mechanically optimized 3D shell-
like composite parts. During the forming of 
complex parts, inevitable fibre path changes 
occur in the TFP preform. Prediction of the final 
state of TFP preforms is required to take full 
advantage of this hybrid solution in the industry.  
    A first numerical modelling strategy is 
proposed to address the forming of flat TFP 
preforms. Two semi-discrete models based on 
an embedded formulation are developed to offer 
the possibility of removing or keeping the 
backing material.  Both finite element models          

use an explicit discretisation of the fibre tows 
using beam elements and assumes no 
slippage between the preform constituents. 
   Full-scale validations of the model without 
backing material are successfully addressed by 
forming hemispherical and tetrahedral parts 
with final orthotropic orientations.  
   Finally, a mixed embedded element-ALE 
(Arbitrary Lagrangian  Eulerian) formulation is 
proposed to introduce fibre slippage into the 
models without modifying their initial 
ingredients. A parametric study of pull-out 
experiments is performed to characterize the 
friction behaviour to be implemented in the 
models. Numerical validations for TFP 
preforms and an extension to model fibre 
slippage in conventional textiles are proposed. 
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