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Chapter 1
General introduction

1.1 Constitutive relations

In the field of computational mechanics, the goal is to solve problems that reflect
everyday phenomena. This is done by solving equations that represent the physical
conditions to which samples are subjected. These physical principles are universal and
they apply to all materials equally, but they do not give any insight into the specific
response to different conditions such as loads and temperature changes.

1.1.1 Definition

Constitutive relations [1] are specifically targeted to specify the mechanical and thermal
properties of any particular material, based on their internal constitution. They de-
scribe relationships among kinematic, material and thermal equations to allow for the
formulation of well-posed problems in continuum mechanics. They aim to physically
describe idealized material models that serve as a reference for representing real mate-
rials. Constitutive relations are complex in nature since they attempt to define internal
properties that are not known. Some materials, such as linear elastic materials, have
simple definitions that we can model with one parameter, however, many others do not
follow a straightforward behavior and different techniques need to be used to obtain an
estimation. Another point to consider is that in general, materials do not keep the same
behavior forever. Things like aging, temperature or high loads can alter the behavior
that is observed in normal conditions, meaning that we would need to find a different
model for a different circumstance. In that sense, it is better to think of constitutive
relations as representing particular behaviors rather than particular materials.

The definition of the constitutive relation is dependent on the material studied, and
typically should define relationship between relevant quantities. Common examples of
this relations mathematically defined are

� Small deformations (σ = σ(ε)): in the cases where the deformations that the
material is subjected are small, we have that the constitutive relation can be
defined in terms of the infinitesimal strain ε and stress σ.

� Large deformations (S = S(E)): if the deformation is large enough, the defor-
mations of the material are defined in terms of the Green-Lagrange strain tensor
E and the respective second Piola-Kirchhoff stress tensor S.
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� Hyperelastic materials (P = P (F )): for hyperelastic materials, the constitutive
relation is derived from energy equations, where it is more convenient to work in
terms of a deformation gradient F and its respective first Piola-Kirchhoff stress
P .

� Linear viscoelasticity (σ = σ(ε, t)): in linear viscoelastic materials we have a
similar dependence of stresses on strains, with the difference that viscoelastic
materials retain a memory of previous steps, so the relation is not instantaneous
as in linear elastic materials, but rather dependent on the full history of strains.

There are many more examples for different kind of materials which not necessarily
can be defined by mathematical expression. Ideally, if we have a mathematical ex-
pression, we want to use the constitutive relation to solve a Boundary Value Problem
(BVP) that represents the situation that we are studying. To pose a problem correctly
we need to combine physical principles such as

� conservation of mass, if we have transient systems;

� equations of motion, for all moving bodies;

� energy equations, for cases where we need to account for temperature and other
energy sources;

with an ad-hoc constitutive relation and adequate boundary conditions that restrict
the problem. Constitutive relations are an essential part of the problem and the way
they are defined or obtained should not be taken lightly, which is the reason why so
much work and research is put into the identification of material properties.

1.1.2 Identification of constitutive relations

Constitutive relations aim to recreate the behavior of a material, most of the time
through a mathematical equation. There are different ways in which these relations
can be obtained:

1. Derived from first principles: First principles are propositions that cannot be de-
duced by another proposition or assumption. In material science, working with first
principles means that our deduction process starts at the level of established science,
without relying on empirical models or parameter fitting. In practice, this means
that, if we want to understand the behavior of a particular material we rely on the
physical principles associated to the microstructure of the material, that then can
be used to understand the behavior on a macro scale. Materials like rubber [2, 3],
colloidal suspensions [4], some polymers [5] and perfect gases [6] can have their con-
stitutive relations derived completely in a mathematical way, without the need of
fitting parameters.

2. Based or estimated from physical principles: If we have the knowledge of how certain
physical phenomena happen inside of a material, we can use these principles to obtain
an estimation of how the constitutive relation might be described. In this case we
do not necessarily know exactly what happens, but we can approximate through
the use of parameters that will act as a simplification of the more complicated
real behavior that is not explicitly formulated. An example of this are hyperelastic
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materials, where we can derive the constitutive relation P = σ(F ) from a postulated
Helmholtz free-energy function Ψ dependent on F [7]. Another example are linear
elastic materials, which are arguably one of the easiest models to work with. In the
simplest of cases, with one parameter we can define the relationship between strain
(ε) and stress (σ). This equation is also derive from energy principles [8] that are
later simplified.

3. Fitted structures in experimental data: In cases where we do not have any knowl-
edge of the internal interactions of the material or they are too complicated to
be posed mathematically, we can rely on the last method which aims to estimate
the constitutive relations through the use of external tools. In here, we have tools
such as Neural Networks [9,10], Data-Driven methods [11], Manifold Learning [12],
What-You-Prescribe-Is-What-You-Get methods [13, 14], among others. The idea of
all these methods is to find a way around the complex relations between strains and
stresses in a material to reach to a solution, without necessarily knowing the process
in between. All these techniques rely on different principles in combination with
some physical constraints that achieve the same goal with as less human input as
possible.

As can be seen, the more we go down this list, the least we know about the ma-
terial itself, so we have a need for more parameters to define the structure that will
represent the constitutive relation. We have endless possibilities for defining a consti-
tutive relation, but to be an adequate one it should be reasonably in agreement with
experimental observations of the material. This expectation, in turn, can be problem-
atic. In the search of an adequate fit of our data, we inevitable introduce a bias in our
modeling, by making certain assumptions or choosing one model over the other. Even
if the model works, a biased fit can give us a wrong idea of the material, so choosing a
model is a delicate process that is inherently a source of error for any problem.

1.1.3 Parameter estimation

To identify the properties of the materials to be used in BVP, we need to estimate the
values of the parameters that define the constitutive relations. Depending on the cases,
estimations can be obtained through testing, where we subject samples of particular
materials to certain conditions, in certain ranges of interest, that might represent how
the material would behave when it is solicited in a common setting. It is important
to remember that constitutive relations do not necessarily represent the entirety of the
material behavior, but sometimes they represent only certain parts of it, which is why
it is important that the testing is performed in ranges that would suit our needs.

One of the big problems is to understand what the parameter represents. In cer-
tain cases we have that parameters might be associated to physical properties of the
material, such as stiffness or relaxation times. In this cases we can have an idea of
the possible values just by observing how the material is responding to certain stimuli.
Some other parameters come as byproducts of certain equations and in those cases it
is more difficult to have a grasp on their proper meaning, and by consequence which
values they should take.

If we, for example, take a homogeneous material which is defined through its strain
and stress relation, we aim to measure values of the strain through the deformation
of a sample, as well as values of stress through the forces that we apply to create this
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deformation, and with both these values we can estimate the parameter that relates
them. Some of the tests that are used for this purpose are

� Uniaxial traction/compression: in this test, a deformation is applied in a sample
in only one direction. Given the known quantities such as forces, deformations
and geometry of the sample, a set of data points can be obtained that can be
used to estimate strain and stresses in the sample.

� Biaxial traction/compression: similar to the previous case, but the test is per-
formed in two directions simultaneously. It is targeted mostly to materials that
present orthotropic behavior.

� Bending: if a material will be used mostly in bending settings (such as beams in
structures), it is of interest to know how the material behaves. Different variations
exists, such as the one or two point bending, the latter having the particular
property of having a constant shear in between the force points. With the values
measured, a bending module can be obtained to simplify calculations, but also
information of tensile or compressive properties can be obtained if there is access
to more accurate measuring.

In more complicated settings, performing only testing might not be sufficient to
obtain a value for the parameters, so we need to resort to more sophisticated ideas. For
example, in most of the cases, a proper value of the stress field cannot be calculated since
they represent internal interactions that cannot be observed. The common approach
to estimate parameters in these cases is trying to minimize a distance between what
is measured in a sample and its simulations, which should provide optimal parameters
for different models. In more modern settings, the availability of imaging techniques
has improved the data collection, allowing for measurements of full fields in the sample
rather than just point-wise approximation. Some popular methods in this vein are [15]:

� Finite Element Model Updating (FEMU): iterative computation of finite elements
simulations while varying parameters in order to obtain the closest results to the
field measurements performed in the sample.

� Constitutive Equation Gap Method (CEGM): minimization of a functional of
a constitutive equation gap which provides the identified values of constitutive
parameters.

� Virtual Fields Method (VFM): based in the virtual work principle, which by
applying well-chosen virtual fields leads to the identification of the parameters
required. In the case of elastic materials it gives explicit identification of the
formulae.

� Equilibrium Gap Method (EGM): based on the discretization of equilibrium equa-
tions, it is useful for obtaining heterogeneous elastic fields, as well as damage by
minimizing the gap on the equilibrium.

� Reciprocity Gap Method (RGM): based on the Maxwell-Betti reciprocity theorem
and adjoint fields, it works by minimizing the reciprocity gap for any adjoint field.
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Different techniques exist for field measurement of properties, but one of the most
common and the one that will be treated in this document is Digital Image Correlation
(DIC) [16], in which a camera is used to measure the displacement field of a sample.
Using a speckle pattern to paint the sample, the algorithm is capable of tracking the
movement of the pixels, which can be translated into deformations and subsequently
into strains. The method is explained in detail in Appendix A.

Finally, a last approach that can be taken is to perform simulations of microstructure
plus some homogenization technique that allows us to obtain an average behavior of
the material in its macrostructure. As expected, the fact that we are extending an
assumption that comes from the micro-world into a more continuous setting comes with
their own problems that might make more difficult the finding of the desired parameters.
It is also worth noting that all these proposed methods can be combined between them
in the quest of optimal parameter fitting, with the complexity and accuracy that comes
along with it.

1.2 Data-based approaches

If the constitutive relation of a certain material is known, we can introduce this pa-
rameter into our system of equations and obtain a solution for our BVP. If we do not
have these information, we have seen that we can fit a relationship, but we can pose the
question: could we be sure that the relation provided is accurate? When working with
classical materials we have many well documented databases with information that
we rely on, but with newer technologies and materials appearing, data is not always
available or simply unobtainable to the confidence level that we require.

1.2.1 State of the art

The exponential rise of computer power as well as storage capacities have made it
easier than ever to perform analysis in big amounts of data. Techniques that allow for
consolidation of information are capable of processing more, which in turn produces
more reliable databases that allows us to perform better model fitting. This already
works as an improvement to a classical approach, since the definition of the models
becomes more accurate with more data. However, one of the bigger advantages from
this improvement is the surge of the so called data-driven methods.

As the name implies, data-driven techniques are based purely on the direct use of
data. As mentioned before, defining a material model is not easy and will unavoidable
lead to biases, which will be reflected in the results obtained when these models are
used. When using a data-driven approach in computational mechanics, ideally the
definition of a material model is replaced by the data itself, which is directly used for
the computation of displacements, strains and stresses in a given sample.

The previous statement raises the question of what exactly we can consider data. In
the general sense of the word is information collected about a material through testing,
as mentioned earlier, but there are nuances to be consider. When testing a material
there are many factors that can be analyzed, so a careful look should be taken. Even for
the same sample, applying different tests can provide different answers, so using this
methods does not only consider the information itself, but also the application that
we will give to the material, which will be complemented with the properly obtained
dataset. The point to retain is the fact that data can take many forms, from a cloud of
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unidimensional points to incomplete measurements in a sample that might not tell the
full picture we are looking for. Even when avoiding the material models, data-driven
methods do not provide an answer if we do not know what to look for.

One of the most important facts to consider then is how the data will be collected
and interpreted. Some of the most popular techniques for collection where outlined in
Section 1.1.3. However, the information obtained needs to be preprocessed before it
can be effectively used, and the way this is done depends on the case analyzed. If we
study elastic materials, a simple cloud of points of strain and stresses might be enough
to understand the behavior of the sample, but in the case of a viscoelastic material the
same cloud of points becomes an unintelligible mess, since we are not considering the
effects of a complete new dimension: time. In this sense, we need to be careful with
data: information by itself is not always enough and it needs to be complemented with
knowledge of what it is being done.

Some Data-Driven methods proposed are listed here:

� Data-Driven Computational Mechanics: DDCM [17] was proposed as an alter-
native formulation of the Finite Elements Method for elastic materials, in where
instead of considering a continuous constitutive law interpolated from the results
of testing, the data itself is used to find the most optimal states for each element
in the mesh. It effectively works by considering a discrete constitutive relation
where the results are obtained by minimizing distances in the phase space.

� Data-Driven Identification: DDI [11] is based on DDCM, but instead it solves
the inverse problem. It starts with the postulate that measurements of strains
and stresses are unobtainable since stresses cannot be computed. The algorithm
then solves for both the stresses in the sample as well as as a database of material
states, which are delocalized strains and stresses that represent the behavior of
the material.

� What-You-Prescribe-Is-What-You-Get: WYPIWYG [13, 14] methods work in a
similar fashion as the previous methods, where the shapes of energy functions are
not provided but obtained by solving equilibrium equations with experimental
data.

� Neural Networks: [18] NN are a set of techniques that were designed in an attempt
to recreate the way the brain makes connections. Through the use of combination
of neurons, they are capable of describing complex phenomena by combination
of paths. NN can adjust themselves to describe the subjacent relation between
strains and stresses, provided they are trained with an extended and adequate
dataset.

� Manifold Learning: In a similar vein, in manifold learning [12] techniques are used
in big datasets to extract the underlying constitutive laws which can be presented
in high dimensional spaces. The response of the material is now described by a
yield surface that is extracted from the dataset, without the need of assuming
certain behaviors.

From all these methods, in this work we will focus mainly on the first two. DDCM
and DDI are complementing algorithms which propose an unbiased definition of the
material behavior by only relying in the data itself rather than what can be extracted
from them.
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1.2.2 Advantages and limitations

The idea of proposing a new methodology for doing something that already works
should always be presented with the advantages that it brings. As can be understood
from above, the main point is to avoid making assumptions about the materials that are
being used. It is expected that by using a pure data formulation to solve the problems
we are not introducing any bias, since the data that it is measured is as exact as it can
be (limited to the precision of the machines). In this way we avoid the human side of
the definition of the material, which are the models that we have defined to make sense
of the material behavior.

The field of data-driven computational mechanics is fairly new, so the prospects
for the methodology that will be introduced here are big. In the last five years there
has been an steady increase of the amount of research produced on them, and the
methodology that was originally introduced for elastic materials has since been adapted
to other types. Progress is also being made in complementary fields such as imaging
techniques and faster computational techniques, so it is also expected that the accuracy
of the methods will have room to improve.

All that has been said of course is not free of some limitations. The measurement of
data is not perfect and there will always be problems such as noise and dispersion that
will inevitably affect the results that data-driven methods can provide. The fact that
we do not dispose of a continuous material law as in the case of the classical methods
limits the solution to individual points in space, that do not necessarily represent reality,
but rather the closest approximation. It is because of this that, in these early stages,
data-driven methods might not be as reliable as the classical techniques, and also the
reason why we need immense amount of data to trust the accuracy of the methods.
However, the field is still young and improvements are definitely being made which will
allows us to avoid many of these problems in the long run.

1.3 Discussion

In this introductory chapter, an overview of the constitutive relations, as well as the
state of the art on how to address them, is given. Constitutive relations take many
forms depending on the case and sometimes parameters are needed to characterize the
link between strains and stresses. Because of this, data-driven methods have emerged
as an alternative to classical approaches for constitutive laws estimations, since we have
the advantage of using pure raw data without much human interaction.

In the current days, new modifications to the original DDCM algorithm are being
proposed to extend the functionality in more complex cases. A variation of DDCM
based on maximizing entropy [19] was proposed for noisy datasets. In other works, the
use of DDCM on finite strain has been addressed in [20, 21], as well as the generation
of data for its use [22]. An extension to inelastic materials has also been proposed [23],
while some advances are being made in the field of fracture [24] and rate-dependent
fracture [25]. In the identification front there are also many lines developing. DDI
as such has already been applied with success to hyperelastic materials [26, 27]. For
both elasticity and inelasticity, a manifold learning approach has been proposed [12]
that waives the need of a constitutive model by proposing a manifold that represent
the yield condition of a material. In What-you-prescribe-is-what-you-get the target is
to obtain functions that define material properties through experimental data, with
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success in the case of isotropic [13] and orthotropic [14] hyperelasticity. Finally, there
are also some works in the vein of optimizing the algorithm. Efficiency in DDCM has
been targeted in [28], while some enhancements such as tensor voting [29] have also
been used successfully.

In this work we are going to focus on DDI mostly, but we want to depart from the
original formulation for elastic materials and go to more complex behavior. Particularly,
we put the focus on heterogeneous materials, specially in samples composed of a matrix
and inclusions. Initially we have a combination of two materials that are elastic in
nature, but in the general picture this is a non-elastic problem since now we have
that for a particular deformed state we have two possible behaviors for the stress.
This heterogeneity will be addressed and analyzed with statistical techniques. Also,
in a more traditional sense, we want to address these non-elastic cases by analyzing
more complex materials. We will also focus on linear viscoelastic materials, whose
stress dependence in strain history rather than instantaneous strains makes it a good
candidate for the use of extended formulations of the current algorithm.

As it is, the current work will be structured as follows:

� Chapter 2 will be a more detail introduction to DDCM and DDI, where the formu-
lation will be presented and examples will be shown to address the functionality
of the methods.

� Chapter 3 involves the use of DDI in heterogeneous samples and the use of a
statistical technique called Correspondence Analysis (CA) for the separation of
both behaviors, as well as the identification of the location of the inclusions in
the matrix.

� Chapter 4 will show an extended formulation of DDI that will be used to address
the time dependence on the stress estimation in linear viscoelastic samples. The
new formulation will be presented and contrasted against the elastic formulation,
to show how the modifications improve stress estimations in this case.

� Chapter 5 will see the introduction of dimension reduction techniques similar
to CA, to see if we can improve the behavior and convergence of the current
methods, given the computational requirements of DDI.

� Chapter 6 addresses the use of the DDI method in a real-life setting, by analyzing
mixed composite samples through DIC. DDI is applied using the strain field
obtained to estimate the stiffness of the material, which is contrasted to the
values that can be estimated through classical means.

� Chapter 7 will act as a conclusion for the full work, where an overview of what
was done is shown and where we see how does the outlook of the project looks in
the future, as well as things that could be improved for better understanding of
the results.
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Chapter 2
Data-driven approaches in mechanics

In the previous chapter we have introduced briefly the concept of constitutive relations
and the different ways in which we can estimate their value to be used in different
problems. In this chapter we go more in depth about how these relations are used in
different methods. Particularly, we want to focus on the Finite Elements Method, both
in its traditional definition as well as the data-based approaches, to establish the trend
of what will be displayed in this work.

2.1 Classical approach in Computational Mechanics

The field of computational mechanics is vast and different methodologies exist to solve
problems. In this section we will focus on recalling the basic concepts for Boundary
Value Problems (BVP), as well as their solution through the Finite Elements Method
(FEM), which is one of the most popular techniques. FEM provides a discretization of
the domain where the BVP is defined, and provides a solution typically through the
use of constitutive relations. FEM is not the only method that can be used, but it
is chosen due to similarities to the DDCM method that will be introduced later this
chapter. The intention is to draw a parallel between both approaches, and how the
solution is handled.

2.1.1 Boundary Value Problems

A Boundary Value Problem is posed as a differential equation in pair with a set of
constraints that are aptly called boundary conditions [30]. Solutions to the problem
require that the equation is solved inside of the domain while satisfying the constraints.
In computational mechanics, a BVP is posed as as a combination of different physical
phenomena, mainly the laws of motion and principles of kinematics.

Kinematic principles and concepts

If we have a rigid body in motion, it is subjected to both translation and deformation [7].
The variation between the reference configuration (i.e., undeformed configuration) of
the body and the current one (i.e., deformed configuration) is tracked by a vector field
known as a displacement field u(x, t), meaning that u relates the position of a point x
between both states.
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Since the displacement at each point of the solid is not constant, we have that there is
a rate of variation of deformation in space, which is what is known as the deformation
gradient ∇u. This gradient is what is known as a tensor, which is a mathematical
entity that describes a multilinear relationship between algebraic objects. In the case
of kinematics, we deal with second-order tensors, which transform a vector into another
one. More practically, the gradient is defined as a second-order tensor since it holds the
values of all the directional derivatives of the displacement field at a particular point.

A concept that is important for our BVP is the strain tensor, which is an adi-
mensional measure of the deformation of the material, and it is directly related to the
displacements through what is known the compatibility condition. If we assume that
the deformations are small enough to be infinitesimal, we can get rid of cross deriva-
tive multiplications terms and have a simplified definition of the tensor, which can be
expressed in terms of the deformation gradient as

ε =
1

2

(
∇u+ (∇u)T

)
,

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
,

(2.1)

where the first equation is in tensor form and the second is written in index notation
for a simpler understanding. The purpose of Equation 2.1 is to establish how strains
are obtained, given that deformation is an external phenomenon that we can see and
measure, as opposed to the strain which is internal.

Stress

Every deformation in a material is originated by forces, which in turn provoke an
internal reaction inside of the material. The intensity of these reactions inside the
body or on the surface is what we call stress [1]. The forces applied to the body can be
defined as body forces, which are the ones that apply to the volume of the body while
the forces that are acting only on the boundary of the solid are called surface forces.
Stress (σ) is also defined as a second order tensor in which each point is represented by
a measure in each direction. If we consider each point as an infinitely small cube, each
one of the components of the tensor represents the stresses in each surface, as seen in
Figure 2.1. The projected stress coming out of a surface is what is known as a traction
t.
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Figure 2.1: Representation of stress tensor in an infinitesimal cube. In matrix representation
of the second order tensor, normal components correspond to the diagonal elements, while shear
components populate the rest of the matrix.

Balance of momentum

In mechanics there are a group of physical principles that work as constraints for our
BVP. They are universal for all kinds of problems, but since we are focusing only in
solid mechanics, we only introduce the relevant one for our case, which corresponds to
the balance of momentum. The derivation of this balance can be seen in most of the
books dedicated to continuum mechanics, but in a general sense states that all bodies
should respect Newton’s second law of motion, which in tensor form is expressed as

∇ · σ + F = ρü. (2.2)

Equation 2.2 balances internal (σ) and external (F ) forces on the left with inertial
forces coming from the acceleration on the body (where ρ is the density of the material
and ü is the acceleration field or the double time derivative of the displacement field).
One generalization that is common, and that will be used through this document, is
to assume that the body does not move (i.e. is static), or it does in very slow settings
(quasi-static), which basically allows to disregard the right side of the equation.

Full BVP problem

Having defined all the parts, the BVP is expressed fully in here. For a rigid solid body
Ω with boundary ∂Ω (as seen in Figure 2.2) subjected to body forces b and surface
tractions t in a quasi-static setting, the problem to solve can be posed as

∇ · σ + b = 0, (2.3a)

∇ · n− t = 0, (2.3b)
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which is constrained by the boundary conditions ũ, which are the initial prescribed
displacements in the domain Ω, and t̃, which are the initial prescribed forces (tractions)
in the boundary ∂Ω. This problem is valid for any material as long as the deformations
remain small. However, since we are solving for stress, we need to find a way to relate
the displacements to it. Equation 2.1 provides a relationship between displacements
and strains, but we also have that stresses and strains are related to each other by
equations of the form

σ = σ(ε). (2.4)

These are what we already introduced as constitutive relations, which are dependent
on each material.

Figure 2.2: Boundary value problem for a rigid solid. Imposed boundary conditions ũ are
applied to the section of the boundary Γu, while surface tractions are applied in Γt. Body forces
b are distributed over the mass of the solid.

Constitutive relations

Constitutive relations vary in definition. Some might be simple equations, while others
might be of a very complex form that might be impossible to describe mathematically.
To illustrate the principles for these equations, we will present the Generalized Hooke’s
law, which is the basic constitutive equation for linear elastic materials. Mathemati-
cally, this law is written as

σ = Cε,
σij = Cijklεkl,

(2.5)

with ε being the strain and σ the stress, both second order tensors. In here, C is
a fourth order tensor that relates both quantities, which for elasticity is called the
stiffness tensor. Given its dimension, C has 81 components that need to be defined to
characterize the material studied. However, this can be simplified greatly. We know
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that both σ and ε are symmetrical tensors to satisfy angular equations of motion, which
can be expressed in tensor notation as

σij = σji,

εkl = εlk,
(2.6)

which leads to the stiffness tensor to have minor symmetries, namely

Cijkl = Cjikl,

Cijkl = Cijlk,
(2.7)

reducing the total number of components to 36. Since the tensor also has major sym-
metry, i.e.,

Cijkl = Cklij , (2.8)

we can now reduce the amount of components to 21. This is the most general case for
anisotropic linear elastic materials, where the constitutive law can be expressed in a
matrix form:



σ11

σ22

σ33

σ23

σ13

σ12

 =



C1111 C1122 C1133 C1123 C1113 C1112

C2222 C2233 C2223 C2213 C2212

C3333 C3323 C3313 C3312

C2323 C2313 C2312

sym C1313 C1312

C1212





ε11

ε22

ε33

2ε23

2ε13

2ε12

 . (2.9)

Further simplifications can be done in order to keep reducing the components, from
which two are shown here, since they will directly be used in later examples. The
first and simplest ones is the case for trusses, where all the elements are only under
axial strains and stresses, meaning that we only need to define one component. This is
typically written as

σ = Eε, (2.10)

where E is most commonly known as the Young’s Modulus of the material. The second
case that we consider is the isotropic plane stress case, where we consider flat samples
that are assumed to have no stress in their normal direction, meaning that Equation 2.12
can be expressed as

 σxx
σyy
τxy

 =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 εxx
εyy
γxy

 , (2.11)

with γxy = 2εxy and εzz = − ν
E (σxx + σyy). In here ν is known as the Poisson’s ratio,
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2.1. CLASSICAL APPROACH IN COMPUTATIONAL MECHANICS

which is a constant that depends on the material itself. E again represents the Young’s
Modulus, which is also an intrinsic parameter of the material.

Simplifying notation

Since tensor computations are not practical, we define here what is known as Voigt
notation (or engineering notation), which is just a simplification of the indices of Equa-
tion 2.9, but also properly allows to perform calculations in matrix form, which can be
handled by a computer. The previous matrix is rewritten as



σ1

σ2

σ3

σ4

σ5

σ6

 =



C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

sym C55 C56

C66





ε1
ε2
ε3
ε4
ε5
ε6

 , (2.12)

which can now be used directly. The compatibility equation can also be expressed in
simple terms. Considering a 3-dimensional deformation and a 6-dimensional strain, we
can rewrite Equation 2.1 as

ε = Bu, (2.13)

with

BT =

 ∂
∂x1

0 0 ∂
∂x2

0 ∂
∂x3

0 ∂
∂x2

0 ∂
∂x1

∂
∂x3

0

0 0 ∂
∂x3

0 ∂
∂x2

∂
∂x1

 . (2.14)

B acts as an operator on u similar to the gradient. In here, the crossed components of ε
are expressed as γij = εij + εji = 2εij , to account for the missing 1/2 term. In a similar
fashion, B can be used in its transposed version to perform the opposite transformation,
acting as a divergence operator.

2.1.2 Finite Elements Method

FEM is a popular method used for solving differential equations. It works by dividing
the domain in which the problem is posed (Ω) into smaller parts (or finite elements,
Ωe) where the problem can be solved. Its derivation is a well documented process in
many sources, so a short version based on the derivation detailed in [31] is shown here.
By using variational principles, a weak form of the equation of motion can be obtained
in each element, expressed as

∑
e

[∫
Ωe

δuTρüdΩ +

∫
Ωe

δ(Bu)TσdΩ−
∫

Ωe

δuTbdΩ−
∫

Γte

δuT tdΓ

]
= 0, (2.15)
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2.1. CLASSICAL APPROACH IN COMPUTATIONAL MECHANICS

where the expression is summed over all elements e and boundaries et, and δu are the
virtual displacements. The force term F is divided into two: b, corresponding to body
forces and t, representing boundary forces. A popular approach to solve this problem
is to use the Galerkin method [31], where approximations are taken for u and δu with
the form

u(x, t) ≈ û =
∑
b

Nb(x)ũ(t). (2.16)

The functions Nb are known as shape functions, whose choice depends on the type
of element chosen to mesh the domain, as well as the accuracy expected from them.
For all the examples in this document, linear functions are used. When using this
approximation we limit the integration to be performed only on the shape functions,
given that the nodal displacements ũ are not dependent of spatial variables. This allows
to rewrite Equation 2.15 as

∑
e

δũT

[∫
Ωe

NTρN ¨̃udΩ +

∫
Ωe

BTσdΩ−
∫

Ωe

NTbdΩ−
∫

Γte

NT tdΓ

]
= 0, (2.17)

which in matrix form yields

Mü+ P (σ) = f , (2.18)

with

M =
∑
e

∫
Ωe

NTρNdΩ, (2.19a)

P =
∑
e

∫
Ωe

BTσdΩ, (2.19b)

f =
∑
e

[∫
Ωe

NTbdΩ +

∫
Γte

NT tdΓ

]
. (2.19c)

In this notation we drop the tilde from u since from now on we will always refer to nodal
displacements. We also change B to B = BN , which is the application of the gradient
operator on the shape functions rather than being directly applied in the displacement
field. In Equation 2.19, matrix M correspond to the mass matrix, used mainly in
problems involving dynamics; vector f represents the external forces and P (σ) is the
stress divergence. In the case of linear elastic materials, we know that we can express
σ as

σ = Dε, (2.20)
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2.2. DATA-DRIVEN COMPUTATIONAL MECHANICS

where D is the generalized constitutive relation, which changes the term P to

P (σ) =
∑
e

∫
Ωe

δBTDε dΩ =
∑
e

∫
Ωe

δBTDBu dΩ = Ku, (2.21)

which is the already known stiffness matrix. In the case of FEM, since the domain is
divided in many elements, D does not necessarily stay constant between elements.

Considering the quasi-static case, the expression in Equation 2.18 is simplified to

Ku = f , (2.22)

which is the main equation use in FEM for linear materials.

2.2 Data-Driven Computational Mechanics

In 2016, Kirchdoerfer and Ortiz [17] introduced a new paradigm to address the problems
with the way constitutive laws are handled. Their particular focus was in the bias that
is introduced every time observational data is used to calibrate an empirical material
model, given the imperfect knowledge of the proper functional form of the underlying
material law.

The approach proposed by them relies on databases, not as a way to obtain an
insight on the material behavior, but as a tool that directly provides a solution to the
mechanical problem. The computation is performed using the observed data in combi-
nation with adequate constraints and conservation laws, allowing to bypass completely
the need for material modelling.

For a finite elements problem, each element defined in the mesh is represented by
a mechanical state, which can be considered as a point in a phase space, which is the
space defined by the strains and stresses. The position of each mechanical state is
restricted by compatibility and equilibrium constraints, as well as the material model
used. Since we are replacing this model with a database of observations, DDCM can
be defined as a minimization problem. This means that the algorithm aims to assign
to each mechanical state a point from the database that is the closest to satisfying the
constraints of the problem. This can be seen as the equivalent of reducing a distance
function in the phase space, subjected to the mentioned compatibility and equilibrium
conditions. While describing the algorithm, the definition is limited to use only elastic
materials, which will give us a phase space composed only by the strains and stresses.

When talking about distances between two points, we refer to a norm defined in the
required space. Since the phase space has different units in each of its axes, the norm
has to be defined in a way that compatibilizes them. The choice taken by the authors
is the use of an energetic norm, defined for a two dimensional phase space (trusses) as

||(εe, σe)||2C =
1

2

(
Cε2e +

1

C
σ2
e

)
. (2.23)

In here, C is a parameter with units [FL−2] that works as a weight for defining the
distance, meaning that higher values of C would considered a distance defined mostly
by the strain values, while lower C would shift this definition towards the stresses. C
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2.2. DATA-DRIVEN COMPUTATIONAL MECHANICS

needs to be defined before running the algorithm. This norm can be generalized for
higher dimensional forms of elasticity:

||(εe,σe)||2C =
1

2

(
εe : C : εe + σe : C−1 : σe

)
, (2.24)

with C always taking the dimensionality of the constitutive tensor associated to the
phase space. It is worth mentioning that, despite the similarities, C does not represent
an actual material behavior and its definition comes from a purely numerical standpoint.

For each element e in the mesh we have a defined mechanical state (εe,σe), whose
distance to a material state (ε∗ie,σ

∗
ie) can be expressed as

Fe = ||(εe − ε∗ie,σe − σ∗ie)||2C, (2.25)

where ie is an index that refers to a point i in the material database associated to the
element e. As a global problem, the algorithm seeks to minimize this distance for all
the elements in the mesh, namely

(εe,σe, ie) = arg min
εe,σe,ie

∑
e

we||(εe − ε∗ie,σe − σ∗ie)||2C. (2.26)

The global minimization is weighted by the values of we that correspond to the inte-
gration weights of each element. This problem is subjected to the constraints

εe =
∑
j

Bejuj , (2.27a)

fj =
∑
e

weBejσe. (2.27b)

Equation 2.27a represent the conditions of compatibility of strains and Equation 2.27b
is the equation for mechanical equilibrium. Bej is the standard connectivity matrix
from FEM, relating the elements e to the nodes j of the mesh. fj and uj are the nodal
forces and displacements, respectively.

To solve the problem, the constraints from Equation 2.27 are enforced in Equa-
tion 2.26. The compatibility constraint is applied by expressing the strains in terms of
displacements. Equilibrium is applied with the use of Lagrange multipliers (ηj), which
yields to

δ

∑
e

we

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

j

Bejuj− ε∗ie,σe − σ∗ie

∣∣∣∣∣∣
∣∣∣∣∣∣
2

C

−
∑
j

(∑
e

weBejσe − fj

)
ηj

 = 0.

(2.28)

From Equation 2.28 we take the variation of the problem according to parameters that
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2.3. DATA-DRIVEN IDENTIFICATION

are not fixed to obtain a system of equations to solve:

δuj →
∑
e

weB
T
ejC

(∑
k

Bekuk − ε∗ie

)
= 0, (2.29a)

δσe → C−1(σe − σ∗ie)−
∑
j

Bejηj = 0, (2.29b)

δηj →
∑
e

weB
T
ejσe − fj = 0. (2.29c)

The linear system defined in Equation 2.29 provides solutions for nodal displacements,
mechanical stresses and the corresponding Lagrange multipliers. Combining these equa-
tions, we obtain a simpler system of equations that can be solved in matrix form, i.e.,

∑
j

(∑
e

weB
T
ekCBej

)
uj =

∑
e

weB
T
ekCε∗e, (2.30a)

∑
j

(∑
e

weB
T
ekCBej

)
︸ ︷︷ ︸

K

ηj = fk −
∑
e

weB
T
ekσ
∗
e . (2.30b)

From Equation 2.30 the similarities between the finite elements method and the DDCM
procedure can be seen. The matrixK defined on the left side resembles the definition of
the stiffness matrix for elastic materials. However, since we have no a priori knowledge
of the material behavior, the constitutive tensor is changed by a numerical constant
that we have used to define the energetic norm. The right side of the equations changes
in order to account for the constraints we have set earlier without relying in the math-
ematical relation between strains and stresses.

The full procedure for solving the DDCM problem is outlined in Algorithm 2.1.
The algorithm returns the mechanical states (εe,σe) that minimize the total distance
to the material database, which is coded in the indices ie. As it is discussed in [11],
the initialization of the algorithm plays a role in the convergence of the algorithm.
Kirchdoerfer and Ortiz decided for a randomized initialization of the material states,
while in [22] Platzer chose an approach based in the k-means algorithm, whose purpose
is to find clusters of points in the space. By initializing the algorithm choosing more
appropriate points there is a reduction of iteration steps.

The convergence criterion for stopping the algorithm can also be discussed. One
common approach that was chosen in both [17] and [11] checks how much the ma-

terial states vary in each step. If the material states (ε
∗(k)
ie ,σ

∗(k)
ie ) are similar to

(ε
∗(k+1)
ie ,σ

∗(k+1)
ie ) up to a certain tolerance we can consider that the algorithm has

already converged.

2.3 Data-Driven Identification

DDI [11] was introduced as a method that identifies the mechanical response of materi-
als without having to rely on a constitutive model on a similar vein to DDCM, since this
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Algorithm 2.1: Summarized DDCM procedure.

Output: εe, σe, ie
Input: C, ε∗ie, σ

∗
ie, fj , Bej

DDCM procedure
Set k → 0.

Initialization: for each element e, pick (ε
∗(k=0)
ie ,σ

∗(k=0)
ie ) for first

calculations.

while convergence criterion < tolerance do
Solve

∑
j

(∑
e

weB
T
ekCBej

)
u

(k)
j =

∑
e

weB
T
ekCε∗(k)

e ,

∑
j

(∑
e

weB
T
ekCBej

)
η

(k)
j = fk −

∑
e

weB
T
ekσ
∗(k)
e .

to obtain u
(k)
j and η

(k)
j .

for each element e do
Solve

ε(k)
e =

∑
j

Beju
(k)
j

C−1(σ(k)
e − σ

∗(k)
ie )−

∑
j

Bejη
(k)
j = 0,

to update (ε
(k)
e ,σ

(k)
e ).

for each mechanical state (ε
(k)
e ,σ

(k)
e ) do

Find new closest material point (ε
∗(k+1)
ie ,σ

∗(k+1)
ie ).

Set k → k + 1.

method is derived from it. Assuming that displacement and strain fields are available,
DDI solves an inverse problem that identifies also the stress fields and the material
database. Given the displacement field, measured for instance by DIC, a collection
of strains can be obtained from analyzing multiple snapshots of a sample subjected
to different loading conditions. DDI provides estimations to the stresses associated to
these deformations, which we also call here mechanical stresses. The algorithm aims
to find the most suitable answer in the phase space, which is the one formed by the
strain and stresses. This is achieved by adjusting material states. The concept in DDI
is similar to DDCM, but not the same. In DDI, material states are strain-stress couples
that characterize the behavior of the material, but they are not known initially. The
numerical advantage of material states is that they are not constrained, so they can be
set in a way that allows to simultaneously find balanced mechanical stress fields. The
mechanical stresses are as close as possible to each one of these material points, with
the distance defined by an energetic norm, which in here we take equivalently as the
one defined in Equation 2.24. The phase space definition in DDI is the same as DDCM.
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In practice, the method is also defined as a minimization problem. The biggest
difference from DDCM is that we know from the beginning the displacement fields (or
mechanical strains in DDCM) of the samples we are analyzing, which is the main input
for our problem. We consider a large database of measurements performed in samples
of the same material. Each sample is tested in different loading conditions, which we
reference by the index X. In theory, each snapshot X can be a different sample, so we
are not limited to test one particular piece, as long as they have the same behavior.
However, in reality it is more practical, both from a testing and algorithmic point of
view, to keep the samples constant during the process.

When the samples are analyzed, for each snapshot X we have the following prop-
erties known:

� applied nodal forces (fXj ), which typically are known from the test performed in
each sample;

� nodal displacements (uXj ), obtained through imaging techniques;

� and geometry and connectivity of the mesh (BX
ej), that in combination with

the nodal displacements allows us to define the mechanical strains as εXe =∑
jB

X
eju

X
j .

The geometry of the sample and therefore the connectivity of the mesh are arbitrary
definitions that we can control, which is advantageous since we can track at any moment
the location of the mechanical states according to their numeration. For the nodal
forces, even if we know the forces used for the test, we cannot know how they are
applied in the border nodes. A practical approach used by the authors and reproduced
here is to consider a clamping force on the affected border, which is the force known
from testing. The force is applied in a group of nodes which is introduced in the system
as a constraint. In this way, we avoid defining arbitrary nodal forces and we focus in
a global approach. Same as the DDCM algorithm, there are parameters that we need
to set for the algorithm. C is again defined as a tensor that defines the energetic norm
for measuring distances. We also include the parameter N∗, which is the amount of
material states points that will sample the material behavior.

DDI seeks to compute N∗ material states (ε∗i ,σ
∗
i ), common to all mechanical states,

thus independent from X. These points are defined such that they allow all snapshots
X to obtain balanced mechanical stresses, σXe . For each one of the mechanical states
(εXe ,σ

X
e ), the closest material state (ε∗

ieX
,σ∗

ieX
) is assigned. ieX correspond to indices

that establish the relationship between material and mechanical states. We call these
indices state mapping, and it can be understood as a function i(e,X), where for each
element e in a snapshot X we obtain the material point i. The importance of the state
mapping will be seen later, where it will also be explained in more detail.

This problem can be represented mathematically in a similar fashion to DDCM as

(
σXe , ε

∗
i ,σ

∗
i , ie

X
)

= arg min
σX
e ,ε
∗
i ,σ
∗
i ,ie

X

∑
X

∑
e

wXe ||(εXe − ε∗ieX ,σ
X
e − σ∗ieX )||2C, (2.31)
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constrained by

∑
e

wXe B
X
ejσ

X
e = fXj ∀X, j. (2.32)

In both Equation 2.31 and 2.32 wXe are the integration weights for each element
in each snapshot. Equation 2.32 represents the equilibrium constraint that we have
also seen in DDCM. Since εXe are not an unknown anymore we do not have to ap-
ply the compatibility requirements and we use the mechanical strains directly in our
calculations.

To solve the problem, the approach followed is similar to the one seen in Section 2.2.
Enforcing Equation 2.32 by the use of Lagrange multipliers, we study perform the min-
imization by studying the variation of the system with respect the non fixed variables,
i.e.

δ

(∑
X

∑
e

wXe
∣∣∣∣(εXe − ε∗ieX ,σ

X
e − σ∗ieX

)∣∣∣∣2
C

−
∑
j

(∑
e

wXe B
X
ejσ

X
e − fXj

)
ηXj

 = 0.

(2.33)

The variations of Equation 2.28 give the system of equations to solve:

δε∗i →
∑
X

∑
e|ieX=i

wXe C : (εXe − ε∗ieX ) = 0 ∀i; (2.34a)

δσ∗i →
∑
X

∑
e|ieX=i

wXe C−1 : (σXe − σ∗ieX ) = 0 ∀i; (2.34b)

δσXe → wXe C−1 : (σXe − σ∗ieX )−
∑
j

wXe B
X
ejη

X
j = 0 ∀e,X; (2.34c)

δηXj →
∑
e

wXe B
X
ej
T
σXe − fXj = 0 ∀j,X. (2.34d)

In these equation, the notation
∑

e|ieX=i refers to a sum of all elements e for each

snapshot X that satisfy the condition ieX = i. In simpler words, it means that the sum
is performed in all the mechanical states associated to material point i. Combining
Equation 2.34b to Equation 2.34d we obtain the system defined by

∑
k

∑
e

wXe B
X
ej
T

: C : BX
ek︸ ︷︷ ︸

KX

ηXk +
∑
e

wXe B
X
ej
T

︸ ︷︷ ︸
SX

σ∗ieX = fXj ∀j,X; (2.35a)

∑
e|ieX=i

∑
X

∑
j

wXe B
X
ejη

X
j = 0 ∀i. (2.35b)
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The meaning of these equations is straightforward. For each loading case X we have
that the imbalance originated from applying the forces fXj and stresses σ∗

ieX
is balanced

by virtual displacements η, in a similar way as it would be done in FEM. From the
second equation we have that the weighted average of strains coming from virtual
displacements is zero. In matrix form, the system can be expressed as


K1 S1

K2 S2

. . .
...

KNX
SN

X

S1 S2 . . . SN
X

0




η1

η2

...

ηN
X

σ∗

 =


f1

f2

...

fN
X

0

 , (2.36)

where the outputs of the algorithm are:

� the mechanical stresses (σXe ), which are the local stresses related to the measured
strains, i.e., the estimation of the real stresses in each of the snapshots;

� the material states (ε∗i ,σ
∗
i ), that sample the material behavior acting as the

centroid of clusters of mechanical states;

� and the state mapping (ieX). In here, (ε∗,σ∗)ieX are the material states in
(ε∗i ,σ

∗
i ) closest to a mechanical state (εXe ,σ

X
e ), where εXe is measured and σXe

is estimated. ieX can be interpreted as a binary adjacency matrix of a bipartite
graph between mechanical states and material states. In this interpretation of
ieX as a matrix, rows represent the mechanical states while columns represent
the material states. In mathematical form, ieX can be interpreted as a function
ieX = i(e,X) defined as

ieX = arg min
i
||(εXe − ε∗i ,σXe − σ∗i )||2C. (2.37)

Solving the algorithm with Equation 2.36 can get expensive really fast due to the
size of the involved matrices. Because of this, in practice we solve the DDI problem
using an alternated minimization scheme, where we update iteratively the values of σXe
and σ∗

ieX
until we reach convergence to a desired tolerance. This procedure for solving

DDI is detailed in Algorithm 2.2. In here the same considerations about initialization
and convergence are carried from the DDCM algorithm. In all of the examples that will
be shown in this document, we consider a k-means initialization of the state mapping,
as well as a convergence criterion that compares the variation of the material states
from step to step.

Finally, a small discussion need to be made about the parameter C. In many cases
during this work, a value of C =∞ is considered. This is due to what has been observed
in [26], that shows that increasing the value of C effectively increases the accuracy of
the stress estimations. To consider a high value of this parameter means that we
are effectively removing the stress from the norm defined in Equation 2.24, so the
pairing performed in the algorithm now is exclusively dependent on the strains. In the
algorithm this is applied by restricting the iterations to just one step, meaning that we
perform an adjustment on the valued for the material stresses, but the material strain
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Algorithm 2.2: Summarized description of DDI.

Output: ε∗i , σ∗i , σXe , ieX

Input: N∗, C, uXj , fXj , BX
ej , ε

X
e

DDI procedure
Set k → 0.

Initialization: set σ
X(k=0)
e = 0 for each element e in every snapshot X.

Likewise, initialize σ
∗(k=0)
i = 0 for each material state i.

Initialization: create state mappings ieX by clustering all (ε
X(0)
e ,σ

X(0)
e )

into N∗ groups.

while convergence criterion for ε∗i < tolerance do
while convergence criterion for σ∗i < tolerance do

for X = 1, . . . , NX do
Solve equations∑

k

∑
e

wXe B
X
ej
T

:C : BX
ek · η

X(k)
k

−
∑
e

wXe B
X
ej
T
σ
∗(k)

ieX
= fXj ∀j,X;

σX(k+1)
e = σ

∗(k)

ieX
+
∑
j

C : BX
ej · η

X(k)
j ∀e,X.

with current values of σ
∗(k)
i to obtain updated values of

σ
X(k+1)
e .

Solve ∑
X

∑
e|ieX=i

wXe C : (σX(k+1)
e − σ∗(k+1)

ieX
) = 0 ∀i

with obtained σ
X(k+1)
e to update σ

∗(k+1)
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for X = 1, . . . , NX do
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X

∑
e|ieX=i

wXe C : (εXe − ε
∗(k+1)

ieX
) = 0 ∀i

to update ε
∗(k+1)
i .

Update state mappings ieX using Equation 2.37.
Set k → k + 1.
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remain the same as the initial pairing. It is because of this that a good initialization
is needed. In [11] it has been seen that a proper initialization of the problem leads to
faster solutions, however, if we decide to run the case of C = ∞, this initial pairing
is essential also for the accuracy of the solution. It is because of this that we rely
on unsupervised clustering techniques to perform this step. During this work we rely
particularly in the k-means method [32], which is explained in detail in Appendix B.

As a way to show the similarities between both methods, Table 2.1 shows side by side
which variables of are known before, and which ones are estimated by the algorithm.

Table 2.1: Comparison between DDI and DDCM variables.

Variable DDCM DDI

Mechanical strain εe unknown known
Mechanical stress σe unknown unknown
Material strain ε∗i known unknown
Material stress σ∗i known unknown

Geometry Bej known known
Nodal forces f)j known known
Pseudo-stiffness C chosen chosen
Amount of material points N∗ given chosen

2.4 Examples

As a way to demonstrate the use of both DDI and DDCM, the following section will
be dedicated to show some examples of how they work and how they complement each
other. First, we simulate testing performed in lab samples made of trusses to obtain
the behavior using DDI, to then solve a different problem using DDCM with DDI as
a database for it, which we compare with FEM results to test the accuracy of the
method. The same is done after with samples defined in the plane stress setting, to
have an overview of how the methods behave in a non-scalar case.

2.4.1 Examples for trusses

DDI has been proposed as an alternative to find the constitutive equations of mate-
rials through testing. To keep the problems more realistic, we perform this synthetic
examples to recreate the experiences on an experimental setting.

DDI in trusses

For the experiment, a test in a membrane is proposed. The membrane, as seen in
Figure 2.3a, is composed of one material with holes in it to avoid having homogeneity
in the stress fields. The simulation is performed by clamping both upper and lower
ends of the sample. The lower end is fixed, while the upper end is allowed to move as a
block. In this setting, a vertical stretch is applied in 3 steps. The deformation is shown
from Figure 2.3b to 2.9b.

24



2.4. EXAMPLES

(a) Undeformed mesh of the membrane. (b) Traction deformation for the membrane.

Figure 2.3: Mesh and deformed state for the DDI example.

The mesh is defined as a truss structure, where every bar in the mesh is defined as
a nonlinear elastic bar with a constitutive equation of the form

σ = K1ε+K3ε
3, (2.38)

where the parameters are set to K1 = 1 and K3 = 7.5.
As it was mention in Section 2.3, for running the algorithm we need the database of

strains, as well as the conditions that were applied when they were obtained. Normally,
this would be done using the DIC technique, but since this is a numerically generated
example, the values of strains are obtained by solving a FEM problem in each step of
deformation. This gives us also the advantage of providing a set of stresses, which DDI
can only estimate, allowing us to compare both results and have a proper grasp of the
accuracy of the predictions.

As a final step, it is necessary to define the values for the parameters of the algo-
rithm. Since our deformation is only applied in three steps, the amount of mechanical
states is low, so we choose a lower ratio of mechanical states to material points, to have
a bigger database. In this case, we set that we will have in average 20 mechanical states
per material point. For the case of the parameter C, it has been seen that increasing
its value leads to lower errors, a trend that is kept as the number increases. For this
reason, we decide to set C =∞, which in practice means that we will let the algorithm
run for only one iteration with C = 1.

The results given by DDI can be seen in Figure 2.4. The algorithm estimates the
values of stresses for the given strains by setting a material point in the phase space.
The material states, that are used as guides for minimizing the distance between points
are placed on the center of the clusters of points. Since for homogeneous trusses the
algorithm works well, a zoomed window is provided in order to see how the mate-
rial states behave as the centroid of the different clusters, which are aligned with the
underlying constitutive curve used to generate the data.
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Figure 2.4: Phase space for the DDI truss example.

In general the results look good, but it is necessary to quantify the error with
respect to the FEM solution. One way of doing this is computing the overall relative
error between DDI and FEM, which is computed with the formula

e2 =
||σFEM − σDDI ||2
||σFEM ||2

, (2.39)

which computes a distance between all the points obtained by DDI and FEM, relative
to the real solution. In the case of this example, the overall error is e2 = 0.0026,
meaning that there is a 0.26% difference between the real solution of the problem and
the estimated one. This can be appreciated better when both stresses are plotted
against each other, as done in Figure 2.5a. In this plot, every point who stays close
to the diagonal is accurately represented, while the dispersion indicates error. As
can be seen, the points are mostly aligned to the diagonal because of the accuracy of
the estimations. Finally, another way of visualizing the error is with the use of the
histogram seen in Figure 2.5b. In this graphic, the x-axis represents the error range
for all mechanical states, while the y-axis represents the percentage of points that are
in a particular error range. In this sense, if we have a histogram that is shifting to the
left it means that we have a good estimation of the values of stresses. In the case of
Figure 2.5b we see that close to 95% of all the mechanical stresses are estimated to a
relative error of 0.02 or less, which reaffirms our good results.
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(a) Diagonal error plot. (b) Histogram error plot.

Figure 2.5: Different error representations for the DDI truss example.

All this three displays of the error have their own advantages. Computing e2 allows
us to have a quick sense of how the overall system is behaving, which in turn allows
us to optimize the algorithm a bit better or to catch any kind of general error during
the calculation. Same for the diagonal plot, it gives a general sense of the results
but also allows us to see in which part of the phase space our problems are. These
plots tend to drift away from the main diagonal in the extreme values of stress, which
happens typically due to the fact that there are less mechanical points due to the over-
representation of the low stress cases. Finally, the histogram gives us an idea of how
is the distribution of errors in our calculations. If we have a flat curve we can expect
that some tweaking of the algorithm can improve our results, however, if there is a shift
to the right we can assume that something is wrong in the definition of the problem.
Histograms are more useful when comparing different instances of DDI, since they give
a very good visual representation of the improvement.

Example of DDCM for a truss

The example shown for DDI is purely academic in nature, since samples are tested to
obtain results but no problem is being solved, we focus solely on obtaining information
about the material. In the following example, we use this information obtained to solve
a problem that is closer to a real case.

To show the capabilities of DDCM in trusses, we propose a structure as seen in Fig-
ure 2.6. The frame has completely restricted movement on the base nodes to simulate
an anchoring point, while the top of the structure is submitted to a uniform downwards
force, which could represent any kind of ceiling structure. We also added in one of the
side a lateral load on the top as a simplification of possible movements caused by wind
or earthquakes.
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Figure 2.6: Structure to be solved with DDCM, including loads and boundary conditions.

The truss elements have one integration point and the material is not defined,
since it is provided by the DDI example studied previously. The procedure to follow
outlined in Algorithm 2.1 is similar to FEM, since the loads and boundary conditions
are defined in the same way, while the stiffness matrix is now built using the values of
C. As opposed to the case of DDI, we cannot use higher values of C expecting better
results, since DDCM is very sensitive to the choice of this parameter. For this case, we
have chosen a value of C = 2 which has proven to give the most accurate results.

The solution of the example obtained with DDCM is shown in Figure 2.7. In here,
the deformed structure is imposed over the original to show the displacement, which is
in accordance to the application of the forces and restrictions.

Figure 2.7: Solution for the truss example with DDCM.

To measure the accuracy of the predictions, we follow the same procedure as in
the examples for DDI. For this, we now assume that the bars have the same property
as the sample from the previous section (defined in Equation 2.38) and we obtain
an FEM solution of the problem, to then compare the displacement of each node, as
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well as the strains and stresses of each bar. Using Equation 3.4, we obtain that the
overall error of the displacement in the solution is eu2 = 0.0261, while for the strains
is eε2 = 0.0396 and the stresses is eσ2 = 0.0511. In general, predictions are very good
in this case. Any divergence with the theoretical solution can be explained by the fact
that we are allowing the system only a limited amount of states to be, rather than
having a continuous behavior for the phase space. This is one of the reasons why for
this method it is very necessary to provide a high amount of data points, since a more
complete database makes up for the discontinuities. The reason why displacement has
the lowest error is due to the fact that it is a direct calculation from ε∗e, while the strain
εe is computed using these displacements, propagating the error. The same can be said
about stresses, which depend on both σ∗e and η. The histograms with the distribution
of the error are shown in Figure 2.8. As can be seen, for both strains and displacements
around 50% of all the predictions have a relative error lower than 0.05, while for the
stresses this is around 70%.

(a) Histogram error plot for strains. (b) Histogram error plot for stresses.

(c) Histogram error plot for displacements.

Figure 2.8: Error histograms for the truss case in DDCM.

29



2.4. EXAMPLES

2.4.2 Examples for plane stress

Both examples shown in Section 2.4.1 show that for the scalar case the pairing of DDI
and DDCM work fine for solving problems in a different way. However, the case for a
high-dimension setting such as plane stress can become a bit more problematic, since
the database obtained by DDI needs to be in similar ranges as the problem that will
be solved in DDCM, which is a more challenging task in a six-dimensional case.

DDI in plane stress

An example of DDI run in plane stress is also shown here to demonstrate the adapt-
ability of the algorithm. The process is done in a similar fashion to the truss example,
choosing the same values for the parameters N∗ and C. In the case of C = ∞, since
we are now dealing with tensors rather than scalar values, we choose C as the identity
matrix, while limiting the run of the algorithm to just one iteration.

In plane stress, we consider triangles elements, all of them with the same material
properties. We consider linear elastic elements, with the elasticity tensor defined as
Equation 2.11, with a Young’s modulus of E = 5 and a Poisson ratio of ν = 0.3. In all
these cases the units for all properties are left undefined for simplicity, but they are all
chosen to be compatible.

To make the database more diverse, we simulate different tests in the sample. Since
we are considering linear elements, we can expand easily the amount of snapshots, so we
consider now 20 steps of deformation for the stretching. We also include a compression
simulation in the sample, as well as shear, to avoid problems with the other components
of the strain and stress tensor. These deformations are shown in Figure 2.9.

(a) Traction deformation for the membrane. (b) Shear deformation for the membrane.

Figure 2.9: Mesh and deformation of the membrane for DDI in plane stress.

The results obtained for the phase space can be seen in Figure 2.10. The accuracy
of DDI is generally lower for higher dimensional problems, so we can see here the
dispersion of the values around the underlying constitutive equation. This dispersion
is more pronounced in the shear component of the stress, where it is typically more
difficult to obtain a proper estimation.
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Figure 2.10: Phase space for the DDI example in plane stress.

To estimate the error we use the same procedure as before, however, in order to
consider all the components of the stress tensor, we compute all the errors based on
the Von Mises stress, which is defined as

σVM =
√
σ2
xx + σ2

yy + 3σ2
xy − σxxσyy. (2.40)

The diagonal plot and the histogram for errors is shown in Figure 2.11. As can
be seen, there is some dispersion around the diagonal line, but in general we have a
tendency of points staying close to it. One disadvantage of using the Von Mises stress
is the fact that we do not have negative values, so we cannot find exactly the part of
the phase space in which we have a bigger error. For the histogram we can see that
we have a good tendency of the curve to the left, but compared to the truss case the
curve is much lower. This time only around 36% of all the mechanical states have an
error of 0.02 or lower, which is a typical amount for plane stress cases.
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(a) Diagonal error plot. (b) Histogram error plot.

Figure 2.11: Error representations for DDI in the plane stress example.

Using Equation 2.39 for the Von Mises stress we obtain an error eσ,V M2 = 0.0361,
which is low. Even though we might have some points misrepresented mostly on the
higher stresses, we still have a good overall estimation of the system.

Example of DDCM for plane stress

Providing an example for plane stress is just an extension of what has been done for the
trusses. However, to prove the universality of the algorithm, for this example different
elements will be used. The DDI samples provided for plane stress in the previous
section were made out of linear elastic triangular elements with one integration point.
For the DDCM example, quadrilateral elements are used. Since DDI provides values
for stresses and strains, it should not be an issue for the algorithm to change the shape
or order of the elements used. Same as in the truss case, we avoid defining material
properties for the elements.

For the plane stress case, a mesh representing a beam is used, as seen in Figure 2.12.
The rectangular beam is completely restricted of movement on the nodes on the left,
while downward displacements are applied in the nodes of the right boundary, which is
restrained in the horizontal direction. The solution obtained by the algorithm is shown
in Figure 2.13, where we can see that the displacement of the nodes is according to the
conditions applied to the system.

Figure 2.12: Boundary conditions and applied loads for DDCM example in plane stress.
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Figure 2.13: Solution for the DDCM example in plane stress.

We can provide a similar error analysis to the truss case. Same as in the DDI,
instead of computing errors for each component of the strain and stress tensors, we
compare the Von Mises values to combine all the behaviors. If we compute the 2-
norm relative error we obtain for the displacements a value of eu2 = 0.0033, while for

the strains a value of eε,V M2 = 0.1993 is obtained. In the case of the stresses, the total

estimated relative error is eσ,V M2 = 0.1228. We can see that the computed displacement
of the mesh is very close to the values obtained with FEM. In this example the stress is
better predicted than the strain, which could be explained by the use of a higher value
of C, which tends to skew the results towards the stresses. In this example we have
chosen C = 5I3×3, to be in a similar value to the original elasticity tensor, although this
choice is not necessarily the most optimal. This can be seen better in the diagonal plots
of Figure 2.14, where we can see that the stresses, although disperse, have a tendency
to follow the line, while the others are over or underestimated.

33



2.4. EXAMPLES

(a) Diagonal error plot for strains. (b) Diagonal error plot for stresses.

(c) Diagonal error plot for displacements.

Figure 2.14: Diagonal error plots for the plane stress case in DDCM.

We can see in the histogram plots of Figure 2.15 that all quantities tend to fol-
low the expected shape of the histograms tending to the left, specially when checking
displacements, which correlates with the total error of the system.
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(a) Histogram error plot for strains. (b) Histogram error plot for stresses.

(c) Histogram error plot for displacements.

Figure 2.15: Histogram error plots for the plane stress case in DDCM.

2.5 Discussion

In this chapter, a little introduction into the world of data-driven method is given.
It starts by recalling the basics of data gathering in the field of material science, as
well as the basic physical principles for mechanics. It also provides an overview on
computational mechanics and a short summary of how the Finite Elements Method
works, to then explain in detail how both Data-Driven Computational Mechanics and
Data-Driven Identification are implemented, complemented with examples that show
the behavior and how they complement each other.

DDI and DDCM are two analogous algorithms based on the same principle of finding
a solution through big data schemes. DDI was derived from DDCM by changing the
approach, where now we aim to find the stresses in the samples studied, while at the
same time we obtain a database of values that represents the material. While DDCM
is convenient to avoid the definition of the constitutive model, in practice it might be
complicated to even have access to strain-stress pairs, since for most materials we do
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not know how stress relates to the displacements in that we measure. This is also the
reason why both methods complement each other, since, as shown in the examples
before, we can use DDI to obtain the information we require from the material without
proposing a constitutive law, but at the same time we have enough to solve actual
problems with DDCM.

Both data-driven algorithm share common traits with the FEM method. They are
basically iterative schemes to minimize a problem that tends to a physically allowed
solution, as a replacement for the direct calculation that is performed with finite ele-
ments. This has the consequence that data-driven schemes will never be able to provide
a fully accurate solution like FEM does, but depending on the amount of data available
and a good choice of parameters, this can be overcome to a great extent. The big
novelty of the data-driven methods is that we do not need to make assumptions on the
material before choosing a constitutive model, which sometimes is a necessity when we
have behaviors that might resemble others. Relying purely on physical principles frees
us from the arbitrarity of a chosen model, which can induce errors even when using
exact methods as FEM.
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Chapter 3
Data-driven identification for samples
with two or more phases

In the previous chapter the focus was put on recalling the classical approaches for
solving mechanical problems, as well as introducing the newer techniques and how they
compare. In this section, we extend on the formulation on DDI to account for samples
with heterogeneities, particularly samples created as a matrix with inclusions of stiffer
materials, a setting commonly seen in composites1.

3.1 Motivation

In the last years there has been an increase of the amount of new materials appearing,
largely due to the improvement in manufacturing techniques, which allows for more
precise and intricate design. In organic composites, fibers have been successfully used
to reinforce polymers to achieve enhanced mechanical properties. For the developing of
more sustainable solutions, there is an increasing interest in tailored composite mate-
rials to meet multiple properties and functionalities. A new generation of technologies
have been recently developed, such as the Automated Fiber Placement [34], Tailored
Fiber Placement [35], and Additive Manufacturing [36] to name a few, which allow
more complex design concepts to be made. Composites with continuously evolving mi-
crostructure can be manufactured to get optimal functional performance requirements
that vary with location within the part. For instance, curvilinear continuous fiber re-
inforced polymers can be produced. As these technologies are relatively young, there
is no computational model yet to predict the microstructure in large engineered parts.
These deficiencies are a limitation for the industry, where the aim is to take advan-
tage of this new class of composites for the design and manufacture of new structural
components with optimized mechanical properties. In this sense, a fundamental under-
standing of mechanical properties derived from the constitutive interactions between
sub-components, their distribution, gradients and patterned structures under mechan-
ical loadings, are needed to perform these optimizations. In all these cases, there is a
need to develop an alternative approach to identify spatially evolving material proper-

1This chapter is taken from: G. Valdés-Alonzo, C. Binetruy, B. Eck, A. Garćıa-González and A.
Leygue. Phase distribution and properties identification of heterogeneous materials: A data-driven
approach, Computer Methods in Applied Mechanics and Engineering, vol. 390, p. 114354, 2022 [33].
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ties.

3.2 Preliminary considerations

As was shown in Chapter 2, DDI gives us the freedom to identify the mechanical stress
in samples from full field displacement measurements. So far, DDI has mainly been
used in samples made of homogeneous materials where elastic behavior was assumed.

A first, naive approach to the problem is to apply DDI directly into an heterogeneous
case. In this chapter, in order to study the behavior of the algorithm, the focus will be
put in one particular sample with a set of parameters that will be changed according
to the different analysis performed.

3.2.1 General properties of the sample

The sample used in this chapter is a rectangular membrane. A plane stress assumption
is made, meaning that the perpendicular component of the stress is considered to be
negligible. Even though the strain in the normal axis is not zero, we ignore its value
through the rest of this document, given that it doesn’t provide useful information.

The materials to be used for both the matrix and the inclusions in the sample
are linear elastic with different values of Young’s moduli depending on the case to
study. For simplicity, the samples are isotropic, so the strain-stress tensorial relation is
expressed as

 σxx
σyy
σxy

 =

 E
1−ν2

Eν
1−ν2 0

Eν
1−ν2

E
1−ν2 0

0 0 E
1+ν

 εxx
εyy
εxy

 , (3.1)

where E is the Young’s moduli and ν is the Poisson’s ratio. In all the examples shown, ν
is considered to be 0.3. To study the cases, the elastic moduli are not specified directly,
but instead they are referred as a ratio between the stiffnesses, defined as

rE =
Ei
Em

. (3.2)

where Em is the stiffness of the matrix and Ei for the inclusions. The matrix material
is modeled to always have an elastic modulus of Em = 1, allowing us to only change
the stiffness of the inclusions.

We define a mesh of linear triangle elements with one integration point. The choice
of elements comes from practicality, since the code used for generating the data was
already written with triangle elements in mind. However, as seen in the examples of
Chapter 2, the choice of shape of the elements plays no role in the results obtained
from DDI. Furthermore, using higher order elements might provide a more localized
estimation of properties, but it is something that will not be addressed in the course
of this work.

For the example in which DDI will be applied, the sample is modeled as a matrix
material with circular inclusions with stiffness Ei = 10. To generate a rich input, we
apply traction, shear and compression loads in both axes as illustrated in Figure 3.1.
The mesh has Nn = 527 nodes and N e = 964 elements and we consider NX = 80
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loading cases, or snapshots obtained by applying imposed displacements on the sample
in linear increments. This gives a total of 80 × 964 = 77120 mechanical points. The
size of this input data is actually low with respect to other published applications of
DDI either on synthetic [11, 37] or experimental [27] data. As a result one can expect
that the predictions will be of poorer quality. This choice is purposely made to expose
the added value of the proposed approach applied to limited data.

(a) Horizontal traction. (b) Horizontal compression. (c) Vertical traction.

(d) Vertical compression. (e) Horizontal shear. (f) Vertical shear.

Figure 3.1: Deformations applied to the mesh.

3.2.2 Choice of parameters

A parametric study is performed to see how the algorithm behaves under different
values of both C and N∗. As shown in [27], the value of N∗ is expected to have an
optimum. If the amount of material states is too low, the clusters of mechanical points
are too big and they will not represent the stresses correctly. However, if the amount
is too high, there is a risk of over-representation that will also hinder the estimation.

With the sample defined in Section 3.2.1, we run the algorithm for different amount
of material states, also considering different values of the tensor C, which for simplicity,
is defined as a proportional to the unit tensor. We could expect to have a better
estimation if C would be closer to the original elasticity tensor, but that might carry
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some complexity in the problem given the need to define two parameters inside of it.
Also, it is important to note that even if C is similar in form to the elasticity tensor, it
does not represent any physical property of the material, but it is rather a numerical
constant used by the algorithm to minimize the distances in the phase space, so its
form is free as long as it is dimensionally correct. For studying N∗, we define a ratio
r∗ defined as

r∗ =
N e ·NX

N∗
. (3.3)

Finally, we compute the 2-norm relative error e2, using as reference the FEM solu-
tion for the sample. Mathematically this is defined as

e2 =
||σDDIe − σFEMe ||
||σFEMe ||

. (3.4)

In Figure 3.2, the results are in accordance with the ones reported in [27]. The opti-
mal ratio is between 20 and 100 depending on the value of C, meaning that in average,
each material point should gather that amount of mechanical states. The optimal ratio
is in the same order of magnitude than the one obtained for an homogeneous material
case.

Unlike what has been observed for single material samples [26] it is not optimal to
consider higher values for C. In [26], DDI was applied to a hyperelastic single material
specimen where stress is obviously uniquely determined by strain. It is therefore not
surprising that high C values, which promote a strain-based clustering of the mechanical
states, are beneficial to the stress estimation. In the present case, as the specimen
involves two material phases with different stiffness, the same strain can correspond
to different stress values. It is therefore reasonable to assume that both strain and
stress have to be accounted for in the clustering of mechanical states around material
states. In this case, the value of C = 5Em 13×3 gives the lowest error for estimating
the local stresses in the sample. The specific value C = 1.3963Em 13×3 corresponds to
the homogenized stiffness of the sample in the y-direction.
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Figure 3.2: Relative error of estimated stresses against amount of material points.

3.3 Application of DDI to heterogeneous samples

We focus on the case with C = 1.3963Em 13×3 and r∗ = 300 to further analyze DDI
predictions. This choice is made since this value represents the homogenization of the
sample, meaning an estimation obtained with the force applied and the total stretch.
Figure 3.3 shows the results for both mechanical and material states, together with the
underlying constitutive laws used to generate the data. The behavior is similar to the
one observed in the previous studies with one material. The mechanical states tend
to gather around the expected values of stress-strain in clusters that have one of the
material states as a centroid. There is a relative loss of accuracy when we go to the
extreme values of strain, which can be attributed to the lower amount of mechanical
states involving higher deformations.

The results show a clear trend, where both mechanical and material states tend
to group around the two suggested constitutive equations. Since there are two mate-
rial behaviors present in the data, the algorithm places the material states in a way
that they sample simultaneously both materials, estimating also the stresses clustered
around them. However, determining which behavior corresponds to each material is
not straightforward. The fact that there is more than one behavior present represented
through a unique set of material points, means that a mechanical state can be associ-
ated with any of them. This problem is certainly more pronounced when strains tend
to zero, given the high amount of mechanical points close to the intersection of the be-
haviors of the materials. In Figure 3.3b we see that, due to the dispersion of material
points close to the origin, it is difficult to associate them to any of the two material
phases in a simple manner.
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(a) Mechanical states and their underlying constitutive relations.

(b) Material states and their underlying constitutive relations.

Figure 3.3: Results for DDI with two material phases.

Convergence was obtained after 23 iterations performed in 62.8075 seconds in a
laptop computer with a 2.2GHz Intel Core i7-8750H processor and 32GB of RAM. The
amount of iterations and time consumed are highly variable and strongly depend on
the quality of the initialization of the algorithm, especially the ieX pairing. As shown
by Kanno [38] in the case of DDCM, the DDI problem is a mixed integer quadratic
programming problem. The minimization may fall into a local minimum and leads
to a sub-optimal solution. The algorithm may also stagnate around a local minimum
before “escaping” and finding a more optimal solution. These are factors that need to
be considered while assessing the computation time.
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3.4 Separating behaviors

From the previous results we have seen that DDI indeed samples the 2 different material
behaviors, but does not separate them. However, we can see that, since material points
tend to gather around the underlying constitutive equations, we have mechanical states
that are associated to only one of the behaviors, particularly at high strains. This serves
as the basis to establish a methodology for separating the phases in the sample.

3.4.1 Heuristic approach

In Figure 3.4, a simplified version of representative output DDI consisting of six ele-
ments over two loading increments (12 mechanical states) and five material states is
illustrated. The results are represented in a simplified two-dimensional strain-stress
space where the underlying material behaviors of the matrix and inclusions phases are
depicted as dashed lines. The mechanical state, i.e. the strain (measured) and the
stress (identified) values within each element are represented using triangle symbols
(^1) where the subscript indicates the element number within the mesh. As DDI is
performed over several loading increments (snapshots) each element appears several
times, once for each increment. The material states of the identified database are rep-
resented as stars (☆a) where the letter subscript is used to number each state. The
values of both strain and stress of each material state are DDI outputs. Additionally,
the color of the symbol of each mechanical state (^) matches the color of the material
state (☆) that is the closest according to the norm defined in Equation 2.24. This
information is provided in the DDI output in the ieX state mapping. For example in
Figure 3.4 we have i21 = i(2, 1) = d and i22 = i(2, 2) = e as the triangle ^2 is closest
to ☆d in one loading step (assumed here to be the first) and closest to ☆e in another.
The cells of the material states are delimited using dotted lines.

From this representation it is visually straightforward to postulate that elements
(^4,^5) (resp. elements (^2,^6)) are likely to belong to the matrix (resp. in-
clusion) phase and that material states (☆b,☆e) (resp. material states ☆d,☆e))
represent the material behavior of the matrix (resp. inclusion) phase. For elements
(^1,^3) it is also possible to make an educated guess as to which phase they belong
but it is impossible for material state (☆a).

43



3.4. SEPARATING BEHAVIORS

5

4

5

4

3

1

31

6

2

2
6

a

d

e

b

c

Figure 3.4: Simplified representation of DDI. For a mesh with 6 elements and two loading
states, the 12 triangles (^) represent the mechanical states and the 5 stars (☆) the material
points.

The previous analysis is merely heuristic and can only be performed in small cases
of limited dimensionality involving only scalar strain and stress. For a more rigorous
identification of the different materials we introduce the following clustering problem:
we seek a clustering of the elements and of the material states in respectively two groups,
such that the first (resp. second) cluster of elements mostly correspond through ieX to
the first (resp. second) cluster of material states. To solve this problem, we introduce
the element-material frequency table N . This table has as many rows as there are
elements in the mesh (N e) and as many columns as there are material states in the
database (N∗). Its entries simply count the number of times each element is associated
to a particular material state and it can be computed in a straightforward manner from
ieX . The frequency table corresponding to the case depicted in Figure 3.4 is shown in
Figure 3.5.

1

2

3

4

5

6

a b c d e

1 0 0 1 0 0

0 0 0 0 2 0

1 0 1 0 0 0

0 2 0 0 0

0 1 1 0 0

0 0 0 1 1

Figure 3.5: Element vs. material state frequency table N .

3.4.2 Correspondence Analysis

The study of the correspondence between different categories, here element number
against material state number, can be achieved using Correspondence Analysis (CA)
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[39]. Examples of its use can be found in [40] for social sciences and [41] for ecology,
where it is applied to visualize the information in a different way. Specifically, CA is a
multivariate statistical technique used for summarizing matrices of non-negative data in
a graphical form [42]. It differs from other similar methods like Principal Component
Analysis (PCA) because of its application in categorical data, instead of continuous
one. CA studies the relation between the rows and columns of a frequency table by
considering them as points in a space. The technique aims to measure the distances
between these points and then projecting them in a low-dimensional space where similar
categories are clustered. The procedure for CA presented in [39] is outlined here. We
start by considering the element-material state frequency table N , which is the sum
over all loading steps of all state mappings ieX , i.e.,

N =
NX∑
X=1

ieX . (3.5)

N is a matrix of dimensions N e×N∗. Each matrix ieX tracks to which material state a
mechanical state is associated in a particular loading case X. The sum of them counts
how many times a specific element of the mesh has been paired to each material state.
This table of frequencies is the basis for any type of CA. Matrix N is normalized as

P =
1

n
N , (3.6)

where n =
∑

i

∑
j Nij . This matrix is called the correspondence matrix, and is the base

for the analysis. From here, we obtain the row and column masses,

ri =
∑

j pij ,

cj =
∑

i pij .
(3.7)

r is a column vector of length N e, collecting the sum of each row. Similarly, c is a row
vector of length N∗ with the sum of each column. From here, we can define Dr and
Dc as the diagonal matrices with the terms of r and c. We use them to compute the
matrix of standard residuals S as

S = D−1/2
r (P − rc)D−1/2

c . (3.8)

The matrix of standard residuals corresponds to the square root of the inertia of the
data. This means that S effectively measures the χ-square distance of each point to
their centroids, weighted by the inverse of the expected average profile [43]. A Singular
Value Decomposition (SVD) is performed in the matrix S:

S = UDαV
T . (3.9)

The SVD technique decomposes the matrix into 3 new matrices: The matrix U , of
dimension N e × N e, where each column is called a singular vector ; V , of dimension
N∗×N∗ and analogous to U ; and the diagonal matrix Dα, with dimensions N e×N∗,
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in which each term is called singular value. These matrices are used to compute the
principal components F and G:

F = D
−1/2
r UDα,

G = D
−1/2
c V DT

α .
(3.10)

Optionally, the principal inertias of the data can be computed as

λk = α2
k, (3.11)

where αk is each one of the diagonal elements of Dα. Appendix D includes some
notes and further explanation of the mathematical aspects of the algorithm, which are
technically out of the scope of this work, since we only use it as a tool for a particular
purpose.

The results of CA can be understood as a parallel to the concept of eigenvalues and
vectors of a matrix. The principal coordinates F andG correspond to values associated
with the rows (mesh elements) and columns (material states) of the correspondence ma-
trix, respectively. In a similar fashion to the eigenvectors, the columns of the principal
coordinates create a space that we can represent graphically. The principal inertias es-
timate the relevance of each principal coordinate, similar to the eigenvalues of a matrix.
In this space, the data is rearranged and presented in clusters that can be interpreted
as the different phases of the material. Depending on the complexity of the problem
and the quality of the data, the amount of dimensions used to perform the analysis can
vary. In most of the cases a 2D representation of the principal coordinates is enough,
but as it will be shown in Section 3.5, more dimensions can solve a problem that is not
visually accessible in 2D.

For the example presented earlier in this section, the results can be seen in Fig-
ure 3.6a. In here we see that the groups that we formed with our heuristic approach
are respected by appearing on opposite sides of the space. Furthermore, elements
(^1,^3) are assigned to different phases, without the need for a guess. However, in
the case of (☆a) we have the ambiguity since the elements associated to it are equally
represented in each material phase.
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(a) Schematic of CA space.
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(b) Sorted contingency table N .

Figure 3.6: Results of the heuristic approach.

We now apply this analysis to the example presented in Section 3.3. The result of
plotting the first two columns of F is shown in Figure 3.7a. The correspondence matrix
clearly appears as a set of clusters in this new space, which represent categories in the
ieX pairing. We separate them assuming that these categories actually correspond to
the different material behaviors, and identify the two clusters with the matrix and
inclusion phases. Locating these clusters back in the mesh gives the result shown in
Figure 3.7b. From this, we see that applying CA to the ieX pairing a posteriori can
indeed separate the two materials that DDI identified blindly.

(a) CA plot for mesh elements. (b) Mesh elements sorted.

Figure 3.7: Mesh elements: Separation process.

To perform the separation on the material states in the space (G1,G2) we use
the same separation as in the (F1,F2) space. Following the same procedure we can
obtain the material states that can be represented in the (ε, σ) space, displaying the
two material behaviors, as seen in Figure 3.8b. The criterion for separation is taken
as the same in the F space because both spaces are equivalent representations of the
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same original matrix. However, performing the separation in the F space is easier since
the clusters have a physical meaning, i.e. the location in the sample. In the G space
the separation is more challenging, since it can be difficult to establish what represents
each behavior in the phase space.

(a) CA plot for material states.

(b) Material states separated in phase space.

Figure 3.8: Material states: Separation process.

3.5 Ranges for the heterogeneous DDI algorithm

The previous section showed that DDI combined with CA is able to provide an estimate
of the stress field in the sample, its material phases distribution and the mechanical
response of each phase. To show the capabilities of the proposed method, we test this
approach in cases for lower inclusion/matrix stiffness ratios and input data with limited
kinematics.
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3.5.1 Minimum stiffness ratio for inclusions

An important point to analyze is the sensitivity of the algorithm with respect to the
stiffness ratio of the two-phase heterogeneous material. Since the estimation of stress
tends to cluster around the unknown surfaces that define the materials responses, noise
can at some point prevent the identification of both materials if the surfaces are too
close. To analyze this effect, we use the same sample as before and we set the number
of material states to a value close to the optimal one found in the previous section
(r∗ = 50). The value of C is fixed again from the homogenized stiffness of the sample
to unify all the cases under the same testing conditions. The stiffness value is tested,
starting from the highest ratio and then decreasing it to find the limit from which
separation through CA cannot be found. In general, we are not interested to test cases
with a higher stiffness ratio, since CA works well when there is a clear separation of
behaviors. The only case where CA would fail for higher ratios is when inclusions
become too stiff that the sensitivity of the camera used for DIC is not capable to detect
the movement, which is a problem not related to the method, but to the physical setting
of the experiment.

Results for different stiffness ratios are summarized in Figure 3.9. On the figures
of the left, we show with colors the exact phases of the material, with the arbitrary
separation marked by the dotted line. On the right, the colors of the mesh are plotted
according to the separation. We can see that with the decrease of the stiffness ratio, the
identification of clusters from the CA analysis becomes more difficult. For r = 10, the
separation can be performed by only using the first principal component F1. When the
ratio decreases, it is necessary to extract more information. With a stiffness of r = 3.5,
the behaviors are still separable using two principal coordinates as in Figure 3.9a. For a
ratio of 3.125, we still can perform a separation visually if we include the third principal
component in the analysis, but we observe some misplaced elements (Figure 3.9f).
Plotting the principal coordinates for lower ratios show results similar to those observed
in Figure 3.10a, for which separation is impossible using visual techniques. It is expected
that using more principal coordinates could help in these cases, but the impossibility
of analyzing this case visually makes it impractical. In these cases, we have to turn to
unsupervised clustering methods.

Among all the clustering techniques, k-means [32] is a popular choice that allows to
partition a sample space in k groups. We choose this technique due to its easy access
in the Matlab suite, and the details of how the algorithm is implemented are detailed
in Appendix B. Using k-means with a k-means++ initialization [44] for finding groups
in higher dimensions (n = 4, 5) allows to obtain satisfactory results. As the quality
of k-means clustering strongly depends on the initialization step, it is expected that
more robust clustering methods might lead to better and highly reproducible results.
In Figure 3.10 we report the phases identified for a stiffness ratio r = 2 using k-
means clustering on the first five principal coordinates F1 to F5. Phase separation is
satisfactory, even if some elements belonging to the matrix phase are assigned to the
inclusion. A possible path for improving the results could be to simultaneous cluster
mesh elements in the F space, as well as in physical space to prevent the prediction of
physically isolated inclusion elements.
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(a) Separation for high stiffness ratio (r = 10). (b) Sorted mesh for r = 10.

(c) Separation at r = 3.5. (d) Sorted mesh for r = 3.5.

(e) Separation at r = 3.125. (f) Sorted mesh for r = 3.125.

Figure 3.9: Separation for different stiffness ratios.
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(a) Elements corresponding to each material. (b) Sorted mesh for a ratio of r = 2.

Figure 3.10: Identification of stiffness ratio r = 2 using 5 modes and k-means clustering.

3.5.2 Identification with poorer inputs

So far, we have considered academic benchmark problems, for which we had a collection
of kinematically rich strains. However, this ideal situation is rarely encountered in real-
life testing. Samples must be tested consistently, ideally in one stage to not alter the
results due to external factors. In this sense, using equipment such as an hexapod [26],
allows to load samples along multiple axes without changing the experimental setup
and keeping the same reference configuration. Even then, results might not be as rich
as the previously used synthetic data. To prove the robustness of the proposed method,
in this section we analyze a sample considering loadings that are representative of what
is achievable using an hexapod.

The procedure is as follows: we stretch the sample vertically in 40 steps, similar
to a tensile test. When the maximum strain is reached, the upper clamp is displaced
horizontally to add shear stress in the sample, again in 40 steps. Snapshots are collected
regularly during the whole procedure. Since some loading conditions are omitted (i.e.
compression testing) with respect to previous scenarios, we can expect the identified
behavior to be more limited. The stiffness ratio is also lowered to 5.

For this case, we use the same sample defined in Figure 3.1 but with a finer mesh.
This refined mesh consists of Nn = 2017 nodes and N e = 3856 elements, giving a total
of 3856×80 = 308480 mechanical points. This will help us increase the amount of data
and hopefully compensate the loss of information due to the poorer kinematics. The
parameter C is kept similar as the previous case, considering the homogenized stiffness
of the sample. We set a ratio for the material points of r∗ = 600, which is not the
optimal but it allows the results to be more accessible visually.

Figure 3.11 shows the deformation of the sample in both stages.
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(a) Traction deformation. (b) Horizontal shear deformation.

Figure 3.11: Deformation stages of the sample.

Applying the algorithm and performing the correspondence analysis yields the re-
sults presented in Figure 3.12. CA performs well in finding the position of the inclusions,
where only some elements are assigned wrongly close to interfaces. In Figure 3.12a the
strain-stress representation shows that the isotropic response of both phases is better
captured than shear. We observe a much larger scatter for both mechanical and mate-
rial states. The different material behaviors are poorly sampled close to the origin, and
the shear behavior of the inclusion phase is poorly predicted, with some material states
far from the actual material behavior. This can be expected from this limited loading
scenario. However, despite the observed scatter, there is a significant correlation with
the underlying material laws represented by the dash-dotted lines.
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(a) Phase space of the solution.

(b) Mesh of the sample with assigned elements.

Figure 3.12: Sample results.

To improve these predictions, we propose to use the output of CA to better initialize
the DDI analysis in a second run. Through the ieX variable, the optimization problem
solved by DDI is indeed of combinatorial nature and the algorithm in the majority
of cases converges to a local minimum. Therefore, in the second run of the DDI, ieX

is initialized in a way that it respects the matrix and previously identified inclusion
phases. Only mechanical states that are identified by CA as belonging to the same
phase can be associated to a specific material state through ieX . This assumption is
only made for initializing the algorithm, and is then relaxed to use the normal DDI as
proposed in Chapter 2. CA is performed again after this second run. The results are
presented in Figure 3.13.
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(a) Phase space of the updated solution.

(b) Updated mesh.

Figure 3.13: Updated results after second run.

In Figure 3.13b, we observe that the phase distribution is much better predicted
and most of mesh elements are now correctly associated to the correct phase. In the
strain-stress space represented in Figure 3.13a, the scatter is visibly less pronounced.
Moreover, the material states provide a finer description of the materials behavior at
small strain, both for the isotropic and deviatoric part of the stress. Table 3.1 displays a
quantitative comparison of prediction errors in both stages, all error indicators improve.

Table 3.1: Error of estimation, comparison of both iterations of the algorithm.

Error First iteration Second iteration

||σFEM − σDDI ||C/||σFEM ||C 0.0125 0.0085
||σFEM − σDDI ||2/||σFEM ||2 0.1682 0.1384
Amount of wrong elements in CA 50 (1.3%) 11 (0.29%)
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We can also visualize the distribution with the use of the histogram plots. In Fig-
ure 3.14 the histograms of both the first and second iteration are plotted together to
show the change. As can be seen, for the trace component of the stresses we have that
the curve slightly moves to the left, which means that we have an overall improve-
ment even though the maximum error value is increase. However, the improvement is
much more pronounced in the shear component of the stress, which tends to be more
complicated to estimate accurately.

Figure 3.14: Histogram error plot for both iterations of DDI.

The improvement provided by the better initialization of ieX can be appreciated in
the correspondence analysis as well. In Figure 3.15, the clusters of points associated
with the different behaviors are not clearly separated in the first CA run. Clustering
based on the first principal component is not obvious. On the second run, the two sets
become more apparent.

Figure 3.15: Comparison of CA in both cases.
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3.6 Discussion

By complementing DDI with CA we were able to identify stress fields in synthetically
manufactured samples composed of a matrix with stiffer inclusions. CA results in
a different visualization of the data that allowed us to predict the location of these
inclusions, which in turn can inform about the underlying behavior of each phase. As
a consequence, the behavior of both the matrix and inclusions can be simultaneously
identified.

The sensitivity of the method was tested by running test cases with different stiffness
ratios between matrix and inclusion. It has been shown that the technique can work at
low contrast limit, and when results tend to degrade, we can increase the dimensionality
of CA to enhance sensitivity with very few added computations. We also observed that
for samples with low richness of strains we can iterate between CA and DDI to improve
stress estimation. CA provides an estimate of the position of the different phases,
which can be used to properly initialize a second DDI analysis for improved predictions.
Furthermore, the proposed approach is not necessarily limited to two-phase samples.
The theory of CA allows the identification of more phases by generating of more clusters
in the transformed phase space. However, in this setting we would expect a loss of
accuracy, given the saturation of information in the strain-stress space. Finally, as the
distinction between linear and non-linear elasticity is irrelevant for DDI, the present
results are not limited by the choice of linear behavior to generate the synthetic input
data.

One shortcoming of the current approach is that DDI does not provide accurate
stress estimates when the stiffness contrast rE is lower than 1. In the case of softer
inclusions, the softer phase is kinematically very constrained and experiences strain
levels very similar to the stiffer one which yields a very homogeneous strain field,
containing very little usable data for the DDI. Modifications to the original algorithm
might be devised to make use of the slight inhomogeneities in the strain field. However,
we believe that one way of overcoming this problem is using a normalized version of
the algorithm that automatically adjusts the value of the DDI C parameter, which is
explored in detail in Chapter 5.
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Chapter 4
Data-driven identification in linear
viscoelasticity

In previous chapters we have stated the algorithm of DDI and its use in elastic cases.
However, elastic behavior is only a subset of all the behaviors that can be found, while
others tend to increase the complexity of the general stress identification. It is because
of this that we want to explore further the use of the DDI algorithm in settings that
differ from classical elasticity.

The main motivation for the study of linear viscoelasticity with DDI is simplicity.
Viscoelasticity encompass a range of materials that vary in behavior according to the
models selected. However, linear viscoelasticity is a phenomenon that is well understood
and that can be kept simple by taking the proper approach. In this sense, linear
viscoelasticity represents a smooth transition towards more complex material behavior.

One of the advantages are the similarities with the elastic case. Linear viscoelastic
materials can behave like linear elastic materials when they are subjected to deforma-
tion, but if they are kept in the deformed position the stresses relax and decrease. In
fact, if we consider a viscoelastic solid sample in which the relaxation is slow enough,
we just revert back to the linear elastic case. This relaxation phenomenon is dependent
on the material itself and it can be estimated if we consider the stress as a function of
strain history, rather than just a particular strain in time. We aim in this chapter to
tackle this particular point.

4.1 Linear viscoelasticity

Viscoelasticity is a term that refers to all materials that simultaneously present both
elastic and viscous properties [45]. For elastic materials, Robert Hooke introduced the
idea of spring-like materials, where the tension in the springs is directly proportional to
the extension that it is subjected. Similarly for fluids materials, Isaac Newton proposed
the idea that in a shear flow, the resistance on a fluid is dependent on the speed at
which the flow is being disturbed. Both effects can be respectively written as

F = K · δ, (4.1a)

F = η · γ̇, (4.1b)
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with K being the elastic constant of the spring and δ its deformation, while η represents
the viscosity of the fluid and γ̇ the rate of deformation. When using simplified models to
represent the material behavior, springs are used to represent elasticity, while dashpots
are used for viscosity. This graphic representation can be seen in Figure 4.1.

(a) Representation of an elastic element. (b) Representation of a viscous element.

Figure 4.1: Representation of behaviors in a material model.

One of the particular properties of viscoelastic materials is that the stresses in the
sample are dependent on the strain history, rather than an instantaneous strains. It
is because of this that the analysis performed are done in a prescribed time interval
where the effects of the previous deformations will be considered.

For these kind of materials an analytical solution exists, although it might not be
explicit, so mathematical schemes need to be used to obtain the solution. Furthermore,
some models require the use of derivatives of both strains and stresses to obtain results.
We have already discuss the difficulty of estimating stresses and how they are a source of
error, a phenomenon that gets aggravated when derivatives are considered. In general
and to abide by the principle of linearity, the constitutive law of a viscoelastic material
is defined in a general way as [46]

σ(t) = E{ε(τ)}|τ=t
τ=t0 , (4.2)

where E is a linear functional that relates the strains in the sample ε(t) to their re-
spective values of stress σ(t) in an specific time interval between τ = t0 and τ = t. In
here t represents the time of interest for the analysis in the material. It is important
to mention that this functional definition is generalized: if we want to address elastic
materials we can take an instantaneous value for τ = t and revert back to classical
definition. If we perform a test that is force-driven rather than deformation-driven, the
opposite relation can be defined as

ε(t) = D{σ(τ)}|τ=t
τ=t0 , (4.3)

where constants are defined in a similar way.
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4.1.1 Viscoelastic models

In linear viscoelasticity, since both Hooke’s and Newton’s laws are linear relationships,
we can apply the superposition principle and also obtain a linear relationship for these
kind of materials. The naive idea would be to consider a behavior as a sum of both
elastic and viscous behavior, which we obtain by summing the forces defined by Equa-
tion 4.1, which yields

σ(t) = σe(t) + σv(t),

= Kε(t) + ηε̇(t),
(4.4)

where σe and σv are the elastic and viscous part of the stress respectively and the
notation of the dot represents a time derivative. In here we change forces and dis-
placements for stresses and strains to refer to the internal phenomena in the material.
In that sense, K and η do not represent the same quantities from Equation 4.1 but
they serve similar purposes. From now on and to be consistent with the literature, we
change K for E, which is the most common letter used to represent the linear constant
between strains and stresses (i.e. the Young’s modulus).

The representation defined in Equation 4.4 is one of the simplest viscoelastic models
and it is typically known as the Kelvin-Voigt model. One of the advantages of this
model is that it provides analytical solutions for certain cases. If a constant stress σ0

is considered starting in t = 0, the differential equation in Equation 4.4 can be solved,
which gives the strain

ε(t) =
σ0

E

[
1− exp

(
− t

τK

)]
, (4.5)

with τK = η/E being a ratio of time units that controls the growth rate of strain, also
known as retardation time of the material. In Figure 4.2 the plot for the dimensionless
quantity εE/σ̄ is shown, which displays one of the main characteristics of viscoelastic
materials: given a constant stress the increase of the strain will decrease exponentially
up to an equilibrium point that is equivalent to the value that would be obtained if the
material was purely elastic. How fast this decrease is experienced is governed by the
parameter τK , hence its name.
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Figure 4.2: Stress over time for the Kelvin model. As can be observed, the increase of strain
in time is a negative exponential curve that tends to a constant value. When one relaxation
time has passed the strain is about 62% of the strain that we would have if the material was
linear elastic.

Using springs and dashpots to represent material behaviors, the combination of ele-
ments is performed in a similar way to a system of springs in mechanics. A combination
of elements in series implies that the stress remains constant in the branch, while the
strains are obtained as a sum of the strains of each component. The opposite case hap-
pens when elements are connected in parallel: strains are equal in both branches while
the total stress are a sum of the effects in each branch. Like this, it is easy to explain
the Kelvin-Voigt model as a connection in parallel of both a spring and a dashpot since
the stress is the sum of the effects in each of them. This can be seen in Figure 4.3.

Figure 4.3: Representation of the Kelvin model. The strain of each branch is the same, while
the stress is a combination of both behaviors.

There are many simplified models that are popular, but in this work we will present
two more. If we decide instead to connect the spring and dashpot in series, we obtain a
model that analyzes the problem from a strain-driven perspective. If we consider that
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the strain rate of a sample is a sum of both elastic and viscous behaviors, we have

ε̇(t) = ε̇e(t) + ε̇v(t),

=
σ̇(t)

E
+
σ(t)

η
,

(4.6)

which can be rearranged as

σ(t) +
η

E
σ̇(t) = ηε̇(t). (4.7)

In this model we have the ratio η/E appearing again in the expression, which we
can define as τM . In an analogous case to the Kelvin-Voigt model, taking a constant
strain rate ε0 starting from t = 0 allows to obtain an analytical solution of the stress,
namely

σ(t) = ηε0

[
1− exp

(
− t

τM

)]
, (4.8)

which shows that in this model, when the strain rate is kept constant in time the
stress grow similarly to the Kelvin-Voigt model. However, if the constant strain rate is
removed at t = 0, the solution becomes

σ(t) = ηε0 · exp

(
− t

τM

)
, (4.9)

meaning that if the material is left undisturbed the stress will decrease exponentially
until the samples relaxes completely. A zero strain rate does not mean that the strains
are inexistent, but that they are constant in time, meaning that the material is relaxing
in a deformed state. This is graphically represented in Figure 4.4b.
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(a) Representation of the Maxwell model (b) Stress relaxation on the Maxwell model.

Figure 4.4: Maxwell model of viscoelasticity. Same as for the Kelvin-Voigt model, the decrease
of the stress has an exponential nature governed by τM . The strain in this model is a sum of
the effects from the elastic and the viscous part.

Maxwell model is used to represent fluids, since the relaxation of stresses in the
deformed state explains the property of fluids of adapting to the shape of the container
where it is hold. It is worth noting that the definition of τM is identical to τK , however,
their effect have different approaches, so they are defined separately. In the Maxwell
model, τ is now known as the relaxation time, since it refers to the scale of time in
which the material will reduce the stresses until it reaches its relaxed state.

The final model that we will mention is the Generalized Maxwell model, also known
as Maxwell-Weichart model [47]. The idea behind it is that materials in real life are
more complicated that what has been introduced here and some behaviors can be
modelled better if different relaxation times are considered. It is defined as a collection
in parallel of n Maxwell branches with different values for each spring and dashpot.
One extra brach considered is just a spring that represent the elastic behavior in the
material leaving a total of n+ 1 branches. Its representation is shown in Figure 4.5.

62



4.1. LINEAR VISCOELASTICITY

Figure 4.5: Generalized Maxwell model. The strain in each branch is the same and equivalent
to the elastic strain from the first branch. Every other branch has a strain value that is a
combination of its own elastic and viscous behavior. The stress is just a sum of the stresses of
all the springs.

In this work, all the examples will be applied to the case where n = 1. This
simplified model is known as the Standard linear solid model or Zener model, shown
in Figure 4.6. The reason to use this model is because it is the simplest model that
include all the phenomena associated to the previous models shown. It also is one of
the simplest representation for viscoelastic solids.

Figure 4.6: Representation of the Zener model.

The Zener model has the following properties:

� The total stress is a sum of the stresses of each branch, i.e., σ = σS0 + σM .

� The stress of the spring and dashpot in the Maxwell branch are equal (σS1 = σD1).
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4.1. LINEAR VISCOELASTICITY

� The strain on both branches is the same, so the strain is equal to the elastic strain
(ε = εM = εS0).

� The strain on the Maxwell branch is the sum of the elements, i.e., εM = εS1 + εD.

We can apply this properties to obtain an equation that can be solved. We start
by taking the total strain and stress of the system:

σ = σS0 + σM , (4.10a)

ε̇ = ε̇S1 + ε̇D, (4.10b)

where in Equation 4.10b we consider that the total strain is equivalent to the strain
in the Maxwell branch and the relationship holds after applying the time derivatives.
Since the stresses of the spring and dashpot in the Maxwell branch are the same, we
can define

ε̇D =
E1

η
εS1, (4.11)

which we can plug into Equation 4.10b. If we rename εS1 ≡ q and remember the
definition of relaxation time as τ = η/E1, we can write the expression as

ε̇(t) = q̇(t) +
1

τ
q(t). (4.12)

The expression in Equation 4.12 is useful since the total strain is defined in terms of
the partial strains in the Maxwell branch. Considering also that the stress in a spring
can be described by Equation 4.1a and that the stress in each branch can be defined
only by their respective springs, we can rewrite Equation 4.10a as

σ(t) = E0ε(t) + E1q(t), (4.13)

where we take advantage of the definition of q(t). Both Equation 4.12 and Equation 4.13
can be used in numerical schemes to obtain the solution with techniques like FEM, and
is indeed how the synthetic data for this chapter is generated. The procedure will be
explained in detail in Section 4.2.4.

A more general relation for the Zener model can be obtained if we rewrite Equa-
tion 4.10b as

ε̇ =
σ̇S1

E1
+
σD
η
. (4.14)

Considering that σS1 = σD = σM , we can express Equation 4.10a and its derivative as

σM = σ − E0ε,

σ̇M = σ̇ − E0ε̇,
(4.15)
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which can be directly plugged in Equation 4.14 to obtain the general differential equa-
tion for the model:

(E0 + E1) ε̇(t) =
1

τ
[τ σ̇(t) + σ(t)− E0ε(t)] . (4.16)

This equation does not have much use for this work other than verification of the
implementation, but it is left as it is relevant to the subject.

Differential representation

Until now, we have used simplified models based on internal variables of the material to
represent the constitutive relations of some of the viscoelastic materials. However, these
representations are limited to each particular configuration of the system of springs and
dashpots used, so we need to find expressions for each one of them. In this sense, we
need to define a general relation of strain and stress. This is achieved by defining a
general differential equation of the form [45]

(
1 + α1

∂

∂t
+ α2

∂2

∂t2
+ · · ·+ αn

∂n

∂tn

)
σ(t)

=

(
β0 + β1

∂

∂t
+ β2

∂2

∂t2
+ · · ·+ βm

∂m

∂tm

)
ε(t),

(4.17)

where n = m or n = m− 1. Up until now, we have define scalar models that represent
the behavior of one generic element. Equation 4.17 is a generalization of the constitutive
relation of viscoelastic materials, meaning that no matter the dimensionality of the
problem, the equation still stands. In our case, this equation is valid for both the scalar
case (trusses), as well as a generalized 3D problem.

All the cases shown earlier can be derived from Equation 4.17. For example, if every
parameter in Equation 4.17 is taken as zero with the exception of β0, we just revert
back to the case of linear elasticity (i.e., σ = β0ε). The same can be performed if we
leave now only β1 as the non-zero parameter, which gives the relation for newtonian
fluids (i.e., σ = β1

∂ε
∂t ). Both of these equations are equivalents to the ones described in

Equation 4.1a and 4.1b respectively.
From the presented viscoelastic formulations, the Kelvin-Voigt model can be re-

trieved if we set β0 = E and β1 = η, with every other term equaling zero. In a similar
vein, the Maxwell representation comes from setting β1 = η and α1 = τM , while the
Zener model becomes more complicated, but can be obtained by rearranging terms in
Equation 4.16. More complex models such as the Jeffrey’s model [48] can be used by
involving second derivatives, but those models are out of the scope of this work.

Integral representation

Every representation of viscoelastic materials that we have presented depends on know-
ing certain parameters that allows us to describe the behavior. The models using inter-
nal variables are simple to use but the lack of analytical solutions for specific cases can
be a problem. In a same way, the differential formulation allows us to obtain a more
general representation of all viscoelastic behaviors, but we give up some simplicity.
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We can abstract even more this generalization, by writing the relation of stresses
against strain history as a time integral of a modulus multiplied by the strain rate
applied on the material. Since all the history of the strains is relevant, the integration
domain goes from negative infinity to the current time, t. This equation can be written
as

σ(t) =

∫ t

−∞
D(t− τ)ε̇(τ) dτ, (4.18)

where D is what is known as the relaxation modulus, it depends on each material and
its expression is to be identified.

The use of this equations is not an optimal way of solving the problems, since
they just work as a generic definition for a full range of phenomena encased into the
viscoelasticity term. If we have access the expression of the relaxation modulus, we can
obtain a very accurate solution for the viscoelastic problem, but in most of the cases
these moduli are unknown or impossible to represent. It is because of this that some
simplifications are made to understand better the behavior and to be able to model the
materials. In this work we stick to samples defined with simplified models, since its
simplicity and parametrization allows us to study better how different ranges of values
will behave when testing DDI.

4.1.2 Viscoelastic response for oscillatory movement

A popular way to test viscoelastic models is through small oscillations. As it is known,
oscillatory movement is defined by functions with sines and cosines. To derive the
formulation, a cosine strain is defined to be implemented into the equations for the
previous models. Considering an oscillatory shear strain of the form

γ(t) = γ0 cos(ωt), (4.19)

the time derivative of this oscillatory strain is

γ̇(t) = −ωγ0 sin(ωt). (4.20)

This expression for the strain and strain rate can be substituted in any of the equations
for the models presented before in order to obtain a solution. In the case of the Kelvin-
Voigt model, the solution is rather trivial. Applying both γ and γ̇ in Equation 4.4 we
obtain

σ(t) = Eγ(t) + ηγ̇(t)

= Eγ0 cos(ωt)− ηωγ0 sin(ωt).
(4.21)

If we group the terms associated to the sine and cosine separately, we can obtain a
relation of the form

σ(t) = γ0G
′(ω) cos(ωt) + γ0G

′′(ω) sin(ωt), (4.22)
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and comparing both Equation 4.21 and Equation 4.22 we can then define G′(ω) and
G′′(ω) as

G′(ω) = E, (4.23a)

G′′(ω) = −ηω. (4.23b)

In literature, G′ is usually called the storage modulus and G′′ the loss modulus.
The storage modulus is the part of the stress that remains in phase with the strain
(due to both being cosine functions) and it represents the elastic component of the
material behavior. On the other hand, the loss modulus deals with the part that is out
of phase and it can be interpreted as the part of the stress that it is being relaxed in
time. Both moduli correspond to Fourier transform [49] coefficients of the viscoelastic
modulus D(t), so they can be used to estimate the behavior of the material. The
moduli are dependent on the frequency of oscillation, meaning that certain frequencies
might trigger a higher viscoelastic response than others.

Applying the same methodology to the Maxwell model, a linear differential equation
is obtained with the form

σ(t) + τ σ̇(t) = −ηωγ0 sin(ωt), (4.24)

whose solution is

σ(t) =
ηω2τ

ω2τ2 + 1
γ0 cos(ωt) +

ηω

ω2τ2 + 1
γ0 sin(ωt), (4.25)

yielding the moduli

G′(ω) =
ηω2τ

ω2τ2 + 1
, (4.26a)

G′′(ω) =
ηω

ω2τ2 + 1
. (4.26b)

Finally, for the Zener model the same procedure is followed, giving the expressions
for the moduli as

G′(ω) = E0 +
E1ω

2τ2

ω2τ2 + 1
, (4.27a)

G′′(ω) =
E1ωτ

ω2τ2 + 1
. (4.27b)

A useful ratio that will be used here is the coefficient tan δ, which is defined as

tan δ =
G′′(ω)

G′(ω)
. (4.28)
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The representation of tan δ is convenient, since it shows a ratio of how viscoelastic the
material will behave at a certain frequency, since it compares the loss modulus over the
storage one. The plots for the moduli, as well as tan δ, as a function of ωt space for the
Zener model are shown in Figure 4.7, where it can be seen where the functions have a
higher response. When generating data for the study of the DDI algorithm, the values
for the G moduli are going to be considered to determine how viscoelastic the sample
should react.

Figure 4.7: Plots for viscoelastic moduli of the Zener model. In here, the blue curve represents
the storage modulus and the red one the loss modulus. In this particular example we can see
that the storage modulus ranges between 1 and 2, while the loss modulus tends to zero on the
extremes of the plot, which are related to very fast or very slow oscillations. The curve on the
right represents the ratio between the moduli, determining which zones of the ωτ space are more
or less viscoelastic.

4.2 Data generation and analysis

For the study of DDI in linear viscoelastic samples, we need to define the samples that
we will use, as well as the properties associated to them. These properties are defined
by certain parameters that we are interested in and that we will modify, in a similar
way as it has been done in Chapter 3. All the data for this chapter will be synthetically
generated by solving different cases through the FEM method.

4.2.1 Model selection

The material considered will be a linear viscoelastic material based on the Zener model,
as defined in Equation 4.13 with q1(t) taken as

q1(t) =

∫ t

−∞
exp

[
−(t− t′)

τ1

]
ε̇(t) dt′, (4.29)

and shown in Figure 4.6. The elastic branch of the model is set to one to standardize
the testing, so we would always define the stiffness of the maxwell branch in terms of a
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ratio. The same convention is applied to the relaxation time, since setting τ = 1 allows
us to modify the experiments around the sample by making them longer or shorter,
instead of defining different samples with different values of it. We do this since we
would like to define a methodology that could be applied in real life, where it is easier
to adapt the parameters of the machine rather than the ones in a sample.

When using a 3D formulation, we consider that the material will be isotropic, with
a Poisson ratio taken as ν = 0.3, to keep it consistent with previous chapters. This
ratio is applied for both springs of the Zener model.

To study the behavior of the algorithm in different setting, we change the values
of the parameters that define the Zener model. The main parameters that will be
researched are:

� Viscoelasticity ratio (Ev): In the Zener model there are two moduli representing
the springs in the elastic branch and in the Maxwell branch, as seen in Figure 4.6.
It is clear that removing each one of the branches will yield either an elastic
material or a pure Maxwell viscoelastic one. In order to study how this affects
the algorithm, the ratio Ev is proposed, which is defined as

Ev =
E1

E0
. (4.30)

Since E0 is the unity, what it is effectively controlled when changing the parameter
is the stiffness of the spring in the Maxwell. For studying the effect, the parameter
is varied from zero to infinity, which yields three main possibilities:

– Ev → 0: If the value of E1 tends to zero the maxwell branch has no effect in
the model, meaning that the material effectively behaves as a normal elastic
material.

– Ev →∞: If the value of E1 is much bigger than E0 the effect of the purely
elastic branch is reduced and can be neglected, meaning that we deal with
a material that is Maxwell viscoelastic.

– Ev ≈ 1: If both stiffness moduli are similar, then the effect is a combination
of Kelvin-Voigt and Maxwell model that was intended in the definition of
the Zener model.

In the 3D cases, where the stiffness modulus is defined by a tensor, the ratio only
affects the value of the Young’s modulus constant and not the tensor itself. In this
sense, the ratio is not defined as a matrix multiplication but just as a comparison
of the E values.

� Time scale for experimentation (Dv): As explained in [45], it can be expected that
every material in the universe can behave as a viscoelastic material, if the amount
of time it is given to deform under a load is enough. Viscoelastic behavior is highly
dependent in the velocity in which the solicitations are applied in the material,
which comes directly from the definition of the constitutive law in Equation 4.18.
In that sense, the parameter Dv is defined as a relation between the relaxation
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time and the time that the experimentation takes to be performed. It is defined
as

Dv = τ ε̇. (4.31)

Similarly to Ev, with the relaxation time conveniently set to the unity we only
need to effectively change the length of the experimentation by speeding up or
slowing down the deformation, i.e., modifying the strain rate, which is a measur-
able property. Three cases can be also be described here:

– Dv → 0: If the strain rate goes to zero, meaning a very slow deformation in
the sample, the dashpot in the model will have enough time to develop the
viscous behavior, so we end up having a viscoelastic behavior.

– Dv →∞: Having the strain rate going to infinity means that the experiment
will be instantaneous, which translates to the viscoelastic behavior being
suppressed. In this case we should again revert to the normal linear elastic
case.

– Dv ≈ 1: If the strain rate is in the same order as the relaxation time we
should see a moderate viscoelastic behavior.

As can be expected, a constant strain rate is difficult to define for most cases. In
this case, the parameter Dv is mostly reserved for using in force profiles such as
extension test, where the strain rate is usually kept constant. For other similar
cases such as the creep test, where the force profile is constant but not the strain
rate, an alternative definition for the parameter can be defined as

Dv =
τ

texp
, (4.32)

where texp represents the length of the experiment, which can be defined a priori.
In general, Dv is defined in combination with Ev. Considering different values
for stiffnesses and strain rates creates different cases that can be analyzed, which
are presented in Figure 4.8.

� Frequency of oscillation (ωt): In the case of oscillatory motion the effects of time
scale cannot be defined easily in the same fashion as Dv, since questions such
as how to define an oscillatory strain rate in a constant fashion arise. In this
case, the definition of viscoelasticity for small oscillations becomes handy, since
a similar analysis can be performed. As was mentioned in Section 4.1.2, in the
case of oscillatory motion a storage (G′) and a loss (G′′) modulus can be defined
as a function of ω, where the first one represents the elastic part and the second
the loss of stress through relaxation. The idea is to choose different values of the
spectrum that will yields more elastic or more viscoelastic behaviors and compare
the performance.
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(a) Case for Ev → 0 and Dv →∞. (b) Case for Ev → 0 and Dv → 0.

(c) Case for Ev →∞ and Dv →∞. (d) Case for Ev →∞ and Dv → 0.

(e) Case for Ev ≈ 1 and Dv ≈ 1.

Figure 4.8: Equivalent models for the different parametrizations of the Zener model. Whenever
we consider Ev → 0 it is equivalent to ignoring the spring in the Maxwell branch, while Ev → ∞
represents the opposite case, where the elastic branch is ignored. In an analogous case, Dv → ∞
suppresses the effect of the dashpot due to how slow the displacement is applied.
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4.2.2 Sample description

All the cases that will be studied here are performed in the same sample mesh. The
mesh, shown in Figure 4.9, follows the same pattern as the examples shown in previous
chapters. We consider a rectangular sample made out of a single isotropic material
with holes in it to avoid generating homogeneous strains through the sample. The
type of elements considered vary between tests, but is either linear triangles with one
integration point in their centers or linear bar elements formed by the edges of the
triangles. Some examples will be presented as trusses due to its simplicity, since its
scalar representation allows us to see better the relation between strain and stress,
although it is implied that the results will work accordingly in the generalized 3D case.

Figure 4.9: Mesh used for testing viscoelastic formulation of DDI.

In all the cases the samples are fixed in both the lower and upper boundaries. A
vertical deformation profile is applied, always to the top boundary of the sample. This
deformation profile is applied as a block to all the nodes, meaning that the nodes on
the top boundary are also constrained horizontally, as they would be in a real test
performed with a clamp. The lower remains fixed during all the testing. The force
profile used depends on the case studied and they will be defined for each example.

A summary of the properties of the mesh is shown in Table 4.1.

Table 4.1: Properties of the mesh used for viscoelasticity.

Property Truss case General 3D case

# of nodes 270 270
# of elements 729 540

4.2.3 Testing setting

From the theory that has been presented, we know that viscoelastic behavior has a high
dependence on the solicitation applied to the sample, particularly associated to the time
scale of the problem and the time that the material has to recover from this changes.
It is because of this that the deformation profiles are chosen to represent feasible cases
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in real testing that are also standard tests performed in this kind of materials. In this
chapter, the following four profiles will be used in different examples:

� Extension-Relaxation test: The sample is subjected to a constant strain for a
certain amount of seconds and then the deformation is left fixed to observe the
relaxation effect of viscoelastic materials. This is done by subjecting the mesh to
a vertical deformation on the upper edge of the sample, while keeping the lower
end fixed. The expected behavior is shown in Figure 4.10a: the constant increase
of strain produces an increase of stress that stabilizes after a time related to the
parameter τ . When the strain is kept constant, the stress decreases exponentially
until it reaches a residual level dictated by the stiffness of the spring in the
Maxwell branch. For this force profile, we consider texp the time that it takes to
reach the maximum strain, just before it is set constant.

� Creep test: Similar to the previous case, it is now a constant stress that is applied
to the sample, achieved by applying a constant force in the upper end of the mesh
while keeping the bottom clamped. The force is applied from a time t0 6= 0 until
an arbitrary time t1, where the sample is released. Before t1 the strain in the
sample increases logarithmically, while the inverse effect happens in the relaxation
phase. This is depicted in Figure 4.10b. In here, texp is the time during which
the force is applied, encompassed between t0 and t1. The creep test is shown here
due to its importance in the field of viscoelasticity, but it will not be applied to
any example shown in this chapter due to the difficulty of parametrization.

� Oscillatory motion: It allows to obtain information of the storage and loss moduli
of the material according to what was shown in Section 4.1.2. For these tests, a
cosine wave function is applied in the upper edge while the lower side is clamped.
The oscillation is applied in a pre-stressed setting, meaning that even considering
the oscillation of the upper edge, the membrane will never be in compression.
Another version of this test is performed considering a wave-like function that is
defined as a sum of two cosines. This is done to avoid repetition in the strains of
the sample, which could affect the accuracy of the DDI algorithm by repetition
of mechanical points. The schematics for both cases are seen in Figure 4.10c. If
we consider a constant sinusoidal function, we can define texp as the time it takes
to perform one oscillation, however, for combinations of sines this definition loses
meaning, and a study based on the oscillatory formulation is preferred.

� Cubic cosine function: The motion prescribed is the same setting as for the
oscillatory motion, but instead of considering a cosine wave function, its cube is
taken. This is specifically done to have discontinuities in the strain rate, so the
effect can be studied in DDI. The schematic is shown in Figure 4.10d. In this
case the same rules of oscillatory motion apply when defining texp.
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(a) Relaxation test, stress profile. (b) Creep test, stress profile.

(c) Oscillatory test, deformation profile. (d) Cubic oscillatory function, deformation profile.

Figure 4.10: Force profiles for viscoelastic tests.

4.2.4 Finite elements procedure for linear viscoelasticity

For testing the new methodology of DDI we need to have access to a database of strains
in a similar fashion as the previous chapters. Because of this is that the same approach
of synthetically generated data through the finite elements method was implemented.
Since the FEM formulation introduced in Section 2.1 was directed at linear elastic
materials, we redefine it here with linear viscoelasticity in mind.

As mentioned in Section 4.1.1, we work with the Zener model. The implementation
of a numerical scheme for this particular model is covered thoroughly in [50], so the
main points of the procedure will be outlined here.

The starting point for the numerical scheme is Equation 4.12. The treatment of the
time derivatives is done using a forward Euler scheme, which renders the equation as

εn+1 − εn
∆t

=
1

τ
qn +

qn+1 − qn
∆t

. (4.33)
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Reordering the equation we obtain the explicit relation for qn+1

qn+1 =

(
1− ∆t

τ

)
qn + εn+1 − εn, (4.34)

which works if we assume that we know each value of εi and qi until timestep n. A
generalization of this can be done using the midpoint rule [50], which renders the
relation as

(
1 +

γ∆t

τ

)
qn+1 =

(
1− (1− γ)∆t

τ

)
qn + εn+1 − εn, (4.35)

where γ is a parameter that has a value between 0 and 1 and allows to shift between a
forward or backward Euler scheme. Equation 4.34 is equivalent to Equation 4.35 when
γ = 0 is taken. In general, 0 will be considered to obtain the solutions due to stability
of the algorithm.

The generalized equation for FEM was introduced in Equation 2.18. In the case
of viscoelasticity we need to define the stress differently, and we do it Equation 4.13,
which adapted to the numerical scheme reads as

σn+1 = E0εn+1 + E1qn+1, (4.36)

which plugged in Equation 2.19b translates into

P (σ) =
∑
e

∫
Ωe

δBT [D0εn+1 +D1qn+1] dΩ. (4.37)

In here, the notation is changed for the more generalized version of the algorithm, with
the strain and stress not being necessarily scalar, and replacing the stiffness of the
springs for the more generalize tensorial moduli, D. Equation 4.37 can be expanded by
replacing qn+1 with Equation 4.35, as well as remembering the compatibility condition
of ε = Bu. This yields to

P (σ) =

∫
BT

D0Bun+1 +D1
1

1 + γ∆t
τ︸ ︷︷ ︸

µt


αt︷ ︸︸ ︷(

1− (1− γ)∆t

τ

)
qn +Bun+1 −Bun


 . (4.38)

For Equation 4.38 the formalities of the integral have been left out because of space
concerns, but it is noted that the integration is performed in the domain Ωe and it is
a summation of integrals over all the elements in the mesh.

The idea behind Equation 4.38 is to organize the terms into a linear system of
equations in the same manner as it has been done in Equation 2.18, that will allow
to obtain the values for the displacement at each timestep. Reordering the terms and
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plugging it into Equation 2.18:

∫
BT (D0 + µtD1)B︸ ︷︷ ︸

KT

un+1 = fn+1 − µtαt
∫
BTD1︸ ︷︷ ︸
S1

qn + µt

∫
BTD1B︸ ︷︷ ︸
K1

un. (4.39)

Using the naming conventions indicated, Equation 4.39 can be finally written as

KTun+1 = fn+1 − µtαtS1qn + µtK1un, (4.40)

where the new values of displacement are computed based on the values of the previous
timestep. The values of εn+1 can be obtain by using the compatibility condition, while
the values of qn+1 and σn+1 are obtained from Equation 4.35 and Equation 4.36.

As a final note on the method for this particular model, it is worth noting that this
approach can be easily extended to a generalized Maxwell model with n branches due
to the superposition principle. In this case Equation 4.40 looks like

KTun+1 = fn+1 −
∑
i

(
µiαiSiq

(i)
n + µiKiun

)
, (4.41)

with KT = K0 +
∑

i µiKi an every other term including i being the values of the
respective branches. It is then necessary to consider n different values of relaxation
times, as well as n different computations of q(i) for each branch.

4.3 DDI algorithm for linear viscoelasticity

If we analyze the FEM formulation for the Zener viscoelastic model, we can see that
the DDI formulation is potentially deficient for this kind of materials, due to the way
in which the data is processed. In the original formulation for elastic materials we
have always considered the input data as a collection of strain fields associated to one
particular deformed state of the sample. Each one of these snapshots is instantaneous
and independent from one another, which works fine when we deal with elasticity.
However, we can see from the formulation of Section 4.2.4 that the stresses of each
deformed states are dependent on the previous timesteps, which is what has been
established from the theory of viscoelastic behavior. In this setting we need to rethink
the concept of snapshots and how it is used in the DDI algorithm, since now we have
to consider a time relationship between them.

4.3.1 Modifications to DDI algorithm

Whenever data is collected, a temporal progression needs to be kept in order to be
able to associate each instantaneous snapshot with its previous one. In that regard,
snapshots now do not represent just a collection of strains, but also a progression for
all the elements in the mesh (i.e. a strain history). Taking this into consideration, we
propose a new formulation in which different mechanical states represent a progression
in time of the strain and stress of each element in the sample.
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With this in mind, we need to modify the algorithm to fit this new strategy. If
we revisit Equation 2.33, we can notice that the definition of the DDI problem is
quite generic. We attempt to minimize a distance between mechanical and material
points subjected to equilibrium conditions. However, the way in which Equation 2.33
is written it is particularly defined for elasticity: when we minimize the distance we
do by seeking points in the phase space, which are defined by the instantaneous strain
and stresses that belong to the elements in all the samples. This approach is expected
given that for elastic materials, σ = f(ε).

Looking at the definition for stresses that were proposed in Section 4.1.1, we now
that the stress for a Zener model can be of the form σ = F(t, ε, q) according to Equa-
tion 4.13; or of the form σ = F(t, ε, ε̇) when defined as an integral according to Equa-
tion 4.18. The first definition for stress is beneficial, since it defines the viscoelastic
strain in a similar fashion as the elastic stress. Each value of stress σt in time is defined
by a pair (εt, qt), with t being some timestep. Time history is not directly addressed,
but in the way the problem is posed, the information of previous steps is contained
in q(t). In fact, when performing a separation of the stress, the part defined by ε(t)
remains constant, while q(t) accounts for the relaxation effects in the material. The
problem with this formulation comes from the fact that there is no way to measure the
value of q at any given time since it is an internal variable, opposite to ε which can be
captured by imaging techniques.

If we revisit again Equation 4.18, we have an equation that depends on the contin-
uous full time history, however, data collection is discrete. If we perform a numerical
scheme for this formulation we obtain

σ(t) =

∫ t

0
D(t− τ)ε̇(τ) dτ

σt = ∆t
t∑
i=1

Dt−iε̇i

σt =
t∑
i=1

Dn−i(εi − εi−1).

(4.42)

For this expression we have considered that the integration is performed at time τ = 0
to be able to perform the summation, which is the case in most of the experiments.
By inspecting the expression obtained, we can see that sigma can be presented as a
function of previous strains in order to account for the time, meaning

σt = F(εt, εt − 1, . . . , ε0). (4.43)

This becomes the basis of how viscoelasticity will be treated in this chapter. We
use a mixed formulation based on internal variables to generate the data with FEM,
with the integral formulation used to define the phase space in DDI. In this setting,
the phase space is now an n+ 2 dimensional space where for each point we have a full
time history associated to it, with n being the amount of timesteps of the experiment
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performed. The C-norm that we use to measure the distances is now defined as

||([εte, εt−1
e , . . . , ε0

e],σ
t
e)||2C =

1

2

(
[εte, ε

t−1
e , . . . , ε0

e] : Cε : [εte, ε
t−1
e , . . . , ε0

e] + σte : C−1
σ : σte

)
,

(4.44)

which now updates the formulation of the DDI problem to

(
σte, ε

∗
i , σ

∗
i , ie

X
)

=

arg min
σt
e,ε
∗
i ,σ
∗
i ,ie

X

∑
t

∑
e

wte||([εte, εt−1
e , . . . , ε0

e]− ε∗ieX ,σ
t
e − σ∗ieX )||2C.

(4.45)

In this renewed formulation the definition of C and ε∗
ieX

is changed to be consistent
with the dimensions of the different matrices. Since the stress remains the same, we
have that, in practice Cσ = C. However, in our new phase space we do not use
the strain but rather the strain history, that for algorithmic purposes we define as a
matrix of horizontally concatenated strains, which means that Cε has to have adequate
dimension. In the simplest of cases, Cε can be defined as a block diagonal matrix with
C as each one of the main blocks, repeated n+ 1 times, e.g.,

Cε =


C

C
. . .

C


︸ ︷︷ ︸

(n+1)×(n+1)

, (4.46)

but the definition could vary if needed (for example, considering decreasing or increasing
values of C). We have decided to use this formulation since it relies on setting just one
value for C, and different schemes will not be studied in this work. In a similar way, ε∗

ieX

are points of n+1 dimensions that are consistent with the formulation of Equation 4.45.
The solution for this updated DDI algorithm is performed exactly as shown in

Algorithm 2.2. Except from the change of dimension, all other aspects of the algorithm
remain the same, and the procedure only needs to account for the new dimensionality
of the problem, which is done by changing C for Cε in Equation 2.34a.

The main concern with this formulation comes from the fact that the strain history
size increases on each timestep, which means that different mechanical states will have
incompatible sizes. The solution for this is addressed by padding the strain history for
earlier timesteps. In this way, every point has the same dimension, but when there
are no previous timesteps, the leftover spaces are filled with zeros. This big amount of
information for each element in each timestep can grow fast, which has a consequence
of reducing the efficiency of the algorithm, making it computationally expensive. As a
secondary effect we also have the curse of dimensionality [51, 52], which will be dealt
in more detail in Chapter 5, but it basically refers to the effect that increasing the
dimension of the problem has, mainly reducing accuracy due to the spacing of data.
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4.3.2 Parametrization

As a final step, to study the new formulation of DDI we need to see how the different
parameters of the algorithm affect the solutions obtained, in a similar fashion as it was
studied in Chapter 3. As explained in Section 2.3, we have the two main parameters of
DDI, C and N∗. We also introduce a new parameter related to the strain history. Since
we mentioned that increasing the phase space is expensive in terms of computation, we
would like to reduce the sizes of the matrices. The simplest way to do this is to reduce
the size of the strain history, with the corresponding loss of accuracy that this implies.
For this, we introduce the parameter nt, which defines the size of the strain history
consider (or equivalently, the amount of previous steps). Particularly for the Zener
model, we know that the relaxation modulus is exponentially decreasing, meaning that
each step further away from the point of interest is less relevant in the calculation of
the stress. It is because of this that we can afford to reduce the amount of steps used
in the calculation.

To study the algorithm in the different viscoelastic behaviors, the following param-
eters are analyzed:

� Amount of previous timesteps (nt): Given the way in which the integration is
approximated by the discrete timestep, it is expected that accuracy should in-
crease if we consider a bigger phase space, simply because the integration will be
more accurate. However, since DDI works with a clustering scheme, it can also
realistically be expected that adding more dimensions to the problem will return
less accurate solutions. This should be seen in the results as finding an optimal
amount of steps that will yield the best solution.

� Amount of timesteps per relaxation time (h): From the previous point, it is
realistic to expect that the amount of timesteps needed for an optimal solution is
not the same for every case and it will be highly dependent on the settings of the
experiment. One way to standardize the analysis is to consider the ratio h which
is defined as

h =
nt
τ
, (4.47)

and provides an idea of how much of the strain history is being considered with
respect to the relaxation time of the material.

� Energetic norm tensor (C): Same as in the linear elastic case, it is expected that
the C tensor will have an effect in the accuracy of the solution. The effect will
be analyzed and discussed, but in the majority of the cases, C will be consider
as infinite, which is equivalent to perform the clustering only considering the
distance between strains and not stresses. Algorithmically, this is achieved by
limiting the outer iterations of DDI to just one cycle. This is done in accordance
to the results by Dalémat in [26], where it was seen that for single material samples
the accuracy of DDI tends to stabilize at a lower point when bigger values of C
are considered. This choice is made also to have simpler results: studying many
parameters together provides endless combinations, so in the cases where C is not
explicitly analyzed then it is not considered.
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Finally, a small mention of the parameter r∗. The effect this value has already been
studied by Dalémat in [26,27], and it has also been address in Chapter 3, with similar
results. Because of this, we will not refer to its effects in this chapter. A value in
the range of r∗ = 100 − 300 will be chosen, since it should provide accurate solutions
without slowing down the computations or cluttering the images obtained. The effects
of the variation of this parameter will not be addressed in this work, although similar
results to [26,27] can be expected due to the mathematical nature of this parameter.

4.4 Analysis of the updated algorithm

To test the efficiency of the modifications to DDI we propose a set of examples designed
to study the differences between this new formulation and the original one. The tests
are performed taking into consideration the parametrizations mentioned in the previous
section, as well as the most common force profiles presented in Figure 4.10.

4.4.1 Comparison between DDI and updated version for a simple case

A first small example is performed just to show how the algorithm works. We consider
the sample in the truss case, With a parameter Ev = 10, meaning that the stiffness
of the viscoelastic branch of the model is ten times higher than the elastic one. This
should provide a sample with a rather viscoelastic behavior. The parameter for the
time scale is set as Dv = 1, which means that the experiment should last around the
same amount as the relaxation time, so there is enough time to develop the viscoelastic
behavior in the sample.

The displacement profiles applied in the sample are arguably the two most common
tests for viscoelasticity: first, a relaxation test is performed, in which the sample is
stretched 10% of its length for 1 experiment time (texp = 1 in this case) and then is
kept in position until 5 times the experiment time is reached. The second case is an
oscillatory test. The sample is initially prestressed by stretching it 10% of its length,
assumed to be long enough before the test so the sample has already relaxed. After
this, the sample is stretched and compressed 5% of the length around this initial point,
meaning that the sample is oscillating between a deformation between 5 to 15%. We
consider that one oscillation is performed in one experiment time, so the test is run
until 5 experiment times are passed. The displacement profiles are shown in detail in
Figure 4.11.
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(a) Displacement profile of relaxation test. (b) Displacement profile of oscillatory test.

Figure 4.11: Displacement profiles for DDI test.

For both tests, the problem is solved using FEM to obtain the strains that are
needed in DDI. The advantage of this is that we also have the real solution for the
stresses that we can use to compare against the estimations of DDI. If all strains εt and
stresses σt (with t representing each timestep in the simulation) are plotted together,
we can obtain the εt−σt phase space shown in Figure 4.12. We can see that without a
distinction of time progression there is not much use for this kind of graphic, since there
is no way that any property of the material can be understood from here. However,
when compared to the same results obtained by DDI it gives us an idea of the behavior
of the algorithm and the accuracy of the estimations.

(a) εt-σt space for relaxation test. (b) εt-σt space for oscillatory test.

Figure 4.12: Strain and stresses for both deformation profiles.

For the relaxation test, DDI is performed in two ways. The first one is using the
normal DDI, considering a phase space formed by instantaneous εt and σt, as we have
done previously in elastic materials. The second approach is the modified version,
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where we assume some sort of temporal connection between snapshots. In this case,
we consider a phase space formed by εt, εt−1 and σt. The results for both attempts
are shown in Figure 4.13. It is clear by the dispersion of the mechanical states that
using the modified formulation for DDI visibly improves the estimations of stresses,
giving a clearer visualization of the εt − σt space. Since stresses are defined by a full
strain history, considering even just one step of past strains helps to predict better the
behavior of the stresses. In these images, the material states are left as a reference, but
for the time being they serve no purpose other than stabilizing the algorithm.

(a) εt-σt space for original DDI. (b) εt-σt space for modified DDI.

Figure 4.13: Strain and stresses for both DDI algorithms in the relaxation test.

This can be appreciated better when we visualize the stress over time. Taking a
random element in the mesh, we plot the estimated stresses over time and we compare
it to the original solution provided by FEM, which is shown in Figure 4.14. In here we
see that the results obtained are quite noisy given the nature of the test, but however,
we can observe that the modified version of DDI provides a curve that remains closer
to the real solution. Since strains are kept constant over time for most of the test,
we can also see that DDI tends to converge to a final value of stress which cannot be
corrected, since we are basically feeding the algorithm the same strain state over and
over.
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Figure 4.14: Stress over time for an element of the mesh in the relaxation test.

We can repeat the same exercise for the oscillatory test, with the results shown in
Figure 4.15. From here we can see a similar trend as the relaxation test, specially when
plotting stress over time. However, one thing to notice is the fact that the improvement
seems to be less pronounced than the relaxation case. One theory that could explain
this behavior is that, since we are using an oscillatory strain profile, the strains are
repeated many times, which provides DDI with a better database to estimate the
stresses. We have already seen in previous chapters that the most important factor for
data-driven methods is the availability of a good database of values on which to base
the estimations.
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(a) εt-σt space for original DDI. (b) εt-σt space for modified DDI.

(c) Stress over time for an element of the mesh.

Figure 4.15: Results of DDI estimations for oscillatory test.

To compare the accuracy of the two DDI algorithm we go back to the histogram plots
introduced in previous chapters. In Figure 4.16 the error distribution of the estimated
mechanical stresses is displayed for both algorithms together in both tests. It is clear
from this figure that the relaxation case benefits greatly from a modified formulation
of DDI. For the oscillatory case we have an improvement, but not a big one. Given the
increased computational time that the modified version of DDI can incur if a bigger
phase space is used, this is a point that needs to be carefully considered.
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(a) Histogram error plot for relaxation test. (b) Histogram error plot for oscillatory test.

Figure 4.16: Histogram error plots for both cases.

4.4.2 Parameter study and limit cases

The previous example sheds a very good light on the new formulation of DDI, but it
consist only on one case that was specifically selected to display these improvement.
To test the overall performance of the extended formulation, a parametric study is
performed to study where are the advantages of the new DDI and where it falls short.

As before, the stiffness of the elastic branch as well as the relaxation time are fixed
and we perform different tests by varying the stiffness of the viscoelastic branch and the
length of the experiment time. The displacement profile used for these tests is a cubic
oscillatory function, which is applied in a similar fashion: the sample is prestressed
by stretching it 10% of its length and when it is relaxed, a cubic sine function (sin3)
is applied to keep the sample stretching in between 5 to 15% of its length. The time
of the experiment coincides with one oscillation, but its length varies according to the
parameter Dv. The use of a cubic sine is made to avoid having continuous derivatives,
which can have a reinforcing effect on the data provided for the DDI algorithm.

Analysis of Ev, Dv and nt

As it was shown in Figure 4.8, when we talk about the parametrization of the Zener
model we cannot make a separation between the stiffnesses of the spring or the time
scale of the problem, since they are all closely related to give the properties to the
material. Giving a higher stiffness to the viscoelastic branch does not guarantee a
viscoelastic behavior since we could have a test that is too fast for the viscoelasticity
to develop, and the opposite can also be true. Because of this, the parameters will be
studied together.

For all our cases we consider three different values for both Ev and Dv. For Ev,
we take values of 0.1 to represent a highly elastic behavior, 10 for a highly viscoelastic
behavior and 1 for a balanced case. The same values are considered for Dv, where
0.1 gives us a slow test that will be able to develop viscoelasticity, 10 is a fast case
that will make the behavior be closer to elasticity and 1 is the moderate case. Of all
these combinations, we will show here the cases for Ev = 0.1 and Dv = 1, which will

85



4.4. ANALYSIS OF THE UPDATED ALGORITHM

behave as an elastic case; Ev = Dv = 1, which is a mild viscoelastic case; and Ev = 10
with Dv = 0.1 and Dv = 10, which should behave as a viscoelastic and an elastic case,
respectively.

Finally, to test the accuracy of the modified algorithm we perform DDI considering
a different amount of previous steps (nt). All the examples here are discretized by
taking 20 timesteps per experiment time, meaning that all the simulations run for 100
steps. An unmodified DDI is always run (nt = 0) to be compared with the modified
versions. The modified algorithms are consider by taking 1, 5, 10 and 20 previous strain
steps, which correspond to different intervals based on the experiment time.

� First, we check the elastic case of Ev = 0.1 and Dv = 1. Considering a low value
of Ev basically ignores the contribution of the viscoelastic branch completely,
so in this case the value chosen for Dv is irrelevant for viscoelasticity purposes.
Performing the DDI on the tested sample gives us the different estimation for
the mechanical stresses, whose accuracy is analyzed through the histogram plot
from Figure 4.17. Although it has a different look, this plot represents the same
information that we have seen in previous histograms, with the difference that
now bars are changed for points representing their value. This is done to have a
cleaner view of the different methods, since we are now comparing five different
cases together. In here we can see that the accuracy of DDI is not very much
affected by the amount of steps considered, but there is a slight decrease as more
previous steps are added. We attribute this to the fact that elastic materials do
not have a need for strain histories since all stresses are instantaneous. Adding a
history increases the complexity of the problem without providing any benefit to
the calculations, which in turn is detrimental for the accuracy of the method.

Figure 4.17: Histogram plot for elastic case with Ev = 0.1 and Dv = 1.

This behavior is not limited to the case where Dv = 1. If we do an error analysis
of the full system considering Ev = 0.1 for different values of Dv we can see that
the trend is similar for all values. In general considering a classical DDI approach
is better for the estimations than the modified version, which is represented in
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Figure 4.18, however, no matter what value we take for Dv the accuracy will be
similar, since we are disregarding the viscoelastic part of the problem.

Figure 4.18: Error analysis for Ev = 0.1.

� For the second case, we want to analyze the other extreme, where we consider a
heavy influence of the viscoelastic branch. In this case, we consider that Ev = 10,
while we have two possibilities with respect to the time scale. First, we choose
Dv = 10, which means that the experiment time will be to short with respect
to the relaxation time. This effectively makes the model behave as an elastic
case, since there is no time to develop the relaxation of the stresses. The second
possibility is to take Dv = 0.1, which makes the test slow enough, allowing us to
observe the viscoelastic behavior.

For the first case with Dv = 10, the results from DDI are shown in Figure 4.19. In
here we see a correlation with the previous example from Figure 4.17, since there
is not much variation in the estimations provided by the different DDI algorithms.
There is a small improvement in the case with nt = 20 which can be attributed to
the fact that the sample is viscoelastic, it has only not being allowed to develop
this behavior yet.
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Figure 4.19: Histogram plot for Ev = 10 and Dv = 10.

For the case with Dv = 0.1, the results are shown in Figure 4.20. In here, where
the relaxation time is much smaller than the scale of the experiment we can
clearly see the improvement of considering a bigger phase space. In fact, the
classical formulation of DDI has a very low accuracy even compared with the
case of nt = 1, since this algorithm is not adapted for cases outside of the elastic
range.

Figure 4.20: Histogram plot for Ev = 10 and Dv = 0.1.

We can have another look at the methods by plotting the stress versus time for one
element of the mesh. As can be seen in Figure 4.21, the original DDI has troubles
identifying the peaks of the oscillations due to the sudden changes in strain. For
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the modified DDI, we can clearly see how with an increase of dimensionality the
estimations get better, and closer to the curve that was obtained using FEM.
Even though the start is not very accurate, the case with nt = 20 stabilizes later
in time.

Figure 4.21: Stress versus time for Ev = 10 and Dv = 0.1.

We can do the same exercise as before and analyze the error of the system for
different values of Dv. In Figure 4.22 we clearly see that the classical DDI formu-
lation is much less accurate compared to the others, but when we approach the
case of Dv = 10 (pseudo-elastic case) the differences become much less important
and classical DDI becomes more convenient again.

Figure 4.22: Error analysis for Ev = 10.
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� Finally, we show the case with Ev = 1 and Dv = 1, which is an average vis-
coelastic case. In this scenario, we should be able to observe a behavior of DDI
in between the cases exposed before. In Figure 4.23 we see that the trend is to
have an improvement the more we add previous steps in the phase space, as it
was predicted.

Figure 4.23: Histogram plot for Ev = 1 and Dv = 1.

From all the test that we have run here, we can see that the trend of the modified
DDI algorithm is to improve results when the viscoelastic effect is pronounced. If
we are dealing with elastic or almost-elastic cases, then the classical formulation is
the better choice, for both accuracy and computational time. With respect to the
amount of previous steps to consider, we can see that in general it is good to have more
information, since we have improvements in accuracy. However, two things need to be
considered: adding more steps increases the dimensionality of the problem which in
turn increases the demand for both memory and computation time, which is something
that needs to be acknowledged in bigger cases. The other thing is that there is a
point in which adding more steps seems to be less beneficial or outright detrimental
for the results. This effect can be attributed to different causes, which will be analyzed
later, but it is important to keep in mind that more dimensions is not necessarily the
appropriate approach.

Analysis of C

In previous works related to DDI, there is always a discussion centered around the
selection of the parameter C. As discussed in Chapter 2, when we have elastic samples
with one material taking a value of C → ∞ tends to produce the most accurate esti-
mations. However, when looking at the results from Chapter 3 we see that we might
have an optimal value for this parameter. In most cases we decide to consider a value
of C based on heuristic approaches, such as homogenization values or approximations
of the expected Young’s modulus of the material. In this section we want to explore
the effect that C have on the different cases that we have analyzed.
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For testing this effect, we will consider three of the cases shown in the previous
subsection: one quasi-elastic case, one mild viscoelastic and one fully viscoelastic. The
tests are performed with an oscillatory displacement in the same truss sample. For each
case we consider a value C = Ch, with Ch being a constant defined by the properties
of the material model as

Ch =

(
1 +

(
1

1 + ∆t
τ

))
Ev, (4.48)

where ∆t = texp/20. The time of the experiment is the time that it takes for one
oscillation to take place, and it is dependent on the parameter Dv. This choice of value
for C is based on the idea of an equivalent value of a Young’s modulus based on the
properties of both branches of the Zener model. For each test case DDI will be run
with values of 0.1Ch, Ch and 10Ch, to analyze the behavior of the system with low and
high values of C.

The first test case is performed in a sample with Ev = 0.1 and Dv = 1, which
represent a quasi-elastic case as seen previously. DDI is performed considering 0, 1,
5, 10, 20, 40 and 60 previous steps and the error of the full system is obtained, for
which the results are visible in Figure 4.24. In general we see the trend that has been
explained before: increasing the value of C tends to improve the accuracy of DDI, which
was expected for the elastic case with one material. However, the improvement is not
very pronounced. Even more, for cases with low nt the changes can be attributed more
to the randomness of the method rather than a real improvement.

Figure 4.24: Error curves for elastic case with Ev = 0.1 and Dv = 1.

The second test is performed with Ev = 1 and Dv = 1 considering the same DDI
cases. As can be seen in Figure 4.25a, there is not a concrete trend on the effect of C.
For the classical formulation of DDI we have an increase of the error with the increase
of C, while for the others the accuracy tends to stay in the same range. This is also
observed in the case with Ev = 10 and Dv = 0.1 for lower nt, but for higher ones we
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can see that the effect of C value is not very relevant. This is reported in Figure 4.25b.

(a) Error curves for mild viscoelasticity. (b) Error curves for viscoelasticity.

Figure 4.25: Viscoelastic test cases.

From what we have seen, there is an influence of the parameter C in the algorithm,
but its contribution seems to be more complicated and with small benefits. In a general
sense, it is more convenient to choose the value of the parameter still using the heuristic
approach. We have seen that the value of C used in Equation 4.48 gives a good result
while using the algorithm and it is a fairly easy value to select. We have also run tests
considering C = ∞, which provides a good accuracy and it also has the advantage of
performing shorter computations.

4.4.3 Analysis for the oscillatory formulation

In Section 4.4.2 we have studied the effects of the different configurations of the Zener
model and how DDI behaves, however, as it was mention in Section 4.1.2, there is a
more convenient definition of viscoelasticity when we analyze oscillatory cases. In this
section, we aim to check if the behavior that has been observed by defining the pair
of parameters Ev − Dv can be recreated by changing the latter for the frequency of
oscillation, ω. It is worth mentioning that, in the way we have defined the experiment
time, both definitions are analogous. However, an oscillatory formulation allows us to
choose better what frequency we want to use in our test, as well as allowing us to use
combinations of sines and cosines that would complicate the definition of an experiment
time.

For this section we analyze a case with Ev = 10, so we have a viscoelastic behavior
that can be influenced by the frequencies selected. We consider a plane stress assump-
tion with linear triangles and we set the discretization as 20 steps. In this case we do
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not discretize the experiment time, but rather the relaxation time. When we analyze
the algorithm we will focus on the vertical component of the stress tensor. Since all the
tests performed include variations of a vertical load, the y component of the tensor is
accurately represented, while the x and shear components tend to be more unreliable
due to the lack of data.

Three cases are chosen to study the oscillatory formulation. All tests will be con-
sidered as a sum of two sine functions applied in a prestressed sample. In Figure 4.26
we have the plots for the storage and loss moduli, as well as the plot of tan δ ratio for
this particular example. In both plots we also show the chosen frequencies for the three
cases are marked. Test 1 is performed in the middle part of the frequency range, where
the loss modulus is the highest, meaning that the behavior is the most viscoelastic. In
here we should observe the improvement of the modified algorithm. To contrast, tests 2
and 3 are performed on the extremes of the range in order to observe a more moderate
viscoelastic range, closer to the elasticity case. In both cases this happens because the
frequency of oscillation is either to fast or too slow, so the viscoelastic behavior of the
material is not able to develop completely.

Figure 4.26: Loss and storage moduli for the Zener model for E0 = 1 and E1 = 10.

The three displacement profiles applied to the sample can be seen in Figure 4.27.
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(a) Test 1, viscoelastic. (b) Test 2, elastic.

(c) Test 3, elastic.

Figure 4.27: Displacement profiles for selected frequencies.

The results for test 1 show the expected behavior. In Figure 4.28 we can see that
there is an improvement of the stress estimations when we consider more steps, which
is in line with previous results. The overall accuracy of all the methods is lower than
before given that in general DDI has poorer performances for higher dimensional cases,
such as plane stress, something that has been seen in previous works. In the modified
algorithm this problem is accentuated, but we can see that the same postulates made
on the scalar case hold in here.
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Figure 4.28: Histogram plot for viscoelastic oscillation.

For test 2 and 3 we notice that considering more dimensions in the problem is not
beneficial, as it was expected. In Figure 4.29a we see no noticeable improvement from
the modified algorithms, while in Figure 4.29b we actually see a decrease in accuracy
for the higher dimensional cases, since the deformation is small enough to be precise.

(a) Histogram plot for test 2. (b) Histogram plot for test 3.

Figure 4.29: Histogram plot for elastic oscillation.

The oscillatory formulation for viscoelasticity is a convenient way to study the
problem when we have complex functions describing the displacements. We see that
the use of the storage and loss moduli representation allows us to understand the
behavior of the material a priori, which can give us an idea of which DDI formulation
we should use.
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4.4.4 Effect of time discretization

From the previous sections we have established that increasing the dimensionality of
the problem helps obtain a better accuracy for the viscoelastic cases, but it is not a
constant improvement and there is a limit on how many previous steps are beneficial
before the accuracy drops again. In this section we expect to find what is that particular
limit and how it is affected by the time discretization chosen for the problem.

Figure 4.30 shows an example of this phenomenon for an oscillatory test. There is a
progressive improvement of the accuracy of DDI when more steps are considered, until
a peak is reached at nt = 10. If we continue increasing the amount of steps we notice
that the error starts increasing again, where having 40 extra steps is almost equally
accurate as only having five.

Figure 4.30: Example for an oscillatory test.

On this basis we want to study what is the optimal amount of steps that we should
consider for performing DDI. We also explore the possibility that the amount of steps
to consider is not a fixed quantity, but mostly related to the relaxation time of the
material.

To test this we run three different cases in our sample mesh, considering bar ele-
ments. We consider Ev = Dv = 1 in order to have a moderate viscoelastic case and
we take different deformation profiles based on oscillatory movement, as shown in Fig-
ure 4.31. For each one of the test cases the strains are obtained using three different
time discretizations, considering ∆t = τ/10, τ/20 and τ/40. Having different intervals
means that more or less steps are needed to cover the strain history associated to a full
relaxation time, which could translate in the need of less steps to obtain same levels of
accuracy.
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(a) Case 1 (b) Case 2

(c) Case 3

Figure 4.31: Displacement profiles used.

For the first case, the results are shown in Figure 4.32. DDI is run with different
amounts of previous steps for the different time discretizations, and the full error of the
system is plotted for every single case. As it can be seen, there is an optimal point for
each curve, where the error is minimized. Considering too many steps is detrimental
due to the overload of information, but there are other causes to be considered. DDI
is dependent on finding nearest neighbors (which is performed when we minimize the
distances on the phase space). When the dimensionality increases too much the curse
of dimensionality makes it difficult to perform kNN searches.
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Figure 4.32: Error curves for case 1.

We can see that the optimal amount of steps to consider is typically lower than the
amount of steps that cover a full relaxation time. If we scale the results based on the
discretization, we can obtain the error plotted against relaxation times, which is what
is shown in Figure 4.33. In here we see that the optimal point is actually fixed and
corresponds to τ/4. For the case of ∆t = τ/10 we have the optimal point at τ/2, which
is different due to the fact that the case of nt = 2.5 is not available.

Figure 4.33: Error curves for case 1, scaled.

This results are not limited to the first case. In Figure 4.34 we show the results
for the second test where we can see similar results, having the same optimal points as
case 1.
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(a) Error curves for case 2. (b) Error curves for case 1, scaled.

Figure 4.34: Case 2.

Finally we show case 3 in Figure 4.34 to confirm the same results. These results gives
us a good insight at how the modified algorithm works, since we can state now that the
amount of steps that we need depends mostly on the properties of the material rather
than the experiment around it, so we can adapt the parameters if we need to reduce
the amount of computations. However, it is worth mentioning that these experiments
are run in one particular mesh, and it can be expected that the optimal point differs if
we consider different samples.

(a) Error curves for case 3. (b) Error curves for case 3, scaled.

Figure 4.35: Case 3.

4.5 Discussion

During the course of this chapter, we have attempted to tackle the challenge of using
DDI for more complex types of materials. In particular, we have settled on the appli-
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cation for linear viscoelasticity, given that is one of the simplest material models that
can be analyzed outside of the elasticity range. The approach that we have taken is
to modify our DDI algorithm to account for the extra information that viscoelasticity
needs. In particular, we have decided to extend the definition of the phase space as
a way to account for the strain history that defines the way that viscoelastic stress
behaves.

The first results obtained show that there is an improvement in the accuracy of
the results when we use the modified formulation. This is further tested by running
different cases with different parameters to understand better if this improvement is
general or if it limited to certain cases. The results show that the modified DDI
algorithm works better when we deal with cases associated to viscoelasticity. For cases
where the viscoelastic effect is too small, the strain history becomes irrelevant and we
tend to revert to an elastic case, where the classical approach of instantaneous strain-
stress pairs for DDI is much more accurate. Another important results that we have
seen is that the amount of previous steps that need to be considered in the modified
formulation is highly dependent on the relaxation time of the material, rather than
external factors such as the forces used. This allows us to wage if we want to have a
more accurate solution with less mechanical points or if we would like to run a longer
simulation with more steps in between.

One of the main issues with this new formulation is the role that material states
play. Material states, mathematically, have always played the role of stabilization of the
algorithm. They are there to assist with the minimization of the distances in the phase
space, but in elastic materials they also work as a database of points that samples
the behavior of the material. In viscoelasticity, this is not the case. Since the new
formulation includes some sort of temporal connection between the different snapshots,
material points are now clustering points independent of time, which does not allows
us to define any kind of constitutive curve. This issue, however, needs to be studied
further, since there might be possibilities to treat the data in a way that might allows
us to obtain information out of them.

Another issue that we have run into is the plane stress formulation. From the
oscillatory formulation case we see that the algorithm works and behaves accordingly to
the results obtained in trusses. However, accuracy for the plane stress case has always
been low, and the for the viscoelastic cases this is more pronounced. One possible
explanation might be that we have only performed uniaxial tests, where we know that
results might not be accurate due to the under-representation of certain directions.
The other problem associated with it is the fact that just by using plane stress we
immediately increase the dimensions of the problem, so considering more previous
steps to improve the accuracy quickly becomes prohibitively when we are studying
samples with a high amount of mechanical points. This is one of the motivations for
the analysis that is performed in Chapter 5: we seek to use data analysis techniques
that can help us improve both accuracy and computational time through the reduction
of the dimensionality of the problems.

In the current state, the modified algorithm of DDI cannot be proposed as a way of
identifying material properties. Nonetheless, we have verified that it can be properly
used in order to obtain the estimation of the stresses on a sample at every timestep. In
this way, it might be possible to analyze the properties of a material by running DDI,
for example in a relaxation test, where we can denoise the results and fit curves on
the relaxation curves in order to estimate the relaxation time of the material. These
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approaches are not as clean as the ones proposed in [11] or in Chapter 3, but they are
definitely a step forward on the issue of DDI and viscoelasticity.

101



Chapter 5
Alternative approaches to the
data-driven algorithm

In the previous chapters we have focused on different adaptations of the DDI algorithm
aiming to solve problems for different kinds of materials. However, these approaches
do not diverge very far from the original formulation and are more of extensions to
solve new problems. In this chapter, the emphasis will be put in modifications to the
core of the algorithm and combinations with other techniques that could improve the
performance of DDI. Furthermore, such techniques will be also developed as a post-
processing tool for the results.

5.1 Motivation

DDI depends on data that we obtain from testing to avoid having to do arbitrary
choices. Nevertheless, this does not save us from the need of defining certain parameters.
In particular, parameter C is complicated in nature. In previous works, the parameter
C has been defined in several ways: Some have referred to it as a numerical constant
that defines a penalty function (as seen in [17]), while in other approaches (such as [11])
it is treated as a value that allows to define a distance norm. It has also been called a
pseudo-stiffness due to the way it replaces the real one in the equations, even though
its nature has nothing to do with this value. All of these references make it difficult to
give a proper definition of the parameter, and they create confusion when the method
is introduced to people who are not familiar with these techniques. Another problem
related to C is its effect on the accuracy of the problem. A common approach in the
works shown in this document was to take a value of C in the order of magnitude of
the underlying stiffness. In [11] it was seen that lowering the value gave more accurate
predictions. In the work of Dalémat [26] however, it is seen that for elastic samples,
accuracy increases when C tends to infinity. This also clashes with the results seen in
Chapter 3, where it is shown that C has an optimal value for the tested samples.

This sensitivity of the parameter C is not observed in the other parameter N∗: it
has been consistently seen that the parameter has an optimal value that can be found,
given that taking too many or too few points causes problems in the clustering of the
material states. It is because of all these issues that it would be desirable to avoid using
C, to reduce the influence of those choices.
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Another aspect to consider for modifying the process is to improve both the speed
and accuracy of the solutions. In Chapter 4 we saw that increasing the dimensionality of
the problem leads to a slowing of the computation. Dimensionality reduction techniques
can eliminate redundant information, which in turn allows for smaller problems that
can be handled faster. It is also expected that removing the influence of the parameter
C would allow for a more optimal estimation of stresses, that is only dependent on the
amount of clusters selected.

5.2 Modified DDI algorithms

The value of C is used in the definition of the norm to compute the distance between
points. The reason behind is the compatibilization of units from all the dimensions
that define the phase space. For modifying the algorithm we address this issue in
particular. A very naive approach to avoid the difference of units will be to perform a
normalization in each one of the coordinates.

5.2.1 Normalization in DDI

Normalization of units

In statistics, normalization is a common technique that allows the comparison of dif-
ferent datasets. This is achieved by adjusting the scale of each dataset to remove the
differences that restrict the analysis, setting a common ground. There are many ways
of normalizing data, but in this formulation we limit ourselves to the simplest one,
which is the one based on the standard score. If we have a dataset X, assuming that it
follows a normal probability distribution, then it is defined by two parameters: µ and
s, which correspond to the mean (or center) and the standard deviation (or spread) of
the samples in it. In mathematical notation, this distribution is expressed as [53]

X ∼ N(µ, s2). (5.1)

We can adjust the data into a standard normal distribution Z with the expression

Z =
X − µ
s

, (5.2)

which gives a centered distribution (µ = 0) with the standard deviation set to one. An
important property of this distribution is the fact that it is unitless. Working with data
without units is convenient since now the distance in the phase space can be defined
using an euclidean norm, which eliminates the need to use the parameter C.

Application in the algorithm

When applying these ideas into DDI, it should not be forgotten that, even when talking
about normalized datasets, the problem to be solved is physical in nature. Even if the
input data is normalized, the computation of mechanical stresses is constrained by
physical terms, such as the applied forces. All these quantities lie on the phase space,
so whenever a normalization is performed, we are effectively transforming the data from
the original space into a new one, which we will call the normalized space. Since these
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constraints are not necessarily valid in the this new space, we want to limit its use to
the clustering phase of the algorithm, so the process will include a constant transform
between the phase and normalized space.

The normalization of the mechanical states is performed such that

ε̄ =
ε− µε
sε

,

σ̄ =
σ − µσ
sσ

,
(5.3)

which are just a rewritting of Equation 5.2. In here, normalization is performed in each
one of the components of the strain and stress tensors independently. This means that
an independence between the components is assumed to exist in the normalized space.
This independent scaling of each dimension accounts for some of the difference between
the results obtained with the original DDI method and the normalized variant.

(a) Phase space (b) Normalized space

Figure 5.1: Effect of the normalization on the phase space for a scalar case. The data is
centered in the origin with a unit standard deviation.

Having the values of ε̄ and σ̄ allows us to obtain a state mapping in the normalized
space by minimizing the euclidean distances between normalized mechanical states
(ε̄Xe , σ̄

X
e ) and normalized material points (ε̄∗

ieX
, σ̄∗

ieX
). This is performed by using the

k-means algorithm in order to find N∗ different clusters. This approach mirrors the
original DDCM and DDI methodology

As mentioned before, the normalized quantities are limited only to the cluster-
ing phase of the algorithm. The search for updated mechanical states, which are
constrained, has to be performed in the original phase space. For this, the inverse
transformation has to be performed in the normalized material states, i.e.,

ε∗ieX = µε + sεε̄
∗
ieX ,

σ∗ieX = µσ + sσσ̄
∗
ieX .

(5.4)

By using the generated state mapping we can track the points that are clustered with
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each material point, obtain a local mean and standard deviation of the cluster, and
then perform the inverse process. In here, for the sake of simplicity, the values used for
µ and s are the same as those obtained for the mechanical states. This means that we
are treating each one of the material states as added data points in the set that, when
placed, have no effect in both the mean and the standard deviation of the full sample
group. Finally, since now we have the material states in the original phase space we can
proceed with the update of the mechanical states using the original Equation 2.34c.

This process is repeated iteratively until we have reached our desired convergence.
For this, we check that in each step the variation of the values for the material states,
and we stop the process when this variation is small enough. The main procedure for
this modified version of DDI is outlined in Algorithm 5.1.

5.2.2 PCA as a generalization of the normalized algorithm

The high dimension of the data used in DDI is the most important bottleneck when
running the algorithm. All of the data-driven methods presented in this document rely
on the search of nearest neighbors that minimize the objective function. It is known
that increasing the dimensionality of problems has a negative effect on the efficiency
of kNN searches [51] and clustering techniques [52]. Measuring distances becomes
difficult, since in spaces with higher dimensions points tend to become sparser and the
differences between pairs of samples decrease. This phenomenon is called the curse of
dimensionality, and it affects many domains where data needs to be processed.

To improve the performance of the algorithms presented, we focus on reducing the
size of the data in our problems. We address this issue with the use dimensionality
reduction techniques. One of the simplest and most popular techniques is the Principal
Component Analysis (PCA), which we will include in our DDI formulation.

Principal Component Analysis

PCA [54] is a multivariate statistical technique that has an extended use in many
disciplines. The method analyzes a dataset consisting of n samples of dimension d
to extract information of the relation between the variables. The output of PCA are
known as principal components, which are a set of orthogonal vectors that best fit the
data. This means that each vector represents a line that minimizes the average squared
distance from all the points to the line, which is equivalent to the axis that has the
lowest covariance.

PCA is performed by grouping the dataset in one matrix, which we call X. Each
column corresponds to one observation xi, where xi ∈ Rd, so naturally, X has dimen-
sions d × n. The rank of X is L, which is equal or lower than the smallest dimension
of the matrix. In a mathematical form, we call each element of the matrix as Xij ,
referring to a sample j in the dimension i.

Before computing the principal components, the data needs to be preprocessed.
Since PCA measures the principal vectors from the origin, having non-centered data
results in a first principal vector that does not represent the data, since it is actually
a vector pointing from the origin to the data cloud. Figure 5.2 explains this effect in
a graphical form. Because of this, it is always recommended that the data is centered
in the columns, meaning that each dimension of the problem is shifted to the origin.
Additionally, if the units of each dimension are different, it is necessary to normalize
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Algorithm 5.1: DDI procedure with normalized mechanical states.

Output: ε∗i , σ∗i , σXe , ieX

Input: N∗, uXj , fXj , BX
ej , ε

X
e

Normalized DDI procedure
Set k → 0

Initialization: set σ
X(k=0)
e = 0 for each element e in every snapshot X.

Likewise, initialize σ
∗(k=0)
i = 0 for each material state i.

Initialization: for each element e in each snapshot X, normalize the

mechanical strains (εXe ) and stresses (σXe
(k=0)

) with Equation 5.3. Retain
the values of µ(k=0) and s(k=0) for all quantities.

Initialization: Obtain (ε̄
∗(k=0)

ieX
, σ̄
∗(k=0)

ieX
) by clustering all (ε̄Xe , σ̄

X(k=0)
e )

into N∗ groups.

while convergence criterion for ε∗i and σ
∗
i < tolerance do

Obtain the not normalized material states (ε
∗(k)

ieX
,σ
∗(k)

ieX
) using

Equation 5.4.
for X = 1, . . . , NX do

Solve equations∑
k

∑
e

wXe B
X
ej
T

:C : BX
ek · η

X(k)
k

−
∑
e

wXe B
X
ej
T
σ
∗(k)

ieX
= fXj ∀j,X;

σX(k+1)
e = σ

∗(k)

ieX
+
∑
j

C : BX
ej · η

X(k)
j ∀e,X.

with current values of σ
∗(k)
i to obtain updated values of σ

X(k+1)
e .

Compute

µ(k+1)
σ =

1

N eNX

∑
e

∑
X

σX(k+1)
e

s(k+1)
σ =

√
1

N eNX

∑
e

∑
X

(σ
X(k+1)
e − µ(k+1)

σ )2

Normalize the σ
X(k+1)
e

¯
σ
X(k+1)
e =

σ
X(k+1)
e − µ(k+1)

σ

s
(k+1)
σ

Perform a k-means clustering on all (ε̄Xe , σ̄
X(k+1)
e ) to update the

material states (ε̄
∗(k+1)

ieX
, σ̄
∗(k+1)

ieX
).

Set k → k + 1
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the columns by their norm:

X̃i =
Xi − µi
||Xi||

, (5.5)

with Xi being a row vector and µi its mean. By normalizing each column in this way
we obtain a correlation matrix when the multiplication C = X̃X̃T is performed. This
is the basis for PCA analysis.

(a) Principal components of uncentered data. (b) Principal components of centered data.

Figure 5.2: Difference of principal components for centered and uncentered data. The shift of
the data cloud far from the origin creates a first principal component that does not represent
correctly the relation between data points.

Matrix C is positive semi-definite of dimension d × d. Performing an eigendecom-
position we can separate C into two matrices U and Λ, both in Rn×n according to the
equation

C = UΛU−1. (5.6)

In this expression, each column of U is an eigenvector of C, while Λ is a diagonal
matrix with the corresponding eigenvalues from highest to lowest value. The principal
components of X are the columns of the matrix Z that can be computed as

Z = U−1X. (5.7)

Matrix U , as a matrix of eigenvectors, represents an orthonormal basis. Performing
the multiplication in Equation 5.7 is equivalent to perform a rotation of the data X in
the direction of the principal axes of U , which are the axes with the lowest covariance.

PCA can be used for reducing the dimension of the problem when some of the
principal components are eliminated. The trace of the matrix C is equivalent to the
total variance of the samples. This quantity is also equivalent to the trace of Λ or the
total sum of all the eigenvalues. If the eigenvalues decrease in size fast, this means that
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only some of the total amount of dimensions in the problem hold most of the variance.
If we set a tolerance ε, we can approximate the total variance of the dataset with only
k < n dimensions, such that

k∑
λi ≥ (1− ε)

n∑
λi. (5.8)

In this case, we can omit the last d − k columns of the matrix U to create a reduced
set of principal components Zr ∈ Rd×k, consisting of only the first k columns of Z.
This is important for the backward mapping of the data. Inverting the expression in
Equation 5.7 gives the reconstitution of the original data matrix X. If we use the
reduced principal components, then we have

Xr = U rTZr, (5.9)

where we take advantage of the orthonormal nature of U , since U−1 = UT . In this
expression, Xr represents a reduced version of the dataset X, which is an approxi-
mation in where some of the information is removed. The error of the approximation
reduces with the tolerance, meaning that the more dimensions we consider, the closer
both matrices are.

PCA method through SVD

Singular Value Decomposition (SVD) is a technique which works as a generalization
of eigendecomposition for non-square matrices. For any matrix M of size m × p, its
decomposition is expressed as

M = FΣV ∗, (5.10)

where F ∈ Rm×m and V ∈ Rp×p are matrices whose columns are known as singular
vectors; and Σ ∈ Rm×p is a matrix formed by the singular values of M in its main
diagonal. Both F and V are orthonormal bases. In Equation 5.10, V ∗ stands for the
conjugate transpose. If the matrix M is real, V ∗ can be written simply as V T . A full
explanation of the SVD method can be found in Appendix C.

Performing the SVD in the data matrix X yields the decomposition

X = UΣQT , (5.11)

where the matrix U is equivalent to the one obtained from the eigendecomposition
of XXT , and Λ = ΣΣT , with each element λi = σ2

i . This comes from performing
the multiplication of the decomposed matrix and taking advantage of the orthonormal
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properties of Q, i.e., QTQ = I. This results in

XXT = (UΣQT )(UΣQT )T

= UΣQTQΣTUT

= U(ΣΣT )UT

= UΛUT ,

(5.12)

which is equivalent to Equation 5.6. It is worth mentioning that the opposite relation
also holds, meaning that Q is equivalent to eigenvectors of the matrix G = XTX,
whose eigenvalues Λ̃ can be defined as Λ̃ = ΣTΣ.

Generally, PCA is always performed using SVD. The computation of the matrix
XXT can become expensive if the amount of dimensions d is big enough. Even though
the same principal components can be obtained from performing the opposite mul-
tiplication (i.e., XTX), SVD allows us to have both sets of vectors from just one
computation. This advantage becomes more important later in the kernel formulation,
where we do not necessarily have access to the opposite multiplication. Another ad-
vantage from using SVD comes from its implementation. Every mathematical software
includes functions to directly perform SVD in an optimized way, which simplifies and
speeds up the method. Finally, another consideration is stability. It has been seen [55]
that performing PCA through the SVD of X avoids errors coming from the eigende-
composition, as the precision can be worsened when multiplications of small numbers
are made.

5.2.3 kPCA for non-linear manifolds

PCA provides a useful tool that allows to visualize the data in a more optimal space,
which most of the times has the advantage of being reduced. However, there are some
limitations. PCA is a linear technique, meaning that the method is designed to study
the relations between the variables when they lie in a linear manifold. This works fine
when working with simple cases like elasticity, but it falls short when the manifolds are
not linear.

The problem can be assessed with the use of non-linear PCA [56]. The idea is to
find a function that untangles the manifold, i.e. finding a function that projects the
data to a higher dimension where the underlying structure is linear. The problem with
this approach is that such functions might be difficult or even impossible to find. The
non-linearity of the problem also might lead to non-unique solutions, as opposed to the
original PCA.

One way to circumvent this difficulty is through the use of kernels, which are specific
functions designed to skip through the definition of the projecting function and provide
a shortcut to the reduced solution that it is being sought.

Kernel functions and PCA

The basis of kernel Principal Component Analysis (kPCA) is derived from the non-
linear variant. Assuming that the data is mapped nonlinearly from its original base Rd
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to a high dimensional feature space F , we can express this relation as [57]

Φ : x ∈ Rd → Φ(x) = x̂ ∈ F ⊆ Rd, (5.13)

where F is the space where a linear PCA can be performed if we choose the function Φ
correctly. Assuming that the projected data is centered, i.e.

∑d
k Φ(xk) = 0, we perform

the same multiplication as before for the correlation matrix, namely

Ĉ = X̂X̂T

=

n∑
i=1

Φ(xi)(Φ(xi))
T .

(5.14)

As for the linear case, the eigenvalues and vectors of matrix Ĉ have to be found with
the expression λV = ĈV . Since all vectors V lie in the span of Φ(x1), . . . ,Φ(xn), the
system can be equivalently written as [58]

λΦ(xi) · V = Φ(xi) · ĈV , ∀k = 1, . . . , n, (5.15)

where there are coefficients α1, . . . , αn such that

V =

n∑
i=1

αiΦ(xi). (5.16)

Substituting everything in Equation 5.15 and simplifying, we arrive at the expression

λα = K (5.17)

where

Kij = Φ(xi) · Φ(xj) (5.18)

is a matrix of inner products between the projections of the dataset. The solutions αk of
Equation 5.17 are normalized by forcing the corresponding vector vk to be normalized,
i.e., having a norm of 1, which makes the base V orthonormal.

As in the linear case, to extract the principal components we must perform the
rotation on the dataset by multiplying against the k highest eigenvectors (according to
the tolerance set). Applying this to one point xj , we obtain

V k · Φ(xj) =

n∑
i

αki (Φ(xi) · Φ(xj)). (5.19)

From here it can be seen that neither during the eigendecomposition of the problem in
Equation 5.15 nor during the computation of the principal components in Equation 5.19
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the explicit value of the function Φ is required, since we only need inner products
between sample projections. Thus, we can use functions, called kernel functions, to
approximate this unknown relations. In mathematical terms, this translates to

κ(x,y) ≈ Φ(x) · Φ(y). (5.20)

One definition that is important in kPCA is the term of Gram matrix. This matrix
is defined as the matrix of inner products, meaning that each element ij represents the
dot product between samples Φ(xi) and Φ(xj). If this matrix is approximated with the
kernel functions it is often referenced as a kernel matrix K, where each term is defined
by κ(xi,xj). One of the conditions that the kernel function κ needs to follow in order
to be a valid choice is that it needs to be defined in such a way that allows matrix K
to be positive semi-definite, which means that each eigenvalue will be positive or zero.
As was mentioned before, this condition is also fulfilled in the linear case given how
matrix C is defined, so it is an imposed condition when projecting the data into higher
spaces.

The selection of the kernel to use is a sensitive choice that mainly depends on the
problem. Every kernel used gives results, but some provide a better insight on the
data than others. In this case, there are a set of kernels that are normally used due to
their simplicity of implementation and good performance. In this document we focus
specifically on gaussian kernels [59], which are defined in a way similar to gaussian
functions [59], namely

κ(x,y) = exp

(
−||x− y||

2

b2

)
, (5.21)

where b is the parameter to define. Usually, b is taken as the mean of the distances
between samples, so it is in the order of magnitude of the data, similar to the standard
deviation. This kernel is also referred sometimes as a radial kernel. Other famous
choice that is commonly used is the polynomial kernel [60], which is defined as an inner
product raised to some power that needs to be defined. In a general sense, they can be
written as

κ(x,y) = (x · y + c)d, (5.22)

where c is a constant value that can be used to shift the functions, but typically is left
as 0; and d which should be chosen depending on the distribution of the data. When
we consider an unshifted polynomial kernel of order 1 (i.e., c = 0 and d = 1), we just
revert back to the original case of linear PCA.

One final consideration is the centering of the kernel matrix. In linear PCA we start
by taking centered samples according to Equation 5.5. In the kPCA case we start with
the same centered samples, but there is no certainty that the samples will be centered
in the feature space. Because of this, the centering of the kernel matrix is performed
in the feature space before performing the eigendecomposition. Considering that the
covariance matrix in the feature space can be expressed as Ĉ = X̂X̂T (where X̂ is
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unknown), we can center each dimension of the data as

¯̂xj = x̂j −
1

n

n∑
i

x̂i, (5.23)

meaning that we are centering the columns of X̂. In matrix form this is expressed as

X̄ = X

(
In −

1

n
1n

)
, (5.24)

where the subindex n means that the matrix is of size n× n. Performing the multipli-
cation we obtain

¯̂
C =

¯̂
X

¯̂
XT = X̂

(
In −

1

n
1n

)(
In −

1

n
1n

)T
X̂T

=

(
X̂ − 1

n
X̂1n

)(
X̂T − 1

n
1nX̂

T

)
= X̂X̂T − 1

n
(X̂1n)X̂T − 1

n
X̂(1nX̂

T )− 1

n2
(X̂1n)(1nX̂

T ),

(5.25)

which is equivalent to the elemental expression

¯̂
Cij = x̂ix̂j

T − 1

n

n∑
k=1

x̂kx̂j
T − 1

n

n∑
q=1

x̂ix̂q
T − 1

n2

n∑
k=1

n∑
q=1

x̂kx̂q
T . (5.26)

In general, performing kPCA is straightforward. The procedure is the same as the
one shown in Algorithm 5.2, with the added step of computing the kernel matrix first.
However, as was mentioned before in Section 5.2.2, the computation of the multiplica-
tion C = XXT is expensive when the amount of samples is too big. Even more, the
size of the kernel matrix K ∈ Rn×n can become too big to store in memory. In linear
PCA we got around this problem performing an SVD decomposition. In the non-linear
case, since we do not know the untangling function Φ, this is impossible. Given that
for performing a kPCA we only need the eigenvalues and vectors, an approximation
method is proposed to estimate these quantities from reduced subsets of the original
dataset.

Nystrom approximation

When performing kernel-based problems, the computational complexity required to
find the solution is in the order of O(n3) [61], which is the reason why the problem
becomes unaffordable. The proposed solution, called the Nyström method, works by
approximating the kernel matrix K with a reduced-rank matrix K̃. This allows us to
reduce the complexity of the problem to the order of O(m2n), where m is the rank of
the reduced matrix. The Nyström method [62] was originally presented as a numerical
way of solving integrals, similar to a Gaussian quadrature. Lately, with the rise in
popularity of kernel-based methods it has made its way into the field to address the
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size problems.
When considering a kernel κ(x,y) in a generalized form [61]

κ(x,y) =
n∑
i=1

λiφi(x)φi(y), (5.27)

with λi being the eigenvalues arranged in a decreasing form and φi the respective
eigenfunctions of the kernel κ, in a way that we have

∫
κ(y,x)φi(x)p(x)dx = λiφi(y), (5.28)

where p(x) is the probability density of x. If the probability distribution is replaced
by a set of distributed samples xk, Equation 5.28 can be approximated as

1

q

q∑
k=1

κ(y,xk)φi(xk) ≈ λiφi(y). (5.29)

The eigenvectors are p-orthogonal, meaning that
∫
φi(x)φj(x)p(x)dx = δij . This is

equivalent to a constraint in the discrete problem of the form 1
q

∑q
k=1 φi(xk)φj(xk) ≈

δij . In matricial form, Equation 5.29 can be expressed as

K(q)U (q) = U (q)Λ(q), (5.30)

considering K(q) as the kernel matrix of a dataset of q samples, called landmark points,
U (q) are the orthonormal eigenvectors of K(q) and Λ(q) are the decreasing eigenvalues
as a diagonal matrix. If the q samples are a subset of the original dataset, taking xj
as y in Equation 5.29 and matching it to Equation 5.30, we obtain

φi(xj) ≈
√
qU

(q)
ji ,

λi ≈
λ

(q)
i

q

(5.31)

which can be plugged again into Equation 5.29 to get

φi(y) ≈
√
q

λ
(q)
i

q∑
k=1

κ(y,xk)U
(q)
ki =

√
q

λ
(q)
i

κy · u(q)
i , (5.32)

where κy accounts for the vector [κ(x1,y), . . . , κ(xq,y)]T and u
(q)
i is the i-th column

of U (q). Equation 5.31 and Equation 5.32 is what is referred as the Nyström approxi-

113



5.2. MODIFIED DDI ALGORITHMS

mation of the i-th eigenfunction. In matricial form they are respectively

Λ =
1

q
Λ(q), (5.33a)

U =
√
qKq,yU

(q)Λ(q)−1
. (5.33b)

When performing the kPCA analysis, what we look for, i.e. the principal com-
ponents, are basically just combinations of the eigenvalues and vectors of the original
kernel matrix. The Nyström technique shown above allows us to directly compute an
approximation of both eigenvalues and vectors without the need of explicitly creating
the original matrixK. If we consider the kernel matrix K̃ ∈ Rm×m as the kernel matrix
computed with a subset of m points (as seen in Figure 5.3), it can be eigendecomposed
as always with Equation 5.6 into

K ≈ K̃ = ŨΛ̃Ũ , (5.34)

with both Ũ and Λ̃ being the eigenvectors and values of the reduced matrix. By
matching Equation 5.33 against the matrices from Equation 5.34, we reach

Λ ≈ n

m
Λ̃, (5.35a)

U ≈
√
m

n
KnmŨΛ̃−1, (5.35b)

where Kmn = κ(xm,xn) is the portion of the kernel matrix that relates the subset of
m landmark points against all points in the dataset.
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Figure 5.3: Diagram of the idea behind the Nyström approximation. A subset X̃ of points
is chosen from the full dataset X to perform the matrix calculations. The subset of points
has to represent the properties of the full dataset, so they need to be chosen properly to avoid
over-representing certain features.

As can be seen, if we consider m << n the computation complexity of the problem
reduces drastically, since the main problem is reduces from a complexity of O(n3) to
O(m2n), while the accuracy of the solution does not decrease dramatically with a low
amount of points [61].

The choice of the points to perform the approximation is approached in many
articles. Since the data selected should be representative of the full dataset, we need
them to be properly distributed in the space to avoid a shift in the principal components
due to variations of the mean values and their standard deviation. A common approach
was to select the points randomly [61]: if a certain amount of points is taken we can
expect them to be equally distributed without a bias. However, these points do not
have to necessarily belong to the dataset. Proposed by Zhang and Kwok [63], the idea of
clustered Nyström proposes another solution for this sampling. As its name indicates,
the method works by using grouping techniques that allows to find the centroids of
subgroups of points in the dataset. In their work, they use particularly the k-means
technique [32] to identify them. The main idea is to approximate the kernel matrix
through the use of the k points obtained by k-means. It is known that the Nyström
approximation ofK(xi,xj) is exact if xi and xj belong to the subset of landmark points,
but this only happen with a reduced amount of samples. Because of this, it is proposed
that the landmark points are actually the centroids of m disjoint clusters in the dataset,
since each point would represent an average of the cluster. This approach allows to
avoid the selection of the landmark points and gives a relatively accurate solution, since
the total error for the approximation of the kernel matrix is bounded [63].

The clustered approach is of interest for our particular case, since we do not have the
need to perform an extra step for clustering. In the DDI case, we can take advantage of
the material points, which already represent the centroids of N∗ clusters of mechanical
points, which are the ones we have been using in our PCA approach to DDI.
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5.2.4 Application of principal components in DDI

The use of both PCA and kPCA methods in the DDI algorithm follow similar consid-
erations as the normalized case. We need to be careful of the fact that the mechanical
states can only be computed in the phase space, so we will be projecting again back
and forth between different spaces.

To perform this variant of DDI we start by normalizing the mechanical states ac-
cording to Equation 5.5. As in the normalized case, we have to perform this operation
in each row of the data matrix, meaning that each component of the strain and stress
tensor are considered independently. As an example, we consider the plane stress case,
where ε = [εxx εyy εxy]

T and σ = [σxx σyy σxy]
T . In this case, each sample xi can be

written as

xi = [(εxx)Xe (εyy)
X
e (εxy)

X
e (σxx)Xe (σyy)

X
e (σxy)

X
e ]T , (5.36)

this time as a column vector, where e represents each element and X each snapshot from
where the data point was taken. This gives us a data matrix X of size 6× (N e × nX)
of the form

X =


ε1xx ε1yy ε1xy σ1

xx σ1
yy σ1

xy

ε2xx ε2yy ε2xy σ2
xx σ2

yy σ2
xy

...
...

εN
s

xx εN
s

yy εN
s

xy σN
s

xx σN
s

yy σN
s

xy

 . (5.37)

In the case of linear PCA, after normalizing each column, an SVD is performed to obtain
the decomposition of the matrix according to Equation 5.11. These matrices are used
to compute the principal components Z using Equation 5.7. A graphical display of
how this transformation affects a dataset for a truss case is shown in Figure 5.4. The
case for the trusses is shown given that its 2D representation has a better visualization,
but the same effect applies to any number of dimensions without loss of generality.

116



5.2. MODIFIED DDI ALGORITHMS

(a) Dataset in phase space (b) Dataset in projected space

Figure 5.4: Transformation of the dataset when PCA is applied. As it can be seen, the
projected space is just a rotation of the data to fit its principal axes, where the covariance is
the lowest.

In the case of kPCA, before performing the SVD we obtain the kernel matrix with
our chosen kernel according to Equation 5.21 and 5.22. Once the matrix is obtained
it is centered in the feature space with Equation 5.25. This centered matrix is either
subjected to the SVD procedure to obtain the principal components in a similar fashion
to the linear case or subjected to the Nyström procedure to obtain the approximated
components.

Now the process continues as in the normalized case. In this feature space we can
find the state mapping by minimizing the distances between each projected mechanical
state (i.e., zi) and the projected material states (z∗

ieX
) using again a nearest neighbors

search or a k-means clustering. The main difference here is that in this part of the
process we can perform the dimensionality reduction. If the first principal components
carry most of the information from the data matrix X, we can omit the last ones and
perform the clustering algorithm in a set with smaller dimensions, which improves the
speed of the minimization.

After the projected material points are found, the inverse process is performed to
obtain the material points using Equation 5.9 in the linear case. In here we know that
the material states do not belong to the original dataset, but since U correspond to an
orthonormal base the transformation still holds. These reconstituted material states
are normalized, so the normalization is removed performing the opposite relation as
was done in Equation 5.4, namely

(x∗ieX )d = µxd
+ ||(x)d||(z∗ieX )d, (5.38)

where d corresponds to each one of the dimensions of each sample x.
In the kernel version, the issue of the backwards projection from the feature space

needs to be addressed. Since the projection function is not known, there is not a proper
way to track back the material states, considering that they do not have a pre-image in
the phase space. A proper approach is to consider that the pre-image x∗ of a point z∗

in the feature space can be obtained as a weighted average of the points xj [64]. In this
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regard, the idea is that, the closer the points zj are to the new point z∗ in the feature
space, the closer the points xj will also be to x∗ in the phase space. For simplicity, in
this document we will take advantage of the clustering performed and we will consider
the material point in the phase space as an average of the mechanical points associated
to it in the feature space.

Now, we proceed in a similar fashion as the normalized case: the mechanical states
are updated with Equation 2.34c and redo each iteration until the desired tolerance is
reached. The full procedure is outlined in Algorithm 5.2.

5.3 Comparison of all presented methods

The presented methods in Section 5.2 introduce a complexity in the computation of
DDI, which can affect both accuracy and efficiency. In the present section we aim
to analyze the performance of all the new methods introduced and compare them
against the original DDI algorithm used in previous chapters to see the advantages and
disadvantages of the new formulation.

5.3.1 Analysis of performance

As mentioned above, our main focus is to check how the accuracy of the stress es-
timations compares between the different methods, as well as how long does it take
to converge to the same criteria in each one. It might be worth to have a bit worse
accuracy if the algorithm behaves much faster or vice-versa, but not if results stay in
similar ranges.

Since the DDI algorithm and its derivatives are random in nature, we perform
repetitions of the same problem in order to obtain an average and dispersion of the
results. With this we want to study in particular four points in the algorithm: accuracy,
initialization time, convergence time and accuracy. These points will be studied in the
cases we have seen earlier, trusses for the scalar problem, plane stress for a more
conventional analysis and viscoelasticity to assess the dimensionality issue.

Truss case

The aim of this analysis is not to test extreme cases, but to study the behavior of the
methods in a common and simple setting. For the case of the truss, we will work with
an heterogeneous sample in a similar fashion to the ones studied in Chapter 3.

The sample will be a rectangular membrane, shown in Figure 5.5. It is embedded
with stiffer inclusions in a ratio of stiffnesses of rE = 10 as defined in Equation 3.2.
The matrix is modeled with stiffness Em = 1 to follow the same procedure as the
previous chapter. The sample is meshed with triangles, where each edge of the triangle
is considered as a bar element with one integration point. In this case, the mesh is
composed of Nn = 904 nodes and N e = 2629 elements. We use the same loading
cases shown in Figure 3.1 but we consider the force applied in 20 steps, so we have
NX = 160 snapshots. This amounts to a total of 420640 mechanical points, which
are clustered with N∗ = 1400 material points, meaning that there is a ratio r∗ = 300
between mechanical and material states. For the constant C we choose the unity, so
we can let the algorithm converge.
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Algorithm 5.2: DDI procedure with PCA.

Output: ε∗i , σ∗i , σXe , ieX

Input: N∗, uXj , fXj , BX
ej , ε

X
e

PCA DDI procedure
Set k → 0.

Initialization: set σ
X(k=0)
e = 0 for each element e in every snapshot X.

Likewise, initialize σ
∗(k=0)
i = 0 for each material state i.

Initialization: data matrix X(k=0) is formed by stacking each mechanical

state (εXe
(k=0)

,σXe
(k=0)

) from element e and snapshot X in columns as
shown in Equation 5.37.

Initialization: perform the normalization of each row of X(k=0) with
Equation 5.5.

Initialization: perform an SVD of this normalized matrix X̃(k=0) to
obtain the principal components Z, as in Equation 5.11.

Perform a k-means clustering on the feature space formed by Z(k=0) to
obtain the projected material states z∗i

(k=0) and the state mapping ieX .

while convergence criterion for ε∗i and σ
∗
i < tolerance do

Project back from the feature space Z(k) using Equation 5.9 to obtain

the material states (ε
∗(k)
i ,σ

∗(k)
i ).

for X = 1, . . . , NX do
Solve equations∑

k

∑
e

wXe B
X
ej
T

:C : BX
ek · η

X(k)
k

−
∑
e

wXe B
X
ej
T
σ
∗(k)

ieX
= fXj ∀j,X;

σX(k+1)
e = σ

∗(k)

ieX
+
∑
j

C : BX
ej · η

X(k)
j ∀e,X.

with current values of σ
∗(k)
i to obtain updated values of σ

X(k+1)
e .

Form data matrix X̃(k+1) by stacking the updated mechanical
states and normalizing the columns.

Perform an SVD on X̃(k+1) to obtain the principal components
Z(k+1).

Perform a k-means clustering on Z(k+1) to obtain the projected
material states z∗i

(k+1) and the new state mapping ieX .
Set k → k + 1
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Figure 5.5: Heterogeneous mesh for truss example.

If we run the original DDI algorithm, we obtain the results shown in Figure 5.6a.
This is contrasted against the results from the normalized algorithm in Figure 5.6b.
As can be seen from the images, using a normalized approach for DDI tends to move
the mechanical states closer to the reference lines given by the underlying constitutive
model used for generating the data. We can see this also on the material states, which
now represent more accurately the specified behavior.

(a) Phase space results for original DDI. (b) Phase space results for normalized DDI.

Figure 5.6: Phase space results for different DDI algorithms.

The results for the PCA algorithm are shown in Figure 5.7a. Next to it we repeat
the results from the normalized algorithm from Figure 5.6b. This is done to show the
similarity of the results, given the procedure performed. Both results tend to show
similar results due to the way they are formulated. As was explained before, PCA
requires the normalization of the columns that are used in the algorithm since we are
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dealing with different units. This in fact makes the PCA algorithm behave in the same
way as the normalized one, only with the exception that the data is rotated around the
origin to fit the axes with smallest covariance. This case is only valid as long as we are
not reducing dimensions when using PCA, which is something that is not done in the
truss case since we only consider two.

(a) Phase space results for PCA DDI. (b) Phase space results for normalized DDI.

Figure 5.7: Phase space results for different DDI algorithms.

Some of the aspects of the algorithm are compared in Table 5.1. We can clearly
notice that both modified algorithms are not efficient in comparison to normal DDI.
We have an increased initialization time due to the transformations and clustering that
is required in the beginning of a new run. Convergence time is also high, but if we
check against the number of iterations we can see that the performance of all three
algorithms are not so far apart. In fact, we can see that the modified algorithms tend
to have troubles converging to the desired solution, but in general they have a similar
performance. The biggest advantage from using this new formulations comes from
the accuracy of the estimations. We can see an improvement of both algorithms with
respect to the original DDI, despite the increased computation.

Table 5.1: Performance comparison for truss case.

Original DDI Normalized DDI PCA DDI

Initialization time (s) 1.519 ± 0.350 11.844 ± 1.507 11.135 ± 0.157
Convergence time (s) 67.144 ± 2.601 280.788 ± 44.149 261.083 ± 24.016
Number of iterations 136.0 ± 0.000 492.0 ± 20.575 493.3 ± 21.187
Time per iteration (s) 0.494 ± 0.019 0.570 ± 0.079 0.529 ± 0.037
2-norm error 0.268 ± 0.000 0.172 ± 0.005 0.176 ± 0.007

This error can be captured better if we use the histogram plots. In here we notice that
both curves for the new algorithms are very similar, and that they predict much better
the mechanical states.
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Figure 5.8: Error histogram comparing algorithms.

During the process of analyzing the algorithms we have decided not to consider a
kernel approach for DDI. PCA has the advantage that the performance of the SVD
is a fast process, however, the Nyström approximation, while it improves performance
dramatically in kPCA, it is still too inefficiently applied in our algorithm to provide a
useful result. Kernel methods will however be used in Section 5.4, since we do not need
to address the computation time or refer to recursive schemes.

Plane Stress case

For the plane stress case we work with the same data as for the truss. The mesh is
the same one from Figure 5.5, but now we consider the triangles as the elements with
one integration point. This keeps the amount of nodes equal at Nn = 904, but changes
the number of elements to N e = 1726, leaving us with 276160 mechanical points and
N∗ = 920 material states. The rest of the parameters is left the same, only adapting
C = I3×3 to keep the dimensions accordingly.

The difference from both the classical DDI approach and the normalized algorithm
are more pronounced in this case. In Figure 5.9 we can see that using the normalized
version of DDI tends to sharpen the results in the trace component of the tensor, so
we have less dispersion of the points around the underlying behavior. The same effect
happens with the shear component, but in here we see that the values of the matrix
phase of the sample differ from the expected curve. In both cases we have points that
gather on a vertical line at the origin, which can be attributed to errors in the DDI
process of the data. These points could be corrected with a more adequate choice of
the parameter C.

The case of the PCA DDI with reduced dimensions is shown as a reference, since
the algorithm clearly does not produce proper results. This is also reflected on the
histogram plot in Figure 5.10, where we can see that the error is similar to the original
DDI, but when visualized in the phase space we have a distribution of the points that
is unclear and does not fit properly the underlying behaviors. This can be attributed
to the fact that we are only considering 5 out of the 6 principal components that are
available. In the case of plane stress where each one of the six dimensions are relevant,
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(a) Phase space results for original DDI.

(b) Phase space results for normalized DDI.

(c) Phase space results for PCA DDI.

Figure 5.9: Phase space results for different DDI algorithms.
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removing one of them becomes problematic. Adding the results of performing the PCA
algorithm considering all the dimensions serves as a contrast for this effect: in here
the effectiveness of the algorithm is increased and we have similar results to what we
observe when using the normalized version of the algorithm, similar to what we saw on
the truss case.

Figure 5.10: Error histogram comparing algorithms.

Checking the same parameters as for the truss case, the results are shown in Ta-
ble 5.2. We can notice that for both convergence time and iterations the PCA algorithm
tends to have a big dispersion, which explains in part the bad results. Checking the
total error of the system we see that, even when the distribution of the error for the
mechanical states is similar between PCA and the original DDI, the performance of the
PCA algorithm with trimmed dimensions is worse, but when all dimensions are taken
the values are in similar ranges to the normalized procedure.

Table 5.2: Performance comparison for plane stress case.

Original DDI Normalized DDI

Initialization time (s) 1.6063 ± 0.2126 13.4863 ± 0.7958
Convergence time (s) 54.5952 ± 1.1921 140.0424 ± 5.7927
Number of iterations 31.0 ± 0.0000 288.0 ± 33.8001
Time per iteration (s) 1.7611 ± 0.0385 0.4907 ± 0.0444
2-norm error 0.2913 ± 0.0000 0.2165 ± 0.0014

PCA DDI (90%) PCA DDI (100%)

Initialization time (s) 9.9650 ± 0.4661 11.3745 ± 0.8591
Convergence time (s) 36.3866 ± 35.4598 134.6251 ± 18.0822
Number of iterations 41.8 ± 35.2824 288.3 ± 41.0259
Time per iteration (s) 3.2995 ± 3.2494 0.4678 ± 0.0215
2-norm error 0.3961 ± 0.0890 0.2205 ± 0.0035
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Viscoelasticity case

For the viscoelastic case, since we do not work with heterogeneous sample, we use a
different mesh, shown in Figure 5.11a. We take a rectangular membrane with holes to
avoid homogenization and we take triangle elements with one integration point, having
Nn = 1203 nodes and N e = 2216 elements. The deformation profile applied in the
upper border is a combination of sines as seen in Figure 5.11b, which is computed in
100 steps. this gives an amount of N∗ = 740 material points for 221600 mechanical
states. As in Chapter 4, we define the material with a Zener model with the stiffness
of the elastic branch as E0 = 1 and a relaxation time of λ = 1. The viscoelastic branch
of the model takes a stiffness of E1 = 10, which represents a highly viscoelastic case.
The speed of the experiment is slow, with Dv = 0.1, for a better visualization of the
viscoelastic behavior. As in the plane stress case, we consider C as an identity matrix.

(a) Mesh for viscoelastic case. (b) Deformation for viscoelastic case.

Figure 5.11: Mesh and deformation profile for viscoelastic case.

In the phase space plots we show only the cases for DDI when considering 20
previous timesteps in Figure 5.12. We can notice that both in the trace and shear
component of the phase space the modified algorithms reduce the dispersion of the
points, which is more noticeable in the PCA case.
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(a) Phase space results for original DDI.

(b) Phase space results for normalized DDI.

(c) Phase space results for PCA DDI.

Figure 5.12: Phase space results for different DDI algorithms.
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If we plot all the errors for the three algorithms and the five different amount of
previous steps, we can have a generalized view of the problem. Figure 5.13 shows
that the original DDI particularly behaves badly when considering lower amount of
previous steps, which is the expected behavior, in line with the results seen in Chapter 4.
However, we can see that, for the modified algorithms, the amount of previous steps
that we use to estimate the mechanical stresses does not have a very big effect, since the
results tend to stay in a similar range of error. In particular, PCA algorithm behaves
better than the normalized one, given that we are now able to reduce the dimensionality
of the problem without losing much information.

Figure 5.13: Error plot comparing algorithms.

In Table 5.3 we can see that the time per iteration for the PCA algorithm is much
faster than the normalized version, and it is mostly in par with the original DDI. Even
though PCA is a less efficient algorithm, we can see that reducing the dimensionality
is beneficial for the clustering problem.
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Table 5.3: Performance comparison for viscoelastic case.

Original DDI Normalized DDI PCA DDI

0 previous steps

Initialization time (s) 1.105 ± 0.060 14.121 ± 0.610 7.281 ± 0.100
Convergence time (s) 26.996 ± 0.135 61.741 ± 20.131 49.834 ± 5.038
Number of iterations 38.0 ± 0.000 182.8 ± 112.447 95.0 ± 17.448
Time per iteration (s) 0.710 ± 0.004 0.394 ± 0.109 0.540 ± 0.046
2-norm error 0.295 ± 0.000 0.203 ± 0.002 0.220 ± 0.003

1 previous step

Initialization time (s) 1.306 ± 0.065 19.296 ± 0.203 8.896 ± 0.220
Convergence time (s) 23.581 ± 0.101 107.647 ± 34.865 45.004 ± 3.993
Number of iterations 30.0 ± 0.000 284.8 ± 150.872 95.0 ± 16.138
Time per iteration (s) 0.786 ± 0.003 0.429 ± 0.113 0.481 ± 0.055
2-norm error 0.359 ± 0.000 0.224 ± 0.001 0.208 ± 0.002

5 previous steps

Initialization time (s) 1.664 ± 0.052 50.632 ± 0.989 10.076 ± 0.209
Convergence time (s) 21.033 ± 0.077 189.106 ± 52.727 30.928 ± 2.638
Number of iterations 22.0 ± 0.000 157.6 ± 105.729 34.8 ± 4.290
Time per iteration (s) 0.956 ± 0.004 1.430 ± 0.393 0.893 ± 0.042
2-norm error 0.227 ± 0.000 0.218 ± 0.002 0.203 ± 0.001

10 previous steps

Initialization time (s) 2.258 ± 0.053 117.944 ± 1.241 12.908 ± 0.459
Convergence time (s) 32.161 ± 0.153 310.491 ± 16.859 41.203 ± 1.755
Number of iterations 27.0 ± 0.000 69.9 ± 2.331 31.2 ± 1.932
Time per iteration (s) 1.191 ± 0.006 4.443 ± 0.221 1.323 ± 0.063
2-norm error 0.267 ± 0.000 0.254 ± 0.002 0.236 ± 0.002

20 previous steps

Initialization time (s) 3.166 ± 0.041 244.212 ± 1.750 20.394 ± 0.384
Convergence time (s) 39.915 ± 0.129 598.064 ± 58.218 83.568 ± 4.256
Number of iterations 23.0 ± 0.000 74.9 ± 12.600 37.2 ± 1.989
Time per iteration (s) 1.735 ± 0.006 8.122 ± 1.154 2.248 ± 0.089
2-norm error 0.278 ± 0.000 0.256 ± 0.003 0.240 ± 0.003

5.3.2 Practical example: softer inclusions

One of the issues that we have addressed earlier in this work is the case where the
stiffness of the inclusions is lower than the matrix. The fact that the boundary of the
inclusion is subjected to the displacement of the stiffer surrounding material limits the
deformation that the inclusion would observe compared to the case it were free, which
in turn might hide the real value of the stresses. If the camera we are using for the
imaging technique is not good enough, we could mistakenly assume that the sample
is homogeneous or that the inclusions are harder than what they really are. In this
section we want to see if using the alternative definitions for DDI can helps us identify
better the phase and behavior for these inclusions.

One of the interests for studying this case is localized failure in a sample. A softer
inclusion is used to represent how a certain section of the material that has already
failed behaves. If the material has completely failed, we can assume that the inclusion
will have zero stiffness and the deformation of that section is infinite, but confined to
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the boundaries of the inclusion. If the failure is partial we can have a reduced value
for stiffness with similar effects. In the example analyzed here we assume that the
inclusions are areas with the stiffness reduced to 50% of the original stiffness Em = 1,
which would also trigger the problems we have seen in the correspondence analysis
method in Section 3.5.1.

We consider the same mesh from Section 3.5.2 in plane stress, as seen in Fig-
ure 3.12b. Since this problem is more complicated for DDI, we profit from having a
richer database. Because of this, we apply deformations to the mesh in a similar fash-
ion as seen in Figure 3.1 rather than the more realistic setting that was used originally
in the mesh. The matrix of the sample is considered to have a Young’s modulus of
Em = 1 and a Poisson’s ratio of ν = 0.3, while the inclusions are taken with Ei = 0.5.
The mesh considers Nn = 941 nodes and N e = 1792 elements. Considering NX = 80
snapshots, the total number of mechanical states amounts to 143360 points. We take
C as the identity, while we consider a ratio r∗ = 300, which gives 480 material states.

First, we start by analyzing the histogram plots to see the error distribution of the
mechanical states for the different algorithms, as shown in Figure 5.14. We can notice
straight away that the PCA algorithm with removed dimensions is not very useful in
this case, as observed in the plane stress case of sectionSection 5.3.1, however, PCA
with all dimensions seems to improve on the results in the same way as the normalized
algorithm, which correlates with the previous results.

Figure 5.14: Error histogram comparing algorithms.

If we compare the phase spaces for both cases, in Figure 5.15a we can observe two
different behaviors without a clear separation in the trace component. The mechan-
ical points associated to the matrix elements gather around the expected underlying
behavior, but as we expected it, the mechanical states associated to the inclusions are
not estimated correctly. In Figure 5.15b we see that the normalized algorithm helps to
clean a bit the results, particularly in the shear component of the phase space, where
we now are able to see two well separated curves. Finally, Figure 5.15c shows that the
PCA algorithm with trimmed dimensions does not recover a separated behavior. As
in the case from Section 5.3.1, considering a PCA algorithm with all the dimensions is
equivalent to performing the normalized DDI, so the results are not displayed due to
their similarity.
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(a) Phase space results for original DDI.

(b) Phase space results for normalized DDI.

(c) Phase space results for PCA DDI.

Figure 5.15: Phase space results for different DDI algorithms.
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The improved results with the normalized algorithm are also visible in the corre-
spondence analysis. Figure 5.16 has the comparison of the results for CA for both
algorithms, used to perform the separation of the mesh elements. In here, the normal-
ized algorithm, as well as the PCA with all its dimensions (which is identical to the
normalized results so they are omitted), provides a clear cut of which elements belong
to each phase of the material, while in the original DDI we have one single cluster of
points with no discernible separation. This is a direct consequence from the improve-
ment at the shear component of the normalized DDI. The results from the CA can
be transported to the mesh, where we can see very well in Figure 5.17 that with the
normalized algorithm we are capable of locating all four inclusions in the mesh, while
the original DDI fails to see any of the inclusions.

(a) CA for original DDI. (b) CA for normalized DDI.

Figure 5.16: CA comparison for original DDI and normalized DDI algorithms.

(a) Phase location with original DDI. (b) Phase location with normalized DDI.

Figure 5.17: Separated meshes with different algorithms.

The algorithms performance comparison is detailed in Table 5.4. With respect to
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time efficiency and convergence we see similar issues as in previous tests. What is
interesting to see is that both of the modified algorithms (normalized and PCA) have a
faster iteration time than the original DDI. With respect to the error, we see again that
PCA tends to produce worse results in cases with plane stress due to the removal of
important components, but we see that the normalized algorithm improves the overall
solution.

Table 5.4: Performance comparison for the soft inclusions case.

Original DDI Normalized DDI

Initialization time (s) 0.7496 6.2300
Convergence time (s) 60.2180 67.9326
Number of iterations 20 500
Time per iteration (s) 3.0109 0.1359
Von Mises error 0.1672 0.1481

PCA DDI (90%) PCA DDI (100%)

Initialization time (s) 4.4945 5.1165
Convergence time (s) 26.1698 54.5085
Number of iterations 253 500
Time per iteration (s) 0.1034 0.1090
Von Mises error 0.1508 0.1494

5.4 Statistical techniques as post-processing tools

Dimensionality reduction techniques have been used extensively as post-processing
tools. As aforementioned, considering a reduced amount of principal components to
recompose the original data matrix removes redundant information, and thus reducing
the noise. We have taken advantage of this property to improve the clustering per-
formed in each iteration of DDI, but the same can be done after results are obtained.

The application of the PCA procedure for post-processing is basically the same as
for the algorithm as shown in Section 5.2.4, but instead of applying the transformation
for performing the clustering, we apply it on the converged result to try to reduce the
error in the final estimation.

5.4.1 Examples

The results that we obtain from techniques such as PCA are highly dependent on what
we choose as input data. In the cases that we show here, we want to improve the
estimations for the stresses, so we consider as input data the same mechanical states
ordered in columns for each snapshot, as done in the examples of Section 5.3. One of
the issues with this approach is that, by updating the values of mechanical states, the
material points are not necessary the centroids of the data anymore. An alternative
approach where each material point corresponds to an extra column in the data matrix
can be taken to also include the values of material states, so we will consider it and
compare the performance. However, a problem that might arise from this definition of
the data is that even if we are considering two different group of points with the same
units, the fact that they have a different origin can disrupt the condition of mechanical
equilibrium in the results, rendering the results to be physically unfeasible.
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To test the post-processing technique, we take as a reference the results from Sec-
tion 3.5.2. We choose these results particularly because they were intentionally com-
puted in a poor setting, so the results are already noisy and less accurate. For applying
the PCA filter, we consider three different ways to organize the data, so we expect to
have different results in each one:

1. The first way is to organize the columns of the data matrix X as each one of the
snapshots of the problem, which is the same approach that we have taken in previous
examples and yields a matrix of size 3N e×NX . Since the filter is expected to move
some of the points around, after applying the filter we proceed to do a new k-means
clustering to rebalance the material states.

2. The second option is to organize the columns of the input data as mechanical states,
which would not take into account how the stresses are organized in the sample,
since there is no correlation between two columns. This yields a matrix X of size
3×N e ·NX . After applying the filter we need to perform again a k-means clustering
to rebalance the material states.

3. The last way is an extension of the second, but we add also the material states as
columns in the matrix, which expands the size of X to 3 × (N e · NX + N∗). In
this case, since the material states are filtered too it is not necessary to perform a
clustering after.

The phase spaces for the Von Mises strains and stresses are shown in Figure 5.18. As
can be seen, if we apply the filter using case 1 we have the most visible results. The fact
that we have in each column a full set of points means that there is a correlation, since
each row of the full matrix will represent a particular component of the stress tensor
for a specific element. This ensures that the underlying linear behavior that must have
been predicted by DDI is enforced during the filtering, resulting in the straight lines
we see in Figure 5.18b. For the other two cases we cannot see this correlation, since
we are only considering all the points independently, even if we decide to include the
material states. It is because of this that the results do not seem to change as much.

We include also in Figure 5.18 the results for kPCA, particularly for the case 1. In
here, we consider a kPCA computed with and without the Nyström approximation, to
compare the differences between them. As can be seen, the dispersion with the kPCA
filters are lower than the ones obtained with the linear PCA. Between both versions of
kPCA, except for the distribution of the points, there seems to be no differences in the
quality of the results.

These results can be further analyzed if we check the results from CA. When we
consider cases 2 and 3, we can see that CA obtains very similar results, only mirroring
the dimensions. However, when we use the PCA as proposed in case 1 we see a proper
separation of both phases. In here the separation of CA is performed automatically
in the middle, but it can be improved by making some considerations. However, it
is very clear that the filtered version provides an easier alternative for visualizing the
CA space. This effect is better appreciated with the use of kPCA, where the points in
the projected space tend to separate more into two clear groups associated with each
phase, which is something similar to what we saw in Section 3.5.2 when a second run
for the DDI was applied.

For the error analysis, Figure 5.20, we see that in general filtering the results pro-
vides a slight improvement of the estimations, which is more pronounced for the case
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(a) Original results. (b) Results filtered by snapshot.

(c) Results filtered by mechanical points. (d) Results filtered by mechanical and material points.

(e) Results filtered by snapshot, kPCA. (f) Results filtered by snapshot, kPCA Nyström.

Figure 5.18: Phase space comparison for filtered DDI.
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(a) Original results.
(b) Results filtered by snapshot.

(c) Results filtered by mechanical points. (d) Results filtered by mechanical and material points.

(e) Results filtered by snapshot, kPCA. (f) Results filtered by snapshot, kPCA Nyström.

Figure 5.19: CA comparison for filtered DDI, mesh elements.
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where we take the snapshots as a basis. Since for the other cases we chose the points as
a basis, even if we add the material states they do not provide a difference, so the error
curves for both cases are exactly the same. For the kPCA filter, we have that using
the non-approximated method yields worse results than any other filter used. Several
factors could be considered for this, including the way matrices are generated when
performing the kPCA.

Figure 5.20: Error histogram comparing different cases.

In fact, if we compare the performance of the different versions of PCA for case 1
in Table 5.5, we can see that the implementation of kPCA without approximation is
slow, with the Nyström approximation helping to reduce the computation time almost
a third. Linear PCA is the most efficient one, since PCA relies only in one SVD
computation that is directly performed on the data. with respect to accuracy, we can
see that the non-approximated kPCA worsens the results, while the other two provide
an improvement, correlating with the results seen in Figure 5.20. For computing the
error, the relationship shown in Equation 2.39 for e2 is used, comparing the values for
the estimated Von Mises stresses against the original FEM solution.

Table 5.5: Comparison of performance of the different PCA filters.

Unfiltered Case 1, PCA Case 1, kPCA Case 1, kPCA Nyström

Time (s) - 0.2180 185.4665 64.7519
Error (%) 0.1414 0.1344 0.1583 0.1102

As we mentioned in the beginning we have to keep an eye on the fact that the
filtering might disrupt the equilibrium condition that we impose in the DDI algorithm.
To verify this, for each one of the cases we compute the divergence of the stresses for each

136



5.4. STATISTICAL TECHNIQUES AS POST-PROCESSING TOOLS

snapshot to check if they remain at zero. This is shown in Figure 5.21, where we can
see that basically there is no disruption of the equilibrium condition. The oscillations
seen, specially in case 1, are due to the fact that we are dealing with numbers too small
for the computer precision. In any case, we can also consider that, since we are dealing
with full snapshots rather than just points, it makes sense that this type of filtering
could introduce the biggest imbalance in the problem.

Figure 5.21: Divergence of stresses for each snapshot.

Finally, Figure 5.22 shows how the error progresses depending on the amount of
principal components considered in the filter. As expected for PCA, since there is one
dominant principal component, all the others can be interpreted as noise, so the error
should progressively increase until the value that it has in the original algorithm. When
the principal components tend to be not relevant at the end we have a plateau and the
error stops increasing, but we can see that considering just one mode is enough to have
an improvement. Interestingly enough, for both cases with kPCA we see that adding
more components to the computation tend to decrease the error, although the plateau
is reached fast. We believe that this effect is related to the fact that for kPCA we do
not compute directly the SVD on the data as it is performed in the linear case, but in
a kernel matrix that approximates the subjacent non-linear manifold, so adding more
components increases the accuracy by adding more information to this approximation.
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Figure 5.22: Error as a function of principal components.

5.5 Discussion

In this chapter we explored the use of dimensionality reduction techniques to try to
reduce the computational load of the algorithm and have an improvement in speed, as
well as accuracy. A normalized version of DDI was also introduced as an alternative to
avoid having to define the parameter C.

Testing the new algorithms in similar settings to the ones seen in previous chapters
we have seen that the modified formulations tend to provide a better estimation of the
mechanical stresses in most of the cases. However, this advantage is heavily restricted
by the fact that these algorithms tend to run much slower than the original version of
DDI. Performing a deeper analysis of the time consumption of all algorithm we noticed
that the issue lies mainly in the convergence: the newer algorithms tend to drift much
more before reaching a desired convergence tolerance. We saw that in some cases,
even when performing several repetitions of the same problem, the new algorithms
always converged to a local minimum rather than the global optimum. In this regard,
some improvements could be implemented to fix both accuracy and speed. For these
algorithms we have relied on the use of k-means for clustering, which can be time
costly for big sets, due to the need of computing distances to each point. Perhaps a
kNN search scheme could be considered, similarly to the way it is being handled in the
original DDI, to obtain a speed increase. For the case of accuracy, the implementation
of the kPCA algorithm could be beneficial, since the availability of different kernels
means that we have access to different sets of results for the same initial problem,
where some could be more accurate than others.

In previous chapters we addressed the problem with softer inclusions and DDI. We
compared the performance of this problem with the newer algorithms and we saw that
particularly the normalized formulation provided a slight increase on the accuracy of
estimations and a speedup in the problem, although we retain the problem with conver-
gence. The big advantage comes in the correspondence analysis, where the normalized
formulation was capable of identifying both phases of the material properly, as opposed
to the original DDI. It is possible that this problem can never be addressed fully by
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data-driven schemes, given the nature of imaging techniques, but the results obtained
here propose interesting options for future study.

Furthermore, we use PCA dimensionality reduction technique as post-processing
filters for the obtained results. We see that by choosing the input data appropriately we
can increase the accuracy of the estimations without losing the physical admissibility
of the stresses. We have seen that applying the filters allowed us to have a cleaner
separation of phases with the application of correspondence analysis, even when the
original results are not optimal.

The combination of DDI with dimensionality reduction is a useful tool that was
born with our DDI implementation for viscoelasticity in mind, but it can be applied
to different cases as shown in this chapter. In here we dedicated ourselves to academic
examples to show the capabilities, but we believe that it could have potential to be
applied in other settings, specially considering more complex material behaviors.
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Chapter 6
Application of DDI to hybrid polymer
composite samples

The previous chapters have been devoted to the development of a new data-driven ap-
proach applied to synthetic heterogeneous materials. The main focus of this work has
been to analyze the behavior and extend DDI algorithm and its variants. However, the
end goal is to be able to apply this methodology as a viable alternative for material
identification or stress estimation. The objective of this chapter is to apply the pro-
posed method, as it has been presented, to real samples of polymer composite materials,
to establish the constitutive properties as well as the different phases present in them.
The scale at which heterogeneities appear in fiber-reinforced composites is generally
too small to be detected by traditional DIC methods. Micro-fluctuations smooth out
at the scale of the measurement. In fact, another family of composites used in the
automotive industry is of interest here. These are hybrid composite structures combin-
ing semi-structural composites with non-oriented fibers and structural composites with
continuous and oriented fibers. The mechanical property contrast is measurable at a
scale compatible with the resolution of DIC methods.

6.1 Experimental setting

6.1.1 Samples

In this chapter, ten samples are analyzed. They are all cut out from a spare wheel tray
designed and produced by Faurecia.

Material

The part is designed with a Glass Mat Thermoplastic material [65], reinforced in
some areas with a woven fiber composite [66]. Both materials are made of the same
polypropylene.

� Glass mat reinforced thermoplastics (GMT) are materials available as prepreg
sheets which are heated and molded in compression. The glass fiber reinforcement
is a needled mat of randomly oriented fibers. The fiber content in these samples is
30% by weight, which corresponds to 13% by volume. The fibers are impregnated
with a polypropylene (PP) matrix.
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� The second material is a woven prepreg reinforced with a twill 2/2 glass fabric. It
is manufactured at Faurecia by the film stacking process with PP sheets to get a
fiber content of 60% by weight, equivalent to 34.5% by volume. The final prepreg
is made of three plies of woven fabric oriented in the same direction.

In our particular case, we do not have access to the properties of the materials that
we are testing. This is done intentionally to be able to test the DDI capabilities, which
is the reason why only some estimated values are given for both materials.

The part to be studied is shown in Figure 6.1. It can be noticed from the coloration
of the part that there is an homogeneous outer region which corresponds to the GMT
composite. In the center there is a rugged texture to the light, which is the part where
the woven prepreg is located. The rugged surface visible in the bottom of the picture
in Figure 6.2 indicates that the part has not been properly consolidated, which was
confirmed by Faurecia. The interface between both composites can be appreciated
better in Figure 6.2. In here, the characteristic woven pattern is much more noticeable.

Figure 6.1: Spare wheel tray from where the samples for testing were obtained.
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Figure 6.2: Zoom on the interface between both composites. The top smooth surface corre-
sponds to the GMT, while the woven prepreg is in the bottom. The rugged surface of the woven
prepreg zone is clearly visible.

Geometry of the samples

In order to test the properties of the materials of this part, small samples are cut out.
They were cut from the flat areas of the part into rectangular coupons. Figure 6.3
shows the areas from where the different samples where obtained. Sample F is not
visible in the picture, which was obtained from the lower part.
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Figure 6.3: Placement of the different samples cut out from the part.

Given the location of the different samples, most of them include a mixture of both
composites. Sample E is the only one fully reinforced with the woven fabric, so it is
used as a reference for that material. Regarding the GMT, both samples F and G are
the only ones entirely composed of this material.

Another point to be considered is that samples A, F and G were obtained from
the bigger flat areas of the part, so these samples are wider than the other four. For
this reason, these samples are split in two to keep the form factor equal for all the ten
samples. All the cut samples are shown in Figure 6.4.
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Figure 6.4: Cut samples to be tested. In this image the material composition of each sample
can be appreciated in the material patterns.

To prepare the samples for the use of DIC, a speckle pattern is painted on one
of their sides, in an area of interest, as shown in Figure 6.5. It can be noticed that
the marks of ejectors (circular print) are still visible through the pattern, which could
interfere with the proper correlation of images.
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Figure 6.5: Samples painted with the speckle pattern.

6.1.2 Testing

The testing was performed in the mechanical testing laboratory at ECN on the prepared
samples. The test performed was a quasi-static tensile test using an electro-mechanical
universal testing machine Instron 5584 (shown in Figure 6.6), that has a maximum
capacity of 100 kN in tension. The machine is controlled using the software Bluhill
developed by the same company.

145



6.1. EXPERIMENTAL SETTING

Figure 6.6: Instron 5584 used for testing.

For the DIC procedure, a 29 megapixel camera (seen in Figure 6.7) is used to track
the movement of the sample during the tensile test. The images that are collected at
certain intervals are matched with the current value of the voltage being applied in the
machine, which then is correlated with a certain value of a force applied at the upper
border of the sample. The obtained images are later processed using the dedicated
software VIC2D (Kilonewton), specialized in DIC for flat samples.
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(a) (b)

Figure 6.7: Camera used in DIC.

The samples were mounted in the tensile grips and stretched until they reach a
failure state. Information about the deformation and the force applied are registered at
different timesteps, which are collected in tables. These values are then used to create
the force-deformation curves that were applied in the sample, which serve as a basis
for the DDI analysis that will be performed later.

Figure 6.8: Samples broken after reaching their failure point.
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6.2 Data processing

Once the test are performed, a big amount of raw data is produced. This data, con-
sisting mostly on the measurements obtained by the machine and the parameters used,
as well as the images obtained by the camera, need to be processed and adapted into
information that can be used by our algorithms.

6.2.1 Preprocessing

The necessary information for the application of DDI comes from two sources. First,
we have the raw images that are taken at certain intervals, that track the deformation
of the sample over a certain period of time. The second source is the machine itself,
which is stretching the sample and it is tracking both the displacement of the crosshead
as well as the voltage that is being applied. This voltage can be translated to the net
force that is applied to the sample.

First, we dedicate ourselves to the processing of the images. For this, we use
the software VIC2D, which uses correlation algorithms to provide non-contact, full-
field, two-dimensional displacement and strain data for mechanical testing on planar
specimens. In-plane displacements are measured at every pixel subset within the area
of interest, and full-field strain is computed with many tensor options. The software
works by loading the set of images that were captured by the camera during the testing
process. Initially, we consider the first one as a reference undeformed state. In the
software we choose an area of interest where the DIC will be performed. This needs to
be chosen carefully, since results will be affected by this selection. Normally, we would
limit ourselves to the painted area of the sample, which should not extend to close to
the clamping points since stress distribution can be more unpredictable closer to the
area where the forces are being applied.

Figure 6.9: Image of sample being processed in VIC2D.

With the interest area sorted, we need to fix some parameters for the software to
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work. Mainly, we need to define the size of the subsets for the image correlation to
track deformation. We want to choose a value that is small enough to produce some
accurate results, but large enough so that the computation of the deformation fields
will not take too long. In this work, we settled for a subset size of 25 × 25 pixels.
Appendix A explains in detail how the DIC algorithm works and what is the use of
the subsets. We also need to choose which type of results we want to obtain from the
analysis. For DDI, we are only interested in the values of the strain tensor, namely εxx,
εyy and εxy. Other results that are provided but not used were the principal strains ε1,
ε2 and γ as well as the parameter σ that tracks the certainty of the image correlation.

Figure 6.10: Image of parameters and area selection.

With all set, the software is run, comparing each step to the reference image to
obtain a deformation and strain field for each image. These results can be plotted over
the original image as shown in Figure 6.11, which allows us to have a live visualization
of the different fields.
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Figure 6.11: Displacement field.

Since the software is not able to tell when a sample is fully broken, it still provides
results for all the snapshots taken after ultimate failure. Those cases are sorted man-
ually and removed from the input data since they have no use for the estimation of
stresses. One important thing to mention is that in all this process, the deformation
fields are measured in pixels rather than metric units. This is no problem for the strain
fields, but to work with appropriate units from now on we need to define the scale.
Since the software tracks the boundary of interest, it is important that it is well defined
and measured, so in every sample we select it as close as possible to the painted area,
whose dimensions are known. From this, we can estimate the deformation in metric
units to be used in following analysis, but we have to be clear that there is an inherent
source of error from this procedure.

With the images already processed, we have access to the deformation and strain
fields in the sample. The last data needed are the forces applied to the samples, which is
the information we obtain from the testing machine. Since we cannot have information
about internal nodal forces, or even the distribution of forces on the upper and lower
ends of the sample, we need to make some assumptions. The first one is that, since
we have a sample without any holes, crack or imperfections, we can expect that all the
internal forces are balanced, and that the only disturbances are being applied in the
boundaries where the grips are placed, specifically the upper and lower ends that are
being pulled. The second assumption made is that we have a perfect boundary where
to apply the force. It is most likely that there are some imperfections on the boundary
that might make the force distribution not uniform, so we force the boundary to be a
clean border and we apply a net force on the full side as a block, which is the same
approach as the one we have used in the synthetic examples in previous chapters.

Finally, the system pairs each snapshot with the measurements that the machine
performed at the moment the image was collected. The information provided is mea-
sured in volts, so a conversion needs to be made to obtain the values in millimeters and
Newtons that we will use. For all samples, we have that the output channel in charge
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of the force has a ratio of 10 kN/V , except in sample A2 where the ratio is taken as 5
kN/V . On a similar way, the output channel for the deformation has an equivalence
of 5 mm/V , while for the sample A2 this is reduced to 2 mm/V .

6.2.2 Application of DDI to samples

From the software and the machine output we have all the required data to run DDI,
now we need to adapt the data for the algorithm. The first step is to generate a mesh
based on the fields obtained. DIC gives a point-wise deformation organized in a grid.
These points are taken as the nodes for the mesh that will be generated. The mesh is
created with square elements with one integration point. For obtaining the elemental
strain rather than the nodal ones an average of the values is considered, taking into
account how many elements each node is neighboring. A special consideration needs to
be taken with the points that are not being captured by the DIC since these points have
missing information, rather than being a hole in the mesh. This difference is important,
since a hole will have a net force of zero on its nodes, due to being a boundary. When
the image cannot capture a point there are some strains and stresses in those points,
meaning that we risk having a zone with a residual force that affects the balance in the
sample. The approach taken to overcome this problem is taken as it was done in [26],
where a zero net force is imposed in the boundary nodes around the hole to make sure
that we keep the condition as it is. A diagram for this can be seen in Figure 6.12.

Figure 6.12: Schematics for imposed zero force on boundaries where information is missing.
The blue border encircles the nodes that could not be captured by DIC, while the green elements
are the neighboring elements that will be deleted from the computation. The net zero force
boundary condition is imposed on the red border.

The mesh is considered to be perfectly clamped in both left and right boundaries,
with a force applied to the group of nodes of the right boundary, as shown in Figure 6.13
for sample D1, including the holes for missing information.
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Figure 6.13: Example of the mesh for sample D1, with boundary forces and conditions. The
cell force is applied in block on the right side of the sample instead of the individual nodes, since
the distribution is unknown.

For the DDI parameters, we have decided to take a different approach to that of
the previous chapters. A value of r∗ = 1000 is chosen for the amount N∗ of material
states, given the size of the problem. For the value of C we choose infinity, due to the
benefit in estimations, but also given the reduction in computation time. The amount
of nodes and elements vary from sample to sample, but in general we have a number
of nodes of about Nn ≈ 40000, with an approximate amount of N e ≈ 40000 elements.
The amount of snapshots NX is dependent on how fast fracture was achieved during
testing, but it ranges between 90 and 170 steps. The exact quantities are reported in
Table 6.1.

Table 6.1: DDI parameters for each sample.

Sample Nn N e NX N∗

A1 43920 43435 170 7384
A2 41511 40826 170 6940
B1 41664 41181 150 6177
C1 41181 40700 90 3663
D1 44754 44247 99 4380
E1 41758 41252 145 5980
F1 45262 44770 145 6492
F2 45262 44770 145 6492
G1 40504 40018 145 5803
G2 41724 41245 145 5981

With respect to the time-dependent DDI algorithm, we have set that the solution
should be computed considering h = 1 and h = 5 previous steps. We are not certain
on the amount of steps that would provide the most efficient solution, but with this
amount of previous steps we should see a trend of divergence between the different DDI
algorithms.

6.3 Results

The target of analyzing these samples is twofold. Our main goal is to have an estimation
on the properties of the material, which means that we are interested in the mechanical
stresses, as well as the material points. Since we do not have any reference solution,
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the analysis is done in a more qualitative way, meaning that we will look more into
how the results look and how they relate to classical estimations of the materials. In
that sense, our second goal is also to test our different approaches of DDI and see how
they relate to an unknown material. In this case, we will run our original formulation
of DDI, as well as the updated formulation for strain-rate dependent materials. Since
we cannot estimate the error of the formulation, we aim to compare how much they
diverge from each other and with that information in hand try to understand which
one would probably suit better.

The traditional approach for studying these types of materials is to perform tensile
tests and obtain a strain-stress curve that can be fitted with a polynomial, where
a tangent Young’s modulus can be obtained, typically close to the origin. Since we
expect the results not to fall exactly in one curve like an elastic case, some provisions
are made. Once mechanical states are computed, we can trace time curves for strain
and stresses, which would be associated to each element in the mesh. Since we would
be dealing with more than 40000 curves, we choose to take an average of the curves
to represent the full material. In this way, we can perform a polynomial fit in the
obtained average strain-stress curve, which will allow us to have an estimated value of
the Young’s modulus. This approach might not be the most accurate, but it will allow
us to see if the values are close to estimated ranges for the studied composites.

6.3.1 All samples, engineering Young’s moduli

Before using DDI, a simple approach that can be performed to obtain an idea of how
the material looks is to use the classical engineering method for obtaining a value of the
Young’s modulus. For idealized uniaxial tension tests performed for example in bars,
we can obtain the displacement of one of the ends of the bar, as well as the force that
it is applied at each step. If we track as well the section of the bar at each step, we
can obtain an estimation of both the stress and strain, which are then used to obtain
the value of the Young’s moduli. For the sake of simplicity, one can assume that the
material behavior is completely linear and only obtain the values of strain and stress
for the last step before failure. For the samples used, the force-deformation plot is
shown in Figure 6.14. In here we can see that the curves are not linear, but they can
be approximated to a good degree. The only exception we have is sample A1, which
seems to harden at high deformations. This might not be the intended behavior of the
material, so we take the results with care.
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Figure 6.14: Force-deformation curves for all samples. Diamonds represent mixed composites
samples, stars represent woven composite and squares are used for GMT composites.

This analysis can also be applied to our samples. Since we are working with flat
samples, the section is replaced for the width (W ) of the sample before the failure
point. In a similar fashion, we also measure the stretched value of the length (L) of the
sample, to estimate the deformation. Table 6.2 outlines the physical characteristics of
all the samples analyzed, as well as the measured deformation (δ) and forces (F ) before
failure, the estimated value for the Young’s moduli (E) and the estimated Poisson’s
ratio (ν) of each of them.

Table 6.2: Composite samples: characteristics and results.

Sample L (mm) W (mm) δ (mm) F (kN) E (GPa) ν

A1 2640.8 24.92 2.8133 3.1550 3.750 0.0759
A2 2606.4 24.77 2.8167 5.4665 7.368 0.2154
B1 2675.0 24.63 2.4832 2.4885 2.923 0.3617
C1 2631.2 24.77 1.4615 3.0855 6.753 0.3709
D1 2663.0 24.78 1.6051 2.1277 4.104 0.2751
E1 2665.0 24.93 2.3633 7.0282 12.013 0.0407
F1 2662.4 24.76 2.3635 3.1764 4.420 0.1912
F2 2651.7 24.92 2.3633 2.6662 4.342 0.1830
G1 2607.0 24.75 2.3634 2.3874 4.038 0.1776
G2 2624.5 24.83 2.3634 2.4810 3.590 0.1508

Samples A to D correspond to the uncontrolled mix of both types of composites,
which can explain the dispersion in the values of their Young’s moduli and Poisson’s
ratio. However, samples F and G are both composed of the GMT composite, who has
more homogeneous properties. In these cases, the values for the Young’s moduli appear
to be close to each other and in line with theoretical values proposed for the sample.
In the case of sample E, the value of the Young’s modulus seems to be adequate to
what it is expected from the woven composite, although the value for the Poisson ratio
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seems to be low. The visible lack of consolidation in the woven composite leads to a
significant amount of voids in the material. Voids in polymers, for instance in polymer
foam, are known to decrease the Poisson ration of the bulk material.

The values that have been obtained here are reference values. Since we cannot verify
the the results from DDI against FEM solutions as it has been done in previous chapters,
we will use the values obtained here to estimate the error of the DDI algorithm.

6.3.2 Woven composite, sample E1

Since we have mostly heterogeneous samples, we will focus our analysis first on the
homogeneous ones, to have a reference to work with. Ideally we would like to identify
first the isolated behavior and then move to the more complex case with combined
materials. Given that we are doing simple tensile tests, we will limit ourselves to show
only the results in the longitudinal component of the deformation (in our case, the x
component of the tensors), since the other directions are poor due to the lack of testing.

We start by analyzing sample E1, which is an homogeneous woven sample. In a
first step, we compare the results for the classical DDI approach for both filtered and
unfiltered data, to then also compare the results for classical DDI against the strain-
rate versions of the method. Figure 6.15 shows the envelope for all the strain-time
curves associated to the elements in the mesh, showing the average value and the error
for each timestep for both filtered and unfiltered data. Given the way that DDI works,
these values of strain are common for all the different runs involving sample E1. It can
be seen that filtering the data produces a much smoother envelope, which is a sign that
the individual curves are a lot less oscillating when the data is treated. Nonetheless,
the average curve is not greatly affected, because of its average nature.

(a) Unfiltered. (b) Filtered.

Figure 6.15: Strain vs. time, sample E1.

After running the classical formulation of DDI with both the filtered and unfiltered
data, the obtained results for the estimated stresses are shown in Figure 6.16. In here
we expected a more pronounced difference, since DDI would be run with cleaner data,
however, the same pattern is noticeable. We tend to have a smoother envelope for the
filtered results, but the average curve and its error tend to remain the same.
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(a) Unfiltered. (b) Filtered.

Figure 6.16: Stress vs. time, sample E1.

The same analysis is performed for the stress considering the different versions of
DDI. Figure 6.17 shows the same unfiltered curves of Figure 6.16a when the algorithm
is run considering h = 1 and h = 5 previous steps. We can see some variations of the
envelopes, but nothing significant. Even more, in the case with 5 previous steps we can
see some added noise to the solution, which could be an indicator that the strain-rate
method is not the most appropriate to study these samples.

(a) DDI with h = 1. (b) DDI with h = 5.

Figure 6.17: Stress vs. time, sample E1.

Since we have seen that filtering the data and performing a higher dimensional DDI
are not very productive for this material, we focus on the unfiltered data with the
original formulation of DDI. Figure 6.18 shows the phase space for sample E1, as well
as the average curve obtained by plotting together the average strain and stress. Here
we have a curve almost linear in nature, which we take as the reference for estimating
the Young’s modulus of the material.
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Figure 6.18: Phase space, sample E1.

We consider three different method for obtaining the modulus. The first and most
simple one is to get tangent values of the modulus by computing the slope between two
consecutive points, namely

Et =
σi+1 − σi
εi+1 − εi

. (6.1)

A second, less reliable option is to consider a secant value between each point and the
origin of the space. This can be written as

Es =
σi
εi
. (6.2)

We consider this case to have more information and to track how much it might vary.
For both cases, since we have an almost vertical increase of the curve in the beginning
due to the adjustment of the mechanical points, we do not consider the value of the
Young’s modulus close to the origin. We instead discard the first five steps for both
and take the next one, when the curve tends to have a more stable derivative.

The last approach to obtain the value of the modulus is to perform a polynomial
fitting. Even though we would be assuming the material to be relatively linear once
the waviness of the weave is eliminated by stretching the fibers, we perform a third
degree polynomial fit to accurately reproduce the slight curvature of the average curve.
After the polynomial is fitted, the derivative is found and the instant values are taken
for each point to compute a fitted modulus, Ef . Table 6.3 shows the estimated values
for the three approaches.

Table 6.3: Values of Young’s moduli for sample E1.

Sample Et (GPa) Es (GPa) Ef (GPa)

E1 28.189 25.789 27.068
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As it can be seen the values obtained for the Young’s modulus with DDI overesti-
mate the ones obtained by traditional means. Since we are considering a case in plane
stress, the values obtained from fitting the curve are already adjusted using the Poisson
ratio ν that was estimated in Section 6.3.1. In Table 6.4 the relative error with respect
to the values obtained in Section 6.3.1 are shown. This is calculated using the equation

ei =
|Eeng − Ei|

Eeng
, (6.3)

where Eeng is the Engineering Young’s modulus estimated in Section 6.3.1 and Ei is
each of the different moduli calculated in this section and reported in Table 6.3.

For this woven composite, the theoretical Young’s modulus is expected to be in the
range of 9 GPa, while the value that we have estimated directly from the images is
around 12 GPa, both much lower than the values that we have predicted with DDI. We
can see that the estimations reported in Table 6.3 are in the same order of magnitude,
but they are more than 100% off from the expected (theoretical) and measured values.
Many causes can be attributed, particularly the error introduced by DDI, as well as
propagation of other errors associated to the methodology.

Table 6.4: Relative error of Young’s moduli’s estimation for sample E1.

Sample et es ef

E1 1.343 1.143 1.250

6.3.3 GMT composite, samples F and G

For the samples F and G, which are taken from GMT areas of the part, we perform
a similar analysis. In these samples we will not consider filtered data nor more com-
plicated formulations of DDI, since they didn’t provide any advantage in the previous
case. We also expect results to be a bit more accurate here, since the GMT material
is isotropic, so we will not have issues related to the orientation of the stresses in the
sample.

Figure 6.19 shows the strain vs. time curve for all four samples F1, F2, G1 and
G2. We can observe that in general the envelope curves are quite smooth, hinting at
a good quality of the measurements of strains obtain through DIC. For both samples
G1 and G2 we have that the maximum strain achieved is higher than for samples
F1 and F2. The fact that fracture took longer in one set of samples might indicate
different localized resistance for the part. The flow during compression molding of
GMT components may occur in axisymmetric or unidirectional manner, leading to fiber
orientation distributions primarily perpendicular and longitudinal to the flow direction,
respectively. Significant differences in mechanical properties will result from the flow
history. In addition, layers closest to the mold surface adheres due to the rapid cooling,
then the upper layers will experience more shear, hence more fiber alignment, than the
inner layers.
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(a) Sample F1. (b) Sample F2.

(c) Sample G1. (d) Sample G2.

Figure 6.19: Strain vs. time.

Figure 6.20 shows now the stress vs. time for the same four samples. We can
see that there is a correlation between the two samples obtained from the same area.
Sample F1 shows a bit higher maximum stress compared to samples F1, G1 and G2, but
all the values stay in very similar ranges. This correlates with the behavior observed
on the strain curves, where both sets of samples behave in similar ways.
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(a) Sample F1. (b) Sample F2.

(c) Sample G1. (d) Sample G2.

Figure 6.20: Stress vs. time.

Finally, phase spaces for all four samples are shown in Figure 6.21. We see that
samples G1 and G2 have a bigger spread than the others, while F2 tends to have the
best results. A visual analysis of the phase spaces shows similarities in the results, but
it is difficult to assess it properly without performing some numerical analysis.
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(a) Sample F1. (b) Sample F2.

(c) Sample G1. (d) Sample G2.

Figure 6.21: Phase space, samples F and G.

Table 6.5 gathers the results of the estimations for the Young’s moduli, obtained
using the same procedure as before. Using similar composites as reference, we expect
a value of the modulus to be in the order of E = 4.5 GPa, which is close to the values
obtained in Section 6.3.1. We can see that compared to the woven composite, the values
of moduli are closer to what is expected, but we are still far from what we should see.

Table 6.5: Values of Young’s moduli for samples F and G.

Sample Et (GPa) Es (GPa) Ef (GPa)

F1 8.318 7.950 9.073
F2 9.390 8.779 9.367
G1 7.889 7.724 8.312
G2 8.632 8.803 8.180

Similar to what we have done in Section 6.3.2, the relative error for each of the
values shown are computed using Equation 6.3 and shown in Table 6.6. One of the
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reasons why the results are slightly better than the woven composite case could be due
to isotropy, which simplifies the estimations by removing the effects of the orientation
of the fibers. However, the results shown are still not optimal, specially considering
that the values from the engineering Young’s modulus are closer to the theory.

Table 6.6: Relative error of Young’s moduli’s estimation for samples F and G.

Sample et es ef

F1 0.813 0.733 0.978
F2 1.090 0.954 1.085
G1 0.892 0.853 0.994
G2 1.350 1.396 1.227

6.3.4 Heterogeneous composite samples

We seek to perform the same analysis for the rest of the samples composed of mixed
composites, adding a correspondence analysis to find a separation that would allow us
to find the different phases of the material. However, it is important to mention that
if the data is as disperse as the one seen in the homogeneous samples, performing CA
would return inadequate results.

To visualize the problem, we show the phase space for four samples in Figure 6.22.
As we can see, a visual separation of the behavior of both materials seems impossible,
since there is a smooth gradient between the stiffer responses and the softer ones.
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(a) Sample A2. (b) Sample B1.

(c) Sample C1. (d) Sample D1.

Figure 6.22: Phase space.

Despite the visual results, we perform CA in all samples. The F space representing
the mesh elements is plotted for the same four samples in Figure 6.23 with a density
plot. As can be seen, the only sample that might provide some sort of separation is the
sample C1, but considering that the composition of the sample is approximately half of
each material, the amount of points tending to the left of the graph seems to be more
dispersion of the data rather than a cluster. For all the other samples no trend can be
seen.
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(a) Sample A2. (b) Sample B1.

(c) Sample C1. (d) Sample D1.

Figure 6.23: CA space for mesh elements.

If we do a separation for the samples A1 and C1 as an example, we obtain the results
shown in Figure 6.24, where we can see that no phases have been correctly identified,
but instead we tend to see stripes crossed across the sample. This phenomenon is a
common result when we have an unsuccessful separation.

(a) Sample A2. (b) Sample C1.

Figure 6.24: Sorted meshes.
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6.4 Discussion

In this chapter we applied DDI to real hybrid polymer composite samples taken from
an industrial part. Up to this point the work has been highly theoretical and we
have relied on synthetically generated data, which due to the nature of FEM, act as a
perfect input for DDI. The hybrid structure is made of two polymer composites with a
theoretical stiffness contrast of a factor of two. The samples were submitted to a tensile
test until failure while snapshots were taken in order to perform DIC. After the strains
are obtained and the force information is retrieved from the machine, different versions
of DDI are performed to the samples to estimate the properties of the material and to
see if a separation is possible.

The results obtained from the experiments are mixed. When performing DDI in
samples who have only one material present we were able to estimate a value for the
Young’s modulus by making some assumptions about the behavior of the material and
by averaging the behavior of all the elements in the mesh. We saw that, for the woven
composite, results were in the same order of magnitude but off a theoretical value
that was obtained from classical testing. However, when studying the GMT sample,
values were closer to the theoretical results. There are many reasons to consider when
analyzing the error in the method. Since we departed from the theoretical case, we
know that every step in the retrieval of data is subjected to errors. In this case, the
way in which DIC is performed can affect the quality of the results. Experimenting
with different subset sizes could allow us to find better values that might produce
better results. The same effect could be obtained by testing different conditions for
DDI. Another important reason is the assumptions made over the material. DDI is
supposed to provide information without the need of a guess, but in reality we still
needed to estimate a value of the Poisson’s ratio to have access to the Young’s moduli.
We also assumed that the material would behave somewhat elastically (at least during
the extension phase), which may not be necessarily appropriate for this case.

During the course of the analysis we focused our analysis in the mechanical states,
rather than the material ones, which is the opposite approach as the one seen in Chap-
ter 3. The reason for this is the fact that with mechanical states we could track a
history that would allow us to find a material curve for each individual element. In any
case, the same analysis could have been performed with the material states if we would
have done some regression, such as least squares, to find a polynomial fit. Results
should not vary much from what we have already obtained.

With respect to the correspondence analysis, we can see that it has not provided the
results we expected, and again we can put the blame in the assumptions made on the
material. We have seen that both the mechanical and material states are very disperse
in the phase space, which provides too much noise for CA to find a proper separation
of behaviors. Something that has also been observed is the fact that CA tends not to
work very well when the difference of behavior is present in a gradient, due to the fact
that material curves would not be discernible. We can expect that in these samples the
interface between both composites is not a hard edge, but a smooth transition between
both stiffnesses, due to the flow of the GMT into the woven prepreg.

Another factor to consider is of a technical nature. Due to the manufacturing
process, some areas in the material will have different properties, specially the areas
with changes of geometry. The samples used here were taken from flat surfaces to avoid
this problem, but we still can see that some of them have present the injection points
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where the part was formed. Details like this can create small areas with a concentration
of tensions that might affect the estimation of DDI. It can also cause some difficulties
during the process of image collection. It could be better for future cases to sand
down this areas in order to have a smoother surface to perform the analysis. Another
problem could come from the part itself. The part used for the test comes from a batch
of defective pieces, so the expected values from the sample can vary because of the
way they were manufactured. Finally, we need to consider that the data obtained is in
itself deficient because the testing performed is uniaxial, which promotes uniform strain
fields. It has been seen in synthetic cases that when we have samples in this situation,
the results are not properly estimated. In previous chapters we have worked in samples
with holes in them precisely to avoid this effect, but in a composite sample it is not
advised to cut a hole, since we disturb the structure of the fibers and we immediately
lose the properties we are trying to measure in the first place. If we want the values of
the Young’s modulus to be better estimated, we need to perform more thorough testing
in samples, either by performing complementary tests (e.g. shear or biaxial testing)
or developing samples that promote this non-uniform behavior, which is also beneficial
for the possibility of orthotropy in the material.

As a final remark, we would like to point out that the experimental part and the
analysis of the samples were performed by different people. It could be beneficial for
the testing that all the process is done by one person, since some things can be left out
between the steps of the analysis, which of course increases the chance of having errors
later.

DDI is a good tool that provides a nice solution for the problem of unknown prop-
erties. In previous works we have seen it successfully applied to samples of different
materials, but in this case we cannot say that this was a successful experience. In
general, when we have homogeneous samples the results tend to be more manageable,
but we clearly need better opportunities to study heterogeneous samples. Ideally we
would like to start analyzing known elastic materials first and then move on to more
complicated cases such as composites. Faurecia initially had provided samples made
of aluminum welded together to test this methodology, but problems during the image
collection rendered the samples not fit for analysis. It is possible that these samples
could have provided a better setup for the study of heterogeneous DDI. In an ideal
future, it would be beneficial for DDI to be able to perform the measurement of the
displacement fields on the full part, rather than just cut areas. Composites rely on a
structure that it is difficult to modify once the part is manufactured, so any sample
cut from the original piece will not necessarily represent the reality of the behavior.
On the other hand, mechanical loadings applied to a formed part can generate a richer
deformation state than that of a simple tensile specimen, which is advantageous for the
DDI approach. If the technology was available to compute a full displacement field, we
would expect the results from DDI to be sharper, but also better targeted for the use
that the company wants to give to the particular designed part.
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Chapter 7
Conclusion

In this work, we have explored in depth the field of Data-Driven Identification [11],
in which the constitutive relationship of an elastic material is obtained through mea-
surements of the strain in samples, generally performed using imaging techniques. The
method also allows us to estimate the stresses associated to the deformations in the
sample, which is a quantity that is usually difficult to compute without having previous
knowledge of the material behavior.

During the course of this document, we have had as an objective extending the
application of DDI, departing from elasticity towards more complex material behaviors.
It is because of this that after recalling the relevant topics and state of the art in
Chapter 1, we introduced briefly DDI in Chapter 2. DDI is based on an algorithm
introduced by Kirchdoerfer and Ortiz called Data-Driven Computational Mechanics
[17], in which we use pairs of strain-stress measurements previously obtained in samples
to replace the constitutive law used in techniques such as the Finite Element Method.

In Chapter 3, we apply the DDI methodology to heterogeneous samples conformed
by a linear elastic matrix and inclusions, in an attempt to identify both material be-
haviors simultaneously. This case is taken due to the possibility of having more than
one value of stress for any given strain, which is a behavior that contrasts with the
unique solutions that are obtained in elastic materials. In here we implemented a
post-processing technique to obtain separated results and to be able to identify both
phases and behaviors of the mixed samples. As a natural progression, in Chapter 4
we go deeper into non-elasticity, by testing the DDI algorithm in linear viscoelastic
models. The dependence of viscoelastic stresses on the history of deformations in a
sample poses a difficulty for the method, since until now we have worked only on in-
stantaneous strain-stress pairs. We tackled this problem by proposing an extension of
the phase space, where we choose consecutive strain states to be associated to a stress
state, allowing us to include the time dependence into the method.

Chapter 5 is a departure of the trend of previous chapters. Instead of testing DDI
on new materials, we take a look at the way the algorithm is defined and propose
some changes in it to try to optimize the efficiency and accuracy of the method. In
particular, we use statistical techniques to treat the data during the algorithm, both to
clean the noise in the calculations or to reduce the dimensionality of the problem. In the
same vein, we use these techniques also as post-processing tools, which gave us cleaner
and more accurate results, specially improving the performance of the Correspondence
Analysis for the separation of phases.
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Finally, Chapter 6 is dedicated to an experimental verification of the DDI method-
ology. With samples provided by the industrial partner of this project, we perform
Digital Image Correlation on mixed polymer composite samples to obtain strain fields
that we could then use to perform DDI and obtain an estimation of the behavior of
the parameters. Given the way the tests were performed, results were mixed, but they
were helpful in shedding light in ways that we can improve the handling of samples for
future testing of the DDI method.

After summarizing the contents of the project, we can outline the main contribu-
tions:

� We have successfully modified the DDI algorithm to include the time dependence
phenomena of linear viscoelastic materials. By extending the phase space we have
consistently obtained better results that are closer to what we have obtained by
simulating different samples with FEM, specially in cases where the viscoelastic
effects are more pronounced, where the original formulation of DDI tends to fall
short.

� We have also managed to introduce statistical analysis into DDI as a solution for
specific problems. In this work, we have particularly shown that:

– Correspondence Analysis is a good tool for performing the separation of
phases in heterogeneous behaviors. By analyzing the mechanical and mate-
rial states as categorical data, we can perform statistical analysis that allows
us to recover certain trends in the data. CA provides us with an alternative
visualization of the data where we can find clusters representing the different
behaviors in a sample, allowing us to retrieve simultaneously the constitutive
relation of both phases, as well as the location of the phases in the original
mesh.

– Introducing normalization in the DDI procedure improves the results at the
expense of efficiency on the calculations. However, particularly in the case
of softer inclusions, it has proven to be a successful trick to identify the
phases of the sample, which until now it was a problem that has always
been present in DDI. Normalizing the algorithm also has the advantage of
ridding us from the use of the parameter C, which simplifies the application
of the algorithm.

– Principal Component Analysis allows us to reduce the dimensionality of the
problem, as well as providing us with a different visualization of the data in
a similar fashion to Correspondence Analysis. The reduction of the prob-
lems has proven useful, specially in the case of viscoelasticity where we have
seen that the extension of the phase space can rapidly grow to levels where
the computation becomes slow and inconvenient. We have obtained consis-
tent results when using a reduced dimensionality formulation in the case of
viscoelasticity, which produces more accurate results than other versions of
DDI, due to the removal of noise as a side effect from PCA.

– We have also seen that the filtering properties of PCA are useful for post-
processing the results of DDI. When using these methods after running DDI
we have slightly reduced the error of the estimations. However, we have an
improved performance of the Correspondence Analysis, where the clusters
are much more apparent and a separation of phases becomes easier.
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With all this in hand, we can also have some perspective on the future of the field
and possible continuation for this work.

� Since CA has provided good results for heterogeneous samples, it is natural to
think that it could be applied in other cases as well. In that sense, it could be
interesting to see if the methodology could be applied in orthotropic samples,
which would allows us to see the different behaviors inside the same material.

� We have also seen that the extension of the phase space is a valid option that
provides a good improvement over the original DDI for cases that are not elastic.
This approach is not exclusive and it has been applied effectively in other type of
materials (see [23] for inelasticity, for example), so it might be possible to keep
pushing for more complex behavior, specially inside of the viscoelasticity field.

� We can also find better ways to integrate data science into the DDI formulation.
PCA is a relatively simple technique that provided improvements to our results.
In this sense, more complex techniques could be studied and implemented into
our methodology to provide new variations that can improve the visualization of
the problem and the results obtained.

� Finally, every day there are improvements in every field, including the ones con-
cerning the recollection of data. In this sense, we can realistically expect to
have better input to use in the data-driven methods and move beyond the two-
dimensional cases. Improvements in 3D imaging, the use of sensors inside of
samples, better cameras, etc.; will provide new visualizations that will push the
boundaries of what it is possible with DDI and DDCM with exciting prospects.

169



Appendix A
Digital Image Correlation

Many experimental settings in solid mechanics rely in having access to a displacement
field of the sample. Although different techniques can be used for this purpose, DIC
stands out due to its simplicity and accessibility, since the setup needed to obtain results
depends only in a good camera and proper lighting conditions.

Image detection and gray levels

The basic procedure for performing DIC is to detect images of the surface of a sample.
Normally a digital camera is used to obtain grayscale pictures of different states of
deformation and then a software is used to compare the different images, tracking the
movement of different points in the picture. To be able to track this displacement,
the image is divided in subsets, areas of a certain amount of pixels that are tracked.
Subsets work under the assumption that the gray level of each subset is unique and
kept constant during the full deformation, so the software matches these areas. An
example of how this works is shown in Figure A.1.

Figure A.1: Example of how the subset is tracked in the sample. The subset is represented
by the red square, whose movement is observed going from the original position (dashed line)
over to the updated position after deformation (solid line).
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Due to the need of having some visible and unique characteristic for the tracking,
typically an artificial randomized pattern is applied to the surface of the sample. The
random speckle pattern that has been already seen in Chapter 6 allows to have a non-
uniform distribution of gray intensities along the sample, avoiding problems on the
tracking due to regularity.

To perform the tracking of subsets, the intensity levels of each pixel are defined as
a function F (x, y) that represents the gray level value measured from 0 to 255, with 0
being black and 255 being white. Since this function is discrete due to the nature of a
pixel image, an interpolation is performed to obtain a continuous representation of the
gray level in the full image, which poses the advantage of being able to track subpixel
deformations.

Estimating deformation in the sample

To deal with deformation in the images, we use the kinematic theory of deformation.
Assuming that the displacement gradients are constant through the subset, we can
express the deformed coordinates (x∗, y∗) as [67]

x∗ = x+ ux + ux,x∆x+ ux,y∆y,

y∗ = y + uy + uy,x∆x+ uy,y∆y,
(A.1)

where ∆x and ∆y represent the distance from the center of a subset to the point (x, y)
in the respective coordinates, and u represents the deformation of the original point.
In here we use tensorial notation for the derivatives, where ui,j = ∂xi

∂xj
.

If we consider a subset centered at a point P at the reference, when it moves it goes
to a new point P ∗ and it deforms. The values of gray levels at positions P and P ∗ can
be written as [68]

F (P ) = F (x, y),

F ∗(P ∗) = F ∗(x+ ux, y + uy).
(A.2)

Similarly for a point Q at a position (x + ∆x, y + ∆y) before deformation, the gray
level function for for this point in its original and deformed state can be written as

F (Q) = F (x+ ∆x, y + ∆y),

F ∗(Q∗) = F ∗(x+ vx + ∆x, y + vy + ∆y),
(A.3)

where v is the deformation of point Q.
If we assume that the subset taken is small enough that straight lines remain straight

after the deformation, as well as assuming that the gray levels remain the same during
the full process (i.e., F (Q) = F ∗(Q∗)), we can define the position of point Q∗ as

(x∗∗, y∗∗) = (x∗ + ∆x∗, y∗ + ∆y∗)

= (x+ ux + ∆x∗, y + uy + ∆y∗)

= (x+ ux + ux,x∆x+ ux,y∆y + ∆x, y + uy + uy,x∆x+ uy,y∆y + ∆y),

(A.4)
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and using Equation A.1, we can rewrite Equation A.3 as

F ∗(Q∗) = F (x+ux+ux,x∆x+ux,y∆y+∆x, y+uy +uy,x∆x+uy,y∆y+∆y), (A.5)

meaning that, if we know the displacement of the center point P and the gradients of
deformation, then any point Q∗ can be calculated. In the same vein, if we assume the
values for u and its derivatives, we can compute estimates of P ∗ and the point Q∗ in a
small subset around. This is the basis of the image correlation analysis.

To obtain accurate estimations of the deformation and its derivatives, subsets are
compared. We start by taking an undeformed subset centered at P , which is inter-
polated to obtain the continuous function F . Then, values for the deformation u are
taken while keeping the other parameters at zero, meaning that we assume that only
a translation took place. The values of (ux, uy) that give the best comparison be-
tween two images are taken as an approximate center for the deformed position. The
most common method to compare two subsets is through the use of a cross-correlation
coefficient C computed as

C(ux, uy, ux,x, ux,y, uy,x, uy,y) =

∫
M∗ F (x, y)F ∗(x∗, y∗) dA√∫

M F (x, y)2 dA
∫
M∗ F

∗(x∗, y∗)2 dA
, (A.6)

where M represents a subset in the original state and M∗ a deformed one. The values
that maximize C are the local deformations for the subset, so the problem is a maxi-
mization one. This is typically solved by obtaining first the values for u until we have
our approximate new center, then we iterate for different values of the gradient until
we settle. This process can be repeated with smaller ranges of deformation centered
around the new position to minimize the error of the deformations. Once the values
of u and the derivatives are obtained, the strain fields can be computed with the finite
strain theory, i.e.,

εxx = ux,x −
1

2
(u2
x,x + u2

y,x), (A.7a)

εyy = uy,y −
1

2
(u2
x,y + u2

y,y), (A.7b)

εxy =
1

2
(ux,y + uy,x)− 1

2
(ux,xux,y + uy,xuy,y). (A.7c)
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Appendix B
Unsupervised sorting: k-means algorithm

K-means [32] is one of the most popular methods for partitioning and clustering sets
of data, given the speed and simplicity in which it achieves results. The main idea of
the algorithm is that, for a set of dataset of n measurements in Rd, we seek to find k
points that reduce the distance between each measurement and their assigned centroid.
One of the drawbacks of the method is the accuracy of it, as well as the uniqueness
of the solution. Depending on the distribution of the measurements, k-means may
provide bad clustering since it only takes into account distances rather than how this
distances are related. Also, the results are heavily dependent on where the initial seeds
for the centroids are placed. If the seeds are chosen randomly, there is the possibility of
centroids being close to each other or misrepresenting certain sections of the dataset.

The algorithm for k-means is outlined in Algorithm B.1. This variant is performed
with a k-means++ initialization [44], which seeds the initial centroids based on a prob-
ability distribution rather than a uniform random pick. In here, D(x) is a function
that describes the shortest distance from a measurement x to a closest center already
chosen, z.

Algorithm B.1: K-means algorithm with k-means++ initialization.

Input: Dataset X ⊂ Rd, number of clusters k
Output: Subsets Xk ⊂ X , centroids zk ∈ Rd

K-means procedure
Pick centroid z1 uniformly at random from X .

Pick each centroid zi for i = 2, . . . , k, choosing x ∈ X with probability
D(x)2∑

x∈X D(x)2

while zk keeps changing do
For each i = 1, 2, . . . , k define Xi as the subset of measurements that are
closer to zi.

For each i = 1, 2, . . . , k define zi as the center of mass of all the points
in Xi, i.e.,

zi =
1

|Xi|
∑
x∈Xi

x.

173



The total squared distance of all the measurements to their centroids is a mono-
tonically decreasing function, so the algorithm ensures that there will not be two equal
configurations in any two steps. Also, since there is a limited amount of possible clusters
(kn), we know that the process will always reach to a solution.
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Appendix C
Singular Value Decomposition

Singular Value Decomposition (SVD, [69]) is a factorization performed on a matrix.
It is a generalization of the eigendecomposition oriented towards rectangular matrices.
Eigendecomposition factorizes a square matrix into two, one orthogonal and one diag-
onal matrix. SVD provides a similar output, considering two orthogonal matrices and
one diagonal, analogous to the square case.

If we consider any rectangular matrix M of size m × n with rank r ≤ min(m,n),
the SVD of M can be expressed as

M = UΣV ∗, (C.1)

where U is an m×m matrix whose columns represent the singular vectors (an analogous
to the eigenvectors of a square matrix) of M associated to the rows, Σ is a diagonal
matrix of size m× n with the singular values (analogous to the eigenvalues of a square
matrix) ordered in decreasing size; and V ∗ is a matrix of size n × n with the rows
containing the singular vectors associated to the columns of M . The relation between
SVD and eigendecomposition can be seen in the definition of U and V , since U cor-
respond to the orthonormal eigenvectors of the square matrix MMT , while V is the
equivalent for matrix MTM . In fact, if M is a positive semi-definite square matrix,
SVD and eigendecomposition are equal. Figure C.1 shows a graphical representation
of this decomposition and its relations.

The particularity of the decomposition lies in the fact that each element of the
matrix Σ is associated to a pair of eigenvectors from matrices U and V . These values
can be used to obtain an approximation M (k) of lower rank of the original matrix,
by considering the k singular vectors associated to the k biggest singular values, and
discarding the lower ones. The original matrix can be reconstructed as

M (k) = U (k)Σ(k)V ∗(k), (C.2)

where U (k) is the reduced matrix of size m × k formed by the first k columns of U ,
and a similar truncation is taken for Σ and V . This is the main formulation in which
dimensionality reduction techniques are based on.

Another property of the SVD is that the columns of U and V are each one a set
of orthonormal vectors, which means that they represent a basis on its own. Because
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Figure C.1: Schematics of the SVD.

of this, the space created by both the columns of U or V represent projections of the
data in different spaces, which gives alternative visualizations and serves as the basis for
techniques such as the Principal Component Analysis (PCA, [54]) and Correspondence
Analysis (CA, [39]), which are featured in this work.
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Appendix D
Correspondence Analysis

Correspondence Analysis (CA) is a multivariate technique that transforms a matrix
of nonnegative data, usually known as a contingency table, into a graphical display in
which the rows and columns of this table are depicted as points [42]. It is analogous to
the Principal Component Analysis (PCA) with the exception that it is tailored to cate-
gorical rather than continuous data. In its simplest form, it is used in two-dimensional
tables, but its extension, known as Multiple Correspondence Analysis (MCA, [70]), is
the generalization for higher-dimensional data.

Procedure

The general procedure for performing CA is outlined here as presented in [39]. The
application to DDI is already outlined from Equation 3.5 to 3.11 in more detail, so
a simpler version is presented in Algorithm D.1. In here, I and J correspond to the
dimensions of the table N , while 1 is a column vector full of ones of an appropriate
dimension for the multiplication.

In all the coordinates computed in Equation D.6 and D.7, the rows of the matrices
Φ/F and Γ/G correspond to each one of the columns or rows of the table N respec-
tively, while the columns are known as the principal axes or dimensions. Since the
process includes performing an SVD, it means that each one of these coordinates are
weighted values of the vectors that reduce the covariance of the matrix S.

The reason why in CA we perform the SVD in the matrix S rather than directly
applying it to the data P as it would be done in the PCA is related to the measured
distance between points. In PCA, we work with a covariance between all points based
on an euclidean distance. The matrix of standard residuals S, however, can be defined
as the weighted average of the χ-squared distances [53] between rows and columns to
their centroids. The choice of χ-squared distances is logical because each distance can
now be interpreted geometrically as a deviation of each row or column profile from
the origin, which is also known as the inertia. In this sense, we can understand that
the distance of each point from the origin, for each one of the points in the principal
or standard components, represents how different they are from an homogeneous case,
which is the reason why we focus on obtaining clusters of points in this projected space.
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Algorithm D.1: General procedure for Correspondence Analysis.

Input: Contingency table, N
Output: Standard coordinates, Φ,Γ. Principal coordinates, F ,G. Principal

inertias, λk.

Pre-processing of the contingency table
Calculation of corresponding matrix (P ):

P =
1

n
N (D.1)

where n is the sum of all elements in N .
Obtain row (ri) and column masses (cj):

ri =

J∑
j=1

pij cj =

I∑
i=1

pij

r = P1 c = P T1

(D.2)

Form diagonal row (Dr) and column masses (Dc):

Dr = diag(r) and Dc = diag(c) (D.3)

Correspondence Analysis procedure
Calculation of the matrix of standard residual (S):

S = D−1/2
r (P − rcT )D−1/2

c (D.4)

Perform SVD calculation of S:

S = UDαV
T (D.5)

Calculation of standard coordinates of rows (Φ) and columns (Γ):

Φ = D−1/2
r U

Γ = D−1/2
c V

(D.6)

Calculation of principal coordinates of rows (F ) and columns (G):

F = ΦDα

G = ΓDα
(D.7)

Calculation of principal inertias (λk):

λk = α2
k, k = 1, 2, . . . ,K where K = min(I − 1, J − 1) (D.8)

In here, αk are the diagonal terms of matrix Dα.
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A total inertia of the problem can be computed as

t =

I∑
i=1

J∑
j=1

[
(pij − ricj)2

ricj

]
, (D.9)

which would be seen as a measure of the heterogeneity of the data.
The results that we obtain from the CA are presented in a K-dimensional space,

where K = min(I−1, J−1), however, since we are using the SVD, we can apply similar
procedures as in the PCA. In this sense, we know that we can recreate a matrix S(m),
which is formed by taking the m first columns of matrices U and V , and the biggest
m αk inertias. This matrix S(m) is a low-rank approximation of the original matrix S,
meaning that CA can provide a low-dimensional categorization of the distribution of
the data. In the case of CA, each one of the inertias represent how heterogeneous the
data is in that dimension, which is the reason why we want to visualize the information
produced by the highest components. If the data tends to be more homogeneous, we
need to use more components to visualize the clusters since the χ-distances tend to be
closer, which gives more components having relevant information, something that we
also have seen when using the PCA method.
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Titre :  Identification des propriétés des matériaux et de la distribution des phases des matériaux hé-
térogènes par des méthodes data-driven : Vers un espace constitutif amélioré 

Mots clés : Méthodes data-driven, Corrélation d’images numériques, Analyse de correspondances, Analyse 
en composantes principales, Composites 

Résumé : L’identification des relations constitutives 
des matériaux est une tâche essentielle pour com-
prendre leur comportement. Les méthodes classiques 
sont efficaces pour comprendre ces relations, mais 
l'introduction de modèles peut conduire à des formu-
lations biaisées. En plus, il n’est pas possible de for-
maliser toutes les relations constitutives par des ex-
pressions mathématiques ou il peut y avoir des para-
mètres difficilement identifiables par des techniques 
courantes. 
L'identification pilotée par les données (DDI), dévelop-
pée par Leygue et al. (2018), est un algorithme dans 
lequel la relation constitutive des matériaux élastiques 
est définie par une base de données de points maté-
riels qui sont calculés en fonction des champs de dé-
formation mesurés, des forces appliquées et de la 
géométrie connue des échantillons du matériau. L'al-
gorithme estime simultanément les champs de con-
traintes associés aux déformations mesurées dans les 
échantillons. 

Dans cette thèse, nous étendons l’algorithme DDI 
pour couvrir des comportements de matériaux plus 
complexes. Dans un premier temps, la méthode est 
appliquée à des échantillons hétérogènes, où un 
post-traitement est effectué avec l'analyse des cor-
respondances pour séparer les différentes phases de 
l’échantillon et identifier leur comportement indivi-
duel. Ensuite, la DDI a également été appliquée à 
des matériaux viscoélastiques linéaires, où une ap-
proche étendue de l'espace de phase est utilisée 
pour tenir compte de la dépendance temporelle du 
comportement. Enfin, différentes variantes de l'algo-
rithme sont envisagées en combinant la DDI avec dif-
férentes techniques statistiques telles que l'analyse 
en composantes principales, dans une recherche de 
rapidité et de précision des prédictions par réduction 
de la dimensionnalité. Parallèlement, la méthode est 
testée sur des échantillons composites hétérogènes 
et comparée aux résultats obtenus par les méthodes 
classiques. 
 

 

Title:  Identification of material properties and phase distribution of heterogeneous materials through 
data-driven computational methods: Towards an enhanced constitutive space 

Keywords: Data-driven methods, Digital image correlation, Correspondence Analysis, Principal Component 
Analysis, Composites 

Abstract:  Identifying the constitutive relations of ma-
terials is an essential task to understand their behav-
ior. Classical methods like testing can be effective in 
understanding these relationships, but introducing 
models can lead to biased formulations and errors. 
Furthermore, not all constitutive relations can be de-
termined directly by mathematical expressions or 
there might be parameters that we cannot obtain eas-
ily through common techniques. 
Data-Driven Identification (DDI), developed by Leygue 
et al. (2018), is an algorithm in which the constitutive 
relation of elastic materials is defined by a database of 
material points that need to be computed based on 
measured strain fields, applied forces and known ge-
ometry of tested samples of the material. The algo-
rithm simultaneously estimates the corresponding val-
ues of the stress fields that emerge due to the defor-
mations measured in the samples. 
 

In this thesis, we focus on departing from elasticity to 
cover more complex material behaviors with the DDI 
algorithm. In a first step, the method is applied to het-
erogeneous samples, where a post-process is per-
formed with Correspondence Analysis to separate 
the different phases in a sample and identify their 
separated behavior. Then, DDI was also applied to 
linear viscoelastic materials, where an extended 
phase-space approach is used to account for the 
time dependence of the behavior. Finally, different 
variations of the algorithm are considered by combin-
ing DDI with different statistical techniques such as 
the Principal Component Analysis, in a search for 
speed and accuracy of the predictions through di-
mensionality reduction. Parallel to this, the method is 
tested in heterogeneous composite samples and 
compared to expected results obtained by classical 
methods. 
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