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Chapter I

General Introduction

«Fais quelque chose, crée quelque chose - n’importe quoi pour que cette affreuse
solitude ne te détruise pas à petit feu...»
“Do something, create something - anything so that this dreadful loneliness does
not slowly destroy you...”[2]

Dimanche 26 octobre

The study of turbulence or turbulent flows forms an important part of the domain of fluid
dynamics and is considered one of the longest unsolved problems of classical physics. The
community of physics and engineering has devoted efforts for centuries to understand turbu-
lence which is continued to this day. This is evidenced from a Google Scholar search which
shows that roughly 44, 000 articles were published with the word turbulence in their titles in
the year 2020 alone. Turbulent flows are characterized by an unpredictable behaviour of the
flow across a range of scales1 which calls for a probabilistic description of turbulence[3] and
amounts to studying different statistical properties of the flow. As was shown by Reynolds
[4], the transition of a laminar flow to a turbulent flow can be characterized by a dimension-
less number (now called the Reynolds number) which is defined as,

Re = uL

ν

where u and L are the typical velocity and length scales of the flow (for example the mean
velocity across a cross section of a circular tube and the radius of the tube for the famous
experiments performed by Reynolds). Reynolds found that for the values of this dimension-
less number above a critical value, the flow became turbulent. As with any other dissipative
system, turbulent flows dissipate energy and to sustain them, one needs to continuously in-
ject energy in them. A physical picture of the process attributed to Richardson [5] is shown

1By scales we mean the length and time scales over which the fluid motion is observed to change.
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2 Chapter I. General Introduction

in fig.I.1a. The mean energy per unit mass is injected in eddies of typical size of l02 and
whose rate per unit time is denoted by 〈ε〉. This energy gets transferred to eddies of smaller
sizes through non-linear interactions all the way down to eddies of typical size η which is
also called as the Kolmogorov microscale where it gets dissipated into heat due to viscosity.
In the stationary state, the mean rate of energy injected per unit mass would be equal to
the mean rate of energy dissipated per unit mass, both of which we denote by 〈ε〉. In quan-
titative terms, this can also be seen from the energy spectrum of the velocity fluctuations
as a function of the wavenumber. If the velocity fluctuations are denoted by u, then the
wavenumber energy spectrum is defined as [6],

E(k) = 1
16π3

∮
dS(k)

∫
d3r Γiiu (r) eιk·r (I.1)

where the integration over a surface of sphere with radius of ‘k’ is denoted by
∮

()dS(k). The
two-point spatial correlation tensor of the velocity fluctuations Γu is defined as,

Γiju (r) = 〈ui(x)uj(x + r)〉

and angular brackets denote ensemble averaging. Fig.I.1b depicts the energy injected at the
wavenumber 1/l0 which gets transferred to smaller scales eventually getting dissipated at
the wavenumber 1/η. The inertial scales are defined as the scales with 1/l0 � k � 1/η.
As is evident from the description presented, a quantity of central interest when studying
turbulent flows is velocity. A mathematical description on the statistical properties of tur-
bulent velocity fluctuations was first given by Kolmogorov in the year 1941 which we refer
to as the K41 theory [7, 8]. Kolmogorov in his K41 theory hypothesized that the for very
large Re, the inertial scales of velocity fluctuations would be homogeneous and isotopic; their
statistical properties determined uniquely by 〈ε〉. He showed that with the assumption of
scale invariance, we obtain for the energy spectrum of the inertial scales,

E(k) = CK〈ε〉2/3k−5/3 (I.2)

where CK is called the Kolmogorov constant. The form of the energy spectrum as well as the
universality of the Kolmogorov constant (eqn.(I.2)) have been validated through numerous
experiments [9, 10]. The value of Kolmogorov constant is found to be CK ≈ 0.53. Later,
in the year 1962 Kolmogorov refined his K41 theory to account for the spatial dependence
of the rate of energy dissipation per unit mass (ε) and the effects of intermittency at small
scales. The refined theory of Kolmogorov is referred to as K62. The quantity of fluctuations
in energy dissipation rate per unit mass (ε′ = ε−〈ε〉) too has drawn interest and a large body
of experimental work [9] has evidenced its intermittent nature and deviation of its statistical
properties from simple scale invariance arguments central to the K41 theory.

2Note that l0 need not necessarily be the same as L as l0 would be characteristic to the instability process
that leads to the transition of a laminar flow to a turbulent one.
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Fig. I.1 (a) Figure shows the energy transferred between eddies of progressively
smaller sizes as envisaged by Richardson [5] (b) A typical plot of the energy spec-
trum of velocity fluctuations E(k) as a function of its wavenumber k. Energy is
transferred between velocity fluctuations of adjacent wavenumbers. In the figures,
l0 denotes the size of the eddies at which energy is injected in the turbulent flow
with a mean rate per unit mass of 〈ε〉. The size of eddies at which energy is dissi-
pated is denoted by η. The eddies of sizes intermediate to l0 and η are denoted by
l.
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In addition to fluctuations in velocity and dissipation rate, the statistical properties of pres-
sure fluctuations too have been studied to characterize turbulent flows. The energy spectrum
for pressure fluctuations predicted from dimensional analysis have been experimentally ver-
ified for isotropic turbulence and shear flows and have also been used to observe coherent
structures in turbulent boundary layers [11, 12] and in the bulk of turbulent flows [13, 14].

All turbulent flows dissipate energy at small scales via viscous dissipation. As we noted
earlier, the process of viscous dissipation has drawn considerable interest owing to its inter-
mittent behaviour and departure from Kolmogorov’s K41 theory. The heat generated in the
process of viscous dissipation would be captured by the spontaneously generated temperature
fluctuations. Studying such temperature fluctuations thus offers a way of characterizing the
small scale structure of turbulence. Surprisingly, no experimental work exists in literature on
the study of temperature fluctuations generated by viscous dissipation. The possible reason
for this is that considerable efforts have been put to understand temperature fluctuations
in turbulent flows in the general framework of passive scalars. Temperature fluctuations
are externally injected in a turbulent flow and its statistical properties when undergoing
turbulent advection and diffusion are studied [15]. In this scenario, the effects of viscous
dissipation are neglected owing to its magnitude being smaller than the externally supplied
temperature fluctuations. Nonetheless, spontaneously generated temperature fluctuations in
turbulent flows are fundamental in characterizing the small scale structure of turbulence and
as of yet their statistical properties remain unexplored.

Even for a quantity as well studied as velocity in turbulent flows, many questions about its
statistical properties are yet to be understood. When studying turbulent velocity fluctuations
in the Eulerian frame of reference, historically the focus has been on studying statistics either
spatially or temporally. For example, studying the energy spectrum of velocity fluctuations
in wavenumber E(k) amounts to studying the two point velocity correlation (see eqn.(I.1)),

Γiju (r) = 〈ui(x)uj(x + r)〉

and studying the energy spectrum of velocity fluctuations in frequency E(f) amounts to
studying the one point temporal velocity correlation,

Γiju (τ) = 〈ui(t)uj(t+ τ)〉

The lack in understanding the spatio-temporal characteristics of turbulence can be possibly
linked to the limitations faced both experimentally and numerically in resolving turbulent
flows across a wide range of scales in space and time simultaneously. With recent advances
in computational power and comparatively newer experimental techniques like the particle
image velocimetry (PIV), there has been a renewed interest in characterizing the spatio-
temporal behaviour of turbulent flows. In their recent work, Leoni et al. [16] numerically
studied the velocity spatio-temporal spectrum E(k, f) for homogeneous, isotropic turbulence
and reported observing the sweeping effect proposed by Tennekes [17]. Another spatio-
temporal quantity which is relevant from an experimental point of view is magnitude-squared
coherence or simply coherence C(r, f) 3 which is defined as,

3Since it is a quantity that can be measured by point measurement techniques like hot-wire anemometry
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C(r, f) = |E(r, f)|2
E(f)2

Studying the spatio-temporal spectrum E(k, f) or coherence C(r, f) amounts to studying the
two point temporal velocity correlation,

Γiju (r, τ) = 〈ui(x, t)uj(x + r, t+ τ)〉

Thus the quantity of coherence offers a way to experimentally characterize the spatio-teporal
characteristics of turbulent flows.

Another physical problem closely related to turbulence is the scattering of electromagnetic
or acoustic waves by disordered media. On one hand, with known statistical properties of
the disordered medium, in our case turbulence, we can predict the statistical properties of
the scattered wave. On the other hand, we can infer statistical quantities related to the
turbulent flow from the scattered wave. One example is the visualization of the flow by
the Schlieren technique wherein the incident light is scattered by density fluctuations in the
flow. Similarly, studying the scattering of acoustic waves by turbulent flows, one can infer
the statistics of turbulent velocity and temperature fluctuations in Fourier space [18] (sketch
I.2a). The problem of acoustic scattering by turbulent flows can also be cast in a slighlt
different way. Consider the scenario of an acoustic wave travelling through a turbulent
flow. The fluctuations in velocity and temperature in the turbulent flow would result in
fluctuations of the amplitude and phase of the acoustic wave (sketch I.2b). In principle, one
can obtain statistical information about the turbulent velocity and temperature fluctuations
by studying the fluctuations in amplitude and phase of the incident acoustic wave.

The presentation of this thesis is quite straightforward and is as follows,

• In chapter II, we study the temperature fluctuations generated due to viscous dissi-
pation in a turbulent flow. We devise an experiment where the external effects of
temperature are minimized. This is important since the magnitude of temperature
fluctuations generated during the process of viscous dissipation is very small4.

• In chapter III, we study the spatio-temporal statistics of velocity fluctuations, specif-
ically its coherence in turbulent flows. Two experimental setups are developed to
ensure the reproducibility and robustness of our results. Two different experimental
techniques are used, one with better temporal resolution and the other with better
spatial resolution. This ensures that the results are not technique dependent.

• In chapter IV, we study the problem of amplitude and phase fluctuations of an acoustic
wave incident on a turbulent flow. Experimental results and the theory developed are
shown to be in agreement with our understanding from chapters II and III.

or laser doppler anemometry (LDA). On the other hand evaluating the spatio-temporal spectrum requires
measurement of the entire velocity field at every instant in time.

4Compared to the ambient fluctuations if turbulent flow is generated in air.
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Turbulent
ow 

(a)

Turbulent
ow 

(b)

Fig. I.2 (a) Sketch showing an incident acoustic wave being scattered by velocity
and temperature inhomogeneities in the turbulent flow (b) Sketch showing the
fluctuations in amplitude and phase of the incident acoustic wave due to velocity
and temperature inhomogeneities in the turbulent flow.



Chapter II

Temperature fluctuations in turbulent
flows

«À quoi bon écrire? La vie est une cage de mots vides.»
“What is the use of writing? Life is a cage of empty words.”[2]

Mercredi 3 septembre

In many physical phenomena occurring in nature, the transport of scalar or vector fields
by a turbulent flow plays an important role. The examples are ubiquitous ranging from
concentration of chemical pollutants in the atmosphere (and the oceans)[19, 20] (fig. II.1a),
the advection of thermodynamic quantities like temperature (humidity, etc.) (fig. II.1b) to
the transport of magnetic fields in electrically conducting fluids and the generation of large
scale magnetic fields in astrophysical bodies [21] (fig. II.1c).

These scalar (and vector) fields transported by the turbulent flow can have a significant
effect on the turbulent flow itself and modify it, in which case they are called “active”. An
example of active scalar would be the magnetic field in 2D magnetohydrodynamic flows. If
the presence of the scalar does not affect the flow and they are only transported by it, they
are called “passive”. For example, coloured dye in a turbulent flow would be a passive scalar.

Another scalar quantity of interest when studying turbulent flows is temperature, which can
either be an active or a passive scalar depending on the problem being studied. Rayleigh-
Bénard convection is a type of flow driven by buoyancy forces in a horizontal layer of fluid
when the lower boundary of the fluid is maintained at a higher temperature than the upper
boundary. The temperature field in Rayleigh-Bénard convection is an example of tempera-
ture as an active scalar. The study of temperature field in Rayleigh-Bénard convection has
been a focus of research for decades. A review of Rayleigh-Bénard convection can be found in
[22] which covers the developments on this topic till the late 1990s. The case of temperature
field as a passive scalar in turbulent flows can be regarded as a particular example of trans-
port and mixing of passive scalars in turbulent flows which has also been studied in detail

7



8 Chapter II. Temperature fluctuations in turbulent flows

over the years. The passive temperature field is either forced through bulk sources of heat
or through a mean gradient of temperature in the bulk which then undergoes mixing due to
the background turbulent flow. Recent advances in the field are summarized in the reviews
by Warhaft [15], Sreenivasan [23], Shraiman [24] and Falkovich [25]. By using dimensional
arguments, many different forms of the energy spectrum1 of the fluctuations of temperature
field have been proposed depending on the relative magnitudes of the kinematic viscosity of
the fluid and the thermal diffusivity.

(a)

(b)

(c)

Fig. II.1 (a) Concentration of nitrogen dioxide in the atmosphere. Data collected
between April and September, 2018 by Copernicus Sentinel-5P mission, ESA [26].
(b) Sea surface temperature from satellite data obtained in March, 2020 [27]. (c)
Illustration of the dipolar magnetic field of Jupiter [28].

1We have to be careful when associating the words energy spectrum to temperature (or other scalar/vector
quantities) fluctuations. Unlike energy spectra of velocity fluctuations, the area under the energy spectra of
temperature fluctuations has the unit K2 and thus does not correspond to energy in the conventional sense.
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Most of the studies regarding passive scalars in turbulent flows have been performed on the
basis that there exists a well defined length and time scale at which energy is injected in the
passive scalar field. When studying temperature as a passive scalar, this may be reasonable
when sources of heat or a temperature gradient is imposed in the bulk and maintained
constant over time. However, this assumption might break down for temperature fluctuations
produced by viscous dissipation in the turbulent flow itself. Surprisingly, the spontaneous
temperature fluctuations arising from the inherent viscous dissipation of any turbulent flow
have been overlooked over the years with only a few recent numerical investigations [29,
30, 31, 32, 33] leaving the problem far from being understood. The study of spontaneous
temperature fluctuations is a theoretical and experimental challenge since the temperature
fluctuations would be intertwined with the process of viscous dissipation. Theoretically, it
is known that the viscous dissipation displays spatial and temporal intermittency [3, 34]
affecting a wide range of spectral scales which breaks the scale invariance hypothesis at the
base of simplest theories for turbulence. Experimentally, the fluctuations may take place at
small scale and high frequency, requiring high sensitivity probes and careful signal analysis.

Can we measure, characterize and understand the temperature field generated by viscous
dissipation with a laboratory experiment? Does the temperature field show behaviour possi-
bly universal to all turbulent flows and can we obtain some predictions for it? This chapter
is dedicated to answering these questions. The presentation of this chapter is as follows,

Sec. II.1: We present the theoretical background for studying temperature fluctuations
produced by viscous dissipation in a turbulent flow. In subsections II.1.1 to II.1.4 we present
the governing equations for the most general case, which is the compressible flow and therein
obtain the governing equations under some limiting cases. In subsections II.1.5 and II.1.6
we study the behaviour of temperature due to viscous dissipation in an incompressible flow
and obtain predictions for its energy spectrum and root-mean-square or RMS value from
dimensional arguments.

Sec. II.2: Presents the experimental setup for studying temperature fluctuations due to vis-
cous dissipation in an incompressible flow. In subsection II.2.3, we detail the basic properties
of the flow.

Sec. II.3: Presents the measure of temperature fluctuations and their link to pressure fluc-
tuations and small scale structures. We draw comparisons between the experimental obser-
vations and the behaviour as predicted from dimensional arguments. Some simple models
are presented to explain these results.

Sec. II.4: Discussion of the results and their implications are presented.
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II.1 Theoretical background

In this section, we will present the governing equations for three limiting cases of a weakly
compressible flow which are the incompressible flow, acoustic waves and perfect fluid. We
then proceed to focus on the limit of incompressible, homogeneous, isotropic turbulence
and obtain predictions on the behaviour of root mean square (RMS) and energy spectrum
of temperature fluctuations generated due to viscous dissipation. The presentation of this
section loosely follows the article by Bayly et al. [35], lecture notes by Moffat [36] and books
by Landau [37] and Yaglom [38, 9].

II.1.1 The governing equations

The set of governing equations for a viscous, compressible flows corresponding to conservation
of mass, momentum, energy and an equation of state are,

∂ρ

∂t
+∇ · (ρu) = 0

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · σ = −∇p+ µ∇2u +

(
ζ + 1

3µ
)
∇(∇ · u) + f

∂

∂t

[
ρe+ 1

2ρu
2
]

= −∇ ·
[(
ρe+ 1

2ρu
2
)

u + pu− σ · u− κ∇T
]

p = p(ρ, T )

where T (x, t) is the temperature field in the flow, u(x, t) and p(x, t) are the turbulent velocity
and pressure fields respectively, µ is the dynamic viscosity, ζ is the bulk viscosity, ρ is the
density, e is the specific internal energy or internal energy per unit mass and κ is the thermal
conductivity of the fluid. The body force per unit volume is denoted by f(x, t), which in
case of turbulent flows would be the forcing mechanism needed to sustain them. The stress
tensor σ is given by,

σ = µ
(
∇u +∇u

ᵀ)
+
(
ζ − 2µ

3

)(
∇ · u

)
I

where the superscript ‘ᵀ’ implies transpose of the tensor and I is the identity tensor. The
term involving ζ and µ is often called the second viscosity λv with the definition,

λv = ζ − 2µ
3

We can obtain the equation for specific entropy from the equation of energy by using the
Gibbs equation and the definition of specific enthalpy,
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Tds = de+ pdv ⇒ de = Tds+ p

ρ2dρ

e = h− pv ⇒ e = h− p

ρ

where s is the specific entropy, v is the specific volume (i.e. inverse of density ρ) and h is the
specific enthalpy. On using the above identities to evaluate both sides of the energy equation
and equating them, we obtain the equation for specific entropy [37],

ρT

(
∂s

∂t
+ ui

∂s

∂xi

)
= ∂

∂xi

(
κ
∂T

∂xi

)
+ µ

2

(
∂ui
∂xj

+ ∂uj
∂xi
− 2

3δij
∂uk
∂xk

)2

+ ζ

(
∂uk
∂xk

)2

(II.1)

where δ is the Kronecker delta tensor. The thermodynamic variables involved are the specific
entropy s, pressure in the fluid p, the density of the fluid ρ and the temperature of the fluid T .
Since, in a compressible flow, both the pressure and temperature result in variations in the
density of the fluid, it cannot be regarded as constant. We can proceed then by evaluating
the derivatives of the thermodynamic quantities with respect to pressure and temperature,

∂s

∂t
=
(
∂s

∂T

)
p

∂T

∂t
+
(
∂s

∂p

)
T

∂p

∂t

∂s

∂xi
=
(
∂s

∂T

)
p

∂T

∂xi
+
(
∂s

∂p

)
T

∂p

∂xi

Substituting these in eqn.(II.1) and rearranging, we obtain [9],

∂T

∂t
+ ui

∂T

∂xi
= α

∂2T

∂x2
i

+ ε

cp
+ εc

cp
+ β

ρcp

[
T

(
∂p

∂t
+ ui

∂p

∂xi

)]
(II.2)

where cp is the specific heat at constant pressure of the fluid, α = κ/ρcp is the thermal
diffusivity of the fluid and is assumed to be constant. To obtain the above equation, we have
used,

T

(
∂s

∂T

)
p

= cp

(
∂s

∂p

)
T

= −β
ρ

where β is the coefficient of thermal expansion of the fluid. To obtain the second relation
above, we have used one of the Maxwell relations,
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(
∂s

∂p

)
T

= −
(
∂v

∂T

)
p

In eqn.(II.2), ε/cp is the source terms arising from viscous dissipation due the incompressible
part of the flow and εc/cp is the source term due to the fluid undergoing compression (or
dilatation). Their definitions are,

ε

cp
= ν

2cp

(∂ui
∂xj

+ ∂uj
∂xi

)2
= ν

cp

(∂ui
∂xj

∂ui
∂xj

+ ∂ui
∂xj

∂uj
∂xi

)
εc

cp
= λv
ρcp

(
∇ · u

)2
= λv
ρcp

(∂ui
∂xi

∂uj
∂xj

)

where ν = µ/ρ is the kinematic viscosity of the fluid and ε is the rate of kinetic energy
dissipation per unit mass. Thus, from their definitions, ε and εc are non-negative quantities
and only transform kinetic energy into heat via viscous dissipation and compressible effects
respectively and not the other way around. Any additional bulk heat sources are accounted
for by adding another term S on the right hand side of eqn.(II.2). The final form of the
governing equation for temperature reads,

DT

Dt
= α∇2T + ε

cp
+ εc

cp
+
(
βT

ρcp

)
Dp

Dt
+ S (II.3)

where D
Dt = ∂

∂t + ui
∂
∂xi

is the material derivative. Thus eqn.(II.3) is the most general form
of the temperature equation for a closed system and accounts for compressibility effects
(involving pressure), dissipative effects (viscous and compressible) and presence of additional
heat sources/sinks in the bulk. Eqn.(II.3) along with the set of equations (II.4) form the set
of governing equations for a compressible flow.

Dρ

Dt
+ ρ(∇ · u) = 0

ρ
Du

Dt
= −∇p+ µ∇2u + (λv + µ)∇(∇ · u) + f

p = p(ρ, T )

(II.4)

If we consider the fluid being air under atmospheric conditions, the ideal gas hypothesis is
a good approximation and henceforth we consider this to be the case. The temperature
equation can be further simplified for an ideal gas, in which case, apart from the equation
of state for an ideal gas, we have the following two relations,
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β = 1
T

cp = R

M

(
γ

γ − 1

)

where γ is the ratio of specific heats at constant pressure and volume, M is the molar mass
of the gas and R ≈ 8.314 J K−1 mol−1 is the universal gas constant. Thus, for a compressible
viscous ideal gas, we obtain,

Dρ

Dt
+ ρ(∇ · u) = 0

ρ
Du

Dt
= −∇p+ µ∇2u + (λv + µ)∇(∇ · u) + f

DT

Dt
= α∇2T + ε

cp
+ εc

cp
+
(

1
ρcp

)
Dp

Dt
+ S

pM = ρRT

(II.5)

Let us denote the ambient pressure, density and temperature when the fluid is at rest by
p0, ρ0 and T0 respectively. We decompose the pressure, density and temperature fields in a
flow as a sum of the ambient values and perturbations which are denoted by p′, ρ′ and T ′
respectively,

p = p0 + p′

ρ = ρ0 + ρ′

T = T0 + T ′

We also assume the amplitudes of the perturbations to be small compared to their ambient
values,

p′ � p0

ρ′ � ρ0

T ′ � T0

On substituting the decomposition in the governing equations (II.5), we obtain for the first
order in fluctuations (p′, ρ′ and T ′),
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∂ρ′

∂t
+∇ · ρ′u + ρ0∇ · u = 0 (II.6)(

1 + ρ′

ρ0

)(
∂u

∂t
+ u · ∇u

)
= − 1

ρ0
∇p′ + ν∇2u +

(
λv + µ

ρ0

)
∇(∇ · u) (II.7)

(
1 + ρ′

ρ0

)(
∂T ′

∂t
+ u · ∇T ′

)
= α∇2T ′ + ε

cp
+ εc

cp
+
(

1
ρ0cp

)
Dp′

Dt
+ S (II.8)

p′M

R
= ρ′T0 + ρ0T

′ (II.9)

where for the ambient, p0M = ρ0RT0. Equations (II.6) to (II.9) form the set of governing
equations for a weakly compressible flow. Let L, T be the characteristic length scale and
time scale of the perturbed flow. We define the characteristic velocity scale2 as U = L/T .
The order of magnitude of the perturbed velocity is denoted by u. The relative orders of
magnitude of the terms in eqn.(II.6) with respect to the term ρ0∇ · u are,

∇ · ρ′u
ρ0∇ · u

∼ ρ′

ρ0
∂ρ′/∂t

ρ0∇ · u
∼

ρ′/T
ρ0u/L

≡
ρ′/ρ0

u/U

Similarly, the relative orders of magnitude of the terms in eqn.(II.7) with respect to ∂u
∂t are,

u · ∇u
∂u/∂t

∼ u
L/T
≡ u

U

( ρ′ρ0
)∂u/∂t

∂u/∂t
∼ ρ′

ρ0

( ρ′ρ0
)u · ∇u

∂u/∂t
∼
(
ρ′

ρ0

)(
u

U

)
( 1
ρ0

)∇p′
∂u/∂t

∼ p′

ρ0uU

ν∇2u
∂u/∂t

∼ ν

UL
≡ 1
Re

(
u

U

)

(λv + µ)∇(∇ · u)
ρ0∂u/∂t

∼ (λv + µ)∇(1/ρ0∂ρ
′/∂t)

ρ0∂u/∂t
≡
(

1 + λv
µ

)(
ρ′

ρ0

)
ν

uL
≡ 1
Re

(
1 + λv

µ

)(
ρ′

ρ0

)

2The flow can have more than one velocity scale associated with it. As an example, for acoustic waves,
we have the typical order of magnitude of the velocity fluctuations and the isentropic speed of sound.
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For eqn.(II.8), the relative order of magnitudes of the terms with respect to ∂T ′

∂t are,

u · ∇T ′
∂T ′/∂t

∼ u
L/T
≡ u

U

( ρ′ρ0
)∂T ′/∂t

∂T ′/∂t
∼ ρ′

ρ0

( ρ′ρ0
)u · ∇T ′
∂T ′/∂t

∼
(
ρ′

ρ0

)(
u

U

)

α∇2T ′

∂T ′/∂t
∼ α

UL
≡ 1
Pe

(
u

U

)
ε/cp
∂T ′/∂t

∼ 1
Re

1(
T ′/T0

)(u
c

)2(
u

U

)

εc/cp
∂T ′/∂t

∼
(
λv
µ

)
1
Re

1(
T ′/T0

)(U
c

)2(
ρ′

ρ0

)2(
u

U

)
1

ρ0cp
∂p′/∂t

∂T ′/∂t
∼ 1(

T ′/T0

) p′

ρ0c2 ∼
(p′/p0)
(T ′/T0)

1
ρ0cp

u · ∇p′

∂T ′/∂t
∼ 1(

T ′/T0

) p′

ρ0c2

(
u

U

)
∼

p′/p0

(T ′/T0)

(
u

U

)

where c is the isentropic speed of sound and we have used the relations,

cp =
(

1
γ − 1

)
c2

T0

c2 = γp0
ρ0

= γRT0
M

where the dimensionless numbers defined using velocity and temperature fluctuations are
the Reynolds number (Re) and Péclet number (Pe). We can also define the dimensionless
Prandtl number Pr from Re and Pe. The definitions of these numbers and their physical
meanings are as follows,
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Re = u′L

ν
=
(

momentum transfer from advection
momentum transfer from viscous diffusion

)

Pe = u′L

α
=
(

heat transfer from advection
heat transfer from thermal diffusion

)

Pr = Pe

Re
= ν

α
=
(
momentum diffusivity
thermal diffusivity

)

Similarly, for the relative order of magnitudes of the terms in the equation of state eqn.(II.9)
with respect to the term ρ′T0,

p′M/R

ρ′T0
∼ (p′/p0)

(ρ′/ρ0)
ρ0T

′

ρ′T0
∼ (T ′/T0)

(ρ′/ρ0)

Eqn.(II.5) (or eqn.(II.8)) shows that there are two pathways of generating temperature fluc-
tuations in the absence of any bulk sources of heat, viz. viscous dissipation and compress-
ibility effects. We consider below the three standard limiting cases, viz., incompressible flow,
acoustic wave and a perfect fluid and discuss the behaviour of temperature in these limits.

II.1.2 Limit I: Incompressible flow
Let us assume that mass flux at any fluid element in the flow is solely due to advection and
the effect of density changes on the mass flux is negligible. Thus from the relative order of
magnitudes of the terms in the equation of conservation of mass, we obtain the conditions,

ρ′

ρ0
� u

U

Eqn.(II.6) then becomes,

∇ · u = 0 (II.10)

Similarly, assuming the effect of density changes on the momentum flux to be negligible while
retaining the remaining terms gives,

u

U
∼ O(1)

p′ ∼ ρ0uU ∼ ρ0U
2



II.1 Theoretical background 17

Eqn.(II.7) then becomes,

(
∂u

∂t
+ u · ∇u

)
= − 1

ρ0
∇p′ + ν∇2u (II.11)

where we have not made any assumption on the order of Re. Equations (II.10) and (II.11)
form the governing equations of the hydrodynamic part of the incompressible flow limit.
These equations form a critically determined system for the three components of velocity
and pressure. The pressure thus obtained is not a dynamical variable and does not result in
density fluctuations. Now we proceed to find the equation for temperature and the equation
of state. We assume that the pressure which is determined from the hydrodynamic part does
not play a role in the thermodynamic part and that viscous dissipation is the sole source of
entropy generation. Along with the behaviour of the perturbed quantities as obtained from
the hydrodynamic part, we get,

DT ′

Dt
= α∇2T ′ + ε

cp
+ S (II.12)

ρ′T0 + ρ0T
′ = 0 (II.13)

where we have not made any assumption on the order of magnitude of Pe. In obtaining
the above equations, we have assumed that the order of magnitudes of the perturbations in
pressure and temperature are such that,

p′

p0
� ρ′

ρ0
∼ T ′

T0
∼ O(Ma2)� 1

where the Mach number is,

Ma = u

c

Equations (II.12) and (II.13) form the set of governing equations for the thermodynamic
part of the problem. The equations (II.10) to (II.13) thus form the complete set of governing
equations for the limiting case of incompressible flow. For a detailed asymptotic analysis to
obtain these equations, refer to the article by Bayly et al. [35].

The eqn.(II.12) for temperature can also be obtained as presented by Landau [37]. The
argument of Landau is as follows; for the equation of entropy, pressure can be regarded as
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constant since the density fluctuations would only be affected by temperature fluctuations
at the leading order. Thus, we have,

∂s

∂t
=
(
∂s

∂T

)
p

∂T

∂t

∂s

∂xi
=
(
∂s

∂T

)
p

∂T

∂xi

Using the above two relations and substituting them in eqn.(II.1) for entropy, we obtain
the temperature eqn.(II.12) without the bulk source of heat S. It is important to note that
even when considering the spontaneous generation of temperature fluctuations from viscous
dissipation for an incompressible flow, the term involving pressure is often put under the rug
by saying that its effects are negligible (see [37, 38]). As we have shown, this is true only
when,

p′

p0
� T ′

T0

the validity of which should be checked for eqn.(II.12) to hold.

II.1.3 Limit II: Acoustic wave
We simplify the governing equations of the hydrodynamic part for a weakly compressible
flow by linearizing them in velocity u. To do so, while accounting for all the linear terms in
the equation for conservation of mass implies,

ρ′

ρ0
∼ u

U

Using this condition, eqn.(II.6) is linearized, giving,

∂ρ′

∂t
+ ρ0∇ · u = 0 (II.14)

On doing the same for the equation of momentum implies,

p′ ∼ ρ0uU

and eqn.(II.7) is linearized, giving,

ρ0
∂u

∂t
= −∇p′ + µ∇2u + (λv + µ)∇(∇ · u)
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The momentum equation is further simplified by assuming the thermodynamic process for
this weakly compressible limit to be isentropic (adiabatic). This would be true when the
flow is inviscid, i.e., µ = 0 = λv. Thus the final form of the momentum equation reads,

ρ0
∂u

∂t
= −∇p′ (II.15)

Taking time derivative of eqn.(II.14), divergence of eqn.(II.15) and combining the resulting
two equations gives us,

∂2ρ′

∂t2
+∇2p′ = 0

Recall the the isentropic speed of sound in the medium is c =
√(

∂p′

∂ρ′

)
s
and replacing it in

the above equation, we obtain,

∂2ρ′

∂t2
+ c2∇2ρ′ = 0

To obtain the characteristic scales involved, we use the condition p′ ∼ c2ρ′ ∼ ρ0uU . This
gives ρ′/ρ0

u/U ∼
(
U
c

)2
. Since the left hand side is of O(1), we obtain that the characteristic

velocity scale involved is the isentropic speed of sound. Thus the characteristic length and
time scales involved are the wavelength and the inverse of frequency of the acoustic wave
respectively.

L ∼ λ
T ∼ 1/f

U ∼ c

where λ and f are the wavelength and the frequency of the acoustic wave respectively. This
also gives us the limiting conditions for which the acoustic wave equation holds true in terms
of the Mach numberMa. Since,

u

U
∼ u

c
=Ma

For the thermodynamic part, we obtain,

∂T ′

∂t
= 1
ρ0cp

∂p′

∂t
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p′M

R
= ρ′T0 + ρ0T

′ (II.16)

and the order of magnitudes of the perturbed quantities are,

p′

p0
∼ ρ′

ρ0
∼ T ′

T0
∼ O(Ma)� 1

The set of equations (II.14) to (II.16) are the set of governing equations for the limit of
acoustic wave of the weakly compressible flow equations. There are a few points to be noted
here. First, for obtaining the governing equations for acoustic wave limit, we assumed the
process to be isentropic. For this to be the case, effects of momentum and thermal diffusion
have to be negligible. The order of magnitude of the terms involving viscosity and thermal
diffusivity respectively are,

ν∇2u
∂u/∂t

∼ 1
Re

(
u

U

)
∼ O(Ma)

α∇2T ′

∂T ′/∂t
∼ 1
Pe

(
u

U

)
∼ O(Ma)

Thus viscous and thermal attenuation of the acoustic wave would be an O(Ma) effect.
Secondly, we obtain wave equation not only for ρ′, p′ and T ′ but also for the velocity field
u on the assumption that the flow is irrotational (i.e., u = ∇ψ for some scalar potential ψ),
in which case we get wave equation independently for the three components of the velocity
field.
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II.1.4 Limit III: Perfect fluid

The case of perfect fluid implies that the fluid is inviscid and non heat-conducting but can
be compressible. This limit would hold when,

Re� 1
Pe� 1

in which case, the set of equations (II.6) to (II.9) for a weakly compressible flow would
become,

∂ρ′

∂t
+ ρ0∇ · u = 0

∂u

∂t
+ u · ∇u = − 1

ρ0
∇p′

DT ′

Dt
=
(

1
ρ0cp

)
Dp′

Dt
+ S

p′M

R
= ρ′T0 + ρ0T

′

(II.17)

where we see that when S = 0 (no bulk sources of heat), the temperature fluctuations are
proportional to pressure fluctuations. We note that the equation of temperature would be
satisfied if the fluctuating quantities undergo an adiabatic process. This can be shown as
follows. For a weakly compressible flow undergoing adiabatic process, we would have,

p′

T ′
=
(

γ

γ − 1

)(
p0
T0

)
= ρ0cp

which would imply,

DT ′

Dt
=
(

1
ρ0cp

)
Dp′

Dt

The above three limits show that temperature fluctuations can arise in a flow at the leading
order from different effects, viz.,

• Viscous dissipation =⇒ Incompressible flow limit

• Pressure fluctuations for a compressible fluid =⇒ Acoustic wave limit and Perfect fluid
limit

• From bulk sources



22 Chapter II. Temperature fluctuations in turbulent flows

The equations and limits derived above are applicable to all flows, laminar and turbulent.
The first two cases corresponding to viscous dissipation and pressure fluctuations are the two
candidates for spontaneous generation of temperature fluctuations in turbulent flows. Their
study could offer an interesting avenue for investigation into possible universal behaviour
of temperature fluctuations in turbulent flows. A priori, in a turbulent flow, we have no
reason to neglect either of the three effects (viscous dissipation, pressure fluctuations and
bulk heat sources) and we have to keep in mind that all of them can manifest simultaneously
in different parts of the flow domain and generate temperature fluctuations.

In typical laboratory experiments studying turbulent flows, the Mach numbers achievable
are smaller than unity and thus one would expect compressible effects to be negligible.
In such incompressible, turbulent flows and in the absence of any bulk sources of heat,
viscous dissipation would play a central role in generating temperature fluctuations. In this
spirit, we begin by analyzing temperature fluctuations in a model of turbulent flow which is
incompressible, statistically homogeneous and statistically isotropic.

II.1.5 Temperature fluctuations in incompressible, homogeneous and isotropic
turbulent flows: Theory

As is customary in studying turbulence, we can proceed to obtain equations for mean and
fluctuating temperature fields in the case which allows further analytical treatment; in-
compressible turbulent flow which is statistically homogeneous and isotropic with perfectly
adiabatic and closed boundaries and no bulk sources or temperature gradients. This would
correspond to eqn.(II.12) for temperature with S = 0,

∂T

∂t
+ ui

∂T

∂xi
= α

∂2T

∂x2
i

+ ε

cp
(II.18)

We proceed by using Reynolds decomposition for the temperature field, velocity field and
kinetic energy injection rate per unit mass ε,

T = 〈T 〉+ T ′

ε = 〈ε〉+ ε′

u = 〈u〉︸︷︷︸
= 0

(isotropy)

+ u′

where the operator 〈·〉 stands for ensemble averaging. The decomposition is such that the
ensemble average of the fluctuating fields 〈T ′〉 = 〈ε′〉 = 〈u′〉 = 0. The root mean square
(RMS) of the velocity fluctuations is denoted by u′rms. From isotropy we have

√
〈u2
i 〉 = u′rms

where ui denotes the ith component of the fluctuating velocity field. Due to the assumption
of isotropy, we also have 〈u〉 = 0. Substituting in eqn.(II.18) and using that ∂〈T 〉

∂xi
= 0 due to

homogeneity, we obtain,
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∂〈T 〉
∂t

+ ∂T ′

∂t
+ u′i

∂T ′

∂xi
= α

∂2T ′

∂x2
i

+ 〈ε〉
cp

+ ε′

cp
(II.19)

Averaging eqn.(II.18) and using incompressibility condition ∂ui
∂xi

= 0, we obtain,

∂〈T 〉
∂t

+ ∂〈u′iT ′〉
∂xi︸ ︷︷ ︸
= 0

homogeneity

= 〈ε〉
cp

where the second term on the left hand side is zero on account of homogeneity giving us,

∂〈T 〉
∂t

= 〈ε〉
cp

(II.20)

which describes the temporal evolution of the mean temperature field. Subtracting eqn.(II.20)
from eqn.(II.19) gives us the equation for the fluctuating temperature field,

∂T ′

∂t
+ u′i

∂T ′

∂xi
= α

∂2T ′

∂x2
i

+ ε′

cp
(II.21)

where,

ε′

cp
= ν

cp

(
∂u′i
∂xj

∂u′i
∂xj

+ ∂u′i
∂xj

∂u′j
∂xi

)
− ν

cp

〈
∂u′i
∂xj

∂u′i
∂xj

+ ∂u′i
∂xj

∂u′j
∂xi

〉

Analogous to the equation for mean kinetic energy, we can write an equation for mean
variance of temperature fluctuations (loosely called “energy” of the fluctuating temperature
field) as,

∂〈T ′2/2〉
∂t

= −α
〈
∂T ′

∂xi

∂T ′

∂xi

〉
+ 〈T

′ε′〉
cp︸ ︷︷ ︸
〈εT 〉

(II.22)

Eqn.(II.20) shows that 〈ε〉, which is the mean rate per unit mass of kinetic energy injected
in the turbulent flow, is transformed into heat due to viscous dissipation and results in the
linear increase with time of the mean temperature. The fluctuating part, ε′, on the other
hand, results in generating temperature fluctuations in the flow which undergo turbulent
mixing and finally are smoothed out by molecular diffusion as seen from equations (II.21)
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and (II.22). Similar to the 〈ε〉 and ε′, we define 〈εT 〉 and ε′T , which are the mean and
fluctuating rate per unit mass of energy injected in the fluctuating temperature field as,

〈εT 〉 = 〈T
′ε′〉
cp

ε′T = T ′ε′ − 〈T ′ε′〉
cp

This shows that behaviour of temperature fluctuations is inherently tied to the behaviour of
ε′. Similar to two-point velocity correlation equation, we can write two-point temperature
correlation equation. Proceeding with the usual analytical steps as done for velocity, we
obtain,

1
2
∂〈T ′(x)T ′(x + r)〉

∂t
− 1

4
∂〈|δT ′(r)|2δui(r)〉

∂ri
= α

∂2〈T ′(x)T ′(x + r)〉
∂r2

i

+ 〈T
′(x)[ε′(x + r) + ε′(x− r)]〉

2cp
(II.23)

where δT ′ and δu′ are the temperature and velocity increments along the vector r separating
the two points in the flow respectively. Eqn.(II.23) is analogous to the Karman-Howarth-
Monin relation for velocity correlation in incompressible, homogeneous turbulence3[3]. At
this point, we cannot proceed with further simplification without knowledge about the pro-
cess of viscous dissipation.

To illustrate the difficulties in obtaining analytical results, let us consider a simpler case of
bulk source with known statistical properties in the absence of viscous dissipation. In this
case, ε′ = 0 and S 6= 0. This can be particularly challenging to achieve experimentally and
we list here the ways in which people have managed to do so,

1. Sources of heat in the bulk

For grid turbulence, which generates turbulent flow in an open domain, either the grid which
was generating the turbulent flow was supplied with a constant power or an additional mesh
was mounted and supplied with constant power in the wind tunnel downstream of the grid
which was generating turbulence. This can be found in the work of Warhaft et al. [39] and
Zhou et al. [40]. Moisy et al. [41] achieved this for turbulent von Kármán swirling flow in
a closed domain using heated grid and studying temperature fluctuations in its wake. The
equations (II.21) and (II.22), would then be rewritten as,

3Isotropy of the turbulent field need not be assumed to obtain the Karman-Howarth-Monin relation or the
analogous equation for temperature fluctuations. Only the assumptions of homogeneity and incompressibility
are sufficient.
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∂T ′

∂t
+ u′i

∂T ′

∂xi
= α

∂2T ′

∂x2
i

+ S

∂〈T ′2/2〉
∂t

= −α
〈
∂T ′

∂xi

∂T ′

∂xi

〉
+ 〈T ′S〉︸ ︷︷ ︸

Λ

2. Mean gradient of temperature in the bulk

Corrsin [42] showed that for non-decaying, isotropic turbulence with a a mean flow along one
direction (say x-axis), an applied linear gradient of a passive scalar in the cross-stream di-
rection (y-axis) will be maintained and will remain independent of the downstream distance
x. This was experimentally validated for grid turbulence experiments though they produce
turbulence decaying in the downstream direction [43, 44]. This characteristic behaviour was
used for studying behaviour of temperature in grid turbulence experiments by Sirivat and
Warhaft [45] and Mydlarski and Warhaft [46] by either differentially heating mesh down-
stream or differentially heating ribbons upstream. This would result in an additional term
in the Reynolds decomposition of temperature field,

T = 〈T 〉ext + T ′

where unlike the case of homogeneous turbulence in the absence of mean gradient, ∂〈T 〉ext∂y 6= 0.
The equations (II.21) and (II.22), would then be rewritten as,

∂T ′

∂t
+ u′i

∂T ′

∂xi
= α

∂2T ′

∂x2
i

−u′y
∂〈T 〉ext
∂y︸ ︷︷ ︸

S

∂〈T ′2/2〉
∂t

= −α
〈
∂T ′

∂xi

∂T ′

∂xi

〉
−〈T ′u′y〉

∂〈T 〉ext
∂y︸ ︷︷ ︸

Λ

(II.24)

where we have said that the external temperature gradient is linear and is along the cross
stream direction (y-axis). In the first case, it is clear to see that the source term will have
a well defined length scale. For the second case, this cannot be said though the gradient of
temperature in the bulk does have a well defined length scale. This scenario is analogous to
mean injection of kinetic energy in the velocity field. Unlike 〈εT 〉 which would likely act as a
source across multitude of scales owing to the intermittent behaviour of ε′, Λ would possibly
act as a source only for a narrow range of scales. In short, the energy spectrum of Λ would
be peaked about some wavenumber whereas it would be spread out for 〈εT 〉. Analogous to
the ‘inertial scales’ usually defined for kinetic energy in turbulent flows, we can have a range
of scales, also called inertial scales, for this system where the effects of thermal diffusivity
(and viscosity) and Λ (and ε) would be negligible.
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Under the assumption of isotropy and for Reynolds number (Re) and Péclet number (Pe)
going to infinity, Yaglom [47] obtained an exact relation analogous to the Kolmogorov’s 4

5
th

law for the inertial scales,

〈|δT ′|2δu′〉 = −4
3Λr (II.25)

In order to predict the form of the temperature energy spectrum ET (k) where k denotes the
wavenumber, eqn.(II.25) is not of much help as it also includes velocity increments and the
only way forward is to rely on dimensional arguments. This highlights that the situation is
more complicated when we deal with effects due to viscous dissipation. We proceed with
obtaining analytical predictions on the energy spectra and RMS of temperature fluctuations
using dimensional arguments for the two cases of an applied mean temperature gradient in
the bulk and viscous dissipation.

II.1.6 Temperature fluctuations in incompressible, homogeneous and isotropic
turbulent flows: Energy spectrum and RMS

As was mentioned in the previous section, to obtain predictions for the energy spectrum and
the RMS value of the temperature fluctuations, we have to rely on dimensional analysis.
First, let us consider the case when a mean gradient of temperature is applied in the bulk.
Then from dimensional analysis, we obtain,

ET (k) = CKOC〈ε〉
− 1/3Λ k

− 5/3 (II.26)

where CKOC is called the Kolmogorv-Obukhov-Corrsin constant and the definition of Λ
is given in eqn.(II.24). The prediction given by eqn.(II.26) was first proposed for the en-
ergy spectrum of passive scalars mixing in a turbulent flow for the inertial-convective range
[48, 49] (when effects of both viscosity and thermal diffusivity can be neglected) and has
been experimentally and numerically verified for the case of bulk source in the absence of
viscous dissipation [23]. On this basis and on the relative magnitudes of Re and Pe one
can obtain other scalings with ET (k) proportional to either k−17/3 (inertial-diffusive range)
or k−1 (viscous-convective range; also called Batchelor spectrum)[50] for the case of direct
cascade. Whereas, for the large scales, the spectrum can be shown to be proportional to k2

as k → 0 [49]. Similarly, using dimensional arguments, we also obtain the scaling for the
RMS of temperature fluctuations as,

T
′2
rms ∼ 〈ε〉−1/3Λ l

2/3
I

If we assume that in the case of a mean temperature gradient in the bulk, Λ scales as,

Λ = 〈T ′u′y〉
∂〈T 〉ext
∂y

∼ T ′rmsu′rms
∂〈T 〉ext
∂y

we obtain,
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T ′rms ∼
(
〈ε〉−1/3l

2/3
I u′rms

)
∂〈T 〉ext
∂y

(II.27)

The linear scaling of the RMS of temperature fluctuations with the mean temperature gra-
dient given by eqn.(II.27) has been experimentally validated [45, 46]. On using dimensional
arguments for the energy spectrum of temperature fluctuations produced by viscous dissipa-
tion, we obtain,

ET (k) = CKOC〈ε〉
− 1/3〈εT 〉k

− 5/3 (II.28)

The scaling for the RMS value of temperature fluctuations can be obtained either by in-
tegrating eqn.(II.28) from the inverse of integral scale to the inverse of Kolmogorov length
scale or from dimensional analysis, both of which give the same behaviour. On integration
eqn.(II.28), we obtain,

T
′2
rms =

∫ 1/η

1/lI
dk ET (k) ≈ C〈ε〉−1/3〈εT 〉l2/3I

where the last equality holds when η � lI and C is a constant prefactor. If we assume that,

〈εT 〉 ≈
T ′rms〈ε〉
cp

which is a positive quantity and thus captures the two effects; one that the temperature
fluctuations would depend on viscous dissipation since the quantity is non-zero and second
it is a positive quantity and thus balances the dissipation of the temperature fluctuations.
Thus, we obtain,

T ′rms = C
(〈ε〉lI)2/3

cp
(II.29)

The important parameter to be understood is the source of temperature fluctuations 〈εT 〉
which as was mentioned before would likely be spread out in spectral space and plays an
important role in the above equations (II.28) and (II.29). Do the temperature fluctuations
due to viscous dissipation in turbulent flows display behaviour of energy spectra and the
scaling of the RMS values as predicted by equations (II.28) and (II.29)? Since a lot of
simplifications went into obtaining predictions for their behaviour and also that dimensional
analysis is unable to capture the finer details of the underlying physical processes, it is far
from evident that the predictions will really hold against experimental data. In this spirit, we
develop an experiment to investigate the behaviour of spontaneous temperature fluctuations
generated by viscous dissipation in a turbulent flow.
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II.2 Temperature fluctuations due to viscous dissipation
For investigating the temperature fluctuations generated by viscous dissipation in turbulence,
we consider the von Kármán swirling flow produced by two counter-rotating disks in a closed
domain. This flow has been chosen for three reasons,

• We need the turbulent flow to be isolated from the ambient surroundings and to be able
to attain a stationary state. These requirements are satisfied by closed box turbulent
flows. In contrast, open turbulent flows (grid turbulence, turbulent jets) would decay
in space.

• The von Kármán swirling flow has been widely used to study turbulent flows. This
allows us to compare and characterize our flow prior to venturing into studying tem-
perature fluctuations. Since temperature fluctuations due to viscous dissipation have
not been experimentally studied yet, it is wiser to use a flow that has already been
used to understand other aspects of turbulence.

II.2.1 The von Kármán swirling flow

The problem of flow generated by one rotating disk with infinite radius was first studied by
von Kármán in 1921 [51]. He showed that it is possible to reduce the stationary problem
to a set of non-linear ordinary differential equations in one parameter (angular velocity of
the disk) by searching for self-similar solutions. Though he could not arrive at an analytical
solution of the flow since the non-linear differential equations needed to be solved numerically,
in the words of Batchelor, “...but to have carried a solution of the Navier-Stokes equations
even so far by exact analysis was (and still is) something of a novelty”. In his analysis,
Kármán had assumed that far from the disk, the flow is normal to the disk with no radial or
azimuthal components. Later, in 1951, Batchelor [52] showed that the simplicity of Kármán’s
solution could still be retained for two families of solutions; viz. (1) flow due to a disk with
the fluid far from the disk having an angular velocity wherein the solutions depend on one
parameter (ratio of angular velocity of disk and of fluid at infinity) and (2) flow between two
parallel disks rotating about the same axis wherein the solutions depend on two parameters
(ratio of angular velocities and Reynolds number based on the distance between the disks).
Batchelor did not obtain explicit analytical solutions and relied on physical arguments and
properties of ordinary differential equations to obtain general characteristics and qualitative
understanding of the flow. Particularly, in the case of counter-rotating disks, he proposed
a solution where the flow is divided into two self contained regions of opposite solid body
rotation with boundary layers close to the disks and a transition region of strong shear and
where the azimuthal component of the flow becomes zero. This was shown experimentally to
not be the case by Stewartson in 1953 [53] for large Re. His experiments, though qualitative,
showed that in the case of exact counter-rotation, the bulk of the fluid has no angular
velocity and has a small magnitude of radial velocity directed towards the axes of the disks.
He reasoned this to be the case since the boundary layers would not have effect on the motion
of the fluid in the bulk. Thus this would also result in the absence of a transition region
with strong shear.

The disagreement of the Batchelor-Stewartson solutions gave rise to a range of studies, both
experimental and numerical. A review of this by Zandbergen and Dijkstra [54] was published
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in 1987. To this day the flow remains an important case of study, being one of the rare cases
where an exact solution to the Navier-Stokes equations can be obtained.

For the study of properties of turbulence at small scales, the flow between two coaxial
counter-rotating disks in a closed cylindrical container is a good candidate as the energy is
injected at large scales comparable to the size of the experiment. Apart from being feasible
for table-top experiments, it can attain high values of Re of the order 105 − 106. This
has resulted in its popularity to this day for many studies on turbulence. In addition to
experiments on the characterization of the properties of the turbulent flow, it was also used
in the first experimental evidence of existence of vorticity filaments in turbulence [55] and of
generation of a large scale magnetic field by a turbulent flow [56, 57].

Over time, many modifications were proposed for the geometry of the disks to attain more
efficient ways of generating turbulence. Disks with protruding rims were first used by Douady
et al. [55]. Abry et al. [58] used disks with radial blades perpendicular to the disks and
noted a five-fold increase in the RMS of velocity fluctuations compared to smooth disks.
Cadot et al. [14] used radially curved blades and reported a sharp increase in the efficiency
of turbulence generation. The absence of a strong mean flow (and thus mean advection) in
the midplane between the two counter-rotating disks coupled with strong shear (and thus
high intensity of turbulence) makes the flow particularly appealing for studying turbulent
flows.

II.2.2 Experimental setup
The sketch of the experiment is shown in fig.II.2. The flow is generated in a closed domain
bounded by a cylinder made out of copper of 2 mm thickness. Copper has been chosen
for its high thermal conductivity to minimize temperature gradients along the boundaries
of the experiment. The top and the bottom faces of the cylinder are closed with circular
copper plates of the same thickness. Since we want to study the behaviour of temperature
fluctuations generated due to viscous dissipation, it is important to remove the drift in mean
temperature (as seen from eqn.(II.20)). To achieve this, the cylindrical part of the container
has a copper tubing of outer diameter 10 mm welded around it. The inlet and the outlet
of the copper tubing is connected to a LAUDA Proline RP 1845 circulating water bath
with thermostat control which maintains the temperature of the container at a given fixed
value. It has a cooling capacity of 1.6 kW which is well above the range of turbulent power
dissipation in our experiment (few watts) and has a temperature stability of ±0.01 K. The
working fluid in our experiment is air.

We use two brushless DC motors from MDP-MAXON (model ECMAX) with the angular
velocity Ω ranging from of 0 − 2000 rpm fit with Hall sensors (for position of the axes)
and optical encoders (for the rotation rates of the axes) along with feedback loop controller
(model ESCON 50/5 ) with access to both instantaneous rotation rates and torques on the
motors. The motors have access to the experimental setup from holes drilled on the top and
bottom faces. The diameter of the holes have been adjusted to the diameter of the motors’
axes to minimize any flow to and from the experiment. Each of the motor is attached to a
curved bladed disk to generate a strong flow inside the cylindrical cavity. The geometry of
the disk can be seen in fig.II.4. The thickness of the disks and the height of the blades is
7.5 mm. Holes drilled on the surface of the cylinder provide access to the probes; one cold-
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wire temperature probe (DANTEC 55P31 )4 and one acceleration compensated piezoelectric
pressure probe (PCB 103B02 ) which are placed in the midplane with the pressure probe
flushed to the wall. One 1D hot-wire velocity probe (DANTEC 55P16 )5 is placed close to
one disk, roughly about 1 cm from the blades. The arrangement of the probes has been
shown in top-view sketch, fig.II.3. Unless stated, the temperature of the circulating water
bath has been maintained at 21°C. The properties of air at 21◦C and 1 atm pressure are
given in tab.II.1.

To controller

To controller

DC 

motor

DC 

motor

50 mm

outlet to circulating water bath

130 mm

H = 100 mm
midplane

130 mm

inlet from circulating water bath

R = 50 mm

(location of temperature and 

pressure probe)

1 cm

Hot-wire

velocity probe

Fig. II.2 Sketch of the experimental setup.

4(1) Platinum filament diameter ≈ 1 µm (2) Resistance R (20◦C) ≈ 50 Ω (3) δR
δT

(20◦C) ≈ 1.7×10−1 Ω/K
(4) Response time τres ≈ O(0.1) ms [59]

5(1) Tungsten filament diameter ≈ 5 µm (2) Resistance R (20◦C) ≈ 3.5 Ω (3) δR
δT

(20◦C) ≈ 1.2×10−2 Ω/K
(4) Minimum measurable velocity ≈ 0.05 m/s
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cold-wire temperature 
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pressure 

probe

Fig. II.3 Top view sketch of the midplane and the location of the different probes.

The pressure probe is connected to a signal conditioner (PCB 480E09 ) whose output is con-
nected to a data acquisition system. The temperature and velocity probes are connected to
DANTEC StreamWare Pro system which provides a constant current of 2 mA to the temper-
ature probes operated in CCA (Constant Current Anemometry) mode and simultaneously
performs CTA (Constant Temperature Anemometry) measurement on the velocity probe.
The output of the DANTEC StreamWare Pro system is connected to the data acquisition
system. The acquisition system consists of NI BNC-2110 connector box connected to NI
data acquisition card.
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Fig. II.4 Photograph showing the geometry of the curved bladed disks used in the
experiment.

ρ 1.204 kg/m3

cp 1007 J/kg K
η 1.825×10−5 kg/m s
ν 1.516×10−5 m2/s
κ 0.02514 W/m K
α 2.074×10−5 m2/s

Table II.1: Properties of air at 21◦C and 1 atm pressure
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II.2.3 Characterization of the flow
The control parameter in our experiment is the rotation rate of the disks (or motors), denoted
by Ω. For physical understanding, we keep the unit of the rotation rate in rotations per
minute or ‘ rpm’. We only consider the case of counter-rotation of the disks which will leads
to a strong shear and hence turbulence intensity in the mid-plane. In the context of the von
Kármán swirling flow, we define the Reynolds number Re as,

Re = πR2Ω
30ν

where the constant π/30 appears from dimensional considerations since we decide to keep the
unit of Ω in rotations per minute. We attain a maximum value of Re = 3.5 × 104 in our
experiment for Ω = 2000 rpm. To present the basic properties of the flow, we start with the
velocity field characterization.

Fig.II.5a shows the time series of the velocity signal close to one of the disk, at a rotation
rate Ω = 2000 rpm. Even though the hot-wire probe is placed close to the disk, the mean
flow is not strong enough to capture the direction of the velocity fluctuations completely
as seen from the asymmetry in the positive and negative fluctuations of the velocity signal.
To estimate properly the mean and the RMS of the velocity fluctuations, we developed a
statistical analysis based on the assumption of Gaussian distribution of velocity fluctuations,
which is a well verified assumption for velocity fluctuations at high Re (appendix II.A). This
gives us the RMS of velocity fluctuations generated in the flow to be of the order 1 m/s.

Fig.II.5b shows the dependence of RMS of velocity fluctuations, u′rms, on the rotation rate
Ω. It is observed to scale linearly with the rotation rate for rotation rates Ω ' 700 rpm. The
large scale scaling6 of RMS of velocity fluctuations with the rotation rate Ω can be obtained
using dimensional analysis which gives,

u′rms = RΩ f

(
Re,

R

H

)
−−−−→
Re→∞

∝ Ω

where f is some unknown function of the dimensionless numbers associated with the system.
As Re→∞, we expect the scaling to become independent of the Reynolds number, in which
case u′rms will scale linearly with the rotation rate as observed in fig.II.5b. The departure
from the predicted scaling at low rotation rates likely comes the flow not being fully developed
turbulence at low rotation rates.

6By large scale scaling we mean the scaling for which the statistical quantity is independent of the small
scale structure of turbulence and thus of kinematic viscosity ν.
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Fig. II.5 (a) Time series of velocity signal as obtained from 1D hot-wire probe for
a rotation rate of Ω = 2000 rpm. (b) Scaling of u′rms with the rotation rate Ω.
Dashed line shows the linear scaling predicted from dimensional analysis.
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Fig.II.6a shows the energy spectrum of velocity fluctuations for a rotation rate Ω = 2000 rpm.
A peak is clearly seen in the energy spectrum at the frequency f = Ω/15 ≈ 133 Hz since,

fforcing =
(

4× Ω
60

)
︸ ︷︷ ︸

due to four blades on the disks

Hz
2000 rpm
≈ 133 Hz

which corresponds to the forcing due to four blades present on the disks. At low frequency,
it is interesting to note that the energy spectrum displays a power law behaviour with
Eu ∝ f−0.6±0.02. This behaviour is reminiscent of the low frequency behaviour in the energy
spectrum of pressure fluctuations in a turbulent flow as demonstrated by Abry et al. [13].
In the article of Abry et al. [13], the authors reported observing a low frequency power
law behaviour for the energy spectrum of pressure fluctuations with Ep ∝ f−0.6 and showed
that this behaviour is a result of the intermittent vorticity filaments being advected through
the pressure probe. Such intermittent vorticity filaments would likely be captured by the
velocity probe as well and result in our observation of Eu ∝ f−0.6 for low frequencies. The
Kolmogorov spectrum is also seen for frequencies f > fforcing with Eu ∝ f

− 5/3. However,
the two power law regions do not juxtapose. The wide transition region in frequency space
between the two scaling can be attributed to the weakness of the mean flow, which breaks
the Taylor’s hypothesis invalidating the correspondence between the spatial and temporal
spectrum.

We can also define the cross-over frequency (denoted by fcross) as the frequency below which
we observe the scaling of Eu ∝ f−0.6 in the energy spectrum. Since the low frequency
Eu ∝ f−0.6 behaviour likely comes from vorticity filaments, their absence would result in the
energy spectrum being flat at low frequencies. This was demonstrated by Abry et al. [13]
for the case of pressure fluctuations. Thus, fcross should be a good estimate of the integral
frequency fI . We evaluate fcross as follows,

• For frequency f∗, we fit the energy spectrum of velocity fluctuations with Cf−0.6 for
frequencies f < f∗ and evaluate the RMSE. Here, C is a constant determined by the
fit.

• We sweep f∗ over a decade of values and obtain the RMSE of the fit for each f∗.

• We define the cross-over frequency fcross as the frequency f∗ for which we obtain the
minimum RMSE.

For the energy spectrum shown in fig.II.6a for a rotation rate of Ω = 2000 rpm, we obtain
fcross ≈ 16 Hz. The large scale scaling of the cross-over frequency with the rotation rate Ω
can also be obtained using dimensional analysis, which gives,

fcross = Ω g

(
Re,

R

H

)
−−−−→
Re→∞

∝ Ω

where g is an unknown function of the dimensionless numbers. As seen from fig.II.6b, fcross
scales linearly with the rotation rate as predicted from dimensional analysis.
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Fig. II.6 (a) Energy spectrum of velocity signal as obtained from 1D hot-wire
probe for Ω = 2000 rpm. The cross-over frequency associated with deviation from
f−0.6 behaviour is denoted by fcross. The forcing frequency is denoted by fforcing.
The different coloured curves correspond to different windowing lengths for evaluat-
ing the averaged spectrum. Dashed line: corresponds to ∝ f−0.6. Dash-dotted line:
corresponds to ∝ f − 5/3. (b) Scaling of cross-over frequency fcross with the rotation
rate Ω. Dashed line shows the large scale scaling as predicted from dimensional
analysis.
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The large scale scaling of the mean power injected (or mean energy injection rate) per unit
mass, 〈εI〉 with the rotation rate as obtained from dimensional analysis is,

〈εI〉 = R2Ω3 h

(
Re,

R

H

)
−−−−→
Re→∞

∝ Ω3

where h is an unknown function of the dimensionless numbers. For evaluating 〈εI〉, we
perform two sets of measurements,

(1) Evaluation of the mean power required by the motors to run the experiment with load
(disks) attached to the motor axes.
(2) Evaluation of the mean power required by the motors to run the experiment without
load attached to the motor axes.

Since we have access to instantaneous torques and rotation rates, mean injected power is
evaluated as 〈P〉 = 〈T Ω〉 in the two sets of experiments mentioned above where P and T
denote injected power and torque respectively. Dividing byMa gives us mean injected power
per unit mass. The difference between the mean power injected per unit mass with and
without the disks attached removes the contribution due to mechanical friction. This gives
us the mean power injected in the turbulent flow. This method is most convenient since
our working fluid is air and thus the fluctuations in torque (and power) imparted by the
turbulent flow are smaller than those imparted by mechanical friction. From dimensional
analysis, we expect torque fluctuations to be of the order of prmsR3 whereas the measured
torque from one motor is greater by roughly an order of magnitude. Figures II.7a and II.7b
show that indeed 〈εI〉 ∝ Ω3 when evaluated this way. We assume that no other losses take
place and thus the power dissipated per unit mass7 〈εD〉 = 〈εI〉 = 〈ε〉.

Since, for homogeneous, isotropic turbulence, the Kolmogorov microscale η =
(
ν3/〈ε〉

)1/4
and

the Taylor microscale λ =
(
15ν u

′2
rms
〈ε〉

)1/2
, we can obtain an order of magnitude estimates for

their values8. This gives us,

η =
(
ν3/〈ε〉

)1/4
∼ O(102) µm

λ =
(
15ν u

′2
rms

〈ε〉

)1/2
∼ O(1) mm

lI ≈ u′
rms/fcross ∼ O(10) cm

Reλ = u′rmsλ

ν
∼ O(102)

where Reλ is the Taylor microscale based Reynolds number. The integral length scale in our
experiment has been evaluated as lI = u′

rms/fcross ≈ 10 cm which is the same order as the
7Since the power injected by the motors is a global quantity, what we are measuring is the average power

injected over the volume of the flow.
8The turbulent flow in the experiment would not be entirely homogeneous or isotropic even in the midplane.

We only use the relations to obtain order of magnitude estimates.
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diameter of the disks and the size of the experimental setup (diameter of the cylinder) and
remains constant with the rotation rate of the motors.
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Fig. II.7 (a) Mean injected power per unit mass with load (blue) and without load
(red) evaluated from the power required by the motors. (b) Mean injected power
per unit mass in the turbulent flow 〈εI〉 evaluated from the power required by the
motors with and without load. Dashed line shows the scaling as predicted from
dimensional analysis.
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To summarize for the von Kármán swirling flow that we are studying, Reλ is moderate, but
the flow exhibits an inertial range. The dissipative length scales would be of the order of
the Kolmogorov microscale η ∼ O(102) µm and are significantly larger than the dimension
of the filament of the temperature probe (1 µm). The viscous time scale (τη ∼ 〈ε〉−1/3η2/3 ∼
O(1) ms) is larger than the response time of the temperature probe which is of O(0.1) ms.
Thus, in such a flow, we should be able to properly access the temperature fluctuations, even
if they originate from the smallest scales involved.

II.3 Experimental Results

II.3.1 Statistics of temperature fluctuations
For brevity, we will drop the prime notation and denote the fluctuating part of temperature
and pressure by T and p. The scaling for the RMS of temperature fluctuations, Trms, as
obtained in eqn.(II.29) can be written for the von Kármán swirling flow in terms of the
control parameter, i.e., the rotation rate of the disks Ω. As was seen in the previous section,
the integral length scale lI remains constant with the rotation rate and the mean energy
injection rate per unit mass scales as 〈ε〉 ∝ Ω3, eqn.(II.29) tells us that,

Trms ∝ Ω2

The same can also be obtained directly from dimensional analysis similar to how the scaling
for RMS of velocity fluctuations was obtained,

Trms = R2Ω2

cp
k

(
Re, Pe,

R

H

)
−−−−→
Re→∞

∝ Ω2 (II.30)

which corresponds to the large scale scaling of the RMS of temperature fluctuations and
thus independent of the kinematic viscosity and thermal diffusivity. Here, k is an unknown
function of the dimensionless numbers associated with the system. An assumption that goes
into obtaining the above scaling is that,

lim
Re→∞

k

(
Re, Pe,

R

H

)
= constant

Figures II.8a and II.8b show the time series of temperature fluctuations obtained for a
rotation rate of Ω = 2000 rpm and the RMS values as a function of the rotation rate of the
motors Ω. Two important observations can be made,

• Sharp negative peaks or bursts are observed in the temperature signal, one of which
has been shown in the inset of fig.II.8a.

• In contrast to u′rms, the RMS of temperature fluctuations Trms does not follow a large
scale scaling with the rotation rate Ω. Thus the effect of kinematic viscosity and
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thermal diffusivity cannot be discarded. We observe that the RMS of temperature
fluctuations scales as Trms ∝ log(Ω) shown in fig.II.8b.

282.72 282.74 282.76 282.78 282.8

-120

-100

-80

-60

-40

-20

0

20

40

282.724 282.726 282.728

-100

-80

-60

-40

-20

0

(a)

10
2

10
3

2

4

6

8

10

12

14

(b)

Fig. II.8 (a) Time series of temperature signal as obtained from cold-wire probe
placed in the midplane (fig.II.3) for Ω = 2000 rpm. Inset: Zoomed-in time series of
a negative peak observed in the signal. (b) Scaling of Trms with the rotation rate
Ω. Dashed line corresponds to Trms ∝ log(Ω).
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The second observation implies that experimentally observed values of T ′rms grow slower with
the rotation rate than the predicted behaviour from large scale scaling. Another interesting
feature is observed if we measure the mean temperature difference between the bulk and the
wall (which are maintained at a constant temperature) ∆〈T 〉 which is defined as,

∆〈T 〉 = 〈T 〉 − Twall

where 〈T 〉 is the mean temperature measured by the cold-wire probe located in the bulk and
Twall is the temperature of the wall and is constant. Fig.II.9 shows the scaling of ∆〈T 〉 with
the rotation rate Ω. We observe that it follows the large scale scaling with,

∆〈T 〉 ∝ Ω2
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Fig. II.9 Scaling of ∆〈T 〉 with the rotation rate Ω. Dashed line corresponds to
∆〈T 〉 ∝ Ω2.

This can be understood from the sketch II.10 which shows the temperature being roughly
constant in the bulk due to turbulent mixing. A gradient of ∆〈T 〉 would exist close to the
boundaries in a region of length scale δ.

In the region with the length scale δ where the mean temperature gradient would exist and
dissipation would be negligible, we would have in steady state,

〈ε〉
cp
∼ α〈∆T 〉

Rδ
(II.31)



42 Chapter II. Temperature fluctuations in turbulent flows

Fig. II.10 Sketch showing heat being ejected at the boundaries. The length scale
close to the coundary of the experiment at which a mean temperature gradient
would exist is denoted by δ.

where R is the radius of the cylinder. The equation eqn.(II.31) implies that in steady state,
the energy injected in the mean temperature field in the form of heat by the mean dissipation
rate would undergo diffusion and then ejected at the boundaries. The flow in the region of
length scale δ would be turbulent and we can assume that the thermal diffusivity is a result
of turbulent advection and hence,

α ∼ u′rmslI

Substituting in eqn.(II.31) and assuming that the length scale δ remains constant, we obtain,

〈∆T 〉 = Rδ

cplI

〈ε〉
u′rms

∝ Ω2

To investigate further the statistics of temperature fluctuations, we plot the probability
distribution function (PDF) of the temperature fluctuations on normalizing with their re-
spective RMS values, Π(T/Trms), seen in fig.II.11a. We observe large exponential tails for
negative fluctuations which can be interpreted as a signature of the negative peaks observed
from the temporal signal in fig.II.8a. Also, we notice that the PDFs Π(T/Trms) coincide for
all rotation rates except for the part of the negative exponential tails. Fig.II.11b shows the
PDFs of temperature fluctuations on normalizing with the large scale scaling Π(T/Ω2). We
observe that the low amplitude fluctuations in temperature deviate from the large scaling
scaling given by eqn.(II.30).
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Fig. II.11 (a) PDF of temperature fluctuations normalized by Trms. Exponential
tails in PDF for negative fluctuations are observed. The negative exponential tails
do not coincide on normalization. (b) PDF of temperature fluctuations normalized
by large scale scaling Ω2. Red squares: 1200 rpm; Blue crosses: 1600 rpm; Green
circles: 2000 rpm.
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To summarize,

• The negative exponential tails in PDFs Π(T/Trms) do not coincide indicating that
the negative peaks observed in the time signal of temperature does not affect the
logarithmic scaling experimentally observed in Trms.

• The PDFs on normalizing with large scale scaling of temperature fluctuations Π(T/Ω2)
do not coincide. The probability of observing low-amplitude temperature fluctuations
does not obey the large scale scaling and increases with increasing rotation rate Ω.
This indicates that the low amplitude temperature fluctuations result in the deviation
of Trms from the large scale scaling given by eqn.(II.30).

• These observations suggest that the energy in the temperature fluctuations and the
negative peaks are a result of different physical structures in the temperature field.

These results call for two noteworthy questions,

Q1A: What is the origin of the negative peaks observed in the time signal of temperature
fluctuations?

Q2A: If Trms does not obey the prediction from dimensional analysis, does the energy spec-
trum follow the KOC spectrum (eqn.(II.28)) across some range of scales?
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II.3.2 Pressure fluctuations and their similarity to temperature fluctuations
The velocity involved in the flow being more than two order of magnitude smaller the speed
of sound, the incompressible limit may not be questioned. However, the presence of negative
peaks in the temperature signal remind us of the pressure fluctuations in turbulent flows,
which also exhibit sharp negative peaks [13]. We measure the temporal evolution of pressure
fluctuations obtained from the pressure probe flushed to the wall, a typical time signal of
which is shown in fig.II.12a. What is immediately noticeable is that pressure fluctuations
also display negative peaks similar to what was seen for the temperature fluctuations. A
zoom in of one of these peaks is shown in the inset figure of the time series. For the large
scale scaling of the RMS of pressure fluctuations, we again turn to dimensional analysis
which tells us,

prms = ρR2Ω2 j

(
Re,

R

H

)
−−−−→
Re→∞

∝ Ω2

where the function j depending on the dimensionless numbers is an unknown function.
Similar to what was done in the case of Trms and other dimensional scalings that we obtained,
we have hypothesized that,

lim
Re→∞

j

(
Re, Pe,

R

H

)
= constant

The above scaling for prms is experimentally observed as seen from fig.II.12b. Similar to
temperature fluctuations, the existence of negative peaks in the time signal of pressure
fluctuations is evidenced by the exponential negative tails observed in their PDFs (fig.II.13).
However, there are two noteworthy differences between the statistics of temperature and
pressure fluctuations,

• The RMS of temperature fluctuations deviate from the large scale scaling whereas the
RMS of pressure fluctuations, like velocity, follow the large scale scaling.

• The exponential tails observed in the PDFs of temperature fluctuations normalized by
their RMS values do not coincide. The PDFs for pressure fluctuations, though, coincide
on normalization with their RMS values. Thus the energy in the pressure fluctuations
and the negative peaks are a result of physical structures which are of comparable
magnitude and size, which is not the case for temperature fluctuations.

The negative peaks or depressions in pressure fluctuations in a turbulent flow and their
statistics have been fairly well-studied and so is the physical phenomenon associated with
it. These have been attributed to vortex filaments [55],[58],[14],[60], [61] and were shown
to result in the low frequency power spectrum of pressure [13]. All except one from the
references mentioned are experimental studies and were performed on von Kármán swirling
flow similar to ours albeit with some geometrical changes.
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Fig. II.12 (a) Time series of pressure signal as obtained from pressure probe flushed
to the wall in the midplane (fig.II.3) for Ω = 2000 rpm. Inset: Zoomed-in time series
of a negative peak observed in the signal. (b) Scaling of prms with the rotation rate
Ω. Dashed line shows the scaling as predicted from dimensional analysis.
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On the other hand, the characteristics of the vorticity filaments have been a source of debate
for decades. The characteristics that have been reported in literature by both numerical
and experimental studies can be summarized as follows ([62] and the the references cited
therein),

• The radial size of these filaments is between the Kolmogorov length scale η and the
Taylor microscale λ.

• The length of these filaments is of the same order of magnitude as the integral scale of
the turbulent flow.

• The velocity increment encountered along the radial direction of these filaments is of
the order of the RMS value of the velocity fluctuations.

• The lifetime of these vorticity filaments is of the same order as the integral time scale.

In the light of these observations Q1A can be rephrased as follows,

Q1B: Are the negative peaks in temperature and pressure fluctuations correlated? If so,
what implications does it have on the physical picture of vorticity filaments?
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Fig. II.13 PDF of pressure fluctuations normalized by prms. All the PDFs coincide
on normalization. Exponential tails in PDF for negative fluctuations are observed.
Red squares: 1200 rpm; Blue crosses: 1600 rpm; Green circles: 2000 rpm.
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II.3.3 Joint PDFs of pressure and temperature fluctuations

As was seen in the previous section, both the pressure and temperature signals are observed
to have negative peaks. One immediate question that arises is whether they are correlated
and thus a result of the same physical structures in the turbulent flow. To understand this,
we evaluate the joint PDFs between pressure and temperature signals. To do so, we placed
one temperature probe as close as possible to the pressure probe (d ≈ 3 mm) which was still
flushed to the wall. The sensing filament of the temperature probe was oriented along the
midplane to capture the vorticity filaments being advected by the flow.

The joint PDF between pressure and temperature is defined as,

Π(p0, T0,∆t) = probability
(
p(t) = p0, T (t+ ∆t) = T0

)
for any time lag ∆t between the pressure and temperature signals. The introduction of a time
lag ∆t is required to account for the mean time required for any fluctuation to advect from
one probe to another. The correlation between pressure and temperature shows a maximum
for a non zero time lag ∆tmax, corresponding to a mean advection speed of

d

∆tmax
∼ O(1) m/s ∼ u′rms

which is comparable to u′rms. Fig.II.14 shows the joint PDFs Π(p0, T0,∆t = ∆tmax) obtained
for a rotation rate of Ω = 1000 rpm and 1400 rpm respectively. We observe that the joint
PDFs are skewed towards simultaneous negative values of both pressure and temperature.
The joint PDFs are also observed to become increasingly skewed with increasing rotation
rate Ω. In summary, following conclusions can be drawn,

• The fluctuations of temperature and pressure are correlated as seen from the joint
PDFs.

• The joint PDFs are skewed towards a line of positive slope which by visual inspection
is roughly (prms/Trms) Pa/mK. The skewness of the PDFs towards this line increases
with increasing rotation rate Ω.

• The skewness of the PDFs towards the line is not symmetric for positive and nega-
tive fluctuations. As seen from the isocontours, negative fluctuations in pressure and
temperature that are correlated have a higher probability than positive fluctuations.

This implies that the negative peaks in pressure and temperature fluctuations are correlated
and caused by the same physical structures present in the turbulent flow. This would mean
that these peaks are a result of vorticity filaments occurring in turbulent flows. This partially
answers Q1B which can be rephrased as follows,

Q1C: Since the negative peaks in temperature and pressure fluctuations are a direct obser-
vation of vorticity filaments, what can we say about the structure of these filaments?
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Note that the joint PDFs of temperature and pressure fluctuations do not probe the struc-
ture of the filaments themselves but only tell us that there is a correlation between the
fluctuations.

(a)

(b)

Fig. II.14 Isocontours of the joint PDFs Π(p0, T0,∆t = ∆tmax) (a) Ω = 1000 rpm
(b) Ω = 1400 rpm. The colours are in logarithmic scale of the magnitude of PDFs.
The isocontours are skewed towards simultaneous negative values of pressure and
temperature. Dashed line shows a line of slope (prms/Trms) Pa/mK.
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II.3.4 Structure of negative peaks in pressure and temperature fluctuations
As we concluded in the last section, vorticity filaments result in the negative peaks or bursts
observed in the time signals of pressure and temperature fluctuations. In this section, we
obtain the average internal structure of these filaments. In succeeding to do so, we can obtain
the order of magnitudes of their width and the temperature (and pressure) drops between
their cores and the surrounding turbulent flow.

To obtain the average structure of the vorticity filaments, we use the method of coherent
averaging and its definition as used by Labbé et al. [63]. In their article, Labbé et al.
demonstrated the technique and used it to extract a periodic structure from a signal with
noise (velocity, temperature). In the above mentioned study, the structures were periodic but
in our case the structures (negative peaks) are not. Since the method is not constrained to
structures that are periodic, we can apply it to our case with some modifications. The details
of the technique are presented in appendix II.B. Applying this method to the temperature
and pressure signals in our case allows us to obtain the average temporal (and spatial)
structure of the peaks.

Figures II.15a and II.15b show the result of coherent averaging when applied to peaks in
temperature and pressure respectively for a rotation rate of Ω = 2000 rpm. We observe that
the actual amplitude of the averaged structure for both pressure and temperature is roughly
three times smaller than the amplitudes of the peaks seen from the actual time signal. This
would mean that the turbulent flow over which the vorticity filaments are superimposed
affect the magnitude of the peaks but the overall structure of the peaks remains unaffected.
If we measure the difference in temperature and pressure between the core of the structure
and its edge (∆T and ∆p), we observe that,

∆p
∆T ≈

prms
Trms

≈ 1 Pa/mK

which we also observe from the slope of the line along which the joint PDFs are skewed in
fig.II.14b. We comment on a statement made in the previous section as reported by other
studies,

“The velocity increment encountered along the radial direction of these filaments is of the
order of the RMS value of the velocity fluctuations.”

This statement would imply that the difference in pressure between the core and the edge
of the structure we observe (∆p) would be,

∆p ∼ ρ∞u
′2
rms

2000 rpm
≈ O(1) Pa

which is smaller than our observation from fig.II.15b. To summarize, vorticity filaments in a
turbulent flow are observed as sharp negative peaks in the time signals of both temperature
and pressure fluctuations. The results presented in this section imply that even though the
turbulent flow is incompressible to the leading order inMa, the vorticity filaments display an
effect of compressibility owing to their direct measurement in both temperature and pressure
fluctuations.
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To understand the effect of compressibility, we turn to eqn.(II.8) which is the governing
equation for temperature in the limit of a weakly compressible flow. We notice that pressure
fluctuations would affect temperature fluctuations only when,

Dp′/Dt

DT ′/Dt
∼
(
γ − 1
γ

)(
p′/p0
T ′/T0

)
∼ O(1)

which would be the case when the thermodynamic process involved is adiabatic. For the
structure of the vorticity filaments obtained via the method of coherent averaging (figures
II.15a and II.15b), we indeed observe that,

(
γ − 1
γ

)(
∆p/p0
∆T/T0

)
∼ O(1)

Though, we notice that the widths of the structures for the pressure and temperature profiles
are different. The probes used for measuring pressure and temperature have different phys-
ical characteristics and as such would affect the quantities they measure differently. As for
vorticity filaments, the characteristics of the probe would affect its width. The effect of the
pressure transducer size on the measured width of the vorticity filaments was demonstrated
by Abry et al. [13]. From our observation of the pressure-temperature joint PDFs being
skewed (fig.II.14), we can confidently say that the vorticity filaments are compressible struc-
tures. Additionally, we also observe that the drops in pressure (∆p) and temperature (∆T )
as obtained from coherent averaging also follow the behaviour predicted for an adiabatic
process. These observations encourage us to study the structure of the vorticity filaments
and we can then ask,

Q1D: Can we create a simple model to understand the geometrical structure of vorticity
filaments as obtained from the method of coherent averaging?
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Fig. II.15 Structure of negative peaks as obtained from the method of coherent
averaging for Ω = 2000 rpm. Examples of two peaks observed in the time signal
(Red) and the structure as obtained from the method of coherent averaging (Blue)
(a) For temperature signal (b) For pressure signal.
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II.3.5 A steady solution for single weakly compressible adiabatic vortex
One striking feature of turbulence is the existence of coherent elongated structures in the
flow along which vorticity is concentrated called vorticity filaments. Since their discovery
[64], they have been observed both numerically and experimentally [65, 62, 55] and are also
proposed to be inherent to the physical picture of Kolmogorov’s cascade of energy to small
scales [66]. As a consequence of its definition, vorticity in a turbulent flow is a solenoidal (or
divergence-free) field and thus vorticity filaments would form closed loops in a turbulent flow
far from the boundaries that bound the turbulent flow. In the close vicinity of these vorticity
filaments, we can thus consider them as cylindrical, tubular structures with a certain radius
within which vorticity is concentrated. This physical picture forms the basis of our current
model of a single steady vortex.

As a result of the physical picture given above, we proceed by writing the governing equations
for compressible, viscous flow in cylindrical co-ordinates with the radial, azimuthal and axial
components of the velocity denoted by ur, uθ and uz respectively,

∂ρ

∂t
+ 1
r

∂(ρrur)
∂r

+ 1
r

∂(ρuθ)
∂θ

+ ∂(ρuz)
∂z

=0

ρ
(∂ur
∂t
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∂ur
∂r

+ uθ
r

∂ur
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∂ur
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− u2

θ

r

)
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∂r
+ µ

(
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2
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3µ
)(∂2ur
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where we have neglected any interaction with the ambient surroundings. The six equations
correspond to conservation of mass, conservation of the three momenta, conservation of
energy and equation of state respectively. In cylindrical co-ordinates,

εT = 2ν
cp

[(∂ur
∂r

)2
+
(1
r

∂uθ
∂θ

+ ur
r

)2
+
(∂uz
∂z

)2]
+ ν

cp

[(1
r

∂ur
∂θ

+ ∂uθ
∂r
− uθ

r

)2
+
(∂uθ
∂z

+ 1
r

∂uz
∂θ

)2
+
(∂uz
∂r

+ ∂ur
∂z

)2]
εcT = λv

ρcp

(
ζ − 2µ

3
)(∂ur

∂r
+ ur

r
+ 1
r

∂uθ
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)2

and the Laplacian operator in cylindrical co-ordinates is,

∇2 = ∂2

∂r2 + 1
r

∂

∂r
+ 1
r2

∂2

∂θ2 + ∂2

∂z2

For a single vortex, we can assume the flow to be axisymmetric. To make possible the
mathematical analysis of obtaining vortex solutions, we assume the axial velocity uz to be
function of r, t and z and that it varies linearly in z. On the other hand, ur and uθ are
assumed to be functions of r and t. We also assume that the vortex we are trying to model
is a strong vortex which implies that the azimuthal component of the velocity is much larger
than the other two components in order of magnitude. This means that the compressible
effect would be a result of the azimuthal component which we have assumed to only depend
on r and t. Thus to the leading order, ρ and T are functions of only the radial distance r and
time t. These assumptions reduce the governing equations into partial differential equations
of only two independent variables (r and t) while being as less restrictive as possible. Thus,

u = ur(t, r)r̂ + uθ(t, r)θ̂ + zw(t, r)ẑ
ρ = ρ(t, r)
p = p(t, r, z)
T = T (t, r)
|uθ| � |ur|
|uθ| � |uz|
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Assuming the fluid to be an ideal gas, the steady state equations we obtain to the leading
order are,

1
r

d(ρrur)
dr

+ ρw = 0

∂p

∂r
= ρu2

θ

r

ρ
(ur
r

d(ruθ)
dr

)
= µ

d

dr

(1
r

d(ruθ)
dr

)
∂p

∂z
= 0 (II.33a)

cp(ρur)
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dr

(
r
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dr

)
+ µr2

[ d
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(uθ
r

)]2
+ ur

∂p

∂r
pM = ρRT

where the equation for conservation of momentum along the z-direction (eqn.(II.33a)) implies
that the pressure is independent of z at the leading order. A detailed asymptotic analysis
for deriving the above set of equations can be found in the article by Vatistas et al. [67].
Now, let us consider the case of a weakly compressible steady vortex, for which we obtain
the governing equations,

1
r

d(rur)
dr

+ w = 0 (II.34a)
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(uθ
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)]2
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ρ∞cp

dp′
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(II.34d)

p′M

R
= ρ′T∞ + T ′ρ∞ (II.34e)

where p = p(r, t) owing to the eqn.(II.33a). To find the appropriate boundary conditions,
we consider a physical picture of a vortex as shown in fig.II.16. The vorticity is assumed to
be concentrated in a finite circular region with radius rc at all times and aligned along the
z-direction. From our preliminary understanding of vorticity [68], we assume the close to the
center (r = 0), the vortex undergoes solid-body rotation Thus, the boundary conditions are,

For r = 0 :


uθ = 0 (solid body rotation)
dT ′

dr = 0 (solid body rotation hence no heat source)
ur = 0 (from continuity equation)
dw
dr = 0 (avoid discontinuity in the profile of w)
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For r =∞ :


uθ = Γ∞

2πr (strong vortex with finite circulation)
T ′ = 0
p′ = 0
ρ′ = 0

Fig. II.16 Sketch of a strong vortex with vorticity aligned along z-axis.

It is worthwhile to mention that the set of equations (II.34) are underdetermined (six vari-
ables and five equations) and would thus have infinite number of solutions. This is the reason
for the variety of vortex solutions proposed in the literature depending on how the system
of equations is closed. If we consider the case of an incompressible, viscous, strong vortex
the hydrodynamic part of the governing equations which are equations (II.34a), (II.34b) and
(II.34c) are,

1
r

d(rur)
dr

+ w = 0

dp′

dr
= ρ∞u

2
θ

r
ur
r

d(ruθ)
dr

= µ
d

dr

(1
r

d(ruθ)
dr

)
(II.35)

and the thermodynamic part of the governing equations (equations (II.34d) and (II.34e)) is
reduced to,

ur
dT ′

dr
= α

r

d

dr

(
r
dT ′

dr

)
+ νr2

cp

[ d
dr

(uθ
r

)]2
ρ′T∞ + T ′ρ∞ = 0 (II.36)

The set of governing equations for the hydrodynamic part (II.35) and the thermodynamic
part (II.36) form an underdetermined system of equations and thus have an infinite number
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of steady vortex solutions. This system can be closed with some assumption on the form
of the velocity field. The simplest assumption of w being a constant in equations (II.33)
gives us the Burgers vortex [69]. Another vortex solution by Sullivan called Sullivan vortex
incorporates a radial dependence of w [70]. In both the vortex solutions, once we assume
some form of the velocity field, solving the hydrodynamic part gives us the pressure field
and the velocity field. On solving the thermodynamic part, we obtain the temperature and
density fields. Note that in this case, pressure fluctuations do not result in either temperature
or density fluctuations.

If we consider an incompressible, viscous vortex with only the azimuthal velocity component
uθ being non-zero, the governing equations form a closed set of equations but with no steady
state solutions being possible. This can be seen from momentum equation in the azimuthal
direction eqn.(II.35), the left hand side of which would be identically zero, whereas the right
hand side would be non-zero in some part of the domain if the boundary conditions on uθ
are to be met. Such vortices undergo viscous spreading over time. Some well-known vortex
solutions like the Rankine vortex [71], Scully vortex [72, 73] and the Lamb-Oseen vortex
[74, 75] fall into this category.

The case of a steady, compressible, viscous vortex is governed by the set of equations (II.33).
Such a vortex generated by a solid rotating cylinder in the core was studied by Mack et al.
[76]. They considered only the azimuthal component of the velocity field and found analytical
expression for the temperature field by using temperature-dependent viscosity. This was
extended by Bellamy-Knights [77] with a radial inward flow in addition to a temperature-
dependent viscosity. Since the core was considered to be a solid rotating cylinder, the
temperature and pressure profiles obtained by both were for the irrotational part of the flow
which would be outside the vortex core. Unsteady, compressible and viscous vortices were
studied by Merzkirch [78], Mandella [79] and Colonius et al. [80].

We proceed to obtain a steady solution for weakly compressible vortex given by equations
(II.34). Since the governing equations form an undetermined system, to obtain a solution we
assume that w is constant. This enables us to solve the hydrodynamic part of the problem
which gives us Burgers vortex. On solving equations (II.34a) and (II.34c), we obtain the
velocity field whose azimuthal component is given by,

uθ = Γ∞
2πr

(
1− exp

(
−r2

r2
c

))

To obtain the pressure field, we integrate eqn.(II.34b),

∫ 0

p
dp′ = ρ∞Γ2

∞
4π2

∫ ∞
r

dx

[
1− exp(−x2/r2

c )
x3/2

]2

After proceeding with change of variables and then using integration by parts, we obtain,
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p(r) = −
[
ρ∞Γ2

∞
8π2r2

c

(
(1− exp(−r2/r2

c ))2

r2/r2
c

+ 2Ei
(
r2

r2
c

)
− 2Ei

(
2r2

r2
c

))]
(II.37)

where Ei(x) denotes ‘exponential integral’ with the definition,

Ei(x) =
∫ ∞
x

dx
exp(−x)

x

which can be computed numerically. As noticed by Rott [81], the term involving the expo-
nential is related to the dynamic pressure whereas the remaining terms are related to the
change in stagnation pressure due to viscosity (where rc depends on viscosity) in the case of
a viscous Burgers vortex. Now, we concentrate on eqn.(II.34d) of the thermodynamic part
of the problem. We non-dimensionalize eqn.(II.34d) such that,

r∗ = r/rc, u
∗
r = ur/ũr, T

∗ = T ′/T̃ , u∗θ = uθ/u
′
rms p

∗ = p′/p̃

We recall that from our assumption of a strong vortex we would have,

uθ ∼ u′rms � ur

Non-dimensionalized form of eqn.(II.34d) is then given by,

u∗r
dT ∗

dr∗
=
[

1
Pe

(
u′rms
ũr

)][
1
r∗

d

dr∗

(
r∗
dT ∗

dr∗

)]
+
[(
γ − 1

)(Ma2

T̃ /T0

)
1
Re

(
u′rms
ũr

)][
r∗2
[
d

dr∗

(
u∗θ
r∗

)]2]

+
[(

γ − 1
γ

)
p̃/p0

T̃ /T0

][
u∗r

(
dp∗

dr∗

)]

where the Reynolds number Re, Peclet number Pe and Mach numberMa are defined as,

Re = uθrc
ν
∼ u′rmsrc

ν

Pe = uθrc
α
∼ u′rmsrc

α

Ma = uθ
c
∼ u′rms

c
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For Re and Pe tending to infinity, we would obtain the equation,

dT ∗

dr∗
= dp∗

dr∗
(II.38)

only when,

(
γ − 1
γ

)
p̃/p0

T̃ /T0
∼ O(1)

which corresponds to the filament undergoing adiabatic process. Eqn.(II.38) can be solved
since we already know the pressure field given by eqn.(II.37). This gives us the temperature
field,

T (r) = −
[

Γ2
∞

8π2r2
ccp

(
(1− exp(−r2/r2

c ))2

r2/r2
c

+ 2Ei
(
r2

r2
c

)
− 2Ei

(
2r2

r2
c

))]
(II.39)

Using the equation for state eqn.(II.34e), we also obtain the density field. We call this
solution the weakly compressible adiabatic Burgers vortex. Figures II.17b and II.17a show
the profile of pressure and temperature as obtained from the method of coherent averaging
and compare it with the profiles as predicted by the model of weakly compressible adiabatic
Burgers vortex (equations (II.37) and (II.39))9. We observe that this simple model is able
to capture the structure of vorticity filaments. Note that we have transformed the time
co-ordinate to space co-ordinate by using the relation r = u′rmst.

For large values of r, the model deviates from the experimentally observed structure, as seen
for r > 1.5 mm for the temperature structure and for r > 8 mm for the pressure structure.
This possibly arises from the interaction of the vortex filament with the surrounding turbulent
flow as well as other vorticity filaments. The weakly compressible adiabatic Burgers vortex
models a single steady vortex with the fluid being at rest far from the vortex. The effects
at the edges of the vorticity filaments would not be captured by the model and would lead
to deviations from the experimentally observed structure far from the core of the vorticity
filament.

9The fitting procedure involves three free parameters; the radius of the vortex rc (which governs the width
of the filament), the constant prefactor (which governs the height of the filament) and the values of the fields
far from the filament (p∞, T∞). The first two would be affected by the characteristics of the probe.
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Fig. II.17 (a) Temperature profile obtained from coherent averaging (red) and a
fit for the pressure profile of weakly compressible adiabatic Burgers vortex solution
(dashed line) (eqn.(II.39)). (b) Pressure profile obtained from coherent averaging
(red) and a fit for the pressure profile of weakly compressible adiabatic Burgers
vortex solution (dashed line) (eqn.(II.37)). We have used r = u′rmst to transform
time to space co-ordinate. The rotation rate is Ω = 2000 rpm.
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Since the physical dimensions of the measuring element of the temperature probe is smaller
than that of the pressure probe, the temperature profile of the structure would be more
accurate at estimating its width. From the fit of the temperature profile with the weakly
compressible Burgers vortex, we obtain,

O(rc) ≈ 1 mm ∼ λ

In conclusion to questions posed Q1A-Q1D, we find experimentally that,

• Vortex filaments in a turbulent flow result in sharp negative peaks in time signals of
temperature and pressure fluctuations.

• The vortex filaments undergo adiabatic process as deduced from the pressure and
temperature drops (∆p,∆T ) which obey the adiabatic relation

(
γ−1
γ

)(
∆p
∆T

)
∼ p0

T0

• They are compressible structures and can be modeled by weakly compressible adiabatic
Burgers vortex. This is surprising since the turbulent flow is of low Mach number and
essentially incompressible.

• The radial size of the vorticity filaments is roughly the same order as the Taylor mi-
croscale.

With the current understanding from our analysis, we can rephrase Q2A,

Q2B: If Trms does not obey the prediction from dimensional analysis, does the energy spec-
trum follow the KOC spectrum (eqn.(II.28)) across some range of scales? Do the
vorticity filaments contribute significantly to the energy spectrum at some scales?
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II.3.6 The energy spectra of temperature fluctuations

Fig.II.18 shows the energy spectrum of temperature fluctuation, ET , when the rotation
rate is Ω = 2000 rpm. We observe two regimes in frequency where the energy spectrum
displays a power law. At low frequencies, ET (f) ∝ f−0.41±0.01 and an inertial regime with
ET (f) ∝ f−1.27±0.05. We recall that the KOC spectrum predicts that the energy spectrum of
temperature fluctuations in the inertial range should scales as ET (f) ∝ f−5/3 (eqn.(II.28)).
Thus, across all scales in frequency, deviation from the KOC spectrum is observed.
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Fig. II.18 Energy spectrum of temperature signal as obtained from cold-wire probe
for Ω = 2000 rpm. The different coloured curves correspond to different windowing
lengths for evaluating the averaged spectrum. Dashed line: corresponds to ∝ f−0.4.
Dash-dotted line: corresponds to ∝ f−1.27.

Can we obtain a model to explain the behaviour of the energy spectrum of temperature
fluctuations and the exponents observed? Where does the low frequency behaviour of the
energy spectrum come from? To be able to model the behaviour of the observed energy
spectrum of temperature fluctuations, we first need to understand the behaviour of the
fluctuations in the rate of kinetic energy dissipation per unit mass or ε′ and the mean rate of
energy injected per unit mass in the field of temperature fluctuations or ε′T (see eqn.(II.22)).

The behaviour of the fluctuations in the rate of dissipation (ε′) have drawn interest as early
as 1960s, largely owing to the observations that they did not obey the large scale scaling
from dimensional analysis as is usually done in the Kolmogorov theory. The approach of
dimensional analysis yields the energy spectrum of the form,

Eε(k) = Cν2〈ε〉4/3k5/3
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where C is a dimensionless constant, suggests that the energy spectrum would be an increas-
ing function of the wavenumber. For the energy spectrum, it was experimentally observed
that it was rather a decreasing function of wavenumber in contrast to the large scale scaling
from dimensional analysis. Using the available experimental data, Yaglom [9] proposed a
model which accounted for intermittency in the dissipation process (via the parameter µ
called the intermittency exponent). He proposed the energy spectrum of the form,

Eε(k) = C〈ε〉2lI(klI)−1+µ (II.40)

where lI is the integral scale of the turbulent flow. Similar to Kolmogorov theory, self-
similarity across scales is assumed to obtain the above form of energy spectrum and thus is
valid for l−1

0 � k � η−1. Since then, a number of studies have concentrated on evaluating
the intermittency exponent µ. For a review till 1975, refer to [9] and for a later review,
refer to [82]. The values of the intermittency exponent reported in literature [9, 83] are
in the range 0.25 < µ < 0.5. Later, it was also observed that the dissipation occurs on
the surface of sheet like structures (long in two directions and short in the third) [34, 84]
unlike structures of strong vorticity which are filamentary (long in one direction and short
in the other two). With the aid of the energy spectrum for fluctuations in dissipation rate
as predicted by Yaglom (eqn.(II.40)), we proceed to model the behaviour of 〈εT 〉. We recall
that,

〈εT 〉 = 〈T
′ε′〉
cp

which is the correlation between temperature and rate of viscous dissipation of kinetic energy
per unit mass. To approximate it, we consider the eqn.(II.21) for the temperature fluctua-
tions. Now, if we assume the diffusion of temperature fluctuations to be negligible for inertial
scales, then eqn.(II.21) shows that a volume of fluid would undergo heating (and cooling as
ε′ can be negative) as it moves in a Lagrangian trajectory in the flow. Thus,

〈εT 〉 = 〈T
′ε′〉
cp

= 1
c2
p

∫ t

0
ds
〈
ε′
(
y(s), s

)
ε′
(
y(t), t

)〉
∼ τL

〈ε′2〉
c2
p

∼ τI
〈ε′2〉
c2
p

= 〈ε〉− 1/3l
2/3
I

〈ε′2〉
c2
p

where y(s) is the Lagrangian trajectory of the fluid particle and τL is the Lagrangian corre-
lation time. Though, it could have a more complicated form, for the ease of further analysis
we assume it to be the integral timescale τL ∼ τI = 〈ε〉− 1/3l

2/3
I .

At this point, we note that 〈ε′2〉 corresponds to the total energy in the dissipation rate
fluctuations and that this energy is spread across scales as seen from eqn.(II.40), including
the inertial range. Thus, the appropriate form would then be,

〈εT 〉 = 〈ε〉
− 1/3l

2/3
I

c2
p

∫ k

1/lI
dk Eε(k) (II.41)
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Now that we have a relation for the behaviour of 〈εT 〉, we proceed by saying that though the
KOC scaling does not match experimental observations, a better prediction on the behaviour
of energy spectrum of temperature fluctuations would be the one resulting from the modifi-
cation of the KOC spectrum. This modification results from a more accurate behaviour of
〈εT 〉 given by eqn.(II.41) than it being just a constant independent of the wavenumber. On
combining equations (II.40), (II.28) and (II.41), we obtain,

ET (k) = C(Re, Pr)
〈ε〉4/3l

2/3
0 k

− 5/3
[
(klI)µ − 1

]
c2
p

which for the inertial range (klI � 1) becomes,

ET (k) = C(Re, Pr)〈ε〉
4/3l

2/3+µ
I k

− 5/3+µ

c2
p

(II.42)

Note that we have retained the dependence of the constant on the Reynolds and Prandtl
numbers. Similar form of the energy spectrum (II.42) was also obtained by Bos et al. [31]
though a slightly different method. Integrating the above equation, we obtain,

T 2
rms =

∫ 1/η

1/lI
dk ET (k) = C(Re, Pr) (〈ε〉lI)4/3

(2/3− µ)c2
p

where the last equality holds when η � lI . This is equivalent to,

Trms =
√
C(Re, Pr) (〈ε〉lI)2/3

(
√

2/3− µ)cp
(II.43)

Our prediction (eqn.(II.42)) suggests that the inertial scales will follow the cascade-like pic-
ture for temperature fluctuations (and thus the KOC spectrum eqn.(II.28)) alongwith a
correction in the power-exponent of the wavenumber due to intermittent behaviour of dissi-
pation (characterized by the intermittency exponent). Thus the correction to the KOC like
spectrum in the inertial range for temperature fluctuations would be a manifestation of dis-
sipative events which are small spatial and temporal scales and intermittent (most probably
in both space and time). It shows that the energy spectrum should scale as ET ∝ k−5/3+µ.
Fig.II.18 shows that the energy spectrum in the inertial range scales as ET ∝ f−1.27. Assum-
ing that we can transform the co-ordinates from wavenumber to frequency with the relation
u′rmsk = f , it gives us the intermittency exponent, µ ≈ 0.4. This is in agreement with
previously reported values of 0.25 < µ < 0.5.

For the RMS of temperature fluctuations, Trms, the prediction obtained (eqn.(II.43)) is
proportional to the large scale scaling predicted from dimensional analysis (eqn.(II.29)) with
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a correction by a constant factor which involves the intermittency exponent. This suggests
that our assumption that,

〈εT 〉 ∼ τL
〈ε′2〉
c2
p

� τI
〈ε′2〉
c2
p

is incorrect and that τL will not be equivalent to τI which will lead to large scale scaling. We
note that this however does not change the scaling of the energy spectrum of temperature
fluctuations ET with the wavenumber. We can further understand the possible reason for
the RMS of temperature fluctuations deviating from large scale scaling from eqn.(II.22). In
steady state, we would have,

α

〈
∂T ′

∂xi

∂T ′

∂xi

〉
= 〈εT 〉 (II.44)

Taylor microscale λ is defined as the length scale at which the velocity gradients are max-
imum. If we assume that the gradients in temperature are also maximum at the Taylor
microscale, we have,

α

〈
∂T ′

∂xi

∂T ′

∂xi

〉
∼ αT 2

rms

λ2 (II.45)

The mean square of the dissipation rate fluctuations can be estimated by integrating the
energy spectrum of dissipation rate fluctuations given by eqn.(II.40) between the integral
scale and the Kolmogorov microscale,

〈ε′2〉 =
∫ 1/η

1/lI
dk Eε(k) ∼ 〈ε〉

2+µ/4 lµI
µν3µ/4

Thus,

〈εT 〉 ∼ τL
〈ε′2〉
c2
p

∼ τL 〈ε〉2+µ/4 lµI
µc2

p ν
3µ/4 (II.46)

Equations (II.44), (II.45) and (II.46) then imply that,

Trms ∼
(
lµI ν

1−3µ/4

µαc2
p

)1/2[
u′rmsτ

1/2
L 〈ε〉

1/2+µ/8
]

(II.47)
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where we have used the relation λ =
(
15ν u

′2
rms
〈ε〉

)1/2
for homogeneous and isotropic turbulence.

We notice from eqn.(II.47) that if we assume τL ∼ τI ∼ 〈ε〉−1/3l
2/3
I and for µ → 0 (which

implies 〈ε′2〉 = 〈ε〉2), we obtain the large scale scaling with Trms ∝ Ω2. Since the exponent
µ/8� 1/2, eqn.(II.47) shows that the the deviation of the RMS of temperature fluctuations
from the large scale scaling likely arises from the behaviour of the timescale τL.

One more question of interest that remains unanswered is regarding the low frequency be-
haviour observed in the energy spectrum of temperature fluctuations,

Q2C: Where does the low frequency behaviour of energy spectrum of temperature fluctua-
tions with ET (f) ∝ f−0.4 come from? Is it due to vorticity filaments?

To answer this question, we look at the energy spectrum of pressure fluctuations, shown in
fig.II.19. The inertial range of the energy spectrum is proportional to f−7/3 as is expected
from Kolmogorov’s K41 theory. We also see that for a small range of low frequencies, Ep ∝
f−0.6 is observed. This is not as clearly seen in the energy spectrum of pressure fluctuations
as the energy spectrum of velocity fluctuations Eu since unlike velocity fluctuations, pressure
fluctuations are polluted at low frequencies by the fluctuations from ambient surroundings.
In their experimental study, Abry et al. [13] showed that the vorticity filaments result in
the energy spectrum of pressure fluctuations displaying a low-frequency power law behaviour
with Ep ∝ f−0.6. This is observed in our experiment with an identical exponent (fig.II.19).

As these vorticity filaments get advected by the turbulent flow, they pass through the sta-
tionary probes placed in the flow. Thus we would expect similar behaviour in the energy
spectrum of velocity and temperature fluctuations as well10. Whether this behaviour is in-
deed observed or not would depend on the relative energy in the fluctuations due to these
filaments with the rest of the signal. Indeed the energy spectrum of velocity fluctuations also
displays a power law behaviour with Eu ∝ f−0.6 in the same range of frequencies as seen
for pressure fluctuations (fig.II.6a). The expectation that the energy spectrum for temper-
ature fluctuations should also display f−0.6 behaviour can also be seen from the governing
eqn.(II.17) for perfect fluid.

To confirm that the energy spectrum of the negative peaks observed in pressure signal indeed
results in a power law behaviour with an exponent close to the one observed for velocity
signal, we define a bursting signal ‘Sp’ using the pressure signal such that,

Sp(t) =
{
−1 when p ≤ −2× prms
0 otherwise

We expect the energy spectra of these signals to capture the energy spectra that would
be resulting from the vorticity filaments [85]. Figures II.20 and II.21 show the bursting
signal and its energy spectrum for pressure fluctuations when the rotation rate is 2000 rpm.
Indeed, we observe that the negative peaks in pressure fluctuations result in the energy

10As we showed the structure of the vorticity filaments can be approximated by adiabatic, compressible
Burgers’ vortex which obeys the governing equations. The fine scale structure and the spectra it would
produce is not what we are probing in our energy spectrum but rather the intermittent signal produced by
the advection of these structures as whole.
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Fig. II.19 Energy spectrum of pressure signal as obtained for Ω = 2000 rpm. The
different coloured curves correspond to different windowing lengths for evaluating
the averaged spectrum. Dashed line: corresponds to Ep ∝ f−0.6. Dash-dotted line:
corresponds to Ep ∝ f−7/3.

spectrum having a power law behaviour with exponent roughly ESp ∝ f−0.6±0.01. The range
of frequencies in which this behaviour is observed coincides with the one in which the energy
spectrum of velocity fluctuations has similar behaviour. On applying the same technique to
temperature fluctuations and obtaining the energy spectrum for the peaks, a flat spectrum is
observed at low frequencies. This is likely due to the observation that the negative peaks are
easier to distinguish from the rest of the signal for pressure fluctuations than temperature
signals. This can seen from the PDFs for pressure and temperature (fig.II.13 and fig.II.11a).
The exponential tails observed in the PDFs are sharper for pressure fluctuations than the
ones in PDFs of temperature fluctuations.

The energy spectrum of temperature fluctuations (fig.II.18) shows a low-frequency power law
behaviour with ET ∝ f−0.4. The range of frequencies for which this behaviour is observed
is much larger and at even lower frequencies than the one in which the power-law behaviour
due to vorticity filaments in energy spectra of velocity and pressure fluctuations is observed.
As to where the large temporal scales observed in temperature fluctuations come from is still
an open question. It is highly likely that it is a manifestation of dissipative structures in the
turbulent flow but this needs further investigation.
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Fig. II.20 Pressure signal and the bursting signal (Sp) defined from it. The thresh-
old for defining the bursting signal is 2 × prms. For this figure, the rotation rate
Ω = 2000 rpm.
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Fig. II.21 Energy spectrum of the bursting signal Sp as obtained for Ω = 2000 rpm.
The different coloured curves correspond to different windowing lengths for evalu-
ating the averaged spectrum. Dashed line: corresponds to Ep ∝ f−0.6.
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II.4 Conclusion
The two different type of intermittent structures observed in turbulent flow, vorticity fil-
aments and viscous dissipative structures, result in many interesting features observed in
measurements of velocity, pressure and temperature fluctuations in a turbulent flow. In the
case of spontaneous temperature fluctuations in a turbulent flow, we observe experimentally
that both the dissipation process and vorticity filaments play an important role.

The main features of the temperature fluctuations which are a consequence of the vorticity
filaments can be summarized as follows,

• Vorticity filaments are characterized by a sharp decrease in temperature and pressure
at their cores. This implies that though the turbulent flow is of low Mach number and
incompressible to the leading order, the vorticity filaments are compressible.

• Their existence is evidenced by sharp negative peaks observed in the time signal of
temperature fluctuations and exponential negative tails observed in the PDFs.

• Vorticity filaments can be accurately modeled by weakly compressible adiabatic Burg-
ers vortex.

• Vorticity filaments do not contribute significantly to the total energy of the temperature
fluctuations.

Whereas the features of the temperature fluctuations which are a consequence of dissipation
can be summarized as follows,

• The energy at the inertial scales as seen from the energy spectra of temperature fluc-
tuations is a direct consequence of the dissipation events in turbulent flows. The
behaviour of energy spectra at the inertial scales gives us a direct measurement on
the intermittency of the dissipation events. This is quantified with the intermittency
exponent.

• The total energy in the temperature fluctuations which is quantified by the RMS of
temperature fluctuations scales logarithmically with the Reynolds number. The RMS
of temperature fluctuations is a result of the dissipation events which are experimentally
observed to contribute the most energy to the fluctuating temperature field.

It is striking that from simple point measurement of temperature, we observe the signature
of two long searched sources of intermittency in turbulence, vortex filaments and dissipative
structures. One interesting feature that remains unanswered is the low-frequency behaviour
of the energy spectrum of temperature fluctuations. Whether it results from the viscous
dissipative events or not remains a question that requires further analysis.

As a concluding remark, it should be noted that even though most of our analysis is centred
around the fluid being an ideal gas, the observations should be valid for liquids as well. As
an example let us consider the case of air and water. For water, the coefficient of thermal
expansion β ≈ 2× 10−4 K−1 and and is an order of magnitude smaller than for air at room
temperature β ≈ 3× 10−3 K−1.

For an incompressible flow, the temperature fluctuations generated by viscous dissipation
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would be of O(Ma2) (see section II.1.2). Thus for compressible effects to be measurable, we
would have the condition on the order of magnitude of pressure fluctuations,

Air =⇒ p′ ∼
(
γp0
γ − 1

)
Ma2 ≈ O(1) Pa

Water =⇒ p′ ∼
(
ρ0cp
β

)
Ma2 ≈ O(104) Pa

where the order of magnitude on the pressure fluctuations is obtained considering u′rms ∼
O(1)m/s. For a turbulent flow in water pressure fluctuations of O(104) Pa are easily achiev-
able. This demonstration shows that spontaneously generated temperature fluctuations in
water would also display effects of both viscous dissipation and vorticity filaments.
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II.A Estimation of RMS of velocity fluctuations from 1D hot-wire
probe

Hot-wire anemometry is one of the most widely used experimental technique for measuring
velocity in turbulent flows. This is owing to its high accuracy, small response time11 allowing
to capture rapidly fluctuating velocity fields and high spatial resolution (about the diameter
of the probe filament which is of order 1 µm). One of the main disadvantages of hot-wire
anemometry technique is its intrusiveness. To minimize the errors owing to intrusiveness,
we have used only 1D hot-wire probes in our experimental work. Though, using 1D hot-
wire probes has one major disadvantage and that is the inability to obtain the direction
of the flow. This results in the measurement of the norm of velocity or the speed rather
than the velocity of the turbulent flow. One very important statistic in characterizing any
turbulent flow is the RMS of the velocity fluctuations. Using 1D hot-wire probes results in
the overestimation and thus an erroneous measurement of the RMS of velocity fluctuations.
We present here a method to obtain a correct estimation of the RMS of velocity fluctuations
from the signal measured by a 1D hot-wire probe.

We consider a signal which is a Gaussian white noise (denoted by u) with a standard deviation
denoted by u′rms and a mean value denoted by 〈u〉. This signal resembles velocity fluctuations
in turbulent flows which are known to be close to Gaussian. We define the modulus of the
signal and denote it by S. This signal is equivalent to the speed of the actual velocity
fluctuations and resembles the measurement by a 1D hot-wire probe. The definition of the
modulus signal S is,

S = |u|

From the modulus signal S, we consider two estimates of the actual RMS of velocity fluctu-
ations (which is one according to our definition),

1. S1
rms =

√
〈S2〉

2. S2
rms =

√
〈(S − 〈S〉)2〉

With these definitions, we proceed to understand which of the two quantities S1
rms and S2

rms

is a better estimate of the actual RMS of velocity fluctuations u′rms as the mean of velocity
fluctuations 〈u〉 is varied. Fig.II.22a shows the two estimates S1

rms and S2
rms normalized by

the value of u′rms as the ratio u′rms/〈u〉 is varied. We can draw two observations,

• When u′rms/〈u〉 → ∞, S2
rms correctly estimates u′rms. This agrees with the physical

understanding that with strong mean flows, the hot-wire probe is able to capture
correctly the fluctuations in the velocity.

• When u′rms/〈u〉 → 0, S1
rms correctly estimates u′rms. In this case, the absence of mean

flow would result in u′2 = |u| and thus S1
rms correctly estimating u′rms.

11for example the hot-wire probe used in our experiments has a maximum acquisition frequency of 250 kHz.
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Fig. II.22 (a) The two estimates of the RMS of velocity fluctuations S1
rms (red)

and S2
rms (blue) normalized by the value of u′rms as the ratio u′rms/〈u〉 is varied.

(b) u′rms/〈u〉 as a function of the ratio of the two estimates, S1
rms/S

2
rms.
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The procedure is as follows,

• We would have the modulus signal S, say the velocity measured by the 1D hot-wire
probe.

• We obtain the values of the two estimates, S1
rms and S2

rms. We would have no prior
knowledge which of the two correctly estimates the actual RMS of the velocity fluctu-
ations u′rms and to what degree of error.

• We evaluate the ratio S1
rms/S

2
rms. The ratio u′rms/〈u〉 is found to be a monotonic

function of S1
rms/S

2
rms (fig.II.22b). Thus, we obtain the value of u′rms/〈u〉.

• From this we obtain the values of R1 = S1
rms/u

′
rms and R2 = S2

rms/u
′
rms, shown in

fig.II.23.

• We can then obtain u′rms as u′rms = S1
rms
R1

= S2
rms
R2

.

This procedure details the procedure of obtaining the correct value of the RMS of velocity
fluctuations from 1D hot-wire probe measurement. Using this procedure we also obtain the
correct mean velocity 〈u〉 once the other values S1

rms, S2
rms and u′rms are determined.
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Fig. II.23

Fig. II.24 PDFs of phase fluctuations normalized by its RMS value. Red squares:
1200 rpm; Blue crosses: 1600 rpm; Green circles: 2000 rpm. Dashed line: Gaussian
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II.B Method of coherent averaging

A signal obtained experimentally or numerically might contain a recurrent structure which
would be observable, say, in its time signal for example. More often than not, the signal
would not be comprised only of these structures but also noise which would pollute every
individual structure and prevent us from studying the features of the structures. The method
of coherent averaging described in this appendix enables us to remove the effect of noise and
obtain an averaged structure. By averaged, we mean, all the structures appearing in the
signal would be accounted for to obtain the averaged structure which can then be analysed
to understand the properties of the structures in general.

Let us say, we have a signal ζ(t) with 0 < t < T0 and that we have identified a noisy structure
in the signal for t1 < t < t2. We call this initial structure χ(τ),

χ(τ) = ζ(t1 + τ) where 0 < τ < t2 − t1

We can compute the correlation of this noisy structure with the signal,

C(T ) =

∫ t2−t1

0
dτ χ(τ)ζ(T + t1 + τ)∫ t2−t1

0
dτ
[
χ(τ)

]2 where − t1 < T < T0 − t2

The procedure of coherent averaging is as follows,

• We start with T = −t1 for the initial structure χ1(τ) and search for peaks in the
correlation. Let us say we obtain the first peak in correlation for T = T1.

• We average the structure at this value and obtain χ2(τ) =
(
χ1(τ) + ζ(T1 + t1 + τ)

)
/2.

• We proceed to find the peaks in correlation for χ2(τ) for T > T1. Let us say we obtain
a peak at T = T2. Thus we obtain χ3(τ) =

(
2χ2(τ) + ζ(T2 + t1 + τ)

)
/3.

• Iterating over the process, we obtain for the kth iteration, χk+1(τ) =
(
(k)χk(τ)+ζ(Tk+

t1 + τ)
)
/k + 1.

• We continue this process till no more peaks exist in correlation and we obtain the
averaged structure.

Note: We have tweaked the process a bit as compared to what was described by Labbé
et al. [63]. Before starting the iterative process, we treat the signal ζ(t) with a highpass
moving average filter with a period Tfilter = t2−t1. This is done since we have low-frequency
fluctuations and the correlation can be peaked because of large amplitude owing to these
fluctuations.
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II.B.1 Demonstration
Consider a signal SN which is Gaussian white noise of both amplitude and standard deviation
of unity. We generate a bursting signal SB with the properties,

• The structure of the bursts is Gaussian.

• The standard deviation of the bursts is a random variable with uniform distribution
with a mean value of σB. This is done to mimic the real scenario where for example
the width in the peaks of temperature are distributed about some mean value.

• The location of the bursts is a random variable with uniform distribution.

We define the sum of the bursting signal and the noise as the noisy bursting signal S,

S = SN + SB

An example of this is shown in fig.II.25. We then choose a peak with the highest amplitude12
and apply the method of coherent averaging.
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Fig. II.25 An example of the Gaussian white noise SN (red), signal with only
bursts SB (black) and the noisy bursting signal S (blue).

12this improves the accuracy in finding peaks in the correlation when performing coherent averaging.
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Fig.II.26 shows four bursts. The one in blue is the burst from the signal S that was chosen
to initialize the process of coherent averaging. The one in magenta is the actual burst from
SB that corresponds to the chosen burst. The one in black is a Gaussian burst with the
standard deviation being the mean value of σB. Finally, the one in red is the one obtained
after coherent averaging. As this example demonstrates, the burst obtained from coherent
averaging (red burst) closely resembles the mean behaviour of the bursts (black burst).
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Fig. II.26 Blue: The sample of the noisy bursting signal S with one burst that
is chosen to initialize the process of coherent averaging. Black: A Gaussian burst
with standard deviation of σ = σB. Red: The burst obtained after the method
of coherent averaging. Magenta: The sample of the bursting signal SB with one
burst.



Chapter III

Coherence of velocity fluctuations in
turbulent flows

«Il faut que je combatte cette léthargie. Mon stylo pèse de plus en plus lourd.»
“I must fight this lethargy. My pen is getting heavier and heavier.”[2]

Jeudi 11 septembre

The unpredictable nature of turbulent flows manifests on any flow related quantities, say,
velocity, pressure or temperature to name a few. This inherent variability of turbulent flows
calls for a probabilistic description of turbulence[3] which has remained the backbone of
turbulence research to this day. This approach to turbulence amounts to studying different
statistical properties of the flow, in the hope that their reproducibility and predictability1
would enable us to formulate laws on the nature of turbulence.

An important example of exact result was obtained by Kolmogorov2 [8] for the case of
statistically homogeneous and isotropic turbulence in the limit of infinite Reynolds number
which is often called the Kolmogorv’s four-fifths law. The statement of the law, in the words
of Frisch [3] is as follows,

“In the limit of infinite Reynolds number, the third order longitudinal structure function
of homogeneous isotropic turbulence, evaluated for increments ‘r’ small compared to the
integral length scale lI , is given in terms of the mean energy dissipation rate per unit mass
‘〈ε〉’ (assumed to remain finite and nonvanishing) by”

1As an example, the probability distribution function (PDF) of velocity fluctuations are reproducible
across a range of experiments though the exact velocity field would vary from one experiment to another and
even for different trials of the same experiment.

2Often called the K41 theory named after the year in which Kolmogorov presented his celebrated work in
a series of articles.

77
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〈(δuLL)3〉 = −4
5〈ε〉r (III.1)

where the subscript ‘LL’ stands for the longitudinal component of the turbulent velocity and
the third order structure function is defined as,

〈(δuLL)3〉 = 〈(uLL(x + r)− uLL(x))3〉

If the turbulent flow is assumed to be self-similar across scales we obtain the prediction for
the scaling for the second order structure function,

〈(δuLL)2〉 ∼ 〈ε〉2/3r2/3 (III.2)

Eqn.(III.2) then implies that the energy spectrum at wavenumber ‘k’ is of the form,

E(k) ∼ 〈ε〉2/3k−5/3 (III.3)

where the energy spectrum in the case of isotropic turbulence is defined as,

E(k) =
∫ ∞

0
dr krΓiiu (r) sin(kr)

and the two-point spatial correlation tensor of the velocity fluctuations Γu is defined as,

Γiju (r) = 〈ui(x)uj(x + r)〉

The behaviour of the third order structure function, second order structure function and the
energy spectrum of the velocity fluctuations given by equations (III.1), (III.2) and (III.3)
have been observed in a range of experiments and their validity has robust experimental
evidence [6, 3, 9]. We note here that the second and third order structure functions and
the Kolmogorov spectrum are functions of space and wavenumber and do not involve time.
Historically, experiments measured these quantities in time and their spatial dependence was
obtained via Taylor’s frozen hypothesis [86].

For two point spatio-temporal characteristics of velocity fluctuations, there are only few
known theoretical predictions and as a consequence, it has been overlooked numerically and
experimentally. Leoni et al. [16] numerically studied the spatio-temporal spectra (spectra
in both wavenumber and frequency) for homogeneous, isotropic turbulence and reported ob-
serving the sweeping effect. On the theoretical front Canet et al. [87] obtained the two-point
velocity correlation function in wavenumber and time for homogeneous isotropic turbulence
using techniques from field theory.
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The sweeping effect deserves further elucidation and likely plays an important role on spatio-
temporal statistics. Kolmogorov’s K41 theory also obtains a prediction on the Lagrangian
velocity energy spectrum, ELag(f), in frequency [9] with,

ELag(f) ∼ 〈ε〉f−2

in the inertial range. A naive assumption that the Lagrangian and Eulerian approach be-
ing similar would suggest the same scaling for the frequency energy spectrum for Eulerian
velocity field, E(f) (for example the velocity measured in homogeneous isotropic turbulence
with no mean flow at a point using a point-measurement technique),

E(f) ∼ 〈ε〉f−2 (III.4)

The controversy on the similarity of the Lagrangian and Eulerian approach was initiated
by the experimental results by Favre et al. [88] and Comte-Bellot et al. [89] who reported
discrepancy of a factor five between the Eulerian time microscale which was smaller than
its Lagrangian counterpart. This discrepancy was analytically resolved by Tennekes [17, 90]
by imploring random sweeping hypothesis and was shown to be a result of the advective
sweeping of the inertial range eddies by the eddies containing the most energy (eddies with
length scales close to the integral length scale). Tennekes’ analysis predicted the Eulerian
velocity frequency spectrum to be,

E(f) ∼ 〈ε〉2/3u2/3
rms f

−5/3 (III.5)

where scales containing the most energy are characterized by the total RMS of the velocity
fluctuations urms which appears in the form of the energy spectrum E(f). This was evidenced
by the work of Nelkin et al. [91] and Sanada et al. [92]. The similarity in the scaling with
wavenumber of E(k) (eqn.(III.3)) and with frequency of E(f) (eqn.(III.5)) comes from the
interpretation that the inertial scales would be advected by the scales containing most energy
implying the applicability of a slightly unconventional form Taylor’s frozen hypothesis3.

3Conventionally Taylor’s frozen hypothesis means advection of all eddies due to and in the presence of a
strong mean flow.
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The aim of this experimental study and the results presented therein are twofold,

Q1A: What new insight on the nature of turbulence can we obtain by studying two-point
statistics of velocity fluctuations in space and time?

Q1B: Can we observe the sweeping effect as hypothesized by Tennekes from two-point spatio-
temporal statistics of velocity fluctuations?

As we mentioned earlier Q1A has been experimentally understudied whereas Q1B has been
experimentally dealt with studying only one point statistics. To ensure the validity of our
experimental observations,

• Experiments are performed on two different experimental setups with two different
experimental techniques to ensure the robustness of the experimental results and its
likely universality to turbulent flows.

• The chosen experimental techniques are such that one has higher resolution in space
while the other has higher resolution in time. This ensures that our observations are
not affected by the nature of the experimental technique.

The outline of this chapter is as follows,

Sec. III.1: Presents the theoretical background on the effect of sweeping and obtain the
governing equations. We demonstrate the effect of sweeping as proposed by Tennekes for the
energy spectrum of velocity fluctuations. We also study the behaviour of two point statistics,
particularly the magnitude-squared coherence (for brevity we call it coherence) under the
effect of sweeping.

Sec. III.2: Presents the first experiment for studying the coherence and the results ob-
tained.

Sec. III.3: Presents a second novel experiment for studying coherence. A new technique is
developed and presented for measuring turbulent flows using standard optical techniques.

Sec. III.4: Summarizes the results and the conclusions on the behaviour of coherence and
how it is affected by the sweeping effect.
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III.1 Theoretical background

The analysis presented in this section builds on the work by Tennekes [17] and Kraichnan et
al. [90]. We explain the results obtained by the authors in the aforementioned articles in a
simple manner by using their physical arguments. We then extend it to obtain results on the
behaviour of coherence of velocity fluctuations under the effect of sweeping for homogeneous,
isotropic turbulence.

We begin by considering a statistically homogeneous, isotropic and stationary turbulent flow
of velocity u(x, t) such that 〈u〉 = 0 (assumption of isotropy). For brevity, we denote the non-
zero fluctuating velocity by u(x, t). The fluctuating velocity field is such that

√
〈u2
i 〉 = urms

for i = 1, 2, 3 (assumption of isotropy) with urms being independent of the spatial and tem-
poral co-ordinates (assumption of homogeneity and stationarity). Additionally, we assume
the turbulent flow to be incompressible. The governing equations for the hydrodynamic part
of an incompressible flow are,

∂ui
∂xi

= 0 (III.6)

∂ui
∂t

+ uj
∂ui
∂xj

= − 1
ρ0

∂p

∂xi
+ ν

∂2ui
∂x2

i

(III.7)

where ρ0 and ν are the density and the kinematic viscosity of the fluid at rest respectively.
We decompose the flow into two parts, one due to the scales containing the most energy,
i.e., close to the integral scales whose velocity and pressure are denoted by uB, pB and the
other due to the inertial scales whose velocity and pressure are denoted by uI , pI . These
two fields can also be thought of as band filtered fields after filtering about a wavenumber
such that kB � kfilter � kI . Thus we have the decomposition,

u = uB + uI

p = pB + pI

We also assume that |uB| ∼ urms � |uI| and pB � pI . For the asymptotic analysis that
is to follow, this ensures that there is no back reaction of the inertial scales on the energy
containing background scales and agrees with our physical understanding of energy being
transferred from large to small scales. Substituting the decomposition in equations (III.6)
and (III.7), we obtain for the zeroth order in perturbations in the flow of energy containing
background scales,

O(0)
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∂uB,i
∂xi

= 0

∂uB,i
∂t

+ uB,j
∂uB,i
∂xj

= − 1
ρ0

∂pB
∂xi

+ ν
∂2uB,i
∂x2

i

which are just the incompressible flow equations for the energy containing background scales.
For the next order in the perturbations we obtain,

O(1)

∂uI,i
∂xi

= 0

∂uI,i
∂t

+ uB,j
∂uI,i
∂xj

+ uI,j
∂uB,i
∂xj

= ν
∂2uI,i
∂x2

i

The term involving pressure is neglected since pI ∼ ρ0u
2
I . The relative order of magnitudes

of the terms with respect to the term ∂uI,i/∂t are,

uB,j∂uI,i/∂xj
∂uI,i/∂t

∼ uB(
fI/kI

)
uI,j∂uB,i/∂xj

∂uI,i/∂t
∼ uB(

fI/kI
)(kB

kI

)

ν∂2uI,i/∂x2
j

∂uI,i/∂t
∼
(
ν
k2
I

fI

)
∼ 1
Re

where fB and fI are the frequency scales associated with the energy containing background
scales and the inertial scales respectively with fB � fI . The Reynolds number based on the
inertial scales is defined as,

Re = fI
νk2

I

Since kB � kI , we obtain to the leading order (with uB ∼ fI/kI),

∇ · uI = 0
∂uI
∂t

+uB · ∇uI = ν∇2uI
(III.8)
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The set of equations (III.8) essentially model the effect of the sweeping of the inertial scales
(uI) by the scales containing the most energy which are close to the integral scales (uB).

We proceed to show that the physical arguments put forward by Tennekes [17] and Kraich-
nan [90] to obtain the energy spectrum of velocity fluctuations in the Eulerian framework
accounting for the sweeping effect can be put in mathematical terms via equations (III.8).

III.1.1 The sweeping effect and the energy spectrum
We consider the case of Reynolds number tending to infinity whence the viscous effects will
be negligible. In this case, the momentum equation of eqn.(III.8) becomes,

∂uI
∂t

+ uB · ∇uI = 0 (III.9)

Since kB � kI , the background flow changes little over the distance 1/kI and can essentially
taken to be constant over the distances at which uI varies. Similarly the background flow
varies little over the timescale 1/fI and can also be considered to be constant in time over
which we study the evolution of the inertial scales. Thus, eqn.(III.9) becomes,

∂uI(x, t)
∂t

+ uB · ∇uI(x, t) = 0

On taking the Fourier transform in space and time, we obtain,

ι
(
ω − uB · kI

)
ũI(kI , ω) = 0 (III.10)

where,

ũI(kI , ω) =
∫ ∞
−∞

d3x

∫ ∞
−∞

dt uI(x, t)eι(kI ·x−ωt)

We first observe from eqn.(III.10) that only the inertial scales whose wavevector is aligned
with the velocity vector of the background flow will be affected by sweeping. Eqn.eqn.(III.10)
also implies,

ω = uBkI (III.11)

There are two things to note here. First, uB = |uB| and thus is a non-negative quantity.
Second uB is a statistical quantity with a typical value of urms and would change over
different realizations of the same flow. Since we are interested in the energy spectrum in
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wavenumber and frequency, eqn.(III.11) implies that for a one realization of uB, the energy
spectrum in wavenumber and frequency will have the form,

EuB (kI , ω) = δ
(
ω − uBkI

)
E(kI) (III.12)

Thus the energy spectrum of the inertial scales in wavenumber and frequency would be the
ensemble average of eqn.(III.12) over all realizations of uB,

E(kI , ω) =
〈
δ
(
ω − uBkI

)
E(kI)

〉
uB

=
∫ ∞

0
duB

1
urms

P

(
uB
urms

)
δ
(
ω − uBkI

)
E(kI)

= 1
urmskI

P

(
ω

urmskI

)
E(kI) (III.13)

where we have assumed that the energy containing scales and the inertial scales are statisti-
cally independent. The probability of obtaining a absolute value or speed of the background
flow uB is denoted by 1

urms
P
(

uB
urms

)
. On substituting the form of Kolmogorov spectrum

(eqn.(III.3)) in eqn.(III.13) and integrating in wavenumber we obtain the the frequency en-
ergy spectrum of the inertial scales in the Eulerian framework,

E(f) ∼ 〈ε〉2/3u2/3
rms f

−5/3 (III.14)

where we have assumed that the following integral converges,

∫ ∞
0

dx P (x)x2/3

It is important to note here the subtle difference between the sweeping effect due to a strong
mean flow and the sweeping effect dueto the energy containing integral scales. In the presence
of a strong mean flow (say U), one obtains a similar expression with,

E(f) ∼ 〈ε〉2/3U2/3 f−5/3

which would hold true only for the wavevectors kI aligned with the direction of the strong
mean flow U. This would be a result of the sweeping effect due to a unidirectional strong
mean flow. Whereas, the eqn.(III.14) accounts for the sweeping effect due to the energy
containing integral scales whose velocity would be randomly aligned in space. Thus, the
expression (III.14) would be valid for all wavevectors belonging to the inertial scales. If one
investigates the frequency energy spectrum of velocity fluctuations aligned with the strong
mean flow4, both the sweeping by the mean flow and the integral scales would result in the
observation of E(f) ∝ f−5/3 for the inertial scales and it would not be possible to differentiate
between the two effects.

4As is often done experimentally using Taylor’s frozen hypothesis.
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III.1.2 The sweeping effect and coherence
Consider eqn.(III.9) which models the sweeping of the inertial scales by the scales containing
the most energy (which would be the scales close to the integral scale). Since fB � fI , uB
would essentially be stationary for timescales 1/fI or smaller. Owing to kB � kI we also
treat uB as being constant in space. For brevity, let us consider only the one dimensional
case. We define the rectangular function RT (t) such that,

RT (t) =


0, t ≤ −T/2
1, −T/2 < t < T/2
0, t ≥ T/2

On multiplying RT (t) with eqn.(III.9) we obtain,

∂ϑ(x, t, T )
∂t

− uI(x, t)
[
δ(t− T/2) + δ(t+ T/2)

]
= −uB

∂ϑ(x, t, T )
∂x

where ϑ(x, t, T ) = uI(x, t)RT (t) and δ is the Dirac delta function. On taking the temporal
Fourier transform of the equation, we obtain,

ιωϑ̃(x, ω, T )−
[
uI(x, T/2)e−ιωT/2 + uI(x,−T/2)eιωT/2

]
= −uB

∂ϑ̃(x, ω, T )
∂x

(III.15)

Similarly for a point x′ located elsewhere in the turbulent flow, after taking the Fourier
transform and its complex conjugate (denoted by superscripted asterix), we would have,

−ιωϑ̃∗(x′, ω, T )−
[
uI(x′, T/2)eιωT/2 + uI(x′,−T/2)e−ιωT/2

]
= −uB

∂ϑ̃(x′, ω, T )
∂x′

(III.16)

On multiplying eqn.(III.15) with eqn.(III.16), we obtain,

ω2
[
ϑ̃(x, ω, T )ϑ̃∗(x′, ω, T )

]
= u2

B

∂2
[
ϑ̃(x, ω, T )ϑ̃∗(x′, ω, T )

]
∂x∂x′

+ {cross terms}

where the cross terms would comprise of terms with order one or less in ϑ̃. Now if we average
over T and take the limit of T →∞, we have,

lim
T→∞

1
T
ω2
[
ϑ̃(x, ω, T )ϑ̃∗(x′, ω, T )

]
= lim

T→∞

1
T
u2
B

∂2
[
ϑ̃(x, ω, T )ϑ̃∗(x′, ω, T )

]
∂x∂x′

+ lim
T→∞

1
T
{cross terms} (III.17)
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If we assume the signal uI and the Fourier transform ϑ̃ to be finite, the last term on the
right hand side of eqn.(III.17) will go to zero. We obtain,

ω2EuB (x, x′, ω) = u2
B

∂2EuB (x, x′, ω)
∂x∂x′

(III.18)

where,

EuB (x, x′, ω) = lim
T→∞

1
T

[
ϑ̃(x, ω, T )ϑ̃∗(x′, ω, T )

]
is the cross-spectrum of uI in frequency and between two points in space located at x and
x′ for one realization of uB.

We observe that the physically plausible solution to eqn.(III.19), would be of the form,

EuB (x, x′, ω) = A(ω) exp
[
ιω

(
x′ − x
uB

)]
+B(ω) exp

[
− ιω

(
x′ − x
uB

)]

and EuB (x, ω) = EuB (x′, ω) = A(ω) +B(ω). Now, the coherence is defined as,

C(r, ω) =
∣∣∣∣∣∣∣
〈

EuB (x, x′, ω)√
EuB (x, ω)

√
EuB (x′, ω)

〉
uB

∣∣∣∣∣∣∣
2

=
∣∣∣∣∣∣∣
〈

exp
[
ιω

(
x′ − x
uB

)]〉
uB

∣∣∣∣∣∣∣
2

6= 1

where the ensemble averaging is evaluated over all the realizations of uB. Note that the
ensemble average is evaluated before taking the modulus. Thus, the coherence could have
a value less than one. On evaluating the ensemble average over the realizations of uB, we
would have,

C(r, ω) =
∣∣∣∣∣∣∣
∫ +∞

−∞
duB

1
urms

Π
(
uB
urms

)
e
ιωr
uB

∣∣∣∣∣∣∣
2

=
∣∣∣∣∣∣∣
∫ +∞

−∞
duB

1
urms

Π
(
uB
urms

)
e

ιωr
urms

(
urms
uB

)∣∣∣∣∣∣∣
2

where the probability density function of the velocity fluctuations of the energy containing
scales is given by 1

urms
Π
(

uB
urms

)
and the spatial distance between the two points x and x′

is denoted by x′ − x = r. We denote the quantity k = ωr
urms

and change the variables to
v = urms

uB
. This gives us,

C(r, ω) =
∣∣∣∣∣∣∣
∫ +∞

−∞
dv

Π(1/v)
v2 eιkv

∣∣∣∣∣∣∣
2

(III.19)
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Fig. III.1 The magnitude of the Fourier transform from eqn.(III.19) evaluated
numerically with Π(uB) = Ne−u

2
B/2u

2
rms . An exponential decay can be observed.

which is just the absolute value of the Fourier transform of the quantity Π(1/v)
v2 . Let us

consider that the PDF of velocity fluctuations is a Gaussian distribution,

Π(uB) = Ne−u
2
B/2u

2
rms

where N is a normalization constant. Then eqn.(III.19) reads,

C(r, ω) = N

∣∣∣∣∣∣∣
∫ +∞

−∞
dv

1
v2 exp

[
− 1

2v2

]
eιkv

∣∣∣∣∣∣∣
2

Fig.III.1 shows the absolute value of the Fourier transform of the function Π(1/v)
v2 . An expo-

nential decay in the variable k is observed implying,

C(r, ω) = exp
[
− crf

urms

]
(III.20)

where the constant c ≈ 1.5. Eq.(III.20) shows that the coherence for the inertial scales decays
exponentially both in frequency and separation length. We again note the subtle difference
between the sweeping effect due to a strong mean flow and due to the energy containing
integral scales. If we are given a strong unidirectional mean flow U and if we are measuring
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the coherence between two points whose direction vector is aligned with the direction of U,
i.e., r̂ = Û (overhat denotes the unit vector), we obtain,

C(r, ω) =
∣∣∣∣∣∣∣
∫ +∞

−∞
du δ(uB − U)e

ιωr
uB

∣∣∣∣∣∣∣
2

= 1

Thus the coherence due to sweeping by a stationary mean flow would be one. The behaviour
of coherence given by eqn.(III.20) can be shown to remain unchanged even when U ∼ urms.
In this case, we would still have eqn.(III.19) with only the PDF of velocity fluctuations
modified to,

Π(uB) = Ne−(uB−U)2/2u2
rms

Fig.III.2 shows the absolute value of the Fourier transform of the function Π(1/v)
v2 with Π(uB) =

Ne−(uB−U)2/2u2
rms when U = urms. An exponential decay in observed implying that the

eqn.(III.20) is still valid and coherence decays exponentially. Thus the quantity of coherence
will be able to differentiate between the sweeping effect due to a mean flow and due to the
energy containing integral scales. Any deviation of coherence from a value of one would be
a result of the sweeping due to the energy containing integral scales.
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Fig. III.2 The magnitude of the Fourier transform from eqn.(III.19) evaluated
numerically with Π(uB) = Ne−(uB−U)2/2u2

rms and U = urms. An exponential decay
can be observed.

We make two important remarks regarding the analytical work presented in this section and
the functional form of coherence eqn.(III.20),
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1. The governing equation for the sweeping effect eqn.(III.8) resembles the equation for
the advection of a passive scalar by a turbulent flow. If our analytical results are true,
they should also hold for the coherence of any passive scalar.

2. The quantity of coherence has not been studied for homogeneous isotropic turbulence.
Though, in the community of wind-engineering, there has been focus on studying this
quantity for its practical reasons on predicting the correlation of wind flows. One of
the earliest was an experimental study in large open wind farms by Davenport et al.
[93] where they studied the statistical properties of streamwise velocity fluctuations
along the direction normal to the ground. Based on their experimental observations
Davenport et al. suggested an empirical formula for the decay of coherence,

C(r, f) = exp
[
− crf

U

]

where c is a constant, r is the distance between two points of measurement normal to
the ground and U is the mean streamwise velocity. Further references can be found in
the work by Marusic et al. [94, 95] and the articles cited therein. The empirical form
suggested by Davenport et al. resembles the form that we just derived (eqn.(III.20)).
Though we should not draw further comparisons as the flow that Davenport et al.
studied was essentially that for a turbulent boundary layer whereas our analysis is for
homogeneous isotropic turbulence.

In the light of these analytical results, we ask, does the behaviour of coherence derived
analytically in eqn.(III.20) for velocity fluctuations hold against experimental observations for
a turbulent flow? How does the spatial variation in the velocity of the energy containing scales
affect the behaviour of coherence? To answer these questions, we develop two experiments to
investigate the behaviour of coherence in a turbulent flow. When developing the experiments,
we should choose flows such that they have the following property,

• Apart from checking the validity of eqn.(III.20), we also want to investigate how the
spatial variation of the energy containing integral scales affects the coherence. Since
the integral scales would vary spatially on a length scale which is the integral length
scale, the spatial dimensions of our flow should be much larger than the associated
integral length scale. This would enable us to measure the coherence at two points
with separation length larger than the integral length scale.
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III.2 Experimental setup I
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Fig. III.3 Sketch of experimental setup along with dimensions.

Fig.III.3 shows the sketch of the first experimental setup used for studying the coherence
of velocity fluctuations in three dimensional turbulence. The experimental setup has been
placed in air which is the working fluid for this setup. The experiment consists of two
plexiglass plates of dimensions 100 cm (W ) × 123 cm (H) fixed vertically using aluminium
supports. The other dimensions that are denoted in the figure are; a ≈ 28cm, b ≈ 9 cm,
c ≈ 16 cm, d ≈ 18 cm, e ≈ 20 cm, f ≈ 17 cm, g ≈ 8 cm and h ≈ 26 cm. The distance
between the two plates is denoted by ‘L’ and is our experimental control parameter which
is varied to obtain different flow configurations. For the current setup, we have performed
experiments for five values of the control parameter L = 23, 44, 55, 62 and 80 cm.

Each of the plates is fitted with 36 AC ball and sleeve bearing axial fans (ebm-papst 8550
VW ). They have five helical blades and a radius of Rfan = 4 cm (fig.III.4). The circular
housing for the motor at the center is of radius 2.5 cm. Each of the fans has a power rating
of 12 W and they are connected to the main power supply in parallel configuration. They
have asynchronous motors with a rotation rate of approximately Ω = 46 Hz for AC power
supply at 50 Hz. All the fans on the same plate rotate in the same direction, whereas, the
fans on the two plates are in counter-rotation. Additionally, the fans on the two plates are
geometrically staggered. Thus we obtain a staggered configuration of counter-rotating fans
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Fig. III.4 Image of a fan used in the experiments.

which can be imagined to create a Roberts-like flow [96] in the volume between the plates.
A sketch of the Roberts flow is shown in fig.III.5. The 3D flow comprises of periodic array
of counter-rotating vortices (whose axial velocities are denoted by the positive and negative
symbols) and is invariant along the axial direction (x-axis). This is not entirely the case in
our experiment since our flow is not invariant along the axial direction and the alternating
vortical flow is imposed only at the boundaries and not in the bulk.

Fig. III.5 Sketch of Roberts flow taken from the article by Roberts [96]. The
positive and negative signs denote the direction of the axial flow.

In our experiment, there is a mean inflow of air in the volume between the plates and as a
result, a mean outward flow exists at the open faces. Nonetheless, a stagnation point with
vanishing mean flow would be expected at the center of the experimental volume.
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The velocity fluctuations in the flow are measured with Constant Temperature Anemometry
(CTA) technique using two 1D hot-wire probes DANTEC 55P16. The velocity probes are
connected to DANTEC StreamWare Pro system which performs the CTA measurement, the
output of which is connected to National Instruments DAQ card. For spatial measurements,
one of the velocity probes has been attached to DANTEC 2D traverse system for translation.
The traverse system has the capability of moving the probe in the x-z plane with a minimum
increment of 6.25 µm. This arrangement enables us to precisely obtain the spatial dependence
of velocity as well as its two-point spatio-temporal statistics for a stationary flow.

One of the velocity probes is fixed at the center of the experimental volume close to the
stagnation point of the flow. When measuring velocity signals at two points, the orientation
of the filaments of the hot-wire probes is kept perpendicular to the direction vector joining
the location of the two probes and whose magnitude is denoted by ‘r’. This arrangement
is shown in fig.III.6. In the experimental results presented henceforth, the second probe
is moved vertically with the filaments of the hot-wire probes oriented horizontally. The
probe can also be moved horizontally with both the probes being oriented vertically. It was
experimentally verified that the results between these two cases remain unchanged.

Fixed

probe

Moving

probe

W/2

L/2

H/2

r

Fig. III.6 Sketch of the location of the hot-wire probes and the orientation of their
filaments when measuring velocities at two points in the flow simultaneously.
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Since we are using 1D hot-wire probes and which are placed in the part of the turbulent
flow with weak to vanishing (for the fixed hot-wire probe) mean flow, it becomes important
to note that we are measuring speed and information on the directionality of velocity is
inaccessible. We will continue calling it velocity for the usage of notation but it must be
kept in mind that it is indeed speed. The reason for choosing this flow is that we expect
the integral length scale to be the same order of magnitude as the dimensions associated
with the fan which is of O(1) cm. Whereas, the size of the experiment is of O(1) m. This
large scale separation between the expected integral length scale and the experimental size
would enable us to explore the behaviour of coherence for separation lengths between the
two points of measurement larger than the integral length scale.

III.2.1 Characterization of the flow

We start with the characterization of the velocity field and define the Reynolds number for
the experiment as,

Re = RfanΩL
ν

where the frequency of rotation of the fans is constant for the experiment with Ω ≈ 46 Hz
and ν is the kinematic viscosity of air. For the experimental setup under consideration, we
obtain the order of magnitude of the Reynolds number Re ∼ O(104).

Fig.III.7 shows the time series of the velocity fluctuations (after the removal of the temporal
mean) obtained at the center of the experimental volume for L = 44 cm. We observe strong
asymmetry in the positive and negative fluctuations of the velocity. This is indicative of the
absence of a mean flow owing to the probe being located in the vicinity of the stagnation
point. For determining the RMS (root mean square) of the velocity fluctuations, its value
evaluated after the removal of temporal mean would be an underestimation of the actual
value of the RMS of velocity fluctuations. Thus, a more accurate estimate of RMS of velocity
fluctuations would be given by u′rms ∼

√
〈u2〉 where the velocity without the removal of its

mean is denoted by u. For L = 44cm, we obtain u′rms ≈ 0.24 m/s. The accuracy of this
estimate on the RMS of velocity fluctuations was double checked and was in agreement with
the process described in appendix II.A.

Fig.III.8a shows the energy spectrum of the velocity fluctuations for L = 44 cm. We observe
that for low frequencies the energy spectrum follows a power-law with Eu(f) ∝ f−0.6±0.02.
This can also be seen from fig.III.8b where we observe that the quantity f0.6Eu(f) is roughly
flat for low frequencies. The inertial range scaling of the energy spectrum of velocity fluctua-
tions corresponding to Kolmogorov spectrum with Eu(f) ∝ f−5/3 is also observed for higher
frequencies. The two power law regions corresponding to Eu(f) ∝ f−0.6 and Eu(f) ∝ f−5/3,
however, do not juxtapose. Since the point of measurement has a vanishing mean flow,
Taylor’s hypothesis would not applicable. Also, as noted by Tennekes [17], the Kolmogorov
spectrum is expected in frequency even in the absence of a mean flow (eqn.(III.5)) but we
recall that in the absence of a mean flow, we measure speed using the 1D hot-wire probe and
not velocity. It is possible that this modifies the behaviour of the energy spectrum resulting
in the absence of a clear inertial range with Kolmogorov scaling of the energy spectrum.
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Fig. III.7 Time series of velocity signal as obtained from the 1D hot-wire probe
located at the center of the experimental volume close to the stagnation point for
L = 44 cm. The temporal mean has been removed from the signal.

The low-frequency power-law behaviour of the energy spectrum likely arises from vorticity
filaments being swept through the probe5. We can define cross-over frequency ‘fcross’ as the
frequency at which the energy spectrum deviates from being Eu ∝ f−0.6. The cross-over fre-
quency fcross is evaluated by finding the frequency below which we obtain a fit of Eu ∝ f−0.6

with the least error. For the case of L = 44 cm whose velocity energy spectrum is shown in
fig.III.8a, we obtain the cross-over frequency of fcross ≈ 13 Hz.

Next, we can proceed to characterize the flow using two point statistics of velocity fluc-
tuations. Specifically, we can obtain the integral length scale of the turbulent flow from
two-point correlation of velocity fluctuations. First, we note that owing to the filament of
the hot-wire probes being perpendicular to the direction vector between their positions, what
we measure from the hot-wire probes is the quantity,

u′ =
√
u2
LL + u2

NN −
〈√

u2
LL + u2

NN

〉
(III.21)

5The low frequency behaviour of the energy spectrum of velocity fluctuations with Eu(f) ∝ f−0.6 was
also observed for the von Kármán swirling flow. Refer to chapter II, figures II.6a, II.21 and the explanation
provided therein.
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Fig. III.8 (a) Energy spectrum of velocity signal as obtained from 1D hot-wire
probe at the centre of the experimental volume for L = 44 cm. Dashed line:
corresponds to Eu ∝ f−0.6. Dash-dotted line: corresponds to Eu ∝ f

− 5/3. (b)
Energy spectrum of velocity signal from (a) normalized by f−0.6. The cross-over
frequency is denoted by fcross. The different coloured curves correspond to different
windowing lengths for evaluating the averaged spectrum.
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where the subscripts ‘LL’ and ‘NN ’ correspond to the longitudinal and normal directions
with respect to the direction vector as shown in the sketch III.9. We define the two-point
velocity correlation as,

Γu(r) =

〈
u′(z = 0)u′(z = r)

〉
√〈

u′(z = 0)2
〉〈
u′(z = r)2

〉
and which, by definition, is unity for zero separation length r = 0. Fig.III.10 shows the
two-point velocity correlation for L = 44 cm. An exponential decay is observed and from
the corresponding exponential fit, we obtain the characteristic length scale of the decay or
the integral length scale, which, in this case is lI ≈ 2.11 cm. We also note that velocity
fluctuations are correlated for separation lengths much larger than the integral length scale
as seen from fig.III.10.

filament orientation

Fig. III.9 Sketch showing the longitudinal and the normal component of the ve-
locity relative to the distance vector denoted by ‘r’ separating the two points of
measurement in the flow.
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Fig. III.10 Two-point correlation of velocity fluctuations,Γu(r) for L = 44cm. The
integral length scale is given by the characteristic length of the exponential decay
and is lI ≈ 2.11cm.

We can also evaluate the integral frequency defined as fI = u′rms/lI which for the case of
L = 44 cm is fI ≈ 11 Hz and is roughly the same as the cross-over frequency fcross evaluated
earlier. To summarize, the values of the RMS of velocity fluctuations, the integral length
scale, the integral frequency and cross-over frequency are given in tab.III.1 for different
values of the distance between the walls, L (which is our control parameter). From the
information experimentally obtained till this point, we also get the estimates on the order of
magnitudes of the mean energy dissipation rate per unit mass 〈ε〉, the Taylor microscale λ,
the Kolmogorov microscale η and Taylor microscale based Reynolds number Reλ,

〈ε〉 ∼ (u′rms)3/lI ∼ O(1) m2/s3

λ =
(

15ν u
2
rms

〈ε〉

)1/2

∼ O(1) mm

η =
(
ν3/〈ε〉

)1/4
∼ O(102) µm

Reλ = u′rmsλ

ν
∼ O(102)

The integral length scales in our experiment are more than an order of magnitude smaller
than the size of the experiment which is aboutW ∼ H ∼ O(1) m. This reaffirms the choice of
our flow and we should be able to investigate the behaviour of magnitude-squared coherence
for separation lengths larger than the integral length scale.
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L(cm)
23 44 55 62 80

u′rms(m/s) 0.46 0.23 0.15 0.16 0.16
lI(cm) 1.42 2.11 2.19 3.73 3.62
fI(Hz) 32.4 11.1 6.9 4.3 4.4

fcross(Hz) 24.6 13.9 5.5 4.8 5.5
Table III.1: Values of the RMS of velocity fluctuations (u′rms), the integral scales (lI , fI) and
the cross-over frequency (fcross) for different values of the distance between the walls, L.
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III.3 Experimental results of setup I
The coherence for the velocity fluctuations is defined as,

C(r, f) =

∣∣∣∣∣
∣∣∣∣∣
∫ ∞
−∞

〈
u′(0, t)u′(r, t+ τ)

〉
e−ifτdτ

∣∣∣∣∣
∣∣∣∣∣
2

[ ∫ ∞
−∞

〈
u′(0, t)u′(0, t+ τ)

〉
e−ifτdτ

][ ∫ ∞
−∞

〈
u′(r, t)u′(r, t+ τ)

〉
e−ifτdτ

]

We recall that when we say velocity, we mean the norm of the longitudinal and the normal
component of the velocity as defined by eqn.(III.21). The averaging in the above definition
of coherence is performed over time t.

Fig.III.11 shows the coherence of velocity fluctuations for two different separation lengths
(r) for the case of L = 44 cm. The following observations can be made,

1. The coherence decays exponentially for all separation lengths r for frequencies larger
than the integral frequency, i.e., f > fI . The coherence deviates from an exponential
decay for frequencies smaller than the integral frequency fI .

2. The frequency scale associated with the exponential decay which we denote by fc
depends on the separation length and decreases with increasing separation length.
This is seen by the exponential decay of coherence becoming sharper with increasing
separation length.

3. The value of coherence at zero frequency which we denote by C0 is a function of the
separation length and decreases with increasing separation length.

These three observations suggest that the coherence for the inertial scales can be written in
the following functional form,

C(r, f) = C0(r)e−f/fc(r) (III.22)

where C0 is the value of coherence at zero frequency and fc is the frequency scale associated
with the exponential decay and thus has the units of hertz. Both C0 and fc are decaying
functions of the separation length r. We proceed to investigate the behaviour of the two
functions C0 and fc.
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Fig. III.11 Coherence of velocity fluctuations for two different separation length
between the points of measurement; r = 0.5 mm (blue) and r = 2.5 mm (yellow).
The coherence at f = 0 is denoted by C0. Dashed line: corresponds to an exponen-
tial decay of coherence with a frequency scale denoted by fc. The distance between
the walls is L = 44 cm and the integral frequency is denoted by fI .
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Fig.III.12 shows the dependence of value of coherence at zero frequency, C0, on the separation
length, r, when the distance between the walls is L = 44 cm. As we observe, it decays
exponentially with increasing separation length. The velocity fluctuations are also observed
to be coherent at zero frequency and for separation lengths larger than the integral length
scale as is evident from a non-zero value of C0 for r > lI ≈ 2.1 cm. Thus we infer that the
functional form of the coherence at zero frequency would be,

C0(r) = e−r/r
† (III.23)

where ‘r†’ is the length scale associated with the decay of coherence at zero frequency.
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Fig. III.12 The decay of the coherence at zero frequency (C0) with increasing sepa-
ration length between the two points of measurement (r). Dashed line: corresponds
to exponential decay with the length scale associated with the exponential decay
being r† ≈ 2.26 cm.

Similarly, fig.III.13 shows the dependence of the frequency scale associated with the decay of
coherence, fc, on the separation length, r, when the distance between the walls is L = 44 cm.
It displays a power-law decay with,

fc(r) ∝ r−1±0.1

This allows us to infer the functional form of the frequency associated with the decay of
coherence with,

fc(r) = u†/r (III.24)
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where ‘u†’ is the velocity scale associated with the decay of fc.
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Fig. III.13 The frequency scale fc of the exponential decay of coherence versus
the separation length between the two points of measurement (r). Dashed line:
corresponds to ∝ r−1.
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Fig. III.14 Coherence normalized by its value at zero frequency, C/C0, versus the
frequency normalized by the frequency scale of decay f/fc. Dashed line: corre-
sponds to C/C0 = e−f/fc .
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Fig.III.14 shows the coherence normalized by its value at zero frequency, C/C0, versus the
frequency normalized by the frequency scale of decay f/fc. Indeed the plots coincide for all
separation lengths between the two points of measurement. In summary, equations (III.22),
(III.23) and (III.24) suggest that the coherence of velocity fluctuations of the inertial scales
is of the form,

C(r, f) = exp
[
−
(
r

r†
+ rf

u†

)]

which can be rearranged in the form,

C(r, f) = exp
[
−
(
r

r†

)(
1 + f

f †

)]
(III.25)

where f † = u†/r†. The length and frequency scales of the decay of coherence (r†, f †) would
be characteristic of the turbulent flow. The next natural question that arises is,

Q3: How are the length scale (r†) and the frequency scale (f †) of the decay of coherence
related to the length and frequency scales associated with the turbulent flow?

To obtain an estimate on the values of the length and frequency scales associated with the
decay of coherence, figures III.15a and III.15b show the length scale r† normalized by the
integral length scale lI and the frequency scale f † normalized by the integral frequency fI (as
well as the cross-over frequency fcross) respectively as the distance between the walls, L, is
varied. We observe that the value of characteristic length scale r† remains roughly the same
as that of the integral length scale lI . As for the frequency scale f †, we observe that its order
of magnitude is comparable to the integral frequency fI and the cross-over frequency fcross,
differing by a constant factor 6. This suggests that the coherence for the inertial scales has
the form,

C(r, f) = exp
[
−
(
r

lI

)(
1 + cf

fcross

)]
= exp

[
−
(
r

lI

)(
1 + cf

fI

)]
(III.26)

where for the current experiment, the mean value of the constant factor c ≈ 2.5.

6For the flow generated by two walls of staggered counter-rotating fans, the integral frequency fI and the
cross-over frequency fcross are found to be roughly equal. Thus the cross-over frequency is a good estimate of
the integral frequency. The former can be obtained from one point measurement whereas the latter requires
the integral length scale and thus is obtained from two-point measurement.



104 Chapter III. Coherence of velocity fluctuations in turbulent flows

20 30 40 50 60 70 80

0

0.2

0.4

0.6

0.8

1

1.2

(a)

20 30 40 50 60 70 80

0

0.1

0.2

0.3

0.4

0.5

0.6

(b)

Fig. III.15 (a) Values of r† normalized by the integral scale lI . Dashed line corre-
sponds to a value of unity. (b) Values of f † normalized by the integral frequency
fI = u′rms/lI (red) and by the cross-over frequency fcross (blue). Dashed line cor-
responds to a value of 1/c ≈ 0.4.
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There are numerous implications of the form described by eqn.(III.26) for the coherence of
velocity fluctuations,

• The exponential decay in coherence is observed for the inertial scales, i.e. for frequencies
greater than the integral frequency f > fI .

• The characteristic scales of length and frequency associated with the decay of coherence
of velocity fluctuations belonging to the inertial scales in turbulence are those of the
scales containing most energy, i.e., integral scales. This strongly resembles the form de-
rived analytically in eqn.(III.20) and shows that indeed the sweeping effect is observed
when studying coherence. This needs further emphasis since the form obtained exper-
imentally has an additional term with only spatial decay (e−r/lI ). Eq.(III.26) when
written in terms of the integral length scale and the RMS of the velocity fluctuations
has the form,

C(r, f) = exp
[
−
(
r

lI

)
︸ ︷︷ ︸

integral scales

−
(
crf

u′rms

)
︸ ︷︷ ︸

inertial scales

]

In the theoretical analysis given at the beginning of this chapter where we modeled
the coherence for the inertial scales due to the sweeping effect, the spatial dependence
of the velocity fluctuations at the integral scales was neglected. This would be the
case only when r � lI in which case we obtain the form of coherence that was derived
analytically. The part of the decay from C0 = exp

[
−
(
r
lI

)]
would likely come from the

spatial dependence of the integral scales whose correlation would decay exponentially in
space. If we consider only the sweeping of the inertial scales, it would be characterized
by,

C(r, f)
C0(r) = exp

[
−
(
crf

u′rms

)]

• For frequencies smaller than the integral frequency f < fI , we observe that the co-
herence deviates from decaying exponentially. This behaviour is not predicted by our
analytical model. So, where does the low frequency behaviour of coherence come from?
As we observed in the energy spectrum of velocity fluctuations in fig.III.8a, the low
frequency behaviour with E(f) ∝ f−0.6 possibly comes from the vorticity filaments.
This suggests that the behaviour of the coherence for frequencies smaller than the in-
tegral frequency f < fI likely arises from the sweeping of the vorticity filaments by the
energy containing integral scales.

The experimentally obtained values of integral scales and those associated with the decay of
coherence are given in table III.2.
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L(cm)
23 44 55 62 80

u′rms(m/s) 0.46 0.23 0.15 0.16 0.16
lI(cm) 1.42 2.11 2.19 3.73 3.62
fI(Hz) 32.4 11.1 6.9 4.3 4.4

fcross(Hz) 22.2 12.7 8 3.3 5.3
r†(cm) 1.29 2.26 2.07 3.9 3.68
f †(Hz) 11.2 3.8 3.2 1.8 1.9

Table III.2: Values of the u′rms, the integral scales (lI , fI), the cross-over frequency (fcross)
and the scales corresponding to the decay of coherence (r†, f †) for different values of flow
configuration as the distance between the walls is changed (L).
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III.4 Experimental setup II
The sketch of the second experimental setup is shown in fig.III.16. Turbulent flow is generated
in a cubical volume of size 15 cm × 15 cm × 15 cm. The flow is forced using eight helices,
four each of left and right chirality. The helices are attached to four axes, each having two
helices of opposite chirality, and oriented along y-axis. Two adjacent axes are separated by
a distance of 5 cm. Each of the axes is connected to a motor which rotates the helices in
clockwise direction thus driving a flow in the cubical volume. For measurement of velocity,
we use the technique of Particle Image Velocimetry (PIV) and seed the flow with reflective
particles. A laser sheet in the x-y mid-plane is generated using an optical setup, the light
of which is reflected by the particles seeded in the flow. The motion of the seeded particles
is tracked using a high-speed camera oriented perpendicular to the laser sheet. Using this
technique we obtain two components of the flow (ux and uy) in the plane of laser sheet
(2D-2C) shown in fig.III.17a.

x

y

z

High-speed
camera

Laser sheet
plane

connected to
motors

Fig. III.16 Sketch of the experimental setup. The laser sheet is in the x-y plane
and camera is oriented along the z-direction. L (for left) and R (for right) denote
the chirality of the helices.
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x

y

(a)

x

z

(b)

Fig. III.17 (a) Front view sketch of the measurement plane. It lies in the midplane
along z-direction and located in the region between the helices. (b) Top view sketch
of the midplane along y-direction. Arrows indicate the geometry of the mean flow.
The stagnation points have been marked in red.

Figures III.17a and III.17b sketch the mean flow in the midplanes along z-axis and y-axis
respectively. In fig.III.17b, the cells indicating mean flow around the helices will not be
rectangular and have been exaggerated to show the stagnation points. We observe that the
flow is similar to Roberts flow (fig.III.5) except for two differences. First, all the vortices
are co-rotating and the midplane along y-axis has no axial flow but instead a radial flow.
Second, this results in a flow having a mean circulation having the same sense as the rotation
of the helices. The reason for choosing this flow is that we expect the integral length scale to
be of the order of either the size of the helix or the distance between the axes of the helices
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both of which are smaller than the size of the experimental volume. Similar to the previous
experiment, this should allow us to investigate the behaviour of coherence at separation
lengths larger than the integral length scale.

III.4.1 Forcing mechanism: Helices and motors
Fig.III.18 shows one of the four axes which are used for forcing the turbulent flow. Each of
the axes is attached with two helices. The diameter of the helix is 25 mm, the length of the
helix is 30 mm, the diameter of the axis is 7 mm and the maximum distance between the
blades of the helix is 7 mm. Each helix has eight blades and the two helices have opposite
chirality.

The helices and the axes are fabricated using UV polymerizing 3D printing technique in
the 3D printing and fabrication facility of the department. The resin used was Nano Clear
(Lumi Industries) which has a refractive index RI ≈ 1.52.

25 mm 7 mm

7 mm

30 mm

Fig. III.18 Image shows one of the four axes each one of which is attached with
two helices of opposing chirality.

The axes are rotated using four brushless DC motors from MDP-MAXON (model EC-
i40HT ) with the rotation rate Ω ranging from of 0-3200 rpm. Each of the motors is fitted
with Hall sensors (for position of the axes) and optical encoders (for the rotation rates of
the axes) along with feedback loop controller (model ESCON 70/10 ) with access to both
instantaneous rotation rates and torques on the motors.
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III.4.2 Working fluid and its properties

The working fluid in our experiment is a mixture of anise oil and mineral oil (Alfa Aesar
Nujol light oil). The purpose of this specific mixture is to match the refractive indices of
the working fluid with that of the material of the forcing structure (helices and axes). Since
the refractive index of the forcing structure material (RI ≈ 1.52) lies in between that of
mineral oil (RI ≈ 1.461) and anise oil (RI ≈ 1.556), it should be possible to match the
refractive indices with a mixture of the two oils. The reason for working with a fluid where
the refractive indices of the fluid and forcing structure are matched is that it allows us to
obtain the velocity field in the flow using optical techniques in any region of the flow without
having to worry about the obstruction to the optical technique from the forcing structure.
Though numerous empirical relations exist in literature for estimating the refractive index of
a binary mixture, we use the simplest of the empirical relations proposed by Arago and Biot
[97] for a rough estimation of the refractive index of our mixture. Arago and Biot proposed
an empirical relation where the refractive index of a mixture is the sum of the refractive
indices of the components times their volume fraction. If we denote the volume fraction of
the mineral oil by φmineral which is defined as

φmineral =
(
Volume of mineral oil
Volume of mixture

)
× 100

Then to obtain a mixture with refractive index RI = 1.52, we would need a mixture with
φmineral ≈ 38% and φanise = 1− φmineral ≈ 62%. Whether this empirical relation is correct
and to what degree is not an issue since we match the refractive indices of the mixture and
the forcing structure experimentally. The procedure for determining the volume fraction
that matches the refractive indices of the mixture and the forcing structure is as follows,

• We pass a laser beam through the center of the axis of the helix and rotate the helix
with some rotation rate Ω (the exact value of the rotation rate is irrelevant to the
procedure).

• Owing to the hexagonal shape of the axis, when the refractive indices of the mixture
and the axis are not matched the transmitted beam would be deflected by a maximum
distance ‘d’ while remaining parallel to the incident laser beam.

• For two configurations while the helix rotates, the deflection would be zero; one when
the beam is incident on any of the vertices of the hexagon and second when it is exactly
perpendicular to the face of the hexagonal axis it is incident upon.

• The maximum distance of deflection ‘d’ would be a function of the difference in the
refractive indices of the axis and that of mixture, i.e., the mismatch between the two
refractive indices.

• We change the volume fraction of the two components of the mixture (anise oil and
mineral oil) and obtain the exact volume fraction at which the distance of deflection is
roughly zero.
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Fig. III.19 (a) Sketch showing the incident beam being deflected by a distance ‘d’
by the rotating hexagonal axis. When the incident beam is perpendicular to the
faces of the axis or when it falls on the vertices of the hexagonal axis, it is not
deflected. (b) Plot showing the maximum distance of deflection ‘d’ of the incident
laser beam versus the volume fraction of mineral oil φmineral. The volume fraction of
mineral oil at which we obtain matching of refractive indices is denoted by φcmineral.



112 Chapter III. Coherence of velocity fluctuations in turbulent flows

The above mentioned procedure is shown in the sketch III.19a. The maximum distance that
the incident laser beam is deflected due to the mismatch between the refractive indices of the
mixture and the axis is shown in fig.III.19b as a function of the volume fraction of mineral
oil in the mixture. The exact volume fraction of the two fluids for matching the refractive
indices is found to be a mixture of 62% anise oil and 38% mineral oil (as indicated by φcmineral
in fig.III.19b). The volume fractions of the mineral oil and anise oil evaluated experimentally
for matching the refractive indices of the mixture and the forcing structure are close to the
rough estimation made using the Arago-Biot empirical relation. Fig.III.20 shows images of
the helix and the axis taken in air and in the mixture after matching the refractive indices
of the mixture and the forcing structure. We observe that, except for the sharp edges of
the helix and the region where the axis and helix is glued together, the forcing structure
becomes essentially transparent to light7. The techniques of fabricating transparent plastics
using 3D printing are quite recent [98] and its application to studying visualization of flows
was demonstrated by Song et al. [99].

Fig. III.20 (a) Helix and the axis of the forcing structure as pictured in air. (b)
Helix and the axis of the forcing structure as pictured in the mixture after matching
the refractive indices. (The mixture contains 62% anise oil and 38% mineral oil by
volume fraction.)

7To be precise, this would depend on the wavelength of the light. But for all our experimental purposes,
it was almost entirely transparent.
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Concerning other physical properties of the mixture, the density can be evaluated easily
since it would be a combination of the densities and volume fractions of the components of
the mixture. The viscosity of the mixture, on the other hand, needs to be experimentally
determined. We measure the viscosity of the mixture by using Ostwald’s viscometer. For
the mixture of 62% Anise oil + 38% Mineral oil, we obtain a kinematic viscosity of ν =
4.5 × 10−6 m2/s3. The physical properties of working fluid mixture and its component
fluids, anise oil and mineral oil, are given in table III.3.

Anise oil Mineral oil Mixture
(62% Anise oil + 38% Mineral oil)

ρ (kg/m3) 980 838 926
η (kg/ms) 2.4× 10−3 6.7× 10−3 4.2× 10−3

ν (m2/s) 2.5× 10−6 8× 10−6 4.5× 10−6

Refractive Index (RI) 1.556 1.461 1.52

Table III.3: Physical properties of anise oil, mineral oil and the mixture used as the working
fluid in our experiment.

III.4.3 The setup of the PIV technique
We generate a laser sheet using an optical setup which is shown in fig.III.21. It consists
of CNI solid state green laser (wavelength of 532 nm) with output power of 2.4 W, two
convex lenses, two cylindrical lenses and three mirrors. The two convex lenses, denoted by
Co1 and Co2 are in telescopic configuration and have focal lengths of f co1 = 15 cm and
f co2 = 4 cm respectively. Similarly, the two cylindrical lenses, Cy1 and Cy2, have focal
lengths f cy1 = 3 cm and f cy2 = 1 cm respectively. The lenses Co2, Cy1 and Cy2 are attached
to a translation stage. This allows us to vary the relative distances between the lenses and
thus the magnification factor. The laser beam is first passed through the two convex lenses
which gives us a circular beam of desired magnification. In the next step, we pass it through
the two cylindrical lenses by which we obtain a laser sheet of desired width. The laser sheet
thus generated is passed through the experimental volume.

The flow is seeded with Goodfellow polyamide-Nylon 12 particles which have a size of about
30 µm and a density of 1000 kg/m3 which is close to the density of our mixture. This ensures
that the particles remain suspended in the flow when in operation. They have a good chemical
resistance to hydrocarbons and thus non-reactive to our working fluid mixture.

The light reflected by the particles in the flow is imaged by a Phantom V1840 high speed
camera. The camera is equipped with a 4 megapixels sensor and can capture images at
a maximum rate of 233, 380 frames per second which is way above our requirement. The
velocity field is obtained from the images by using the freely available time-resolved particle
image velocimetry software PIVlab [100].
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Fig. III.21 (a) Photo of the optical setup. (b) Sketch of the optical setup for
generating a laser sheet.
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III.4.4 Characterization of the flow
We begin characterizing the flow by first defining the Reynolds number as,

Re = πR2Ω
30ν

where R is the radius of the helix and Ω is the rotation rate of the forcing structure in
rotations per minute (or rpm). The rotation rate is varied between Ω = 0−3200 rpm. In the
definition of the Reynolds number, the constant π/30 appears from dimensional considerations
since we decide to keep the unit of Ω in rotations per minute. We attain a maximum value
of Re ∼ 104 in our experiment for a rotation rate of Ω = 3200 rpm. Figure III.22a shows
the velocity as obtained from the PIV technique at one instant in time for a rotation rate
of Ω = 3200 rpm. The figure also outlines in red the borders of the axes of the forcing
structure. The axes are encountered by the light reflected off the particles before reaching
the camera since we are measuring in the x-y plane midway along the z-axis. As can be
seen from fig.III.22a, we are indeed able to observe the velocity field almost without any
obstruction from the axes of the helices. This is more evident when we plot the percentage
error in evaluating the velocity field which is shown in fig.III.22b for a rotation rate of
Ω = 3200 rpm. If the total samples in time for each point in space is denoted by N , the
percentage error Nerror is defined as,

Nerror =
(
δux,NaN + δuy ,NaN

2N

)
× 100

where δk,NaN stands for Kronecker delta and has a value of one when ‘k’ attains a non-
numeric value. Even with the axes having relatively higher percentage error compared to
the rest of the flow, the percentage error never exceeds 0.15 % thus quantifying the loss of
data due to refraction by the axes. Apart from the axes, the percentage error is observed to
be within 0.04 % for the rest of the flow.

We note that the error would likely increase if the light reflected off the seeding particles
has to travel through the part of the forcing structure that has helices. The sharp edges
of the helices would result in higher errors due to the stronger refraction of the light. But
for the current experimental study, our plane of measurement is close to the center of the
experimental volume and thus the light reflected off the seeding particles has to only travel
through the axis of the forcing structure.
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(a)

(b)

Fig. III.22 (a) Velocity field at an instant in time for a rotation rate of Ω =
3200 rpm. The outline of the axes of helices are outlined in red. (b) Percentage
error in the velocity field when the rotation rate is Ω = 3200 rpm. The outline of
the axes is visible with relatively higher percentage error.
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Fig.III.23 shows the field of mean and RMS of the velocity components along x and y axes
denoted by 〈ux〉, 〈uy〉, u

′rms
x and u

′rms
y respectively. For obtaining the mean and RMS of

the velocity field, the averages are evaluated over time. The red lines in the figure mark
the outlines of axes of the forcing structure and we observe that the axes do not interfere
with the measurement of the mean and RMS of velocity. Notice that the measured mean
flow resembles fig.III.17. The RMS of velocity fluctuations along the x-axis u′rmsx (and due
to symmetry along z-axis as well) is observed to be homogeneous in the region between the
axes with an error of ±0.08%. The same cannot be said for the RMS of velocity fluctuations
along y-axis, u′rmsy , which varies by about ±29% in the region between the axes. Henceforth,
the results presented are for the velocity fluctuations in the region between the axes marked
with black dashed lines in fig.III.23. Obtaining statistical quantities in this region ensures
their homogeneity along the two directions, x and z.

Fig. III.23 Mean and RMS of velocity fluctuations for Ω = 3200 rpm. From top
to bottom: 〈ux〉, 〈uy〉, u

′rms
x and u

′rms
y . Red lines mark the outlines of the axes.

Black dashed box denotes the area in which homogeneity for u′rmsx is observed.
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We begin first by characterizing the flow using one point statistical quantities. We define the
norm of the velocity as unorm =

√
u2
x + u2

y. Figure III.24 shows the RMS of the two velocity
components u′rmsx , u′rmsy and of the norm of velocity u′rmsnorm versus the rotation rate of the
motors Ω. The values are obtained after averaging the respective quantities in time and over
the region of measurement. We observe that all the three RMS quantities, u′rmsx , u′rmsy and
u
′rms
norm grow linearly with the rotation rate Ω but with different slopes. The magnitude of
u
′rms
y is higher than that of u′rmsx implying that the flow is more turbulent along the y-axis

than the x-axis. This is also seen from fig.III.23 for a rotation rate of Ω = 3200 rpm where
we observe that the flow is highly turbulent along the y-axis in the immediate vicinity of the
two axes of the forcing structure.
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Fig. III.24 The RMS of velocity along x, y axes denoted by u′rmsx (red squares),
u
′rms
y (blue circles) and the RMS of the norm of velocity u′rmsnorm (magenta diamonds)

versus the rotation rate of motors Ω. Black dashed line denote linear dependence.

At this point, we note that we can obtain the large scale scaling of the RMS of velocity
fluctuations by using dimensional analysis similar to the way we obtained scaling for different
statistical quantities in the von Kármán swirling flow. Dimensionally speaking, the current
flow that we are studying and the von Kármán swirling flow share a lot of similarities. For
example, the only experimental parameter that involves time in both flows is the rotation
rate; of the disks in the case of von Kármán swirling flow and that of the forcing structure
in the current flow denoted by Ω. In both the von Kármán swirling flow and the current
flow, the control parameter for the experiment is the rotation rate. Applying dimensional
arguments for the RMS of velocity fluctuations, we would have for the large scale scaling,
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u′rms = RΩ F

(
Re,

R

lhelix
,
R

lbox
,
R

lhh

)
Re→∞−−−−→ ∝ Ω

where F is an unknown function of the dimensionless numbers. We have denoted the radius
of the helix, the length of the helix, the size of the box and the distance between two adjacent
helices by R, lhelix, lbox and lhh respectively. We observe that as compared to the von Kármán
swirling flow, the current flow has more parameters with the dimensions of length. The linear
scaling for the RMS of velocity fluctuations with the rotation rate derived using dimensional
arguments would be valid for the components as well as the norm of the velocity. As seen
from fig.III.24, the RMS of the components and the norm of the velocity fluctuations scale
linearly with the rotation rate Ω as predicted by dimensional analysis for large scale scaling.

Fig.III.25 shows the energy spectrum of the x-component of the velocity fluctuations denoted
by Eux(f) for a rotation rate of Ω = 3200 rpm. The energy spectrum has been averaged
in space over all points in the region of measurement. At low frequencies a power-law
behaviour close to Eux(f) ∝ f−0.6 is observed albeit not as clearly as was observed for the
experiments presented earlier (see fig.II.6a and fig.III.8a). We note that the low-frequency
behaviour is not observed for the energy spectrum of the norm of velocity. As for the higher
frequencies the behaviour is unclear as the exponent of the scaling lies somewhere between
the one predicted for the Lagrangian velocity field (eqn.(III.4) with E(f) ∝ f−2) and the
one predicted for Eulerian velocity field due to sweeping effect proposed by Tennekes [17]
(eqn.(III.5) with E(f) ∝ f−5/3). Thus, from the energy spectrum, we cannot conclude either
the presence or the absence of the sweeping effect.
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Fig. III.25 The frequency energy spectrum of the x-component of velocity fluc-
tuations Eux(f) for Ω = 3200 rpm. Black dashed line denotes Eux(f) ∝ f−0.6,
black dotted dashed line denotes Eux(f) ∝ f−2 and red dashed line denotes
Eux(f) ∝ f−5/3. The integral frequency is denoted by fIx and given by eqn.(III.28).
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As was done in the case of von Kármán swirling flow in chapter II, we measure the mean
energy injection (and thus mean dissipation for a stationary flow) rate per unit mass 〈ε〉 by
measuring the power required by the motors in two sets of experiments, one with the fluid
and the other without the fluid. The difference in the power required by the motors in these
two sets of experiments gives the power injected in maintaining the turbulent flow. This
directly gives us mean energy injection rate per unit mass 〈ε〉 on dividing the power injected
in maintaining the flow by the mass of the fluid in the experiment. Fig.III.26 shows the
dependence of the mean energy injection rate per unit mass 〈ε〉 on the rotation rate Ω. A
power law behaviour with 〈ε〉 ∝ Ω3 is clearly observed. A large scale scaling of the mean
energy injection rate per unit mass with the rotation rate can be obtained from dimensional
analysis with,

〈ε〉 = R2Ω3 Feps

(
Re,

R

lhelix
,
R

lbox
,
R

lhh

)
Re→∞−−−−→ ∝ Ω3

where Feps is an unknown function of the dimensionless numbers. This prediction is in
agreement with the scaling observed experimentally.
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Fig. III.26 The mean energy injection rate per unit mass 〈ε〉 versus the rotation
rate of the motors Ω. Black dashed line denotes 〈ε〉 ∝ Ω3.
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Next, we characterize the flow using velocity correlations which are two point statistical
quantities. We define the longitudinal two-point correlation functions for the two velocity
components and the two-point correlation function for the norm of velocity as,

Γux(r) =

〈
u′x(t, x, y)u′x(t, x+ r, y)

〉
√〈

u′2x (t, x, y)
〉〈
u′2x (t, x+ r, y)

〉

Γuy(r) =

〈
u′y(t, x, y)u′y(t, x, y + r)

〉
√〈

u′2y (t, x, y)
〉〈
u′2y (t, x, y + r)

〉

Γnorm(r) =

〈
u′norm(t, x, y)u′norm(t, x+ r, y)

〉
√〈

u′2norm(t, x, y)
〉〈
u′2norm(t, x+ r, y)

〉 (III.27)

where the ensemble averaging is performed over the space variables x, y and time t. Fig.III.27
shows the longitudinal correlation functions along x and y axes and correlation function of the
norm, denoted by Γux, Γuy and Γnorm respectively. We observe that all the three correlation
functions decay exponentially with the separation length r. The characteristic length scale
of the exponential decay gives us the integral scales along x and y axes which are denoted
by lIx and lIy respectively and the integral scale of the norm denoted by lInorm.
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Fig. III.27 The longitudinal two-point correlation function along the x and y axes
and the two-point correlation function of the norm, denoted by Γux, Γuy and Γnorm
respectively and defined by eqn.(III.27). The dashed lines denote exponential decay
with characteristic length scales lIx, lIy and lInorm.
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Fig.III.28 shows the dependence of the three integral length scales lIx, lIy and lInorm on the
rotation rate of the motors Ω. We observe that the integral scales are roughly constant with
the rotation rate as was the case with von Kármán swirling flow. Similarly, we can define
the integral frequency scales fIx, fIy and fInorm using the RMS of velocity fluctuations and
the integral length scales as,

fIx = u
′rms
x

lIx

fIx =
u
′rms
y

lIy

fInorm = u
′rms
norm

lInorm
(III.28)

500 1000 1500 2000 2500 3000 3500

3

3.5

4

4.5

5

5.5

6

6.5

7

Fig. III.28 The integral length scales along x, y axes denoted by lIx, lIy and the
integral length scale of the norm of velocity denoted by lInorm versus the rotation
rate of the motors.

From fig.III.29, we observe that all the integral frequencies linearly depend on the rotation
rate of the motors Ω as expected from the behaviour of u′rms and lI . Dimensional analysis
gives linear scaling for the integral frequency with the rotation rate Ω as was the case for
the cross-over frequency which is in agreement with our observed scaling of the integral
frequencies.
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Fig. III.29 The integral frequency scale denoted by fI versus the rotation rate of
the motors whose definition is given by equation (III.28). The dashed black line
denotes a linear dependence.

From all the experimentally obtained characterization of the flow till this point, we can obtain
estimates on the order of magnitudes of the Taylor microscale λ, Kolmogorov microscale η
and the Taylor microscale based Reynolds number Reλ,

λ =
(

15ν u
2
rms

〈ε〉

)1/2

∼ O(1) mm

η =
(
ν3/〈ε〉

)1/4
∼ O(102) µm

Reλ = u′rmsλ

ν
∼ O(102)

In summary, the characteristics and scaling of the different statistical quantities of the flow
are similar to the von Kármán swirling flow. Finally, the choice of the flow suits our purpose
for studying the coherence since we observe that the integral length scales are smaller than
the size of the domain where we measure the flow by an order of magnitude. This should
allow us to study the behaviour of coherence for separation lengths larger than the integral
length scales.
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III.5 Experimental results of setup II
Unlike measurements of velocity acquired using 1D hot-wire probes, we obtain two-components
of the velocity with the PIV technique used in the current experiment (2D-2C). We can thus
define two-point measurements for either the longitudinal (uLL) or normal (uNN ) compo-
nents of the velocity as well as for its norm (unorm or speed). The longitudinal and normal
components of velocity are defined according to the separation vector ‘r’ separating the two
points in the flow as shown in fig.III.9. The statistics obtained for the norm of velocity
would be analogous to the statistics obtained by 1D hot wire probes. This enables us to
compare the results for two point statistics between the current and the previous experiment
in addition to investigating their behaviour for the velocity components.

We present the results obtained for coherence evaluated using either the longitudinal com-
ponent or the norm of the velocity component, denoted by CLL(r, f) and Cnorm(r, f) re-
spectively. We have checked experimentally and similar results are obtained for the normal
component. The definitions of the coherence for the longitudinal component and the norm
of velocity are,

CLL(r, f) =

∣∣∣∣∣
∣∣∣∣∣
∫ ∞
−∞

〈
u′x(x, t)u′x(x+ r, t+ τ)

〉
e−ifτdτ

∣∣∣∣∣
∣∣∣∣∣
2

[∫ ∞
−∞

〈
u′x(x, t)u′x(x+ 0, t+ τ)

〉
e−ifτdτ

][∫ ∞
−∞

〈
u′x(x+ r, t)u′x(x+ r, t+ τ)

〉
e−ifτdτ

]

Cnorm(r, f) =

∣∣∣∣∣
∣∣∣∣∣
∫ ∞
−∞

〈
u′norm(x, t)u′norm(x+ r, t+ τ)

〉
e−ifτdτ

∣∣∣∣∣
∣∣∣∣∣
2

[∫ ∞
−∞

〈
u′norm(x, t)u′norm(x, t+ τ)

〉
e−ifτdτ

][∫ ∞
−∞

〈
u′norm(x+ r, t)u′norm(x+ r, t+ τ)

〉
e−ifτdτ

]

where we have chosen the x-axis for the separation vector since we have better spatial
resolution along x-axis than y-axis. The averages for evaluating the coherences are performed
in space x, y and time t. Fig.III.30 shows the behaviour of the coherence for the longitudinal
component and the norm of the velocity fluctuations when the rotation rate of the motors
is Ω = 3200 rpm. We observe that the coherence decays exponentially in the frequency
range of inertial scales (f > fI) and the behaviour is similar to that observed in the previous
experiment. We observe two additional features on the behaviour of coherence,

• The coherence decays exponentially for both the longitudinal component and the norm
of the velocity fluctuations.

• The coherence decays exponentially even for frequencies smaller than the integral fre-
quency (f < fI).
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Fig. III.30 Coherence of velocity fluctuations when the rotation rate of the motors
is Ω = 3200 rpm (a) For longitudinal component, denoted by CLL. (b) For the norm,
denoted by Cnorm.
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The two observation imply that the functional form of the coherence for both the longitudinal
component and the norm of velocity at all frequencies (inertial scales as well as low frequency)
resembles eqn.(III.22) with,

CLL(r, f) = CLL0 (r)e−f/fLLc (r) (III.29)

Cnorm(r, f) = Cnorm0 (r)e−f/fnormc (r) (III.30)

In equations eqn.(III.29) and eqn.(III.30), fLLc and fnormc are the frequency scales associ-
ated with the decay of coherence of the longitudinal component and the norm of velocity
respectively. The value at zero frequency of coherence of the longitudinal component and
norm of velocity is denoted by CLL0 and Cnorm0 respectively. We recall here the conclusions
drawn from the previous experiment that the decay of coherence at zero frequency, CLL0 and
Cnorm0 , would capture the spatial dependence of the integral scales. On the other hand, the
frequency dependence,fLLc and fnormc , would capture the sweeping by the integral scales. All
of the four quantities, fLLc , fnormc , CLL0 and Cnorm0 decay with the separation length r as seen
from fig.III.30.

Fig.III.31 shows the decay of the coherence at zero frequency for the longitudinal component
and the norm of the velocity (denoted by CLL0 and Cnorm0 ) with the separation length for
Ω = 3200 rpm. We observe an exponential decay with the separation length which suggests
a functional form similar to eqn.(III.23), with,

CLL0 (r) = e−r/r
†
LL (III.31)

Cnorm0 (r) = e−r/r
†
norm (III.32)

Figure III.32 shows the dependence of frequency scale associated with the exponential decay
(denoted by fLLc and fnormc ) of coherence on the separation length for a rotation rate of the
motors Ω = 3200 rpm. It displays a power law decay with,

fLLc (r) ∝ r−1.1±0.1

fnormc (r) ∝ r−1.2±0.1
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Fig. III.31 The decay of the coherence of velocity at zero frequency (C0) with in-
creasing separation length between the two points of measurement (r) when the
rotation rate of the motors is Ω = 3200 rpm. Dashed line: corresponds to ex-
ponential decay with the length scale of the exponential decay being r†. (a) For
longitudinal component. (b) For the norm.
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Fig. III.32 The frequency scale of the exponential decay of coherence of velocity
versus the separation length between the two points of measurement (r) for a ro-
tation rate of the motors Ω = 3200 rpm. Dashed line: corresponds to fc ∝ r−1 (a)
For longitudinal component. (b) For the norm.
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We can approximate the behaviour of fLLc and fnormc by a functional form similar to equation
(III.24),

fLLc (r) = u†LL/r (III.33)

fnormc (r) = u†norm/r (III.34)

The quantities r†LL, r†norm (equations (III.31) and (III.32)) are the length scales associated
with the exponential decay of coherence at zero frequency. The quantities u†LL, u†norm (equa-
tions (III.33) and (III.34)) are velocity scales associated with the decay of the coherence with
frequency. All these four quantities would be characteristic of the turbulent flow. So, how
are these quantities related to the length and velocity scales associated with the turbulent
flow?

To answer this question, we note that equations (III.29) to (III.34) imply that an expression
similar to equation (III.25) is obtained for the coherence of the longitudinal component and
the norm of velocity fluctuations, with,

CLL(r, f) = exp
[
−
(

r

r†LL

)(
1 + f

f †LL

)]

Cnorm(r, f) = exp
[
−
(

r

r†norm

)(
1 + f

f †norm

)]

where f †LL = u†LL/r
†
LL and f †norm = u†norm/r

†
norm and would be frequencies characteristic of

the turbulent flow. Fig.III.33a shows the length scale associated with the decay of coherence
normalized by the integral length scale for the longitudinal component and the norm of
velocity. We observe that the value of characteristic length scale r† remains roughly the same
as that of the integral length scale lI up to a constant factor (denoted by c1). Fig.III.33b
shows the frequency scale associated with the decay of coherence normalized by the integral
frequency for the longitudinal component and the norm of velocity. We observe that the
orders of magnitude of fLLc and fnormc are comparable to the integral frequencies. Their
values differ from the corresponding integral frequencies by a constant factor (denoted by
c2). The constants c1 and c2 are observed to be of similar orders of magnitude for the
longitudinal component and the norm of velocity. This implies that the coherence for all
frequencies can be cast in a simple functional form,
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CLL(r, f) = exp
[
−
(
c1r

lIx

)(
1 + c2f

fIx

)]
(III.35)

Cnorm(r, f) = exp
[
−
(

c1r

lInorm

)(
1 + c2f

fInorm

)]
(III.36)

The mean values of the constant factors are found to be c1 ≈ 0.7 and c2 ≈ 3.1. To summarize
our observations for the second experiment,

• The exponential decay in coherence is observed for all frequencies and thus the func-
tional form obtained experimentally (equations (III.35) and (III.36)) is valid for inertial
scales (f > fI) as well as for low frequency behaviour of coherence (f < fI). For fre-
quencies f > fI it would indicate the effect of sweeping of the inertial scales by the
energy containing integral scales.

• The behaviour of the coherence for frequencies smaller than the integral frequency
f < fI likely arises from the sweeping of the vorticity filaments by the energy contain-
ing integral scales. Our experimental observations suggest that even the sweeping of
vorticity filaments is captured by an exponential decay in coherence.

• The exponential decay in coherence is observed for the components as well as the norm
of velocity.

• The sweeping of the inertial scales as well as that at low frequencies (possibly from the
sweeping of vorticity filaments) would be captured by normalizing with the decay of
coherence at zero frequency,

CLL(r, f)
CLL0 (r)

= exp
[
−
(
c3rf

u′rmsx

)]

Cnorm(r, f)
Cnorm0 (r) = exp

[
−
(
c3rf

u′rmsnorm

)]

and would decay both with the separation length and the frequency of the scales being
considered. The constant factor c3 = c1c2 ≈ 2.3. This resembles the behaviour of
coherence that we derived analytically and given by eqn.(III.20).
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Fig. III.33 (a) Values of r† normalized by the integral scale lI . Red squares:
Longitudinal component of velocity fluctuations. Blue circles: Fluctuations of the
norm of velocity. Dashed line corresponds to a value of 1/c1 ≈ 1.4. (b) Values
of f † normalized by the integral frequency fI = u′rms/lI . Red squares: Longitudi-
nal component of velocity fluctuations. Blue circles: Fluctuations of the norm of
velocity. Dashed line corresponds to a value of 1/c2 ≈ 0.32.
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III.6 Conclusion
In this chapter we have studied the behaviour of coherence of velocity in a turbulent flow
both analytically and experimentally. We can conclude our investigation into coherence as
follows,

• Coherence is a quantity measured at two points in a turbulent flow and depending on
both space and time. Our experiments show that it has a reproducible behaviour as
evidenced for two different experiments. The results are observed to be independent of
the experimental techniques where one experimental technique offered better temporal
resolution while the other offered better spatial resolution.

• Single point as well as two-point spatio-temporal measurements in studying the dy-
namics of inertial scales would be affected by the effect of their sweeping by the larger,
energetic integral scales.

• Energy spectrum in frequency evaluated at one point captures the effect of sweeping
by the integral scales as well as a mean flow if present. The quantity of coherence
captures only the effect of sweeping by the energy containing integral scales.

• For the inertial scales, f > fI , magnitude squared coherence decays exponentially for
both the components and the norm of velocity and has the functional form,

C(r, f) = exp
[
−
(
c1r

lI

)
−
(
c3rf

u′rms

)]

where the constants observed to be c1 ∼ O(1) and c3 ∼ O(1) for both the flows that
we studied. The first part on the right hand side

(
exp[−c1r/lI]

)
is owing to the spatial

dependence of the velocity belonging to the integral scales and would be negligible
for r � lI . The second part on the right hand side

(
exp[−c3rf/u′

rms]
)
is due to the

sweeping of smaller scales by the integral scales and is in agreement with the functional
form derived analytically (eqn.(III.20)).

• The low frequency behaviour of coherence (f < fI) possibly comes from the sweeping
of the vorticity filaments by the integral scales. Its behaviour is inconclusive from
our two experiments. In one experiment, the behaviour of coherence deviates from an
exponential decay for low frequencies while in the other experiment it is observed to
decay exponentially even at low frequencies.

Our theoretical and experimental work suggests that the characteristics of the sweeping of
the inertial scales can be understood by studying the quantity of coherence normalized by
its value at zero frequency. It has the form,

C(r, f)
C0(r) = exp

[
− c3

(
rf

u′rms

)]

where c is an experimental constant. We can also obtain this form of the behaviour of the
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coherence for the inertial scales on qualitative arguments. If we are measuring the velocity
fluctuations at two points in a turbulent flow separated by a distance r, the average time
that a velocity fluctuation belonging to the inertial scales will take to get advected by a
distance r would be given by,

τadv ∼
r

u′rms

There would be a second timescale associated with the measurement of the coherence which
would be the correlation between velocity fluctuations measured at points separated not only
by a distance r but also temporally by,

τcorr ∼
1
f

This simple qualitative analysis shows that,

C(r, f)
C0(r) ∼ F

(
τadv
τcorr

)
∼ F

(
rf

u′rms

)
(III.37)

where F is some unknown function. Now, if the behaviour of the decay in C/C0 is scale
invariant which would be the case for inertial scales in homogeneous isotropic turbulence,
the function F would have the property,

Fn(x) = F (nx)
F (0) = 1
F (x) x→∞−−−→= 0 (III.38)

Equations (III.37) and (III.38) would then imply that,

C(r, f)
C0(r) = exp

[
− c3

(
rf

u′rms

)]

which is exactly what we have observed experimentally. This resembles our observations
without the dependence of the coherence at zero-frequency. As a concluding remark, in
the experiments that were performed by Davenport et al. [93], the authors did not observe
any decay in space corresponding to our experimental observation of coherence decaying
exponentially at zero frequency. This is likely due to the fact that in the case of experiments
performed in open wind farms the integral scale is associated with the atmospheric turbulent
flow is very large compared to the distances between the points of measurement, in which
case,

C0(r) = e
−
(
r
lI

)
lI→∞−−−−→ 1
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Chapter IV

Acoustic scattering by turbulent flows

«J’écris, mais que sont les mots en définitive? Quelques éraflures sur une
surface blanche et lisse. Je n’éprouve plus le besoin de garder une trace.»
“I write, but what are the final words? Some scratches on a smooth white
surface. I no longer feel the need to keep track.”[2]

Dimanche 19 octobre

Lighthill [101, 102] in his two seminal articles first studied the problem of sound generated
aerodynamically (also called vortex sound) as intrinsic to an unsteady, inviscid incompressible
flow (fig.IV.1a). This was different from the earlier studies on sound generated in flows which
were attributed to fluctuating boundary conditions, body forces or mass sources [103]. This
gave a mathematically rigorous basis to various physical phenomena like sound generated
by storms in the atmosphere [104, 105], subsonic jets [106] and by the flight of an owl
[107]. Lighthill showed that the incompressible flow acts as a field of quadrupole sources in
generating sound unlike sound generated by moving boundaries which either act as monopoles
or dipoles.

This phenomenon of unsteady flow generating sound can be further extended to probe tur-
bulent flows using acoustic waves and their scattering by the flow. The earliest of studies on
sound-flow interaction was presented by Rayleigh [108] who treated the problem of refraction
of sound waves by flows. Subsequent work by Obukhov [109], Blokhintzev [110], Kraichnan
[111] and others led to further development in this field and the study of sound scattering
due to velocity gradients in the flow. Fabrikant et al. [112] and Lund et al. [113] related
the scattered acoustic field with the vorticity field in the flow (instead of velocity gradients)
and gave compact formulae in the far-field limit under the approximations of Born and low
Mach number of the flow. Experimental studies and the verification of the theory was carried
out consequently on laminar as well as turbulent flows and was also used in the study of
vorticity filaments ([114, 63, 60, 115, 116, 117, 118, 119] and references cited therein). It
was first noted by Chu et al. [120] that the governing equations can be decomposed into
coupled equations for the three hydrodynamic modes of vorticity, sound and entropy. Under

135
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the framework of asymptotic expansion, they obtained the equations of these three modes
with the non-linear coupling deducible from the uncoupled equations. Accounting for the
vorticity-sound interaction results in the scattering of sound due to vorticity inhomogeneities
in the flow whereas accounting for the entropy-sound interaction results in the scattering of
sound due to temperature inhomogeneities in the flow. The formulae for scattering of sound
due to temperature inhomogeneities were given by Tatarskii [121] and Chernov [122]. Ex-
perimental studies performed on buoyancy driven flows [123, 124, 125, 126] and on weakly
heated jet [127] validated the analytical results.

(a)

(b)

Fig. IV.1 (a) Sequence of images shows the generation of tornado in Kansas in
2016. Tornadoes have strong vorticity concentrated in the unsteady flow at the core
thus generating sound [128]. (b) Illustration showing star scintillation or twinkling
which occurs due to scattering of light by turbulent atmosphere in LOS propagation
[129].
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Apart from studying the scattered acoustic field due to vorticity and temperature inhomo-
geneities in the flow, there are two other effects which are equally if not more important due
to their physical implications. As Tatarskii [121] notes, the scattering due to turbulent flow
also results in fluctuations of the amplitude and phase of the incoming sound wave in the
particular case of Line-Of-Sight (LOS) propagation, i.e., when the scattering angle is zero.
This has practical use for example in underwater ultrasound transmission. This effect is not
restricted to only acoustic waves but can also be extended to electromagnetic waves and is
important, as an example, for optical ground based telescopes. The light reaching earth from
the stars can be considered to be in LOS configuration. The fluctuations in its amplitude
and phase due to atmospheric turbulence is the reason for the twinkling of stars (also known
as star scintillation) seen by an observer on earth [130] (fig.IV.1b). Finally, as noted by Lund
[18], the effect of multiple scattering of acoustic waves due to the inhomogeneities present in
the flow result in coherent wave propagation and the change in speed of sound of the incident
acoustic wave. In this chapter we experimentally study the scattering of acoustic waves in
the LOS configureation. We ask the following two questions,

Q1A: What are the characteristics of the phase and amplitude fluctuations of the incident
acoustic wave undergoing scattering? How are they related to the properties of the
turbulent flow which scatters the incident acoustic wave? Inversely, can we comment
on the properties of the turbulent flow from the behaviour of the fluctuations in the
phase and amplitude of the incident acoustic wave?

Q1B: Can we experimentally observe the existence of a coherent wave propagating due to the
effect of multiple scattering? Can we measure the resulting change in speed of sound
which would be a direct indication of coherent wave propagation?

Two extensive references on the topics to be studied in this chapter are the books by Tatarskii
[121] and by Ostachev [131]. The presentation of this chapter is as follows,

Sec.IV.1: presents the basic theoretical background of two effects, viz., the spontaneous
generation of sound by an acoustic wave by an incompressible flow also called as vortex
sound and the scattering of an incident acoustic wave by a turbulent flow. We derive the
governing equation for the scattering of an acoustic wave by a turbulent flow in the limit of
geometrical acoustics.

Sec.IV.2: is devoted to obtaining the governing equations and understanding the behaviour
they predict for the two problems that will be experimentally studied. The two problems to
be experimentally studied are the fluctuations in amplitude and phase of an acoustic wave by
a turbulent flow and the change in the speed of sound due to the effect of multiple scattering
in a turbulent flow.

Sec.IV.3 and IV.4: present the experimental setup and the results that are obtained for
the two problems of interest to us. The relation between the parameter fluctuations of an
acoustic wave and the sweeping effect is investigated and its validity is checked experimen-
tally.

Sec.IV.5: We give a brief summary and conclusions of our analytical and experimental work
of this chapter.
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IV.1 Theoretical background

IV.1.1 Vortex sound
We have presented in chapter II the two limits of the weakly compressible flow at low Mach
numbers; the limit of incompressible flow and the limit of acoustic waves with the following
order of magnitudes of the perturbed quantities,

p′

p0
� ρ′

ρ0
∼ T ′

T0
∼ O(Ma2)� 1 =⇒ incompressible flow

p′

p0
∼ ρ′

ρ0
∼ T ′

T0
∼ O(Ma)� 1 =⇒ acoustic waves

where p0, ρ0 and T0 are the pressure, density and temperature of the fluid at rest. The
perturbations in pressure, density and temperature of the weakly compressible flow are
denoted by p′, ρ′ and T ′ respectively.

The interaction between the flows associated with the two limits results in the generation
of acoustic waves by the incompressible flow which is called vortex sound. The qualitative
understanding on the generation of vortex sound can be given as follows. Let us say we are
given an unsteady, inviscid, incompressible flow of low Mach number such that the vorticity
is bounded initially in some finite domain. Due to Kelvin’s circulation theorem [68], the
vorticity would remain bounded. Far from the bounded vorticity, the velocity would decay1
as |x|−3 whereas the pressure, temperature and density fluctuations would decay2 |x|−6. The
velocity and pressure fields in this scenario would be entirely characterized by the vorticity
field.

In the incompressible limit, the pressure fluctuations do not result in density fluctuations
to the leading order. At higher order in the Mach number, the pressure fluctuations will
result in density fluctuations, let us call them ρ′′. Note that the density fluctuations ρ′′ are
different and of higher order in Mach number than the density fluctuations associated with
the incompressible flow ρ′. If the density fluctuations ρ′′ are at the same order as the pressure
fluctuations, we would have,

p′

p0
∼ ρ′′

ρ0
� ρ′

ρ0
∼ O(Ma2)

To the leading order, the density fluctuations observed would still be the ones of ρ′/ρ0 ∼
O(Ma2) of the incompressible flow and which are independent of the pressure fluctuations.

1This can be shown by writing the equation for vector potential, which turns out to be a Poisson equation.
If the vorticity is assumed to be bounded, the Green’s function of this equation and thus the vector potential
decays inversely with the distance and the velocity field as inverse of distance cubed far from the bounded
vorticity.

2In the incompressible limit the source for temperature fluctuations is viscous dissipation which will decay
as velocity squared or equivalently as |x|−6. Owing to the linear dependence of temperature and density
fluctuations from the equation of state, density fluctuations will decay in the same manner as temperature
fluctuations.
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The density fluctuations ρ′′ driven by the pressure fluctuations of the incompressible flow
would be at orders higher than two in Mach number. These density fluctuations would
result in acoustic waves and would decay slower in space than the density fluctuations of the
incompressible flow3. Thus, in the far field limit, we would observe acoustic waves which
would be a direct result of the pressure (and thus stress) fluctuations of the incompressible
flow.

Since the background incompressible flow is completely characterized by vorticity at any
given instant, we use the two terms ‘incompressible flow’ and ‘vortical flow’ interchangeably.
The process of generation of vortex sound which has been described qualitatively in the
previous paragraph is illustrated in sketch IV.2. The characteristic scales involved depend on
the region of the flow considered. The length scales associated with the vorticity, the region
of the domain bounding vorticity and the acoustic waves are l0, lB and the wavelength λ
respectively. Since the acoustic waves are forced by the incompressible flow, the characteristic
time-scales should be the same in both the regions. This gives us along with the condition
Ma � 1,

l0 ≤ lB � λ

One point to note is that the acoustic waves observed far from the bounded vorticity is
obviously a compressible effect and the relations between the thermodynamic quantities of
pressure, density and temperature are given by the equation of state (say ideal gas law)
and the equation for isentropic process which we have assumed to be the case. Whereas,
an equation of state for incompressible flow does not involve pressure and the only role of
pressure is to ensure that the incompressible flow remains divergence-less.

Bounded vorticity

 region

Intermediate

region

Acoustic wave

region

Fig. IV.2 Sketch of weakly compressible flow with region of bounded vorticity,
intermediate region and region with acoustic waves.

3This can be seen from the Green’s function for the wave equation. In 3D, the velocity, density and
temperature field will decay as |x|−1 from the bounded vorticity in the far field limit.
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The governing equation describing the effect of vortex sound is given by eqn.(IV.1) (for its
derivation, see Appendix IV.A),

∂2ρ

∂t2
− c2∇2ρ = ρ0

∂2(uB,iuB,j)
∂xi∂xj

= ∂2Ti,j
∂xi∂xj

(IV.1)

where uB is the velocity field associated with the incompressible background flow and the
components of the tensor T are,

Tij = ρ0uB,iuB,j

This was the equation derived by Lighthill on physical grounds. Owing to the form of
the source term on the right hand side, we infer that the acoustic field generated far from
bounded vortical flow is a result of a field of quadrupoles. Ideally, a more mathematically
rigorous analysis would involve decomposition of the velocity field into a solenoidal field
(corresponding to the incompressible flow) and an irrotational field (corresponding to the
acoustic waves) and using method of matched asymptotic expansions for the two regions.
This was done by Crow [132]. After Lighthill’s work, it was shown that the source could also
be written as a field of monopoles [133] or dipoles [134, 135] involving vorticity and whose
respective monopole and dipole strength vanish since they all describe the generation of the
same acoustic field. It also showed that indeed the sound was generated by vorticity and the
sources would vanish outside the region of bounded vorticity. Lighthill [101] showed that the
density fluctuations in the vortex sound will be of O(Ma4) and thus are indeed much smaller
than the density fluctuations in the incompressible background flow which are of O(Ma2).

IV.1.2 Acoustic scattering
In the previous section we briefly introduced the spontaneous generation of vortex sound by
unsteady, inviscid vortical flow. If the bounded vortical flow has a characteristic timescale of
evolution of 1/f0, the vortex sound far from the bounded vortical flow would have a frequency
of f0.

Now, suppose, we send an acoustic wave incident on the region of bounded vorticity. Such
an incident wave would be associated with an irrotational flow. In the absence of any non-
linearities in the governing equations, the incident acoustic wave and the vortical flow would
be decoupled and would evolve independently. Accounting for non-linearities in the governing
equations would result in (1) generation of vortex sound as seen from the previous section and
which would have characteristic timescale that of the vortical flow and (2) coupling between
the incident acoustic wave and the bounded vortical flow which would result in the scattering
of the incident wave by the vortical flow and advection of the vortical flow by the incident
acoustic wave. The scattered wave would, thus, carry information about the vortical flow.
Though, separating the contribution of the vortex sound from that of the scattered wave
far from the bounded vorticity needs additional constraints on the properties of the incident
wave. This can be achieved by ensuring that the incident wave evolves on a timescale much
smaller than any timescale encountered in the vortical flow (fI � f0) and thus the vortex
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sound and scattered wave would be observed in different range of frequencies. Additionally,
if we assume the incident wave to be of low amplitude, the modifications to the vortical flow
would be negligible. Thus, a low amplitude, high frequency incident wave would allow us to
probe the vortical flow without being intrusive.

A physical interpretation of this process can be given as follows. A low-amplitude, high
frequency incident wave would see the vortical flow as essentially frozen in time. This incident
wave would generate high frequency fluctuations in the vorticity while keeping it undisturbed
on timescales associated with the flow. The fluctuating, unsteady vorticity would generate
acoustic waves4. A schematic diagram is shown in fig.IV.3. An equation for the scattered
acoustic wave can be derived (Appendix IV.B) and is given by eqn.(IV.2). The frequency
and wavevector of the incident wave are denoted by fI and kI respectively. The inverse of
the time scale associated with the vortical flow is denoted by f0 whereas the wavevector of
the scattered wave and the scattering angle are denoted by kS and θ respectively.

Bounded vorticity

 region

Scattered wave

Fig. IV.3 Sketch of plane wave incident on a region of bounded vorticity. The
scattering angle is denoted by θ.

We see that eqn.(IV.2) is a wave equation with the terms on the right hand side acting as
sources. The first source term denotes the scattering due to interaction between the velocity
field of the incident wave and the bounded vortical flow. The second source term denotes
the interaction between the density field of the incident wave and the velocity field of the
bounded vortical flow. The next two source terms are due to interaction between the density
fluctuations in the weakly compressible vortical flow and the incident wave. If we account
for temperature fluctuations in the vortical flow TB (such that 〈TB〉 = 0) we obtain the last
term with temperature fluctuations acting as source.

4This naive interpretation is not entirely correct as it neglects the interaction between the incident wave
and the flow generated by the vorticity.
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∂2ρS
∂t2

− c2∇2ρS = 2ρB
∂2(uB,iuS,j)
∂xi∂xj

+ ∂2(ρSuB,iuB,j)
∂xi∂xj

+ 2
(
∂ρB
∂xi

)
∂(uB,iuS,j + uB,juS,i)

∂xj
+ 2

(
∂2ρB
∂xi∂xj

)
uB,iuS,j + c2∇ ·

((
TB
T

)
∇ρS

)
(IV.2)

where we have assumed that the incident and scattered waves have negligible temperature
fluctuations associated with them owing to their small amplitudes. The speed of sound
‘c’ in the above equation is evaluated using the ambient values of pressure, density and
temperature. For an ideal gas, it is given by,

c =
√
γp0
ρ0

=
√
γRT0
M

The relative order of magnitudes of the source terms in eqn.(IV.2) are as follows,

ρB
∂2(uB,iuS,j)
∂xi∂xj

/
c2∇2ρS ∼

ρ0uBuS/λ2
[
1 +O(Ma2) +O

(
λ
l0

)
+ ...

]
ρ0uSc/λ2

∼ O(Ma)

∂2(ρSuB,iuB,j)
∂xi∂xj

/
c2∇2ρS ∼

ρSu2
B/λ2

[
1 +O(Ma2) +O

(
λ
l0

)
+ ...

]
ρ0uSc/λ2

∼ O(Ma2)

(
∂ρB
∂xi

)
∂(uB,iuS,j + uB,juS,i)

∂xj

/
c2∇2ρS ∼

ρBuBuS/l0λ
[
1 +O(Ma2) +O

(
λ
l0

)
+ ...

]
ρ0uSc/λ2

∼ O
(
λ

l0
Ma3

)
(
∂2ρB
∂xi∂xj

)
uB,iuS,j

/
c2∇2ρS ∼

ρBuBuS/l20
[
1 +O(Ma2) + ...

]
ρ0uSc/λ2

∼ O
((

λ

l0

)2

Ma3
)

c2∇ ·
((

TB
T

)
∇ρS

)/
c2∇2ρS ∼

ρ0uSc/λ2 × (TB/T)×
[
1 +O

(
λ
lT

)]
ρ0uSc/λ2

∼ O
(
TB
T

)
∼ O(Ma2)

where λ is the wavelength of the incident wave and l0 and lT are the characteristic length
scales associated with the velocity and temperature fluctuations in the background vortical
flow respectively. We have also used O

(
ρS
ρ0

)
∼ O

(
uS
c

)
since for acoustic waves density

fluctuations are of O(Ma). Note that till this point we have not used the assumptions of
fI � f0, amplitude of incident wave being much weaker than the background flow or the
relative magnitudes of the wavelength of the incident wave and the typical length scale of
the vortical flow.
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IV.1.3 The geometrical acoustic limit
Let us first consider the case when the background flow is considered to be comprised of only
the incompressible flow (i.e. neglecting any density fluctuations at O(Ma2) or from vortex
sound). The continuity and momentum equations at next order (where the O(1) equations
would correspond to the background flow) without any assumptions can be written as,

∂ρS
∂t︸︷︷︸
O(1)

+ (uB · ∇)ρS︸ ︷︷ ︸
O(Ma)

= − ρB∇ · uS︸ ︷︷ ︸
O(1)

∂uS
∂t︸ ︷︷ ︸
O(1)

+ (uB · ∇)uS︸ ︷︷ ︸
O(Ma)

+ (uS · ∇)uB︸ ︷︷ ︸
O
(
Ma

(
λ
l0

)) = − 1
ρB
∇pS︸ ︷︷ ︸

O(1)

+ ρS
ρ2
B

∇pB︸ ︷︷ ︸
O
(
Ma2

(
λ
l0

))
(IV.3a)

The geometrical acoustic limit is the case when,

λ

l0
� 1

λ

lT
� 1

On neglecting the terms of O
(
λ
l0

)
, we obtain,

∂ρS
∂t

+ uB · ∇ρS ≈ −ρB∇ · uS
∂uS
∂t

+ 1
ρB
∇pS ≈ −(uB · ∇)uS

(IV.4)

Combining the above two equations gives us,

∂2ρS
∂t2

− c2∇2ρS = ρB∇ ·
[
(uB · ∇)uS

]
− ∂

∂t

[
(uB · ∇)ρS

]
≈ ρB(uB · ∇)(∇ · uS)− ∂

∂t

[
(uB · ∇)ρS

]
≈ −(uB · ∇)

(
∂ρS
∂t

+ uB · ∇ρS

)
− ∂

∂t

[
(uB · ∇)ρS

]

where we have used λ/l0 � 1 for the second approximation and substituted the continuity
equation again to obtain the last equation.
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Rearranging the equation gives us,

(
∂

∂t
+ uB · ∇

)2

ρS − c2∇2ρS = 0

Accounting also for fluctuations in temperature with λ/lT � 1,

(
∂

∂t
+ uB · ∇

)2

ρS − c2∇2ρS = c2
(
TB
T

)
∇2ρS (IV.5)

The above equation can also be obtained from eqn.(IV.27) (Appendix IV.C) and as it il-
lustrates, we have considered source terms upto O(Ma2) to arrive at the eqn.(IV.5) 5. We
involve scattering due to temperature fluctuations since the background flow is incompress-
ible and thus

(
TB
T

)
∼ O(Ma2) . Tatarskii, in his monograph on waves in turbulent media

[121], uses eqn.(IV.5) for studying scattering effects.

For the experimental study to be presented in this chapter, we are in the regime of geometrical
acoustics. The results obtained therein and their theoretical understanding will be centered
about this master equation.

5Till this point, we have not used the assumption of separation in temporal scales, fI � f0, which leads
to further simplifications
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IV.2 Acoustic scattering in Line Of Sight (LOS) propagation

IV.2.1 Parameter fluctuations of incident wave in LOS propagation
We consider the case of zero scattering angle (forward scattering or LOS propagation) with
both the acoustic source and the receiver placed within the bounded flow region. The
schematic of this arrangement is shown in figure IV.4. We disregard the flow lying before
the source and after the receiver and thus consider only the region between the two.

Bounded vorticity

 region

ReceiverSource

x = 0 x = L

Fig. IV.4 Sketch of line of sight propagation.

The problem of scattering can be framed as either solving for the scattered wave (where
the total acoustic field is the sum of the incident and the scattered acoustic field) or solving
for the fluctuations in the parameters (namely amplitude and phase) of the incident wave.
The second approach is practically more relevant for LOS propagation since the effects
are intuitively easier to grasp. For example, scintillation of stars is due to fluctuations in
amplitude and phase when light travels through turbulent atmosphere of the earth.

Since the scattering angle is zero, the problem can be reduced to one dimension, along
the direction of the incident wavevector. For simplicity, assume this to be along x-axis
(kI = kI x̂). In proceeding with our analysis we will use the method developed by Rytov
[136, 137], where the complex scalar wave-field ‘ζ’ (whose real part could be components of
velocity, pressure, density or temperature) is written as,

ζ(x, t) = eΨ(x,t)

where Ψ(x, t) is the complex phase.
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For a plane wave traveling along x-direction, we have ζ(x, t) = Aeι(kx−ft). Comparing it
with the Rytov representation, we find,

<(Ψ) = log(A) = χ

=(Ψ) = kx− ft = φ

Thus the real part of the complex phase corresponds to the log-amplitude of the wave-field
(denoted by χ) and the imaginary part corresponds to the phase of the wave-field (denoted
by φ). We start by rewriting our master equation, eqn.(IV.5) in terms of pressure, which
reads,

1
c2

(
∂

∂t
+ uB · ∇

)2

pS −∇2pS =
(
TB
T

)
∇2pS

On expanding and neglecting the term (uB · ∇)(uB · ∇)pS which is of O(Ma2), we obtain,

1
c2
∂2pS
∂t2

−∇2pS = − 1
c2

(
∂uB
∂t
· ∇pS

)
︸ ︷︷ ︸

O
(
f0
fI

)
− 2
c2

(
uB · ∇

(
∂pS
∂t

))
+
(
TB
T

)
∇2pS

Further simplification is obtained if we assume the frequency of the incident wave to be much
larger than the frequency of the background incompressible flow, i.e., fI � f0. The second
term on the right hand side which is of O

(
f0
fI

)
can then be neglected. Thus we obtain the

equation,

1
c2
∂2pS
∂t2

−∇2pS = − 2
c2

(
uB · ∇

(
∂pS
∂t

))
+
(
TB
T

)
∇2pS︸ ︷︷ ︸

O(Ma2)

(IV.6)

where the first term on the right hand side is of O(Ma). The last term on the right hand
side involving temperature fluctuations would be negligible since

(
TB
T

)
∼ O(Ma2) for an

incompressible flow. Thus the final equation for the scattered wave is,

1
c2
∂2pS
∂t2

−∇2pS = − 2
c2

(
uB · ∇

(
∂pS
∂t

))
(IV.7)
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Eqn.(IV.7) can also be obtained from eqn.(IV.2) keeping source terms till O(Ma) and using
∂ρS
∂t ≈ −ρB∇ · uS from eqn.(IV.4) since, uB · ∇ρS

/
ρB∇ · uS ∼ O(Ma). Substituting Rytov

representation6 and solving the equation at O(Ma) (Appendix IV.D), we obtain,

Φ1(L, y, z, t) = kI

∫ L

0
dx n′(x, y, z, t) (IV.8)

χ1(L, y, z, t) = −1
2

∫ L

0
dx

∫ x

0
dζ
[∂2n′(ζ, y, z, t)

∂y2 + ∂2n′(ζ, y, z, t)
∂z2

]
(IV.9)

We reiterate that we have assumed the direction of propagation of the incident wave to be
along the x-axis.. The fluctuations in the refractive index, denoted by n′(x, t) are given by,

n′(x, t) = −
(
m̂ · uB
c

)
(IV.10)

The details of obtaining equations (IV.8)-(IV.10) are given in appendix IV.D. Equations
(IV.8)-(IV.10) can also be found in Tatarskii’s book [121] albeit with a slightly different
method for obtaining them. Tatarskii [121] relates the spatial dependence of the fluctuations
in phase and log-amplitude to that of the spatial structure of the turbulent flow. We, instead,
will concentrate at the temporal characteristics of the phase and log-amplitude fluctuations.

IV.2.2 Statistical properties of phase fluctuations of the incident wave
We begin with assuming that the incompressible background flow is turbulent and statisti-
cally homogeneous and isotropic. Owing to isotropy, we have 〈uB〉 = 0. We also have from
definition 〈TB〉 = 0. Using equation (IV.8), we first notice that,

〈
Φ1(t)

〉
= kI

∫ L

0
dx
〈
n′(x, t)

〉
= 0

We can write the auto-correlation function for phase fluctuations,

〈
Φ1(t)Φ1(t+ τ)

〉
= k2

I

∫ L

0
dx

∫ L

0
dy
〈
n′(x, t)n′(y, t+ τ)

〉
Now,

〈
n′(x, t)n′(y, t+ τ)

〉
=

〈
uB,x(x, t)uB,x(y, t+ τ)

〉
c2

6Note that the eqn.(IV.7) is linear in pS and thus would hold for the complex wave-field.
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Substituting it back in the equation of phase auto-correlation,

〈
Φ1(t)Φ1(t+ τ)

〉
= k2

I

c2

∫ L

0
dx

∫ L

0
dy
〈
uB,x(x, t)uB,x(y, t+ τ)

〉
Taking the temporal Fourier transform on both sides and using the Wiener-Khinchin theorem
for a stationary process (we also assume the turbulent flow to be stationary),

EΦ1(f) = 2k2
I

c2

∫ L

0
dz

∫ z

−z
dr ẼuB,x(r, f) (IV.11)

where we have used the transformation z = x+y and r = y−x. The temporal cross-spectrum
of uB,x at two points separated by a distance r is denoted by ẼuB,x and has the definition,

ẼuB,x(r, f) =
∫ +∞

−∞
dτ
〈
uB,x(0, 0)uB,x(r, τ)

〉
e−2πιfτ

Note that, the cross-spectra are, in general, complex quantities and thus carry phase in-
formation and the integrand on the right hand side of eqn.(IV.11) is a complex quantity,
whereas the energy spectrum of phase fluctuations on the left hand side of the equation is a
real quantity. The right hand hand side of eqn.(IV.11) would be real since,

∫ z

−z
dr ẼuB,x(r, f) =

∫ z

0
dr
[
ẼuB,x(r, f) + ẼuB,x(−r, f)

]
=
∫ z

0
dr
[
ẼuB,x(r, f) + Ẽ∗uB,x(r, f)

]
=⇒ Real

where the asterisk denotes complex conjugate and ẼuB,x(−r, f) = Ẽ∗uB,x(r, f) owing to the
flow being statistically homogeneous and stationary. For the mean-square of the phase
fluctuations, we get,

〈
Φ2

1

〉
=

4k2
I

〈
u2
B,x

〉
c2

∫ L

0
dz

∫ z

0
dr Γu(r)

where the spatial two point correlation of velocity fluctuations is denoted by Γu and is defined
as,

Γu(r) =

〈
uB,x(x)uB,x(x+ r)

〉
〈
u2
B,x

〉
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If the spatial correlation has an exponential form 7,

Γu(r) = exp(−|r|/l0)

If we assume l0 � L and on subsequent substitution and solving, we obtain,

Φrms
1 = 2kIu

′rms
B

√
l0L

c
(IV.12)

where u
′rms
B is the RMS of the velocity fluctuations in the turbulent flow. Note that

eqn.(IV.12) gives an estimate on the magnitude of Φrms
1 which can be experimentally vali-

dated.

IV.2.3 Statistical properties of log-amplitude fluctuations of the incident wave
The mean of the log-amplitude fluctuations would be given by,

〈
χ1(t)

〉
= −1

2

∫ L

0
dx

∫ x

0
dζ

[
∂2
〈
n′(ζ, t)

〉
∂y2 +

∂2
〈
n′(ζ, t)

〉
∂z2

]
= 0

where we have neglected any attenuation of the acoustic wave due to the turbulent flow.
Similar to phase fluctuations, for the auto-correlation of log-amplitude fluctuations we obtain,

〈
χ1(t)χ1(t+ τ)

〉
= 1

4

∫ L

0
dp

∫ L

0
dq

∫ p

0
dα

∫ q

0
dβ

〈(
∂2n′(α, t)
∂xi∂xi

)(
∂2n′(β, t+ τ)

∂xi∂xi

)〉

= 1
4

∫ L

0
dp

∫ L

0
dq

∫ p

0
dα

∫ q−α

−α
dr

〈(
∂2n′(α, t)
∂xi∂xi

)(
∂2n′(α+ r, t+ τ)

∂xi∂xi

)〉

We have used the index notation for brevity where i = 2, 3 and x2 = y and x3 = z. If the
background turbulent flow is isotropic, homogeneous and stationary, we have,

〈
∂2n′(α, t)
∂y2

∂2n′(α+ r, t+ τ)
∂y2

〉
=
〈
∂2n′(α, t)
∂z2

∂2n′(α+ r, t+ τ)
∂z2

〉
= γyy(r, τ)

〈
∂2n′(α, t)
∂y2

∂2n′(α+ r, t+ τ)
∂z2

〉
=
〈
∂2n′(α, t)
∂z2

∂2n′(α+ r, t+ τ)
∂y2

〉
= γyz(r, τ)

7In chapter III, we experimentally observe this to be the case for two different flows and this behaviour is
not far-fetched. See chapter III, figures III.10 and III.27
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On substituting the form of fluctuations in refractive index (eqn.(IV.10)), we obtain,

〈
χ1(t)χ1(t+ τ)

〉
=
( 1

2c2

) ∫ L

0
dp

∫ L

0
dq

∫ p

0
dα

∫ q−α

−α
dr
[
γ
uB,x
yy (r, τ) + γ

uB,x
yz (r, τ)

]

On taking the temporal Fourier transform on both sides, we have,

Eχ1(f) =
(

1
2c2

)∫ L

0
dp

∫ L

0
dq

∫ p

0
dα

∫ q−α

−α
dr
[
ẼyyuB,x(r, f) + ẼyzuB,x(r, f)

]
(IV.13)
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IV.2.4 Coherent wave propagation and change in speed of sound
In this section, we follow the analytical steps as laid out by Lund [18] and the details of
calculations can be found therein. On neglecting the temperature fluctuations, eqn.(IV.5)
along with eqn.(IV.3a) can be written in the form,

[
∇2 + k2

I − V (x)
]
pS = 0 (IV.14)

where V (x) = V 1(x) + V 2(x) is a differential operator with V 1(x) and V 2(x) being the
contributions from terms of O(Ma) and O(Ma2) respectively. The scattered field of velocity,
pressure and density is assumed to evolve with the incident frequency fI and is greater than
the frequency associated with the turbulent flow f0. The time dependence is thus dropped
in the ensuing analysis. The potential operator V (x) has the form,

V 1{pS} = 2ι
fI

(
∂pS
∂xj

)(
∂2uB,i
∂xj∂xi

)

V 2{pS} = − 1
c2

(
uB,iuB,j

) ∂2pS
∂xj∂xi

+ 2
f2
I

∂2

∂xj∂xi

[
uB,iuB,l

∂2pS
∂xl∂xj

]
+ k2

I∆c2pS

where the speed of sound is a function of space denoted by c̃(x) and has two contributions,

1. Owing to temperature fluctuations in the incompressible flow.

2. Owing pressure fluctuations in the incompressible flow driving density fluctuations.

The normalized change in speed of sound due to these two contributions is denoted by ∆c2(x)
and defined as,

∆c2(x) = c̃2(x)− c2

c2

Two observations can be made when studying eqn.(IV.14) as noted by Lund [18],

• The source operator V (x) is a non-linear differential operator and is a function of the
background flow and parameters of the incident wave.

• There will be two contributions to ∆c2, one from temperature fluctuations of the
incompressible turbulent flow and second from the incompressible pressure fluctuations
driving density fluctuations. The former can be shown to give a vanishing contribution
to coherent wave propagation whereas the latter does not.
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The Green’s function for eqn.(IV.14) can be evaluated using perturbation method (which
assumes that the interaction between the turbulent flow and incident wave to be weak).
As outlined in [18], coherent wave propagation is indeed analytically seen to exist with the
prediction for the change in speed of sound being,

δc

c
= −

(
B1
2k2

I

+ <(B2)
2k2

I

)

where δc is the change in the speed of sound of the medium owing to multiple scattering
and,

B1 = (γ − 4)k2
I

c2V

∫
V
d3x 〈(k̂I · uB)2〉

B2 = k2
I

2π3c2V

∫
V
d3x d3q(k̂I · q)2G̃(q)

〈(
k̂I · ũB(q− kI)

)(
k̂I · ũB(kI − q)

)〉
where the overhead tilde symbol in the above relations denote the spatial Fourier transforms.
The Fourier transform of the Green’s function of the Helmholtz operator is denoted by,

G̃(k) = 1
k2 − k2

I

Evaluation of the integral will depend on the flow and would be a tedious task. Though,
given a homogeneous and isotropic turbulent flow, the above equations show that,

δc

c
∝ −

(
u
′rms
B

c

)2

∼ −O(Ma2) (IV.15)
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IV.3 Experimental setup
The experimental setup is similar to the one described in chapter II with the von Kármán
swirling flow. The main reasons for choosing this setup is as follows,

• We need a setup with good control on the temperature of the flow volume. In our
setup of von Kármán swirling flow, this is achieved by using a cooling system which
maintains a constant temperature at the boundaries (fig.II.2).

• For studying the regime of geometrical acoustics, the integral length scale (l0) should
be much larger than the wavelength of the incident wave (λ). In the von Kármán
swirling flow, the integral scale is roughly the order of the size of the experimental
setup.

• To avoid diffraction effects, the following condition needs to be met [121],
√
λL� l0

where λ and L are the wavelength of the incident wave and the total distance travelled
by the acoustic wave between the emitter and receiver respectively. Thus, a turbulent
flow with a large integral length scale reduces errors that might arise due to diffraction
of the acoustic wave.

The sketch of the setup is shown in fig.II.2 of chapter II. For the current set of experiments, we
use two acoustic transducers ITC-9073 (which act as both emitters and receivers) having a
diameter of 12 mm and emit ultrasound at a frequency of 230 kHz (fig.IV.5). The transducers
are flushed to the cylindrical wall facing each other as shown in fig.IV.6. The transducers
are surrounded by sound absorbing foam to absorb any reflected acoustic waves not in LOS
propagation.

The emitting transducer is supplied with a sine wave signal via agilent 33220A arbitrary
waveform generator. The output of the receiving transducer is passed through an EG&G
5185 wideband preamplifier. The amplified output is then is given to SR844 lock-in amplifier
whose output is recorded through NI USB-6212 acquisition card. The lock-in amplifier
directly measures the fluctuations in amplitude and phase of the incident wave after it
travels through the bulk of the turbulent flow from the emitter to the receiver.

One cold wire temperature probe DANTEC 55P31 measures the temperature of the flow
and is connected to DANTEC Streamware Pro system. The working fluid in our experiment
is air. For additional details of the setup, refer to chapter II.
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Fig. IV.5 Image of the ultrasound transducer used in the experiment. Diameter
of the transducer is 12 mm and has emitting frequency of 230 kHz.

The length scales and the frequency scales are as follows,

l0 ∼ O(10) cm
λ ∼ O(1) mm
L ∼ O(10) cm
f0 ∼ O(10) Hz
fI = 230 kHz

and the conditions for geometrical acoustics to be valid are satisfied with,

λ

l0
≈ O(10−2)� 1

√
λL

l0
≈ O(10−1)� 1
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cold-wire temperature 

probe 

Acoustic emitter Acoustic receiver

output to pre-ampli er

input from waveform

generator

sound absorbing foam

Fig. IV.6 Sketch of the experimental setup. Top view of the midplane of the
cylindrical cavity.

We use two different geometries of disks. The details and the reasons are as follows,

• For studying log-amplitude and phase fluctuations: We use disks with curved blades
(fig.IV.7a). The curved blades result in higher turbulence intensity compared to disks
with straight blades. However, we cannot use the symmetry Ω → −Ω with curved
blades which will be used for the requirement of more accurate measurements.

• For studying the change in speed of sound: We use disks with straight blades (fig.IV.7b).
The turbulence intensity in the flow is lower than the one generated by disks with curved
blades. But on the other hand, we expect the flow to be symmetric when the rotation
of the disks is reversed. Since, we aim to measure an effect which is very small and of
O(Ma2), errors can be minimized by averaging the results over different symmetries
of the flow and thus a disk with straight blades is preferable.
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(a)

(b)

Fig. IV.7 (a) Image of the disk with curved blades used for forcing the flow in
experiments on studying log-amplitude and phase fluctuations. (b) Image of the
disk with straight blades used for experiments on studying change in speed of sound.
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IV.4 Experimental results

IV.4.1 Parameter fluctuations of incident wave in LOS propagation
Fig.IV.8a shows the time series of the phase fluctuations (Φ1) when the rotation rate of disks
is 2000 rpm. Eqn.(IV.8) shows that the phase fluctuations depend linearly on the velocity
fluctuations of the turbulent flow. As demonstrated by eqn.(IV.12) for the simple case of
the velocity correlation function decaying exponentially in space, Φrms

1 which characterizes
the total energy in the phase fluctuations follows the behaviour,

Φrms
1 ∝ u′rms

Since for the von Kármán swirling flow, u′rms ∝ Ω, we obtain,

Φrms
1 ∝ Ω

Fig.IV.8b shows the behaviour of Φrms
1 with the rotation rate. We observe that it scales

linearly with the rotation rate as predicted. We can also obtain the order of magnitude of
Φrms

1 from eqn.(IV.12). For u′rms ∼ O(1) m/s, we find that Φrms
1 ∼ O(1). This corresponds

to a rotation rate Ω = 2000 rpm and from fig.IV.8b we observe that our prediction is in
agreement with experimental observation. Fig.IV.9 shows the PDF of the phase fluctuations
normalized by its RMS value for three different rotation rates. They all coincide are are
observed to be roughly Gaussian.

Eqn.(IV.11) gives the prediction on the behaviour of the energy spectrum of the phase
fluctuations and is seen to be related to the cross-spectrum of the velocity fluctuations. We
can rewrite the formula obtained for the energy spectrum of phase fluctuations in terms of
the coherence of velocity fluctuations instead of the cross-spectrum which gives,

EΦ1(f) =
(

2k2
I

c2

)(
EuB,x(f)

)∫ L

0
dz

∫ z

−z
dr
√
CuB,x(r, f)

where CuB,x is the coherence of uB,x. When the turbulent flow is homogeneous, it has the
definition

CuB,x(r, f) =

∣∣∣ẼuB,x∣∣∣2(
EuB,x

)2 (IV.16)
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Fig. IV.8 (a) Time series of phase fluctuations for Ω = 2000rpm. (b) Scaling of
RMS of phase fluctuations Φrms

1 with the rotation rate Ω. Dashed line shows the
predicted linear scaling.
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Fig. IV.9

Fig. IV.10 PDFs of phase fluctuations normalized by its RMS value. Red squares:
1200 rpm; Blue crosses: 1600 rpm; Green circles: 2000 rpm. Dashed line: Gaussian

If the coherence of velocity fluctuations has the form (see chapter II),

CuB,x(r, f) = exp
[
− r

r†

(
1 + f

f †

)]

where r† and f † are the characteristic length and frequency scales of the decay of coherence
and would be proportional to the integral length scale (l0) and integral frequency scale (f0)
of the turbulent flow. On substituting this form of coherence in eqn.(IV.16), we obtain,

EΦ1(f) =
(

8k2
Ir
†2

c2

)(
EuB,x(f)
1 + f/f †

)[(
L

r†

)
−
(

2
1 + f/f †

)(
1− exp

(
− L(1 + f/f †)

2r†

))]
(IV.17)

which can be written as,

EΦ1(f) = A(f/f †, r†/L, kIr†)EuB,x(f) (IV.18)
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where A(f/f †, r†/L, kIr†) is the frequency dependent prefactor which comes from the coher-
ence of velocity fluctuations between two points in a turbulent flow. It would be associated
with the effect of sweeping of the inertial scales by the integral scales. In chapter II, it was
experimentally shown that the energy spectrum of velocity fluctuations has the behaviour,

EuB,x(f) ∝ f−0.6 for f < f0

whereas, we would expect the inertial range scaling of the energy spectrum in the Eulerian
framework [17],

EuB,x(f) ∝ f−5/3 for f > f0

which accounts for the effect of sweeping of the inertial scales by the integral scales. This
would give us for the energy spectra of phase fluctuations,

EΦ1(f) ∝
{
A(f/f †, r†/L, kIr†)f−0.6 when f < f0

A(f/f †, r†/L, kIr†)f−5/3 when f > f0

It is important to comment that we observed in chapter III that the exponential decay in
coherence is observed for the inertial scales (f > f0). Its validity for the scales with f < f0
was not conclusive with the coherence deviating from exponential behaviour for frequencies
smaller than the integral frequency for one experiment while for the other experiment the
decay remained exponential even for frequencies smaller than the integral frequency. Thus
the form for the energy spectrum for f < f0 might not be exactly valid.

We proceed with the assumption that the exponential decay in coherence is valid for all
frequencies including those smaller than the integral frequency and show that this agrees
with our experimental results on the energy spectrum of phase fluctuations. We recall that
r† and f † are, as of yet, undetermined and whose values we expect to be proportional to
the integral length scale and integral frequency scale of the turbulent flow. Since we are
interested in the frequency dependence, the exact value of r† does not radically affect the
frequency behaviour of energy spectrum of phase fluctuations predicted by eqn.(IV.17). In
chapter III we observed that O(r†) ∼ O(l0) and hence we proceed to evaluate the value of f †
by fixing the value of r† to that of the integral length scale l0. The procedure for evaluating
f † is as follows,

• We define a range of frequencies f̂ ranging over two decades of values centered loga-
rithmically about the value of f0.

• For one value of f̂ , we fit the spectrum with A(f/f̂)f−0.6 for f < f0 and with
A(f/f̂)f−5/3 for f > f0 and evaluate the total root-mean-square error of the two
fits (sum of the two errors). Here, the only free parameter in our fit is the constant
prefactor.

• We sweep over the range of frequencies and find the frequency for which the total root-
mean-square error is minimized. The frequency for which the total root-mean-square
error is minimized is denoted by f †.
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Fig.IV.11a shows the energy spectrum for phase fluctuations, EΦ1(f), when the rotation rate
is Ω = 2000 rpm. We observe that it has two power law behaviours, one for low frequencies
with EΦ1 ∝ A(f/f †)f−0.6 and the other for higher frequencies with EΦ1 ∝ A(f/f †)f−5/3.
Fig.IV.11b shows the values of f † obtained from the fitting process mentioned above versus
the integral frequency scale f0 as the rotation rate of the motors is varied. As we observe,
the dependence is linear with a slope close to a half. Our observations on the behaviour of
the energy spectrum of phase fluctuations suggest that the coherence is of the form,

CuB,x(r, f) = exp
[
− r

l0

(
1 + 2f

f0

)]

and valid for all frequencies. The above functional form of coherence was also found for one
of the experiments in chapter II (eqn.(III.26)). The form of the energy spectrum of the phase
fluctuations given by eqn.(IV.18) can be understood by the two terms it comprises of,

EΦ1(f) = A(f/f †, r†/L, kIr†)︸ ︷︷ ︸
I

EuB,x(f)︸ ︷︷ ︸
II

where the prefactor A (term I) is evaluated from the coherence and thus encompasses the
effect of sweeping on two-point statistics in a turbulent flow whereas the energy spectrum
of the velocity fluctuations (term II) is the effect of sweeping on one-point statistics in
a turbulent flow. If the inertial scales were being swept by a constant flow and not by
the random velocity field of the integral scales, we would have the coherence being one
everywhere in which case,

EΦ1(f) =
(

2k2
IL

2

c2

)
EuB,x(f)

and thus would be proportional to the energy spectrum of the velocity fluctuations. The
deviation of the energy spectrum of phase fluctuations from that of the velocity fluctuations
thus would be a direct result of the sweeping by the random velocity field of the integral
scales. At this point, it is imperative to discuss the behaviour of the prefactor A in some
limiting cases. From its form, we deduce that,

A(f/f0, l/L, kI l)→


C(kI l0)2

(
L
l0

)
when f � f0, l0 � L

C(kI l0)2
[(

L
l0

)
− 2

(
1− exp

(
L

2l0

))]
when f � f0

C(kI l0)2
(
L
l0

)(
1

1+f/f0

)
when l0 � L
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Fig. IV.11 (a) Energy spectrum of phase fluctuations for a rotation rate of Ω =
2000 rpm. Dashed line: corresponds to EΦ1(f) ∝ A(2f/f0)f−5/3. Dotted-dashed
line: corresponds to EΦ1(f) ∝ A(2f/f0)f−0.6. (b) The frequency scale f † obtained
from fitting versus the integral frequency f0 as the rotation rate of the motors is
varied. Dashed line denotes a slope of one half.
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where the proportionality constant C depends only on the speed of sound. What we observe
from the above limits is that the energy in the phase fluctuations is maximum when both the
conditions f � f0, l � L are met. In this limit, the energy in phase fluctuations is directly
proportional to the energy in the velocity fluctuations. This does make sense as the phase
difference would be evaluated between two points in the turbulent flow much farther than
the integral scale of the flow and at timescales much larger than the integral timescale. As
such the phase measured at these two points would be statistically independent, resulting in
the energy spectra of the phase difference being proportional to that of velocity fluctuations.
However, the energy spectrum of the phase fluctuations would be proportional to the integral
scales l0 and thus carry information about the integral scales.

The interesting case arises when either of the above two conditions are not met. When the
length travelled by the acoustic wave is much larger than the integral scale and if we consider
the phase fluctuations at frequencies not necessarily smaller than the integral frequency, the
energy in phase fluctuations is reduced by a factor of 1/(1+f/f0) as compared to the previous
case. Similarly when f � f0 but the length travelled by acoustic wave and the integral scale
are comparable, the energy in phase fluctuations is reduced as well.

The above discussion has two implications,

• Coherence between velocity at two points in a turbulent flow results in reduction of
energy in phase fluctuations encountered by an acoustic wave travelling through it.

• The agreement of the experimentally observed energy spectrum of phase fluctuations
with the analytical prediction suggests that the exponential decay in coherence is ob-
served for all frequencies. The observed behaviour of the coherence and the energy spec-
trum of the phase fluctuations for frequencies smaller than the integral scale (f < f0)
is likely owing to the sweeping of the vorticity filaments by the integral scales. For
frequencies larger than the integral scale (f > f0) it is owing to the sweeping of the
inertial scales by the integral scales.

Fig.IV.12a shows the time series of the log-amplitude fluctuations (χ1) when the rotation rate
of disks is 2000 rpm. What is immediately noticeable is that the log-amplitude fluctuations
show sharp negative peaks similar to what has been observed for pressure and temperature
fluctuations. As was the case for RMS of phase fluctuations, the RMS of log-amplitude
fluctuations scale linearly with the rotation rate. This is seen in fig.IV.12b. The existence of
negative peaks in log-amplitude fluctuations are clearly observed in its probability density
function (figure IV.13) where the PDFs have exponential tails for negative fluctuations. On
normalization with the RMS values the PDFs are observed to coincide.

In the case of phase fluctuations, we observed that the behaviour of phase fluctuations
can be related to the behaviour of coherence of velocity fluctuations in the turbulent flow.
This was evident from the agreement between the predicted and experimentally observed
behaviour of the energy spectrum of phase fluctuations. The eqn.(IV.13) obtained for the
behaviour of the energy spectrum of log-amplitude fluctuations shows that it is related to the
cross-spectrum of the second derivatives of the velocity fluctuations. This equation cannot
be further simplified without any prior knowledge about the nature of the second spatial
derivatives of the turbulent velocity fluctuations.
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Fig. IV.12 (a) Time series of log-amplitude fluctuations for Ω = 2000rpm. Note
that the signal displays sharp negative peaks. (b) Scaling of RMS of log-amplitude
fluctuations χrms1 with the rotation rate Ω. Dashed line shows the scaling as pre-
dicted from dimensional analysis.
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Fig. IV.13 PDFs of log-amplitude fluctuations normalized by their RMS values.
Red squares: 1200 rpm; Blue crosses: 1600 rpm; Green circles: 2000 rpm.

The energy spectrum of log-amplitude fluctuations which is denoted by Eχ1 shows an ex-
ponential decay with frequency as seen in fig.IV.14. We also observe a peak at the forcing
frequency which corresponds to the frequency of the disks. For the exponential behaviour
of the energy spectrum, we can define a characteristic cut-off frequency fc with the energy
spectrum having the form,

Eχ1(f) = E0
χ1e
−f/fc

Along with the behaviour of the energy spectrum of the log-amplitude fluctuations obtained
analytically (eqn.(IV.13)), we deduce that the cross-spectrum of double velocity gradient
would likely have the form8,

ẼyyuB,x(r, f) ∼ B(r/rc)e−f/fc (IV.19)

8We assume that the the cross-spectrum ẼyzuB,x would decay faster in space than ẼyyuB,x . None the less, it
would be the larger of the two that will contribute to the energy spectrum of log-amplitude fluctuations and
will have the form given by eqn.(IV.19).
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Fig. IV.14 Energy spectrum of log-amplitude fluctuations for Ω = 2000rpm.
Dashed line: corresponds to Eχ1 ∝ e−f/fc .

On taking the inverse temporal Fourier transform of eqn.(IV.19), we obtain,

γ
uB,x
yy (r, τ) ∼ B(r/rc)

(
fc

(fcτ)2 + 1

)

where the function inside brackets on the right hand size is a Lorentzian function. The length
rc corresponds to the characteristic length scale of the decay of the double velocity gradient
γ
uB,x
yy and its temporal spectrum ẼyyuB,x . We recall that,

γ
uB,x
yy (r, τ) =

〈
∂2uB,x(α, t)

∂y2
∂2uB,x(α+ r, t+ τ)

∂y2

〉

The dependence of fc with the rotation rate is plotted in figure IV.15a and shows a logarith-
mic dependence on the rotation rate. Its magnitude is comparable to that of the rotation
rate of the disks which is (Ω/60) Hz. The dependence of rc on the rotation rate cannot be
deduced, though the dependence of E0

χ1 can be deduced, where E0
χ1 is given by,

E0
χ1 =

(
1

2c2

)∫ L

0
dp

∫ L

0
dq

∫ p

0
dα

∫ q−α

−α
dr B(r/rc)

is shown in figure IV.15b and observed to scale with the rotation rate as E0
χ1 ∝ Ω1.2±0.1.
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Fig. IV.15 (a) Cut-off frequency fc corresponding to the energy spectrum of log-
amplitude fluctuations as a function of the rotation rate Ω. (b) The energy spectrum
of log-amplitude fluctuations at zero frequency denoted by E0

χ1 as a function of the
rotation rate Ω. Dashed line corresponds to E0

χ1 ∝ Ω1.2.
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Another deduction that can be made is about the form of energy spectrum of the double-
derivative of velocity fluctuations,

EyyuB,x(f) ∼ e−f/fc

since EyyuB,x(f) = ẼyyuB,x(r = 0, f) and we expect limr→0 B(r/rc) = constant. Thus the
quantity

(
∂2uB,x
∂y2

)
in a turbulent flow would likely display large temporal scales as is evident

from the form of its spectra given above. This would result in the log-amplitude fluctuations
also displaying large temporal scales.

To summarize,

• The phase fluctuations of an incident wave traveling through a turbulent flow is a direct
result of the coherence of the velocity fluctuations of the turbulent flow. We show that
if we know the behaviour of coherence of the turbulent velocity fluctuations, we can
predict the behaviour of energy spectrum of the phase fluctuations.

• The energy spectrum of the log-amplitude fluctuations is observed to decay exponen-
tially with frequency. This enables to predict some characteristics about the behaviour
of double velocity gradients in a turbulent flow

(
∂2uB,x
∂y2

)
. This quantity, which is asso-

ciated to the turbulent flow, likely displays an exponential behaviour in its frequency
energy spectrum and cross-spectrum. The temporal correlation of this quantity, if
measured, would likely display a behaviour described by a Lorentzian function. The
time signal of log-amplitude fluctuations displays negative peaks. Further analysis is
required to understand the source of these negative peaks.
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IV.4.2 Change in speed of sound due to turbulent flow

Since the change in speed of sound resulting from the turbulent flow is an O(Ma2) effect,
we need to be able to measure it with high level of precision. To wit, we measure it from the
change in mean phase difference of the acoustic wave between the emitter and receiver (∆Φ0)
in the two cases, viz., with and without turbulence. Since we are using a lock-in amplifier
which measures the phase difference between the emitter and the receiver, we have,

〈∆Φ〉 = ∆Φ0 = Φ0(x = L)− Φ0(x = 0) = 2πfL
c

Therefore,

∆Φflow
0 −∆Φno flow

0 = δΦ0 = 2πfl
c+ δc

− 2πfl
c

From which we have the relation,

δc = − c2δΦ0
2πfL+ cδΦ0

Figure IV.16a shows the PDFs of ∆Φ with and without the turbulent flow when the rotation
rate is 2000rpm. From the point of minimizing any errors, we list two important sources of
error and how we remove them from our measurements.

• When the background flow is turbulent, the mean temperature of air is increased as
compared to when the flow is absent. This is due to viscous dissipation inherent to
turbulent flow. This will result in change in speed of sound9 δcT ≈ 20.05(

√
T + ∆T −√

T ). We measure the temperature of the flow using cold-wire temperature probe and
thus the change in speed of sound resulting from viscous dissipation. Figure IV.16b
shows the contribution of viscous dissipation (δcT ) and the turbulent flow (δcturb) to
the measured change in speed of sound (δc) where δc = δcT + δcturb.

• Any asymmetry in the flow would result in erroneous measurement of the speed of
sound due to net advection (in addition to the background turbulent flow) along the
direction of propagation of the acoustic wave. To counter this effect, we measure and
average the change in speed of sound,

1. By reversing the rotation of the disks, i.e., δc(Ω)+δc(−Ω)
2 . In figure IV.16b, we see

that we do have asymmetry in the change of speed of sound for reversed rotation.

2. By interchanging the emitter and the receiver, i.e., δc(0→L)+δc(L→0)
2 . This is shown

in figure IV.17a by the two paths for the acoustic wave, 1 and 2. As shown in
figure IV.17b, indeed a small radial asymmetry in the flow leads to difference in
the speed of sound measured along the two directions.

9For air under standard conditions, if we consider it as an ideal gas, c =
√
γRT/M ≈ 20.05

√
T .
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Fig. IV.16 (a) The PDFs of difference in phase at the receiver and emitter (∆Φ)
in the absence of turbulent flow with motors turned off (blue) and in the presence
of turbulent flow with motors turned on (red). (b) Contribution of different effects
to the observed change in speed of sound. Red squares (δc): as measured from the
change in mean phase between the emitter and the receiver. Blue circles (δcT ):
contribution from the change of mean temperature owing to turbulent viscous dis-
sipation. Black squares (δcturb): contribution from the turbulent flow.
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Fig. IV.17 (a) Sketch showing the two opposite paths for the direction of propa-
gation of the incident wave. (b) The change in speed of sound obtained for the two
opposite paths 1 and 2.
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Equation (IV.15) when applied to the von Kármán flow suggests the scaling,

−
(
δc

c

)
∝ Ω2

Figure IV.18a shows the change in speed of sound as a function of the rotation rate Ω and
the predicted scaling is indeed observed. In our experiments, we observe that the turbulent
flow reduces the speed of sound and that it scales as the rotation rate squared. A maximum
reduction in speed of sound of about 0.03% with respective to the speed of sound was
obtained.

The results presented in this chapter on the change in speed of sound caused by a turbulent
flow is the first reported experimental evidence and validates the theory developed by Lund
[18]. This effect, arising due to multiple scattering by the turbulent velocity fluctuations act-
ing as acoustic scatterers is, as expected, a very small effect. We note that in our experiment
for u′rms ∼ O(1) m/s, the speed of sound reduces by δcturb ∼ O(10−1) m/s for the speed of
sound in air being roughly 345 m/s.

Figure IV.18b shows that the actual magnitude of the normalized change in speed of sound
as a function ofMa2. Our observations suggest that,

−
(
δc

c

)
≈ −10

(
u
′rms
B

c

)2

= −10
(
Ma2

)
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Fig. IV.18 (a) Normalized change in speed of sound due to turbulence −δcturb/c
as a function of the rotation rate. Dashed line corresponds to −δcturb/c ∝ Ω2. Note
that we plot the negative of the change in speed of sound, i.e., turbulence results in
a reduction of speed of sound. (b) The non-dimensional change in speed of sound
−δcturb/c versus the square of Mach number. Dashed line denotes a slope of ten.
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We can also evaluate the excess inverse attenuation length ‘α’. Consider an acoustic wave of
amplitude A travelling from an emitter to receiver which are placed apart by a distance L.
It will undergo attenuation in the presence as well as in the absence of a turbulent flow. In
the absence of a turbulent flow, we can write,

〈A〉no flow = Ae−αno flow
L
2 (IV.20)

Similarly in the presence of turbulent flow,

〈A〉flow = Ae−αflow
L
2 (IV.21)

On taking the log of eqn.(IV.20) and subtracting log of eqn.(IV.21) from it, we obtain the
excess inverse attenuation length,

α = αflow−αno flow =
(

2
L

)(
log

(
〈A〉no flow

)
− log

(
〈A〉flow

))
=
(

2
L

)(
χno flow0 −χflow0

)

Figure IV.19 shows the dependence of α on the rotation rate Ω. We observe that α ∝ Ω2.5±0.3.
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Fig. IV.19 Excess inverse attenuation length α as a function of the rotation rate
Ω. Dashed line corresponds to α ∝ Ω2.5.
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IV.5 Conclusion
The results presented in this chapter can be broadly categorized as studying the behaviour
of an acoustic wave as it travels through a turbulent flow. First part dealt with the study of
phase and log-amplitude fluctuations of the acoustic wave and the second with the change
in the speed of sound of the acoustic wave.

For the fluctuations in phase and log-amplitude, we observe,

• Phase and log-amplitude fluctuations of an acoustic wave are a result of the scattering
of the acoustic wave due to velocity fluctuations of the turbulent flow at O(Ma).

• Phase fluctuations are directly related to the coherence of the turbulent velocity fluc-
tuation and thus a result of the sweeping by the integral scales. For frequencies smaller
than the integral frequency (f < f0), they are likely a result of the sweeping of vorticity
filaments and for frequencies higher than the integral frequency (f > f0), they are a
result of the sweeping of inertial scales.

• Log-amplitude fluctuations can be shown to be related to the second spatial derivatives
of the velocity fluctuations of the turbulent flow. The second spatial derivatives of
the velocity fluctuations is a difficult quantity to measure experimentally but we can
comment on its possible behaviour by studying amplitude fluctuations of the acoustic
wave travelling through the turbulent flow.

• The energy spectrum of log-amplitude fluctuations of the acoustic wave is observed to
decay exponentially with frequency. This would imply that the energy spectrum of
second spatial derivatives of the velocity fluctuations would likely decay exponentially
with frequency.

The change in speed of sound was experimentally observed and can be summarized as follows,

• In our experiments, the turbulent flow results in a reduction of speed of sound. The
reduction in speed of sound is observed to scale as O(Ma2).

• The plausible explanation for the reduction in speed of sound is the existence of a
coherent wave due to multiple scattering as theoretically proposed by Lund [18].

• The process of multiple scattering alters the speed of sound in the turbulent medium
which is a mean field property of the turbulent medium.



176 Chapter IV. Acoustic scattering by turbulent flows

IV.AThe governing equation of vortex sound
As shown in fig.IV.2, we note that the characteristic scales involved in the incompressible
flow region (fig IV.2) are,

L ∼ l0
U ∼ u′

T ∼ l0/u′

p ∼ ρ0u
′2

and for the acoustic wave region,

L ∼ λ
U ∼ uac
T ∼ λ/c ∼ l0/u′

p ∼ ρ0uacc

where u′ stands for the solenoidal (or the incompressible) part of the velocity field and uac
stands for the irrotational (or the acoustic) part of the velocity field. Since the acoustic waves
are forced by the incompressible flow, the characteristic time-scales should be the same in
both the regions. This gives us another definition ofMa,

Ma = u′

c
= l0
λ

implying that there is indeed a separation of the domain into the regions described above.
We start with the equations for inviscid (isentropic), compressible flow,

∂ρ

∂t
+∇ · (ρu) = 0

∂ρu

∂t
+∇ · (ρuu) = −∇p

∂p

∂ρ
= c2

The equation of state would for a compressible flow under the assumption of isentropic
process gives the last equation. Here, u involves both the solenoidal and irrotational part of
the velocity field (u′, uac). Taking the time derivative of the first equation, divergence of the
second equation gives,

∂2ρ

∂t2
−∇2p = ∂2(ρuiuj)

∂xi∂xj
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Adding the term c2∇2ρ on both sides of the equation and rearranging,

∂2ρ

∂t2
− c2∇2ρ = ∂2(ρuiuj)

∂xi∂xj
+∇2(p− c2ρ) (IV.22)

Let us say that the mean temperature of the background flow is T and there exist fluctuations
in temperature field T ′(x, t). Then the speed of sound used above is the one at the mean
temperature, i.e.,

c2 = γRT

M

Though accounting for the temperature fluctuations would give the speed of sound as a
function of space and time, c̃(x, t). Thus,

c̃2(x, t) = γR(T + T ′(x, t))
M

= c2
(

1 + T ′(x, t)
T

)

Thus the last term on the right hand side of equation (IV.22) would be,

∇2(p− c2ρ) = ∇ · (∇p− c2∇ρ) = ∇ · ((c̃2 − c2)∇ρ) = ∇ ·
((

T ′

T

)
c2∇ρ

)

Thus the relative order of magnitude of the last term would be,

∇2(p− c2ρ)
c2∇2ρ

∼ O
(

(T ′/T)
(l0/λ)

)
∼ O(Ma)

since the temperature fluctuations in the incompressible background flow will be of O(Ma2)
and its effect on vortex sound would be negligible and we can assume the temperature to be
constant everywhere. Thus we obtain,

∂2ρ

∂t2
− c2∇2ρ = ∂2(ρuiuj)

∂xi∂xj

which on writing in terms of pressure gives,

1
c2
∂2p

∂t2
−∇2p = ∂2(ρuiuj)

∂xi∂xj

Since we assumeMa � 1, to leading order we can rewrite the right hand side by neglecting
terms of O(Ma2) due to density fluctuations in the incompressible background flow,
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1
c2
∂2p

∂t2
−∇2p = ρ0

∂2(uiuj)
∂xi∂xj

(IV.23)

Non-dimensionalizing the above equation with characteristic scales of the incompressible
region gives to leading order,

∇̂2p̂ = ρ0
∂2(ûiûj)
∂x̂i∂x̂j

which is the governing equation for pressure in an incompressible flow. Similarly, non-
dimensionalizing with the characteristic scales of the acoustic wave region and that uac/c�
Ma gives us,

1
c2
∂2p̂

∂t̂2
− ∇̂2p̂ = 0

which is the governing equation for pressure in an acoustic field implying the existence
of acoustic wave region far from the bounded vorticity. Since the flow in this region is
irrotational, we would obtain wave equations for density, pressure and the three components
of velocity fluctuations. We can write the equation (IV.23) in terms of density and to the
leading order on right hand side we obtain the equation (IV.1).

IV.BThe governing equation of acoustic scattering
We start with the compressible flow equations for an inviscid fluid and follow the procedure
as outlined in [18],

∂ρ

∂t
+∇ · (ρu) = 0

∂ρu

∂t
+∇ · (ρuu) = −∇p

∂p

∂ρ
= c2

(IV.24)

Let us denote the velocity and pressure fields of the low Ma number, weakly compressible
background flow with bounded vorticity by uB, pB, ρB. The weakly compressible back-
ground flow is assumed to be incompressible at the leading order. They are governed by the
compressible flow equations and the equation for temperature,

∂ρB
∂t

+∇ · (ρBuB) = 0
∂ρBuB
∂t

+∇ · (ρBuBuB) = −∇pB
∂pB
∂ρB

= c2

(IV.25)
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Similarly the fields associated with the incident wave are uI , pI , ρI and the ones associated
with the scattered wave are uS , pS , ρS . Thus,

uI = Ueι(kI ·x−fI t)

pI = Peι(kI ·x−fI t) ∼
(
ρ0|U|c

)
eι(kI ·x−fI t)

ρI = Reι(kI ·x−fI t) ∼
(ρ0|U|

c

)
eι(kI ·x−fI t)

uI = 1
ιρ0fI

∇pI = c2

ιρ0fI
∇ρI

where the last relation is obtained by using the momentum eqn.(II.15) for acoustic waves.
From our assumption that the incident wave does not modify the background flow, we have,

|uI | � |uB| � c

pI � pB

ρI � ρB

From the equations (IV.24) and (IV.25), we obtain for the next order,

∂2ρB
∂t2

−∇2pB = ∂2(ρBuB,iuB,j)
∂xi∂xj

(IV.26a)

∂2ρ

∂t2
−∇2p = ∂2(ρuiuj)

∂xi∂xj
(IV.26b)

where the first equation corresponds to the weakly compressible background flow for which
we have ρB = ρ0 + ρ′B with ρ′B

ρ0
∼ O(Ma2). Substituting ρ = ρB + ρS , p = pB + pS and

u = uB + uS , such that ρS � ρB, pS � pB and |uS | � |uB| and subtracting equation
(IV.26a) from equation (IV.26b) gives us equation (IV.27).

∂2ρS
∂t2

− c2∇2ρS = 2ρB
∂2(uB,iuS,j)
∂xi∂xj

+ ∂2(ρSuB,iuB,j)
∂xi∂xj

+ 2
(
∂ρB
∂xi

)
∂(uB,iuS,j + uB,juS,i)

∂xj
+ 2

(
∂2ρB
∂xi∂xj

)
uB,iuS,j +∇2(pS − c2ρS)

(IV.27)

If we account for temperature fluctuations in the background flow TB (such that 〈TB〉 = 0),
we obtain equation (IV.28).
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∂2ρS
∂t2

− c2∇2ρS = 2ρB
∂2(uB,iuS,j)
∂xi∂xj

+ ∂2(ρSuB,iuB,j)
∂xi∂xj

+ 2
(
∂ρB
∂xi

)
∂(uB,iuS,j + uB,juS,i)

∂xj
+ 2

(
∂2ρB
∂xi∂xj

)
uB,iuS,j + c2∇ ·

((
TB
T

)
∇ρS

)
(IV.28)

IV.CThe governing equation for the geometrical acoustic limit

In the case of wavelength being very small compared to the length scales associated with ve-
locity and temperature fluctuations and that the background flow is incompressible, equation
(IV.27) becomes,

∂2ρS
∂t2

− c2∇2ρS ≈ 2ρBuB · ∇(∇ · uS) + uB ·
(
uB · ∇(∇ρS)

)
(IV.29)

Note that we have kept terms of O(Ma) and O(Ma2). We can rewrite the last term on
right hand side as,

uB ·
(
uB · ∇(∇ρS)

)
= (uB · ∇)(uB · ∇)ρS −

(
(uB · ∇)uB

)
· ∇ρS

Thus equation (IV.29) becomes,

∂2ρS
∂t2

− c2∇2ρS ≈ 2ρBuB · ∇(∇ · uS) + (uB · ∇)(uB · ∇)ρS −
(
(uB · ∇)uB

)
· ∇ρS

Substituting in the above equation,

∇ · uS = − 1
ρB

[
∂ρS
∂t

+ uB · ∇ρS

]

(uB · ∇)uB = −
[
∂uB
∂t

+ 1
ρB
∇pB

]

We obtain,
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∂2ρS
∂t2

− c2∇2ρS = −2uB · ∇
(
∂ρS
∂t

+ uB · ∇ρS

)
+ (uB · ∇)(uB · ∇)ρS +

(
∂uB
∂t

)
· ∇ρS

+
(

1
ρB
∇pB

)
· ∇ρS︸ ︷︷ ︸

O
(
λ
l0

)

The last term is of O
(
λ
l0

)
since,

1
ρB
∇pB · ∇ρS

/
c2∇2ρS ∼

c̃2

ρB
∇ρB · ∇ρS

/
c2∇2ρS ∼

c2
[
1 + TB

T

]
ρB

∇ρB · ∇ρS
/
c2∇2ρS

∼ O
(
λ

l0

[
1 + TB

T

])

Neglecting this term and rearranging the rest, we obtain equation (IV.5).

IV.DThe governing equations for log-amplitude and phase fluctua-
tions

We begin with equation (IV.6) and proceed by substituting the Rytov representation, pS(x, t) =
eΨ(x,t), which gives,

1
c2

[
∂2Ψ
∂t2

+
(∂Ψ
∂t

)2
]
−∇2Ψ− (∇Ψ)2 =− 2

c2

[(
∂Ψ
∂t

)
(uB · ∇Ψ) + uB · ∇

(
∂Ψ
∂t

)]

+
(
TB
T

)[
∇2Ψ + (∇Ψ)2

]
(IV.30)

The terms on the right hand side of the above equation are of O(Ma). Using perturbative
expansion of the form,

Ψ = Ψ0 + (Ma)Ψ1 + (Ma2)Ψ2 + · · ·

and substituting in equation (IV.30), we obtain successive equations in orders ofMa which
are,
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O(1):

1
c2

[
∂2Ψ0
∂t2

+
(
∂Ψ0
∂t

)2]
−∇2Ψ0 − (∇Ψ0)2 = 0

where Ψ0 = χ0 + ιΦ0 such that χ0 = log(A0) and Φ0 = kIm̂ · x− ft. The unit vector along
kI is denoted by m̂. On assuming that χ0, kI and f of the incident wave as constants, it is
straightforward to check that the above equation is satisfied.

O(Ma):

1
c2

[
∂2Ψ1
∂t2

+ 2
(
∂Ψ0
∂t

)(
∂Ψ1
∂t

)]
−∇2Ψ1 − 2(∇Ψ0 · ∇Ψ1) =− 2

c2

[(
∂Ψ0
∂t

)
(uB · ∇Ψ0) + uB · ∇

(
∂Ψ0
∂t

)]

+
(
TB
T

)[
∇2Ψ0 + (∇Ψ0)2

]

On substituting Ψ0, we obtain,

1
c2
∂2Ψ1
∂t2

−∇2Ψ1 = 2ι
(
kI
c

)(
∂Ψ1
∂t

)
+ 2ιkI(m̂ · ∇Ψ1)− 2

(
k2
I

c

)
(m̂ · uB)− k2

I

(
TB
T

)

On substituting Ψ1 = χ1 + ιΦ1 and equating the real and imaginary parts,

1
c2
∂2χ1
∂t2︸ ︷︷ ︸

O
(
Ma2

(
λ
l

)2)
− ∇2χ1︸ ︷︷ ︸

O
((

λ
l

)2) = − 2
(
kI
c

)(
∂Φ1
∂t

)
︸ ︷︷ ︸

O(Ma)

− 2kI(m̂ · ∇Φ1)︸ ︷︷ ︸
O(1)

− 2
(
k2
I

c

)
(m̂ · uB)︸ ︷︷ ︸

O(1)

− k2
I

(
TB
T

)
︸ ︷︷ ︸
O(Ma)

1
c2
∂2Φ1
∂t2︸ ︷︷ ︸

O(Ma2)

− ∇2Φ1︸ ︷︷ ︸
O(1)

= 2
(
kI
c

)(
∂χ1
∂t

)
︸ ︷︷ ︸

O(Ma)

+ 2kI(m̂ · ∇χ1)︸ ︷︷ ︸
O(1)
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The order of magnitudes of the terms in the above equations imply that Φ1 ∼ O
(

1
Ma

(
λ
l

))
and χ1 ∼ O

(
1
Ma

(
λ
l

)2)
. Equating the terms of O(1), we obtain the equations,

(m̂ · ∇Φ1) = kI

[
−
(
m̂ · uB
c

)]
︸ ︷︷ ︸

n′(x, t)

kI(m̂ · ∇χ1) = −1
2∇

2Φ1 (IV.32a)

The term in brackets on the right hand side of equation (IV.32a) can be identified as the
fluctuations in the refractive index of the medium. If the temperature fluctuations are
externally induced in the flow and are of O(Ma), the fluctuations in refractive index become,

n′(x, t) =
[
−
(
m̂ · uB
c

)
− 1

2

(
TB
T

)]

This expression was also obtained in [138, 139, 140]. If we assume for simplicity that the
incident wave propagates along x-axis and that the total length of propagation is denoted
by L (figure IV.4),

∂Φ1
∂x

= −kI
(
uB,x
c

)

kI
∂χ1
∂x

= −1
2∇

2Φ1

On integrating the above equations, we get,

Φ1(L, y, z, t) = kI

∫ L

0
dx n′(x, y, z, t)

χ1(L, y, z, t) = − 1
2kI

[ ∫ L

0
dx

(
∂2Φ1
∂y2 + ∂2Φ1

∂z2

)]
− 1

2kI

[(
∂Φ1
∂x

)
(L,y,z,t)

−
(
∂Φ1
∂x

)
(0,y,z,t)

]
︸ ︷︷ ︸

n′(L,y,z,t)−n′(0,y,z,t)
2

If at x = 0 and x = L, we assume that the flow is bounded with a fixed temperature and
no-slip boundary condition, the last term on the right hand side of the second equation would
be zero. This gives us the equations (IV.8) and (IV.9).
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Chapter V

General conclusion and perspectives

«Je me demande qui il est? Un penseur, peut-être. Un philosophe? Ou peut-être
un créateur d’objets qui, par son activité même, a été incité à méditer sur la
vérité, la vie et la nature de notre captivité. Peut-être a-t-il trouvé un
compromis. Il a l’air satisfait.»
“ I wonder who he is? A thinker, perhaps. A philosopher? Or perhaps a creator
of objects who, by his very activity, has been prompted to meditate on the truth,
the life and the nature of our captivity. Maybe he found a compromise. He looks
satisfied.”[2]

Dimanche 21 septembre

In this thesis, we study three different fluctuating quantities in turbulent flows; spontaneously
generated temperature fluctuations, the spatio-temporal quantity of coherence for velocity
fluctuations and parameter fluctuations of an acoustic wave incident on a turbulent flow.

In the first part of the thesis, we study the temperature fluctuations generated by viscous
dissipation in a turbulent flow. We have devised an experiment with the von Kármán swirling
flow where the boundaries are maintained at a fixed temperature. This ensures that the
mean temperature of the flow is maintained constant. We observe that the magnitude
of temperature fluctuations (its root mean square or RMS value) and the energy spectra
do not behave according to large scale scaling obtained from dimensional arguments. We
develop a theoretical model accounting for the intermittent behaviour of the dissipation
process. On comparing the energy spectra for temperature fluctuations predicted by our
model and the ones obtained experimentally, we can determine the value of the intermittency
exponent, µ, for the dissipation process. Doing so, we obtain µ ≈ 0.4 which falls in the range
of values, 0.25 < µ < 0.5, reported by previous experiments studying dissipation. This
gives a new method of obtaining the intermittency exponent of the process of turbulent
dissipation from one point temporal measurement of temperature. Our theoretical analysis
also suggests that the total energy in the temperature fluctuations (or its RMS value) comes
from dissipative events. The experimentally observed logarithmic dependence (as opposed to
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quadratic dependence) of the RMS value of temperature fluctuations on the Reynolds number
would thus likely be a result of the intermittent behaviour of dissipation in turbulent flows.
Another feature of temperature fluctuations observed in our experiments is the presence of
large negative bursts in its time signals. We show that these bursts are correlated to the
negative bursts observed in pressure fluctuations in a turbulent flow which have been shown
to arise from vorticity filaments by other studies. We can obtain the structure of these
peaks using the method of coherent averaging and show that it matches the structure as
predicted for a weakly compressible adiabatic Burgers vortex. This suggests that though the
turbulent flow is of low Mach number and essentially incompressible, the vorticity filaments
are compressible structures as seen from their pressure and temperature profiles. One more
observation is the low-frequency power law behaviour of the energy spectrum of temperature
fluctuations. To understand the physical origin of this low-frequency behaviour, further
analysis is required. In conclusion, temperature fluctuations are observed to be entirely a
result of intermittent events (vorticity filaments and dissipation).

The second part of this thesis focuses on the coherence of velocity fluctuations in turbulent
flows. The spatio-temporal quantity of coherence measured from two point velocity signals
in a turbulent flow depends on the spatial distance between the two points of measurement
and frequency. We develop two experiments and use two different experimental techniques
to validate the reproducibility of our results. From our experimental observations, coherence
decays exponentially in space as well as frequency. Our theoretical model which is based on
the effect of sweeping by the most energetic integral scales correctly predicts this behaviour.
The sweeping effect though previously observed for one point energy spectrum of velocity
fluctuations was not observed in two point statistics of velocity fluctuations in turbulent
flows.

This brings us to the third and final part of the thesis where we study the effect of scattering
on the acoustic wave propagation in turbulent flows. We study the fluctuations in amplitude1
and phase of an acoustic wave incident on the turbulent flow. The two contributors to the
amplitude and phase fluctuations of an acoustic wave are the inhomogeneities in temperature
and velocity fluctuations in the turbulent flow. If the turbulent flow does not have any bulk
sources of heat or temperature gradients, the sole source of the temperature inhomogeneities
would be viscous dissipation which would be inherent to all turbulent flows. From the results
on the study of spontaneously generated temperature fluctuations, we understand that the
amplitude and phase fluctuations would be a result of the inhomogeneities in velocity fluc-
tuations whereas temperature inhomogeneities would play a negligible role. We analytically
show that the energy spectrum of phase fluctuations can be determined from the behaviour
of coherence of velocity fluctuations. Our analytical predictions are in agreement with the
energy spectra of phase fluctuations obtained experimentally. This implies that the most
energetic integral scales sweep the acoustic wave propagating through the turbulent flow
resulting in phase fluctuations whose behaviour is determined by the quantity of coherence.
The integral scales would also sweep the structures of vorticity filaments and is likely the
reason for low-frequency behaviour in the energy spectrum of phase fluctuations observed
in our experiments. When it comes to amplitude fluctuations, a simple analytical form
cannot be obtained without knowledge about the spatio-temporal behaviour of the second

1We actually study the quantity of log-amplitude fluctuations which for brevity we call simply as amplitude
fluctuations.
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gradients of velocity2. Experimentally, we make two observations. First, the time signal of
amplitude fluctuations displays large negative bursts akin to the ones observed in tempera-
ture and pressure fluctuations in a turbulent flow. Second, the energy spectra of amplitude
fluctuations display exponential decay with frequency. The latter observation suggests us
the one-point energy spectrum as well as the two-point cross energy spectrum of the second
gradient of velocity fluctuations would also decay exponentially with frequency. We note
that obtaining the quantity of second gradient of velocity locally is challenging experimen-
tally but nonetheless the expected exponential behaviour needs to be validated with further
experiments. Lastly, we present the first experimental evidence in measuring the change in
speed of sound due to multiple scattering in a turbulent flow and show that it follows the
expected [18] scaling with the Mach number.

V.1 Perspectives
Future studies concerning the spontaneous generation of temperature fluctuations could an-
swer the question on the source of low frequency fluctuations observed in the energy spectrum
as well as the logarithmic dependence of the RMS of temperature fluctuations. Another pos-
sibility would be to study the two point statistics of spontaneously generated temperature
fluctuations, for example the structure functions. All these questions would shed more light
on the process of viscous dissipation in turbulent flows.

The study of coherence and the analytical model developed therein suggests that our obser-
vations should also be valid for the advection of passive scalars in turbulent flows. Future
experimental work can test this hypothesis. Similar to coherence which is a two point spatio-
temporal quantity, what is the effect of sweeping on other statistical quantities? The effect
of sweeping deserves further understanding as it breaks the universality hypothesis of Kol-
mogorov’s K41 theory with the dynamics of inertial scales being affected by the integral
scales.

Finally, the fluctuations in amplitude of an acoustic wave travelling through a turbulent
flow displays sharp negative peaks which are reminiscent of the negative peaks observed
in pressure and temperature fluctuations in a turbulent flow. We have shown that for the
pressure and temperature fluctuations, the peaks are a result of the vorticity filaments.
What is the source of the negative peaks in amplitude fluctuations of an acoustic wave? Is
it possible that it is an observation of the vorticity filaments?

We hope that future experimental, analytical and numerical studies will be able to answer
some, if not all, of these questions.

2By second gradients we mean the quantity ∂2ui
∂x2
j

for any index i, j ∈ 1, 2, 3. Here ui denotes the ith

component of the velocity fluctuations.
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Appendix A

Calibration of hot-wire probes

Throughout all the experiments, we use two 1D hot-wire probes (Dantec 55P16 ). We de-
scribe the procedure for their calibration.

A.1 King’s law
The hot-wire probe consists of a sensing filament which is a tungsten wire of 5 µm diameter
and 1.25 mm long, exposed to the fluid flow. The basic working principle is that as a current
is passed through the wire the wire gets electrically heated owing to Joule dissipation. The
wire loses heat to the cold surrounding fluid by forced convection as it is exposed to the flow.
The heat transferred by the wire to the fluid via convection which is characterized by the
Nusselt number would be a function of the other dimensionless numbers associated with the
heat transfer problem. Combining empirical relations from experimental observations and
theoretical approaches, one obtains1 [141, 142, 143, 144],

V 2

R(R−R∞) = A+B
√
u

which is called the King’s law. where A and B depend on the physical properties of the
fluid and the characteristics of the wire at the ambient temperature denoted by T∞. In the
above relation, V , R and R∞ are the voltage across the filament of the hot-wire probe, the
resistance of the filament during measurement and the resistance of the filament at ambient
temperature respectively. The velocity component of the flow perpendicular to the length of
the filament is denoted by u.

When the hot-wire probes are operated in CTA (Constant Temperature Anemometry), the
resistance (and thus the temperature) of the wire is kept constant with the aid of Wheatstone
bridge. The filament of the hot-wire probe forms one arm of the Wheatstone bridge. This
gives us a simple relation between the voltage across the filament of the hot-wire probe and
the velocity of the surrounding fluid perpendicular to the length of the filament,

1This is true for small overheat ratio. The overheat ratio is defined as the ratio
(
T−T∞
T∞

)
. The temperature

of the flow and the ambient temperature are denoted by T and T∞ respectively.
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V 2 = A+B
√
u

The Dantec system employs overheat adjustment and temperature correction as a part of
hardware setup, which minimizes the effect of variation in ambient temperature on output
voltage. Care was taken that, hardware setup was performed prior to calibration and every
experiment. Thus henceforth, temperature effects would be neglected.

A.2 Setup
For calibration, we generate a flow with a high mean velocity compared to the amplitude
of fluctuating part or in other words, with a very low value of the ratio (u′/〈u〉). Here u′
denotes the RMS of the velocity fluctuations and 〈u〉 is the mean of the velocity. Thus under
the condition that (u′/〈u〉) << 1, on averaging the King’s law, we obtain:

〈V 〉2 = A+B
√
〈u〉 (A.1)

where we have also assumed that (V ′/〈V 〉) << 1 and V ′, V̄ are the RMS and mean of the
voltage respectively. The assumption on the voltage fluctuations being smaller than their
mean is guaranteed since we calibrate using a flow with u′ � 〈u〉. The purpose of calibration
is to find the values of the constants ‘A’ and ‘B’ for both the hot-wire probes.

For generating a flow with minimum possible value of u′/〈u〉, we use a small table-top wind
tunnel which involves an ebmpapst 24 V DC centrifugal blower. At the exit of the blower, we
attach a square mesh and a tunnel of roughly square cross-section. The mesh reduces u′/〈u〉
of the flow along the axis of the tunnel. We also connect a 0-10 V DC variable control input,
thus allowing us to vary the air-flow in the wind tunnel necessary to obtain calibration.

To calibrate a hot-wire probe, we need a flow with known velocity. For this purpose, we
use testo 425 which is a pre-calibrated 1D hot-wire probe which gives direct measurement
of velocity. The testo 425 probe can also directly measure the mean velocity over a time
of our choice. Thus, for every location of measurement by the hot-wire, we use testo 425
probe at exactly the same location using a translation stage to obtain the mean velocity
at that location (which is 〈u〉 in eqn.(A.1)). This, in conjunction with the mean voltage
measured by the hot-wire (which is 〈E〉 in eqn.(A.1)), gives us the constants A and B. We
also use temperature probe in our calibration for using overheat adjustment and temperature
correction of the hardware.

The setup is shown in fig.A.1. The point ‘O’ is the center of the cross-section. The velocities
are measured at 2 cm from the opening of the wind tunnel exactly in front of the point ‘O’.
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O

9.5 cm

9 cmTemperature

probe

Testo 425 and

hot-wire probe

Translation 

stage

Fig. A.1 Sketch of the calibration setup.

A.3 Results
We measure the mean flow velocity using the testo for a duration of 2 min. This duration
is enough to obtain a stationary value of the mean velocity. Fig.A.2 shows the calibration
curves (〈V 〉 versus 〈u〉) for both the probes (whose voltages are denoted by V1 and V2). By
fitting it to the functional form eqn.(A.1), we obtain,

V 2
1 = 1.744 + 0.7388

√
u

V 2
2 = 1.957 + 0.8031

√
u
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Fig. A.2 The mean voltage across the filament of hot-wire probes versus the mean
velocity perpendicular to the filament. Probe 1 (red squares) and Probe 2 (blue
circles). Black dashed and dotted dashed lines denote the fit using eqn.(A.1).
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MOTS CLÉS

Turbulence, Fluctuations, Temperature, Dissipation, Filaments de vorticité, Cohérence, Ondes acoustiques,
Fluctuations des paramètres, Diffusion multiple, Vitesse du son.

RÉSUMÉ

Dans cette thèse, nous étudions les fluctuations de vitesse et de température dans un écoulement turbulent, et leurs
implications sur la propagation d’ondes acoustiques en turbulence. La première partie est consacrée à l’étude de la
génération spontanée de fluctuations de température par un écoulement turbulent. Nous démontrons que ces fluctua-
tions de température proviennent de deux types de structures intermittentes, les filaments de vorticité et les structures
dissipatives. Dans la seconde partie, nous étudions les fluctuations spatio-temporelles de la vitesse, en utilisant la fonc-
tion de cohérence. Nous démontrons que la fonction de cohérence résulte d’un balayage des fluctuations de vitesse
dans la gamme inertielle par les fluctuations plus lentes de l’échelle intégrale. L’effet du balayage est particulièrement
intéressant pour l’étude des écoulements turbulents, car il ne rentre pas dans le cadre de la théorie K41 de Kolmogorov.
Enfin, nous étudions la propagation d’ondes acoustiques à travers un écoulement turbulent, et en particulier les fluc-
tuations de phase et d’amplitude. Nous montrons que les fluctuations de phase peuvent être déduites de la fonction
de cohérence des fluctuations de vitesse. Ces fluctuations résultent ainsi d’un effet de balayage de l’onde acoustique
par l’écoulement turbulent. Nous mesurons également la variation de la vitesse du son induite par un effet de diffusion
multiple par l’écoulement turbulent.

ABSTRACT

In this thesis, we study the velocity and temperature fluctuations in a turbulent flow and their implications on the propaga-
tion of acoustic waves in turbulence. The first part is devoted to the study of the spontaneous generation of temperature
fluctuations by a turbulent flow. We demonstrate that these temperature fluctuations originate from two types of intermit-
tent structures, vorticity filaments and dissipative structures. In the second part, we study the spatio-temporal fluctuations
of velocity, using the coherence function. We demonstrate that the coherence function results from the sweeping of the
velocity fluctuations in the inertial range by the slower fluctuations of the integral scale. The sweeping effect is particularly
interesting for the study of turbulent flows, because it does not come within the scope of Kolmogorov’s K41 theory. Finally,
we study the propagation of acoustic waves through a turbulent flow and in particular phase and amplitude fluctuations.
We show that phase fluctuations can be deduced from the coherence function of turbulent speed fluctuations. These
fluctuations thus result from a sweeping effect of the acoustic wave by the turbulent flow. We also measure the variation
in the speed of sound induced by a multiple scattering effect of the turbulent flow.

KEYWORDS

Turbulence, Fluctuations, Temperature, Dissipation, Vorticity filaments, Coherence, Sweeping, Acoustic
waves, Parameter fluctuations, Multiple scattering, Speed of sound.
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