machine learning for modeling dynamic stochastic systems : application to adaptive control on deep-brain stimulation

par Rémi Souriau

Thèse de doctorat en Mathématiques et Informatique

Sous la direction de Vincent Vigneron et de Jean Lerbet.

Le président du jury était Florence Forbes.

Le jury était composé de Vincent Vigneron, Bertrand Rivet, Ali Mansour, Aurélia Fraysse.

Les rapporteurs étaient Bertrand Rivet, Ali Mansour.

  • Titre traduit

    apprentissage automatique pour la modélisation de systèmes stochastiques dynamiques : application au contrôle adaptatif sur la stimulation cérébrale profonde


  • Résumé

    Ces dernières années ont été marquées par l'émergence d'un grand nombre de base données dans de nombreux domaines comme la médecine par exemple. La création de ces bases données a ouvert la voie à de nouvelles applications. Les propriétés des données sont parfois complexes (non linéarité, dynamique, grande dimension ou encore absence d'étiquette) et nécessite des modèles d'apprentissage performants. Parmi les modèles d'apprentissage existant, les réseaux de neurones artificiels ont connu un large succès ces dernières décennies. Le succès de ces modèles repose sur la non linéarité des neurones, l'utilisation de variables latentes et leur grande flexibilité leur permettant de s'adapter à de nombreux problèmes. Les machines de Boltzmann présentées dans cette thèse sont une famille de réseaux de neurones non supervisés. Introduite par Hinton dans les années 80, cette famille de modèle a connu un grand intérêt dans le début du 21e siècle et de nouvelles extensions sont proposées régulièrement.Cette thèse est découpée en deux parties. Une partie exploratoire sur la famille des machines de Boltzmann et une partie applicative. L'application étudiée est l'apprentissage non supervisé des signaux électroencéphalogramme intracrânien chez les rats Parkinsonien pour le contrôle des symptômes de la maladie de Parkinson.Les machines de Boltzmann ont donné naissance aux réseaux de diffusion. Il s'agit de modèles non supervisés qui reposent sur l'apprentissage d'une équation différentielle stochastique pour des données dynamiques et stochastiques. Ce réseau fait l'objet d'un développement particulier dans cette thèse et un nouvel algorithme d'apprentissage est proposé. Son utilisation est ensuite testée sur des données jouet ainsi que sur des données réelles.


  • Résumé

    The past recent years have been marked by the emergence of a large amount of database in many fields like health. The creation of many databases paves the way to new applications. Properties of data are sometimes complex (non linearity, dynamic, high dimensions) and require to perform machine learning models. Belong existing machine learning models, artificial neural network got a large success since the last decades. The success of these models lies on the non linearity behavior of neurons, the use of latent units and the flexibility of these models to adapt to many different problems. Boltzmann machines presented in this thesis are a family of generative neural networks. Introduced by Hinton in the 80's, this family have got a large interest at the beginning of the 21st century and new extensions are regularly proposed.This thesis is divided into two parts. A first part exploring Boltzmann machines and their applications. In this thesis the unsupervised learning of intracranial electroencephalogram signals on rats with Parkinson's disease for the control of the symptoms is studied.Boltzmann machines gave birth to Diffusion networks which are also generative model based on the learning of a stochastic differential equation for dynamic and stochastic data. This model is studied again in this thesis and a new training algorithm is proposed. Its use is tested on toy data as well as on real database.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Cette thèse a donné lieu à une publication

machine learning for modeling dynamic stochastic systems : application to adaptive control on deep-brain stimulation


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université d'Evry-Val d'Essonne. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.

Consulter en bibliothèque

Cette thèse a donné lieu à une publication

Informations

  • Sous le titre : machine learning for modeling dynamic stochastic systems : application to adaptive control on deep-brain stimulation
  • Détails : 1 vol. (iii-106 p.)
  • Annexes : Bibliogr. p. 99-106.
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse\u00a0?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.