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PREAMBLE
During my 4 years of PhD in the team Dynamic and Plasticity of Synthetases (DyPS), 

I have been working on the yeast Saccharomyces cerevisiae, a unicellular eukaryotic 

organism that has been extensively used as model organism. Saccharomyces cerevisiae’s 

Goffeau et al. ). A few 

years later, yeast strain libraries of deleted, overexpressed and reporter-tagged genes were 

created with the aim of characterizing the essentiality and localization of every single gene 

product (Giaever et al., 2002 Huh et al. Sopko et al., 2006). Over the years, the yeast 

became a model organism to assess many biological processes ranging from mitochondrial 

or autophagy and has proven its robustness. Even now, the yeast Saccharomyces cerevisiae 

remains the favorite organism of many biologists not only because of its powerful genetics 

but also because of the cheapness and easiness of its handling that allows screening and 

phenotyping of populations of individuals at the whole genome scale (Peter and Schacherer, 

2016). 

Like all eukaryotic cells, yeast cells possess subcellular compartments and organelles, 

tuned communication and coordination between the different compartments. This can be 

achieved by the multiple contacts between organelles formed in the cell and by vesicles that 

are transported from one compartment to another, both of them supporting the transfer 

of molecules and the transduction of signals. The mitochondria stand out as an exception 

compared to all the organelles, since they are considered as semi-autonomous and are not 

part of the endomembrane system. Nevertheless, all organelles rely on nuclear-encoded 

proteins for their correct functioning. These proteins, which are translated in the cytosol 

the composition of the mitochondrial proteome, also called mitoproteome. Over 1000 

shown to be located in more than one subcellular compartment, a phenomenon called dual-

localization (Ben-Menachem et al., 2011). Yogev and Pines proposed to name “echoforms” 

these molecules of a single protein that can have different subcellular localizations. These 

echoforms are identical or nearly identical proteins but can have completely different 
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functions depending on their localization (Yogev and Pines, 2011). 

In the DyPS research team we are particularly interested in a family of proteins called 

the aminoacyl-tRNA synthetases (aaRSs). These essential and ubiquitous enzymes have been 

extensively studied regarding their tRNA aminoacylation activity that occurs in the cytosol. 

However, many studies demonstrated that aaRSs can relocate to different subcellular 

compartments, where they either perform their “canonical” role of tRNA aminoacylation 

or participate to diverse processes beyond translation (Debard et al., 2017 Yakobov et al., 

). These relocating aaRSs can thus be considered as echoforms, since the two identical 

or nearly identical proteins can have two or more different localizations. During my PhD, 

I took interest in the mitochondrial and vacuolar localization of cytosolic aaRSs (
c
aaRSs), 

which had already been described for some 
c
aaRSs ( et al., 2012 Frechin et al ). 

However, the characterization of vacuolar and mitochondrial aaRSs’ echoforms (
vace

aaRS and 

mte
aaRS respectively) is challenging. Moreover, we particularly adhere to the idea conveyed 

at that time were not suited to discriminate the cytosolic pool of aaRSs from the discrete 

organellar echoform.

The aim of my PhD work was thus to create and develop microscopy tools, that would 

mte
- and 

vace
-aaRSs in the yeast Saccharomyces 

cerevisiae. I also aimed to characterize the mode of targeting or anchoring that the proteins 

use to localize to these particular compartments and to investigate the possible functions 

of 
vace

aaRS and particularly of the multi-aminoacyl-tRNA synthetase complex AME from the 

yeast and its individual components when localized at the vacuolar surface. 

To present this work, I mainly focus on eukaryotes and particularly on the yeast 

Saccharomyces cerevisiae

process, together with their “canonical” and “non-canonical” role and/or localization in a 

general introduction. In order to make it easier to follow and to categorize the information 

and my results, my research work will be presented into two chapters chapter I about 

the mitochondrial localization of proteins and the chapter II about the vacuolar localization 

of proteins. Each chapter contains, an introduction that provides the necessary information 

regarding the organelle of interest, a section in which I introduce the context of my work 

discussion and the perspectives. After the two chapter, the material and methods used for 



 xvii 

to co-author during my PhD as well as the poster I presented at the 27th International tRNA 

in the bibliography.
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Figure I-1: tRNA structures (inspired from Enkler, 2014 [1] and Debard, 2019 [2]) and codon-anticodon pairing. 

A. Schematic representation of the cloverleaf secondary structure and consensus sequence of tRNAs. B. 

Representation of the same tRNA in the L-shape folding. C. Interaction of the codon on the mRNA with the tRNA 

anticodon. The interaction between the first (5’) position of the anticodon (position       ) and the third position of 

the anticodon (position        ) involves wobble pairing (indicated in orange in the table). A: adenosine, U: uridine, G: 

guanosine, C: cytidine, I: inosine. 
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I. tRNA aminoacylation: a key step in eukaryotic protein synthesis

I.1. transfer RNA (tRNA)

nucleic acid and protein sequence was performed by a dedicated class of molecules ( et 

al )

RNA (tRNA), that can covalently bind amino acid (aa) in the presence of ATP and an enzyme 

preparation able to activate the aa. They hypothesized that aa-bound soluble RNA would 

be the link between amino acid activation and protein translation (Hoagland et al ). 

A few years later, the tRNAAla from yeast was sequenced and its cloverleaf-like secondary 

structure was determined. The subsequent sequencing data obtained for tRNATyr, tRNAPhe and 

tRNASer Figure I-1A). These sequencing data 

also led to the concept that the central base triplet of the stem-loop located in the middle of 

tRNA was the so-called anticodon complementary to the messenger RNA (mRNA) codon. This 

the adaptor molecules between mRNA and proteins (Fernández-Millán et al., 2016). 

I.1.1. tRNA structure

To ensure their recognition by the ribosome and elongation factors, all tRNA 

Phe and tRNAAsp 

(Figure I-1B). To form the two arms of the L-shape, the helical domains of the cloverleaf 

with the anticodon helix. A network of tertiary interactions then holds the structure together 

(Fernández-Millán et al., 2016). 

Some exceptions to this conserved shape can be found in animal mitochondria 

with tRNAs displaying a reduced size due to shorter loops in D or T arms, and in some 

cases, to complete absence of one or two arms. The most extreme case reported of a 

functional shortened tRNA is the 42 nucleotide (nt)-long mitochondrial tRNAArg of the worm 

Romanomermis culicivorax (Wende et al ). 
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I.1.2. 

In eukaryotes, transcription of tRNA genes is performed by the RNA Polymerase 

III (RNA Pol III) in the nucleus and is controlled, in response to nutrient availability and 

other environmental circumstances, by Maf1. In growth-limiting conditions Maf1 is 

dephosphorylated and imported in the nucleus to bind to RNA polymerase III and prevent 

tRNA transcription (Wichtowska et al ). Once transcribed, precursor tRNAs (pre-tRNAs) 

undergo several maturation steps. First the pre-tRNAs 5’-leader is cleaved by RNase P 

Fernández-Millán et al., 

2016). The end-processed tRNAs are then exported to the cytoplasm. Throughout the tRNA 

enzymes either bind nucleotide in the anticodon loop or residues embedded inside the tRNA 

stability. In yeast, ten tRNA families are encoded by intron-containing genes that need to 

be processed. The end-processed intron-containing tRNAs are exported to the cytoplasm 

and introns are removed by the Sen machinery that is bound to the mitochondrial outer 

membrane. The cytoplasmic Trl1 ligase then ligates the tRNA half-molecules and the 

2’-phosphotransferase Tpt1 catalyzes the transfer of 2’-phosphate from the splice junction 

to NAD+ (Wichtowska et al. ).

To test their maturity and integrity prior to export to the cytoplasm, tRNA can be 

aminoacylated inside the nucleus ( ). However, other 

routes for tRNA export from the nucleus exist, since the aminoacylation is not absolutely 

necessary for the export in S. cerevisiae and X. laevis. The evidences that tRNAs undergo 

Ala that 

revealed the presence methylated bases, dihydrouridine, ribo-thymidine, pseudouridine… To 

of inosine at this position in the tRNA would extend its decoding capacity since inosine can 
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) (Figure I-1C

anticodon loop explains why the number of tRNA species in a cell is always lower than the 61 

increase tRNA scaffold stability (Fernández-Millán et al., 2016).

I.1.3. tRNA turnover

In the yeast Saccharomyces cerevisiae

TRAMP complex and targeted for exosome degradation. During the early steps of maturation, 

defective intermediates can be polyadenylated and subsequently degraded by the exosome 

or the Rapid tRNA Decay (RTD). Unstable mature tRNAs that contain mutations or that are 

Wichtowska et al. ). 

I.1.4. tRNA non-canonical roles

Besides their function as adaptor molecules for translation of mRNAs, tRNA have 

many other roles that are not always related to protein synthesis. Indeed, retroviruses can 

hijack host tRNAs, which serve as primers for the viral genome reverse transcription. In 

bacteria, the 5’-UTR-located T-box riboswitches upon binding to uncharged tRNAs adopt 

an anti-terminator structure that allows transcription of the downstream genes. However, 

charged tRNAs cannot bind T-Boxes making these riboswitches potent aa-sensors that 

monitor the aminoacylation state of tRNAs. They usually control the expression of genes 

involved in a number of functions related to aminoacylation and the metabolism of amino 

acids (Fernández-Millán et al., 2016). 

activities and the tRNA cleavage products are called tRNA-derived fragments (tRFs). The tRFs 

are evolutionary widespread and constitute a recent and increasingly important class of small 

Fernández-Millán et al., 2016). In 

the yeast, tRNAs can be cleaved by the endonuclease Rny1 in their anticodon loop, producing 

tRNA half-molecules in certain stress conditions such as oxidative stress, stationary phase, 

heat, and methionine or nitrogen starvation. This cleavage seems to be a general response 
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and does not lead to a decrease of mature tRNA levels (Wichtowska et al. ). 

I.2. The proteinogenic amino acids

The proteinogenic amino acids are essential molecules that are the building blocks 

for protein synthesis and have a central role in general metabolism. The particularity of 

yeast cells compared to mammalian cells, is their ability to produce aa de novo, making 

them aa prototrophs. Yeast cells can thus grow on minimum media containing glucose and 

ammonium as sole source of nitrogen.

I.2.1. Biosynthesis

The aa carbon skeletons ( -keto acids) derive from the glucose catabolic pathway 

and the -amino group derives from Glu and Gln that are used for the transamination 

reactions required in the synthesis of each aa. Glu and Gln can be produced from two 

-ketoglutarate by 

the NADPH-dependent glutamate dehydrogenase (GDH1) and the synthesis of Gln from Glu 

by the glutamine synthetase (GLN1). When Gln is the sole nitrogen source, Glu is synthesized 

from -ketoglutarate by the catabolic reaction catalyzed by the NADH-dependent glutamate 

synthase (GLT1). On the other hand, when Glu is the sole nitrogen source, the catabolic 

reaction performed by NAD+-linked glutamate dehydrogenase (GDH2) provides NH
4

+ that can 

then be used for the production of Gln. The aa that derive from a common molecule are 

grouped into families. The glutamate family includes Glu, Gln, Lys, Arg and Pro, the aromatic 

of His is connected to that of nucleotides (Figure I-2) (Ljungdahl and Daignan-Fornier, 2012).  

I.2.2. Utilization

Amino acids are used for protein synthesis but can also be used as nitrogen source, 

Figure I-3). The extracellular content in nitrogen 

sources controls the uptake of these compounds and the regulation of catabolic and anabolic 

processes. Even if almost all aa can be used as nitrogen source, they do not support cell 

yeast generation time varies from approximately 2 h in presence of Asn, Gln or Arg, up to 
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nitrogen sources depending on (i) how they individually support cell growth when present 

as the sole nitrogen source and (ii)

supra-pathway response to ensure preferred nitrogen sources utilization, when available. 

Once internalized, nitrogenous compounds can be (i) used directly in biosynthetic processes, 

(ii) deaminated to generate ammonium (NH
4

+) or (iii) used as substrates by transaminases 

that transfer amino groups to -ketoglutarate to form Glu (Ljungdahl and Daignan-Fornier, 

2012) (Figure I-3). 

I.2.3. Sensing, uptake and storage

The catabolic nitrogen source utilization and anabolic aa biosynthetic pathways 

function in parallel and must be coordinated (Figure I-3). Thus, the nutrient extracellular 

and intracellular concentrations need to be monitored and this is performed by plasma 

membrane sensors, a network of intracellular sensing systems and metabolic intermediates 

that act as signaling molecules. The presence of external aa induces the expression of 

(Figure I-4A). The major route for aa uptake for catabolic metabolism is composed of Gap1, 

Magasanik 

and Kaiser, 2002

a large set of genes in response to aa starvation (Hinnebusch, 2005 Hinnebusch and 

Natarajan, 2002) (Figure I-4B). A precise response can also trigger activation or repression 

response to adjust the catalytic properties of enzymes, modulate the degradation rates of 

of intracellular organelles, post-translational modes of regulation are also used. All these 

modes of regulation of aa uptake and biosynthesis are reviewed in Ljungdahl and Daignan-

Fornier, 2012 and et al. .

In yeast cells, sensing systems localized at the plasma membrane, named SPS (Ssy1-

to micromolar amounts of extracellular aa (reviewed in ) (Figure I-4A). The 

SPS-sensing pathway regulates the aa permease gene expression by controlling the activity 

Andréasson and Ljungdahl, 2002). In presence 
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aa permeases are upregulated. The protein Ssy1 is an integral plasma membrane protein 

that interacts with extracellular aa and thus monitors the ratio of external and internal aa 

across the plasma membrane by undergoing conformational changes (Wu et al., 2006). The 

signal initiated by binding of aa to Ssy1 is transduced to the peripherally-associated plasma 

in the nucleus to induce the expression of SPS sensor-regulated genes (Andréasson and 

Ljungdahl, 2002). 

Figure I-4B). The signal 

during aa starvation. These uncharged tRNAs are bound by and activate the Gcn2 kinase that 

will downregulate translation at the initiation step. In eukaryotes, the translation initiation 

factor eIF2 forms a ternary complex with charged tRNA
i

Met and GTP. This ternary complex 

associates with the 40S ribosomal subunit to facilitate scanning of the 5’ region of mRNAs 

(when bound to uncharged tRNAs), the ternary complex formation is largely reduced leading 

to a decrease in the rate of general translation initiation. On the contrary, the reduction of 

controlled at the level of protein degradation. Indeed, during aa starvation, the level of Gcn4 

and activates the transcription of more than 500 genes mostly involved in aa biosynthesis 

(Hinnebusch, 2005 Hinnebusch and Natarajan, 2002 Natarajan et al., 2001). 

The transport of aa across the plasma membrane is facilitated via the H+-symport 

energized by the plasma membrane H+-ATPase Pma1 ( Serrano et al. ). 

Interestingly, individual substrates can be transported by several different systems. The 

redundancy of transport systems allows the extraction of nutrients from a great variety of 

environments (Regenberg et al. ). The internalized aa can then be imported into the 

mitochondria to sustain mitochondrial translation or to the vacuole for storage (see Chapter 

II section I.3).
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  Class I Class II 

    aaRS 

quaternary 

structure 

editing 

activity aaRS 

quaternary 

structure 

editing 

activity 

Subclasses 

A 

MRS , 2 yes SRS 2 yes 

LRS  yes PRS 2 yes 

IRS  yes TRS 2 yes 

VRS  yes GRS 2   

      HRS 2   

B 

CRS , 2   DRS 2   

QRS    NRS 2   

ERS    KRS 2 yes 

C 

YRS  2    FRS ( ß)2, 2 yes 

WRS 2   GRS ( ß)2   

      ARS 2 yes 

      SepRS 4   

      PylRS 2   

D RRS          

E KRS α         

Catalytic 

domain 

organization 

 
Rossman fold (5 parallel ß-sheet 

connected with α-helices 

7 stranded ß- α-

helices 

Motif sequence HIGH and KMSKS 

motif 1: +GΦXXΦXXPΦΦ 

motif 2: (F/Y/H)RX(E/D)…(X=4-

12)…(R/H)XXXFXXX(D/E) 

motif 3: λXΦGΦGΦERΦΦΦΦΦ  

Mechanistic 

features 

A76 hydroxyl group 

acceptor 
2'OH 3'OH 

tRNA acceptor stem 

binding  

via minor groove of the helix (except 

for dimeric aaRS) 
via major groove of the helix 

aaRS-bound ATP 

conformation 
straight conformation bent conformation 

tRNA 3' CCA bent conformation extended conformation 

rate-limiting step release of aa-tRNA product formation of aa-tRNA on the enzyme 

 

aaRSs represented in bold require the presence of tRNA for amino acid activation. +: positively charged aa, 

single-letter code: invariant residues, X: any residue, λ: small aa, Φ: hydrophobic aa. 
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I.3. The aminoacyl-tRNA synthetase (aaRSs) family

I.3.1. The two aaRSs classes 

The aminoacyl-tRNA synthetases (aaRSs) are very ancient proteins already present in 

in the three domains of life (Fournier et al., 2011). The aaRSs do not show vertical inheritance 

from a common ancestor but are separated into two distinct evolutionary unrelated classes 

classes have different sequence motifs and thus different active site topologies (Perona and 

Hadd, 2012 Ribas de Pouplana and Schimmel, 2001) (Table I-1). 

I.3.1.1. Class I

The class I aaRSs are characterized by a catalytic domain composed of a Rossmann 

nucleotide binding fold that binds the tRNA acceptor stem from the minor groove side and 

which displays the characteristic KMSKS and HIGH sequence signatures involved in binding 

of ATP in an extended conformation. In all class I aaRS, the Rossmann fold is split by an 

IRS, VRS and LRS, this domain is greatly enlarged and is the catalytic site for the hydrolysis 

with the exception of LRS, is involved in tRNA anticodon binding and contributes to tRNA 

the Rossmann fold are also common features of class I aaRS. The class I aaRS are subdivided 

IA is composed of IRS, MRS, VRS, LRS, subclass IB 

subclass IC of dimeric WRS and YRS, subclass ID of RRS and subclass IE of KRS-I (Perona and 

Hadd, 2012) (Table I-1). 

I.3.1.2. Class II

The class II aaRSs are likely older than the class I aaRSs (Hartman and Smith, 2014). 

IIA is composed of GRS, HRS, PRS, TRS and 

SRS, subclass IIB of NRS, DRS and KRS-II, and subclass IIC of FRS, GRS, ARS, SepRS and PylRS. 

The GRS is present in distinct classes as two forms that do not directly share a common 

ancestor. The class II possess a catalytic domain with an anti-parallel ß-fold and three motifs 
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Aminoacylation reaction 

aa-tRNAaa + aaRSaa~AMP aaRS + tRNAaa

aaRS + aa + ATP aa~AMP aaRS + PPi
Mg2+

1

2

A

B

A
PPP

A
P

1 2

PP A
P

p
o

st
-t

ra
n

sf
e

r

e
d

it
in

g
 i

n
 t

r
a

n
s

release hydrolysis

trans-editing

factor

A
P

hydrolysisA
P

p
o

st
-t

ra
n

sf
e

r

e
d

it
in

g
 i

n
 c

is

release

hydrolysis

A
PPP

A
P

A
P

PP
A

P

p
re

-t
ra

n
sf

e
r

e
d

it
in

g

Figure I-5: tRNA aminoacylation and proofreading reactions. A. The tRNA aminoacylation is a two-steps reaction 

performed by aminoacyl-tRNA synthetases. 1) The amino acid is activated in the aaRS active site forming 

aminoacyl-AMP (aa-AMP), 2) the activated aminoacyl moiety is transferred to the 2’- or 3’-OH (class I and class II aaRS 

respectively) of the terminal adenine A76 of the tRNA forming an ester bond. B. The misaminoacylated tRNAs 

produced by some aaRSs can be edited by three different processes. The pre-transfer editing is performed in the 

aaRS active site while and post-transfer editing can be performed in cis by aaRS-attached editing domains or in trans 

by free-standing editing domains. ATP: adenosine triphosphate, PPi: inorganic pyrophosphate, AMP: adenosine 

monophosphate.
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three motifs have been characterized and they contain a strongly conserved core with an 

for motif 2, and G G ER

Eriani et al. ). 

region can thus be a place for insertion of additional modular domains. Most class II aaRSs 

4
 or ( ß)

2
 

tetramers. In the FRS ( ß)
2
 tetramer the -chain carries the catalytic fold and activity, 

while the essential catalytic residues are absent in the homologous ß-chain. The tetrameric 

FRS thus only possess 2 active sites and binds two tRNAs that interact with all four enzyme 

subunits.  For aa activation, class II aaRSs bind ATP in a bent conformation. Their interaction 

with tRNA occurs via the major groove side of the acceptor stem and the variable loop of 

tRNA faces the aaRSs (Ibba and Söll, 2000 Perona and Hadd, 2012) (Table I-1). 

I.3.2. Canonical role of aaRSs: tRNA aminoacylation

The tRNA aminoacylation is a two-steps reaction that necessitates aa, aaRS, tRNA, 

ATP and Mg2+ (Figure I-5A). First, the aa activation occurs in the aaRS active site, where the 

-carboxylate of aa nucleophilically attacks the -phosphate of ATP to form aminoacyl-

adenylate (aa AMP) and an inorganic pyrophosphate. This process is tRNA-independent 

except for class I aaRS QRS, ERS, RRS and KRS I. During the second step of the reaction, the 

-carbonyl of aa

adenosine A76 of tRNAs that are substrate of class I and class II aaRSs respectively (Arnez 

).

The structure of QRS complexed with tRNAGln

of an aaRS-tRNA complex, gave many insights on the interaction between tRNA and aaRS. 

It demonstrated that binding of aaRSs to their substrates can induce sequence-dependent 

interactions between aa and nucleotides. Moreover, particular protein domains were shown 

Ibba and Söll, 2000

aminoacylation of tRNA by their cognate aaRS is ensured by tRNA identity that relies on 

positive determinants and negative anti-determinants elements. For most tRNAs, the 
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identity elements are mostly located at the two distal extremities, the anti-codon loop 

and the aa accepting stem. These positive determinants are limited in number and can be 

or structural motifs. On the other hand, anti-determinants prevent tRNA recognition by non-

cognate aaRS and thus tRNA misaminoacylation (Giegé et al. ). 

Despite the high selectively of aaRS for tRNAs, some aaRS can produce misacylated 

tRNAs. Some aaRSs are less selective than others toward aa and can generate incorrect aa-AMP 

transferred onto tRNA, thus generating mischarged tRNAs. To prevent the incorporation of 

the incorrect aa in the nascent polypeptide by the ribosome, aaRSs can either perform pre-

transfer or post-transfer editing (Figure I-5B). Pre-transfer editing consists in the hydrolysis 

of the incorrect aa~AMP and is performed by the active site of the aaRS. On the other hand, 

post-transfer editing consists in the deacylation of the misacylated tRNA by an editing 

Jakubowski, 2012). 

For example, the PRS contains a post-transfer editing domain inserted between motifs 2 and 

Thr but the editing domain 

is localized in N-terminus. SRS and KRS have pre-transfer editing activities that trigger the 

hydrolysis of misactivated aminoacyl-adenylates prior to transfer onto the tRNA (Perona 

and Hadd, 2012). The editing of misacylated tRNAs can also be performed in trans, by trans-

editing factors that are homologous to the editing domains encoded in some aaRSs (Figure 

I-5B trans-editing factors are homologous to ARS editing domain 

and deacylated Gly- and Ser-tRNAAla

bacteria and eukaryotes. Saccharomyces cerevisiae aa 

but lacks editing activity. Another type of trans-editing factor found in archaea, eukaryotes 

and most bacteria are the D-aminoacyl-tRNA deacylases (DTDs). They can edit various 

D-aa-tRNAs in addition to selectively editing Gly-tRNAAla

misincorporation after tRNAPro mischarging by PRS. Other examples of trans-editing factors 

are listed in Kuzmishin Nagy et al., 2020. 
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I.3.3. Indirect biosynthesis of aa-tRNAs

From the 20 standard aa encoded by the genetic code, three amino acids, Asn, Gln 

indirect pathway that relies on tRNA-dependent conversion of a precursor mischarged aa-

tRNA (Hemmerle et al., 2020 Sheppard et al ). When NRS and/or QRS is/are missing an 

indirect route called transamidation pathway can be used to produce Asn-tRNAAsn or Gln-tRNAGln 

through a two-step reaction. This pathway necessitates non-discriminating (ND)-DRS or ND-

ERS that will aminoacylate tRNAAsn and tRNAGln with Asp or Glu respectively. The misacylated 

tRNAs are then handled by tRNA-dependent amidotransferases (AdT). To date four types 

GatDE and GatAB. In the vast majority of prokaryotes, the two-steps transamidation pathway 

is used to produce Gln-tRNAGln Gln with 

Glu by ND-ERS (Lapointe et al. ). Then, the Glu moiety is transamidated into Gln by the 

 et al.

Gln and Asn-tRNAAsn, while 

Gln, archaea possess an 

Tumbula et al., 2000). All eukaryotes are deprived of the 

gene encoding the mitochondrial 
m

AdT producing mitochondrial Gln-tRNAGln (Gln-
m

tRNAGln). In organelles, the mitochondrial 
m

ERS 

is usually the ND-ERS that participates in the organellar transamidation pathway, whereas 

plants have a mitochondrial and chloroplastic dual-targeted ND-ERS that participates in the 

transamidation pathways of both organelles. In the yeast Saccharomyces cerevisiae, the 

Figure I-6). The real 

difference between the yeast mitochondrial transamidation and those of all other eukaryotes 

is that the 
m

ERS cannot aminoacylate 
m

tRNAGln and therefore is not the ND-ERS providing Glu-

m
tRNAGln to the GatFAB Adt. Frechin and coworkers demonstrated that a fraction of 

c
ERS can 

be imported in the mitochondria and acts as the ND-ERS to produce Glu-
m

tRNAGln (Frechin et 

al. ) (Figure I-6).

In addition to the 20 standard genetically-encoded aa, two non-standard aa can be 

st genetically encoded 

aa and which is found in mammals, bacteria and archaea, and pyrrolysine (Pyl) the 22nd 

genetically-encoded aa found in methanogenic archaea and some bacteria. The formation of 
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Sec-tRNASec relies strictly on an indirect pathway. First, serine (Ser) is aminoacylated onto the 

opal suppressor tRNASec by the SRS. In bacteria, the Ser moiety is directly selenylated by SelA 

to form Sec-tRNASec

O-phosphoseryl-

tRNA-kinase (PSTK) to form O-phosphoseryl-tRNASec (Sep-tRNASec). The Sep moiety is then 

selenylated in a tRNA-dependent manner by the SepSecS enzyme. Finally, the Sec-tRNASec

is transported by the eEFSec SBP2 complex to the translating ribosomes (Hemmerle et al.,

2020). 

I.3.4. Non-canonical roles and localizations

In addition to their canonical and essential role in tRNA aminoacylation, aaRSs can 

participate to many other cellular processes in prokaryotic and eukaryotic cells. In eukaryotes, 

these additional functions rely on additional domains and insertions that aaRSs acquired 

tRNA synthetases are not restricted to the cytoplasm in eukaryotic cells. Indeed, they can 

relocate at many different subcellular compartments where they will usually participate to 

other cellular processes. All these non-canonical functions and/or localizations of aaRSs are 

extensively described in recent reviews (Debard et al., 2017  Yakobov et al ) and I will 

only present a few of them in the following paragraph.

I.3.4.1. Mitochondrial localization and missing aaRSs

Theoretically, bacteria and each translationally-active eukaryotic compartment (e.g., 

cytoplasm, mitochondria, and chloroplasts for plants) should contain a full subset of 20 

aaRSs, one for each aa of the genetic code. However, some aaRSs are missing in bacteria and 

there are no eukaryotic species that encode a complete and unique set of mitochondrial and/

or chloroplastic aaRSs. Missing aaRSs need to be compensated either by an alternate route 

or by the import of a cytosolic aaRS (
c
aaRS), that becomes a dual-localized aaRS. Surprisingly, 

in higher plants and Saccharomyces cerevisiae, 
c
aaRSs can be imported in the mitochondria 

even if the corresponding mitochondrial aaRS (
m

aaRS) already exists. For their non-canonical 

mitochondrial import, 
c
aaRSs need a mitochondrial matrix-targeting sequence (MTS). In 

that we name mitochondrial echoform aaRS (
mte

aaRS), which is targeted to the mitochondria 

via a N-terminal MTS, and the other lacking this MTS which is the cytosolic echoform
 cyte

aaRS 

ERS

ERS

tRNA tRNA

ERS

Glu- tRNA

ERS

ure I-6: Transamidation pathway used to produce Gln-tRNAGln in the yeast mitochondria. ondria do not 
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that stays in the cytosol (Tolkunova et al., 2000). For human GRS, the same transcript also 

produces the cytosolic and mitochondrial echoforms by using two different translation 

initiation starts (Alexandrova et al., 2015). 

In yeast, the mRNA of HRS and VRS contain two different AUG start codons that lead to 

the production of 2 isoforms (  et al. Natsoulis et al. ). The long echoforms, 

mte
HRS and 

mte
VRS, contain the N-terminal MTS and localize in the mitochondria, while the 

short echoforms deprived of the MTS,
 cyte

HRS and 
cyte

VRS, remain in the cytosol. For yeast 

(Tang et al., 2004). Again, the long and short echoforms are mitochondrial and cytosolic, 

respectively. The mitochondrial localization of the yeast aaRSs echoforms was investigated 

by our team and the results obtained are presented in the research article I co-authored 

“Assigning mitochondrial localization of dual localized proteins using a yeast bi-genomic 

mitochondrial-split-GFP” (Bader et al., 2020, Chapter I section III.1). In the yeast, the 
mte

ERS 

echoform of 
c
ERS can also be imported in the mitochondria (see section I.3.3.) but the 

mte
ERS 

echoform has exactly the same sequence as the cytosolic echoform. In this particular case, 

c
ERS is in fact a mitochondrial protein which is retained in the cytosol through its interaction 

with the protein Arc1 that acts as a cytosolic anchor for the aaRS (see section II.2). The 
mte

ERS 

corresponds, therefore, to the pool of 
c
ERS which is not binding to Arc1. This strategy allows 

Frechin et al., 

2014).

I.3.4.2. Nuclear localization; tRNA quality control and transcription 

regulation

Some aaRSs can also localize in the nucleus where tRNA transcription and maturation 

are performed. Their nuclear localization was associated with tRNA aminoacylation, which 

is considered as a quality control step prior to export of the tRNA towards the cytoplasm. 

The aminoacylation of tRNATyr and tRNA
i

Met was demonstrated in X. leavis oocytes (Lund and 

), which reinforced this idea. Moreover, nuclear localization signals (NLS) 

were found in many yeast aaRSs ( Yakobov et al ). In the 

tRNA species were detected in this compartment (Sarkar et al.

Mangroo, 2004

). In 
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yeast, MRS can also relocate to the nucleus to regulate transcription of Atp1 subunit of the 

F
1
 domain of mitochondrial ATPase (Frechin et al., 2014) (see section II.2.1.). 

I.3.4.3. Implication in mammalian angiogenesis

An unexpected role for aaRSs is their implication in the process of angiogenesis in 

leukocytes migration and that represses angiogenesis (Ewalt and Schimmel, 2002 Kleeman 

et al. ). Under apoptotic conditions, YRS is secreted and cleaved by extracellular 

which is an EMAP II-like protein, attracts a large number of macrophages. On the other hand, 

the N-terminal fragment, named mini-YRS, contains a conserved Glu-Leu-Arg motif and the 

( ). The mini-YRS also possesses a pro-angiogenic activity that 

relies on its Glu-Leu-Arg motif. When uncleaved, this motif is masked by the EMAP II-like 

domain, thus blocking the pro-angiogenic activity of mini-YRS. Like YRS, mammalian WRS 

contains an additional N-terminal domain. Upon alternative splicing of Trp mRNA, T1-Trp 

which lacks the N-terminal domain, is formed. In contrary to full-length WRS, T1-WRS blocks 

angiogenesis in vivo. A T2-WRS shorter version, produced upon T1-WRS proteolytic cleavage, 

displays even higher anti-angiogenic properties (Otani et al., 2002 Wakasugi et al., 2002)

I.3.4.4. Regulation of transcription in bacteria

In E. coli, the TRS binds to the operator site of its own mRNA upstream from the Shine-

Dalgarno sequence (Moine et al. ) which mimics tRNAThr anticodon stem-loop structure. 

initiation (Marzi et al., 2007).

I.3.4.5. Membrane localization and trans-editing in cyanobacteria

In some cyanobacteria, the ERS, VRS, LRS and IRS possess a 100-200 aa-long additional 

domain (Luque et al.

essential for aaRS anchoring in thylakoid membrane (Olmedo-Verd et al., 2011). In the 
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cyanobacteria Anabaena

thylakoids localized next to the junction with a neighboring cell (polar thylakoids), while 

thylakoids in other regions are largely devoid of VRS. This localization of VRS appears to be 

advantageous for faster growth under nitrogen starvation. Moreover, when localized in the 

thylakoids, VRS interacts with the F
1
F

o

that VRS could be an aa sensor to monitor the nitrogen availability and transduce the signal 

to the F
1
F

O
 complex in order to adjust its functioning (Santamaría-Gómez et al., 2016). 

The cyanobacteria Anabaena also contains two TRS, named T1 and T2. In presence of 

2+ in the medium, T1 homodimers perform the canonical aminoacylation of tRNAThr. Upon 

2+ depletion, T1 dimers dissociate into monomers that have no aminoacylation activity. 

On the other hand, the expression of editing-defective T2 is induced leading to mischarged 

Ser-tRNAThr 2+ limitation, the editing of mischarged Ser-tRNAThr is performed in trans by 

apo-T1 that can form heterodimers with T2 (Rubio et al., 2015). 

I.3.4.6.

Another example of noncanonical localization related to noncanonical function of 

an aaRS in bacteria is the KRS of Mycobacterium tuberculosis. This organism encodes two 

KRS genes and one isoform contains a N-terminal MprF-like domain. This KRS localizes at 

the plasma membrane and acts as a lysyl-phosphatidylglycerol synthase (LysPGS) (Maloney 

et al. ). The KRS domain aminoacylates tRNALys with lysine, while the MprF-like domain 

transfers the lysyl moiety onto phosphatidylglycerol. Recently, a similar mechanism of lipid 

aminoacylation was found in Aspergillus fumigatus by our team (Yakobov et al., 2020). This 

organism contains an enzyme called ErdS composed of a fusion of an DRS with a DUF2156 

domain. The DRS domain aminoacylates its cognate tRNAAsp with aspartate and the DUF2156 

domain transfers the aspartyl moiety onto ergosterol leading to the formation of ergosteryl-

O-L-aspartate (Yakobov et al., 2020). The aspartylated ergosterol could be implicated in 

I.3.4.7.  AaRS and aa sensing

via its 

Yoon et al., 2016) 

(Figure I-7A

interacts with and activates the phospholipase D (PLD) 1. Upon activation, PLD1 translocates 
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to the lysosomal membrane and hydrolyzes phosphatidylcholine to produce phosphatidic 

Yoon et al., 2011

does not require neither tRNA nor the production of Leu-tRNALeu, but only leucine. The LRS is 

Yoon et al., 

2016). Independently of the previous pathway, mammalian LRS was also shown to localize 

at the lysosomal membrane in presence of aa, where it interacts with the Rag GTPase RagD 

Figure I-7A). Again, the tRNA charging activity of LRS is not 

RagD-GTP and promotes its conversion to the GDP-bound active form (Han et al., 2012). 

However, the GTPase-activating protein (GAP) activity of LRS is under debate (Tsun et al., 

). In yeast, LRS interacts with and activates the Rag GTPase Gtr1 from the EGO complex 

(Figure I-7B

upon leucine deprivation, misaminoacylated tRNALeu

LRS. The conformational changes of LRS upon editing activity disrupt its interaction with Gtr1 

et al., 2012). 

Recently He and coworkers reported that each aaRS is able to sense the presence of 

its cognate aa (He et al. ). This process relies on the production of reactive aminoacyl 

adenylates by aaRSs, which are then used to modify lysine residues on target proteins. 

demonstrates that aaRSs can also be considered as aminoacyl transferases serving as aa 

sensors. Interestingly, upon leucine addition in the culture media or LRS overexpression 

the global level of leucylation and the leucylation of RagA, a component of the RAGULATOR 

Yoon et al., 

2016) and by leucylating RagA. They also demonstrated that QRS can glutaminylate the pro-

which is located in its ATP binding site. Upon glutaminylation, Ask1 kinase activity is inhibited 

and the apoptosis is suppressed (Ko et al., 2001). QRS is thus an aminoacyl transferase, an aa 

sensor and an apoptosis repressor in human cells. 
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I.4. The aminoacyl-tRNAs (aa-tRNAs)

I.4.1. Canonical role; protein synthesis at the ribosomes

I.4.1.1. Initiation

and recycling. In eukaryotes, the initiation starts with the assembly of ternary complex 

composed of the initiation factor eIF2, GTP and the initiator Met-tRNA
i

Met  (Levin et al ). 

(Majumdar et al.

mRNA 5’-end contains a 7-methylguanosine cap structure (5’-cap) where the eIF4F complex 

assembles ( ). This complex has been proposed to bind and unwind any structures 

by poly(A) binding protein (PAB). PAB interacts with eIF4G, which is a component of eIF4F 

complex, leading to the circularization of mRNA ( ). This mRNA structure 

the synthesis of truncated proteins that could be toxic for the cell (Kapp and Lorsch, 2004). 

Kozak sequence (Kozak, 2002). Upon codon-anticodon base pairing between the initiation 

AUG codon and initiator tRNA
i

Met in ternary complex (  et al. ), eIF2 GTP hydrolyses 

its GTP with the help of eIF5, and eIF2 GDP releases the Met-tRNA
i

Met into the peptidyl (P) 

site of the 40S subunit and dissociates. The large 60S ribosomal subunit assembles with the 

40S Met-tRNA
i

Met mRNA complex with the help of eIF5B GTP. The hydrolysis of eIF5B’s GTP 

Acker et 

al Pestova et al., 2000).

I.4.1.2. Elongation

In contrast to the initiation mechanism, which is very different between prokaryotes 

and eukaryotes, the elongation process is conserved across the three kingdoms of life. 

One cycle of elongation starts with a peptidyl-tRNA in the P-site next to a vacant 

A-site. The aa-tRNA, which are part of a ternary complex with GTP-bound Elongation Factor 
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1A (eEF1A), are carried to the ribosomal A-site. The selection of only cognate aa-tRNA is 

ensured by codon-anticodon base pairing between mRNA and aa-tRNA, conformational 

changes in the decoding center of the small ribosome subunit, and GTP hydrolysis by eEF1A 

( ). The aa-tRNA is then released into the A-site and the 

ribosomal peptidyl-transferase center catalyzes the formation of a peptide bond between 

the incoming aa and the P-site occupying peptidyl-tRNA. This results in a deacylated tRNA 

that has its acceptor end in the exit (E) site of the large ribosomal subunit and its anticodon 

end in the P site of small subunit. The peptidyl-tRNA is in a similar hybrid position with its 

acceptor end in the P-site of the large subunit and its anticodon end in the A-site of the 

Upon translocation, the deacylated tRNA and the peptidyl-tRNA shift completely in the E- 

into the A site (Ling and Ermolenko, 2016). 

I.4.1.3. Termination and recycling

Termination occurs when a stop codon is placed in the A-site. This stop codon is 

decoded by class 1 release factor eRF1, which adopts a three dimensional structure mimicking 

a L-shaped tRNA (Bertram et al., 2000 GTP binds to eRF1 

and promotes stop codon recognition and discrimination (Wada and Ito, 2014

dissociation after GTP hydrolysis, Rli1 factor binds to eRF1 and triggers the hydrolysis of 

the ester bond linking the peptide to the P-site tRNA, releasing the neo-synthesized protein 

from the complex (Khoshnevis et al., 2010  Shoemaker and Green, 2011).

inter-subunit space and to eRF1, inducing conformational shifts in eRF1. The conformational 

ribosomal subunits separation. Deacylated tRNA and mRNA remain bound to the 40S subunit 

). It has also been 

proposed that the 40S subunit may not be released and shuttle across the poly(A) tail back 

to the 5’-end of the mRNA thanks to the closed-loop conformation of eukaryotic mRNAs. This 

would facilitate the re-initiation of translation (Kapp and Lorsch, 2004). 
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I.4.1.4. Cotranslational assembly of protein complexes

Recently, Shiber and coworkers demonstrated that proteins belonging to a complex 

can assemble co-translationally (Shiber et al. ). For this, the interactions of the 

nascent subunits from 12 hetero-oligomerics protein complexes in the yeast Saccharomyces 

cerevisiae

before engaging the nascent interaction partner(s). Among the complexes which display a 

co-translational assembly mode, they found the AME complex, which is a multi-aminoacyl-

the glutamyl-tRNA synthetase (ERS) and the cofactor protein Arc1 (see section II.2). The 

three proteins of the complex interact with each other through their N-terminal GST-like 

domains. They demonstrated that both ERS and MRS engage each other and nascent Arc1 

co-translationally upon emergence at the ribosome exit tunnel of the N-terminal GST-like 

domain. Arc1 was also shown to associate with nascent ERS but the interaction was less 

stable. They hypothesized that this co-translational assembly could regulate dual protein 

targeting and prioritize cytosolic activity (see section II.2.) 

I.4.2. Non-canonical roles

author, on aa-tRNA non-canonical utilizations (Hemmerle et al., 2020). Here I will describe 

see publication Hemmerle et al., 2020 page ). 

Besides being substrates for protein synthesis, aa-tRNA can be rerouted to participate 

to other cellular processes, that are equally important. In bacteria, the lysyl- and alanyl- 

moieties from Lys-tRNALys and Ala-tRNAAla can be used by aa-phosphatidyl glycerol synthase 

(aaPGS) as aa donors to modify lipids. The addition of positively charged or neutral aa, 

aa are decrease the susceptibility of bacteria to positively-charged antimicrobial agents, 

increasing the adaptation of bacteria to environmental changes, allowing the immune 

escape and augmenting the virulence of some strains. aa-tRNAs can also be used by FEM 

(Factor essential for Expression of Methicillin resistance) transferases as aa donors to form 
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interpeptide bridges in the peptidoglycan sacculus of bacteria.

The Glu-tRNAGlu can be used as a substrate for the synthesis of -aminolevulinic acid 

which is essential in the synthesis of hemes in bacteria and green plants. This aminoacyl-tRNA 

peptide-based antibiotics. 

Finally, the degradation of proteins relies on the N-end rule pathway. In this process 

an aa-tRNA transferase uses the aa moiety of aa-tRNA to modify the N-terminal of proteins 

proteasome in eukaryotes.

II. Multi-aminoacyl-tRNA synthetase complexes

The assembly of aaRSs into multi-aminoacyl-tRNA synthetase (MARS) complexes or 

proteins (AIMPs) was discovered in mammals in the early 70’s (Bandyopadhyay and Deutscher, 

Mirande et al

archaea and vary in size and composition (Laporte et al., 2014). One study reported the 

aaRSs would be dedicated to their tRNA aminoacylation activity and upon release they could 

relocate to other compartments and/or perform noncanonical functions (Ray et al., 2007). 

and thus support the translation by a process called tRNA channeling (Han et al

).

II.1. Architecture and roles

M. thermautotrophicus and is 

elongation factor EF-1A (Hausmann et al., 2007). Inside the complex, KRS and PRS bind to 

a
EF-1A interacts with the editing 

M. 

thermautotrophicus

proteins L7 and L12. Upon complex formation the activity of SRS is increased, whereas RRS 
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by the translating ribosomes (Godinic-Mikulcic et al., 2014). 

Saccharomyces cerevisiae AME complex, 

Simos et al. ). It is composed of two aaRSs and 

one cofactor protein and will be extensively discussed below in section II.2. 

its composition and stoichiometry (Kaminska et al.

via their GST domains. This 

core complex would then serve as a nucleation platform for the assembly of the other 

symmetrically arranged subunits, each containing a single copy of the constituents, with 

the exception of KRS which is present as a dimer in each subunit. The two subunits would be 

joined by dimers of DRS and PRS domain of the EPRS and possibly KRS tetramers (  et al., 

2015). However, a recent study determined that this complex conformation was very unlikely 

(Khan et al., 2020

appr. 2 MDa, whereas the mass determination by centrifugation in sucrose gradient or by gel 

inclusion of the second monomer of the three proposed dimeric constituents (DRS, KRS and 

mainly monomers and a few homodimers. The exact structure and stoichiometry of the 

Khan et al., 2020

to be a cytosolic reservoir for cytosolic aaRSs, that can relocate to other compartments and 

perform noncanonical functions upon release. 

II.2. Yeast Saccharomyces cerevisiae AME complex

In the yeast Saccharomyces cerevisiae, the cytosolic methionyl-tRNA synthetase 

(
c
MetRS or 

c
MRS) and glutamyl-tRNA synthetase (

c
GluRS or 

c
ERS) can associate with the 

aminoacylation tRNA cofactor 1, Arc1, to form a small multisynthetasic complex named the 

AME complex (Frechin et al., 2010) (Figure I-8A). 
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II.2.1. Arc1 structure, role and localization

The gene ARC1 was discovered by Simos and coworkers in a synthetic lethal screen 

with LOS1, a gene encoding a protein involved in tRNA nuclear export (Simos et al. ). 

Sequencing of the ARC1 gene showed that it encodes an overall basic protein, composed of 

Frechin

et al., 2010 Simos et al.

like fold, that promotes protein-protein interaction and thus the association of Arc1 with 

the two 
c
aaRSs that also contain a GST-like domain in their N-terminal domains (Simader 

et al., 2006) (Figure I-8B). The residues essential for the interaction of Arc1 with 
c
MRS are 

c
ERS 

(Karanasios et al., 2007) (Figure I-8C

Simos et al ). 

to the N-terminal of the ß subunit of FRS (Simos et al.

tRNA binding because of its OB fold. Together with the M domain they form the tRNA binding 

domain (TRBD) of Arc1 (Galani et al., 2001) (Figure I-8D). 

Since ARC1 is synthetic lethal with LOS1, it very likely participates to the nuclear 

nucleus and the cytoplasm (Figure I-9

Moreover, Galani and coworkers showed that even upon the addition of a strong NLS, Arc1 is 

Galani et al., 2005). 

riche Nuclear Exclusion Signal (NES) inside the Arc1 sequence. They hypothesized that Arc1 

contain cytosolic tethering function.  

Interestingly, In an attempt to identify new phospholipid-binding proteins by 

incubating yeast soluble extract onto membranes coated with phospholipids and subsequent 

lipid-binding protein (Fernandez-Murray and McMaster, 2006). Since Arc1 does not contain 
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AME complex is soluble and sustains the translation machinery by providing aminoacyl-tRNAs. Arc1 was suggested to 

participate to the export of tRNAs from the nucleus and thus needs to be transiently localized in the nucleus. The 

Xpo1-dependent nuclear exclusion of Arc1 has been demonstrated [10]

phospholipid-binding protein raises the possibility of a vacuolar relocalization of Arc1 alone or in complex with the two 

c
transcription of ARC1 gene is then cMRS and c nto the 

cMRS activates the transcription of the nuclear-encoded 

cERS sustains the mitochondrial translation of mtDNA-encoded respiratory complex subunits

[11,12]. 
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protein. Nonetheless, when incubated with lipids, either on membranes or with liposomes, 

2
, which are 

enriched in the yeast endosomal and vacuolar membranes respectively. If Arc1 also interacts 

with these lipids in vivo, it could possibly bring the 
c
MRS and 

c
ERS to the vicinity of these 

subcellular compartments, maybe to perform non-canonical roles, like the vacuolar LRS 

et al., 2012) (Figure I-9). 

Genome Database) but one of them is very surprising. Indeed, Arc1 can be biotinylated by 

Kim et al., 2004) (Figure I-8C). Unlike the other 

proteins biotinylated in the yeast, the biotin-protein BirA from E. coli cannot use Arc1 as a 

substrate. Arc1 biotinylation is not implicated in the formation of the AME complex, nor in 

tRNA binding. The only impact that could be observed is a decrease in Arc1 thermal stability 

upon biotinylation (  et al., 2016). 

II.2.2. AME complex dynamic

The association of Arc1 with the two 
c
aaRSs enhances their catalytic activities. Upon 

binding to Arc1, 
c

with a major effect on the Km (Simos et al. ). The Arc1
c
MRS interaction resembles a 

Karanasios et al., 

2007 Simader et al., 2006). On the other hand, 
c

Graindorge et al., 

2005). The Arc1
c
ERS interaction is a new type of interaction between two GST-like folds 

(Karanasios et al., 2007 Karanasios et al., 2007) and 

the Arc1
c
ERS interaction is thus more stable than for Arc1

c
MRS, maybe because of the 

broader interaction surface (Frechin et al., 2010). When not bound to 
c
MRS and 

c
ERS, Arc1 

can bind to 5S RNA (weak) and a subset of tRNA species (Deinert et al., 2001). However, when 

bound to 
c
MRS and 

c

Glu

and tRNAMet (Frechin et al., 2010). It was hypothesized that Arc1 binding to tRNAs might be 

involved in tRNA channeling because it directly provides tRNAs for aaRSs and prevents their 

release in the soluble cytosol (Simos et al ). 

When yeast switches from fermentation to respiration, the intracellular ATP is mainly 
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complex is soluble and sustains the translation machinery by providing aminoacyl-tRNAs. Arc1 was suggested to 

participate to the export of tRNAs from the nucleus and thus need  to be transiently localized in the nucleus. The 

-dependent nuclear exclusion of Arc1 has been demonstrated 

phospholipid-binding protein raises the possibility of a vacuolar relocalization of Arc1 alone or in complex with the two 

transcription of ARC1 gene is then and nto the 

activates the transcription of the nuclear-encoded 

sustains the mitochondrial translation of -encoded respiratory complex subunits

[11,12]. 
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produced by the mitochondria and thus the mitochondrial translation needs to be enhanced 

to produce the proteins from the respiratory chain among which the mitochondrial ATP 

synthase (respiratory complex V). However, in yeast the gene encoding the mitochondrial 

QRS is missing and the Gln-
m

tRNAGln production relies on both the mitochondrial AdT that 

converts misacylated mitochondrial Glu-
m

tRNAGln into Gln-
m

tRNAGln (Frechin et al. ) 

and on import of 
c
ERS. In other words, mitochondrial translation is directly depending on 

the pool of 
c
ERS which is not binding to Arc1. Previous studies achieved in the DyPS team, 

showed that, as expected, upon switch to respiration, the transcription of ARC1 is inhibited 

by the Snf1/4 glucose-sensing pathway. This causes a drastic reduction of Arc1, leading to 

the release of both aaRSs (Frechin et al., 2014) (Figure I-9). The 
c
ERS is then imported in 

the mitochondria to generate Glu-mtRNAGln (Frechin et al. ) that will be converted into 

Gln-mtRNAGln by the GatFAB AdT. They also showed that 
c
ERS-mediated formation of Gln-

mtRNAGln

ATP synthase F
O
 domain. Meanwhile, the released 

c
MRS relocates inside the nucleus where it 

acts as a transcription factor that regulates expression of the ATP1 gene, encoding a subunit 

of the F
1
 catalytic sector of the mitochondrial ATP synthase (Frechin et al., 2014). The protein 

Arc1 is thus an aminoacylation cofactor, a cytosolic retention platform for both aaRSs and 

most importantly it also coordinates/synchronizes the expression and assembly of the two 

domains (F
O
 and F

1
) of ATP synthase in response to the switch in nutritional carbon source 

(Figure I-9).

III. Purpose of my thesis work

In the DyPS team, I worked on yeast aminoacyl-tRNA synthetases with the aim of 

identifying their non-canonical subcellular localization and, for some of them, the non-

canonical role associated with this nonconventional localization.  I focused on two different 

subcellular compartments in which aaRS relocalization has already been described in the 

c

microscopy tools because the aaRS organellar echoforms are often less abundant than their 

dual-localized proteins because of (i) the sample contaminations with cytoplasmic material 

and also because (ii) many subcellular compartments present contact sites with others. 
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localizations.  

of proteins. For the visualization of mitochondrial echoforms of dual-localized proteins we 

developed the BiG Mito-Split-GFP strain and this work has been recently published (Bader et 

al., 2020). In a second chapter, I will introduce the fungal vacuole and the microscopy Vac-

presented in the form of a research article along with the supplementary work. Finally, the 

material and methods are presented in a distinct chapter. 



 54 



55

CHAPTER I: MITOCHONDRIAL 

LOCALIZATION OF PROTEINS

I. Introduction 57

II. Context of the study 71

III. Results & Discussion 73

IV. Conclusion & perspectives 105



 56 

A

B

mtDNA encodes: 

- 7 subunits of the respiratory chain complexes:

Cytb, Cox1, Cox2, Cox3, Atp6, Atp8 and Atp9

- 1 ribosomal protein: Var1

- 2 rRNAs: 15S and 21S

- complet set of tRNAs

respiratory chain

mtDNA

cristae

matrix

inner membrane (IM)

intermembrane space (IMS)

outer membrane (OM)

Mid-log

N

early 

stationary

N

late log

N

Mid-to-late

log

N

late 

stationary

N

glucose

diauxic
shift

FERMENTATION RESPIRATION

Figure ChI.I-1:  Mitochondria organization and morphology. A. Mitochondria possess two membranes: inner 

membrane (IM) and outer membrane (OM) that delimit two soluble compartments: intermembrane space (IMS) and 

the matrix. The IM is invaginated in the matrix forming cristae that harbor the respiratory chain. The mitochondrial 

(mt)DNA consists mainly in linear molecules and encodes 8 proteins, 2 rRNAs and a full tRNA subset. B.  The 

mitochondrial organization and morphology depend on the metabolic cell status.  Log: logarithmic growth, N: 

nucleus. 
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I. Introduction

I.1. The mitochondria

Mitochondria are essential organelles of aerobic eukaryotic cells (Figure ChI.I-1A). They 

originate from the endosymbiosis of a prokaryotic organism, with -proteobacteria being 

Gray et al. ). From their bacteria ancestor, mitochondria 

and enclose two soluble compartments, the matrix and the intermembrane space (IMS). 

The two membranes of yeast mitochondria have been characterized and they are mainly 

). The inner membrane has a higher content in 

the respiratory chain complexes. Mitochondria also possess their own DNA (mitochondrial 

DNA or mtDNA) remnant of their bacterial ancestor, which varies in size and content between 

Plasmodium falciparum up 

Reclinomonas americana (Gray et al. ). This variety in gene content is explained 

by the massive transfer of mitochondrial genes to the nuclear genome that occurred in the 

course of evolution ( ). The mtDNA of Saccharomyces cerevisiae is 

composed of linear molecules of appr. 75 to 150 kb, and small amounts of circular DNA have 

also been observed (Maleszka et al. Westermann, 2014 Williamson, 2002). The yeast 

(Var1), two rRNAs (15S and 21S) and the complete set of tRNAs needed for mitochondrial 

translation (Foury et al. ). The proteins encoded by the mitochondrial genome are 

almost exclusively very hydrophobic membrane proteins (also called proteolipids) which 

are subunits of the respiratory chain complexes. This feature explains why they cannot be 

synthesized in the cytosol as precursors but are co-translationally integrated into the inner 

membrane by mitochondrial ribosomes, which are tightly bound to the inner membrane 

(Fox, 2012). Most of the mitochondria-encoded proteins thus function in association with 

nucleus-encoded proteins that have to be imported in the mitochondria after cytosolic 

translation (Malina et al. ). 
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Figure ChI.I-2: Yeast respiratory chain and the genes encoding the different subunits. A. The electrons (e-) flux 

between the different complexes is represented in gray. The [H+] gradient formed by  complexes III and IV is used by 

the complex V or FOF1-ATP synthase to produce ATP from ADP and inorganic phosphate (Pi). UQ: ubiquinone, UQH2: 

ubiquinol, Cytc: cytochrome c. B. With the exception of the NADH oxidase, which is only composed of the protein 

Ndi1, the respiratory chain complexes are composed of multiple subunits that are either encoded by the 

mitochondrial (mt)DNA or the nuclear DNA. 
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Early studies performed on the yeast Saccharomyces cerevisiae, demonstrated that 

the morphology and organization of mitochondria are greatly affected by the cell status 

( ) (Figure ChI.I-1B). During mid- and mid-to-late 

logarithmic growth, cells contain only few mitochondria with poorly developed cristae. 

During the late logarithmic phase, the glucose starvation induces nearly full mitochondrial 

and several smaller tubular organelles. The switch from fermentation to respiration triggers 

the disruption of the mitochondrial reticulum into many small, regular mitochondria 

preferentially arranged at the cell periphery. During extended starvation, the mitochondria 

change slowly into degenerative forms composed of parallel or concentric lamellae. Later 

1-2 mitochondria, while cells in stationary phase during glucose limitation contain 44 

mitochondria ( ). 

I.2. Roles

I.2.1. Production of ATP through the respiratory chain

Mitochondria are often described as the “powerhouse of the cell” because they produce 

the majority of cellular energy in the form of ATP through the oxidative phosphorylation 

Figure ChI.I-2A)

the F
O
F

1
-ATP synthase (also referred as complex V). The electrons used in the respiratory chain 

c. 

The energy released during the transport of electrons is stored in the form of a proton (H+) 

O
F

1
-ATP synthase to 

generate ATP from ADP and inorganic phosphate (P
i
) ( ). Since the mitochondria 

and imported in the mitochondria, and a few proteins are directly encoded by the mtDNA 

and translated in this compartment (Figure ChI.I-2B).

In Saccharomyces cerevisiae, complex I is absent and replaced by Ndi1, a NADH 

oxidase, which faces the mitochondrial matrix ( Marres et al., 
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). The oxidation of NADH by complex I provides two electrons that are transferred to 

ubiquinone, which diffuses in the inner membrane to reach to complex III (cytochrome 

bc1). The complex II, or succinate dehydrogenase, transfers an electron from succinate to 

+ across the membrane 

but only provide electrons. The complex III or cytochrome bc
1
 complex delivers the electrons 

from ubiquinol to cytochrome c, a reaction that is coupled to the generation of an H+ 

gradient across the membrane. The cytochrome c, which is a water-soluble hemoprotein, 

moves across the membrane to donate electrons to the complex IV, or cytochrome c oxidase. 

The electrons are transferred to the active site and used to reduce O
2
 into 2H

2
O. Again, this 

reaction is coupled to the formation of an H+ gradient across the membrane. The H+ located 

O
F

1
-ATP synthase or complex V as a 

motive force. The ATP synthase F
O
 sector contains the H+ channel, while the F

1
 sector facing 

the matrix side of the membrane is the catalytic component. The F
1
 sector is composed of 

5 subunits with a 
1 1 1

 stoichiometry. The  and  subunits can bind nucleotides but 

only 

loose and tight. The open state is an empty  subunit, the loose  subunit contains ADP 

+ P
i
 and the tight  subunit contains ATP that is obtained upon spontaneous conversion 

of ADP and P
i
 ( ). The subunit  is located within the ( ) core 

and also interacts with subunits  and  to form a “central stalk” linking F
1
 to F

O
. High-

resolution structures demonstrated that subunit  only makes a few direct contacts with 

the F
O
 c-ring, while subunit  displays extensive interactions with both c-ring and subunit . 

The subunit  on the other hand looks like a clip around  and  subunits ( et al. ). 

-less mitochondria that the sole 

loss of subunit + leak in the ATP synthase 

H+-channel. The subunit  thus plays a key role in connecting the F
O
 c-ring with the F

1
 subunit  

 ( et al. ). Interestingly, the F
O
 subunits e and g were shown to be 

important for the formation of mitochondria characteristic cristae by an oligomerization 

process (Paumard et al., 2002). 

I.2.2. Amino acid synthesis

Beside the production of ATP by the respiratory chain, mitochondria are involved in a 

plethora of other metabolic processes. 
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In the yeast mitochondria, aa can be synthesized from pyruvate and -ketoglutarate. 

Ile. Ala can be synthesized in the mitochondria by Alt1 directly from pyruvate with Glu as 

an ammonia donor (  et al. . The entire pathway for Ile and Val 

biosynthesis is localized in the mitochondria, and the last step can alternatively be performed 

in the cytosol (Kispal et al. ). On the other hand, Leu synthesis is localized both in the 

cytosol and the mitochondria ( ). The synthesis of Arg and Lys partly occurs 

in the mitochondria. Indeed, ornithine, which is an intermediate in Arg biosynthesis, is 

synthesized in the mitochondria from Glu and acetyl-coA by 5 consecutive acetylation steps 

-ketoglutarate involves 

by mitochondrial proteins, Lys4 and Lys12, which produce the intermediates homoisocitrate 

and -ketoadipate respectively. The intermediates are then transported to the cytosol to 

serve as substrates for the remaining steps of Lys biosynthesis (Ljungdahl and Daignan-

Fornier, 2012). In the yeast mitochondria, Asp is synthesized from the transamination reaction 

between Glu and oxaloacetate by the Aat1 aspartate aminotransferase. For Glu biosynthesis 

three different pathways can be used. Two pathways produce Glu from -ketoglutarate and 

latter being induced upon growth on non-fermentable carbon source and localized in the 

mitochondria.  

In mammals, Gln can be synthesized from Glu and ammonia by the Glutamine synthase 

(GS). It has been demonstrated that GS has activity in the cytosol and the mitochondria and 

has a “weak” mitochondrial localization. In liver, the GS is imported in the mitochondria, 

be converted by the glutaminase (GLS) to Glu and ammonia. Glu is then converted into 

-ketoglutarate by transaminase or glutamate dehydrogenase (GDH), or converted by 

glutamate–oxaloacetate transaminase 2 (GOT2) to produce Arg. Finally, Gly is obtained by the 

mitochondrial conversion of tetrahydrofolate (THF) by the serine hydroxymethyltransferase 

(SHMT2) ( ). 
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I.2.3. Iron-sulfur cluster and heme biogenesis

Mitochondria are the place for mitochondrial iron-sulfur (Fe/S) clusters biogenesis 

and assembly and the building of cytoplasmic and nuclear Fe/S cluster proteins (Braymer 

and Lill, 2017). The Fe/S clusters are versatile co-factors, which can act as catalytic sites or 

participate to electron transfer and sensory functions. The only mitochondrial Fe/S protein 

that is essential for S. cerevisiae’s growth is ferredoxin. Moreover, some cytoplasmic and 

nuclear Fe/S proteins are essential for viability. Thus, complete loss of mitochondrial Fe/S 

cluster biosynthesis is lethal. The synthesis of hemes that are involved in sensing cellular 

oxygen levels through the regulation of oxygen responsive genes is dually localized in the 

cytosol and in the mitochondrial matrix (Malina et al. ). 

I.2.4. Lipid metabolism

Mitochondria play an important role in lipid metabolism. Indeed, phosphatidic 

acid (PA) originating from the ER is used in mitochondria to generate cardiolipin 

et al., Osman et al., 2010). 

Moreover, phosphatidylethanolamine (PE) is generated through the decarboxylation 

of phosphatidylserine (PS) by Psd1 in the mitochondria and then transported back to 

et al., ). The ER-synthetized 

are only partly autonomous for lipid synthesis and because of their endosymbiotic origin, 

they are not connected to the endomembrane system. The lipids needed for mitochondrial 

biogenesis thus have to be provided by nonvesicular pathways (Fernández-Murray and 

McMaster, 2016 ). 

I.2.5. Calcium homeostasis and apoptosis

2+) control are the endoplasmic 

2+ uptake in isolated mitochondria and its accumulation in the matrix in an 

energy-dependent way ( ). In order to reach the mitochondrial 

2+ must cross both the outer membrane (OMM) and the ion-impermeable inner 

membrane (IMM) to reach the mitochondrial matrix. Uptake across the OMM is controlled by 

2+

2+ accumulation is counteracted 
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by Na+ 2+ and H+ 2+ exchangers ( et al. Gincel et al., 2001 Pozzan et 

al 2+ controls the energy metabolism, by enhancing the 

and fatty acid oxidation ( 2+ 

2+ concentration and for the 

2+ 2+ 

can escape the mitochondrial matrix through the opening of large permeability transition 

pore (PTP). This also leads to matrix swelling, rupture of the outer membrane and release 

of cytochrome c

(Giacomello et al., 2007). 

Many of the signaling events leading to apoptosis in mammalian cells also take place in 

2+ 

2+ concentration 

will lead to increased ROS levels, cristae remodeling, mitochondria depolarization, ATP 

depletion, matrix swelling, OMM permeabilization and eventually release of cytochrome 

c

c release does not trigger caspase activation. However, evidences 

2+

2+ transport may exist ( ). Another important difference with 

2+ 2+ 

2+ 2+/H+ exchanger Vcx1, a mechanism that 

2+ homeostasis to the regulation of intracellular pH in yeast cells (

Miseta et al ). 

I.3. Protein import

been estimated to contain approximately 1000 proteins, which are encoded by the nuclear 

the mitochondria (Vögtle et al., 2017). For their import, precursor proteins are kept in an 

unfolded import-competent conformation by chaperones and other factors ( et al., 

Jores et al., Young et al. ). The targeting and distribution of precursors to 

mitochondrial sub-compartments rely on targeting signals ( et al. ) (Figure 

ChI.I-3). Most of the matrix and inner membrane proteins and some proteins of the IMS 
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Figure ChI.I-3:   Mitochondrial targeting signals and distribution of the mitochondrial precursors.  Depending on 

the destination of the precursors different targeting signals can be used. Some targeting signals can be cleaved 

(cleavage site represented with red arrowheads) by mitochondrial peptidases . MTS: matrix-targeting sequence, 

iMTS-L: internal MTS-like, TMD: transmembrane domain, +: positive residues, : hydrophobic residues, ß-strands 

are represented by blue arrows and -helices are in black. 
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and of the outer membrane are synthesized with a N-terminal matrix-targeting sequence 

hydroxylated residues such as serine and threonine, form amphiphatic -helices with one 

positively charged and one hydrophobic face (Vögtle et al., ). Mitochondrial precursors 

are recognized at the mitochondrial surface by receptors that are part of the translocase 

of the outer membrane (TOM) complex, thus allowing their entry in the protein-conducting 

channel (H. Yamamoto et al., 2011). The precursor proteins are then driven through the outer 

membrane by several binding sites and sequential interactions. The MTS facilitates binding 

to Tom20/Tom22 and the translocation through the TOM pore. After binding to the trans-site 

of the TOM complex, the presequence is handed to the translocase of the inner membrane 

Abe et al., 2000 Melin et al., 2014 Mokranjac et al. ). 

Because of the accumulation of protons in the IMS, the inner membrane facing the IMS is 

positively charged, while the membrane side facing the matrix is negatively charged. The 

positively charged MTS could thus take advantage from this gradient to be translocated 

prevent backsliding. The MTSs are then removed by the mitochondrial processing peptidase 

(MPP) and rapidly degraded. Protein folding in the matrix is then supported by chaperones 

( et al. ).

In addition to MTS, some proteins of the matrix and the inner membrane can contain 

an additional internal MTS-like structure (iMTS-L) that helps to maintain them in an import-

competent state (Backes et al ). Some inner membrane proteins lack N-terminal 

targeting signals but use internal signals that are neighboring their transmembrane domain 

(TMD) and some other have a positively-charged stretch downstream of the TMD (Fölsch et 

al. Wiedemann et al., 2001). This region may form a hairpin-like structure that mimics 

a MTS. The majority of proteins of the outer membrane lack N-terminal MTSs. Some proteins 

TMD of ER and peroxisomal proteins (Kemper et al. Marty et al., 2014). Another 

category is the signal-anchored proteins that use an N-terminal TMD to be targeted to the 

outer mitochondrial membrane (Ahting et al., 2005). Outer membrane proteins can also 

belong to the group of ß-barrel proteins and probably use the ß-sheet hairpin structures 

as targeting signals (Jores et al., 2016). The proteins that reside in the IMS can contain an 

ITS/MISS targeting signal, formed by internal amphiphatic helices in direct proximity to a 

cysteine residue (Milenkovic et al. Sideris et al ). The utilization of algorithms 

Figure ChI.I-3:   Mitochondrial targeting signals and distribution of the mitochondrial precursors.  g on 

the destination of the precursors different targeting signals can be used. Some targeting signals can be cleaved 

(cleavage site represented with red arrowheads) by mitochondrial peptidases . MTS: matrix-targeting sequence, 

L: internal MTS-like, TMD: transmembrane domain, +: positive residues, : hydrophobic residues, ß-strands 

are represented by blue arrows and -helices are in black. 
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Figure ChI.I-4: Organization of vCLAMPs, ERMES and EMC contact sites. Mitochondria can contact vacuoles through 

vCLAMP structures and the ER by forming ERMES and EMC structures. These contact sites are involved in the transfer 

of lipids and other small molecules between the different subcellular compartments. The core components of 

ERMES, EMC and vCLAMP are represented in orange, blue and purple respectively. The other proteins participating in 

the contact sites are represented in gray. Upon growth on non-fermentable carbon source vCLAMPs are abolished 

and Vps13 relocates to the nucleus-vacuole junctions (NVJ, described in Chapter II section I.51). The ER protein 

Lam6-Ltc1 represented in green is at the interface between vCLAMP, ERMES and NVJ. SEAC and Gem1 represented in 

dark blue are regulatory components of vCLAMP and ERMES respectively. CoQ: Coenzyme Q. 
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can be useful to detect the presence of N-terminal MTSs but they are less powerful for 

recognizing other types of targeting signals ( Emanuelsson et al., 

2000 ). 

of mitochondria supports the idea that some proteins of the inner membrane can be co-

translationally imported (Eliyahu et al., 2010 Gadir et al., 2011). The interaction of the 

Om14 targets cytosolic ribosomes to mitochondria (Lesnik et al., 2014). The targeting of 

targeting pathway named ER-SURF (ER surface-mediated protein targeting) (Hansen et 

al ). Indeed, mRNAs for many mitochondrial proteins are located on the ER surface, 

suggesting that these proteins are intentionally synthesized on the ER from which they are 

handed over to mitochondria. 

I.4. Connection with other organelles

ions (e.g. 2+

metabolic regulation of organelles (Elbaz and Schuldiner, 2011

sources or cell status (Elbaz-Alon et al., 2014 Hönscher et al., 2014

it is important to consider their connections and cross-talk to completely understand their 

functions. For example, when yeast cells are grown on non-fermentable carbon source, 

the connection between vacuoles and mitochondria (vacuole and mitochondria patches, 

reticulum (ER) (ER-mitochondria encounter structure, ERMES) increase (Hönscher et al., 

2014

Elbaz-Alon et al., 2014). 

system since making contacts with other organelles is a mean for them to communicate and 

exchange molecules. 
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of lipids and other small molecules between the different subcellular compartments. The core components of 

ERMES, EMC and vCLAMP are represented in orange, blue and purple respectively. The other proteins participating in 

the contact sites are represented in gray. Upon growth on non-fermentable carbon source vCLAMPs are abolished 
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Lam6-Ltc1 represented in green is at the interface between , ERMES and NVJ. SEAC and Gem1 represented in 
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I.4.1. ER-mitochondria encounter structure; ERMES

Mitochondria and ER are connected via a protein complex named ERMES (Figure 

ChI.I-4). The core components of the complex are the integral ER protein, Mmm1, the 

Mdm10 (Kornmann et al. ). The four proteins interact with each other, forming a few 

foci per cell at ER-mitochondria junctions (Boldogh et al., Kornmann et al.

Youngman et al., 2004). The analysis of mitochondrial phospholipid (PL) composition shows 

Kornmann et al., Osman et al., ). Moreover, 

ERMES mutants display a decrease in the rate of conversion from phosphatidylserine (PS) to 

ER-mitochondria PL transport (Kornmann et al. ). Beside its lipid transfer function, 

ERMES complex has other biological roles like distribution of mitochondrial nucleoids, and 

implications in mitophagy (Böckler and Westermann, 2014 Youngman et al., 2004) Indeed, 

ERMES colocalizes with sites of mitophagosome formation. ERMES could be implicated in 

this process through its role in PLs synthesis for the expansion of the mitophagosome. The 

transferred from the ER to the mitochondria through ERMES (Eisenberg-Bord et al.

Subramanian et al. ). When ERMES is abolished, the connection of mitochondria with 

Lahiri et al., 2014). For example, 

the ER and mitochondria can form contact sites through ER membrane protein complex 

(Wideman et al.

them triggers the reduction of PS to PE conversion that occurs in the mitochondria. Moreover, 

the quintuple mutant shows reduced contacts between ER and mitochondria and does not 

grow on non-fermentable carbon sources (Lahiri et al., 2014). When the quintuple mutant 

contains a thermo-sensitive allele of MMM1 (ERMES component), the cells are nonviable at 

restrictive temperature and the PS transfer to mitochondria is impaired (Lahiri et al., 2014). 
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I.4.2. vCLAMPs

Another type of connection between mitochondria and the endomembrane system 

Figure ChI.I-4). In the yeast, formation 

protein sorting (HOPS) complex (Elbaz-Alon et al., 2014 Hönscher et al., 2014). To tether the 

Tom40 (González Montoro et al. ). When ERMES components Mdm10 and Mdm12 are 

growth defects of the ERMES mutants on fermentable carbon source. The lethal phenotype 

observed for ERMES mutants on non-fermentable carbon source was also partially rescued 

Hönscher et al., 2014

leads to a severe alteration of mitochondrial PL homeostasis (Elbaz-Alon et al., 2014). The 

and mitochondria via Bean et 

al. A. Peter et al., 2017

(Lang et al., 2015). One dominant allele of VPS13 could restore the mitochondria morphology 

characteristic of ERMES mutants and also mtDNA stability, even if ERMES complex was not 

relocates to nucleus-vacuole junctions (NVJs) (Lang et al., 2015). Another protein, which is 

for their cross-regulation (Elbaz-Alon et al., 2015). This clearly demonstrates a direct cross-

talk between nucleus, vacuoles, mitochondria and endoplasmic reticulum and some proteins 

I.5. 

With respect to the essential roles of mitochondria in eukaryotic cells, many efforts 

have been made to determine mitoproteomes (Malina et al. ). However, the mitochondrial 

targeting signals within proteins can be cryptic and their prediction by algorithms is not 

always possible. Thus, in order to identify and visualize mitochondrial proteins, the approach 
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Thr65
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C

Crystal structure of the superfolder 

(sf) GFP (PDB: 2B3P, [13]). The GFP is composed of 11 ß-strands (each strand represented by a different color) and a 

central helix (dark blue) that contains the chromophore. B. The chromophore of the sfGFP is formed by the Thr, Tyr 

and Gly amino acid triade at positions 65,66 and 67 respectively. The mature chromophore is obtained upon 

cyclization, dehydration and oxidation of these three residues. C. The sequence of the initial Aequorea victoria GFP 

(avGFP) was mutated at some positions to obtain the soluble folding reporter (fr)GFP and finally the brighter sfGFP 

[13–15]. λ: wavelength. 
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among all the FPs the most famous of them remains the Green Fluorescent Protein (GFP). 

Aequorea victoria

and coworkers  (Prasher et al.,

barrel structure called “ß-can” and a central helix containing the chromophore composed of 

E. coli, avGFP is poorly soluble. 

To overcome this issue, the avGFP was mutated to give rise to the folding reporter GFP 

(frGFP) (Waldo et al., ), which displays better brightness and solubility when expressed 

alone. Nonetheless, this variant still exhibits folding defects when fused to other proteins. 

By expressing libraries of GFP variants N-terminally fused to poorly folded polypeptides in 

E. coli, Pedelacq and coworkers were able to isolate brighter clones corresponding to GFP 

variants still able to fold and they generated the superfolfer GFP (sfGFP) variant (Figure 

ChI.I-5) (Pédelacq et al., 2006). 

Even though the GFP has been widely developed since its discovery, it still displays 

many limitations when it comes to its use for protein localization and even more in eukaryotic 

cells. Indeed, as explained in the introduction, eukaryotic cells are composed of different 

organelles and some proteins can simultaneously localize in different compartments. 

and mitochondria, like the 
c
ERS in the yeast, it is nearly impossible because the cytosolic 

Frechin et al. ).  

II. Context of the study

Many efforts have been made to characterize the mitoproteome, but many 

to identify proteins containing “classical” MTS but has shown limitations to unveil cryptic 

of mitochondrial proteins, have many limitations. Moreover, it is almost impossible to obtain 

pure mitochondrial extracts because of the contact sites that occur in the cell between 

mitochondria and other organelles, like the vacuole or the endoplasmic reticulum. Disrupting 

these contacts sites could disturb the import of proteins in mitochondria and their composition. 

Another approach for the subcellular localization of proteins is the utilization of GFP-fused 

proteins. However, for dual-localized proteins, and especially for cytosolic and mitochondrial 
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Thr
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Thr Val
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Table ChI.I-1: Creation of the Split-GFP system and mutations present in the two fragments. 

The Split-GFP system is based on the separation of the Superfolder sfGFP [13]

[16]. 
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impossible. It is even more dramatic for proteins, for which organelle pools are very limited. 

of mitochondrial echoforms. For this, we optimized the Split-GFP system developed by 

(  et al., 2005). In this system the eleven ß strands of the 

GFP
ß1-10 

and GFP
ß11

 in this work, see Table ChI.I-1 

and can auto-assemble. In the strain we developed, the GFP
ß1-10 

fragment is encoded by 

the mitochondrial genome and thus sequestered in the mitochondrial matrix. On the other 

hand, the GFP
ß11 

fragment is fused to the protein of interest. If the GFP
ß11 

protein is indeed 

imported in the mitochondria, the GFP
ß11

 tag will be able to interact with the GFP
ß1-10 

fragment 

team created the BiG Mito-Split-GFP strain in which the GFP
ß1-10 

fragment is stably expressed 

from the ATP6 locus of the mitochondrial DNA. Dr. G. Bader, a former PhD student of the DyPS 

team, Dr. L. Enkler and myself created an expression plasmid library of aaRS, transcriptional 

and translational variants of aaRSs and other proteins from yeast, human and Arabidopsis 

thaliana, fused to the GFP
ß11

 tag in three consecutive copies, called in this thesis GFP
ß11chaplet 

or GFP
ß11ch

 (Bader, 2017)
. 
We then

 
studied their mitochondrial localizations using the Big Mito-

Split-GFP and further characterized their mitochondrial import signals. All the results we 

obtained led to the publication of a research article for which I am a second co-author (Bader 

et al., 2020). In this thesis I will also present the study of mitochondrial import signals and 

especially 
c
ERS. Note that I also used the BiG Mito-Split-GFP to follow mitochondria during 

yet been published but that are presented in Chapter I section III.2.

III. Results & Discussion

III.1. Research article 1: Bader et al., 2020. eLife
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Abstract A single nuclear gene can be translated into a dual localized protein that distributes

between the cytosol and mitochondria. Accumulating evidences show that mitoproteomes contain

lots of these dual localized proteins termed echoforms. Unraveling the existence of mitochondrial

echoforms using current GFP (Green Fluorescent Protein) fusion microscopy approaches is

extremely difficult because the GFP signal of the cytosolic echoform will almost inevitably mask

that of the mitochondrial echoform. We therefore engineered a yeast strain expressing a new type

of Split-GFP that we termed Bi-Genomic Mitochondrial-Split-GFP (BiG Mito-Split-GFP). Because one

moiety of the GFP is translated from the mitochondrial machinery while the other is fused to the

nuclear-encoded protein of interest translated in the cytosol, the self-reassembly of this Bi-

Genomic-encoded Split-GFP is confined to mitochondria. We could authenticate the mitochondrial

importability of any protein or echoform from yeast, but also from other organisms such as the

human Argonaute 2 mitochondrial echoform.

Introduction
Mitochondria provide aerobic eukaryotes with adenosine triphosphate (ATP), which involves carbo-

hydrates and fatty acid oxidation (Saraste, 1999), as well as numerous other vital functions like lipid

and sterol synthesis (Horvath and Daum, 2013) and formation of iron-sulfur cluster (Lill et al.,

2012). Mitochondria possess their own genome, remnant of an ancestral prokaryotic genome

(Gray, 2017; Margulis, 1975) that has been considerably reduced in size due to a massive transfer

of genes during eukaryotic evolution (Thorsness and Weber, 1996). As a result, most of the pro-

teins required for mitochondrial structure and functions are expressed from the nuclear genome

(>99%) and synthetized as precursors targeted to the mitochondria by mitochondrial targeting sig-

nals (MTS), that in some case are cleaved upon import (Chacinska et al., 2009). In the yeast S. cere-

visiae, about a third of the mitochondrial proteins (mitoproteome) have been suggested to be dual

localized (Ben-Menachem et al., 2011; Dinur-Mills et al., 2008; Kisslov et al., 2014), and have

been named echoforms (or echoproteins) to accentuate the fact that two identical or nearly identical

forms of a protein, can reside in the mitochondria and another compartment (Ben-Menachem and

Pines, 2017). Due to these two coexisting forms and the difficulty to obtain pure mitochondria,
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determination of a complete mitoproteome remains challenging and gave rise to conflicting results

(Kumar et al., 2002; Morgenstern et al., 2017; Reinders et al., 2006; Sickmann et al., 2003).

Among all possible methods used to identify the subcellular destination of a protein, engineering

green fluorescent protein (GFP) fusions has the major advantage that these fusions can be visualized

in living cells using epifluorescence microscopy. This method is suitable to discriminate the cytosolic

and mitochondrial pools of dual localized proteins when the cytosolic fraction has a lower concentra-

tion than the mitochondrial one (Weill et al., 2018). However, when the cytosolic echoform is more

abundant than the mitochondrial one, this will inevitably eclipse the mitochondrial fluorescence sig-

nal. To bypass this drawback, we designed a yeast strain containing a new type of Split-GFP system

termed Bi-Genomic Mitochondrial-Split-GFP (BiG Mito-Split-GFP) because one moiety of the GFP is

encoded by the mitochondrial genome, while the other one is fused to the nuclear-encoded protein

to be tested. By doing so, both Split-GFP fragments are translated in separate compartments and

only mitochondrial proteins or echoforms of dual localized proteins trigger GFP reconstitution and

can be visualized by fluorescence microscopy of living cells.

We herein first validated this system with proteins exclusively localized in the mitochondria and

with the dual localized glutamyl-tRNA synthetase (cERS) that resides and functions in both the cyto-

sol and mitochondria as we have shown previously (Frechin et al., 2009; Frechin et al., 2014). We

next applied our Split-GFP strategy to the near-complete set of all known yeast cytosolic aminoacyl-

tRNA synthetases. Interestingly, we discovered that two of them, cytosolic phenylalanyl-tRNA syn-

thetase 2 (cFRS2) and cytosolic histidinyl-tRNA synthetase have a dual localization. We also con-

firmed the recently reported dual cellular location of cytosolic cysteinyl-tRNA synthetase (cCRS)

(Nishimura et al., 2019). We further demonstrate that our yeast BiG Mito-Split-GFP strain can be

used to better define non-conventional mitochondrial targeting sequences and to probe the mito-

chondrial importability of proteins from other eukaryotic species (human, mouse and plants). For

instance, we show that the mammalian Argonaute 2 protein heterologously expressed in yeast local-

izes inside mitochondria.

Results

Construction of the BiG Mito-Split-GFP strain encoding the GFPb1-10
fragment in the mitochondrial genome
We used the scaffold of the self-assembling Superfolder Split-GFP fragments designed by Caban-

tous and coworkers (Cabantous et al., 2005b; Pédelacq et al., 2006), where the 11 beta strands

forming active Superfolder GFP are separated in a fragment encompassing the 10 first beta strands

(GFPb1-10) and a smaller one consisting of the remaining beta strand (GFPb11). Seven amino acid (aa)

residues of GFPb1-10 and three of GFPb11 were replaced in order to increase the stability and the

self-assembly of both fragments (Figure 1—figure supplement 1). To increase the fluorescent signal

and facilitate observation of low-abundant proteins, we concatenated and fused three b11 strands

(GFPb11-chaplet; b11ch) linked by GTGGGSGGGSTS spacers (see Materials and methods for DNA

sequence, Figure 1—figure supplement 1, as in Kamiyama et al., 2016; Figure 1A).

Our objective was to integrate the gene encoding the GFPb1-10 fragment into the mtDNA so that

it will only be translated inside the mitochondrial matrix, while the GFPb11ch fragment is fused to the

nuclear-encoded protein of interest and thus translated by cytosolic ribosomes (Figure 1A). To

achieve this, we constructed a strain (RKY112) in which the coding sequence of the ATP6 gene has

been replaced by ARG8m (atp6::ARG8m), and where ATP6 is integrated at the mitochondrial COX2

locus under the control of the 5’ and 3’ UTRs of COX2 gene (Supplementary file 1; Table 1; Fig-

ure 1—figure supplement 2A–C; see Materials and methods section for details). The RKY112 strain

grew well on respiratory carbon source as wild type yeast (MR6) (Figure 1B), produced ATP effec-

tively (Figure 1C), and expressed normally Atp6 and all the other mitochondria-encoded proteins

(Figure 1D). We next integrated at the atp6::ARG8m locus of RKY112 strain mtDNA, the sequence

encoding GFPb1-10 (Figure 1A; Figure 1—figure supplement 2). To this end, we first introduced

into the r0 mitochondria (i.e. totally lacking mtDNA) of DFS160 strain, a plasmid carrying the GFPb1-

10 sequence flanked by 5’ and 3’ UTR sequences of the native ATP6 locus (pRK67, see Materials and

methods for DNA sequence), yielding the RKY172 strain (bearing a non-functional synthetic r-S

mtDNA, Figure 1—figure supplement 2C). This strain was crossed to RKY112 to enable
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Figure 1. Engineering of the BiG Mito-Split-GFP system in S. cerevisiae. (A) Principle of the Split-GFP system. When present in the same subcellular

compartment, two fragments of GFP namely GFPb1-10 and GFPb11ch can auto-assemble to form a fluorescent BiG Mito-Split-GFP chaplet (three

reconstituted GFPs). GFPb1-10 sequence encoding the first ten beta strands of GFP has been integrated into the mitochondrial genome under the

control of the ATP6 promoter. GFPb11ch consists of a tandemly fused form of the eleventh beta strand of GFP and is expressed from a plasmid under

the control of a strong GPD promoter (pGPD). The molecular weight of the tag is indicated. (B) Growth assay on permissive SC Glu plates, respiratory

plates (SC Gly), and restrictive media lacking arginine (SC Glu -Arg) of the different strains used in the study (N = 2). All generated strains are derivative

from MR6. (C) ATP synthesis rates of the MR6 and RKY112 strains presented as the percent of the wild type control strain (N = 2). P-value was 0.7456

(not significant). 95% confidence interval was !273.4 to 229.9, R squared = 0.064 (D) Mitochondrial translation products in the MR6 and RKY112 strains

(N = 2). Cells were grown in rich galactose medium. Pulse-chase of radiolabeled [35S]methionine + [35S]cysteine was performed by a 20 min incubation

in the presence of cycloheximide. Total cellular extracts were separated by SDS PAGE in two different polyacrylamide gels prepared with a 30:0.8 ratio

Figure 1 continued on next page
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replacement of ARG8m with GFPb1-10. The desired recombinant clones, called RKY176, were identi-

fied by virtue of their incapacity to grow in media lacking arginine due to the loss of ARG8m and

their capacity to grow in respiratory media (Figure 1B). Integration of GFPb1-10 in mtDNA was con-

firmed by PCR (Figure 1—figure supplement 2E, Supplementary file 2) and Western blot with

anti-GFP antibodies (Figure 2C). Finally, the BiG Mito-Split-GFP strain (Table 1) was obtained by

restoring the nuclear ADE2 locus in order to eliminate interfering fluorescence emission of the vacu-

ole due to accumulation of a pink adenine precursor (Fisher, 1969; Kim et al., 2002).

The BiG Mito-Split-GFP system restricts fluorescence emission to
mitochondrially-localized proteins
The BiG Mito-Split-GFP system was first tested with Pam16 which localizes in the matrix at the

periphery of the mitochondrial inner membrane and Atp4, an integral membrane protein with

domains exposed to the matrix (Kozany et al., 2004; Velours et al., 1988; Figure 2A). The BiG

Mito-Split-GFP host strain was transformed with centromeric plasmids expressing either Pam16
b11ch

Figure 1 continued

of acrylamide and bis-acrylamide. Upper gel: 12% polyacrylamide gel containing 4 M urea and 25% glycerol. Lower gel: 17.5% polyacrylamide gel. Gels

were dried and exposed to X-ray film. The representative gels are shown.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Respiratory competency and translation of mtDNA-encoded respiratory subunits of the strains used in this study.

Source data 2. Statistics of the comparison of ATP synthesis rates between RKY112 and MR6 strains (related to Figure 1C).

Figure supplement 1. Optimized sequence and secondary structure of the GFP
b1-10 and GFP

b11ch that were used in this study (related to Figure 1).

Figure supplement 2. Engineering of the strains and verification of the correct integration of ATP6 under the control of COX2 gene UTRs or GFPb1-10
under the control of ATP6 gene UTRs (related to Figure 1).

Table 1. Genotypes of yeast strains used or generated for this study.

Strain Nuclear genotype mtDNA Source

MR6 MATa ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 �
+ Rak et al., 2007

DFS160 MATa leu2D ura3-52 ade2-101 arg8::URA3 kar1-1 �
o Steele et al., 1996

NB40-3C MATa lys2 leu2-3,112 ura3-52 his3DHindIII arg8::hisG �
+ cox2-62 Steele et al., 1996

MR10 MATa ade2-1 his3-11,15 trp1-1 leu2-3,112
ura3-1 CAN1 arg8::hisG

�
+ atp6::ARG8m Rak et al., 2007

SDC30 MATa leu2D ura3-52 ade2-101 arg8::URA3 kar1-1 �
-COX2 ATP6 Rak et al., 2007

YTMT2 MATa leu2D ura3-52 ade2-101 arg8::URA3 kar1-1 �
+cox2-62 This study

RKY83 MATa ade2-1 his3-11,15 trp1-1 leu2-3,112
ura3-1 arg8::HIS3

�
+cox2-62 atp6::ARG8m This study

RKY89 MATa leu2D ura3-52 ade2-101 arg8::URA3 kar1-1 �
-S5‘UTRCOX2 ATP6 3

‘UTRCOX2 COX2
This study

RKY112 MATa ade2-1 his3-11,15 trp1-1 leu2-3,112
ura3-1 arg8::HIS3

�
+ atp6::ARG8m 5‘UTRCOX2

ATP6 3‘UTRCOX2

This study

RKY172 MATa leu2D ura3-52 ade2-101 arg8::URA3 kar1-1 �
-S atp6::GFPb1-10 COX2 This study

RKY176 MATa ade2-1 his3-11,15 trp1-1 leu2-3,112
ura3-1 CAN1 arg8::HIS3

�
+atp6::GFPb1-10 5‘UTRCOX2

ATP6 3‘UTRCOX2

This study

BiG Mito- Split-GFP MATa his3-11,15 trp1-1 leu2-3,112
ura3-1 CAN1 arg8::HIS3

�
+atp6::GFPb1-10 5‘UTRCOX2

ATP6 3‘UTRCOX2

This study

BiG Mito- Split-
GFP+PAM16

b11ch

MATa his3-11,15 trp1-1::PAM16b11ch leu2-3,112
ura3-1 CAN1 arg8::HIS3

�
+atp6::GFPb1-10 5‘UTRCOX2

ATP6 3‘UTRCOX2

This study

BiG Mito- Split-
GFP+PGK1

b11ch

MATa his3-11,15 trp1-1::PGK1b11ch leu2-3,112
ura3-1 CAN1 arg8::HIS3

�
+atp6::GFPb1-10 5‘UTRCOX2

ATP6 3‘UTRCOX2

This study

BiG Mito- Split-
GFP+GUS1

b11ch

MATa his3-11,15 trp1-1:: GUS1b11ch leu2-3,112
ura3-1 CAN1 arg8::HIS3

�
+atp6::GFPb1-10 5‘UTRCOX2

ATP6 3‘UTRCOX2

This study

BY 4742 MATa his3D1 leu2D0 lys2D0 ura3D0 �
+ Winston et al., 1995
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Figure 2. The reconstitution and fluorescence emission of the BiG Mito-Split-GFP is confined to mitochondria and exclusively generated by

mitochondrial proteins. (A) Schematic of the spatial localization of proteins used as positive mitochondrial control proteins (Atp4, Pam16), negative

cytosolic control protein (Pgk1) and as dual localized protein (cERS) in S. cerevisiae. (B) Empty pAG414pGPDb11ch vector (EV) or pAG414pGPDb11ch

vectors expressing each of the four GFPb11ch-tagged proteins used as markers in our study were transformed into the BiG Mito-Split-GFP strain.

Figure 2 continued on next page
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or Atp4b11ch bearing the GFPb11ch tag at their C-terminus under the constitutive GPD promoter.

Expression of Pam16b11ch and Atp4b11ch resulted in strong GFP signal emissions that colocalized

with MitoTracker Red CMXRos-stained mitochondria, whereas no fluorescence was detected with

the corresponding empty plasmid (Figure 2B; Figure 2—figure supplement 1A). These observa-

tions confirmed that the GFPb1-10 polypeptide is well expressed from the mtDNA, stably and cor-

rectly folded, allowing reconstitution of an active GFP upon association with the mitochondrial

GFPb11ch-tagged protein. So far, the positive controls we used for the proof of concept of the BiG

Mito-Split-GFP approach are proteins more or less abundant: Atp4 (30000–40000 copies/cell) and

Pam16 (3000 copies/cell) (Morgenstern et al., 2017; Vögtle et al., 2017). We will report soon, in

BioRxiv, tests with other proteins with a known mitochondrial location and varying abundance to

better estimate the sensitivity of the BiG Mito-Split-GFP system, including the GatF subunit of the

GatFAB tRNA-dependent amidotransferase chromosomally expressed from its own promoter. This

is a mitochondrial protein that has been reported to be present at only 40–80 copies (Vögtle et al.,

2017).

We next tested the BiG Mito-Split-GFP system with a GFPb11ch-tagged version of Pgk1, which is

commonly used as negative cytosolic marker protein to probe the purity of mitochondrial prepara-

tions. Pgk1b11ch and endogenous Pgk1 were well detected by Western blot of total protein extracts

probed with anti-Pgk1 antibodies (Figure 2C). No GFP fluorescence was observed with Pgk1b11ch
(Figure 2B; Figure 2—figure supplement 1A) despite its good expression (Figure 2C). This is an

interesting observation considering that Pgk1 localizes at the external surface of mitochondria

(Cobine et al., 2004; Kritsiligkou et al., 2017; Levchenko et al., 2016). This provides the proof

that the BiG Mito-Split-GFP system does not yield any unspecific fluorescence with cytosolic proteins

even when they are externally associated to the organelle (see also Source data 4). Another negative

control (His3) that further confirms the absence of false positive signal will be provided soon in Bio-

Rxiv. In conclusion, these data show that any GFPb11ch-tagged protein that localizes inside the mito-

chondrial matrix or at matrix side periphery of the inner membrane triggers GFP reconstitution and

fluorescence emission, making this emission a robust in vivo readout for the mitochondrial import-

ability of proteins of nuclear genetic origin.

We next tested whether the BiG Mito-Split-GFP system also allows visualization of the mitochon-

drial echoform of a protein located in both the cytosol and the organelle. We chose the cytosolic

glutamyl-tRNA synthetase (cERS) encoded by the GUS1 gene as a proof of concept. As we have

shown, cERS is an essential and abundant protein of the cytosolic translation machinery, and a small

fraction (15%) is located in mitochondria where it is required for mitochondrial protein synthesis and

ATP synthase biogenesis (Frechin et al., 2009; Frechin et al., 2014). After transformation of the BiG

Mito-Split-GFP strain with plasmids expressing a GFPb11ch-tagged version of cERS under the control

of either the GPD promoter (pGPD) or its own promoter (pGUS1), a GFP signal was observed only in

Figure 2 continued

cERSb11ch was either expressed under the dependence of the GPD (pGPD) or its own promoter (pGUS1) from a centromeric plasmid. GFP

reconstitution upon mitochondrial import was followed by epifluorescence microscopy (N = 3). (C) Immunodetection of the GFPb1-10, cERSb11ch and

Pgk1b11ch fusion protein in whole cell extract from the transformed BiG Mito-Split-GFP strain using anti-GFP and -Pgk1 antibodies, confirming

expression of Pgk1b11ch. Loading control: stain-free. The representative gels are shown. (D) The strains described in the legend of panel (B) were used

for three-dimensional reconstitution of yeast mitochondrial network (N = 1). Z-Stack images from Pam16b11ch, Atp4b11ch, cERSb11ch and Pgk1b11ch were

taken using an Airyscan microscope. Scale bar: 1 mm. (E) Flow cytometry measurements of total GFP fluorescence of the BiG Mito-Split-GFP strain

stably expressing Pgk1b11ch or Pam16b11ch (N = 3). (F) The mitochondrial GatF protein was fused to the GFPb1-10 fragment (mtGatF b1-10), thereby

targeting the ten first GFP beta-strands to mitochondria after being transcribed in the nucleus and translated in the cytoplasm. This construct was co-

expressed with either cERSb11ch or Pgk1b11ch. The GFP reconstitution was monitored by epifluorescence microscopy. Mitochondria were stained with

MitoTracker Red CMXRos. Scale bar: 5 mm. Representative fields are shown.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Micrographs of the BiG Mito-Split-GFP expressing Pgk1b11ch, cERSb11ch, Pam16b11ch, (related to Figure 2B).

Source data 2. Confirmation of the expression of the GFPb1-10, cERSb11ch and Pgk1b11ch fusion proteins in whole cell extract from the transformed BiG

Mito-Split-GFP strains (Related to Figure 2C).

Source data 3. Flow cytometry measurements of total GFP fluorescence of the three biological replicates of the BiG Mito-Split-GFP strain stably

expressing Pgk1b11ch or Pam16b11ch (related to Figure 2F).

Figure supplement 1. Mitochondrial relocation of mitochondrial proteins or echoforms tagged with GFPb11 (related to Figure 2).
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mitochondria (Figure 2B; Figure 2—figure supplement 1A). We also generated a stable BiG Mito-

Split-GFP strain in which the gene encoding cERSb11ch was chromosomally expressed under the

dependence of its own promoter at the TRP1 locus (Supplementary file 3, Figure 2—figure supple-

ment 1B). Again, GFP fluorescence was strictly confined to mitochondria (Figure 2B, Figure 2—fig-

ure supplement 1A). These observations demonstrate that the BiG Mito-Split-GFP system enables a

specific detection in vivo of the mitochondrial pool of cERS (mtecERS), without any interference by

the cytosolic echoform, which is not possible when cERS is tagged with regular GFP (Frechin et al.,

2009). We also expressed Pam16b11ch and Pgk1b11ch under the dependence of the GPD promoter at

the TRP1 locus. Again, as shown with the plasmid-borne strategy, Pam16b11ch expression resulted in

a specific mitochondrial fluorescence, while Pgk1b11ch gave no fluorescence (Figure 2—figure sup-

plement 1B).

Using high-resolution Airyscan confocal microscopy, a typical 3D mitochondrial network was

reconstituted from the fluorescence induced by the expression of Pam16b11ch, Atp4b11ch and

cERSb11ch in the BiG Mito-Split-GFP strain whereas, as expected, no fluorescent at all was detected

with Pgk1b11ch (Figure 2D), which further illustrates the mitochondrial detection specificity of this

system. These data were corroborated by flow cytometry analyses of the BiG Mito-Split-GFP strain

stably expressing Pam16b11ch and Pgk1b11ch (Figure 2E). These data will soon be completed (in Bio-

Rxiv) with flow cytometry experiments aiming to know if the BiG Mito-Split-GFP system could be

used in systematic screens for proteins with a mitochondrial localization.

We next evaluated whether the BiG Mito-Split-GFP approach represents a significant technical

advance compared to the existing MTS-based Split-GFP methods that are currently used. To this

end, we constructed cells (with a wild type mitochondrial genome) that co-express in the cytosol the

mitochondrial protein GatF (with its own MTS) fused at its C-terminus with GFPb1-10 (mtGatFb1-10)

and either cERSb11ch (dual localized, positive control) or Pgk1b11ch (cytosolic, negative control)

(Figure 2F, left panel). As expected, a strong and specific mitochondrial fluorescent signal was

obtained with cERSb11ch (Figure 2F, right panel). However, Pgk1b11ch resulted in a mitochondrial sig-

nal of similar intensity. This is presumably due to the location at the external surface of mitochondria

of a small fraction of the Pgk1 pool that could interact with mtGatFb1-10 prior to its import into the

organelle. These results show that due to the high affinity of both self-assembling Split-GFP frag-

ments, the MTS-based strategy can generate a mitochondrial fluorescence without mitochondrial

protein internalization (Figure 2F, right panel). These experiments suggest that compartment-

restricted expression of the GFPb1-10 fragment and GFPb11ch-tagged proteins increases the reliability

of identifying mitochondrial echoforms of dual-localized proteins.

Screening for mitochondrial relocation of cytosolic aminoacyl-tRNA
synthetases
Originally, screening cytosolic aminoacyl-tRNA synthetases (caaRSs) that can additionally relocate to

mitochondria was motivated by several inconsistencies concerning this family of enzymes. The first

and most documented example concerns cERS (Frechin et al., 2009; Frechin et al., 2014). We

showed that the fraction of cERS which is imported (mtecERS) into mitochondria is essential for the

production of mitochondrial Gln-tRNAGln by the so-called transamidation pathway (Frechin et al.,

2009; Frechin et al., 2014). In the latter, mtecERS aminoacylates the mitochondrial tRNAGln with Glu

thereby producing the Glu-tRNAGln that is then converted into Gln-tRNAGln by the GatFAB amido-

transferase (AdT) (Frechin et al., 2009; Frechin et al., 2014). These results argued against the pro-

posal that mitochondrial import of cQRS compensates for the absence of nuclear-encoded mtQRS in

yeast (Rinehart et al., 2005). This being said, nothing excludes that cQRS can be imported into

mitochondria to fulfill additional tasks beyond translation.

Another puzzling concern is the absence in S. cerevisiae of genes encoding six stricto-senso

mtaaRSs: mtARS, mtCRS, mtGRS, mtHRS, mtQRS and mtVRS (Table 2). This suggests that the genes

encoding their cytosolic equivalents (cytecaaRS) might also encode their mitochondrial echoforms

(mtecaaRSs). This has been confirmed for cARS, cGRS1, cHRS, cVRS for which alternative translation/

transcription initiation allows the expression of both echoforms (Figure 3D; Chang and Wang,

2004; Chatton et al., 1988; Chen et al., 2012; Natsoulis et al., 1986; Turner et al., 2000).

We therefore applied the BiG Mito-Split-GFP strategy to the S. cerevisiae caaRSs (See

supplementary file 4), aiming to discover new mitochondrial echoforms of caaRSs. We successfully

expressed in the BiG Mito-Split-GFP strain the full length GFPb11ch-tagged versions of 18 out of 20
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yeast caaRSs or cyteaaRSs (Figure 3A–C; Figure 3—figure supplement 1, Supplementary files 3

and 4). For unknown reasons, we failed to obtain the full-length GFP
b11ch-tagged versions of cCRS

and cPRS despite repeated attempts, but successfully cloned the first hundred N-terminal aa resi-

dues of cCRS (N100cCRS) (Figure 3C). An unambiguous mitochondrial fluorescent signal was

observed with cFRS2
b11ch (the a-subunit of the a2b2 cFRS), cytecHRSb11ch and N100cCRSb11ch

(Figure 3A–C; Figure 3—figure supplement 1). Since the existence of a fully functional mtFRS has

been demonstrated (Koerner et al., 1987), it is possible that supernumerary mtecFRS2 we identified

is not necessary for charging mitochondrial tRNAPhe but exerts some non-canonical functions, in

addition to its role in cytosolic protein synthesis. The mitochondrial fluorescence triggered by

expression of N100cCRSb11ch suggests that this part of cCRS harbors a MTS, which has recently been

proposed (Nishimura et al., 2019, see Discussion). The mitochondrial fluorescence triggered by

cytecHRSb11ch is more intriguing. The most plausible hypothesis is that the MTS of the mtecHRS is lon-

ger than the one originally characterized. The other possibility is that there is indeed a second mito-

chondrial echoform of cHRS imported inside mitochondria through a cryptic MTS that has yet to be

Table 2. List of genes encoding S. cerevisiae cytosolic and mitochondrial aminoacyl-tRNA

synthetases and their cytosolic or mitochondrial echoforms

Gene coding for

aaRSs forms aaRS echoforms

aaRS cytosolic
(c)

mitochondrial
(mt)

cytosolic (cyte) mitochondrial (mte)

IRS ILS1 ISM1 - -

GRS GRS1/GRS2 - GRS1 GRS1 !23

SRS SES1 DIA4 - -

KRS KRS1 MSK1 - -

RRS RRS1 MSR1 - -

ERS GUS1 MSE1 GUS1 GUS1

VRS VAS1 - VAS1D46 VAS1

YRS TYS1 MSY1 - -

MRS MES1 MSM1 - -

NRS DED81 SLM5 - -

PRS YHR020W AIM10 - -

TRS THS1 MST1 - -

DRS DPS1 MSD1 - -

FRS FRS1 (b)/FRS2 (a) MSF1 (a) - -

CRS CRS1 - - -

WRS WRS1 MSW1 - -

QRS GLN4 - - -

ARS ALA1 - ALA1 ALA1 !25

LRS CDC60 NAM2 - -

HRS HTS1 - HTS1D20 HTS1

The Saccharomyces Genome Database standard gene names are used. The amino acid (aa) one-letter code is used

for the aminoacyl-tRNA synthetase aa specificity and (-) means that the gene encoding the corresponding aaRS is

missing. Two genes encode the cytosolic phenylalanyl-tRNA synthetase (cFRS) since the enzyme is an a2b2 hetero-

tetramer. For echoforms, the position of the alternative initiation start codon is indicated and corresponds to the

nomenclature described in Figure 3; briefly, (- number) means that the start codon of the mteaaRS is located (num-

ber) aa upstream the one that starts translation of the corresponding cyteaaRS while (Dnumber) means that the start

codon of the cyteaaRS is located (number) aa downstream the one that starts translation of the corresponding

mteaaRS.
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Figure 3. Identification and visualization of mitochondrial echoforms of yeast cytosolic aaRSs using the BiG Mito-Split-GFP strategy. Fluorescence

microscopy analyses of BiG Mito-Split-GFP strain transformed with pAG414pGPDb11ch expressing yeast caaRSs (also see Table S3). Genes encoding 18

out of the 20 yeast caaRS, including those encoding the a- and b-subunits of the cytosolic a2b2 FRS (cFRS2), and the cGRS2 pseudogene, as well as the

four encoding the cytosolic echoforms of cGRS1 (cytecGRS1), cARS (cytecARS), cHRS (cytecHRS) and cVRS (cytecVRS) were cloned in the pAG414pGPDb11ch

Figure 3 continued on next page
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identified and, like for cFRS2, this new mtecHRS would then most probably exert a non-canonical

function.

As already mentioned, cARS, cGRS1, cHRS and cVRS genes are known to produce both cytosolic

and mitochondrial forms of these proteins (Figure 3D). When mtecARSb11ch, mtecGRS1
b11ch,

mtecHRSb11ch and mtecVRSb11ch (echoforms that start with the most upstream methionine initiator

codon, Figure 3D) were expressed in the BiG Mito-Split-GFP strain, a mitochondrial GFP staining

was, as expected, observed with these four mtecaaRSs (Figure 3D). Conversely, cytecARSb11ch,

cytecGRS1
b11ch and cytecVRSb11ch, versions without their MTS) did not produce any detectable GFP

signal confirming the MTS-dependency of these cytosolic echoforms for mitochondria localization

(Figure 3D; Figure 3—figure supplement 1A). The mitochondrial fluorescence produced by

cytecHRSb11ch has already been discussed above.

Investigating non-conventional mitochondrial targeting signals in dual
localized proteins
Unlike proteins with a MTS that is cleaved upon import into mitochondria, mtecERS does not involve

any processing (Frechin et al., 2009). Presumably, the mitochondrial targeting residues are located

in the N-terminal (N-ter) region of cERS as in precursors of mitochondrial proteins destined to the

matrix. To identify them, we tagged with GFP
b11ch three N-ter domains of cERS of varying length

that correspond to the first 30 (cERS
b11ch-N1), 70 (cERS

b11ch-N2) and 200 (cERS
b11ch-N3) residues of

cERS (Supplementary files 3 and 4; Figure 4A) and we tested their ability to be imported in the

mitochondria of the BiG Mito-Split-GFP strain (Figure 4B). All three peptides produced a GFP fluo-

rescence signal that matched the labeling of mitochondria with MitoTracker Red CMXRos

(Figure 4B). Consistently, no GFP fluorescence was detected with cERS
b11ch lacking the residues 1–

30 or 1–200 (cERS
b11ch-DN1 and cERS

b11ch-DN2 respectively) (Figure 4B) despite detection by WB of

these truncated proteins in cells (Figure 4C). For unknown reasons, cERS
b11ch-N1 and cERS

b11ch-N2

constructs were not detected by Western blot but gave a proper mitochondrial fluorescence staining

(Figure 4B and C). These data narrow down cERS’ MTS to the 30 first aa residues of its N-ter

domain; this segment is made of a short b-strand and a 13 aa long a-chain (Simader et al., 2006)

likely harboring the import signal. This further illustrates the strength of our technique towards the

identification of unconventional MTSs in dual localized proteins.

Testing mitochondrial importability of plant and mammalian proteins
using the BiG Mito-Split-GFP system
The BiG Mito-Split-GFP system is based on modifications in the mitochondrial genome for express-

ing the GFP
b1-10 fragment inside the organelle. Modifying the mitochondrial genome is thus far only

possible in S. cerevisiae and Chlamydomonas reinhardtii (Remacle et al., 2006). Owing to the high

degree of conservation of mitochondrial protein import systems (Lithgow and Schneider, 2010), we

used the yeast BiG Mito-Split-GFP strain to test the mitochondrial importability of proteins from vari-

ous eukaryotic origins. We first tested two glutamyl-tRNA synthetases from Arabidopsis thaliana,

AthcERS and Athmt/chlERS. According to independent MTS prediction tools, AthcERS would be a

cytosolic protein with a putative chloroplastic targeting signal (TargetP1.1), whereas Athmt/chlERS is

Figure 3 continued

and expressed in the BiG Mito-Split-GFP strain (N = 2). (A) From the set of caaRSs tested, only cERS, cQRS, cFRS2 and cytecHRS micrographs are

shown. (B) Table summarizing the GFP emission and mitochondrial localization of the caaRSs not shown in A). The corresponding micrographs are

shown in Fig. S4A. (C) Fluorescence microscopy analysis of the BiG Mito-Split-GFP strain expressing the first 100 amino acids of the N-ter region of the

cCRS fused to GFP
b11ch (N = 2). (D) Fluorescence microscopy analyses of BiG Mito-Split-GFP strain transformed with pAG414pGPD

b11ch expressing the

mitochondrial echoforms mtecGRS1, mtecARS, mtecHRS and mtecVRS. Schematics of cARS, cGRS1, cHRS and cVRS echoforms expression in yeast.

Expression can be initiated upstream of the initiator ATG+1 (mtecARS at ACG-75 and mtecGRS1 at TTG-69) but the synthesis of this echoform can also be

initiated at the ATG+1. In this case, the expression of the cytosolic echoform is initiated downstream (cytecHTS at ATG+60 and cytecVRS at ATG+148).

Mitochondria were stained with MitoTracker Red CMXRos. Scale bar: 5 mm. Representative fields are shown.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Confirmation, by WB, of the expression of the 18 full-length aaRS
b11ch and N100cCRS

b11ch in whole cell extracts from the transformed

BiG Mito-Split-GFP strains (Related to Figure 3).

Figure supplement 1. Screening of caaRSs and expression level of each GFP
b11ch-tagged proteins (related to Figure 3).
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Figure 4. The BiG Mito-Split-GFP is a suitable tool to delimit regions containing non-canonical MTSs. (A) Schematic representation of the cERS

fragments fused to GFPb11ch. Orange boxes correspond to the GST-like domain necessary for Arc1 interaction (GST), the grey boxes represent the

catalytic domain (CD), and the blue box, the tRNA-binding domain generally named anti-codon binding domain (ABD). Numbering above corresponds

to cERS amino acids residues. (B) Fluorescence microscopy analyses of the BiG Mito-Split-GFP strain expressing the cERS variants shown on A.

Mitochondria were stained with MitoTracker Red CMXRos; scale bar: 5 mm. The secondary structure (according to Simader et al., 2006) of the smallest

peptide that still contains the non-conventional MTS of cERS is described together with the amino acid sequence of each helices. Positively and

negatively charged amino acids are shown in orange and blue respectively. (C) Immunodetection of the cERS variants in BiG Mito-Split-GFP whole cell

extracts using anti-GFP antibodies. Quantity of proteins loaded in each lane was estimated using anti-Pgk1 antibodies or by the stain-free procedure.

The bands corresponding to the mutants N1 and N2 could not be detected. The representative fields or gel are shown.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Immunodetection of the cERS variants in BiG Mito-Split-GFP whole cell extracts using anti-GFP antibodies (related to Figure 4C).

Figure supplement 1. Analysis of N-terminal sequences of mitochondrial aaRSs and echoforms.
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strongly predicted to be located in mitochondria and chloroplast (Figure 5A). cDNAs encoding the

AthcERS and Athmt/chlERS proteins were fused to GFPb11ch (Supplementary files 3 and 4) and the

resulting plasmids were transformed into the BiG Mito-Split-GFP strain. Expression of these proteins

was confirmed by Western blot (Figure 5C). AthcERSb11ch did not produce any GFP signal, whereas

consistent with its predicted localization Athmt/chlERSb11ch resulted in a specific mitochondrial fluo-

rescence staining (Figure 5B). These data show that the yeast BiG Mito-Split-GFP system can be

used to analyze mitochondrial localization of plant proteins.

We also used the BiG Mito-Split-GFP system to address a yet-unresolved question regarding the

presence of mammalian Argonaute protein 2 (Ago2) in mitochondria. This protein mainly localizes to

Figure 5. The BiG Mito-Split-GFP can be used to study mitochondrial importability of mammalian and plant proteins. (A, D) Prediction of MTS and

mitochondrial localization of (A) two ERS from Arabidopsis thaliana (AthcERS and Athmt/chlERS) and (D) five eukaryotic Ago2 proteins [HsaAgo2

(Protein argonaute-2 isoform X2 [Homo sapiens] NCBI sequence ID: XP_011515267.1), MmuAgo2 (protein argonaute-2 Mus musculus NCBI sequence

ID: NP_694818.3.), BtaAgo2 (Bos Taurus), DreAgo2 (Danio rerio), DmeAgo2 (Drosophila melanogaster). MTS were predicted using TPpred2.0 (http://

tppred2.biocomp.unibo.it/tppred2), TargetP1.1 (http://cbs.dtu.dk/services/TargetP/), MitoFates (http://mitf.cbrc.jp/MitoFates/cgibin/top.cgi) and the

EukmPloc2 website (http://www.csbio.sjtu.edu.cn/bioinf/euk-multi-2/). Grey boxes indicate prediction of a cytosolic localization, light and dark green

indicate prediction of mitochondrial or chloroplastic localization respectively. Blue boxes indicate prediction of nuclear localization. (B, E) Fluorescence

microscopy analyses of the BiG Mito-Split-GFP strain expressing the GFPb11ch-tagged AthcERS and Athmt/chlERS (N = 2) (B) andMmuAgo2, HsaAgo2

(N = 2) (E). Mitochondria were stained with MitoTracker Red CMXRos. Scale bar: 5 mm. Representative fields are shown. (C, E) Protein expression was

checked by WB with anti-GFP antibodies and equal amount of loaded protein was controlled using anti-Pgk1 antibodies and by the stain-free

technology (Loading control: stain-free). The representative gels are shown.

The online version of this article includes the following source data for figure 5:

Source data 1. Confirmation, by WB, of the expression of AthERSb11ch and mouse and human Ago2b11ch in whole cell extract from the transformed BiG

Mito-Split-GFP strains (Related to Figure 5C and F).
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the nucleoplasm and cell junctions where it is required for RNA-mediated gene silencing (RNAi) by

the RNA-induced silencing complex (RISC) (Hammond et al., 2000). In some studies, Ago2 was sug-

gested to be associated to mitochondria, but it remains unclear whether it localizes at the external

surface or inside the organelle (Barrey et al., 2011; Shepherd et al., 2017). Using four different

algorithms a potential MTS could not be predicted in Ago2 proteins from human, mouse, Bos tau-

rus, Danio rerio andDrosophila melanogaster, casting doubts on the mitochondrial import of Ago2

(Figure 5D). To help resolve this question, the BiG Mito-Split-GFP yeast strain was transformed with

plasmids expressing mouse and human Ago2b11ch proteins (MmuAgo2b11ch and HsaAgo2b11ch,

respectively, Supplementary files 3 and 4). Expression of each of these GFPb11ch-tagged constructs

was confirmed by WB, and both generated a solid and specific GFP fluorescence restricted to mito-

chondria (Figure 5E and F). These observations provide strong evidence that in addition to a cyto-

solic and nuclear location, Ago2 is also transported into mitochondria and is really a multi-localized

protein with a mitochondrial echoform.

Discussion

Initially designed to study protein-protein interactions and solubility, the Split-GFP technology was

almost immediately hijacked to track protein localization in various cell types and compartments

(Hyun et al., 2015; Kaddoum et al., 2010; Kamiyama et al., 2016; Külzer et al., 2013; Pinaud and

Dahan, 2011; Van Engelenburg and Palmer, 2010). It has also been used to study the mitochon-

drial localization of PARK7 upon nutrient starvation (Calı̀ et al., 2015), and to detect remodeling of

MERCs (mitochondria-ER contact sites) in mammalian cells (Yang et al., 2018). Recently, Kakimoto

and coworkers developed in yeast and mammalian cells a Split-based system to analyze inter-organ-

elles contact sites (Kakimoto et al., 2018). However, in these approaches both GFPb1-10 and GFPb11

were anchored to proteins either translated in the cytosol or following the secretory pathway.

Although the latter may avoid nonspecific interaction or reconstitution of the two GFP parts, we

bring herein proofs that the simultaneous synthesis of both fragments in the cytosol, coupled to their

high affinity to self-assemble, may induce potential false-positive GFP emission (Figure 2F).

To bypass this issue, we describe herein a new and robust Split-GFP system where the first 10

segments of beta barrel GFP (GFPb1-10) is expressed from the mitochondrial genome and translated

inside the organelle without interfering with mitochondrial function (Figure 1C and D). The remain-

ing beta barrel is concatenated (GFPb11ch), tagged to the protein of interest and expressed from

cytosolic ribosomes. As a result, any detected GFP fluorescence obligatory originates from the

organelle thereby demonstrating a mitochondrial localization for the tested proteins (Figure 6A–B).

This system was first successfully tested with two mitochondrial proteins (Atp4 and Pam16), and a

cytosolic one (Pgk1) as a negative control. Moreover, the mitochondrial echoform of the cytosolic

glutamyl-tRNA synthetase (mtecERS) encoded by the GUS1 nuclear gene was also detected with the

BiG Mito-Split-GFP system (Figures 2, 3, 4 and 6A). As we already showed, synchronous release of

cERS and cMRS from the cytosolic anchor Arc1 protein is required for a coordinated expression of

mitochondrial and nuclear ATP synthase genes (Frechin et al., 2009; Frechin et al., 2014). Mito-

chondrial relocation of cERS is consistent with the functional plasticity of caaRSs with multiple loca-

tions in cells. Using GFPb11ch-tagged N-ter segments of cERS, we localized its cryptic MTS within the

first 30 aa residues. This region lacks amphiphilic residues (residues 15–28) and folds into a b-strand-

loop-a!helix motif different than regular MTSs (Roise et al., 1988; Simader et al., 2006; Figure 4).

These findings demonstrate that the BiG Mito-Split-GFP system allows not only to visualize in living

cells the mitochondrial pool of proteins with multiple cellular locations, but also to decipher their

non-conventional MTSs.

Recent efforts made to identify mitochondrial proteins and assign their submitochondrial localiza-

tion revealed an exquisite precision (Morgenstern et al., 2017). However, resolving mitochondrial

proteomes is challenging due to the difficulty of obtaining pure mitochondria and because many

proteins transiently localize in mitochondria and are found elsewhere in cells. Up to 10–20% of the

yeast mitoproteome was suggested to be composed of proteins with another location in cells (i.e

the cytosol, the nucleus, ER. . .) (Ben-Menachem and Pines, 2017; Morgenstern et al., 2017). Our

BiG Mito-Split-GFP system will be especially helpful to resolve these proteome complexities. This

system was here applied to proteins involved in tRNA aminoacylation, some of which are well-known

to relocate in different compartment to fulfill a wide range of cellular activities (Han et al., 2012;
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Figure 6. Schematic of the BiG Mito-Split-GFP system and its applications. (A) Using our engineered strain, we could show the dual localization of

echoforms in the aaRS family of proteins and foster its power by studying localization of heterologous proteins originating from plants, mice and

human. (B) The BiG Mito-Split-GFP strain was generated by integrating the sequence encoding the first 10 beta barrel segments into yeast

mitochondrial DNA, and by either expressing any protein of interest fused to the 11th GFP segment from a plasmid or by integration in yeast nuclear

Figure 6 continued on next page
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Ko et al., 2000; Yakobov et al., 2018). In this way, we provide strong evidence that cFRS2 and

cytecHRS are dual localized as was observed for cERS, which suggests that these proteins may have

additional roles beyond translation (Figure 6A). Being dually localized in the cytosol and mitochon-

dria, and since there is no mtecFRS1, it can be inferred that the catalytic a-subunit (cFRS2) is not inev-

itably in complex with the b-subunit within the a2b2 heterotetrameric form of cFRS. It will be

interesting to test whether these findings in yeast extend to heterotetrameric cFRS from other eukar-

yotes, including humans. A bona fide mtFRS (encoded by the MSF1 gene) that was shown to func-

tion as a monomer is essential to generate mitochondrial Phe-tRNAPhe (F-mttRNAF) in mitochondria

(Sanni et al., 1991). This further supports the hypothesis that mtecFRS2 is not required to produce

F-mttRNAF but more likely has a non-canonical yet-to-be-discovered function. Our failure to detect a

mitochondrial echoform for cQRS is consistent with our previous findings (Frechin et al., 2009) that

the only source of Q-mttRNAQ in mitochondria is provided by the relocation of mtecERS into the

organelle (Figure 3 and Figure 3—figure supplement 1) de concert with the tRNA-dependent Gat-

FAB Adt (Frechin et al., 2014). This definitely casts in doubt the previous proposal of the existence

of a cQRS mitochondrial echoform (Rinehart et al., 2005). In agreement with our results

(Figure 3C), mitochondrial echoforms of cCRS were also detected in a recent study and shown to

result from alternative transcription and translation starts (Nishimura et al., 2019), thereby unravel-

ing how mtCRS is expressed from the CRS1 gene and rationalizing how mitochondrial Cys-tRNACys

is produced.

Having identified new mitochondrial echoforms of caaRSs, we wondered if they carry in their

N-terminal regions some common specific sequence or structural features possibly driving mitochon-

drial import. No specific motif was found using MAST/MEME analysis (Bailey et al., 2009), and there

was no significant sequence similarity (as tested with Blast) (Figure 4—figure supplement 1). All but

mtecARS show at least one a!helix within their 50 first aa residues, and most (except cERS) are

enriched in positively- vs negatively-charged aa residues, as in classical mitochondrial targeting

sequences. Due to the lack of 3D structures, we cannot rule out that these N-termini adopt some

specific ternary structure that are important for mitochondrial localization. As we have shown, most

of the cytosolic form of cERS interacts with Arc1 in fermenting yeast, but during the diauxic shift,

Arc1 expression is repressed, allowing the generation of a free pool of cERS able to relocate into

mitochondria. Thus, in the case of this caaRS, interactions of its N-terminal domain seem to be

important to distribute it between the cytosol and mitochondria. Future work is required to know

whether such a mechanism operates also for the other dually localized caaRSs.

Our BiG Mito-Split-GFP system requires modifications of the mitochondrial genome, which can

be achieved in only a limited number of organisms (S. cerevisiae Bonnefoy and Fox, 2001 and C.

Reinhardtii Remacle et al., 2006). However, due to the good evolutionary conservation of mitochon-

drial protein import, we reasoned that the system we developed in yeast could be used to test pro-

teins of various eukaryotic origins, and we present evidence that this is indeed the case (Figure 5;

Figure 6C). For instance, we showed that the mammalian Ago2 protein (Hsa- and MmuAgo2, Fig-

ure 5) heterologously-expressed in yeast localize inside mitochondria. This protein was suggested to

be exclusively located at the external surface of mitochondria in human cells where it would help the

transport of pre- and miRNAs into the organelle, as do numerous nuclear-encoded pre- and miRNAs

(Bandiera et al., 2011; Barrey et al., 2011; Kren et al., 2009). Several studies have suggested that

mitochondrial miRNAs, also termed mitomiRs, play a role in apoptosis (Kren et al., 2009), mitochon-

drial functions (Das et al., 2012), and translation (Bandiera et al., 2011; Jagannathan et al., 2015;

Li et al., 2016; Zhang et al., 2014), and this would require the mitochondrial import of Ago2

(Bandiera et al., 2011; Das et al., 2012; Jagannathan et al., 2015; Li et al., 2016; Zhang et al.,

2014). However, the import of mitomiRs is still poorly understood and several possible import mech-

anisms have been evoked (Barrey et al., 2011; Shepherd et al., 2017). Our unambiguous detection

Figure 6 continued

DNA. As opposed to regular GFP-tagging where visualizing an echoform ultimately results in a GFP signal diffusing in the entire cell, our BiG Mito-

Split-GFP system abolishes the fluorescence originating from cytosolic echoform to only display a specific mitochondrial signal. Further applications

range from high-throughput experiments to identify relocating proteins involved in mitochondria homeostasis or metabolism, to identify non-

conventional MTSs or seek for mitochondrial localization of heterologous proteins.
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of Ago2 inside mitochondria of yeast cells expressing this protein sheds new light on its potential

role in miRNAs import.

The yeast BiG Mito-Split-GFP system we describe here is designed to point out mitochondrial

echoforms. It is robust, not expensive and can be used to test proteins from various organisms. This

new approach has certainly many potential applications and opens new avenues in the study of mito-

chondria and their communications with other compartments of the cell.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Genetic reagent
(S. cerevisiae)

BiG Mito- Split-GFP This study RKY176 strain with
ADE2 gene
(�+atp6::GFPb1-10
5‘UTRCOX2 ATP6 3
‘UTRCOX2)

Genetic reagent
(S. cerevisiae)

BiG Mito- Split-
GFP+Pgk1b11ch

This study RKY176 strain
(PGK1:: b11ch::TRP1)

Genetic reagent
(S. cerevisiae)

BiG Mito- Split-
GFP+PAM16b11ch

This study RKY176 strain
(PAM16:: b11ch::TRP1)

Genetic reagent
(S. cerevisiae)

BiG Mito- Split-
GFP+cERSb11ch

This study RKY176 strain
(GUS1:: b11ch::TRP1)

Antibody Anti-GFP
(Mouse polyclonal)

Sigma Cat# G1544 WB (1:5000)
Called GFP N-ter
in Figure 2C
recognizes GFPb1–10

Antibody Anti-GFP (Mouse
monoclonal IgG1k
clones 7.1 and 13.1)

Roche Cat# 11814460001 WB (1:5000)
Called GFP polyclonal
in Figure 2C
recognizes GFPb11

Antibody Anti-Pgk1 (Mouse
monoclonal IgG1,
clone 22C5D8)

Molecular Probes Cat# 459250 WB (1:5000)

Recombinant
DNA reagent

pAG414-pGPD-
b11ch (plasmid)

This study Template vector used
for all constructs.
Cloning done by
Gibson assembly

Chemical
compound, drug

MitoTracker Red CMXRos ThermoFisher Cat# M7512 Mitochondria staining

Chemical
compound, drug

0.5% (v/v) 2,2,2-
Trichloroethanol

Sigma Cat# T54801 Used to detect total
protein loading in
SDS-PAGE, referred
to Loading control

Construction of plasmids
ATP6 gene flanked by 75 bp of 5‘UTR and 118 bp of 3‘UTR of COX2 was synthesized by Genescript

and cloned at the EcoRI site of pPT24 plasmid bearing the sequence of COX2 gene along with its

UTRs (Thorsness and Fox, 1993), giving pRK49-2. The GFPb1-10 sequence (optimized for mitochon-

drial codon usage) encoding the first ten b-strands of GFP flanked by the regulatory sequences of

ATP6 gene and BamHI/EcoRI sites was synthesized by Genescript. The BamHI-EcoRI DNA fragment

was cloned into pPT24 plasmid, giving the pRK67-2. The sequences of inserts were verified by

sequencing.

The GFPb11ch coding sequence, synthesized by Genescript, was subcloned into the pAG414

pGPD-ccdB vector to generate the pAG414pGPD-ccdBb11ch. All genes encoding cytosolic or mito-

chondrial proteins were amplified from genomic DNA using the PrimeSTAR Max polymerase accord-

ing to the manufacturer instructions (Takara), purified by PCR clean up (Macherey-Nagel) and

subcloned either by Gateway (Thermofisher) (Katzen, 2007) or Gibson assembly (NEB)
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(Gibson et al., 2010; Gibson et al., 2009) according to the manufacturer’s instructions (see Table

S2).

Construction of the BiG Mito-Split-GFP strain
The genotypes of strains used in this study are listed in Table 1. The r

+ indicates the wild-type com-

plete mtDNA (when followed by deletion/insertion mutation it means the complete mtDNA with a

mutation). The r
- synthetic genome (r-S) was obtained by biolistic introduction into mitochondria of

r
0 DFS160 strain (devoid of mitochondrial DNA) of the plasmids (pRK49-2 or pRK67-2) bearing indi-

cated genes. The integration of ATP6 gene into the mtDNA under the control of regulatory sequen-

ces of COX2 was done using a previously described procedure (Steele et al., 1996). The pRK49-2

plasmid was introduced into mitochondria of DFS160 r
0 strain by ballistic transformation using the

Particle Delivery Systems PDS-1000/He (BIO-RAD) as described (Bonnefoy and Fox, 2001), giving

the r
-S strain RKY89. For the integration of the ATP6 gene at the COX2 locus, we first constructed a

r
+ strain (RKY83, Fig. S2A) with a complete deletion of the coding sequence of ATP6 (atp6::ARG8m)

and a partial deletion in COX2, cox2-62 (Table 1), by crossing YTMT2 (Mata derivative of strain

NB40-3C carrying the cox2-62 mutation (Steele et al., 1996) and MR10 (atp6::ARG8m) (Rak et al.,

2007). After crossing, cells were allowed to divide during 20–40 generations to allow mtDNA recom-

bination and mitotic segregation of the double mutation. The double atp6::ARG8m cox2-62 mutant

colonies were identified by crossing with the r
-S strain SDC30 (Duvezin-Caubet et al., 2003) that

carries ATP6 and COX2 which restored the respiratory competence and by crossing with the YTMT2

strain, r+cox2-62, which did not restored the respiratory competence of the double mutant. Next,

the r
-S strain RKY89 was crossed with strain RKY83. This cross resulted in the respiratory competent

progenies, named RKY112, which were growing on minimal medium without arginine (Table 1,

Figure 1B and S2B). The ectopic integration of the ATP6 gene into COX2 locus was verified by

PCR using oligonucleotides oAtp6-2, oAtp6-4, o5‘UTR2 and o5‘UTR1 (Table S1, Fig. S2D).

To integrate GFPb1-10 into ATP6 locus the r
-S strain RKY172 was obtained by biolistic

transformation of DFS160r0 with pRK67-2, as described above. RKY172 was crossed with

RKY112, heterokaryons were allowed to divide during 20–40 generations to allow mtDNA recombi-

nation and mitotic segregation (Fig. S2C). The RKY176 progenies were selected by their respiratory

competence and inability to grow on arginine depleted plates. The correct integration of the GFPb1-

10 gene into ATP6 locus was verified by PCR using oligonucleotides oAtp6-1, oAtp6-10, oXFP-pr

and oXFP-lw (Table S1, Fig. S2E). Finally, ADE2 WT sequence was amplified from the genomic DNA

of a BY strain using oligonucleotides ADE2 Fw and ADE2 Rv (Table S2) and transformed into the

RKY176 strain. Red/white colonies were then screened on adenine depleted plates to select ADE2-

bearing RK176 strain.

Media and growth conditions
Yeast cell culture media and their composition: complete glucose YP medium (1% Bacto yeast

extract, 1% Bacto peptone, 2% glucose, 40 mg/l adenine), complete YP Gal (1% Bacto yeast extract,

1% Bacto peptone, 2% galactose, 40 mg/l adenine), synthetic media composed of 0.67% (w/v) yeast

nitrogen base without amino acids (aa), 0.5% (w/v) ammonium sulfate, either 2% (w/v) glucose (SC),

galactose (SC Gal) or glycerol (SC Gly) and a mixture of aa and bases from Formedium (Norfolk, UK).

Low sulfate medium LSM contained 0.67% (w/v) yeast nitrogen base without aa and ammonium sul-

phate, 2% galactose and 50 mg/L histidine, tryptophan, leucine, uracil, adenine, and arginine. The

solid media contained 2% (w/v) of agar. Every strain was grown at 30˚C with rotational shaking to

mid-log (OD600 nm = 0.7). SC Gal was filtered on 25 mm filters and not autoclaved before use.

Pulse-labelling of mitochondrially-synthesized proteins and ATP
synthesis
Labeling of mitochondrial translation products was performed using the protocol described by

Barrientos et al., 2002. Yeast cells were grown to early exponential phase (107 cells/mL) in 10 mL of

liquid YP Gal medium. Cells were harvested by centrifugation and washed twice with LSM medium

then suspended in the same medium and incubated for cysteine and methionine starvation for 2 hr

at 28˚C with shaking. Cells were suspended in 500 mL of LSM medium, and 1 mM cycloheximide was

added. After a 5 min incubation at 28˚C, 0.5 mCi of [35S]methionine and [35S]cysteine (Amersham
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Biosciences) was added and cell suspension was further incubated for 20 min at 28˚C. Total proteins

were isolated by alkaline lysis and suspended in 50 mL of Laemmli buffer. Samples with the same

level of incorporated radioactivity were separated by SDS-PAGE in 17.5% (w/v) acrylamide gels (to

separate Atp8 and Atp9) or 12% (w/v) acrylamide containing 4 M urea and 25% (v/v) glycerol (to

separate Atp6, Cox3, Cox2 and cytochrome b). After migration, the gels were dried and [35S]-radio-

labeled proteins were visualized by autoradiography with a PhosphorImager after a one-week expo-

sure. To measure ATP synthase activities in the RKY112 strain, mitochondria were prepared by the

enzymatic method as described in Guérin et al., 1979. For the rate of ATP synthesis, the mitochon-

dria (0.15 mg/mL) were placed in a 1 mL thermostatically controlled chamber at 28˚C in respiration

buffer (0.65 M mannitol, 0.36 mM EGTA, 5 mM Tris-phosphate, 10 mM Tris-maleate pH 6.8)

(Rigoulet and Guerin, 1979). The reaction was started by adding 4 mM NADH and 750 mM ADP;

100 mL aliquots were taken every 15 s and the reaction was stopped by adding 3.5% (v/v) perchloric

acid and 12.5 mM EDTA. Samples were neutralized to pH 6.5 by KOH and 0.3 M MOPS. ATP was

quantified using the Kinase-Glo Max Luminescence Kinase Assay (Promega) and a Beckman Coulter’s

Paradigm Plate Reader.

Flow cytometry analysis
5 mL of cells stably expressing Pam16b11ch and Pgk1b11ch strains (see Table 1) grown in YPD to con-

fluence were diluted in 4 mL of SC Gal and grown overnight to reach mid-log phase. They were then

diluted again in SC Gal and grown for 6 hr. Cells were then centrifuged and resuspended in water,

passed for GFP detection on a BD FACS Canto II cytometer and Data analysis was performed using

FlowJo.

Proteins extraction and western blots
10 mL of cells grown to mid-log phase were harvested and spin down 5 min at 2000 � g at room

temperature (RT). Cells were suspended in 500 mL of deionized water, 50 mL of 1.85 M NaOH was

added and the mixture was incubated 10 min on ice. After addition of 50 mL of TCA 100% and 10

min of incubation on ice, the total precipitate was pelleted by centrifugation 15 min at 13000 � g at

4˚C. After removing the supernatant, pellets were suspended in 200 mL of Laemmli buffer (1�) sup-

plemented with 20 mL of 1M Tris Base pH 8.

For each strain, 10 mL of total proteins were separated by SDS-PAGE on 8-, 10- or 12% (w/v) poly-

acrylamide gels prior to electroblotting with a Trans-Blot Turbo system (BIO-RAD) onto PVDF mem-

branes (BIO-RAD, #1704156). Detection was carried out using mouse monoclonal IgG anti-GFP

primary antibodies (1:5000; Roche Clone 7.1 and 13.1) + mouse polyclonal for the recognition of

GFPb1-10 (1:5000, Sigma #G1544), and mouse monoclonal IgG1 anti-Pgk1 primary antibodies

(1:5000; Molecular Probes Clone 22C5D8). Secondary antibodies were Goat anti-mouse IgG (H+L)

HRP-conjugated antibodies (BIO-RAD; #1706516), at a concentration of 1:10000. ECL-plus reagents

(BIO-RAD) was used according to the manufacturer’s instructions and immuno-labeled proteins were

revealed using a ChemiDoc Touch Imaging System (BIO-RAD). Total load of protein (Loading con-

trol) was assessed by UV detection using a ChemiDoc Touch Imaging System (BIO-RAD; Stain-free

procedure) and detected by addition of 0.5% (v/v) 2,2,2-Trichloroethanol (Sigma #T54801) to the

30% acrylamide/bis-acrylamide solution.

Image acquisition and staining
Cells were incubated overnight in the appropriate media, diluted to an OD600 nm of 0.3 prior to

microscopy studies and stained after 6 hr of growth at 30˚C. For mitochondria staining, cells were

centrifuged 1 min at 1500 � g at room temperature, suspended in 1 mL of SC Gal supplemented

with Red-Mitotracker CMXRos at a final concentration of 100 nM (Molecular Probes), and incubated

15 min at rotational shaking at 30˚C. Cells were washed three times in one volume of deionized

water, and suspended in 100 mL of deionized water for microscopic studies. Epifluorescence images

were taken with an AXIO Observer d1 (Carl Zeiss) epifluorescence microscope using a 100 � plan

apochromatic objective (Carl Zeiss) and processed with the Image J software. Images for 3D recon-

struction were taken using a confocal LSM 780 high resolution module Airyscan with a 63 � 1.4 NA

plan apochromatic objective (Carl Zeiss) controlled by the Zen Black 2.3 software (Carl Zeiss). Z-stack

reconstruction was performed on the IMARIS 9.1.2 (Bitplane AG) software.
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III.2. 

The mitochondrial role of 
c

c
ERS as the ND-ERS responsible for the aminoacylation of 

m
tRNAGln with Glu 

in the mitochondria (Frechin et al. ). They also demonstrated that relocalization of 
c
ERS 

inside the mitochondria occurs during the diauxic shift, when ARC1 expression is repressed 

(Frechin et al., 2014). In these growth conditions, the newly synthesized 
c
ERS cannot associate 

with the cytosolic anchor protein Arc1. By using the BiG Mito-Split-GFP strain we developed 

we were able to visualize the mitochondrial pool of 
c

In order to identify 
c
ERS’ MTS, we created GFP

ß11ch
-tagged 

c
ERS deletion mutants and could 

c
ERS sequence. This 

c ß11ch

sustain mitochondrial translation. In this regard, strains expressing 
c ß11ch

 as the sole 

copy should not be able to grow under respiration conditions. To test this, I used a 

 strain in which the endogenous GUS1 essential gene has been deleted (GUS1::HIS5) 

and transferred onto a plasmid carrying the selection gene URA3 GUS1). I 

ß11ch
 and the auxotrophy marker 

TRP1 (Figure ChI.R-1A). In order to chase the plasmid containing the wild-type GUS1 gene, 

by URA3 GUS1 (Ura+ cells) will not be able to 

grow on medium supplemented with 5-FOA, while cells that chased the plasmid (Ura- cells) 

will grow, provided that the 
c ß11ch

 mutant can complement the absence of GUS1. I was 

indeed able to obtain clones on medium supplemented with 5-FOA indicating that 
c ß11ch

 

can be the sole 
c
ERS. The absence of wild-type (WT) 

c
ERS and expression of 

c ß11ch
 were 

Figure ChI.R-1B). 

I then performed drop tests on YPGly respiration medium using these strains (Figure ChI.R-

1C). Unexpectedly, the strains expressing the truncated version as the sole 
c
ERS were still 

able to grow on the respiration medium. These somewhat contradictory results have to be 

analyzed in the light of those obtained with the BiG Mito-Split-GFP microscopy observations 

of the same mutant and for which there was an unambiguous absence of mitochondrial 

c ß11ch
 still confers the capacity of growing on YPGly and thus 

of having a robust mitochondrial translation cannot be explained by a differential expression 
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of the mutant protein between the two experiments, that could have explained the absence 

transformed with a KanMX4 deletion cassette to replace one GUS1 allele and obtain a 2n 

GUS1 and ) by 

c
ERS , 

c

 or 
c

 (Figure ChI.R-1D). After selection of the transformants, the 

integration of the plasmids at the URA3

Western blotting using anti-HA primary antibody (Figure ChI.R-1E). The diploids were then 

incubated on sporulation medium and dissected to obtain tetrads. The spores obtained were 

phenotyped (absence and presence of the GUS1 constructions was determined on YPD + 

HA antibodies (Figure ChI.R-1F). For the spore containing the WT GUS1 gene and the 
c
ERS  

construction, two bands can be observed with the anti-ERS antibody. On the contrary, for 

the other spores tested, only the band corresponding to the HA-tagged constructions is 

GUS1 deletion and that the 

spores are indeed . The spores containing the constructions of interest were spotted on 

YPD (fermentation) and YPGly (respiration) plates respectively to compare the growth rate of 

each spore to WT cells and to assess their capacity to sustain the mitochondrial translation in 

respiring cells (Figure ChI.R-1G

of  with 
c c

assays on YPGly plates, both 
c

 and 
c

 display growth rates similar to the 

WT cells and  cells complemented with 
c
ERS

c
ERS N-terminus 

(
c

we can observe the apparition of suppressor colonies in the  spores complemented 

with 
c

 and even more with 
c

 (Figure ChI.R-1G). This could indicate that 

an adaptative mechanism is used by cells to sustain mitochondrial growth in absence of an 

import-competent 
c
ERS. 

In contrary to the spores, the BiG Mito-Split-
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GFP contains both the WT 
c
ERS and mutant 

c ß11ch
. One could imagine that upon loss 

of WT 
c
ERS, 

c c

route, that would be MTS-independent or depend on a targeting signal that has yet not 

c ß11ch 
unambiguously 

proves that the protein is not imported inside mitochondria and that the growth on YPGly is 

would be to analyze the suppressor colonies obtained by whole genome sequence analysis 

to identify mutated genes that could have an impact on mitochondrial translation and more 

m
tRNAGln aminoacylation. One hypothesis would be that in the suppressors the 

mitochondrial ERS (
m

ERS) gene (MSE1) has accumulated mutations allowing the 
m

ERS to be 

capable of charging 
m

tRNAGln. Another possibility is that the gene encoding the cytosolic QRS 

(
c
QRS, GLN4) has accumulated mutations allowing import of a small fraction of it inside the 

mitochondria. The latter would be easy to test since if 
c
QRS is imported to charge 

m
tRNAGln 

III.3. 
ß11ch

 fragment

is always a risk that the protein undergoes N-terminal degradation or cleavage, resulting in 

ß11ch
 

tag resulting from protein degradation could be imported in the mitochondria and trigger 

GFP reconstitution. To assess this question, I created a plasmid expressing the GFP
ß11ch

 tag 

under control of the GPD promoter and transformed the BiG Mito-Split-GFP strain. Since the 

GFP
ß11ch

 tag has a really low molecular weight (

concentrations and Tris-Tricine gels to verify its expression by Western blot. However, I could 

never obtain a signal for the GFP
ß11ch

 tag. I nonetheless performed microscopy analyses and 

ß11ch
 tag is expressed and 

localized in the mitochondrial matrix (Figure ChI.R-2). The main advantage of the BiG Mito-

Split-GFP tool, is that we can ensure that the reconstitution of the GFP did not occur prior 

to the mitochondrial import since the GFP
ß1-10 

fragment is translated and sequestered in the 

mitochondrial matrix. Thus, the GFP
ß11ch

 tag must be imported in the mitochondria even if 

it does not contain any recognizable MTS. In addition to the TOM complex, mitochondria 
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Split-GFP DIC Merge

WT

GFPß11ch

GFPß11ch

Figure ChI.R-2:  Visualization of the GFPß11ch fragment mitochondrial relocation. BiG Mito-Split-GFP WT (upper panel) 

and  (lower panel) were transformed with the  p414-pGPD-GFPß11ch plasmid. Selected transformants were grown 

in SCGal-Trp medium for microscopy observations. 
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mitochondrial porin Por1. This channel is important for the import of small molecules up 

to 5 kDa in size (Lemasters and Holmuhamedov, 2006). Even if the GFP
ß11ch

 tag is bigger 

POR1 gene in the BiG Mito-Split-GFP strain and 

performed microscopy analyses to assess the mitochondrial localization of the GFP
ß11ch

 tag 

(Figure ChI.R-2). The replacement of POR1 by the KanMX4

ß11ch
 import in the mitochondrial 

via the TOM complex. However, the import of GFP
ß11ch

 in the mitochondria seems to be a rare 

GFP signal. 

III.4. Mitochondria visualization in autophagy conditions

During macroautophagy, the autophagosomes that contain organelles, proteins and 

other cellular constituents are delivered to the vacuole for degradation. During this process, 

mitochondria can be sequestered and brought to the vacuole. In order to examine the fate of 

mitochondria during autophagy, I decided to use the BiG Mito-Split-GFP. The advantage is that 

GFP reconstituted in the mitochondria is stable and cells can be further treated with different 

c
ERS

ß11ch
 

either under control of GPD promoter or GUS1 promoter. In order to visualize vacuoles that are 

grown in fermentation conditions, the mitochondria form a network that is wrapped around 

the vacuole, but the absence of colocalized FM4-64 and GFP signals indicate that the two 

organelles do not closely interact (Figure ChI.R-3A). On the contrary, when cells are incubated 

in autophagy medium (SD-N) overnight, the mitochondria network is completely abolished 

and mitochondria adopt a dot shape. Interestingly, the GFP signal is very close from the FM4-

64 vacuolar signal. It even seems that mitochondria are not only localized at the vacuolar 

periphery but in the vacuole (Figure ChI.R-3A). Since the vacuole staining with FM4-64 is not 

optimal in autophagy conditions, I transformed the BiG Mito-Split-GFP strain with a plasmid 

4

is a component of the autophagosomes and can thus be used to follow the autophagic bodies 

4
, the cells were incubated during 

-GFP DIC ge

WT

GFP

GFP

e ChI.R-2:  Visualization of the GFP fragment mitochondrial relocation. o-Split-GFP WT (upper panel) 

and  (lower panel) were transformed with the  p414- -GFP transformants were grown 

in SCGal-Trp medium for microscopy observations. 
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Figure ChI.R-3B). This strain was subsequently 

transformed with the integrative plasmid expressing Pam16
ß11ch

 (promoter GPD) to visualize 

the mitochondria via the GFP signal. Again, the mitochondria adopt a dot shape and the GFP 

Figure 

ChI.R-3C). However, at this step it not possible to determine whether the mitochondria are 

close to the autophagosomes or in these compartments for subsequent vacuolar targeting 

and degradation. In order to determine if the mitochondria are degraded in the vacuoles, I 

fused the GFP
ß11ch

under low-nitrogen conditions. This protein is a vacuolar resident protein and should thus 

not be degraded in this compartment. The idea was that if mitochondria are degraded in the 

vacuole during autophagy, the GFP
ß1-10 

fragment should be released in the vacuolar lumen 

ß11ch ß11ch
 was 

in the vacuole (Figure ChI.R-3D). The absence might be due to the rapid degradation of 

the autophagic bodies and thus of the GFP
ß1-10

 fragment in the vacuolar lumen. In order to 

accumulate autophagic bodies in the vacuolar lumen, I deleted the PEP4 gene encoding a 

vacuolar protease in the BiG Mito-Split-GFP strain. The replacement of PEP4 by the KanMX4 

ß11ch
 was expressed in this strain, we could 

the GFP
ß1-10 

fragment was released in the vacuolar lumen (Figure ChI.R-3D). I could thus 

IV. Conclusion & perspectives

Thanks to the BiG Mito-Split-GFP we developed, it is now possible to visualize the 

mitochondrial echoforms of proteins that are dual- or multi-localized in the cell. Its utilization 

c
ARS, 

c
GRS1, 

c
HRS and 

c
VRS produced upon alternative transcription/

translation initiation are indeed mitochondrial echoforms, as previously described in the 

literature ( et al. et al., 2012 Natsoulis et 

al., Turner et al., 2000) (Figure ChI.CP-1). Unexpectedly, the shorter version of 
c
HRS, 

which was thought to be MTS-deprived and thus logically the cytosolic echoform, was also 

Figure ChI.CP-

1). We hypothesized that the MTS of 
c
HRS may be longer than the one initially predicted or 
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Figure ChI.CP-1: Mitochondrial localization of caaRS after diauxic shift. Summary of results obtained with the BiG 

Mito-Split-GFP system. The mitochondrial localization of cHRS deprived of the previously identified MTS either indicate 

that the MTS is longer than expected or that both cHRS can localize in the mitochondria. In addition, a mitochondrial 

echoform for cFRS2 was identified despite the presence of a mitochondrial mtFRS. The two caaRSs thus may exert 

non-canonical functions upon mitochondrial localization. 
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that both isoforms indeed localize in the mitochondria. One could be dedicated to translation 

c
FRS2 

mitochondrial echoform was also an unexpected result since a mitochondrial 
mt

FRS is already 

present (Figure ChI.CP-1). We also deduced that the 
mte

function when localized in the mitochondria. The BiG Mito-Split-GFP system has also proven 

and human proteins. In the case of human and mouse Ago2, the prediction algorithms could 

their mitochondrial localization, making the BiG Mito-Split-GFP system a powerful tool in the 

the organismal origin of the tested protein. Moreover, the BiG Mito-Split-GFP system can be 

used to identify these cryptic MTS, or at least to determine their localization in the protein 

sequence as was done with 
c

st residues as essential 

for mitochondrial localization. The apparition of suppressor colonies in the growth assays 

performed in respiration conditions when 
c
ERS deleted for its MTS indicates that the cells 

somehow develop adaptive mechanisms to bypass the absence of 
mte

cERS or to support 
c
ERS 

mutant mitochondrial import. The whole-genome sequencing analysis of these suppressors 

colonies could help us identify these alternative mechanisms. 

Nonetheless, the BiG Mito-Split-GFP system has not been developed or explored to 

its maximum of possibilities and the applications are vast and diverse. I will present here 

the high-priority ones. Over 1200 proteins have been annotated to yeast mitochondria in 

the Saccharomyces Genome Database and their number is constantly increasing (Malina et 

al ). Moreover, it was estimated that a third of the mitoproteome is dual-localized 

(Ben-Menachem et al., 2011). However, the mechanisms allowing correct distribution of 

ß11ch
-tagging of yeast proteins, we could 

gain insight on mitoproteome composition and on cryptic MTSs by aligning the protein 

sequences or by comparing crystallographic structures of mitochondrial echoforms. For 

st residues of 
c
ERS that are essential for mitochondrial import and the 

N-terminal of Arc1 (which is also localized in the mitochondria) are made of a short ß-strand 

followed by an -helix. This structural signature (rather than a sequence signature) could be 

found in other mitochondrial proteins and thus represent a novel type of MTS. It would also be 
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Figure ChI.CP-2: Purification of HA-GFPß1-10 associated with GFPß11ch-tagged protein and determination of 

mitochondrial protein interactome. In order to determine the interactome (I1, I2, I3...) of protein mitochondrial 

echoform, an HA-tag will be added in N-terminal of the mtDNA encoded GFPß1-10 fragment. After cell lysis, the GFPß1-10

interacting with GFPß11ch-tagged protein will be purified by affinity chromatography (beads coupled to anti-HA 

antibodies). The competitive elution with HA peptides enables the purification of native protein together with its 

interactant. The interactome of the GFPß11ch-tagged mitochondrial protein will then be determined by mass 

spectrometry. 
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interesting to develop the N-terminal GFP
ß11ch

-tagging of proteins to identify mitochondrial 

proteins carrying unprocessed N-terminal MTSs.

three GFP
ß11

 strands were concatenated to form the GFP
ß11ch

-tag that can interact together 

with three mitochondrial GFP
ß1-10

. This is of particular interest for proteins that are less 

abundant in the mitochondria. It would be interesting to demonstrate that the concomitant 

reconstitution of three GFP indeed occurs and triggers a threefold increase in the GFP 

signal emitted. For this, the recombinant GFP
ß1-10

 fragment and GFP
ß11

 and GFP
ß11ch

 would 

in vitro 

reconstitution assays. The reconstitution of GFP can be analyzed by several approaches to 

see how many GFPs are actually reconstituted with GFPß
11ch

 (size-exclusion chromatography, 

ß1-10
 and GFP

ß11(ch)
 fragments 

self-assembling properties but we do not know with which strength they assemble nor in 

which conditions they can dissociate after reconstitution. This is particularly crucial for the 

Chapter II) to study the 

dynamics of protein localization upon stress and metabolic changes.

matrix and the intermembrane space (IMS). The BiG Mito-Split-GFP strain presented here 

submitochondrial compartments would also be interesting to explore using the BiG Mito 

Split-GFP strategy like the IMS which is at the center of numerous essential processes like 

the iron-sulfur cluster assembly and apoptosis (Herrmann and Riemer, 2010). In order to 

identify proteins that localize in the IMS and determine its proteome, the gene encoding 

the GFP
ß1-10

 fragment will have to be adequately fused to a mtDNA-encoded protein that is 

their mitochondrial and submitochondrial interactome remains challenging and based on 

GFP
ß1-10

 fragment of both matrix and IMS BiG Mito-Split-GFP strains (Figure ChI.CP-2). By 
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doing so, we will be able to purify the HA-GFP
ß1-10 

fragment along with the GFP
ß11ch

-tagged 

protein and its interactants in native conditions. The proteins will then be eluted using HA 

peptides and analyzed by mass spectrometry.
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I. Introduction

I.1. The fungal vacuole

The fungal vacuole is an acidic compartment, very dynamic and sensitive to different 

stresses, to carbon sources and to the cell status (Figure ChII.I-1). The fungal vacuole 

growing cells often have a multilobed vacuole while stationary-phase cells and cells in G1 

have a single large vacuole. A carbon source starvation will also trigger vacuole fusion, 

a phenomenon that is rapidly reversed by the addition of a carbon source (Jones et al., 

). The fungal vacuole and the mammalian lysosome share many similarities but also 

differ in their function and composition. For example, the fungal vacuole can sequester 

high concentrations of small molecules and ions, unlike the mammalian lysosome. Indeed, 

the vacuoles contain a number of metabolites among which phosphate, polyphosphate, aa, 

S 2+, Mg2+, Mn2+) and 

other ions (Jones et al ). 

There are multiple pathways that deliver cargo to the vacuole (Figure ChII.I-2). The 

endocytosed receptors and their cargo contained in endocytic vesicles fuse with the early 

Huotari 

and Helenius, 2011). For proteins from the late Golgi, two different routes are possible for 

late endosomes or multivesicular bodies (MVBs) that eventually fuse with the vacuole or they 

are directly delivered to the vacuole following the ALP pathway. The latter pathway requires 

vacuoles ( ). Another way to deliver proteins to the vacuole are the 

autophagosomes, which are generated mainly during starvation and which deliver proteins 

and organelles to the vacuoles ( ). The common feature of these 

SNAREs after membrane contact (Kümmel and Ungermann, 2014). However, vacuoles can 

bridge organelles together (Malia and Ungermann, 2016). 
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I.2. The vacuolar membrane

I.2.1. Lipid composition

The vacuolar membrane contains only a low level of ergosterol and other sterols (

et al.

phosphatidylethanolamine (PE), phosphatidylinositol (PtdIns), and phosphatidylserine (PS) 

( et al. ). Microscopy methods have also shown the presence of phosphorylated 

2
) and phosphatidylinositol 4-phosphate (PtdIns4P) ( et 

al., 2014 Obara et al. Takatori et al., 2016 Tomioku et al. ). 

and is asymmetrically distributed in the vacuole membrane since it is only present in the 

et al., 2014 Schu et al.

et al., 2014 Kihara et al., 2001
2

of total PtdIns in Saccharomyces cerevisiae (Mccartney et al., 2014) and is synthesized 

Yamamoto 

et al.
2
 level and vacuole 

fragmentation within approximately 10 min (Dove et al. ). The vacuolar fragmentation 

2

2

Gopaldass et al., 2017).  The vacuoles of fab1 mutant cells have 

(Yamamoto et al. ). The enlargement of vacuoles has been shown to have an impact on 

2
 also has an essential 

role in protein sorting at the late endosomes/MVB (Odorizzi et al. ). 

2
. Lipids thus need 

to be supplied to the vacuole by vesicular and non-vesicular pathways. Most vesicles coming 
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of ergosterol to the vacuole, Osh1 likely participates to the exchange of ergosterol and 

(Gatta et al., 2015

Henne et al., 2015 Manik et al., 2017 Murley et al., 2015 Toulmay and Prinz, 2012). On the 

vacuolar membrane (Elbaz-Alon et al., 2014 Hönscher et al., 2014). 

I.2.2. Vacuolar membrane domains

Interestingly, the vacuole morphology and its membrane organization drastically 

change according to growth conditions or upon stress. When nutrients in a medium are 

exhausted, yeast cells enter the stationary phase and undergo a metabolic shift from 

fermentation to respiration. In this condition, vacuoles fuse with each other to form a 

large vacuole that often takes a polyhedral shape (Figure ChII.I-3

intramembrane particles (IMPs), that mainly represent transmembrane proteins, locate at 

(Moeller and Thomson, ). The IMP-rich domains were also demonstrated to be enriched 

with the V-ATPase V
O
 subunit Vph1 and unsaturated lipids ( ). On 

like liquid-ordered (L
o
) domains. The sterols are provided by the lipophagy and subsequent 

pathway mediated by Ncr1 and Npc2 proteins (Tsuji et al., 2017). Other features of IMP-

L
o
 domains is their capacity to merge upon 

collision with each other, solve and dissolve reversibly upon temperature change and their 

higher content in more saturated and longer acyl chains of phosphatidylcholine (Klose et al., 

2012

also enriched with EGO complex component, Gtr2, and Ivy1 that interacts with EGO complex, 

Malia and Ungermann, 2016 Toulmay and Prinz, 

).

2
 level rapidly increases and vacuoles 

and IMP-rich domains (Figure ChII.I-3

2 2

formation (Takatori et al., 2016 L
O
 domain in 

stationary phase, but their ergosterol content is unknown. During hyperosmotic stress, the 
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vacuolar membrane constituting the nuclear-vacuole junction (NVJ) expands drastically, and 

Takatori et al., 

2016

cycloheximide treatment and weak acid stress ( ) (Figure ChII.I-3). 

domains depends on the ergosterol transport performed by Lct1/Lam6 at NVJ (Murley et al., 

2015

stationary phase (Tsuji et al., 2017) (Figure ChII.I-3). The ergosterol needed for domain 

formation is provided by the intralumenal vesicles of MVBs and its transport depends on the 

Müller et al  Tsuji et al., 2017). 

I.2.3. Vacuolar V-ATPase complex

The vacuolar-type V-ATPase is a multiprotein complex that uses ATP to transport protons 

(H+) from the cytosol to the vacuolar lumen (Figure ChII.I-4). The accumulation of H+ into the 

The V-ATPase is also necessary to maintain cytosolic pH homeostasis in a combined action 

with the plasma membrane ATPase Pma1 ( ). The V-ATPase is 

1
 and membrane V

O
 subcomplexes (Figure 

ChII.I-4A and B). The assembly of the two subcomplexes, that is required for V-ATPase 

activity, is reversible and controlled depending on different stimuli (Figure ChII.I-4C). The 

proteins required for assembly of the V-ATPase are all VMA (vacuolar membrane ATPase) 

genes, with the exception of the V
O

VMA 

gene exhibit a characteristic set of growth phenotypes. The VMA mutants display a loss of 

2+, an inability to grow in media buffered to 

neutral pH (pH 5.0 being the yeast optimal pH) and to use non-fermentable carbon sources 

(Kane, 2006). On the other hand, cells deleted of the V-ATPase V
O
 subunit Vph1 do not result 

in complete VMA phenotype, but have a largely reduced V-ATPase activity and grow slowly 

on YPD medium buffered to pH 7.5 (Manolson et al. ). 

The V
O

membrane proteins, with the exception of subunit d which is peripheral and tightly associated 

with the V
O
 subcomplex ( Parra et al., 2014 Sambade and Kane, 

2004). The proteolipids are inserted into the endoplasmic reticulum (ER) membrane upon 
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(Graham et al. ). The H+ pore of the V
o
 subcomplex is formed by subunits c, c’ and c’’, 

forming the the c-ring (Graham et al. ). Loss of a V
o
 subunit affects the assembly and 

stability of the remaining V
o
 subunits and prevents the assembly of the V-ATPase (Tomashek 

et al. ). The catalytic V
1

where ATP hydrolysis occurs (Parra et al., 2014). The subunits A and B form the catalytic ATP-

hydrolyzing portion of V-ATPase in the form of an A B  hexamer (Graham et al., 2000). Loss 

of a V
1
 subunit, with the exception of subunit H, does not affect the stability of the other V

1
 

components but prevents their assembly into the vacuolar membrane. Upon loss of subunit 

H, the V-ATPase complex assembles but remains inactive (Ho et al. ). In V
1
 mutant cells, 

the V
o
 subcomplex assembles, remains stable and is successfully transported to the vacuolar 

membrane. The energy provided by ATP hydrolysis will allow the rotation of the rotor shaft, 

composed of subunits D, F and d, which is connected to the membrane c-ring. For their 

transfer, H+ + exit the 

pore through subunit a ,encoded by the VPH1 gene, inside the vacuolar lumen (Parra et al., 

2014). The subunit F of V
1
 subcomplex has been proposed to be a stalk subunit bridging the 

two subcomplexes ( ). 

they have been demonstrated to be required for the assembly of functional V-ATPase. Loss 

of Vma12, Vma21 or Vma22 results in cells displaying phenotype characteristic of the VMA 

form a heterodimer that interacts with Vph1 (subunit a of V
O
 subcomplex) (Graham et al., 

). 

1 1

V
o
 subcomplex ( ) (Figure ChII.I-4C). In the V

1

, with EG
2
 and with the N-terminus of V

o

a bridge between the two subcomplexes and the interactions are disrupted and reformed 

upon V-ATPase disassembly and reassembly ( ). The V-ATPase 

disassembly occurs in response to glucose deprivation, exposure to less-preferred carbon 
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(Diakov and Kane, 2010 ). Upon glucose re-addition, the regulator of ATPase 

of vacuoles and endosomes (RAVE) complex is required for V-ATPase reassembly. The RAVE 

1
V

O
 complex and its absence results in unstable 

and inactive V-ATPase (Smardon et al., 2002 Smardon and Kane, 2007). Upon osmotic shock, 

P
2
 that interacts with Vph1 (Li et al., 2014

2
 has no effect on 

V-ATPase reassembly after glucose deprivation, indicating that the responses triggering 

V-ATPase reassembly after the two stimuli, are independent. 

I.3. Amino acid storage and sensing

I.3.1. Amino acids transporters

The aa pool available in the cell is strictly controlled in response to the nutritional 

the aa synthesis and degradation, the protein synthesis and the proteolysis. Among all 

the small molecules sequestered in the vacuole, ten different aa can accumulate at high 

concentrations, making the vacuole a reservoir for these aa (Ishimoto et al., 2012 Jones 

et al. Kitamoto et al. Messenguy et al. ). The 

vacuolar pool of aa is regulated by the import and export of aa across the vacuolar membrane 

and by the vacuolar hydrolytic enzymes, which degrade macromolecules (Figure ChII.I-5). 

aa), Thr, Ser, Ile, Leu, Tyr, Phe and Trp  (Ishimoto et al., 2012 Tone et al., 2015

of acidic aa (Asp and Glu) are excluded from this organelle and Val, Pro, Gly and Ala are only 

poorly enriched in vacuoles ( et al. Ishimoto et al., 2012). The stored aa 

are then redirected to the cytosol when the cells are under starvation conditions, to be used 

for de novo protein synthesis. Because of the concentration gradient between vacuole and 

cytosol, aa transport across the vacuolar membrane requires an active transport system, 

which relies on transporters from the amino acid/auxin permease (AAAP) family, the major 

Figure 

ChII.I-5 and Table ChII.I-1). These transporters are secondary active transporters that use 

the energy from the electrochemical H+-gradient generated by the V-ATPase to mediate 

+ symport (movement in the same direction) or antiport (movement in opposite 

directions). These active transporters have been extensively studied and characterized since 
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Table ChII.I-1: Vacuolar amino acid transporters. 

Family Protein Substrate

direction

from to

MSF

Vba1 His, Lys cyt vac

Vba2 His, Lys, Arg cyt vac

Vba3 His, Lys cyt vac

Atg22 Ile, Leu, Tyr vac cyt

AAAP

Avt1 Neutral aa, His cyt vac

Avt3 Neutral aa vac cyt

Avt4

Neutral aa, His, Lys, 

Arg vac cyt

Avt6 Glu, Asp vac cyt

Avt7 Pro, Gln vac cyt

LCT

Ers1 cystine vac cyt

Ypq1 Lys, Arg cyt vac

Ypq2 Arg cyt vac

Ypq3 His cyt vac
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Sato et al. ) and are reviewed in Bianchi 

et al. . 

I.3.2. TORC1 sensing and signaling

In the yeast, an amino acid-sensing machinery is constitutively present at the 

Dubouloz et al., 2005 Powis et al., 2015) (Figure 

ChII.I-6). The Ego1 subunit anchors the EGO complex in the vacuolar membrane. The Gtr1-

Gtr2 heterodimer is then tethered to the membrane by its interaction with EGO complex. In 

the presence of aa, the Rag GTPases Gtr1 and Gtr2 are loaded with GTP and GDP respectively 

Binda et al.

then activated and the TOR kinases Tor1 or Tor2 phosphorylate multiple target proteins to 

promote anabolic processes (protein synthesis, nucleotide synthesis, lipid synthesis). On the 

other hand, when cells are treated with rapamycin or under nutrient starvation, GDP-bound 

Gtr1 inactivates the TOR kinase activity via

to macroautophagy (Binda et al. ). Interestingly, the EGO complex in conjunction with 

TOR has been demonstrated to be essential to counterbalance the massive macroautophagy 

induced upon rapamycin treatment by positively regulating microautophagy (Dubouloz et 

al., 2005

is reversible and the disassembly relies on the Gtr GTPases (Morozumi and Shiozaki, 2021). 

The Gtr Rag GTPases can be regulated by different complexes (Figure ChII.I-6). The octameric 

Panchaud et al. ). The 

through Iml1, which stimulates Gtr1 intrinsic GTPase activity upon leucine deprivation and is 

Binda et al., 

). During aa starvation, the heterodimeric complex Lst4-Lst7 relocates to the vacuolar 

membrane. Upon stimulation with aa, Lst4-Lst7 transiently binds with Gtr2 and acts as GAP 
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Péli-Gulli et 

al., 2015). High (Gln or ammonium) or low-quality nitrogen sources can stimulate a rapid 

et al., 2014). Interestingly, Gln activates 

via different 

et 

al., 2014) (Figure ChII.I-6). Indeed, the protein Pib2 binds to the vacuolar membrane through 

Morozumi and Shiozaki, 2021

For this, leucine-bound leucyl-tRNA synthetase (LRS) binds to Gtr1, this interaction being 

 et 

al., 2012). For Met signaling, it has been proposed that when cells use lactate as a carbon 

source, the synthesis of S-adenosylmethionine (SAM) may be used to promote methylation 

of type 2A protein phosphatase (PP2A) leading to dephosphorylation of Npr2 preventing 

Sutter et al

is also regulated by the availability of glucose. In glucose-deprived cells, Snf1 is activated 

inhibition is Gtr1/2-independent (Hughes Hallett et al., 2015). 

Saccharomyces cerevisiae (Figure ChII.I-7A

prevents Gcn2 Ser577 dephosphorylation, leading to a decrease in Gcn2 ability to bind 

activated leading to a reduction of general translation rate but an increase in GCN4 mRNA 

translation, which is a transactivator of aa biosynthetic genes (

Kubota et al. Figure 

ChII.I-7B). In presence of aa, the SPS sensor component Ssy5 is activated and processes 

expression of genes encoding aa permeases. Shin and coworkers demonstrated that under 

phosphorylated. On the other hand, rapamycin treatment or nitrogen starvation leads to a 
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inactivation (Shin et al. ). 

I.4. Autophagy

effective responses to maintain cell homeostasis. Under nutritional stress, one of the 

general responses that is triggered in eukaryotic cells is the rapid and massive induction of 

macroautophagy, often called autophagy (Figure ChII.I-8). Another type of autophagy, called 

Saccharomyces cerevisiae but is less studied. During 

microautophagy, the vacuole membrane invaginates and sequesters cytoplasmic material 

that is delivered to the vacuole lumen. The two mechanisms, macro- and microautophagy, 

are not identical since mutations in genes required for macroautophagy attenuate but do not 

abolish microautophagy (Sattler and Mayer, 2000). The process of autophagy in yeast was 

mutants helped to understand the mechanistic of this process (Takeshige et al.,

Thumm et al ). In yeast, different stresses (e.g. removal of carbon source, auxotrophic 

aa or nucleic acids from the medium, rapamycin treatment) can lead to the induction of 

autophagy, but nitrogen starvation remains the stimulus leading to the most rapid and 

substantial autophagy ( Takeshige et al. Thumm et al. ). 

During the process of autophagy, cytoplasmic components are delivered to the yeast vacuole 

for degradation. The internal pool of molecules generated by the degradation will be sent 

begins at a single perivacuolar site that is proximal to the vacuole, called the phagophore 

assembly site (PAS). During the nucleation, the PAS gradually generates a primary double-

membrane-sequestering compartment called the phagophore. Next, the phagophore 

undergoes the expansion and the resulting double-membrane autophagosome is ultimately 

autophagy, involves the de novo synthesis of cytosolic double-membrane vesicles but the 

origin of lipids composing the autophagosomes remains unclear. The autophagosomes then 

reach the vacuoles and the outer membrane fuse with the organelle membrane to release 

the monolayered autophagic bodies and their cargo inside the vacuole lumen. In the vacuolar 
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translation translation
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single-membrane autophagic bodies are delivered in the vacuole lumen and subsequently degraded by resident 

proteases. The resulting macromolecules are recycled back into the cytoplasm for reuse [28–31]. 
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lumen, the resident hydrolases will degrade the autophagic bodies and the cargo. The 

Baba et al.

Wen and Klionsky, 2016). When the serine protease inhibitor PMSF is added to 

starving cells, the autophagic bodies accumulate in the vacuole and can be observed by light 

and electron microscopy (Thumm, 2000). Many autophagy mutants have been isolated and 

they almost all share typical phenotypes. When grown on rich medium, they behave like wild-

wild-type cells. Moreover, they cannot accumulate autophagic bodies in the vacuole, even in 

in vacuolar uptake and maturation of proaminopeptidase I which, contrary to other vacuolar 

proteases, does not follow the classical vacuolar protein sorting (vps-) pathway but instead 

Thumm, 2000). Indeed, autophagy 

was shown to be implicated in the selective transport of precursor hydrolases to the vacuole 

Scott et al., ). Moreover, the majority of genes required for 

autophagic bodies that will be degraded (Abeliovich and Klionsky, 2001). Macroautophagy is 

also involved in the clearance of damaged mitochondria through a process called mitophagy 

( ). Even if the process of autophagy was extensively studied, 

many issues remain unsolved, like the formation of the phagophore and autophagosome 

including the precise nature of the PAS, the origin/source(s) of the lipid/membrane used for 

its expansion which remain thus far unclear. 

I.5. Connection with other organelles

I.5.1. NVJ

Beside the membrane contacts occurring between vacuole membrane and 

Chapter I section I.4.2), the vacuole is connected to the nuclear 

envelop of the ER (nER) through the nuclear-vacuole junctions (NVJs) (Figure ChII.I-9). In the 

in the ER  (Pan et al., 2000). When cells are starved, Nvj1 promotes the selective turn-over 

of this ER region through piecemeal microautophagy of the nucleus (PMN) (Roberts et al., 

Atg1 complex: 
Atg9 

lex I 
ystems:

Induction

leation

Expansion

Completion

Degradation

PAS

ore

ome

bodies

Autophagy is induced 

degradation and recycling. The main proteins participating to each stage are Atg proteins. The induction starts at a 

a double-membrane called the phagophore that non-selectively sequesters cytoplasmic material. The phagophore 

-membrane autophagic bodies are delivered in the vacuole lumen and subsequently degraded by resident 

proteases. The resulting macromolecules are recycled back into the cytoplasm for reuse . 
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nucleus (NVJ). vCLAMP are described in Figure ChI.I-4. The proteins implicated in NVJ formation are represented in 

maintain NVJ formation in the absence of other NVJ components. 
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). Osh1, a member of the oxysterol-binding protein (OSBP), localizes to the Golgi and 

NVJs and moves preferentially to the latter under starvation conditions (Levine and Munro, 

2001). This protein binds to Nvj1 via its ankyrin repeats and to the Golgi via its PH domain 

(Kvam and Goldfarb, 2004 Loewen et al. ). The integral ER membrane protein Lam6, 

mitochondria (Elbaz-Alon et al., 2015). Another integral ER membrane protein that is part of 

NVJ is Mdm1 (Henne et al., 2015 via

II. Context of the study

(Fernandez-Murray and McMaster, 2006). More precisely, Arc1 can interact in vitro both with 

2 

in vivo. Given that the main 

role of Arc1 is to assemble the AME complex, Arc1 could thus trigger the relocalization of 

the 
c
MRS and/or the 

c
ERS to membranes and in particular to the vacuolar membrane. If the 

two aaRSs indeed localize in the vacuole vicinity, one could ask why they would localize 

at the surface of this compartment, which is not considered as a translationally active 

location of the cell. As explained in the introduction (section I.3.4

many roles beside aminoacylation of tRNAs and such a vacuolar/lysosomal localization of an 

aaRS was already demonstrated for Leucyl-tRNA synthetase (LRS) in human and yeast cells 

( et al et al., 2012). In yeast, the vacuolar localization of LRS depends on 

its interaction with the vacuolar Rag GTPase Gtr1.  When leucine is available, LRS promotes 

editing domain of LRS undergoes a conformational change and edits mischarged Ile-tRNALeu. 

This conformational change of the editing domain disrupts the interaction between LRS and 

Ltc1
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Figure ChII.I-9: Vacuole membrane contact sites. Vacuoles can form contact sites with mitochondria (vCLAMP) and 

nucleus (NVJ). vCLAMP are described in ure ChI.I-4. The proteins implicated in NVJ formation are represented in 

maintain NVJ formation in the absence of other NVJ components. 
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Figure ChII.R-1: Subcellular fractionation and AME complex components in vitro localization. A. Schematic 

representation of the subcellular fractionation protocol. Cells are broken using glass beads and vortex in order to 

maintain membrane integrity. After the first centrifugation at 13,000 g, two fractions are obtained; soluble S13 and 

pellet P13.The S13 fraction is subsequently centrifuged at 100,000 g to obtain the S100 and P100 fractions. P13: 

vacuole, nucleus, endoplasmic reticulum, plasma membrane, P100: Golgi and vesicles, S100: soluble fraction. B. 

Immunoblotting of the P13, P100 and S100 fractions obtained after subcellular fractionation of BY wild-type (WT) and 

arc1∆ cells. The presence of AME components was determined using anti-MRS, anti-ERS and anti-Arc1 antibodies.
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but does not rely on the aminoacylation activity of LRS but on its editing domain. In regards 

to these observations, we hypothesized that 
c
MRS and 

c
ERS could localize at the vacuole 

another aa-sensing pathway. 

To identify the vacuolar localization of proteins, biochemical approaches like 

impossibility to separate vacuoles from other organelles with which vacuoles make 

contact sites. To visualize the pool of proteins that localize at the vacuole, Dr. G. Bader and 

ß1-10 ß11ch
, that can auto-

ß1-10 ß1-10
) and 

integrated in the yeast nuclear genome. On the other hand, the GFP
ß11ch

 fragment is fused to 

the protein of interest and expressed from plasmid DNA. Upon vacuolar localization of the 

ß11ch

was to develop a microscopy tool that ensures that only vacuolar echoforms (
vace

-) proteins 

microscopy tool along with the characterization of AME components’ role at the vacuolar 

III. Results & discussion

III.1. Preliminary work: biochemical approaches to assess the 

AME components membrane localization

When I started working in the DyPS team, preliminary experiments had shown that 

Arc1 was found in membrane fractions. I thus performed subcellular fractionation of WT 

yeast cells from BY and RS genetic backgrounds (see Table MM-2

components were indeed found in membrane fractions. For the subcellular fractionation cell 

were lysed using glass beads and the cell lysate was then separated in membrane fractions 

× g 
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Figure ChII.R-2: Vacuole purification and AME complex components vacuolar localization. A. Schematic representation 

of the vacuole purification protocol. Cells are lysed using zymolyase and isoosmotic shock. Intact vacuoles are then 

separated from the other subcellular components using a Ficoll gradient and an ultracentriguation at 110,000 g and 

are finally recovered at the 0-4 % Ficoll interface. B. Vacuole enrichment and presence of contaminating subcellular 

compartments were assessed by immunoblotting using antibodies directed against proteins from different subcellular 

compartment; Vph1: vacuole, Hsp70: mitochondria, Nop1 and Taf14: nucleus, Wbp1: endoplasmic reticulum, Pep112: 

endosomes. TE: total extract, vac: vacuole purification fraction. C. Determination of AME complex components presence 

in the vacuole purification fractions by immunoblotting using anti-Arc1, anti-MRS and anti-ERS. D. The vacuole fractions 

were sonicated and subsequently centrifuged at 13,000 g and 100,000 g. The soluble and pellet fractions were 

analyzed by Western blot to verify the integrity of the vacuole membrane (anti-Vph1 antibody) and the absence of 

mitochondrial matrix contamination (anti-Hsp70 antibody). 
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and 100,000 × g respectively) (Figure ChII.R-1A

vacuolar, endoplasmic reticulum, mitochondria and plasma membranes, while the P100 

fraction contains vesicles and Golgi apparatus membrane. The soluble S100 fraction contains 

analyzed by immunoblotting to assess the presence of AME complex components (Figure 

ChII.R-1B). In both backgrounds, all the AME complex components are found in mainly 

are indeed able to associate with membranes from subcellular compartments in vivo. The 

three proteins are also found in the soluble S100 fraction of BY cells. However, Arc1 and 

MRS are more abundant in the membrane fraction than the soluble S100 and ERS is equally 

distributed between both fractions. These results indicate that even if the three proteins 

were previously described as being exclusively cytosolic, they actually extensively associate 

with membranes in vivo. The absence of signal for the three proteins in the S100 fraction of 

RS cells can be explained by the lower level of proteins in this fraction (Figure ChII.R-1B). All 

together these results indicate that a substantial fraction of AME components relocate to the 

membranes in vivo. However, by using subcellular fractionation we cannot identify precisely 

these membranes and we cannot determine if the three components are associated with 

membranes in the form of a complex. 

To gain insight in the vacuolar localization of AME complex components, I attempted 

zymolyase digestion and then lysed under isosmotic conditions using DEAE-dextran solution.  

Figure 

ChII.R-2A). After isolation, the enrichment and purity of the vacuole fractions were analyzed 

by Western blot using antibodies directed against proteins from different subcellular 

compartments (Figure ChII.R-2B). Despite a high degree of vacuole enrichment, we observed 

that our vacuole preparation was still contaminated with mitochondria for both BY WT and 

 strains. This is not surprising since mitochondria and vacuoles closely interact through 

neither nuclear nor ER contaminations within our vacuole preparation. The presence of a 

and Arc1 because they both have mitochondrial echoforms localizing in the mitochondrial 

matrix (Bader, 2017 Bader et al., 2020). Nonetheless, the immunoblotting performed on 

the vacuole-mitochondria fractions could demonstrate that they indeed are present (Figure 
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ChII.R-2C). Since MRS does not localize in the mitochondria, its presence in the vacuole-

mitochondria preparation is very like due to its vacuolar localization. Interestingly, when 

ARC1 is deleted (BY ), the presence of MRS in the vacuole fraction is abolished. These 

preliminary results thus indicate that MRS vacuolar localization could rely on the presence 

of Arc1. Since ERS and Arc1 localize in the mitochondrial matrix and are not associated with 

mitochondrial membranes, I attempted to get rid of mitochondrial matrix proteins in the 

vacuole-mitochondria fractions. For this I disrupted the organelles by sonicating the vacuole 

preparation and performed differential centrifugation to separate soluble proteins and 

membrane-associated proteins (Figure ChII.R-2D). The Western blot analysis indicates that 

the matrix protein Hsp70 indeed localizes in the soluble S100 fraction and is largely excluded 

Figure ChII.R-2D). Unfortunately, the integral 

vacuolar membrane protein Vph1, which is supposed to be only present in membrane 

fractions was also found in the soluble fraction (Figure ChII.R-2D). This indicates that 

sonicating the samples disrupts the membrane integrity and solubilizes membrane proteins. 

This technic thus could not be used further to unambiguously assess the association of the 

AME components with the vacuolar membrane. 

III.2. -

calization using the Vac-Split-CFP microscopy tool

Since biochemical approaches could not be used to identify beyond reasonable 

doubt, the vacuolar localization of AME complex components, we decided to create the 

previously developed (Chapter I section III.1
ß1-10 

fragment and its 

fusion to the vacuolar membrane protein Vph1 along with the integration at the URA3 locus 

team (Bader, 2017). One of the advantages of the two Split systems we developed is that 

ß1-10 ß1-10
) differ but the 

last ß-strand is the same for both systems. Thus, the GFP
ß11ch

-tagged proteins plasmid library 

that was developed for the study of mitochondrial proteins in Chapter I can also be used for 

the study of vacuolar localization. Nonetheless, when presenting the results obtained with 

ß11ch
 to avoid misunderstanding. The 

results I obtained after developing the system are presented here in the form of a research 

article. 
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Introduction

Aminoacyl-tRNA synthetases (aaRSs) are a family of ubiquitous enzymes primarily 

responsible for the formation of aminoacyl-tRNA (aa-tRNA) that serve as adaptor molecules 

during messenger RNA translation [1]. In eukaryotes, cytosolic aaRSs (
c
aaRSs) can assemble 

into multi-aminoacyl-tRNA synthetase (MARS) complexes [2,3] that are dynamical particles 

composed of aaRSs and accessory scaffolding proteins called AIMPs (aminoacyl-tRNA 

synthetase interacting multi-functional proteins) [4,5]. When inside these MSCs, aaRSs are 

dedicated to the production of aa-tRNAs for ribosomal protein synthesis and, in some cases 

when released from the MSCs, 
c
aaRSs eventually relocate to new subcellular compartments 

and accomplish a variety of non-translational functions that are equally important to the cell 

[7,8]. The yeast Saccharomyces cerevisiae possesses the smallest MSC characterized thus far. 

This complex named AME, is composed of cytosolic methionyl- (
c
MRS) and glutamyl-tRNA 

synthetase (
c
ERS) both bound to the Arc1 AIMP [9]. Inside the AME complex, Arc1 plays the 

role of a cytosolic anchor preventing the release and subcellular relocation of 
c
MRS and 

c
ERS 

c
aaRSs by binding and 
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delivering their cognate tRNAs [9,13–15]. So far, the AME complex has been described as 

exclusively cytosolic, even if the three components can have other subcellular localizations 

when not binding together [12,16]. Indeed, we previously demonstrated that after a metabolic 

switch from fermentation to respiration, the expression of the ARC1 gene is repressed leading 

to the release of the 
c
MRS and 

c
ERS from the complex. Once released, 

c
MRS and 

c
ERS relocate 

respectively to the nucleus and to mitochondria and synchronize the nuclear transcription and 

mitochondrial translation of ATP synthase subunits [16]. Studies performed across species have 

c
aaRSs are dual- if not 

multi-localized proteins [7,17]. It is now well accepted that eukaryotic cells use simultaneous 

targeting of proteins to different compartments as a way to increase protein functions with the 

same number of gene products. These identical or nearly identical forms that are distributed 

between different subcellular compartments are called echoforms [18]. Dual-localized proteins 

can represent up to one-third of a given species’ proteome [19] and their dual-localization 

view of what we consider as the localization and also the function of a given protein in a 

given organism. In the case of 
c
aaRSs, the subcellular distribution of their various echoforms 

is complex, dynamic and responds to a variety of stimuli  [7,17]. The most frequent additional 

subcellular destination of 
c
aaRSs is the nucleus, and in many cases the noncanonical function 

c
aaRSs have 

been shown to relocate to mitochondria or at the surface of lysosome/vacuole [16,22–24]. 

The vacuolar/lysosomal localization of an aaRS was initially discovered for leucyl-

tRNA synthetase (LRS) [23,24]. In S. cerevisiae, the vacuole is the main amino acid (aa) 

this compartment [25–29]. Moreover, the Target of Rapamycin Complex 1 (TORC1), which 

regulates the autophagy according to the metabolic status of the cell is constitutively present at 

the vacuolar surface. In the yeast, leucine-bound LRS interacts with TORC1 component Gtr1 

through its CP1 editing domain. Upon leucine deprivation, the editing domain of LRS undergoes 

conformational changes and the interaction with Gtr1 is abolished leading to the inhibition of 

TORC1 activity and ultimately to autophagy. In mammalian cells, the lysosomal localization 
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of LRS is associated with leucylation of Rag GTPase RagA/B which promotes TORC1 activity 

and repress autophagy. Recently, He et al. demonstrated that every aaRSs, and particularly LRS 

and QRS, are sensing the presence of their cognate aa by reversible lysine aminoacylation of 

cognate aa, they could serve as aa sensors to signal aa availability to transporters and other 

amino acid-dependent pathways.

Interestingly, in vitro proteomic studies have shown that interacts with phospholipids and 

3,5-bisphosphate (PtdIns(3,5)P
2
) which are components of the yeast endosomal and vacuolar 

membranes respectively [31,32]. If this interaction also occurs in vivo, it would mean that a 

portion of Arc1 could also be associated with these subcellular compartments. Given that the 

majority of 
c
MRS and 

c
ERS is binding to Arc1, the vacuolar binding of Arc1 could trigger 

vacuolar localization of 
c
MRS and 

c

proteins using classical biochemical and microscopy techniques is challenging and even more 

for proteins which localize in the cytosol and in the vicinity of membrane organelles that face 

the cytoplasm. In addition, many organelles make contact with other organelles in the cell 

through the formation of membrane contact sites (MCSs) [33,34]. This is particularly true for 

signal of the cytosolic pool of a GFP-fused echoform will eclipse that of the vacuolar one. 

To circumvent this limitation, we developed a yeast strain expressing a Split-CFP 

system, dedicated to the visualization of vacuolar echoforms of dual-localized proteins by 

proximity of the vacuolar membrane in the yeast Saccharomyces cerevisiae. The Vac-Split-
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of the CFP (CFP ). We anchored the CFP  fragment at the vacuolar surface facing the 

cytoplasm by fusing it to the Vph1 subunit of the vacuolar V-ATPase (Vph1
CFP

), while the 

CFP  fragment is fused to the putative dual-localized protein of interest. If there is a vacuolar 

echoform of the CFP -tagged protein, it will be located in the vicinity of the vacuole and 

thus close to the Vph1
CFP 0

 fragment. Given that both fragments (CFP
 
and CFP ) have 

the ability to self-assemble when in contact, the CFP is reconstituted yielding emission of a 

the performances of the Vac-Split-CFP system with control proteins (i.e. using an exclusively 

cytosolic protein, His3, the vacuolar protein Vam13, the outer mitochondrial membrane protein 

Por1 and the nucleus-vacuole junction protein Nvj1) to guarantee that only a vacuolar protein 

vacuolar localization of 20 
c
aaRSs. As expected, we could visualize vacuolar echoforms for the 

two aaRSs from the AME complex. To our surprise, all the 
c
aaRSs we probed were also found 

to possess vacuolar echoforms. However, the Vac-Split-CFP does not differentiate proteins that 

directly bind to vacuolar lipids from those binding to vacuolar proteins. We thus performed 

in vitro lipid binding assays for the three components of the AME complex to determine their 

Arc1 and MRS vacuolar echoforms on cell growth and TORC1 activity during methionine and 

nitrogen starvation respectively. 

Results

For the construction of the Vac-Split-CFP strain, the Superfolder self-assembling Split-

GFP fragments designed by Cabantous and coworkers [35,36] and optimized by our team [22] 

were used. In this system, the 11 beta strands of the Superfolder GFP are separated into two 

) were respectively mutated into Trp and Thr to 
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obtain the CFP fragment ( ). The second fragment composed of 

three concatenated beta 11 strands (GFP ) corresponds to the one we previously published 

[22] and is named CFP  in this study ( ). 

To assess the vacuolar localization of proteins, the CFP fragment was fused to the 

vacuolar V-ATPase subunit Vph1 thereby generating Vph1 fusion protein ( ). 

In order to stably express the Vph1 fusion protein, a plasmid carrying the construction 

under the control of GPD promoter was inserted into the URA3 locus of BY4741 cells and the 

). On the other hand, the protein of interest is fused to the CFP  fragment and expressed from 

p414-pGPD-  plasmid. Since the integral vacuolar protein Vph1 is delivered to the vacuole 

through the secretory pathway [37], its interaction with cytosolic proteins before insertion into 

the vacuolar membrane is very unlikely. The V-ATPase pumps protons from the cytosol into the 

vacuolar lumen and is thus essential to maintain cytosolic pH homeostasis. Cells with impaired 

Vph1 do not trigger phenotypes as drastic as cells deleted for other V-ATPase components, 

but have a reduced V-ATPase activity and grow slowly on medium buffered to pH 7.5 [38,39]. 

To ensure that the V-ATPase assembly and function were not impaired in cells expressing 

Vph1

into the vacuole, Figure 2A) between the wild-type (WT) and Vac-Split-CFP strains; (ii) the 

growth rate on media buffered to pH 7.5 and (iii) the vacuole morphology between both strains 

(

Vph1 expressing 

cells have a growth rate and a vacuolar morphology similar to those of WT cells in presence of 

YPD medium buffered to pH 5.0 or pH 7.5. These results show that the fusion of the CFP

fragment to Vph1 in the Vac-Split-CFP strain has no impact on V-ATPase activity or vacuolar 

morphology.



 140 

CHAPTER II    Hemmerle et al. 

histidine biosynthesis pathway ( ). Unexpectedly, when expressed in the Vph1
CFP

strain 14% of cells expressing His3

and CFP
ch

 

 vacuolar protein, 

we generated a strain expressing Vma13 . Vma13 is part of the V
1
 subunit of the vacuolar 

V-ATPase that will dock, in fermentation conditions, to the vacuolar membrane V
O
 subunit. When 

the complex is assembled, Vma13 and Vph1 are thus in close proximity [40,41]. Vma13  

would thus localize at the surface of the vacuole and should interact with Vph1
CFP

 (Figure 

 merges almost entirely with the 

 and up to 80 % of FM4-

64-stained vacuoles present a CFP signal ( ). Given 

 corresponding 

to a vacuole-localized protein as CFP
all around

 and that of His3  which is a cytosolic protein as 

CFP
dot

 respectively (

patterns can be observed with our Vac-Split-CFP strain, probably depending on the intracellular 

distribution of the protein. 

-tagged proteins 

taking part to membrane contact sites (MCSs) between the vacuole and the nucleus or that are 

anchored in the mitochondrial outer membrane (

for Nvj1 , which is anchored in the endoplasmic reticulum membrane and participate to 

the nucleus-vacuole junction (NVJ, ), does not display the CFP
dot

 or CFP
all around

 

patterns obtained for vacuolar Vma13  or cytosolic His3  ( ). Indeed, 

the NVJ. Since the CFP signal is more extended than the one obtained for His3, we decided to 

index this pattern as CFP
patch

. The vacuoles and mitochondria can also be in close proximity and 
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decided to use the mitochondrial porin Por1 (

was detected when expressing Por1  indicating that mitochondrial membrane proteins, 

which do not participate to MCS, could not trigger the reconstitution of the CFP (

). We then tested Atg20 which is localized at the endosomes (

). The cells expressing Atg20

patterns described so far ( ). Given that endosomes will 

Atg20 , which is very likely the result of endosomes fusing with the vacuolar membrane 

even though Atg20 is not a  vacuolar protein ( ). In order to assign a CFP 

(CFP
tot

) ( ). By doing so, our data show that the cytosolic protein His3, 

the CFP
dot

 and CFP
all around

 and CFP
patch

 patterns respectively ( ). On the contrary, the 

endosomal protein Atg20 displays all three patterns equally ( ). The number of cells 

the number of cells stained with FM4-64 ( ). For all the proteins, with the exception of 

Vma13 protein, than for the other proteins ( ). Thus, only a vacuolar protein 

that are dynamically located to the vacuole vicinity will trigger CFP reconstitution in a much 

lower number of cells.

All together these results indicate that proteins from the mitochondrial outer membrane, 

that are not part of MCS between the mitochondria and the vacuole, do not trigger a detectable 

Nvj1 , His3
 
and Atg20
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distribution. The CFP signal obtained for Vma13 vacuolar protein 

the CFP  and CFP  fragments thus require a proximity that can only be achieved in the 

context of a membrane contact site, a direct interaction between membranes or upon interaction 

with a vacuolar protein. Moreover, the Vac-Split-CFP system allows the discrimination of 

the vacuole like Vma13. 

The vacuolar/lysosomal localization of cytosolic leucyl-tRNA synthetase (LRS) has 

already been demonstrated in human and yeast cells by using confocal microscopy and co-

the vacuolar/lysosomal surface. We thus decided to use the Vac-Split-CFP strain we developed 

to screen the GFP -tagged aaRS library created in a previous work [22]. Since the mutations 

protein, the last beta 11 strand is common to the previously described BiG Mito-Split-GFP 

and the Vac-Split-CFP systems. Surprisingly, when expressed in the Vac-Split-CFP strain, all 

the 
c
aaRS

). In order to characterize the vacuolar distribution of the 
c
aaRS, the number of cells 

of cells presenting a CFP signal ( ). The results obtained 

unambiguously indicate that all 
c
aaRSs we tested localize at the vacuolar surface with a CFP

all 

around 
pattern similar to that we obtained for the vacuolar protein Vma13. Moreover, the ratio 

of cells with a CFP
all around 

pattern compared to the number of FM4-64 cells (

) is similar to the ratio obtained when comparing the CFP
tot

 signal with FM4-64 

c
aaRSs. Since 

the 
c
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compared the number of cells displaying 
c
aaRS CFP

all around 
pattern to Vma13 ( ). By 

doing so, we could determine that only 
c
FRS2, 

c
NRS, 

c
LRS, 

c
ARS and 

c
GRS1 triggered a CFP

all 

around c
aaRSs tested possess 

a vacuolar echoform. However, differences in the frequency and probably the dynamics of the 

vacuolar localization event between the 
c
aaRSs are observed and will be discussed. 

The yeast Saccharomyces cerevisiae contains a small Multi-Aminoacyl-tRNA Synthetase 

(MARS) complex, called AME complex, composed of the cytosolic glutamyl-tRNA synthetase 

(
c
ERS), the methionyl-tRNA synthetase (

c
MRS) and the aminoacylation cofactor Arc1. In 

fermentation conditions, the AME complex is cytosolic and participates to the production of 

aa-tRNA needed for protein synthesis. Upon glucose starvation, the transcription of ARC1 gene 

is repressed, resulting in free 
c
MRS and 

c
ERS that relocate to the nucleus and the mitochondria 

respectively [16]. The AME complex is thus composed of 
c
aaRSs that have multiple subcellular 

localizations. Moreover, Arc1 has previously been shown to bind to phospholipids in vitro, 

2
 that are enriched in the endosomal and 

vacuolar membranes respectively [32]. We thus hypothesized that Arc1 could relocate at the 

surface of the vacuole and might escort the two 
c
aaRSs at the surface of this compartment. 

 in the Vac-Split-CFP  strain and visualized its 

vacuolar localization ( ). As expected, Arc1 was localized at 

the vacuole surface with CFP
all around

). We then assessed the vacuolar localization of 
c
ERS and 

c
MRS in the 

Split-Vac-CFP  strain and could demonstrate that 
c
ERS  and 

c
MRS  localize at the 

vacuole surface in an Arc1-independent manner (

( ). Even if the two 
c
aaRSs can localize at the vacuolar surface independently of Arc1, 

strain ( ). Indeed, for both 
c
aaRSs, ARC1 
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the number of cells displaying the CFP
all around 

cells with a CFP
patch

 pattern. This suggests that Arc1 somehow modulates the 
c
aaRSs’ vacuolar 

localization. The CFP
all around

 pattern remaining the representative pattern in Vac-Split-CFP 

WT and  cells ( ). For 
c
MRS

number of cells presenting a CFP
all around

 pattern when ARC1 is deleted. This demonstrates that 

a fraction of the vacuolar 
c
MRS echoform is lost upon Arc1 deletion. On the contrary, 

cells expressing 
c
ERS  display an increase in the total number of cells presenting CFP

all around
 

when compared to WT cells ( ). These results demonstrate that upon Arc1 loss, 
c
ERS 

vacuolar distribution rearranges and 
c

as patches in our system. On the other hand, the increase in the total number of cells presenting 

a CFP
all around

 signal observed for  cells, indicate that Arc1 somehow restricts the 
c
ERS 

vacuolar localization event. These results demonstrate that 
c
ERS and 

c
MRS can localize at 

the vacuolar surface, but the distribution and the frequency of this relocalization are impacted 

by Arc1. This would suggest that there might exist 2 vacuolar echoforms for both 
c
ERS and 

c
MRS, one remaining at the surface of the vacuoles by binding to Arc1(whether as a trimer or 2 

distinct dimers remains to be characterized) and another either directly binding to the vacuolar 

membrane or interacting with a yet unknown vacuolar protein.

To assess their lipid-binding ability, the three recombinant AME complex components 

E. coli strain and incubated on membranes coated 

with different phospholipid species ( ). The results we obtained for Arc1 are similar 

to the ones previously reported by Fernandez and coworkers [32] ( ). However, we 

could identify a strong interaction of 
His6

Arc1 with PtdIns(5)P and a weaker interaction with 

PtdIns(3,4,5)P
3 

which is unexpected since these phosphoinositides have never been found 

in the yeast Saccharomyces cerevisiae [31]. Recombinant ERS
His6

 strongly interacts with 

vacuolar PtdIns(3,5)P
2 
and more generally with all monophosphorylated and bisphosphorylated 

phosphoinositides (Figure 8). Again, ERS can interact with PtdIns(5)P and to a lesser extent 
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with PtdIns(3,4)P
2
, and PtdIns(3,4,5)P

3
, despite their absence it the yeast. The 

c
ERS thus does 

not require Arc1 to interact with lipids in vitro, however both proteins could bind to lipids in 

the form of a complex in the yeast. On the other hand, 
c
MRS does not directly interact with 

any tested phospholipids ( ). Its vacuolar localization thus relies on the interaction with 

a vacuolar protein. To test if 
c
MRS could interact with Arc1 bound to lipids, the recombinant 

duplex Arc1
c
MRS

His6
). 

The immunoblotting analysis using anti-
c
MRS antibodies indicates that 

c
MRS indeed interacts 

with Arc1 bound to lipids in vitro. Arc1 could thus trigger the vacuolar localization of a portion 

of 
c
MRS.  

c

In yeast, the vacuolar Target Of Rapamycin Complex 1 (TORC1) regulates the anabolic 

and catabolic metabolisms in response to nutrient availability [42,43]. In presence of amino 

acids, TORC1 is active and stimulates translation and represses autophagy by phosphorylating 

many target proteins and among them the ribosomal protein Rps6. In order to assess the 

implication of Arc1 and 
c
MRS vacuolar echoform on TORC1 activity, we monitored the 

phosphorylation level of Rps6 in  strain and in the double mutant   strains 

and in these strains complemented with 
c
MRS fused to Vph1 (MRS

vac
) and thus constitutively 

and exclusively localized at the vacuolar membrane ( ). In rich medium (all amino 

acids are available), TORC1 activity of all mutant strains is similar to the WT. Arc1 and the 

possible portion of 
c
MRS vacuolar echoform brought by Arc1 thus have no impact on the 

activation of TORC1. On the contrary, during nitrogen depletion, TORC1, which is completely 

 strain. This indicates 

that Arc1 and potentially the vacuolar pool of 
c
MRS interacting with Arc1 are required for 

the correct inhibition of TORC1 activity in absence of a nitrogen source. The overexpression 

of 
c
MRS

vac
 restores the WT TORC1 inactivation in both  and strains. The 

vacuolar localization of 
c
MRS thus has an impact on the downregulation of TORC1. However, 

this modulation of TORC1 activity seems to be dependent on the quantity of 
c
MRS present at 
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the vacuolar surface rather than on 
c
MRS interaction with Arc1. Arc1 could thus be implicated 

in TORC1 regulation by bringing a fraction of 
c
MRS to the vacuole vicinity. To determine if 

Arc1 was implicated in sensing and signaling the availability of methionine, growth assays 

were performed on medium depleted for methionine ( ). All the strains used for 

this experiment are prototroph for methionine and can thus produce it. While cell growth is 

almost totally inhibited in WT cells upon methionine depletion,  cells are still able to 

grow even if growth is greatly reduced in comparison with rich YPD medium. The WT growth 

phenotype is restored upon expression of Arc1 fused to Vph1 (Arc1
vac

) and thus constitutively 

present at the vacuolar membrane. These results indicate that Arc1 vacuolar echoform somehow 

participates to the signaling of methionine availability to repress translation and thus growth 

upon methionine depletion. 

Taken together these results demonstrate that TORC1 activity and amino acid sensing 

and signaling pathways are modulated by Arc1 and MRS vacuolar echoform. 

that allows the detection of the vacuolar echoform of cytosolic proteins. In this system, the 

fragment with 

the CFP -tagged protein depends on the subcellular origin of the latter. Indeed, we could 

demonstrate that proteins from MCS or localized in the cytosol or endosomal membranes that 

fuse with the vacuolar membrane will generate CFP reconstitution but i) vacuoles are never 

( ). On the opposite, when the CFP  tag is fused to a bona 

vacuolar protein, the CFP signal is i) extended to the entire vacuole surface (all around) and 

ii) the CFP signal is observed in a large number of cells ( , ). 

to the vacuole membrane. Indeed, even if mitochondria and vacuole make close contacts in the 

cell, an outer mitochondrial membrane protein will not trigger CFP reconstitution (

). We observed that a small portion of cytosolic His3 unexpectedly 
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). This 

could be explained by the fact that His3 participates to the biosynthesis of histidine and up to 90 

% of this amino acid is stored in the vacuole. One could easily speculate that bringing enzymes 

responsible for histidine biosynthesis nearby the vacuole would potentiate histidine import in 

its storage compartment. 

By using the Vac-Split-CFP system, we demonstrated that all 
c
aaRSs tested possess a 

vacuolar echoform that distributes like the vacuolar protein Vma13 all around the vacuolar 

surface (

c
aaRS. The 

c
aaRSs that localize at the vacuole surface in a number of cells as large as for Vma13 

are 
c
FRS2, 

c
NRS, 

c
LRS, 

c
ARS and 

c
GRS1 ( ). These aaRSs are thus greatly enriched at 

the vacuole surface. Interestingly, the vacuolar localization of 
c
LRS has already been described 

when amino acids are available and dissociate from the vacuolar membrane upon leucine 

c
LRS indeed localizes in the vacuole vicinity when amino 

acids are available in the growth media. For the other 
c
aaRSs, the vacuolar localization could be 

more dynamic or a rather rarer event regulated by different stimuli. Since aaRS can be considered 

as amino acid sensors [30], it would be interesting to study their vacuolar localization and 

the AME complex, we could demonstrate that the three complex components localize at the 

vacuole membrane ( ). Even if Arc1 was not absolutely necessary for 
c
MRS and 

c
ERS 

vacuolar localization, we showed that upon ARC1 deletion, the distribution of 
c
MRS and 

c
ERS 

). Moreover, 

the number of cells in which vacuolar localization of both 
c
aaRSs occurred was impacted by 

Arc1 deletion. For 
c

signal (

c
MRS vacuolar localization, possibly because of loss of a portion of 

c
MRS vacuolar echoform. 

On the opposite, upon Arc1 loss, a larger number of cells displays 
c
ERS vacuolar localization 

indicating that Arc1somehow restricts 
c
ERS vacuolar localization. The 

c
aaRSs could thus 

localize at the vacuolar membrane both by binding to Arc1 and by another mechanism that has 
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yet to be unraveled. The in vitro interaction of 
c
ERS with phospholipids, and particularly with 

PtdIns(3,5)P
2
, raises the possibility of a direct interaction between 

c
ERS and vacuolar lipids, in 

vivo ( ). Interestingly, Arc1 and 
c

and bisphosphorylated phosphoinositides in vitro. We can thus hypothesize that, in vivo, Arc1 

and 
c
ERS interaction with lipids could be extended to numerous subcellular membranes and 

not only to the vacuolar membrane. On the opposite, in vitro, 
c
MRS cannot bind directly to 

lipids and the interaction of 
c
MRS with phospholipids depends on the presence of Arc1 (

). Arc1 could thus bring a portion of 
c
MRS vacuolar echoforms to the vacuole in vivo 

and the remaining could localize at the vacuole surface by interacting with another vacuolar 

protein that has yet to be characterized. During amino acid starvation, TORC1 kinase activity 

is downregulated and translation is inhibited. However, when Arc1 is deleted, TORC1 remains 

partially active and cell growth is no longer impacted by methionine depletion ( ). The 

amino acid availability sensing and signaling machinery to TORC1 is thus impaired upon Arc1 

deletion. The overexpression of MRS or Arc1 constitutively anchored at the vacuolar membrane 

respectively. We thus hypothesized that TORC1 is regulated by the amount of MRS vacuolar 

echoforms, and that the fraction of 
c
MRS brought to the vacuole by Arc1 can act synergistically 

with the Arc1-independent vacuolar 
c

downregulation. 
c
MRS, and Arc1 through its possible implication in 

c
MRS vacuolar anchoring, 

could thus be negative regulators of TORC1 during amino acid and nitrogen starvation. 

The Vac-Split-CFP system we describe here, demonstrates that all 18 caaRSs tested 

have a vacuolar echoform. With the exception of 
c
LRS, their localization at the vacuolar surface 

and implication in vacuolar functions or TORC1 signaling has never been proposed. However, 

they are all able to bind and activate their cognate amino acid, making them ideal candidates 

for amino acid sensors. Moreover, the aminoacyl-adenylate intermediate they produce during 

the aminoacylation reaction, has been shown to be implicated in the aminoacylation of lysine 

residues of target proteins in human cells [30]. If the same occurs in the yeast, one could 

imagine that the localization of 
c
aaRS at the surface of the storage compartment for many amino 
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TORC1 machinery or to other kinases like the ones from the General Amino Acid Control for 

example. 

The plasmid p414pGPD-ccdB  was previously created by our lab [22]. The plasmid 

pGPD

by colony PCR on BY4741 strain using the Phire Plant Direct PCR Master Mix (ThermoFisher) 

subcloned either by Gateway cloning or Gibson assembly in the linearized p414pGDP
ß11ch

 

plasmid. 

For the creation of p306pGPD-Vph1  plasmid, the residues Tyr66 and Asn 146 

of the previously described GFP fragment [22] were mutated by site-directed mutagenesis 

into Trp and Thr respectively to obtain the CFP  fragment. The VPH1

by PCR and fused to the CFP  fragment and subsequently cloned in the integrative plasmid 

p306pGPD-ccdB by Gateway cloning to obtain p306pGPD-Vph1 .

The integrative plasmid p306pGPD-Vph1  linearized using NsiI restriction enzyme 

on SC-Ura plates. For the construction of the Vac-Split-CFP  strain, the Vac-Split-CFP 

strain was crossed with BY 4742 strain. After selection, the diploid cells were incubated 

on sporulation medium (potassium acetate 1 % (w/v)) and incubated at 25 °C. The tetrads 

were treated with zymolyase 20T (1 mg/mL) for 5 min at room temperature. Spores are then 

separated using a micromanipulator microscope (Singer MSM System 200). Spores having the 

phenotype of interest (Trp-, Ura+ and G418 resistant) were then selected. 
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Yeast cells were cultured in complete glucose YPD medium (1% Bacto yeast extract, 1% 

Bacto peptone, 2% glucose) or Synthetic Complete (SC) medium (0.67% (w/v) yeast nitrogen 

base without amino acids (aa), 0.5% (w/v) ammonium sulfate, 2% (w/v) glucose and a mixture 

of aa and bases from MP biomedicals). The solid media contained 2% (w/v) of agar. Every 

strain was grown at 30°C with rotational shaking to mid-logarithmic growth phase (OD
600nm

 = 

0.7-1.2). 

Bacteria were grown in LB medium (5% (w/v) Yeast extract, 10% (w/v) bacto peptone, 

10% (w/v) NaCl) supplemented with ampicillin and chloramphenicol (100 mg/mL and 34 mg/

mL respectively) at 37°C with rotational shaking to an OD
600nm

 = 0.5. Protein overexpression 

was induced with 1mM IPTG during 3 hours at 30°C.  

1-1.5 OD
600nm

 units were centrifuged 5 min at 3500 rpm at room temperature (RT). Cells 

were suspended in 450 µL 0.185 NaOH and incubated 10 min on ice. 50 µL TCA 100% were 

added and after a 10 min incubation on ice the cell lysate was centrifuged 15 min at 13 000 × g 

at 4°C. After removing the supernatant, pellets were suspended in 50-75 µL Laemmli buffer (1 

×) buffered with Tris Base. 

For each strain, 10 µL of total proteins were separated by SDS-PAGE on 8-, 10- or 

12% (w/v) poly- acrylamide gels prior to electroblotting with a Trans-Blot Turbo system 

(BIO-RAD) onto PVDF membranes (BIO-RAD, #1704156). Detection was carried out 

using mouse monoclonal anti-GFP primary antibodies (1:5000; Roche Clone 7.1 and 13.1) 

for the recognition of CFP  fragment, rabbit polyclonal anti-GFP primary antibodies for 

the recognition of CFP
-10 

(1:5000, Sigma #G1544) and mouse monoclonal IgG1 anti-Pgk1 

primary antibodies (1:5000; Molecular Probes Clone 22C5D8). Secondary antibodies were 

Goat anti-mouse and anti-rabbit IgG (H+L) HRP-conjugated antibodies (BIO-RAD; #1706516 
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and #1706515 respectively), at a concentration of 1:5000. ECL-plus reagents (BIO-RAD) was 

used according to the manufacturer’s instructions and immuno-labeled proteins were revealed 

using a ChemiDoc Touch Imaging System (BIO-RAD). Total load of protein (Loading control) 

was assessed by UV detection using a ChemiDoc Touch Imaging System (BIO-RAD; Stain-free 

procedure) and detected by addition of 0.5% (v/v) 2,2,2-Trichloroethanol (Sigma #T54801) to 

the 30% acrylamide/bisacrylamide solution. 

Cells were incubated overnight at 30°C in the appropriate media and diluted to an OD
600nm

 

of 0.4. When the culture reached mid-logarithmic phase, 1-1.5 OD
600nm

 units were centrifuged 5 

min at 3500 rpm at RT. For vacuolar staining cells were suspended in 50 µL YPD supplemented 

with N-(3-Triethylammoniumpropyl)-4-(6-(4-(Diethylamino) Phenyl) Hexatrienyl) Pyridinium 

Cells were then washed with 500 µL YPD and centrifuged 2 min at 3500 rpm. FM4-64 chase 

was performed by a 10 min incubation at 30°C in 300 µL YPD. Cells were then centrifuged 

and washed with 500 µL YPD. For the microscopic studies cells were suspended in 50 µL SC 

medium. 

processed with the Image J software.

Recombinant proteins binding to lipids was analyzed using PIP Strip from Echelon 

Biosciences following the manufacturer instructions. After a 1 h incubation in blocking buffer 

(TBS-Tween 0.1% (v/v) fatty acid-free BSA 3% (w/v)) at RT, 10 pmol of recombinant proteins 

diluted in 5 mL blocking buffer were incubated for 2.5 h at RT. Detection of the protein was 

carried out using rabbit polyclonal anti-Arc1, -ERS and -MRS antibodies diluted 1:5000 in 

blocking buffer. Secondary antibodies were Goat anti-rabbit HRP-conjugated antibodies 

at a concentration of 1:5000. ECL-plus reagents (BIO-RAD) was used according to the 
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manufacturer’s instructions and immuno-labeled proteins were revealed using a ChemiDoc 

Touch Imaging System (BIO-RAD).
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Figure 1: Engineering of Vacuolar-Split-CFP system in Saccharomyces cerevisiae. The CFP composed of eleven 

beta strands is separated into two non-fluorescent and self-assembling fragments; CFPß1-10 and CFPß11. Three 

CFPß11 tags are concatenated to form the CFPß11chapelet or CFPß11ch tag that allows the simultaneous reconstitution 

of three CFP. The CFPß1-10 tag fused to the gene VPH1 is stably expressed from the genomic DNA, while the 

CFPß11ch tag fused to the protein of interest is expressed from plasmidic DNA. Upon cytosolic translation, the 

integral membrane protein Vph1CFPß1-10 is inserted in the endoplasmic reticulum (ER) membrane and brought the 

vacuolar membrane through the secretory pathway. Upon vacuolar localization of the CFPß11ch-tagged protein, the 

two CFP fragments can self-assemble and reconstitute an active and fluorescent CFP. The emission of CFP can be 

monitored by epifluorescence microscopy. 

Vph1ProtX
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Figure 2: Impact of CFPß1-10 fusion to Vph1 on vacuolar V-ATPase activity. A. Vacuolar acidification assay 

using quinacrine as a fluorescent probe on wild-type (WT) and Vac-Split-CFP strains. The sequestration of quinacrine 

in the vacuole was monitored using epifluorescence microscopy. B. Growth assay (N=3) and visualization of vacuole 

membrane is stained with the fluorescent probe FM4-64. Representative fields are shown. 
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Figure 2: Impact of CFPß1-10 fusion to Vph1 on vacuolar V-ATPase activity. A. Vacuolar acidification assay 

using quinacrine as a fluorescent probe on wild-type (WT) and Vac-Split-CFP strains. The sequestration of quinacrine 

in the vacuole was monitored using epifluorescence microscopy. B. Growth assay (N=3) and visualization of vacuole 

membrane is stained with the fluorescent probe FM4-64. Representative fields are shown. 

Figure 3: CFP fluorescence signal patterns triggered 

by proteins with different subcellular localization. A. 

Schematic representation of the subcellular localization of 

the proteins used to determine the different fluorescence 

patterns. His3: cytosolic protein, Por1: outer 

mitochondrial membrane protein, Atg20: endosomal 

protein, Nvj1: nuclear ER protein, part of NVJ membrane 

contact site, Vma13: cytosolic protein associated with the 

vacuolar membrane subcomplex VO of the V-ATPase. B. 

The Vac-Split-CFP strain stably expressing Vph1CFPß1-10 

was transformed with empty p414pGPD-ß11ch vector 

(EV) or p414pGPD-ß11ch vectors expressing the control 

proteins. Vacuolar CFP reconstitution upon protein 

vacuolar localization was monitored using 

epifluorescence microscopy (N=3). The vacuole 

membrane was stained using FM4-64. C. For each control 

protein, the number of cells presenting a the CFPall around, 

CFPpatch or CFPdot pattern was compared to the total 

number of cells with a vacuolar CFP signal (CFPtot). The 

difference between the most abundant pattern and the 

D. The CFP 

pattern representative of each protein was compared to 

the total number of cells with FM4-64-stained vacuoles. A 

significant difference was only observed for Atg20 (**: p 

value ≤ 0.01). 
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Figure 4: Identification and visualization of vacuolar echoforms of caaRSs using the Vac-Split-CFP system. 

The plasmids p414pGPD-ß11ch expressing 20 different aaRSs were transformed in the Vac-Split-CFP strain. The 

vacuolar localization triggering CFP reconstitution was followed by epifluorescence microscopy. Vacuoles were 

stained with FM4-64 to monitor merging of the two vacuolar signals. Representative fields are shown. 
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Figure 5: Analysis of vacuolar aaRS echoforms fluorescence patterns. A. The number of cells presenting the three 

different CFP fluorescence patterns was compared to the CFPtot signal. B. The CFPall around/FM4-64 ratio of each 

aaRS was compared to Vam13. The difference between each caaRS and Vma13 was statistically analyzed. Only 
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Figure 6: Vacuolar localization of the AME complex components. Cells stably expressing Vph1CFPß1-10 
and 

deleted for ARC1 gene ( ) were transformed with centromeric pAG414pGPD-ß11ch plasmid expressing 

either Arc1ß11ch, ERSß11ch or
 
MRSß11ch (N>89 cells observed) and vacuoles were stained using FM4-64. Scale 
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Figure 6: Vacuolar localization of the AME complex components. Cells stably expressing Vph1CFP and 

deleted for ARC1 gene ( ) were transformed with centromeric pAG414pGPD- 11ch plasmid expressing 

either Arc1 11ch, ERS 11ch or MRS 11ch (N>89 cells observed) and vacuoles were stained using FM4-64. Scale 
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Figure 9: MRS interacts with lipid-bound 

Arc1 Purified recombinant Arc1•MRSHis6

duplex (10 pmol) was incubated on a 

membrane coated with different phospholipids. 

The immunoblotting was performed with 

anti-MRS and subsequently with anti-Arc1 

antibodies. 
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Figure 10:  Sensing of amino acid availability 

and TORC1 activity are impaired in 

strain. A. The activity of TORC1 was monitored 

by the phosphorylation status of Rps6 in 

presence of rich medium or during nitrogen 

starvation (-N) (N=2). s.e/l.e: short and long 

exposition of the Western blot. MRSvac: MRS 

fused to Vph1 and constitutively localized at the 

vacuolar surface. Pgk1: loading control. B.

Growth assay on rich (YPD) and methionine 

depleted (SC-Met) medium. Arc1vac: Arc1 fused 

to Vph1 and constitutively localized at the 

vacuole surface (N=1). 
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Supplemental Figure S1: CFPß1-10 amio acid sequence and secondary structure. The CFPß1-10 fragment was 

designed based on the BiG Mito-Split-GFP GFPß1-10 fragment we previously published. The amino acids 

represented in blue are the two mutations that were inserted in order to obtain CFPß1-10 from GFPß1-10. The 

-strands are schematized as blue arrows. 
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Supplemental Figure S2: Western blot analysis of the 

expression of the CFPß11ch-tagged proteins and 

Vph1CFPß1-10. The expression of CFPß11ch-tagged 

proteins and Vph1CFPß1-10 was verified in each strain 

(WT and arc1∆) using anti-GFPß11 and anti-GFPß1-10 

antibodies respectively. Pgk1: Western blot transfer 

control. SDS-PAGE loading control performed using the 
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YRS 82 13 2 4 16 15  56 14 46 16     

VRS 86 12 0 0 14 12  29 9 25 10     

MRS 88 11 1 3 11 8  71 14 62 12     

IRS 88 8 0 0 12 8  61 19 54 16     

FRS2 89 14 0 0 11 14  48 26 43 30     

FRS1 91 7 2 3 7 8  68 9 62 11     

LRS 96 8 0 0 4 8  63 20 60 21     

KRS 96 4 0 0 4 4  60 12 57 9     

ARS 96 6 1 2 3 6  78 11 75 13     

ERS 96 5 0 0 4 5  24 8 23 6     

GRS1 98 2 0 0 2 2  85 8 83 7     

DRS 99 2 0 0 1 2  65 12 64 11     

Vac-

Split-

CFP 

arc1  

Arc1 75 8 0 0 25 8  71 12 53 11     

ERS 65 17 0 0 35 17  81 14 53 17     

MRS 65 10 2 5 33 11  61 8 39 10        
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III.3. Additional work performed on the Vac-Split-CFP strain

III.3.1. 
ß11ch

 fragment

ß11ch
-tagged proteins could result 

ß11ch

pGPD
ß11ch

(Figure ChII.R-3
ß11ch

 fragment (

not verify its expression by Western blot. However, the same plasmid was used in the BiG 

Mito-Split-GFP strain (Figure ChI.R-2) and triggered the reconstitution of mitochondrial 

GFP, ensuring that standalone ß11ch fragment is indeed expressed from this plasmid and 

Figure ChII.R-3) thus indicates 

ß11ch
 cannot localize at the vacuole surface and interact with Vph1  

ß11ch
 fragment will not give rise to false positive vacuolar 

III.3.2. Utilization of the Vac-Split-CFP strain in autophagy conditions

III.3.2.1. Outer mitochondrial membrane protein Por1 does not inter-

act with vacuolar membrane during autophagy

By using the BiG Mito-Split-GFP strain in autophagy conditions, I could show that 

mitochondria seem to localize in the vacuole vicinity in this condition (Figure ChI.R-3). In 

order to determine if mitochondria were indeed close enough to the vacuolar membrane 

membrane protein Por1
ß11ch

 and induced autophagy by transferring the cells to SD-N medium 

during 1 h (Figure ChII.R-4

mitochondrial Por1
ß11ch

 does not get close enough from the vacuolar membrane during 

autophagy to interact with Vph1 Figure ChII.R-4A). 

However, the expression of Por1
ß11ch

and not after (Figure ChII.R-4B

a reduction of Por1
ß11ch

 expression during autophagy. The autophagy was also only induced 

during 1 h before observation, while the observations with BiG Mito-Split-GFP strain were 

performed after an overnight incubation in SD-N medium. A longer autophagy induction 

could thus allow the relocalization of mitochondria in the the vicinity of the vacuole and thus 
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III.3.2.2. LRS, ERS and MRS vacuolar localization during autophagy

ß11ch
, ERS

ß11ch
 or MRS

ß11ch
 was grown in 

overnight with the addition of PMSF to inhibit autophagic bodies degradation in the vacuolar 

lumen. In fermentation condition, the three proteins distribute with their previously 

all around
 pattern at the vacuolar surface (Figure ChII.R-5A). In the model 

et al., 2012), during leucine starvation the LRS 

starts editing misaminoacylated tRNALeu leading to conformational changes and disruption 

LRS
ß11ch

Figure ChII.R-5A) indicating 

that LRS still localizes at the vacuole surface, maybe through its interaction with another 

for both ERS
ß11ch

 and MRS
ß11ch

dissociation before drawing conclusions about their vacuolar localization during autophagy. 

patch
 pattern previously described. This distribution resembles that of the vacuolar 

domains formed during nitrogen starvation described by Tsuji and Fujimoto (Tsuji and 

, see Chapter II section I.2.2, Figure ChII.I-3). Indeed, the distribution of Vph1 

ß1-

10 

by the reduced expression of LRS
ß11ch

, ERS
ß11ch

 and MRS
ß11ch

 during autophagy (Figure ChII.R-

5B). When cells are incubated overnight in autophagy medium in presence of PMSF, the 

Figure ChII.R-5A). For LRS
ß11ch

 and ERS
ß11ch

 we can 
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areas. That kind of vacuolar patterns based on Vph1 distribution was also described by Tsuji 

and Fujimoto and is representative of cells responding to glucose starvation (Chapter II 

section I.2.2, Figure ChII.I-3). Since the cells were grown overnight in medium containing 

glucose as a carbon source (SD-N), the carbon source very likely became scarce over time 

accordance with Vph1 distribution at the surface of the vacuole during glucose starvation. 

Interestingly, MRS
ß11ch

 distribution after overnight incubation in autophagy medium is not 

similar to the one observed for LRS
ß11ch

 and ERS
ß11ch

 (Figure ChII.R-5A

is localized in small foci or smaller patches than the ones observed for ERS
ß11ch

 or LRS
ß11ch

. 

ß11ch
 during prolonged autophagy 

or glucose deprivation, displaying a dynamic localization of the vacualor MRS
ß11ch

 echoform 

is not due to MRS
ß11ch

 or Vph1  degradation, western blot analyses would have to be 

performed. 

III.4. -

brane and lipids

III.4.1. 

The in vitro interaction of Arc1 with phospholipids had previously been described 

(Fernandez-Murray and McMaster, 2006 Chapter II 

section III.2

we decided to create His6-tagged Arc1 deletion mutants that were expressed in E. coli and 

Figure ChII.R-6A and B). These recombinant proteins were then used to 

perform lipid binding assay using membranes coated with different phospholipids (Figure 

ChII.R-6C

phospholipids (Figure ChII.R-6C). The residues responsible for Arc1 interaction with lipids 

should thus be located in the N-terminal part. However, when the N-terminal domain of 

Arc1 is incubated in presence of phospholipids, only a slight interaction occurs and the 

2
 is completely lost. These results indicate that the 

Arc1 interaction with phospholipids could thus rely on the protein conformation rather than 
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III.4.2. Utilization of the Vac-Split-CFP system to study Arc1, ERS and MRS 

vacuolar localization

III.4.2.1. Arc1 vacuolar anchoring domain

In order to gain insight into the Arc1 domain responsible for its interaction with the 

vacuolar membrane in vivo
ß11ch

-tagged Arc1 deletion mutants were transformed 

microscopy (Figure ChII.R-7A
ß11ch

therefore not essential for the interaction of Arc1 with the vacuolar membrane. For the 

ß11ch

if the protein was expressed (Figure ChII.R-7B). These results indicate that the region 

th and 54th aa residues is required for the vacuolar localization of 

Arc1. However, when a larger part or the entire N-terminal domain was deleted (mutants 

ß11ch ß11ch 
respectively), the vacuolar localization of Arc1 was restored 

(Figure ChII.R-7B). These results demonstrate that the N-terminal domain of Arc1 is not 

essential for the vacuolar localization of the protein. We thus hypothesized that the absence 

ß11ch
 could be explained by an important 

relocalization of this mutant to another subcellular compartment leading to the impossibility 

for this mutant to interact with the vacuolar membrane. The nuclear localization of Arc1 

had been previously demonstrated by Galani and coworkers (K. Galani et al., 2001) and they 

localizes in the cytosol and the nucleus. These results demonstrate that the strong NES of Arc1 

ß11ch
 mutant 

ß11ch

residues, and this mutant could thus accumulate in the nucleus because it still bears Arc1’s 

ß11ch ß11ch
 localize at the vacuolar membrane, it would logically 

mean that they are excluded from the nucleus. The NLS of Arc1 could thus be localized 

between the 54th th aa residues. These results also indicate that Arc1’s N-terminal 

domain is not essential for Arc1 vacuolar localization. However, given that, when fused to 
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ß11ch
, the N-terminal domain of Arc1 (Arc1N

ß11ch ß11ch

reconstitution (Figure ChII.R-7A), Arc1’s N-terminal domain is able to localize at the vacuole 

surface. Since Arc1 interacts with ERS and MRS through its N-terminal domain and MRS and 

ERS localize at the vacuolar surface independently of Arc1 (see Chapter II section III.2.), 

the vacuolar localization of Arc1 N-terminal domain could thus occur through interaction 

with vacuolar ERS or MRS. Arc1 could thus localize at the vacuolar surface (i) through the 

interaction with vacuolar ERS and/or MRS via its N-terminal GST-like domain and (ii) through 

a lipid-binding domain that will encompass the Middle domain. It is also important to note 

that the utilization of truncated mutants also raises the possibility of protein misfolding that 

could ultimately trigger mislocalization of the proteins. 

III.4.2.2. ERS and MRS vacuolar anchoring

For ERS, we analyzed the vacuolar localization of a deletion mutant containing the 

GST-like domain (aa 1-160) that allows the interaction with Arc1 (Figure ChII.R-8A). The 

ß11ch
 mutant cannot localize at 

Figure 

ChII.R-8B). The absence of vacuolar localization could result from the deletion of ERS lipid-

binding domain or could be due to the localization of this mutant to another subcellular 

compartment. Indeed, we previously demonstrated that the MTS of ERS is localized within 

Bader et al., 2020, Chapter I section III.1), the ERS1-160
ß11ch

 could thus 

that the lipid-binding domain of ERS is located after the residue 160, we could perform 

in vitro

conclude that ERS’ vacuolar localization does not rely on its interaction with Arc1. 

In order to determine the implication of Arc1 and the AME complex formation in 

plasmids expressing Arc1 mutants that cannot interact with MRS (Arc1

mutants) or with ERS (Arc1 ERS, T55R, R100A, Y104A mutants) or with both MRS and ERS  

(Arc1 MRS ERS) (Figure ChII.R-9). The vacuolar localization of the aaRSs was then assessed 

by co-transforming with plasmids expressing ERS
ß11ch

 or MRS
ß11ch

. Using Arc1 mutants that 

cannot interact with aaRSs is somewhat different from using an  strain because of the 
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expression of MRS
ß11ch 

and Arc1

bind to the vacuolar membrane in an Arc1-independent manner (Figure ChII.R-9A). However, 

or dots. The localization of MRS at the vacuole surface thus seems to be impacted by its 

interaction with Arc1 at the vacuolar surface. On the other hand, the inability of Arc1 to 

interact with ERS (Arc1 ERS) does not impact MRS vacuolar localization that localizes at the 

vacuolar surface regardless of the presence or absence of Arc1 and therefore the formation 

of an AME complex (Figure ChII.R-9A). When Arc1 MRS ERS is expressed, the MRS vacuolar 

localization resembles the one obtained in presence of Arc1
ß11ch

, I 

was not able to co-express it with Arc1

Arc1 MRS indicates that the formation of AME complex is indeed not required for ERS
ß11ch

 

vacuolar localization (Figure ChII.R-9A

complex is not essential for the vacuolar localization of MRS and ERS. However, even if the 

presence of Arc1 is not an absolute requirement for the vacuolar localization of MRS its 

distribution at the surface of the vacuole is impacted by its interaction with Arc1. 

III.4.3. AME complex component interaction with lipid bilayer

In order to test the ability of the AME complex components to interact with lipids in 

a context mimicking the vacuole membrane, we used liposomes that have the same lipid 

composition than subcellular membranes (PolyPIPososmes from Echelon Biosciences, Figure 

ChII.R-10A). Since I am interested in the anchoring to the vacuolar membrane, the liposomes 

2
. For this assay, the 

Figure ChII.R-10B-G) and then incubated with the 

liposomes. The advantage of these PolyPIPosomes over classical homemade liposomes, is 

heterologously-expressed MRS interaction with lipids relies on Arc1 (Chapter II section III.2), 

MRS
His6

 was co-expressed with Arc1 in order to obtain a Arc1 MRS
His6 

duplex. Because only 

MRS is fused to a His
6

Figure ChII.R-10E) relies on the formation of Arc1 MRS
His6

 duplex. In order to 

separate Arc1 MRS
His6

 duplex from free MRS
His6

and the four main elution peaks we obtained were analyzed (Figure ChII.R-10F and G). The 

immunoblotting indicates that the two proteins are found in the four peaks. However, it is 
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impossible for the duplex to be eluted in so many fractions. Since Arc1 and MRS
His6

 are 42 and 

and dimers of MRS
His6

Arc1 and MRS are enriched (Figure ChII.R-10F) would contain the duplex Arc1 MRS
His6

 that 

amount of MRS
His6

 and higher amount of Arc1, would contain MRS
His6

 and dimers of Arc1 that 

2
 

and control PolyPIPosomes (Figure ChII.R-10J-N, left and right panels respectively). For 

ERS
His6

 (Figure ChII.R-10J

could indicate that ERS only weakly interacts with the liposomes. On the other hand, its 

2
 and control PolyPIPosomes indicates 

previously performed lipid binding assays (Chapter II section III.2). In order to prevent ERS 

and then the protein was added (Figure ChII.R-10K). However, this did not diminish ERS’ 

presence in the elution fractions of both assays. These results indicate that ERS is thus able 

His6
Arc1, the 

liposomes were also previously incubated with the streptavidin beads before addition of the 

recombinant protein (Figure ChII.R-10L). The results obtained are similar to the one obtained 

for ERS
His6

 since 
His6

Arc1 is found in the elution fractions of both assays. Since recombinant 

His6
Arc1 cannot be biotinylated by E. coli biotin-protein ligase BirA, the presence of Arc1 in 

the elution fraction is not due to its interaction with the streptavidin beads. Similar to ERS, 

thus indicate that Arc1 can interact with lipid bilayers independently of their composition 

in a manner similar to ERS. For MRS (Figure ChII.R-10M), the protein is only found in the 

results are in accordance with the results showing that MRS cannot directly interact lipids 

(Chapter II section III.2). However, when the duplex Arc1 MRS
His6

 was incubated with the 

liposomes (Figure ChII.R-10N), MRS
His6

 was found in the elution fractions of both assays very 

likely because of the interaction of Arc1 with the lipid bilayer. These results could suggest 

that Arc1 anchors MRS to the subcellular membranes in vivo. 
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III.5. Impact of Arc1 deletion on vacuolar morphology and cell 

survival upon stress

III.5.1. pH stress

Since ERS and MRS can localize at the vacuolar surface independently of Arc1, we 

hypothesized that the role of vacuolar Arc1 may differ from its cytosolic one meaning an 

carbon source observed for  cells is a phenotype that is observed for vacuolar 

membrane ATPase activity (VMA) mutants. We thus aimed to determine if Arc1 could be 

involved in vacuolar morphology and vacuolar functions. For this we analyzed the impact of 

pH stress on cells deleted for ARC1 (Figure ChII.R-11). The optimal pH for yeast cell growth 

is 5.0 and VMA mutant display an inability to grow in presence of medium buffered to pH 

7.5. In presence of YPD pH 5.0, WT and  cells have round and multilobed vacuoles and 

cells display similar growth rate (Figure ChII.R-11A and B). There is also no difference in 

the size of the vacuole between the two strains (Figure ChII.R-11C). Upon pH change, some 

WT cells display more fragmented vacuoles but the overall vacuolar morphology does not 

change (Figure ChII.R-11A). Even if vacuole fragmentation could not be observed at pH 7.5 

for  cells, the overall vacuolar morphology of  cells is not impacted by pH change. 

The WT and  cells also display the same growth rate at pH 7.5 (Figure ChII.R-11B) and 

a diminution in the vacuole size can be observed for both strains (Figure ChII.R-11C). These 

results indicate that the Arc1 KO mutant does not display the phenotype of VMA mutants 

in presence of pH 7.5. However, VMA 2+ and 

a loss of V-ATPase activity that could also be studied in the  strain. Indeed, despite 

being an important component of vacuolar V-ATPase, Vph1 mutants only display mild VMA 

phenotypes, which could also be the case for Arc1. 

III.5.2. Osmotic stress

We also assessed the impact of ARC1 deletion on vacuolar fusion and fragmentation 

during hypotonic and hypertonic stresses respectively (Figure ChII.R-12). For this, cells were 

grown to mid-log phase in “normal” condition (YPD medium supplemented with 100 mM 

normal condition, the WT and cells have multilobed vacuoles and the shift to hypotonic 

WT

hypotonic

(SC)

normal

(YPD pH 5.0)

hypertonic

-64 merged -64 merged merged

s in different osmotic conditions Cells were grown in 

; 

n>15 cells were observed. 
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condition does not impact the vacuolar shape of both strains (Figure ChII.R-12, left panel). 

This is unexpected because vacuoles undergo fusion during hypotonic stress, there should 

thus be a single enlarged vacuole in both strains. Since cells were only subjected to hypotonic 

stress during 10 min, a prolonged incubation in hypotonic condition may be required to 

trigger vacuolar fusion. On the other hand, when incubated in hypertonic conditions, the 

vacuoles of both strains are highly fragmented (Figure ChII.R-12, right panel). Arc1 thus do 

not seem to be implicated in the process of vacuole fragmentation during hypertonic stress.

III.5.3. Prolonged starvation

The yeast vacuole is the main storage compartment for many aa, and aa uptake and 

export are regulated by vacuolar aa transporters. The vacuolar membrane also contains the 

We thus studied the vacuole morphology and cell survival of WT and  strains after 

early and prolonged amino acid and nitrogen starvations (Figure ChII.R-13). During early 

autophagy (1,5 h in SD-N), the vacuoles of WT cells start to undergo fragmentation in 

contrary to  cells that maintain round and large vacuoles. After 2,5 h induction, the WT 

vacuoles are highly fragmented and display membrane invaginations. For  cells, the 

vacuole fragmentation is less abundant and resembles the one observed for WT cells after 

1,5 h starvation. Membrane invaginations can also be observed but to a lesser extent than 

for WT cells. The  cells could thus display a delay in the apparition of the characteristic 

vacuolar structures associated with aa and nitrogen starvation in comparison to WT cells. 

Since overnight incubation in SD-N medium was used for previous experiments, 

we assessed the survival of WT and  cells by testing their recovery after early and 

prolonged starvation (Figure ChII.R-13B). For this, cells grown in YPD until mid-log phase 

incubation) min and aliquots were plated on YPD medium. The number of colonies for each 

 cells is similar in presence or in absence of 

aa and nitrogen. The incubation in starvation medium during 120 min thus has no impact on 

WT and  cells survival. However, after 120 min starvation there is a slight decrease in 

cell survival for both WT and  cells. Nonetheless, since the number of colonies does not 

cell division is inhibited during prolonged starvation but cell survival and recovery are not 

BY WT

YPD

SD-N

SD-N

-64 merged merged
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WT YPD

WT SD-N

arc1∆ YPD

arc1∆ SD-N

Figure ChII.R-13: Vacuole morphology and survival 

of BY WT and arc1∆ strains in autophagic 

conditions . A. Cells were grown in YPD and 

transferred in SD-N autophagy medium for 1,5 or 2,5 

h. The morphology of the vacuole was assessed by 

epifluorescence microscopy after FM4-64 staining. 

Scale bar : 5 µm ; n>15 cells were observed. B. WT 

and arc1∆ grown in YPD medium were transferred to 

SD-N or YPD medium and incubated for 30, 60, 120, 

180 min or overnight (870 min) before being plated 

on YPD medium to assess their recovery after 

starvation.
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Figure  ChII.CP-1: Vacuolar localization of caaRS and model for TORC1 regulation during nitrogen starvation by 

vaceMRS.  Unexpectedly, we identified a vacuolar echoform for all the caaRSs tested by using the Vac-Split-CFP system. 

All the AME complex components also localize at the vacuolar surface but their precise mode of binding remains 

unknown.  A potential role for vaceMRS in TORC1 regulation during nitrogen starvation was identified but remains to be 

confirmed. Moreover, the impact of vaceMRS on TORC1 activity seems to depend on the quantity of cMRS present at the 

vacuolar surface rather than on its interaction with a specific protein.
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impacted. Moreover, the number of colonies after starvation is similar for both WT and  

cells, the absence of Arc1 thus has no impact on cell survival after induction of autophagy.

IV. Conclusion & perspectives

components are localized in subcellular membranes. However, because of the many 

possible to clearly demonstrate the vacuolar localization of the three proteins. For these 

of the vacuolar echoforms of cytosolic proteins. Depending on the subcellular origin of the 

vacuolar distribution of the proteins. We could also demonstrate that a  vacuolar 

c
aaRS

ß11ch

indicating that they all possess a vacuolar echoform (Figure ChII.CP-1). With the exception 

of 
c
LRS, a vacuolar localization for these 

c
aaRSs had never been described thus far. The Arc1 

protein from the AME complex is also present at the vacuolar surface but is not essential 

for 
c
MRS and 

c
ERS vacuolar localization even though it somehow modulates the vacuolar 

localization/distribution of both 
c
aaRS. Indeed, Arc1 absence was linked to a remodeling in 

vacuolar distribution of both 
c
aaRS. Moreover, in absence Arc1, 

c
MRS vacuolar localization 

seems to occur more rarely, while 
c
ERS vacuolar localization occurs in a larger number of 

cells. Arc1 could thus promote 
c
MRS and restrict 

c
ERS vacuolar localization. Moreover, we 

demonstrated that the formation of AME complex is not a prerequisite for 
c
MRS and 

c
ERS 

vacuolar localization. Since 
c
ERS can bind to lipids and lipid bilayers in vitro, we hypothesized 

that it can bind to the vacuolar membrane in vivo. The lipid-binding domain of 
c
ERS could 

c
ERS is not implicated 

in vacuolar localization (Figure ChII.CP-1). On the other hand, 
c
MRS cannot bind directly to 

lipids or lipid bilayers and its vacuolar localization thus relies on the interaction with Arc1 

Figure ChII.CP-1). The lipid-

via a lipid-binding domain that could be located in a part of the protein that encompasses 

the Middle domain and (ii) via its interaction with 
c
ERS or 

c
MRS (Figure ChII.CP-1). A potential 
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Figure  ChII.CP-2: Purification of HA-CFPß1-10 associated 

with CFPß11ch-tagged protein and determination of 

vacuolar protein interactome. In order to determine the 

interactome of protein vacuolar echoform, an HA-tag and 

a cleavage site for 3C protease (in green) will be added 

between CFPß1-10 N-terminal extremity and Vph1 

(Vph1-3C-HA-CFPß1-10 construction). After cell lysis, a 

centrifugation at 13,000 × g will be performed in order to 

obtain a membrane fraction (P13) that contains 

Vph1-3C-HA-CFPß1-10 together with CFPß11ch-tagged 

protein and its interactants. After cleavage with 3C 

protease, the HA-CFPß1-10 fragment and CFPß11ch-tagged 

protein interactome will be purified by affinity 

chromatography (beads coupled to anti-HA antibodies) 

and eluted with HA peptides. Finally, the interactome of 

the CFPß11ch-tagged vacuolar protein will be determined 

by mass spectrometry. 
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c
MRS (Figure ChII.CP-1). Indeed, 

methionine starvation are impaired in  cells and fully restored upon overexpression 

and constitutive vacuolar anchoring of 
c
MRS (MRS

vac
) or Arc1 (Arc1

vac
) respectively. We 

hypothesized that the fraction of 
c
MRS brought to the vacuolar membrane by Arc1 could 

act synergistically with the Arc1-independent vacuolar fraction of 
c

and thus cell growth depending on the nutrient availability (Figure ChII.CP-1). In order to 

be analyzed in  cells overexpressing Arc1
vac

. The cell growth in methionine starvation 

will also be assessed in  and  cells expressing MRS
vac

. We could also use 

MRS mutants unable to activate and/or transfer the activated aminoacyl moiety onto tRNAMet 

in these assays in order to determine if the aminoacylation function of vacuolar MRS is 

these experiments in order to determine if 

downregulation. This would help us decipher the pathway(s) used by Arc1 to signal aa and/

Arc1 and MRS or only on Arc1 or MRS, we could use variants of Arc1 and MRS that I already 

generated and that are unable to interact through their GST-like domains. This would allow 

us to generate a strain in which MRS cannot bind to vacuolar Arc1 without having to delete 

Arc1. If in this strain, we observe the same pattern of Rps6 phosphorylation than in an  

strain upon shift to nitrogen starvation, this would mean that it is MRS which is responsible 

for modulating TOR activity and not Arc1.

in the yeast ( ). Indeed, Sylvain Debard, a former PhD student of the DyPS team, 

demonstrated that MRS can be N-terminally processed by the vacuolar protease Pep4 and 

that truncation increases during autophagy. Since the GST-like domain of this MRS is absent, 

it cannot interact with Arc1. This could explain why a portion of vacuolar MRS relies on the 

interaction with Arc1, while another portion is Arc1-independent. 

that 
c
ERS, 

c
LRS and 

c
MRS still localize at the vacuole surface (Figure ChII.CP-1). However, 

for 
c c

LRS and 
c
ERS, with a 
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more restricted distribution and possibility a diminution in the vacuolar localization. The 

c
MRS could thus leave the vacuole during autophagy. However, in order to use the Vac-Split-

ß1-10 ß11ch
 

Chapter I section IV. Another possibility 

in order to verify that the two fragments can dissociate upon metabolic change and protein 

ß11ch
 in respiration 

which is part of the V
1
 V-ATP subcomplex, interacts with Vph1 in fermentation conditions, 

cytoplasm (Parra et al., 2014

ß11ch
 cytosolic 

relocalization.

c
aaRSs tested (Figure ChII.CP-1). These 

bind to various lipid species as it was done for AME complex components. On the other 

in a similar way as described in Chapter section IV (Figure ChII.CP-2). For this, a cleavage 

ß1-

10 ß11ch

ß1-10 
fragment will then 

ß11ch
-tagged protein and its interactants (Figure 

ChII.CP-2). The utilization of an HA-tag allows the native elution of the proteins by using 

HA peptides. The eluted proteins could then be analyzed by mass spectrometry and tested 

understand how the proteins localize at the vacuole surface but will also provide essential 

information regarding the vacuolar function of the 
c

aaRS, we are also currently developing ex vivo aminoacylation assays for membrane fractions 

to determine if aaRS aminoacylate tRNAs or proteins (lysine side chains of proteins). The 
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c
aaRSs act as amino acid sensors for the aminoacylation of target 

proteins in human cells (He et al. ) indicates that vacuolar 
c

role rather than their tRNA aminoacylation canonical role which, logically, is performed by 

the cytosolic echoform. 

measurements between our different control proteins to determine if this method is 

trapped into small wells and the cell environment (growth medium) can easily be changed. 

stresses and gain insight into the potential dynamics of this vacuolar localization of cytosolic 

aaRSs, in response to environmental changes.
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into their potential role associated with relocation and to characterize organelles’ proteome. 

This phenomenon of dual-localization is also common within cytosolic aaRSs and their 

unexpected relocations is often related to the non-canonical functions they can exert in the 

new compartment they reach which has been shown to be as important as their primary 

MRS nuclear echoform and ERS mitochondrial echoform that are essential to synchronize 

expression of the F
O
 and F

1
 domains of the mitochondrial ATP synthase upon switch to the 

mitochondrial echoforms for 
c
aaRSs that already have a functional mitochondrial counterpart, 

mitochondria. Given the importance of aaRS and mitochondrial in numerous diseases, it 

would be interesting to characterize the function of these echoforms and their so far elusive 

c
aaRS, we were surprised to observe 

that all the tested 
c
aaRS do possess vacuolar echoform(s). Vacuolar/lysosomal localization 

Even if LRS vacuolar/lysosomal localization and its mode of action differ between the two 

cells. Whether they will be able to sustain the function of their fungal counterparts remains 

and mitochondrial echoform of Arc1 adds a new degree of complexity to the dynamics and 

roles of the AME complex components and in a more general way to multi aminoacyl-tRNA 

synthetase complexes regardless of their organismal origin. Even if evidences show that 

AME complex formation is not required for the vacuolar localization, we cannot exclude 
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of new localizations for cytosolic proteins probably involves new organellar signaling and 

targeting pathways that urgently need to be explored and characterized.
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RS arc1  Arc1vac MAT? arc1::KanMX4 ura3-52::VPH1-ARC1-3HA 

 Utilization Genotype 

DH5α 
Plasmid 

replication 

F– φ 80lacZ฀ M15 ฀ (lacZYA-argF)U169 recA1 endA1 hsdR17(rK–, mK+) phoA supE44 λ– thi-1 

gyrA96 relA1 

XL1 Blue 
endA1 gyrA96(nalR) thi-1 recA1 relA1 lac glnV44 F’[ ::Tn10 proAB+ lacIq lacZ M15] 

hsdR17(rK-mK+) - 

Rosetta 2 

Recombinant 

protein 

production 

F- ompT hsdSB(rB- mB-) gal dcm pRARE2 (CamR) 

Table MM-1: E.coli strains used for cloning or recombinant protein overexpression.

 Genotype Coll number  

GUS1  
 MATa gus1::HIS5 ade2-1 his3-11,15 ura3-52 leu2-3,112 trp1-1 

can1-100 GAL+  + pRS316-GUS1 
49 

2n RS 453 
MATa/α his3-11,15/his3-11,15 ura3-52/ura3-52 leu2-3,112/leu2-

3,112 trp1-1/trp1-1 ADE2/ADE2 
  

BiG Mito-Split-GFP 
MATa his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3, 

mitochondrial genome ρ+ atp6::GFPß1 -10 5‘UTRCOX2 ATP6 3‘UTRCOX2 
1820 

BiG Mito-Split-GFP por1  

MATa his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 

por1::KanMX4, mitochondrial genome ρ+ atp6::GFPß1 -10 5‘UTRCOX2 

ATP6 3‘UTRCOX2 

2214/2215 

BiG Mito-Split-GFP pep4  

MATa his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 

pep4::KanMX4, mitochondrial genome ρ+ atp6::GFPß1 -10 5‘UTRCOX2 

ATP6 3‘UTRCOX2 

2241/2242 

BY WT his3 1 leu2 0 lys2 0 trp1 0 ura3 0    

BY WT Trp- MATa his3 1 leu2 0 lys2 0 trp1 0 ura3 0 trp1::hphMX6 602 

BY arc1  MATa arc1::KanMX4 his3 1 leu2 0  ura3 0   

RS WT MATa ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-52   

RS arc1  MATa ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-52 arc1::KanMX4   

Vac-Split-CFP MATa his3 1 leu2 0 lys2 0 trp1::hphMX6 ura3::VPH1CFPß1-10 1642 

Vac-Split-CFP arc1  MAT? his3 1 leu2 0 trp1::hphMX6 ura3::VPH1CFPß1-10 arc1::KanMX4 2019 

RS arc1  MRSvac MAT? arc1::KanMX4 ura3-52::MES1-VPH1   

RS arc1  mes1  MRSvac MAT? mes1::HIS3 arc1  ::KanMX4 leu2-3,112::MES1-VPH1-cMyc   

Table MM-2: Yeast strains used in this study. 



 203 

GENERAL CONCLUSION

I. Biological material and growth media

I.1. Bacterial strains

Replication of plasmids is performed using bacterial strains that derive from the K-12 

strain and are listed in the Table MM-1. 

For recombinant protein production the bacterial strain Rosetta 2 that derive from 

BL21 strains is used (Table MM-1). This strain is designed to enhance the expression of 

eukaryotic proteins that contain codons rarely used in E. coli. Indeed, it carries the pRARE2 

control of the lacUV5 promoter which expression can be induced by adding isopropyl ß-D-1-

thiogalactopyranoside (IPTG) to the growth media. This strain is thus suitable for production 

of eukaryotic proteins from a plasmid carrying the gene of interest under the control of a 

T7 promoter. 

I.2. Bacterial growth media

For plasmid selection, antibiotics are supplemented in media when the media temperature 

I.3. Yeast strains

The different yeast strains used in this study are listed in Table MM-2. 

I.4. Yeast growth media

Table MM-3
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Common 

components 
  

agar-

agar (if 

solid) 

Carbon source  
medium 

rich 

media 

YPD 

Peptone 
Yeast 

extract  

 

(w/v) 
Fermentation   

YPGly 
 

(w/v) 
Respiration   

YPD + 

 (w/v) 
Fermentation 

µg/mL 

synthetic 

media 

 

Yeast Nitrogen Base 

with ammonium 

sulfate 6.7 g/L 

(w/v) 
Fermentation 

(w/v) 
Fermentation 

 

 
(w/v) 

Fermentation + 

active 

mitochondria 

-

aa (w/v) 

Fermentation + 

active 

mitochondria 
 

media 

5 FOA 

Yeast Nitrogen Base 

with ammonium 

sulfate 6.7 g/L 
(w/v) 

Fermentation 

(5FOA) 2.5 mM 

SD-N 

Yeast Nitrogen Base 

without ammonium 

sulfate 1.7 g/L 
(w/v) 

Autophagy 

(Nitrogen 

starvation) 

  

SPM 
Potassium acetate 

) 
None  Sporulation   

Table MM-3: Composition of yeast media used in this study. 
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select yeast cells according to their auxotrophic markers. The YPD media are not used for 

a KanMX4 cassette. The carbohydrate source introduced in the media will determine the 

metabolism used by the yeast cells (fermentation, respiration). Liquid and solid media are 

II. 

II.1. Bacterial cell transformation

µL of 

Gibson assembly (see section II.4.1.3) are added to the cells and incubated 20 min on ice. 

before being plated on LB-agar supplemented with the appropriate antibiotic. Transformed 

II.2. Plasmid extraction from bacterial cells

II.3. Yeast genomic DNA extraction

600 nm 600 nm 
unit are centrifuged and the pellet 

is resuspended in 200 µL

µL glass beads (Roth,  0.25 – 0.5 mm). Then, 200 µL 

× g at RT, the aqueous phase is transferred in 400 µL ice-cold ethanol absolute and 

× g for 5 min at room temperature (RT) and washed with 500 µL 
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primer

MH n°  Fw/Rv Primer use

 

Primer sequence (5'  3')

 

169 Fw 
KanMX4 deletion 

cassette for GUS1 deletion 

GAAGTATTAGTAACATTACCAGACCTCATCTGTTCC
TAATAacatggaggcccagaatac 

170 RV 
KanMX4 deletion 

cassette for GUS1 deletion 

TGGATGATAAACTTTTACAGTCAAAGTTCTATAGGT
AGACAcggcgttagtatcgaatcg 

163 Fw GUS1 upstream primer TTGCACTAACACCCATTGGG 

173 Rv GUS1 downstream primer AGCTCGTAGTCACTATTTGAACC 

57 Rv ampicillin marker TTTTCTGTGACTGGTGAGTACTCAACC 

175 Rv 
plasmid 

integration at the URA3 locus 
AATCATTACGACCGAGATTCCC 

117 Fw 
KanMX4 deletion 

cassette for POR1 deletion 

CAAGCGTACCCAAAGCAAAAATCAAACCAACCTCTC

AACAacatggaggcccagaatacc 

118 Rv 
KanMX4 deletion 

cassette for POR1 deletion 

ATGGTATATAGTGAACATATATATATTAGATATATA
CGTcggcgttagtatcgaatcgac 

39 Rv 
KanMX4 deletion cassette 

acaattacaaacaggaatcgaatgc 

177 Fw POR1 upstream primer GTGCTACGGATTCTCCCAAC 

123 Fw 
KanMX4 deletion 

cassette for PEP4 deletion 

ATTTAATCCAAATAAAATTCAAACAAAAACCAAAAC
TAACACATGGAGGCCCAGAATACC  

134 Rv 
KanMX4 deletion 

cassette for PEP4 deletion 

GCAGAAAAGGATAGGGCGGAGAAGTAAGAAAAGTTT
AGCCGGCGTTAGTATCGAATCGAC  

178 Fw PEP4 upstream primer TGAGAAGCCTACCACGTAAGG 
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× g for 5 min at RT, the pellet is dried at 

2
O (the volume depends on the pellet size). The concentration 

of DNA is determined by measuring the absorbance at 260 nm (A
260 nm

) with the Nanodrop. 

II.4. 

II.4.1. Primer design

will be different. However, all forward and reverse primers will anneal on the DNA region to 

The melting temperature (Tm) of the primers should not be too different and is usually 

plasmid containing a tag, the reverse primer will be designed in order to remove the STOP 

codon of the gene to be cloned. 

II.4.1.1. Gene deletion

Gene deletion in Sce genome occurs through the replacement by homologous 

containing the KanMX4 gene (or an auxotrophic marker) (Table MM-4). To completely replace 

KanMX4 cassette. Usually for the 

homologous recombination to occur, the overlapping sequences must be approximately 40 

nucleotides long. 

II.4.1.2. Gateway cloning

sites located on the gene to insert and the “donor” vector respectively. Thus, the forward 

and reverse primers used to amplify the gene of interest must contain the attB1 and attB2 

II.4.1.3. Gibson assembly

regions used for homologous recombination is 20 nucleotides. For more detailed information 
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  PrimeSTAR Phire   

  Temperature Time Temperature Time   

Initial denaturation  1 min  5 min   

Denaturation  10 sec  10 sec 

3
0

 
 

Annealing 
depends on the 

primers 
15 sec 

depends on the 

primers 
10 sec 

Extension  5 sec/kb  20 sec/kb 

Final extension  1 min  5 min   
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refer to Hemmerle et al., 2021, page 260. 

II.4.2. 

To amplify a DNA fragment from a plasmid or from Sce genomic DNA (gDNA), the 

PrimeSTAR® Max DNA Polymerase (Takara) is used. The 20 µL

µL PrimeSTAR Max Premix 2 ×, 0.5 µM of each primer and 4 pg – 400 pg plasmidic DNA or 2 

from Bio-Rad and protocol is described in Table MM-5. 

II.4.3. Yeast colony PCR

of a gene from Sce

µL reaction mixture is composed of 0,5 µM of each primer 

and 5 µL 2 × Phire Master Mix. Yeast cells are then swiped with a sterile pipette tip and 

Table MM-5.

II.5. DNA visualization under UV light

20 mM acetate, 1 mM EDTA) and submitted to electrophoresis in the same TAE buffer for 

bromide. The visualization is performed using Herolab Transilluminator.  

II.6. Enzymatic restriction of plasmids

Plasmids can be digested using restriction enzymes (Fast digest enzymes from 

plasmids for further cloning steps. The 20 µL reaction contains around 0.5-1 µg plasmid, 

0.5 µL restriction enzymes, 2 µL Fast digest buffer 10 ×

II.7. Cloning strategies

During my PhD I used two different cloning strategies for DNA insertion in expression 
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  Components Final concentration 

Buffer 

100 mM 

10 mM 

DTT 10 mM 

NAD+ 1 mM 

each of the 4 dNTPs 2 mM 

  

Enzymes 

T5 exonuclease 7.5 U/ml 

Phusion DNA Pol 25 U/ml 

Taq DNA ligase 200 U/ml 

Table MM-6: Composition of 1  Gibson assembly mix. 
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plasmids. However, Gibson strategy was the most commonly-used technic and most of the 

plasmids I have constructed were assembled using this technic. 

II.7.1. Gateway cloning strategy

and attB2 (see section II.4.1.2

µg of plasmid is linearized with restriction enzyme (section II.6.) that digests outside of the 

GOI sequence. Restriction enzyme is inactivated following the manufacturer’s instructions 

and 5 µL are mixed with 150 ng “donor vector” pDONR221 for BP recombination using the 

plated on LB-agar supplemented with kanamycin. LR recombination then occurs between 

the pDONR221/GOI and any expression plasmid from the Gateway™ cloning collection. The 

LR recombination mix is composed of 150 ng of each plasmid and 10 µL of the Gateway™ 

recombination mix are transformed in competent bacteria cells subsequently plated on LB-

agar supplemented with ampicillin. 

II.7.2. Gibson assembly

overhangs that will be used for the homologous recombination between the linearized 

section II.4.1.3 and Hemmerle et al., 2021, page 260. 

Sce gDNA or from a plasmid. Linearization of the 

Nagel) the concentration of each sample is determined by measuring the A
260 nm 

and the molar 

µL of Gibson assembly buffer (Table MM-6). Finally, competent cells are transformed using 

5 – 7.5 µL of the assembly. 
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Coll number  pMH n° vector
 

promoter
 

Insert-tag 
MW 

(kDa) 

linearization 

enzyme 

Split-CFP/GFP plasmids 

1768/1769 063 p306 pGPD Vph1-CFPß1-10 122 NsiI 

    p304 pGPD cERS-ß11ch 91 PmlI 

2317 120 p304 pGUS1 cERS-ß11ch 91 PmlI 

2318 121 p304 pGPD Pam16-ß11ch 27 PmlI 

1808 - p414 pGPD cERS N1( 30)-ß11ch 87 - 

2047-49   p414 pGPD GFP/CFPß11ch 9 - 

2134 091 p414 pGPD Cps1-ß11ch 74 - 

1505   p414 pGPD Arc1-ß11ch 52 - 

1791   p414 pGPD Arc1 N1( 37)-ß11ch 47 - 

1785   p414 pGPD Arc1 N2( 54)-ß11ch 45 - 

1790   p414 pGPD Arc1 N3( 108)-ß11ch 39 - 

1509 024 p414 pGPD Arc1 N( 132)-ß11ch 37 - 

1507 006 p414 pGPD Arc1N(1-132)-ß11ch 25 - 

1510 030 p414 pGPD Arc1 C(1-201)-ß11ch 33 - 

1723   p414 pGPD ERS1-160-ß11ch 28 - 

1155   p414 pGPD His3-ß11ch 34 - 

2133 090 p414 pGPD Vma13-ß11ch 64 - 

2315 118 p414 pGPD Nvj1-ß11ch 46 - 

2332 122 p414 pGPD Por1-ß11ch 40 - 

2314 117 p414 pGPD Atg20-ß11ch 82 - 

1739   p414 pGPD MRS-ß11ch 96 - 

1162   p414 pGPD ERS-ß11ch 91 - 

1719   p414 pGPD ARS-ß11ch 118 - 

1139   p414 pGPD KRS-ß11ch 78 - 

1128   p414 pGPD DRS-ß11ch 74 - 

1881/1882 080/081
 

p414 pGPD FRS2-ß11ch 67 - 

1138   p414 pGPD HRS-ß11ch 70 - 

1721   p414 pGPD LRS-ß11ch 134 - 

Table MM-7: Plasmids used in this study for protein expression in the yeast (1/2). 

1720   p414 pGPD VRS-ß11ch 136 - 

1161   p414 pGPD GRS1-ß11ch 86 - 



 213 

Procedures used for S. cerevisiae   MATERIAL & METHODS

For more detailed information refer to Hemmerle et al., 2021, page 260. 

II.8. 

analyzed with ApE plasmid editor software. 

III. Procedures used for S. cerevisiae

III.1. Yeast growth monitoring

Most experiments are carried out using yeast cells that are in their exponential (or 

mid-logarithmic, mid-log) growth phase. To determine their growth phase, the OD
600 nm 

is 

measurement, cells are diluted 1/10 in water in a polystyrene spectrophotometer cuvette. 

For this spectrophotometer the exponential growth phase corresponds to an OD
600 nm 

1.5. 

Usually, pre-cultures are inoculated directly from the agar plates in the appropriate 

600 nm 

III.2. Yeast transformation

Yeast cells are grown overnight in YPD and centrifuged at 5,000 × g for 5 min at RT. 

The pellet is washed two times with sterile H
2
O and resuspended in the appropriate volume 

of H
2
O. 10 µL

50 µL

µL

short spin centrifugation and the pellet is washed with 1 mL H
2
O. The supernatant is removed 

to leave approximately 100 – 150 µL in the tube to resuspend the pellet. Transformed cells 

plasmids used in this study are listed in Table MM-7.
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1163   p414 pGPD QRS-ß11ch 103 - 

1215   p414 pGPD NRS-ß11ch 73 - 

1160   p414 pGPD SRS-ß11ch 64 - 

1137   p414 pGPD TRS-ß11ch 95 - 

1216   p414 pGPD WRS-ß11ch 60 - 

1738   p414 pGPD IRS-ß11ch 133 - 

1166   p414 pGPD YRS-ß11ch 54 - 

1154   p414 pGPD RRS-ß11ch 80 - 

1874 073/074 p414 pGPD GRS2-ß11ch 80 - 

    p414 pGPD FRS1-ß11ch 76 - 

Other plasmids 

1639 049 p425 pGPD Arc1 MRS(A26R,S33A)-3cHis10 45 - 

1638 048 p425 pGPD Arc1 ERS(T55R, R100A, Y104A)-3cHis10 45 - 

1634 044 p425 pGPD Arc1 MRS ERS-3cHis10 45 - 

2135 092 p306 pGPD cERS N1( 30)-3HA 82 PstI 

2141 098 p306 pGPD cERS N2( 70)-3HA 78 PstI 

2142 099 p306 pGPD cERS-3HA 86 PstI 

2146 103 p306 pGPD cERS N3( 160)-3HA 68 PstI 

Sylvie Friant      mCherry-Atg8  - 

2131 088 p306 pGPD Vph1-Arc1-3HA 143 NsiI 

Split-CFP/GFP plasmids 

Table MM-7: Plasmids used in this study for protein expression in the yeast (2/2). 

Coll number  pMH n° vector
 

promoter
 

Insert-tag 
MW 

(kDa) 

linearization 

enzyme 
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III.3. Serial dilution spotting assay

600 nm

washing the cells with 1 mL sterile H
2
O, the pellet is resuspended in a volume of water to 

obtain a OD
600 nm 

-2, 5.10-

,5.10-4, 5.10-5 µL

III.4. Yeast mating procedure

Mating of yeast cells to obtain diploid cells is performed on YPD-agar plates by mixing 

cells of mating type a and 

plate to obtain isolated clones. The selection of diploid is performed using the mating type 

tester strains PT1 (Mat a iso1- ham1- cam1-) or PT2 (Mat  iso1- ham1- cam1-). Indeed, when 

haploid cells are crossed with PT1 or PT2 strains, the diploids obtained are able to grow on SD 

selected are then replica plated on various media to determine their phenotype. Finally, 

600 nm 

hour the tube is left on the bench for 1 min to let the cells settle. A 10 µL aliquot is taken 

procedure above). 

III.5. Diploid sporulation and tetrad dissection

are harvested from the plate and visualized by optical microscopy to check the presence of 

tetrads of four haploid spores.

Once a majority of diploid cells have undergone sporulation, tetrads are inoculated in 
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45 µL H
2
O and the protective membrane surrounding spores is digested with 5 µL of zymolyase 

20T (10 mg/mL) for 5 min at RT. Digested tetrads are then spread in a line on a YPD plate to 

form a “tetrad reservoir”. After drying the plate for a few minutes tetrads are selected, 

picked, and the individual spores pulled apart using a micromanipulator microscope (Singer 

the spores is performed by replica plating on various media and mating type is determined 

by cross-testing with PT1 and PT2 strains. 

III.6. Yeast protein extract preparation

III.6.1. Total protein extract

600 nm 600 nm
 

unit is then centrifuged at 5,000 × g

by the addition of 450 µL

precipitation is performed by addition of 50 µL

× g µL/OD
600 nm

 unit 1 × loading buffer (60 mM 

bromophenol blue). 

III.6.2. Subcellular fractionation

600 nm

100 OD
600 nm 

units is centrifuged at 5,000 × g during 10 min. From this point all steps are 

2
, 250 mM sorbitol) and centrifuged at 5,000 × g

The lysate is transferred in a 1.5 mL Eppendorf tube and centrifuged at 500 × g during 5 

× g 
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µL

1.5 mL ultracentrifugation tube. The soluble S100 and the pellet P100 fractions are obtained 

after a 1 h ultracentrifugation at 100,000 × g 

washed using 500 µL

equivalent to the S100 fraction. The concentration of each fraction is determined using 

Bradford. For Western blot analysis the same volume of each fraction is loaded onto SDS-

PAGE. The quantity of proteins loaded on the gel should be at least 10 µg and at most 50 µg.  

III.6.3. 

The following protocol is adapted for a 1 L culture at an OD
600 nm

approximately 1000 OD
600 nm

 units. The culture is centrifuged for 2 min at 4,400 × g at RT. 

4

× g at RT and 

600 nm 
units/mL (1 × 

×

2
O and vortexed to monitor the OD

600 nm
. Spheroplasts are prepared by 

 600 nm
 units (stock solution 

2 min incubation the mix is vortexed and the OD
600 nm 

is measured. The digestion is completed 

when the OD
600 nm 600 nm 

before zymolyase treatment. From this 

point all steps should be performed very carefully since the spheroplasts are very fragile. 

× g 

spheroplast medium B (1 × × amino acids, 1 M sorbitol) by gently 

concentration of 1 – 5 OD
600 nm 

× 

g

dextran solution (0.4 mg/mL in PS buffer) are added and gently mixed. After an incubation 

gentle mixing during the incubation and kept on ice. The cell lysate is then transferred in 
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Fluorescent Dye Excitation (nm) Emission (nm) 

   

FM4-64 515 640 

  525 

Table MM-8: Fluorescent probes used in this study. 
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at 110,000 × g

×. 

III.7. Fluorescence microscopic observations

III.7.1. FM™ 4-64 staining

600 nm

OD
600 nm 

unit is pelleted at 5,000 × g 5 min RT. The pellet is resuspended in 50 µL medium 

N

Phenyl) Hexatrienyl) Pyridinium Dibromide) (Table MM-8). The suspension is then incubated 

µL medium. 

After centrifugation at 5,000 × g µL medium and 

× g 

and the pellet is resuspended in 500 µL medium. After a 5,000 × g 1 min centrifugation the 

pellet is resuspended in 50 µL of adequate medium for microscopic observations. 

III.7.2. MitoTracker™ Red CMXRos staining

mitochondria. Approximately 1 OD
600 nm 

unit is harvested and supplemented with 1 µL 200 nM 

Table MM-8

the cells are washed three times with H
2
O and resuspended in 20-50 µL

III.7.3. 

This protocol is adapted from Baggett et al.

phase in rich medium and 1 OD
600 nm 

× g

is removed and the pellets are incubated on ice for 2 - 5 min and subsequently resuspended 

µL Hepes 1 M pH 7.6 and quinacrine prepared in Hepes-Na 1 

Table MM-8). The suspension is incubated 

× g at RT 
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and resuspended in 50 µL

IV. Biochemisty

IV.1. Protein electrophoresis and immunoblotting

All samples for protein electrophoresis are prepared in 1 × loading buffer (60 mM 

total extract a volume equivalent to 0.1 OD
600 nm

 is used for SDS-PAGE analysis. 

- 

adjusted depending on the molecular weight of the proteins to analyze (usually 

- 

Gels are poured between two glass plates (10 ×

integrated spacers (Mini-PROTEAN® Spacer Plates, BIO-RAD). 

After sample loading, electrophoresis is performed in Tris-glycine SDS running buffer 

RAD). 

solution. Indeed, the trihalo compound is covalently bound to tryptophan residues, enhancing 
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For Western blotting, proteins are transferred onto 0.2 µm PVDF membrane (Trans-Blot 

Transfer Packs, BIO-RAD) using the Trans-Blot Turbo™ transfer system (BIO-RAD) following 

the manufacturer’s instructions. The PVDF membrane is activated by bathing it in ethanol 

at different concentrations (Table MM-9). After three 10 min washing steps in TBS-Tween, 

membranes are incubated with the HRP-couped secondary antibodies (anti-mouse or anti-

rabbit goat antibodies, Table MM-9

(BIO-RAD). 

IV.2. 

The plasmids used for ERS
His6

, MRS
MBP

, 
His6

Arc1 (WT and truncated mutants) and 

Arc1 MRS
His6

 overexpression are listed in Table MM-10

of MRS
MBP

 along with cleavage of the MBP-tag were performed by Sylvain Debard and 

described in  After overexpression, 
His6

Arc1 and ERS
His6

using Ni-IDA agarose beads (Jena Bioscience). 

IV.2.1. Protein overexpression

E. coli Rosetta 2 strains harboring the pET15b or pET20b expression plasmids (Table 

MM-10) are grown overnight in 50 mL LB medium supplemented with ampicillin (Amp) and 

OD
600 nm 600 nm 

the expression of Arc1 truncated mutants, the expression was induced upon addition of 0.2 

× g for 10 min at RT. At 
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Primary antibody Type Host Dilution Source 

anti-MRS polyclonal rabbit  this lab 

anti-Arc1 polyclonal rabbit  this lab 

anti-ERS polyclonal rabbit  this lab 

anti-GFP N-terminal polyclonal rabbit  Sigma 

anti-Vph1 monoclonal mouse  gift from Dr. Friant's lab 

anti-Pgk1 monoclonal mouse  Abcam 

anti-GFPß11 monoclonal mouse  Roche 

Ni-HRP conjugate      Thermo Fisher 

          

Secondary antibody Host Dilution Source   

anti-mouse IgG Goat  BIO-RAD   

anti-rabbit IgG Goat  BIO-RAD 
 

Table MM-9: Antibodies used for immunoblotting. 

Name Protein-Tag Resistance marker induction 

 His6-Arc1 Amp IPTG 

M His6-Arc1 M Amp IPTG 

His6-Arc1 Amp IPTG 

 His6-Arc1N Amp IPTG 

pET20b-ERS ERS-His6 Amp IPTG 

pMALc2-MRS MBP-MRS Amp IPTG 

pET20b-AMRS Arc1•MRS-His6 Amp IPTG 

Table MM-10: Plasmids used for protein overexpression in E. coli. 
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IV.2.2. Soluble fraction preparation

2

× g × g 

of the proteins. 

IV.2.3. 

Ni-IDA buffer (NaH
2
PO

4

is then washed with 10 volumes of Ni-IDA buffer supplemented with 20 mM imidazole. The 

elution of the His6-tagged proteins is performed using Ni-IDA buffer supplemented with 250 

mM imidazole. In order to remove the imidazole from the elution fractions, sample dialysis 

is performed. The sample is poured in a dialysis bag previously rinsed with distilled water 

and the dialysis bag is then soaked in ice-cold dialysis buffer under constant agitation at 4 

should be at least 100 times the sample volume. To concentrate the sample after dialysis, 

to trigger diffusion of the buffer from the dialysis bag into PEG powder. 

IV.2.4. 

ERS
His6

, Arc1
His6

 and Arc1 MRS
His6

IV.2.4.1. HisTrap

The soluble extracts prepared in section IV.2.2 are loaded onto 1 mL HisTrap™ High 

lysis buffer and the proteins are then eluted in presence of lysis buffer and a 0-400 mM 
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IV.2.4.2. 

Depending on the protein concentration in the HisTrap elution fractions, 40-500 

equilibrated with 1 × Phosphate Buffered-Saline (PBS). The elution of the proteins is 

performed using 1 × PBS. 

IV.3. Lipid overlay assays

membranes pre-spotted with different biologically-active lipids at 100 pmol per spot. PIP 

recombinant protein diluted in 5 mL blocking buffer are then incubated on the membranes 

Table MM-9) in blocking buffer is incubated 

IV.4. Liposome binding assays

In order to perform liposome-binding assays, PolyPIPosomes from Echelon 

2
 (see Figure ChII.R-10). For the 

for Western blot analysis).

IV.4.1. 
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transferred to 1 mL binding buffer and vortexed for 5 sec. The tube is then placed into a 

magnetic rack for 1 min and the supernatant is removed. After resuspending the beads in 

45 µL binding buffer, the PolyPIPosomes are added and incubated for 1 h at RT on a rotary 

collected. After three washing steps with 500 µL binding buffer, the proteins are eluted upon 

addition of 100 µL of SDS-PAGE loading buffer (see section IV.1
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Abstract

The aminoacylation reaction is one of most extensively studied cellular processes. The

so-called “canonical” reaction is carried out by direct charging of an amino acid (aa) onto

its corresponding transfer RNA (tRNA) by the cognate aminoacyl-tRNA synthetase

(aaRS), and the canonical usage of the aminoacylated tRNA (aa-tRNA) is to translate a

messenger RNA codon in a translating ribosome. However, four out of the 22 geneti-

cally-encoded aa are made “noncanonically” through a two-step or indirect route

that usually compensate for a missing aaRS. Additionally, from the 22 proteinogenic

aa, 13 are noncanonically used, by serving as substrates for the tRNA- or aa-tRNA-

dependent synthesis of other cellular components. These nontranslational processes

range from lipid aminoacylation, and heme, aa, antibiotic and peptidoglycan synthesis
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to protein degradation. This chapter focuses on these noncanonical usages of aa-tRNAs

and the ways of generating them, and also highlights the strategies that cells have

evolved to balance the use of aa-tRNAs between protein synthesis and synthesis of

other cellular components.

1. Introduction

Translation relies on the constant synthesis and delivery to the

decoding ribosomes of a complete set of accurately aminoacylated transfer

RNAs (aa-tRNAs). aa-tRNAs are the products of an enzymatic reaction

termed tRNA aminoacylation, that is catalyzed by a family of ubiquitous

enzymes called aminoacyl-tRNA synthetases (aaRSs) [1]. Elucidation of

the aminoacylation reaction was concomitant with the characterization of

tRNA and aaRSs [2–7]. In the “canonical” aminoacylation reaction, using

a specific amino acid (aa), aaRSs catalyze the ATP-dependent formation

of an aminoacyl-adenylate (aa!AMP), which enables this activated aa to

be transferred directly onto the accepting 30- or 20OH of the terminal aden-

osine of the cognate tRNA (Fig. 1A). “Canonical” tRNA aminoacylation

is often also termed “direct” tRNA aminoacylation and signifies that the

aa and tRNA that are linked are cognate pairs and that, upon release,

the aa-tRNA can be used directly in protein synthesis. Contrarily, the

“non-canonical” tRNA aminoacylation, also termed “alternate” or “indirect

pathway,” starts with an aa that is first charged onto a non-cognate tRNA

by an aaRS, followed by its conversion into the cognate aa by a second enzy-

matic activity. The first description of a non-canonical pathway for tRNA

aminoacylation occurred as early as 1968 by M. Wilcox and M. Nirenberg,

who demonstrated that direct formation of glutaminyl-tRNAGlutamine

(Gln-tRNAGln) by a glutaminyl-tRNA synthetase (GlnRS) was absent

in three Bacilli species; the evidence indicated that they all required first

the aminoacylation of tRNAGln with glutamate (Glu), followed by the

tRNA-dependent conversion of Glu into Gln, thereby demonstrating that

tRNA can be a cofactor in aa biosynthesis [8]. The description of the first

non-canonical aminoacylation reaction almost coincided with the first

report of the non-canonical utilization of an aa-tRNA, e.g., not for protein

synthesis, and was that of lysyl-tRNALysine in the synthesis of O-lysyl

phosphatidylglycerol in Staphylococcus aureus [9].

From the 22 genetically-encoded aa that have been identified to date,

18 are exclusively aminoacylated onto their cognate tRNAs through the

2 Marine Hemmerle et al.
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Fig. 1 Canonical and noncanonical tRNA aminoacylation reaction and nontranslational

aa-tRNA usages. (A) Overview of the canonical tRNA aminoacylation (right side, blue

arrows) and of the noncanonical 2-step reaction (left side, red arrows). For details see

Fig. 2. (B) Schematic representations of the nontranslational usages of aa-tRNAs

described in this chapter. The molecule that will be tRNA-dependently or aa-tRNA-

dependently modified is indicated in the top row, the enzyme responsible for the

tRNA-dependent modification in the middle and the product of the reaction or the

fate of the compound tRNA-dependently modified is indicated in the bottom row.

3Noncanonical inputs and outputs of tRNA aminoacylation
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canonical reaction (Ala, Arg, Asp, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro,

Pyrrolysine (Pyl), Ser, Thr, Trp, Tyr and Val), one is strictly aminoacylated

via a non-canonical aminoacylation reaction (Selenocysteine, Sec) and

three are charged onto their corresponding tRNA either canonically or

non-canonically (Asn, Cys and Gln). All four indirect pathways of tRNA

aminoacylation have three main common features. They proceed via two

consecutive steps (an exception is Sec-tRNASec formation in archaea and

eukaryotes that requires three reactions; see Fig. 2). The first step is the mis-

charging of a tRNA with a non-cognate aa by a so-called non-discriminating

aaRS (ND-aaRS) [10,11]. The second step is the conversion of the

misacylated aa into the cognate one, while it is attached to the tRNA by a

tRNA-dependent modifying enzyme [12]. Sometimes the ND-aaRS and

the tRNA-dependent modifying enzyme form a complex that catalyzes both

reactions without the release of the mischarged aa-tRNA intermediate [13].

The last common feature is that the noncognate aa of the misacylated

aa-tRNA intermediate is always a metabolic precursor of the cognate final

aa, in the tRNA-independent and regular metabolic pathway (e.g., Asp for

Asn, Glu for Gln, O-phosphoserine (Sep) for Sec; Fig. 1A). Among the

22 proteinogenic aa, 13 (Ala, Arg, Asp, Glu, Gly, Leu, Lys, Met, Phe, Thr,

Trp, Val and Ser) can serve as substrates for the tRNA-dependent synthesis

of other cellular components. Noteworthy, when the aa of an aa-tRNA is

used for a non-canonical pathway, the tRNA carrier is generally not specific

to the non-canonical usage but diverted from protein synthesis. This often

requires adaptation of other components of the translation machinery that

limit the negative impact that rerouting of aa-tRNAs could have on the

efficiency or accuracy of protein synthesis [14]. The purpose of this chapter

is to present the fascinating diversity of the non-canonical usages made by

organisms of aa-tRNAs (Fig. 1B).

2. Non canonical aminoacylation of tRNAs and
tRNA-dependent synthesis of amino acids

2.1 The two non-standard amino acids

In addition to the common set of 20 proteinogenic aa, two additional

and non-standard aa are used for protein synthesis in some organisms:

selenocysteine (Sec) and pyrrolysine (Pyl), respectively, known as the 21st

and 22st genetically-encoded aa.

4 Marine Hemmerle et al.
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Fig. 2 Non-canonical pathways of aa-tRNA biosynthesis. (A): Biosynthesis of Sec-tRNASec

using a post-charging conversion of Sec by a two-step pathway in bacteria (upper panel)

and a three-step pathway in eukaryotes and archaea (lower panel); (B) Two-step

biosynthesis of Cys-tRNACys in archaea lacking CysRS. (C) Two-step transamidation

pathway of Gln-tRNAGln synthesis used by bacteria, archaea, mitochondria and chloro-

plasts. GatCAB AdT: Glutamyl-tRNAGln amidotransferase used by bacteria, most eukary-

otic organelles; GatDE: Glutamyl-tRNAGln amidotransferase used by archaea; GatFAB

AdT: Glutamyl-tRNAGln amidotransferase of yeast mitochondria; GatAB: Glutamyl-

tRNAGln amidotransferase used by apicoplast. (D) Two-step transamidation pathway or

transamidosome-mediated route of Asn-tRNAAsn synthesis used by bacteria, archaea

deprived of AsnRS or of asparagine synthetase. The amide donor is either Gln or Asn and

is deaminated to formGluorAsp (acid)during transamidation, respectively.Panel B: adapted

from J. Yuan, S. Palioura, J.C. Salazar, D. Su, P. O’Donoghue, M.J. Hohn, A.M. Cardoso, W.B.

Whitman, D. S€oll, RNA-dependent conversion of phosphoserine forms selenocysteine in

eukaryotes and archaea, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 18923–18927.

5Noncanonical inputs and outputs of tRNA aminoacylation
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2.1.1 The 21st proteinogenic aa: Selenocysteine (Sec)

Selenocysteine incorporation has been discovered in 1986 both in mammals

and bacteria [15,16]. Its incorporation into proteins depends on an in-frame

UGA “opal” STOP codon, which is read through by ribosomes. Sec

residues are found in the active sites of selenoproteins (25 genes in mammals,

but none in fungi and higher plants). This non-ubiquitous proteinogenic aa

has a higher nucleophilic reactivity than cysteine (Cys), thus facilitating

selenoproteins in performing enhanced redox reactions and maintain

redox homeostasis [17]. Sec is generated via two consecutive steps [18]

(Fig. 2A) by tRNA-dependent modification of a Ser precursor attached

to the opal suppressor tRNASec [19]. Indeed, because tRNASec and

tRNASer share the same tRNA identity elements, tRNASec can be recog-

nized by the seryl-tRNA synthetase (SerRS) and charged with Ser to form

Ser-tRNASec [20]. However, an additional base pair in the acceptor stem

of tRNASec—in comparison to all known tRNAs—prevents the recogni-

tion of the misacylated Ser-tRNASec by the elongation factor thermo-

unstable (EF-Tu), thus precluding misincorporation of Ser into proteins

[21–23]. After serylation of tRNASec by SerRS, the Ser residue is either

(i) directly selenylated by SelA to form Sec-tRNASec in bacteria [19], or

(ii) phosphorylated by O-phosphoseryl-tRNA-kinase (PSTK) to form

O-phosphoseryl-tRNASec (Sep-tRNASec), the latter activated aa being sub-

sequently selenylated in a tRNA-dependent manner by the SepSecS enzyme

in eukaryotes and archaea [24]. Both SelA and SepSecS are pyridoxal-50-

phosphate (PLP)-dependent enzymes and use selenophosphate as a selenium

donor (Fig. 2A). Selenocysteinyl-tRNASec is then transported to translating

ribosomes by specific elongation factors: SelB in bacteria [25] and the

eEFSec•SBP2 complex in eukaryotes [26,27]. Finally, incorporation of

Sec requires pausing of the ribosomes at UGA “Sec” codons, which requires

a cis-acting stem loop structure, called SElenoCysteine Insertion Sequence

or SECIS, located downstream of the “Sec” UGA codons of selenoprotein

mRNAs. Note that SECIS elements differ in length and structure between

bacteria, archaea and eukaryotes [28–32].

2.1.2 The 22nd proteinogenic aa: Pyrrolysine (Pyl)

Pyrrolysine is a modified lysine with a 4-methylpyrroline-5-carboxylate

group linked by an amide to the ε-amino group (ε-N). It was first discovered

in 2002 in methanogenic archaea and later in several bacteria [33,34]. In

methanogenic archaea, all genes encoding methylamine methyltransferases

6 Marine Hemmerle et al.
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(methane-generating enzymes) contain an in-frame UAG “amber” STOP

codon that is translated into a pyrrolysyl residue. As for Sec, Pyl active

site residues appear to be crucial for the activity of enzymes involved

in methanogenesis [35]. Pyrrolysyl-tRNAPyl is synthesized by direct

pyrrolysylation of an amber-suppressor tRNAPyl by the class IIc PylRS

[36]. Pyl incorporation has become the first known example to date of

direct aminoacylation of a tRNA with a non-standard proteinogenic aa.

The structure of tRNAPyl differs from the classical tRNA structure because

it displays for example a D- and TΨC-loop without their conserved

representative residues [37]. Contrary to Sec-tRNASec and its trans-specific

factors, Pyl-tRNAPyl is transported to the A-site of the ribosome by the stan-

dard elongation factor EF-Tu [38]. In addition, in some cases the mRNA

sequence context seems important for Pyl insertion, and a specific stem

loop called PYrroLysyl Insertion Sequence or PYLIS has sometimes, but

not always, been found directly next to the “amber” codon on mRNAs

encoding for methylamine methyltransferases [39].

2.2 tRNA-dependent pathways of amino acid biosynthesis

Selenocysteine is not the only aa that requires multiple steps to be incorpo-

rated into proteins. In numerous organisms, analogous indirect pathways are

also needed for the incorporation of standard aa into proteins. In those cases,

the biosynthesis of the proteinogenic aa is tRNA-dependent and linked to

the production of the corresponding cognate aa-tRNA.

For the majority of eukaryotes and very few bacteria, the 20 different

types of standard aa-tRNAs are produced by a full and unique set of 20 dif-

ferent aaRSs. But in the majority of bacteria and all archaea, one or more

aaRS genes is missing, suggesting that the aminoacylation of corresponding

orphan tRNAs is performed by a non-canonical route. The organism

that best illustrates missing aaRSs is the hyperthermophilic methanogenic

archaea Methanocaldococcus jannaschii, whose genome was sequenced in

1996 and that lacks four expected aaRS genes: LysRS, CysRS, AsnRS

and GlnRS [40]. It was shown in this archaeon that the lack of CysRS is

compensated by a tRNACys-dependent two-step pathway (Fig. 2B) similar

to that of Sec-tRNASec formation in bacteria. In this pathway, tRNACys is

first mischarged by a dedicated O-phosphoseryl-tRNA synthetase (SepRS)

with Sep, before tRNA-dependent conversion of the Sep moiety into Cys

by the PLP-dependent SepCysS enzyme that ressembles SepSecS [41].

7Noncanonical inputs and outputs of tRNA aminoacylation
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AsnRS and especially GlnRS are also often missing in prokaryotes and in

organelles [42]. All archaea and the majority of bacteria lack GlnRS, whereas

AsnRS can be found in most bacteria and half of archaea. While all organ-

elles do possess a dedicated AsnRS, an organellar GlnRS is never found,

except in some protozoans [43]. When AsnRS and/or GlnRS is/are absent,

direct tRNA charging with the two respective cognate aa—Asn and Gln—is

compensated for by an indirect route called the transamidation pathway. It

is a two-step pathway in which the metabolic precursors of Gln and Asn,

respectively, Glu and Asp, are first attached onto the non-cognate

tRNAGln and tRNAAsn by ND-GluRS or ND-AspRS [10,44] (Fig. 2C).

Once released from ND-aaRSs, the mischarged Glu- or Asp-tRNAs are

transferred to tRNA-dependent amidotransferases (AdTs). AdTs first

ATP-dependently activate the γ- or β-carboxyl group of the misacyled

Glu- and Asp-tRNAs by phosphorylation, the activated side chains then

being amidated, using an amido group donor, to form Gln-tRNAGln or

Asn-tRNAAsn [45]. All AdTs, regardless of their origins or types, usually

use the γ-amide of a free Gln, with the release of Glu, to produce this amido

group [46–48]. AdTs are complexes that always possess an amidase subunit

to generate the amido group necessary for the amidation reaction, and a

subunit that binds the misacylated aa-tRNA substrates and catalyzes the

activation of the carboxyl group of the mischarged aa before amidation.

The amido donor travels from one subunit to the other, enabling amidation

of the misacylated tRNA, a reaction termed “transamidation.” Accessory

proteins also participate in the formation of the complex.

To date, four types of tRNA-dependent AdTs are known: the hetero-

trimeric GatCAB and GatFAB and the heterodimeric GatDE and GatAB

(“Gat” for glutamyl-tRNAGln amidotransferase). The GatCAB AdT

(A: amidase, B: aa-tRNA binding, COOH activation and transamidation

subunit, C: accessory chaperone) usually is a bispecific Glu/Asp-AdT that

can generate Gln-tRNAGln and Asn-tRNAAsn, such as in bacteria. In

archaea GatCAB is a specific Asp-AdT [49]. The heterodimeric GatDE

(E: amidase subunit, D: aa-tRNA binding, COOH activation and trans-

amidation subunit) is an archaea-specific Glu-AdT [48] that only produces

Gln-tRNAGln. In most eukaryotic organelles, such as mitochondria and

chloroplasts, an organellar AdT is also required, and it is of the GatCAB-

type. It functions as a Glu-AdT that synthesizes organellar Gln-tRNAGln

in vivo [50,51]. Note that in plants, there is only a single organellar

GatCAB AdT that is dually-targeted to mitochondria and chloroplasts.

Of note, in mitochondria of the yeast Saccharomyces cerevisiae, formation of

8 Marine Hemmerle et al.
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the mitochondrial Gln-tRNAGln pool relies on a heterotrimeric GatFAB

that differs from the homologous bacterial GatCAB by the presence of

a fungi-specific GatF subunit that replaces structurally GatC. Recently,

a heterodimeric GatAB AdT lacking a “C” subunit was found in the

apicoplast of the human parasite Plasmodium falciparum to function as a

Glu-AdT [52].

All organisms using an AdT to generate Gln-tRNAGln or Asn-tRNAAsn

or both also possess ND-GluRS and/or ND-AspRS that, in addition to

regular Glu-tRNAGlu and Asp-tRNAAsp, respectively, provide the

misacylated Glu-tRNAGln and Asp-tRNAAsn [10,44]. Some organisms such

asHelicobacter pylori, possess in addition to regular “discriminating” GluRS, a

dedicated supernumerary tRNAGln-mischarging GluRS2 [11,53]. In organ-

elles, the mitochondrial GluRS usually is the ND-GluRS that participates in

the organellar transamidation pathway [51]. In plants, there is a dual-targeted

ND-GluRS that participates in the chloroplast and mitochondrial trans-

amidation pathways [50]. The yeast S. cerevisiae is however an exception,

because it is the cytosolic GluRS that canonically produces the cytoplasmic

Glu-tRNAGlu pool which is imported into mitochondria, to specifically

mischarge the mitochondrial tRNAGln. The bona fide mitochondrial

GluRS only aminoacylates the mitochondrial tRNAGlu [43,54].

Organisms that use the transamidation pathway to generate amidated

aa-tRNAs have an adapted EF-Tu that has been shown to lack significant

binding capacity for the misacylated Glu-tRNAGln and Asp-tRNAAsn inter-

mediates, thereby preventing misincorporation of Glu and Asp at Gln and

Asn codons [13,54,55]. Another way to generate amidated aa-tRNAs with-

out challenging the genetic code with the mischarged intermediates is the

formation of so-called transamidosomes. These complexes are formed by

binding of the ND-aaRS to the AdT in a tRNA-dependent manner. In

the transamidosomes that have been described to date, the misacylated

Asp-tRNAAsn or Glu-tRNAGln generated by the complexed ND-AspRS

or -GluRS are channeled to the AdT active site, without being released,

and transamidated to release only the final amidated forms from the particle

[56]. Bacterial (ND-AspRS•tRNAAsn•GatCAB, Fig. 2D) and archaeal

(ND-GluRS•tRNAGln•GatDE; [55]) transamidosomes have been charac-

terized. The stoichiometry of their components (tRNA, ND-aaRS

and AdT) varies as well as their stability and catalytic mechanism. The

transamidosome of Thermus thermophilus is composed of 2 dimeric

ND-AspRSs (four enzymes), four tRNAAsn and 2 GatCAB AdTs (two

enzymes); 2 tRNAAsnmolecules are substrates and two others are scaffolding

9Noncanonical inputs and outputs of tRNA aminoacylation
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components that ensure the stability of the ribonucleoprotein particle

throughout catalysis [14]. In H. pylori, only transient Glu- or Asp-

transamidosomes have been identified [57,58].

While these four indirect pathways are compensatory routes for the

synthesis of a given aa-tRNA when the cognate aaRS is absent, for two

of them, Sec and Asn, they are (Sec) or can sometimes be (Asn) the sole

metabolic pathway for the synthesis of the aa, which is therefore strictly

tRNA-dependent [44].

3. aa-tRNA-dependent aminoacylation of lipids
and cell-wall synthesis

3.1 Multiple peptide resistance factor (MprF)

In the early 60s, Macfarlane reported the presence of O-L-lysyl and

O-L-alanyl esters of phosphatidylglycerol (PG) in Clostridium welchii

and in Staphylococcus aureus [59]. However, that the enzymatic synthesis

of lysyl-PG in S. aureus involves the transfer of the lysyl moiety from

Lys-tRNALys onto PG was not demonstrated until 1966 [9]. Over the last

decades, a large number of studies detected aminoacylated lipids in several

bacterial species, and showed that Lys-tRNALys and Ala-tRNAAla are usu-

ally the aa donors for lipid aminoacylation and that PG, diacylglycerol or

cardiolipin are the aa acceptors. Arg-PG and could also be detected but

to a lesser extent [60]. In 2001, Peschel et al. demonstrated in S. aureus that

the mprF gene encodes the lysyl-phosphatydyl glycerol synthase (LysPGS)

responsible for LysPG synthesis [61]. They also showed that the cytoplasmic

domain of LysPGS is responsible for the transfer of L-Lys from Lys-tRNALys

onto PG at the inner leaflet of the plasma membrane, whereas the

N-terminal integral membrane domain flips the newly synthesized LysPG

to the outer membrane leaflet [62]. The addition of positively- charged

or neutral aa to PG by aminoacyl-phosphatidyl glycerol synthases

(aaPGSs) reverses or neutralizes the net negative charge of the cell envelope

[63], thereby decreasing the susceptibility of bacteria to positively-charged

antimicrobial agents. Furthermore, aaPGS-dependent membrane remo-

deling participates in the adaptation of bacteria to environmental changes

(pH, osmolarity, temperature), increases immune escape [64,65] and

enhances virulence of S. aureus and Listeria monocytogenes upon infection

of epithelial cells and macrophages in mice [66,67].

Some aaPGSs are specific for a single aa-tRNA (e.g., Lys- or Ala-tRNA),

and others exhibit broader substrate specificity and can utilize up to three

10 Marine Hemmerle et al.
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different aa-tRNAs as aa donors (e.g., Lys-, Ala- or Arg-tRNA) [68,69]. It

has been shown that the acceptor-stem of the tRNA and in particular its

fifth base pair and the Cα of the corresponding aa are essential elements

for the recognition of Ala-tRNAAla by the AlaPGS [70,71]. Structural anal-

ysis showed that the catalytic domain of AlaPGS from Pseudomonas aeruginosa

and LysPGS from Bacillus licheniformis harbor a so-called dupli-GNAT

(GCN5 N-acetyltransferase) domain, where the two GNATs are separated

by a positively-charged alpha helix [72]. Such similar structures have also

been described for other aminoacyl-tRNA transferases (AAT), including

the Fem and L/F transferases described below. Site-directed mutagenesis

based on the structures of aaPGSs, demonstrated that this positively- charged

helix is essential for aa-tRNA recruitment. However, it is still not understood

how bacteria regulate the balance between the usage of the aa-tRNA for pro-

tein synthesis versus lipid aminoacylation. Interestingly, Mycobacterium spp.

encode a LysPGS (LysX) that is fused directly to a C-terminal lysyl-tRNA

synthetase (LysRS) that is essential for the LysPG synthesis activity. This

suggests that, inMycobacterium spp., a dedicated pool of Lys-tRNALys is syn-

thesized and used by LysPGS, to produce LysPGs and that this pool escapes

protein synthesis [73].

4. FemXAB

The peptidoglycan sacculus (murein) is a unique and essential struc-

tural element of bacterial cell walls found outside of the plasma membrane.

It contributes to the maintenance of cell shape to preserve the cell integrity,

and serves as a scaffold for the anchoring of other cell envelope components

such as proteins and teichoic acids in Gram-positive bacteria.

Peptidoglycan synthesis is achieved by a succession of enzymatic

events, that start with the formation of the well-known lipid II. This lipid

harbors a so-called stem-peptide composed of the L-Ala1-D-Glu2-X3-

D-Ala4-D-Ala5 pentapeptide where X3 is variable among species

(L-Lys, δ-L-ornithine or ω-L, L-diaminopimelic acid) (Fig. 3A). At this

stage, Fem transferases, which are non-ribosomal peptidyl transferases, use

aa-tRNA as aa donors to form an “interpeptide bridge” that, in a later step,

serves to cross-link the X3 of the newly-synthesized peptidoglycan subunit

(Lipid II released from its undecaprenyl-diphosphate) to the D-Ala4 of an

adjacent peptidoglycan stem-peptide [74,75]. The formation of the stem-

peptide is tRNA-independent, whereas Fem ligase-mediated formation

of the interpeptide bridge was shown to be tRNA-dependent.

11Noncanonical inputs and outputs of tRNA aminoacylation
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Fig. 3 Aminoacyl-tRNA-dependent cell wall remodeling in prokaryotes. (A) In S. aureus, the stem peptide composed of L-Ala1-D-Glu2-Lys3-

D-Ala4-D-Ala5 is added onto Lipid I to form the well-characterized Lipid II. Aminoacyl-tRNA transferases (ATT) belonging to the Fem ligases

family then successively add a variable number of aa to form the interpeptide bridge. For example, in S. aureus FemX adds a single glycine,

FemA adds Gly2 and Gly3 and finally, FemB adds Gly4 and Gly5 onto the L-Lys of the stem-peptide. The resulting peptidoglycan subunit is

then flipped out to the outer cytoplasmic-membrane leaflet, and the link to the growing peptidoglycan saccule is made by PBP tran-

speptidases. MurNac: N-Acetylmuramic acid, GlcNac: N-Acetylglucosamine. (B) MprF and MprF-like proteins contain a C-terminal ATT domain

(green) that reroutes aa-tRNAaa from the translational machinery and transfers the aa moiety onto glycerolipids, and a N-terminal flipase

domain (purple) that exposes the aminoacylated glycerolipid to the outer membrane leaflet. As schematized in the upper panel, different

aa/ lipid combinations were documented in prokaryotes as reviewed by Slavetinsky et al. [60]. PG: phosphatidylglycerol, DAG: diacylglycerol,

CL: cardiolipin, Raa: lateral chain of the indicated aa.
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In S. aureus, 3 Fem ligases are required. FemX adds the first glycine res-

idue (Gly1) onto the stem-peptide at the ε-NH2 group of L-Lys3 [76,77],

while FemA and FemB are essential for the addition of Gly2,3 and Gly4,5,

respectively. These proteins are highly specific with respect to the position

of the Gly residues that they attach [78]. Among the five tRNAGly

isoacceptors encoded by S. aureus, three of them have a weak binding capac-

ity to EF-Tu, due to the replacement of G49-U65 and G51-C63 by A49-U65

and A51-U63 base pairs in the T-loop [79,80]. Furthermore, Rohrer et al.

showed that the three tRNAGly capable of escaping the translational

machinery have G18 and G19 replaced by UU or CU [81]. The Fem factors

are known to be essential for methicillin resistance, and are found in both

resistant and susceptible S. aureus strains. The phenotypes of the FemAB null

mutants of S. aureus showed a reduction of cell wall Gly content and strong

morphological aberrations during cell division and separation [76]. The

inactivation of the femAB operon reduces the interpeptide to amonoglycine,

inducing a poorly crosslinked peptidoglycan. Decreased growth rate and

hypersusceptibility to antibiotics such as methicillin were observed in

femAB deleted strains, making FemAB a potential target to restore β-lactam

susceptibility in methicillin-resistant S. aureus (MRSA) [82].

Staphylococcus simulans, S. epidermidis and S. capitis incorporate a variable

ratio of L-Ser/Gly residues (but also L-Ala for S. epidermidis) into the inter-

peptide bridges to escape pentaglycine endopeptidase-mediated degrada-

tion. To our knowledge, tRNASer modifications are not involved in the

distribution of Ser-tRNASer between peptidoglycan cross-linking and

translation. Thus, bacteria may adapt the ratio of Ser-tRNASer used for each

mechanism according to environmental conditions. S. epidermis encodes at

least two tRNAGly isoacceptors employed exclusively for interpeptide-chain

formation [83]. Both contain CC or UU instead of the universal G18 and

G19 di-nucleotide. Furthermore, the supplementary C32-G38 base pair in

the anticodon loop and, to a lesser extent, the impaired U10-U25 base pairs

as well as the weak post-transcriptional modification ratio in the D-loop

are also considered as crucial to determine the fate of Gly-tRNAGly

isoacceptors.

In S. pneumoniae, MurM (homologue of the S. aureus FemA) adds L-Ser

or L-Ala as the first residue to the L-Lys of the stem peptide [78,84], and

MurN then adds L-Ala to form an interpeptide chain composed only of

two residues [84].

Finally,Weissella viridescens harbors either a L-Ala-L-Ser or a L-Ala-L-Ser-

L-Ala interpeptide chain [85]. Villet et al. showed that the C71 and C72

13Noncanonical inputs and outputs of tRNA aminoacylation
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from the tRNAAla are critical nucleotides for recognition by FemX, whereas

the G3-U70, base pair considered as a strong identity determinant for recog-

nition by AlaRS is dispensable [86]. Because MurM and FemX of

W. viridescens recognize only two aa-tRNAs [87,88], it has been suggested

that these two proteins may be involved in the complex discrimination

between protein and peptidoglycan synthesis [89].

In summary, Gly-tRNAGly, Ala-tRNAAla, Ser-tRNASer but also

Thr-tRNAThr participate in peptidoglycan interpeptide chain formation.

For a more detailed review of the interpeptide composition across bacterial

species, refer to reports of Dare & Ibba or Schleifer & Kandler [83,90].

5. aa-tRNA-dependent synthesis of hemes

Only a small subset of the aa produced by the cell are used in

protein synthesis, and we have seen that from this small pool some can be

deviated to build molecules other than proteins. There are also several other

pathways that require non-proteogenic aa and among them, the synthesis

of heme necessitates δ-aminolevulinic acid (ALA), a pathway that is

tRNA-dependent. ALA can be synthesized either from free glycine and

succinyl-CoA (eukaryotes) or glutamate (bacteria and green plants), when

the latter is bound to its cognate tRNAGlu (reviewed in [91], Fig. 4).

ALA is the first molecule in the tetrapyrrole synthesis pathway that leads

to heme biosynthesis in mammals and chlorophyll in plants. ALA biogenesis

in plants and bacteria has been studied for more than four decades, and

employs a simple three-step pathway. First, Glu is charged onto tRNAGlu

by GluRS [92–94]. Second, tRNAGlu-bound Glu is reduced to glutamate

Fig. 4 C5 pathway of ALA formation. Glutamate (Glu) is attached directly onto tRNAGlu

by GluRS. Glu is then reduced to glutamate-1 semi-aldehyde (GSA) by glutamyl-tRNA

reductase (GluTR) and further converted by glutamate aminomutase (GSAT) to

δ-aminolevulinic acid (ALA).

14 Marine Hemmerle et al.
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semi-aldehyde (GSA) and detached from tRNAGlu by glutamyl-tRNA

reductase (GluTR) [95,96]. Finally, GSA is converted to the final product

ALA by GSA aminomutase (GSAT) [97].

The finding that Glu is used to produce ALA in green plants [98,99] pre-

ceded the discovery that tRNAGlu is required for ALA production [92–94].

Thus, Glu-tRNAGlu formation is an absolute intermediate in the GSA for-

mation by GluTR, an enzyme that has been shown to form a complex with

GluRS [100] and together, both proteins have strict requirements for

tRNAGlu [101,102].

In bacteria, GluTR is encoded by the hemA gene that is part of the

hemAXCDBL operon in which hemX codes for an integral membrane

protein capable of negatively affecting the cellular concentration of hemA

[103]. GluTR activity is rate-limiting in ALA formation [104] and in plants,

it represents an ideal target for designing herbicides [105]. Its activity has

been shown to be regulated by acting on the protein stability that is increased

in heme limiting conditions in S. typhimurium [106]. Later, FLU, another

negative regulator of GluTR was identified. Flu is a membrane-bound

protein involved in chlorophyll biosynthesis that interacts directly with

GluTR but not with GSAT [107,108]. It must be noted that although

the levels of GluTR and GSAT control ALA production, they do not con-

trol directly chlorophyll synthesis in Chlamydomonas reinhardtii. A complex

between GSAT and GluTR has been identified and proposed to protect

the highly- reactive GSA intermediate [109].

ALA is the universal precursor of tetrapyrroles like hemes, and the latter

have been shown to downregulate not only the activity of GluTR but also of

GluRS, which is more surprising [110]. In addition, hemes are also capable

of inhibiting aminoacylation activity of a Zn2+-deprived form of human

tryptophanyl-tRNA synthetase [111]. Moreover, holocytochrome c (e.g.,

heme bound) can interact with tRNA, and this interaction was shown to

mediate caspase-mediated apoptosis [112].

An essential GluTR-interacting protein named GluTRB that is localized

in the thylakoid membrane, participates in the sub-compartmentalization of

GluTR, to separate ALA pools in order to balance production of heme and

chlorophyll [113]. The interaction of GluTRBP with GluTR stimulates its

activity, but the latter is still inhibited in a heme-dependent concentration

[114]. Binding of GluTRBP to GluTR also prevents FLU from inhibiting

GluTR, but a ternary complex consisting of GluTR, GluTRBP and FLU

can be formed, suggesting a biological role for the ternary complex in the

regulation of the plant GluTR [115]. The complexity of this regulation

15Noncanonical inputs and outputs of tRNA aminoacylation
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of GluTR expression/activity is reinforced by the finding that GluTR can

be degraded from its N-terminus by the Clp protease, but not when pro-

tected by GluTRBP [116].

ALA utilization by bacteria leads to heme, an essential cofactor for

S. aureus growth and colonization that becomes toxic at high concentrations,

thereby underlining the necessity for these organisms to control tightly heme

homeostasis [117]. In plants, subplastidial allocation of GluTR in the stroma

and in membrane fractions reveals that when membrane-bound, GluTR is

less active, and this is the result of the concerted actions of GluTR inter-

acting proteins (FLU, GluTRBP, Clp protease and cpSRP43) [118,119].

Finally, in higher plants there are two isoforms for GluTR: GluTR1 that

is expressed predominantly in green tissue, and GluTR2 that is expressed

constitutively in all organs. It was recently shown that heme binding to

GluTRBP inhibits its interaction with GluTR, thereby making it accessible

to Clp protease, which participates in GluTR regulation [120].

Overall, the utilization of Glu-tRNAGlu outside translation represents an

intriguing example of how various metabolic pathways are interconnected.

Glu-tRNAGlu utilization for ALA production controls heme and chloro-

phyll biosynthesis, two molecules that are crucial for other cellular events

that contribute to the life cycle of various organisms, and whose production

seems to be subjected to tight and complex control.

6. aa-tRNA-dependent formation of antibiotics

Peptide-based antibiotics can, at least in part, be synthesized tRNA-

dependently, and are an important class of molecules because they provide

organisms with defenses to fight against invading microbes, or to help them

survive in a given ecological niche [89,121]. There is a group of antibiotics

whose composition is based on peptides. There are two ways of synthe-

sizing peptide-based antibiotics that both require tRNA: ribosomally- or

non-ribosomally-synthesized peptidic antibiotics [122]. Those that are

ribosomally-synthesized include defensins (30–40 aa in length; disrupt

membrane integrity) that are a large class of Cys-rich peptide antibiotics

whose Cys residues are regionally-specifically oxidized to stabilize the

molecule and provide protease resistance. Similarly, lantibiotics are low

molecular weight lanthionine-containing cyclic peptides that, like defensins,

perturb membrane integrity. This class of molecules belongs to the super-

family of RiPP (ribosomally synthesized peptides that undergo extensive

post-translational modifications). They are synthesized as precursors that

16 Marine Hemmerle et al.
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consist of an N-terminal leader peptide fused to a C-terminal core peptide

containing modifications. Interestingly for some of them, a Glu-tRNAGlu is

used by a dehydratase to modify aa residues of the ribosomally-made pep-

tide parts (reviewed in [123]). Aromatic heterocyclic peptide scaffolds

derived from Cys, Ser and Thr residues [124] are another large family of

ribosomally-derived antibiotics like microcin B17, patellamides and strepto-

lysin S. It is noteworthy that microcins have a broad diversity of chemical

structures and modifications, and are widely used as antitumoral and/or

antimicrobial drugs [125]. The synthesis of these antibiotic compounds is

rather complex and there are tens of genes that are required, and tRNAs

are either involved as regulators of this process [122] or as carrier molecules

for additional modifications with aa. tRNA-based regulation of antibiotic

production is, for example, used by Streptomyces coelicolor. In this filamentous

bacterium there is a single gene (bldA) that encodes the only tRNALeu capa-

ble of decoding the UUA rare Leu codon. The expression of this specific

tRNALeu is very low in fresh cultures, but increases to reach its maximum

as cultures get older. The tRNALeu expression pattern correlates with mor-

phological differentiation and changes in antibiotic production [126]. This

suggests a means of limiting ribosomal-mediated antibiotic synthesis in the

host to physiologically appropriate circumstances by modulating tRNA

availability. A similar mode of regulation has also been proposed for biofilm

production, in which Hha proteins decrease biofilm production by repre-

ssing transcription of tRNAs decoding rare codons (argU and proL)

normally involved in fimbriae production [127].

The second tRNA-dependent mode of synthesizing peptide-based

antibiotics are the non-ribosomal antibiotic pathways. These rely on a

series of enzymatic reactions that involve at one step an aa-tRNA. For

example, valanimycin production involves a gene cluster containing

14 genes in Streptomyces viridifaciens, in which the VlmA protein catalyzes

the transfer of a seryl residue from Ser-tRNASer to the hydroxyl group

of isobutylhydroxylamine to produce the O-seryl-isobutylhydroxylamine

ester [128]. An intriguing fact concerning valanimycin production is that

the Ser-tRNASer used in the reaction is produced by a dedicated SerRS,

named VlmL, encoded by the vlmL gene [129]. Similarly, production of a

streptothricin-related antibiotic requires an intermediate, in which an

amino sugar is aminoacylated with Gly by a Fem-like enzyme in a

tRNA-dependent manner [130]. Overall, the enzymes involved in these

types of modifications belong to the class of the aa-tRNA-dependent

transferases that were identified over 50 years ago [131–133].
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Although aa-tRNAs can be used to remodel several compounds,

they can also be substrates for the synthesis of cyclic dipeptide-based antibi-

otics. They were long thought to be products released prematurely

from the ribosome until the discovery of cyclodipeptides synthases [134].

Cyclodipeptides are further subjected to various modifications until the

final product is obtained [135]. A strategy employing various enzymes to

modify a core scaffold to produce differential tailoring is often used in nature

to generate structural diversity. Such small molecule diversity enables easy

evolution of new biological functions, and allows fine-tuning of existing

ones [135,136]. Cyclodipeptide synthases genes, are often clustered with

tailoring enzyme genes, most likely to facilitate the overall regulation of

the cyclodipeptide-based compound production (for a review see [123]).

Cyclic dipeptides are an interesting class of molecules because they consti-

tute a rather convincing alternative over conventional antibiotics, as

exemplified in their role in preventing quorum sensing pathogenesis of

uropathogens [137].

7. aa-tRNA-dependent degradation of proteins

In 1963, the participation of aa-tRNAs in protein degradation was first

reported in prokaryotes, in which it was shown that ribosome-deprived

extracts were still able to catalyze tRNA-dependent aminoacylation of pro-

teins [138]. In eukaryotes, it was noted 23 years later that specific aa residues

found in the N-terminus (N-t) of proteins could decrease dramatically the

half-life of the corresponding protein in S. cerevisiae [139]. An enzymatic

activity able to transfer the aa moiety of an aa-tRNA to the N-t of proteins

leading to protein degradation was also identified in eukaryotes [140], and is

presently termed the N-end rule pathway [141].

In bacteria, the N-end rule pathway includes three components: an

aa-tRNA transferase responsible for the transfer of the aa moiety onto the

protein that will be degraded, a N-recognin that binds the aminoacylated

protein signaling it to the degradation machinery, the Clp protease complex.

In eukaryotes, an additional preliminary step involving deamination of amide

aa residues in N-t of the protein is catalyzed by a deamination enzyme. This

enables the subsequent recognition by the aa-tRNA transferase, followed by

signaling of the protein for degradation by the proteasome [142].
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7.1 N-end rule pathway in prokaryotes

In 1963, Kaji et al. identified a protein fraction in E. coli that was able to

transfer radioactively-labeled Leu onto proteins in the absence of ribosomes

[138], thereby describing for the first time the activity of a leucyl-tRNA pro-

tein transferase. In 1973, Soffer demonstrated that Leu, Phe, and to a lower

extent Met and Trp, can also be transferred onto the N-t residue of α-casein

[143]. Later, it was discovered that the nature of the N-t residue of the

targeted protein modulates the aa conjugation efficiency [139]. The residues

onto which aa are efficiently transferred efficiently include the basic residues

Arg, Gln, Lys and Pro, which were thereafter termed destabilizing residues.

However, the mechanism linking addition of aa to the N-t of a protein to its

degradation was not identified until Tobias et al. showed in 1991that a bac-

terial strain lacking the Clp ATP-dependent protease degraded much less

efficiently a protein carrying destabilizing residues [144]. This proved that

Leu (or Phe) conjugation mediates degradation by recruiting the Clp pro-

tease [144]. The gene coding the leucyl!/phenylalanyl-tRNA transferase

(L/F transferase) was identified 2 years later [145]. Notably, this gene is

located near the gene encoding ClpA, a component of the Clp protease

complex, which participates in the N-end rule pathway. In 1995, the gene

encoding the protein was cloned, overexpressed and purified, allowing the

development of an in vitro assay that lead to the characterization of its cata-

lytic mechanism [146]. Since then, the structure of the aa-tRNA transferase

was determined in complex with an aa-tRNA analog [147], and the mech-

anism of the peptide bond formation between the N-t residue and the aa

transferred by the aa-tRNA transferase has been elucidated [148].

In sum, protein aminoacylation in prokaryotes is mediated by L/F

transferases that modify a residue in N-t (preferentially recognizing a basic

residue), which enables the recognition of the protein by ClpS, which in

turn signals delivery of the proteins to the Clp protease complex for degra-

dation. Note that ClpS belongs to the family of N-recognins, which are

proteins that bind to aminoacylated proteins and enable their delivery to

the degradation machinery (Fig. 5C).

7.2 N-end rule pathway in eukaryotes

In S. cerevisiae and higher eukaryotes, proteins are not aminoacylated directly

to induce their degradation (Fig. 5B). Instead, a first step of deamidation

converts the amide aa Asn and Gln to Asp and Glu. These deamination
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Fig. 5 Overview of the N-end rule pathway leading to protein degradation. (A) In mam-

mals, protein degradation starts by the deamination of Gln (Q) or Asn (N) in first position

at the N-ter of the protein. This leads to the arginylation of the N-ter of by Ate1, and

subsequently to the binding of the protein by a N-recognin, which delivers it to the

proteasome. (B) In fungi, the pathway is very similar, the sole difference being that

the deamination step is performed by one enzyme both for Gln and Asn. (C) In prokary-

otes there is no deamination step: Arg (R), Lys (K) andMet (M) are recognized by a leucyl-

phenylalanine-tRNA transferase (L/F transferase) which transfers either Leu (L) or Phe

(P) on the first amino acid in the N-ter of the protein. This so-called destabilizing residue

is recognized by ClpS, which delivers the protein to the ClpA protease for degradation.

Panel C: adapted from T. Tasaki, S.M. Sriram, K.S. Park, Y.T. Kwon, The N-end rule pathway,

Annu. Rev. Biochem. 81 (2012) 261–289.
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reactions are performed by Nta1 in fungi [149]. In mammals, deamination

of Gln and Asn is performed by Ntaq1 and Ntan1, respectively [141,150]

(Fig. 5A). After deamination, these residues can be aminoacylated by a

unique arginyl-tRNA transferase, Ate1, both in S. cerevisiae and mammals

[151,152]. Upon arginylation, the protein can be ubiquitinylated, a step

mediated by a N-recognin. This leads finally to the degradation of the

protein by the 26S proteasome.

This N-end rule mechanism is the only noncanonical pathway in which

proteinogenic aa-tRNAs are used for protein degradation rather than for

their synthesis. In this case, aa-tRNAs are diverted not only from their

anabolic use, but become essential components of the protein catabolic

pathway.

8. Concluding remarks

This chapter has been dedicated. Mainly to the fascinating diversity

of the nontranslational mechanisms and processes that employ the aa

moiety of an aa-tRNA. The first descriptions of these noncanonical usages

of aa-tRNAs (Leu-tRNALeu to modify proteins and of Lys-tRNALys in

O-lysyl-phosphatidylglycerol synthesis) coincided with the characterization

of the conventional aminoacylation reaction for protein synthesis [5–7,9].

Yet, these nontranslational usages are generally less well known than the pri-

mary historical role of aa-tRNA in protein synthesis, despite being equally

essential for the cell. There is no doubt that new processes and functions will

be unraveled in the future, and will enrich the existing functional repertoire

of aa-tRNAs. As an example, the arginyltransferase Ate1, which transfers the

arginyl moiety from Arg-tRNAArg to the N-terminus of proteins targeted

for degradation by the N-end rule pathway, has recently also been shown

in mammalian cells and in Dictyostelium discoideum to be implicated in the

aminoacylation of internal residues of β-actin [153,154]. Interestingly

the steady-state level of arginylated β-actin is relatively low but tends

to increase in migratory cells, demonstrating that this post-translational

aminoacylation is actively regulated in cells [153]. Arginylation of protein

is not restricted to β-actin, because an increasing number of eukaryotic

proteins appear to undergo Ate1-mediated arginylation of internal Asp

and Glu residues; these arginylated proteins participate in myriad cellular

processes ranging from embryogenesis, to cell migration and protein

homeostasis [155].
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There are however many unanswered issues when considering the non-

translational processes that rely on the use of aa-tRNAs. One of the most

important is how aa-tRNAs escape the translational machinery, and how

cells achieve a balance between the use of the same aa-tRNA species for

protein synthesis and/or for other cellular processes? In fact, though the

various non-canonical usages of aa-tRNAs we describe in this chapter

have been studied actively, it remains largely unknown how aa-tRNAs

are diverted from their primary and canonical usage. In some cases, organ-

isms have found a strategy that eliminates the competition between transla-

tion and nontranslational usages of an aa-tRNA by producing a dedicated

pool of aa-tRNAs for a given non-canonical process. For example,

S. epidermis encodes two tRNAGly isoacceptors dedicated exclusively to

interpeptide-chain formation. Moreover, sometimes organisms have even

acquired or evolved a supernumerary aaRS dedicated to the synthesis of

specific aa-tRNAs (e.g., LysRS fused to LysPGS in Mycobacterium for

LysPG synthesis). Dedicating a given pool of tRNAs to nontranslational

processes could also be accomplished by post-transcriptionally modifying

tRNA nucleotides. Indeed, tRNAs undergo a series of post-transcriptional

modifications, and some of them could potentially also serve to assign a

given tRNA pool to a given nontranslational function. Finally, it was

recently shown that, in eukaryotes, a single aaRSs can be localized in two

or more subcellular compartments, and that these spatially-distinguished

isoforms (called echoforms) can serve different roles, including the

noncanonical roles that rely on the synthesis of a compartment-specific

aa-tRNA [156].
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Chromosomal or plasmidic
nuclear-encoded 

GOI-GFPß11ch 

Bi-Genomic Mitochondrial-Split-GFP

Cytosolic echoform-GFPß11ch

Mitochondrial echoform-GFPß11ch

Nucleus

Or

         
 Mitochondria

 The gene of interest (GOI) encoding 

). The mRNA of this GOI  gene will be 

translated by cytosolic ribosomes into the corresponding protein fused at its C-terminus with 

tagged echoform will translocate inside the mitochondrial matrix. Upon mitochondrial import 

 fragment of the Split-

10 gene. Upon interaction both mitochondria-restricted Split-GFP fragments will reconstitute 
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pG
PD

GOI
GFP

ß11ch

C
o
lE
1

bla

A-C TR
P1

p414-pGPD

GOI-GFPß11ch

b. Final construct

TTG CAC GAA TAT GTC AAT GCT GCT GGT ATT ACT GGT ACC TGA ctc gag

L H E Y V N A A G I T G T *

G I T G T G G G S G G G S T S R D H M V

GGT ATT ACT GGT ACA GGT GGT GGT TCT GGT GGT GGT TCT ACC AGT AGA GAT CAT ATG GTT

S G G G S T S R D H M V L H E Y V N A A

TCT GGT GGT GGT TCT ACC AGT AGA GAT CAT ATG GTT TTG CAC GAA TAT GTC AAT GCT GCT

D H M V L H E Y V N A A G I T G T G G G

GAT CAT ATG GTT TTG CAC GAA TAT GTC AAT GCT GCT GGT ATT ACT GGT ACC GGT GGT GGT

G C R N S I S S L R A Q A S G G S T S R

ggc tgc agg aat tcg ata tca agc tta CGT GCA CAA GCT AGC GGC GGA TCA ACA AGT AGA

a. GFPß11ch sequence

5'
3' 5'

3'

T5 exonuclease

Step1: cohesive end production

Taq ligase

Final product

Step 2 : Hybridization + polymerization

5'
3' 5'

3'

Phusion DNA polymerase

Step 3 : Ligation

5'
3'

5'
3'

d. Isothermal assembly

GOI

plasmid #1

(P2-for+A-rev)

(P1-rev+A-for)

plasmid #2

xxx I

p414-pGPD

xxx-GFPß11ch

P1-rev

Primers :

G1-for

G2-rev
GOI

P1-rev : TAGTTCTAGAATCCGTCGAAAC

G1-for : GTTTCGACGGATTCTAGAACTA-ATG of GOI + 20-25 nt

P2-for: GGCTGCAGGAATTCGATATCAAGC

G2-rev: GCTTGATATCGAATTCCTGCAGCC-20-25 nt of GOI without stop codon

A-for: TTGAGTACTCACCAGTCACAGAAAAGC

A-rev: TTTTCTGTGACTGGTGAGTACTCAACC

c. PCR step

3 PCR produts :

1 GOI

2 plasmid

P2-for

A-rev

A-for
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  Sequence (Nucleotides and amino acids) of the GFP  tag. The 

are in black. Nucleotides in red correspond to the downstream isoT tag (used for P2-for and 

at both ends of the GFP . (b) In silico assembly of the desired construct (p414-pGPD-

GOI- GFP ) showing showing the selection marker (bla (ampicillin resistance), yellow), 

the gene of interest (GOI, blue), the GFP  tag (green) with a small linker region (red), the 

GPD promoter (pGPD), the yeast auxotrophy marker TRP1, the E. coli origin of replication 

(ColE1) and the yeast centromeric origin of replication (A-C : ARS/CEN).  To obtain the 

template used to amplify the destination vector is a similar plasmid containing an irrelevant 

GOI (named xxx here). The position and the sequence of the primers is indicated. Please note 

that for primer G2-rev the reverse-complement sequence of your GOI has to be considered 

(without stop codon) since the primer has the same sequence than the minus strand of the 

GOI.  Gibson assembly of the 3 PCR products (the GOI and the two plasmid halves). This 

3’ overhangs since it gets rapidly inactivated at 50°C, ii) the single stranded overhangs can 

hybridize and become substrates for Phusion DNA polymerase and iii) the fragments are ligated 
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Micrographs of the RS453 strain expressing GUS1 tagged with regular GFP (top) and of 

the BiG Mito-Split-GFP strain expressing GUS1 GUS1 encodes 

glutamyl-tRNA synthetase which has been shown to be dual-localized both in the cytosol and 

the mitochondria [11]. Cells were treated as described in section 3.4. steps 1-7 and images were 

taken as described in section 3.4., step 8 and processed with the ImageJ software. Mitochondrial 

echoforms of glutamyl-tRNA synthetase are indicated with white arrowheads.

5 µm

5 µm

RS453 
+

GUS1-GFP

BiG Mito Split-GFP 
+

GUS1-GFPß11ch

GFP MitoTracker Merge
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Aminoacyl-tRNA synthetases and signaling pathways

 In the yeast Saccharomyces cerevisiae the cytosolic methionyl- (MRS) and glutamyl-tRNA 

synthetase (ERS) associate with Arc1 to form the AME multisynthetasic complex. In this complex, Arc1 

is a cytosolic anchor and an aminoacylation cofactor for the two aaRSs [1]. 

 The AME complex has been described as exclusively cytosolic until a proteomic study 

showed that Arc1 can bind to PI(3)P and PI(3,5)P
2
 which are specific of the endosomes and vacuolar 

membranes respectively [2]. Localization at the surface of vacuoles is not restricted to AME as was 

shown for Leucyl-tRNA synthetase (LRS) that regulates autophagy by sensing the amino acids 

availabilty in the cell and aminoacylating proteins of the TORC1 pathway [3,4] . 
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en doso m
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glass 
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 Subcellular fractionation consists in the 

separation of the «heavy» membranes (P13; mitochondria, 

vacuoles, endoplasmic reticulum, nucleus, plasmic 

membrane) from the «light» membranes (P100; 

endosomes and golgi) and the soluble fraction (S100; 

cytosol and vesicles) by differential centrifugations (13 000 

x g and 100 000 x g) (Fig.2A).

Modular organization of Arc1
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Arc1 is organized in 3 modules and can be 

biotinylated in the aaRS-binding domain (K86) 

(Fig. 3A) [5]. Arc1 does not contain any 

conventional PIP-binding site and the role of  

biotinylated Arc1 is still unknown. Arc1 mutants 

were tested on lipid- and PIP-coated 

membranes (Fig. 3B) and with the Split-GFP 

system (Fig. 3C) to identify the lipid-binding 

domain.
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Background

Our aim was to decipher the subcellular distribution of the AME complex components. Our hypothesis was that if 

Arc1 can bind to lipids in vitro it could bind to organellar membranes in vivo and redirect ERS and MRS to form a 

membrane-associated AME complex. 

The localization of the AME components, the interaction domain of Arc1 with lipids and the aminoacylation activity 

of the membrane-bound aaRSs were analyzed using biochemical approaches and a Split-GFP-based microscopy 

stratregy we designed. 

1 AME components localize in membrane fractions and at the vacuole surface

2 Identification of Arc1 lipid-interacting domain 3 Aminoacylation activity of membrane-bound aaRS

Background

Perspectives

References

Arc1 lipid-binding domain could not be identified using these mutants. However, the mutant Arc1N 

seems to have a reduced affinity for lipids and its vacuolar localization is not as clear as for the 

full-length protein. 

Arc1 anchoring may be mediated by its tridimentional structure or another post-translational 

modification since Arc1 can be  succinylated, phosphorylated, ubiquitinylated... 

MRS and ERS are both active in 

the membrane fractions.

Only ERS remains active when 

Arc1 is absent.

The possibility that aaRSs also 

aminoacylate proteins instead of 

tRNAs when localized at the 

vacuole to regulate signaling 

pathways will be checked. 

AME components localize in 

membrane fractions (Fig. 2B) and at 

the vacuolar surface (Fig. 2D). MRS 

anchoring is mediated by the 

protein Arc1 whereas ERS binding is 

Arc1-independent (Fig. 2E). 

The primary role of the cytosolic AME complex is to 

produce Glu- and Met-tRNAs. The aminoacylation 

activity of the membrane-bound AME 

components was tested on the P13, P100 and S100  

fractions (Fig. 4A). In the WT strain (lower pannel) 

the MRS and ERS are both active in the P13 and 

P100 fractions (membrane) respectively. However, 

in the arc1∆ strain only the ERS remains active in 

the membrane fraction. Indeed, ERS remains 

anchored to membrane fractions even in the 

absence of Arc1 (Fig. 4B).

1. Confirm that MRS vacuolar binding is Arc1-dependent and that ERS anchoring is 

Arc1-indepedent using the Split-GFP system in an arc1∆ strain.

2. Determine if Arc1, MRS and ERS use the endosomes pathway to localize at the vacuolar 

surface. 

3. Understand the binding strategy of the AME components (use hemi-complexes AE, AM) 

4. Compare Arc1/MRS/ERS interactome in absence or presence of Glu/Met.

5. Analyze methionylation/glutamylation of TORC1 pathway proteins (Gtr1). 

tRNA conference 2018
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full-length Arc1 ∆M Arc1 ∆C Arc1 N

The split-GFP system is composed of two non-fluorescent fragments (ß11 and ß1-10) and allows the specific detection of 

multi-localized proteins through compartment-specific reconstitution of the GFP protein (Fig. 2A). This technic was used to 

visualize the vacuolar localization of the AME components (Fig. 2B). To determine whether Arc1 mediates the anchoring of the 

2 aaRS at the vacuolar membrane, vacuoles from a WT and an arc1∆ strain were purified on Ficoll gradient (Fig. 2C). 
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