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Abstract

In classical information theory, polar codes are the first explicit construction of a fam-
ily of codes that provably achieve the channel capacity for any discrete memoryless clas-
sical channel. In this thesis, we investigate the generalizations of polar codes to the case of
quantum channels with qudit-inputs, where the dimension of the qudit quantum system
is d ≥ 2. We start by reviewing the Calderbank-Shor-Steane (CSS) quantum polar coding,
which is proposed for qubit quantum systems (d = 2). The CSS quantum polar codes uti-
lize the fact that the recursive construction of polar codes using the quantum CNOT gate
yields classical polarization in both the amplitude and phase bases. The first important
theorem of this thesis proves a “purely quantum polarization” for qudit-input quantum
channels, where synthesized virtual channels tend to be either completely noiseless or
noisy as quantum channels, and not merely in a basis. The channel combining operation
for purely quantum polarization is randomly chosen from a finite set of two-qudit uni-
taries. Taking advantage of this purely quantum polarization phenomenon, we construct
an efficient quantum code, where the completely noisy channels are frozen by half of a
preshared EPR pair between the encoder and decoder. Hence, our quantum polar code is
entanglement assisted. Further, it achieves a quantum communication rate equal to half
the symmetric mutual information, which is the symmetric channel capacity for the en-
tanglement assisted quantum communication. Moreover, by chaining several quantum
polar codes, we provide a coding scheme, which uses the preshared EPR pairs as catalyst,
so that the rate of preshared entanglement vanishes asymptotically.

Subsequently, we focus on an important family of quantum channels known as qubit
Pauli channels. Given a Pauli channel, we associate to it a classical channel with a four
symbol set as the input alphabet, and show that the former polarizes quantumly if and
only if the latter polarizes classically. Based on the classical counterpart channel, we
provide an alternative proof of quantum polarization for the Pauli channel. More impor-
tantly, we also provide an efficient way to decode Pauli errors by decoding the polar code
on the classical counterpart channel. We also consider a multilevel polarization for Pauli
channels, where polarization happens in multi-levels, such that the synthesized virtual
channels can also be “half-noisy” instead of being completely noiseless or noisy. This
construction does not use randomization of the channel combining operation. Further,
we show that half-noisy channels can be frozen in either the amplitude or the phase ba-
sis. Hence, multilevel polarization can be effectively used to construct a quantum polar
coding scheme.

Finally, we report on our ongoing work on CSS quantum polar codes in the context of
fault tolerant quantum computing. We provide fault tolerant procedures for preparing
logical encoded quantum states and for error syndrome extraction. Hence, we can protect
the encoded logical states for arbitrarily long time in the low noise limit. Further, for
quantum information processing, we provide fault tolerant procedures to implement the
logical Pauli, the Hadamard, and the CNOT gates. Therefore, the only thing missing
to have universal fault tolerant quantum computing with polar codes is a fault tolerant
procedure for the implementation of the T gate.
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Introduction

In 1948, Shannon laid down the foundation of information theory in his seminal paper
“A mathematical theory of communication” [1]. One of the aspects of Shannon’s the-
ory deals with the problem of transmitting information over noisy channels, where the
sender has access to a noisy channel to transmit information to the receiver, and the goal
is to reproduce the transmitted information at the receiver end despite being corrupted
by the noisy channel. Shannon’s noisy channel coding theorem states that when one can
use a noisy channel arbitrarily many times, it is possible to transmit information reliably
using error correcting codes if the rate of transmission is below a limit, referred to as the
channel capacity. Further, the channel capacity is given by the mutual information of
the channel. The channel coding theorem led to the development of the theory of error
correcting codes, which aims at finding effective constructions of codes and decoding
algorithms, achieving the channel capacity.

In 2009, 60 years after Shannon’s noisy coding theorem, Arikan proposed polar codes,
which is the first explicit construction of a family of codes, achieving the channel capac-
ity with efficient encoding and decoding algorithms [2]. The construction of polar codes
is based on the recursive application of a channel combining and splitting procedure. It
first combines two instances of a noisy channel, using a controlled-NOT gate as channel
combining operation, and then splits the combined channel into two virtual channels,
referred to as good and bad channels. When applied recursively n times, the above pro-
cedure yields N = 2n virtual channels. These virtual channels exhibit a polarization
property, in the sense that they tend to become either completely noisy or noiseless, as
N goes to infinity. A channel parameter known as the Bhattacharyya parameter plays
an important role in Arikan’s proof of channel polarization. Polar coding consists of ef-
ficient encoding and decoding algorithms that take effective advantage of the channel
polarization property.

As information needs to be stored in physical systems, it becomes important to take into
account the physics of the underlying system. Shannon’s information theory assumes
that information is stored in classical systems, which obey the laws of classical mechan-
ics. Considering quantum systems that obey the laws of quantum mechanics to store
and process information, initialized the study of quantum information and computation
around the 1970s and 1980s [3, 4, 5, 6, 7]. Quantum information, that is the information
represented by the state of a quantum system, is fundamentally different from classical
information as it has features, such as, quantum superposition and entanglement, which
do not have any classical counterparts. Despite of these fundamental differences, many
of Shannon’s ideas have been generalized to quantum information, leading to the devel-
opment of quantum Shannon theory [8]. Quantum Shannon theory is important from
both theoretical and practical perspectives, as it provides operational ways to interpret
many measures of quantum information.

The aspect of quantum Shannon theory that we consider in this thesis is the problem
of transmitting quantum information reliably through quantum channels. Two scenar-
ios are possible in this regard, quantum communication with or without entanglement
assistance. For quantum communication without entanglement assistance, Llyod-Shor-
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Devetak (LSD) theorem [9, 10, 11] states that the channel capacity is given by the regular-
ized coherent information. However, this regularized expression is not easy to evaluate
for general quantum channels because of superadditivity. Hence, channel capacity is still
an open problem for general quantum channels. In the entanglement assisted scenario,
channel capacity has been established in [12], and it is easy to compute in this case as it
is given by half the quantum mutual information of the quantum channel.

Motivated by the fact that classical polar codes achieve the symmetric capacity of clas-
sical channels, we investigate polar coding in the context of quantum communication
over quantum channels. The first known construction of quantum polar codes is the
Calderbank-Shor-Steane (CSS) quantum polar codes, which basically utilize classical chan-
nel polarization in the amplitude and phase bases [13]. One of the main contributions of
this thesis is to introduce a new family of purely quantum polar codes, which are entan-
glement assisted and achieve the symmetric channel capacity for entanglement assisted
quantum communication. For purely quantum polar codes, we utilize a polarization
phenomenon happening at the quantum level, and not merely in a basis. To prove this
polarization, using quantum Rényi entropies, we introduce a new channel parameter that
plays the role of the Bhattacharyya parameter from the classical channel polarization. We
refer to this channel parameter as Rényi-Bhattacharyya parameter. We first provide the
purely quantum polar codes for general quantum channels with qudit-input, and further
extensively explore them for qubit Pauli channels, for which we also provide an efficient
decoding algorithm.

Quantum Shannon theory assumes that quantum operations required for encoding and
decoding procedures can be performed perfectly and quantum information is only cor-
rupted during the transmission through noisy channels. In the last chapter of the thesis,
we relax this assumption and investigate quantum polar codes in a broader framework
of fault tolerant quantum computing.

The thesis is organized as follows.

Chapter 2 (Polar Coding: From Classical to Quantum): The first part of the chapter
is devoted to classical polar coding, where we review the construction and decoding of
classical polar codes. In the second part, we provide basic definitions in quantum in-
formation theory that will be used throughout this thesis. Further, we describe, from a
slightly different perspective, the quantum CSS polar codes from [13], whose construc-
tion is based on classical polar codes in amplitude and phase bases.

Chapter 3 (Purely Quantum Polar codes): In this chapter, we introduce a purely quan-
tum polarization for quantum channels with qudit input, where polarization happens at
the quantum level, not merely in a basis. Our purely quantum polarization is based on
a quantum channel combining and splitting procedure, where a two-qudit unitary, ran-
domly chosen from a unitary 2-design is used as a channel combining operation. Under
the recursive application of this channel combining and splitting procedure, we show
that synthesized virtual channels tend to be either completely noisy or completely noise-
less as quantum channels.

Using the fact that the generalized two-qudit Clifford group is a unitary 2-design, we con-
clude that the channel combining operation can be randomly chosen from this set. Fur-
ther, we show that purely quantum polarization also happens for a subset of two-qudit
generalized Clifford group, which is not a unitary 2-design. We exploit the purely quan-
tum polarization to construct a quantum coding scheme, in which good virtual channels
are used for quantum communication, while bad virtual channels are frozen using pre-
shared EPR pairs. Hence, our coding scheme is entanglement-assisted, and we show that
it achieves half the symmetric mutual information of the channel. Moreover, by chaining
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several quantum polar codes, we provide a coding scheme for which the rate of pre-
shared entanglement vanishes asymptotically and the resulting quantum code achieves
the symmetric coherent information.

This chapter is based on our published works [A1, A3, A5].

Chapter 4 (Purely Quantum Polar Codes for Qubit Pauli Channels): In this chapter,
we further investigate the purely quantum polarization for the particular case of qubit
Pauli channels. To a Pauli channel, we associate a classical non-binary input symmetric
channel, referred as the classical counterpart of the Pauli channel. We show that a Pauli
channel polarizes quantumly if and only if its classical counterpart polarizes classically.
Finally, we exploit this equivalence to provide an alternative proof of the quantum po-
larization of a Pauli channel. Based on this equivalence, we further devise an effective
method to decode the quantum polar code on a Pauli channel, by decoding its classi-
cal counterpart. We also provide a fast polarization property ensuring the reliability of
decoding.

This chapter is based on our published work [A1].

Chapter 5 (Multilevel Polarization of Pauli Channels): In this chapter, we investigate
purely quantum polarization, using a fixed channel combining operation instead of a
randomized one as in Chapter 3. For a fixed channel combining operation, we show that
polarization happens in a different way for Pauli channels, where polarization happens
in multilevels instead of two levels. In particular, synthesized virtual channels can also be
“half-noisy” except being completely noisy or noiseless. The half-noisy channels need to
be frozen by fixing their inputs in either the amplitude or the phase basis, while preshared
EPR pairs are required for the completely noisy channels as before. This allows reducing
the number of preshared EPR pairs compared to Chapter 3.

This chapter is based on our published work [A2].

Chapter 6 (Towards Fault Tolerant Quantum Computing using Quantum Polar Codes):
In this chapter, we report on our ongoing work on using CSS quantum polar codes for
fault tolerant quantum computing. The reason to choose CSS quantum polar codes for
fault tolerance instead of purely quantum polar codes is that entanglement assistance
goes to zero for CSS quantum polar codes, if a low noise condition is satisfied. For fault
tolerant quantum computing, an efficient quantum code must be accompanied with fault
tolerant procedures for preparing encoded (logical) states, operating on encoded states,
and extracting information about the error that has happened in the form of an error
syndrome. We provide a procedure to prepare encoded logical state that works for finite
codelengths if the failure probability of the CNOT gate used in the preparation is suffi-
ciently small. We also provide fault tolerant procedures to implement the logical Pauli,
the Hadamard, and the CNOT gates and also a fault tolerant procedure for error syn-
drome extraction. Therefore, we only need a fault tolerant procedure for the T gate for
universal fault tolerant quantum computing.

14





1
Polar Coding: From Classical to Quantum

The chapter consists of two parts. In the first part (up to Section 1.2.4), we provide basic
definitions in classical information theory, and describe the construction and the decod-
ing of Arikan’s classical polar codes [2]. In the second part, we provide basic definitions
in quantum information theory that shall be used throughout this thesis. Further, we
describe, from a slightly different perspective, the quantum CSS polar codes from [13],
whose construction is based on two classical polar codes in amplitude and phase bases.

1.1 Classical Information Theory

In this section, we briefly explain the basic concepts in classical information theory
and coding to motivate polar coding. The reader may refer to [14] for an extensive review
of the field.

One of the aspects of Shannon’s information theory is concerned with the reliable trans-
mission of information over noisy channels. Noisy channels affect the transmitted infor-
mation in an uncontrollable and undesirable way, that may lead to the loss of informa-
tion at the receiver end. The sender has access to an information source, which produces
a message to be transmitted to the receiver. The information source is modeled as a ran-
dom variable, which selects letters from an alphabet X , according to some probability
distribution. Suppose that the message received at the receiver end contains letters from
another alphabet Y .

The noisy channel W with the input alphabet X and the output alphabet Y is defined by
a set of transition probabilities,

{W (y|x)|x ∈ X , y ∈ Y},

where W (y|x) is the conditional probability of y given x. In the above description, the
transition probabilitiesW (y|x) do not depend on previously transmitted symbols, hence,
W is called a memoryless channel. In the following, we shall restrict our attention to
a binary-input, discrete output, memoryless channel (B-DMC) W from X to Y , where
X = {0, 1} is the input alphabet, and Y := {y1, y2, . . .} is the output alphabet.

16



1.1. Classical Information Theory

Channel coding is a way to transmit information reliably through a noisy channel so that it
can be recovered at the receiver end. A channel coding scheme, as depicted in Figure 1.1,
consists of two main procedures, namely encoding and decoding.

Encoding Channel Deccoding
x ∈ {0, 1}N y ∈ YNu ∈ {0, 1}K û ∈ {0, 1}K

Figure 1.1: Channel coding

Let u be a K-bit source message, generated using a random variable U . The encoding
procedure maps u to a N -bit message x, where N ≥ K. Let Ec : {0, 1}K → {0, 1}N be the
encoding operation. The code C, generated by Ec, is defined as,

C := {Ec(u) | u ∈ {0, 1}K}. (1.1)

Instead of sending u ∈ {0, 1}K directly, the encoded N -bit message x := Ec(u) ∈ {0, 1}N
is transmitted using N times the channel W . Suppose y ∈ YN is received as the channel
output of N instances. The decoding procedure is applied on y in order to generate an
estimate û of the source message. Let Dc : YN → {0, 1}K be the decoding procedure,
then the estimate is given by,

û := Dc(y) ∈ {0, 1}K . (1.2)

The coding scheme is said to be ε-reliable if the probability of error is at most ε, that is,

Pr(Û 6= U) ≤ ε, (1.3)

where Û is the random variable corresponding to the output û of the decoder.

As N ≥ K, channel coding improves the reliability of transmission by making use of re-
dundancy. The rate of transmission for the code C is defined as the number of information
bits transmitted per channel use, that is,

R :=
K

N
∈ [0, 1]. (1.4)

A rate R is achievable for W , if for any ε, δ > 0, there exists a ε-reliable code with rate
R−δ. The capacity of a channelW is defined as the tightest upper bound on the achievable
transmission rate, that is,

C(W ) := sup{R | R is achievable}. (1.5)

Shannon’s coding theorem [1] states that the capacity C(W ) is given by the mutual infor-
mation of the channel W (see Definition 2 below), that is,

C(W ) = Im(W ). (1.6)

Since Shannon stated the channel coding theorem, a lot of progress has been made in
developing explicit coding schemes, as for instance Reed-Muller codes [15, 16], Reed-
Solomon codes [17], Bose–Chaudhuri–Hocquenghem (BCH) codes [18, 19], and algebraic
geometric codes [20, 21] etc. to name a few. Another important family of codes to be
mentioned is low density parity check (LDPC) codes [22], that are capacity approaching.
However, an explicit code, that provably achieves the capacity was not constructed for
a long time. Arikan finally resolved this problem by proposing polar codes [2]. Shortly
after, another capacity achieving construction based on spatially coupled low density
parity check (LDPC) codes has been proposed [23]. In what follows, we shall discuss
Arikan’s polar codes at length.

Shannon’s information theory provides two important measures of information, known
as the Shannon entropy and the mutual information, which are defined below.
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Definition 1 (Shannon Entropy). Let X be an information source (random variable), which
outputs a letter x from an alphabet X , with probability pX(x). The Shannon entropy of the source
X is defined as,

H(X) :=
∑
x∈X
−pX(x) log2 pX(x) ∈ [0, 1]. (1.7)

The Shannon entropy H(X) measures the information content of X . More precisely,
Shannon’s source coding theorem states that N independent and identically distributed
(i.i.d) random variables X1, . . . , XN can be compressed into NH(X) bits as N → ∞,
with very low probability of information loss. Further, this compression is optimal in
the sense that information will be lost with very high probability if they are compressed
further than NH(X) bits.

Definition 2 (Mutual information). (a) Let X and Y be the input and the output random
variables of the channel W , such that X selects a letter x from an alphabet X , with prob-
ability pX(x), and Y is related to X by transition probabilities W (y|x),∀y ∈ Y, x ∈ X .
Then, the mutual information between X and Y is defined as,

I(X;Y ) :=
∑
y∈Y

∑
x∈{0,1}

W (y|x)pX(x) log2

W (y|x)∑
x∈{0,1}W (y|x)pX(x)

∈ [0, 1]. (1.8)

Alternatively, it can be expressed as follows in terms of the Shannon entropy,

I(X;Y ) = H(X) +H(Y )−H(X,Y ), (1.9)

where H(X), H(Y ) and H(X,Y ) are the Shannon entropies of the input X , the output
Y , and the input and output jointly, respectively. Therefore, the mutual information is a
correlation measure between the input and output of the channel W

(b) The mutual information of the channel W is defined as the mutual information between X
and Y , maximized over the input probability distribution pX(x), that is,

Im(W ) := sup
pX(x)

I(X;Y ). (1.10)

(c) The symmetric mutual information of W is defined as the mutual information when pX(x)
is the uniform distribution, that is,

I(W ) :=
1

2

∑
y∈Y

∑
x∈{0,1}

W (y|x) log2

W (y|x)
1
2W (y|0) + 1

2W (y|1)
∈ [0, 1]. (1.11)

Observe that, when W is a symmetric channel, the symmetric mutual information is
equal to the capacity, i.e., I(W ) = C(W ) [14]. Further, if I(W ) goes to 0, W tend to be the
completely noisy channel, which completely randomizes the one-bit input. If I(W ) goes
to 1, W tend to be the completely noiseless channel, which perfectly transmits the input
bit. In the sequel, we shall assume that input random variableX is uniformly distributed,
hence, we mainly consider the symmetric mutual information.

We now define the Bhattacharyya parmeter of the channel W .

Definition 3 (Bhattacharyya Parameter). The Bhattacharya parameter of W is defined as,

Z(W ) :=
∑
y∈Y

√
W (y|0)W (y|1) ∈ [0, 1]. (1.12)
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1.2. Classical Polar Coding

For uncoded transmission over W , given y ∈ Y as the channel output, the maximum a
posteriori estimate of the input x is given by,

x̂ = argmax
x=0,1

W (y|x). (1.13)

The Bhattacharyya parameter Z(W ) gives an upper bound on the error probability of the
maximum a posteriori decoding [24], that is,

Pr(X̂ 6= X) ≤ Z(W ), (1.14)

where X̂ is the random variable corresponding to x̂. Further, it can be seen that when
W is an identity channel (W (y|x) is equal to 1 if x = y, equal to 0 otherwise), Z(W ) is
equal to 0. Also, when W is completely randomizing channel (W (y|0) = W (y|1), for all
y), Z(W ) is equal to 1. Therefore, intuitively, we would expect that I(W ) approaches to 0
iff Z(W ) approaches to 1, and I(W ) approaches to 1 iff Z(W ) approaches to 0. This has
been made precise in the following lemma.

Lemma 4 ([2]). For any B-DMC W , we have that

I(W ) ≥ log2

2

1 + Z(W )
. (1.15)

I(W ) ≤
√

1− Z(W )2. (1.16)

1.2 Classical Polar Coding

Polar codes proposed by Arikan [2] are the first explicit construction of channel codes,
endowed with efficient encoding and decoding, provably achieving the capacity of any
B-DMC. The construction of polar codes is based on a recursive channel combining and
splitting procedure. It first combines two instances of a channel using the controlled-
NOT gate as channel combining operation. Then, the combined channel is split into two
so-called virtual channels, referred to as the good and the bad channel. Applying the
channel combining and splitting procedure recursively n times yields a set of N = 2n

virtual channels. These virtual channels tend to become either completely noisy or com-
pletely noiseless, asN goes to infinity, which is known as channel polarization. Polar codes
are constructed taking advantage of the channel polarization phenomenon. Intuitively,
the sender freezes the inputs to the virtual channels that are close to completely noisy to
the values known to the receiver, and transmits information bits using only virtual chan-
nels that are close to completely noiseless. Moreover, polar codes are equipped with an
efficient decoding algorithm, known as successive cancellation (SC) decoding.

In the following, we describe the channel polarization, the code construction, and the
decoding of polar codes in more detail. Unless otherwise stated, we shall assume column
vectors throughout this thesis and denote them by bold letters such as u,v. Hence, for a
vector v ∈ {0, 1}N , we may simply write v = (v0, v1, . . . , vN−1), where v0, v1, . . . , vN−1 ∈
{0, 1}.

We first define the channel combining and splitting procedure from [2]. The channel
combining of two instances of W yields a channel W2 as depicted in Figure 1.2.
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Chapter 1. Polar Coding: From Classical to Quantum

Figure 1.2: Combined channel W2(y0, y1|u0, u1). Here, x0 = u0 ⊕ u1, x1 = u1.

Given vectors u := (u0, u1) and x := (x0, x1), we have the following equality,

x = P2u, (1.17)

where P2 :=

[
1 1

0 1

]
. The transition probability of W2 is given by,

W2(y0, y1|u0, u1) = W (y1|u0 ⊕ u1)W (y1|u1). (1.18)

The combined channel is split into two virtual channels W (0) and W (1) as illustrated in
Figure 1.3.

(a) Bad Channel W (0)(y0, y1|u0) (b) Good Channel W (1)(y0, y1, u0|u1)

Figure 1.3: Channel splitting

The channel W (0) has input u0 and output y0, y1, and the channel W (1) has input u1 and
output y0, y1, u0. Transition probabilities for W (0) and W (1) are given below,

W (0)(y0, y1|u0) =
1

2

∑
u1

W (y1|u0 ⊕ u1)W (y1|u1). (1.19)

W (1)(y0, y1, u0|u1) =
1

2
W (y1|u0 ⊕ u1)W (y1|u1). (1.20)

Lemma 5 ([2]). We have the following for the symmetric mutual informations ofW (0) andW (1),

I(W (0)) + I(W (1)) = 2I(W ) (1.21)

I(W (0)) ≤ I(W ) ≤ I(W (1)), (1.22)

where I(W (0)) = I(W (1)) = I(W ) if and only if I(W ) ∈ {0, 1}.

Therefore, the channel combining and splitting procedure redistributes the symmetric
mutual information between W (0) and W (1), while preserving the total amount. The
channels W (0) and W (1) are called good and bad channel due to (1.22).
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Lemma 6 ([2]). The following relations hold for the Bhattacharyya parameters ofW (0) andW (1),

Z(W (0)) ≤ 2Z(W )− Z(W )2, (1.23)

Z(W (1)) = Z(W )2, (1.24)

where the inequality for the bad channel is an equality if and only if W is an erasure channel.

Applying two times the transformW 7→ (W (0),W (1)) gives four virtual channels {(W (i1))(i2) :
i1, i2 ∈ {0, 1}}. Thus, applied recursively n times, we obtain the following 2n virtual
channels,

(W (i1···in)) := (W (i1···in−1))(in), (i1 · · · in) ∈ {0, 1}n. (1.25)

We are now in a position to state Arikan’s main polarization theorem.

Theorem 7 ([2]). For any B-DMC W , let
{
W (i1···in) : (i1 . . . in) ∈ {0, 1}n

}
be the set of chan-

nels defined in (1.25). Then, for any δ > 0,

lim
n→∞

#{(i1 · · · in) ∈ {0, 1}n : I
(
W (i1···in)

)
∈ (δ, 1− δ)}

2n
= 0. (1.26)

and furthermore,

lim
n→∞

#
{

(i1 · · · in) ∈ {0, 1}n : I(W (i1···in)) > 1− δ
}

2n
= I(W ). (1.27)

Here, we briefly discuss the main steps of the proof (for details we refer to [2]).

(a) I is preserved: First, the recursive application of the channel combining and split-
ting procedure can be modeled as a discrete time stochastic process {In : n ≥ 0},
with I0 = I(W ) and In = I(W i1···in) for n > 0, where i1, . . . , in, . . . are ran-
domly and independently chosen from {0, 1}. From (1.21), the mutual informa-
tion is preserved under channel combining and splitting, therefore, it follows that
{In : n ≥ 0} is a martingale. Thus, it converges almost everywhere to a random
variable I∞, whose expectation satisfies E[I∞] = I0.

(b) I and Z polarize simultaneously: Equation (1.26) states that I∞ takes values in
{0, 1}. This can be proven by taking an indirect approach. Indeed, by Lemma 4,
it is enough to prove (1.26) while substituting the Bhattacharyya parameter to the
mutual information, since they polarize simultaneously.

(c) Guaranteed improvement of Z(W (1)): To prove polarization of the Bhattacharyya
parameter, the main ingredient is its guaranteed improvement, when taking the good
channel. Here, guaranteed improvement means that there exists a continuous func-
tion f : [0, 1] → [0, 1], satisfying f(0) = 0, f(1) = 1, and f(z) < z, ∀z ∈ (0, 1), such
that Z(W (1)) ≤ f(Z(W )), for any B-DMC W. In our case, according to (1.24), we
may take f(z) = z2. It is worth noticing that for the mutual information, we have
I(W (1)) > I(W ), for I(W ) ∈ (0, 1), but this inequality is weaker than guaranteed
improvement condition. This explains the need of the indirect approach.

(d) Expected value argument: Eventually, (1.27) follows by recognizing that the left
hand side limit is equal to Pr(I∞ = 1), which is the same as the expectation E[I∞].
Since I∞ takes values in {0, 1}, we have Pr(I∞ = 1) = I0 = I(W ), as desired.
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Chapter 1. Polar Coding: From Classical to Quantum

1.2.1 Polar Code Construction

We first describe the recursive construction of polar code for N = 2n copies of W (see
Figure 1.6 from right to left). We divide the N copies of W into N

2 pairs and then apply
the channel combining and splitting procedure on each pair. This gives us N

2 copies of
bothW (0) andW (1). In the next step, for all i1 ∈ {0, 1}, we group together the N

2 copies of
W (i1), and divide them into N

4 pairs. After applying the channel combining and splitting
procedure again on each pair, we get N

4 copies of W (i1i2),∀i1, i2 ∈ {0, 1}. Similarly, at
any level of recursion k ≤ n, we group copies of a virtual channel W (i1···ik) together
and divide them in pairs, and subsequently apply the channel combining and splitting
procedure on each pair. The recursion stops at k = n, as we have only one copy of each
virtual channel W (i1···in), (i1 · · · in) ∈ {0, 1}n.

Figure 1.4: Polar code construction for N = 23.

We shall denote W (i) := W (i1···in), where (i1 · · · in) is the binary representation of i ∈
{0, · · · , N − 1}. By the polarization theorem, I(W (i)) goes to either 0 or 1, as N goes
to infinity, except for a vanishing fraction of channels. However, for finite N , it is more
difficult to distinguish between good and bad virtual channels, since the polarization is
incomplete. Nevertheless, it is always possible to determine the best virtual channels, say
according to the value of the Bhattacharyya parameter 1. Thus, we shall fix some subset
I ⊂ {0, . . . , N − 1}, referred to as the information set, such that Z(W (i)) ≤ Z(W (j)), for
any i ∈ I and j ∈ J := Ic. Inputs of the virtual channels W (i), i ∈ I, are set to infor-
mation bits, while inputs of W (j), j ∈ J , are frozen, i.e., set to the values known to both
the sender and the receiver (see Section 1.2.2). Hence, the transmission rate is given by
R = |I|

N . IfN is large enough, the information set I may be chosen such that |I| is close to
I(W )N . For finite N , the size of the information set may be determined according to the

1One may use either the mutual information or the Bhattacharyya parameter. The latter is generally
preferred due to the fact that it can be used to upper-bound the decoding error probability, as discussed in
Section 1.2.4.
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1.2. Classical Polar Coding

desired error probability. We will see in Section 1.2.4 that the decoding error probability
is upper-bounded by

∑
i∈I Z(W (i)). Thus, in practice, I can be determined such that the

above sum is less than some desired probability value.

1.2.2 Encoding

The polar transform after n steps, i.e., the transform obtained by recursively applying the
channel combining operation for n levels, as depicted in Figure 1.4, shall be denoted by
PN . In the matrix form, we have that

PN = P⊗n2 , (1.28)

where P2 is the polar transform for N = 2 defined in (1.17).

The input vector u := (u0, . . . , uN−1) ∈ {0, 1}N is composed as follows,

• For an index i belonging to the information set I, ui can be randomly chosen from
{0, 1}. The value of ui is not known to the decoder.

• For an index j belonging to the frozen set J , uj is frozen (fixed) and known to both
the encoder and decoder. The bit uj can be fixed to either 0 or 1, only it should be
known to the receiver. Hence, we may set uj = 0, ∀j ∈ J .

The vector u is encoded into x := (x0, . . . , xN−1) ∈ {0, 1}N using the classical polar
transform PN . Using (1.28), we may write

x = PNu. (1.29)

1.2.3 Decoding

Let the vector x be transmitted through N copies of W and let the channel output vector
be y := (y0, . . . , yN−1) ∈ YN . The task of decoder is to output estimates ûi corresponding
to the information bits ui, i ∈ I, using the channel output vector y and the frozen bits
uj , j ∈ J . Arikan’s successive cancellation (SC) decoder generates estimates ûi one by
one, from i = 0 to i = N − 1. To do this, observe first that ui is the input of the vir-
tual channel W (i), whose output consists of the vector y, together with the inputs to all
the previous virtual channels ui−1

0 := (u0, . . . , ui−1). Hence, the maximum a posteriori
estimate of ui is given by

ûi = argmax
ui=0,1

W (i)
(
y,ui−1

0 | ui
)

(1.30)

Since the inputs to the previous virtual channels are unknown, the SC decoder substitutes
the previously estimated inputs ûi−1

0 to ui−1
0 , in the above equation. It is also more

convenient to rewrite the above argmax computation in the form of a log-likelihood-ratio
(LLR) computation. Hence, for i = 0, . . . , N − 1, we define recursively

λ
(u)
i := log

W (i)
(
y, ûi−1

0 | ui = 0
)

W (i)
(
y, ûi−1

0 | ui = 1
) , (1.31)

ûi :=

{
0, if i ∈ J ,
1−sign(λ

(u)
i )

2 , if i ∈ I,
(1.32)

where sign(x) ∈ {±1}, and sign(0) is set to either −1 or +1 with equal probability.
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Now, we explain how the LLR values λ(u)
i can be computed in an efficient way. Remem-

ber that the actual transmission consists of sending the encoded vectorx := (x0, x1, . . . , xN−1)
usingN instances of theW channel, producing the observed channel output y := (y0, y1, . . . ,
yN−1). Hence, one may compute the LLR of each xi, conditioned on the observed channel
output yi, that is,

λ
(x)
i := log

W (yi | xi = 0)

W (yi | xi = 1)
. (1.33)

These LLR values only depend on the W channel and the observed channel output. To
compute the LLR values λ(u)

i from (1.31), one may actually propagate the λ
(x)
i values

through the polar transform (see Figure 1.4), from the right to the left side.

For N = 2, the propagation rules are illustrated in Figure 1.5, and given as follows:

(bad channel) λ
(u)
0 = log

1 + eλ
(x)
0 λ

(x)
1

eλ
(x)
0 + eλ

(x)
1

(1.34)

(good channel) λ
(u)
1 = (−1)û0λ

(x)
0 + λ

(x)
1 (1.35)

(a) Bad Channel W (0) (b) Good Channel W (1)

Figure 1.5: Propagation of LLR for N = 2.

For N > 2, the above propagation rules are used to propagate the LLR values through
the different kernels (i.e., 2 subblocks) composing the polar transform. When both LLR
values at the right hand side of a kernel are known, they may be propagated to the cor-
responding bad channel. Propagation to the good channel is delayed until the estimate
of the bad channel is known. When the propagation reaches some position, say i, on the
left hand side of the polar transform, the propagated value is nothing else but the LLR
λ

(u)
i in (1.31). The estimate ûi may then be computed by using (1.32) and propagated

forward (from left to right) together with previous estimates ûi−1
0 , so as to determine the

estimates needed by the delayed propagations.

To illustrate the above procedure, we describe the SC decoding for two steps of polariza-
tion, i.e., N = 22, using the binary tree graph of depth two given in Figure 1.6.

Each node in the graph may store two messages at a given time; a list of LLRs and a list of
estimates ûi. The list of LLRs are propagated (represented by blue arrows) from the root
node (node on the top) to the leaf nodes, in such a way that its size becomes half after each
increment in depth. In Figure 1.6, a list of LLRs corresponding to a node (except for the
root node) represents the list that has been propagated from its parent node. Therefore,
any leaf node receives a list containing only one LLR, based on which the estimate is
generated for the corresponding virtual channel using (1.32). The estimates are stored as a
list of length 1 at the leaf node, which are propagated towards the root node (represented
by orange arrows) in such a way that its size doubles after each decrement in depth.
Therefore, the root node must receive a list of estimates of size 4. In Figure 1.6, a list of
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1.2. Classical Polar Coding

Figure 1.6: Successive cancellation decoder for N = 22. Here, u′ represents the vector u after the
first step of polarization.

estimates corresponding to a node represents the list of estimates that will be propagated
to its parent node. This list is not represented for the root node as it is the last node. The
propogation of LLRs on the binary tree graph is done as follows,

1. The computation is initialized by giving the list of LLRs L = [λ
(x)
0 ,

λ
(x)
1 , λ

(x)
2 , λ

(x)
3 ] as input to the root node.

2. We first make two lists L1 = [λ
(x)
0 , λ

(x)
1 ] and L2 = [λ

(x)
2 , λ

(x)
3 ] by dividing the input

list down the middle. Then, we pair the elements of L1 with the corresponding
element of L2, which gives us two pairs (λ

(x)
0 , λ

(x)
2 ) and (λ

(x)
1 , λ

(x)
3 ). Using (1.34),

the LLR of the bad channel is computed for each pair, i.e., λ(u′)
0 and λ

(u′)
1 , where

u′ represents the vector u after the first step of polarization. The list [λ
(u′)
0 , λ

(u′)
1 ] is

propogated to the left child of the root node, which is then activated. Meanwhile
the root node waits for the list of estimates [û′0, û

′
1] to arrive from its left child. Once

it receives the estimates, using (1.35), LLRs of the good channels are computed for
pairs (λ

(x)
0 , λ

(x)
2 ) and (λ

(x)
1 , λ

(x)
3 ), i.e., λ(u′)

2 and λ(u′)
3 , respectively. Subsequently, the

list [λ
(u′)
2 , λ

(u′)
3 ] is sent to the right child of the root node, which is then activated.

3. Whenever a node apart from one of the leaf nodes is activated after recieving a
list of LLRs from its parent node, the above process is repeated. In other words,
the received list is divided into two lists down the middle, corresponding elements
of two lists are paired together and LLRs of the bad channels are computed for
each pair using (1.34) and stored as a list. This list is then propagated to the left
child of the node, which is then activated. Meanwhile the node waits for the list of
estimates to arrive from its left child in order to calculate the list for the LLRs of the
good channels, which are to be sent to its right child.

4. When one of the leaf nodes is reached, the estimate ûi is generated using (1.32).
If the leaf node is the last one (the rightmost leaf node in the figure), the decoding
procedure ends as all the estimates ûi has been generated. Otherwise, the generated
estimate is sent back to the parent node of the corresponding leaf.
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5. When a node has received a list of estimates from both its right and left child, de-
noted by ûL, ûR, it combines them by applying bitwise XOR and makes a new list
ûL ⊕ ûR. The new list ûL ⊕ ûR is merged with ûR and sent upward to the par-
ent node. As mentioned before, the waiting parent node, then uses this estimate to
compute the list of LLRs for the good channel.

1.2.4 Fast Polarization

Let Perr(W
(i)) := Pr(ûi 6= ui) be the decoding error probability on the i-th virtual chan-

nel2. As mentioned before, the Bhattacharyya parameter gives an upper bound on the
error probability of maximum a posteriori decoding for uncoded transmission through a
channel. Therefore,

Perr(W
(i)) ≤ Z(W (i)). (1.36)

The SC decoding fails if any one of the virtual channels W (i) for i ∈ I has been decoded
incorrectly. Hence, we have the following for the block error probability of SC decoding
PBerr,

PBerr = 1−
∏
i∈I

(
1− Perr(W

(i))
)

≤
∑
i∈I

Perr(W
(i))

≤
∑
i∈I

Z(W (i)). (1.37)

Therefore, in order to ensure that PBerr goes to zero, as N goes to infinity, it is sufficient
to prove that the Bhattacharyya parameter scales as Z(W (i)) = O(N−1−θ), for some θ >
0,∀i ∈ I. This property is called fast polarization. The following stronger fast polarization
result is given in [25], where it is shown that Z(W (i)), i ∈ I scales exponentially with
respect to N .

Proposition 8 ([25]). For any B-DMC W , and for any β < 1
2 , following holds,

Z(W (i)) = O(2−N
β
),∀i ∈ I. (1.38)

Hence, the above proposition ensures the reliability of the SC decoding.

1.3 Quantum Information Theory

In this section, without going into too much detail, we provide some definitions in
quantum information theory, that shall be used throughout this thesis. For more compre-
hensive review of the field of quantum information, the reader may refer to [8, 26].

The following notation is used:

1. Any quantum system is associated with a complex vector space with inner product,
referred to as the Hilbert space. We denote byHA the Hilbert space associated with
a quantum system A.

2Here, in Pr(ûi 6= ui), ûi and û are understood as random variables.
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2. Throughout this thesis, we consider finite dimensional Hilbert spaces. A quantum
system with Hilbert space dimension d ≥ 2 is referred to as a qudit, and for the
particular case d = 2, it is called a qubit.

3. The Hilbert space corresponding to a multipartite system A1 · · ·AN is given by the
tensor product of the individual Hilbert spaces, i.e.,HA1···AN = HA1 ⊗ · · · ⊗ HAN .

4. Dirac’s bra-ket notation is used to represent a vector, and its dual (transpose of
the complex conjugate of the vector). A vector is denoted by |φ〉A ∈ HA (column
vector), and it’s dual by 〈φ|A (row vector). The inner product of any two vectors
|φ〉A, |ψ〉A ∈ HA is denoted by 〈ψ|φ〉 := 〈ψ|A|φ〉A. Therefore, norm of a vector is
given by, |||ψ〉|| =

√
〈ψ|ψ〉.

5. The set of all linear operators fromHA toHB is denoted by L(HA,HB). For the lin-
ear operators onHA, we simply write L(HA) := L(HA,HA). Further, let Pos(HA) ⊂
L(HA) be the set of all positive semidefinite operators on A.

6. For any operator L ∈ L(HA,HB), L† is defined as the transpose of the complex
conjugate of LA.

7. Throughout this thesis, logarithm is taken in base d, the dimension of the qudit.

We will also need the definitions of the trace and partial trace of a linear operator.

Definition 9 (Trace and partial trace). Let dA be the dimension of HA and let {|i〉A | i ∈
{0, . . . , dA − 1}} be an orthonormal basis forHA. The trace is a map Tr : L(HA)→ C, where C
is the set of complex numbers, such that

Tr[LA] :=

dA−1∑
i=0

〈i|ALA|i〉A, LA ∈ L(HA). (1.39)

Consider a bipartite quantum system AB. The partial trace with respect to A is a map TrA :
L(HAB)→ L(HB) such that

TrA[LAB] :=

dA−1∑
i=0

(〈i|A ⊗ IB)LAB (|i〉A ⊗ IB) , LAB ∈ L(HAB). (1.40)

It’s important to mention that the trace and the partial trace are independent of the chosen
basis.

1.3.1 Quantum States

A quantum system is described by its quantum state, which is defined below.

Definition 10 (Quantum states). (a) Quantum state of a system A, also known as density
matrix, is given by a positive semidefinite operator ρA ∈ Pos(HA) such that Tr[ρA] = 1. We
denote by D(HA) ⊂ Pos(HA) the set of all quantum states.

(b) A quantum state ρA ∈ D(HA) is called a pure quantum state if and only if it can be written
as ρA = |ψ〉A〈ψ|A, where |ψ〉A ∈ HA is a unit vector, i.e., |||ψ〉|| = 1. We will often represent a
pure quantum state by the corresponding vector |ψ〉A.

(c) A mixed quantum state is a convex combination of pure states, i.e., ρA =
∑

i pi|ψi〉A〈ψi|A,
such that

∑
i pi = 1. The quantum state 1A

dA
, where 1A ∈ Pos(HA) is the identity matrix, is

called the maximally mixed quantum state.
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(d) The support of a quantum state ρ is defined as the set of eigenstates of ρ with non-zero eigen-
values,

supp(ρ) := {|ψ〉 | ρ|ψ〉 = λ|ψ〉, with λ > 0}.

Given a bipartite quantum state ρAB ∈ D(HAB), one obtains the quantum state of A or
B, separately, by doing the partial trace with respect toB orA, respectively. For example,
the quantum state corresponding to A is given by, ρA = TrB[ρAB].

One of the peculiar features of quantum systems is quantum entanglement that do not
have a parallel in the classical systems. Quantum entanglement refers to correlation be-
tween quantum systems, as defined below.

Definition 11 (Entangled quantum states). (a) A pure bipartite quantum state |ψ〉AB is called
entangled if it is not a product state, that is, |ψ〉AB = |φ1〉A ⊗ |φ2〉B , for some pure quantum
states |φ1〉A and |φ2〉B .

(b) A mixed bipartite state ρAB is said to be entangled if it can not be written as a convex com-
bination of the product states, that is,

∑
i piψ

i
A ⊗ φiB , where pi ≥ 0,

∑
i pi = 1 and ψiA ∈

D(HA), φiB ∈ D(HB),∀i.
(c) An Einstein-Podolsky-Rosen (EPR) pair on quantum systems A and A′, each of dimension
dA, is a maximally entangled quantum state defined as, ΦAA′ := |Φ〉AA′〈Φ|AA′ , where |Φ〉AA′ :=

1√
dA

∑
i |i〉A|i〉A′ .

1.3.2 Unitary Operators

Here, we provide the definition of unitary operators, which are used to describe the dy-
namics of closed (without any interaction with its environment) quantum systems. More
general quantum maps are presented in Section 1.3.4 below.

Definition 12 (Unitary operators). An operator UA ∈ L(HA) is said to be unitary if the
following holds,

U †AUA = UAU
†
A = I. (1.41)

Note that for a unitary operator UA, we have that ||UA|ψ〉A|| = 1, hence a unitary operator
maps a pure quantum state to another pure quantum state. We now provide two impor-
tant class of unitaries for qudit quantum systems. They are groups in the mathematical
sense, and are referred to as the generalized Pauli and Clifford group 3.

Definition 13 (Generalized Pauli Group). (a) The generalized Pauli operators X and Z for a
qudit quantum system are defined as X =

∑d−1
j=0 |j〉〈j ⊕ 1|, and Z =

∑d−1
j=0 ω

j |j〉〈j|, where ⊕
denotes the sum modulo d, and ω = e

2πı
d .

(b) The generalized Pauli group on one qudit is defined as P1
d := {ωλPr,s | λ, r, s = 0, . . . , d−1},

where Pr,s := XrZs.

(c) The generalized Pauli group on n qudits is defined as Pnd := P1
d ⊗ P1

d ⊗ · · · ⊗ P1
d .

It is easily seen thatXd = Zd = I andXZ = ωZX , hence P1
d is indeed a group. Applying

the commutation relation XZ = ωZX appropriately many times, we have that

Pr,sPt,u = ωru−stPt,uPr,s. (1.42)

3They are generalizations of the Pauli and Clifford group from the qubit case. Here, we first present them
for qudit quantum systems and for the particular case of qubit quantum systems, they are presented later in
Section 1.3.8.
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Definition 14 (Generalized Clifford Group). The Clifford group Cnd is the unitary group on n
qudits that takes Pnd to Pnd by conjugation,

Cnd = {U ∈ U(dn) | UPU † ∈ Pnd , ∀P ∈ Pnd }. (1.43)

1.3.3 Quantum Measurement

Quantum measurement is performed to extract classical information from a quantum
system. The quantum state of the system changes according to the classical output. This
phenomenon is known as the collapse of the quantum state, which is another peculiar fea-
ture of quantum systems.

Definition 15 (Quantum Measurement). (a) A quantum measurement M on a quantum sys-
temAwith n classical outputs is specified by n operators {Mi ∈ L(HA) | i = 1, . . . , n} satisfying∑

iM
†
iMi = IA.

(b) When perfomed on a quantum state ρA,M outputs a classical output i ∈ {1, . . . , n} randomly
with probability pi = Tr(M †iMiρ) and the state of the system after measurement is given by,

MiρM
†
i

Tr(M †iMiρA)
. (1.44)

(c) A quantum measurement M is called projective if each Mi is a projector, that is, M2
i = Mi.

(d) If one is only interested in the classical output (not in the quantum state after the measure-
ment), a quantum measurement with n outcomes {1, . . . , n} can be specified by a set of positive
operators E1, E2, . . . , En, such that

∑
iEi = I , and the probability of getting i as the outcome is

given by pi = Tr[Eiρ]. This is called the positive operator valued measurement (POVM).

An example of quantum measurement is the measurement of an observable, which is
defined below.

Definition 16 (Measurement of an Observable). (a) An observable LA ∈ L(HA) is a Hermi-
tian operator, i.e., L† = L.

(b) Measurement of an observable LA corresponds to the projective measurement defined by the
operators Mα =

∑
i |i〉〈i|, for each eigenvalue α of LA, where the states |i〉 are eigenvectors of

LA with eigenvalue α 4. The outcome of the measurement corresponding to Mα is given by the
eigenvalue α.

(c) A Pauli observable is a Hermitian Pauli operator (Definition 13), and a Pauli measurement is
the measurement corresponding to a Pauli observable.

1.3.4 Quantum Channels

Quantum channels are used to describe the dynamics of open (interacting with its en-
vironment) quantum systems. We will need the definition of superoperators to define
quantum channels.

Definition 17 (Superoperators). (a) A superoperator TA→B : L(HA) → L(HB) maps an
operator LA ∈ L(HA) to another operator LB ∈ L(HB).

4|ψ〉A ∈ HA is an eigenvector of LA with eigenvalue α if LA|ψ〉A = α|ψ〉A.
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(b) A superoperator TA→B is completely positive if for any bipartite positive semidefinite operator
PAA′ ∈ Pos(HAA′), we have that (TA→B ⊗ IA′) (PAA′) ∈ Pos(HAA′), where IA is the identity
superoperator.

(c) A superoperator TA→B is trace preserving if for any LA ∈ L(HA), we have that Tr [LA] =
Tr [TA→B(LA)].

Definition 18 (Quantum channels). A quantum channelNA→B , from A to B, is a superopera-
tor from L(HA) to L(HB), which is a completely positive and trace preserving (CPTP) map. As
NA→B is CPTP, it follows that NA→B maps a quantum state on A to a quantum state on B.

Remark 19. Given a bipartite quantum state ψAA′ , to simplify the notation, we often use
NA→B(ψAA′) := (NA→B ⊗ IA′)(ψAA′) to indicate that N is applied only on part A of ψAA′ .

Any quantum channel NA→B can be written as NA→B(LA) =
∑

iNiLAN
†
i , for a set of

operators {Ni|Ni ∈ L(HA,HB)}, which satisfy
∑

iN
†
iNi = IA. This is called the Kraus

representation of quantum channels and operators Ni are called the Kraus operators. Quan-
tum channels can be interpreted as a quantum measurement, defined in a slightly more
general way than in Definition 15, with measurement operators Mi ∈ L(HA) replaced by
Kraus operators Ni ∈ L(HA,HB), where the classical outcome is not known.

Another interpretation of quantum channels is given in terms of the isometry transfor-
mations. Isometry transformations are a subset of quantum channels, that are completely
noiseless, as defined below.

Definition 20 (Isometry transformation). (a) An isometry operator UA→B ∈ L(HA,HB) is
an operator that satisfies U †B→AUA→B = IA. If B = A, the operator UA := UA→B is a unitary
(Definition 12).

(b) An isometry transformation UA→B : L(HA)→ L(HB) is a quantum channel induced by the
conjugate action of an isometry, that is,

UA→B(ρA) = UA→BρAU
†
B→A, (1.45)

where UA→B is an isometry.

Note that an isometry operator UA→B ∈ L(HA,HB) maps a pure quantum state |ψ〉A ∈
HA to another pure quantum state |φ〉B = UA→B|ψ〉A ∈ HB . It is easily seen that if |ψ〉A
is a unit vector, |φ〉B is also a unit vector.

Quantum channels excluding isometry transformations are noisy as they are irreversible.
The Stinespring’s dilation theorem states that any quantum channel NA→B(ρA) can be ob-
tained from an isometry transformation as follows,

NA→B(ρA) = TrE [UA→BEρAU
†
BE→A] (1.46)

where UA→BE is an isometry, whose output contains an extra system E, referred to as the
environment. Therefore, the noisy effect of the channel can be considered to arise due to
interaction with the environment, which is not accessible. Further, using the Stinespring
dialation, any quantum channel can be associated with a complementary channel, as
follows.

Definition 21 (Complementary Channel). Let UA→BE be a Strinspring dialation of the quan-
tum channel NA→B . The complementary channel of NA→B , denoted by N c

A→E is defined as,

N c
A→E(ρA) := TrB[UA→BEρAU

†
BE→A]. (1.47)
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1.3.5 Unitary 2-Designs

Let U(HA) be the set of unitary operators onHA. In many quantum information theoretic
tasks, one needs to sample unitaries from the set U(HA) according to the Haar measure.
As it contains infinitely many elements, in practice it’s not efficient to sample from it.
However, in certain situations, this problem is avoided by sampling from a unitary de-
sign, which is finite. In this thesis, we would need unitary 2-designs, which is defined
below.
Let WA := WA→A be a quantum channel. The twirling of WA with respect to U(HA) is
defined as the quantum channel that maps a ρA as follows,

ρA 7→
∫
U †AWA(UAρAU

†
A)UAdη, (1.48)

where UA ∈ U(HA) is randomly chosen according to the Haar measure η. The twirling of
Wn with respect to a finite subset U ⊂ U(HA) is defined as the quantum channel acting
as,

ρ 7→ 1

|U|
∑
UA∈U

U †AWA(UAρAU
†
A)UA. (1.49)

Definition 22 (Unitary 2-design). A finite subset UA ∈ U(HA) is said to form a unitary 2-
design if it satisfies the following, for all quantum channelsWA, and quantum states ρA:

1

|U|
∑
UA∈U

U †AWA(UAρAU
†
A)UA =

∫
U †AWA(UAρAU

†
A)UAdη. (1.50)

1.3.6 Distinguishing Quantum States

In many situations, it’s useful to compare quantum states with each other. In this section,
two measures known as the fidelity and the trace distance are provided, which quantify
the degree to which two quantum states are different.

Definition 23 (Fidelity). Given any two quantum states, ρ, σ ∈ D(HA), the fidelity is defined
as,

F (ρ, σ) := ||√ρ√σ||1 ∈ [0, 1], (1.51)

where || · ||1 is the trace norm defined as, ||L||1 = Tr[
√
L†L], for any L ∈ L(HA,HB).

For pure quantum states, the expression of fidelity simplifies as, F (|ψ〉, |φ〉) = |〈ψ|φ〉|. It
can be seen that F (ρ, σ) = 1, if and only if ρ = σ, and F (ρ, σ) = 0, if and only if matrices
ρ and σ are orthogonal to each other, that is, ρσ = 0. Therefore, fidelity is a measure of
closeness between quantum states.

Definition 24 (Trace Distance). Trace distance between quantum states ρ, σ ∈ D(HA) is de-
fined as,

D(ρ, σ) :=
1

2
||ρ− σ||1. (1.52)

The trace distance is a metric on the set of quantum states in the mathematical sense.
Further, it has operational significance in the task of discriminating quantum states ρ and
σ, as explained below.

Suppose we are given a quantum system with the guarantee that its quantum state is
either ρ or σ, and our task is to guess which quantum state has been given. Consider a
POVM measurement E := {E0, E1}. Suppose that if the measurement outcome is 0, we
conclude that the given state is ρ and if the outcome is 1, we conclude that the given state
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is σ. Then, we incorrectly guess the state if ρ was given and the measurement outcome is
1, and if σ was given and the measurement outcome is 0. Hence, the error probability pEe
is given by,

pEe =
1

2
Tr[E1ρ] +

1

2
Tr[E0σ]. (1.53)

The error probability pe of discriminating quantum states ρ and σ is defined as the mini-
mum of pEe over all the POVM measurements E, that is,

pe := min
E

pEe . (1.54)

We have the following relation between pe and D(ρ, σ),

pe =
1

2
− 1

2
D(ρ, σ). (1.55)

The trace distance and fidelity are related as follows.

Proposition 25 (Fuchs-van de Graaf inequality [27]). For any two quantum states ρ, σ ∈
D(HA), we have the following,

1− F (ρ, σ) ≤ D(ρ, σ) ≤
√

1− F (ρ, σ)2. (1.56)

1.3.7 Measures of Quantum Information

Many measures of information from classical information theory are generalized to quan-
tum information. Here, we review some of the quantum information measures that we
shall need in this thesis. In the following, when no confusion is possible, we shall drop
the quantum systems from the notations of the quantum channels and quantum states.

von-Neumann Entropy

We first define the von-Neumann entropy, which is the quantum analog of the Shannon
entropy.

Definition 26 (von-Neumann Entropy). (a) The von-Neumann entropy of a quantum state
ρA is defined as,

H(ρA) := −Tr(ρA log ρA) ∈ [0, 1].

(b) The conditional von-Neumann entropy of a bipartite quantum state ρAB is defined as,

H(A|B)ρAB := H(ρAB)−H(ρB) ∈ [−1, 1].

The von-Neumann entropy H(ρA) measures the information content of the quantum
state ρA. More precisely, Schumacher’s quantum source coding theorem [28] states that
N i.i.d quantum states ρ⊗N can be compressed into NH(ρ) qubits, with very low prob-
ability of information loss and also information will be lost with very high probability if
they are compressed further than NH(ρ) qubits. Further, H(ρ) = 0 if and only if ρA is a
pure quantum state and H(ρ) = 1 if and only if ρA is the maximally mixed state, that is,
ρA = 1A

d .

The conditional quantum entropy H(A|B)ρAB measures the information content of the
systemA, given access to the systemB, when the quantum state of the systemAB is ρAB .
This interpretation is somewhat non-intuitive as H(A|B) can take negative values for
entangled quantum states. The negative values can be better understood in the context of
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the quantum state merging protocol [29]. The conditional entropy gives the entanglement
cost of quantum state merging, that is, if H(A|B) > 0 means entanglement needs to be
consumed, and H(A|B) < 0 means entanglement is gained [29]. Further, for a tripartite
pure quantum state ρABC , the conditional entropy satisfies the following duality relation,

H(A|B) +H(A|C) = 0. (1.57)

The above equation follows from the fact that for a pure quantum state ρABC , we have
supp(ρAB) = supp(ρC), and supp(ρAC) = supp(ρB), where supp(ρ) is the support of ρ
(Definition 10).

Using the von-Neumann entropy, we define below two information measures of quan-
tum channels, namely the coherent information and the mutual information.

Definition 27 (Coherent Information). (a) The coherent information of a bipartite quantum
state ρAB ∈ D(HAB) is defined as,

I(A〉B) := −H(A|B)ρAB . (1.58)

(b) Consider the action of a quantum channel NA′→B on A′-half of a bipartite quantum state
ψAA′ ∈ D(HAA′), i.e., N (ψAA′) := (IA ⊗ NA′→B)(ψAA′). The coherent information of
the quantum channel NA′→B is defined as the maximum coherent information over all the
input quantum states ψAA′ ,

Q1(NA′→B) := max
ψAA′

I(A〉B)N (ψAA′ )
∈ [0, 1]. (1.59)

(c) The symmetric coherent information of a quantum channelNA′→B is defined as the coherent
information when half of an EPR pair ΦAA′ is given as the input,

I(NA′→B) := I(A〉B)N (ΦAA′ )
∈ [−1, 1]. (1.60)

When there is no entanglement assistance, the regularized coherent information is equal
to the capacity of the quantum channel, as discussed in Section 1.4.1. Further, the coher-
ent information can be strictly superadditive, i.e., Q1(N ⊗M) > Q1(N ) +Q1(M), hence
it becomes intractable to compute it for tensor product channelsN⊗N for large N , as one
needs to maximize over the input states of the channel N⊗N [30, 31, 32]. It can be seen
that the symmetric coherent information is a lower bound on the coherent information of
a channel from their definitions. Further, the symmetric coherent information is easier to
compute on tensor product channels as it is additive, i.e., I(N ⊗M) = I(N ) + I(M). For
this reason, it is is often used instead of the coherent information.

The symmetric coherent information I(N ) is equal to 1 if and only if N is the identity
channel5, i.e., N (ρ) = ρ, ∀ρ ∈ D(HA). Further, if I(N ) is equal to −1, from the duality
relation of the conditional entropy in (1.57), it follows that I(N c) is equal to 1, whereN c is
a complementary channel ofN (Definition 21). Therefore,N c is the identity channel. This
implies that the channel N is a useless channel that outputs a fixed state ρf regardless of
the channel input, i.e., NA′→B(ρA′) = ρf ,∀ρ ∈ D(HA′).

Definition 28 (Quantum mutual information). (a) The quantum mutual information of a
bipartite quantum state ρAB ∈ D(HAB) is defined as,

I(A;B) := H(ρA) +H(ρB)−H(ρAB). (1.61)

5an isometry transformation (Definition 20) instead of the identity channel to be precise. As isometry
transformations are reversible, we consider the identity channel for the sake of simplicity.
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(b) The mutual information of a quantum channel NA′→B is defined as the maximum mutual
information over all the pure input quantum states ψAA′ ∈ D(HAA′),

Im(NA′→B) := max
ψAA′

I(A;B)N (ψAA′ )
∈ [0, 1]. (1.62)

(c) The symmetric mutual information of a quantum channel NA′→B is defined as the mutual
information when half of an EPR pair ΦAA′ is given as the input,

Ims(NA′→B) := I(A;B)N (ΦAA′ )
∈ [0, 1]. (1.63)

The mutual informations of the quantum and classical channels are analogous in the
sense that both are given by the entropy of the input plus output minus the joint entropy
of the input and output, maximized over the input. In the classical case, entropy is the
Shannon entropy and in the quantum case, it is the von-Neumann entropy. The quantum
mutual information gives the capacity of a quantum channel in the entanglement assisted
scenario, as discussed in Section 1.4.2.

Rényi Entropies

We first briefly discuss the classical Rényi entropies and divergences to provide the con-
text and then define their quantum counterparts.

Based on an axiomatic approach, Rényi in his seminal work [33] provided a family of in-
formation measures generalizing the Shannon’s entropy, now known as Rényi entropies.

Definition 29 (Rényi Entropies [33]). Let X be a random variable defined on an alphabet X ,
with probability distribution pX(x), where x ∈ X . Then, the Rényi entropy of order α ∈ (0, 1) ∪
(1,∞) is defined as follows,

Hα(X) :=
1

1− α log
(∑
x∈X

(pX(x))α
)
. (1.64)

The Shannon entropy is given by the limit value of Hα(X) as α approaches 1, that is,

H(X) = lim
α→1

Hα(X). (1.65)

The relative entropy is an important information measure, which measures how far two
random variables are from each other. It is defined using the Shannon entropy as follows.

Definition 30 (Relative entropy [34]). Let X and X ′ be two random variables defined on the
same alphabet X , with probability distributions pX(x) and pX′(x), respectively. The relative
entropy (also knowns as Kullback–Leibler divergence) of X with respect to X ′ is defined as,

D(X||X ′) :=

{∑
x pX(x) (log pX(x)− log pX′(x)) if X ′ � X,

∞ otherwise,

where X ′ � X means if pX′(x) = 0 for some x ∈ X , we also have pX(x) = 0.

The relative entropy D(X||X ′) is zero if and only if X and X ′ are identical. Hence,
it is sort of a distance measure between X and X ′. However, it’s not a metric in the
mathematical sense as it is not symmetric under the exchange of X and X ′, that is,
D(X||X ′) 6= D(X ′||X).

Rényi further provided a family of divergences generalizing the relative entropy, which
are known as Rényi divergences.
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Definition 31 (Rényi divergences [33]). The Rényi divergence of order α ∈ (0, 1) ∪ (1,∞) is
defined as follows,

Dα(X||X ′) :=

{
1

α−1 log
(∑

x∈X
(pX(x))α

(pX′ (x))(1−α)

)
if X ′ � X.

∞ otherwise.

The relative entropy D(X||X ′) is recovered from Dα(X||X ′) as α approaches 1, that is,

D(X||X ′) = lim
α→1

Dα(X||X ′). (1.66)

The other important cases of Rényi divergences, which have several applications in in-
formation theory, are α = 0, 1

2 , 2,∞. The reader may refer to [35] for more details.

The Rényi entropies and divergences have also been generalized for quantum states,
which have found several applications in quantum information theory.

Definition 32 (Quantum Rényi Entropies [36]). The generalization of Rényi entropies to the
quantum case is straighforward and given as follows for any quantum state ρ ∈ D(H) and order
α ∈ (0, 1) ∪ (1,∞),

Hα(ρ) =
1

1− α log (Tr[ρα]) . (1.67)

The von-Neumann entropy is recovered from Hα as α approaches 1, that is,

H(ρ) = lim
α→1

Hα(ρ). (1.68)

Definition 33 (Quantum relative entropy [8, 26]). The quantum quantum relative entropy or
quantum Kullback–Leibler divergence of a quantum state ρ with respect to a quantum state σ is
defined as,

D(ρ||σ) :=

{
Tr [ρ (log ρ− log σ)] if σ � ρ,

∞ otherwise,

where the symbol σ � ρ means that supp(ρ) is included in supp(σ).

The classical relative entropy can be recovered from quantum relative entropy when
quantum states ρ and σ commute with each other, that is, [ρ, σ] = 0. Several properties
from the classical case are preserved, for example, the quantum relative entropy D(ρ||σ)
is zero if and only if ρ = σ. Further, it’s not symmetric in general under the exchange of
ρ and σ, that is, D(ρ||σ) 6= D(σ||ρ).

There are many generalizations of Rényi divergences to the quantum case. Here, we
mention two important generalizations that we shall use later; the first quantum Petz-
Rényi divergences [37, 38] and the second quantum sandwiched Rényi divergences [36,
39].

Definition 34 (Quantum Petz-Rényi divergences [37, 38]). Quantum Rényi relative entropy
of order α ∈ (0, 1) ∪ (1,∞) of the quantum state ρ with respect to the quantum state σ is defined
as,

Dα(ρ||σ) :=

{
1

α−1 Tr[ρασ1−α] if σ � ρ.

∞ otherwise.

Definition 35 (Quantum sandwiched Rényi divergences [36, 39]). Sandwiched quantum
Rényi relative entropy of order α ∈ (0, 1) ∪ (1,∞) of the quantum state ρ with respect to the
quantum state σ is defined as,

D̃α(ρ||σ) :=

{
1

α−1 Tr
[(
σ

1−α
2α ρασ

1−α
2α

)α]
if σ � ρ.

∞ otherwise.
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When ρ and σ commute, both generalizations Dα(ρ||σ) and D̃α(ρ||σ) yield the classi-
cal Rényi divergence of order α. Further, as α approaches 1, Dα(ρ||σ) and D̃α(ρ||σ) ap-
proach to the quantum relative entropyD(ρ||σ). It is shown in [39], using the Araki-Lieb-
Thirring trace inequality [40, 41] that

Dα(ρ||σ) ≥ D̃α(ρ||σ). (1.69)

Morever, functions α → Dα(ρ||σ) and α → D̃α(ρ||σ) are monotonically increasing [36,
42].

Remark 36. For α > 1, a new generalization of quantum Rényi divegence D#
α (ρ||σ) is proposed

recently in [43] via convex optimization, whose regularization gives the quantum sandwiched
Rényi divergence D̃α(ρ||σ).

We now turn to the quantum conditional Rényi entropies, which are defined using quan-
tum Rényi divergences Dα and D̃α [44]. First note that the quantum conditional entropy
H(A|B) (Definition 26) can be derived from the quantum relative entropy as follows,

H(A|B)ρAB = −D(ρAB||1⊗ ρB).

= sup
σB

−D(ρAB||1⊗ σB),

where ρB = TrA[ρAB]. The second equality follows from the fact that σB = ρB maximizes
the quantity D(ρAB||1 ⊗ σB). However, this is not true in general for Rényi relative
entropies Dα and D̃α. Similarly to the above, using Dα and D̃α, quantum conditional
Rényi entropies are defined in [44], as follows.

Definition 37 (Quantum conditional Petz-Rényi entropies). For a bipartite quantum state
ρAB ∈ D(HAB) and α ∈ (0, 1) ∪ (1,∞),

H↓α(A|B)ρAB := −Dα(ρAB||1A ⊗ ρB). (1.70)

H↑α(A|B)ρAB := sup
σB

−Dα(ρAB||1A ⊗ σB). (1.71)

Definition 38 (Quantum conditional sandwiched Rényi entropies). For a bipartite quantum
state ρAB ∈ D(HAB) and α ∈ (0, 1) ∪ (1,∞),

H̃↓α(A|B)ρ := −D̃α(ρAB||1A ⊗ ρB). (1.72)

H̃↑α(A|B)ρ := sup
σB

−D̃α(ρAB||1A ⊗ σB). (1.73)

In the above definitions ↑ is used for maximization and ↓ is used when there is no maxi-
mization. Note that when α approaches 1, we have the following for any quantum state
ρAB ,

lim
α→1

H↓α(A|B) = lim
α→1

H↑α(A|B) = lim
α→1

H̃↓α(A|B) = lim
α→1

H̃↑α(A|B) = H(A|B). (1.74)

The duality relation in (1.57) also holds for conditional Rényi entropies, as below.

Theorem 39 ( [44]). For any α, β ∈ (0, 1)∪ (1,∞), satisfying α.β = 1, and any pure quantum
state ρABC ∈ D(HABC), the following relation holds,

H↑α(A|B)ρ + H̃↓β(A|B)ρ = 0. (1.75)
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We will make use of the conditional Petz-Rényi entropy H̃↑α of order α = 1
2 , and the condi-

tional sandwiched Rényi entropy H̃↓α(A|B)ρ of order α = 2 for the proof of our quantum
polarization theorem in Chapter 2. The quantity H̃↓2 is first introduced by Renner [45],
and it is also known as quantum conditional collision entropy. Note that H↑1

2

and H̃↓2 sat-

isfy the duality relation in Theorem 39. The explicit expressions of H↑1
2

and H̃↓2 are given

below for a bipartite quantum state ρAB .

H̃↓2 (A|B)ρ = − log Tr

[
(1A ⊗ ρ

− 1
2

B )ρAB(1A ⊗ ρ
− 1

2
B )ρAB

]
. (1.76)

H↑1
2

(A|B)ρ = 2 log sup
σB

Tr

[
ρ

1
2
AB(1A ⊗ σ

1
2
B)

]
. (1.77)

1.3.8 Qubit Quantum Systems

In this section, we focus on qubit quantum systems. As mentioned before, the dimension
of the associated Hilbert space is two for a qubit quantum system. The orthonormal basis

for a single qubit system, defined by the set of vectors {|0〉, |1〉}, where |0〉 :=

[
1

0

]
and

|1〉 :=

[
0

1

]
, is called the amplitude or computational basis. Another important basis for

a single qubit system is the phase basis, which is defined by the set {|+〉, |−〉}, where
|+〉 := |0〉+|1〉

2 , and |−〉 := |0〉−|1〉
2 .

Qubit Gates

Qubit gates are unitary transformations on qubits. In this section, we give some examples
of single and two-qubit gates.
Pauli gates: Pauli gates or matrices are single qubit gates consisting of the identity gate I ,
and three single qubit gates X,Y, Z, which act as follows in the amplitude basis,

X|x〉 = |x⊕ 1〉, (1.78)
Z|x〉 = (−1)x|x〉, (1.79)
Y |x〉 = (−1)xi|x⊕ 1〉, (1.80)

where x ∈ {0, 1}. Note that the Pauli X acts like the classical NOT gate in the amplitude
basis, hence, referred to as the bit-flip gate. Also, it can be easily seen that the Pauli
Z acts as the classical NOT gate in the phase basis, hence, referred to as the phase-flip
gate. Further, It can be seen that all the Pauli gates are Hermitian, i.e., T † = T, ∀T ∈
{I,X, Y, Z}, and they satisfy XY = iZ.
Hadamard gate: The Hadamard gate is a single qubit gate, which takes an amplitude
basis state to a phase basis state as below,

H|x〉 =
|0〉+ (−1)x|1〉√

2
, x ∈ {0, 1}. (1.81)

Phase gate: The phase gate corresponding to a θ ∈ [0, 2π] is a single qubit gate, which
acts as follows in the amplitude basis,

Rθ|x〉 = ei2θx|x〉, x ∈ {0, 1}. (1.82)
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CNOT gate: The quantum Controlled-NOT (CNOT) gate is a two-qubit gate. When the
first qubit is target and the second qubit is control, as depicted in Figure 1.7, it acts as
follows,

C2→1|x〉|y〉 = |x⊕ y〉|y〉, x, y ∈ {0, 1}. (1.83)

Therefore, the quantum CNOT gate acts like the classical CNOT in the amplitude basis.
This explains the same circuit being used for both the classical and the quantum CNOT.

Figure 1.7: Quantum CNOT

Swap gate: The swap gate is a two-qubit gate, which acts as follows in the amplitude
basis,

S|x〉|y〉 = |y〉|x〉, x, y ∈ {0, 1}. (1.84)

Pauli and Clifford Group

Here, we present the Pauli and Clifford groups for qubit quantum systems.

Definition 40 (Pauli Group). (a) The Pauli group on one qubit G1 consists of Pauli matrices,
with phase factors {±1,±i}, as defined below,

G1 := {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}. (1.85)

(b) The Pauli group GN on N -qubits is defined as

GN := G⊗N1 . (1.86)

As product of any two single qubit Pauli matrices yields another Pauli matrix upto a
phase factor in {±1,±i}, and I2 = X2 = Y 2 = Z2 = I , therefore, GN is indeed a group.
Further, any g1, g2 ∈ GN either commute or anti-commute, that is,

g1 and g2 commute if [g1, g2] := g1g2 − g2g1 = 0. (1.87)
g1 and g2 anti-commute if {g1, g2} := g1g2 + g2g1 = 0. (1.88)

Definition 41 (Clifford group). The Clifford Group on N -qubits CN is a set of unitaries that
takes GN to GN by conjugation,

CN = {U ∈ U(2N ) | UgU † ∈ GN , ∀g ∈ GN}. (1.89)

Universal Set of Qubit Gates

We first define the operator norm.

Definition 42 (Operator norm). For any L ∈ L(HA,HB), the operator norm is defined as,

||L|| = sup
ψ
||L|ψ〉||, (1.90)

where maximization is taken over all the normalized vectors (pure quantum states) inHA.
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A unitary operator V is an ε-approximation of a unitary operatorU if the following holds,

||U − V || ≤ ε. (1.91)

When ε is close to zero, for any quantum measurement M , we have almost the same
output probabilities for quantum states U |ψ〉 and V |ψ〉 [26, Chapter 4].

Definition 43 (Universal set of gates). A finite set of gates G is said to be universal if for any
n-qubit unitary U and ε > 0, there exists a sequence of gates G1, G2 . . . , GN ∈ G, which gives
an ε-approximation of U .

Remark 44. The gate set {C,H, T}, where C is the CNOT gate, H is the Hadamard gate, and
T is the π

8 -phase gate Rπ
8

, is an example of universal set [26, Chapter 4].

Qubit Channels

Here, we give some examples of the qubit quantum channels, whose inputs and outputs
are qubit quantum states. We denote NA := NA→A.

Definition 45 (Pauli channels). A quantum channel NA, acting on a single qubit quantum
state, is called a Pauli channel, if there exists a Kraus representation of the following form,

NA(ρA) := pIρA + pXXρAX + pY Y ρAY + pZZρAZ, (1.92)

where pI , pX , pY , pZ ≥ 0, such that pI + pX + pY + pZ = 1.

A Pauli channel can be interpreted as randomly applying a single qubit Pauli gate from
I,X, Y, Z on the qubit-input ρA, with probabilities pI , pX , pY , pZ , respectively. Note that,
when pI = 1, the Pauli channel is the identity channel. Further, when pI = pX = pY =
pZ = 1

4 , we have NA(ρA) = 1A
2 ,∀ρA ∈ D(HA). Hence, the Pauli channel is completely

noisy, as it outputs the maximally mixed state regardless of the channel input.

Definition 46 (Depolarizing channels). A depolarizing channel is a Pauli channel, which acts
as follows on a single qubit quantum state,

NA(ρA) := (1− p)ρA + p
1A

2
, p ≥ 0. (1.93)

In other words, depolarizing channel outputs a convex combination of the input state ρA
and the maximally mixed state 1A

2 .

Definition 47 (Qubit erasure channels). A qubit erasure channel is defined as,

NA→FA(ρA) := (1− p)|0〉〈0|F ⊗ ρA + p|1〉〈1|F ⊗
1A

2
, p ≥ 0. (1.94)

In other words, the qubit erasure channel outputs a classical flag F along with the quan-
tum output A. If the flag is found to be in |0〉 state, the output quantum state is equal to
the input state ρA and if it is in |1〉 state, the output state is the maximally mixed quantum
state 1A

2 .

1.4 Quantum Channel Coding

A quantum channel (Definition 18) can be used to transmit either classical or quan-
tum information (quantum states). Here, we shall consider the transmission of quantum
information through quantum channnels. The following two scenarios are discussed; the
first quantum communication without entanglement assistance and the second quantum
communication with entanglement assistance.

39
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1.4.1 Quantum Communication without Entanglement Assistance

As discussed in Section 1.3.4, quantum channels are in general irreversible, therefore,
they corrupt the input quantum state. The goal of quantum channel coding is to transmit
quantum information reliably through a noisy quantum channel so that it can be recov-
ered at the receiver end. Similarly to classical channel coding, a quantum channel coding
scheme consists of encoding and decoding procedures as illustrated in Figure 1.8.

Encoding Channel Deccoding
Eq(ρ) N⊗N (Eq(ρ))ρ Dq

(
N⊗N (Eq(ρ))

)

Figure 1.8: Quantum channel coding

We consider qudit quantum systems for which the dimension of the associated Hilbert
space is d ≥ 2. The encoding procedure is given by an isometry transformation (Defini-
tion 20) Eq(A1···AK)→(A1···AN ), where N ≥ K, mapping a K-qudit quantum state ρA1···AK ∈
D(HA1···AK ) to a N -qudit quantum state Eq(ρA1...AK ) ∈ D(HA1···AN ). Let {|i1, · · · , iK〉 |
i1, · · · , iK ∈ {0, 1}} be a basis ofHA1···AK , andE(A1···AK)→(A1···AN ) ∈ L(HA1...AK ,HA1···AN )
be the isometry operator associated with Eq, such that,

Eq(ρA1...AK ) = EρA1...AkE
†. (1.95)

Then, the quantum code CQ, generated by the encoding Eq, is the subspace of HA1···AN
corresponding to the basis,

{E|i1, · · · , iK〉 | i1, · · · , iK ∈ {0, 1}}. (1.96)

The rate of transmission for the code CQ is defined as,

R :=
K

N
∈ [0, 1]. (1.97)

The encoded quantum state Eq(ρA1...AK ) is transmitted over N instances of a quantum
channel NA→B , which output the quantum state N⊗N (Eq(ρA1...AK )). Upon receiving
the channel output, the receiver applies the decoding procedure to generate an estimate
ρ̂A1···AK of the input quantum state. The decoding procedure is given by an isometry
Dq(B1···BN )→(A1···AK) such that

ρ̂A1···AK := Dq
(
N⊗N (Eq(ρA1...AK ))

)
. (1.98)

A code is ε-reliable, if the following holds for the trace distance D(ρ, ρ̂),

D(ρ, ρ̂) ≤ ε,∀ρ ∈ D(HA1···AK ). (1.99)

A rateR is achievable forN , if for any ε, δ > 0, there exists a ε-reliable quantum code with
rate R − δ. Quantum capacity Q(N ) is defined as the tightest upper bound on the achiev-
able rate of transmission of quantum information (see (1.5)). The Llyod-Shor-Devetak
quantum capacity theorem [9, 10, 11] states that the quantum capacity is characterized
by the following regularized expression,

Q(N ) = lim
N→∞

1

N
Q1(N⊗N ), (1.100)
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where Q1(N⊗N ) is the coherent information, maximized over all the input states ofN⊗N
(Definition 27). As the coherent information is superadditive, it follows that the coher-
ent information of single channel use Q1(N ) only gives a lower bound on the capacity
Q(N ) [30, 31, 32]. Further, the supperadditive effect makes it hard to evaluate the value
of the above limit for general quantum channels. For this reason, unlike the classical
capacity, we do not yet have a closed formula for the capacity of general quantum chan-
nels. It is worth pointing out here that there are a subset of quantum channels known as
degradable channels for which the coherent information is additive, therefore, the coher-
ent information of the single channel use Q1(N ) is the channel capacity for degradable
channels [46].

1.4.2 Quantum Communication with Entanglement Assistance

A quantum channel coding scheme is said to be entanglement assisted if the coding
scheme uses entangled quantum states that have been priorly shared between the sender
and receiver. The encoding and decoding for an entanglement assisted coding scheme is
done as follows.

A K qudit quantum state is encoded into a N qudit quantum state, using an isometry
from K + T qudit system to N qudit system for some 0 < T ≤ N −K, as below,

EqA1···AKA′→A1···AN (ρA1···AK ⊗ ψA′B′) , (1.101)

where ψA′B′ is an entangled quantum state on T qudit quantum systems A′ := A′1 · · ·A′T
and B′ := B′1 · · ·B′T shared between the sender and receiver, such that the sender has
A′ and the receiver B′. Note that the encoding isometry only acts on the system A′
of the shared entangled state ψA′B′ . The sender transmits the encoded N -qudit system
A1 . . . AN , using N times a quantum channel NA→B , which output the following quan-
tum state,

N⊗N (Eq (ρA1···AK ⊗ ψA′B′))B1...BNB′ . (1.102)

The decoding is done by applying an isometry DqB1...BNB′→A1···AK , which gives the fol-
lowing quantum state,

Dq
(
N⊗N (Eq (ρA1···AK ⊗ ψA′B′))

)
A1...AK

. (1.103)

It is shown in [12] that regularization is not necessary for the channel capacity in the case
of the entanglement assisted quantum communication, and it is given by half the mutual
information of the channel NA→B (Definition 28),

Qent(N ) =
Im(N )

2
. (1.104)

1.4.3 Stabilizer and CSS Quantum Codes

Here, we provide efficient constructions of quantum codes for qubit quantum systems
(d = 2). We first consider well-known stabilizer codes [47]. Then, we consider a special
case of the stabilizer codes, known as the Calderbank-Shor-Steane (CSS) codes [48, 49], for
which we also briefly discuss the extension to the entanglement assisted communication
scenario.
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Consider an Abelian subgroup of the N -qubit Pauli group S ⊂ GN (Definition 40). The
subgroup S stabilizes a pure quantum state |ψ〉 if the following holds,

S|ψ〉 = |ψ〉, ∀S ∈ S. (1.105)

In other words, |ψ〉 is fixed by every S ∈ S . The above can be generalized for mixed
state ρ in a straightforward way as follows. The subgroup S stabilizes a mixed quantum
state ρ, with a pure state decomposition

∑
i pi|ψi〉〈ψi|, if all the pure states |ψi〉 in the

decomposition are stabilized by S. For the sake of clarity, we will consider only pure
states in this section. However, everything described here remains valid for mixed states.

Given an Abelian subgroup S ⊂ GN , define a subspace C(S) of the N qubit Hilbert space
as follows,

C(S) := {|ψ〉 | S|ψ〉 = |ψ〉, ∀S ∈ S}. (1.106)

It can be easily seen that −I ∈ S implies that C(S) is an empty set.

Definition 48. A stabilizer group S is an Abelian subgroup of GN , which does not contain −I .
In this case, C(S) is called the stabilizer code generated by the stabilizer group S.

Any stabilizer group S ⊂ GN has 2N−K elements, for some 0 ≤ K ≤ N [26, Chapter 10,
Section 10.5]. Further, a subgroup with 2N−K elements stabilizes a subspace of dimension
2K of the N -qubit Hilbert space. Therefore, a subgroup with 2N elements stabilizes only
one pure quantum state, which is called a stabilizer state.

A subset {S1, . . . , Sn} ⊂ S is said to be a generating set of S if every element in S can be
written as a product of elements from {S1, . . . , Sn}. Further, a generating set is said to be
independent if any Si ∈ {S1, . . . , Sn} is not a product of elements from {S1, . . . , Sn} \ Si.
Any independent generating set of S has cardinality log2 |S|, where |S| is the cardinality
of S. In the following, unless otherwise mentioned, we shall always consider indepen-
dent generating sets of a stabilizer group.

The stabilizer codes are defined in a way that they are suitable for correcting Pauli errors.
Suppose a (unknown) Pauli error E ∈ GN occurs on a quantum state |ψ〉 ∈ C(S). Then,
the corrupted quantum state is given by, |ψ′〉 := E|ψ〉. First, note that if E ∈ S, the
error does not affect the state as |ψ′〉 = |ψ〉, hence, there is no need of error correction. In
general, we need to identify the error E up to a stabilizer, i.e., we can identify E with E′

such that E = E′S, for any S ∈ S . Then, the initial state can be recovered by applying
the operator E′† back on the corrupted state. We now briefly give the intuition behind
the error correction properties of the stabilizer codes.

As elements in GN either commute or anti-commute, we have the following for any S ∈ S,

S
∣∣ψ′〉 = SE|ψ〉

= (−1)aE|ψ〉, (1.107)

where a = 0, if [S,E] = 0, and a = 1 if {S,E} = 0. We now consider the following two
cases,

1. The error E anti-commutes with at least one S ∈ S : From (1.107), it follows that
the corrupted state |ψ′〉 is orthogonal to the code C(S). Hence, E can be detected
by performing a projective measurement corresponding to the generator S, which
anticommutes withE. As S is an Abelian group, all the generators {S1, . . . , Sn} can
be measured simultaneously. The error syndrome is defined as the set of outcomes
of the measurements corresponding to all the generators {S1, . . . , Sn}.
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2. The error E commutes with every element in the stabilizer group S, and E /∈
S: Then E ∈ N(S) \ S, where N(S) is the centralizer of the stabilizer group S.
From (1.107), the commutation condition implies that the corrupted state |ψ′〉 be-
longs to the code C(S). Further, as E /∈ S, |ψ′〉 is not equal to |ψ〉. In this case, E can
not be detected by performing measurements corresponding to the generators.

Using the above two conditions, the set of correctable errors for any stabilizer code C(S)
can be determined as given in the following lemma.

Lemma 49 ([47]). A set of errors E is correctable if for any Ei, Ej ∈ E , the condition E†iEj /∈
N(S) \ S holds.

We briefly give the intuition behind the proof of the above lemma. From Point (1) of
the above discussion, it follows that if E†iEj /∈ N(S) \ S, then 〈ψ|E†iEj |ψ〉 = 0, for any
|ψ〉 ∈ C(S). Therefore, errors Ei and Ej take the state |ψ〉 to two different orthogonal
spaces to the code C(S), implying that they produce different error syndromes. Hence,
we can distinguish them from one another.

Note that the above lemma does not explicitly provide a decoding scheme to identify the
errors given the error syndrome. Lastly it’s important to mention that using a stabilizer
code, the symmetric coherent information can be achieved for Pauli channels (see [8,
Chapter 24, Section 6]).

Definition 50 (Calderbank-Shor-Steane (CSS) code [48, 49]). An stabilizer code C(S) is
called a CSS code if there exists a generating set G := GX ∪GZ , such that any gx ∈ GX consists
of Pauli matrices I and X , i.e., gx = Xu0 ⊗ · · · ⊗ XuN−1 , for some u0, . . . , uN−1 ∈ {0, 1},
and any gz ∈ GZ consists of Paulis matrices I and Z, i.e., gz = Zv0 ⊗ · · · ⊗ ZvN−1 , for some
v0, . . . , vN−1 ∈ {0, 1}. We shall refer GX as the X type generating set and GZ as the Z type
generating set.

The problem of constructing a CSS code is equivalent to the construction of two orthog-
onal classical binary linear codes as explained below.

Given a CSS code C, consider the X and Z part of the generators GX and GZ . One may
associate a KX ×N matrix HX with GX , where KX is the cardinality of GX , such that the
rows ofHX are vectors (u0, . . . , uN−1) corresponding to gx = Xu0⊗· · ·⊗XuN−1 ,∀gx ∈ GX .
Similarly, a KZ ×N matrix HZ is associated with GZ , where KZ is the cardinality of GZ ,
such that the rows of HZ are vectors (v0, . . . , vN−1) corresponding to gz = Zv0 ⊗ · · · ⊗
ZvN−1 , ∀gz ∈ GZ .

Consider an errorE ∈ GN occurs on a quantum state |ψ〉 belonging to the CSS code C. We
only need to correct errors up to the phase factor, hence we may take E ∈ GN \ {±1,±i},
i.e., the centralizer of the Pauli group GN with respect to its quotient. As any element in
Ḡ1 can be written as XuZv for some u, v ∈ {0, 1}, it follows that E = Xu′0Zv

′
0 ⊗ · · · ⊗

Xu′NZv
′
N−1 for some vectors (u′0, . . . , u

′
N−1), (v′0, . . . , v

′
N−1) ∈ {0, 1}N .

It can be seen that the measurement of a generator gx = Xu0 ⊗ · · · ⊗ XuN−1 ∈ GX on
the error corrupted quantum state E|ψ〉 outputs

∑N−1
i=0 uiv

′
i ∈ {0, 1}, where the sum is

XOR. Therefore, it follows that the measurement outcome of all the generators gx ∈ GX
is given by the following vector,

HX(v′0, . . . , v
′
N−1) ∈ {0, 1}KX . (1.108)

Similarly, the measurement outcome of all the generators gz ∈ GZ is given by the vector,

HZ(u′0, . . . , u
′
N−1) ∈ {0, 1}KZ . (1.109)
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Hence, a quantum CSS code yields two classical binary linear codes defined by the parity
check matrices HX and HZ (see [26, Chapter 10] and [14, Chapter 13] for the Parity check
matrices). Further, the commutativity of generators gx, gz,∀gX ∈ GX , gZ ∈ GZ imposes
the following orthogonality constraint on matrices HX and HZ ,

HXH
>
Z = 0, (1.110)

where H>Z is the transpose of HZ . Therefore, two classical codes associated with a CSS
codes are orthogonal to each other. Moreover, given two classical codes with check ma-
trices H1 and H2 satisfying H1H

>
2 = 0, one can obtain a quantum CSS code by defining

the X and Z type generating sets GX and GZ , using the rows of H1 and H2, respectively.
Hence, the problem of constructing a CSS code is reduced to constructing two orthogonal
classical binary linear codes.

Entanglement assisted CSS code: Given the entanglement assistance, a quantum CSS
code can be built using two classical codes even if they are not orthogonal [50, 51, 52].
Consider parity check matrices H1 and H2 associated with two classical codes, and as-
sume H1H

>
2 6= 0. Using the rows of H1, define the X type generator GX and us-

ing the rows of H2, define the Z type generator GZ . Let S be the group generated
by GX ∪ GZ . The group S is not a stabilizer group as there are elements in GX ∪ GZ ,
that anti-commute with each other. However, given any two anti-commuting operators
gx = Xu0 ⊗ · · · ⊗ XuN−1 ∈ GX and gz = Xv0 ⊗ · · · ⊗ XvN−1 ∈ GZ , one can modify
the operators gx and gz by adding an extra noiseless system, so that they commute, as
follows,

g′x = X ⊗Xu0 ⊗ · · · ⊗XuN−1 .

g′z = Z ⊗Xv0 ⊗ · · · ⊗XvN−1 .

It can be seen that [g′x, g
′
z] = 0 if {gX , gZ} = 0. The above modification is basically done

by sharing an EPR pair between the sender and receiver, such that the receiver’s half of
the preshared EPR pair is noiseless (see [50] for more details).

1.5 Quantum Polar Coding

As polar coding for classical channels achieves the channel capacity, it is desirable to
extend it for quantum channels. Polar codes are first generalized for sending classical
information through qubit quantum channels, that is, classical-quantum (cq) channels
in [53], achieving the Holevo information as the rate of transmission. The encoding, in
this case, is the same as the classical polar codes, hence, it is efficient. For decoding, a
quantum analog of SC decoding has been proposed, for which the error probability ap-
proaches to zero, exponentially in the codelength. Although, this decoding is not efficient
in the sense that it requires collective measurements. Moreover, it has been shown in [54]
that one necessarily needs to perform a certain number of collective measurements to
achieve the Holevo information.

A generalization of polar codes for quantum communication over qubit-input Pauli and
erasure channels is given in [13], which subsumes efficient encoding and decoding, and
achieves the symmetric coherent information as the rate of transmission. The quantum
polar coding scheme in [13] first associates two classical B-DMCs with a given Pauli or
erasure quantum channel, referred to as the induced amplitude and phase channels. Then,
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it is shown that the recursive construction of polar codes, using a quantum CNOT gate,
yields classical channel polarization for both induced channels. Finally, a Calderbank-
Shor-Steane (CSS) quantum code is constructed using the classical polar codes on the in-
duced amplitude and phase channels. This construction requires a small number of EPR
pairs to be shared between the sender and the receiver, thus making the resulting code
entanglement-assisted. However, in the low noise limit, the number of EPR pairs goes to
zero. A refined CSS construction is proposed in [55], where preshared entanglement is
completely suppressed at the cost of a more complicated multilevel coding scheme. The
quantum CSS polar codes are further extended to general quantum channels in [56, 53],
which also achieves the symmetric coherent information. For general quantum channels,
the associated induced amplitude and phase channels are cq channels instead of classical
channels.

In the following, we restrict our attention to Pauli channels and present the CSS construc-
tion of polar codes from [13] in more detail, and from a slightly different perspective.

1.5.1 Quantum CSS Polar Code

Notation: We denote 0̄ := +, and 1̄ := −. For any vector u = (u0, . . . , uN−1)
∈ {0, 1}N , ū is obtained by substituting its components uk ∈ {0, 1} with uk. Therefore,
the N qubit phase basis can be represented as, {|ū〉 | u ∈ {0, 1}N}.
We define the quantum polar transform QN , as the unitary matrix obtained by replacing
the classical CNOT with the quantum one in the classical polar transform PN . From the
definition of the quantum CNOT gate (see Section 1.3.8), it follows that the quantum
polar transform QN acts like the classical polar transform PN on a N -qubit amplitude
basis state, that is,

QN |u〉 = |PNu〉, ∀u ∈ {0, 1}N . (1.111)

The quantum CNOT gate acts as below in the phase basis,

C2→1

∣∣∣(x, y)
〉

=
∣∣∣(x, x⊕ y)

〉
,∀(x, y) ∈ {0, 1}2. (1.112)

The above can be easily seen from the circuit equivalence in Figure 1.9,

Figure 1.9: The two circuits produce the same output for a given two-qubit input.

Note that the quantum CNOT gate also yields the classical CNOT in the phase basis, only
the inputs and outputs are arranged in the reversed order compared to the amplitude
basis. Therefore, the quantum polar transform QN acts like the classical polar transform
on a N -qubit phase basis state, with inputs and outputs arranged in the reversed order
compared to the amplitude basis, as illustrated in Figure 1.10. Let P rN be the reversed
classical polar transform defined as,

P rN (u0, . . . , ui, . . . , uN−1) := RPNR(u0, . . . , ui, . . . , uN−1), (1.113)

where R is a permutation matrix defined as

R(u0, . . . , ui, . . . , uN−1) := (uN−1, . . . , uN−1−i, . . . , u0). (1.114)
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Then, we have that
QN |ū〉 =

∣∣P rNu〉,∀u ∈ {0, 1}N . (1.115)

Proposition 51. We have the following identity

P rN = P>N , (1.116)

where P>N is the transpose of PN .

Proof. The equation (1.112) can be written as following,

C2→1

∣∣∣(x, y)
〉

=
∣∣∣P r2 (x, y)

〉
, (1.117)

where P r2 :=

[
1 0

1 1

]
= P>2 . Since P rN = P r2

⊗n, it follows that P rN = P>N .

We show in Section 1.5.2 that two classical channels, namely the induced amplitude and
phase channels, can be associated with a Pauli channel. As the quantum polar transform
QN acts like the classical polar transforms PN and P rN in amplitude and phase bases,
respectively, it implies that QN yields the classical channel polarization for both the in-
duced amplitude and phase channel. The CSS quantum polar construction relies on the
polarization of the induced amplitude and phase channels, the encoding and decoding
for which is given in Sections 1.5.3 and 1.5.4, respectively.

Figure 1.10: Quantum Polar transform for N = 23 as two classical polar transforms. The blue
wires represent quantum information in the amplitude basis and the orange wires in the phase
basis.
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1.5.2 Induced Amplitude and Phase Channels

Here, we associate two classical channels, induced amplitude and phase channels, with
a Pauli channel. Consider a Pauli channelW(ρ) := pIρ+ pXXρX + pY Y ρY + pZZρZ. In
the amplitude basis, only X and Y errors matter, therefore,W is equal to a channelWA,
such that

WA(ρ) = (pI + pZ)ρ+ (pX + pY )XρX. (1.118)

Since X corresponds to the bit flip, the above channel acts like a binary symmetric clas-
sical channel (BSC) WA in the amplitude basis, with crossover probability pA = pX + pY ,
as depicted in Figure 1.11. We shall refer to WA as the induced amplitude channel.

Figure 1.11: A BSC with crossover probability p.

In the phase basis, only Z and Y errors matter. Therefore, W is equal to a channel W ′P ,
such that

W ′P (ρ) = (pI + pX)ρ+ (pZ + pY )ZρZ. (1.119)

Since Z corresponds to the phase flip, the above channel acts like a BSC W ′P in the phase
basis, with crossover probability pP = pZ + pY .

The classical channels WA and W ′P do not take into account the correlation between X
and Z errors due to Y error. To accomodate the correlation, we assume the knowledge
whether X error has occurred or not, and modify the quantum channelW ′P as below,

WP (|x̄〉〈x̄|) = (PI + PZ)|0〉〈0|F ⊗W0(|x̄〉〈x̄|) + (PX + PY )|1〉〈1|F ⊗W1(|x̄〉〈x̄|), (1.120)

where the classical flag F indicates whether X error has occured or not, and

W0(|x̄〉〈x̄|) :=
pI

pI + pZ
|x̄〉〈x̄|+ pZ

pI + pZ
Z|x〉〈x|Z

W1(|x̄〉〈x̄|) :=
pX

pX + pY
|x̄〉〈x̄|+ pY

pX + pY
Z|x〉〈x|Z. (1.121)

The above channels W0 and W1 act like BSCs W0 and W1, with crossover probabilities
pZ

pI+pZ
and, pY

pX+pY
, respectively. Hence, WP acts like a mixture of two BSCs WP :=

{W0,W1}, chosen with probabilities PI + PZ and PX + PY , respectively. We shall re-
fer to WP as the induced phase channel. The transition probabilities of WP are given
by,

WP (u, y|x) = puWu(y|x), u ∈ {0, 1}, (1.122)

where p0 = pI + pZ and p1 = pX + pY .

Lemma 52. The following equality holds,

I(W) = I(WA) + I(WP )− 1, (1.123)

where I(W) is the symmetric coherent information of W and I(WA)(I(WP )) is the symmetric
mutual information of WA(WP ).
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Proof. The symmetric coherent information of the Pauli channelW is given by,

I(W) = 1−H(p), (1.124)

where p := (pI , pX , pY , pZ) and H(p) is the Shannon entropy of the probability vector p,
that is, H(p) = −pI log pI − pX log pX − pY log pY − pZ log pZ .

It can be seen that the mutual information of a BSC channel with crossover probaility ε
is equal to 1 −H(ε), where H(ε) represents the Shannon entropy of a binary probability
vector (ε, 1− ε). Hence, the symmetric mutual information of WA is given by,

I(WA) = 1−H(pX + pY ), (1.125)

Similarly, the mutual information of WP is given by,

I(WP ) = (pI + pZ)I(W0) + (pX + pY )I(W1)

= (pI + pZ)H

(
pZ

pI + pZ

)
+ (pX + pY )H

(
pY

pX + pY

)
= 1−H(p) +H(pX + pY ). (1.126)

From (1.125) and (1.126), we have that

I(WA) + I(WP )− 1 = 1−H(p). (1.127)

1.5.3 Encoding

To an index i ∈ {0, . . . , N − 1}, we associate two classical virtual channels as follows,

• The virtual channel W (i)
A , obtained by channel combining and splitting procedure

on WA, using the classical polar transform PN .

• The virtual channel W (ic)
P , where ic := N − i − 1, obtained by channel combining

and splitting procedure on WP , using the reversed classical polar transform P rN .

As channel polarization happens for both WA and WP , therefore, their respective virtual
channels tend to be either completely noiseless or completely noisy as N →∞. We call a
binary-input classical channel W δ-noiseless if Z(W ) < δ, and δ-noisy if Z(W ) > 1 − δ.
Hence, for any δ < 1

2 and sufficiently large N , all but a vanishing fraction of indices from
the set S := {0, 1, . . . , N − 1} can be grouped in the following four disjoint subsets

• A ⊆ S such that ∀j ∈ A, both W (i)
A and W (ic)

P are δ-noiseless.

• B ⊆ S such that ∀j ∈ B, W (i)
A is δ-noiseless and W (ic)

P is δ-noisy.

• C ⊆ S such that ∀j ∈ C, W (i)
A is δ-noisy and W (ic)

P is δ-noiseless.

• D ⊆ S such that ∀j ∈ D both W (i)
A and W (ic)

P are δ-noisy.

Let D̄ be the complement of the set A ∪ B ∪ C. Note that |D̄| is almost equal to |D| for
sufficiently largeN . With a slight abuse of notation, we denoteA, B, C, and D̄ as quantum
systems composed of |A|, |B|, |C|, and |D̄| qubits, respectively. It will be clear from the
context when they represent quantum systems or when sets of indices.

We first set the quantum state of systems A, B, C, and D̄ as follows,

48



1.5. Quantum Polar Coding

• The quantum state corresponding to the system A is an arbitrary quantum state
ρA ∈ D(HA), which is to be transmitted to the receiver.

• The quantum state of the system B is frozen (fixed) by the quantum state ρ+
B :=

⊗b∈B|+〉〈+|b.

• The quantum state of the system C is frozen by the quantum state ρ0
C := ⊗c∈C |0〉〈0|c.

• Let ΦD̄D̄′ be the maximally entangled quantum state, defined on isomorphic quan-
tum systems D and D′ each containing |D| qubits, as follows,

ΦD̄D̄′ := ⊗d∈D̄Φdd′ , (1.128)

where d and d′ are the dth qubit of the quantum systems D̄ and D̄′. The quantum
state of the system D̄ is frozen by the D̄ part of ΦD̄D̄′ . The other part D̄′ is directly
given to the decoder.

Then, the quantum polar transform QN is applied on the ABCD̄ part, which gives the
following quantum state,

ϕABCD̄D̄′ = QN ⊗ ID̄′
(
ρA ⊗ ρ+

B ⊗ ρ0
C ⊗ ΦD̄D̄′

)
Q†N ⊗ ID̄′ . (1.129)

Generators of the quantum polar code stabilizer group: The quantum polar code can
be seen as a stabilizer code as follows. The quantum state

(
ρA ⊗ ρ+

B ⊗ ρ0
C ⊗ ΦD̄D̄′

)
for any

ρA ∈ D(HA) is stabilized by the following Pauli operators,

Xb ⊗k 6=b Ik, ∀b ∈ B. (1.130)
Zc ⊗k 6=c Ik, ∀c ∈ C. (1.131)

Xd ⊗Xd′ ⊗k 6=d,d′ Ik, ∀d ∈ D̄. (1.132)
Zd ⊗ Zd′ ⊗k 6=d,d′ Ik, ∀d ∈ D̄. (1.133)

Therefore, the stabilizer group of the polar code is generated by,

QN ⊗ ID̄′(Xb ⊗k 6=b Ik)Q†N ⊗ ID̄′ , ∀b ∈ B. (1.134)

QN ⊗ ID̄′(Zc ⊗k 6=c Ik)Q†N ⊗ ID̄′ , ∀c ∈ C. (1.135)

QN ⊗ ID̄′(Xd ⊗Xd′ ⊗k 6=d,d′ Ik)Q†N ⊗ ID̄′ , ∀d ∈ D̄. (1.136)

QN ⊗ ID̄′(Zd ⊗ Zd′ ⊗k 6=d,d′ Ik)Q†N ⊗ ID̄′ , ∀d ∈ D̄. (1.137)

Note that the following holds for the CNOT gate,

C2→1(X ⊗ I)C2→1 = X ⊗ I (1.138)
C2→1(I ⊗X)C2→1 = X ⊗X (1.139)
C2→1(Z ⊗ I)C2→1 = Z ⊗ Z (1.140)
C2→1(I ⊗ Z)C2→1 = I ⊗ Z (1.141)

From the above four equations, it follows that any stabilizer generator from (1.134)-
(1.137) consists of either X and I , or Z and I . Therefore, from Definition 50, the set
of stabilizer generators of the quantum polar code gives a CSS code. However, as the
preshared EPR pairs are required, it is an entanglement assisted CSS code.

Rate of the quantum CSS polar code: The rate of the quantum CSS polar code is given
by,

R =
|A|
N
. (1.142)
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As N →∞, from Theorem 7, we have that

|A|+ |B| → NI(WA). (1.143)
|A|+ |C| → NI(WP ). (1.144)

|A|+ |B|+ |C|+ |D| → N. (1.145)

From the above three equations, we have that

|A|
N
→ (I(WA) + I(WP )− 1) +

|D|
N
. (1.146)

Hence, the quantum CSS polar code achieves the symmetric coherent information plus
the fraction of preshared EPR pairs. Hence, the net communication rate, that is, the rate less
than the fraction of preshared EPR pair, approaches the symmetric coherent information
I(W).

Entanglement free condition: As mentioned above, preshared EPR pairs are needed for
the indices in the set D̄. In the following lemma, we give a condition on the Bhattacharyya
parameters of WA,WP , which guarantees that |D| → 0 as N → ∞. In other words, the
number of preshared EPR pairs goes to zero for sufficiently large N .

Lemma 53 ([13]). If the constraint Z(WA) + Z(WP ) ≤ 1 holds, then |D| → 0 as N →∞.

Proof. From (1.23) and (1.24), we have the following after the first polarization step,

Z(W
(0)
A ) + Z(W

(1)
P ) ≤ 2Z(WA)− Z(WA)2 + Z(WP )2

≤ 2Z(WA)− Z(WA)2 + (1− Z(WA))2

= 1. (1.147)

Applying the above recursively, it can be seen that following holds for any i ∈ S,

Z(W
(i)
A ) + Z(W

(ic)
P ) ≤ 1. (1.148)

As N → ∞, from the polarization theorem (Theorem 7), we have that the parameters
Z(W

(i)
A ) and Z(W

(ic)
P ) approach to either 0 or 1. The above equation implies that both

Z(W
(i)
A ) and Z(W

(ic)
P ) can’t approach 1 together. Hence, |D| → 0 as N →∞.

1.5.4 Decoding

The quantum system ABCD̄ is sent using N instances of the Pauli channel W . As no
errors occur on the system D̄′, the following is the channel output,

ψABCD̄D̄′ := (W⊗N ⊗ ID̄′)(ϕABCD̄D̄′). (1.149)

SinceW is a Pauli channel, we have that

ψABCD̄D̄′ = (EABCD̄QN ⊗ ID̄′)(ρA ⊗ ρ+
B ⊗ ρ0

C ⊗ ΦD̄D̄′)(Q
†
NE
†
ABCD̄ ⊗ ID̄′), (1.150)

for a random N -qubit Pauli error EABCD̄ ∈ GN \ {±1,±i}. The decoding is performed in
the following steps,

Step 1: Apply the inverse quantum polar transform on the channel output state. Ap-
plying Q†N on the output state ψABCD̄D̄′ , we have that

Q†NψABCD̄D̄′QN = (Q†NEABCD̄QN ⊗ ID̄′)(ρA ⊗ ρ+
B ⊗ ρ0

C ⊗ ΦD̄D̄′)(Q
†
NE
†
ABCD̄QN ⊗ ID̄′)

= (E′ABCD̄ ⊗ ID̄′)(ρA ⊗ ρ+
B ⊗ ρ0

C ⊗ ΦD̄D̄′)(E
′
ABCD̄ ⊗ ID̄′),
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where E′ABCD := Q†NEABCD̄QN . From (1.138)-(1.141), it follows that E′ABCD̄ ∈ GN \
{±1,±i} is also a Pauli error.

Step 2: Quantum measurement. Let E′ABCD̄′ = Xu′0Zv
′
0 ⊗ . . . Xu′NZv

′
N−1 and let u′X and

v′Z be the X and Z error vectors of E′ABCD̄′ , respectively, that is,

u′X := (u′0, . . . , u
′
N−1).

v′Z := (v′0, . . . , v
′
N−1).

The receiver performs the Pauli X measurement on each b ∈ B ⊂ S , which determines
the components of v′Z corresponding to the set B. Further, the Pauli Z measurement on
each c ∈ C, which determines the components of u′X corresponding to the set C. Finally,
the receiver performs the Bell measurement, that is, the measurement corresponding to the
Pauli operators X⊗X and Z⊗Z, on the two-qubit system dd′ for each d ∈ D̄ ⊂ S , which
determines the components of both u′X and v′Z corresponding to D̄.

Step 3: Decode the classical polar codes on WA and WP . Let uX and vZ be X and
Z error vectors, respectively, corresponding to the error EABCD ∈ ḠN . Since E′ABCD =

Q†NEABCD̄QN , from (1.138)-(1.141), we have the following equalities,

u′X = PNuX . (1.151)
v′Z = P rNvZ . (1.152)

Further, as P 2
N = P rN

2 = I , we also have the following,

uX = PNu
′
X . (1.153)

vZ = P rNv
′
Z . (1.154)

The vectors uX and vZ are decoded as follows,

(i) Decoding of u′X : note that when the all-zero vector 0N := (0, . . . , 0) is input to the
N instances of WA, denoted by WN

A , then the vector uX can be considered as a channel
output of WN

A . As the channel WA is a BSC, we have that

WN
A (uX |0N ) = WN

A (0N |uX). (1.155)

Therefore, we can equivalently consider 0N as the observed channel output, and uX
(unknown) as the channel input. We have been given,

• The components of the vector u′X corresponding to the set C ∪ D ⊂ S .

• A noisy observation of the channel input uX = PNu
′
X (namely 0N ).

Based on the above, we can determine the components of the vector u′X corresponding
to the set (A ∪ B), using the SC decoding of polar codes as described in Section 1.2.3.

(ii) Decoding of v′Z : Recall theWP is a mixture of two BSCsW0 andW1, which are chosen
with some probability (see (1.122) for the transition probability of WP ). Note that when
0N is input to WN

P (N instances of WP ), the pair (ux,vZ) can be considered as a channel
output, where the vector ux is known and the vector vZ is unknown. As channels W0

and W1 are BSCs, from (1.122), we have that

WN
P (uX ,vZ |0N ) = WN

P (uX , 0
N |vZ). (1.156)

Therefore, we can equivalently consider (uX , 0
N ) as the channel output and vZ as the

channel input. We have been given,
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• The components of the vector v′Z corresponding to the set B ∪ D ⊂ S .

• A noisy observation of the channel input vZ = P rNv
′
Z (namely (uX , 0

N )).

Based on the above, we can determine the components of the vector v′Z corresponding to
the set (A ∪ C), using the SC decoding of polar codes.
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2
Purely Quantum Polar codes

Quantum CSS polar code (for qubit-input quantum channels) presented in the previous
chapter takes advantage of the fact that the recursive construction with the CNOT gate
(channel combining operation) yields channel polarization for both induced amplitude
and phase channels, which are associated with a quantum channel. The induced am-
plitude and phase channels associated with a Pauli channel are classical channels and
for general quantum channels, they are classical-quantum channels. Therefore, in gen-
eral, quantum CSS polar coding is based on the polarization of two classical-quantum
channels.

In this chapter, we take a different approach to construct quantum polar codes. We prove
a channel polarization phenomenon for quantum channels, where synthesized virtual
channels tend to be completely noisy or noiseless as quantum channels, not just in one
basis. We refer to this phenomenon as purely quantum polarization. Here, we prove the
purely quantum polarization for quantum channels with qudit-input of dimension d ≥ 2.

Our purely quantum polarization is based on a quantum channel combining and splitting
procedure, where a two-qudit unitary, randomly chosen from a unitary 2-design (see
Section 1.3.5) is used as a channel combining operation. Further, using the fact that the
generalized two-qudit Clifford group (Definition 14) is a unitary 2-design [57] (we also
provide a simple proof of this fact), we conclude that the channel combining operation
can be randomly chosen from this set.

Using a symmetry argument, we reduce the set from which the channel combining op-
eration is chosen. Precisely, when the qudit dimension d is a prime, we show that polar-
ization happens for a subset of two-qudit Clifford unitaries containing only d4 + d2 − 2
elements, which is not a unitary 2-design. Hence, unitary 2-designs are not necessary for
the quantum polarization of qudit-input channels. When d = 2, the channel combining
set can be further reduced to d4+d2−2

2 = 9 elements.

We exploit the purely quantum polarization to construct a quantum coding scheme,
where the virtual channels that are completely noiseless as quantum channels are used
for quantum communication, while the virtual channels that are completely noisy are
frozen using preshared EPR pairs. Hence, our coding scheme is entanglement-assisted.
Further, it achieves half the symmetric mutual information of the channel.
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2.1 A General Set of Conditions for Stochastic Process Polariza-
tion

Recall from the discussion regarding the proof of classical polarization (Theorem 7)
that the recursive application of the channel combining and splitting procedure can be
modeled as a discrete time stochastic process {In : n > 0}, where In = I(W i1···in) is the
mutual information of the virtual channelW i1···in . Further, the proof of polarization of In
therein is done indirectly using the Bhattacharyya parameter.

The following lemma provides a general set of conditions for polarization of an informa-
tion measure I , using a Bhattacharyya like parameter T , under the recursive application
of a channel combining and splitting procedure. The lemma below is a slightly modified
version of [24, Lemma 2], so as to meet our specific needs.

Lemma 54 ([24, Lemma 2]). Suppose Bi, i = 1, 2, . . . are independent and identically dis-
tributed (i.i.d.), {0, 1}-valued random variables with P (B1 = 0) = P (B1 = 1) = 1/2, defined
on a probability space (Ω,F , P ). SetF0 = {φ,Ω} as the trivial σ-algebra and setFn, n ≥ 1, to be
the σ-field generated by (B1 · · ·Bn). Suppose further that two stochastic processes {In : n ≥ 0}
and {Tn : n ≥ 0} are defined on this probability space with the following properties:

(i.1) In takes values in [ι0, ι1] and is measurable with respect to Fn. That is, I0 is a constant, and
In is a function of B1 · · ·Bn.

(i.2) {(In,Fn) : n ≥ 0} is a martingale, i.e., EBn+1 [In+1 | In = in, In−1 = in−1, . . . , I1 =
i1, I0] = in, for any n > 0 and all possible i1, . . . , in.

(t.1) Tn takes values in the interval [θ0, θ1] and is measurable with respect to Fn.

(i&t.1) For any ε > 0 there exists δ > 0, such that In ∈ (ι0 + ε, ι1 − ε) implies Tn ∈ (θ0 +
δ, θ1 − δ).

(t.2) Guaranteed improvement: Tn+1 ≤ f(Tn) when Bn+1 = 1, where f : [θ0, θ1] → [θ0, θ1]
is a continuous function, such that f(θ) < θ,∀θ ∈ (θ0, θ1).

Then, I∞ := limn→∞ In exists with probability 1, I∞ takes values in {ι0, ι1}, and E(I∞) :=
ι0P (I∞ = ι0) + ι1P (I∞ = ι1) = I0.

Proof. As the process {(In,Fn) : n ≥ 0} is a martingale, it follows that almost surely In
converges to a limit value. This means that for any ε > 0, there exists a n0 such that for
all n > n0, we have that |In − ι| ≤ ε, for some ι ∈ [ι0, ι1]. It can be seen that ι ∈ {ι0, ι1} as
follows,

Suppose for δ > 0, ι ∈ (ι0 + δ, ι1 − δ) holds, then it follows that there exists a n0, such
that for all n > n0, In takes values in (ι0 + δ, ι1 − δ). From point (i&t.1), we have that
In ∈ (ι0 + δ, ι1− δ) =⇒ Tn ∈ (θ0 + δ′, θ1− δ′) for some δ′ > 0. For some n > n0, consider
an event En, such that Bn = Bn+1 = · · · = Bn+k = 1 for k > 0. We have the following,

(i) Bi, i = 0, 1 . . . are i.i.d random variables.

(ii) The probability of En for any n is equal to 2−k > 0, therefore we have
∑

n Pr(En) =
∞.

Hence, from the Borel-Cantelli lemma, it follows that En occurs infinitely often for any
finite k > 0. From point (t.2), when En occurs for some n > n0, we have that

Tn+k ≤ fk(Tn), (2.1)
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where fk is the k-fold composition of f . As f is a continuous function and f(Tn) < Tn,
we have that for any δ′ > 0 and n such that Tn ∈ (θ0 +δ′, θ1−δ′), there exists a k such that
fk(Tn) < θ0 +δ′. Hence, it follows that In does not converge to any value in (ι0 +δ, ι1−δ),
therefore, we have that ι ∈ {ι0, ι1}. Finally, using the martingale property (i.2), we have
that

E(I∞) := ι0P (I∞ = ι0) + ι1P (I∞ = ι1) = I0. (2.2)

2.2 Purely Quantum Polarization

In this section, we show our purely quantum polarization phenomenon for quantum
channels. To do so, we introduce a channel combining and splitting procedure for quan-
tum channels. We show that all the conditions of polarization from Section 2.1 are satis-
fied for the stochastic process obtained by recursively applying this channel combining
and splitting procedure, hence polarization happens.

2.2.1 Channel Combining and Splitting Procedure

Consider two quantum channels NA′→B andMA′→B , where A′ is a qudit quantum sys-
tem of dimesnion d ≥ 2, and B is a qudit quantum system of arbitrary dimension. Our
quantum polarization scheme relies on the channel combining and splitting procedures
depicted in Figure 2.1.

N

M
C

A′1

A′2

B1

B2

(a) Combined channel N ./C M

N

M
C

A′1
1A′2
d

B1

B2

(b) Bad channel N �CM

N

M
C

A′2

B1

B2

ΦA1A′1

A1

(c) Good channel N �CM

Figure 2.1: Channel combining and splitting. (a) combined channel: a two-qudit unitary C is
applied on the two inputs. (b) bad channel: we input a totally mixed state into the second input.
(c) good channel: we input half of an EPR pair into the first input, and the other half is given as
the output A1.

First, quantum channels NA′1→B1
andMA′2→B2

are combined, using a two-qudit unitary
C, which yields the quantum channelN ./C M, as depicted in Figure 2.1a. The combined
channel N ./C M is a quantum channel from A′1A

′
2 to B1B2, which acts as follows on a

two-qudit quantum state φAA′ ∈ D(HAA′),

(N ./C M)A′1A′2→B1B2

(
φA′1A′2

)
:= NA′1→B1

⊗MA′2→B2

(
CφA′1A′2C

†
)
. (2.3)

The combined channel is then split into two quantum virtual channels, the bad channel
N�CM, and the good channelN�CM, as depicted in Figures 2.1b and 2.1c, respectively.

The bad channel N �C M is a channel from A′1 to B1B2, which acts as follows on a
quantum state ρA′1 ∈ D(HA′1),

(N �CM)A′1→B1B2
(ρA′1) := (N ./C M)A′1A′2→B1B2

(
ρA′1 ⊗

1A′2

d

)
. (2.4)
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2.2. Purely Quantum Polarization

The good channel N �C M is a quantum channel from A′2 to A1B1B2, which acts as
follows on a quantum state ρA′2 ∈ D(HA′2),

(N �CM)A′2→A1B1B2
(ρA′2) := (N ./C M)A′1A′2→B1B2

(
ΦA1A′1

⊗ ρA′2
)
, (2.5)

where ΦA1A′1
is an EPR pair (Definition 11).

2.2.2 Properties of the Channel Combining and Splitting

In the following lemma, we show that the complements of the good and bad chan-
nels yield the bad and good channels, respectively on the complements of NA′1→B1

and
MA′2→B2

.

Lemma 55. For quantum channels NA′1→B1
andMA′2→B2

, we have that

(a) (N �CM)cA′1→E1E2A2
(ρA′1) = N c

A′1→E1
⊗Mc

A′2→E2

(
C
(
ρA′1 ⊗ ΦA′2A2

)
C†
)

,

(b) (N �CM)cA′2→E1E2
(ρA′2) = N c

A′1→E1
⊗Mc

A′2→E2

(
C

(
1A′1
d ⊗ ρA′2

)
C†
)

,

where N c
A′1→E1

and Mc
A′2→E2

are complementary channels of NA′1→B1
and MA′2→B2

, respec-
tively.

Proof. Let UA′1→B1E1
and VA′2→B2E2

be the Stinespring dilations ofNA′1→B1
andMA′2→B2

,
respectively. Define isometries WA′1→B1B2E1E2A2

and W ′A′2→B1B2E1E2A1
as following,

W (ρA′1)W † := U ⊗ V
(
C
(
ρA′1 ⊗ ΦA′2A2

)
C†
)
U † ⊗ V †. (2.6)

W ′(ρA′2)W ′† := U ⊗ V
(
C
(

ΦA1A′1
⊗ ρA′2

)
C†
)
U † ⊗ V †. (2.7)

It can be seen that

trE1E2A2(W (ρA′1)W †) = N ⊗M
(
C

(
ρA′1 ⊗

1A′2
d

)
C†
)

= (N �CM)(ρA′1). (2.8)

trE1E2(W ′(ρA′2)W ′†) = N ⊗M
(
C
(

ΦA1A′1
⊗ ρA′2

)
C†
)

= (N �CM)(ρA′2). (2.9)

Therefore, isometries WA′1→B1B2E1E2A2
and W ′A′2→B1B2E1E2A1

are Stinespring dilations of
the channels (N�CM) and (N�CM), respectively (see also [58, Theorem 1]). Therefore,
by tracing out channel outputs of (N �C M) and (N �C M), we get their respective
complementary channels,

(N �CM)c(ρA′1) = trB1B2(W (ρA′1)W †) = N c ⊗Mc
(
C
(
ρA′1 ⊗ ΦA′2A1

)
C†
)
. (2.10)

(N �CM)c(ρA′2) = trA1B1B2(W ′(ρA′2)W ′†) = N c ⊗Mc

(
C

(
1A′1
d ⊗ ρA′2

)
C†
)
. (2.11)

In the following lemma, we show that the channel combining and splitting procedure
preserves the total symmetric coherent information.

Lemma 56. Given two channels NA′1→B1
andMA′2→B2

with qudit inputs, then

I(N �CM) + I(N �CM) = I(N ) + I(M),

and this holds for all choices of C.
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Proof. Consider the following state,

ρA1A2B1B2 = (NA′1→B1
⊗MA′2→B2

)(C(ΦA1A′1
⊗ ΦA2A′2

)C†). (2.12)

Then, we have that

I(N �CM) = −H(A1|B1B2)ρ (2.13)
I(N �CM) = −H(A2|A1B1B2)ρ. (2.14)

Therefore, by the chain rule,

I(N �CM) + I(N �CM) = −H(A1|B1B2)ρ −H(A2|A1B1B2)ρ

= −H(A1A2|B1B2)ρ. (2.15)

Now, recall that the EPR pair has the property that (Z ⊗ 1)|Φ〉 = (1 ⊗ Z>)|Φ〉 for any
matrix Z. Using this, we can move C from the input systems A′1 and A′2 to the purifying
systems A1A2: ρ = C>(N ⊗M)(ΦA1A′1

⊗ ΦA2A′2
)C̄, where C̄ is the complex conjugate of

C. Hence, we have

−H(A1A2|B1B2)ρ = −H(A1A2|B1B2)(N⊗M)(ΦA1A
′
1
⊗ΦA2A

′
2
)

= −H(A1|B1)N (ΦA1A
′
1
) −H(A2|B2)M(ΦA2A

′
2
)

= I(N ) + I(M).

2.2.3 Rényi-Bhattacharyya Parameter

Here, we introduce a new channel parameter, based on the quantum conditional Rényi
entropies H↑1

2

and H̃↓2 (see Definitions 37, 38, and also (1.76) and (1.77)). This parameter

will play the role of the Bhattacharyya parameter in the proof of our polarization Theo-
rem 60 below. For this reason, we call it the Rényi-Bhattacharyya parameter.

Definition 57 (Rényi-Bhattacharyya parameter). For any quantum channelNA′→B with qu-
dit input A′, the Rényi-Bhattacharyya parameter is defined as,

R(N ) := d
H↑1

2

(A|B)N (ΦAA′ ) = d
−H̃↓2 (A|E)Nc(ΦAA′ ) ∈

[
1
d , d
]
, (2.16)

where ΦAA′ is an EPR pair and N c
A′→E is a complementary channel of N .

Note that the second equality in (2.16) follows from the duality relation of the condi-
tional quantum entropies in Theorem 39. Further, as mentioned before, the choice of the
complementary channel is not unique. However, the value of H̃↓2 (A|E)N c(ΦAA′ ) is inde-
pendent of the choice.
We now give the following relation between the Rényi-Bhattacharyya parameter and the
coherent information.

Lemma 58. LetWA′→B be a channel with qudit input. Then, for any δ > 0, we have that

(a) R(W) 6 1
d + δ ⇒ I(W) > 1− log(1 + dδ).

(b) R(W) > d − δ ⇒ I(W) 6 −1 + 2
√

δ
d +

√
d+
√
δ√

d
H
( √

δ√
d+
√
δ

)
, where H( · ) denotes the

binary entropy function.
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2.2. Purely Quantum Polarization

Proof. Point (a). For ρAB =W(ΦAA′), we have that

1

d
+ δ > R(W) = d

H↑1
2

(A|B)ρ
> dH(A|B)ρ = d−I(W),

where we have used H↑1
2

(A|B)ρ > H(A|B)ρ for the second inequality, which follows

from the monotonically decreasing property of the conditional Petz-Rényi entropy with
respect to its order [36, Theorem 7]. Hence, I(W) > 1− log(1 + dδ).

Point (b). We have that

d− δ 6 R(W) 6 R(W)

= max
σB

Tr

[
ρ

1
2
ABσ

1
2
B

]2

= dmax
σB

Tr

[
√
ρAB

√
1A

d
⊗ σB

]2

6 dmax
σB

∥∥∥∥∥√ρAB
√
1A

d
⊗ σB

∥∥∥∥∥
2

1

(2.17)

= dmax
σB

F

(
ρAB,

1A

d
⊗ σB

)2

(2.18)

Using the Fuchs-van de Graaf inequalities [27], we get that there exists a σB such that
1
2

∥∥ρAB − 1A
d ⊗ σB

∥∥
1
6
√

δ
d . We are now in a position to use the Alicki-Fannes-Winter [59,

Lemma 2] inequality, which states that

|H(A|B)ρ − 1| 6 2

√
δ

d
+

√
d+
√
δ√

d
H

( √
δ√

d+
√
δ

)
.

2.2.4 Quantum Channel Polarization

We now consider the channel combining and splitting procedure for two copies of a quan-
tum channelWA′→B , and we will use the following notation,

W(0)
C :=W �C W
W(1)
C :=W �C W

The polarization construction is obtained by recursively applying the channel combining
and splitting procedure, while choosing C randomly from some finite set of two-qudit
unitaries, denoted by U ⊂ U(d2). To accommodate the random choice ofC ∈ U , a classical
description of C is included as part of the output of the bad and good channels. Hence,
for i = 0, 1, we define,

W(i)(ρ) =
1

|U|
∑
C∈U
|C〉〈C| ⊗W(i)

C (ρ), (2.19)

where {|C〉}C∈U is an orthogonal basis of some auxiliary system. Applying twice the
transformation W 7→

(
W(0),W(1)

)
, we get four virtual channels W(i1i2) :=

(
W(i1)

)
(i2),
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where (i1i2) ∈ {00, 01, 10, 11}. In general, after n levels or recursion, we obtain 2n chan-
nels:

W(i1···in) :=
(
W(i1···in−1)

)
(in), ∀(i1 · · · in) ∈ {0, 1}n. (2.20)

Our quantum polarization theorem below (Theorem 60) states that the symmetric coher-
ent information of the synthesized virtual channels channelsW(i1···in) polarizes, meaning
that it goes to either−1 or +1 as n goes to infinity (except possibly for a vanishing fraction
of channels), provided that U is a unitary 2-design.

Before stating the polarization theorem, we first provide the following lemma on the
symmetric coherent information I and the Rényi-Bhattacharyya parameter R of a classi-
cal mixture of quantum channels. It will allow us to derive the main steps in the proof of
the polarization theorem, by conveniently working with theW(0)

C (ρ)/W(1)
C (ρ) construc-

tion, rather than the W(0)(ρ)/ W(1)(ρ) mixture (in which a classical description of C is
included in the output). The proof is omitted, since part (a) is trivial, and part (b) follows
easily from [36, Section B.2].

Lemma 59. Let N (ρ) =
∑

x∈X λx|x〉〈x| ⊗ Nx(ρ), be a classical mixture of quantum channels
Nx, where {|x〉}x∈X is some orthonormal basis of an auxiliary system, and

∑
x∈X λx = 1. Then,

(a) I(N ) = EXI(Nx) :=
∑

x∈X λxI(Nx).

(b) R(N ) = EXR(Nx) :=
∑

x∈X λxR(Nx).

We are now in a position to state our polarization theorem.

Theorem 60. Let U be a unitary 2-design. For any qudit-input quantum channel W , let{
W(i1...in) : (i1 . . . in) ∈ {0, 1}n

}
be the set of channels defined in (2.20), with channel combin-

ing unitary C randomly chosen from U . Then, for any δ > 0,

lim
n→∞

#{(i1 · · · in) ∈ {0, 1}n : I
(
W(i1···in)

)
∈ (−1 + δ, 1− δ)}

2n
= 0

and furthermore,

lim
n→∞

#
{

(i1 · · · in) ∈ {0, 1}n : I(W(i1···in)) > 1− δ
}

2n
=
I(W) + 1

2

Proof. We will utilize Lemma 54 for the proof. This basically requires us to find two
parameters I and T that respectively play the roles of the symmetric mutual information
and the Bhattacharyya parameter from the classical case. The parameter I for us is the
symmetric coherent information. The choice of T is crucial to prove polarization as all
the constraints in Lemma 54 should be satisfied for I and T . We shall consider the Rényi-
Bhattacharyya parameter as our T .

Let {Bn : n ≥ 1} be a sequence of i.i.d., {0, 1}-valued random variables with P (Bn =
0) = P (Bn = 1) = 1/2, as in Lemma 54. Let {In : n ≥ 0} and {Rn : n ≥ 0} be
the stochastic processes defined by In := I

(
W(B1···Bn)

)
and Rn := R

(
W(B1···Bn)

)
. By

convention, W(∅) := W , thus I0 = I(W) and R0 = R(W). For the first part, we prove
that all the conditions of Lemma 54 hold for In and Tn := Rn.

(i.1) Straightforward (with [ι0, ι1] = [−1, 1]).

(i.2) We must show that In forms a martingale. In other words, that the channel com-
bining and splitting transformation does not change the total coherent information,
i.e., I

(
W(0)

)
+ I

(
W(1)

)
= 2I (W). This follows from Lemma 56, and Lemma 59 (a),

given before.
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2.2. Purely Quantum Polarization

(t.1) Straightforward (with [θ0, θ1] = [1
d , d]).

(i&t.1) For any ε > 0, there exists a δ > 0 such that In ∈ (−1 + ε, 1 − ε) implies that
Rn ∈ (1

d + δ, d − δ). In other words, we need to show that if R polarizes, then so
does I . This holds for any choice of the Clifford unitary in the channel combining
operation, and is proven in Lemma 58 before.

(t.2) We will show the guaranteed improvement of the good channel such that

Rn+1 =
d

d2 + 1

(
1 +R2

n

)
, when Bn+1 = 1.

It is enough to prove the above for n = 0 (i.e., the first step of recursion), since in
the general case the proof is obtained simply by replacingW withW(B1···Bn). First,
by using Lemma 59 (b), and assuming B1 = 1, we get

R1 := R
(
W(1)

)
= ECR

(
W(1)
C

)
= ECR (W �C W) ,

where the last equality is simply a reminder of our notationW(1)
C :=W�CW . Then,

from Lemma 61 below, it follows that ECR
(
W(1)
C

)
= d

d2+1

(
1 +R(W)2

)
.

Lemma 61. Let NA′→B andMA′→B be two quantum channels with qudit input. Then,

ECR (N �CM) =
d

d2 + 1
(1 +R(N )R(M))

where EC denotes the expectation operator, C is the channel combining unitary, chosen uniformly
at random from a unitary 2-design U .

Proof. Let N c
A′1→E1

and Mc
A′2→E2

be the complementary channels of N and M respec-
tively. From Lemma 55, we have that

(N �CM)c(ρA′2) = (N c ⊗Mc)

(
C

(
1A′1

d
⊗ ρA′2

)
C†
)
.

Therefore,R(N�CM) = d−H̃
↓
2 (A2|E1E2)ρ , where ρA2E1E2 = (N�CM)c(ΦA2A′2

). Note that
ρE1E2 = N c

(
1

d

)
⊗Mc

(
1

d

)
, which is independent of C. Now, to compute the expected

value of this for a random choice of C, we proceed as follows:

ECd−H̃
↓
2 (A2|E1E2)ρ = EC Tr

[(
ρ
− 1

4
E1E2

ρA2E1E2ρ
− 1

4
E1E2

)2
]

= EC Tr

[(
ρ
− 1

4
E1E2

(N c ⊗Mc)

(
C

(
1A′1

d
⊗ ΦA2A′2

)
C†
)
ρ
− 1

4
E1E2

)2
]
.

Note that this is basically the same calculation as in [60, Equation (3.32)] (there, U is
chosen according to the Haar measure over the full unitary group, but all that is required
is a unitary 2-design). However, we will not make the simplifications after (3.44) and
(3.45) in [60], but will instead keep all the terms. We therefore get

ECd−H̃
↓
2 (A2|E1E2)ρ = αTr

[
(
1A2

d
)2

]
+ β Tr

[
(
1A′1

d
⊗ ΦA2A′2

)2

]
=

1

d
α+

1

d
β,
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where

α =
d4

d4 − 1
− d2

d4 − 1
d−H̃

↓
2 (A1A2|E1E2)ω ,

β =
d4

d4 − 1
d−H̃

↓
2 (A1A2|E1E2)ω − d2

d4 − 1
,

and ωA1A2E1E2 := (N c ⊗Mc)(ΦA1A′1
⊗ ΦA2A′2

).

Hence,

ECd−H̃
↓
2 (A2|E1E2)ρ =

d

d2 + 1
+

d

d2 + 1
d−H̃

↓
2 (A1A2|E1E2)ω

=
d

d2 + 1
+

d

d2 + 1
d
−H̃↓2 (A1|E1)Nc(Φ

A1A
′
1

)
d
−H̃↓2 (A2|E2)Mc(Φ

A2A
′
2

)

=
d

d2 + 1
(1 +R(N )R(M)) ,

where we have used that the conditional sandwiched Rényi entropy of order 2 is additive
with respect to tensor-product states, which follows easily from the definition of H̃↓2 .

The second part of the theorem follows from the martingale property (i.2). From Lemma 54,
we have that

ι0P (I∞ = ι0) + ι1P (I∞ = ι1) = I0,

here, ι0 = −1, ι1 = 1 and, I0 = I(W). Since I∞ takes values in {−1, 1}, P (I∞ = −1) =
1− P (I∞ = 1). Therefore, we have,

P (I∞ = 1) =
1 + I(W)

2
,

Note that the fraction of noiseless channels, that is, P (I∞ = 1) is equal to half the sym-
metric mutual information of the channelW .

2.3 A Channel Combining Set

As proven in Section 2.2, the purely quantum polarization phenomenon happens by
choosing the channel combining operation from a unitary 2-design. Here, we provide a
simple proof of the fact that the generalized Clifford group (Definition 14) on two-qudits
is a unitary 2-design. Hence, one may sample the channel combining operation from this
set.

Theorem 62. The generalized Clifford group on two qudits, C2
d , is a unitary 2-design1.

1We note that it may be inferred from Lemmas 1, 2 and 3 in [57]. We give an alternative and more
elementary proof here, by generalizing the proof from [61] to the qudit case.
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Proof. It is shown in [61, Theorem 1] (see also [62]) that the Clifford group on n-qubits
forms a unitary 2-design for any n ≥ 1. Here, we generalize the proof from [61] to the
qudit case, and for n = 2. We need to prove that the Clifford group C2

d satisfies the
Definition 22. For this, it is sufficient to prove (1.50), with U = C2

d , for two-qudit input
quantum channels of the form W2(ρ) := AρB (since any quantum channel is a convex
combination of quantum channels of this form).

We first consider the twirling ofW2 with respect to the Clifford group C2
d . Since the Pauli

group P2
d is a normal subgroup of C2

d , we may chose a subset C̄2
d ⊂ C2

d containing one
representative for each equivalence class in the quotient group C2

d/P2
d . Thus, any element

of C2
d can be uniquely written as a product CP , where C ∈ C̄2

d , and P ∈ P2
d . Therfore, in

order to twirl W2 with respect to C2
d , we may first twirl it with respect to P2

d , then twirl
again the obtained channel with respect to C̄2

d .

The elements of P2
d have the form ωλPr,s ⊗ Pr′,s′ , with λ, r, s, r′, s′ = 0, . . . , d − 1. Hence,

twirlingW2 with respect to P2
d gives a quantum channel, denotedW ′2, defined below

W ′2(ρ) :=
1

d5

∑
λ,r,s,r′,s′

(
ωλPr,s ⊗ Pr′,s′

)†
A
(
ωλPr,s ⊗ Pr′,s′

)
ρ
(
ωλPr,s ⊗ Pr′,s′

)†
B
(
ωλPr,s ⊗ Pr′,s′

)
,

=
1

d4

∑
r,s,r′,s′

(P †r,s ⊗ P †r′,s′)A (Pr,s ⊗ Pr′,s′) ρ(P †r,s ⊗ P †r′,s′)B (Pr,s ⊗ Pr′,s′) . (2.21)

The last equality from the above shows that it is actually enough to twirlW2 with respect
to the subset P̄2

d :=
{
Pr,s ⊗ Pr′,s′ | r, s, r′, s′ = 0, . . . , d− 1

}
, obtained by omitting phase

factors. Since P̄2
d forms an operator basis (for two-qudit operators), we may write

A =
∑

r,s,r′,s′

α(r, s, r′, s′)Pr,s ⊗ Pr′,s′ (2.22)

B =
∑

r,s,r′,s′

β(r, s, r′, s′)Pr,s ⊗ Pr′,s′ . (2.23)

We now prove two lemmas 63 and 64, which imply Theorem 62.

Lemma 63. The quantum channel W ′2, obtained by twirling W2 with respect to P̄2
d , is a Pauli

channel satisfying the following

W ′2(ρ) =
∑

r,s,r′,s′

γr,s,r′,s′
(
Pr,s ⊗ Pr′,s′

)
ρ(P †r,s ⊗ P †r′,s′), (2.24)

where γr,s,r′,s′ := ωrs+r
′s′α(r, s, r′, s′)β(−r,−s,−r′,−s′) and −x denotes the additive inverse

of x modulo d.

Proof. Recall that P̄2
d =

{
Pr,s ⊗ Pr′,s′ | r, s, r′, s′ = 0, . . . , d− 1

}
is the subset of two-qudit

Pauli, without phase factors. Hence, twirling ofW2 with respect to P̄2
d gives

W ′2(ρ) =
1

d4

∑
r,s,r′,s′

(P †r,s ⊗ P †r′,s′)A
(
Pr,s ⊗ Pr′,s′

)
ρ(P †r,s ⊗ P †r′,s′)B

(
Pr,s ⊗ Pr′,s′

)
(2.25)

Since P̄2
d forms an operator basis, we may write

A =
∑

r,s,r′,s′

α(r, s, r′, s′)Pr,s ⊗ Pr′,s′ , (2.26)

B =
∑

r,s,r′,s′

β(r, s, r′, s′)Pr,s ⊗ Pr′,s′ (2.27)
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Substituting A and B in the above equation, we get

W ′2(ρ) =
1

d4

∑
t,u,t′,u′

∑
v,w,v′,w′

α(t, u, t′, u′)β(v, w, v′, w′)κ, (2.28)

where κ is defined as,

κ :=
∑

r,r′,s,s′

(P †r,sPt,uPr,s)⊗ (P †r′,s′Pt′,u′Pr′,s′)ρ(P †r,sPv,wPr,s)⊗ (P †r′,s′Pv′,w′Pr′,s′). (2.29)

From (1.42), we have that Pt,uPr,s = ω−ru+stPr,sPt,u. Then, we may write

κ = k(Pt,u ⊗ Pt′,u′)ρ(Pv,w ⊗ Pv′,w′), (2.30)

where k is defined as,

k :=
∑
r,s

ω−r(u+w)+s(v+t)
∑
r′,s′

ω−r
′(u′+w′)+s′(v′+t′). (2.31)

When u + w = v + t = 0 (mod d), we have
∑

r,s ω
−r(u+w)+s(v+t) = d2. When either

u+v 6= 0 (mod d) or t+w 6= 0 (mod d), we have
∑

r,s ω
−r(u+w)+s(v+t) = (ω−d−1)(ωd−1)

(ω−1−1)(ω−1)
= 0.

Therefore,

k =

{
d4, when u+ w = v + t = u′ + w′ = v′ + t′ = 0 (mod d)

0, otherwise
(2.32)

The condition u + w = v + t = 0 (mod d) implies that Pt,uPv,w = XtZuXvZw = ω−uvI .
Using t = −v (mod d), we have that Pv,w = ωtuP †t,u. Plugging κ into (2.28), we get

W ′2(ρ) =
∑

t,u,t′,u′

γt,u,t′,u′(Pt,u ⊗ Pt′,u′)ρ(P †t,u ⊗ P †t′,u′), (2.33)

where γt,u,t′,u′ is defined as,

γt,u,t′,u′ := ωtu+t′u′α(t, u, t′, u′)β(−t,−u,−t′,−u′). (2.34)

Hence,W ′2 is a qudit Pauli channel, as desired.

Lemma 64. The quantum channel obtained by twirling W ′2 with respect to C̄2
d , is the quantum

channelW ′′2 acting as

W ′′2 (ρ) =
Tr(AB)

d4
1⊗ 1 +

d2 Tr(A) Tr(B)− Tr(AB)

d2(d4 − 1)

(
ρ− 1

d2
1⊗ 1

)
. (2.35)

Proof. Recall that C̄2
d ⊂ C2

d is a subset containing one representative for each equivalence
class in the quotient group C2

d/P2
d . Twirling ofW ′2 with respect to C̄2

d gives

W ′′2 (ρ) =
∑

t,u,t′,u′

γt,u,t′u′
1

|C̄2
d |
∑
C∈C̄2

d

C†(Pt,u ⊗ Pt′,u′)CρC†(P †t,u ⊗ P †t′,u′)C. (2.36)

We know that the conjugate action of the entire set C̄2
d maps any Pt,u ⊗ Pt′,u′ 6= I ⊗ I to

all d4 − 1 two-qudit Paulis excluding I ⊗ I , an equal number of times. In other words,
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2.3. A Channel Combining Set

Pt,u⊗Pt′,u′ 6= I ⊗ I gets mapped to a Pauli Pr,s⊗Pr′,s′ 6= I ⊗ I , |C̄
2
d |

d4−1
times. Further, I ⊗ I

is always mapped to I ⊗ I . Therefore, we have that

W ′′2 (ρ) = γ0,0,0,0ρ+
1

d4 − 1
γ′

∑
(r,s,r′,s′)6=(0,0,0,0)

(Pr,s ⊗ Pr′,s′)ρ(P †r,s ⊗ P †r′,s′), , (2.37)

where γ′ is defined as,
γ′ :=

∑
(t,u,t′,u′)6=(0,0,0,0)

γt,u,t′,u′ . (2.38)

Using the following three identities, we can easily transform (2.37) into the form of (2.35).

1. γ0,0,0,0 =
Tr(A)Tr(B)

d4
.

2.
∑

t,u,t′,u′

γt,u,t′,u′ =
Tr(AB)

d2
.

3.
∑

r,s,r′,s′

(Pr,s ⊗ Pr′,s′)ρ(P †r,s ⊗ P †r′,s′) = d2I ⊗ I .

Proof of identity 1) We have that γ0,0,0,0 = α(0, 0, 0, 0)β(0, 0, 0, 0). Also,

Tr(Pr,s) =

{
d, when Pr,s = I

0, otherwise

Using (2.26) and (2.27), we get Tr(A) = α(0, 0, 0, 0)d2 and Tr(B) = β(0, 0, 0, 0)d2. Hence,
we have γ0,0,0,0 = Tr(A)Tr(B)

d4 .

Proof of identity 2) We have,

Tr(AB) =
∑

t,u,t′,u′

∑
v,w,v′,w′

α(t, u, t′, u′)β(v, w, v′, w′)Tr(Pt,uPv,w)Tr(Pt′,u′Pv′,w′)

=
∑

t,u,t′,u′

d2ωtu+t′u′α(t, u, t′, u′)β(−t,−u,−t′,−u′)

= d2
∑

t,u,t′,u′

γt,u,t′,u′ .

Proof of identity 3) Let ρ =
∑

r,s,r′,s′ ρr,s,r′,s′Pr,s⊗Pr′,s′ . Since ρ is a density matrix, we have

ρ0,0,0,0 = Tr(ρ)
d2 = 1

d2 . Hence,∑
r,s,r′,s′

(Pr,s ⊗ Pr′,s′)ρ(P †r,s ⊗ P †r′,s′) =
∑

r,s,r′,s′

∑
t,u,t′,u′

ρt,u,t′,u′(Pr,sPt,uP
†
r,s)⊗ (Pr′,s′Pt′,u′P

†
r′,s′)

=
∑

t,u,t′,u′

ρt,u,t′,u′

 ∑
r,s,r′,s′

ω−st+ruω−s
′t′+r′u′

Pt,u ⊗ Pt′,u′

= d4ρ0,0,0,0I ⊗ I
= d2I ⊗ I.

We get (2.35) from (2.37) by using the above identities, while also substituting the notation
1 for the identity matrix I , as it denotes a quantum state here.
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Now, the quantum channelW ′′2 is the twirling ofW2 with respect to C2
d . To conclude that

C2
d is a unitary 2-design, we need to show that twirling W2 with respect to U(d2) yields

the same channel, which follows from [63].

2.4 Reduction of the Channel Combining Set

In this section, we prove that when the qudit dimension d is a prime number, quan-
tum polarization can be achieved by taking a subset of the two-qudit Clifford group C2

d ,
containing only d4 + d2 − 2 elements. For the qubit case, that is, d = 2, this set can be
further reduced to d4+d2−2

2 elements. Recall from the proof of Theorem 60 that only con-
dition that depends on the channel combining set is the guaranteed improvement condi-
tion (t.2). We show that guaranteed improvement condition (t.2) is still fulfilled, when
the channel combining operation is chosen from the reduced set of two-qudit Cliffords,
which implies that polarization happens.

2.4.1 A Channel Combining Set with d4 +d2− 2 Elements for Qudit Channels

We first define an equivalence relation on C2, whose equivalence classes are the left cosets
of C1 ⊗ C1 as follows.

Definition 65. We say that C ′ and C ′′ ∈ C2 are equivalent, and denote it by C ′ ∼ C ′′, if there
exist C1, C2 ∈ C1 such that C ′′ = C ′(C1 ⊗ C2) (see also Figure 2.2).

U2

U1

C2

C1

C ′

X2

X1

C ′′

Figure 2.2: Equivalent two-qudit Clifford gates C ′ ∼ C ′′

Now, we observe that two equivalent Clifford gates, used to combine any two quantum
channels, yield the same Rényi-Bhattacharyya parameter of the bad/good channels. This
is stated in the following lemma.

Lemma 66. Let C ′, C ′′ ∈ C2. If C ′ ∼ C ′′, then for any two quantum channels N andM with
qudit inputs, we have the following,

(a) R(M�C′ N ) = R(M�C′′ N ).

(b) R(M�C′ N ) = R(M�C′′ N ).

Proof. Point (i). Given C ′′A′1A′2 = C ′A′1A′2
(C1

A′1
⊗ C2

A′2
), let

ρ′ := (N �C′M)cA′1→E1E2A2
(ΦA1A′1

)

ρ′′ := (N �C′′M)cA′1→E1E2A2
(ΦA1A′1

).
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2.4. Reduction of the Channel Combining Set

Then, we have that

ρ′′ = N c
A′1→E1

⊗Mc
A′2→E2

(
C ′A′1A′2

(C1
A′1
⊗ C2

A′2
)
(

ΦA1A′1
⊗ ΦA′2A2

)
(C1

A′1

† ⊗ C2
A′2

†
)C ′†

A′1A
′
2

)
= N c

A′1→E1
⊗Mc

A′2→E2

(
C ′A′1A′2

(C1>
A1
⊗ C2>

A2
)
(

ΦA1A′1
⊗ ΦA′2A2

)
(C̄1

A1
⊗ C̄2

A2
)C ′†

A′1A
′
2

)
= C1>

A1
⊗ C2>

A2

(
N c
A′1→E1

⊗Mc
A′2→E2

(
C ′A′1A′2

(
ΦA1A′1

⊗ ΦA′2A2

)
C ′†
A′1A

′
2

))
C̄1
A1
⊗ C̄2

A2

= C1>
A1
⊗ C2>

A2
(ρ′)C̄1

A1
⊗ C̄2

A2
, (2.39)

where the first equality follows from part (a) of Lemma 55 and the second equality fol-
lows from the relation (1⊗ Z)|Φ〉 = (Z> ⊗ 1)|Φ〉, for any matrix Z.

From (57), we have that

R(N �C′′M) = 2−H̃
↓
2 (A1|E1E2A2)ρ′′ ,

where H̃↓2 (A|B)ρ = −D̃2(ρAB||I⊗ρB) (Definition 38). We have the following equality for
D̃2(ρ||σ),

D̃2(ρ||σ) = D̃2(UρU †||UσU †), (2.40)

where U is a unitary operator. Hence,

H̃↓2 (A1|E1E2A2)ρ′′ = −D̃2(ρ′′||1⊗ TrA1(ρ′′))

= −D̃2(C1>
A1
⊗ C2>

A2
(ρ′)C̄1

A1
⊗ C̄2

A2
||1⊗ (C2>

A2
TrA1(ρ′)C̄2

A2
))

= −D̃2(ρ′||1⊗ TrA1(ρ′))

= H̃↓2 (A1|E1E2A2)ρ′ ,

where the second equality follows from (2.39) and TrA1(ρ′′) = C2>
A2

TrA1(ρ′)C̄2
A2

, and the
third equality follows from the unitary equivalence in (2.40). Therefore, we get R(N �C′′

M) = R(N �C′M), as desired.

Point (ii). Given C ′′A′1A′2 = C ′A′1A′2
(C1

A′1
⊗ C2

A′2
), let

ρ′ := (N �C′M)cA′1→E1E2A2
(ΦA1A′1

)

ρ′′ := (N �C′′M)cA′1→E1E2A2
(ΦA1A′1

).

Then, it can be shown similarly to the point (i) that

ρ′′ = C2>
A2
ρ′C̄2

A2
. (2.41)

From the unitary equivalence in (2.40), it follows that R(M�C′ N ) = R(M�C′′ N ).

Using Lemma 66, we reduce the channel combining set as follows.

Theorem 67. If d is prime, there exists a subset U ⊂ C2
d , of size |U| = d4 + d2 − 2, which is not

a unitary 2-design, and such that polarization happens when the channel combining unitary C is
randomly chosen from U .

Proof. We divide the set C2
d into equivalence classes with respect to the equivalence rela-

tion in Definition 65. The equivalence classes are left cosets of C1
d ⊗ C1

d in C2
d . The number

of the left cosests are equal to |C2
d |

|C1
d |2

. Consider now a set of representatives R, containing
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Chapter 2. Purely Quantum Polar codes

only one two-qudit Clifford unitary from each left coset. As a consequence of Lemma 66,
we have the following for the Rényi-Bhattacharyya parameter of the good channelW(1)

C ,

EC∈RR(W(1)
C ) = EC∈C2

d
R(W(1)

C ). (2.42)

Therefore, we need a set containing only |C2
d |

|C1
d |2

two-qudit Cliffords to achieve the polar-

ization. In the following lemma, we give |C2
d | and |C1

d |.

Lemma 68. If d is a prime number, |C1
d | = d3(d2 − 1) and |C2

d | = d8(d4 − 1)(d2 − 1).

Proof. Consider the one-qudit Clifford group C1
d . We count first the permutations gener-

ated by C1
d on P̄1

d := {Pr,s|r, s = 0, . . . , d − 1}, and later we will accommodate the phase
factors. Any Clifford C ∈ C1

d is uniquely determined by its conjugate action on the gen-
erators of the Pauli group, X and Z. Suppose that C maps X 7→ Pr,s and Z 7→ Pt,u via
its conjugate action, where Pr,s, Pt,u 6= I . On the one hand, since commutation relations
are preserved under unitary conjugation, Pr,s and Pt,u must satisfy Pr,sPt,u = ωPt,uPr,s.
On the other hand, from (1.42), we have that Pr,sPt,u = ωru−stPt,uPr,s. Therefore, r, u, s, t
must be such that ru − st = 1 (mod d). We fix r, s and solve for t, u. Since Pr,s 6= I ,
it follows that either r or s is non-zero. Without loss of generality, we may assume that
r 6= 0. Since d is a prime number, r is invertible under multiplication modulo d. There-
fore, for any t ∈ {0, . . . , d− 1}, there exists a unique u := r−1(1 + st) (mod d), satisfying
ru−st = 1. Hence, there are exactly d choices for the t, u pair. Since we have d2−1 choices
for the r, s pair, it follows that there are d(d2 − 1) pairs of Paulis, Pr,s and Pt,u, such that
Pr,sPt,u = ωPt,uPr,s. Taking into account the phase factors, ωλ, λ ∈ {0, . . . , d − 1}, it
follows that C1

d has d3(d2 − 1) elements.

We now count the number of elements in C2
d . The two-qudit Pauli group P2

d is generated
by a set of four Paulis I ⊗X, I ⊗Z,X ⊗ I and Z ⊗ I , and any Clifford C ∈ C2

d is uniquely
determined by its conjugate action on these four generators. The commutation relations
between the four generators are illustrated in Fig. 2.3.

I ⊗ Z

I ⊗X

Z ⊗ I

X ⊗ I

Figure 2.3: Connected Paulis satisfy AB = ωBA, with A is the Pauli on the top row, and B the
Pauli on the bottom row. Paulis that are not connected commute.

Consider a mapping I⊗X 7→ A, I⊗Z 7→ B,X⊗I 7→ A′, Z⊗I 7→ B′, whereA,B,A′, B′ ∈
P̄2
d , that preserves all the commutation relations between generators. Pauli I ⊗X can be

mapped to any two-qudit Pauli A 6= I ⊗ I , so there are d4 − 1 choices for A. It is not very
difficult to see that for any A 6= I ⊗ I there are d3 choices for B such that AB = ωBA.
Further, there are d(d2 − 1) pairs of two-qudit Paulis A′ and B′, which commute with
both A and B, and satisfy A′B′ = ωB′A′. Therefore, we have d4(d4 − 1)(d2 − 1) possible
permutations on P̄2

d , which satisfy all the commutation relations. Taking into account the
phase factors, it follows that C2

d has d8(d4 − 1)(d2 − 1) elements.

Therefore, from the above lemma, we have that |C
2
d |

|C1
d |2

= d4 + d2. Further, we may choose
our representative set R such that it contains the identity (I) and the swap (S) gates.
Note that R(W(1)

C ) = R(W) for C ∈ {I, S}. Since EC∈RR(W(1)
C ) ≤ R(W), it follows
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2.4. Reduction of the Channel Combining Set

that removing I and S can only decrease the expectation value, that is, ER∈C\{I,S} ≤
EC∈RR(W(1)

C ). More precisely, we have the following,

EC∈R\{I,S}R(W(1)
C ) =

d3

d4 + d2 − 2
− 2R(W)

d4 + d2 − 2
+

d3R(W)2

d4 + d2 − 2
≤ d

d2 + 1
(1 +R(W)2).

Hence, condition (t.2) from Theorem 60 remains satisfied even after removing the I and
S gates from the set of representatives R. Therefore, polarization happens by sampling
the channel combining operation from a set containing d4 + d2 − 2 two-qudit Clifford.

In Lemma 69 below, we prove that when two-qudit Clifford unitaries C ′ and C ′′, which
are connected by the swap gate S, such that C ′′ := SC ′, are used to combine two copies
of a quantum channelWA′→B with qudit input, yield the same Rényi-Bhattacharyya pa-
rameter of the bad/good channels. Note that this property is weaker than the one in
Lemma 66, which holds for any two quantum channels N andM. However, it is suffi-
cient in the context of polaization, where one has many copies of the same channel.

Lemma 69. Let C ′, C ′′ ∈ C2, such that C ′′ = SC ′, where S is the swap gate. Then, for two
copies of a quantum channelW with qudit input,

R(W �C′ W) = R(W �C′′ W) and R(W �C′ W) = R(W �C′′ W).

Proof. First, we note that by applying a unitary on the output of any quantum channel
does not change the Rényi-Bhattacharyya parameter. Precisely, let NA→B be any quan-
tum channel, and UNA→BU † be the quantum channel2 obtained by applying the unitary
U on the output system B, that is,

(
UNA→BU †

)
(ρA) := UNA→B(ρA)U †. Then,

R
(
UNA→BU †

)
= R (NA→B) . (2.43)

Going back to the proof of the Lemma, by the definition ofW�CW and using that S† = S,
we may write:

(W �C′′ W)(ρ) = (W ⊗W)

(
C ′′(ρ⊗ 1

d
)C ′′†

)
= (W ⊗W)

(
SC ′(ρ⊗ 1

d
)C ′†S

)
.

Now, it is easily seen that theW ⊗W channel is covariant with respect to the swap gate,
i.e., the swap gate commutes with the action of the channel. Hence we may further write:

(W �C′′ W)(ρ) = S(W ⊗W)

(
C ′(ρ⊗ 1

d
)C ′†

)
S

= S(W �C′ W)(ρ)S

= (S(W �C′ W)S) (ρ).

Hence,W �C′′ W = S(W �C′ W)S, and using (2.43), with N := W �C′ W and U := S,
we get

R (W �C′ W) = R (W �C′′ W) ,

as desired. The equalityR(W�C′W) = R(W�C′′W) may be proven in a similar way.

2To see that UNA→BU† is a quantum channel, it is enough to notice that if NA→B is defined by Kraus
operators {Ek}, then UNA→BU† is defined by Kraus operators {UEk}.
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We would like to further reduce the channel combining set using the above lemma. Note
that if C ′ and C ′′ belong to the same equivalence class under the equivalence relation in
Definition 65, this is not significant as we are using only one unitary from each equiva-
lence class. However, if C ′ and C ′′ belong to different equivalence classes for all C ′, the
size of the channel combining set can be reduced to d4+d2−2

2 . We show in Lemma 70 by
providing a counterexample that this property does not hold for a two-qudit unitary in
dimension d = 5. However, as shown in Section 2.4.2 below, it holds for all two-qubit
clifford unitaries.

Lemma 70. For d = 5, there exists a C ∈ C2
d such that SC = C(C1⊗C2) for some C1, C2 ∈ C1

d .

Proof. We consider d = 5. Let C1 = I be the identity, and C ′2 ∈ C1
d be such that it maps

X 7→ X4 and Z 7→ Z4, via conjugation. Since X4Z4 = ωZ4X4, C ′2 is indeed a one-qudit
Clifford. We define C2 = C ′2X

2Z2. Further, let C ∈ C2
d , such that its conjugate action

generates the following permutation on the generators of P2
d ,

I ⊗X 7→ X4Z ⊗XZ4,

I ⊗ Z 7→ XZ ⊗X4Z4,

X ⊗ I 7→ X4Z ⊗X4Z,

Z ⊗ I 7→ XZ ⊗XZ.

Using (1.42), it is easily seen that the above permutation preserves all the commutation
relations between the generators. Now, the conjugate actions of SC and C(C1 ⊗ C2)
generate the same permutation on P2

d . Therefore, SC = C(C1 ⊗ C2).

2.4.2 A Channel Combining Set with Nine Elements for Qubit Channels

For the qubit case, d = 2, a set of d4 + d2 − 2 = 18 representatives can be chosen as
follows3.

• For nine out of the remaining 18 equivalence classes, one may find representatives
of the form (C1 ⊗ C2)C2→1, where C2→1 is the CNOT gate with control on the
second qubit and target on the first qubit (see Section 1.3.8), C1 ∈ {I,

√
Z,
√
Y },

C2 ∈ {I,
√
X,
√
Y }, and

√
P = (1−i)(1+iP )

2 , for any Pauli matrix P ∈ {X,Y, Z}. We
denote this set by L, which is further depicted in Figure 2.4.

L :=
{

(C1 ⊗ C2)C2→1 | C1 ∈ {I,
√
Z,
√
Y }, C2 ∈ {I,

√
X,
√
Y }
}
.

• For the remaining nine equivalence classes, one may find representatives of the
form SL, where S is the swap gate and L ∈ L. We denote this set by L′,

L′ := {SL | L ∈ L} .

Hence, from Theorem 67 and Lemma 69 either the set L or L′ is sufficient to achieve
polarization.

3We used a computer program to determine such a set of representatives.
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I

I

L1,1 :

√
Z

I

L2,1 :

√
Y

I

L3,1 :

I

√
X

L1,2 :

√
Z

√
X

L2,2 :

√
Y

√
X

L3,2 :

I

√
Y

L1,3 :

√
Z

√
Y

L2,3 :

√
Y

√
Y

L3,3 :

Figure 2.4: The set L := {Li,j | 1 ≤ i, j ≤ 3} containing nine Cliffords.

2.5 Quantum Polar Coding

2.5.1 Quantum Polar Codes

We exploit the purely quantum polarization to construct a quantum polar of finite code-
length as follows [2] (see also Figure 2.5) . For a quantum polar code of length N = 2n,
n > 0, we start with N copies of the quantum channel W , pair them in N/2 pairs, and
apply the channel combining and splitting operation on each pair. The same channel
combining Clifford gate is used for each of theN/2 pairs, which will be denoted by C. By
doing so, we generate N/2 copies of the channelW(0) :=W �C W and N/2 copies of the
channelW(1) :=W �CW . Hence, for each i1 = 0, 1, we group together the N/2 copies of
theW(i1) channel, pair them inN/4 pairs, and apply the channel combining and splitting
operation on each pair, by using some channel combining Clifford gate denoted by Ci1 .
By performing n polarization steps (that is, applying the above construction recursively
n times), we generate quantum channelsW(i1···in), which can be recursively defined for
n > 0, as follows:

W(i1···in) :=

W(i1···in−1) �Ci1···in−1
W(i1···in−1), if in = 0

W(i1···in−1) �Ci1···in−1
W(i1···in−1), if in = 1

(2.44)

where, for n = 1, in the right hand side term of the above equality, we set by conven-
tion W(∅) := W and C∅ := C. Note that, for the sake of simplicity, we have dropped
the channel combining Clifford gate from the W(i1···in) notation. The construction is il-
lustrated in Fig. 2.5, for N = 8. Here, horizontal “wires” represent qudits, and for each
polarization step, we have indicated on each wire the virtual channelW(i1i2··· ) “seen” by
the corresponding qudit state.

The above construction synthesizes a set of N channels and, for any i = 0, . . . , N − 1,
we shall further denoteW(i) :=W(i1···in), where i1 · · · in is the binary decomposition of i.
Let I ⊆ {0, 1, . . . , N − 1} denote the set of good channels (i.e., with symmetric coherent
information close to 1, or equivalently, Rényi-Bhattacharyya parameter close to 1/2), and
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W

W

W

W

W

W

W

W

CW(1)

W(0)

CW(1)

W(0)

CW(1)

W(0)

CW(1)

W(0)

C1W(11)

W(10)

C0W(01)

W(00)

C1W(11)

W(10)

C0W(01)

W(00)

C00W(001)

W(000)

C01W(011)

W(010)

C10W(101)

W(100)

C11W(111)

W(110)

Figure 2.5: Quantum polar code of length N = 8

let J := {0, 1, . . . , N − 1} \ I. With a slight abuse of notation, we shall also denote by I
and J as quantum systems consisting of |I| and |J | qudits, respectively.

A quantum state ρI on system I is encoded by supplying it as input to channels i ∈ I,
while supplying each channel j ∈ J with half of an EPR pair, shared between the sender
and the receiver. Precisely, let ΦJJ ′ be a maximally entangled state, defined by

ΦJJ ′ = ⊗j∈JΦjj′ , (2.45)

where indices j and j′ indicate the j-th qudits of J and J ′ systems, respectively, and
Φjj′ is an EPR pair. Let also QN denote the quantum polar transform, that is the unitary
operator defined by applying Clifford gates corresponding to the n polarization steps.
The encoded state, denoted ϕIJJ ′ , is obtained by applying the QN ⊗ IJ ′ unitary on the
IJJ ′ system, hence:

ϕIJJ ′ := (QN ⊗ IJ ′)(ρI ⊗ ΦJJ ′)(Q
†
N ⊗ IJ ′). (2.46)

Since no errors occur on the J ′ system, the channel output state is given by:

ψIJJ ′ := (W⊗N ⊗ IJ ′)(ϕIJJ ′). (2.47)

It is worth noticing that randomness is used only at the code construction stage (since
Clifford gates used in the n polarization steps are randomly chosen from some prede-
termined set of gates), but not at the encoding stage. The constructed polar code allows
communicating quantum information over a quantum channelW at a rate |I|/N , which
approaches (1 + I(W))/2 (that is, half the symmetric mutual information of the channel),
as N goes to infinity. The net communication rate, is given by (|I| − |J |)/N , and ap-
proaches the symmetric coherent information I(W), as N goes to infinity, similarly to the
CSS quantum polar code (see discussion on the rate of communication in Section 1.5.3).

2.5.2 Quantum Polar Codes as Entanglement-Assisted Stabilizer Codes

In this section, we consider the purely quantum polar code presented in Section 2.5.1 for
qubit quantum systems and observe that it can be considered as an entanglement assisted
stabilizer code.
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Including all information qubits (I system) and both systems of the preshared EPR pairs
(J and J ′ systems), the quantum polar code from the above section can be described as
an entanglement assisted stabilizer code, in the sense of [50]. Precisely, using the notation
from the previous section, the quantum state ρI ⊗ ΦJJ ′ is stabilized by the set of Pauli
operators

SIJJ ′ := {II ⊗XjXj′ , II ⊗ ZjZj′ | j ∈ J }, (2.48)

where II denotes the identity on the I system, and XjXj′ (respectively, ZjZj′) denotes
the tensor product of the Pauli-X (respectively, Pauli-Z) operators of the j-th qubits of
systems J and J ′ 4. Conversely, any quantum state on the tripartite IJJ ′ system, which
is stabilized by Pauli operators in SIJJ ′ , is necessarily of the form ρI ⊗ ΦJJ ′ (by a di-
mension argument). Hence, encoded states (ϕIJJ ′ defined in (2.46)) are stabilized by the
set of Pauli operators obtained by passing the elements of SIJJ ′ through the polar transform
Gq, that is,

S̄IJJ ′ := (Gq ⊗ IJ ′)SIJJ ′(G†q ⊗ IJ ′). (2.49)

For stabilizer codes, the decoding problem for general quantum channels reduces to de-
coding Pauli errors only, after performing syndrome measurement, i.e., measuring all the
generators of the stabilizer group (in our case, the elements of S̄IJJ ′). Here, the implicit
assumption is that syndrome measurement induces appropriate projections, such that it
results in the standard Pauli error model.

For qubit Pauli channels, we provide an efficient decoding algorithm (Section 3.5), achiev-
ing the symmetric coherent information of the channel. For general quantum channels,
syndrome measurement coupled with the above decoding on the induced Pauli error
model may yield a practical solution to the decoding problem. However, such a solution
is not optimal, due to the loss of information incurred during syndrome measurement.
Besides, the polar code should be fitted to (and thus exploit the polarization of) the in-
duced Pauli error model, rather than the quantum channel itself. Devising an efficient
decoding algorithm capable of achieving the symmetric coherent information of general
quantum channels is an open problem.

2.6 Quantum Polar Codes with Vanishing Rate of Preshared En-
tanglement

In this section we present a code construction using an asymptotically vanishing rate
or preshared entanglement, while achieving a net transmission rate equal to the symmet-
ric coherent information of the channel. In particular, we shall assume that the coherent
information of the channel is positive, I(W) > 0. The proposed construction bears sim-
ilarities to the universal polar code construction in [64, Section V], capable of achieving
the compound capacity of a finite set of classical channels.

Let Pq(N,J , I) denote a quantum polar code of length N = 2n, for some n > 0, where I
and J denote the sets of good and bad channels respectively. By Theorem 60, as n goes
to infinity, |I| approaches 1+I(W)

2 N , and thus |J | approaches 1−I(W)
2 N . Since I(W) > 0,

it follows that |J | < |I|, provided that n is large enough. Therefore, we may find a subset

4Note that the definition of SIJJ ′ in (2.48) depends only on index j ∈ J , since j′ ∈ J ′ is the counterpart
of j (thus, uniquely determined by the latter).
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of good channels I ′ ⊂ I, such that |I ′| = |J |. In the sequel, we shall extend the definition
of a polar code to include such a subset I ′, and denote it by Pq(N,J , I, I ′).

Let us now consider k copies of a quantum polar code Pq(N,J , I, I ′), denoted by
P lq(N,Jl, Il, I ′l) or simply by P lq , for any l ∈ {0, 1, . . . , k − 1}. We define a quantum code
Ckq of codelength |Ckq | = kN , by chaining them in the following way (see also Fig. 2.6):

J0

I0

I′0

P 0
q

J1

I1

I′1

P 1
q

J2

I2

I′2

ΦI′0J1
ΦI′1J2

P 2
q

J ′0

ΦJ ′
0J0

Receiver Sender

Figure 2.6: C3
q : Chaining construction with k = 3 copies of a quantum polar codes Pq

(i) For system J0, the input quantum state before encoding is half of a maximally en-
tangled state ΦJ0J ′0 , where system J ′0 is part of channel output. This is the only
preshared entanglement between the sender and the receiver.

(ii) For systems I ′l−1 and Jl, with l 6= 0, the input quantum state before encoding is a
maximally entangled state ΦI′l−1Jl .

(iii) Systems Il \ I ′l , for l 6= k − 1, and Ik−1 are information systems, meaning that
the corresponding quantum state is the one that needs to be transmitted from the
sender to the receiver.

It can be easily seen that the transmission (coding) rate of the proposed scheme is
given by

R :=

∑k−2
l=0 |Il \ I ′l |+ |Ik−1|

kN
−−−→
n→∞

(k − 1)I(W) + 1+I(W)
2

k
−−−→
k→∞

I(W),

while the rate of preshared entanglement is given by

E :=
|J0|
kN
−−−→
n→∞

1− I(W)

2k
−−−→
k→∞

0.

Decoding Ckq : We shall assume that we are given an effective decoding algorithm of the
quantum polar code Pq, capable of achieving the symmetric coherent information of the
channel. In the next chapter, we indeed provide an efficient decoding for qubit Pauli
channels (Section 3.5), but it remains an open problem for general quantum channels.
In this case, Ckq can be decoded sequentially, by decoding first P 0

q , then P 1
q , P 2

q , and so
on. Indeed, after decoding P 0

q , thus in particular correcting the state of the I ′0 system,
the EPR pairs ΦI′0J1

will play the role of the preshared entanglement required to decode
P 1
q . Therefore, P 1

q can be decoded once P 0
q has been decoded, and similarly, P lq can be

decoded after P l−1
q has been decoded, for any l ∈ {2, . . . , k − 1}.

Entanglement as a catalyst: Finally, the above coding scheme can be slightly modified,
such that preshared entanglement between the sender and the receiver is not consumed.
In the above construction, we have considered that for the last P k−1

q polar code, the I ′k−1

system is an information system, i.e., used to transmit quantum information from the
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sender to the receiver (system I ′2 in Fig. 2.6). Let us now assume that the input quantum
state to the I ′k−1 system is half of a maximally entangled state ΦI′k−1Jk , where quantum
system Jk is held by the sender. When the receiver completes decoding of the Ckq code, it
restores the initial state of the I ′k−1, thus resulting in a maximally entangled state ΦI′k−1Jk
shared between the sender (Jk system) and the receiver (I ′k−1 system). Hence, the initial
preshared entanglement ΦJ0J ′0 acts as a catalyst, in that it produces a new state ΦI′k−1Jk
shared between the sender and the receiver, which can be used for the next transmission.
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3
Purely Quantum Polar Codes for Qubit Pauli

Channels

In this chapter, we further investigate the quantum polarization from Chapter 2 for the
particular case of qubit Pauli channels (Definition 45). First, to a Pauli channel, we as-
sociate a classical non-binary symmetric channel, with both input and output alphabets
given by a set containing four elements. We refer to it as the classical couterpart of the
Pauli channel. We further define a channel combining and splitting procedure for the
classical counterpart, using the permutation generated by a two qubit Clifford on the two
qubit Pauli group as the channel combining operation. We then show that a Pauli channel
and its classical counterpart polarize simultaneously under their respective channel com-
bining and splitting procedure. Therefore, the quantum polarization of a Pauli channel
implies the polarization of its classical counterpart and vice-versa. We use this equiv-
alence to provide an alternative proof of the quantum polarization of a Pauli channel,
by explicitly showing the polarization of its classical counterpart, using techinques from
classical polarization. In particular, we show polarization when the channel combining
operation is randomly chosen from the set of nine Clifford unitary L given in Figure 2.4,
and also when it is randomly chosen from a subset S ⊂ L containing three elements.
Finally, we provide an effective method to decode the quantum polar code on a Pauli
channel, by decoding its classical polar code on its classical counterpart channel. We also
show a fast polarization property when the channel combining operation is chosen from
S , ensuring the reliability of the decoding.

3.1 Classical Counterpart of a Pauli channel

3.1.1 Classical Mixture of Pauli Channels

We will consider a slightly more general class of quantum channels, namely classical mix-
ture of Pauli channels. The reason for this is that the virtual channels synthesized during
polarization of a Pauli channel are identifiable (see Definition 72) to classical mixture of
Pauli channels (this will be proved later in Proposition 78).
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Definition 71 (Classical Mixture of Pauli (CMP) channels ). A classical mixture of Pauli
(CMP) channels is a quantum channel defined as, N (ρ) =

∑
x px|x〉〈x| ⊗ Nx(ρ), where {|x〉 |

x ∈ X} is some orthonormal basis of an auxiliary system, Nx are Pauli channels, and px ≥ 0
such that

∑
x px = 1. We will simply refer to N as a CMP channel.

Definition 72 (Identifiable Channels). We say that a quantum channel NA→B1B2 is identifi-
able to a channel N ′A→B1

, if for some unitary operator C on the B1B2 system, we have that

N (ρ) = C

(
N ′(ρ)⊗ IB2

dB2

)
C†, (3.1)

where dB2 denotes the dimension of the B2 system.

3.1.2 Classical Counterpart of a CMP channel

The following notation will be used,

1. Let ḠN = GN/{±1,±i} be the Abelian group obtained by taking the quotient of the
N qubit Pauli group GN by its centralizer.

2. We write Ḡ1 = {σi | i = 0, . . . , 3}, with σ0 = I , σ1 = Z, σ2 = X , σ3 = Y , and
Ḡ2 = {σi,j := σi ⊗ σj | i, j = 0, . . . , 3} ' Ḡ1 × Ḡ1.

3. For any two-qubit Clifford unitary C, we denote by Γ(C), or simply Γ when no
confusion is possible, the conjugate action of C on Ḡ2. In other words, Γ is the
automorphism of Ḡ2 (or equivalently Ḡ1 × Ḡ1), defined by Γ(σi,j) = Cσi,jC

†.

We will first introduce the classical counterpart of a Pauli channels and then we will
extend the definition to CMP channels.

Definition 73 (Classical counterpart of a Pauli channel). Let N be a Pauli channel that acts
as N (ρ) =

∑
i piσiρσi. The classical counterpart of N , denoted by N#, is the classical channel

with the input and output alphabets Ḡ1, and transition probabilities N#(σi|σj) = pk, where k is
such that σiσj = σk, where equality is understood as equivalence classes in Ḡ1.

Note that the classical counterpart of a Pauli channel is a memoryless symmetric chan-
nel. Hence, its capacity is given by the symmetric mutual information, which is defined
below.

Definition 74. The symmetric mutual information of a classical channel W with input set Ḡ1 is
given by,

I(W ) :=
1

4

∑
y

∑
x∈Ḡ1

W (y|x) log2

W (y|x)

W (y)
∈ [0, 2], (3.2)

where W (y) = 1
4

∑
x′∈Ḡ1

W (y|x′).

From (3.2), the symmetric mutual information of N# is given by,

I(N#) = 2−H(p) ∈ [0, 2], (3.3)

whereH(p) is the Shannon entropy of the probability vector p = (p0, p1, p2, p3). From (3.3)
and (1.124) it follows that, we have the following relation between the symmetric mutual
information of N# and the symmetric coherent information of N ,

I(N#) = 1 + I(N ). (3.4)

Note that the right hand side of (3.4) is the symmetric mutual information of the Pauli
channel N . We now extend the definition of the classical counterpart to CMP channels.
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Definition 75 (Classical counterpart of a CMP channel). Given a CMP channel N (ρ)
=
∑

x∈X px|x〉〈x| ⊗ Nx(ρ), its classical classical counterpart N# is a channel from X × Ḡ1

to Ḡ1, with transition probability,

N#(x, σi | σj) = pxN#
x (σi | σj).

It can be seen that the symmetric mutual information of the classical counterpart of a
CMP channel N is given by,

I(N#) =
∑
x

pxI(N#
x ). (3.5)

Hence, from the above equation and Lemma 59, it follows that the relation in (3.4) also
holds for the CMP channel.

Definition 76 (Equivalent classical channels). We say two classical channels W and W ′ are
equivalent and denote it by W ≡W ′, if they have the same transition probability matrix, modulo
a permutation of rows and columns.

As mentioned before, the virtual channels synthesized during polarization process of a
Pauli channel are identifiable to a CMP channel. It can be seen that if a quantum channel
is identifiable to two CMP channels NA→B1 and N ′A→B1 , then (N ′)# and (N ′′)# are
classically equivalent channels in the sense of Definition 76. This follows from the lemma
below.

Lemma 77. LetN ′ andN ′′ be two CMP channels, such that the following holds for some unitary
C,

N ′(ρ)⊗ IB2

dB2

= C

(
N ′′(ρ)⊗ IB2

dB2

)
C†, (3.6)

where dB2 is dimension of B2. Then, (N ′)# ≡ (N ′′)# in the sense of Definition 76.

Proof. We restrict ourselves to the case when N ′ and N ′′ are Pauli channels, since the
case of CMP channels follows in a similar manner, by introducing an auxiliary system
providing a classical description of the Pauli channel being used. Hence, we may write

N ′(ρ) =

3∑
i=0

p′iσiρσ
†
i , (3.7)

N ′′(ρ) =
3∑
i=0

p′′i σiρσ
†
i , (3.8)

where
∑3

i=0 p
′
i =

∑3
i=0 p

′′
i = 1. It follows that N ′(σk) = α′kσk and N ′′(σk) = α′′kσk, where

α′0 = α′′0 = 1, and for k = 1, 2, 3, α′k = p′0 + p′k − p′k1
− p′k2

, α′′k = p′′0 + p′′k − p′′k1
− p′′k2

, with
{k1, k2} = {1, 2, 3} \ {k}. Using the vector notation p′ := (p′0, p

′
1, p
′
2, p
′
3), and similarly

p′′,α′,α′′, the above equalities rewrite as

α′ = Ap′ and α′′ = Ap′′, (3.9)

where A :=


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1
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Now, replacing ρ by σk in (3.6), we have that

α′kσk ⊗ IB2 = C
(
α′′kσk ⊗ IB2

)
C†. (3.10)

Since the conjugate action of the unitary C preserves the Hilbert–Schmidt norm of an
operator, it follows that ‖α′kσk ⊗ IB2‖HS = ‖α′′kσk ⊗ IB2‖HS, and therefore |α′k| = |α′′k|.
Case 1: We first assume that α′k = α′′k,∀k = 1, 2, 3. In this case, using (3.9), it follows that
p′ = p′′, and therefore (N ′)# = (N ′′)#.

Case 2: We consider now the case when α′k 6= α′′k, for some k = 1, 2, 3. To address this
case, we start by writing C =

∑3
i=0 σi ⊗ Ci, where Ci are linear operators on the system

B2. Hence, (3.6) rewrites as

N ′(ρ)⊗ IB2

dB2

=
∑
i,j

(
σiN ′′(ρ)σ†j

)
⊗
CiC

†
j

dB2

. (3.11)

Tracing out the B2 system, we have

N ′(ρ) =
∑
i,j

γi,jσiN ′′(ρ)σ†j , where γi,j =
Tr(CiC

†
j )

dB2

. (3.12)

We define γi := γi,i, and from (3.12) it follows that γi := γi,i ∈ R+. Replacing ρ = σk in
(3.12), we have that for all k = 0, . . . , 3,

α′kσk = α′′k
∑
i

γiσiσkσ
†
i + α′′k

∑
i,j,i6=j

γi,jσiσkσ
†
j . (3.13)

The left hand side of the above equation has only σk term, so only σk on the right hand
side should survive as Pauli matrices form an orthogonal basis. It follows that either
α′k = α′′k = 0, or the terms of the second sum in the right hand side of the above equation
necessarily cancel each other. In both cases, we have that

α′kσk = α′′k
∑
i

γiσiσkσ
†
i = α′′kλkσk, (3.14)

and thus, α′k = λkα
′′
k, (3.15)

where, λ0 := γ0 + γ1 + γ2 + γ3 (3.16)
λ1 := γ0 + γ1 − γ2 − γ3 (3.17)
λ2 := γ0 − γ1 + γ2 − γ3 (3.18)
λ3 := γ0 − γ1 − γ2 + γ3 (3.19)

We also note that λ0 = 1, since α′0 = α′′0 = 1. We further rewrite (3.15) as

α′ = Λα′′. (3.20)

where Λ = diag(λ0, λ1, λ2, λ3) is the square diagonal matrix with λi’s on the main diago-
nal. Plugging (3.9) into (3.20), and using A2 = 4I , we get

p′ =
1

4
AΛAp′′ = Γp′′, (3.21)

where Γ :=
1

4
AΛA =


γ0 γ1 γ2 γ3

γ1 γ0 γ3 γ2

γ2 γ3 γ0 γ1

γ3 γ2 γ1 γ0
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We now come back to our assumption, namely α′k 6= α′′k, for some k = 1, 2, 3. Without loss
of generality, we may assume that α′1 6= α′′1 . Since |α′1| = |α′′1| and α′1 = λ1α

′′
1 , it follows

that λ1 = −1. Then, using (3.16) and (3.17), we have that 2(γ0 + γ1) = λ0 + λ1 = 0, which
implies

γ0 = γ1 = 0, (3.22)

since they are non-negative. We proceed now with several sub-cases:

Case 2.1: either α′2 6= α′′2 or α′3 6= α′′3 . Similarly to the derivation of (3.22), we get either
γ2 = 0 (in which case γ3 = 1) or γ3 = 0 (in which case γ2 = 1). In either case Λ is a
permutation matrix, which implies that (N ′)# ≡ (N ′′)#, as desired.

Case 2.2: α′2 = α′′2 and α′3 = α′′3 , and either α′2 = α′′2 6= 0 or α′3 = α′′3 6= 0. Let us assume
that α′2 = α′′2 6= 0. In this case, using (3.15), we have that λ2 = 1, and from (3.18) it
follows that γ2 − γ3 = 1. This implies γ2 = 1 and γ3 = 0, therefore Λ is a permutation
matrix, and thus (N ′)# ≡ (N ′′)#, as desired.

Case 2.3: α′2 = α′′2 = 0 and α′3 = α′′3 = 0. Using α′k = 2(p′0 + p′k) − 1,∀k 6= 0, we get
p′2 = p′3 = 1

2 − p′0, and similarly p′′2 = p′′3 = 1
2 − p′′0 . Moreover, using (3.21) and the fact

that γ2 + γ3 = 1, we get p′0 = p′1 = p′′2 = p′′3 and p′2 = p′3 = p′′0 = p′′1 . This implies that
(N ′)# ≡ (N ′′)#, as desired.

This concludes the second case, and finishes the proof.

3.1.3 Channel Combining and Splitting Procedure for the Classical Counter-
part Channel

Simplified notation: To simplify notation, we shall identify
(
Ḡ1,×

) ∼= ({0, 1, 2, 3},⊕),
by identifying σu ∼= u, ∀u = 0, . . . , 3, where the additive group operation u ⊕ v is given
by the bitwise exclusive OR (XOR) between the binary representations of integers u, v.
The classical counterpart N# of a Pauli channel N (ρ) =

∑3
u=0 puσuρσ

†
u (Definition 73),

is therefore identified to a channel with input and output alphabet Ḡ1
∼= {0, 1, 2, 3}, and

transition probabilities N#(u | v) = pu⊕v.

LetN andM be two classical channels, both with the input alphabet Ḡ1
∼= {0, 1, 2, 3}, and

output alphabets A and B, respectively. Channel transition probabilities are denoted by
N(a | u) and M(b | v), for u, v ∈ Ḡ1, a ∈ A, and b ∈ B. Let Γ : Ḡ1 × Ḡ1 → Ḡ1 × Ḡ1 be
any permutation, and write Γ = (Γ1,Γ2), with Γi : Ḡ1 × Ḡ1 → Ḡ1, i = 1, 2. The channel
combining and splitting procedures are depicted in Figure 3.1 below.

N

M
Γ

u

v

a

b

(a)

N

M
Γ

u

v

a

b

(b)

N

M
Γ

v

a

b

u

u

(c)

Figure 3.1: Channel combining and splitting. (a) combined channel: N ./Γ M(a, b | u, v). (b)
bad channel: N �Γ M(a, b | u). (c) good channel: N �Γ M(u, a, b | v).

The combined channel N ./Γ M is defined as,

(N ./ΓM)(a, b |u, v) = N(a |Γ1(u, v))M(b |Γ2(u, v)) (3.23)
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3.1. Classical Counterpart of a Pauli channel

The combined channel is further split into two channels N �Γ M and N �Γ M , as follows

(N �Γ M)(a, b | u) =
1

4

∑
v

(N ./Γ M)(a, b | u, v), (3.24)

(N �Γ M)(a, b, u | v) =
1

4
(N ./Γ M)(a, b | u, v). (3.25)

From the chain rule of the mutual information, we have that

I(N �Γ M) + I(N �Γ M) = I(N) + I(M), (3.26)

which means that the symmetric mutual information is preserved under the above chan-
nel combining and splitting procedure. Applying the above construction to the classical
counterparts of two CMP channels, we prove the following proposition.

Proposition 78. LetNU→A andMV→B be two CMP channels, and C be any two-qubit Clifford
unitary, acting on the two qubit system UV . Let N# andM# denote the two classical counter-
parts of the above CMP channels, and Γ := Γ(C) be the permutation induced by the conjugate
action of C on Ḡ1 × Ḡ1. Then N �CM and N �CM are identifiable to CMP channels, thus
(N �CM)# and (N �CM)# are well defined, and the following properties hold:

(a) (N �CM)# ≡ N# �ΓM#.

(b) (N �CM)# ≡ N# �ΓM#.

Proof. We identify the automorphism Γ = Γ(C) induced by the conjugate action of a two-
qubit Clifford unitary C on Ḡ1× Ḡ1, to a linear permutation Γ : {0, 1, 2, 3}2 → {0, 1, 2, 3}2,
such that Cσi,jC† = σΓ(i,j). We shall also write Γ = (Γ1,Γ2), with Γi : {0, 1, 2, 3}2 →
{0, 1, 2, 3}, i = 1, 2.

It can be easily seen that it is enough to prove the statements of the proposition for
the case when N and M are Pauli channels. Let N (ρ) =

∑3
i=0 piσiρσ

†
i and M(ρ) =∑3

j=0 qjσjρσ
†
j .

Point (a). We have the following,

(N �M)(ρU ) = (N ⊗M)

(
C

(
ρU ⊗

IV
2

)
C†
)

=
∑
i,j

piqjσi,jC

(
ρU ⊗

IV
2

)
C†σ†i,j

=
∑
i,j

ri,jCσΓ−1(i,j)

(
ρU ⊗

IV
2

)
σ†

Γ−1(i,j)
C†, where ri,j := piqj

= C

∑
i,j

rΓ(i,j)σi,j

(
ρU ⊗

IV
2

)
σ†i,j

C†

= C

∑
i,j

rΓ(i,j)σi,j

(
ρU ⊗

IV
2

)
σ†i,j

C†

= C

∑
i,j

rΓ(i,j)σiρUσ
†
i ⊗

IV
2

C†

= C

(∑
i

si σiρUσ
†
i ⊗

IV
2

)
C†, where si :=

∑
j

rΓ(i,j) (3.27)
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where the fourth equality follows from the variable change (i, j) 7→ Γ(i, j). Omitting the
conjugate action of the unitary C and discarding the V system, we may further identify:

(N �M)(ρU ) =
∑
i

siσiρUσ
†
i .

Hence, the associated classical channel (N �M)# is defined by the probability vector
s = (s0, s1, s2, s3), meaning that

(N �M)#(i | j) = si⊕j . (3.28)

On the other hand, we have:

(N# �M#)(a, b | u) =
1

4

∑
v

N#(a | Γ1(u, v))M#(b | Γ2(u, v))

=
1

4

∑
v

pa⊕Γ1(u,v)qb⊕Γ2(u,v). (3.29)

Applying Γ−1 on the channel output, we may identifyN#�M# to a channel with output
(a′, b′) = Γ−1(a, b), and transition probabilities given by:

(N# �M#)(a′, b′ | u) =
1

4

∑
v

pΓ1(a′,b′)⊕Γ1(u,v)qΓ2(a′,b′)⊕Γ2(u,v)

=
1

4

∑
v

pΓ1((a′,b′)⊕(u,v))qΓ2((a′,b′)⊕(u,v))

=
1

4

∑
v

pΓ1(a′⊕u,b′⊕v)qΓ2(a′⊕u,b′⊕v)

=
1

4

∑
v

pΓ1(a′⊕u,v)qΓ2(a′⊕u,v)

=
1

4

∑
v

rΓ(a′⊕u,v)

=
1

4
sa′⊕u. (3.30)

We can then discard the b′ output, since the channel transition probabilities do not depend
on it, which gives a channel defined by transition probabilities:

(N# �M#)(a′ | u) = sa′⊕u. (3.31)

Finally, using (3.28) and (3.31), and noticing that omitting the conjugate action of the
unitaryC and discarding the V system in the derivation of (3.28) is equivalent to applying
Γ−1 on the channel output and discarding the b′ output in the derivation of (3.31), we
conclude that (N �M)# ≡ N# �M#.
Point (b). Similar to the derivations used for point (i), we get

(N �M)(ρV ) = C

∑
i,j

rΓ(i,j)σi,j (ΦU ′U ⊗ ρV )σ†i,j

C†

= C

∑
i,j

rΓ(i,j)

(
(IU ′ ⊗ σi)(ΦU ′U )(IU ′ ⊗ σ†i )

)
⊗ (σjρV σ

†
j)

C† (3.32)
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Omitting the conjugate action of the unitary C, and expressing (IU ′ ⊗σi)(ΦU ′U )(IU ′ ⊗σ†i )
in the Bell basis, {|i〉}i=0,...,3 := { |00〉+|11〉√

2
, |01〉+|10〉√

2
, |01〉−|10〉√

2
, |00〉−|11〉√

2
}, we get:

(N �M)(ρV ) =
∑
i,j

rΓ(i,j)|i〉〈i| ⊗ (σjρV σ
†
j).

Let λi :=
∑

j rΓ(i,j) and si,j := rΓ(i,j)/λi (with si,j := 0 if λi = 0). Denoting by Si the Pauli
channel defined by S(ρ)i =

∑
j si,jσjρV σ

†
j , we may rewrite:

(N �M)(ρV ) =
∑
i

λi|i〉〈i| ⊗ Si(ρV ).

Hence, (N �M)# is the mixture of the channels S#
i , with S#

i being used with probability
λi, whose transition probabilities are given by:

(N �M)#(i, j | k) = λisi,j⊕k = rΓ(i,j⊕k). (3.33)

On the other hand, we have:

(N# �M#)(a, b, u | v) =
1

4
N#(a | Γ1(u, v))M#(b | Γ2(u, v))

=
1

4
pa⊕Γ1(u,v)qb⊕Γ2(u,v). (3.34)

We apply Γ−1 on the (a, b) output of the channel, which is equivalent to omitting the
conjugate action of the unitary C in (3.32), and then identifyN# �M# to a channel with
output (a′, b′, u), where (a′, b′) = Γ−1(a, b), and transition probabilities:

(N# �M#)(a′, b′, u | v) =
1

4
pΓ1(a′,b′)⊕Γ1(u,v)qΓ2(a′,b′)⊕Γ2(u,v)

=
1

4
pΓ1(a′⊕u,b′⊕v)qΓ2(a′⊕u,b′⊕v)

=
1

4
rΓ(a′⊕u,b′⊕v). (3.35)

We further perform a change of variable, replacing (a′, u) by (a′ ⊕ u, u), which makes the
above transition probability independent of u. We may then discard the u output, and
thus identify N# �M# to a channel with output (a′, b′) and transition probabilities:

(N# �M#)(a′, b′ | v) = rΓ(a′,b′⊕v). (3.36)

Finally, using (3.33) and (3.36), we conclude that (N �M)# ≡ N# �M#.

A consequence of the above proposition is that a CMP channel polarizes under the recur-
sive application of the channel combining and splitting rules, if and only if its classical
counterpart does so. Moreover, processes of both quantum and classical polarization
yield the same set of indices for the good/bad channels. More precisely, we have the
following.

Corollary 79. Let W be a CMP channel, and W(i1···in) be defined recursively as in (2.44),
∀n > 0, ∀i1 · · · in ∈ {0, 1}n. Let W# be the classical counterpart of W , and (W#)(i1···in) be
defined recursively, similar to (2.44), while replacing W by W#, and Clifford unitaries Ci1···in
by the corresponding permutations Γi1···in := Γ(Ci1···in). Then

(
W(i1···in)

)# ≡ (W#)(i1···in),
∀n,∀i1 · · · in ∈ {0, 1}n. In particular:

I
(

(W#)(i1···in)
)

= 1 + I
(
W(i1···in)

)
.

As we have already proven in Thereom 60 that as n goes to infinity, I
(
W(i1···in)

)
ap-

proaches to either −1 or 1, hence, I
(
(W#)(i1···in)

)
approaches to either 0 or 2. Therefore,

polarization also happens for the classical counterpart.
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3.2 Proof of Quantum Polarization Using the Classical Counter-
part Channel

In this section, we provide an alternative proof of quantum polarization for the Pauli
channel by proving classical polarization for the classical counterpart channel. The chan-
nel combining here is chosen randomly from the set of nine two-qubit Clifford uni-
taries L given in Figure 2.4. The proof of polarization for the classical counterpart may
be obtained by verifying the conditions from Lemma 54, with the stochastic process
{Tn : n ≥ 0} given by the Bhattacharyya parameters Zn of the synthesized virtual chan-
nels. Note that we only need to prove the guaranteed improvement condition under the
set L as all the other conditions are already shown in [24].

We give below the definition of the Bhattacharyya parameter for a classical channel W
with non-binary input, as defined in [24]. We shall restrict our attention to classical chan-
nels with input alphabet Ḡ1.

Definition 80 (Bhattacharyya Parameter [24]). Let W be a classical channel, with input al-
phabet Ḡ1

∼= ({0, 1, 2, 3},⊕) and output alphabet Y . For u, u′, d ∈ Ḡ1, we define

Z(Wu,u′) :=
∑
y∈Y

√
W (y|u)W (y|u′) ∈ [0, 1].

Zd(W ) :=
1

4

∑
u∈Ḡ1

Z(Wu,u⊕d) ∈ [0, 1].

In particular, note that Z(Wu,u) = 1,∀u ∈ Ḡ1, and Z0(W ) = 1. The Bhattacharyya parameter
of W , denoted Z(W ), is then defined as

Z(W ) :=
1

3

∑
d6=0

Zd(W ) =
1

12

∑
u6=u′

Z(Wu,u′) ∈ [0, 1].

In the following lemma, we show the guaranteed improvement for the Bhattacharyya
parameter, which implies the polarization of the classical counterpart.

Lemma 81. Let W be a CMP channel and W := W# its classical counterpart. Given two
instances of the channel W , we have that

EΓ∈Γ(L)Z (W �Γ W ) =
1

3
Z(W ) +

2

3
Z(W )2 ≤ Z(W ). (3.37)

where Γ(L) denotes the set of permutations generated on the two-qubit Pauli group Ḡ2 by the
conjugate action of Cliffords in L. Further, the inequality in the above equation is an equality if
and only if Z(W ) ∈ {0, 1}.

Before proving Lemma 81, we will prove Lemmas 82 and 83.

Lemma 82. For any two classical channels N,M , with input alphabet Ḡ1
∼= ({0, 1, 2, 3},⊕),

and any linear permutation Γ = (A,B) : Ḡ1 × Ḡ1 → Ḡ1 × Ḡ1, the following equality holds for
any d ∈ Ḡ1:

Zd(N �Γ M) = ZA(0,d)(N)ZB(0,d)(M).
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Proof. According to Definition 80, for the channel N �Γ M , we have that

Z
(
(N �Γ M)v, v′

)
=
∑
u,y1,y2

√
(N �Γ M)(y1, y2, u | v) (N �Γ M)(y1, y2, u | v′)

=
1

4

∑
u,y1,y2

√
N(y1 | A(u, v)) M(y2 | B(u, v)) N(y1 | A(u, v′)) M(y2 | B(u, v′))

=
1

4

∑
u,y1,y2

√
N(y1 | A(u, v)) N(y1 | A(u, v′)) M(y2 | B(u, v)) M(y2 | B(u, v′))

=
1

4

∑
u

Z
(
NA(u,v), A(u,v′)

)
Z
(
MB(u,v), B(u,v′)

)
.

Therefore,

Zd (N �Γ M) =
1

4

∑
v

Z ((N �Γ M)v, v⊕d)

=
1

16

∑
u,v

Z
(
NA(u,v), A(u,v⊕d)

)
Z
(
MB(u,v), B(u,v⊕d)

)
=

1

16

∑
u,v

Z
(
NA(u,v), A(u,v)⊕A(0,d)

)
Z
(
MB(u,v), B(u,v)⊕B(0,d)

)
=

1

16

∑
a

Z
(
Na, a⊕A(0,d)

)∑
b

Z
(
Mb, b⊕B(0,d)

)
= ZA(0,d)(N)ZB(0,d)(M), (3.38)

where the third equality follows from the linearity of the permutation Γ = (A,B), and
the fourth equality follows from the change of basis for the summation from (u, v) to
(a, b) := (A(u, v), B(u, v)).

We denote by u := [u1, u2] the binary representation of a given u ∈ Ḡ1
∼= {0, 1, 2, 3}, where

u1, u2 ∈ {0, 1} and u2 is the least significant bit.

Lemma 83. Let Γi,j := Γ(Li,j) : Ḡ1×Ḡ1 → Ḡ1×Ḡ1 be the permutation defined by the conjugate
action of Li,j ∈ L. Then Γi,j = (Ai, Bj),∀1 ≤ i, j ≤ 3, with Ai, Bj : Ḡ1 × Ḡ1 → Ḡ1 given by:

A1(u, v) = [u1 ⊕ v1, u2], B1(u, v) = [v1, u2 ⊕ v2]

A2(u, v) = [u1 ⊕ v1, u1 ⊕ v1 ⊕ u2], B2(u, v) = [v1 ⊕ u2 ⊕ v2, u2 ⊕ v2]

A3(u, v) = [u2, u1 ⊕ v1] B3(u, v) = [u2 ⊕ v2, v1]

where inputs u and v are represented in binary form, u := [u1, u2] and v := [v1, v2], with
u1, u2, v1, v2 ∈ {0, 1} (Γi,j permutations are also depicted in Fig. 3.2).
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I

I

u1, u2

v1, v2 v1, u2 ⊕ v2

u1 ⊕ v1, u2

Γ1,1 :

√
Z

I

u1, u2

v1, v2 v1, u2 ⊕ v2

u1 ⊕ v1, u1 ⊕ v1 ⊕ u2

Γ2,1 :

√
Y

I

u1, u2

v1, v2 v1, u2 ⊕ v2

u2, u1 ⊕ v1

Γ3,1 :

I

√
X

u1, u2

v1, v2 v1 ⊕ u2 ⊕ v2, u2 ⊕ v2

u1 ⊕ v1, u2

Γ1,2 :

√
Z

√
X

u1, u2

v1, v2 v1 ⊕ u2 ⊕ v2, u2 ⊕ v2

u1 ⊕ v1, u1 ⊕ v1 ⊕ u2

Γ2,2 :

√
Y

√
X

u1, u2

v1, v2 v1 ⊕ u2 ⊕ v2, u2 ⊕ v2

u2, u1 ⊕ v1

Γ3,2 :

I

√
Y

u1, u2

v1, v2 u2 ⊕ v2, v1

u1 ⊕ v1, u2

Γ1,3 :

√
Z

√
Y

u1, u2

v1, v2 u2 ⊕ v2, v1

u1 ⊕ v1, u1 ⊕ v1 ⊕ u2

Γ2,3 :

√
Y

√
Y

u1, u2

v1, v2 u2 ⊕ v2, v1

u2, u1 ⊕ v1

Γ3,3 :

Figure 3.2: Elements of the set Γ(L)

Proof. Recall from Section 2.4.2, that Li,j = (C ′ ⊗ C ′′)C2→1, where C ′ ∈ {I,
√
Z,
√
Y },

C ′′ ∈ {I,
√
X,
√
Y }, and C2→1 is the CNOT gate. Recall also that by identifying Ḡ1

∼=
{0, 1, 2, 3}, we have I = σ0

∼= 0, Z = σ1
∼= 1, X = σ2

∼= 2, Y = σ3
∼= 3. The conjugate

action of
√
X on Ḡ1, fixes I and X , and permutes Y and Z. Hence, the corresponding

permutation on Ḡ1
∼= {0, 1, 2, 3}, can be written as (0, 3, 2, 1). Similarly, the conjugate

action of
√
Y and

√
Z induces the permutations (0, 2, 1, 3) and (0, 1, 3, 2), respectively.

Replacing u ∈ {0, 1, 2, 3} by its binary representation [u1, u2], we may write:

√
X : [u1, u2] 7→ [u1 ⊕ u2, u2]
√
Y : [u1, u2] 7→ [u2, u1]
√
Z : [u1, u2] 7→ [u1, u1 ⊕ u2]

(3.39)

Moreover, the permutation induced by the conjugate action of the C2→1 gate is the linear
permutation on Ḡ1 × Ḡ1 such that:

C2→1 : (X, I) 7→ (X, I), (I,X) 7→ (X,X)

(Z, I) 7→ (Z,Z), (I, Z) 7→ (I, Z)

⇒ C2→1 : ([u1, u2], [v1, v2]) 7→ ([u1 ⊕ v1, u2], [v1, u2 ⊕ v2]) . (3.40)

Finally, using (3.39) and (3.40), it can be easily verified that Γi,j = (Ai, Bj), ∀1 ≤ i, j ≤ 3,
with Ai and Bj as given in the lemma.

Proof of Lemma 81. Applying Lemma 82 and Lemma 83, we may express Zd(W �Γi,jW )
as a function of the parameters (Z1(W ), Z2(W ), Z3(W )), for any Γi,j ∈ Γ(L) and any
d = 1, 2, 3 (recall that Z0(W ) = 1). The corresponding expressions are given in Table 3.1.
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3.3. Further Reducing the Channel Combining Set

(i, j) Z1(W �Γi,j W ) Z2(W �Γi,j W ) Z3(W �Γi,j W )

(1, 1) Z1(W ) Z2(W )2 Z2(W )Z3(W )

(1, 2) Z3(W ) Z2(W )2 Z1(W )Z2(W )

(1, 3) Z2(W ) Z1(W )Z2(W ) Z2(W )Z3(W )

(2, 1) Z1(W ) Z2(W )Z3(W ) Z3(W )2

(2, 2) Z3(W ) Z2(W )Z3(W ) Z1(W )Z3(W )

(2, 3) Z2(W ) Z1(W )Z3(W ) Z3(W )2

(3, 1) Z1(W ) Z1(W )Z2(W ) Z1(W )Z3(W )

(3, 2) Z3(W ) Z1(W )Z2(W ) Z1(W )2

(3, 3) Z2(W ) Z1(W )2 Z1(W )Z3(W )

Table 3.1: Zd(W �Γi,j W ) as a function of (Z1(W ), Z2(W ), Z3(W ))

Hence,

∑
Γ∈Γ(L)

Z (W �Γ W ) =
1

3

∑
Γ∈Γ(L)

3∑
d=1

Zd (W �Γ W )

=
3∑
d=1

Z1(W ) +
2

3

(
3∑
d=1

Z1(W )

)2

= 3Z(W ) + 6Z(W )2, (3.41)

and therefore,

EΓ∈Γ(L)Z (W �Γ W ) =
1

9

∑
Γ∈Γ(L)

Z (W �Γ W ) .

=
1

3
Z(W ) +

2

3
Z(W )2.

Remark 84. It can be directly seen that EΓ∈Γ(L)Z (W �Γ W ) = EΓ∈Γ(L′)Z (W �Γ W ), where
the elements of the set L′ is connected to the elements of L by the swap gate, as defined in Sec-
tion 2.4.2.

3.3 Further Reducing the Channel Combining Set

In this section, we first show polarization, when the channel combining operation is
randomly chosen from a set of three two-qubit Cliffords, namely L1,3, L2,2, L3,1. Then,
we attempt to completely derandomize the channel combining operation, with the help
of a numerical simulation. We plot the channel combining operation for two steps of
polarization for all the nine permutations, which suggests that polarization may happen
for L1,3, L2,2, L3,1 individually.
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3.3.1 Polarization with a Set Containing Three Two-Qubit Clifford Unitaries

Let S denote the set containing the Clifford gates L1,3, L2,2, and L3,1 from Fig. 2.4, and
Γ(S) denote the corresponding set of permutations, namely Γ(L1,3), Γ(L2,2) and Γ(L3,1),
generated by the conjugate actions of L1,3, L2,2, and L3,1 on Ḡ2.

Lemma 85. Let W be a CMP channel and W := W# its classical counterpart. Given two
instances of the channel W , then

EΓ∈Γ(S)Z (W �Γ W ) ≤ 1

3
Z(W ) +

2

3
Z(W )2. (3.42)

Proof. Using Table 3.1, for Γ ∈ Γ(S) = {Γ1,3,Γ2,2,Γ3,1}, we get

EΓ∈Γ(S)Z (W �Γ W ) =
1

3

∑
Γ∈Γ(S)

Z (W �Γ W )

=
1

9

∑
Γ∈Γ(S)

∑
1≤d≤3

Zd (W �Γ W )

=
1

9

∑
1≤d≤3

Zd(W ) +
2

9

∑
1≤d′ 6=d′′≤3

Zd′(W )Zd′′(W )

≤ 1

3
Z(W ) +

2

3
Z(W )2,

where, usingZ(W ) = (Z1(W )+Z2(W )+Z3(W ))/3, it is easily seen that the last inequality
is equivalent to the following inequality,

Z1(W )Z2(W ) + Z1(W )Z3(W ) + Z2(W )Z3(W ) ≤ Z1(W )2 + Z2(W )2 + Z3(W )2. (3.43)

The above inequality follows from Zi(W )Zj(W ) ≤ (Zi(W )2 + Zj(W )2)/2.

3.3.2 Polarization with Only One Two-Qubit Clifford Unitary

We note that the main ingredient of proof of polarizations in Sections 3.2 and 3.3.1 is the
gauranteed improvement of the good channel. The following two observations are in
order,

1. Polarization happens if we have guaranteed degradation1 instead of guaranteed
improvement as Lemma 54 holds with minor modifications for guaranteed degra-
dation.

2. Polarization also happens if guaranteed improvement or degradation happens for
a virtual channel after two polarization steps instead of one.

From Table 3.1, it can be verified that none of the permutations yield guaranteed im-
provement for the good channel after one polarization step. In the remaining section, we
investigate with the help of a computer program whether guaranteed improvement or
degradation happens after two polarization steps for any of the nine permutations.

We discretize the probability values defining the Pauli channels. In Figures 3.3-3.11 be-
low, each point in the black region corresponds to a different Pauli channel. In the figures,
we have plotted the Bhattacharyya parameter of the virtual channels obtained after two

1For guaranteed degradation, we have f(θ) > θ, when Bn+1 = 0 (instead of f(θ) < θ, when Bn+1 = 1)
in condition (t.2) of Lemma 54.
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steps of polarization, that is, Z(W (i1i2)), where W is a Pauli channel and i1, i2 ∈ {0, 1},
with respect to Z(W ), for all 9 permutations. For guaranteed improvement, we re-
quire the black region to be always strictly below the red line except at the end values
Z(W ) = 0, 1 and similarly, for guaranteed degradation, we require the black part to be
always strictly above the red line.

Figure 3.3: Permutation Γ1,1, no guaranteed improvement or degradation for any virtual channel.
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Figure 3.4: Permutation Γ1,2, no guaranteed improvement or degradation for any virtual channel.

Figure 3.5: Permutation Γ1,3, guaranteed improvement for the virtual channel W (11).
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Figure 3.6: Permutation Γ2,1, no guaranteed improvement or degradation for any virtual channel.

Figure 3.7: Permutation Γ2,2, guaranteed improvement for the virtual channel W (11) and guar-
anteed degradation for the virtual channel W (00).

91



Chapter 3. Purely Quantum Polar Codes for Qubit Pauli Channels

Figure 3.8: Permutation Γ2,3, no guaranteed improvement or degradation for any virtual channel.

Figure 3.9: Permutation Γ3,1, guaranteed degradation for the virtual channel W (00).
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Figure 3.10: Permutation Γ3,2, no guaranteed improvement or degradation for any virtual chan-
nel.

Figure 3.11: Permutation Γ3,3, no guaranteed improvement or degradation for any virtual chan-
nel.

To conclude, the numerical results suggest that polarization might happen for two-qubit
Cliffords Γ1,3,Γ2,2,Γ3,1 individually. However, to prove polarization, we would need a
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rigorous proof of guaranteed improvement or degradation after two polarization steps
for CMP channels, which is left as an open problem. Finally, we note the following.

Remark 86. For permutation Γ3,3, we almost have the guaranteed degradation for W (00) and
the guaranteed improvement for W (11) as the black region touches the red line at only one point
Z(W ) = 1

3 . We show in Chapter 4 that the recursive application of Γ3,3 yields a multilevel
polarization and a quantum polar code can be constructed using this multilevel polarization.

3.4 Fast Polarization

Before discussing decoding of quantum polar codes over Pauli channels (Section 3.5
below), recall that classical polar codes are equipped with a decoding algorithm, known
as successive cancellation (SC) [2]. However, the effectiveness of the classical SC de-
coding, i.e., its capability of successfully decoding at rates close to the capacity, depends
on the speed of polarization. The Bhattacharyya parameter of the synthesized channels
plays an important role in determining the speed at which polarization takes place. First,
we note that for a classical channel W , the Bhattacharyya parameter upper bounds the
error probability of uncoded transmission. Precisely, given a classical channel W with
input alphabet X , the error probability of the maximum a posteriori estimate for a single
channel use, denoted Pe, is upper-bounded as follows ([24, Proposition 2]):

Pe ≤ (|X| − 1)Z(W ).

Now, consider a polar code defined by the recursive application of n polarization steps
to the classical channel W := W# (the input alphabet is X := Ḡ1, of size |Ḡ1| = 4).
The construction is the same as the one in Section 2.5.1, while replacing the quantum
channel W by its classical counterpart W , and channel combining Clifford gates Ci1i2···
by the corresponding permutations Γi1i2··· := Γ(Ci1i2···). For any i = 0, . . . , N − 1, let
W (i) := (W#)(i1···in), where i1 · · · in is the binary decomposition of i. For the sake of
simplicity, we drop the channel combining permutations Γ’s from the above notation.
Let I ⊂ {0, 1, . . . , N − 1} denote the set of good channels (i.e., channels used to transmit
information symbols, as opposed to bad channels, which are frozen to symbol values
known to both the encoder and decoder). Since the SC decoding proceeds by decoding
successively the synthesized good channels2, it can be easily seen that the block error
probability of the SC decoder, denoted by Pe(N, I), is upper-bounded by (see also [2,
Proposition 2]):

Pe(N, I) ≤ 3
∑
i∈I

Z(W (i)). (3.44)

If the Bhattacharyya parameters of the W (i) channels, with i ∈ I, converge sufficiently
fast to zero, one can use (3.44) to ensure that Pe(N, I) goes to zero. Since the number of
terms in the right hand side of (3.44) is linear in N , it is actually enough to prove that
Z(W (i)) ≤ O(N−(1+θ)),∀i ∈ I, for some θ > 0.

The proof of fast polarization properties given in [25] (see also [24, Lemma 3]) exploits
the following two main ingredients:

2An estimate of the input of each good channel is generated using the maximum a posteriori estimate,
according to the observed channel output and the previously decoded channels.
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(1) The quadratic improvement of the Bhattacharyya parameter, when taking the good
channel, i.e., Z

(
W (i1···in−1in)

)
≤ Z

(
W (i1···in−1)

)2
, ∀i1 · · · in−1in ∈ {0, 1}n, such that

in = 1.

(2) The linearly upper-bounded degradation of the Bhattacharyya parameter, when
taking the bad channel, i.e., Z

(
W (i1···in−1in)

)
≤ κZ

(
W (i1···in−1)

)
, ∀i1 · · · in−1in ∈

{0, 1}n, such that in = 0, for some constant κ > 0.

Regarding the second condition, in our case we have the following lemma, where for a
classical channel W with input alphabet Ḡ1

∼= {0, 1, 2, 3}, we define

Z̄(W ) := max
d=1,2,3

Zd(W ). (3.45)

Lemma 87. For any classical channel W with input alphabet Ḡ1, and any linear permutation
Γ : Ḡ1 × Ḡ1 → Ḡ1 × Ḡ1, the following inequalities hold:

Z̄(W �Γ W ) ≤ 4Z̄(W ).

Z(W �Γ W ) ≤ 12Z(W ).

Proof. According to Definition 80, for the channel N �Γ M , we have:

Z
(
(N �Γ M)u, u′

)
=
∑
y1,y2

√
(N �Γ M)(y1, y2 | u) (N �Γ M)(y1, y2 | u′)

=
1

4

∑
y1,y2

√∑
v

N(y1 | A(u, v))M(y2 | B(u, v))
∑
v′

N(y1 | A(u′, v′))M(y2 | B(u′, v′))

≤ 1

4

∑
v,v′

∑
y1,y2

√
N(y1 | A(u, v)) M(y2 | B(u, v)) N(y1 | A(u′, v′)) M(y2 | B(u′, v′))

=
1

4

∑
v,v′

∑
y1,y2

√
N(y1 | A(u, v)) N(y1 | A(u′, v′)) M(y2 | B(u, v)) M(y2 | B(u′, v′))

=
1

4

∑
v,v′

Z
(
NA(u,v), A(u′,v′)

)
Z
(
MB(u,v), B(u′,v′)

)
,

where the inequality above follows from
√∑

v xv ≤
∑

v

√
xv. Therefore,

Zd (N �Γ M) =
1

4

∑
u

Z ((N �Γ M)u, u⊕d)

≤ 1

16

∑
u,v,v′

Z
(
NA(u,v), A(u⊕d,v′)

)
Z
(
MB(u,v), B(u⊕d,v′)

)
=

1

16

∑
u,v,d′ (d′ := v ⊕ v′)

Z
(
NA(u,v), A(u⊕d,v⊕d′)

)
Z
(
MB(u,v), B(u⊕d,v⊕d′)

)
=

1

16

∑
u,v,d′

Z
(
NA(u,v), A(u,v)⊕A(d,d′)

)
Z
(
MB(u,v), B(u,v)⊕B(d,d′)

)
=

1

16

∑
d′

∑
a

Z
(
Na, a⊕A(d,d′)

)∑
b

Z
(
Mb, b⊕B(d,d′)

)
=
∑
d′

ZA(d,d′)(N)ZB(d,d′)(M), (3.46)
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where the third to last equality follows from the linearity of the permutation Γ = (A,B),
and the second to last follows from the change of basis for the summation from (u, v) to
(a, b) := (A(u, v), B(u, v)).

Now, using (3.46), we have that

Zd(W �Γ W ) ≤
∑
d′∈Ḡ1

ZA(d,d′)(W )ZB(d,d′)(W ).

For d 6= 0,A(d, d′) andB(d, d′) cannot be simultaneously zero (recall thatZ0(W ) = 1), and
therefore we get ZA(d,d′)(W )ZB(d,d′)(W ) ≤ Z̄(W ). Hence, Zd(W �Γ W ) ≤ 4Z̄(W ),∀d =
1, 2, 3, which implies Z̄(W �Γ W ) ≤ 4Z̄(W ), as desired. Finally, we have

Z(W �Γ W ) ≤ Z̄(W �Γ W ) ≤ 4Z̄(W ) ≤ 12Z(W ),

which proves the second inequality of the lemma.

The condition (1) above – quadratic improvement of the Bhattacharyya parameter, when
taking the good channel – is more problematic, due to the linear term in the right hand
side of (3.37) and (3.42). In particular, we can not apply [24, Lemma 3] to derive fast
polarization properties in our case. Instead, we will prove fast polarization properties by
drawing upon arguments similar to those in the proof of [2, Theorem 2]. First, we need
the following definition.

Definition 88. LetW be a classical channel with input alphabet Ḡ1, and Γ = {Γ,Γi1···in | n > 0,
i1 · · · in ∈ {0, 1}n} be an infinite sequence of permutations. For n > 0, let

W (i1···in) :=

W (i1···in−1) �Γi1···in−1
W (i1···in−1), if in = 0

W (i1···in−1) �Γi1···in−1
W (i1···in−1), if in = 1

(3.47)

where, for n = 1, in the right hand side term of the above equality, we set by convention W (∅) :=
W and Γ∅ := Γ. We say that Γ is a polarizing sequence (or that polarization happens for Γ), if
for any δ > 0,

lim
n→∞

#{(i1 · · · in) ∈ {0, 1}n : I
(
W (i1···in)

)
∈ (δ, 1− δ)}

2n
= 0.

Note that contrary to Lemma 81 and Lemma 85, we consider here a given sequence of
permutations, instead of averaging over some set of sequences. If W =W# is the classi-
cal counterpart of a CMP channelW , by Lemma 85, we know that polarization happens
when averaging over all the sequences Γ ∈ Γ(S)∞. As a consequence, there exists a
subset Γ(S)∞pol ⊂ Γ(S)∞ of positive probability3, such that polarization happens for any
Γ ∈ Γ(S)∞pol. We are now ready to state the following fast polarization result.

Proposition 89. LetW be a CMP channel, W :=W# its classical counterpart, and S the set of
three Clifford gates from Section 3.3.1. Then the following fast polarization property holds for
almost all Γ sequences in Γ(S)∞pol:

3Note that Γ(S)∞ is the infinite product space of countable many copies of Γ(S), and it is endowed with
the infinite product probability measure, taking the uniform probability measure on each copy of Γ(S). See
[65] for infinite product probability measures.
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For any θ > 0 and R < I(W ), there exists a sequence of sets IN ⊂ {0, . . . , N − 1},
N ∈ {1, 2, . . . , 2n, . . .}, such that |IN | ≥ NR and Z

(
W (i)

)
≤ O

(
N−(1+θ)

)
, ∀i ∈ IN . In

particular, the block error probability of polar coding under SC decoding satisfies

Pe(N, IN ) ≤ O
(
N−θ

)
.

We proceed first with several lemmas, then prove the above proposition. In the following,
the notation x = x( · ) means that the value of x depends only on the list of variables ( · )
enclosed between parentheses.

Lemma 90. (i) For any permutation Γ ∈ Γ(S), there exist δ1 = δ1(Γ), δ2 = δ2(Γ), δ3 = δ3(Γ),
such that {δ1, δ2, δ3} = {1, 2, 3}, and

Z1(W �Γ W ) = Zδ1(W )

Z2(W �Γ W ) = Zδ1(W )Zδ2(W )

Z3(W �Γ W ) = Zδ1(W )Zδ3(W ),

and the above equalities hold for any channel W .
(ii) For any d ∈ {1, 2, 3}, there exists exactly one permutation Γ ∈ Γ(S), such that δ1(Γ) = d.

Proof. Follows from Table 3.1, wherein Γ(S) = {Γ1,3,Γ2,2,Γ3,1}. Precisely, we have δ1(Γ1,3) =
2, δ1(Γ2,2) = 3, δ1(Γ3,1) = 1.

Lemma 91. There exist a constant κ > 1 and δ = δ(W ) ∈ {1, 2, 3}, such that for any Γ ∈ Γ(S)
and any d ∈ {1, 2, 3}, the following equality holds

Zd(W �Γ W ) ≤ κZδ(W ).

Proof. Follows from Lemma 87, for κ = 4 and δ = δ(W ) := argmax
d=1,2,3

Zd(W ).

We shall also use the following lemma (known as Hoeffding’s inequality) providing an
upper bound for the probability that the mean of n independent random variables falls
below its expected value mean by a positive number.

Lemma 92 ([66, Theorem 1]). Let X1, X2, . . . , Xn be independent random variables such that
0 ≤ Xi ≤ 1, for any i = 1, . . . , n. Let X̄ := 1

n

∑n
i=1Xi, and µ = E(X̄). Then, for any

0 < t < µ,
Pr
{
X̄ ≤ µ− t

}
≤ e−2nt2 .

Now, let Γ(S)∞ be the infinite Cartesian product of countable many copies of Γ(S). It
is endowed with an infinite product probability measure [65], denoted by P , where the
uniform probability measure is taken on each copy of Γ(S). For our purposes, an infinite
sequence Γ ∈ Γ(S)∞ should be written as Γ := {Γ,Γi1···in | n > 0, i1 · · · in ∈ {0, 1}n} (this
is always possible, since the set of indices is countable). We further define a sequence
of independent and identically distributed (i.i.d) Bernoulli random variables on Γ(S)∞,
denoted ∆i1···in , n ≥ 0, i1 · · · in ∈ {0, 1}n,

∆i1···in(Γ) := 1{δ1(Γi1···in )∈{2,3}},

that is, ∆i1···in(Γ) is equal to 1, if δ1(Γi1···in) ∈ {2, 3}, and equal to 0, if δ1(Γi1···in) = 1. Note
that ∆i1···in(Γ) does actually only depend on the Γi1···in element of Γ (here, n and i1 · · · in
are fixed). From Lemma 90 (ii), it follows that E(∆i1···in) = 2/3, ∀n ≥ 0, ∀i1 · · · in ∈
{0, 1}n.

97



Chapter 3. Purely Quantum Polar Codes for Qubit Pauli Channels

For 0 < γ < 2/3 and m > 0, we define

Πm(γ) :=

Γ ∈ Γ(S)∞
∣∣∣ ∑
i1···im−1

∆i1···im−11(Γ) ≥
(

2

3
− γ
)

2m−1

 (3.48)

Πm(γ) :=
⋂
n≥m

Πn(γ) (3.49)

The sum in (3.48) comprises all the terms ∆i1···im−1im(Γ), with i1 · · · im−1 ∈ {0, 1}m−1 and
im = 1 (here, m is fixed). Thus, Πm(γ) is defined by requiring that at least a fraction
of (2/3 − γ) of ∆i1···im−1im variables are equal to 1, where im = 1. In (3.49), the above
condition must hold for any n ≥ m.

Lemma 93. For any 0 < γ < 2/3 and m > 0,

P
(
Πm(γ)

)
≥ 2− 1

1− e−γ22m
. (3.50)

Proof. By Lemma 92, P (Πm(γ)) ≥ 1− e−γ22m . Therefore, we have

P
(
Πm(γ)

)
≥ 1−

∑
n≥m

e−γ
22n

= 1−
∑
n≥0

(
e−γ

22m
)2n

≥ 1−
∑
n≥1

(
e−γ

22m
)n

= 1−
(

1

1− e−γ22m
− 1

)
= 2− 1

1− e−γ22m
.

Note that the right hand side term in (3.50) converges to 1 as m goes to infinity. Hence,
for ε > 0, we denote by m(γ, ε) the smallest m value, such that 2 − 1

1−e−γ22m
≥ 1 − ε. It

follows that P
(
Πm(γ,ε)(γ)

)
≥ 1− ε.

In the following, we fix once for all some γ value, such that 0 < γ < 2/3. The value of
γ will not matter for any of what we do here, we only need (2/3 − γ) to be positive. We
proceed now with the proof of Proposition 89.

Proof of Proposition 89. Let Ω := {0, 1}∞ denote the set of infinite binary sequences
ω := (ω1ω2 · · · ) ∈ {0, 1}∞. Hence, Ω can be endowed with an infinite product probability
measure, by taking the uniform probability measure on each ωn component. We denote
this probability measure by P (the notation is the same as for the probability measure on
Γ(S)∞, but no confusion should arise, since the sample spaces are different).

Let ε > 0 and fix any Γ ∈ Γ(S)∞pol ∩ Πm(γ,ε)(γ). Given Γ, the polarization process can be
formally described as a random process on the probability space Ω [2]. Precisely, for any
ω = (ω1ω2 · · · ) ∈ Ω and n > 0, we define

Z [n](ω) := Z
(
W (ω1···ωn)

)
Z

[n]
d (ω) := Zd

(
W (ω1···ωn)

)
,∀d ∈ {1, 2, 3}
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Note that W (ω1···ωn) is recursively defined as in (3.47), through the implicit assumption
of using the channel combining permutations in the given sequence Γ. For n = 0, we set
Z [0](ω) := Z(W ) and Z [0]

d (ω) := Zd(W ).

For ζ > 0 and m ≥ 0, we define

Tm(ζ) :=
{
ω ∈ Ω | Z [n]

d (ω) ≤ ζ,∀d = 1, 2, 3,∀n ≥ m
}
.

Hence, for ω ∈ Tm(ζ), d ∈ {1, 2, 3}, and n > m, we may write

Z
[n]
d (ω) =

Z
[n]
dn

(ω)

Z
[n−1]
dn−1

(ω)

Z
[n−1]
dn−1

(ω)

Z
[n−2]
dn−2

(ω)
· · ·

Z
[m+1]
dm+1

(ω)

Z
[m]
dm

(ω)
Z

[m]
dm

(ω), (3.51)

where dn := d, and dn−1, . . . , dm are defined as explained below. Recall that Z [k]
d (ω) :=

Zd(W
(ω1···ωk)), and for k ∈ {n, n− 1, . . . ,m+ 1}, we have

W (ω1···ωk) =

W (ω1···ωk−1) �Γω1···ωk−1
W (ω1···ωk−1), if ωk=0

W (ω1···ωk−1) �Γω1···ωk−1
W (ω1···ωk−1), if ωk=1

Hence, if ωk = 0, we set dk−1 := δ
(
W (ω1···ωk−1)

)
from Lemma 91, such that we have

Z
[k]
dk

(ω)

Z
[k−1]
dk−1

(ω)
≤ κ, if ωk = 0. (3.52)

If ωk = 1, we set dk−1 := δ1

(
Γω1···ωk−1

)
from Lemma 90, such that we have

Z
[k]
dk

(ω)

Z
[k−1]
dk−1

(ω)
= 1, if ωk = 1 and dk = 1. (3.53)

Z
[k]
dk

(ω)

Z
[k−1]
dk−1

(ω)
≤ ζ, if ωk = 1 and dk ∈ {2, 3}. (3.54)

LetAm,n(ω) := {k ∈ {m+1, . . . , n} | ωk = 1}, andBm,n(ω) := {k ∈ {m+1, . . . , n} | ωk = 1
and dk ∈ {2, 3}}. Using (3.51), (3.52)–(3.54), for ω ∈ Tm(ζ) and n > m, we get:

Z
[n]
d (ω) ≤ κ(n−m)−|Am,n(ω)|ζ |Bm,n(ω)|ζ. (3.55)

Now, we want to upper-bound the right hand side term of the above inequality, by pro-
viding lower-bounds for the |Am,n(ω)| and |Bm,n(ω)| values.

|Am,n(ω)| lower-bound: Let A[k](ω) := ωk, hence |Am,n(ω)| =
∑n

k=m+1A
[k](ω). Fix any

α ∈ (0, 1/2), and let

Am,n(α) :=

{
ω ∈ Ω

∣∣∣ n∑
k=m+1

A[k](ω) ≥
(

1

2
− α

)
(n−m)

}
.

Hence, for any ω ∈ Am,n(α),

|Am,n(ω)| ≥ (1/2− α)(n−m). (3.56)

Moreover, by Lemma 92, P (Am,n(α)) ≥ 1− e−2α2(n−m).
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|Bm,n(ω)| lower-bound: First, note that dk is defined depending on ωk+1 value. Hence, we
may write

Bm,n(ω) = {k ∈ {m+ 1, . . . , n} | ωk = 1 and dk ∈ {2, 3}}
⊇ {k ∈ {m+ 1, . . . , n− 1} | ωk = 1, ωk+1 = 1, and dk ∈ {2, 3}}
= {k ∈ {m+ 1, . . . , n− 1} | ωk = 1, ωk+1 = 1, and δ1 (Γω1···ωk) ∈ {2, 3}} .

Let B[k] be the Bernoulli random variable on Ω, defined by

B[k](ω) := 1{ωk+1=1}1{ωk=1}1{δ1(Γω1···ωk )∈{2,3}}.

The expected value of B[k] is given by

EB[k] =
1

2k+1

∑
i1···ikik+1

1{ik+1=1}1{ik=1}1{δ1(Γi1···ik )∈{2,3}}

=
1

2k+1

∑
i1···ik−1

1{δ1(Γi1···ik−11)∈{2,3}}

=
1

2k+1

∑
i1···ik−1

∆i1···ik−11(Γ).

Since Γ ∈ Πm(γ,ε)(γ), for k > m ≥ m(γ, ε), we get

EB[k] ≥ γ0 :=
1

4

(
2

3
− γ
)
.

Let K(m,n) := {k ∈ m+ 1, . . . , n− 1 | k = m+ 1 mod 2}, the set of integers m+ 1,m+
3, . . . comprised between m + 1 and n − 1. Random variables B[k], k ∈ K(m,n), are
independent, and the expected value of their mean, denoted EBK(m,n) := 1

|K(m,n)|EB
[k],

satisfies EBK(m,n) ≥ γ0. Fix any β ∈ (0, γ0), and let

Bm,n(β) :=

ω ∈ Ω
∣∣∣ ∑
k∈K(m,n)

B[k](ω) ≥ (γ0 − β)|K(m,n)|

 .

Hence, for m ≥ m(γ, ε) and ω ∈ Bm,n(β), we have4

|Bm,n(ω)| ≥
n−1∑

k=m+1

B[k](ω) ≥
∑

k∈K(m,n)

B[k](ω) ≥ (γ0 − β)|K(m,n)| ≥ (γ0 − β)
n−m

3
.

(3.57)
Moreover, by applying Lemma 92, we have

P (Bm,n(β)) ≥ P

 ∑
k∈K(m,n)

B[k](ω) ≥ (EBK(m,n) − β)|K(m,n)|


≥ 1− e−2β2|K(m,n)|

≥ 1− e−2β2 n−m
3 .

4The last inequality could be tighten, but we only need a non-zero fraction of n−m.

100



3.4. Fast Polarization

We define Um,n(ζ, α, β) := Tm(ζ) ∩Am,n(α) ∩ Bm,n(β). Using (3.55), (3.56), and (3.57), for
n > m ≥ m(γ, ε) and ω ∈ Um,n(ζ, α, β), we have

Z
[n]
d (ω) ≤ κ(α+ 1

2
)(n−m)ζ

γ0−β
3

(n−m)ζ =
(
κα+ 1

2 ζ
γ0−β

3

)n−m
ζ.

Note that α, β, and γ (thus, γ0) are some fixed constants. Hence, for any θ > 0 (as in

the fast polarization property), we may choose ζ > 0, such that κα+ 1
2 ζ

γ0−β
3 ≤ 2−(1+θ).

Using Z [n](ω) ≤ maxd=1,2,3 Z
[n]
d (ω), we get the following inequality, that holds for any

n > m ≥ m(γ, ε) and any ω ∈ Um,n(ζ, α, β):

Z [n](ω) ≤ c2−n(1+θ) = cN−(1+θ).

where c = c(m,α, β, γ, ζ) :=
(
κα+ 1

2 ζ
γ0−β

3

)−m
ζ, andN = 2n. Note that α, β, γ, and ζ have

been fixed at this point, and only the value of m can still be varied.

To complete the proof, we need to show that Um,n(ζ, α, β) is sufficiently large (for some
m, and large enough n > m), so that we may find information sets IN of size |IN | ≥ RN ,
for R < I(W ). For this, we need the following lemma, which is essentially the same as
Lemma 1 in [2], and the proof follows using exactly the same arguments as in loc. cit.
(and also using the fact that Γ is a polarizing sequence).

Lemma 94. For any fixed ζ > 0 and any 0 ≤ δ < I(W ), there exists an integer m0(ζ, δ), such
that

P (Tm0(ζ)) ≥ I(W )− δ.

Therefore, P (Tm(ζ)) can be made arbitrarily close to I(W ), by taking m large enough,
and once we have made P (Tm(ζ)) as close as desired to I(W ), we can make P (Am,n(α))
and P (Bm,n(β)) arbitrarily close to 1, by taking n > m large enough. Hence, for any
R < I(W ), we may find m0 = m0(ζ,R) and n0 = n0(m0, α, β, γ) > m0, such that

P (Um0,n(ζ, α, β)) > R, ∀n ≥ n0,

and since we may assume that m0 ≥ m(γ, ε), we also have

Z [n](ω) ≤ c0N
−(1+θ), ∀n ≥ n0, ∀ω ∈ Um0,n(ζ, α, β) (3.58)

where c0 := c0(m0, α, β, γ, ζ).

Now, for n > 0, let Vn := {ω ∈ Ω | Z [n](ω) ≤ c0N
−(1+θ)}. Using (3.58), we have that

Um0,n(ζ, α, β) ⊆ Vn, for any n ≥ n0, and therefore P [Vn] ≥ R. On the other hand,

P [Vn] =
∑

i1···in∈{0,1}n

1

2n
1
{
Z(W (i1···in)) ≤ c0N

−(1+θ)
}

=
1

N
|IN |,

where IN :=
{
i ∈ {0, . . . , N − 1} | Z(W (i)) ≤ cN−(1+θ)

}
. It follows that |IN | ≥ RN , for

n ≥ n0.

We have shown that, given ε > 0, the fast polarization property holds for any Γ ∈
Γ(S)∞pol ∩ Πm(γ,ε)(γ), with P

(
Πm(γ,ε)(γ)

)
≥ 1− ε. We then conclude that it holds for any

Γ ∈ Γ(S)∞pol
⋂(⋃

ε>0 Πm(γ,ε)(γ)
)
, which is a measurable subset of Γ(S)∞pol, of same proba-

bility.
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Chapter 3. Purely Quantum Polar Codes for Qubit Pauli Channels

3.5 Decoding the Quantum Polar Code Using its Classical Coun-
terpart

LetW be a CMP channel andW# its classical counterpart. Let QN denote the unitary
operator corresponding to the quantum polar code (defined by the recursive application
of n polarization steps, see Section 2.5.1), and PN denote the linear transformation cor-
responding to the classical polar code. Let I and J be the set of indices corresponding
to the good and bad channels, respectively, with |I| + |J | = N := 2n. We shall use the
following notation from Section 2.5.1:

• ρI denotes the original state of system I,

• ϕIJJ ′ := (QN ⊗ IJ ′)(ρI ⊗ ΦJJ ′)(Q
†
N ⊗ IJ ′) denotes the encoded state, where ΦJJ ′

is a maximally entangled state, as defined in (2.45).

• ψIJJ ′ := (W⊗N ⊗ IJ ′)(ϕIJJ ′) denotes the channel output state.

SinceW is a CMP channel, it follows that:

ψIJJ ′ = (EIJQN ⊗ IJ ′)(ρI ⊗ ΦJJ ′)(Q
†
NE
†
IJ ⊗ IJ ′).

for a random N -qubit Pauli error EIJ ∈ ḠN . Hence, quantum polar code decoding can
be performed in the 4 steps described below.

Step 1: Apply the inverse quantum polar transform on the channel output state. Ap-
plying Q†N on the output state ψIJJ ′ , leaves the IJJ ′ system in the following state:

ψ′IJJ ′ = (Q†NEIJQN ⊗ IJ ′)(ρI ⊗ ΦJJ ′)(Q
†
NE
†
IJQN ⊗ IJ ′)

= (E′IJ ⊗ IJ ′)(ρI ⊗ ΦJJ ′)(E
′ †
IJ ⊗ IJ ′).

where E′IJ := Q†NEIJQN . As QN is a N qubit Clifford, we have that E′IJ ∈ ḠN ' ḠN1 ,
and thus write E′IJ = P−1

N EIJ , or equivalently:

EIJ = PNE
′
IJ .

Put differently, EIJ is the classical polar encoded version of E′IJ .

Step 2: Quantum measurement.5 Let E′IJ = ⊗
i∈I

E′i ⊗
j∈J

E′j , with E′i, E
′
j ∈ Ḡ1. Measuring

XjXj′ and ZjZj′ observables6, allows determining the value of E′j , for any j ∈ J , since
no errors occurred on the J ′ system.

Step 3: Decode the classical polar code counterpart. We note that the error EIJ can be
seen as the output of the classical vector channel (W#)N , when the “all-identity vector”
σN0 ∈ ḠN1 is applied at the channel input. However, by the definition of the classical
channel W#, we have (W#)N (EIJ | σN0 ) = (W#)N (σN0 | EIJ ), meaning that we can
equivalently consider σN0 as being the observed channel output, and EIJ the (unknown)
channel input. Hence, we have given (i) the value of E′J := ⊗j∈J E′j , and (ii) a noisy ob-
servation (namely σN0 ) of EIJ = PNE

′
IJ . We can then use classical polar code decoding

to recover the value of E′I := ⊗i∈I E′i.
Step 4: Error correction. Once we have recovered the E′J (step 2) and E′I (step 3) values,
we can apply the E′IJ ⊗IJ ′ operator on ψ′IJJ ′ , thus leaving the IJJ ′ system in the state
ρI ⊗ ΦJJ ′ .

5Steps (1) and (2) together perform a set of measurements that are equivalent to measuring the elements
of the stabilizer set S̄IJJ ′ defined in (2.49).

6Here, indices j and j′ indicate the j-th qubits of J and J ′ systems.
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3.6. Purely Quantum vs. CSS-based Polarization

3.6 Purely Quantum vs. CSS-based Polarization

In this section, using a numerical simultion, we compare the speed of polarizations of
purely quantum construction presented in this chapter and the quantum CSS construc-
tion from Section 1.5.1, for a finite length code. We consider a quantum erasure channel
(Definition 47)W , with erasure probability ε = 0.25. The symmetric coherent information
ofW is given by,

I(W) = 1− 2ε = 0.5. (3.59)

In Figure 3.12 below, we plot the Bhattacharyya parameter of the synthesized virtual
channels, for n = 16 polarization steps, for both the purely quantum and the CSS-based
polarization. Almost noiseless virtual channels are those with Bhattacharyya parameter
approaching 0 , while almost noisy virtual channels are those with Bhattacharyya param-
eter approaching 1.

• For the purely quantum polarization (solid black curve), the Bhattacharyya param-
eter is given by Definition 80. The fraction of good channels is almost equal to
(1 + I(W)) /2 = 0.75 and the fraction of preshared EPR pairs is almost equal to
(1− I(W)) /2 = 0.25.

• For the CSS-based polarization (solid red curve), the Bhattacharyya parameter is
the sum of the two classical Bhattacharyya parameters obtained by polarizing in-
duced amplitude and phase channels WA and WP . The fraction of good channels
approaches I(W) = 0.5.

As expected, our scheme achieves a higher communication rate than the CSS-based one,
since it uses entanglement. To compare the two schemes in terms of net rates, that is,
the rate minus the fraction of preshared EPR pairs, we shift the purely quantum polar-
ization curve to the left by (1− I(W)) /2 = 0.25, thus obtaining the dashed black curve
in Figure 3.12, which is virtually superimposed on the CSS-based polarization curve. We
conclude that our construction and the CSS construction exhibit the same polarization
speed, which is given by the slope of the two curves.
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4
Multilevel Polarization of Pauli Channels

Recall that in Chapter 3, for Pauli channels, we first show polarization, using the set of 9
two-qubit Cliffords L from Figure 2.4 (see Section 3.2). We then show polarization, using
a subset S ⊂ L containing three two-qubit Cliffords (see Section 3.3.1). For the proofs, we
rely on guaranteed improvement of the good channel after one polarization step. Further,
using a computer simulation, we look for guaranteed improvement or degradation after
two polarization steps in order to completely derandomize the channel combining oper-
ation. Moreover, we note that for L3,3 ∈ L, we almost have the gauranteed improvement
for a virtual channel after two polarization steps (see Remark 86).

In this chapter, we consider the polarization construction, with the gateL3,3 ∈ L, for Pauli
channels. We show a different polarization phenomenon, where polarization happens in
multi-levels instead of two levels in the sense of [67, 68]. More precisly, the synthesized
virtual channels also tend to be “half-noisy” except being completely noisy or noiseless.
The half-noisy channels need to be frozen by fixing their inputs in either the amplitude or
the phase basis, while preshared EPR pairs are required for the completely noisy channels
as before.

As some of the bad channels are frozen in either the amplitude or the phase basis, this re-
duces the number of preshared EPR pairs compared to the construction in Chapter 3. We
also give an upper bound on the number of preshared EPR pairs, which is an equality for
the quantum erasure channel. In particular, for a quantum erasure channel with erasure
probability ε, the fraction of preshared EPR pairs is ε2, while it is ε for the construction
proposed in Chapter 3 (see Section 3.6). Therefore, the number of preshared EPR pairs is
significantly reduced, taking advantage of the multilevel nature of polarization. We con-
struct a quantum polar code based on the multilevel polarization for which the decoding
can also be efficiently performed by decoding the classical counterpart.

Finally, we present a slightly different construction utilizing a quantum circuit equiva-
lence, the goal of which is to improve the speed of multilevel polarization. For a quan-
tum erasure channel, we show with the help of a computer program that the speed of
multilevel polarization improves significantly for this alternative construction compared
to the first construction.
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4.1. Noiseless, Half-noisy and Noisy channels

4.1 Noiseless, Half-noisy and Noisy channels

Recall from Chapter 3 that quantum polarization on a Pauli channel happens if and
only if the classical polarization on its classical counterpart happens (see Proposition 78
and Corollary 79). This allowed us to prove the quantum polarization by showing po-
larization for the classical counterpart. In what follows, we prove multilevel polarization
for the CMP channel, using the polar code construction on its classical counterpart chan-
nel. In this section, using the Bhattacharyya parameter from Definition 80, we provide
conditions for the classical counterpart channel to be completely noiseless, half-noisy or
completely noisy. We shall use the following notation from Chapter 3.

1. Let ḠN := GN/{±1,±i} be the Abelian group obtained by taking the quotient of the
N qubit Pauli group GN by its centralizer.

2. For the classical counterpart of a CMP channelW , we shall use W := W#. Recall
that W is a classical channel with the input alphabet Ḡ1 := G1/{±1,±i}.

3. We shall identify I ≡ 00, Z ≡ 01, X ≡ 10, and Y ≡ 11. Using this identification, we
may write Ḡ1 = {00, 01, 10, 11}, or sometimes Ḡ1 = {0, 1, 2, 3}, which will be clear
from the context.

For any x, x′, d ∈ Ḡ1, we first define two information measures I(Wx,x′) and Id(W ) as
follows

I(Wx,x′) :=
∑
y

1

2

[
W (y|x) log2

W (y|x)
1
2 [W (y|x) +W (y|x′)] +W (y|x′) log2

W (y|x′)
1
2 [W (y|x) +W (y|x′)]

]
.

(4.1)

Id(W ) :=
1

4

∑
x

I(Wx,x⊕d). (4.2)

Note that I(Wx,x′) is the symmetric mutual information of the binary-input channel (Def-
inition 2) obtained by restricting the input alphabet of W to {x, x′} ⊆ Ḡ1.

Further note that the parameter Zd(W ) from Definition 80 can be written as follows, for
x, x′, x′′, d ∈ Ḡ1,

Z(Wx,x′) :=
∑
y

√
W (y|x)W (y|x′). (4.3)

Zd(W ) :=
1

4

∑
x∈Ḡ1

Z(Wx,x⊕d), (4.4)

=
1

2
[Z(W0,d) + Z(Wx′′,x′′⊕d)], for any x′′ 6= 0, d, (4.5)

where (4.5) follows from Z(Wx,x′) = Z(Wx′,x). Also recall from Definition 80 that the
Bhattacharyya parameter of W is given by,

Z(W ) :=
1

3

∑
d∈Ḡ1:d 6=0

Zd(W ). (4.6)

We now proceed with several lemmas. First, we give the following lemma for the sym-
metric mutual information I(W ) and the Bhattacharyya parameter Z(W ) for the non-
binary input channel W , analogous to Lemma 4.
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Chapter 4. Multilevel Polarization of Pauli Channels

Lemma 95 ([24]). For the classical counterpart channel W , we have

I(W ) ≥ log2

4

1 + 3Z(W )
. (4.7)

I(W ) ≤ 6(log2 e)
√

1− Z(W )2. (4.8)

The first inequality in the above Lemma implies that I(W ) approaches to 2 if Z(W ) ap-
proaches to 0, and the second inequality implies that I(W ) approaches to 0 if Z(W ) ap-
proaches to 1.

In the lemma below, we show that if any two parameters from the set
{Z1(W ), Z2(W ), Z3(W )}, defined in (4.5), approach 1, the remaining third parameter will
also approach 1.

Lemma 96. For any {d1, d2, d3} = {1, 2, 3}, if Zd1(W ) ≥ 1− ε1, and Zd2(W ) ≥ 1− ε2, then,

Zd3(W ) ≥ 1− ε3, where ε3 = 4(
√
ε1 +

√
ε2)2. (4.9)

Proof. For x ∈ Ḡ1, consider a vector ~A(x) such that ~A(x) = (
√
W (y|x), y ∈ Y ). It follows

that ~A(x) · ~A(x′) = Z(Wx,x′) and | ~A(x) − ~A(x′)| =
√

2
(
1− Z(Wx,x′)

)
, where | ~A(x) −

~A(x′)| is the Euclidean distance between the vectors ~A(x) and ~A(x′). Using the triangle
inequality and d1 ⊕ d2 = d3, we have that

√(
1− Z(Wx,x⊕d3)

)
≤
√(

1− Z(Wx,x⊕d1)
)

+
√(

1− Z(Wx⊕d1,x⊕d1⊕d2)
)
. (4.10)

For d ∈ {d1, d2}, we have that Zd(W ) ≥ 1 − ε =⇒ (1 − Z(Wx,x⊕d)) ≤ 4ε,∀x. Then,
from (4.10), √(

1− Z(Wx,x⊕d3)
)
≤ 2(
√
ε1 +

√
ε2),∀x

=⇒ Zd3(W ) ≥ 1− 4(
√
ε1 +

√
ε2)2.

We now introduce the partial channels of the non-binary input channel W .

Definition 97. (Partial channels). Consider x = x1x2 ∈ Ḡ1 = {00, 01, 10, 11} is given as the
channel input of W . We define the following three binary-input channels that are obtained by
randomizing one bit of information from x,

W [1] : x1 → y; W [1](y|0) =
W (y|00) +W (y|01)

2
, W [1](y|1) =

W (y|10) +W (y|11)

2
. (4.11)

W [2] : x2 → y; W [2](y|0) =
W (y|00) +W (y|10)

2
, W [2](y|1) =

W (y|01) +W (y|11)

2
. (4.12)

W [3] : x1 ⊕ x2 → y; W [3](y|0) =
W (y|00) +W (y|11)

2
, W [3](y|1) =

W (y|01) +W (y|10)

2
. (4.13)

In particular, the partial channel W [1] takes x1 as input and randomizes x2, the partial
channel W [2] takes x2 as input and randomizes x1, and the partial channel W [3] takes
x1 ⊕ x2 as input and randomizes both x1 and x2, individually. For {d1, d2, d3} = {1, 2, 3},
the above three definitions can be merged into the following

W [d1](y|0) =
W (y|0) +W (y|d1)

2
, and W [d1](y|1) =

W (y|d2) +W (y|d3)

2
. (4.14)

We now prove several bounds relating Zd(W ), Z(W [d]) and I(W ).
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Lemma 98. Given {d1, d2, d3} = {1, 2, 3}, we have the following inequalities, which bear simi-
larities to Lemmas 9 and 10 from [67]:

(a) Z(W [d1]) ≤ Zd2(W ) + Zd3(W ).

(b) Z(W [d1]) ≥ Zdi(W ), where Zdi(W ) = max(Zd2(W ), Zd3(W )).

(c) I(W ) ≤ 1
3

∑
d∈{1,2,3}

√
1− Zd(W )2 + 1

3

∑
d∈{1,2,3}

√
1− Z(W [d])2.

Proof. Point (a): The Bhattacharyya parameter of the partial channel W [d1] is given by,

Z(W [d1]) =
∑
y

√
W [d1](y|0)W [d1](y|1)

=
1

2

∑
y

√ ∑
l∈{0,d1}m∈{d2,d3}

W (y|l)W (y|m)

≤ 1

2

∑
l∈{0,d1}m∈{d2,d3}

∑
y

√
W (y|l)W (y|m)

= Zd2(W ) + Zd3(W ),

where the second equality follows from (4.14), the third inequality follows from
√∑

x ax ≤∑
x

√
ax, and the fourth equality follows from l ⊕ m ∈ {d2, d3},∀l,m as d3 = d1 ⊕ d2

and (4.5).

Point (b): For W [d1], we consider the following two-dimensional vectors:

~B0(y) = (
√
W (y|0),

√
W (y|d1)).

~B1(y) = (
√
W (y|d2),

√
W (y|d1 ⊕ d2)).

~B2(y) = (
√
W (y|d1 ⊕ d2),

√
W (y|d2)).

Then, we have that

| ~B0(y)| =
√
W (y|0) +W (y|d1).

| ~B1(y)| = | ~B2(y)| =
√
W (y|d2) +W (y|d1 ⊕ d2).

~B0(y) · ~B1(y) =
√
W (y|0)

√
W (y|d2) +

√
W (y|d1)

√
W (y|d1 ⊕ d2).

~B0(y) · ~B2(y) =
√
W (y|0)

√
W (y|d1 ⊕ d2) +

√
W (y|d1)

√
W (y|d2).

From the definitions of Z(W [i]) and Zd(W ), it follows:

Z(W [d1]) =
1

2

∑
y

| ~B0(y)|| ~B1(y)| = 1

2

∑
y

| ~B0(y)|| ~B2(y)|. (4.15)

Zd2(W ) =
1

2

∑
y

~B0(y) · ~B1(y). (4.16)

Zd3(W ) = Zd1⊕d2(W ) =
1

2

∑
y

~B0(y) · ~B2(y). (4.17)

Then, from the Cauchy-Schwartz inequality, we have that

Zd(W ) ≤ Z(W [d1]), for d = d2, d3. (4.18)
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Point (c): I(W ) can be written as following [67, Lemma 10],

I(W ) =
1

4

∑
y

∑
x∈Ḡ1

W (y|x) log2

W (y|x)

P (y)

=
1

4

∑
y

1

6

∑
d∈{d1,d2,d3}

∑
x

[
W (y|x) log2

W (y|x)

P (y)
+W (y|x⊕ d) log2

W (y|x⊕ d)

P (y)

]
=

1

24

∑
d∈{d1,d2,d3}

∑
x

W (y|x) log2

W (y|x)
1
2 [W (y|x) +W (y|x⊕ d)]

+W (y|x⊕ d) log2

W (y|x⊕ d)
1
2 [W (y|x) +W (y|x⊕ d)]

+
1

12

∑
y

∑
d∈{d1,d2,d3}

∑
x

W (y|x) +W (y|x⊕ d)

2
log2

1
2 [W (y|x) +W (y|x⊕ d)]

P (y)

=
1

12

∑
d∈{d1,d2,d3}

∑
x

I(Wx,x⊕d) +
1

6

∑
y

∑
d∈{d1,d2,d3}

W (y|0) +W (y|d)

2
log2

1
2 [W (y|0) +W (y|d)]

P (y)

+
1

12

∑
y

∑
d∈{d1,d2,d3}

∑
x6=0,d

W (y|x) +W (y|x⊕ d)

2
log2

1
2 [W (y|x) +W (y|x⊕ d)]

P (y)

=
1

3

∑
d 6=0

Id(W ) +
1

6

∑
d∈{d1,d2,d3}

∑
y

[
W [d](y|0) log2

W [d](y|0)

P (y)
+W [d](y|1) log2

W [d](y|1)

P (y)

]
=

1

3

∑
d6=0

Id(W ) +
1

3

∑
d∈{1,2,3}

I(W [d]),

where the first equality follows from Definition 74, and parameters I(Wx,x′), Id(W ) are
defined in (4.1) and (4.2), respectively. Also, I(W [d]) is the symmetric mutual information
of the binary-input partial channel W [d]. Using I(Wx,x′) ≤

√
1− Z(Wx,x′)2 from [2], and

concavity of the function f(x) =
√

1− x2, we have that

I(W ) ≤ 1

3

∑
d∈{1,2,3}

√
1− Zd(W )2 +

1

3

∑
i∈{1,2,3}

√
1− Z(W [i])2. (4.19)

Finally, we prove the following lemma that will be used to define half-noisy channels.

Lemma 99. Given Zd1(W ) ≤ ε, Zd2(W ) ≤ ε, and Zd3(W ) ≥ 1 − ε, with ε > 0, and
{d1, d2, d3} = {1, 2, 3}, then

(a) I(W [d3]) ∈ [1− log2(1 + 2ε), 1].

(b) |I(W )− I(W [d3])| ≤ ∆, where ∆ =
√

2ε+ log2(1 + 2ε).

Proof. Point (a): Since W [d3] is a binary-input channel, I(W [d3]) ≤ 1. From point (a) of
Lemma 98, we have that

0 ≤ Z(W [d3]) ≤ Zd1(W ) + Zd2(W ) ≤ 2ε. (4.20)

Using the inequality I(Wb) ≥ 1 − log2(1 + Z(Wb)) for any binary-input channel Wb

from [2], we can lower bound I(W [d3]) as follows

I(W [d3]) ≥ 1− log2(1 + 2ε). (4.21)

Hence,
I(W [d3]) ∈ [1− log2(1 + 2ε), 1]. (4.22)
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Point (b): From Point (b) of Lemma 98, we have that

Z(W [di]) ≥ Zd3(W ) ≥ 1− ε,∀di = d1, d2. (4.23)

In point 3 of Lemma 98, substituting the lower bound onZd(W ), i.e., Zd1(W ) = Zd2(W ) =
0, Zd3(W ) = 1− ε, and the lower bound on Z(W [d]) from (4.20) and (4.23), i.e., Z(W [d1]) =
Z(W [d2]) = 1− ε, Z(W [d3]) = 0, we have the following upper bound on I(W ),

I(W ) ≤ 1 +
√

2ε. (4.24)

From inequality in (4.7), I(W ) can also be lower bounded, as below

I(W ) ≥ log2

4

2 + ε

= 1− log2(1 +
ε

2
). (4.25)

From (4.24) and (4.25), we have that

I(W ) ∈ [1− log2(1 +
ε

2
), 1 +

√
2ε]. (4.26)

From (4.22) and (4.26), we have that

|I(W )− I(W [d3])| ≤ ∆, (4.27)

where ∆ = max
(√

2ε+ log2(1 + 2ε), log2(1 + ε
2)) =

√
2ε+ log2(1 + 2ε

)
.

We are now in a position to define the noiseless, half-noisy, and noisy channels.

Definition 100. Given δ > 0, a channel W is said to be:

(a) δ-noiseless if Z1(W ) < δ,Z2(W ) < δ, and Z3(W ) < δ.

(b) δ-noisy if Z1(W ) > 1− δ, and Z2(W ) > 1− δ.

(c) δ-half-noisy of type d3, ifZd1(W ) < δ,Zd2(W ) < δ, andZd3(W ) > 1−δ, with {d1, d2, d3} =
{1, 2, 3}.

Recall that W takes as input two bits x1x2, where x1, x2, and x1 ⊕ x2 are inputs to the
partial channels W [1],W [2], and W [3], respectively.

If W is such that Z1(W ) < δ,Z2(W ) < δ, and Z3(W ) < δ, using (4.7), we have that
I(W )→ 2 as δ → 0. Therefore, we call W , δ-noiseless.

If W is such that Z1(W ) > 1− δ, Z2(W ) > 1− δ, using (4.8) and Lemma 96, we have that
I(W )→ 0 as δ → 0. Therefore, we call W , δ-noisy.

IfW is such thatZd1(W ) < δ,Zd2(W ) < δ, andZd3(W ) > 1−δ, with {d1, d2, d3} = {1, 2, 3}
and δ → 0, from point (a) of Lemma 99, the binary-input partial channel W [d3] tends to
be noiseless, that is, I(W [d3]) → 1. We may take d3 = 1, without the loss of generality.
Then, we can reliably transmit one bit of information, namely x1, the input to the partial
channel W [1], using W . Moreover, from point (b) of Lemma 99, I(W [d3]) → I(W ). Thus,
the remaining one bit from the input of W , namely x2, the input to the partial channel
W [2], is completely randomized or erased. Therefore, we call W , “δ-half-noisy of type
d3”.
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4.2 Multilevel Polarization

In this section, we show that the CMP channel polarizes into completely noiseless,
half-noisy or completely noisy channels, under the recursive channel combining and
splitting procedure, using the two qubit Clifford L3,3 ∈ L (see Figure 2.4) as the chan-
nel combining operation. We utilize the channel combining and splitting procedure on
the classical counterpart to prove the polarization, where the permutation corresponding
to L3,3, that is, Γ3,3 from Figure 3.2, is taken as the channel combining operation. Since
the single qubit gate L3,3 generates the same permutation on the set Ḡ1 as the Hadamard
gate H by the conjugate action, for our purposes the following two-qubit Clifford L is
equivalent to L3,3.

H W B1A′1

H W B2A′2

L

Figure 4.1: Two-qubit Clifford gate L. Here H is the Hadamard gate.

The permutation generated by the conjugate action of L on Ḡ1 × Ḡ1 is depicted in the
following figure, which is the same as Γ3,3

1.

H W y1
u2, u1 ⊕ v1

u1, u2

H W
u2 ⊕ v2, v1

y2v1, v2

Γ(L)

Figure 4.2: The permutation Γ(L). To avoid any possible confusion, two bits of the input and
output symbols are separated here by a comma.

From (3.24) and (3.25), the virtual channels obtained after the channel combining and
splitting procedure on two copies of W , using Γ(L) as channel combining operation, are
given by

(W �W )(y1, y2|u1, u2) =
1

4

∑
v1,v2

W (y1|u2, u1 ⊕ v1)W (y2|u2 ⊕ v2, v1), (4.28)

(W �W )(y1, y2, u1, u2|v1, v2) =
1

4
W (y1|u2, u1 ⊕ v1)W (y2|u2 ⊕ v2, v1), (4.29)

where u1, u2, v1, v2 ∈ {0, 1}.

4.2.1 Several Inequalities for the Good and Bad Channels

Here, we shall provide many inequalities for the good and bad channel synthesized after
one polarization step, which we shall use later for the proof of multilevel polarization.

1Recall that 00 ≡ I, 01 ≡ Z, 10 ≡ X, 11 ≡ Y .
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Lemma 101. The following equalities hold for the good channel W �W ,

Z1(W �W ) = Z2(W ). (4.30)

Z2(W �W ) = Z1(W )2. (4.31)

Proof. Proof of (4.30): We have that

Z1(W �W ) =
1

4

∑
y1,y2,u1,u2

v1,v2

√
(W �W )(y1, y2, u1, u2|v1, v2)(W �W )(y1, y2, u1, u2|v1, v2 + 1)

=
1

16

∑
y1,y2,u1,u2

v1,v2

W (y1|u2, u1 + v1)
√
W (y2|u2 + v2, v1)W (y2|u2 + v2 + 1, v1)

=
1

16

∑
y2,u1,u2
v1,v2

√
W (y2|u2 + v2, v1)W (y2|u2 + v2 + 1, v1)

=
1

4

∑
u1,u2

Z2(W ) = Z2(W ). (4.32)

Proof of (4.31): We have that

Z2(W �W ) =
1

4

∑
y1,y2,u1,u2

v1,v2

√
(W �W )(y1, y2, u1, u2|v1, v2)(W �W )(y1, y2, u1, u2|v1 + 1, v2)

=
1

16

∑
y1,y2,u1,u2

v1,v2

√
W (y1|u2, u1 + v1)W (y1|u2, u1 + v1 + 1)

·
√
W (y2|u2 + v2, v1)W (y2|u2 + v2, v1 + 1)

=
1

16

∑
y1,u1,u2

√
W (y1|u2, u1)W (y1|u2, u1 + 1)

·
∑

y2,v1,v2

√
W (y2|v2, v1)W (y2|v2, v1 + 1)

= Z1(W )2. (4.33)

Lemma 102. The following inequalities hold for the partial channels, (W�W )[i] and (W�W )[i],
for all i ∈ {1, 2},

Z
(
(W �W )[1]

)
≤ 2Z(W [2])− Z(W [2])2. (4.34)

Z
(
(W �W )[2]

)
= Z(W [1]). (4.35)

Z
(
(W �W )[1]

)
= Z1(W )Z(W [2]). (4.36)

Z
(
(W �W )[2]

)
≤ Z(W [1]). (4.37)

Proof. The transition probabilities of the partial channels (see (4.11) and (4.12)) (W�W )[i]

and (W �W )[j] for i, j ∈ {1, 2} is given by

(W�W )[1](y1, y2|u1) =
(W �W )(y1, y2|u1, 0) + (W �W )(y1, y2|u1, 1)

2
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=
1

8

∑
v1,v2

[W (y1|0, u1 + v1)W (y2|v2, v1) +W (y1|1, u1 + v1)W (y2|v2 + 1, v1)]

=
1

8

∑
v1

[W (y1|0, u1 + v1)
∑
v2

W (y2|v2, v1) +W (y1|1, u1 + v1)
∑
v2

W (y2|v2 + 1, v1)]

=
1

4

∑
v1

[W (y1|0, u1 + v1)W [2](y2|v1) +W (y1|1, u1 + v1)W [2](y2|v1)]

=
1

2

∑
v1

W [2](y1|u1 + v1)W [2](y2|v1). (4.38)

(W�W )[2](y1, y2|u2) =
(W �W )(y1, y2|0, u2) + (W �W )(y1, y2|1, u2)

2

=
1

8

∑
v1,v2

[W (y1|u2, v1)W (y2|u2 + v2, v1) +W (y1|u2, v1 + 1)W (y2|u2 + v2, v1)]

=
1

8

∑
v1

[W (y1|u2, v1)
∑
v2

W (y2|u2 + v2, v1) +W (y1|u2, v1 + 1)
∑
v2

W (y2|u2 + v2, v1)]

=
1

4

∑
v1

[W (y1|u2, v1) +W (y1|u2, v1 + 1)]W [2](y2|v1)

=
1

2
W [1](y1|u2)

∑
v1

W [2](y2|v1). (4.39)

(W �W )[1](y1, y2, u1, u2|v1) =
(W �W )[1](y1, y2, u1, u2|v1, 0) + (W �W )[1](y1, y2|v1, 1)

2

=
1

8

[
W (y1|u2, u1 + v1)W (y2|u2, v1) +W (y1|u2, u1 + v1)W (y2|u2 + 1, v1)

]
=

1

4
W (y1|u2, u1 + v1)W [2](y2|v1).

(4.40)

(W �W )[2](y1, y2, u1, u2|v2) =
(W �W )[1](y1, y2, u1, u2|0, v2) + (W �W )[1](y1, y2|1, v2)

2

=
W (y1|u2, u1)W (y2|u2 + v2, 0) +W (y1|u2, u1 + 1)W (y2|u2 + v2, 1)

8
.

(4.41)

Proof of (4.34): From (4.38), we have that

(W �W )[1](y1, y2|0) =
W [2](y1|0)W [2](y2|0) +W [2](y1|1)W [2](y2|1)

2

(W �W )[1](y1, y2|1) =
W [2](y1|0)W [2](y2|1) +W [2](y1|1)W [2](y2|0)

2

Define α(y1) = W [2](y1|0), β(y2) = W [2](y2|0), δ(y1) = W [2](y1|1) and γ(y2) = W [2](y2|1).
Then, the following equalities hold,

Z(W [2]) =
∑
y1

√
α(y1)δ(y1) =

∑
y2

√
β(y2)γ(y2) (4.42)∑

y1

α(y1) =
∑
y1

δ(y1) =
∑
y2

β(y2) =
∑
y2

γ(y2) = 1 (4.43)
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The Bhattacharyya parameter of the partial channel (W �W )[1] is given by

Z
(
(W �W )[1]

)
=
∑
y1,y2

√
(W �W )[1](y1, y2|0)(W �W )[1](y1, y2|1)

=
1

2

∑
y1,y2

√
α(y1)β(y2) + δ(y1)γ(y2)

√
α(y1)γ(y2) + δ(y1)β(y2)

≤ 1

2

∑
y1

[α(y1) + δ(y1)]
∑
y2

√
β(y2)γ(y2) +

1

2

∑
y1

√
α(y1)δ(y1)

∑
y2

[β(y2) + γ(y2)]

−
∑
y1,y2

√
α(y1)δ(y1)β(y2)γ(y2)

= 2Z(W [2])− Z(W [2])2,

where for the third inequality, we have used the following inequality from [2]

√
(αβ + δγ)(αγ + δβ) ≤ (

√
αβ +

√
γδ)(
√
αγ +

√
δβ)− 2

√
αβγδ. (4.44)

and the fourth equality follows from (4.42) and (4.43).

Proof of (4.35): The Bhattacharyya parameter of the partial channel (W �W )[2] is given
by

Z((W �W )[2]) =
1

2

∑
y1,y2

√
(W �W )[2](y1, y2|0)

√
(W �W )[2](y1, y2|1)

=
1

2

∑
y1

√
W [1](y1|0)W [1](y1|1)

∑
y2

∑
v1

W [1](y2|v1)

= Z(W [1]),

where the second equality follows from (4.39).

Proof of (4.36): The Bhattacharyya parameter of the partial channel (W �W )[1] is given
by

Z
(
(W �W )[1]

)
=

∑
y1,y2,u1,u2

√
(W �W )[1](y1, y2, u1, u2|0)(W �W )[1](y1, y2, u1, u2|1)

=
1

4

∑
y1

∑
u1,u2

√
W (y1|u2, u1)W (y1|u2, u1 + 1)

∑
y2

√
W [2](y2|0)W [2](y2|1)

= Z1(W )Z(W [2]), (4.45)

where the second equality follows from (4.40).

Proof of (4.37): The Bhattacharyya parameter of the partial channel (W �W )[2] is given
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by

Z
(
(W �W )[2]

)
=

∑
y1,y2,u1,u2

√
(W �W )[2](y1, y2, u1, u2|0)(W �W )[2](y1, y2, u1, u2|1)

≤
∑

y1,y2,u2

√∑
u1

(W �W )[2](y1, y2, u1, u2|0)
∑
u′1

(W �W )[2](y1, y2, u′1, u2|1)

=
1

4

∑
y1,y2,u2

√√√√1

2

(∑
u1

W (y1|u2, u1)

)
W (y2|u2, 0) +

1

2

(∑
u1

W (y1|u2, u1 + 1)

)
W (y2|u2, 1)

·

√√√√√1

2

∑
u′1

W (y1|u2, u′1)

W (y2|u2 + 1, 0) +
1

2

∑
u′1

W (y1|u2, u′1 + 1)

W (y2|u2 + 1, 1)

=
1

2

∑
y1,y2,u2

W [1](y1|u2)

√
W (y2|u2, 0) +W (y2|u2, 1)

2

√
W (y2|u2 + 1, 0) +W (y2|u2 + 1, 0)

2

=
1

2

∑
y2,u2

√
W [1](y2|u2)W [1](y2|u2 + 1)

= Z(W [1]),

where for the second inequality, consider vectors ~A(y1, y2, u2) = (
√

(W �W )[2](y1, y2, u1, u2|0))u1

and ~B(y1, y2, u2) = (
√

(W �W )[2](y1, y2, u1, u2|1))u1 . Then, it follows from the Cauchy
-Schwartz inequality, | ~A(y1, y2, u2) · ~B(y1, y2, u2)| ≤ | ~A(y1, y2, u2)|| ~B(y1, y2, u2)|. The third
equality follows from (4.41).

4.2.2 Proof of Multilevel Polarization

We define W (0) := W �W and W (1) := W �W , and consider the recursive application
of channel combining and splitting procedure, W 7→ (W (0),W (1)). After two steps of
polarization, we have a set of four virtual channels, (W (i1))(i2),∀i1i2 ∈ {0, 1}2. Similarly,
after n polarization steps, we have the following set of 2n virtual channels,

W (i1···in) := (W (i1···in−1))(in),∀i1 · · · in ∈ {0, 1}n. (4.46)

We now state the multilevel polarization theorem.

Theorem 103. Let {W (i1···in)|i1 · · · in ∈ {0, 1}n} be the set of virtual channels defined in (4.46),
when the permutation Γ(L) is used as channel combining operation. Then, for any 0 < δ < 1

2 ,

lim
n→∞

#{i1 · · · in ∈ {0, 1}n |W (i1···in) is either δ-noiseless, δ-half-noisy of type 1 or 2, or δ-noisy}
2n

= 1.

Remark 104. The end result of the multilevel polarization may appear to be similar to the quan-
tum CSS construction presented in Section 1.5.1. However, note that the multilevel polarization is
fundamentally different from the quantum CSS construction, as the synthesized virtual channels
here are quantum channels at every polarization step, which are identifiable to a classical channel
with non-binary input. However, for the CSS construction, we have two classical virtual channels
with binary input, obtained by two different classical polar code constructions (see Figure 1.10).

Remark 105. It is easily seen that the multilevel polarization does not happen when the channel
combining operation is fixed to the CNOT gate (without Hadamard afterward). Taking CNOT
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gate as the channel combining operation, we have the following,

Z1(W �W ) = Z1(W ). (4.47)

Z2(W �W ) = Z2(W )2. (4.48)

Hence, from (4.47), the parameter Z1 remains fixed, implying that the multilevel polarization into
completely noiseless, half-noisy, and completely noisy channels does not happen. Note that in
Lemma 101, where the channel combining operation is fixed to (H ⊗ H)CNOT , Z1(W � W )
depends on Z2(W ) and Z2(W � W ) depends on Z1(W ). Hence, there is improvement for both
parameters Z1 and Z2, when we take many good channels in succession, which is one of the key
arguments in the proof of multilevel polarization theorem, below.

Note that it is sufficient to prove the above theorem assuming that n goes to infinity
through even values 2, 4, 6, . . . . Indeed if the above theorem holds for n going to infinity
through even values, we can set W = W (i1), for all i1 ∈ {0, 1}, and then it follows that it
also holds for n going to infinity through odd values. Therefore, from now on, we assume
that n = 2m.

In (4.34)-(4.37), the upper bound on Z(W (i1)[d]
), for any i1 ∈ {0, 1} and d ∈ {1, 2}, is

a function of Z(W [d′]), such that {d, d′} = {1, 2}. Therefore, applying the transform

W → (W (0),W (1)) twice, we get an upper bound on Z(W (i1i2)[d]
),∀i1i2 ∈ {0, 1}2, which

is a function of Z(W [d]). For this reason, it is convenient to consider even steps of polar-
ization, i.e., n = 2m, and use W → (W (00),W (01),W (10),W (11)) as our basic transform for
recursion. For any given sequence i1 · · · in ∈ {0, 1}n, we write i1 · · · in = ω1 · · ·ωm, such
that ωk = i2k−1i2k ∈ {0, 1}2,∀k > 0.

To prove Theorem 103, we will express the limit therein as the probability of an event on a
probability space. Therefore, suppose that {Bi : i = 0, 1, . . .∞} is a sequence of random
i.i.d variables defined on a probability space (Ω,F , P ), where each Bi takes values in
{0, 1}2 with equal probability, meaning that P (Bi = 00) = P (Bi = 01) = P (Bi = 10) =
P (Bi = 11) = 1

4 . Let F0 = {φ,Ω} be the trivial σ-algebra and Fm, m ≥ 1 be the σ-field
generated by (B1, . . . , Bm). Define a random sequence of channels {Wm : m ≥ 0} on
the probability space, such that W0 = W , and at any time m ≥ 1, Wm = Wωm

m−1, where
ωm ∈ {0, 1}2 is the value of Bm. Therefore, if B1 = ω1, B2 = ω2, . . . , Bm = ωm, we have
that Wm = W (ω1···ωm).

For a 0 < δ < 1
2 , we define the following events on probability space,

A = {ω ∈ Ω : ∃m0,∀m ≥ m0,Wm is δ-noiseless}. (4.49)
B = {ω ∈ Ω : ∃m0,∀m ≥ m0,Wm is δ-half-noisy of type 1}. (4.50)
C = {ω ∈ Ω : ∃m0,∀m ≥ m0,Wm is δ-half-noisy of type 2}. (4.51)
D = {ω ∈ Ω : ∃m0,∀m ≥ m0,Wm is δ-noisy}. (4.52)

The intersection of any two of the above sets is the null set. Note that the limit in Theo-
rem 103 is equal to P (A∪B ∪C ∪D), hence, in other words, Theorem 103 states that one
of the events from A,B,C,D occurs with probability 1, as n goes to infinity.
We first prove the following Lemmas 106, 107 and 108, and then use them to prove the
above polarization theorem.

Lemma 106. Consider a stochastic process {Tm : m ≥ 0} defined on (Ω,F , P ) such that it
satisfies the following properties:

1. Tm takes values in [0, 1] and is measurable with respect to Fm, that is, T0 is a constant and
Tm is a function of (B1, . . . , Bm).
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2. Process {(Tm,Fm) : m ≥ 0} is a super-martingale, i.e., EBm+1 [Tm+1 | Tm = tm, . . . , T1 =
t1, T0] ≤ tm, for any m > 0 and all possible t1, . . . , tm.

3. Tm+1 = T 2
m with probability 1

2 .

Then, the limit T∞ = limm→∞ Tm exists with probability 1, and T∞ takes values in {0, 1}.

Proof. The proof is similar to [2, Proposition 9]. Since the process {(Tm,Fm) : m ≥ 0} is a
super-martingale, Tm converges with probability 1. This gives the proof of the first part,
which implies that limm→∞|Tm+1−Tm| = 0. As Tm+1 = T 2

m with probability 1
2 , it follows

that Tm takes values in {0, 1}.

Lemma 107. For all d = 1, 2, the process {Z(W
[d]
m ) : m ≥ 0} defined on (Ω,F , P ), is a super-

martingale and there exist q1 = q1(d), q2 = q2(d) ∈ {0, 1}2, such that when Bm+1 ∈ {q1, q2},
Z(W

[d]
m+1) ≤ Z(W

[d]
m )2.

Proof. For d = 1, using (4.34)-(4.37) with W = Wm, we get

Z(W (00)
m

[1]
) ≤ 2Z(W (0)

m

[2]
)− Z((W (0)

m )[2])2 = 2Z(W [1]
m )− Z(W [1]

m )2, (4.53)

Z(W (01)
m

[1]
) ≤ Z1(W (0)

m )Z(W (0)
m

[2]
) ≤ Z(W [1]

m )2, (4.54)

Z(W (10)
m

[1]
) ≤ 2Z(W (1)

m

[2]
)− Z(W (1)

m

[2]
)2 ≤ 2Z(W [1]

m )− Z(W [1]
m )2, (4.55)

Z(W (11)
m

[1]
) = Z1(W (1)

m )Z(W (1)
m

[2]
)) ≤ Z2(Wm)Z(W [1]

m ), (4.56)

where the second inequality in (4.54) uses the inequality Z1(W (0)) ≤ Z(W (0)[2]
) from

[Lemma 98, point 2], and second inequality in (4.56) uses Z1(W 1
m) = Z2(Wm) from (4.30).

From (4.53)-(4.56) and Z2(W ) ≤ Z(W [1]) [Lemma 98, point (b)], it follows,∑
i1,i2∈{0,1}

Z1(W (i1i2)
m

[1]
) ≤ 4Z1(W [1]

m ). (4.57)

Hence, the process {Z(W
[1]
m ) : m ≥ 0} is a super-martingale and also when Bm+1 ∈

{01, 11}, we have that Z(W
[1]
m+1) ≤ Z(W

[1]
m )2.

For d = 2, from (4.34)-(4.37) with W = Wm, we have that

Z(W (00)
m

[2]
) = Z(W (0)

m

[1]
)) ≤ 2Z(W [2]

m )− Z(W [2])2. (4.58)

Z(W (01)
m

[2]
) ≤ Z(W (0)

m

[1]
) ≤ 2Z(W [2]

m )− Z(W [2])2. (4.59)

Z(W (10)
m

[2]
)) = Z(W (1)

m

[1]
) = Z1(Wm)Z(W [2]

m ). (4.60)

Z(W (11)
m

[2]
)) ≤ Z(W (1)

m

[1]
) = Z1(Wm)Z(W [2]

m ). (4.61)

From (4.58)-(4.61) and using Z1(W ) ≤ Z(W [2]) [Lemma 98, point (b)], we have that∑
i1,i2∈{0,1}

Z(W (i1i2)
m

[2]
)) ≤ 4Z(W [2]

m ). (4.62)

Thus, process {Z(W
[2]
m ) : m ≥ 0} is a super-martingale, and also when Bm+1 ∈ {10, 11},

we have that Z(W
[2]
m+1) ≤ Z(W

[2]
m )2.
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Lemma 108. Define the following events for d = 1, 2,

S[d](δ) := {ω ∈ Ω : ∃m0, ∀m ≥ m0, Z(W [d]
m ) < δ}. (4.63)

T [d](δ) := {ω ∈ Ω : ∃m0, ∀m ≥ m0, Z(W [d]
m ) > 1− δ}. (4.64)

Sd(δ) := {ω ∈ Ω : ∃m0, ∀m ≥ m0, Zd(Wm) < δ,Z3(Wm) < δ}. (4.65)
Td(δ) := {ω ∈ Ω : ∃m0,∀m ≥ m0, Zd(Wm) > 1− δ}. (4.66)

Then,

(a) P (S[d](δ) ∪ T [d](δ)) = 1, ∀d = 1, 2.

(b) Given {d, d′} = {1, 2}, then

(i) S[d](δ) ⊆ Sd′(δ).
(ii) T [d](δ) ⊆ Td′(δ) with probability 1.

Proof. Point (a): It follows directly from Lemmas 106 and 107. As a consequence, note
that any ω ∈ Ω belongs to one of the sets, S[1](δ)∩S[2](δ), S[1](δ)∩T [2](δ), T [1](δ)∩S[2](δ)
and T [1](δ) ∩ T [2](δ) with probability 1. This will be used in the proof of Theorem 103.

Point (b).(i): From [lemma 98, point 2], we have that Zd′(Wm) ≤ Z(W
[d]
m ) and Z3(Wm) ≤

Z(W
[d]
m ), for {d, d′} = {1, 2}. Then, it immediately follows by definitions of S[d](δ) and

Sd′(δ) that S[d](δ) ⊆ Sd′(δ).

Point (b).(ii)2: We assume T [d](δ) 6⊂ Td′(δ) with non-zero probability and disprove it by
contradiction. The above assumption implies that the following event,

E = {ω ∈ Ω : ω ∈ T [d](δ), ω 6∈ Td′(δ)}, (4.67)

occurs with non-zero probability, that is, P (E) > 0.

Define an event Em such that Zd′(Wm) ≤ 1 − δ, that is, given B1 = ω1, . . . , Bm = ωm,
we have Zd′(W (ω1···ωm)) ≤ 1 − δ. Any ω ∈ E belongs to infinitely many Em because if
there exists a m0 such that Zd′(Wm) > 1− δ, for all m > m0, this would imply ω ∈ Td′(δ),
which is not true by assumption. Given ω ∈ E, consider M = {m1,m2, . . .} as the set of
instances such that for allmi ∈M , ω ∈ Emi . Further, takem such thatBm+1 = Bm+2 = 11
happens, probability of such an event is given by P (Bm+1 = Bm+2 = 11) = 1

16 > 0, for
any m ≥ 1, therefore,

∑
mi∈M P (Bmi+1 = Bmi+2 = 11) = ∞. Since {Bm : m ≥ 1} are

i.i.d. random variables, using Borel-Cantelli lemma, there are infinitely manymi ∈M for
which Bmi+1 = Bmi+2 = 11.

The condition ω ∈ T [d](δ) implies that Z(W
[d]
m ) > 1 − δ, for all m ≥ m0. Take a m ≥ m0

such that ω ∈ Em, and Bm+1 = Bm+2 = 11. Then, we have the following for all d = 1, 2,

Z(W
[d]
m+2) ≤ Zd′(Wm+1)Z(W

[d]
m+1)

≤ Zd′(Wm)2Zd′(Wm)Zd(W
[d]
m )

≤ (1− δ)3 < (1− δ),
where both the first and second inequalities use (4.56) and (4.61), the second inequality
also uses Zd(Wm+1) = Zd(Wm)2 (from (4.30) and (4.31)), and the third inequality follows
from the assumption that Zd′(Wm) ≤ (1 − δ). Hence, we have a contradiction with the
statement that Z(W

[d]
m ) > 1 − δ for all m ≥ m0. Therefore, T [d](δ) ⊆ Td′(δ) holds with

probability 1.

2Note that Td′(δ) ⊆ T [d](δ), by the same reasoning as in the proof of previous point (b).(i). Hence, point
(b).(ii) actually implies that T [d](δ) = Td′(δ) with probability 1.
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Proof of Theorem 103: We have the following by definition,

S1(δ) ∩ S2(δ) = A.

T1(δ) ∩ S2(δ) = B.

S1(δ) ∩ T2(δ) = C.

T1(δ) ∩ T2(δ) = D.

From point (ii).(a) of Lemma 108, we have that S[1](δ) ∩ S[2](δ) ⊆ S1(δ) ∩ S2(δ), which
means ω ∈ S[1] ∩ S[2] =⇒ ω ∈ S1(δ) ∩ S2(δ). Similarly, from point (ii).(a) and point
(ii).(b) of Lemma 108, we have that

S[1](δ) ∩ T [2](δ) ⊂ T1(δ) ∩ S2(δ).

T [1](δ) ∩ S[2](δ) ⊂ S1(δ) ∩ T2(δ).

T [1](δ) ∩ T [2](δ) ⊂ T1(δ) ∩ T2(δ).

From point (i) of Lemma 108, we know that one of the events from S[1](δ) ∩ S[2](δ),
S[1](δ)∩T [2](δ), T [1](δ)∩S[2](δ) and T [1](δ)∩T [2](δ) happens with probability 1, therefore,
we have that

S[1](δ) ∩ S[2](δ) = S1(δ) ∩ S2(δ) = A, (4.68)

S[1](δ) ∩ T [2](δ) = T1(δ) ∩ S2(δ) = B, (4.69)

T [1](δ) ∩ S[2](δ) = S1(δ) ∩ T2(δ) = C, (4.70)

T [1](δ) ∩ T [2](δ) = T1(δ) ∩ T2(δ) = D, (4.71)

Hence, P (A ∪B ∪ C ∪D) = 1.

4.3 Quantum Coding Scheme

Here, we take the same construction as in Section 2.5.1 on N = 2n copies of a Pauli
channelW , while using the same two-qubit Clifford L everywhere as channel combining
operation. We know that the construction yields 2n quantum virtual channelsW(i1···in),
that are CMP channels. Further, we also consider the classical polar code construction
on N copies of the classical counterpart channel W := W#, using permutation Γ(L)
as channel combining operation, which synthesizes 2n classical virtual channels W i1···in .
From Proposition 78 and Corollary 79, we know that the classical counterpart of the CMP
channelW(i1···in) is classically equivalent to W (i1···in), that is,W(i1···in)# ≡W (i1···in) in the
sense of Definition 76. Moreover, from Theorem 103, we know that W (i1···in) tend to be
completely noisy, half-noisy, or completely noiseless. We now give the encoding and
decoding of the quantum polar code.

4.3.1 Encoding

Consider n steps of polarization with n > 0. The polar code construction synthesizes
N = 2n virtual channels corresponding to each i ∈ {0, 1, . . . , N − 1}. We shall denote,
W(i) := W(i1···in), where i1 · · · in is the binary representation of i ∈ {0, 1, . . . , N − 1}.
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Similar to Section 4.2, we define the following sets,

A = {i ∈ {0, 1, . . . , N − 1} : W (i) is δ-noiseless}. (4.72)

B = {i ∈ {0, 1, . . . , N − 1} : W (i) is δ-half-noisy of type 1}. (4.73)

C = {i ∈ {0, 1, . . . , N − 1} : W (i) is δ-half-noisy of type 2}. (4.74)

D = {i ∈ {0, 1, . . . , N − 1} : W (i) is δ-noisy}. (4.75)

From Theorem 103, it follows that for sufficiently large N , all but a vanishing fraction of
elements from the set {0, 1, . . . , N − 1} belong to one of the above sets. Let D̄ denote the
complement ofA∪B ∪C. The inputs to the virtual channelsW(i) are supplied as follows
for i in A, B, C and D̄,

• If a ∈ A, the correspondingW(a) is used for quantum communication.

• If b ∈ B, the input of the corresponding W(b) is set to |+〉, the eigenvector of the
Pauli X operator with eigenvalue 1 (recall Z part of the input x1x2 ∈ {0, 1}2, that is
x2, is randomized by W (b)).

• If c ∈ C, the input of the correspondingW(c) is set to |0〉, the eigenvector of the Pauli
Z operator with eigenvalue 1 (recall X part of the input x1x2 ∈ {0, 1}2, that is x1, is
completely randomized by W (c)).

• If d ∈ D̄, the input of the correspondingW(d) is set to half of an EPR pair. The other
half of the EPR pair is given to the decoder.

We shall use the following notation similar to Section 1.5.3 and Section 2.5.1.

(i) With a slight abuse of notation, we shall denoteA, B, C and D̄ consisting of |A|, |B|, |C|
and |D̄| qubits, respectively.

(ii) Let ΦD̄D̄′ be the maximally entangled state ΦDD′ as follows,

ΦD̄D̄′ = ⊗d∈D̄Φdd′ , (4.76)

where indices d and d′ indicate the d-th qubits of systems D̄ and D̄′, respectively,
and Φdd′ is the density matrix corresponding to an EPR pair.

(iii) Let ρ+
B := ⊗b∈B|+〉〈+|b and ρ0

C := ⊗c∈C |0〉〈0|c.

(iv) Let also QN denote the quantum polar transform, that is, the N -qubit Clifford uni-
tary obtained by applying the two-qubit Clifford unitary L for n levels of recursion
(see also Section 2.5.1).

Let a quantum state ρA on the systemA is encoded by supplying it as input to the virtual
channels corresponding to a ∈ A. The encoded state, denoted by ϕABCD̄D̄′ , is obtained
by applying Gq ⊗ ID̄′ on the system ABCD̄D̄′ as follows

ϕABCD̄D̄′ := (Gq ⊗ ID̄′)(ρA ⊗ ρ+
B ⊗ ρ0

C ⊗ ΦD̄D̄′)(G
†
q ⊗ ID̄′). (4.77)

As no errors occur on the system D̄′, the following is the channel output,

ψABCD̄D̄′ := (W⊗N ⊗ ID̄′)(ϕABCD̄D̄′). (4.78)

SinceW is a Pauli channel, we have that

ψABCD̄D̄′ = (EABCD̄QN ⊗ ID̄′)(ρA ⊗ ρ+
B ⊗ ρ0

C ⊗ ΦD̄D̄′)(Q
†
NE
†
ABCD̄ ⊗ ID̄′), (4.79)

for a random N -qubit Pauli error EABCD̄ ∈ ḠN .
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4.3.2 Decoding

The decoding is similar to Section 1.2.3, and which is performed in the three steps given
below.

Step 1: Apply the inverse quantum polar transform on the channel output state. Ap-
plying Q†N on the output state ψABCD̄D̄′ , we have that

Q†NψABCD̄D̄′QN = (Q†NEABCD̄QN ⊗ ID̄′)(ρA ⊗ ρ+
B ⊗ ρ0

C ⊗ ΦD̄D̄′)(Q
†
NE
†
ABCD̄QN ⊗ ID̄′)

= (E′ABCD̄ ⊗ ID̄′)(ρA ⊗ ρ+
B ⊗ ρ0

C ⊗ ΦD̄D̄′)(E
′
ABCD̄ ⊗ ID̄′),

where E′ABCD := Q†NEABCD̄QN . Since QN is a N -qubit Clifford unitary, it follows that
E′ABCD̄ ∈ ḠN is also a Pauli error.

Step 2: Quantum measurement. Let E′ABCD̄′ = ⊗a∈AE′a⊗b∈B E′b⊗c∈C E′c⊗d∈D̄ E′d, where
E′a, E

′
b, E

′
c, E

′
d ∈ Ḡ1. We know that any E′i ∈ Ḡ1 can be written as Xu1Zu2 , where u1u2 ∈

{0, 1}2. The decoder performs the PauliX measurement on each b ∈ B, which determines
the Z part (u2) corresponding to E′b, and the Pauli Z measurement on each c ∈ C, which
determines the X part (u1) corresponding to E′c. Finally, the decoder performs the Bell
measurement, that is, the measurement corresponding to the Pauli operators X ⊗ X and
Z⊗Z, on the two-qubit system dd′ for each d ∈ D̄, which determines both X and Z parts
(u1u2) corresponding to E′d.

Step 3: Decode the classical counterpart polar code. Note that when the all-identity
vector IN ∈ ḠN1 is input to the N instances of the classical counterpart W#, denoted
by W#N , the error EABCD̄ ∈ ḠN can be considered as an output of W#N . As W# is a
symmetric channel, we have that W#N

(EABCD̄ | IN ) = W#N
(IN | EABCD̄), therefore,

we can equivalently consider IN as the observed channel output, and EABCD̄ (unknown)
the channel input. Hence, we have been given,

• u2 corresponding to E′b for any b ∈ B.

• u1 corresponding to E′c for any c ∈ C.

• u1u2 corresponding to E′d for any d ∈ D̄.

• A noisy observation (namely IN ) of the error EABCD̄ = PNE
′
ABCD̄, where PNE′ABCD̄

:= QNE
′
ABCD̄Q

†
N , is the linear transformation corresponding to the quantum polar

transform QN . Thus, E is classical polar code encoded version of E′.

Based on the above, we can use classical polar decoding, namely the successive cancellation
decoding, to recover the value of u1u2 corresponding to E′a for all a ∈ A, u1 correspond-
ing to E′b for all b ∈ B, and u2 corresponding to E′c for all c ∈ C.

4.3.3 Number of Preshared EPR Pairs

In this section, we give an upper bound on |D|N , that is, the fraction of virtual channels
requiring preshared EPR pairs, and also a lower bound on |B|+|C|N , that is, the fraction of
virtual channels frozen in either the Pauli X or Z basis.

Proposition 109. Following inequalities hold for sufficiently large N ,

(a) |D|N ≤ Z(W [1])Z(W [2]).
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(b) |B|+|C|N ≥ 2−I(W )−2Z(W [1])Z(W [2]),where I(W ) is the symmetric mutual information
of W .

Proof. Point (a): From (4.34)-(4.37), we have the following for any W ,

Z(W (0)[1]
)Z(W (0)[2]

) ≤
(

2− Z(W [2])
)
Z(W [1])Z(W [2]).

Z(W (1)[1]
)Z(W (1)[2]

) ≤ Z1(W )Z(W [1])Z(W [2]).

Using the above two equations, we have that∑
i1∈{0,1}

Z(W (i1)[1]
)Z(W (i1)[2]

) ≤ 2Z(W [1])Z(W [2])−
(
Z(W [2])− Z1(W )

)
Z(W [1])Z(W [2]),

(4.80)

≤ 2Z(W [1])Z(W [2]), (4.81)

where the second inequality follows fromZ(W [2]) ≥ Z1(W ). Applying (4.81) recursively,
for any W (i), with i1 · · · in ∈ {0, 1}n being the binary representation of i ∈ {0, . . . , N − 1},
we have that

N−1∑
i=0

Z(W (i)[1]
)Z(W (i)[2]

) ≤ 2nZ(W [1])Z(W [2]). (4.82)

We know from Theorem 103 that for sufficiently large N = 2n, any i ∈ {0, . . . , N − 1}
belongs to one of the sets A, B, C and D with probability 1. Further, we have that

Z(W (i)[1]
)Z(W (i)[2]

)→
{

1, if i ∈ D.
0, otherwise.

Therefore, from (4.82), it follows that

|D| ≤ NZ(W [1])Z(W [2]).

Point (b): Recursively applying (3.26), we have that

N−1∑
i=0

I(W (i)) = NI(W ). (4.83)

We know from Section 4.1 that I(W (i)) → 2 for i ∈ A, I(W (i)) → 1 for i ∈ B ∪ C, and
I(W (i))→ 0 for i ∈ D. Thus, we have that

2|A|+ |B|+ |C| = NI(W ). (4.84)

Any i belongs to one of the sets A, B, C and D with probability 1, therefore,

|A|+ |B|+ |C|+ |D|
N

→ 1. (4.85)

From the above two equations, we have that

|B|+ |C|+ 2|D| ≈ N (2− I(W )) . (4.86)

Since |D| ≤ NZ(W [1])Z(W [2]) from part (a), we have that

|B|+ |C| ≥ N
(

2− I(W )− 2Z(W [1])Z(W [2])
)
.

The upper bounds in points (a) and (b) of the above lemma are not strict in general as
one can get a stronger bound by recursively applying (4.80) instead of (4.81) to evalu-

ate
∑N−1

i=0 Z(W (i)[1]
)Z2(W (i)[2]

) in (4.82). However, here it is not possible to apply (4.80)

recursively as we only have upper bound for Z(W (i1)[2]
) when i1 = 1.

121



Chapter 4. Multilevel Polarization of Pauli Channels

4.3.4 Fast Polarization

As mentioned in Section 1.2.4 and Section 3.4, reliability of the successive cancellation de-
coding depends on the speed of polarization, that is, if polarization happens fast enough,
the block error probability of the successive cancellation decoding goes to zero. In this
section, using the results from [25], we give a fast polarization property, which ensures
reliable decoding of the quantum polar code constructed in the previous section.

Proposition 110. LetW :=W# be the classical counterpart of a CMP channelW , and consider
the quantum polar construction onW for n polarization steps, using the two-qubit Clifford gate L
as channel combining operation. If PBe is the block error probability of the successive cancellation
decoding, then we have the following as n→∞,

PBe = O(2−2βn), (4.87)

for any 0 < β < 1
4 .

Proof. From (4.53)-(4.56) and (4.58)-(4.61), for all d = 1, 2 and ωi ∈ {0, 1}2, we have that

Z(W (ωi)
[d]

) ≤
{

2Z(W [d]), with probability 1
2

Z(W [d])2, with probability 1
2

Note that these are the same two main ingredients required for fast polarization men-
tioned in Section 3.4. Therefore, from [25], we have the following,

For any sequence ω = ω1 · · ·ωm, with n = 2m, and ωk ∈ {0, 1}2,∀k > 0, such that

Z(W (ω)[d]
)→ 0 as m→∞, we have the following

Z(W (ω)[d]
) ≤ 2−2αm , as m→∞, for any 0 < α <

1

2
. (4.88)

From (4.63), the condition Z(W (ω)[d]
)→ 0 as m→∞ implies that ω ∈ S[d](δ) with δ → 0.

From (4.68)-(4.71), we know that S[1](δ) = A ∪ B and S[2](δ) = A ∪ C. Therefore, the
above equation holds for ω ∈ A ∪B, when d = 1, and ω ∈ A ∪ C, when d = 2.

From [24, Proposition 2], the symbol error probability of the maximum likelihood de-
coder, denoted by Pe, is upper bounded as Pe(W ) ≤ 3Z(W ), and Pe(W

[d]) ≤ Z(W [d]).
Therefore, the block error probability of the successive cancellation decoding, PBe , can be
upper bounded for sufficiently large codelength 2n as follows

PBe ≤
∑
a∈A

3Z(W (a)) +
∑
b∈B

Z(W (b)[1]
) +

∑
c∈C

Z(W (c)[2]
)

≤
∑
a

2
[
Z(W (a)[1]

) + Z(W (a)[2]
)
]

+
∑
b∈B

Z(W (b)[1]
) +

∑
c∈C

Z(W (c)[2]
)

≤ (4|A|+ |B|+ |C|)2−2αm , as m→∞
≤ 2n+22−2αm ,

where the second inequality uses [Lemma 98, Point (b)] and the third inequality follows
from (4.88). Therefore, PBe = O(2−2βn) for any 0 < β < 1

4 .

The above proposition implies that PBe → 0 as N → ∞, hence, the decoding is reliable
for sufficiently large N .
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4.4 An Alternative Construction

In this section, we introduce an alternative construction, the goal of which is to im-
prove the speed of multilevel polarization. For a quantum erasure channel, we show
in the next section with the help of a computer program that the multilevel polariza-
tion occurs significantly faster for the alternative construction compared to the previous
construction.

Firstly, we note the following circuit equivalence,

H W

H W

H W

H W

H

H

H

H

≡

W

W

W

W

(a) (b)

Figure 4.3: (a) and (b) are equivalent quantum circuits.

In circuit (b), the CNOT gate is used in both the first and second polarization step, how-
ever, the control and target are interchanged after the first step. To make this clear, we
denote by L1 and L2 the CNOT gate in the first and second step, respectively. The quan-
tum circuits (a) and (b) are equivalent in the sense that given any 4-qubit quantum state
as input, the outputs of quantum circuits (a) and (b) are identical. Therefore, the virtual
channels obtained after two steps of channel combining and splitting are equal for both
circuits (a) and (b). Hence, the multilevel polarization theorem from the previous sec-
tion also holds when CNOT gates L1 and L2 are used as channel combining operation
alternatively for odd and even polarization steps, respectively. In other words, L1 is used
to combine two copies of W , and then L2 is used to combine two copies of W i1 , for all
i1 ∈ {0, 1}, again L1 is used to combine two copies ofW i1i2 , for all i1, i2 ∈ {0, 1}, and so
on.

Here, we propose an alternative construction, where instead of using L1 and L2 for odd
and even steps of polarization, an optimal choice is made at each polarization step, using
the classical counterpart viewpoint as follows.

Let Γ1 and Γ2 be the permutations asscoiated with L1 and L2, respectively. We define
T (Γ,W ) := Z

(
(W �Γ W )[1]

)
+ Z

(
(W �Γ W )[2]

)
, where W is the classical counterpart of

W . For combining two copies of W , the permutation Γ ∈ {Γ1,Γ2} is selected as channel
combining operation if the following holds,

T (Γ,W ) = min
{
T (Γ1,W ), T (Γ2,W )

}
. (4.89)

A similar selection process takes place at each polarization step, so that two copies of a
virtual channel W (i1···ik) are combined using the permutation Γ(i1···ik) ∈ {Γ1,Γ2} mini-
mizing T (Γ(i1···ik),W (i1···ik)).

We now give the following lemma for the Bhattacharya parameter of partial channels
associated with virtual channels, W �W and W �W , using permutations Γ1 and Γ2.

Lemma 111. Let W (0) := W � W and W (1) := W � W , and for x ≤ a, y ≤ b, we denote
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(x, y) ≤ (a, b). When Γ1 is used as channel combining operation, we have that

(
Z(W (i1)[1]

), Z(W (i1)[2]
)
)
≤
{(
Z(W [1]), 2Z(W [2])− Z(W [2])2

)
, when i1 = 0,(

Z(W [1]), Z1(W )Z(W [2])
)
, when i = 1,

and when Γ2 is used as channel combining operation, we have that

(
Z(W (i1)[1]

), Z(W (i1)[2]
)
)
≤
{(

2Z(W [1])− Z(W [1])2, Z(W [2])
)
, when i1 = 0.(

Z2(W )Z(W [1]), Z(W [2])
)
, when i1 = 1.

Proof. We have omitted the proof of the lemma as it is basically the same proof as in
Lemma 102.

It can be verified from the above inequalities that (4.81), i.e.,
∑
i1∈{0,1} Z(W (i1)[1]

)Z(W (i1)[2]
)

≤ 2Z(W [1])Z(W [2]), holds for both Γ1 and Γ2. This implies that the upper bound on the
number of preshared EPR pairs from point (a) of Proposition 109 holds for the alternative
construction. It is also easy to verify that point (b) of Proposition 109 holds as well.

4.5 Multilevel Polarization for the Quantum Erasure Channel

In this section, using both the first and second construction, we construct quantum
polar codes for a quantum erasure channel with the help of a computer program, and
compare the two constructions in terms of their speeds of polarization.

4.5.1 Bit-level Erasure Channel

Recall from Definition 47 that the quantum erasure channel with erasure probability ε > 0
acts as follows,

WE(ρA) = (1− ε)|0〉〈0|F ⊗ ρA + ε|1〉〈1|F ⊗
IA
2
. (4.90)

The quantum erasure channel is a CMP channel as it can be written as,

WE(ρA) = (1− ε)|0〉〈0|F ⊗W0(ρA) + ε|1〉〈1|F ⊗W1(ρA), (4.91)

where W0(ρA) = ρA and W1(ρA) = 1
4 [ρA + XρAX + Y ρAY + ZρAZ] = IA

2 for any ρA,
are clearly Pauli channels. Therefore, the classical counterpart channel W#

E is the clas-
sical mixture of Pauli channelsW#

0 andW#
1 with probabilities 1 − ε and ε, respectively.

Here,W#
0 is the identity channel asW#

0 (i | j) = δij , ∀i, j ∈ {0, 1}2, andW#
1 completely

randomizes the two-bit input asW#
1 (i | j) = 1

4 , ∀i, j ∈ {0, 1}2. Thus,W#
E can be consid-

ered as a classical erasure channel with two-bits x1x2 ∈ {0, 1}2 as input and the erasure
probabilityW#

E (?, ? | x1, x2) = ε. Here, symbol ? represents the erasure of a bit.

For the sake of clarity, we denoteW :=W#
E from now on. ForW , the two bits of the input

x1, x2 is either transmitted perfectly with the probability 1−ε, or both bits are erased with
the probability ε. However, polarizing W yields virtual channels that may erase only one
bit either x1 or x2 (see also Lemma 114 below). For this reason, we define a more general
erasure channel W ′, referred to as the bit-level erasure channel, as follows.
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Definition 112 (Bit-level erasure channel). A bit-level erasure channel is defined by the fol-
lowing transition probabilities,

W ′(?, x2|x1, x2) = ε1,W
′(x1, ?|x1, x2) = ε2,W

′(?, ?|x1, x2) = ε3, ∀x1, x2 ∈ {0, 1}.
The erasure channel W is a special case of the bit-level erasure channel with ε1 = ε2 = 0,
and ε3 = ε. In the next lemma, we give Z(W ′[1]), Z(W ′[2]), Z1(W ′) and Z2(W ′).

Lemma 113. The following equalities hold for a bit-level erasure channel W ′,

Z(W ′[1]) = Z2(W ′) = ε1 + ε3.

Z(W ′[2]) = Z1(W ′) = ε2 + ε3.

Proof. Given x1x2 ∈ {0, 1}2 as input to W ′, the bits x1 and x2 are inputs to the partial
channels W ′[1] and W ′[2], respectively. It is not very difficult to see that W ′[1] and W ′[2] are
binary-input erasure channels with erasure probabilities ε1 + ε3 and ε2 + ε3, respectively.
Since the Bhattacharyya parameter is equal to the erasure probability for a binary-input
erasure channel, it follows that Z(W ′[1]) = ε1 + ε3 and Z(W ′[2]) = ε2 + ε3.

Moreover, Z1(W ′) = ε2 + ε3 as for any x1, x2,
√
W (y|x1, x2)W (y|x1, x2 ⊕ 1) is non-zero

only when y = x1, ? or y =?, ?. Similarly, Z2(W ′) = ε1 + ε3.

Taking advantage of the above lemma, we will only use quantities Z(W ′[1]) and Z(W ′[2])
from now on. Also, from (3.2) and Lemma 113, the symmetric mutual information of W ′

is given by,
I(W ′) = 2− Z(W ′[1])− Z(W ′[2]). (4.92)

4.5.2 Bhattacharyya Parameters for the First Construction

Here, we consider the quantum polar code construction given in Section 4.2. Firstly, we
prove the following lemma for the partial channels.

Lemma 114. Given W ′ is a bit-level erasure channel, let W ′(0) := W ′ �Γ W
′ and W ′(1) :=

W ′ �Γ W
′ be the synthesized virtual channels for the channel combining operation Γ = Γ(L)

(Figure 4.2). Then, W ′(0) and W ′(1) are also bit-level erasure channels and the inequalities for
partial channels in (4.34)-(4.37) are equalities, that is,

Z(W ′(0)[1]
) = 2Z(W ′[2])− Z(W ′[2])2. (4.93)

Z(W ′(0)[2]
) = Z(W ′0

[1]
). (4.94)

Z(W ′(1)[1]
) = Z(W ′[2])2. (4.95)

Z(W ′(1)[2]
) = Z(W ′[1]). (4.96)

Proof. The erasure probabilities for W ′(0),

ε01 := W ′(0)(?, x2|x1, x2) = ε2 + (1− ε1 − ε2 − ε3)× (ε2 + ε3).

ε02 := W ′(0)(x1, ?|x1, x2) = ε1 × (1− ε2 − ε3).

ε03 := W ′(0)(?, ?|x1, x2) = ε3 + ε1 × (ε2 + ε3).

The erasure probabilities for W ′(1),

ε11 := W ′(1)(?, x2|x1, x2) = ε2 × (ε2 + ε3).

ε12 := W ′(1)(x1, ?|x1, x2) = ε1 + ε3 × (1− ε2 − ε3).

ε13 := W ′(1)(?, ?|x1, x2) = ε3 × (ε2 + ε3).
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Note that even when W ′ is an erasure channel, that is, ε1 = ε2 = 0, we have that ε01 =
ε12 = (1− ε3)ε3, which is non-zero except when ε3 ∈ {0, 1}. Therefore, the virtual channels
W ′(0) and W ′(1) are bit-level erasure channels in general. From Lemma 113, we have that

Z(W ′(0)[1]
) = ε01 + ε03 = 2Z(W ′[2])− Z(W ′[2])2.

Z(W ′(0)[2]
) = ε02 + ε03 = Z(W ′[1]).

Z(W ′(1)[1]
) = ε11 + ε13 = Z(W ′[2])2.

Z(W ′(1)[2]
) = ε12 + ε13 = Z(W ′[1]).

Applying Lemma 114 recursively, we may compute (Z(W (i)[1]
), Z(W (i)[2]

)) for any vir-
tual channel W (i) for i ∈ {0, . . . , N − 1}.

4.5.3 Bhattacharyya Parameters for the Second construction

Here, we consider the alternative construction proposed in the Section 4.4. First of all,
we give the following Lemma for Γ1 and Γ2, the permutations associated with the CNOT
gates L1 and L2, respectively.

Lemma 115. Given a bit-level erasure channel W ′, let W ′(0) := W ′ �Γ W
′ and W ′(1) :=

W ′ �Γ W
′. Then, for Γ = Γ1 as channel combining operation, we have that(

Z(W ′(i1)[1]
), Z(W ′(i1)[2]

)
)

=

{(
Z(W ′[1]), 2Z(W ′[2])− Z(W ′[2])2

)
, when i1 = 0,(

Z(W ′[1]), Z(W ′[2])2
)
, when i1 = 1,

and for Γ = Γ2 as channel combining operation, we have that

(
Z(W ′(i1)[1]

), Z(W ′(i1)[2]
)
)

=

{(
2Z(W ′[1])− Z(W ′[1])2, Z(W ′[2])

)
, when i1 = 0.(

Z(W ′[1])2, Z(W ′[2])
)
, when i1 = 1.

Proof. The proof has been omitted as it is basically the same proof as in Lemma 114.

Recall from Section 4.4 that Γ ∈ {Γ1,Γ2} is chosen as channel combining operation if it
satisfies (4.89). From Lemma 115, for a virtual channel W ′i1···ik , we have that

T (Γ1,W
′(i1···ik)) = Z(W ′(i1···ik)[1]

) + Z(W ′(i1···ik)[2]
)2. (4.97)

T (Γ2,W
′(i1···ik)) = Z(W ′(i1···ik)[1]

)2 + Z(W ′(i1···ik)[2]
). (4.98)

Therefore, for a virtual channel W (i1···ik), we first determine the optimal permutation

from {Γ1,Γ2} using the above two equations, and subsequently compute (Z(W (i1···ikik+1)[1]
),

Z(W (i1···inik+1)[2]
)) using Lemma 115.

4.5.4 A Comparison of the Speed of Polarization between the Two Construc-
tions

Here we will provide numerical results to compare the first and the second construction
in terms of their speed of polarization. First, we note the following property.

It follows from Lemmas 114 and 115 that for a bit-level erasure channel W ′, (4.81) is an
equality for both the first and second construction, i.e.,

∑
i1∈{0,1} Z(W (i1)[1]

)Z(W (i1)[2]
) =
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2Z(W [1])Z(W [2]). Therefore, the upper bound on |D| and the lower bound on |B| + |C|
from Proposition 109 are also equalities for both first and second constructions. Hence,
as N →∞, we have that

|D|
N
→ Z(W ′[1])Z(W ′[2]), (4.99)

|B|+ |C|
N

→
(
Z(W ′[1]) + Z(W ′[2])− 2Z(W ′[1])Z(W ′[2])

)
, (4.100)

|A|
N
→
(

1− Z(W ′[1])− Z(W ′[2]) + Z(W ′[1])Z(W ′[2])
)
, (4.101)

where the first equation follows from [Proposition 109, point (a)], the second equation
follows from [Proposition 109, point (b)] and (4.92), and the third equation is obtained by
using |A|+|B|+|C|+|D|N → 1.

We now consider a quantum erasure channel with erasure probability W (?, ?|x1, x2) =
0.1. From Lemma 113, Z(W [1]) = Z(W [2]) = 0.1. From above three equations, it follows
that |D|N → 0.01, |B|+|C|N → 0.18 and |A|

N → 0.81 as N → ∞. Therefore, we have saved
9% of EPR pairs as compared to the construction from Chapter 3 (see also Section 3.6),
and are left with only 1% of preshared EPR pairs. For this erasure channel, we perform
a numerical simulation for n = 20 steps of polarization for both the first and second
construction, and compare their speeds of polarization.

In Figure 4.4, the parameter T (i) := Z(W (i)[1]
) + Z(W (i)[2]

) is plotted for both first and
second constructions after n = 20 polarization steps.

Figure 4.4: T (i) values for a quantum erasure channel with erasure probability W (?, ?|x1, x2) =
0.1 after n = 20 polarization steps. The virtual channel indices i ∈ {0, . . . , 2n − 1} are sorted
according to increasing T (i) values.

The multilevel polarization is evident in the above figure. In particular, we have the
following,

• When T (i) → 0, that is, the plateau in the begining of the plot, i ∈ A.

• When T (i) → 1, that is, the plateau in the middle of the plot, i ∈ B ∪ C.

• When T (i) → 2, that is, the plateau in the end of the plot, i ∈ D.
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Further, it is clear from the slopes of the slopes of the two curves in Figure 4.4 that the
polarization happens faster for the second construction.

Finally, for δ = 10−6, we compare the first and second construction in the following table,

|A|
N

|B|+|C|
N

|D|
N

|A|+|B|+|C|+|D|
N

First construction 0.49438 0.03021 0.00046 0.52505

Second construction 0.64493 0.07359 0.00071 0.71923

Table 4.1: Fraction of polarized channels for δ = 10−6.

Thus, we have |A|+|B|+|C|+|D|N greater for the second construction meaning that more
fraction of virtual channels are polarized for the second construction.
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5
Towards Fault Tolerant Quantum Computing

using Quantum Polar Codes

In principle, quantum computers can solve certain problems much faster than any clas-
sical computer [69, 70, 71]. However, in real life, qubits are subject to noise and the
implementation of quantum gates are not perfect. This means that without error cor-
rection, noise will accumulate over time and render the computation useless. Therefore,
we need to encode quantum information using a quantum error correction code to be
able to perform any useful computation. However, having access to an efficient quantum
code does not in itself implies the ability to do fault tolerant quantum computation. It
must be complemented with several quantum procedures aimed at preparing encoded
(logical) states, operating on encoded states, and extracting information about the error
that has happened in the form of an error syndrome. Moreover, in order to be usable,
these procedures must themselves be fault tolerant. Roughly speaking, a procedure is
said to be fault tolerant if a component failure at any stage of the computation does not
spread on many qubits, thus ensuring that it remains correctable by the code (see Defini-
tion 116 below). Hence, fault tolerant quantum computing incorporates both a quantum
error correcting code and the above fault-tolerant procedures [72, 73, 74, 75, 76]. The
quantum fault-tolerance theorem (or quantum threshold theorem) [73] states that if the
physical error rate is below a threshold value, one can perform arbitrarily long quantum
computation reliably.

We now discuss in more detail the quantum procedures needed for fault-tolerant quan-
tum computing. First of all, we need to prepare encoded logical quantum states fault
tolerantly. Further, we should be able to protect the encoded logical states from noise
for arbitrarily long time. To do so, we need to perform error correction repeatedly af-
ter some time interval in order to prevent the accumulation of errors. For each round
of error correction, an error syndrome needs to be extracted. To this end, ancilla qubits
are first entangled with data qubits (i.e., qubits of the encoded quantum state) through a
syndrome extraction circuit, then quantum measurements are performed on ancilla qubits.
This is done in a way that error syndrome is extracted without collapsing the encoded
quantum information. These measurements also project the error to a Pauli error, that is
decoded by a classical algorithm processing the error syndrome. Subsequently, the error
may be corrected. Note that component failures that happen during syndrome extraction
can also introduce errors on the encoded block of qubits. Hence, we would need a fault
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tolerant procedure for the syndrome extraction [72, 77], so that we may hope to correct
the errors introduced during syndrome extraction in the next round of correction.

Once we can protect encoded qubits from noise for arbitrarily long time, we would like to
perform quantum algorithms on them. Here, we consider the circuit model of quantum
computation, where quantum gates chosen from a universal set (see Definition 43) are
applied sequentially. For fault-tolerant implementation of a quantum circuit, each qubit
in the original circuit is replaced by many physical qubits, which are encoding a logi-
cal qubit. Each quantum gate in the circuit is replaced by a procedure involving many
quantum gates on encoded logical qubits. We would require these procedures to be fault
tolerant. To summarize, we will need the following fault tolerant procedures:

1. Fault tolerant preparation of encoded states.

2. Fault tolerant procedures for every gate in a universal set of quantum gates.

3. A fault tolerant procedure for syndrome extraction.

As mentioned before, for a round of error correction, first an error syndrome is extracted.
This syndrome is a classical information that is processed by a classical decoding algo-
rithm to produce an estimate of the error. In the remaining of the chapter, the term “de-
coder” or “decoding” refers to the classical decoding. A low complexity decoding is an
essential ingredient for fault tolerance. Indeed, to keep up with the accumulating errors,
one needs to perform error correction rapidly meaning that the time interval between
two rounds of error correction needs to be small. Decoding must be faster than the syn-
drome generation rate, since otherwise the latency overhead becomes exponential in the
number of non-Clifford gates, which would hinder any quantum advantage [78]. Hence,
a low complexity decoder is needed.

Currently, quantum LDPC codes, and particularly their topological constructions, are one
of the most promising candidates for fault tolerant quantum computation [79, 80, 81, 82,
83]. The main property of quantum LDPC codes is that they have low-weight stabilizer
generators. Taking advantage of this property, logical state preparation and syndrome
extraction is done fault tolerantly by performing measurements corresponding to the
generators. However, high complexity decoding may be an obstacle in the implemen-
tation of quantum LDPC codes for fault tolerant quantum computing. For example, for
topological quantum LDPC codes, the minimum-weight perfect matching (MWPM) [84,
85] is currently the standard decoding, whose complexity scales as the cube in the num-
ber of physical qubits. Although this means MWPM decoding is efficient, complexity
needs to be further reduced for practical applications. To do so, many alternatives for
decoding topological quantum codes have also been proposed [86, 87, 88, 78]. For the
general class of LDPC codes, decoding algorithms have been proposed based on belief-
propogation [89, 90, 91, 92, 93]. Despite these efforts, further optimizations in decoding
are needed if quantum LDPC codes are to be used in practical devices for fault toler-
ance. This is an active field of research and a lot of efforts are currently being devoted to
develop new decoding algorithms [94, 95, 96, 97, 98, 99, 100].

Motivated by the fact that quantum polar codes are equipped with a decoding of log-
linear complexity (see Section 1.2.3), in this chapter, our goal is to investigate them in
the context of fault tolerant quantum computing. However, an obvious shortcoming of
quantum polar codes in the context of fault tolerant quantum computing is the entangle-
ment assistance, which is required for both CSS and purely quantum constructions of the
quantum polar code. However, we have that the entanglement assistance goes to zero
for CSS quantum polar codes if the low noise condition in Lemma 53 is satisfied. For
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this reason, we shall focus on CSS quantum polar codes instead of purely quantum polar
codes. Throughout this chapter, we shall assume that the low noise condition is satisfied,
so that the entanglement assistance is zero for CSS quantum polar codes.

In the following, for CSS quantum polar codes, we first provide a fault-tolerant procedure
for syndrome extraction, which is based on Steane’s technique [77]. This requires ancilla
qubits prepared in an encoded logical state, hence the problem of syndrome extraction
is basically reduced to logical state preparation. We then provide a procedure to prepare
the required encoded logical state based on repetition. While encoding one qubit per
polar block of lengthN = 2n, we finally provide logical versions of Pauli, Hadamard and
CNOT gates on the encoded state. Hence, the only thing that is missing for universal fault
tolerant quantum computation is a fault-tolerant procedure for T gates (see Remark 44).

5.1 Quantum Circuits, Noise Model and Fault tolerant Proce-
dures

Quantum circuit model is a universal language to represent quantum computations.
A quantum circuit consists of qubits, unitary gates and quantum measurements. Gen-
erally, it is customary to start a quantum circuit on n qubits in an amplitude (computa-
tional) basis state |x1, . . . , xn〉, where x1, . . . , xn ∈ {0, 1}. Then, a sequence of quantum
gates chosen from a universal set are applied. A subset of qubits then are measured to
extract classical information and measured qubits are discarded. Here, we only consider
single qubit measurements as any joint measurement on n qubits is equivalent to apply-
ing a unitary on n qubits and then doing single qubit measurements.

For noisy quantum circuits, we consider the following noise model for quatum gates and
measurements [83].

1. Noise model for Quantum Gates: For any quantum gate U that entangles N -
qubits, we assume that noise affects all N qubits upon which the gate acts as fol-
lows. While attempting to perform U , one instead performs U followed by a Pauli
channel WN on N qubits. An N qubit Pauli channel is a channel that randomly
applies a N qubit Pauli on N qubit input with some probability.

2. Noise model for Single Qubit Measurements: We consider that the outcome of
a single qubit measurement is reported incorrectly with some probability. For ex-
ample, for the measurement of Pauli-Z operator, the measurement wrongly reports
0 as the outcome, when actually the quantum state is projected into |1〉 state and
similarly 1 as the outcome, when it is projected into |0〉 state.

We have considered the above noise model for the sake of simplicity. Other related noise
models have also been investigated for fault tolerant quantum computation, e.g., adver-
sarial independent stochastic noise [101, 102, 103, 104], local stochastic noise [105], depo-
larizing noise [106, 107], and biased noise, where phase flips happens more often than bit
flips [108, 109].

As discussed before, for fault tolerant implementation of a quantum circuit, each qubit
in the original circuit is replaced by an encoded (logical) version containing many phys-
ical qubits. The qubit state initialization in the computational basis state is replaced by
a procedure of logical state preparation, and each gate in the original circuit is replaced
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by a procedure, which acts on encoded qubits. Based on the noise model defined above,
we say that a quantum gate or measurement on physical qubits fails if a Pauli error apart
from the identity occurs in the implementation. Note that a failure can cause a Pauli er-
ror that acts non-trivially on many qubits. The weight of a Pauli operator on N qubits
is defined as the number of positions, on which it acts non-trivially. For example, the
weight of the Pauli error Xu0 ⊗ · · · ⊗ XuN−1 is equal to the number of 1s in the vector
(u0, . . . , uN−1) ∈ {0, 1}N . In the following definition, we give the condition for a proce-
dure to be fault tolerant.

Definition 116 (Fault tolerant procedures). A procedure acting on encoded qubits is said to be
fault tolerant if any n ≥ 1 failures happened during the procedure (including both quantum gate
and measurment failures) cause a Pauli error of weight at most n in any one encoded qubit.

For example a procedure that has only single qubit gates is fault tolerant according to the
above definition. Further, a gate, which acts on only one qubit in each encoded quantum
state, generates only one error in each encoded quantum state if it fails. Hence, a pro-
cedure containing such quantum gates, which act in parallel, i.e., they don’t overlap, is
also fault tolerant. An example of such a procedure is transversal application of a gate on
qubits in encoded quantum states [72, 73] (see also Figures 5.1 and 5.2 below).

5.2 Fault Tolerant Syndrome Extraction

Recall from Section 1.5.1 that a CSS quantum polar code on a Pauli channel consists
of two classical polar codes on induced amplitude and phase channels WA and WP . For
a quantum polar code of lengthN = 2n, we divide the set ofN qubits denoted by indices
S := {0, 1, . . . , N − 1} into four subsets A,B, C,D. The qubits in A are used for quantum
communication, each qubit B is set to the phase basis state |+〉, each qubit in C is set to
the amplitude basis state |0〉, and each qubut in D is set to half of an EPR pair that is
preshared between the sender and receiver. Finally, the quantum information is encoded
by applying the quantum polar transform QN . As discussed before, we assume the low
noise condition, so that no preshared EPR pair is required, hence, the set D is empty (see
also the Appendix).

We now briefly recall the decoding from Section 1.5.4. Consider that a Pauli error E
occurs on an encoded quantum state. We first apply the inverse of the quantum polar
transform QN on the error corrupted encoded state. Then, we measure the qubits in B
in the phase basis and the qubits in C in the amplitude basis. This gives the X and Z

components of the error E′ = Q†NEQN corresponding to the set C and B, respectively.
This information is then given as input to the classical successive cancellation decoder,
which outputs an estimate of the error E. The above decoding strategy is fine in a com-
munication scenario, where the goal is to transmit qubits from one place to another using
a noisy quantum channel. However, it does not work for computation due to the follow-
ing reason. After a round of error correction, one needs to encode qubits again in order to
perform the remaining computation. The errors that had occured during the time when
the quantum information was not encoded would not be corrected by the quantum polar
code. Therefore, one needs to perform the error correction in such a way that quantum
information remains encoded.

One way to do this is by performingX and Z type (stabilizer) generator measurements of
the CSS quantum polar codes. From Proposition 117 below, it can be seen that generator
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measurements also gives the X and Z components of the error E′ = Q†NEQN corre-
sponding to the set C and B, respectively. However, as we discuss below, this approach
is problematic as an error in the outcome of a generator measurement may propagate to
many qubits due to successive cancellation decoding.

Proposition 117. Let E′ = Xu′0Zv
′
0 ⊗ · · · ⊗ Xu′N−1Zv

′
N−1 . Then, the measurement of X type

generators GX gives the values of v′b for all b ∈ B and the measurement of Z type generators GZ
gives the values of u′c for all c ∈ C.

Proof. Recall from Section 1.5.3 that X type generating set GX has elements of form gbX =

QN (Xb ⊗k 6=b Ik)Q†N , where b ∈ B and Z type generating set GZ has elements of form
gcZ = QN (Zc ⊗k 6=c Ic)Q†N , where c ∈ C. We first observe the following

gbXE = QN (Xb ⊗k 6=b Ik)Q†NE
= QN (Xb ⊗k 6=b Ik)E′Q†N
= (−1)v

′
bQNE

′(Xb ⊗k 6=b Ik)Q†N
= (−1)v

′
bEgbX , (5.1)

where third equality follows from XbZb = −ZbXb. This means that gbX anticommutes
with the error E if v′b = 1, otherwise commutes. Therefore, the measurement of the
stabilizer gbX gives the value of v′b. Similiarly for a Z type generator gcZ , we have that

gcZE = (−1)u
′
cEgcZ . (5.2)

Therefore, the measurement of gcZ gives the value of u′c.

Now, the first question is whether measurement of generators can be done fault toler-
antly. Indeed it can be accomplished using ancilla qubits prepared in a cat state [72]. The
cat state consists of the same number of qubits as the weight of the generator that we
want to measure, and it is a uniform superposition of computational basis states contain-
ing even number of 1. To extract the syndrome, first the (qubit-wise) transversal CNOT
gate is applied between the qubits in the encoded quantum state (at positions where the
generator does not have the identity) and the qubits in the cat state. Finally, the qubits
of the cat state are measured. One can see that a n number of failures occurred during
the generator measurement procedure (either while applying the transversal CNOT or
while measuring the ancilla qubits) can produce at most n errors in the encoded block of
quantum polar code. Hence, the procedure is fault tolerant.

The second question is if the decoding based on the error corrupted syndrome is fault
tolerant. As shown in Proposition 117, measurement of a generator of the quantum polar
code gives either X or Z component of E′ = Q†NEQN corresponding to some index i
in either C or B. Based on this information, the error E is estimated using successive
cancellation decoding. Failures during the generator measurement procedure may cause
error in the extracted syndrome. In other words, we get incorrect information about the
error E′ corresponding to the position i. The successive cancellation decoding based
on incorrect information about E′ even at one position may output an error Ê, that is
different from E at many positions. Hence, decoding is not fault tolerant as an error in
the procedure may spread on many qubits after error correction based on the successive
cancellation decoding.

Fault Tolerant Syndrome Extraction Using Steane’s Technique: We now show that us-
ing Steane’s syndrome extraction technique, a noisy version of some codeword for the
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classical polar codes on WA and WP can be extracted in a fault tolerant way. Based on
this information, we can further estimate the error E in a way that the error happened
during the syndrome extraction does not propagate uncontrollably after decoding, unlike
the syndrome decoding based on generator measurements as discussed before.

Consider an encoded quantum state |φL〉S (encoded version of a quantum state |φ〉A) on
which a Pauli error E occurs. Let E := EXEZ , such that the binary indicator vectors for
EX andEZ are eX ∈ {0, 1}N and eZ ∈ {0, 1}N , respectively. Let |0〉A := ⊗a∈A|0〉a, i.e., all
zero state onA, and |+〉B := ⊗b∈B|+〉B , i.e., all plus state on B . Then, the error corrupted
encoded state E|φL〉 can be written as follows in the amplitude basis,

E|φL〉S = EQN (|φ〉A|+〉B|0〉C)

=
1√
2|B|

∑
u∈{0,1}|A|,x∈{0,1}|B|

φuEQN |(u,x, 0)〉S

=
1√
2|B|

∑
u∈{0,1}|A|,x∈{0,1}|B|

φuE|PN (u,x, 0)〉S

=
1√
2|B|

∑
u∈{0,1}|A|,x∈{0,1}|B|

φuEZ |eX ⊕ PN (u,x, 0)〉S , (5.3)

where in the second equality, we have expanded |φ〉A and |+〉B in the amplitude basis
and the third equality follows from the fact that the quantum polar transform QN acts as
the classical polar transform PN in the amplitude basis.

We will now write E|φL〉S in the phase basis. For this, we will use the notation |0̄〉 := |+〉
and |1̄〉 := |−〉 from Section 1.5.1.

E|φL〉S = EQN (|φ〉A|0̄〉B|0〉C)

=
1√
2|C|

∑
u∈{0,1}|A|,z∈{0,1}|C|

φūEQN

∣∣∣(u, 0, z)
〉
S

=
1√
2|C|

∑
u∈{0,1}|A|,z∈{0,1}|C|

φūE
∣∣∣P rN (u, 0, z)

〉
S

=
1√
2|C|

∑
u∈{0,1}|A|,z∈{0,1}|C|

φūEX

∣∣∣eZ ⊕ P rN (u, 0, z)
〉
S , (5.4)

where in the second equality, we have expanded |φ〉A and |0〉C in the phase basis and
the third equality follows from the fact that the quantum polar transform QN acts as the
reverse classical polar transform P rN (see also (1.115)) in the phase basis.

Fault Tolerant Syndrome Extraction for EX : For this, we need ancilla qubits prepared
in the encoded logical state |+L〉. We denote by S ′ = A′∪B′∪C′ the ancilla system. Then,
we have the following in the amplitude basis,

|+L〉S′ = QN (|+〉A′ |+〉B′ |0〉C′)

=
1√

2|A|+|B|

∑
u∈{0,1}|A|,x∈{0,1}|B|

QN |(u,x, 0)〉S′

=
1√

2|A|+|B|

∑
u∈{0,1}|A|,x∈{0,1}|B|

|PN (u,x, 0)〉S′ , (5.5)

where in the second equality, we have expanded |+〉A and |+〉B in the amplitude basis.
We now apply transversal CNOT gate CS→S′ between S and S ′ such that qubits in S are
control and qubits in S ′ are targets as illustrated in Figure 5.1.
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5.2. Fault Tolerant Syndrome Extraction

Figure 5.1: Syndrome extraction for EX . Here, wires in the left of quantum polar transform QN
represent qubits corresponding to quantum systems A, B and C, and each wire in the right of QN
represents one qubit. MZ corresponds to the Pauli Z measurement.

We have the following,

|θ〉SS′ = CS→S′ (E|φL〉S |+L〉S′)

=
1√

2|A|+2|B|

∑
u,u′∈{0,1}|A|,x,x′∈{0,1}|B|

φuCS→S′
(
EZ |eX ⊕ PN (u,x, 0)〉S

∣∣PN (u′,x′, 0)
〉
S′
)

=
1√

2|A|+2|B|

∑
u,u′∈{0,1}|A|,x,x′∈{0,1}|B|

φuEZ |eX ⊕ PN (u,x, 0)〉S
∣∣eX ⊕ PN (u⊕ u′,x⊕ x′, 0)

〉
S′

= E|φL〉SEX |+L〉S′ ,
(5.6)

where the second equality follows from (5.3) and (5.5). Therefore, the CNOT gate CS→S′
simply copies the X part EX onto the ancilla qubits S ′, while S and S ′ remain sep-
arated. We now measure the ancilla qubits S ′ in the amplitude basis, which yields
(eX ⊕ PN (u,x, 0)) for some u ∈ {0, 1}|A| and x ∈ {0, 1}|B|. Clearly, the syndrome ex-
traction is fault tolerant as it consists of the transversal CNOT gate and single qubit mea-
surements.

Note that the measurement outcome here is not a syndrome in the traditional sense, i.e.,
the value of parity checks of the error eX , but a noisy version of some random codeword.
In this case, the input of the noisy virtual channels (channels in the set C) are indeed
frozen to zero. This enables the use of the successive cancellation decoder in a fault
tolerant way, as explained later in more detail.

Fault Tolerant Syndrome Extraction for EZ : For this, we need ancilla qubits prepared
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in the encoded logical state |0L〉. We have the following in the phase basis,

|0L〉S′ = QN (|0〉A′ |0̄〉B′ |0〉C′)

=
1√

2|A|+|C|

∑
u∈{0,1}|A|,z∈{0,1}|C|

QN

∣∣∣(u, 0, z)
〉
S′

=
1√

2|A|+|C|

∑
u∈{0,1}|A|,z∈{0,1}|C|

∣∣∣P rN (u, 0, z)
〉
S′ , (5.7)

where in the second equality, we have expanded |0〉A and |0〉C in the phase basis. We now
apply the transversal CNOT gate CS′→S between qubits in S and S ′, such that qubits in
S ′ are control and qubits in S are targets as illustrated in Figure 5.2.

Figure 5.2: Syndrome extraction for EZ . MX corresponds to the Pauli X measurement.

We have the following∣∣θ′〉SS′ = CS′→S (E|φL〉S |0L〉S′)

=
1√

2|A|+2|C|

∑
u,u′∈{0,1}|A|,z,z′∈{0,1}|C|

φuCS′→S

(
EX

∣∣∣eZ ⊕ P rN (u, 0, z)
〉
S

∣∣∣P rN (u′, 0, z′)
〉
S′
)

=
1√

2|A|+2|C|

∑
u,u′∈{0,1}|A|,z,z′∈{0,1}|C|

φuEX

∣∣∣eZ ⊕ P rN (u, 0, z)
〉
S

∣∣∣eZ ⊕ P rN (u⊕ u′, 0, z′ ⊕ z)
〉
S′

= E|φL〉SEZ |0L〉S′ ,
(5.8)

where the second equality follows from (5.4) and (5.7). Therefore, the qubit-wise CNOT
gate CS′→S simply copies the Z part EZ onto the ancilla qubits S ′, while S and S ′ re-
main separated. We now measure the ancilla qubits S ′ in the phase basis, which yields
(eZ ⊕ P rN (u, 0, z)) for some u ∈ {0, 1}|A| and z ∈ {0, 1}|C|, which is a noisy version of the
codeword P rN (u, 0, z).

Decoding Based on the Extracted Error Syndrome: We first consider the decoding of X
part EX of the total error E. Our goal is to guess the indicator vector eX corresponding
to EX with high probability using (eX ⊕ PN (u,x, 0)), which is a noisy version of the
encoded vector PN (u,x, 0). Further, the components of the vector (u,x, 0) corresponding
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to C are all zero and known to both the encoder and decoder. Recall from Section 1.5.3
that the set C corresponds to the bad virtual channels for the classical polar code on the
induced amplitude channel WA. Therefore, using successive cancellation decoding, we
can reliably estimate the vectors u and x, hence, also the vector eX . Similarly, for EZ , the
indicator vector eZ is decoded using (noisy version of a codeword) (eZ ⊕ P rN (u, 0, z)).

We now see what happens if there are errors in the extracted syndrome. Suppose be-
cause of failures during the syndrome extraction (either in CNOT gates or single qubit
measurements), one instead gets (e′X ⊕ eX ⊕ PN (u,x, 0)) and (e′Z ⊕ eZ ⊕ P rN (u, 0, z))
for some e′X , e

′
Z ∈ {0, 1}N . Then, the successive cancellation decoding would output

e′X ⊕ eX and e′Z ⊕ eZ instead of eX and eZ , respectively. Therefore, the error correction
procedure only leaves errors e′X and e′Z (errors in the syndrome) on the encoded qubits.
This means that successive cancellation decoding is fault tolerant. The remaining errors
may be corrected in the next round of error correction.

5.3 Preparation of Encoded Logical States

We need logical polar code states corresponding to a computational basis state to ini-
tialize a fault tolerant quantum computation. Further, as discussed in Section 5.2, we
need ancilla qubits prepared in logical states |0L〉 and |+L〉 to extract error syndromes
corresponding to X and Z errors, that have happened on the encoded quantum state.
First of all, note that to implement the circuit for quantum polar transform QN (see Sec-
tion 1.5.1), we must be able to apply non-local CNOT gates. Further, this circuit is not
fault tolerant as failure of a CNOT gate may cause an error of weight two in the prepared
encoded state. Further, these errors may propagate to many more qubits through the
CNOT gates that are applied afterwards. The propagation of errors may cause too many
errors on the encoded state to be correctable by the polar code. Further, these errors are
correlated, hence, polar codes may not be suitable as they have been designed to correct
independent errors. Hence, we need to use some other method to suppress the errors
that occurred during the execution of quantum polar transform circuit.

A construction to produce encoded states of CSS codes free of errors is based on verifi-
cation of the encoded state, that may have been prepared in a non fault tolerant way [72,
110, 101]. The prepared state is checked for errors using a fault-tolerant procedure. If
the errors are detected, it is discarded and the encoded state is prepared again. If no er-
rors are detected, the prepared encoded state is further used for computation. Another
construction that has been used for CSS codes is based on fault tolerant preparation of a
graph state [111].

Here, we will provide fault tolerant procedures to make the polar code state |0L〉 free of
bothX and Z errors. It is shown in Section 5.4 below that the Hadamard gate is transver-
sal up to a renumbering of qubits, when only one qubit is encoded per quantum polar
block. Hence, we can convert |0L〉 to |+L〉 fault tolerantly, when one qubit is encoded.
However, in this section, we present things in general without imposing any constraint
on how many qubits are encoded per quantum polar block. Our approach to prepare
|0L〉 is based on repetition. First, we prepare the encoded quantum state |0L〉 free of X
errors, using many independent copies of the corrupted logical state |0L〉. Then, from
many independent copies of |0L〉, which are free of X errors, we prepare |0L〉 free of both
X and Z errors. Using a numerical simulation, we also estimate the logical error rate of
producing the corrected polar code state for our method.
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5.3.1 Removing X errors from the polar code state |0L〉
Let S = A∪B∪C be a N -qubit system, on which we want to prepare the polar code state
|0L〉. We start by preparing the N qubits of S in state |+〉, denoted by |+〉S , which is the
equal superposition of all the computational basis states. We assume that this state can be
prepared fault tolerantly, and to simplify the analysis, we shall actually assume that no
errors occurred during the preparation of the |+〉S state. Hence, we have the following in
the amplitude basis (throughout this section, we have omitted the normalization factor
for the sake of clarity):

|+〉S = |+〉A|+〉B|+〉C
=

∑
u∈{0,1}|A|

∑
x∈{0,1}|B|

∑
z∈{0,1}|C|

|u,x, z〉S

=
∑

u∈{0,1}|A|

∑
x∈{0,1}|B|

∑
z∈{0,1}|C|

|PN (u,x, z)〉S , (5.9)

where the last equality follows by a change of variable.

Now, consider an ancilla system S ′ = A′∪B′∪C′, on which we prepare the logical all-zero
state, denoted |0L〉A. Hence, if no error occurs during the state preparation, we have the
following in the amplitude basis,

|0L〉S′ = QN (|0〉A′ |+〉B′ |0〉C′) =
∑

x∈{0,1}|B|
|PN (0,x, 0)〉S′ . (5.10)

However, since the polar encoding is faulty, there may be some Pauli error corrupting the
|0L〉S′ state. We first deal with X-type errors, and thus denote the error operator by EX ,
with the corresponding indicator vector eX = (e1, . . . , eN ) ∈ {0, 1}N . Then, we have the
following in the amplitude basis,

EX |0L〉S′ =
∑

x∈{0,1}|B|
|eX ⊕ PN (0,x, 0)〉S′ . (5.11)

[Initial preparation] Applying the transversal CNOT gateCS→S′ on |+〉SE|0L〉S′ , we get:

CS→S′ |+〉SE|0L〉S′ =
∑

u∈{0,1}|A|

∑
x,x′∈{0,1}|B|

∑
z∈{0,1}|C|

CS→S′
(
|PN (u,x, z)〉S

∣∣eX ⊕ PN (0,x′, 0)
〉
S′
)

=
∑

u∈{0,1}|A|

∑
x,x′∈{0,1}|B|

∑
z∈{0,1}|C|

|PN (u,x, z)〉S
∣∣eX ⊕ PN (u,x⊕ x′, z)

〉
S′

=
∑

u∈{0,1}|A|

∑
x,x′∈{0,1}|B|

∑
z∈{0,1}|C|

|PN (u,x, z)〉S
∣∣eX ⊕ PN (u,x′, z)

〉
S′ .

(5.12)

We now measure the S ′ system in the amplitude basis, giving the vector eX⊕PN (u,x′, z)
as measurement outcome, for some u ∈ {0, 1}|A|, x′ ∈ {0, 1}|B| and z ∈ {0, 1}|C|. This
leaves the system S in the following state,

|Ψ〉S :=
∑

x∈{0,1}|B|
|PN (u,x, z)〉S = QN (|u〉A|+〉B|z〉C) . (5.13)

Note that |Ψ〉S is the encoded logical state corresponding to |u〉A, while assuming that
the state of the C subsystem is frozen to |z〉C rather than all-zero |0〉C . Hence, we need to
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determine the vectors u ∈ {0, 1}|B| and z ∈ {0, 1}|C|. Indeed, the fact that the state of C is
frozen to |z〉 rather than all-zero is not problematic, as long as we are able to determine
its value. Further, it’s also important to determine u, so that we may apply the logical X
operator (Given in Section 5.4 below) to obtain the |0L〉A.

To determine u and z, the only information we have is the measurement outcome, which
is the binary vector

m := eX ⊕ PN (u,x′, z). (5.14)

For a vector v ∈ {0, 1}|S|, we define its restriction to B ⊆ S , denoted by v|B, as the vector
obtained by keeping only the coordinates of v corresponding to the set B. Since EX
needs to be determined up to stabilizers, we may always assume that PN (eX)|B = 0 1.
Therefore, using PN (m) = (u,x′, z) ⊕ PN (eX), it follows that x′ = PN (m)|B. Since
we can determine x′, we may add PN (0,x′, 0) to the measurement result m, therefore
getting

m′ := m⊕ PN (0,x′, 0) = PN (u, 0, z)⊕ eX , (5.15)

with PN (eX)|B = 0. To resume, we get a noisy version of PN (u, 0, z), where the latter is
corrupted by an error eX , satisfying PN (eX)|B = 0.

[Repetition] Now, we prepare again the system S ′ in the logical all-zero state (or we may
use another ancilla system S ′′, that can be prepared in parallel with the first preparation
of S ′). Since the preparation is again faulty, we get a state

E1
X |0L〉S′ =

∑
x∈{0,1}|X|

∣∣e1
X ⊕ PN (0,x, 0)

〉
S′ , (5.16)

for some error E1
X with the indicator vector e1

X ∈ {0, 1}N . Applying the transversal
CNOT gate CS→S′ on |Ψ〉SE1

X |0L〉S′ , we get

CS→S′ |Ψ〉SE1
X |0L〉S′ =

∑
x,x′∈{0,1}|B|

|PN (u,x, z)〉S
∣∣e1
X ⊕ PN (u,x⊕ x′, z)

〉
S′ . (5.17)

Hence, S and S ′ systems are still separated, thus measuring the S ′ system in the am-
plitude basis leaves the S system in the same state |Ψ〉S , with measurement outcome
e1
X ⊕ PN (u,x′, z) for some x′ ∈ {0, 1}B|. Similarly to the above, we may determine a

noisy version of PN (u, 0, z),

m′1 = PN (u, 0, z)⊕ e1
X (5.18)

with P (e1
X)|B = 0. We repeat the above procedure many times, and use a majority vote

for each position i ∈ {0, . . . , N−1} to determine the value of PN (u, 0, z). For the majority
voting decoding to be reliable, Pr(ei = 1), i.e., the probability of the ith component ei
to be 1 for a random error vector eX , needs to be small for all i ∈ {0, . . . , N − 1}. In
Section 5.3.3 below, based on a numerical simulation, we estimate the logical error rate
pL, that is, probability that the majority voting decoding provides wrong prediction for
PN (u, 0, z).

1Since we may replace eX by the equivalent error e′
X := eX ⊕ PN (0, PN (eX)|B, 0), which satisfies

PN (e′
X) = PN (eX)⊕ (0, PN (eX)|B, 0), and therefore PN (e′

X)|B = 0.
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Remark 118. So far, we have considered that errors occur when preparing the logical all-zero
state on system S ′, but we have neglected the errors that might be introduced when applying the
the transversal CNOT gateCS→S′ . Errors introduced by theCS→S′ gates on the S ′ system do not
propagate and do not accumulate during the repetition process, hence, they will have a negligible
impact on the majority vote. Errors introduced by theCS→S′ gates on the S system will propagate
to the S ′ system during the next repetitions. However, an error on the S system will propagate to
only one error in S ′, thus we expect their impact on the majority vote to be limited. Once we have
determined the z and u values, it should be also possible to correct the S system.

5.3.2 Removing Z errors from the polar code state |0L〉
Here, we will use many independent copies of the encoded state |0L〉, which is corrupted
only by Z errors and free of X errors, to produce the encoded state |0L〉 free of both X
and Z errors. The approach here is similar to the preparation of |0L〉 free of X errors
given above.

[Initial Preparation] We first start by preparing the N qubits of S in state |0〉, denoted by
|0〉S . We have the following in the phase basis

|0〉S = |0〉A|0〉B|0〉C (5.19)

=
∑

u∈{0,1}|A|

∑
x∈{0,1}|B|

∑
z∈{0,1}|C|

∣∣∣(u,x, z)
〉
S (5.20)

=
∑

u∈{0,1}|A|

∑
x∈{0,1}|B|

∑
z∈{0,1}|C|

∣∣∣P rN (u,x, z)
〉
S , (5.21)

where the last equality follows by a change of variable.

Now, consider an ancilla system S ′ = A′ ∪ B′ ∪ C′, prepared in the logical all-zero state
|0L〉S′ , which is free of X errors. Let EZ , with the corresponding indicator vector eZ ∈
{0, 1}N , be the Z type error that had occurred on |0L〉S′ during preparation. This error is
the composition of Z errors occurred during the implementation of the polar transform
circuit on S ′, and during the procedure to make free of X errors. Hence, we have the
following in the phase basis, using the notation |0̄〉 := |+〉 and |1̄〉 := |−〉

EZ |0L〉S′ = EZQN (|0〉A′ |0̄〉B′ |0〉C′) =
∑

u∈{0,1}|A|

∑
z∈{0,1}|C|

∣∣∣eZ ⊕ P rN (u, 0, z)
〉
S′ . (5.22)

We now apply the transversal CNOT gate CS′→S on |0〉SEZ |0L〉S′ . Then, we have the
following in the phase basis

CS′→S |0〉SEZ |0L〉S′
=

∑
u,u′∈{0,1}|A|

∑
x∈{0,1}|B|

∑
z,z′∈{0,1}|C|

CS′→S

(∣∣∣P rN (u,x, z)
〉
S

∣∣∣eZ ⊕ P rN (u′, 0, z′)
〉
S′
)

=
∑

u,u′∈{0,1}|A|

∑
x∈{0,1}|B|

∑
z,z′∈{0,1}|C|

∣∣∣P rN (u,x, z)
〉
S

∣∣∣eZ ⊕ P rN (u⊕ u′,x, z ⊕ z′)
〉
S′

=
∑

u,u′∈{0,1}|A|

∑
x∈{0,1}|B|

∑
z,z′∈{0,1}|C|

∣∣∣P rN (u,x, z)
〉
S

∣∣∣eZ ⊕ P rN (u′,x, z′)
〉
S′ .

(5.23)
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We measure the S ′ system in the phase basis, giving the vector eZ ⊕ P rN (u′,x, z′) as the
measurement outcome, for some u′ ∈ {0, 1}|A|, x ∈ {0, 1}|B| and z′ ∈ {0, 1}|C|. This leaves
the system S in the following state,

|Ψ〉S :=
∑

u∈{0,1}|A|

∑
z∈{0,1}|C|

∣∣∣P rN (u,x, z)
〉
S = QN (|0〉A|x〉B|0〉C) . (5.24)

Note that it is the encoded logical state corresponding to |0〉A, where the state of the B
subsystem is frozen to |x〉B rather than all-plus |0̄〉B = |+〉B. We must determine the
vector x.

To determine x, the only information we have is the measurement outcome, which is the
binary vector

m := eZ ⊕ P rN (u′,x, z′). (5.25)

SinceEZ needs to be determined up to stabilizers, we may always assume thatPN (eZ)|A =
PN (eZ)|C = 0, similar to what we have done in the case of X error. Therefore, using
P rN (m) = (u′,x, z′)⊕P rN (eZ), it follows that u′ = P rN (m)|A and z′ = P rN (m)|C . Since we
can determineu′ and z′, we may add P rN (u′, 0, z′) to the measurement resultm, therefore
getting

m′ := m⊕ P rN (u′, 0, z′) = P rN (0,x, 0)⊕ eZ , (5.26)

with P rN (eZ)|A = 0 and P rN (eZ)|C = 0. Observe that m′ is a noisy version of P rN (0,x, 0),
corrupted by an error eZ . Similarly to Section 5.3.1, we obtain many noisy versions of
P rN (0,x, 0) and, do a majority voting decoding to produce an estimate for x ∈ {0, 1}|B|.

5.3.3 Numerical Results

As the procedures presented above for removing X and Z errors from the polar code
state |0L〉 are almost identical, we consider only X errors in this section, and using a
numerical simulation, we compute the logical error rate pL for preparing |0L〉 free of X
errors. We consider a fault model for the CNOT gate, where each possible error I ⊗ X ,
X ⊗ I , and X ⊗X occurs after a CNOT gate with probability p/3 (hence, the total error
probability is p).

We consider that two qubits are encoded per polar block, i.e., |A| = 2, for the reasons
explained below in Section 5.4. We first evaluate Pr(ei = 1), ∀i ∈ {1, . . . , N}, that is, the
probability for ith component ei of a random error vector eX to be 1. Then, using this
probability, we evaluate the error probability of the majority voting decoding pim, ∀i ∈
{1, . . . , N}, depending on the number of repetitions R. Note that for an odd number of
independent repetitions R, pim is equal to the probability that at least R+1

2 times out of R
repititions the component ei is equal to 1, that is,

pim =
R∑

k=R+1
2

C(R, k)Pr(ei = 1)k (1− Pr(ei = 1))R−k , (5.27)

where C(R, k) = R !
k !(R−k) ! . Finally, under the assumption that the majority voting decod-

ing holds independently on each position, we compute the logical error rate pL (proba-
bility of failing to recover PN (z, 0,u) value) as below,

pL = 1−
N−1∏
i=0

(1− pim). (5.28)

To evaluate Pr(ei = 1), ∀i ∈ {0, . . . , N − 1}, we proceed as follows:
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1. We apply the polar transform on the all-zero vector, using the above fault model to
implement CNOT gates, and generate a random error vector eX .

2. We replace eX ← eX ⊕ PN (0, PN (eX)|B, 0), such that we get an equivalent error
(still denoted by eX here) for which PN (eX)|B = 0.

3. We repeat the steps 1 and 2 several times and update Pr(ei = 1) according to the
positions of 1s in eX .

Figure 5.3 below shows the logical error rate pL, as a function of the CNOT fault proba-
bility p for different values of N , where each curve corresponds to a different number of
repetitions R.
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(a) N = 64
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(b) N = 128
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(c) N = 256
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(d) N = 1024

Figure 5.3: Logical error rate pL as a function of the CNOT fault probability p. Number of
physical qubits N = 64, 128, 256, 1024, encoding |A| = 2 logical qubits.

It can be observed that the logical error rate increases pL increases with the CNOT fault
probability p. Further, it also increases with increasing number of physical qubits – this is
not surprising, since our approach is based on repetition and does not use error correcting
capability of the polar code, hence it is easier to prepare a shorter code state. This means
that this approach can not be used to prepare a code state of arbitrary large N for a
constant p. However, it may work for a givenN if p is small enough and if use a sufficient
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number of repetitions. For example, for N = 64 and p = 10−4, the logical error rate is
equal to 10−10 for R = 11 repetitions. For a given p, preparation of an encoded state of
arbitrarily large code length N is still an open problem.

5.4 Fault Tolerant Logical Gates on Encoded Quantum States

In this section, we discuss the fault tolerant procedures for logical gates on encoded
quantum states. While encoding one qubit per quantum polar block, we provide fault
tolerant procedures to implement logical Paulis X and Z, CNOT, and Hadamard gates.

We consider a quantum polar code on a Pauli channel such that its induced amplitude
and phase channels are equivalent, i.e., WA ≡ WP . Then, from the definitions of B and C
in Section 1.5.3, we have the following for sets B and C (see also the Appendix).

b ∈ B ⇐⇒ N − b− 1 ∈ C. (5.29)

Here, we take |B| = |C| = N−2
N . This implies that |A| = 2, such that A = {a,N − a − 1},

for some a ∈ {0, . . . , N − 1}. We will further freeze one qubit of A in either |0〉 or, |+〉
state, and use the remaining qubit to encode quantum information. Hence, we have two
degrees of freedom associated with freezing a qubit inA, the first is the choice of the qubit
that is frozen and the second is the chosen quantum state in which it is frozen (either |0〉
or |+〉). We exploit these degrees of freedoms to implement the logical Hadamard gate
transversally (up to a renumbering of the qubits). Finally, for logical X , Z, CNOT gates,
it does not make any difference the specific way the qubit in A is frozen.

To implement an arbitrary unitary gate, we need fault tolerant procedures for a universal
set. A standard universal set is {C,H, T}, where C is the CNOT gate, H is the Hadamard
gate, and T is phase gateRπ

8
(see Section 1.3.8 for the definitions of these quantum gates).

Hence, the fault tolerant procedure for T gate is the only procedure that we need for
universal fault-tolerant quantum computation with quantum polar codes. Finally, We
would also like to point out that transversal procedures alone can not be used to imple-
ment a universal set according to the Eastin-Knill no go theorem [112]. However, given
our implementation of the Hadamard gate, Eastin-Knill theorem does not directly imply
the impossibility of having a transversal T gate. In any case, there are different ways
to circumvent Eastin-Knill theorem such as quantum gate teleportation [113], magic state
distillation [114], gauge fixing [115], concatenated schemes [116], code deformation [117],
and lattice surgery [118].

We first give the definition of encoded logical gates.

Definition 119 (Encoded Logical Gates). Let U be a unitary gate acting on n qubits, and |φL〉
be the encoded version of a n qubit quantum state |φ〉. Then, for any |φ〉, the encoded version of
U , denoted by L(U), acts as follows on |φL〉,

L(U)|φL〉 = |(Uφ)L〉, (5.30)

where |(Uφ)L〉 is the encoded version of U |φ〉.

It can be seen that for any unitary gate U , there always exists an encoded version L(U),
however, we need a fault tolerant way to implement it. We now proceed with fault toler-
ant procedures for Pauli, Hadamard and CNOT gates.
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5.4.1 Fault Tolerant Procedure for encoded Pauli X and Z Gates

Let i ∈ A be the position corresponding to the information qubit in the polar block 2.
Then, using Definition 119, for a single qubit unitary Ui acting on the uncoded informa-
tion qubit, its logical version L(Ui) is given by,

L(U) = QNU
(i)Q†N , (5.31)

where U (i) = Ui ⊗j 6=i Ij and recall that QN is the quantum polar transform. Let Xu :=
Xu0 ⊗ · · · ⊗ XuN−1 and Zu := Zu0 ⊗ · · · ⊗ ZuN−1 , where u = (u0, . . . , uN−1) ∈ {0, 1}N .
Further, let ui ∈ {0, 1}N be a vector such that it has 1 at ith position and 0 everywhere
else. Then, from (5.31), encoded gates corresponding to Pauli gates Xi and Zi for the
information qubit i ∈ A are given by,

L(Xi) = QNX
uiQ†N = XPNui , (5.32)

L(Zi) = QNZ
uiQ†N = ZP

r
Nui , (5.33)

where the second equalities of (5.32) and (5.33) follow from (1.138)-(1.141). Therefore,
encoded Pauli gates L(Xui) corresponds to applying Pauli X on physical qubits at posi-
tions, where the vector PNui ∈ {0, 1}N has 1. Similarly, L(Zui) corresponds to applying
Pauli Z on physical qubits at positions, where the vector P rNui ∈ {0, 1}N has 1. As we are
only applying single qubit gates on physical qubits, these procedures are fault tolerant.

5.4.2 Fault Tolerant Procedure for the encoded CNOT Gate

Let the first qubit encoded into S and the second qubit encoded into S ′. Then, the
transversal CNOT gate CS→S′ (see Figure 5.1) is equal to the encoded C1→2. This follows
from the fact that setting n = 2 and U = C1→2, CS→S′ satisfies (5.30) for computational
basis states, as shown below in (5.34). Note that it’s sufficient that (5.30) holds for a basis,
as then it extends to arbitrary quantum states by linearity.
For any u, u′ ∈ {0, 1}, we have that,

CS→S′ |uL〉S |uL〉S′ =
1

2|B|

∑
x,x′∈{0,1}|B|

CS→S′
(
|PN (u,x, 0)〉S

∣∣PN (u′,x′, 0)
〉
S′
)

=
1

2|B|

∑
x,x′∈{0,1}|B|

(
|PN (u,x, 0)〉S

∣∣PN (u⊕ u′,x⊕ x′, 0)
〉
S′
)

= |uL〉S
∣∣(u⊕ u′)L〉S′ , (5.34)

where in the first equality, we have expanded |uL〉S and |uL〉S′ in the computational basis.

5.4.3 Fault Tolerant Procedure for the encoded Hadamard Gate

Here we take a different approach, using the stabilizer group of the quantum polar code
rather than using Definition 119 directly. We first give the following proposition.

Proposition 120. If a unitary U on physical qubits preserves the stabilizer group of the code via
conjugation, i.e., it maps the stabilizer group onto itself via conjugation, then U corresponds to
an encoded logical gate.

2Recall that we are encoding only one qubit per quantum polar block.
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Proof. First of all, we note that if a encoded quantum state |φL〉 is stabilized by an operator
A, then U |φL〉 is stabilized by UAU †. It is easily seen as follows,

U |φL〉 = UA|φL〉 (5.35)

= UAU † (U |φL〉) . (5.36)

Therefore, the fact that U preserves the stabilizer group of the code via conjugation im-
plies that for any encoded state |φL〉, U |φL〉 also belongs to the codespace. Hence, it can
be written as,

U |φL〉 =
∣∣(U ′φ)L

〉
, (5.37)

for some U ′ acting on the uncoded state |φ〉. This completes the proof.

We now prove the following lemma.

Lemma 121. For a CSS quantum polar code, such that frozen sets B and C satisfy the condition
b ∈ B ⇐⇒ N − b − 1 ∈ C given in (5.29). Then, the gate RqH̄ is an encoded logical gate,
where H̄ is the transversal Hadamard gate on physical qubits and Rq is the quantum gate that
permutes qubits according to the permutation R defined in (1.114), that is, it acts as follows in
the computational basis

Rq|u0, . . . , ui, . . . , uN−1〉 := |uN−1, . . . , uN−1−i, . . . , u0〉, (5.38)

where (u0, . . . , ui, . . . , uN−1) ∈ {0, 1}N .

Proof. To prove the lemma, we show that given the condition in (5.29), the gate RqH̄
preserves the stabilizer group under conjugation.

Similarly to (5.32) and (5.33), the set ofX and Z type stabilizer generators of the quantum
polar code (Section 1.5.3) can be written as follows.

GX = {XPNub | b ∈ B}, (5.39)

GZ = {ZP rNuc | c ∈ C}, (5.40)

where ub ∈ {0, 1}N is a vector such that it has 1 at position b ∈ B and 0 everywhere else
and similarly uc ∈ {0, 1}N has 1 at position c ∈ C and 0 everywhere else. Further, using
HXH† = Z and HZH† = X and the definition of Rq, we have the following,

RqH̄X
PNubH̄†R†q = ZRPNub . (5.41)

RqH̄Z
P rNucH̄†R†q = XRP rNuc . (5.42)

We now show that ZRPNub ∈ GZ and XRP rNuc ∈ GX . From b ∈ B ⇐⇒ N − b− 1 ∈ C, it
follows that

Rub = uc′ for c′ = N − b− 1 ∈ C. (5.43)
Ruc = ub′ for b′ = N − c− 1 ∈ B. (5.44)

Using (5.43)-(5.44), we have that

ZRPNub = ZRPNRRub = ZP
r
Nuc′ ∈ GZ . (5.45)

XRP rNuc = XRP rNRRuc = XPNub′ ∈ GX . (5.46)

Hence, RqH̄ fixes the stabilizer group via conjugation. Finally, from Proposition 120, it
follows that RqH̄ is an encoded logical gate.
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Turning RqH̄ into the Logical Hadamard Gate: For the encoded Hadamard gate L(H),
we need a procedure on physical qubits that satisfies the following,

• It is an encoded logical gate (see Proposition 120).

• It exchanges the logical L(X) and L(Z) via conjugation.

As shown in Lemma 121, the first property from the above is satisfied for RqH̄ . For the
second property, we first consider that two information qubits are encoded correspond-
ing to positions a and N − a − 1 in A. From (5.32)-(5.33), (5.41)-(5.42) and(5.45)-(5.46),
logical Pauli X and Z gates corresponding to a and N − a− 1 are mapped as follows via
conjugation with RqH̄ .

L(Xa)→ L(ZN−a−1).

L(Za)→ L(XN−a−1).

L(XN−a−1)→ L(Za).

L(ZN−a−1)→ L(Xa).

This means RqH̄ on physical qubits is equivalent to applying L(S(H ⊗ H)), i.e., the en-
coded version of S(H⊗H), where S is the swap gate. Finally, we freeze one of the qubits
in A by setting it’s quantum state to either |0〉 or |+〉, and encode only one qubit per
quantum polar block. Then, L(S(H ⊗ H)) basically corresponds to applying encoded
Hadamard on the information qubit, and changing the basis of the ancilla qubit and then
swapping the frozen and information qubits with each other. Hence, we succesfully man-
aged to apply the encoded Hadamard gate. However, the information qubit changed its
position in the polar block from a to N − a− 1 if ath qubit is used to encode information,
or from N − a− 1 to a if N − a− 1th qubit is used and the frozen qubit in A changes its
value from |0〉 to |+〉, or from |+〉 to |0〉.
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Conclusion and Perspectives

The goal of this thesis has been to investigate polar coding in the context of quan-
tum communication and computation. We have introduced purely quantum polar codes,
which achieve the symmetric channel capacity with entanglement assistance. Purely
quantum polar codes make effective use of a quantum polarization phenomenon, where
polarization happens at the quantum level, so that the synthesized virtual channels tend
to be completely noisy or noiseless as quantum channels. This quantum polarization
relies on a channel combining and splitting procedure, using randomized Clifford uni-
tary as the channel combining operation. We have introduced the necessary definitions
and worked out the proof of quantum polarization for general quantum channels with
qudit input. Further, for qubit Pauli channels, we provide an alternative proof of quan-
tum polarization, and also a decoding algorithm. Moreover, for Pauli channels, we show
another polarization phenomenon, namely, multilevel polarization, which uses a fixed
channel combining operation and allows to reduce the number of preshared EPR pair
compared to the first construction. Finally, we have investigated CSS quantum polar
codes for fault tolerant quantum computing. For CSS quantum polar codes, we have
provided fault tolerant procedures to (i) prepare a polar code state, (ii) perform logical
Pauli, Hadamard, and CNOT gates, and (iii) extract error syndrome.

We now discuss some important open problems arising from this thesis. First of all, we
believe that two-level purely quantum polarization may also happen while using one
single specific Clifford gate throughout the polarization process. For this, we need guar-
anteed improvement or degradation of a virtual channel after two steps of polarization as
discussed in Section 3.3.2, wherein we have provided numerical evidence in this regard.
However, a rigorous proof of guaranteed improvement or degradation is still missing.

For Pauli channels, we have an efficient decoding algorithm. For non-Pauli quantum
channels, there are two approaches to deal with the problem. The first approach is based
on syndrome measurement, i.e., measuring a generating set of the stabilizer group, which
projects the error to a Pauli error. This is the standard way to deal with general quantum
noise, and it has been discussed in Section 2.5.2. However, this approach does not achieve
symmetric mutual information in general due to the loss of information incurred during
the syndrome measurement. The second approach is the twirling of a general quantum
channel, with respect to the group of Pauli operators (see Section 1.3.5, for a definition
of channel twirling). This operation projects the original quantum channel into a Pauli
channel [61](see also Lemma 63), and one may reduce the decoding problem to decod-
ing the latter. This approach is also suboptimal, since channel twirling induces a loss
of information. Hence, a decoding algorithm for non-Pauli channels, allowing reliable
communication at rates close to the symmetric coherent information remains an open
problem.
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For fault tolerant quantum computation with CSS quantum polar codes, our procedure
to prepare a polar code state (see Section 5.3) works, if the code length is not too large for
a constant CNOT gate fault probability p. Larger code lengths imply smaller logical error
rate for the quantum polar code, hence one may want to prepare a larger code state. It
may be possible to prepare a larger polar code state by better exploiting the structure of
the quantum polar code or using concatenation [73]. The other procedures for preparing
encoded quantum state for CSS codes such as fast filtering [110] and preparation based
on a graph state [111] may also be investigated in this regard.
Finally, we have provided fault tolerant procedures to implent the logical CNOT and
Hadamard gates, and we are missing a fault tolerant procedure for logical T gate to have
a universal fault tolerant quantum computation with CSS quantum polar codes. Given
that our procedure to implement the Hadamard gate is not exactly transversal, Eastin-
Knill no go theorem does not directly apply. This means that a transversal (or local)
procedure for logical T gate could be possible. This intuition is further strengthened by
the fact that some Reed-Muller codes allows tranversal implementation of the T gate [119,
114, 111], since polar codes are very close to Reed-Muller codes. Moreover, there are
several ways to get round Eastin-Knill theorem (see Section 5.4), out of which a widely
used fault tolerant construction is based on magic state distillation. In this context, it is
also worth noticing that polar codes can be used for magic state distillation as shown
in [120].

149





Appendix

Here we consider a Pauli channelW , such that both its amplitude and phase channels
WA and WP are equivalent, and are given by a BSC W . Alternatively, we may consider
that X and Z errors are corrected independently, without taking into account the correla-
tion between them (in this case, if we take for instanceW to be the depolarizing channel,
WA and WP are equivalent BSCs). Hence, a CSS quantum polar code on W relies on a
classical polar code on W to correct both X and Z errors. Using a numerical simulation,
we show that one can construct entanglement free polar codes, without sacrificing the
error correction performance. We will use the sets A,B, C and D defined in Section 1.5.3.
We first note the following property.

Proposition 122. Let J ⊂ {0, . . . , N − 1} be the frozen set for a classical polar code on W , i.e.,
the set of indices corresponding to the bad virtual channels. Then, the entanglement free condition
(the frozen set D is empty) holds for the CSS quantum polar code onW , constructed using this
classical polar code on W , if and only if the following holds

J ∩ π(J ) = ∅, (5.47)

where π(J ) := {j ∈ {0, . . . , N − 1} | N − j − 1 ∈ J }.

Proof. As the polar transform on WA = W is PN (not reversed), it directly follows that
J = C ∪ D. From the definitions of B and C, it can be seen that if WA and WP are
equivalent, we have the following

j ∈ C ⇐⇒ N − j − 1 ∈ B. (5.48)

Further, using the fact that if j ∈ D, both W (j) and W (N−j−1) are bad, we have that

j ∈ D ⇐⇒ N − j − 1 ∈ D. (5.49)

From (5.48) and (5.49), we have that π(J ) = B∪D. Since, the sets B, C and D are disjoint,
it follows that

J ∩ π(J ) = D. (5.50)

Hence, the entanglement free condition holds if and only if J ∩ π(J ) = ∅.

Corollary 123. For the entanglement free condition, the rate R of the classical polar code on W
must satisfy,

R = 1− |J |
N
≥ 1

2
. (5.51)

Note that (5.51) is not sufficient for the entanglement free condition.
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Numerical Results

To construct a classical polar code on W , with rate R ≥ 1/2 and code length N , we
estimate the error probability of each virtual channel, based on the density evolution
technique [121]. Then we consider two different constructions, as follows.

1. The first construction is simply the conventional construction of a Polar code, in
which the frozen set J consists of the (1−R)N virtual channels with highest error
probabilities. We note that J ∩ π(J ) may be non empty, thus the CSS code based
on this classical polar code may need entanglement assistance.

2. For the second construction, we impoose the condition that J ∩ π(J) = ∅ to make it
“entanglement free”. Precisely, we freeze virtual channels, starting again from the
worst (highest probability value) to the best one (lowest probability value). How-
ever, each time a virtual channel, say of index j, is frozen (that is, we add j to J ),
we declare the the virtual channel of index N − 1 − j as being “unfreezable”. Un-
freezable channels are skipped (not added to J ) as the freezing process continues,
and the latter stops when |J | = (1 − R)N . This way, we make sure that the set
of frozen virtual channels satisfies J ∩ π(J ) = ∅, thus the CSS code based on this
construction does not need entanglement assistance.

Once we have fixed the frozen set, we may get an upper-bound of the word error rate
(that is, the rate at which the successive cancellation decoder fails), based on the es-
timated error probabilities of the unfrozen virtual channels [121]. Moreover, this up-
erbound is known to be tight, especially in the low word error rate region. In Fig-
ures 5.4, 5.5, and 5.6 below, we plot this upper-bound for the two constructions, for
various rate R and code length N values. Blue curves correspond to the conventional
construction (first construction), while the red markers correspond to the entanglement-
free construction (second construction). One can observe that both constructions exhibit
the same word error rate performance, which, based on a careful analysis of our numer-
ical results, can be explained as follows. First, the entanglement assistance requirement
for the conventional construction (that is, |J ∩ π(J )|) is low. Second, in the entange-
ment free construction, virtual channels declared as “unfreezable” will not be freezed,
but instead some other virtual channels will be added to J . Practically, this amounts
to replacing a small amount of the channels frozen by the conventional construction, by
some others which were not frozen before. It turns out that this replacement operates an
exchange between virtual chanels with almost the same error probability.

Figure 5.4: Word error rate performance of the conventional and entanglement-free constructions,
for R = 0.5.
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Figure 5.5: Word error rate performance of the conventional and entanglement-free constructions,
for R = 0.55.

Figure 5.6: Word error rate performance of the conventional and entanglement-free constructions,
for R = 0.6.
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