Thèse soutenue

Fabrication de motifs de nanostructures diélectriques par nano-imprint lithographie et chimie sol-gel pour des applications optiques

FR  |  
EN
Auteur / Autrice : Mehrnaz Modaresialam-Bochet
Direction : David GrossoMarco Abbarchi
Type : Thèse de doctorat
Discipline(s) : Physique et sciences de la matière. Matière condensée et nanosciences
Date : Soutenance le 01/10/2021
Etablissement(s) : Aix-Marseille
Ecole(s) doctorale(s) : Ecole Doctorale Physique et Sciences de la Matière (Marseille)
Partenaire(s) de recherche : Laboratoire : Institut Matériaux Microélectronique Nanosciences de Provence (IM2NP) (Marseille, Toulon)
Jury : Président / Présidente : Thierry Djenizian
Examinateurs / Examinatrices : Lionel Santinacci, Magali Putero, Mehrnaz Modaresialam-Bochet
Rapporteurs / Rapporteuses : Christophe Sinturel, Yves Jourlin

Résumé

FR  |  
EN

Le but de cette thèse est de développer des méthodes d’élaboration de métasurfaces nanostructurées par combinaison de la chimie sol-gel et de la lithographie par nano impression (soft-NIL). Celle-ci présente notamment des intérêts d’ordres scientifiques et technologiques. En outre, elle entre dans la tendance générale du développement des processus rapide à faibles coûts utilisant des matériaux biocompatibles et non toxiques. Dans un premier temps, nous présenterons l'élaboration de nouveaux revêtements anti-reflets constitués de silice hydrophobe (modifiée méthyle) avec différentes nanostructures (piliers et trous). Ces nouveaux revêtements permettent de réduire la réflexion dans un intervalle spectral large tout en conservant une large tolérance angulaire à la lumière incidente. D’autre part, ces nanomatériaux présentent une stabilité chimique, thermique et mécanique améliorée par rapport à l’état de l’art. Par la suite, un nouveau système de couche sensible composé d’une méta-surface de TiO2 encapsulée dans une matrice hybride microporeuse pour capteur basée sur la transduction optique, et présentant une sensibilité spectrale de 4470 nm/RIU a été développé. Ce dernier a été exploiter pour sonder la présence de COV dans l’air avec une sélectivité partielle et une sensibilité de 0.5×10-3 R/ppm. Finalement, le savoir-faire développé a ensuite été mis à contribution pour l’élaboration de réseaux de méta-surfaces par empilements successifs de matériaux diélectriques SiO2 poreuse et TiO2 dense nano-imprimés. Ce dernier travail est précurseur à la fabrication de méta-matériaux 3D par procédé sol-gel