Tensor Field Theories : Renormalization and Random Geometry

par Nicolas Delporte

Thèse de doctorat en Physique

Sous la direction de Vincent Rivasseau.

Le président du jury était Christoph Kopper.

Le jury était composé de Adrian Tanasa, John Wheater, Reiko Toriumi, Fabien Vignes-Tourneret, Damir Bečirević, Dario Benedetti.

Les rapporteurs étaient Adrian Tanasa, John Wheater.

  • Titre traduit

    Théories de Champs Tensoriels : Renormalisation et Géométrie Aléatoire


  • Résumé

    Cette thèse se scinde en deux volets, avec vue sur la renormalisation de théorie quantique des champs.Le premier volet traite de trois modèles tensoriels en trois dimensions, un quartique fermionique de rang 3 et deux sextiques bosonique, de rangs 3 et 5. On se base sur l'expansion melonique à grand N des théories tensorielles. Pour le premier modèle, invariant sous le groupe U(N)³, on calcule le flot du groupe de renormalisation des deux couplages meloniques et on dresse le diagramme des phases du vide de la théorie, en étudiant sa reformulation par un champ intermédiaire matriciel diagonalisable. Observant une brisure spontanée de la symétrie discrète chirale, la comparaison avec le modèle de Gross-Neveu tri-dimensionel est faite. Au-delà de la phase symétrique U(N)³ sans masse, on note aussi une phase massive de même symétrie et une autre où la symétrie est brisée vers U(N²) x U(N/2) x U(N/2). Un modèle matriciel de symétrie U(N) x U(N²), présentant les mêmes caractéristiques, est aussi considéré.Dans les deux autres modèles tensoriels, de groupes de symétrie U(N)³ et O(N)⁵, un couplage non-melonique (la ``roue") adjoint d'une puissance de N optimale nous conduit à une expansion melonique généralisée. Les termes cinétiques sont pris de courte ou longue portée et on étudie, à grand N, perturbativement les différents groupes de renormalisation des couplages d'ordre 6, jusqu'à quatre boucles. Tandis que le modèle de rang 5 ne présente pas de point fixe non-trivial, celui de rang 3 possède deux points fixes non-triviaux réels de type Wilson-Fisher dans le cas à courte portée et une ligne de points fixes dans l'autre. On obtient enfin les dimensions conformes réelles des opérateurs primaires bilinéaires en le champ fondamental.Le second volet établit les premiers résultats de renormalisation constructive multi-échelle pour un modèle scalaire quartique sur des arbres de Galton-Watson critiques, avec un terme cinétique à longue portée. Au point critique, l'émergence d'une spine infinie fournit un espace de dimension effective 4/3 sur lequel calculer des fonctions de corrélations moyennées. Cela formalise la notion de théorie des champs sur une géométrie aléatoire. Nous utilisons dans notre approche des bornes probabilistes sur le noyau de la chaleur dans un graphe aléatoire. On esquisse pour terminer l'extension du formalisme à des fermions et à une spine compactifiée.


  • Résumé

    This thesis divides into two parts, focusing on the renormalization of quantum field theories. The first part considers three tensor models in three dimensions, a fermionic quartic with tensors of rank-3 and two bosonic sextic, of ranks 3 and 5. We rely upon the large-N melonic expansion of tensor models. For the first model, invariant under U(N)³, we compute the renormalization group flow of the two melonic couplings and establish the vacuum phase diagram, from a reformulation with a diagonalizable matrix intermediate field. Noting a spontaneous symmetry breaking of the discrete chiral symmetry, the comparison with the three-dimensional Gross-Neveu model is made. Beyond the massless U(N)³ symmetric phase, we also observe a massive phase of same symmetry and another where the symmetry breaks into U(N²) x U(N/2) x U(N/2). A matrix model invariant under U(N) x U(N²), sharing the same properties, is also studied.For the two other tensor models, with symmetry groups U(N)³ and O(N)⁵, a non-melonic coupling (the ``wheel") with an optimal scaling in N drives us to a generalized melonic expansion. The kinetic terms are taken of short and long range, and we analyze perturbatively, at large-N, the renormalization group flows of the sextic couplings up to four loops. While the rank-5 model doesn't present any non-trivial fixed point, that of rank 3 displays two real non-trivial Wilson-Fisher fixed points in the short-range case and a line of fixed points in the other. We finally obtain the real conformal dimensions of the primary operators bilinear in the fundamental field.In the second part, we establish the first results of constructive multi-scale renormalization for a quartic scalar field on critical Galton-Watson trees, with a long-range kinetic term. At the critical point, an emergent infinite spine provides a space of effective dimension 4/3 on which to compute averaged correlation fonctions. This approach formalizes the notion of a quantum field theory on a random geometry. We use known probabilistic bounds on the heat-kernel on a random graph. At the end, we sketch the extension of the formalism to fermions and to a compactified spine.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris-Saclay. DiBISO. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.