Thèse soutenue

Catalyse moléculaire de la réduction photochimique du CO2 à l’aide de complexes de cobalt en conditions homogène et supportée

FR  |  
EN
Auteur / Autrice : Bing Ma
Direction : Julien BoninMarc Robert
Type : Thèse de doctorat
Discipline(s) : Chimie
Date : Soutenance le 04/12/2020
Etablissement(s) : Université Paris Cité
Ecole(s) doctorale(s) : École doctorale Chimie physique et chimie analytique de Paris Centre (Paris ; 2000-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'Électrochimie Moléculaire (Paris) (1997-....)
Jury : Examinateurs / Examinatrices : Julien Bonin, Marc Robert, Caroline Mellot-Draznieks, Marie-Noëlle Collomb, Junwang Tang, Alexander Cowan
Rapporteurs / Rapporteuses : Caroline Mellot-Draznieks, Marie-Noëlle Collomb

Résumé

FR  |  
EN

La production photocatalytique de carburants solaires est un moyen efficace de stockage chimique de l'énergie solaire et offre une option potentiellement fructueuse pour parvenir à un système énergétique à zéro émission de carbone. La pierre angulaire d'un processus pratique de production de carburant solaire est de concevoir et d'optimiser des photocatalyseurs stables, efficaces et déployables à grande échelle, et comprenant un matériau semi-conducteur permettant l'absorption de photons, la génération efficace de porteurs de charge, leur transport jusqu’à la réalisation de réactions catalytiques.La catalyse moléculaire joue un rôle essentiel dans la photosynthèse naturelle et artificielle. Dans ce travail de doctorat, j’ai étudié (i) un complexe bimétallique pour la réduction sélective du CO2, illustrant le fait que la catalyse moléculaire est l'un des moyens prometteurs pour mettre en œuvre la coopérativité des métaux avec des activités intrinsèques exceptionnelles ; (ii) des matériaux inorganiques (nitrure de carbone semi-conducteur et acide graphitique) pouvant être fonctionnalisés par une molécule (complexe quaterpyridine de cobalt) par le biais d’une liaison amide covalente. Une hétérogénéisation efficace des deux composants a été réalisée. Ces systèmes hybrides ont montré des performances catalytiques élevées vis-à-vis de la photoréduction au CO2. Ils illustrent que le développement de catalyseurs moléculaires vaut la peine d'être exploré afin de parvenir à des systèmes catalytiques évolutifs qui sont nécessaires pour la production pratique de carburant solaire à grande échelle. Dans le mécanisme de fonctionnement des catalyseurs moléculaires supportés par des matériaux, des défis subsistent en ce qui concerne à la fois la stabilité de l’unité moléculaire, les techniques d'hétérogénéisation et le contrôle de l'interaction électronique entre les composants.