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Résumé

Les régions continentales stables sismiquement actives, comme celle du Gra-
ben du Rhin Supérieur, sont caractérisées par des taux de déformation très
faibles et enregistrent une sismicité majoritairement faible à modérée. La com-
préhension des mécanismes qui gouvernent l’occurrence et la distribution de
cette sismicité dans ces régions est fortement entravée par les capacités limi-
tées des systèmes de détection à détecter les séismes de plus faible magnitude,
dans des environnement qui sont souvent très anthropisés, et ce, malgré le
déploiement intensif des réseaux de stations.

Afin d’améliorer la détection des séismes de faible magnitude dans notre
zone d’étude, nous avons cherché à définir les facteurs qui limitent cette détec-
tion et avons développé une nouvelle procédure de détection automatique. Ce
travail a mis en évidence deux principaux facteurs limitants : le niveau de bruit
enregistré aux stations et le milieu de propagation des ondes sismiques. Si ces
deux facteurs sont négligés dans les différentes étapes du processus de détec-
tion (pointé des temps d’arrivée des ondes sismiques, association des pointés
pour inférer une origine, localisation de l’origine), des taux élevés de faux évé-
nements, associés à du bruit impulsif, et de vrais événements (tirs de carrière
ou séismes), contaminés par du bruit, sont détectés.

En prenant en compte un nombre limité de paramètres qui gouvernent les
différentes étapes du processus de détection des événements, nous avons été
en mesure de réduire significativement la contamination par le bruit des vrais
évènements détectés. Les paramètres ayant fourni les meilleurs résultats sont
associés aux caractéristiques du bruit enregistré aux stations, à la géométrie
du réseau de stations, ainsi qu’au milieu de propagation des ondes sismiques.

L’utilisation combinée de l’Homme et d’un algorithme d’apprentissage ma-
chine supervisé interprétable nous a permis de solidement classifier les diffé-
rents types d’événements détectés : d’abord en vrais et faux évènements, puis
en tirs de carrières et séismes. Cette approche hybride s’est avérée efficace pour
classer les événements à travers une validation des règles de classification qui
minimisent à la fois les effets liés au bruit et au milieu de propagation.

Les résultats de cette procédure de détection automatique sont promet-
teurs : 50% de séismes de magnitude inférieure à 1.2 sont détectés en plus. En
outre, l’utilisation de l’apprentissage machine met à jour une variabilité spatiale
dans l’efficacité des discriminants utilisés pour différencier les séismes des tirs
de carrière, qui est à cartographier plus finement pour en comprendre l’origine.
Aussi, ce travail de thèse promeut une plus large exploration de l’apprentissage
machine au sein des observatoires sismologiques.

Mots-clefs : détection, discrimination, apprentissage machine su-
pervisé, intelligence artificielle, tirs de carrière, bruit sismique, séismes
de faible magnitude
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Abstract

Seismically active stable continental regions, such as Upper Rhine Graben
area, are subjected to very low strain rate conditions and mainly record low-to-
moderate seismicity. In the highly anthropogenic context of Central Western
Europe, and despite intense station deployments, small-magnitude earthquakes
remain unevenly recorded, blurring our view of present-day earthquake beha-
viors. Under these conditions, earthquake occurrence and triggering mecha-
nisms are difficult to explain.

In order to improve the detection capabilities of our station network, we
studied the factors that affect earthquake detection performance and develo-
ped a new automatic detection procedure. We observe that the main limiting
factors are related to station noise level and seismic wave propagation medium.
If both factors are neglected during the detection process (P- and S-arrival pi-
cking, pick association to infer event origin locations, origin location), high
rates of false events, related to impulsive noise, and real events (quarry blasts
or earthquakes) contaminated by noise are detected.

By taking into account a limited number of parameters, we are able to
significantly reduce the contamination of noise in the detection process of real
events. The parameters that give the best results are associated to the space-
time-varying noise characteristics of individual stations, the network geometry
and the seismic wave propagation medium. By using a combination of both
Human and interpretable supervised machine learning algorithm, we robustly
classify the detected events in first, false vs real event, and second, quarry
blast vs earthquake. This hybrid machine learning approach has proved to be
efficient in event classification by validating classification rules that minimize
noise and path effects.

Compared to the reference French National Catalog for the same time per-
iod, this detection procedure detects twice as many earthquakes with magni-
tudes less than 1.2. Furthermore, examination of the classification rules created
in the earthquake-quarry blast classifier reveals a strong geographical variabi-
lity in the effectiveness of signal discriminants, whose origin has to be inves-
tigated more deeply. This work also promotes a broader implication of hybrid
intelligence monitoring within seismological observatories.

Key words : detection, discrimination, supervised machine learning,
artificial intelligence, quarry blasts, seismic noise, small-magnitude
earthquakes
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Chapitre 1

Préface

« Often nature surprises us, such as when an earthquake,
hurricane or flood is bigger or has greater effects than
expected from hazard assessments. In other cases, nature
outsmarts us, doing great damage despite expensive mi-
tigation measures, or making us divert resources to ad-
dress a minor hazard. We keep learning the hard way to
maintain humility before the complexity of nature »—Seth
Stein, 2014

Le 13 octobre 2014 après-midi, île de Saint-Martin, Nord des Antilles. La
sirène d’alerte retentit. A cet instant précis, tous les habitants de l’île savent
que l’alerte rouge est désormais lancée : Gonzalo, un ouragan de catégorie 1
approche. Un peu chancelants, les saint-martinois pensent que ce sera comme
d’habitude une “petite” tempête tropicale. La population se barricade mais elle
va laisser nonchalemment des portails ouverts, des voitures non protégées, des
vitres non consolidées, des bâteaux non mis à l’abri.

Nuit du 13 au 14 octobre 2014. Les portes claquent, les toits de tôle font un
boucan du diable, les vitres tremblent. La nature rappelle à l’ordre, le réveil
est lourd. L’eau et l’électricité sont coupées, les communications brouillées. Le
paysage est apocalyptique : les panneaux signalétiques sont à terre, les arbres
jonchent le sol, les câbles électriques trempent dans les flaques d’eau, des toits
sont arrachés, des portails sont démantelés, les habitats de fortune ne sont plus
que des amoncellements de débris, des cadavres de bateau habillent le bord de
mer, des voitures ont été broyées par des morceaux de tôles projetés depuis
le petit aéroport de Grand-Case à proximité. Les dégâts sont catastrophiques
et démesurés, la population est abasourdie. Gonzalo a été un petit ouragan.
Pourtant, l’expérience de Luis, Ouragan de catégorie 4 ayant ravagé l’île en
1995, avait laissé de lourdes cicatrices. “Luis” était en fait considéré comme un
bon vieux copain. La mémoire collective en ce 13 octobre 2014 a été défaillante.
Devoir de résilience oblige, la vie reprend rapidement son cours. Les habitats
sont reconstruits identiquement, de bric et de broc, toujours plus proches de la
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mer. Trois ans plus tard, le 6 septembre 2017, l’ouragan de catégorie 5, Irma,
pulvérise l’île. Un ange passe. . .

Tout aléa naturel est donc indissociablement lié à la notion de risque. S’il est
pourtant possible de prévoir à court terme la trajectoire des cyclones avec une
assez bonne précision temporelle et donc d’anticiper, la vulnérabilité inhérente
de l’île (fragilité des constructions, terres littorales facilement submergées, ur-
banisation intense dans les zones à risques), mai aussi le manque de préparation
de ses habitants n’ont permis ni une minimisation des dégâts, ni une gestion
de crise optimale. Un constat un peu plus lourd pourrait être également dressé
en cas de séisme majeur. Un peu plus lourd car, contrairement aux cyclones,
il est impossible de prévoir exactement où et quand un séisme aura lieu, et à
quelle magnitude il sera.

Les séismes dévastateurs surprennent alors souvent. En Haïti, plusieurs dé-
cennies de constructions sans surveillance ont amené à un effondrement colossal
des structures lors du séisme du 12 janvier 2010, provoquant la mort de plus de
230 000 personnes dans le district de Port-au-Prince. Ce séisme de magnitude
7.4 a été deux fois plus meurtrier que tout autre précédent séisme de magnitude
équivalente (Bilham, 2010). Dans la région de Tohoku au Japon, le 11 mars
2011, un séisme de magnitude 9 déclenche un énorme tsunami, submergeant
les digues de protection qui avaient été érigées jusqu’à 10 mètres de hauteur
pour contrer les effets des séismes tsunamigéniques. Au bilan, l’alimentation
nécessaire au maintien de la circulation d’eau pour refroidir les réacteurs de la
centrale nucléaire de Fukushima est interrompue, plus de 19 000 morts et au
moins 2 00 milliards de dollars de dégâts ont été recensés (Normile, 2012). Ce
séisme a libéré environ 150 fois l’énergie du séisme de magnitude 7,5 qui était
prévu par la cartographie des aléas (Stein, Geller et al., 2012).

Si Haïti et le Japon sont des exemples de régions reconnus historiquement
comme étant naturellement actives, de nombreux séismes destructeurs com-
plètement inattendus peuvent aussi être directement attribués aux activités
humaines, comme l’exploitation d’énergie souterraine telle que le pétrole dans
l’état d’Oklahoma aux Etats-Unis (X. Zhang et al., 2020), le gaz de shiste dans
le Bassin de Sichuan en Chine (Lei, D. Huang et al., 2017) ou bien la géother-
mie dans la région de Pohang en Corée du Sud (Grigoli, Scarabello et al.,
2018 ; K. W. Chang et al., 2020 ; E. J. Lee et al., 2020). Nucléés à des profon-
deurs très faibles (Klose, 2010), ces séismes ont des impacts socio-économiques
disproportionnellement élevés car ils sont généralement situés proche de zones
urbanisées, dans des régions continentales stables, qui concentrent 90 % d’une
population mondiale souvent peu préparée à endiguer un séisme destructeur
(Kraft et al., 2009).
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« Earthquakes are a collective experience »—Richard M.
Allen, 2013

Chaque société est donc confrontée à un double-défi. Le premier est de
comprendre les risques sismiques auxquels elle est confrontée pour en atténuer
les effets, et donc de décider du niveau de sécurité à atteindre. Le deuxième
est d’évaluer la capacité à se remettre d’événements extrêmes (R. Eyre et al.,
2020 ; Markhvida et al., 1999).

De problèmes sanitaires post-sismiques qui peuvent se poser tels que la
recrudescence de maladies infectieuses (Chin, 2011 ; Reina Ortiz et al., 2017),
ou la perturbation du fonctionnement des hôpitaux (Almeida et al., 2020),
de problèmes sociaux aussi comme l’aide nécessaire pour cultiver la résilience
psychologique chez les survivants de séismes tragiques (Sasaki et al., 2019),
et de problèmes économiques évidemment comme la répartition des budgets
alloués pour la consolidation de bâtiments avec des structures parasismiques
(Stein, Liu et al., 2017), chaque membre de la société est acteur du double-défi
à relever. Et le scientifique en fait parti.

A travers l’étude de l’aléa sismique, le scientifique a un rôle central à jouer
dans la compréhension des risques sismiques et leur évolution. Ainsi, si les
séismes destructeurs peuvent balayer en un court instant les constructions hu-
maines, ils peuvent balayer aussi des concepts scientifiques tenaces qui gou-
vernaient la compréhension humaine de ces derniers. La science des séismes
tire donc les leçons de son propre objet d’étude : « Seismology : Shaking up
earthquake theory » (Chui, 2009), « The lessons of Tohoku-Oki » (Avouac,
2011), « Why giant earthquakes keep catching us out » (Lay, 2012), « Be-
ware of slowly slipping faults » (P. Z. Zhang, 2013). Ainsi, par exemple, le
bien installé modèle de rebond élastique, introduit à la suite du séisme de San
Francisco de 1906 (Reid, 1910), bien avant l’avènement de la tectonique des
plaques, a fini par lâcher. Face à la variabilité de la récurrence des séismes, force
est de constater que la périodicité ou la quasi-périodicité de cette récurrence
est finalement un phénomène plutôt rare dans la nature (Matthews et al.,
2002 ; Kagan et al., 2012 ; Y. Chen et al., 2020). Seulement, des nouveaux
paradigmes scientifiques ont pu être mis à jour parce que l’émergence des nou-
velles technologies d’observation, comme le suivi temporel de la position du sol
par les capteurs GNSS, a permis d’apporter un regard neuf sur les phénomènes
sismiques observés.

Cependant, ces changements de paradigmes scientifiques sont en fait diffi-
ciles à installer. Avec seulement un siècle d’histoire détaillée des séismes, une
instrumentation sismique moderne pour enregistrer les mouvements du sol et
des méthodes analytiques pour en extraire l’information développés que très ré-
cemment (1970-2000), la rareté des données d’observation a cristallisé pendant
longtemps nos connaissances sur l’occurrence des séismes (interaction entre
séismes, physique de la rupture et facteurs déclencheurs par exemple).
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En conséquence, les cartes d’aléas sont souvent encore construites sur la
base de postulats, comme le modèle du cycle sismique, qui ne reflètent pas le
comportement non linéaire de l’occurrence des séismes (Stein, Geller et al.,
2012). Il n’est alors pas très étonnant que des séismes dévastateurs inattendus
aient révélé des zones qui abritaient un potentiel sismique auparavant sous-
estimé (Lay et Kanamori, 2011 ; Lay, 2012).

Si la rareté des données d’observation fut un frein à la compréhension des
phénomènes physiques qui sous-tendent l’occurrence des séismes, la technologie
de la détection des séismes est désormais en pleine révolution (E. Z. Cochran
et al., 2018 ; Kong et al., 2019 ; Bergen et al., 2019). Cette révolution prépare
de nouvelles observations sans précédent sur les séismes et leurs impacts. En
effet, des réseaux sismologiques denses à taux d’échantillonage élevé sont désor-
mais aisément déployés (Li et al., 2018 ; Meng et al., 2018), le développement
et l’installation de nouvelles générations de sismomètres portatifs bon marché
sont en expansion (Clayton et al., 2015 ; Christensen et al., 2017), et la dé-
tection acoustique distribuée (DAS), une technologie émergente qui convertit
la fibre optique en capteurs sismiques, est en plein essor (Lindsey et al., 2017 ;
Williams et al., 2019). De grands volumes de données sont alors produits et
disponibles (Yoon, Bergen et al., 2019). Par exemple, le centre de gestion
de données des Institutions de Recherche Incorporée de Sismologie (IRIS) a
actuellement archivé plus de 600 To de données sismologiques (IRIS-DMC Ar-
chive, 2020). Les progrès de la technologie informatique, avec l’augmentation
de la puissance de calcul et de la mémoire de stockage, le traitement parallèle et
distribué, le développement de nouveaux algorithmes d’exploration de données
et de l’intelligence artificielle, rendent possible le traitement massif de toutes
ces données (Yoon, Bergen et al., 2019).

La sismologie encaisse donc des changements rapides, radicaux et à mul-
tiples facettes, et doit se ré-inventer. Elle doit se réinventer car si la sismologie
a toujours été gouvernée par la donnée, elle y croule dorénavant dessous, et
beaucoup plus que ce que les chercheurs ne peuvent analyser en utilisant des
méthodes conventionnelles. Le nouvel enjeu est donc de donner du sens à toute
cette donnée, et les nouvelles technologies en sont le catalyseur principal. Il y
a là la nécessité d’accepter que ce ne soit pas la physique qui, dans un premier
temps, gouverne la réflexion scientifique mais plutôt la donnée. . . C’est à la
fois un vrai challenge mais aussi une grande opportunité, une voie ouverte vers
la créativité.

La sismologie doit aussi se réinventer parce-qu’avec l’essor des nouveaux
sismomètres portatifs à faible coût, chaque citoyen peut désormais en installer
un chez lui (E. Z. Cochran et al., 2018). Cela signifie alors que l’accès à
la connaissance scientifique devient universelle, et n’est plus cantonnée à une
seule élite. Et les attentes sociales en matière de science, de technologie et
d’innovation n’ont jamais été aussi élevées (Sato et al., 2016).
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Chaque citoyen peut donc être pleinement acteur de la découverte scienti-
fique mais aussi contestataire de la science institutionnelle. A l’heure de la «
science ouverte » et la « science citoyenne participative », pour une imprégna-
tion radicale et durable des changements de paradigmes qui viennent rythmer
le champ de la connaissance scientifique, et une diffusion positive et unanime
de cette connaissance sur l’ensemble des membres de la société, il apparaît
indispensable de cultiver un écosystème scientifique où acteurs de la gestion
opérationnelle des données collectées, de la recherche fondamentale, ainsi que
de l’ingénierie de l’aléa et du risque sismique forment un réseau intimement
connecté. D’une catastrophe à l’autre, d’un bout à l’autre de la planète, les
séismes sont une expérience collective.

Ce travail de thèse s’inscrit donc dans ce panorama, comme une petite
brique posée. S’il ne traite pas directement des grands séismes, il se focalise
plutôt sur les plus petits. Un non-sens ? Peut-être pas. Le chapitre 1 est alors
consacré plus spécifiquement au développement de la problématique de re-
cherche ainsi que les questions de recherche scientifiques qui y en découlent.
Le chapitre 2 définit en quoi l’objet d’étude qui est choisi est un objet intéres-
sant pour répondre aux questions de recherche soulevées dans le chapitre 1. Le
chapitre 3 et 4 exposent la méthodologie de recherche mise en oeuvre pour ré-
pondre aux questions de recherche. Le chapitre 6 offre une conclusion partielle
à ce travail et présente les nouvelles perspectives de recherche qui s’ouvrent.
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Introduction

«How small is small enough ? »—J.E. Ebel, 2008
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2.1. MOTIVATION GÉNÉRALE : POURQUOI DÉTECTER LES PETITS
SÉISMES ?

2.1 Motivation générale : pourquoi détecter les
petits séismes ?

2.1.1 Les petits séismes dominent les catalogues

La distribution de la taille des séismes pour une région donnée est générale-
ment décrite par la relation empirique de Gutenberg-Richter (Ishimoto et al.,
1939 ; Gutenberg et al., 1944). Cette relation indique que la fréquence des
magnitudes des séismes suit une distribution exponentielle (Figure 2.1) :

logN(M) = a� bM for M �Mc (2.1)

N(M) représente le nombre cumulé de séismes de magnitude égale ou su-
périeure à M ; Mc est la magnitude de complétude : tous les événements de
magnitude M �Mc sont supposés être enregistrés dans un catalogue donné. Le
paramètre a décrit le niveau de sismicité global ou le niveau de productivité
des séismes, qui peut varier largement d’une région à l’autre. La valeur b décrit
la relation entre le nombre de petits et de grands séismes.

Figure 2.1: Relation empirique de Gutenberg-Richter établie pour le Nord-
Ouest de l’Europe, dans la zone inférieure du Graben du Rhin (D’après
Vanneste et al., 2013)

Une valeur b égale à 1 signifie que la fréquence des événements de magnitude
M = 2 est dix fois celle des événements de magnitude M = 3 (Fiedler et al.,
2018 ; Brodsky, 2019b). Si les jeux de données globaux et régionaux suivent
souvent une distribution fréquence-magnitude avec b = 1, des variations locales
de la valeur b entre 0.4 et 2.0 sont aussi observées (Wiemer et al., 2002).
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2.1. MOTIVATION GÉNÉRALE : POURQUOI DÉTECTER LES PETITS
SÉISMES ?

Certains auteurs attribuent ces fluctuations de la valeur b à des artefacts
résultant du sous-échantillonnage des événements, des erreurs de calcul des
magnitudes et des capacités de détection non homogènes (Shi et al., 1982 ;
Frohlich et al., 1993 ; Kagan, 1999 ; Kagan, 2002 ; Kagan, 2010 ; Amorese
et al., 2010). D’autres auteurs considèrent ces variations spatio-temporelles
comme une approximation de divers régimes tectoniques, de la contrainte de
cisaillement ou bien de la pression interstitielle (Scholz, 1968 ; Wiemer et
al., 1997 ; Wiemer et al., 2002 ; Schorlemmer et al., 2005 ; Bachmann et al.,
2012 ; Tormann et al., 2014 ; Gulia, Tormann et al., 2016).

Déterminer statistiquement la distribution des magnitudes des séismes n’est
en fait pas si simple que cela. En effet, de nombreux a priori, tels que la taille de
la zone de mesure de la valeur b ou bien le choix de la valeur b habituelle pour
une région donnée, sont nécessaires pour mener à bien une étude statistique
sur la taille et la distribution des séismes. Ces différents postulats de départ
représentent le talon d’Achille de ces études statistiques, d’autant plus qu’un
catalogue de séismes est intrinsèquement incomplet (Brodsky, 2019b).

De ce fait, la valeur b extraite de la relation de Gutenberg-Richter est
fortement dépendante du seuil inférieur de magnitude détectée (Mignan et
Woessner, 2012 ; Godano et al., 2014). Certes, les petits séismes dominent
systématiquement les catalogues de séismes du fait de la courte période d’en-
registrement couverte par ces derniers (Hanks, 1992 ; Pacheco et al., 1992 ;
Ross, Trugman et al., 2019). Cependant, ces catalogues étant très peu exhaus-
tifs pour les gammes de petite magnitude, beaucoup d’autres petits séismes en
sont inexorablement absents. Les raisons pour cela sont notamment l’hétéro-
généité spatio-temporelle des réseaux de stations sismologiques et les seuils
limites de détection (Helmstetter, 2005 ; Gulia et Wiemer, 2019).

L’amélioration des capacités de détection et de localisation d’un réseau sis-
mologique d’un ou de deux ordre(s) de magnitude (par exemple de magnitude
M 3.0 à M 2.0 puis M 1.0) peut augmenter d’un facteur 10 à 100 le nombre de
séismes détectés par an. Seulement, abaisser le seuil de détectabilité d’un réseau
implique un fort surcoût (coût de calcul ou charge manuelle de travail supplé-
mentaire). Est-ce que ce coût en vaut le bénéfice ? Autrement dit, est-ce
qu’il est si important d’enregistrer et de traiter des sismogrammes de
tous les séismes jusqu’à la magnitude 2.0 ? magnitude 1.0 ? Magnitude
0 ou en-dessous ?
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2.1. MOTIVATION GÉNÉRALE : POURQUOI DÉTECTER LES PETITS
SÉISMES ?

2.1.2 Les petits séismes cartographient plus finement le
comportement sismique d’une région

•Comportements sismiques long-terme

Depuis le séisme de San Francisco de 1906, un des paradigmes dominants
de la sismologie a été le cycle sismique décrit simplement par le modèle du
rebond élastique : lors de la période intersismique, les contraintes s’accumulent
peu à peu sur une faille verrouillée du fait du mouvement relatif des plaques
ou des blocs qu’elle sépare ; lors de la phase cosismique, les contraintes sont
relâchées par le glissement sur le plan de faille associé au séisme (Reid, 1910)
(Figure 2.2a).

Ce modèle implique l’occurrence de séismes périodiques donnant lieu à une
accumulation régulière de déplacements cumulés (Figure 2.2). Or, les longues
séquences d’enregistrement des séismes, maintenant accessibles pour les régions
à fort taux de déformation, montrent un comportement beaucoup plus com-
plexe. En effet, dans la plupart des systèmes tectoniques actifs, on observe que
les grands séismes ont lieu plus souvent en clusters regroupés dans le temps, al-
ternant avec des intervalles de quiescence longs et variables (Wallace, 1987 ;
Sieh et al., 1989 ; Agnon, 2014 ; D. Clark, McPherson et Van Dissen,
2012 ; D. Clark, McPherson, T. Allen et al., 2014 ; Ratzov et al., 2015 ;
Salditch et al., 2020 ; Y. Chen et al., 2020). (Figure 2.2b et Figure 2.3).

Cette distribution des séismes en Escalier du Diable (Mandelbrot, 1982 ;
Turcotte, 1997) est une caractéristique des systèmes dynamiques complexes.
Cela suggère donc que ces motifs particuliers d’occurrence sismique manifestent
le comportement de systèmes non linéaires élaborés à partir de multiples com-
posants (i.e. les failles et/ou les segments de faille) qui interagissent entre eux
(Liu et al., 2016). Ces interactions entre failles se traduisent par des transferts
de contrainte statique, dynamique, et/ou viscoélastique ou bien des perturba-
tions des conditions de chargement régional par des ruptures de failles locales.

De ce fait, chaque grand séisme ayant eu lieu sur une faille (ou segment(s)
de faille) du système peut affecter les contraintes et les taux de chargement
sur les autres failles (Dolan et al., 2007 ; Luo et al., 2012). Il n’est donc pas
rare que des grands séismes rompent des segments de failles multiples comme
cela a été le cas pour les séismes de Kunlun en 2001 (Mw 7.8, Chine), d’El
Mayor-Cucapah en 2010 (Mw 7.2, Mexique) et de Kaikōura en 2016 (Mw 7.8,
Nouvelle-Zélande) (Fletcher et al., 2017 ; Xu et al., 2018 ; Improta et al.,
2019).
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2.1. MOTIVATION GÉNÉRALE : POURQUOI DÉTECTER LES PETITS
SÉISMES ?

Figure 2.2: Comparaison globale des schémas d’occurrence des séismes, des
déplacements et de la déformation cumulés sur une faille selon l’hypothèse
classique du cycle sismique (a) et selon l’hypothèse des supercycles (b) (D’après
Salditch et al., 2020)
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SÉISMES ?

Figure 2.3: Motifs temporels des grands séismes (a) dans le monde, (b) au
Japon, (c) dans le Nord de la Chine et (d) sur la faille Nord Anatolienne en
Turquie (NAF). Les lignes continues représentent les catalogues globaux, et les
lignes discontinues représentent les résultats après déclusterisation. (D’après
Y. Chen et al., 2020).
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SÉISMES ?

Chaque faille individuelle présente alors un taux de chargement spécifique
et variable, qui est affecté par les séismes précédents ayant eu lieu soit sur
cette même faille, soit sur d’autres failles du système. A cela s’ajoutent les
perturbations de contraintes locales telles que l’érosion (Calais et al., 2010),
le réajustement isostatique post-glaciaire (Ding et al., 2019), les variations de
densité lithosphérique (Levandowski et al., 2017 ; Murphy et al., 2019) ou
bien les fluides (Kumar et al., 2017). Ainsi, inscrit dans un système entier
de failles en interaction, le comportement d’une faille court-terme est plus
difficilement appréhendable que ce que le modèle de rebond élastique préludait.

De plus, les grands séismes sont finalement très peu fréquents, et les ca-
talogues instrumentaux ont des périodes d’enregistrement courtes et sont in-
trinsèquement incomplets. Par conséquent, l’analyse de tels catalogues montre
inéluctablement une vue biaisée de la sismicité long-terme (Salditch et al.,
2020). Il est alors difficile d’estimer par exemple un temps de récurrence moyen
des séismes ou bien d’identifier si les quelques événements enregistrés d’un ca-
talogue se sont produits au sein d’un même cluster de séismes ou s’ils s’étendent
à la fois sur la période d’activité du cluster et la période de quiescence (Stein,
Liu et al., 2017 ; Y. Chen et al., 2020). La plupart des enregistrements actuels
contiennent donc des séquences de séismes raccourcies qui sous-estiment le de-
gré d’apériodicité des séismes. Ce qui rend d’autant plus difficile l’estimation
de l’aléa sismique (Ellsworth et al., 1999 ; M, 2007).

Cette difficulté est amplifiée pour les régions continentales intraplaques
où les grands séismes sont des phénomènes encore plus rares, voire inexistants,
et où les intervalles de quiescence sont beaucoup plus longs que dans les zones
interplaques. Ces régions se déformant très lentement, les données historiques
et paléosismologiques, combinées aux données néoctectoniques, sont indispen-
sables pour comprendre la chronologie des déformations sismiques, et estimer
l’aléa sismique (T. I. Allen, 2020 ; D. J. Clark et al., 2020).

Des indices de déformation de surface associés à l’occurrence de séismes pas-
sés peuvent être effectivement préservés sur des milliers d’années. Seulement,
si l’intervalle entre deux séismes engendrant des ruptures en surface est beau-
coup plus long que les processus d’érosion et de sédimentation qui viennent
modeler le paysage actuel, les traces d’activité de faille datant d’avant la fin du
Quaternaire sont alors perdues (Walker et al., 2015 ; Abdrakhmatov et al.,
2016).

Par exemple, entre 1968 et 2018, même si 90% des séismes enregistrés dans
le craton australien ont engendré des déformations de surface, ces derniers
ne peuvent être associés à aucune évidence néotectonique d’activité de faille.
Seulement, on ne peut pas exclure la possibilité que des marqueurs de rupture
précédente aient été supprimés (King et al., 2019). L’absence d’indicateurs de
déformations de surface n’est pas donc un révélateur formel d’inactivité d’une
faille sur le long terme.
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SÉISMES ?

Par conséquent, assigner un label « actif/inactif» à une faille (ou segment(s)
de faille) dans ces zones continentales intraplaques, basé sur l’occurrence (ou
la non occurrence) d’un séisme dans les quelques derniers milliers d’années
n’est pas un indicateur robuste de futur potentiel sismogénique (D. Clark et
Mcpherson, 2011 ; D. Clark, McPherson et Van Dissen, 2012 ; Boncio
et al., 2018).

Sans apport conséquent d’études paléosismologiques et néotectoniques ap-
profondies, il est alors difficile d’estimer l’aléa sismique dans ces régions conti-
nentales stables où les témoins de déformation de surface se font rares et où
les mesures géodésiques le long des failles ne décèlent pas d’indices forts de
déformation cumulée (Grutzner et al., 2017 ; Vallage et al., 2020).

Par ailleurs, la grande incertitude associée aux localisations des séismes
des catalogues instrumentaux ne permet pas non plus d’établir clairement une
relation entre les hypocentres et les failles projetées en surface, ni d’accéder
finement à la géométrie 3D de ces failles, à supposer que ces séismes soient ins-
crits sur le même plan (D. J. Clark et al., 2020 ; Ross, E. S. Cochran et al.,
2020). De plus, l’hétérogénéité des catalogues sismiques (calcul des magnitudes,
réseaux sismiques évoluant) ainsi que leur courte période d’enregistrement ré-
vèlent une cartographie de la sismicité largement incomplète.

Outre la faible représentativité des données sismologiques, l’absence de mar-
queurs morphotectoniques et géodésiques forts de déformation ainsi que la
complexité des systèmes de failles qui accommodent cette faible déformation
(Matos et al., 2018), l’aléa sismique sera d’autant plus difficile à estimer que le
comportement des séismes s’éloigne du comportement poissonnien (Y. Chen
et al., 2020 ; Vallage et al., 2020), que l’évaluation de la magnitude maxi-
male associée au futur plus grand séisme est plus que spéculative (Neely et
al., 2018), et que la présence encore active de répliques associées à des chocs
principaux historiques ou préhistoriques n’est pas encore robustement établie
(Toda et al., 2018).

Enfin, aucun mécanisme n’est universellement accepté pour expliquer le
déclenchement et le comportement des séismes dans ces régions continentales
stables (Soto-Cordero et al., 2018 ; Gallen et al., 2018 ; Bezada et al.,
2019 ; Leclere et al., 2019. De ce fait, en l’absence de théorie robuste sur
l’occurrence des séismes dans ces régions, l’incertitude épistémique dans la
caractérisation des sources sismiques pour l’évaluation de l’aléa dans ces zones
restera élevée (Griffi et al., 2020).
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C’est donc sur ce dernier point crucial que va intervenir la détec-
tion des petits séismes. Comme cela a été soulevé par Brodsky,
2019a, nous sommes souvent conduits en sismologie à analyser
de près les quelques exemples que la nature nous fournit à in-
tervalles irréguliers. Par conséquent, nous devons manier avec
prudence ces quelques données rares avant d’en tirer des conclu-
sions générales hâtives (Brodsky, 2019a). Les grands séismes sont
effectivement extrêmement rares par rapport à l’abondante sis-
micité de magnitude faible qui est enregistrée à travers le globe.
De part la haute fréquence d’occurrence de ces séismes de faible
magnitude, mieux les détecter permettrait d’apporter plus de
robustesse statistique aux comportements sismiques court-terme
observés, afin de mieux comprendre leur origine. Ceci est parti-
culièrement important pour les zones continentales intraplaques,
où la sismicité de magnitude faible à modérée reste difficile à
expliquer puisque les taux de déformation y sont très faibles.
Cependant, comprendre l’origine de cette microsismicité et son
rôle dans la description du comportement sismique d’une région
présente un réel enjeu du point de vue du risque sismique, étant
donné que ces régions concentrent 90 % de la population mon-
diale (Hirose et al., 2014).

•Comportements sismiques court-terme

Une détection plus fine des petits séismes permet de rendre visible entière-
ment des séquences de séismes qui étaient auparavant fragmentées (Brodsky,
2019b). Cette détection plus continue un niveau supérieur d’interactions entre
les séismes, à la fois au sein même d’une séquence individuelle (essaims ou
répliques par exemple), mais également entre les différentes séquences enregis-
trées (par exemple : précurseurs/chocs principaux, chocs principaux/répliques,
chocs principaux/post-séismes déclenchés de façon dynamique ou statique) (Fi-
gure 2.4).

Ces interactions plus complexes sont non seulement capables de connecter
des séquences ou des séismes qui étaient à première vue isolé(e)s, mais peuvent
surtout renseigner sur les détails des processus physiques qui sous-tendent l’ini-
tiation, le déclenchement ou bien la migration spatio-temporelle de l’ensemble
des séismes repérés (Ross, Trugman et al., 2019).

La détection plus fine des petits séismes rend donc possible la description
plus précise de l’évolution spatio-temporelle de séquences de séismes spéci-
fiques, y compris par la prise en compte des événements précoces voire pré-
curseurs. Dans les paragraphes suivants, je m’intéresse à quelques séquences
individuelles de séismes, qui sont intensément étudiées dans la littérature.
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Figure 2.4: Enregistrement sismique théorique sur 6 mois (de juillet à dé-
cembre) avant l’amélioration de la détection des petits séismes (à gauche) et
après (à droite). Chaque amas de séismes est représenté par une couleur. Les
traits noirs correspondent aux nouveaux séismes détectés. Cette détection sup-
plémentaire permettrait par exemple de : (1) mieux résoudre l’initiation d’une
séquence individuelle de séismes et d’en définir son mécanisme déclencheur ;
(2) compléter une séquence individuelle de séismes et comprendre leur degré
d’interaction ainsi que leur mécanisme de déclenchement, (3) relier des sé-
quences isolées entre elles et investiguer plus sur les mécanismes qui contrôlent
l’évolution spatio-temporelle de l’ensemble de ces séismes.
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Les répliques. Une quantité importante des répliques qui ont lieu après un
choc principal est souvent absente des catalogues de séismes existants, surtout
si elles sont de faibles magnitudes ou trop nombreuses (superposition des si-
gnaux associés empêchant leur utilisation, Kagan, 2004 ; Peng, Vidale et al.,
2006). Pourtant, réussir à les detecter puis les localiser en plus grand nombre
amènerait des contraintes importantes sur la géométrie du plan de faille sur
lequel le choc principal a eu lieu (Bulut et al., 2007 ; Yang et al., 2009 ; Peng
et Zhao, 2009) et sur l’extension latérale et en profondeur du segment qui a
rompu (C. H. Chang et al., 2007 ; Peng et Zhao, 2009 ; Yang et al., 2009 ;
Yin et al., 2018).

Une meilleure description de l’évolution spatio-temporelle des répliques est
donc essentielle pour d’une part comprendre les mécanismes physiques qui
contrôlent leur déclenchement (Enescu et al., 2007), et pour d’autre part
suivre la déformation post-sismique autour de la zone de rupture associée au
choc principal, pouvant impliquer d’autres segments de failles voisins (Hsu et
al., 2006 ; C. H. Chang et al., 2007). Les mécanismes physiques à l’origine des
répliques font encore l’objet de nombreux débats (Lippiello et al., 2015). En
utilisant des événements de plus faible magnitude, une meilleure robustesse
statistique peut être atteinte, saisissant plus finement les conditions qui défi-
nissent l’état de contrainte crustale comme par exemple celles de la pression
interstitielle lithostatique (Shebalin et al., 2017).

La plupart des séquences de répliques sont relativement transitoires, le taux
d’occurrence décroissant au fil des jours, des mois ou des années avant d’at-
teindre les niveaux de fond, en suivant globalement la loi d’Omori (Utsu et al.,
1995) et la loi empirique de Bath (Shearer, 2012). Cependant, dans certaines
zones intraplaques, des groupes d’événements persistants peuvent se produire
sur des échelles de temps beaucoup plus grandes, comme la séquence en cours
dans la zone de New Madrid dans l’est des États-Unis (J. Wang, Main et al.,
2017). Seulement dans ce cas, l’étude court-terme de séquences de petits séismes
ne permettra pas d’apporter plus de contraintes sur l’étude de ces séquences
persistantes si particulières.

Les essaims sismiques. Les essaims sismiques sont des séquences de
séismes concentrées dans le temps et l’espace sans aucun choc principal évident
(Vidale et al., 2006). Ces essaims peuvent se produire dans des régions volca-
niques (De Barros, Bean et al., 2013 ; McNutt, 2005), des régions à faible
taux de déformation (Hainzl, 2004), le long de failles glissant asismiquement
(Llenos et al., 2009 ; Roland et al., 2009), dans les zones de subduction
(Vallee et al., 2013), ou lors des stimulations hydrauliques anthropiques des
réservoirs (Keranen et al., 2018 ; Wei et al., 2015).
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La question de savoir pourquoi la sismicité se développe comme un essaim,
plutôt que comme une séquence de choc principal/répliques, est fondamen-
tale. Grâce à une meilleure détection des petits séismes, la résolution spatio-
temporelle plus fine des essaims de séismes aiderait alors à mieux trancher sur
les facteurs réels qui les déclenchent (Hatch et al., 2020). En effet, des fac-
teurs comme la pression des fluides (Vidale et al., 2006 ; Hainzl et al., 2012 ;
Shelly et al., 2016) ou bien le glissement asismique (Delahaye et al., 2009 ;
Hirose et al., 2014) sont souvent évoqués. Seulement, des études récentes ont
montré que l’activité des essaims serait en fait contrôlée par les deux facteurs
à la fois : des phases d’accumulation de pression de fluide déclencheraient un
glissement asismique, qui lui-même induirait des séquences de sismicité à mi-
gration rapide (Bourouis et al., 2007 ; Guglielmi et al., 2015 ; De Barros,
Guglielmi et al., 2018 ; Cappa et al., 2019 ; De Barros, Cappa et al., 2020).

De plus, une étude plus détaillée des essaims sismiques permettrait de mieux
comprendre leur rôle dans les mécanismes précurseurs de futurs grands séismes
(Brodsky et Lay, 2014 ; Rhoades, 2010). Indicateurs de glissement lent, une
image détaillée de ces derniers pourrait également contribuer à suivre finement
la naissance et l’évolution d’un glissement lent (Nadeau et al., 1998 ; A. Kato
et al., 2014 ; Reverso et al., 2016 ; Nishikawa et al., 2017).

Les précurseurs. La détection accrue des petits séismes pourrait appor-
ter là encore une robustesse statistique quant à la présence d’activité sismique
précurseur (Goebel et al., 2013 ; Malin et al., 2018). Actuellement, la valeur
pronostique des précurseurs est fortement débattue : des précurseurs seraient
observés pour seulement 10 à 50% des chocs principaux étudiés (Mori et al.,
1997 ; X. Chen et al., 2016 ; Marsan et al., 2014). De ce fait, établir des ca-
talogues de séismes de haute résolution (meilleure précision des paramètres
hypocentraux et magnitude de complétude plus faible) représente un double-
enjeu. Le premier est la possibilité de rechercher systématiquement une activité
précurseur de façon à en estimer la fréquence réelle dans la nature (Martinez-
Garzon et al., 2019 ; Trugman et al., 2019 ; Ende et al., 2020). Le deuxième
enjeu concerne l’approfondissement des connaissances relatives aux mécanismes
physiques qui participent à l’occurrence des précurseurs et leur lien avec les
chocs principaux. En effet, pour l’instant, deux écoles de pensées s’affrontent
(Mignan, 2014) : l’école déterministe qui affirme que les précurseurs consti-
tuent une réponse à un glissement précurseur sur une faille (ou segment(s) de
faille) comme par exemple un glissement lent (Bouchon, Durand et al., 2013 ;
Tokuda et al., 2019 ; Yao et al., 2020), et l’école stochastique qui postule que
les précurseurs font partie d’un processus naturel de déclenchement des séismes
en cascade par transfert de contraintes inter-séismes (Gulia et Wiemer, 2019 ;
Pino et al., 2019).
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Les séismes déclenchés dynamiquement. De grands séismes peuvent
déclencher dynamiquement, par propagation des ondes résultant du choc prin-
cipal, d’autres séismes plus distants. Une détermination plus poussée des petits
séismes pourrait révéler une sismicité de plus faible magnitude reliée indirecte-
ment à un plus grand séisme comme cela a été le cas dans le Sud de la Californie
après le séisme d’El Mayor-Cucapah en 2010 (Ross, Trugman et al., 2019).

...Et toutes les autres séquences de séismes identifiées. Ainsi, révéler
des séquences spatio-temporelles de séismes plus complexes pourraient mettre
en évidence plus systématiquement plusieurs mécanismes moteurs de généra-
tion des séismes comme l’association d’un glissement asismique avec une dif-
fusion de pression de fluide (Ross, Rollins et al., 2017). La complexification
de ces séquences spatio-temporelles identifiées par une détection plus accrue
des petits séismes constitue donc le terrain idéal pour une caractérisation plus
aboutie des facteurs qui déclenchent les séismes en général, que ce soit par
des contraintes différentielles transitoirement élevées (Jamtveit et al., 2018 ;
Levandowki et al., 2018) ou bien des mécanismes locaux d’affaiblissement (par
exemple, une pression élevée du fluide interstitiel, Gardonio et al., 2018).

La clusterisation des séismes est donc une des caractéristiques do-
minantes de la sismicité naturelle et anthropique (Ross, Trugman
et al., 2019). Les types les plus étudiés de clusterisation incluent
les répliques, les précurseurs, les essaims (Zaliapin et al., 2008).
A travers l’étude plus approfondie des petits séismes, l’analyse
plus précise d’un cluster de séismes ou une combinaison de plu-
sieurs d’entre eux constitue une des perspectives majeures pour
comprendre la redistribution et/ou le transfert des contraintes
sismiques, ainsi que leur origine, la genèse des séismes et la dy-
namique globale de la lithosphère en somme (Romanowicz et al.,
1993).
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2.1.3 Avantages des bases de données actuelles pour la dé-
tection des petits séismes

Ces dix dernières années, des réseaux sismologiques se sont densifiés et pro-
duisent des données de meilleure qualité avec un contenu fréquentiel beaucoup
plus large (Jousset et al., 2018). Les projets japonnais Hi-net, américains
USArray ou européens AlpArray sont des exemples marquants d’instrumen-
tation de vastes régions par des réseaux sismologiques très denses (Hetényi
et al., 2018 ; Fuchs et al., 2019 ; T. Zhou et al., 2020). Initialement destinés
à l’imagerie des structures profondes, ces réseaux représentent également une
bonne opportunité de réduire la magnitude de complétude d’une région donnée
et de construire des catalogues sismiques de qualité. Il en est de même pour les
récents réseaux denses de capteurs type nodes ou de capteurs bas-coût, qui se
multiplient partout dans le monde.

En conséquence, de hauts volumes de données de qualité sont désormais
disponibles, et offrent une opportunité unique d’obtenir une image de la sis-
micité plus haute résolution (Bouchon, Karabulut et al., 2011 ; H. Kato et
al., 2012 ; Schaumberg et al., 2020). Par exemple, au 1er juin 2020, le Centre
de Gestion de Données des Institutions de Recherche Incorporée pour la Sis-
mologie (IRIS DMC) a stocké près de 650 Terabytes de données sismologiques
(Figure 2.5).

Cependant, alors que la quantité de données acquises par les réseaux de
stations toujours plus denses augmente continuellement, la qualité des données
reste en fait toujours entravée par la présence de bruit systématique enregistré
aux stations et un échantillonnage spatial souvent biaisé (sources et stations
sismiques inégalement réparties, P.-F. Chen et al., 2019).

Même si des réseaux plus denses proches des sources cibles ont des capacités
de détection plus élevées, un ensemble de paramètres tels que la qualité du
réseau (niveau de bruit, distribution spatiale), les caractéristiques de la source,
les effets de propagation des ondes et le système d’acquisition vont venir limiter
les capacités réelles de détection (Kwiatek et al., 2016).

Alexandra Renouard CHAPITRE 2. INTRODUCTION 19



2.1. MOTIVATION GÉNÉRALE : POURQUOI DÉTECTER LES PETITS
SÉISMES ?

Figure 2.5: Evolution temporelle de l’archivage des données sismologiques au
sein du Centre de Management des Données des Institutions de Recherche
Incorporée pour la Sismologie (IRIS DMC) depuis 1992. (D’après http://ds.
iris.edu/files/stats/data/archive/Archive_Growth.jpg)
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De cette façon, si de hauts volumes de données disponibles sont
capables d’offrir une mine d’or d’informations sur les petits
séismes, il semblerait que cette masse de donnée ne garantisse
pas une récupération optimale de cette information.

2.2 Limitations à la détection des petits séismes

2.2.1 Présentation générale du système de détection utilisé
dans les observatoires sismologiques

Les deux systèmes de détection les plus utilisés dans les observatoires sis-
mologiques sont Earth Worm (EW ; C. Johnson et al., 1995 ; http://www.
earthwormcentral.org) et SeisComP3 (SC3 ; http://www.seiscomp3.org).
Conçus pour recevoir les flux de données en temps réel, ces deux systèmes
utilisent des algorithmes de détection basés sur l’amplitude du signal enregis-
tré, archivent les données de manière continue, et déterminent automatique-
ment une localisation ainsi qu’une magnitude pour chaque événement détecté
(Utheim et al., 2014). Cette localisation est généralement revue par un ana-
lyste.

L’algorithme principal de détection utilisé pour déceler les évènements sis-
miques est basé sur le calcul des valeurs moyennes de l’amplitude absolue d’un
signal sismique sur deux fenêtres temporelles mobiles consécutives. La fenêtre
temporelle courte (STA) est sensible aux événements sismiques tandis que la
fenêtre temporelle longue (LTA) fournit des informations sur l’amplitude tem-
porelle du bruit sismique à une station donnée (R. Allen, 1978 ; R. Allen,
1982). Un rapport des deux valeurs moyennes estimées sur ces deux fenêtres,
le rapport STA/LTA, est calculé. Ce rapport est comparé en continue à une
valeur-seuil définie par l’utilisateur, le niveau seuil de déclenchement STA/LTA
(Trnkoczy, 1999). Si le rapport excède ce seuil à un nombre de stations don-
nées, un déclenchement est déclaré et un pointé, qui correspond au temps
d’arrivée des ondes sismiques (principalement ondes de volume P et S) est créé
(Figure 2.6A).

Un ensemble de temps d’arrivée des différentes phases sismiques (P et S)
pour chaque station est donc généré. Un algorithme d’association va par la
suite nucléer et localiser les événements sismiques (Yeck et al., 2019). L’as-
sociation d’événements consiste à rassembler les pointés de différentes stations
dans une certaine fenêtre temporelle. Si le nombre de pointés dans cette fenêtre
temporelle est supérieur à un seuil prédéfini, l’algorithme d’association va re-
lier les différents pointés (les premiers temps d’arrivée des ondes P et S) à une
localisation hypocentrale approximative (Grigoli, Scarabello et al., 2018).
Si cette procédure réussit, un événement sismique est déclaré (Figure 2.6B et
C).
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Une fois que cet événement est déclaré, sa localisation peut être affinée grâce
à des méthodes de localisation plus avancées (par exemple NonLinLoc, Lomax,
Virieux et al., 2000) et des modèles de vitesse plus détaillés.

Les méthodes de localisation basées sur le pointé du temps d’arrivées des
ondes sismiques reposent sur la minimisation des résidus entre les temps d’ar-
rivée théoriques et observés des ondes de volume (ondes P et S), et utilisent
des algorithmes d’inversion itératifs (Thurber, 1985) ou globaux (Lomax,
Virieux et al., 2000).

Ces trois étapes essentielles (pointés, association, localisation) constituent
le coeur du système de détection standard classiquement utilisé dans la plupart
des organismes en charge de la surveillance sismique.

Figure 2.6: Procédure de détection sous SeisComP3. (A) Pointés automa-
tiques des temps d’arrivées des ondes P et S avec le module Scautopick. (B)
Association des pointés automatiques P et S avec le module Scautoloc et/ou
Scanloc. Chaque association réussie engendre la création d’une origine qui est
localisée avec l’algorithme LOCSAT. (C) Association des origines produites à
un événement spécifique avec le module Scevent. Chaque événement présente
une origine préférentielle fixée. La procédure SeisComP3 génère automatique-
ment un catalogue multi-origine. Les événements peuvent être localisés plus
finement avec le module Screloc par exemple en utilisant un autre algorithme
de localication (comme NonLinLoc) et/ou un autre modèle de vitesse.

Même si les méthodes de détection et de localisation des séismes basées
sur la forme d’onde sont également largement utilisées en sismologie et très
efficaces pour détecter les petits séismes (Kao et al., 2004 ; Grigoli, Cesca
et al., 2013 ; Grigoli, Scarabello et al., 2018 ; Pesicek et al., 2014 ; Yoon,
O’Reilly et al., 2015 ; Yoon, Y. Huang et al., 2017 ; M. Zhang et al., 2015 ;
Wei et al., 2015 ; Tong et al., 2016 ; Perol et al., 2018), elles restent cependant
très coûteuses en calcul (Z. Zhang et al., 2019). Par conséquent, les méthodes
basées sur le pointé des temps d’arrivées des ondes sismiques restent toujours
dominantes pour les opérations routinières de surveillance des séismes en temps
réel (Grigoli, Scarabello et al., 2018 ; Z. Zhang et al., 2019).
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2.2.2 Première limitation : le processus d’association, gou-
lot d’étranglement des systèmes de détection

Une des principales lacunes des systèmes de détection standard est la pos-
sibilité de détecter tout type de signal transitoire impulsif, autre que ceux
associés aux séismes (Ross, Trugman et al., 2019). En effet, les algorithmes
d’association standards sont principalement basés sur l’information apportée
par les temps d’arrivées (Figure 2.7). Par comparaison entre les temps d’arri-
vées observés et les temps théoriques calculés à partir d’un modèle de vitesse
aux différentes stations, ces derniers associent les arrivées dans une fenêtre tem-
porelle qui semblent compatibles avec une source réaliste (McBrearty et al.,
2019).

Figure 2.7: Exemple schématique du processus d’association basée sur le
temps d’arrivée des ondes sismiques. En haut : Plusieurs sources sismiques,
localisées sur une interface de subduction, produisent des ondes impulsives qui
se propagent aux cinq stations sismologiques. En bas à gauche : ensemble des
arrivées observées à travers le réseau sismique avant association (le signal est ici
monophasé). En bas à droite : ensemble des arrivées correctement associées, co-
lorées pour les cinq sources distinctes et reliées par une courbe (ligne pointillée
rouge). D’après McBrearty et al., 2019.

Seulement, ce processus d’association perd progressivement de l’efficacité
et de la précision à mesure que les algorithmes de détection deviennent plus
sensibles (C. E. Johnson et al., 1997 ; McBrearty et al., 2019). Quand les
seuils de détection sont effectivement abaissés pour détecter les événements de
plus faible magnitude, les algorithmes de détection sont confrontés à de plus
faibles rapports signal sur bruit. De cette façon, ils deviennent sensibles à la
moindre irrégularité, impulsivité ou hausse d’amplitude véhiculée par le bruit
sismique ambiant enregistré.
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Par conséquent, en plus d’une augmentation de la quantité de pointés cor-
respondant aux phases P et S détectés, de nombreux pointés correspondant à
du bruit transitoire impulsif sont aussi produits. Ces faux pointés sont alors
traités comme s’ils correspondaient aux arrivées d’ondes sismiques propagées
depuis une source sismique (Figure 2.8).

En plus de la diminution du seuil de détection, le taux de pointés auto-
matiques sera également amplifié de par l’augmentation des volumes de flux
de données à traiter provenant des réseaux sismologiques plus denses. Ce taux
sera aussi exacerbé en contexte urbain, là où le niveau de bruit d’origine an-
thropique enregistré est très intense (Díaz et al., 2017 ; Poli et al., 2020). Dans
ces environnements, une grande quantité de signaux d’origine anthropique est
générée, créant alors de nombreux pointés supplémentaires.

De ce fait, alors qu’aucune forme d’onde n’est utilisée pour affiner le pro-
cessus d’association, des jeux de pointés d’une grande variabilité, créés sur des
fenêtres temporelles très courtes, sont très facilement associés. La proportion
de fausses associations produites à partir du bruit transitoire est alors forte-
ment augmentée, de même que la proportion d’associations provoquées par des
événements autres que les séismes (tirs de carrière, activités géothermiques,
glissements de terrain par exemple).

De plus, sur la base uniquement de temps d’arrivée compatibles sur une
fenêtre temporelle donnée, la probabilité d’associer des arrivées reliées à des
phases sismiques avec des arrivées reliées à du bruit est largement accrue (Fi-
gure 2.8).
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Figure 2.8: Hauts volumes de données et seuils de détection diminués dans
les observatoires sismologiques : un encombrement rapide des systèmes d’alerte
des événements.

2.2.3 Deuxième limitation : une hausse des détections pa-
rasitaires

Avec la sensibilité croissante des algorithmes de détection et la hausse des
volumes de données à traiter, la détection standard des petits séismes engendre
un taux considérable de détections d’événements autres que ces séismes (Fi-
gure 2.9). Et le processus d’association en est une des principales causes.
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Figure 2.9: Détection des événements par le réseau de surveillance sismique
BCSF-RéNaSS depuis 1980. L’année 2012 marque le début de l’intégration des
tirs de carrière dans le catalogue après discrimination manuelle. La densifi-
cation du réseau de stations dont les données sont intégrées au système de
localisation depuis 2014 (courbe noire) a conduit à une détection d’environ 2
fois plus de séismes (en bleu) et 10 fois plus de tirs de carrière (en rouge), si
l’on prend comme référence l’année 2012. Un peu plus anecdotique en termes
de nombre, un nombre croissant d’explosions (en vert) ainsi que de sismicité in-
duite (en gris) par l’activité géothermique (plus particulièrement de la région
Grand-Est) est aussi détecté. La période 2016-2019 correspond à la période
de déploiement du réseau temporaire AlpArray dont les stations françaises,
allemandes, belges, italiennes et suisses ont été utilisées pour la localisation
manuelle des événements.
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Des milliers de faux événements provoqués par un pointé quasi-
systématique de bruit transitoire impulsif sont d’abord aisément détectés (Fi-
gure 2.10).

Figure 2.10: Exemple de faux événement détecté par l’association de bruit
pointé pour quatre stations sismiques dans une fenêtre temporelle compatible
pour engendrer une détection.

En conséquence, des catalogues massifs d’événements contaminés par l’exis-
tence de faux événements liés au bruit sont générés. De plus, parmi ce taux
considérable de faux événements à traiter, des quantités non négligeables de
vrais événements - comme les séismes naturels ou d’origine anthropique - se
trouvent facilement pollués par du bruit. Et cette pollution est d’autant plus
fréquente si le paramétrage associé à la qualité des pointés automatiques et du
processus d’association n’est pas affiné spécifiquement en fonction du niveau
de bruit à chaque station et des vitesses de propagation des ondes sismiques
dans le milieu (Figure 2.11).

Dans cette configuration de réseaux denses, revoir manuellement tous les
événements issus des catalogues automatiques devient une tâche nettement
plus difficile à accomplir.

En outre, en plus de ces derniers événements, d’autres événements, de même
ordre de magnitude que les séismes, s’ajoutent à la liste déjà trop longue
d’événements à discriminer manuellement. Dans les environnements très ur-
banisés, ces événements supplémentaires sont principalement d’origine anthro-
pique, et particulièrement des tirs de carrière. La détection opérationnelle des
petits séismes dans ces contextes implique donc de discriminer manuellement
les séismes (Figure 2.12) d’autres événements comme les tirs de carrière (Fi-
gure 2.13).
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Figure 2.11: Exemple de fausse association ayant généré un vrai événement
contaminé par du bruit pointé à la station RONF (en bleu). Si cet événement
n’est pas nettoyé manuellement par un analyste, ce dernier sera conservé en
tant qu’événement dans le catalogue, même si les incertitudes des paramètres
hypocentraux risquent d’être significatifs.

Figure 2.12: Exemple de séisme enregistré dans la plaine d’Alsace, près de la
ville de Colmar (Magnitude Locale composante verticale MLv 1.0)
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Figure 2.13: Exemple de tir de carrière enregistré au niveau de la carrière de
Raon-l-Etape dans les Vosges (MLv 1.7).

Par exemple, le réseau national de surveillance sismique français (BCSF-
RéNaSS) détecte actuellement majoritairement près de 50% d’événements
autres que les séismes, dont 43% de tirs de carrières (Figure 2.9).

Si les seuils de détection étaient abaissés et, en tenant compte du nombre
de stations utilisées par le BCSF-RéNaSS, la proportion de tirs de carrière dé-
tectés pourraient s’élever à près de 60%, avec en moyenne 400 faux événements
supplémentaires détectés par jour, qui viennent encombrer le système d’alerte
des événements.
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2.2.4 Troisième limitation : un nettoyage des catalogues
sismiques chronophage

Avec la diminution du seuil de détection et/ou la densification des réseaux
de stations, la tâche quotidienne de nettoyage du catalogue de séismes apparaît
donc difficile à réaliser entièrement manuellement. Sous la contrainte du temps,
les événements vont donc être identifiés avec un inévitable compromis entre
la vitesse de réalisation de la tâche à accomplir et la précision nécessaire à
atteindre pour réussir cette dernière.

Il est par ailleurs impossible en temps réel de revoir manuellement des cen-
taines de faux événements par jour. La fatigue naturelle physiologique propre
à l’humain, liée ici à un afflux d’événements à examiner en un temps court,
engendre une désensibilisation telle que des vrais événements (séismes et tirs de
carrière principalement) peuvent être facilement traités par le cerveau humain
comme des faux. L’effet produit est équivalent à celui de "crier au loup" : à
force de fausses alertes, les vraies alertes finissent par passer plus facilement
inaperçues (Figure 2.14). Sans oublier que les analystes doivent, en plus de la
discrimination, nettoyer tous les vrais événements contaminés par du bruit.

Au final, par exemple, pour l’année 2014, seulement 8% des 6 000 000 de
détections opérées par le système de surveillance international (IMS) ont été
incluses dans le centre de données international (IDC). Le reste des détections,
c’est-à-dire les 92% restants, sont en fait des faux événements. De plus, 39%
des détections présentes dans le bulletin de l’IDC sont effectivement modifiées
postérieurement par des analystes (Draelos et al., 2018).
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Figure 2.14: Fatigue physiologique liée aux fausses alertes. (a) Lorsque les
seuils de détection sont abaissés, des centaines de fausses alarmes (engendrées
par la détection de faux événements) sont émises par jour. (b) Les analystes
(ou tout autre expert) sont submergés par une quantité trop importante d’évé-
nements à traiter (c) Une perte de vigilance physiologique est à craindre avec
un effet équivalent à celui de "crier au loup" : à force de fausses alertes, les
vraies alertes passent plus facilement inaperçues. (d) En conséquence, la dimi-
nution de la réponse physiologique des analystes aux stimulus provoqués par
les alertes répétées d’événements engendre un phénomène d’habituation. (e) La
fatigue s’installe alors. Les analystes exposés à des fausses alertes récurrentes
ne répondent plus correctement à toutes les alertes d’événements. (f) De nom-
breuses vraies alertes ne sont plus traitées et seront supprimées. Près de 30%
des vrais événements à identifier peuvent manquer dans les catalogues finaux.
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Le temps de traitement manuel de grands volumes de données
produites est non seulement conséquent, mais ces données mas-
sives saturent aussi les espaces de stockage qui archivent fina-
lement une majorité de données superflues. Les efforts fournis
pour obtenir un catalogue de séismes de plus faible magnitude
de complétude apparaissent rapidement contre-productifs si l’on
se réfère aux résultats finaux obtenus. En définitive, beaucoup de
séismes vont inévitablement manquer dans des catalogues pollués
par de faux événements.

Or, les systèmes de détection standards, basés sur le pointé des
temps d’arrivées des ondes sismiques, ne reposent pas sur l’ex-
haustivité d’une base de données des événements, comme c’est
le cas des techniques de détection basées sur les formes d’onde
(E. J. Lee et al., 2020). Par conséquent, ils offrent la possibilité
de décoder de nouveaux signaux sismiques, enfouis dans la masse
de données sismologiques désormais disponibles.

Seulement, trois grandes limitations, qui ont été décrites dans
les paragraphes précédents, viennent fortement réduire la per-
formance de ces systèmes de détection standards vis-à-vis des
petits séismes.

La problématique de recherche qui rythmera ce travail de thèse
s’intéressera alors à répondre à la question suivante :

Comment lever les limitations à la détection des petits
séismes ?
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2.3 Lever les limitations à la détection des petits
séismes

2.3.1 Problématique de recherche

La performance des systèmes de détection standards est donc réduite par
l’existence de trois grands limitations à lever. Ces trois limitations nécessitent
de répondre aux trois questions de recherche suivantes :

(1) comment réduire la détection de ces très nombreux petits séismes conta-
minés par du bruit ?

(2) comment restreindre la détection de milliers de faux événements venant
diluer l’information portée par les centaines de séismes détectés ?

(3) comment diminuer efficacement la charge conséquente de discrimina-
tion manuelle des séismes et des autres événements (principalement les tirs de
carrière) ?

Les systèmes de détection standards ne sont actuellement ni complète-
ment automatisés, ni complètement humanisés. Probablement parce que les
deux acteurs de la détection des séismes, l’Homme et la machine (via les al-
gorithmes), se complètent : leurs performances respectives compensent leurs
propres limitations. Alors que les algorithmes de détection sont capables de
traiter des données rapidement avec cohérence et objectivité, les humains pré-
sentent une expertise scientifique sur ces données qui est inégalable. Cette
interaction Homme-machine est donc centrale, et mérite à être approfondie.

En effet, comment à partir de l’expertise humaine pourrait-on affiner le
fonctionnement des algorithmes de détection pour (1) réduire la quantité de
séismes contaminés par le bruit et (2) limiter les détections parasitaires ? Et
comment à partir de la machine pourrait-on diminuer la charge de discrimina-
tion manuelle de l’ensemble des événements du catalogue (3) ?

L’approche qui guidera mes réponses aux différentes questions de recherche
se basera donc sur :

Une optimisation de l’interaction Homme-machine pour une détection
plus performante des petits séismes.
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2.3.2 Choix qui vont guider le développement de la procé-
dure de détection des petits séismes

Les choix qui vont guider le développement de la procédure de détection
des petits séismes sont à relier avec les propriétés indispensables que doit avoir
un système de détection qui opère en temps réel ; à savoir, sa rapidité, son
évolutivité, sa flexibilité et sa longévité.

La rapidité de la procédure est un premier critère indispensable pour main-
tenir les opérations de surveillance sismologique en temps réel et faciliter la
tâche quotidienne des analystes.

L’évolutivité de la procédure est également essentielle afin que cette der-
nière puisse être opérable à toutes les échelles possibles de détection des évé-
nements (locaux, régionaux, téléséismes) sans ajout excessif de complexité, ni
de coût de calcul (C. E. Johnson, 2020).

La flexibilité de la procédure est un atout majeur pour que celle-ci soit
adaptable aux besoins particuliers des services de surveillance sismique. Cela
implique que le système de détection produit puisse être amélioré facilement
une fois mis en opération, et donc être un outil de développement disponible
(Yeck et al., 2019).

Enfin, le critère de longévité de la procédure est aussi important, pour
garantir l’homogénéité d’un catalogue sur une longue période de temps. Cette
procédure doit en effet susciter l’adhésion et l’implication de la communauté.
Elle doit donc pouvoir être adoptée facilement : mise à jour facile, faible ap-
prentissage, fiabilité, réponse aux besoins évolutifs.

Afin d’atteindre ces quatre objectifs de performance, j’ai donc utilisé les
outils standards de détection déjà disponibles. En effet, même s’ils présentent
des lacunes, ces outils sont déjà fortement implantés dans les observatoires
sismologiques, travaillent déjà en temps réel et sont dès lors capables de traiter
de grands volumes de données.

Je me suis donc intéressée à la mise en place d’une procédure plus perfor-
mante en corrigeant les lacunes existantes des systèmes de détection utilisés.
De par sa facilité d’implémentation, cette procédure pourrait plus facilement
susciter l’adhésion de la communauté (familiarité du protocole, peu d’appren-
tissage nécessaire, facilité d’utilisation, langage algorithmique équivalent).

Ce travail de recherche privilégie les pistes de développement
qui améliorent efficacement la détection des petits séismes avec
les outils standards de détection actuels, tout en approfondissant
l’interaction Homme-machine.
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2.3.3 Comment réduire la détection des petits séismes
contaminés par le bruit à partir de l’interaction
Homme-machine ?

Le fait que de vrais événements détectés (principalement des séismes et
des tirs de carrière) soient contaminés par du bruit est à relier au processus
d’association lui-même. En effet, comme cela a été évoqué précédemment, le
principe d’association se base sur les temps d’arrivées des pointés, et non sur
le signal lui-même. Par conséquent, pour une fenêtre temporelle donnée, des
temps d’arrivée correspondant aux arrivées des différentes phases sismiques (P
et S) peuvent être groupés avec des temps d’arrivée qui ne sont reliés qu’à du
bruit.

Trois pistes sont envisageables pour limiter le groupement de vrais pointés
avec des faux pointés. Il est possible d’agir directement au niveau des pointés
et/ou au niveau du processus même d’association et/ou au niveau de l’origine
créée de chaque événement.

•Agir au niveau des pointés ?

Réduire la quantité de faux pointés produite offre l’avantage de désengorger
le processus d’association et de limiter les fausses associations. En effet, l’uti-
lisation des caractéristiques du signal (via les spectrogrammes ou les formes
d’onde) sur une fenêtre temporelle centrée sur les temps d’arrivée de tous les
pointés effectués permettrait de distinguer plus spécifiquement un temps d’ar-
rivée, qui renseigne une phase sismique, d’un temps d’arrivée, qui signale du
bruit. De cette manière, une labélisation des phases sismiques reconnues pour-
rait faciliter la suppression de tous les pointés générés par le bruit. Des études
de reconnaissance des différentes phases sismiques ont été effectivement réali-
sées en utilisant par exemple l’intelligence artificielle, plus particulièrement les
méthodes basées sur les réseaux neuronaux (Mousset et al., 1996 ; Gentili
et al., 2006 ; Ross, M.-A. Meier et al., 2018 ; Y. Zhou et al., 2019).

Alors que l’implémentation de ces méthodes est une perspective intéressante
pour la surveillance sismique globale comme c’est le cas à l’Institut d’Etudes
Géologiques des Etats-Unis (USGS, Yeck et al., 2019), son implémentation
reste plus délicate dans le cadre de la détection régionale de la sismicité. En
effet, l’abaissement des seuils de détection amène à décoder des sismogrammes
jusqu’à des rapports signal/bruit très faibles. Par conséquent, il y a un haut
risque que des phases sismiques qui se détachent à peine du niveau de bruit
moyen soient identifiées comme étant du bruit (McBrearty et al., 2019 ; Fu
et al., 2019).

De plus, si les niveaux de bruit enregistré aux différentes stations sont éle-
vés, comme c’est le cas dans les environnements urbains, des pointés correspon-
dant à des signaux impulsifs transitoires de bruit, des pulses d’étalonnage ou
des pointes de bruit peuvent être facilement identifiés comme étant des vrais
pointés à conserver (Ross, M.-A. Meier et al., 2018).
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L’objectif étant de développer une procédure qui puisse détecter les pe-
tits séismes avec de faibles rapport signal/bruit, cette dernière piste n’est pas
privilégiée dans ce travail.

En revanche, la piste de travail qui est plutôt envisagée est celle d’agir
directement sur les vrais pointés qui vont gouverner la création des vraies as-
sociations. En effet, une paramétrisation plus affinée du processus de pointé
automatique améliorerait à la fois la qualité de l’estimation des temps d’ar-
rivée des phases sismiques et la reconnaissance de l’ensemble des phases qui
interviennent dans la création des événements.

Seulement, cela nécessite de comprendre comment ces pointés automatiques
sont générés et quels sont les facteurs critiques qui déclenchent (ou ne dé-
clenchent pas) un pointé à une station donnée. L’expertise humaine est donc
ici indispensable pour augmenter la performance des algorithmes de détection.
La réponse à ce premier point sera développée dans le chapitre 4.1.

→Réponse : chapitre 4.1

•Agir au niveau du processus d’association ?

En définitive, suivant les procédures de détection standards actuelles, les
faux événements ne sont pas générés directement à partir des pures propriétés
du bruit détecté, mais à partir d’une combinaison de temps d’arrivée qui sont
à relier avec des sources complètement indépendantes (Tyler et al., 2018). Agir
au niveau du processus même d’association est donc une piste indispensable à
considérer.

Les faux pointés étant toujours générés, améliorer le processus d’association
limiterait la création systématique de groupements de vrais pointés avec de faux
pointés. Néanmoins, cela demande de comprendre comment fonctionnent les al-
gorithmes d’association implémentés dans les procédures de détection standard
et quels sont les paramètres décisifs qui contrôlent la qualité du processus d’as-
sociation. L’expertise humaine est là-encore essentielle pour accroître l’efficacité
des algorithmes d’association. La réponse à ce deuxième point sera développée
dans le chapitre 4.2.

! Réponse : chapitre 4.2
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•Agir au niveau de l’origine créée de chaque événement ?

Agir au niveau des événements détectés est une opération délicate car cela
implique que la fausse association ait déjà été créée et que l’événement ait
été localisé avec cette présence de bruit à 1 ou 2 stations, voire plus dans les
cas les plus difficiles. Une première piste qui peut être évoquée est d’utiliser
les caractéristiques du signal pour distinguer de manière automatique ce qui
révèle du bruit transitoire impulsif à une station donnée ou de phases sismiques
à une autre station.

Seulement, les signaux sismiques, provenant d’une seule source décorrèlent,
même avec de légères déviations du chemin parcouru par les ondes émises à par-
tir de cette source (Harris, 2006 ; Dickey et al., 2019). Par conséquent, pour
un même événement donné, la variabilité des signaux sismiques enregistrés à
plusieurs stations peut significativement dégrader la possibilité de distinguer
clairement tous les signaux associés à cet événement, de ceux associés à uni-
quement du bruit transitoire impulsif.

Cette tâche de discrimination peut être aussi d’autant plus difficile que le
bruit d’origine anthropique présente des amplitudes et un contenu fréquen-
tiel similaires à ceux des signaux sismiques régionaux (Hutton et al., 2010 ;
Inbal et al., 2018 ; Perol et al., 2018). Pour ce travail de thèse, cette piste de
recherche n’est pas sélectionnée.

Elle n’est pas privilégiée également car la procédure de détection standard
qui est utilisée produit un catalogue d’événements à multiples origines. Chaque
événement dans le catalogue contient plusieurs origines comme décrit dans la
Figure 2.6. Même si une origine préférentielle est fixée automatiquement par
défaut, il est alors probable d’agir sur la sélection préférentielle de cette origine
de façon à éviter toute origine contaminée par du bruit.

C’est donc sur l’optimisation de cette sélection que ce travail de thèse se
penche. Seulement, cela implique d’identifier des critères de sélection qui soient
différents de ceux déjà disponibles par défaut, et qui soient décisifs pour le choix
optimal de cette origine préférentielle. L’expertise humaine est une nouvelle
fois indispensable à l’amélioration des algorithmes qui interviennent dans la
sélection des origines préférentielles d’un catalogue multi-origine. La réponse à
ce troisième point sera développée dans le chapitre 4.3.

! Réponse : chapitre 4.3
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2.3.4 Comment réduire la détection des faux événements
à partir de l’interaction Homme-machine ?

Le contexte de la zone d’étude (une zone urbaine par exemple), le niveau
de densification du réseau sismique et/ou la valeur du seuil de détection sont
autant de facteurs qui vont contribuer à générer une importante quantité de
pointés automatiques qui ne vont pas uniquement correspondre à des arrivées
d’ondes de volume (P et S). Un faux événement est le produit d’une association
de faux pointés qui ne sont pas reliés à un temps d’arrivée des ondes sismiques.

Deux options sont possibles pour diminuer le taux de faux événements : ou
bien agir avant le processus d’association, en se focalisant sur les faux pointés,
ou bien agir après le processus d’association, en cherchant à éliminer les faux
événements détectés.

•Agir au niveau des faux pointés ?

Comme décrit précédemment, l’implémentation d’un processus de recon-
naissance et d’élimination des faux pointés à partir des caractéristiques du
signal est une opération délicate. Les faibles rapports signal/bruit qui sont
utilisés pour détecter des petits séismes augmentent fortement les risques d’er-
reur d’identification des phases sismiques de très faible amplitude notamment.
Cette piste de travail n’est donc toujours pas considérée.

•Eliminer les faux événements ?

L’Homme a l’expertise physique d’éliminer les faux événements détectés, en
inspectant essentiellement l’aspect du signal enregistré aux stations qui sont
intervenues dans le processus de fausse association. Il repère assez aisément un
ensemble non cohérent et aléatoire de signaux. Seulement, face à des centaines
de faux événements détectés par jour, suite à un abaissement des seuils de dé-
tection et une augmentation des volumes de sismogrammes à traiter, l’expertise
humaine seule ne suffit plus.

Une automatisation du processus de reconnaissance des faux événements
détectés allégerait donc l’opération de revue et d’élimination de ces événements
qui parasitent les catalogues de séismes produits.

En sismologie, les outils de l’apprentissage machine ont été largement utili-
sés pour classer une diversité d’événements depuis les années 1990 (Dowla et
al., 1990 ; J. Wang et Teng, 1995 ; Tiira, 1999 ; Maggi et al., 2017 ; Perol et
al., 2018 ; Linville et al., 2019 ; Rouet-Leduc et al., 2019 ; Zhu et al., 2019).
Ces outils ont également un faible coût opérationnel de calcul, peuvent analyser
d’importants volumes de données en temps réel (M. Meier et al., 2019) et ont
déjà fait leur preuve dans la détection routinière des signaux sismo-volcaniques
(par exemple Malfante et al., 2018).
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C’est donc naturellement vers ces outils que je me dirige. Cependant,
construire des classifieurs automatiques d’événements performants demande de
comprendre avant tout comment définir de façon robuste un faux événement
relativement à un vrai événement.

Pour une optimisation du processus de discrimination automatisée des faux
événements, l’expertise humaine sera donc une ressource précieuse et un guide
nécessaire pour construire un classifieur fiable basé sur l’apprentissage ma-
chine. De plus, il faudra ajouter à cette classification automatique des faux
événements, un processus d’élimination de ces derniers, de façon à désengor-
ger la base de données d’information parasite. La réponse à ces deux derniers
points sera développée dans le chapitre 5.

! Réponse : chapitre 5

2.3.5 comment diminuer efficacement la charge de discri-
mination manuelle des événements du catalogue ?

Si la question des faux événements détectés est résolue dans la sous-section
2.3.4, il n’en demeure pas moins que le catalogue généré contient aussi de très
nombreux vrais événements à identifier. En effet, dans le cas de la détection
des petits séismes, la détection des faux événements représente 96% du total
des détections. La charge de revue manuelle des événements est donc consé-
quemment allégée avec l’introduction potentiel d’un classifieur automatique de
faux et de vrais événements, supprimant l’effet du "cri du loup".

En revanche, il reste encore ces milliers de vrais événements émis qui ne sont
pas encore identifiés. Parmi ces vrais événements, on compte principalement
des séismes et des tirs de carrière. La tâche de discrimination de ces deux
derniers types d’événements n’est en fait pas toujours aisée et peut donc être
très coûteuse en temps.

Les principaux critères usuellement utilisés pour discriminer les séismes des
tirs de carrière sont la proximité de l’événement localisé à un site de carrière
(Figure 2.15), le jour et l’heure de l’événement (Figures 2.16 et 2.17) ainsi que
la similarité des formes d’onde (Figure 2.18) (Voyles et al., 2019).
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Figure 2.15: Localisations des tirs de la carrière de Raon-l’Etape dans les
Vosges de juillet à décembre 2016. L’emplacement de la carrière est figuré par
une étoile blanche et la localisation des tirs est représentée par des cercles.
Les cercles de couleur (rouge, bleu, turquoise, violet, orange, vert, jaune et
rose) correspondent aux tirs qui sont utilisés pour montrer les formes d’onde
associées, enregistrées à la station ECH (voir Figure 2.18).
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Figure 2.16: Exemple de distribution du nombre de tirs de carrière en fonction
des heures de la journée pour la carrière de Raon-l’Etape dans les Vosges de
juillet à décembre 2016.

Figure 2.17: Exemple de distribution du nombre de tirs de carrière effectués
en fonction du jour de la semaine pour la carrière de Raon-l’Etape dans les
Vosges de juillet à décembre 2016.
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Si les séismes ont lieu et se localisent plutôt aléatoirement, les tirs de carrière
sont normalement reliés à leur lieu de production. Ils dépendent donc très
fortement des heures et jours d’ouverture de la carrière ainsi que du calendrier
des tirs. De plus, en se basant sur les formes d’onde, il est possible d’identifier
chaque tir à une carrière donnée. En effet, des sismogrammes enregistrés à la
même station, et correspondant à des tirs provenant d’une même carrière, sont
visuellement similaires (Figure 2.18) (Israelsson, 1990). Ainsi, l’ensemble de
tous ces arguments permettent de donner un diagnostic assez sûr pour repérer
un tir.

Cependant, si cela est vrai pour les carrières très actives et qui génèrent
des signaux qui se distinguent aisément du bruit ambiant enregistré, le diag-
nostic peut en fait s’avérer très complexe. Plusieurs raisons à cela peuvent être
évoquées :

� La mémorisation difficile de tous les signaux associés à chaque carrière
sans base de données conséquente à laquelle se référer (Figures 2.19,
2.20, and 2.21) ;

� La revue manuelle des événements chronologique, avec une impossibi-
lité d’effectuer des aller-retour dans la base de données sans y passer
beaucoup de temps ;

� La probabilité plus élevée de détecter des signaux de faible amplitude
associés à des carrières très peu actives et/ou très peu connues, voire
inconnues, lorsque les seuils de détection sont abaissés ;

� La localisation variable des tirs au sein même d’une seule carrière en-
gendrant des dissimilarités dans les formes d’ondes, qui sont fortement
influencées par les effets du milieu de propagation (Figure 2.22) ;

� La dissimilarité des signaux enregistrés à différentes stations pour un
même tir de carrière, fortement influencés là encore par les effets du
milieu de propagation (Figure 2.23) ;

� La probabilité non négligeable de séismes enregistrés proches des sites de
carrières et/ou pendant les heures ouvrées et/ou possédant des caracté-
ristiques du signal similaires aux tirs de carrière, du fait par exemple de
la faible profondeur de leur source (Figure 2.24).

Face à la grande diversité des formes d’ondes, la distinction entre séismes et
tirs de carrière peut devenir donc très subjective et demande une très grande ex-
pertise. Par conséquent, discriminer des milliers de vrais événements en temps
limité devient difficile. La piste envisagée pour alléger cette charge laborieuse
de discrimination des événements est donc l’automatisation du processus de
classification des séismes et des tirs de carrières en utilisant l’apprentissage
machine (rapidité, objectivité, évolutivité).

42 CHAPITRE 2. INTRODUCTION Alexandra Renouard



2.3. LEVER LES LIMITATIONS À LA DÉTECTION DES PETITS
SÉISMES

Seulement, pour obtenir une classification fiable et robuste, cela demande de
déterminer précisément quels sont les critères qui vont permettre de distinguer
de façon univoque un séisme d’un tir de carrière. L’expertise humaine sur les
propriété des signaux enregistrés apparaît alors indispensable pour améliorer la
performance des algorithmes de classification basés sur l’apprentissage machine.
La réponse à ce dernier point sera développée dans le chapitre 5.

→Réponse : chapitre 5

Le chapitre suivant (chapitre 3) est réservé à la présentation de
l’objet d’étude. Chaque sous-chapitre présentera en quoi cet ob-
jet est le terrain idéal pour le développement d’une méthode qui
puisse lever les plus grandes limitations à la détection des petits
séismes.
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2.3. LEVER LES LIMITATIONS À LA DÉTECTION DES PETITS
SÉISMES

a) 19 décembre 2016 à 11h05 (MLv 2.0). Cercle violet dans la Figure 2.15

b) 21 novembre 2016 à 11h15 (MLv 1.9). Cercle bleu dans la Figure 2.15

c) 05 septembre 2016 à 09h57 (MLv 1.5). Cercle jaune dans la Figure 2.15

Figure 2.18: Exemples de similarité de formes d’onde enregistrées à la station
ECH pour différents tirs de la carrière de Raon-l’Etape dans les Vosges.
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SÉISMES

(a) (b)

(c)

(d)

(e)
(f)

(g)
(h)

Figure 2.19: Exemples de formes d’ondes enregistrées à la première station sur
la composante verticale pour différentes carrières de juillet à décembre 2016 :
(a), (b), (c) carrières d’Arcey, de Chaffois et de Berche dans le Doubs en France,
(d) Carrière de Bernécourt dans le département de la Meurthe-et-Moselle en
France (e) carrière d’Attiswil dans le canton de Bern en Suisse, (f) carrière
de Groß-Bieberau dans la région de Hesse en Allemagne, (g), (h) carrières
de Dotternhausen et de Dunningen dans la région de Baden-Württemberg en
Allemagne.
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SÉISMES

(a)
(b)

(c) (d)

(e) (f)

(g)
(h)

Figure 2.20: Exemples de formes d’ondes enregistrées à la première station sur
la composante verticale pour différentes carrières de juillet à décembre 2016 :
(a), (b), (c), (d) carrières d’Efringen-Kirchen, d’Ehingen, de Hausach-Dorf et
de Mauer dans la région de Baden-Württemberg en Allemagne, (e) carrière de
Gerbamont dans le département des Vosges en France, (f) carrière de La Heutte
dans le Jura bernois en Suisse, (g) carrière de Lepuix-Gy dans le Territoire de
Belfort en France, (h) carrière de Marchaux dans le département du Doubs en
France.
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SÉISMES

(a) (b)

(c)

(d)

(e)
(f)

(g)
(h)

Figure 2.21: Exemples de formes d’ondes enregistrées à la première station
sur la composante verticale pour différentes carrières de juillet à décembre
2016 : (a), (b), (c), (d), (e) carrières de Trochtelfingen, de Rems-Murr, de
Schelklingen-Vohenbronnen, de Schuttertal et de Seebach dans la région de
Baden-Württemberg en Allemagne, (f) carrière de Pagny-sur-Meuse dans le
département de la Meuse en France, (g) carrière de Saint-Amé dans le dépar-
tement des Vosges en France, (h) carrière de Villigen dans le canton d’Aargau
en Suisse.
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2.3. LEVER LES LIMITATIONS À LA DÉTECTION DES PETITS
SÉISMES

Tir du 19 décembre 2016 à 11h05

Tir du 21 novembre 2016 à 11h15

Tir du 7 novembre 2016 à 11h08

Tir du 12 octobre 2016 à 09h55

Tir du 05 septembre 2016 à 09h57

Figure 2.22: Exemples de variations dans les formes d’onde enregistrées à la
station FR.WLS sur la composante verticale pour des tirs ayant eu lieu à la
carrière de Raon-l’Etape dans les Vosges.
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2.3. LEVER LES LIMITATIONS À LA DÉTECTION DES PETITS
SÉISMES

a) Tir du 5 septembre 2016 à 09h57

b) Tir du 21 novembre 2016 à 11h15

Figure 2.23: Exemples de formes d’ondes enregistrées à différentes stations
pour deux tirs ayant eu lieu à la carrière de Raon-l’Etape dans les Vosges : à
gauche, tir du 05 septembre 2016 à 09h57 et à droite, tir du 21 novembre à
11h15.
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2.3. LEVER LES LIMITATIONS À LA DÉTECTION DES PETITS
SÉISMES

(a) Signal correspondant à un séisme ayant eu lieu le 21 novembre 2016 à 16h14 dans
le région de Singen dans le Sud de l’Allemagne.

(b) Signal correspondant à un tir ayant eu lieu le 05 septembre 2016 à 11h52, localisé
à 40 km au sud-ouest du séisme précédent près de la carrière de Waldshut-Tiengen-
Detzel.

Figure 2.24: Exemples de signaux difficilement discriminables enregistrés à la
station SLE pour un séisme (a) et un tir de carrière (b).
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Chapitre 3

Un objet d’étude idéal pour
développer la détection des séismes
de faible magnitude
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3.1. UNE ZONE D’ÉTUDE SITUÉE AU COEUR D’UN DOMAINE
INTRAPLAQUE CONTINENTAL

3.1 Une zone d’étude située au coeur d’un do-
maine intraplaque continental

3.1.1 Une zone géologiquement complexe

La région située au Nord-Est de la France et au delà des frontières est
d’abord une zone géologiquement complexe (Figure 3.1). Elle souligne une tec-
tonique complexe marquée par une histoire géologique ancienne et variée. Elle
regroupe d’importants massifs paléozoïques appartenant à la chaîne varisque
d’Europe de l’ouest : le Massif des Vosges, le Massif de la Forêt Noire, une par-
tie du Massif Central (plus particulièrement le Massif du Morvan), le Massif
de l’Ardenne et du Brabant, ainsi que le Massif de Rhenish.

Elle contient également des grands bassins sédimentaires épicontinentaux
d’âge Méso-Cénozoique : la partie Est du Bassin Parisien et une partie du
bassin sédimentaire au Sud de la Bavière allemande.

Cette région est traversée par deux segments majeurs du système de rifts
Cénozoïques Ouest-Européen qui sont disposés concentriquement autour du
front alpin : le graben de la Hesse et du Rhin Supérieur orientés NNE-SSO
puis les fossés d’effondrement du Massif Central (les Limagnes) et de la Bresse
orientés N-S. Cette zone inclut d’ailleurs une partie de la chaîne alpine. Associée
à cette chaîne alpine, la zone renferme aussi un bassin flexural synorogénique,
le Bassin Molassique Suisse.

Enfin, cette zone comporte le Massif du Jura d’âge Miocène (Jura Français,
Jura Suisse, Jura Souabe).
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3.1. UNE ZONE D’ÉTUDE SITUÉE AU COEUR D’UN DOMAINE
INTRAPLAQUE CONTINENTAL

Figure 3.1: Principales unités géologiques du centre Ouest de l’Europe. La
zone d’étude est marquée par un cadre noir. BR : Fossé de la Bresse, V :
Vosges, BF : Forêt Noire, URG : Graben du Rhin Supérieur, HG : Graben de
la Hesse, LG : Graben du Leine, RM : Massif de Rhenish, E : Eifel, LRE :
Système d’effondrement du Rhin Inférieur, EG : Graben de l’Eger. Modifié
d’après Tesauro et al. (2005).
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3.1. UNE ZONE D’ÉTUDE SITUÉE AU COEUR D’UN DOMAINE
INTRAPLAQUE CONTINENTAL

3.1.2 Une zone continentale stable

La zone d’étude est une zone continentale intraplaque relativement stable.
Les vitesses de surface horizontales et verticales, déterminées grâce aux données
GNSS montrent des valeurs très faibles, de l’ordre de l’incertitude des mesures :
une valeur moyenne de 0.37 ± 0.30 mm/yr pour les vitesses horizontales dans
un référentiel Eurasie et une valeur moyenne absolue de l’ordre de 0.4 ± 0.52
mm/yr pour les vitesses verticales (Henrion et al., 2020).

L’étude du champ de vitesses horizontales montre des directions de ces
vitesses hétérogènes avec de faibles amplitudes de vitesse sur toute la zone
d’étude, à l’exception de la région comprise entre le front du Jura et les Alpes.
En effet, un mouvement léger est observé en direction du Nord (vitesses hori-
zontales de l’ordre de 0:49mm� 0:33mm=an, Henrion et al., 2020).

L’analyse supplémentaire du tenseur des taux de déformation, établi à par-
tir du tenseur des gradients de vitesse, met en évidence un raccourcissement
NW-SE à NNW-SSE entre le front Alpin et le Jura, de l’ordre de 2.86 ± 0.2e-
09 par an (Rabin et al., 2018) à 7e-09 par an (Henrion et al., 2020). En
revanche, l’analyse de ce tenseur ne montre pas de déformation géodésique ap-
parente claire au Nord du front jurassien, c’est-à-dire sur tout le reste de la
zone d’étude. Cependant, la quasi-absence de mouvements tectoniques mesu-
rables actuellement par la géodésie ne signifie pas une absence de déformation
de cette région.

Cette zone continentale intraplaque stable enregistre effectivement quoti-
diennement une sismicité de faible magnitude qui reste encore difficile à expli-
quer sous des conditions actuelles de déformation très faible, voire négligeable,
comme c’est le cas pour nombreuses autres zones intracontinentales à l’échelle
du globe (Gallen et al., 2018 ; Bezada et al., 2019 ; Leclere et al., 2019).

3.1.3 Une zone sismique de faible magnitude

La zone d’étude est donc principalement caractérisée par une sismicité
de faible magnitude. Comme de nombreuses autres zones intraplaques conti-
nentales, cette sismicité semble diffuse au premier ordre à l’échelle du ré-
seau complexe de failles, qui est encore peu connu (Bowman et al., 1990 ;
Gagnepain-Beyneix et al., 1982 ; Tuttle et al., 2002 ; Camelbeeck et al.,
2007 ; Terrinha et al., 2009 ; Martinez-Garzon et al., 2019).
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3.1. UNE ZONE D’ÉTUDE SITUÉE AU COEUR D’UN DOMAINE
INTRAPLAQUE CONTINENTAL

De plus, cette zone d’étude a épisodiquement hébergé une sismicité de plus
forte magnitude, comme l’atteste l’ensemble de la sismicité instrumentale ainsi
que la sismicité historique de la zone (voir Annexe A pour la zone du Graben
du Rhin Supérieur). En effet, plusieurs séismes de magnitude modérée ont
d’abord été sporadiquement enregistrés. Par exemple, le séisme d’Albstadt de
1978, ayant eu lieu dans le Jura Souabe, affiche une magnitude locale de 5.7
(Haessler, P. Hoang-Trong et al., 1980), les séismes de Remiremont de
1984 et de Rambervillers de 2003, ayant eu lieu dans les Vosges, présentent
respectivement une magnitude locale de 4.8 (Haessler et H. Hoang-Trong,
1985) et 5.4 (Audin et al., 2002), et le séisme de Corrençon, situé dans les Alpes
de l’Ouest près de Grenoble, a une magnitude locale estimée à 5.3 (Thouvenot
et al., 2003).

De plus larges séismes ont également été répertoriés historiquement comme
le séisme de Bâle de 1356 dont la magnitude de moment (Mw) a été estimée
entre 6 et 7.1 (Meghraoui et al., 2001 ; Fah, Gisler et al., 2009 ; Shipton
et al., 2017) ou le séisme de Visp plus au Sud datant de 1855 (Mw 6.2 ; Fah,
Moore et al., 2012).

Si l’on s’intéresse à l’activité sismique régulière de la zone d’étude depuis
2012, date à partir de laquelle les événements autres que les séismes ont été
intégrés au catalogue de sismicité, la majeure partie des séismes qui sont détec-
tés par le système de détection du Réseau National de Surveillance Sismique
(BCSF-RéNaSS) ont des magnitudes locales (calculées sur la composante ver-
ticale) comprises entre 1 et 3 (Figure 3.2).

La distribution des magnitudes locales MLv des séismes pour la période
2012-2020 montre que 70% des événements ont une magnitude inférieure à 1.5
et la quasi-totalité des séismes enregistrés ont une magnitude inférieure à 2.0
(Figure 3.3).
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Figure 3.2: Distribution des séismes détectés par le Réseau National de Sur-
veillance Sismique (RéNaSS) français pour la période janvier 2012-juillet 2020.
Localisations extraites de la base de données RéNaSS selon un protocole FDSN
à l’adresse http://renass-sc1.u-strasbg.fr:8080.

Figure 3.3: Distribution des magnitudes des séismes détectées par le Réseau
National de Surveillance Sismique (RéNaSS) français pour la période janvier
2012-juillet 2020. La magnitude estimée est une magnitude locale calculée sur
la composante verticale (MLv).
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A partir de la représentation graphique de la distribution cumulative
fréquence-magnitude des séismes détectés pour cette même période 2012-2020,
il est possible d’estimer une valeur de magnitude de complétude environ égale
à 1.2. (Figure 3.4).

Figure 3.4: Distribution cumulative fréquence-magnitude des séismes détectés
par le Réseau National de Surveillance Sismique (BCSF-RéNaSS) français pour
la période janvier 2012-juillet 2020.
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3.1.4 Une zone à activité anthropique régulière

Très urbanisée et économiquement active, cette zone enregistre quotidien-
nement des signaux qui sont reliés à une activité d’origine anthropique, princi-
palement des tirs de carrière, mais aussi une sismicité induite par la géothermie
profonde ainsi qu’une très faible activité sismique reliée à l’exploitation minière.
(Figure 3.5).

Figure 3.5: Distribution et répartition des événements d’origine anthropique,
majoritairement des tirs de carrière, détectés par le Réseau National de Sur-
veillance Sismique (BCSF-RéNaSS) français pour la période janvier 2012-juillet
2020.
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Une carte de la distribution des sites de carrières, des sites géothermiques
ainsi que quelques sites miniers, corrélant avec l’activité d’origine anthropique
détectée précédemment, montre une large prépondérance de l’activité de car-
rière à travers tout le site d’étude (Figure 3.6). Un peu plus de 96% des évé-
nements d’origine anthropique détectés par le BCSF-RéNaSS correspondent à
des tirs de carrières.

Figure 3.6: Densité de population et distribution des sites de car-
rière, de géothermie profonde et de quelques mines dans la zone
d’étude. D’après https://public.opendatasoft.com/explore/dataset/
geonames-all-cities-with-a-population-1000/table/?disjunctive.
country pour la base de données sur la densité de population, d’après
http://geoservices.brgm.fr/odmgm pour la base de données des car-
rières du Bureau de Recherches Géologiques et Minières (BRGM),
d’après http://www.seismo.ethz.ch/en/knowledge/things-to-know/
geothermal-energy-earthquakes/geothermal-energy-in-switzerland/
pour les sites de géothermie en Suisse, d’après www.geotis.de pour les sites de
géothermie en Allemagne et d’après http://www.energies-renouvelables.
org pour les sites de géothermie en France. Les carrières représentées en noir
correspondent aux carrières dont les tirs ont été identifiés et détectés au cours
de l’année 2016.
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De plus, les magnitudes locales (MLv) de l’ensemble des événements étique-
tés comme tirs de carrière présentées sur la Figure 3.5 pour la période 2012-2020
sont de même ordre de grandeur que celles des séismes naturels enregistrés (Fi-
gure 3.7). La totalité des tirs enregistrés ont une magnitude locale inférieure à
2.8 et environ 48% d’entre eux ont des magnitudes locales comprises entre 1.5
et 1.6.

La probabilité d’enregistrer plus de tirs de carrière, lorsque la détection des
petits séismes est accentuée, est donc grande.

Figure 3.7: Distribution des magnitudes locales calculées sur la composante
verticale (Mlv) pour l’ensemble des tirs de carrière détectés pour la période
janvier 2012-juillet 2020.

Par ailleurs, le Réseau National de Surveillance Sismique (BCSF-RéNaSS)
français met à disposition une base de données de séismes et de tirs de carrière
qui sont robustement discriminés depuis 2016 par des analystes. Cette zone est
donc particulièrement intéressante pour monter un protocole de discrimination
automatique des tirs de carrière et des séismes.

Elle donne également la possibilité de comprendre finement les caracté-
ristiques dominantes qui vont solidement différencier les tirs de carrière des
séismes. En effet, cette zone d’étude est une zone géologique et structurale
complexe comme peut le témoigner la variabilité pétrographique de ses roches.
Par conséquent, à l’échelle de la zone d’étude, l’ensemble des carrières vont
exploiter une diversité de matériaux produits à partir de roches sédimentaires,
de roches volcaniques, de roches plutoniques et de roches métamorphiques (Fi-
gure 3.8).
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Figure 3.8: Distribution des carrières dans la zone d’étude en fonction de la
nature géologique des terrains d’extraction. Les carrières représentées en noir
correspondent aux carrières dont les tirs ont été identifiés et détectés au cours de
l’année 2016. D’après https://services.bgr.de/wms/geologie/igme5000/?
pour la carte géologique et la représentation des structures et d’après http://
geoservices.brgm.fr/odmgm pour la base de données des carrières du Bureau
de Recherches Géologiques et Minières (BRGM).
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Roches sédimentaires. Par exemple, la carrière de Hauteville-Lompnes
située au Sud de Bourg-en-Bresse dans le Massif du Jura français exploite un
calcaire apparenté au marbre du Jurassique Supérieur. La carrière de Pagny-
sur-Meuse située à proximité de la ville de Nancy dans le Bassin Parisien ex-
ploite un calcaire gélif corallien ou oolithique du Jurassique Supérieur. Les
carrières d’Heidenheim et de Schelklingen-Vohenbronnen situées dans le Jura
Souabe en Allemagne, à proximité d’Ulm, exploitent un calcaire pur du Juras-
sique Supérieur. La carrière de la Heutte située dans le Massif du Jura Bernois
en Suisse exploite un calcaire marneux du Jurassique Supérieur (Figure 3.9 :
1, 2, 3, 4 et 5).

La carrière de Chaffois située dans le Massif du Jura, près de la ville de
Pontarlier, la carrière d’Epagny située près de la ville de Dijon à l’extrême
bord Sud-Est du Bassin Parisien ainsi que la carrière de Bainville-sur-Madon
située à proximité de Nancy dans le Bassin Parisien exploitent le calcaire à
polypiers du Jurassique Moyen (Figure 3.9 : 6, 7 et 8).

La carrière de Cielle située près de la ville de Rendeux en Belgique exploite
le grès du Permien (Figure 3.9 9).

Roches volcaniques. La carrière de Trapp de Raon-l’Etape située dans
les Vosges exploite du basalte porphyrique calco-alcalin d’âge Dévonien à Car-
bonifère Inférieur. La carrière de Lepuix-Gy située au sud des Vosges dans le
Territoire de Belfort exploite la rhyodacite du Carbonifère Figure 3.9 : 10 et
11).

Roches plutoniques. La carrière de Saint-Amé située à proximité de la
ville de Remiremont dans le Massif des Vosges exploite du granite de la fin du
Carbonifère. La carrière de Waldhambach située près de la ville de Landau en
Allemagne et la carrière de Seebach située dans le Massif de la Forêt Noire en
Allemagne exploitent également du granite d’âge Carbonifère. La carrière de
Jettenbach située en Bavière allemande extrait quant à elle de la microdiorite.
La carrière de Groß-Bieberau située dans le canton de Hesse en Allemagne
exploite du gabbro Figure 3.9 : 12, 13, 14, 15 et 16).

Roches métamorphiques. La carrière d’Heppenheim située au sud de
Frankfurt dans le canton de Hesse en Allemagne exploite de la granodiorite
avec des inclusions d’amphibolite de la fin du Carbonifère. La carrière de Dot-
ternhausen située au bord du Massif du Jura Souabe en Allemagne exploite du
calcaire mais également des schistes bitumineux du Jurassique Moyen. Enfin,
la carrière de Hausach située dans le Massif de la Forêt Noire en Allemagne
exploite du gneiss du Carbonifère (Figure 3.9 : 17, 18 et 19).
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Figure 3.9: Distribution des exemples de carrière évoquées dans le paragraphe
précédent pour la diversité globale du matériel qui est extrait dans la zone
d’étude : roches sédimentaires calcaires de (1) Hauteville-Lompnes, (2) Pagny-
sur-Meuse, (3) Heidenheim, (4) Schelklingen-Vohenbronnen, (5) La-Heutte, (6)
Chaffois, (7) Epagny, et (8) Bainville-sur-Madon ; roches sédimentaires gré-
seuses de (9) Rendeux ; Roches volcaniques basaltiques de (10) Raon-l’Etape
et (11) rhyodacitiques de Lepuix-Gy ; roches plutoniques granitiques de (12)
Saint-Amé, (13) Waldhambach, (14) Seebach ; roches plutoniques microdio-
ritiques de (15) Jettenbach et gabbroïques de (16) Groß-Bieberau ; roches
métamorphiques à passées amphibolitiques de (17) Heppenheim, rpches mé-
tamorphiques schisteuses de (18) Dotternhausen et roches métamorphiques
gneissiques de (19) Hausach.
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Produits dans des milieux d’une extrême diversité pétrographique et litho-
logique, ces tirs engendrent une variabilité de signaux qui sont détectables par
les réseaux de stations. Cette variabilité observée dépend à la fois de la na-
ture pétrographique du matériel extrait (Figures 3.10, 3.11, 3.12 et 3.13),
des pratiques de dynamitage mais également de l’orientation du front de taille
(Stump et al., 2001).

De plus, même si les formes d’ondes enregistrées aux mêmes stations se
ressemblent très fortement pour des tirs ayant eu lieu dans une même carrière,
les différents emplacements possibles pour ces tirs peuvent entraîner des va-
riations sensibles dans les formes d’onde (Bonner et al., 2003). En effet, en
plus d’une orientation variable du front de taille, des variations dans la nature
du gisement pour un même site (présence d’un filon, dureté ou porosité diffé-
rentielle, etc.) peuvent également modifier substantiellement les propriétés des
roches formant ce front de taille. Enfin, la couverture azimutale des stations
ainsi que les effets du milieu de propagation vont aussi fortement influencer la
variabilité observée de ces formes d’onde enregistrées.

De part la variabilité intrinsèque observée des signaux associés
aux tirs de carrière dans la zone d’étude, cette zone est donc
idéale pour comprendre comment efficacement discriminer les
tirs de carrière des séismes. C’est justement cette variabilité de
formes d’onde observées dans cette zone d’étude que je souhaite
exploiter pour solidement définir les caractéristiques fortes qui
vont aider à distinguer avec une grande précision et exactitude
les tirs de carrière des séismes.
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(a) Calcaire marbrier de
Hauteville-Lompnes (station

OG35 : 7.24 km)

(b) Calcaire gélif et friable de
Pagny-sur-Meuse (station

A210A : 18.84 km)

(c) Calcaire pur de Heidenheim
(station A360A : 6.22 km)

(d) Calcaire pur de
Schelklingen-Vohenbronnen
(station A108A : 3.67 km)

(e) Calcaire marneux de
La-Heutte (station BOURR :

24.86 km

(f) Calcaire pur
sublithographique de Chaffois
(station BRANT : 14.23 km)

(g) Calcaire dalleux d’Epagny
(station A160A : 28.29 km)

(h) Calcaire stratifié et diaclasé
de Bainville-sur-Madon (station

A210A : 27.34 km)

(i) Grès quartzitique de Rendeux
(station RCHB : 25.03 km)

Figure 3.10: Exemples de variabilité des formes d’ondes enregistrées sur la
composante verticale à la première station pour des tirs de carrière ayant eu
lieu dans des roches sédimentaires.
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(a) Basalte porphyritique de Raon-l’Etape
(station ECH : 30.64 km) (b) Rhyodacite de Lepuix-Gy (station

RONF : 11.44 km)

Figure 3.11: Exemples de formes d’ondes enregistrées sur la composante verti-
cale à la première station pour des tirs de carrière ayant eu lieu dans des roches
volcaniques.

(a) Granite de Saint-Amé (station
STDM : 21.55 km)

(b) Granite de Waldhambach en
Allemagne (station KTD : 19.29 km)

(c) Granite de Seebach en Allemagne
(station OPP : 10.56 km)

(d) Microdiorite de Jettenbach en
Allemagne (distance épicentrale -station

ABH- : 34.71 km)

(e) Gabbro de Groß-Bieberau en
Allemagne (station A110A : 8.74 km)

Figure 3.12: Exemples de formes d’ondes enregistrées sur la composante verti-
cale à la première station pour des tirs de carrière ayant eu lieu dans des roches
plutoniques.
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(a) Granodiorite avec passées
amphibolitiques de Heppenheim en

Allemagne (station A113A : 11.04 km)

(b) Calcaires et schistes bitumineux de
Dotternhausen en Allemagne (station

GUT : 18.55 km)

(c) Gneiss de Hausach en Allemagne
(station OPP : 23.18 km)

Figure 3.13: Exemples de formes d’ondes enregistrées sur la composante verti-
cale à la première station pour des tirs de carrière ayant eu lieu dans des roches
métamorphiques.

3.2 Des données volumineuses et de qualité

3.2.1 Un réseau sismologique récemment densifié

•Un apport supplémentaire de stations permanentes de qualité.

Le réseau sismologique de la zone d’étude a grandement été densi-
fié depuis ces dernières années grâce à différents projets. On notera tout
d’abord le construction du Réseau Large Bande Permanent dans le cadre
dans le cadre de l’infrastructure de recherche RESIF (https://www.allenvi.
fr/groupes-transversaux/infrastructures-de-recherche/resif). En par-
ticulier le volet Large Bande (RESIF-CLB) a permis la construction d’un réseau
de 160 stations large bande sur l’ensemble du territoire français métropolitain.

Plus particulièrement dans notre zone d’étude, ce projet a permis la moder-
nisation du réseau courte période existant depuis les années 1980 en réseau large
bande (3-composantes, large bande, transmission temps réel 3G/4G-ADSL,
etc.). Parmi l’ensemble de ces stations, on compte 6 stations construites avec
des capteurs installés en fond de puits ( 5m) en 2016, évoluant vers 11 en 2020.

En complément, un projet d’instrumentation sismologique a été mené par
l’École et Observatoire des Sciences de la Terre (EOST) et Électricité de Stras-
bourg (projet EGS, ADEME, 2016-2020) pour densifier le réseau en Alsace, et
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améliorer la détection de séismes de faible magnitude. Ce réseau permet notam-
ment d’être en mesure de mieux surveiller les éventuelles séquences sismiques
induites par l’activité industrielle, l’activité géothermique notamment.

Les stations construites sont instrumentées à la fois par des capteurs ac-
célérométriques et des capteurs vélocimétriques moyenne et large bande. La
difficulté d’instrumenter cette région avec des stations de qualité réside dans
le fait que celle-ci est très urbanisée comme précisé ci-dessus, mais aussi dans
la nature même du sol en plaine d’Alsace, où la couverture sédimentaire peu
consolidée perturbe les signaux sismiques. Ainsi, certains capteurs ont été ins-
tallés jusqu’à 45 m pour limiter les effets de site.

En parallèle, les instituts de surveillance sismologiques en Allemagne ont
également densifié et modernisé leur réseau de l’autre côté de la frontière. L’en-
semble des signaux sont quotidiennement partagés grâce aux différents centres
d’archivage et de distribution des données, dont l’initiative EIDA (European In-
tegrated Data Archive), par chacun des organismes en charge de la surveillance
sismologique de chacun des pays ou des landers.

•Une forte densification du réseau par des stations temporaires.

En plus de la densification des stations permanentes depuis 2015, un réseau
temporaire AlpArray-Fr a pu compléter le réseau permanent jusqu’en 2020
(Figure 3.14). L’édification de ce réseau temporaire a été inscrit dans le cadre du
projet européen AlpArray qui a permis d’impliquer plusieurs pays européens,
dont la France, pour densifier le réseau permanent autour de la chaîne alpine
(Hetényi et al., 2018).

De ce fait, la période 2016-2019 correspond à un maximum de couverture
des stations à l’échelle de la zone d’étude (apport des stations permanentes
françaises, allemandes, suisses, belges puis des stations temporaires AlpArray).
Elle constitue donc une période propice pour développer cette méthodologie
de détection des petits séismes dans la zone.
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Figure 3.14: Evolution de la couverture de stations dans la zone d’étude depuis
2012.
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•Potentiel de détection du réseau densifié

Le suivi de l’évolution de la détection de la sismicité naturelle par le BCSF-
RéNaSS pour la période 2012-2020 montre un nombre de petits séismes qui
augmentent en fonction de la densification progressive du réseau de stations
(Annexe A). La distribution des magnitudes des séismes autour de 1 a été effec-
tivement multipliée par 8 depuis 2012. De plus, un nombre de 2.5 fois plus de
séismes de magnitude inférieur à 1 ont été détectés depuis 2017 ; ce qui corres-
pond au maximum de couverture de stations de la zone d’étude (Figure 3.15).

Si l’on estime approximativement la magnitude de complétude à partir de
la distribution cumulative fréquence-magnitude des séismes pour chaque année
depuis 2013, celle-ci varie très peu et reste autour de 1.2. Par conséquent,
même si le nombre de séismes de magnitude locale MLv inférieure à 1.0 a
augmenté très fortement ces 3 dernières années, ce nombre supplémentaire de
séismes détectés n’a pas d’incidence majeure sur la valeur de la magnitude de
complétude globale de la zone étudiée, malgré les incertitudes estimées sur le
calcul des petites magnitudes (Figures 3.16 et 3.17).

La détection des événements de magnitude inférieure à 1.2 reste donc en-
core sous-exploitée par le système de détection actuel du BCSF-RéNaSS. Il est
important de noter que les stations AlpArray n’ont pas été intégrées au sys-
tème de détection automatiques pendant toute leur période d’activité puisque
les signaux n’étaient pas transmis en temps réel. Ainsi, elles n’ont été utilisées
que pour localiser les événements. Inclure ce réseau dans une procédure de
détection des séismes de faible magnitude offre une opportunité majeure pour
augmenter la détectabilité des petits événements.
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Figure 3.15: Évolution de distribution des magnitudes pour la période 2012-
2019.
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Figure 3.16: Distributions cumulatives fréquence-magnitude annuelles des
séismes détectés par le réseau de stations utilisé par le BCSF-RéNaSS pour
la période 2012-2019.
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Figure 3.17: Distributions cumulatives des séismes détectés par le réseau de
stations utilisé par le BCSF-RéNaSS pour la période 2012-2019 et incertitudes
associées.
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La période 2016-2019 est donc encore une fois la période idéale pour dé-
velopper une procédure de détection qui puisse exploiter au maximum les ca-
pacités de détection du réseau (réseau à maillage plus fin, seuils de détection
plus bas). De cette manière, un volume de 4 TéraBytes de sismogrammes échan-
tillonnés à 100 Hz sur 3 canaux (2 composantes horizontales et une composante
verticale) est donc disponible pour cette période d’étude.

3.2.2 Un réseau plus sensible au bruit d’origine anthro-
pique

• Caractérisation des stations impliquées dans la détection
des faux événements.

Si la période comprise entre 2016 et 2019 est la meilleure période pour
détecter les petits séismes dans la zone d’étude, il s’avère que l’ajout de stations
supplémentaires, combiné à un seuil de détection plus bas, augmente fortement
le taux de fausses détections, comme expliqué précédemment (Chapitre 2). En
effet, le résultat d’un test de détection automatique sur 4 mois (septembre
2016-décembre 2016) engendre environ 48 000 faux événements.

Une proportion de 26 % des stations temporaires AlpArray utilisées (soit
18 stations) sont effectivement impliquées dans la création d’au moins 10% des
faux événements. Par exemple, des stations telles que A117A et A102A inter-
viennent dans la détection de plus de 20 % des faux événements (Figure 3.18).

Figure 3.18: Taux d’implication des stations temporaires AlpArray (en %)
dans la création de faux événements.

Si l’on compare le taux d’implication des stations AlpArray dans la création
de faux événements à celui des stations permanentes, le taux d’implication di-
minue à 13% pour les stations permanentes. Parmi celles-ci, 2 stations (GIMEL
et OGSI) interviennent dans la création de plus de 25 % des faux événements
(Figure 3.19).
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Figure 3.19: Taux d’implication des stations permanentes (en %) dans la créa-
tion des faux événements pour la période septembre 2016-décembre 2016.

Cependant, les stations qui sont en fait le plus impliquées dans la génération
des faux événements sont également celles qui sont largement utilisées pour la
détection automatique des vrais événements.

Par exemple, la station A102A est une des stations AlpArray les plus enga-
gées dans l’élaboration des faux événements (de l’ordre de 21%) pour la période
test septembre 2016-décembre 2016, mais elle est également la station AlpArray
la plus utilisée dans la création des vrais événements pour cette même période
(de l’ordre de 40%). En définitive, l’ensemble des stations AlpArray qui sont
impliquées dans la création de faux événements interviennent dans 4 à 40% des
vrais détections (Figure 3.20).

Figure 3.20: Taux d’implication des stations temporaires AlpArray (en %)
dans la création des vrais événements pour la période septembre-décembre
2016.
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Quant aux stations permanentes utilisées pour cette même période test, si
le même constat peut également être fait, la part dominante d’implication de
ces stations est plutôt réservée à la création de vrais événements. Des stations
comme KIZ, SLE, GUT, CHMF, FELD ou ECH sont impliquées dans la créa-
tion de plus de 50% des vrais événements. En revanche, elles sont utilisées pour
la détection des faux événements à la hauteur de "seulement" 6 à 16% d’entre
eux (Figure 3.21).

Figure 3.21: Taux d’implication des stations permanentes (en %) dans la créa-
tion des vrais événements pour la période septembre-décembre 2016.

De ce fait, la détection des petits séismes s’accompagne inexorablement
d’un fort taux de fausses détections car ce sont approximativement les mêmes
stations qui interviennent dans la génération des vrais et fausses détections.

•Caractérisation du bruit détecté aux stations

Un niveau de bruit élevé aux hautes fréquences ( > 1 Hz). La
diminution du seuil de détection, combinée à un taux élevé d’enregistrement
de signaux impulsifs variés à des stations localisées proches de centres d’activité
anthropique, augmente les probabilités de détection d’autres signaux que ceux
associés aux séismes.

Par exemple, la station A102A est localisée près d’une route à proximité
d’un centre équestre et à environ 2 km de la carrière de Sigmaringen dans le
Sud de l’Allemagne.

L’analyse de la fonction de densité spectrale de puissance pour évaluer le
niveau de bruit de fond de la station A102A montre que la puissance du bruit
aux gammes de fréquences typiques du bruit d’origine anthropique, c’est-à-
dire comprises entre 1 et 10 Hz, est variable et peut augmenter d’environ 20
décibels par rapport à la puissance minimale. Cette puissance de bruit atteint
alors des probabilités plus fortes d’occurrence (de l’ordre de 20 %) par rapport
au modèle de bruit bas (NLNM). Cette station est donc très sensible au bruit
impulsif transitoire d’origine anthropique.
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Figure 3.22: Densité spectrale de puissance probabiliste calculée pour la sta-
tion A102A. Les courbes grises correspondent aux modèles de bruit standard
(courbe supérieure = modèle de bruit élevé [NHNM] et courbe inférieure =
modèle de bruit bas [NLNM] (Peterson, 1993). Les niveaux de bruit de la
station sont estimés sur une large gamme de fréquences de 0.01 Hz à 16 Hz
(soit une période de 100 secondes à 0.0625 secondes). En bas du graphique
sont affichés les données qui ont servi au calcul de cette fonction. Le rectangle
vert représente les données disponibles et le rectangle bleu montre l’étendue
des données qui ont servi au calcul. Ces spectres ont été obtenus via le package
ObsPy de Python suivant la méthode de McNamara et al., 2004.
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Il en est de même pour les stations A213A ou A117A par exemple. La
station A213A est située au Nord-Est de la région de Dijon en France à 200
m d’un moto club, et A117A est localisée dans une exploitation agricole, à
proximité d’une petite industrie textile, au Nord-Est de la région de Stuttgart
en Allemagne. La puissance du bruit aux gammes de fréquence caractéristiques
du bruit d’origine anthropique atteint des probabilités d’occurrence très élevées
jusqu’à près de 20% pour les 2 stations, et s’éloigne fortement des valeurs
estimées pour le modèle de bruit bas (Figures 3.24 et 3.23). Un pic autour de la
gamme de fréquence 10-20 Hz est observé sur la station A213A, correspondant
à la puissance du bruit d’un trafic autoroutier (Riahi et al., 2015 ; Díaz et al.,
2017 ; Xiao et al., 2020). Si l’autoroute est située à 25 km de cette station,
il est plus probable que ce pic corresponde à l’activité du moto club situé à
proximité.

Figure 3.23: Densité spectrale de puissance probabiliste calculée pour la sta-
tion A213A. Les courbes grises correspondent aux modèles de bruit standard
(courbe supérieure = modèle de bruit élevé [NHNM] et courbe inférieure =
modèle de bruit bas [NLNM] (Peterson, 1993). Les niveaux de bruit de la
station sont estimés sur une large gamme de fréquences de 0.01 Hz à 16 Hz
(soit une période de 100 secondes à 0.0625 secondes). En bas du graphique
sont affichées les données qui ont servi au calcul de cette fonction. Le rectangle
vert représente les données disponibles et le rectangle bleu montre l’étendue
des données qui ont servi au calcul.Ces spectres ont été obtenus via le package
ObsPy de Python suivant la méthode de McNamara et al., 2004.
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La station A117A affiche un niveau de bruit globalement plus élevé que celui
de la station A102A pour l’ensemble des gammes fréquentielles présentées. La
puissance du bruit longue période tend notamment à se rapprocher des valeurs
du modèle de bruit élevé avec une probabilité plutôt forte (de 20 à 30%). De
cette façon, si cette station est la station AlpArray la plus impliquée dans la
création des faux événements pour la période considérée, elle est proportion-
nellement beaucoup moins impliquée dans la création de vrais événements que
la station A102A.

Figure 3.24: Densité spectrale de puissance probabiliste calculée pour la sta-
tion A117A. Les courbes grises correspondent aux modèles de bruit standard
(courbe supérieure = modèle de bruit élevé [NHNM] et courbe inférieure =
modèle de bruit bas [NLNM] ; Peterson, 1993. Les niveaux de bruit de la
station sont estimés sur une large gamme de fréquences de 0.01 Hz à 16 Hz
(soit une période de 100 secondes à 0.0625 secondes). En bas du graphique
sont affichées les données qui ont servi au calcul de cette fonction. Le rectangle
vert représente les données disponibles et le rectangle bleu montre l’étendue
des données qui ont servi au calcul.Ces spectres ont été obtenus via le package
ObsPy de Python suivant la méthode de McNamara et al., 2004.

Le même constat peut être effectué pour les stations permanentes. C’est la
cas par exemple de la station GIMEL qui est la station permanente intervenant
le plus dans la création de faux événements, et qui fait partie des stations
permanentes les plus utilisées pour la création des vrais événements. Cette
station est située dans le Jura Vaudois en Suisse à proximité d’une route et
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d’une activité de Gravière (Figure 3.25).

Figure 3.25: Densité spectrale de puissance probabiliste calculée pour la sta-
tion GIMEL. Les courbes grises correspondent aux modèles de bruit standard
(courbe supérieure = modèle de bruit élevé [NHNM] et courbe inférieure =
modèle de bruit bas [NLNM] ; Peterson, 1993). Les niveaux de bruit de la
station sont estimés sur une large gamme de fréquences de 0.01 Hz à 16 Hz
(soit une période de 100 secondes à 0.0625 secondes). En bas du graphique
sont affichées les données qui ont servi au calcul de cette fonction. Le rectangle
vert représente les données disponibles et le rectangle bleu montre l’étendue
des données qui ont servi au calcul. Ces spectres ont été obtenus via le package
ObsPy de Python suivant la méthode de McNamara et al., 2004.

Ainsi, les stations les plus impliquées dans la création de vrais événements
sont donc également celles qui sont sensibles au bruit impulsif d’origine anthro-
pique. Les faux événements qui sont générés sont donc majoritairement reliés
à ce type de bruit.

Une détection maximale aux heures d’activité humaine intense
L’étude de la répartition de la totalité des faux événements détectés en fonction
des heures de la journée pour la période septembre-décembre 2016 montre que
celle-ci se concentre effectivement autour des heures qui correspondent aux pics
d’activité humaine (Figure 3.26), ce qui est une des caractéristiques du bruit
d’origine anthropique (Sheen et al., 2009).
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Figure 3.26: Distributions des faux événements détectés par une procédure
automatique de détection incluant l’ensemble du réseau de stations disponible
pour la période juillet 2016-décembre 2016 en fonction des heures de la journée.

Des signaux associés au bruit anthropique détectés avec les mêmes
amplitudes, durées et contenus fréquentiels que les signaux sismiques
associés aux séismes et aux tirs de carrière. L’analyse des spectrogrammes
des signaux ayant engendré les faux événements montre une intensité maximale
du signal dans les bandes de fréquence typique du bruit d’origine anthropique,
c’est-à-dire principalement concentrée entre 1 et 10 Hz, mais pouvant s’étendre
jusqu’à 20 Hz (Figures 3.27 à 3.29). Les variations diurnes d’amplitude du
signal entre 1 et 20 Hz sont effectivement reconnues comme étant associées
au bruit d’origine anthropique (Bungum et al., 1971 ; Gurrola et al., 1990 ;
Young et al., 1996 ; Atef et al., 2009 ; Lewis et al., 2012 ; Loer et al., 2018).
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(a) (b)

(c)

Figure 3.27: Formes d’ondes et spectrogrammes correspondant aux signaux
enregistrés sur la composante verticale des stations (a) A100A, (b) A128A et
(c) A119A. Ces signaux sont reliés à un faux événement détecté le 24 décembre
2016 à 11h14.
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(a) (b)

(c) (d)

Figure 3.28: Formes d’onde et spectrogrammes correspondant aux signaux
enregistrés sur la composante verticale des stations (a) A119A, (b) GUT, (c)
A108A et (d) A061A. Ces signaux sont reliés à un faux événement détecté le
12 novembre 2016 à 09h29.
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(a) (b)

(c)

Figure 3.29: Formes d’onde et spectrogrammes correspondant aux signaux
enregistrés sur la composante verticale des stations (a) A100A, (b) FELD et (c)
A104A. Ces signaux sont reliés à un faux événement détecté le 27 octobre 2016
à 11h19. Ce faux événement contient dans son association un signal sismique
isolé enregistré à la station FELD.
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Or, ces signaux d’origine anthropique véhiculent un maximum d’énergie
dans la bande de fréquences de 1 à 10 Hz qui est souvent utilisée pour observer
l’activité microsismique (Hutton et al., 2010 ; Riahi et al., 2015 ; Inbal et al.,
2018). En effet, l’analyse de quelques spectrogrammes de signaux correspondant
à des séismes de très faible magnitude (ici MLv de 0.3 et 1.4, Figures 3.30
et 3.31) montre une concentration de l’intensité du signal dans cette gamme
fréquentielle, avec un maximum autour de 5 à 10 Hz. Quelques pics d’intensité
apparaissent jusqu’à 20 Hz et semblent correspondre à l’arrivée des ondes P.

(a) (b)

(c)

Figure 3.30: Formes d’onde et spectrogrammes correspondant aux signaux
enregistrés sur la composante verticale des stations (a) OGSI, (b) DIX, et (c)
RSL. Ces signaux sont reliés à un séisme ayant eu lieu le 03 décembre 2016 à
20h00 dans la région de Chamonix dans les Alpes françaises (MLv=0.3).
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(a) (b)

(c) (d)

(e)

Figure 3.31: Formes d’onde et spectrogrammes correspondant aux signaux
enregistrés sur la composante verticale des stations (a) SLE, (b) GUT, (c)
SULZ, (d) KIZ et (e) BALST. Ces signaux sont reliés à séisme ayant eu lieu
le 20 novembre 2016 à 20h08 dans le Sud de l’Allemagne, près de la frontière
Suisse (MLv=1.4).
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Pour les séismes de plus forte magnitude (c’est-à-dire MLv > 1.5 dans les
exemples proposés), même si l’intensité du signal se concentre également aux
gammes fréquentielles caractéristiques du bruit d’origine anthropique, cette
forte intensité s’étale à plus forte fréquence c’est-à-dire un peu au-delà de 20Hz,
en particulier pour la partie du signal qui semble correspondre à l’arrivée des
ondes S (Figures 3.32 et 3.33).
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(a) (b)

(c) (d)

(e)

Figure 3.32: Formes d’onde et spectrogrammes correspondant aux signaux
enregistrés sur la composante verticale des stations (a) A102A, (b) GUT, (c)
A100A, (d) A103A et (e) SLE. Ces signaux sont reliés à un séisme ayant eu
lieu le 12 octobre 2016 à 18h33 dans le Jura Souabe (MLv=1.5).
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(a) (b)

(c) (d)

(e)

Figure 3.33: Formes d’onde et spectrogrammes correspondant aux signaux
enregistrés sur la composante verticale des stations (a) VOGT, (b) KIZ, (c)
A122A, (d) FELD et (e) WLS. Ces signaux sont reliés à un séisme ayant eu lieu
le 07 septembre 2016 à 06h58 au Nord de Freiburg en Allemagne (MLv=2.1).
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En ce qui concerne les signaux qui sont reliés aux tirs de carrière, l’analyse
de leurs spectrogrammes montre aussi une intensité plus forte du signal dans
la bande fréquentielle typique des signaux d’origine anthropique. Seulement,
celle-ci est plutôt concentrée vers les plus basses fréquences, particulièrement
entre 1 et 5 Hz. Quelques pics d’intensité peuvent être notés à plus haute
fréquence, entre 10 à 15 Hz, et semblent être corrélés avec l’arrivée des ondes
P (Figure 3.34 et figure 3.35).
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(a) (b)

(c) (d)

(e)

Figure 3.34: Formes d’onde et spectrogrammes correspondant aux signaux
enregistrés sur la composante verticale des stations (a) A100A, (b) GUT, (c)
SLE, (d) A122A et (e) FELD. Ces signaux sont reliés à un tir de la carrière de
Haigerloch-Weildorf située à 60 km au Sud de Stuttgart en Allemagne et ayant
eu lieu le 02 décembre 2016 à 08h37 (MLv=1.3).
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(a) (b)

(c) (d)

(e)

Figure 3.35: Formes d’onde et spectrogrammes correspondant aux signaux
enregistrés sur la composante verticale des stations (a) SULZ, (b) BALST, (c)
FELD, (d) KIZ et (e) SLE. Ces signaux sont reliés à un tir de la carrière de
Rheinfelden située à l’Est de Bâle et ayant eu lieu le 26 octobre 2016 à 13h53
(MLv=1.2).
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La zone d’étude est donc une zone caractérisée par un fort dé-
ploiement de stations entre 2016 et 2019, notamment du fait de
l’installation des stations temporaires AlpArray. Cette période
est la période qui est sélectionnée pour détecter les séismes de
faible magnitude.

Seulement, l’inclusion de la totalité des stations dans le protocole
de détection automatique, combinée à une diminution du seuil
de détection, engendre des milliers de faux événements. Or, les
stations (permanentes ou temporaires) qui interviennent le plus
dans la création des vrais événements sont en fait aussi celles
qui sont le plus impliquées dans la génération des faux événe-
ments, car très sensibles au bruit transitoire impulsif d’origine
anthropique.

L’information véhiculée par les séismes est donc aisément diluée
dans un flot d’information d’origine anthropique, impossible à
décoder manuellement. Que les faux événements constituent un
facteur limitant majeur des capacités réelles des systèmes de dé-
tection est confirmé. Cette zone d’étude représente donc un ter-
rain idéal pour comprendre comment les dépasser efficacement.

En définitive, il s’agit de comprendre comment distinguer de ma-
nière solide un faux événement d’un vrai événement, en s’inter-
rogeant sur les paramètres univoques qui vont automatiquement
permettre de supprimer ce flux constant, mais inexorable, de
faux événements.

3.2.3 Une base de données bien discriminée

Depuis 2016, une attention particulière est portée à la discrimination ma-
nuelle des événements, nous l’avons vu plus haut. Le catalogue rendu disponible
par le BCSF-RéNaSS est donc soigneusement labélisé depuis cette date.

Au début de ce travail de thèse, j’ai revu manuellement l’ensemble des
événements détectés pour l’année 2016 en introduisant les stations temporaires
AlpArray pour la localisation. J’ai alors pointé 28079 phases (17707 phases P
-Pg et Pn- et 10372 phases S -Sg et Sn) réparties sur 1134 événements (351
tirs de carrière, 774 séismes et 9 séismes induits par l’activité géothermique
profonde). Les stations AlpArray les plus pointées correspondent aux mêmes
stations qui sont impliquées dans la détection automatique des vrais et des faux
événements. La performance de stations AlpArray telles que A060A, A061A,
A100A, A102A, A103A, A158A ou bien A160A, peut donc être confirmée pour
la période septembre 2016-décembre 2016 (Annexe B).
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Ce travail de pointés, de localisation et de discrimination manuelle m’a
permis de construire une base de données de carrières actives, en plus de celle
fournie par le Bureau de Recherches Géologiques et Minières (BRGM). Au total
438 carrières ont été répertoriées en France, en Allemagne et en Suisse. Cette
base de données contient le nom de la carrière et ses coordonnées géographiques.
J’y ai ajouté les formes d’onde associées aux premières stations pour environ
180 carrières (celles actives pour la période septembre 2016-décembre 2016).

•Des épicentres localisés plus précisément

Cette base de données a pu être solidement construite car l’ajout des sta-
tions AlpArray dans la localisation a mieux contraint les épicentres des événe-
ments, en diminuant les incertitudes latitudinales et longitudinales de l’ordre
de 1.5 km en moyenne, pour environ 50 % des événements (Figure 3.36). Sur
l’ensemble des événements détectés, environ 15 % ont été localisés avec un
nombre de pointés (P et S) supérieurs à 35 en présence des stations AlpArray
contre 8 % sans inclusion de ces stations temporaires.

Figure 3.36: Comparaison des incertitudes latitudinales (à gauche) et longi-
tudinales (à droite) obtenues des épicentres des événements détectés au cours
de l’année 2016, avec et sans inclusion des stations AlpArray.

De plus, en guise d’exemple, la comparaison des épicentres des tirs de la
carrière de Raon-l-Etape pour l’année 2016 montre un déplacement des épi-
centres vers le centre de la carrière lorsque les stations AlpArray sont incluses
dans la localisation, facilitant un peu mieux le diagnostic de discrimination
pour certains tirs (Figure 3.37).
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Figure 3.37: Comparaison des localisations épicentrales des tirs de la carrière
de Raon-l’Etape détectés au cours de l’année 2016, avant et après inclusion des
stations temporaires AlpArray.

En revanche, les profondeurs des événements n’ont pas été un critère retenu
pour constituer la base de données de carrières actives. En incorporant les
stations AlpArray, les profondeurs n’ont pas été fixées après relocalisation des
événements. Autrement dit, aucun événement n’a été fixé à une profondeur
donnée (Figure 3.38).

De cette façon, si l’ensemble des événements semblent avoir des profondeurs
plus faibles lorsque les stations AlpArray sont incluses, ces mêmes événements
semblent plutôt concentrés autour de 5 et de 10 km (ici les séismes) quand les
stations AlpArray ne sont pas incluses, soulignant le fait que les localisations
déterminées par le BCSF-RéNaSS soient souvent fixées. Ce phénomène réduit
alors probablement artificiellement les incertitudes de localisation hypocentrale
calculées par l’algorithme de localisation LOCSAT.
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Figure 3.38: Comparaison des localisations hypocentrales ainsi que des incerti-
tudes associées de l’ensemble des événements détectés au cours de l’année 2016,
avant et après inclusion des stations temporaires AlpArray. Les incertitudes de
localisation hypocentrales sont estimées par l’algorithme de localisation LOC-
SAT qui calcule une ellipsoïde de confiance pour chaque origine de chaque
événement à partir de la diagonalisation d’une matrice de covariance 3D.

Par conséquent, les profondeurs laissées libres, les incertitudes hypocen-
trales augmentent alors, soulignant indirectement les incertitudes liées aux
modèles de vitesse à 3 couches utilisés. Ces modèles 1D très simples, même
si efficaces pour détecter, ne tiennent pas compte des variations d’épaisseur de
la couche sédimentaire ou des discontinuités lithologiques latérales par exemple.
Le modèle de vitesse régional le plus utilisé dans la zone d’étude est le modèle
d’Haslach (Figure 3.39).

Enfin, la forte proportion de tirs de carrière positionnés librement autour
de 1-2 km, ainsi que le fort pourcentage d’événements fixé artificiellement à 2
km par LOCSAT lorsque ce dernier ne converge pas vers une solution hypocen-
trale stable, ne sont pas des arguments solides pour considérer de façon fiable
les profondeurs évaluées automatiquement par LOCSAT dans le diagnostic de
discrimination.
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Figure 3.39: Modèle de vitesse, dit modèle de "Haslach", le plus utilisé pour la
détection et les localisations des événements dans la zone d’étude. Les vitesses
ont été déduites de l’étude des tirs de la carrière située près de la ville d’Haslach,
au coeur de la Forêt Noire en Allemagne. Modifié d’après Rothe et al., 1950.

•Des distances épicentrales minimales plus petites

L’étude des formes d’onde a été un autre critère fondamental pour consoli-
der cette base de carrières, notamment pour 180 d’entre elles. Grâce à l’obser-
vation de ces formes d’onde, certains tirs de carrières ont pu être révélés bien
distinctement grâce aux stations AlpArray.

En effet, l’ajout de ces stations temporaires a diminué la distance épicentrale
minimale pour environ 60 % d’entre eux. La moyenne des distances épicentrales
minimales est alors descendue à 25 km, au lieu de 33 km sans les stations
AlpArray. De plus, 73% des événements détectés au cours de l’année 2016 ont
désormais des distances minimales épicentrales de moins de 30 km, contre 62
% sans les stations AlpArray (Figure 3.40).

De ce fait, certains tirs ont pu être clairement identifiés à une carrière bien
spécifique grâce à la première station AlpArray la plus proche. C’est le cas de
carrières telles que la carrière de Rochefort-sur-Nenon dans le Jura français
avec la station A213A, la carrière de Gerbamont dans les Vosges avec la station
A158A, les carrières de Bernécourt, Bainville-sur-Madon, Pagny-sur-Meuse ou
bien Barville, situées dans la région de Nancy au coeur du Bassin Parisien, avec
la station A210A.

De même, en Allemagne, les stations AlpArray ont permis de révéler des
formes d’onde particulières associées à plusieurs carrières situées dans le Jura
Souabe (A100A, 102A, A108A, A109A, A360A), le Massif de Rhenish (A110A,
A112), les terrains escarpés du Trias à l’Est du Massif de la Forêt Noire (A113A,
A117A, A119) et dans le Massif de la Forêt Noire lui-même (A122A).
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Figure 3.40: Comparaison des distances épicentrales minimales des événe-
ments détectés pour l’année 2016, avec et sans inclusion des stations AlpArray.

Ainsi, associé à une discrimination plus solide des événements
détectés depuis 2016, ce recueil de carrières et de formes d’ondes
apporte un ensemble de données disponibles de qualité, permet-
tant d’évaluer la performance future de la classification automa-
tique des événements, majoritairement séismes et tirs de carrière,
avec plus de certitude.

3.3 Des outils disponibles de haute performance

3.3.1 Un système de détection mondialement utilisé avec
un code source en libre accès

Les principaux modules formant le système de détection de SeisComP3 ont
leur code source mis librement à disposition https://github.com/SeisComP3/
seiscomp3. Ce code source offre une mine d’or possible de développement, no-
tamment en offrant des bibliothèques exploitables pour le traitement du signal
(filtrage, taperisation, déconvolution, etc.), des outils mathématiques (dériva-
tion, intégration, transformée de Fourier, rotation, métriques statistiques, etc.)
ainsi que des outils propres à la sismologie (calcul des magnitudes, calcul des
temps de trajet, etc.). La procédure de détection peut donc être facilement
mise en place en utilisant les fonctionnalités entières du logiciel SeisComP3.
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Ensuite, développer la future procédure de détection au sein de SeisComP3
garantit un accès aux données directement en base (formes d’onde, métadon-
nées des stations, catalogue d’événements) sans nécessité de téléchargements
préalables superflus, venant encombrer les espaces de stockage.

De plus, le code de SeisComP3 est écrit en langage C++ mais des modules
peuvent être entièrement écrits en Python, tout en utilisant les fonctionnalités
entières de SeisComP3. En effet, l’utilisation d’un compilateur (SWIG) aide à
créer une interface d’accès aux déclarations C++ à partir du langage Python,
via des bibliothèques compatibles avec ce dernier langage. L’intérêt de cette
interface est donc de pouvoir combiner la performance et la rapidité du langage
C++ avec la simplicité, la diversité et l’universalité du langage Python. C’est
donc la voie que j’ai choisie.

Enfin, d’un point de vue opérationnel, intégrer la procédure de détection
des petits séismes directement dans SeisComP3, peut assurer facilement son
transfert automatique intégral en temps réel. Par conséquent, cela permet de
traduire instantanément des résultats scientifiques (les paramètres univoques
qui permettent de détecter proprement un séisme avec une haute probabilité)
en une opération de surveillance sismique qui va produire efficacement des
catalogues de séismes encore plus complets.

3.3.2 Des superordinateurs à haute performance de calcul

Un volume de 4 Térabytes de sismogrammes est disponible pour la pé-
riode 2016-2019. Afin de traiter efficacement ces données volumineuses dans
des temps raisonnables, c’est-à-dire plus rapides que le temps réel, l’emploi des
superordinateurs, mis à disposition par le centre de Haute Performance de Cal-
cul (HPC) de l’Université de Strasbourg, est particulièrement utile. Seulement,
cela nécessite de comprendre comment transférer sur ces superordinateurs la
procédure de détection développée sous SeisComP3 pour un fonctionnement
optimal.

La création d’un conteneur SINGULARITY sera donc une étape impor-
tante pour assurer le fonctionnement autonome de la procédure de détection
sur un cluster HPC. Cette encapsulation isolante permettra le déploiement de
plusieurs instances SeisComP3 en parallèle, accélérant alors le processus de dé-
tection (Figure 3.41. Opération qui est pour l’instant impossible à réaliser avec
le système de détection actuel de SeisComP3 sans développement méthodolo-
gique.
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Figure 3.41: Schéma simplifié d’un déploiement de commandes multiples sur
un cluster à Haute Performance de Calcul (HPC). Dans cet exemple, chaque
commande activée exécute un conteneur Singularity sur un processeur (coeur)
d’un ordinateur (noeud). Chaque conteneur encapsule une instance de détec-
tion SeisComP3 qui traite ici 1 jour de données. Si 1095 jours sont traités
(c’est-à-dire l’équivalent de 3 ans de données), 1095 commandes seront exécu-
tées sur 16 ordinateurs (noeuds), chacun contenant 24 coeurs.

J’ai alors tous les facteurs pour développer une procédure de
détection optimale des petits séismes : une forte probabilité d’oc-
currence des petits séismes, une intense activité anthropique dé-
tectée régulièrement par les réseaux de stations, un fort taux de
faux événements inexorablement détectés également.

J’ai aussi des données disponibles (un volume de 4 térabytes pour
la période 2016-2019) grâce au récent apport de nouvelles sta-
tions permanentes et l’important déploiement des stations tem-
poraires AlpArray.

J’ai enfin des outils disponibles performants : un système de dé-
tection qui peut être optimisé facilement grâce à un code source
en libre accès, un cluster de calcul de haute performance intégré
dans un des centres de calcul les plus puissants de France.

Par conséquent, je dispose d’un objet d’étude solide qui permet-
tra de résoudre dans les chapitres suivants les importantes ques-
tions de recherche évoquées dans le chapitre précédent. A savoir,
comment limiter la détection des très nombreux petits séismes
contaminés par du bruit ? Comment réduire de façon conséquente
la détection de milliers de faux événements ? Et comment effica-
cement discriminer les séismes des tirs de carrière ?
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Comment limiter la détection des
séismes contaminés par du bruit ?
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4.1 Améliorer la qualité des pointés

4.1.1 Comment fonctionne le processus de pointés dans le
système de détection ?

•Pointé automatique des ondes P

Une première estimation du temps d’arrivée des ondes P est établie grâce
à un algorithme qui détecte les phases sismiques, en se basant sur la méthode
STA/LTA. Comme évoqué dans le chapitre 1, cet algorithme recherche des ano-
malies dans le signal sous la forme de changements d’amplitude en calculant
un rapport moyen STA/LTA (STA = fenêtre temporelle courte sensible aux
événements sismiques, LTA = fenêtre temporelle longue fournissant des infor-
mations sur l’amplitude temporelle du bruit sismique à une station donnée).
Un pointé est émis dès que la valeur du rapport STA/LTA dépasse une valeur
seuil de référence préalablement définie.

Quatre paramètres principaux vont gouverner la fréquence d’occurrence de
ces premiers pointés émis : les tailles des deux fenêtres temporelles STA et LTA,
la valeur du seuil de déclenchement d’un pointé, ainsi que la valeur minimale de
rapport STA/LTA à atteindre après qu’un pointé ait été émis, pour de nouveau
activer une opération de pointé.

Un éventail de valeurs de ces paramètres ont été testées empiriquement sur
la détection automatique des événements pour les mois de juillet et août 2016.
Des valeurs comprises entre 0.1s et 2s ont été testées pour la fenêtre temporelle
STA et entre 10s et 80s pour la fenêtre temporelle LTA. En ce qui concerne
la valeur seuil de déclenchement d’un pointé et la valeur minimale de rapport
STA/LTA à atteindre après qu’un pointé ait été émis, celles-ci ont été affinées
à partir des valeurs de référence obtenues par Grunberg et al., 2018 sur la
zone du Graben du Rhin Supérieur (qui étaient respectivement de 2.2 et de
2.7).

Ainsi, les paramètres finaux qui ont permis d’aboutir à un taux de dé-
tection optimal (meilleure qualité des pointés automatiques P et S, nombre
d’événements détectés automatiquement comparativement à ceux détectés par
le BCSF-RéNaSS pour la même période, nombre d’événements nouvellement
détectés en plus), correspondent à :

— une taille de fenêtre STA égale à 0.5 seconde, ajustée de sorte
à augmenter la sensibilité de l’algorithme aux événements locaux, mais
ceci implique une augmentation du taux de faux pointés liés à du bruit
transitoire impulsif d’origine anthropique (Trnkoczy, 1999) ;

— une taille de fenêtre LTA égale à 40 secondes définie par rapport
aux fluctuations importantes et irrégulières du bruit d’origine anthro-
pique enregistré aux stations, c’est-à-dire pas trop grande pour accom-
moder en continu les valeurs du rapport STA/LTA aux changements
graduels de bruit enregistré ;
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— une valeur seuil de déclenchement plutôt basse, égale à 2.4 de
sorte à élever la probabilité de détecter de plus faibles événements ;

— une valeur référence de réactivation du pointé également basse,
2.0, pour capturer entièrement la coda du signal pointé précédemment.

L’amplitude et le type de bruit sismique enregistrés aux stations influencent
fortement le paramétrage de la valeur du seuil de déclenchement d’un pointé.
En effet, un bruit sismique statistiquement stationnaire va permettre une va-
leur de seuil plus basse, alors qu’un comportement irrégulier de bruit sismique
nécessite de choisir de plus hautes valeurs. La valeur du seuil de détection
a été dans ce travail choisie particulièrement bas, induisant alors un nombre
important de faux pointés.

Le pointé des temps d’arrivée des ondes P est ensuite affiné à partir d’une
fenêtre temporelle autour de la détection émise par la méthode précédente. L’al-
gorithme qui est choisi pour cette affinage se base sur le calcul d’une fonction
caractéristique de l’enveloppe du signal qui utilise en plus une métrique statis-
tique, à savoir la variance (Figure 4.1, pour plus de détails, voir Kradolfer
et al., 1987). Cette méthode est nommée méthode BK. En effet, (Kradolfer
et al., 1987) ont modifié la fonction enveloppe d’Allen (R. Allen, 1978) en
l’élevant au carré et en implémentant la variance de cette enveloppe. Un pointé
P est émis quand la valeur de le fonction caractéristique excède un certain
seuil 
 = 10 (Kuperkoch et al., 2012). De plus, la variance est continuelle-
ment mise à jour afin d’accommoder le calcul de la fonction caractéristique aux
variations temporelles du niveau de bruit enregistré, sauf lorsque les valeurs de
cette fonction caractéristique excède un second seuil dynamique � = 2� 
.

Figure 4.1: Exemple de fonction caractéristique (CF, représentée en rouge) de
Kradolfer et al., 1987 calculée pour une forme d’onde correspondant à un
événement local (en noir). La ligne verticale bleue indique le pointé automa-
tique de la phase P, la ligne verticale verte la lecture manuelle de la première
arrivée des ondes P. D’après Kuperkoch et al., 2012.
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•Pointé automatique des ondes S

Un algorithme basé sur le critère d’information d’Akaike (AIC, Akaike,
1971) détecte les phases sismiques S, une fois que les pointés des phases sis-
miques P sont émis. Par conséquent, les pointés des temps d’arrivée des ondes
S ne sont effectués que s’il y a eu au préalable une détection des temps d’arrivée
des ondes P sur la composante verticale de la station. Les pointés des ondes S
sont déterminés sur la somme vectorielle des composantes horizontales.

L’apparition d’une phase (ici S) sur une trace sismique peut être déterminée
en modélisant le bruit et le signal sismique dans des fenêtres temporelles de
taille pré-établie. L’algorithme de pointé automatique des ondes S se base effec-
tivement sur l’hypothèse que la trace peut être divisée en segments temporels
avec des caractéristiques de stationnarité spécifiques (Maeda, 1985). Si deux
segments consécutifs ont des caractéristiques de stationnarité différentes (seg-
ment de signal correspondant uniquement à du bruit, suivi par un segment de
signal transitoire impulsif par exemple), cela souligne alors l’émergence d’une
phase sismique correspondant à la première arrivée des ondes S (Sleeman et
al., 1999).

Le critère AIC, se basant sur le calcul continu d’une fonction caractéristique
qui utilise la variance des amplitudes de chaque segment de signal, est donc
utilisé pour marquer le point de deux fenêtres temporelles adjacentes qui ont
des propriétés statistiques différentes (Figure 4.2). Un pointé S est donc émis
lorsque la valeur du critère AIC a atteint sa valeur minimale, c’est-à-dire au
moment où la variance du signal sismique non-stationnaire enregistré augmente
soudainement, se détachant nettement du bruit de fond plutôt stationnaire.

Le développement qui va suivre met alors en évidence les critères princi-
paux qui vont conditionner fortement la qualité des pointés P et S émis à
chaque station. Ces critères principaux qui vont optimiser la qualité du pointé
automatique des phases P et S sont ceux qui sont reliés aux caractéristiques de
bruit communément enregistré à une station donnée ainsi qu’à la localisation de
cette dernière. En effet, si le paramétrage des algorithmes de pointés des temps
d’arrivée des ondes sismiques P et S n’est pas adapté au contenu fréquentiel
des signaux enregistrés aux stations, il y a un risque accru de ne pas activer
l’émission d’un pointé, de retarder fortement ou activer trop précocement cette
émission.
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(a) (b)

Figure 4.2: Principe de l’utilisation du critère AIC pour pointer les premières
arrivées des phases sismiques. (a) Trace sismique et fonction AIC calculée. Un
pointé est émis lorsque le critère AIC est minimisé (point de contact entre
deux segments de trace consécutifs, caractérisé par un changement marqué de
la variance du signal).(b) Trace sismique avec pointés des phases P et S (en
haut), évolution de la variance du signal correspondant à cette trace sismique
(au milieu) et calcul du critère AIC sur 60 fenêtres temporelles définies sur
la trace sismique (en bas). Deux des fenêtres AIC ont détecté les premières
arrivées des phases sismiques P et S. Les lignes bleues verticales correspondent
aux premières arrivées des phases sismiques et les lignes rouges horizontales
correspondent aux fenêtres pour lesquelles le critère AIC est évalué. Modifié
d’après St-Onge, 2011.
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4.1.2 S’adapter aux caractéristiques de bruit des stations
et à leur localisation

•Pour les pointés automatiques des ondes P

La taille de la fenêtre STA qui a été choisie pour récupérer la valeur instan-
tanée du signal sismique, est relativement courte (0.5 seconde). Par conséquent,
celle-ci devient plus sensible aux pointes de bruit, en particulier pour les sta-
tions implantées dans des sites très pollués par du bruit transitoire impulsif.
Dans cette configuration, les pointés des ondes P peuvent être anticipés du fait
de bruit parasite précédent le signal sismique cible (Figure 4.3).

Figure 4.3: Influence de la durée de la fenêtre STA sur la sensibilité de l’al-
gorithme de détection des ondes P. (a) Signal correspondant à un tir de la
carrière précédé d’un artefact de bruit de courte durée. (b) Évolution du rap-
port STA/LTA associée à la trace sismique pour une fenêtre STA égale à 3 s
et une fenêtre LTA égale à 30 s. Un pointé est déclenché au bon endroit.(c)
Évolution du rapport STA/LTA associée à la trace sismique pour une fenêtre
STA égale à 0.5 s et une fenêtre LTA égale à 30 s. Un pointé supplémentaire
anticipé est émis au début du pic de bruit. Modifié d’après Trnkoczy, 1999.
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De même, la taille de la fenêtre LTA est relativement courte (40 secondes).
Ainsi, dans cette configuration, face à des ondes P de très faible amplitude, il
y a un risque accru que cette phase sismique passe inaperçue, d’autant plus si
le niveau de bruit de fond est élevé. Si aucun pointé P n’est alors déclenché,
l’arrivée des ondes P non détectées vient augmenter l’amplitude du bruit sis-
mique enregistré, diminuant la sensibilité du déclenchement d’un futur pointé
au moment où des ondes S plus énergétiques arrivent. De cette façon, ou bien
un pointé P retardé est émis au moment où ce sont les ondes S qui arrivent,
mais avec un faible rapport signal/bruit, ou bien aucun pointé n’est déclenché
car les signaux sismiques sont de trop faible amplitude (Figure 4.4).

Figure 4.4: Influence de la durée de la fenêtre LTA sur la sensibilité de l’al-
gorithme de détection des ondes P. (a) Signal avec des ondes P de faible am-
plitude, correspondant à un séisme local. (b) Évolution du rapport STA/LTA
associée à la trace sismique pour une fenêtre STA égale à 1 s et une fenêtre
LTA égale à 100 s. Un pointé est déclenché au bon endroit.(c) Evolution du
rapport STA/LTA associée à la trace sismique pour une fenêtre STA égale à
1 s et une fenêtre LTA égale à 45 s. Un pointé P retardé est émis au moment
où des ondes S de plus forte amplitude arrivent. Modifié d’après Trnkoczy,
1999.

Alexandra Renouard CHAPITRE 4. 107



4.1. AMÉLIORER LA QUALITÉ DES POINTÉS

Le paramétrage de l’affinage du pointé P par la méthode BK est alors in-
dispensable pour éviter la propagation de tels pointés P erronés.

Les paramètres qui vont améliorer la qualité de ces pointés sont en fait deux
paramètres qui sont reliés indirectement aux caractéristiques du bruit enregis-
tré à la station. Ces deux paramètres sont utilisés pour calculer la fonction
caractéristique nécessaire à l’émission d’un pointé selon la méthode BK, à sa-
voir : la fenêtre temporelle définie autour du premier pointé P déterminé par
la méthode STA/LTA ainsi que le filtrage du signal utilisé.

- Adapter la fenêtre temporelle pour calculer la fonction caracté-
ristique

Le début de la fenêtre temporelle choisie pour calculer la fonction caracté-
ristique de l’enveloppe du signal selon la méthode BK est définie à partir du
déclenchement du pointé P émis par la méthode STA/LTA. Par défaut elle est
de -20 s à partir de cette détection initiale.

Seulement, les niveaux de bruit enregistrés varient temporellement pour une
station donnée et spatialement en fonction de la localisation de cette station.
Par conséquent, un paramétrage unique de la fenêtre temporelle utilisée pour
pointer le temps d’arrivée des ondes P ne tient pas compte des variations spatio-
temporelles des niveaux de bruit enregistrés aux stations.

De cette façon, afin de comprendre l’impact de la valeur du début de cette
fenêtre temporelle sur le pointé des temps d’arrivée des ondes P à chaque
station, différentes valeurs ont été testées empiriquement sur l’ensemble des
stations impliquées dans la détection des événements pour les mois de juillet-
août 2016 et janvier 2017.

Il a été alors constaté que, pour les stations qui enregistrent des niveaux
de bruit assez élevés, avec des soubresauts répétés de bruit non-stationnaire de
courte durée qui se détachent du niveau de fond, cette fenêtre s’initiera plus
tardivement. Ceci évite effectivement une pollution du calcul de la fonction
caractéristique par du signal parasite, enregistré avant l’arrivée des ondes P,
comme c’est le cas dans la Figure 4.5.

En effet, pour illustrer ce propos, si je prends l’exemple d’une station parti-
culièrement sensible au bruit comme la station FELD, située sur le sommet le
plus élevé du Massif de la Forêt Noire en Allemagne, près de 4 tours de commu-
nication et non loin d’une station de ski, le début de la fenêtre temporelle a été
placée quelques secondes avant le pointé P initié, c’est-à-dire à -2 s. Ceci limite
alors la probabilité de passer sous silence l’arrivée des ondes P qui serait dans
le sillage de la fenêtre de traitement d’un précédent faux pointé P (Figure 4.6).
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Figure 4.5: Sismogramme enregistré sur la composante verticale d’une station
bruitée (A117A) et fonction STA/LTA correspondante. Un pointé P a été créé
de façon anticipée quelques secondes avant les premières arrivées des ondes P
émises par un tir de la carrière de Satteldorf-Crailsheim ayant eu lieu le 03
novembre 2016 à 14h21 en Allemagne (MLv 1.6).
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(a) Sismogramme et fonction STA/LTA
correspondante (tir de la carrière de Raon-
l’Etape, identifié le 05 juillet 2016 à 10h01
dans les Vosges, MLv 1.6). Le trait rouge
foncé équivaut au pointé P défini à partir
d’une fenêtre temporelle débutant à -2 s et
le trait rouge clair à une fenêtre temporelle
débutant à -6 s.

(b) Sismogramme et fonction STA/LTA
correspondante (séisme identifié dans la ré-
gion de Bâle en Suisse, le 11 juillet 2016 à
06h14, MLv 1.2). Le premier trait vertical
rouge équivaut au pointé P défini à partir
d’une fenêtre temporelle débutant à -6 s et
le deuxième à une fenêtre temporelle débu-
tant à -2 s.

(c) Sismogramme et fonction STA/LTA
correspondante (tir de la carrière de Schut-
tertal dans le Massif de la Forêt Noire en
Allemagne, identifié le 13 octobre 2016 à
12h49, MLv 1.5). Le trait vertical rouge
clair équivaut au pointé P défini à partir
d’une fenêtre temporelle débutant à -6 s et
le trait vertical rouge foncé à une fenêtre
temporelle débutant à -2 s.

(d) Sismogramme et fonction STA/LTA
correspondante (tir de la carrière de Mag-
stadt à L’Ouest de Stuttgart en Allemagne,
identifié le 05 décembre 2016 à 07h28, MLv
1.8). Le trait vertical rouge clair équivaut
au pointé P défini à partir d’une fenêtre
temporelle débutant à -6 s et le trait ver-
tical rouge foncé à une fenêtre temporelle
débutant à -2 s.

Figure 4.6: Exemple de signaux enregistrés à la station FELD et pointés P au-
tomatiquement émis pour deux fenêtres temporelles différentes : une débutant
à -6 s et une autre à -2 s.
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En revanche, pour les stations qui enregistrent un bruit de fond continu plus
ou moins élevé, avec peu de signaux de bruit transitoire impulsif, une fenêtre
temporelle débutant plus précocement est privilégiée. Ceci évite ainsi les poin-
tés P retardés, du fait de premières arrivées d’ondes P émergentes, se détachant
très peu du niveau de bruit de fond, comme c’est le cas dans l’exemple de la
figure 4.7. Le calcul de la fonction caractéristique sur une fenêtre temporelle
plus précoce peut capter effectivement plus facilement les changements subtils
de phase et/ou d’amplitude et/ou de contenu fréquentiel associés à l’arrivée de
ces faibles ondes P, se détachant à peine du bruit.

Figure 4.7: Sismogrammes enregistrés à la station A100A et fonctions
STA/LTA associées. Un faux pointé P a été créé de façon retardée, c’est-à-
dire une dizaine de secondes après les premières arrivées des ondes P émises
par un séisme identifié au Sud de l’Allemagne, près du lac Konstanz, le 05
décembre 2016 à 01h41 (MLv 1.6).

De cette façon, si je prends l’exemple de la station EMBD, située dans
la région du Valais Suisse, près d’une station de ski et non loin d’une voie
ferrée, une fenêtre à -25 s captera la faible arrivée des ondes P d’un signal de
faible amplitude alors qu’une fenêtre initiée à -6 s ne produira aucun pointé
(Figure 4.8).
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Figure 4.8: Sismogrammes enregistrés à la station EMBD et fonctions
STA/LTA associées. Les signaux affichés sur ces sismogrammes correspondent
à un séisme identifié dans la région de Sion en Suisse le 01 janvier 2017 à 04h13
(MLv 1.1). Deux pointés automatiques P ont été émis à partir d’une fenêtre
temporelle débutant à -25s : un premier faux pointé P anticipé (trait vertical
rouge clair) et un deuxième pointé P captant les subtils changements de phase
et d’amplitude liés à l’arrivée des ondes P (trait vertical rouge foncé). Une
deuxième fenêtre temporelle initiée à -6 s n’a produit aucun pointé.
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De même, pour la station BRANT, située au coeur du Massif du Jura Suisse,
une fenêtre temporelle initiée à -11 s captera plus facilement les variations
d’amplitude associées à l’arrivée des ondes P qu’une fenêtre débutant à -3 s
(Figure 4.9).

Figure 4.9: Sismogrammes enregistrés à la station BRANT et fonctions
STA/LTA associées. Les signaux affichés sur ces sismogrammes correspondent
à un tir de la carrière de Chéniaz, située en Suisse au Sud du Lac Leman, ayant
eu lieu le 05 janvier 2017 à 04h25 (MLv 1.0). Un premier pointé automatique
P a été émis à partir d’une fenêtre temporelle débutant à -11s (trait vertical
rouge foncé) et un deuxième faux pointé P retardé a été produit à partir d’une
fenêtre temporelle commençant à -3 s (trait vertical rouge clair). Une fenêtre
temporelle plus longue permet le calcul d’une fonction caractéristique qui capte
plus clairement les variations ténues de phase et/ou d’amplitude et/ou contenu
fréquentiel associés à l’arrivée des ondes P.

Seulement, face à la diversité des signaux émis et des conditions fluctuantes
du niveau de bruit enregistré à une même station, il a été souvent plus judicieux
d’établir plusieurs valeurs d’initiation de cette fenêtre temporelle. En effet, par
exemple, la station RSL, située à quelques mètres du barrage de Roselend
dans les Alpes françaises, enregistre quotidiennement un bruit de fond de forte
intensité (500 à 700 décibels) autour de 12 Hz (Figure 4.10).
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(a) Tir de la carrière de Montalieu-Vercieu
à l’Est de Lyon, identifié le 04 août 2016
à 08h06 au Sud-Est de Chambéry dans les
Alpes françaises (MLv 1.0).

(b) Séisme ayant eu lieu le 10 septembre
2016 à 07h28 près de Vallorcine dans les
Alpes françaises (MLv 0.4).

(c) Séisme ayant eu lieu le 02 octobre 2016
à 06h28 à l’Ouest du Massif de l’Argentière
dans les Alpes françaises (MLv 0.6).

(d) Séisme ayant eu lieu le 29 décembre
2016 à 03h48 au Sud du Lac Léman dans
les Alpes françaises (MLv 1.1).

Figure 4.10: Exemples de spectrogrammes pour quelques signaux enregis-
trés sur la composante verticale de la station RSL. Cette station enregistre en
continu un bruit autour de 12 Hz.
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Ce niveau de bruit presque continu se trouve dans les mêmes gammes de
fréquences que les ondes P. Si des signaux sismiques de faible amplitude par
rapport au bruit de fond sont enregistrés, les rapport signal/bruit évalués vont
alors être très faibles. De plus, si les ondes P sont tout juste émergentes, une
fenêtre temporelle qui débute à -20 s permettra de capter plus facilement ces
faibles arrivées d’ondes P à la station RSL. La fonction caractéristique sera
effectivement calculée sur une fenêtre temporelle de bruit plus longue, et éva-
luera donc mieux les changements subtils de phase et/ou d’amplitude liés à
l’arrivée des ondes P, malgré des changements fréquentiels peu perceptibles
(Figure 4.11).

Figure 4.11: Sismogrammes enregistrés par la station RSL et fonctions
STA/LTA correspondantes. Les sismogrammes affichent un signal qui corres-
pond à un séisme ayant eu lieu le 05 janvier 2017 à 02h59 dans la région de Sion
en Suisse (MLv 2.2). Le premier trait vertical rouge correspond à un premier
pointé P qui a été redéfini à partir d’une fenêtre temporelle débutant à -20 s.
Le deuxième trait vertical rouge correspond à un deuxième pointé P qui a été
affiné à partir d’une fenêtre temporelle initiée à -5 s. Ce dernier pointé est un
faux pointé retardé.
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En revanche, lorsque cette même station enregistre plus périodiquement du
bruit impulsif transitoire, de même ordre d’amplitude et contenu fréquentiel
que les ondes P, une fenêtre temporelle initiée plus tardivement (ici -5 s) sera
préférable. En effet, le calcul de la fonction caractéristique raccourcira l’enre-
gistrement de ces fluctuations importantes de bruit transitoire qui précèdent
l’arrivée des ondes P, rendant alors plus visibles les changements de phase
associés à l’arrivée de ces ondes (Figure 4.12).

Figure 4.12: Sismogrammes enregistrés par la station RSL et fonctions
STA/LTA correspondantes. Les sismogrammes affichent un signal qui corres-
pond à un séisme ayant eu lieu le 05 janvier 2017 à 15h24 dans les Alpes
françaises (MLv 0.64). Le premier trait vertical rouge correspond à un premier
pointé P qui a été redéfini à partir d’une fenêtre temporelle débutant à -5 s.
Le deuxième trait vertical rouge correspond à un deuxième pointé P qui a été
affiné à partir d’une fenêtre temporelle initiée à -20 s. Ce dernier pointé est un
faux pointé retardé.
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- Optimiser le filtrage du signal

Le filtre qui a été utilisé pour calculer la fonction caractéristique sur la
fenêtre temporelle préalablement définie autour de la détection de l’arrivée des
ondes P par la méthode STA/LTA est un filtre passe-bande de Butterworth
d’ordre 2 avec fréquences de coupures comprises entre 4 et 20 Hz. En effet,
l’intensité du signal associée à l’arrivée des ondes P est concentrée en moyenne
dans cette gamme de fréquences (Figure 4.13).

(a) Tir, carrière de Chevenez en Suisse, 30
septembre 2016 à 13h00, MLv 1.5, distance
épicentrale : 16.8 km.

(b) Tir, carrière de Rottenburg en Alle-
magne, 11 novembre 2016 à 08h08, MLv
1.5, distance épicentrale : 3.1 km.

(c) Séisme dans le Jura français, 09 sep-
tembre 2016 à 22h39, MLv 1.5, distance
épicentrale : 11.1 km.

(d) Séisme dans les Alpes françaises, 02 oc-
tobre 2016 à 05h46, MLv 2.2, distance épi-
centrale : 7.5 km.

Figure 4.13: Exemples de spectrogrammes pour quelques signaux enregistrés
sur la composante verticale des stations. L’intensité du signal équivalent aux
ondes P est plus élevée entre 4 et 20 Hz en moyenne.
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Seulement, cette intervalle de fréquences n’est pas efficace pour toutes les
stations, et ceci en raison du contenu fréquentiel des signaux enregistrés qui
diffèrent en fonction de la localisation des stations. Une étude plus précise du
contenu fréquentiel des signaux enregistrés temporellement aux différentes sta-
tions utilisées dans cette étude est donc nécessaire pour spécifiquement adapter
le filtrage nécessaire à un pointé des ondes P de qualité.

En effet, par exemple, la station FELD est installée au coeur du Massif
de la Forêt Noire sur un socle métamorphique, majoritairement des gneiss.
Celle-ci enregistre quasi-systématiquement des ondes P qui arrivent avec des
fréquences plus élevées, comprises entre 6 et 25 Hz (Figure 4.14). Ce phénomène
est probablement dû à l’effet de la propagation des ondes P dans un milieu qui
atténue moins rapidement les hautes fréquences. Par conséquent, un filtre avec
des fréquences de coupures comprises entre 6 et 25 Hz a été choisi.

(a) Séisme ayant eu lieu le 18 décembre
2016 à 10h08 dans le Massif des Vosges
(MLv 1.8, distance épicentrale : 80.9 km).

(b) Tir de la carrière de Villigen en Suisse
ayant eu lieu le 06 octobre 2016 à 09h41
(MLv 1.3, distance épicentrale : 40.5 km.

Figure 4.14: Exemples de spectrogrammes pour quelques signaux enregistrés
sur la composante verticale de la station FELD. L’intensité du signal équivalent
aux ondes P est concentrée à des fréquences plus élevées que la moyenne, à
savoir comprises entre 6 et 25 Hz.

De même, le filtrage utilisé dépend également du contenu fréquentiel des
différents types de bruit enregistrés aux différentes stations. Par exemple, la
station BOUC, située en France, dans la périphérie de la ville de Besançon,
au bord d’une route départementale, à 6 km d’une voie ferrée, et à 3 km de la
carrière de Gonsans, est soumise régulièrement à du bruit haute fréquence (> 10
Hz). L’utilisation du filtre passe-bande de 4 à 20 Hz empêche alors la capture
des ondes P, plus particulièrement celles de même ordre d’amplitude que le
bruit enregistré, car noyées dans le bruit haute fréquence. Par conséquent, un
filtre passe-bande avec des fréquences de coupure plus basses, à savoir entre
3 et 12 Hz, a réduit fortement l’amplitude du bruit haute fréquence, mettant
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en évidence plus aisément les changements d’amplitude et de fréquence liés à
l’arrivée des ondes P (Figure 4.15).

(a) Signaux filtrés (1 et 2) avec une bande
passante des fréquences comprises entre 4
et 20 Hz.

(b) Signaux filtrés (1 et 2) avec une bande
passante des fréquences comprises entre 3
et 12 Hz.

(c) Spectrogramme des signaux filtrés avec
une bande passante des fréquences com-
prises entre 4 et 20 Hz.

(d) Spectrogramme des signaux filtrés avec
une bande passante des fréquences com-
prises entre 3 et 12 Hz.

Figure 4.15: Impact du filtrage sur la détection des signaux à la station BOUC.
Le premier signal (1) correspond à un tir de la carrière de Fontaines identifié
le 11 juillet 2016 à 15h10 (MLv 1.3, distance épicentrale : 54.0 km). Les spec-
trogrammes ont été définis à partir des signaux enregistrés sur la composante
verticale de la station. Le filtrage bande-passante 3-12 Hz est un filtrage plus
adapté pour affiner le pointé automatique P à cette station BOUC.
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•Pour les pointés automatiques des ondes S

- Déterminer le filtrage du signal le plus adapté

De la même façon, le filtrage du signal est un critère essentiel pour obtenir
un pointé du temps d’arrivée des ondes S de qualité. Le filtrage qui a été prin-
cipalement utilisé pour réaliser l’opération de pointé automatique des phases
S est un filtre de Butterworth passe-bande d’ordre 4 avec des fréquences de
coupure comprises entre 4 Hz et 25 Hz. En effet, cette gamme fréquentielle
correspond à la gamme qui va le mieux capturer les ondes de volume S (Fi-
gure 4.16).
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(a) Signal enregistré à la station ECH (dis-
tance épicentrale : 7.5 km), correspondant
à un séisme identifié dans les Vosges, le 18
décembre 2016 à 10h08 (MLv 1.8).

(b) Signal enregistré à la station GUT (dis-
tance épicentrale : 40.0 km), correspondant
à un séisme identifié en Allemagne près du
lac Konstanz, le 05 décembre 2016 à 02h44
(MLv 2.0).

(c) Signal enregistré à la station RONF
(distance épicentrale : 7.0 km), correspon-
dant à un tir de la carrière Lepuix-Gy iden-
tifié au Nord de Belfort, le 25 novembre
2016 à 09h45 (MLv 2.0).

(d) Signal enregistré à la station SULZ (dis-
tance épicentrale : 17.5 km), correspondant
à un tir de la carrière de Villigen identifié
dans le Jura Suisse, le 15 septembre 2016 à
09h41 (MLv 1.9).

Figure 4.16: Exemples de spectrogrammes de quelques signaux détectés au-
tomatiquement. L’intensité du signal correspondant à la phase sismique S se
concentre en moyenne entre 4 et 25 Hz.
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Si l’intensité du signal équivalent à l’arrivée des ondes S reste forte sur
des gammes fréquentielles plus larges (jusqu’à 25 Hz) pour les séismes, cette
intensité reste concentrée autour de 4 et 10 Hz pour les tirs de carrière. De cette
façon, utiliser une filtre passe-bande moins restrictif (bande 4-25 Hz) permet de
capter plus facilement l’arrivée des ondes S qui sont beaucoup plus marquées
pour les séismes.

Seulement, ce filtre de Butterworth n’est pas efficace pour toutes les sta-
tions. Pour optimiser le pointé automatique des ondes S, il a été nécessaire
d’adapter le filtrage aux caractéristiques systématiques du bruit enregistré à
ces stations. Une analyse des signaux enregistrés temporellement aux diffé-
rentes stations a donc là aussi été nécessaire pour mettre en évidence l’impact
des fréquences des différents bruits enregistrés sur la qualité des pointés S. En
effet, si l’on prend l’exemple de la station AIGLE, celle-ci se situe en Suisse au
Sud du Lac Léman à 600 m de la voie ferrée et à 1 km d’un réseau autoroutier.

L’analyse de la fonction de densité spectrale de puissance pour la station
AIGLE montre que la puissance du bruit est élevée aux gammes de fréquence
typiques du bruit d’origine anthropique, c’est-à-dire comprises entre 1 et 10 Hz.
Pour ces gammes fréquentielles, cette puissance est variable et peut augmenter
d’environ 20 décibels par rapport à la puissance minimale. De plus, elle atteint
des probabilités fortes d’occurrence (de l’ordre de 15 à 20 %) par rapport au
modèle de bruit bas (NLNM). A partir de 20 Hz, la puissance de bruit atteint
des probabilités d’occurrence maximales élevées (30 %), s’éloignant radicale-
ment du NLNM. Cette station, particulièrement bruitée, est donc très sensible
au bruit haute fréquence. (Figure 4.17).
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Figure 4.17: Densité spectrale de puissance probabiliste calculée pour la sta-
tion AIGLE. Les courbes grises correspondent aux modèles de bruit standard
(courbe supérieure = modèle de bruit élevé [NHNM] et courbe inférieure =
modèle de bruit bas [NLNM] ; Peterson, 1993). Les niveaux de bruit de la
station sont estimés sur une large gamme de fréquences de 0.01 Hz à 16 Hz (soit
une période de 100 s à 0.0625 s). En bas du graphique sont affichées les don-
nées qui ont servi au calcul de cette fonction. Le rectangle vert représente les
données disponibles et le rectangle bleu montre l’étendue des données qui ont
servi au calcul. Ces spectres ont été obtenus via le package ObsPy de Python
suivant la méthode de McNamara et al., 2004
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L’observation de quelques spectrogrammes de signaux enregistrés à la sta-
tion AIGLE montre effectivement deux bandes continues de haute fréquence
quasi-systématiques : une bande à 25 Hz montrant une intensité du signal de
l’ordre de 5 à 12 décibels et une autre à 50 Hz, affichant une intensité du si-
gnal de l’ordre de 7 à 20 décibels. La bande à 50 Hz équivaut à la fréquence
fondamentale de l’alimentation électrique et la bande à 25 Hz probablement
son harmonique inférieure, soulignant alors un artefact d’origine électrique (Fi-
gure 4.18).

(a) Séisme ayant eu lieu le 17 octobre 2016
à 17h53 (MLv 2.0).

(b) Séisme ayant eu lieu le 08 novembre
2016 à 22h59 (MLv 2.0).

(c) Séisme ayant eu lieu le 23 décembre
2016 à 09h00 (MLv 0.7).

(d) Séisme ayant eu lieu le 01 janvier 2017
à 04h13 (MLv 2.0).

Figure 4.18: Spectrogrammes de quelques signaux enregistrés sur la compo-
sante verticale de la station AIGLE.
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De cette façon, afin de capturer le maximum d’intensité du signal corres-
pondant à l’arrivée des ondes S, un filtrage passe-bande de Butterworth avec
des fréquences de coupure comprises entre 4 et 21 Hz a été sélectionné pour
cette station AIGLE, au lieu de 4 et 25 Hz. Avec ce filtre spécifique, le bruit de
fond haute-fréquence enregistré à cette station est fortement réduit. Ceci a pour
effet d’augmenter corrélativement le rapport signal/bruit associé au pointé de
la phase S (Figure 4.19a et b), et de diminuer la probabilité de pointer du bruit
haute fréquence, qui se chevauche avec l’arrivée des ondes S, du fait d’une am-
plitude et d’un contenu fréquentiel équivalents (Figure 4.19b et c). Ces deux
effets favorisent alors l’émission de pointés automatiques S de meilleure qualité.
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(a) Filtre passe-bande de Butterworth
d’ordre 4 avec fréquences de coupure 4-25
Hz (séisme du 23 décembre 2016 à 09h00).

(b) Filtre passe-bande de Butterworth
d’ordre 4 avec fréquences de coupures 4-21
Hz (séisme du 23 décembre 2016 à 09h00).

(c) Filtre passe-bande de Butterworth
d’ordre 4 avec fréquences de coupures 4-25
Hz (séisme du 01 janvier 2017 à 04h13).

(d) Filtre passe-bande de Butterworth
d’ordre 4 avec fréquences de coupures 4-21
Hz (séisme du 01 janvier 2017 à 04h13).

Figure 4.19: Impact du filtrage sur la qualité des pointés automatiques des
phases sismiques S pour la station AIGLE. (a) + (b) Augmentation du rapport
signal/bruit. (b) + (c) Réduction de l’effet parasite du bruit haute-fréquence.
Le trait vertical rouge correspond au pointé P de référence ; les traits verticaux
bleus surmontés de "AIC0" et "AIC1" indiquent respectivement le début et
la fin du traitement du sismogramme pour réaliser le pointé S. Le traitement
s’arrête lorsque le rapport signal/bruit minimum (SNR) et le nombre minimum
à partir duquel le critère AIC minimal doit être rencontré sur des fenêtres
temporelles adjacentes sont atteints pour pointer une phase S (ici SNR= 3.5 et
nombre minimum= 2). Le ligne verticale bleue surmontée de AIC correspond
au pointé S effectué et le nombre relate le rapport signal/bruit avec lequel il a
été émis. Les deux composantes horizontales de la station sont utilisées pour
pointer les phases S. La partie supérieure de chaque encadré montre les traces
sismiques non filtrées des deux composantes horizontales. La partie inférieure
correspond à la somme vectorielle des composantes horizontales (trace L2).
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De même, un filtre plus restrictif avec fréquences de coupure comprises entre
3 et 15 Hz a permis de mieux détecter les arrivées des ondes S à la station KIZ,
qui est située au Sud-Est de Freiburg au sein du Massif de la Forêt Noire, mais
pour d’autres raisons. En effet, cette station est impliquée dans la détection de
près de 3.5 fois plus de carrières et les distances épicentrales évaluées sont en
moyenne de 103.22 km (médiane = 65.05 km). De plus, pour seulement 8 %
des événements détectés, les distances épicentrales sont estimées à moins de 30
km.

Par conséquent, au-delà des caractéristiques de bruit inhérentes à chaque
station, le type de filtrage utilisé dépend également de la localisation de la
station au regard de la probabilité d’occurrence des événements enregistrés
(type d’événement et localisation de la source). En effet, ce filtrage reflète à
la fois la probabilité plus élevée que des signaux enregistrés à la station KIZ
soient reliés à des tirs de carrière émettant des ondes S dans des gammes de
fréquence globalement plus faibles (< 15 Hz), et la probabilité plus grande que
ces stations soient situées à des distances épicentrales plus grandes, enregistrant
donc des ondes S plus atténuées en haute fréquence (Figure 4.20).

Seulement, si ce filtrage peut paraître au premier abord biaisé, il n’empêche
pas le pointé correct des ondes S pour des signaux dont l’intensité du signal
reste élevée jusqu’à 25 Hz (Figure 4.20e). En effet, si un peu de signal risque
d’être perdu, la station KIZ affichant globalement un niveau de bruit de fond
constant et minimal à des fréquences supérieures à 7 Hz (avec peu de bruit
impulsif), il est possible de capter plus facilement le signal autour de 10 Hz
avec moins d’interférences (Figure 4.21).

La configuration optimale du filtrage résulte donc à la fois du
milieu de propagation des ondes, du site d’implantation de la
station, ainsi que de l’orientation et de la distance de cette station
à la source, soulignant là encore la diversité et la complexité de
l’ensemble des signaux enregistrés.
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(a) Tir de la carrière de Villigen en Suisse
(15 septembre 2016 à 09h41, MLv 1.9 ,

distance épicentrale : 57.3 km).

(b) Tir de la carrière de Bötzingen en
Allemagne (21 septembre 2016 à 12h00,
MLv 1.4 , distance épicentrale : 20.4 km.

(c) Tir de la carrière de Raon-L’Etape
dans les Vosges (10 octobre 2016 à 10h01,
MLv 1.6 , distance épicentrale : 98.3 km.

(d) Séisme identifié au Nord-Est de
Mulhouse dans le Fossé Rhénan (18 août

2016 à 00h51, MLv 2.1, distance
épicentrale : 26.9 km).

(e) Séisme identifié au Sud-Est de Freiburg
en Allemagne (25 novembre 2016 à 14h41,
MLv 0.8, distance épicentrale : 0.5 km).

(f) Séisme identifié dans le Massif des
Vosges (18 décembre 2016 à 10h08, MLv

1.8, distance épicentrale : 71.1 km).

Figure 4.20: Exemples de spectrogrammes de signaux enregistrés sur la com-
posante verticale de la station KIZ. Le filtrage utilisé pour le pointé automa-
tique (3-15 Hz) est fonction de la distance épicentrale et du type d’événement.
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(a) Station KIZ située au Sud-Est de Frei-
burg, à 2.5 km d’une route nationale et 3
km d’un aérodrome.

(b) Station RONF située dans les Vosges
du Sud à 500 mètres d’une voie ferrée

(c) Station FELD située sur le plus haut
sommet de la Forêt Noire, à quelques di-
zaines mètres de 3 tours de communication
et à 2 km d’une station de ski très touris-
tique.

Figure 4.21: Densité spectrale de puissance probabiliste calculée pour la sta-
tion KIZ (a), comparée à celles des stations RONF (b) et FELD (c), plus
sensibles au bruit transitoire impulsif. Les 3 stations sont sensibles au bruit
d’origine anthropique (fréquences > 1 Hz). Contrairement aux stations RONF
et FELD, la puissance du bruit à la station KIZ atteint un niveau de l’ordre de
-145 dB en moyenne, avec une probabilité d’occurrence de l’ordre de 30 %, et
affiche un seuil minimal d’amplitude aux plus hautes fréquences (7 à 50 Hz).
En revanche, les stations RONF et FELD affichent des niveaux de bruit beau-
coup plus variables, avec des sauts d’amplitude plus forts autour de 11 Hz pour
RONF et autour de 15 Hz pour FELD, ainsi que des probabilités d’occurrence
plus faibles (de l’ordre de 15%). Ces spectres ont été obtenus via le package
ObsPy de Python suivant la méthode de McNamara et al., 2004.
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•Déterminer un rapport signal/bruit optimal

Un autre paramètre qui gouverne la qualité des pointés S est l’estimation du
rapport signal/bruit minimal nécessaire pour accepter un pointé. Ce rapport
signal/bruit a été paramétré globalement à 3.5. Cette valeur a été définie empi-
riquement à partir d’un jeu test de différentes valeurs comprises entre 1.5 et la
valeur par défaut définie dans SeisComP3 égale à 5. Ces différents paramétrages
ont été testés sur le pointé automatique des ondes S à partir de sismogrammes
enregistrés entre juillet et août 2016, puis janvier 2017. La valeur de 3.5 a été
obtenue pour un grand nombre de stations. Cette valeur correspond à la valeur
minimale du rapport signal/bruit nécessaire pour obtenir un nombre maximal
de pointés S de qualité, malgré un niveau de bruit enregistré élevé.

Seulement, pour des stations enregistrant régulièrement des fluctuations
importantes de bruit transitoire d’origine anthropique, un rapport signal/bruit
minimal plus élevé a été obtenu (autour de 4). Ceci limite effectivement la
possibilité de pointer du bruit au lieu de la phase S, en particulier pour des
signaux sismiques dont l’amplitude et le contenu fréquentiel s’approchent de
ceux du bruit.

En revanche, un rapport signal/bruit minimal supérieur à 4 a par exemple
été obtenu pour pointer les arrivées des ondes S aux stations permanentes telles
que GIMEL (à 50 m d’une route circulante), BRANT (à 3 km d’une voie ferrée
et d’une autoroute), MOF (à 4 km d’une route nationale et 800 m d’une route
départementale) ou EMBD (à 300 m d’une station de ski et à 400 m d’une
voie ferrée). Par ailleurs, ces stations correspondent aux mêmes stations qui
sont fortement impliquées dans la génération de 10 à 35% des faux événements
détectés (Figure 3.19).

Il en est de même pour les stations temporaires AlpArray telles que A117A
(au sein d’une exploitation agricole et à 1 km d’une zone urbaine), A164A (au
bord d’une petite route, à 1500 m d’une autoroute et à 500 m d’une route
nationale), A113A (au coeur d’un village, à 2 km d’une voie ferrée) ou A116A
(à 900 m d’une autoroute). Ces stations sont également impliquées dans la
génération de 10 à 25 % des faux événements détectés (cf Figure 3.18).

En revanche, pour d’autres stations, la valeur du rapport signal/bruit mi-
nimal obtenue a été plus faible, c’est-à-dire autour de 3. En effet, ces stations,
un peu plus éloignées des axes routiers et des centres d’activité urbaine, ont
tendance à enregistrer des niveaux de bruit haute-fréquence moins élevés que
les stations précédentes. Les ondes S ayant des gammes de fréquence et des
amplitudes équivalentes à ceux du bruit enregistré (en particulier pour les évé-
nements de plus faible magnitude), les rapports signal/bruit sont alors ici plus
élevés, permettant la diminution du rapport signal/bruit minimal à atteindre
pour pointer les ondes S.

Parmi ces stations, on retrouve des stations permanentes comme GUT (si-
tuée dans le Jura Souabe), BALST (située dans le Jura Suisse), ECH (située
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dans les Vosges du Nord) ou RIVEL (située dans le Jura français) et des stations
temporaires telles que A112A (située dans le Massif de Rhenish au Nord-Ouest
de l’Allemagne), A158A (située dans les Vosges) ou A173A (située dans les
Alpes du Nord françaises).

Ces stations affichent effectivement des puissances de bruit aux hautes fré-
quences (> 10 Hz) qui sont inférieures de 20 à 40 dB aux puissances de bruit
estimées pour les stations évoquées précédemment, pour des probabilités d’oc-
currence équivalentes (Figure 4.22).

Par ailleurs, ces stations sont également moins impliquées dans la création
de faux événements, de l’ordre de 5 à 10% d’entre eux (cf Figures 3.19 et 3.18),
mais elles font partie de celles qui sont le plus impliquées dans la création des
vrais événements (cf Figures 3.21 et 3.20).
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(a) (b)

(c) (d)

(e)
(f)

Figure 4.22: Comparaison des densités spectrales de puissance probabiliste
des stations dont le rapport signal/bruit minimum pour activer un pointé S
est inférieur ou égal à 3 (A112A (a), A158A (b) et BALST(c)) avec celles des
stations dont le rapport signal/bruit minimum pour activer un pointé S est
supérieur ou égal à 4 (A113A (d), A164A (e) et MOF (f)). Avec une probabilité
d’occurrence équivalente, les stations A112A, A158A et BALST affichent une
puissance du bruit de l’ordre de 20 à 40 dB inférieure aux puissances estimées
aux stations A113A, A164A et MOF, pour les gammes de haute fréquence
comprises entre 10 et 35 Hz. Ces spectres ont été obtenus via le package ObsPy
de Python suivant la méthode de McNamara et al., 2004.
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•Optimiser le calcul du critère AIC

Trois paramètres sont utilisés pour définir le critère AIC minimal : la durée
du signal choisie pour rechercher la valeur minimale du critère AIC, la taille
des fenêtres temporelles utilisées sur ce signal pour calculer le critère AIC sur
différents segments du signal, et le nombre minimum de fois que le critère AIC
minimal doit être trouvé consécutivement.

Début du signal. Le début du signal qui est choisi pour entamer le
calcul du critère AIC est défini à partir du pointé P qui sert de référence. Pour
beaucoup de stations, la valeur qui est sélectionnée est la valeur qui correspond
au temps minimal qui sépare l’arrivée des ondes P de l’arrivée des S dans la
zone d’étude, c’est-à-dire 1.68 s. Cette valeur a été obtenue à partir de l’analyse
statistique des différences de temps séparant les ondes P et S calculées pour
l’ensemble des événements détectés par le BCSF-RéNaSS au cours de l’année
2016.

En revanche, pour certaines stations, il a fallu augmenter cette valeur, qui
est en fait fonction des distances épicentrales moyennes estimées pour chaque
station. Pour obtenir la valeur optimale, un ensemble de valeurs a été testé
empiriquement sur l’ensemble des stations en évaluant leur impact sur la qualité
du pointé automatique des ondes S à partir des sismogrammes enregistrés entre
juillet et août 2016 ainsi que janvier 2017.

De ce fait, le début du signal a été placé à des valeurs comprises entre 2.5
et 3 s pour des stations comme SLE (située au Nord du Lac de Konstanz en
Allemagne), ECH (située au Nord des Vosges) ou bien RIVEL (située dans le
Jura français). Or, 75% des événements détectés par ces stations sont situés
à des distances épicentrales supérieures à 50 Km. Ces stations sont alors plus
impliquées dans la détection des événements à l’échelle régionale qu’à l’échelle
locale. La probabilité d’enregistrer des arrivées d’ondes S plus retardées relati-
vement aux ondes P de référence, est donc nécessairement plus élevée.

Taille des fenêtres temporelles De plus, la taille des fenêtres temporelles
utilisées pour calculer le critère AIC le long du signal extrait est en moyenne
de 0.96 s pour l’ensemble des stations. De la même façon, celle-ci a été définie
empiriquement à partir d’un ensemble de valeurs possibles testées, dont l’im-
pact sur la qualité des pointés automatiques des ondes S émis aux différentes
stations a été évalué sur les périodes juillet-août 2016 et janvier 2017.

Cependant, cette valeur de 0.96s va être modifiée également en fonction de
la localisation des stations par rapport aux événements détectés. En effet, par
exemple 35% des signaux enregistrés à la station AIGLE ou à la station DIX
correspondent à des événements (séismes ou tirs de carrière) qui sont situés
à des distances épicentrales de moins de 30 km pour AIGLE (située au Sud
du Lac Léman) et 40 km pour DIX (située au coeur du Valais Suisse). Dans
ces cas-ci, des fenêtres temporelles plus courtes comprises entre 0.5 et 0.6 s
a permis de mieux capter les arrivées précoces des ondes S relativement aux
ondes P, du fait de la faible distance épicentrale.
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Et ceci a d’ailleurs permis d’améliorer davantage la qualité des pointés des
ondes S plutôt que de placer le début du signal à des valeurs inférieures à
1.68 s. L’avancée du début du signal pour calculer le critère AIC augmente
effectivement la probabilité de pointer du signal haute fréquence dans la coda
des ondes P, plutôt que les premières arrivées des ondes S.

Ainsi, rechercher des valeurs optimales pour les deux paramètres nécessaires
au calcul optimal du critère AIC (début du signal et taille des fenêtres tempo-
relles) permet d’adapter ce calcul aux distances épicentrales, et donc à l’arrivée
différentielle des ondes S.

Deux tendances se dégagent en conséquence. La première tendance obser-
vée est que plus la distance épicentrale augmente, plus le début du signal
sélectionné sera retardé par rapport à la valeur de référence (ici 1.68 s) et
plus la fenêtre temporelle utilisée pour calculer le critère AIC sera longue. La
deuxième tendance qui est constatée est que, pour un même début de signal
(ici entre 1.68 s et 2.2 s), la fenêtre temporelle utilisée pour calculer la critère
AIC augmente avec la distance épicentrale (Figure 4.23).

Figure 4.23: Évolution de la taille de la fenêtre temporelle utilisée pour cal-
culer le critère AIC en fonction du début du signal sélectionné pour initier le
calcul et de la distance épicentrale. Chaque point correspond à une station.
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Enfin, le nombre de fois que le critère AIC minimum est trouvé sur deux
fenêtres temporelles adjacentes pour activer un pointé automatique S, a été
placé à 3, qui est la valeur définie par défaut dans SeisComP3.

Néanmoins, une valeur de 2 a parfois été paramétrée dans les cas où des
stations performantes, qui ont tendance à détecter beaucoup d’événements,
ont un début de signal pour calculer le critère AIC tardif par rapport à la
valeur moyenne de référence (c’est-à-dire > 1.68 s). Ainsi, si ces stations en
question ont tendance à détecter plus fréquemment des événements locaux,
comme par exemple AIGLE ou DIX, cette valeur de 2 offre la possibilité de
détecter l’arrivée des ondes S pour des rapports signal/bruit plus élevés, c’est-
à-dire pour des signaux moins pollués par le bruit haute fréquence que ces
stations ont tendance à enregistrer. Si au contraire ces stations détectent plus
fréquemment des séismes distants, comme c’est le cas des stations KIZ, ECH
ou GIMEL, une valeur de 2 augmente les chances de pointer l’arrivée des ondes
S pour des détections à des distances épicentrales plus faibles.

La qualité des pointés P et S dépend alors de deux principaux
facteurs :

— les caractéristiques du bruit enregistré aux stations, indi-
rectement définies par l’amplitude et le contenu fréquentiel
du signal enregistré ainsi que le rapport signal/bruit ;

— la localisation de ces dernières relativement à la probabilité
d’occurrence spatiale des séismes, autrement dit la distance
épicentrale.

Par conséquent, plusieurs configurations des paramètres critiques
à l’amélioration des pointés des ondes P et S apparaissent souvent
nécessaires pour une même station.

De cette façon, j’ai implémenté 2 instances de pointés automa-
tiques, fonctionnant simultanément. Chaque instance s’adapte
spécifiquement aux conditions de bruit et à la localisation parti-
culières des stations.

Seulement, pour une même station, les signaux enregistrés sont
d’une grande diversité et correspondent à des distances épicen-
trales variables d’un événement à l’autre. De plus, les niveaux
de bruit enregistrés ne sont jamais constants et sont fortement
dépendants de l’environnement de la station ainsi que sa qualité
instrumentale intrinsèque.
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Le nombre d’instances à définir a été déterminé à partir de l’éva-
luation de la performance du pointé automatique des premières
arrivées des ondes P et S. Cette performance a été estimée en
comparant les pointés automatiques des ondes P et S aux pointés
manuels effectués pour les mêmes événements détectés.

4.1.3 Quelle performance pour ces pointés automatiques
des ondes P et S ?

•Comparaison aux pointés manuels

La comparaison des temps d’arrivée des ondes P estimés par les pointés
manuels et par les pointés automatiques pour la période juillet-octobre 2016
montre que 70 % des pointés automatiques P diffèrent des pointés manuels de
seulement �0:5s, dont 19% sont identiques (Figure 4.24).

Figure 4.24: Distribution des temps d’arrivée différentiels entre les pointés ma-
nuels et automatiques pour des mêmes événements ayant été détectés pendant
la période juillet-octobre 2016. Pointés automatiques P (à gauche) et pointés
automatiques S (à droite).

De plus, 11% des pointés automatiques P ont des temps d’arrivée qui dif-
fèrent de plus de �1:5s des pointés manuels, et 94 % d’entre eux diffèrent de
moins de �3s. Pour autant, on notera que ces pourcentages n’engagent pas de
façon absolue la performance réelle du pointé automatique P. En effet, cette
comparaison tient uniquement compte des pointés automatiques qui ont été
sélectionnés pour créer les événements détectés.
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Or, plusieurs pointés identifiés comme P peuvent être émis consécutivement
à une même station, en fonction des conditions de bruit enregistré, mais un
seul correspond à l’arrivée réelle des ondes P. Par conséquent, si, parmi le choix
des pointés P émis à cette station, c’est finalement un pointé erroné qui est
sélectionné dans le processus d’association, cela signifie que lorsque l’on com-
pare ce pointé au pointé manuel équivalent, ce n’est pas la performance réelle
de l’opération de pointé qui est évalué mais celle du processus d’association
(Figure 4.25).

Figure 4.25: Exemple d’émission de plusieurs pointés automatiques P consé-
cutifs à la station A102A. Signal correspondant à un séisme ayant eu lieu le
01 juillet 2016 à 03h15 dans la région d’Albstadt en Allemagne (MLv 1.4). Si
le premier ou le deuxième pointé P (trait vertical rouge clair) était sélectionné
dans le processus d’association, chacun aurait respectivement une différence de
temps d’arrivée estimée des ondes P de -7.5 s et -4 s, alors que pourtant un
vrai pointé P a été émis (troisième trait vertical rouge foncé).

De même, 65% des pointés automatiques S diffèrent des pointés manuels
équivalents de seulement �0:5s et 97% diffèrent de moins de �3s (Figure 4.24).
La même remarque peut être également établie concernant l’estimation de la
performance réelle de l’opération de pointé des ondes S, au regard des multiples
pointés S qui peuvent être aussi émis consécutivement à une même station.
Cependant, étant donné que les pointés S sont émis une fois que les pointés
P sont produits, la probabilité qu’un pointé S erroné soit sélectionné dans le
processus d’association est supérieure si un pointé P sélectionné est lui-même
erroné (Figure 4.26).

L’opération de pointé des ondes S est un processus plus délicat. En effet, la
phase S arrive souvent dans la coda des ondes P et est parfois précédée par des
phases sismiques converties (Lomax, 2008). Une proportion moins élevée de
pointés automatiques S, relativement aux pointés P, présente conséquemment
des différentiels de temps d’arrivée plus petit que �0:5s par rapport aux pointés
manuels. Ces pointés plus inexacts peuvent être le vecteur d’une plus grande
incertitude dans la localisation future des événements détectés.
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Figure 4.26: Exemple d’émission de plusieurs pointés automatiques P et S
consécutifs à la station A102. Signal correspondant à un séisme ayant eu lieu
le 01 juillet 2016 à 03h15 dans la région d’Albstadt en Allemagne (MLv 1.4).
Les traits verticaux rouge foncé représentent les pointés automatiques erronés
qui ont été sélectionnés pour cet exemple. Le pointé P est anticipé de 7 s et le
pointé S résultant est anticipé de 5.5 s.

Ainsi, l’estimation de l’impact de l’incertitude des pointés des ondes S sur les
localisations épi- et hypocentrale, confrontée aux incertitudes liées au modèle de
vitesse, est un facteur important à considérer pour définir un niveau satisfaisant
d’amélioration du pointé automatique.
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•Impact sur les localisations épi- et hypocentrales

Le logiciel NonLinLoc (Lomax, Virieux et al., 2000) a été utilisé pour si-
muler l’impact des variations des temps d’arrivée des ondes S par rapport au
temps d’arrivée référence, évalués manuellement, sur l’incertitude des locali-
sations épicentrale et hypocentrale des événements au regard de 100 modèles
de vitesses (50 modèles à 3 couches et 50 modèles à 12 couches). Ces modèles
de vitesse ont été établis aléatoirement à partir d’une gamme de vitesses des
ondes P comprises entre 3.5 km/s et 8.2 km/s et des rapports Vp/Vs compris
entre 1.65 et 2.00.

La gamme de valeurs choisie pour les vitesses des ondes P correspondent
aux gammes de vitesse qui peuvent être possiblement rencontrées dans les
roches qui composent le milieu de propagation. L’intervalle de valeurs pour
les rapports Vp/Vs a été défini à partir de la construction du diagramme de
Wadati pour les événements détectés en 2016 par le BCSF-RéNaSS, et des
résultats de l’étude réalisée par Rothe et al., 1950 sur les carrières souterraines
d’Haslach en Allemagne pour élaborer le modèle de vitesse régional d’Haslach
(Figure 4.27).
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Figure 4.27: Diagramme de wadati réalisé à partir des temps d’arrivée des
ondes S (ts) et des ondes P (tp) définis par les pointés manuels de l’ensemble
des événements détectés en 2016 par le BCSF-RéNaSS. La valeur du rapport
Vp/Vs est égale à 1.68
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La procédure de localisation utilisée par le programme NonLinLoc déter-
mine une fonction de densité de probabilités a posteriori sur toutes les solu-
tions épi- et hypocentrales. En effet, cette localisation quantifie l’accord entre
les temps d’arrivée observés et prédits en relation à toutes les incertitudes
considérées (pointés, calcul des temps de trajet, géométrie du réseau) et forme
une solution complète probabiliste qui représente la distribution de toutes les
localisations possibles.

Cette fonction de densité de probabilité est calculée ici à partir de l’algo-
rithme Oct-Tree (Lomax et Curtis, 2001). Cet algorithme utilise une sub-
division récursive et un échantillonnage de cellules dans un espace 3-D pour
générer une cascade de cellules échantillonnées, où la densité des cellules échan-
tillonnées suit les valeurs de la fonction de densité de probabilités du centre de
la cellule (Husen, Kissling et al., 2003). La valeur maximale de cette fonction
est prise comme hypocentre préférentiel avec le maximum de vraisemblance
(Figure 4.28).
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Figure 4.28: Procédure d’échantillonnage de l’algorithme Oct-Tree pour ob-
tenir la fonction de densité de probabilités complète (a). Cette procédure est
initialisée par un échantillonnage global de l’espace de recherche sur une grille
grossière et régulière (b). La probabilité est calculée pour chaque cellule puis
celle-ci est insérée dans la liste des probabilités à la position correspondant à
la valeur de sa probabilité. La cellule avec la probabilité la plus grande (Pmax,
carré rouge) est obtenue de la liste ordonnée des probabilités (b). Cette cellule
est alors divisée en 8 cellules filles (c). La probabilité est calculée pour chacune
des 8 cellules filles. Les 8 cellules filles sont insérées dans le liste ordonnée des
probabilités selon la valeur de leur probabilité et ainsi de suite jusqu’à obtenir
la fonction complète de densité de probabilités (d-f). L’ensemble de la figure
représente les projections 2-D des échantillons 3-D. D’après Lomax et Curtis,
2001.
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En plus des incertitudes de localisation incluses dans la solution pro-
babiliste, le programme NonLinLoc produit des estimations traditionnelles
gaussiennes telles que la localisation hypocentrale attendue et l’ellipsoïde de
confiance à 68% (Lomax, Virieux et al., 2000). Cette ellipsoïde représente
une approximation statistique gaussienne de la fonction de densité de proba-
bilités, tronquée au niveau de confiance de 68%. Ceci signifie que si la fonction
de densité de probabilités était parfaitement ellipsoïdale, alors il y aurait une
probabilité de 68% que l’hypocentre soit à l’intérieur de cette ellipsoïde.

L’hypocentre attendu et l’ellipsoïde de confiance peuvent être interpré-
tés comme des résultats obtenus par des algorithmes de localisation tels que
HYPO-71 (W. H. K. Lee et al., 1972) ou HYPOELLIPSE (Lahr, 1989). Ce-
pendant, les incertitudes véhiculées par les estimations gaussiennes sont signi-
ficatives uniquement lorsque la fonction de densité de probabilités exprime un
minimum clair, unique et global (Husen, Kissling et al., 2003).

L’effet des variations des temps d’arrivée des ondes S sur les localisations
épicentrales et hypocentrales dépend d’abord fortement du modèle de vitesse
utilisé pour localiser (nombre de couches et vitesses de propagation des ondes).
Seulement, quelques généralités transparaissent. De manière globale, en pre-
nant comme référence les localisations émises à partir des temps d’arrivées
des ondes S estimés manuellement, les solutions épicentrales et hypocentrales
vont fortement se dégrader à partir de retards de temps d’arrivée des ondes
S moyens, par rapport aux temps d’arrivée références, supérieurs à +1 s pour
tous les modèles de vitesse, voire supérieurs à +2 s, pour 36% des modèles de
vitesse multicouches (Figures 4.29 et 4.30). Cette dégradation des solutions
épicentrales et hypocentrales se manifeste par des incertitudes plus grandes :
un étalement spatial plus large des fonctions de densité de probabilités, un net
allongement des ellipsoïdes de confiance et un plus fort éloignement des deux
hypocentres (gaussien et maximum de vraisemblance).

Seulement, cette dégradation des solutions a tendance à s’atténuer avec
l’augmentation du nombre de phases impliquées dans la localisation, pour la
majorité des modèles de vitesse sélectionnés (Figures 4.31 et 4.32).

En ce qui concerne les variations négatives des temps d’arrivée des ondes
S, c’est-à-dire des temps d’arrivée estimés en moyenne de façon anticipée par
rapport aux temps d’arrivée définis manuellement, le même constat peut être
fait. Si les temps d’arrivées des ondes S sont émis jusqu’à -1 s, voire jusqu’à
-2 s pour 26% des modèles de vitesse multicouches, les solutions épicentrales
et hypocentrales vont rester comparables aux solutions de référence, puis se
dégrader au-delà de -1 et -2 s (Figures 4.33 et 4.34). De même, la dégradation
des solutions épi- et hypocentrales a tendance à s’atténuer avec l’augmentation
du nombre de phases (Figures 4.33 et 4.34).

Alexandra Renouard CHAPITRE 4. 143



4.1. AMÉLIORER LA QUALITÉ DES POINTÉS

Figure 4.29: Solutions épi- et hypocentrales pour un tir de la carrière de Dot-
ternhausen (MLv 1.7, 15/07/2016 10h25) en fonction des variations positives
moyennes (de +0.5 s à +5s) des temps d’arrivée des ondes S relativement
aux temps de référence estimés manuellement (= 0s). Solution épicentrale (à
gauche) et solution hypocentrale en fonction de la longitude (au milieu) et
la latitude (à droite). Le point rouge correspond à l’hypocentre gaussien et
l’ellipsoïde rouge l’ellipsoïde de confiance à 68%. La fonction de densité de
probabilités est représentée avec une palette de niveaux de gris et son hypo-
centre optimal de maximum de vraisemblance est défini par un triangle jaune.
Les localisations sont émises avec 23 phases (11 phases S) et un modèle
de vitesse multicouche (cf Annexe D.1).
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Figure 4.30: Solutions épi- et hypocentrales pour un tir de la carrière de
Dotternhausen émis le 15 juillet 2016 à 10h25 (MLv 1.7) en fonction des va-
riations positives moyennes (de +0.5 s à +5 s) des temps d’arrivée des ondes
S relativement aux temps de référence estimés manuellement (= 0 s). Solution
épicentrale (en haut) et solution hypocentrale en fonction de la longitude (au
milieu) et la latitude (en bas). Le point rouge correspond à l’hypocentre gaus-
sien et l’ellipsoïde rouge l’ellipsoïde de confiance à 68%. La fonction de densité
de probabilités est représentée avec une palette de niveaux de gris et son hy-
pocentre optimal de maximum de vraisemblance est définie par un hexagone
jaune. Les localisations sont émises avec 23 phases (11 phases S) et un
modèle de vitesse à 3 couches (cf Annexe D.2).
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Figure 4.31: Solutions épi- et hypocentrales pour un séisme ayant eu lieu le
16 juillet 2016 à 02h36 dans les Pré-alpes Suisses (MLv 2.7) en fonction des
variations positives moyennes (de +0.5 s à +5 s) des temps d’arrivée des ondes
S relativement aux temps de référence estimés manuellement (= 0 s). Solu-
tion épicentrale (en haut) et solution hypocentrale en fonction de la longitude
(au milieu) et la latitude (en bas). Le point rouge correspond à l’hypocentre
gaussien et l’ellipsoïde rouge l’ellipsoïde de confiance à 68%. La fonction de
densité de probabilités est représentée avec une palette de niveaux de gris et
son hypocentre optimal de maximum de vraisemblance est définie par un cercle
jaune. Les localisations sont émises avec 52 phases (18 phases S) et un
modèle de vitesse multicouche (cf Annexe D.3).
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Figure 4.32: Solutions épi- et hypocentrales pour un séisme ayant eu lieu le
16 juillet 2016 à 02h36 dans les Pré-alpes Suisses (MLv 2.7) en fonction des
variations positives moyennes (de +0.5 s à +5 s) des temps d’arrivée des ondes
S relativement aux temps de référence estimés manuellement (= 0 s). Solu-
tion épicentrale (en haut) et solution hypocentrale en fonction de la longitude
(au milieu) et la latitude (en bas). Le point rouge correspond à l’hypocentre
gaussien et l’ellipsoïde rouge l’ellipsoïde de confiance à 68%. La fonction de
densité de probabilités est représentée avec une palette de niveaux de gris et
son hypocentre optimal de maximum de vraisemblance est définie par un cercle
jaune. Les localisations sont émises avec 52 phases (18 phases S) et un
modèle de vitesse à 3 couches (cf Annexe D.5).
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Figure 4.33: Solutions épi- et hypocentrales pour un tir de la carrière de
Dotternhausen émis le 15 juillet 2016 à 10h25 (MLv 1.7) en fonction des va-
riations négatives moyennes (de -0.5 s à -5 s) des temps d’arrivée des ondes
S relativement aux temps de référence estimés manuellement (= 0 s). Solu-
tion épicentrale (en haut) et solution hypocentrale en fonction de la longitude
(au milieu) et la latitude (en bas). Le point rouge correspond à l’hypocentre
gaussien et l’ellipsoïde rouge l’ellipsoïde de confiance à 68%. La fonction de
densité de probabilités est représentée avec une palette de niveaux de gris et
son hypocentre optimal de maximum de vraisemblance est définie par un tri-
angle jaune. Les localisations sont émises avec 23 phases (11 phases S)
et un modèle de vitesse multicouche (cf Annexe D.1).
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Figure 4.34: Solutions épi- et hypocentrales pour un tir de la carrière de
Dotternhausen émis le 15 juillet 2016 à 10h25 (MLv 1.7) en fonction des va-
riations négatives moyennes (de -0.5 s à -5 s) des temps d’arrivée des ondes
S relativement aux temps de référence estimés manuellement (= 0 s). Solu-
tion épicentrale (en haut) et solution hypocentrale en fonction de la longitude
(au milieu) et la latitude (en bas). Le point rouge correspond à l’hypocentre
gaussien et l’ellipsoïde rouge l’ellipsoïde de confiance à 68%. La fonction de
densité de probabilités est représentée avec une palette de niveaux de gris et
son hypocentre optimal de maximum de vraisemblance est définie par un cercle
jaune. Les localisations sont émises avec 23 phases (11 phases S) et un
modèle de vitesse à 3 couches (cf Annexe D.6).
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Figure 4.35: Solutions épi- et hypocentrales pour un séisme ayant eu lieu le
16 juillet 2016 à 02h36 dans les Pré-alpes Suisses (MLv 2.7) en fonction des
variations négatives moyennes (de -0.5 s à -5 s) des temps d’arrivée des ondes
S relativement aux temps de référence estimés manuellement (= 0 s). Solu-
tion épicentrale (en haut) et solution hypocentrale en fonction de la longitude
(au milieu) et la latitude (en bas). Le point rouge correspond à l’hypocentre
gaussien et l’ellipsoïde rouge l’ellipsoïde de confiance à 68%. La fonction de
densité de probabilités est représentée avec une palette de niveaux de gris et
son hypocentre optimal de maximum de vraisemblance est définie par un cercle
jaune. Les localisations sont émises avec 52 phases (18 phases S) et un
modèle de vitesse multicouche (cf Annexe D.3).
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Figure 4.36: Solutions épi- et hypocentrales pour un séisme ayant eu lieu le
16 juillet 2016 à 02h36 dans les Pré-alpes Suisses (MLv 2.7) en fonction des
variations négatives moyennes (de -0.5 s à -5 s) des temps d’arrivée des ondes
S relativement aux temps de référence estimés manuellement (= 0 s). Solution
épicentrale (en haut) et solution hypocentrale en fonction de la longitude (au
milieu) et la latitude (en bas). Le point rouge correspond à l’hypocentre gaus-
sien et l’ellipsoïde rouge l’ellipsoïde de confiance à 68%. La fonction de densité
de probabilités est représentée avec une palette de niveaux de gris et son hy-
pocentre optimal de maximum de vraisemblance est définie par un hexagone
jaune. Les localisations sont émises avec 52 phases (18 phases S) et un
modèle de vitesse à 3 couches (cf Annexe D.5).
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Plus spécifiquement, si les localisations épicentrales et hypocentrales sont
maintenant analysées par modèle de vitesse, celles-ci dépendent fortement des
temps d’arrivée moyens des ondes S émis par rapport aux temps de référence.
En effet, lorsque les modèles de vitesse multicouches présentent des vitesses
assez élevées pour les ondes S dans les premières couches (environ 2.80 km/s
en moyenne jusqu’à 5 km), les localisations hypocentrales seront plus approxi-
matives si les pointés S émis sont anticipés. Si je prends l’exemple du tir de
la carrière de Dotternhausen produit le 15 juillet 2016 à 10h25 (MLv 1.7) et
localisé avec un de ces modèles de vitesse, il est possible de remarquer que
l’hypocentre optimal de maximum de vraisemblance change soudainement de
position et passe à une profondeur de l’ordre de 15 km lorsque les pointés des
ondes S sont émis en avance (de -0.5 s à -5 s). L’élongation de la fonction de den-
sité de probabilités ainsi que la séparation nette des deux hypocentres (gaussien
et maximum de vraisemblance) de l’ordre de 5 km mettent en évidence une
large incertitude hypocentrale, en partie biaisée par les temps d’arrivées des
ondes S. (Figure 4.37).

En revanche, cette observation est moins marquée lorsque les variations des
temps d’arrivée des ondes S sont positives, c’est à dire que les pointés S sont
retardés. En effet, jusqu’à +2 s, la position de l’hypocentre optimal de maxi-
mum de vraisemblance est stable et située à environ 2 km. De plus, la fonction
de densité de probabilités garde la même allure. En revanche, l’hypocentre
gaussien de référence (c’est-à-dire celui émis à partir des temps d’arrivées des
ondes S de référence) est placé initialement à 7 km et avec une ellipsoïde de
confiance de l’ordre de 7 km de longueur. Au fur et à mesure que les temps
d’arrivées estimées des ondes S sont retardés, cet hypocentre gaussien tend à
se rapprocher de l’hypocentre optimal et l’aire de l’ellipsoïde de confiance di-
minue. L’hypocentre vrai étant situé à 0 km (tir de carrière), cet effet traduit
alors nettement des incertitudes supplémentaires liées au modèle de vitesse,
qui semble surestimer les vitesses des ondes S (Figure 4.37).

Avec un modèle de vitesse qui présente des vitesses des ondes S moins éle-
vées (environ 2.72 km/s en moyenne pour les premières couches jusqu’à 5 km),
les solutions hypocentrales restent beaucoup plus stables pour tous les cas de
pointés S émis entre -1 et + 1 s autour du temps d’arrivée de référence (Fi-
gures 4.29 et 4.33). Les incertitudes de ces localisations hypocentrales sont
d’ailleurs plus faibles comme en témoignent la contraction des fonctions de
densité de probabilité, les petites surfaces des ellipsoïdes de confiance (lon-
gueur de 3 km) et le rapprochement des deux hypocentres calculés (gaussien et
maximum de vraisemblance). De plus, l’hypocentre optimal de vraisemblance
reste à une profondeur stable d’environ 1-2 km.
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Figure 4.37: Solutions épi- et hypocentrales pour un tir de la carrière de
Dotternhausen en Allemagne émis le 15 juillet 2016 à 10h25 (MLv 1.7) en
fonction des variations négatives moyennes (de -0.5 s à -5 s) des temps d’arrivée
des ondes S relativement aux temps de référence estimés manuellement (=
0 s). Solution épicentrale (en haut) et solution hypocentrale en fonction de
la longitude (au milieu) et la latitude (en bas). Le point rouge correspond à
l’hypocentre gaussien et l’ellipsoïde rouge l’ellipsoïde de confiance à 68%. La
fonction de densité de probabilités est représentée avec une palette de niveaux
de gris et son hypocentre optimal de maximum de vraisemblance est définie
par un hexagone jaune. Les localisations sont émises avec 23 phases (11
phases S) et un modèle de vitesse multicouche (cf Annexe D.7).
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Les mêmes observations peuvent être également effectuées pour les modèles
de vitesse plus simples à 3 couches, à l’exception que l’incertitude liée aux
temps d’arrivée des ondes S a plus d’implication dans l’estimation de l’incerti-
tude des solutions épicentrales et hypocentrales. Par exemple, pour le même tir
de la carrière de Dotternhausen du 15 juillet 2016 et pour des modèles de vi-
tesse avec des vitesses moyennes des ondes S dans la première couche d’environ
2.60 km/s, l’étalement spatial des fonctions de densité de probabilités, l’allon-
gement des ellipsoïdes de confiance et l’écartement entre les deux hypocentres
estimés (gaussien et maximum de vraisemblance) augmentent avec le retard
des temps d’arrivée des ondes S (par rapport aux temps de référence), même si
l’hypocentre optimal de maximum de vraisemblance reste fixé à la même pro-
fondeur. Cette incertitude devient très grande dès +2 s de retard (Figure 4.38).
Néanmoins, cet effet se manifeste beaucoup moins pour des temps d’arrivée des
ondes S qui sont en moyenne pointés en avance par rapport au pointé manuel
de référence, soulignant alors là encore l’impact fort du modèle de vitesse sur
les incertitudes calculées (Figure 4.39).
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Figure 4.38: Solutions épi- et hypocentrales pour un tir de la carrière de Dot-
ternhausen ayant eu lieu le 15 juillet 2016 à 10h25 en Allemagne (MLv 1.7) en
fonction des variations positives moyennes (de +0.5 s à +5 s) des temps d’ar-
rivée des ondes S relativement aux temps de référence estimés manuellement
(= 0 s). Solution épicentrale (en haut) et solution hypocentrale en fonction de
la longitude (au milieu) et la latitude (en bas). Le point rouge correspond à
l’hypocentre gaussien et l’ellipsoïde rouge l’ellipsoïde de confiance à 68%. La
fonction de densité de probabilités est représentée avec une palette de niveaux
de gris et son hypocentre optimal de maximum de vraisemblance est définie par
un triangle jaune. Les localisations sont calculées à partir de 23 phases
(11 phases S) et un modèle de vitesse à 3 couches (cf Annexe D.8).
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Figure 4.39: Solutions épi- et hypocentrales pour un tir de la carrière de Dot-
ternhausen ayant eu lieu le 15 juillet 2016 à 10h25 en Allemagne (MLv 1.7) en
fonction des variations négatives moyennes (de -0.5 s à -5 s) des temps d’ar-
rivée des ondes S relativement aux temps de référence estimés manuellement
(= 0 s). Solution épicentrale (en haut) et solution hypocentrale en fonction de
la longitude (au milieu) et la latitude (en bas). Le point rouge correspond à
l’hypocentre gaussien et l’ellipsoïde rouge l’ellipsoïde de confiance à 68%. La
fonction de densité de probabilités est représentée avec une palette de niveaux
de gris et son hypocentre optimal de maximum de vraisemblance est définie
par un triangle jaune. Les localisations sont calculées à partir de 23 phases (11
phases S) et un modèle de vitesse à 3 couches (cf Annexe D.8).
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De ce fait, lorsque les variations des temps d’arrivée des ondes S
pour un même événement sont comprises entre -1 et 1 s par rap-
port au temps de référence, les incertitudes hypocentrales éva-
luées sont davantage dominées par les incertitudes liées à la struc-
ture du modèle de vitesse que par les variations des temps d’ar-
rivée des ondes S. En revanche, si ces pointés S ont des marges
d’erreur trop grandes, c’est-à-dire retardés de plus de 2 s et ou
anticipés de plus de 2 s, les fonctions de densité de probabilités
ont de plus larges distributions et les ellipsoïdes d’erreur ont des
surfaces très grandes, soulignant une très grande incertitude des
localisations hypocentrales et un plus grand impact des erreurs
des pointés. Par ailleurs, l’utilisation de modèles de vitesse très
simples (ici à 3 couches) met davantage en lumière les erreurs
liées aux pointés des temps d’arrivée des ondes S, quelque soit
leur ampleur.

Concernant les localisations épicentrales, celles-ci apparaissent
beaucoup plus facilement contraintes que les localisations hypo-
centrales. En effet, quel que soient le modèle de vitesse utilisé et
l’incertitude des pointés S, les deux épicentres (gaussien et maxi-
mum de vraisemblance) se chevauchent et ont des positions très
stables. En revanche, cette position gagne rapidement en incerti-
tude lorsque les pointés S sont émis avec une marge d’erreur très
importante (inférieure à -3 s et supérieure à + 3 s), comme l’ex-
priment l’élargissement de la fonction de densité de probabilités
et de l’ellipsoïde de confiance.

Un total de 80% des événements détectés automatiquement
pour la période juillet-octobre 2016 présente des temps d’arri-
vée moyens des ondes S compris entre -1.5 et + 1.5 s par rap-
port aux temps d’arrivée de référence estimés manuellement. Par
exemple, pour le tir de la carrière de Dotternhausen effectué le
15 juillet 2016 à 10h25, la moyenne est évaluée à +1.15 s et pour
le séisme des Pré-Alpes Suisses ayant du 16 juillet à 02h36, il
est +0.77 s. Les incertitudes de localisation pour la majorité des
événements vont donc être très sensibles aux incertitudes liées
au modèle de vitesse, voire du nombre de phases et du type de
phases disponibles (Tarantola et al., 1982).
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De plus, si des variations importantes des temps d’arrivée des
ondes S entre le pointé automatique et le pointé manuel peuvent
exister, celles-ci ne reflètent pas forcément la qualité du pointé
automatique lui-même, mais peut mettre en évidence une dé-
faillance du processus d’association. En effet, la structure du
modèle de vitesse utilisé (par exemple des vitesses des ondes sis-
miques trop lentes) jouant sur la contrainte des solutions épicen-
trales et hypocentrales calculées, il est possible d’anticiper que,
si plusieurs pointés ont été émis consécutivement, comme dans
l’exemple de la Figure 4.25, un faux pointé anticipé de quelques
secondes pourrait être sélectionné au détriment du vrai pointé
parce que son temps d’arrivée pourrait expliquer de façon plus
cohérente une structure de vitesse avec des vitesse plus ralenties.

Enfin, l’ensemble de cette étude sur l’amélioration de la qua-
lité des pointés automatiques P et S met en évidence clairement
les critères principaux qui vont conditionner la qualité de ces
pointés automatiques. L’analyse empirique des valeurs optimales
obtenues pour chaque paramètre SeisComP3 configuré offre éga-
lement une solide base d’étude pour le paramétrage futur des
algorithmes de pointé automatique des phases sismiques P et S
dans d’autres zones d’étude. De plus, le paramétrage manuel in-
tense effectué dans ce travail de thèse a permis de mettre en
lumière les deux facteurs fondamentaux qui contrôlent la valeur
des différents paramètres SeisComP3 configurés, à savoir les dis-
tances épicentrales et les caractéristiques du bruit enregistré. De
ce fait, ces deux facteurs fondamentaux vont être à considérer
pour une mise en place future d’un paramétrage automatique dy-
namique des paramètres SeisComP3 exposés dans ce travail. Ce
paramétrage dynamique aura la possibilité de s’ajuster automati-
quement à la localisation statistique des stations par rapport aux
événements détectés et aux caractéristiques du bruit enregistrés
aux stations, en utilisant par exemple un apprentissage continu
par renforcement comme dans l’étude établie par Draelos et al.,
2018.
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4.2 Améliorer le processus d’association

4.2.1 Comment fonctionne le processus d’association dans
le système de détection ?

•Un assemblage de pointés basé sur une recherche sur grille

Le premier algorithme d’association qui est utilisé se base sur la recherche
de l’hypocentre optimal à partir d’une grille qui propose toutes les localisations
et temps d’origine possibles. Cette grille constitue donc un jeu de points arbi-
traires qui échantillonne densément la zone d’intérêt (la zone d’étude). Chaque
point de la grille correspond alors à un hypocentre hypothétique pour tous les
pointés P à associer qui arrivent. Chaque pointé est rétro-projeté dans le temps
pour chacun des points de la grille, à supposer que ce dernier corresponde à la
première arrivée des ondes P.

Si le pointé équivaut bien à un temps d’arrivée des ondes P d’un événement
sismique et si cet événement est enregistré à un nombre de stations suffisant,
le nouveau pointé rétro-projeté est assemblé avec les pointés précédents com-
patibles qui proviennent du même événement. Le regroupement de ces pointés
sera le plus dense autour du temps d’origine du point de la grille le plus proche
de l’hypocentre optimal. Cependant, si un regroupement est identifié comme
une potentielle origine, cela ne signifie pas nécessairement que tous les pointés
qui y sont impliqués soient nécessairement des phases P. Ces pointés pour-
raient être aussi bien des faux pointés qui coïncident fortuitement, mais qui
peuvent être regroupés du fait d’une maille grossière de la grille élaborée et/ou
d’éventuelles contaminations liées au bruit enregistré.

Un programme de localisation (LocSAT, Bratt et al., 1988) est ensuite
utilisé pour tenter une localisation et tester si le jeu de pointés regroupés cor-
respond à un hypocentre cohérent. La qualité de l’hypocentre est évaluée à tra-
vers le meilleur accord entre les temps d’arrivée des ondes P calculés à chaque
station et les temps observés pour la même station. Cet accord est estimé avec
le calcul de la moyenne quadratique des résidus temporels (RMS des résidus
des pointés). Si la valeur de cette RMS est trop grande, une amélioration est
tentée en excluant chacun des pointés contributifs un à un pour vérifier s’il est
possible de réduire la valeur de la RMS. Si la qualité de l’hypocentre estimée
par le calcul de la RMS est validée, une origine est déclarée.

Seulement, l’origine déclarée (ou mise à jour) peut être encore contaminée
par des phases faussement interprétées comme des phases P. Par conséquent,
le rapport signal/bruit et les amplitudes pour chacun des pointés sont pris en
compte pour affiner chaque origine. Un pic avec un rapport signal/bruit élevé
est moins susceptible d’être associé à une salve de bruit transitoire qu’un pic
dépassant simplement le seuil du rapport signal/bruit défini. De même, un pic
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associé de manière absolue à une forte amplitude est plus susceptible de cor-
respondre à un déclenchement sismique réel, notamment en cas d’observations
simultanées de fortes amplitudes aux stations voisines.

Certains critères heuristiques sont en plus appliqués pour comparer les qua-
lités des origines concordantes. Ces critères sont combinés en un score identifié
pour chaque origine, qui est basé sur les propriétés des pointés eux-mêmes
(valeurs des résidus, RMS, gap azimutal).

•Un clustering des pointés P et S

A chaque pointé qui arrive, le deuxième processus d’association vérifie si
ce pointé peut être associé à une ou plusieurs origine(s) déjà identifiée(s)
en calculant à chaque fois un score pour chaque origine. Ce score est une
somme pondérée de 4 facteurs principaux : le nombre de pointés P et S
associés (pCount et sCount), le nombre de pointés P et S non associés
(p0Count et s0Count), la profondeur (depthFactor) et les résidus temporels
(residualFactor). Chaque facteur est pondéré d’un poids (score.weights.p,
score.weights.p0, score.weights.s, score.weights.s0, score.weights.depth et
score.weights.residual) qui peut être librement défini (équation 4.1).

Les valeurs définies pour les facteurs profondeur et résidus temporels (c’est-
à-dire depthFactor et residualFactor dérivent des profondeurs et des résidus
considérés, tout en tenant compte des valeurs maximales des profondeurs (> 50
km) et des résidus temporels (> 6s) à ignorer qui sont configurées au préalable.

score = score:weights:p� pCount+ score:weights:p0� p0Count

+ score:weights:s� sCount+ score:weights:s0� s0Count

+ score:weights:depth� depthFactor

+ score:weights:residual� residualFactor (4.1)
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C’est l’origine qui possède le score le plus élevé qui est sélectionnée. Cette
origine est ensuite envoyée au module de gestion des événements uniquement
si le score de la nouvelle origine excède le score de la dernière origine envoyée.
Le score minimal à atteindre pour envoyer une origine est de 6.

Le poids affilié au nombre de pointés P (score.weights.p) et de pointés S
(score.weights.s) associés est la valeur par défaut de 1. Le poids attribué au
nombre de pointés P (score.weights.p0 ) et de pointés S (score.weights.s0 )
non associés est de 0. De même, le poids assigné à la profondeur est également
de 0. Ces derniers critères ne sont donc pas considérés dans le calcul du score :
le calcul de la profondeur étant très incertaine et le nombre de pointés P et
S non associés n’étant pas un facteur critique pour la sélection d’une origine
robuste. Au contraire, plus de poids a été alloué aux résidus temporels (poids
de 5). Celui-ci a été défini empiriquement et correspond au poids qui a permis
d’éliminer le maximum d’origines avec des pointés dont les résidus temporels
étaient trop élevés. En effet, le score minimal à atteindre pour envoyer une
origine étant de 6 et le nombre minimal de pointés à associer étant de 4, ceci
favorise alors dans un premier temps la sélection d’origines définies à partir
de résidus temporels plus faibles. Par conséquent, ceci évite au maximum les
associations de pointés contenant de faux pointés, aboutissant à des origines
correspondant à des événements pollués par du bruit d’origine anthropique
pointé.

Dans le cas où le pointé ne peut pas être associé à une nouvelle origine, ce
deuxième processus d’association va déterminer des nouvelles solutions hypo-
centrales en recherchant des clusters basés sur l’algorithme DBSCAN (Ester
et al., 1996). Cet algorithme forme des clusters de pointés en cherchant si les
stations voisines ont des pointés émis qui peuvent être regroupés dans le même
cluster.
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Plusieurs types de pointés sont identifiés dans le processus de clustering : les
pointés centraux, les pointés atteignables et les pointés aberrants. Un pointé
émis à une station P2 est considéré comme central si au moins un nombre
minimal de pointés, incluant d’ailleurs le pointé émis à la station P2, se trouve
à une distance temporelle inférieure ou égale à une distance de référence R
autour du pointé émis à la station P2 (Figures 4.40a et 4.41 Step(1)).

Cette distance temporelle R est donc la distance de référence pour l’opéra-
tion de clustering. Elle est équivalente à la somme vectorielle des différences de
temps d’arrivée entre les pointés (�t, en secondes) et des différences de temps
de trajet entre les stations (en tt, secondes) : distance =

p
�t2 + tt2. Les temps

de trajet tt correspondent à tt = �x=v où x désigne la distance spatiale entre
les stations (en kilomètres) et v la vitesse moyenne (en kilomètres/seconde)
apparente horizontale des ondes P dans la croûte continentale.

Par conséquent, un pointé émis à la station P1 est directement atteignable
depuis le pointé émis à la station P2 si ce pointé émis à la station P1 est à
distance temporelle R du point central défini par le pointé émis à la station P2
(Figures 4.40b et 4.41 Step(2)). Tous les pointés qualifiés d’atteignables le sont
à partir de pointés qualifiés de centraux. Par conséquent, un nouveau pointé
émis à la station P5 est atteignable depuis le pointé émis à la station P2 s’il
existe un chemin qui relie ces deux pointés entre eux au cours duquel chaque
autre pointé émis par une station Pi+1 peut être directement atteignable depuis
un autre pointé émis à une station Pi (Figures 4.40b-f et 4.41 Step(3)-Step(6)).
Cela implique que chaque pointé initial et tous les pointés sur ce chemin doivent
être des pointés centraux, avec l’exception possible du pointé émis à la station
P5. Enfin tous les pointés qui ne sont atteignables depuis aucun autre pointé
sont des pointés aberrants ou des pointés bruités (Figures 4.40g-h et 4.41
Step(7)-Step(8)).

Ainsi si le pointé émis à la station P2 est un pointé central, alors tous les
pointés qui sont atteignables depuis ce pointé émis à la station P2 forment
un cluster avec lui. Chaque cluster contient au moins un pointé central ; des
pointés non centraux peuvent aussi faire partie du cluster mais ces derniers
vont définir le contour du cluster, puisqu’ils ne peuvent pas être utilisés pour
atteindre d’autres pointés (Figures 4.40 et 4.41).

Lorsque le cluster de pointés P contient le nombre minimal de phases qui est
préalablement défini, l’algorithme d’association localise le cluster de pointés,
crée une origine et associe des pointés P et S supplémentaires qui sont déjà
présents, mais non encore associés. Si le pointé supplémentaire est un pointé
P, l’algorithme tente directement d’associer le pointé basé sur la valeur de son
résidu. Si cette association est un succès, la nouvelle solution est relocalisée.
Dès que les pointés P sont associés, ce sont les pointés S qui vont ensuite être
associés, ces derniers étant émis après les pointés P.
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Figure 4.40: Principe de la méthode de clustering des pointés établi avec l’al-
gorithme DBSCAN (voir Figure 4.41) pour plus de détails. Le nombre minimal
de pointés défini pour classer un pointé comme pointé central est de 3 (N �
3) dans l’exemple de la figure. La lettre T représente la distance temporelle de
référence et C désigne le nombre minimal de pointés nécessaires pour détecter
un événement (C � 4). Les annotations tij constituent la différence de temps
absolue (tij = jti � tjj) entre les pointés émis à la station i et la station j.
Chaque couleur différente représente à la fois un pointé (cercle de couleur) et
une fenêtre temporelle (de distance temporelle de référence T) de recherche de
pointés voisins atteignables (rectangle de couleur). Une fois qu’un cluster se
forme, le pointé formant ce cluster prend la même couleur que le pointé central
qui a été à l’origine de la formation de ce cluster (en l’occurrence rouge clair).
D’après Grigoli, Scarabello et al., 2018.
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Figure 4.41: Principe de la méthode de clustering des pointés établi avec
l’algorithme DBSCAN. P1, P2, P3, P4, P5, P6 désignent des pointés émis
aux stations P1, P2, P3, P4, P5 et P6. R représente la distance temporelle
de référence utilisée pour rechercher des pointés voisins. Les cercles de couleur
représentent les surfaces de recherche de pointés voisins à partir d’un pointé
central de référence. Ce cercle est de centre le pointé et de rayon la distance
temporelle de référence R. D’après Grigoli, Scarabello et al., 2018.
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Chaque nouvelle origine est reliée à un score (somme pondérée du nombre
de pointés P et S associés, du nombre de pointés P et S non associés, de la
profondeur et des résidus temporels) qui est comparé aux scores des autres
origines appartenant au même événement. L’origine qui est envoyée au module
de gestion des événements est celle qui a le score le plus élevé.

Les algorithmes d’association utilisés (méthode type recherche
sur grille et méthode de clustering) se basent principalement sur
les temps d’arrivée relatifs des différents pointés émis ainsi que
la valeur de leurs résidus temporels pour associer les pointés
entre eux. Or, les résidus temporels sont évalués en comparant
les temps d’arrivée observés aux temps d’arrivée théoriques qui
dépendent des temps de trajet calculés. Seulement, le calcul des
temps de trajet théoriques est fonction de la géométrie du réseau
de stations et de la structure du modèle de vitesse. Ces derniers
facteurs vont donc être essentiels à prendre en compte pour amé-
liorer le processus d’association. Cette amélioration vise à limiter
les associations hybrides des faux pointés avec de vrais pointés.
Ces faux pointés peuvent être de deux natures : ou bien ce sont
des pointés qui ont été émis autour de vrais pointés dans une fe-
nêtre temporelle très proche, comme il a été vu précédemment,
ou bien ce sont des pointés qui sont reliés purement à du bruit. La
sélection du premier type de faux pointé dans le processus d’as-
sociation est fortement dépendant de la structure du modèle de
vitesse et le deuxième type est plus lié à la géométrie du réseau.

Alexandra Renouard CHAPITRE 4. 165



4.2. AMÉLIORER LE PROCESSUS D’ASSOCIATION

4.2.2 Tenir compte de la configuration du réseau de sta-
tions

Quelque soit l’algorithme d’association utilisé, une distance maximale auto-
risée pour opérer le processus d’association est définie. La valeur qui est choisie
est 250 km. Sachant que cette procédure s’attarde à détecter les événements de
faible magnitude, le rayon de recherche est donc limité à une échelle régionale,
car au-delà les chances de détecter des signaux de faible amplitude sont très
petites.

De plus, la distance de référence utilisée pour accomplir le procédé de clus-
tering est un facteur indispensable, voire déterminant, à définir pour mener à
bien l’association basée sur cette méthode. Comme il a été écrit précédemment,
l’estimation de cette distance dépend de deux paramètres fondamentaux : les
différences de temps d’arrivée entre les pointés et les différences de temps de
trajet entre les stations. Ce dernier paramètre dépend donc de la distance spa-
tiale entre les stations. La prise en compte de la configuration du réseau de
stations est donc capitale pour évaluer une distance de référence optimale pour
clusteriser, donc détecter efficacement les événements.

Pour évaluer cette distance de référence optimale en tenant compte de la
configuration du réseau de stations (Pestourie et al., 2017), j’ai d’abord gé-
néré automatiquement une grille de localisations épicentrales et hypocentrales
de 45000 séismes synthétiques. Les localisations épicentrales sont comprises
entre les intervalles de latitude [46°N-52°N] et de longitude [3°E-12°E] et les
localisations hypocentrales sont comprises entre 2 km et 15 km. L’intervalle de
profondeurs choisies est en lien avec les profondeurs qui sont majoritairement
retrouvées dans les catalogue de séismes de la zone d’étude.

A partir du réseau de stations qui est utilisé pour cette étude, les temps
d’arrivée des différentes phases sismiques P et S ont été simulés pour chacun des
séismes synthétiques à partir du logiciel NonLinLoc (Lomax, Virieux et al.,
2000). Le modèle de vitesse qui a été choisi pour générer ces temps d’arrivée
théoriques a été le modèle régional Haslach utilisé majoritairement pour la
détection des événements (cf Figure 3.39).
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Pour chaque événement synthétique, une matrice des distances temporelles
(somme vectorielle des différences de temps d’arrivée entre les pointés et des
différences de temps de trajet entre les stations) est calculée à partir des 10
stations les plus proches de l’événement. Pour déterminer les temps de trajets
entre les stations (rapport entre la distance spatiale entre les stations et la
vitesse moyenne apparente horizontale des ondes P dans la croûte), la vitesse
moyenne qui a été choisie correspond à la vitesse moyenne des ondes P dans
la croûte pour le modèle Haslach, à savoir 6 km/s. A partir de cette matrice
des distances, un algorithme de clustering DBSCAN, contenu dans le package
Python Scikit-Learn, a été utilisé pour rechercher la valeur minimale de dis-
tance temporelle nécessaire pour former un cluster à partir de la matrice des
distances pour chaque événement synthétique. Pour trouver cette valeur mi-
nimale, une gamme de valeurs de distance temporelle comprises entre 0.1 et
200 s avec un pas de 0.1 s a été testée. De plus, la valeur minimale de pointés
nécessaires pour former un cluster a été paramétrée à 6.

A l’issue de cette recherche, chaque événement synthétique est donc caracté-
risé par une distance temporelle minimale nécessaire pour former des clusters.
De ce fait, la valeur optimale de cette distance temporelle pour la totalité de
la zone d’étude a été déduite de l’ensemble des événements synthétiques. Cette
valeur optimale correspond à une valeur qui induirait des clusters sur toute
la zone d’étude, quelque soit les localisations épicentrales et hypocentrales des
événements. C’est donc la valeur qui couvre à 100% la zone d’étude, et dans
notre cas, elle correspond à la valeur maximale rencontrée sur l’ensemble du
jeu synthétique, à savoir 21.5 s (Figures 4.42 et 4.43).
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Figure 4.42: Représentation des valeurs de distance temporelle minimale pour
former un cluster de pointés pour l’ensemble des événements synthétiques de
la zone d’étude situés à une profondeur de 5 km. Chaque point correspond à
la localisation épicentrale d’un événement synthétique. La couleur de ce point
identifie la valeur de la distance temporelle pour cette événement (cf légende
de la couleur sur la carte). Les triangles blancs correspondent aux stations qui
ont été utilisées pour générer les temps d’arrivée.
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Figure 4.43: Graphique représentant le pourcentage de couverture de la zone
d’étude en fonction de la valeur de la distance temporelle. Cette couverture
correspond à la proportion d’événements qui sont effectivement générés à partir
d’un cluster d’au moins 6 pointés pour une distance temporelle donnée.
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4.2.3 Tenir compte du milieu de propagation des ondes
sismiques

•Adapter le calcul des temps de trajet entre les stations

La nature des terrains affleurant dans cette zone d’étude est très variable :
granitoïdes, roches volcaniques et roches métamorphiques des Massifs cristal-
lins, couverture sédimentaire d’épaisseur, de nature et d’origine variables des
bassins et des reliefs jurassiens (calcaires, dolomies, grès, argiles, bancs gypseux,
etc.). La structure lithologique verticale et latérale de la croûte continentale est
en conséquence très complexe. Affilier une seule vitesse moyenne apparente des
ondes P pour toute la zone d’étude est donc très restrictive.

La vitesse des ondes sismiques étant fortement dépendante de la nature du
milieu qu’elles traversent, une vitesse moyenne de 6 km/s pour la croûte conti-
nentale, comme exprimée par le modèle d’Haslach, peut facilement surestimer
les temps trajets des ondes qui sont émises dans un milieu où la couche sé-
dimentaire superficielle est régionalement plus épaisse de quelques kilomètres.
En effet, le modèle d’Haslach a été établi à partir de l’étude des signaux émis
par une explosion qui a eu lieu dans une carrière souterraine située à 2 km
de profondeur dans le Massif de la Forêt Noire. La région est essentiellement
constituée de gneiss (ortho- et paragneiss) traversés par des filons amphiboli-
tiques. Cette étude a conduit à considérer un modèle de vitesse élaboré à par-
tir d’une structure crustale constituée essentiellement d’une première couche
granito-gneissique, d’une couche de granites plus profonds et d’une couche de
basaltes et de gabbros lenticulaires. Seulement, les vitesses des ondes sismiques
P sont généralement plus lentes dans des matériaux comme les calcaires (3.0-
4.0 km/s) ou les grès (4.0-4.5 km/s) que dans des granites (5.5-6.0 km/s), des
gneiss (de l’ordre de 5.5 km/s) ou des gabbros (6.5-7.0 km/s).

Or, la qualité de l’assemblage des pointés par clustering dépend de la dis-
tance temporelle qui est utilisée pour former les clusters. Et cette distance
temporelle est conditionnée par la vitesse moyenne apparente des ondes P qui
est choisie pour calculer les temps de trajet entre les stations. Par conséquent,
une vitesse moyenne plus élevée diminue les temps de trajets et vice-versa.
Ainsi, pour une même différence de temps d’arrivée entre les pointés, la valeur
de la distance temporelle de référence diminue alors inversement à l’augmen-
tation de la vitesse moyenne des ondes P utilisée.

De ce fait, si cette vitesse moyenne est surestimée pour une zone donnée, il
y a un risque accru que des pointés ne soient pas associés au cluster en forma-
tion. Dans ce cas, leurs temps d’arrivée seraient en effet trop tardifs (puisque
traversant un milieu de vitesse moyenne plus faible) relativement aux temps
de trajets calculés entre les stations, augmentant artificiellement la distance
temporelle qui les sépare des autres pointés inclus dans le cluster, et diminuant
la probabilité que ces pointés tardifs soient finalement contenus dans le cluster.
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Ainsi, dans cette configuration, si de multiples pointés ont été émis consé-
cutivement dans le temps autour du signal à détecter, même si dans ce lot de
pointés multiples il y a un vrai pointé qui correspond à la première arrivée des
ondes P, un faux pointé a plus de chance d’être associé au cluster parce qu’à
une distance temporelle suffisante pour y être inclus.

Afin de combler les lacunes de ce processus d’association, plusieurs vitesses
moyennes des ondes P dans la croûte continentale ont alors été considérées :
4 km/s, 5 km/s et 6 km/s. De cette façon, trois instances ont été utilisées en
parallèle pour générer le processus d’association par clustering : une instance
avec pour vitesse moyenne des ondes P dans la croûte continentale de 4 km/s,
une instance avec une vitesse moyenne de 5 km/s et une instance avec une
moyenne de 6 km/s.

•Adapter les modèles de vitesse pour générer des origines optimales

Les deux procédés d’association (méthode recherche sur grille puis méthode
basée sur le clustering des pointés) produisent des assemblages de pointés qui
sont produits soit par rétro-projection à un hypocentre optimal, soit par clus-
tering basé sur le calcul de distances temporelles. Dans tous les cas, des pointés
supplémentaires peuvent y être ajoutés, en considérant la valeur de leurs ré-
sidus temporels notamment. Chaque assemblage de pointés génère finalement
une origine qui est localisée avec un score optimal. Or, quelque soit le procédé
d’association, ce score tient compte à la fois de la valeur des résidus et de la
RMS.

Les valeurs maximales des résidus qui ont donc été autorisées pour maxi-
maliser les détections ont été respectivement 2.5 s pour le premier procédé
d’association (méthode recherche sur grille) et 2.8 s pour le deuxième procédé
d’association (méthode basée sur le clustering). Ces valeurs ont été testées em-
piriquement et offrent un seuil maximal qui permet à la fois l’élimination des
pointés avec des résidus excessifs et l’inclusion de pointés avec des résidus un
peu plus élevés, augmentant alors le nombre de pointés P et S possibles tout
en compensant un peu les grandes incertitudes liées au modèle de vitesse.

De plus, les valeurs maximales de RMS ont été plafonnées à 5 s pour le pre-
mier procédé d’association et à 6 s pour le deuxième procédé d’association. Ces
valeurs ont été placées assez hautes mais elles ont permis d’évaluer la perfor-
mance de l’association en révélant par exemple des événements dont les origines
sélectionnées avaient systématiquement des RMS élevées, mais correspondaient
pourtant à un vrai événement (séisme ou tir de carrière). Par conséquent, ces
valeurs constituent un garant pour continuellement déceler des défaillances des
procédés d’association qui peuvent être plus facilement corrigées. Ce qui aug-
mente les chances de récupérer des événements qui sinon auraient été perdus.
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Le modèle de vitesse est un paramètre fondamental qui conditionne la qua-
lité des associations et des futures origines sélectionnées. Plusieurs modèles de
vitesse ont alors été empiriquement testés de façon à évaluer si ces derniers
pouvaient aboutir à des détections plus nombreuses et de meilleure qualité
(moins de faux pointés). Les modèles testés empiriquement ont été ceux qui
ont été générés automatiquement pour évaluer l’impact des incertitudes des
pointés en fonction des localisations épicentrales et hypocentrales établies à
partir d’une centaine de modèles de vitesse (50 modèles à 3 couches et 50
modèles multicouches).

L’objectif est de détecter ici, non pas d’obtenir des solutions hypocentrales
de qualité exacte mais d’obtenir des solutions hypocentrales plus précises, c’est-
à-dire qui minimisent les différences entre les temps d’arrivée des ondes P et
S observés et les temps d’arrivée de ces ondes théoriques calculés pour les
différentes stations. Ce n’est donc pas l’exactitude des modèles de vitesse au
regard de la structure latérale et verticale réelle de la croûte continentale que
nous cherchons, mais leur précision évaluée par la valeur de la RMS obtenue.
Ceux qui ont donc été testés ont été ceux qui ont minimisé la RMS pour les
événements localisés en juillet 2016, à savoir les modèles à 3 couches notifiés 11,
25, 31 et 38 et les modèles multicouches notifiés 10, 24, 27 et 35 (Figure 4.44 et
4.45). L’ensemble des 8 modèles sélectionnés présentent des vitesses moyennes
crustales des ondes P et S équivalentes c’est-à-dire des valeurs comprises entre
4.5 km/s et 5.5 km/s pour les ondes P et des valeurs comprises entre 2.6 km/s
et 3 km/s pour les ondes S (cf Annexe E pour le détails des différents modèles
de vitesse). Ces modèles choisis ont par la suite été testés sur la détection
automatique des événements au cours du mois de juillet 2016.

Ajouté à ces modèles de vitesse, un dernier modèle de vitesse a été testé.
Il s’agit d’un modèle multicouche 1D minimum obtenu à partir du modèle
1D d’Haslach grâce à la procédure d’inversion des paramètres hypocentraux
et des paramètres de vitesse proposée par Kissling et al., 1995, à travers le
programme VELEST. L’approche proposée par Kissling et al., 1995 consiste
en une série d’inversions simultanées des paramètres hypocentraux et des mo-
dèles de vitesses (Vp et Vs) de telle façon à approcher des solutions minimales,
c’est-à-dire la RMS minimale. Les solutions sont à la fois la localisation des
hypocentres, le calcul d’un modèle 1D en couches et la correction apportée aux
stations (correction liée aux différences de temps de trajet sous chaque station).
Le modèle 1D minimum est présenté dans l’annexe F.1.

Les tables des temps de trajet ont été calculées pour chaque modèle sélec-
tionné à partir des outils TauP (Crotwell et al., 1999). Ces tables regroupent
les temps de trajets des phases sismiques P et S pour des profondeurs com-
prises entre 0 et 35 km et des distances épicentrales comprises entre 0 km et
1400 km. Le programme de localisation LocSAT (Bratt et al., 1988) utilisent
ces tables pour localiser les différentes origines détectées.
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Figure 4.44: Distribution de la RMS évaluée sur des événements détectés en
juillet 2016 et localisés avec 50 modèles de vitesse à 3 couches générés automa-
tiquement (voir paragraphe 4.1.3). Chaque modèle de vitesse est numéroté et
la valeur de la RMS moyenne obtenue pour chacun des modèles de vitesse est
spécifiée en haut de chaque encart.
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Figure 4.45: Distribution de la RMS évaluée sur des événements détectés en
juillet 2016 et localisés avec 50 modèles de vitesse à multicouches générés auto-
matiquement (voir paragraphe 4.1.3). Chaque modèle de vitesse est numéroté
et la valeur de la RMS moyenne obtenue pour chacun des modèles de vitesse
est spécifiée en haut de chaque encart.

174 CHAPITRE 4. Alexandra Renouard



4.2. AMÉLIORER LE PROCESSUS D’ASSOCIATION

Les différents modèles ont été testés sur les détections et localisations des
événements pour le mois de juillet 2016. Les résultats ont été comparés avec
ceux obtenus avec deux modèles régionaux 1D de référence qui sont classique-
ment utilisés par les analystes pour localiser les événements de la zone d’étude.
Ces deux modèles sont celui d’Haslach et un autre modèle traditionnellement
utilisé pour localiser les événements dans la région des Alpes (Figure 4.46,
Frechet, 1978 ; Thouvenot et al., 2003).

Figure 4.46: Modèle de vitesse des Alpes utilisé pour la détection, en combi-
naison avec le modèle de Haslach. Le modèle des Alpes a été élaboré à partir
de l’analyse de profils sismiques et de l’hodochrone des ondes P déduit d’un
tir d’une carrière identifié le 29 septembre 1977, près de la ville de Guillestre
(Frechet, 1978 ; Thouvenot et al., 2003).

Les différents tests effectués n’ont pas permis de mettre en relief une solu-
tion de modèle de vitesse optimale pour toute la zone d’étude. En effet, si un
modèle peut localement améliorer le processus final d’association et de localisa-
tion des origines (nombre de pointés supérieurs et diminution des faux pointés
sélectionnés), il peut à l’inverse fortement dégrader la détection ailleurs, jus-
qu’à ne plus détecter les événements qui étaient précédemment présents dans
le catalogue de référence automatique établi avec le modèle d’Haslach.
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Le choix de modèles plus spécifiques, notamment les modèles multicouches,
n’a donc pas apporté de plus-value sur les résultats de détection finaux, mais
a au contraire souligné des hétérogénéités spatiales dans les détections plus
marquées. Face à la variabilité lithologique du milieu de propagation, plusieurs
de ces modèles de vitesse seraient en fait nécessaires. Seulement, déterminer
les critères de détection (géographiques, pétrologiques, stratigraphiques, litho-
logiques, structuraux, sismologiques, etc) qui puissent permettre de découper
efficacement et significativement la zone d’étude en plusieurs régions de détec-
tion, chacune affiliée par exemple à un modèle 1D minimum spécifique, devient
éminemment complexe et demande une connaissance plus approfondie du com-
portement de la sismicité dans cette zone d’étude.

Par conséquent, la sélection combinée des deux modèles de référence, celui
d’Haslach et celui des Alpes, a finalement produit les meilleurs résultats, avec
plus d’homogénéité. Néanmoins, afin de récupérer le maximum d’événements,
le choix d’en fixer automatiquement certains à une profondeur arbitraire a été
privilégié.

En effet, en cas d’incertitudes trop fortes des modèles de vitesse choisis, en
particulier vis-à-vis des couches superficielles, cela a permis à l’algorithme de
localisation LocSAT de faire converger les solutions hypocentrales vers un mini-
mum local, notamment pour les événements localisés plus superficiellement. La
profondeur minimale arbitraire qui a été choisie est 2 km. Celle-ci correspond
à la profondeur qui a été majoritairement retrouvée lorsque j’ai relocalisé l’en-
semble des événements de la période 2016 en incluant les stations temporaires
AlpArray pour l’année 2016 (cf Figure 3.38).
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•Créer plusieurs instances pour optimiser le processus d’association
sur toute la zone d’étude

Six instances du processus d’association ont alors été introduites : deux
pour le premier processus d’association (rétro-projection de pointés) et quatre
pour le second processus d’association (clustering de pointés). Pour le premier
processus d’association, chaque instance localise les origines avec un modèle de
vitesse différent (la première instance utilise le modèle Haslach et la deuxième
le modèle des Alpes). Pour le second processus d’association, chaque instance
est définie par une combinaison d’une vitesse moyenne des ondes P dans la
croûte continentale pour le clustering et d’un modèle de vitesse pour localiser
(Table 4.1).

Table 4.1: Critères différenciant les différentes instances déployées du même
processus d’association basé sur le clustering par la méthode DBSCAN (Ester
et al., 1996).

Mean P-wave Velocity Velocity Model
First Instance 4 km/s Haslach Model
Second Instance 5 km/s Haslach Model
Third Instance 5 km/s Alps Model
Fourth Instance 6 km/s Haslach Model

En plus des deux instances fournies par le premier processus d’association,
l’utilisation en parallèle de ces 4 dernières instances améliorent nettement le
processus d’association final. Par exemple, pour le séisme du 05 janvier 2017 à
09h24 qui est localisé au coeur du Massif du Chablais alpin (MLv 1.3), l’utilisa-
tion d’une vitesse moyenne des ondes P de 6 km/s, couplée au modèle Haslach,
a permis d’associer correctement un pointé P à la station OGSI, située à l’ex-
trême Sud de la nappe alpine de la Dent-Blanche (Figure 4.47a), et les deux
pointés P et S à la station DIX, située au coeur du Valais Suisse (Figure 4.47c).
En revanche, avec une vitesse moyenne de 4 km/s, et le même modèle d’Has-
lach, cette association échoue avec les deux stations : pour OGSI, c’est un faux
pointé P précoce qui est choisi alors que pour la station DIX, ce sont deux faux
pointés anticipés P et S qui ont été associés avec le reste des autres pointés
(Figure 4.47b et d).
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Pour ce séisme, des vitesses moyennes inférieures à 6 km/s induisent des
distances temporelles entre les pointés supérieures à celles calculées pour des
vitesses égales à 6 km/s, et donc des temps de trajet proportionnellement plus
longs. Par conséquent, les pointés émis aux stations OGSI et DIX qui vont être
à des distances temporelles suffisantes pour être assemblés avec les autres poin-
tés émis au stations A173A, AIGLE, GIMEL, OGMY, OG35, A164A et A181A
vont être ceux qui ont des temps d’arrivée anticipés, c’est-à-dire en l’occurrence
des faux pointés. Ces dernières associations aboutissent à des résidus tempo-
rels négatifs élevés pour ces deux stations OGSI et DIX, augmentant alors la
RMS de l’origine localisée : 4.7 (instance avec vitesse moyenne de 4 km/s),
5.4 (instance avec vitesse moyenne de 5 km/s) ou 4.6 secondes (instance avec
vitesse moyenne de 5 km/s mais modèles des Alpes) au lieu de 1.4 (instance
avec vitesse moyenne de 6 km/s) pour un même nombre de phases (18).

a) Pointés P et S sélectionnés (trait vertical rouge foncé) à la station DIX

b) Faux pointés P et S sélectionnés (trait vertical rouge foncé) à la station
DIX

Figure 4.47: Comparaison de la performance de l’association produite avec
deux instances du processus d’association considérant une vitesse moyenne des
ondes P de 6 km/s (a) et 4 km/s (b).
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De cette façon, pour améliorer le processus d’association des pointés pour
cet événement avec les instances qui prennent en compte une vitesse moyenne
des ondes P inférieure à 6 km/s pour calculer les temps de trajet entre les sta-
tions, il faudrait sélectionner une origine qui n’intègre pas les stations les plus
éloignées (comme OG35, OGMY, A164A ou A181A). Cependant cela implique-
rait de sélectionner des origines avec moins de phases (10 en l’occurrence) pour
obtenir une RMS de moins de 2 s. Par conséquent, l’instance qui considère une
vitesse moyenne de 6 km/s est l’instance optimale pour détecter ce séisme.

En revanche, pour le séisme du 06 janvier 2017 ayant eu lieu à 11h34 dans
la région de Chambéry (MLv 0.9), c’est l’instance avec une vitesse moyenne
des ondes P de 5 km/s, combinée au modèle des Alpes, qui va générer l’origine
optimale : 9 phases et RMS de 1.4 secondes. En effet, si l’on prend l’exemple
de la station RSL, de faux pointés P et S émis avec des temps d’arrivée antici-
pés sont sélectionnés dans le processus d’association opéré par les trois autres
instances.

L’instance considérant une vitesse moyenne de 6 km/s calcule des distances
temporelles globalement plus petites pour clusteriser, autorisant un plus grand
nombre de phases (13 phases mais RMS de 5.2), donc l’inclusion de stations
plus éloignées. Seulement, cela signifie également que la probabilité d’inclure
de faux pointés est accrue, comme cela a été effectivement le cas dans cet
exemple. Ainsi, l’inclusion d’un faux pointé dans le processus d’association émis
à la station A215A a perturbé le procédé de clustering. La station RSL étant
éloignée de la station A215A, pour que celle-ci soit à des distances temporelles
suffisantes pour être associé au cluster, l’instance du processus d’association a
alors sélectionné les faux pointés P et S émis de façon anticipée à cette station
RSL, diminuant alors la différence des temps d’arrivée entre les stations, donc
les distances temporelles utilisées pour clusteriser (Figure 4.48a).

De même, l’instance considérant une vitesse moyenne de 4 km/s à tendance
à calculer des distances temporelles plus grandes, diminuant la possibilité d’in-
clure des phases dans l’association (7 phases, RMS 1.4). Seulement, dans ce
cas-ci, cette instance a sélectionné les faux pointés P et S émis de façon anti-
cipée à la station RSL car cela compense des temps de trajet calculés entre les
stations trop élevés (Figure 4.48b).

Enfin, l’instance considérant une vitesse moyenne de 5 km/s, mais combi-
née avec le modèle Haslach, tend à calculer des temps d’arrivée théoriques plus
précoces qu’avec le modèle des Alpes, car les temps de trajets calculés pour
ce modèle sont plus rapides. Dans cette configuration, la différence des temps
d’arrivée théoriques et observés est élevée. Sachant que la valeur du résidu in-
tervient dans le calcul du score qui va sélectionner la meilleure future origine,
et qu’un poids élevé est donné à cette valeur, cette instance a sélectionné éga-
lement les faux pointés P et S émis de façon anticipée à la station RSL car ils
minimisent la valeur des résidus temporels (Figure 4.49c). L’instance avec une
vitesse moyenne de 5 km/s, combinée au modèle des Alpes, est l’instance qui va
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donc améliorer le mieux le processus d’association, sélectionnant notamment
les pointés P et S corrects à la station RSL (Figure 4.49d)

a) Faux pointés P et S sélectionnés (trait vertical rouge foncé) avec l’instance
considérant une vitesse moyenne de 6 km/s et le modèle Haslach

b) Faux pointés P et S sélectionnés (trait vertical rouge foncé) avec l’instance
considérant une vitesse moyenne de 4 km/s et le modèle Haslach

Figure 4.48: Comparaison de la performance de l’association produite avec les
quatre instances du processus d’association basé sur la méthode de clustering
de DBSCAN (Ester et al., 1996) à partir de l’exemple de la station RSL).
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c) Faux pointés P et S sélectionnés (trait vertical rouge foncé) avec l’instance
considérant une vitesse moyenne de 5 km/s et le modèle Haslach

d) Faux pointés P et S sélectionnés (trait vertical rouge foncé) avec l’instance
considérant une vitesse moyenne de 5 km/s et le modèle des Alpes

Figure 4.49: Comparaison de la performance de l’association produite avec les
quatre instances du processus d’association basé sur la méthode de clustering
de DBSCAN (Ester et al., 1996) à partir de l’exemple de la station RSL).
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4.3. AMÉLIORER L’ORIGINE PRÉFÉRENTIELLE POUR CHAQUE
ÉVÉNEMENT

La prise en compte de la variabilité latérale et verticale du milieu
de propagation est décisive pour améliorer le processus d’asso-
ciation des pointés P puis S entre eux. En effet, une évaluation
erronée des temps de trajet au sein du réseau de stations peut
faire perdre un vrai pointé au détriment d’un faux pointé émis
dans une fenêtre temporelle très restreinte autour du signal à dé-
tecter, parce que ce dernier est à une distance temporelle compa-
tible avec les autres pointés inclus dans le cluster ou est associé à
un résidu temporel plus petit. Or, l’intégration de tels faux poin-
tés déstabilise fortement la procédure d’association qui peut, en
s’éloignant de la solution, plus facilement inclure d’autres faux
pointés, dont ceux correspondant à du bruit. Par ailleurs, la prise
en compte de la géométrie du réseau de stations dans la zone
d’étude, c’est-à-dire de la distance entre les stations, est un autre
garant pour limiter l’inclusion de faux pointés aberrants émis au
sein du réseau.

4.3 Améliorer l’origine préférentielle pour chaque
événement

4.3.1 Combler les défaillances du protocole par défaut de
sélection de l’origine préférentielle

Comme décrit précédemment dans la section 2, le système de détection de
SeisComP3, qui est utilisé la plupart du temps en temps réel, crée plusieurs
origines par événement. En effet, au fur et à mesure du temps qui passe, plus de
phases sismiques vont être disponibles pour déclencher une nouvelle association
de pointés et donc une nouvelle origine, y compris pour un même événement.
Les origines sont sélectionnées sur la base d’un score, qui tient compte de plu-
sieurs critères comme la RMS, la valeur des résidus, voire le nombre de pointés
P et S associés ou non associés comme c’est le cas du deuxième processus
d’association qui se base sur le clustering de pointés.

Pour chaque événement, le système de détection sélectionne parmi l’en-
semble des origines une seule origine préférentielle en se basant principalement
sur des critères comme la valeur de la RMS la plus basse ou le nombre maxi-
mal de phases. Ceci signifie qu’une origine contenant le plus grande nombre de
phases et la plus petite valeur de RMS est considérée comme l’origine préfé-
rentielle, c’est-à-dire l’origine localisée avec la meilleure précision.
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Cependant, ces deux critères ne sont pas suffisants pour sélectionner avec
robustesse la meilleure origine. En effet, par exemple, le tir de la carrière de
Dotternhausen, située dans la région d’Albstadt en Allemagne, qui a eu lieu le
19 juillet 2016 à 09h30, présente une origine préférentielle automatique estimée
à 7 phases avec une RMS de 0.69 s (Figure 4.50a). Cette origine correspond
effectivement à la meilleure combinaison nombre de phases maximal et RMS
minimale.

Seulement, cette origine a été déclenchée suite à une association de poin-
tés qui contient un faux pointé émis à la station EMBD, située au coeur du
Valais suisse (Figure 4.50b). L’analyse des signaux montre que ce faux pointé
correspond à du bruit et détériore la qualité de la localisation épicentrale (plus
particulièrement latitudinale), hypocentrale (qui est fixée à la valeur par dé-
faut de 2 km) et du calcul de la magnitude locale sur la composante verticale
(MLv), qui est de 1.40. Sans prendre en compte ce faux pointé à cette station,
l’origine préférentielle est estimée à partir de 6 phases avec une RMS égale à
0.69 s (Figure 4.51). Alors que les incertitudes des localisations épicentrales et
hypocentrales restent élevées du fait du faible nombre de phases et des incer-
titudes liées au modèle de vitesse, la magnitude diminue, passant de 1.40 à
1.20. De ce fait, choisir cette dernière origine comme préférentielle éviterait de
contaminer cet événement par un faux pointé, et améliorerait non seulement
sa localisation mais aussi l’estimation de sa magnitude.

Alexandra Renouard CHAPITRE 4. 183



4.3. AMÉLIORER L’ORIGINE PRÉFÉRENTIELLE POUR CHAQUE
ÉVÉNEMENT

a) Origine préférentielle sélectionnée par le système de détection SeisComP3

b) Faux pointé émis à la station EMBD située à une distance épicentrale de
238 km et intégré à l’origine préférentielle définie par le système de détection

SeisComP3

Figure 4.50: Exemple de défaillance de la procédure de sélection de l’origine
préférentielle établie par le système de détection de SeisComP3. La figure pré-
sente deux origines pour un même événement correspondant à un tir de la
carrière de Dotternhausen identifié le 19 juillet 2016 à 09h30 environ.
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Origine préférentielle sans la prise en compte du faux pointé émis à la station
EMBD située à une distance épicentrale de 238 km

Figure 4.51: Exemple de défaillance de la procédure de sélection de l’origine
préférentielle établie par le système de détection de SeisComP3. La figure pré-
sente deux origines pour un même événement correspondant à un tir de la
carrière de Dotternhausen identifié le 19 juillet 2016 à 09h30 environ.

De même, pour le tir de la carrière de Schuttertal, situé au coeur du Massif
de la Forêt Noire, identifié le 01 juillet 2016 à 12h54 (MLv 0.9), le système de
détection de SeisComP3 identifie une origine préférentielle pour cet événement
à partir de 14 phases avec une RMS de 1.22 s (Figure 4.52). Seulement, là
encore, cette origine a intégré un faux pointé émis à la station RONF (distance
épicentrale 122 km). Ce faux pointé correspond également à du bruit impulsif
pointé (Figure 4.52b). La meilleure origine pour cet événement n’intégrant pas
le pointé à la station RONF serait alors une origine à 13 phases avec une RMS
de 0.82 s (Figure 4.53).
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a)Origine préférentielle sélectionnée par le système de détection SeisComP3

b) Faux pointé émis à la station RONF située à une distance épicentrale de
122 km et intégré à l’origine préférentielle définie par le système de détection

SeisComP3

Figure 4.52: Exemple de défaillance de la procédure de sélection de l’origine
préférentielle établie par le système de détection de SeisComP3. La figure pré-
sente deux origines pour un même événement correspondant à un tir de la
carrière de Schuttertal identifié le 01 juillet 2016 à 12h54 environ.
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Origine préférentielle sans la prise en compte du faux pointé émis à la station
RONF

Figure 4.53: Exemple de défaillance de la procédure de sélection de l’origine
préférentielle établie par le système de détection de SeisComP3. La figure pré-
sente deux origines pour un même événement correspondant à un tir de la
carrière de Schuttertal identifié le 01 juillet 2016 à 12h54 environ.
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Pour le séisme qui a eu lieu le 06 août 2016 au Nord du Lac Konztanz en
Allemagne à 16h53 (MLv 0.64), l’origine préférentielle qui est sélectionnée par
le système de détection de SeisComP3 est une origine déterminée à partir de
9 phases et une RMS de 0.77 s (Figure 4.54). Celle-ci a été localisée à partir
d’une association de pointés qui contient un faux pointé émis à la station
A103A, augmentant les incertitudes épicentrales et hypocentrales. Seulement,
ici il ne s’agit pas d’un pointé relié à du bruit mais à un faux pointé du temps
d’arrivée des ondes P (Figure 4.54b). Même si le vrai pointé automatique P
a bien été produit, c’est le faux pointé P retardé qui a finalement été inclus
dans le processus d’association, probablement parce que l’instance du processus
d’association considère une vitesse moyenne apparente des ondes P de la croûte
continentale (6 km/s) et un modèle de vitesse (Haslach) évaluant des temps de
trajet trop rapides par rapport aux vrais temps d’arrivées observés.

Dans le cas de ce séisme, la vraie origine préférentielle est alors une origine
à 7 phases avec une RMS de 0.47 seconde (Figure 4.55. La station A103A n’est
alors pas intégrée au processus de localisation de cette origine.

Sachant que les données acquises durent les mois de juillet et août 2016
ont servi à développer la procédure de détection proposée dans cette étude,
la combinaison des différentes instances des processus d’association avec une
procédure optimisée du choix de l’origine préférentielle apparaît bien indispen-
sable pour détecter des origines préférentielles robustes, nettoyées de tout faux
pointé.

Enfin, pour le tir de la carrière d’Arcey, situé dans la zone pré-jurassienne
française, ayant eu lieu le 11 juillet 2016 à 15h12 (MLv 1.6), l’origine préféren-
tielle définie par le système de détection de SeisComP3 est une origine à 15
phases avec une RMS de 1.14 s alors que la véritable origine préférentielle est
une autre origine à 15 phases mais avec une RMS plus petite (1.02 s). Seule-
ment, étant donné que cette dernière origine a été émise plus précocement,
le système de détection privilégie, pour un même nombre de phases et une
RMS équivalente, l’origine la plus tardive. Par conséquent, ce système gardera
comme origine préférentielle une origine contenant deux faux pointés reliés à
du bruit, émis à la station A122A (distance épicentrale de 121 km) et A103A
(distance épicentrale de 215 km), et localisée avec de très fortes incertitudes
épicentrales et hypocentrales (Figure 4.56).
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a) Origine préférentielle sélectionnée par le système de détection SeisComP3

b) Faux pointé P émis à la station A103A située à une distance épicentrale de
34.25 km et intégré à l’origine préférentielle définie par le système de détection
SeisComP3

Figure 4.54: Exemple de défaillance de la procédure de sélection de l’ori-
gine préférentielle établie par le système de détection de SeisComP3. La figure
présente deux origines pour un même événement correspondant à un séisme
identifié le 06 août 2016 à 16h53 environ.
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Origine préférentielle sans la prise en compte du faux pointé P émis à la
station A103A

Figure 4.55: Exemple de défaillance de la procédure de sélection de l’ori-
gine préférentielle établie par le système de détection de SeisComP3. La figure
présente deux origines pour un même événement correspondant à un séisme
identifié le 06 août 2016 à 16h53 environ.
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a)Origine préférentielle sélectionnée par le système de détection SeisComP3

Figure 4.56: Exemple de défaillance de la procédure de sélection de l’origine
préférentielle établie par le système de détection de SeisComP3. La figure pré-
sente deux origines pour un même événement correspondant à un tir de la
carrière d’Arcey identifié le 11 juillet 2016 à 15h12 environ.
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Origine préférentielle créée sans les faux pointés émis aux stations A122A et
A103A

Figure 4.57: Exemple de défaillance de la procédure de sélection de l’origine
préférentielle établie par le système de détection de SeisComP3. La figure pré-
sente deux origines pour un même événement correspondant à un tir de la
carrière d’Arcey identifié le 11 juillet 2016 à 15h12 environ.
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L’utilisation combinée du nombre maximal de phases et de la
valeur minimale de la RMS ne suffit pas à définir l’origine préfé-
rentielle de manière robuste. Il y a donc nécessité de reconsidérer
cette solution d’origine préférentielle en apportant d’autres cri-
tères (que ceux prédéfinis par SeisComP3) évaluant la qualité
d’une origine qui puissent être facilement accessibles depuis la
base de données des événements.

4.3.2 Définir des critères pour optimiser la sélection

Les incertitudes de localisation latitudinale et longitudinale apportent une
information capitale indirecte pour évaluer si une origine a sa localisation pol-
luée par d’éventuels faux pointés ou pour révéler quelle peut être la meilleure
origine parmi celles qui présentent un même nombre de phases et une RMS
équivalente.

De même, la valeur des résidus peut aider à reconnaître des origines conta-
minées par des faux pointés de part l’existence de résidus aberrants supérieurs
à 3.5 secondes. Les valeurs des résidus peuvent également être très utiles pour
repérer les origines avec les plus petites valeurs de résidus temporels (inférieures
à 1.5 s).

Les distances épicentrales sont aussi des critères liés à la géométrie du ré-
seau de stations à considérer (Bondar et al., 2004). La distance épicentrale
minimale peut être utilisée pour départager des origines qui ont un nombre de
phases, une valeur de RMS et des incertitudes de localisation épicentrales qui
sont du même ordre de grandeur. La distance épicentrale maximale est aussi
intéressante à prendre en compte car une valeur élevée peut indiquer l’existence
d’un pointé aberrant émis à une station fortement éloignée géométriquement
du reste des stations impliquées dans la localisation de l’origine, malgré des
différences de temps d’arrivée et des résidus temporels qui peuvent être faibles.

La profondeur peut être également un paramètre intéressant pour exclure de
la sélection des origines localisées à des profondeurs excessives (très supérieures
à 30 km) du fait de l’existence d’un ou plusieurs faux pointé(s) associés au reste
des vrais pointés.

Enfin, le nombre de phases S fournit une contrainte importante sur la pro-
fondeur focale des événements et sur les incertitudes de localisation (Gomberg
et al., 1990 ; Husen et Hardebeck, 2010). Comme il est possible de l’observer
dans les Figures 4.29 à 4.39, sans le pointé des temps d’arrivée des ondes S,
la profondeur focale des événements est peu contrainte. Même si le pointé des
temps d’arrivée des ondes S n’apporte pas nécessairement de l’exactitude (le
pointé des ondes S est difficile du fait des conversions de phases notamment), le
nombre de phases S inclus dans l’assemblage de pointés apporte de la précision
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à la localisation et peut départager les origines qui ont un nombre de phases
et une valeur de RMS similaires.

Le nombre de phases et la valeur de la RMS restent des paramètres clefs
dans la sélection de l’origine préférentielle, en complément et en appui des
autres critères décrits. Ces deux paramètres clefs servent également à affiner
la sélection de l’origine préférentielle à travers une recherche itérative de la
meilleure origine basée sur un intervalle de valeurs autour du nombre maximal
de phases qui minimise à la fois la RMS et les imprécisions de localisation
qu’évaluent les autres critères décrits ci-dessus.

4.3.3 Créer un module SeisComP3 qui détermine une
meilleure origine préférentielle

L’analyse de l’ensemble des 708 événements détectés pour la période juillet-
août 2016 a conduit à l’élaboration d’un arbre décisionnel qui initie la sélection
de l’origine préférentielle à travers deux seuils de référence : le nombre maxi-
mal de phases (plusieurs valeurs seuils possibles) et la valeur minimale de RMS
(un unique seuil égal à 2 s). Les autres critères (nombre de phases S, nombre
de résidus temporels supérieurs à 1.5 s, nombre de résidus temporels > 3.5 s,
distance épicentrale minimale, distance épicentrale maximale, profondeur, in-
certitude latitudinale, incertitude longitudinale) viennent en appui pour affiner
la sélection.

L’élaboration de l’arbre décisionnel a donc été effectuée manuellement après
une étude précise de l’ensemble des critères potentiels pouvant influencer le
choix de l’origine préférentielle pour tous les vrais événements détectés au cours
des mois de juillet et août 2016. Cet arbre construit a été intégré dans un
module SeisComP3 que j’ai codé et a été testé sur un jeu d’événements détectés
par le BCSF-RéNaSS entre janvier et juillet 2016 puis un jeu d’événements
détectés uniquement automatiquement selon la procédure développée dans ce
travail de thèse pour les mois compris entre septembre et décembre 2016.

De cette façon, pour chaque événement détecté au cours du mois de juillet
et août, j’ai vérifié son origine préférentielle. Si celle-ci ne correspondait pas à la
véritable origine préférentielle (intégration d’un faux pointé par exemple dans
l’association qui a conduit à l’origine préférentielle déclarée par SeisComP3),
j’ai alors recherché d’autres critères, différents de ceux utilisés par défaut (RMS
et nombre de phases), qui pourraient, s’ils étaient utilisés, faire basculer la
sélection vers la véritable origine préférentielle.

L’arbre décisionnel construit manuellement répond donc à plusieurs che-
mins décisionnels possibles. Ces chemins décisionnels représentent l’ensemble
des choix disponibles élaborés à partir de la valeur des critères utilisés pour
sélectionner chaque origine (nombre de phases, RMS, nombre de phases S,
nombre de résidus temporels supérieurs à 1.5 s, nombre de résidus temporels
> 3.5 s, distance épicentrale minimale, distance épicentrale maximale, profon-
deur, incertitude latitudinale, incertitude longitudinale), et ce, pour un large
spectre de configurations possibles. Le facteur qui est finalement hautement

194 CHAPITRE 4. Alexandra Renouard



4.3. AMÉLIORER L’ORIGINE PRÉFÉRENTIELLE POUR CHAQUE
ÉVÉNEMENT

considéré pour optimiser le choix de l’origine préférentielle est la qualité de sa
localisation.

Cet arbre décisionnel est donc d’abord construit sur la base du nombre
maximal de phases qui est identifié pour chaque événement. Lorsque le nombre
maximal de phases est supérieur à 20 ou bien inférieur 6, le choix de l’origine
préférentielle est plus rapide et se base uniquement sur une recherche de l’ori-
gine préférentielle à travers la combinaison simultanée de la valeur minimale
de la RMS et le nombre maximal de phases possible (Figure 4.58).

En revanche, le choix se complexifie pour un nombre de phases compris entre
6 et 19. En effet, en plus d’une recherche itérative de la meilleure combinaison
possible entre la valeur de RMS minimale et le nombre de phases maximal,
des critères supplémentaires tels que le nombre de phases S, la distance épi-
centrale minimale et les incertitudes de localisation épicentrale vont aider à
affiner le diagnostic de cette nouvelle origine préférentielle (Figures 4.59, 4.60
et 4.61). Les autres critères comme la profondeur, les valeurs des résidus et
la distance épicentrale maximale sont principalement utilisés pour rejeter les
origines aberrantes quand c’est possible (Figure 4.58). Néanmoins, ces derniers
critères sont très précieux lorsqu’il s’agit d’affiner la sélection d’une origine pré-
férentielle pour les événements dont les origines présentent très peu de phases
(généralement inférieur ou égal à 7, Figures 4.60 et 4.62).
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Cet arbre décisionnel, présenté dans les Figures 4.58, 4.59, 4.60, 4.61
et 4.62, a été implémenté dans un module SeisComP3 que j’ai développé.
Ce module, écrit en Python, extrait les différentes critères (RMS, nombre de
phases, nombre de phases S, nombre de résidus temporels supérieurs à 1.5 s,
nombre de résidus temporels > 3.5 s, distance épicentrale minimale, distance
épicentrale maximale, profondeur, incertitude latitudinale, incertitude longi-
tudinale) pour chaque origine de chaque événement. En fonction de la valeur
du nombre maximal de phases identifié pour chaque événement, relativement
à la plus faible valeur de RMS, ce module évalue l’origine préférentielle en
utilisant l’arbre décisionnel empiriquement construit. Celui-ci récupère finale-
ment l’identifiant (ID) de l’origine préférentielle sélectionnée. Il notifie ensuite
le système de messagerie du changement en activant le protocole de mise-à-jour
de l’origine préférentielle. Le module de gestion des événements modifie alors
dans la base de données des événements l’origine préférentielle par défaut en
validant la nouvelle origine préférentielle.
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Figure 4.58: Architecture générale de l’arbre décisionnel qui sert à sélectionner
la nouvelle origine préférentielle en se basant d’abord sur le nombre maximal
de phases qui sont présentes pour chaque événement. A l’issue de la recherche
de la nouvelle origine préférentielle, c’est l’identifiant de l’origine sélectionnée
(ressource ID) qui est récupéré.
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Figure 4.59: Composante plus détaillée (cercle numéroté 1 sur la figure 4.58)
de l’arbre décisionnel. Cette composante sert à sélectionner la nouvelle origine
préférentielle pour des événements dont le nombre maximal de phases, pour la
valeur de RMS la plus faible, est compris entre 13 et 19 phases. A l’issue de
la recherche de la nouvelle origine préférentielle, c’est l’identifiant de l’origine
sélectionnée (ressource ID) qui est récupéré.
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Figure 4.60: Composante plus détaillée (cercle numéroté 2 sur la figure 4.58)
de l’arbre décisionnel. Cette composante sert à affiner la sélection de la nouvelle
origine préférentielle pour des événements dont le nombre maximal de phases,
pour la valeur de RMS la plus faible, est compris entre 7 et 12 phases. A
l’issue de la recherche de la nouvelle origine préférentielle, c’est l’identifiant de
l’origine sélectionnée (ressource ID) qui est récupéré.
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Figure 4.61: Composante plus détaillée (cercle numéroté 3 sur la figure 4.58)
de l’arbre décisionnel. Cette composante sert à affiner la sélection de la nouvelle
origine préférentielle pour des événements dont le nombre maximal de phases,
pour la valeur de RMS la plus faible, est compris entre 5 et 6 phases. A l’issue de
la recherche de la nouvelle origine préférentielle, c’est l’identifiant de l’origine
sélectionnée (ressource ID) qui est récupéré.
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Figure 4.62: Composante plus détaillée (cercle numéroté 4 sur la figure 4.58)
de l’arbre décisionnel. Cette composante sert à affiner la sélection de la nouvelle
origine préférentielle pour des événements dont le nombre maximal de phases,
pour la valeur de RMS la plus faible, est inférieur à 5 phases. A l’issue de
la recherche de la nouvelle origine préférentielle, c’est l’identifiant de l’origine
sélectionnée (ressource ID) qui est récupéré.
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4.4 Récapitulatif

L’amélioration de la qualité des pointés automatiques P et S, du proces-
sus d’association ainsi que du processus de sélection de l’origine préférentielle
conditionne fortement la réduction du nombre de séismes détectés avec un ou
plusieurs faux pointés.

La prise en compte de la configuration du réseau de stations (géométrie,
localisation, site d’implantation) est d’abord déterminante pour obtenir des
pointés automatiques P et S, de meilleure qualité.

De plus, la considération du milieu de propagation, à travers la vitesse des
ondes sismiques, est ensuite capitale pour améliorer le processus d’association,
et limiter l’association de faux pointés avec de vrais pointés. En effet, ce milieu
impacte fortement les temps de trajet qui sont calculés au sein du réseau de
stations, que ce soit pour évaluer les résidus temporels associés aux différents
pointés, ou pour évaluer les distances temporelles nécessaires pour former les
clusters de pointés.

Enfin, la gestion de critères supplémentaires qui vont évaluer la qualité
d’une origine localisée est décisive pour améliorer le processus de sélection de
l’origine préférentielle parmi les origines qui constituent chaque événement. Si
le nombre maximal de phases et la valeur minimale de la RMS sont suffisants
pour estimer des événements qui sont générés avec beaucoup de phases (su-
périeurs à 20), ceci est beaucoup moins évident pour ceux qui en possèdent
moins.

Or, la procédure de détection est ici établie pour détecter des signaux de
faible amplitude correspondant à des séismes qui sont enregistrés à un faible
nombre de stations. Les critères comme le nombre de phases S, les distances
épicentrales maximale et minimale, la profondeur, le nombre de pointés avec des
résidus supérieurs à 1.5 s et 3.5 s, les incertitudes de localisation latitudinales
et longitudinales viennent donc affiner le processus de sélection de l’origine
préférentielle. L’origine qui est finalement choisie est l’origine qui a certes le
nombre maximal de phases et la plus petite valeur de RMS, mais qui est aussi
localisée avec la plus grande précision.

La connaissance des caractéristiques du bruit enregistré aux stations et du
milieu de propagation des ondes sismiques, couplée à la prise en compte des dis-
tances épicentrales et des facteurs évaluant la qualité des localisations des évé-
nements, conditionnent donc la performance de la détection finale des séismes.
Cette détection dépend donc fortement de la nature du signal enregistré, qui
reflète l’influence combinée des effets de la source, souvent très atténués, de la
propagation des ondes dans le milieu et du bruit enregistré aux stations.
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Face à une performance de détection des petits séismes multifactorielle, le
nouveau système de détection contient :

— plusieurs instances de pointés P et S (dans notre cas 2) qui ont été
introduites pour répondre à l’évolution spatio-temporelle des conditions
de bruit aux stations et des distances épicentrales (Figure 4.63a) ;

— plusieurs instances du processus d’association qui ont été implémentées
en parallèle (dans notre cas deux instances pour le processus d’associa-
tion basé sur la rétro-projection des pointés à un hypocentre optimal,
quatre instances pour le processus d’association basé sur le clustering
de pointés) pour prendre en compte de façon optimale les variations
verticales et latérales du milieu de propagation des ondes sismiques (Fi-
gure 4.63b) ;

— un module SeisComP3 qui a été développé pour sélectionner plus soli-
dement l’origine préférentielle de chaque événement puis introduit dans
le système de détection final (Figure 4.63c).

Afin d’assurer une synchronisation de l’ensemble des étapes de la nouvelle
procédure, j’ai également développé un autre module SeisComP3 qui est intégré
à la procédure de détection, directement après toutes les instances des processus
d’association. Ce module vérifie en continu le statut de ces différentes instances
et autorise la poursuite de la procédure de détection une fois que toutes ces
dernières ont terminé leur action, à savoir lorsque toutes les origines ont été
créées et localisées.

Si ces développements diminuent fortement la détection de séismes conta-
minés par de faux pointés, ils ne permettent en revanche pas d’annuler la
détection des faux événements. Le chapitre suivant est donc dédié à expli-
quer comment à partir de l’apprentissage machine supervisé, il est possible de
réduire la quantité de faux événements détectés, tout en veillant à identifier
également automatiquement les vrais événements restants, à savoir les séismes
et les tirs de carrière.
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Figure 4.63: Procédure de détection nouvellement développée, qui vise à ré-
duire le taux de séismes détectés avec de faux pointés tout en diminuant le seuil
avec lequel ces derniers sont détectés. (a) L’instance de pointé automatique des
ondes P et S est remplacée par plusieurs instances qui viennent améliorer la
qualité des pointés émis en prenant en compte la variabilité spatio-temporelle
des caractéristiques du bruit enregistré aux stations et des distances épicen-
trales. (b) Chaque instance des deux processus d’association (rétro-projection
des pointés et clustering des pointés) est remplacée par plusieurs instances
qui considèrent plus spécifiquement les variations latérales et verticales du mi-
lieu de propagation (modèle de vitesse pour les deux processus d’association
et vitesse moyenne apparente des ondes P dans la croûte continentale pour
le deuxième processus d’association). (c) Un nouveau module SeisComP3 que
j’ai développé est introduit dans le système de détection pour sélectionner la
véritable origine préférentielle basée sur d’autres critères (que ceux proposés
par SeisComP3) qui évaluent la précision de localisation de cette origine.
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Chapitre 5

Comment réduire la détection des
faux événements et comment
efficacement discriminer les séismes
des tirs de carrière ?
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5.1. CLASSER LES ÉVÉNEMENTS AVEC L’APPRENTISSAGE
MACHINE SUPERVISÉ

5.1 Classer les événements avec l’apprentissage
machine supervisé

5.1.1 Trouver une fonction de prédiction qui minimise l’er-
reur de généralisation

L’énoncé du problème de classification se base sur la supposition qu’il existe
une fonction cible inconnue, une fonction d’étiquetage (nommée F), qui va
permettre de labéliser en sortie (affilier une étiquette de classe) un ensemble
d’événements (ici les faux événements, les séismes et les tirs de carrière) en
données d’entrée (Figure 5.6a).

Figure 5.1: Cadre théorique de l’apprentissage machine supervisé. (a) Un en-
semble d’observations (x1 à xn) appartenant au domaine X, avec chaque obser-
vation décrite par un vecteur d’attributs (xa à xzz), est mappé en un ensemble
de labels, appartenant au domaine Y, par une fonction cible inconnue F. (b)
Une base d’entraînement, échantillonnée à partir des données disponibles, est
constituée d’un ensemble de couples (x,y) appartenant à X × Y, et sert de
base d’entrée pour un algorithme d’apprentissage A (c) qui va générer une
fonction de prédiction G qui va approximer la fonction cible inconnue (e), en
se basant sur un espace initial d’hypothèses restreintes H (d). Cette fonction
de prédiction doit être capable de prédire les labels de nouveaux événements
en minimisant l’erreur de généralisation.

La résolution de ce problème par l’apprentissage machine supervisé va se
baser sur la construction inductive d’une fonction de prédiction généralisable
G, qui va approximer la fonction cible inconnue F, en commettant une erreur
de prédiction (ou erreur empirique) la plus faible possible (Figure 5.6e). Dans le
cadre de la classification, cette fonction de prédiction G est appelée classifieur.
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Ce classifieur est construit à partir d’un ensemble fini d’exemples, appelé
base d’entraînement, dans lequel chaque exemple est une paire constituée du
vecteur représentatif d’une observation, c’est-à-dire ici un vecteur d’attributs
décrivant un événement, et d’une réponse associée, à savoir l’étiquette de classe
de chaque événement (Figure 5.6b). Les Figures 5.2, 5.3 et 5.4 présentent
quelques exemples d’attributs qui peuvent être utilisés pour décrire les événe-
ments qui sont à classer, à savoir les faux événements, les tirs de carrière et les
séismes.

La base d’entraînement qui est utilisée (nommée S) correspond donc à un
échantillonnage de l’ensemble des observations possibles (nommé X) et de leurs
réponses associées (nommé Y) dont la distribution D est inconnue (Figure 5.6a,
b). Seulement, l’hypothèse de base sous-jacente à l’apprentissage est que les
données sont stationnaires, c’est-à-dire que les exemples de la base d’entraîne-
ment, sur laquelle la fonction de prédiction est apprise, sont représentatifs du
problème général que l’on souhaite résoudre.

L’objectif de l’apprentissage supervisé est donc de rechercher la fonction de
prédiction G qui aura de bonnes performances de généralisation. Autrement
dit, la fonction de prédiction G trouvée réalisera une erreur de généralisation
très faible. Seulement, cette erreur de généralisation est en fait difficile à estimer
car elle est exprimée en fonction de deux paramètres inconnus : la distribution
de l’ensemble de toutes les observations possibles D et la fonction d’étique-
tage cible F. La seule information disponible est en fait contenue dans la base
d’entraînement.

En suivant le principe inductif de la minimisation du risque empirique
(MRE, Vapnik, 1999), cette erreur de généralisation sera donc approximée
à travers le calcul de l’erreur empirique. En effet, ce principe suppose que la
fonction de prédiction qui minimise l’erreur empirique, aboutit à une erreur
de généralisation qui est proche de son minimum, et donc offre une borne su-
périeure à cette erreur de généralisation. Il s’agit alors dans ce nouveau cadre
de trouver la fonction de prédiction G qui a l’erreur empirique la plus faible,
c’est-à-dire qui minimise l’écart entre la réponse réelle y (l’étiquette de classe)
et la réponse prédite G(x) par la fonction de prédiction G pour une observation
donnée de la base d’entraînement S.

Seulement, la recherche de la fonction de prédiction G optimale sera res-
treinte par le choix de l’algorithme d’apprentissage et la configuration de ce
dernier, qui vont définir l’espace des hypothèses possibles H pour trouver cette
fonction G (Figure 5.6c). Cet espace d’hypothèses possibles H constitue l’en-
semble des fonctions de prédiction candidates qui vont être considérées dans
l’apprentissage pour prédire les réponses associées aux données d’observation.
La recherche de cette fonction de prédiction optimale est donc biaisée vers un
jeu particulier de règles de prédiction, ce qui est nommé biais inductif (Haussler,
1988 ; Mitchell, 1997). La fonction de prédiction optimale G, soit l’hypothèse
finale qui appartient à l’ensemble H, est celle qui va se rapprocher le mieux de
la fonction cible, et donc de minimiser l’erreur sur S.
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(a)

(b)

Figure 5.2: Aperçu de la variabilité des attributs qui peuvent être utilisés
pour décrire un événement. L’événement qui est présenté ici est un tir de la
carrière de Straßberg, identifié en Allemagne le 15 décembre 2016 à 12h29
(MLv 1.6). Par exemple, les attributs nommés xa à xd sont des paramètres
statistiques (valeur maximale, moyenne, médiane, mode) qui décrivent l’en-
veloppe du signal enregistré sur la composante verticale de la station GUT
pour cet événement. Les attributs nommés xe à xh sont les mêmes paramètres
statistiques (valeur maximale, moyenne, médiane, mode) qui décrivent quant
à eux la fonction STA/LTA, c’est-à-dire l’évolution des valeurs du rapport
STA/LTA en fonction du temps, pour la même station. De même, pour xj à
xl qui décrivent statistiquement la représentation spectrale discrète du signal
échantillonné, obtenue par transformée discrète de Fourier (DFT). L’attribut xi
définit le rapport spectral de l’intensité du signal sur deux fenêtres temporelles
adjacentes. Les attributs xm à xr apportent des informations sur l’origine préfé-
rentielle de l’événement localisé, à savoir par exemple sa localisation épicentrale
et les incertitudes associées, le nombre de phases inclus dans l’association, la
RMS des résidus, le gap azimutal ou la distance épicentrale minimale.
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(a)

(b)

Figure 5.3: Aperçu de la variabilité des attributs qui peuvent être utilisés pour
décrire un événement. L’événement qui est présenté ici est un séisme, identifié
dans le canton de Zürich en Suisse le 18 octobre 2016 à 21h36 (MLv 1.4). Les
attributs proposés sont les mêmes que que dans la Figure 5.2. Pour les attributs
liés au signal, c’est la composante verticale de la première station (BALST) qui
est ici présentée.
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(a)

(b)

Figure 5.4: Aperçu de la variabilité des attributs qui peuvent être utilisés pour
décrire un événement. L’événement qui est présenté ici est un faux événement,
identifié au Sud-Ouest de Frankfurt, non loin de deux carrières, le 19 novembre
2016 à 13h07. Les attributs proposés sont aussi les mêmes que que dans la
Figure 5.2. Pour les attributs liés au signal, c’est la composante verticale de la
première station (A116A) qui est également présentée.
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Si l’algorithme d’apprentissage renvoie une fonction de prédiction dont l’er-
reur empirique reflète son erreur de généralisation lorsque la taille de la base
d’entraînement tend vers l’infini, et, si l’algorithme permet de trouver une
fonction de prédiction qui minimise l’erreur de généralisation dans la classe
d’hypothèses considérée, alors l’erreur empirique de cette fonction de prédic-
tion sur la base d’entraînement S converge en probabilité vers son erreur de
généralisation.

La borne supérieure de l’erreur de généralisation s’exprime donc effective-
ment en fonction de l’erreur empirique de la fonction de prédiction apprise
sur une base d’entraînement, mais aussi en fonction de la complexité de la
classe d’hypothèses utilisées (nombre de nœuds dans un réseau neuronal, pro-
fondeur d’un arbre décisionnel, etc.). Cette complexité traduit la capacité de
la classe d’hypothèses à résoudre le problème de prédiction. Plus cette capacité
est grande, plus l’erreur empirique sur S est faible, mais plus il y a un risque
que l’erreur de généralisation soit en revanche élevée (Figure 5.5). Cette borne
exhibe ainsi le compromis qui existe entre l’erreur empirique à minimiser et la
capacité de la classe d’hypothèses à contrôler.

L’erreur qui est estimée sur la base d’entraînement n’est donc pas forcé-
ment représentative de la performance de la fonction de prédiction sur de nou-
velles observations. Il est alors nécessaire de disposer d’un second ensemble
d’exemples étiquetés, appelé base de test, auquel l’algorithme d’apprentissage
n’avait pas accès, pour estimer l’erreur moyenne de la fonction produite, qui
sera cette fois plus représentative de son erreur de généralisation. L’objectif
pour l’algorithme d’apprentissage est de trouver une fonction ayant de bonnes
performances de généralisation et non celle qui sera capable de reproduire par-
faitement les réponses associées aux exemples d’entraînement.
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Figure 5.5: Évolution de l’erreur empirique (ou erreur d’entraînement) et de
l’erreur de généralisation en fonction de la complexité de la classe d’hypothèses
utilisées (H). L’erreur empirique diminue avec la complexité de la classe d’hy-
pothèses utilisées alors que l’erreur de généralisation est d’abord élevée pour de
faibles niveaux de complexité, diminue jusqu’à ce que la complexité de la classe
d’hypothèses utilisées corresponde à la distribution inconnue des observations,
puis s’élève de nouveau pour des classes d’hypothèse de plus haute complexité.
Modifié d’après Belkin et al., 2019.
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Figure 5.6: Illustration des deux phases d’un problème d’apprentissage su-
pervisé. Dans la phase d’apprentissage (schématisée par les traits pleins), une
fonction minimisant l’erreur empirique sur une base d’entraînement est trouvée
parmi une classe de fonctions hypothétiques prédéfinies. Dans la phase de test
(schématisée par les traits pointillés), les sorties de nouveaux exemples sont
prédites par la fonction de prédiction. D’après Amini, 2015.
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5.1.2 Définir les contraintes de l’espace d’apprentissage qui
élèvent l’erreur de généralisation

•Une taille d’échantillon petite

Dans le cadre du problème de la classification, afin d’évaluer la performance
des prédictions du classifieur, il est nécessaire d’avoir une base d’entraînement
qui ait des étiquettes de classe correctement affiliées aux différents événements.
Or, dans la zone d’étude, c’est seulement à partir de 2012 que les tirs de car-
rière ont été inclus dans le catalogue maintenu par le BCSF-RéNaSS. De plus,
comme il a été déjà décrit dans la section 3, ce n’est qu’à partir de 2016 que
cette base de données a pu être réellement soigneusement discriminée. Par
conséquent, la seule base de données vraiment robuste dont je dispose pour
résoudre ce problème de classification des faux événements, des séismes et des
tirs de carrière, est une base relativement petite d’environ 10389 événements
(728 faux événements, 5537 séismes, et 4124 tirs de carrière) qui ont été détec-
tés entre 2016 et 2019. Cette taille est effectivement relativement petite si on
la compare aux bases de données qui peuvent être produites actuellement dans
d’autres domaines appliqués comme la biomédecine avec les données omiques
(ex : données de séquençage entier du génome, plusieurs dizaines de milliards
de nucléotides répartis sur plus de 20 000 génomes différents, Wainberg et
al., 2018) ou plus théoriques comme la reconnaissance d’images à partir de la
base des 300 millions d’images du monde réel éditée par Google (ImageNet et
JFT-300M, Sun et al., 2017).

•Des données de grande dimension

Chaque événement de la base de données que je possède peut être décrit à
travers un espace d’attributs qui est grand. En effet, quel que soit l’événement
(faux événement, séisme ou tir de carrière), celui-ci peut être d’abord décrit
à travers les paramètres qui vont définir son origine, à savoir sa localisation
(coordonnées géographiques, profondeur, distance à un site anthropique comme
une carrière, etc.) et les incertitudes associées (ellipsoïdes de confiance), son
temps d’occurrence (heure de la journée, jour de la semaine, etc.), sa qualité
(distances épicentrales, RMS, résidus temporels, nombre et type de phases,
gap azimutal, etc) et sa magnitude (magnitude locale, magnitude de coda,
magnitude de surface, etc.) par exemple.

Un événement peut ensuite être également défini grâce aux signaux qui
ont servi à l’identifier. Ces derniers fournissent des informations indirectes
précieuses sur la source qui a émis ces signaux, mais aussi sur les effets du
milieu de propagation et les caractéristiques du bruit enregistré aux diffé-
rentes stations. Cet ensemble d’informations peut être extrait à partir d’une
description complète des signaux dans le domaine temporel (formes d’onde,
enveloppe), fréquentiel (spectre) et tempo-fréquentiel (spectrogrammes, sono-
grammes, décomposition en ondelettes, transformation de Wigner-Ville, trans-
formation d’Hilbert-Huang, etc.).
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Quelques exemples d’attributs sont présentés dans la Figure 5.3 ou 5.2 ou
5.4. Dans ce travail de thèse, un total de 361 attributs ont été identifiés pour
décrire chaque événement. Le détail de ces attributs est adressé dans le tableau
S1 qui se trouve dans le supplément de l’article qui est présenté ultérieurement.

Seulement, la précision des algorithmes de classification a tendance à se dé-
tériorer à mesure que la dimensionnalité des attributs augmente, en raison d’un
phénomène appelé la “malédiction de la dimensionnalité” (Bellman, 1961 ;
Trunk, 1979 ; Koppen, 2000). En effet, si la distance euclidienne est choi-
sie pour comparer relativement chaque observation de la base d’entraînement
(à savoir chaque vecteur d’événement) dans l’espace euclidien correspondant,
la distance qui sépare chaque point d’observation augmente avec le nombre
d’attributs (Figure 5.7).

Figure 5.7: Évolution de la distribution de la densité de 500 points d’observa-
tion en fonction de la distance euclidienne et de la dimensionnalité de l’espace
d’attributs. Chaque histogramme représente une dimensionnalité (de 1 à 128).
Au fur et à mesure que la dimensionnalité des attributs augmente, les distri-
butions tendent vers une forme gaussienne avec une distance moyenne entre
chaque point d’observation de l’espace euclidien qui s’accroît. Cette accroisse-
ment de la distance qui sépare chaque point d’observation limite les possibilités
de regroupement des observations en des classes bien identifiées. Une comparai-
son relative des distances (normalisation par rapport à la distance maximale)
montre qu’à mesure que la dimension augmente, les distances se concentrent
autour d’une valeur centrale, soulignant le fait que les points d’observation
tendent à être environ tous à la même distance. SD = écart-type.
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Avec l’augmentation de la dimensionnalité de l’espace d’attributs, les pos-
sibilités de combinaisons uniques d’attributs se multiplient donc, éloignant les
points d’observation les uns des autres (Figure 5.8). Cet accroissement expo-
nentiel du nombre attributs est d’ailleurs nécessairement associé à une aug-
mentation de la redondance ou la non significativité de plusieurs entre eux, au
regard du problème posé.

Figure 5.8: Effet de l’augmentation de la dimensionnalité des attributs sur la
densité des points d’observation (chaque point d’observation correspond à un
vecteur de n attributs, n=1, 2, 3). Les données dans une seule dimension sont
relativement compactes. En ajoutant une dimension, les points d’observation
s’écartent. Des dimensions supplémentaires éparpillent largement les points
d’observation, diminuant fortement leur densité au sein d’un espace d’attributs
à plus grande dimension. D’après Parsons et al., 2004.

Par conséquent, au fur et à mesure que la dimensionnalité des attributs
s’étend, il y a un risque accru de sur-adapter la fonction de prédiction à des cas
particuliers. Ceci génère donc des classifieurs avec de mauvaises performances
de généralisation et rend donc plus difficile les prédictions correctes sur de
nouvelles observations (Figure 5.9). Lorsque l’espace d’attributs progresse en
dimensionnalité, les données perdent en densité mais le classifieur généré se
complexifie aussi.
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(a) Représentation théorique du phéno-
mène de Hughes

(b) Estimation grossière de la performance
d’un classifieur obtenu à partir d’un jeu
d’entraînement constitué de séismes et
de tirs de carrières extraits du catalogue
BCSF-RéNaSS, pour la période 2017-2019.
Chaque donnée d’observation (séisme ou
tir de carrière) est représentée par un vec-
teur allant de 10 à 350 attributs aléatoi-
rement choisis parmi la banque d’attributs
définie initialement (cf supplément de l’ar-
ticle qui va suivre). L’algorithme d’appren-
tissage utilisé pour générer le classifieur est
Random Forest.

Figure 5.9: Représentation graphique du phénomène de Hughes. Dans le cadre
de l’apprentissage machine supervisé, la performance d’un classifieur est forte-
ment dépendante de la dimensionnalité de l’espace d’attributs qui est donnée
en entrée. Si la performance du classifieur augmente d’abord proportionnelle-
ment avec le nombre d’attributs utilisés jusqu’à atteindre une performance op-
timale, celle-ci chute rapidement du fait de l’accroissement possible du nombre
de combinaisons uniques d’attributs, éloignant les observations les unes des
autres. Pour de nouveau optimiser la performance du classifieur, il faudrait
augmenter la taille de l’échantillon du jeu d’entraînement afin de diminuer les
distances qui séparent chaque point d’observation dans un espace à grande
dimension d’attributs.
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•Une répartition déséquilibrée des classes d’événement

Par ailleurs, en plus d’une dimensionalité élevée, ce jeu de données présente
un fort déséquilibre des classes d’événement en direction des faux événements.
En effet, les faux événements ne représentent que 7% du total des événements
pour la période 2016-2019. De façon moins marquée, les tirs de carrière repré-
sentent 40% des événements détectés pour la même période contre 53% pour
les séismes.

Dans le cadre d’un problème de classification binaire, s’il s’agit d’identifier
les faux événements de l’ensemble des vrais événements, alors les vrais événe-
ments constituent 93% de la base d’entraînement. Or, dans la réalité, lorsque les
petits séismes sont détectés, ce sont les faux événements qui sont majoritaires
pour plus de 95% du total des événements détectés. Ce jeu de données collec-
tés n’est donc pas représentatif du profil de détection qui est généré lorsque les
seuils de détection sont fortement diminués.

Or, dans un cas ou dans l’autre, des données très déséquilibrées posent des
difficultés supplémentaires. La plupart des fonctions de prédiction apprises à
partir d’une base d’entraînement fortement déséquilibrée présentent effective-
ment un biais en faveur de la classe majoritaire (ici les vrais événements) et,
dans des cas extrêmes, peuvent ignorer complètement la classe minoritaire dans
leurs prédictions (J. M. Johnson et al., 2019). Les algorithmes d’apprentissage
présentent donc des difficultés à généraliser le comportement de la classe mino-
ritaire et la capacité prédictive de la fonction de prédiction apprise est faible.

En effet, les probabilités ou les scores prédits par de nombreux algorithmes
d’apprentissage ne sont pas calibrés. Ceci signifie que la distribution et le com-
portement des probabilités prédites peuvent ne pas correspondre à la distri-
bution attendue des probabilités observées dans les données d’apprentissage.
Ceci est particulièrement courant avec les algorithmes d’apprentissage auto-
matiques non linéaires complexes qui ne font pas directement des prédictions
probabilistes, mais utilisent plutôt des approximations. Par exemple, les al-
gorithme d’apprentissage basés sur les forêt aléatoires comme Random Forest
(Breiman, 2001) estiment leur prédiction sous la forme d’un score qui évalue
le nombre d’arbres décisionnels qui a prédit correctement le label d’un événe-
ment par rapport au nombre total d’arbres utilisés pour construire la fonction
de prédiction.
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•Des données bruitées et hétérogènes

Comme il a été écrit dans les sections précédentes, les signaux associés aux
faux événements et aux vrais événements (séismes, tirs de carrière) qui sont
détectés dans la zone d’étude ont des contenus fréquentiels, des amplitudes
et des durées qui peuvent être très fortement similaires (Inbal et al., 2018 ;
Poli et al., 2020). De nombreux vrais événements sont détectés avec de très
faibles rapport signal/bruit. D’ailleurs, le succès de l’opération de pointé des
temps d’arrivée des différentes phases sismiques a été fortement dépendant
des conditions de bruit enregistré aux stations. La prise en compte de ces
conditions de bruit est effectivement un critère décisif pour obtenir un pointé
automatique de qualité, nous l’avons vu. L’ensemble des signaux sismiques qui
sont détectés sont donc de faible amplitude, et fortement contaminés par du
bruit stationnaire, voire non stationnaire.

De plus, la diversité des formes d’ondes associées aux tirs de carrière rend
souvent difficile la tâche de discrimination des vrais événements entre eux,
comme je l’ai déjà évoqué précédemment dans les chapitres 1 et 2. L’analyse
de la forme d’onde peut alors parfois brouiller la qualité de la discrimination.

Par ailleurs, les solutions épicentrales et hypocentrales des événements dé-
tectés peuvent apporter beaucoup d’incertitudes à l’identification des événe-
ments, en se basant uniquement sur ces paramètres. Par exemple, la profon-
deur est souvent mal contrainte, les incertitudes latitudinales et longitudinales
des épicentres des vrais événements peuvent être aussi fortes que celles des
épicentres des faux événements, car ce sont souvent des petits événements qui
sont détectés et localisés avec très peu de phases.

Or, tous ces paramètres évoqués juste au-dessus font partie des attributs que
j’ai sélectionnés pour former la banque des 361 attributs qui vont servir à clas-
ser les événements (faux événement, séisme, tir de carrière). Cela signifie que
des attributs statistiques décrivant le contenu fréquentiel absolu des signaux
ou bien le contenu fréquentiel de ces signaux relativement au temps (spec-
trogramme par exemple) ou bien l’enveloppe du signal peuvent être utilisés.
Or, si ces attributs peuvent apporter des informations précieuses sur la nature
de chaque événement, ils peuvent également introduire beaucoup de confu-
sion lorsque par exemple, d’une classe d’événement à une autre, les contenus
fréquentiels se chevauchent ou les formes d’ondes tendent à être similaires.

Face à la complexité et la diversité intrinsèques du jeu d’événements (i.e.
diversité des signaux, effets du milieu de propagation, contenu en bruit élevé,
localisations des origines peu contraintes), il y a un fort risque que l’algorithme
d’apprentissage apprenne sur des corrélations parasitaires dans les données
d’apprentissage.
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Lorsque l’algorithme d’apprentissage exploite des artefacts ou des informa-
tions parasites dans le jeu de données pour en déduire une fonction de prédic-
tion erronée, ce comportement est nommé métaphoriquement "Clever-Hans"
(Pfungst, 1911 ; Lapuschkin et al., 2019 ; Schramowski et al., 2020, Fi-
gure 5.10). Clever-Hans était le nom d’un cheval intelligent qui semblait avoir
appris à répondre à des questions arithmétiques, mais qui n’avait en fait appris
à lire que les indices sociaux qui lui permettaient de donner la bonne réponse.
Dans des environnements contrôlés où il ne pouvait ni voir les visages des
gens, ni recevoir d’autres commentaires, ce cheval intelligent n’a en fait pas pu
répondre à ces questions.

Figure 5.10: Exemple de comportement type "Clever-Hans". Des feuilles de
Betterave sont soumises à un stress biotique (inoculation des feuilles avec un
pathogène fongique Cercospora beticola, typique de la famille des Chenopo-
diaceae à laquelle appartient la Betterave). Un réseau de neurones convolutif
(CNNs) a été utilisé pour classer des images RGB, produites par imagerie hy-
perspectrale, de feuilles de Betterave infectées et saines. Les disques de tissu
foliaire ont été placés dans des boîte de pétri contenant une solution d’agar (fi-
gures du haut). A chaque photographie correspond une coche de couleur (vert
pour feuille saine et rose pour feuille infectée). Les résultats de la classification
par le réseau neuronal convolutif sont représentés graphiquement pour chaque
échantillon (figures du bas). Les couleurs jaune-vert correspondent aux régions
qui ont été utilisées pour obtenir le diagnostic de classification alors que les cou-
leurs bleu-violet correspondent aux régions non utilisées. Pour une meilleure
lisibilité, les régions colorées ont été superposées à l’image originale filtrée. Il
est possible alors d’observer que le réseau neuronal convolutif profond a cor-
rectement classifié les feuilles infectées sur la base d’arguments artéfactuels,
en l’occurrence ici la solution d’agar entourant les disques foliaires, illustrant
ainsi un comportement de type "Clever-Hans". Modifié d’après Schramowski
et al., 2020.
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•Conséquence : un fort risque de sur-apprentissage

L’ensemble des paramètres décrits, une taille d’échantillon petite avec une
dimensionnalité des données élevée, un déséquilibre des classes d’événement et
des informations possiblement parasitaires, limitent l’aptitude des algorithmes
d’apprentissage à générer des fonctions de prédictions généralisables. En effet,
tous ces paramètres qui décrivent la base de données que je possède peuvent
facilement induire en erreur l’algorithme d’apprentissage, et aboutir à un sur-
apprentissage des données collectées, donc une erreur de généralisation élevée.

L’erreur de généralisation peut se décomposer de la manière suivante : une
erreur bayésienne intrinsèque irréductible associée à tous les classifieurs, une
erreur d’approximation et une erreur d’estimation. L’erreur d’approximation
désigne l’erreur minimale réalisable par une fonction de prédiction G au sein
de l’espace d’hypothèses H. Ce terme mesure le risque encouru lorsque l’on se
restreint à une certaine classe d’hypothèses, à savoir le niveau de biais inductif
atteint (Shalev-Shwartz et al., 2014).

Le fort taux d’informations parasitaires contenues dans les données d’ap-
prentissage peut facilement aboutir à un fort biais inductif, et donc à une erreur
d’approximation élevée. Seulement, la haute dimensionalité de l’espace d’attri-
buts peut véhiculer une richesse d’informations telle que des motifs multiples de
classification possibles des événements peuvent se révéler, complexifiant gran-
dement l’espace d’hypothèses qui sert à générer la fonction de prédiction. Dans
ce cas-ci, l’erreur d’approximation devient beaucoup plus faible.

L’erreur d’estimation représente la différence entre l’erreur d’approximation
et l’erreur globalement réalisée par la fonction de prédiction, dans le cadre du
principe de minimisation du risque empirique. Cette erreur d’estimation mesure
l’éloignement de la fonction de prédiction, apprise par l’algorithme d’appren-
tissage, de la meilleure fonction de prédiction disponible au sein de la classe
d’hypothèses H. Étant une propriété incompressible de l’algorithme d’appren-
tissage, cette erreur dépend fortement de la taille du jeu d’entraînement, mais
aussi de la taille de la classe d’hypothèses sélectionnée H. Ainsi, pour une classe
d’hypothèses finie, l’erreur d’estimation augmente logarithmiquement avec la
taille (et donc la complexité) de la classe d’hypothèses et décroît avec la taille de
l’échantillon d’entraînement. Cette erreur d’estimation existe parce que l’erreur
empirique est seulement une estimation de l’erreur globale de généralisation.

L’échantillon que je possède étant relativement petit et assez peu repré-
sentatif de l’ensemble des classes d’événements à identifier (ici les faux évé-
nements), l’erreur d’estimation à l’issue de l’apprentissage a de fortes chances
d’être élevée.
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Le jeu de données que je détiens apporte donc de fortes contraintes sur son
apprentissage. La fonction de prédiction générée présente un risque fort d’er-
reur d’approximation et d’erreur d’estimation. Or, l’objectif d’un apprentissage
automatique optimal, guidé par un algorithme d’apprentissage, est de minimi-
ser l’erreur totale de généralisation. Je suis donc nécessairement confrontée à
un compromis entre le biais et la complexité de la fonction de prédiction à
générer.

D’une part, choisir une classe d’hypothèses très riche peut diminuer l’erreur
d’approximation mais peut en même temps augmenter l’erreur d’estimation,
puisqu’un espace d’hypothèses riche peut conduire à un sur-apprentissage (Fi-
gure 5.11). D’un autre côté, choisir un petit ensemble d’hypothèses réduit l’er-
reur d’estimation mais peut augmenter l’erreur d’approximation ou, en d’autres
termes, peut conduire à un sous-apprentissage (Figure 5.11). Bien sûr, le choix
optimal pour l’espace d’hypothèses est un espace réduit qui contient un seul
classifieur, le classifieur optimal de Bayes. Seulement, ce classifieur optimal
dépend de la distribution sous-jacente D de l’ensemble des observations (des
événements) ayant lieu dans la nature, qui est totalement inconnue. De tout
manière, l’apprentissage aurait été inutile si nous avions connu cette distribu-
tion D.

Figure 5.11: Représentation théorique de l’erreur d’approximation et de l’er-
reur d’estimation en fonction de la complexité de l’espace d’hypothèses. Pour
une taille d’échantillon fixe, à mesure que la complexité de l’espace d’hypo-
thèses augmente, l’erreur d’approximation diminue, tandis que l’erreur d’es-
timation augmente. Une valeur élevée de l’un ou de l’autre contribue à une
erreur de généralisation élevée. L’erreur d’approximation élevée est associée à
un sous-apprentissage alors qu’une erreur d’estimation élevée est associée à un
sur-apprentissage. Agarwal, 2018.
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La sous-section suivante s’attache alors à définir les réponses que je peux
apporter aux contraintes inhérentes au jeu de données que je possède. L’objec-
tif est clairement de générer un apprentissage automatique qui puisse étudier
un espace d’hypothèses suffisamment riche, tout en conservant une erreur d’es-
timation raisonnable pour obtenir la "meilleure" fonction de prédiction.

5.1.3 Réduire les contraintes pour optimiser l’apprentis-
sage

•Réajuster le déséquilibre des classes d’événement

Une première réponse aux contraintes inhérentes au jeu de données dispo-
nibles serait d’augmenter la taille de ce dernier. En effet, ce jeu de données
est très déséquilibré puisque les faux événements ne représentent que 7% du
nombre total d’événements. Afin de compenser ce déséquilibre, j’ai utilisé les
faux événements détectés au cours du mois de juillet et août 2016. Ces deux
mois font partie d’un catalogue test automatique qui a servi de base pour amé-
liorer la détection automatique des petits séismes. Environ 24000 événements
sont alors disponibles pour combler le déséquilibre de classe entre les faux et
les vrais événements. Tous ces faux événements ont été revus manuellement.

De plus, afin d’égaliser les proportions des séismes et des tirs de carrière
dans ce jeu de données (40% de tirs de carrière et 53% de séismes), un sous-
échantillonnage de ces événements peut être réaliser. Ce procédé autorise plus
facilement un ré-échantillonnage ultérieur de la base d’entraînement générée
à partir de ce jeu de données pour tester la performance de l’apprentissage
automatique à partir de bases d’entraînement différentes.

Toutefois, en fonction de l’algorithme d’apprentissage choisi, l’entraîne-
ment sur des bases d’entraînement différentes, même légèrement variables, peut
conduire à des résultats de prédiction très instables du fait d’une adaptabilité
trop forte de l’algorithme aux variations de la base d’entraînement, diminuant
alors l’erreur de généralisation.

De ce fait, pour obtenir un classifieur qui puisse prédire efficacement les dif-
férents types d’événement en dehors du jeu d’entraînement (faux événement,
séisme, tir de carrière), il est nécessaire de délimiter clairement un espace d’hy-
pothèses qui puisse solidement réduire les effets des contraintes inhérentes au
jeu de données disponible. Le choix de l’algorithme d’apprentissage ainsi que
sa configuration, en sont les éléments fondateurs.
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•Définir un espace d’hypothèses optimal

- Choisir un algorithme d’apprentissage stable. La stabilité d’un al-
gorithme d’apprentissage peut être reliée à la notion de variance. En effet,
un algorithme d’apprentissage stable est un algorithme qui réalise une erreur
moyenne de généralisation faible s’il est entraîné sur plusieurs bases d’entraîne-
ment différentes. Cette erreur de généralisation moyenne est formalisée comme
étant la somme de plusieurs erreurs : la variance, le biais (élevé au carré) et une
erreur irréductible ou bruit intrinsèque associée à la distribution inconnue de
l’ensemble des observations possibles. Cette erreur de généralisation moyenne
est évaluée à partir de la moyenne des prédictions émises par l’ensemble des
fonctions de prédiction apprises sur les différents échantillons de jeu d’entraî-
nement.

Le biais (élevé au carré) évalue l’écart entre les prédictions émises par la
fonction de prédiction moyenne et les prédictions attendues émises par la fonc-
tion de prédiction optimale. La variance évalue de combien une fonction de pré-
diction apprise à partir d’un échantillon d’entraînement particulier, s’éloigne
de la fonction de prédiction moyenne (Agarwal, 2018). La variance traduit
donc le degré de flexibilité de l’algorithme d’apprentissage utilisé, c’est-à-dire
la capacité de ce dernier à changer sa fonction de prédiction lorsqu’un jeu d’en-
traînement différent est utilisé. Un algorithme avec une variance élevée aura
ainsi une faible stabilité et sera donc sujet au sur-apprentissage (Figure 5.12).

En revanche, ce dernier sera caractérisé par un faible biais puisque son adap-
tabilité (il peut produire une fonction de prédiction différente lorsque l’échan-
tillon d’entraînement change) tend à diminuer les écarts entre les prédictions
produites par chaque fonction de prédiction et celles attendues.

Un algorithme d’apprentissage optimal est donc un algorithme capable de
réduire la variance tout en conservant un faible biais. L’algorithme qui a été
choisi dans ce travail de thèse a été l’algorithme de Random Forest (forêt aléa-
toire, Breiman, 2001). Cet algorithme base son apprentissage sur la construc-
tion d’un ensemble d’arbres décisionnels qui forme alors une forêt.
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Figure 5.12: Évolution du biais et de la variance en fonction du degré de
complexité de l’espace d’hypothèses. Pour une taille d’échantillon fixe, à me-
sure que la complexité de l’espace d’hypothèses augmente, le biais diminue,
tandis que la variance augmente. Une valeur élevée de chacun contribue à une
erreur de généralisation moyenne élevée. Un biais élevé est associé à un sous-
apprentissage alors qu’une variance élevée est associée à un sur-apprentissage.
Modifié d’après Agarwal, 2018.

Cependant, les arbres de décision sont généralement très sensibles aux don-
nées sur lesquelles ils sont entraînés. Chaque arbre a effectivement la potentia-
lité de capturer des interactions complexes entre les attributs. Un petit change-
ment dans les données d’apprentissage peut provoquer facilement une modifi-
cation des chemins décisionnels, rendant le processus de prédiction très instable
(forte variance). Pour gagner en stabilité (et donc diminuer la variance), l’algo-
rithme de Random Forest effectue un double échantillonnage : celui de la base
d’entraînement et celui des attributs qui constituent cette base d’entraînement
(Figure 5.13).

Le tirage aléatoire effectué sur la base d’entraînement est réalisé par une
méthode d’échantillonnage avec remplacement (Bootstrap). Au sein de la fo-
rêt, chaque arbre décisionnel est donc construit indépendamment à partir d’un
échantillon aléatoire de la base d’entraînement. Par conséquent, les échantillons
qui ont été utilisés pour élaborer chaque arbre individuel sont de même lon-
gueur et issus de la même population, celle de l’échantillon original (la base
d’entraînement originelle). Les données sont alors identiquement distribuées,
et cela signifie que le biais de l’algorithme qui sera évalué sur la totalité de la
forêt aléatoire sera le même que celui qui aurait été évalué à partir d’un seul
arbre au sein de la forêt.
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Figure 5.13: Méthode d’agrégation avec bootstrap (bagging) utilisée par Ran-
dom Forest pour effectuer ses prédictions. La base d’entraînement est d’abord
échantillonnée aléatoirement par bootstrap. Chaque échantillon aléatoire gé-
néré est utilisé pour construire un arbre décisionnel. Chaque embranchement
de l’arbre décisionnel est élaboré à partir d’un deuxième échantillonnage aléa-
toire de l’espace d’attributs. La prédiction finale est définie en agrégeant les
prédictions de l’ensemble des arbres décisionnels. Dans le cas de la classifica-
tion, cette prédiction finale correspond à un vote majoritaire. Modifié d’après
Cao et al. (2020)

.
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Par ailleurs, en plus de l’échantillonnage de la base d’entraînement, un
deuxième échantillonnage aléatoire est réalisé à partir de l’espace d’attributs
qui définit chaque observation. Ce second échantillonnage vise à réduire la
variance de l’algorithme d’apprentissage en décorrélant les arbres décisionnels
entre eux. En effet, chaque arbre est une construction récursive de séries de frac-
tionnements binaires qui séparent les différentes observations en sous-groupes
successifs (Figure 5.14).

Chaque fois qu’une partition est considérée dans la construction de l’arbre,
au lieu de la totalité des p attributs, un échantillon aléatoire de n attributs est
tiré parmi l’ensemble du jeu complet des attributs décrivant chaque événement
(observation). Parmi ces n attributs candidats potentiels pour générer un noeud
de fractionnement, un seul attribut est sélectionné : c’est celui qui minimise
l’erreur de classification des différentes observations au noeud formé. Ainsi, à
chaque nouvel embranchement de l’arbre décisionnel, un nouvel échantillonnage
de n attributs est prélevé (généralement n =

p
p). Cet échantillonnage aléatoire

des attributs réduit donc la possibilité de générer des arbres similaires. En effet,
si le même jeu de p attributs était toujours considéré à chaque noeud et pour
chaque arbre, chaque arbre décisionnel serait systématiquement construit à
partir de la même sélection hiérarchique des attributs les plus discriminants,
en particulier au sommet de l’arbre.

Les prédictions des différents arbres décisionnels au sein de la forêt aléa-
toire sont ensuite agrégées pour aboutir à une prédiction finale (la prédiction
finale correspond au vote majoritaire dans le cas de la classification). Les pré-
dictions effectuées par les différents arbres étant faiblement corrélées du fait
du sous-échantillonnage aléatoire récursif des attributs, leur agrégation dimi-
nue fortement la variance globale de l’algorithme d’apprentissage. Seulement,
en présence de ce sous-échantillonnage, la solution prédictive étant recherchée
dans un sous-espace restreint, la complexité du modèle est certes plus faible
mais le biais est également plus grand. Si Random Forest réduit la variance, il
y a tout de même un réglage biais-variance à réaliser. C’est ce que permet le
réglage des hyperparamètres.
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Figure 5.14: Exemple d’arbre décisionnel généré par l’algorithme d’appren-
tissage Random Forest. L’arbre décisionnel présenté a été établi à partir d’un
jeu de données contenant l’ensemble des séismes et des tirs de carrière détectés
entre 2017 et 2019 par le BCSF-RéNaSS (une part de 70 % est réservée au
jeu d’entraînement et une part de 30% au jeu test). Chaque événement est
représenté par un vecteur de trois attributs : l’heure de la journée, le jour de la
semaine et la proximité de l’événement à la carrière. L’espace des hypothèses
qui a été utilisé pour générer la fonction de prédiction (c’est-à-dire le classifieur)
a été restreint afin de visualiser plus facilement la solution de classification. La
sélection de l’attribut à chaque noeud de l’arbre a été établie à partir du calcul
de l’impureté de Gini qui donne accès à l’importance de chaque attribut dans
le processus de classification, soit son pouvoir discriminant. Chaque noeud ap-
porte 5 informations. La première est la question posée au sujet des données,
basée sur la valeur de l’attribut (par exemple à la racine de l’arbre : est-ce que
le jour de la semaine est inférieur à 5.5, c’est-à-dire est-ce le jour de la semaine
n’est pas samedi ?). Chaque question a soit une réponse "vrai", soit une ré-
ponse "fausse", qui va séparer le noeud en deux sous-groupes (le groupe "vrai"
à gauche et le groupe "faux" à droite), et ainsi de suite en descendant dans
l’arbre. La deuxième information de chaque noeud est la valeur de l’impureté
de Gini. La troisième information est le nombre d’observations (événements)
dans le noeud. La quatrième information est le nombre d’échantillons de ces
observations dans chaque classe (ici classe 1 séisme ou classe 0 tir de carrière).
Par exemple, la racine a 2298 échantillons dans la classe 0 et 2943 dans la classe
1. La dernière information est la classe majoritaire pour les observations à ce
noeud. Par exemple, à la racine, la classe majoritaire est la classe 1 (séisme).
Les prédictions finales se font aux noeuds terminaux c’est-à-dire au niveau des
feuilles.
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- Configurer des hyperparamètres de façon optimale. Les hyperpara-
mètres sont des paramètres inhérents à l’algorithme d’apprentissage lui-même
(Figure 5.15). Dans le cas de Random Forest, ces paramètres sont clairement
reliés à l’architecture des arbres décisionnels à construire. Le nombre d’arbres
fait partie des hyperparamètres à définir. En effet, un choix optimal du nombre
d’arbres à inclure dans la forêt aura une influence direct sur le biais : augmen-
ter le nombre diminuera le biais (Arlot et al., 2014). De même, augmenter la
profondeur de l’arbre décisionnel diminue le biais mais augmente la variance.

Figure 5.15: Principaux hyperparamètres associés à la configuration interne
des arbres décisionnels constituant l’armature de l’apprentissage de l’algo-
rithme de Random Forest. Ces hyperparamètres délimitent l’espace des hy-
pothèses possibles pour rechercher la fonction de prédiction optimale (soit le
meilleur classifieur).

Afin d’établir le choix optimal des hyperparamètres qui vont délimiter l’es-
pace des hypothèses possibles, il est nécessaire d’explorer la plus grand étendue
d’hyperparamètres possible afin de minimiser l’erreur de généralisation de la
future fonction de prédiction apprise, et donc obtenir le juste équilibre entre
le biais et la variance.
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Plusieurs méthodes existent pour effectuer cette recherche multiple comme
la recherche sur grille, la recherche aléatoire ou l’optimisation bayésienne. Dans
ce travail de recherche, c’est la combinaison des deux méthodes, recherche aléa-
toire puis recherche sur grille, qui est utilisée. La recherche sur grille effectue
une recherche exhaustive (explore toutes les combinaisons possibles) sur un
ensemble de valeurs des hyperparamètres préalablement spécifié. C’est un al-
gorithme de recherche très simple qui conduit aux prédictions les plus précises
tant que des combinaisons suffisantes et pertinentes sont données (Bergstra
et al., 2012). La recherche aléatoire (Bergstra et al., 2012) est une amélio-
ration fondamentale de la recherche sur grille. Cette recherche s’effectue sur
un échantillonnage aléatoire des valeurs d’hyperparamètres à partir des dis-
tributions statistiques préalablement définies. L’utilisation de cette méthode
est souvent suggérée au début de la procédure d’optimisation des hyperpa-
ramètres pour réduire rapidement l’espace de recherche, avant d’utiliser un
autre algorithme guidé pour obtenir un résultat plus fin (passage d’un schéma
d’échantillonnage grossier à fin, Yu et al., 2020). L’échantillonnage plus fin est
établi grâce à une recherche sur grille dans cette étude.

Figure 5.16: Recherche sur grille versus recherche aléatoire dans le cas de deux
hyperparamètres et neuf combinaisons testées. Points noirs : combinaisons tes-
tées des hyperparamètres. Courbes jaune et verte : fonction objective de chaque
hyperparamètre testé (fonction qui sert de critère pour déterminer la meilleure
solution au problème d’optimisation des hyperparamètres et qui évalue l’erreur
de validation). Sur l’axe y, la courbe est presque plate, signifiant que cet hyper-
paramètre a un faible impact sur la fonction objective totale. Cependant, sur
l’axe x, un minimum clair apparaît, correspondant à la valeur optimale de cet
hyperparamètre. Points gris : projection des combinaisons d’hyperparamètres
testés sur la courbe verte. Le nombre de points gris est plus élevé pour la re-
cherche aléatoire que pour la recherche sur grille, ce qui signifie que plus de
valeurs ont été testées. D’après Bergstra et al., 2012.
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L’estimation de l’erreur de généralisation est établie pour les différentes
combinaisons d’hyperparamètres testées à l’aide de la stratégie de la valida-
tion croisée (Figure 5.17). Celle-ci se fonde sur le principe suivant : le jeu de
données (ici la période 2017-2019) est partitionné en k sous-ensembles indépen-
dants. Chaque sous-ensemble sert successivement d’échantillon de validation et
le reste d’échantillon d’entraînement. L’échantillon d’entraînement est utilisé
pour entraîner l’algorithme d’apprentissage (Random Forest) qui va sélection-
ner la fonction de prédiction, puis l’erreur commise est évaluée avec les données
de validation. La performance de la validation croisée est estimée comme étant
la moyenne arithmétique sur les k estimations de performance des ensembles
de validation. La principale idée derrière la validation croisée est que chaque
échantillon de l’ensemble de données disponible a la possibilité d’être testé
(Raschka, 2018). La figure 5.17 illustre le processus de validation croisée à
partir d’un partitionnement des données en 5 sous-ensembles. Dans ce cas pré-
cis, cinq fonctions de prédiction sont générées à partir des 5 itérations sur un
jeu d’entraînement différent mais de longueur identique.

Si la validation croisée pour la recherche des hyperparamètres optimaux est
intégrée dans la démarche globale d’apprentissage supervisée, le jeu de données
est d’abord divisé en deux parties : une partie réservée à l’apprentissage pro-
prement dit (période 2017-2019) et une partie destinée à constituer le jeu test
(ici janvier-août 2016, Figure 5.18 étape 1). La recherche des hyperparamètres
optimaux s’applique au jeu servant à l’apprentissage qui est lui-même subdivisé
en jeu d’entraînement et jeu de validation.

La méthode de validation croisée type k-fold est utilisée pour chaque com-
binaison d’hyperparamètres testés. Plusieurs fonctions de prédiction sont pro-
duites avec, pour chacune, l’estimation de leur performance de prédiction (Fi-
gure 5.18 étape 2). Ce sont les valeurs des hyperparamètres qui ont produit
les meilleurs résultats lors de la procédure de validation croisée qui sont par la
suite utilisés pour dimensionner l’espace d’hypothèses et sélectionner la fonc-
tion de prédiction optimale (Figure 5.18 étape 3). Le jeu test indépendant (pé-
riode janvier-août 2016) est ensuite utilisé pour évaluer la performance de cette
fonction de prédiction (Figure 5.18 étape 4). Enfin, cette fonction de prédic-
tion validée par le jeu test est déployé et utilisé sur un nouveau jeu de données
(ici événements détectés au cours de la procédure de détection automatique
développée dans ce travail de thèse pour la période septembre-décembre 2016,
(Figure 5.18 étape 5)).
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Figure 5.17: Principe de la validation croisée. Le processus d’apprentissage
est itéré k fois (ici 5 fois). (a) A chaque itération le jeu de données est dé-
coupé en k parties (ici 5 parties) : une partie est utilisée pour la validation
(c) et les k� 1 (4) parties restantes sont fusionnées en un sous-ensemble d’en-
traînement pour l’apprentissage à partir d’une combinaison d’hyperparamètres
donnée (b). La fonction de prédiction apprise est testée avec le jeu de validation
(c). La performance globale de la validation croisée (par exemple le calcul de
la précision) correspond à la moyenne arithmétique des k (ici 5) estimations de
performance de la fonction de prédiction sur les ensembles de validation (a).
D’après Raschka, 2018
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Figure 5.18: Intégration de la procédure de recherche des hyperparamètres
optimaux par validation croisée dans la procédure d’apprentissage dans le but
de trouver la fonction de prédiction qui minimise l’erreur de généralisation.
D’après Raschka, 2018.

Alexandra Renouard CHAPITRE 5. 233



5.1. CLASSER LES ÉVÉNEMENTS AVEC L’APPRENTISSAGE
MACHINE SUPERVISÉ

L’algorithme d’apprentissage Random Forest permet de générer
une fonction de prédiction moyenne stable grâce à l’agrégation
d’un ensemble d’arbres décisionnels complètement indépendants.
La configuration de ces hyperparamètres (i.e nombre d’arbres
dans la forêt aléatoire, profondeur d’un arbre décisionnel, etc.)
aide à établir un cadre de recherche optimal de cette fonction de
prédiction à partir d’une classe d’hypothèses restreintes. Cette
classe d’hypothèses restreintes permet à la fois de diminuer le
biais associé à l’algorithme lui-même tout en veillant à maintenir
une variance qui puisse être acceptable. De cette façon, le choix
de Random Forest, couplé à la stratégie de recherche des hyper-
paramètres optimaux par validation croisée type k-fold, est un
bon compromis pour limiter le sur-apprentissage à partir d’une
base d’entraînement de taille petite.

•Privilégier l’interactivité avec l’algorithme d’apprentissage

L’idée primordiale est qu’il y a un niveau de connaissance préalable du
problème spécifique en question (ici la classification des faux événements, des
séismes et des tirs de carrière) qui puisse permettre de concevoir des espaces
d"hypothèses pour lesquels l’erreur d’approximation et l’erreur d’estimation ne
soient pas trop grandes.

Plusieurs sources de connaissances préalables sont possibles et peuvent
être intégrées dans le pipeline de l’apprentissage (Rueden et al., 2019). Elles
peuvent provenir d’un groupe individuel de personnes ayant une expérience
significative sur un domaine de connaissances donné. Il s’agit dans ce cas
d’une connaissance d’expertise que peuvent avoir par exemple les analystes
sur l’identification des tirs de carrière grâce aux formes d’onde. Ces connais-
sances préalables peuvent découler directement du savoir scientifique discipli-
naire (propriétés intrinsèques du bruit par exemple) ou d’un savoir formalisé
par une communauté scientifique particulière (comme le rapport d’amplitude
maximale entre les ondes P et S en tant que facteur discriminant des tirs de
carrière et des séismes). Ces connaissances peuvent enfin provenir d’un savoir
intuitif partagé et validé implicitement par le raisonnement humain (comme
par exemple le repérage des tirs de carrière à travers les épicentres qui sont
situés très proches des carrières).
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Lorsque la performance de l’apprentissage automatique est évaluée, celle-
ci peut être effectivement exprimée à travers de nombreuses métriques dédiées
telles que l’exactitude (proportion d’événements bien classé), la sensitivité (pro-
portion de vrais événements ou de séismes correctement prédits par exemple)
ou la spécificité (proportion de faux événements ou de tirs de carrière correcte-
ment prédits par exemple). Ces métriques évaluent donc la capacité prédictive
des fonctions de prédiction apprises et soulèvent les taux d’erreurs de classifi-
cation si le problème posé est de ce type. Néanmoins, ces dernières ne donnent
pas accès au processus de décision qui a conduit la fonction de prédiction à
opérer tel ou tel choix. Pourtant, cette transparence du chemin décisionnel est
nécessaire pour juger si la fonction de prédiction est bien valide et généralisable
ou si elle a fondé l’ensemble de ses décisions sur des corrélations erronées dans
les données d’apprentissage (Lapuschkin et al., 2019).

La transparence du processus de décision peut être obtenue par l’interven-
tion de l’être humain. En effet, à travers ses connaissances et son expertise,
ce dernier est capable de révéler les corrélations parasitaires ou artefactuelles
qui ont conduit l’algorithme d’apprentissage à générer une solution erronée et
les corriger pour obtenir des stratégies de décision plus fiables (Gilpin et al.,
2018). L’interaction entre le système d’apprentissage et l’utilisateur humain
est donc une clef indispensable pour minimiser l’erreur de généralisation vé-
hiculée par les fonctions apprises (S. Lundberg et al., 2017 ; Schramowski
et al., 2020). L’interactivité est la voie que j’ai alors choisie dans ce travail de
thèse. En effet, face à un jeu de données d’une grande dimensionnalité (nombre
d’attributs mais également nature et quantité d’informations contenues dans
chacun très élevées), l’inclusion des connaissances préalables dans le processus
d’apprentissage va permettre de délimiter plus efficacement encore l’espace des
hypothèses qui va servir à générer la fonction de prédiction optimale.

Cette interactivité peut se dessiner à plusieurs niveaux au cours du proces-
sus d’apprentissage (Figure 5.19). Cette interaction est effectivement nécessaire
pour déceler des informations parasitaires ou artefactuelles ayant été incluses
dans le processus d’apprentissage, pour vérifier la significativité des attributs
sélectionnés et leur impact sur la construction des règles de classification, et
pour valider la généralisabilité et la plausibilité de la fonction de prédiction
apprise en étudiant son comportement sur plusieurs instances ou sur différents
jeux de données (Figure 5.19).
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Figure 5.19: Procédure d’apprentissage qui implémente un cadre unifié d’in-
terprétation de la fonction de prédiction (modèle). La première étape (étape
1) est la construction du modèle. Cette étape est une condition pré-requise qui
reste en dehors du cadre d’interprétation. Les propriétés basiques du modèle
sont évaluées à travers son pouvoir prédictif (étape 2) et sa capacité à inclure
dans sa prédiction des informations parasitaires ou artefactuelles (étape 3).
Dans le cas où chacune des étapes ne montre pas un modèle de qualité suffi-
sante, le modèle et/ou la qualité des données sont revus (retour à l’étape 1). Si
le modèle passe ce contrôle qualité, la prochaine étape est celle de l’estimation
de ce modèle à l’échelle des attributs (étape 4). Plusieurs options sont possibles
pour identifier les attributs significatifs (ex : tests de bootstrap, sélection des
attributs basée sur leur importance relative). Si les attributs significatifs iden-
tifiés ne fournissent pas des résultats sensibles, la construction du modèle est
révisée (étape 1). Dans le cas contraire, la généralisabilité et la plausibilité du
modèle sont testés. La généralisabilité est testée à travers de nouvelles don-
nées (étape 5). La validité géophysique du modèle est examinée à travers les
résultats de la littérature par exemple (étape 5bis). Cette étape peut également
être effectuée plusieurs fois au cas où le modèle suggère de nouvelles théories
qui devraient être évaluées. La dernière étape est l’analyse représentationnelle
et comportementale du modèle (étape 6) et contribue à mieux comprendre les
processus de décision du modèle, en examinant son comportement sur plusieurs
instances ou sur plusieurs jeux de données. Cette dernière étape peut nécessi-
ter souvent d’autres modèles pour permettre une comparaison. Cependant, si
d’autres modèles sont déjà disponibles, cette étape peut être effectuée plus tôt.
Enfin, les résultats de l’étape 6 pourraient fournir des preuves convergentes
pour l’étape 5bis. Modifié d’après Kohoutova et al., 2020.
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Seulement, pour rendre opérable cette interactivité, il faut pouvoir visua-
liser les processus de décision de la fonction de prédiction apprise, avoir ac-
cès aux attributs sélectionnés ainsi que leur importance relative et avoir une
connaissance de la valeur physique de ces attributs que la littérature peut nous
fournir.

Choisir un algorithme d’apprentissage interprétable est donc indis-
pensable. La notion d’algorithme interprétable est ici à relier à la capacité hu-
maine de comprendre comment l’algorithme d’apprentissage utilise les attributs
en entrée pour choisir ses prédictions (S. Lundberg et al., 2017). L’algorithme
de Random Forest a donc été aussi choisi car ce dernier se base sur l’édification
d’un arrangement hiérarchique de règles de classification qui sont assez facile-
ment interprétables (Doshi-Velez et al., 2017 ; Drouin et al., 2019). En effet,
la visualisation des chemins décisionnels à travers un arbre suffit à comprendre
comment et pourquoi la fonction de prédiction peut arriver à sa prédiction
(Samek, 2020, Figure 5.20).

De plus, l’analyse de l’arbre apporte une information capitale donnée par
l’impureté de Gini (affichée dans chaque noeud de l’arbre). En effet, cette im-
pureté de Gini donne accès à l’importance de chaque attribut dans le processus
de classification, soit son pouvoir discriminant.

L’impureté de Gini est une métrique utilisée pour déterminer quel est l’attri-
but qui doit être utilisé et avec quel seuil pour pouvoir fractionner les données
en des groupes plus petits (passage d’un noeud parent à deux noeuds fils dans
l’arbre). Ce critère mesure la fréquence à laquelle une observation aléatoirement
choisie dans la base d’entraînement serait incorrectement labélisée si elle était
aléatoirement labélisée selon la distribution des labels dans l’échantillon formé
au noeud (c’est-à-dire si la moitié des observations dans l’échantillon est "A"
et l’autre moitié est "B", une observation aléatoirement labélisée en se basant
sur la composition de cet échantillon a 50% de chance d’être labélisée incor-
rectement). L’impureté de Gini atteint 0 quand toutes les observations dans
l’échantillon tombent dans une seule catégorie (c’est-à-dire s’il y a seulement
un label possible dans l’échantillon, une observation sera identifiée avec ce label
100% du temps). Cette mesure est donc essentiellement la probabilité qu’une
nouvelle observation soit incorrectement classifiée à un noeud donné dans un
arbre décisionnel, en se basant sur le jeu d’entraînement.
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Figure 5.20: Exemple d’arbre décisionnel généré par l’algorithme d’appren-
tissage Random Forest pour classer les séismes et tirs de carrière détectés au
cours de la période 2017-2019 (cf Figure 5.14 pour plus de détails). L’analyse
des différents chemins décisionnels de cet arbre montre d’abord que lorsque
le jour de la semaine est samedi (> 5.5), quelque soit la proximité de l’événe-
ment à une carrière, les événements répondant à ces critères sont classés comme
séismes (classe 1, chemin 1). Si maintenant le jour de la semaine est différent de
samedi, plusieurs configurations sont possibles. Si la proximité de l’événement
à la carrière la plus proche est inférieure ou égale à 0.04 degré (soit � 4:45km)
alors tous les événements répondant à ce dernier critère sont classés comme
étant des tirs de carrière (classe 0, chemin 2). Si en revanche, la distance de
l’événement à la carrière la plus proche est comprise entre 0.04 degré (4.45
km) et 0.12 degré (13.34 km) et que l’heure d’occurrence de cet événement est
avant 8.35 h ou après 14.42 h, alors les événements qui possèdent ces derniers
critères sont classés comme séismes (classe 1, chemin 4 et chemin 3), sinon si
l’heure d’occurrence est comprise entre 8.35 h et 14.42 h, ces événements sont
identifiés comme des tirs de carrière (classe 0, chemin 5). De plus, si la dis-
tance de l’événement à la carrière la plus proche est comprise entre 0.12 degré
(13.34 km) et 0.18 degré (20 km), et que le jour de la semaine n’est toujours
pas samedi, alors les événements qui tombent dans cette catégorie de valeurs
sont classés comme des séismes (classe 1, chemin 6). Enfin, si la distance de
l’événement à la carrière la plus proche est supérieure ou égale à 0.18 degré
(20 km), que le jour de la semaine est compris entre mardi et vendredi, et que
l’heure d’occurrence de l’événement se situe après 14.6h, alors les événements
qui répondent à ces critères sont identifiés comme des séismes (classe 1, chemin
7). Néanmoins, si l’heure d’occurrence de l’événement se situe avant 14.6 h et
que la distance de l’événement à la carrière la plus proche est comprise entre
0.18 degré (20 km) et 0.25 degré (27.79 km), alors les événements sont plutôt
classés comme des tirs des carrière (classe 0, chemin 8).
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Parce que les forêts aléatoires sont un ensemble d’arbres décisionnels indi-
viduels, l’impureté de Gini peut être mise à profit pour estimer l’importance
des attributs en calculant la diminution moyenne de l’impureté de Gini entre
les noeuds parent et fils que l’attribut divise. En effet, après chaque fractionne-
ment binaire à partir d’un noeud parent, les noeuds fils générés doivent avoir
un coefficient de Gini inférieur, car le but des fractionnements est de rendre
les distributions des observations dans les nœuds fils aussi pures que possible
(c’est-à-dire une impureté de 0). En effet, toutes les observations dans un nœud
doivent tendre vers un maximum de similarité pour pouvoir progressivement
atteindre une prédiction finale à un noeud terminal pour une unique classe
d’observation. Par conséquent, l’attribut qui a été utilisé pour scinder le noeud
parent en deux noeuds fils a diminué l’impureté de Gini.

Ainsi, si la diminution moyenne de l’impureté de Gini est calculée pour
chaque attribut utilisé dans les arbres de la forêt, il est alors possible de déduire
le degré d’importance de chacun. Ce calcul correspond à la somme moyennée
des diminutions de l’impureté pour tous les noeuds où l’attribut est utilisé, pon-
dérée par la proportion des échantillons qui atteignent ce noeud dans chaque
arbre décisionnel de la forêt aléatoire (Louppe et al., 2013). C’est donc un
calcul qui peut évaluer le degré d’importance d’un attribut à travers tous les
arbres qui forment la forêt. Une valeur de diminution moyenne de l’impureté
de Gini élevée indiquera une importance élevée de l’attribut.

Si j’évalue l’importance relative des attributs pour la forêt aléatoire auquel
l’arbre décisionnel de la Figure 5.20 appartient, il est possible de constater que
l’heure d’occurrence des événements et la distance de l’événement à la carrière
la plus proche sont les attributs les plus discriminants (Figure 5.21).

Figure 5.21: Importance relative des attributs calculée à partir de la forêt
aléatoire contenant l’arbre décisionnel présenté dans la Figure 5.20 pour la
prédiction des labels des séismes et des tirs de carrière du catalogue BCSF-
RéNaSS pour la période 2017-2019.
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L’étude de l’arbre décisionnel (élaborée dans la Figure 5.20) le confirme.
En effet, d’après cet arbre décisionnel, tous les événements qui sont situés
à moins de 4.5 km d’une carrière la plus proche sont considérés comme des
tirs de carrière. Lorsque cette distance augmente, c’est l’heure d’occurrence de
l’événement qui va déterminer son label. En l’occurrence, pour des distances
supérieures à 4.5 km mais inférieures à 13 km, si l’heure est comprise entre
8.35 h et 14.42 h, c’est-à-dire dans la période d’activité maximale classique
des carrières dans la zone d’étude mais aussi ailleurs dans le monde (Voyles
et al., 2019), les événements qui tombent dans cette intervalle de valeurs sont
identifiés comme des tirs de carrière. Dès que la distance s’éloigne de 13 km,
la plupart des événements sont classés comme des séismes à l’exception d’un
échantillon.

Si cette classification apparaît globalement pertinente (un tir de carrière
est un événement qui est situé très proche d’une carrière et a lieu aux heures
traditionnelles d’activité des carrières), elle reste tout de même fragile. En effet,
un échantillon d’événements est d’abord classé comme tir de carrière alors que
ces derniers sont localisés à une distance comprise entre 20 et 28 km d’une
carrière la plus proche. Plusieurs hypothèses sont possibles pour expliquer ce
résultats : soit ces événements sont en fait mal identifiés, soit ils sont bien
classés mais très mal localisés et/ou la carrière qui leur est associée n’a pas été
répertoriée dans la base de données des carrières.

Par ailleurs, les attributs sélectionnés vont conduire à classer les séismes par
défaut : ce sont des événements qui sont très éloignés des carrières, ou lorsqu’ils
sont plus proches, n’ont pas lieu aux heures d’activité maximale des carrières.
Ce qui est alors très restrictif.

Or, pourtant, si la performance prédictive de ce classifieur est évaluée, il est
possible d’observer que 80% des tirs de carrière et 90% de séismes ont été bien
classés. Ce qui n’est, au premier abord, pas si mauvais. Seulement, l’analyse
des arbres décisionnels amène à penser à un sur-apprentissage.

En effet, une proportion non négligeable de tirs de carrière ont bien lieu
en dehors des pics traditionnels d’activité des carrières, de nombreux tirs de
carrière sont également mal localisés et la base de données des carrières, même
si riche, n’est certainement pas exhaustive. De même, les séismes sont égale-
ment bien détectés pendant les pics d’activité des carrières et peuvent même
être localisés non loin des sites de ces carrières. Un taux élevé d’exceptions
à cette règle de classification souligne la forte instabilité de cette fonction de
prédiction, et son incapacité à généraliser. Même si ces résultats offrent une
base intéressante, d’autres attributs doivent être considérés pour affiner cette
classification primordiale. On observe là la nécessité absolue d’apporter une ex-
pertise humaine pour estimer la validité d’une fonction de prédiction apprise.
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Seulement, j’ajouterai que si l’analyse d’un arbre décisionnel est à portée de
l’Homme, cette analyse devient plus difficile lorsqu’il s’agit d’évaluer l’ensemble
des arbres (de l’ordre de plusieurs centaines) qui composent la forêt aléatoire.
L’apport d’outils automatisés pour analyser ce flux d’arbres est donc d’un grand
apport et reste une perspective intéressante à approfondir (Lapuschkin et al.,
2019 ; Samek, 2020, Figure 5.22).

Figure 5.22: (a) Des arbres décisionnels simples peuvent être facilement com-
pris en visualisant le chemin de décision. (b) Du fait de leur complexité, des
modèles de pointe basés sur un ensemble d’arbres deviennent extrêmement dif-
ficiles à interpréter dans leur totalité. (c) Des outils automatisés (par exemple
TreeExplainer, S. M. Lundberg et al., 2020) sont nécessaires pour extraire les
attributs pertinents et trouver les effets d’interaction dans les modèles basés
sur les arbres. D’après Samek, 2020.

L’être humain peut donc vérifier en partie le choix pertinent des attri-
buts (qui sont préalablement sélectionnés automatiquement) et peut valider
les règles de classification élaborées par l’algorithme de Random Forest (seuil
utilisé pour générer un noeud, organisation hiérarchique des noeuds, pertinence
de la prédiction au regard de la règle de classification choisie, etc.), réduisant
l’espace d’hypothèses possibles à un espace plus riche et pertinent.

Choix de l’algorithme, sélection des hyperparamètres optimaux
et forte interactivité avec les connaissances préalables humaines
sont les trois grands facteurs qui vont aider à délimiter un es-
pace d’hypothèses riche et pertinent dans le but de sélectionner
une fonction de prédiction qui minimise l’erreur de généralisa-
tion malgré les contraintes apportées par mon jeu de données
disponible.
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•Optimiser la résolution du problème de classification posé

Si une seule fonction de prédiction est utilisée pour simultanément prédire
les labels des faux événements, des tirs de carrière et des séismes, la performance
de classification est diminuée. En effet, comme il a été décrit précédemment
dans le chapitre 2, le bruit non-stationnaire à l’origine de la détection des faux
événements est souvent de même ordre d’amplitude, de contenu fréquentiel et
de durée que les séismes ou les tirs de carrière. De plus, étant donné que la
procédure de détection détecte un taux élevé d’événements de faible magnitude,
les signaux associés à ces événements se détachent très souvent à peine du bruit.

En considérant une seule fonction de prédiction, une sélection automatique
d’un sous-ensemble optimal d’attributs par élimination récursive à partir du
pool initial des 361 attributs (cf tableau S1 du supplément de l’article) révèle
que les attributs qui possèdent l’importance la plus forte ne sont pas ceux qui
décrivent les caractéristiques du signal associé à l’événement à classer. A la
place, ce sont des attributs comme le nombre de phases total, le nombre de
phases S, le facteur de corrélation entre la différence des temps d’arrivée P-S
et la distance épicentrale, le nombre de stations, la RMS des résidus tempo-
rels ou bien l’heure d’occurrence des événements qui ressortent principalement
(Figure 5.23).

Si effectivement un faux événement peut être globalement plus facilement
classé par rapport à un séisme avec ces critères : ce dernier possède un nombre
plus faible de phases, un nombre presque négligeable de phases S, un facteur de
corrélation entre la différence des temps d’arrivée P-S et la distance épicentrale
plus faible, un nombre de stations impliquées dans la détection de l’événement
plus petit, une RMS des résidus temporels plus élevée, et une heure d’occur-
rence concentrée à la période d’activité anthropique la plus élevée (c’est-à-dire
entre 7 heures et 18 heures) ; le constat est plus difficile pour les tirs de carrière.

En effet, ces derniers ont souvent lieu aux périodes de la journée où le niveau
de bruit d’origine anthropique est le plus élevé, leurs signaux sont donc forte-
ment contaminés par du bruit. La détection des phases est alors plus difficile
et beaucoup de tirs de carrière sont détectés avec très peu de stations. Ajouté à
cela, les ondes S sont souvent de plus faible amplitude pour les tirs de carrière
et il est couramment difficile d’identifier et de pointer les temps d’arrivée de
ces ondes. Par ailleurs, ces événements sont très superficiels et peuvent avoir
lieu dans des terrains sédimentaires, leurs solutions hypocentrales peuvent donc
être localisées avec une plus grande incertitude puisque les modèles de vitesse
qui sont utilisés pour détecter ne tiennent pas compte des variations latérales et
verticales de l’épaisseur de la couche sédimentaire. Par conséquent, ces tirs de
carrière peuvent partager les mêmes caractéristiques que les faux événements
et être classés en tant que tels.
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Figure 5.23: Importance relative des attributs pour la prédiction des labels
des faux événements, des séismes et des tirs de carrière avec un seul classifieur.
La sélection automatique des attributs a été effectuée par élimination récursive
pour obtenir un sous-ensemble optimal qui est visualisé ici (c’est une sélection
primordiale). Cette combinaison a été évaluée par validation croisée sur 5 ité-
rations (jeu de données de la période 2017-2019) puis testée sur un nouveau jeu
test comprenant les événements détectés par le BCSF-RéNaSS entre janvier et
août 2016. L’équilibre de classe a été respectée dans les jeux d’entraînement
et de validation. Le jeu test a une taille qui correspond à 30% de celle du
jeu d’entraînement. Le détail des attributs est présenté dans le tableau 1 du
supplément de l’article qui va suivre.
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Lorsque cette fonction de prédiction apprise à partir d’un jeu d’entraîne-
ment élaboré à partir de cette sélection primordiale d’attributs (toujours la
période 2017-2019) est utilisée pour prédire le labels des événements d’un jeu
test (période janvier 2016-août 2016), on constate que 25% des tirs de carrière
sont effectivement identifiés comme des faux événements contre 7% pour les
séismes.

En revanche, si deux fonctions de prédiction sont désormais apprises, une
pour prédire les faux événements et les vrais événements et une pour prédire les
séismes et les tirs de carrière parmi les vrais événements identifiés, on constate
que 15% des tirs de carrière sont identifiés comme faux événements contre 5%
pour les séismes.

Avec deux fonctions de prédiction, si les attributs liés à la configuration du
réseau de stations ressortent également, le résultat de la sélection automatique
des attributs par élimination récursive montre également que des attributs re-
liés au signal comme le degré de polarisation planaire ou bien le degré de com-
plexité de la fonction STA/LTA prennent de 2 à 3 fois plus d’importance lorsque
que le problème de la classification des faux événements est traité de manière
binaire (c’est-à-dire faux événements versus vrais événements, Figure 5.24).

Par ailleurs, des attributs comme l’heure d’occurrence de l’événement et la
variance des fréquences contenues dans le spectre du signal ne sont plus sélec-
tionnés pour classifier les faux événements parmi les autres événements dans
le cas d’une approche binaire, alors qu"ils le sont indéniablement dans une
approche ternaire (faux événements versus tirs de carrière versus séismes). Or,
si ces deux attributs peuvent être précieux pour distinguer un séisme d’un tir
de carrière, ils amènent à des confusions lorsqu’ils sont utilisés pour identifier
les faux événements parmi le reste des autres événements. En effet, ces faux
événements présentent en moyenne statistiquement une variance spectrale qui
se rapproche fortement de celle des tirs de carrière et leurs heures d’occur-
rence sont majoritairement comprises dans le même intervalle temporel que
celui des tirs de carrière. Le problème se complexifie davantage s’il s’avère que
des séismes répondent aussi à cet ensemble de critères, à savoir une variance
spectrale plus faible, une heure d’occurrence identifiée dans le pic d’activité
anthropique, un nombre inférieur de phases (dont les phases S) et une RMS
résiduelle plus élevée.

Avec une approche binaire, la variance spectrale et l’heure d’occurrence
de l’événement sont sélectionnés lorsqu’il s’agit uniquement de classer les tirs
de carrière et les séismes. Leur importance relative est d’ailleurs très élevée
(10% et 13% respectivement, Figure 5.25). Comparativement à la classification
ternaire simultanée des tirs de carrière, des séismes et des faux événements, ces
derniers sont donc utilisés plus fréquemment pour la construction des arbres
décisionnels dans cette approche binaire.
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Figure 5.24: Importance relative des attributs pour la prédiction des labels
des faux événements et des vrais événements (ensemble unitaire de séismes
et de tirs de carrière) avec une approche binaire. La sélection des attributs
a été effectuée automatique par élimination récursive pour combiner un sous-
ensemble optimal qui est visualisé ici (c’est une sélection primordiale). Cette
combinaison a été évaluée par validation croisée sur 5 itérations (jeu de données
de la période 2017-2019) puis testée sur un jeu test comprenant les événements
détectés par le BCSF-RéNaSS entre janvier et août 2016. L’équilibre de classe a
été respectée dans le jeu d’entraînement. Le jeu test a une taille qui corresponde
à 30% de celle du jeu d’entraînement. Voir tableau S1 du supplément de l’article
qui va suivre pour plus de détails sur les attributs.
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Figure 5.25: Importance relative des attributs pour la prédiction des labels
des séismes et des tirs de carrière avec une approche binaire. La sélection des
attributs a été effectuée automatique par élimination récursive pour combiner
un sous-ensemble optimal qui est visualisé ici (c’est une sélection primordiale).
Cette combinaison a été évaluée par validation croisée sur 5 itérations (jeu de
données de la période 2017-2019) puis testée sur un jeu test comprenant les
événements détectés par le BCSF-RéNaSS entre janvier et août 2016. L’équi-
libre de classe a été respectée dans le jeu d’entraînement. Le jeu test a une
taille qui corresponde à 30% de celle du jeu d’entraînement. Voir tableau S1
du supplément de l’article qui va suivre pour le détail des attributs.
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J’ai donc privilégié dans ce travail de thèse, une approche bi-
naire séquentielle. Deux fonctions de prédiction sont effective-
ment apprises : une pour prédire les faux événements et les vrais
événements et une autre pour prédire les séismes et les tirs de
carrière parmi les vrais événements. En s’attardant plus spécifi-
quement sur les attributs qui vont d’abord définir ce qu’est un
faux événement relativement à un vrai événement, puis un séisme
naturel relativement à un tir de carrière, cette approche limite les
effets parasitaires d’une approche ternaire en éliminant des cor-
rélations artefactuelles comme celle de lier l’heure d’occurrence
de l’événement avec son incertitude de localisation et la variance
spectrale des signaux associés. Cette approche binaire permet
alors de mieux solidement gérer l’hétérogénéité et la complexité
des données.

En outre, l’utilisation de l’algorithme de Random Forest, combi-
née à une sélection optimale de ses hyperparamètres de configu-
ration, permet de contrebalancer les effets liés à la taille, petite,
et à la dimensionnalité, assez élevée, du jeu de données, en mi-
nimisant les erreurs d’approximation et d’estimation.

Par ailleurs, l’apport de connaissances préalables dans le proces-
sus d’apprentissage, transmises par l’interaction avec l’être hu-
main, aide à déceler les informations parasitaires véhiculées par le
jeu de données qui peuvent conduire à une sélection automatique
d’attributs redondants et/ou non significatifs. Cette interactivité
est aussi un garant pour estimer la validité et la plausibilité de
la fonction de prédiction apprise (cohérence et significativité des
règles de classification, pertinence des attributs, généralisabilité
des règles apprises, etc.). Cette interactivité offre alors un cadre
structurel à un jeu de données qui présente des informations très
hétérogènes et diversifiées, et donc qui offre un espace de solu-
tions prédictives multiples mais pas toutes vraisemblables.

Enfin, le déséquilibre des classes d’événements au sein du jeu
de données mère est corrigé par l’inclusion de faux événements
revus manuellement et un sous-échantillonnage des autres classes
d’événement (séismes et tirs de carrière).
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5.2 Choisir la fonction de prédiction optimale
dans l’espace des hypothèses possibles

5.2.1 Rechercher la combinaison optimale d’attributs

Comme écrit précédemment, le jeu de données qui a servi pour l’entraî-
nement et la validation croisée comprend les vrais événements détectés par le
BCSF-RéNaSS entre janvier 2017 et décembre 2019. Ce jeu de données a été
complété avec un lot de faux événements détectés automatiquement au cours
des mois de juillet et août 2016 pour assurer la discrimination des vrais et
des faux événements. Ces derniers ont d’ailleurs été revus manuellement. Les
proportions des différentes classes d’événements ont été équilibrées dans le jeu
d’entraînement, et leur représentativité a été estimée dans les différents jeux
de validation.

Les valeurs des hyperparamètres utilisés pour contraindre l’espace des hy-
pothèses possibles sont répertoriées dans le tableau suivant (Table 5.1).

Table 5.1: Hyperparamètres optimaux utilisés pour contraindre l’espace des
hypothèses possibles avec l’algorithme d’apprentissage Random Forest.

Hyperparameter Value
Tree Depth 150

Minimum number of samples required to split a node 5
Minimum number of samples required at a leaf node 5

Number of Trees 500

•Rechercher les attributs pour classer les vrais et faux événements

En ce qui concerne la discrimination des faux événements et des vrais évé-
nements, l’utilisation du sous-ensemble optimal d’attributs extrait de la procé-
dure d’élimination récursive des attributs (cf Figure 5.24), après avoir testé sa
performance via validation croisée sur 5 itérations, montre que celle-ci aboutit
à un classifieur capable de prédire correctement 92% des vrais événements et 99
% des faux événements sur un jeu test contenant les vrais événements détectés
par le BCSF-RéNaSS entre janvier 2016 et août 2016, complété par environ
2500 faux événements (Figure 5.26).

En revanche, lorsque ce classifieur est utilisé sur un nouveau jeu de données
détecté automatiquement selon la procédure qui a été développée dans cette
thèse (septembre 2016-décembre 2016), la performance prédictive de ce dernier
se dégrade fortement pour les vrais événements : seulement 60% d’entre eux
sont correctement prédits. En revanche, 98% des faux événements sont quant
à eux bien prédits (Figure 5.26).
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Figure 5.26: Effets du retrait (symbole -) et/ou de l’ajout (symbole +) d’attri-
buts sur la capacité prédictive de classifieurs discriminant les vrais événements
et les faux événements. La spécificité désigne le taux de faux événements correc-
tement prédits (c’est-à-dire le rapport des vrais négatifs sur la somme des vrais
négatifs et des faux positifs). La sensitivité désigne le taux de vrais événements
correctement prédits (c’est-à-dire le rapport des vrais positifs sur la somme des
vrais positifs et des faux négatifs). La précision désigne la proportion de vrais
événements correctement prédits relativement à l’ensemble des événements pré-
dits positivement (c’est-à-dire le rapport entres les vrais positifs et la somme
des vrais positifs et des faux positifs). Référence RFE = sélection automatique
des attributs effectuée par élimination récursive des attributs (cf Figure 5.24).
Voir tableau S1 du supplément de l’article pour le détail des attributs.
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Parmi les attributs automatiquement sélectionnés par la procédure d’éli-
mination récursive des attributs, plusieurs attributs contribuent à diminuer la
performance prédictive du classifieur vis-à-vis du jeu d’événements produits au-
tomatiquement. L’erreur standard (RMS des résidus temporels) est d’abord en
moyenne plus élevée pour ce jeu automatique : 1:32� 1:17s contre 0:37� 0:10s
pour les jeux d’entraînement, de validation et de test. De nombreux vrais évé-
nements compris dans le jeu automatique ont donc des erreurs standards qui
peuvent se rapprocher des erreurs standards des faux événements, qui sont en
moyenne égales à 2:56� 2:04s.

De plus, les épicentres des vrais événements du jeu automatique ont des in-
certitudes longitudinales et latitudinales élevées, respectivement 9:46�9:41km
et 9:51 � 9:60km. Ces incertitudes épicentrales sont effectivement 2 à 3 fois
plus élevées que celles estimées pour les vrais événements compris dans les
jeux d’entraînement, de validation et de test. Là encore, les incertitudes épi-
centrales de nombreux vrais événements tendent à s’approcher des incertitudes
estimées pour les épicentres des faux événements (incertitudes latitudinales et
longitudinales moyennes égales à 13:96 � 13:39km et 14:44 � 14:26km). Par
ailleurs, les écarts-types calculés sur les incertitudes latitudinales et longitudi-
nales montrent une grande dispersion des valeurs pour les vrais événements du
jeu automatique et la totalité des faux événements.

Or, les attributs décrivant l’erreur standard et les incertitudes épicentrales
font partie des attributs qui ont une importance relative forte (de 3 % pour les
incertitudes longitudinales à 7 % pour la RMS des résidus). Par conséquent,
étant donné qu’un quart des vrais événements présentent des incertitudes la-
titudinales et longitudinales supérieures à 10 km et que environ 13% ont une
erreur standard supérieure à 2 s, ces attributs ont été retirés.

Le retrait de ces attributs n’a pas beaucoup d’effet sur la performance pré-
dictive du nouveau classifieur vis-à-vis du jeu test (celui-ci prédit correctement
les vrais et faux événements avec la même performance prédictive que le clas-
sifieur précédent). En revanche, la nouvelle fonction de prédiction générée à
partir de la nouvelle combinaison d’attributs améliore la qualité de prédiction
des vrais événements contenus dans le jeu automatique, en prédisant correcte-
ment environ 70% d’entre eux, tout en maintenant un taux élevé de prédictions
correctes des faux événements (Figure 5.26).

De même, les attributs décrivant les rapports d’amplitude et spectraux entre
les ondes P et S ont été retirés de la combinaison des attributs. Les valeurs de
ces différents rapports sont en moyenne plus élevées pour les faux événements.
Seulement, ces valeurs expriment plus une conséquence du processus de gé-
nération des pointés qu’une propriété physique à relier aux faux événements
eux-mêmes. En effet, les variations d’amplitude, souvent très impulsives, du
bruit non-stationnaire haute fréquence conduit à assimiler ces variations à une
arrivée d’ondes P de forte amplitude et à haute fréquence.
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De plus les temps d’arrivée des ondes S étant détectés une fois que les
pointés P sont émis, les pointés "S" dans le cas des faux événements sont émis
dans le sillage des faux pointés "P".

Afin de ne pas introduire des corrélations artefactuelles (des rapports d’am-
plitude et spectraux P/S élevés associés à des faux événements alors que ce sont
des rapports artefactuels), les attributs reliés à la description complète de ces
rapports P/S dans les domaines temporel et fréquentiel ont donc été retirés.
Ceci permet d’éviter les erreurs de prédiction pour des vrais événements dont
les rapports d’amplitude et spectraux P/S sont élevés. Le retrait de l’ensemble
de ces attributs induit une performance prédictive supérieure pour les vrais
événements, quel que soit le jeu de données : le nouveau classifieur détecte
respectivement 95% et 76% des vrais événements pour le jeu test et le jeu au-
tomatique, tout en maintenant de haut niveaux de prédiction correcte des faux
événements.

Par ailleurs, la plupart des attributs dépeignant la fonction STA/LTA (évo-
lution du rapport STA/LTA au cours du temps), ont été supprimés, à l’ex-
ception de la valeur maximale du rapport STA/LTA. L’estimation du de-
gré de complexité de cette fonction STA/LTA traduit les fortes fluctuations
liées au bruit enregistré. Les attributs décrivant statistiquement cette fonction
STA/LTA constituent donc de forts discriminants pour identifier les faux évé-
nements. Néanmoins, de nombreux vrais événements détectés avec de faibles
rapports signal/bruit peuvent être également associés à une fonction STA/LTA
complexe, sensible au niveau de bruit contaminant le signal sismique détecté.
Cette sensibilité est fortement exacerbée puisqu’une fenêtre temporelle STA
de durée courte (0.5 s) a été initialement choisie. Par conséquent, ces attributs
pouvant introduire facilement de la confusion, ils ont alors été retirés. Ce retrait
a conduit à une amélioration de la capacité prédictive du classifieur résultant
qui est en mesure de prédire correctement près de 96% des vrais événements
pour le jeu test et 79% pour le jeu automatique (Figure 5.26).

De la même manière, des attributs tels que la distance épicentrale maximale,
les magnitudes des événements (magnitude locale et magnitude de coda), la
proportion de pointés S ou bien la déviation de l’événement par rapport au
centroïde des stations impliquées dans la détection de cet événement, ont été
supprimés de la combinaison d’attributs. Les faux événements étant détectés
à partir d’une association de faux pointés décorrélés entre eux, ces derniers
sont alors détectés avec des distances épicentrales élevées, leurs magnitudes
sont alors généralement élevées et la déviation de l’événement par rapport
au centroïde des stations est forte. De plus, la proportion des phases S dans
l’association est faible puisqu’il n’y a pas à proprement parler des arrivées
d’ondes S détectables dans le cas de ces faux événements. Seulement, les vrais
événements peuvent aussi partager toutes ces caractéristiques, en particulier
pour les événements détectés aux confins du réseau de stations et pour les
événements dont le contenu en bruit est élevé et qui rend difficile la détection
des phases S.
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Quelques attributs redondants ont aussi été retranchés de la sélection des at-
tributs comme le nombre de stations utilisées, la variance des résidus temporels
ou la proportion de stations du réseau qui sont les plus proches de l’événement
et qui sont impliquées dans sa détection. Le nombre de stations utilisées, qui
a un poids élevé dans les attributs, est effectivement très indirectement cor-
rélé au nombre de phases utilisées, qui est l’attribut avec l’importance relative
maximale. L’utilisation de ces deux attributs, nombre de stations et nombre
de phases utilisées, augmente la probabilité de classer les vrais événements dé-
tectés avec très peu de stations et très peu de phases comme faux événements.
De plus, la variance des résidus temporels est un indice de la dispersion des
valeurs des résidus assez superflue puisque l’écart-type des résidus (racine car-
rée de la variance), inclus dans la sélection, apporte déjà cette information.
De même, la proportion des stations les plus proches de l’événement est assez
liée à la distance épicentrale minimale, également incluse dans la sélection des
attributs.

D’autres attributs ont également été retirés alors qu’ils contribuent très
activement à la discrimination des vrais et faux événements. Ce sont le degré
de rectilinéarité du signal, le nombre de pics dans la fonction d’auto-corrélation
ainsi que, en moindre mesure, la plus grande valeur propre initiale de la matrice
de covariance calculée à partir du signal sur les trois composantes.

La rectilinéarité mesure la polarisation linéaire du champ d’onde : une valeur
élevée de cette rectilinéarité représente un champ d’onde linéairement polarisé
comme c’est le cas par exemple des ondes P longitudinales, des ondes S trans-
versales et des ondes de Love (Greenhalgh et al., 2018). Quand un signal
rectilinéairement polarisé est contaminé par du bruit, même si le bruit est par
exemple polarisé de façon sphérique, sa direction de polarisation va changer
nettement (Zheng et al., 1992). Par conséquent, la variabilité des phases sis-
miques qui peuvent être repérées dans le signal, associée à un fort contenu
en bruit, amène à une trajectoire des particules 3D très complexe, s’éloignant
d’une polarisation purement linéaire (Cliet et al., 1987). Si l’apport de la rec-
tilinéarité dans la combinaison d’attributs a tendance à améliorer la prédiction
des faux événements, la complexité du signal associé aux vrais événements rend
plus difficile leur prédiction.

Le degré de rectilinéarité étant formulé en fonction de la l’ordre de grandeur
de la valeur propre maximale de la matrice de covariance, le même constat peut
être établi avec l’attribut qui exprime cette valeur propre maximale. Cet attri-
but donne des informations sur la cohérence spatiale du champ d’onde observé,
et est classiquement utilisé pour détecter les signaux sismiques (Wagner et
al., 1996 ; Seydoux et al., 2016). Seulement, lorsque ces signaux sismiques sont
détectés avec de faibles rapports signal/bruit, leurs valeurs propres maximales
diminuent, rendant plus difficile la prédiction correcte des vrais événements qui
sont associés à ces types de signaux (Saenger et al., 2009).
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Il en est de même pour l’estimation du degré de périodicité du signal, tra-
duite par l’estimation du nombre de pics dans la fonction d’autocorrélation.
En effet, le bruit d’origine anthropique étant généralement non-stationnaire et
non-Gaussien (Groos et al., 2009 ; Steim, 2015) et les signaux sismiques dé-
tectés étant souvent de faible amplitude et contaminés par du bruit, les profils
de ces fonctions d’autocorrélation peuvent être très similaires, accentuant la
difficulté d’utiliser un tel attribut pour correctement prédire les vrais et faux
événements.

Si le retrait de ces trois précédents attributs aboutit à une amélioration de
la capacité prédictive du classifieur vis-à-vis des vrais événements (respective-
ment 96 % pour le jeu test et 82-84% pour le jeu automatique), la qualité de
prédiction des faux événements est quant à elle légèrement dégradée, comme en
témoigne la diminution de la valeur de la précision (rapport entre le nombre de
vrais événements correctement prédits et la somme du nombre de faux événe-
ments incorrectement prédits plus le nombre de vrais événements correctement
prédits). Cependant, au regard du grand nombre de faux événements détectés
(près de 45 000), cette dégradation de la prédiction des faux événements ne se
manifeste presque pas sur la valeur du taux de faux événements correctement
prédits. Par conséquent, le taux de faux événements incorrectement détectés
reste donc acceptable.

Enfin, les attributs qui sont reliés à l’énergie du signal dans les différentes
gammes fréquentielles testées (1-3 Hz, 3-6 Hz, 6-9 Hz, 1-5 Hz, 5-10 Hz, 10-20
Hz, 20-50 Hz) et à la description du spectre issu de la transformation discrète
de Fourier (médiane, énergie dans les gammes fréquentielles 0-12.5 Hz, 12.5-
25 Hz, 25-37.5 Hz et 37.5-50 Hz, nombre de pics) n’ont pas été gardés non
plus. Ces attributs sont effectivement peu discriminants (importance relative
inférieure à 1%) et complexifient la tâche de discrimination. Comme il a déjà été
évoqué, les signaux associés aux différents événements (faux événements, tirs de
carrière, séismes) présentent des contenus fréquentiels et des amplitudes assez
équivalentes. De plus, au sein d’une même classe d’événements, les signaux
peuvent présenter des amplitudes et des intensités très variables pour une même
gamme fréquentielle, relatant la taille différentielle des sources de ces signaux.

En revanche, si ce sont plutôt des rapports d’énergie du signal sur des
gammes de fréquence différentes qui sont considérés, l’effet discriminant s’am-
plifie. En effet, si l’attribut définissant le rapport de l’énergie du signal entre
les gammes de fréquence 6-9 Hz et 10-20 Hz est ajouté à la combinaison des
attributs optimaux, celui-ci, ayant une importance relative non négligeable (en-
viron 5 %), améliore de façon notoire la performance prédictive du classifieur
résultant. Celui-ci est désormais capable de prédire correctement environ 87
% des vrais événements du jeu automatique et 96 % des vrais événements du
jeu test, tout en maintenant un fort taux de prédiction des faux événements
(99.7% de prédictions correctes).
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Pris individuellement, le signal filtré aux gammes de fréquences comprises
entre 10 et 20 Hz peut être d’une intensité comparable pour les séismes, les
faux événements et parfois les tirs de carrière. De la même manière, en fonction
de la nature du bruit, le signal filtré aux gammes de fréquences comprises entre
6 et 9 Hz peut être en moyenne de même intensité pour les différents types
d’événement. En revanche, la prise en compte du rapport combiné de l’énergie
du signal entre les gammes de fréquence 6-9 Hz et 10-20 Hz permet de distinguer
plus facilement les événements entre eux. L’énergie du signal dans la gamme
de fréquence 6-9 Hz est effectivement relativement plus élevée pour les vrais
événements (tirs de carrière et séismes) que l’énergie du signal dans la gamme
de fréquence 10-20 Hz, comparativement au rapport de l’énergie du signal pour
ces gammes de fréquence estimé pour les faux événements (Figure 5.27).

Le classifieur final qui prédit les vrais et faux événements est présenté dans
l’article de la sous-section suivante.
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(a) Spectrogramme correspondant au si-
gnal détecté à la station RONF et qui est
relié à un faux événement créé le 03 dé-
cembre 2016 à 06h23

(b) Spectrogramme correspondant au si-
gnal détecté à la station PLYF et qui est
relié à un faux événement créé le 19 dé-
cembre 2016 à 07h05

(c) Spectrogramme correspondant au signal
détecté à la station BOURR et qui est relié
à un séisme identifié le 18 octobre 2016 à
21h36 dans le canton de Zürich (MLv 1.4)

(d) Spectrogramme correspondant au si-
gnal détecté à la station BALST et qui est
relié à un séisme identifié le 18 octobre 2016
à 21h36 dans le canton de Zürich (MLv 1.4)

(e) Spectrogramme correspondant au signal
détecté à la station BOUC et qui est relié
à un tir de carrière Bonnefoy identifié le 15
décembre 2016 à 12h29 dans la région de
Besançon (MLv 1.6)

(f) Spectrogramme correspondant au signal
détecté à la station CHMF et qui est relié
à un tir de la carrière Bonnefoy identifié le
15 décembre 2016 à 12h29 dans le canton
de Besançon (MLv 1.6)

Figure 5.27: Comparaison de l’intensité du signal pour les gammes fréquen-
tielles 6-9 Hz et 10-20 Hz entre les deux grands types d’événements : (a), (b)
faux événements et vrais événements dont (c) (d) les séismes et (e) (f) les tirs
de carrière.
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•Rechercher les attributs pour classer les séismes et les tirs

En ce qui concerne la classification des séismes et des tirs de carrière, l’uti-
lisation du sous-ensemble optimal des attributs sélectionnés par élimination
récursive conduit à une fonction de prédiction capable de prédire correctement
82% des tirs de carrière et 97% des séismes contenus dans le jeu test (jan-
vier 2016-août 2016). Lorsque cette fonction de prédiction est utilisée sur le
jeu automatique (septembre 2016-décembre 2016), le classifieur est capable de
prédire correctement 88% des séismes et 89% des tirs de carrière (Figure 5.28).

L’exclusion des attributs véhiculant des informations sur la distance de
l’événement à la carrière la plus proche, le nombre de phases utilisées, le nombre
de phases S, les magnitudes locales (MLv et ML) amènent à mieux prédire les
séismes du jeu automatique avec une amélioration de 2% de vraies prédictions.
En revanche, cela a peu d’effet sur les séismes contenus dans le jeu test et cela
dégrade assez fortement la qualité de la prédiction des tirs de carrière dans les
deux jeux de données.

En effet, un tir de carrière est situé proche d’une carrière, contient peu de
phases S dans l’association qui l’a détecté et donc possède un nombre de phases
moins grand, mais la réciproque n’est pas forcément vraie pour les séismes. De
plus, les magnitudes estimées pour les tirs de carrière sont en moyenne plus
élevées comme décrit dans le chapitre 2 (1.58 contre 1.40 pour les séismes). Ces
attributs apparaissent donc significatifs pour classer les tirs de carrière alors
qu’ils le sont beaucoup moins pour les séismes (Figure 5.28).

Toutefois, cet effet négatif tend à s’annuler lorsque ce sont les attributs
statistiques qui décrivent l’enveloppe du signal qui sont retirés de la combinai-
son d’attributs (la tendance s’inverse, la prédiction correcte des tirs de carrière
s’améliore). Si ces derniers ressortent fortement de la sélection automatique
des attributs, ils apportent de la confusion à la fonction de prédiction générée.
Comme il a été illustré précédemment, il est souvent difficile de distinguer un
séisme d’un tir de carrière basé uniquement sur sa forme d’onde, du fait notam-
ment des effets liés au milieu de propagation. Or, ici, lorsque la combinaison
d’attributs est dénuée des informations liées à l’enveloppe (donc indirectement
la forme d’onde) et à la distance de l’événement à la plus proche carrière,
la qualité de la prédiction des séismes contenus dans le jeu test reste élevée
(97% de séismes correctement prédits). Celle-ci s’améliore également nette-
ment pour les séismes contenus dans le jeu automatique (passage de 90 à 93%
de séismes correctement prédits, Figure 5.28). Ces attributs, pourtant utilisés
pour discriminer les événements par les analystes, ne sont pas ceux qui vont
fondamentalement aider à classer les séismes et les tirs de carrière entre eux.
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Figure 5.28: Effets du retrait (symbole -) et/ou de l’ajout (symbole +) d’at-
tributs à partir d’une sélection initiale automatique d’attributs, effectuée par
élimination récursive, sur la capacité prédictive de classifieurs discriminant les
séismes et les tirs de carrières. La spécificité désigne le taux de tirs de car-
rière correctement prédits (c’est-à-dire le rapport entres les vrais négatifs et la
somme des vrais négatifs et des faux positifs). La sensitivité désigne le taux de
séismes correctement prédits (c’est-à-dire le rapport entres les vrais positifs et
la somme des vrais positifs et des faux négatifs). La précision désigne la propor-
tion de séismes correctement prédits relativement à l’ensemble des événements
prédits positivement (c’est-à-dire le rapport entres les vrais positifs et la somme
des vrais positifs et des faux positifs). Référence RFE = sélection automatique
des attributs effectuée par élimination récursive des attributs. Voir e tableau
S1 du supplément de l’article pour le détail des attributs.
Alexandra Renouard CHAPITRE 5. 257



5.2. CHOISIR LA FONCTION DE PRÉDICTION OPTIMALE DANS
L’ESPACE DES HYPOTHÈSES POSSIBLES

Le même constat peut être fait pour les attributs statistiques décrivant
les valeurs des rapports des amplitudes maximales entre les ondes P et S pour
chaque événement (Figure 5.28). Si ces attributs semblent être importants pour
la prédiction des tirs de carrière, ils ont un effet plutôt négatifs sur la prédiction
des séismes (leur retrait de la combinaison des attributs amène à une augmen-
tation du taux de prédiction correcte des séismes pour les deux jeux test et
automatique).

De même, l’attribut exprimant la moyenne des valeurs du spectre du si-
gnal ainsi que les attributs représentant l’énergie du signal dans les gammes
fréquentielles 10-20 Hz et 20-50 Hz ont été retirés de la sélection automatique.
Si les tirs de carrière sont associés à des signaux qui ont un contenu fréquen-
tiel globalement plus basse-fréquence que ceux associés aux séismes, les motifs
fréquentiels peuvent être en fait très variables d’un événement à l’autre, et
d’une station à l’autre. Ce sont donc les rapports d’énergie du signal relatifs
qui sont donc considérés : le rapport de l’énergie du signal entre les gammes
fréquentielles 6-9 Hz et 1-5 Hz ainsi que le rapport de l’énergie du signal entre
les gammes fréquentielles 3-6 Hz et 20-50 Hz. En effet, les signaux reliés aux
tirs de carrière présentent une énergie plus élevée dans la gamme de fréquences
1-5 Hz ou 3-6 Hz relativement à la gamme de fréquences 6-9 Hz ou 20-50 Hz,
et inversement pour les séismes. Ceci souligne notamment la superficialité gé-
nérale des tirs de carrière qui génèrent beaucoup d’ondes de surface de faible
fréquence (Gitterman et al., 1998).

Enfin, l’apport supplémentaire d’attributs reliés à la description du signal
dans le domaine fréquentiel apporte plus de contraintes à la discrimination des
séismes et des tirs de carrière. Il semble que les attributs reliés à des infor-
mations contenues dans le spectrogramme du signal dans le domaine tempo-
fréquentiel (variance des valeurs du spectre du signal, nombre de pics contenus
dans le spectre, rapports spectraux entre les ondes P et S, fréquence cumulée
de 25%, fréquence cumulée de 75%) expriment davantage ce qu’est un séisme
relativement à un tir de carrière, et vice versa. En présence de ces attributs, le
nouveau classifieur converge vers une capacité équivalente à prédire correcte-
ment les séismes et les tirs de carrière, quel que soit le jeu de données utilisé
(Figure 5.28).

A l’inverse, si ce sont les attributs qui définissent les rapports d’amplitudes
maximales entre les ondes S et P ainsi que les caractéristiques de l’enveloppe
qui sont choisis, cela engendre un déséquilibre dans la capacité prédictive du
classifieur résultant : les tirs de carrière sont en conséquence plus correctement
prédits que les séismes, et inversement si ces attributs sont retirés sans ajout
d’informations sur les spectrogrammes des signaux. Cette instabilité de pré-
diction en présence de ces attributs soulignent bien l’incapacité du classifieur
à généraliser.
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Si en revanche, on décide d’ajouter de nouveau les attributs qui relatent
les informations liées à la distance de l’événement à la carrière la plus proche,
la performance prédictive vis-à-vis des séismes se dégrade derechef. Par consé-
quent, si ces informations sont très utiles pour affiner la prédiction des tirs de
carrière, elles apportent de la confusion et de l’instabilité à la fonction de pré-
diction, qui aura plus de difficulté à prédire certains séismes (surtout s’ils sont
véritablement situés près d’une carrière). Ces informations sont alors définiti-
vement retirées de la sélection des attributs. La fonction de prédiction finale
est présentée dans l’article qui va suivre.

5.2.2 Comprendre les erreurs de classification

L’interactivité Homme-machine peut se traduire aussi à travers l’analyse
des erreurs de classification réalisées par le classifieur automatique. En effet,
l’analyse de ces erreurs amène à estimer la réelle performance prédictive des
classifieurs en évaluant la pertinence des règles de classification émises, de sorte
à déceler les défaillances de la fonction de prédiction apprise.

•Erreurs de classification pour les vrais et faux événements

Erreurs de classification des faux événements. Parmi les faux évé-
nements incorrectement prédits par le classifieur, 24 % d’entre eux sont issus
d’une association de faux pointés avec 1 ou 2 vrais pointés émis au moins à
une station qui a enregistré un signal sismique isolé. De ce fait, les attributs
qui sont calculés pour ces faux événements vont véhiculer une information
supplémentaire à relier avec cet apport de signal cohérent non-stationnaire.

Cela peut avoir pour effet d’augmenter le nombre de phases utilisées pour
l’association, qui est l’attribut qui a une importance relative la plus élevée.
Cela peut aussi modifier la valeur des attributs tels que l’entropie de Shannon,
qui traduit le caractère aléatoire du signal, ou la différence absolue moyenne
d’ordre 1 de l’enveloppe du signal, qui exprime le degré de non-stationnarité
du signal.

Par exemple, le faux événement détecté le 11 décembre 2016 à 15h10 pré-
sente un signal sismique isolée enregistré à la station A119A où deux pointés
(P et S) sont émis (Figure 5.29). Cet événement présente alors 8 phases. De
plus, le signal détecté à la station A119A apportant de la cohérence, la cor-
rélation entre les premières arrivées détectées aux stations (les pointés P) et
la distance épicentrale devient forte (0.99). Ce faux événement n’est pas cor-
rectement prédit par le classifieur, en particulier parce que l’apport du signal
sismique "parasite" éloigne les valeurs de certains attributs des caractéristiques
généralement rencontrées chez les faux événements comme le faible nombre de
phases ou le fort caractère aléatoire.
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(a) (b)

(c) (d)

Figure 5.29: Formes d’onde et spectrogrammes des signaux associés à un faux
événement détecté le 11 décembre 2016 à 15h10 et incluant un signal sismique
isolé à la station A119A (composante verticale).
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De plus, ce faux événement est prédit comme vrai événement par le classi-
fieur avec une probabilité de 0.55 (soit 275 arbres sur 500, le vote majoritaire
étant à partir de 250 arbres).

Parmi les arbres décisionnels de la forêt aléatoire qui vont correctement
prédire cet événement, l’attribut déterminant qui va contribuer de façon no-
toire à orienter la prédiction finale vers celle de faux événement est le degré de
polarisation planaire du signal qui est élevé pour ce dernier (0.79). Le degré
de polarisation planaire est fortement corrélé à la profondeur de la source : la
valeur est élevée pour les signaux associés au bruit d’origine anthropique puis-
qu’ils se propagent principalement sous forme d’ondes de surface de Rayleigh
(Havskov et Alguacil, 2004).

Erreurs de classification des vrais événements. A l’inverse, les vrais
événements qui sont incorrectement prédits sont caractérisés par un nombre
de phases plus petites, et sont souvent détectés avec des distances épicentrales
minimales supérieures. Ces derniers peuvent être fortement contaminés par
du bruit stationnaire (rapports signal/bruit faibles), diminuant le rapport de
l’énergie du signal entre les gammes fréquentielles 6-9 Hz et 10-20 Hz.

En fonction du degré de certitude de la prédiction, les vrais événements in-
correctement prédits avec une forte probabilité peuvent détenir encore de faux
pointés non éliminés par les développements exposés précédemment. Dans ces
cas extrêmes, l’inclusion de faux pointés induit une augmentation de la va-
leur des résidus temporels et une diminution du facteur de corrélation entre les
premières arrivées des ondes P et la distance épicentrale. Cet effet souligne l’im-
portance de développer une procédure de détection adaptée des petits séismes,
sans quoi, le taux de perte des événements serait conséquent.

Parmi les arbres décisionnels qui contribuent à prédire correctement ces
vrais événements, qui sont finalement systématiquement mal classés par vote
majoritaire, la valeur de l’entropie de Shannon calculée à partir du signal dans
le domaine tempo-fréquentiel (voir détails des attributs dans le tableau S1 du
supplément de l’article qui va suivre) est un critère décisif pour orienter le
choix final de prédiction vers la prédiction correcte, à savoir l’étiquette "vrai
événement".

•Erreurs de classification pour les séismes et les tirs de carrière

Erreurs de classification des séismes. Si je prends l’exemple de séismes
appartenant à un essaim régulièrement observé au Nord du Lac Konstanz en Al-
lemagne, plusieurs d’entre eux sont systématiquement mal classés. Ces séismes
sont classés par le classifieur comme étant des tirs de carrière avec des pro-
babilités de prédiction comprises entre 0.53 et 0.69. Ceci signifie que, pour
ces événements, 265 à 345 arbres décisionnels, sur un total de 500 arbres in-
clus dans la forêt, aboutissent à la prédiction finale de tir de carrière. Le vote
majoritaire est estimé à au moins 250 arbres.
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Ces séismes mal classés sont caractérisés par des signaux dont l’intensité
se concentre à des gammes fréquentielles particulièrement basses (< 10 Hz,
Figure 5.30). De plus, la variance du spectre est inférieure à la moyenne des
variances estimées pour l’ensemble des séismes du jeu de données (période
2016-2019). Le nombre de pics estimé dans le spectre du signal est aussi parti-
culièrement bas.

Aussi, pour les séismes prédits comme étant des tirs de carrière avec les plus
fortes probabilités, la moyenne des magnitudes de surface (à la période 10 s)
est plus élevée (de l’ordre de 1.30) que la moyenne des magnitudes de surface
estimées pour l’ensemble des séismes du jeu de données (qui est équivalent à
0.78). Ces séismes partagent donc les mêmes caractéristiques que les tirs de
carrière, traduisant probablement la superficialité de leurs sources.

L’analyse de quelques arbres décisionnels montre que le séisme détecté le 10
novembre à 09h28 (MLv 1.34), et appartenant à l’essaim de séismes identifié au
Nord du Lac Konstanz en Allemagne, est correctement prédit par le classifieur si
les attributs traduisant la forme de la distribution des valeurs du signal associé
à l’événement sont impliqués dans le chemin décisionnel (Figure 5.31). Ces
attributs sont le coefficient d’asymétrie de la distribution (en anglais skewness)
et le coefficient d’aplatissement de cette distribution (en anglais kurtosis).

En revanche, lorsque ce même événement est prédit comme tir de carrière
par un autre arbre décisionnel, ce sont les attributs reliés aux rapports de
l’énergie du signal entre les gammes fréquentielles 3-6 Hz et 20-50 Hz puis
1-5 Hz et 6-9 Hz qui vont guider la prédiction finale du chemin décisionnel,
combinés avec la valeur maximale du rapport spectral entres les ondes P et
S (Figure 5.32). En effet, les signaux associés à cet événement présentent une
intensité maximale relativement plus élevée aux faibles gammes fréquentielles,
comme c’est le cas de nombreux tirs de carrière.
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5.2. CHOISIR LA FONCTION DE PRÉDICTION OPTIMALE DANS
L’ESPACE DES HYPOTHÈSES POSSIBLES

(a) Séisme détecté le 03 novembre 2016 à
6h34 (MLv 1.22)

(b) Séisme détecté le 10 novembre à 09h28
(MLv 1.34)

(c) Séisme détecté le 21 novembre à 16h14
(MLv 1.71)

(d) Séisme détecté le 27 novembre à 11h00
(MLv 1.67)

(e) Séisme détecté le 01 décembre à 13h58
(MLv 1.25)

Figure 5.30: Signaux associés à 6 séismes incorrectement classifiés par le clas-
sifieur automatique des séismes et des tirs de carrière. Les signaux sont enre-
gistrés à la première station SLE (distance épicentrale moyenne = 22 km) et
présentent une intensité maximale à des fréquences relativement basses pour
des séismes (< 10 Hz). Les séismes ont été détectés au Nord du Lac Konstanz
en Allemagne.

Alexandra Renouard CHAPITRE 5. 263



5.2. CHOISIR LA FONCTION DE PRÉDICTION OPTIMALE DANS
L’ESPACE DES HYPOTHÈSES POSSIBLES

Figure 5.31: Extrait d’un arbre décisionnel tiré aléatoirement de la forêt aléa-
toire, aboutissant à la prédiction correcte du séisme détecté le 10 novembre à
09h28 (MLv 1.34) au Nord du Lac Konstanz en Allemagne. Le chemin déci-
sionnel est représenté en vert. La classe y[1] représente la classe des séismes et
y[0] la classe des tirs de carrière.
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L’ESPACE DES HYPOTHÈSES POSSIBLES

Figure 5.32: Extrait d’un arbre décisionnel tiré aléatoirement de la forêt aléa-
toire, aboutissant à la prédiction incorrecte du séisme détecté le 10 novembre
à 09h28 (MLv 1.34) au Nord du Lac Konstanz en Allemagne. Le chemin déci-
sionnel est représenté en rouge. La classe y[1] représente la classe des séismes
et y[0] la classe des tirs de carrière.
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5.2. CHOISIR LA FONCTION DE PRÉDICTION OPTIMALE DANS
L’ESPACE DES HYPOTHÈSES POSSIBLES

Erreurs de classification des tirs de carrière. De la même façon, les tirs
de carrière incorrectement classés sont reliés à des signaux dont l’intensité reste
élevée à des gammes de fréquences supérieures à 10 Hz et dont le spectre pos-
sède une valeur de variance plus élevée que la moyenne des variances estimées
pour l’ensemble des tirs de carrière du jeu de données (Figure 5.33).

(a) Tir de la carrière de Groß-Bieberau
identifié le 09 novembre 2016 à 13h44 (MLv
2.11, première station A110A, distance épi-
centrale 33 km)

(b) Tir de la carrière de Mühltal détecté en
Allemagne le 20 septembre 2016 à 11h25
(MLv 2.08, première station A110A, dis-
tance épicentrale 24 km)

(c) Tir de la carrière de Mühltal détecté en
Allemagne le 20 septembre 2016 à 11h25
(MLv 2.08, seconde station A113A, dis-
tance épicentrale 33 km)

Figure 5.33: Signaux associés à 2 tirs de carrière incorrectement classifiés
par le classifieur automatique des séismes et des tirs de carrière. Les signaux
présentent une intensité maximale à des fréquences relativement élevées pour
des tirs de carrière (> 10 Hz).
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5.2. CHOISIR LA FONCTION DE PRÉDICTION OPTIMALE DANS
L’ESPACE DES HYPOTHÈSES POSSIBLES

L’analyse de quelques arbres décisionnels montre par exemple que le tir de
la carrière de Groß-Bieberau identifié le 09 novembre 2016 à 13h44 (MLv 2.11)
est incorrectement prédit par le classifieur lorsque les attributs décrivant le
rapport de l’énergie du signal entre 1-5 Hz et 6-9 Hz, la variance du spectre
et le rapport minimum spectral entre les ondes P et S sont impliqués dans
l’élaboration du chemin décisionnel (Figure 5.34).

Figure 5.34: Extrait d’un arbre décisionnel tiré aléatoirement de la forêt aléa-
toire, aboutissant à la prédiction correcte du tir de la carrière de Groß-Bieberau
détecté le 09 novembre 2016 à 12h44 (MLv 2.11) en Allemagne. Le chemin dé-
cisionnel est représenté en rouge. La classe y[1] représente la classe des séismes
et y[0] la classe des tirs de carrière.

Comme il a été décrit dans le chapitre 2, les carrières exploitent une diver-
sité de matériaux, qui va des roches sédimentaires aux roches métamorphiques,
en passant par les roches magmatiques. La carrière de Groß-Bieberau exploite
du gabbro qui est une roche compétente qui véhicule des signaux de haute fré-
quence faiblement atténués. Les caractéristiques du signal enregistré apportant
des confusions, ces tirs de carrière peuvent se rapprocher des caractéristiques
des séismes.

Le tir de carrière décrit précédemment est en revanche bien classé si le
chemin décisionnel qui conduit à la prédiction finale présente à ses embranche-
ments les attributs tels que le coefficient d’asymétrie moyen de la distribution
des amplitudes des signaux associés à cet événement, l’heure de l’événement
ainsi que la différence moyenne entre la magnitude locale et la magnitude de
coda, qui une fonction sensible de la profondeur de la source (Koper et al.,
2016 ; Holt et al., 2019). D’autres informations que l’analyse pure du spectro-
gramme apparaissent alors nécessaires pour assurer une couverture de prédic-
tion plus large (Figure 5.35.
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5.2. CHOISIR LA FONCTION DE PRÉDICTION OPTIMALE DANS
L’ESPACE DES HYPOTHÈSES POSSIBLES

Figure 5.35: Extrait d’un arbre décisionnel tiré aléatoirement de la forêt aléa-
toire, aboutissant à la prédiction incorrecte du tir de la carrière de Groß-
Bieberau détecté le 09 novembre à 13h44 (MLv 2.11) en Allemagne. Le chemin
décisionnel est représenté en vert. La classe y[1] représente la classe des séismes
et y[0] la classe des tirs de carrière.

268 CHAPITRE 5. Alexandra Renouard



5.3. UTILISER LA FONCTION DE PRÉDICTION OPTIMALE ET
ÉVALUER SA PERFORMANCE FINALE

L’injection des connaissances préalables dans le système d’ap-
prentissage amène à détecter les corrélations parasitaires sur les-
quelles l’algorithme peut fonder son apprentissage, limitant la
minimisation de l’erreur de généralisation. A travers l’analyse
des attributs, des arbres décisionnels ainsi que les résultats de
prédiction des différents classifieurs, la performance prédictive
de ces derniers a pu être estimée. Reste à connaître le potentiel
des fonctions de prédiction optimales qui en découlent.

5.3 Utiliser la fonction de prédiction optimale et
évaluer sa performance finale

L’article ci-dessous replace le problème de classification dans le
contexte de ce travail de recherche. Il brosse de manière syn-
thétique la méthodologie adoptée et redéfinit la procédure d’ap-
prentissage dans le cadre de l’interactivité. Il présente ensuite
les résultats obtenus avec les deux classifieurs optimaux sélec-
tionnés puis les discute. Le premier classifieur identifie les faux
événements et les vrais événements. Le second classifieur dis-
crimine les vrais événements préalablement identifiés en les éti-
quetant comme séismes ou tirs de carrière. La performance des
classifieurs est évaluée à travers deux modes : un mode dit test
et un mode dit opérationnel. Plusieurs métriques sont utilisées
pour évaluer cette performance (sensitivité, spécificité, précision
mais également probabilité de prédiction). Cet article donne en-
fin des éléments qui révèlent le degré de validité et de plausibilité
des classifieurs sélectionnés à travers l’analyse des attributs, des
arbres décisionnels et des informations tirées de la littérature sur
ce sujet de classification.

5.3.1 Article : Monitoring Regional Seismicity Using Hy-
brid Intelligence
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Abstract13

Small-magnitude earthquakes shed light on the distribution and occurrence of earthquakes,14

especially in stable continental regions where natural seismicity remains difficult to explain15

under slow strain rate conditions. However, capturing them in catalogs is strongly hin-16

dered by signal-to-noise issues, resulting in high rates of false as well as man-made events17

also being detected. Accurate and robust classification of all these events is then critical18

for optimally detecting small earthquakes. This requires uncovering recurrent salient fea-19

tures that can firstly rapidly identify false events from real events, then accurately recognize20

earthquakes form man-made events (mainly quarry blasts) despite high signal variability and21

noise content. In this study, we combine the complementary strengths of human and inter-22

pretable rule-based machine-learning algorithms for solving this classification problem. We23

use human expert knowledge to co-create two reliable machine-learning classifiers through24

human-assisted selection of classification features and review of events for which the classifier25

predictions are uncertain. The two classifiers are integrated into the SeiscomP3 operational26

monitoring system. The first one discards false events from the set of events obtained with27

a low STA-LTA threshold; the second one labels the remaining events as either earthquakes28

or quarry blasts. When run in an operational setting, the first classifier correctly detected29

more than 99% of false events and just over 93% of earthquakes; the second classifier cor-30

rectly labeled 95% of quarry blasts and 96% of earthquakes. After a manual review of31

only the second classifier low-confidence outputs, the final catalog contained fewer than 2%32

of misclassified events. These results confirm that machine-learning strengthens the qual-33

ity of earthquake catalogs and that the performance of machine-learning classifiers can be34

improved through human expertise. Our study promotes a broader implication of hybrid35

intelligence monitoring within seismological observatories.36

1 INTRODUCTION37

Even if small earthquakes rarely make the news, the benefits of their study are real38

(Brodsky, 2019; Ross, Trugman, et al., 2019). Due to their high frequency of occurrence,39

small earthquakes can bring statistical robustness to the observed seismic processes such as40

recurrent earthquakes triggered by local perturbations in the regional stress field. This is41

particularly important in continental plate interiors hosting low-to-moderate seismicity, such42

as the northeastern European Upper Rhine Graben area, where no mechanism is universally43

accepted to explain earthquake occurrence under very slow strain rate conditions (Gallen &44

Thigpen, 2018; Bezada & Smale, 2019; Leclère & Calais, 2019).45

Recent worldwide deployment of seismic networks provides high-quality volumes of46

recorded seismograms, hiding a gold mine of information on small earthquakes (Levandowki47

et al., 2018). However, capturing them in catalogs is strongly hindered by signal-to-noise48

issues. The automated detection approaches used by most seismological observatories world-49

wide are based on arrival time differences (Lindenbaum et al., 2017). They use standard am-50

plitude threshold algorithms, such the ratio of the short-term to the long-term average signal51

energy (STA/LTA), to automatically pick seismic wave arrival times, then associate them in52

coherent groups to infer earthquake locations. If observatories lower the detection threshold53

to recover lower-amplitude earthquake signals, they will also detect many more data-glitches,54

transient noise or man-made signals related to human activities (Arrowsmith et al., 2014;55

Dı́az et al., 2017; Ross, Meier, & Hauksson, 2019). Consequently, high rates of false events56

and man-made events contaminate the automated earthquake catalogs, and fewer than 10%57

of automated detections remain in the final analyst-reviewed catalogs (Draelos et al., 2018).58

Decreasing the minimum detection magnitude also increases operational cost, since ana-59

lysts have to screen a huge number of false events and risk missing real events in the process60

(Draelos et al., 2012). Some authors have suggested labelling arrival times before associating61

them (Yeck et al., 2019), however small events have lower signal-to-noise ratio arrivals that62

can easily be mistaken for false arrivals (McBrearty et al., 2019) and be therefore excluded63

from the catalogs.64
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Yet another challenge in building high-quality earthquake catalogs is discriminating65

between natural earthquakes and anthropogenic events such as explosions or quarry blasts.66

Although experienced analysts are able to distinguish these events by taking into account67

both waveform characteristics and source parameters of detected events (origin-time, lo-68

cation, polarities etc.), as catalogs grow in size thanks to improved seismic networks, the69

discrimination step becomes more complex and less repeatable (Onagawa et al., 2019).70

Machine-learning tools have been proposed to help analysts classify seismological signals71

since the 1990s (Dowla et al., 1990; Wang & Teng, 1995; Tiira, 1999; Maggi et al., 2017;72

Perol et al., 2018; Linville et al., 2019; Rouet-Leduc et al., 2019; Zhu & Beroza, 2019). They73

have low operational cost, and can analyse large volumes of real-time data (Meier et al.,74

2019), but are not yet implemented routinely outside of volcanic observatories.75

In this paper, we describe how we trained machine-learning algorithms to classify events76

resulting from operational seismic monitoring of the Upper Rhine Graben area, using a77

hybrid approach that combines the advantages of machine-learning algorithms and human78

expertise while overcoming their respective limitations (Patel et al., 2019; Gennatas et al.,79

2020). We chose to classify events after the association step, as proposed by Draelos et al.80

(2012) and Z. Li et al. (2018).81

We developed our classifiers within the SeisComP3 framework, one of the main earth-82

quake monitoring systems used for detecting local, regional, and global seismicity in many83

countries across the world (Olivieri & Clinton, 2012), thereby also addressing the gap that84

has been observed between research developments in earthquake classification and their85

implementation on an operational level (Sparks et al., 2012).86

2 DATA AND METHODS87

Figure 1a describes the data flow we implemented. We first optimised the SeiscomP388

automated event detector already operational at the French National Seismological Ser-89

vice (BCSF-RéNaSS) to increase the number of small events detected, which also greatly90

increased the number of false detections. We then extracted waveform and event-based91

features for each detected event, and fed them through two successive rule-based classifiers:92

one to discriminate between false detections and real seismic events (classifier 1), and one93

to discriminate between seismic events of natural or anthropogenic origin (classifier 2). The94

machine-learning algorithm we selected to build these classifiers was supervised Random95

Forest (Breiman, 2001), which produces robust classifications through human-interpretable96

learning mechanisms (Drouin et al., 2019; Lundberg et al., 2020). It grows multiple indepen-97

dent base learners (decisions trees) to build a classification model, outputs prediction results98

from all of them, and combines these results to form a final prediction with a probability99

estimate. In order to co-construct more trusted classifiers, we included human feedback100

when refining the classifier, as suggested by Schaumberg et al. (2020). We obtained the101

final classifiers by proceeding in stages, as illustrated in Figure 1b and described below.102
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Figure 1. (a) Operational classifiers incorporated within the automatic detection procedure in

near real-time (for details of the optimised event detector processing, see Figure S2 in the electronic

supplement to this article). (b) Human-In-the-Loop Machine Learning architecture used to create

the final operational classifiers (classifier 1 and 2).
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2.1 Data103

We conducted this study using 100 Hz seismic waveform data recorded between 2016104

and 2019 by 226 seismic stations in the northeastern European Upper Rhine Graben area105

(see figure S1 in the electronic supplement to this article). Half of these were permanent106

stations (103 three-component broadband seismometers and 10 three-component strong mo-107

tion sensors) and half were temporary stations from the AlpArray Seismic Network installed108

around the Alpine arc from 2015 to 2020 (Hetényi et al., 2018).109

In addition to the raw waveform data, we needed a set of manually classified seismic110

events to train and test our machine-learning classifiers. We retrieved 10389 manually111

reviewed seismic event solutions (728 false alarms, 5537 earthquakes, and 4124 quarry blasts)112

from the database maintained by BCSF-RéNaSS between 2016 and 2019 (see figure S1). To113

test our machine-learning trained classifiers in a fully operational mode, we ran the full114

system presented in Figure 1a on four months of continuous data (09/2016-12/2016).115

2.2 Feature Extraction116

Each event used to perform our machine-learning procedure was coded into a vector117

of 361 features (see Table S1 in the electronic supplement to this article). More than half118

represent time and frequency domain characteristics of the vertical component seismograms119

from stations close to each event; a quarter represent characteristics of the 3-component120

seismograms from these same stations; and about one-fifth represent characteristics of the121

preferred origins themselves (e.g. event magnitudes, origin times and locations, uncertain-122

ties, and quality scores).123

Following O’Rourke et al. (2016), we calculated our waveform features using data from124

the five closest stations starting from 10 s before the P-wave arrival times. We defined the125

duration of the data window using the STA/LTA (short-term average / long-term average)126

functions used for picking: we cut the signals when the value of the STALTA function after127

the first S arrivals (observed or inferred) descended towards its value before the first P128

arrivals. The waveform data were rotated to radial and transverse components, detrended129

and tapered before removing the instrument response.130

2.3 Training mode131

Our first step was to train the Random Forest machine algorithm to produce semi-132

automatic classification rules (Figure 1b). For this step, we used data retrieved from133

the BCSF-RéNaSS catalog between 2017 and 2019. Compared to many machine-learning134

datasets, whose number of samples run into the millions, those from seismic classification135

problems including ours are small, and may not fully represent the full spread of possible136

data. Since false events were underrepresented in the BCSF-RéNaSS dataset, we added137

23747 manually reviewed false events from a supplementary un-labeled dataset from the138

same region. We populated each classifier’s training set by randomly selecting 50% false139

events and 50% real events (earthquakes, quarry blasts) for classifier 1, and 50% earthquakes140

and 50% quarry blasts for classifier 2.141

We optimised hyper-parameters linked to the Random Forest algorithm (e.g. number142

of trees, tree depth) using a five-fold cross-validated random-search and refined their values143

using a five-fold cross-validated grid-search (Bergstra & Bengio, 2012). We assessed the144

extracted features to find the most accurate and efficient feature representation for each145

classifier. We used a recursive feature elimination algorithm to select the best features146

(Gregorutti et al., 2017), combined with a five-fold cross-validated selection of the optimal147

number of features to retain. Human expertise was used to validate the rules proposed by148

each classifier.149
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2.4 Testing mode150

We tested the performance of each trained classifier on representative testing sets (Fig-151

ure 1b). For both classifiers, the real events in the testing set were extracted from the152

BCSF-RéNaSS catalog (Jan. to Aug. 2016). For classifier 1, we added previously unseen153

false events until the testing set reached 30% of the size of the training set. In order to154

estimate how our classifiers generalised, we performed 50 runs for each one, randomly re-155

sampling the training data at every run. We used human expertise to examine the rules156

proposed by each classifier for the first runs and for any subsequent runs that resulted in157

significantly different predictions.158

2.5 Operational mode159

We deployed the final trained classifiers in operational mode with only the best features160

computed for each incoming event (Figure 1b). The classifiers were run on four months161

(Sept. to Dec. 2016) of the automatic catalog generated by our optimised SeisComP3162

detection procedure. All the incoming events predicted as real by classifier 1 were fed163

into classifier 2, labelled as either earthquakes or quarry blasts, and then tagged as such164

in the database. In order to correctly estimate operational performance and be able to165

manually check all prediction outcomes, the events identified as false by classifier 1 were166

not automatically removed from the database. Here also, we performed 50 runs for each167

classifier, randomly resampling the training data at every run. We used human expertise to168

review the final low-confidence outputs (those with low prediction probability) in order to169

analyse and remove the few remaining misclassifications.170

3 RESULTS171

We analyse each classifier in turn by first presenting the relative weight given by the172

classifier to each feature to check they are consistent with the physical process that generates173

the data, as suggested by Kohoutová et al. (2020) and J. Li et al. (2020), and then by174

presenting the standard classifier evaluation metrics and the distribution of classification175

probabilities.176

3.1 Classifier 1: False Events vs Real Events177

Given that false events are generated by incorrectly associating random local noise,178

the features that contributed most strongly to discriminating false from real events were179

related to location quality and pick statistics. We found the most important features to180

be the number of phases used, the standard deviation of the event-station distance, that181

of time residual distributions, and the maximum value of the function that depicts the182

time variations of the STA/LTA ratio (Figure 2). False events were often located with few183

phases because the random and transient character of impulsive anthropogenic noise made184

it unlikely that multiple stations in a network would reach STA/LTA pick-triggering values185

in a time-consecutive order (Coviello et al., 2019). The distributions of epicentral distances186

and time residuals had larger standard deviations for false events as they were influenced187

by the systematic mislocation of unrelated anthropogenic noise sources, induced by the188

fortuitous alignment of non-seismic phases (Arrowsmith et al., 2018). The maximum value189

of the STALTA function contributed also strongly because false events were generated by190

strong impulsive noise which triggered larger peak value in the STALTA function.191
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Figure 2. Relative importance of best features for classifier 1. The features belonging to group

A estimate the event location quality, especially poor for false events. The features of groups B and

C give information on the quality of the pick association process. Higher maximum values of the

STALTA function (STALTAmax) usually indicate false picks and lower correlation coefficients be-

tween first time arrivals and epicentral distances (OnsetTime-Dist-Corr) underline false associations.

Among the five signal-related features (groups D to G), the degree of planar polarization (SurfPla-

narPolarization10) is correlated to the source depth: its value is higher for man-made signals since

they propagate mainly as surface Rayleigh waves. The ratio of seismic energy in the low-frequency

and high-frequency ranges (SignalEnergy6-9/10-20Hz) as well as the first quartile of the signal spec-

trum (Freq1Quartile) enhance real event prediction, especially for night-time events when seismic

noise level decrease at low-frequency bands. The signal randomness and non-stationarity, higher for

cultural noise, are described by the Shannon Entropy variance of the decomposed Intrinsic Mode

Functions (EntropyIMFSVariance) and the mean absolute 1-order difference of the signal envelope

(EnvMeanAbsDiff). See Table S1 for more detailed feature description.
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The predictive performance of classifier 1 is shown in Table 1. The classifier achieved192

99% precision in testing mode. Among the missed events, the majority were few poorly193

recorded quarry blasts or some earthquakes located out of the network. If we set aside194

teleseismic events, for which neither the seismic network nor the 4-20 Hz bandpass butter-195

worth filter used to detect events were designed, the loss-rate for earthquakes was below196

2% (Table 2). The classifier accurately predicted real events, especially earthquakes, with197

few false positives. The high predictive quality of the false event /real event classifier is198

underlined by its F-Measure score above 0.95. We also evaluated classifier 1 in operational199

mode: although the overall precision dropped to 92%, more than 99% of the false events200

were correctly identified. This is reassuring, as one of the side-effects of dropping the detec-201

tion threshold in the automated picking phase is to increase the number of false events. In202

operational mode, the classifier missed fewer than 7% of earthquakes (Table 2). The major-203

ity of missed events were poorly recorded events such as quarry blasts or other events that204

analysts could not identify because of unclear signal signature and/or high minimum epi-205

central distance. The few misclassified false events were mostly located within the network206

and 24% of them incorporated isolated seismic signals in their association (for locations of207

the misclassified events in both modes, see figures S3 and S5 in the electronic supplement208

to this article).209

Table 1. Confusion matrix and classification metricsa for the false event vs real event classifier

Testing mode Operational mode

Predicted false Predicted real Predicted false Predicted real

Expected false 3466 ± 2 10 ± 2 46442 ± 5 117 ± 5

Expected real 40 ± 2 977 ± 2 242 ± 4 1395 ± 4

Specificity (%) 99.71 ± 0.06 99.74 ± 0.01

Sensitivity (%) 96.07 ± 0.11 85.21 ± 0.22

Precision (%) 98.99 ± 0.21 92.26 ± 0.33

F-Measure 0.975 ± 0.001 0.886 ± 0.002

a Specificity: the correctly predicted false event rate (i.e. the ratio of true negatives to true

negatives plus false positives). Sensitivity: the correctly predicted real event rate (i.e. the ratio

of true positives to true positives plus false negatives). Precision: the proportion of correctly

predicted real events relative to all true positive detections (i.e. the ratio of true positives to

true positives plus false positives. F-Measure: a summary statistic that combines precision and

sensitivity (2 × precision × sensitivity/(precision + sensitivity)).
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Table 2. Description of the real events missed by the false event vs real event classifier

Testing mode Operational mode

Missed Earthquakes

Proportion (%) 3.92 ± 0.28 6.95 ± 0.24

Number
22±2
576

48±2
694

Teleseismic events: 11 ± 1 Teleseismic events: 0

Missed Quarry Blasts

Proportion (%) 3.91 ± 0.40 19.32 ± 0.38

Number
17±2
441

159±3
822

Missed Unknown Events

Proportion (%) - 27.36 ± 0.84

Number -
33±1
121

Figure 3a shows the prediction probability distribution for the classifier 1 in operational210

mode (for testing mode, see figure S6 in the electronic supplement to this article). Nearly211

75% of the real events identified by the classifier were predicted with probabilities of over212

0.8; after manual verification, 0.4% of these turned out to be false events. Conversely,213

nearly 90% of false events identified by the classifier were predicted with near certainty214

(probabilities of being real events under 0.1); after manual verification, fewer than 0.2%215

of these turned out to be real events. But what about the intermediate-level predictions?216

About 1% of the events in the operational mode catalog were predicted with probabilities217

ranging between 0.4 and 0.6; nearly 20% of these were incorrectly predicted. These incorrect218

predictions disproportionately involved false events being identified as real events: after219

manual verification, 40% of the events predicted to be real with probabilities close to 0.5220

were in fact false events. In an operational setting, therefore, it would make sense to trust221

the near certainty predictions of this classifier, but we should probably ask operators to222

verify its intermediate-level predictions of real events.223
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Figure 3. Distribution of prediction probabilities for (a) the trained false event vs real event

and (b) the trained earthquake vs quarry blast classifiers in operational mode. (c) Full prediction

outcomes for the earthquake vs quarry blast classifier.
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3.2 Classifier 2: Earthquakes vs Quarry Blasts224

Analysts use three main criteria to manually discriminate quarry blasts from earth-225

quakes: their proximity to known blasting sites, their occurrence within daylight hours, and226

the similarity of their waveforms to those of previous quarry blasts in the area (Voyles et227

al., 2019). All three were among the most discriminant features for classifier 2 (Figure 4),228

but they were not alone. The epicentre’s latitude, longitude, and distance to the near-229

est city allowed better quarry blast prediction accuracy than the distance to the nearest230

quarry alone. Instead of comparing each waveform to previous ones from known blast sites231

(too time consuming) we encapsulated waveform shape by calculating the skewness of the232

4-20 Hz filtered seismogram. The three analyst criteria discussed here, though powerful,233

were insufficient by themselves, because natural earthquakes also occur near quarries during234

working hours and quarry-blast signals can vary with even slight ray-path changes (Dickey235

et al., 2019).236

We improved matters by adding a feature that coded the variance of the discrete Fourier237

transform amplitudes, and therefore detected the narrower frequency spectrum and spectral238

scalloping typical of blast-related signals (Kortström et al., 2016). Compared to earthquakes239

of similar magnitude, quarry blasts generate longer duration coda waves (Koper et al., 2016)240

and have higher low-frequency surface-wave amplitudes (Musil & Plešinger, 1996) because241

of the shallowness of their source depth. Earthquakes that occur at shallow depths share242

these characteristics, but generate a higher proportion of high-frequency S-wave energy than243

quarry blasts, giving a small role to features that encode the P-to-S wave spectral ratios and244

the ratio of vertical to horizontal peak ground acceleration (Fereidoni & Atkinson, 2017).245

Figure 4. Relative importance of best features for classifier 2. The features belonging to group

A and B give information on potential candidates for being quarry blasts (their epicenter position

within or very near a blasting site, its occurrence on working days and daylight hours). The signal-

related features (groups C to G) validate or invalidate the preceding diagnostic using information

on the spectral frequency content (group C), the waveform shape (group D: SignalSkewness4-20Hz

and SignalKurtosis4-20Hz) and the wavefield properties (surface waves: group D -SignalEnergy6-

9Hz/1-5Hz, SignalEnergy3-6Hz/20-50Hz, SurfZHratioMax10- and group E; P- and S-waves: group

F and group G). See Table S1 for more detailed feature description.
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The performance of classifier 2 is shown in Table 3. The classifier obtained high scores in246

both testing mode and operational mode, with a precision between 94.7 and 96.6% and a F-247

Measure score between 0.95 and 0.96. It identified incorrectly just over 3-4% of earthquakes248

and 4-5% of quarry blasts. When attempting to classify the few false events incorrectly la-249

beled by the first classifier (118 out of over 46 560), it split them equally between earthquakes250

and quarry blasts. We manually checked the misclassified earthquakes and quarry blasts.251

The misclassified earthquakes were located near blasting sites, occurred in working hours,252

and had low frequency variance. Most of their waveforms were similar to those associated253

with quarry blasts. Almost half the misclassified earthquakes had high P/S spectral ratios254

and some of them had high surface magnitude values, probably due to the shallowness of255

their sources. The misclassified quarry blasts had more high frequency content, potentially256

due to the nature of the extracted material (very competent rocks such as basalt, gabbro,257

or rhyodacite), and were difficult to classify manually. The locations of earthquakes and258

quarry blasts predicted by classifier 2 for both modes are shown in figures S4 and S5.259

Table 3. Confusion matrix and classification metricsa for the earthquake vs quarry blast classifier

Testing mode Operational mode

Predicted quake Predicted blast Predicted quake Predicted blast

Expected quake 558 ± 2 18 ± 2 620 ± 2 26 ± 2

Expected blast 20 ± 2 421 ± 2 35 ± 3 630 ± 3

Specificity (%) 95.54 ± 0.49 94.76 ± 0.34

Sensitivity (%) 96.90 ± 0.36 96.04 ± 0.30

Precision (%) 96.60 ± 0.36 94.68 ± 0.33

F-Measure 0.966 ± 0.002 0.953 ± 0.002

a Specificity: the correctly predicted quarry blast rate (i.e. the ratio of true negatives to true

negatives plus false positives). Sensitivity: the correctly predicted earthquake rate (i.e. the ratio

of true positives to true positives plus false negatives). Precision: the proportion of correctly

predicted earthquakes relative to all true positive detections (i.e. the ratio of true positives to

true positives plus false positives. F-Measure: a summary statistic that combines precision and

sensitivity (2 × precision × sensitivity/(precision + sensitivity)).

Figure 3b,c shows the prediction probability distributions for the expected earthquakes260

and quarry blasts in operational mode (see Figure S6 for testing mode). Confusion between261

earthquakes and quarry blasts was due in large part to very shallow earthquakes, earthquakes262

that occurred close to quarries or in urban environments, or the false events let through by263

classifier 1.264

Probability values allow analysts to streamline their operational processes. In our 4-265

month operational dataset, almost 80% of misclassified quarry blasts, 85% of misclassified266

earthquakes, nearly 70% of false events, and more than half of the manually unclassifiable267

events had probabilities between 0.3 and 0.7 (Figure 3). If analysts concentrated on re-268

visiting events in this probability range, they would screen just over 30% of the events let269

through by classifier 1 and have to correct about one in three events screened. This works270

out to 6-7 events that need to be screened per day, compared to 582 events per day if271

no machine-learning classifier were available. At the end of the human-assisted machine-272

learning procedure (enhanced detection, followed by the two classifiers, followed by manual273

screening) only 1% of the events would be manually re-tagged and the final catalog would274
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contain only 1% of misclassified quarry blasts, 0.5% of misclassified earthquakes, and 0.08%275

of false events.276

4 DISCUSSION277

The hybrid approach we designed involved a strong partnership between humans and278

machine-learning algorithms that improved their respective performances. From an opera-279

tional standpoint, machine-learning classifiers can reduce the number of events that require280

manual discrimination. This is particularly important where the number of expected false281

events and/or anthropogenic events is high (in our case because we lowered the network’s282

detection threshold in order to lower the regional completeness magnitude), as classifiers can283

eliminate the cry wolf effect caused by false alarm fatigue and help reduce the number of284

missed real events (Heldt, 2015; Lim et al., 2019). Our procedure removed more than 99%285

of false events from the original 48 000 detected events in a few minutes, missing fewer than286

7% of earthquakes out of 14% of missed real events, whereas manual review of the same287

data took several months and missed 30% of the real events. Machine-learning classifiers288

can also assist analysts in making diagnoses and resolve erroneous labeling. In training289

mode, classifier 2 uncovered 1.63% of mis-classified earthquakes and 2.04% of mis-classified290

quarry-blasts in the manually labeled training set, comparable to the proportion of mis-291

labeled events in other catalogs (e.g Utah catalog, Linville et al., 2019). Adding manual292

review of the uncertain classifications using the probability information would then result293

in even cleaner catalogs.294

However, human input should not be relegated simply to checking the output of the295

machine-learning classifiers. Recent studies have underscored the strong link between the296

validity of classifiers and their interpretability (Rudin, 2019; J. Li et al., 2020). To help297

detect and avoid biases in the classifiers, especially where the number of training samples298

is small, such as in seismic discrimination problems like ours, we need humans to use their299

domain expertise to assist in selecting features and validating models.300

Some features that seem at first glance to be good candidates for driving event classi-301

fication turn out to be irrelevant, and we need domain-level knowledge to understand why.302

We found that features related to absolute event locations should not be relied upon too303

heavily, as they can have large uncertainties due to poor knowledge of the seismic velocity304

structures. Furthermore, we confirmed that in a geological context ruled by heterogeneities,305

sharp lateral discontinuities, and path effects, features that code for the signal’s envelope306

discriminate poorly between earthquakes and quarry blasts.307

Without knowing why and how a classification model works, it is difficult to know308

when it will fail, to which seismic event subgroups it applies, and how it can advance our309

understanding of the mechanisms underlying event classification performance (Kohoutová310

et al., 2020). We chose to implement Random Forest classifiers because they give direct311

access to the sequences in which the features are taken into account by the decision trees312

they are made from. These sequences strongly influence the final outcome. For example,313

we found that classifier 1 trees that used location-related features (number and quality of314

picks, epicentral uncertainties etc.) to perform the bulk of the classification and waveform-315

related features to refine it performed better than the trees that used the same features316

in inverse order (see Figure S7 in the electronic supplement to this article). Man-made317

signals carry ample energy in the 1-10-Hz frequency band often used to observe regional318

seismic signals in urban environments (Inbal et al., 2018; Poli et al., 2020). This overlap in319

frequency content and amplitude makes it difficult to use signal-related features as primary320

predictors. Another example concerns classifier 2: its decision trees first split events into321

geographically dependent daylight vs non-daylight groups, then refined each group based on322

its waveform features (see Figures S8 and S9 in the electronic supplement to this article).323

This correlates with previously noted regional variabilities in the effectiveness of signal324

discriminants (Baumgardt & Young, 1991; Tibi et al., 2019).325
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We analysed several tens of trees out of the 500 in each classifier, which allowed us to326

validate or invalidate some choices made by the Random Forest algorithm’s recursive feature327

selection, and remove certain features entirely. The refined classifiers generalised better328

than the original versions, and improved their predictions for data taken from an entirely329

different study area (the Pyrenees region). Even finer understanding and refinement of the330

classification rules would require analysing the entire forest using automated methods and331

tools (Lapuschkin et al., 2019; Lundberg et al., 2020; Samek, 2020).332

Because no previous studies have combined a false vs real event classifier with a quake333

vs blast classifier, we compare our two classifiers separately to those documented in the334

literature. Additional validation for machine-learning classifiers can be provided by the335

geophysical plausibility of their classification rules (Kohoutová et al., 2020).336

Our finding that the number of phases used for an event location is a strong discrimina-337

tor between false and real events was previously noted by Draelos et al. (2012), who found338

that this single feature could be used to correctly classify 76% of the events at the Inter-339

national Data Center. We also agree with Draelos et al. (2012) that the lowest slowness340

residual, the lowest slowness uncertainty and the highest signal-to-noise ratio contribute341

significantly to false event vs real event discrimination. Some studies in earthquake early342

warning exploited signal impulsivity measured through kurtosis or skewness to distinguish343

large earthquakes from noise in the Western U.S. (Meier et al., 2019). However we found344

these features less useful in our moderate-seismicity context because many of our noise345

sources generated impulsive, transient signals with amplitudes similar to many earthquakes346

(Westfall, 2014). Instead, we found that polarisation features, such as the degree of planarity347

of the surface wave-field, helped improve classifier 1 because they are highly correlated with348

the source depth, as previously observed by Chouet et al. (1997) and Mousavi et al. (2016).349

Many of the best features retained by our quake vs blast classifier were also used in previ-350

ous studies: the daytime hours discriminant was used in Switzerland, Alaska, and western351

United States by Wiemer and Baer (2000) and in South Africa by Zaliapin and Ben-Zion352

(2016); spectral parameters as well as spectral ratios were used in Southern California, USA353

by Allmann et al. (2008) and in Turkey by (Kuyuk et al., 2011); ground motion parameters354

were used in US western Alberta by Fereidoni and Atkinson (2017), surface-wave magnitude355

was used in Italy by Bonner et al. (2011), and the change in coda energy was used in Utah,356

USA by Koper et al. (2016).357

5 CONCLUSION358

We implemented two Random Forest classifiers that can be integrated into the Seis-359

comP3 workflow of the French seismic monitoring center BCSF-RéNaSS, allowing us to360

lower the detection threshold of the network without analysts being overwhelmed by the361

increase in the number of false detections. When run in an operational setting, our sys-362

tem detected more small earthquakes and quarry-blasts while requiring direct input from363

analysts for fewer than 1% of the events, and led to a final catalog containing only 1% of364

misclassified quarry blasts, 0.5% of misclassified earthquakes, and 0.08% of false events.365

As suggested by many recent studies (Alber et al., 2019; Kong et al., 2019; Tibi et366

al., 2019; Kohoutová et al., 2020; J. Li et al., 2020; Lundberg et al., 2020), we have pre-367

ferred a hybrid approach that integrates humans in the system at all levels of the machine-368

learning implementation, including feature selection, model refinement, and decision making369

on events for which the classifier predictions are uncertain. We believe such close human-370

machine integration is necessary to provide optimal classification results, especially in fields,371

such as seismic discrimination, where natural variability of events is high but sample sizes372

for training are low.373
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6 DATA AND RESOURCES374

This work included data from the permanent seismic networks operated by the French375

seismological and geodetic network (RESIF), the Swiss Seismological Service (SED), the376

German Research Center for Geosciences in Potsdam (GFZ), the German State Office377

of Geology, Natural Resources and Mining of Freiburg (LGRB), and the Royal Observa-378

tory of Belgium (ROB) as well as AlpArray temporary seismic network Z3 (Hetényi et al.,379

2018; AlpArray Seismic Network, 2015). The waveform data are available through EIDA380

(http://www.orfeus-eu.org/eida, last accessed September 2019). The catalog used for train-381

ing and testing phases is provided by the French National Service of Observation (BCSF-382

RéNaSS) and available using a FDSN protocol (http://renass.unistra.fr, last accessed July383

2020). The catalog produced in operational mode is a currently unpublished catalog of384

the wide region surrounding the Upper Rhine Graben area, but is available upon request.385

The quarry database is also a currently unpublished database and available upon request.386

Some features are provided by the French geological survey (BRGM) and available via a387

web feature service (http://geoservices.brgm.fr/odmgm, last accessed July 2019). All data388

processing used in the study is made under the SeisComP3 framework. All SeisComP3389

modules were written in Python (feature extraction, classification, event labeling and false390

event removal) and can be fully integrated in the SeisComP3 monitoring system. The codes391

can be available upon request.392
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• 1) the description of the 361 features initially used to create the automatic machine-

learning classification rules (Table S1); page 2

• 2) the study area and the distribution of the station network used (Figure S1); page

4

• 3) the optimised detection and post-detection procedure developed to detect small

earthquakes (figure S2); page 5

• 4) the geographical locations of the training data, the testing data and the oper-

ational data (Figures S3, S4 and S5) page 6;

• 5) the distribution of prediction probabilities for classifiers 1 and 2 in testing mode

(Figure S6) page 9;

• 6) the visualization of a simplified part of a decision tree for each classifier: clas-

sifier 1 (Figure S7) and classifier 2 (Figure S8 + its map projection Figure S9) page

10.
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Table S1. Feature description. (separate file (TableS1.pdf ) containing the details of

the 361 features initially used for classifier training). References cited for some features

: surface magnitudes (Bonner et al., 2006, onner et al., 2006; Russel, 2006, ussel, 2006; Selby,

2001, elby, 2001), coda magnitudes (Holt et al., 2019, olt et al., 2019; Koper et al., 2016, oper

et al., 2016), ratio of vertical to horizontal amplitudes in Rayleigh waves (Tanimoto and Rivera,

2008, animoto and Rivera, 2008), polarization analysis (Jurkevics, 1988, urkevics, 1988; Vidale,

1986, idale, 1986), complexity measure (Batista et al., 2014, atista et al., 2014), spectral centroid

(Tzanetakis and Cook, 2002, zanetakis and Cook, 2002), spectrogram features (Provost et al.,

2017, rovost et al., 2017), empirical mode decomposition and Hilbert spectrum (Huang et al.,

1998, uang et al., 1998).
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Figure S1. (a) Station network of the studied area and (b) events retrieved from the French

national catalog (BCSF-RéNaSS)
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Figure S2. SeisComP3 optimised detection and post-detection procedure. (a) We improved

the quality of the automatic P- and S-arrival time picking by implementing multiple picker in-

stances that account for the space-time-varying noise characteristics of individual stations. We

also increased the sensitivity of the STA/LTA pick triggers. (b) We enhanced the pick associ-

ation process (process of grouping together phase arrival picks to create and locate an origin)

by implementing multiple pick associator instances that account for the space-varying velocity

characteristics of the seismic wave propagation medium. This helps to decrease misdetections

(actual seismic origins including some non-seismic picks in their association). (c) The origins

derived from the pick associators are fed into an event associator algorithm that grouped all the

origins for each event and designated a preferred one. To address the remaining misdetections,

we designed a first SeisComP3 post-detection module that automatically impedes a misdetec-

tion to be a preferred origin. If most of the misdetections are discarded, many false detections

(pick association caused by noise or glitches) continue to be processed and overwhelm the event

alert system. To discriminate between false detections and true detections, we implemented two

machine-learning classifiers within a second SeisComP3 post-detection module. This modules ex-

tracts the best features (d) then discriminates between false detections, earthquakes, and quarry

blasts (e). False detections are automatically removed from the database.
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Figure S3. Locations of manually classified real and false events making up the training

set (a) compared to the locations of automatically classified real and false events coming from

the testing set (b). The events misclassified by classifier 1 are represented with blue diamonds

whereas the correctly classified events appeared in white circles.
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Figure S4. Locations of manually classified earthquakes and quarry blasts making up the

training set (a) compared to the locations of automatically classified earthquakes and quarry

blasts coming from the testing set (b). The events misclassified by classifier 2 are represented

with blue diamonds whereas the correctly classified events appeared in white circles.
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Figure S5. Locations of events predicted by classifier 1 (a) and classifier 2 (b) in operational

mode.
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Figure S6. Distribution of prediction probabilities for (a) the trained false event vs real event

and (b) the trained earthquake vs quarry blast classifiers in testing mode.
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Figure S7. Simplified part of a decision tree randomly extracted from the classifier 1. The

features linked to the event location and pick association quality, shaded in white, recursively

alternate with the signal-related features, shaded in grey. Each partition in the tree (i.e. the tree

node) is created from a feature value threshold. For instance, the first tree node corresponds to

the question: “is the number of phases lower than 7.5?”. The two answers (true, false) create

two branches in the tree (a split). If the answer is true, the left branch of the tree is concerned;

if false, it is the right branch. The procedure continues iteratively, until a decision tree hyper-

parameter criteria is reached (i.e. maximum depth of the tree or minimum number of samples

reached at a partition). The final partitions shaded in yellow (i.e. the leaves) make the final

predictions (RE= real event, FE=false event).
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Figure S8. Simplified part of a decision tree (tree A + tree B) randomly extracted from the

classifier 2. This decision tree extract was color-coded by geographical sub-region. Each geo-

graphical sub-region is delimited by the Latitude and Longitude threshold values (white rectangle

outlined in black). Each geographical color group corresponds to a combination of specific signal-

related features values that are used to discriminate the earthquake and quarry blast populations

inside it (QB= quarry blast, EQ= earthquake.
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Figure S9. Map projection of each color-coded geographical sub-region represented in the

Figure S10. Each sub-region is defined by an ensemble of features used to predict earthquakes

and quarry blasts inside it. The dotted lines correspond to the Latitude and Longitude threshold

values used in the aforementioned tree to delimit the sub-geographical regions.
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Nbr Short name Description Formula

Event parameters

Origin quality

1 PhasesUsed Number of phases used -

2 StationsUsed Number of stations used -

3 StandardError Standard error √ 1
N

(∑ res ²)

N number of residual values and
res=residual value

4 MinEpicentralDist
Minimum epicentral

distance
-

5 MaxEpicentralDist
Maximum epicentral

distance
-

6 MeanEpicentralDist Mean epicentral distance -

7 MedianEpicentralDist
Median epicentral

distance
-

8 EpicentralDistSTD
Epicentral Distance
Standard Deviation

9 AzimuthalGap Azimuthal gap -

10 ResidualMean Residual mean -

11 ResidualMedian ResidualMedian -

12
ResidualStandardDeviatio

n
Residual standard

deviation

13 ResidualVariance Residual variance -

14 ResidualMin Residual minimum -

15 ResidualMax Residual maximum -

16 ClosestStationNumber
Absolute number of

closest stations used to
create the origin 

-

17 ClosestStationProportion
Proportion of closest

stations relative the total
number of stations used

-



Nbr Short name Description Formula

Picks

18 SPicks Number of S picks -

19 SPickProportion
Proportion of S picks

relative to the total picks
-

20 OnlyS
Number of isolated S

picks
-

21 PSindice
Proportion of  associated

P-S picks
-

22 PSDiffDistCorr

Correlation Coefficient
between P-S time

difference and epicentral
distance

-

23 PSDiffVariance
P-S time difference

variance
-

24 OnsetTime-Dist-Corr

Correlation Coefficient
between

first onset time and
epicentral distance

-

Origin uncertainty

25 LongUncertainty Longitude uncertainty -

26 LatUncertainty Latitude uncertainty -

27 HorUncertainty

Circular confidence
region given by single

value of horizontal
uncertainty

-

28 MinHorUncertainty
Semi-minor axis of
confidence ellipse

-

29 MaxHorUncertainty
Semi-major axis of
confidence ellipse

-

30 MaxAzUncertainty
Azimuth of major axis
of confidence ellipse
(positive to the East)

-



Nbr Short name Description Formula

Origin position

31 NearestQuarryDist
Distance to nearest

quarry
-

32 NearestMineDist
Distance to nearest

mining site
-

33 NearestCityDist
Distance to the nearest

city
-

34 NearestGeothermalDist
Distance to the nearest
geothermal power plant

-

35 NearestQuarryID Name of nearest quarry -

36 NearestMineID Name of nearest mine -

37 NearestCityID Name of the nearest city -

38 NearestGeothermalID
Name of nearest

geothermal power plant
-

39 NearestQuarryAz
Azimuth of the nearest

quarry
-

40 NearestMineAz
Azimuth of the nearest

mine
-

41 NearestGeothermalAz
Azimuth of the nearest
geothermal power plant

-

42 NearestCityAz
Azimuth of the nearest

city
-

43 Longitude Origin Longitude -

44 Latitude Origin Latitude -

45 Depth Origin Depth -

46 CentroidDeviation
Origin deviation from
the centroid of stations

-

Origin time

47 Daytime Time of the day hour+minute/60+second/3600

48 Weekday Day of the week
0 = Sunday, 1= Monday, 2= Tuesday,

3= Wednesday, 4= Thursday, 5=
Friday, 6= Saturday



Nbr Short name Description Formula

Origin magnitude

49 MLvValue
Vertical-component

local magnitude

ML = log (A)−log (A0)

A = Wood-Anderson amplitude
A0= empirical calibration function

50 MLValue
Three-component local

magnitude

51 MaxAmplitudeMean
Maximum Amplitude

Mean 

52 MaxAmplitudeVariance
Maximum Amplitude

Variance

53 AmplitudeDistCorr

Correlation coefficient
maximum

amplitude/epicentral
distance

54-63
SurfaceMagnitudeRMs8

-...-
SurfaceMagnitudeRMs25

Rayleigh Surface
Magnitude RMS 8-25s Ms =

log(a)+
1
2

log(sin(Δ))+0.0031(
20
T

)
1.8

−0.66 log (
20
T

)−log( fc)−0.43

8⩽T⩽25 sec , fc≤0.6 /T √Δ

a = amplitude of the Butterworth-
filtered surface waves (zero-to-peak)

Δ= epicentral distance
T= period

fc= filter frequency of a third-order
Butterworth bandpass filter with
corner frequencies 1/T-fc, 1/T+fc

(Bonner et al., 2006; Russel, 2006;
Selby,2001)

64-73

SurfaceMagnitudeMean8
-...-

SurfaceMagnitudeMean2
5

Rayleigh Surface
Magnitude mean 8-25s

74-83
SurfaceMagnitudeMax8

-...-
SurfaceMagnitudeMax25

Rayleigh Surface
Magnitude maximum 8-

25s

84-93
SurfaceMagnitudeMin8

-...-
SurfaceMagnitudeMin25

Rayleigh Surface
Magnitude minimum 8-

25s

94-
103

SurfaceMagnitudeVarian
ce8-
...-

SurfaceMagnitudeVarian
ce25

Rayleigh Surface
Magnitude variance 8-

25s

104 CodaAmplitude Coda amplitude

Md = −0.87+2.0 log (τ)+0.389Δ

τ=coda duration
Δ= epicentral distance

(Koper et al., 2016; Holt et al., 2019)

105 CodaMagnitude Coda magnitude

106 DiffLocalCodaMag

Difference between
three-component local
magnitude and coda

magnitude

107-
116

SurfZHratioMean8
-...-

SurfZHratioMean25

Ratio of vertical to
horizontal amplitudes in
Rayleigh waves mean Z (ω)

H (ω)

Z(ω) = vertical amplitude
H(ω) = horizontal amplitude

(Tanimoto and Rivera, 2008)

117-
126

SurfZHratioMax8
-...-

SurfZHratioMax25

Ratio of vertical to
horizontal amplitudes in

Rayleigh waves
maximum



Nbr Short name Description Formula

Signal parameters

Polarization analysis

127-
136

SurfaceStrike8
-...-

SurfaceStrike25

Azimuth of the direction
of maximum

polarization of Rayleigh
waves 8-25s

Φ=arctan (
ℜ( yo)
ℜ(xo )

)

ℜ(xo) , ℜ( yo ) = real parts of xo
and yo coordinates of the eigenvector
associated with the largest eigenvalue

(Vidale, 1986)

137-
146

SurfaceDip8
-...-

SurfaceDip25

Dip of the direction of
maximum polarization

of Rayleigh waves 8-25s

δ=arctan(
ℜ(zo )

√ℜ(xo) ²+ℜ( yo) ²
)

ℜ(xo) , ℜ( yo ) , ℜ(zo ) = real
parts of the eigenvector (xo,yo,zo)

associated with the largest eigenvalue
(Vidale, 1986)

147-
156

SurfEllipticalComponent
8

-...-
SurfEllipticalComponent

25

Elliptical component of
polarization of Rayleigh

waves 8-25s

PE=
√1−X ²

X
PE is the ratio of the imaginary part of
the eigenvector to the real part of the

eigenvector
X = length of the real component of

the eigenvector (x0,y0,Z0)
(Vidale, 1986)

157-
166

SurfPolarizationStrength
8

-...-
SurfPolarizationStrength

25

Surface polarization
strength 8-25s

PS=1−
λ3+λ 2

λ1
λ1 = largest eigenvalue

λ2= intermediate eigenvalue
λ3 = smallest eigenvalue

(Vidale, 1986)

167-
176

SurfPlanarPolarization8
-...-

SurfPlanarPolarization25

Degree of planar
polarization of Rayleigh

waves 8-25s

PP = 1−
λ3
λ2

 

λ2= intermediate eigenvalue
λ3 = smallest eigenvalue

(Vidale, 1986)

177 SmallestEigenvalue Smallest eigenvalue -

178 IntermediateEigenvalue Intermediate eigenvalue -

179 LargestEigenvalue Largest eigenvalue -

180 Azimuth

Azimuth
Direction of maximum
polarization of signal
Horizontal angular

measure

Φ=arctan (
ℜ( yo)
ℜ(xo )

)

ℜ(xo) , ℜ( yo ) = real parts of xo
and yo coordinates of the eigenvector
associated with the largest eigenvalue

(Vidale, 1986)



Nbr Short name Description Formula

Polarization analysis

181 Incidence

Incidence
 polarization of

signal
Vertical angular

measure
Direction of
maximum

δ=arctan(
ℜ(zo )

√ℜ(xo) ²+ℜ( yo) ²
)

ℜ(xo) , ℜ( yo ) , ℜ(zo ) = real
parts of the eigenvector (xo,yo,zo)

associated with the largest eigenvalue
(Vidale, 1986)

182 Rectilinearity
Degree of

Rectilinearity
of signal

1−
λ2+λ3

2λ1
λ3= smallest eigenvalue

λ2= intermediate eigenvalue
λ1= largest eigenvalue

(Jurkevics, 1988)

183 Planarity
Degree of Planarity

of signal

1−
2λ3

λ1+λ2
λ3= smallest eigenvalue

λ2= intermediate eigenvalue
λ1= largest eigenvalue

(Jurkevics, 1988)

P/S ratios

184-
190

PSRMS,
PSMean,

PSMedian
PSFirstMax,

PSMax
PSMin
PSStd

P over S maximum
amplitude ratios :

RMS, Mean,
Median, First
Maximum,
Maximum,

Minimum, Standard
Deviation

Pmax

Smax
=

√(Pmax
Z

) ²+(Pmax
R

) ²

√(Smax
Z

) ²+(Smax
R

) ²+(Smax
T

)²
Pmax

Z = P-wave maximum amplitude on
vertical component (Z)

Pmax
R = P-wave maximum amplitude on

radial component (R)
Smax

Z = S-wave maximum amplitude on
vertical component (Z)

Smax
Z = S-wave maximum amplitude on

radial component (R)
Smax

Z = S-wave maximum amplitude on
transverse component (T) 

191-
197

PSFreqRMS, 
PSFreqMean,

PSFreqMedian,
PSFreqFirstMax

PSFreqMax
PSFreqMin
PSFreqStd

P over S maximum
frequency ratios:

RMS, Mean,
Median, First
Maximum,
Maximum,

Minimum, Standard
Deviation  

Pmax

Smax
=

√(Pmax
Z

) ²+(Pmax
R

) ²

√(Smax
Z

) ²+(Smax
R

) ²+(Smax
T

)²
Pmax

Z = P-wave maximum spectral
amplitude on vertical component (Z)

Pmax
R = P-wave maximum spectral

amplitude on  radial component (R)
Smax

Z = S-wave maximum spectral
amplitude on vertical component (Z)

Smax
Z = S-wave maximum spectral

amplitude on radial component (R)
Smax

Z = S-wave maximum spectral
amplitude on  transverse component (T) 
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198-
204

PSMeanRMS
PSMeanMean

PSMeanMedian
PSMeanFirstMax

PSMeanMax
PSMeanMin
PSMeanStd

RMS of P mean/max
over S mean/max
amplitude ratios:

RMS, Mean,
Median, First
Maximum,
Maximum,

Minimum, Standard
Deviation  

PMeanMax

SMMax
=

√(PMMax
Z

) ²+(PMMax
R

) ²

√(SMMax
Z

) ²+(SMMax
R

) ²+(SMMax
T

) ²
PMMax

Z = P-wave mean/maximum
amplitude on vertical component (Z)

PMMax
R = P-wave mean/maximum

amplitude on  radial component (R)
SMMax

Z = S-wave mean/maximum
amplitude on vertical component (Z)

SMMax
Z = S-wave mean/maximum

amplitude on radial component (R)
SMMax

Z = S-wave mean/maximum
amplitude on  transverse component (T)

205-
211

PSFreqMeanRMS
PSFreqMeanMean

PSFreqMeanMedian
PSFreqMeanFirstMax

PSFreqMeanMax
PSFreqMeanMin
PSFreqMeanStd

RMS of P mean/max
over S mean/max
frequency ratios:

RMS, Mean,
Median, First
Maximum,
Maximum,

Minimum, Standard
Deviation

PMeanMax

SMMax
=

√(PMMax
Z

) ²+(PMMax
R

) ²

√(SMMax
Z

) ²+(SMMax
R

) ²+(SMMax
T

) ²
PMMax

Z = P-wave mean/maximum spectral
amplitude on vertical component (Z)

PMMax
R = P-wave mean/maximum spectral

amplitude on  radial component (R)
SMMax

Z = S-wave mean/maximum spectral
amplitude on vertical component (Z)

SMMax
Z = S-wave mean/maximum spectral

amplitude on radial component (R)
SMMax

Z = S-wave mean/maximum spectral
amplitude on  transverse component (T)

Envelope

212 MaxEnv
Maximum of the

envelope

Envelope = √ x( t ) ²+H [ x( t)] ²
x(t) = signal

H[x(t)] = Hilbert-Transformed signal

213 MeanEnv
Mean of the

envelope
-

214 MedianEnv
Median of the

envelope
-

215 STDEnv
Standard deviation

of the envelope
-

216 KurtosisEnv
Kurtosis of the

envelope

Kurtosis=
1
n
∑
i

(
E (i)−μE

σE
)

4

E(i) = envelope values
σE= envelope standard deviation

μE= envelope mean, n = envelope length

217 SkewnessEnv
Skewness of the

envelope

Skewness =
1
n
∑
i

(
E (i)−μE

σE
)

3

E(i) = envelope values
σE= envelope standard deviation

μE= envelope mean, n = envelope length
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Envelope

218 MeanMaxEnv

Ratio between the
mean of the

envelope and the
maximum of the

envelope

-

219 MedianMaxEnv

Ratio between the
median of the

envelope and the
maximum of the

envelope

-

220 EnvSum
Sum of the

envelope’s amplitude
values

-

221 EnvSecondDerivative

Mean value of a
central

approximation of the
second derivative of

the envelope

1
2n ∑

i=1,. .. ,n−1

(
1
2
E i+2−E i+1+Ei)

E = envelope values
n = envelope length

222 EnvComplexity

Complexity of the
envelope (One order
discrete difference

mean)

√ ∑
n−2lag

i=1

(E i−Ei+1) ²

E = envelope values
n = envelope length

(Batista et al., 2014)

223 EnvMeanAbsDiff

Mean over the
absolute differences
between subsequent

envelope values

1
n ∑
i=1,... , n−1

|Ei+ 1−Ei|

E = envelope values
n = envelope length

224 EnvMeanDiff

Mean over the
differences between
subsequent envelope

values

1
n ∑
i=1,... , n−1

E i+1−E i=
1

n−1
En−E1

E = envelope values
n = envelope length

225 EnvUniqueVal

Percentage of unique
values, that are
present in the

envelope more than
once

-

226 EnvAbsSumChange

Sum over the
absolute value of

consecutive changes
in the envelope

∑
i=1,... ,n−1

|Ei+1−Ei|

E = envelope values
n = envelope length

227 EnvBelowMean
Number of Values in
the envelope that are
lower than the mean

-



Nbr Short name Description Formula

Envelope

228 EnvAboveMean
Number of Values in
the envelope that are
higher than the mean

-

229 EnvDuplicateMax
Number of duplicate

maximum values
-

230 EnvDiffPickMax

Difference between
maximum envelope
value and value at P

arrival

-

231 EnvAsDecTime
Ratio between
ascending and

descending time

tmax−ti
t f−tmax

ti= time of the signal beginning
tf= time of the signal end 

tmax= time of the largest amplitude

232 EnvCorNbPeaks
Number of peaks in
the autocorrelation

function
-

233 EnergyCor1

Energy in the first
third part of the
autocorrelation

function 

∫
0

T
3

C (τ)d (τ)

T = signal duration
C = autocorrelation function

234 EnergyCor2

Energy in the
remaining part of the

autocorrelation
function

∫
T
3

T

C (τ)d (τ)

T = signal duration
C = autocorrelation function

Waveform

235 SkewnessSig
Skewness of the

signal

Skewness=
1
n
∑
i

(
x (i)−μ x

σ x
)

3

x(i) = signal values
σx= signal standard deviation

μx= signal mean
n = signal length

236 KurtosisSig
Kurtosis of the

signal

Kurtosis=
1
n
∑
i

(
x (i)−μ x

σ x
)

4

x(i) = signal values
σx= signal standard deviation

μx= signal mean
n = signal length



Nbr Short name Description Formula

Waveform

237-
243

SignalEnergy_1-3Hz
SignalEnergy_3-6Hz
SignalEnergy_6-9Hz
SignalEnergy_1-5Hz

SignalEnergy_5-10HZ
SignalEnergy_10-20Hz
SignalEnergy_20-50Hz

Signal energy
filtered in the

frequency range [f1-
f2]: 1-3 Hz, 3-6 Hz,
6-10 Hz, 1-5 Hz, 5-
10 Hz, 10-20 Hz, 20

– 50 Hz

∫
0

T

x (τ)d (τ)

x = filtered signal in the frequency range
[f1-f2]

244-
250

KurtoSig_1-3Hz,
KurtoSig_3-6Hz,
KurtoSig_6-9Hz,
KurtoSig_1-5Hz,
KurtoSig_5-10Hz,

KurtoSig_10-20Hz,
KurtoSig_20-50Hz

Signal Kurtosis 1-3
Hz, 3-6 Hz, 6-9 Hz,
1-5 Hz, 5-10 Hz, 10-

20 Hz, 20-50 Hz

Kurtosis=
1
n
∑
i

(
x (i)−μ x

σ x
)

4

x(i) = signal values
σx= signal standard deviation

μx= signal mean
n = signal length

251-
270

SignalEnergyRatio_1-
3_3-6Hz-...-

SignalEnergyRatio_10-
20_20-50Hz

Signal Energy Ratio
in the frequency

ranges [f1-f2] and
[f3-f4]: 1-3Hz/3-

6Hz, …,
10-20Hz/20-50Hz

∫
0

T

x (τ)d (τ) / ∫
0

T

y (τ )d ( τ)

x = filtered signal in the frequency range
[f1-f2]

y = filtered signal in the frequency range
[f3-f4]

271 SignalCCMax

Inter-station
waveform similarity:

maximum
correlation
coefficient

272 SignalCCMean

Inter-station
waveform similarity:

mean correlation
coefficient

-

STALTA function

273 STALTAmax
Maximum STA/LTA

ratio

STA=
1
N s

∑
j=i−N s

i

CF j

LTA=
1
N l

∑
j=i−N l

i

CF j

Ns= number of samples used by each STA
window

Nl=  number of samples used by each LTA
window

CFj= values of the samples

274 STALTAmin
Minimum STA/LTA

ratio
-

275 STALTATriggerP
STA/LTA value at P

arrival
-



Nbr Short name Description Formula

STALTA function

276 STALTATriggerS
STA/LTA value at S

arrival
-

277 STALTAsum
Sum of STA/LTA

values
-

278 STALTAMeanAbsDiff

Mean over the
differences between

subsequent STA/LTA
values

1
n ∑
i=1,... , n−1

|x i+1−x i|

x = STA/LTA values
n = STA/LTA function length

279 STALTAMeanDiff

Mean over the
differences between

subsequent STA/LTA
values

1
n ∑
i=1,... , n−1

x i+1−xi=
1

n−1
xn−x1

x = STA/LTA values
n = STA/LTA function length

280 STALTAComplexity
Complexity of the
STA/LTA function

√ ∑
n−2lag

i=1

(x i−x i+1) ²

x = STA/LTA values
n = STA/LTA function length

(Batista, 2014)

281 STALTAAbsSumChange

Sum over the
absolute value of

consecutive changes
in the STA/LTA

function

∑
i=1,... ,n−1

|x i+1−x i|

x = STA/LTA values
n = STA/LTA function length

282
STALTAMeanSeconDeri

vative

Mean value of a
central

approximation of the
second derivative of

the STA/LTA
function

1
2n ∑

i=1,. .. ,n−1

(
1
2
x i+2−x i+1+x i)

x = STA/LTA values
n = STA/LTA function length

283 STALTAUniqueVal

Percentage of unique
values, that are
present in the

STA/LTA function
more than once

-

284 STALTABelowMean

Number of Values in
the   STA/LTA

function that are
lower than the mean

-

285 STALTAAboveMean

Number of Values in
the   STA/LTA

function that are
higher than the mean

-

286 STALTADuplicateMax
Number of duplicate

maximum values
-



Nbr Short name Description Formula

STALTA function

287 STALTADiffPickMax
Difference between
maximum value and

value at P arrival
-

288 STALTAAbsEnergy
STA/LTA Absolute

energy

∑
i=1,... ,n

xi ²

x = STA/ LTA function

Spectrum

289 RMSDFT
RMS of the Discrete
Fourier Transform

(DFT)

 Spectrum=

S ( f )=x (t)+2∑
k=1

n−1

x(k )cos (kω)

290 InstFreq
Instantaneous

frequency
-

291 MeanDFT
Mean of the Discrete

Fourier Transform
-

292 MaxDFT
Maximum of the
Discrete Fourier

transform
-

293 MedianDFT
Median of the

Discrete Fourier
transform

-

294 VarianceDFT
Variance of the
Discrete Fourier

transform
-

295 SpecCentroid Spectral centroid

∑
1

N

f im
i

∑
1

M

mi

mi= magnitude of bin number, fi= central
frequency at that bin, M= number of bins

(Tzanetakis et al., 2001)

296 Freq1Quartile
Central frequency of

the 1st quartile
-

297 Freq3Quartile
Central frequency of

the 2nd quartile
-

298 NbPeaksDFT
Number of peaks in

the DFT
-

299 MeanPeaksDFT
Mean value for the

peaks
-

300-
303

EnergyDFT1,
EnergyDFT2,
EnergyDFT3,
EnergyDFT4

Spectral Energy in 0-
12.5Hz, 12.5-25Hz,

25-37.5Hz, 37.5-
50Hz

∫
f 1

f 2

|S (f ) ²|df

S(f) = spectrum
f1,f2= frequency range



Nbr Short name Description Formula

Spectrum

304-
309

EnergyDFT1_DFT2,-...-,
EnergyDFT3_DFT4

Spectral Energy ratio
of [f1,f2] over [f3,f4]
frequency ranges : 0-
12.5Hz, 12.5-25Hz,

25-37.5Hz, 37.5-
50Hz

∫
f 1

f 2

|S (f ) ²|df / ∫
f 3

f 4

|S ( f ) ²|df

S(f) = spectrum
f1,f2= first frequency range

f3,f4= second frequency range

Spectrogram

310 MaxMeanSpec
Maximum/mean
ratio of all DFTs

mean(∑
t=0

T max (Spec( t , f ))
mean(Spec (t , f ))

)

Spec(t,f)=spectrogram

311 MaxMedianSpec
Maximum/median
ratio of all DFTs

mean(∑
t=0

T max(Spec (t , f ))
median(Spec( t , f ))

)

Spec(t,f)=spectrogram

312 KurtoMaxSpec
Kurtosis of the
maximum of all

DFTs

mean(∑
t=0

T

Kurtosis(max(Spec (t , f ))))

Spec(t,f)=spectrogram

313 KurtoMedianSpec
Kurtosis of the

median of all DFTs
mean(∑

t=0

T

Kurtosis(median(Spec( t , f ))))

Spec(t,f)=spectrogram

314 NbPeaksMaxSpec

Number of peaks in
the curve showing

the temporal
evolution of the
DFTs maximum 

-
(Provost et al., 2016)

315 NbPeaksMeanSpec

Number of peaks in
the curve showing

the temporal
evolution of the

DFTs mean

-
(Provost et al., 2016)

316 NbPeaksMedianSpec

Number of peaks in
the curve showing

the temporal
evolution of the
DFTs median

-
(Provost et al., 2016)

317 NbPeaksCentralFreq

Number of peaks in
the curve showing

the temporal
evolution of the

DFTs central
frequency

-
(Provost et al., 2016)
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Spectrogram

318 DistMaxMeanFFTs

Mean distance
between the curves

of the temporal
evolution of the
DFTs maximum

frequency and mean
frequency

-
(Provost et al., 2016)

319 DistMaxMedianFFTs

 Mean distance
between the curves

of the temporal
evolution of the
DFTs maximum
frequency and

median frequency

-
(Provost et al., 2016)

320 Dist1QMedianFFTs

Mean distance
between the 1st
quartile and the

median of all DFTs
as a function of time

-
(Provost et al., 2016)

321 Dist3QMedianFFTs

Mean distance
between the 3rd
quartile and the

median of all DFTs
as a function of time

-
(Provost et al., 2016)

322 Dist1Q3Q

Mean distance
between the 3rd

quartile and the 1st
quartile of all DFTs
as a function of time

-
(Provost et al., 2016)

Time-frequency analysis: signal Empirical Mode Decomposition (Intrinsic Mode Functions 
IMFs)

323-
326

SkewnessIMFsMean
SkewnessIMFsMedian

SkewnessIMFsMin
SkewnessIMFsMax

Skewness of all
IMFS: mean,

median, minimum,
maximum

xDFT (t )=∑
i=1

N

IMFi(t )+RN (t)

xDFT(t) = original signal
N = number of extracted IMFs

IMFi(t) = ith IMF
RN(t) = final residual
(Huang et al., 1998)

327-
330

KurtosisIMFsMean
KurtosisIMFsMedian

KurtosisIMFsMin
KurtosisIMFsMax

Kurtosis of all
IMFS:

mean, median,
minimum, maximum

-



Nbr Short name Description Formula

Time-frequency analysis: signal Empirical Mode Decomposition (Intrinsic Mode Functions 
IMFs)

331-
334

VarianceIMFsMean
VarianceIMFsMedian

VairanceIMFsMax
VarianceIMFsMin

Variance of all IMFs:
mean, median,

minimum, maximum
-

335-
338

InstFreqIMFsMean
InstFreqIMFsMedian

InstFreqIMFsMin
InstFreqIMFsMax

Instantaneous
frequency of all

IMFS: mean,
median, minimum,

maximum

-

339-
343

AmplitudesIMFsMean
AmplitudesIMFsMedian

AmplitudesIMFsMin
AmplitudesIMFsMax

AmplitudesIMFsVariance

Amplitudes of all
IMFS: mean,

median, minimum,
maximum, variance

-

344-
347

SpecCentIMFsMean
SpecCentIMFsMedian

SpecCentIMFsMax
SpecCentIMFsMin

Spectral Centroid of
all IMFs: mean,

median, minimum,
maximum

-

348-
352

EntropyIMFsMean
EntropyIMFsMedian

EntropyIMFsMax
EntropyIMFsMin

EntropyIMFsVariance

Shannon Entropy of
all IMFS: mean,

median, minimum,
maximum, variance

Average information contained in the
probability distribution function

−∑
i=1

N

p( IMFi) log2(p (IMFi))

p(sj) = probability of amplitude level sj

353-
357

DFAIMFsMean
DFAIMFsMedian

DFAIMFsMax
DFAIMFsMin

DFAIMFsVariance

Detrended
fluctuation analysis
of all IMFS: mean,
median, minimum,
maximum, variance

√ 1
N∑

k=1

N

[ y (k )− yn(k )] ²

with y(k) the IMF expressed as :

∑
i=1

k

[IMF (i)−μIMF ]

 μx=mean of IMF values, x(i) = ith IMF
N = length of IMF

Ground Motions

358 PGAHV

Peak Ground
Acceleration

Horizontal-to-
Vertical amplitude

ratio

√(PGAZ )²

√(PGAR) ²+(PGAT ) ²
PGAZ= PGA vertical component
PGAR, PGAT= PGA horizontal

components

359 PGVHV

Peak Ground
Velocity Horizontal-
to-Vertical amplitude

ratio

√(PGV Z ) ²

√(PGV R) ²+(PGV T ) ²
PGVZ= PGV vertical component

PGVR, PGVT= PGA horizontal
components
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360 PGA
Peak Ground

Acceleration mean
-

361 PGV
Peak Ground

Velocity 
-



5.4. RÉCAPITULATIF

5.4 Récapitulatif

L’introduction de l’apprentissage machine supervisé pour classer les événe-
ments qui sont finalement détectés demande de délimiter les contraintes affé-
rentes au problème de classification avec un jeu de données de petite taille mais
complexe.

Outre le choix de l’algorithme d’apprentissage ainsi que la sélection de ses
hyperparamètres optimaux, l’interactivité Homme-machine est une des plus
grandes réponses aux contraintes du jeu de données. Du contrôle de la sélec-
tion des attributs à la validation des règles de classification, l’injection des
connaissances préalables dans le système d’apprentissage offre un cadre struc-
turel à l’espace des hypothèses possibles, augmentant les chances de capturer
dans cette espace la fonction de prédiction recherchée.

La fonction de prédiction qui a été sélectionnée dans ce travail de thèse pour
prédire les vrais événements et les faux événements a été sélectionnée à partir
d’une combinaison finale de 13 attributs. Ces attributs retracent indirectement
les critères qui vont définir ce qu’est un vrai événement dans le système de
détection.

C’est un événement localisé avec précision (distribution statistique des ré-
sidus, nombre de phases utilisées, distance épicentrale minimale, écart-type à
partir de la distance épicentrale moyenne) à partir d’une association cohérente
de pointés (facteur de corrélation entre les premières arrivées des ondes P et la
distance épicentrale) qui ont été déclenchés par variation d’amplitude (valeur
maximale de la fonction STA/LTA) à partir d’un signal cohérent (estimation
de l’entropie de Shannon) et non-stationnaire (différence discrète d’ordre 1 de
l’enveloppe du signal) qui se détache du bruit de fond ambiant (énergie du
signal dans les gammes fréquentielles 6-9 Hz et 10-20 Hz, fréquence cumulée à
25%), et dont la source apparaît moins superficielle que celle des faux événe-
ments (degré de polarisation planaire).

La fonction de prédiction qui a été sélectionnée dans ce travail de thèse
pour prédire les séismes et les tirs de carrière a été sélectionnée à partir d’une
combinaison finale de 22 attributs.
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Les séismes et les tirs de carrière sont mieux décrits à travers les attributs
qui décrivent le signal dans le domaine fréquentiel (variance des valeurs du
spectre du signal, nombre de pics contenus dans le spectre, rapports spectraux
entre les ondes P et S, fréquence cumulée de 25%, fréquence cumulée de 75%),
puis dans le domaine temporel (coefficient d’asymétrie et d’aplatissement de la
distribution des valeurs d’amplitude du signal, rapport de l’énergie du signal
à différentes bandes fréquentielles). Ces arguments temporels et fréquentiels
retracent la nature des ondes sismiques qui composent les signaux associés
aux différents événements. Les signaux sismiques associés aux tirs de carrière
présentent par exemple une intensité maximale aux faibles fréquences (1-5 Hz),
principalement due aux ondes de surface.

De plus, des attributs supplémentaires apportent des informations plus ou
moins indirectes sur les paramètres de la source : sa profondeur, systémati-
quement superficielle dans le cas des tirs de carrière (magnitudes de surface,
différence magnitude de coda et magnitude locale, Z/H ratio), sa localisation
épicentrale, invariablement proche d’une carrière pour les tirs (proximité de
l’événement à un centre urbain, donc potentiellement d’une carrière, et son
temps d’origine, inéluctablement pendant les heures ouvrées pour les tirs de
carrière (heure et date de l’événement).

Ces deux classifieurs générés ont été implémentés dans un module Seis-
ComP3 que j’ai développé. Ce module intègre les outils de l’apprentissage ma-
chine supervisé, à savoir l’algorithme d’apprentissage de Random Forest. Afin
de compléter le nouveau système de détection, ce module :

— calcule les 35 attributs (13 attributs pour la discrimination des vrais et
faux événements et 22 attributs pour la discrimination des séismes et
des tirs de carrière, Figure 5.36d) ;

— utilise le classifieur final des vrais et faux événement généré par l’algo-
rithme d’apprentissage de Random Forest pour prédire chaque événe-
ment détecté entrant (Figure 5.36e) ;

— supprime l’ensemble des faux événements prédits par le classifieur (la-
bel=0) de la base de données des événements (Figure 5.36e) ;

— utilise le classifieur final des séismes et des tirs de carrière généré par
l’algorithme d’apprentissage de Random Forest pour prédire l’ensemble
des événements qui sont prédits comme vrais événements (Figure 5.36e) ;

— labélise automatiquement les séismes (label=3) et les tirs de carrière
(label=5) prédits par le classifieur précédent (Figure 5.36e).

Afin de traiter plus rapidement l’ensemble des données disponibles (notam-
ment en cas de retraitement des données pour inclure les stations AlpArray
temporaires dans la détection), le système de détection complet a été isolé
dans un conteneur SINGULARITY de telle façon à pourvoir exécuter plusieurs
instances de ce système de détection sur les super-ordinateurs.
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Figure 5.36: Procédure de détection nouvellement développée, qui vise à ré-
duire le taux de séismes détectés avec de faux pointés et le taux de faux événe-
ments détectés, puis de discriminer les vrais événements entre eux en séismes et
tirs de carrière. (d), (e) Un autre module SeisComP3 que j’ai développé est fina-
lement implémenté pour calculer les attributs optimaux de chaque événement
entrant, classer les événements en faux et vrais événements avec un premier
classifieur, supprimer les faux événements prédits et classer le reste des vrais
événements en tirs de carrière et séismes dont le label est automatiquement
ajouté dans la base de donnée. (cf Figure 4.63 pour a,b,c).
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Chapitre 6

Conclusion

« In summary, it has been a long journey, but that journey
is not yet complete. »—C. E. Johnson, 2020
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6.1 La détection et la discrimination des séismes
de faible magnitude, deux problèmes récipro-
quement liés

6.1.1 Des facteurs communs à la résolution des deux pro-
blèmes

Le dénominateur commun aux problèmes de détection et discrimination est
de trouver une solution approchante des différents paramètres qui vont caracté-
riser une source sismique inconnue, à savoir sa taille, sa nature, sa localisation
et son temps d’origine. La solution approchante du problème de la détection
est une localisation de cette source et une estimation de sa taille. En effet, la
localisation est définie par l’hypocentre (longitude x, latitude y, profondeur z),
qui correspond à la localisation physique de l’initiation du processus de rupture
(Havskov2011), et le temps d’origine (t) qui correspond à l’heure du début
de la rupture. La taille de la source est quant à elle indirectement définie par
la mesure logarithmique de la magnitude (ici magnitude locale MLv). La so-
lution approchante du problème de discrimination est une caractérisation du
type de la source sismique (séisme d’origine naturel ou induit, tir de carrière,
bruit d’origine anthropique).

Le point de départ de l’expression du problème de la détection est donc
l’existence d’une source inconnue que l’on souhaite caractériser. Le signal, en-
registré aux stations, est la seule information indirecte disponible pour résoudre
le problème de détection. Ce signal est le résultat d’une combinaison des effets
de la source, des effets liés au milieu de propagation des ondes sismiques émises
et les effets liés au bruit enregistré aux stations. C’est donc à partir de ce signal
que la localisation et la taille de la source vont être inférées.

En revanche, ce n’est pas l’existence de cette source inconnue qui va motiver
l’expression du problème de la discrimination, mais sa solution hypocentrale,
apportée par la résolution du problème de la détection. Par conséquent, la
résolution de ces deux types de problème (détection et discrimination) se fait
de manière inverse. Dans le cas de la détection, le problème s’initie à une source
sismique inconnue et se résout avec la détection de l’événement qui en découle,
alors que, dans le cas de la discrimination, le problème s’initie à l’événement
détecté, qui est de type inconnu, pour remonter à la caractérisation de la source
qui l’a créée. La discrimination est en quelque sorte la réciproque du problème
de la détection (Figure 6.1).
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Figure 6.1: La détection et la discrimination, deux problèmes réciproquement
liés. Chaque événement détecté dans le catalogue est simplement défini par
un hypocentre, un temps d’origine, une magnitude et un label (séisme, tir de
carrière). Seulement, ce dernier représente la solution finale à deux problèmes
beaucoup plus complexes, celui de la détection et celui de la discrimination. Le
succès de la résolution de ces deux problèmes dépend de la prise en compte de
plusieurs facteurs communs : les caractéristiques globales du signal enregistré,
la configuration du réseau de stations qui l’enregistre, les propriétés spécifiques
du bruit enregistré aux stations ainsi que le milieu de propagation. D’où la
métaphore de l’iceberg. Si le problème de détection s’initie à une source sis-
mique inconnue et se résout avec la détection de l’événement qui en découle,
le problème de la discrimination s’initie à l’événement détecté qui est de type
inconnu pour remonter à la caractérisation de la source qui l’a créée.
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Les problèmes de la détection et de la discrimination sont ainsi réciproque-
ment liés par des facteurs communs qui définissent le cadre de leur résolution.
Ces facteurs communs sont les propriétés des signaux sismiques détectés, la
configuration du réseau de stations qui enregistrent les différents signaux, le
niveau de bruit enregistré aux différentes stations, la prise en compte du milieu
de propagation ainsi que les facteurs de qualité qui vont évaluer la précision de
localisation de l’événement finalement détecté.

Dans le cadre de la détection, ces différents facteurs interviennent pour
améliorer la qualité des pointés des temps d’arrivée des ondes P et S, la qualité
du processus d’association ainsi que la sélection de l’origine préférentielle (si le
catalogue produit est un catalogue multi-origine). La qualité du pointé auto-
matique des ondes P et S est conditionnée par la prise en compte des caractéris-
tiques du bruit enregistré aux différentes stations et des distances épicentrales.
La qualité des processus d’association est déterminée par la considération de
la configuration spécifique du réseau de stations (distances inter-station) et du
milieu de propagation (vitesses de propagation des ondes sismiques). Enfin, la
qualité de la sélection de l’origine préférentielle dépend de l’utilisation plus ex-
haustive de paramètres qui évaluent la précision de la localisation hypocentrale
(distances épicentrales, nombre de phases, RMS des résidus, nombre de phases
S, incertitudes de localisation).

La discrimination étant la réciproque du problème de la détection, pour
remonter au type de la source sismique (séisme naturel, tir de carrière ou bruit
d’origine anthropique) à partir de l’événement qui est détecté, c’est tout le
cheminement qui a conduit à sa détection qu’il faut remonter. De ce fait, en
plus des informations véhiculées par la localisation de la source apportée par
la détection (longitude, latitude, heure et jour d’occurrence définis à partir du
temps d’origine), ce sont également les mêmes facteurs qui vont intervenir pour
optimiser le processus de discrimination des événements détectés, à savoir les
distances épicentrales, les paramètres qui évaluent la précision de la localisation
hypocentrale (valeurs des résidus, nombre de phases), les propriétés du bruit
(caractère stationnaire, aléatoire, et impulsif), les caractéristiques du signal
(forme de la distribution des amplitudes du signal, contenu fréquentiel) ainsi
que le milieu de propagation (polarisation des ondes).
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6.1.2 Une recherche de solutions optimales dans un espace
multi-factoriel complexe

La résolution des problèmes de détection et de discrimination dans le cadre
de la détection des séismes de faible magnitude est éminemment complexe. Avec
la densification du réseau de stations et la diminution du seuil de détection,
l’espace de recherche pour détecter les signaux associés à de potentiels événe-
ments est considérablement accru. Le taux de pointés augmente fortement car
les signaux sont détectés avec de plus faibles rapports signal/bruit, les combi-
naisons de pointés élaborées par les processus d’association se démultiplient et
les possibilités d’obtenir des solutions parasites augmentent considérablement.

La prise en compte des différents facteurs tels que la configuration du réseau
de stations (distances épicentrales, distance inter-stations), les caractéristiques
du signal (amplitudes, contenu fréquentiel), le niveau de bruit enregistré aux
stations (variations d’amplitudes temporelles, contenu fréquentiel) ainsi que
le milieu de propagation (vitesses de propagation) a donc été critique pour
contraindre l’espace de solutions possibles vers des solutions de détection plus
optimales.

Les problèmes de la détection et de la discrimination étant deux problèmes
qui sont réciproquement liés, un espace de solutions de détection plus optimal
facilite la résolution du problème de discrimination. Si par exemple les dis-
tances épicentrales ne sont pas considérées dans la procédure de détection, les
risques d’émettre des pointés automatiques P ou S trop précoces ou trop tardifs
par rapport aux temps d’arrivée réels des ondes sismiques P et S augmentent
fortement. Par conséquent, dans ces conditions, les possibilités de générer des
fausses associations sont plus grandes, d’autant plus si la distance temporelle de
référence nécessaire pour clusteriser les pointés entre eux ne tient pas compte
de la configuration du réseau et/ou du milieu de propagation. Or, la résolu-
tion du problème de discrimination repose sur la recherche d’un ensemble de
critères qui vont solidement définir chaque événement. Si l’espace de solution
des détections est dégradé (nombreuses vraies associations contaminées par
du bruit, association de pointés émis trop tardivement ou précocement), c’est
aussi le processus de discrimination qui se dégrade. Par exemple, la mauvaise
définition des pointés P et S peut amener à calculer des rapports spectraux
entre les ondes P et S erronés, diminuant la valeur discriminante de ce rapport
spectral.
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De plus, dans le cadre de la résolution du problème de la discrimination,
les caractéristiques des signaux étant fortement influencées par les effets du
bruit enregistré aux stations et du milieu de propagation, ne tenir compte
que de ces dernières pour résoudre ce problème nous éloigne fortement d’une
solution optimale convergente. En effet, le bruit d’origine anthropique et le
signal sismique régional présentent des amplitudes, des durées et un contenu
fréquentiel très souvent similaires (Hutton et al., 2010 ; Inbal et al., 2018 ;
Provost et al., 2017). Il est donc difficile dans ces conditions de discriminer les
faux et les vrais événements en se basant uniquement sur les caractéristiques
d’un signal fortement influencé par les effets liés au bruit. La prise en compte
de la solution hypocentrale apportée par la détection, qui est un paramètre de
la source que l’on cherche à identifier, permet alors de compenser les effets du
bruit qui atténuent fortement les effets de la source que le signal exprime.

En outre, les signaux associés aux séismes et aux tirs de carrière sont très
fortement influencés par les effets liés au milieu de propagation, comme le té-
moignent la diversité des formes d’onde associées à ces signaux au sein d’une
même classe d’événements et la similarité de ces formes d’ondes souvent re-
marquée entre les différentes classes d’événements. Par ailleurs, ces signaux
sont fortement contaminés par le bruit enregistré aux stations, d’autant plus
si les signaux détectés sont de faible amplitude. Il apparaît là encore difficile
de trouver une solution convergente optimale de discrimination des séismes et
des tirs de carrière en se focalisant uniquement sur les caractéristiques d’un
signal qui est très fortement dominé par les effets liés au milieu de propagation
mais aussi au bruit. De même, la prise en compte de la solution hypocentrale
apportée par la détection (localisation épicentrale, temps d’origine) permet, en
contraignant l’espace de solutions possibles pour identifier le type de la source,
une compensation des effets du milieu de propagation et du bruit qui atténuent
fortement les effets de la source que le signal exprime.

Trouver un espace optimal de détection et de discrimination est donc com-
plexe car les contenus en bruit du signal sont spatio-temporellement variables,
les formes d’onde associées aux signaux sont fortement soumises aux effets du
milieu de propagation dans lequel les ondes se propagent. De plus, les signaux,
qu’ils soient ou non associés à une même source, sont géométriquement dissé-
minés au sein d’un réseau dense de stations qui les enregistrent. Seulement, ne
pas considérer au maximum cet espace multiparamétrique, c’est probablement
approximer fortement la réponse aux problèmes de détection et de discrimina-
tion, voire même la dégrader.
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6.2 Les résultats de la détection et de la discri-
mination des séismes de faible magnitude, un
reflet de la complexité d’un système multipa-
ramétrique

6.2.1 Des résultats de détection qui reflètent les effets liés
au bruit enregistré aux stations

La comparaison des détections produites par la procédure de détection dé-
veloppée dans ce travail de thèse, avec celles émises par le BCSF-RéNaSS pour
la période juillet 2016 - décembre 2016, montre qu’un total de 2000 événements
ont été détectés en plus, dont 1290 tirs de carrières et 700 séismes. Ce qui fait
qu’avec les événements déjà détectés auparavant par le BCSF-RéNaSS, ce sont
2755 événements qui sont finalement détectés. Au total, 2.5 fois plus de séismes
et presque 6 fois plus de tirs de carrière ont été identifiés.

Parmi les nouveaux séismes détectés, 48% d’entre eux présentent une ma-
gnitude locale MLv inférieure à 1.20 (Figure 6.2). Avec cette procédure de dé-
tection, la proportion de séismes de très faible magnitude augmente donc : deux
fois plus de séismes sont désormais détectés avec des magnitudes inférieures à
1.20. Sur l’ensemble des nouveaux séismes détectés, 82% ont des magnitudes
locales inférieures à 1.50.

Parmi les nouveaux tirs de carrière détectés, 55% d’entre eux ont des ma-
gnitudes locales inférieures à 1.50 et la quasi-totalité ont des magnitudes infé-
rieures à 2.0.

Figure 6.2: Distribution des magnitudes des événements détectés avec la nou-
velle procédure de détection développée dans ce travail de thèse pour la période
juillet 2016-décembre 2016.
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L’analyse de la distribution cumulative fréquence-magnitude des séismes
pour cette période de juillet à décembre 2016 montre que la magnitude de com-
plétude, estimée grossièrement à partir de cette distribution, atteint maintenant
1.10 avec la nouvelle détection automatique, alors qu’elle était de 1.20 pour le
catalogue de référence (Figure 6.3). Même si cette magnitude de complétude
affiche une baisse très subtile, ce constat annonce des résultats prometteurs
pour une détection future des séismes de faible magnitude plus approfondie et
plus longue.

Figure 6.3: Distribution cumulative fréquence-magnitude des événements dé-
tectés automatiquement par la nouvelle procédure de détection pendant la pé-
riode juillet 2016 -décembre 2016.Distribution cumulative fréquence-magnitude
des événements détectés automatiquement par la nouvelle procédure de détec-
tion pendant la période juillet 2016 -décembre 2016.
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Néanmoins, en observant le taux de détection des séismes au cours des
heures de la journée, il est possible de constater que 71% des séismes contenus
dans le catalogue automatique ont eu lieu avant 6 heures du matin et après
18 heures, c’est-à-dire pendant les périodes où le niveau du bruit d’origine
anthropique est le plus bas (Figure 6.4). Un peu moins de 75% des tirs de
carrière sont détectés entre 9 heures et 16 heures. C’est aux heures où les tirs
de carrière sont majoritairement détectés que le taux de séismes capturés est le
plus bas, et inversement. Il y a donc une segmentation temporelle artificielle de
la détection des événements. Même si les séismes sont détectés à n’importe quel
moment de la journée, il reste un déficit de détection des séismes aux périodes
où sont intensément détectés les tirs de carrière.

Figure 6.4: Comparaison des distributions des séismes et des tirs de car-
rière détectés automatiquement en fonction des heures de la journée avec celle
du BCSF-RéNaSS pour la même période de détection (juillet 2016-décembre
2016). La distribution des faux événements est représentée également comme
approximation de l’évolution du niveau de bruit anthropique au cours des
heures de la journée.

De la même manière, la distribution des détections des séismes et des tirs
de carrière en fonction du jour de la semaine montre une discrimination tem-
porelle de la détection des événements, même si celle-ci est moins marquée.
Sur l’ensemble des séismes détectés, environ 36% ont eu lieu un samedi ou
un dimanche, c’est-à-dire pendant le week-end, période au cours de laquelle le
niveau de bruit d’origine anthropique est globalement plus bas et/ou l’activité
de carrière est minimale (Figure 6.5).
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Figure 6.5: Distribution des séismes et des tirs de carrière détectés automati-
quement en fonction du jour de la semaine. La période de détection est juillet
2016-décembre 2016. La distribution des faux événements est représentée éga-
lement comme approximation de l’évolution du niveau de bruit anthropique
en fonction des jours de la semaine. 0 = lundi, 1 = mardi, 2 = mercredi, 3 =
jeudi, 4 = vendredi, 5 = samedi, 6 = dimanche.
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Les périodicités apparentes hebdomadaires et quotidiennes des séismes ob-
servées semblent être corrélées aux périodes de détection minimales du bruit
d’origine anthropique. Comme cela a été déjà observé, ce bruit d’origine an-
thropique affecte durablement la détection des séismes, plus particulièrement
pour les séismes de faible magnitude qui sont détectés avec de faibles rapports
signal/bruit (Atef et al., 2009 ; Hao et al., 2019). Cet artefact de périodicité
liée à la détectabilité des événements dans un environnement urbain brouille
le comportement statistique des séismes dans la zone d’étude. Par conséquent,
les résultats de la détection sont très prometteurs mais ces résultats mettent
aussi en évidence qu’il reste difficile de s’affranchir complètement des effets liés
au bruit enregistré aux stations.

6.2.2 Des résultats de discrimination qui reflètent les effets
liés au milieu de propagation

•Une variabilité régionale de l’efficacité des discriminants

Comme exprimé dans l’article présenté au chapitre précédent, une varia-
bilité régionale de l’efficacité des discriminants peut être mise à jour dans la
classification des séismes et des tirs de carrière. Cette variabilité transparaît au
niveau de l’architecture des arbres décisionnels constituant la forêt aléatoire.
La localisation de l’événement (longitude et latitude) offre une contrainte qui
va rythmer la constitution des différents embranchements de l’arbre. Se des-
sinent alors plusieurs régions géographiques qui sont chacune caractérisées par
une combinaison d’attributs spécifiques et leur seuil de valeurs respectif. A
partir de là, il est possible de traduire l’arrangement hiérarchique de l’arbre
décisionnel en classification emboîtée, où chaque boîte correspond à un assem-
blage d’attributs reliés au signal, délimitée par les différentes valeurs seuils de
la longitude et de la latitude.

Si je reprends l’exemple proposé dans l’article, mais en y ajoutant quelques
exemples de séismes incorrectement prédits par le classifieur des séismes et
des tirs de carrière pour la période septembre 2016-décembre 2016, plusieurs
groupes se dessinent (Figure 6.6). D’après cet arbre décisionnel analysé, le
séisme appartenant au groupe 1 se situe dans une surface géographique iden-
tifiée par les régions A, B et C. Ce dernier est alors prédit selon les critères
partagés par l’ensemble des régions A, B et C, à savoir le degré d’asymétrie de
la distribution des valeurs d’amplitudes du signal, le temps d’origine de l’évé-
nement détecté (jour de la semaine, heures de la journée), la variance spectrale
ainsi que la magnitude de surface moyenne estimée à 10 s. Dans ce cas, ce
séisme est prédit en tant que tir de carrière car il possède une magnitude de
surface relativement élevée et est associé à une valeur du coefficient d’asymétrie
qui s’approche de celui des tirs de carrière pour la zone d’étude.
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(a)

(b)

Figure 6.6: Projection en carte d’une partie de la classification emboîtée dé-
duite d’un arbre décisionnel extrait aléatoirement à partir de la forêt (cf sup-
plément de l’article pour détail de cet arbre). Chaque région géographique,
exprimée à travers un code couleur, est définie par un ensemble d’attributs uti-
lisés pour prédire les séismes et les tirs de carrière à l’intérieur de cette région.
Les séismes incorrectement prédits par le classifieur pour la période septembre
2016-décembre 2016 définissent des groupes qui appartiennent à différentes ré-
gions géographiques (groupe 1 à 6). Ces séismes sont incorrectement prédits
selon les critères qui sont utilisés dans chaque région géographique. Les lignes
en pointillé constituent les valeurs de longitude et de latitude de référence qui
ont servi à élaborer les emboîtements.

De même, le séisme du groupe 2, appartenant à la zone géographique qui
regroupe les régions A, B et E, n’est pas correctement classifié à cause d’un
contenu fréquentiel particulièrement bas et d’une variance spectrale moins éle-
vée que la moyenne des séismes détectés dans la zone d’étude. Quant au séisme
appartenant au groupe 3 (régions G et H), le rapport de l’accélération maximale
du sol entre la composante horizontale et verticale de la station, particulière-
ment élevé, et le contenu relatif basse-fréquence du signal associé, plutôt haut,
sont les deux critères qui vont induire une prédiction incorrecte de ce séisme.
En revanche, le séisme appartenant au groupe 4 (régions I et K) est correc-
tement prédit car les signaux qui lui sont associés présentent une énergie du
signal intense à des fréquences plus élevées (6-9 Hz) typiques des séismes, tout
comme celui du groupe 5 qui est également bien prédit. Le même raisonnement
peut être fait pour les séismes appartenant aux trois derniers groupes (6, 7 et
8).

De cette façon, si le rapport de l’accélération maximale du sol entre la com-
posante horizontale et verticale de la station est un attribut qui est utilisé dans
l’édification du chemin décisionnel de l’arbre pour prédire un événement dans
la zone géographique nommée F, cet attribut ne fait pas partir de la sélection
pour l’élaboration des chemins décisionnels qui vont contribuer à prédire les
événements dans la zone géographique nommée J.
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Sur l’ensemble des arbres décisionnels qui composent la forêt, chaque arbre
peut donc être traduit sous forme d’une classification emboîtée spécifique avec
une combinaison d’attributs distinctes comme c’est le cas par exemple de deux
autres classifications emboîtées élaborées à partir deux autres extrait d’arbre
décisionnel différent (Figure 6.7). A partir de la comparaison des trois classifi-
cations proposées (Figures 6.6 et 6.7), quelques lignes communes peuvent être
tracées.

La première est que la longitude 8°E semble à chaque fois séparer la zone
d’étude en deux grands sous-groupes. La résolution des régions géographiques
est plus faible à l’est de la ligne de référence 8°E. Cette observation reflète un
déséquilibre de répartition des événements dans le jeu de données qui a servi
à l’apprentissage. En effet, la majorité des événements dont je dispose pour
entraîner l’algorithme de classification est située à l’ouest de cette ligne de
référence. Cette scission se répète successivement à travers l’analyse des arbres
décisionnels.

La deuxième observation est qu’il est possible d’ores et déjà de faire des re-
coupements entre les différentes régions géographiques révélées, à travers l’ana-
lyse grossière de ces trois extraits d’arbre décisionnel. En effet, par exemple,
pour les trois classifications emboîtées, l’attribut qui décrit le coefficient d’asy-
métrie de la distribution des valeurs d’amplitudes du signal est intégré dans
l’élaboration des chemins décisionnels qui servent à prédire les événements si-
tués dans une zone comprise entre les longitudes 1.8°E et 5°E et les latitudes
46.8°N et 50°N.

Les attributs décrivant les magnitudes de surface à 8s (valeur minimale)
et 10 s (valeurs moyenne et minimale) semblent être quant à eux impliqués
dans l’édification des chemins décisionnels qui conduisent à la prédiction des
événements dans la zone délimitée par les longitudes 2.8°E et 6°E et les latitudes
47°N et 49.6°N.

De même, le rapport de l’accélération maximale du sol entre la compo-
sante horizontale et verticale de la station est un attribut qui est utilisé dans
l’édification des chemins décisionnels des trois arbres pour prédire les événe-
ments circonscrits dans la zone comprise entre les longitudes 6°E et 6.4°E et
les latitude supérieures à 49.6°N.

En outre, l’attribut retraçant l’écart-type des valeurs des rapports spectraux
entre les ondes P et S calculés pour l’ensemble des signaux impliqués dans la
détection de chaque événement est utilisé pour prédire les événements dans la
zone comprise entre les longitudes 6°E et 6.4°E et les latitudes 47°N et 49.6°N.

Enfin, les attributs décrivant le temps d’origine des événements (heure et
date d’occurrence) sont utilisés dans l’élaboration des chemins décisionnels des
trois arbres décisionnels pour des zones plus larges : entre les longitudes 2.8°E
et 5.2°E et les latitudes 44°N et 49.5°N puis les longitudes 6.4°E et 8°E et les
latitudes 44°N et 47°N pour les heures d’occurrence et les longitudes 1.8°E et
8°E et les latitudes 44°N et 49°N pour le jour d’occurrence.
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(a)
(b)

(c)

Figure 6.7: Exemple de cartographie de la régionalisation de l’effet des attri-
buts sur la prédiction des séismes et des tirs de carrière. (a),(b) Projection en
carte de deux classifications emboîtées déduites chacune d’un extrait d’arbre
décisionnel tiré aléatoirement parmi l’ensemble des 500 arbres décisionnels qui
composent la forêt aléatoire. Chaque région géographique, exprimée à travers
un code couleur, est définie par un ensemble d’attributs utilisés pour prédire
les séismes et les tirs de carrière à l’intérieur de cette région. (c) Projection
en carte du résultat de la combinaison des trois classifications emboîtées pré-
sentées dans les Figures 6.6 et 6.7a, b. Chaque zone géographique commune,
partageant le même échantillonnage d’attributs pour la prédiction, est repré-
sentée par un code couleur spécifique. Les lignes en pointillés constituent les
valeurs de longitude et de latitude de référence qui ont servi à élaborer les
emboîtements sur l’ensemble des figures présentées.
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Par conséquent, si l’ensemble des informations véhiculées par chaque zone
géographique issue de la fusion des trois extraits d’arbre décisionnels sont com-
binées ensemble, il est possible de révéler une zone commune, délimitée par les
longitudes 2.8°E et 5.2°E et les latitudes 47°N et 49°N. Dans cette zone mise en
relief, les séismes et les tirs de carrière sont prédits grâce à un pool d’attributs
constitués par l’heure et la date d’occurrence des événements, le coefficient
d’asymétrie des distributions des valeurs des amplitudes des signaux associés
à chaque événement ainsi que les magnitudes de surface à 8 s et 20 s (valeurs
minimales et/ou moyennes).

Les premiers résultats des classifications emboîtées offrent pour l’instant
une image très incomplète de l’étendue de la variabilité de l’efficacité des dis-
criminants sur les différentes régions géographiques. Seulement, l’ébauche de
cartographie très simplifiée de la régionalisation des effets des attributs effec-
tuée dans ce travail de thèse met en évidence le potentiel réel des résultats
de l’apprentissage machine pour révéler une cartographie complète de cette
régionalisation.

Ainsi, une piste intéressante à approfondir est d’élaborer une classification
emboîtée exhaustive sur l’ensemble de la forêt aléatoire de façon à pouvoir fine-
ment cartographier les combinaisons de discriminants partagés par une même
zone géographique. Une information riche est contenue dans cette forêt, qui
ne demande qu’à être exploitée. Seulement, pour l’exploiter efficacement, une
procédure automatique d’analyse des différents arbres doit être mise en place.
Certains auteurs ont par ailleurs déjà élaboré des outils d’analyse automatique
des arbres décisionnels. Ce qui constitue une première approche (Lapuschkin
et al., 2019 ; Samek, 2020.
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•Une variabilité locale de l’efficacité des discriminants

La variabilité des discriminants peut être aussi observée plus localement.
Si je prends l’exemple de la séquence d’événements qui a eu lieu au nord du
lac Konstanz en Allemagne au cours de la période septembre 2016-décembre
2016, 61 séismes ont d’abord été identifiés. Ces séismes sont caractérisés par
une similarité de formes d’onde manifeste au premier abord (cf Figure 5.30
pour la visualisation de la similarité des formes d’onde enregistrée à la station
SLE).

Seulement, malgré la forte similarité de ces formes d’ondes et de localisations
épicentrales, le classifieur des séismes et des tirs de carrière ne prédit pas ces
événements avec la même probabilité (Figure 6.8). Un total de 16 séismes vont
même être prédits comme des tirs de carrière pour les raisons déjà évoquées
dans le chapitre précédent.

Figure 6.8: Distribution de la famille de séismes localisés au nord du lac
Konstanz en Allemagne en fonction des probabilités de prédiction du classifieur
des séismes et des tirs de carrière. Une probabilité de 1 signifie que la totalité
des arbres de la forêt aléatoire a prédit l’événement comme étant un séisme.
Une probabilité de 0 signifie qu’aucun des arbres de la forêt aléatoire n’a prédit
l’événement comme étant un séisme (donc les 500 arbres ont prédit dans ce cas
l’événement comme étant un tir de carrière). Un événement est prédit comme
séisme à partir d’une probabilité de 0.502.
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D’une manière globale, l’ensemble des 61 séismes repérés au nord du lac
Konstanz sont associés à des signaux dont la valeur moyenne du coefficient
d’asymétrie (0:31 � 0:20) tend à se rapprocher de celle des tirs de carrière de
la zone d’étude (0:20� 0:49), plutôt que de celle des séismes (0:55� 0:81). Les
séismes les mieux prédits (probabilité de prédiction > 0.72) par le classifieur
des séismes et des tirs de carrière sont d’ailleurs reliés aux valeurs les plus
élevées du coefficient d’asymétrie de cette distribution (Figure 6.9).

(a) Signal correspondant à un séisme ayant
eu lieu le 21 novembre 2016 à 04h30 (MLv
1.50) et prédit avec une probabilité d’être
un séisme faible (0.37).

(b) Signal correspondant à un séisme ayant
eu lieu le 13 novembre 2016 à 15h12 (MLv
1.65) et prédit avec une probabilité d’être
un séisme élevé (0.80).

Figure 6.9: Coefficients d’asymétrie et formes d’onde associés à deux signaux
enregistrés sur la composante verticale de la station SLE et correspondant
chacun à un séisme appartenant à l’ensemble des 61 séismes identifiés au Nord
du lac Konstanz en Allemagne (distance épicentrale 20 km). Les valeurs les plus
élevées du coefficient d’asymétrie sont à relier avec des événements prédits avec
une forte probabilité d’être assimilés à des séismes.

De plus, comme il a été écrit précédemment, les séismes qui sont prédits
incorrectement par le classifieur sont reliés à des signaux qui ont une variance
spectrale généralement inférieure aux autres événements correctement prédits
(Figure 6.10b) et une énergie relative plus intense aux fréquences comprises
entre 1 et 5 Hz (Figure 6.10c).
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(a) Distribution des valeurs absolues du co-
efficient d’asymétrie.

(b) Distribution des valeurs de la variance
spectrale (le spectre du signal est normalisé
par sa valeur maximale).

(c) Distribution des valeurs des rapport
d’énergie du signal entre les bandes fré-
quentielles 6-9 Hz et 1-5 Hz.

(d) Distribution des valeurs issues de la dif-
férence entre la magnitude de coda et la
magnitude locale.

Figure 6.10: Distribution des valeurs de 4 attributs utilisés pour prédire les
séismes et tirs de carrière (coefficient d’asymétrie, variance spectrale, rapport
d’énergie du signal entre les bandes fréquentielles 6-9 Hz et 1-5 Hz, différence
entre la magnitude de coda et la magnitude locale) en fonction des probabi-
lités de prédiction émises par le classifieur. Les valeurs sont extraites de la
totalité des 61 séismes détectés au Nord du lac Konstanz en Allemagne entre
septembre 2016 et décembre 2016. Une probabilité de 1 signifie que la totalité
des arbres de la forêt aléatoire a prédit l’événement comme étant un séisme.
Une probabilité de 0 signifie qu’aucun des arbres de la forêt aléatoire n’a prédit
l’événement comme étant un séisme (donc cela signifie que les 500 arbres ont
prédit l’événement en tant que tir de carrière).
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En outre, en observant la répartition des valeurs de la différence entre la
magnitude de coda et la magnitude locale en fonction des probabilités de pré-
diction du classifieur, une tendance s’affirme. En effet, la différence entre la
magnitude de coda et la magnitude locale diminue à mesure que les probabili-
tés de prédiction augmentent (Figure 6.10d).

Or, il a été constaté que la différence moyenne entre la magnitude de coda
et la magnitude locale est une fonction sensible de la profondeur de la source
(Koper et al., 2016). Plusieurs pistes ont d’ailleurs été proposées pour tenter
d’expliquer pourquoi les événements les plus superficiels possèdent des codas
de plus longue durée, comme la présence d’un guide d’ondes à faible vitesse
proche de la surface ou des chutes de contrainte plus faibles (Holt et al., 2019).

Par conséquent, si cet attribut (différence entre magnitude de coda et ma-
gnitude locale) témoigne indirectement de la profondeur des événements, cela
signifie alors que le classifieur prédit plus difficilement correctement les évé-
nements superficiels de ces essaims de séismes : une plus forte valeur de cet
attribut est corrélée avec une valeur de probabilité faible. Ce classifieur prédira
plus facilement les séismes superficiels comme étant des tirs de carrière car leurs
signaux présentent des propriétés similaires à ceux des tirs de carrière pour les
attributs considérés, d’autant plus que la particularité de ces 61 séismes est de
partager des valeurs de coefficient d’asymétrie de la distribution des valeurs
d’amplitude des signaux associés similaires à celles des tirs de carrière.

De ce fait, les erreurs de classification pour ces essaims de séismes ont
manifesté une valeur discriminante différentielle des attributs en fonction de
l’événement considéré au sein même de chaque essaim. Cette variabilité plus
locale de l’effet des discriminants limite donc localement la performance de la
prédiction. Celle-ci révèle également indirectement, à travers les probabilités
de prédiction, un paramètre de la source, à savoir ici sa profondeur. Enfin, ce
résultat signale que les critères utilisés pour classer les événements reflètent
indirectement les effets du milieu de propagation que les signaux manifestent.
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6.3 Une procédure de détection des séismes de
faible magnitude encore à optimiser

6.3.1 Approfondir l’interactivité Homme-machine au sein
des observatoires sismologiques

La procédure de détection qui est développée dans ce travail de thèse, élabo-
rée sous SeisComP3, a l’avantage d’être transposée facilement en opérationnel.
De plus, elle fournit des résultats de classification prometteurs, qui ne se dé-
parent pas des résultats de la classification manuelle, ou bien d’une classification
automatique élaborée à partir d’un jeu pointé manuellement.

En effet, si je compare les résultats de la classification automatique des
séismes et des tirs de carrière élaborée à partir du jeu de données produit
automatiquement (période septembre 2016 -décembre 2016) aux résultats de
la classification automatique élaborée à partir de ce même jeu de données,
mais repris manuellement, il est possible de constater que le classifieur prédit
correctement un taux équivalent de séismes, quel que soit le jeu de données
(Table 6.1).

De plus, pour le jeu automatique non repris manuellement, la performance
prédictive du classifieur vis-à-vis des tirs de carrière se dégrade légèrement (de
l’ordre de 2%), même si les résultats restent très honorables (94.76% de tirs de
carrière bien classés).

Table 6.1: Comparaison des performances prédictives du classifieur de séismes
et de tirs de carrière vis-à-vis du jeu d’événements détectés automatiquement
entre septembre 2016 et décembre 2016 et le même jeu d’événements repris
manuellement

Manually Reviewed Automatic Data Automatic data
Specificity (%) 96.82 � 0.24 94.76 � 0.34
Sensitivity (%) 96.55 � 0.22 96.04 � 0.30
Precision (%) 96.00 � 0.29 94.68 � 0.33
F-Measure 0.963 � 0.002 0.953 � 0.002

a Spécificité : le taux de tirs de carrière correctement prédits (soit le rapport des vrais
négatifs sur la somme des vrais négatifs et des faux positifs). Sensitivité : le taux de
séismes correctement prédits (soit le rapport des vrais positifs sur la somme des vrais
positifs et des faux négatifs). Précision : la proportion de séismes correctement prédits
relativement à toutes les détections positives (le rapport des vrais positifs sur la somme
des vrais positifs et faux positifs). La mesure F : un résumé statistique qui combine la
précision et la sensitivité (2� prcision� sensitivit=(prcision + sensitivit)).
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Ce dernier résultat souligne indirectement la difficulté accrue d’obtenir des
pointés automatiques de très bonne qualité lorsqu’il s’agit de détecter des si-
gnaux sismiques associés aux tirs de carrière. En effet, ces signaux sont détectés
dans des périodes où le bruit d’origine anthropique est le plus élevé et avec de
faibles rapports signal/bruit. Toutefois, la forte proportion de tirs de carrière
bien prédits avec le jeu automatique met tout de même en évidence l’apport si-
gnificatif de la procédure de détection pour qualitativement détecter l’ensemble
des vrais événements de la zone d’étude.

Comme décrit dans l’article présenté précédemment, l’intégration de cette
procédure de détection au sein des observatoires sismologiques a des avantages
certains.

Elle permet d’abord la détection des vrais événements en éliminant plus de
99% des faux événements. En effet, sans intégration de l’apprentissage machine
dans le flux de détection, la procédure de détection génère près de 50 000
événements sur 4 mois. De ce fait, l’introduction du module de discrimination
SeisComP3, que j’ai développé, dans le système de détection final élimine la
fatigue physiologique liée aux faux événements, tout en maintenant un taux de
séismes détectés très satisfaisant (environ 93 %).

De plus, les probabilités de prédiction apportées par le classifieur des séismes
et des tirs de carrière offrent une base intéressante pour revoir manuellement
les résultats finaux de la détection automatique. Seulement, il faudrait com-
prendre plus précisément la nature de l’interaction Homme-machine dans le
cadre de cette revue manuelle des événements. En effet, revoir manuellement
les événements en se basant sur la valeur de la probabilité de prédiction est
une approche simple. Comme écrit dans l’article précédent, la revue manuelle
de l’ensemble des événements discriminés avec une probabilité comprise entre
0.4 et 0.7 n’est pas une lourde tâche et conduit même à une amélioration très
forte du taux d’événements correctement classés.

Cependant, avec cette approche, il y a un risque de conformation forte aux
résultats prédits par la fonction de prédiction, en particulier pour les proba-
bilités en dehors de la gamme 0.40-0.70. Pour éviter ces effets potentiellement
négatifs, il apparaît indispensable d’étudier de manière approfondie comment
l’humain se comporte dans un processus décisionnel qui intègre la machine.
Au demeurant, si une trop grande conformation vis-à-vis de l’apprentissage
machine peut dégrader les solutions finales, le rejet systématique des résultats
de l’apprentissage machine sous prétexte que l’algorithme se "trompe" souvent
ou qu’il apprend "mal" est également contre-productif. En définitive, si l’algo-
rithme apprend "mal", c’est que l’espace d’hypothèses initiales pour rechercher
la fonction de prédiction optimale n’est pas suffisamment contraint.
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L’analyse comportementaliste de l’Homme vis-à-vis de la machine, comme
par exemple comparer une population d’analystes qui classe les événements
sans l’apprentissage machine et une autre population qui classe les événements
avec, puis comprendre les choix élaborés par les deux populations, reste indis-
pensable pour optimiser l’interactivité Homme-machine. Il s’agit de tirer profit
de l’apport manifeste de l’apprentissage machine dans la discrimination, tout
en assurant une veille permanente de l’Homme sur les résultats prodigués par
cet apprentissage.

6.3.2 Tendre vers l’erreur de généralisation la plus petite
possible

Si dans ce travail j’ai recherché à élaborer des classifieurs (un classifieur
pour les vrais et faux événements et un classifieur pour les séismes et les tirs de
carrière) qui minimisent au maximum l’erreur de généralisation, d’autres angles
sont à considérer pour augmenter la performance prédictive de ces derniers, et
asseoir leur validité.

Ces classifieurs ont été testés en dehors de la zone d’étude, sur un jeu
d’événements détectés dans la zone des Pyrénées françaises. C’est d’ailleurs
avec ce jeu d’événements qu’il a été confirmé que les différents paramètres qui
vont décrire l’enveloppe du signal (statistique et forme de la distribution des
valeurs de l’enveloppe, complexité, etc) dégradent la prédiction des séismes.
En effet, étant donné la forte variabilité des formes d’onde au sein même d’une
classe d’événements et entre les classes d’événements, une introduction détaillée
des paramètres qui vont définir le signal dans le domaine temporel apporte
beaucoup de confusions.

Ainsi, utiliser ces classifieurs pré-entraînés sur d’autres jeux d’événements
détectés dans d’autres environnements peut apporter une validité aux résultats
proposés dans ce travail de thèse. De plus, détecter les événements dans la zone
d’étude en retirant les stations temporaires AlpArray, pourra aussi être un autre
garant de la robustesse des deux classifieurs. Tester le pouvoir prédictif de ces
classifieurs avec un jeu d’entraînement plus grand est aussi intéressante pour
évaluer leur stabilité.

De plus, comme écrit précédemment, la variabilité régionale des discrimi-
nants des séismes et des tirs de carrière mérite d’être approfondie à travers une
étude complète de l’ensemble des arbres décisionnels, de façon à savoir s’il est
possible d’élaborer une cartographie globale de l’efficacité de ces derniers. Or,
si ces discriminants s’avèrent être d’efficacité variable en fonction des régions
géographiques, il serait intéressant de comprendre plus exactement ce qu’ils
révèlent : les effets de la source ? les effets du milieu de propagation ? les effets
du bruit enregistré à certaines stations spécifiques ?
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Enfin, la discrimination des vrais événements reste à être affinée notamment
en se penchant sur d’autres classes d’événements comme la sismicité induite par
la géothermie profonde. Si cette classe d’événements est minoritaire par rapport
aux séismes et aux tirs de carrière, elle présente des enjeux non négligeables
(économiques, scientifiques, sociologiques) pour la compréhension des risques
sismiques associés à cette activité géothermique. Seulement, la résolution de ce
problème de classification des séismes induits par la géothermie profonde est
une tâche complexe à accomplir.

C’est un problème qui est dès le départ complexe puisque le jeu de don-
nées disponible dans la zone d’étude est de taille petite et pollué par d’autres
événements qui sont étiquetés comme induits mais qui sont en fait purement
liés à une activité minière (effondrement de toit de mines par exemple). C’est
en élaborant un premier apprentissage à partir de ce jeu de données que je
me suis aperçue de l’inclusion de ces événements. La sélection automatique
des attributs qui est produite considère la proximité de l’événement à la mine
la plus proche avec une importance relative non négligeable de l’ordre de 3%
(Figure 6.11).

Figure 6.11: Première sélection d’attributs produite par élimination récursive
pour l’élaboration d’un classifieur qui puisse également identifier les séismes in-
duits par la géothermie profonde parmi l’ensemble des autres vrais événements
détectés dans la zone d’étude. Cette sélection a été élaborée à partir d’un jeu
d’événements détectés au cours de l’année 2016-2017. La valeur discriminante
de cette sélection n’a pas été testée, ni validée.

Par ailleurs, si la discrimination de la sismicité induite par la géothermie
peut être établie à travers des corrélations spatiales et temporelles avec les in-
jections qui l’ont produite (Verdon et al., 2019), ces critères peuvent être non
suffisants lorsque des séismes d’origine naturelle sont régulièrement détectés
dans la zone des puits d’injection.
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Ainsi, ces séismes induits par la géothermie profonde sont reconnus pour
être reliés à des caractéristiques de la source, des relations magnitude-fréquence
et des mouvements du sol similaires aux séismes dits naturels (Schoenball
et al., 2015 ; Atkinson, 2020 ; Atkinson et al., 2020. Ils partagent également
avec ces derniers des mécanismes de rupture assez semblables, comme peuvent
le témoigner l’analyse de leurs mécanismes focaux double-couple qui semblent
compatibles avec les champs de contrainte régionaux (Clarke et al., 2019 ;
T. S. Eyre et al., 2019 ; Lei, Z. Wang et al., 2019 ; Z. Zhang et al., 2019. Ce
qui rend encore plus difficile la résolution du problème de discrimination de
cette sismicité induite, au-delà de la qualité du jeu d’entraînement disponible.

6.4 Bilan

Le problème de la détection des séismes de faible magnitude dans une ré-
gion continentale stable, telle que la zone d’étude de ce travail de thèse, est
intimement associée à la notion de détectabilité des signaux sismiques dans
un système multiparamétrique. Ces signaux sont le résultat de la combinaison
des effets de la source, souvent atténués, du milieu de propagation et du bruit
enregistré aux stations.

Lorsque les seuils de détection sont diminués pour détecter les signaux avec
de faible rapports signal/bruit, les effets du bruit sur ces signaux à détecter
s’amplifient. Si la diminution des seuils des détection est combinée avec un ré-
seau de stations plus dense, comme c’est le cas de la zone d’étude, la complexité
des chemins de propagation des ondes sismiques est plus facilement capturée
dans toutes les directions de l’espace, et, à l’échelle du réseau, les effets du mi-
lieu de propagation sur les signaux à détecter s’intensifient. Par conséquent, si
ce sont des signaux de faible amplitude qui sont détectés, les effets de la source
deviennent très vite atténués.

Le problème de la détection des séismes de faible magnitude émerge alors,
et il s’agit de comprendre comment décoder le signal pour en extraire les in-
formations atténuées de la source sismique, c’est-à-dire comment diminuer les
effets liés au bruit et au milieu de propagation.

La procédure de détection que j’ai développée vise à diminuer ces deux ef-
fets. Les effets liés au bruit se manifestent d’emblée par le pointé automatique
des ondes sismiques P et S. En effet, les algorithmes de pointé automatique,
implémenté dans le système de détection de SeisComP3 que je cherche à opti-
miser, se basent sur des variations d’amplitudes, voire de fréquence et de phase
pour détecter les temps d’arrivée des ondes sismiques. Ces algorithmes peuvent
donc reconnaître indistinctement des signaux sismiques cohérents associés à un
événement comme des signaux associés purement à du bruit impulsif d’origine
anthropique, d’autant plus si tous ces signaux sont de même amplitude, de
même durée et de même contenu fréquentiel.
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Afin de limiter ces effets liés au bruit, le filtrage fréquentiel du signal, le
début de la fenêtre temporelle utilisée pour détecter les temps d’arrivée des
ondes P et S et la valeur du rapport signal/bruit minimal autorisée pour pointer
les phases S ont été adaptés aux conditions de bruit enregistrées spécifiquement
aux stations. De plus, les phases S étant pointées une fois que les pointés
des phases P ont été émis, la taille et le pas de la fenêtre temporelle utilisés
pour détecter l’arrivée des ondes S sont fortement conditionnés par la distance
épicentrale et doivent donc être ajustés en fonction de cette distance. Dans ce
cas-ci, ce sont les effets du milieu de propagation qui sont pris en compte.

Le processus d’association étant fondé sur le regroupement de temps d’arri-
vée compatibles dans une fenêtre temporelle donnée, celui-ci est donc fortement
soumis aux effets du milieu de propagation. Si les vitesses des ondes dans le
milieu ne sont pas correctement définies et si la configuration du réseau de
stations est négligée, la probabilité de créer des combinaisons de pointés avec
des pointés parasites s’élève. Pour diminuer les effets liés au milieu de propaga-
tion, les distances inter-station et plusieurs vitesses de propagation des ondes
sismiques ont été explorées.

Le système de détection de SeisComP3 produisant un catalogue multi-
origine, une sélection préférentielle d’une origine est réalisée pour chaque évé-
nement. Afin de réaliser une sélection optimale, il s’agit de choisir l’origine qui
minimise à la fois les effets du bruit et les effets du milieu de propagation. Pour
cela, estimer des paramètres supplémentaires (seuil de RMS, seuil du nombre
de phases, distances épicentrales, valeurs des résidus, incertitudes de localisa-
tion latitudinales et longitudinales, nombre de phases S) qui vont définir la
précision de la localisation de l’origine est une étape nécessaire à la détection
finale optimale des séismes de faible magnitude.

A l’issue des différentes étapes, la réduction des effets liés au bruit enre-
gistré aux stations et au milieu de propagation améliore la détection des vrais
événements mais n’empêche pas la détection des faux événements. Or, dans
le cadre de ce travail de thèse, c’est facilement 50 000 faux événement qui
sont détectés en 4 mois. De ce fait, même si la détection des vrais événements
a été améliorée, les effets de cette amélioration sont fortement limités par la
détection outrancière des faux événements.

Un deuxième problème se soulève, celui de la discrimination des événe-
ments. Discriminer un événement revient à disséquer complètement ce dernier
de manière à extraire l’information sur la nature de la source qui l’a engendré.
Or, un événement c’est à la fois une solution hypocentrale et épicentrale, un
temps d’origine, une magnitude, une combinaison de pointés, une combinaison
de signaux, mais c’est aussi des incertitudes puisque ce dernier est détecté à
partir d’une source inconnue. Un événement c’est donc un très grand espace de
solutions possibles difficiles à décrypter avec le seul cerveau humain. L’utilisa-
tion de l’apprentissage machine a alors permis de gérer plus efficacement cet
espace des possibles.
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Si les effets liés au bruit et au milieu de propagation ont fortement condi-
tionné le succès de la détection, ces derniers effets vont aussi apporter une
contrainte forte à la résolution du problème de discrimination. Or, l’apprentis-
sage machine permet assez bien de gérer ces effets en segmentant les différentes
informations dans un espace d’attributs indépendants, où chaque attribut véhi-
cule une partie de la réponse au problème posé de la discrimination. Seulement,
la difficulté ici est de trouver dans cet espace la combinaison optimale d’attri-
buts qui va pouvoir retracer le plus fidèlement possible l’information véhiculée
par la source, sans risque de sur-apprentissage ou de sous-apprentissage de
l’algorithme utilisé.

De ce fait, afin d’optimiser la résolution du problème de discrimination
des événements par apprentissage machine, l’interactivité Homme-machine a
été privilégiée dans la construction de cette apprentissage, en plus du choix
raisonnée de l’algorithme d’apprentissage et de la configuration de son espace
d’hyperparamètres. Cette interactivité vise à détecter les corrélations parasites
élaborées par le système d’apprentissage et estimer la validité des règles de
classification émises.

La solution optimale obtenue pour discriminer les faux événements des vrais
événements ne s’est pas basée majoritairement sur les caractéristiques du signal,
les signaux associés à ces différents événements étant très souvent d’amplitude
similaire, de durée équivalente et de contenu fréquentiel semblable.

Un faux événement est donc mieux classé à partir d’une combinaison d’attri-
buts qui le définit comme étant un événement généré à partir d’une association
incohérente de pointés (facteur de corrélation entre les premières arrivées des
ondes P et la distance épicentrale), qui ont été déclenchés suite à une forte
variation d’amplitude (valeur maximale de la fonction STA/LTA), à partir de
signaux aléatoires (estimation de l’entropie de Shannon) et relativement sta-
tionnaires (différence discrète d’ordre 1 de l’enveloppe du signal) et dont la
source est superficielle (fort degré de polarisation planaire) et mal localisée
(distribution statistique des résidus, nombre de phases utilisées, distance épi-
centrale minimale, écart-type à partir de la distance épicentrale moyenne).

En revanche, les caractéristiques du signal dans le domaine fréquentiel (va-
riance, nombre de pics, fréquence cumulée à 25%, fréquence cumulée à 75%,
rapports spectraux entre les ondes P et S) puis le domaine temporel (coefficient
d’asymétrie et d’aplatissement de la distribution des valeurs d’amplitude du
signal, rapport de l’énergie du signal à différentes bandes fréquentielles) ont été
largement utilisés dans la classification des séismes et des tirs de carrière. En
effet, ces différentes caractéristiques expriment la nature des différentes phases
sismiques qui composent les signaux associés aux séismes et aux tirs de carrière.
De plus, des informations complémentaires très indirectes sur la profondeur de
ces événements (différence entre magnitude de coda et magnitude locale, ma-
gnitudes de surface, rapports Z/H) ainsi que le lieu et le temps d’occurrence
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des événements (proximité de l’événement à un centre urbain, donc poten-
tiellement d’une carrière, heure et date de l’événement) viennent compléter le
diagnostic.

La procédure de détection des séismes de faible magnitude qui est dévelop-
pée au cours de ce travail de thèse apportent des résultats prometteurs. Cette
procédure détecte 2.5 fois plus de séismes dont 48% ont des magnitudes locales
MLv inférieures à 1.20. Cette détection supplémentaire de séismes amène à
diminuer la magnitude de complétude qui atteint une valeur de 1.10 au lieu de
1.20. A ce niveau de magnitude c’est une différence subtile mais qui catalyse
un début d’infléchissement qui n’était pas encore observé malgré l’apport de
nouvelles stations. L’intégration des stations AlpArray semblent apporter une
plus-value qui reste à être confirmée plus largement.

De plus, la procédure de classification des événements est également pro-
metteuse : elle élimine plus de 99% des faux événements et manque très peu
de séismes (moins de 7%) parmi les vrais événements, elle discrimine aussi
correctement environ 95% des tirs de carrière et 96% des séismes.

Si ces résultats sont bel et bien prometteurs, la procédure de détection dé-
veloppée gagnerait en robustesse si elle était testée sur d’autres jeux de données
ou dans d’autres conditions de monitoring (comme par exemple sans les sta-
tions AlpArray), et si la caractérisation de l’interaction Homme-machine était
plus approfondie pour augmenter les bénéfices de l’intéractivité dans l’affinage
finale de la discrimination.

Ces résultats expriment aussi qu’il reste difficile de se détacher complète-
ment des effets liés au bruit et au milieu de propagation. Si la procédure détecte
plus de séismes de faible magnitude, le profil de détection des séismes maintient
une périodicité apparente qui est fortement liée au niveau de bruit d’origine
anthropique enregistrée au cours de la journée : le taux de séismes reste le plus
élevé aux périodes de journées où le niveau de bruit est minimal.

De plus, l’utilisation de l’apprentissage machine semble mettre à jour une
variabilité spatiale dans l’efficacité des attributs du signal utilisés pour discri-
miner les séismes et les tirs de carrière. Cela signifie que, face à un milieu de
propagation hétérogène et complexe, la réponse du système semble être une
régionalisation de l’effet des discriminants. Cependant, pour confirmer cela,
une cartographie fine de cette variabilité spatiale est indispensable pour mieux
comprendre ce que ces discriminants expriment régionalement ou plus loca-
lement, à savoir s’ils expriment une signature sismique spécifique, gouvernée
par des hétérogénéités géologiques et/ou des effets localisés du bruit enregistré
aux stations et/ou des effets du milieu de propagation et/ou des effets dûs à la
profondeur de la source.
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En effet, pouvoir distinguer explicitement dans la signature du signal sis-
mique ce qui révèle spécifiquement de la source ou des autres effets mentionnés,
serait une avancée majeure pour mieux contraindre les profondeurs hypocen-
trales, en donnant des informations indirectes sur la profondeur de la source, et
pour clairement identifier si cette zone héberge des caractéristiques sismiques
bien définies. L’identification soit de sources types associées à une zone précise,
soit de formes d’ondes récurrentes ouvre alors des fenêtres d’études permettant
de mieux caractériser le fonctionnement sismotectonique de la zone d’étude.
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Annexe A

Distribution de la sismicité
historique et expérimentale de la
zone du Graben du Rhin Supérieur
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Figure A.1: (a) Segments majeurs du rift Cénozoïque ouest-européen, répré-
sentés en orange ECRIS. (b) Sismicité historique et instrumentale de la zone
du Graben Supérieur (catalogue SI-Hex, Cara et al. 2015). Les failles majeures
sont représentées par des lignes marrons pour les deux figures. D’après Henrion
et al., 2020.
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Annexe B

Distribution de la sismicité extraite
du catalogue RéNaSS et du réseau
de détection utilisé pour la période
2012-2019

Figure B.1: Distribution de la sismicité et du réseau de détection utilisé par
le RéNaSS pour l’année 2012. Localisations des stations et des séismes ainsi
que magnitudes des séismes extraites de la base de données RéNaSS selon un
protocole FDSN à l’adresse http://renass-sc1.u-strasbg.fr:8080
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Figure B.2: Distribution de la sismicité et du réseau de détection utilisé par
le RéNaSS pour l’année 2013.

Figure B.3: Distribution de la sismicité et du réseau de détection utilisé par
le RéNaSS pour l’année 2014.
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Figure B.4: Distribution de la sismicité et du réseau de détection utilisé par
le RéNaSS pour l’année 2015.

Figure B.5: Distribution de la sismicité et du réseau de détection utilisé par
le RéNaSS pour l’année 2016.
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Figure B.6: Distribution de la sismicité et du réseau de détection utilisé par
le RéNaSS pour l’année 2017.

Figure B.7: Distribution de la sismicité et du réseau de détection utilisé par
le RéNaSS pour l’année 2018.
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Figure B.8: Distribution de la sismicité et du réseau de détection utilisé par
le RéNaSS pour l’année 2019.
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manuels effectués pour l’année 2016
en fonction des stations AlpArray
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Figure C.1: Distribution du nombre de pointés manuels effectués pour l’année
2016 en fonction des stations AlpArray.

384ANNEXE C. DISTRIBUTION DU NOMBRE DE POINTÉS MANUELS
EFFECTUÉS POUR L’ANNÉE 2016 EN FONCTION DES STATIONS

ALPARRAY

Alexandra Renouard



Annexe D

Modèles de vitesse utilisés pour les
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385



Table D.1: Modèle de vitesse multicouche utilisé pour les solutions épicentrales
et hypocentrales proposées dans les Figures 4.29 et 4.33 pour le tir de la carrière
de Dotternhausen identifié le 15 juillet 2016 à 10h25 (MLv 1.7).

Depth P- and S-wave velocity Density
0.0 3.83 2.26 2.7
1.0 3.88 2.29 2.7
1.0 3.88 2.29 2.7
2.0 4.41 2.61 2.7
2.0 4.41 2.61 2.7
5.0 4.71 2.69 2.7
5.0 4.71 2.69 2.7
8.0 5.45 3.11 2.7
8.0 5.45 3.11 2.7
11.0 5.45 3.12 2.7
11.0 5.45 3.12 2.7
14.0 5.63 3.21 2.7
14.0 5.63 3.21 2.7
17.0 5.99 3.42 2.7
17.0 5.99 3.42 2.7
20.0 6.78 3.82 2.7
20.0 6.78 3.82 2.7
22.0 6.85 3.86 2.7
22.0 6.85 3.86 2.7
24.0 6.92 3.87 2.7
24.0 6.92 3.87 2.7
26.0 7.26 4.06 2.7
26.0 7.26 4.06 2.7
28.0 7.54 4.21 2.7
28.0 7.54 4.21 2.7
30.2 8.01 4.40 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6

outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.

inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13
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Table D.2: Modèle de vitesse à 3 couches utilisé pour les solutions épicentrales
et hypocentrales proposées dans la Figure 4.30 pour le tir de la carrière de
Dotternhausen identifié le 15 juillet 2016 à 10h25 (MLv 1.7).

Depth P- and S-wave velocity Density
0.0 4.24 2.38 2.7
2.4 4.24 2.38 2.7
2.4 5.72 3.04 2.7
20.1 5.72 3.94 2.7
20.1 7.39 3.85 2.7
30.2 7.39 3.85 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6

outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2

inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13
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Table D.3: Modèle de vitesse à multicouche utilisé pour les solutions épicen-
trales et hypocentrales proposées dans les Figures 4.31 et 4.35 pour le séisme
qui a eu lieu le 16 juillet 2016 à 02h36 dans les Pré-alpes Suisses (MLv 2.7).

Depth (km) P-wave and S-wave velocity (km/s) Density
0.0 4.65 2.68 2.7
1.0 4.65 2.68 2.7
1.0 4.84 2.75 2.7
2.0 4.84 2.75 2.7
2.0 4.89 2.71 2.7
5.0 4.89 2.71 2.7
5.0 5.28 2.90 2.7
8.0 5.28 2.90 2.7
8.0 5.31 2.91 2.7
11.0 5.31 2.91 2.7
11.0 5.57 3.02 2.7
14.0 5.57 3.02 2.7
14.0 5.60 3.03 2.7
17.0 5.60 3.03 2.7
17.0 5.84 3.09 2.7
20.0 5.84 3.09 2.7
20.0 6.09 3.20 2.7
22.0 6.09 3.20 2.7
22.0 6.18 3.25 2.7
24.0 6.18 3.25 2.7
24.0 7.10 3.69 2.7
26.0 7.65 3.92 2.7
28.0 7.65 3.92 2.7
28.0 8.09 4.12 2.7
30.2 8.15 4.12 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6

outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2

inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13
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Table D.4: Modèle de vitesse à 3 couches utilisé pour les solutions épicentrales
et hypocentrales proposées dans les Figures 4.32 et 4.35 pour le séisme qui a
eu lieu le 16 juillet 2016 à 02h36 dans les Pré-alpes Suisses (MLv 2.7).

Depth (km) P- and S-wave velocity (km/s) Density
0.0 4.24 2.52 2.7
2.4 4.24 2.52 2.7
2.4 5.72 3.18 2.7
20.1 5.72 3.18 2.7
20.1 7.39 3.69 2.7
30.2 7.39 3.69 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 0.7 5.9 4.4
2891 13.7 7.2 5.6

outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2

inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13
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Table D.5: Modèle de vitesse à 3 couches utilisé pour les solutions épicentrales
et hypocentrales proposées dans les Figure 4.32 et 4.36 pour le tir de la caiirère
de Dotternhausen identifié le 15 juillet 2016 à 10h25 (MLv 1.7).

Depth (km) P-wave and S-wave velocity (km/s) Density
0.0 5.46 3.23 2.7
2.4 5.46 3.23 2.7
2.4 6.13 3.5 2.7
20.1 6.13 3.5 2.7
20.1 6.91 3.86 2.7
30.2 6.91 3.86 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6

outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2

inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13
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Table D.6: Modèle de vitesse à 3 couches utilisé pour les solutions épicentrales
et hypocentrales proposées dans la Figure 4.34 pour le tir de la caiirère de
Dotternhausen identifié le 15 juillet 2016 à 10h25 (MLv 1.7).

Depth (km) P-wave and S-wave velocity (km/s) Density
0.0 4.28 2.53 2.7
2.4 4.28 2.53 2.7
2.4 5.78 3.3 2.7
20.1 5.78 3.3 2.7
20.1 6.79 3.79 2.7
30.2 6.79 3.79 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6

outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2

inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13
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Table D.7: Modèle de vitesse à 3 couches utilisé pour les solutions épicentrales
et hypocentrales proposées dans la Figure 4.37 pour le tir de la carrière de
Dotternhausen identifié le 15 juillet 2016 à 10h25 (MLv 1.7).

Depth (km) P-wave and S-wave velocity (km/s) Density
0.0 4.65 2.80 2.7
1.0 4.65 2.80 2.7
1.0 4.84 2.89 2.7
2.0 4.84 2.89 2.7
2.0 4.89 2.91 2.7
5.0 4.89 2.91 2.7
5.0 5.28 3.03 2.7
8.0 5.28 3.03 2.7
8.0 5.31 3.05 2.7
11.0 5.31 3.05 2.7
11.0 5.57 3.10 2.7
14.0 5.57 3.10 2.7
14.0 5.60 3.14 2.7
17.0 5.60 3.14 2.7
17.0 5.84 3.17 2.7
20.0 5.84 3.17 2.7
20.0 6.09 3.27 2.7
22.0 6.09 3.27 2.7
22.0 6.18 3.28 2.7
24.0 6.18 3.28 2.7
24.0 7.10 3.64 2.7
26.0 7.65 3.90 2.7
28.0 7.65 3.90 2.7
28.0 8.09 4.10 2.7
30.2 8.15 4.14 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6

outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2

inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13
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Table D.8: Modèle de vitesse à 3 couches utilisé pour les solutions épicentrales
et hypocentrales proposées dans les Figures 4.38 et 4.39 pour le tir de la carrière
de Dotternhausen identifié le 15 juillet 2016 à 10h25 (MLv 1.7).

Depth (km) P-wave and S-wave velocity (km/s) Density
0.0 4.73 2.81 2.7
2.4 4.73 1.81 2.7
2.4 6.07 3.46 2.7
20.1 6.07 3.46 2.7
20.1 7.19 4.01 2.7
30.2 7.19 4.01 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6

outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2

inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13
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Annexe E

Modèles de vitesse testées pour
optimiser les processus
d’association (chapitre 4).

Table E.1: Modèle de vitesse à 3 couches n°11.

Depth (km) P-wave and S-wave velocity (km/s) Density
0.0 4.70 2.78 2.7
2.4 4.70 2.78 2.7
2.4 5.75 3.29 2.7
20.1 5.75 3.29 2.7
20.1 7.30 4.08 2.7
30.2 7.30 4.08 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6

outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2

inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13
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Table E.2: Modèle de vitesse à 3 couches n°25

Depth (km) P-wave and S-wave velocity (km/s) Density
0.0 3.54 2.09 2.7
2.4 3.54 2.09 2.7
2.4 5.84 3.34 2.7
20.1 5.84 3.34 2.7
20.1 7.30 4.08 2.7
30.2 7.30 4.08 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6

outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2

inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13
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Table E.3: Modèle de vitesse à 3 couches n°31

Depth (km) P-wave and S-wave velocity (km/s) Density
0.0 5.21 3.08 2.7
2.4 5.21 3.08 2.7
2.4 5.72 3.27 2.7
20.1 5.72 3.27 2.7
20.1 7.37 4.12 2.7
30.2 7.37 4.12 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6

outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2

inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13
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Table E.4: Modèle de vitesse à 3 couches n°38.

Depth (km) P-wave and S-wave velocity (km/s) Density
0.0 4.07 2.41 2.7
2.4 4.07 2.41 2.7
2.4 5.73 3.27 2.7
20.1 5.73 3.27 2.7
20.1 7.45 4.16 2.7
30.2 7.45 4.16 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6

outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2

inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13

Alexandra RenouardANNEXE E. MODÈLES DE VITESSE TESTÉES POUR OPTIMISER LES
PROCESSUS D’ASSOCIATION (CHAPITRE 4).

397



Table E.5: Modèle de vitesse multicouche n°10.

Depth (km) P-wave and S-wave velocity (km/s) Density
0.0 4.65 2.71 2.7
1.0 4.65 2.71 2.7
1.0 4.84 2.80 2.7
2.0 4.84 2.80 2.7
2.0 4.89 2.83 2.7
5.0 4.89 2.83 2.7
5.0 5.28 2.91 2.7
8.0 5.28 2.91 2.7
8.0 5.31 3.00 2.7
11.0 5.31 3.00 2.7
11.0 5.57 3.04 2.7
14.0 5.57 3.04 2.7
14.0 5.60 3.04 2.7
17.0 5.60 3.04 2.7
17.0 5.84 3.14 2.7
20.0 5.84 3.14 2.7
20.0 6.09 3.23 2.7
22.0 6.09 3.23 2.7
22.0 6.18 3.25 2.7
24.0 6.18 3.25 2.7
24.0 7.10 3.69 2.7
26.0 7.65 3.94 2.7
28.0 7.65 3.94 2.7
28.0 8.09 4.10 2.7
30.2 8.15 4.10 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6

outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2

inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13
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Table E.6: Modèle de vitesse multicouche n°24.

Depth (km) P-wave and S-wave velocity (km/s) Density
0.0 4.65 2.75 2.7
1.0 4.65 2.75 2.7
1.0 4.84 2.86 2.7
2.0 4.84 2.86 2.7
2.0 4.89 2.89 2.7
5.0 4.89 2.89 2.7
5.0 5.28 3.01 2.7
8.0 5.28 3.01 2.7
8.0 5.31 3.03 2.7
11.0 5.31 3.03 2.7
11.0 5.57 3.18 2.7
14.0 5.57 3.18 2.7
14.0 5.60 3.20 2.7
17.0 5.60 3.20 2.7
17.0 5.84 3.33 2.7
20.0 5.84 3.33 2.7
20.0 6.09 3.45 2.7
22.0 6.09 3.45 2.7
22.0 6.18 3.48 2.7
24.0 6.18 3.48 2.7
24.0 7.10 3.96 2.7
26.0 7.65 3.96 2.7
28.0 7.65 4.27 2.7
28.0 8.09 4.31 2.7
30.2 8.15 4.31 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6

outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2

inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13
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Table E.7: Modèle de vitesse multicouche n°25.

Depth (km) P-wave and S-wave velocity (km/s) Density
0.0 4.20 2.48 2.7
1.0 4.41 2.61 2.7
1.0 4.41 2.61 2.7
2.0 4.47 2.64 2.7
2.0 4.47 2.64 2.7
5.0 4.57 2.64 2.7
5.0 4.57 2.64 2.7
8.0 4.76 2.72 2.7
8.0 4.76 2.72 2.7
11.0 5.61 3.21 2.7
11.0 5.61 3.21 2.7
14.0 5.66 3.23 2.7
14.0 5.66 3.23 2.7
17.0 5.80 3.31 2.7
17.0 5.80 3.31 2.7
20.0 6.55 3.69 2.7
20.0 6.55 3.69 2.7
22.0 6.60 3.74 2.7
22.0 6.60 3.74 2.7
24.0 6.98 3.90 2.7
24.0 6.98 3.90 2.7
26.0 7.27 4.06 2.7
28.0 7.27 4.34 2.7
28.0 7.77 4.34 2.7
30.2 7.99 4.40 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6

outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2

inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13
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Table E.8: Modèle de vitesse multicouche n°27.

Depth (km) P-wave and S-wave velocity (km/s) Density
0.0 3.59 2.12 2.7
1.0 4.95 2.93 2.7
1.0 4.95 2.93 2.7
2.0 5.25 3.10 2.7
2.0 5.25 3.10 2.7
5.0 5.39 3.08 2.7
5.0 5.39 3.08 2.7
8.0 5.45 3.11 2.7
8.0 5.45 3.11 2.7
11.0 5.62 3.21 2.7
11.0 5.62 3.21 2.7
14.0 5.77 3.29 2.7
14.0 5.77 3.29 2.7
17.0 6.17 3.53 2.7
17.0 6.17 3.53 2.7
20.0 6.22 3.55 2.7
20.0 6.22 3.55 2.7
22.0 6.37 3.56 2.7
22.0 6.37 3.56 2.7
24.0 6.45 3.60 2.7
24.0 6.45 3.60 2.7
26.0 7.39 4.13 2.7
28.0 7.41 4.14 2.7
28.0 7.41 4.14 2.7
30.2 7.60 4.25 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6

outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2

inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13
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Annexe F

Modèle de vitesse testé pour la
détection automatique des
événements dans la zone d’étude
exposée dans le chapitre 4.

402



Table F.1: Modèle de vitesse tiré de l’inversion des paramètres hypocentraux
et de vitesse sous VELEST à partir du modèle Haslach.

Depth (km) P-wave and S-wave velocity (km/s)
0.0 4.65 2.76
1.0 4.65 2.76
1.0 4.84 2.88
2.0 4.84 2.88
2.0 4.89 2.91
5.0 4.89 2.91
5.0 5.28 3.14
8.0 5.28 3.14
8.0 5.31 3.16
11.0 5.31 3.16
11.0 5.57 3.27
14.0 5.57 3.27
14.0 5.60 3.29
17.0 5.60 3.29
17.0 5.84 3.41
20.0 5.84 3.41
20.0 6.09 3.58
22.0 6.09 3.58
22.0 6.18 3.63
24.0 6.18 3.63
24.0 7.10 4.07
26.0 7.65 4.20
28.0 7.65 4.20
28.0 8.09 4.31
30.2 8.15 4.40
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AUTOMATIQUE DES ÉVÉNEMENTS DANS LA ZONE D’ÉTUDE
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Détection automatique et classification basée
sur l’apprentissage machine des séismes de

faible magnitude dans une région
continentale stable

Résumé
La compréhension des mécanismes qui gouvernent l'occurrence et la distribution de la sismicité 
faible à modérée des régions continentales stables est entravée par les capacités limitées des 
algorithmes traditionnels à détecter les petits séismes dans des environnements anthropisés, 
malgré le déploiement intensif des réseaux de stations. Cette thèse développe une procédure de 
détection automatique des séismes de faible magnitude à travers SeisComP3 et le Calcul de 
Haute Performance. Cette nouvelle procédure réduit la contamination des séismes détectés par du
bruit sismique en tenant compte des niveaux de bruit enregistré aux stations, de la géométrie du 
réseau de stations et du milieu de propagation des ondes sismiques. En incorporant un algorithme 
d’apprentissage machine supervisé, elle discrimine efficacement les séismes détectés, des tirs de 
carrière et des faux événements associés à du bruit. Les résultats sont prometteurs : 50% de 
séismes de magnitude inférieure à 1.2 sont détectés en plus. Ce travail vise à une plus large 
exploration de l’apprentissage machine dans les observatoires sismologiques. 

Mots clés : détection, discrimination, apprentissage machine supervisé, intelligence 
artificielle, tirs de carrière, bruit sismique, séismes de faible magnitude, calcul de haute 
performance

Résumé en anglais
Understanding the mechanisms responsible for the occurrence of low-to-moderate seismicity in
stable continental regions is hampered by the limited capabilities of the algorithms used to detect
small-magnitude  earthquakes  in  anthropogenic  environments,  and  despite  extensive  station
deployment. This thesis work develops an automatic detection procedure via SeisComP3 and High
Performance Computing. This new procedure takes into account the station noise level, the station
network  geometry  and the  seismic  wave propagation  medium to  reduce  the  detection  rate  of
earthquakes  contaminated  by  seismic  noise.  By  incorporating  a  supervised  machine  learning
algorithm, it  also robustly discriminates all  detected earthquakes from quarry blasts and noise-
related events. The detection results are promising: compared to the reference French National
Catalog for the same time period, twice as many earthquakes with magnitudes less than 1.2 are
detected. This work also promotes a broader implication of hybrid intelligence monitoring within
seismological observatories.

Keywords : detection, discrimination, supervised machine learning, artificial intelligence, 
quarry blasts, seismic noise, small-magnitude earthquakes, High Performance Computing
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