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Résumé

Les régions continentales stables sismiquement actives, comme celle du Gra-
ben du Rhin Supérieur, sont caractérisées par des taux de déformation trés
faibles et enregistrent une sismicité majoritairement faible a modérée. La com-
préhension des mécanismes qui gouvernent ’occurrence et la distribution de
cette sismicité dans ces régions est fortement entravée par les capacités limi-
tées des systémes de détection a détecter les séismes de plus faible magnitude,
dans des environnement qui sont souvent trés anthropisés, et ce, malgré le
déploiement intensif des réseaux de stations.

Afin d’améliorer la détection des séismes de faible magnitude dans notre
zone d’étude, nous avons cherché a définir les facteurs qui limitent cette détec-
tion et avons développé une nouvelle procédure de détection automatique. Ce
travail a mis en évidence deux principaux facteurs limitants : le niveau de bruit
enregistré aux stations et le milieu de propagation des ondes sismiques. Si ces
deux facteurs sont négligés dans les différentes étapes du processus de détec-
tion (pointé des temps d’arrivée des ondes sismiques, association des pointés
pour inférer une origine, localisation de l'origine), des taux élevés de faux évé-
nements, associés a du bruit impulsif, et de vrais événements (tirs de carriére
ou séismes), contaminés par du bruit, sont détectés.

En prenant en compte un nombre limité de parameétres qui gouvernent les
différentes étapes du processus de détection des événements, nous avons été
en mesure de réduire significativement la contamination par le bruit des vrais
événements détectés. Les parameétres ayant fourni les meilleurs résultats sont
associés aux caractéristiques du bruit enregistré aux stations, a la géométrie
du réseau de stations, ainsi qu’au milieu de propagation des ondes sismiques.

L’utilisation combinée de I'Homme et d’un algorithme d’apprentissage ma-
chine supervisé interprétable nous a permis de solidement classifier les diffé-
rents types d’événements détectés : d’abord en vrais et faux éveénements, puis
en tirs de carriéres et séismes. Cette approche hybride s’est avérée efficace pour
classer les événements a travers une validation des régles de classification qui
minimisent a la fois les effets liés au bruit et au milieu de propagation.

Les résultats de cette procédure de détection automatique sont promet-
teurs : 50% de séismes de magnitude inférieure & 1.2 sont détectés en plus. En
outre, I'utilisation de I’apprentissage machine met a jour une variabilité spatiale
dans l'efficacité des discriminants utilisés pour différencier les séismes des tirs
de carriére, qui est a cartographier plus finement pour en comprendre 'origine.
Aussi, ce travail de thése promeut une plus large exploration de I’apprentissage
machine au sein des observatoires sismologiques.

Mots-clefs : détection, discrimination, apprentissage machine su-
pervisé, intelligence artificielle, tirs de carriére, bruit sismique, séismes
de faible magnitude
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Abstract

Seismically active stable continental regions, such as Upper Rhine Graben
area, are subjected to very low strain rate conditions and mainly record low-to-
moderate seismicity. In the highly anthropogenic context of Central Western
Europe, and despite intense station deployments, small-magnitude earthquakes
remain unevenly recorded, blurring our view of present-day earthquake beha-
viors. Under these conditions, earthquake occurrence and triggering mecha-
nisms are difficult to explain.

In order to improve the detection capabilities of our station network, we
studied the factors that affect earthquake detection performance and develo-
ped a new automatic detection procedure. We observe that the main limiting
factors are related to station noise level and seismic wave propagation medium.
If both factors are neglected during the detection process (P- and S-arrival pi-
cking, pick association to infer event origin locations, origin location), high
rates of false events, related to impulsive noise, and real events (quarry blasts
or earthquakes) contaminated by noise are detected.

By taking into account a limited number of parameters, we are able to
significantly reduce the contamination of noise in the detection process of real
events. The parameters that give the best results are associated to the space-
time-varying noise characteristics of individual stations, the network geometry
and the seismic wave propagation medium. By using a combination of both
Human and interpretable supervised machine learning algorithm, we robustly
classify the detected events in first, false vs real event, and second, quarry
blast vs earthquake. This hybrid machine learning approach has proved to be
efficient in event classification by validating classification rules that minimize
noise and path effects.

Compared to the reference French National Catalog for the same time per-
iod, this detection procedure detects twice as many earthquakes with magni-
tudes less than 1.2. Furthermore, examination of the classification rules created
in the earthquake-quarry blast classifier reveals a strong geographical variabi-
lity in the effectiveness of signal discriminants, whose origin has to be inves-
tigated more deeply. This work also promotes a broader implication of hybrid
intelligence monitoring within seismological observatories.

Key words : detection, discrimination, supervised machine learning,
artificial intelligence, quarry blasts, seismic noise, small-magnitude
earthquakes
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Chapitre 1

Préface

« Often nature surprises us, such as when an earthquake,
hurricane or flood s bigger or has greater effects than
expected from hazard assessments. In other cases, nature
outsmarts us, doing great damage despite exrpensive mi-
tigation measures, or making us dwvert resources to ad-
dress a minor hazard. We keep learning the hard way to
maintain humality before the complezity of nature »—Seth
Stein, 2014

Le 13 octobre 2014 apres-midi, ile de Saint-Martin, Nord des Antilles. La
siréne d’alerte retentit. A cet instant précis, tous les habitants de 1’ile savent
que l’alerte rouge est désormais lancée : Gonzalo, un ouragan de catégorie 1
approche. Un peu chancelants, les saint-martinois pensent que ce sera comme
d’habitude une “petite” tempéte tropicale. La population se barricade mais elle
va laisser nonchalemment des portails ouverts, des voitures non protégées, des
vitres non consolidées, des bateaux non mis a 1’abri.

Nuit du 13 au 14 octobre 2014. Les portes claquent, les toits de tdle font un
boucan du diable, les vitres tremblent. La nature rappelle a 'ordre, le réveil
est lourd. L’eau et I’électricité sont coupées, les communications brouillées. Le
paysage est apocalyptique : les panneaux signalétiques sont a terre, les arbres
jonchent le sol, les cables électriques trempent dans les flaques d’eau, des toits
sont arrachés, des portails sont démantelés, les habitats de fortune ne sont plus
que des amoncellements de débris, des cadavres de bateau habillent le bord de
mer, des voitures ont été broyées par des morceaux de toles projetés depuis
le petit aéroport de Grand-Case a proximité. Les dégats sont catastrophiques
et démesurés, la population est abasourdie. Gonzalo a été un petit ouragan.
Pourtant, 1’expérience de Luis, Ouragan de catégorie 4 ayant ravagé l'ile en
1995, avait laissé de lourdes cicatrices. “Luis” était en fait considéré comme un
bon vieux copain. La mémoire collective en ce 13 octobre 2014 a été défaillante.
Devoir de résilience oblige, la vie reprend rapidement son cours. Les habitats
sont reconstruits identiquement, de bric et de broc, toujours plus proches de la
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mer. Trois ans plus tard, le 6 septembre 2017, 'ouragan de catégorie 5, Irma,
pulvérise I'flle. Un ange passe. ..

Tout aléa naturel est donc indissociablement lié a la notion de risque. S’il est
pourtant possible de prévoir a court terme la trajectoire des cyclones avec une
assez bonne précision temporelle et donc d’anticiper, la vulnérabilité inhérente
de 'ile (fragilité des constructions, terres littorales facilement submergées, ur-
banisation intense dans les zones a risques), mai aussi le manque de préparation
de ses habitants n’ont permis ni une minimisation des dégéats, ni une gestion
de crise optimale. Un constat un peu plus lourd pourrait étre également dressé
en cas de séisme majeur. Un peu plus lourd car, contrairement aux cyclones,
il est impossible de prévoir exactement ol et quand un séisme aura lieu, et a
quelle magnitude il sera.

Les séismes dévastateurs surprennent alors souvent. En Haiti, plusieurs dé-
cennies de constructions sans surveillance ont amené a un effondrement colossal
des structures lors du séisme du 12 janvier 2010, provoquant la mort de plus de
230 000 personnes dans le district de Port-au-Prince. Ce séisme de magnitude
7.4 a été deux fois plus meurtrier que tout autre précédent séisme de magnitude
équivalente (BiLHAM, 2010). Dans la région de Tohoku au Japon, le 11 mars
2011, un séisme de magnitude 9 déclenche un énorme tsunami, submergeant
pour contrer les effets des séismes tsunamigéniques. Au bilan, 1’alimentation
nécessaire au maintien de la circulation d’eau pour refroidir les réacteurs de la
centrale nucléaire de Fukushima est interrompue, plus de 19 000 morts et au
moins 2 00 milliards de dollars de dégats ont été recensés (NORMILE, 2012). Ce
séisme a libéré environ 150 fois I’énergie du séisme de magnitude 7,5 qui était
prévu par la cartographie des aléas (STEIN, GELLER et al., 2012).

Si Haiti et le Japon sont des exemples de régions reconnus historiquement
comme étant naturellement actives, de nombreux séismes destructeurs com-
pléetement inattendus peuvent aussi étre directement attribués aux activités
humaines, comme l’exploitation d’énergie souterraine telle que le pétrole dans
I’état d’Oklahoma aux Etats-Unis (X. ZHANG et al., 2020), le gaz de shiste dans
le Bassin de Sichuan en Chine (LE1, D. HUANG et al., 2017) ou bien la géother-
mie dans la région de Pohang en Corée du Sud (GRIGOLI, SCARABELLO et al.,
2018; K. W. CHANG et al., 2020; E. J. LEE et al., 2020). Nucléés & des profon-
deurs trés faibles (KLOSE, 2010), ces séismes ont des impacts socio-économiques
disproportionnellement élevés car ils sont généralement situés proche de zones
urbanisées, dans des régions continentales stables, qui concentrent 90 % d’une
population mondiale souvent peu préparée a endiguer un séisme destructeur
(KRAFT et al., 2009).
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« Earthquakes are a collective experience »—Richard M.
Allen, 2013

Chaque société est donc confrontée & un double-défi. Le premier est de
comprendre les risques sismiques auxquels elle est confrontée pour en atténuer
les effets, et donc de décider du niveau de sécurité a atteindre. Le deuxiéme
est d’évaluer la capacité a se remettre d’événements extrémes (R. EYRE et al.,
2020; MARKHVIDA et al., 1999).

De problémes sanitaires post-sismiques qui peuvent se poser tels que la
recrudescence de maladies infectieuses (CHIN, 2011 ; REINA ORTIZ et al., 2017),
ou la perturbation du fonctionnement des hépitaux (ALMEIDA et al., 2020),
de problémes sociaux aussi comme 1’aide nécessaire pour cultiver la résilience
psychologique chez les survivants de séismes tragiques (SASAKI et al., 2019),
et de problémes économiques évidemment comme la répartition des budgets
alloués pour la consolidation de batiments avec des structures parasismiques
(STEIN, L1U et al., 2017), chaque membre de la société est acteur du double-défi
a relever. Et le scientifique en fait parti.

A travers I’étude de 'aléa sismique, le scientifique a un réle central a jouer
dans la compréhension des risques sismiques et leur évolution. Ainsi, si les
séismes destructeurs peuvent balayer en un court instant les constructions hu-
maines, ils peuvent balayer aussi des concepts scientifiques tenaces qui gou-
vernaient la compréhension humaine de ces derniers. La science des séismes
tire donc les lecons de son propre objet d’étude : « Seismology : Shaking up
earthquake theory » (CHuI, 2009), « The lessons of Tohoku-Oki » (AvoUuAc,
2011), « Why giant earthquakes keep catching us out » (LAy, 2012), « Be-
ware of slowly slipping faults » (P. Z. ZHANG, 2013). Ainsi, par exemple, le
bien installé modéle de rebond élastique, introduit a la suite du séisme de San
Francisco de 1906 (REID, 1910), bien avant ’avénement de la tectonique des
plaques, a fini par lacher. Face a la variabilité de la récurrence des séismes, force
est de constater que la périodicité ou la quasi-périodicité de cette récurrence
est finalement un phénoméne plutét rare dans la nature (MATTHEWS et al.,
2002; KAcAN et al,, 2012; Y. CHEN et al., 2020). Seulement, des nouveaux
paradigmes scientifiques ont pu étre mis a jour parce que l’émergence des nou-
velles technologies d’observation, comme le suivi temporel de la position du sol
par les capteurs GNSS, a permis d’apporter un regard neuf sur les phénomeénes
sismiques observés.

Cependant, ces changements de paradigmes scientifiques sont en fait diffi-
ciles a installer. Avec seulement un siécle d’histoire détaillée des séismes, une
instrumentation sismique moderne pour enregistrer les mouvements du sol et
des méthodes analytiques pour en extraire 'information développés que tres ré-
cemment (1970-2000), la rareté des données d’observation a cristallisé pendant
longtemps nos connaissances sur ’occurrence des séismes (interaction entre
séismes, physique de la rupture et facteurs déclencheurs par exemple).

Alexandra Renouard CHAPITRE 1. PREFACE 3



En conséquence, les cartes d’aléas sont souvent encore construites sur la
base de postulats, comme le modéle du cycle sismique, qui ne reflétent pas le
comportement non linéaire de 'occurrence des séismes (STEIN, GELLER et al.,
2012). Il n’est alors pas trés étonnant que des séismes dévastateurs inattendus
aient révélé des zones qui abritaient un potentiel sismique auparavant sous-
estimé (LAY et KANAMORI, 2011 ; LAy, 2012).

Si la rareté des données d’observation fut un frein a la compréhension des
phénomeénes physiques qui sous-tendent 1'occurrence des séismes, la technologie
de la détection des séismes est désormais en pleine révolution (E. Z. COCHRAN
et al., 2018 ; KoNG et al., 2019; BERGEN et al., 2019). Cette révolution prépare
de nouvelles observations sans précédent sur les séismes et leurs impacts. En
effet, des réseaux sismologiques denses a taux d’échantillonage élevé sont désor-
mais aisément déployés (L1 et al., 2018; MENG et al., 2018), le développement
et l'installation de nouvelles générations de sismomeétres portatifs bon marché
sont en expansion (CLAYTON et al., 2015 ; CHRISTENSEN et al., 2017), et la dé-
tection acoustique distribuée (DAS), une technologie émergente qui convertit
la fibre optique en capteurs sismiques, est en plein essor (LINDSEY et al., 2017;
WiLLIAMS et al., 2019). De grands volumes de données sont alors produits et
disponibles (YooN, BERGEN et al., 2019). Par exemple, le centre de gestion
de données des Institutions de Recherche Incorporée de Sismologie (IRIS) a
actuellement archivé plus de 600 To de données sismologiques (IRIS-DMC Ar-
chive, 2020). Les progrés de la technologie informatique, avec l’augmentation
de la puissance de calcul et de la mémoire de stockage, le traitement paralléle et
distribué, le développement de nouveaux algorithmes d’exploration de données
et de l'intelligence artificielle, rendent possible le traitement massif de toutes
ces données (YOON, BERGEN et al., 2019).

La sismologie encaisse donc des changements rapides, radicaux et a mul-
tiples facettes, et doit se ré-inventer. Elle doit se réinventer car si la sismologie
a toujours été gouvernée par la donnée, elle y croule dorénavant dessous, et
beaucoup plus que ce que les chercheurs ne peuvent analyser en utilisant des
méthodes conventionnelles. Le nouvel enjeu est donc de donner du sens a toute
cette donnée, et les nouvelles technologies en sont le catalyseur principal. Il y
a la la nécessité d’accepter que ce ne soit pas la physique qui, dans un premier
temps, gouverne la réflexion scientifique mais plutoét la donnée... Clest a la
fois un vrai challenge mais aussi une grande opportunité, une voie ouverte vers
la créativité.

La sismologie doit aussi se réinventer parce-qu’avec 1’essor des nouveaux
sismomeétres portatifs a faible cofit, chaque citoyen peut désormais en installer
un chez lui (E. Z. CocHRAN et al., 2018). Cela signifie alors que ’accés a
la connaissance scientifique devient universelle, et n’est plus cantonnée a une
seule élite. Et les attentes sociales en matiére de science, de technologie et
d’innovation n’ont jamais été aussi élevées (SATO et al., 2016).
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Chaque citoyen peut donc étre pleinement acteur de la découverte scienti-
fique mais aussi contestataire de la science institutionnelle. A I'heure de la «
science ouverte » et la « science citoyenne participative », pour une imprégna-
tion radicale et durable des changements de paradigmes qui viennent rythmer
le champ de la connaissance scientifique, et une diffusion positive et unanime
de cette connaissance sur ’ensemble des membres de la société, il apparait
indispensable de cultiver un écosystéme scientifique ou acteurs de la gestion
opérationnelle des données collectées, de la recherche fondamentale, ainsi que
de l'ingénierie de l'aléa et du risque sismique forment un réseau intimement
connecté. D’une catastrophe a 'autre, d’un bout a 'autre de la planéte, les
séismes sont une expérience collective.

Ce travail de thése s’inscrit donc dans ce panorama, comme une petite
brique posée. S’il ne traite pas directement des grands séismes, il se focalise
plutdt sur les plus petits. Un non-sens ? Peut-étre pas. Le chapitre 1 est alors
consacré plus spécifiquement au développement de la problématique de re-
cherche ainsi que les questions de recherche scientifiques qui y en découlent.
Le chapitre 2 définit en quoi ’objet d’étude qui est choisi est un objet intéres-
sant pour répondre aux questions de recherche soulevées dans le chapitre 1. Le
chapitre 3 et 4 exposent la méthodologie de recherche mise en oeuvre pour ré-
pondre aux questions de recherche. Le chapitre 6 offre une conclusion partielle
a ce travail et présente les nouvelles perspectives de recherche qui s’ouvrent.

Alexandra Renouard CHAPITRE 1. PREFACE 5



Chapitre 2

Introduction

[ « How small 1s small enough ? »—J.E. Ebel, 2008
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2.1. MOTIVATION GENERALE : POURQUOI DETECTER LES PETITS
SEISMES ?

2.1 Motivation générale : pourquoi détecter les
petits séismes ?

2.1.1 Les petits séismes dominent les catalogues

La distribution de la taille des séismes pour une région donnée est générale-
ment décrite par la relation empirique de Gutenberg-Richter (IsHiMOTO et al.,
1939 ; GUTENBERG et al., 1944). Cette relation indique que la fréquence des
magnitudes des séismes suit une distribution exponentielle (Figure 2.1) :

log N(M)=a—bM for M > M. (2.1)

N(M) représente le nombre cumulé de séismes de magnitude égale ou su-
périeure a M ; M, est la magnitude de complétude : tous les événements de
magnitude M > M, sont supposés étre enregistrés dans un catalogue donné. Le
parameétre a décrit le niveau de sismicité global ou le niveau de productivité
des séismes, qui peut varier largement d’une région a I’autre. La valeur b décrit
la relation entre le nombre de petits et de grands séismes.
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FicURE 2.1: Relation empirique de Gutenberg-Richter établie pour le Nord-
Ouest de I'Europe, dans la zone inférieure du Graben du Rhin (D’aprés
VANNESTE et al., 2013)

Une valeur b égale a 1 signifie que la fréquence des événements de magnitude
M = 2 est dix fois celle des événements de magnitude M = 3 (FIEDLER et al.,
2018 ; BRODSKY, 2019Db). Si les jeux de données globaux et régionaux suivent
souvent une distribution fréquence-magnitude avec b = 1, des variations locales
de la valeur b entre 0.4 et 2.0 sont aussi observées (WIEMER et al., 2002).

Alexandra Renouard CHAPITRE 2. INTRODUCTION 7



2.1. MOTIVATION GENERALE : POURQUOI DETECTER LES PETITS
SEISMES ?

Certains auteurs attribuent ces fluctuations de la valeur b a des artefacts
résultant du sous-échantillonnage des événements, des erreurs de calcul des
magnitudes et des capacités de détection non homogénes (SHI et al., 1982;
FROHLICH et al., 1993 ; KAGAN, 1999 ; KAGAN, 2002 ; KAGAN, 2010; AMORESE
et al., 2010). D’autres auteurs considérent ces variations spatio-temporelles
comme une approximation de divers régimes tectoniques, de la contrainte de
cisaillement ou bien de la pression interstitielle (ScHOLZ, 1968; WIEMER et
al., 1997 ; WIEMER et al., 2002 ; SCHORLEMMER et al., 2005 ; BACHMANN et al.,
2012; TORMANN et al.,, 2014; GULIA, TORMANN et al., 2016).

Déterminer statistiquement la distribution des magnitudes des séismes n’est
en fait pas si simple que cela. En effet, de nombreux a priore, tels que la taille de
la zone de mesure de la valeur b ou bien le choix de la valeur b habituelle pour
une région donnée, sont nécessaires pour mener a bien une étude statistique
sur la taille et la distribution des séismes. Ces différents postulats de départ
représentent le talon d’Achille de ces études statistiques, d’autant plus qu’'un
catalogue de séismes est intrinséquement incomplet (BRODSKY, 2019b).

De ce fait, la valeur b extraite de la relation de Gutenberg-Richter est
fortement dépendante du seuil inférieur de magnitude détectée (MIGNAN et
WOESSNER, 2012; GODANO et al., 2014). Certes, les petits séismes dominent
systématiquement les catalogues de séismes du fait de la courte période d’en-
registrement couverte par ces derniers (HANKs, 1992 ; PACHECO et al., 1992;
Ross, TRUGMAN et al., 2019). Cependant, ces catalogues étant trés peu exhaus-
tifs pour les gammes de petite magnitude, beaucoup d’autres petits séismes en
sont inexorablement absents. Les raisons pour cela sont notamment 1’hétéro-
généité spatio-temporelle des réseaux de stations sismologiques et les seuils
limites de détection (HELMSTETTER, 2005; GULIA et WIEMER, 2019).

L’amélioration des capacités de détection et de localisation d'un réseau sis-
mologique d’un ou de deux ordre(s) de magnitude (par exemple de magnitude
M 3.0 & M 2.0 puis M 1.0) peut augmenter d’un facteur 10 & 100 le nombre de
séismes détectés par an. Seulement, abaisser le seuil de détectabilité d’un réseau
implique un fort surcott (cott de calcul ou charge manuelle de travail supplé-
mentaire). Est-ce que ce colit en vaut le bénéfice? Autrement dit, est-ce
qu’il est si important d’enregistrer et de traiter des sismogrammes de
tous les séismes jusqu’a la magnitude 2.0 ? magnitude 1.0 7 Magnitude
0 ou en-dessous ?

8 CHAPITRE 2. INTRODUCTION Alexandra Renouard



2.1. MOTIVATION GENERALE : POURQUOI DETECTER LES PETITS
SEISMES ?

2.1.2 Les petits séismes cartographient plus finement le
comportement sismique d’une région

eComportements sismiques long-terme

Depuis le séisme de San Francisco de 1906, un des paradigmes dominants
de la sismologie a été le cycle sismique décrit simplement par le modéle du
rebond élastique : lors de la période intersismique, les contraintes s’accumulent
peu a peu sur une faille verrouillée du fait du mouvement relatif des plaques
ou des blocs qu’elle sépare; lors de la phase cosismique, les contraintes sont
relachées par le glissement sur le plan de faille associé au séisme (REID, 1910)
(Figure 2.2a).

Ce modéle implique ’occurrence de séismes périodiques donnant lieu a une
accumulation réguliére de déplacements cumulés (Figure 2.2). Or, les longues
séquences d’enregistrement des séismes, maintenant accessibles pour les régions
a fort taux de déformation, montrent un comportement beaucoup plus com-
plexe. En effet, dans la plupart des systémes tectoniques actifs, on observe que
les grands séismes ont lieu plus souvent en clusters regroupés dans le temps, al-
ternant avec des intervalles de quiescence longs et variables (WALLACE, 1987 ;
SIEH et al., 1989; AGNON, 2014; D. CLARK, MCPHERSON et VAN DISSEN,
2012; D. CLArK, McPHERSON, T. ALLEN et al., 2014; RaTzoV et al., 2015;
SALDITCH et al., 2020; Y. CHEN et al., 2020). (Figure 2.2b et Figure 2.3).

Cette distribution des séismes en Escalier du Diable (MANDELBROT, 1982;
TURCOTTE, 1997) est une caractéristique des systémes dynamiques complexes.
Cela suggere donc que ces motifs particuliers d’occurrence sismique manifestent
le comportement de systémes non linéaires élaborés a partir de multiples com-
posants (i.e. les failles et/ou les segments de faille) qui interagissent entre eux
(Liu et al., 2016). Ces interactions entre failles se traduisent par des transferts
de contrainte statique, dynamique, et/ou viscoélastique ou bien des perturba-
tions des conditions de chargement régional par des ruptures de failles locales.

De ce fait, chaque grand séisme ayant eu lieu sur une faille (ou segment(s)
de faille) du systéme peut affecter les contraintes et les taux de chargement
sur les autres failles (DOLAN et al., 2007 ; Luo et al., 2012). Il n’est donc pas
rare que des grands séismes rompent des segments de failles multiples comme
cela a été le cas pour les séismes de Kunlun en 2001 (Mw 7.8, Chine), d’El
Mayor-Cucapah en 2010 (Mw 7.2, Mexique) et de Kaikoura en 2016 (Mw 7.8,
Nouvelle-Zélande) (FLETCHER et al., 2017; XU et al., 2018; IMPROTA et al.,
2019).

Alexandra Renouard CHAPITRE 2. INTRODUCTION 9



2.1. MOTIVATION GENERALE : POURQUOI DETECTER LES PETITS
SEISMES ?
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FiGURE 2.2: Comparaison globale des schémas d’occurrence des séismes, des
déplacements et de la déformation cumulés sur une faille selon I’hypothése
classique du cycle sismique (a) et selon I’hypothése des supercycles (b) (D’aprés
SALDITCH et al., 2020)
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FIGURE 2.3: Motifs temporels des grands séismes (a) dans le monde, (b) au
Japon, (c) dans le Nord de la Chine et (d) sur la faille Nord Anatolienne en
Turquie (NAF). Les lignes continues représentent les catalogues globaux, et les
lignes discontinues représentent les résultats aprés déclusterisation. (D’aprés
Y. CHEN et al., 2020).
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Chaque faille individuelle présente alors un taux de chargement spécifique
et variable, qui est affecté par les séismes précédents ayant eu lieu soit sur
cette méme faille, soit sur d’autres failles du systéme. A cela s’ajoutent les
perturbations de contraintes locales telles que 1’érosion (CALAIS et al., 2010),
le réajustement isostatique post-glaciaire (DING et al., 2019), les variations de
densité lithosphérique (LEVANDOWSKI et al., 2017; MURPHY et al., 2019) ou
bien les fluides (KUMAR et al., 2017). Ainsi, inscrit dans un systéme entier
de failles en interaction, le comportement d’une faille court-terme est plus
difficilement appréhendable que ce que le modéle de rebond élastique préludait.

De plus, les grands séismes sont finalement trés peu fréquents, et les ca-
talogues instrumentaux ont des périodes d’enregistrement courtes et sont in-
trinséquement incomplets. Par conséquent, 1’analyse de tels catalogues montre
inéluctablement une vue biaisée de la sismicité long-terme (SALDITCH et al.,
2020). Il est alors difficile d’estimer par exemple un temps de récurrence moyen
des séismes ou bien d’identifier si les quelques événements enregistrés d’un ca-
talogue se sont produits au sein d’un méme cluster de séismes ou s’ils s’étendent
a la fois sur la période d’activité du cluster et la période de quiescence (STEIN,
L1u et al., 2017; Y. CHEN et al., 2020). La plupart des enregistrements actuels
contiennent donc des séquences de séismes raccourcies qui sous-estiment le de-
gré d’apériodicité des séismes. Ce qui rend d’autant plus difficile ’estimation
de l’aléa sismique (ELLSWORTH et al., 1999 ; M, 2007).

Cette difficulté est amplifiée pour les régions continentales intraplaques
ou les grands séismes sont des phénomeénes encore plus rares, voire inexistants,
et ol les intervalles de quiescence sont beaucoup plus longs que dans les zones
interplaques. Ces régions se déformant trés lentement, les données historiques
et paléosismologiques, combinées aux données néoctectoniques, sont indispen-
sables pour comprendre la chronologie des déformations sismiques, et estimer
’aléa sismique (T. I. ALLEN, 2020; D. J. CLARK et al., 2020).

Des indices de déformation de surface associés a I’occurrence de séismes pas-
sés peuvent étre effectivement préservés sur des milliers d’années. Seulement,
si l'intervalle entre deux séismes engendrant des ruptures en surface est beau-
coup plus long que les processus d’érosion et de sédimentation qui viennent
modeler le paysage actuel, les traces d’activité de faille datant d’avant la fin du
Quaternaire sont alors perdues (WALKER et al., 2015 ; ABDRAKHMATOV et al.,
2016).

Par exemple, entre 1968 et 2018, méme si 90% des séismes enregistrés dans
le craton australien ont engendré des déformations de surface, ces derniers
ne peuvent étre associés a aucune évidence néotectonique d’activité de faille.
Seulement, on ne peut pas exclure la possibilité que des marqueurs de rupture
précédente aient été supprimés (KiNG et al., 2019). L’absence d’indicateurs de
déformations de surface n’est pas donc un révélateur formel d’inactivité d’une
faille sur le long terme.

12 CHAPITRE 2. INTRODUCTION Alexandra Renouard



2.1. MOTIVATION GENERALE : POURQUOI DETECTER LES PETITS
SEISMES ?

Par conséquent, assigner un label « actif/inactify a une faille (ou segment(s)
de faille) dans ces zones continentales intraplaques, basé sur ’occurrence (ou
la non occurrence) d'un séisme dans les quelques derniers milliers d’années
n’est pas un indicateur robuste de futur potentiel sismogénique (D. CLARK et
MCPHERSON, 2011; D. CLARK, McPHERSON et VAN DIssSEN, 2012; BoNcIO
et al., 2018).

Sans apport conséquent d’études paléosismologiques et néotectoniques ap-
profondies, il est alors difficile d’estimer 1’aléa sismique dans ces régions conti-
nentales stables ou les témoins de déformation de surface se font rares et ou
les mesures géodésiques le long des failles ne décélent pas d’indices forts de
déformation cumulée (GRUTZNER et al., 2017 ; VALLAGE et al., 2020).

Par ailleurs, la grande incertitude associée aux localisations des séismes
des catalogues instrumentaux ne permet pas non plus d’établir clairement une
relation entre les hypocentres et les failles projetées en surface, ni d’accéder
finement a la géométrie 3D de ces failles, a supposer que ces séismes soient ins-
crits sur le méme plan (D. J. CLARK et al., 2020; Ross, E. S. COCHRAN et al.,
2020). De plus, 'hétérogénéité des catalogues sismiques (calcul des magnitudes,
réseaux sismiques évoluant) ainsi que leur courte période d’enregistrement ré-
vélent une cartographie de la sismicité largement incompléte.

Outre la faible représentativité des données sismologiques, l’absence de mar-
queurs morphotectoniques et géodésiques forts de déformation ainsi que la
complexité des systémes de failles qui accommodent cette faible déformation
(MATOS et al., 2018), ’aléa sismique sera d’autant plus difficile & estimer que le
comportement des séismes s’éloigne du comportement poissonnien (Y. CHEN
et al., 2020; VALLAGE et al., 2020), que 1’évaluation de la magnitude maxi-
male associée au futur plus grand séisme est plus que spéculative (NEELY et
al., 2018), et que la présence encore active de répliques associées & des chocs
principaux historiques ou préhistoriques n’est pas encore robustement établie
(Topa et al., 2018).

Enfin, aucun mécanisme n’est universellement accepté pour expliquer le
déclenchement et le comportement des séismes dans ces régions continentales
stables (SoTO-CORDERO et al., 2018; GALLEN et al., 2018; BEzADA et al,,
2019; LECLERE et al., 2019. De ce fait, en 1’absence de théorie robuste sur
I’occurrence des séismes dans ces régions, l'incertitude épistémique dans la
caractérisation des sources sismiques pour ’évaluation de l'aléa dans ces zones
restera élevée (GRIFFI et al., 2020).
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C’est donc sur ce dernier point crucial que va intervenir la détec-
tion des petits séismes. Comme cela a été soulevé par Brodsky,
2019a, nous sommes souvent conduits en sismologie a analyser
de prés les quelques exemples que la nature nous fournit a in-
tervalles irréguliers. Par conséquent, nous devons manier avec
prudence ces quelques données rares avant d’en tirer des conclu-
sions générales hatives (Brodsky, 2019a). Les grands séismes sont
effectivement extrémement rares par rapport a ’abondante sis-
micité de magnitude faible qui est enregistrée a travers le globe.
De part la haute fréquence d’occurrence de ces séismes de faible
magnitude, mieux les détecter permettrait d’apporter plus de
robustesse statistique aux comportements sismiques court-terme
observés, afin de mieux comprendre leur origine. Ceci est parti-
culiérement important pour les zones continentales intraplaques,
ou la sismicité de magnitude faible & modérée reste difficile a
expliquer puisque les taux de déformation y sont trés faibles.
Cependant, comprendre l’origine de cette microsismicité et son
role dans la description du comportement sismique d’une région
présente un réel enjeu du point de vue du risque sismique, étant
donné que ces régions concentrent 90 % de la population mon-
diale (Hirose et al., 2014).

eComportements sismiques court-terme

Une détection plus fine des petits séismes permet de rendre visible entiére-
ment des séquences de séismes qui étaient auparavant fragmentées (BRODsKY,
2019b). Cette détection plus continue un niveau supérieur d’interactions entre
les séismes, a la fois au sein méme d’une séquence individuelle (essaims ou
répliques par exemple), mais également entre les différentes séquences enregis-
trées (par exemple : précurseurs/chocs principaux, chocs principaux/répliques,
chocs principaux/post-séismes déclenchés de fagon dynamique ou statique) (Fi-
gure 2.4).

Ces interactions plus complexes sont non seulement capables de connecter
des séquences ou des séismes qui étaient a premiére vue isolé(e)s, mais peuvent
surtout renseigner sur les détails des processus physiques qui sous-tendent 1’'ini-
tiation, le déclenchement ou bien la migration spatio-temporelle de 'ensemble
des séismes repérés (Ross, TRUGMAN et al., 2019).

La détection plus fine des petits séismes rend donc possible la description
plus précise de 1’évolution spatio-temporelle de séquences de séismes spéci-
fiques, y compris par la prise en compte des événements précoces voire pré-
curseurs. Dans les paragraphes suivants, je m’intéresse a quelques séquences
individuelles de séismes, qui sont intensément étudiées dans la littérature.
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FIGURE 2.4: Enregistrement sismique théorique sur 6 mois (de juillet a dé-
cembre) avant I’amélioration de la détection des petits séismes (& gauche) et
aprés (& droite). Chaque amas de séismes est représenté par une couleur. Les
traits noirs correspondent aux nouveaux séismes détectés. Cette détection sup-
plémentaire permettrait par exemple de : (1) mieux résoudre l'initiation d’une
séquence individuelle de séismes et d’en définir son mécanisme déclencheur;
(2) compléter une séquence individuelle de séismes et comprendre leur degré
d’interaction ainsi que leur mécanisme de déclenchement, (3) relier des sé-
quences isolées entre elles et investiguer plus sur les mécanismes qui contrélent
I’évolution spatio-temporelle de ’ensemble de ces séismes.
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Les répliques. Une quantité importante des répliques qui ont lieu aprés un
choc principal est souvent absente des catalogues de séismes existants, surtout
si elles sont de faibles magnitudes ou trop nombreuses (superposition des si-
gnaux associés empéchant leur utilisation, KAGAN, 2004 ; PENG, VIDALE et al.,
2006). Pourtant, réussir a les detecter puis les localiser en plus grand nombre
ameénerait des contraintes importantes sur la géométrie du plan de faille sur
lequel le choc principal a eu lieu (BULUT et al., 2007 ; YANG et al., 2009 ; PENG
et ZHAO, 2009) et sur l'extension latérale et en profondeur du segment qui a
rompu (C. H. CHANG et al., 2007 ; PENG et ZHAO, 2009; YANG et al., 2009;
YIN et al., 2018).

Une meilleure description de 1’évolution spatio-temporelle des répliques est
donc essentielle pour d'une part comprendre les mécanismes physiques qui
controlent leur déclenchement (ENEscu et al., 2007), et pour d’autre part
suivre la déformation post-sismique autour de la zone de rupture associée au
choc principal, pouvant impliquer d’autres segments de failles voisins (HsU et
al., 2006 ; C. H. CHANG et al., 2007). Les mécanismes physiques a l'origine des
répliques font encore 1'objet de nombreux débats (LiPPIELLO et al., 2015). En
utilisant des événements de plus faible magnitude, une meilleure robustesse
statistique peut étre atteinte, saisissant plus finement les conditions qui défi-
nissent 1’état de contrainte crustale comme par exemple celles de la pression
interstitielle lithostatique (SHEBALIN et al., 2017).

La plupart des séquences de répliques sont relativement transitoires, le taux
d’occurrence décroissant au fil des jours, des mois ou des années avant d’at-
teindre les niveaux de fond, en suivant globalement la loi d’Omori (UTsu et al.,
1995) et la loi empirique de Bath (SHEARER, 2012). Cependant, dans certaines
zones intraplaques, des groupes d’événements persistants peuvent se produire
sur des échelles de temps beaucoup plus grandes, comme la séquence en cours
dans la zone de New Madrid dans ’est des Etats-Unis (J. WANG, MAIN et al.,
2017). Seulement dans ce cas, 1'étude court-terme de séquences de petits séismes
ne permettra pas d’apporter plus de contraintes sur 1’étude de ces séquences
persistantes si particuliéres.

Les essaims sismiques. Les essaims sismiques sont des séquences de
séismes concentrées dans le temps et ’espace sans aucun choc principal évident
(VIDALE et al., 2006). Ces essaims peuvent se produire dans des régions volca-
niques (DE BARROS, BEAN et al., 2013; McNuTT, 2005), des régions a faible
taux de déformation (HAINZL, 2004), le long de failles glissant asismiquement
(LLENOS et al., 2009; ROLAND et al., 2009), dans les zones de subduction
(VALLEE et al., 2013), ou lors des stimulations hydrauliques anthropiques des
réservoirs (KERANEN et al., 2018 ; WEI et al., 2015).
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La question de savoir pourquoi la sismicité se développe comme un essaim,
plutét que comme une séquence de choc principal/répliques, est fondamen-
tale. Grace a une meilleure détection des petits séismes, la résolution spatio-
temporelle plus fine des essaims de séismes aiderait alors a mieux trancher sur
les facteurs réels qui les déclenchent (HATCH et al., 2020). En effet, des fac-
teurs comme la pression des fluides (VIDALE et al., 2006 ; HAINZL et al., 2012;
SHELLY et al., 2016) ou bien le glissement asismique (DELAHAYE et al., 2009;
HIROSE et al., 2014) sont souvent évoqués. Seulement, des études récentes ont
montré que 'activité des essaims serait en fait contrélée par les deux facteurs
a la fois : des phases d’accumulation de pression de fluide déclencheraient un
glissement asismique, qui lui-méme induirait des séquences de sismicité a mi-
gration rapide (Bourouis et al., 2007 ; GUGLIELMI et al., 2015; DE BARROS,
GUGLIELMI et al., 2018 ; CAPPA et al.,, 2019; DE BARROS, CAPPA et al., 2020).

De plus, une étude plus détaillée des essaims sismiques permettrait de mieux
comprendre leur réle dans les mécanismes précurseurs de futurs grands séismes
(BRODSKY et LAYy, 2014 ; RHOADES, 2010). Indicateurs de glissement lent, une
image détaillée de ces derniers pourrait également contribuer a suivre finement
la naissance et ’évolution d’un glissement lent (NADEAU et al., 1998 ; A. KaTo
et al., 2014 ; REVERSO et al., 2016 ; NISHIKAWA et al., 2017).

Les précurseurs. La détection accrue des petits séismes pourrait appor-
ter 1a encore une robustesse statistique quant a la présence d’activité sismique
précurseur (GOEBEL et al., 2013 ; MALIN et al., 2018). Actuellement, la valeur
pronostique des précurseurs est fortement débattue : des précurseurs seraient
observés pour seulement 10 & 50% des chocs principaux étudiés (MORI et al.,
1997; X. CHEN et al.,, 2016 ; MARSAN et al., 2014). De ce fait, établir des ca-
talogues de séismes de haute résolution (meilleure précision des paramétres
hypocentraux et magnitude de complétude plus faible) représente un double-
enjeu. Le premier est la possibilité de rechercher systématiquement une activité
précurseur de fagon & en estimer la fréquence réelle dans la nature (M ARTINEZ-
GARZON et al., 2019; TRUGMAN et al.,, 2019; ENDE et al., 2020). Le deuxiéme
enjeu concerne l’approfondissement des connaissances relatives aux mécanismes
physiques qui participent a ’occurrence des précurseurs et leur lien avec les
chocs principaux. En effet, pour l'instant, deux écoles de pensées s’affrontent
(MIGNAN, 2014) : I’école déterministe qui affirme que les précurseurs consti-
tuent une réponse a un glissement précurseur sur une faille (ou segment(s) de
faille) comme par exemple un glissement lent (BoucHON, DURAND et al., 2013,
ToKUDA et al., 2019; Yao et al., 2020), et ’école stochastique qui postule que
les précurseurs font partie d’un processus naturel de déclenchement des séismes
en cascade par transfert de contraintes inter-séismes (GULIA et WIEMER, 2019,
PiNoO et al., 2019).
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Les séismes déclenchés dynamiquement. De grands séismes peuvent
déclencher dynamiquement, par propagation des ondes résultant du choc prin-
cipal, d’autres séismes plus distants. Une détermination plus poussée des petits
séismes pourrait révéler une sismicité de plus faible magnitude reliée indirecte-
ment & un plus grand séisme comme cela a été le cas dans le Sud de la Californie
apres le séisme d’El Mayor-Cucapah en 2010 (Ross, TRUGMAN et al., 2019).

...Et toutes les autres séquences de séismes identifiées. Ainsi, révéler
des séquences spatio-temporelles de séismes plus complexes pourraient mettre
en évidence plus systématiquement plusieurs mécanismes moteurs de généra-
tion des séismes comme l’association d’'un glissement asismique avec une dif-
fusion de pression de fluide (Ross, RoLLINS et al., 2017). La complexification
de ces séquences spatio-temporelles identifiées par une détection plus accrue
des petits séismes constitue donc le terrain idéal pour une caractérisation plus
aboutie des facteurs qui déclenchent les séismes en général, que ce soit par
des contraintes différentielles transitoirement élevées (JAMTVEIT et al., 2018;
LEVANDOWKI et al., 2018) ou bien des mécanismes locaux d’affaiblissement (par
exemple, une pression élevée du fluide interstitiel, GARDONIO et al., 2018).

La clusterisation des séismes est donc une des caractéristiques do-
minantes de la sismicité naturelle et anthropique (Ross, Trugman
et al., 2019). Les types les plus étudiés de clusterisation incluent
les répliques, les précurseurs, les essaims (Zaliapin et al., 2008).
A travers I’étude plus approfondie des petits séismes, ’analyse
plus précise d’un cluster de séismes ou une combinaison de plu-
sieurs d’entre eux constitue une des perspectives majeures pour
comprendre la redistribution et/ou le transfert des contraintes
sismiques, ainsi que leur origine, la genése des séismes et la dy-
namique globale de la lithosphére en somme (Romanowicz et al.,
1993).
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2.1.3 Avantages des bases de données actuelles pour la dé-
tection des petits séismes

Ces dix derniéres années, des réseaux sismologiques se sont densifiés et pro-
duisent des données de meilleure qualité avec un contenu fréquentiel beaucoup
plus large (JOUSSET et al., 2018). Les projets japonnais Hi-net, américains
USArray ou européens AlpArray sont des exemples marquants d’instrumen-
tation de vastes régions par des réseaux sismologiques trés denses (HETENYI
et al., 2018; FucHs et al.,, 2019; T. ZHOU et al., 2020). Initialement destinés
a 'imagerie des structures profondes, ces réseaux représentent également une
bonne opportunité de réduire la magnitude de complétude d’une région donnée
et de construire des catalogues sismiques de qualité. Il en est de méme pour les
récents réseaux denses de capteurs type nodes ou de capteurs bas-cofit, qui se
multiplient partout dans le monde.

En conséquence, de hauts volumes de données de qualité sont désormais
disponibles, et offrent une opportunité unique d’obtenir une image de la sis-
micité plus haute résolution (BoucHON, KARABULUT et al., 2011 ; H. KATO et
al., 2012; SCHAUMBERG et al., 2020). Par exemple, au ler juin 2020, le Centre
de Gestion de Données des Institutions de Recherche Incorporée pour la Sis-
mologie (IRIS DMC) a stocké prés de 650 Terabytes de données sismologiques
(Figure 2.5).

Cependant, alors que la quantité de données acquises par les réseaux de
stations toujours plus denses augmente continuellement, la qualité des données
reste en fait toujours entravée par la présence de bruit systématique enregistré
aux stations et un échantillonnage spatial souvent biaisé (sources et stations
sismiques inégalement réparties, P.-F. CHEN et al., 2019).

Meéme si des réseaux plus denses proches des sources cibles ont des capacités
de détection plus élevées, un ensemble de parameétres tels que la qualité du
réseau (niveau de bruit, distribution spatiale), les caractéristiques de la source,
les effets de propagation des ondes et le systéme d’acquisition vont venir limiter
les capacités réelles de détection (KWIATEK et al., 2016).
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IRIS DMC Archive Size
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FicURE 2.5: Evolution temporelle de 1’archivage des données sismologiques au
sein du Centre de Management des Données des Institutions de Recherche
Incorporée pour la Sismologie (IRIS DMC) depuis 1992. (D’aprés http://ds.
iris.edu/files/stats/data/archive/Archive_Growth. jpg)
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2.2. LIMITATIONS A LA DETECTION DES PETITS SEISMES

De cette fagon, si de hauts volumes de données disponibles sont
capables d’offrir une mine d’or d’informations sur les petits
séismes, il semblerait que cette masse de donnée ne garantisse
pas une récupération optimale de cette information.

2.2 Limitations a la détection des petits séismes

2.2.1 Présentation générale du systéme de détection utilisé
dans les observatoires sismologiques

Les deux systémes de détection les plus utilisés dans les observatoires sis-
mologiques sont Earth Worm (EW; C. JOHNSON et al., 1995; http://www.
earthwormcentral.org) et SeisComP3 (SC3; http://www.seiscomp3.org).
Concus pour recevoir les flux de données en temps réel, ces deux systémes
utilisent des algorithmes de détection basés sur l'amplitude du signal enregis-
tré, archivent les données de maniére continue, et déterminent automatique-
ment une localisation ainsi qu'une magnitude pour chaque événement détecté
(UTHEIM et al., 2014). Cette localisation est généralement revue par un ana-
lyste.

L’algorithme principal de détection utilisé pour déceler les événements sis-
miques est basé sur le calcul des valeurs moyennes de I’amplitude absolue d’un
signal sismique sur deux fenétres temporelles mobiles consécutives. La fenétre
temporelle courte (STA) est sensible aux événements sismiques tandis que la
fenétre temporelle longue (LTA) fournit des informations sur ’amplitude tem-
porelle du bruit sismique & une station donnée (R. ALLEN, 1978; R. ALLEN,
1982). Un rapport des deux valeurs moyennes estimées sur ces deux fenétres,
le rapport STA/LTA, est calculé. Ce rapport est comparé en continue & une
valeur-seuil définie par I'utilisateur, le niveau seuil de déclenchement STA /LTA
(TrRNKOCZY, 1999). Si le rapport excéde ce seuil & un nombre de stations don-
nées, un déclenchement est déclaré et un pointé, qui correspond au temps
d’arrivée des ondes sismiques (principalement ondes de volume P et S) est créé
(Figure 2.6A).

Un ensemble de temps d’arrivée des différentes phases sismiques (P et S)
pour chaque station est donc généré. Un algorithme d’association va par la
suite nucléer et localiser les événements sismiques (YECK et al., 2019). L’as-
sociation d’événements consiste a rassembler les pointés de différentes stations
dans une certaine fenétre temporelle. Si le nombre de pointés dans cette fenétre
temporelle est supérieur a un seuil prédéfini, 1’algorithme d’association va re-
lier les différents pointés (les premiers temps d’arrivée des ondes P et S) & une
localisation hypocentrale approximative (GRIGOLI, SCARABELLO et al., 2018).
Si cette procédure réussit, un événement sismique est déclaré (Figure 2.6B et
C).
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2.2. LIMITATIONS A LA DETECTION DES PETITS SEISMES

Une fois que cet événement est déclaré, sa localisation peut étre affinée grace
a des méthodes de localisation plus avancées (par exemple NonLinLoc, LoMAX,
VIRIEUX et al., 2000) et des modéles de vitesse plus détaillés.

Les méthodes de localisation basées sur le pointé du temps d’arrivées des
ondes sismiques reposent sur la minimisation des résidus entre les temps d’ar-
rivée théoriques et observés des ondes de volume (ondes P et S), et utilisent
des algorithmes d’inversion itératifs (THURBER, 1985) ou globaux (LOMAX,
VIRIEUX et al., 2000).

Ces trois étapes essentielles (pointés, association, localisation) constituent
le coeur du systéme de détection standard classiquement utilisé dans la plupart
des organismes en charge de la surveillance sismique.

P'ICKASSCCIATCR@ EVENT ASSOCIATOR 0

EVENT
- origin 1

Single-station P- and 5- 1 cagmz-
P- and S5- pick |pretemea arigin
- . - origin 3
Arrivals association

picking

WAVEFORM EVENT
DATABASE DATABASE

Automatic generation of earthquake catalog

FIGURE 2.6: Procédure de détection sous SeisComP3. (A) Pointés automa-
tiques des temps d’arrivées des ondes P et S avec le module Scautopick. (B)
Association des pointés automatiques P et S avec le module Scautoloc et/ou
Scanloc. Chaque association réussie engendre la création d'une origine qui est
localisée avec l'algorithme LOCSAT. (C) Association des origines produites a
un événement spécifique avec le module Scevent. Chaque événement présente
une origine préférentielle fixée. La procédure SeisComP3 génére automatique-
ment un catalogue multi-origine. Les événements peuvent étre localisés plus
finement avec le module Screloc par exemple en utilisant un autre algorithme
de localication (comme NonLinLoc) et/ou un autre modéle de vitesse.

Méme si les méthodes de détection et de localisation des séismes basées
sur la forme d’onde sont également largement utilisées en sismologie et trés
efficaces pour détecter les petits séismes (KAo et al., 2004; GricoLl, CESCA
et al., 2013 ; GRIGOLI, SCARABELLO et al., 2018 ; PESICEK et al., 2014 ; YOON,
O’REILLY et al., 2015; YOoON, Y. HUANG et al., 2017; M. ZHANG et al., 2015;
WEI et al., 2015 ; ToNG et al., 2016 ; PEROL et al., 2018), elles restent cependant
trés cotiteuses en calcul (Z. ZHANG et al., 2019). Par conséquent, les méthodes
basées sur le pointé des temps d’arrivées des ondes sismiques restent toujours
dominantes pour les opérations routiniéres de surveillance des séismes en temps
réel (GRIGOLI, SCARABELLO et al., 2018 ; Z. ZHANG et al., 2019).
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2.2.2 Premiére limitation : le processus d’association, gou-
lot d’étranglement des systémes de détection

Une des principales lacunes des systémes de détection standard est la pos-
sibilité de détecter tout type de signal transitoire impulsif, autre que ceux
associés aux séismes (Ross, TRUGMAN et al., 2019). En effet, les algorithmes
d’association standards sont principalement basés sur l'information apportée
par les temps d’arrivées (Figure 2.7). Par comparaison entre les temps d’arri-
vées observés et les temps théoriques calculés a partir d’'un modeéle de vitesse
aux différentes stations, ces derniers associent les arrivées dans une fenétre tem-
porelle qui semblent compatibles avec une source réaliste (MCBREARTY et al.,
2019).
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FiGURE 2.7: Exemple schématique du processus d’association basée sur le
temps d’arrivée des ondes sismiques. En haut : Plusieurs sources sismiques,
localisées sur une interface de subduction, produisent des ondes impulsives qui
se propagent aux cing stations sismologiques. En bas a gauche : ensemble des
arrivées observées a travers le réseau sismique avant association (le signal est ici
monophasé). En bas a droite : ensemble des arrivées correctement associées, co-
lorées pour les cing sources distinctes et reliées par une courbe (ligne pointillée
rouge). D’aprés MCBREARTY et al., 2019.

Seulement, ce processus d’association perd progressivement de 1'efficacité
et de la précision a mesure que les algorithmes de détection deviennent plus
sensibles (C. E. JOHNSON et al., 1997; MCBREARTY et al., 2019). Quand les
seuils de détection sont effectivement abaissés pour détecter les événements de
plus faible magnitude, les algorithmes de détection sont confrontés a de plus
faibles rapports signal sur bruit. De cette facon, ils deviennent sensibles a la
moindre irrégularité, impulsivité ou hausse d’amplitude véhiculée par le bruit
sismique ambiant enregistré.
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Par conséquent, en plus d’'une augmentation de la quantité de pointés cor-
respondant aux phases P et S détectés, de nombreux pointés correspondant a
du bruit transitoire impulsif sont aussi produits. Ces faux pointés sont alors
traités comme s’ils correspondaient aux arrivées d’ondes sismiques propagées
depuis une source sismique (Figure 2.8).

En plus de la diminution du seuil de détection, le taux de pointés auto-
matiques sera également amplifié de par 'augmentation des volumes de flux
de données a traiter provenant des réseaux sismologiques plus denses. Ce taux
sera aussi exacerbé en contexte urbain, 1a ou le niveau de bruit d’origine an-
thropique enregistré est trés intense (DIAz et al., 2017 ; PoL1 et al., 2020). Dans
ces environnements, une grande quantité de signaux d’origine anthropique est
générée, créant alors de nombreux pointés supplémentaires.

De ce fait, alors qu’aucune forme d’onde n’est utilisée pour affiner le pro-
cessus d’association, des jeux de pointés d’une grande variabilité, créés sur des
fenétres temporelles trés courtes, sont trés facilement associés. La proportion
de fausses associations produites a partir du bruit transitoire est alors forte-
ment augmentée, de méme que la proportion d’associations provoquées par des
événements autres que les séismes (tirs de carriére, activités géothermiques,
glissements de terrain par exemple).

De plus, sur la base uniquement de temps d’arrivée compatibles sur une
fenétre temporelle donnée, la probabilité d’associer des arrivées reliées a des
phases sismiques avec des arrivées reliées a du bruit est largement accrue (Fi-
gure 2.8).
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FIGURE 2.8: Hauts volumes de données et seuils de détection diminués dans
les observatoires sismologiques : un encombrement rapide des systémes d’alerte
des événements.

2.2.3 Deuxiéme limitation : une hausse des détections pa-
rasitaires

Avec la sensibilité croissante des algorithmes de détection et la hausse des
volumes de données a traiter, la détection standard des petits séismes engendre
un taux considérable de détections d’événements autres que ces séismes (Fi-
gure 2.9). Et le processus d’association en est une des principales causes.
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FIGURE 2.9: Détection des événements par le réseau de surveillance sismique
BCSF-RéNaSS depuis 1980. L’année 2012 marque le début de I'intégration des
tirs de carriére dans le catalogue aprés discrimination manuelle. La densifi-
cation du réseau de stations dont les données sont intégrées au systéme de
localisation depuis 2014 (courbe noire) a conduit & une détection d’environ 2
fois plus de séismes (en bleu) et 10 fois plus de tirs de carriére (en rouge), si
I’on prend comme référence ’année 2012. Un peu plus anecdotique en termes
de nombre, un nombre croissant d’explosions (en vert) ainsi que de sismicité in-
duite (en gris) par ’activité géothermique (plus particuliérement de la région
Grand-Est) est aussi détecté. La période 2016-2019 correspond a la période
de déploiement du réseau temporaire AlpArray dont les stations francaises,
allemandes, belges, italiennes et suisses ont été utilisées pour la localisation
manuelle des événements.
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Des milliers de faux événements provoqués par un pointé quasi-
systématique de bruit transitoire impulsif sont d’abord aisément détectés (Fi-
gure 2.10).
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FIGURE 2.10: Exemple de faux événement détecté par 1’association de bruit
pointé pour quatre stations sismiques dans une fenétre temporelle compatible
pour engendrer une détection.

En conséquence, des catalogues massifs d’événements contaminés par 1'exis-
tence de faux événements liés au bruit sont générés. De plus, parmi ce taux
considérable de faux événements a traiter, des quantités non négligeables de
vrais événements - comme les séismes naturels ou d’origine anthropique - se
trouvent facilement pollués par du bruit. Et cette pollution est d’autant plus
fréquente si le paramétrage associé a la qualité des pointés automatiques et du
processus d’association n’est pas affiné spécifiquement en fonction du niveau
de bruit a chaque station et des vitesses de propagation des ondes sismiques
dans le milieu (Figure 2.11).

Dans cette configuration de réseaux denses, revoir manuellement tous les
événements issus des catalogues automatiques devient une tache nettement
plus difficile a accomplir.

En outre, en plus de ces derniers événements, d’autres événements, de méme
ordre de magnitude que les séismes, s’ajoutent a la liste déja trop longue
d’événements a discriminer manuellement. Dans les environnements trés ur-
banisés, ces événements supplémentaires sont principalement d’origine anthro-
pique, et particuliérement des tirs de carriére. La détection opérationnelle des
petits séismes dans ces contextes implique donc de discriminer manuellement
les séismes (Figure 2.12) d’autres événements comme les tirs de carriére (Fi-
gure 2.13).
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FicURE 2.11: Exemple de fausse association ayant généré un vrai événement
contaminé par du bruit pointé a la station RONF (en bleu). Si cet événement
n’est pas nettoyé manuellement par un analyste, ce dernier sera conservé en
tant qu’événement dans le catalogue, méme si les incertitudes des paramétres
hypocentraux risquent d’étre significatifs.
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FicURE 2.12: Exemple de séisme enregistré dans la plaine d’Alsace, prés de la
ville de Colmar (Magnitude Locale composante verticale MLv 1.0)
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FIGURE 2.13: Exemple de tir de carriére enregistré au niveau de la carriére de
Raon-1-Etape dans les Vosges (MLv 1.7).

Par exemple, le réseau national de surveillance sismique frangais (BCSF-
RéNaSS) détecte actuellement majoritairement prés de 50% d’événements
autres que les séismes, dont 43% de tirs de carriéres (Figure 2.9).

Si les seuils de détection étaient abaissés et, en tenant compte du nombre
de stations utilisées par le BCSF-RéNaSS, la proportion de tirs de carriére dé-
tectés pourraient s’élever a prés de 60%, avec en moyenne 400 faux événements
supplémentaires détectés par jour, qui viennent encombrer le systéme d’alerte

des événements.
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2.2.4 Troisiéme limitation : un nettoyage des catalogues
sismiques chronophage

Avec la diminution du seuil de détection et/ou la densification des réseaux
de stations, la tache quotidienne de nettoyage du catalogue de séismes apparait
donc difficile a réaliser entiérement manuellement. Sous la contrainte du temps,
les événements vont donc étre identifiés avec un inévitable compromis entre
la vitesse de réalisation de la tache a accomplir et la précision nécessaire a
atteindre pour réussir cette derniére.

I1 est par ailleurs impossible en temps réel de revoir manuellement des cen-
taines de faux événements par jour. La fatigue naturelle physiologique propre
a I’humain, liée ici a un afflux d’événements a examiner en un temps court,
engendre une désensibilisation telle que des vrais événements (séismes et tirs de
carriére principalement) peuvent é&tre facilement traités par le cerveau humain
comme des faux. L’effet produit est équivalent a celui de "crier au loup" : a
force de fausses alertes, les vraies alertes finissent par passer plus facilement
inapergues (Figure 2.14). Sans oublier que les analystes doivent, en plus de la
discrimination, nettoyer tous les vrais événements contaminés par du bruit.

Au final, par exemple, pour l’année 2014, seulement 8% des 6 000 000 de
détections opérées par le systéme de surveillance international (IMS) ont été
incluses dans le centre de données international (IDC). Le reste des détections,
c’est-a-dire les 92% restants, sont en fait des faux événements. De plus, 39%
des détections présentes dans le bulletin de I'IDC sont effectivement modifiées
postérieurement par des analystes (DRAELOS et al., 2018).
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?False alarms

FIGURE 2.14: Fatigue physiologique liée aux fausses alertes. (a) Lorsque les
seuils de détection sont abaissés, des centaines de fausses alarmes (engendrées
par la détection de faux événements) sont émises par jour. (b) Les analystes
(ou tout autre expert) sont submergés par une quantité trop importante d’évé-
nements a traiter (c) Une perte de vigilance physiologique est & craindre avec
un effet équivalent a celui de "crier au loup" : a force de fausses alertes, les
vraies alertes passent plus facilement inapergues. (d) En conséquence, la dimi-
nution de la réponse physiologique des analystes aux stimulus provoqués par
les alertes répétées d’événements engendre un phénomeéne d’habituation. (e) La
fatigue s’installe alors. Les analystes exposés a des fausses alertes récurrentes
ne répondent plus correctement a toutes les alertes d’événements. (f) De nom-
breuses vraies alertes ne sont plus traitées et seront supprimées. Prés de 30%
des vrais événements a identifier peuvent manquer dans les catalogues finaux.
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Le temps de traitement manuel de grands volumes de données
produites est non seulement conséquent, mais ces données mas-
sives saturent aussi les espaces de stockage qui archivent fina-
lement une majorité de données superflues. Les efforts fournis
pour obtenir un catalogue de séismes de plus faible magnitude
de complétude apparaissent rapidement contre-productifs si ’on
se référe aux résultats finaux obtenus. En définitive, beaucoup de
séismes vont inévitablement manquer dans des catalogues pollués
par de faux événements.

Or, les systémes de détection standards, basés sur le pointé des
temps d’arrivées des ondes sismiques, ne reposent pas sur l’ex-
haustivité d’'une base de données des événements, comme c’est
le cas des techniques de détection basées sur les formes d’onde
(E. J. Lee et al., 2020). Par conséquent, ils offrent la possibilité
de décoder de nouveaux signaux sismiques, enfouis dans la masse
de données sismologiques désormais disponibles.

Seulement, trois grandes limitations, qui ont été décrites dans
les paragraphes précédents, viennent fortement réduire la per-
formance de ces systémes de détection standards vis-a-vis des
petits séismes.

La problématique de recherche qui rythmera ce travail de thése
s’intéressera alors a répondre a la question suivante :

Comment lever les limitations a la détection des petits
séismes ?

32
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2.3 Lever les limitations a la détection des petits
séismes

2.3.1 Problématique de recherche

La performance des systémes de détection standards est donc réduite par
I’existence de trois grands limitations a lever. Ces trois limitations nécessitent
de répondre aux trois questions de recherche suivantes :

(1) comment réduire la détection de ces trés nombreux petits séismes conta-
minés par du bruit ?

(2) comment restreindre la détection de milliers de faux événements venant
diluer 'information portée par les centaines de séismes détectés?

(3) comment diminuer efficacement la charge conséquente de discrimina-
tion manuelle des séismes et des autres événements (principalement les tirs de
carriére) ?

Les systémes de détection standards ne sont actuellement ni compléte-
ment automatisés, ni complétement humanisés. Probablement parce que les
deux acteurs de la détection des séismes, ’Homme et la machine (via les al-
gorithmes), se complétent : leurs performances respectives compensent leurs
propres limitations. Alors que les algorithmes de détection sont capables de
traiter des données rapidement avec cohérence et objectivité, les humains pré-
sentent une expertise scientifique sur ces données qui est inégalable. Cette
interaction Homme-machine est donc centrale, et mérite a étre approfondie.

En effet, comment a partir de ’expertise humaine pourrait-on affiner le
fonctionnement des algorithmes de détection pour (1) réduire la quantité de
séismes contaminés par le bruit et (2) limiter les détections parasitaires? Et
comment a partir de la machine pourrait-on diminuer la charge de discrimina-
tion manuelle de I’ensemble des événements du catalogue (3) ?

L’approche qui guidera mes réponses aux différentes questions de recherche
se basera donc sur :

Une optimisation de l'interaction Homme-machine pour une détection
plus performante des petits séismes.
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2.3.2 Choix qui vont guider le développement de la procé-
dure de détection des petits séismes

Les choix qui vont guider le développement de la procédure de détection
des petits séismes sont a relier avec les propriétés indispensables que doit avoir
un systéme de détection qui opére en temps réel; a savoir, sa rapidité, son
évolutivité, sa flexibilité et sa longévité.

La rapidité de la procédure est un premier critére indispensable pour main-
tenir les opérations de surveillance sismologique en temps réel et faciliter la
tache quotidienne des analystes.

L’évolutivité de la procédure est également essentielle afin que cette der-
niére puisse étre opérable a toutes les échelles possibles de détection des évé-
nements (locaux, régionaux, téléséismes) sans ajout excessif de complexité, ni
de cotit de calcul (C. E. JOHNSON, 2020).

La flexibilité de la procédure est un atout majeur pour que celle-ci soit
adaptable aux besoins particuliers des services de surveillance sismique. Cela
implique que le systéme de détection produit puisse étre amélioré facilement
une fois mis en opération, et donc étre un outil de développement disponible
(YECK et al., 2019).

Enfin, le critére de longévité de la procédure est aussi important, pour
garantir I’homogénéité d’un catalogue sur une longue période de temps. Cette
procédure doit en effet susciter 1’adhésion et ’implication de la communauté.
Elle doit donc pouvoir étre adoptée facilement : mise a jour facile, faible ap-
prentissage, fiabilité, réponse aux besoins évolutifs.

Afin d’atteindre ces quatre objectifs de performance, j'ai donc utilisé les
outils standards de détection déja disponibles. En effet, méme s’ils présentent
des lacunes, ces outils sont déja fortement implantés dans les observatoires
sismologiques, travaillent déja en temps réel et sont dés lors capables de traiter
de grands volumes de données.

Je me suis donc intéressée a la mise en place d'une procédure plus perfor-
mante en corrigeant les lacunes existantes des systémes de détection utilisés.
De par sa facilité d’implémentation, cette procédure pourrait plus facilement
susciter 1’adhésion de la communauté (familiarité du protocole, peu d’appren-
tissage nécessaire, facilité d’utilisation, langage algorithmique équivalent).

Ce travail de recherche privilégie les pistes de développement
qui améliorent efficacement la détection des petits séismes avec
les outils standards de détection actuels, tout en approfondissant
I’interaction Homme-machine.
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2.3.3 Comment réduire la détection des petits séismes
contaminés par le bruit a partir de Dlinteraction
Homme-machine ?

Le fait que de vrais événements détectés (principalement des séismes et
des tirs de carriére) soient contaminés par du bruit est a relier au processus
d’association lui-méme. En effet, comme cela a été évoqué précédemment, le
principe d’association se base sur les temps d’arrivées des pointés, et non sur
le signal lui-méme. Par conséquent, pour une fenétre temporelle donnée, des
temps d’arrivée correspondant aux arrivées des différentes phases sismiques (P
et S) peuvent &tre groupés avec des temps d’arrivée qui ne sont reliés qu’a du
bruit.

Trois pistes sont envisageables pour limiter le groupement de vrais pointés
avec des faux pointés. Il est possible d’agir directement au niveau des pointés
et/ou au niveau du processus méme d’association et/ou au niveau de l’origine
créée de chaque événement.

eAgir au niveau des pointés ?

Réduire la quantité de faux pointés produite offre 'avantage de désengorger
le processus d’association et de limiter les fausses associations. En effet, I'uti-
lisation des caractéristiques du signal (via les spectrogrammes ou les formes
d’onde) sur une fenétre temporelle centrée sur les temps d’arrivée de tous les
pointés effectués permettrait de distinguer plus spécifiquement un temps d’ar-
rivée, qui renseigne une phase sismique, d'un temps d’arrivée, qui signale du
bruit. De cette maniére, une labélisation des phases sismiques reconnues pour-
rait faciliter la suppression de tous les pointés générés par le bruit. Des études
de reconnaissance des différentes phases sismiques ont été effectivement réali-
sées en utilisant par exemple l'intelligence artificielle, plus particuliérement les
méthodes basées sur les réseaux neuronaux (MOUSSET et al., 1996 ; GENTILI
et al., 2006 ; Ross, M.-A. MEIER et al., 2018; Y. ZHOU et al., 2019).

Alors que I'implémentation de ces méthodes est une perspective intéressante
pour la surveillance sismique globale comme c’est le cas a I'Institut d’Etudes
Géologiques des Etats-Unis (USGS, YECK et al., 2019), son implémentation
reste plus délicate dans le cadre de la détection régionale de la sismicité. En
effet, ’abaissement des seuils de détection ameéne a décoder des sismogrammes
jusqu’a des rapports signal/bruit trés faibles. Par conséquent, il y a un haut
risque que des phases sismiques qui se détachent a peine du niveau de bruit
moyen soient identifiées comme étant du bruit (McBREARTY et al., 2019; Fu
et al., 2019).

De plus, si les niveaux de bruit enregistré aux différentes stations sont éle-
vés, comme c’est le cas dans les environnements urbains, des pointés correspon-
dant a des signaux impulsifs transitoires de bruit, des pulses d’étalonnage ou
des pointes de bruit peuvent étre facilement identifiés comme étant des vrais
pointés a conserver (Ross, M.-A. MEIER et al., 2018).
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L’objectif étant de développer une procédure qui puisse détecter les pe-
tits séismes avec de faibles rapport signal/bruit, cette derniére piste n’est pas
privilégiée dans ce travail.

En revanche, la piste de travail qui est plutét envisagée est celle d’agir
directement sur les vrais pointés qui vont gouverner la création des vraies as-
sociations. En effet, une paramétrisation plus affinée du processus de pointé
automatique améliorerait a la fois la qualité de ’estimation des temps d’ar-
rivée des phases sismiques et la reconnaissance de l’ensemble des phases qui
interviennent dans la création des événements.

Seulement, cela nécessite de comprendre comment ces pointés automatiques
sont générés et quels sont les facteurs critiques qui déclenchent (ou ne dé-
clenchent pas) un pointé & une station donnée. L’expertise humaine est donc
ici indispensable pour augmenter la performance des algorithmes de détection.
La réponse a ce premier point sera développée dans le chapitre 4.1.

[ —Réponse : chapitre 4.1

eAgir au niveau du processus d’association ?

En définitive, suivant les procédures de détection standards actuelles, les
faux événements ne sont pas générés directement a partir des pures propriétés
du bruit détecté, mais a partir d’une combinaison de temps d’arrivée qui sont
a relier avec des sources complétement indépendantes (Tyler et al., 2018). Agir
au niveau du processus méme d’association est donc une piste indispensable a
considérer.

Les faux pointés étant toujours générés, améliorer le processus d’association
limiterait la création systématique de groupements de vrais pointés avec de faux
pointés. Néanmoins, cela demande de comprendre comment fonctionnent les al-
gorithmes d’association implémentés dans les procédures de détection standard
et quels sont les paramétres décisifs qui contrélent la qualité du processus d’as-
sociation. L’expertise humaine est la-encore essentielle pour accroitre ’efficacité
des algorithmes d’association. La réponse a ce deuxiéme point sera développée
dans le chapitre 4.2.

— Réponse : chapitre 4.2
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eAgir au niveau de l'origine créée de chaque événement ?

Agir au niveau des événements détectés est une opération délicate car cela
implique que la fausse association ait déja été créée et que 1’événement ait
été localisé avec cette présence de bruit a 1 ou 2 stations, voire plus dans les
cas les plus difficiles. Une premiére piste qui peut étre évoquée est d’utiliser
les caractéristiques du signal pour distinguer de maniére automatique ce qui
révele du bruit transitoire impulsif a une station donnée ou de phases sismiques
a une autre station.

Seulement, les signaux sismiques, provenant d’une seule source décorrélent,
méme avec de légéres déviations du chemin parcouru par les ondes émises a par-
tir de cette source (HARRIS, 2006 ; DICKEY et al., 2019). Par conséquent, pour
un méme événement donné, la variabilité des signaux sismiques enregistrés a
plusieurs stations peut significativement dégrader la possibilité de distinguer
clairement tous les signaux associés a cet événement, de ceux associés a uni-
quement du bruit transitoire impulsif.

Cette tache de discrimination peut étre aussi d’autant plus difficile que le
bruit d’origine anthropique présente des amplitudes et un contenu fréquen-
tiel similaires a ceux des signaux sismiques régionaux (HUuTTON et al., 2010;
INBAL et al., 2018 ; PEROL et al., 2018). Pour ce travail de thése, cette piste de
recherche n’est pas sélectionnée.

Elle n’est pas privilégiée également car la procédure de détection standard
qui est utilisée produit un catalogue d’événements a multiples origines. Chaque
événement dans le catalogue contient plusieurs origines comme décrit dans la
Figure 2.6. Méme si une origine préférentielle est fixée automatiquement par
défaut, il est alors probable d’agir sur la sélection préférentielle de cette origine
de facon a éviter toute origine contaminée par du bruit.

C’est donc sur l'optimisation de cette sélection que ce travail de thése se
penche. Seulement, cela implique d’identifier des critéres de sélection qui soient
différents de ceux déja disponibles par défaut, et qui soient décisifs pour le choix
optimal de cette origine préférentielle. L’expertise humaine est une nouvelle
fois indispensable a ’amélioration des algorithmes qui interviennent dans la
sélection des origines préférentielles d’'un catalogue multi-origine. La réponse a
ce troisiéme point sera développée dans le chapitre 4.3.

[ — Réponse : chapitre 4.3
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2.3.4 Comment réduire la détection des faux événements
a partir de ’interaction Homme-machine ?

Le contexte de la zone d’étude (une zone urbaine par exemple), le niveau
de densification du réseau sismique et/ou la valeur du seuil de détection sont
autant de facteurs qui vont contribuer a générer une importante quantité de
pointés automatiques qui ne vont pas uniquement correspondre a des arrivées
d’ondes de volume (P et S). Un faux événement est le produit d’une association
de faux pointés qui ne sont pas reliés a un temps d’arrivée des ondes sismiques.

Deux options sont possibles pour diminuer le taux de faux événements : ou
bien agir avant le processus d’association, en se focalisant sur les faux pointés,
ou bien agir aprés le processus d’association, en cherchant a éliminer les faux
événements détectés.

eAgir au niveau des faux pointés ?

Comme décrit précédemment, l'implémentation d'un processus de recon-
naissance et d’élimination des faux pointés a partir des caractéristiques du
signal est une opération délicate. Les faibles rapports signal/bruit qui sont
utilisés pour détecter des petits séismes augmentent fortement les risques d’er-
reur d’identification des phases sismiques de trés faible amplitude notamment.
Cette piste de travail n’est donc toujours pas considérée.

eEliminer les faux événements ?

L’Homme a l'expertise physique d’éliminer les faux événements détectés, en
inspectant essentiellement 1’aspect du signal enregistré aux stations qui sont
intervenues dans le processus de fausse association. Il repére assez aisément un
ensemble non cohérent et aléatoire de signaux. Seulement, face a des centaines
de faux événements détectés par jour, suite a un abaissement des seuils de dé-
tection et une augmentation des volumes de sismogrammes a traiter, 'expertise
humaine seule ne suffit plus.

Une automatisation du processus de reconnaissance des faux événements
détectés allégerait donc 'opération de revue et d’élimination de ces événements
qui parasitent les catalogues de séismes produits.

En sismologie, les outils de ’apprentissage machine ont été largement utili-
sés pour classer une diversité d’événements depuis les années 1990 (DowLA et
al., 1990; J. WANG et TENG, 1995; TIIRA, 1999 ; MAGGI et al., 2017 ; PEROL et
al., 2018 ; LINVILLE et al., 2019; RoUET-LEDUC et al., 2019 ; ZHU et al., 2019).
Ces outils ont également un faible cofit opérationnel de calcul, peuvent analyser
d’importants volumes de données en temps réel (M. MEIER et al., 2019) et ont
déja fait leur preuve dans la détection routiniére des signaux sismo-volcaniques
(par exemple MALFANTE et al., 2018).
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C’est donc naturellement vers ces outils que je me dirige. Cependant,
construire des classifieurs automatiques d’événements performants demande de
comprendre avant tout comment définir de fagon robuste un faux événement
relativement a un vrai événement.

Pour une optimisation du processus de discrimination automatisée des faux
événements, ’expertise humaine sera donc une ressource précieuse et un guide
nécessaire pour construire un classifieur fiable basé sur ’apprentissage ma-
chine. De plus, il faudra ajouter a cette classification automatique des faux
événements, un processus d’élimination de ces derniers, de fagon a désengor-
ger la base de données d’information parasite. La réponse a ces deux derniers
points sera développée dans le chapitre 5.

[ — Réponse : chapitre 5 ]

2.3.5 comment diminuer efficacement la charge de discri-
mination manuelle des événements du catalogue ?

Si la question des faux événements détectés est résolue dans la sous-section
2.3.4, il n’en demeure pas moins que le catalogue généré contient aussi de tres
nombreux vrais événements a identifier. En effet, dans le cas de la détection
des petits séismes, la détection des faux événements représente 96% du total
des détections. La charge de revue manuelle des événements est donc consé-
quemment allégée avec 'introduction potentiel d'un classifieur automatique de
faux et de vrais événements, supprimant 1'effet du "cri du loup".

En revanche, il reste encore ces milliers de vrais événements émis qui ne sont
pas encore identifiés. Parmi ces vrais événements, on compte principalement
des séismes et des tirs de carriére. La tache de discrimination de ces deux
derniers types d’événements n’est en fait pas toujours aisée et peut donc étre
trés cotiteuse en temps.

Les principaux critéres usuellement utilisés pour discriminer les séismes des
tirs de carriére sont la proximité de 1’événement localisé a un site de carriére
(Figure 2.15), le jour et I’heure de I’événement (Figures 2.16 et 2.17) ainsi que
la similarité des formes d’onde (Figure 2.18) (VOYLES et al., 2019).
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FiGURE 2.15: Localisations des tirs de la carriére de Raon-1'Etape dans les
Vosges de juillet a décembre 2016. L’emplacement de la carriére est figuré par
une étoile blanche et la localisation des tirs est représentée par des cercles.
Les cercles de couleur (rouge, bleu, turquoise, violet, orange, vert, jaune et
rose) correspondent aux tirs qui sont utilisés pour montrer les formes d’onde
associées, enregistrées a la station ECH (voir Figure 2.18).
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FI1GURE 2.16: Exemple de distribution du nombre de tirs de carriére en fonction
des heures de la journée pour la carriére de Raon-I’Etape dans les Vosges de
juillet & décembre 2016.
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FIGURE 2.17: Exemple de distribution du nombre de tirs de carriére effectués
en fonction du jour de la semaine pour la carriére de Raon-I'Etape dans les
Vosges de juillet a décembre 2016.
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Si les séismes ont lieu et se localisent plutot aléatoirement, les tirs de carriére
sont normalement reliés a leur lieu de production. Ils dépendent donc trés
fortement des heures et jours d’ouverture de la carriére ainsi que du calendrier
des tirs. De plus, en se basant sur les formes d’onde, il est possible d’identifier
chaque tir a une carriére donnée. En effet, des sismogrammes enregistrés a la
méme station, et correspondant a des tirs provenant d’'une méme carriére, sont
visuellement similaires (Figure 2.18) (ISRAELSSON, 1990). Ainsi, I’ensemble de
tous ces arguments permettent de donner un diagnostic assez sfir pour repérer
un tir.

Cependant, si cela est vrai pour les carriéres trés actives et qui géneérent
des signaux qui se distinguent aisément du bruit ambiant enregistré, le diag-
nostic peut en fait s’avérer trés complexe. Plusieurs raisons a cela peuvent étre
évoquées :

e La mémorisation difficile de tous les signaux associés a chaque carriére
sans base de données conséquente & laquelle se référer (Figures 2.19,
2.20, and 2.21);

e La revue manuelle des événements chronologique, avec une impossibi-
lité d’effectuer des aller-retour dans la base de données sans y passer
beaucoup de temps;

La probabilité plus élevée de détecter des signaux de faible amplitude
associés a des carriéres trés peu actives et/ou trés peu connues, voire
inconnues, lorsque les seuils de détection sont abaissés;

e La localisation variable des tirs au sein méme d’une seule carriére en-
gendrant des dissimilarités dans les formes d’ondes, qui sont fortement
influencées par les effets du milieu de propagation (Figure 2.22);

La dissimilarité des signaux enregistrés a différentes stations pour un
meéme tir de carriére, fortement influencés la encore par les effets du
milieu de propagation (Figure 2.23);

La probabilité non négligeable de séismes enregistrés proches des sites de
carriéres et/ou pendant les heures ouvrées et/ou possédant des caracté-
ristiques du signal similaires aux tirs de carriére, du fait par exemple de
la faible profondeur de leur source (Figure 2.24).

Face a la grande diversité des formes d’ondes, la distinction entre séismes et
tirs de carriére peut devenir donc trés subjective et demande une trés grande ex-
pertise. Par conséquent, discriminer des milliers de vrais événements en temps
limité devient difficile. La piste envisagée pour alléger cette charge laborieuse
de discrimination des événements est donc ’automatisation du processus de
classification des séismes et des tirs de carriéres en utilisant 1’apprentissage
machine (rapidité, objectivité, évolutivité).
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Seulement, pour obtenir une classification fiable et robuste, cela demande de
déterminer précisément quels sont les critéres qui vont permettre de distinguer
de fagon univoque un séisme d’un tir de carriére. L’expertise humaine sur les
propriété des signaux enregistrés apparait alors indispensable pour améliorer la
performance des algorithmes de classification basés sur l’apprentissage machine.
La réponse a ce dernier point sera développée dans le chapitre 5.

—Réponse : chapitre 5

Le chapitre suivant (chapitre 3) est réservé a la présentation de
I’objet d’étude. Chaque sous-chapitre présentera en quoi cet ob-
jet est le terrain idéal pour le développement d’une méthode qui
puisse lever les plus grandes limitations a la détection des petits
séismes.
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FIGURE 2.18: Exemples de similarité de formes d’onde enregistrées a la station
ECH pour différents tirs de la carriére de Raon-I’Etape dans les Vosges.
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F1GURE 2.19: Exemples de formes d’ondes enregistrées a la premiére station sur
la composante verticale pour différentes carriéres de juillet a décembre 2016 :
(a), (b), (c) carriéres d’Arcey, de Chaffois et de Berche dans le Doubs en France,
(d) Carriére de Bernécourt dans le département de la Meurthe-et-Moselle en
France (e) carriére d’Attiswil dans le canton de Bern en Suisse, (f) carriére
de Grof-Bieberau dans la région de Hesse en Allemagne, (g), (h) carriéres
de Dotternhausen et de Dunningen dans la région de Baden-Wiirttemberg en
Allemagne.
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(g)

FI1GURE 2.20: Exemples de formes d’ondes enregistrées a la premiére station sur
la composante verticale pour différentes carriéres de juillet & décembre 2016 :
(a), (b), (c), (d) carriéres d’Efringen-Kirchen, d’Ehingen, de Hausach-Dorf et
de Mauer dans la région de Baden-Wiirttemberg en Allemagne, (e) carriére de
Gerbamont dans le département des Vosges en France, (f) carriére de La Heutte
dans le Jura bernois en Suisse, (g) carriére de Lepuix-Gy dans le Territoire de
Belfort en France, (h) carriére de Marchaux dans le département du Doubs en
France.
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FiGURE 2.21: Exemples de formes d’ondes enregistrées a la premiére station
sur la composante verticale pour différentes carriéres de juillet & décembre
2016 : (a), (b), (c), (d), (e) carriéres de Trochtelfingen, de Rems-Murr, de
Schelklingen-Vohenbronnen, de Schuttertal et de Seebach dans la région de
Baden-Wiirttemberg en Allemagne, (f) carriére de Pagny-sur-Meuse dans le
département de la Meuse en France, (g) carriére de Saint-Amé dans le dépar-
tement des Vosges en France, (h) carriére de Villigen dans le canton d’Aargau
en Suisse.
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FIGURE 2.22: Exemples de variations dans les formes d’onde enregistrées a la

station FR.WLS sur la composante verticale pour des tirs ayant eu lieu a la
carriére de Raon-1'Etape dans les Vosges.
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FIGURE 2.24: Exemples de signaux difficilement discriminables enregistrés a la
station SLE pour un séisme (a) et un tir de carriére (b).
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3.1. UNE ZONE D’ETUDE SITUEE AU COEUR D’UN DOMAINE
INTRAPLAQUE CONTINENTAL

3.1 Une zone d’étude située au coeur d’un do-
maine intraplaque continental

3.1.1 Une zone géologiquement complexe

La région située au Nord-Est de la France et au dela des frontiéres est
d’abord une zone géologiquement complexe (Figure 3.1). Elle souligne une tec-
tonique complexe marquée par une histoire géologique ancienne et variée. Elle
regroupe d’importants massifs paléozoiques appartenant a la chalne varisque
d'Europe de 'ouest : le Massif des Vosges, le Massif de la Forét Noire, une par-
tie du Massif Central (plus particuliérement le Massif du Morvan), le Massif
de I’Ardenne et du Brabant, ainsi que le Massif de Rhenish.

Elle contient également des grands bassins sédimentaires épicontinentaux
d’age Méso-Cénozoique : la partie Est du Bassin Parisien et une partie du
bassin sédimentaire au Sud de la Baviére allemande.

Cette région est traversée par deux segments majeurs du systéme de rifts
Cénozoiques Ouest-Européen qui sont disposés concentriquement autour du
front alpin : le graben de la Hesse et du Rhin Supérieur orientés NNE-SSO
puis les fossés d’effondrement du Massif Central (les Limagnes) et de la Bresse
orientés N-S. Cette zone inclut d’ailleurs une partie de la chaine alpine. Associée
a cette chaine alpine, la zone renferme aussi un bassin flexural synorogénique,
le Bassin Molassique Suisse.

Enfin, cette zone comporte le Massif du Jura d’age Miocéne (Jura Frangais,
Jura Suisse, Jura Souabe).
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Ficure 3.1: Principales unités géologiques du centre Ouest de l'Europe. La
zone d’étude est marquée par un cadre noir. BR : Fossé de la Bresse, V :
Vosges, BF : Forét Noire, URG : Graben du Rhin Supérieur, HG : Graben de
la Hesse, LG : Graben du Leine, RM : Massif de Rhenish, E : Eifel, LRE :
Systéme d’effondrement du Rhin Inférieur, EG : Graben de I’Eger. Modifié
d’aprés Tesauro et al. (2005).
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3.1.2 Une zone continentale stable

La zone d’étude est une zone continentale intraplaque relativement stable.
Les vitesses de surface horizontales et verticales, déterminées grace aux données
GNSS montrent des valeurs trés faibles, de ’ordre de 'incertitude des mesures :
une valeur moyenne de 0.37 + 0.30 mm/yr pour les vitesses horizontales dans
un référentiel Eurasie et une valeur moyenne absolue de l'ordre de 0.4 + 0.52
mm /yr pour les vitesses verticales (HENRION et al., 2020).

L’étude du champ de vitesses horizontales montre des directions de ces
vitesses hétérogénes avec de faibles amplitudes de vitesse sur toute la zone
d’étude, a ’exception de la région comprise entre le front du Jura et les Alpes.
En effet, un mouvement léger est observé en direction du Nord (vitesses hori-
zontales de ’ordre de 0.49mm + 0.33mm/an, HENRION et al., 2020).

L’analyse supplémentaire du tenseur des taux de déformation, établi a par-
tir du tenseur des gradients de vitesse, met en évidence un raccourcissement
NW-SE a NNW-SSE entre le front Alpin et le Jura, de l'ordre de 2.86 + 0.2e-
09 par an (RABIN et al., 2018) & 7e-09 par an (HENRION et al., 2020). En
revanche, I’analyse de ce tenseur ne montre pas de déformation géodésique ap-
parente claire au Nord du front jurassien, c’est-a-dire sur tout le reste de la
zone d’étude. Cependant, la quasi-absence de mouvements tectoniques mesu-
rables actuellement par la géodésie ne signifie pas une absence de déformation
de cette région.

Cette zone continentale intraplaque stable enregistre effectivement quoti-
diennement une sismicité de faible magnitude qui reste encore difficile a expli-
quer sous des conditions actuelles de déformation tres faible, voire négligeable,
comme c’est le cas pour nombreuses autres zones intracontinentales a 1’échelle
du globe (GALLEN et al., 2018 ; BEZADA et al., 2019; LECLERE et al., 2019).

3.1.3 Une zone sismique de faible magnitude

La zone d’étude est donc principalement caractérisée par une sismicité
de faible magnitude. Comme de nombreuses autres zones intraplaques conti-
nentales, cette sismicité semble diffuse au premier ordre a 1’échelle du ré-
seau complexe de failles, qui est encore peu connu (BowMAN et al., 1990;
GAGNEPAIN-BEYNEIX et al., 1982; TUTTLE et al., 2002 ; CAMELBEECK et al.,
2007 ; TERRINHA et al., 2009; MARTINEZ-GARZON et al., 2019).
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De plus, cette zone d’étude a épisodiquement hébergé une sismicité de plus
forte magnitude, comme ’atteste I’ensemble de la sismicité instrumentale ainsi
que la sismicité historique de la zone (voir Annexe A pour la zone du Graben
du Rhin Supérieur). En effet, plusieurs séismes de magnitude modérée ont
d’abord été sporadiquement enregistrés. Par exemple, le séisme d’Albstadt de
1978, ayant eu lieu dans le Jura Souabe, affiche une magnitude locale de 5.7
(HAESSLER, P. HoANG-TRONG et al., 1980), les séismes de Remiremont de
1984 et de Rambervillers de 2003, ayant eu lieu dans les Vosges, présentent
respectivement une magnitude locale de 4.8 (HAESSLER et H. HOANG-TRONG,
1985) et 5.4 (AUDIN et al., 2002), et le séisme de Correngon, situé dans les Alpes
de I’Ouest prés de Grenoble, a une magnitude locale estimée & 5.3 (THOUVENOT
et al., 2003).

De plus larges séismes ont également été répertoriés historiquement comme
le séisme de Bale de 1356 dont la magnitude de moment (Mw) a été estimée
entre 6 et 7.1 (MEGHRAOUI et al., 2001; FAH, GISLER et al., 2009 ; SHIPTON
et al., 2017) ou le séisme de Visp plus au Sud datant de 1855 (Mw 6.2 ; FAH,
MOORE et al., 2012).

Si l'on s’intéresse a l'activité sismique réguliére de la zone d’étude depuis
2012, date a partir de laquelle les événements autres que les séismes ont été
intégrés au catalogue de sismicité, la majeure partie des séismes qui sont détec-
tés par le systéme de détection du Réseau National de Surveillance Sismique
(BCSF-RéNaSS) ont des magnitudes locales (calculées sur la composante ver-
ticale) comprises entre 1 et 3 (Figure 3.2).

La distribution des magnitudes locales MLv des séismes pour la période
2012-2020 montre que 70% des événements ont une magnitude inférieure & 1.5
et la quasi-totalité des séismes enregistrés ont une magnitude inférieure a 2.0
(Figure 3.3).
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FicuRrE 3.2: Distribution des séismes détectés par le Réseau National de Sur-
veillance Sismique (RéNaSS) frangais pour la période janvier 2012-juillet 2020.
Localisations extraites de la base de données RéNaSS selon un protocole FDSN
a l'adresse http://renass-scl.u-strasbg.fr:8080.
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F1cURE 3.3: Distribution des magnitudes des séismes détectées par le Réseau
National de Surveillance Sismique (RéNaSS) frangais pour la période janvier
2012-juillet 2020. La magnitude estimée est une magnitude locale calculée sur
la composante verticale (MLv).
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A partir de la représentation graphique de la distribution cumulative
fréquence-magnitude des séismes détectés pour cette méme période 2012-2020,
il est possible d’estimer une valeur de magnitude de complétude environ égale
a 1.2. (Figure 3.4).
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F1GURE 3.4: Distribution cumulative fréquence-magnitude des séismes détectés

par le Réseau National de Surveillance Sismique (BCSF-RéNaSS) francais pour
la période janvier 2012-juillet 2020.
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3.1.4 Une zone a activité anthropique réguliére

Trés urbanisée et économiquement active, cette zone enregistre quotidien-
nement des signaux qui sont reliés a une activité d’origine anthropique, princi-
palement des tirs de carriére, mais aussi une sismicité induite par la géothermie
profonde ainsi qu’une trés faible activité sismique reliée a ’exploitation miniére.
(Figure 3.5).
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FicURE 3.5: Distribution et répartition des événements d’origine anthropique,
majoritairement des tirs de carriére, détectés par le Réseau National de Sur-
veillance Sismique (BCSF-RéNaSS) frangais pour la période janvier 2012-juillet
2020.
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Une carte de la distribution des sites de carriéres, des sites géothermiques
ainsi que quelques sites miniers, corrélant avec 1’activité d’origine anthropique
détectée précédemment, montre une large prépondérance de l'activité de car-
riére & travers tout le site d’étude (Figure 3.6). Un peu plus de 96% des évé-
nements d’origine anthropique détectés par le BCSF-RéNaSS correspondent a
des tirs de carriéres.

BRGM quarry sites
Quarries involved in the 2016 Blasts
Geothermal Sites

Mine Sites

Leaflet | Map files by Stamen Desian, under CC BY 3.0. Data by © Opens

FIGURE 3.6: Densité de population et distribution des sites de car-
riére, de géothermie profonde et de quelques mines dans la zone
d’étude. D’aprés https://public.opendatasoft.com/explore/dataset/
geonames-all-cities-with-a-population-1000/table/?disjunctive.
country pour la base de données sur la densité de population, d’apres
http://geoservices.brgm.fr/odmgm pour la base de données des car-
riéeres du Bureau de Recherches Géologiques et Miniéres (BRGM),
d’aprés http://www.seismo.ethz.ch/en/knowledge/things-to-know/
geothermal -energy-earthquakes/geothermal-energy-in-switzerland/
pour les sites de géothermie en Suisse, d’aprés www.geotis.de pour les sites de
géothermie en Allemagne et d’aprés http://www.energies-renouvelables.
org pour les sites de géothermie en France. Les carriéres représentées en noir
correspondent aux carriéres dont les tirs ont été identifiés et détectés au cours
de ’année 2016.
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De plus, les magnitudes locales (MLv) de ’ensemble des événements étique-
tés comme tirs de carriére présentées sur la Figure 3.5 pour la période 2012-2020
sont de méme ordre de grandeur que celles des séismes naturels enregistrés (Fi-
gure 3.7). La totalité des tirs enregistrés ont une magnitude locale inférieure a
2.8 et environ 48% d’entre eux ont des magnitudes locales comprises entre 1.5
et 1.6.

La probabilité d’enregistrer plus de tirs de carriére, lorsque la détection des
petits séismes est accentuée, est donc grande.
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Vertical Local Magnitude (Mlv)

FicURE 3.7: Distribution des magnitudes locales calculées sur la composante
verticale (Mlv) pour I’ensemble des tirs de carriére détectés pour la période
janvier 2012-juillet 2020.

Par ailleurs, le Réseau National de Surveillance Sismique (BCSF-RéNaSS)
frangais met & disposition une base de données de séismes et de tirs de carriére
qui sont robustement discriminés depuis 2016 par des analystes. Cette zone est
donc particuliérement intéressante pour monter un protocole de discrimination
automatique des tirs de carriére et des séismes.

Elle donne également la possibilité de comprendre finement les caracté-
ristiques dominantes qui vont solidement différencier les tirs de carriére des
séismes. En effet, cette zone d’étude est une zone géologique et structurale
complexe comme peut le témoigner la variabilité pétrographique de ses roches.
Par conséquent, a 1’échelle de la zone d’étude, ’ensemble des carriéres vont
exploiter une diversité de matériaux produits a partir de roches sédimentaires,
de roches volcaniques, de roches plutoniques et de roches métamorphiques (Fi-
gure 3.8).
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FicURE 3.8: Distribution des carriéres dans la zone d’étude en fonction de la
nature géologique des terrains d’extraction. Les carriéres représentées en noir
correspondent aux carriéres dont les tirs ont été identifiés et détectés au cours de
I’année 2016. D’aprés https://services.bgr.de/wms/geologie/igme5000/7
pour la carte géologique et la représentation des structures et d’aprés http://
geoservices.brgm.fr/odmgm pour la base de données des carriéres du Bureau
de Recherches Géologiques et Miniéres (BRGM).
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Roches sédimentaires. Par exemple, la carriére de Hauteville-Lompnes
située au Sud de Bourg-en-Bresse dans le Massif du Jura frangais exploite un
calcaire apparenté au marbre du Jurassique Supérieur. La carriére de Pagny-
sur-Meuse située a proximité de la ville de Nancy dans le Bassin Parisien ex-
ploite un calcaire gélif corallien ou oolithique du Jurassique Supérieur. Les
carriéres d’Heidenheim et de Schelklingen-Vohenbronnen situées dans le Jura
Souabe en Allemagne, a proximité d’Ulm, exploitent un calcaire pur du Juras-
sique Supérieur. La carriére de la Heutte située dans le Massif du Jura Bernois
en Suisse exploite un calcaire marneux du Jurassique Supérieur (Figure 3.9 :
1,2, 3,4 et5).

La carriére de Chaffois située dans le Massif du Jura, prés de la ville de
Pontarlier, la carriére d’Epagny située prés de la ville de Dijon a l'extréme
bord Sud-Est du Bassin Parisien ainsi que la carriére de Bainville-sur-Madon
située a proximité de Nancy dans le Bassin Parisien exploitent le calcaire a
polypiers du Jurassique Moyen (Figure 3.9 : 6, 7 et 8).

La carriéere de Cielle située pres de la ville de Rendeux en Belgique exploite
le grés du Permien (Figure 3.9 9).

Roches volcaniques. La carriére de Trapp de Raon-I’Etape située dans
les Vosges exploite du basalte porphyrique calco-alcalin d’age Dévonien a Car-
bonifére Inférieur. La carriére de Lepuix-Gy située au sud des Vosges dans le
Territoire de Belfort exploite la rhyodacite du Carbonifére Figure 3.9 : 10 et
11).

Roches plutoniques. La carriére de Saint-Amé située a proximité de la
ville de Remiremont dans le Massif des Vosges exploite du granite de la fin du
Carbonifére. La carriére de Waldhambach située prés de la ville de Landau en
Allemagne et la carriére de Seebach située dans le Massif de la Forét Noire en
Allemagne exploitent également du granite d’age Carbonifére. La carriére de
Jettenbach située en Baviére allemande extrait quant a elle de la microdiorite.
La carriere de Grof-Bieberau située dans le canton de Hesse en Allemagne
exploite du gabbro Figure 3.9 : 12, 13, 14, 15 et 16).

Roches métamorphiques. La carriéere d’Heppenheim située au sud de
Frankfurt dans le canton de Hesse en Allemagne exploite de la granodiorite
avec des inclusions d’amphibolite de la fin du Carbonifére. La carriére de Dot-
ternhausen située au bord du Massif du Jura Souabe en Allemagne exploite du
calcaire mais également des schistes bitumineux du Jurassique Moyen. Enfin,
la carriére de Hausach située dans le Massif de la Forét Noire en Allemagne
exploite du gneiss du Carbonifére (Figure 3.9 : 17, 18 et 19).
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F1cURE 3.9: Distribution des exemples de carriére évoquées dans le paragraphe
précédent pour la diversité globale du matériel qui est extrait dans la zone
d’étude : roches sédimentaires calcaires de (1) Hauteville-Lompnes, (2) Pagny-
sur-Meuse, (3) Heidenheim, (4) Schelklingen-Vohenbronnen, (5) La-Heutte, (6)
Chaffois, (7) Epagny, et (8) Bainville-sur-Madon; roches sédimentaires gré-
seuses de (9) Rendeux; Roches volcaniques basaltiques de (10) Raon-I’Etape
et (11) rhyodacitiques de Lepuix-Gy; roches plutoniques granitiques de (12)
Saint-Amé, (13) Waldhambach, (14) Seebach; roches plutoniques microdio-
ritiques de (15) Jettenbach et gabbroiques de (16) GroR-Bieberau; roches
métamorphiques & passées amphibolitiques de (17) Heppenheim, rpches mé-
tamorphiques schisteuses de (18) Dotternhausen et roches métamorphiques
gneissiques de (19) Hausach.
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Produits dans des milieux d’une extréme diversité pétrographique et litho-
logique, ces tirs engendrent une variabilité de signaux qui sont détectables par
les réseaux de stations. Cette variabilité observée dépend a la fois de la na-
ture pétrographique du matériel extrait (Figures 3.10, 3.11, 3.12 et 3.13),
des pratiques de dynamitage mais également de l'orientation du front de taille
(STuMmP et al., 2001).

De plus, méme si les formes d’ondes enregistrées aux mémes stations se
ressemblent trés fortement pour des tirs ayant eu lieu dans une méme carriére,
les différents emplacements possibles pour ces tirs peuvent entrainer des va-
riations sensibles dans les formes d’onde (BONNER et al., 2003). En effet, en
plus d’une orientation variable du front de taille, des variations dans la nature
du gisement pour un méme site (présence d’'un filon, dureté ou porosité diffé-
rentielle, etc.) peuvent également modifier substantiellement les propriétés des
roches formant ce front de taille. Enfin, la couverture azimutale des stations
ainsi que les effets du milieu de propagation vont aussi fortement influencer la
variabilité observée de ces formes d’onde enregistrées.

De part la variabilité intrinséque observée des signaux associés
aux tirs de carriére dans la zone d’étude, cette zone est donc
idéale pour comprendre comment efficacement discriminer les
tirs de carriére des séismes. C’est justement cette variabilité de
formes d’onde observées dans cette zone d’étude que je souhaite
exploiter pour solidement définir les caractéristiques fortes qui
vont aider a distinguer avec une grande précision et exactitude
les tirs de carriére des séismes.
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Ficure 3.10: Exemples de variabilité des formes d’ondes enregistrées sur la
composante verticale a la premiére station pour des tirs de carriére ayant eu

lieu dans des roches sédimentaires.
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(a) Basalte porphyritique de Raon-I’Etape |

(station ECH : 30.64 km)

b) Rhyodacite de Lepuix-Gy (station
RONF : 11.44 km)

FicURE 3.11: Exemples de formes d’ondes enregistrées sur la composante verti-
cale a la premiére station pour des tirs de carriére ayant eu lieu dans des roches
volcaniques.
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FI1GURE 3.12: Exemples de formes d’ondes enregistrées sur la composante verti-
cale a la premiére station pour des tirs de carriére ayant eu lieu dans des roches
plutoniques.
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F1GURE 3.13: Exemples de formes d’ondes enregistrées sur la composante verti-
cale a la premiére station pour des tirs de carriére ayant eu lieu dans des roches
métamorphiques.

3.2 Des données volumineuses et de qualité

3.2.1 Un réseau sismologique récemment densifié

eUn apport supplémentaire de stations permanentes de qualité.

Le réseau sismologique de la zone d’étude a grandement été densi-
fié depuis ces derniéres années grace a différents projets. On notera tout
d’abord le construction du Réseau Large Bande Permanent dans le cadre
dans le cadre de l'infrastructure de recherche RESIF (https://www.allenvi.
fr/groupes-transversaux/infrastructures-de-recherche/resif). En par-
ticulier le volet Large Bande (RESIF-CLB) a permis la construction d’un réseau
de 160 stations large bande sur ’ensemble du territoire frangais métropolitain.

Plus particuliérement dans notre zone d’étude, ce projet a permis la moder-
nisation du réseau courte période existant depuis les années 1980 en réseau large
bande (3-composantes, large bande, transmission temps réel 3G/4G-ADSL,
etc.). Parmi l’ensemble de ces stations, on compte 6 stations construites avec
des capteurs installés en fond de puits ( 5m) en 2016, évoluant vers 11 en 2020.

En complément, un projet d’instrumentation sismologique a été mené par
I’'Ecole et Observatoire des Sciences de la Terre (EOST) et Electricité de Stras-
bourg (projet EGS, ADEME, 2016-2020) pour densifier le réseau en Alsace, et
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améliorer la détection de séismes de faible magnitude. Ce réseau permet notam-
ment d’étre en mesure de mieux surveiller les éventuelles séquences sismiques
induites par 1’activité industrielle, ’activité géothermique notamment.

Les stations construites sont instrumentées a la fois par des capteurs ac-
célérométriques et des capteurs vélocimétriques moyenne et large bande. La
difficulté d’'instrumenter cette région avec des stations de qualité réside dans
le fait que celle-ci est trés urbanisée comme précisé ci-dessus, mais aussi dans
la nature méme du sol en plaine d’Alsace, ou la couverture sédimentaire peu
consolidée perturbe les signaux sismiques. Ainsi, certains capteurs ont été ins-
tallés jusqu’a 45 m pour limiter les effets de site.

En parall€le, les instituts de surveillance sismologiques en Allemagne ont
également densifié et modernisé leur réseau de 1’autre c6té de la frontiére. L’en-
semble des signaux sont quotidiennement partagés grace aux différents centres
d’archivage et de distribution des données, dont l'initiative EIDA (European In-
tegrated Data Archive), par chacun des organismes en charge de la surveillance
sismologique de chacun des pays ou des landers.

eUne forte densification du réseau par des stations temporaires.

En plus de la densification des stations permanentes depuis 2015, un réseau
temporaire AlpArray-Fr a pu compléter le réseau permanent jusqu’en 2020
(Figure 3.14). L’édification de ce réseau temporaire a été inscrit dans le cadre du
projet européen AlpArray qui a permis d’impliquer plusieurs pays européens,
dont la France, pour densifier le réseau permanent autour de la chaine alpine
(HETENYI et al., 2018).

De ce fait, la période 2016-2019 correspond a un maximum de couverture
des stations & 1’échelle de la zone d’étude (apport des stations permanentes
francgaises, allemandes, suisses, belges puis des stations temporaires AlpArray).
Elle constitue donc une période propice pour développer cette méthodologie
de détection des petits séismes dans la zone.
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Ficure 3.14: Evolution de la couverture de stations dans la zone d’étude depuis
2012.
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ePotentiel de détection du réseau densifié

Le suivi de I’évolution de la détection de la sismicité naturelle par le BCSF-
RéNaSS pour la période 2012-2020 montre un nombre de petits séismes qui
augmentent en fonction de la densification progressive du réseau de stations
(Annexe A). La distribution des magnitudes des séismes autour de 1 a été effec-
tivement multipliée par 8 depuis 2012. De plus, un nombre de 2.5 fois plus de
séismes de magnitude inférieur a 1 ont été détectés depuis 2017 ; ce qui corres-
pond au maximum de couverture de stations de la zone d’étude (Figure 3.15).

Si l'on estime approximativement la magnitude de complétude a partir de
la distribution cumulative fréquence-magnitude des séismes pour chaque année
depuis 2013, celle-ci varie trés peu et reste autour de 1.2. Par conséquent,
méme si le nombre de séismes de magnitude locale MLv inférieure a 1.0 a
augmenté trés fortement ces 3 derniéres années, ce nombre supplémentaire de
séismes détectés n’a pas d’incidence majeure sur la valeur de la magnitude de
complétude globale de la zone étudiée, malgré les incertitudes estimées sur le
calcul des petites magnitudes (Figures 3.16 et 3.17).

La détection des événements de magnitude inférieure a 1.2 reste donc en-
core sous-exploitée par le systéme de détection actuel du BCSF-RéNaSS. Il est
important de noter que les stations AlpArray n’ont pas été intégrées au sys-
téme de détection automatiques pendant toute leur période d’activité puisque
les signaux n’étaient pas transmis en temps réel. Ainsi, elles n’ont été utilisées
que pour localiser les événements. Inclure ce réseau dans une procédure de
détection des séismes de faible magnitude offre une opportunité majeure pour
augmenter la détectabilité des petits événements.
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FicUrE 3.16: Distributions cumulatives fréquence-magnitude annuelles des
séismes détectés par le réseau de stations utilisé par le BCSF-RéNaSS pour
la période 2012-2019.
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Ficure 3.17: Distributions cumulatives des séismes détectés par le réseau de
stations utilisé par le BCSF-RéNaSS pour la période 2012-2019 et incertitudes
associées.
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La période 2016-2019 est donc encore une fois la période idéale pour dé-
velopper une procédure de détection qui puisse exploiter au maximum les ca-
pacités de détection du réseau (réseau a maillage plus fin, seuils de détection
plus bas). De cette maniére, un volume de 4 TéraBytes de sismogrammes échan-
tillonnés a 100 Hz sur 3 canaux (2 composantes horizontales et une composante
verticale) est donc disponible pour cette période d’étude.

3.2.2 Un réseau plus sensible au bruit d’origine anthro-
pique

e Caractérisation des stations impliquées dans la détection
des faux événements.

Si la période comprise entre 2016 et 2019 est la meilleure période pour
détecter les petits séismes dans la zone d’étude, il s’avére que I'ajout de stations
supplémentaires, combiné a un seuil de détection plus bas, augmente fortement
le taux de fausses détections, comme expliqué précédemment (Chapitre 2). En
effet, le résultat d’un test de détection automatique sur 4 mois (septembre
2016-décembre 2016) engendre environ 48 000 faux événements.

Une proportion de 26 % des stations temporaires AlpArray utilisées (soit
18 stations) sont effectivement impliquées dans la création d’au moins 10% des
faux événements. Par exemple, des stations telles que A117A et A102A inter-
viennent dans la détection de plus de 20 % des faux événements (Figure 3.18).
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FIGURE 3.18: Taux d’implication des stations temporaires AlpArray (en %)
dans la création de faux événements.

Sil’on compare le taux d’implication des stations AlpArray dans la création
de faux événements a celui des stations permanentes, le taux d’implication di-
minue & 13% pour les stations permanentes. Parmi celles-ci, 2 stations (GIMEL
et OGSI) interviennent dans la création de plus de 25 % des faux événements
(Figure 3.19).
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FIGURE 3.19: Taux d’implication des stations permanentes (en %) dans la créa-
tion des faux événements pour la période septembre 2016-décembre 2016.

Cependant, les stations qui sont en fait le plus impliquées dans la génération
des faux événements sont également celles qui sont largement utilisées pour la
détection automatique des vrais événements.

Par exemple, la station A102A est une des stations AlpArray les plus enga-
gées dans ’élaboration des faux événements (de l'ordre de 21%) pour la période
test septembre 2016-décembre 2016, mais elle est également la station AlpArray
la plus utilisée dans la création des vrais événements pour cette méme période
(de 'ordre de 40%). En définitive, I’ensemble des stations AlpArray qui sont
impliquées dans la création de faux événements interviennent dans 4 a 40% des
vrais détections (Figure 3.20).
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FIGURE 3.20: Taux d’implication des stations temporaires AlpArray (en %)
dans la création des vrais événements pour la période septembre-décembre
2016.
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Quant aux stations permanentes utilisées pour cette méme période test, si
le méme constat peut également étre fait, la part dominante d’implication de
ces stations est plutdt réservée a la création de vrais événements. Des stations
comme KIZ, SLE, GUT, CHMF, FELD ou ECH sont impliquées dans la créa-
tion de plus de 50% des vrais événements. En revanche, elles sont utilisées pour
la détection des faux événements a la hauteur de "seulement" 6 a 16% d’entre
eux (Figure 3.21).
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FIGURE 3.21: Taux d’implication des stations permanentes (en %) dans la créa-
tion des vrais événements pour la période septembre-décembre 2016.

De ce fait, la détection des petits séismes s’accompagne inexorablement
d’'un fort taux de fausses détections car ce sont approximativement les mémes
stations qui interviennent dans la génération des vrais et fausses détections.

eCaractérisation du bruit détecté aux stations

Un niveau de bruit élevé aux hautes fréquences ( > 1 Hz). La
diminution du seuil de détection, combinée a un taux élevé d’enregistrement
de signaux impulsifs variés a des stations localisées proches de centres d’activité
anthropique, augmente les probabilités de détection d’autres signaux que ceux
associés aux séismes.

Par exemple, la station A102A est localisée prés d’'une route a proximité

d’un centre équestre et a environ 2 km de la carriére de Sigmaringen dans le
Sud de I’Allemagne.

L’analyse de la fonction de densité spectrale de puissance pour évaluer le
niveau de bruit de fond de la station A102A montre que la puissance du bruit
aux gammes de fréquences typiques du bruit d’origine anthropique, c’est-a-
dire comprises entre 1 et 10 Hz, est variable et peut augmenter d’environ 20
décibels par rapport a la puissance minimale. Cette puissance de bruit atteint
alors des probabilités plus fortes d’occurrence (de l'ordre de 20 %) par rapport
au modéle de bruit bas (NLNM). Cette station est donc trés sensible au bruit
impulsif transitoire d’origine anthropique.
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Z3.A102A.HHZ 2016-11-13 -- 2016-11-13 (46/46 segments)
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FiGURE 3.22: Densité spectrale de puissance probabiliste calculée pour la sta-
tion A102A. Les courbes grises correspondent aux modeéles de bruit standard
(courbe supérieure = modéle de bruit élevé [NHNM]| et courbe inférieure =
modéle de bruit bas [NLNM] (PETERSON, 1993). Les niveaux de bruit de la
station sont estimés sur une large gamme de fréquences de 0.01 Hz a 16 Hz
(soit une période de 100 secondes & 0.0625 secondes). En bas du graphique
sont affichés les données qui ont servi au calcul de cette fonction. Le rectangle
vert représente les données disponibles et le rectangle bleu montre 1'étendue
des données qui ont servi au calcul. Ces spectres ont été obtenus via le package
ObsPy de Python suivant la méthode de McNAMARA et al., 2004.
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I1 en est de méme pour les stations A213A ou A117A par exemple. La
station A213A est située au Nord-Est de la région de Dijon en France a 200
m d’'un moto club, et A117A est localisée dans une exploitation agricole, a
proximité d’une petite industrie textile, au Nord-Est de la région de Stuttgart
en Allemagne. La puissance du bruit aux gammes de fréquence caractéristiques
du bruit d’origine anthropique atteint des probabilités d’occurrence tres élevées
jusqu’a prés de 20% pour les 2 stations, et s’éloigne fortement des valeurs
estimées pour le modéle de bruit bas (Figures 3.24 et 3.23). Un pic autour de la
gamme de fréquence 10-20 Hz est observé sur la station A213A, correspondant
a la puissance du bruit d’un trafic autoroutier (RiAHI et al., 2015; DiAz et al.,
2017; X1A0 et al., 2020). Si l'autoroute est située a 25 km de cette station,
il est plus probable que ce pic corresponde a l’activité du moto club situé a
proximité.

Z3.A213A.00.HHZ 2016-12-28 -- 2016-12-28 (46/46 segments)
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FicURE 3.23: Densité spectrale de puissance probabiliste calculée pour la sta-
tion A213A. Les courbes grises correspondent aux modeéles de bruit standard
(courbe supérieure = modéle de bruit élevé [NHNM| et courbe inférieure =
modéle de bruit bas [NLNM] (PETERSON, 1993). Les niveaux de bruit de la
station sont estimés sur une large gamme de fréquences de 0.01 Hz a 16 Hz
(soit une période de 100 secondes & 0.0625 secondes). En bas du graphique
sont affichées les données qui ont servi au calcul de cette fonction. Le rectangle
vert représente les données disponibles et le rectangle bleu montre 1'étendue
des données qui ont servi au calcul.Ces spectres ont été obtenus via le package
ObsPy de Python suivant la méthode de McNAMARA et al., 2004.
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La station A117A affiche un niveau de bruit globalement plus élevé que celui
de la station A102A pour ’ensemble des gammes fréquentielles présentées. La
puissance du bruit longue période tend notamment a se rapprocher des valeurs
du modéle de bruit élevé avec une probabilité plutét forte (de 20 a 30%). De
cette fagon, si cette station est la station AlpArray la plus impliquée dans la
création des faux événements pour la période considérée, elle est proportion-
nellement beaucoup moins impliquée dans la création de vrais événements que
la station A102A.

Z3.A117A..HHZ 2016-12-25 -- 2016-12-25 (46/46 segments)
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FIGURE 3.24: Densité spectrale de puissance probabiliste calculée pour la sta-
tion A117A. Les courbes grises correspondent aux modéles de bruit standard
(courbe supérieure = modéle de bruit élevé [NHNM]| et courbe inférieure =
modéle de bruit bas [NLNM]; PETERSON, 1993. Les niveaux de bruit de la
station sont estimés sur une large gamme de fréquences de 0.01 Hz a 16 Hz
(soit une période de 100 secondes & 0.0625 secondes). En bas du graphique
sont affichées les données qui ont servi au calcul de cette fonction. Le rectangle
vert représente les données disponibles et le rectangle bleu montre 1’étendue
des données qui ont servi au calcul.Ces spectres ont été obtenus via le package
ObsPy de Python suivant la méthode de McNAMARA et al., 2004.

Le méme constat peut étre effectué pour les stations permanentes. C’est la
cas par exemple de la station GIMEL qui est la station permanente intervenant
le plus dans la création de faux événements, et qui fait partie des stations
permanentes les plus utilisées pour la création des vrais événements. Cette
station est située dans le Jura Vaudois en Suisse a proximité d’une route et
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d’une activité de Graviére (Figure 3.25).

CH.GIMEL..HHZ 2016-12-12 -- 2016-12-12 (46/46 segments)
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FicUuRrE 3.25: Densité spectrale de puissance probabiliste calculée pour la sta-
tion GIMEL. Les courbes grises correspondent aux modéles de bruit standard
(courbe supérieure = modéle de bruit élevé [NHNM| et courbe inférieure =
modeéle de bruit bas [NLNM]|; PETERSON, 1993). Les niveaux de bruit de la
station sont estimés sur une large gamme de fréquences de 0.01 Hz a 16 Hz
(soit une période de 100 secondes & 0.0625 secondes). En bas du graphique
sont affichées les données qui ont servi au calcul de cette fonction. Le rectangle
vert représente les données disponibles et le rectangle bleu montre 1'étendue
des données qui ont servi au calcul. Ces spectres ont été obtenus via le package
ObsPy de Python suivant la méthode de MCNAMARA et al., 2004.

Ainsi, les stations les plus impliquées dans la création de vrais événements
sont donc également celles qui sont sensibles au bruit impulsif d’origine anthro-
pique. Les faux événements qui sont générés sont donc majoritairement reliés
a ce type de bruit.

Une détection maximale aux heures d’activité humaine intense
L’étude de la répartition de la totalité des faux événements détectés en fonction
des heures de la journée pour la période septembre-décembre 2016 montre que
celle-ci se concentre effectivement autour des heures qui correspondent aux pics
d’activité humaine (Figure 3.26), ce qui est une des caractéristiques du bruit
d’origine anthropique (SHEEN et al., 2009).
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Cumulative number of falsee events over 4 months (from Juillet to December 2016)
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Ficure 3.26: Distributions des faux événements détectés par une procédure
automatique de détection incluant ’ensemble du réseau de stations disponible
pour la période juillet 2016-décembre 2016 en fonction des heures de la journée.

Des signaux associés au bruit anthropique détectés avec les mémes
amplitudes, durées et contenus fréquentiels que les signaux sismiques
associés aux séismes et aux tirs de carriére. L’analyse des spectrogrammes
des signaux ayant engendré les faux événements montre une intensité maximale
du signal dans les bandes de fréquence typique du bruit d’origine anthropique,
c’est-a-dire principalement concentrée entre 1 et 10 Hz, mais pouvant s’étendre
jusqu’a 20 Hz (Figures 3.27 a 3.29). Les variations diurnes d’amplitude du
signal entre 1 et 20 Hz sont effectivement reconnues comme étant associées
au bruit d’origine anthropique (BuNncuwMm et al., 1971; GURROLA et al., 1990;
YOUNG et al., 1996 ; ATEF et al., 2009 ; LEwIs et al., 2012 ; LOER et al., 2018).
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FI1GURE 3.27: Formes d’ondes et spectrogrammes correspondant aux signaux
enregistrés sur la composante verticale des stations (a) A100A, (b) A128A et
(c) A119A. Ces signaux sont reliés a un faux événement détecté le 24 décembre
2016 a 11h14.
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FIGURE 3.28: Formes d’onde et spectrogrammes correspondant aux signaux
enregistrés sur la composante verticale des stations (a) A119A, (b) GUT, (c)
A108A et (d) A061A. Ces signaux sont reliés & un faux événement détecté le
12 novembre 2016 a 09h29.
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spectrogrammes correspondant aux signaux

enregistrés sur la composante verticale des stations (a) A100A, (b) FELD et (c)
A104A. Ces signaux sont reliés a un faux événement détecté le 27 octobre 2016
a 11h19. Ce faux événement contient dans son association un signal sismique

isolé enregistré a la station FELD.
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Or, ces signaux d’origine anthropique véhiculent un maximum d’énergie
dans la bande de fréquences de 1 & 10 Hz qui est souvent utilisée pour observer
’activité microsismique (HUTTON et al., 2010; RiaHI et al., 2015 ; INBAL et al.,
2018). En effet, ’analyse de quelques spectrogrammes de signaux correspondant
a des séismes de trés faible magnitude (ici MLv de 0.3 et 1.4, Figures 3.30
et 3.31) montre une concentration de l'intensité du signal dans cette gamme
fréquentielle, avec un maximum autour de 5 a 10 Hz. Quelques pics d’intensité
apparaissent jusqu’a 20 Hz et semblent correspondre a ’arrivée des ondes P.
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FicGURE 3.30: Formes d’onde et spectrogrammes correspondant aux signaux
enregistrés sur la composante verticale des stations (a) OGSI, (b) DIX, et (c)
RSL. Ces signaux sont reliés a un séisme ayant eu lieu le 03 décembre 2016 a
20h00 dans la région de Chamonix dans les Alpes frangaises (MLv=0.3).
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FIGURE 3.31: Formes d’onde et spectrogrammes correspondant aux signaux
enregistrés sur la composante verticale des stations (a) SLE, (b) GUT, (c)
SULZ, (d) KIZ et (e) BALST. Ces signaux sont reliés a séisme ayant eu lieu
le 20 novembre 2016 & 20h08 dans le Sud de 1’Allemagne, prés de la frontiére
Suisse (MLv=1.4).
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Pour les séismes de plus forte magnitude (c’est-a-dire MLv > 1.5 dans les
exemples proposés), méme si 'intensité du signal se concentre également aux
gammes fréquentielles caractéristiques du bruit d’origine anthropique, cette
forte intensité s’étale a plus forte fréquence c’est-a-dire un peu au-dela de 20Hz,
en particulier pour la partie du signal qui semble correspondre a l’arrivée des
ondes S (Figures 3.32 et 3.33).
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FIGURE 3.32: Formes d’onde et spectrogrammes correspondant aux signaux
enregistrés sur la composante verticale des stations (a) A102A, (b) GUT, (c)
A100A, (d) A103A et (e) SLE. Ces signaux sont reliés & un séisme ayant eu
lieu le 12 octobre 2016 & 18h33 dans le Jura Souabe (MLv=1.5).
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FiGURE 3.33: Formes d’onde et spectrogrammes correspondant aux signaux
enregistrés sur la composante verticale des stations (a) VOGT, (b) KIZ, (c)
A122A, (d) FELD et (e) WLS. Ces signaux sont reliés & un séisme ayant eu lieu
le 07 septembre 2016 a 06h58 au Nord de Freiburg en Allemagne (MLv=2.1).
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En ce qui concerne les signaux qui sont reliés aux tirs de carriére, ’analyse
de leurs spectrogrammes montre aussi une intensité plus forte du signal dans
la bande fréquentielle typique des signaux d’origine anthropique. Seulement,
celle-ci est plutét concentrée vers les plus basses fréquences, particuliérement
entre 1 et 5 Hz. Quelques pics d’'intensité peuvent étre notés a plus haute
fréquence, entre 10 a 15 Hz, et semblent étre corrélés avec l'arrivée des ondes
P (Figure 3.34 et figure 3.35).
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FIGURE 3.34: Formes d’onde et spectrogrammes correspondant aux signaux
enregistrés sur la composante verticale des stations (a) A100A, (b) GUT, (c)
SLE, (d) A122A et (e) FELD. Ces signaux sont reliés a un tir de la carriére de
Haigerloch-Weildorf située a 60 km au Sud de Stuttgart en Allemagne et ayant
eu lieu le 02 décembre 2016 a 08h37 (MLv=1.3).
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FiGURE 3.35: Formes d’onde et spectrogrammes correspondant aux signaux
enregistrés sur la composante verticale des stations (a) SULZ, (b) BALST, (c)
FELD, (d) KIZ et (e) SLE. Ces signaux sont reliés & un tir de la carriére de

Rheinfelden située a I’Est de Béle et ayant eu lieu le 26 octobre 2016 & 13h53
(MLv=1.2).
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La zone d’étude est donc une zone caractérisée par un fort dé-

ploiement de stations entre 2016 et 2019, notamment du fait de
I’installation des stations temporaires AlpArray. Cette période
est la période qui est sélectionnée pour détecter les séismes de
faible magnitude.

Seulement, I’inclusion de la totalité des stations dans le protocole
de détection automatique, combinée a une diminution du seuil
de détection, engendre des milliers de faux événements. Or, les
stations (permanentes ou temporaires) qui interviennent le plus
dans la création des vrais événements sont en fait aussi celles
qui sont le plus impliquées dans la génération des faux événe-
ments, car trés sensibles au bruit transitoire impulsif d’origine
anthropique.

L’information véhiculée par les séismes est donc aisément diluée
dans un flot d’information d’origine anthropique, impossible a
décoder manuellement. Que les faux événements constituent un
facteur limitant majeur des capacités réelles des systémes de dé-
tection est confirmé. Cette zone d’étude représente donc un ter-
rain idéal pour comprendre comment les dépasser efficacement.

En définitive, il s’agit de comprendre comment distinguer de ma-
niére solide un faux événement d’un vrai événement, en s’inter-
rogeant sur les parameétres univoques qui vont automatiquement
permettre de supprimer ce flux constant, mais inexorable, de
faux événements.

3.2.3 Une base de données bien discriminée

Depuis 2016, une attention particuliére est portée a la discrimination ma-
nuelle des événements, nous 1’avons vu plus haut. Le catalogue rendu disponible
par le BCSF-RéNaSS est donc soigneusement labélisé depuis cette date.

Au début de ce travail de thése, j'ai revu manuellement 1’ensemble des
événements détectés pour I’année 2016 en introduisant les stations temporaires
AlpArray pour la localisation. J'ai alors pointé 28079 phases (17707 phases P
-Pg et Pn- et 10372 phases S -Sg et Sn) réparties sur 1134 événements (351
tirs de carriere, 774 séismes et 9 séismes induits par 1’activité géothermique
profonde). Les stations AlpArray les plus pointées correspondent aux mémes
stations qui sont impliquées dans la détection automatique des vrais et des faux
événements. La performance de stations AlpArray telles que AOG60A, AO61A,
A100A, A102A, A103A, A158A ou bien A160A, peut donc étre confirmée pour
la période septembre 2016-décembre 2016 (Annexe B).
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Ce travail de pointés, de localisation et de discrimination manuelle m’a
permis de construire une base de données de carriéres actives, en plus de celle
fournie par le Bureau de Recherches Géologiques et Miniéres (BRGM). Au total
438 carrieres ont été répertoriées en France, en Allemagne et en Suisse. Cette
base de données contient le nom de la carriéere et ses coordonnées géographiques.
J’y ai ajouté les formes d’onde associées aux premiéres stations pour environ
180 carriéres (celles actives pour la période septembre 2016-décembre 2016).

eDes épicentres localisés plus précisément

Cette base de données a pu étre solidement construite car I'ajout des sta-
tions AlpArray dans la localisation a mieux contraint les épicentres des événe-
ments, en diminuant les incertitudes latitudinales et longitudinales de 1’'ordre
de 1.5 km en moyenne, pour environ 50 % des événements (Figure 3.36). Sur
I’ensemble des événements détectés, environ 15 % ont été localisés avec un
nombre de pointés (P et S) supérieurs a 35 en présence des stations AlpArray
contre 8 % sans inclusion de ces stations temporaires.

3

certainty with AlpArray stations (km)
uncertainty with AlpArray stations (km)

°e
Ldd l‘

Latitude un
o

Longitude
o

5 10 15 S 30 35 W 0 5 10 15 20 25 30 35 0
Latitude uncertainty without AlpArray stations (km) Longitude uncertainty without AlpArray stations (km)

FIGURE 3.36: Comparaison des incertitudes latitudinales (& gauche) et longi-
tudinales (a droite) obtenues des épicentres des événements détectés au cours
de ’année 2016, avec et sans inclusion des stations AlpArray.

De plus, en guise d’exemple, la comparaison des épicentres des tirs de la
carriére de Raon-l-Etape pour 'année 2016 montre un déplacement des épi-
centres vers le centre de la carriére lorsque les stations AlpArray sont incluses
dans la localisation, facilitant un peu mieux le diagnostic de discrimination
pour certains tirs (Figure 3.37).
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@® Raon-I'Etape Quarry

Latitude (°)
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2016 Quarry Blast
@ with AlpArray Stations

@ without AlpArray Stations

- % Raon-I'Etape quarry

Ficure 3.37: Comparaison des localisations épicentrales des tirs de la carriére
de Raon-1'Etape détectés au cours de 'année 2016, avant et aprés inclusion des
stations temporaires AlpArray.

En revanche, les profondeurs des événements n’ont pas été un critére retenu
pour constituer la base de données de carriéres actives. En incorporant les
stations AlpArray, les profondeurs n’ont pas été fixées apres relocalisation des
événements. Autrement dit, aucun événement n’a été fixé a une profondeur
donnée (Figure 3.38).

De cette fagon, si I’ensemble des événements semblent avoir des profondeurs
plus faibles lorsque les stations AlpArray sont incluses, ces mémes événements
semblent plutét concentrés autour de 5 et de 10 km (ici les séismes) quand les
stations AlpArray ne sont pas incluses, soulignant le fait que les localisations
déterminées par le BCSF-RéNaSS soient souvent fixées. Ce phénomeéne réduit
alors probablement artificiellement les incertitudes de localisation hypocentrale
calculées par l'algorithme de localisation LOCSAT.
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F1GURE 3.38: Comparaison des localisations hypocentrales ainsi que des incerti-
tudes associées de ’ensemble des événements détectés au cours de ’année 2016,
avant et aprés inclusion des stations temporaires AlpArray. Les incertitudes de
localisation hypocentrales sont estimées par 1’algorithme de localisation LOC-
SAT qui calcule une ellipsoide de confiance pour chaque origine de chaque
événement a partir de la diagonalisation d’'une matrice de covariance 3D.

Par conséquent, les profondeurs laissées libres, les incertitudes hypocen-
trales augmentent alors, soulignant indirectement les incertitudes liées aux
modeles de vitesse & 3 couches utilisés. Ces modéles 1D trés simples, méme
si efficaces pour détecter, ne tiennent pas compte des variations d’épaisseur de
la couche sédimentaire ou des discontinuités lithologiques latérales par exemple.
Le modele de vitesse régional le plus utilisé dans la zone d’étude est le modeéle
d’Haslach (Figure 3.39).

Enfin, la forte proportion de tirs de carriére positionnés librement autour
de 1-2 km, ainsi que le fort pourcentage d’événements fixé artificiellement a 2
km par LOCSAT lorsque ce dernier ne converge pas vers une solution hypocen-
trale stable, ne sont pas des arguments solides pour considérer de fagon fiable
les profondeurs évaluées automatiquement par LOCSAT dans le diagnostic de
discrimination.
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FicURE 3.39: Modéle de vitesse, dit modéle de "Haslach", le plus utilisé pour la
détection et les localisations des événements dans la zone d’étude. Les vitesses
ont été déduites de I’étude des tirs de la carriére située prés de la ville d’Haslach,
au coeur de la Forét Noire en Allemagne. Modifié d’aprés ROTHE et al., 1950.

eDes distances épicentrales minimales plus petites

L’étude des formes d’onde a été un autre critére fondamental pour consoli-
der cette base de carriéres, notamment pour 180 d’entre elles. Grace a 1’'obser-
vation de ces formes d’onde, certains tirs de carriéres ont pu étre révélés bien
distinctement grace aux stations AlpArray.

En effet, I'ajout de ces stations temporaires a diminué la distance épicentrale
minimale pour environ 60 % d’entre eux. La moyenne des distances épicentrales
minimales est alors descendue a 25 km, au lieu de 33 km sans les stations
AlpArray. De plus, 73% des événements détectés au cours de ’année 2016 ont
désormais des distances minimales épicentrales de moins de 30 km, contre 62
% sans les stations AlpArray (Figure 3.40).

De ce fait, certains tirs ont pu étre clairement identifiés a une carriére bien
spécifique grace a la premiére station AlpArray la plus proche. C’est le cas de
carriéres telles que la carriere de Rochefort-sur-Nenon dans le Jura francais
avec la station A213A, la carriére de Gerbamont dans les Vosges avec la station
A158A, les carriéres de Bernécourt, Bainville-sur-Madon, Pagny-sur-Meuse ou
bien Barville, situées dans la région de Nancy au coeur du Bassin Parisien, avec
la station A210A.

De méme, en Allemagne, les stations AlpArray ont permis de révéler des
formes d’onde particuliéres associées a plusieurs carriéres situées dans le Jura
Souabe (A100A, 102A, A108A, A109A, A360A), le Massif de Rhenish (A110A,
A112), les terrains escarpés du Trias a I'Est du Massif de la Forét Noire (A113A,
A117A, A119) et dans le Massif de la Forét Noire lui-méme (A122A).
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FiGURE 3.40: Comparaison des distances épicentrales minimales des événe-
ments détectés pour ’année 2016, avec et sans inclusion des stations AlpArray.

Ainsi, associé a une discrimination plus solide des événements
détectés depuis 2016, ce recueil de carriéres et de formes d’ondes
apporte un ensemble de données disponibles de qualité, permet-
tant d’évaluer la performance future de la classification automa-
tique des événements, majoritairement séismes et tirs de carriére,
avec plus de certitude.

3.3 Des outils disponibles de haute performance

3.3.1 Un systéme de détection mondialement utilisé avec
un code source en libre accés

Les principaux modules formant le systéme de détection de SeisComP3 ont
leur code source mis librement a disposition https://github.com/SeisComP3/
seiscomp3. Ce code source offre une mine d’or possible de développement, no-
tamment en offrant des bibliothéques exploitables pour le traitement du signal
(filtrage, taperisation, déconvolution, etc.), des outils mathématiques (dériva-
tion, intégration, transformée de Fourier, rotation, métriques statistiques, etc.)
ainsi que des outils propres a la sismologie (calcul des magnitudes, calcul des
temps de trajet, etc.). La procédure de détection peut donc étre facilement
mise en place en utilisant les fonctionnalités entiéres du logiciel SeisComP3.
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Ensuite, développer la future procédure de détection au sein de SeisComP3
garantit un accés aux données directement en base (formes d’onde, métadon-
nées des stations, catalogue d’événements) sans nécessité de téléchargements
préalables superflus, venant encombrer les espaces de stockage.

De plus, le code de SeisComP3 est écrit en langage C++ mais des modules
peuvent étre entiérement écrits en Python, tout en utilisant les fonctionnalités
entiéres de SeisComP3. En effet, l'utilisation d’un compilateur (SWIG) aide a
créer une interface d’accés aux déclarations C++ a partir du langage Python,
via des bibliothéques compatibles avec ce dernier langage. L’intérét de cette
interface est donc de pouvoir combiner la performance et la rapidité du langage
C++ avec la simplicité, la diversité et 'universalité du langage Python. C’est
donc la voie que j’ai choisie.

Enfin, d’'un point de vue opérationnel, intégrer la procédure de détection
des petits séismes directement dans SeisComP3, peut assurer facilement son
transfert automatique intégral en temps réel. Par conséquent, cela permet de
traduire instantanément des résultats scientifiques (les parameétres univoques
qui permettent de détecter proprement un séisme avec une haute probabilité)
en une opération de surveillance sismique qui va produire efficacement des
catalogues de séismes encore plus complets.

3.3.2 Des superordinateurs a haute performance de calcul

Un volume de 4 Térabytes de sismogrammes est disponible pour la pé-
riode 2016-2019. Afin de traiter efficacement ces données volumineuses dans
des temps raisonnables, c’est-a-dire plus rapides que le temps réel, I’emploi des
superordinateurs, mis a disposition par le centre de Haute Performance de Cal-
cul (HPC) de ’Université de Strasbourg, est particuliérement utile. Seulement,
cela nécessite de comprendre comment transférer sur ces superordinateurs la
procédure de détection développée sous SeisComP3 pour un fonctionnement
optimal.

La création d'un conteneur SINGULARITY sera donc une étape impor-
tante pour assurer le fonctionnement autonome de la procédure de détection
sur un cluster HPC. Cette encapsulation isolante permettra le déploiement de
plusieurs instances SeisComP3 en paralléle, accélérant alors le processus de dé-
tection (Figure 3.41. Opération qui est pour l'instant impossible a réaliser avec
le systéme de détection actuel de SeisComP3 sans développement méthodolo-

gique.
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FIGURE 3.41: Schéma simplifié d’un déploiement de commandes multiples sur
un cluster & Haute Performance de Calcul (HPC). Dans cet exemple, chaque
commande activée exécute un conteneur Singularity sur un processeur (coeur)
d’un ordinateur (noeud). Chaque conteneur encapsule une instance de détec-
tion SeisComP3 qui traite ici 1 jour de données. Si 1095 jours sont traités
(c’est-a-dire ’équivalent de 3 ans de données), 1095 commandes seront exécu-

tées sur 16 ordinateurs (noeuds), chacun contenant 24 coeurs.

J’ai alors tous les facteurs pour développer une procédure de
détection optimale des petits séismes : une forte probabilité d’oc-
currence des petits séismes, une intense activité anthropique dé-
tectée réguliérement par les réseaux de stations, un fort taux de
faux événements inexorablement détectés également.

J’ai aussi des données disponibles (un volume de 4 térabytes pour
la période 2016-2019) grace au récent apport de nouvelles sta-
tions permanentes et I’'important déploiement des stations tem-
poraires AlpArray.

J’ai enfin des outils disponibles performants : un systéme de dé-
tection qui peut étre optimisé facilement grace & un code source
en libre accés, un cluster de calcul de haute performance intégré
dans un des centres de calcul les plus puissants de France.

Par conséquent, je dispose d’un objet d’étude solide qui permet-
tra de résoudre dans les chapitres suivants les importantes ques-
tions de recherche évoquées dans le chapitre précédent. A savoir,
comment limiter la détection des trés nombreux petits séismes
contaminés par du bruit ? Comment réduire de fagon conséquente
la détection de milliers de faux événements ? Et comment effica-
cement discriminer les séismes des tirs de carriére ?
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Comment limiter la détection des
séismes contaminés par du bruit ?
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4.1. AMELIORER LA QUALITE DES POINTES

4.1 Améliorer la qualité des pointés

4.1.1 Comment fonctionne le processus de pointés dans le
systéme de détection ?

ePointé automatique des ondes P

Une premiére estimation du temps d’arrivée des ondes P est établie grace
a un algorithme qui détecte les phases sismiques, en se basant sur la méthode
STA/LTA. Comme évoqué dans le chapitre 1, cet algorithme recherche des ano-
malies dans le signal sous la forme de changements d’amplitude en calculant
un rapport moyen STA/LTA (STA = fenétre temporelle courte sensible aux
événements sismiques, LTA = fenétre temporelle longue fournissant des infor-
mations sur l’amplitude temporelle du bruit sismique & une station donnée).
Un pointé est émis dés que la valeur du rapport STA/LTA dépasse une valeur
seuil de référence préalablement définie.

Quatre paramétres principaux vont gouverner la fréquence d’occurrence de
ces premiers pointés émis : les tailles des deux fenétres temporelles STA et LTA,
la valeur du seuil de déclenchement d’un pointé, ainsi que la valeur minimale de
rapport STA/LTA & atteindre aprés qu’un pointé ait été émis, pour de nouveau
activer une opération de pointé.

Un éventail de valeurs de ces paramétres ont été testées empiriquement sur
la détection automatique des événements pour les mois de juillet et aotit 2016.
Des valeurs comprises entre 0.1s et 2s ont été testées pour la fenétre temporelle
STA et entre 10s et 80s pour la fenétre temporelle LTA. En ce qui concerne
la valeur seuil de déclenchement d’un pointé et la valeur minimale de rapport
STA/LTA a atteindre aprés qu’'un pointé ait été émis, celles-ci ont été affinées
a partir des valeurs de référence obtenues par GRUNBERG et al., 2018 sur la
zone du Graben du Rhin Supérieur (qui étaient respectivement de 2.2 et de
2.7).

Ainsi, les paramétres finaux qui ont permis d’aboutir & un taux de dé-
tection optimal (meilleure qualité des pointés automatiques P et S, nombre
d’événements détectés automatiquement comparativement a ceux détectés par
le BCSF-RéNaSS pour la méme période, nombre d’événements nouvellement
détectés en plus), correspondent a :

— une taille de fenétre STA égale a 0.5 seconde, ajustée de sorte

a augmenter la sensibilité de 'algorithme aux événements locaux, mais
ceci implique une augmentation du taux de faux pointés liés a du bruit
transitoire impulsif d’origine anthropique (TRNKOCZY, 1999);

— une taille de fenétre LTA égale a 40 secondes définie par rapport
aux fluctuations importantes et irréguliéres du bruit d’origine anthro-
pique enregistré aux stations, c’est-a-dire pas trop grande pour accom-
moder en continu les valeurs du rapport STA/LTA aux changements
graduels de bruit enregistré;
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— une valeur seuil de déclenchement plutét basse, égale a 2.4 de
sorte a élever la probabilité de détecter de plus faibles événements;

— une valeur référence de réactivation du pointé également basse,
2.0, pour capturer entiérement la coda du signal pointé précédemment.

L’amplitude et le type de bruit sismique enregistrés aux stations influencent
fortement le paramétrage de la valeur du seuil de déclenchement d’un pointé.
En effet, un bruit sismique statistiquement stationnaire va permettre une va-
leur de seuil plus basse, alors qu’un comportement irrégulier de bruit sismique
nécessite de choisir de plus hautes valeurs. La valeur du seuil de détection
a été dans ce travail choisie particuliérement bas, induisant alors un nombre
important de faux pointés.

Le pointé des temps d’arrivée des ondes P est ensuite affiné a partir d’une
fenétre temporelle autour de la détection émise par la méthode précédente. L’al-
gorithme qui est choisi pour cette affinage se base sur le calcul d’une fonction
caractéristique de ’enveloppe du signal qui utilise en plus une métrique statis-
tique, a savoir la variance (Figure 4.1, pour plus de détails, voir KRADOLFER
et al., 1987). Cette méthode est nommée méthode BK. En effet, (KRADOLFER
et al., 1987) ont modifié la fonction enveloppe d’Allen (R. ALLEN, 1978) en
I’élevant au carré et en implémentant la variance de cette enveloppe. Un pointé
P est émis quand la valeur de le fonction caractéristique excéde un certain
seuil ¥ = 10 (KUPERKOCH et al., 2012). De plus, la variance est continuelle-
ment mise a jour afin d’accommoder le calcul de la fonction caractéristique aux
variations temporelles du niveau de bruit enregistré, sauf lorsque les valeurs de
cette fonction caractéristique excéde un second seuil dynamique § = 2 x 7.

——

20 30 40 50 285 29 295 30 305 31
Time [s] Time [s]

FIGURE 4.1: Exemple de fonction caractéristique (CF, représentée en rouge) de
KRADOLFER et al., 1987 calculée pour une forme d’onde correspondant a un
événement local (en noir). La ligne verticale bleue indique le pointé automa-
tique de la phase P, la ligne verticale verte la lecture manuelle de la premiére
arrivée des ondes P. D’aprés KUPERKOCH et al., 2012.
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ePointé automatique des ondes S

Un algorithme basé sur le critére d’information d’Akaike (AIC, AKAIKE,
1971) détecte les phases sismiques S, une fois que les pointés des phases sis-
miques P sont émis. Par conséquent, les pointés des temps d’arrivée des ondes
S ne sont effectués que s’il y a eu au préalable une détection des temps d’arrivée
des ondes P sur la composante verticale de la station. Les pointés des ondes S
sont déterminés sur la somme vectorielle des composantes horizontales.

L’apparition d’une phase (ici S) sur une trace sismique peut étre déterminée
en modélisant le bruit et le signal sismique dans des fenétres temporelles de
taille pré-établie. L’algorithme de pointé automatique des ondes S se base effec-
tivement sur 'hypothése que la trace peut étre divisée en segments temporels
avec des caractéristiques de stationnarité spécifiques (MAEDA, 1985). Si deux
segments consécutifs ont des caractéristiques de stationnarité différentes (seg-
ment de signal correspondant uniquement a du bruit, suivi par un segment de
signal transitoire impulsif par exemple), cela souligne alors I’émergence d’une
phase sismique correspondant a la premiére arrivée des ondes S (SLEEMAN et
al., 1999).

Le critére AIC, se basant sur le calcul continu d’une fonction caractéristique
qui utilise la variance des amplitudes de chaque segment de signal, est donc
utilisé pour marquer le point de deux fenétres temporelles adjacentes qui ont
des propriétés statistiques différentes (Figure 4.2). Un pointé S est donc émis
lorsque la valeur du critére AIC a atteint sa valeur minimale, c’est-a-dire au
moment ol la variance du signal sismique non-stationnaire enregistré augmente
soudainement, se détachant nettement du bruit de fond plutét stationnaire.

Le développement qui va suivre met alors en évidence les critéres princi-
paux qui vont conditionner fortement la qualité des pointés P et S émis a
chaque station. Ces critéres principaux qui vont optimiser la qualité du pointé
automatique des phases P et S sont ceux qui sont reliés aux caractéristiques de
bruit communément enregistré a une station donnée ainsi qu’a la localisation de
cette derniére. En effet, si le paramétrage des algorithmes de pointés des temps
d’arrivée des ondes sismiques P et S n’est pas adapté au contenu fréquentiel
des signaux enregistrés aux stations, il y a un risque accru de ne pas activer
I’émission d'un pointé, de retarder fortement ou activer trop précocement cette
émission.
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FIGURE 4.2: Principe de l'utilisation du critére AIC pour pointer les premiéres
arrivées des phases sismiques. (a) Trace sismique et fonction AIC calculée. Un
pointé est émis lorsque le critére AIC est minimisé (point de contact entre
deux segments de trace consécutifs, caractérisé par un changement marqué de
la variance du signal).(b) Trace sismique avec pointés des phases P et S (en
haut), évolution de la variance du signal correspondant a cette trace sismique
(au milieu) et calcul du critére AIC sur 60 fenétres temporelles définies sur
la trace sismique (en bas). Deux des fenétres AIC ont détecté les premiéres
arrivées des phases sismiques P et S. Les lignes bleues verticales correspondent
aux premiéres arrivées des phases sismiques et les lignes rouges horizontales
correspondent aux fenétres pour lesquelles le critére AIC est évalué. Modifié

d’aprés ST-ONGE, 2011.
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4.1.2 S’adapter aux caractéristiques de bruit des stations
et a leur localisation

ePour les pointés automatiques des ondes P

La taille de la fenétre STA qui a été choisie pour récupérer la valeur instan-
tanée du signal sismique, est relativement courte (0.5 seconde). Par conséquent,
celle-ci devient plus sensible aux pointes de bruit, en particulier pour les sta-
tions implantées dans des sites trés pollués par du bruit transitoire impulsif.
Dans cette configuration, les pointés des ondes P peuvent étre anticipés du fait
de bruit parasite précédent le signal sismique cible (Figure 4.3).
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15 - — S . i
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T |  earthguake
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| LTA=30s STALTA ratio
- A trigger active
. PEM, [T
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false trigger STALTA ratio |
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FIGURE 4.3: Influence de la durée de la fenétre STA sur la sensibilité de 1’al-
gorithme de détection des ondes P. (a) Signal correspondant & un tir de la
carriére précédé d'un artefact de bruit de courte durée. (b) Evolution du rap-
port STA/LTA associée a la trace sismique pour une fenétre STA égale & 3 s
et une fenétre LTA égale a 30 s. Un pointé est déclenché au bon endroit.(c)
Evolution du rapport STA/LTA associée & la trace sismique pour une fenétre
STA égale a 0.5 s et une fenétre LTA égale a 30 s. Un pointé supplémentaire
anticipé est émis au début du pic de bruit. Modifié d’aprés TRNKOCZY, 1999.
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De méme, la taille de la fenétre LTA est relativement courte (40 secondes).
Ainsi, dans cette configuration, face a des ondes P de trés faible amplitude, il
y a un risque accru que cette phase sismique passe inapergue, d’autant plus si
le niveau de bruit de fond est élevé. Si aucun pointé P n’est alors déclenché,
I’arrivée des ondes P non détectées vient augmenter I’amplitude du bruit sis-
mique enregistré, diminuant la sensibilité du déclenchement d’un futur pointé
au moment ou des ondes S plus énergétiques arrivent. De cette fagon, ou bien
un pointé P retardé est émis au moment ou ce sont les ondes S qui arrivent,
mais avec un faible rapport signal/bruit, ou bien aucun pointé n’est déclenché
car les signaux sismiques sont de trop faible amplitude (Figure 4.4).
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FIGURE 4.4: Influence de la durée de la fenétre LTA sur la sensibilité de 1’al-
gorithme de détection des ondes P. (a) Signal avec des ondes P de faible am-
plitude, correspondant & un séisme local. (b) Evolution du rapport STA/LTA
associée a la trace sismique pour une fenétre STA égale a 1 s et une fenétre
LTA égale & 100 s. Un pointé est déclenché au bon endroit.(c) Evolution du
rapport STA/LTA associée a la trace sismique pour une fenétre STA égale a
1 s et une fenétre LTA égale a 45 s. Un pointé P retardé est émis au moment
ol des ondes S de plus forte amplitude arrivent. Modifié d’aprés TRNKOCZY,
1999.
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Le paramétrage de ’affinage du pointé P par la méthode BK est alors in-
dispensable pour éviter la propagation de tels pointés P erronés.

Les paramétres qui vont améliorer la qualité de ces pointés sont en fait deux
parametres qui sont reliés indirectement aux caractéristiques du bruit enregis-
tré a la station. Ces deux parameétres sont utilisés pour calculer la fonction
caractéristique nécessaire a 1’émission d’'un pointé selon la méthode BK, a sa-
voir : la fenétre temporelle définie autour du premier pointé P déterminé par
la méthode STA/LTA ainsi que le filtrage du signal utilisé.

- Adapter la fenétre temporelle pour calculer la fonction caracté-
ristique

Le début de la fenétre temporelle choisie pour calculer la fonction caracté-
ristique de ’enveloppe du signal selon la méthode BK est définie a partir du
déclenchement du pointé P émis par la méthode STA/LTA. Par défaut elle est
de -20 s a partir de cette détection initiale.

Seulement, les niveaux de bruit enregistrés varient temporellement pour une
station donnée et spatialement en fonction de la localisation de cette station.
Par conséquent, un paramétrage unique de la fenétre temporelle utilisée pour
pointer le temps d’arrivée des ondes P ne tient pas compte des variations spatio-
temporelles des niveaux de bruit enregistrés aux stations.

De cette facon, afin de comprendre 'impact de la valeur du début de cette
fenétre temporelle sur le pointé des temps d’arrivée des ondes P a chaque
station, différentes valeurs ont été testées empiriquement sur l’ensemble des
stations impliquées dans la détection des événements pour les mois de juillet-
aolit 2016 et janvier 2017.

I1 a été alors constaté que, pour les stations qui enregistrent des niveaux
de bruit assez élevés, avec des soubresauts répétés de bruit non-stationnaire de
courte durée qui se détachent du niveau de fond, cette fenétre s’initiera plus
tardivement. Ceci évite effectivement une pollution du calcul de la fonction
caractéristique par du signal parasite, enregistré avant 1’arrivée des ondes P,
comme c’est le cas dans la Figure 4.5.

En effet, pour illustrer ce propos, si je prends 1’exemple d’une station parti-
culiérement sensible au bruit comme la station FELD, située sur le sommet le
plus élevé du Massif de la Forét Noire en Allemagne, prés de 4 tours de commu-
nication et non loin d’une station de ski, le début de la fenétre temporelle a été
placée quelques secondes avant le pointé P initié, c’est-a-dire a -2 s. Ceci limite
alors la probabilité de passer sous silence 'arrivée des ondes P qui serait dans
le sillage de la fenétre de traitement d’un précédent faux pointé P (Figure 4.6).
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FIGURE 4.5: Sismogramme enregistré sur la composante verticale d'une station
bruitée (A117A) et fonction STA/LTA correspondante. Un pointé P a été créé
de fagon anticipée quelques secondes avant les premiéres arrivées des ondes P
émises par un tir de la carriére de Satteldorf-Crailsheim ayant eu lieu le 03
novembre 2016 & 14h21 en Allemagne (MLv 1.6).
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FIGURE 4.6: Exemple de signaux enregistrés a la station FELD et pointés P au-
tomatiquement émis pour deux fenétres temporelles différentes : une débutant
a -6 s et une autre a -2 s.
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En revanche, pour les stations qui enregistrent un bruit de fond continu plus
ou moins élevé, avec peu de signaux de bruit transitoire impulsif, une fenétre
temporelle débutant plus précocement est privilégiée. Ceci évite ainsi les poin-
tés P retardés, du fait de premiéres arrivées d’ondes P émergentes, se détachant
trés peu du niveau de bruit de fond, comme c’est le cas dans l'exemple de la
figure 4.7. Le calcul de la fonction caractéristique sur une fenétre temporelle
plus précoce peut capter effectivement plus facilement les changements subtils
de phase et /ou d’amplitude et/ou de contenu fréquentiel associés a ’arrivée de
ces faibles ondes P, se détachant a peine du bruit.
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FIGURE 4.7: Sismogrammes enregistrés a la station A100A et fonctions
STA/LTA associées. Un faux pointé P a été créé de fagon retardée, c’est-a-
dire une dizaine de secondes aprés les premiéres arrivées des ondes P émises
par un séisme identifié au Sud de l’Allemagne, prés du lac Konstanz, le 05
décembre 2016 a 01h41 (MLv 1.6).

De cette fagon, si je prends l'exemple de la station EMBD, située dans
la région du Valais Suisse, prés d’une station de ski et non loin d’une voie
ferrée, une fenétre a -25 s captera la faible arrivée des ondes P d'un signal de
faible amplitude alors qu'une fenétre initiée a -6 s ne produira aucun pointé
(Figure 4.8).
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EMBD CH HHZ, distance: 39.25 km, azimuth: 93.5°
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FIGURE 4.8: Sismogrammes enregistrés a la station EMBD et fonctions
STA/LTA associées. Les signaux affichés sur ces sismogrammes correspondent
a un séisme identifié dans la région de Sion en Suisse le 01 janvier 2017 a 04h13
(MLv 1.1). Deux pointés automatiques P ont été émis a partir d’une fenétre
temporelle débutant a -25s : un premier faux pointé P anticipé (trait vertical
rouge clair) et un deuxiéme pointé P captant les subtils changements de phase
et d’amplitude liés & ’arrivée des ondes P (trait vertical rouge foncé). Une
deuxiéme fenétre temporelle initiée a -6 s n’a produit aucun pointé.
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De méme, pour la station BRANT, située au coeur du Massif du Jura Suisse,
une fenétre temporelle initiée a -11 s captera plus facilement les variations
d’amplitude associées a l'arrivée des ondes P qu’une fenétre débutant a -3 s
(Figure 4.9).
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FIGURE 4.9: Sismogrammes enregistrés a la station BRANT et fonctions
STA/LTA associées. Les signaux affichés sur ces sismogrammes correspondent
a un tir de la carriére de Chéniaz, située en Suisse au Sud du Lac Leman, ayant
eu lieu le 05 janvier 2017 & 04h25 (MLv 1.0). Un premier pointé automatique
P a été émis a partir d'une fenétre temporelle débutant & -11s (trait vertical
rouge foncé) et un deuxiéme faux pointé P retardé a été produit & partir d’une
fenétre temporelle commengant & -3 s (trait vertical rouge clair). Une fenétre
temporelle plus longue permet le calcul d’une fonction caractéristique qui capte
plus clairement les variations ténues de phase et/ou d’amplitude et/ou contenu
fréquentiel associés a 1’arrivée des ondes P.

Seulement, face a la diversité des signaux émis et des conditions fluctuantes
du niveau de bruit enregistré a une méme station, il a été souvent plus judicieux
d’établir plusieurs valeurs d’initiation de cette fenétre temporelle. En effet, par
exemple, la station RSL, située a quelques meétres du barrage de Roselend
dans les Alpes francgaises, enregistre quotidiennement un bruit de fond de forte
intensité (500 a 700 décibels) autour de 12 Hz (Figure 4.10).
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FIGURE 4.10: Exemples de spectrogrammes pour quelques signaux enregis-
trés sur la composante verticale de la station RSL. Cette station enregistre en
continu un bruit autour de 12 Hz.
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Ce niveau de bruit presque continu se trouve dans les mémes gammes de
fréquences que les ondes P. Si des signaux sismiques de faible amplitude par
rapport au bruit de fond sont enregistrés, les rapport signal/bruit évalués vont
alors étre tres faibles. De plus, si les ondes P sont tout juste émergentes, une
fenétre temporelle qui débute a -20 s permettra de capter plus facilement ces
faibles arrivées d’ondes P a la station RSL. La fonction caractéristique sera
effectivement calculée sur une fenétre temporelle de bruit plus longue, et éva-
luera donc mieux les changements subtils de phase et/ou d’amplitude liés a
I’arrivée des ondes P, malgré des changements fréquentiels peu perceptibles
(Figure 4.11).
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FIGURE 4.11: Sismogrammes enregistrés par la station RSL et fonctions
STA/LTA correspondantes. Les sismogrammes affichent un signal qui corres-
pond a un séisme ayant eu lieu le 05 janvier 2017 a 02h59 dans la région de Sion
en Suisse (MLv 2.2). Le premier trait vertical rouge correspond & un premier
pointé P qui a été redéfini a partir d'une fenétre temporelle débutant a -20 s.
Le deuxiéme trait vertical rouge correspond a un deuxiéme pointé P qui a été
affiné a partir d’une fenétre temporelle initiée a -5 s. Ce dernier pointé est un
faux pointé retardé.
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En revanche, lorsque cette méme station enregistre plus périodiquement du
bruit impulsif transitoire, de méme ordre d’amplitude et contenu fréquentiel
que les ondes P, une fenétre temporelle initiée plus tardivement (ici -5 s) sera
préférable. En effet, le calcul de la fonction caractéristique raccourcira ’enre-
gistrement de ces fluctuations importantes de bruit transitoire qui précedent
I’arrivée des ondes P, rendant alors plus visibles les changements de phase
associés a l'arrivée de ces ondes (Figure 4.12).
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FIGURE 4.12: Sismogrammes enregistrés par la station RSL et fonctions
STA/LTA correspondantes. Les sismogrammes affichent un signal qui corres-
pond a un séisme ayant eu lieu le 05 janvier 2017 a 15h24 dans les Alpes
frangaises (MLv 0.64). Le premier trait vertical rouge correspond & un premier
pointé P qui a été redéfini a partir d’'une fenétre temporelle débutant a -5 s.
Le deuxiéme trait vertical rouge correspond a un deuxiéme pointé P qui a été
affiné a partir d’une fenétre temporelle initiée a -20 s. Ce dernier pointé est un
faux pointé retardé.
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- Optimiser le filtrage du signal

Le filtre qui a été utilisé pour calculer la fonction caractéristique sur la
fenétre temporelle préalablement définie autour de la détection de l'arrivée des
ondes P par la méthode STA/LTA est un filtre passe-bande de Butterworth
d’ordre 2 avec fréquences de coupures comprises entre 4 et 20 Hz. En effet,
I'intensité du signal associée a l'arrivée des ondes P est concentrée en moyenne
dans cette gamme de fréquences (Figure 4.13).
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FIGURE 4.13: Exemples de spectrogrammes pour quelques signaux enregistrés
sur la composante verticale des stations. L’'intensité du signal équivalent aux
ondes P est plus élevée entre 4 et 20 Hz en moyenne.
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Seulement, cette intervalle de fréquences n’est pas efficace pour toutes les
stations, et ceci en raison du contenu fréquentiel des signaux enregistrés qui
différent en fonction de la localisation des stations. Une étude plus précise du
contenu fréquentiel des signaux enregistrés temporellement aux différentes sta-
tions utilisées dans cette étude est donc nécessaire pour spécifiquement adapter
le filtrage nécessaire a un pointé des ondes P de qualité.

En effet, par exemple, la station FELD est installée au coeur du Massif
de la Forét Noire sur un socle métamorphique, majoritairement des gneiss.
Celle-ci enregistre quasi-systématiquement des ondes P qui arrivent avec des
fréquences plus élevées, comprises entre 6 et 25 Hz (Figure 4.14). Ce phénoméne
est probablement dii a 'effet de la propagation des ondes P dans un milieu qui
atténue moins rapidement les hautes fréquences. Par conséquent, un filtre avec
des fréquences de coupures comprises entre 6 et 25 Hz a été choisi.
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(a) Séisme ayant eu lieu le 18 décembre (b) Tir de la carriére de Villigen en Suisse
2016 a 10h08 dans le Massif des Vosges ayant eu lieu le 06 octobre 2016 & 09h41
(MLv 1.8, distance épicentrale : 80.9 km). (MLv 1.3, distance épicentrale : 40.5 km.

FIGURE 4.14: Exemples de spectrogrammes pour quelques signaux enregistrés
sur la composante verticale de la station FELD. L’intensité du signal équivalent
aux ondes P est concentrée a des fréquences plus élevées que la moyenne, a
savoir comprises entre 6 et 25 Hz.

De méme, le filtrage utilisé dépend également du contenu fréquentiel des
différents types de bruit enregistrés aux différentes stations. Par exemple, la
station BOUC, située en France, dans la périphérie de la ville de Besangon,
au bord d’une route départementale, 3 6 km d’une voie ferrée, et a 3 km de la
carriére de Gonsans, est soumise réguliérement & du bruit haute fréquence (> 10
Hz). L’utilisation du filtre passe-bande de 4 & 20 Hz empéche alors la capture
des ondes P, plus particuliérement celles de méme ordre d’amplitude que le
bruit enregistré, car noyées dans le bruit haute fréquence. Par conséquent, un
filtre passe-bande avec des fréquences de coupure plus basses, & savoir entre
3 et 12 Hz, a réduit fortement ’amplitude du bruit haute fréquence, mettant
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en évidence plus aisément les changements d’amplitude et de fréquence liés a
l'arrivée des ondes P (Figure 4.15).
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FIGURE 4.15: Impact du filtrage sur la détection des signaux a la station BOUC.
Le premier signal (1) correspond & un tir de la carriére de Fontaines identifié
le 11 juillet 2016 a 15h10 (MLv 1.3, distance épicentrale : 54.0 km). Les spec-
trogrammes ont été définis a partir des signaux enregistrés sur la composante
verticale de la station. Le filtrage bande-passante 3-12 Hz est un filtrage plus
adapté pour affiner le pointé automatique P a cette station BOUC.
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ePour les pointés automatiques des ondes S

- Déterminer le filtrage du signal le plus adapté

De la méme facon, le filtrage du signal est un critére essentiel pour obtenir
un pointé du temps d’arrivée des ondes S de qualité. Le filtrage qui a été prin-
cipalement utilisé pour réaliser 1'opération de pointé automatique des phases
S est un filtre de Butterworth passe-bande d’ordre 4 avec des fréquences de
coupure comprises entre 4 Hz et 25 Hz. En effet, cette gamme fréquentielle
correspond a la gamme qui va le mieux capturer les ondes de volume S (Fi-
gure 4.16).
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(c) Signal enregistré & la station RONF (d) Signal enregistré a la station SULZ (dis-
(distance épicentrale : 7.0 km), correspon- tance épicentrale : 17.5 km), correspondant
dant & un tir de la carriére Lepuix-Gy iden- a un tir de la carriére de Villigen identifié
tifié au Nord de Belfort, le 25 novembre dans le Jura Suisse, le 15 septembre 2016 a
2016 & 09h45 (MLv 2.0). 09h41 (MLv 1.9).

FIGURE 4.16: Exemples de spectrogrammes de quelques signaux détectés au-
tomatiquement. L’intensité du signal correspondant a la phase sismique S se
concentre en moyenne entre 4 et 25 Hz.
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Si l'intensité du signal équivalent & l'arrivée des ondes S reste forte sur
des gammes fréquentielles plus larges (jusqu’a 25 Hz) pour les séismes, cette
intensité reste concentrée autour de 4 et 10 Hz pour les tirs de carriére. De cette
fagon, utiliser une filtre passe-bande moins restrictif (bande 4-25 Hz) permet de
capter plus facilement l'arrivée des ondes S qui sont beaucoup plus marquées
pour les séismes.

Seulement, ce filtre de Butterworth n’est pas efficace pour toutes les sta-
tions. Pour optimiser le pointé automatique des ondes S, il a été nécessaire
d’adapter le filtrage aux caractéristiques systématiques du bruit enregistré a
ces stations. Une analyse des signaux enregistrés temporellement aux diffé-
rentes stations a donc 1a aussi été nécessaire pour mettre en évidence 'impact
des fréquences des différents bruits enregistrés sur la qualité des pointés S. En
effet, si I’on prend l'exemple de la station AIGLE, celle-ci se situe en Suisse au
Sud du Lac Léman a 600 m de la voie ferrée et a 1 km d’un réseau autoroutier.

L’analyse de la fonction de densité spectrale de puissance pour la station
AIGLE montre que la puissance du bruit est élevée aux gammes de fréquence
typiques du bruit d’origine anthropique, c’est-a-dire comprises entre 1 et 10 Hz.
Pour ces gammes fréquentielles, cette puissance est variable et peut augmenter
d’environ 20 décibels par rapport a la puissance minimale. De plus, elle atteint
des probabilités fortes d’occurrence (de 'ordre de 15 a 20 %) par rapport au
modéle de bruit bas (NLNM). A partir de 20 Hz, la puissance de bruit atteint
des probabilités d’occurrence maximales élevées (30 %), s’éloignant radicale-
ment du NLNM. Cette station, particuliérement bruitée, est donc trés sensible
au bruit haute fréquence. (Figure 4.17).
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FIGURE 4.17: Densité spectrale de puissance probabiliste calculée pour la sta-
tion AIGLE. Les courbes grises correspondent aux modéles de bruit standard
(courbe supérieure = modéle de bruit élevé [NHNM]| et courbe inférieure =
modéle de bruit bas [NLNM]; PETERSON, 1993). Les niveaux de bruit de la
station sont estimés sur une large gamme de fréquences de 0.01 Hz & 16 Hz (soit
une période de 100 s & 0.0625 s). En bas du graphique sont affichées les don-
nées qui ont servi au calcul de cette fonction. Le rectangle vert représente les
données disponibles et le rectangle bleu montre 1’étendue des données qui ont
servi au calcul. Ces spectres ont été obtenus via le package ObsPy de Python
suivant la méthode de McNAMARA et al., 2004
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L’observation de quelques spectrogrammes de signaux enregistrés a la sta-

tion AIGLE montre effectivement deux bandes continues de haute fréquence
quasi-systématiques : une bande a 25 Hz montrant une intensité du signal de
I’ordre de 5 a 12 décibels et une autre a 50 Hz, affichant une intensité du si-
gnal de 'ordre de 7 a 20 décibels. La bande a 50 Hz équivaut a la fréquence
fondamentale de 1’alimentation électrique et la bande a 25 Hz probablement

son harmonique inférieure, soulignant alors un artefact d’origine électrique (Fi-
gure 4.18).
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FIGURE 4.18: Spectrogrammes de quelques signaux enregistrés sur la compo-

sante verticale de la station AIGLE.
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De cette fagon, afin de capturer le maximum d’intensité du signal corres-
pondant a ’arrivée des ondes S, un filtrage passe-bande de Butterworth avec
des fréquences de coupure comprises entre 4 et 21 Hz a été sélectionné pour
cette station AIGLE, au lieu de 4 et 25 Hz. Avec ce filtre spécifique, le bruit de
fond haute-fréquence enregistré a cette station est fortement réduit. Ceci a pour
effet d’augmenter corrélativement le rapport signal/bruit associé au pointé de
la phase S (Figure 4.19a et b), et de diminuer la probabilité de pointer du bruit
haute fréquence, qui se chevauche avec 'arrivée des ondes S, du fait d’'une am-
plitude et d’un contenu fréquentiel équivalents (Figure 4.19b et c). Ces deux
effets favorisent alors I’émission de pointés automatiques S de meilleure qualité.
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Pick: 2016-12-23 09:00:31.904201 UTC Pick: 2016-12-23 09:00:31.912534 UTC
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mean: 5.08584e-09 mean: 5.08584e-09
|CH.AIGLE..HHE [CH.AIGLE..HHE
amax: 2.09342e- amax: 2.09342e-(
mean: -2.962e-09 mean: -2.962e-09
Absolute horizontal amplitude (L2 norm) Absolute horizontal amplitude (L2 norm)
|AICRIC 6.0 |AIC |AICAIC 6.6 AIC1
" u|, N " " . ‘|“,“/VM‘| h I f
Wmmwwxwmwmmw* iy , M *:, | an wwl,“l\ .{, { ittt i ey v M il |l | W |r w\' H ‘\ w*
amax: 2.27097e-07 amax: 2.09277e-07
mean: -3.77511e-12 SO mean: 2.05672e-11
T T T T T
09:00:25 09:00:30 09:00:35 09:00:25 09:00:30 09:00:35
2016-12-23 2016-12-23

(a) Filtre passe-bande de Butterworth (b) Filtre passe-bande de Butterworth
d’ordre 4 avec fréquences de coupure 4-25 d’ordre 4 avec fréquences de coupures 4-21
Hz (séisme du 23 décembre 2016 & 09h00). Hz (séisme du 23 décembre 2016 a 09h00).

Pick: 2017-01-01 04:13:38.0467 UTC Pick: 2017-01-01 04:13:38.0467 UTC

Horizontal components: unfiltered
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(c) Filtre passe-bande de Butterworth (d) Filtre passe-bande de Butterworth
d’ordre 4 avec fréquences de coupures 4-25 d’ordre 4 avec fréquences de coupures 4-21
Hz (séisme du 01 janvier 2017 & 04h13). Hz (séisme du 01 janvier 2017 & 04h13).

FIGURE 4.19: Impact du filtrage sur la qualité des pointés automatiques des
phases sismiques S pour la station AIGLE. (a) + (b) Augmentation du rapport
signal/bruit. (b) + (c) Réduction de l'effet parasite du bruit haute-fréquence.
Le trait vertical rouge correspond au pointé P de référence; les traits verticaux
bleus surmontés de "AICO0" et "AIC1" indiquent respectivement le début et
la fin du traitement du sismogramme pour réaliser le pointé S. Le traitement
s’arréte lorsque le rapport signal/bruit minimum (SNR) et le nombre minimum
a partir duquel le critére AIC minimal doit étre rencontré sur des fenétres
temporelles adjacentes sont atteints pour pointer une phase S (ici SNR= 3.5 et
nombre minimum= 2). Le ligne verticale bleue surmontée de AIC correspond
au pointé S effectué et le nombre relate le rapport signal/bruit avec lequel il a
été émis. Les deux composantes horizontales de la station sont utilisées pour
pointer les phases S. La partie supérieure de chaque encadré montre les traces
sismiques non filtrées des deux composantes horizontales. La partie inférieure
correspond a la somme vectorielle des composantes horizontales (trace L2).
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De méme, un filtre plus restrictif avec fréquences de coupure comprises entre
3 et 15 Hz a permis de mieux détecter les arrivées des ondes S a la station KIZ,
qui est située au Sud-Est de Freiburg au sein du Massif de la Forét Noire, mais
pour d’autres raisons. En effet, cette station est impliquée dans la détection de
prés de 3.5 fois plus de carriéres et les distances épicentrales évaluées sont en
moyenne de 103.22 km (médiane = 65.05 km). De plus, pour seulement 8 %
des événements détectés, les distances épicentrales sont estimées a moins de 30
km.

Par conséquent, au-dela des caractéristiques de bruit inhérentes a chaque
station, le type de filtrage utilisé dépend également de la localisation de la
station au regard de la probabilité d’occurrence des événements enregistrés
(type d’événement et localisation de la source). En effet, ce filtrage refléte a
la fois la probabilité plus élevée que des signaux enregistrés a la station KIZ
soient reliés a des tirs de carriére émettant des ondes S dans des gammes de
fréquence globalement plus faibles (< 15 Hz), et la probabilité plus grande que
ces stations soient situées a des distances épicentrales plus grandes, enregistrant
donc des ondes S plus atténuées en haute fréquence (Figure 4.20).

Seulement, si ce filtrage peut paraitre au premier abord biaisé, il n’empéche
pas le pointé correct des ondes S pour des signaux dont 'intensité du signal
reste élevée jusqu’a 25 Hz (Figure 4.20€). En effet, si un peu de signal risque
d’étre perdu, la station KIZ affichant globalement un niveau de bruit de fond
constant et minimal a des fréquences supérieures a 7 Hz (avec peu de bruit
impulsif), il est possible de capter plus facilement le signal autour de 10 Hz
avec moins d’interférences (Figure 4.21).

La configuration optimale du filtrage résulte donc a la fois du
milieu de propagation des ondes, du site d’implantation de la
station, ainsi que de ’orientation et de la distance de cette station
a la source, soulignant 1a encore la diversité et la complexité de
I’ensemble des signaux enregistrés.
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(e) Séisme identifié au Sud-Est de Freiburg (f) Séisme identifié¢ dans le Massif des
en Allemagne (25 novembre 2016 a 14h41, Vosges (18 décembre 2016 & 10h08, MLv
MLv 0.8, distance épicentrale : 0.5 km). 1.8, distance épicentrale : 71.1 km).

FIGURE 4.20: Exemples de spectrogrammes de signaux enregistrés sur la com-
posante verticale de la station KIZ. Le filtrage utilisé pour le pointé automa-
tique (3-15 Hz) est fonction de la distance épicentrale et du type d’événement.
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LEKIZ..HHZ 2016-11-16 -- 2016-11-16 (46/46 segments)

FR.RONF.00.HHZ 2016-11-23 -- 2016-11-23 (47/47 segments)
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(a) Station KIZ située au Sud-Est de Frei- (b) Station RONF située dans les Vosges
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km d’un aérodrome.
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(c) Station FELD située sur le plus haut
sommet de la Forét Noire, & quelques di-
zaines meétres de 3 tours de communication
et & 2 km d’une station de ski trés touris-
tique.

FI1GURE 4.21: Densité spectrale de puissance probabiliste calculée pour la sta-
tion KIZ (a), comparée a celles des stations RONF (b) et FELD (c), plus
sensibles au bruit transitoire impulsif. Les 3 stations sont sensibles au bruit
d’origine anthropique (fréquences > 1 Hz). Contrairement aux stations RONF
et FELD, la puissance du bruit a la station KIZ atteint un niveau de 1’ordre de
-145 dB en moyenne, avec une probabilité d’occurrence de 'ordre de 30 %, et
affiche un seuil minimal d’amplitude aux plus hautes fréquences (7 a 50 Hz).
En revanche, les stations RONF et FELD affichent des niveaux de bruit beau-
coup plus variables, avec des sauts d’amplitude plus forts autour de 11 Hz pour
RONF et autour de 15 Hz pour FELD, ainsi que des probabilités d’occurrence
plus faibles (de ’ordre de 15%). Ces spectres ont été obtenus via le package
ObsPy de Python suivant la méthode de McNAMARA et al., 2004.
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eDéterminer un rapport signal/bruit optimal

Un autre parameétre qui gouverne la qualité des pointés S est ’estimation du
rapport signal/bruit minimal nécessaire pour accepter un pointé. Ce rapport
signal/bruit a été paramétré globalement & 3.5. Cette valeur a été définie empi-
riquement a partir d’un jeu test de différentes valeurs comprises entre 1.5 et la
valeur par défaut définie dans SeisComP3 égale a 5. Ces différents paramétrages
ont été testés sur le pointé automatique des ondes S a partir de sismogrammes
enregistrés entre juillet et aofit 2016, puis janvier 2017. La valeur de 3.5 a été
obtenue pour un grand nombre de stations. Cette valeur correspond a la valeur
minimale du rapport signal/bruit nécessaire pour obtenir un nombre maximal
de pointés S de qualité, malgré un niveau de bruit enregistré élevé.

Seulement, pour des stations enregistrant réguliérement des fluctuations
importantes de bruit transitoire d’origine anthropique, un rapport signal/bruit
minimal plus élevé a été obtenu (autour de 4). Ceci limite effectivement la
possibilité de pointer du bruit au lieu de la phase S, en particulier pour des
signaux sismiques dont ’amplitude et le contenu fréquentiel s’approchent de
ceux du bruit.

En revanche, un rapport signal/bruit minimal supérieur & 4 a par exemple
été obtenu pour pointer les arrivées des ondes S aux stations permanentes telles
que GIMEL (& 50 m d’une route circulante), BRANT (& 3 km d’une voie ferrée
et d'une autoroute), MOF (a 4 km d’une route nationale et 800 m d’une route
départementale) ou EMBD (& 300 m d’une station de ski et a 400 m d’une
voie ferrée). Par ailleurs, ces stations correspondent aux mémes stations qui
sont fortement impliquées dans la génération de 10 a 35% des faux événements
détectés (Figure 3.19).

Il en est de méme pour les stations temporaires AlpArray telles que A117A
(au sein d’une exploitation agricole et & 1 km d’une zone urbaine), A164A (au
bord d'une petite route, a 1500 m d’une autoroute et & 500 m d’une route
nationale), A113A (au coeur d’un village, & 2 km d’une voie ferrée) ou A116A
(2 900 m d’une autoroute). Ces stations sont également impliquées dans la
génération de 10 a 25 % des faux événements détectés (cf Figure 3.18).

En revanche, pour d’autres stations, la valeur du rapport signal/bruit mi-
nimal obtenue a été plus faible, c’est-a-dire autour de 3. En effet, ces stations,
un peu plus éloignées des axes routiers et des centres d’activité urbaine, ont
tendance a enregistrer des niveaux de bruit haute-fréquence moins élevés que
les stations précédentes. Les ondes S ayant des gammes de fréquence et des
amplitudes équivalentes a ceux du bruit enregistré (en particulier pour les évé-
nements de plus faible magnitude), les rapports signal/bruit sont alors ici plus
élevés, permettant la diminution du rapport signal/bruit minimal a atteindre
pour pointer les ondes S.

Parmi ces stations, on retrouve des stations permanentes comme GUT (si-
tuée dans le Jura Souabe), BALST (située dans le Jura Suisse), ECH (située
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dans les Vosges du Nord) ou RIVEL (située dans le Jura frangais) et des stations
temporaires telles que A112A (située dans le Massif de Rhenish au Nord-Ouest
de ’Allemagne), A158A (située dans les Vosges) ou A173A (située dans les
Alpes du Nord francaises).

Ces stations affichent effectivement des puissances de bruit aux hautes fré-
quences (> 10 Hz) qui sont inférieures de 20 & 40 dB aux puissances de bruit
estimées pour les stations évoquées précédemment, pour des probabilités d’oc-
currence équivalentes (Figure 4.22).

Par ailleurs, ces stations sont également moins impliquées dans la création
de faux événements, de I’ordre de 5 & 10% d’entre eux (cf Figures 3.19 et 3.18),
mais elles font partie de celles qui sont le plus impliquées dans la création des
vrais événements (cf Figures 3.21 et 3.20).
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Z3.A112A..HHZ 2016-12-05 -- 2016-12-05 (46/46 segments)
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FIGURE 4.22: Comparaison des densités spectrales de puissance probabiliste
des stations dont le rapport signal/bruit minimum pour activer un pointé S
est inférieur ou égal a 3 (A112A (a), A158A (b) et BALST(c)) avec celles des
stations dont le rapport signal/bruit minimum pour activer un pointé S est
supérieur ou égal a 4 (A113A (d), A164A (e) et MOF (f)). Avec une probabilité
d’occurrence équivalente, les stations A112A, A158A et BALST affichent une
puissance du bruit de ’ordre de 20 a 40 dB inférieure aux puissances estimées
aux stations A113A, A164A et MOF, pour les gammes de haute fréquence
comprises entre 10 et 35 Hz. Ces spectres ont été obtenus via le package ObsPy
de Python suivant la méthode de McNAMARA et al., 2004.
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eOptimiser le calcul du critére AIC

Trois paramétres sont utilisés pour définir le critére AIC minimal : la durée
du signal choisie pour rechercher la valeur minimale du critére AIC, la taille
des fenétres temporelles utilisées sur ce signal pour calculer le critére AIC sur
différents segments du signal, et le nombre minimum de fois que le critére AIC
minimal doit étre trouvé consécutivement.

Début du signal. Le début du signal qui est choisi pour entamer le
calcul du critére AIC est défini a partir du pointé P qui sert de référence. Pour
beaucoup de stations, la valeur qui est sélectionnée est la valeur qui correspond
au temps minimal qui sépare 'arrivée des ondes P de 1’arrivée des S dans la
zone d’étude, c’est-a-dire 1.68 s. Cette valeur a été obtenue a partir de ’analyse
statistique des différences de temps séparant les ondes P et S calculées pour
I’ensemble des événements détectés par le BCSF-RéNaSS au cours de 1’année
2016.

En revanche, pour certaines stations, il a fallu augmenter cette valeur, qui
est en fait fonction des distances épicentrales moyennes estimées pour chaque
station. Pour obtenir la valeur optimale, un ensemble de valeurs a été testé
empiriquement sur l’ensemble des stations en évaluant leur impact sur la qualité
du pointé automatique des ondes S a partir des sismogrammes enregistrés entre
juillet et aofit 2016 ainsi que janvier 2017.

De ce fait, le début du signal a été placé a des valeurs comprises entre 2.5
et 3 s pour des stations comme SLE (située au Nord du Lac de Konstanz en
Allemagne), ECH (située au Nord des Vosges) ou bien RIVEL (située dans le
Jura frangais). Or, 75% des événements détectés par ces stations sont situés
a des distances épicentrales supérieures a 50 Km. Ces stations sont alors plus
impliquées dans la détection des événements a 1’échelle régionale qu’a I’échelle
locale. La probabilité d’enregistrer des arrivées d’ondes S plus retardées relati-
vement aux ondes P de référence, est donc nécessairement plus élevée.

Taille des fenétres temporelles De plus, la taille des fenétres temporelles
utilisées pour calculer le critére AIC le long du signal extrait est en moyenne
de 0.96 s pour l'ensemble des stations. De la méme facon, celle-ci a été définie
empiriquement a partir d’un ensemble de valeurs possibles testées, dont 'im-
pact sur la qualité des pointés automatiques des ondes S émis aux différentes
stations a été évalué sur les périodes juillet-aotit 2016 et janvier 2017.

Cependant, cette valeur de 0.96s va étre modifiée également en fonction de
la localisation des stations par rapport aux événements détectés. En effet, par
exemple 35% des signaux enregistrés a la station AIGLE ou a la station DIX
correspondent a des événements (séismes ou tirs de carriére) qui sont situés
a des distances épicentrales de moins de 30 km pour AIGLE (située au Sud
du Lac Léman) et 40 km pour DIX (située au coeur du Valais Suisse). Dans
ces cas-ci, des fenétres temporelles plus courtes comprises entre 0.5 et 0.6 s
a permis de mieux capter les arrivées précoces des ondes S relativement aux
ondes P, du fait de la faible distance épicentrale.
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Et ceci a d’ailleurs permis d’améliorer davantage la qualité des pointés des
ondes S plutét que de placer le début du signal a des valeurs inférieures a
1.68 s. L’avancée du début du signal pour calculer le critére AIC augmente
effectivement la probabilité de pointer du signal haute fréquence dans la coda
des ondes P, plutdt que les premiéres arrivées des ondes S.

Ainsi, rechercher des valeurs optimales pour les deux parameétres nécessaires
au calcul optimal du critére AIC (début du signal et taille des fenétres tempo-
relles) permet d’adapter ce calcul aux distances épicentrales, et donc a l’arrivée
différentielle des ondes S.

Deux tendances se dégagent en conséquence. La premiére tendance obser-
vée est que plus la distance épicentrale augmente, plus le début du signal
sélectionné sera retardé par rapport & la valeur de référence (ici 1.68 s) et
plus la fenétre temporelle utilisée pour calculer le critére AIC sera longue. La
deuxiéme tendance qui est constatée est que, pour un méme début de signal
(ici entre 1.68 s et 2.2 s), la fenétre temporelle utilisée pour calculer la critére
AIC augmente avec la distance épicentrale (Figure 4.23).
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FIGURE 4.23: Evolution de la taille de la fenétre temporelle utilisée pour cal-
culer le critére AIC en fonction du début du signal sélectionné pour initier le
calcul et de la distance épicentrale. Chaque point correspond a une station.

134 CHAPITRE 4. Alexandra Renouard



4.1. AMELIORER LA QUALITE DES POINTES

Enfin, le nombre de fois que le critére AIC minimum est trouvé sur deux
fenétres temporelles adjacentes pour activer un pointé automatique S, a été
placé a 3, qui est la valeur définie par défaut dans SeisComP3.

Néanmoins, une valeur de 2 a parfois été paramétrée dans les cas ou des
stations performantes, qui ont tendance a détecter beaucoup d’événements,
ont un début de signal pour calculer le critére AIC tardif par rapport a la
valeur moyenne de référence (c’est-a-dire > 1.68 s). Ainsi, si ces stations en
question ont tendance a détecter plus fréquemment des événements locaux,
comme par exemple AIGLE ou DIX, cette valeur de 2 offre la possibilité de
détecter I’arrivée des ondes S pour des rapports signal/bruit plus élevés, c’est-
a-dire pour des signaux moins pollués par le bruit haute fréquence que ces
stations ont tendance a enregistrer. Si au contraire ces stations détectent plus
fréquemment des séismes distants, comme c’est le cas des stations KIZ, ECH
ou GIMEL, une valeur de 2 augmente les chances de pointer 1’arrivée des ondes
S pour des détections a des distances épicentrales plus faibles.

La qualité des pointés P et S dépend alors de deux principaux
facteurs :

— les caractéristiques du bruit enregistré aux stations, indi-
rectement définies par ’amplitude et le contenu fréquentiel
du signal enregistré ainsi que le rapport signal /bruit ;

— la localisation de ces derniéres relativement a la probabilité
d’occurrence spatiale des séismes, autrement dit la distance
épicentrale.

Par conséquent, plusieurs configurations des paramétres critiques
a ’amélioration des pointés des ondes P et S apparaissent souvent
nécessaires pour une méme station.

De cette fagon, j’ai implémenté 2 instances de pointés automa-
tiques, fonctionnant simultanément. Chaque instance s’adapte
spécifiquement aux conditions de bruit et a la localisation parti-
culiéres des stations.

Seulement, pour une méme station, les signaux enregistrés sont
d’une grande diversité et correspondent a des distances épicen-
trales variables d’un événement a ’autre. De plus, les niveaux
de bruit enregistrés ne sont jamais constants et sont fortement
dépendants de I’environnement de la station ainsi que sa qualité
instrumentale intrinséque.
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Le nombre d’instances a définir a été déterminé a partir de 1’éva-
luation de la performance du pointé automatique des premiéres
arrivées des ondes P et S. Cette performance a été estimée en
comparant les pointés automatiques des ondes P et S aux pointés
manuels effectués pour les mémes événements détectés.

4.1.3 Quelle performance pour ces pointés automatiques
des ondes P et S?

eComparaison aux pointés manuels

La comparaison des temps d’arrivée des ondes P estimés par les pointés
manuels et par les pointés automatiques pour la période juillet-octobre 2016
montre que 70 % des pointés automatiques P différent des pointés manuels de
seulement +0.5s, dont 19% sont identiques (Figure 4.24).

Number of P picks

T T T T T T T T T T T T T T T T - T T A N e
P arrival time differences (s) Time S picks difference (s)

FIGURE 4.24: Distribution des temps d’arrivée différentiels entre les pointés ma-
nuels et automatiques pour des mémes événements ayant été détectés pendant
la période juillet-octobre 2016. Pointés automatiques P (a gauche) et pointés
automatiques S (& droite).

De plus, 11% des pointés automatiques P ont des temps d’arrivée qui dif-
férent de plus de +1.55 des pointés manuels, et 94 % d’entre eux différent de
moins de +3s. Pour autant, on notera que ces pourcentages n’engagent pas de
facon absolue la performance réelle du pointé automatique P. En effet, cette
comparaison tient uniquement compte des pointés automatiques qui ont été
sélectionnés pour créer les événements détectés.
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Or, plusieurs pointés identifiés comme P peuvent étre émis consécutivement
a une méme station, en fonction des conditions de bruit enregistré, mais un
seul correspond a 'arrivée réelle des ondes P. Par conséquent, si, parmi le choix
des pointés P émis a cette station, c’est finalement un pointé erroné qui est
sélectionné dans le processus d’association, cela signifie que lorsque 1’on com-
pare ce pointé au pointé manuel équivalent, ce n’est pas la performance réelle
de l'opération de pointé qui est évalué mais celle du processus d’association
(Figure 4.25).

Al02A 73 HHZ, distance: 17.35 km, azimuth: 123.9°
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FIGURE 4.25: Exemple d’émission de plusieurs pointés automatiques P consé-
cutifs a la station A102A. Signal correspondant & un séisme ayant eu lieu le
01 juillet 2016 & 03h15 dans la région d’Albstadt en Allemagne (MLv 1.4). Si
le premier ou le deuxiéme pointé P (trait vertical rouge clair) était sélectionné
dans le processus d’association, chacun aurait respectivement une différence de
temps d’arrivée estimée des ondes P de -7.5 s et -4 s, alors que pourtant un
vrai pointé P a été émis (troisiéme trait vertical rouge foncé).

De méme, 65% des pointés automatiques S différent des pointés manuels
équivalents de seulement +0.5s et 97% différent de moins de +3s (Figure 4.24).
La méme remarque peut étre également établie concernant l'estimation de la
performance réelle de ’opération de pointé des ondes S, au regard des multiples
pointés S qui peuvent étre aussi émis consécutivement & une méme station.
Cependant, étant donné que les pointés S sont émis une fois que les pointés
P sont produits, la probabilité qu’un pointé S erroné soit sélectionné dans le
processus d’association est supérieure si un pointé P sélectionné est lui-méme
erroné (Figure 4.26).

L’opération de pointé des ondes S est un processus plus délicat. En effet, la
phase S arrive souvent dans la coda des ondes P et est parfois précédée par des
phases sismiques converties (LoMAX, 2008). Une proportion moins élevée de
pointés automatiques S, relativement aux pointés P, présente conséquemment
des différentiels de temps d’arrivée plus petit que +£0.5s par rapport aux pointés
manuels. Ces pointés plus inexacts peuvent étre le vecteur d’une plus grande
incertitude dans la localisation future des événements détectés.
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Al02A Z3 HHZ, distance: 17.83 km, azimuth: 298.0°
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FIGURE 4.26: Exemple d’émission de plusieurs pointés automatiques P et S
consécutifs a la station A102. Signal correspondant a un séisme ayant eu lieu
le 01 juillet 2016 a 03h15 dans la région d’Albstadt en Allemagne (MLv 1.4).
Les traits verticaux rouge foncé représentent les pointés automatiques erronés
qui ont été sélectionnés pour cet exemple. Le pointé P est anticipé de 7 s et le
pointé S résultant est anticipé de 5.5 s.

Ainsi, ’estimation de 'impact de I'incertitude des pointés des ondes S sur les
localisations épi- et hypocentrale, confrontée aux incertitudes liées au modele de
vitesse, est un facteur important a considérer pour définir un niveau satisfaisant
d’amélioration du pointé automatique.
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eImpact sur les localisations épi- et hypocentrales

Le logiciel NonLinLoc (LoMAX, VIRIEUX et al., 2000) a été utilisé pour si-
muler I'impact des variations des temps d’arrivée des ondes S par rapport au
temps d’arrivée référence, évalués manuellement, sur 'incertitude des locali-
sations épicentrale et hypocentrale des événements au regard de 100 modeles
de vitesses (50 modéles & 3 couches et 50 modéles & 12 couches). Ces modéles
de vitesse ont été établis aléatoirement a partir d'une gamme de vitesses des
ondes P comprises entre 3.5 km/s et 8.2 km/s et des rapports Vp/Vs compris
entre 1.65 et 2.00.

La gamme de valeurs choisie pour les vitesses des ondes P correspondent
aux gammes de vitesse qui peuvent étre possiblement rencontrées dans les
roches qui composent le milieu de propagation. L’intervalle de valeurs pour
les rapports Vp/Vs a été défini a partir de la construction du diagramme de
Wadati pour les événements détectés en 2016 par le BCSF-RéNaSS, et des
résultats de ’étude réalisée par ROTHE et al., 1950 sur les carriéres souterraines
d'Haslach en Allemagne pour élaborer le modéle de vitesse régional d’Haslach
(Figure 4.27).
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i ° — y=0.68x+1.48
50 - *

tp (s)

FIGURE 4.27: Diagramme de wadati réalisé a partir des temps d’arrivée des
ondes S (ts) et des ondes P (tp) définis par les pointés manuels de I’ensemble
des événements détectés en 2016 par le BCSF-RéNaSS. La valeur du rapport

Vp/Vs est égale a 1.68
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La procédure de localisation utilisée par le programme NonLinLoc déter-
mine une fonction de densité de probabilités a posterior: sur toutes les solu-
tions épi- et hypocentrales. En effet, cette localisation quantifie ’accord entre
les temps d’arrivée observés et prédits en relation a toutes les incertitudes
considérées (pointés, calcul des temps de trajet, géométrie du réseau) et forme
une solution compléte probabiliste qui représente la distribution de toutes les
localisations possibles.

Cette fonction de densité de probabilité est calculée ici a partir de 1’algo-
rithme Oct-Tree (Lomax et Currtis, 2001). Cet algorithme utilise une sub-
division récursive et un échantillonnage de cellules dans un espace 3-D pour
générer une cascade de cellules échantillonnées, ou la densité des cellules échan-
tillonnées suit les valeurs de la fonction de densité de probabilités du centre de
la cellule (HuseN, KissSLING et al., 2003). La valeur maximale de cette fonction
est prise comme hypocentre préférentiel avec le maximum de vraisemblance
(Figure 4.28).

Alexandra Renouard CHAPITRE 4. 141



4.1. AMELIORER LA QUALITE DES POINTES
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FIGURE 4.28: Procédure d’échantillonnage de l’algorithme Oct-Tree pour ob-
tenir la fonction de densité de probabilités compléte (a). Cette procédure est
initialisée par un échantillonnage global de l'espace de recherche sur une grille
grossiére et réguliére (b). La probabilité est calculée pour chaque cellule puis
celle-ci est insérée dans la liste des probabilités a la position correspondant a
la valeur de sa probabilité. La cellule avec la probabilité la plus grande (Pmax,
carré rouge) est obtenue de la liste ordonnée des probabilités (b). Cette cellule
est alors divisée en 8 cellules filles (c). La probabilité est calculée pour chacune
des 8 cellules filles. Les 8 cellules filles sont insérées dans le liste ordonnée des
probabilités selon la valeur de leur probabilité et ainsi de suite jusqu’a obtenir
la fonction compléte de densité de probabilités (d-f). L’ensemble de la figure
représente les projections 2-D des échantillons 3-D. D’apreés LoMAax et CURTIS,
2001.
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En plus des incertitudes de localisation incluses dans la solution pro-
babiliste, le programme NonLinLoc produit des estimations traditionnelles
gaussiennes telles que la localisation hypocentrale attendue et 1’ellipsoide de
confilance a 68% (Lomax, VIRIEUX et al., 2000). Cette ellipsoide représente
une approximation statistique gaussienne de la fonction de densité de proba-
bilités, tronquée au niveau de confiance de 68%. Ceci signifie que si la fonction
de densité de probabilités était parfaitement ellipsoidale, alors il y aurait une
probabilité de 68% que ’hypocentre soit a l'intérieur de cette ellipsoide.

L’hypocentre attendu et l'ellipsoide de confiance peuvent étre interpré-
tés comme des résultats obtenus par des algorithmes de localisation tels que
HYPO-71 (W. H. K. LEE et al., 1972) ou HYPOELLIPSE (LAHR, 1989). Ce-
pendant, les incertitudes véhiculées par les estimations gaussiennes sont signi-
ficatives uniquement lorsque la fonction de densité de probabilités exprime un
minimum clair, unique et global (HuseN, KISSLING et al., 2003).

L’effet des variations des temps d’arrivée des ondes S sur les localisations
épicentrales et hypocentrales dépend d’abord fortement du modéle de vitesse
utilisé pour localiser (nombre de couches et vitesses de propagation des ondes).
Seulement, quelques généralités transparaissent. De maniére globale, en pre-
nant comme référence les localisations émises a partir des temps d’arrivées
des ondes S estimés manuellement, les solutions épicentrales et hypocentrales
vont fortement se dégrader a partir de retards de temps d’arrivée des ondes
S moyens, par rapport aux temps d’arrivée références, supérieurs a +1 s pour
tous les modéles de vitesse, voire supérieurs a +2 s, pour 36% des modéles de
vitesse multicouches (Figures 4.29 et 4.30). Cette dégradation des solutions
épicentrales et hypocentrales se manifeste par des incertitudes plus grandes :
un étalement spatial plus large des fonctions de densité de probabilités, un net
allongement des ellipsoides de confiance et un plus fort éloignement des deux
hypocentres (gaussien et maximum de vraisemblance).

Seulement, cette dégradation des solutions a tendance a s’atténuer avec
I’augmentation du nombre de phases impliquées dans la localisation, pour la
majorité des modéles de vitesse sélectionnés (Figures 4.31 et 4.32).

En ce qui concerne les variations négatives des temps d’arrivée des ondes
S, c’est-a-dire des temps d’arrivée estimés en moyenne de fagon anticipée par
rapport aux temps d’arrivée définis manuellement, le méme constat peut étre
fait. Si les temps d’arrivées des ondes S sont émis jusqu’a -1 s, voire jusqu’a
-2 s pour 26% des modéles de vitesse multicouches, les solutions épicentrales
et hypocentrales vont rester comparables aux solutions de référence, puis se
dégrader au-dela de -1 et -2 s (Figures 4.33 et 4.34). De méme, la dégradation
des solutions épi- et hypocentrales a tendance a s’atténuer avec 'laugmentation
du nombre de phases (Figures 4.33 et 4.34).
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FIGURE 4.29: Solutions épi- et hypocentrales pour un tir de la carriére de Dot-
ternhausen (MLv 1.7, 15/07/2016 10h25) en fonction des variations positives
moyennes (de +0.5 s & +5s) des temps d’arrivée des ondes S relativement
aux temps de référence estimés manuellement (= 0s). Solution épicentrale (a
gauche) et solution hypocentrale en fonction de la longitude (au milieu) et
la latitude (& droite). Le point rouge correspond & ’hypocentre gaussien et
lellipsoide rouge l’ellipsoide de confiance & 68%. La fonction de densité de
probabilités est représentée avec une palette de niveaux de gris et son hypo-
centre optimal de maximum de vraisemblance est défini par un triangle jaune.
Les localisations sont émises avec 23 phases (11 phases S) et un modéle
de vitesse multicouche (cf Annexe D.1).
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FIGURE 4.30: Solutions épi- et hypocentrales pour un tir de la carriére de
Dotternhausen émis le 15 juillet 2016 & 10h25 (MLv 1.7) en fonction des va-
riations positives moyennes (de +0.5 s & +5 s) des temps d’arrivée des ondes
S relativement aux temps de référence estimés manuellement (= 0 s). Solution
épicentrale (en haut) et solution hypocentrale en fonction de la longitude (au
milieu) et la latitude (en bas). Le point rouge correspond & I’hypocentre gaus-
sien et ’ellipsoide rouge l’ellipsoide de confiance a 68%. La fonction de densité
de probabilités est représentée avec une palette de niveaux de gris et son hy-
pocentre optimal de maximum de vraisemblance est définie par un hexagone
jaune. Les localisations sont émises avec 23 phases (11 phases S) et un
modéle de vitesse & 3 couches (cf Annexe D.2).
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FIGURE 4.31: Solutions épi- et hypocentrales pour un séisme ayant eu lieu le
16 juillet 2016 & 02h36 dans les Pré-alpes Suisses (MLv 2.7) en fonction des
variations positives moyennes (de +0.5 s & +5 s) des temps d’arrivée des ondes
S relativement aux temps de référence estimés manuellement (= 0 s). Solu-
tion épicentrale (en haut) et solution hypocentrale en fonction de la longitude
(au milieu) et la latitude (en bas). Le point rouge correspond a I’hypocentre
gaussien et l’ellipsoide rouge ’ellipsoide de confiance a 68%. La fonction de
densité de probabilités est représentée avec une palette de niveaux de gris et
son hypocentre optimal de maximum de vraisemblance est définie par un cercle
jaune. Les localisations sont émises avec 52 phases (18 phases S) et un
modéle de vitesse multicouche (cf Annexe D.3).
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FIGURE 4.32: Solutions épi- et hypocentrales pour un séisme ayant eu lieu le
16 juillet 2016 & 02h36 dans les Pré-alpes Suisses (MLv 2.7) en fonction des
variations positives moyennes (de +0.5 s & +5 s) des temps d’arrivée des ondes
S relativement aux temps de référence estimés manuellement (= 0 s). Solu-
tion épicentrale (en haut) et solution hypocentrale en fonction de la longitude
(au milieu) et la latitude (en bas). Le point rouge correspond a I’hypocentre
gaussien et l’ellipsoide rouge ’ellipsoide de confiance a 68%. La fonction de
densité de probabilités est représentée avec une palette de niveaux de gris et
son hypocentre optimal de maximum de vraisemblance est définie par un cercle
jaune. Les localisations sont émises avec 52 phases (18 phases S) et un
modéle de vitesse & 3 couches (cf Annexe D.5).
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FIGURE 4.33: Solutions épi- et hypocentrales pour un tir de la carriére de
Dotternhausen émis le 15 juillet 2016 & 10h25 (MLv 1.7) en fonction des va-
riations négatives moyennes (de -0.5 s & -5 s) des temps d’arrivée des ondes
S relativement aux temps de référence estimés manuellement (= 0 s). Solu-
tion épicentrale (en haut) et solution hypocentrale en fonction de la longitude
(au milieu) et la latitude (en bas). Le point rouge correspond a I’hypocentre
gaussien et l’ellipsoide rouge ’ellipsoide de confiance a 68%. La fonction de
densité de probabilités est représentée avec une palette de niveaux de gris et
son hypocentre optimal de maximum de vraisemblance est définie par un tri-
angle jaune. Les localisations sont émises avec 23 phases (11 phases S)

et un modéle de vitesse multicouche (cf Annexe D.1).
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FIGURE 4.34: Solutions épi- et hypocentrales pour un tir de la carriére de
Dotternhausen émis le 15 juillet 2016 & 10h25 (MLv 1.7) en fonction des va-
riations négatives moyennes (de -0.5 s & -5 s) des temps d’arrivée des ondes
S relativement aux temps de référence estimés manuellement (= 0 s). Solu-
tion épicentrale (en haut) et solution hypocentrale en fonction de la longitude
(au milieu) et la latitude (en bas). Le point rouge correspond a I'hypocentre
gaussien et l’ellipsoide rouge ’ellipsoide de confiance a 68%. La fonction de
densité de probabilités est représentée avec une palette de niveaux de gris et
son hypocentre optimal de maximum de vraisemblance est définie par un cercle
jaune. Les localisations sont émises avec 23 phases (11 phases S) et un

modéle de vitesse 4 3 couches (cf Annexe D.6).
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FIGURE 4.35: Solutions épi- et hypocentrales pour un séisme ayant eu lieu le
16 juillet 2016 & 02h36 dans les Pré-alpes Suisses (MLv 2.7) en fonction des
variations négatives moyennes (de -0.5 s & -5 s) des temps d’arrivée des ondes
S relativement aux temps de référence estimés manuellement (= 0 s). Solu-
tion épicentrale (en haut) et solution hypocentrale en fonction de la longitude
(au milieu) et la latitude (en bas). Le point rouge correspond a I’hypocentre
gaussien et l’ellipsoide rouge ’ellipsoide de confiance a 68%. La fonction de
densité de probabilités est représentée avec une palette de niveaux de gris et
son hypocentre optimal de maximum de vraisemblance est définie par un cercle
jaune. Les localisations sont émises avec 52 phases (18 phases S) et un
modéle de vitesse multicouche (cf Annexe D.3).
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FIGURE 4.36: Solutions épi- et hypocentrales pour un séisme ayant eu lieu le
16 juillet 2016 & 02h36 dans les Pré-alpes Suisses (MLv 2.7) en fonction des
variations négatives moyennes (de -0.5 s & -5 s) des temps d’arrivée des ondes
S relativement aux temps de référence estimés manuellement (= 0 s). Solution
épicentrale (en haut) et solution hypocentrale en fonction de la longitude (au
milieu) et la latitude (en bas). Le point rouge correspond & l’hypocentre gaus-
sien et ’ellipsoide rouge l’ellipsoide de confiance a 68%. La fonction de densité
de probabilités est représentée avec une palette de niveaux de gris et son hy-
pocentre optimal de maximum de vraisemblance est définie par un hexagone
jaune. Les localisations sont émises avec 52 phases (18 phases S) et un
modéle de vitesse & 3 couches (cf Annexe D.5).
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Plus spécifiquement, si les localisations épicentrales et hypocentrales sont
maintenant analysées par modéle de vitesse, celles-ci dépendent fortement des
temps d’arrivée moyens des ondes S émis par rapport aux temps de référence.
En effet, lorsque les modéles de vitesse multicouches présentent des vitesses
assez élevées pour les ondes S dans les premiéres couches (environ 2.80 km/s
en moyenne jusqu’a 5 km), les localisations hypocentrales seront plus approxi-
matives si les pointés S émis sont anticipés. Si je prends ’exemple du tir de
la carriére de Dotternhausen produit le 15 juillet 2016 & 10h25 (MLv 1.7) et
localisé avec un de ces modéles de vitesse, il est possible de remarquer que
I’hypocentre optimal de maximum de vraisemblance change soudainement de
position et passe a une profondeur de ’ordre de 15 km lorsque les pointés des
ondes S sont émis en avance (de -0.5 s & -5 s). L’élongation de la fonction de den-
sité de probabilités ainsi que la séparation nette des deux hypocentres (gaussien
et maximum de vraisemblance) de l'ordre de 5 km mettent en évidence une
large incertitude hypocentrale, en partie biaisée par les temps d’arrivées des
ondes S. (Figure 4.37).

En revanche, cette observation est moins marquée lorsque les variations des
temps d’arrivée des ondes S sont positives, c’est a dire que les pointés S sont
retardés. En effet, jusqu’a +2 s, la position de I’hypocentre optimal de maxi-
mum de vraisemblance est stable et située a environ 2 km. De plus, la fonction
de densité de probabilités garde la méme allure. En revanche, 'hypocentre
gaussien de référence (c’est-a-dire celui émis a partir des temps d’arrivées des
ondes S de référence) est placé initialement a 7 km et avec une ellipsoide de
confiance de l'ordre de 7 km de longueur. Au fur et a mesure que les temps
d’arrivées estimées des ondes S sont retardés, cet hypocentre gaussien tend a
se rapprocher de 'hypocentre optimal et 1'aire de 'ellipsoide de confiance di-
minue. L’hypocentre vrai étant situé & 0 km (tir de carriére), cet effet traduit
alors nettement des incertitudes supplémentaires liées au modéle de vitesse,
qui semble surestimer les vitesses des ondes S (Figure 4.37).

Avec un modéele de vitesse qui présente des vitesses des ondes S moins éle-
vées (environ 2.72 km/s en moyenne pour les premiéres couches jusqu’a 5 km),
les solutions hypocentrales restent beaucoup plus stables pour tous les cas de
pointés S émis entre -1 et + 1 s autour du temps d’arrivée de référence (Fi-
gures 4.29 et 4.33). Les incertitudes de ces localisations hypocentrales sont
d’ailleurs plus faibles comme en témoignent la contraction des fonctions de
densité de probabilité, les petites surfaces des ellipsoides de confiance (lon-
gueur de 3 km) et le rapprochement des deux hypocentres calculés (gaussien et
maximum de vraisemblance). De plus, ’hypocentre optimal de vraisemblance
reste a une profondeur stable d’environ 1-2 km.
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FIGURE 4.37: Solutions épi- et hypocentrales pour un tir de la carriére de
Dotternhausen en Allemagne émis le 15 juillet 2016 & 10h25 (MLv 1.7) en
fonction des variations négatives moyennes (de -0.5 s & -5 s) des temps d’arrivée
des ondes S relativement aux temps de référence estimés manuellement (=
0 s). Solution épicentrale (en haut) et solution hypocentrale en fonction de
la longitude (au milieu) et la latitude (en bas). Le point rouge correspond a
I’hypocentre gaussien et 'ellipsoide rouge l’ellipsoide de confiance a 68%. La
fonction de densité de probabilités est représentée avec une palette de niveaux
de gris et son hypocentre optimal de maximum de vraisemblance est définie
par un hexagone jaune. Les localisations sont émises avec 23 phases (11
phases S) et un modéle de vitesse multicouche (cf Annexe D.7).
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Les mémes observations peuvent étre également effectuées pour les modéles
de vitesse plus simples a 3 couches, a l'exception que l'incertitude liée aux
temps d’arrivée des ondes S a plus d’implication dans I’estimation de l'incerti-
tude des solutions épicentrales et hypocentrales. Par exemple, pour le méme tir
de la carriére de Dotternhausen du 15 juillet 2016 et pour des modéles de vi-
tesse avec des vitesses moyennes des ondes S dans la premiére couche d’environ
2.60 km/s, I’étalement spatial des fonctions de densité de probabilités, 1'allon-
gement des ellipsoides de confiance et 1’écartement entre les deux hypocentres
estimés (gaussien et maximum de vraisemblance) augmentent avec le retard
des temps d’arrivée des ondes S (par rapport aux temps de référence), méme si
I’hypocentre optimal de maximum de vraisemblance reste fixé a la méme pro-
fondeur. Cette incertitude devient trés grande dés +2 s de retard (Figure 4.38).
Néanmoins, cet effet se manifeste beaucoup moins pour des temps d’arrivée des
ondes S qui sont en moyenne pointés en avance par rapport au pointé manuel
de référence, soulignant alors la encore l'impact fort du modéle de vitesse sur
les incertitudes calculées (Figure 4.39).
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FIGURE 4.38: Solutions épi- et hypocentrales pour un tir de la carriére de Dot-
ternhausen ayant eu lieu le 15 juillet 2016 & 10h25 en Allemagne (MLv 1.7) en
fonction des variations positives moyennes (de +0.5 s & +5 s) des temps d’ar-
rivée des ondes S relativement aux temps de référence estimés manuellement
(= 0 s). Solution épicentrale (en haut) et solution hypocentrale en fonction de
la longitude (au milieu) et la latitude (en bas). Le point rouge correspond a
I’hypocentre gaussien et 'ellipsoide rouge l’ellipsoide de confiance a 68%. La
fonction de densité de probabilités est représentée avec une palette de niveaux
de gris et son hypocentre optimal de maximum de vraisemblance est définie par
un triangle jaune. Les localisations sont calculées a partir de 23 phases
(11 phases S) et un modéle de vitesse & 3 couches (cf Annexe D.8).
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FIGURE 4.39: Solutions épi- et hypocentrales pour un tir de la carriére de Dot-
ternhausen ayant eu lieu le 15 juillet 2016 a 10h25 en Allemagne (MLv 1.7) en
fonction des variations négatives moyennes (de -0.5 s & -5 s) des temps d’ar-
rivée des ondes S relativement aux temps de référence estimés manuellement
(= 0 s). Solution épicentrale (en haut) et solution hypocentrale en fonction de
la longitude (au milieu) et la latitude (en bas). Le point rouge correspond a
I’hypocentre gaussien et l'ellipsoide rouge l’ellipsoide de confiance a 68%. La
fonction de densité de probabilités est représentée avec une palette de niveaux
de gris et son hypocentre optimal de maximum de vraisemblance est définie
par un triangle jaune. Les localisations sont calculées a partir de 23 phases (11
phases S) et un modéle de vitesse a 3 couches (cf Annexe D.8).
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De ce fait, lorsque les variations des temps d’arrivée des ondes S
pour un méme événement sont comprises entre -1 et 1 s par rap-
port au temps de référence, les incertitudes hypocentrales éva-
luées sont davantage dominées par les incertitudes liées a la struc-
ture du modéle de vitesse que par les variations des temps d’ar-
rivée des ondes S. En revanche, si ces pointés S ont des marges
d’erreur trop grandes, c’est-a-dire retardés de plus de 2 s et ou
anticipés de plus de 2 s, les fonctions de densité de probabilités
ont de plus larges distributions et les ellipsoides d’erreur ont des
surfaces trés grandes, soulignant une trés grande incertitude des
localisations hypocentrales et un plus grand impact des erreurs
des pointés. Par ailleurs, I'utilisation de modéles de vitesse trés
simples (ici & 3 couches) met davantage en lumiére les erreurs
liées aux pointés des temps d’arrivée des ondes S, quelque soit
leur ampleur.

Concernant les localisations épicentrales, celles-ci apparaissent
beaucoup plus facilement contraintes que les localisations hypo-
centrales. En effet, quel que soient le modéle de vitesse utilisé et
I’incertitude des pointés S, les deux épicentres (gaussien et maxi-
mum de vraisemblance) se chevauchent et ont des positions trés
stables. En revanche, cette position gagne rapidement en incerti-
tude lorsque les pointés S sont émis avec une marge d’erreur trés
importante (inférieure a -3 s et supérieure a + 3 s), comme ’ex-
priment I’élargissement de la fonction de densité de probabilités
et de D’ellipsoide de confiance.

Un total de 80% des événements détectés automatiquement
pour la période juillet-octobre 2016 présente des temps d’arri-
vée moyens des ondes S compris entre -1.5 et + 1.5 s par rap-
port aux temps d’arrivée de référence estimés manuellement. Par
exemple, pour le tir de la carriére de Dotternhausen effectué le
15 juillet 2016 & 10h25, la moyenne est évaluée & +1.15 s et pour
le séisme des Pré-Alpes Suisses ayant du 16 juillet a 02h36, il
est +0.77 s. Les incertitudes de localisation pour la majorité des
événements vont donc étre trés sensibles aux incertitudes liées
au modéle de vitesse, voire du nombre de phases et du type de
phases disponibles (Tarantola et al., 1982).
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De plus, si des variations importantes des temps d’arrivée des
ondes S entre le pointé automatique et le pointé manuel peuvent
exister, celles-ci ne reflétent pas forcément la qualité du pointé
automatique lui-méme, mais peut mettre en évidence une dé-
faillance du processus d’association. En effet, la structure du
modeéle de vitesse utilisé (par exemple des vitesses des ondes sis-
miques trop lentes) jouant sur la contrainte des solutions épicen-
trales et hypocentrales calculées, il est possible d’anticiper que,
si plusieurs pointés ont été émis consécutivement, comme dans
P’exemple de la Figure 4.25, un faux pointé anticipé de quelques
secondes pourrait étre sélectionné au détriment du vrai pointé
parce que son temps d’arrivée pourrait expliquer de fagon plus
cohérente une structure de vitesse avec des vitesse plus ralenties.

Enfin, I’ensemble de cette étude sur ’amélioration de la qua-
lité des pointés automatiques P et S met en évidence clairement
les critéres principaux qui vont conditionner la qualité de ces
pointés automatiques. L’analyse empirique des valeurs optimales
obtenues pour chaque paramétre SeisComP3 configuré offre éga-
lement une solide base d’étude pour le paramétrage futur des
algorithmes de pointé automatique des phases sismiques P et S
dans d’autres zones d’étude. De plus, le paramétrage manuel in-
tense effectué dans ce travail de thése a permis de mettre en
lumiére les deux facteurs fondamentaux qui contrélent la valeur
des différents paramétres SeisComP3 configurés, a savoir les dis-
tances épicentrales et les caractéristiques du bruit enregistré. De
ce fait, ces deux facteurs fondamentaux vont étre a considérer
pour une mise en place future d’'un paramétrage automatique dy-
namique des paramétres SeisComP3 exposés dans ce travail. Ce
paramétrage dynamique aura la possibilité de s’ajuster automati-
quement a la localisation statistique des stations par rapport aux
événements détectés et aux caractéristiques du bruit enregistrés
aux stations, en utilisant par exemple un apprentissage continu
par renforcement comme dans I’étude établie par Draelos et al.,
2018.
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4.2 Améliorer le processus d’association

4.2.1 Comment fonctionne le processus d’association dans
le systéme de détection ?

eUn assemblage de pointés basé sur une recherche sur grille

Le premier algorithme d’association qui est utilisé se base sur la recherche
de 'hypocentre optimal a partir d’une grille qui propose toutes les localisations
et temps d’origine possibles. Cette grille constitue donc un jeu de points arbi-
traires qui échantillonne densément la zone d’intérét (la zone d’étude). Chaque
point de la grille correspond alors a un hypocentre hypothétique pour tous les
pointés P a associer qui arrivent. Chaque pointé est rétro-projeté dans le temps
pour chacun des points de la grille, a supposer que ce dernier corresponde a la
premiére arrivée des ondes P.

Si le pointé équivaut bien a un temps d’arrivée des ondes P d’un événement
sismique et si cet événement est enregistré a un nombre de stations suffisant,
le nouveau pointé rétro-projeté est assemblé avec les pointés précédents com-
patibles qui proviennent du méme événement. Le regroupement de ces pointés
sera le plus dense autour du temps d’origine du point de la grille le plus proche
de ’hypocentre optimal. Cependant, si un regroupement est identifié comme
une potentielle origine, cela ne signifie pas nécessairement que tous les pointés
qui y sont impliqués soient nécessairement des phases P. Ces pointés pour-
raient étre aussi bien des faux pointés qui coincident fortuitement, mais qui
peuvent étre regroupés du fait d’une maille grossiére de la grille élaborée et/ou
d’éventuelles contaminations liées au bruit enregistré.

Un programme de localisation (LocSAT, BRATT et al., 1988) est ensuite
utilisé pour tenter une localisation et tester si le jeu de pointés regroupés cor-
respond a un hypocentre cohérent. La qualité de I’hypocentre est évaluée a tra-
vers le meilleur accord entre les temps d’arrivée des ondes P calculés a chaque
station et les temps observés pour la méme station. Cet accord est estimé avec
le calcul de la moyenne quadratique des résidus temporels (RMS des résidus
des pointés). Si la valeur de cette RMS est trop grande, une amélioration est
tentée en excluant chacun des pointés contributifs un a un pour vérifier s’il est
possible de réduire la valeur de la RMS. Si la qualité de ’hypocentre estimée
par le calcul de la RMS est validée, une origine est déclarée.

Seulement, l'origine déclarée (ou mise & jour) peut étre encore contaminée
par des phases faussement interprétées comme des phases P. Par conséquent,
le rapport signal/bruit et les amplitudes pour chacun des pointés sont pris en
compte pour affiner chaque origine. Un pic avec un rapport signal/bruit élevé
est moins susceptible d’étre associé a une salve de bruit transitoire qu'un pic
dépassant simplement le seuil du rapport signal/bruit défini. De méme, un pic
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associé de maniére absolue a une forte amplitude est plus susceptible de cor-
respondre a un déclenchement sismique réel, notamment en cas d’observations
simultanées de fortes amplitudes aux stations voisines.

Certains critéres heuristiques sont en plus appliqués pour comparer les qua-
lités des origines concordantes. Ces critéres sont combinés en un score identifié
pour chaque origine, qui est basé sur les propriétés des pointés eux-mémes
(valeurs des résidus, RMS, gap azimutal).

eUn clustering des pointés P et S

A chaque pointé qui arrive, le deuxiéme processus d’association vérifie si
ce pointé peut étre associé & une ou plusieurs origine(s) déja identifiée(s)
en calculant a chaque fois un score pour chaque origine. Ce score est une
somme pondérée de 4 facteurs principaux : le nombre de pointés P et S
associés (pCount et sCount), le nombre de pointés P et S non associés
(p0Count et s0OCount), la profondeur (depthFactor) et les résidus temporels
(residualFactor). Chaque facteur est pondéré d’un poids (score.weights.p,
score.weights.p0, score.weights.s, score.weights.sO, score.weights.depth et
score.wetights.residual) qui peut étre librement défini (équation 4.1).

Les valeurs définies pour les facteurs profondeur et résidus temporels (c’est-
a-dire depthFactor et restdualFactor dérivent des profondeurs et des résidus
considérés, tout en tenant compte des valeurs maximales des profondeurs (> 50
km) et des résidus temporels (> 6s) & ignorer qui sont configurées au préalable.

score = score.weights.p x pCount + score.weights.p0 x p0Count
+ score.wetghts.s x sCount + score.weights.s0 x sOCount
+ score.weights.depth x depthFactor
+ score.weights.restdual x residual Factor (4.1)
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C’est l'origine qui posséde le score le plus élevé qui est sélectionnée. Cette
origine est ensuite envoyée au module de gestion des événements uniquement
si le score de la nouvelle origine excéde le score de la derniére origine envoyée.
Le score minimal a atteindre pour envoyer une origine est de 6.

Le poids affilié au nombre de pointés P (score.weights.p) et de pointés S
(score.werghts.s) associés est la valeur par défaut de 1. Le poids attribué au
nombre de pointés P (score.weights.p0) et de pointés S (score.wetghts.s0)
non associés est de 0. De méme, le poids assigné a la profondeur est également
de 0. Ces derniers critéres ne sont donc pas considérés dans le calcul du score :
le calcul de la profondeur étant trés incertaine et le nombre de pointés P et
S non associés n’étant pas un facteur critique pour la sélection d’une origine
robuste. Au contraire, plus de poids a été alloué aux résidus temporels (poids
de 5). Celui-ci a été défini empiriquement et correspond au poids qui a permis
d’éliminer le maximum d’origines avec des pointés dont les résidus temporels
étaient trop élevés. En effet, le score minimal a atteindre pour envoyer une
origine étant de 6 et le nombre minimal de pointés & associer étant de 4, ceci
favorise alors dans un premier temps la sélection d’origines définies a partir
de résidus temporels plus faibles. Par conséquent, ceci évite au maximum les
associations de pointés contenant de faux pointés, aboutissant a des origines
correspondant a des événements pollués par du bruit d’origine anthropique
pointé.

Dans le cas ou le pointé ne peut pas étre associé a une nouvelle origine, ce
deuxiéme processus d’association va déterminer des nouvelles solutions hypo-
centrales en recherchant des clusters basés sur ’algorithme DBSCAN (EsTER
et al., 1996). Cet algorithme forme des clusters de pointés en cherchant si les
stations voisines ont des pointés émis qui peuvent étre regroupés dans le méme
cluster.
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Plusieurs types de pointés sont identifiés dans le processus de clustering : les
pointés centraux, les pointés atteignables et les pointés aberrants. Un pointé
émis a une station P2 est considéré comme central si au moins un nombre
minimal de pointés, incluant d’ailleurs le pointé émis a la station P2, se trouve
a une distance temporelle inférieure ou égale a une distance de référence R
autour du pointé émis & la station P2 (Figures 4.40a et 4.41 Step(1)).

Cette distance temporelle R est donc la distance de référence pour 1’opéra-
tion de clustering. Elle est équivalente a la somme vectorielle des différences de
temps d’arrivée entre les pointés (At, en secondes) et des différences de temps
de trajet entre les stations (en tt, secondes) : distance = +/At? + t¢2. Les temps
de trajet tt correspondent a tt = Az /v ou x désigne la distance spatiale entre
les stations (en kilomeétres) et v la vitesse moyenne (en kilométres/seconde)
apparente horizontale des ondes P dans la crofite continentale.

Par conséquent, un pointé émis a la station P1 est directement atteignable
depuis le pointé émis a la station P2 si ce pointé émis a la station P1 est a
distance temporelle R du point central défini par le pointé émis a la station P2
(Figures 4.40b et 4.41 Step(2)). Tous les pointés qualifiés d’atteignables le sont
a partir de pointés qualifiés de centraux. Par conséquent, un nouveau pointé
émis a la station P5 est atteignable depuis le pointé émis a la station P2 s'’il
existe un chemin qui relie ces deux pointés entre eux au cours duquel chaque
autre pointé émis par une station Pi+1 peut étre directement atteignable depuis
un autre pointé émis a une station Pi (Figures 4.40b-f et 4.41 Step(3)-Step(6)).
Cela implique que chaque pointé initial et tous les pointés sur ce chemin doivent
étre des pointés centraux, avec l'exception possible du pointé émis a la station
P5. Enfin tous les pointés qui ne sont atteignables depuis aucun autre pointé
sont des pointés aberrants ou des pointés bruités (Figures 4.40g-h et 4.41

Step(7)-Step(8)).

Ainsi si le pointé émis a la station P2 est un pointé central, alors tous les
pointés qui sont atteignables depuis ce pointé émis a la station P2 forment
un cluster avec lui. Chaque cluster contient au moins un pointé central; des
pointés non centraux peuvent aussi faire partie du cluster mais ces derniers
vont définir le contour du cluster, puisqu’ils ne peuvent pas étre utilisés pour
atteindre d’autres pointés (Figures 4.40 et 4.41).

Lorsque le cluster de pointés P contient le nombre minimal de phases qui est
préalablement défini, 1’algorithme d’association localise le cluster de pointés,
crée une origine et associe des pointés P et S supplémentaires qui sont déja
présents, mais non encore associés. Si le pointé supplémentaire est un pointé
P, I'algorithme tente directement d’associer le pointé basé sur la valeur de son
résidu. Si cette association est un succes, la nouvelle solution est relocalisée.
Deés que les pointés P sont associés, ce sont les pointés S qui vont ensuite étre
associés, ces derniers étant émis aprés les pointés P.
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FIGURE 4.40: Principe de la méthode de clustering des pointés établi avec 1’al-
gorithme DBSCAN (voir Figure 4.41) pour plus de détails. Le nombre minimal
de pointés défini pour classer un pointé comme pointé central est de 3 (N <
3) dans ’exemple de la figure. La lettre T représente la distance temporelle de
référence et C désigne le nombre minimal de pointés nécessaires pour détecter
un événement (C < 4). Les annotations ¢;7 constituent la différence de temps
absolue (¢;7 = |t; — t;|) entre les pointés émis & la station i et la station j.
Chaque couleur différente représente a la fois un pointé (cercle de couleur) et
une fenétre temporelle (de distance temporelle de référence T) de recherche de
pointés voisins atteignables (rectangle de couleur). Une fois qu'un cluster se
forme, le pointé formant ce cluster prend la méme couleur que le pointé central
qui a été a l'origine de la formation de ce cluster (en ’occurrence rouge clair).
D’aprés GRIGOLI, SCARABELLO et al., 2018.
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FIGURE 4.41: Principe de la méthode de clustering des pointés établi avec
I’algorithme DBSCAN. P1, P2, P3, P4, P5, P6 désignent des pointés émis
aux stations P1, P2, P3, P4, P5 et P6. R représente la distance temporelle
de référence utilisée pour rechercher des pointés voisins. Les cercles de couleur
représentent les surfaces de recherche de pointés voisins a partir d’un pointé
central de référence. Ce cercle est de centre le pointé et de rayon la distance
temporelle de référence R. D’aprés GRIGOLI, SCARABELLO et al., 2018.
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Chaque nouvelle origine est reliée & un score (somme pondérée du nombre
de pointés P et S associés, du nombre de pointés P et S non associés, de la
profondeur et des résidus temporels) qui est comparé aux scores des autres
origines appartenant au méme événement. L’origine qui est envoyée au module
de gestion des événements est celle qui a le score le plus élevé.

Les algorithmes d’association utilisés (méthode type recherche
sur grille et méthode de clustering) se basent principalement sur
les temps d’arrivée relatifs des différents pointés émis ainsi que
la valeur de leurs résidus temporels pour associer les pointés
entre eux. Or, les résidus temporels sont évalués en comparant
les temps d’arrivée observés aux temps d’arrivée théoriques qui
dépendent des temps de trajet calculés. Seulement, le calcul des
temps de trajet théoriques est fonction de la géométrie du réseau
de stations et de la structure du modéle de vitesse. Ces derniers
facteurs vont donc étre essentiels a prendre en compte pour amé-
liorer le processus d’association. Cette amélioration vise a limiter
les associations hybrides des faux pointés avec de vrais pointés.
Ces faux pointés peuvent étre de deux natures : ou bien ce sont
des pointés qui ont été émis autour de vrais pointés dans une fe-
nétre temporelle trés proche, comme il a été vu précédemment,
ou bien ce sont des pointés qui sont reliés purement a du bruit. La
sélection du premier type de faux pointé dans le processus d’as-
sociation est fortement dépendant de la structure du modéle de
vitesse et le deuxiéme type est plus lié a la géométrie du réseau.
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4.2.2 Tenir compte de la configuration du réseau de sta-
tions

Quelque soit 'algorithme d’association utilisé, une distance maximale auto-
risée pour opérer le processus d’association est définie. La valeur qui est choisie
est 250 km. Sachant que cette procédure s’attarde a détecter les événements de
faible magnitude, le rayon de recherche est donc limité a une échelle régionale,
car au-dela les chances de détecter des signaux de faible amplitude sont trés
petites.

De plus, la distance de référence utilisée pour accomplir le procédé de clus-
tering est un facteur indispensable, voire déterminant, & définir pour mener a
bien l'association basée sur cette méthode. Comme il a été écrit précédemment,
I’estimation de cette distance dépend de deux paramétres fondamentaux : les
différences de temps d’arrivée entre les pointés et les différences de temps de
trajet entre les stations. Ce dernier parameétre dépend donc de la distance spa-
tiale entre les stations. La prise en compte de la configuration du réseau de
stations est donc capitale pour évaluer une distance de référence optimale pour
clusteriser, donc détecter efficacement les événements.

Pour évaluer cette distance de référence optimale en tenant compte de la
configuration du réseau de stations (PESTOURIE et al., 2017), j’ai d’abord gé-
néré automatiquement une grille de localisations épicentrales et hypocentrales
de 45000 séismes synthétiques. Les localisations épicentrales sont comprises
entre les intervalles de latitude [46°N-52°N] et de longitude [3°E-12°E] et les
localisations hypocentrales sont comprises entre 2 km et 15 km. L’intervalle de
profondeurs choisies est en lien avec les profondeurs qui sont majoritairement
retrouvées dans les catalogue de séismes de la zone d’étude.

A partir du réseau de stations qui est utilisé pour cette étude, les temps
d’arrivée des différentes phases sismiques P et S ont été simulés pour chacun des
séismes synthétiques a partir du logiciel NonLinLoc (LOoMAX, VIRIEUX et al.,
2000). Le modéle de vitesse qui a été choisi pour générer ces temps d’arrivée
théoriques a été le modeéle régional Haslach utilisé majoritairement pour la
détection des événements (cf Figure 3.39).
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Pour chaque événement synthétique, une matrice des distances temporelles
(somme vectorielle des différences de temps d’arrivée entre les pointés et des
différences de temps de trajet entre les stations) est calculée & partir des 10
stations les plus proches de I’événement. Pour déterminer les temps de trajets
entre les stations (rapport entre la distance spatiale entre les stations et la
vitesse moyenne apparente horizontale des ondes P dans la crotite), la vitesse
moyenne qui a été choisie correspond a la vitesse moyenne des ondes P dans
la crotite pour le modéle Haslach, & savoir 6 km/s. A partir de cette matrice
des distances, un algorithme de clustering DBSCAN, contenu dans le package
Python Scikit-Learn, a été utilisé pour rechercher la valeur minimale de dis-
tance temporelle nécessaire pour former un cluster a partir de la matrice des
distances pour chaque événement synthétique. Pour trouver cette valeur mi-
nimale, une gamme de valeurs de distance temporelle comprises entre 0.1 et
200 s avec un pas de 0.1 s a été testée. De plus, la valeur minimale de pointés
nécessaires pour former un cluster a été paramétrée a 6.

A l'issue de cette recherche, chaque événement synthétique est donc caracté-
risé par une distance temporelle minimale nécessaire pour former des clusters.
De ce fait, la valeur optimale de cette distance temporelle pour la totalité de
la zone d’étude a été déduite de ’ensemble des événements synthétiques. Cette
valeur optimale correspond a une valeur qui induirait des clusters sur toute
la zone d’étude, quelque soit les localisations épicentrales et hypocentrales des
événements. C’est donc la valeur qui couvre a 100% la zone d’étude, et dans
notre cas, elle correspond a la valeur maximale rencontrée sur ’ensemble du
jeu synthétique, a savoir 21.5 s (Figures 4.42 et 4.43).
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FIGURE 4.42: Représentation des valeurs de distance temporelle minimale pour
former un cluster de pointés pour l’ensemble des événements synthétiques de
la zone d’étude situés a une profondeur de 5 km. Chaque point correspond a
la localisation épicentrale d’un événement synthétique. La couleur de ce point
identifie la valeur de la distance temporelle pour cette événement (cf légende
de la couleur sur la carte). Les triangles blancs correspondent aux stations qui
ont été utilisées pour générer les temps d’arrivée.
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FIGURE 4.43: Graphique représentant le pourcentage de couverture de la zone
d’étude en fonction de la valeur de la distance temporelle. Cette couverture
correspond a la proportion d’événements qui sont effectivement générés a partir
d’un cluster d’au moins 6 pointés pour une distance temporelle donnée.
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4.2.3 Tenir compte du milieu de propagation des ondes
sismiques

eAdapter le calcul des temps de trajet entre les stations

La nature des terrains affleurant dans cette zone d’étude est trés variable :
granitoides, roches volcaniques et roches métamorphiques des Massifs cristal-
lins, couverture sédimentaire d’épaisseur, de nature et d’origine variables des
bassins et des reliefs jurassiens (calcaires, dolomies, grés, argiles, bancs gypseux,
etc.). La structure lithologique verticale et latérale de la crotite continentale est
en conséquence trés complexe. Affilier une seule vitesse moyenne apparente des
ondes P pour toute la zone d’étude est donc tres restrictive.

La vitesse des ondes sismiques étant fortement dépendante de la nature du
milieu qu’elles traversent, une vitesse moyenne de 6 km/s pour la crofite conti-
nentale, comme exprimée par le modeéle d’Haslach, peut facilement surestimer
les temps trajets des ondes qui sont émises dans un milieu ou la couche sé-
dimentaire superficielle est régionalement plus épaisse de quelques kilométres.
En effet, le modéle d’Haslach a été établi a partir de I’étude des signaux émis
par une explosion qui a eu lieu dans une carriére souterraine située a 2 km
de profondeur dans le Massif de la Forét Noire. La région est essentiellement
constituée de gneiss (ortho- et paragneiss) traversés par des filons amphiboli-
tiques. Cette étude a conduit & considérer un modéle de vitesse élaboré a par-
tir d’une structure crustale constituée essentiellement d’une premiére couche
granito-gneissique, d’'une couche de granites plus profonds et d’une couche de
basaltes et de gabbros lenticulaires. Seulement, les vitesses des ondes sismiques
P sont généralement plus lentes dans des matériaux comme les calcaires (3.0-
4.0 km/s) ou les grés (4.0-4.5 km/s) que dans des granites (5.5-6.0 km/s), des
gneiss (de l'ordre de 5.5 km/s) ou des gabbros (6.5-7.0 km/s).

Or, la qualité de 'assemblage des pointés par clustering dépend de la dis-
tance temporelle qui est utilisée pour former les clusters. Et cette distance
temporelle est conditionnée par la vitesse moyenne apparente des ondes P qui
est choisie pour calculer les temps de trajet entre les stations. Par conséquent,
une vitesse moyenne plus élevée diminue les temps de trajets et vice-versa.
Ainsi, pour une méme différence de temps d’arrivée entre les pointés, la valeur
de la distance temporelle de référence diminue alors inversement a 1’augmen-
tation de la vitesse moyenne des ondes P utilisée.

De ce fait, si cette vitesse moyenne est surestimée pour une zone donnée, il
y a un risque accru que des pointés ne soient pas associés au cluster en forma-
tion. Dans ce cas, leurs temps d’arrivée seraient en effet trop tardifs (puisque
traversant un milieu de vitesse moyenne plus faible) relativement aux temps
de trajets calculés entre les stations, augmentant artificiellement la distance
temporelle qui les sépare des autres pointés inclus dans le cluster, et diminuant
la probabilité que ces pointés tardifs soient finalement contenus dans le cluster.
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Ainsi, dans cette configuration, si de multiples pointés ont été émis consé-
cutivement dans le temps autour du signal a détecter, méme si dans ce lot de
pointés multiples il y a un vrai pointé qui correspond a la premiére arrivée des
ondes P, un faux pointé a plus de chance d’étre associé au cluster parce qu’a
une distance temporelle suffisante pour y étre inclus.

Afin de combler les lacunes de ce processus d’association, plusieurs vitesses
moyennes des ondes P dans la crofite continentale ont alors été considérées :
4 km/s, 5 km/s et 6 km/s. De cette facon, trois instances ont été utilisées en
parallele pour générer le processus d’association par clustering : une instance
avec pour vitesse moyenne des ondes P dans la crofite continentale de 4 km/s,
une instance avec une vitesse moyenne de 5 km/s et une instance avec une
moyenne de 6 km/s.

eAdapter les modéles de vitesse pour générer des origines optimales

Les deux procédés d’association (méthode recherche sur grille puis méthode
basée sur le clustering des pointés) produisent des assemblages de pointés qui
sont produits soit par rétro-projection a un hypocentre optimal, soit par clus-
tering basé sur le calcul de distances temporelles. Dans tous les cas, des pointés
supplémentaires peuvent y étre ajoutés, en considérant la valeur de leurs ré-
sidus temporels notamment. Chaque assemblage de pointés génére finalement
une origine qui est localisée avec un score optimal. Or, quelque soit le procédé
d’association, ce score tient compte a la fois de la valeur des résidus et de la
RMS.

Les valeurs maximales des résidus qui ont donc été autorisées pour maxi-
maliser les détections ont été respectivement 2.5 s pour le premier procédé
d’association (méthode recherche sur grille) et 2.8 s pour le deuxiéme procédé
d’association (méthode basée sur le clustering). Ces valeurs ont été testées em-
piriquement et offrent un seuil maximal qui permet a la fois ’élimination des
pointés avec des résidus excessifs et 1’inclusion de pointés avec des résidus un
peu plus élevés, augmentant alors le nombre de pointés P et S possibles tout
en compensant un peu les grandes incertitudes liées au modeéle de vitesse.

De plus, les valeurs maximales de RMS ont été plafonnées a 5 s pour le pre-
mier procédé d’association et a 6 s pour le deuxiéme procédé d’association. Ces
valeurs ont été placées assez hautes mais elles ont permis d’évaluer la perfor-
mance de 'association en révélant par exemple des événements dont les origines
sélectionnées avaient systématiquement des RMS élevées, mais correspondaient
pourtant & un vrai événement (séisme ou tir de carriére). Par conséquent, ces
valeurs constituent un garant pour continuellement déceler des défaillances des
procédés d’association qui peuvent étre plus facilement corrigées. Ce qui aug-
mente les chances de récupérer des événements qui sinon auraient été perdus.
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Le modéle de vitesse est un paramétre fondamental qui conditionne la qua-
lité des associations et des futures origines sélectionnées. Plusieurs modéles de
vitesse ont alors été empiriquement testés de facon a évaluer si ces derniers
pouvaient aboutir a des détections plus nombreuses et de meilleure qualité
(moins de faux pointés). Les modéles testés empiriquement ont été ceux qui
ont été générés automatiquement pour évaluer l'impact des incertitudes des
pointés en fonction des localisations épicentrales et hypocentrales établies a
partir d’une centaine de modéles de vitesse (50 modeéles & 3 couches et 50
modéles multicouches).

L’objectif est de détecter ici, non pas d’obtenir des solutions hypocentrales
de qualité exacte mais d’obtenir des solutions hypocentrales plus précises, c’est-
a-dire qui minimisent les différences entre les temps d’arrivée des ondes P et
S observés et les temps d’arrivée de ces ondes théoriques calculés pour les
différentes stations. Ce n’est donc pas I’exactitude des modéles de vitesse au
regard de la structure latérale et verticale réelle de la crofite continentale que
nous cherchons, mais leur précision évaluée par la valeur de la RMS obtenue.
Ceux qui ont donc été testés ont été ceux qui ont minimisé la RMS pour les
événements localisés en juillet 2016, a savoir les modéles a 3 couches notifiés 11,
25, 31 et 38 et les modéles multicouches notifiés 10, 24, 27 et 35 (Figure 4.44 et
4.45). L’ensemble des 8 modéles sélectionnés présentent des vitesses moyennes
crustales des ondes P et S équivalentes c’est-a-dire des valeurs comprises entre
4.5 km/s et 5.5 km/s pour les ondes P et des valeurs comprises entre 2.6 km/s
et 3 km/s pour les ondes S (cf Annexe E pour le détails des différents modéles
de vitesse). Ces modéles choisis ont par la suite été testés sur la détection
automatique des événements au cours du mois de juillet 2016.

Ajouté a ces modéles de vitesse, un dernier modele de vitesse a été testé.
Il s’agit d’'un modéle multicouche 1D minimum obtenu a partir du modéle
1D d’Haslach gréace a la procédure d’inversion des parameétres hypocentraux
et des parameétres de vitesse proposée par KissLING et al., 1995, a travers le
programme VELEST. L’approche proposée par KIsSSLING et al., 1995 consiste
en une série d’inversions simultanées des parameétres hypocentraux et des mo-
déles de vitesses (Vp et Vs) de telle fagon a approcher des solutions minimales,
c’est-a-dire la RMS minimale. Les solutions sont a la fois la localisation des
hypocentres, le calcul d’'un modéle 1D en couches et la correction apportée aux
stations (correction liée aux différences de temps de trajet sous chaque station).
Le modéle 1D minimum est présenté dans ’annexe F.1.

Les tables des temps de trajet ont été calculées pour chaque modéle sélec-
tionné a partir des outils TauP (CROTWELL et al., 1999). Ces tables regroupent
les temps de trajets des phases sismiques P et S pour des profondeurs com-
prises entre 0 et 35 km et des distances épicentrales comprises entre 0 km et
1400 km. Le programme de localisation LocSAT (BRATT et al., 1988) utilisent
ces tables pour localiser les différentes origines détectées.
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FIGURE 4.44: Distribution de la RMS évaluée sur des événements détectés en
juillet 2016 et localisés avec 50 modéles de vitesse a 3 couches générés automa-
tiquement (voir paragraphe 4.1.3). Chaque modéle de vitesse est numéroté et
la valeur de la RMS moyenne obtenue pour chacun des modéles de vitesse est
spécifiée en haut de chaque encart.
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FIGURE 4.45: Distribution de la RMS évaluée sur des événements détectés en
juillet 2016 et localisés avec 50 modéles de vitesse a multicouches générés auto-
matiquement (voir paragraphe 4.1.3). Chaque modéle de vitesse est numéroté
et la valeur de la RMS moyenne obtenue pour chacun des modeéles de vitesse
est spécifiée en haut de chaque encart.
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Les différents modéles ont été testés sur les détections et localisations des
événements pour le mois de juillet 2016. Les résultats ont été comparés avec
ceux obtenus avec deux modeéles régionaux 1D de référence qui sont classique-
ment utilisés par les analystes pour localiser les événements de la zone d’étude.
Ces deux modeles sont celui d’Haslach et un autre modéle traditionnellement
utilisé pour localiser les événements dans la région des Alpes (Figure 4.46,
FRECHET, 1978 ; THOUVENOT et al., 2003).

Seismic Wave Velocity (km/s)
3 4 5 6 7 8
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FIGURE 4.46: Modéle de vitesse des Alpes utilisé pour la détection, en combi-
naison avec le modeéle de Haslach. Le modéle des Alpes a été élaboré a partir
de 'analyse de profils sismiques et de 1’hodochrone des ondes P déduit d’un
tir d’une carriére identifié le 29 septembre 1977, prés de la ville de Guillestre
(FRECHET, 1978 ; THOUVENOT et al., 2003).

Les différents tests effectués n’ont pas permis de mettre en relief une solu-
tion de modéle de vitesse optimale pour toute la zone d’étude. En effet, si un
modéle peut localement améliorer le processus final d’association et de localisa-
tion des origines (nombre de pointés supérieurs et diminution des faux pointés
sélectionnés), il peut & 'inverse fortement dégrader la détection ailleurs, jus-
gu’a ne plus détecter les événements qui étaient précédemment présents dans
le catalogue de référence automatique établi avec le modéle d’Haslach.
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Le choix de modéles plus spécifiques, notamment les modéles multicouches,
n’a donc pas apporté de plus-value sur les résultats de détection finaux, mais
a au contraire souligné des hétérogénéités spatiales dans les détections plus
marquées. Face a la variabilité lithologique du milieu de propagation, plusieurs
de ces modeéles de vitesse seraient en fait nécessaires. Seulement, déterminer
les critéres de détection (géographiques, pétrologiques, stratigraphiques, litho-
logiques, structuraux, sismologiques, etc) qui puissent permettre de découper
efficacement et significativement la zone d’étude en plusieurs régions de détec-
tion, chacune affiliée par exemple a un modéle 1D minimum spécifique, devient
éminemment complexe et demande une connaissance plus approfondie du com-
portement de la sismicité dans cette zone d’étude.

Par conséquent, la sélection combinée des deux modéles de référence, celui
d’Haslach et celui des Alpes, a finalement produit les meilleurs résultats, avec
plus d’homogénéité. Néanmoins, afin de récupérer le maximum d’événements,
le choix d’en fixer automatiquement certains a une profondeur arbitraire a été
privilégié.

En effet, en cas d’incertitudes trop fortes des modeles de vitesse choisis, en
particulier vis-a-vis des couches superficielles, cela a permis a 1’algorithme de
localisation LocSAT de faire converger les solutions hypocentrales vers un mini-
mum local, notamment pour les événements localisés plus superficiellement. La
profondeur minimale arbitraire qui a été choisie est 2 km. Celle-ci correspond
a la profondeur qui a été majoritairement retrouvée lorsque j’ai relocalisé 1'en-
semble des événements de la période 2016 en incluant les stations temporaires
AlpArray pour ’année 2016 (cf Figure 3.38).
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oeCréer plusieurs instances pour optimiser le processus d’association
sur toute la zone d’étude

Six instances du processus d’association ont alors été introduites : deux
pour le premier processus d’association (rétro-projection de pointés) et quatre
pour le second processus d’association (clustering de pointés). Pour le premier
processus d’association, chaque instance localise les origines avec un modele de
vitesse différent (la premiére instance utilise le modéle Haslach et la deuxiéme
le modéle des Alpes). Pour le second processus d’association, chaque instance
est définie par une combinaison d’une vitesse moyenne des ondes P dans la
crolite continentale pour le clustering et d’un modéle de vitesse pour localiser
(Table 4.1).

TABLE 4.1: Critéres différenciant les différentes instances déployées du méme
processus d’association basé sur le clustering par la méthode DBSCAN (EsTER
et al., 1996).

Mean P-wave Velocity | Velocity Model
First Instance 4 km/s Haslach Model
Second Instance 5 km/s Haslach Model
Third Instance 5 km/s Alps Model
Fourth Instance 6 km/s Haslach Model

En plus des deux instances fournies par le premier processus d’association,
I'utilisation en paralléle de ces 4 derniéres instances améliorent nettement le
processus d’association final. Par exemple, pour le séisme du 05 janvier 2017 a
09h24 qui est localisé au coeur du Massif du Chablais alpin (MLv 1.3), 'utilisa-
tion d’une vitesse moyenne des ondes P de 6 km/s, couplée au modéle Haslach,
a permis d’associer correctement un pointé P a la station OGSI, située a 1'ex-
tréme Sud de la nappe alpine de la Dent-Blanche (Figure 4.47a), et les deux
pointés P et S a la station DIX, située au coeur du Valais Suisse (Figure 4.47c).
En revanche, avec une vitesse moyenne de 4 km/s, et le méme modeéle d’Has-
lach, cette association échoue avec les deux stations : pour OGSI, c’est un faux
pointé P précoce qui est choisi alors que pour la station DIX, ce sont deux faux
pointés anticipés P et S qui ont été associés avec le reste des autres pointés
(Figure 4.47b et d).
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Pour ce séisme, des vitesses moyennes inférieures & 6 km/s induisent des
distances temporelles entre les pointés supérieures a celles calculées pour des
vitesses égales a 6 km/s, et donc des temps de trajet proportionnellement plus
longs. Par conséquent, les pointés émis aux stations OGSI et DIX qui vont étre
a des distances temporelles suffisantes pour étre assemblés avec les autres poin-
tés émis au stations A173A, AIGLE, GIMEL, OGMY, OG35, A164A et A181A
vont étre ceux qui ont des temps d’arrivée anticipés, c’est-a-dire en ’occurrence
des faux pointés. Ces derniéres associations aboutissent a des résidus tempo-
rels négatifs élevés pour ces deux stations OGSI et DIX, augmentant alors la
RMS de l'origine localisée : 4.7 (instance avec vitesse moyenne de 4 km/s),
5.4 (instance avec vitesse moyenne de 5 km/s) ou 4.6 secondes (instance avec
vitesse moyenne de 5 km/s mais modéles des Alpes) au lieu de 1.4 (instance
avec vitesse moyenne de 6 km/s) pour un méme nombre de phases (18).
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FIGURE 4.47: Comparaison de la performance de l'association produite avec

deux instances du processus d’association considérant une vitesse moyenne des
ondes P de 6 km/s (a) et 4 km/s (D).
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De cette fagon, pour améliorer le processus d’association des pointés pour
cet événement avec les instances qui prennent en compte une vitesse moyenne
des ondes P inférieure & 6 km/s pour calculer les temps de trajet entre les sta-
tions, il faudrait sélectionner une origine qui n’intégre pas les stations les plus
éloignées (comme OG35, OGMY, A164A ou A181A). Cependant cela implique-
rait de sélectionner des origines avec moins de phases (10 en l’'occurrence) pour
obtenir une RMS de moins de 2 s. Par conséquent, 'instance qui considére une
vitesse moyenne de 6 km/s est I'instance optimale pour détecter ce séisme.

En revanche, pour le séisme du 06 janvier 2017 ayant eu lieu & 11h34 dans
la région de Chambéry (MLv 0.9), c’est l'instance avec une vitesse moyenne
des ondes P de 5 km/s, combinée au modéle des Alpes, qui va générer l'origine
optimale : 9 phases et RMS de 1.4 secondes. En effet, si I'on prend '’exemple
de la station RSL, de faux pointés P et S émis avec des temps d’arrivée antici-
pés sont sélectionnés dans le processus d’association opéré par les trois autres
instances.

L’instance considérant une vitesse moyenne de 6 km/s calcule des distances
temporelles globalement plus petites pour clusteriser, autorisant un plus grand
nombre de phases (13 phases mais RMS de 5.2), donc 'inclusion de stations
plus éloignées. Seulement, cela signifie également que la probabilité d’'inclure
de faux pointés est accrue, comme cela a été effectivement le cas dans cet
exemple. Ainsi, I'inclusion d'un faux pointé dans le processus d’association émis
a la station A215A a perturbé le procédé de clustering. La station RSL étant
éloignée de la station A215A, pour que celle-ci soit & des distances temporelles
suffisantes pour étre associé au cluster, 'instance du processus d’association a
alors sélectionné les faux pointés P et S émis de fagon anticipée a cette station
RSL, diminuant alors la différence des temps d’arrivée entre les stations, donc
les distances temporelles utilisées pour clusteriser (Figure 4.48a).

De méme, 'instance considérant une vitesse moyenne de 4 km/s a tendance
a calculer des distances temporelles plus grandes, diminuant la possibilité d’in-
clure des phases dans l'association (7 phases, RMS 1.4). Seulement, dans ce
cas-ci, cette instance a sélectionné les faux pointés P et S émis de fagon anti-
cipée a la station RSL car cela compense des temps de trajet calculés entre les
stations trop élevés (Figure 4.48D).

Enfin, l'instance considérant une vitesse moyenne de 5 km/s, mais combi-
née avec le modéle Haslach, tend a calculer des temps d’arrivée théoriques plus
précoces qu’avec le modeéle des Alpes, car les temps de trajets calculés pour
ce modéle sont plus rapides. Dans cette configuration, la différence des temps
d’arrivée théoriques et observés est élevée. Sachant que la valeur du résidu in-
tervient dans le calcul du score qui va sélectionner la meilleure future origine,
et qu'un poids élevé est donné a cette valeur, cette instance a sélectionné éga-
lement les faux pointés P et S émis de facon anticipée a la station RSL car ils
minimisent la valeur des résidus temporels (Figure 4.49¢). L’instance avec une
vitesse moyenne de 5 km/s, combinée au modéle des Alpes, est 'instance qui va
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donc améliorer le mieux le processus d’association, sélectionnant notamment
les pointés P et S corrects a la station RSL (Figure 4.49d)
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a) Faux pointés P et S sélectionnés (trait vertical rouge foncé) avec 'instance
considérant une vitesse moyenne de 6 km/s et le modéle Haslach

RSL FR 00HHZ, distance: 39.25 km, azimuth: 95.4°
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b) Faux pointés P et S sélectionnés (trait vertical rouge foncé) avec 'instance
considérant une vitesse moyenne de 4 km/s et le modéle Haslach

FIGURE 4.48: Comparaison de la performance de 1’association produite avec les
quatre instances du processus d’association basé sur la méthode de clustering
de DBSCAN (Ester et al., 1996) a partir de l’exemple de la station RSL).
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RSL FR 00HHZ, distance: 38.38 km, azimuth: 86.1°
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c) Faux pointés P et S sélectionnés (trait vertical rouge foncé) avec l'instance
considérant une vitesse moyenne de 5 km/s et le modéle Haslach

RSL FR 00HHZ, distance: 41.15 km, azimuth: 8.7°
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d) Faux pointés P et S sélectionnés (trait vertical rouge foncé) avec l'instance
considérant une vitesse moyenne de 5 km/s et le modéle des Alpes

FIGURE 4.49: Comparaison de la performance de ’association produite avec les
quatre instances du processus d’association basé sur la méthode de clustering
de DBSCAN (Ester et al., 1996) a partir de l’exemple de la station RSL).
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La prise en compte de la variabilité latérale et verticale du milieu
de propagation est décisive pour améliorer le processus d’asso-
ciation des pointés P puis S entre eux. En effet, une évaluation
erronée des temps de trajet au sein du réseau de stations peut
faire perdre un vrai pointé au détriment d’un faux pointé émis
dans une fenétre temporelle trés restreinte autour du signal a dé-
tecter, parce que ce dernier est & une distance temporelle compa-
tible avec les autres pointés inclus dans le cluster ou est associé a
un résidu temporel plus petit. Or, ’intégration de tels faux poin-
tés déstabilise fortement la procédure d’association qui peut, en
s’éloignant de la solution, plus facilement inclure d’autres faux
pointés, dont ceux correspondant a du bruit. Par ailleurs, la prise
en compte de la géométrie du réseau de stations dans la zone
d’étude, c’est-a-dire de la distance entre les stations, est un autre
garant pour limiter ’inclusion de faux pointés aberrants émis au
sein du réseau.

4.3 Améliorer 'origine préférentielle pour chaque
événement

4.3.1 Combler les défaillances du protocole par défaut de
sélection de ’origine préférentielle

Comme décrit précédemment dans la section 2, le systéme de détection de
SeisComP3, qui est utilisé la plupart du temps en temps réel, crée plusieurs
origines par événement. En effet, au fur et & mesure du temps qui passe, plus de
phases sismiques vont étre disponibles pour déclencher une nouvelle association
de pointés et donc une nouvelle origine, y compris pour un méme événement.
Les origines sont sélectionnées sur la base d’un score, qui tient compte de plu-
sieurs critéres comme la RMS, la valeur des résidus, voire le nombre de pointés
P et S associés ou non associés comme c’est le cas du deuxiéme processus
d’association qui se base sur le clustering de pointés.

Pour chaque événement, le systéme de détection sélectionne parmi 1’en-
semble des origines une seule origine préférentielle en se basant principalement
sur des critéres comme la valeur de la RMS la plus basse ou le nombre maxi-
mal de phases. Ceci signifie qu’une origine contenant le plus grande nombre de
phases et la plus petite valeur de RMS est considérée comme l'origine préfé-
rentielle, c’est-a-dire 'origine localisée avec la meilleure précision.
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Cependant, ces deux critéres ne sont pas suffisants pour sélectionner avec
robustesse la meilleure origine. En effet, par exemple, le tir de la carriére de
Dotternhausen, située dans la région d’Albstadt en Allemagne, qui a eu lieu le
19 juillet 2016 a 09h30, présente une origine préférentielle automatique estimée
a 7 phases avec une RMS de 0.69 s (Figure 4.50a). Cette origine correspond
effectivement a la meilleure combinaison nombre de phases maximal et RMS
minimale.

Seulement, cette origine a été déclenchée suite a une association de poin-
tés qui contient un faux pointé émis a la station EMBD, située au coeur du
Valais suisse (Figure 4.50b). L’analyse des signaux montre que ce faux pointé
correspond & du bruit et détériore la qualité de la localisation épicentrale (plus
particuliérement latitudinale), hypocentrale (qui est fixée & la valeur par dé-
faut de 2 km) et du calcul de la magnitude locale sur la composante verticale
(MLv), qui est de 1.40. Sans prendre en compte ce faux pointé & cette station,
I'origine préférentielle est estimée a partir de 6 phases avec une RMS égale a
0.69 s (Figure 4.51). Alors que les incertitudes des localisations épicentrales et
hypocentrales restent élevées du fait du faible nombre de phases et des incer-
titudes liées au modeéle de vitesse, la magnitude diminue, passant de 1.40 a
1.20. De ce fait, choisir cette derniére origine comme préférentielle éviterait de
contaminer cet événement par un faux pointé, et améliorerait non seulement
sa localisation mais aussi l’estimation de sa magnitude.

Alexandra Renouard CHAPITRE 4. 183



4.3. AMELIORER L’ORIGINE PREFERENTIELLE POUR CHAQUE
EVENEMENT
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b) Faux pointé émis a la station EMBD située a une distance épicentrale de

238 km et intégré a 1'origine préférentielle définie par le systéme de détection
SeisComP3

FIGURE 4.50: Exemple de défaillance de la procédure de sélection de l'origine
préférentielle établie par le systéme de détection de SeisComP3. La figure pré-
sente deux origines pour un méme événement correspondant a un tir de la
carriére de Dotternhausen identifié le 19 juillet 2016 a 09h30 environ.
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EMBD située a une distance épicentrale de 238 km

FI1GURE 4.51: Exemple de défaillance de la procédure de sélection de l’origine
préférentielle établie par le systéme de détection de SeisComP3. La figure pré-
sente deux origines pour un méme événement correspondant a un tir de la
carriére de Dotternhausen identifié le 19 juillet 2016 a 09h30 environ.

De méme, pour le tir de la carriére de Schuttertal, situé au coeur du Massif
de la Forét Noire, identifié le 01 juillet 2016 & 12h54 (MLv 0.9), le systéme de
détection de SeisComP3 identifie une origine préférentielle pour cet événement
a partir de 14 phases avec une RMS de 1.22 s (Figure 4.52). Seulement, la
encore, cette origine a intégré un faux pointé émis a la station RONF (distance
épicentrale 122 km). Ce faux pointé correspond également & du bruit impulsif
pointé (Figure 4.52b). La meilleure origine pour cet événement n’intégrant pas
le pointé a la station RONF serait alors une origine a 13 phases avec une RMS
de 0.82 s (Figure 4.53).
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b) Faux pointé émis a la station RONF située a une distance épicentrale de

122 km et intégré a 'origine préférentielle définie par le systéme de détection
SeisComP3

FIGURE 4.52: Exemple de défaillance de la procédure de sélection de 1’origine
préférentielle établie par le systéme de détection de SeisComP3. La figure pré-
sente deux origines pour un méme événement correspondant a un tir de la
carriére de Schuttertal identifié le 01 juillet 2016 a 12h54 environ.
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Germany Time: 2016-07-01 12:54:54 Distance | Azimuth | TravelTime | Moveo /|P
EL 3 i sens Landau in der Pfalz Filter is not active
Irmasens . UL gRiive
. 4 o o Depth: 2.00 km fixed
. Y SEnie Lat: 48.30633 ° N +/- 3.033 km
3 3 | |
o ol %bforst Lon: 8.01115 °E +/-2.798 km  1©
4 u"ag“e“a“u “Ragen-Baden Phases: 13 / 13 ¢
e f o RMS Res.: 0.82 s 0.8
#ﬂnghmm @ otrasbourg. o 5 n
‘ Az. Gap: 130 ° = L
s Offenh_urg " . ) = u
v 3 Min. Dist.: 11.08 km -
-~ ahe % =1 .
- .
0 i > a EventiD: ALEX2016mvnd £ "
’ “Colmar | Agency: ALEX -0.8 . o &
|burg im Breisgau Author: scanloc L}
Evaluation: - (A} i
'ldu\huuse r Maus&n s Method: LOCSAT -
Earth model: haslach_taup-2.11

il am Rhe.rP “Basel 0 20 0 60 80

B - SWint Updated: 2018-10-03 18:49:07 e Tom)

Used | Status | Phase | Polarity | Net Sta Loc/Cha Res (s)| Dis (km) / | Az (°) Time (UTC) +/- (s) l—l
VT- A<l> 5 73 AlZ2A 00.HHN 0.56 11.08 253 12:54:58....
VT - A<B> P Z3 Al22A 00.HHZ -0.09 11.08 253 12:54:56....
VT - A<l> 5 LE OPP 00.EHN -0.49 24,7631 12:55:01....
VT A<B> P LE OPP 00.EHZ -0.76 24.76 |31 12:54:58....
VT- A<l> 5 LE KIZ HHN -1.10 39.55|190 12:55:05....
VT - A<B> P LE KIZ HHZ -0.82 39.55 (190 12:55:00....
M- A<l> 5 LE FELD EHN -0.79 47.83 180 12:55:08....
VT- A<B> P LE FELD EHZ -0.67 47.83 180 12:55:02....
I A<l> 5 FR ECH 00.ELN 0.31 64.15 261 12:55:14....
VT - A<B= P FR ECH 00.ELZ 1.19 64.15 261 12:55:06....
VT- A<l> 5 CH SLE HHN 1.66 70.14 149 12:55:17....
VT - A<l> S LE GUT EHN 0.47 86.17 | 107 AR,
VT - A<B> P LE GUT EHZ 0.53 86.17 107 12:55:10....

]

LOCSAT 'I = Profile: Ihaslachitaup-z.ll - I~ Fix depth 200 km I Distance cutoff 1000 km I Ignore initial location (g
Origine préférentielle sans la prise en compte du faux pointé émis a la station
RONF

FI1GURE 4.53: Exemple de défaillance de la procédure de sélection de l’origine
préférentielle établie par le systéme de détection de SeisComP3. La figure pré-
sente deux origines pour un méme événement correspondant a un tir de la
carriére de Schuttertal identifié le 01 juillet 2016 a 12h54 environ.
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Pour le séisme qui a eu lieu le 06 aofit 2016 au Nord du Lac Konztanz en
Allemagne a 16h53 (MLv 0.64), l'origine préférentielle qui est sélectionnée par
le systéme de détection de SeisComP3 est une origine déterminée a partir de
9 phases et une RMS de 0.77 s (Figure 4.54). Celle-ci a été localisée a partir
d’'une association de pointés qui contient un faux pointé émis a la station
A103A, augmentant les incertitudes épicentrales et hypocentrales. Seulement,
ici il ne s’agit pas d’un pointé relié a du bruit mais a un faux pointé du temps
d’arrivée des ondes P (Figure 4.54b). Méme si le vrai pointé automatique P
a bien été produit, c’est le faux pointé P retardé qui a finalement été inclus
dans le processus d’association, probablement parce que 'instance du processus
d’association considére une vitesse moyenne apparente des ondes P de la crofite
continentale (6 km/s) et un modéle de vitesse (Haslach) évaluant des temps de
trajet trop rapides par rapport aux vrais temps d’arrivées observés.

Dans le cas de ce séisme, la vraie origine préférentielle est alors une origine
a 7 phases avec une RMS de 0.47 seconde (Figure 4.55. La station A103A n’est
alors pas intégrée au processus de localisation de cette origine.

Sachant que les données acquises durent les mois de juillet et aotit 2016
ont servi a développer la procédure de détection proposée dans cette étude,
la combinaison des différentes instances des processus d’association avec une
procédure optimisée du choix de l'origine préférentielle apparait bien indispen-
sable pour détecter des origines préférentielles robustes, nettoyées de tout faux
pointé.

Enfin, pour le tir de la carriére d’Arcey, situé dans la zone pré-jurassienne
francgaise, ayant eu lieu le 11 juillet 2016 & 15h12 (MLv 1.6), l'origine préféren-
tielle définie par le systéme de détection de SeisComP3 est une origine a 15
phases avec une RMS de 1.14 s alors que la véritable origine préférentielle est
une autre origine a 15 phases mais avec une RMS plus petite (1.02 s). Seule-
ment, étant donné que cette derniére origine a été émise plus précocement,
le systéme de détection privilégie, pour un méme nombre de phases et une
RMS équivalente, ’origine la plus tardive. Par conséquent, ce systéme gardera
comme origine préférentielle une origine contenant deux faux pointés reliés a
du bruit, émis a la station A122A (distance épicentrale de 121 km) et A103A
(distance épicentrale de 215 km), et localisée avec de trés fortes incertitudes
épicentrales et hypocentrales (Figure 4.56).
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g 1" -"J f Earth model: alpes_taup-2.11
:'-UC'E"“E = "I‘ gy Updated: 2018-10-19 20:55:14 e 20 4 60 B0 100 1z
“ 4 . T Distance (km)
used | status | Phase | Pulanty | Net Sta|  Log/Cha| Rests)/ |  Dis km)|az ) Time wte) | +-ts1 |-
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FT- A<B> 3 CcH suLz HHZ 014 123.23|238 16:54:06....
FT- A<L> s 3 A102A HHN 015 22.81|276 16:53:54....
FT- A<l> s cH suLz HHN -0.48 123.23| 238 16:54:20....
FT- A<L> s CcH SLE HHN 052 85.20|242 16:54:10....
FT- A<B> P 73 A102A HHZ 0.73 22.81|276 16:53:50....
FT- A<B> P LE OPP|  00.EHZ 1.05 106.46| 293 16:54:05....
FT- A<B> P 73 A104A HHZ 1.07 16.56| 111 16:53:40....
FT- A<B> P 73 A103A HHZ 143 34.25/177 16:53:54....
|

LOCSAT = =& Profile: Ihas\ach_taup—z.ll 'I ™ Fix depth 18.92 km [~ Distance cutoff 1000 km ™ Ignore initial location (&
a) Origine préférentielle sélectionnée par le systéme de détection SeisComP3
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b) Faux pointé P émis & la station A103A située a une distance épicentrale de
34.25 km et intégré a l'origine préférentielle définie par le systéme de détection
SeisComP3

FIGURE 4.54: Exemple de défaillance de la procédure de sélection de 1'ori-
gine préférentielle établie par le systéme de détection de SeisComP3. La figure
présente deux origines pour un méme événement correspondant a un séisme
identifié le 06 aofit 2016 a 16h53 environ.
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Location | Magnitudes | Event | Events
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; v, ; j d: ¥ '“r ” Updated: 2018-10-22 12:19:16 0 20 40 80 80 100 119
g L7 F pdated: L= =Ls Distance (km)
Used | Status | Phase | Polarity | Net Sta Loc/Cha| Res(s)/ Dis (km)| Az (%) Time (UTC) +/- (s) I—I
IF T- - A<B> P Z3 ALD4A HHZ 0.00 15.33 75 16:53:49....
IF T - A<l s CH SLE HHN 0.21 81.66 249 16:54:10....
Ip T - A<B> P CH SULZ HHZ 0.30 118.79 242 16:54:06....
Ip T - A<L> S 3 ALOZA HHN 0.37 26.35298 16:53:54....
Ip T - A<B> P CH SLE HHZ 0.53 B81.66 249 16:54:00....
Ip T - A<l> s CH SULZ HHN -0.64 118.79 242 16:54:20....
Ip T - A<B> P Z3 Al02A HHZ -0.77 26.35 298 16:53:50....
El
LOCSAT hd S Profile: Ihaslachitaup—z.ll - ™ Fix depth 2.00 km [ Distance cutoff 1000 km T Ignore initial location &

Origine préférentielle sans la prise en compte du faux pointé P émis a la

station A103A

FIGURE 4.55: Exemple de défaillance de la procédure de sélection de l'ori-
gine préférentielle établie par le systéme de détection de SeisComP3. La figure
présente deux origines pour un méme événement correspondant a un séisme
identifié le 06 aofit 2016 a 16h53 environ.
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Location | Magnitudes | Event | Events |
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FT-- A<B> P FR CHMF 00.HHZ -1.17 33.08|181 15:12:57....
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VT A<B> P FR ECH 00.ELZ 0.47 83.14 |26 15:13:07....
FT-- A<L> 5 LE KIZ HHN 0.69 104.45 63 15:13:24....
VT A<B> P LE KIZ HHZ 0.52 104.45 63 15:13:10....
FT-- A<L> 5 CH suLZ HHN 1.24 108.91 90 15:13:26....
VT A<B> P CH SULZ HHZ 0.45 108.91 90 15:13:11....
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FIGURE 4.56: Exemple de défaillance de la procédure de sélection de 1’origine
préférentielle établie par le systéme de détection de SeisComP3. La figure pré-
sente deux origines pour un méme événement correspondant a un tir de la

carriére d’Arcey identifié le 11 juillet 2016 a

15h12 environ.
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Location | Magnitudes | Event | Eventsl

France Time: 2016-07-11 15:12:53 Distance | Azimuth | TravelTime | MoveOJLl
B Depth 2.00 km fixed FLiETlE (el arive
. /‘;4 Lat: 47.50478 ° N +/- 2.343 km
Lon: 6.67803 °E +/- 3.237 km L]
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J ', , .1 RMS Res.: 1.02 s
.f.l."' Shousal  AZ Gap: 140 ° % .
“Belfort “e.  Min. Dist.: 28.58 km g, hd !
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, . ) o] EventiD: ALEX2016nnys E L] L
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J iel/Bienne
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o= Kbniz “ern Evaluation: - (A) =
L . Method: LOCSAT
!’r/ Earth model: haslach_taup-2.11 0 20 40 50 30 100
I A ,/"Et:ua;mj' - Updated: 2018-10-04 15:54:59 Py
Used | status | Phase | Polarrty | Net Ssta|  Log/Cha Res ()| Dis (km / | Az () Time WTe) | 41150 |-
FT-- A<L> s FR CHMF 00.HHN -0.39 28.58 184 15:13:01....
FT- A<B> P FR CHMF 00.HHZ -1.19 28.58 184 15:12:57....
FT- A<L> 3 73 A158A 00.HHN 1.69 60.85 336 15:13:13....
FT- A<B> P 73 A158A 00.HHZ 0.26 60.85 336 15:13:04....
FT- A<L> 3 CH BRANT HHN -0.28 64.90(193 15:13:12....
VT - A<B> P cH BRANT HHZ 1.46 64.90/193 15:13:06....
FT- A<L> s CH BALST HHN 2.25 79.01 (103 15:13:19....
FT- A<L> s FR ECH 00.ELN -0.72 86.87 |24 15:13:18....
FT- A<B> P FR ECH 00.ELZ 115 86.87 |24 15:13:07....
V- A<L> s LE KIZ HHN -0.66 105.72 |61 15:13:24....
FT- A<B> P LE KIZ HHZ -0.82 105.72 |61 15:13:10....
FT- A<L> s CH SULZ HHN 0.52 108.01 |88 15:13:26....
FT- A<B> P CH SULZ HHZ -0.65 108.01 |88 15:13:11....
FT- A<L> s CH GIMEL HHN 0.25 112.44 196 15:13:27....
FT- A<B> P CH GIMEL HHZ -0.57 112.44 196 15:13:12.... =l
m -, Profile: lm I™ Fix depth 2.00 km [ Distance cutoff 1000 km [ Ignore initial location (&

Origine préférentielle créée sans les faux pointés émis aux stations A122A et
A103A

FIGURE 4.57: Exemple de défaillance de la procédure de sélection de 1’origine
préférentielle établie par le systéme de détection de SeisComP3. La figure pré-
sente deux origines pour un méme événement correspondant a un tir de la
carriére d’Arcey identifié le 11 juillet 2016 a 15h12 environ.
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L’utilisation combinée du nombre maximal de phases et de la
valeur minimale de la RMS ne suffit pas & définir I’origine préfé-
rentielle de maniére robuste. Il y a donc nécessité de reconsidérer
cette solution d’origine préférentielle en apportant d’autres cri-
téres (que ceux prédéfinis par SeisComP3) évaluant la qualité
d’une origine qui puissent étre facilement accessibles depuis la
base de données des événements.

4.3.2 Définir des critéres pour optimiser la sélection

Les incertitudes de localisation latitudinale et longitudinale apportent une
information capitale indirecte pour évaluer si une origine a sa localisation pol-
luée par d’éventuels faux pointés ou pour révéler quelle peut étre la meilleure
origine parmi celles qui présentent un méme nombre de phases et une RMS
équivalente.

De méme, la valeur des résidus peut aider a reconnaitre des origines conta-
minées par des faux pointés de part l'existence de résidus aberrants supérieurs
a 3.5 secondes. Les valeurs des résidus peuvent également étre trés utiles pour
repérer les origines avec les plus petites valeurs de résidus temporels (inférieures
albs).

Les distances épicentrales sont aussi des critéres liés a la géométrie du ré-
seau de stations & considérer (BONDAR et al., 2004). La distance épicentrale
minimale peut étre utilisée pour départager des origines qui ont un nombre de
phases, une valeur de RMS et des incertitudes de localisation épicentrales qui
sont du méme ordre de grandeur. La distance épicentrale maximale est aussi
intéressante a prendre en compte car une valeur élevée peut indiquer 'existence
d’un pointé aberrant émis a une station fortement éloignée géométriquement
du reste des stations impliquées dans la localisation de 1’origine, malgré des
différences de temps d’arrivée et des résidus temporels qui peuvent étre faibles.

La profondeur peut étre également un paramétre intéressant pour exclure de
la sélection des origines localisées & des profondeurs excessives (trés supérieures
a 30 km) du fait de I’existence d’un ou plusieurs faux pointé(s) associés au reste
des vrais pointés.

Enfin, le nombre de phases S fournit une contrainte importante sur la pro-
fondeur focale des événements et sur les incertitudes de localisation (GOMBERG
et al., 1990 ; HUSEN et HARDEBECK, 2010). Comme il est possible de l'observer
dans les Figures 4.29 & 4.39, sans le pointé des temps d’arrivée des ondes S,
la profondeur focale des événements est peu contrainte. Méme si le pointé des
temps d’arrivée des ondes S n’apporte pas nécessairement de l’exactitude (le
pointé des ondes S est difficile du fait des conversions de phases notamment), le
nombre de phases S inclus dans 1’assemblage de pointés apporte de la précision
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a la localisation et peut départager les origines qui ont un nombre de phases
et une valeur de RMS similaires.

Le nombre de phases et la valeur de la RMS restent des parameétres clefs
dans la sélection de l'origine préférentielle, en complément et en appui des
autres critéres décrits. Ces deux parameétres clefs servent également a affiner
la sélection de l'origine préférentielle a travers une recherche itérative de la
meilleure origine basée sur un intervalle de valeurs autour du nombre maximal
de phases qui minimise a la fois la RMS et les imprécisions de localisation
qu’évaluent les autres critéres décrits ci-dessus.

4.3.3 Créer un module SeisComP3 qui détermine une
meilleure origine préférentielle

L’analyse de l’ensemble des 708 événements détectés pour la période juillet-
aolit 2016 a conduit a 1’élaboration d’un arbre décisionnel qui initie la sélection
de l'origine préférentielle a travers deux seuils de référence : le nombre maxi-
mal de phases (plusieurs valeurs seuils possibles) et la valeur minimale de RMS
(un unique seuil égal & 2 s). Les autres critéres (nombre de phases S, nombre
de résidus temporels supérieurs a 1.5 s, nombre de résidus temporels > 3.5 s,
distance épicentrale minimale, distance épicentrale maximale, profondeur, in-
certitude latitudinale, incertitude longitudinale) viennent en appui pour affiner
la sélection.

L’élaboration de I’arbre décisionnel a donc été effectuée manuellement aprés
une étude précise de l'ensemble des critéres potentiels pouvant influencer le
choix de l'origine préférentielle pour tous les vrais événements détectés au cours
des mois de juillet et aofit 2016. Cet arbre construit a été intégré dans un
module SeisComP3 que j’ai codé et a été testé sur un jeu d’événements détectés
par le BCSF-RéNaSS entre janvier et juillet 2016 puis un jeu d’événements
détectés uniquement automatiquement selon la procédure développée dans ce
travail de thése pour les mois compris entre septembre et décembre 2016.

De cette facon, pour chaque événement détecté au cours du mois de juillet
et aofit, j’ai vérifié son origine préférentielle. Si celle-ci ne correspondait pas a la
véritable origine préférentielle (intégration d’un faux pointé par exemple dans
’association qui a conduit a l’origine préférentielle déclarée par SeisComP3),
j’ai alors recherché d’autres critéres, différents de ceux utilisés par défaut (RMS
et nombre de phases), qui pourraient, s’ils étaient utilisés, faire basculer la
sélection vers la véritable origine préférentielle.

L’arbre décisionnel construit manuellement répond donc a plusieurs che-
mins décisionnels possibles. Ces chemins décisionnels représentent l’ensemble
des choix disponibles élaborés a partir de la valeur des critéres utilisés pour
sélectionner chaque origine (nombre de phases, RMS, nombre de phases S,
nombre de résidus temporels supérieurs a 1.5 s, nombre de résidus temporels
> 3.5 s, distance épicentrale minimale, distance épicentrale maximale, profon-
deur, incertitude latitudinale, incertitude longitudinale), et ce, pour un large
spectre de configurations possibles. Le facteur qui est finalement hautement
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considéré pour optimiser le choix de 1’origine préférentielle est la qualité de sa
localisation.

Cet arbre décisionnel est donc d’abord construit sur la base du nombre
maximal de phases qui est identifié pour chaque événement. Lorsque le nombre
maximal de phases est supérieur a 20 ou bien inférieur 6, le choix de 'origine
préférentielle est plus rapide et se base uniquement sur une recherche de 1’ori-
gine préférentielle a travers la combinaison simultanée de la valeur minimale
de la RMS et le nombre maximal de phases possible (Figure 4.58).

En revanche, le choix se complexifie pour un nombre de phases compris entre
6 et 19. En effet, en plus d’une recherche itérative de la meilleure combinaison
possible entre la valeur de RMS minimale et le nombre de phases maximal,
des critéres supplémentaires tels que le nombre de phases S, la distance épi-
centrale minimale et les incertitudes de localisation épicentrale vont aider a
affiner le diagnostic de cette nouvelle origine préférentielle (Figures 4.59, 4.60
et 4.61). Les autres critéres comme la profondeur, les valeurs des résidus et
la distance épicentrale maximale sont principalement utilisés pour rejeter les
origines aberrantes quand c’est possible (Figure 4.58). Néanmoins, ces derniers
critéres sont trés précieux lorsqu’il s’agit d’affiner la sélection d’une origine pré-
férentielle pour les événements dont les origines présentent trés peu de phases
(généralement inférieur ou égal & 7, Figures 4.60 et 4.62).

Alexandra Renouard CHAPITRE 4. 195



4.3. AMELIORER L’ORIGINE PREFERENTIELLE POUR CHAQUE
EVENEMENT

Cet arbre décisionnel, présenté dans les Figures 4.58, 4.59, 4.60, 4.61
et 4.62, a été implémenté dans un module SeisComP3 que j’ai développé.
Ce module, écrit en Python, extrait les différentes critéres (RMS, nombre de
phases, nombre de phases S, nombre de résidus temporels supérieurs a 1.5 s,
nombre de résidus temporels > 3.5 s, distance épicentrale minimale, distance
épicentrale maximale, profondeur, incertitude latitudinale, incertitude longi-
tudinale) pour chaque origine de chaque événement. En fonction de la valeur
du nombre maximal de phases identifié pour chaque événement, relativement
a la plus faible valeur de RMS, ce module évalue l'origine préférentielle en
utilisant 1’arbre décisionnel empiriquement construit. Celui-ci récupeére finale-
ment l'identifiant (ID) de l'origine préférentielle sélectionnée. Il notifie ensuite
le systéme de messagerie du changement en activant le protocole de mise-a-jour
de 'origine préférentielle. Le module de gestion des événements modifie alors
dans la base de données des événements 1’origine préférentielle par défaut en
validant la nouvelle origine préférentielle.
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la nouvelle origine préférentielle en se basant d’abord sur le nombre maximal
CHAPITRE 4.

de phases qui sont présentes pour chaque événement. A 1l'issue de la recherche
de la nouvelle origine préférentielle, c’est 1’identifiant de 1’origine sélectionnée

(ressource ID) qui est récupéré.

FIGURE 4.58: Architecture générale de 1’arbre décisionnel qui sert a sélectionner
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FIGURE 4.59: Composante plus détaillée (cercle numéroté 1 sur la figure 4.58)
de ’arbre décisionnel. Cette composante sert a sélectionner la nouvelle origine
préférentielle pour des événements dont le nombre maximal de phases, pour la
valeur de RMS la plus faible, est compris entre 13 et 19 phases. A l'issue de
la recherche de la nouvelle origine préférentielle, c’est l'identifiant de l'origine
sélectionnée (ressource ID) qui est récupéré.
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CHAPITRE 4.

I’issue de la recherche de la nouvelle origine préférentielle, c’est 1'identifiant de

'origine sélectionnée (ressource ID) qui est r

origine préférentielle pour des événements dont le nombre maximal de phases,
pour la valeur de RMS la plus faible, est compris entre 7 et 12 phases. A

FIGURE 4.60: Composante plus détaillée (cercle numéroté 2 sur la figure 4.58)
de 'arbre décisionnel. Cette composante sert a affiner la sélection de la nouvelle
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EVENEMENT
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FIGURE 4.61: Composante plus détaillée (cercle numéroté 3 sur la figure 4.58)
de 'arbre décisionnel. Cette composante sert a affiner la sélection de la nouvelle
origine préférentielle pour des événements dont le nombre maximal de phases,
pour la valeur de RMS la plus faible, est compris entre 5 et 6 phases. A 'issue de

la recherche de la nouvelle origine préférentielle, c’est l'identifiant de l'origine
sélectionnée (ressource ID) qui est récupéré.
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EVENEMENT
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FIGURE 4.62: Composante plus détaillée (cercle numéroté 4 sur la figure 4.58)
de ’arbre décisionnel. Cette composante sert a affiner la sélection de la nouvelle
origine préférentielle pour des événements dont le nombre maximal de phases,
pour la valeur de RMS la plus faible, est inférieur a 5 phases. A l’issue de
la recherche de la nouvelle origine préférentielle, c’est l'identifiant de l'origine
sélectionnée (ressource ID) qui est récupéré.
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4.4 Récapitulatif

L’amélioration de la qualité des pointés automatiques P et S, du proces-
sus d’association ainsi que du processus de sélection de 1’origine préférentielle
conditionne fortement la réduction du nombre de séismes détectés avec un ou
plusieurs faux pointés.

La prise en compte de la configuration du réseau de stations (géométrie,
localisation, site d’implantation) est d’abord déterminante pour obtenir des
pointés automatiques P et S, de meilleure qualité.

De plus, la considération du milieu de propagation, a travers la vitesse des
ondes sismiques, est ensuite capitale pour améliorer le processus d’association,
et limiter ’association de faux pointés avec de vrais pointés. En effet, ce milieu
impacte fortement les temps de trajet qui sont calculés au sein du réseau de
stations, que ce soit pour évaluer les résidus temporels associés aux différents
pointés, ou pour évaluer les distances temporelles nécessaires pour former les
clusters de pointés.

Enfin, la gestion de critéres supplémentaires qui vont évaluer la qualité
d’une origine localisée est décisive pour améliorer le processus de sélection de
I'origine préférentielle parmi les origines qui constituent chaque événement. Si
le nombre maximal de phases et la valeur minimale de la RMS sont suffisants
pour estimer des événements qui sont générés avec beaucoup de phases (su-
périeurs & 20), ceci est beaucoup moins évident pour ceux qui en possédent
moins.

Or, la procédure de détection est ici établie pour détecter des signaux de
faible amplitude correspondant a des séismes qui sont enregistrés a un faible
nombre de stations. Les critéres comme le nombre de phases S, les distances
épicentrales maximale et minimale, la profondeur, le nombre de pointés avec des
résidus supérieurs a 1.5 s et 3.5 s, les incertitudes de localisation latitudinales
et longitudinales viennent donc affiner le processus de sélection de l'origine
préférentielle. L’origine qui est finalement choisie est 1'origine qui a certes le
nombre maximal de phases et la plus petite valeur de RMS, mais qui est aussi
localisée avec la plus grande précision.

La connaissance des caractéristiques du bruit enregistré aux stations et du
milieu de propagation des ondes sismiques, couplée a la prise en compte des dis-
tances épicentrales et des facteurs évaluant la qualité des localisations des évé-
nements, conditionnent donc la performance de la détection finale des séismes.
Cette détection dépend donc fortement de la nature du signal enregistré, qui
reflete 'influence combinée des effets de la source, souvent trés atténués, de la
propagation des ondes dans le milieu et du bruit enregistré aux stations.
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Face a une performance de détection des petits séismes multifactorielle, le
nouveau systéme de détection contient :

— plusieurs instances de pointés P et S (dans notre cas 2) qui ont été
introduites pour répondre a 1’évolution spatio-temporelle des conditions
de bruit aux stations et des distances épicentrales (Figure 4.63a);

— plusieurs instances du processus d’association qui ont été implémentées
en paralléle (dans notre cas deux instances pour le processus d’associa-
tion basé sur la rétro-projection des pointés a un hypocentre optimal,
quatre instances pour le processus d’association basé sur le clustering
de pointés) pour prendre en compte de fagon optimale les variations
verticales et latérales du milieu de propagation des ondes sismiques (Fi-
gure 4.63b);

— un module SeisComP3 qui a été développé pour sélectionner plus soli-
dement 1’origine préférentielle de chaque événement puis introduit dans
le systéme de détection final (Figure 4.63c).

Afin d’assurer une synchronisation de 1’ensemble des étapes de la nouvelle
procédure, j’ai également développé un autre module SeisComP3 qui est intégré
a la procédure de détection, directement aprés toutes les instances des processus
d’association. Ce module vérifie en continu le statut de ces différentes instances
et autorise la poursuite de la procédure de détection une fois que toutes ces
derniéres ont terminé leur action, a savoir lorsque toutes les origines ont été
créées et localisées.

Si ces développements diminuent fortement la détection de séismes conta-
minés par de faux pointés, ils ne permettent en revanche pas d’annuler la
détection des faux événements. Le chapitre suivant est donc dédié a expli-
quer comment a partir de 'apprentissage machine supervisé, il est possible de
réduire la quantité de faux événements détectés, tout en veillant a identifier
également automatiquement les vrais événements restants, a savoir les séismes
et les tirs de carriére.
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FIGURE 4.63: Procédure de détection nouvellement développée, qui vise a ré-
duire le taux de séismes détectés avec de faux pointés tout en diminuant le seuil
avec lequel ces derniers sont détectés. (a) L’instance de pointé automatique des
ondes P et S est remplacée par plusieurs instances qui viennent améliorer la
qualité des pointés émis en prenant en compte la variabilité spatio-temporelle
des caractéristiques du bruit enregistré aux stations et des distances épicen-
trales. (b) Chaque instance des deux processus d’association (rétro-projection
des pointés et clustering des pointés) est remplacée par plusieurs instances
qui considérent plus spécifiquement les variations latérales et verticales du mi-
lieu de propagation (modéle de vitesse pour les deux processus d’association
et vitesse moyenne apparente des ondes P dans la crofite continentale pour
le deuxiéme processus d’association). (c¢) Un nouveau module SeisComP3 que
j’al développé est introduit dans le systéme de détection pour sélectionner la
véritable origine préférentielle basée sur d’autres critéres (que ceux proposés
par SeisComP3) qui évaluent la précision de localisation de cette origine.
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Chapitre 5

Comment réduire la détection des
faux événements et comment
efficacement discriminer les séismes
des tirs de carriére ?
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5.1. CLASSER LES EVENEMENTS AVEC L’APPRENTISSAGE
MACHINE SUPERVISE

5.1 Classer les événements avec l'apprentissage
machine supervisé

5.1.1 Trouver une fonction de prédiction qui minimise 1’er-
reur de généralisation

L’énoncé du probléme de classification se base sur la supposition qu’il existe
une fonction cible inconnue, une fonction d’étiquetage (nommée F), qui va
permettre de labéliser en sortie (affilier une étiquette de classe) un ensemble
d’événements (ici les faux événements, les séismes et les tirs de carriére) en
données d’entrée (Figure 5.6a).

a Classification b d

SITLET Training Set
S=((x,y¥y) -.[x,

Fix—ey R Oy L) |

F : Unknown Target Function e Seil"e".-"ﬁ Stz
X : Event set to label o
Y . Set of possible labels
]

KXy, X, Xg,..n, X ] Where
R R, X, Ko X ]IS 8

Set of features

Hypothesis
Set
H

* mum

Final Hypothesis
G=F

L [yll ¥z '!'3,---,'3‘“] where
¥, :Ooulou2

I\_;. L-I'
G ; Prediction rule

0 = False Event, 1= Quary Blast
2 = Earthguake

FIGURE 5.1: Cadre théorique de l'apprentissage machine supervisé. (a) Un en-
semble d’observations (z; & z,) appartenant au domaine X, avec chaque obser-
vation décrite par un vecteur d’attributs (z, & z.,), est mappé en un ensemble
de labels, appartenant au domaine Y, par une fonction cible inconnue F. (b)
Une base d’entrainement, échantillonnée a partir des données disponibles, est
constituée d'un ensemble de couples (x,y) appartenant & X X Y, et sert de
base d’entrée pour un algorithme d’apprentissage A (c) qui va générer une
fonction de prédiction G qui va approximer la fonction cible inconnue (e), en
se basant sur un espace initial d’hypothéses restreintes H (d). Cette fonction
de prédiction doit étre capable de prédire les labels de nouveaux événements
en minimisant ’erreur de généralisation.

La résolution de ce probléme par l'apprentissage machine supervisé va se
baser sur la construction inductive d'une fonction de prédiction généralisable
G, qui va approximer la fonction cible inconnue F, en commettant une erreur
de prédiction (ou erreur empirique) la plus faible possible (Figure 5.6e). Dans le
cadre de la classification, cette fonction de prédiction G est appelée classifieur.
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Ce classifieur est construit a partir d’un ensemble fini d’exemples, appelé
base d’entralnement, dans lequel chaque exemple est une paire constituée du
vecteur représentatif d’'une observation, c’est-a-dire ici un vecteur d’attributs
décrivant un événement, et d’une réponse associée, a savoir 1’étiquette de classe
de chaque événement (Figure 5.6b). Les Figures 5.2, 5.3 et 5.4 présentent
quelques exemples d’attributs qui peuvent étre utilisés pour décrire les événe-
ments qui sont a classer, a savoir les faux événements, les tirs de carriére et les
séismes.

La base d’entrainement qui est utilisée (nommée S) correspond donc a un
échantillonnage de ’ensemble des observations possibles (nommé X) et de leurs
réponses associées (nommé Y) dont la distribution D est inconnue (Figure 5.6a,
b). Seulement, ’hypothése de base sous-jacente & l’apprentissage est que les
données sont stationnaires, c’est-a-dire que les exemples de la base d’entraine-
ment, sur laquelle la fonction de prédiction est apprise, sont représentatifs du
probléme général que l'on souhaite résoudre.

L’objectif de I’apprentissage supervisé est donc de rechercher la fonction de
prédiction G qui aura de bonnes performances de généralisation. Autrement
dit, la fonction de prédiction G trouvée réalisera une erreur de généralisation
trés faible. Seulement, cette erreur de généralisation est en fait difficile a estimer
car elle est exprimée en fonction de deux parameétres inconnus : la distribution
de I’ensemble de toutes les observations possibles D et la fonction d’étique-
tage cible F. La seule information disponible est en fait contenue dans la base
d’entralnement.

En suivant le principe inductif de la minimisation du risque empirique
(MRE, VAPNIK, 1999), cette erreur de généralisation sera donc approximée
a travers le calcul de ’erreur empirique. En effet, ce principe suppose que la
fonction de prédiction qui minimise l’erreur empirique, aboutit a une erreur
de généralisation qui est proche de son minimum, et donc offre une borne su-
périeure a cette erreur de généralisation. Il s’agit alors dans ce nouveau cadre
de trouver la fonction de prédiction G qui a ’erreur empirique la plus faible,
c'est-a-dire qui minimise 1’écart entre la réponse réelle y ('étiquette de classe)
et la réponse prédite G(x) par la fonction de prédiction G pour une observation
donnée de la base d’entralnement S.

Seulement, la recherche de la fonction de prédiction G optimale sera res-
treinte par le choix de 1’algorithme d’apprentissage et la configuration de ce
dernier, qui vont définir ’espace des hypothéses possibles H pour trouver cette
fonction G (Figure 5.6¢c). Cet espace d’hypothéses possibles H constitue ’en-
semble des fonctions de prédiction candidates qui vont étre considérées dans
I’apprentissage pour prédire les réponses associées aux données d’observation.
La recherche de cette fonction de prédiction optimale est donc biaisée vers un
jeu particulier de régles de prédiction, ce qui est nommé biais inductif (Haussler,
1988 ; Mitchell, 1997). La fonction de prédiction optimale G, soit I’hypothése
finale qui appartient a I’ensemble H, est celle qui va se rapprocher le mieux de
la fonction cible, et donc de minimiser l’erreur sur S.
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FIGURE 5.2: Apergu de la variabilité des attributs qui peuvent étre utilisés
pour décrire un événement. L’événement qui est présenté ici est un tir de la
carriére de Strafberg, identifié en Allemagne le 15 décembre 2016 a 12h29
(MLv 1.6). Par exemple, les attributs nommés z, & =, sont des parameétres
statistiques (valeur maximale, moyenne, médiane, mode) qui décrivent ’en-
veloppe du signal enregistré sur la composante verticale de la station GUT
pour cet événement. Les attributs nommés z. a x5, sont les mémes parameétres
statistiques (valeur maximale, moyenne, médiane, mode) qui décrivent quant
a eux la fonction STA/LTA, c’est-a-dire 1'évolution des valeurs du rapport
STA/LTA en fonction du temps, pour la méme station. De méme, pour z; a
x; qui décrivent statistiquement la représentation spectrale discréte du signal
échantillonné, obtenue par transformée discréte de Fourier (DF'T). L’attribut z;
définit le rapport spectral de 'intensité du signal sur deux fenétres temporelles
adjacentes. Les attributs z,, a z, apportent des informations sur l'origine préfé-
rentielle de I’événement localisé, a savoir par exemple sa localisation épicentrale
et les incertitudes associées, le nombre de phases inclus dans 1’association, la
RMS des résidus, le gap azimutal ou la distance épicentrale minimale.
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FIGURE 5.3: Apercu de la variabilité des attributs qui peuvent é&tre utilisés pour
décrire un événement. L’événement qui est présenté ici est un séisme, identifié
dans le canton de Ziirich en Suisse le 18 octobre 2016 & 21h36 (MLv 1.4). Les
attributs proposés sont les mémes que que dans la Figure 5.2. Pour les attributs
liés au signal, c’est la composante verticale de la premiére station (BALST) qui

est ici présentée.
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MACHINE SUPERVISE
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FIGURE 5.4: Apercu de la variabilité des attributs qui peuvent étre utilisés pour
décrire un événement. L’événement qui est présenté ici est un faux événement,
identifié au Sud-Ouest de Frankfurt, non loin de deux carriéres, le 19 novembre
2016 a 13h07. Les attributs proposés sont aussi les mémes que que dans la
Figure 5.2. Pour les attributs liés au signal, c’est la composante verticale de la

premiére station (A116A) qui est également présentée.
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Si 'algorithme d’apprentissage renvoie une fonction de prédiction dont l'er-
reur empirique refléte son erreur de généralisation lorsque la taille de la base
d’entralnement tend vers l'infini, et, si ’algorithme permet de trouver une
fonction de prédiction qui minimise ’erreur de généralisation dans la classe
d’hypotheéses considérée, alors l'erreur empirique de cette fonction de prédic-
tion sur la base d’entrailnement S converge en probabilité vers son erreur de
généralisation.

La borne supérieure de ’erreur de généralisation s’exprime donc effective-
ment en fonction de 'erreur empirique de la fonction de prédiction apprise
sur une base d’entrainement, mais aussi en fonction de la complexité de la
classe d’hypothéses utilisées (nombre de noeuds dans un réseau neuronal, pro-
fondeur d’un arbre décisionnel, etc.). Cette complexité traduit la capacité de
la classe d’hypothéses a résoudre le probléme de prédiction. Plus cette capacité
est grande, plus l'erreur empirique sur S est faible, mais plus il y a un risque
que lerreur de généralisation soit en revanche élevée (Figure 5.5). Cette borne
exhibe ainsi le compromis qui existe entre I’erreur empirique a minimiser et la
capacité de la classe d’hypothéses a contréler.

L’erreur qui est estimée sur la base d’entrainement n’est donc pas forcé-
ment représentative de la performance de la fonction de prédiction sur de nou-
velles observations. Il est alors nécessaire de disposer d’un second ensemble
d’exemples étiquetés, appelé base de test, auquel 'algorithme d’apprentissage
n’avait pas accés, pour estimer l’erreur moyenne de la fonction produite, qui
sera cette fois plus représentative de son erreur de généralisation. L’objectif
pour l’algorithme d’apprentissage est de trouver une fonction ayant de bonnes
performances de généralisation et non celle qui sera capable de reproduire par-
faitement les réponses associées aux exemples d’entralnement.
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Generalization error

Error 2

Training error

Complexity of H >

FIGURE 5.5: Evolution de l’erreur empirique (ou erreur d’entrainement) et de
I’erreur de généralisation en fonction de la complexité de la classe d’hypothéses
utilisées (H). L’erreur empirique diminue avec la complexité de la classe d’hy-
pothéses utilisées alors que l'erreur de généralisation est d’abord élevée pour de
faibles niveaux de complexité, diminue jusqu’a ce que la complexité de la classe
d’hypotheses utilisées corresponde a la distribution inconnue des observations,
puis s’éléve de nouveau pour des classes d’hypothése de plus haute complexité.
Modifié d’aprés BELKIN et al., 2019.
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Nouvel exemple
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FIGURE 5.6: Illustration des deux phases d’un probléme d’apprentissage su-
pervisé. Dans la phase d’apprentissage (schématisée par les traits pleins), une
fonction minimisant ’erreur empirique sur une base d’entrainement est trouvée
parmi une classe de fonctions hypothétiques prédéfinies. Dans la phase de test
(schématisée par les traits pointillés), les sorties de nouveaux exemples sont
prédites par la fonction de prédiction. D’aprés AmiIni, 2015.
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5.1.2 Définir les contraintes de I’espace d’apprentissage qui
élévent 'erreur de généralisation

eUne taille d’échantillon petite

Dans le cadre du probléme de la classification, afin d’évaluer la performance
des prédictions du classifieur, il est nécessaire d’avoir une base d’entrainement
qui ait des étiquettes de classe correctement affiliées aux différents événements.
Or, dans la zone d’étude, c’est seulement a partir de 2012 que les tirs de car-
riere ont été inclus dans le catalogue maintenu par le BCSF-RéNaSS. De plus,
comme il a été déja décrit dans la section 3, ce n’est qu’a partir de 2016 que
cette base de données a pu étre réellement soigneusement discriminée. Par
conséquent, la seule base de données vraiment robuste dont je dispose pour
résoudre ce probléme de classification des faux événements, des séismes et des
tirs de carriére, est une base relativement petite d’environ 10389 événements
(728 faux événements, 5537 séismes, et 4124 tirs de carriére) qui ont été détec-
tés entre 2016 et 2019. Cette taille est effectivement relativement petite si on
la compare aux bases de données qui peuvent étre produites actuellement dans
d’autres domaines appliqués comme la biomédecine avec les données omiques
(ex : données de séquengage entier du génome, plusieurs dizaines de milliards
de nucléotides répartis sur plus de 20 000 génomes différents, WAINBERG et
al., 2018) ou plus théoriques comme la reconnaissance d’images a partir de la
base des 300 millions d’'images du monde réel éditée par Google (ImageNet et
JFT-300M, SUN et al., 2017).

eDes données de grande dimension

Chaque événement de la base de données que je posséde peut étre décrit a
travers un espace d’attributs qui est grand. En effet, quel que soit 1’événement
(faux événement, séisme ou tir de carriére), celui-ci peut étre d’abord décrit
a travers les parameétres qui vont définir son origine, a savoir sa localisation
(coordonnées géographiques, profondeur, distance a un site anthropique comme
une carriére, etc.) et les incertitudes associées (ellipsoides de confiance), son
temps d’occurrence (heure de la journée, jour de la semaine, etc.), sa qualité
(distances épicentrales, RMS, résidus temporels, nombre et type de phases,
gap azimutal, etc) et sa magnitude (magnitude locale, magnitude de coda,
magnitude de surface, etc.) par exemple.

Un événement peut ensuite étre également défini gréce aux signaux qui
ont servi a l'identifier. Ces derniers fournissent des informations indirectes
précieuses sur la source qui a émis ces signaux, mais aussi sur les effets du
milieu de propagation et les caractéristiques du bruit enregistré aux diffé-
rentes stations. Cet ensemble d’informations peut étre extrait a partir d’une
description compléte des signaux dans le domaine temporel (formes d’onde,
enveloppe), fréquentiel (spectre) et tempo-fréquentiel (spectrogrammes, sono-
grammes, décomposition en ondelettes, transformation de Wigner-Ville, trans-
formation d’Hilbert-Huang, etc.).
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Quelques exemples d’attributs sont présentés dans la Figure 5.3 ou 5.2 ou
5.4. Dans ce travail de thése, un total de 361 attributs ont été identifiés pour
décrire chaque événement. Le détail de ces attributs est adressé dans le tableau
S1 qui se trouve dans le supplément de ’article qui est présenté ultérieurement.

Seulement, la précision des algorithmes de classification a tendance a se dé-
tériorer a mesure que la dimensionnalité des attributs augmente, en raison d’un
phénoméne appelé la “malédiction de la dimensionnalité” (BELLMAN, 1961;
TRUNK, 1979; KOPPEN, 2000). En effet, si la distance euclidienne est choi-
sie pour comparer relativement chaque observation de la base d’entrainement
(a savoir chaque vecteur d’événement) dans l’espace euclidien correspondant,
la distance qui sépare chaque point d’observation augmente avec le nombre
d’attributs (Figure 5.7).
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FIGURE 5.7: Evolution de la distribution de la densité de 500 points d’observa-
tion en fonction de la distance euclidienne et de la dimensionnalité de I'espace
d’attributs. Chaque histogramme représente une dimensionnalité (de 1 & 128).
Au fur et a mesure que la dimensionnalité des attributs augmente, les distri-
butions tendent vers une forme gaussienne avec une distance moyenne entre
chaque point d’observation de 1’espace euclidien qui s’accroit. Cette accroisse-
ment de la distance qui sépare chaque point d’observation limite les possibilités
de regroupement des observations en des classes bien identifiées. Une comparai-
son relative des distances (normalisation par rapport a la distance maximale)
montre qu’a mesure que la dimension augmente, les distances se concentrent
autour d’une valeur centrale, soulignant le fait que les points d’observation
tendent a étre environ tous a la méme distance. SD = écart-type.
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Avec ’augmentation de la dimensionnalité de 1’espace d’attributs, les pos-
sibilités de combinaisons uniques d’attributs se multiplient donc, éloignant les
points d’observation les uns des autres (Figure 5.8). Cet accroissement expo-
nentiel du nombre attributs est d’ailleurs nécessairement associé a une aug-
mentation de la redondance ou la non significativité de plusieurs entre eux, au
regard du probléme posé.
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FicuRE 5.8: Effet de ’augmentation de la dimensionnalité des attributs sur la
densité des points d’observation (chaque point d’observation correspond a un
vecteur de n attributs, n=1, 2, 3). Les données dans une seule dimension sont
relativement compactes. En ajoutant une dimension, les points d’observation
s’écartent. Des dimensions supplémentaires éparpillent largement les points
d’observation, diminuant fortement leur densité au sein d’un espace d’attributs
a plus grande dimension. D’aprés PARSONS et al., 2004.

Par conséquent, au fur et a mesure que la dimensionnalité des attributs
s’étend, il y a un risque accru de sur-adapter la fonction de prédiction a des cas
particuliers. Ceci génére donc des classifieurs avec de mauvaises performances
de généralisation et rend donc plus difficile les prédictions correctes sur de
nouvelles observations (Figure 5.9). Lorsque ’espace d’attributs progresse en
dimensionnalité, les données perdent en densité mais le classifieur généré se
complexifie aussi.
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(b) Estimation grossiére de la performance
d'un classifieur obtenu a partir d’un jeu
d’entralnement constitué de séismes et
de tirs de carriéres extraits du catalogue
BCSF-RéNaSS, pour la période 2017-2019.
(a) Représentation théorique du phéno- Chaque donnée d’observation (séisme ou
meéne de Hughes tir de carriére) est représentée par un vec-
teur allant de 10 & 350 attributs aléatoi-
rement choisis parmi la banque d’attributs
définie initialement (cf supplément de l’ar-
ticle qui va suivre). L’algorithme d’appren-
tissage utilisé pour générer le classifieur est
Random Forest.
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FI1GURE 5.9: Représentation graphique du phénomeéne de Hughes. Dans le cadre
de ’apprentissage machine supervisé, la performance d’un classifieur est forte-
ment dépendante de la dimensionnalité de 1'espace d’attributs qui est donnée
en entrée. Si la performance du classifieur augmente d’abord proportionnelle-
ment avec le nombre d’attributs utilisés jusqu’a atteindre une performance op-
timale, celle-ci chute rapidement du fait de I'accroissement possible du nombre
de combinaisons uniques d’attributs, éloignant les observations les unes des
autres. Pour de nouveau optimiser la performance du classifieur, il faudrait
augmenter la taille de I’échantillon du jeu d’entrainement afin de diminuer les

distances qui séparent chaque point d’observation dans un espace a grande
dimension d’attributs.
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eUne répartition déséquilibrée des classes d’événement

Par ailleurs, en plus d’une dimensionalité élevée, ce jeu de données présente
un fort déséquilibre des classes d’événement en direction des faux événements.
En effet, les faux événements ne représentent que 7% du total des événements
pour la période 2016-2019. De fagcon moins marquée, les tirs de carriére repré-
sentent 40% des événements détectés pour la méme période contre 53% pour
les séismes.

Dans le cadre d'un probléme de classification binaire, s’il s’agit d’identifier
les faux événements de 'ensemble des vrais événements, alors les vrais événe-
ments constituent 93% de la base d’entrainement. Or, dans la réalité, lorsque les
petits séismes sont détectés, ce sont les faux événements qui sont majoritaires
pour plus de 95% du total des événements détectés. Ce jeu de données collec-
tés n’est donc pas représentatif du profil de détection qui est généré lorsque les
seuils de détection sont fortement diminués.

Or, dans un cas ou dans 1’autre, des données trés déséquilibrées posent des
difficultés supplémentaires. La plupart des fonctions de prédiction apprises a
partir d’'une base d’entrainement fortement déséquilibrée présentent effective-
ment un biais en faveur de la classe majoritaire (ici les vrais événements) et,
dans des cas extrémes, peuvent ignorer complétement la classe minoritaire dans
leurs prédictions (J. M. JOHNSON et al., 2019). Les algorithmes d’apprentissage
présentent donc des difficultés a généraliser le comportement de la classe mino-
ritaire et la capacité prédictive de la fonction de prédiction apprise est faible.

En effet, les probabilités ou les scores prédits par de nombreux algorithmes
d’apprentissage ne sont pas calibrés. Ceci signifie que la distribution et le com-
portement des probabilités prédites peuvent ne pas correspondre a la distri-
bution attendue des probabilités observées dans les données d’apprentissage.
Ceci est particuliérement courant avec les algorithmes d’apprentissage auto-
matiques non linéaires complexes qui ne font pas directement des prédictions
probabilistes, mais utilisent plutét des approximations. Par exemple, les al-
gorithme d’apprentissage basés sur les forét aléatoires comme Random Forest
(BREIMAN, 2001) estiment leur prédiction sous la forme d’un score qui évalue
le nombre d’arbres décisionnels qui a prédit correctement le label d’un événe-
ment par rapport au nombre total d’arbres utilisés pour construire la fonction
de prédiction.
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eDes données bruitées et hétérogénes

Comme il a été écrit dans les sections précédentes, les signaux associés aux
faux événements et aux vrais événements (séismes, tirs de carriére) qui sont
détectés dans la zone d’étude ont des contenus fréquentiels, des amplitudes
et des durées qui peuvent étre trés fortement similaires (INBAL et al., 2018;
PoLI et al., 2020). De nombreux vrais événements sont détectés avec de trés
faibles rapport signal/bruit. D’ailleurs, le succés de l'opération de pointé des
temps d’arrivée des différentes phases sismiques a été fortement dépendant
des conditions de bruit enregistré aux stations. La prise en compte de ces
conditions de bruit est effectivement un critére décisif pour obtenir un pointé
automatique de qualité, nous ’avons vu. L’ensemble des signaux sismiques qui
sont détectés sont donc de faible amplitude, et fortement contaminés par du
bruit stationnaire, voire non stationnaire.

De plus, la diversité des formes d’ondes associées aux tirs de carriére rend
souvent difficile la tache de discrimination des vrais événements entre eux,
comme je 1’ai déja évoqué précédemment dans les chapitres 1 et 2. L’analyse
de la forme d’onde peut alors parfois brouiller la qualité de la discrimination.

Par ailleurs, les solutions épicentrales et hypocentrales des événements dé-
tectés peuvent apporter beaucoup d’incertitudes a l'identification des événe-
ments, en se basant uniquement sur ces parameétres. Par exemple, la profon-
deur est souvent mal contrainte, les incertitudes latitudinales et longitudinales
des épicentres des vrais événements peuvent étre aussi fortes que celles des
épicentres des faux événements, car ce sont souvent des petits événements qui
sont détectés et localisés avec trés peu de phases.

Or, tous ces paramétres évoqués juste au-dessus font partie des attributs que
j’ai sélectionnés pour former la banque des 361 attributs qui vont servir a clas-
ser les événements (faux événement, séisme, tir de carriére). Cela signifie que
des attributs statistiques décrivant le contenu fréquentiel absolu des signaux
ou bien le contenu fréquentiel de ces signaux relativement au temps (spec-
trogramme par exemple) ou bien ’enveloppe du signal peuvent &tre utilisés.
Or, si ces attributs peuvent apporter des informations précieuses sur la nature
de chaque événement, ils peuvent également introduire beaucoup de confu-
sion lorsque par exemple, d’une classe d’événement a une autre, les contenus
fréquentiels se chevauchent ou les formes d’ondes tendent a étre similaires.

Face a la complexité et la diversité intrinséques du jeu d’événements (i.e.
diversité des signaux, effets du milieu de propagation, contenu en bruit élevé,
localisations des origines peu contraintes), il y a un fort risque que 1’algorithme
d’apprentissage apprenne sur des corrélations parasitaires dans les données
d’apprentissage.
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Lorsque 'algorithme d’apprentissage exploite des artefacts ou des informa-
tions parasites dans le jeu de données pour en déduire une fonction de prédic-
tion erronée, ce comportement est nommé métaphoriquement "Clever-Hans"
(PrFunGsT, 1911; LAPUSCHKIN et al., 2019; SCHRAMOWSKI et al., 2020, Fi-
gure 5.10). Clever-Hans était le nom d’un cheval intelligent qui semblait avoir
appris a répondre a des questions arithmétiques, mais qui n’avait en fait appris
a lire que les indices sociaux qui lui permettaient de donner la bonne réponse.
Dans des environnements contrélés ou il ne pouvait ni voir les visages des
gens, ni recevoir d’autres commentaires, ce cheval intelligent n’a en fait pas pu
répondre a ces questions.

FiGURE 5.10: Exemple de comportement type "Clever-Hans". Des feuilles de
Betterave sont soumises & un stress biotique (inoculation des feuilles avec un
pathogéne fongique Cercospora beticola, typique de la famille des Chenopo-
diaceae & laquelle appartient la Betterave). Un réseau de neurones convolutif
(CNNs) a été utilisé pour classer des images RGB, produites par imagerie hy-
perspectrale, de feuilles de Betterave infectées et saines. Les disques de tissu
foliaire ont été placés dans des boite de pétri contenant une solution d’agar (fi-
gures du haut). A chaque photographie correspond une coche de couleur (vert
pour feuille saine et rose pour feuille infectée). Les résultats de la classification
par le réseau neuronal convolutif sont représentés graphiquement pour chaque
échantillon (figures du bas). Les couleurs jaune-vert correspondent aux régions
qui ont été utilisées pour obtenir le diagnostic de classification alors que les cou-
leurs bleu-violet correspondent aux régions non utilisées. Pour une meilleure
lisibilité, les régions colorées ont été superposées a l'image originale filtrée. Il
est possible alors d’observer que le réseau neuronal convolutif profond a cor-
rectement classifié les feuilles infectées sur la base d’arguments artéfactuels,
en l'occurrence ici la solution d’agar entourant les disques foliaires, illustrant
ainsi un comportement de type "Clever-Hans". Modifié d’aprés SCHRAMOWSKI
et al., 2020.
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eConséquence : un fort risque de sur-apprentissage

L’ensemble des paramétres décrits, une taille d’échantillon petite avec une
dimensionnalité des données élevée, un déséquilibre des classes d’événement et
des informations possiblement parasitaires, limitent l’aptitude des algorithmes
d’apprentissage a générer des fonctions de prédictions généralisables. En effet,
tous ces parameétres qui décrivent la base de données que je posséde peuvent
facilement induire en erreur l'algorithme d’apprentissage, et aboutir & un sur-
apprentissage des données collectées, donc une erreur de généralisation élevée.

L’erreur de généralisation peut se décomposer de la maniére suivante : une
erreur bayésienne intrinséque irréductible associée a tous les classifieurs, une
erreur d’approximation et une erreur d’estimation. L’erreur d’approximation
désigne 'erreur minimale réalisable par une fonction de prédiction G au sein
de ’espace d’hypothéses H. Ce terme mesure le risque encouru lorsque 1’on se
restreint a une certaine classe d’hypothéses, a savoir le niveau de biais inductif
atteint (SHALEV-SHWARTZ et al., 2014).

Le fort taux d’'informations parasitaires contenues dans les données d’ap-
prentissage peut facilement aboutir a un fort biais inductif, et donc a une erreur
d’approximation élevée. Seulement, la haute dimensionalité de 1’espace d’attri-
buts peut véhiculer une richesse d’informations telle que des motifs multiples de
classification possibles des événements peuvent se révéler, complexifiant gran-
dement 'espace d’hypothéses qui sert a générer la fonction de prédiction. Dans
ce cas-ci, 'erreur d’approximation devient beaucoup plus faible.

L’erreur d’estimation représente la différence entre I’erreur d’approximation
et l'erreur globalement réalisée par la fonction de prédiction, dans le cadre du
principe de minimisation du risque empirique. Cette erreur d’estimation mesure
I’éloignement de la fonction de prédiction, apprise par l’algorithme d’appren-
tissage, de la meilleure fonction de prédiction disponible au sein de la classe
d’hypothéses H. Etant une propriété incompressible de 1’algorithme d’appren-
tissage, cette erreur dépend fortement de la taille du jeu d’entrainement, mais
aussi de la taille de la classe d’hypotheéses sélectionnée H. Ainsi, pour une classe
d’hypothéses finie, ’erreur d’estimation augmente logarithmiquement avec la
taille (et donc la complexité) de la classe d’hypothéses et décroit avec la taille de
I’échantillon d’entrainement. Cette erreur d’estimation existe parce que 1’erreur
empirique est seulement une estimation de 1’erreur globale de généralisation.

L’échantillon que je posséde étant relativement petit et assez peu repré-
sentatif de l’ensemble des classes d’événements a identifier (ici les faux évé-
nements), l'erreur d’estimation a l'issue de l’apprentissage a de fortes chances
d’étre élevée.
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Le jeu de données que je détiens apporte donc de fortes contraintes sur son
apprentissage. La fonction de prédiction générée présente un risque fort d’er-
reur d’approximation et d’erreur d’estimation. Or, I’objectif d’un apprentissage
automatique optimal, guidé par un algorithme d’apprentissage, est de minimi-
ser 'erreur totale de généralisation. Je suis donc nécessairement confrontée a
un compromis entre le biais et la complexité de la fonction de prédiction a
générer.

D’une part, choisir une classe d’hypotheéses trés riche peut diminuer 1’erreur
d’approximation mais peut en méme temps augmenter ’erreur d’estimation,
puisqu’un espace d’hypothéses riche peut conduire a un sur-apprentissage (Fi-
gure 5.11). D’un autre c6té, choisir un petit ensemble d’hypothéses réduit 1’er-
reur d’estimation mais peut augmenter l'erreur d’approximation ou, en d’autres
termes, peut conduire & un sous-apprentissage (Figure 5.11). Bien sfr, le choix
optimal pour ’espace d’hypothéses est un espace réduit qui contient un seul
classifieur, le classifieur optimal de Bayes. Seulement, ce classifieur optimal
dépend de la distribution sous-jacente D de l’ensemble des observations (des
événements) ayant lieu dans la nature, qui est totalement inconnue. De tout
maniére, ’apprentissage aurait été inutile si nous avions connu cette distribu-
tion D.

Underfitting Overfitting

- —— —
Generalization error

Estimation error

Error 2

Approximation error

Complexity of H 2>

FIGURE 5.11: Représentation théorique de ’erreur d’approximation et de l'er-
reur d’estimation en fonction de la complexité de l'espace d’hypothéses. Pour
une taille d’échantillon fixe, & mesure que la complexité de 1’espace d’hypo-
théses augmente, 'erreur d’approximation diminue, tandis que l’erreur d’es-
timation augmente. Une valeur élevée de 'un ou de ’autre contribue a une
erreur de généralisation élevée. L’erreur d’approximation élevée est associée a
un sous-apprentissage alors qu'une erreur d’estimation élevée est associée a un
sur-apprentissage. AGARWAL, 2018.
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La sous-section suivante s’attache alors a définir les réponses que je peux
apporter aux contraintes inhérentes au jeu de données que je posseéde. L’objec-
tif est clairement de générer un apprentissage automatique qui puisse étudier
un espace d’hypothéses suffisamment riche, tout en conservant une erreur d’es-
timation raisonnable pour obtenir la "meilleure" fonction de prédiction.

5.1.3 Réduire les contraintes pour optimiser ’apprentis-
sage

eRéajuster le déséquilibre des classes d’événement

Une premiére réponse aux contraintes inhérentes au jeu de données dispo-
nibles serait d’augmenter la taille de ce dernier. En effet, ce jeu de données
est trés déséquilibré puisque les faux événements ne représentent que 7% du
nombre total d’événements. Afin de compenser ce déséquilibre, j’ai utilisé les
faux événements détectés au cours du mois de juillet et aotit 2016. Ces deux
mois font partie d’un catalogue test automatique qui a servi de base pour amé-
liorer la détection automatique des petits séismes. Environ 24000 événements
sont alors disponibles pour combler le déséquilibre de classe entre les faux et
les vrais événements. Tous ces faux événements ont été revus manuellement.

De plus, afin d’égaliser les proportions des séismes et des tirs de carriére
dans ce jeu de données (40% de tirs de carriére et 53% de séismes), un sous-
échantillonnage de ces événements peut étre réaliser. Ce procédé autorise plus
facilement un ré-échantillonnage ultérieur de la base d’entrainement générée
a partir de ce jeu de données pour tester la performance de l'apprentissage
automatique a partir de bases d’entralnement différentes.

Toutefois, en fonction de l'algorithme d’apprentissage choisi, 1’entraine-
ment sur des bases d’entrainement différentes, méme légérement variables, peut
conduire a des résultats de prédiction trés instables du fait d’'une adaptabilité
trop forte de ’algorithme aux variations de la base d’entrainement, diminuant
alors l'erreur de généralisation.

De ce fait, pour obtenir un classifieur qui puisse prédire efficacement les dif-
férents types d’événement en dehors du jeu d’entrainement (faux événement,
séisme, tir de carriére), il est nécessaire de délimiter clairement un espace d’hy-
pothéses qui puisse solidement réduire les effets des contraintes inhérentes au
jeu de données disponible. Le choix de 1’algorithme d’apprentissage ainsi que
sa configuration, en sont les éléments fondateurs.
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eDéfinir un espace d’hypothéses optimal

- Choisir un algorithme d’apprentissage stable. La stabilité d’un al-
gorithme d’apprentissage peut étre reliée a la notion de variance. En effet,
un algorithme d’apprentissage stable est un algorithme qui réalise une erreur
moyenne de généralisation faible s’il est entrainé sur plusieurs bases d’entraine-
ment différentes. Cette erreur de généralisation moyenne est formalisée comme
étant la somme de plusieurs erreurs : la variance, le biais (élevé au carré) et une
erreur irréductible ou bruit intrinséque associée a la distribution inconnue de
I’ensemble des observations possibles. Cette erreur de généralisation moyenne
est évaluée a partir de la moyenne des prédictions émises par ’ensemble des
fonctions de prédiction apprises sur les différents échantillons de jeu d’entrai-
nement.

Le biais (élevé au carré) évalue 1'écart entre les prédictions émises par la
fonction de prédiction moyenne et les prédictions attendues émises par la fonc-
tion de prédiction optimale. La variance évalue de combien une fonction de pré-
diction apprise a partir d'un échantillon d’entralnement particulier, s’éloigne
de la fonction de prédiction moyenne (AGARWAL, 2018). La variance traduit
donc le degré de flexibilité de 1’algorithme d’apprentissage utilisé, c’est-a-dire
la capacité de ce dernier a changer sa fonction de prédiction lorsqu’'un jeu d’en-
trainement différent est utilisé. Un algorithme avec une variance élevée aura
ainsi une faible stabilité et sera donc sujet au sur-apprentissage (Figure 5.12).

En revanche, ce dernier sera caractérisé par un faible biais puisque son adap-
tabilité (il peut produire une fonction de prédiction différente lorsque ’échan-
tillon d’entrainement change) tend & diminuer les écarts entre les prédictions
produites par chaque fonction de prédiction et celles attendues.

Un algorithme d’apprentissage optimal est donc un algorithme capable de
réduire la variance tout en conservant un faible biais. L’algorithme qui a été
choisi dans ce travail de thése a été ’algorithme de Random Forest (forét aléa-
toire, BREIMAN, 2001). Cet algorithme base son apprentissage sur la construc-
tion d’'un ensemble d’arbres décisionnels qui forme alors une forét.
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FIGURE 5.12: Evolution du biais et de la variance en fonction du degré de
complexité de '’espace d’hypothéses. Pour une taille d’échantillon fixe, a me-
sure que la complexité de l'espace d’hypothéses augmente, le biais diminue,
tandis que la variance augmente. Une valeur élevée de chacun contribue a une
erreur de généralisation moyenne élevée. Un biais élevé est associé a un sous-
apprentissage alors qu’'une variance élevée est associée a un sur-apprentissage.
Modifié d’aprés AGARWAL, 2018.

Cependant, les arbres de décision sont généralement trés sensibles aux don-
nées sur lesquelles ils sont entrainés. Chaque arbre a effectivement la potentia-
lité de capturer des interactions complexes entre les attributs. Un petit change-
ment dans les données d’apprentissage peut provoquer facilement une modifi-
cation des chemins décisionnels, rendant le processus de prédiction trés instable
(forte variance). Pour gagner en stabilité (et donc diminuer la variance), 1’algo-
rithme de Random Forest effectue un double échantillonnage : celui de la base
d’entrainement et celui des attributs qui constituent cette base d’entrainement
(Figure 5.13).

Le tirage aléatoire effectué sur la base d’entrainement est réalisé par une
méthode d’échantillonnage avec remplacement (Bootstrap). Au sein de la fo-
rét, chaque arbre décisionnel est donc construit indépendamment a partir d'un
échantillon aléatoire de la base d’entralnement. Par conséquent, les échantillons
qui ont été utilisés pour élaborer chaque arbre individuel sont de méme lon-
gueur et issus de la méme population, celle de 1’échantillon original (la base
d’entrainement originelle). Les données sont alors identiquement distribuées,
et cela signifie que le biais de l'algorithme qui sera évalué sur la totalité de la
forét aléatoire sera le méme que celui qui aurait été évalué a partir d’un seul
arbre au sein de la forét.
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FIGURE 5.13: Méthode d’agrégation avec bootstrap (bagging) utilisée par Ran-
dom Forest pour effectuer ses prédictions. La base d’entralnement est d’abord
échantillonnée aléatoirement par bootstrap. Chaque échantillon aléatoire gé-
néré est utilisé pour construire un arbre décisionnel. Chaque embranchement
de 'arbre décisionnel est élaboré a partir d'un deuxiéme échantillonnage aléa-
toire de l’espace d’attributs. La prédiction finale est définie en agrégeant les
prédictions de l'ensemble des arbres décisionnels. Dans le cas de la classifica-
tion, cette prédiction finale correspond a un vote majoritaire. Modifié d’aprés
Cao et al. (2020)
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Par ailleurs, en plus de 1’échantillonnage de la base d’entrainement, un
deuxiéme échantillonnage aléatoire est réalisé a partir de l’espace d’attributs
qui définit chaque observation. Ce second échantillonnage vise a réduire la
variance de 1’algorithme d’apprentissage en décorrélant les arbres décisionnels
entre eux. En effet, chaque arbre est une construction récursive de séries de frac-
tionnements binaires qui séparent les différentes observations en sous-groupes
successifs (Figure 5.14).

Chaque fois qu'une partition est considérée dans la construction de 1’arbre,
au lieu de la totalité des p attributs, un échantillon aléatoire de n attributs est
tiré parmi l’ensemble du jeu complet des attributs décrivant chaque événement
(observation). Parmi ces n attributs candidats potentiels pour générer un noeud
de fractionnement, un seul attribut est sélectionné : c’est celui qui minimise
I’erreur de classification des différentes observations au noeud formé. Ainsi, a
chaque nouvel embranchement de I’arbre décisionnel, un nouvel échantillonnage
de n attributs est prélevé (généralement n = ,/p). Cet échantillonnage aléatoire
des attributs réduit donc la possibilité de générer des arbres similaires. En effet,
si le méme jeu de p attributs était toujours considéré a chaque noeud et pour
chaque arbre, chaque arbre décisionnel serait systématiquement construit a
partir de la méme sélection hiérarchique des attributs les plus discriminants,
en particulier au sommet de 1’arbre.

Les prédictions des différents arbres décisionnels au sein de la forét aléa-
toire sont ensuite agrégées pour aboutir & une prédiction finale (la prédiction
finale correspond au vote majoritaire dans le cas de la classification). Les pré-
dictions effectuées par les différents arbres étant faiblement corrélées du fait
du sous-échantillonnage aléatoire récursif des attributs, leur agrégation dimi-
nue fortement la variance globale de 1’algorithme d’apprentissage. Seulement,
en présence de ce sous-échantillonnage, la solution prédictive étant recherchée
dans un sous-espace restreint, la complexité du modeéle est certes plus faible
mais le biais est également plus grand. Si Random Forest réduit la variance, il
y a tout de méme un réglage biais-variance a réaliser. C’est ce que permet le
réglage des hyperparameétres.
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FIGURE 5.14: Exemple d’arbre décisionnel généré par 1’algorithme d’appren-
tissage Random Forest. L’arbre décisionnel présenté a été établi a partir d’un
jeu de données contenant ’ensemble des séismes et des tirs de carriére détectés
entre 2017 et 2019 par le BCSF-RéNaSS (une part de 70 % est réservée au
jeu d’entrainement et une part de 30% au jeu test). Chaque événement est
représenté par un vecteur de trois attributs : 'heure de la journée, le jour de la
semaine et la proximité de 1’événement a la carriére. L’espace des hypothéses
qui a été utilisé pour générer la fonction de prédiction (c’est-a-dire le classifieur)
a été restreint afin de visualiser plus facilement la solution de classification. La
sélection de 'attribut a chaque noeud de I’arbre a été établie a partir du calcul
de 'impureté de Gini qui donne accés a I'importance de chaque attribut dans
le processus de classification, soit son pouvoir discriminant. Chaque noeud ap-
porte 5 informations. La premiére est la question posée au sujet des données,
basée sur la valeur de l'attribut (par exemple & la racine de ’arbre : est-ce que
le jour de la semaine est inférieur a 5.5, c’est-a-dire est-ce le jour de la semaine
n’est pas samedi?). Chaque question a soit une réponse "vrai", soit une ré-
ponse "fausse", qui va séparer le noeud en deux sous-groupes (le groupe "vrai"
a gauche et le groupe "faux" a droite), et ainsi de suite en descendant dans
I’arbre. La deuxiéme information de chaque noeud est la valeur de 'impureté
de Gini. La troisiéme information est le nombre d’observations (événements)
dans le noeud. La quatriéme information est le nombre d’échantillons de ces
observations dans chaque classe (ici classe 1 séisme ou classe O tir de carriére).
Par exemple, la racine a 2298 échantillons dans la classe 0 et 2943 dans la classe
1. La derniére information est la classe majoritaire pour les observations a ce
noeud. Par exemple, a la racine, la classe majoritaire est la classe 1 (séisme).
Les prédictions finales se font aux noeuds terminaux c’est-a-dire au niveau des
feuilles.
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- Configurer des hyperparamétres de facon optimale. Les hyperpara-
metres sont des parameétres inhérents a 'algorithme d’apprentissage lui-méme
(Figure 5.15). Dans le cas de Random Forest, ces paramétres sont clairement
reliés a ’architecture des arbres décisionnels a construire. Le nombre d’arbres
fait partie des hyperparamétres a définir. En effet, un choix optimal du nombre
d’arbres a inclure dans la forét aura une influence direct sur le biais : augmen-
ter le nombre diminuera le biais (ARLOT et al., 2014). De méme, augmenter la
profondeur de 1’arbre décisionnel diminue le biais mais augmente la variance.
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FIGURE 5.15: Principaux hyperparameétres associés a la configuration interne
des arbres décisionnels constituant 1’armature de l’apprentissage de 1’algo-
rithme de Random Forest. Ces hyperparameétres délimitent 1’espace des hy-
pothéses possibles pour rechercher la fonction de prédiction optimale (soit le
meilleur classifieur).

Afin d’établir le choix optimal des hyperparamétres qui vont délimiter 1’es-
pace des hypotheéses possibles, il est nécessaire d’explorer la plus grand étendue
d’hyperparamétres possible afin de minimiser 1’erreur de généralisation de la
future fonction de prédiction apprise, et donc obtenir le juste équilibre entre
le biais et la variance.
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Plusieurs méthodes existent pour effectuer cette recherche multiple comme
la recherche sur grille, la recherche aléatoire ou l'optimisation bayésienne. Dans
ce travail de recherche, c’est la combinaison des deux méthodes, recherche aléa-
toire puis recherche sur grille, qui est utilisée. La recherche sur grille effectue
une recherche exhaustive (explore toutes les combinaisons possibles) sur un
ensemble de valeurs des hyperparamétres préalablement spécifié. C’est un al-
gorithme de recherche trés simple qui conduit aux prédictions les plus précises
tant que des combinaisons suffisantes et pertinentes sont données (BERGSTRA
et al., 2012). La recherche aléatoire (BERGSTRA et al., 2012) est une amélio-
ration fondamentale de la recherche sur grille. Cette recherche s’effectue sur
un échantillonnage aléatoire des valeurs d’hyperparameétres a partir des dis-
tributions statistiques préalablement définies. L'utilisation de cette méthode
est souvent suggérée au début de la procédure d’optimisation des hyperpa-
rameétres pour réduire rapidement 1’espace de recherche, avant d’utiliser un
autre algorithme guidé pour obtenir un résultat plus fin (passage d’un schéma
d’échantillonnage grossier a fin, YU et al., 2020). L’échantillonnage plus fin est
établi grace a une recherche sur grille dans cette étude.
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F1GURE 5.16: Recherche sur grille versus recherche aléatoire dans le cas de deux
hyperparameétres et neuf combinaisons testées. Points noirs : combinaisons tes-
tées des hyperparamétres. Courbes jaune et verte : fonction objective de chaque
hyperparamétre testé (fonction qui sert de critére pour déterminer la meilleure
solution au probléme d’optimisation des hyperparameétres et qui évalue l'erreur
de validation). Sur l’axe y, la courbe est presque plate, signifiant que cet hyper-
parameétre a un faible impact sur la fonction objective totale. Cependant, sur
I’axe x, un minimum clair apparait, correspondant a la valeur optimale de cet
hyperparamétre. Points gris : projection des combinaisons d’hyperparamétres
testés sur la courbe verte. Le nombre de points gris est plus élevé pour la re-
cherche aléatoire que pour la recherche sur grille, ce qui signifie que plus de
valeurs ont été testées. D’aprés BERGSTRA et al., 2012.
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L’estimation de l'erreur de généralisation est établie pour les différentes
combinaisons d’hyperparameétres testées a 1’aide de la stratégie de la valida-
tion croisée (Figure 5.17). Celle-ci se fonde sur le principe suivant : le jeu de
données (ici la période 2017-2019) est partitionné en k sous-ensembles indépen-
dants. Chaque sous-ensemble sert successivement d’échantillon de validation et
le reste d’échantillon d’entralnement. L’échantillon d’entrainement est utilisé
pour entrainer l'algorithme d’apprentissage (Random Forest) qui va sélection-
ner la fonction de prédiction, puis ’erreur commise est évaluée avec les données
de validation. La performance de la validation croisée est estimée comme étant
la moyenne arithmétique sur les k estimations de performance des ensembles
de validation. La principale idée derriére la validation croisée est que chaque
échantillon de 1’ensemble de données disponible a la possibilité d’étre testé
(RASCHKA, 2018). La figure 5.17 illustre le processus de validation croisée a
partir d’un partitionnement des données en 5 sous-ensembles. Dans ce cas pré-
cis, cinq fonctions de prédiction sont générées a partir des 5 itérations sur un
jeu d’entrainement différent mais de longueur identique.

Si la validation croisée pour la recherche des hyperparamétres optimaux est
intégrée dans la démarche globale d’apprentissage supervisée, le jeu de données
est d’abord divisé en deux parties : une partie réservée a ’apprentissage pro-
prement dit (période 2017-2019) et une partie destinée a constituer le jeu test
(ici janvier-aott 2016, Figure 5.18 étape 1). La recherche des hyperparamétres
optimaux s’applique au jeu servant a ’apprentissage qui est lui-méme subdivisé
en jeu d’entralnement et jeu de validation.

La méthode de validation croisée type k-fold est utilisée pour chaque com-
binaison d’hyperparameétres testés. Plusieurs fonctions de prédiction sont pro-
duites avec, pour chacune, ’estimation de leur performance de prédiction (Fi-
gure 5.18 étape 2). Ce sont les valeurs des hyperparamétres qui ont produit
les meilleurs résultats lors de la procédure de validation croisée qui sont par la
suite utilisés pour dimensionner 1’espace d’hypothéses et sélectionner la fonc-
tion de prédiction optimale (Figure 5.18 étape 3). Le jeu test indépendant (pé-
riode janvier-aotit 2016) est ensuite utilisé pour évaluer la performance de cette
fonction de prédiction (Figure 5.18 étape 4). Enfin, cette fonction de prédic-
tion validée par le jeu test est déployé et utilisé sur un nouveau jeu de données
(ici événements détectés au cours de la procédure de détection automatique
développée dans ce travail de thése pour la période septembre-décembre 2016,
(Figure 5.18 étape 5)).
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FiGURE 5.17: Principe de la validation croisée. Le processus d’apprentissage
est itéré k fois (ici 5 fois). (a) A chaque itération le jeu de données est dé-
une partie est utilisée pour la validation
(c) et les k — 1 (4) parties restantes sont fusionnées en un sous-ensemble d’en-
trainement pour l'apprentissage a partir d’'une combinaison d’hyperparameétres
donnée (b). La fonction de prédiction apprise est testée avec le jeu de validation
(c). La performance globale de la validation croisée (par exemple le calcul de
la précision) correspond a la moyenne arithmétique des k (ici 5) estimations de
performance de la fonction de prédiction sur les ensembles de validation (a).
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FIGURE 5.18: Intégration de la procédure de recherche des hyperparameétres
optimaux par validation croisée dans la procédure d’apprentissage dans le but

de trouver la fonction de prédiction qui minimise ’erreur de généralisation.
D’aprés RASCHKA, 2018.
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L’algorithme d’apprentissage Random Forest permet de générer
une fonction de prédiction moyenne stable grace a l’agrégation
d’un ensemble d’arbres décisionnels complétement indépendants.
La configuration de ces hyperparamétres (i.e nombre d’arbres
dans la forét aléatoire, profondeur d’un arbre décisionnel, etc.)
aide a établir un cadre de recherche optimal de cette fonction de
prédiction a partir d’une classe d’hypothéses restreintes. Cette
classe d’hypothéses restreintes permet a la fois de diminuer le
biais associé a ’algorithme lui-méme tout en veillant & maintenir
une variance qui puisse étre acceptable. De cette facon, le choix
de Random Forest, couplé a la stratégie de recherche des hyper-
paramétres optimaux par validation croisée type k-fold, est un
bon compromis pour limiter le sur-apprentissage a partir d’une
base d’entrainement de taille petite.

ePrivilégier I'interactivité avec ’algorithme d’apprentissage

L’idée primordiale est qu’il y a un niveau de connaissance préalable du
probléme spécifique en question (ici la classification des faux événements, des
séismes et des tirs de carriére) qui puisse permettre de concevoir des espaces
d"hypothéses pour lesquels l'erreur d’approximation et ’erreur d’estimation ne
soient pas trop grandes.

Plusieurs sources de connaissances préalables sont possibles et peuvent
étre intégrées dans le pipeline de I’apprentissage (RUEDEN et al., 2019). Elles
peuvent provenir d’un groupe individuel de personnes ayant une expérience
significative sur un domaine de connaissances donné. Il s’agit dans ce cas
d’'une connaissance d’expertise que peuvent avoir par exemple les analystes
sur l'identification des tirs de carriére grace aux formes d’onde. Ces connais-
sances préalables peuvent découler directement du savoir scientifique discipli-
naire (propriétés intrinséques du bruit par exemple) ou d’un savoir formalisé
par une communauté scientifique particuliére (comme le rapport d’amplitude
maximale entre les ondes P et S en tant que facteur discriminant des tirs de
carriére et des séismes). Ces connaissances peuvent enfin provenir d’un savoir
intuitif partagé et validé implicitement par le raisonnement humain (comme
par exemple le repérage des tirs de carriére a travers les épicentres qui sont
situés trés proches des carriéres).
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Lorsque la performance de ’apprentissage automatique est évaluée, celle-
ci peut étre effectivement exprimée a travers de nombreuses métriques dédiées
telles que l’exactitude (proportion d’événements bien classé), la sensitivité (pro-
portion de vrais événements ou de séismes correctement prédits par exemple)
ou la spécificité (proportion de faux événements ou de tirs de carriére correcte-
ment prédits par exemple). Ces métriques évaluent donc la capacité prédictive
des fonctions de prédiction apprises et soulévent les taux d’erreurs de classifi-
cation si le probléme posé est de ce type. Néanmoins, ces derniéres ne donnent
pas accés au processus de décision qui a conduit la fonction de prédiction a
opérer tel ou tel choix. Pourtant, cette transparence du chemin décisionnel est
nécessaire pour juger si la fonction de prédiction est bien valide et généralisable
ou si elle a fondé 'ensemble de ses décisions sur des corrélations erronées dans
les données d’apprentissage (LAPUSCHKIN et al., 2019).

La transparence du processus de décision peut étre obtenue par 'interven-
tion de I’étre humain. En effet, a travers ses connaissances et son expertise,
ce dernier est capable de révéler les corrélations parasitaires ou artefactuelles
qui ont conduit 'algorithme d’apprentissage a générer une solution erronée et
les corriger pour obtenir des stratégies de décision plus fiables (GILPIN et al.,
2018). L’interaction entre le systéme d’apprentissage et ’'utilisateur humain
est donc une clef indispensable pour minimiser l'erreur de généralisation vé-
hiculée par les fonctions apprises (S. LUNDBERG et al., 2017 ; SCHRAMOWSKI
et al., 2020). L’interactivité est la voie que j’ai alors choisie dans ce travail de
thése. En effet, face & un jeu de données d’une grande dimensionnalité (nombre
d’attributs mais également nature et quantité d’informations contenues dans
chacun trés élevées), 'inclusion des connaissances préalables dans le processus
d’apprentissage va permettre de délimiter plus efficacement encore l'espace des
hypothéses qui va servir a générer la fonction de prédiction optimale.

Cette interactivité peut se dessiner a plusieurs niveaux au cours du proces-
sus d’apprentissage (Figure 5.19). Cette interaction est effectivement nécessaire
pour déceler des informations parasitaires ou artefactuelles ayant été incluses
dans le processus d’apprentissage, pour vérifier la significativité des attributs
sélectionnés et leur impact sur la construction des régles de classification, et
pour valider la généralisabilité et la plausibilité de la fonction de prédiction
apprise en étudiant son comportement sur plusieurs instances ou sur différents
jeux de données (Figure 5.19).
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FI1GURE 5.19: Procédure d’apprentissage qui implémente un cadre unifié d’in-
terprétation de la fonction de prédiction (modeéle). La premiére étape (étape
1) est la construction du modéle. Cette étape est une condition pré-requise qui
reste en dehors du cadre d’interprétation. Les propriétés basiques du modele
sont évaluées a travers son pouvoir prédictif (étape 2) et sa capacité a inclure
dans sa prédiction des informations parasitaires ou artefactuelles (étape 3).
Dans le cas ou chacune des étapes ne montre pas un modéle de qualité suffi-
sante, le modéle et/ou la qualité des données sont revus (retour a ’étape 1). Si
le modéele passe ce contrdle qualité, la prochaine étape est celle de I’estimation
de ce modéle a I’échelle des attributs (étape 4). Plusieurs options sont possibles
pour identifier les attributs significatifs (ex : tests de bootstrap, sélection des
attributs basée sur leur importance relative). Si les attributs significatifs iden-
tifiés ne fournissent pas des résultats sensibles, la construction du modéle est
révisée (étape 1). Dans le cas contraire, la généralisabilité et la plausibilité du
modéle sont testés. La généralisabilité est testée a travers de nouvelles don-
nées (étape 5). La validité géophysique du modéle est examinée & travers les
résultats de la littérature par exemple (étape 5bis). Cette étape peut également
étre effectuée plusieurs fois au cas ou le modéle suggere de nouvelles théories
qui devraient étre évaluées. La derniére étape est l’analyse représentationnelle
et comportementale du modéle (étape 6) et contribue & mieux comprendre les
processus de décision du modéele, en examinant son comportement sur plusieurs
instances ou sur plusieurs jeux de données. Cette derniére étape peut nécessi-
ter souvent d’autres modéles pour permettre une comparaison. Cependant, si
d’autres modéles sont déja disponibles, cette étape peut étre effectuée plus tot.
Enfin, les résultats de 1’étape 6 pourraient fournir des preuves convergentes
pour 'étape 5bis. Modifié d’aprés KoHOUTOVA et al., 2020.
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Seulement, pour rendre opérable cette interactivité, il faut pouvoir visua-
liser les processus de décision de la fonction de prédiction apprise, avoir ac-
cés aux attributs sélectionnés ainsi que leur importance relative et avoir une
connaissance de la valeur physique de ces attributs que la littérature peut nous
fournir.

Choisir un algorithme d’apprentissage interprétable est donc indis-
pensable. La notion d’algorithme interprétable est ici a relier a la capacité hu-
maine de comprendre comment 1’algorithme d’apprentissage utilise les attributs
en entrée pour choisir ses prédictions (S. LUNDBERG et al., 2017). L’algorithme
de Random Forest a donc été aussi choisi car ce dernier se base sur 1’édification
d’un arrangement hiérarchique de regles de classification qui sont assez facile-
ment interprétables (DoOSHI-VELEZ et al., 2017 ; DROUIN et al., 2019). En effet,
la visualisation des chemins décisionnels a travers un arbre suffit 4 comprendre
comment et pourquoi la fonction de prédiction peut arriver a sa prédiction
(SAMEK, 2020, Figure 5.20).

De plus, l'analyse de ’arbre apporte une information capitale donnée par
I'impureté de Gini (affichée dans chaque noeud de ’arbre). En effet, cette im-
pureté de Gini donne accés a 'importance de chaque attribut dans le processus
de classification, soit son pouvoir discriminant.

L’impureté de Gini est une métrique utilisée pour déterminer quel est l'attri-
but qui doit étre utilisé et avec quel seuil pour pouvoir fractionner les données
en des groupes plus petits (passage d'un noeud parent & deux noeuds fils dans
’arbre). Ce critére mesure la fréquence a laquelle une observation aléatoirement
choisie dans la base d’entralnement serait incorrectement labélisée si elle était
aléatoirement labélisée selon la distribution des labels dans 1’échantillon formé
au noeud (c’est-a-dire si la moitié des observations dans 1’échantillon est "A"
et 'autre moitié est "B", une observation aléatoirement labélisée en se basant
sur la composition de cet échantillon a 50% de chance d’étre labélisée incor-
rectement). L’impureté de Gini atteint 0 quand toutes les observations dans
I’échantillon tombent dans une seule catégorie (c’est-a-dire s’il y a seulement
un label possible dans I’échantillon, une observation sera identifiée avec ce label
100% du temps). Cette mesure est donc essentiellement la probabilité qu’une
nouvelle observation soit incorrectement classifiée a un noeud donné dans un
arbre décisionnel, en se basant sur le jeu d’entrainement.
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FiGURE 5.20: Exemple d’arbre décisionnel généré par 1’algorithme d’appren-
tissage Random Forest pour classer les séismes et tirs de carriére détectés au
cours de la période 2017-2019 (cf Figure 5.14 pour plus de détails). L’analyse
des différents chemins décisionnels de cet arbre montre d’abord que lorsque
le jour de la semaine est samedi (> 5.5), quelque soit la proximité de 1’événe-
ment & une carriére, les événements répondant a ces critéres sont classés comme
séismes (classe 1, chemin 1). Si maintenant le jour de la semaine est différent de
samedi, plusieurs configurations sont possibles. Si la proximité de 1’événement
a la carriére la plus proche est inférieure ou égale a 0.04 degré (soit < 4.45km)
alors tous les événements répondant a ce dernier critére sont classés comme
étant des tirs de carriére (classe 0, chemin 2). Si en revanche, la distance de
I’événement a la carriére la plus proche est comprise entre 0.04 degré (4.45
km) et 0.12 degré (13.34 km) et que ’heure d’occurrence de cet événement est
avant 8.35 h ou aprés 14.42 h, alors les événements qui possédent ces derniers
critéres sont classés comme séismes (classe 1, chemin 4 et chemin 3), sinon si
I’heure d’occurrence est comprise entre 8.35 h et 14.42 h, ces événements sont
identifiés comme des tirs de carriére (classe 0, chemin 5). De plus, si la dis-
tance de I’événement a la carriére la plus proche est comprise entre 0.12 degré
(13.34 km) et 0.18 degré (20 km), et que le jour de la semaine n’est toujours
pas samedi, alors les événements qui tombent dans cette catégorie de valeurs
sont classés comme des séismes (classe 1, chemin 6). Enfin, si la distance de
I’événement a la carriére la plus proche est supérieure ou égale a 0.18 degré
(20 km), que le jour de la semaine est compris entre mardi et vendredi, et que
I’heure d’occurrence de ’événement se situe aprés 14.6h, alors les événements
qui répondent & ces critéres sont identifiés comme des séismes (classe 1, chemin
7). Néanmoins, si I’heure d’occurrence de 1'événement se situe avant 14.6 h et
que la distance de I’événement a la carriére la plus proche est comprise entre
0.18 degré (20 km) et 0.25 degré (27.79 km), alors les événements sont plutét
classés comme des tirs des carriére (classe 0, chemin 8).
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Parce que les foréts aléatoires sont un ensemble d’arbres décisionnels indi-
viduels, I'impureté de Gini peut étre mise a profit pour estimer I'importance
des attributs en calculant la diminution moyenne de I'impureté de Gini entre
les noeuds parent et fils que 'attribut divise. En effet, aprés chaque fractionne-
ment binaire a partir d’un noeud parent, les noeuds fils générés doivent avoir
un coefficient de Gini inférieur, car le but des fractionnements est de rendre
les distributions des observations dans les nceuds fils aussi pures que possible
(c’est-a-dire une impureté de 0). En effet, toutes les observations dans un nceud
doivent tendre vers un maximum de similarité pour pouvoir progressivement
atteindre une prédiction finale & un noeud terminal pour une unique classe
d’observation. Par conséquent, ’attribut qui a été utilisé pour scinder le noeud
parent en deux noeuds fils a diminué 'impureté de Gini.

Ainsi, si la diminution moyenne de 'impureté de Gini est calculée pour
chaque attribut utilisé dans les arbres de la forét, il est alors possible de déduire
le degré d’importance de chacun. Ce calcul correspond a la somme moyennée
des diminutions de I'impureté pour tous les noeuds ou I’attribut est utilisé, pon-
dérée par la proportion des échantillons qui atteignent ce noeud dans chaque
arbre décisionnel de la forét aléatoire (LOUPPE et al., 2013). C’est donc un
calcul qui peut évaluer le degré d’importance d'un attribut a travers tous les
arbres qui forment la forét. Une valeur de diminution moyenne de 'impureté
de Gini élevée indiquera une importance élevée de I'attribut.

Si j'évalue l'importance relative des attributs pour la forét aléatoire auquel
I’arbre décisionnel de la Figure 5.20 appartient, il est possible de constater que
I’heure d’occurrence des événements et la distance de I’événement a la carriére
la plus proche sont les attributs les plus discriminants (Figure 5.21).

DayTime WeekDay NearestQuarryDist

N w w» <]
=) =) =) =)

Importance Relative (%)

=
=)

=)

Features

FiGURE 5.21: Importance relative des attributs calculée a partir de la forét
aléatoire contenant 1’arbre décisionnel présenté dans la Figure 5.20 pour la
prédiction des labels des séismes et des tirs de carriére du catalogue BCSF-
RéNaSS pour la période 2017-2019.
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L’étude de l'arbre décisionnel (élaborée dans la Figure 5.20) le confirme.
En effet, d’apres cet arbre décisionnel, tous les événements qui sont situés
a moins de 4.5 km d’une carriére la plus proche sont considérés comme des
tirs de carriére. Lorsque cette distance augmente, c’est I'heure d’occurrence de
I’événement qui va déterminer son label. En 'occurrence, pour des distances
supérieures a 4.5 km mais inférieures a 13 km, si l'heure est comprise entre
8.35 h et 14.42 h, c’est-a-dire dans la période d’activité maximale classique
des carriéres dans la zone d’étude mais aussi ailleurs dans le monde (VOYLES
et al., 2019), les événements qui tombent dans cette intervalle de valeurs sont
identifiés comme des tirs de carriére. Dés que la distance s’éloigne de 13 km,
la plupart des événements sont classés comme des séismes a l'exception d’un
échantillon.

Si cette classification apparait globalement pertinente (un tir de carriére
est un événement qui est situé trés proche d’une carriére et a lieu aux heures
traditionnelles d’activité des carriéres), elle reste tout de méme fragile. En effet,
un échantillon d’événements est d’abord classé comme tir de carriére alors que
ces derniers sont localisés a une distance comprise entre 20 et 28 km d’une
carriére la plus proche. Plusieurs hypothéses sont possibles pour expliquer ce
résultats : soit ces événements sont en fait mal identifiés, soit ils sont bien
classés mais trés mal localisés et/ou la carriére qui leur est associée n’a pas été
répertoriée dans la base de données des carriéres.

Par ailleurs, les attributs sélectionnés vont conduire a classer les séismes par
défaut : ce sont des événements qui sont trés éloignés des carriéres, ou lorsqu’ils
sont plus proches, n’ont pas lieu aux heures d’activité maximale des carriéres.
Ce qui est alors tres restrictif.

Or, pourtant, si la performance prédictive de ce classifieur est évaluée, il est
possible d’observer que 80% des tirs de carriére et 90% de séismes ont été bien
classés. Ce qui n’est, au premier abord, pas si mauvais. Seulement, 1’analyse
des arbres décisionnels ameéne a penser a un sur-apprentissage.

En effet, une proportion non négligeable de tirs de carriére ont bien lieu
en dehors des pics traditionnels d’activité des carriéres, de nombreux tirs de
carriére sont également mal localisés et la base de données des carriéres, méme
si riche, n’est certainement pas exhaustive. De méme, les séismes sont égale-
ment bien détectés pendant les pics d’activité des carriéres et peuvent méme
étre localisés non loin des sites de ces carriéres. Un taux élevé d’exceptions
a cette régle de classification souligne la forte instabilité de cette fonction de
prédiction, et son incapacité a généraliser. Méme si ces résultats offrent une
base intéressante, d’autres attributs doivent étre considérés pour affiner cette
classification primordiale. On observe la la nécessité absolue d’apporter une ex-
pertise humaine pour estimer la validité d’une fonction de prédiction apprise.
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Seulement, j’ajouterai que sil’analyse d’un arbre décisionnel est a portée de
I’Homme, cette analyse devient plus difficile lorsqu’il s’agit d’évaluer I’ensemble
des arbres (de 'ordre de plusieurs centaines) qui composent la forét aléatoire.
L’apport d’outils automatisés pour analyser ce flux d’arbres est donc d’un grand
apport et reste une perspective intéressante a approfondir (LAPUSCHKIN et al.,
2019; SAMEK, 2020, Figure 5.22).
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FIGURE 5.22: (a) Des arbres décisionnels simples peuvent étre facilement com-
pris en visualisant le chemin de décision. (b) Du fait de leur complexité, des
modéles de pointe basés sur un ensemble d’arbres deviennent extrémement dif-
ficiles & interpréter dans leur totalité. (c) Des outils automatisés (par exemple
TreeExplainer, S. M. LUNDBERG et al., 2020) sont nécessaires pour extraire les
attributs pertinents et trouver les effets d’interaction dans les modéles basés
sur les arbres. D’aprés SAMEK, 2020.

L’étre humain peut donc vérifier en partie le choix pertinent des attri-
buts (qui sont préalablement sélectionnés automatiquement) et peut valider
les régles de classification élaborées par l'algorithme de Random Forest (seuil
utilisé pour générer un noeud, organisation hiérarchique des noeuds, pertinence
de la prédiction au regard de la régle de classification choisie, etc.), réduisant
I’espace d’hypothéses possibles & un espace plus riche et pertinent.

Choix de I’algorithme, sélection des hyperparameétres optimaux

et forte interactivité avec les connaissances préalables humaines
sont les trois grands facteurs qui vont aider & délimiter un es-
pace d’hypothéses riche et pertinent dans le but de sélectionner
une fonction de prédiction qui minimise I’erreur de généralisa-
tion malgré les contraintes apportées par mon jeu de données
disponible.
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eOptimiser la résolution du probléme de classification posé

Si une seule fonction de prédiction est utilisée pour simultanément prédire
les labels des faux événements, des tirs de carriére et des séismes, la performance
de classification est diminuée. En effet, comme il a été décrit précédemment
dans le chapitre 2, le bruit non-stationnaire a 1’origine de la détection des faux
événements est souvent de méme ordre d’amplitude, de contenu fréquentiel et
de durée que les séismes ou les tirs de carriére. De plus, étant donné que la
procédure de détection détecte un taux élevé d’événements de faible magnitude,
les signaux associés a ces événements se détachent trés souvent a peine du bruit.

En considérant une seule fonction de prédiction, une sélection automatique
d’un sous-ensemble optimal d’attributs par élimination récursive a partir du
pool initial des 361 attributs (cf tableau S1 du supplément de ’article) révéle
que les attributs qui possédent l'importance la plus forte ne sont pas ceux qui
décrivent les caractéristiques du signal associé a 1’événement a classer. A la
place, ce sont des attributs comme le nombre de phases total, le nombre de
phases S, le facteur de corrélation entre la différence des temps d’arrivée P-S
et la distance épicentrale, le nombre de stations, la RMS des résidus tempo-
rels ou bien ’heure d’occurrence des événements qui ressortent principalement
(Figure 5.23).

Si effectivement un faux événement peut étre globalement plus facilement
classé par rapport a un séisme avec ces critéres : ce dernier posséde un nombre
plus faible de phases, un nombre presque négligeable de phases S, un facteur de
corrélation entre la différence des temps d’arrivée P-S et la distance épicentrale
plus faible, un nombre de stations impliquées dans la détection de 1’événement
plus petit, une RMS des résidus temporels plus élevée, et une heure d’occur-
rence concentrée a la période d’activité anthropique la plus élevée (c’est-a-dire
entre 7 heures et 18 heures) ; le constat est plus difficile pour les tirs de carriére.

En effet, ces derniers ont souvent lieu aux périodes de la journée ot le niveau
de bruit d’origine anthropique est le plus élevé, leurs signaux sont donc forte-
ment contaminés par du bruit. La détection des phases est alors plus difficile
et beaucoup de tirs de carriére sont détectés avec tres peu de stations. Ajouté a
cela, les ondes S sont souvent de plus faible amplitude pour les tirs de carriére
et il est couramment difficile d’identifier et de pointer les temps d’arrivée de
ces ondes. Par ailleurs, ces événements sont trés superficiels et peuvent avoir
lieu dans des terrains sédimentaires, leurs solutions hypocentrales peuvent donc
étre localisées avec une plus grande incertitude puisque les modéles de vitesse
qui sont utilisés pour détecter ne tiennent pas compte des variations latérales et
verticales de I'épaisseur de la couche sédimentaire. Par conséquent, ces tirs de
carriére peuvent partager les mémes caractéristiques que les faux événements
et étre classés en tant que tels.
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FIGURE 5.23: Importance relative des attributs pour la prédiction des labels
des faux événements, des séismes et des tirs de carriére avec un seul classifieur.
La sélection automatique des attributs a été effectuée par élimination récursive
pour obtenir un sous-ensemble optimal qui est visualisé ici (c’est une sélection
primordiale). Cette combinaison a été évaluée par validation croisée sur 5 ité-
rations (jeu de données de la période 2017-2019) puis testée sur un nouveau jeu
test comprenant les événements détectés par le BCSF-RéNaSS entre janvier et
aolit 2016. L’équilibre de classe a été respectée dans les jeux d’entrainement
et de validation. Le jeu test a une taille qui correspond a 30% de celle du
jeu d’entralnement. Le détail des attributs est présenté dans le tableau 1 du
supplément de 1’article qui va suivre.
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Lorsque cette fonction de prédiction apprise a partir d’un jeu d’entraine-
ment élaboré & partir de cette sélection primordiale d’attributs (toujours la
période 2017-2019) est utilisée pour prédire le labels des événements d’un jeu
test (période janvier 2016-aotit 2016), on constate que 25% des tirs de carriére
sont effectivement identifiés comme des faux événements contre 7% pour les
séismes.

En revanche, si deux fonctions de prédiction sont désormais apprises, une
pour prédire les faux événements et les vrais événements et une pour prédire les
séismes et les tirs de carriére parmi les vrais événements identifiés, on constate
que 15% des tirs de carriére sont identifiés comme faux événements contre 5%
pour les séismes.

Avec deux fonctions de prédiction, si les attributs liés a la configuration du
réseau de stations ressortent également, le résultat de la sélection automatique
des attributs par élimination récursive montre également que des attributs re-
liés au signal comme le degré de polarisation planaire ou bien le degré de com-
plexité de la fonction STA /LTA prennent de 2 & 3 fois plus d’importance lorsque
que le probléme de la classification des faux événements est traité de maniére
binaire (c’est-a-dire faux événements versus vrais événements, Figure 5.24).

Par ailleurs, des attributs comme 1’heure d’occurrence de I’événement et la
variance des fréquences contenues dans le spectre du signal ne sont plus sélec-
tionnés pour classifier les faux événements parmi les autres événements dans
le cas d'une approche binaire, alors qu'ils le sont indéniablement dans une
approche ternaire (faux événements versus tirs de carriére versus séismes). Or,
si ces deux attributs peuvent étre précieux pour distinguer un séisme d’un tir
de carriére, ils ameénent a des confusions lorsqu’ils sont utilisés pour identifier
les faux événements parmi le reste des autres événements. En effet, ces faux
événements présentent en moyenne statistiquement une variance spectrale qui
se rapproche fortement de celle des tirs de carriére et leurs heures d’occur-
rence sont majoritairement comprises dans le méme intervalle temporel que
celui des tirs de carriére. Le probléme se complexifie davantage s’il s’avére que
des séismes répondent aussi a cet ensemble de critéres, a savoir une variance
spectrale plus faible, une heure d’occurrence identifiée dans le pic d’activité
anthropique, un nombre inférieur de phases (dont les phases S) et une RMS
résiduelle plus élevée.

Avec une approche binaire, la variance spectrale et ’heure d’occurrence
de ’événement sont sélectionnés lorsqu’il s’agit uniquement de classer les tirs
de carriére et les séismes. Leur importance relative est d’ailleurs tres élevée
(10% et 13% respectivement, Figure 5.25). Comparativement a la classification
ternaire simultanée des tirs de carriére, des séismes et des faux événements, ces
derniers sont donc utilisés plus fréquemment pour la construction des arbres
décisionnels dans cette approche binaire.
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FIGURE 5.24: Importance relative des attributs pour la prédiction des labels
des faux événements et des vrais événements (ensemble unitaire de séismes
et de tirs de carriére) avec une approche binaire. La sélection des attributs
a été effectuée automatique par élimination récursive pour combiner un sous-
ensemble optimal qui est visualisé ici (c’est une sélection primordiale). Cette
combinaison a été évaluée par validation croisée sur 5 itérations (jeu de données
de la période 2017-2019) puis testée sur un jeu test comprenant les événements
détectés par le BCSF-RéNaSS entre janvier et aotit 2016. L’équilibre de classe a
été respectée dans le jeu d’entrainement. Le jeu test a une taille qui corresponde
a 30% de celle du jeu d’entrainement. Voir tableau S1 du supplément de ’article
qui va suivre pour plus de détails sur les attributs.

Alexandra Renouard CHAPITRE 5. 245



5.1. CLASSER LES EVENEMENTS AVEC L’APPRENTISSAGE
MACHINE SUPERVISE

PSRAPPMAXMEANRMS

CENTROIDBACKAZIMUTH

PSRAPPMAXMEAN

SURFACEMAGNITUDEMSMEANS

STATIONSUSED

PSRAPPMAXMIN

SURFACEMAGNITUDEMSMEAN10

CLOSESTSTATIONPROPORTION

SIGNALENERGY5

SKEWENV

FREQ3QUARTILE

AMPLITUDESIMFSMAX

PHASESUSED

CENTROIDAZIMUTH

PSRAPPMAXMEDIAN

WEEKDAY

Features

KURTOSIG

MAGNITUDEVALUE

PGA

SHANNONENTROPYIMFSMIN

SIGNALENERGY6

MAXENV

ENVDIFFPICKMAX

ENERGYCOR2

MEANFFT

NEARESTQUARRYDIST

SKEWSIG

LONGITUDE

LATITUDE

AMPLITUDESFFT

HOUR

o 2 4 6 8 10 12 14
Importance Relative (%)

FIGURE 5.25: Importance relative des attributs pour la prédiction des labels
des séismes et des tirs de carriére avec une approche binaire. Lia sélection des
attributs a été effectuée automatique par élimination récursive pour combiner
un sous-ensemble optimal qui est visualisé ici (c’est une sélection primordiale).
Cette combinaison a été évaluée par validation croisée sur 5 itérations (jeu de
données de la période 2017-2019) puis testée sur un jeu test comprenant les
événements détectés par le BCSF-RéNaSS entre janvier et aotit 2016. L’équi-
libre de classe a été respectée dans le jeu d’entrainement. Le jeu test a une
taille qui corresponde a 30% de celle du jeu d’entrainement. Voir tableau S1
du supplément de 1’article qui va suivre pour le détail des attributs.
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J’ai donc privilégié dans ce travail de thése, une approche bi-
naire séquentielle. Deux fonctions de prédiction sont effective-
ment apprises : une pour prédire les faux événements et les vrais
événements et une autre pour prédire les séismes et les tirs de
carriére parmi les vrais événements. En s’attardant plus spécifi-
quement sur les attributs qui vont d’abord définir ce qu’est un
faux événement relativement & un vrai événement, puis un séisme
naturel relativement a un tir de carriére, cette approche limite les
effets parasitaires d’une approche ternaire en éliminant des cor-
rélations artefactuelles comme celle de lier I’heure d’occurrence
de I’événement avec son incertitude de localisation et la variance
spectrale des signaux associés. Cette approche binaire permet
alors de mieux solidement gérer I’hétérogénéité et la complexité
des données.

En outre, 'utilisation de ’algorithme de Random Forest, combi-
née a une sélection optimale de ses hyperparamétres de configu-
ration, permet de contrebalancer les effets liés a la taille, petite,
et a la dimensionnalité, assez élevée, du jeu de données, en mi-
nimisant les erreurs d’approximation et d’estimation.

Par ailleurs, ’apport de connaissances préalables dans le proces-
sus d’apprentissage, transmises par l’interaction avec 1’étre hu-
main, aide a déceler les informations parasitaires véhiculées par le
jeu de données qui peuvent conduire & une sélection automatique
d’attributs redondants et/ou non significatifs. Cette interactivité
est aussi un garant pour estimer la validité et la plausibilité de
la fonction de prédiction apprise (cohérence et significativité des
régles de classification, pertinence des attributs, généralisabilité
des régles apprises, etc.). Cette interactivité offre alors un cadre
structurel & un jeu de données qui présente des informations trés
hétérogénes et diversifiées, et donc qui offre un espace de solu-
tions prédictives multiples mais pas toutes vraisemblables.

Enfin, le déséquilibre des classes d’événements au sein du jeu
de données meére est corrigé par l’'inclusion de faux événements
revus manuellement et un sous-échantillonnage des autres classes
d’événement (séismes et tirs de carriére).
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5.2 Choisir la fonction de prédiction optimale
dans 'espace des hypothéses possibles

5.2.1 Rechercher la combinaison optimale d’attributs

Comme écrit précédemment, le jeu de données qui a servi pour l’entrai-
nement et la validation croisée comprend les vrais événements détectés par le
BCSF-RéNaSS entre janvier 2017 et décembre 2019. Ce jeu de données a été
complété avec un lot de faux événements détectés automatiquement au cours
des mois de juillet et aofit 2016 pour assurer la discrimination des vrais et
des faux événements. Ces derniers ont d’ailleurs été revus manuellement. Les
proportions des différentes classes d’événements ont été équilibrées dans le jeu
d’entralnement, et leur représentativité a été estimée dans les différents jeux
de validation.

Les valeurs des hyperparameétres utilisés pour contraindre l’espace des hy-
pothéses possibles sont répertoriées dans le tableau suivant (Table 5.1).

TABLE 5.1: Hyperparameétres optimaux utilisés pour contraindre 1’espace des
hypothéses possibles avec 1’algorithme d’apprentissage Random Forest.

Hyperparameter Value

Tree Depth 150
Minimum number of samples required to split a node 5
Minimum number of samples required at a leaf node 5
Number of Trees 500

eRechercher les attributs pour classer les vrais et faux événements

En ce qui concerne la discrimination des faux événements et des vrais évé-
nements, 'utilisation du sous-ensemble optimal d’attributs extrait de la procé-
dure d’élimination récursive des attributs (cf Figure 5.24), aprés avoir testé sa
performance via validation croisée sur 5 itérations, montre que celle-ci aboutit
a un classifieur capable de prédire correctement 92% des vrais événements et 99
% des faux événements sur un jeu test contenant les vrais événements détectés
par le BCSF-RéNaSS entre janvier 2016 et aotit 2016, complété par environ
2500 faux événements (Figure 5.26).

En revanche, lorsque ce classifieur est utilisé sur un nouveau jeu de données
détecté automatiquement selon la procédure qui a été développée dans cette
thése (septembre 2016-décembre 2016), la performance prédictive de ce dernier
se dégrade fortement pour les vrais événements : seulement 60% d’entre eux
sont correctement prédits. En revanche, 98% des faux événements sont quant
a eux bien prédits (Figure 5.26).
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FIGURE 5.26: Effets du retrait (symbole -) et/ou de 'ajout (symbole +) d’attri-
buts sur la capacité prédictive de classifieurs discriminant les vrais événements
et les faux événements. La spécificité désigne le taux de faux événements correc-
tement prédits (c’est-a-dire le rapport des vrais négatifs sur la somme des vrais
négatifs et des faux positifs). La sensitivité désigne le taux de vrais événements
correctement prédits (c’est-a-dire le rapport des vrais positifs sur la somme des
vrais positifs et des faux négatifs). La précision désigne la proportion de vrais
événements correctement prédits relativement a l’ensemble des événements pré-
dits positivement (c’est-a-dire le rapport entres les vrais positifs et la somme
des vrais positifs et des faux positifs). Référence RFE = sélection automatique
des attributs effectuée par élimination récursive des attributs (cf Figure 5.24).
Voir tableau S1 du supplément de 1’article pour le détail des attributs.
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Parmi les attributs automatiquement sélectionnés par la procédure d’éli-
mination récursive des attributs, plusieurs attributs contribuent a diminuer la
performance prédictive du classifieur vis-a-vis du jeu d’événements produits au-
tomatiquement. L’erreur standard (RMS des résidus temporels) est d’abord en
moyenne plus élevée pour ce jeu automatique : 1.32 4+ 1.17s contre 0.374+0.10s
pour les jeux d’entrainement, de validation et de test. De nombreux vrais évé-
nements compris dans le jeu automatique ont donc des erreurs standards qui
peuvent se rapprocher des erreurs standards des faux événements, qui sont en
moyenne égales a 2.56 + 2.04s.

De plus, les épicentres des vrais événements du jeu automatique ont des in-
certitudes longitudinales et latitudinales élevées, respectivement 9.46 +9.41km
et 9.51 + 9.60km. Ces incertitudes épicentrales sont effectivement 2 a 3 fois
plus élevées que celles estimées pour les vrais événements compris dans les
jeux d’entrainement, de validation et de test. La encore, les incertitudes épi-
centrales de nombreux vrais événements tendent a s’approcher des incertitudes
estimées pour les épicentres des faux événements (incertitudes latitudinales et
longitudinales moyennes égales a 13.96 + 13.39km et 14.44 4+ 14.26km). Par
ailleurs, les écarts-types calculés sur les incertitudes latitudinales et longitudi-
nales montrent une grande dispersion des valeurs pour les vrais événements du
jeu automatique et la totalité des faux événements.

Or, les attributs décrivant ’erreur standard et les incertitudes épicentrales
font partie des attributs qui ont une importance relative forte (de 3 % pour les
incertitudes longitudinales & 7 % pour la RMS des résidus). Par conséquent,
étant donné qu’un quart des vrais événements présentent des incertitudes la-
titudinales et longitudinales supérieures a 10 km et que environ 13% ont une
erreur standard supérieure a 2 s, ces attributs ont été retirés.

Le retrait de ces attributs n’a pas beaucoup d’effet sur la performance pré-
dictive du nouveau classifieur vis-a-vis du jeu test (celui-ci prédit correctement
les vrais et faux événements avec la méme performance prédictive que le clas-
sifieur précédent). En revanche, la nouvelle fonction de prédiction générée a
partir de la nouvelle combinaison d’attributs améliore la qualité de prédiction
des vrais événements contenus dans le jeu automatique, en prédisant correcte-
ment environ 70% d’entre eux, tout en maintenant un taux élevé de prédictions
correctes des faux événements (Figure 5.26).

De méme, les attributs décrivant les rapports d’amplitude et spectraux entre
les ondes P et S ont été retirés de la combinaison des attributs. Les valeurs de
ces différents rapports sont en moyenne plus élevées pour les faux événements.
Seulement, ces valeurs expriment plus une conséquence du processus de gé-
nération des pointés qu’une propriété physique a relier aux faux événements
eux-mémes. En effet, les variations d’amplitude, souvent trés impulsives, du
bruit non-stationnaire haute fréquence conduit a assimiler ces variations a une
arrivée d’ondes P de forte amplitude et a haute fréquence.
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De plus les temps d’arrivée des ondes S étant détectés une fois que les
pointés P sont émis, les pointés "S" dans le cas des faux événements sont émis
dans le sillage des faux pointés "P".

Afin de ne pas introduire des corrélations artefactuelles (des rapports d’am-
plitude et spectraux P/S élevés associés a des faux événements alors que ce sont
des rapports artefactuels), les attributs reliés & la description compléte de ces
rapports P/S dans les domaines temporel et fréquentiel ont donc été retirés.
Ceci permet d’éviter les erreurs de prédiction pour des vrais événements dont
les rapports d’amplitude et spectraux P/S sont élevés. Le retrait de I’ensemble
de ces attributs induit une performance prédictive supérieure pour les vrais
événements, quel que soit le jeu de données : le nouveau classifieur détecte
respectivement 95% et 76% des vrais événements pour le jeu test et le jeu au-
tomatique, tout en maintenant de haut niveaux de prédiction correcte des faux
événements.

Par ailleurs, la plupart des attributs dépeignant la fonction STA/LTA (évo-
lution du rapport STA/LTA au cours du temps), ont été supprimés, a l'ex-
ception de la valeur maximale du rapport STA/LTA. L’estimation du de-
gré de complexité de cette fonction STA/LTA traduit les fortes fluctuations
liées au bruit enregistré. Les attributs décrivant statistiquement cette fonction
STA/LTA constituent donc de forts discriminants pour identifier les faux évé-
nements. Néanmoins, de nombreux vrais événements détectés avec de faibles
rapports signal/bruit peuvent étre également associés a une fonction STA /LTA
complexe, sensible au niveau de bruit contaminant le signal sismique détecté.
Cette sensibilité est fortement exacerbée puisqu’'une fenétre temporelle STA
de durée courte (0.5 s) a été initialement choisie. Par conséquent, ces attributs
pouvant introduire facilement de la confusion, ils ont alors été retirés. Ce retrait
a conduit a une amélioration de la capacité prédictive du classifieur résultant
qui est en mesure de prédire correctement prés de 96% des vrais événements
pour le jeu test et 79% pour le jeu automatique (Figure 5.26).

De la méme maniére, des attributs tels que la distance épicentrale maximale,
les magnitudes des événements (magnitude locale et magnitude de coda), la
proportion de pointés S ou bien la déviation de l’événement par rapport au
centroide des stations impliquées dans la détection de cet événement, ont été
supprimés de la combinaison d’attributs. Les faux événements étant détectés
a partir d’une association de faux pointés décorrélés entre eux, ces derniers
sont alors détectés avec des distances épicentrales élevées, leurs magnitudes
sont alors généralement élevées et la déviation de 1’événement par rapport
au centroide des stations est forte. De plus, la proportion des phases S dans
I’association est faible puisqu’il n'y a pas a proprement parler des arrivées
d’ondes S détectables dans le cas de ces faux événements. Seulement, les vrais
événements peuvent aussi partager toutes ces caractéristiques, en particulier
pour les événements détectés aux confins du réseau de stations et pour les
événements dont le contenu en bruit est élevé et qui rend difficile la détection
des phases S.
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Quelques attributs redondants ont aussi été retranchés de la sélection des at-
tributs comme le nombre de stations utilisées, la variance des résidus temporels
ou la proportion de stations du réseau qui sont les plus proches de I’événement
et qui sont impliquées dans sa détection. Le nombre de stations utilisées, qui
a un poids élevé dans les attributs, est effectivement trés indirectement cor-
rélé au nombre de phases utilisées, qui est ’attribut avec I'importance relative
maximale. L’utilisation de ces deux attributs, nombre de stations et nombre
de phases utilisées, augmente la probabilité de classer les vrais événements dé-
tectés avec trés peu de stations et trés peu de phases comme faux événements.
De plus, la variance des résidus temporels est un indice de la dispersion des
valeurs des résidus assez superflue puisque 1’écart-type des résidus (racine car-
rée de la variance), inclus dans la sélection, apporte déja cette information.
De méme, la proportion des stations les plus proches de 1’événement est assez
liée a la distance épicentrale minimale, également incluse dans la sélection des
attributs.

D’autres attributs ont également été retirés alors qu'’ils contribuent trés
activement a la discrimination des vrais et faux événements. Ce sont le degré
de rectilinéarité du signal, le nombre de pics dans la fonction d’auto-corrélation
ainsi que, en moindre mesure, la plus grande valeur propre initiale de la matrice
de covariance calculée a partir du signal sur les trois composantes.

La rectilinéarité mesure la polarisation linéaire du champ d’onde : une valeur
élevée de cette rectilinéarité représente un champ d’onde linéairement polarisé
comme c’est le cas par exemple des ondes P longitudinales, des ondes S trans-
versales et des ondes de Love (GREENHALGH et al., 2018). Quand un signal
rectilinéairement polarisé est contaminé par du bruit, méme si le bruit est par
exemple polarisé de facon sphérique, sa direction de polarisation va changer
nettement (ZHENG et al., 1992). Par conséquent, la variabilité des phases sis-
miques qui peuvent étre repérées dans le signal, associée a un fort contenu
en bruit, améne a une trajectoire des particules 3D trés complexe, s’éloignant
d’une polarisation purement linéaire (CLIET et al., 1987). Si ’apport de la rec-
tilinéarité dans la combinaison d’attributs a tendance a améliorer la prédiction
des faux événements, la complexité du signal associé aux vrais événements rend
plus difficile leur prédiction.

Le degré de rectilinéarité étant formulé en fonction de la I’ordre de grandeur
de la valeur propre maximale de la matrice de covariance, le méme constat peut
étre établi avec ’attribut qui exprime cette valeur propre maximale. Cet attri-
but donne des informations sur la cohérence spatiale du champ d’onde observé,
et est classiquement utilisé pour détecter les signaux sismiques (WAGNER et
al., 1996 ; SEYDOUX et al., 2016). Seulement, lorsque ces signaux sismiques sont
détectés avec de faibles rapports signal/bruit, leurs valeurs propres maximales
diminuent, rendant plus difficile la prédiction correcte des vrais événements qui
sont associés a ces types de signaux (SAENGER et al., 2009).
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I1 en est de méme pour l'estimation du degré de périodicité du signal, tra-
duite par ’estimation du nombre de pics dans la fonction d’autocorrélation.
En effet, le bruit d’origine anthropique étant généralement non-stationnaire et
non-Gaussien (GrRoOSs et al., 2009 ; STEIM, 2015) et les signaux sismiques dé-
tectés étant souvent de faible amplitude et contaminés par du bruit, les profils
de ces fonctions d’autocorrélation peuvent étre trés similaires, accentuant la
difficulté d’utiliser un tel attribut pour correctement prédire les vrais et faux
événements.

Si le retrait de ces trois précédents attributs aboutit a une amélioration de
la capacité prédictive du classifieur vis-a-vis des vrais événements (respective-
ment 96 % pour le jeu test et 82-84% pour le jeu automatique), la qualité de
prédiction des faux événements est quant a elle 1égérement dégradée, comme en
témoigne la diminution de la valeur de la précision (rapport entre le nombre de
vrais événements correctement prédits et la somme du nombre de faux événe-
ments incorrectement prédits plus le nombre de vrais événements correctement
prédits). Cependant, au regard du grand nombre de faux événements détectés
(prés de 45 000), cette dégradation de la prédiction des faux événements ne se
manifeste presque pas sur la valeur du taux de faux événements correctement
prédits. Par conséquent, le taux de faux événements incorrectement détectés
reste donc acceptable.

Enfin, les attributs qui sont reliés a 1’énergie du signal dans les différentes
gammes fréquentielles testées (1-3 Hz, 3-6 Hz, 6-9 Hz, 1-5 Hz, 5-10 Hz, 10-20
Hz, 20-50 Hz) et a la description du spectre issu de la transformation discréte
de Fourier (médiane, énergie dans les gammes fréquentielles 0-12.5 Hz, 12.5-
25 Hz, 25-37.5 Hz et 37.5-50 Hz, nombre de pics) n’ont pas été gardés non
plus. Ces attributs sont effectivement peu discriminants (importance relative
inférieure a 1%) et complexifient la tache de discrimination. Comme il a déja été
évoqué, les signaux associés aux différents événements (faux événements, tirs de
carriére, séismes) présentent des contenus fréquentiels et des amplitudes assez
équivalentes. De plus, au sein d’'une méme classe d’événements, les signaux
peuvent présenter des amplitudes et des intensités trés variables pour une méme
gamme fréquentielle, relatant la taille différentielle des sources de ces signaux.

En revanche, si ce sont plutét des rapports d’énergie du signal sur des
gammes de fréquence différentes qui sont considérés, l'effet discriminant s’am-
plifie. En effet, si I'attribut définissant le rapport de 1’énergie du signal entre
les gammes de fréquence 6-9 Hz et 10-20 Hz est ajouté a la combinaison des
attributs optimaux, celui-ci, ayant une importance relative non négligeable (en-
viron 5 %), améliore de fagon notoire la performance prédictive du classifieur
résultant. Celui-ci est désormais capable de prédire correctement environ 87
% des vrais événements du jeu automatique et 96 % des vrais événements du
jeu test, tout en maintenant un fort taux de prédiction des faux événements
(99.7% de prédictions correctes).
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Pris individuellement, le signal filtré aux gammes de fréquences comprises
entre 10 et 20 Hz peut étre d’une intensité comparable pour les séismes, les
faux événements et parfois les tirs de carriére. De la méme maniére, en fonction
de la nature du bruit, le signal filtré aux gammes de fréquences comprises entre
6 et 9 Hz peut étre en moyenne de méme intensité pour les différents types
d’événement. En revanche, la prise en compte du rapport combiné de ’énergie
du signal entre les gammes de fréquence 6-9 Hz et 10-20 Hz permet de distinguer
plus facilement les événements entre eux. L’énergie du signal dans la gamme
de fréquence 6-9 Hz est effectivement relativement plus élevée pour les vrais
événements (tirs de carriére et séismes) que 1’énergie du signal dans la gamme
de fréquence 10-20 Hz, comparativement au rapport de 1’énergie du signal pour
ces gammes de fréquence estimé pour les faux événements (Figure 5.27).

Le classifieur final qui prédit les vrais et faux événements est présenté dans
’article de la sous-section suivante.
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FI1GURE 5.27: Comparaison de 'intensité du signal pour les gammes fréquen-
tielles 6-9 Hz et 10-20 Hz entre les deux grands types d’événements : (a), (b)
faux événements et vrais événements dont (c) (d) les séismes et (e) (f) les tirs
de carriére.
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eRechercher les attributs pour classer les séismes et les tirs

En ce qui concerne la classification des séismes et des tirs de carriére, I'uti-
lisation du sous-ensemble optimal des attributs sélectionnés par élimination
récursive conduit a une fonction de prédiction capable de prédire correctement
82% des tirs de carriére et 97% des séismes contenus dans le jeu test (jan-
vier 2016-aotit 2016). Lorsque cette fonction de prédiction est utilisée sur le
jeu automatique (septembre 2016-décembre 2016), le classifieur est capable de
prédire correctement 88% des séismes et 89% des tirs de carriére (Figure 5.28).

L’exclusion des attributs véhiculant des informations sur la distance de
I’événement a la carriére la plus proche, le nombre de phases utilisées, le nombre
de phases S, les magnitudes locales (MLv et ML) aménent & mieux prédire les
séismes du jeu automatique avec une amélioration de 2% de vraies prédictions.
En revanche, cela a peu d’effet sur les séismes contenus dans le jeu test et cela
dégrade assez fortement la qualité de la prédiction des tirs de carriére dans les
deux jeux de données.

En effet, un tir de carriére est situé proche d’une carriére, contient peu de
phases S dans ’association qui ’a détecté et donc posséde un nombre de phases
moins grand, mais la réciproque n’est pas forcément vraie pour les séismes. De
plus, les magnitudes estimées pour les tirs de carriére sont en moyenne plus
élevées comme décrit dans le chapitre 2 (1.58 contre 1.40 pour les séismes). Ces
attributs apparaissent donc significatifs pour classer les tirs de carriére alors
qu’ils le sont beaucoup moins pour les séismes (Figure 5.28).

Toutefois, cet effet négatif tend a s’annuler lorsque ce sont les attributs
statistiques qui décrivent 1’enveloppe du signal qui sont retirés de la combinai-
son d’attributs (la tendance s’inverse, la prédiction correcte des tirs de carriére
s’améliore). Si ces derniers ressortent fortement de la sélection automatique
des attributs, ils apportent de la confusion a la fonction de prédiction générée.
Comme il a été illustré précédemment, il est souvent difficile de distinguer un
séisme d’'un tir de carriére basé uniquement sur sa forme d’onde, du fait notam-
ment des effets liés au milieu de propagation. Or, ici, lorsque la combinaison
d’attributs est dénuée des informations liées a I’enveloppe (donc indirectement
la forme d’onde) et a la distance de 1’événement a la plus proche carriére,
la qualité de la prédiction des séismes contenus dans le jeu test reste élevée
(97% de séismes correctement prédits). Celle-ci s’améliore également nette-
ment pour les séismes contenus dans le jeu automatique (passage de 90 a 93%
de séismes correctement prédits, Figure 5.28). Ces attributs, pourtant utilisés
pour discriminer les événements par les analystes, ne sont pas ceux qui vont
fondamentalement aider a classer les séismes et les tirs de carriére entre eux.
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FIGURE 5.28: Effets du retrait (symbole -) et/ou de ’ajout (symbole +) d’at-
tributs a partir d’une sélection initiale automatique d’attributs, effectuée par
élimination récursive, sur la capacité prédictive de classifieurs discriminant les
séismes et les tirs de carriéres. La spécificité désigne le taux de tirs de car-
riére correctement prédits (c’est-a-dire le rapport entres les vrais négatifs et la
somme des vrais négatifs et des faux positifs). La sensitivité désigne le taux de
séismes correctement prédits (c’est-a-dire le rapport entres les vrais positifs et
la somme des vrais positifs et des faux négatifs). La précision désigne la propor-
tion de séismes correctement prédits relativement a ’ensemble des événements
prédits positivement (c’est-a-dire le rapport entres les vrais positifs et la somme
des vrais positifs et des faux positifs). Référence RFE = sélection automatique
des attributs effectuée par élimination récursive des attributs. Voir e tableau
S1 du supplément de 'article pour le détail des attributs.
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Le méme constat peut étre fait pour les attributs statistiques décrivant
les valeurs des rapports des amplitudes maximales entre les ondes P et S pour
chaque événement (Figure 5.28). Si ces attributs semblent étre importants pour
la prédiction des tirs de carriére, ils ont un effet plutét négatifs sur la prédiction
des séismes (leur retrait de la combinaison des attributs améne a une augmen-
tation du taux de prédiction correcte des séismes pour les deux jeux test et
automatique).

De méme, 'attribut exprimant la moyenne des valeurs du spectre du si-
gnal ainsi que les attributs représentant 1’énergie du signal dans les gammes
fréquentielles 10-20 Hz et 20-50 Hz ont été retirés de la sélection automatique.
Si les tirs de carriére sont associés a des signaux qui ont un contenu fréquen-
tiel globalement plus basse-fréquence que ceux associés aux séismes, les motifs
fréquentiels peuvent étre en fait trés variables d’'un événement a l’autre, et
d’une station a l'autre. Ce sont donc les rapports d’énergie du signal relatifs
qui sont donc considérés : le rapport de l’énergie du signal entre les gammes
fréquentielles 6-9 Hz et 1-5 Hz ainsi que le rapport de 1’énergie du signal entre
les gammes fréquentielles 3-6 Hz et 20-50 Hz. En effet, les signaux reliés aux
tirs de carriére présentent une énergie plus élevée dans la gamme de fréquences
1-5 Hz ou 3-6 Hz relativement a la gamme de fréquences 6-9 Hz ou 20-50 Hz,
et inversement pour les séismes. Ceci souligne notamment la superficialité gé-
nérale des tirs de carriére qui générent beaucoup d’ondes de surface de faible
fréquence (GITTERMAN et al., 1998).

Enfin, ’apport supplémentaire d’attributs reliés a la description du signal
dans le domaine fréquentiel apporte plus de contraintes a la discrimination des
séismes et des tirs de carriére. Il semble que les attributs reliés a des infor-
mations contenues dans le spectrogramme du signal dans le domaine tempo-
fréquentiel (variance des valeurs du spectre du signal, nombre de pics contenus
dans le spectre, rapports spectraux entre les ondes P et S, fréquence cumulée
de 25%, fréquence cumulée de 75%) expriment davantage ce qu’est un séisme
relativement a un tir de carriére, et vice versa. En présence de ces attributs, le
nouveau classifieur converge vers une capacité équivalente a prédire correcte-
ment les séismes et les tirs de carriére, quel que soit le jeu de données utilisé
(Figure 5.28).

A T’inverse, si ce sont les attributs qui définissent les rapports d’amplitudes
maximales entre les ondes S et P ainsi que les caractéristiques de 1’enveloppe
qui sont choisis, cela engendre un déséquilibre dans la capacité prédictive du
classifieur résultant : les tirs de carriére sont en conséquence plus correctement
prédits que les séismes, et inversement si ces attributs sont retirés sans ajout
d’'informations sur les spectrogrammes des signaux. Cette instabilité de pré-
diction en présence de ces attributs soulignent bien l'incapacité du classifieur
a généraliser.
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Si en revanche, on décide d’ajouter de nouveau les attributs qui relatent
les informations liées a la distance de ’événement a la carriére la plus proche,
la performance prédictive vis-a-vis des séismes se dégrade derechef. Par consé-
quent, si ces informations sont trés utiles pour affiner la prédiction des tirs de
carriére, elles apportent de la confusion et de I’'instabilité a la fonction de pré-
diction, qui aura plus de difficulté & prédire certains séismes (surtout s’ils sont
véritablement situés prés d’une carriére). Ces informations sont alors définiti-
vement retirées de la sélection des attributs. La fonction de prédiction finale
est présentée dans 'article qui va suivre.

5.2.2 Comprendre les erreurs de classification

L’interactivité Homme-machine peut se traduire aussi a travers l'analyse
des erreurs de classification réalisées par le classifieur automatique. En effet,
I’analyse de ces erreurs amene a estimer la réelle performance prédictive des
classifieurs en évaluant la pertinence des régles de classification émises, de sorte
a déceler les défaillances de la fonction de prédiction apprise.

eErreurs de classification pour les vrais et faux événements

Erreurs de classification des faux événements. Parmi les faux évé-
nements incorrectement prédits par le classifieur, 24 % d’entre eux sont issus
d’une association de faux pointés avec 1 ou 2 vrais pointés émis au moins a
une station qui a enregistré un signal sismique isolé. De ce fait, les attributs
qui sont calculés pour ces faux événements vont véhiculer une information
supplémentaire a relier avec cet apport de signal cohérent non-stationnaire.

Cela peut avoir pour effet d’augmenter le nombre de phases utilisées pour
I’association, qui est l’attribut qui a une importance relative la plus élevée.
Cela peut aussi modifier la valeur des attributs tels que 1’entropie de Shannon,
qui traduit le caractére aléatoire du signal, ou la différence absolue moyenne
d’ordre 1 de l'enveloppe du signal, qui exprime le degré de non-stationnarité
du signal.

Par exemple, le faux événement détecté le 11 décembre 2016 a 15h10 pré-
sente un signal sismique isolée enregistré a la station A119A ou deux pointés
(P et S) sont émis (Figure 5.29). Cet événement présente alors 8 phases. De
plus, le signal détecté a la station A119A apportant de la cohérence, la cor-
rélation entre les premiéres arrivées détectées aux stations (les pointés P) et
la distance épicentrale devient forte (0.99). Ce faux événement n’est pas cor-
rectement prédit par le classifieur, en particulier parce que l'apport du signal
sismique "parasite" éloigne les valeurs de certains attributs des caractéristiques
généralement rencontrées chez les faux événements comme le faible nombre de
phases ou le fort caractéere aléatoire.
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FIGURE 5.29: Formes d’onde et spectrogrammes des signaux associés a un faux
événement détecté le 11 décembre 2016 a 15h10 et incluant un signal sismique
isolé & la station A119A (composante verticale).
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De plus, ce faux événement est prédit comme vrai événement par le classi-
fieur avec une probabilité de 0.55 (soit 275 arbres sur 500, le vote majoritaire
étant & partir de 250 arbres).

Parmi les arbres décisionnels de la forét aléatoire qui vont correctement
prédire cet événement, ’attribut déterminant qui va contribuer de fagon no-
toire a orienter la prédiction finale vers celle de faux événement est le degré de
polarisation planaire du signal qui est élevé pour ce dernier (0.79). Le degré
de polarisation planaire est fortement corrélé a la profondeur de la source : la
valeur est élevée pour les signaux associés au bruit d’origine anthropique puis-
qu'ils se propagent principalement sous forme d’ondes de surface de Rayleigh
(Havskov et Alguacil, 2004).

Erreurs de classification des vrais événements. A l'inverse, les vrais
événements qui sont incorrectement prédits sont caractérisés par un nombre
de phases plus petites, et sont souvent détectés avec des distances épicentrales
minimales supérieures. Ces derniers peuvent étre fortement contaminés par
du bruit stationnaire (rapports signal/bruit faibles), diminuant le rapport de
I’énergie du signal entre les gammes fréquentielles 6-9 Hz et 10-20 Hz.

En fonction du degré de certitude de la prédiction, les vrais événements in-
correctement prédits avec une forte probabilité peuvent détenir encore de faux
pointés non éliminés par les développements exposés précédemment. Dans ces
cas extrémes, l'inclusion de faux pointés induit une augmentation de la va-
leur des résidus temporels et une diminution du facteur de corrélation entre les
premiéres arrivées des ondes P et la distance épicentrale. Cet effet souligne 1’im-
portance de développer une procédure de détection adaptée des petits séismes,
sans quoi, le taux de perte des événements serait conséquent.

Parmi les arbres décisionnels qui contribuent a prédire correctement ces
vrais événements, qui sont finalement systématiquement mal classés par vote
majoritaire, la valeur de I'’entropie de Shannon calculée a partir du signal dans
le domaine tempo-fréquentiel (voir détails des attributs dans le tableau S1 du
supplément de ’article qui va suivre) est un critére décisif pour orienter le
choix final de prédiction vers la prédiction correcte, a savoir 1’étiquette "vrai
événement".

eErreurs de classification pour les séismes et les tirs de carriére

Erreurs de classification des séismes. S1 je prends 'exemple de séismes
appartenant a un essaim réguliérement observé au Nord du Lac Konstanz en Al-
lemagne, plusieurs d’entre eux sont systématiquement mal classés. Ces séismes
sont classés par le classifieur comme étant des tirs de carriére avec des pro-
babilités de prédiction comprises entre 0.53 et 0.69. Ceci signifie que, pour
ces événements, 265 & 345 arbres décisionnels, sur un total de 500 arbres in-
clus dans la forét, aboutissent a la prédiction finale de tir de carriére. Le vote
majoritaire est estimé a au moins 250 arbres.
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Ces séismes mal classés sont caractérisés par des signaux dont ’intensité
se concentre a des gammes fréquentielles particuliérement basses (< 10 Hz,
Figure 5.30). De plus, la variance du spectre est inférieure & la moyenne des
variances estimées pour l’ensemble des séismes du jeu de données (période
2016-2019). Le nombre de pics estimé dans le spectre du signal est aussi parti-
culiérement bas.

Aussi, pour les séismes prédits comme étant des tirs de carriére avec les plus
fortes probabilités, la moyenne des magnitudes de surface (& la période 10 s)
est plus élevée (de 'ordre de 1.30) que la moyenne des magnitudes de surface
estimées pour ’ensemble des séismes du jeu de données (qui est équivalent a
0.78). Ces séismes partagent donc les mémes caractéristiques que les tirs de
carriére, traduisant probablement la superficialité de leurs sources.

L’analyse de quelques arbres décisionnels montre que le séisme détecté le 10
novembre a 09h28 (MLv 1.34), et appartenant a I’essaim de séismes identifié au
Nord du Lac Konstanz en Allemagne, est correctement prédit par le classifieur si
les attributs traduisant la forme de la distribution des valeurs du signal associé
a l’événement sont impliqués dans le chemin décisionnel (Figure 5.31). Ces
attributs sont le coefficient d’asymétrie de la distribution (en anglais skewness)
et le coefficient d’aplatissement de cette distribution (en anglais kurtosis).

En revanche, lorsque ce méme événement est prédit comme tir de carriére
par un autre arbre décisionnel, ce sont les attributs reliés aux rapports de
I’énergie du signal entre les gammes fréquentielles 3-6 Hz et 20-50 Hz puis
1-5 Hz et 6-9 Hz qui vont guider la prédiction finale du chemin décisionnel,
combinés avec la valeur maximale du rapport spectral entres les ondes P et
S (Figure 5.32). En effet, les signaux associés a cet événement présentent une
intensité maximale relativement plus élevée aux faibles gammes fréquentielles,
comme c’est le cas de nombreux tirs de carriére.
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FIGURE 5.30: Signaux associés a 6 séismes incorrectement classifiés par le clas-
sifieur automatique des séismes et des tirs de carriére. Les signaux sont enre-
gistrés a la premiére station SLE (distance épicentrale moyenne = 22 km) et
présentent une intensité maximale a des fréquences relativement basses pour
des séismes (< 10 Hz). Les séismes ont été détectés au Nord du Lac Konstanz
en Allemagne.
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FIGURE 5.31: Extrait d’un arbre décisionnel tiré aléatoirement de la forét aléa-

toire, aboutissant a la prédiction correcte du séisme détecté le 10 novembre a
09h28 (MLv 1.34) au Nord du Lac Konstanz en Allemagne. Le chemin déci-
sionnel est représenté en vert. La classe y[1] représente la classe des séismes et
y[0] la classe des tirs de carriére.
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FIGURE 5.32: Extrait d’un arbre décisionnel tiré aléatoirement de la forét aléa-
toire, aboutissant a la prédiction incorrecte du séisme détecté le 10 novembre
a 09h28 (MLv 1.34) au Nord du Lac Konstanz en Allemagne. Le chemin déci-
sionnel est représenté en rouge. La classe y[1] représente la classe des séismes
et y[0] la classe des tirs de carriére.
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Erreurs de classification des tirs de carriére. De la méme fagon, les tirs
de carriére incorrectement classés sont reliés a des signaux dont 1'intensité reste
élevée a des gammes de fréquences supérieures a 10 Hz et dont le spectre pos-
séde une valeur de variance plus élevée que la moyenne des variances estimées
pour l’ensemble des tirs de carriére du jeu de données (Figure 5.33).
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(c) Tir de la carriére de Miihltal détecté en
Allemagne le 20 septembre 2016 a 11h25
(MLv 2.08, seconde station A113A, dis-
tance épicentrale 33 km)

FIGURE 5.33: Signaux associés a 2 tirs de carriére incorrectement classifiés
par le classifieur automatique des séismes et des tirs de carriére. Les signaux
présentent une intensité maximale a des fréquences relativement élevées pour
des tirs de carriére (> 10 Hz).
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L’analyse de quelques arbres décisionnels montre par exemple que le tir de
la carriére de Grofi-Bieberau identifié le 09 novembre 2016 & 13h44 (MLv 2.11)
est incorrectement prédit par le classifieur lorsque les attributs décrivant le
rapport de 1’énergie du signal entre 1-5 Hz et 6-9 Hz, la variance du spectre
et le rapport minimum spectral entre les ondes P et S sont impliqués dans
I’élaboration du chemin décisionnel (Figure 5.34).

FIGURE 5.34: Extrait d’'un arbre décisionnel tiré aléatoirement de la forét aléa-
toire, aboutissant a la prédiction correcte du tir de la carriére de Grof-Bieberau
détecté le 09 novembre 2016 & 12h44 (MLv 2.11) en Allemagne. Le chemin dé-
cisionnel est représenté en rouge. La classe y[1] représente la classe des séismes
et y[0] la classe des tirs de carriére.

Comme il a été décrit dans le chapitre 2, les carriéres exploitent une diver-
sité de matériaux, qui va des roches sédimentaires aux roches métamorphiques,
en passant par les roches magmatiques. La carriére de Grof-Bieberau exploite
du gabbro qui est une roche compétente qui véhicule des signaux de haute fré-
quence faiblement atténués. Les caractéristiques du signal enregistré apportant
des confusions, ces tirs de carriére peuvent se rapprocher des caractéristiques
des séismes.

Le tir de carriére décrit précédemment est en revanche bien classé si le
chemin décisionnel qui conduit a la prédiction finale présente a ses embranche-
ments les attributs tels que le coefficient d’asymétrie moyen de la distribution
des amplitudes des signaux associés a cet événement, I’heure de 1’événement
ainsi que la différence moyenne entre la magnitude locale et la magnitude de
coda, qui une fonction sensible de la profondeur de la source (KOPER et al.,
2016 ; HoLT et al., 2019). D’autres informations que 1’analyse pure du spectro-
gramme apparaissent alors nécessaires pour assurer une couverture de prédic-
tion plus large (Figure 5.35.
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F1GURE 5.35: Extrait d'un arbre décisionnel tiré aléatoirement de la forét aléa-
toire, aboutissant a la prédiction incorrecte du tir de la carriére de Grof-
Bieberau détecté le 09 novembre & 13h44 (MLv 2.11) en Allemagne. Le chemin
décisionnel est représenté en vert. La classe y[1] représente la classe des séismes
et y[0] la classe des tirs de carriére.
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5.3. UTILISER LA FONCTION DE PREDICTION OPTIMALE ET
EVALUER SA PERFORMANCE FINALE

L’injection des connaissances préalables dans le systéme d’ap-
prentissage améne a détecter les corrélations parasitaires sur les-
quelles l’algorithme peut fonder son apprentissage, limitant la
minimisation de l’erreur de généralisation. A travers l’analyse
des attributs, des arbres décisionnels ainsi que les résultats de
prédiction des différents classifieurs, la performance prédictive
de ces derniers a pu étre estimée. Reste a connaitre le potentiel
des fonctions de prédiction optimales qui en découlent.

5.3 Utiliser la fonction de prédiction optimale et
évaluer sa performance finale

L’article ci-dessous replace le probléme de classification dans le
contexte de ce travail de recherche. Il brosse de maniére syn-
thétique la méthodologie adoptée et redéfinit la procédure d’ap-
prentissage dans le cadre de l’interactivité. Il présente ensuite
les résultats obtenus avec les deux classifieurs optimaux sélec-
tionnés puis les discute. Le premier classifieur identifie les faux
événements et les vrais événements. Le second classifieur dis-
crimine les vrais événements préalablement identifiés en les éti-
quetant comme séismes ou tirs de carriére. La performance des
classifieurs est évaluée a travers deux modes : un mode dit test
et un mode dit opérationnel. Plusieurs métriques sont utilisées
pour évaluer cette performance (sensitivité, spécificité, précision
mais également probabilité de prédiction). Cet article donne en-
fin des éléments qui révélent le degré de validité et de plausibilité
des classifieurs sélectionnés a travers ’analyse des attributs, des
arbres décisionnels et des informations tirées de la littérature sur
ce sujet de classification.

5.3.1 Article : Monitoring Regional Seismicity Using Hy-
brid Intelligence
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Abstract

Small-magnitude earthquakes shed light on the distribution and occurrence of earthquakes,
especially in stable continental regions where natural seismicity remains difficult to explain
under slow strain rate conditions. However, capturing them in catalogs is strongly hin-
dered by signal-to-noise issues, resulting in high rates of false as well as man-made events
also being detected. Accurate and robust classification of all these events is then critical
for optimally detecting small earthquakes. This requires uncovering recurrent salient fea-
tures that can firstly rapidly identify false events from real events, then accurately recognize
earthquakes form man-made events (mainly quarry blasts) despite high signal variability and
noise content. In this study, we combine the complementary strengths of human and inter-
pretable rule-based machine-learning algorithms for solving this classification problem. We
use human expert knowledge to co-create two reliable machine-learning classifiers through
human-assisted selection of classification features and review of events for which the classifier
predictions are uncertain. The two classifiers are integrated into the SeiscomP3 operational
monitoring system. The first one discards false events from the set of events obtained with
a low STA-LTA threshold; the second one labels the remaining events as either earthquakes
or quarry blasts. When run in an operational setting, the first classifier correctly detected
more than 99% of false events and just over 93% of earthquakes; the second classifier cor-
rectly labeled 95% of quarry blasts and 96% of earthquakes. After a manual review of
only the second classifier low-confidence outputs, the final catalog contained fewer than 2%
of misclassified events. These results confirm that machine-learning strengthens the qual-
ity of earthquake catalogs and that the performance of machine-learning classifiers can be
improved through human expertise. Our study promotes a broader implication of hybrid
intelligence monitoring within seismological observatories.

1 INTRODUCTION

Even if small earthquakes rarely make the news, the benefits of their study are real
(Brodsky, 2019; Ross, Trugman, et al., 2019). Due to their high frequency of occurrence,
small earthquakes can bring statistical robustness to the observed seismic processes such as
recurrent earthquakes triggered by local perturbations in the regional stress field. This is
particularly important in continental plate interiors hosting low-to-moderate seismicity, such
as the northeastern Furopean Upper Rhine Graben area, where no mechanism is universally
accepted to explain earthquake occurrence under very slow strain rate conditions (Gallen &
Thigpen, 2018; Bezada & Smale, 2019; Leclere & Calais, 2019).

Recent worldwide deployment of seismic networks provides high-quality volumes of
recorded seismograms, hiding a gold mine of information on small earthquakes (Levandowki
et al., 2018). However, capturing them in catalogs is strongly hindered by signal-to-noise
issues. The automated detection approaches used by most seismological observatories world-
wide are based on arrival time differences (Lindenbaum et al., 2017). They use standard am-
plitude threshold algorithms, such the ratio of the short-term to the long-term average signal
energy (STA/LTA), to automatically pick seismic wave arrival times, then associate them in
coherent groups to infer earthquake locations. If observatories lower the detection threshold
to recover lower-amplitude earthquake signals, they will also detect many more data-glitches,
transient noise or man-made signals related to human activities (Arrowsmith et al., 2014;
Diaz et al., 2017; Ross, Meier, & Hauksson, 2019). Consequently, high rates of false events
and man-made events contaminate the automated earthquake catalogs, and fewer than 10%
of automated detections remain in the final analyst-reviewed catalogs (Draelos et al., 2018).
Decreasing the minimum detection magnitude also increases operational cost, since ana-
lysts have to screen a huge number of false events and risk missing real events in the process
(Draelos et al., 2012). Some authors have suggested labelling arrival times before associating
them (Yeck et al., 2019), however small events have lower signal-to-noise ratio arrivals that
can easily be mistaken for false arrivals (McBrearty et al., 2019) and be therefore excluded
from the catalogs.
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Yet another challenge in building high-quality earthquake catalogs is discriminating
between natural earthquakes and anthropogenic events such as explosions or quarry blasts.
Although experienced analysts are able to distinguish these events by taking into account
both waveform characteristics and source parameters of detected events (origin-time, lo-
cation, polarities etc.), as catalogs grow in size thanks to improved seismic networks, the
discrimination step becomes more complex and less repeatable (Onagawa et al., 2019).
Machine-learning tools have been proposed to help analysts classify seismological signals
since the 1990s (Dowla et al., 1990; Wang & Teng, 1995; Tiira, 1999; Maggi et al., 2017;
Perol et al., 2018; Linville et al., 2019; Rouet-Leduc et al., 2019; Zhu & Beroza, 2019). They
have low operational cost, and can analyse large volumes of real-time data (Meier et al.,
2019), but are not yet implemented routinely outside of volcanic observatories.

In this paper, we describe how we trained machine-learning algorithms to classify events
resulting from operational seismic monitoring of the Upper Rhine Graben area, using a
hybrid approach that combines the advantages of machine-learning algorithms and human
expertise while overcoming their respective limitations (Patel et al., 2019; Gennatas et al.,
2020). We chose to classify events after the association step, as proposed by Draelos et al.
(2012) and Z. Li et al. (2018).

We developed our classifiers within the SeisComP3 framework, one of the main earth-
quake monitoring systems used for detecting local, regional, and global seismicity in many
countries across the world (Olivieri & Clinton, 2012), thereby also addressing the gap that
has been observed between research developments in earthquake classification and their
implementation on an operational level (Sparks et al., 2012).

2 DATA AND METHODS

Figure la describes the data flow we implemented. We first optimised the SeiscomP3
automated event detector already operational at the French National Seismological Ser-
vice (BCSF-RéNaSS) to increase the number of small events detected, which also greatly
increased the number of false detections. We then extracted waveform and event-based
features for each detected event, and fed them through two successive rule-based classifiers:
one to discriminate between false detections and real seismic events (classifier 1), and one
to discriminate between seismic events of natural or anthropogenic origin (classifier 2). The
machine-learning algorithm we selected to build these classifiers was supervised Random
Forest (Breiman, 2001), which produces robust classifications through human-interpretable
learning mechanisms (Drouin et al., 2019; Lundberg et al., 2020). It grows multiple indepen-
dent base learners (decisions trees) to build a classification model, outputs prediction results
from all of them, and combines these results to form a final prediction with a probability
estimate. In order to co-construct more trusted classifiers, we included human feedback
when refining the classifier, as suggested by Schaumberg et al. (2020). We obtained the
final classifiers by proceeding in stages, as illustrated in Figure 1b and described below.
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Figure 1. (a) Operational classifiers incorporated within the automatic detection procedure in

near real-time (for details of the optimised event detector processing, see Figure S2 in the electronic
supplement to this article). (b) Human-In-the-Loop Machine Learning architecture used to create

the final operational classifiers (classifier 1 and 2).
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2.1 Data

We conducted this study using 100 Hz seismic waveform data recorded between 2016
and 2019 by 226 seismic stations in the northeastern European Upper Rhine Graben area
(see figure S1 in the electronic supplement to this article). Half of these were permanent
stations (103 three-component broadband seismometers and 10 three-component strong mo-
tion sensors) and half were temporary stations from the AlpArray Seismic Network installed
around the Alpine arc from 2015 to 2020 (Hetényi et al., 2018).

In addition to the raw waveform data, we needed a set of manually classified seismic
events to train and test our machine-learning classifiers. We retrieved 10389 manually
reviewed seismic event solutions (728 false alarms, 5537 earthquakes, and 4124 quarry blasts)
from the database maintained by BCSF-RéNaSS between 2016 and 2019 (see figure S1). To
test our machine-learning trained classifiers in a fully operational mode, we ran the full
system presented in Figure la on four months of continuous data (09/2016-12/2016).

2.2 Feature Extraction

Each event used to perform our machine-learning procedure was coded into a vector
of 361 features (see Table S1 in the electronic supplement to this article). More than half
represent time and frequency domain characteristics of the vertical component seismograms
from stations close to each event; a quarter represent characteristics of the 3-component
seismograms from these same stations; and about one-fifth represent characteristics of the
preferred origins themselves (e.g. event magnitudes, origin times and locations, uncertain-
ties, and quality scores).

Following O’Rourke et al. (2016), we calculated our waveform features using data from
the five closest stations starting from 10 s before the P-wave arrival times. We defined the
duration of the data window using the STA/LTA (short-term average / long-term average)
functions used for picking: we cut the signals when the value of the STALTA function after
the first S arrivals (observed or inferred) descended towards its value before the first P
arrivals. The waveform data were rotated to radial and transverse components, detrended
and tapered before removing the instrument response.

2.3 Training mode

Our first step was to train the Random Forest machine algorithm to produce semi-
automatic classification rules (Figure 1b). For this step, we used data retrieved from
the BCSF-RéNaSS catalog between 2017 and 2019. Compared to many machine-learning
datasets, whose number of samples run into the millions, those from seismic classification
problems including ours are small, and may not fully represent the full spread of possible
data. Since false events were underrepresented in the BCSF-RéNaSS dataset, we added
23747 manually reviewed false events from a supplementary un-labeled dataset from the
same region. We populated each classifier’s training set by randomly selecting 50% false
events and 50% real events (earthquakes, quarry blasts) for classifier 1, and 50% earthquakes
and 50% quarry blasts for classifier 2.

We optimised hyper-parameters linked to the Random Forest algorithm (e.g. number
of trees, tree depth) using a five-fold cross-validated random-search and refined their values
using a five-fold cross-validated grid-search (Bergstra & Bengio, 2012). We assessed the
extracted features to find the most accurate and efficient feature representation for each
classifier. We used a recursive feature elimination algorithm to select the best features
(Gregorutti et al., 2017), combined with a five-fold cross-validated selection of the optimal
number of features to retain. Human expertise was used to validate the rules proposed by
each classifier.
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2.4 Testing mode

We tested the performance of each trained classifier on representative testing sets (Fig-
ure 1b). For both classifiers, the real events in the testing set were extracted from the
BCSF-RéNaSS catalog (Jan. to Aug. 2016). For classifier 1, we added previously unseen
false events until the testing set reached 30% of the size of the training set. In order to
estimate how our classifiers generalised, we performed 50 runs for each one, randomly re-
sampling the training data at every run. We used human expertise to examine the rules
proposed by each classifier for the first runs and for any subsequent runs that resulted in
significantly different predictions.

2.5 Operational mode

We deployed the final trained classifiers in operational mode with only the best features
computed for each incoming event (Figure 1b). The classifiers were run on four months
(Sept. to Dec. 2016) of the automatic catalog generated by our optimised SeisComP3
detection procedure. All the incoming events predicted as real by classifier 1 were fed
into classifier 2, labelled as either earthquakes or quarry blasts, and then tagged as such
in the database. In order to correctly estimate operational performance and be able to
manually check all prediction outcomes, the events identified as false by classifier 1 were
not automatically removed from the database. Here also, we performed 50 runs for each
classifier, randomly resampling the training data at every run. We used human expertise to
review the final low-confidence outputs (those with low prediction probability) in order to
analyse and remove the few remaining misclassifications.

3 RESULTS

We analyse each classifier in turn by first presenting the relative weight given by the
classifier to each feature to check they are consistent with the physical process that generates
the data, as suggested by Kohoutova et al. (2020) and J. Li et al. (2020), and then by
presenting the standard classifier evaluation metrics and the distribution of classification
probabilities.

3.1 Classifier 1: False Events vs Real Events

Given that false events are generated by incorrectly associating random local noise,
the features that contributed most strongly to discriminating false from real events were
related to location quality and pick statistics. We found the most important features to
be the number of phases used, the standard deviation of the event-station distance, that
of time residual distributions, and the maximum value of the function that depicts the
time variations of the STA/LTA ratio (Figure 2). False events were often located with few
phases because the random and transient character of impulsive anthropogenic noise made
it unlikely that multiple stations in a network would reach STA/LTA pick-triggering values
in a time-consecutive order (Coviello et al., 2019). The distributions of epicentral distances
and time residuals had larger standard deviations for false events as they were influenced
by the systematic mislocation of unrelated anthropogenic noise sources, induced by the
fortuitous alignment of non-seismic phases (Arrowsmith et al., 2018). The maximum value
of the STALTA function contributed also strongly because false events were generated by
strong impulsive noise which triggered larger peak value in the STALTA function.
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Figure 2. Relative importance of best features for classifier 1. The features belonging to group
A estimate the event location quality, especially poor for false events. The features of groups B and
C give information on the quality of the pick association process. Higher maximum values of the
STALTA function (STALTAmax) usually indicate false picks and lower correlation coefficients be-
tween first time arrivals and epicentral distances (OnsetTime-Dist-Corr) underline false associations.
Among the five signal-related features (groups D to G), the degree of planar polarization (SurfPla-
narPolarization10) is correlated to the source depth: its value is higher for man-made signals since
they propagate mainly as surface Rayleigh waves. The ratio of seismic energy in the low-frequency
and high-frequency ranges (SignalEnergy6-9/10-20Hz) as well as the first quartile of the signal spec-
trum (FreqlQuartile) enhance real event prediction, especially for night-time events when seismic
noise level decrease at low-frequency bands. The signal randomness and non-stationarity, higher for
cultural noise, are described by the Shannon Entropy variance of the decomposed Intrinsic Mode
Functions (EntropyIMFSVariance) and the mean absolute 1-order difference of the signal envelope

(EnvMeanAbsDiff). See Table S1 for more detailed feature description.
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The predictive performance of classifier 1 is shown in Table 1. The classifier achieved
99% precision in testing mode. Among the missed events, the majority were few poorly
recorded quarry blasts or some earthquakes located out of the network. If we set aside
teleseismic events, for which neither the seismic network nor the 4-20 Hz bandpass butter-
worth filter used to detect events were designed, the loss-rate for earthquakes was below
2% (Table 2). The classifier accurately predicted real events, especially earthquakes, with
few false positives. The high predictive quality of the false event /real event classifier is
underlined by its F-Measure score above 0.95. We also evaluated classifier 1 in operational
mode: although the overall precision dropped to 92%, more than 99% of the false events
were correctly identified. This is reassuring, as one of the side-effects of dropping the detec-
tion threshold in the automated picking phase is to increase the number of false events. In
operational mode, the classifier missed fewer than 7% of earthquakes (Table 2). The major-
ity of missed events were poorly recorded events such as quarry blasts or other events that
analysts could not identify because of unclear signal signature and/or high minimum epi-
central distance. The few misclassified false events were mostly located within the network
and 24% of them incorporated isolated seismic signals in their association (for locations of
the misclassified events in both modes, see figures S3 and S5 in the electronic supplement
to this article).

Table 1. Confusion matrix and classification metrics® for the false event vs real event classifier

Testing mode Operational mode
Predicted false Predicted real | Predicted false Predicted real

Expected false 3466 £ 2 10 £ 2 46442 + 5 117 £ 5
Expected real 40 £ 2 977 £ 2 242 £ 4 1395 + 4
Specificity (%) 99.71 + 0.06 99.74 + 0.01
Sensitivity (%) 96.07 £ 0.11 85.21 £+ 0.22
Precision (%) 98.99 £+ 0.21 92.26 £+ 0.33

F-Measure 0.975 £ 0.001 0.886 £+ 0.002

¢ Specificity: the correctly predicted false event rate (i.e. the ratio of true negatives to true
negatives plus false positives). Sensitivity: the correctly predicted real event rate (i.e. the ratio
of true positives to true positives plus false negatives). Precision: the proportion of correctly
predicted real events relative to all true positive detections (i.e. the ratio of true positives to
true positives plus false positives. F-Measure: a summary statistic that combines precision and

sensitivity (2 X precision X sensitivity/(precision + sensitivity)).



210

211

212

213

214

215

216

217

218

219

220

221

222

223

Table 2. Description of the real events missed by the false event vs real event classifier

Testing mode Operational mode
Missed Earthquakes
Proportion (%) 3.92 £ 0.28 6.95 £+ 0.24
Nuwh 2242 4842
Hmber 576 694

Teleseismic events: 11 + 1 [Teleseismic events: 0

Missed Quarry Blasts

Proportion (%) 3.91 £ 0.40 19.32 £+ 0.38
Number @ 7159:*:3
441 822
Missed Unknown Events
Proportion (%) - 27.36 + 0.84
Number - @
121

Figure 3a shows the prediction probability distribution for the classifier 1 in operational
mode (for testing mode, see figure S6 in the electronic supplement to this article). Nearly
75% of the real events identified by the classifier were predicted with probabilities of over
0.8; after manual verification, 0.4% of these turned out to be false events. Conversely,
nearly 90% of false events identified by the classifier were predicted with near certainty
(probabilities of being real events under 0.1); after manual verification, fewer than 0.2%
of these turned out to be real events. But what about the intermediate-level predictions?
About 1% of the events in the operational mode catalog were predicted with probabilities
ranging between 0.4 and 0.6; nearly 20% of these were incorrectly predicted. These incorrect
predictions disproportionately involved false events being identified as real events: after
manual verification, 40% of the events predicted to be real with probabilities close to 0.5
were in fact false events. In an operational setting, therefore, it would make sense to trust
the near certainty predictions of this classifier, but we should probably ask operators to
verify its intermediate-level predictions of real events.
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3.2 Classifier 2: Earthquakes vs Quarry Blasts

Analysts use three main criteria to manually discriminate quarry blasts from earth-
quakes: their proximity to known blasting sites, their occurrence within daylight hours, and
the similarity of their waveforms to those of previous quarry blasts in the area (Voyles et
al., 2019). All three were among the most discriminant features for classifier 2 (Figure 4),
but they were not alone. The epicentre’s latitude, longitude, and distance to the near-
est city allowed better quarry blast prediction accuracy than the distance to the nearest
quarry alone. Instead of comparing each waveform to previous ones from known blast sites
(too time consuming) we encapsulated waveform shape by calculating the skewness of the
4-20 Hz filtered seismogram. The three analyst criteria discussed here, though powerful,
were insufficient by themselves, because natural earthquakes also occur near quarries during
working hours and quarry-blast signals can vary with even slight ray-path changes (Dickey
et al., 2019).

We improved matters by adding a feature that coded the variance of the discrete Fourier
transform amplitudes, and therefore detected the narrower frequency spectrum and spectral
scalloping typical of blast-related signals (Kortstrom et al., 2016). Compared to earthquakes
of similar magnitude, quarry blasts generate longer duration coda waves (Koper et al., 2016)
and have higher low-frequency surface-wave amplitudes (Musil & Plesinger, 1996) because
of the shallowness of their source depth. Earthquakes that occur at shallow depths share
these characteristics, but generate a higher proportion of high-frequency S-wave energy than
quarry blasts, giving a small role to features that encode the P-to-S wave spectral ratios and
the ratio of vertical to horizontal peak ground acceleration (Fereidoni & Atkinson, 2017).

LLLEL .
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Figure 4. Relative importance of best features for classifier 2. The features belonging to group
A and B give information on potential candidates for being quarry blasts (their epicenter position
within or very near a blasting site, its occurrence on working days and daylight hours). The signal-
related features (groups C to G) validate or invalidate the preceding diagnostic using information
on the spectral frequency content (group C), the waveform shape (group D: SignalSkewness4-20Hz
and SignalKurtosis4-20Hz) and the wavefield properties (surface waves: group D -SignalEnergy6-
9Hz/1-5Hz, SignalEnergy3-6Hz/20-50Hz, SurfZHratioMax10- and group E; P- and S-waves: group
F and group G). See Table S1 for more detailed feature description.
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The performance of classifier 2 is shown in Table 3. The classifier obtained high scores in
both testing mode and operational mode, with a precision between 94.7 and 96.6% and a F-
Measure score between 0.95 and 0.96. It identified incorrectly just over 3-4% of earthquakes
and 4-5% of quarry blasts. When attempting to classify the few false events incorrectly la-
beled by the first classifier (118 out of over 46 560), it split them equally between earthquakes
and quarry blasts. We manually checked the misclassified earthquakes and quarry blasts.
The misclassified earthquakes were located near blasting sites, occurred in working hours,
and had low frequency variance. Most of their waveforms were similar to those associated
with quarry blasts. Almost half the misclassified earthquakes had high P/S spectral ratios
and some of them had high surface magnitude values, probably due to the shallowness of
their sources. The misclassified quarry blasts had more high frequency content, potentially
due to the nature of the extracted material (very competent rocks such as basalt, gabbro,
or rhyodacite), and were difficult to classify manually. The locations of earthquakes and
quarry blasts predicted by classifier 2 for both modes are shown in figures S4 and S5.

Table 3. Confusion matrix and classification metrics® for the earthquake vs quarry blast classifier

Testing mode Operational mode
Predicted quake Predicted blast | Predicted quake Predicted blast

Expected quake 558 £+ 2 18 + 2 620 £+ 2 26 + 2

Expected blast 20 + 2 421 + 2 35+ 3 630 £+ 3
Specificity (%) 95.54 + 0.49 94.76 + 0.34
Sensitivity (%) 96.90 + 0.36 96.04 + 0.30
Precision (%) 96.60 + 0.36 94.68 + 0.33
F-Measure 0.966 + 0.002 0.953 + 0.002

@ Specificity: the correctly predicted quarry blast rate (i.e. the ratio of true negatives to true
negatives plus false positives). Sensitivity: the correctly predicted earthquake rate (i.e. the ratio
of true positives to true positives plus false negatives). Precision: the proportion of correctly
predicted earthquakes relative to all true positive detections (i.e. the ratio of true positives to
true positives plus false positives. F-Measure: a summary statistic that combines precision and

sensitivity (2 X precision X sensitivity/(precision + sensitivity)).

Figure 3b,c shows the prediction probability distributions for the expected earthquakes
and quarry blasts in operational mode (see Figure S6 for testing mode). Confusion between
earthquakes and quarry blasts was due in large part to very shallow earthquakes, earthquakes
that occurred close to quarries or in urban environments, or the false events let through by
classifier 1.

Probability values allow analysts to streamline their operational processes. In our 4-
month operational dataset, almost 80% of misclassified quarry blasts, 85% of misclassified
earthquakes, nearly 70% of false events, and more than half of the manually unclassifiable
events had probabilities between 0.3 and 0.7 (Figure 3). If analysts concentrated on re-
visiting events in this probability range, they would screen just over 30% of the events let
through by classifier 1 and have to correct about one in three events screened. This works
out to 6-7 events that need to be screened per day, compared to 582 events per day if
no machine-learning classifier were available. At the end of the human-assisted machine-
learning procedure (enhanced detection, followed by the two classifiers, followed by manual
screening) only 1% of the events would be manually re-tagged and the final catalog would
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contain only 1% of misclassified quarry blasts, 0.5% of misclassified earthquakes, and 0.08%
of false events.

4 DISCUSSION

The hybrid approach we designed involved a strong partnership between humans and
machine-learning algorithms that improved their respective performances. From an opera-
tional standpoint, machine-learning classifiers can reduce the number of events that require
manual discrimination. This is particularly important where the number of expected false
events and/or anthropogenic events is high (in our case because we lowered the network’s
detection threshold in order to lower the regional completeness magnitude), as classifiers can
eliminate the cry wolf effect caused by false alarm fatigue and help reduce the number of
missed real events (Heldt, 2015; Lim et al., 2019). Our procedure removed more than 99%
of false events from the original 48 000 detected events in a few minutes, missing fewer than
7% of earthquakes out of 14% of missed real events, whereas manual review of the same
data took several months and missed 30% of the real events. Machine-learning classifiers
can also assist analysts in making diagnoses and resolve erroneous labeling. In training
mode, classifier 2 uncovered 1.63% of mis-classified earthquakes and 2.04% of mis-classified
quarry-blasts in the manually labeled training set, comparable to the proportion of mis-
labeled events in other catalogs (e.g Utah catalog, Linville et al., 2019). Adding manual
review of the uncertain classifications using the probability information would then result
in even cleaner catalogs.

However, human input should not be relegated simply to checking the output of the
machine-learning classifiers. Recent studies have underscored the strong link between the
validity of classifiers and their interpretability (Rudin, 2019; J. Li et al., 2020). To help
detect and avoid biases in the classifiers, especially where the number of training samples
is small, such as in seismic discrimination problems like ours, we need humans to use their
domain expertise to assist in selecting features and validating models.

Some features that seem at first glance to be good candidates for driving event classi-
fication turn out to be irrelevant, and we need domain-level knowledge to understand why.
We found that features related to absolute event locations should not be relied upon too
heavily, as they can have large uncertainties due to poor knowledge of the seismic velocity
structures. Furthermore, we confirmed that in a geological context ruled by heterogeneities,
sharp lateral discontinuities, and path effects, features that code for the signal’s envelope
discriminate poorly between earthquakes and quarry blasts.

Without knowing why and how a classification model works, it is difficult to know
when it will fail, to which seismic event subgroups it applies, and how it can advance our
understanding of the mechanisms underlying event classification performance (Kohoutova
et al., 2020). We chose to implement Random Forest classifiers because they give direct
access to the sequences in which the features are taken into account by the decision trees
they are made from. These sequences strongly influence the final outcome. For example,
we found that classifier 1 trees that used location-related features (number and quality of
picks, epicentral uncertainties etc.) to perform the bulk of the classification and waveform-
related features to refine it performed better than the trees that used the same features
in inverse order (see Figure S7 in the electronic supplement to this article). Man-made
signals carry ample energy in the 1-10-Hz frequency band often used to observe regional
seismic signals in urban environments (Inbal et al., 2018; Poli et al., 2020). This overlap in
frequency content and amplitude makes it difficult to use signal-related features as primary
predictors. Another example concerns classifier 2: its decision trees first split events into
geographically dependent daylight vs non-daylight groups, then refined each group based on
its waveform features (see Figures S8 and S9 in the electronic supplement to this article).
This correlates with previously noted regional variabilities in the effectiveness of signal
discriminants (Baumgardt & Young, 1991; Tibi et al., 2019).
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We analysed several tens of trees out of the 500 in each classifier, which allowed us to
validate or invalidate some choices made by the Random Forest algorithm’s recursive feature
selection, and remove certain features entirely. The refined classifiers generalised better
than the original versions, and improved their predictions for data taken from an entirely
different study area (the Pyrenees region). Even finer understanding and refinement of the
classification rules would require analysing the entire forest using automated methods and
tools (Lapuschkin et al., 2019; Lundberg et al., 2020; Samek, 2020).

Because no previous studies have combined a false vs real event classifier with a quake
vs blast classifier, we compare our two classifiers separately to those documented in the
literature. Additional validation for machine-learning classifiers can be provided by the
geophysical plausibility of their classification rules (Kohoutova et al., 2020).

Our finding that the number of phases used for an event location is a strong discrimina-
tor between false and real events was previously noted by Draelos et al. (2012), who found
that this single feature could be used to correctly classify 76% of the events at the Inter-
national Data Center. We also agree with Draelos et al. (2012) that the lowest slowness
residual, the lowest slowness uncertainty and the highest signal-to-noise ratio contribute
significantly to false event vs real event discrimination. Some studies in earthquake early
warning exploited signal impulsivity measured through kurtosis or skewness to distinguish
large earthquakes from noise in the Western U.S. (Meier et al., 2019). However we found
these features less useful in our moderate-seismicity context because many of our noise
sources generated impulsive, transient signals with amplitudes similar to many earthquakes
(Westfall, 2014). Instead, we found that polarisation features, such as the degree of planarity
of the surface wave-field, helped improve classifier 1 because they are highly correlated with
the source depth, as previously observed by Chouet et al. (1997) and Mousavi et al. (2016).
Many of the best features retained by our quake vs blast classifier were also used in previ-
ous studies: the daytime hours discriminant was used in Switzerland, Alaska, and western
United States by Wiemer and Baer (2000) and in South Africa by Zaliapin and Ben-Zion
(2016); spectral parameters as well as spectral ratios were used in Southern California, USA
by Allmann et al. (2008) and in Turkey by (Kuyuk et al., 2011); ground motion parameters
were used in US western Alberta by Fereidoni and Atkinson (2017), surface-wave magnitude
was used in Italy by Bonner et al. (2011), and the change in coda energy was used in Utah,
USA by Koper et al. (2016).

5 CONCLUSION

We implemented two Random Forest classifiers that can be integrated into the Seis-
comP3 workflow of the French seismic monitoring center BCSF-RéNaSS, allowing us to
lower the detection threshold of the network without analysts being overwhelmed by the
increase in the number of false detections. When run in an operational setting, our sys-
tem detected more small earthquakes and quarry-blasts while requiring direct input from
analysts for fewer than 1% of the events, and led to a final catalog containing only 1% of
misclassified quarry blasts, 0.5% of misclassified earthquakes, and 0.08% of false events.

As suggested by many recent studies (Alber et al., 2019; Kong et al., 2019; Tibi et
al., 2019; Kohoutova et al., 2020; J. Li et al., 2020; Lundberg et al., 2020), we have pre-
ferred a hybrid approach that integrates humans in the system at all levels of the machine-
learning implementation, including feature selection, model refinement, and decision making
on events for which the classifier predictions are uncertain. We believe such close human-
machine integration is necessary to provide optimal classification results, especially in fields,
such as seismic discrimination, where natural variability of events is high but sample sizes
for training are low.
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s 6 DATA AND RESOURCES

375 This work included data from the permanent seismic networks operated by the French
376 seismological and geodetic network (RESIF), the Swiss Seismological Service (SED), the
377 German Research Center for Geosciences in Potsdam (GFZ), the German State Office

78 of Geology, Natural Resources and Mining of Freiburg (LGRB), and the Royal Observa-
379 tory of Belgium (ROB) as well as AlpArray temporary seismic network Z3 (Hetényi et al.,
380 2018; AlpArray Seismic Network, 2015). The waveform data are available through EIDA
381 (http://www.orfeus-eu.org/eida, last accessed September 2019). The catalog used for train-
382 ing and testing phases is provided by the French National Service of Observation (BCSF-
383 RéNaSS) and available using a FDSN protocol (http://renass.unistra.fr, last accessed July

384 2020). The catalog produced in operational mode is a currently unpublished catalog of
385 the wide region surrounding the Upper Rhine Graben area, but is available upon request.
386 The quarry database is also a currently unpublished database and available upon request.

387 Some features are provided by the French geological survey (BRGM) and available via a
388 web feature service (http://geoservices.brgm.fr/odmgm, last accessed July 2019). All data

389 processing used in the study is made under the SeisComP3 framework. All SeisComP3
390 modules were written in Python (feature extraction, classification, event labeling and false
391 event removal) and can be fully integrated in the SeisComP3 monitoring system. The codes
302 can be available upon request.

303 7 AKNOWLEDGMENTS

394 We would like to acknowledge the High Performance Computing (HPC) center of the
395 University of Strasbourg for supporting this work by providing scientific support and ac-
396 cess to computing resources. Part of the computing resources were funded by the Equipex
307 Equip@Meso project (Programme Investissements d’Avenir) and the CPER Alsacalcul /Big
398 Data. We acknowledge the operation of the AlpArray temporary seismic network Z3

300 (Hetényi et al., 2018; AlpArray Seismic Network, 2015), which is part of the project
400 AlpArray-FR funded by Agence Nationale de la Recherche (contract ANR-15-CE31-0015).
201 We warmly thank Clément Grellier for his guidance in the world of SeisComP3 and HPC. We
a02 acknowledge funding from the LABEX ANR-11-LABX-0050-G-EAU-THERMIE-PROFONDE.

403

204 References

405 Alber, M., Buganza Tepole, A., Cannon, W. R.; De, S., Dura-Bernal, S., Garikipati, K., ...

406 Kuhl, E. (2019). Integrating machine learning and multiscale modeling—perspectives,
a07 challenges, and opportunities in the biological, biomedical, and behavioral sciences.
408 npj Digital Medicine, 115(2). doi: 10.1038/s41746-019-0193-y

409 Allmann, B. P., Shearer, P. M., & Hauksson, E. (2008). Spectral discrimination between
a10 quarry blasts and earthquakes in southern california. Bulletin of the Seismological
a Society of America, 98(4), 2073-2079. doi: 10.1785/0120070215

a2 AlpArray Seismic Network. (2015). AlpArray Seismic Network (AASN) Temporary Com-
a3 ponent, AlpArray Working Group. doi : 10.12686/alparray/z32015.

a1 Arrowsmith, S., Euler, G., Marcillo, O., Blom, P., Whitaker, R., & Randall, G. (2014).
a1 Development of a robust and automated infrasound event catalogue using the interna-
416 tionalmonitoring system. Geophysical Journal International, 200(3), 1411-1422. doi:
a7 101093/gj1/ggu486

a1 Arrowsmith, S., Young, C., & Pankow, K. (2018). Implementation of the waveform cor-
419 relation event detection system (wceds) method for regional seismic event detection
20 in utah. Bulletin of the Seismological Society of America, 108(6), 3548-3561. doi:
21 10.1785/0120180097

2 Baumgardt, D. R., & Young, G. B. (1991). Regional seismic waveform discriminants and
23 case-based event identification using regional arrays. Bulletin - Seismological Society

—15—



424

426

427

428

429

430

431

432

433

449

450

451

452

453

454

455

456

457

458

459

460

462

463

464

465

466

467

468

469

470

478

of America, 80(6), 1874-1892.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13, 281-305.

Bezada, M. J.; & Smale, J. (2019). Lateral variations in lithospheric mantle structure
control the location of intracontinental seismicity in australia. Geophysical Research
Letters, 46(22). doi: 10.1029/2019GL084848

Bonner, J. L., Stroujkova, A., & Anderson, D. (2011). Determination of love-and rayleigh-
wave magnitudes for earthquakes and explosions. Bulletin of the Seismological Society
of America, 101(6), 3096-3104. doi: 10.1785/0120110131

Breiman, L. (2001). Random forests. Machine Learning. doi: 10.1023/A:1010933404324

Brodsky, E. E. (2019). The importance of studying small earthquakes. Science, 364 (6442),
736-737. doi: 10.1126/science.aax2490

Chouet, B., Saccorotti, G., Martini, M., Dawson, P., De Luca, G., & Milana, G. (1997).
Source and path effects in the wave fields of tremor and explosions at stromboli volcano,
italy. Journal of Geophysical Research: Solid Earth, 102(BT7), 15129-15150. doi:
10.1029/97JB00953

Coviello, V., Arattano, M., Comiti, F., Macconi, P., & Marchi, L. (2019). Seismic
characterization of debris flows: Insights into energy radiation and implications for
warning. Journal of Geophysical Research: Earth Surface, 124(6), 1440-1463. doi:
10.1029/2018JF004683

Diaz, J., Ruiz, M., Sdnchez-Pastor, P. S., & Romero, P. (2017). Urban seismology: On the
origin of earth vibrations within a city. Scientific Reports, 7(15296). doi: 10.1038/
$41598-017-15499-y

Dickey, J., Borghetti, B., Junek, W., & Martin, R. (2019). Beyond correlation: A path-
invariant measure for seismogram similarity. Seismological Research Letters, 91(1),
356-369. doi: 10.1785,/0220190090

Dowla, F. U., Taylor, S. R., & Anderson, R. W. (1990). Seismic discrimination with
artificial neural networks: preliminary results with regional spectral data. Bulletin -
Seismological Society of America, 80(5), 1346-1373.

Draelos, T. J., Peterson, M. G., Knox, H. A., Lawry, B. J., Phillips-Alonge, K. E., Ziegler,
A.E., ... Faust, A. (2018). Dynamic tuning of seismic signal detector trigger levels for
local networks. Bulletin of the Seismological Society of America, 108(3), 1346-1354.
doi: 10.1785/0120170200

Draelos, T. J., Procopio, M. J., Lewis, J. E., & Young, C. J. (2012). False event screening
using data mining in historical archives. Seismological Research Letters, 83(2), 267—
274. doi: 10.1785/gssrl.83.2.267

Drouin, A., Letarte, G., Raymond, F., Marchand, M., Corbeil, J., & Laviolette, F. (2019).
Interpretable genotype-to-phenotype classifiers with performance guarantees. Scien-
tific Reports, 9(4071). doi: 10.1038/s41598-019-40561-2

Fereidoni, A., & Atkinson, G. M. (2017). Discriminating earthquakes from quarry blasts
based on shakemap ground-motion parameters. Bulletin of the Seismological Society
of America, 107(4), 1931-1939. doi: 10.1785/0120160308

Gallen, S. F., & Thigpen, J. R. (2018). Lithologic controls on focused erosion and intraplate
earthquakes in the eastern tennessee seismic zone. Geophysical Research Letters, 45,
9569-9578. doi: 10.1029/2018GL079157

Gennatas, E. D., Friedman, J. H., Ungar, L. H., Pirracchio, R., Eaton, E., Reichmann,
L. G., ... Valdes, G. (2020). Expert-augmented machine learning. Proceedings of the
National Academy of Sciences of the United States of America, 117(9), 4571-4577.
doi: 10.1073/pnas.1906831117

Gregorutti, B., Michel, B., & Saint-Pierre, P. (2017). Correlation and variable importance
in random forests. Statistics and Computing, 27(3), 659-678.

Heldt, T. (2015). Beep, beeep, beeeep, beeeeeep. Science Translational Medicine, 810(7).
doi: 10.1126/scitranslmed.aad4451

Hetényi, G., Molinari, I., Clinton, J., Bokelmann, G., Bondar, I., Crawford, W. C., ...
Zieke, T. (2018). The alparray seismic network: A large-scale european experiment

—16—



479

480

481

482

483

484

486

487

488

489

490

491

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

to image the alpine orogen. Surveys in Geophysics, 39(5), 1009-1033. doi: 10.1007/
s10712-018-9472-4

Inbal, A., Cristea-Platon, T., Ampuero, J. P., Hillers, G., Agnew, D., & Hough, S. E. (2018).
Sources of long-range anthropogenic noise in southern california and implications for
tectonic tremor detection. Bulletin of the Seismological Society of America, 108(6),
3511-3527. doi: 10.1785/0120180130

Kohoutova, L., Heo, J., Cha, S., Lee, S., Moon, T., Wager, T. D., & Woo, C.-W. (2020).
Toward a unified framework for interpreting machine-learning models in neuroimaging.
Nature Protocols, 15(4), 1399-1435. doi: 10.1038/s41596-019-0289-5

Kong, Q., Trugman, D. T., Ross, Z. E., Bianco, M. J., Meade, B. J., & Gerstoft, P. (2019).
Machine learning in seismology: Turning data into insights. Seismological Research
Letters, 90(1), 3-14. doi: 10.1785/0220180259

Koper, K. D., Pechmann, J. C., Burlacu, R., Pankow, K. L., Stein, J., Hale, J. M., ...
McCarter, M. K. (2016). Magnitude-based discrimination of man-made seismic events
from naturally occurring earthquakes in utah, usa. Geophysical Research Letters,
43(20), 10638-10645. doi: 10.1002/2016GL070742

Kortstrom, J., Uski, M., & Tiira, T. (2016). Automatic classification of seismic events
within a regional seismograph network. Computers and Geosciences, 87, 22-30. doi:
10.1016/j.cageo.2015.11.006

Kuyuk, H. S., Yildirim, E., Dogan, E., & Horasan, G. (2011). An unsupervised learning
algorithm: Application to the discrimination of seismic events and quarry blasts in
the vicinity of istanbul. Natural Hazards and Earth System Science, 11(1), 93-100.
doi: 10.5194/nhess-11-93-2011

Lapuschkin, S., S., W., Binder, A., Montavon, G., Samek, W., & Miiller, K.-R. (2019).
Unmasking clever hans predictors and assessing what machines really learn. Nature
Communications, 10(1096). doi: 10.1038/s41467-019-08987-4

Leclere, H., & Calais, E. (2019). A parametric analysis of fault reactivation in the new
madrid seismic zone: The role of pore fluid overpressure. Journal of Geophysical
Research: Solid Earth, 124(10), 10630-10648. doi: 10.1029/2018JB017181

Levandowki, W., Herrmann, R. B., Briggs, R., O., B., & R., G. (2018). An updated stress
map of the continental united states reveals heterogeneous intraplate stress. Nature
Geoscience, 11, 433-437. doi: 10.1038/s41561-018-0120-x

Li, J., Liu, L., Le, T. D, & Liu, J. (2020). Accurate data-driven prediction does not
mean high reproducibility. Nature Machine Intelligence, 2, 13-15. doi: 10.1038/
$42256-019-0140-2

Li, Z., Meier, M. A., Hauksson, E., Zhan, Z., & Andrews, J. (2018). Machine learning
seismic wave discrimination: Application to earthquake early warning. Geophysical
Research Letters, 45(10), 4773-4779. doi: 10.1029/2018GL0O77870

Lim, J. R., Liu, B. F., & Egnoto, M. (2019). Cry wolf effect? evaluating the impact of
false alarms on public responses to tornado alerts in the southeastern united states.
Weather, Climate, and Society, 11(3), 549-563. doi: 10.1175/WCAS-D-18-0080.1

Lindenbaum, O., Rabin, N., Bregman, Y., & Averbuch, A. (2017). Multi-channel fusion for
seismic event detection and classification. In 2016 ieee international conference on the
science of electrical engineering, icsee 2016. doi: 10.1109/ICSEE.2016.7806088

Linville, L., Pankow, K., & Draelos, T. (2019). Deep learning models augment analyst
decisions for event discrimination. Geophysical Research Letters, 46(7), 3643-3651.
doi: 10.1029/2018GL081119

Lundberg, S., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., ... S.-I.; L.
(2020). From local explanations to global understanding with explainable ai for trees.
Nature Machine Intelligence, 2, 56—67. doi: 10.1038/s42256-019-0138-9

Maggi, A., Ferrazzini, V., Hibert, C., Beauducel, F., Boissier, P., & Amemoutou, A. (2017,
April). Implementation of a Multistation Approach for Automated Event Classification
at Piton de la Fournaise Volcano. Seismological Research Letters, 88(3), 878-891.

McBrearty, I. W., Delorey, A. A., & Johnson, P. A. (2019). Pairwise association of seismic
arrivals with convolutional neural networks. Seismological Research Letters, 90(2).

—17—



534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

doi: 10.1785/0220180326

Meier, M. A., Ross, Z. E., Ramachandran, A., Balakrishna, A., Nair, S., Kundzicz, P., ...
Yue, Y. (2019). Reliable real-time seismic signal/noise discrimination with machine
learning. Journal of Geophysical Research: Solid Earth, 124(1), 788-800. doi: 10
.1029/2018JB016661

Mousavi, S. M., Horton, S. P., Langston, C. A., & Samei, B. (2016). Seismic features and
automatic discrimination of deep and shallow induced-microearthquakes using neural
network and logistic regression. Geophysical Journal International, 207(1), 29-46.
doi: 10.1093/gji/ggw258

Musil, M., & Plesinger, A. (1996). Discrimination between local microearthquakes and
quarry blasts by multi-layer perceptrons and kohonen maps. Bulletin of the Seismo-
logical Society of America, 86(4), 1077-1090.

Olivieri, M., & Clinton, J. (2012). An almost fair comparison between earthworm and
seiscomp3. Seismological Research Letters, 83(4), 720-727. doi: 10.1785/0220110111

Onagawa, R., Shinya, M., Ota, K., & Kudo, K. (2019). Risk aversion in the adjustment of
speed-accuracy tradeoff depending on time constraints. Scientific Reports, 9(1), 1-12.
doi: 10.1038/s41598-019-48052-0

ORourke, C. T., Baker, G. E., & Sheehan, A. F. (2016). Using p/s amplitude ratios
for seismic discrimination at local distances. Bulletin of the Seismological Society of
America, 106(5), 2320-2331. doi: 10.1785/0120160035

Patel, B. N., Rosenberg, L., Willcox, G., Baltaxe, D., Lyons, M., Irvin, J., ... Lungren, M. P.
(2019). Human-machine partnership with artificial intelligence for chest radiograph
diagnosis. npj Digital Medicine, 2(1), 1-10. doi: 10.1038/s41746-019-0189-7

Perol, T., Gharbi, M., & Denolle, M. (2018). Convolutional neural network for earthquake
detection and location. Science Advances, 4(2), 1-8. doi: 10.1126/sciadv.1700578

Poli, P., Boaga, J., Molinari, 1., Cascone, V., & Boschi, L. (2020). The 2020 coronavirus
lockdown and seismic monitoring of anthropic activities in northern italy. Scientific
Reports, 10(9404). doi: 10.101038/s41598-020-66368-0

Ross, Z. E., Meier, M.-A., & Hauksson, E. (2019). P wave arrival picking and first-motion
polarity determination with deep learning. Journal of Geophysical Research: Solid
Earth, 123(6), 5120-5129. doi: 10.1029/2017JB015251

Ross, Z. E., Trugman, D. T., Hauksson, E., & Shearer, P. M. (2019). Searching for
hidden earthquakes in southern california. Science, 364 (6442), 767-771. doi: 10.1126/
science.aaw6888

Rouet-Leduc, B., Hulbert, C., & Johnson, P. A. (2019). Continuous chatter of the cascadia
subduction zone revealed by machine learning. Nature Geoscience, 12(1), 75-79. doi:
10.1038/s41561-018-0274-6

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence, 1, 206—
215. doi: 10.1038/s42256-019-0048-x

Samek, W. (2020). Learning with explainable trees. Nature Machine Intelligence, 2, 16-17.
doi: 10.1038/s42256-019-0142-0

Schaumberg, A. J., Juarez-Nicanor, W. C., Choudhury, S. J., Pastrian, L. G., Pritt, B. S.,
Prieto-Pozuelo, M., ... Fuchs, T. J. (2020). Interpretable multimodal deep learning for
real-time pan-tissue pan-disease pathology search on social media. Modern Pathology.
doi: 10.1038/s41379-020-0540-1

Sparks, R. S., Biggs, J., & Neuberg, J. W. (2012). Monitoring volcanoes. Science, 335(6074),
1310-1311. doi: 10.1126/science.1219485

Tibi, R., Linville, L., Young, C., & Brogan, R. (2019). Classification of local seismic events
in the utah region: A comparison of amplitude ratio methods with a spectrogram-
based machine learning approach. Bulletin of the Seismological Society of America,
109(6), 2532-2544. doi: 10.1785/0120190150

Tiira, T. (1999). Detecting teleseismic events using artificial neural networks. Computers
and Geosciences, 25(8), 929-939. doi: 10.1016/S0098-3004(99)00056-4

Voyles, J. R., Holt, M. M., Hale, J. M., Koper, K. D., Burlacu, R., & Chambers, D. J. (2019).

—18—



589

590

592

593

594

595

596

597

598

599

600

601

602

604

605

606

607

608

609

A new catalog of explosion source parameters in the utah region with application to
ml-mc-based depth discrimination at local distances. Seismological Research Letters,
91(1), 222-236. doi: 10.1785/0220190185

Wang, J., & Teng, T.-L. (1995). Artificial neural network-based seismic detector. Bulletin
- Seismological Society of America, 85(1), 308-319. doi: 10.1016/0148-9062(96)86904
-X

Westfall, P. H. (2014). Kurtosis as peakedness, 1905-2014. r.i.p. American Statistician,
68(3), 191-195. doi: 10.1080/00031305.2014.917055

Wiemer, S., & Baer, M. (2000). Mapping and removing quarry blast events from seismicity
catalogs. Bulletin of the Seismological Society of America, 90(2), 525-530. doi: 10
.1785/0119990104

Yeck, W. L., Patton, J. M., Johnson, C. E., Kragness, D., Benz, H. M., Earle, P. S., ...
Ambruz, N. B. (2019). Glass3: A standalone multiscale seismic detection associator.
Bulletin of the Seismological Society of America, 109(4), 1469-1478. doi: 10.1785/
0120180308

Zaliapin, 1., & Ben-Zion, Y. (2016). Discriminating characteristics of tectonic and human-
induced seismicity. Bulletin of the Seismological Society of America, 106(3), 846-859.
doi: 10.1785/0120150211

Zhu, W.; & Beroza, G. C. (2019). Phasenet: A deep-neural-network-based seismic arrival-
time picking method. Geophysical Journal International, 216(1), 261-273. doi: 10

1093 /gji/gey423

—19—



5.3. UTILISER LA FONCTION DE PREDICTION OPTIMALE ET
EVALUER SA PERFORMANCE FINALE

5.3.2 Supplément de ’article

Alexandra Renouard CHAPITRE 5. 289



SUPPLEMENTAL MATERIAL

Title: Monitoring Regional Seismicity using Hybrid Intelligence

Authors: Alexandra Renouard, Alessia Maggi, Marc Grunberg, Cécile Doubre,
Clément Hibert

The supplement includes one table and 9 figures :

« 1) the description of the 361 features initially used to create the automatic machine-
learning classification rules (Table S1); page 2

* 2) the study area and the distribution of the station network used (Figure S1); page
4

+ 3) the optimised detection and post-detection procedure developed to detect small
earthquakes (figure S2); page 5

+ 4) the geographical locations of the training data, the testing data and the oper-
ational data (Figures S3, S4 and S5) page 6;

+ 5) the distribution of prediction probabilities for classifiers 1 and 2 in testing mode
(Figure S6) page 9;

* 6) the visualization of a simplified part of a decision tree for each classifier: clas-
sifier 1 (Figure S7) and classifier 2 (Figure S8 + its map projection Figure S9) page
10.



Table S1. Feature description. (separate file (TableS1.pdf) containing the details of
the 361 features initially used for classifier training). References cited for some features

: surface magnitudes (Bonner et al., 2006, onner et al., 2006; Russel, 2006, ussel, 2006; Selby,
2001, elby, 2001), coda magnitudes (Holt et al., 2019, olt et al., 2019; Koper et al., 2016, oper

et al., 2016), ratio of vertical to horizontal amplitudes in Rayleigh waves (Tanimoto and Rivera,
2008, animoto and Rivera, 2008), polarization analysis (Jurkevics, 1988, urkevics, 1988; Vidale,
1986, idale, 1986), complexity measure (Batista et al., 2014, atista et al., 2014), spectral centroid
(Tzanetakis and Cook, 2002, zanetakis and Cook, 2002), spectrogram features (Provost et al.,
2017, rovost et al., 2017), empirical mode decomposition and Hilbert spectrum (Huang et al.,

1998, uang et al., 1998).
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Figure S2. SeisComP3 optimised detection and post-detection procedure. (a) We improved
the quality of the automatic P- and S-arrival time picking by implementing multiple picker in-
stances that account for the space-time-varying noise characteristics of individual stations. We
also increased the sensitivity of the STA/LTA pick triggers. (b) We enhanced the pick associ-
ation process (process of grouping together phase arrival picks to create and locate an origin)

by implementing multiple pick associator instances that account for the space-varying velocity
characteristics of the seismic wave propagation medium. This helps to decrease misdetections
(actual seismic origins including some non-seismic picks in their association). (c) The origins
derived from the pick associators are fed into an event associator algorithm that grouped all the
origins for each event and designated a preferred one. To address the remaining misdetections,
we designed a first SeisComP3 post-detection module that automatically impedes a misdetec-
tion to be a preferred origin. If most of the misdetections are discarded, many false detections
(pick association caused by noise or glitches) continue to be processed and overwhelm the event
alert system. To discriminate between false detections and true detections, we implemented two
machine-learning classifiers within a second SeisComP3 post-detection module. This modules ex-
tracts the best features (d) then discriminates between false detections, earthquakes, and quarry

blasts (e). False detections are automatically removed from the database.
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Figure S3. Locations of manually classified real and false events making up the training
set (a) compared to the locations of automatically classified real and false events coming from
the testing set (b). The events misclassified by classifier 1 are represented with blue diamonds

whereas the correctly classified events appeared in white circles.
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Figure S4. Locations of manually classified earthquakes and quarry blasts making up the
training set (a) compared to the locations of automatically classified earthquakes and quarry
blasts coming from the testing set (b). The events misclassified by classifier 2 are represented

with blue diamonds whereas the correctly classified events appeared in white circles.
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alternate with the signal-related features, shaded in grey. Each partition in the tree (i.e. the tree
node) is created from a feature value threshold. For instance, the first tree node corresponds to
the question: “is the number of phases lower than 7.57”. The two answers (true, false) create
two branches in the tree (a split). If the answer is true, the left branch of the tree is concerned;
if false, it is the right branch. The procedure continues iteratively, until a decision tree hyper-
parameter criteria is reached (i.e. maximum depth of the tree or minimum number of samples
reached at a partition). The final partitions shaded in yellow (i.e. the leaves) make the final

predictions (RE= real event, FE=false event).
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Figure S8. Simplified part of a decision tree (tree A + tree B) randomly extracted from the

classifier 2. This decision tree extract was color-coded by geographical sub-region. Each geo-

graphical sub-region is delimited by the Latitude and Longitude threshold values (white rectangle
outlined in black). Each geographical color group corresponds to a combination of specific signal-
related features values that are used to discriminate the earthquake and quarry blast populations

inside it (QB= quarry blast, EQ= earthquake.
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Figure S9. Map projection of each color-coded geographical sub-region represented in the

Figure S10. Each sub-region is defined by an ensemble of features used to predict earthquakes

and quarry blasts inside it. The dotted lines correspond to the Latitude and Longitude threshold

values used in the aforementioned tree to delimit the sub-geographical regions.
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5.3. UTILISER LA FONCTION DE PREDICTION OPTIMALE ET
EVALUER SA PERFORMANCE FINALE

5.3.3 Tableau des 361 attributs
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Nbr Short name Description Formula
Event parameters
Origin quality
1 PhasesUsed Number of phases used -
2 StationsUsed Number of stations used -
\/ S (D res2)
3 StandardError Standard error N )
N number of residual values and
res=residual value
4 MinEpicentralDist Mmlmgm epicentral -
distance
5 MaxEpicentral Dist MaXIml.lm epicentral -
distance
6 MeanEpicentralDist Mean epicentral distance -
7 MedianEpicentral Dist Medlap epicentral -
distance
. . Epicentral Distance
8 Epicentral DistSTD Standard Deviation
9 AzimuthalGap Azimuthal gap -
10 ResidualMean Residual mean -
11 ResidualMedian ResidualMedian -
12 ResidualStandardDeviatio Residual standard
n deviation
13 Residual Variance Residual variance -
14 ResidualMin Residual minimum -
15 ResidualMax Residual maximum -
Absolute number of
16 ClosestStationNumber closest stations used to -
create the origin
Proportion of closest
17 | ClosestStationProportion | stations relative the total -
number of stations used




Nbr Short name Description Formula
Picks
18 SPicks Number of S picks -
. . Proportion of S picks
19 SPickProportion relative to the total picks i
20 OnlyS Number Qf isolated S i
picks
21 PSindice Proportion of_ associated i
P-S picks
Correlation Coefficient
22 PSDiffDistCorr  between P-5 time i
difference and epicentral
distance
23 PSDiffVariance P-5 time difference .
variance
Correlation Coefficient
24 OnsetTime-Dist-Corr between -

first onset time and
epicentral distance

Origin uncertainty

25 LongUncertainty Longitude uncertainty -
26 LatUncertainty Latitude uncertainty -
Circular confidence
27 HorUncertainty reston given b.y single -
value of horizontal
uncertainty
28 MinHorUncertainty Seml‘-rnmor axis of -
confidence ellipse
29 MaxHorUncertainty Seml'- fnajor axis o -
confidence ellipse
Azimuth of major axis
30 MaxAzUncertainty of confidence ellipse -

(positive to the East)




Nbr

Short name

Description

Formula

Origin position

Distance to nearest

31 NearestQuarryDist quarry -
32 NearestMineDist DlStaI?C? to qearest -
mining site
33 NearestCityDist Distance to the nearest i
city
34 | NearestGeothermalDist Distance to the nearest -
geothermal power plant
35 NearestQuarryID Name of nearest quarry -
36 NearestMinelD Name of nearest mine -
37 NearestCityID Name of the nearest city -
38 NearestGeothermallD Name of nearest -
geothermal power plant
39 NearestQuarryAz Azimuth of the nearest i
quarry
40 NearestMineAz Azimuth of the nearest i
mine
41 NearestGeothermal Az Azimuth of the nearest -
geothermal power plant
a0 NearestCityAz Azimuth of the nearest i
city
43 Longitude Origin Longitude -
44 Latitude Origin Latitude -
45 Depth Origin Depth -
46 CentroidDeviation Origin deviation from -

the centroid of stations

Origin time

47 Daytime Time of the day hour+minute/60+second/3600
0 = Sunday, 1= Monday, 2= Tuesday,
48 Weekday Day of the week 3= Wednesday, 4= Thursday, 5=

Friday, 6= Saturday



Nbr

Short name

Description

Formula

Origin magnitude

Vertical-component

49 MLvValue local magnitude
=0 MI Value Three-comp.onent local
magnitude
51 | MaxAmplitudeMean Mamm‘;\r/[“e;mphmde ML= log(A)—log(A0)
A = Wood-Anderson amplitude
52 | MaxAmplitudeVariance Maxunum‘ Amplitude AO0= empirical calibration function
Variance
Correlation coefficient
. . maximum
53 AmplitudeDistCorr amplitude/epicentral
distance
163 SurfaceME{gn_ltudeRMSS Rayleigh Surface
SurfaceMagnitudeRMs25 Magnitude RMS 8-25s Ms = s
1 . 20"
SurfaceMagnitudeMean8 log(a)+ > log (sin(A))+0.0031 <T)
64-73 s Rayleigh Surface 20
SurfaceMagnitudeMean2 | Magnitude mean 8-25s —0.66log (T)—log( fc)—0.43
> 8<T<25sec , fc<0.6/TVA
SurfaceMagnitudeMax8 Rayleigh Surface a = amplitude of the Butterworth-
74-83 - Magnitude maximum 8- | filtered surface waves (zero-to-peak)
SurfaceMagnitudeMax25 25s A= epicentral distance
SurfaceMagnitudeMin8 Rayleigh Surface T= period
84-93 . Magnitude minimum 8- fc= filter frequency of a third-order
SurfaceMagnitudeMin25 255 Butterworth bandpass filter with
corner frequencies 1/T-fc, 1/T+fc
SurfaceMagnitude Varian
94- ces- Rayleigh Surface | (Bonner et al., 2006; Russel, 2006;
103 e . Magnitude variance 8- Selby,2001)
SurfaceMagnitude Varian 25s
ce25
104 CodaAmplitude Coda amplitude
105 CodaMagnitude Coda magnitude Md= -0.87+2.0log(7)+0.389A
Difference between A T=(;0datdlir$1(zn
) = epicentral distance
106 Diffl.ocalCodaMag three C.O mponent local
magnitude and coda
magnitude (Koper et al., 2016; Holt et al., 2019)
SurfZHratioMean8 Ratio of vertical to
107- . . .
116 S horizontal amplitudes in
SurfZHratioMean25 Rayleigh waves mean %
. . a)
117 SurfZHratioMax8 h Ratlo (if Vertll‘cahto ) Z(w) = vertical amplitude
126- o OHZRO ntfl ,aﬁlp ltudes in H(w) = horizontal amplitude
SurfZHratioMax25 dyleigh waves (Tanimoto and Rivera, 2008)

maximum




Nbr

Short name

Description

Formula

Signal parameters

Polarization analysis

R (yo)
d =arct
. Azimuth of the direction arctan R(xo ))
SurfaceStrike8 .
127- o of maximum R(xo) , R(yo) =real parts of xo
136 SurfaceStrike2s polarization of Rayleigh | and yo coordinates of the eigenvector
waves 8-25s associated with the largest eigenvalue
(Vidale, 1986)
(S:arctan(\/s %EZO) -
137- SurfaceDip8 Dip of the direction of : . R(xo) ':'ER ¥ O>_
146 s maximum polarization R(x0) , J%’(yo) , R(z0) =real
SurfaceDip25 of Rayleigh waves 8-25s|  Parts of the eigenvector (x0,yo,z0)
associated with the largest eigenvalue
(Vidale, 1986)
— X2
pp=" 1 XX
SurfEllipticalComponent o PE is the ratio of the imaginary part of
8 Elliptical component of .
147- oo . the eigenvector to the real part of the
s polarization of Rayleigh .
156 . eigenvector
SurfElliptical Component waves 8-25s
X = length of the real component of
25 :
the eigenvector (x0,y0,Z0)
(Vidale, 1986)
A3+A2
SurfPolarizationStrength PS=1- 1
157- i 8 i Surface polarization Al = largest eigenvalue
166 SurfPolarizationStrength strength 8-25s A2= 1£1termed1ate‘e1genvalue
75 A3 = smallest eigenvalue
(Vidale, 1986)
PP= 1-— ﬁ
167- SurfPlanarPolarization8 Degree of planar A2
176 s polarization of Rayleigh A2= intermediate eigenvalue
SurfPlanarPolarization25 waves 8-25s A3 = smallest eigenvalue
(Vidale, 1986)
177 SmallestEigenvalue Smallest eigenvalue -
178 | IntermediateEigenvalue | Intermediate eigenvalue -
179 LargestEigenvalue Largest eigenvalue -
R (yo
Azimuth ® =arctan ( = Ei/ > ; )
Direction of maximum R R ~ real ¢
180 Azimuth polarization of signal (xo) ', R(yo) =real parts of xo

Horizontal angular
measure

and yo coordinates of the eigenvector
associated with the largest eigenvalue
(Vidale, 1986)



Nbr Short name Description Formula
Polarization analysis
Incidence 5= arctan( R(zo0) )
polasril;?lglon of o) \(/ER ()xo) 2_,_9? (y;)) 2
. ) R(xo R(yo) , R(zo) =real
181 Incidence Vertical angular parts of the eigenvector (x0,y0,20)
measure associated with the largest eigenvalue
Direction of (Vidale, 1986)
1— A2+A3
Degree of A3= srnalles2t iil envalue
182 Rectilinearity Rectilinearity . ot CIEE
of signal A2= mtermedlatg eigenvalue
A1= largest eigenvalue
(Jurkevics, 1988)
243
AL+A2
183 Planarity Degree of Planarity A3= smallest eigenvalue
of signal A2= intermediate eigenvalue
A1= largest eigenvalue
(Jurkevics, 1988)
P/S ratios
Pmax \/(PTZHCIX)2+(PTR;'ICIX)2
P over S maximum Smax \/(Siax) 2+( Sfmx) 2+< S?ax)z
PSRMS, ) ) Punax” = P-wave maximum amplitude on
PSMean, amé)ll\zt;dlewratlos : vertical component (Z)
184- PSMedian Medie’m E‘E’t Pna” = P-wave maximum amplitude on
190 PSFirstMax, Maxin;um radial component (R) .
PSMax Maximum, Smax” = S—wa.ve maximum amplitude on
PSMin Minimum Star’ldard vertical component (Z).
PSStd o Smax” = S-wave maximum amplitude on
Deviation radial component (R)
Smax” = S-wave maximum amplitude on
transverse component (T)
P V(Pr,)2+(P,)"
P over S maximum Sm“ZX \/(Siax)z-b(sﬁmx)z-'-(sfnax)z
PSFreqRMS, frequency ratios: Pmax. = P-wave rpaxunurn spectral
PSFreqMean, RMS. Mean : amthtude on Vertlcal‘cornponent (2)
191- PSFreqMedian, Mediz;n Firs’t Pmax. = P-wave max1mum spectral
197 PSFreqFirstMax Maxirr’lurn amplzltude on radial f:omponent R)
PSFreqMax Maximum’ Smax. = S-wave rpaxunurn spectral
PSFreqMin Minimum Star,ldard amphztude on Vertlcal'component (2)
PSFreqStd Devie{tion Smax” = S-wave maximum spectral
amplitude on radial component (R)
Smax” = S-wave maximum spectral
amplitude on transverse component (T)



Nbr Short name Description Formula
PMeanMax — \/(PZMMax)Z-F(PII\!;IMax)Z
RMS of P mean/max |~ MM \/(SI%/IMax) 2+( Shivtan) 2+ (Shavian) 2
PSMeanRMS over S mean/max Pvmax” = P-wave mean/maximum
PSMeanMean amplitude ratios: amplitude on vertical component (Z)
198 PSMeanMedian RMS, Mean, Pumaxt = P-wave mean/maximum
204 PSMeanFirstMax Median, First amplitude on radial component (R)
PSMeanMax Maximum, Smma” = S-wave mean/maximum
PSMeanMin Maximum, amplitude on vertical component (Z)
PSMeanStd Minimum, Standard Smmax” = S-wave mean/maximum
Deviation amplitude on radial component (R)
Smmax- = S-wave mean/maximum
amplitude on transverse component (T)
PMeanMax — \/(PZMMGX>2+(P§4Max)2
RMS of P mean/max Swvtox \/(szfMax) 2+( Sian) 2+ (Shantan) ?
PSFreqMeanRMS over S mean/max | Puma’ = P-wave mean/maximum spectral
PSFreqMeanMean frequency ratios: amplitude on vertical component (Z)
205 PSFreqMeanMedian RMS, Mean, Pumax = P-wave mean/maximum spectral
211_ PSFreqMeanFirstMax Median, First amplitude on radial component (R)
PSFreqMeanMax Maximum, Smmax” = S-wave mean/maximum spectral
PSFreqMeanMin Maximum, amplitude on vertical component (Z)
PSFreqMeanStd Minimum, Standard | Smma” = S-wave mean/maximum spectral
Deviation amplitude on radial component (R)
Smmax” = S-wave mean/maximum spectral
amplitude on transverse component (T)
Envelope
= 2 2
Maximum of the Envelope \/X<t> +H[x(t)]
212 MaxEnv envelope x(t) = signal
P H[x(t)] = Hilbert-Transformed signal
213 MeanEnv Mean of the -
envelope
214 MedianEnv Median of the )
envelope
215 STDEnV Standard deviation i
of the envelope
E(i)—ug '
Kurtosis= — > (%)
. Kurtosis of the ) n
216 KurtosisEnv envelope E(i) = envelope values
or= envelope standard deviation
He= envelope mean, n = envelope length
E(i)—ug’
Skewness = lz (%)
Skewness of the n-i g
217 SkewnessEnv envelope E(i) = envelope values
or= envelope standard deviation
He= envelope mean, n = envelope length




Nbr

Short name

Description

Formula

Envelope

218

MeanMaxEnv

Ratio between the
mean of the
envelope and the
maximum of the
envelope

219

MedianMaxEnv

Ratio between the
median of the
envelope and the
maximum of the
envelope

220

EnvSum

Sum of the
envelope’s amplitude
values

221

EnvSecondDerivative

Mean value of a
central
approximation of the
second derivative of
the envelope

1

T

1
(EEIZHZ_iE
E = envelope values

n = envelope length

i+1
yee,n—1

+E,)

222

EnvComplexity

Complexity of the
envelope (One order
discrete difference
mean)

S (B

n—2lag
E = envelope values
n = envelope length
(Batista et al., 2014)

223

EnvMeanAbsDiff

Mean over the
absolute differences
between subsequent

envelope values

1
- Z ‘Ei+1_Ei‘

Nz n1
E = envelope values
n = envelope length

224

EnvMeanDiff

Mean over the
differences between
subsequent envelope

values

S|

i=1

Z E,.—E= L E

yeeyN—1 n__l
E = envelope values
n = envelope length

n__lzl

225

EnvUniqueVal

Percentage of unique
values, that are
present in the
envelope more than
once

226

EnvAbsSumChange

Sum over the
absolute value of
consecutive changes
in the envelope

Z ‘Ei+1 _Ei‘

i=1,..,n—1
E = envelope values
n = envelope length

227

EnvBelowMean

Number of Values in
the envelope that are
lower than the mean




Nbr Short name Description Formula
Envelope
Number of Values in
228 EnvAboveMean the envelope that are -
higher than the mean
229 EnvDuplicateMax Numb? r of duplicate -
maximum values
Difference between
230 EnvDiffPickMax | Maximum envelope -
value and value at P
arrival
tmax - ti
Ratio between tr—Comax
231 EnvAsDecTime ascending and t;= time of the signal beginning
descending time t= time of the signal end
tmax= time of the largest amplitude
Number of peaks in
232 EnvCorNbPeaks the autocorrelation -
function
T
Energy in the first j: (9d(2)
i Clr)d(t
233 EnergyCorl third part of ‘the )
autocorrelation . .
functi T = signal duration
unction . .
C = autocorrelation function
T
Energy in the f c(7)d(7)
234 EnergyCor2 remaining part ‘of the r
autocorrelation . .
functi T = signal duration
unction . .
C = autocorrelation function
Waveform
. 3
x(i)—
Skewness= %Z (#)
235 SkewnessSig Skewness of the x(1) = signal values
signal ox= signal standard deviation
lx= signal mean
n = signal length
. 4
Kurtosis= > (w)
n i X
236 KurtosisSig Kurtosis of the x(i) = signal values
signal ox= signal standard deviation
lx= signal mean
n = signal length



Nbr Short name Description Formula
Waveform
SignalEnergy_1-3Hz Signal energy
SignalEnergy_3-6Hz filtered in the T

237. SignalEnergy_6-9Hz | frequency range [f1- f x(7)d(7)

243 SignalEnergy_1-5Hz | f2]: 1-3 Hz, 3-6 Hz, _ S0
SignalEnergy_S-lOHZ 6-10 Hz, 1-5 Hz, 5- x = filtered signal in the frequency range
SignalEnergy_10-20Hz | 10 Hz, 10-20 Hz, 20 [f1-£2]
SignalEnergy_20-50Hz — 50 Hz

KurtoSig_1-3Hz . 4
o= ’ 1 xli) =,
KurtoSig_3-6Hz, Signal Kurtosis 1-3 Kurtosis= EZ (T)
KurtoSig_6-9Hz, l
244- . _ Hz, 3-6 Hz, 6-9 Hz, X(l) = Signal values
KurtoSig_1-5Hz,
250 ‘g O 1-5 Hz, 5-10 Hz, 10- ox= signal standard deviation
KurtoSig_5-10Hz, 20 Hz. 20-50 Hz ;
KurtoSig_10-20Hz, ’ Hx= signal mean
KurtoSig_20-50Hz n = signal length
T T
Signal Energy Ratio
SignalEnergyRatio_1- in the frequency ! x(7)d(7) / ! y(z)d(7)
251- 3_3-6Hz-...- ranges [f1-f2] and | x = filtered signal in the frequency range
270 | SignalEnergyRatio_10- [£3-f4]: 1-3Hz/3- [f1-£2]
20_20-50Hz 6Hz, ..., y = filtered signal in the frequency range
10-20Hz/20-50Hz [£3-£4]
Inter-station
waveform similarity:
271 Signal CCMax maximum
correlation
coefficient
Inter-station
272 Signal CCMean waveform smnlfmty: i
mean correlation
coefficient
STALTA function
STA=— 3 CF,
s j=i—N,
La=L Y cr ;
Maximum STA/LTA 1j=i-N,
273 STALTAmax ratio N,= number of samples used by each STA
window
N,;= number of samples used by each LTA
window
CFj= values of the samples
274 STALTAmin Minimum STA/LTA )
ratio
275 STALTATriggerp | > /V/LTA value atP ;
arrival




Nbr Short name Description Formula
STALTA function
276 STALTATriggers | > /VLTA valueats ]
arrival
277 STALTAsum Sum of STA/LTA i
values
differenees between 2 b
. i=1,...,n—1
278 STALTAMeanAbsDiff subsequent STA/LTA « = STA/LTA values
values n = STA/LTA function length
d.f?/lean ovle)r :he % Z X=X 1 XX
) ifferences between =11 —
279 STALTAMeanDiff subsequent STA/LTA - STA/LTA values
values n = STA/LTA function length
i=1
c 1 fih Z (Xi_Xi+1)2
. omplexity of the n—2lag
280 STALTACOInpleXlty STA/LTA fUHCtiOH x = STA/LTA Values
n = STA/LTA function length
(Batista, 2014)
Sum over the Z |Xi+1_xi‘
absolute value of i=1,..,n-1
281 | STALTAAbsSumChange | consecutive changes x = STA/LTA values
in the STA/LTA n = STA/LTA function length
function
Mean value of a 1 1
— =X . —X.. . +X.
Central 2 n i:1;n71 (2 X1+2 X1+1 Xz)
282 STALTAMeanSeconDeri | approximation of the x = STA/LTA values
vative second derivative of n = STA/LTA function length
the STA/LTA
function
Percentage of unique
values, that are
283 STALTAUniqueVal present in the -
STA/LTA function
more than once
Number of Values in
284 | STALTABelowMean the STA/LTA ]
function that are
lower than the mean
Number of Values in
285 STALTA AboveMean the .STA/LTA -
function that are
higher than the mean
286 | STALTADuplicateMax |\ umber of duplicate ]
maximum values




Nbr Short name Description Formula
STALTA function
Difference between
287 STALTADIffPickMax | maximum value and -
value at P arrival
STA/LTA Absolute 2 X7
288 STALTAAbsEnergy i=1,..,n
energy x = STA/ LTA function
Spectrum
RMS of the Discrete SpecErlurnZ
289 RMSDFT Fourier Transform S (f) —x (t)+2 Z x(k)cos (k w)
(DFT) panet
290 InstFreq Instantaneous -
frequency
291 MeanDET Mean .of the Discrete i
Fourier Transform
Maximum of the
292 MaxDFT Discrete Fourier -
transform
Median of the
293 MedianDFT Discrete Fourier -
transform
Variance of the
294 VarianceDFT Discrete Fourier -
transform
N .
2 fm
1
M
295 SpecCentroid Spectral centroid le m,
m;= magnitude of bin number, f;= central
frequency at that bin, M= number of bins
(Tzanetakis et al., 2001)
. Central frequency of
296 FreqlQuartile the 1st quartile -
. Central frequency of
297 Freq3Quartile the 2™ quartile -
Number of peaks in
298 NbPeaksDFT the DET -
299 MeanPeaksDET Mean value for the i
peaks
EnergyDFT1, Spectral Energy in 0- ff| S(f)?df
300- EnergyDFT2, 12.5Hz, 12.5-25Hz, )
303 EnergyDFTB, 25-375HZ, 37.5- S(f) = Spectrum
EnergyDFT4 50Hz f1,f2= frequency range



Nbr Short name Description Formula
Spectrum
Spectral Energy ratio f2 f4
of [f1,f2] over [f3,f4] “S(f)z‘df / f|5(f)2| df
304- | EnergyDFT1_DFT2,-...-, | frequency ranges : 0- A s

S(f) = spectrum

evolution of the

309 EnergyDFT3_DFT4 12.5Hz, 12.5-25Hz, e
f1,£2= first frequency range
25-37.0Hz, 37.5- £3,f4= second frequency range
S0Hz ) q y rang
Spectrogram
T
_ max (Spec(t,f))
Maximum/mean mean ( )
310 MaxMeanSpec ratio of all DFTS ;, mean (Spec (t,f))
Spec(t,f)=spectrogram
T
. . max Spec(t,f))
. Maximum/median mean ( , )
311 MaxMedianSpec iatio of all DFTs ; median(Spec(t,f))
Spec(t,f)=spectrogram
Kurtosis of the C ;
312 KurtoMaxSpec maximum of all mean (Z;‘ Kurtosis(max(Spec(t,f))))
DFTs Spec(t,f)=spectrogram
T
. Kurtosis of the mean (D Kurtosis(median(Spec(t,f))))
313 KurtoMedianSpec median of all DETs pars
Spec(t,f)=spectrogram
Number of peaks in
the curve showing
314 NbPeaksMaxSpec the temporal i
evolution of the (Provost et al., 2016)
DFTs maximum
Number of peaks in
the curve showing
315 NbPeaksMeanSpec the temporal i
evolution of the (Provost et al., 2016)
DFTs mean
Number of peaks in
the curve showing i
316 NbPeaksMedianSpec the temporal (Provost et al., 2016)
evolution of the ”
DFTs median
Number of peaks in
the curve showing
the temporal -
317 NbPeaksCentralFreq (Provost et al., 2016)

DFTs central
frequency




Nbr

Short name

Description

Formula

Spectr

ogram

318

DistMaxMeanFFTs

Mean distance
between the curves
of the temporal
evolution of the
DFTs maximum
frequency and mean
frequency

(Provost et al., 2016)

319

DistMaxMedianFFTs

Mean distance
between the curves
of the temporal
evolution of the
DFTs maximum
frequency and
median frequency

(Provost et al., 2016)

320

Dist1QMedianFFTs

Mean distance

between the 1st

quartile and the
median of all DFTs
as a function of time

(Provost et al., 2016)

321

Dist3QMedianFFTs

Mean distance
between the 3rd
quartile and the

median of all DFTs
as a function of time

(Provost et al., 2016)

322

Dist1Q3Q

Mean distance
between the 3rd
quartile and the 1st
quartile of all DFTs
as a function of time

(Provost et al., 2016)

Time-frequency analysis: signal Empirical Mode Decomposition (Intrinsic Mode Functions

IMFs)
N
SkewnessIMFsMean Skewness of all Xper ()= ;‘ IME; (¢ J+ Ry (1)
323- | SkewnessIMFsMedian IMFS: mean, xprr(t) = original signal
326 SkewnessIMFsMin median, minimum, N = number of extracted IMFs
SkewnessIMFsMax maximum IMF(t) = ith IMF
Rn(t) = final residual
(Huang et al., 1998)
KurtosisIMFsMean Kaurtosis of all
327- | KurtosisIMFsMedian IMEFS: i
330 KurtosisIMFsMin mean, median,
KurtosisIMFsMax minimum, maximum




Nbr Short name Description Formula
Time-frequency analysis: signal Empirical Mode Decomposition (Intrinsic Mode Functions
IMFs)

VarianceIMFsMean . .
331- | VariancelMFsMedian |\ once Of all IMFs: ]
334 VairanceIMFsMax minimun’1 rnaxirr’lum
VariancelMFsMin ’
InstFreqIMFsMean frI:SLaer;t(E:lneO(;uasu
335- | InstFreqIMFsMedian H\‘}IFS_ I-Zlean ]
338 InstFreqIMFsMin median lil‘linil‘l‘ll,ll‘l‘l
InstFreqIMFsMax - ’
maximum
Arnp.l 1tudesIMFsMe§n Amplitudes of all
AmplitudesIMFsMedian .
339- . . IMFS: mean,
343 AmplitudesIMFsMin median, minimum i
AmplitudesIMFsMax maxirnu,rn Varianc’e
AmplitudesIMFsVariance ’
SpecCentIMFsMean | Spectral Centroid of
344- | SpecCentIMFsMedian all IMFs: mean, i
347 SpecCentIMFsMax median, minimum,
SpecCentIMFsMin maximum
EntropyIMFsMean Average information contained in the
EntropyIMFsMedian Shannon Entropy of probability distribution function
348- EntropyIMFsMax all IMFS: mean, N
352 EntropyIMFsMin median, minimum, - ; p(IMF,)log,(p (IMF,))
. maxlimum, variance =
EntropyIMFsVariance p(s;) = probability of amplitude level s;
- k)— k)2
DFAIMFsMean Detrended N ,; Ly (k)= (k)]
353- DFAIMFsMedian fluctuation analysis with y(k) the IMF expressed as :
357 DFAIMFsMax of all IMFS: mean, k )
DFAIMFsMin median, minimum, 2. [IMF (i) = i
DFAIMFsVariance maximum, variance "

ux=mean of IMF values, x(i) = ith IMF
N = length of IMF

Ground Motions

Peak Ground J(PGA,)?
Acceleration \/(PGAR)2+(PGAT) -
358 PGAHV H(?rizontal—Fo- PGA,= PGA vertical component
Vertical amphtude PGAy, PGA:= PGA horizontal
ratio components
(PGV,)?
Peak Ground - -
Velocity Horizontal- V(PGV,) "'(P GV,)
- FOVEY PGV;= PGV vertical component

to-Vertical amplitude
ratio

PGVg, PGV 1= PGA horizontal
components



Nbr Short name Description Formula

360 PGA Peak Ground i
Acceleration mean

361 PGV Peak Ground i

Velocity




5.4. RECAPITULATIF

5.4 Reécapitulatif

L’introduction de I’apprentissage machine supervisé pour classer les événe-
ments qui sont finalement détectés demande de délimiter les contraintes affé-
rentes au probléme de classification avec un jeu de données de petite taille mais
complexe.

Outre le choix de I’algorithme d’apprentissage ainsi que la sélection de ses
hyperparamétres optimaux, l’'interactivité Homme-machine est une des plus
grandes réponses aux contraintes du jeu de données. Du contréle de la sélec-
tion des attributs a la validation des regles de classification, l'injection des
connaissances préalables dans le systéme d’apprentissage offre un cadre struc-
turel a 'espace des hypothéses possibles, augmentant les chances de capturer
dans cette espace la fonction de prédiction recherchée.

La fonction de prédiction qui a été sélectionnée dans ce travail de thése pour
prédire les vrais événements et les faux événements a été sélectionnée a partir
d’une combinaison finale de 13 attributs. Ces attributs retracent indirectement
les critéres qui vont définir ce qu’est un vrai événement dans le systéme de
détection.

C’est un événement localisé avec précision (distribution statistique des ré-
sidus, nombre de phases utilisées, distance épicentrale minimale, écart-type a
partir de la distance épicentrale moyenne) a partir d’une association cohérente
de pointés (facteur de corrélation entre les premiéres arrivées des ondes P et la
distance épicentrale) qui ont été déclenchés par variation d’amplitude (valeur
maximale de la fonction STA/LTA) & partir d’un signal cohérent (estimation
de I’entropie de Shannon) et non-stationnaire (différence discréte d’ordre 1 de
I’enveloppe du signal) qui se détache du bruit de fond ambiant (énergie du
signal dans les gammes fréquentielles 6-9 Hz et 10-20 Hz, fréquence cumulée a
25%), et dont la source apparait moins superficielle que celle des faux événe-
ments (degré de polarisation planaire).

La fonction de prédiction qui a été sélectionnée dans ce travail de thése
pour prédire les séismes et les tirs de carriere a été sélectionnée a partir d’une
combinaison finale de 22 attributs.
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Les séismes et les tirs de carriére sont mieux décrits a travers les attributs
qui décrivent le signal dans le domaine fréquentiel (variance des valeurs du
spectre du signal, nombre de pics contenus dans le spectre, rapports spectraux
entre les ondes P et S, fréquence cumulée de 25%, fréquence cumulée de 75%),
puis dans le domaine temporel (coefficient d’asymétrie et d’aplatissement de la
distribution des valeurs d’amplitude du signal, rapport de 1’énergie du signal
a différentes bandes fréquentielles). Ces arguments temporels et fréquentiels
retracent la nature des ondes sismiques qui composent les signaux associés
aux différents événements. Les signaux sismiques associés aux tirs de carriére
présentent par exemple une intensité maximale aux faibles fréquences (1-5 Hz),
principalement due aux ondes de surface.

De plus, des attributs supplémentaires apportent des informations plus ou
moins indirectes sur les paramétres de la source : sa profondeur, systémati-
quement superficielle dans le cas des tirs de carriére (magnitudes de surface,
différence magnitude de coda et magnitude locale, Z/H ratio), sa localisation
épicentrale, invariablement proche d’une carriére pour les tirs (proximité de
I’événement a un centre urbain, donc potentiellement d’une carriére, et son
temps d’origine, inéluctablement pendant les heures ouvrées pour les tirs de
carriére (heure et date de ’événement).

Ces deux classifieurs générés ont été implémentés dans un module Seis-
ComP3 que j’ai développé. Ce module intégre les outils de l'apprentissage ma-
chine supervisé, a savoir 1’algorithme d’apprentissage de Random Forest. Afin
de compléter le nouveau systéme de détection, ce module :

— calcule les 35 attributs (13 attributs pour la discrimination des vrais et
faux événements et 22 attributs pour la discrimination des séismes et
des tirs de carriére, Figure 5.36d);

— utilise le classifieur final des vrais et faux événement généré par 1’algo-
rithme d’apprentissage de Random Forest pour prédire chaque événe-
ment détecté entrant (Figure 5.36e);

— supprime ’ensemble des faux événements prédits par le classifieur (la-
bel=0) de la base de données des événements (Figure 5.36e);

— utilise le classifieur final des séismes et des tirs de carriére généré par
I’algorithme d’apprentissage de Random Forest pour prédire 1’ensemble
des événements qui sont prédits comme vrais événements (Figure 5.36¢) ;

— labélise automatiquement les séismes (label=3) et les tirs de carriére
(label=5) prédits par le classifieur précédent (Figure 5.36¢).

Afin de traiter plus rapidement ’ensemble des données disponibles (notam-
ment en cas de retraitement des données pour inclure les stations AlpArray
temporaires dans la détection), le systéme de détection complet a été isolé
dans un conteneur SINGULARITY de telle fagon & pourvoir exécuter plusieurs
instances de ce systéme de détection sur les super-ordinateurs.
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FIGURE 5.36: Procédure de détection nouvellement développée, qui vise a ré-
duire le taux de séismes détectés avec de faux pointés et le taux de faux événe-
ments détectés, puis de discriminer les vrais événements entre eux en séismes et
tirs de carriére. (d), (e) Un autre module SeisComP3 que j’ai développé est fina-
lement implémenté pour calculer les attributs optimaux de chaque événement
entrant, classer les événements en faux et vrais événements avec un premier
classifieur, supprimer les faux événements prédits et classer le reste des vrais
événements en tirs de carriére et séismes dont le label est automatiquement
ajouté dans la base de donnée. (cf Figure 4.63 pour a,b,c).
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Chapitre 6

Conclusion

« In summary, 1t has been a long journey, but that journey
1s not yet complete. »—C. E. Johnson, 2020
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6.1. LA DETECTION ET LA DISCRIMINATION DES SEISMES DE
FAIBLE MAGNITUDE, DEUX PROBLEMES RECIPROQUEMENT LIES

6.1 La détection et la discrimination des séismes
de faible magnitude, deux problémes récipro-
quement liés

6.1.1 Des facteurs communs a la résolution des deux pro-
blémes

Le dénominateur commun aux problémes de détection et discrimination est
de trouver une solution approchante des différents parameétres qui vont caracté-
riser une source sismique inconnue, a savoir sa taille, sa nature, sa localisation
et son temps d’origine. La solution approchante du probléme de la détection
est une localisation de cette source et une estimation de sa taille. En effet, la
localisation est définie par I’hypocentre (longitude x, latitude y, profondeur z),
qui correspond a la localisation physique de 'initiation du processus de rupture
(Havskov2011), et le temps d’origine (t) qui correspond & ’heure du début
de la rupture. La taille de la source est quant a elle indirectement définie par
la mesure logarithmique de la magnitude (ici magnitude locale MLv). La so-
lution approchante du probléme de discrimination est une caractérisation du
type de la source sismique (séisme d’origine naturel ou induit, tir de carriére,
bruit d’origine anthropique).

Le point de départ de l’expression du probléme de la détection est donc
I’existence d’une source inconnue que 1’on souhaite caractériser. Le signal, en-
registré aux stations, est la seule information indirecte disponible pour résoudre
le probléme de détection. Ce signal est le résultat d’'une combinaison des effets
de la source, des effets liés au milieu de propagation des ondes sismiques émises
et les effets liés au bruit enregistré aux stations. C’est donc a partir de ce signal
que la localisation et la taille de la source vont étre inférées.

En revanche, ce n’est pas ’existence de cette source inconnue qui va motiver
I’expression du probléme de la discrimination, mais sa solution hypocentrale,
apportée par la résolution du probléme de la détection. Par conséquent, la
résolution de ces deux types de probléme (détection et discrimination) se fait
de maniére inverse. Dans le cas de la détection, le probléme s’initie a une source
sismique inconnue et se résout avec la détection de I’événement qui en découle,
alors que, dans le cas de la discrimination, le probléme s’initie a 1’événement
détecté, qui est de type inconnu, pour remonter a la caractérisation de la source
qui I’a créée. La discrimination est en quelque sorte la réciproque du probléme
de la détection (Figure 6.1).
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FIGURE 6.1: La détection et la discrimination, deux problémes réciproquement
liés. Chaque événement détecté dans le catalogue est simplement défini par
un hypocentre, un temps d’origine, une magnitude et un label (séisme, tir de
carriére). Seulement, ce dernier représente la solution finale & deux problémes
beaucoup plus complexes, celui de la détection et celui de la discrimination. Le
succes de la résolution de ces deux problémes dépend de la prise en compte de
plusieurs facteurs communs : les caractéristiques globales du signal enregistré,
la configuration du réseau de stations qui ’enregistre, les propriétés spécifiques
du bruit enregistré aux stations ainsi que le milieu de propagation. D’ou la
métaphore de l'iceberg. Si le probléme de détection s’initie & une source sis-
mique inconnue et se résout avec la détection de I'’événement qui en découle,
le probléme de la discrimination s’initie a I’événement détecté qui est de type
inconnu pour remonter a la caractérisation de la source qui 'a créée.
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FAIBLE MAGNITUDE, DEUX PROBLEMES RECIPROQUEMENT LIES

Les problémes de la détection et de la discrimination sont ainsi réciproque-
ment liés par des facteurs communs qui définissent le cadre de leur résolution.
Ces facteurs communs sont les propriétés des signaux sismiques détectés, la
configuration du réseau de stations qui enregistrent les différents signaux, le
niveau de bruit enregistré aux différentes stations, la prise en compte du milieu
de propagation ainsi que les facteurs de qualité qui vont évaluer la précision de
localisation de ’événement finalement détecté.

Dans le cadre de la détection, ces différents facteurs interviennent pour
améliorer la qualité des pointés des temps d’arrivée des ondes P et S, la qualité
du processus d’association ainsi que la sélection de l'origine préférentielle (si le
catalogue produit est un catalogue multi-origine). La qualité du pointé auto-
matique des ondes P et S est conditionnée par la prise en compte des caractéris-
tiques du bruit enregistré aux différentes stations et des distances épicentrales.
La qualité des processus d’association est déterminée par la considération de
la configuration spécifique du réseau de stations (distances inter-station) et du
milieu de propagation (vitesses de propagation des ondes sismiques). Enfin, la
qualité de la sélection de l'origine préférentielle dépend de 1'utilisation plus ex-
haustive de parameétres qui évaluent la précision de la localisation hypocentrale
(distances épicentrales, nombre de phases, RMS des résidus, nombre de phases
S, incertitudes de localisation).

La discrimination étant la réciproque du probléme de la détection, pour
remonter au type de la source sismique (séisme naturel, tir de carriére ou bruit
d’origine anthropique) a partir de ’événement qui est détecté, c’est tout le
cheminement qui a conduit a sa détection qu’il faut remonter. De ce fait, en
plus des informations véhiculées par la localisation de la source apportée par
la détection (longitude, latitude, heure et jour d’occurrence définis a partir du
temps d’origine), ce sont également les mémes facteurs qui vont intervenir pour
optimiser le processus de discrimination des événements détectés, a savoir les
distances épicentrales, les paramétres qui évaluent la précision de la localisation
hypocentrale (valeurs des résidus, nombre de phases), les propriétés du bruit
(caractére stationnaire, aléatoire, et impulsif), les caractéristiques du signal
(forme de la distribution des amplitudes du signal, contenu fréquentiel) ainsi
que le milieu de propagation (polarisation des ondes).
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6.1.2 Une recherche de solutions optimales dans un espace
multi-factoriel complexe

La résolution des problémes de détection et de discrimination dans le cadre
de la détection des séismes de faible magnitude est éminemment complexe. Avec
la densification du réseau de stations et la diminution du seuil de détection,
I’espace de recherche pour détecter les signaux associés a de potentiels événe-
ments est considérablement accru. Le taux de pointés augmente fortement car
les signaux sont détectés avec de plus faibles rapports signal/bruit, les combi-
naisons de pointés élaborées par les processus d’association se démultiplient et
les possibilités d’obtenir des solutions parasites augmentent considérablement.

La prise en compte des différents facteurs tels que la configuration du réseau
de stations (distances épicentrales, distance inter-stations), les caractéristiques
du signal (amplitudes, contenu fréquentiel), le niveau de bruit enregistré aux
stations (variations d’amplitudes temporelles, contenu fréquentiel) ainsi que
le milieu de propagation (vitesses de propagation) a donc été critique pour
contraindre 1’espace de solutions possibles vers des solutions de détection plus
optimales.

Les problémes de la détection et de la discrimination étant deux problémes
qui sont réciproquement liés, un espace de solutions de détection plus optimal
facilite la résolution du probléme de discrimination. Si par exemple les dis-
tances épicentrales ne sont pas considérées dans la procédure de détection, les
risques d’émettre des pointés automatiques P ou S trop précoces ou trop tardifs
par rapport aux temps d’arrivée réels des ondes sismiques P et S augmentent
fortement. Par conséquent, dans ces conditions, les possibilités de générer des
fausses associations sont plus grandes, d’autant plus si la distance temporelle de
référence nécessaire pour clusteriser les pointés entre eux ne tient pas compte
de la configuration du réseau et/ou du milieu de propagation. Or, la résolu-
tion du probléme de discrimination repose sur la recherche d’un ensemble de
critéres qui vont solidement définir chaque événement. Si ’espace de solution
des détections est dégradé (nombreuses vraies associations contaminées par
du bruit, association de pointés émis trop tardivement ou précocement), c’est
aussi le processus de discrimination qui se dégrade. Par exemple, la mauvaise
définition des pointés P et S peut amener a calculer des rapports spectraux
entre les ondes P et S erronés, diminuant la valeur discriminante de ce rapport
spectral.
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De plus, dans le cadre de la résolution du probléme de la discrimination,
les caractéristiques des signaux étant fortement influencées par les effets du
bruit enregistré aux stations et du milieu de propagation, ne tenir compte
que de ces derniéres pour résoudre ce probléme nous éloigne fortement d’une
solution optimale convergente. En effet, le bruit d’origine anthropique et le
signal sismique régional présentent des amplitudes, des durées et un contenu
fréquentiel trés souvent similaires (HuTTON et al., 2010; INBAL et al., 2018,
PRrROVOST et al., 2017). Il est donc difficile dans ces conditions de discriminer les
faux et les vrais événements en se basant uniquement sur les caractéristiques
d’'un signal fortement influencé par les effets liés au bruit. La prise en compte
de la solution hypocentrale apportée par la détection, qui est un parameétre de
la source que 'on cherche a identifier, permet alors de compenser les effets du
bruit qui atténuent fortement les effets de la source que le signal exprime.

En outre, les signaux associés aux séismes et aux tirs de carriére sont trés
fortement influencés par les effets liés au milieu de propagation, comme le té-
moignent la diversité des formes d’onde associées a ces signaux au sein d’'une
méme classe d’événements et la similarité de ces formes d’ondes souvent re-
marquée entre les différentes classes d’événements. Par ailleurs, ces signaux
sont fortement contaminés par le bruit enregistré aux stations, d’autant plus
si les signaux détectés sont de faible amplitude. Il apparait la encore difficile
de trouver une solution convergente optimale de discrimination des séismes et
des tirs de carriére en se focalisant uniquement sur les caractéristiques d’un
signal qui est trés fortement dominé par les effets liés au milieu de propagation
mais aussi au bruit. De méme, la prise en compte de la solution hypocentrale
apportée par la détection (localisation épicentrale, temps d’origine) permet, en
contraignant l'espace de solutions possibles pour identifier le type de la source,
une compensation des effets du milieu de propagation et du bruit qui atténuent
fortement les effets de la source que le signal exprime.

Trouver un espace optimal de détection et de discrimination est donc com-
plexe car les contenus en bruit du signal sont spatio-temporellement variables,
les formes d’onde associées aux signaux sont fortement soumises aux effets du
milieu de propagation dans lequel les ondes se propagent. De plus, les signaux,
qu'ils soient ou non associés a une méme source, sont géométriquement dissé-
minés au sein d’un réseau dense de stations qui les enregistrent. Seulement, ne
pas considérer au maximum cet espace multiparamétrique, c’est probablement
approximer fortement la réponse aux problémes de détection et de discrimina-
tion, voire méme la dégrader.
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6.2 Les résultats de la détection et de la discri-
mination des séismes de faible magnitude, un
reflet de la complexité d’un systéme multipa-
ramétrique

6.2.1 Des résultats de détection qui reflétent les effets liés
au bruit enregistré aux stations

La comparaison des détections produites par la procédure de détection dé-
veloppée dans ce travail de theése, avec celles émises par le BCSF-RéNaSS pour
la période juillet 2016 - décembre 2016, montre qu'un total de 2000 événements
ont été détectés en plus, dont 1290 tirs de carriéres et 700 séismes. Ce qui fait
qu’avec les événements déja détectés auparavant par le BCSF-RéNaSS, ce sont
2755 événements qui sont finalement détectés. Au total, 2.5 fois plus de séismes
et presque 6 fois plus de tirs de carriére ont été identifiés.

Parmi les nouveaux séismes détectés, 48% d’entre eux présentent une ma-
gnitude locale MLv inférieure a 1.20 (Figure 6.2). Avec cette procédure de dé-
tection, la proportion de séismes de trés faible magnitude augmente donc : deux
fois plus de séismes sont désormais détectés avec des magnitudes inférieures a
1.20. Sur I'’ensemble des nouveaux séismes détectés, 82% ont des magnitudes
locales inférieures a 1.50.

Parmi les nouveaux tirs de carriére détectés, 55% d’entre eux ont des ma-
gnitudes locales inférieures a 1.50 et la quasi-totalité ont des magnitudes infé-
rieures a 2.0.
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F1GURE 6.2: Distribution des magnitudes des événements détectés avec la nou-
velle procédure de détection développée dans ce travail de thése pour la période
juillet 2016-décembre 2016.
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L’analyse de la distribution cumulative fréquence-magnitude des séismes
pour cette période de juillet a décembre 2016 montre que la magnitude de com-
plétude, estimée grossiérement a partir de cette distribution, atteint maintenant
1.10 avec la nouvelle détection automatique, alors qu’elle était de 1.20 pour le
catalogue de référence (Figure 6.3). Méme si cette magnitude de complétude
affiche une baisse trés subtile, ce constat annonce des résultats prometteurs
pour une détection future des séismes de faible magnitude plus approfondie et
plus longue.
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FI1GURE 6.3: Distribution cumulative fréquence-magnitude des événements dé-
tectés automatiquement par la nouvelle procédure de détection pendant la pé-
riode juillet 2016 -décembre 2016.Distribution cumulative fréquence-magnitude
des événements détectés automatiquement par la nouvelle procédure de détec-
tion pendant la période juillet 2016 -décembre 2016.
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Néanmoins, en observant le taux de détection des séismes au cours des
heures de la journée, il est possible de constater que 71% des séismes contenus
dans le catalogue automatique ont eu lieu avant 6 heures du matin et aprés
18 heures, c’est-a-dire pendant les périodes ou le niveau du bruit d’origine
anthropique est le plus bas (Figure 6.4). Un peu moins de 75% des tirs de
carriére sont détectés entre 9 heures et 16 heures. C’est aux heures ou les tirs
de carriére sont majoritairement détectés que le taux de séismes capturés est le
plus bas, et inversement. Il y a donc une segmentation temporelle artificielle de
la détection des événements. Méme si les séismes sont détectés a n’importe quel
moment de la journée, il reste un déficit de détection des séismes aux périodes
ou sont intensément détectés les tirs de carriére.
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FIGURE 6.4: Comparaison des distributions des séismes et des tirs de car-
riére détectés automatiquement en fonction des heures de la journée avec celle
du BCSF-RéNaSS pour la méme période de détection (juillet 2016-décembre
2016). La distribution des faux événements est représentée également comme
approximation de 1’évolution du niveau de bruit anthropique au cours des
heures de la journée.

De la méme maniére, la distribution des détections des séismes et des tirs
de carriére en fonction du jour de la semaine montre une discrimination tem-
porelle de la détection des événements, méme si celle-ci est moins marquée.
Sur l’ensemble des séismes détectés, environ 36% ont eu lieu un samedi ou
un dimanche, c’est-a-dire pendant le week-end, période au cours de laquelle le
niveau de bruit d’origine anthropique est globalement plus bas et/ou l'activité
de carriére est minimale (Figure 6.5).
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FIGURE 6.5: Distribution des séismes et des tirs de carriére détectés automati-
quement en fonction du jour de la semaine. La période de détection est juillet
2016-décembre 2016. La distribution des faux événements est représentée éga-
lement comme approximation de 1’évolution du niveau de bruit anthropique
en fonction des jours de la semaine. 0 = lundi, 1 = mardi, 2 = mercredi, 3 =
jeudi, 4 = vendredi, 5 = samedi, 6 = dimanche.
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Les périodicités apparentes hebdomadaires et quotidiennes des séismes ob-
servées semblent étre corrélées aux périodes de détection minimales du bruit
d’origine anthropique. Comme cela a été déja observé, ce bruit d’origine an-
thropique affecte durablement la détection des séismes, plus particuliérement
pour les séismes de faible magnitude qui sont détectés avec de faibles rapports
signal/bruit (ATEF et al., 2009; Hao et al., 2019). Cet artefact de périodicité
liée a la détectabilité des événements dans un environnement urbain brouille
le comportement statistique des séismes dans la zone d’étude. Par conséquent,
les résultats de la détection sont trés prometteurs mais ces résultats mettent
aussi en évidence qu'’il reste difficile de s’affranchir complétement des effets liés
au bruit enregistré aux stations.

6.2.2 Des résultats de discrimination qui reflétent les effets
liés au milieu de propagation

eUne variabilité régionale de ’efficacité des discriminants

Comme exprimé dans l'article présenté au chapitre précédent, une varia-
bilité régionale de l'efficacité des discriminants peut étre mise a jour dans la
classification des séismes et des tirs de carriére. Cette variabilité transparait au
niveau de l'architecture des arbres décisionnels constituant la forét aléatoire.
La localisation de I’événement (longitude et latitude) offre une contrainte qui
va rythmer la constitution des différents embranchements de 1'arbre. Se des-
sinent alors plusieurs régions géographiques qui sont chacune caractérisées par
une combinaison d’attributs spécifiques et leur seuil de valeurs respectif. A
partir de 13, il est possible de traduire l’arrangement hiérarchique de l’arbre
décisionnel en classification emboitée, o chaque boite correspond a un assem-
blage d’attributs reliés au signal, délimitée par les différentes valeurs seuils de
la longitude et de la latitude.

Si je reprends l'exemple proposé dans 1’article, mais en y ajoutant quelques
exemples de séismes incorrectement prédits par le classifieur des séismes et
des tirs de carrieére pour la période septembre 2016-décembre 2016, plusieurs
groupes se dessinent (Figure 6.6). D’aprés cet arbre décisionnel analysé, le
séisme appartenant au groupe 1 se situe dans une surface géographique iden-
tifiée par les régions A, B et C. Ce dernier est alors prédit selon les critéres
partagés par ’ensemble des régions A, B et C, a savoir le degré d’asymétrie de
la distribution des valeurs d’amplitudes du signal, le temps d’origine de 1’évé-
nement détecté (jour de la semaine, heures de la journée), la variance spectrale
ainsi que la magnitude de surface moyenne estimée a 10 s. Dans ce cas, ce
séisme est prédit en tant que tir de carriére car il posséde une magnitude de
surface relativement élevée et est associé a une valeur du coefficient d’asymétrie
qui s’approche de celui des tirs de carriére pour la zone d’étude.
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FIGURE 6.6: Projection en carte d’une partie de la classification emboitée dé-
duite d’un arbre décisionnel extrait aléatoirement a partir de la forét (cf sup-
plément de l’article pour détail de cet arbre). Chaque région géographique,
exprimée a travers un code couleur, est définie par un ensemble d’attributs uti-
lisés pour prédire les séismes et les tirs de carriére a I'intérieur de cette région.
Les séismes incorrectement prédits par le classifieur pour la période septembre
2016-décembre 2016 définissent des groupes qui appartiennent a différentes ré-
gions géographiques (groupe 1 & 6). Ces séismes sont incorrectement prédits
selon les critéres qui sont utilisés dans chaque région géographique. Les lignes
en pointillé constituent les valeurs de longitude et de latitude de référence qui
ont servi a élaborer les emboitements.

De méme, le séisme du groupe 2, appartenant a la zone géographique qui
regroupe les régions A, B et E, n’est pas correctement classifié a cause d’un
contenu fréquentiel particuliérement bas et d’une variance spectrale moins éle-
vée que la moyenne des séismes détectés dans la zone d’étude. Quant au séisme
appartenant au groupe 3 (régions G et H), le rapport de ’accélération maximale
du sol entre la composante horizontale et verticale de la station, particuliére-
ment élevé, et le contenu relatif basse-fréquence du signal associé, plutét haut,
sont les deux critéres qui vont induire une prédiction incorrecte de ce séisme.
En revanche, le séisme appartenant au groupe 4 (régions I et K) est correc-
tement prédit car les signaux qui lui sont associés présentent une énergie du
signal intense a des fréquences plus élevées (6-9 Hz) typiques des séismes, tout
comme celui du groupe 5 qui est également bien prédit. Le méme raisonnement
peut étre fait pour les séismes appartenant aux trois derniers groupes (6, 7 et
8).

De cette facon, si le rapport de I'accélération maximale du sol entre la com-
posante horizontale et verticale de la station est un attribut qui est utilisé dans
I’édification du chemin décisionnel de ’arbre pour prédire un événement dans
la zone géographique nommée F, cet attribut ne fait pas partir de la sélection
pour ’élaboration des chemins décisionnels qui vont contribuer a prédire les
événements dans la zone géographique nommée J.
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Sur ’ensemble des arbres décisionnels qui composent la forét, chaque arbre
peut donc étre traduit sous forme d’une classification emboitée spécifique avec
une combinaison d’attributs distinctes comme c’est le cas par exemple de deux
autres classifications emboitées élaborées a partir deux autres extrait d’arbre
décisionnel différent (Figure 6.7). A partir de la comparaison des trois classifi-
cations proposées (Figures 6.6 et 6.7), quelques lignes communes peuvent étre
tracées.

La premiére est que la longitude 8°E semble a chaque fois séparer la zone
d’étude en deux grands sous-groupes. La résolution des régions géographiques
est plus faible a I’est de la ligne de référence 8°E. Cette observation refléte un
déséquilibre de répartition des événements dans le jeu de données qui a servi
a 'apprentissage. En effet, la majorité des événements dont je dispose pour
entralner l'algorithme de classification est située a 1’ouest de cette ligne de
référence. Cette scission se répéte successivement a travers 1’analyse des arbres
décisionnels.

La deuxiéme observation est qu'’il est possible d’ores et déja de faire des re-
coupements entre les différentes régions géographiques révélées, a travers 1’ana-
lyse grossiére de ces trois extraits d’arbre décisionnel. En effet, par exemple,
pour les trois classifications emboitées, ’attribut qui décrit le coefficient d’asy-
métrie de la distribution des valeurs d’amplitudes du signal est intégré dans
I’élaboration des chemins décisionnels qui servent a prédire les événements si-
tués dans une zone comprise entre les longitudes 1.8°E et 5°E et les latitudes
46.8°N et 50°N.

Les attributs décrivant les magnitudes de surface a 8s (valeur minimale)
et 10 s (valeurs moyenne et minimale) semblent étre quant a eux impliqués
dans I’édification des chemins décisionnels qui conduisent a la prédiction des
événements dans la zone délimitée par les longitudes 2.8°E et 6°E et les latitudes
47°N et 49.6°N.

De méme, le rapport de 1’accélération maximale du sol entre la compo-
sante horizontale et verticale de la station est un attribut qui est utilisé dans
I’édification des chemins décisionnels des trois arbres pour prédire les événe-
ments circonscrits dans la zone comprise entre les longitudes 6°E et 6.4°E et
les latitude supérieures a 49.6°N.

En outre, I’attribut retragant I’écart-type des valeurs des rapports spectraux
entre les ondes P et S calculés pour ’ensemble des signaux impliqués dans la
détection de chaque événement est utilisé pour prédire les événements dans la
zone comprise entre les longitudes 6°E et 6.4°E et les latitudes 47°N et 49.6°N.

Enfin, les attributs décrivant le temps d’origine des événements (heure et
date d’occurrence) sont utilisés dans I’élaboration des chemins décisionnels des
trois arbres décisionnels pour des zones plus larges : entre les longitudes 2.8°E
et 5.2°E et les latitudes 44°N et 49.5°N puis les longitudes 6.4°E et 8°E et les
latitudes 44°N et 47°N pour les heures d’occurrence et les longitudes 1.8°E et
8°E et les latitudes 44°N et 49°N pour le jour d’occurrence.
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FIGURE 6.7: Exemple de cartographie de la régionalisation de l'effet des attri-
buts sur la prédiction des séismes et des tirs de carriére. (a),(b) Projection en
carte de deux classifications emboitées déduites chacune d'un extrait d’arbre
décisionnel tiré aléatoirement parmi l'ensemble des 500 arbres décisionnels qui
composent la forét aléatoire. Chaque région géographique, exprimée a travers
un code couleur, est définie par un ensemble d’attributs utilisés pour prédire
les séismes et les tirs de carriére & l'intérieur de cette région. (c) Projection
en carte du résultat de la combinaison des trois classifications emboitées pré-
sentées dans les Figures 6.6 et 6.7a, b. Chaque zone géographique commune,
partageant le méme échantillonnage d’attributs pour la prédiction, est repré-
sentée par un code couleur spécifique. Les lignes en pointillés constituent les
valeurs de longitude et de latitude de référence qui ont servi a élaborer les
emboitements sur I’ensemble des figures présentées.
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Par conséquent, si l’ensemble des informations véhiculées par chaque zone
géographique issue de la fusion des trois extraits d’arbre décisionnels sont com-
binées ensemble, il est possible de révéler une zone commune, délimitée par les
longitudes 2.8°E et 5.2°E et les latitudes 47°N et 49°N. Dans cette zone mise en
relief, les séismes et les tirs de carriére sont prédits grace a un pool d’attributs
constitués par ’heure et la date d’occurrence des événements, le coefficient
d’asymétrie des distributions des valeurs des amplitudes des signaux associés
a chaque événement ainsi que les magnitudes de surface & 8 s et 20 s (valeurs
minimales et/ou moyennes).

Les premiers résultats des classifications emboitées offrent pour l’instant
une image trés incompléte de 1’étendue de la variabilité de l'efficacité des dis-
criminants sur les différentes régions géographiques. Seulement, 1’ébauche de
cartographie trés simplifiée de la régionalisation des effets des attributs effec-
tuée dans ce travail de thése met en évidence le potentiel réel des résultats
de l'apprentissage machine pour révéler une cartographie compléte de cette
régionalisation.

Ainsi, une piste intéressante a approfondir est d’élaborer une classification
embofitée exhaustive sur I’ensemble de la forét aléatoire de fagon a pouvoir fine-
ment cartographier les combinaisons de discriminants partagés par une méme
zone géographique. Une information riche est contenue dans cette forét, qui
ne demande qu’a étre exploitée. Seulement, pour 1’exploiter efficacement, une
procédure automatique d’analyse des différents arbres doit étre mise en place.
Certains auteurs ont par ailleurs déja élaboré des outils d’analyse automatique
des arbres décisionnels. Ce qui constitue une premiére approche (LAPUSCHKIN
et al., 2019; SAMEK, 2020.
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eUne variabilité locale de ’efficacité des discriminants

La variabilité des discriminants peut étre aussi observée plus localement.
S1 je prends ’exemple de la séquence d’événements qui a eu lieu au nord du
lac Konstanz en Allemagne au cours de la période septembre 2016-décembre
2016, 61 séismes ont d’abord été identifiés. Ces séismes sont caractérisés par
une similarité de formes d’onde manifeste au premier abord (cf Figure 5.30
pour la visualisation de la similarité des formes d’onde enregistrée a la station
SLE).

Seulement, malgré la forte similarité de ces formes d’ondes et de localisations
épicentrales, le classifieur des séismes et des tirs de carriére ne prédit pas ces
événements avec la méme probabilité (Figure 6.8). Un total de 16 séismes vont
méme étre prédits comme des tirs de carriére pour les raisons déja évoquées
dans le chapitre précédent.
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FIGURE 6.8: Distribution de la famille de séismes localisés au nord du lac
Konstanz en Allemagne en fonction des probabilités de prédiction du classifieur
des séismes et des tirs de carriére. Une probabilité de 1 signifie que la totalité
des arbres de la forét aléatoire a prédit ’événement comme étant un séisme.
Une probabilité de O signifie qu’aucun des arbres de la forét aléatoire n’a prédit
I’événement comme étant un séisme (donc les 500 arbres ont prédit dans ce cas
I'événement comme étant un tir de carriére). Un événement est prédit comme
séisme a partir d’'une probabilité de 0.502.
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D’une maniére globale, ’ensemble des 61 séismes repérés au nord du lac
Konstanz sont associés a des signaux dont la valeur moyenne du coefficient
d’asymétrie (0.31 + 0.20) tend & se rapprocher de celle des tirs de carriére de
la zone d’étude (0.20 + 0.49), plutdt que de celle des séismes (0.55 4 0.81). Les
séismes les mieux prédits (probabilité de prédiction > 0.72) par le classifieur
des séismes et des tirs de carriére sont d’ailleurs reliés aux valeurs les plus
élevées du coefficient d’asymétrie de cette distribution (Figure 6.9).
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un séisme faible (0.37). un séisme élevé (0.80).

F1GURE 6.9: Coefficients d’asymétrie et formes d’onde associés a deux signaux
enregistrés sur la composante verticale de la station SLE et correspondant
chacun a un séisme appartenant a I’ensemble des 61 séismes identifiés au Nord
du lac Konstanz en Allemagne (distance épicentrale 20 km). Les valeurs les plus
élevées du coefficient d’asymétrie sont a relier avec des événements prédits avec
une forte probabilité d’étre assimilés a des séismes.

De plus, comme il a été écrit précédemment, les séismes qui sont prédits
incorrectement par le classifieur sont reliés a des signaux qui ont une variance
spectrale généralement inférieure aux autres événements correctement prédits
(Figure 6.10b) et une énergie relative plus intense aux fréquences comprises
entre 1 et 5 Hz (Figure 6.10c).
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(c) Distribution des valeurs des rapport (d) Distribution des valeurs issues de la dif-
d’énergie du signal entre les bandes fré- férence entre la magnitude de coda et la
quentielles 6-9 Hz et 1-5 Haz. magnitude locale.

FIGURE 6.10: Distribution des valeurs de 4 attributs utilisés pour prédire les
séismes et tirs de carriére (coefficient d’asymétrie, variance spectrale, rapport
d’énergie du signal entre les bandes fréquentielles 6-9 Hz et 1-5 Hz, différence
entre la magnitude de coda et la magnitude locale) en fonction des probabi-
lités de prédiction émises par le classifieur. Les valeurs sont extraites de la
totalité des 61 séismes détectés au Nord du lac Konstanz en Allemagne entre
septembre 2016 et décembre 2016. Une probabilité de 1 signifie que la totalité
des arbres de la forét aléatoire a prédit ’événement comme étant un séisme.
Une probabilité de O signifie qu’aucun des arbres de la forét aléatoire n’a prédit
I’événement comme étant un séisme (donc cela signifie que les 500 arbres ont
prédit ’événement en tant que tir de carriére).
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En outre, en observant la répartition des valeurs de la différence entre la
magnitude de coda et la magnitude locale en fonction des probabilités de pré-
diction du classifieur, une tendance s’affirme. En effet, la différence entre la
magnitude de coda et la magnitude locale diminue a mesure que les probabili-
tés de prédiction augmentent (Figure 6.10d).

Or, il a été constaté que la différence moyenne entre la magnitude de coda
et la magnitude locale est une fonction sensible de la profondeur de la source
(KOPER et al., 2016). Plusieurs pistes ont d’ailleurs été proposées pour tenter
d’expliquer pourquoi les événements les plus superficiels possédent des codas
de plus longue durée, comme la présence d'un guide d’ondes a faible vitesse
proche de la surface ou des chutes de contrainte plus faibles (HoLT et al., 2019).

Par conséquent, si cet attribut (différence entre magnitude de coda et ma-
gnitude locale) témoigne indirectement de la profondeur des événements, cela
signifie alors que le classifieur prédit plus difficilement correctement les évé-
nements superficiels de ces essaims de séismes : une plus forte valeur de cet
attribut est corrélée avec une valeur de probabilité faible. Ce classifieur prédira
plus facilement les séismes superficiels comme étant des tirs de carriére car leurs
signaux présentent des propriétés similaires a ceux des tirs de carriére pour les
attributs considérés, d’autant plus que la particularité de ces 61 séismes est de
partager des valeurs de coefficient d’asymeétrie de la distribution des valeurs
d’amplitude des signaux associés similaires a celles des tirs de carriere.

De ce fait, les erreurs de classification pour ces essaims de séismes ont
manifesté une valeur discriminante différentielle des attributs en fonction de
I’événement considéré au sein méme de chaque essaim. Cette variabilité plus
locale de l’effet des discriminants limite donc localement la performance de la
prédiction. Celle-ci révéle également indirectement, a travers les probabilités
de prédiction, un parameétre de la source, a savoir ici sa profondeur. Enfin, ce
résultat signale que les critéres utilisés pour classer les événements reflétent
indirectement les effets du milieu de propagation que les signaux manifestent.
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6.3 Une procédure de détection des séismes de
faible magnitude encore a optimiser

6.3.1 Approfondir l'interactivité Homme-machine au sein
des observatoires sismologiques

La procédure de détection qui est développée dans ce travail de thése, élabo-
rée sous SeisComP3, a ’avantage d’étre transposée facilement en opérationnel.
De plus, elle fournit des résultats de classification prometteurs, qui ne se dé-
parent pas des résultats de la classification manuelle, ou bien d’une classification
automatique élaborée a partir d'un jeu pointé manuellement.

En effet, si je compare les résultats de la classification automatique des
séismes et des tirs de carriére élaborée a partir du jeu de données produit
automatiquement (période septembre 2016 -décembre 2016) aux résultats de
la classification automatique élaborée a partir de ce méme jeu de données,
mais repris manuellement, il est possible de constater que le classifieur prédit
correctement un taux équivalent de séismes, quel que soit le jeu de données
(Table 6.1).

De plus, pour le jeu automatique non repris manuellement, la performance
prédictive du classifieur vis-a-vis des tirs de carriére se dégrade légérement (de
I'ordre de 2%), méme si les résultats restent trés honorables (94.76% de tirs de
carriére bien classés).

TABLE 6.1: Comparaison des performances prédictives du classifieur de séismes
et de tirs de carriére vis-a-vis du jeu d’événements détectés automatiquement
entre septembre 2016 et décembre 2016 et le méme jeu d’événements repris
manuellement

Manually Reviewed Automatic Data | Automatic data
Specificity (%) 96.82 + 0.24 94.76 £ 0.34
Sensitivity (%) 96.55 £+ 0.22 96.04 £+ 0.30
Precision (%) 96.00 + 0.29 94.68 + 0.33
F-Measure 0.963 £+ 0.002 0.953 £ 0.002

@ Spécificité : le taux de tirs de carriére correctement prédits (soit le rapport des vrais
négatifs sur la somme des vrais négatifs et des faux positifs). Sensitivité : le taux de
séismes correctement prédits (soit le rapport des vrais positifs sur la somme des vrais
positifs et des faux négatifs). Précision : la proportion de séismes correctement prédits
relativement a toutes les détections positives (le rapport des vrais positifs sur la somme
des vrais positifs et faux positifs). La mesure F : un résumé statistique qui combine la
précision et la sensitivité (2 x prcision x sensitivit /(prcision + sensitivit)).
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Ce dernier résultat souligne indirectement la difficulté accrue d’obtenir des
pointés automatiques de trés bonne qualité lorsqu’il s’agit de détecter des si-
gnaux sismiques associés aux tirs de carriére. En effet, ces signaux sont détectés
dans des périodes ou le bruit d’origine anthropique est le plus élevé et avec de
faibles rapports signal/bruit. Toutefois, la forte proportion de tirs de carriére
bien prédits avec le jeu automatique met tout de méme en évidence ’apport si-
gnificatif de la procédure de détection pour qualitativement détecter I’ensemble
des vrais événements de la zone d’étude.

Comme décrit dans I’article présenté précédemment, l'intégration de cette
procédure de détection au sein des observatoires sismologiques a des avantages
certains.

Elle permet d’abord la détection des vrais événements en éliminant plus de
99% des faux événements. En effet, sans intégration de I’apprentissage machine
dans le flux de détection, la procédure de détection génére prés de 50 000
événements sur 4 mois. De ce fait, I'introduction du module de discrimination
SeisComP3, que j'ai développé, dans le systéme de détection final élimine la
fatigue physiologique liée aux faux événements, tout en maintenant un taux de
séismes détectés trés satisfaisant (environ 93 %).

De plus, les probabilités de prédiction apportées par le classifieur des séismes
et des tirs de carriére offrent une base intéressante pour revoir manuellement
les résultats finaux de la détection automatique. Seulement, il faudrait com-
prendre plus précisément la nature de l'interaction Homme-machine dans le
cadre de cette revue manuelle des événements. En effet, revoir manuellement
les événements en se basant sur la valeur de la probabilité de prédiction est
une approche simple. Comme écrit dans l’article précédent, la revue manuelle
de 'ensemble des événements discriminés avec une probabilité comprise entre
0.4 et 0.7 n’est pas une lourde tache et conduit méme a une amélioration trés
forte du taux d’événements correctement classés.

Cependant, avec cette approche, il y a un risque de conformation forte aux
résultats prédits par la fonction de prédiction, en particulier pour les proba-
bilités en dehors de la gamme 0.40-0.70. Pour éviter ces effets potentiellement
négatifs, il apparait indispensable d’étudier de maniére approfondie comment
I’humain se comporte dans un processus décisionnel qui intégre la machine.
Au demeurant, si une trop grande conformation vis-a-vis de l’apprentissage
machine peut dégrader les solutions finales, le rejet systématique des résultats
de I’apprentissage machine sous prétexte que l'algorithme se "trompe" souvent
ou qu’il apprend "mal" est également contre-productif. En définitive, si 1’algo-
rithme apprend "mal", c’est que ’espace d’hypothéses initiales pour rechercher
la fonction de prédiction optimale n’est pas suffisamment contraint.
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L’analyse comportementaliste de I’Homme vis-a-vis de la machine, comme
par exemple comparer une population d’analystes qui classe les événements
sans 'apprentissage machine et une autre population qui classe les événements
avec, puis comprendre les choix élaborés par les deux populations, reste indis-
pensable pour optimiser l'interactivité Homme-machine. Il s’agit de tirer profit
de 'apport manifeste de I’apprentissage machine dans la discrimination, tout
en assurant une veille permanente de I’'Homme sur les résultats prodigués par
cet apprentissage.

6.3.2 Tendre vers ’erreur de généralisation la plus petite
possible

Si dans ce travail j'ai recherché & élaborer des classifieurs (un classifieur
pour les vrais et faux événements et un classifieur pour les séismes et les tirs de
carriére) qui minimisent au maximum l’erreur de généralisation, d’autres angles
sont & considérer pour augmenter la performance prédictive de ces derniers, et
asseoir leur validité.

Ces classifieurs ont été testés en dehors de la zone d’étude, sur un jeu
d’événements détectés dans la zone des Pyrénées frangaises. C’est d’ailleurs
avec ce jeu d’événements qu'il a été confirmé que les différents paramétres qui
vont décrire I’enveloppe du signal (statistique et forme de la distribution des
valeurs de l’enveloppe, complexité, etc) dégradent la prédiction des séismes.
En effet, étant donné la forte variabilité des formes d’onde au sein méme d’une
classe d’événements et entre les classes d’événements, une introduction détaillée
des parameétres qui vont définir le signal dans le domaine temporel apporte
beaucoup de confusions.

Ainsi, utiliser ces classifieurs pré-entrainés sur d’autres jeux d’événements
détectés dans d’autres environnements peut apporter une validité aux résultats
proposés dans ce travail de thése. De plus, détecter les événements dans la zone
d’étude en retirant les stations temporaires AlpArray, pourra aussi étre un autre
garant de la robustesse des deux classifieurs. Tester le pouvoir prédictif de ces
classifieurs avec un jeu d’entrainement plus grand est aussi intéressante pour
évaluer leur stabilité.

De plus, comme écrit précédemment, la variabilité régionale des discrimi-
nants des séismes et des tirs de carriére mérite d’étre approfondie a travers une
étude compléte de ’ensemble des arbres décisionnels, de fagon a savoir s’il est
possible d’élaborer une cartographie globale de 'efficacité de ces derniers. Or,
si ces discriminants s’avérent étre d’efficacité variable en fonction des régions
géographiques, il serait intéressant de comprendre plus exactement ce qu’ils
révelent : les effets de la source 7 les effets du milieu de propagation 7 les effets
du bruit enregistré a certaines stations spécifiques ?
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Enfin, la discrimination des vrais événements reste a étre affinée notamment
en se penchant sur d’autres classes d’événements comme la sismicité induite par
la géothermie profonde. Si cette classe d’événements est minoritaire par rapport
aux séismes et aux tirs de carriére, elle présente des enjeux non négligeables
(économiques, scientifiques, sociologiques) pour la compréhension des risques
sismiques associés a cette activité géothermique. Seulement, la résolution de ce
probléme de classification des séismes induits par la géothermie profonde est

une tache complexe a accomplir.

C’est un probléme qui est dés le départ complexe puisque le jeu de don-
nées disponible dans la zone d’étude est de taille petite et pollué par d’autres
événements qui sont étiquetés comme induits mais qui sont en fait purement
liés & une activité miniére (effondrement de toit de mines par exemple). C’est
en élaborant un premier apprentissage a partir de ce jeu de données que je
me suis apergue de l'inclusion de ces événements. La sélection automatique
des attributs qui est produite considére la proximité de 1’événement a la mine
la plus proche avec une importance relative non négligeable de ’ordre de 3%

(Figure 6.11).
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FIGURE 6.11: Premiére sélection d’attributs produite par élimination récursive
pour 1’élaboration d’un classifieur qui puisse également identifier les séismes in-
duits par la géothermie profonde parmi l'’ensemble des autres vrais événements
détectés dans la zone d’étude. Cette sélection a été élaborée a partir d’un jeu
d’événements détectés au cours de ’année 2016-2017. La valeur discriminante

de cette sélection n’a pas été testée, ni validée.

Par ailleurs, si la discrimination de la sismicité induite par la géothermie
peut étre établie a travers des corrélations spatiales et temporelles avec les in-
jections qui ’ont produite (VERDON et al., 2019), ces critéres peuvent étre non
suffisants lorsque des séismes d’origine naturelle sont réguliérement détectés

dans la zone des puits d’injection.
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Ainsi, ces séismes induits par la géothermie profonde sont reconnus pour
étre reliés a des caractéristiques de la source, des relations magnitude-fréquence
et des mouvements du sol similaires aux séismes dits naturels (SCHOENBALL
et al., 2015 ; ATKINSON, 2020; ATKINSON et al., 2020. Ils partagent également
avec ces derniers des mécanismes de rupture assez semblables, comme peuvent
le témoigner 1’analyse de leurs mécanismes focaux double-couple qui semblent
compatibles avec les champs de contrainte régionaux (CLARKE et al., 2019;
T. S. EYRE et al., 2019; LE1, Z. WANG et al., 2019; Z. ZHANG et al., 2019. Ce
qui rend encore plus difficile la résolution du probléme de discrimination de
cette sismicité induite, au-dela de la qualité du jeu d’entrainement disponible.

6.4 Bilan

Le probléme de la détection des séismes de faible magnitude dans une ré-
gion continentale stable, telle que la zone d’étude de ce travail de thése, est
intimement associée a la notion de détectabilité des signaux sismiques dans
un systéme multiparamétrique. Ces signaux sont le résultat de la combinaison
des effets de la source, souvent atténués, du milieu de propagation et du bruit
enregistré aux stations.

Lorsque les seuils de détection sont diminués pour détecter les signaux avec
de faible rapports signal/bruit, les effets du bruit sur ces signaux a détecter
s'amplifient. Si la diminution des seuils des détection est combinée avec un ré-
seau de stations plus dense, comme c’est le cas de la zone d’étude, la complexité
des chemins de propagation des ondes sismiques est plus facilement capturée
dans toutes les directions de 1’espace, et, a ’échelle du réseau, les effets du mi-
lieu de propagation sur les signaux a détecter s’intensifient. Par conséquent, si
ce sont des signaux de faible amplitude qui sont détectés, les effets de la source
deviennent trés vite atténués.

Le probléme de la détection des séismes de faible magnitude émerge alors,
et il s’agit de comprendre comment décoder le signal pour en extraire les in-
formations atténuées de la source sismique, c’est-a-dire comment diminuer les
effets liés au bruit et au milieu de propagation.

La procédure de détection que j’ai développée vise a diminuer ces deux ef-
fets. Les effets liés au bruit se manifestent d’emblée par le pointé automatique
des ondes sismiques P et S. En effet, les algorithmes de pointé automatique,
implémenté dans le systéme de détection de SeisComP3 que je cherche a opti-
miser, se basent sur des variations d’amplitudes, voire de fréquence et de phase
pour détecter les temps d’arrivée des ondes sismiques. Ces algorithmes peuvent
donc reconnaitre indistinctement des signaux sismiques cohérents associés a un
événement comme des signaux associés purement a du bruit impulsif d’origine
anthropique, d’autant plus si tous ces signaux sont de méme amplitude, de
méme durée et de méme contenu fréquentiel.
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Afin de limiter ces effets liés au bruit, le filtrage fréquentiel du signal, le
début de la fenétre temporelle utilisée pour détecter les temps d’arrivée des
ondes P et S et la valeur du rapport signal/bruit minimal autorisée pour pointer
les phases S ont été adaptés aux conditions de bruit enregistrées spécifiquement
aux stations. De plus, les phases S étant pointées une fois que les pointés
des phases P ont été émis, la taille et le pas de la fenétre temporelle utilisés
pour détecter ’arrivée des ondes S sont fortement conditionnés par la distance
épicentrale et doivent donc étre ajustés en fonction de cette distance. Dans ce
cas-ci, ce sont les effets du milieu de propagation qui sont pris en compte.

Le processus d’association étant fondé sur le regroupement de temps d’arri-
vée compatibles dans une fenétre temporelle donnée, celui-ci est donc fortement
soumis aux effets du milieu de propagation. Si les vitesses des ondes dans le
milieu ne sont pas correctement définies et si la configuration du réseau de
stations est négligée, la probabilité de créer des combinaisons de pointés avec
des pointés parasites s’éléve. Pour diminuer les effets liés au milieu de propaga-
tion, les distances inter-station et plusieurs vitesses de propagation des ondes
sismiques ont été explorées.

Le systéme de détection de SeisComP3 produisant un catalogue multi-
origine, une sélection préférentielle d’une origine est réalisée pour chaque évé-
nement. Afin de réaliser une sélection optimale, il s’agit de choisir 'origine qui
minimise a la fois les effets du bruit et les effets du milieu de propagation. Pour
cela, estimer des paramétres supplémentaires (seuil de RMS, seuil du nombre
de phases, distances épicentrales, valeurs des résidus, incertitudes de localisa-
tion latitudinales et longitudinales, nombre de phases S) qui vont définir la
précision de la localisation de 1’origine est une étape nécessaire a la détection
finale optimale des séismes de faible magnitude.

A Tlissue des différentes étapes, la réduction des effets liés au bruit enre-
gistré aux stations et au milieu de propagation améliore la détection des vrais
événements mais n’empéche pas la détection des faux événements. Or, dans
le cadre de ce travail de theése, c’est facilement 50 000 faux événement qui
sont détectés en 4 mois. De ce fait, méme si la détection des vrais événements
a été améliorée, les effets de cette amélioration sont fortement limités par la
détection outranciére des faux événements.

Un deuxiéme probléme se souléve, celui de la discrimination des événe-
ments. Discriminer un événement revient a disséquer complétement ce dernier
de maniére a extraire I'information sur la nature de la source qui I’a engendré.
Or, un événement c’est a la fois une solution hypocentrale et épicentrale, un
temps d’origine, une magnitude, une combinaison de pointés, une combinaison
de signaux, mais c’est aussi des incertitudes puisque ce dernier est détecté a
partir d’'une source inconnue. Un événement c’est donc un trés grand espace de
solutions possibles difficiles a décrypter avec le seul cerveau humain. L’'utilisa-
tion de l'apprentissage machine a alors permis de gérer plus efficacement cet
espace des possibles.
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Si les effets liés au bruit et au milieu de propagation ont fortement condi-
tionné le succeés de la détection, ces derniers effets vont aussi apporter une
contrainte forte a la résolution du probléme de discrimination. Or, ’apprentis-
sage machine permet assez bien de gérer ces effets en segmentant les différentes
informations dans un espace d’attributs indépendants, oit chaque attribut véhi-
cule une partie de la réponse au probléme posé de la discrimination. Seulement,
la difficulté ici est de trouver dans cet espace la combinaison optimale d’attri-
buts qui va pouvoir retracer le plus fidélement possible I'information véhiculée
par la source, sans risque de sur-apprentissage ou de sous-apprentissage de
I’algorithme utilisé.

De ce fait, afin d’optimiser la résolution du probléme de discrimination
des événements par apprentissage machine, l'interactivité Homme-machine a
été privilégiée dans la construction de cette apprentissage, en plus du choix
raisonnée de l'algorithme d’apprentissage et de la configuration de son espace
d’hyperparamétres. Cette interactivité vise a détecter les corrélations parasites
élaborées par le systéme d’apprentissage et estimer la validité des régles de
classification émises.

La solution optimale obtenue pour discriminer les faux événements des vrais
événements ne s’est pas basée majoritairement sur les caractéristiques du signal,
les signaux associés a ces différents événements étant trés souvent d’amplitude
similaire, de durée équivalente et de contenu fréquentiel semblable.

Un faux événement est donc mieux classé a partir d’une combinaison d’attri-
buts qui le définit comme étant un événement généré a partir d’une association
incohérente de pointés (facteur de corrélation entre les premiéres arrivées des
ondes P et la distance épicentrale), qui ont été déclenchés suite a une forte
variation d’amplitude (valeur maximale de la fonction STA/LTA), a partir de
signaux aléatoires (estimation de l’entropie de Shannon) et relativement sta-
tionnaires (différence discréte d’ordre 1 de l’enveloppe du signal) et dont la
source est superficielle (fort degré de polarisation planaire) et mal localisée
(distribution statistique des résidus, nombre de phases utilisées, distance épi-
centrale minimale, écart-type & partir de la distance épicentrale moyenne).

En revanche, les caractéristiques du signal dans le domaine fréquentiel (va-
riance, nombre de pics, fréquence cumulée a 25%, fréquence cumulée a 75%,
rapports spectraux entre les ondes P et S) puis le domaine temporel (coefficient
d’asymeétrie et d’aplatissement de la distribution des valeurs d’amplitude du
signal, rapport de I’énergie du signal a différentes bandes fréquentielles) ont été
largement utilisés dans la classification des séismes et des tirs de carriére. En
effet, ces différentes caractéristiques expriment la nature des différentes phases
sismiques qui composent les signaux associés aux séismes et aux tirs de carriére.
De plus, des informations complémentaires trés indirectes sur la profondeur de
ces événements (différence entre magnitude de coda et magnitude locale, ma-
gnitudes de surface, rapports Z/H) ainsi que le lieu et le temps d’occurrence
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des événements (proximité de ’événement & un centre urbain, donc poten-
tiellement d’une carriére, heure et date de ’événement) viennent compléter le
diagnostic.

La procédure de détection des séismes de faible magnitude qui est dévelop-
pée au cours de ce travail de thése apportent des résultats prometteurs. Cette
procédure détecte 2.5 fois plus de séismes dont 48% ont des magnitudes locales
MLv inférieures a 1.20. Cette détection supplémentaire de séismes ameéne a
diminuer la magnitude de complétude qui atteint une valeur de 1.10 au lieu de
1.20. A ce niveau de magnitude c’est une différence subtile mais qui catalyse
un début d’'infléchissement qui n’était pas encore observé malgré ’apport de
nouvelles stations. L’intégration des stations AlpArray semblent apporter une
plus-value qui reste a étre confirmée plus largement.

De plus, la procédure de classification des événements est également pro-
metteuse : elle élimine plus de 99% des faux événements et manque trés peu
de séismes (moins de 7%) parmi les vrais événements, elle discrimine aussi
correctement environ 95% des tirs de carriére et 96% des séismes.

Si ces résultats sont bel et bien prometteurs, la procédure de détection dé-
veloppée gagnerait en robustesse si elle était testée sur d’autres jeux de données
ou dans d’autres conditions de monitoring (comme par exemple sans les sta-
tions AlpArray), et si la caractérisation de l'interaction Homme-machine était
plus approfondie pour augmenter les bénéfices de ’intéractivité dans 1’affinage
finale de la discrimination.

Ces résultats expriment aussi qu’il reste difficile de se détacher compléte-
ment des effets liés au bruit et au milieu de propagation. Si la procédure détecte
plus de séismes de faible magnitude, le profil de détection des séismes maintient
une périodicité apparente qui est fortement liée au niveau de bruit d’origine
anthropique enregistrée au cours de la journée : le taux de séismes reste le plus
élevé aux périodes de journées ou le niveau de bruit est minimal.

De plus, 'utilisation de l’'apprentissage machine semble mettre a jour une
variabilité spatiale dans 'efficacité des attributs du signal utilisés pour discri-
miner les séismes et les tirs de carriére. Cela signifie que, face a un milieu de
propagation hétérogéne et complexe, la réponse du systéme semble étre une
régionalisation de l'effet des discriminants. Cependant, pour confirmer cela,
une cartographie fine de cette variabilité spatiale est indispensable pour mieux
comprendre ce que ces discriminants expriment régionalement ou plus loca-
lement, a savoir s’ils expriment une signature sismique spécifique, gouvernée
par des hétérogénéités géologiques et/ou des effets localisés du bruit enregistré
aux stations et/ou des effets du milieu de propagation et/ou des effets diis a la
profondeur de la source.
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6.4. BILAN

En effet, pouvoir distinguer explicitement dans la signature du signal sis-
mique ce qui réveéle spécifiquement de la source ou des autres effets mentionnés,
serait une avancée majeure pour mieux contraindre les profondeurs hypocen-
trales, en donnant des informations indirectes sur la profondeur de la source, et
pour clairement identifier si cette zone héberge des caractéristiques sismiques
bien définies. L’identification soit de sources types associées a une zone précise,
soit de formes d’ondes récurrentes ouvre alors des fenétres d’études permettant
de mieux caractériser le fonctionnement sismotectonique de la zone d’étude.
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Distribution de la sismicité
historique et expérimentale de la
zone du Graben du Rhin Supérieur
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FIGURE A.1: (a) Segments majeurs du rift Cénozoique ouest-européen, répré-
sentés en orange ECRIS. (b) Sismicité historique et instrumentale de la zone
du Graben Supérieur (catalogue SI-Hex, Cara et al. 2015). Les failles majeures
sont représentées par des lignes marrons pour les deux figures. D’apres Henrion
et al., 2020.
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Annexe B

Distribution de la sismicité extraite
du catalogue RéNaSS et du réseau

de détection utilisé pour la période
2012-2019
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Ficure B.1: Distribution de la sismicité et du réseau de détection utilisé par
le RéNaSS pour 'année 2012. Localisations des stations et des séismes ainsi
que magnitudes des séismes extraites de la base de données RéNaSS selon un
protocole FDSN a l'adresse http://renass-scl.u-strasbg.fr:8080
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Ficure B.2: Distribution de la sismicité et du réseau de détection utilisé par
le RéNaSS pour 'année 2013.
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Ficure B.3: Distribution de la sismicité et du réseau de détection utilisé par
le RENaSS pour ’année 2014.

AlexANNEREhBuafdISTRIBUTION DE LA SISMICITE EXTRAITE DU 379
CATALOGUE RENASS ET DU RESEAU DE DETECTION UTILISE
POUR LA PERIODE 2012-2019



o Magnitude MLv < 1
O Magnitude MLv between 1 and 3

O Magnitude MLv between 3 and 5

O Magnitude MLv > 5

- ] 5 F/
h' . Station Network
French Stations (151)

German Stations (11)

v
v
W Swiss Stations (11)
v

Belgian Stations (5)

ISITIE'IE RIM!

»
AJJONSCINAS

L

7 RRARA
Leaflet | Map files by Stamen Design, uhder CC BY 3.0. Data by © OpenStreethiap, un

FicURrE B.4: Distribution de la sismicité et du réseau de détection utilisé par
le RéENaSS pour I'année 2015.
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Ficure B.5: Distribution de la sismicité et du réseau de détection utilisé par
le RéNaSS pour ’année 2016.
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Ficure B.6: Distribution de la sismicité et du réseau de détection utilisé par
le RéNaSS pour ’année 2017.
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Ficure B.7: Distribution de la sismicité et du réseau de détection utilisé par
le RENaSS pour ’année 2018.
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Ficure B.8: Distribution de la sismicité et du réseau de détection utilisé par
le RéNaSS pour ’année 2019.
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Annexe C

Distribution du nombre de pointés
manuels effectués pour ’année 2016
en fonction des stations AlpArray
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Ficure C.1: Distribution du nombre de pointés manuels effectués pour ’année

2016 en fonction des stations AlpArray.
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Annexe D

Modéles de vitesse utilisés pour les
solutions épicentrales et
hypocentrales proposées dans le
chapitre 4.
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TABLE D.1: Modéle de vitesse multicouche utilisé pour les solutions épicentrales
et hypocentrales proposées dans les Figures 4.29 et 4.33 pour le tir de la carriére
de Dotternhausen identifié le 15 juillet 2016 a 10h25 (MLv 1.7).

Depth P- and S-wave velocity | Density
0.0 3.83 2.26 2.7
1.0 3.88 2.29 2.7
1.0 3.88 2.29 2.7
2.0 4.41 2.61 2.7
2.0 4.41 2.61 2.7
5.0 4.71 2.69 2.7
5.0 4.71 2.69 2.7
8.0 5.45 3.11 2.7
8.0 5.45 3.11 2.7
11.0 5.45 3.12 2.7
11.0 5.45 3.12 2.7
14.0 5.63 3.21 2.7
14.0 5.63 3.21 2.7
17.0 5.99 3.42 2.7
17.0 5.99 3.42 2.7
20.0 6.78 3.82 2.7
20.0 6.78 3.82 2.7
22.0 6.85 3.86 2.7
22.0 6.85 3.86 2.7
24.0 6.92 3.87 2.7
24.0 6.92 3.87 2.7
26.0 7.26 4.06 2.7
26.0 7.26 4.06 2.7
28.0 7.54 4.21 2.7
28.0 7.54 4.21 2.7
30.2 8.01 4.40 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6

outer-core
2891 8.0 0.0 9.9

5149.5 10.3 0.0 12.

inner-core

5149.5 11 3.5 12.7
6371 11.3 3.7 13

2NEXE D. MODELES DE VITESSE UTILISES POURI&BI GQTRERIGONS
EPICENTRALES ET HYPOCENTRALES PROPOSEES DANS LE
CHAPITRE 4.



TABLE D.2: Modéle de vitesse a 3 couches utilisé pour les solutions épicentrales
et hypocentrales proposées dans la Figure 4.30 pour le tir de la carriére de
Dotternhausen identifié le 15 juillet 2016 a 10h25 (MLv 1.7).

Depth P- and S-wave velocity | Density
0.0 4.24 2.38 2.7
2.4 4.24 2.38 2.7
2.4 5.72 3.04 2.7
20.1 5.72 3.94 2.7
20.1 7.39 3.85 2.7
30.2 7.39 3.85 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6

outer-core
2891 8.0 0.0 9.9

5149.5 10.3 0.0 12.2

inner-core

5149.5 11 3.5 12.7
6371 11.3 3.7 13

ANNENT Bed@DELES DE VITESSE UTILISES POUR LES SOLUTICR8S
EPICENTRALES ET HYPOCENTRALES PROPOSEES DANS LE
CHAPITRE 4.



TABLE D.3: Modéle de vitesse a multicouche utilisé pour les solutions épicen-
trales et hypocentrales proposées dans les Figures 4.31 et 4.35 pour le séisme
qui a eu lieu le 16 juillet 2016 & 02h36 dans les Pré-alpes Suisses (MLv 2.7).

Depth (km) P-wave and S-wave velocity (km/s) | Density
0.0 4.65 2.68 2.7
1.0 4.65 2.68 2.7
1.0 4.84 2.75 2.7
2.0 4.84 2.75 2.7
2.0 4.89 2.71 2.7
5.0 4.89 2.71 2.7
5.0 5.28 2.90 2.7
8.0 5.28 2.90 2.7
8.0 5.31 2.91 2.7
11.0 5.31 2.91 2.7
11.0 5.57 3.02 2.7
14.0 5.57 3.02 2.7
14.0 5.60 3.03 2.7
17.0 5.60 3.03 2.7
17.0 5.84 3.09 2.7
20.0 5.84 3.09 2.7
20.0 6.09 3.20 2.7
22.0 6.09 3.20 2.7
22.0 6.18 3.25 2.7
24.0 6.18 3.25 2.7
24.0 7.10 3.69 2.7
26.0 7.65 3.92 2.7
28.0 7.65 3.92 2.7
28.0 8.09 4.12 2.7
30.2 8.15 4.12 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6
outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2
inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13

2NEXE D. MODELES DE VITESSE UTILISES POURI&BS GQIRERIGONS
EPICENTRALES ET HYPOCENTRALES PROPOSEES DANS LE
CHAPITRE 4.



TABLE D.4: Modéle de vitesse a 3 couches utilisé pour les solutions épicentrales
et hypocentrales proposées dans les Figures 4.32 et 4.35 pour le séisme qui a
eu lieu le 16 juillet 2016 a 02h36 dans les Pré-alpes Suisses (MLv 2.7).

Depth (km) P-and S-wave velocity (km/s) | Density
0.0 4.24 2.52 2.7
2.4 4.24 2.52 2.7
2.4 5.72 3.18 2.7
20.1 5.72 3.18 2.7
20.1 7.39 3.69 2.7
30.2 7.39 3.69 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 0.7 5.9 4.4
2891 13.7 7.2 5.6
outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2
inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13
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EPICENTRALES ET HYPOCENTRALES PROPOSEES DANS LE
CHAPITRE 4.



TABLE D.5: Modéle de vitesse a 3 couches utilisé pour les solutions épicentrales
et hypocentrales proposées dans les Figure 4.32 et 4.36 pour le tir de la caiirére
de Dotternhausen identifié le 15 juillet 2016 a 10h25 (MLv 1.7).

Depth (km) P-wave and S-wave velocity (km/s) | Density
0.0 5.46 3.23 2.7
2.4 5.46 3.23 2.7
2.4 6.13 3.5 2.7
20.1 6.13 3.5 2.7
20.1 6.91 3.86 2.7
30.2 6.91 3.86 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6
outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2
inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13

2Q0NEXE D. MODELES DE VITESSE UTILISES POURI&BI GQIRERIGONS
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TABLE D.6: Modéle de vitesse a 3 couches utilisé pour les solutions épicentrales
et hypocentrales proposées dans la Figure 4.34 pour le tir de la caiirére de
Dotternhausen identifié le 15 juillet 2016 a 10h25 (MLv 1.7).

Depth (km) P-wave and S-wave velocity (km/s) | Density
0.0 4.28 2.53 2.7
2.4 4.28 2.53 2.7
2.4 5.78 3.3 2.7
20.1 5.78 3.3 2.7
20.1 6.79 3.79 2.7
30.2 6.79 3.79 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6
outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2
inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13
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TABLE D.7: Modéle de vitesse a 3 couches utilisé pour les solutions épicentrales
et hypocentrales proposées dans la Figure 4.37 pour le tir de la carriére de
Dotternhausen identifié le 15 juillet 2016 a 10h25 (MLv 1.7).

Depth (km) P-wave and S-wave velocity (km/s) | Density
0.0 4.65 2.80 2.7
1.0 4.65 2.80 2.7
1.0 4.84 2.89 2.7
2.0 4.84 2.89 2.7
2.0 4.89 2.91 2.7
5.0 4.89 2.91 2.7
5.0 5.28 3.03 2.7
8.0 5.28 3.03 2.7
8.0 5.31 3.05 2.7
11.0 5.31 3.05 2.7
11.0 5.57 3.10 2.7
14.0 5.57 3.10 2.7
14.0 5.60 3.14 2.7
17.0 5.60 3.14 2.7
17.0 5.84 3.17 2.7
20.0 5.84 3.17 2.7
20.0 6.09 3.27 2.7
22.0 6.09 3.27 2.7
22.0 6.18 3.28 2.7
24.0 6.18 3.28 2.7
24.0 7.10 3.64 2.7
26.0 7.65 3.90 2.7
28.0 7.65 3.90 2.7
28.0 8.09 4.10 2.7
30.2 8.15 4.14 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6
outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2
inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13
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TABLE D.8: Modéle de vitesse a 3 couches utilisé pour les solutions épicentrales
et hypocentrales proposées dans les Figures 4.38 et 4.39 pour le tir de la carriére
de Dotternhausen identifié le 15 juillet 2016 & 10h25 (MLv 1.7).

Depth (km) P-wave and S-wave velocity (km/s) | Density
0.0 4.73 2.81 2.7
2.4 4.73 1.81 2.7
2.4 6.07 3.46 2.7
20.1 6.07 3.46 2.7
20.1 7.19 4.01 2.7
30.2 7.19 4.01 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6
outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2
inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13

ANNENE Bed@RELES DE VITESSE UTILISES POUR LES SOLUTIC39S
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Annexe E

Modéles de vitesse testées pour
optimiser les processus
d’association (chapitre 4).

TABLE E.1: Modeéle de vitesse a 3 couches n°11.

Depth (km) P-wave and S-wave velocity (km/s) | Density
0.0 4.70 2.78 2.7
2.4 4.70 2.78 2.7
2.4 5.75 3.29 2.7
20.1 5.75 3.29 2.7
20.1 7.30 4.08 2.7
30.2 7.30 4.08 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6
outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2
inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13
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TABLE E.2: Modéle de vitesse a 3 couches n°25

Depth (km) P-wave and S-wave velocity (km/s) | Density
0.0 3.54 2.09 2.7
2.4 3.54 2.09 2.7
2.4 5.84 3.34 2.7
20.1 5.84 3.34 2.7
20.1 7.30 4.08 2.7
30.2 7.30 4.08 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6
outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2
inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13

ANNREB Bend@DRELES DE VITESSE TESTEES POUR OPTIMISER 1388
PROCESSUS D’ASSOCIATION (CHAPITRE 4).



TABLE E.3: Modéle de vitesse a 3 couches n°31

Depth (km) P-wave and S-wave velocity (km/s) | Density
0.0 5.21 3.08 2.7
2.4 5.21 3.08 2.7
2.4 5.72 3.27 2.7
20.1 5.72 3.27 2.7
20.1 7.37 4.12 2.7
30.2 7.37 4.12 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6
outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2
inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13

2NEXE E. MODELES DE VITESSE TESTEES POURIGRAIMIBERTA
PROCESSUS D’ASSOCIATION (CHAPITRE 4).



TABLE E.4: Modéle de vitesse a 3 couches n°38.

Depth (km) P-wave and S-wave velocity (km/s) | Density
0.0 4.07 2.41 2.7
2.4 4.07 2.41 2.7
2.4 5.73 3.27 2.7
20.1 5.73 3.27 2.7
20.1 7.45 4.16 2.7
30.2 7.45 4.16 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6
outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2
inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13

ANNREB Bend@DRELES DE VITESSE TESTEES POUR OPTIMISER 1383
PROCESSUS D’ASSOCIATION (CHAPITRE 4).



TABLE E.5: Modeéle de vitesse multicouche n°10.

Depth (km) P-wave and S-wave velocity (km/s) | Density
0.0 4.65 2.71 2.7
1.0 4.65 2.71 2.7
1.0 4.84 2.80 2.7
2.0 4.84 2.80 2.7
2.0 4.89 2.83 2.7
5.0 4.89 2.83 2.7
5.0 5.28 2.91 2.7
8.0 5.28 2.91 2.7
8.0 5.31 3.00 2.7
11.0 5.31 3.00 2.7
11.0 5.57 3.04 2.7
14.0 5.57 3.04 2.7
14.0 5.60 3.04 2.7
17.0 5.60 3.04 2.7
17.0 5.84 3.14 2.7
20.0 5.84 3.14 2.7
20.0 6.09 3.23 2.7
22.0 6.09 3.23 2.7
22.0 6.18 3.25 2.7
24.0 6.18 3.25 2.7
24.0 7.10 3.69 2.7
26.0 7.65 3.94 2.7
28.0 7.65 3.94 2.7
28.0 8.09 4.10 2.7
30.2 8.15 4.10 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6
outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2
inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13
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TABLE E.6: Modéle de vitesse multicouche n°24.

Depth (km) P-wave and S-wave velocity (km/s) | Density
0.0 4.65 2.75 2.7
1.0 4.65 2.75 2.7
1.0 4.84 2.86 2.7
2.0 4.84 2.86 2.7
2.0 4.89 2.89 2.7
5.0 4.89 2.89 2.7
5.0 5.28 3.01 2.7
8.0 5.28 3.01 2.7
8.0 5.31 3.03 2.7
11.0 5.31 3.03 2.7
11.0 5.57 3.18 2.7
14.0 5.67 3.18 2.7
14.0 5.60 3.20 2.7
17.0 5.60 3.20 2.7
17.0 5.84 3.33 2.7
20.0 5.84 3.33 2.7
20.0 6.09 3.45 2.7
22.0 6.09 3.45 2.7
22.0 6.18 3.48 2.7
24.0 6.18 3.48 2.7
24.0 7.10 3.96 2.7
26.0 7.65 3.96 2.7
28.0 7.65 4.27 2.7
28.0 8.09 4.31 2.7
30.2 8.15 4.31 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6
outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2
inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13
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TABLE E.7: Modeéle de vitesse multicouche n°25.

Depth (km) P-wave and S-wave velocity (km/s) | Density
0.0 4.20 2.48 2.7
1.0 4.41 2.61 2.7
1.0 441 2.61 2.7
2.0 4.47 2.64 2.7
2.0 4.47 2.64 2.7
5.0 457 2.64 2.7
5.0 4.57 2.64 2.7
8.0 4.76 2.72 2.7
8.0 4.76 2.72 2.7
11.0 5.61 3.21 2.7
11.0 5.61 3.21 2.7
14.0 5.66 3.23 2.7
14.0 5.66 3.23 2.7
17.0 5.80 3.31 2.7
17.0 5.80 3.31 2.7
20.0 6.55 3.69 2.7
20.0 6.55 3.69 2.7
22.0 6.60 3.74 2.7
22.0 6.60 3.74 2.7
24.0 6.98 3.90 2.7
24.0 6.98 3.90 2.7
26.0 7.27 4.06 2.7
28.0 7.2'7 4.34 2.7
28.0 7.77 4.34 2.7
30.2 7.99 4.40 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6
outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2
inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13
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TABLE E.8: Modéle de vitesse multicouche n°27.

Depth (km) P-wave and S-wave velocity (km/s) | Density
0.0 3.59 2.12 2.7
1.0 4.95 2.93 2.7
1.0 4.95 2.93 2.7
2.0 5.25 3.10 2.7
2.0 5.25 3.10 2.7
5.0 5.39 3.08 2.7
5.0 5.39 3.08 2.7
8.0 5.45 3.11 2.7
8.0 5.45 3.11 2.7
11.0 5.62 3.21 2.7
11.0 5.62 3.21 2.7
14.0 .77 3.29 2.7
14.0 5.77 3.29 2.7
17.0 6.17 3.53 2.7
17.0 6.17 3.53 2.7
20.0 6.22 3.55 2.7
20.0 6.22 3.55 2.7
22.0 6.37 3.56 2.7
22.0 6.37 3.56 2.7
24.0 6.45 3.60 2.7
24.0 6.45 3.60 2.7
26.0 7.39 4.13 2.7
28.0 7.41 4.14 2.7
28.0 7.41 4.14 2.7
30.2 7.60 4.25 2.7

mantle
30.2 8.15 4.40 3.3
60.0 8.15 4.55 3.3
410 8.90 4.7 3.5
410 9.10 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
2891 13.7 7.2 5.6
outer-core
2891 8.0 0.0 9.9
5149.5 10.3 0.0 12.2
inner-core
5149.5 11 3.5 12.7
6371 11.3 3.7 13
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Annexe F

Modéle de vitesse testé pour la
détection automatique des
événements dans la zone d’étude
exposée dans le chapitre 4.
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TABLE F.1: Modéle de vitesse tiré de l'inversion des paramétres hypocentraux
et de vitesse sous VELEST a partir du modéle Haslach.

Depth (km) P-wave and S-wave velocity (km/s)
0.0 4.65 2.76
1.0 4.65 2.76
1.0 4.84 2.88
2.0 4.84 2.88
2.0 4.89 2.91
5.0 4.89 2.91
5.0 5.28 3.14
8.0 5.28 3.14
8.0 5.31 3.16
11.0 5.31 3.16
11.0 5.57 3.27
14.0 5.57 3.27
14.0 5.60 3.29
17.0 5.60 3.29
17.0 5.84 3.41
20.0 5.84 3.41
20.0 6.09 3.58
22.0 6.09 3.58
22.0 6.18 3.63
24.0 6.18 3.63
24.0 7.10 4.07
26.0 7.65 4.20
28.0 7.65 4.20
28.0 8.09 4.31
30.2 8.15 4.40

AlSNNEX R oMADELE DE VITESSE TESTE POUR LA DETECTIONM03
AUTOMATIQUE DES EVENEMENTS DANS LA ZONE D’ETUDE
EXPOSEE DANS LE CHAPITRE 4.
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o Détection automatique et classification basée
sur 'apprentissage machine des séismes de
faible magnitude dans une région
continentale stable

Résume

La compréhension des mécanismes qui gouvernent I'occurrence et la distribution de la sismicité
faible a modérée des régions continentales stables est entravée par les capacités limitées des
algorithmes traditionnels a détecter les petits séismes dans des environnements anthropisés,
malgré le déploiement intensif des réseaux de stations. Cette thése développe une procédure de
détection automatique des séismes de faible magnitude a travers SeisComP3 et le Calcul de
Haute Performance. Cette nouvelle procédure réduit la contamination des séismes détectés par du
bruit sismique en tenant compte des niveaux de bruit enregistré aux stations, de la géométrie du
réseau de stations et du milieu de propagation des ondes sismiques. En incorporant un algorithme
d’apprentissage machine supervisé, elle discrimine efficacement les séismes détectés, des tirs de
carriére et des faux événements associés a du bruit. Les résultats sont prometteurs : 50% de
séismes de magnitude inférieure a 1.2 sont détectés en plus. Ce travail vise a une plus large
exploration de I'apprentissage machine dans les observatoires sismologiques.

Mots clés : détection, discrimination, apprentissage machine supervisé, intelligence
artificielle, tirs de carriére, bruit sismique, séismes de faible magnitude, calcul de haute
performance

Résumé en anglais

Understanding the mechanisms responsible for the occurrence of low-to-moderate seismicity in
stable continental regions is hampered by the limited capabilities of the algorithms used to detect
small-magnitude earthquakes in anthropogenic environments, and despite extensive station
deployment. This thesis work develops an automatic detection procedure via SeisComP3 and High
Performance Computing. This new procedure takes into account the station noise level, the station
network geometry and the seismic wave propagation medium to reduce the detection rate of
earthquakes contaminated by seismic noise. By incorporating a supervised machine learning
algorithm, it also robustly discriminates all detected earthquakes from quarry blasts and noise-
related events. The detection results are promising: compared to the reference French National
Catalog for the same time period, twice as many earthquakes with magnitudes less than 1.2 are
detected. This work also promotes a broader implication of hybrid intelligence monitoring within
seismological observatories.

Keywords : detection, discrimination, supervised machine learning, artificial intelligence,
quarry blasts, seismic noise, small-magnitude earthquakes, High Performance Computing
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