| Université H

UNIVERSITE DE STRASBOURG EDSC

Ecole Doctorale des

de Strasbourg
| L Sciences Chimiques

ECOLE DOCTORALE DES SCIENCES CHIMIQUES (ED 222)
Institut de Chimie et Procédés pour I'Energie, 'Environnement et la Santé
(UMR 7515 ; CNRS)

THESE présentée par :
Firas BAROUDI

soutenue le : 10 Décembre 2020

pour obtenir le grade de : Docteur de I'université de Strasbourg

Discipline/ Spécialité : Chimie Analytique

Etude comparative de trois biomoniteurs

(conifere, escargot et miel) pour évaluer la

variabilité spatio-temporelle de polluants
organiques dans I'atmospheére au Liban

THESE dirigée par :
M. MILLET Maurice PR, Université de Strasbourg
M. FAJLOUN Ziad PR, Université Libanaise
RAPPORTEURS :
Mme. DEVAUFLEURY Annette MCEF, Université de Franche - Comté
M. LEDAUPHIN Jérome MCEF, Université de Caen Normandie
AUTRES MEMBRES DU JURY :
M. VUILLEUMIER Stéphane PR, Université de Strasbourg
M. BANAS Damien PR, Université de Lorraine
M. DELHOMME Olivier MCEF, Université de Lorraine

Mme. AL ALAM Joséphine Enseignant - Chercheur, LAU



Remerciements

Cette these est le résultat de trois années de travail au cours desquelles j'ai été
accompagné et soutenu par de nombreuses personnes. C'est tres agréable pour moi de
pouvoir vous exprimer a tous ma gratitude. Mes remerciements les plus sinceres vont a
mon directeur, Monsieur MILLET Maurice, qui sans votre inquiétude et votre soutien, qui
tres souvent su me remettre dans la bonne direction, cette theése n’aurait pas pu arriver a
son terme. Votre expertise, compréhension et patience m'ont permis de rédiger et
finaliser ma theése de doctorat. J’ai apprécié vos vastes connaissances et compétences dans
de nombreux domaines. Merci pour votre accueil ainsi que pour I'environnement amical

que vous m’avez procuré.

Je tiens également a exprimer ma profonde gratitude a mon co-directeur, Monsieur
FAJLOUN Ziad, pour la confiance qu’il m’a attribué des mon arrivée et pour toutes les
discussions agréables et enrichissantes. Merci pour tout le temps que vous m’avez
accordé, pour votre encouragement tout au long de la période et vos précieux conseils
pour la réalisation de cette thése. Vos précieux commentaires ont grandement contribué

alaréalisation et au développement de mes travaux.

Je tiens a transmettre mes sinceéres remerciements au Monsieur DELHOMME Olivier pour
avoir encadré mes travaux durant ces trois années et de m’avoir fait profiter de vos
connaissances et expériences. Je ne peux pas exprimer de maniere simple par des mots
ma gratitude pour votre encouragement stimulant, votre soutien moral et I'aide apporté

lors de la réalisation et du développement de mes travaux.

Ma profonde gratitude également a Madame AL ALAM Joséphine pour avoir encadré mes
travaux ces trois années. Je vous remercie pour la confiance que vous m’avez portée et les
nombreuses discussions et conseils éclairés que vous m’avez accordés tout au long de
mon parcours. Je vous remercie également pour votre disponibilité, votre rigueur

scientifique et je n’oublierai jamais votre gentillesse, votre bon cceur et votre patience.

J'exprime ma gratitude a tous les membres de mon jury qui m'ont fait 'honneur de juger,

d'examiner et de mettre a contribution leurs connaissances pour juger ce travail de these:



Madame DEVAUFLEURY Annette et Messieurs LEDAUPHIN Jérome, VUILLEUMIER

Stéphane et BANAS Damien. Merci d’avoir accepté de participer a ce jury.

Je remercie de méme, Monsieur SCHLATTER Guy, directeur de I'Institut de Chimie et
Procédés pour I'Energie, 'Environnement et la Santé (ICPEES, UMR 7515 CNRS -
UNISTRA), Monsieur LE CALVE Stéphane et Monsieur OCAMPO-TORRES Ruben pour votre

accueil au sein du laboratoire et votre contribution a ’avancement de mes travaux.

J'adresse également mes remerciements, a Monsieur KHALIL Mohamad, Directeur du
centre AZM pour la Recherche en Biotechnologie et ses Applications, Monsieur HARB
Nafez et a I'ensemble des membres du Centre Azm et en particulier a I'équipe du

laboratoire de biotechnologie pour leur aide et soutien tout au long de ce travail de these.

Je remercie enfin infiniment tous les membres de 1'équipe « ICPEES » et particulierement
CHIMJARN Supansa, SONNETTE Alexandre, RODRIGUES Anais, GALMICHE Mathieu,
CLISSON Claire, BECKER Anais et TIDIANE Cheikh qui m’ont fait part de leurs
connaissances et qui ont su guider certaines expériences quand il était nécessaire. Merci

pour votre accueil, votre aide et votre bonne humeur.

Firas



Table des matieres

L 2E] 0TS 03 1<) 4013 01 2
LISTE AES TADIEAUX ..ureurreueeeeresseeseeesseessessssesses s s s sssess s ssse bbb 6
LISt AES fIGUIES w.vuuererereisssetssssesssesss s sssss s s s s bbb 7
Liste des abréviations et NOtAtIONS ... ssssssssssaas 9
IS E i 0 Lo 0101 0] or- L 0§ PPN 10
gL oY 10 (od n o) o TP 11
Chapitre I : Synthése bibliographique ... —————————— 15
L POIIULION A€ 1T ..eiiiiiiiiiie e 15

1o GAMBTAIIEAS ..o 15

2. Méthodologie et évolution des émissions de polluants.............ccccoooveriiieiniiiennn. 17

3. Sources d'émission des polluants dans I'air ............cccceeiiiiiiiiiii e 18

4. Pollution de 1'air au LiDan ........c..ooiiiiiiiiiiiiiiiie e 20

[I. Principaux polluants dans I'air...........cccciiiiiiiiii e 21

1 PeSTICIARS ..t 22

1.1, GANETALITES ... 22

1.2. Classification des pestiCides .........ccuuiiiiiiiiiiiiiiiiie e 24

2. Polluants organiques persistants (POPS) .........ccccoiiiiiiiiiiiiiiei e 25

2.0 GENETAIILES ... 25

2.2. Hydrocarbures aromatiques polycycliques (HAPS) ........ccccccvvveiiiiiiiiiiiinennn 28

2.3. Polychlorobiphényles (PCBS)........cccoiiiiiiiiiieiiiieeee e 32

[1I. Principaux biomoniteurs de la qualité de I'air.............ccoceiiiiii e, 33

1. Analyse des polluants dans I'air par échantillonnage passif............ccccviviiniinnnne 34

2. Organismes pour la surveillance de la pollution : Biomoniteurs..............cc.c.cueee.. 35

2.0 GENETAIILES ... s 35

2.2. Biomoniteur a base VEgAtale ... 36

2.2.1. Biomoniteur a base végétale : les aiguilles de coniferes.................cceec.. 37

2.2.2. Biomoniteur a base végétale : les lichens.............cccccconiiiin 38

2.2.3. Biomoniteur a base végétale : 1es mOUSSES ..........ccevveiiiiiiiieiiiiiieciiiieeee 39

2.3. Biomoniteur a base animale.............ccccooiiiiii e 39

2.3.1. Les mollusques: 1S SCargots..........cooouiiiiiiiiiiiiiiiiiiee i 40

2.3.2. Les abeilles et 1eurs produits...........ccouiiiiiiiiiiiiiiiiiiiie e 42

4



IV. Méthodes d'analyse des polluants.............cccuveiiiiiiiiiiiiiic 44

1. Extraction des polluants...........cooiiiiiiiiiiiii e 45
1.1. Extraction liquide-liquide (LLE) .......ccooiiiiiiiiii e 45

1.2 Extraction accélérée par solvant (ASE) ..o 46

1.3. Extraction en phase solide (SPE) ... 47

1.4. Microextraction en phase solide (SPME) ........ccccoooviiiiiiiiii e 48

1.5. QUECKERS. ...ttt 49

2. SEparation et dEtECION .........ceiiiiiiiiieiiei s 51
2.1. Chromatographie en phase azeuse ..........cccccooeviriiieiiiii i 52

2.2. Chromatographie en phase liquide ............cccooiiiiiiiiini 53

2.3. Spectrométrie de masse en mode tandem .............ceevviviieeiiiiiiieeniiiiee e 53
VOB ECEIES e 54
Chapitre II : Matériels et méthodes & résultats ... ———— 71

I. Snail as sentinel organism for monitoring the environmental pollution; a review....71
[I. A multiresidue method for the analysis of pesticides, polycyclic aromatic
hydrocarbons, and polychlorinated biphenyls in snails used as environmental
{000 4010) 0V L) o PO 93
I[II. Conifers as environmental biomonitors: A multi-residue method for the
concomitant quantification of pesticides, polycyclic aromatic hydrocarbons and
polychlorinated biphenyls by LC-MS/MS and GC-MS/MS ..........ccoiiiiiiiiiiiiee, 125
IV. The use of Pinus nigra as a biomonitor of pesticides and polycyclic aromatic
hydrocarbons in Lebanomn ... 154
V. The use of Helix aspersaand Pinus nigraas environmental biomonitors for the study
of temporal air pollution variation in Northern Lebanon..........cccccccccoiiiiiiiiiiniiinnnnn, 169

VI. Liquid-liquid based extraction for multiresidue determination of non-volatile

pesticides in honey as environmental biomonitors..........cccccccovviiiiiiiiiii e, 195
Chapitre III : DiSCUSSION GENETAlE........cccererrmremresrsesasessrsssesssss s s ss s sens 209
L000) o 1ol UL TSI T0) o B o 01 0] 01T 010 A 232



Liste des tableaux

Chapitre I

Tableau 1: Classification des pesticides sur la base de I'organisme nuisible qu'ils tuent et
de la fonction des PeStiCIAES.......cuuiir it e e e 25
Tableau 2: Rapports de diagnostic utilisés avec leurs valeurs généralement rapportées

pour des processus PArtiCULIETS . .....c.eeiuir et e et e e e e e e e s 31

Chapitre II : Résultat-I

Table 1: Summary of the use of snails as biomMONItOrs.......ccccueeieirier i e 79

Chapitre II : Résultat-II
Table 1: Compounds detected in real samples: percentage of samples contaminated and

the average quantified cONCENTratioN........cccviviiiiiiie it e s 105

Chapitre II : Résultat-III

Table 1: Concentration of compounds (ng g—1) detected in real samples.........ccccevreernene. 137

Chapitre II: Résultat-IV
Table 1: Sum of pesticide and PAH concentrations in conifer samples (ngg=1)................161

Table 2: Diagnostic ratios of PAHs for selected areas based on the work of Tobiszewski

PN o Le A N0 1N L=1s) 000 N o N2 L 15 165

Chapitre II : Résultat-V
Table 1: Diagnostic ratios of polycyclic aromatic hydrocarbons in selected areas reporting

the petrogenic and pyrogenic source during July and December 2019 based on the work

of Tobiszewski and NamieSNiKin 2012 ... ieeeeeres seseessessrsasssesseseresssssssnseessnn seses 183

Chapitre II : Résultat-VI
Table 1: Validation parameters for non-volatile pesticides analyzed by LC-MS /

LS et e e e e e R e e s R R R R SRR er e eR e s Rt e snn e n e s e e 201
Table 2: Concentration of pesticides (ng g'1) detected in real samples..........c.ccevuerneene. 205
Chapitre III

Tableau 1: Résidus de pesticide et limites maximales de résidus (mg / Kg) ....ccccoueervrernen. 220



Liste des figures

Chapitre I
Figure 1: Pyramide des effets associés a la pollution de l'air surla santé...............ccccovee.. 16
Figure 2: Processus et voies de dispersion des polluants dans I'environnement.................18

Figure 3: Effet de la pollution atmosphérique sur la visibilité: panorama de la ville de

Beyrouth par temps clair (a gauche) et pollué (2 droite).......c.cccerveivieiicienie e 20
Figure 4: Classification générale des pesticides..........ccuveveiriiiinin i e e 25
Figure 5: Classification des polluants organiques persistants..........c.cccvverversvniessecieennnns 26

Figure 6: A: Structure des 16 hydrocarbures aromatiques polycycliques répertoriés
comme composés prioritaires par I’agence américaine de protection de I'environnement
(US-EPA) et B: structures de base des polychlorobiphényles, des dibenzofuranes chlorés
(furanes) et des dibenzo-p-dioxXines Chlorées...........cooviiiiiiii i e 27

Figure 7: Types de biomoniteurs avec des réponses spécifiques..........cccouvrverieereniiennnnn 36

Chapitre II : Résultat-I

Figure 1: Sectional diagram of the anatomy of a snail..........cccceerivniiiinin v 74

Chapitre II : Résultat-II

Figure 1: Mean recovery rate obtained from both extraction protocols...........ccccceeeruenen. 105
Figure 2: Mean RSD% obtained from both extraction protocols..........ccccooscvvrrerrcnrnne 107
Figure 3: Mean recovery rate obtained with both QUEChERS extraction solvent............. 108

Chapitre II: Résultat-IV

Figure 1: Map showing the sampling Sites........ccccccviriirir i e e e 160
Figure 2: Flow chart of the modified QUEChERS extraction procedure............ccceccerruene. 160
Figure 3: Pesticide and PAH concentrations (ng g=1) in conifer samples...........ccc.ccveenvee 162

Chapitre II : Résultat-V

Figure 1: Monthly concentrations of pesticides and polycyclic aromatic hydrocarbons in
studied areas reporting increase of the pollutants assessed in Helix aspersa during the
total duration of the study and the decline of these pollutants during the last two months

of the study in the asseSSed PINUS MIGIa..........coccoeioeueiieiiieee e e e e e 177



Figure 2: Monthly levels of air temperature and precipitation in selected locations across
the Northern Lebanon reporting decrease temperature and significant increase of

precipitation during July and December 2019.......c.ccviiiiii i e 178

Chapitre II : Résultat-VI
Figure 1: Geographical partition of the 5 sampling Sites..........ccoovviniiiiiine v 199

Chapitre III

Figure 1: Concentrations mensuelles de pesticides et d'hydrocarbures aromatiques
polycycliques dans les zones étudiées faisant état d'une baisse de ces polluants au cours
des deux derniers mois de I'étude dans Pinus Nigra.............cceoeeveisieenses e s 222
Figure 2: Concentrations mensuelles de pesticides et d'hydrocarbures aromatiques
polycycliques dans les zones étudiées faisant état d'une augmentation des polluants
évalués dans Helix aspersapendant la durée totale de I'étude..........cccvvvevceivceisiien e, 224
Figure 3: Valeur P pour les concentrations de pesticides et d'hydrocarbures aromatiques
polycycliques dans les échantillons avec la température et la précipitation des sites

d'EChantillONNAZE ....ocuei it et s e e e e e nre e e 225



Liste des abréviations et notations

AAS
ACN
AE
ANT
ASE
BaA
BaP
BeP
Cis
CHR
DDT
FL
FLA
GC
GC-MS

GC-MS/MS
HAPs
HCLO4
HMW
HNO3
HPLC

LC

LC-MS/MS
LLE
LMW
LOD
LOQ
MAE
MgSO4
MS-MS
NaCl
OCPs
PA
PbNOs
PCBs
PDMS
PHE
POPs
PSA
PYR
SPE
SPME

Spectrométrie d'absorption atomique
Acétonitrile
Acétate d'éthyle
Anthracéne
Extraction accélérée par solvant
Benz[a]anthracene
Benzo[a]pyréne
Benzo[e]|pyrene
Octadécylsilane
Chrysene
Dichlorodiphenyltrichloroethane
Fluorene
Fluoranthene
Chromatographie en phase gazeuse
Chromatographie en phase gazeuse couplée a la spectrométrie de masse
Chromatographie en phase gazeuse couplée a la spectrométrie de masse
en tandem
Hydrocarbures aromatiques polycycliques
Acide perchlorique
Somme des HAPs a quatre et cinq cycles
Acide nitrique
Chromatographie en phase liquide a haute performance
Chromatographie en phase liquide
Chromatographie en phase liquide couplée a la spectrométrie de masse
en tandem
Extraction liquide-liquide
Somme des HAPs a deux et trois cycles
Limite de détection
Limite de quantification
Extraction assistée par micro-ondes
Magnésium anhydre
Spectrométrie de masse en tandem
Chlorure de sodium
Pesticides organochlorés
Polyacrylate
Nitrate de plomb
Polychlorobiphényles
Polydiméthylsiloxane
Phénanthréne
Polluants organiques persistants
Amine primaire secondaire
Pyrene
Extraction en phase solide
Microextraction en phase solide

9



Liste des publications

Articles publiés

Baroudi, F., Al Alam, ], Fajloun, Z., Millet, M., 2020a. Snail as sentinel organism for
monitoring the environmental pollution; a review. Ecological Indicators 113,
106240. https://doi.org/10.1016/j.ecolind.2020.106240

Baroudi, F., Al-Alam, ]., Chimjarn, S., Delhomme, O., Fajloun, Z., Millet, M., 2020b. Conifers
as environmental biomonitors: A multi-residue method for the concomitant
quantification of pesticides, polycyclic aromatic hydrocarbons and polychlorinated
biphenyls by LC-MS/MS and GC-MS/MS. Microchemical Journal 154, 104593.
https://doi.org/10.1016/j.microc.2019.104593

Baroudi, F., Al-Alam, J., Delhomme, O., Chimjarn, S., Fajloun, Z., Millet, M., 2021. The use of
Pinus nigra as a biomonitor of pesticides and polycyclic aromatic hydrocarbons in
Lebanon. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-11954-y

Al-Alam, ]., Baroudi, F., Chbani, A., Fajloun, Z., Millet, M., 2020. A multiresidue method for
the analysis of pesticides, polycyclic aromatic hydrocarbons, and polychlorinated

biphenyls in snails used as environmental biomonitors. Journal of Chromatography
A 1621, 461006. https://doi.org/10.1016/j.chroma.2020.461006

Articles soumis pour publication

Baroudi, F., Al-Alam, ]., Chimjarn, S., Haddad, K., Fajloun, Z., Delhomme, O., Millet, M., 2020.
The use of Helix aspersaand Pinus nigraas environmental biomonitors for the study
of temporal air pollution variation in Northern Lebanon. Environmental Chemistry
Letters. ECLE-D-00013 - [EMID: f3c094ad26b7855b].

Baroudi, F., Al-Alam, ]., Delhomme, O., Chimjarn, S., Al-Ghech, H., Fajloun, Z., Millet, M.,
2020. Liquid-liquid extraction procedure for non-volatile pesticides determination
in Acacia honey as environmental biomonitors. Journal of Environmental Science and
Health, Part B (JESHB-2020-0267).

10


https://doi.org/10.1016/j.ecolind.2020.106240
https://doi.org/10.1016/j.microc.2019.104593
https://doi.org/10.1007/s11356-020-11954-y
https://doi.org/10.1016/j.chroma.2020.461006

Introduction

La pollution environnementale due aux émissions de divers types de polluants dans l'air
ou le sol constitue a ’heure actuelle un des axes de recherches les plus importants. Malgré
I'intérét que porte l'usage de certaines molécules chimiques telles que les médicaments
sur le développement de 'humanité et son mode de vie, celles-ci peuvent étre a I'origine
de perturbations de I’équilibre écologique dont '’homme sera affecté de maniere plus ou
moins importante. En effet, les activités anthropiques qu’elles soient industrielles ou
agricoles sont a l'origine de I’émission dans l'’environnement d’'une multitude de
composés organiques qui peuvent étre considérés comme des polluants chimiques. Ces
composés du fait de leur résistance ala dégradation et leurs propriétés physico-chimiques
peuvent persister dans I’environnement et s’accumuler jusqu’aux niveaux des organismes
humains conduisant parfois a des effets néfastes inéluctables. Ainsi, 'homme est
fréquemment exposé a des tonnes de ces substances chimiques via ses pratiques
journaliéres mais également via sa nourriture. Parmi ces polluants figurent les pesticides,
y compris les organochlorés, les hydrocarbures aromatiques polycycliques et les

polychlorobiphényles.

En effet, le travail dans des secteurs qui utilisent régulierement les pesticides, comme
l'agriculture et la lutte antiparasitaire, ainsi que la vie a proximité de zones traitées par
ces molécules, augmentent l'exposition globale des personnes évoluant au contact ou a
proximité de ce genre de polluants. En outre, la consommation d’aliments contaminés par
des résidus de pesticides reste la source majeure d’exposition humaine aux produits
phytosanitaires mais elle est fortement influencée par 1'dge des personnes et leurs
préférences alimentaires. Quant aux polluants organiques persistants, ces produits sont
connus pour leur persistance élevée, leur transport a longue distance, leur
bioaccumulation et leur toxicité. En effet, les caractéristiques de ces polluants conduisent

a leur présence de maniere ubiquiste dans tous les compartiments de I’environnement.

L’atmosphere est un excellent vecteur pour la mondialisation de la contamination des
milieux et des denrées. En effet, ces nombreux polluants, quand ils sont émis, transitent a
un moment ou a un autre par I’air qui assurera leur transport souvent loin de leurs zones

d’émissions. Ainsi, les cultures sont non seulement contaminées par les applications mais
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également par les dépots d’origine atmosphérique. De ce fait, la caractérisation de la
qualité de l'air semble, de nos jours, une approche fondamentale afin d'évaluer I'impact
potentiel des divers polluants sur l'environnement. Deux techniques principales
d'échantillonnage ont été couramment utilisées permettant une évaluation qualitative et
quantitative précise de la pollution de l'air : les échantillonneurs d'air actif et les
échantillonneurs d'air passif. Néanmoins, vu les contraintes électriques, chimiques et
pratiques des échantillonneurs d'air actif, les études récentes sont plutot orientées vers
'usage des échantillonneurs d'air passif. Parmi ces échantillonneurs les plus disponibles
et les plus utilisés, figure 1'usage de certains éléments biologiques naturels comme
capteurs fiables de polluants émis dans I'atmosphere. Il s’agit de la technique dite de «
biomonitoring » ou de « biosurveillance » environnementale, généralement définie
comme « l'utilisation systématique des organismes vivants ou de leurs réponses pour

déterminer I'état et / ou les changements de I'environnement ».

Dans cette these de doctorat, différentes méthodes analytiques ont été utilisées pour la

détermination des polluants organiques dans l'air et les biomoniteurs retenus.

La partie I de ce manuscrit de thése est consacrée a une étude bibliographique centrée sur
la problématique de la large utilisation des pesticides et la présence des polluants
organiques persistants dans I'air et la nécessité de développer des méthodes analytiques
appropriées pour les quantifier. Ainsi, la chromatographie couplée a la spectrométrie de

masse est également évoquée dans cette partie.

La partie Il présente les travaux expérimentaux réalisés et les résultats obtenus au cours
de ces travaux de these et ils sont répartis en six chapitres différents selon la matrice

étudiée et la technique chromatographique utilisée :

e Le chapitre 1 concerne une revue scientifique publiée dans le journal « Ecological
Indicators » sur 'usage des escargots en tant que biomoniteur de la pollution de I'air.
L’'intérét de ce travail était d'explorer la possibilité d'utiliser différents types
d'escargots, en raison de leur sensibilité a divers contaminants et de leur capacité a
les accumuler dans leurs tissus, comme matrice de surveillance potentielle et idéale
pour évaluer la pollution de l'air et détecter la contamination en métaux lourds, en

pesticides et en polluants organiques persistants par différentes techniques
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d'extraction, notamment l'extraction au Soxhlet, I'extraction accélérée par solvant
(ASE), I'extraction en phase solide (SPE), I'extraction assistée par micro-ondes (MAE)
et la digestion acide par micro-ondes ;

Le chapitre 2 est consacré a un travail publié dans « Journal of Chromatography A »
qui porte sur le développement d'une méthode multirésidus permettant l'analyse de
pesticides, d’hydrocarbures aromatiques polycycliques (HAPs) et de
polychlorobiphényles (PCBs) dans des escargots utilisés comme biomoniteurs
environnementaux. Ainsi, une stratégie d'extraction a été élaborée et est basée sur la
procédure d'extraction QUEChERS et sur la microextraction en phase solide pour le
criblage simultané de 120 pesticides, 16 HAPs et 22 PCBs a partir de l'escargot
terrestre Helix aspersa. Cette méthode a été validée et elle a montré une sensibilité,
une exactitude et une précision élevées, avec des limites de détection (LOD) et de
quantification (LOQ) inférieures a 20 ng g-1 pour la plupart des polluants considérés.
Les analyses inter et intra-journaliéres ont révélé un faible écart-type relatif qui était
inférieur a 20% pour la plupart des composés ciblés. De plus, le coefficient de
régression (R2) obtenu était supérieur a 0.98 et les taux de récupérations étaient
supérieurs a 60% pour la majorité des polluants évalués ;

Le chapitre 3 présenté sous forme d’article publié dans « Michrochemical Journal »,
décrit le développement d’'une autre méthode multi-résidus pour la quantification
concomitante, dans des aiguilles de coniferes ( Pinus nigra), de 134 pesticides, 16 HAPs
et 22 PCBs, utilisant les analyses chromatographiques en phase liquide (LC) et gazeuse
(GC) couplées a la spectrométrie de masse en tandem apres une extraction avec la
technique QuUEChERS et pre-concetration par microextraction sur phase solide
(SPME). Cette méthode présente 'avantage d’utiliser un faible volume de solvants
organiques tout en permettant I'extraction d'une large gamme de polluants (172
polluants) et cela avec un temps de préparation des échantillons court. Les
performances obtenues par cette méthode ont révélé un taux de récupération compris
entre 60% et 121% pour tous les composeés ciblés, une sensibilité et précision élevées,
avec des LOD et des LOQ inférieures a 20 ng g1 pour la plupart des composés cibles
avec un RSD inférieures a 20 % ;

Le chapitre 4 présenté sous forme d’un article publié dans « Environmental Science
and Pollution Research » présente une application directe de la méthode d’extraction

des aiguilles de coniferes prélevés dans quinze régions différentes au nord du Liban.
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Les principaux objectifs étaient de déterminer les sept sites les plus polluées a choisir
comme les sites principaux pour l'étude finale, qui consistera en une campagne
d’évaluation de la qualité de I'air utilisant a la fois des escargots et des coniferes ;

* Le chapitre 5, soumis dans « Environmental Chemistry Letters » est consacré a la
campagne d’évaluation de la qualité de l'air au voisinage des cultures par une
approche basée sur le biomonitoring grace aux escargots et aiguilles de coniferes. Au
cours de ce travail et en utilisant les deux méthodes analytiques mentionnées
précédemment, il a été possible d’étudier des échantillons d’escargots et de coniféres
prélevés dans sept sites différents au nord du Liban et cela pendant six mois
consécutifs (de Juin a Décembre 2019). L'analyse des échantillons collectés a montré
une persistance des différents polluants étudiés et ceci en fonction des
caractéristiques de chaque site. Les résultats obtenus a l'issu de ce travail ont montré
que les échantillons des aiguilles de coniferes et des escargots collectés révelent une
variation non similaire des différents types de polluants pour chaque matrice.
L'analyse des données météorologiques au cours de cette période suggere que les
résultats obtenus dans ce cadre étaient en corrélation avec les conditions climatiques
qui varient considérablement au cours de cette période de I'année ;

* Le chapitre 6, soumis dans « Journal of Environmental Science and Health, Part B »
contribue au développement d'une méthode multi-résidus pour l'analyse de
pesticides dans du miel. La méthode développée consistait a I'extraction liquide-
liquide (LLE) des pesticides par l'acétate d'éthyle (AE) et leur analyse par
chromatographie en phase liquide couplée a la spectrométrie de masse en tandem
(LC-MS/MS). Le coefficient de régression obtenu était supérieur a 0.99, les
récupérations étaient supérieures a 60% et I'écart type obtenu sur des échantillons
dopés a plusieurs niveaux de concentration était inférieur a 5% dans toutes les

extractions.

Enfin, la partie Il du manuscrit est consacrée a la discussion générale de tous les travaux
entrepris et des résultats obtenus au cours de ces années de recherche. Une conclusion

générale menant a quelques perspectives est présentée a la fin du manuscrit.

14



Chapitre I : Synthese bibliographique

I. Pollution de I'air

1. Généralités

La pollution de I'air est une préoccupation majeure du nouveau monde civilisé, qui a un
grave impact toxicologique sur la santé humaine et I'environnement (Manisalidis et al.,
2020). Elle est définie comme l'ensemble des effets destructeurs de toute source
contribuant a la pollution de l'air et / ou a la détérioration de l'environnement. La
pollution de l'air est causée a la fois par des phénomeénes naturels et / ou par des
interventions humaines. De nombreux types de polluants, y compris des matériaux en
phases solide, liquide et gazeuse, sont présents dans 'air au-dessus de leurs niveaux
ambiants normaux et a une concentration suffisamment élevée pour produire ainsi un
effet mesurable et indésirable pour les animaux, les hommes et les végétaux (Manisalidis

etal, 2020 ; Ghorani-Azam et al., 2016).

L'organisation mondiale de la santé (OMS) estime que 1'exposition a la pollution de I'air
ambiant provoque chaque année environ 3,7 millions de décés prématurés dans le monde
(WHO, 2013). Cette pollution de I'air a donc été identifiée comme la principale cause
environnementale de ces déces prématurés (Yin et al,, 2020 ; Babatola, 2018). Dans un
scénario socioéconomique, il a été estimé que la contribution de la mortalité prématurée
a l'air extérieur pollué pourrait doubler d'ici 2050 et qu’elle resterait ainsi la cause

environnementale principale de mortalité dans le monde (Vandyck et al., 2018).

Selon le degré d'exposition, l'impact de I'air pollué sur la santé humaine s’étend a partir
d’événements symptomatiques et subcliniques jusqu’a une mortalité accrue et / ou une
morbidité (Hamanaka et Mutlu, 2018). Les preuves scientifiques confirment que les
expositions a court et a long terme aux polluants de I'air ambiant sont associées a un large
éventail de conséquences néfastes pour la santé (Domingo et Rovira, 2020 ; Kelly et
Fussell, 2015), comme des taux de mortalité plus élevés et des admissions a I'h6pital plus

importantes (Achilleos et al., 2019) (Figure 1).
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Figure 1. Pyramide des effets associés a la pollution de l'air sur la santé (Melody et Johnston,
2015)

Les expositions a la pollution de I'air ambiant affectent de grandes populations du monde
entier. Plus de 90% de la population mondiale est exposée a des niveaux néfastes de
pollution de 'air dépassant les recommandations de I'OMS (WHO, 2019). Les personnes
a tous les stades de la vie, en particulier les personnes agées et les enfants, peuvent étre
affectés par l'exposition a des niveaux élevés de pollution de l'air ambiant et dont
I'exposition a long terme représente le plus grand risque (Lelieveld et al., 2018). Du point
de vue santé humaine, I'exposition aigué et chronique aux polluants organiques, aérosols
et gaz est positivement associée aux maladies cardiovasculaires, respiratoires et au
cancer du poumon (Beelen et al., 2014). Les effets respiratoires et cardiovasculaires de
I'exposition a la pollution de l'air sont bien démontrés tant dans la population
professionnelle que dans la population générale (Lee et al, 2018). La plupart de la
littérature disponible sur les relations entre l'exposition a la pollution de I'air et le cancer
porte sur les cancers du poumon (Santibanez-Andrade et al,, 2017 ; Raaschou-Nielsen et
al,, 2016) et les cancers infantiles (Pacitto et al., 2018 ; Shmuel et al., 2017). Des études
ont révélé que l'exposition a plusieurs polluants tels que les gaz d'échappement des

moteurs diesel et les HAPs était liée a un risque accru de maladies (Peters et al., 2018).

La pollution de I'air nuit non seulement a la santé humaine, mais aussi a I'environnement
dans lequel nous vivons. Un large éventail d'écosystemes est actuellement menacé par la
pollution de I'air et ceci a travers une variété des processus, tels que l'acidification et
I'eutrophisation. Les précipitations humides (brouillard, pluie, neige) ou seches

(particules et gaz) impliqués dans la formation des pluies acides sont capables d'acidifier
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les environnements aquatiques et terrestres et d'endommager les arbres et les
plantations (De Vries et al, 2014). Concernant les particules en tant que polluant
atmosphérique, son impact sur la productivité alimentaire, le rendement des cultures et

sur les organismes aquatiques a été signalé (Zuhara et Isaifan, 2018).
2. Méthodologie et évolution des émissions de polluants

La qualité de I'air dépend des émissions de polluants atmosphériques (anthropiques et
naturels), des conditions météorologiques (qui régissent la dispersion, le dépot et les
transformations physiques et chimiques de ces polluants dans I'atmosphere) et de la
topographie (qui module les modes de circulation et de transport des polluants) (Abdel-

Shafy et Mansour, 2016).

Au niveau local, les émissions naturelles dépendent de I'humidité et de la température. Le
transport des polluants repose sur les caractéristiques du vent et des turbulences. Les
précipitations influencent le dépot de ces polluants (dépots humide) et la topographie
controle la dynamique a méso-échelle, comme les courants de vallée en montagne et les
brises terre-mer. De plus, la circulation atmosphérique a I'échelle synoptique affecte le
transport de la pollution a 1'échelle régionale (Liao et al., 2020 ; Tibbetts, 2015). En
conséquence et afin de caractériser la qualité de l'air dans un territoire donné, il est
essentiel de saisir le réle de la circulation synoptique contrélant sa dynamique régionale

et locale (Pineda-Martinez et al., 2014).

Divers polluants émis dans I'atmosphere peuvent étre transportés par le vent, parfois vers
des zones loin du lieu d'émission. Sous l'influence du rayonnement solaire et de la
dynamique atmosphérique, les polluants dits primaires peuvent étre convertis en
polluants secondaires par des réactions physiques (coagulation, nucléation,
condensation) et chimiques (réactions acido-basiques, réactions photochimiques,
réactions d'oxydo-réductions). Par conséquent, de nouvelles particules telles que le
nitrate d'ammonium, par exemple, se forme au cours de ce processus. Ces polluants ont
parfois une demi-vie plus longue et peuvent étre plus toxiques et nocifs que les polluants

dits primaires (Juodis et al., 2016 ; Manisalidis et al., 2020).

Le transport des polluants dans l'air varie selon leurs propriétés et comprend trois
niveaux : local (accumulation des polluants autour de leur zones d'émission), régional (les
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polluants sont observés a plusieurs centaines de kilomeétres de la zone d'émission) et

global (les polluants atteignent la planeéte entiere) (Gheorghe et Ion, 2011).

Enfin, le processus final provoqué par la pollution de I'air est le dépot. Deux types de
dépdts peuvent se produire, les dépositions humides liées aux précipitations et les
dépositions seches dues a l'influence de la gravité terrestre. Le dép6t humide réunit tous
les mécanismes de transfert de matériaux de 'atmosphere au sol par précipitation qui
peut se présenter sous forme diverses (pluie, neige, brouillard). Le dép6t sec se forme
lorsque de fines particules acides et des gaz se déposent a la surface du sol. Les gaz tels
que I'oxyde nitrique et le dioxyde de soufre se convertissent en acides au contact de 1'eau

(Arinaitwe et al,, 2016) (Figure 2).

Transport et dégradation atmosphériques
|gas + aérosols) >

Aérosols

Volatilisation Volatilisation indirecte

Traitement directe depuis le sol ou la plante Dépdt

s8C

Dé pét
humide

Dépdt sur le sol
ou la plante
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Transport RY
P superficielles

Lixiviation
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Figure 2. Processus et voies de dispersion des polluants dans I'environnement (Blanchoud et al,,
2011)

3. Sources d'émission des polluants dans I'air

Les inventaires des sources d'émissions pour les polluants de I’air prennent en compte les
principales catégories telles que le chauffage domestique, le briilage des déchets, la
production d'électricité, la consommation de carburant industriel et le transport. Il existe
donc différentes sources de pollution atmosphérique qui different selon leur composition,
leur caractéristique et les conditions dans lesquelles elles sont produites. Les sources
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courantes de pollution de I'air sont les sources industrielles et agricoles ainsi que la
combustion des combustibles fossiles provenant du trafic. Les polluants préoccupants
sont les les composés organiques volatils, les particules et les gaz comme le monoxyde de
carbone et le dioxyde de soufre. Ce sont les polluants dits primaires, qui sont rejetés
directement dans I'air alors que les polluants secondaires s’y forment principalement a
partir des polluants primaires exposés au rayonnement ultra-violet solaire. Les particules
ambiantes sont I'une des composantes de la pollution de I'air ambiant, qui est produite
soit par des processus naturels soit par I'activité humaine. La pollution par les particules
est un mélange complexe de particules et de gouttelettes extrémement petites et se
compose d'un certain nombre de composants, notamment des produits chimiques
organiques, des métaux, des acides et des poussieres ou des particules de sol (D’Amato et

al,, 2016 ; Schikowski et Altug, 2020).

Les sources principales de pollution de I'air sont reparties en sources naturelles qui

existent certainement dans I'air et en sources anthropiques dues aux activités humaines.

e Lessources naturelles : parmi ces sources, il existe le volcanisme, libérant une grande
quantité de cendres, de soufre et d'oxydes de carbone dans l'air. De plus, les volcans
et les tempétes de sable et de poussiéres constituent une source principale de petites
particules dans I'environnement. La foudre est également considérée comme la source
d'émissions d'oxyde d'azote, en particulier d'acide nitrique dans la haute troposphere.
D'autres processus naturels peuvent également entralner une augmentation de cette
pollution naturelle comme la décomposition bactérienne de la matiére organique, les

incendies naturels et divers processus d'érosion (D’Amato et al., 2016).

e Les sources anthropiques : diverses sources sont classées comme sources
anthropiques; les sources domestiques, les sources industrielles et les émissions
d'échappement des automobiles. En plus de ces sources, il existe des sources agricoles
qui sont responsables du rejet de nombreux polluants dans l'air et qui sont
particulierement dues aux applications d'engrais et de pesticides. Ces sources sont soit
fixes telles que les centrales thermiques, les chaudiéres industrielles et les émissions
provenant du chauffage domestique, ou des sources mobiles provenant de
I'évaporation des essences, des effluents d'échappement des moteurs et des

pulvérisations de pesticides (Manisalidis et al., 2020).
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4., Pollution de I'air au Liban

Le Liban est situé sur la cote de la Méditerranée entre les latitudes 33° 20 - 34° 38 et les
longitudes 35° 16 - 35° 16. D'est en ouest, le Liban peut étre divisé géographiquement en
quatre zones: la fertile plaine de la Bekaa (I'est du Liban), la chaine de montagnes du
Mont-Liban (centre ouest du Liban), une plaine cotiére le long de I'ouest et la chaine de
montagnes qui longent la frontiere orientale avec la Syrie (nord du Liban) (Ministere
Libanais de 1'Environnement, 2006). La surface du Liban est de 10 452 km? et sa
population, est de 6 millions de personnes (CIA, 2018); par conséquent, le Liban a une
densité de population élevée de 638.09 habitants / km?2 En 2018, l'agriculture qui
employait plus de 39% de la population (Chaza et al., 2018) et l'industrie sont considérés
comme les principaux contributeurs a la contamination par les pesticides et les polluants

organiques persistants (POPs) au Liban (Chen, 2007).

Le Liban, membre de la Convention de Stockholm en 2003, a créé des inventaires
nationaux des polluants organiques et en 2006 a formulé un apercu national de mise en
ceuvre, afin de développer des cadres juridiques efficaces pour éliminer ou réduire la
libération des polluants dans I'environnement. Malheureusement, le Liban est caractérisé
par un secteur privé non réglementé de générateurs diesels (Shihadeh et al, 2013 ;
Ghanem, 2018 ; Bouri et El Assad, 2016), un secteur de transport routier non durable
(Haddad et al.,, 2019 ; Daher et al., 2013) et une gestion médiocre de la qualité de I'air. Le
Liban connait une augmentation des événements liés a la pollution avec un effet néfaste
plus important dans les quartiers urbains due aux émissions élevées des polluants dans
ces zones densément peuplées, comme la ville de Beyrouth (Mokalled et al., 2018 ;

Massoud et al., 2011) (Figure 3).
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Figure 3. Effet de la pollution atmosphérique sur la visibilité: panorama de la ville de Beyrouth
par temps clair (a gauche) et pollué (a droite)
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La pollution au Liban par les particules en suspension (PM1o et PMz25) a dépassée de 100%
le seuil recommandé par 'OMS en 2005 (Roumie et al.,, 2011 ; Waked et al,, 2013). Le
Liban, comme de nombreux pays méditerranéens, connait une croissance démographique
croissante avec plus de 6 millions d'habitants en 2018. Environ 70% de la population
libanaise vit sur un littoral étroit qui accueille un taux croissant d'urbanisations,
d'industries, de polluants produits par les activités agricoles et transportés directement

ou indirectement vers l'eau, l'air, et le sol.

Les pesticides, une des causes de la contamination de l'air, ne sont pas produits au Liban.
Leur utilisation locale dépend des importations légales répondant aux besoins (Youssef
et al,, 2015). Au Liban, malheureusement, il existe de nombreux obstacles a la protection
de l'agriculture malgré I'existence d'une législation, tels que la manque d'exigences de
conformité pour l'utilisation et l'identification des polluants ainsi que la manque
d'installations de matériels de recherche pour détecter leurs résidus et leurs effets, tandis
que des mesures de controle législatives et politiques doivent encore étre établies.
Plusieurs études ont montré que la plupart des travailleurs agricoles ne connaissaient pas
le nom des pesticides et la limite de toxicité a ne pas dépasser. Par ailleurs, plus de 66%
ne pouvaient nommer aucun pesticide dangereux et semblaient ignorer les risques réels
des pesticides, par manque de connaissance sur la sécurité. La liste des pesticides
interdits publiée par le ministere de lI'agriculture était auparavant connue par moins de

10% des travailleurs agricoles (Maddah et al., 2019 ; Salameh et al., 2004).
[I. Principaux polluants dans l'air

L'OMS recense six principaux polluants atmosphériques, a savoir la pollution par 1'ozone
troposphérique, le plomb, le monoxyde de carbone, les particules, les oxydes de soufre et
les oxydes d'azote. La pollution atmosphérique peut avoir un effet désastreux sur toutes
les composantes de l'environnement, y compris l'air, le sol et les eaux souterraines. De
plus, il constitue une menace sérieuse pour les organismes vivants. Un polluant
atmosphérique est une matiere dans l'air qui peut avoir des effets néfastes sur
I'écosysteme et les humains. La substance peut étre des gouttelettes de liquide, des
particules solides ou des gaz présents en suspension dans l'air. Ces polluants peuvent étre

d'origines naturelles ou d'origines anthropiques et sont classés comme primaires ou
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secondaires, entrainant une augmentation du niveau de la pollution dans I’environnement

naturel (Manisalidis et al., 2020).

1. Pesticides

1.1. Généralités

Les pesticides sont des produits chimiques, appliqués dans les terres agricoles, les jardins
privés et autres zones publiques. Leurs réles sont de détruire, repousser ou atténuer les
parasites tels que les insectes, les acariens, les nématodes et les mauvaises herbes. Selon
I’'OMS, environ un million de personnes sont touchées par une intoxication aigué au
contact des pesticides, avec un taux de mortalité compris entre 0,4 et 1,9% enregistré
chaque année (Jia et al, 2020 ; Qiu et al, 2017). La plupart des déces résultent
d'expositions accidentelles ou professionnelles, qui sont généralement topiques ou par
inhalation, plutét que de 1'auto-intoxication par ingestion. Les intoxications graves aux
pesticides sont plus courantes dans les pays ruraux, a revenu faible ou intermédiaire, en
raison de leur large utilisation (Eddleston, 2020) et en 1'absence de réglementation par

les ministeres de l'agriculture et de la santé (Salameh et al., 2004).

De plus, de nombreux pesticides sont stables lors de leur application et, par conséquent,
peuvent étre transportés dans l'eau et I'air pour contaminer des zones éloignées de leur
source d’application (Li et al.,, 2020). Il a été montré dans de nombreuses études que les
pesticides sont des substances toxiques pour 'homme et I'environnement (Rasheed et al.,
2019 ; Nicolopoulou-Stamati et al.,, 2016 ; Covert et al., 2020 ; El-Nahhal, 2020 ; Cheng et
al,, 2020) car leur utilisation affecte les écosystemes et menace la faune, les animaux
domestiques et sauvages (Ruiz-Sudrez et al., 2015 ; Tavalieri et al., 2020). De nombreuses
études ont également montré qu'une exposition persistante a ces polluants entraine leur
accumulation dans les tissus et induisent des effets néfastes sur le développement, la
croissance ainsi que le métabolisme (Mahmood et al.,, 2015 ; Lushchak et al, 2018 ;
Sabarwal et al., 2018 ; Jayaraj et al.,, 2016 ; La Merrill et al.,, 2013). Les pesticides ont été
liés a plusieurs troubles, qui sont associés au systeme nerveux central (Mostafalou et

Abdollahi, 2018), pulmonaire (Ye et al., 2013) et cardiovasculaire (Sekhotha et al., 2016).

La toxicité des pesticides dépend principalement de deux facteurs, a savoir la dose et le

temps. Par conséquent, la quantité de substance impliquée (dose) et la fréquence a
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laquelle l'exposition a la substance se produit (temps) donnent lieu a deux types
différents de toxicité: la toxicité chronique et la toxicité aigué. La toxicité chronique est la
capacité d'un pesticide, apres une exposition continue ou répétée, a provoquer des effets
néfastes sur la santé pendant une période prolongée. Ce type de toxicité des pesticides est
préoccupant non seulement pour ceux qui travaillent directement avec les pesticides mais
aussi, pour le grand public, étant donné 1'exposition potentielle aux pesticides présents
dans les produits, I'eau et l'air. La toxicité aigué désigne le degré de toxicité d'un pesticide
apres une seule exposition de courte durée. Un pesticide ayant une toxicité aigué élevée
est mortel méme lorsqu'une tres petite quantité est absorbée. Ce type de toxicité peut étre
mesuré en tant que toxicité aigué par inhalation, toxicité cutanée aigué et toxicité orale

aigué (Damalas et Koutroubas, 2016).

Les résidus de pesticides représentent un large éventail de sources de pollution agricole
diffuses, qui dure longtemps et qui est difficile a dégrader, ce qui entraine des risques
d'exposition professionnelle a long terme pour les agriculteurs (Balazs et al., 2020 ; Yuan
et al., 2017). En fait, un contact continu avec un pesticide avec de faibles doses était
associé a un groupe de syndromes a moyen et long terme, impliquant de troubles du
systéme nerveux et de nombreuses tumeurs (Bertero et al., 2020). Il a été démontré que
I'exposition aux pesticides est liée a divers effets néfastes sur la santé, allant de la simple
irritation des yeux et de la peau a des effets plus graves tels que le cancer (Lentola et al.,
2017), des effets sur le systéme nerveux et des mutations génétiques (Marcelino et al,,
2019). Des preuves substantielles existent pour d'autres résultats négatifs de 1'exposition
aux pesticides, comme des dommages neuronaux ainsi que des altérations
neurocomportementales, qui augmentent le risque de maladie d'Alzheimer (Li et al,

2021).

De nombreuses techniques analytiques peuvent étre utilisées pour déterminer la
concentration de résidus de pesticides dans différentes matrices contaminées telles que
sédiments, tissus de poissons, sol, plante, légumes, escargots, fruits et 1'eau. Il s'agit
notamment de la GC (Alghamdi etal., 2020 ; Igbal etal., 2020 ; Issa et al., 2020), laLC (Al-
Alam et al.,, 2020 ; Baroudi et al., 2020 ; Diuzheva et al,, 2019 ; Hou et al., 2020 ; Yetim et
al, 2020 ; Zhang et al., 2019) et la chromatographie en fluide supercritique (Cutillas et
al, 2020 ; Wang et al,, 2019).
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Des techniques de préconcentration et de nettoyage doivent étre utilisées avant l'analyse
chromatographique des pesticides (Parrilla Vazquez et al., 2019 ; Madej et al., 2018 ;
Makos et al., 2018). Les techniques de préconcentration les plus couramment utilisées
dans les échantillons comprennent la SPE (Wang et al,, 2019), la SPME (Gionfriddo et al.,
2018;Wuetal,, 2016), 'extraction QUEChERS (Baroudi et al., 2020 ; Al-Alam et al., 2020),
la micro-extraction dispersive liquide-liquide (Musarurwa et Tavengwa, 2020 ; Salemi et
al,, 2019) et I'extraction par dispersion en phase solide (Chatzimitakos et al., 2019 ; Soares

etal, 2017).
1.2. Classification des pesticides

Un pesticide est un produit chimique fabriqué par I'homme et n'existant pas dans la
nature. Ces pesticides varient par leurs propriétés physiques et chimiques d'une classe a
'autre et sont classés en plusieurs groupes en fonction de leur utilisation. Ils peuvent étre
utilisés comme insecticides, fongicides, herbicides, rodenticides en agriculture et servent

a la fois a détruire et a protéger des ravageurs (Jayaraj et al., 2016).

Actuellement, il existe deux approches largement répandues de classification des
pesticides (Yadav et al., 2015). Ces classifications peuvent fournir des informations utiles
sur la structure chimique du pesticide, leur fonctionnement et leur cible. Les pesticides
chimiques sont classés en plusieurs types selon leurs structures chimiques : les
carbamates, les organophosphorés, les organochlorés, les triazines, les azolés et les
pyréthrinoides de synthese par exemple. Parmi les pesticides, il existe une autre classe
nommés biopesticides, qui sont des matiéres d'origine naturelle, et reposent sur
l'utilisation d'organismes vivants tels que les champignons, les plantes et les bactéries
pour supprimer directement ou indirectement l'impact d'un organisme nuisible

spécifique (Girard et al., 2020) (Figure 4).
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Figure 4. Classification générale des pesticides (Girard et al.,, 2020)

Tableau 1 Classification des pesticides sur la base de 'organisme nuisible qu'ils tuent et de la
fonction des pesticides

Type de pesticide Ravageurs / fonctions cibles Exemples
- Substances utilisées pour tuer les acariens et/ou perturber  Chlorpyrifos,
Acaricides ) .
leur croissance ou leur développement DDT
f Composés utilisés pour tuer ou inhiber les bactéries dans les .
Bactéricides Streptomycine
plantes ou le sol
.. Produits chimiques utilisés éliminer ou limiter le .
Fongicides . . . . Cymoxanil
développement des champignons parasites des végétaux
.. Substances utilisées pour tuer les plantes ou pour inhiber Alachlore,
Herbicides ) p;
leur croissance ou leur développement. 2,4-D
Régulateur de . .
& Substance qui agit en perturbant la croissance ou le .
croissance des . . Diflubenzuron
. développement d'un insecte
insectes
Algicides Substances utilisées pour tuer ou inhiber les algues Diuron
.. Pesticides utilisées pour tuer les insectes ou pour Chlorpyrifos,
Insecticides . : .
interrompre leur croissance ou leur développement DDT
Nématicides Produits chimiques utilisés pour lutter contre les nématodes Chlorpyrifos
Régulateurs de - . .
g. Ces substances modifient le taux de croissance, de floraison
croissance des . ., 2,4-D
ou de reproduction prévu des plantes
plantes
. Substances utilisées pour tuer les rats et les animaux .
Rodenticides p Warfarine

apparentés

2. Polluants organiques persistants (POPs)

2.1. Généralités

Ces dernieres années, l'industrialisation, la croissance économique et I'urbanisation ont

créé d'énormes défis pour la santé humaine, les écosystémes et l'environnement (Al-
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Mulali et al, 2015). Les POPs sont des composés organiques présentant des
caractéristiques de persistance, de toxicité, de bioaccumulation et un potentiel de
transport environnemental a longue distance (Ong et al., 2018). Il existe diverses sources
d'émission de POPs, y compris l'incinération des déchets, la production de métaux, la
production de chaleur et d'électricité et le transport (Odabasi et al., 2015). Les POPs sont
des composés organiques qui peuvent étre classés en deux catégories, les composés
chimiques issus de la synthése chimique (intentionnellement), en particulier, les
pesticides organochlorés (DDT, aldrine, endrine, heptachlore, chlordane), les
polychlorobiphényles, I’hexachlorobenzene et les composés chimiques produits non
intentionnellement en particulier par combustion, comme les dioxines, les furanes et les

HAPs (Merhaby et al,, 2019) (Figure 5 et 6).

Pesticides
organochlorés ' )

Intentionnellement Polychlorobiphényles

Produits
chimiques
industriels

Polluants Hexachlorobenzéne

organiques Hydrocarbures
persistants aromatiques
polycycliques

Non

intentionnellement Furannes

Dioxines

\. J

Figure 5. Classification des polluants organiques persistants (Merhaby et al., 2019)

Pendant plusieurs décennies, ces composés ont été largement utilisés en agriculture et
dans l'industrie et sont actuellement largement distribués dans l'air, I'eau, les sédiments
et les sols (Anim et al,, 2017 ; Pariatamby et Kee, 2016). En raison de leur persistance et
leur nature lipophile, ces POPs ont tendance a s'accumuler dans la chaine alimentaire
ainsi que dans les tissus riches en lipides du corps humain et des animaux (Imbeault et

al, 2018 ; Fernandez-Rodriguez et al,, 2015 ; Govaerts et al., 2018).

26



En conséquence, la concentration de certains POPs, par exemple ceux utilisés comme
fongicides ou insecticides, est principalement déterminée par l'exposition alimentaire
(Malisch et Kotz, 2014 ; Banyiova et al, 2017). Pour d'autres, la principale voie
d'exposition humaine peut étre dues a des sources non alimentaires, telles que l'ingestion
ou l'inhalation de particules contaminées en suspension dans l'air ou de poussieres

intérieure (Fromme et al,, 2016).
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Figure 6. A: Structure des 16 HAPs répertoriés comme composés prioritaires par 'agence
américaine de protection de I'environnement (US-EPA) et B: structures de base des PCBs, des
dibenzofuranes chlorés et des dibenzo-p-dioxines chlorées (d’aprés Merhaby et al., 2019)

L'exposition aux POPs a été associée a un large éventail d'effets négatifs sur la santé,
notamment un risque accru de diabete de type 2 (Han et al,, 2020 ; Lee et al,, 2018 ; Wolf
et al, 2019), une mortalité accrue (Lind et al., 2019), 'obésité (Liang et al., 2020) et une
hypertension (Lind et al., 2014). Les enfants sont extrémement sensibles aux POPs car ils
sont exposés avant la naissance par le transfert de ces composés de la mere au foetus a
travers le placenta et en tant que nourrisson via le lait maternel (Vukavic et al., 2013 ;
Vizcaino et al., 2014). L'exposition prénatale aux POPs a été associée a une perturbation
du systeme endocrinien, une altération de la croissance fcetale, des maladies
endocriniennes-métaboliques avec un risque de maladies respiratoires aigués et
chroniques (Govarts et al., 2018 ; Garcia-Villarino et al.,, 2018 ; Tang-Péronard et al., 2015

; Gascon et al., 2014). IIs ont soulevé d'importantes préoccupations mondiales en raison
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de leurs effets néfastes importants sur la santé humaine, de leur bioaccumulation et leur
persistance dans 1'écosystéeme (Bakirtas et Akpolat, 2018 ; Al-Mulali et al., 2015). Ils
peuvent nuire considérablement aux étres vivants et a la santé humaine par inhibition de
la réponse normale du systéme immunitaire et la réduction simultanée de la résistance
du corps aux virus (Islam et al., 2018). De plus, de nombreuses études ont montré que les
organismes exposés a ces polluants peuvent entrainer des troubles de la reproduction et

des malformations congénitales (Nadal et al,, 2015 ; Lee et al., 2014 ; Tartu et al,, 2015).

Les différentes étapes pour I'évaluation d'une vaste gamme de POPs comprend la collecte
d'échantillons dans des matrices sélectionnés, l'extraction et la purification des
échantillons avec des solvants appropriés, suivie par leur l'analyse et I'interprétation des
résultats. Des recherches pour obtenir des concentration détectables de ces polluants
dans les plantes (Massimi et al., 2021), les aliments (Vaccher et al., 2020; Rusin et al,,
2019), les lichens et les mousses (Kosior et al., 2017), ont été menées en utilisant des
méthodes conventionnelles telles que la méthode d’extraction Soxhlet, 1'ASE, la SPE,
I'extraction liquide sous pression et la méthode QUEChERS (Chamkasem et al., 2016 ;
Cloutier etal,, 2017 ; Kim et al,, 2019 ; Lee et al.,, 2020 ; Li et al., 2020 ; Sun et Wu, 2020).

Outre les différentes méthodologies d'extraction, diverses approches analytiques simples,
sensibles et rapides sont développées et introduites pour une détermination précise des
POPs en termes de quantité et de qualité. Les analyses chromatographiques en phase
liquide et en phase gazeuse avec 'utilisation de détecteurs sensibles, tels que détecteur a
photométrie de flamme, le détecteur a ionisation de flamme, le détecteur d'émission
atomique, le détecteur azote-phosphore et la détection par spectrométrie de masse sont
généralement classés comme techniques analytiques largement utilisées pour la
séparation et la détection des POPs (Nardelli et al., 2020 ; Tang et al., 2020 ; Stader et al.,
2016).

2.2. Hydrocarbures aromatiques polycycliques (HAPs)

Les HAPs sont des polluants préoccupants a 1'échelle mondiale en raison de leur large
distribution dans l'environnement et de leurs impacts écologique et sanitaire (Ji et al,,
2019 ; Cachada et al., 2016). Pendant des décennies, la contamination par les HAPs a fait

l'objet d'études environnementales, en raison des rejets provenant de la combustion, des
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activités industrielles et en particulier des activités pétrolieres. Les HAPs sont des
cancérogenes, des mutagenes et des tératogenes qui ont tendance a s'accumuler dans

l'eau et les sédiments (Bandowe et Nkansah, 2016).

En raison de leur structure moléculaire, les HAPs ont tendance a subir a la fois des
processus de dégradation et de transformation (Ghosal et al., 2016). Certains de ces
processus comprennent la réduction, 1'oxydation, la photolyse, la biodégradation et
I'hydrolyse aidées par plusieurs facteurs tels que la présence de micro-organismes et la
lumiére du soleil (Achten et Andersson, 2015 ; Jia et al., 2014). De plus, les produits de
transformation et de dégradation de certains HAPs conduisent souvent a la formation de
produits qui sont principalement différents des polluants émis a l'origine en termes de
propriétés physico-chimiques et sont plus toxiques entrainant des effets néfastes.
Certains peuvent éventuellement pénétrer dans les cours d'eau et causer des problémes
environnementaux supplémentaires en raison de leur toxicité et de leur potentiel de
bioaccumulation accrus par rapport aux hydrocarbures d'origine (Achten et Andersson,

2015; Wei etal,, 2015).

Les HAPs constituent une classe large et diversifiée de composés organiques et sont
généralement décrits comme des molécules constituées de deux ou plusieurs cycles
aromatiques fusionnés constitués d'atomes d'hydrogene et de carbone, fusionnés dans
diverses configurations structurelles angulaires, linéaires ou groupées (Chikere et Fenibo,
2018 ; Iwegbue et al., 2020). Les principales sources qui contribuent a leur émission dans
I'air ambiant et intérieur proviennent de sources anthropiques (combustion des matieres
fossiles, émissions industrielles, de transport et de chauffage) ou naturelles (incendies de
forét, volcans, ...). La contribution des sources anthropiques est plus élevée que celle des
sources naturelles. Par conséquent, le risque associé a l'exposition humaine aux HAPs
dans les zones urbaines est plus élevé que dans les zones suburbaines ou rurales, compte
tenu de I'activité industrielle, de la densité de la population et de la circulation automobile

plus importante (Duodu et al., 2017 ; Abdel-Shafy et Mansour, 2016).

Des leur émission dans l'air, les HAPs de faible poids moléculaire (acénaphtene,
naphtalene, fluoréne, anthracene, phénanthrene) seront distribués dans la phase gazeuse,
tandis que ceux de haut poids moléculaire (benz [a] anthracéne, pyrene, benzo (k)

fluoranthéne, benzo [e] pyréne, fluoranthene, chrysene) seront adsorbés sur des
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particules (Han et al, 2015). Les HAPs de poids moléculaire intermédiaire (quatre
anneaux) sont répartis en fonction de la température atmosphérique entre les phases
vapeur et particulaire (fluoranthéne, phénanthréne, anthraceéne, pyrene) (Srogi, 2007).
[Is sont soumis a divers procédés de transformation telle que la photolyse, des réactions
d'oxydation et le transfert ou I'élimination par dép6t humide et sec. Une fois déposés, ils
peuvent étre réactivés par les masses d'air et transportés sur de longues distances et
atteindre des zones éloignées de leur site d’émissions, soit ils surviennent au milieu marin
par les transferts fluviaux ainsi que le lessivage des sols et seront adsorbés sur des
particules pour étre transférés dans les sédiments (Abdel-Shafy et Mansour, 2016). La
lipophilie des HAPs permet a ces substances d'étre absorbées, accumulées ou
transformées par l'organisme aux différents niveaux des chaines alimentaires jusqu’a

I’'homme (Harris et al., 2013).

L'exposition humaine aux HAPs se produit également par la fumée de tabac (Orisakwe et
al,, 2015), la circulation automobile (Slezakova et al., 2013 ; Gong et al., 2015 ; Cui et al,,
2016), les déchets électroniques et les déchets médicaux (Liu et al., 2014 ; Luo et al,,
2015), le charbon de bois (Nguyen et al., 2013) et les feux de forét (Adetona et al,, 2015).
Les personnes sont également exposées a ces composés via l'eau, l'air et les aliments
contaminés qu'ils ingerent. Les voies d'exposition comprennent donc le contact cutané,
I'inhalation et l'ingestion dans les milieux professionnels et non professionnels et
certaines expositions peuvent impliquer simultanément plusieurs voies telles que
I'inhalation a partir d'air contaminé et par des expositions cutanées affectant la dose

totale d'absorption.

Les HAPs dans les aliments (Lee et al., 2018), le sol (Leech et al., 2020), I'air (Szulejko et
al,, 2014), les plantes (Baroudi et al.,, 2020), I'eau (Zhou et Gao, 2014), les abeilles et les
escargots (Kargar et al., 2017; Al-Alam et al., 2020) sont généralement extraits dans un
solvant organique approprié avant I’étape d’analyse. Les méthodes d'extraction utilisées
pour la quantification des HAPs dans I'’environnement comprennent : la SPE (Xu et al,,
2015 ; Zheng et al, 2016), 'extraction par fluide supercritique (Gbeddy et al., 2020),
'extraction assistée par ultrasons (De Barros Caetano et al., 2019), la microextraction
dispersive liquide-liquide (Agus et al., 2020), la microextraction dispersive en phase
solide (Saburouh et al., 2020 ; Sajid et al,, 2020) et la technique d'extraction QUEChERS

(Sun et Wu, 2020 ; Garballo-Rubio et al., 2020). L’analyse des composés est réalisée par
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différentes techniques chromatographiques couplées a des détecteurs sensibles

détecteur a fluorescence (Zhang et al., 2020), détecteur a ionisation de flamme (Olatunji

et al,, 2014) et détecteur par spectrométrie de masse (Martinefski et al., 2019) sont les

plus fréquemment utilisés.

Les ratios entre différentes HAPs sont couramment utilisés comme outil d'identification

et d'évaluation des sources d'émission de pollution (Tableau 2). Les ratios sont

applicables aux HAPs déterminés dans différents milieux environnementaux: sol, eau, air

(particules + phase gazeuse), sédiments ainsi que des organismes biomoniteurs tels que

les escargots ou les aiguilles de coniferes. Ces ratios distinguent la pollution aux HAPs

provenant des émissions d'essence et des véhicules, des produits pétroliers et de la

combustion du charbon et du pétrole (Tobiszewski et Namiesnik, 2012).

Tableau 2 Rapports de diagnostic utilisés avec leurs valeurs généralement rapportées pour des

processus particuliers.

PAH ratio Valeurs Source Référence
<1 Pyrogénique Zhang et al., 2008
YLMW/ZHMW
>1 Pétrogénique
<0.5 Emissions d'essence Ravindra et al., 2008b
FL/(FL + PYR) )
>0.5 Emissions diesel
<0.1 Pétrogénique Pies et al., 2008
ANT/(ANT + PHE)
>0.1 Pyrogénique
<0.4 Pétrogénique
FLA/(FLA + PYR)  0.4-0.5 Combustion de. combustibles De La Torre-Roche et al.,,
fossiles 2009
>0.5 Combustion du charbon
0.2- Combustion du charbon
0.35

BaA/(BaA + CHR) >0-35

Emissions des véhicules

Akyuz et Cabuk, 2010

<0.2 Pétrogénique
Yunker et al., 2002
>0.35 Combustion
~0.5 Particules
BaP/(BaP + BeP) Oliveiraetal., 2011
<0.5 Photolyse

YXLMW: somme des HAPs a deux et trois cycles, ZHMW: somme des HAPs a quatre et cing cycles
FL: Fluorene, PYR: Pyrene, ANT: Anthracene, PHE: Phénanthrene, FLA: Fluoranthéne, BaA: Benzo [a]

anthracene, CHR: Chrysene, BaP: Benzo [a] pyréne, BeP: Benzo [e] pyrene
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2.3. Polychlorobiphényles (PCBs)

Les PCBs classés parmi les POPs sont identifiés par I'OMS (WHO, 2019) comme étant des
composés hautement néfastes pour I'environnement et la santé humaine en raison de leur
capacité de bioamplification et de bioaccumulation tout au long de la chaine alimentaire
(Omwoma et al., 2019 ; Nouira et al., 2013). Structurellement, les propriétés physico-
chimiques des PCBs dépendent du nombre et de la position des atomes de chlore dans les
cycles biphényles (Wahlang et al,, 2019). Les PCBs faiblement chlorés sont souvent
métabolisés et rapidement éliminés des organismes, y compris les humains, tandis que
ceux fortement chlorés sont lentement absorbés et accumulés dans le tissu adipeux et la
peau et ont tendance a entrainer des troubles de santé (Helou et al., 2019). Leurs
propriétés diélectriques et leur résistance au feu ont conduit a une large utilisation des
PCBs depuis des décennies dans les équipements électriques, tels que les condensateurs
et les transformateurs, les lubrifiants, les peintures et comme plastifiants. La présence
environnementale des PCBs provient d'une élimination incorrecte, des fuites des
décharges, de l'incinération et des activités industrielles. Néanmoins, 1'exposition aux
PCBs est associée a un risque accru de certains cancers du tube digestif, de la peau et du
foie. Cette exposition est également associée a des déficiences de la reproduction
(développement retardé, taux de croissance réduits) et du systéme immunitaire

(augmentation des taux d'infection, des modifications cutanées) (Iwegbue et al., 2019).

Les PCBs sont persistants dans les environnements biotiques et abiotiques, en raison de
leur large éventail d'applications et de leur stabilité chimique excessive. Les propriétés
physico-chimiques distinctes ainsi que la propriété diélectrique exceptionnelle des PCBs
les ont certifiés comme des composés indispensables dans un large domaine
d'applications industrielles. En outre, leur capacité thermique élevée et leur faible
conductivité électrique ont prouvé qu'ils étaient idéaux comme réfrigérants dans les
équipements électriques. Par conséquent, les PCBs ont été détectés presque dans tous les
compartiments de l'écosysteme mondial au moins a l'état de traces et sont distribués a
travers les régions ou ils n'ont jamais été utilisés auparavant due a leur facilité de
transport sur de longues distances via I'atmosphéere (Randoll et al,, 2014; Zeng et al,,

2013).
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Les PCBs résistent a la dégradation par les bases, les acides et la chaleur dans une large
mesure en raison de leur propriété hydrophobe et peuvent pénétrer pratiquement dans
tous les écosystémes et se maintenir pendant des années sans subir de réduction,
d'oxydation ou de biodégradation. De plus, ces PCBs peuvent se lier aux segments
lipidiques des tissus animaux et tout au long de la chaine alimentaire vu leur solubilité

élevée dans les lipides (Tang et al., 2015; Wu et al., 2018).

Compte tenu de leur toxicité aigué et de leur persistance dans l'environnement, plusieurs
stratégies analytiques ont été élaborées pour l'échantillonnage, le prétraitement et
I'analyse des PCBs dans le sol, I'eau, l'air et les sédiments contaminées. Récemment,
plusieurs études ont déterminé la concentrations de ces composés dans les sols (Song et
al,, 2018 ; Francisco et al., 2017), les eaux de surface (Cerasa et al., 2020; Habibullah-Al-
Mamun et al., 2019), l'air (Melymuk et al.,, 2017 ; Sakin et al., 2017), ainsi que dans
différents échantillons tels que les aiguilles de coniféeres (Al-Alam et al., 2017 ; Silva et al.,
2015), le miel (Chiesa et al.2016), les escargots (Baroudi et al., 2020) et les poissons (Li
etal, 2019 ; Visha et al,, 2018).

[IL. Principaux biomoniteurs de la qualité de I'air

La pollution de l'air doit étre surveillée afin d’évaluer son impact sur 'homme et
I'environnement. Deux techniques d'échantillonnage sont couramment utilisées
permettant une évaluation quantitative et qualitative précise de la pollution de I'air. Les
échantillonneurs d'air passif et actif font partie des méthodes couramment utilisées pour
la détermination des polluants dans l'air. De méme, une évaluation qualitative et
quantitative des polluants peut étre réalisée par biosurveillance, permettant la
détermination des polluants organiques avec une substance naturelle (Al-Alam et al,,

2017; Xu etal,, 2013).

La biosurveillance peut étre définie comme une série d'étapes de détermination et
d'identification des polluants atmosphériques accumulés dans des biomoniteurs /
bioindicateurs sur une période donnée. C'est une excellente alternative aux
échantillonneurs passifs et actifs en estimant la pollution de I'air avec une substance
naturelle et en permettant ainsi une évaluation qualitative et quantitative de la présence

de polluants (Van der Wat et Forbes, 2015).
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1. Analyse des polluants dans 1'air par échantillonnage passif

Les études de surveillance atmosphérique des polluants sont généralement réalisées a
l'aide de technique d'échantillonnage passif et actif (Karaskova et al., 2018 ; Newton et al.,
2016 ; Tuduri et al,, 2012). Les échantillonneurs actifs aspirent I'air ambiant a travers un
filtre et un matériau absorbant a l'aide d'une pompe. L'échantillonnage passif de 1'air est
la collecte de polluants atmosphériques par la diffusion de gaz et, dans une moindre
mesure, l'entralnement de particules, sur et dans un milieu d'échantillonnage.
L'échantillonnage passif complete 1'échantillonnage actif de l'air en fournissant des
méthodes moins coliteuses, nécessitant moins de sécurité, silencieuses et ne nécessitant
pas d'électricité (Ellickson et al., 2017 ; Lee et al., 2017). Les principales concentrations
de polluants dans I'air peuvent étre obtenues directement avec des échantillonneurs d'air
actifs. Ceux-ci présentent également l'avantage d'utiliser des données de concentration
quantitatives fiables, d'évaluer les effets des facteurs contrélant la variabilité de la
concentration a court terme et de déterminer la répartition des particules de gaz, la
distribution des particules dans l'air et la température. Ces systemes présentent
I'inconvénient de la nécessité d'une alimentation électrique et de colits d'équipement

élevés (Sari et al., 2021 ; Hayward et al., 2011; Xu et al., 2013 ; Tuduri et al., 2012).

Les échantillonneurs d'air passifs sont utilisés comme un choix efficace par rapport aux
échantillonneurs d'air actifs pour la mesure des polluants organiques. Les avantages des
échantillonneurs d'air passifs comprennent la facilité d'utilisation , les faibles cofits et
'absence d'électricité (McLagan et al., 2018 ; Okeme et al., 2016). Cependant, les longues
périodes d'échantillonnage nécessaires constituent un des inconvénients majeur de ce

type d’échantillonnage (Lai et al., 2018) avec la calibration.

L'utilisation de dispositifs d'échantillonnage passifs s'est rapidement développée, ce qui
a permis une surveillance continue des contaminants environnementaux pendant la
période ou ils sont exposés sur le terrain. L'usage de certaines substances ou organismes
naturelles (biomoniteurs) comme capteurs fiables de polluants dans I'air, figure parmi les
échantillonneurs passifs les plus utilisés et les plus disponibles. 1l s’agit en fait de la
technique de biosurveillance environnementale dite de biomonitoring (Baroudi et al,,

2020 ; Ghosh et al,, 2014 ; Mukhopadhyay et al., 2020 ; Roll et Halden, 2016).
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2. Organismes pour la surveillance de la pollution : Biomoniteurs

2.1. Généralités

La biosurveillance est définie comme Il'acte d'observer et d'évaluer l'état et les
changements en cours dans les composants de la biodiversité et les écosystemes, y

compris les populations, les habitats naturels et les espéces.

La biosurveillance est au cceur de la gestion, de la restauration et de la conservation des
écosystemes. Etant donné que la biosurveillance est devenue une obligation, leurs
programmes sont élaborés par des organisations gouvernementales. La biosurveillance
consiste a enregistrer 1'abondance des especes et la diversité a différents moments et a
différents endroits a 1'aide d'une gamme de techniques de recensement écologique et
d'identification taxonomique. La plupart des méthodologies d'échantillonnage de
biosurveillance ont été développées au milieu du 20¢ siecle et ont été sélectionnées pour
des raisons entierement pragmatiques reflétant 1'état actuel des connaissances, la

simplicité et le colt (Bohan et al., 2017).

Parmi les échantillonneurs passifs tres connus, figurent les biomoniteurs. Un biomoniteur
est décrit comme une espéce d'animaux, de plantes ou de champignons fournissant des
informations sur l'environnement dans lequel il réside. Il est généralement caractérisé
par sa large distribution spatio-temporelle, son mode de vie sédentaire, son pouvoir
cumulatif, sa sensibilité élevée aux différents types de contaminants, et par sa facilité
d'identification et de collecte (Al Alam et al., 2019 ; Parmar et al., 2016). Le biomoniteur
est une alternative peu coliteuse pour analyser la qualité de l'air et obtenir des
informations relatives a l'exposition de la population aux polluants atmosphériques, et
permettent ainsi d'évaluer simultanément plusieurs sites d'échantillonnage différents

(Giampaoli et al., 2016 ; Capozzi et al., 2016).
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Biominoteur végétal Biominoteuranimal

La croissance ou le déclin
d'espéces dans une
population peut nuire a la
communauté biologique en
raison d'une charge de
population excessive

La disparition de certaines
plantes ou de la vie végétative
dans un groupe naturel peut
donner des données de base

sur le bien-étre de
I'environnement

Les microorganismes
présentent des changements

morphologiques importants et
révelent le niveau de pollution
dans l'environnement

Figure 7. Types de biomoniteurs avec des réponses spécifiques (Parmar et al., 2016)

Les especes d’invertébrés (escargots et abeilles) et les espéces végétales (aiguilles de
coniferes et lichens) (Varga et al,, 2020 ; Girones et al., 2020 ; Ji et al., 2019 ; Luo et al,,
2020) sont reconnues comme des indicateurs biologiques appropriés, en raison de leur
accumulation potentielle de polluants organiques et d'oligo-éléments métalliques, et sont
également utilisées comme espece modeéle pour évaluer 1'effet de ces polluants sur leur

développement (Krupnova et al,, 2018 ; Cossi et al ., 2018) (Figure 7).
2.2. Biomoniteur a base végétale

L'utilisation de la végétation pour la surveillance de I'environnement peut étre considérée
comme une technique simple, efficace et rentable pour détecter et évaluer la pollution de
I'environnement. L'importance de la biosurveillance de la pollution de I’air par les plantes
offre des résultats importants pour différentes raisons (Parmar et al.,, 2016 ; Ratola et al.,

2014 ; Cuny, 2012) :

e Les plantes montrent une réponse intégrée au climat de la pollution, pouvant méme
donner des informations sur la puissance des mélanges de polluants complexes. Elles
sont plus ou moins sensibles et ne réagissent qu'a une partie d'une situation de

pollution donnée ;
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» Différents niveaux de la plante, allant de la plante unique a l'association végétale et a
|'écosystéme peuvent étre utilisés pour la biosurveillance. La réponse obtenue est le
résultat d'une intégration de différents facteurs sur une période relativement longue
vécue par des espéces végétales compétitives ;

e Certains polluants sont difficiles a étre mesuré avec précision par des méthodes
chimiques et physiques du fait de leur concentrations ambiantes tres faibles. Ces
polluants peuvent étre accumuler par les plantes a un niveau plus facile a analyser ;

e Les effets sont exprimés sous forme de lésions visibles dans les especes végétales
sensibles (lésions foliaires ou changements d'habitude) et dans les espéces moins
sensibles dans l'accumulation de polluants (méme les espéces tolérantes a la
pollution). Les deux fournissent un outil important pour reconnaitre les effets de la
pollution de l'air et le transfert des traces de polluants au niveau de la chalne

biologique.

En raison des problemes liés a I’environnement et a la santé humaine, les processus de
surveillance et de contréle des polluants étroitement liés a la contamination de I'air
deviennent essentiels. Les échantillonneurs actifs ont été largement utilisés dans la
surveillance atmosphérique mais ne peuvent pas étre appliqués dans les zones de
couverture éloignées ou étendues en raison du manque d'alimentation électrique. Au
cours des dernieres décennies, le développement de méthodes utilisant des algues, des
plantes, des lichens et des mousses comme biomoniteurs a suscité un intérét croissant en
raison de leur rapidité, de leur faible colit et de leur facilité d'utilisation (Vitali et al., 2019

; Massimi et al., 2019).
2.2.1. Biomoniteur a base végétale : les aiguilles de coniferes

Des plantes vasculaires persistantes, telles que les aiguilles de coniféres, ont été suggérées
pour surveiller les polluants, comme les métaux, les pesticides et d’autres polluants
organiques (Luo etal., 2020 ; Tang etal,, 2014 ; Ratola et al., 2014). L'un des avantages de
|'utilisation de coniferes qui sont de bons indicateurs de pollution au cours de I'année est
la capacité a accumuler tout au long de 1'année des polluants liés au trafic et qui sont a
l'origine de la pollution de I'air (Turkyilmaz et al., 2018). De plus, les especes a feuilles
larges peuvent avoir une accumulation de polluants plus élevée que les feuilles plus

grandes et plus plates du fait que les particules en suspension dans l'air peuvent étre plus
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facilement accumulés par les aiguilles étroites et longues (Alexandrino et al,, 2020; Chen
et al, 2017). La présence d’une couche cireuse et la teneur élevée en lipides permettent
I'accumulation et l'adsorption de polluants organiques de l'air au fil des années dans leurs
tissus (Al Alam et al,, 2019 ; Bertolotti et Gialanella, 2014). La biosurveillance avec ces
biomoniteurs passifs est économiquement pratique pour étudier divers polluants
organiques, y compris les polybromodiphényléthers (Ratola et al., 2011), les PCBs (Al
Dine et al., 2015), les polychlorodibenzo-p-dioxines, les polychlorodibenzofuranes (Chen
et al,, 2017) et les HAPs (Oishi, 2018 ; Kargar et al., 2017), ainsi que la détection de leur

accumulation a long terme dans l'air a une large échelle spatiale.
2.2.2. Biomoniteur a base végétale : les lichens

En raison de leur capacité a accumuler de nombreux polluants différents, les lichens sont
considérés comme des outils efficaces pour un échantillonnage a long terme des polluants
organiques (Srivastava et Bhattacharya, 2016). Plusieurs facteurs, tels que les conditions
atmosphériques au cours de la période d'échantillonnage, la concentration des polluants
dans l'air ainsi que leurs propriétés physico-chimiques affectent I'accumulation de
quantités détectables de polluants de l'air dans les lichens. La campagne de
biosurveillance peut étre menée en utilisant des lichens indigenes présents dans la zone
étudiée ou transplantés vers la zone d'étude (Van der Wat et Forbes, 2015 ; Augusto et al.,
2013). Néanmoins, les greffes de lichen sont les plus appropriées pour réaliser un vaste
réseau d'observation qui permet d'étudier la répartition spatiale des polluants
atmosphériques (Massimi et al., 2021 ; Gallo et al,, 2017 ; Vannini et al., 2016 ; Conti et
Tudino, 2016).

Les polluants organiques toxiques présents dans l'air qui pénétrent dans les lichens
peuvent influencer la structure anatomique des thalles (Osyczka et al., 2018). Certaines
caractéristiques anatomiques semblent étre liées a l'accumulation de métal, et des
différences significatives de structure anatomique ont été observées entre des thalles de
la méme espece prélevés dans des localités dont le niveau de pollution differe. Les
changements structurels susceptibles résultant de la pollution ont été fréquemment
rapportés en ce qui concerne la composante des algues, et ces changements dépendent de
facteurs climatiques et peuvent différer d'une espece de lichen a l'autre (Rola et Osyczka,

2018). Les lichens sont couramment utilisés comme biomoniteurs passifs pour étudier les
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métaux lourds (zinc, cuivre, plomb) (Rola et al,, 2021) et divers polluants organiques, y
compris, les HAPs (Cappozi et al,, 2021 ; Ji et al,, 2019), les PCBs (Massimi et al., 2021 ;
Vitali et al, 2019), les polychlorodibenzodioxines et les polychlorodibenzofuranes

(Massimi et al., 2021).
2.2.3. Biomoniteur a base végétale : les mousses

Les mousses sont considérés comme des biomoniteurs de surveillance et de gestion de la
qualité de l'air (Ogunkunle et al., 2016). Ils permettent d'évaluer la pollution de l'air par
les polluants accumulés ou déposés directement dans leurs tissus (Salo et al., 2012 ;

Boquete et al., 2014).

Les mousses, fournissant des informations sur la contamination temporelle et spatiale de
divers polluants, sont régulierement utilisées comme biomoniteurs des polluants
présentes dans l'air par deux processus méthodologiques tels que la biosurveillance
active ou passive. Dans le cas de la biosurveillance active, des échantillons de mousse sont
prélevés dans des zones relativement peu polluées, ou ils sont nettoyés et traités avant
d'étre exposés a différents environnements pollués. Pour la biosurveillance passive, les
mousses poussant dans une zone particuliere sont collectées directement et analysées

(Gallego-Cartagena et al,, 2021 ; Baltrenaite et al,, 2014 ; Boquete et al., 2013).

Différentes techniques analytiques sont mise en ceuvre pour I’étude de la qualité de l'air
a l'aide d'échantillons de mousse, telles que la spectrométrie d'absorption atomique
(AAS) (Lazo et al, 2019 ; Macedo-Miranda et al., 2016), l'analyse par activation
neutronique (Madadzada et al., 2019), la spectrométrie de masse a plasma a couplage
inductif (Gallego-Cartagena et al., 2021 ; Fackovcova et al., 2020) et la spectrométrie

d'émission optique a plasma a couplage inductif (Donovan et al., 2016).
2.3. Biomoniteur a base animale

Les matrices animales comestibles ont l'avantage de démontrer le risque réel des
polluants sur la population et leur passage dans la chaine alimentaire. La bioaccumulation
dans les tissus et les organes rend la surveillance biologique plus sensible que la
surveillance environnementale, en particulier dans les zones ou aucune pollution n'a été

détectée. La biosurveillance animale présente des avantages spécifiques étant donné que
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les animaux se caractérisent par une mobilité quotidienne limitée et sont moins
susceptibles d'étre affectés par des facteurs de confusion ce qui facilite l'identification de

la source de contamination (Scaramozzino et al,, 2019).
2.3.1. Les mollusques: les escargots

Un biomoniteur animal fournissant des informations sur la qualité de I'environnement
dans lequel il réside, se caractérise généralement par son mode de vie sédentaire, sa large
distribution et sa facilité d'identification et de collecte (Parmar et al., 2016). Les especes
d'invertébrés, comme les escargots, sont reconnues comme des indicateurs biologiques
appropriés en raison de leur accumulation potentielle de POPs et d'oligo-éléments
métalliques (Louzon et al., 2020) et sont également utilisées comme outil pour évaluer
|'effet de ces polluants sur leur développement (Louzon et al., 2020 ; Cossi et al., 2018 ;
Krupnova et al., 2018 ; De Vaufleury, 2015). Les escargots terrestres (Helix aspersa,
Cepaea nemoralis, Theba pisana et Eobania vermiculata) sont d'excellents biomoniteurs
de la contamination environnementale en raison de leur échantillonnage facile, de leur
large distribution et de leur capacité a accumuler divers contaminants dans l'air, le sol et

la flore (Baroudi et al., 2020).

Ces espéces occupent une place importante dans l'interface sol-air-végétation du milieu
et intégrent de nombreuses sources de pollution (sol, atmospheére, végétaux) a travers les
voies digestive, respiratoire et / ou cutanée. Plusieurs espéces d'escargots ont été
etudiées, par exemple Papillifera papillaris (Emilia et al., 2016), /ndothais gradata (Proum
et al., 2016), Pomacea canaliculata (Ramli et al., 2019), Cantareus apertus (Mleiki et al.,
2018), Helix aspersa (Abdel-Halim et al., 2013), Fobania vermiculata (El-Shenawy et al.,
2012), Cepaea nemoralis (Boshoff et al.,, 2015), Bellamya aeruginosa (Yin et al., 2014),
Theodoxus niloticus (Abdel Gawad, 2018) et Achatina fulica (Cho et al,, 2019).

En raison de leur large distribution, les escargots peuvent étre utilisés pour évaluer la
biodisponibilité des contaminants du sol en mesurant la transmission sol-escargot ou sol-
plante-escargot et pour analyser la biodisponibilité des polluants environnementaux en
mesurant leur concentration dans les escargots présents dans leur biotope, dans leur
torsion ou leur masse viscérale et leur coquille lors d'une période de temps spécifiée. Leur

mucus les protége des menaces extérieures et des infections bactériennes et fongiques
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(Gomot de Vaufleury et Pihan, 2000). Les escargots peuvent étre facilement collectés,
élevés, identifiés et trouvés presque partout. De plus, ils sont en contact avec différents
polluants qu'ils consomment par voie transcutanée, digestive et respiratoire provenant
de l'eau, des plantes et du contact avec le sol. L'analyse des polluants a montré que les
escargots sont plus susceptibles de s'accumuler dans les viscéres que dans le pied, ce qui
indique la pertinence du choix des visceres pour étudier la biodisponibilité des polluants
dans 1'écosystéme et illustre l'utilité d'analyser séparément le pied et les visceres

(Baroudi et al., 2020).

La bioaccumulation de polluants dans les escargots dépend de la durée de I'exposition, ce
qui implique que les escargots sauvages sont fortement contaminés en raison de leur
exposition aux polluants environnementaux. La période d'exposition de plusieurs
semaines refléte les effets nocifs et prouve que la bioaccumulation est modulée par le type
des polluants par rapport a des expositions courtes qui peuvent étre suffisantes pour

détecter la bioaccumulation (Nica et al., 2013).

Les escargots sont largement utilisés comme détecteurs environnementaux pour les
métaux lourds, le glufosinate, le glyphosate, les HAPs, les diphényléthers polybromés, les
PCBs et les pesticides, y compris les pesticides organochlorés (OCPs). Plusieurs méthodes
d'extraction des polluants organiques et des métaux lourds des escargots ont été publiées
dans la littérature (Sturba et al., 2020 ; Girones et al., 2020 ; Louzon et al., 2020 ; Abdel-
Halim et al., 2013 ; Wu et al, 2019). Par exemple, les polluants organiques ont été
principalement extraits par QUEChERS (Al-Alam et al., 2020), par SPE (Beach etal., 2009),
par I'extraction d'eau chaude sous pression (Cho et al., 2019) et MAE (Ramli et al., 2019).
Cependant, I'extraction des métaux lourds se faisait surtout par digestion avec un mélange
d'acide nitrique (HNO3), d'eau oxygénée (H202), d'acide perchlorique (HCIO4) et de
nitrate de plomb (PbNO3) en utilisant une digestion acide assistée par micro-ondes
(Abdel Gawad, 2018 ; Emilia et al.,, 2016). De plus, il existe de nombreuses techniques
d’analyses disponibles pour I'étude des polluants émergents de ces especes telles que la
LC (Choetal,2019;Ramlietal.,, 2019),la GC (Wuetal, 2019),1'AAS (Abdel Gawad, 2018
; Emilia et al,, 2016) et le spectrometre de masse a plasma a couplage inductif (Emilia et

al, 2016 ; Boshoff et al.,, 2015).
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2.3.2. Les abeilles et leurs produits

Bien que les populations d'abeilles soient développées dans le monde entier, des pertes
de colonies ont été provoquées par de multiples facteurs tels que le changement
climatique, la réduction de la diversité florale, 'intoxication par des composés chimiques
y compris les POPs et les pesticides, et l'infection par des agents pathogenes y compris
des bactéries, des virus, des parasites et des champignons (Belsky et Joshi, 2019 ; Goulson
etal, 2015 ; Harwood et Dolezal, 2020). La diminution des populations d'abeilles dans le
monde est préoccupante compte tenu de leur réle de biomoniteur, leur large distribution
et leur importance économique et écologique (Goulson et al., 2018). La présence de la
déforestation, des maladies naturelles et de I'application de pesticides sur les cultures ont
été signalées comme des causes de l'effondrement des colonies d'abeilles (Wood et

Goulson, 2017 ; Park et al., 2015 ; Goulson et al., 2015).

L'abeille est un pollinisateur essentiel pour l'agriculture dans le monde entier et a été
largement considéré comme un biomoniteur des polluants présents dans lair
(Skorbitowicz et al., 2018 ; Niell et al.,, 2017 ; Villalba et al., 2020). Au cours de leurs
recherche de nourriture, les abeilles sont exposées a des polluants notamment des
polluants organiques et des métaux qui sont ramenés dans les ruches et peuvent
également se retrouver dans les produits de la ruche, tels que le miel et la cire (Ostiguy et
al,, 2019 ; Sadowska et al., 2019 ; Negri et al,, 2015 ; Hooven et al., 2019). L'origine de ces
polluants peut étre a I'origine de l'inhalation de polluants par les stigmates de la trachée,
'exposition des particules via les poils des corps d'insectes, l'ingestion de nectar, de

pollen et d'eau contaminée.

La plupart des études utilisent des corps d'abeilles adultes pour surveiller les polluants
dans l'environnement. Il a été constaté que le niveau de pollution dans les corps des
abeilles était significativement différent d'un environnement a l'autre et correspondait
aux différents niveaux de pollution (Barganska et al,, 2013). La zone d'activité associée
aux colonies d'abeilles peut généralement s'étendre sur une vaste zone (Barganska et al.,
2016) autour de la colonie, et cette variabilité dans la recherche de nourriture est
généralement due a des différences dans la disponibilité des sources de nourriture autour
de la colonie (Garbuzov et al.,, 2015). Cependant, méme au méme endroit, les colonies

peuvent différer dans leur zone d'alimentation réelle, leur activité d'alimentation et méme
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dans la distance parcourue. La quantité de pollution trouvée dans les corps d'abeilles et
dans le pollen collecté peuvent étre affecter par ces différences entre les colonies.
Plusieurs auteurs (El-Nahhal, 2020 ; Larson et al,, 2015 ; Zioga et al., 2020 ; Bonmatin et
al,, 2015 ; Sanchez-Bayo et Goka, 2014) ont révélé une contamination directe des abeilles
melliferes par des acaricides, des insecticides, des herbicides et des fongicides lors de la
visite des fleurs, de la collecte du pollen, du retour dans les ruches et du stockage des
échantillons de miel. De plus, une contamination directe du nectar peut survenir pendant

la saison de floraison et la collecte du nectar.

Le miel, fabriqué par les abeilles a partir de pollen et de nectar, contiennent une quantité
relativement élevée de protéines, de matiéres organiques, de vitamines et d'enzymes
(Donkersley et al., 2017 ; Di Bella et al,, 2015 ; Da Silva et al., 2016). Des études montrent
que l'analyse élémentaire des propriétés chimiques et physiques du miel est importante
non seulement pour l'identification de 1'origine géographique ou botanique mais aussi
pour le simple controle de la qualité de I'air (Czipa et al., 2015 ; Louppis et al.,, 2017). Les
changements dans la composition élémentaire du miel peuvent indiquer une pollution
locale, du fait que les polluants de l'air, de I'eau et du sol peuvent étre accumulés dans les
produits de la ruche. La production de miel d'une zone dépend principalement des
conditions climatiques dans lesquelles les plantes poussent et du type de la végétation

utilisée par les abeilles (Escuredo et al., 2014).

Le miel est généralement le moins exposé aux polluants atmosphériques, et son niveau de
pollution est inférieur a celui du pollen qui peut étre exposé aux polluants
atmosphériques pendant longtemps, et du fait de sa viscosité élevée l'aménant a
accumuler de plus grandes quantités de polluants (Maragou et al., 2017). Le pollen et le
nectar peuvent étre contaminés par le dépot et I'absorption de polluants organiques sur
les plantes comme les métaux lourds du sol et les radionucléides (Ismael et al., 2019 ; Silva
et al., 2012). Ainsi, la présence de contaminants dans le miel peut varier selon la capacité
des plantes a absorber et a excréter des polluants dans le nectar produit et de la capacité

de la fleur a accumuler des polluants (Zieba et al., 2020).

Les abeilles ainsi que le miel peuvent étre utilisés pour surveiller I'environnement pour
la distribution de divers polluants telles que les métaux lourds (Goretti et al., 2020 ; Xun

et al., 2018), les HAPs (Zieba et al., 2020 ; Kargar et al., 2017), les pesticides (Moreno-
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Gonzalez etal., 2020 ; Sgargietal.,, 2020) etles PCBs (Villalba et al., 2020 ; Sari etal., 2021).
Diverses techniques et méthodes d'échantillonnage sont connues pour collecter, mesurer
et analyser les niveaux de pollution sur le corps d'abeilles, des parties de corps ou
d'échantillons de produits d'abeille. L'extraction des polluants dans les matrices
environnementales a été principalement réalisée a l'aide de la méthode QuEChERS
(Calatayud-Vernich et al,, 2016 ; Liu et al., 2016 ; Martinello et al., 2017 ; Shendy et al,,
2016 ; Silva et al,, 2019 ; Tette et al., 2016), de 'ASE (Chiesa et al., 2016), de la SPE (Sun
etal, 2016 ; Surma et al,, 2015 ; Shamsipur et al., 2016) et la LLE (Zhu etal,, 2019).

[V. Méthodes d'analyse des polluants

L'importance de la qualité de l'air est devenue un probléme sérieux en raison de la
présence importante des polluants organiques et de l'utilisation généralisée des
pesticides. Au cours de la derniere décennie, il y a eu une augmentation de la
consommation de pesticides en raison de l'urbanisation rapide et de la population élevée
(Kopittke et al., 2019). Ces résidus dans l'air, I’eau, le sol et les aliments ont des effets
potentiellement néfastes sur la santé humaine et l'environnement. Divers rapports
suggerent le risque de la contamination par différents polluants avec leur mode d'action
et l'exposition continue provoquant des déficits neurologiques, des maladies
respiratoires telles que la rhinite et dans les cas les plus graves, le cancer, I'avortement

spontané et la mort feetale (Lim et al., 2018).

Plusieurs méthodes spécifiques a un polluant, a une classe de polluant ou a plusieurs
polluants ont été utilisées pour l'analyse des polluants dans différentes matrices. Il
convient toutefois de noter que la sélection appropriée de la méthode analytique est
étroitement liée a la qualité des résultats. Une méthode multirésiduelle appropriée pour
quantifier et détecter les polluants d'intérét dans un temps relativement court,
comprenant des étapes minimales de préparations de I’échantillon est essentielle pour un

programme de surveillance efficace.

Des exemples de méthodes de préparation d'échantillons fréquemment utilisées sont la
SPE, la LLE, la SPME, I’ASE et la méthode QUEChERS. La LC et la GC sont les techniques

les plus couramment utilisées pour séparer efficacement les composés étudiées.
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1. Extraction des polluants

La préparation des échantillons est une étape importante de 1'ensemble du processus
analytique. Cependant il s'agit de la partie du protcole analytique la plus longue, la plus
laborieuse et surtout la partie qui peut engendrer le plus d’erreurs et de perte des
composés, entrainant une influence non négligeable sur les résultats. La préparation des
échantillons a pour principaux objectifs de favoriser l'extraction et l'enrichissement des
composés analysés et d'éliminer autant que possible les interférences. Une méthode de
préparation d'échantillons pour l'analyse des résidus de polluants devrait avoir les
propriétés suivantes: inclure le plus grand nombre possible de polluants, avoir des taux
de récupération aussi proches que possible de 100%, éliminer les composés
potentiellement interférents dans 1'échantillon, avoir une précision et une robustesse
appropriées. Ainsi, I'étape de préparation des échantillons est primordiale pour garantir
une meilleure sélectivité, sensibilité de la méthode et de limiter au maximum |'effet de
matrice lors de l'analyse des composés. Les methodes d’extraction de polluants
organiques dans les matrices comprennent la LLE (Cacho et al.,, 2018 ; Zhu et al., 2019), la
SPE (Wangetal.,, 2019 ; Ly et al,, 2020), la SPME (Panio et al., 2020 ; Grandy et al., 2019 ;
Wuetal,, 2016), et QUEChERS (Wang et al., 2020 ; Wurita etal., 2020 ; Rahman et al., 2018
; Lee et al, 2020).

1.1. Extraction liquide-liquide (LLE)

La LLE également appelé extraction par solvant, implique la séparation des composés,
principalement en fonction de leurs solubilités relatives dans des liquides non miscibles.
La LLE, en présence de différents solvants d'extraction tels que l'acétonitrile (ACN),
I'hexane et I'acétate d'éthyle (AE) est 1'une des techniques les plus largement utilisées et
les plus anciennes dans la préparation d'échantillons pour l'analyse quantitative et
qualitative. L'AE a polarité moyenne est1'un des solvants le plus couramment utilisés pour
'extraction de pesticides a partir de matrices alimentaires (Stocka et al., 2011 ; Raina-

Fulton et Xie, 2017).

Cependant, la LLE se caractérise également par l'utilisation de plusieurs étapes de
manipulation des échantillons, ce qui le rend vulnérable aux erreurs et a la contamination.

De plus, elle permet généralement d'extraire des composés appartenant a une seule classe

45



chimique. Malgré ces inconvénients, ce type d’extraction continue d'étre utilisé dans
'analyse des polluants comme les pesticides (Rodrigues et al., 2018 ; Zhao et al., 2019 ;

Duca et al., 2014).

Dans cette méthode d'extraction, trois étapes peuvent étre distinguées. Dans la premiere
étape précédant l'extraction, la matrice est homogénéisée dans de l'eau, méthanol-eau ou
I'acétone-eau permettant une meilleure homogénéisation des échantillons. Dans la
deuxiéme étape, les polluants sont extraits avec différents solvants non miscibles a I'eau
en fonction de la polarité du polluant tels que I'’eau, ’ACN, I'AE, le dichlorométhane, le
tétrachlorure de carbone, ou des mélanges d'hexane-acétone et de benzene-isopropanol.
Finalement, dans la troisiéme étape apres le traitement de 1'échantillon, I'extrait obtenu
est nettoyé pour éviter les composés co-extraits de poids moléculaire élevé et pour
réduire les composés interférents qui peuvent contaminer le systeme chromatographique
et rendre I'analyse du chromatogramme difficile en raison de la présence de pics (Daso et

Okonkwo, 2015).

Plusieurs études ont montré l'efficacité de la LLE pour la détermination des polluants
organiques tels que les pesticides (Zahiri et al., 2020 ; Shamsipur et al., 2016), les HAPs
(Harris et al., 2020) et les métaux lourds (Matin et al.,, 2016) détectées dans plusieurs
matrices comme le lait (Andrade et al., 2013), les escargots (Druart et al.,, 2011) et le miel

(Kadzinski et al.,, 2018 ; Zhu et al.,, 2019).
1.2 Extraction accélérée par solvant (ASE)

L'ASE, aussi appelé extraction de fluide sous pression ou extraction de liquide sous
pression (Harris et al., 2020 ; Gbeddy et al., 2020), est un procédé d'extraction solide-
liquide effectué a des pressions élevées (10-15 MPa) et a des températures élevées (40-
200 °C). Ses principaux avantages par rapport aux méthodes d'extraction traditionnelles
se traduisent par une diminution du temps d'extraction et de la quantité de solvant utilisé.
L'échantillon est placé dans une cellule d'extraction, en acier inoxydable. Apres I'ajout du
solvant, la cellule est mise sous pression, chauffée a la température souhaitée et
I'échantillon est extrait de maniere statique pendant une période de temps spécifique.
L’application d’'une pression permet d’effectuer une extraction a plus haute température

en maintenant le solvant sous forme liquide. Cette augmentation de température entraine
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une augmentation du pouvoir de solvatation et du pouvoir de diffusion. Ensuite, l'extrait
est retiré de la cellule qui sera rincée avec du solvant. Une fois 1'extraction terminée,
I'azote comprimé déplacera tous les solvants de la cellule d'échantillon vers le flacon
d'échantillon pour analyse. L'extrait est filtré avant d'étre collecté dans le récepteur,
aucune étape de filtrage ultérieure n'est donc nécessaire (Kinross et al.,, 2020 ; Mandal et

al, 2015).

Aujourd'hui, ’ASE est utilisée avec succes pour l'extraction des composés organiques a
partir de matrices solides environnementales, biologiques, alimentaires et de plantes
médicinales. Ce type d’extraction combine les avantages du haut débit, de
'automatisation et de la faible consommation de solvants (Lavin et Hageman, 2012). Des
études ont montré l'efficacité et I'applicabilité de I’ASE pour l'analyse des polluants
organiques tels que les pesticides (Kinross et al., 2020 ; Lavin et Hageman, 2012), les HAPs
(Tan et al., 2019), les PCBs (Al-Alam et al., 2017) et les OCPs (Duodu et al., 2016 ; Al Dine
etal, 2015) détectées dans plusieurs matrices alimentaires (Ahmad et al.,, 2020 ; Wang et
al, 2020 ; Kellogg et al.,, 2017), les abeilles et leur produits (Chiesa et al., 2016), les
aiguilles de coniferes (Noth et al., 2013) et les lichens (Kodnik et al., 2015).

1.3. Extraction en phase solide (SPE)

La SPE est la méthode la plus couramment utilisée en raison de sa rapidité, sa simplicité
et sa capacité a traiter avec une récupération élevée un grand volume d'échantillons. La
SPE consiste a retenir le composé sélectionné sur l'adsorbant, puis a 1'éluer avec un
solvant approprié. Elle combine des procédures d'extraction et de nettoyage pour fournir

des extraits propres qui peuvent étre analysés directement (Manesiotis et al.,, 2012).

Au cours de l'extraction, 1'échantillon passe a travers une cartouche ou une colonne
contenant un sorbant solide ou les polluants sont absorbés puis élués avec un solvant
organique. Cette procédure présente plusieurs avantages : elle diminue l'utilisation de
solvants toxiques et prend moins de temps que la procédure d’extraction LLE. La
procédure de la SPE peut étre réalisée en quatre étapes qui consiste tout d'abord par le
conditionnement de I’adsorbant, nécessaire afin d'assurer une interaction reproductible
avec le composé, puis la percolation de I’échantillon sur le support suivie d’un lavage

éventuel de I'adsorbant pour améliorer 1I'élution et la récupération, et enfin I’élution des
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composés ciblés par percolation d’un solvant spécifique (AE, méthanol, acétone, hexane,
dichlorométhane ou mélanges hexane-AE, hexane-dichlorométhane et de méthanol-eau
ou méthanol-AE-dichlorométhane) pour rompre les interactions entre le support solide
et les composés d’intérét tout en évitant, autant que possible I’élution des composés

interférents qui sont fortement retenus sur le support.

Les sorbants, utilisés avec succes pour l'extraction de polluants dans différentes matrices,
sont la cartouche Cig en phase inverse qui constitue le choix le plus couramment utilisée
par les chercheurs pour l'extraction d'herbicides, de fongicides, d'acaricides et
d'insecticides, et le sorbant Florisil utilisé pour les pyréthroides et les OCPs (Hercegova
et al., 2007). Le pH de I'échantillon est essentiel pour obtenir des rendements élevés de
rétention de polluants dans le matériau absorbant. Par conséquent, dans certains cas, il
peut étre nécessaire de modifier le pH de I'échantillon pour protonifier le polluant étudié
et augmenter son absorption sur la phase solide. Le sorbant utilisé pour les extractions en
phase solide et la polarité des pesticides sont directement liés au choix du meilleur
sorbant d'élution. Bien que des limites de détection et des récupérations similaires aient
été obtenues, I'extraction en phase solide a donné une meilleure précision et un nombre
moins important de composés co-extraits lors de leur analyse par rapport a la LLE pour

|'extraction de pesticides (Canbay, 2017).

La SPE a été largement utilisée dans des études de biosurveillance environnementale,
telles que I'extraction des pesticides (Al-Alam et al.,, 2017), des HAPs et des OCPs (Al Dine
et al, 2015) dans les aiguilles de coniferes ainsi que dans les lichens et les mousses
(Concha-Grana et al,, 2015 ; Zhu et al,, 2015 ; Foan et Simon, 2012), des pesticides dans
les échantillons du miel (Shamsipur etal., 2016 ; Oellig, 2016) et des PCBs dans la matrice
d’eau (Wang etal., 2016).

1.4. Microextraction en phase solide (SPME)

La SPME est une méthode de préparation d'échantillons rapide, simple et sans solvant qui
peut étre couplée facilement et avec sensibilité a la GC et la chromatographie en phase
liquide a haute performance (HPLC). Dans les années 1990, la SPME a été développé pour
la premiére fois par Pawliszyn et considérée comme une méthode de prétraitement

prometteuse largement utilisée dans les domaines de I'alimentation (Dou et al.,, 2020), de
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I'environnement (Yin et al,, 2019), de la biologie (Zhang et al., 2019) et de la médecine
clinique (Filipiak et Bojko, 2019).

La SPME est fondée sur la répartition des composés entre la phase stationnaire et
I’échantillon liquide ou gazeux. Par conséquent, la phase stationnaire enduite sur la fibre
joue un réle important dans le développement de la répétabilité et de la sensibilité de la
méthode (Piri-Moghadam et al,, 2016). L'extraction consiste a placer la fibre sur un
support solide en contact avec I'échantillon a extraire pour I'analyse des composés par
chromatographie liquide ou gazeuse couplée a un spectrometre de masse. L'extraction est
basée sur un principe similaire a la chromatographie, basé sur le partage liquide-liquide
ou gaz-liquide. La cinétique du processus de la SPME dépend de nombreux parameétres
comme |'épaisseur du film de phase stationnaire, l'agitation de I'échantillon et la durée

d'échantillonnage (Ruiz del Castillo et al., 2019 ; Zhao et al., 2015).

L'inconvénient majeur de cette méthode est la fragilité et la durée de vie limitée des fibres
commerciales telles que le polyacrylate (PA) et le polydiméthylsiloxane (PDMS). Par
contre, ce procédé d’extraction respectueux de I'environnement par absence de solvants
présente de nombreux avantages : simplicité, fiabilité, sensibilité, rentabilité, facilité
d’automatisation et nécessitant une quantité minime d'échantillon (Zhang et al.,, 2016 ;

Dimpe et Nomngongo, 2016).

Plusieurs procédures de SPME ont été menées par Saraji et al. en 2016, pour 'analyse des
pesticides organophosphorés par GC, par Abdulra’'uf et Tan en 2015, pour la
détermination des pesticides dans les fruits et légumes par analyse GC-MS, par Kin et Huat
en 2010, pour I'étude des résidus de pesticides dans les échantillons de fraises et de
concombres et par Zhang et al. en 2017, pour la détermination des pyréthrinoides

combinée a une GC.
1.5. QUEChERS

La méthode QUEChERS, est une technique d’extraction qui est devenu courante au sein de
la communauté scientifique, lors de l'analyse des pesticides dans les matrices
alimentaires (Lee et al.,, 2016 ; Bernardi et al., 2016 ; Tette et al., 2016 ; Golge et al., 2018).
Anastassiades et al. en 2003, ont développé la technique QUEChERS qui a été nommée
ainsi en raison de ces caractéristiques : étre rapide, facile, bon marché, efficace, robuste
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et siir. La méthode QUEChERS a subi plusieurs modifications, ce qui est essentiel pour
'analyse multi-résidus de pesticides et I'extraction de grandes quantités de ces pesticides
a partir de différentes catégories et matrices alimentaires (Musarurwa et al., 2019 ; He et
al,, 2015). La plupart des modifications proposées a la méthode QUEChERS se concentrent
sur les étapes de nettoyage, y compris l'utilisation de différents sorbants tels que 'amine
primaire secondaire (PSA) (Ferreira et al,, 2016), I'octadécylsilane (C1g) (Dankyi et al.,
2015), le noir de carbone graphité (Bernardi et al, 2016) et le Florisil (silicate de

magnésium) (Kemmerich et al., 2020).

La procédure QuEChERS utilise surtout I'ACN, qui permet l'extraction des analytes
polaires avec un degré élevé de détection et de sélectivité, ainsi qu'une compatibilité
directe avec une analyse par LC et / ou en GC, couplée a la spectrométrie de masse
(Alcantara et al,, 2019 ; Lehotay et al,, 2010 ; Igbal et al.,, 2020 ; Kim et al., 2019). Par
rapport a d'autres techniques mentionnées ci-dessus telles que la LLE et la SPE, la
méthode QUEChERS minimise le nombre d'étapes en deux, dont la premiere consiste en
une simple extraction avec de ’ACN et un mélange de sels ainsi que la deuxiéme est une
étape de nettoyage par extraction en phase solide dispersive comprenant un ou plusieurs
sorbants (Muhammad et al., 2017). Les autres avantages de la méthode QUEChERS par
rapport aux autres techniques sont la faible consommation de solvant, le gain de temps
pour la préparation des échantillons et leurs excellentes récupérations (Zhang et al,,

2014).

En général, le PSA est utilisé comme un adsorbant ayant comme phase éthylénediamine-
N-propyle (CsH14N2) et qui renferme a la fois des amines primaires et secondaires ce qui
lui confere une forte sélectivité (due ala présence du NH3) ainsi qu'une capacité tres élevé
(due ala présence du NH). C’est un échangeur d'anions faible avec un pKa de 10,1 et 10,9.
Il a également une tres forte affinité et grande capacité d'élimination des acides
organiques, des acides gras, des sucres polaires et de certains pigments lors de 1'analyse
de pesticides multi-résidus dans les aliments (Suganthi et al., 2018). La méthode
QuEChERS originale a trouvé de nombreuses applications lors de 1'analyse de pesticides
dans des matrices complexes telles que les échantillons de miel (Tette et al., 2016), des
échantillons de tabac (Bernardi et al., 2016), des échantillons de poissons (Medeiros et
al,, 2020), des échantillons de sang humain (Igbal et al., 2020) et des échantillons de fruits

et végétaux (Narenderan et al., 2019).
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La méthode QUEChERS modifiée utilise I'extraction par ’ACN, suivie du relargage de l'eau
del'échantillon al'aide de chlorure de sodium (NaCl) et de sulfate de magnésium anhydre
(MgS04) (Lee etal, 2016). Lors de cette méthode, les sels de citrate sont utilisés comme
tampon afin de créer des conditions de pH appropriées pour induire un partage liquide-
liquide. Une extraction en phase solide dispersive est effectuée pour le nettoyage en
utilisant une combinaison de MgSO4 pour réduire la quantité de l'eau restante dans
I'extrait, C1g pour éliminer les lipides, PSA pour éliminer les acides gras parmi d'autres
composants et le noir de carbone graphité particulierement utile pour 1'élimination de la
chlorophylle qui, lorsqu'il est injecté dans un chromatographe en phase gazeuse et liquide
peut également avoir un impact négatif sur I'analyse (Zheng et al., 2018). De nombreux
chercheurs (Calatayud-Vernich et al., 2016 ; Garcia and Gotah, 2017 ; Lee et al.,, 2016 ;
Lehotay et al,, 2010 ; Ly et al., 2020) ont utilisé la technique QUEChERS pour analyser les
pesticides dans les matrices alimentaires. Par exemple, Lee et al. en 2016, ont analysé les
herbicides dans le riz, Wang et al. en 2020, détectent la présence de pesticides dans les
légumes et les fruits, tandis que Zheng et al. en 2018, ont analysé les pesticides dans le
miel. La technique QUEChERS est appliquée lors de 1'analyse des pesticides et d’autres
polluants organiques dans de nombreuses matrices différentes. Ces matrices
comprennent les escargots (Al-Alam et al., 2020), les fruits et les 1égumes (Alcantara et
al,, 2019 ; Wang et al., 2020), les produits d'origine animale (Rahman et al., 2018 ; Mu et
al,, 2016), les aiguilles de coniféres (Baroudi et al., 2020) et les céréales (Tian et al., 2020).

2. Séparation et détection

Plusieurs méthodes analytiques ont été utilisées pour séparer et détecter les polluants
dans les matrices. En raison de la grande complexité de la matrice et de la faible
concentration de ces composés, l'utilisation de méthodes analytiques qui offrent une
sensibilité et une sélectivité élevées est essentielle. Le choix de la technique de séparation
dépend particulierement des caractéristiques des composés d'intéréts (Souza Tette et al,,
2016). La détection des composés thermiquement stables (volatils, semi-volatils) se fait
par GC, tandis que les composés thermiquement instables (non volatils) peuvent étre
analysés par LC (Dimpe et Nomngongo, 2016 ; Coskun, 2016). Les méthodes
chromatographiques telles que la chromatographie en phase gazeuse ou la

chromatographie liquide avec la détection par spectrométrie de masse en tandem, sont
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particulierement adaptées a la détection de nombreux polluants présents dans des

matrices complexes.
2.1. Chromatographie en phase gazeuse

La GC a été la méthode la plus largement utilisée pour l'analyse des résidus de polluants
organiques présentant des propriétés hydrophobes et volatiles dans les matrices
complexes. Les composés analysés sont séparés a 1'aide de colonnes capillaires avec
différentes phases stationnaires (Madej et al., 2018). Elle a été associée a différents types
de méthodes de détection, comme la détection par ionisation de flamme (Farajzadeh et
al, 2015), la détection par capture d'électrons (Yu et al, 2012) et la détection
photométrique de flamme (Zhu et al., 2018).

Parmi les méthodes chromatographiques en phase gazeuse adaptées a l'analyse des
résidus de pesticides, la chromatographie gazeuse avec détection par spectrometre de
masse (GC-MS), y compris les spectromeétres de masse a simple quadripoéle et a triple
quadripdle, a été le plus souvent utilisée. La GC-MS fonctionnant en mode d'ionisation par
impact électronique (EI) a été utilisé pour la quantification des résidus de pesticides
(Shamsipur et al., 2016), des HAPs et des PCBs (Chamkasem et al., 2016 ; Issa et al., 2020
; Tang et al,, 2020).

Les composés ont été identifiés par leur temps de rétention et quantifiés a 'aide de leurs
ions spécifiques donnant des résultats corrects méme a de faibles niveaux de
concentration pour des composés cibles. Cependant, si les ions sélectionnés sont affectés
par des interférences de la matrice, l'utilisation de la chromatographie gazeuse couplée a
la spectrométrie de masse en tandem (GC-MS/MS) peut étre appliquée, permettant des
niveaux de sensibilité plus élevés et des limites de détection plus basses (Loos etal., 2016

; Panuwet et al,, 2016).

Par rapport a la LC, la GC-MS est la technique la plus largement utilisée pour analyser les
résidus dans les aliments. Cependant, les pesticides utilisés aujourd'hui sont
thermiquement instables, plus polaires ou difficilement vaporisables, ils sont devenus

essentiellement analysables par LC (David et al., 2017).
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2.2. Chromatographie en phase liquide

La LC est une technique analytique utilisée pour la détermination de pesticides polaires,
thermolabiles et / ou non volatils ainsi que des résidus des autres polluants organiques
dans les matrices complexes. En raison de sa sélectivité et de sa sensibilité élevées, la LC
couplée a la détection spectrophotométrie (Tuzimski et Rejczak, 2016,2014) et a la
spectrométrie de masse (Wurita et al,, 2020 ; Han et al,, 2016) a été principalement
utilisée. Cependant, le détecteur a barrette de diodes, le détecteur a ultraviolet et la
spectroscopie de fluorescence sont généralement utilisés pour analyser uniquement
quelques pesticides ou quelques classes de pesticides en raison de la similitude entre les
spectres de différents pesticides appartenant a la méme famille (Akvan et al, 2019 ;

Ferreyraetal, 2021).

La méthode d’extraction QUEChERS suivie d’'une analyse par LC-MS/MS est la technique
la plus puissante pour "analyse de pesticides dans les aiguilles de coniferes (Baroudi et
al, 2020), la détermination de carbamates (Moreno-Gonzalez et al, 2014), la
quantification de pesticides de différentes classes dans les matrices végétales (Rajski et
al,, 2013), I'analyse des pesticides dans les escargots (AL-Alam et al., 2020) et la détection
du diméthoate et de la terbuthylazine dans les échantillons d’olives (Gémez-Almenar et

Garcia-Mesa, 2015).

Cependant, malgré tous les avantages de la technique de détection actuelle, des méthodes
appropriées de préparation d'échantillons sont toujours cruciales, car les effets de
matrice peuvent avoir un impact significatif sur la détection en créant un bruit de fond
d'analyse et en modifiant 1'efficacité d'ionisation, résultant en une sensibilité réduite

(Souza Tette et al., 2016 ; Loos et al,, 2016).
2.3. Spectrométrie de masse en mode tandem

La spectrométrie de masse couramment utilisée permet de détecter et d'identifier des
molécules chargées en mesurant le rapport de leur masse au nombre de charges (m/z) en
fournissant des informations quantitatives et qualitatives précises sur les composés
analysés. Compte tenu de sa sélectivité et de sa sensibilité élevée, cette technique peut
étre couplée a différents détecteurs tels que la chromatographie en phase gazeuse et
liquide (Loos et al., 2016). La spectrométrie de masse en tandem, également connue sous
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le nom de MS / MS, implique plusieurs étapes de sélection par spectrométrie de masse,
avec une certaine forme de fragmentation se produisant entre les étapes (Mittal, 2015).
L'analyse d'échantillons biologiques complexes avec des techniques de spectrométrie de
masse et de masse en tandem, a contribué a l'acquisition d'informations structurelles
importantes pour de nombreux types d'ions, notamment les peptides, protéines, lipides

et glucides (Kailemia et al., 2014).

Dans la spectrométrie de masse en tandem, un premier analyseur est utilisé pour isoler
I'ion précurseur, qui subit ensuite une fragmentation pour produire des ions produits et
des fragments neutres qui sont ensuite analysés par un deuxieme analyseur de masse. La
détection MS / MS offre une sélectivité accrue par rapport a d'autres techniques de
mesure analytiques courantes, telles que la chromatographie liquide et Ia
spectrophotométrie ultraviolette-visible (Breemen et Martinez, 2013; Rockwood et al,,

2018).
V. Objectifs

Compte tenu de la situation environnementale concernant la pollution de I'air au Liban, il
est possible d'énoncer le but de la these. L'objectif principal de cette these est I'étude
comparative de trois biomoniteurs (conifere, escargot et miel) pour évaluer la variabilité

spatio-temporelle de polluants organiques dans I'atmosphere au Liban.
Pour y parvenir, il est nécessaire de développer les objectifs spécifiques suivants :

e développer deux méthodes d’extraction multi-résidus avec la technique du
QuEChERS pour I'analyse des pesticides, des HAPs et des PCBs dans les escargots et
les aiguilles de coniferes ;

e caractériser la qualité de I'air au voisinage des cultures par une approche basée sur le
« biomonitoring » grace aux escargots et aiguilles de coniféres, tout en étudiant
I'accumulation des polluants en fonction du temps et des sites d’échantillonnage ;

e développer une méthode d’analyse des pesticides non volatiles dans le miel.

54



Abdel Gawad, S.S., 2018. Acute toxicity of some heavy metals to the fresh water snail, Theodoxus niloticus (Reeve, 1856). The Egyptian
Journal of Aquatic Research 44, 83-87. https://doi.org/10.1016/j.ejar.2018.06.004

Abdel-Halim, K.Y., Abo El-Saad, A.M., Talha, M.M,, Hussein, A.A., Bakry, N.M., 2013. Oxidative stress on land snail Helix aspersa as a
sentinel organism for ecotoxicological effects of urban pollution with heavy metals. Chemosphere 93, 1131-1138.
https://doi.org/10.1016/j.chemosphere.2013.06.042

Abdel-Shafy, H.I, Mansour, M.S.M., 2016. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on
human health and remediation. Egyptian Journal of Petroleum 25, 107-123. https://doi.org/10.1016/j.ejpe.2015.03.011

Abdulra’uf, L.B., Tan, G.H., 2015. Chemometric approach to the optimization of HS-SPME/GC-MS for the determination of multiclass
pesticide residues in fruits and vegetables. Food Chemistry 177, 267-273. https://doi.org/10.1016/j.foodchem.2015.01.031

Achilleos, S., Al-Ozairi, E., Alahmad, B., Garshick, E., Neophytou, A.M., Bouhamra, W., Yassin, M.F., Koutrakis, P., 2019. Acute effects of
air pollution on mortality: A 17-year analysis in Kuwait. Environment International 126, 476-483.
https://doi.org/10.1016/j.envint.2019.01.072

Achten, C., Andersson, ]J.T., 2015. Overview of Polycyclic Aromatic Compounds (PAC). Polycycl Aromat Compd 35, 177-186.
https://doi.org/10.1080/10406638.2014.994071

Agus, B.A.P., Hussain, N., Selamat, J., 2020. Quantification of PAH4 in roasted cocoa beans using QUEChERS and dispersive liquid-liquid
micro-extraction (DLLME) coupled with HPLC-FLD. Food Chemistry 303, 125398.
https://doi.org/10.1016/j.foodchem.2019.125398

Ahmad, R.,, Ahmad, N., Al-Anaki, W.S,, Ismail, F.A., Al-Jishi, F., 2020. Solvent and temperature effect of accelerated solvent extraction
(ASE) coupled with ultra-high-pressure liquid chromatography (UHPLC-PDA) for the determination of methyl xanthines in
commercial tea and coffee. Food Chemistry 311, 126021. https://doi.org/10.1016/j.foodchem.2019.126021

Akashe, M., Pawade, U., Nikam, A., 2018. CLASSIFICATION OF PESTICIDES: A REVIEW. International Journal of Research in Ayurveda
and Pharmacy 9, 144-150. https://doi.org/10.7897/2277-4343.094131

Akvan, N., Azimi, G., Parastar, H., 2019. Chemometric assisted determination of 16 PAHs in water samples by ultrasonic assisted
emulsification microextraction followed by fast high-performance liquid chromatography with diode array detector.
Microchemical Journal 150, 104056. https://doi.org/10.1016 /j.microc.2019.104056

Akyiiz, M., Cabuk, H., 2010. Gas-particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of
Zonguldak, Turkey. Science of The Total Environment 408, 5550-5558. https://doi.org/10.1016 /j.scitotenv.2010.07.063

Al Dine, E.J., Mokbel, H., Elmoll, A., Massemin, S., Vuilleumier, S., Toufaily, ., Hanieh, T., Millet, M., 2015. Concomitant evaluation of
atmospheric levels of polychlorinated biphenyls, organochlorine pesticides, and polycyclic aromatic hydrocarbons in
Strasbourg (France) wusing pine needle passive samplers. Environ Sci Pollut Res 22, 17850-17859.
https://doi.org/10.1007 /s11356-015-5030-5

Al-Alam, ]., Baroudi, F., Chbani, A., Fajloun, Z., Millet, M., 2020. A multiresidue method for the analysis of pesticides, polycyclic aromatic
hydrocarbons, and polychlorinated biphenyls in snails used as environmental biomonitors. Journal of Chromatography A 1621,
461006. https://doi.org/10.1016/j.chroma.2020.461006

AL-Alam, J., Chbani, A., Faljoun, Z., Millet, M., 2019. The use of vegetation, bees, and snails as important tools for the biomo nitoring of
atmospheric pollution—a review. Environ Sci Pollut Res 26, 9391-9408. https://doi.org/10.1007/s11356-019-04388-8

Al-Alam, ], Fajloun, Z., Chbani, A., Millet, M., 2017. The use of conifer needles as biomonitor candidates for the study of temporal air
pollution variation in the Strasbourg region. Chemosphere 168, 1411-1421.
https://doi.org/10.1016/j.chemosphere.2016.11.103

Alcantara, D.B., Fernandes, T.S.M., Nascimento, H.O., Lopes, A.F., Menezes, M.G.G., Lima, A.C.A., Carvalho, T.V., Grinberg, P., Milhome,
M.A.L,, Oliveira, A.H.B., Becker, H., Zocolo, G.J., Nascimento, R.F., 2019. Diagnostic detection systems and QUEChERS methods for
multiclass pesticide analyses in different types of fruits: An overview from the last decade. Food Chemistry 298, 124958.
https://doi.org/10.1016/j.foodchem.2019.124958

Alexandrino, K., Viteri, F.,, Rybarczyk, Y., Guevara Andino, J.E., Zalakeviciute, R., 2020. Biomonitoring of metal levels in urban areas with
different vehicular traffic intensity by using Araucaria heterophylla needles. Ecological Indicators 117, 106701.
https://doi.org/10.1016/j.ecolind.2020.106701

Alghamdi, B.A., Alshumrani, E.S,, Saeed, M.S.B.,, Rawas, G.M., Alharthi, N.T., Baeshen, M.N., Helmi, N.M., Alam, M.Z,, Suhail, M., 2020.
Analysis of sugar composition and pesticides using HPLC and GC-MS techniques in honey samples collected from Saudi Arabian
markets. Saudi Journal of Biological Sciences. https://doi.org/10.1016/j.sjbs.2020.08.018

Al-Mulali, U., Ozturk, 1., Lean, H.H., 2015. The influence of economic growth, urbanization, trade openness, financial development, and
renewable energy on pollution in Europe. Nat Hazards 79, 621-644. https://doi.org/10.1007 /s11069-015-1865-9

Andrade, P.D,, da Silva, ].L.G., Caldas, E.D., 2013. Simultaneous analysis of aflatoxins B1, B2, G1, G2, M1 and ochratoxin A in breast milk
by high-performance liquid chromatography/fluorescence after liquid-liquid extraction with low temperature purification
(LLE-LTP). Journal of Chromatography A 1304, 61-68. https://doi.org/10.1016/j.chroma.2013.06.049

Anim, A K, Drage, D.S,, Goonetilleke, A., Mueller, J.F., Ayoko, G.A., 2017. Distribution of PBDEs, HBCDs and PCBs in the Brisbane River
estuary sediment. Marine Pollution Bulletin 120, 165-173. https://doi.org/10.1016/j.marpolbul.2017.05.002

Arihilam, E.C., Arihilam*, N.H., 2019. Impact and control of anthropogenic pollution on the ecosystem A review. ]JBBD 4, 54-59.
https://doi.org/10.31248/JBBD2019.098

Arinaitwe, K., Rose, N.L., Muir, D.C.G., Kiremire, B.T., Balirwa, ].S., Teixeira, C., 2016. Historical deposition of persistent organic
pollutants in Lake Victoria and two alpine equatorial lakes from East Africa: Insights into atmospheric deposition from
sedimentation profiles. Chemosphere 144, 1815-1822. https://doi.org/10.1016/j.chemosphere.2015.10.061

Augusto, S., Maguas, C., Branquinho, C., 2013. Guidelines for biomonitoring persistent organic pollutants (POPs), using lichens and
aquatic mosses - A review. Environmental Pollution 180, 330-338. https://doi.org/10.1016/j.envpol.2013.05.019

Babatola, S.S., 2018. Global burden of diseases attributable to air pollution. Journal of Public Health in Africa 9.
https://doi.org/10.4081/jphia.2018.813

Bakirtas, T., Akpolat, A.G., 2018. The relationship between energy consumption, urbanization, and economic growth in new emer ging-
market countries. Energy 147, 110-121. https://doi.org/10.1016/j.energy.2018.01.011

Balazs, H.E.,, Schmid, C.A.O., Podar, D., Hufnagel, G, Radl, V., Schroder, P.,, 2020. Development of microbial communities in
organochlorine pesticide contaminated soil: A post-reclamation perspective. Applied Soil Ecology 150, 103467.
https://doi.org/10.1016/j.aps0il.2019.103467

Baltrénaite, E., Baltrénas, P., Lietuvninkas, A., Serevitiene, V., Zuokaite, E., 2014. Integrated evaluation of aerogenic pollution by air-
transported heavy metals (Pb, Cd, Ni, Zn, Mn and Cu) in the analysis of the main deposit media. Environ Sci Pollut Res 21, 299-
313. https://doi.org/10.1007/s11356-013-2046-6

55


https://doi.org/10.1016/j.ejar.2018.06.004
https://doi.org/10.1016/j.chemosphere.2013.06.042
https://doi.org/10.1016/j.ejpe.2015.03.011
https://doi.org/10.1016/j.foodchem.2015.01.031
https://doi.org/10.1016/j.envint.2019.01.072
https://doi.org/10.1080/10406638.2014.994071
https://doi.org/10.1016/j.foodchem.2019.125398
https://doi.org/10.1016/j.foodchem.2019.126021
https://doi.org/10.7897/2277-4343.094131
https://doi.org/10.1016/j.microc.2019.104056
https://doi.org/10.1016/j.scitotenv.2010.07.063
https://doi.org/10.1007/s11356-015-5030-5
https://doi.org/10.1016/j.chroma.2020.461006
https://doi.org/10.1007/s11356-019-04388-8
https://doi.org/10.1016/j.chemosphere.2016.11.103
https://doi.org/10.1016/j.foodchem.2019.124958
https://doi.org/10.1016/j.ecolind.2020.106701
https://doi.org/10.1016/j.sjbs.2020.08.018
https://doi.org/10.1007/s11069-015-1865-9
https://doi.org/10.1016/j.chroma.2013.06.049
https://doi.org/10.1016/j.marpolbul.2017.05.002
https://doi.org/10.31248/JBBD2019.098
https://doi.org/10.1016/j.chemosphere.2015.10.061
https://doi.org/10.1016/j.envpol.2013.05.019
https://doi.org/10.4081/jphia.2018.813
https://doi.org/10.1016/j.energy.2018.01.011
https://doi.org/10.1016/j.apsoil.2019.103467
https://doi.org/10.1007/s11356-013-2046-6

Bandowe, B.A.M., Nkansah, M.A., 2016. Occurrence, distribution and health risk from polycyclic aromatic compounds (PAHs,
oxygenated-PAHs and azaarenes) in street dust from a major West African Metropolis. Science of The Total Environment 553,
439-449. https://doi.org/10.1016/j.scitotenv.2016.02.142

Banerjee, S., Mazumdar, S., 2012. Electrospray lonization Mass Spectrometry: A Technique to Access the Information beyond the
Molecular Weight of the Analyte [WWW Document]. International Journal of Analytical Chemistry.
https://doi.org/10.1155/2012/282574

Banyiova, K., Cerna, M., Mikes, 0., Komprdova, K., Sharma, A., Gyalpo, T., Cupr, P., Scheringer, M., 2017. Long-term time trends in human
intake of POPs in the Czech Republic indicate a need for continuous monitoring. Environment International 108, 1-10.
https://doi.org/10.1016/j.envint.2017.07.008

Barganska, Z., Slebioda, M., Namie$nik, ]., 2016. Honey bees and their products: Bioindicators of environmental contamination. Critical
Reviews in Environmental Science and Technology 46, 235-248. https://doi.org/10.1080/10643389.2015.1078220

Baroudi, F., Al Alam, ]., Fajloun, Z., Millet, M., 2020a. Snail as sentinel organism for monitoring the environmental pollution; a review.
Ecological Indicators 113, 106240. https://doi.org/10.1016/j.ecolind.2020.106240

Baroudi, F., Al-Alam, ]., Chimjarn, S., Delhomme, O., Fajloun, Z., Millet, M., 2020b. Conifers as environmental biomonitors: A multi-
residue method for the concomitant quantification of pesticides, polycyclic aromatic hydrocarbons and polychlorinated
biphenyls by LC-MS/MS and GC-MS/MS. Microchemical Journal 154, 104593. https://doi.org/10.1016 /j.microc.2019.104593

Beach, D.G., Quilliam, M.A,, Hellou, ], 2009. Analysis of pyrene metabolites in marine snails by liquid chromatography using
fluorescence  and mass  spectrometry detection. Journal of Chromatography B 877, 2142-2152.
https://doi.org/10.1016/j.jchromb.2009.06.006

Beelen, R, et al,, 2014. Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts
within the multicentre ESCAPE project. The Lancet 383, 785-795. https://doi.org/10.1016/S0140-6736(13)62158-3

Belsky, ], Joshi, N.K, 2019. Impact of Biotic and Abiotic Stressors on Managed and Feral Bees. Insects 10.
https://doi.org/10.3390/insects10080233

Bernardi, G., Kemmerich, M., Ribeiro, L.C., Adaime, M.B., Zanella, R., Prestes, 0.D., 2016. An effective method for pesticide residues
determination in tobacco by GC-MS/MS and UHPLC-MS/MS employing acetonitrile extraction with low-temperature
precipitation and d-SPE clean-up. Talanta 161, 40-47. https://doi.org/10.1016/j.talanta.2016.08.015

Bertero, A, Rivolta, M., Davanzo, F., Caloni, F., 2020. Suspected environmental poisoning by drugs, household products and pesticides
in domestic animals. Environmental Toxicology and Pharmacology 80, 103471. https://doi.org/10.1016/j.etap.2020.103471

Bertolotti, G., Gialanella, S., 2014. Review: use of conifer needles as passive samplers of inorganic pollutants in air quality monitoring.
Anal. Methods 6, 6208-6222. https://doi.org/10.1039/C4AY00172A

Bohan, D.A., Vacher, C., Tamaddoni-Nezhad, A. Raybould, A. Dumbrell, A, Woodward, G., 2017. Next-Generation Global
Biomonitoring: Large-scale, Automated Reconstruction of Ecological Networks. Trends in Ecology & Evolution 32, 477-487.
https://doi.org/10.1016/j.tree.2017.03.001

Bonmatin, ].-M., Giorio, C., Girolami, V., Goulson, D., Kreutzweiser, D.P., Krupke, C., Liess, M., Long, E., Marzaro, M., Mitchell, E.A.D.,
Noome, D.A., Simon-Delso, N., Tapparo, A., 2015. Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci
Pollut Res 22, 35-67. https://doi.org/10.1007 /s11356-014-3332-7

Boquete, M.T., Aboal, ].R,, Carballeira, A., Fernandez, ].A., 2014. Effect of age on the heavy metal concentration in segments of
Pseudoscleropodium purum and the biomonitoring of atmospheric deposition of metals. Atmospheric Environment 86, 28-34.
https://doi.org/10.1016/j.atmosenv.2013.12.039

Boquete, M.T., Fernandez, J.A., Carballeira, A., Aboal, J.R., 2013. Assessing the tolerance of the terrestrial moss Pseudoscleropodium
purum to high levels of atmospheric heavy metals: A reciprocal transplant study. Science of The Total Environment 461-462,
552-5509. https://doi.org/10.1016/j.scitotenv.2013.05.039

Boshoff, M., Jordaens, K., Baguet, S., Bervoets, L., 2015. Trace metal transfer in a soil-plant-snail microcosm field experiment and
biomarker responses in snails. Ecological Indicators 48, 636-648. https://doi.org/10.1016/j.ecolind.2014.08.037

Bouri, E., El Assad, ., 2016. The Lebanese Electricity Woes: An Estimation of the Economical Costs of Power Interruptions. E nergies 9,
583. https://doi.org/10.3390/en9080583

Breemen, R.B. van, Martinez, E.M., 2013. Best Practice in Mass Spectrometry for LC-MS, in: Handbook of LC-MS Bioanalysis. John Wiley
& Sons, Ltd, pp. 205-216. https://doi.org/10.1002/9781118671276.ch16

Bilyiikkéroglu, G., Dora, D.D., Ozdemir, F., Hizel, C., 2018. Chapter 15 - Techniques for Protein Analysis, in: Barh, D., Azevedo, V. (Eds.),
Omics Technologies and Bio-Engineering. Academic Press, pp. 317-351. https://doi.org/10.1016/B978-0-12-804659-
3.00015-4

Cachada, A, Ferreira da Silva, E., Duarte, A.C,, Pereira, R., 2016. Risk assessment of urban soils contamination: The particular case of
polycyclic aromatic hydrocarbons. Science of The Total Environment 551-552, 271-284.
https://doi.org/10.1016/j.scitotenv.2016.02.012

Cacho, J.I,, Campillo, N, Vifias, P., Hernandez-Cérdoba, M., 2018. In situ ionic liquid dispersive liquid-liquid microextraction coupled to
gas chromatography-mass spectrometry for the determination of organophosphorus pesticides. Journal of Chromatography A
1559, 95-101. https://doi.org/10.1016 /j.chroma.2017.12.059

Calatayud-Vernich, P., Calatayud, F., Sim¢, E., Picd, Y., 2016. Efficiency of QUEChERS approach for determining 52 pesticide residues in
honey and honey bees. MethodsX 3, 452-458. https://doi.org/10.1016/j.mex.2016.05.005

Canbay, H.S., 2017. Effectiveness of Liquid-Liquid Extraction, Solid Phase Extraction, and Headspace Technique for Determination of
Some Volatile Water-Soluble Compounds of Rose Aromatic Water [WWW Document]. International Journal of Analytical
Chemistry. https://doi.org/10.1155/2017 /4870671

Capozzi, F., Adamo, P., Spagnuolo, V., Giordano, S., 2021. Field comparison between moss and lichen PAHs uptake abilities based on
deposition fluxes and diagnostic ratios. Ecological Indicators 120, 106954. https://doi.org/10.1016/j.ecolind.2020.106954

Cerasa, M., Benedetti, P., De Stefanis, A., Guerriero, E., Mosca, S., Bacaloni, A., Rotatori, M., 2020. Validation studies on activated carbon
fiber passive sampler for PCDD/Fs and PCBs in water. Chemosphere 239, 124666.
https://doi.org/10.1016/j.chemosphere.2019.124666

Chamkasem, N., Lee, S., Harmon, T., 2016. Analysis of 19 PCB congeners in catfish tissue using a modified QUEChERS method with GC-
MS/MS. Food Chemistry 192, 900-906. https://doi.org/10.1016 /j.foodchem.2015.07.088

Chatzimitakos, T.G., Karali, KK, Stalikas, C.D., 2019. Magnetic graphene oxide as a convenient nanosorbent to streamline matrix solid-
phase dispersion towards the extraction of pesticides from vegetables and their determination by GC-MS. Microchemical
Journal 151, 104247. https://doi.org/10.1016/j.microc.2019.104247

Chaza, C., Sopheak, N., Mariam, H., David, D., Baghdad, O., Moomen, B., 2018. Assessment of pesticide contamination in Akkar
groundwater, northern Lebanon. Environ Sci Pollut Res 25, 14302-14312. https://doi.org/10.1007 /s11356-017-8568-6

56


https://doi.org/10.1016/j.scitotenv.2016.02.142
https://doi.org/10.1155/2012/282574
https://doi.org/10.1016/j.envint.2017.07.008
https://doi.org/10.1080/10643389.2015.1078220
https://doi.org/10.1016/j.ecolind.2020.106240
https://doi.org/10.1016/j.microc.2019.104593
https://doi.org/10.1016/j.jchromb.2009.06.006
https://doi.org/10.1016/S0140-6736(13)62158-3
https://doi.org/10.3390/insects10080233
https://doi.org/10.1016/j.talanta.2016.08.015
https://doi.org/10.1016/j.etap.2020.103471
https://doi.org/10.1039/C4AY00172A
https://doi.org/10.1016/j.tree.2017.03.001
https://doi.org/10.1007/s11356-014-3332-7
https://doi.org/10.1016/j.atmosenv.2013.12.039
https://doi.org/10.1016/j.scitotenv.2013.05.039
https://doi.org/10.1016/j.ecolind.2014.08.037
https://doi.org/10.3390/en9080583
https://doi.org/10.1002/9781118671276.ch16
https://doi.org/10.1016/B978-0-12-804659-3.00015-4
https://doi.org/10.1016/B978-0-12-804659-3.00015-4
https://doi.org/10.1016/j.scitotenv.2016.02.012
https://doi.org/10.1016/j.chroma.2017.12.059
https://doi.org/10.1016/j.mex.2016.05.005
https://doi.org/10.1155/2017/4870671
https://doi.org/10.1016/j.ecolind.2020.106954
https://doi.org/10.1016/j.chemosphere.2019.124666
https://doi.org/10.1016/j.foodchem.2015.07.088
https://doi.org/10.1016/j.microc.2019.104247
https://doi.org/10.1007/s11356-017-8568-6

Chen, J., 2007. Rapid urbanization in China: A real challenge to soil protection and food security. CATENA, Influences of rapid
urbanization and  industrialization @ on  soil  resource and its quality in  China 69, 1-15.
https://doi.org/10.1016/j.catena.2006.04.019

Chen, P., Xiao, X, Meij, J., Cai, Y., Tang, Y., Peng, P., 2017. Characteristic accumulation of PCDD/Fs in pine needles near an MSWI and
emission levels of the MSWI in Pearl River Deltax A case study. Chemosphere 181, 360-367.
https://doi.org/10.1016 /j.chemosphere.2017.04.098

Chen, S., Shahi, C., Chen, H.Y.H., McLaren, B., 2017. Economic analysis of forest management alternatives: Compositional objectives,
rotation ages, and harvest methods in boreal forests. Forest Policy and Economics 85, 124-134.
https://doi.org/10.1016/j.forpol.2017.09.006

Cheng, L., Ly, Y., Zhao, Z., Hoogenboom, R.L.A.P., Zhang, Q., Liu, X., Song, Wei, Guan, S., Song, Weiguo, Rao, Q., 2020. Assessing the
combined toxicity effects of three neonicotinoid pesticide mixtures on human neuroblastoma SK-N-SH and lepidopteran Sf-9
cells. Food and Chemical Toxicology 145, 111632. https://doi.org/10.1016/j.fct.2020.111632

Chiesa, L.M.,, Labella, G.F., Giorgi, A., Panseri, S., Pavlovic, R., Bonacci, S., Arioli, F., 2016. The occurrence of pesticides and persistent
organic pollutants in Italian organic honeys from different productive areas in relation to potential environmental pollution.
Chemosphere 154, 482-490. https://doi.org/10.1016 /j.chemosphere.2016.04.004

Chikere, C.B., Fenibo, E.O., 2018. Distribution of PAH-ring hydroxylating dioxygenase genes in bacteria isolated from two illegal oil
refining sites in the Niger Delta, Nigeria. Scientific African 1, e00003. https://doi.org/10.1016/j.sciaf.2018.e00003

Cho, Y.J,, Getachew, A.T., Saravana, P.S., Chun, B.S., 2019. Optimization and characterization of polysaccharides extraction from Giant
African snail (Achatina fulica) using pressurized hot water extraction (PHWE). Bioactive Carbohydrates and Dietary Fibre 18,
100179. https://doi.org/10.1016 /j.bcdf.2019.100179

Cloutier, P.-L., Fortin, F., Groleau, P.E., Brousseau, P., Fournier, M., Desrosiers, M., 2017. QUEChERS extraction for multi-residue analysis
of PCBs, PAHs, PBDEs and PCDD/Fs in biological samples. Talanta 165, 332-338.
https://doi.org/10.1016/j.talanta.2016.12.080

Concha-Grafia, E., Muniategui-Lorenzo, S., De Nicola, F., Aboal, ].R,, Rey-Asensio, A.lL, Giordano, S., Reski, R., Lopez-Mahia, P., Prada-
Rodriguez, D., 2015. Matrix solid phase dispersion method for determination of polycyclic aromatic hydrocarbons in moss.
Journal of Chromatography A 1406, 19-26. https://doi.org/10.1016/j.chroma.2015.06.014

Conti, M.E,, Tudino, M.B,, 2016. Chapter 6 - Lichens as Biomonitors of Heavy-Metal Pollution, in: de la Guardia, M., Armenta, S. (Eds.),
Comprehensive Analytical Chemistry, The Quality of Air. Elsevier, pp. 117-145. https://doi.org/10.1016/bs.coac.2016.02.005

Coppock, R.W.,, Dziwenka, M.M., 2020. Chapter 63 - Threats to wildlife by chemical and warfare agents, in: Gupta, R.C. (Ed.), Handbook
of Toxicology of Chemical Warfare Agents (Third Edition). Academic Press, Boston, pp. 1077-1087.
https://doi.org/10.1016 /B978-0-12-819090-6.00063-5

Coskun, 0., 2016. Separation techniques: Chromatography. North Clin Istanb 3, 156-160. https://doi.org/10.14744 /nci.2016.32757

Cossi, P.F., Herbert, L.T., Yusseppone, M.S., Pérez, A.F., Kristoff, G., 2018. Environmental concentrations of azinphos-methyl cause
different toxic effects without affecting the main target (cholinesterases) in the freshwater gastropod Biomphalaria straminea.
Ecotoxicology and Environmental Safety 162, 287-295. https://doi.org/10.1016/j.ecoenv.2018.06.091

Covert, S.Alex., Shoda, M.E., Stackpoole, S.M., Stone, W.W., 2020. Pesticide mixtures show potential toxicity to aquaticlife in U.S. streams,
water years 2013-2017. Science of The Total Environment 745, 141285. https://doi.org/10.1016/j.scitotenv.2020.141285

Cui, M., Chen, Y., Tian, C., Zhang, F,, Yan, C., Zheng, M., 2016. Chemical composition of PM 2.5 from two tunnels with different vehicular
fleet characteristics. Science of The Total Environment 550, 123-132. https://doi.org/10.1016/j.scitotenv.2016.01.077

Cuny, D, 2012. La biosurveillance végétale et fongique de la pollution atmosphérique: concepts et applications. Annales
Pharmaceutiques Francgaises 70, 182-187. https://doi.org/10.1016/j.pharma.2012.05.003

Cutillas, V., Garcia-Valverde, M., Gdmez-Ramos, M. del M., Diaz-Galiano, F.]., Ferrer, C., Fernandez-Alba, A.R., 2020. Supercritical fluid
chromatography separation of chiral pesticides: Unique capabilities to study cyhalothrin and metalaxyl as examples. Journal of
Chromatography A 1620, 461007. https://doi.org/10.1016/j.chroma.2020.461007

Czipa, N., Andrasi, D., Kovacs, B., 2015. Determination of essential and toxic elements in Hungarian honeys. Food Chemistry 175, 536-
542. https://doi.org/10.1016/j.foodchem.2014.12.018

Da Silva, P.M., Gauche, C., Gonzaga, L.V., Costa, A.C.0,, Fett, R,, 2016. Honey: Chemical composition, stability and authenticity. Food
Chemistry 196, 309-323. https://doi.org/10.1016 /j.foodchem.2015.09.051

Daher, N,, Saliba, N.A,, Shihadeh, A.L., Jaafar, M., Baalbaki, R,, Sioutas, C., 2013. Chemical composition of size-resolved particulate matter
at near-freeway and urban background sites in the greater Beirut area. Atmospheric Environment 80, 96-106.
https://doi.org/10.1016/j.atmosenv.2013.08.004

Damalas, C.A., Koutroubas, S.D., 2016. Farmers’ Exposure to Pesticides: Toxicity Types and Ways of Prevention. Toxics 4.
https://doi.org/10.3390/toxics4010001

D’Amato, G., Vitale, C., Lanza, M., Molino, A.,, D’Amato, M., 2016. Climate change, air pollution, and allergic respiratory diseases: an
update. Current Opinion in Allergy and Clinical Immunology 16, 434-440. https://doi.org/10.1097/AC1.0000000000000301

Dankyi, E., Carboo, D., Gordon, C., Fomsgaard, 1.S., 2015. Application of the QUEChERS procedure and LC-MS/MS for the assessment of
neonicotinoid insecticide residues in cocoa beans and shells. Journal of Food Composition and Analysis 44, 149-157.
https://doi.org/10.1016/j.jfca.2015.09.002

Daso, A.P., Okonkwo, 0.J., 2015. Conventional Extraction Techniques: Soxhlet and Liquid-Liquid Extractions and Evaporation, in:
Analytical Separation Science. American Cancer Society, pp. 1437-1468. https://doi.org/10.1002/9783527678129.assep053

David, F., Devos, C., Dumont, E., Yang, Z., Sandra, P., Huertas-Pérez, ].F., 2017. Determination of pesticides in fatty matrices using gel
permeation clean-up followed by GC-MS/MS and LC-MS/MS analysis: A comparison of low- and high-pressure gel permeation
columns. Talanta 165, 201-210. https://doi.org/10.1016/j.talanta.2016.12.032

De Barros Caetano, V.C.L., da Costa Cunha, G., Oliveira, R.V.M,, da Rosa Alexandre, M., Romao, L.P.C., 2019. Magnetic hybrid support for
ultrasound-assisted magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from produced water. Microchemical
Journal 146, 1195-1203. https://doi.org/10.1016/j.microc.2019.02.055

De La Torre-Roche, R.J., Lee, W.-Y., Campos-Diaz, S.I., 2009. Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: Analysis of
a potential problem in the United States/Mexico border region. Journal of Hazardous Materials 163, 946-958.
https://doi.org/10.1016/j.jhazmat.2008.07.089

De Vries, W,, Du, E., Butterbach-Bahl, K., 2014. Short and long-term impacts of nitrogen deposition on carbon sequestration by forest
ecosystems. Current Opinion in Environmental Sustainability, SI: System dynamics and sustainability 9-10, 90-104.
https://doi.org/10.1016/j.cosust.2014.09.001

57


https://doi.org/10.1016/j.catena.2006.04.019
https://doi.org/10.1016/j.chemosphere.2017.04.098
https://doi.org/10.1016/j.forpol.2017.09.006
https://doi.org/10.1016/j.fct.2020.111632
https://doi.org/10.1016/j.chemosphere.2016.04.004
https://doi.org/10.1016/j.sciaf.2018.e00003
https://doi.org/10.1016/j.bcdf.2019.100179
https://doi.org/10.1016/j.talanta.2016.12.080
https://doi.org/10.1016/j.chroma.2015.06.014
https://doi.org/10.1016/bs.coac.2016.02.005
https://doi.org/10.1016/B978-0-12-819090-6.00063-5
https://doi.org/10.14744/nci.2016.32757
https://doi.org/10.1016/j.ecoenv.2018.06.091
https://doi.org/10.1016/j.scitotenv.2020.141285
https://doi.org/10.1016/j.scitotenv.2016.01.077
https://doi.org/10.1016/j.pharma.2012.05.003
https://doi.org/10.1016/j.chroma.2020.461007
https://doi.org/10.1016/j.foodchem.2014.12.018
https://doi.org/10.1016/j.foodchem.2015.09.051
https://doi.org/10.1016/j.atmosenv.2013.08.004
https://doi.org/10.3390/toxics4010001
https://doi.org/10.1097/ACI.0000000000000301
https://doi.org/10.1016/j.jfca.2015.09.002
https://doi.org/10.1002/9783527678129.assep053
https://doi.org/10.1016/j.talanta.2016.12.032
https://doi.org/10.1016/j.microc.2019.02.055
https://doi.org/10.1016/j.jhazmat.2008.07.089
https://doi.org/10.1016/j.cosust.2014.09.001

Di Bella, G., Lo Turco, V., Potorti, A.G., Bua, G.D., Fede, M.R., Dugo, G., 2015. Geographical discrimination of Italian honey by multi-
element analysis with a chemometric approach. Journal of Food Composition and Analysis 44, 25-35.
https://doi.org/10.1016/j.jfca.2015.05.003

Dimpe, K.M., Nomngongo, P.N., 2016. Current sample preparation methodologies for analysis of emerging pollutants in different
environmental matrices. TrAC Trends in Analytical Chemistry 82, 199-207. https://doi.org/10.1016/j.trac.2016.05.023

Diuzheva, A., Dejmkova, H., Fischer, J., Andruch, V., 2019. Simultaneous determination of three carbamate pesticides using vortex-
assisted liquid-liquid microextraction combined with HPLC-amperometric detection. Microchemical Journal 150, 104071.
https://doi.org/10.1016 /j.microc.2019.104071

Domingo, J.L., Rovira, ]., 2020. Effects of air pollutants on the transmission and severity of respiratory viral infections. Environmental
Research 187, 109650. https://doi.org/10.1016/j.envres.2020.109650

Donkersley, P., Rhodes, G., Pickup, R.W.,, Jones, K.C., Power, E.F., Wright, G.A., Wilson, K., 2017. Nutritional composition of honey bee
food stores vary with floral composition. Oecologia 185, 749-761. https://doi.org/10.1007/s00442-017-3968-3

Donovan, G.H., Jovan, S.E., Gatziolis, D., Burstyn, L., Michael, Y.L., Amacher, M.C., Monleon, V.J., 2016. Using an epiphytic moss to identify
previously unknown sources of atmospheric cadmium pollution. Science of The Total Environment 559, 84-93.
https://doi.org/10.1016/j.scitotenv.2016.03.182

Doocy, S., Lyles, E., Fahed, Z., Mkanna, A., Kontunen, K., Burnham, G., 2018. Characteristics of Syrian and Lebanese Diabetes and
Hypertension Patients in Lebanon. The Open Hypertension Journal 10. https://doi.org/10.2174/1876526201810010060

Dou, T.-X,, Shi, ].-F,, Li, Y., Bi, F.-C,, Gao, H.-]., Hu, C.-H,, Li, C.-Y,, Yang, Q.-S., Deng, G.-M,, Sheng, O., He, W.-D,, Yi, G.-]., Dong, T., 2020.
Influence of harvest season on volatile aroma constituents of two banana cultivars by electronic nose and HS-SPME coupled
with GC-MS. Scientia Horticulturae 265, 109214. https://doi.org/10.1016/j.scienta.2020.109214

Druart, C., Millet, M., Scheifler, R., Delhomme, 0., Raeppel, C., de Vaufleury, A., 2011. Snails as indicators of pesticide drift, deposit,
transfer and effects in the vineyard. Science of The Total Environment 409, 4280-4288.
https://doi.org/10.1016/j.scitotenv.2011.07.006

Duca, R.-C,, Salquebre, G., Hardy, E., Appenzeller, B.M.R,, 2014. Comparison of solid phase- and liquid/liquid-extraction for the
purification of hair extract prior to multi-class pesticides analysis. Journal of Chromatography B 955-956, 98-107.
https://doi.org/10.1016/j.jchromb.2014.02.035

Duodu, G.0., Goonetilleke, A., Ayoko, G.A., 2016. Optimization of in-cell accelerated solvent extraction technique for the determination
of organochlorine pesticides in river sediments. Talanta 150, 278-285. https://doi.org/10.1016/j.talanta.2015.12.049

Duodu, G.0., Ogogo, K.N., Mummullage, S., Harden, F., Goonetilleke, A., Ayoko, G.A., 2017. Source apportionment and risk assessment of
PAHs in Brisbane River sediment, Australia. Ecological Indicators 73, 784-799. https://doi.org/10.1016/j.ecolind.2016.10.038

Eddleston, M., 2020. Poisoning by pesticides. Medicine 48, 214-217. https://doi.org/10.1016 /j.mpmed.2019.12.019

El-Shenawy, N.S., Mohammadden, A., Al-Fahmie, Z.H., 2012. Using the enzymatic and non-enzymatic antioxidant defense system of the
land snail Eobania vermiculata as biomarkers of terrestrial heavy metal pollution. Ecotoxicology and Environmental Safety 84,
347-354. https://doi.org/10.1016/j.ecoenv.2012.08.014

Ellickson, K.M., McMahon, C.M., Herbrandson, C., Krause, M.]., Schmitt, C.M., Lippert, C.J., Pratt, G.C., 2017. Analysis of polycyclic aromatic
hydrocarbons (PAHs) in air using passive sampling calibrated with active measurements. Environ Pollut 231, 487-496.
https://doi.org/10.1016/j.envpol.2017.08.049

Emilia, R, Debora, B,, Stefania, A., Nicola, B., Roberto, B., 2016. Papillifera papillaris (O.F. Miiller), a small snail living on stones and
monuments, as indicator of metal deposition and bioavailability in urban environments. Ecological Indicators 69, 360-367.
https://doi.org/10.1016/j.ecolind.2016.04.024

Escuredo, O., Dobre, 1., Fernandez-Gonzalez, M., Seijo, M.C., 2014. Contribution of botanical origin and sugar composition of honeys on
the crystallization phenomenon. Food Chemistry 149, 84-90. https://doi.org/10.1016/j.foodchem.2013.10.097

Fackovcova, Z., Vannini, A., Monaci, F., Grattacaso, M., Paoli, L., Loppi, S., 2020. Effects of wood distillate (pyroligne ous acid) on sensitive
bioindicators (lichen and moss). Ecotoxicology and Environmental Safety 204, 111117.
https://doi.org/10.1016 /j.ecoenv.2020.111117

Farajzadeh, M.A,, Khorram, P. Ghorbanpour, H. 2015. Simultaneous derivatization and solid-based disperser liquid-liquid
microextraction for extraction and preconcentration of some antidepressants and an antiarrhythmic agent in urine and plasma
samples followed by GC-FID. Journal of Chromatography B 983-984, 55-61. https://doi.org/10.1016/j.jchromb.2015.01.004

Fellet, G., Pos¢i¢, F., Licen, S., Marchiol, L., Musetti, R., Tolloi, A., Barbieri, P., Zerbi, G., 2016. PAHs accumulation on leaves of six evergreen
urban shrubs: A field experiment. Atmospheric Pollution Research 7, 915-924. https://doi.org/10.1016/j.apr.2016.05.007

Fernandez-Rodriguez, M., Arrebola, ].P., Artacho-Cordén, F., Amaya, E., Aragones, N., Llorca, J., Perez-Gomez, B., Ardanaz, E., Kogevinas,
M., Castano-Vinyals, G., Pollan, M., Olea, N., 2015. Levels and predictors of persistent organic pollutants in an adult population
from four Spanish regions. Science of The Total Environment 538, 152-161. https://doi.org/10.1016/j.scitotenv.2015.07.162

Ferreira, ].A., Ferreira, ].M.S., Talamini, V., Facco, J. de F., Rizzetti, T.M., Prestes, 0.D., Adaime, M.B., Zanella, R., Bottoli, C.B.G., 2016.
Determination of pesticides in coconut ( Cocos nucifera Linn.) water and pulp using modified QUEChERS and LC-MS/MS. Food
Chemistry 213, 616-624. https://doi.org/10.1016/j.foodchem.2016.06.114

Ferreyra, S., Bottini, R., Fontana, A., 2021. Tandem absorbance and fluorescence detection following liquid chromatography for the
profiling of multiclass phenolic compounds in different winemaking products. Food Chemistry 338, 128030.
https://doi.org/10.1016/j.foodchem.2020.128030

Filipiak, W., Bojko, B., 2019. SPME in clinical, pharmaceutical, and biotechnological research - How far are we from daily practice?
TrAC Trends in Analytical Chemistry 115, 203-213. https://doi.org/10.1016/j.trac.2019.02.029

Foan, L., Simon, V., 2012. Optimization of pressurized liquid extraction using a multivariate chemometric approach and comparison of
solid-phase extraction cleanup steps for the determination of polycyclic aromatic hydrocarbons in mosses. Journal of
Chromatography A 1256, 22-31. https://doi.org/10.1016 /j.chroma.2012.07.065

Francisco, A.P., Nardocci, A.C.,, Tominaga, M.Y., da Silva, C.R., de Assungdo, J.V., 2017. Spatial and seasonal trends of poly chlorinated
dioxins, furans and dioxin-like polychlorinated biphenyls in air using passive and active samplers and inhalation risk
assessment. Atmospheric Pollution Research 8, 979-987. https://doi.org/10.1016 /j.apr.2017.03.007

Fromme, H., Hilger, B., Albrecht, M., Gries, W., Leng, G., Volkel, W., 2016. Occurrence of chlorinated and brominated dioxins/furans,
PCBs, and brominated flame retardants in blood of German adults. International Journal of Hygiene and Environmental Health
219, 380-388. https://doi.org/10.1016/j.ijheh.2016.03.003

Gallego-Cartagena, E., Morillas, H., Carrero, ].A.,, Madariaga, ].M., Maguregui, M., 2021. Naturally growing grimmiaceae family mosses as
passive biomonitors of heavy metals pollution in urban-industrial atmospheres from the Bilbao Metropolitan area.
Chemosphere 263, 128190. https://doi.org/10.1016/j.chemosphere.2020.128190

58


https://doi.org/10.1016/j.jfca.2015.05.003
https://doi.org/10.1016/j.trac.2016.05.023
https://doi.org/10.1016/j.microc.2019.104071
https://doi.org/10.1016/j.envres.2020.109650
https://doi.org/10.1007/s00442-017-3968-3
https://doi.org/10.1016/j.scitotenv.2016.03.182
https://doi.org/10.2174/1876526201810010060
https://doi.org/10.1016/j.scienta.2020.109214
https://doi.org/10.1016/j.scitotenv.2011.07.006
https://doi.org/10.1016/j.jchromb.2014.02.035
https://doi.org/10.1016/j.talanta.2015.12.049
https://doi.org/10.1016/j.ecolind.2016.10.038
https://doi.org/10.1016/j.mpmed.2019.12.019
https://doi.org/10.1016/j.ecoenv.2012.08.014
https://doi.org/10.1016/j.envpol.2017.08.049
https://doi.org/10.1016/j.ecolind.2016.04.024
https://doi.org/10.1016/j.foodchem.2013.10.097
https://doi.org/10.1016/j.ecoenv.2020.111117
https://doi.org/10.1016/j.jchromb.2015.01.004
https://doi.org/10.1016/j.apr.2016.05.007
https://doi.org/10.1016/j.scitotenv.2015.07.162
https://doi.org/10.1016/j.foodchem.2016.06.114
https://doi.org/10.1016/j.foodchem.2020.128030
https://doi.org/10.1016/j.trac.2019.02.029
https://doi.org/10.1016/j.chroma.2012.07.065
https://doi.org/10.1016/j.apr.2017.03.007
https://doi.org/10.1016/j.ijheh.2016.03.003
https://doi.org/10.1016/j.chemosphere.2020.128190

Gallo, L., Corapi, A., Apollaro, C., Vespasiano, G., Lucadamo, L., 2017. Effect of the interaction between transplants of the epiphytic lichen
Pseudevernia furfuracea L. (Zopf) and rainfall on the variation of element concentrations associated with the water-soluble
part of atmospheric depositions. Atmospheric Pollution Research 8,912-920. https://doi.org/10.1016/j.apr.2017.03.002

Garballo-Rubio, A., Soto-Chinchilla, J.,, Martin-Pozo, L., Zafra-Gémez, A., 2020. Use of Quick, Easy, Cheap, Effective, Rugged & Safe
(QUEChERS) and molecular imprinted polymer followed by gas chromatography with tandem mass spectrometry for the
quantitative analysis of polycyclic aromatic hydrocarbons (PAH4) in complex health supplements. Journal of Food Composition
and Analysis 93, 103588. https://doi.org/10.1016/j.jfca.2020.103588

Garbuzov, M., Schiirch, R,, Ratnieks, F.L.W., 2015. Eating locally: dance decoding demonstrates that urban honey bees in Brighton, UK,
forage mainly in the surrounding urban area. Urban Ecosyst 18, 411-418. https://doi.org/10.1007/s11252-014-0403-y

Garcia, C.V., Gotah, A., 2017. Application of QUEChERS for Determining Xenobiotics in Foods of Animal Origin. ] Anal Methods Chem
2017. https://doi.org/10.1155/2017/2603067

Garcia-Villarino, M., Riafio-Galan, 1., Rodriguez-Dehli, A.C., Vizcaino, E., Grimalt, ].0., Tarddn, A., Ferndndez-Somoano, A., 2018. Prenatal
Exposure to Persistent Organic Pollutants and Anogenital Distance in Children at 18 Months. Horm Res Paediatr 90, 116-122.
https://doi.org/10.1159/000492236

Gascon, M,, Sunyer, J., Martinez, D., Guerra, S., Lavi, 1., Torrent, M., Vrijheid, M., 2014. Persistent organic pollutants and children’s
respiratory health: The role of cytokines and inflammatory biomarkers. Environment International 69, 133-140.
https://doi.org/10.1016/j.envint.2014.04.021

Gbeddy, G., Egodawatta, P., Goonetilleke, A, Ayoko, G., Jayarathne, A., Chen, L., Russell, S., 2020. Optimized simultaneous pressurized
fluid extraction and in-cell clean-up, and analysis of polycyclic aromatic hydrocarbons (PAHs), and nitro-, carbonyl-, hydroxy -
PAHs in solid particles. Analytica Chimica Acta 1125, 19-28. https://doi.org/10.1016/j.aca.2020.05.021

Gheorghe, LF., lon, B,, 2011. The Effects of Air Pollutants on Vegetation and the Role of Vegetation in Reducing Atmospheric Pollution.
The Impact of Air Pollution on Health, Economy, Environment and Agricultural Sources. https://doi.org/10.5772/17660

Ghorani-Azam, A., Riahi-Zanjani, B., Balali-Mood, M., 2016. Effects of air pollution on human health and practical measures for
prevention in Iran. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences 21,
65. https://doi.org/10.4103/1735-1995.189646

Ghosal, D., Ghosh, S, Dutta, T.K.,, Ahn, Y., 2016. Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic
Hydrocarbons (PAHs): A Review. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.01369

Ghosh, U,, Driscoll, S.K., Burgess, R.M,, Jonker, M.T., Reible, D., Gobas, F., Choi, Y., Apitz, S.E., Maruya, K.A., Gala, W.R., Mortimer, M.,
Beegan, C., 2014. Passive sampling methods for contaminated sediments: Practical guidance for selection, calibration, and
implementation. Integrated Environmental Assessment and Management 10, 210-223. https://doi.org/10.1002 /ieam.1507

Giampaoli, P.,, Wannaz, E.D., Tavares, A.R, Domingos, M., 2016. Suitability of Tillandsia usneoides and Aechmea fasciata for
biomonitoring toxic elements under tropical seasonal climate. Chemosphere 149, 14-23.
https://doi.org/10.1016/j.chemosphere.2016.01.080

Gill, HK, Garg, H. 2014. Pesticides: Environmental Impacts and Management Strategies. Pesticides - Toxic Aspects.
https://doi.org/10.5772/57399

Gionfriddo, E., Souza-Silva, E.A., Ho, T.D., Anderson, J.L., Pawliszyn, J., 2018. Exploiting the tunable selectivity features of polymeric
ionic liquid-based SPME sorbents in food analysis. Talanta 188, 522-530. https://doi.org/10.1016/j.talanta.2018.06.011

Girard, L., Reix, N., Mathelin, C., 2020. Impact des pesticides perturbateurs endocriniens sur le cancer du sein. Gynécologie Obstétrique
Fertilité & Sénologie 48, 187-195. https://doi.org/10.1016/j.gofs.2019.10.008

Girones, L., Arias, A.H., Oliva, A.L., Recabarren-Villalon, T. Marcovecchio, J.E., 2020. Occurrence and spatial distribution of
organochlorine pesticides in the southwest Buenos Aires using the freshwater snail Chilina parchappii as environmental
biomonitor. Regional Studies in Marine Science 33, 100898. https://doi.org/10.1016/j.rsma.2019.100898

Golge, 0., Hepsag, F., Kabak, B., 2018. Health risk assessment of selected pesticide residues in green pepper and cucumber. Food and
Chemical Toxicology 121, 51-64. https://doi.org/10.1016/j.fct.2018.08.027

Gomez-Almenar, M.C., Garcia-Mesa, J.A., 2015. Determination of pesticide residues in olives by liquid extraction surface analysis
followed by  liquid  chromatography/tandem  mass spectrometry. Grasas y  Aceites 66, 078.
https://doi.org/10.3989/gya.0828142

Gomot de Vaufleury, A, Pihan, F., 2000. Growing snails used as sentinels to evaluate terrestrial environment contamination by trace
elements. Chemosphere 40, 275-284. https://doi.org/10.1016/S0045-6535(99)00246-5

Gong, J., Zhu, T, Kipen, H., Rich, D.Q., Huang, W, Lin, W.-T., Hu, M., Zhang, J. (Jim), 2015. Urinary polycyclic aromatic hydrocarbon
metabolites as biomarkers of exposure to traffic-emitted pollutants. Environment International 85, 104-110.
https://doi.org/10.1016/j.envint.2015.09.003

Goretti, E., Pallottini, M., Rossi, R, La Porta, G., Gardi, T., Cenci Goga, B.T,, Elia, A.C,, Galletti, M., Moroni, B., Petroselli, C., Selvaggi, R.,
Cappelletti, D., 2020. Heavy metal bioaccumulation in honey bee matrix, an indicator to assess the contamination level in
terrestrial environments. Environmental Pollution 256, 113388. https://doi.org/10.1016/j.envpol.2019.113388

Goulson, D., Nicholls, E., Botias, C., Rotheray, E.L., 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of
flowers. Science (New York, N.Y.) 347, 1255957. https://doi.org/10.1126/science.1255957

Goulson, D., Thompson, J., Croombs, A., 2018. Rapid rise in toxic load for bees revealed by analysis of pesticide use in Great Britain.
Peer] 6. https://doi.org/10.7717 /peerj.5255

Govaerts, A., Verhaert, V., Covaci, A, Jaspers, V.L.B., Berg, 0.K,, Addo-Bediako, A., Jooste, A., Bervoets, L., 2018. Distribution and
bioaccumulation of POPs and mercury in the Ga-Selati River (South Africa) and the rivers Gudbrandsdalslagen and Rena
(Norway). Environment International 121, 1319-1330. https://doi.org/10.1016/j.envint.2018.10.058

Govarts, E., Iszatt, N., Trnovec, T., de Cock, M., Eggesbg, M., Palkovicova Murinova, L., van de Bor, M., Guxens, M., Chevrier, C., Koppen,
G., Lamoree, M., Hertz-Picciotto, 1., Lopez-Espinosa, M.-],, Lertxundi, A., Grimalt, J.0., Torrent, M., Gofli-Irigoyen, F., Vermeulen,
R, Legler, ]J., Schoeters, G., 2018. Prenatal exposure to endocrine disrupting chemicals and risk of being born small for
gestational age: Pooled analysis of seven European birth cohorts. Environment International 115, 267-278.
https://doi.org/10.1016/j.envint.2018.03.017

Grandy, ].J., Lashgari, M., Heide, H.V., Poole, ]., Pawliszyn, J., 2019. Introducing a mechanically robust SPME sampler for the on-site
sampling and extraction of a wide range of untargeted pollutants in environmental waters. Environmental Pollution 252, 825-
834. https://doi.org/10.1016/j.envpol.2019.06.013

Habibullah-Al-Mamun, Md., Kawser Ahmed, Md,, Saiful Islam, Md., Tokumura, M., Masunaga, S., 2019. Occurrence, distribution and
possible sources of polychlorinated biphenyls (PCBs) in the surface water from the Bay of Bengal coast of Bangladesh.
Ecotoxicology and Environmental Safety 167, 450-458. https://doi.org/10.1016/j.ecoenv.2018.10.052

59


https://doi.org/10.1016/j.apr.2017.03.002
https://doi.org/10.1016/j.jfca.2020.103588
https://doi.org/10.1007/s11252-014-0403-y
https://doi.org/10.1155/2017/2603067
https://doi.org/10.1159/000492236
https://doi.org/10.1016/j.envint.2014.04.021
https://doi.org/10.1016/j.aca.2020.05.021
https://doi.org/10.5772/17660
https://doi.org/10.4103/1735-1995.189646
https://doi.org/10.3389/fmicb.2016.01369
https://doi.org/10.1002/ieam.1507
https://doi.org/10.1016/j.chemosphere.2016.01.080
https://doi.org/10.5772/57399
https://doi.org/10.1016/j.talanta.2018.06.011
https://doi.org/10.1016/j.gofs.2019.10.008
https://doi.org/10.1016/j.rsma.2019.100898
https://doi.org/10.1016/j.fct.2018.08.027
https://doi.org/10.3989/gya.0828142
https://doi.org/10.1016/S0045-6535(99)00246-5
https://doi.org/10.1016/j.envint.2015.09.003
https://doi.org/10.1016/j.envpol.2019.113388
https://doi.org/10.1126/science.1255957
https://doi.org/10.7717/peerj.5255
https://doi.org/10.1016/j.envint.2018.10.058
https://doi.org/10.1016/j.envint.2018.03.017
https://doi.org/10.1016/j.envpol.2019.06.013
https://doi.org/10.1016/j.ecoenv.2018.10.052

Haddad, N,, Kanj, S.S., Awad, L.S., Abdallah, D.I.,, Moghnieh, R.A., 2019. The 2018 Lebanese Society of Infectious Diseases and Clinical
Microbiology Guidelines for the use of antimicrobial therapy in complicated intra-abdominal infections in the era of
antimicrobial resistance. BMC Infect Dis 19. https://doi.org/10.1186/s12879-019-3829-2

Hamanaka, R.B., Mutly, G.M., 2018. Particulate Matter Air Pollution: Effects on the Cardiovascular System. Front Endocrinol (Lausanne)
9. https://doi.org/10.3389/fendo.2018.00680

Han, X, Meng, L., Li, Y., Li, A, Turyk, M.E,, Yang, R., Wang, P., Xiao, K., Zhao, ]., Zhang, ., Zhang, Q., Jiang, G., 2020. Associations between
the exposure to persistent organic pollutants and type 2 diabetes in East China: A case-control study. Chemosphere 241,
125030. https://doi.org/10.1016 /j.chemosphere.2019.125030

Han, Y., Song, L., Zou, N., Chen, R, Qin, Y., Pan, C,, 2016. Multi-residue determination of 171 pesticides in cowpea using modified
QuEChERS method with multi-walled carbon nanotubes as reversed-dispersive solid-phase extraction materials. Journal of
Chromatography B 1031, 99-108. https://doi.org/10.1016 /j.jchromb.2016.07.043

Han, Y.M., Bandowe, B.A.M., Wei, C., Cao, ].J., Wilcke, W., Wang, G.H., Ni, H.Y,, Jin, Z.D., An, Z.S., Yan, B.Z., 2015. Stronger association of
polycyclic aromatic hydrocarbons with soot than with char in soils and sediments. Chemosphere 119, 1335-1345.
https://doi.org/10.1016/j.chemosphere.2014.02.021

Harris, K.J., Subbiah, S., Tabatabai, M., Archibong, A.E., Singh, K.P., Anderson, T.A., Adunyah, S.E., Ramesh, A., 2020. Pressurized liquid
extraction followed by liquid chromatography coupled to a fluorescence detector and atmospheric pressure chemical ionization
mass spectrometry for the determination of benzo(a)pyrene metabolites in liver tissue of an animal model of colon cancer.
Journal of Chromatography A 1622, 461126. https://doi.org/10.1016/j.chroma.2020.461126

Harris, K.L., Myers, ].N., Ramesh, A., 2013. Benzo(a)pyrene modulates fluoranthene-induced cellular responses in HT-29 colon cells in
a dual exposure system. Environmental Toxicology and Pharmacology 36, 358-367.
https://doi.org/10.1016/j.etap.2013.04.017

Harwood, G.P., Dolezal, A.G., 2020. Pesticide-Virus Interactions in Honey Bees: Challenges and Opportunities for Understanding
Drivers of Bee Declines. Viruses 12. https://doi.org/10.3390/v12050566

Hayward, S.J., Lei, Y.D., Wania, F., 2011. Sorption of a diverse set of organic chemical vapors onto XAD-2 resin: Measurement, prediction
and implications for air sampling. Atmospheric Environment 45, 296-302. https://doi.org/10.1016/j.atmosenv.2010.10.028

He, Z., Wang, L., Peng, Y., Luo, M., Wang, W,, Liu, X., 2015. Multiresidue analysis of over 200 pesticides in cereals using a QUEChERS and
gas chromatography-tandem mass spectrometry-based method. Food Chemistry 169, 372-380.
https://doi.org/10.1016/j.foodchem.2014.07.102

Helou, K., Harmouche-Karaki, M., Karake, S., Narbonne, J.-F., 2019. A review of organochlorine pesticides and polychlorinated biphenyls
in Lebanon: Environmental and human contaminants. Chemosphere 231, 357-368.
https://doi.org/10.1016/j.chemosphere.2019.05.109

Hercegova, A, Domotorova, M., Matisova, E., 2007. Sample preparation methods in the analysis of pesticide residues in baby food with
subsequent chromatographic determination. Journal of Chromatography A 1153, 54-73.
https://doi.org/10.1016 /j.chroma.2007.01.008

Heub, S., Tscharner, N., Kehl, F., Dittrich, P.S., Follonier, S., Barbe, L., 2016. A Simple Method for Automated Solid Phase Extraction of
Water Samples for Immunological Analysis of Small Pollutants. ] Vis Exp. https://doi.org/10.3791/53438

Hooven, L.A,, Chakrabarti, P., Harper, B.J,, Sagili, R.R., Harper, S.L., 2019. Potential Risk to Pollinators from Nanotechnology-Based
Pesticides. Molecules 24. https://doi.org/10.3390/molecules24244458

Hou, X., Xu, Xu, Xu, Xiaoying, Han, M,, Qiu, S., 2020. Application of a multiclass screening method for veterinary drugs and pesticides
using HPLC-QTOF-MS in egg samples. Food Chemistry 309, 125746. https://doi.org/10.1016/j.foodchem.2019.125746

Imbeault, P., Ravanelli, N., Chevrier, J., 2018. Can POPs be substantially popped out through sweat? Environment International 111,
131-132. https://doi.org/10.1016/j.envint.2017.11.023

Igbal, S., Igbal, M.M,, Javed, M., Bahadur, A, Yasien, S., Najam-ud-din, Hurr, A.,, Ahmad, N., Raheel, M,, Liy, G., 2020. Modified QUEChERS
extraction method followed by simultaneous quantitation of nine multi-class pesticides in human blood and urine by using GC-
MS. Journal of Chromatography B 1152, 122227. https://doi.org/10.1016/j.jchromb.2020.122227

Islam, A.K.M.M,, Lee, H.-S., Ro, J.-H., Kim, D., Kwon, H., 2019. Application of high-surface-area graphitized carbon black with primary
secondary amine as an alternative quick, easy, cheap, effective, rugged, and safe cleanup material for pesticide multi-residue
analysis in spinach. Journal of Separation Science 42, 2379-2389. https://doi.org/10.1002/jssc.201900066

Islam, R., Kumar, S., Karmoker, J., Kamruzzaman, Md., Rahman, Md.A., Biswas, N., Tran, T.K.A., Rahman, M.M., 2018. Bioaccumul ation
and adverse effects of persistent organic pollutants (POPs) on ecosystems and human exposure: A review study on Bangladesh
perspectives. Environmental Technology & Innovation 12, 115-131. https://doi.org/10.1016/j.eti.2018.08.002

Ismael, M.A,, Elyamine, A.M., Moussa, M.G., Cai, M., Zhao, X., Hu, C., 2019. Cadmium in plants: uptake, toxicity, and its interactions with
selenium fertilizers. Metallomics 11, 255-277. https://doi.org/10.1039/C8MT00247A

Issa, M.M.,, M. Taha, S, El- Marsafy, A.M., Khalil, M.M.H., Ismail, E.H., 2020. Acetonitrile-Ethyl acetate based method for the residue
analysis of 373 pesticides in beeswax using LC-MS/MS and GC-MS/MS. Journal of Chromatography B 1145, 122106.
https://doi.org/10.1016/j.jchromb.2020.122106

Iwegbue, C.M.A., Eyengho, S.B., Egobueze, F.E., Odali, E-W., Tesi, G.0., Nwajei, G.E., Martincigh, B.S., 2019. Polybrominated diphenyl
ethers and polychlorinated biphenyls in indoor dust from electronic repair workshops in southern Nigeria: Implications for
onsite human exposure. Science of The Total Environment 671, 914-927. https://doi.org/10.1016/j.scitotenv.2019.02.449

Iwegbue, C.M.A,, Osijaye, K.O., Igbuku, U.A,, Egobueze, F.E., Tesi, G.0., Bassey, F.I,, Martincigh, B.S., 2020. Effect of the number of frying
cycles on the composition, concentrations and risk of polycyclic aromatic hydrocarbons (PAHs) in vegetable oils and fried fish.
Journal of Food Composition and Analysis 94, 103633. https://doi.org/10.1016/j.jfca.2020.103633

Jabali, Y., Millet, M., El-Hoz, M., 2019. Optimization of a DI-SPME-GC-MS/MS method for multi-residue analysis of pesticides in waters.
Microchemical Journal 147, 83-92. https://doi.org/10.1016/j.microc.2019.03.004

Jayaraj, R., Megha, P., Sreedev, P., 2016. Organochlorine pesticides, their toxic effects on living organisms and their fate in the
environment. Interdiscip Toxicol 9, 90-100. https://doi.org/10.1515/intox-2016-0012

Ji, X., Abakumov, E., Polyako, V., Xie, X., Dongyang, W., 2019. The ecological impact of mineral exploitation in the Russian Arctic: A field-
scale study of polycyclic aromatic hydrocarbons (PAHs) in permafrost-affected soils and lichens of the Yamal-Nenets
autonomous region. Environmental Pollution 255, 113239. https://doi.org/10.1016/j.envpol.2019.113239

Jia, H., Zhao, ]., Li, L., Li, X,, Wang, C., 2014. Transformation of polycyclic aromatic hydrocarbons (PAHs) on Fe(IlI)-modified clay
minerals: Role of molecular chemistry and clay surface properties. Applied Catalysis B: Environmental 154-155, 238-245.
https://doi.org/10.1016/j.apcatb.2014.02.022

60


https://doi.org/10.1186/s12879-019-3829-2
https://doi.org/10.3389/fendo.2018.00680
https://doi.org/10.1016/j.chemosphere.2019.125030
https://doi.org/10.1016/j.jchromb.2016.07.043
https://doi.org/10.1016/j.chemosphere.2014.02.021
https://doi.org/10.1016/j.chroma.2020.461126
https://doi.org/10.1016/j.etap.2013.04.017
https://doi.org/10.3390/v12050566
https://doi.org/10.1016/j.atmosenv.2010.10.028
https://doi.org/10.1016/j.foodchem.2014.07.102
https://doi.org/10.1016/j.chemosphere.2019.05.109
https://doi.org/10.1016/j.chroma.2007.01.008
https://doi.org/10.3791/53438
https://doi.org/10.3390/molecules24244458
https://doi.org/10.1016/j.foodchem.2019.125746
https://doi.org/10.1016/j.envint.2017.11.023
https://doi.org/10.1016/j.jchromb.2020.122227
https://doi.org/10.1002/jssc.201900066
https://doi.org/10.1016/j.eti.2018.08.002
https://doi.org/10.1039/C8MT00247A
https://doi.org/10.1016/j.jchromb.2020.122106
https://doi.org/10.1016/j.scitotenv.2019.02.449
https://doi.org/10.1016/j.jfca.2020.103633
https://doi.org/10.1016/j.microc.2019.03.004
https://doi.org/10.1515/intox-2016-0012
https://doi.org/10.1016/j.envpol.2019.113239
https://doi.org/10.1016/j.apcatb.2014.02.022

Jia, Z.-Q., Zhang, Y.-C., Huang, Q.-T., Jones, A.K,, Han, Z.-]., Zhao, C.-Q., 2020. Acute toxicity, bioconcentration, elimination, action mode
and detoxification metabolism of broflanilide in zebrafish, Danio rerio. Journal of Hazardous Materials 394, 122521.
https://doi.org/10.1016/j.jhazmat.2020.122521

Juodis, L., Filistovi¢, V., Maceika, E., Remeikis, V., 2016. Analytical dispersion model for the chain of primary and secondary air
pollutants released from point source. Atmospheric Environment 128, 216-226.
https://doi.org/10.1016 /j.atmosenv.2015.12.019

Kadzinski, L., Banasiuk, R., Banecki, B., 2018. Determination of ten sulfonamides in honey using tetrahydrofuran Salting Out Liquid
Liquid Extraction and monolithic silica column. LWT 96, 7-12. https://doi.org/10.1016/j.lwt.2018.05.007

Kagaya, S., Katoh, T., Saito, M., Ohki, M., Shirota, R., Saeki, Y., Kajiwara, T., Nakada, S., Miyazaki, H., Gemmei-Ide, M., Inoue, Y., 2018. A
porous sintered material consisting of Presep PolyChelate as a chelating resin and particulate polyethylene as a thermoplastic
binder for solid-phase extraction of trace elements. Talanta 188, 665-670. https://doi.org/10.1016/j.talanta.2018.06.024

Kailemia, M.]J., Ruhaak, L.R., Lebrilla, C.B., Amster, 1], 2014. Oligosaccharide Analysis By Mass Spectrometry: A Review Of Recent
Developments. Anal Chem 86, 196-212. https://doi.org/10.1021/ac403969n

Karaskova, P., Codling, G., Melymuk, L., Klanova, J., 2018. A critical assessment of passive air samplers for per- and polyfluoroalkyl
substances. Atmospheric Environment 185, 186-195. https://doi.org/10.1016/j.atmosenv.2018.05.030

Kargar, N., Matin, G., Matin, A.A,, Buyukisik, H.B., 2017. Biomonitoring, status and source risk assessment of polycyclic aromatic
hydrocarbons (PAHs) using honeybees, pine tree leaves, and propolis. Chemosphere 186, 140-150.
https://doi.org/10.1016/j.chemosphere.2017.07.127

Kellogg, ].J., Wallace, E.D., Graf, T.N., Oberlies, N.H., Cech, N.B., 2017. Conventional and accelerated-solvent extractions of green tea
(camellia sinensis) for metabolomics-based chemometrics. Journal of Pharmaceutical and Biomedical Analysis 145, 604-610.
https://doi.org/10.1016/j.jpba.2017.07.027

Kelly, F.]J., Fussell, ].C., 2015. Air pollution and public health: emerging hazards and improved understanding of risk. Environ Geochem
Health 37, 631-649. https://doi.org/10.1007 /s10653-015-9720-1

Kemmerich, M., Demarco, M., Bernardi, G., Prestes, 0.D., Adaime, M.B., Zanella, R., 2020. Balls-in-tube matrix solid phase dispersion
(BiT-MSPD): An innovative and simplified technique for multiresidue determination of pesticides in fruit samples. Journal of
Chromatography A 1612, 460640. https://doi.org/10.1016/j.chroma.2019.460640

Kim, L., Lee, D., Cho, H.-K,, Choi, S.-D., 2019. Review of the QUEChERS method for the analysis of organic pollutants: Persistent organic
pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals. Trends in Environmental Analytical Chemistry 22, e00063.
https://doi.org/10.1016/j.teac.2019.e00063

Kinross, A.D., Hageman, K.J., Doucette, W.J,, Foster, A.L., 2020. Comparison of Accelerated Solvent Extraction (ASE) and Energized
Dispersive Guided Extraction (EDGE) for the analysis of pesticides in leaves. Journal of Chromatography A 1627, 461414.
https://doi.org/10.1016 /j.chroma.2020.461414

Kodnik, D., Candotto Carniel, F., Licen, S., Tolloi, A., Barbieri, P., Tretiach, M., 2015. Seasonal variations of PAHs content and distribution
patterns in a mixed land use area: A case study in NE Italy with the transplanted lichen Pseudevernia furfuracea. Atmospheric
Environment 113, 255-263. https://doi.org/10.1016/j.atmosenv.2015.04.067

Kopittke, P.M., Menzies, N.W., Wang, P., McKenna, B.A,, Lombi, E., 2019. Soil and the intensification of agriculture for global food
security. Environment International 132, 105078. https://doi.org/10.1016/j.envint.2019.105078

Kosior, G., Pribylova, P., Vankova, L., Kukucka, P., Audy, O., Klanovj, J., Samecka-Cymerman, A. Mré6z, L., Kempers, AJ., 2017.
Bioindication of PBDEs and PCBs by native and transplanted moss Pleurozium schreberi. Ecotoxicology and Environmental
Safety 143, 136-142. https://doi.org/10.1016/j.ecoenv.2017.05.025

Krupnova, T.G., Mashkova, L.V, Kostryukova, A.M., Schelkanova, E.E., Gavrilkina, S.V., 2018. Gastropods as potential biomonitors of
contamination caused by heavy metals in South Ural lakes, Russia. Ecological Indicators 95, 1001-1007.
https://doi.org/10.1016/j.ecolind.2017.12.005

La Merrill, M., Emond, C., Kim, M.]., Antignac, J.-P., Le Bizec, B., Clément, K., Birnbaum, L.S., Barouki, R., 2013. Toxicological Function of
Adipose  Tissue: Focus on Persistent Organic Pollutants. Environ Health Perspect 121, 162-169.
https://doi.org/10.1289/ehp.1205485

Lai, F.Y,, Rauert, C., Gobelius, L., Ahrens, L., 2019. A critical review on passive sampling in air and water for per- and polyfluoroalkyl
substances (PFASs). TrAC Trends in Analytical Chemistry 121, 115311. https://doi.org/10.1016/j.trac.2018.11.009

Larson, J.L., Redmond, C.T., Potter, D.A., 2015. Mowing mitigates bioactivity of neonicotinoid insecticides in nectar of flow ering lawn
weeds and turfgrass guttation. Environmental Toxicology and Chemistry 34, 127-132. https://doi.org/10.1002/etc.2768

Lavin, K.S.,, Hageman, K.J., 2012. Selective pressurised liquid extraction of halogenated pesticides and polychlorinated biphenyls from
pine needles. Journal of Chromatography A 1258, 30-36. https://doi.org/10.1016/j.chroma.2012.08.042

Lazo, P., Stafilov, T., Qarri, F., Allajbeu, S., Bekteshi, L., Frontasyeva, M., Harmens, H., 2019. Spatial distribution and temporal trend of
airborne trace metal deposition in Albania studied by moss biomonitoring. Ecological Indicators 101, 1007-1017.
https://doi.org/10.1016/j.ecolind.2018.11.053

Lee, E.G.,, Magrm, R, Kusti, M., Kashon, M.L., Guffey, S., Costas, M.M., Boykin, C.]., Harper, M., 2017. Comparison between active (pumped)
and passive (diffusive) sampling methods for formaldehyde in pathology and histology laboratories. ] Occup Environ Hyg 14,
31-39. https://doi.org/10.1080/15459624.2016.1211284

Lee, ], Jeong, J.-H., Park, S, Lee, K.-G., 2018. Monitoring and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in processed
foods and their raw materials. Food Control 92, 286-292. https://doi.org/10.1016/j.foodcont.2018.05.012

Lee, ].E,, Oh, H.B,, Im, H., Han, S.B., Kim, K.H., 2020. Multiresidue analysis of 85 persistent organic pollutants in small human serum
samples by modified QUEChERS preparation with different ionization sources in mass spectrometry. Journal of
Chromatography A 1623, 461170. https://doi.org/10.1016/j.chroma.2020.461170

Lee, KK, Miller, M.R,, Shah, A.S.V., 2018. Air Pollution and Stroke. ] Stroke 20, 2-11. https://doi.org/10.5853/jos.2017.02894

Lee, Y.-J., Rahman, Md.M,, Abd El-Aty, A.M., Choj, J.-H., Chung, H.S., Kim, S.-W., Abdel-Aty, A.M,, Shin, H.-C., Shim, ].-H., 2016. Detection of
three herbicide, and one metabolite, residues in brown rice and rice straw using various versions of the QUEChERS method and
liquid chromatography-tandem mass spectrometry. Food Chemistry 210, 442-450.
https://doi.org/10.1016/j.foodchem.2016.05.005

Lee, Y.-M,, Jacobs Jr., D.R,, Lee, D.-H., 2018. Persistent Organic Pollutants and Type 2 Diabetes: A Critical Review of Review Articles.
Front Endocrinol (Lausanne) 9. https://doi.org/10.3389/fendo0.2018.00712

Lee, Y.-M,, Kim, K.-S., Kim, S.-A., Hong, N.-S,, Lee, S.-]., Lee, D.-H., 2014. Prospective associations between persistent organic pollutants
and metabolic syndrome: A nested case-control study. Science of The Total Environment 496, 219-225.
https://doi.org/10.1016/j.scitotenv.2014.07.039

61


https://doi.org/10.1016/j.jhazmat.2020.122521
https://doi.org/10.1016/j.atmosenv.2015.12.019
https://doi.org/10.1016/j.lwt.2018.05.007
https://doi.org/10.1016/j.talanta.2018.06.024
https://doi.org/10.1021/ac403969n
https://doi.org/10.1016/j.atmosenv.2018.05.030
https://doi.org/10.1016/j.chemosphere.2017.07.127
https://doi.org/10.1016/j.jpba.2017.07.027
https://doi.org/10.1007/s10653-015-9720-1
https://doi.org/10.1016/j.chroma.2019.460640
https://doi.org/10.1016/j.teac.2019.e00063
https://doi.org/10.1016/j.chroma.2020.461414
https://doi.org/10.1016/j.atmosenv.2015.04.067
https://doi.org/10.1016/j.envint.2019.105078
https://doi.org/10.1016/j.ecoenv.2017.05.025
https://doi.org/10.1016/j.ecolind.2017.12.005
https://doi.org/10.1289/ehp.1205485
https://doi.org/10.1016/j.trac.2018.11.009
https://doi.org/10.1002/etc.2768
https://doi.org/10.1016/j.chroma.2012.08.042
https://doi.org/10.1016/j.ecolind.2018.11.053
https://doi.org/10.1080/15459624.2016.1211284
https://doi.org/10.1016/j.foodcont.2018.05.012
https://doi.org/10.1016/j.chroma.2020.461170
https://doi.org/10.5853/jos.2017.02894
https://doi.org/10.1016/j.foodchem.2016.05.005
https://doi.org/10.3389/fendo.2018.00712
https://doi.org/10.1016/j.scitotenv.2014.07.039

Leech, C,, Tighe, M.K,, Pereg, L., Winter, G., McMillan, M., Esmaeili, A., Wilson, S.C., 2020. Bioaccessibility constrains th e co-composting
bioremediation of field aged PAH contaminated soils. International Biodeterioration & Biodegradation 149, 104922.
https://doi.org/10.1016 /j.ibiod.2020.104922

Lehotay, S.J., Son, K.A., Kwon, H., Koesukwiwat, U., Fu, W., Mastovska, K., Hoh, E., Leepipatpiboon, N., 2010. Comparison of QUEChERS
sample preparation methods for the analysis of pesticide residues in fruits and vegetables. Journal of Chromatography A 1217,
2548-2560. https://doi.org/10.1016/j.chroma.2010.01.044

Lelieveld, ]., Haines, A., Pozzer, A., 2018. Age-dependent health risk from ambient air pollution: a modelling and data analysis of
childhood mortality in middle-income and low-income countries. The Lancet Planetary Health 2, e292-e300.
https://doi.org/10.1016/S2542-5196(18)30147-5

Lentola, A, David, A., Abdul-Sada, A., Tapparo, A., Goulson, D., Hill, E.M., 2017. Ornamental plants on sale to the public are a significant
source of pesticide residues with implications for the health of pollinating insects. Environmental Pollution 228, 297-304.
https://doi.org/10.1016/j.envpol.2017.03.084

Les pesticides dans le bassin de la Seine | PIREN-Seine [WWW Document], n.d. URL https://www.piren-seine.fr/fr/fasicules/les-
pesticides-dans-le-bassin-de-la-seine (accessed 10.5.20).

Li, W,, Zhang, Z., Zhang, R, Jiao, H,, Sun, A,, Shi, X,, Chen, ]., 2020. Effective removal matrix interferences by a modified QuEChERS based
on the molecularly imprinted polymers for determination of 84 polychlorinated biphenyls and organochlorine pesticides in
shellfish samples. Journal of Hazardous Materials 384, 121241. https://doi.org/10.1016/j.jhazmat.2019.121241

Li, X, Dong, S., Wang, P., Su, X,, Fu, ., 2019. Polychlorinated biphenyls are still alarming persistent organic pollutants in marine-origin
animal feed (fishmeal). Chemosphere 233, 355-362. https://doi.org/10.1016/j.chemosphere.2019.05.250

Li, Y., Fang, R, Liu, Z,, Jiang, L., Zhang, |, Li, H,, Liu, C,, Li, F,, 2021. The association between toxic pesticide environmental exposure and
Alzheimer’s disease: A scientometric and visualization analysis. Chemosphere 263, 128238.
https://doi.org/10.1016/j.chemosphere.2020.128238

Li, Y., Lohmann, R, Zou, X,, Wang, C., Zhang, L., 2020. Air-water exchange and distribution pattern of organochlorine pesticides in the
atmosphere and surface water of the open Pacific ocean. Environmental Pollution 265, 114956.
https://doi.org/10.1016 /j.envpol.2020.114956

Liang, Y., Liu, D., Zhan, |, Luo, M., Han, J., Wang, P., Zhou, Z., 2020. New insight into the mechanism of POP -induced obesity: Evidence
from DDE-altered microbiota. Chemosphere 244, 125123. https://doi.org/10.1016/j.chemosphere.2019.125123

Liao, Z., Xie, ], Fang, X,, Wang, Y., Zhang, Y., Xu, X,, Fan, S., 2020. Modulation of synoptic circulation to dry season PM2.5 pollution over
the Pearl River Delta region: An investigation based on self-organizing maps. Atmospheric Environment 230, 117482.
https://doi.org/10.1016 /j.atmosenv.2020.117482

Lim, C.C,, Hayes, R.B., Ahn, J,, Shao, Y., Silverman, D.T., Jones, R.R,, Garcia, C., Thurston, G.D., 2018. Association between long-term
exposure to ambient air pollution and diabetes mortality in the US. Environ Res 165 330-336.
https://doi.org/10.1016/j.envres.2018.04.011

Lind, P.M,, Penell, ],, Salihovic, S., van Bavel, B, Lind, L., 2014. Circulating levels of p,p’-DDE are related to prevalent hypertension in the
elderly. Environmental Research 129, 27-31. https://doi.org/10.1016/j.envres.2013.12.003

Lind, P.M,, Salihovic, S., Stubleski, ]., Kdrrman, A,, Lind, L., 2019. Association of Exposure to Persistent Organic Pollutan ts With Mortality
Risk. JAMA Netw Open 2. https://doi.org/10.1001/jamanetworkopen.2019.3070

Liu, H.-Y,, Lin, S.-L.,, Fuh, M.-R., 2016. Determination of chloramphenicol, thiamphenicol and florfenicol in milk and honey using
modified QUEChERS extraction coupled with polymeric monolith-based capillary liquid chromatography tandem mass
spectrometry. Talanta 150, 233-239. https://doi.org/10.1016/j.talanta.2015.12.045

Loos, G., Van Schepdael, A., Cabooter, D., 2016. Quantitative mass spectrometry methods for pharmaceutical analysis. Philos Trans A
Math Phys Eng Sci 374. https://doi.org/10.1098/rsta.2015.0366

Loos, M., Krauss, M., Fenner, K., 2012. Pesticide nonextractable residue formation in soil: insights from inverse modeling of degradation
time series. Environmental Science & Technology 46, 9830-9837. https://doi.org/10.1021/es300505r

Louzon, M., Zahn, S, Capelli, N., Massemin, S., Coeurdassier, M., Pauget, B., Gimbert, F., de Vaufleury, A., 2020. Impact of ageing and soil
contaminants on telomere length in the land snail. Ecotoxicology and Environmental Safety 201, 110766.
https://doi.org/10.1016/j.ecoenv.2020.110766

Louzon, M., Pauget, B., Pelfréne, A.,, Gimbert, F., de Vaufleury, A., 2020. Combining human and snail indicators for an integrative risk
assessment of metal(loid)-contaminated soils. Journal of Hazardous Materials 124182.
https://doi.org/10.1016/j.jhazmat.2020.124182

Louppis, A.P., Karabagias, .K., Kontakos, S., Kontominas, M.G., Papastephanou, C., 2017. Botanical discrimination of Greek unifloral
honeys based on mineral content in combination with physicochemical parameter analysis, using a validated chemometric
approach. Microchemical Journal 135, 180-189. https://doi.org/10.1016/j.microc.2017.09.004

Lucci, P., Pacetti, D., Nuiiez, O., Frega, N.G., 2012. Current Trends in Sample Treatment Techniques for Environmental and Food
Analysis. Chromatography - The Most Versatile Method of Chemical Analysis. https://doi.org/10.5772 /47736

Luo, Y., Sun, ], Wang, P, Li, Y, Li, H, Xiao, K., Yang, R., Zhang, Q., Jiang, G., 2020. Age dependence accumulation of or ganochlorine
pesticides and PAHs in needles with different forest types, southeast Tibetan Plateau. Science of The Total Environment 716,
137176. https://doi.org/10.1016/j.scitotenv.2020.137176

Lushchak, V.I., Matviishyn, T.M., Husak, V.V., Storey, ].M., Storey, K.B., 2018. Pesticide toxicity: a mechanistic approach. EXCLI | 17,
1101-1136. https://doi.org/10.17179 /excli2018-1710

Ly, T.-K,, Ho, T.-D., Behra, P., Nhu-Trang, T.-T., 2020. Determination of 400 pesticide residues in green tea leaves by UPLC-MS/MS and
GC-MS/MS combined with QuUEChERS extraction and mixed-mode SPE clean-up method. Food Chemistry 326, 126928.
https://doi.org/10.1016/j.foodchem.2020.126928

Macedo-Miranda, G., Avila-Pérez, P., Gil-Vargas, P., Zarazua, G., Sdnchez-Meza, ].C., Zepeda-Gémez, C., Tejeda, S., 2016. Accumulation of
heavy metals in mosses: a biomonitoring study. Springerplus 5. https://doi.org/10.1186/s40064-016-2524-7

Madadzada, A.l, Badawy, W.M., Hajiyeva, S.R., Veliyeva, Z.T., Hajiyev, 0.B., Shvetsova, M.S., Frontasyeva, M.V., 2019. Assessment of
atmospheric deposition of major and trace elements using neutron activation analysis and GIS technology: Baku - Azerbaijan.
Microchemical Journal 147, 605-614. https://doi.org/10.1016/j.microc.2019.03.061

Maddabh, D., Ghach, W., Farraj, N.A., Yehya, M., Khatib, ].A., Alami, N.H., 2019. The first community-based intervention to promote safe
pesticide use by developing knowledge, attitudes, and practices among Lebanese farmers. Human and Ecological Risk
Assessment: An International Journal 0, 1-12. https://doi.org/10.1080/10807039.2019.1688639

Madeira, P.J.A., Floréncio, M.H., 2012. Applications of Tandem Mass Spectrometry: From Structural Analysis to Fundamental Studies.
Tandem Mass Spectrometry - Applications and Principles. https://doi.org/10.5772/31736

62


https://doi.org/10.1016/j.ibiod.2020.104922
https://doi.org/10.1016/j.chroma.2010.01.044
https://doi.org/10.1016/S2542-5196(18)30147-5
https://doi.org/10.1016/j.envpol.2017.03.084
https://www.piren-seine.fr/fr/fasicules/les-pesticides-dans-le-bassin-de-la-seine
https://www.piren-seine.fr/fr/fasicules/les-pesticides-dans-le-bassin-de-la-seine
https://doi.org/10.1016/j.jhazmat.2019.121241
https://doi.org/10.1016/j.chemosphere.2019.05.250
https://doi.org/10.1016/j.chemosphere.2020.128238
https://doi.org/10.1016/j.envpol.2020.114956
https://doi.org/10.1016/j.chemosphere.2019.125123
https://doi.org/10.1016/j.atmosenv.2020.117482
https://doi.org/10.1016/j.envres.2018.04.011
https://doi.org/10.1016/j.envres.2013.12.003
https://doi.org/10.1001/jamanetworkopen.2019.3070
https://doi.org/10.1016/j.talanta.2015.12.045
https://doi.org/10.1098/rsta.2015.0366
https://doi.org/10.1021/es300505r
https://doi.org/10.1016/j.ecoenv.2020.110766
https://doi.org/10.1016/j.jhazmat.2020.124182
https://doi.org/10.1016/j.microc.2017.09.004
https://doi.org/10.5772/47736
https://doi.org/10.1016/j.scitotenv.2020.137176
https://doi.org/10.17179/excli2018-1710
https://doi.org/10.1016/j.foodchem.2020.126928
https://doi.org/10.1186/s40064-016-2524-7
https://doi.org/10.1016/j.microc.2019.03.061
https://doi.org/10.1080/10807039.2019.1688639
https://doi.org/10.5772/31736

Madej, K., Kalenik, T.K., Piekoszewski, W., 2018. Sample preparation and determination of pesticides in fat-containing foods. Food
Chemistry 269, 527-541. https://doi.org/10.1016 /j.foodchem.2018.07.007

Mahmood, L., Imadi, S., Shazadi, K., Gul, A., Hakeem, K., 2015. Effects of Pesticides on Environment. https://doi.org/10.1007/978-3-
319-27455-3_13

Makos, P., Fernandes, A., Przyjazny, A., Boczkaj, G.,, 2018. Sample preparation procedure using extraction and derivatization of
carboxylic acids from aqueous samples by means of deep eutectic solvents for gas chromatographic-mass spectrometric
analysis. Journal of Chromatography A 1555, 10-19. https://doi.org/10.1016/j.chroma.2018.04.054

Malisch, R., Kotz, A., 2014. Dioxins and PCBs in feed and food — Review from European perspective. Science of The Total Environment
491-492, 2-10. https://doi.org/10.1016/j.scitotenv.2014.03.022

Mandal, S.C., Mandal, V., Das, A.K,, 2015. Chapter 6 - Classification of Extraction Methods, in: Mandal, S.C., Mandal, V., Das, A.K. (Eds.),
Essentials of Botanical Extraction. Academic Press, Boston, pp. 83-136. https://doi.org/10.1016/B978-0-12-802325-9.00006-
9

Manesiotis, P., Fitzhenry, L., Theodoridis, G., Jandera, P., 2012. 4.20 - Applications of SPE-MIP in the Field of Food Analysis, in:
Pawliszyn, ]. (Ed.), Comprehensive Sampling and Sample Preparation. Academic Press, Oxford, pp. 457-471.
https://doi.org/10.1016/B978-0-12-381373-2.00144-7

Manisalidis, I., Stavropoulou, E., Stavropoulos, A., Bezirtzoglou, E., 2020. Environmental and Health Impacts of Air Pollution: A Review.
Front. Public Health 8. https://doi.org/10.3389/fpubh.2020.00014

Maragou, N., Pavlidis, G., Karasali, H., Hatjina, F., 2017. Major and minor element levels in Greek apicultural products. Global Nest
Journal 19, 423-429.
Marcelino, A.F., Wachtel, C.C., Ghisi, N. de C., 2019. Are Our Farm Workers in Danger? Genetic Damage in Farmers Exposed to Pesticides.
International Journal of Environmental Research and Public Health 16, 358. https://doi.org/10.3390/ijerph16030358
Martinefski, M., Feizi, N., Lunar, M.L., Rubio, S., 2019. Supramolecular solvent-based high-throughput sample treatment platform for
the biomonitoring of PAH metabolites in urine by liquid chromatography-tandem mass spectrometry. Chemosphere 237,
124525, https://doi.org/10.1016 /j.chemosphere.2019.124525

Martinello, M., Borin, A, Stella, R., Bovo, D., Biancotto, G., Gallina, A., Mutinelli, F., 2017. Development and validation of a QUEChERS
method coupled to liquid chromatography and high resolution mass spectrometry to determine pyrrolizidine and tropane
alkaloids in honey. Food Chemistry 234, 295-302. https://doi.org/10.1016/j.foodchem.2017.04.186

Massimi, L., Castellani, F., Protano, C., Conti, M.E., Antonucci, A., Frezzini, M.A.,, Galletti, M., Mele, G., Pileri, A., Ristorini, M., Vitali, M.,
Canepari, S., 2021. Lichen transplants for high spatial resolution biomonitoring of Persistent Organic Pollutants (POPs) in a
multi-source polluted area of Central Italy. Ecological Indicators 120, 106921. https://doi.org/10.1016/j.ecolind.2020.106921

Massimi, L., Conti, M.E., Mele, G., Ristorini, M., Astolfi, M.L., Canepari, S., 2019. Lichen transplants as indicators of atmospheric element
concentrations: a high spatial resolution comparison with PM10 samples in a polluted area (Central Italy). Ecological Indicators
101, 759-769. https://doi.org/10.1016 /j.ecolind.2018.12.051

Massoud, R., Shihadeh, Alan.L., Roumié, M., Youness, M., Gerard, ], Saliba, N., Zaarour, R., Abboud, M., Farah, W., Saliba, N.A., 2011.
Intraurban variability of PM10 and PM2.5 in an Eastern Mediterranean city. Atmospheric Research 101, 893-901.
https://doi.org/10.1016/j.atmosres.2011.05.019

Matin, G., Kargar, N., Buyukisik, H.B., 2016. Bio-monitoring of cadmium, lead, arsenic and mercury in industrial districts of Izmir,
Turkey by wusing honey bees, propolis and pine tree leaves. Ecological Engineering 90, 331-335.
https://doi.org/10.1016/j.ecoleng.2016.01.035

McLagan, D.S., Mitchell, C.P.]., Steffen, A., Hung, H., Shin, C., Stupple, G.W., Olson, M.L., Luke, W.T,, Kelley, P., Howard, D., Edwards, G.C.,
Nelson, P.F.,, Xiao, H., Sheu, G.-R.,, Dreyer, A.,, Huang, H., Abdul Hussain, B., Lei, Y.D., Tavshunsky, I, Wania, F., 2018. Global
evaluation and calibration of a passive air sampler for gaseous mercury. Atmospheric Chemistry and Physics 18, 5905-5919.
https://doi.org/10.5194 /acp-18-5905-2018

Medeiros, A.S., Silva, D.B., Santos, A.O., Castro, S.S.L., Oliveira, T.M.B.F., 2020. Voltammetric sensing of E,E-dienestrol in fish tissue by
combining a cathodically pretreated boron-doped diamond electrode and QUEChERS extraction method. Microchemical Journal
155, 104718. https://doi.org/10.1016/j.microc.2020.104718

Mee Kin, C., Guan Huat, T., 2010. Headspace solid-phase microextraction for the evaluation of pesticide residue contents in cucumber
and strawberry after washing treatment. Food Chemistry 123, 760-764. https://doi.org/10.1016/j.foodchem.2010.05.038

Melody, S.M., Johnston, F.H., 2015. Coal mine fires and human health: What do we know? International Journal of Coal Geology 152, 1-
14. https://doi.org/10.1016/j.coal.2015.11.001

Melymuk, L., Bohlin-Nizzetto, P., Prokes, R., Kukucka, P., Pfibylova, P., Vojta, S. Kohoutek, J., Lammel, G., Klanov4, J., 2017. Uncertainties
in monitoring of SVOCs in air caused by within-sampler degradation during active and passive air sampling. Atmospheric
Environment 167, 553-565. https://doi.org/10.1016/j.atmosenv.2017.08.038

Merhaby, D., Ouddane, B., Net, S., Halwani, J., 2020. Assessment of persistent organic pollutants in surface sediments along Lebanese
coastal zone. Marine Pollution Bulletin 153, 110947. https://doi.org/10.1016/j.marpolbul.2020.110947

Merhaby, D., Rabodonirina, S., Net, S, Ouddane, B, Halwani, ], 2019. Overview of sediments pollution by PAHs and PCBs in
mediterranean basin: Transport, fate, occurrence, and distribution. Marine Pollution Bulletin 149, 110646.
https://doi.org/10.1016 /j.marpolbul.2019.110646

Mittal, R.D., 2015. Tandem Mass Spectroscopy in Diagnosis and Clinical Research. Indian ] Clin Biochem 30, 121-123.
https://doi.org/10.1007 /s12291-015-0498-9

Mleiki, A., Zaldibar, B., Izagirre, U., El Menif, N.T., Marigémez, 1., 2018. Effects of dietary Pb and Cd and their combination on lysosomal
and tissue-level biomarkers and histopathology in digestive gland of the land snail, Cantareus apertus (Born, 1778).
Ecotoxicology and Environmental Safety 156, 301-310. https://doi.org/10.1016/j.ecoenv.2018.02.079

Mokalled, T., Adjizian Gérard, J., Abboud, M,, Liaud, C., Nassreddine, R., Le Calvé, S., 2019. An assessment of indoor air quality in the
maintenance room at Beirut-Rafic Hariri International Airport. Atmospheric Pollution Research 10, 701-711.
https://doi.org/10.1016/j.apr.2018.11.008

Mokalled, T., Le Calvé, S., Badaro-Saliba, N., Abboud, M., Zaarour, R., Farah, W., Adjizian-Gérard, J., 2018. Identifying the impact of Beirut
Airport’s activities on local air quality - Part I: Emissions inventory of NO2 and VOCs. Atmospheric Environment 187, 435-444.
https://doi.org/10.1016/j.atmosenv.2018.04.036

Moreno-Gonzalez, D., Cutillas, V., Hernando, M.D., Alcantara-Durdn, ], Garcia-Reyes, ].F.,, Molina-Diaz, A, 2020. Quantitative
determination of pesticide residues in specific parts of bee specimens by nanoflow liquid chromatography high resolution mass
spectrometry. Science of The Total Environment 715, 137005. https://doi.org/10.1016/j.scitotenv.2020.137005

63


https://doi.org/10.1016/j.foodchem.2018.07.007
https://doi.org/10.1007/978-3-319-27455-3_13
https://doi.org/10.1007/978-3-319-27455-3_13
https://doi.org/10.1016/j.chroma.2018.04.054
https://doi.org/10.1016/j.scitotenv.2014.03.022
https://doi.org/10.1016/B978-0-12-802325-9.00006-9
https://doi.org/10.1016/B978-0-12-802325-9.00006-9
https://doi.org/10.1016/B978-0-12-381373-2.00144-7
https://doi.org/10.3389/fpubh.2020.00014
https://doi.org/10.3390/ijerph16030358
https://doi.org/10.1016/j.chemosphere.2019.124525
https://doi.org/10.1016/j.foodchem.2017.04.186
https://doi.org/10.1016/j.ecolind.2020.106921
https://doi.org/10.1016/j.ecolind.2018.12.051
https://doi.org/10.1016/j.atmosres.2011.05.019
https://doi.org/10.1016/j.ecoleng.2016.01.035
https://doi.org/10.5194/acp-18-5905-2018
https://doi.org/10.1016/j.microc.2020.104718
https://doi.org/10.1016/j.foodchem.2010.05.038
https://doi.org/10.1016/j.coal.2015.11.001
https://doi.org/10.1016/j.atmosenv.2017.08.038
https://doi.org/10.1016/j.marpolbul.2020.110947
https://doi.org/10.1016/j.marpolbul.2019.110646
https://doi.org/10.1016/j.ecoenv.2018.02.079
https://doi.org/10.1016/j.apr.2018.11.008
https://doi.org/10.1016/j.atmosenv.2018.04.036
https://doi.org/10.1016/j.scitotenv.2020.137005

Moreno-Gonzalez, D., Huertas-Pérez, ].F., Garcia-Campafia, A.M., Gdmiz-Gracia, L., 2014. Determination of carbamates in edible
vegetable oils by ultra-high performance liquid chromatography-tandem mass spectrometry using a new clean-up based on
zirconia for QUEChERS methodology. Talanta 128, 299-304. https://doi.org/10.1016/j.talanta.2014.04.045

Mostafalou, S., Abdollahi, M., 2018. The link of organophosphorus pesticides with neurodegenerative and neurodevelopmental
diseases based on evidence and mechanisms. Toxicology 409, 44-52. https://doi.org/10.1016/j.tox.2018.07.014

Muy, P, Xu, N,, Chai, T, Jia, Q,, Yin, Z,, Yang, S., Qian, Y., Qiu, J., 2016. Simultaneous determination of 14 antiviral drugs and relevant
metabolites in chicken muscle by UPLC-MS/MS after QUEChERS preparation. Journal of Chromatography B 1023-1024, 17-23.
https://doi.org/10.1016 /j.jchromb.2016.04.036

Muhammad, N., Subhani, Q., Wang, F., Guo, D., Zhao, Q., Wu, S., Zhu, Y., 2017. Application of a simple column-switching ion
chromatography technique for removal of matrix interferences and sensitive fluorescence determination of acidic compounds
(pharmaceutical drugs) in complex samples. Journal of Chromatography A 1515, 69-80.
https://doi.org/10.1016 /j.chroma.2017.07.007

Mukhopadhyay, S., Dutta, R., Das, P., 2020. A critical review on plant biomonitors for determination of polycyclic aromatic
hydrocarbons  (PAHs) in air through solvent extraction techniques. Chemosphere 251, 126441.
https://doi.org/10.1016 /j.chemosphere.2020.126441

Musarurwa, H., Tavengwa, N.T., 2020. Deep eutectic solvent-based dispersive liquid-liquid micro-extraction of pesticides in food
samples. Food Chemistry 127943. https://doi.org/10.1016/j.foodchem.2020.127943

Musarurwa, H., Chimuka, L., Pakade, V.E., Tavengwa, N.T., 2019. Recent developments and applications of QUEChERS based techniques
on food samples during pesticide analysis. Journal of Food Composition and Analysis 84, 103314.
https://doi.org/10.1016/j.jfca.2019.103314

Nadal, M., Marqués, M., Mari, M., Domingo, J.L., 2015. Climate change and environmental concentrations of POPs: A review.
Environmental Research 143, 177-185. https://doi.org/10.1016/j.envres.2015.10.012

Nardelli, V., D’Amico, V., Della Rovere, 1., Casamassima, F., Marchesiello, W.M.V., Nardiello, D., Quinto, M., 2020. Box Behnken design-
based optimized extraction of non-dioxin-like PCBs for GC-ECD and GC-MS analyses in milk samples. Emerging Contaminants
6,303-311. https://doi.org/10.1016/j.emcon.2020.08.002

Narenderan, S.T., Meyyanathan, S.N., Karri, V.V.S.R,, Babu, B., Chintamaneni, P., 2019. Multivariate response surface methodology
assisted modified QUEChERS extraction method for the evaluation of organophosphate pesticides in fruits and vegetables
cultivated in Nilgiris, South India. Food Chemistry 300, 125188. https://doi.org/10.1016/j.foodchem.2019.125188

Negri, 1., Mavris, C., Di Prisco, G., Caprio, E., Pellecchia, M., 2015. Honey Bees (Apis mellifera, L.) as Active Samplers of Airborne
Particulate Matter. PLoS One 10. https://doi.org/10.1371/journal.pone.0132491

Newton, S., Sellstrom, U., Harrad, S., Yu, G., de Wit, C.A., 2016. Comparisons of indoor active and passive air sampling methods for
emerging and legacy halogenated flame retardants in Beijing, China offices. Emerging Contaminants 2, 80-88.
https://doi.org/10.1016 /j.emcon.2016.02.001

Nica, D., Bordean, D.-M., Borozan, A., Gergen, 1., Bura, M., Banatean-Dunea, 1., 2013. Use of Land Snails (Pulmonata) for Monitoring
Copper Pollution in Terrestrial Ecosystems.

Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., Hens, L., 2016. Chemical Pesticides and Human Health: The Urgent
Need for a New Concept in Agriculture. Front Public Health 4. https://doi.org/10.3389/fpubh.2016.00148

Niell, S, Jesus, F., Pérez, N., Pérez, C., Pareja, L., Abbate, S., Carrasco-Letelier, L., Diaz, S., Mendoza, Y., Cesio, V., Heinzen, H., 2017.
Neonicotinoids transference from the field to the hive by honey bees: Towards a pesticide residues biomonitor. Science of The
Total Environment 581-582, 25-31. https://doi.org/10.1016/j.scitotenv.2017.01.011

Noth, E.M., Katharine Hammond, S., Biging, G.S., Tager, 1.B., 2013. Mapping and modeling airborne urban phenanthrene distribution
using vegetation biomonitoring. Atmospheric Environment 77, 518-524. https: //doi.org/10.1016/j.atmosenv.2013.05.056

Nouira, T, Risso, C., Chouba, L., Budzinski, H., Boussetta, H., 2013. Polychlorinated biphenyls (PCBs) and Polybrominated Diphenyl
Ethers (PBDEs) in surface sediments from Monastir Bay (Tunisia, Central Mediterranean): Occurrence, distribution and
seasonal variations. Chemosphere 93, 487-493. https://doi.org/10.1016/j.chemosphere.2013.06.017

Odabasi, M., Ozgunerge Falay, E., Tuna, G., Altiok, H., Kara, M., Dumanoglu, Y., Bayram, A., Tolunay, D., Elbir, T., 2015. Biomonitoring the
Spatial and Historical Variations of Persistent Organic Pollutants (POPs) in an Industrial Region. Environ. Sci. Technol. 49,
2105-2114. https://doi.org/10.1021/es506316t

Oellig, C., 2016. Acetonitrile extraction and dual-layer solid phase extraction clean-up for pesticide residue analysis in propolis. Journal
of Chromatography A 1445, 19-26. https://doi.org/10.1016/j.chroma.2016.03.082

Ogunkunle, C.0., Ziyath, A.M., Rufaj, S.S., Fatoba, P.0., 2016. Surrogate approach to determine heavy metal loads in a moss species —
Barbula lambaranensis. Journal of King Saud University - Science 28, 193-197. https://doi.org/10.1016/j.jksus.2015.11.002

Oishi, Y., 2018. Comparison of moss and pine needles as bioindicators of transboundary polycyclic aromatic hydrocarbon pollution in
central Japan. Environmental Pollution 234, 330-338. https://doi.org/10.1016/j.envpol.2017.11.035

Okeme, ].0., Saini, A, Yang, C., Zhuy, J., Smedes, F., Klanova, ., Diamond, M.L., 2016. Calibration of polydimethylsiloxane and XAD-Pocket
passive air samplers (PAS) for measuring gas- and particle-phase SVOCs. Atmospheric Environment 143, 202-208.
https://doi.org/10.1016/j.atmosenv.2016.08.023

Olatunji, 0.S., Fatoki, 0.S., Opeolu, B.O., Ximba, B.J., 2014. Determination of polycyclic aromatic hydrocarbons [PAHs] in processed meat
products using gas chromatography - Flame ionization detector. Food Chemistry 156, 296-300.
https://doi.org/10.1016/j.foodchem.2014.01.120

Oliveira, César, Martins, N., Tavares, J., Pio, C., Cerqueira, M., Matos, M,, Silva, H., Oliveira, Cristina, Camdes, F., 2011. Size distribution of
polycyclic aromatic hydrocarbons in a roadway tunnel in Lisbon, Portugal. Chemosphere 83, 1588-1596.
https://doi.org/10.1016/j.chemosphere.2011.01.011

Omwoma, S., Mbithi, B.M., Pandelova, M., Ssebugere, P., Lalah, ].0., Wang, Y., Bi, Y., Henkelmann, B., Schramm, K.-W., 2019. Comparative
exposomics of persistent organic pollutants (PCBs, OCPs, MCCPs and SCCPs) and polycyclic aromatic hydrocarbons (PAHs) in
Lake Victoria (Africa) and Three Gorges Reservoir (China). Science of The Total Environment 695, 133789.
https://doi.org/10.1016/j.scitotenv.2019.133789

Ong, C.B, Ng, L.Y., Mohammad, A.W., 2018. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and
applications. Renewable and Sustainable Energy Reviews 81, 536-551. https://doi.org/10.1016/j.rser.2017.08.020

Orisakwe, O.E., Igweze, Z.N., Okolo, K.O., Udowelle, N.A., 2015. Human health hazards of poly aromatic hydrocarbons in Nigerian
smokeless tobacco. Toxicology Reports 2, 1019-1023. https://doi.org/10.1016/j.toxrep.2015.07.011

Ostiguy, N., Drummond, F.A., Aronstein, K., Eitzer, B., Ellis, ].D., Spivak, M., Sheppard, W.S., 2019. Honey Bee Exposure to Pesticides: A
Four-Year Nationwide Study. Insects 10. https://doi.org/10.3390/insects10010013

64


https://doi.org/10.1016/j.talanta.2014.04.045
https://doi.org/10.1016/j.tox.2018.07.014
https://doi.org/10.1016/j.jchromb.2016.04.036
https://doi.org/10.1016/j.chroma.2017.07.007
https://doi.org/10.1016/j.chemosphere.2020.126441
https://doi.org/10.1016/j.foodchem.2020.127943
https://doi.org/10.1016/j.jfca.2019.103314
https://doi.org/10.1016/j.envres.2015.10.012
https://doi.org/10.1016/j.emcon.2020.08.002
https://doi.org/10.1016/j.foodchem.2019.125188
https://doi.org/10.1371/journal.pone.0132491
https://doi.org/10.1016/j.emcon.2016.02.001
https://doi.org/10.3389/fpubh.2016.00148
https://doi.org/10.1016/j.scitotenv.2017.01.011
https://doi.org/10.1016/j.atmosenv.2013.05.056
https://doi.org/10.1016/j.chemosphere.2013.06.017
https://doi.org/10.1021/es506316t
https://doi.org/10.1016/j.chroma.2016.03.082
https://doi.org/10.1016/j.jksus.2015.11.002
https://doi.org/10.1016/j.envpol.2017.11.035
https://doi.org/10.1016/j.atmosenv.2016.08.023
https://doi.org/10.1016/j.foodchem.2014.01.120
https://doi.org/10.1016/j.chemosphere.2011.01.011
https://doi.org/10.1016/j.scitotenv.2019.133789
https://doi.org/10.1016/j.rser.2017.08.020
https://doi.org/10.1016/j.toxrep.2015.07.011
https://doi.org/10.3390/insects10010013

Osyczka, P., Boron, P., Lenart-Boron, A, Rola, K., 2018. Modifications in the structure of the lichen Cladonia thallus in the aftermath of
habitat contamination and implications for its heavy-metal accumulation capacity. Environ Sci Pollut Res 25, 1950-1961.
https://doi.org/10.1007 /s11356-017-0639-1

Pacitto, A, Stabile, L., Scungio, M., Rizza, V., Buonanno, G., 2018. Characterization of airborne particles emitted by an electrically heated
tobacco smoking system. Environmental Pollution 240, 248-254. https://doi.org/10.1016/j.envpol.2018.04.137

Panio, A., Fabbri Corsarini, S., Bruno, A,, Lasagni, M., Labra, M., Saliu, F., 2020. Determination of phthalates in fish fillets by liquid
chromatography tandem mass spectrometry (LC-MS/MS): A comparison of direct immersion solid phase microextraction
(SPME) versus ultrasonic assisted solvent extraction (UASE). Chemosphere 255, 127034.
https://doi.org/10.1016 /j.chemosphere.2020.127034

Panuwet, P., Hunter, R.E., D’Souza, P.E., Chen, X,, Radford, S.A., Cohen, J.R., Marder, M.E., Kartavenka, K., Ryan, P.B., Barr, D.B., 2016.
Biological Matrix Effects in Quantitative Tandem Mass Spectrometry-Based Analytical Methods: Advancing Biomonitoring. Crit
Rev Anal Chem 46, 93-105. https://doi.org/10.1080/10408347.2014.980775

Pariatamby, A., Kee, Y.L., 2016. Persistent Organic Pollutants Managementand Remediation. Procedia Environmental Sciences 31,842~
848. https://doi.org/10.1016/j.proenv.2016.02.093

Park, M.G., Blitzer, E.J,, Gibbs, J., Losey, .E., Danforth, B.N., 2015. Negative effects of pesticides on wild bee communities can be buffered
by landscape context. Proc Biol Sci 282. https://doi.org/10.1098 /rspb.2015.0299

Parmar, T.K,, Rawtani, D., Agrawal, Y.K., 2016. Bioindicators: the natural indicator of environmental pollution. Frontiers in Life Science
9,110-118. https://doi.org/10.1080/21553769.2016.1162753

Parrilla Vazquez, P., Ferrer, C., Martinez Bueno, M.]., Ferndndez-Alba, A.R., 2019. Pesticide residues in spices and herbs: Sample
preparation methods and determination by chromatographic techniques. TrAC Trends in Analytical Chemistry 115, 13-22.
https://doi.org/10.1016/j.trac.2019.03.022

Peters, C.E,, Parent, M.-E., Harris, S.A., Bogaert, L., Latifovic, L., Kachuri, L., Villeneuve, P.J., 2018. Occupational Exposure to Diesel and
Gasoline Engine Exhausts and the Risk of Kidney Cancer in Canadian Men. Ann Work Expo Health 62, 978-989.
https://doi.org/10.1093 /annweh/wxy059

Pies, C., Hoffmann, B., Petrowsky, J., Yang, Y., Ternes, T.A., Hofmann, T., 2008. Characterization and source identification of polycyclic
aromatic hydrocarbons (PAHs) in river bank soils. Chemosphere 72, 1594-1601.
https://doi.org/10.1016/j.chemosphere.2008.04.021

Pineda-Martinez, L.F., Carbajal, N., Campos-Ramos, A., Aragén-Pifia, A., Garcia, A.R., 2014. Dispersion of atmospheric coarse particulate
matter in the San Luis Potosi, Mexico, urban area. Atmésfera 27, 5-19. https://doi.org/10.1016/S0187-6236(14)71097-5

Piri-Moghadam, H., Ahmadj, F., Pawliszyn, J., 2016. A critical review of solid phase microextraction for analysis of water samples. TrAC
Trends in Analytical Chemistry, On-site and In-vivo Instrumentation and Applications 85, 133-143.
https://doi.org/10.1016/j.trac.2016.05.029

Proum, S, Santos, ].H., Lim, L.H., Marshall, D.J., 2016. Metal accumulation in the tissues and shells of Ind othais gradata snails inhabiting
soft and hard substrata in an acidified tropical estuary (Brunei, South East Asia). Regional Studies in Marine Science 8, 487 -
497. https://doi.org/10.1016/j.rsma.2016.03.010

Qiu, Y.-W,, Zeng, E.Y,, Qiu, H,, Yu, K,, Cai, S., 2017. Bioconcentration of polybrominated diphenyl ethers and organochlorine pesticides
in algae is an important contaminant route to higher trophic levels. Science of The Total Environment 579, 1885-1893.
https://doi.org/10.1016/j.scitotenv.2016.11.192

Raaschou-Nielsen, O., Beelen, R., Wang, M., Hoek, G., Andersen, Z.]., Hoffmann, B., Stafoggia, M., Samolij, E., Weinmayr, G., Dimakopoulou,
K., Nieuwenhuijsen, M., Xun, W.W,, Fischer, P, Eriksen, K.T., Sgrensen, M., Tjgnneland, A., Ricceri, F.,, de Hoogh, K., Key, T., Eeftens,
M., Peeters, P.H., Bueno-de-Mesquita, H.B., Meliefste, K., Oftedal, B., Schwarze, P.E., Nafstad, P., Galassi, C., Migliore, E., Ranzi, A.,
Cesaroni, G., Badaloni, C., Forastiere, F., Penell, ., De Faire, U., Korek, M., Pedersen, N., Ostenson, C.-G., Pershagen, G., Fratiglioni,
L., Concin, H., Nagel, G., Jaensch, A, Ineichen, A,, Naccarati, A, Katsoulis, M., Trichpoulou, A., Keuken, M., Jedynska, A., Kooter,
.M., Kukkonen, |, Brunekreef, B., Sokhi, R.S., Katsouyanni, K., Vineis, P., 2016. Particulate matter air pollution components and
risk for lung cancer. Environment International 87, 66-73. https://doi.org/10.1016/j.envint.2015.11.007

Rahman, Md.M,, Lee, H.S., Abd El-Aty, A.M,, Kabir, Md.H., Chung, H.S,, Park, ].-H., Kim, M.-R,, Kim, J., Shin, H.-C., Shin, S.S., Shim, J.-H., 2018.
Determination of endrin and 6-keto endrin in five food products of animal origin using GC-pECD: A modified QUEChERS
approach to traditional detection. Food Chemistry 263, 59-66. https://doi.org/10.1016/j.foodchem.2018.04.099

Raina-Fulton, R, Xie, Z., 2017. Sample Preparation Methods for Pesticide Analysis in Food Commodities, Biological and Environment
Matrices. Ideas and Applications Toward Sample Preparation for Food and Beverage Analysis.
https://doi.org/10.5772 /intechopen.69791

Rajski, L., Lozano, A, Uclés, A, Ferrer, C., Fernandez-Alba, A.R, 2013. Determination of pesticide residues in high oil vegetal
commodities by using various multi-residue methods and clean-ups followed by liquid chromatography tandem mass
spectrometry. Journal of Chromatography A 1304, 109-120. https://doi.org/10.1016/j.chroma.2013.06.070

Ramli, N.H., Yusup, S., Quitain, A.T., Johari, K., Kueh, B.W.B., 2019. Optimization of saponin extracts using microwave-assisted extraction
as a sustainable biopesticide to reduce Pomacea canaliculata population in paddy cultivation. Sustainable Chemistry and
Pharmacy 11, 23-35. https://doi.org/10.1016/j.scp.2018.12.002

Randoll, R, Wondrak, W., Schletz, A., 2014. Dielectric strength and thermal performance of PCB-embedded power electronics.
Microelectronics Reliability, SI: ESREF 2014 54, 1872-1876. https://doi.org/10.1016/j.microrel.2014.07.139

Rasheed, T., Bilal, M., Nabeel, F., Adeel, M., Igbal, H.M.N., 2019. Environmentally-related contaminants of high concern: Potential sources
and analytical modalities for detection, quantification, and treatment. Environment International 122, 52-66.
https://doi.org/10.1016/j.envint.2018.11.038

Ratola, N, Alves, A, Santos, L., Lacorte, S., 2011a. Pine needles as passive bio-samplers to determine polybrominated diphenyl ethers.
Chemosphere 85, 247-252. https://doi.org/10.1016/j.chemosphere.2011.06.005

Ratola, N., Amigo, J.M., Oliveira, M.S.N,, Araujo, R, Silva, J.A., Alves, A,, 2011b. Differences between Pinus pinea and Pinus pinaster as
bioindicators of polycyclic aromatic hydrocarbons. Environmental and Experimental Botany 72, 339-347.
https://doi.org/10.1016/j.envexpbot.2011.04.012

Ratola, N,, Homem, V., Silva, J.A., Araujo, R., Amigo, ].M., Santos, L., Alves, A., 2014. Biomonitoring of pesticides by pine needles —
Chemical scoring, risk of exposure, levels and trends. Science of The Total Environment 476-477, 114-124.
https://doi.org/10.1016/j.scitotenv.2014.01.003

Ravindra, K., Sokhi, R., Van Grieken, R., 2008. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and
regulation. Atmospheric Environment 42, 2895-2921. https://doi.org/10.1016/j.atmosenv.2007.12.010

65


https://doi.org/10.1007/s11356-017-0639-1
https://doi.org/10.1016/j.envpol.2018.04.137
https://doi.org/10.1016/j.chemosphere.2020.127034
https://doi.org/10.1080/10408347.2014.980775
https://doi.org/10.1016/j.proenv.2016.02.093
https://doi.org/10.1098/rspb.2015.0299
https://doi.org/10.1080/21553769.2016.1162753
https://doi.org/10.1016/j.trac.2019.03.022
https://doi.org/10.1093/annweh/wxy059
https://doi.org/10.1016/j.chemosphere.2008.04.021
https://doi.org/10.1016/S0187-6236(14)71097-5
https://doi.org/10.1016/j.trac.2016.05.029
https://doi.org/10.1016/j.rsma.2016.03.010
https://doi.org/10.1016/j.scitotenv.2016.11.192
https://doi.org/10.1016/j.envint.2015.11.007
https://doi.org/10.1016/j.foodchem.2018.04.099
https://doi.org/10.5772/intechopen.69791
https://doi.org/10.1016/j.chroma.2013.06.070
https://doi.org/10.1016/j.scp.2018.12.002
https://doi.org/10.1016/j.microrel.2014.07.139
https://doi.org/10.1016/j.envint.2018.11.038
https://doi.org/10.1016/j.chemosphere.2011.06.005
https://doi.org/10.1016/j.envexpbot.2011.04.012
https://doi.org/10.1016/j.scitotenv.2014.01.003
https://doi.org/10.1016/j.atmosenv.2007.12.010

Reddy, A.V.B., Moniruzzaman, M., Aminabhavi, T.M., 2019. Polychlorinated biphenyls (PCBs) in the environment: Recent updates on
sampling, pretreatment, cleanup technologies and their analysis. Chemical Engineering Journal 358, 1186-1207.
https://doi.org/10.1016/j.cej.2018.09.205

Rockwood, A.L., Kushnir, M.M,, Clarke, N.J., 2018. 2 - Mass Spectrometry, in: Rifai, N., Horvath, A.R., Wittwer, C.T. (Eds.), Principles and
Applications of Clinical Mass Spectrometry. Elsevier, pp. 33-65. https://doi.org/10.1016/B978-0-12-816063-3.00002-5

Rodrigues, A.A.Z.,, Neves, A.A,, Queiroz, M.E.L.R. de, Oliveira, A.F. de, Prates, L.H.F., Morais, E.H. da C., 2018. Optimization and validation
ofthe salting-out assisted liquid-liquid extraction method and analysis by gas chromatography to determine pesticides in water.
Eclética Quimica 43, 11-21.

Rodriguez Lopez, D., Ahumada, D.A,, Diaz, A.C., Guerrero, J.A., 2014. Evaluation of pesticide residues in honey from different geographic
regions of Colombia. Food Control 37, 33-40. https://doi.org/10.1016/j.foodcont.2013.09.011

Rola, K, Lenart-Boron, A., Boron, P., Osyczka, P.,, 2021. Heavy-metal pollution induces changes in the genetic composition and
anatomical properties of photobionts in pioneer lichens colonising post-industrial habitats. Science of The Total Environment
750, 141439 https://doi.org/10.1016/j.scitotenv.2020.141439

Rola, K., Osyczka, P., 2018. Cryptogamic communities as a useful bioindication tool for estimating the degree of soil pollution with
heavy metals. Ecological Indicators 88, 454-464. https://doi.org/10.1016/j.ecolind.2018.01.013

Roll, I.B., Halden, R.U,, 2016. Critical Review of Factors Governing Data Quality of Integrative Samplers Employed in Environmental
Water Monitoring. Water Res 94, 200-207. https://doi.org/10.1016/j.watres.2016.02.048

Roumié, M., Saliba, N., Nsouli, B., Younes, M., Noun, M., Massoud, R., 2011. PIXE identification of fine and coarse particles of aerosol
samples and their distribution across Beirut. Nuclear Instruments and Methods in Physics Research Section B: Beam
Interactions with Materials and Atoms, Proceedings of the 10th European Conference on Accelerators in Applied Research and
Technology (ECAART10) 269, 3106-3110. https://doi.org/10.1016/j.nimb.2011.04.081

Ruiz del Castillo, M.L., Rodriguez-Valenciano, M., Flores, G., Blanch, G.P., 2019. New method based on Solid Phase Microextraction and
Multidimensional gas chromatography-mass spectrometry to determine pesticides in strawberry jam. LWT 99, 283-290.
https://doi.org/10.1016/j.lwt.2018.09.063

Ruiz-Suarez, N., Boada, L.D., Henriquez-Hernandez, L.A., Gonzalez-Moreo, F., Sudrez-Pérez, A., Camacho, M., Zumbado, M., Almeida-
Gonzalez, M., del Mar Travieso-Aja, M., Luzardo, O.P., 2015. Continued implication of the banned pesticides carbofuran and
aldicarb in the poisoning of domestic and wild animals of the Canary Islands (Spain). Science of The Total Environment 505,
1093-1099. https://doi.org/10.1016/j.scitotenv.2014.10.093

Rusin, M., Dziubanek, G., Marchwinska-Wyrwat, E., Cwielqg—Drabek, M., Razzaghi, M., Piekut, A., 2019. PCDDs, PCDFs and PCBs in locally
produced foods as health risk factors in Silesia Province, Poland. Ecotoxicology and Environmental Safety 172, 128-135.
https://doi.org/10.1016/j.ecoenv.2019.01.052

Sabarwal, A., Kumar, K., Singh, R.P., 2018. Hazardous effects of chemical pesticides on human health-Cancer and other associated
disorders. Environmental Toxicology and Pharmacology 63, 103-114. https://doi.org/10.1016/j.etap.2018.08.018

Saburouh, N, Jabbari, A, Parastar, H., 2020. An innovative chemometric approach for simultaneous determination of polycyclic
aromatic hydrocarbons in oil-contaminated waters based on dispersive micro-solid phase extraction followed by gas
chromatography. Microchemical Journal 159, 105407. https://doi.org/10.1016/j.microc.2020.105407

Sadowska, M., Gogolewska, H., Pawelec, N., Sentkowska, A., Krasnodebska-Ostrega, B., 2019. Comparison of the contents of selected
elements and pesticides in honey bees with regard to their habitat. Environ Sci Pollut Res Int 26, 371-380.
https://doi.org/10.1007 /s11356-018-3612-8

Sajid, M., Nazal, M.K,, Ihsanullah, I., 2020. Novel materials for dispersive (micro) solid-phase extraction of polycyclic aromatic
hydrocarbons in environmental water samples: A review. Analytica Chimica Acta S0003267020308023.
https://doi.org/10.1016/j.aca.2020.07.064

Sakin, A.E., Esen, F., Tasdemir, Y., 2017. Effects of sampling interval on the passive air sampling of atmospheric PCBs levels. Journal of
Environmental Science and Health, Part A 52, 673-679. https://doi.org/10.1080/10934529.2017.1297148

Salameh, P.R,, Baldj, I., Brochard, P., Saleh, B.A., 2004. Pesticides in Lebanon: a knowledge, attitude, and practice study. Environmental
Research 94, 1-6. https://doi.org/10.1016/S0013-9351(03)00092-6

Salemi, A., Khaleghifar, N., Mirikaram, N., 2019. Optimization and comparison of membrane-protected micro-solid-phase extraction
coupled with dispersive liquid-liquid microextraction for organochlorine pesticides using three different sorbents.
Microchemical Journal 144, 215-220. https://doi.org/10.1016/j.microc.2018.09.011

Salo, H., Bu¢ko, M.S., Vaahtovuo, E., Limo, J., Mdkinen, ., Pesonen, L.J., 2012. Biomonitoring of air pollution in SW Finlan d by magnetic
and chemical measurements of moss bags and lichens. Journal of Geochemical Exploration 115, 69-81.
https://doi.org/10.1016/j.gexplo.2012.02.009

Sanchez-Bayo, F. Goka, K., 2014. Pesticide Residues and Bees - A Risk Assessment. PLOS ONE 9, e94482.
https://doi.org/10.1371 /journal.pone.0094482

Santibafiez-Andrade, M., Quezada-Maldonado, E.M., Osornio-Vargas, A., Sanchez-Pérez, Y., Garcia-Cuellar, C.M., 2017. Air pollution and
genomic instability: The role of particulate matter in lung carcinogenesis. Environmental Pollution 229, 412-422.
https://doi.org/10.1016/j.envpol.2017.06.019

Sari, M.F,, Esen, F., Tasdemir, Y., 2021. Levels of polychlorinated biphenyls (PCBs) in honeybees and bee products and their evaluation
with ambient air concentrations. Atmospheric Environment 244, 117903. https://doi.org/10.1016/j.atmosenv.2020.117903

Saraji, M., Jafari, M.T., Mossaddegh, M., 2016. Carbon nanotubes@silicon dioxide nanohybrids coating for solid-phase microextraction
of organophosphorus pesticides followed by gas chromatography-corona discharge ion mobility spectrometric detection.
Journal of Chromatography A 1429, 30-39. https://doi.org/10.1016/j.chroma.2015.12.008

Sari, M.F,, Esen, F., Tasdemir, Y., 2021. Levels of polychlorinated biphenyls (PCBs) in honeybees and bee products and their evaluation
with ambient air concentrations. Atmospheric Environment 244, 117903. https://doi.org/10.1016/j.atmosenv.2020.117903

Scaramozzino, P., Battisti, S., Desiato, R., Tamba, M., Fedrizzi, G., Ubaldi, A., Neri, B., Abete, M.C., Ru, G., 2019. Application of a risk-based
standardized animal biomonitoring approach to contaminated sites. Environ  Monit Assess 191.
https://doi.org/10.1007 /s10661-019-7653-3

Schikowski, T., Altug, H., 2020. The role of air pollution in cognitive impairment and decline. Neurochemistry International 136,
104708. https://doi.org/10.1016/j.neuint.2020.104708

Scopus preview - Scopus - Document details [WWW Document], n.d. https://doi.org/10.1016/j.envpol.2007.09.004

Sekhotha, M.M., Monyeki, K.D., Sibuyi, M.E., 2016. Exposure to Agrochemicals and Cardiovascular Disease: A Review. Int ] Environ Res
Public Health 13. https://doi.org/10.3390/ijerph13020229

66


https://doi.org/10.1016/j.cej.2018.09.205
https://doi.org/10.1016/B978-0-12-816063-3.00002-5
https://doi.org/10.1016/j.foodcont.2013.09.011
https://doi.org/10.1016/j.scitotenv.2020.141439
https://doi.org/10.1016/j.ecolind.2018.01.013
https://doi.org/10.1016/j.watres.2016.02.048
https://doi.org/10.1016/j.nimb.2011.04.081
https://doi.org/10.1016/j.lwt.2018.09.063
https://doi.org/10.1016/j.scitotenv.2014.10.093
https://doi.org/10.1016/j.ecoenv.2019.01.052
https://doi.org/10.1016/j.etap.2018.08.018
https://doi.org/10.1016/j.microc.2020.105407
https://doi.org/10.1007/s11356-018-3612-8
https://doi.org/10.1016/j.aca.2020.07.064
https://doi.org/10.1080/10934529.2017.1297148
https://doi.org/10.1016/S0013-9351(03)00092-6
https://doi.org/10.1016/j.microc.2018.09.011
https://doi.org/10.1016/j.gexplo.2012.02.009
https://doi.org/10.1371/journal.pone.0094482
https://doi.org/10.1016/j.envpol.2017.06.019
https://doi.org/10.1016/j.atmosenv.2020.117903
https://doi.org/10.1016/j.chroma.2015.12.008
https://doi.org/10.1016/j.atmosenv.2020.117903
https://doi.org/10.1007/s10661-019-7653-3
https://doi.org/10.1016/j.neuint.2020.104708
https://doi.org/10.1016/j.envpol.2007.09.004
https://doi.org/10.3390/ijerph13020229

Sgargi, D., Adam, B., Budnik, L.T., Dinelli, G., Moldovan, H.R., Perry, M.]., Scheepers, P.T]., Schliinssen, V., Teixeira, ].P., Mandrioli, D.,
Belpoggi, F., 2020. Protocol for a systematic review and meta-analysis of human exposure to pesticide residues in honey and
other bees’ products. Environmental Research 186, 109470. https://doi.org/10.1016/j.envres.2020.109470

Shaltout, A.A., Hassan, S.K., Karydas, A.G., Zaki, Z.1., Mostafa, N.Y., Kregsamer, P., Wobrauschek, P., Streli, C.,2018. Com parative elemental
analysis of fine particulate matter (PM 2.5 ) from industrial and residential areas in Greater Cairo-Egypt by means of a multi-
secondary target energy dispersive X-ray fluorescence spectrometer. Spectrochimica Acta Part B: Atomic Spectroscopy 145,
29-35. https://doi.org/10.1016/j.sab.2018.04.003

Shamsipur, M. Yazdanfar, N. Ghambarian, M., 2016. Combination of solid-phase extraction with dispersive liquid-liquid
microextraction followed by GC-MS for determination of pesticide residues from water, milk, honey and fruit juice. Food
Chemistry 204, 289-297. https://doi.org/10.1016 /j.foodchem.2016.02.090

Shendy, A.H., Al-Ghobashy, M.A., Gad Alla, S.A., Lotfy, H.M., 2016. Development and validation of a modified QUuEChERS protocol coupled
to LC-MS/MS for simultaneous determination of multi-class antibiotic residues in honey. Food Chemistry 190, 982-989.
https://doi.org/10.1016 /j.foodchem.2015.06.048

Shihadeh, A, Azar, S., Antonios, C., Haddad, A., 2004. Towards a topographical model of narghile water-pipe café smoking: a pilot study
in a high socioeconomic status neighborhood of Beirut, Lebanon. Pharmacology Biochemistry and Behavior 79, 75-82.
https://doi.org/10.1016/j.pbb.2004.06.005

Shmuel, S., White, A.J., Sandler, D.P., 2017. Residential exposure to vehicular traffic-related air pollution during childhood and breast
cancer risk. Environmental Research 159, 257-263. https://doi.org/10.1016/j.envres.2017.08.015

Silva, A.S., Aragjo, S.B., Souza, D.C,, Silva, F.A.S. e, 2012. Study of the Cu, Mn, Pb and Zn dynamics in soil, plants and bee pollen from the
region of Teresina (PI), Brazil. Anais da Academia Brasileira de Ciéncias 84, 881-889. https://doi.org/10.1590/S0001-
37652012005000065

Silva, B, Gonzaga, L.V,, Fett, R,, Oliveira Costa, A.C., 2019. Improved strategy based on QUEChERS method followed by HPLC/DAD for
the quantification of phenolic compounds from Mimosa scabrella Bentham honeydew honeys. LWT 116, 108471.
https://doi.org/10.1016/j.lwt.2019.108471

Silva, J.A,, Ratola, N., Ramos, S., Homem, V., Santos, L., Alves, A., 2015. An analytical multi-residue approach for the determination of
semi-volatile organic pollutants in pine needles. Analytica Chimica Acta 858, 24-31. https://doi.org/10.1016/j.aca.2014.12.042

Skorbitowicz, E., Skorbitowicz, M., Cie$luk, 1., 2018. Bees as Bioindicators of Environmental Pollution with Metals in an Urban Area.
Journal of Ecological Engineering 19, 229-234. https://doi.org/10.12911/22998993 /85738

Slezakova, K., Castro, D., Delerue-Matos, C., Alvim-Ferraz, M. da C., Morais, S., Pereira, M. do C., 2013. Impact of vehicular traffic
emissions on particulate-bound PAHs: Levels and associated health risks. Atmospheric Research 127, 141-147.
https://doi.org/10.1016/j.atmosres.2012.06.009

Soares, K.L., Cerqueira, M.B.R,, Caldas, S.S., Primel, E.G., 2017. Evaluation of alternative environmentally friendly matrix solid phase
dispersion solid supports for the simultaneous extraction of 15 pesticides of different chemical classes from drinking water
treatment sludge. Chemosphere 182, 547-554. https://doi.org/10.1016 /j.chemosphere.2017.05.062

Souza Tette, P.A., Rocha Guidi, L., de Abreu Gléria, M.B., Fernandes, C., 2016. Pesticides in honey: A review on chromatographic
analytical methods. Talanta 149, 124-141. https://doi.org/10.1016/j.talanta.2015.11.045

Song, S, Xue, |, Lu, Y., Zhang, H., Wang, C., Cao, X,, Li, Q., 2018. Are unintentionally produced polychlorinated biphenyls the main source
of polychlorinated biphenyl occurrence in soils? Environmental Pollution 243, 492-500.
https://doi.org/10.1016/j.envpol.2018.09.027

Srivastava, K., Bhattacharya, P., 2016. Lichen as a Bio-Indicator Tool for Assessment of Climate and Air Pollution Vulnerability: Review.
International Research Journal of Environment Sciences 4, 2319-1414.

Srogi, K., 2007. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett 5, 169-195.
https://doi.org/10.1007 /s10311-007-0095-0

Stader, C., Deventer, M.].,, Klemm, O., Achten, C., 2016. Turbulent transport of particle-bound PAHs: A feasibility study combining GC-
APLI-MS and eddy covariance. Atmospheric Pollution Research 7, 603-610. https://doi.org/10.1016/j.apr.2016.02.005

Stocka, J., Tankiewicz, M., Biziuk, M., Namiesnik, J., 2011. Green Aspects of Techniques for the Determination of Currently Used
Pesticides in Environmental Samples. Int ] Mol Sci 12, 7785-7805. https://doi.org/10.3390/ijms12117785

Sturba, L., Liberatori, G., Vannuccini, M.L., Ancora, S., Corsi, I, 2018. Uptake and biological responses in land snail Cornu aspersum
exposed to vaporized CdCl2. Ecotoxicology and Environmental Safety 148, 377-383.
https://doi.org/10.1016/j.ecoenv.2017.10.050

Suganthi, A., Bhuvaneswari, K., Ramya, M., 2018. Determination of neonicotinoid insecticide residues in sugarcane juice using LCMSMS.
Food Chemistry 241, 275-280. https://doi.org/10.1016/j.foodchem.2017.08.098

Suman, S., Sinha, A,, Tarafdar, A., 2016. Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source id entification
and soil toxicity assessment in urban traffic soil of Dhanbad, India. Science of The Total Environment 545-546, 353-360.
https://doi.org/10.1016/j.scitotenv.2015.12.061

Sun, C,, Tan, H.,, Zhang, Y., Zhang, H., 2016. Phenolics and abscisic acid identified in acacia honey comparing different SPE cartridges
coupled with HPLC-PDA. Journal of Food Composition and Analysis 53, 91-101. https://doi.org/10.1016/j.jfca.2016.08.006

Sun, Y., Wy, S., 2020. Analysis of PAHs in oily systems using modified QUEChERS with EMR-Lipid T clean-up followed by GC-QqQ-MS.
Food Control 10.

Szulejko, J.E., Kim, K.-H., Brown, R.J.C., Bae, M.-S., 2014. Review of progress in solvent-extraction techniques for the determination of
polyaromatic hydrocarbons as airborne pollutants. TrAC Trends in Analytical Chemistry 61, 40-48.
https://doi.org/10.1016/j.trac.2014.07.001

Tan, ], Lu, X, Fu, L., Yang, G., Chen, J., 2019. Quantification of CI-PAHs and their parent compounds in fish by improved ASE method and
stable isotope dilution GC-MS. Ecotoxicology and Environmental Safety 186, 109775.
https://doi.org/10.1016/j.ecoenv.2019.109775

Tang, D., Liu, X,, He, H., Cui, Z., Gan, H., Xia, Z., 2020. Distribution, sources and ecological risks of organochlorine compounds (DDTs,
HCHs and PCBs) in surface sediments from the Pearl River Estuary, China. Marine Pollution Bulletin 152, 110942.
https://doi.org/10.1016 /j.marpolbul.2020.110942

Tang, ], Ma, S, Liu, R, Yue, C, Li, G, Yu, Y., Yang, Y., An, T., 2020. The pollution profiles and human exposure risks of chlorinated and
brominated PAHs in indoor dusts from e-waste dismantling workshops: Comparison of GC-MS, GC-MS/MS and GC X GC-
MS/MS determination methods. Journal of Hazardous Materials 394, 122573. https://doi.org/10.1016/j.jhazmat.2020.122573

Tang, R, Luo, J., Yang, P., She, J., Chen, Y., Gong, Y., Zhou, ]., 2014. Trace metals of needles and litter in timberline forests in the Eastern
of Tibetan Plateau, China. Ecological Indicators 45, 669-676. https://doi.org/10.1016/j.ecolind.2014.06.003

67


https://doi.org/10.1016/j.envres.2020.109470
https://doi.org/10.1016/j.sab.2018.04.003
https://doi.org/10.1016/j.foodchem.2016.02.090
https://doi.org/10.1016/j.foodchem.2015.06.048
https://doi.org/10.1016/j.pbb.2004.06.005
https://doi.org/10.1016/j.envres.2017.08.015
https://doi.org/10.1590/S0001-37652012005000065
https://doi.org/10.1590/S0001-37652012005000065
https://doi.org/10.1016/j.lwt.2019.108471
https://doi.org/10.1016/j.aca.2014.12.042
https://doi.org/10.12911/22998993/85738
https://doi.org/10.1016/j.atmosres.2012.06.009
https://doi.org/10.1016/j.chemosphere.2017.05.062
https://doi.org/10.1016/j.talanta.2015.11.045
https://doi.org/10.1016/j.envpol.2018.09.027
https://doi.org/10.1007/s10311-007-0095-0
https://doi.org/10.1016/j.apr.2016.02.005
https://doi.org/10.3390/ijms12117785
https://doi.org/10.1016/j.ecoenv.2017.10.050
https://doi.org/10.1016/j.foodchem.2017.08.098
https://doi.org/10.1016/j.scitotenv.2015.12.061
https://doi.org/10.1016/j.jfca.2016.08.006
https://doi.org/10.1016/j.trac.2014.07.001
https://doi.org/10.1016/j.ecoenv.2019.109775
https://doi.org/10.1016/j.marpolbul.2020.110942
https://doi.org/10.1016/j.jhazmat.2020.122573
https://doi.org/10.1016/j.ecolind.2014.06.003

Tang, X., Hashmi, M.Z., Zeng, B., Yang, |, Shen, C., 2015. Application of iron-activated persulfate oxidation for the degradation of PCBs
in soil. Chemical Engineering Journal 279, 673-680. https://doi.org/10.1016/j.cej.2015.05.059

Tang-Péronard, J.L., Heitmann, B.L., Jensen, T.K,, Vinggaard, A.M., Madsbad, S., Steuerwald, U., Grandjean, P., Weihe, P., Nielsen, F.,
Andersen, H.R., 2015. Prenatal exposure to persistent organochlorine pollutants is associated with high insulin levels in 5-year-
old girls. Environmental Research 142, 407-413. https://doi.org/10.1016/j.envres.2015.07.009

Tarty, S., Angelier, F., Wingfield, ].C., Bustamante, P., Labadie, P., Budzinski, H.,, Weimerskirch, H., Bustnes, J.0., Chastel, 0., 2015.
Corticosterone, prolactin and egg neglect behavior in relation to mercury and legacy POPs in a long-lived Antarctic bird. Science
of The Total Environment 505, 180-188. https://doi.org/10.1016/j.scitotenv.2014.10.008

Tavalieri, Y.E., Galoppo, G.H., Canesini, G., Luque, E.H., Mufioz-de-Toro, M.M,, 2020. Effects of agricultural pesticides on the reproductive
system of aquatic wildlife species, with crocodilians as sentinel species. Molecular and Cellular Endocrinology 110918.
https://doi.org/10.1016/j.mce.2020.110918

Tette, P.A.S,, da Silva Oliveira, F.A., Pereira, E.N.C,, Silva, G., de Abreu Gléria, M.B., Fernandes, C., 2016. Multiclass method for pesticides
quantification in honey by means of modified QuEChERS and UHPLC-MS/MS. Food Chemistry 211, 130-139.
https://doi.org/10.1016 /j.foodchem.2016.05.036

Tian, F., Qiao, C, Luo, |, Guo, L., Pang, T., Pang, R, Li, ], Wang, C., Wang, R,, Xie, H., 2020. Development of a fast mu lti-residue method
for the determination of succinate dehydrogenase inhibitor fungicides in cereals, vegetables and fruits by modified QuEChERS
and UHPLC-MS/MS. Journal of Chromatography B 1152, 122261. https://doi.org/10.1016/j.jchromb.2020.122261

Tibbetts, ].H., 2015. Managing Marine Plastic Pollution: Policy Initiatives to Address Wayward Waste. Environ Health Perspect 123,
A90-A93. https://doi.org/10.1289/ehp.123-A90

Tiwari, G., Tiwari, R, 2010. Bioanalytical method validation: An updated review. Pharm Methods 1, 25-38.
https://doi.org/10.4103/2229-4708.72226

Tobiszewski, M., Namie$nik, ], 2012. PAH diagnostic ratios for the identification of pollution emission sources. Environmental
Pollution 162, 110-1109. https://doi.org/10.1016/j.envpol.2011.10.025

Tuduri, L., Millet, M., Briand, 0., Montury, M., 2012. Passive air sampling of semi-volatile organic compounds. TrAC Trends in Analytical
Chemistry 31, 38-49. https: //doi.org/10.1016/j.trac.2011.08.007

Turkyilmaz, A., Sevik, H., Cetin, M., 2018. The use of perennial needles as biomonitors for recently accumulated heavy metals.
Landscape Ecol Eng 14, 115-120. https://doi.org/10.1007 /s11355-017-0335-9

Tuzimski, T., Rejczak, T., 2016. Application of HPLC-DAD after SPE/QuEChERS with ZrO 2 -based sorbent in d-SPE clean-up step for
pesticide analysis in edible oils. Food Chemistry 190, 71-79. https://doi.org/10.1016/j.foodchem.2015.05.072

Tuzimski, T., Rejczak, T., 2014. Determination of Pesticides in Sunflower Seeds by High-Performance Liquid Chromatography Coupled
with a Diode Array Detector. ] AOAC Int 97, 1012-1020. https://doi.org/10.5740/jaoacint.SGETuzimski

Vaccher, V., Ingenbleek, L., Adegboye, A., Hossou, S.E., Koné, A.Z., Oyedele, A.D., Kisito, C.S.K.J., Dembélé, Y.K,, Hu, R., Adbel Malak, I.,
Cariou, R,, Vénisseau, A., Veyrand, B, Marchand, P., Eyangoh, S., Verger, P., Dervilly-Pinel, G., Leblanc, J.-C., Le Bizec, B., 2020.
Levels of persistent organic pollutants (POPs) in foods from the first regional Sub-Saharan Africa Total Diet Study. Environment
International 135, 105413. https://doi.org/10.1016/j.envint.2019.105413

Van der Wat, L., Forbes, P.B.C., 2015. Lichens as biomonitors for organic air pollutants. TrAC Trends in Analytical Chemistry 64, 165-
172. https://doi.org/10.1016/j.trac.2014.09.006

Vandyck, T., Keramidas, K, Kitous, A., Spadaro, ].V., Van Dingenen, R., Holland, M., Saveyn, B., 2018. Air quality co-benefits for human
health and agriculture counterbalance costs to meet Paris Agreement pledges. Nat Commun 9.
https://doi.org/10.1038/s41467-018-06885-9

Vannini, A., Guarnieri, M., Paolj, L., Sorbo, S., Basile, A., Loppi, S., 2016. Bioaccumulation, physiological and ultrastructural effects of
glyphosate in the lichen Xanthoria parietina (L) Th. Fr. Chemosphere 164, 233-240.
https://doi.org/10.1016/j.chemosphere.2016.08.058

Varga, T., Sajtos, Z., Gajdos, Z., Jull, A.J.T., Molnar, M., Baranyai, E., 2020. Honey as an indicator of long-term environmental changes:
MP-AES analysis coupled with 14C-based age determination of Hungarian honey samples. Science of The Total Environment
736, 139686. https://doi.org/10.1016/j.scitotenv.2020.139686

Villalba, A., Maggi, M., Ondarza, P.M., Szawarski, N., Miglioranza, K.S.B., 2020a. Influence of land use on chlorpyrifos and persistent
organic pollutant levels in honey bees, bee bread and honey: Beehive exposure assessment. Science of The Total Environment
713, 136554. https://doi.org/10.1016/j.scitotenv.2020.136554

Villalba, A., Maggi, M., Ondarza, P.M., Szawarski, N., Miglioranza, K.S.B., 2020b. Influence of land use on chlorpyrifos and persistent
organic pollutant levels in honey bees, bee bread and honey: Beehive exposure assessment. Science of The Total Environ ment
713, 136554. https://doi.org/10.1016/j.scitotenv.2020.136554

Visha, A., Gandhi, N., Bhavsar, S.P., Arhonditsis, G.B., 2018. A Bayesian assessment of polychlorinated biphenyl contamination of fish
communities in the Laurentian Great Lakes. Chemosphere 210, 1193-1206.
https://doi.org/10.1016/j.chemosphere.2018.07.070

Vitali, M., Antonucci, A., Owczarek, M., Guidotti, M., Astolfi, M.L., Manigrasso, M., Avino, P., Bhattacharya, B., Protano, C., 2019. Air quality
assessment in different environmental scenarios by the determination of typical heavy metals and Persistent Organic Pollutants
in native lichen Xanthoria parietina. Environmental Pollution 254, 113013. https://doi.org/10.1016/j.envpol.2019.113013

Vizcaino, E., Grimalt, J.0., Fernandez-Somoano, A., Tardon, A., 2014. Transport of persistent organic pollutants across the human
placenta. Environment International 65, 107-115. https://doi.org/10.1016/j.envint.2014.01.004

Vukavi¢, T., Vojinovi¢ Miloradov, M., Mihajlovi¢, L., Ristivojevi¢, A., 2013. Human milk POPs and neonatal risk trend from 1982 to 2009
in the same geographic region in Serbia. Environment International 54, 45-49. https://doi.org/10.1016/j.envint.2013.01.008

Wahlang, B., Hardesty, J.E.,, Jin, J., Falkner, K.C., Cave, M.C,, 2019. Polychlorinated biphenyls and nonalcoholic fatty liver disease. Current
Opinion in Toxicology 14, 21-28. https://doi.org/10.1016/j.cotox.2019.06.001

Waked, A., Afif, C., Seigneur, C., 2012a. An atmospheric emission inventory of anthropogenic and biogenic sources for Lebanon.
Atmospheric Environment 50, 88-96. https://doi.org/10.1016 /j.atmosenv.2011.12.058

Waked, A., Seigneur, C., Couvidat, F., Kim, Y., Sartelet, K., Afif, C., Borbon, A., Formenti, P., Sauvage, S., 2012b. Modelin g air pollution in
Lebanon: evaluation at a suburban site in Beirut. Atmospheric Chemistry and Physics Discussions 12.
https://doi.org/10.5194 /acpd-12-29571-2012

Wang, |, Xu, ], Ji, X, Wu, H,, Yang, H., Zhang, H., Zhang, X,, Li, Z,, Ni, X,, Qian, M., 2020. Deter mination of veterinary drug/pesticide
residues in livestock and poultry excrement using selective accelerated solvent extraction and magnetic material purification
combined with ultra-high-performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography A
1617,460808. https://doi.org/10.1016 /j.chroma.2019.460808

68


https://doi.org/10.1016/j.cej.2015.05.059
https://doi.org/10.1016/j.envres.2015.07.009
https://doi.org/10.1016/j.scitotenv.2014.10.008
https://doi.org/10.1016/j.mce.2020.110918
https://doi.org/10.1016/j.foodchem.2016.05.036
https://doi.org/10.1016/j.jchromb.2020.122261
https://doi.org/10.1289/ehp.123-A90
https://doi.org/10.4103/2229-4708.72226
https://doi.org/10.1016/j.envpol.2011.10.025
https://doi.org/10.1016/j.trac.2011.08.007
https://doi.org/10.1007/s11355-017-0335-9
https://doi.org/10.1016/j.foodchem.2015.05.072
https://doi.org/10.5740/jaoacint.SGETuzimski
https://doi.org/10.1016/j.envint.2019.105413
https://doi.org/10.1016/j.trac.2014.09.006
https://doi.org/10.1038/s41467-018-06885-9
https://doi.org/10.1016/j.chemosphere.2016.08.058
https://doi.org/10.1016/j.scitotenv.2020.139686
https://doi.org/10.1016/j.scitotenv.2020.136554
https://doi.org/10.1016/j.scitotenv.2020.136554
https://doi.org/10.1016/j.chemosphere.2018.07.070
https://doi.org/10.1016/j.envpol.2019.113013
https://doi.org/10.1016/j.envint.2014.01.004
https://doi.org/10.1016/j.envint.2013.01.008
https://doi.org/10.1016/j.cotox.2019.06.001
https://doi.org/10.1016/j.atmosenv.2011.12.058
https://doi.org/10.5194/acpd-12-29571-2012
https://doi.org/10.1016/j.chroma.2019.460808

Wang, L., Wang, X,, Zhou, J.-B., Zhao, R.-S., 2016. Carbon nanotube sponges as a solid-phase extraction adsorbent for the enrichment
and determination of polychlorinated biphenyls at trace levels in environmental water samples. Talanta 160, 79-85.
https://doi.org/10.1016/j.talanta.2016.07.005

Wang, S, Li, M,, Li, Xiuqin, Li, Xianjiang, Li, Xiaomin, Li, S., Zhang, Q., Li, H., 2020. A functionalized carbon nanotube nanohybrids-based
QuEChERS method for detection of pesticide residues in vegetables and fruits. Journal of Chromatography A 1631, 461526.
https://doi.org/10.1016/j.chroma.2020.461526

Wang, S., Qi, P., Di, S., Wang, J., Wy, S.,, Wang, Xiangyun, Wang, Z., Wang, Q., Wang, Xinquan, Zhao, C., Li, Q., 2019. Significant role of
supercritical fluid chromatography - mass spectrometry in improving the matrix effect and analytical efficiency during multi-
pesticides residue analysis of complex chrysanthemum samples. Analytica Chimica Acta 1074, 108-116.
https://doi.org/10.1016/j.aca.2019.04.063

Wang, X,, Jia, R, Song, Y., Wang, M., Zhao, Q., Sun, S., 2019. Determination of pesticides and their degradation products in water samples
by solid-phase extraction coupled with liquid chromatography-mass spectrometry. Microchemical Journal 149, 104013.
https://doi.org/10.1016 /j.microc.2019.104013

Wei, C., Bandowe, B.A.M., Han, Y., Cao, J., Zhan, C., Wilcke, W., 2015. Polycyclic aromatic hydrocarbons (PAHs) and their derivatives
(alkyl-PAHs, oxygenated-PAHs, nitrated-PAHs and azaarenes) in urban road dusts from Xi’an, Central China. Chemosphere 134,
512-520. https://doi.org/10.1016/j.chemosphere.2014.11.052

WHO | Ambient air pollution: Health impacts.http://www.who.int/airpollution/ambient/health-impacts/en/.

WHO | Persistent organic pollutants (POPs).https://www.who.int/foodsafety/areas_work/chemical-risks /pops/en/.

WHO | World Health Statistics 2019: Monitoring health for the SDGs
http: //www.who.int/gho/publications/world_health_statistics/2019/en/.
Wilm, M., 2011. Principles of Electrospray Ionization. Molecular & Cellular Proteomics 10.

https://doi.org/10.1074/mcp.M111.009407

Wolf, K., Bongaerts, B.W.C., Schneider, Alexandra, Huth, C., Meisinger, C., Peters, A., Schneider, Andrea, Wittsiepe, J., Schramm, K.-W.,
Greiser, K.H., Hartwig, S., Kluttig, A., Rathmann, W., 2019. Persistent organic pollutants and the incidence of type 2 diabetes in
the CARLA and KORA cohort studies. Environment International 129, 221-228. https://doi.org/10.1016/j.envint.2019.05.030

Wood, T.J., Goulson, D., 2017. The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environ Sci
Pollut Res Int 24, 17285-17325. https://doi.org/10.1007 /s11356-017-9240-x

Wu, ], Huy, ], Wang, S, Jin, JingXi, Wang, R, Wang, Y., Jin, Jun, 2018. Levels, sources, and potential human health risks of PCNs, PCDD/Fs,
and PCBs in an industrial area of Shandong Province, China. Chemosphere 199, 382-389.
https://doi.org/10.1016/j.chemosphere.2018.02.039

Wu, J.-P., Chen, X.-Y,, Wy, S.-K,, Tao, L., She, Y.-Z., Luo, X.-]., Mai, B.-X., 2019. Polychlorinated biphenyls in apple snails from an abandoned
e-waste recycling site, 2010-2016: A temporal snapshot after the regulatory efforts and the bioaccumulation characteristics.
Science of The Total Environment 650, 779-785. https://doi.org/10.1016/j.scitotenv.2018.09.074

Wu, M, Wang, L., Zeng, B. Zhao, F, 2016. lonic liquid polymer functionalized carbon nanotubes-doped poly(3,4-
ethylenedioxythiophene) for highly-efficient solid-phase microextraction of carbamate pesticides. Journal of Chromatography
A 1444, 42-49. https://doi.org/10.1016/j.chroma.2016.03.074

Wurita, A. Hasegawa, K, Nozawa, H. Yamagishi, [, Minakata, K., Watanabe, K, Suzuki, 0. 2020. Postmortem
distribution/redistribution of buformin in body fluids and solid tissues in an autopsy case using liquid chromatography-tandem
mass spectrometry with QuEChERS extraction method. Forensic Science International 314, 110376.
https://doi.org/10.1016/j.forsciint.2020.110376

Xu, Q.,, Zhuy, X,, Henkelmann, B., Schramm, K.-W., Chen, ], Ni, Y., Wang, W., Pfister, G., My, J., Qin, S., Li, Y., 2013. Simultaneous monitoring
of PCB profiles in the urban air of Dalian, China with active and passive samplings. Journal of Environmental Sciences 25, 133-
143. https://doi.org/10.1016/S1001-0742(12)60030-8

Xu, X, Liy, ], Huang, C., Lu, F.,, Chiung, Y.M., Huo, X., 2015. Association of polycyclic aromatic hydrocarbons (PAHs) and l ead co-exposure
with child physical growth and development in an e-waste recycling town. Chemosphere 139, 295-302.
https://doi.org/10.1016/j.chemosphere.2015.05.080

Xun, E., Zhang, Y., Zhao, |, Guo, ]., 2018. Heavy metals in nectar modify behaviors of pollinators and nectar robbers: Consequences for
plant fitness. Environmental Pollution 242, 1166-1175. https://doi.org/10.1016/j.envpol.2018.07.128

Yadav, I.C., Devi, N.L,, Syed, ].H., Cheng, Z., Li, ]., Zhang, G., Jones, K.C., 2015. Current status of persistent organic pesticides residues in
air, water, and soil, and their possible effect on neighboring countries: A comprehensive review of India. Science of The Total
Environment 511, 123-137. https://doi.org/10.1016/j.scitotenv.2014.12.041

Yao, T., He, C., Zhang, P., Gao, H., Zhou, C., 2013. Distribution and Sources of Polychlorinated Biphenyls (PCBs) and Organochlorine
Pesticides (OCPs) in Surface Waters of Jinzhou Bay in China. Procedia Environmental Sciences 18, 317-322.
https://doi.org/10.1016/j.proenv.2013.04.041

Ye, M., Beach, ]., Martin, ].W., Senthilselvan, A., 2013. Occupational Pesticide Exposures and Respiratory Health. Int] Environ Res Public
Health 10, 6442-6471. https://doi.org/10.3390/ijerph10126442

Yetim, N.K.,, Hasanoglu Ozkan, E., Ozcan, C., Sari, N., 2020. Preparation of AChE immobilized microspheres containing thiophene and
furan for the determination of pesticides by the HPLC-DAD method. Journal of Molecular Structure 1222, 128931.
https://doi.org/10.1016/j.molstruc.2020.128931

Yin, H,, Cai, Y., Duan, H., Gao, J., Fan, C., 2014. Use of DGT and conventional methods to predict sediment metal bioavailability to a field
inhabitant freshwater snail (Bellamya aeruginosa) from Chinese eutrophic lakes. Journal of Hazardous Materials 264, 184-194.
https://doi.org/10.1016/j.jhazmat.2013.11.030

Yin, L., Hu, Q., Mondal, S., Xu, J., Ouyang, G., 2019. Peanut shell-derived biochar materials for effective solid-phase microextraction of
polycyclic aromatic hydrocarbons in environmental waters. Talanta 202, 90-95.
https://doi.org/10.1016/j.talanta.2019.04.020

Yin, P, Brauer, M., Cohen, A.J., Wang, H,, Li, ]., Burnett, R.T., Stanaway, ].D., Causey, K., Larson, S., Godwin, W., Frostad, ]., Marks, A., Wang,
L., Zhou, M., Murray, C.J.L., 2020. The effect of air pollution on deaths, disease burden, and life expectancy across China and its
provinces, 1990-2017: an analysis for the Global Burden of Disease Study 2017. The Lancet Planetary Health 4, e386-e398.
https://doi.org/10.1016/S2542-5196(20)30161-3

Youssef, L., Younes, G., Kouzayha, A, Jaber, F., 2015. Occurrence and levels of pesticides in South Lebanon water. Chemical Speciation
& Bioavailability 27, 62-70. https://doi.org/10.1080/09542299.2015.1023092

Yu, S, Zhu, B, Lv, F,, Li, S.,, Huang, W., 2012. Rapid analysis of cyclamate in foods and beverages by gas chromatography-electron capture
detector (GC-ECD). Food Chemistry 134, 2424-2429. https://doi.org/10.1016/j.foodchem.2012.04.028

69


https://doi.org/10.1016/j.talanta.2016.07.005
https://doi.org/10.1016/j.chroma.2020.461526
https://doi.org/10.1016/j.aca.2019.04.063
https://doi.org/10.1016/j.microc.2019.104013
https://doi.org/10.1016/j.chemosphere.2014.11.052
http://www.who.int/airpollution/ambient/health-impacts/en/
https://www.who.int/foodsafety/areas_work/chemical-risks/pops/en/
http://www.who.int/gho/publications/world_health_statistics/2019/en/
https://doi.org/10.1074/mcp.M111.009407
https://doi.org/10.1016/j.envint.2019.05.030
https://doi.org/10.1007/s11356-017-9240-x
https://doi.org/10.1016/j.chemosphere.2018.02.039
https://doi.org/10.1016/j.scitotenv.2018.09.074
https://doi.org/10.1016/j.chroma.2016.03.074
https://doi.org/10.1016/j.forsciint.2020.110376
https://doi.org/10.1016/S1001-0742(12)60030-8
https://doi.org/10.1016/j.chemosphere.2015.05.080
https://doi.org/10.1016/j.envpol.2018.07.128
https://doi.org/10.1016/j.scitotenv.2014.12.041
https://doi.org/10.1016/j.proenv.2013.04.041
https://doi.org/10.3390/ijerph10126442
https://doi.org/10.1016/j.molstruc.2020.128931
https://doi.org/10.1016/j.jhazmat.2013.11.030
https://doi.org/10.1016/j.talanta.2019.04.020
https://doi.org/10.1016/S2542-5196(20)30161-3
https://doi.org/10.1080/09542299.2015.1023092
https://doi.org/10.1016/j.foodchem.2012.04.028

Yuan, C,, Liu, L., Ye, ], Ren, G., Zhuo, D., Qi, X,, 2017. Assessing the effects of rural livelihood transition on non-point source pollution: a
coupled ABM-IECM model. Environ Sci Pollut Res 24, 12899-12917. https://doi.org/10.1007 /s11356-017-8812-0

Yue, M.-E,, Yu, K, Lin, Q., Xu, |, Jiang, T.-F., 2019. Determination of N-acylhomoserine lactones from spoilage bacteria and aquatic
product by integrative coupling method of solvent-terminated dispersive liquid-liquid microextraction and micellar
electrokinetic capillary chromatography. Microchemical Journal 146, 1263-1268.
https://doi.org/10.1016 /j.microc.2019.02.062

Yunker, M.B., Macdonald, R.W.,, Vingarzan, R., Mitchell, R.H., Goyette, D., Sylvestre, S., 2002. PAHs in the Fraser River basin: a critical
appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry 33, 489-515.
https://doi.org/10.1016/S0146-6380(02)00002-5

Zahiri, E.,, Khandaghi, ]., Farajzadeh, M.A,, Afshar Mogaddam, M.R., 2020. Combination of dispersive solid phase extraction with
solidification organic drop-dispersive liquid-liquid microextraction based on deep eutectic solvent for extraction of
organophosphorous pesticides from edible o0il samples. Journal of Chromatography A 1627, 461390.
https://doi.org/10.1016 /j.chroma.2020.461390

Zeng, S., Gan, N., Weideman-Mera, R,, Cao, Y., Li, T., Sang, W., 2013. Enrichment of polychlorinated biphenyl 28 from aqueous solutions
using Fe304 grafted graphene oxide. Chemical Engineering Journal 218, 108-115. https://doi.org/10.1016/j.cej.2012.12.030

Zhang, N, Su, L., Man, S,, Lei, X,, Huang, T., Zhu, C.,, Zhang, L., Wu, X,, 2019. Task-specific solid-phase microextraction based on ionic
liquid/polyhedral oligomeric silsesquioxane hybrid coating for sensitive analysis of polycyclic aromatic hydrocarbons by gas
chromatography-mass spectrometry. Journal of Chromatography A 1598, 49-57.
https://doi.org/10.1016/j.chroma.2019.03.062

Zhang, Q.-H., Zhou, L.-D., Chen, H., Wang, C.-Z, Xia, Z.-N,, Yuan, C.-S., 2016. Solid-phase microextraction technology for in vitro and in
vivo metabolite analysis. TrAC Trends in Analytical Chemistry 80, 57-65. https://doi.org/10.1016/j.trac.2016.02.017

Zhang, S, Yang, Q., Yang, X,, Wang, W.,, Li, Z,, Zhang, L., Wang, C., Wang, Z., 2017. A zeolitic imidazolate framework based nanoporous
carbon as a novel fiber coating for solid-phase microextraction of pyrethroid pesticides. Talanta 166, 46-53.
https://doi.org/10.1016/j.talanta.2017.01.042

Zhang, W.,, Zhang, S., Wan, C,, Yue, D, Ye, Y., Wang, X., 2008. Source diagnostics of polycyclic aromatic hydrocarbons in urban road
runoff, dust, rain and canopy throughfall. Environmental Pollution 153, 594-601.
https://doi.org/10.1016/j.envpol.2007.09.004

Zhang, Y., Zhang, X,, Jiao, B., 2014. Determination of ten pyrethroids in various fruit juices: Comparison of dispersive liquid-liquid
microextraction sample preparation and QUEChERS method combined with dispersive liquid-liquid microextraction. Food
Chemistry 159, 367-373. https://doi.org/10.1016 /j.foodchem.2014.03.028

Zhao, L., Szakas, T., Churley, M., Lucas, D., 2019. Multi-class multi-residue analysis of pesticides in edible oils by gas chromatography-
tandem mass spectrometry using liquid-liquid extraction and enhanced matrix removal lipid cartridge cleanup. Journal of
Chromatography A 1584, 1-12. https://doi.org/10.1016/j.chroma.2018.11.022

Zhao, T., Guan, X,, Tang, W., Ma, Y., Zhang, H., 2015. Preparation of temperature sensitive molecularly imprinted polymer for solid-
phase microextraction coatings on stainless steel fiber to measure ofloxacin. Analytica Chimica Acta 853, 668-675.
https://doi.org/10.1016/j.aca.2014.10.019

Zheng, H.-B,, Ding, ],, Zheng, S.-]., Zhuy, G.-T., Yuan, B.-F,, Feng, Y.-Q., 2016. Facile synthesis of magnetic carbon nitride nanosheets and
its application in magnetic solid phase extraction for polycyclic aromatic hydrocarbons in edible oil samples. Talanta 148, 46—
53. https://doi.org/10.1016/j.talanta.2015.10.059

Zheng, W.,, Park, J.-A., Abd El-Aty, A.M,, Kim, S.-K,, Cho, S.-H., Choj, ], Yi, H., Cho, S.-M., Ramadan, A., Jeong, ].H., Shim, ].-H., Shin, H.-C,,
2018. Development and validation of modified QUEChERS method coupled with LC-MS/MS for simultaneous determination of
cymiazole, fipronil, coumaphos, fluvalinate, amitraz, and its metabolite in various types of honey and royal jelly. Journal of
Chromatography B 1072, 60-69. https://doi.org/10.1016/j.jchromb.2017.11.011

Zhou, Q.-X., Gao, Y.-Y., 2014. Combination of ionic liquid dispersive liquid-phase microextraction and high performance liquid
chromatography for the determination of triazine herbicides in water samples. Chinese Chemical Letters 25, 745-748.
https://doi.org/10.1016/j.cclet.2014.01.026

Zhou, X., Wu, B,, Jin, Q., 2018. Analysis of User Network and Correlation for Community Discovery Based on Topic-Aware Similarity
and Behavioral Influence. IEEE Transactions on Human-Machine Systems 48, 559-571.
https://doi.org/10.1109/THMS.2017.2725341

Zhuy, ], Wang, L., Xiao, Z., Niu, Y., 2018. Characterization of the key aroma compounds in mulberry fruits by application of gas
chromatography-olfactometry (GC-0), odor activity value (OAV), gas chromatography-mass spectrometry (GC-MS) and flame
photometric detection (FPD). Food Chemistry 245, 775-785. https://doi.org/10.1016/j.foodchem.2017.11.112

Zhu, Z., Zhang, Y., Wang, ]., Li, X, Wang, W., Huang, Z., 2019. Sugaring-out assisted liquid-liquid extraction coupled with high
performance liquid chromatography-electrochemical detection for the determination of 17 phenolic compounds in honey.
Journal of Chromatography A 1601, 104-114. https://doi.org/10.1016/j.chroma.2019.06.023

Zieba, K., Szostak, E., Czekonska, K., Miskowiec, P., Moos-Matysik, A., Nyczyk-Malinowska, A., Szentgyorgyi, H., 2020. Usefulness of bee
bread and capped brood for the assessment of monocyclic aromatic hydrocarbon levels in the environment. Environmental
Pollution 265, 114882. https://doi.org/10.1016/j.envpol.2020.114882

Zioga, E., Kelly, R., White, B, Stout, J.C., 2020. Plant protection product residues in plant pollen and nectar: A review of current
knowledge. Environmental Research 189, 109873. https://doi.org/10.1016/j.envres.2020.109873

Zuhara, S., Isaifan*, R., 2018. The Impact of Criteria Air Pollutants on Soil and Water: A Review. Journal of Environmental Science and
Pollution Research 278-284. https://doi.org/10.30799/jespr.133.18040205

70


https://doi.org/10.1007/s11356-017-8812-0
https://doi.org/10.1016/j.microc.2019.02.062
https://doi.org/10.1016/S0146-6380(02)00002-5
https://doi.org/10.1016/j.chroma.2020.461390
https://doi.org/10.1016/j.cej.2012.12.030
https://doi.org/10.1016/j.chroma.2019.03.062
https://doi.org/10.1016/j.trac.2016.02.017
https://doi.org/10.1016/j.talanta.2017.01.042
https://doi.org/10.1016/j.envpol.2007.09.004
https://doi.org/10.1016/j.foodchem.2014.03.028
https://doi.org/10.1016/j.chroma.2018.11.022
https://doi.org/10.1016/j.aca.2014.10.019
https://doi.org/10.1016/j.talanta.2015.10.059
https://doi.org/10.1016/j.jchromb.2017.11.011
https://doi.org/10.1016/j.cclet.2014.01.026
https://doi.org/10.1109/THMS.2017.2725341
https://doi.org/10.1016/j.foodchem.2017.11.112
https://doi.org/10.1016/j.chroma.2019.06.023
https://doi.org/10.1016/j.envpol.2020.114882
https://doi.org/10.1016/j.envres.2020.109873
https://doi.org/10.30799/jespr.133.18040205

Chapitre II : Matériels et méthodes & résultats

I. Snail as sentinel organism for monitoring the environmental pollution; a review
Résumé

Cette revue scientifique publiée dans le journal « Ecological Indicators » présente un
apport bibliographique sur 'usage des escargots en tant que biomoniteur de la pollution
de l'air, les polluants couramment détectés ainsi que les méthodes permettant I’extraction

et I'analyse de ces polluants.

Les animaux, comme les escargots, utilisés comme biomoniteurs de la pollution
environnementale, présentent de multiples mécanismes physiologiques pour contrer les
effets des toxines dans l'environnement en raison de leur sensibilité a divers
contaminants. Ces espéces occupent une place importante dans l'interface sol - air -
végétation du milieu et se trouvent en contact avec de nombreuses sources de pollution

(sol, atmosphere, végétaux) a travers les voies digestive, respiratoire et / ou cutanée.

L’'intérét de cette revue était d'explorer la possibilité d'utiliser différents types
d’escargots terrestres (Helix aspersa, Cepaea nemoralis, Theba pisana et Fobania
vermiculata), en raison de leur échantillonnage facile, leur large distribution et leur
capacité a accumuler divers contaminants dans leurs tissus. Ces matrices sont étudiés
comme biomoniteurs potentielles et idéales pour évaluer la pollution de l'air et de
détecter la concentration des métaux lourds, des pesticides, des composés organochlorés
(PCBs et OCPs), des diphényléthers polybromés, des HAPs ainsi que le glufosinate et
glyphosate persistants en utilisant différentes techniques d'extraction, notamment

I'extraction soxhlet, I'’ASE, la SPE, la MAE et I'’extraction d'eau chaude sous pression.

L'étude de l'impact des métaux et autres polluants sur la physiologie des organismes
contribue au développement de nombreuses études toxiques qui peuvent étre utilisées
comme outil d'évaluation environnementale. Leur utilisation dans les essais biologiques
de toxicité est un processus efficace car les escargots sont faciles a adapter et a manipuler
en laboratoire et ils peuvent étre traités avec les quantités souhaitées de contaminants

sur des régimes spécifiques et réagir rapidement a la contamination par les polluants.
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Pour toutes ces raisons, l'utilisation d'escargots comme matrice est fortement
recommandée afin de surveiller une large classe de polluants environnementaux qui

pourraient étre présents dans l'air.
Highlights

« Studies regarding the use of snails as biomonitors for environmental pollution were
reviewed and discussed.

* Snails were shown to be efficient biomonitor species for environmental pollution by
organic pollutants and heavy metals.

e The ability of snails to bioaccumulate heavy metals and organic pollutants in their

different organs are reviewed.
ABSTRACT

Environmental pollution, one of the most serious problems facing human health,
ecosystems and biodiversity, is defined as the contamination of the physical and biological
components of the atmosphere system which has harmful consequences for normal
environmental processes. Animals, such as snails used as environmental pollution
biomonitors, show multiple physiological mechanisms to counteract the effects of toxins
in the environment due to their sensitivity to various contaminants and their ability to
accumulate them through their tissues. The objective of this review is to explore the
possibility of using different types of snails as potential and ideal monitoring matrices to
assess air pollution and to detect heavy metal and POPs concentration by different
extraction techniques including Soxhlet extraction, Accelerated Solvent Extraction, Solid
Phase Extraction, Microwave-Assisted Extraction, Pressurized Hot Water extraction and

Microwave Acid Digestion.

Keywords: Air pollution; Bioindicator; Snails; Metallic trace elements; Organic pollutants.

72



1. Introduction

The World Health Organization (WHO) remains strictly bound by the principles set out in
the constitution preface that described health as “a complete state of physical, mental and
social well-being and not just the absence of disease or infirmity” (Ortmann et al., 2016).
Several factors, such as demographic, socio-economic, environmental geographic,
climatic and meteorological factors, affect directly or indirectly the health of individuals
and populations. In fact, the contribution of all these factors is of paramount importance

on health sector (Ebi et al., 2017).

Various human activities, industrial and other anthropogenic waste, concentrated around
the world, exceed the critical levels set by the European Union and other environmental
governments leading to serious problems (Guerreiro et al., 2014). Indeed, air pollution’s
exposure is characterized by a person's exposure to pollutant concentration over a time
period that depends on the concentrations of air pollutants present at the sites through
which the person moves as well as the time spent at each site causing respiratory,
cardiovascular and cancer diseases problems at excessive levels (Reames and Bravo,
2019, Lee et al., 2014, Le Tertre et al.,, 2002, Stieb et al., 2002). The existence of a pollutant
in the soil is therefore not a direct risk, but the danger occurs as soon as this pollutant can
be activated and acts on the atmosphere or on humans (Tchounwou et al,, 2012). By
definition, a complete risk model, consisting of five components (sources, transport,
exposure, dose and effect), is used as a method of adjusting the concentration of a toxic
pollutant to estimate the variance in health risk (Laumbach et al,, 2015, Muralikrishna

and Manickam, 2017).

Therefore, monitoring and predicting occurring changes in the environment as well as the
effects of air pollution is critical. Such monitoring stations evaluate long-term
environmental changes but are complicated to implement and maintain. Thus,
biomonitoring can provide alternative method for assessing air pollution (Marshall et al.,
2019). In recent years, the expansion of passive samplers has been one of the significant
developments in air sampling technology. Palmes and Gunnison first applied air sampling
to the safety and health field in 1973 (Palmes and Gunnison, 1973). As the applications of

this technology have developed and changed recently, the number and different kinds of
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passive samplers are increasing rapidly and become a crucial element in the range of air

sampling equipment (Amato et al.,, 2018, Osytek et al., 2008).

Among the very well-known passive samplers, figure the biomonitors. In fact, a
biomonitor, described as a species of animals, plants or fungi providing information on
the quality of the environment in which it resides, is usually characterized by its sedentary
lifestyle, wide distribution and ease of identification and collection (Parmar et al,
2016, Kovalchuk and Kovalchuk, 2008). Invertebrate species, such as snails are
recognized as appropriate biological indicators due to their potential accumulation of
persistent organic pollutants (POPs) and metallic trace elements and are also used as a
research species to evaluate the effect of these pollutants on their development (Cossi et

al,, 2018, Krupnova et al., 2018, Hodkinson and Jackson, 2005) (Fig. 1).

Fig. 1. Sectional diagram of the anatomy of a snail (Winkelmann A, 2007). 1: Shell. 2: Liver. 3:
Lung. 4: Anus. 5: Respiratory pore. 6: Eye. 7: Tentacle. 8: Brain. 9: Salivary duct. 10: Mouth. 11:
Panse. 12: Salivary gland. 13: Genital opening. 14: Penis. 15: Vagina. 16: mucous gland. 17:
Oviduct. 18: Bag of darts. 19: Foot. 20: Stomach. 21: Kidney. 22: Coat. 23: Heart. 24: vas deferens.

For instance, terrestrial snails (Helix aspersa, Cepaea nemoralis, Theba pisana and
FEobania vermiculata) are excellent biomonitors of environmental contamination due to
their easy sampling, wide distribution, high tolerance to stress and their ability to
accumulate diverse contaminants in the air, soil and flora (Soltani et al., 2013, Itziou and

Dimitriadis, 2011, De Vaufleury and Pihan, 2000).

The purpose of this study is to assess the feasibility to use naturally distributed snails to
control the concentration of contaminants throughout the ecosystem. The theory is that

snails feeding on species that are directly exposed to dry and wet pollutant deposition and
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inhaling major urban air pollutants can be an important biomonitor sentinel for
determining pollutants and heavy metals' spatial distribution and bioavailability. This
review sheds light on some parameters including production of nitric oxide, phenol
oxidase, and lysozymes that are associated with the immune response that is resulting
from the interaction between the snail and the particles and organisms. The quality of the
growth of some snails gives indices of degree of soil pollution by pesticides or some metal
trace elements. It allows for example the evaluation of the bioassimilable chromium
content of a soil for example or of organophosphorus pesticides or even to study the

bioaccumulation of heavy metals.
2. Snails as atmospheric pollution biomonitoring tools

Representative species of the environment must be studied to assess the effects of
pollutants in a matrix. In fact, a biomonitor can be identified as an organism or group of
organisms that are important for qualitative and quantitative environmental pollution
determination (Franzle, 2006). Many studies have shown that gastropod mollusks
including terrestrial snails are pollution bioindicators, including metals, pesticides, PAHs,
PCBs and PBDEs (Beeby and Richmond, 2002, Fu et al,, 2011, De Vaufleury and Pihan,
2000, Silva et al., 2019). Such species occupy an important place in the soil-air-vegetation
interface of the environment and incorporate many pollution sources (soil, atmosphere,
plants) through the digestive, respiratory and/or cutaneous tracts. Multiple species of
snails have been recorded, for example Papillifera papillaris (Emilia et al,
2016), Indothais gradata (Proum et al., 2016), Pomacea canaliculata (Ramli et al.,
2019, Dummee et al,, 2012), Cantareus apertus (Mleiki et al., 2016), Helix aspersa (Viard
etal, 2004, Abdel-Halim et al., 2013), Eobania vermiculata (El1-Shenawy et al., 2012, Itziou
and Dimitriadis, 2011, Itziou et al, 2011), Cepaea nemoralis (Boshoff et al,
2015), Bellamya aeruginosa (Yin et al., 2014), Theodoxus niloticus (Abdel Gawad, 2018)
and Achatina fulica (Cho et al., 2019). Such snails colonize most environments and
frequent the periphery of agricultural and forest areas. In contrast, several species have
shown their ability to resist and accumulate contaminants (Notten et al., 2005, Radwan et
al, 2010, Scheifler et al, 2002). For this reason, snails can be useful biomonitoring
organisms commonly used as effective indicators in recent studies to determine the
effects of pollutant mixtures on environments in space and time, based on the species

collected (Coeurdassier et al.,, 2002, Druart et al.,, 2011, Gimbert et al., 2006).
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2.1. Characteristics of snails

Snails have long been used to study pollutant accumulation. The assessment of the
accumulation of contaminants such as metals is dependent on the assessment of internal
concentrations after a specified exposure period and authorize the possibility to assess
the accumulation capacity of snails, their bioavailability and the intensity of the transfer
of contaminants from the environment (food and / or soil) (Gimbert et al., 2006).
Invertebrate species accumulate pollutants as a consequence of absorption-assimilation,
storage, transmission and excretion processes (Regoli et al., 2006). Once pollutants are
absorbed, terrestrial snails have a non-regulation strategy that is influenced by calcium
metabolism (Notten et al., 2005), and the need to prevent excessive water losses
(Dallinger et al,, 2001). In fact, there is two great parts to be considered: the foot and the
viscera. The viscera refer to the shell's organs and includes the kidney, hepatopancreas,
heart and part of the genital system that also extends into the foot. The foot essentially
comprises the anterior part of the digestive tract and the nervous system. There is a dose-
dependent increase in the concentration of pollutants in both organs analyzed
(hepatopancreas and kidney) and their accumulation is related to their organism's
bioavailability and environmental concentrations (Cceurdassier et al., 2002). Due to the
open circulatory system of snails, there is no distinct difference between the blood and
the lymph. As a consequence, the circulatory fluid is generally known to as a haemolymph,
instead of blood. The organic and inorganic composition of the haemolymph is variable,
and factors such as temperature, photoperiod, activity, hibernation, hydration and
feeding, affect the composition of the haemolymph. However, shell size and age,
influences the haemolymph pollutants accumulation (Pagano et al., 2017). Moreover,
[tziou et al,, in 2011 showed the use of land snails as biomarkers for early detection of
organic pollutants in the environment, since significant alterations have been reported in
haemolymph and digestive gland of snails exposed to organic contaminants (Itziou et al,,

2011).

For instance, a high accumulation capacity of heavy metals, particularly of Cu, Zn, Cd and
Pb, was shown in gastropod mollusks in 2004, as indicated by Viard et al. (Viard et al,,
2004). Additionally, particularly in the Mediterranean and oceanic regions, snails are
widespread, and they colonize anthropogenic environments and are also found in woods,

rocks and areas of agriculture. They mainly feed on plants, lichens and fungi and adapt to
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the plants that colonize the ecosystem (Chevalier et al, 2001, Guiller et al., 2012).
Therefore, the soil is also a part of the diet of snails and can affect their growth, so a low
calcium soil could be a restricting factor in the development of snails (Dallinger et al.,
2001). In addition, snails exposed to terrestrial environment, are subjects to frequent and
seasonal fluctuations in temperature. In order to resist to these fluctuations such as heat
and aridity over long periods of estivation, snails are able to form an epiphragm by their
dried mucous. Such snails normally resume activities in the early spring when
temperatures are around 12-14 °C (Arad and Heller, 2009, Eugene Havel et al,
2014, Gaitan-Espitia et al., 2013).

In common with other invertebrates, mollusks are known by their innate immunity
composed of both cellular and humoral elements consider as the first line of defense that
reflects the immune response against foreign particles and organisms by the phagocytic
cells, anatomic barriers and physiological components. Nitric oxide, phenyloxidase
system, lysozyme activity and lectins are the humoral components, while the circulating
phagocytic hemocytes are the cellular components of snail immunity. Small invaders are
eliminated by phagocytic hemocytes, while large invaders are eliminated by
encapsulation. The pathogens and foreign invaders are then hemolyzed by the action of

certain toxic enzymes that catalyze oxidative burst reactions (Wang et al., 2018).
2.2. Snails, matrix used for biomonitoring

Owing to their wide distribution, snails can be used to evaluate soil contaminant
bioavailability by measuring soil-snail or soil-plant-snail transmission and to analyze the
bioavailability of environmental pollutants (soil, plants air) by measuring their
concentration in caged snails during a specified time period. Snails may reflect the quality
of their atmosphere by accumulating some toxic pollutants present in their biotope in
their twist or visceral mass and shell. Their mucus protects them from external threats

and from the infections of bacteria and fungi (De Vaufleury and Gimbert, 2009).

Ecotoxicology is important for assessing the value of ecosystems and biomes: it is
particularly interesting in interactions between environmental chemicals and biotope,
covering several areas including bioindicator development. The snails can be easily

collected, raised, identified and found nearly anywhere. In addition, snails are in contact
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with different pollutants that they consume transcutaneous, digestively and respiratory

from water, plants and contact with the ground soil (De Vaufleury and Pihan, 2000).

The existence of pollutants has shown that snails are more likely to accumulate in the
viscera than in the foot, which indicates the appropriateness of the viscera to expose the
pollutant bioavailability in the ecosystem and illustrating the utility of separately
analyzing foot and viscera (De Vaufleury and Pihan, 2000). Bioaccumulation of pollutant
in snails depends on the duration of exposure, which implies that wild snails are highly
contaminated due to their lifetime exposure to environmental pollutants. The exposure
period of several weeks reflects the harmful effects and demonstrates that
bioaccumulation is modulated by pollution type compared to short exposures that may

be sufficient to detect bioaccumulation (Eeva et al., 2010, Nica et al., 2013).

In fact, snails can accumulate in their shell toxic minerals and metals (Beeby and
Richmond, 2011). Studying toxic accumulation in snails is allowed by modifying two

parameters:
* Biological parameters expressed by the organ growth and weight

e Chemical parameters presented through the phase of bioaccumulation (Abdel-Halim et

al,, 2013, Gimbert et al.,, 2008).

Several snails are herbivorous with lungs that provide information on air, soil and flora
quality. They absorb air through breathing to measure the atmospheric pollution and
have the capacity to accumulate large quantities of pollutants in their body without any
hurtful effects on their life cycle (De Vaufleury and Gimbert, 2009). Furthermore, snails
have the particularity of concentrating the chemical substances present in the soil, the air
and the plants of their environment in their tissues and can be used both as test organisms
for the study the toxicity of metals and as bioindicators of terrestrial pollution (Druart et
al., 2012, Kramarz et al,, 2009). The pollution state of a soil observed by the analysis of
what is accumulated in the gastropod organism, could be estimated as well as the amount
of pollutants and their evaluation, such as pesticides likely to disperse in nature and

contaminate living things (Scheifler et al., 2003, Gimbert et al., 2006).

2.3. Methods of pollutants extraction and analysis
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Various snail species have been studied, such as Achatina fulica (Cho et al,

2019), Indothais gradata (Proum et al, 2016), Helix aspersa (Abdel-Halim et al,
2013, Viard et al, 2004), Papillifera papillaris (Emilia et al, 2016), FEobania

vermiculata (El-Shenawy et al, 2012, Itziou and Dimitriadis, 2011), Cantareus

apertus (Mleiki et al., 2016), and Pomacea canaliculata (Ramli et al., 2019, Wu et al,,

2019, Dummee et al,, 2012). Among these species, Helix aspera was used to investigate

fungicides (tebuconazole, folpet, pyraclostrobin and cymoxanil) and herbicides

(glufosinate and glyphosate) contamination using fluorescence detection GC-MS and

HPLC respectively (Druart et al., 2011) while analysis of polycyclic aromatic compounds

was done using liquid chromatography coupled to a fluorimetric detector (Sverdrup et al,,

2006).

Table 1. summarizes some snail matrices commonly used in studies on biomonitoring, the

aim of the study and the target analytes and their extraction methods and analysis.

Table 1. Summary of the use of snails as biomonitors.

Matrix Aim of the study Analytes Extraction Analytical method Ref.
and clean up
Effects a.nd uptake O.f Polycyclic Accelerated Liquid
. polycyclic of aromatic . chromatography (Sverdrup
Helix aspersa . aromatic solvent
compounds Helix - coupled to a etal,, 2006)
compounds extraction . .
aspersa fluorimetric detector
Analysis of pyrene Polycyclic Liquid
Buccinum spp. YSIS Of pyret aromatic Solid phase chromatography using (Beach et
metabolites in marine .
and N. lyrata snails hydrocarbons: extraction fluorescence and mass al, 2009)
pyrene spectrometry detection
Optimization and Pressurized -High-performance

Achatina filica

characterization of liquid chromatography

polysaccharides Polysaccharides hot waFer (HPLO) (Choetal,
. . extraction . 2019)
extraction Achatina (PHWE) -Gel permeation
fulicausing chromatography (GPC)
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Optimization of
saponin extracts using
microwave-assisted

extraction as a Microwave- -HPLC-UV (Ramli et al
Pomacea canaliculata sustainable Saponin assisted -UV/Vis 2019) v
biopesticide to reduce extraction spectrophotometric
Pomacea canaliculata
population in paddy
cultivation
Spatial distribution of -Polychlorinated
polychlorinated  biphenyls (PCBs) Isotope Gas chromatograph
Ampullariidae biphenyls and -Polybrominated dilution coupled with high- (Fuetal,
polybrominated biphenyl ethers methods resolution mass 2011)
biphenyl ethers in (PBDEs) spectrometer
China
-Herbicides
Measure the exposure, (gl}l/p?o§ate and
the transfer and the g OS}n.ate) L -Herbicides : HPLC
. -Fungicides  Liquid-liquid L
Helix aspersa effects of pest1c1de.s on (cymoxanil, extraction -Fongicides : (Druart et
a non-target soil folpet GC-MS al, 2011)
invertebrate, the land tebucona’zole
snail Helix aspersa
and
pyraclostrobin)
Trace metal transfer in Digestion with
a soil-plant-snail a mixed .
Cepaea microcosm field As. Ni. Pb and Zn solution of Ind%ﬁ;‘;ﬁg’l\izzfled (Boshoff et
nemoralis experiment and T nitric acid and al,, 2015)
biomarker responses hydrochloric Spectrometer (ICP-MS)
in snails acid
Thermo Trace GC
Levels of connected with a
olychlorinated Polychlorinated Thermo PolarisQ MS  (Storelli et
Hexaplex trunculus bipl})leri,yls in Hexaplex k}:iphenyls Soxhlet operated in electron (al., 2014)
trunculus impact
ionization
Acute toxicity of some Dllge.s.tlon with
Theodoxus heavy metals to the acidified water Atomic Absorption (Abdel
niloticus snail, Theodoxus Zn,FeandPb  samples, HNQB Reader Gawad,
niloticus and per.chlorlc 2018)
acid
Effect of periphyton Microwave-
Cipangopaludina comm}t:nlty structlu re V, Cr, Co, Ni, Cu, Assisted Acid ICP-MS (Cuietal,
chinensis O:ccﬁfnvli]l:tlii)tr? Cd, and Pb Digestion i 2012)
Cipangopaludina System
chinensis
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Bioaccumulation of
heavy metals in water,
sediments, aquatic
plant and
histopathological
effects on the golden
apple snail

Pomacea canaliculata

Using the enzymatic
and non-enzymatic
antioxidant defense
system of Fobania
vermiculata as
biomarkers of

Eobania vermiculata

terrestrial heavy metal

pollution

Papillifera papillaris,
as indicator of metal
deposition and
bioavailability in
urban environments

Papillifera papillaris

Digestion with
a mixed
solution of

nitric acid- Flame atomic

Cu, Mn, Fe, Zn, Pb N . (Dummee et
perchloric acid absorption
and Cd al, 2012)
and spectrophotometer
concentrated
hydrochloric
acid
Digestion with
concentrated
I’lltI‘.lC acidina Inductively coupled
microwave : (El-
Cd, Cu, Fe,Ca,Pb . . plasma optical
digester using . . Shenawy et
and Zn : emission spectrometry
microwave al, 2012)
digestion (ICPOES)
program
-Atomic absorption
. S spectrometry with
Al Cd. Cr. Ni. Pb Dlg,?:gg: n graphite furnace for Al,
I-i éu l:"e Mn ’ containers Cd, Cr, Niand Pb. (Emilia et
& an(’i Zr; with HNOs and -Inductively coupled  al., 2016)
H,0 ¥ plasma emission
2 spectrometry

for Cu, Fe, Mn and Zn.

Digestion in

Associations between o Inductively
shell strength, shell nitric acid coupled plasma-atomic
Cepaea g Ca,Cd,Cr,Pband using the o (Jordaens et
, morphology and heavy - emission
nemoralis ; Zn microwave al,, 2006)
metals in Cepaea . . spectrophotometry
; digestion
nemoralis (ICP-AES)
procedure
Biomarkers of
oxidative stress in Digestion in
Theba pisana for concentrated  Atomic absorption (Radwan et
Theba pisana assessing Zn, Cu, Pb and Cd nitric acid and spectrophotometry
. i L al, 2010)
ecotoxicological deionized (AAS)
effects of urban metal water
pollution
Use of DGT and Digestion with
conventional methods concentrated
Bellamya to predict sediment Cr,Nj, Cu,Zn,Cd . ul.trap.ur.e (Yinetal,
. metal nitricacid in a ICP-MS
aeruginosa . o1 and Pb . 2014)
bioavailability to a microwave
field inhabitant digestion
freshwater snail system
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Bioaccumulation and

tissue distribution of Digestion with
Pb and Cd and growth cadmium Inductively coupled
Cantareus effects in Cantareus Pb and Cd chloride plasma mass (Mleiki et
apertus apertus after dietary (CdCl2) and spectrometry al, 2016)
exposure to the metals lead nitrate (ICP-MS)
alone and in (PbNO3)
combination

. o Laser ablation
Biomonitoring of Digestion with inductively coupled
Nassarius metal contamination  Cu, Zn, Cd, Hg g y coup (Santos et
. . . HNOs and plasma mass
reticulatus in Nassarius and Pb al,, 2009)
. H:02 spectrometry (LA-ICP-
reticulatus
MS)
Freshwater Ulva as a . . .
bioaccumulator of Digestion with Inductively coupled
. Cd, Ni, Pb, Caand a mixture of (Rybak et
Ulva thalli selected heavy metals plasma
. Mg HNOs and . al,, 2012)
and alkaline earth H,0 Emission spectrometer
metals 22

As shown in Table 1, snails are widely used as environmental detectors for heavy metals,
glufosinate, glyphosate, PAHs, PBDEs, PCBs and pesticides including OCPs. Several
methods for extraction of organic pollutants and heavy metals from snails have been
published in the literature (Wu et al.,, 2019). For instance, organic pollutants were mainly
extracted by Accelerated Solvent Extraction (ASE) (Sverdrup et al.,, 2006), Solid Phase
Extraction (SPE) (Beach et al., 2009), Pressurized Hot Water Extraction (PHWE) (Cho et
al,, 2019) and Microwave-Assisted Extraction (MAE) (Ramli et al., 2019). However, the
extraction of heavy metals was especially done by digestion with a mixture of nitric acid
(HNO3), deionized water (H202), perchloric acid (HCl104), chloride (CdCl:), lead nitrate
(PbNO3) wusing microwave-assisted acid digestion technology (Abdel Gawad,
2018, Dummee et al., 2012, Emilia et al,, 2016). However, a purification step may be

required by simple centrifugation or filtration, SPE or chromatography technique.

Furthermore, there are many separation and detection techniques available for the study
of emerging pollutants from such species such as liquid chromatography (LC) (Cho et al,,
2019, Ramli etal, 2019, Druart et al.,, 2011, Beach et al., 2009, Sverdrup et al., 2006), Gas
chromatography (GC) (Fu et al,, 2011), Atomic Absorption Spectrophotometry (AAS)
(Abdel Gawad, 2018, Emilia et al.,, 2016, Radwan et al., 2010) and Inductively Coupled

Plasma Mass Spectrometer (ICP-MS) (Emilia et al., 2016, Boshoff et al.,, 2015, Cui et al,,
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2012). Moreover, it was shown that LC was the main process of analyzing POPs in
combination with a fluorometric detector to analyze polycyclic aromatic hydrocarbons
(Sverdrup et al, 2006, Beach et al, 2009) and to mass spectrometry to analyze
polychlorinated biphenyls (Storelli et al., 2014). However, GC-MS could also be used for
the assessment of several organic pollutants in snails (Druart et al., 2011). On the other
side, the AAS, ICP-AES and ICP-MS are the most widely used methods for the assessment

of heavy metals in environmental samples (Sastre et al., 2002).

In addition, it has been confirmed that the apple snail “ Pomacea canaliculata”is identified
as bioindicators for many environmental pollutants, indicating both the level and the
profile of pollutants, as well as for persistent organic pollutants (Harmon and Wiley,
2010, Fuetal, 2011) as for metals and organometallic compounds (Giraud-Billoud et al.,
2018, Cueto et al., 2013, Campoy-Diaz et al., 2018). Their ecology and biology can be
classified as having the main properties of an ideal indicator species to evaluate the
pollution of the environment, such as the capacity for bioaccumulation, short lifetime,
limited movement range, wide distribution and ease of collection compared to other

animals like fish or birds (Tanabe and Subramanian, 2006, Gerlach et al.,, 2013).

3. Presence and detection of pollutants in snails

3.1. Snail pollution by metallic trace elements (MTE)

Metal trace elements (MTEs) are part of trace elements family and constitute only 0.6%
of the total elements. Their denomination is due to their low concentration, which usually
does not exceed 1000 mg kg~1! naturally in soils (Crémazy et al., 2019, Emilia et al., 2016).
Among these MTEs, zinc (Zn), copper (Cu), cadmium (Cd), lead (Pb) and chromium (Cr)
are classified in the metal class while arsenic (As) and antimony (Sb) are among the
metalloid group. Due to their harmful effects on the environment and their classification
as carcinogenic or dangerous to human health, their presence in the environment and soil
is a significant source of concern. However, three of these metals (mercury (Hg), cadmium
(Cd) and lead (Pb)) are listed as priority dangerous substances in Decision

2455/2001/EC of the European Council (Cheng and Yap, 2015, Emilia et al., 2016).

Snails are well known for the bioaccumulation of these pollutants (Viard et al,

2004, Coeurdassier et al., 2002). In fact, it has been observed that about 68% of the
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cadmium (Cd), 90% of the copper (Cu), 43% of the lead (Pb), and 60% of the zinc (Zn)
ingested were accumulated in Helix aspera snails ' soft tissue, shells, and feces that were
analyzed by flame atomic absorption spectrometry after mineralization and extraction
using concentrated HNOs. Snails seem to be more significant pathways for transport along
the Cu and Cd food chains than Zn and Pb and are not able of depositing large amounts of
metals into their shells. Resistance to the appearance of effects associated with the
accumulation of metals by the snails may cause their predators to be contaminated
(Laskowski and Hopkin, 1996). However, snails have many predators, including
vertebrates, such as birds, small mammals, reptiles and invertebrates, such as carabids
(Liew and Schilthuizen, 2014 ). Staikou and Lazaridou emphasize the role of snails in the
transfer of material and energy from producers to higher trophic levels (Staikou and
Lazaridou, 2013), suggesting their potential involvement in the transfer of metallic
pollutants along trophic chains (Dar et al, 2019, Hispard et al., 2008). Human
consumption of the Helix aspersa snail is also small (15 tons of canned food in France in
2008) relative to the Bourgogne Helix pomatia snail (876 tons of canned food in France

in 2008) (Druartetal.,, 2011).

In addition, mosses absorb metals in deposition of wet and dry atmosphere via passive
cation exchange mechanisms and the detection of airborne particles (Bargagli, 2016),
while metal absorption may occur via various processes in snails, like inhalation, contact
with the surfaces of the walls and ingestion of lichens, herbs, algae, soil particles and
mosses. Metabolism and detoxification processes of cadmium (Cd), zinc (Zn), chromium
(Cr), mercury (Hg), copper (Cu), and lead (Pb) are conducted in digestive gland, and their
bioaccumulation is mainly due to the compartmentalization in the granules inside the
cells or vesicles in the digestive gland or other tissues like foot (Boshoff etal,, 2013, Regoli
et al,, 2006). Soft snail tissues purged of their intestine content have lower metals levels
and their composition may provide an accurate image of emissions from environmental
metals. For example, lead (Pb) concentrations in Italian urban areas can be detected in
very high concentrations in street dust suspended by a vehicle, and even in low
concentrations that have relatively small impact on the chains of foods (Barca et al,

2014).

Moreover, the adsorption and precipitation of trace metals increase under alkaline soils.

A higher percentage of metals in their ionic state with alower pH level. In order to succeed
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in binding to the exchange sites, such metal ions should interact with specific cations
including magnesium (Mg?*), calcium (Ca?*), iron (Fe?*), aluminum (Al3+) and hydrogen
(H*) (Bakircioglu et al.,, 2011). Metals can thus be more attainable for plant absorption at
lower pH levels (Bakircioglu et al.,, 2011). In fact, in their study, Pauget et al. in 2012,
demonstrated an important correlation between Cantareus aspersus metal accumulation
and soil physicochemical properties such as cation exchange capacity and pH (Pauget et
al,, 2012). Nonetheless, based on the maximum residue limit (MLR), it was not reasonable
to deduce with confidence that physicochemical properties of the soil and metals
contributed to the cumulation of metal in the digestive gland, although the
physicochemical characteristics of the soil might have indirectly affected the metal’s
accumulation in snails (Cepaea nemoralis) and determined the accumulation of metals in
plants (Urtica dioica) as well as snails by their digestive exposure (Gimbert et al.,
2006, Coeurdassier et al., 2002). Moreover, Boshoff et al., in 2013 and 2014 and Notten et
al,, in 2006, have reported differing levels of cadmium (Cd) such as 60-150 mg kg1,
33.93-148.40 mg kg—1and 94 mg kg—1in several studies in Cepaea nemoralis, respectively
(Boshoffetal.,, 2015, Boshoff et al.,, 2013, Notten et al., 2006). The absorption of cadmium
(Cd) as a non-essential element is not controlled at an accurate level or is less efficiently
regulated than fundamental elements (Tchounwou et al., 2012). Higher concentrations
are detected in the helix aspersa snail that fed a cadmium-rich diet (Cd) (Scheifler et al.,
2002) by binding to metallothionein-like proteins present in the digestive gland that
accumulate metal at higher levels without severe effects (Nica et al,, 2013, Gimbert et al.,
2006, Manzl et al., 2004). For snail physiological functioning, copper (Cu) and zinc (Zn)
are required and their absorption is controlled till it exceeds the threshold rate (Nica et
al, 2012). Specifically, snails require large amounts of copper as an element of
hemocyanin thatis converted and absorbed after accumulation (Manzl et al., 2004). Snails
can maintain zinc in tissues for essential functions at low levels and can affect the feeding

and development at high concentrations (Swaileh and Ezzughayyar, 2001).

Moreover, snails living in areas highly contaminated with metals also exhibit
physiological and morphological modifications due to higher energy costs correlated with
process of excretion and detoxification (Radwan et al.,, 2010, Regoli et al., 2006). As the
strength of the shell increases slightly, there was no significant change in the thickness or

strength of the shell that can be correlated with the site and time interaction even when
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exposed to contaminated soil. Similarly, there are no detected effects of metal toxicity
such as lead (Pb) and cadmium (Cd) on the weight or size of the snail shell (Mourier et al.,
2011, Jordaens et al., 2006). Although adult snails have a completely formed shell, the
morphology of wild population shells may change (De Vaufleury and Pihan, 2000).

Furthermore, snails have mechanisms for metabolizing, exporting storing and excreting
metals, and these mechanisms are triggered by the acclimatization process, such as
transfer to new environment, physiological changes resulting from experimental
stressors or response to stress due to the current microcosm conditions (Bighiu et al.,
2017). Cumulative metals will be stable after a specified exposure time and therefore

cannot interact with biochemical reactions (Tchounwou et al.,, 2012, Rainbow, 2007).

Some studies have shown that high doses and duration of metal exposure cause more
serious effects, such as kidney failure caused by the combination of inorganic arsenic and
cadmium, compared to low doses and individual exposure to various elements (Wang and

Fowler, 2008, Nordberg et al., 2005).

In general, digestion with HNO3 and H20; mixture (Abdel Gawad, 2018, Emilia et al,,
2016, Dummee et al,, 2012, Rybak et al.,, 2012, Santos et al.,, 2009) followed by the
inductively coupled plasma mass spectrometer (ICP-MS) (Mleiki et al., 2016, Yin et al,,
2014, Rybak et al., 2012, Cui et al., 2012, Santos et al., 2009) was the main multi-residue

extraction and analytical procedure of heavy metals from the different snail species used.
3.2. Snail pollution by organic pollutants

The high use of pesticides as a result of the increasing world population growth and plant
protection policies as well, led to an increase of the invertebrates’ contamination by these
pollutants. They are scarcely used separately in agriculture and can be used in association
during crop production at specific times (Ngowi et al., 2007). Due to their usage and
application, the presence of pesticides overlaps in space and time (Smiley et al., 2014).
Snails are widely used in ecotoxicological studies to investigate pesticide exposure effects
that observed in response to each of the individual and combined pesticides exposures
(Hock and Poulin, 2012, Mora et al, 2011). The effects of pesticides and their
accumulation via different routes on snails that affecting their response, are influenced by
several factors, such as, the sensitivity of species to pesticide (Lushchak et al,, 2018), the
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chemical mode of action (Staley et al., 2015) and their exposure period (Damalas and
Eleftherohorinos, 2011). Exposure can have direct effects on biological organization at all
levels, while toxicant mode of action mainly defines the class of organisms are affected.
Several characteristics of snails such as, fertility (Coutellec et al., 2008), survival (Qiu et
al, 2011), and movement (Perez et al., 2009) can be quantified to estimate the fitness of
snails which decrease in response to stress associated with the environment (Coutellec et
al, 2008), including pesticides contamination (Coutellec and Lagadic, 2006) and
physicochemical parameters (Elias and Bernot, 2017). In addition, the effects of
pesticides on snails can either directly affect their egestion and movement or indirectly
affect food chains and predator interactions. Lower snail egestion levels once exposed to
pesticides may limit the availability of carbon and nitrogen that affect biomass algae and
nutrient flows (Fink and Elert, 2006). In addition to the pesticide mode of action, it is
necessary to consider the sensitivity of organisms to pesticides in combination with
different exposures periods to comprehend the potential adverse environmental impacts
of co-occurring pesticides on biodiversity. The ecology and biology of snails, such as large
distribution, bioaccumulation capacity and ease of sampling reflect most of the essential
characteristics of an ideal bioindicator (Hall et al., 2009), and these advantages make the
snail field an effective bioindicator for toxins and other natural substances such

as Pomacea canaliculata (Martin et al., 2019, Koch et al., 2013, Fu et al,, 2011).

It is also noted that snails are involved in multiple food chains: carabids, amphibians,
mammals, birds, other gastropods and humans. Consequently, the contamination of snails
by pesticides can be transferred for consumers leading to a risk of secondary poisoning.
The pesticide concentrations determined in snails exposed exceed the MRLs (Maximum
Residue Limit) set for a type of animal food (Glyphosate: Animal product
MRL = 0.1 mg kg—1, Snail MRL 6 mg kg=1) (Druart et al.,, 2011).

However, the effects of pesticides on the snails are limited to few studies. Among the
available data, it appears that carbamates and organophosphorus insecticides cause low
mortality in snails feeding for 10 days with contaminated food (Schuytema et al., 1994).
The insecticide pentachlorophenol is not fatal for snails at concentrations of
1000 mg kg—1in food (De Vaufleury, 2000). Moreover, Coeurdassier etal.,in 2002 studied
the effects on survival, growth, and acetylcholinesterase (AChE) of an organophosphorus

insecticide, dimethoate, and demonstrated growth inhibition in relation to its
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accumulation. These authors also observed that snails are more sensitive to pesticides

contained in the soil than in food (Cceurdassier et al., 2002).
4, Conclusion

Snails used as sensitive environmental pollution indicators has taken considerable
importance and been applied for incorporate the pollution signal over a period of time or
an area. Their use in toxicity bioassays is an effective process as snails are easy to adapt
and manipulate in the laboratory and it can be treated with the desired amounts of
contaminants on specific diets and react quickly to pollutant contamination in the
sublethal dosage range. Such organisms are also chosen as sentinels due to their limited
toxic response or little ability to control their tissue levels. Studying the impact of metals
and other pollutants on organism physiology contributes to the development of many

toxic studies which can be used as an environmental evaluation tool.

For all these reasons, the use of snails as matrix is highly recommended in order to
monitor a wide class of environmental pollutants that might be present in the

environment.
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[I. A multiresidue method for the analysis of pesticides, polycyclic aromatic hydrocarbons,

and polychlorinated biphenyls in snails used as environmental biomonitors

Résumé

Cette étude publiée dans « Journal of Chromatography A », contribue au développement
d’'une méthode multi-résidus pour I'analyse des pesticides, des HAPs et des PCBs a partir

des escargots.

Une stratégie d'extraction a été mise au point pour le criblage simultané de 120 pesticides,
16 HAPs et 22 PCBs a partir de l'escargot terrestre Helix aspersa. La méthode d'extraction
optimisée était basée sur le QUEChERS utilisant de 1'ACN, suivi d'un nettoyage par
extraction en phase solide dispersive al'aide de PSA et de sorbants 1'octadécylsilane (C1sg).
Les extraits obtenus ont été analysés par LC-MS/MS et GC-MS/MS. La GC-MS/MS a été
précédée d'une étape de préconcentration par SPME avec des fibres de polyacrylate pour
I'analyse des pesticides volatiles et de polydimethylsiloxane pour I'analyse des HAPs et

des PCBs.

La validation montre que la méthode analytique utilisée est fiable, précise, reproductible
et robuste avec un (R?) obtenu supérieur a 0.99 pour la plupart des composés cibles. Cette
validation a révélé un bon taux de récupération compris entre 60 et 110%, avec des LOD

et des LOQ inférieures a 20 ng g'! pour les composés analysés.

La comparaison de la méthode basée sur QUEChERS avec I’ASE suivie d'une SPE a montré
une meilleure efficacité, sensibilité et précision pour la premiére méthode. La validation
delaméthode a donné des résultats positifs, indiquant de bonnes performances en termes
de linéarité, d'exactitude et de précision. Enfin, I'ACN en présentant de meilleurs taux de

récupération que I'AE a prouvé une plus grande efficacité.

En conclusion, cette méthode d'extraction suivie d'une analyse chromatographique est un
outil fiable pour l'analyse d'une large gamme de composés dans les escargots. Cette
méthode a été testée pour montrer son efficacité sur trois échantillons de Helix aspersa
prélevés dans la région d'Akkar, située au nord du Liban, dans lesquels des résidus de

pesticides et de HAPs ont été détectées.
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Highlights
* QUECHERS-SPME for the quantification of pesticides, PAHs and PCBs in snails’ samples.
e Comparison of ASE and QUECHERs for snails’ analysis.

e Comparison of acetonitrile and ethyl acetate as solvent extraction for QuEChERS

extraction.
 Application on the use of snails as environmental biomonitors.
Abstract

This paper reports an optimized multiresidue extraction strategy based on the Quick,
Easy, Cheap, Effective, Rugged, and Safe (QUEChERS) extraction procedure and on solid-
phase microextraction (SPME) for the simultaneous screening of 120 pesticides, 16
polycyclic aromatic hydrocarbons, and 22 polychlorinated biphenyls from the terrestrial
snail Helix aspersa. The optimized extraction method was based on QUEChERS using
acetonitrile, followed by dispersive-Solid-phase extraction clean-up using primary
secondary amine and octadecyl (Cig) sorbents. The obtained extracts were analyzed by
liquid chromatography coupled with tandem mass spectrometry and gas
chromatography coupled with tandem mass spectrometry. This latest technique was
preceded by a pre-concentration step using SPME with appropriate fibers. Afterwards,
the method was validated for its linearity, sensitivity, recovery, and precision. Results
showed high sensitivity, accuracy, and precision, with limits of detection and
quantification lower than 20 ng g ~! for most considered pollutants. Both inter and intra-
day analyses revealed low relative standard deviation (%), which was lower than 20%
for most targeted compounds. Moreover, the obtained regression coefficient (R2) was
higher than 0.98 and the recoveries were higher than 60% for the majority of the assessed

pollutants.

Keywords: Snails; Helix aspersa; Quechers; SPME; Environmental biomonitoring.
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1. Introduction

Recent excessive polluting factors due to increased industrial activities, excessive
agricultural practices (such as the use of pesticides and fertilizers), and intensive
population growth and tobacco smoking need to be monitored to protect the ecosystem
from their negative effects [1-4]. Environmental biomonitoring or biological
environmental monitoring is generally defined as “the systematic use of living organisms
or their responses to determine the state or changes in the environment” [5]. These
samplers, known as biomonitors, are living organisms naturally present in the
environment and characterized by a high ability to accumulate pollutants in their
tissues [6]. These species should be accumulative and characterized by different criteria
such as specificity, accumulation ratio, occurrence, time-integrative behavior, and

biodiversity [7-9].

Among these species, mollusks are well known as filtering organisms, which have been
successfully used in persistent organic pollutant (POP) monitoring programs due to their
high bioaccumulation capacity, fixed location, and high population density [10, 11]. The
use of snails as sentinel indicators is efficient due to their wide distribution, easy
sampling, and ability to accumulate various type of pollutants [10, 12, 13]. Furthermore,
snails live at the soil-plant-air interface and then integrate different sources and paths of
contamination, which make them prone to various types of pollutants that accumulate in

their soft tissues and become incorporated in their shells [14-19].

Among different type of mollusks, the terrestrial gastropod Helix aspersais known for its
biomonitoring properties, easy adaptation and manipulation in the laboratory, and
sensitivity to genotoxicity assays [20, 21]. H. aspersa can accumulate different classes of
chemicals and serve as appropriate species for environmental biomonitoring for
pesticides [22], trace metals [23-25], polycyclic aromatic compounds [26], industrial

contamination [27], and urban pollution agents [28].

Therefore, the development of analytical tools for the quantification of traces of organic
pollutants in such organisms seems efficient to establish a specific environmental control.
Prior to chromatographic analysis, sample preparation is required to remove all types of

interferences that may disturb the detection of the pollutants of concern, decrease the
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separation efficiency, or shorten the chromatographic column life [10, 29]. Although
snails are well known for their ability to accumulate pollutants, studies on the extraction

of pesticides and POPs from these matrices remain limited.

Accelerated solvent extraction (ASE) is an example of an extraction technique that has
been used for the assessment of organic pollutants [30]. However, ASE requires efficient
clean-up to remove all interfering impurities that give rise to high labor costs. SPE and
solid-phase microextraction (SPME) are two well-known extraction / purification /
concentration methods used to obtain a pure extract that can be analyzed by

chromatographic techniques [31, 32].

In 2003, anew method was developed by Anastassiades et al. to overcome all critical flaws
and practical limitations of the extraction procedures. This method known as QUEChERS
was first used for the analysis of multiresidue pesticides in food [33]. This technique
consists of softliquid-liquid extraction followed by an optional clean-up step and requires
few minutes and 5-15 mL of extracting solvent [34]. Although the original method
showed remarkable efficiency for hundreds of analytes, several adjustments were made
to improve the method's performance and make it even more rugged and efficient for

other difficult analytes in different complex matrices [35-37].

After extraction, organic pollutants are analyzed using commonly known analytical
techniques, namely, liquid chromatography coupled with tandem mass spectrometry
(LC-MS/MS) and gas chromatography coupled with tandem mass spectrometry (GC-
MS/MS) [38]. The choice of the separation technique depends mostly on the

characteristics of the pollutants of interest [39, 40].

For all these reasons, this study aimed to develop a simple, fast, sensitive, and reliable
analytical method for the trace analysis of a large number of environmental contaminants
in the terrestrial snail H. aspersa. For this purpose, 120 pesticides, 16 polycyclic aromatic
hydrocarbons (PAHs), and 22 polychlorinated biphenyls (PCBs) were selected to cover a
wide number of organic environmental contaminants that can be monitored in such
organisms. Two extraction protocols were compared to choose the method with a high
extraction potential, allowing the best extraction recovery. The first protocol was based

on ASE-SPE, and the second was based on QUEChERS. Both techniques were followed by
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a pre-concentration step using SPME. Both liquid and gas chromatography, coupled with
MS/MS, were used to analyze this wide range of pollutants. The chosen matrices have yet
to be studied for contamination by all these pollutants. Furthermore, the two extraction
protocols were never carried out on snails, enabling their use as potential biomonitor

candidates.
2. Materials and methods
2.1. Materials and reagents

Pesticide analysis included 30 nonvolatile compounds analyzed by LC-MS/MS and 90
semi-volatile compounds including 21 organochlorine pesticides (OCPs) analyzed by GC-
MS/MS. All pesticides, except OCPs, were purchased from Sigma-Aldrich (L'Isle d'Abeau,
France) with purity higher than 97%.

For LC-MS/MS pesticide analysis, the 30 pesticides were as follows: pymetrozine,
carbendazim, chloridazon, acetamiprid, nicosulfuron, thiacloprid, chlortoluron,
carbetamide, terbutryn, spinosad A, isoproturon, diuron, metalaxyl-M, spinosad D,
dimethenamid-p, penconazole, isoxadifen, tebuconazole, diflubenzuron, epoxiconazole,
prothioconazole, propiconazole, chlorfenvinphos, triflusulfuron methyl, pendimethalin,
cyazofamid, pyraclostrobine, diflufenican, flufenoxuron, and lufenuron. A stock solution

of each of these standards at 1 g L — ! was prepared in acetonitrile.

For GC-MS/MS pesticide analysis, the pesticides (except OCPs) were as follows:
clofentezine, dichlobenil, etridiazole, diphenylamine, trifluralin, chlorpropham, tebutam,
clomazone, propyzamide, lindane, pyrimethanil, dimethenamid-P, dimethachlor,
acetochlor, alachlor, fenpropidin, carbaryl, ethofumesate, malathion, fenpropimorph,
metolachlor-S, chlorpyrifos, flurochloridone, cyprodinil, pendimethalin, tolyfluanid,
metazachlor, penconazole, procymidone, captan, folpet, oxadiazon, buprofezine,
kresoxim-methyl, bupirimate, flusilazole, myclobutanil, aclonifen, trifloxystrobin,
bromoxynil octanoate, propiconazole, quinoxyfen, lenacile, diclofop-methyl, chloridazon,
diflufenicanil, fluazinam, tebuconazole, bifenthrin, dimoxystrobin, epoxiconazole,
fenoxycarb, isoxaflutole, tebufenpyrad, bifenox, lambda cyhalothrin, fenarimol,

pyraclostrobin, prochloraz, cypermethrin, boscalid, indoxacarb, difenoconazole,
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deltamethrin, azoxystrobin, dimethomorph, spiroxamine, and metamitron. A stock

solution of each of these standards at 1 g L — 1 was prepared in acetonitrile.

For OCP analysis, a mixture at 0.1 g L — 1 of 21 OCPs, including a-HCH, y-HCH, 3-HCH, 6-
HCH, heptachlor epoxide A, methoxychlor, o,p’-DDD, o,p’-DDT, p,p’-DDD, p,p’-DDT, a-
endosulfan, o,p’-DDE, p,p’-DDE, aldrin, heptachlor, dieldrin, hexachlorobenzene,
heptachlor epoxide B, trans-chlordane, and cis-chlordane, was purchased from Cluzeau

Info Labo (St. Foy la Grande, France).

For PAH analysis, a mixture at 0.1 g L — 1 of 16 PAHs (i.e., naphthalene, acenaphthene,
fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene,
chrysene, benzo[ b]fluoranthene, benzo[ k]fluoranthene, benzo[ e]pyrene,
benzo(a)pyrene, indeno (1,2,3-cd) pyrene, benzo[g A i]perylene, and
dibenzo[ g A]anthracene) was prepared from individual standards purchased from

Sigma-Aldrich (L'Isle D'Abeau, France).

For PCB analysis, a mixture at 0.1 g L — ! of 22 PCBs (i.e.,, PCB 18, PCB 31, PCB 28, PCB 52,
PCB 44, PCB 70, PCB 81, PCB 101, PCB 123, PCB 118, PCB 114, PCB 105, PCB 126, PCB
149, PCB 153, PCB 138, PCB 167, PCB 156, PCB 157, PCB 169, PCB 180, and PCB 189) was

purchased from Cluzeau Info Labo (St. Foy la Grande, France).
All prepared solutions were stored at —18 °C.

Four internal standards for LC-MS/MS were obtained from CDN isotopes (Quebec,
Canada): carbendazim-d* (99.3%), diuron-d® (99.8%), pendimethalin-d> (99%), and
nicosulfuron-d® (99%). A standard solution of each compound at 0.05 g L — 1 in
acetonitrile was prepared, and a mixture of each compound at 0.01 g L — 1 in acetonitrile

was prepared and stored at —18 °C for alternative use as internal standard (IS) solution.

Internal standards for GC-MS/MS were trifluralin-d4, 4-nitrophenol-d4, and
naphthalene-d® (99%), and they were purchased from Sigma-Aldrich (L'Isle d'Abeau,
France) and Cambridge Isotope Laboratories (Cluzeau Info Labo, France). A mixture of
trifluralin-d!* and 4-nitrophenol-d* at 0.01 g L — ! in acetonitrile was used as IS solution
for pesticide analysis except OCPs. A solution of naphthalene-d® at 0.01 g L = ! in

acetonitrile was used as IS solution for OCP, PAH, and PCB analyses.
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HPLC-grade acetonitrile, toluene (TOL) from Biosolve (Dieuze, France), methanol
(MeOH), ethyl acetate (EA), “Fontainebleau” sand from Prolabo (France), and silica gel
(Merck, Germany) were used. LC-MS-grade acetonitrile, LC-MS-grade water, formic acid,
and HPLC-grade acetonitrile were purchased from Sigma-Aldrich (L'Isle D'Abeau,

France). Ultrapure water used was purified by an Elga system (Antony, France).

Kits for QUEChERS sample preparations were purchased as ready to use from RESTEK,
France. Buffered extraction kits (EN 1566 method) containing 4 g of MgS04, 1 g of NaCl,
1 g of trisodium citrate dihydrate, and 0.5 g of disodium hydrogencitrate sesquihydrate
were used. For clean-up, sample clean-up kits (AOAC 2007 method) containing 1.2 g of
MgS04, 400 mg of PSA, and 400 mg of C1s were used.

SPE CHROMABOND® EASY cartridges consisting of a polar-modified polystyrene divinyl
benzene copolymer were used as adsorbents (mean pore diameter 60 A, surface area

623 m?/g, and mean particle size 91 pm) and purchased from Macherey-Nagel, France.

SPME polyacrylate (PA) fiber (65 pm) was purchased from Supelco-Sigma Aldrich (Saint

Martin d'Here France) and used for the extraction of semi-volatile pesticides except OCPs.

SPME polydimethylsiloxane (PDMS) fiber (100 um) was purchased from Supelco- Sigma
Aldrich (Saint Martin d'Here France) and used for the extraction of OCPs, PCBs, and PAHs.

2.2. Sample collection

Certified H. aspersa blank snails were purchased from “Cap' Hélix Escargots, 2,
Bréharadec, 29,770 GOULIEN, France.” The snails were transported frozen to the

laboratory where they were kept at —18 °C until used.

For real sample analysis, three samples of H. aspersa were collected from three different
lands in Akkar region situated in northern Lebanon (34°33'02"N 036°04'41"E). This

region is known for its high population rate and agricultural production.

Samples were collected in propylene tubes and then transported frozen to the laboratory,

where they were stored at —18 °C until analysis.

2.3. Extraction procedures
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About 5 g of homogenized blank snails samples was weighed in 50 mL centrifuge tubes
and fortified with 200 pL of each mixture. Fortified samples were kept at 4 °C overnight,
followed by the extraction procedure cited below. All extractions were conducted in

triplicate.
2.3.1. ASE-SPE-based extraction
2.3.1.1. ASE

About 5 g of the fortified snails was extracted by ASE. For ASE, 33 mL cells were fitted at
the bottom with filter paper, and a thin layer (1 cm height) of activated silica gel was
added to provide a first purification step. A second filter was added on the top of the silica,
and 5 g of snails mixed with “Fontainebleau” sand was added. Finally, a filter was added
at the top of the cell, which was sealed well. Extraction was carried out with acetonitrile
(100%), and the program was as follows: heating the cell for 7 min, 10 min of static cycle,
temperature 100 °C, pressure 1500 psi, flushing 100%, and purging for 300 s. Around

30 min was required for each extracting cell.

ASE final extracts were collected in ASE bottles and prepared for SPE purification. Extracts

were filtered and then diluted to 1000 mL with acidified (pH 3) ultrapure water.
2.3.1.2.SPE

The SPE procedure was as follows: conditioning of the cartridge with 5 mL of MeOH
followed by 5 mL of ultrapure water, flushing 1000 mL of the sample into the cartridge at
10 mL min—1, and drying by N2 flushing for 30 min. Extracts were sequentially eluted with
2 mL of each of the following solvents: EA, TOL, and acetonitrile. The obtained extract was
sampled in a 10 mL glass tube and then evaporated to 100 pL. Around 1 h was needed for
each sample to be extracted by SPE.

2.3.2. QUEChERS-based extraction

This extraction procedure was based on the work of Al Alam et al. in 2017 for the analysis

of organic pollutant residues in honey [41].

First, 10 mL of acetonitrile was added to 5 g of fortified snails, and the tubes were shaken.

When the mixture was homogeneous, 10 mL of QuEChERS citrate buffered extraction salts
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was added. The tubes were immediately shaken by hand, vortexed for 1 min, and
centrifuged for 10 min at 5000 rpm. Second, the supernatant was added to the 15 mL PSA
tube. This tube was immediately shaken by hand, vortexed for around 30 s, and
centrifuged for 10 min at 5000 rpm. Finally, the obtained extract was sampled ina 10 mL
glass tube and then evaporated to 100 pL. Around 20 min was needed for the whole

procedure.
2.3.3. Extract reconstitution

Once evaporated, the collected extracts were reconstituted with acetonitrile to 1 mL to

prepare them for chromatographic analysis.

About 100 pL of the final extract was transferred to an LC vial, where 10 uL of the
appropriated IS solution was added. The extract was then analyzed by LC-MS/MS.

The remaining 900 pL was diluted to 20 mL with salted water (1.5% NaCl) to promote
their adsorption on the SPME fiber. Subsequently, 10 pL of both appropriated GC IS

solutions was added prior to this latest purification and extraction.
2.3.4. SPME and concentration

SPME fibers were soaked in 20 mL of the salted prepared solution and heated at 60 °C
under agitation (500 rpm) for 40 min for the PA fiber and at 80 °C for 40 min for the PDMS
fiber.

SPME was carried out by direct immersion in which the fiber was directly immersed into
the liquid sample, and the analytes were divided between the fiber and the liquid sample.
After extraction, the SPME fiber was transferred to the GC injection port where desorption

of the analyte occurred and analysis was carried out.
2.4. Sample analysis
2.4.1. LC-MS/MS

The system used was an LC system (Thermo Scientific, Surveyor pump and autosampler)
coupled with a tandem MS/MS system (TSQ Quantum Access Max equipped with a Hyper

Quads Driven) operating in electrospray ionization (ESI) mode. Chromatographic
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separation was performed on a Macherey-Nagel Nucleodur Cig Pyramid column
(150 mm X 3 mm; 3 um) thermostated at 25 °C. The chromatographic system was also
equipped with an autosampler (Accela Autosampler) and a Surveyor LC Pump Plus
(Thermo Scientific). The flow rate was 300 pL min—1. Samples were analyzed using a
mobile phase of acetonitrile/water (0.05% formic acid). The gradient started with 30:70
(v/v) for 5 min, followed by 50:50 (v/v) for 6 min and then 80:20 (v/v) for 7 min to
achieve 95:5 (v/v) for 10 min. Finally, a ratio of 30:70 (v/v) for 8 min was recommended

to stabilize the column for a new injection. The injection volume was 20 pL.
Details on the analyzed pesticide figure are illustrated in supplementary materials S1.
2.4.2. GC-MS/MS

A Thermo Scientific Trace GC coupled with an MS/MS system (ITQ 700, Temperature
source: 210 °C, transfer line temperature: 300 °C) operating in electron impact (EI) mode
was used. The considered POPs (20 OCPs, 16 PAHs, and 22 PCBs) and the 70 remaining
semi-volatile pesticides were analyzed on an XLB (50% phenyl/ 50% methylsiloxane)
capillary column (30 m X 0.25 mm internal diameter and 0.25 pm as film thickness).
Injections were made in splitless mode at 250 °C for 15 min. Helium was used as a carrier

gas at a flow rate of 1 mL min—1.
2.4.2.1. POP separation and analysis

Samples were injected by thermal desorption of the PDMS SPME fiber. The initial oven
temperature was set at 50 °C for 3 min, followed by a linear ramp to 255 °C at a rate of
10 °C min—! and another increase to 330 °C at a rate of 20 °C min—!, where it was

maintained for 18 min. The total run time was 45.25 min.
Details on the analyzed POP figure are in supplementary materials S2.
2.4.2.2. Semi-volatile pesticide separation and analysis

Samples were injected by thermal desorption of the PA SPME fiber. The initial oven
temperature was set at 50 °C for 3 min, followed by a linear ramp to 160 °C at a rate of
36.6 °C min~! and another ramp to 300 °C at a rate of 5.8 °C min—1, where it was

maintained for 10 min. The total run time was 41 min.
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Details of the semi-volatile pesticides analyzed by GC-MS/MS are shown in

supplementary materials S3.
2.5. Method validation
2.5.1. Validation parameters

The method was validated for all quantification parameters. First, fortified samples with
aconcentration range of 5-3000 ng g—1 were extracted in triplicate to determine linearity.
Five samples of spiked matrix with three concentration levels (10, 100, and 1000 ng g~ 1)
were extracted for three successive days to determine intermediate precision and
repeatability. The intra and inter-day precision and accuracy were estimated by analyzing
five replicates at three different QC levels (10, 100, and 1000 ng g 1). The intra-day
precision of the assay was estimated by calculating the relative standard deviation (RSD)
for the analysis of QC samples in five replicates, and inter-day precision was determined
by the analysis of five replicates of QC samples on three consecutive days. This parameter
was determined by varying processes conditions, which were the different days of
extraction, different solvent bottles, and different extraction kits used. The intra-day and

inter-day precision were evaluated by their corresponding RSD (%).

Concerning method validation limits, the limit of detection (LOD) and limit of
quantification (LOQ) were calculated using the signal produced over the background
noise obtained. These limits were determined using LOD = 3 X [min] S/N and
LOQ = 10 X [min] S/N, where [min] = minimal concentration at which a signal was
obtained, S = signal intensity obtained at this concentration, and N = noise intensity

obtained at this concentration.
The recoveries were determined at the same levels as precision following the equation:
Recovery (%) = (A extracted spiked sample / A standard solution) x 100
where 4 = peak area obtained.
2.5.2. Matrix-matched calibration curves

To overcome the possible matrix effect and to obtain reliable data of analyzed samples,

matrix-matched calibration curves were developed. Ten calibration points were prepared
103



using the validated extraction procedure. Homogenate matrices were spiked with
standard solutions to cover a pollutant range between 5 and 3000 ng g~ 1, extracted, and
analyzed. The calibration points used included the following concentrations (in ng g— 1):

5,10, 25, 50,100, 500, 1000, 1500, 2000, and 3000.

Calibration curves were validated for their linearity by calculating the determination

coefficient R2.

Finally, the validation of each compound included several criteria such as fragmentations,
retention time, and ion ratios for nonvolatile compounds. Furthermore, the extraction
performance was determined following the signal areas of the IS solutions in each

analyzed sample.

Calibrations and quantification analysis were conducted using XCalibur software.
3. Results and discussion

3.1. Method development

To obtain a concentrated extract, a concentration step by evaporation and reconstitution
was added prior to LC analysis. Moreover, SPME was added prior to GC analysis for
arranging and discriminating volatile compounds. Among different SPME fibers, the
PDMS fiber was used as it is well known for its usefulness for the extraction of analytes
with high partition coefficients such as PAHs, PCBs, and OCPs, whereas PA was used for
the extraction of pesticides due to its efficiency in extracting polar compounds. PA is a
moderated polar coating characterized by a stronger hydrogen bond than PDMS fiber,
which makes it ideal for polar compounds with moderate hydrophobicity compared with
other fibers [42]. These concentration steps were used following the two extraction
procedures previously detailed. Both extractions were compared to choose the method

enabling the highest recovery with the lowest RSD%.

Chromatograms of the assessed nonvolatile pesticides, volatile pesticides, PAHs, PCBs,
and OCPs are shown in Fig. 1, Fig. 2, Fig. 3 in supplementary materials S4. These obtained
chromatograms showed good separation of all sought compounds, which allowed the
identification of the assessed pollutants on the basis of each parameter previously shown

in Tables 1s-3 s.
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Fig. 1. Mean recovery rate obtained from both extraction protocols.

Table 1. Compounds detected in real samples: percentage of samples contaminated and the
average quantified concentration.

Average concentration (ng g— 1) Percentage of samples contaminated
Carbendazim 38.5 100
Chloridazon 0.56 66.6
Pymetrozine 30.6 100
Acetamiprid 0.43 66.6
Terbutryn 2.17 66.6
Metalaxyl-M 3.4 66.6
Sulcotrione 85.6 100
Trifluralin 26.6 100
Chlorpropham 33.5 66.6
Tebutam 8.63 33.3
Clomazone 53.71 100
Propyzamide 59.1 100
Naphthalene 8.54 100
Acenaphthene 6.82 100
Fluorene 9.16 66.6
Anthracene 42.9 100
Phenanthrene 18.73 100
Fluoranthene 314.33 100
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3.1.1. Influence of the extraction procedure

Fortified snails at a mid-level concentration of 1000 ng g~ of each pollutant mixture were
extracted by ASE-SPE-based extraction and QuEChERS-based extraction. The two
extractions were followed by a pre-concentration step using SPME prior to GC-MS/MS

analysis.

All extractions were carried out in triplicate, and RSD% was calculated for each

compound.

Fig. 1 shows the recoveries obtained by the two methods at a concentration of
1000 ng gL This figure shows the average recovery rate for each type of considered

pollutant.

The obtained results showed that the recoveries obtained with ASE-SPE-based extraction
were lower than those obtained with QUEChERS-based extraction. For semi-volatile
pesticides, the recoveries obtained with ASE-SPE-based extraction were between 20%
and 94% with a mean recovery of 61.24%, whereas those obtained with QuEChERS-based
extraction were between 65% and 107% with a mean recovery of 85.72%. For OCP
recoveries, results obtained with ASE-SPE-based extraction were between 17% and 82%
with a mean recovery of 54.93%, whereas those obtained with QuEChERS-based
extraction were between 62% and 104% with a mean recovery of 80.24%. For PAH
recoveries, results obtained with ASE-SPE-based extraction were between 56% and 71%
with a mean recovery of 63.39%, whereas those obtained with QuEChERS-based
extraction were between 64% and 96% with a mean recovery of 84.31%. For PCB
recoveries, results obtained with ASE-SPE-based extraction were between 17% and
110% with a mean recovery of 54.75%, whereas those obtained with QuEChERS-based
extraction were between 50% and 117% with a mean recovery of 80.2%. For the
remaining volatile pesticides, high recovery rates were obtained with QuEChERS-based
extraction. Results obtained with ASE-SPE-based extraction were between 14% and
127% with a mean recovery of 51.06%, whereas those obtained with QuUEChERS-based

extraction were between 55% and 114% with a mean recovery of 78.06%.

These results clearly demonstrated the influence of the extraction procedure on pollutant
analysis from the same matrix. These results were also proven by Blasco et al. in 2011,
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who proved that QUEChERS-based extraction allows higher recovery rates in comparison
with PLE and SPE [43].

The RSD% of the two developed methods was also assessed. The RSD% of each pollutant

type obtained using the two compared extraction methods is shown in Fig. 2.
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Fig. 2. Mean RSD% obtained from both extraction protocols.

The results obtained from the analysis of the RSD% of both extraction protocols favored
extraction based on QUEChERS to that based on ASE-SPE. The RSD% obtained with ASE-
SPE was higher than 20% for all the analyzed pollutants, whereas this value was lower
than 15% for all compounds extracted using QUEChERS. The mean RSDs% for ASE-SPE-
based extraction were 33.12%, 43.66%, 43.71%, 54.71%, and 48.06% for the
determination of nonvolatile pesticides, OCPs, PAHs, PCBs, and remaining volatile
pesticides, respectively. These values were far lower for QUEChERS-based extraction; the
RSDs% were 6.11%, 10.82%, 9.91%, 15.16%, and 15.55% for nonvolatile pesticides,

OCPs, PAHs, PCBs, and remaining volatile pesticides, respectively.

The results provided by the calculation of the recoveries and the RSD% proved that
QuEChERS-based extraction is a method of choice for the analysis of multiresidual
pollutants from such matrices, providing high recovery rates with a low RSD. Compared
with ASE-based methods, QUEChERS-based extraction is rapid and easy to use, providing

better recoveries with fewer losses of volatile compounds [44].
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For all these reasons, QUEChERS-based extraction was proved to be the method of choice
in this work. Furthermore, several crucial points, such as the high cost of equipment, large
volume used for cell rinsing and preparation before extraction, high temperature leading
to low recoveries and decomposition of thermally instable analytes, and several
extraction steps increasing RSD% [45, 46], reduce ASE-SPE-based extraction's efficiency
and give high credibility to QUEChERS-based extraction for the analysis of multi-residues

of environmental pollutants.
3.1.2. Influence of the nature of the extraction solvent

As QuEChERS seems to be the most efficient extraction procedure, a selection of an
appropriate extraction solvent for liquid-liquid extraction is crucial to improve recovery.
The extraction solvent plays a main role in any extraction step as incomplete extraction
and matrix effects can lead to an underestimation of the actual concentration in the
sample [47]. The organic solvent chosen must be highly polar, miscible in water, and able
to induce phase separation following the addition of the appropriate extraction salts.
Moreover, the suitable salt must not be soluble in the extraction solvent [29]. Acetonitrile
and EA were tested on fortified snails with the same precision level, and the extraction
efficiency of both solvents was compared. To choose the best extraction solvent,
recoveries were calculated. Fig. 3 shows the recovery results obtained with the use of

acetonitrile and EA as QUEChERS extraction solvent.

Mean recovery rate obtained with both QUEChERS extraction solvent
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Fig. 3. Mean recovery rate obtained with both QUEChERS extraction solvent.
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As observed in Fig. 3, the use of EA showed recoveries lower than those obtained with
acetonitrile. For nonvolatile pesticides, the recovery obtained was 68.09% for the use of
EA and 85.62% with the use of acetonitrile; for OCPs, the use of EA gave a mean recovery
of 69.59%, whereas this value was 80.24% with the use of acetonitrile. For PAHs and
PCBs, the mean recoveries were 77.91 and 72.49% with EA, respectively, and 84.31 and
80.2% with acetonitrile, respectively. Likewise, the recovery rate of semi-volatile
pesticides increased from 65.95% with the use of EA as QUEChERS extraction solvent to

78.06% with the use of acetonitrile.

The use of acetonitrile has proven its efficiency in several multiresidue analyses in
biological samples in comparison with EA, exhibiting better recoveries and lower

standard deviations between replicates [29, 48, 49].

For matrix effects, the analysis of biological matrices, such as snails, can lead to the co-
extraction of a certain quantity of other compounds, such as lipids, sugars, and organic

acids; their elimination prior to the final determination step is crucial [48].

Studies have shown that PSA allows the removal of all polar organic acids, polar pigments,
sugars, and fatty acids from the extracts, whereas C1s allows the elimination of nonpolar

interfering substances such as lipids [34, 50].

The analyzed extracts showed good separation among all searched compounds, which
allowed the identification of 120 pesticides, 16 PAHs, and 22 PCBs on the basis of the

properties of each parameter previously shown in Tables 1s, 2 s, and 3 s.
3.2. Method validation

Once chosen and developed, the method should be validated as efficient and useful. The
validation proves that the used analytical methodology is accurate, specific, reproducible,
and robust over the specified range that a compound will be analyzed [51]. Several
parameters were tested: repeatability and reproducibility for method accuracy, LOD and
LOQ for method limits, linearity for the ability of the method to elicit test results that are
directly proportional to analyte concentration within a range between 5 and 3000 ng g~ 1,

and recovery for extraction efficiency. To include the error due to the matrix effect in
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measurements, matrix-matched calibrations were conducted. Figure 4 s in

supplementary material S5 shows the calibration curves of some analyzed compounds.

Table 4 s represents the results of the validation parameters for nonvolatile pesticides

analyzed by LC-MS/MS.

For the nonvolatile pesticides analyzed by LC-MS/MS, all target compounds were
validated with good linearity expressed by a regression coefficient higher than 0.99 for
the 30 targeted pesticides. LOD and LOQ were lower than 15 ng g ~1 for all compounds,
except lufenuron having an LOQ of about 20 ng g—1. The 30 pesticides were detected with
high precision with RSD% lower than 20% for inter- and intra-day analyses. Furthermore,

the method showed good recoveries higher than 65% for all targeted compounds.

For semi-volatile compounds, Tables 5 s and 6 s represent the validation parameters for

OCPs, PAHs, PCBs, and volatile pesticide analyzed by GC-MS/MS.

For the semi-volatile compounds analyzed with GC-MS/MS, compounds were validated
for their good linearity expressed by regression coefficients higher than 0.99 for the
majority of the compounds sought. Low LOD and LOQ were determined for the analyzed
compounds with an RSD lower than 20% for most of them. By contrast, the calculated
RSD% was higher than the one obtained with the nonvolatile pesticides. The main
explanation for these results is the introduction of SPME as a pre-concentration step;
excluding this step increased the error and decreased the recovery rates [52]. Moreover,
some fiber's saturation problems could be the main reasons for the high RSD% and low
recovery observed with some compounds (PCB-169, PCB-157, methoxychlor, 0.p-DDT,

and bupirimate).
3.3. Application to real samples

The samples collected were analyzed in accordance with the previously developed
method. Residue levels were calculated using Xcalibur software based on the previously

plotted calibration curves.

Most of the assessed samples were contaminated with pesticides and PAHs, whereas no

important PCB residues were found for all the samples analyzed.
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Table 1 shows the most relevant pesticides and the PAH residues found in the samples

analyzed.
4. Conclusion

The analytical method developed in this paper enabled the simultaneous analysis of 158
emerging environmental pollutants from the terrestrial gastropod H. aspersa. The
combination of a simple extraction method such as QUEChERS with an SPME process
coupled with chromatographic analytical techniques allowed the extraction of this wide
number of different types of pollutants. The comparison of the QUEChERS-SPME-based
method with ASE-SPE-SPME proved the efficiency of the first method, especially in terms
of being efficient and ecofriendly. The validation of the developed method yielded positive

results, indicating good performance in terms of linearity, accuracy, and precision.

The presented extraction method followed by chromatographic analysis via LC-MS/MS
and GC-MS/MS presents a reliable tool for the routine analysis of a large range of
compounds at trace level in snails. The proposed method may be applied in further

studies focusing on environmental biomonitoring.
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Supplementary Materials S1

Supplementary materials S1- table 1s: LC-MS/MS method parameters

Pesticides RT (mn) Parent ion Daughter ion MRM ratio
pymetrozine 1.80 ;12 18(1) 17095128286 1.5-3.6
carbendazim 1.85 13; 182 123 123 0.4-2.0
chloridazon 5.14 ;;; 882 170;32:00 0.5-1.3
acetamiprid 6.10 g;g ggg 19296200272 0.3

thiacloprid 8.25 ;gg 882 19296223642 6.4-6.9
nicosulfuron 7.70 iﬁ 182 ;?; 222 1.9-2.1
chlortoluron 11.10 ;g 18(2) 1120209363 4.8-7.5
carbetamide 8.20 ;2; 18; i% gg; 4.2-4.8

terbutryn 10.05 ;jg 88(1) 16886329100 25.0-56.0
spinosad A 10.50 ;3; 28(1) 19482105721 6.0-18.8
isoproturon 11.70 ;g; 18(1) 47}2 28; 2.7-44
dturon 1205 | 233001 72306 w045
metalaxyl-M 11.40 ;gg gg; iég g;g 1.0-16
spinosad D 11.15 ;:2 ;;: 19481495777 1.2-8333
dimethenamid-p 14.35 276190 244011 2.9-33
276101 168 034
penconazole 15.47 ;g: 88(1) 17509309700 1.3-1.8

isoxadifen 16.62 ;22 88(1) ggi 158 1315

tebuconazole 15.77 ggg 88(1) 1720531%00 3.9-5.0
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diflubenzuron 15.50 gﬂ 88(1) 123 ggg 0.9-1.6
) 330000 221
epoxiconazole 14.44 330001 119 200 24.0-27.5
propiconazole 15.89 gg 88(1) 133 (1)28 5.6
prothioconazole 15.75 gii 88(1) igg ggi 0.4-2.7
chlorfenvinphos 16.17 ggg 88(1) 19790 108200 1.5
triflusulfuron methyl 14.75 igg 18(1) 29663098087 4.4-64
pendimethain 050 | 22100 | 21196 ot1s
cyazofamid 16.60 g;g 88(1) ;;i Z;i 0.5-3.0
pyraclostrobin 17.26 ggg 88(1) 12; 128 1.1-18
diflufenican 18.01 igg 382 522 ggg 5.0
flufenoxuron 19.70 igg gg; 11511 gjg 1.2
lufenuron 19.00 gﬁ 38(1) 11511 32(1) 1.6-2.0

Supplementary materials S2- ta

ble 2s: GC-MS/MS method parameters for OCPs-PAHs and PCBs

Collision energy

Compound Parention Daughter ions (ev) RT (mn)
OCPs

aldrin 263 191/227 1.8 21.56
cischlordane 373 301/337 1.4 23.28
dieldrin 279 241/206 1.6 23.8
heptachlor 272 237/235 1.5 20.9
heptachlor epoxide A 183 155/119 1.5 22.62
heptachlor epoxide B 353 253/317 1.5 22.51
hexachlorobenzene 284 249/214 1.4 18.98
methoxychlor 227 169 1.12 25.67
o.p’-DDD 235 199/165 1.4 23.83
0.p’-DDE 246 176/150 1.9 22.93
0.p’-DDT 235 199/165 1.5 24.36
p.p’-DDD 235 199 1.5 24.57
p.p’-DDE 246 176/150 1.9 23.66
p.p-DDT 235 165/199 1.5 25.01
transchlordane 373 301/264 1.4 23.17
a-endosulfan 241 170/204 1.7 23.33
a-HCH 183 147/109 1.6 18.82
B-endosulfan 195 159/123 1.8 24.69
B-HCH 183 147/109 1.6 20.3
y-HCH 183 147/109 1.6 19.57
§-HCH 183 147/109 1.6 20.8

114




PAHs

acenaphthene 153 150/151 1.3 16.14
anthracene 178 152/176 1.2 20.06
benz[a]anthracene 228 226/202 1.2 25.99
benzo[a]pyrene 252 250/226 1.3 28.19
benzo[b]fluoranthene 252 250/226 1.3 27.66
benzo[e]pyrene 252 250/226 1.3 28.09
benzo[gh,i]perylene 276 274 1.4 30.87
benzo[k]fluoranthene 252 250/226 1.3 27.7
chrysene 228 226/202 1.2 26.06
dibenzo[a,h]anthracene 278 276 1.5 30.21
fluoranthene 202 200 1.3 22.96
fluorene 165 163/139 1.2 17.48
indeno[1,2,3-c,d]pyrene 276 274 1.4 30.25
naphthalene 128 102/126 1.2 11.73
Phenanthrene 178 152/176 1.2 19.9
pyrene 202 200 1.2 23.52

PCBs
PCB 101 326 291/254 1.2 23.11
PCB 105 326 256/254 1.4 24.56
PCB 114 326 256/254 1.3 24.41
PCB 118 326 256/254 1.3 24.38
PCB 123 326 256/254 1.3 24.29
PCB 126 326 256/254 1.4 24.81
PCB 138 360 325/288 2.1 25.05
PCB 149 360 288/290 2 24.14
PCB 153 360 290/288 2 24.6
PCB 156 360 290/288 1.5 25.84
PCB 157 360 290/288 1.5 25.89
PCB 167 360 290/288 2 25.52
PCB 169 360 290/288 1.5 26.4
PCB 18 256 186/221 1.4 19.57
PCB 180 396 361/324 1.8 25.94
PCB 189 396 326/324 2.1 26.74
PCB 28 256 186/150 1.7 20.8
PCB 31 256 186/150 1.7 20.73
PCB 44 292 257/220 1.9 21.74
PCB 52 292 257/220 1.9 21.35
PCB 70 292 220/185 1.3 22.68
PCB 81 292 220/185 2.1 23.89
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Supplementary materials S3- table 3s: GC-MS/MS method parameters for remained volatile pesticides

Collision energy

Pesticides Parent ion Daughter ions (ev) RT(mn)
acetochlor 146 132/131 1.26 14.87
aclonifen 194 167/139 1.45 21.45
alachlor 160 132/117 1.4 15.16
azoxystrobin 344 329 1.6 31.77
bifenox 341 311/310 1.2 24.59
bifenthrin 181 165/166 11 23.38
boscalid 140 112/76 1.4 28.92
bromoxynil octanoate 127 109/67 0.76 2213
bupirimate 193 165/109 1.4 19.71
buprofezin 175 132/117 1.2 19.68
captan 79 51/77 1.2 18.43
carbaryl 144 116/144 1.28 15.59
chloridazon 220 193/166 1.6 22.75
chlorpropham 127 100/92 1.46 11.49
chlorpyrifos 314 258/286 11 16.4
clofentezine 137 102/75/110 1.4 6.97
clomazone 204 107/174 1.6 12.97
cypermethrin 181 152 1.5 28.51
cyprodinil 224 208/197 1.9 17.53
deltamethrin 181 152 1.8 31.21
dichlobenil 171 136/100 1.5 8.31
diclophop-methyl 340 253/281 1.4 22.65
difenoconazole 265 249/202 1.45 31.06
diflufenican 266 246/238 1.6 22.8
dimethachlor 134 105/79 1.3 14.84
dimethenamid-P 154 137/111 1.22 14.81
dimethomorph 301 165/258 1.6 32.07
dimoxystrobin 116 89/63 1.2 23.42
diphenylamine 169 139/166 1.5 11.27
epoxiconazole 192 138/157 1.16 23.48
ethofumesate 161 133/105 1.4 1591
etridiazole 211 183/140 1 9.03
fenarimol 139 111/75 1.3 26.05
fenoxycarb 186 157/158 1.4 23.89
fenpropidin 98 70/55 1.3 15.35
fenpropimorph 128 110/70 1.6 16.16
fluazinam 387 359/324 1.5 22.84
flurochloridone 174 127/145 1.4 17.52
flusilazole 233 165/152 1.85 20.19
folpet 260 260/232 1.2 18.66
indoxacarb 203 134/175 1.22 30.92
isoxaflutole 279 252/223 1.5 17.75
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krersoxim-methyl 116 116/89 2.13 19.68
lambda cyhalothrin 181 152/161 1.5 25.25
lenacil 153 136/135 1.3 22.43
lindane 183 147/148 1.4 13.54
malathion 127 99 0.78 15.98
metamitron 202 174/186 0.9 20.94
metazachlor 209 132/174 1.2 17.75
metolachlor-S 162 133/134 1.3 16.36
myclobutanil 179 125/152 1.3 20.37
oxadiazon 258 275/146 1.6 19.34
penconazole 248 192/157 1.42 17.95
pendimethalin 252 208/191 1.2 17.7
prochloraz 180 138 1.2 27.53
procymidone 283 255/254 1.4 18.19
propiconazole 259 191/173 1.4 22.19
propyzamide 173 145/109 1.4 13.39
pyraclostrobin 132 104/77 1.3 26.89
Pyrimethanil 198 183/182 1.7 13.77
quinoxyfen 237 208/181 1.9 22.35
spiroxamine 100 72/58 1.1 14.65/15.45
tebuconazole 250 163/153 1.4 23
tebufenpyrad 171 156/127 1.5 24.14
tebutam 91 65 1.4 11.82
tolyfluanid 137 122/109 1.4 17.73
trifloxystrobin 116 89/63 1.16 21.57
trifluralin 264 206/160 1.5 11.4
Supplementary materials S4-Figure 1s: chromatogram of nonvolatile pesticides analyzed by LC-MS/MS
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Supplementary materials S4-Figure 2s: chromatogram of volatile pesticides analyzed by GC-MS/MS
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Supplementary materials S4-Figure 3s: chromatogram of PAHs, PCBs and OCPs analyzed by GC-MS/MS
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Supplementary materials S5-Figure 4s: Calibration curves of some analyzed compounds
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Supplementary Material S6: Table 4s: LC-MS/MS method performance and validation for pesticides analysis

Table 4s: LC-MS/MS method performance and validation for pesticides analysis

Compounds Regressign line Regrgs.sion LOD | LOQ _ Repeatability Re}()lrli)t(ilrl_c(ijk;i;ity Recovery
equation coefficient | (ng/g)| (ng/g) |(intra-day RSD%) RSD %) (%)

acetamiprid Y =0.0011*X 0.998 513 | 171 0.932 5.728 74.728
carbendazim Y = 0.0040*X 0.996 1.13 | 3.78 4.219 5.1854 72.086
carbetamide Y =0.0073*X 0.997 2.56 | 858 3.212 5.458 67.373
chloridazon Y =0.0021*X 0.997 1.01 | 3.39 0.550 4.147 85.532
chlortoluron Y =0.010*X 0.998 198 | 6.61 1.805 5.577 74.034
clofenvinphos Y =0.0045*X 0.998 3.32 | 11.08 2.501 6.267 73.500
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cyazofamid Y = 8.8e-005*X 0.995 248 | 8.26 0.746 7.813 98.249
diflufenican Y = 0.0465*X 0.997 1.03 | 3.44 0.827 6.026 98.500
dimethenamid-P | Y= 0.1194*X 0.997 0.46 | 1.55 1.013 4.381 92.870
diuron Y = 0.0050*X 0.999 0.52 1.73 1.426 4.791 77.791
DPMU Y = 0.0060*X 0.997 1.73 5.77 Nd Nd Nd
epoxiconazole Y= 0.0715*X 0.998 1.06 | 3.53 0.059 6.738 87.001
flufenoxuron Y =0.0087*X 0.995 1.11 3.71 2.598 5.717 95.493
foramsulfuron Y =0.0014*X 0.998 2.71 | 9.03 4.060 4.422 97.402
isoproturon Y = 0.0244*X 0.998 1.19 | 3.95 0.087 5.901 79.0373
isoxadifen Y =0.0076*X 0.998 1.76 | 5.85 1.604 4.932 77.045
lufenuron Y =0.0007*X 0.997 5.87 | 19.57 0.628 6.867 97.529
metalaxyl-M Y =0.0043*X 0.996 4.42 14.7 1.927 6.344 69.119
nicosulfuron Y =0.0009*X 0.997 522 | 1741 Nd Nd Nd
penconazole Y = 0.0145*X 0.998 1.42 | 4.73 1.835 6.853 97.682
pendimethalin Y =0.0160*X 0.998 1.68 5.6 0.788 5.251 95.630
propiconazole Y =0.0302*X 0.997 3.73 | 12.43 1.332 5.598 94.1038
pymetrozine Y = 0.0008*X 0.995 2.63 8.8 4.588 8.744 67.800
pyraclostrobin Y =0.0154*X 0.992 0.79 | 2.63 0.0027 5.771 77.279
spinosad A Y = 0.0294*X 0.996 4.19 14 0.479 5.813 72.433
spinosad D Y =0.0067*X 0.996 0.16 | 0.55 0.607 4971 82.214
tebuconazole Y =0.0188*X 0.994 094 | 3.13 0.491 5.711 92.611
terbutryn Y =0.0242*X 0.993 1.99 | 6.64 0.096 3.960 84.026
thiacloprid Y= 0.010*X 0.995 1.96 | 6.53 1.45 4.827 79.263
triflu-Methyl Y =0.0185*X 0.999 1.51 | 5.04 0.130 4.868 101.649

Supplementary Material S7: Table 5s: GC-MS/MS method performance and validation for OCPs, PAHs and PCBs analysis

Table 5s: GC-MS/MS method performance and validation for OCPs, PAHs and PCBs analysis

Compounds .Regressi(.)n Regrejs_sion LOD LOQ |intra-day| inter-day | Recovery
line equation coefficient |(ng/g)| (ng/g) | RSD% RSD % %

aldrin Y Zg 41166%‘_*86%2?;)(' 0.9901 5 165 | 1.144 | 7.443 | 85934
cischlordane Y= 0'0000081*§'1'929' 0.994 214 | 714 | 1980 8.98 79.222
dieldrin Y= 6'5%?)%2;)2(”'48& 0.990 10 | 33 | 4311 | 5036 | 74.108
heptachlor | ¥ = >7& 009 X+2.02¢ 0,994 5 | 165 | 2630 | 8016 | 65285
heptachlor epoxide A Y= 0'0000%%‘4;?;2'3& 0.994 5.77 19.2 2.600 8.23 78.809
heptachlor epoxide B Y= 0.0832:;(:—1.12& 0.991 1.67 5.56 1.729 6.916 95.174
hexachlorobenzene Y122§8031333§Z;)2{- 0.996 0.41 1.39 0.970 8.516 75.210
methoxychlor Y= 0.8gg§;>2<-3.4e- 0.998 133 | 442 | 9945 | 5416 | 55.071
0.p’-DDD Y= 3'36%'ggf;§(+1'07e' 0.997 78 | 262 | 1595 | 4496 | 67.107
0.p’-DDE Y= 0'88§I§;6'23e' 0.992 75 | 247 | 3772 | 6.733 | 71.643
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Y = 0.0003*X-4.79e-

0.p-DDT 0084 0.975 214 | 7.14 Nd Nd Nd
_ *Y_ _
p.p’-DDD Y= 0'0000073*)?2 1.02e 0.990 158 | 526 | 2.003 | 2683 | 81.609
— * _
p.p’-DDE Y= 0'0000071*;(2“'86 0.998 10 33 | 3.033 | 7313 | 66.746
— * _
p.p-DDT Y= 0'0000%1)2(2+3'9e 0.994 6.43 | 214 | 4436 | 7.006 | 73.259
—_ - *Y_ -
transchlordane | ¥ 7'3% ggfxz( 694 0.994 136 | 455 | 2877 | 9343 | 78379
— * _
a-endosulfan Y= 0.000007i)é+2.7e 0.996 5 16.5 2.65 5.696 83.161
— * _
a-HCH Y= 0.0000(;;(2“.% 0.996 5 | 165 | 1.130 | 8493 | 94241
— _ * _
- endosulfane - ' . . . . .
B- endosulf: Y=2 Zzggfxz)”s le 0.995 5 165 | 2320 | 6.633 | 71.868
B-HCH Y= 8'45622§+9'8e' 0.995 10 33 | 0686 | 7.06 | 75.011
— * _
y-HCH Y= 0.0000%1;(2+2.5e 0.996 15 5 2300 | 10.726 | 94.471
8-HCH Y = 0.0019+0.0001*X 0.997 10 33 | 0301 | 7.246 | 86.838
— * _
acenaphthylene Y= 0.0832&:—1.1% 0.999 6.89 23 1.093 6.691 95.424
anthracene Y = 0.030-0.001*X 0.995 225 | 75 | 1299 | 7388 | 9427
— - * -
benz[alanthracene |* ~ *4%¢ (())ng2><+2.25e 0.993 255 | 833 | 0350 | 7.545 | 85.948
benzo[a]pyrene  |Y = 0.0023+3.81e-005*X  0.996 375 | 125 | 1.208 | 9.759 | 8276
— *Y_ -
benzo[b]fluoranthene Y= Oggglx)z( L.2e 0.996 1.76 5.88 2.913 8.952 64.959
benzo[e]pyrene  |Y = 0.0013+4.33e-005*X  0.997 375 | 125 | 1389 | 11.934 | 75425
— - * -
benzo[ghiilperylene | T 1'360?)25)()2(“'136 0.998 10 33 1.048 | 7322 | 65.809
— - Xy _ -
benzo[K]fluoranthene| © — 3'0‘(‘)61 gfxi X-57e 0.981 857 | 286 | 0830 | 9240 | 82479
— - * -
chrysene V= 8'12%8§fxzx+5'27e 0.993 10 | 33 | 0474 | 7.555 | 93.436
dlbenz[a,hganthracen Y= 2.7%-(;)50*5;:1.32& 0.994 10 33 1.152 7.048 85.956
fluoranthene Y = 0.011+0.0006*X 0.993 10 33 | 2370 | 4821 | 94.225
— *Y_ _
fluorene Y= 0'8825;2( 7:9¢ 0.999 041 | 1.39 | 3.604 | 6706 | 83.667
indeno[1,23- |y _  0001+2.6e-005*X 0.995 10 33 1169 | 4532 | 94314
c,d]pyrene
— - * -
naphthalene | ¥~ 2'690?)22)22(”'5“ 0.997 0.68 | 227 | 1930 | 7.020 | 76.183
— *y -
phenanthrene Y= 0.88;3};1.8% 0.995 1.43 4.75 0.397 7.016 86.821
— * _
pyrene Y= 0'0882,&(; 2.62¢ 0.996 10 33 | 2497 | 7128 | 91.629
— _ * _
PCB 101 Y ‘4'16eoggfx§+8'92e 0.97 5 | 167 | 1005 | 9352 | 67.768
— - * -
PCB 105 Y= 2'8550%2)5(2“6& 0.998 375 | 125 | 1.982 | 9.739 | 97.349
— - * -
PCB 114 Y= 2'883835)(2)(“'52‘3 0.997 333 | 111 | 1.635 | 9813 | 64.887
— *y_ _
PCB 118 Y= 0'0000082*)?2 8.03¢ 0.996 115 | 385 | 0591 | 10257 | 88.054
— - * -
PCB 123 Y= 2.34%8gfxz><+1.22e 0.996 231 | 7.69 | 3.094 | 7.657 | 83.191
— _ * _
PCB 126 v= 3'4%ggfxf+1'3e 0.994 188 | 625 | 4785 | 8897 | 68.091
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PCB 138 Y= 1'2256%2)5;“1'26' 0.837 5 | 167 | 5047 | 10237 | 68711
PCB 149 Y=4850000%917e 1 0985 10 | 33 | 1822 | 5157 | 84150
PCB 153 Y= 2'01%'f8f;§(+1'50e' 0.995 10 | 33 | 1710 | 9759 | 95.652
PCB 156 Y= 1'263})0925;2(”'90‘3' 0.998 5 | 167 | 2100 | 7.991 | 66.098
PCB 157 Y= 1'283'90*2(5;*2”3'16' 0.998 5 | 167 | 0566 | 6.673 | 64389
PCB 167 Y= 7'39%'ggf;§(+1'31e' 0.9874 10 | 33 | 1570 | 9553 | 96.663
PCB 169 Y =0.0008+4.29¢-006*X|  0.967 10 | 33 | 3007 | 6911 | 63673
PCB 18 Y= 0'088233“'16' 0.995 214 | 714 | 2194 | 7252 | 101876
PCB 180 Y= 2'095688)5(’2%'3%' 0.999 75 | 25 | 1572 | 8215 | 77.136
PCB 189 Nd Nd Nd | Nd Nd Nd Nd

PCB 28 Y= 0'0000082;;()(2'1'636' 0.991 5 16.5 | 0.798 8.089 | 76.086
PCB 31 Y= 0'08823;“ 1.80e- 0.997 1.07 | 357 | 0939 | 9807 | 84.419
PCB 44 Y= 0'0000081*2'1'58e' 0.991 375 | 125 | 1.787 9.160 | 100.273
PCB 52 YO Lo 0995 | 167 | 556 | 0986 | 5085 | 95532
PCB 70 Y= 4'73%'ggf;f+8'126' 0.981 10 | 33 | 1522 | 10716 | 75.614
PCB 81 Y= 1'63%'855)2(”'0%' 0.991 75 | 25 Nd Nd Nd

Table 6s: GC-MS/MS method performance and validation for pesticides analysis

Supplementary Material S8: Table 6s: GC-MS/MS method performance and validation for pesticides analysis

Compounds Regressiqn Regrgs_sion LOD LOQ | Intra-day |Inter-day |Recovery
line equation coefficient (ng/g) | (ng/g) | RSD % RSD % %
acetochlor Y= 0'0010053;3'006' 0.996 13.53 | 45.11 | 5940 | 10.492 | 78.6075
aclonifen Y = 1.53+0.023*X 0.961 943 | 31.43 | 3.730 | 10.076 | 71.033
alachlor Y= 0'08821§;’ 1.39- 0.991 5 16.7 1.788 | 11.941 | 86.351
azoxystrobin Y = 0.084+0.0017*X 0.996 273 | 9.09 5243 | 10.684 | 84.474
bifenox Y= 0'000006i%+1'5e' 0.999 12.39 | 413 9.561 8.841 | 75.197
bifenthrin Y = 0.127*X+0.0001*X2 0.988 9.95 | 33.2 4.631 8.834 | 79.233
boscalid Y= 0'000065?;1'189' 0.998 234 | 781 6.742 | 10.124 | 81.896
bromoxynil * i _ 6 5074x123e-006*x7  0.997 13.93 | 46.43 Nd Nd Nd
octanoate
bupirimate Y = 0.099+0.005*X 0.996 11.63 | 38.75 | 8.140 | 11.334 | 82.638
buprofezin Y= 0002 X139 0.994 75 | 25 | 3916 | 12575 | 76.552
captan Y= 0'000;79*’;)(2'3'35‘3' 0.998 13.91 | 46.38 | 3.740 8.676 | 92.039
carbaryl Y= 0'28;8';),?;9*)('2'79' 0.991 5.63 18.8 4318 | 11.197 | 82.26
chloridazon Y= 0'088%3; 249e- 0.997 5 16.7 | 0.0468 | 11.475 | 81.324
chlorpropham Y= 0'005065*3;'2—1'18(3- 0.998 5.12 17.07 9.478 8.902 78.738
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Y = 0.003*X+7.64e-

chlorpyrifos 008*X2 0.999 4.09 13.6 6.220 9.865 89.600
clofentezine Y=0030°% 1.82e- 0.994 375 | 125 | 45082 | 12.307 | 91.468
clomazone Y= 0.008"X+5.21e- 0.993 5 16.7 6.483 7.739 | 81.769
006*X2
cypermethrin Y=0.185+ 0.005*X 0.997 12 40 6.618 | 7.444 | 79.834
cyprodinil v= O'OSééiij L13e- 0.994 5 16.7 | 1127 | 11.405 | 83.997
deltamethrin v= 0'088;3; 6:25e- 0.998 7.5 25 5050 | 7.214 | 82.597
dichlobenil v= 0'008005*5:;4'68‘3' 0.996 027 | 089 | 3.3514 | 9.880 | 86.521
diclophop-methyl | ¥ = 0'006085*5;6'27‘*' 0.988 122 | 407 | 3165 | 11.345 | 84519
difenoconazole Y= 0'00050353;'2_7'872& 0.998 15.1 50.3 6.594 9.885 | 76.077
diflufenicanil | Y = 0.062*X+0.0003*X2 0.980 088 | 294 | 8270 |11.91271| 72.194
dimethachlor Y= 0'0832i§j 9-18e- 0.999 417 | 1389 | 5909 | 10.607 |81.9438
dimethenamid-P | 0'088;3: L17e- 0.996 10.53 | 3511 | 1136 | 10.119 | 79.296
dimethomorph Y= 0'000005*%'4'97e' 0.993 6.25 | 208 5.291 7.557 | 83.363
dimoxystrobin Y= 0'105005*3§(J;4'36e' 0.997 186 | 619 | 3.948 | 9717 | 92.639
diphenylamine | Y = 0.321*X+0.0001*X2 0.998 231 | 7.69 | 7.586 | 10.029 | 80.576
epoxiconazole v= 0'08§;I§j 214 0.990 1073 | 3577 | 5862 | 9.914 | 90.869
Y=
ethofumesate 0.13+0.001*X+2.25e- 0.997 938 | 313 | 0259 | 12287 | 82.124
006*X2
etridiazole v= 0'0070?;?'666' 0.998 564 | 188 | 7.608 | 9.858 | 79.617
fenarimol Y=0.152+0.001*X 0.998 833 | 27.77 | 14707 | 8485 | 70.454
fenoxycarb Y= 0.08(())32;1))((-21-6.07& 0.991 6 20 4.533 | 12.623 | 90.464
fenpropidin v= 0'08321§;’ 3:27e- 0.992 20 | 66.67 | 8236 | 10.786 | 77.830
fenpropimorph v= 0'000027*553'78& 0.996 7.5 25 7.287 | 8.0123 | 80.885
fluazinam Y= 9'20%'8;)5;2)(“'849' 0.995 12 40 | 2435 | 9879 | 79.209
flurochloridone Y= 0'8(2)2324'32‘3' 0.993 12.27 | 409 | 6803 | 9.228 | 82.256
flusilazole Y= 0'83‘7‘?;8'5 le- 0.991 247 | 822 | 12171 | 10.196 | 76.448
folpet Y= 4'76%'8;;)5;2)(”'899' 0.981 117 | 389 | 6119 | 9269 | 80.267
indoxacarb Y= 0'0882:;‘—3'2%- 0.998 8.72 29.61 Nd Nd Nd
isoxaflutole Y= O'Oggézij 9:52e- 0.993 5 167 | 2570 | 8014 | 91416
kresoxim-methyl Y= 0'00000;*’;()(2'1'41‘3' 0.998 11.25 | 375 7.943 9.487 | 80.226
lambda cyhalothrin | O'Ogégzij 1.06e- 0.989 818 | 273 | 2906 | 10.647 | 92.189
lenacil ¥'=0.0016X +5.41e- 0.998 144 | 481 | 5638 | 9308 | 74.172
007*X?
lindane Y =0.03+0.0032*X 0.996 065 | 217 | 7394 | 9726 | 81.818
malathion ¥'=0.002X-6.17¢- 0.996 946 | 315 | 3321 | 9710 | 89.062

008*X2
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Y = 0.0006*X+5.45e-

metamitron 008*X2 0.995 7.5 25 Nd Nd Nd

_ *y_ _

metazachlor Y =0.0028"X-3.23¢ 0.997 193 | 648 | 8908 | 11361 | 85.043

007*X?

— * _

metolachlor-S Y= 0'0050353;;2'2% 0.991 6.43 21.43 2.930 12.256 | 84.939
— * _

myclobutanil Y= 0'08(2)2,,;:_3'416 0.998 11.78 | 39.29 3.148 10.562 | 89.468
. Y = 0.0018*X-3.6e-

oxadiazon 007*X2 0.991 5 16.7 6.828 10.340 | 84.740
— * _

penconazole Y= 0'00%85,2;4'63(3 0.972 0.22 0.72 4.730 8.113 84.940
— * _

pendimethalin Y= 0.08(1)2*§;|-3.38e 0.996 7.06 23.53 1.898 9.549 | 85.314
— * _

prochloraz Y= 0.08(2)2*§;I-2.43e 0.997 14.4 48 6.628 9.646 | 79.559
— * _

procymidone Y= 0'08(1);*§2+ 1.80e 0.997 186 | 62.1 4164 | 10.795 | 90.772

propiconazole  [Y = 0.008*X+2.7e-005*X? 0.995 1.82 6.06 3.208 11.852 | 79.902
— * _

Propyzamide Y= 0'0070653;7'17(3 0.996 7.33 24.43 1.851 8.176 | 77.863

pyraclostrobin Y =0.359+0.010*X 0.996 9.16 30.55 6.578 11.067 | 81.051
— * _

pyrimethanil Y= 0'0080553;-’2-7'43(3 0.997 2.5 8.33 2.789 8.048 | 84.718
— * _

quinoxyfen Y= 0'0010753;-1'52(3 0.991 0.44 1.47 5911 7.662 | 89.660
— * _

spiroxamine Y= 0.088;&:—3.0% 0.983 6.36 21.2 8.575 7.765 | 79.443

tebuconazole Y =0.01340.0004*X 0.998 13.12 | 43.75 7.505 11.455 | 82.666
Y = 0.0013*X-2.02e-

tebufenpyrad 007Xz 0.999 0.61 2.04 1.441 11.570 | 82.150
— *Y_ -

tebutam Y =00817"X-4.09¢ 0.996 5.27 17.57 2.307 | 10.5094 | 82.069

006*X?2

— * _

tolyfluanid Y= 0.088§*§;|-2.76e 0.995 5 16.7 2.786 11.622 | 84.136
— * _

trifloxystrobin Y= 0'0010653;3'3% 0.991 9.5 31.7 6.239 11.409 | 84.214
— * _

trifluralin Y= 0'0000853;2'7% 0.999 0.83 2.78 1.129 11.909 | 76.932
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[II. Conifers as environmental biomonitors: A multi-residue method for the concomitant
quantification of pesticides, polycyclic aromatic hydrocarbons and polychlorinated

biphenyls by LC-MS/MS and GC-MS/MS
Résumé

Ces recherches, présentés dans cet article publié dans « Microchemical Journal », consiste
au développement d’'une méthode multi-résidus pour I’analyse des pesticides, HAPs et des

PCBs a partir des aiguilles de coniferes de type Pinus nigra.

L'utilisation de la végétation pour la surveillance de I'environnement peut étre considérée
comme une technique de surveillance simple, efficace et rentable pour détecter et évaluer
sa pollution. Parmi les différentes especes végétales, les aiguilles de coniféeres peuvent
jouer un réle important en tant qu'échantillonneurs passifs. Ils ont été largement utilisés
pour la biosurveillance consécutive de plusieurs polluants et se caractérisent par une

forte capacité a accumuler un ou plusieurs polluants dans leurs tissus.

Dans cette étude, une stratégie d'extraction multi-résidus optimisée basée sur lI'approche
QuEChERS-SPME pour le criblage simultané de 134 pesticides, 22 PCBs et 16 HAPs suivie
de leur analyse par LC-MS/MS et GC-MS/MS est rapportée. L'extraction a été réalisée sur
QuEChERS en utilisant 'ACN, suivie d'un lavage par extraction en phase solide dispersive
en utilisant du PSA et de sorbants octadécyl (Cis). La technique d'extraction utilisée est
suivie d'une étape de préconcentration pour les composés volatils en utilisant une SPME,
préalablement a leur analyse en GC. Les composés non volatils, quant a eux, ont été
directement analysés en LC apres leur extraction. La procédure d'analyse validée a révélé
une bonne récupération comprise entre 60 et 121% pour tous les composés cibles. De
plus, tous ces composés ont été validés avec une bonne linéarité exprimée par un R?

supérieur a 0.98 et des LOD et des LOQ inférieures a 15 ng g-..

Ainsi, le développement d'outils d'extraction pour l'analyse des traces de polluants
organiques dans une telle matrice semble efficace afin d'établir un controle
environnemental spécifique. Les résultats ont prouvé que le protocole QUEChERS-SPME
en combinaison avec les techniques chromatographiques peut étre utilisé comme un outil
de surveillance environnementale. Les méthodes développées ont été appliquées avec
succes dans l'analyse d'échantillons réels collectés dans 15 régions du Liban.
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Highlights

e Application of QUEChERS for the analysis of pesticides, PAHs and PCBs in conifer

needles.

e QuUEChERS-SPME was shown to be a reliable extraction procedure for the multi-

residue's analysis of organic pollutants in conifer needles.

« Conifers were used as biomonitor candidates to evaluate atmospheric contamination in

Lebanon.
Abstract

The conifer is a natural vascular land plant composed of very particular leaves called
needles that are able to accumulate, throughout years, a wide range of non-volatile, semi-
volatile and volatile compounds of different structure and polarity such as pesticides and
persistent organic pollutants. However, the extraction of these compounds from such
matrix remains mainly uncommitted. In this paper, a QUEChERS based extraction
procedure was developed for the concomitant extraction and analysis of 134 pesticides,
22 polychlorinated biphenyls and 16 polycyclic aromatic hydrocarbons residues from
conifer needles. The method included a liquid-liquid extraction using acetonitrile (ACN)
followed by a clean-up step using, Primary Secondary Amine (PSA), graphitized carbon
black (GCB) and Cis particles, in the presence of salts. The obtained extracts were
analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS)
for their contamination by non-volatile pesticides. However, volatile pesticides,
polychlorinated biphenyls, organochlorine pesticides and polycyclic aromatic
hydrocarbons were subjected to a concentration step using solid-phase microextraction
(SPME) prior to their analysis by gas chromatography coupled to tandem mass
spectrometry (GC-MS/MS). The method was developed and validated, and the obtained
results revealed a recovery rate ranged between 60% and 121% for all the targeted
compounds. In addition, the method showed high sensitivity and precision with detection
and quantification limits less than 20 ng g—! for most target compounds and low RSD for
both inter and intra-day analysis. Once developed the method was applied on conifer

samples collected from 15 different sites in northern Lebanon. The analysis of the
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collected samples showed a persistence of the different assessed pollutants depending of

the characteristics of each site.

Keywords : Conifers; Environmental pollution; QUEChERS; Pesticides; Polycyclic aromatic

hydrocarbons; Polychlorinated biphenyls.
1. Introduction

Environmental pollution is a global common problem to both developed and developing
countries, which attracts human attention to its severe long-term consequences [1].
Therefore, the monitoring of this pollution becomes a worldwide necessity. Among the
different monitoring techniques used, figures the biomonitoring. In fact, biomonitoring
requires the use of responses from natural species at multiple levels to identify or predict
environmental changes and to observe their evolution as a function of time [2Z].
Consequently, biological monitoring can be defined as the measurement of the response
of living organisms to changes in their environment [3]. In terrestrial environments, many
species or groups of species can be used for monitoring purposes [4,5]. For instance,
lichens, mosses, vascular plants and fungi have been widely used as passive biomonitors

for air pollution [6,7].

As a follow, the use of vegetation for environmental monitoring can be considered as a
simple, efficient and cost-effective monitoring technique for detecting and assessing

environmental pollution [8,9]

Among the different vegetation species, conifer needles can play an important role as
passive samplers. They have been widely used for the consecutive biomonitoring of
several pollutants and are characterized by a high capacity to accumulate one or more
pollutants in their tissues such as pesticides [9,10], PAHs [11,12] and PCBs [13,14].
Moreover, conifers are widespread and can be found in a large area that can be difficult to
access [15]. Furthermore, conifers are characterized by a waxy layer allowing the
adsorption and the accumulation of organic air contaminants through the years and

therefore, making them efficient for environmental passive sampling [16].
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For all of these reasons, the development of extraction tools for the analysis of traces of
organic pollutants in such matrix seems efficient in order to establish a specific

environmental control.

In fact, a large variety of approaches have been used for determination of environmental
pollutants in vegetables [17]. For instance, some modern techniques such as ultrasound-
assisted extraction (UAE) [18,19], accelerated solvent extraction (ASE) [20-23],
Soxhlet [11], ultrasonic solvent extraction [24], or pressurized liquid extraction [11] were

used.

However, all these traditional methods present some major drawbacks and practical
limitations which are mainly overcame by the multi residues extraction method
QuEChERS. In fact, this method known as quick, easy, cheap, effective, rugged, and safe
extraction procedure, has proved its efficiency for the extraction of organic pollutants,
including non-polar and polar pesticides, in several matrix. [25,26]. This technique is
divided in two steps, the first considered as a soft extraction method using ACN as
extraction agent while the second as an optional clean-up procedure by dispersive solid-
phase extraction (d-SPE) [27]. However, even that QUEChERS extraction procedure has
proven its efficiency in many environmental studies, this method, was to the best of our

knowledge never applied on conifer needles.

Following their extraction, the analytical control of pesticides and POPs residues in
environmental matrices requires their analysis by efficient analytical instruments such as
tandem mass spectrometry (MS/MS) associated with gas chromatography (GC) or liquid
chromatography (LC) [28,29]. The use of such analytical tools plays a key role and
provides the most effective and efficient means to assess hundreds of analytes in a variety
of matrices in one run. In fact, it is important to note that while GC-MS/MS is specifically
targeted at non-polar and semi-polar, volatile and semi-volatile compounds, LC-MS/MS is
more suitable for polar and semi-polar, non-volatile and thermolabile compounds

[30,31].

For all these reasons, this manuscript proposes the development of QUEChERS, a multi-
residue analytical method for the extraction of 134 pesticides, 22 PCBs and 16 PAHs
followed by their analysis using LC-MS/MS and GC- MS/MS. The application of this
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method to the analysis of coniferous matrices is considered to be challenging as well. In
fact, the introduction of the QUEChERS method provides a high-throughput multi-residual
approach to the routine pollutant monitoring of conifers samples. The extraction
technique used was followed by a pre-concentration step for volatile compounds using
SPME prior for their analysis by GC-MS/MS while non-volatile compounds were directly
analyzed, after their extraction, by LC-MS/MS. In fact, the extraction techniques used and
the wide number and pollutants assessed, were, to the best of our knowledge, never
reported before. The developed method presents, therefore, a new contribution to this
field. Moreover, the developed method was applied on real samples collected from several
regions in northern Lebanon in order to biomonitor the environmental state in these

regions.
2. Experimental
2.1. Materials and reagents

For LC-MS/MS pesticides analysis, the 31 non-volatile pesticides (Sigma Aldrich, St,

Quentin Fallavier, France) were:

Acetamiprid, Carbendazim, Carbetamide, Chlorfenvinphos, Chloridazone, Chlortoluron,
Cyazofamid, Diflubenzuron, Diflufenican, Dimethenanid-P, Diuron, Epoxyconazole,
Flufenoxuron, Formasulfuron. Isoproturon, Isoxadifen, Metalaxyl-M, Nicosulfuron,
Penconazole, Pendimethalin, Propiconazole, Prothioconazole, Pymetrozine,
Pyraclostrobine, Spinosade-A, Spinosade-D, Sulcotrione, Tebuconazole, Terbutryn,

Thiacloprid and Triflusulfuron-methyl.
A stock solution of each of these standards at 1 g L-! was prepared in ACN.

For GC-MS/MS pesticides analysis, the 82 volatile pesticides except OCPs (Sigma Aldrich,

St, Quentin Fallavier, France) were:

2,4-MPCA, Acetochlor, Aclonifen, Alachlor, Azinphos-ethyl, Azoxystrobin, Benoxacor,
Bifenox, Bifenthrin, Boscalid, Bromoxynil-octanoate, Bupirimate, Buprofezine, Captan,
Carbaryl, Chlorothalonil, Chlorpropham, Chlorpyrifos, Chlorpyrifos-Methyl, Clofentezin,
Clomazone, Cypermethrin, Cyproconazole, Cyprodinil, Deltamethrin, Dicamba, Diclobenil,

Diclophop-methyl, Diflufenicanil, Dimethachlor, Dimethanamid-P, Dimetomorph,
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Dimoxystrobin, Diphenylamine, Epoxyconazole, Ethofumesate, Etridiazole, Fenarimol,
Fenoxycarb, Fenpropidin, Fluazinam, Fludioxynil, Flumioxazin, Flurochloridon,
Flusilazole, Folpet, Indoxacarb, Iprovolicarb, Isoxaflutole, Kerosym-methyl, Lambda-
cyhalothrin, Lenacil, Lindane, Malathion, Mecroprop-P, Metamitron, Metazachlor,
Metolachlor-S, Myclobutanil, Oxadiazon, Penconazol, Pendimethalin, Picloram Piperonil-
butoxide, Prochloraz, Procymidon, Propiconazole, Propyzamid, Prosulfocarb,
Pyraclostrobin, Pyrimethanil, Quinoxyfen, Spiroxamine, Tebuconazole, Tebufenpyrad,
Tebutam, Tetraconazole, Tolyfluanid, Triadimenol, Trifloxystrobin, Trifluralin and

Zoxamide.
A stock solution of each of these standards at 1 g L=1 was prepared in ACN.

For OCPs analysis, a solution at 0.1 g L-! of 21 OCPs including: Aldrine, cis-
chlordane, trans-chlordane, Dieldrine, «o-Endosulfan, [B-Endosulfan, Heptachlore,
Heptachlore-epoxyde A, Heptachlore-epoxyde B, Hexachlorobenzene, Metoxychlore, o,p’-
DDD, o,p’-DDE, o,p’-DDT, p,p’-DDD, p,p’-DDE, p,p’-DDT, a-HCH, 3-HCH, y-HCH and §-HCH

was purchased from Cluzeau Info Labo, St, Croix la Grande, France.

For PAHs analysis, a solutionat 0.1 g L1 of 16 PAHs including: Acenaphthene, Anthracene,
Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthrene, Benzo(e)pyrene,
Benzo(gh,i)perylene, Benzo(k)fluoranthrene, Chrysene, Dibenzo(ah)anthracene,
Fluoranthrene, Fluorene, Indenol(1,2,3)pyrene, Naphtalene, Phenanthrene and Pyrene

was purchased from Cluzeau Info Labo, St, Croix la Grande, France.

For PCBs analysis, a solution at 0.1 g L—1 of 22 PCBs including: PCB 18, PCB 28, PCB 31,
PCB 44,PCB 52, PCB 70, PCB81,PCB 101, PCB 105,PCB 114, PCB 118, PCB 123, PCB 126,
PCB 138, PCB 149, PCB 153, PCB 156, PCB 157, PCB 167, PCB 169, PCB 180 and PCB 189

was purchased from Cluzeau Info Labo, St, Croix la Grande, France.

Internal standards for LC-MS/MS were obtained from Sigma Aldrich, St, Quentin Fallavier,
France. These standards included: Carbendazim-d* (99.3%), Diuron-d® (99.8%),
Pendimethalin-d> (99%), and Nicosulfuron-d® (99%). A standard solution of each
compound at 1 g L=1 in ACN was prepared. A mixture of these standards at 0.01 g L-1 in

ACN was also prepared for their alternative use as IS.
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Internal standards for GC-MS/MS were obtained from Sigma Aldrich, St, Quentin
Fallavier, France except Naphtalene-d® obtained from Cambridge Isotope Laboratories. A
mixture of Trifluralin-d!4, 4-Nitrophenol-d%, 2,4-D-d3, Atrazine-d>, Pendimethalin-
d> and trans-Cypermethrin-d> at 1 g L~ in ACN was used as IS for pesticides analysis
except OCPs, while a mixture of Naphtalene-d8 Phenanthrene-d°, Chrysene-d!? and
Perylene-d1? at 1 g L-1in ACN was used for OCPs, PAHs and PCBs analysis . A mixture of
these two standard solutions at 0.01 g/L in ACN was prepared.

All prepared solutions were stored at —18 °C.

Kits for QUEChERS (RESTEK France-EN 1566 method) were purchased as ready to use
containing 4 g MgS04, 1 g NaCl, 1 g trisodium citrate dehydrate and 0.5 g disodium
hydrogen citrate sesquihydrate. For clean-up, the kits (AOAC 2007 method) containing
1.2 g MgSO04, 400 mg PSA, 400 mg C1g and 400 mg GCB were used.

LC-MS grade ACN, LC-MS grade water and formic acid = 99% where purchased from
Avantor®, United States. The ACN and water solutions are prepared by mixing 500 mL of
each solution with 0.1% (0.5 mL) of formic acid. The solvents used were all HPLC grade
and the ultra-pure water was obtained through a Milli-Q system (18 M cm) from Merck,

Germany.
2.2. Sample collection

Blank conifer matrix samples ( Pinus nigra) were collected from the botanical garden of
the university of Strasbourg, campus of Cronenbourg, France and only the terminal parts
of the branches, newly obtained and not exposed to environmental pollutants were
collected. The samples were transported in polyethylene bags to the laboratory where
they were finely cut and then washed with ACN for 15 min under the hood. This washing
is repeated twice in order to remove all traces of contaminants on their surfaces. After
washing, the conifers were well dried, and were kept at —18 °C until their analysis. These
needles were then analyzed by GC-MS/MS and LC-MS/MS in order to assess any previous
contamination that may interfere with targeted pollutants. The results showed a complete
absence of such interference and therefore these needles were used as for matrix matched
calibration curves and for method development as well. Other conifers samples were
collected from 15 different sites in northern of Lebanon (Bsharri, Abdine, Akkar, Koura
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and Tripoli) in August 2018. The samples were transported in polyethylene bags and
stored frozen (- 18 °C) until analysis [23].

A map showing the location of the different sampling sites is shown in figure 1 in

supplementary materials (S3).
2.3. Extraction procedures

Five grams of homogenized samples of washed conifer needles were weighed in 50 mL
centrifuge tube then fortified with different concentrations of each mixture's solution (5,
10, 25, 50, 100, 500, 1000, 1500, 2000 and 3000 ng g—1). The samples were kept at 4 °C
overnight, and then extracted using the QUEChERS extraction procedure cited below. All

extractions were done in triplicate.

The protocol chosen was as follows: to 5 gs of homogenized matrix, 15 mL of ACN were
added and the tubes were shaken. After stirring, QUEChERS citrate buffered extraction
salts were added, then the tubes were vortexed for 1 min and then centrifuged for 10 min
at 5000 rpm. Afterwards, the supernatant was added to the 15 mL of PSA tube then
vortexed and centrifuged for 10 min at approximately 5000 rpm. Finally, the obtained
extract (around 3 mL), was sampled in a 10 mL glass tube, and then evaporated at

approximately 100 pL.
2.3.1. Extract reconstitution

Once evaporated, the collected extracts were reconstituted with ACN to 1 mL, in order to

prepare them to chromatographic analysis.

100 pL of this solution were transferred to LC vials and were directly injected into an LC-
MS/MS system after the addition of 10 pL of the appropriate internal standards. The
remained 900 pL were derivatized then pre concentrated by SPME prior to their analysis

with GC-MS/MS.
2.3.1.1. Derivatization by silylation

A silylation reaction from N-methyl-N-tert-butyldimethylsilyltrifluoroacetamide (noted
MTBSTFA) was used. The remained 900 pL were brought in contact with 50 pL of

MTBSTFA at 80 °C for 1 h After the derivation reaction, the obtained solution was diluted
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to 20 mL using of acidified water (pH 3) and 10 pL of both appropriated GC internal
standards. The acidified water solution is prepared by mixing 30 gs of sodium chloride

>99,8% with 250 pL of nitric acid 68% and 2 L ultrapure water.
2.3.2. Concentration and injection by solid-phase microextraction (SPME)

Due to the large number of compounds with different chemical families, characteristics
and polarities, two SPME fibers were wused. The first was coated with
polydimethylsiloxane (PDMS) of 100 um and was used for the extraction of PAHs, PCBs,
OCPs. The second was coated with polyacrylate (PA) at 85 um and was used for the
extraction of the remained semi-volatile pesticides. The immersion time for both fibers in

the solution was 40 min.
2.4. Extract analysis

Extracted samples were analyzed, according to their properties, using LC-MS/MS for the
31 non-volatile pesticides and GC-MS/MS for the 103 volatile pesticides, the 22 PCBs and
the 16 PAHs.

2.4.1. Liquid chromatography coupled to a tandem mass spectrometer

A thermo Scientific TSQ Vantage Triple Quadrupole Mass Spectrometer coupled with a
Surveyor pump and autosampler (Accela Autosampler) operating in electrospray
ionization mode (ESI) was used. The sampler is equipped with a 20 pL injection loop and
the samples were kept at a temperature of 1 °C. The analysis was performed on a
Nucleodur Cig Pyramid column (150 mm X 3 mm, 3 pm) thermostated at 25 °C. Samples
were analyzed using a mobile phase ACN/water (0.1% formic acid) with a flow rate of
0.3 mL min—L The gradient started with 30:70 (v/v) for 5 min, followed by 50:50 (v/v)
for 6 min, then 80:20 (v/v) for 7 min, to achieve 95:5 (v/v) for 10 min, finally a ratio of

30:70 (v/v) for 8 min was set in order to stabilize the column for any new injection.

The LC-MS/MS parameters for non-volatile pesticides analysis figure in supplementary

materials S1-1.

2.4.2. Gas chromatography coupled to a tandem mass spectrometer

133



A GC-MS/MS Trace GC Ultra/ITQ 700 coupling equipped with a Combi PAL equipped with
SPME fiber was used for the analysis of semi volatile pesticides, PAHs, PCBs and OCPs. The
analysis was carried out on an XLB (50% phenyl/ 50% methylsiloxane) capillary column
of 30 m X 0.25 mm, 0.25 pum film thickness. Injection was done in splitless mode at 250 °C
for 15 min. The transfer line was maintained at 300 °C and the source of the MS at 210 °C.

Helium was used as carrier gas at a flow rate of 1 mL min—1.
2.4.2.1. Semi volatile pesticides separation and analysis

Injection of the sample was done by thermal desorption of the polyacrylate fiber. Initial
oven temperature was set at 50 °C for 3 min, followed by a linear ramp to 160 °C at a rate
of 36.6 °C min—1, followed by a ramp to 300 °C at a rate 5.8 °C min—1, where it was

maintained for 10 min, leading to a total run time of 41 min.

The GC-MS/MS parameters for semi volatile pesticides analysis figure in supplementary

materials S1-2.
2.4.2.2. POPs separation and analysis

Injection of the sample was done by thermal desorption of the polydimethylsiloxane fiber.
Initial oven temperature was set at 50 °C for 3 min, followed by a linear ramp to 255 °C at
a rate of 10 °C min—1, followed by a ramp to 330 °C at a rate 20 °C min—1, where it was

maintained for 18 min, leading to a total run time of 45.25 min.
The GC-MS/MS parameters for POPs analysis figure in supplementary materials S1-3.
2.5. Validation of the method

Once developed, the method was validated for all analytical parameters. First, triplicate
extraction of fortified samples with concentrations ranged from 5 to 3000 ng g~1 (5-10-
25-50-100-500-1000-1500-2000-3000) was performed to determine linearity. Then,
five samples of spiked matrix with thee level concentration (10, 100 and 1000 ng g-1)
were extracted for three successive days in order to determine intermediate precision
and repeatability. These two precision parameters were evaluated by their correspondent

relative standard deviation (RSD%).
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In fact, matrix-matched calibration curves were performed using the washed conifer
needles. Matrix effect was assessed by the use of internal standards which gave the same
intensity for both washed and real matrix and therefore we assumed that the wash had
no effect on the matrix composition. For this, quantification was done using the matrix
matched calibration curves developed on the washed conifer needles in order to ensure
that the matrix was exactly the same as the samples. Concerning method validation limits,
the limit of detection and quantification were calculated as the lowest concentration for
which precision and accuracy has been demonstrated and which responds to the
relationship respectively: signal /noise > 3 and signal/noise > 10. In fact, the method limit
of detection (LOD) was determined as the analyte concentration that produced a peak
signal of three times the background noise from the chromatogram, and the method limit
of quantification (LOQ) was determined as the analyte concentration that produced a
peak signal of ten times the background noise from the chromatogram. These limits were
than determined graphically with: LOD = 3 X [min] S/N and LOQ = 10 X [min] S/N
[32,33].

Regarding the recoveries, they were also determined at the same three levels of
concentrations as precision (10, 100 and 1000 ng g—1). The recoveries were considered
as the ratio of the area of the spiked samples to the area of the standard following the

equation:

Recovery% = (Sample concentration/Standard solution concentration) *100.
Results

3.1. Method development

A concentration step by evaporation and reconstitution was added before the liquid and
gas chromatographic analysis to obtain a concentrated extract. For the volatile
compounds, this process was followed by solid-phase microextraction
extraction/concentration step prior to gas chromatographic analysis using the
polyacrylate and polydimethylsiloxane fiber for the extraction of semi volatile pesticides
and PAHs, PCBs, OCPs respectively [34,35]. A validation procedure was performed, which
showed good results for suitability, recovery and repeatability. The developed method
was applied to the determination of real samples that some pollutants were detected.
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3.2. Method validation

Once identified and developed, the method was validated and verified in order to ensure
its reliability and efficiency. Validation shows that the analytical method used to evaluate
a component is reliable, accurate, reproducible and robust over the specific range and it
is suitable for its intended purpose [36]. Typical characteristics of validation to be
considered were: accuracy, linearity, precision: repeatability and reproducibility,

detection limit, quantitation limit and recovery.

All target compounds were validated with good linearity expressed by a regression
coefficient higher than 0.98. LOD were lower than 15 ng g-! for all compounds except
Indoxacarb and LOQ were lower than 15 ng g~1 for all non-volatile pesticides and for the
majority of volatile compounds analyzed by GC-MS/ MS. Moreover, results showed that
all these pollutants were detected with high precision with RSD% lower than 20% for
inter and intra-day analysis except nicosulfuron and diflubenzuron. Furthermore, the
method showed good recoveries between 60.48 to 98.31%, 62.75 to 107.14%, 71.29 to
121.92%, 73.38 to 99.97% and 61.04 to 98.89% for non-volatile pesticides, volatile
pesticides, OCPs, PCBs and PAHs respectively.

The validation parameters for non-volatile pesticides analyzed by LC-MS/MS, volatile
pesticides and POPs analyzed by GC-MS/MS figure in supplementary materials S2-1, S2-
2 and S2-3 respectively.

4, Application to real samples

Once developed and validated, the method was applied on real samples. These samples
were collected from several regions in Lebanon and were analyzed according to the
previously developed method. Residue levels were calculated with Xcalibur using the

previously plotted calibration curves.

Table 1 shows the majority of the pesticides, PAHs, OCPs and PCBs residues found in the

samples analyzed.
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Table 1. Concentration of compounds (ng g-1) detected in real samples.

Compounds Average concentration Lowest concentration Highest concentration
Chloridazon 2.66 0.3 6.72
Metalaxyl-M 38.66 3.64 51.24
Pendimethalin 3.93 1.59 11.91
Fluoranthrene 372.18 48.16 984.44
Boscalid 87.93 65.71 208.36
Naphtalene 11.68 4.51 39.6
Diflufenican 158.6 23.9 612.81
Acenaphtalene 7.21 13.39 82.19
Hexachlorobenzene 523.7 256.92 826.04
Terbutryn 5.33 0.81 56.22
Fenpropidin 238 75.27 918.68
Sulcotrione 78.23 4,72 287.18

5. Discussion

To the best of our knowledge, this is the first article on the combination of QUEChERS-
SPME extraction with LC-MS/MS and GC-MS/MS analysis for simultaneous quantification
and confirmation analysis for 134 pesticides, 16 PAHs and 22 PCBs from coniferous

matrix.

The major advantage of the proposed method is the low volume of the organic solvent
used allowing the extraction of a wide range of pollutants (172 pollutants) with a short
time of sample preparation. Concerning the analytical procedure, it is more complicated
to implement splitless injection. The temperature of the oven, the solvent and the splitless
time must be carefully selected. However, this method is suitable for trace analysis since
the complete sample is introduced into the column. Once optimized, the methodology is

easy to use, fairly robust and easy to automate [37].

In fact, the results provided by the developed method overcome the drawbacks presented
by the traditional used extraction methods. For instance, this method proved to be fast,
efficient, environmental friendliness and reliable mainly due to the reduction of the
sample weight (5 g) and the amount of solvents used [25]. Moreover, recoveries obtained

using QUEChERS appear to be even higher than those obtained by accelerated solvent
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extraction or solid-phase extraction especially with taking into consideration the high
amount of solvent used in these latest techniques [38]. For instance, the recoveries
obtained with our developed method were higher than those provided for the analysis of
pesticides in conifer needles using S-PLE. In fact, the recoveries obtained for these two
methods were for chlorpyrifos 73 and 50%, for trifluralin 86 and 70%, for Aldrin 96 and
65%, for heptachlor 87 and 70%, 86 and 70% for PCB 105 and for (3-Endosulfan 96 and
65% respectively [39].

Furthermore, the developed method was evaluated and compared in terms of extraction
time, accuracy, precision, sensitivity and versatility, with other procedures. The main
differences between the developed procedures and other published methods for
determination of pollutants residues in conifer samples pertain to the time of the stage of

extraction and clean-up [40], [41].

Based on the data presented in the literature it can be concluded that the developed
methodology introduces a new trend in the process of determination of a wide range of
pollutants (pesticides, PCBs, PAHs and OCPs) in conifer samples in comparison with other
already published methods such as ASE/S-PLE for pesticides and PCBs analysis [39], ASE
mainly used for the analysis of PAHs [42], Soxhlet for the OCPs [43], polychlorinated

dibenzo-p-dioxins/- furans [44] and ultrasonic extraction for PAHs [45].

Many researchers reported influence of different extraction solvents on the content of
pollutants in matrix [46]. Efficiency of solvents and methods are strongly dependent on
plant matrix used [47]. Solvents, such as methanol, ethanol, dichloromethane, ACN and
ethyl acetate have been commonly used for the extraction of pollutants in conifer. Another
main advantage between the QUEChERS-SPME procedure and other published methods
for determination of pollutants residues in conifer samples is the number and the volume
of solvents used for extraction. In the developed methodology, needles were extracted
using ACN as solvent extraction while in other methods several solvents such
dichloromethane, toluene, ethyl acetate and methanol were required for the extraction of

pesticides and POPs from conifer needles [23,48,49].

In addition, the range of QUEChERS applications is very wide and allowed its comparison

with reference methods in different applications such as liquid-liquid extraction, solid-
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liquid extraction, solid-phase extraction, accelerated solvent extraction, microwave
assisted extraction and ultrasound assisted extraction that depend essentially by the
nature of the analytes to extract and the complexity of the matrix. In fact, QUEChERS is a
high-performance reasonable choice able to provide similar or better analytical
performance without the drawbacks of the other methods, as well as the need for specific
devices such as microwave or ultrasound [50]. For instance, Di et al. in 2015, analyzed
organochlorine pesticides and confirmed that QUEChERS and microwave-assisted
extraction methods generated higher results compared to the accelerated solvent
extraction and ultrasound assisted extraction [51]. Moreover, the QUEChERS method
showed better performance for the determination of pesticides in honey and honey
bees [52] and in roots and rhizomes of herbal medicines [53] than liquid-liquid extraction

and solid-phase extraction.

A comparison of the%RSD for pesticides, PCBs and PAHs in the pine needle using
conventional pressurized liquid extraction (PLE), selective pressurized liquid extraction
(S-PLE) and QuEChERS method developed in our work showed that this latest provided
higher precision than PLE and S-PLE with lowest% RSD for both a-Endosulfan and a-
HCH [39].

In addition, the comparison of the developed method with the work of AL ALAM et al.,
2017 in which ASE-SPE-SPME was used for the multi-residue's organic pollutants in
conifer needles, showed that even if no big differences were found in term of analytical
parameters, it is clear that the amount of solvent and time used in QUEChERS-SPME favor

this latest and make it the method of choice for such studies [23,54].

On the other side, the analysis of organic pollutants residues in conifer by GC-MS/MS and
LC-MS/MS proved the efficiency of these analytical tools in multi- residues analysis. In
fact, results showed that the combination of the separating power of liquid and gas
chromatography with the highly sensitive and selective mass analysis capability of
MS/MS solve most of the problems associated with assessing pollutant residues such as
the small amount of sample that can be detected, the relative analysis time, the precision,
the broad range of samples, the continuous operation on a large scale and the simplicity
of equipment [55,56]. In fact, chromatography is used in a wide range of applications due

to its possibility to separate different components of a complex mixture based on polarity,
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molecular weight and ionic mobility. However, both techniques of chromatography are
necessary in trace analysis for the determination of a wide spectrum of environmental
pollutants such as polynuclear aromatic hydrocarbons, dioxins, PCBs, chlorinated

pesticides, and some other pesticides [57-59].

The results proved that the QUEChERS-SPME protocol in combination with LC and GC
techniques can be used as a tool in environmental monitoring. The developed methods
were successfully applied in monitoring real samples collected from 15 districts in
Lebanon. Some pollutant concentrations in the conifer samples are summarized
in Table 1. The concentrations were expressed in ng g-1. Several studies have shown the
currency of the use of conifer as an environmental biomonitor for pesticide and POPs
pollution. Detectable pollutants have been found in most samples with varying residual
levels by area and by different factors such as temperature, humidity, altitude and
precipitation that can have a significant impact on the concentration of these
pollutants [60]. In their study, Al-Alam et al., 2017 showed a direct effect of meteorological
effects on pollutant concentrations found in conifer [23]. The levels of pesticides found in
our study were comparable to those reported for honey samples from same sites in
Northern Lebanon (Bsharri and Akkar) studied by Al Alam et al.,, 2017. However, the
concentrations of diflufenican, fenpropidin, hexachlorobenzene and other pesticides
present in this study were significantly identical as those above [61]. The results of the
PAHs showed that the 15 sites tested were in accordance with the results provided by Al
Alam et al,, 2019 for determination of 16 PAHs and 22 PCBs in honey samples from

different regions of Lebanon [62].
6. Conclusion

This study aimed to develop an analytical method for the extraction and quantification of
pesticides, PCBs and PAHs’ residues from conifer needles. The protocol chosen consisted
of the use of QuEChERS based extraction followed by SPME for extraction and
concentration of multi- residues organic pollutants. Chromatographic analysis was done
using salts with LC-MS/MS and GC-MS/MS. The developed method proves its efficiency
especially being fast, simple and covering a large majority of the pollutants assessed. The
results showed satisfactory quantification and detection limits, good recoveries rates with

areduction of the analysis time and the solvent consumption as well.
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Supplementary Materials S1: Chapter II-II - Supplementary Materials - Table 1, 2 and 3.

Supplementary Materials S2

Supplementary materials S2-1: Validation parameters for LC-MS/MS method for semi-volatile pesticides
analysis

Pesticide - LC Regression Regression | LOD | LOQ | % RSD % RSD Recovery %
line equation coefficient | (ng/g)|(ng/g)|Intra-Day | Inter-Day

Carbendazim Y =3.94081e-005*X 0.99 0.57 | 1.92 | 13.40 14.84 90.46
Chloridazone Y =9.73219e-008*X 0.97 2.50 | 832 | 13.95 13.70 87.26
Pymetrozine Y =5.53601e-005*X 0.99 0.62 | 2.08 | 10.99 14.47 68.73
Acetamiprid Y = 2.49889¢-005*X 0.99 214 | 713 | 12.58 14.11 97.28
Chlortoluron Y = 1.80165e-005*X 0.99 042 | 142 | 14.62 16.06 80.36
Nicosulfuron Y =2.73063e-005*X 0.99 1.15 | 3.84 | 16.33 20.08 91.39
Formasulfuron Y =5.6901e-005* 0.99 1.88 | 6.24 | 13.09 14.65 89.17
Thiacloprid Y =0.000302437*X 0.99 1.07 | 3.56 | 10.06 11.55 98.31
Carbetamide Y =0.000217453*X 0.99 1.76 | 587 | 12.48 13.51 92.31
Terbutryn Y =7.81516e-005*X 0.99 0.31 | 1.06 | 11.74 13.95 84.53
Metalaxyl-M Y = 0.00334545*X 0.99 0.17 | 0.59 | 10.36 11.01 66.31
Sulcotrione Y =0.000704102*X 0.99 0.15 | 0.51 | 13.20 13.42 81.77
Spinosade-A Y = 0.00243457*X 0.99 0.57 | 1.90 7.70 10.28 78.00
Isoproturon Y = 0.00946096*X 0.99 0.06 | 0.19 6.82 9.41 63.69
Diuron Y = 3.75718e-006*X 0.99 5.00 |16.65| 16.22 15.65 85.16
Spinosade-D Y =1.51239e-005*X 0.99 0.57 | 1.92 8.32 11.13 90.77
Dimethenamid-P Y = 0.00284929*X 0.99 0.02 | 0.06 9.45 7.84 62.74
Epoxyconazole Y =0.0138056*X 0.99 3.33 |11.10| 6.99 10.59 73.14
Trisulfuron-Methyl Y =0.000191594*X 0.99 0.06 | 0.21 7.73 11.11 71.66
Tebuconazole Y = 0.00979492*X 0.99 0.20 | 0.67 | 14.96 13.26 68.43
Diflubenzuron Y =0.000213112*X 0.99 1.07 | 3.56 | 15.67 21.26 95.60
Prothioconazole Y =0.000482435*X 0.99 1.25 | 416 | 1494 14.82 60.49
Penconazole Y =0.0134616*X 0.99 0.07 | 0.24 9.11 10.92 95.66
Propioconazole Y =0.0273699*X 0.99 1.76 | 5.87 8.80 9.91 76.18
Chlorfenvinphos Y =0.00371447*X 0.99 041 | 1.36 | 12.74 12.84 66.98
Cyazofamid Y =1.0503e-006*X 0.98 0.55 | 1.85 5.26 10.78 71.33
[soxadifen Y =0.00234394*X 0.99 0.45 | 1.51 | 11.68 12.45 71.48
Pyraclostribine Y =0.00110839*X 0.99 0.08 | 0.29 | 14.68 17.24 92.45
Diflufenican Y =0.0012687*X 0.99 0.31 | 1.04 | 14.06 17.19 88.91
Flufenoxuron Y =0.00045246*X 0.99 1.78 | 594 | 11.79 13.11 72.62
Pendimethalin Y =0.00518177*X 0.99 0.22 | 0.73 | 12.02 13.07 84.10
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Supplementary materials S2-2: GC-MS/MS method performance and validation for pesticides analysis

% RSD % RSD
Regression Regression LOD LOQ Recovery
Pesticide - GC Intra- Inter-
line equation coefficient | (ng/g) | (ng/g) %
Day Day
Y =3.33042e-
2.4-MCPA 0.99 3.55 11.82 11.11 11.14 68.47
006*X+1.2134e-009*X"2
Y =
Acetochlore 0.000135324*X+3.30875e- 0.99 0.46 1.55 16.58 14.46 93.58
007*X"2
Y = 0.00363907*X-
Aclonifen 0.99 0.25 0.83 8.36 10.70 91.94
5.29763e-007*X"2
Y =
Alachlore 0.000125231*X+2.00607e- 0.99 0.24 0.82 12.04 14.34 82.55
007*X"2
Y =
Azinphos-Ethyl | 0.00054823*X+1.29837e- 0.99 6.25 20.81 11.76 12.70 89.00
007*X"2
Y =
Azoxystrobine | 0.000685443*X+6.87898e- 0.99 11.75 | 39.14 9.15 9.25 97.88
007*X"2
Y =
Benoxacore 0.00106206*X+6.1954 2e- 0.99 10.22 | 34.03 11.10 11.45 102.30
007*X"2
Y = 2.44507e-
Bifenox 0.99 5.00 16.65 10.44 12.49 94.09
005*X+1.146e-007*X"2
Y = 0.00079064*X-
Bifenthrin 0.99 0.07 0.23 10.01 12.25 86.93
9.04425e-008*X"2
Y =1.43451e-
Boscalid 0.99 7.50 24.97 8.74 10.00 94.81
005*X+2.09261e-008*X"2
Y=
Bromoxynil-
0.0129879*X+3.86195e- 0.99 3.33 11.10 8.10 8.90 82.12
Octanoate
006*X"2
Y =9.36501e-
Bupirimate 0.99 0.98 3.29 12.04 13.28 80.12
005*X+1.77803e-008*X"2
Y =
Buprofezine 0.000329971*X+3.42977e- 0.99 0.88 2.93 11.96 10.42 86.13
007*X"2
Y =0.000627018*X-
Captane 0.98 7.50 24.97 8.97 9.40 89.36
7.95707e-008*X"2
Y =2.5009e-
Carbaryl 0.97 1.32 4.39 16.15 15.49 65.81

006*X+1.70182e-008*X"2
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Y=

Chlorothalonil | 0.000167542*X+2.35736e- 0.99 2.32 7.75 8.94 9.85 71.39
007*X"2
Y =0.000219185*X-
Chlorpropham 0.99 3.75 12.48 14.88 12.74 94.36
6.94502e-009*X"2
Y =
Chlorpyrifos 0.000245862*X+1.01725e- 0.96 0.17 0.56 15.38 14.41 73.82
008*X"2
Y =
Chlorpyrifos-
0.00463647*X+2.90356€- 0.99 1.43 4.79 13.36 15.97 95.27
Methyl
007*X"2
Y =0.00190331*X-
Clofentezine 0.99 1.60 5.48 6.38 10.64 89.37
1.10233e-007*X"2
Y =2.95923e-
Clomazone 0.99 7.50 24.97 10.45 11.00 86.75
005*X+9.46942e-009*X"2
Y =
Cypermethrine | 0.00019814*X+3.07773e- 0.99 9.63 32.07 12.33 12.54 98.28
008*X"2
Y =8.50295e-
Cyproconazole 0.99 10.00 | 33.30 13.71 13.31 97.59
005*X+3.5732e-008*X"2
Y=4.11151e-
Cyprodinil 0.98 12.90 | 43.20 17.08 14.70 84.94
006*X+2.85062e-008*X"2
Y = 1.29209e-005*X-
Deltamethrin 0.99 7.50 24.97 11.47 11.68 74.02
2.45532e-009*X"2
Y = 3.72468e-
Dicamba 0.99 7.50 24.97 14.07 14.74 82.31
006*X+3.80604e-009*X"2
Y=
Diclobenil 0.000742132*X+9.29598e- 0.99 1.87 6.24 11.73 11.52 82.14
008*X"2
Diclophop- Y = 4.39875e-
0.99 0.06 0.21 12.27 12.14 98.26
Methyl 005*X+7.6866e-007*X"2
Y =
Diflufenical 0.000426293*X+9.46314e- 0.99 3.39 11.29 1091 11.48 80.80
007*X"2
Y =
Dimethachlore | 0.000158889*X+1.11615e- 0.99 0.21 0.72 11.79 13.43 96.56
007*X"2
Dimethanamid- Y =2.29185e-
0.99 0.17 0.58 10.16 11.89 91.03
P 005*X+2.3419e-007*X"2
Y = 1.8938e-
Dimetomorph 0.99 8.82 29.38 11.75 8.61 71.63
006*X+1.61434e-009*X"2
Y = 0.0527932*X-
Dimoxystrobin 0.97 1.25 4.16 11.37 9.58 107.14

2.38672e-006*X"2
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Diphenylamine

Y —
0.00122086*X+1.22776e-
006*X"2

0.99

0.39

1.31

13.18

11.26

98.41

Epoxyconazole

Y =
0.000942167*X+9.97056e-
008*X"2

0.99

7.50

24.97

12.02

12.10

9591

Ethofumesate

Y = 0.00642255*X-
9.23822e-007*X"2

0.98

4.83

16.11

1191

13.86

88.81

Etridiazole

Y=
0.000883778*X+1.0261e-
006*X"2

0.99

0.60

1.99

8.92

10.39

90.36

Fenarimol

Y =
0.0011558*X+8.50419e-
006*X"2

0.99

3.75

12.48

8.32

8.93

92.45

Fenoxycarb

Y=
0.00290547*X+3.72671e-
006*X"2

0.99

1.17

3.89

14.31

12.97

98.70

Fenpropidine

Y =
0.00379713*X+2.18485e-
006*X"2

0.99

2.14

8.32

11.46

13.92

95.84

Fluazinam

Y=
0.000170003*X+3.03901e-
008*X"2

0.99

3.86

12.87

13.76

14.18

85.77

Fludioxynil

Y =
0.000601692*X+9.77059%¢-
007*X"2

0.99

0.75

2.49

11.42

11.55

92.95

Flumioxazin

Y = 2.30478e-
005*X+3.96962e-007*X"2

0.99

3.75

12.48

8.62

10.90

95.03

Flurochloridon

Y =
0.000130154*X+2.44659%-
007*X"2

0.99

1.62

5.42

11.48

12.42

85.93

Flusilazole

Y =9.80292e-
005*X+1.33274e-007*X"2

0.99

9.38

31.21

9.15

8.50

95.55

Folpet

Y =6.23031e-
005*X+1.16141e-007*X"2

0.99

9.68

32.26

11.35

11.79

96.37

Indoxacarb

Y=
0.0002264*X+2.77684e-
008*X"2

0.99

16.66

55.50

13.88

14.31

84.32

Iprovolicarbe

Y = 6.99259¢-005*X-
1.00861e-008*X"2

0.98

15.00

49.95

13.21

13.45

84.04

Isoxaflutole

Y=
0.000161381*X+2.15252e-
007*X"2

0.99

7.50

24.97

14.73

14.05

90.08

146




Y=

Kerosym-
0.0123359*X+1.28294e- 0.99 4.54 15.13 11.78 11.23 98.92
Methyl
005*X"2
Lambda- Y = 0.00295526*X-
0.99 0.46 1.53 15.35 15.16 99.14
Cyhalothrine 5.35227e-007*X"2
Y =7.05185e-
Lenacile 0.99 0.11 0.36 11.62 13.05 89.55
005*X+2.21503e-007*X"2
Y =
Lindane 0.00848122*X+5.99064e- 0.99 3.99 13.30 9.42 10.73 98.11
006*X"2
Y =5.15061e-
Malathion 0.99 2.14 8.32 19.61 15.66 95.53
005*X+2.16532e-007*X"2
Y =7.35567e-
Mercop-P 0.98 5.00 16.65 15.35 13.55 98.68
006*X+1.41146e-009*X"2
Y =4.60381e-
Metamitrone 0.99 5.00 16.65 7.64 10.75 92.97
005*X+6.93347e-008*X"2
Y =0.000108082*X-
Metazachlore 0.99 8.46 28.19 9.51 10.39 97.00
7.86706e-009*X"2
Y =
Metolachlore-S 0.0127101*X+9.91357e- 0.99 2.50 8.32 8.86 11.71 90.50
006*X"2
Y =4.59712e-
Myclobutinil 0.99 4.28 14.27 11.05 12.81 89.56
005*X+2.10983e-007*X"2
Y =
Oxadiazone 0.000735906*X+5.54908e- 0.99 3.75 12.48 9.34 10.83 90.24
007*X"2
Y=
Penconazole 0.000183874*X+2.86178e- 0.99 0.24 0.81 10.52 11.29 86.50
007*X"2
Y=
Pendimethalin 0.0297307*X+1.10702e- 0.98 0.77 2.58 13.46 12.64 77.82
005*X"2
Y = 3.7084e-005*X-
Picloram 0.99 15.00 | 49.95 9.41 12.96 69.25
6.46461e-010*X"2
Y =
Piperonil-
0.00653124*X+6.6018e- 0.98 7.50 24.97 13.01 11.08 91.88
Butoxide
006*X"2
Y =1.75474e-
Prochloraze 0.99 4.87 16.24 10.28 11.69 94.35
005*X+3.63795e-009*X"2
Y =1.28136e-
Procymidone 0.99 6.35 21.16 14.72 12.97 99.45

005*X+7.66863e-009*X"2
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Propioconazole

Y=
0.000803894*X+7.42073e-
008*X"2

0.99

0.27

0.89

12.68

12.72

82.12

Propoxur

Y =1.09538e-
005*X+2.34395e-008*X"2

0.99

5.00

16.65

9.82

11.99

62.95

Propyzamid

Y=
0.000258477*X+4.48032e-
007*X"2

0.99

5.00

16.65

11.19

9.64

79.38

Prosulfocarb

Y =
0.029353*X+1.11883e-
005*X"2

0.98

1.59

5.30

11.14

13.20

80.39

Pyraclostrobin

Y=
0.000610163*X+1.09317e-
007*X"2

0.99

10.00

33.30

11.01

13.17

88.59

Pyrimethanil

Y =9.71542e-
007*X+2.83044e-009*X"2

0.98

0.88

2.93

13.18

12.81

66.12

Quinoxifen

Y =
0.00833408*X+3.86209e-
006*X"2

0.99

7.50

24.97

10.61

10.72

95.52

Spiroxamine

Y =
0.000128826*X+5.14422e-
008*X"2

0.99

5.00

16.65

12.93

15.23

85.63

Tebuconazole

Y =7.12736e-
005*X+1.09577e-008*X"2

0.99

15.00

49.95

13.06

13.60

87.13

Tebufenpyrad

Y =
0.000706886*X+1.09483e-
006*X"2

0.99

3.75

12.48

11.72

11.45

90.00

Tebutam

Y = 0.0109834*X-1.7285e-
006*X"2

0.99

2.14

7.13

11.74

12.48

93.16

Tetraconazole

Y =1.58667e-
005*X+5.09125e-008*X"2

0.99

1.87

6.24

7.86

8.97

99.18

Tolyfluanid

Y=
0.00184088*X+3.07644e-
006*X"2

0.99

0.27

0.92

9.87

9.77

96.29

Triadimenol

Y = 4.9824e-
005*X+4.05058e-008*X"2

0.98

5.00

16.65

14.75

12.47

94.14

Trifloxytrobine

Y =
0.00154587*X+3.81657e-
007*X"2

0.99

0.32

1.07

11.57

11.34

94.57

Trifluarine

Y = 6.49394e-
005*X+1.4133e-008*X"2

0.99

2.50

8.33

14.25

14.36

86.91

Zoxamide

Y =0.00124399*X+5.18609e-
006*X"2

0.99

1.25

4.16

9.02

10.34

98.90
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Supplementary materials S2-3: Validation parameters for the POPs analyzed by GC-MS/MS

% RSD

% RSD

componds | fewesion | egrossion | 100 | 100, | | e | s
Day Day
Y=
Acenaphtalene 0.0537161*X+3.71474e- 0.99 046 | 156 | 13.87 | 12.04 | 9174
006*X2
Y=
Anthracene 0.000323432*X+4.0943e- 0.99 0.75 | 249 | 1425 | 1349 | 7670
008*X2
Benzo-a- Y=
Antheare 0.00142064*X+8.07338e- 0.99 136 | 4.54 | 1307 | 1182 | 9876
008*X2
Y=
Benzo-a-Pyrene 0.495489+0.0030427*X 0.99 0.93 312 | 13.01 | 13.55 82.82
Y=
Benzo-b- 0.00192698*X+1.69011e- 0.99 0.57 | 1.92 | 1446 | 1370 | 97.62
Fluoranthrene
007*X2
Y=
Benzo-e-Pyrene | 0.00196019*X+1.90739%- 0.99 0.83 | 2.77 | 1425 | 1587 | 7569
007*X2
Benzo-gh.i- Y =0.0002539647X-
Porylons 5 009560.000"X"2 0.99 3.75 | 1248 | 1589 | 1601 | 7849
Y=
Benzo-k- 0.00197205*X+1.83325¢- 0.99 230 | 7.68 | 1379 | 13.19 | 9451
Fluoranthrene
007*X2
Y=
Chrysene 0.00122762*X+6.97952e- 0.99 3.75 | 1248 | 946 | 1032 | 9889
008*X"2
Dibenzo-a.h- Y=
0.000633564*X+4.70987¢ |  0.99 3.75 | 1248 | 14.00 | 14.06 | 70.14
Anthracene
-008*X"2
Y=
Fluoranthrene | 0.000299562*X+2.1121e- 0.99 5.00 | 1665 | 13.47 | 1478 | 93.11
008*X"2
Y=
Fluorene 0.0229726*X+2.17022¢- 0.99 044 | 146 | 1040 | 10.65 | 7516
005*X"2
Y=
I“d%“°1'1'2'3' 0.000409942*X+4.8782¢- 0.99 500 | 1665 | 7.96 | 1012 | 9575
yrene 008*X2
= *
Naphtalene ;0‘6(1)504%2_3(1)23)(%2 0.99 078 | 262 | 1124 | 1142 | 97.38
Phenanthrene 005*XY+Z.;1-.821129££(})‘(3)_9*X"2 0.99 2.00 6.66 14.46 | 13.35 83.35
Y=
Pyrene 0.000260029*X+4.78073¢ |  0.99 500 | 1665 | 14.61 | 12.56 | 91.06
-008*X"2
Y=
PCB-101 0.000701049*X+3.45565¢ |  0.99 3.75 | 1248 | 13.14 | 17.54 | 88.19
-007*X"2
Y=
PCB-105 0.000119678*X+3.1736% |  0.99 093 | 3.2 | 1393 | 1273 | 88.14
-006*X"2
Y = 4.30403¢-
PCB-114 006X 1881449 010~z | 0-96 3.23 | 1077 | 1347 | 1322 | 7339
Y = 1.05549%-
PCB-118 005*X12.608270.0085%~2 | 099 088 | 293 | 1324 | 1538 | 8174
Y =3.79015¢-
PCB-123 006X 4 1.316460.009%%~2 | 097 3.65 | 1216 | 1494 | 1551 | 7659
Y=
PCB-126 0.000119678*X+3.1736% |  0.99 3.75 | 1248 | 1378 | 13.04 | 88.02
-006*X"2
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Y=

PCB-138 0.000478556*X+1.96386e 0.96 0.29 0.99 11.80 8.81 78.15
-006*X"2
Y —
PCB-149 0.000156911*X+9.33819¢ 0.99 0.15 0.53 16.28 14.72 80.45
-007*X"2
Y =
PCB-153 0.000478556*X+1.96386e 0.96 1.76 5.87 11.19 9.49 78.15
-006*X"2
Y =2.21915e-
PCB-156 005*X41.254566-007*X 2 0.94 0.28 0.96 11.83 12.28 95.13
Y =3.47673e-
PCB-157 005*X+1.0468e-007*XA2 0.95 0.69 2.29 11.91 12.34 94.87
Y =
PCB-167 0.000218079*X+2.71961e 0.99 1.25 4.16 15.12 15.51 86.30
-007*X"2
Y =
PCB-169 0.000143801*X+1.65032e 0.97 0.95 3.18 10.14 | 11.31 99.98
-007*X"2
Y =8.74162e-
PCB-18 007*X+2.61352e-010%XA2 0.99 3.75 12.48 | 12.03 11.54 74.57
Y = 2.98888e-
PCB-180 005*X+1.35514e-007*X2 0.99 8.64 | 28.80 | 13.01 | 15.84 75.19
Y =2.8135e-
PCB-189 005*X+7.65629-009*X2 0.98 9.05 | 30.15 | 10.18 | 10.59 82.35
Y =
PCB-28 0.000194352*X+1.43348e 0.99 0.17 0.58 10.49 991 83.82
-007*X"2
Y =
PCB-31 0.000191618*X+1.40464e 0.99 0.27 091 10.74 | 10.15 84.82
-007*X"2
Y =7.09343e-
PCB-44 005*X+5.178176-008*X2 0.99 0.30 1.00 13.22 | 14.60 91.74
Y =7.62608e-
PCB-52 005*X+4.973126-008*X2 0.99 0.13 0.44 13.46 | 1497 87.94
Y =9.93025e-
PCB-70 006*X+4.798876-008*X2 0.99 0.09 0.31 13.27 | 10.83 86.15
Y =9.93025e-
PCB-81 006*X+4.798876-008*X2 0.99 0.35 1.17 14.64 | 14.79 86.72
. Y =6.16015e-
Aldrine 006*X+1.14803e-008*X2 0.99 1.06 3.54 9.70 10.76 96.70
. Y =9.5917e-
Cischlordane 005*X+2.586476-011*X2 0.98 1.50 499 13.10 | 14.07 86.83
C Y =1.71891e-
Dieldrine 006*X+4.60978e-009*X2 0.96 350 | 11.89 | 14.21 | 15.19 79.95
Y =1.09775e-
Heptachlore 006*X+2.609166-009*X2 0.99 2.50 8.33 6.38 9.18 87.10
Heptachlore- Y = 2.32972e-
Epoxyde-A 005*X+1.54059e-008*X"2 0.99 188 6.24 8.25 9.27 103.79
Heptachlore- Y =3.57522e-
Epoxyde-B 005*X+1.300026-008*X2 0.99 1.66 5.55 12.09 | 14.01 99.17
Y=
Hexachlorobenzene | 0.000604155*X+1.10654e 0.99 0.57 1.92 9.88 10.00 91.17
-007*X"2
Y =
Metoxychlore 0.000557597*X+1.53462¢ 0.99 7.50 | 24.97 9.37 9.05 121.82
-006*X"2
Y =
0-P'-DDD 0.00312545*X+2.00744e- 0.99 5.00 | 16.65 | 15.05 | 15.62 98.23
006*X"2
O-P'-DDE Y = 2.05729- 0.97 10.00 | 33.30 | 15.06 | 13.29 71.29

005*X+2.04773e-008*X"2
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O-P'-DDT

Y —
0.00322982*X+2.01513e- 0.99 2.50 8.33 13.98
006*X"2

13.14

89.86

P-P'-DDD

Y —
0.00107107*X+3.7361e- 0.99 0.55 1.85 12.77
006*X"2

13.84

93.94

P-P'-DDE

Y=
0.0115345*X+1.25002e- 0.99 0.26 0.89 12.38
005*X"2

12.67

92.11

P-P'-DDT

Y=
0.00316545*X+2.03424e- 0.99 6.97 23.23 | 13.74
006*X"2

15.50

99.02

Transchlordane

Y=
0.000650758*X+8.43452e 0.99 3.75 12.48 | 16.39
-008*X"2

16.55

84.96

a-Endosulfan

Y =7.06931e-

006*X+2.44469-008*x72 | %97 681 (22.70 | 1083

10.28

78.00

o-HCH

Y =8.04401e-

006*X-+6.4409¢-009*X"2 0.99 5.00 |16.65 | 827

7.26

95.64

B-Endosulfan

Y = 5.44398e-

006*X+2.10728e-009*x72 | %97 7.50 [ 24.97 | 14.05

15.83

96.02

B-HCH

Y =3.1446e-

006*X+9.15863¢-009*x72 | %97 3.75 (1248 | 791

7.44

98.32

y-HCH

Y = 4.8628e-

006*X+8.58973¢-009*x"2 | %97 130 | 432 | 781

8.05

99.94

o-HCH

Y = 3.35096e-

006*X+9.11275e-009*x~2 | °99 5.00 | 1665 | 9.29

9.02

96.58
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Supplementary materials S3-Figure 2: Calibration curves of some analyzed compounds.
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Supplementary materials S3-Figure 3:

RT: 0.00 - 25.00

Chromatogram of nonvolatile pesticides analyzed by LC-MS/MS.
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Supplementary materials S3-Figure 4: Chromatogram of volatile pesticides analyzed by GC-MS/MS.
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Supplementary materials S3-Figure 5: Chromatogram of PAHs, PCBs and OCPs analyzed by GC-MS/MS.
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IV. The use of Pinus nigra as a biomonitor of pesticides and polycyclic aromatic

hydrocarbons in Lebanon

Résumé

Ce résultat, présenté sous forme d’un article publié dans « Environmental Science and
Pollution Research », présente une premiére application de la méthode d’analyse multi-
résidus développée sur les échantillons de coniferes. Dans cette étude, 15 échantillons de
coniféres collectés dans différentes régions du Liban nord ont été analysés pour

déterminer leur contamination environnementale.

En effet, parmi les différentes especes de végétation, les coniferes connus par leurs
propriétés accumulatrices des polluants, leur teneur élevée en lipides et leur couche
cireuse spécifique jouent un role important en tant que biomoniteur de la pollution de
I'air. Au total, 127 pesticides et 16 HAPs ont été analysés afin d'étudier la pollution de I'air
dans ces différentes régions du nord du Liban : Tripoli, Koura, Bcharre et Akkar.
L’extraction multi-résidus a été basée sur la méthode QUEChERS - SPME, suivie par des

analyses chromatographiques par LC-MS/MS et GC-MS/MS.

Les résultats ont montré la présence des résidus de plusieurs pesticides et d’'HAPs avec
des taux variables selon les régions dans la plupart des échantillons analysés. Les
échantillons collectés dans les régions d’Akkar et de Tripoli, largement connues pour leur
agriculture, étaient les plus contaminés. Les concentrations totales dans les coniféres
récupérés a Akkar et a Tripoli étaient respectivement de 231 ng g1 et 192 ng g1 pour les
pesticides et de 422 ng g1 et 370 ng g1 pour les HAPs. Cependant les échantillons
provenant de la région de Bcharre dédiée aux productions organiques étaient les moins
concentrés en pesticides et en HAPs avec une concentration totale de 50 et 66 ng g-1. Ces
résultats signifient que la pollution de l'air dans cette zone, qui est généralement
consacrée aux cultures biologiques, est étroitement affectée par le trafic et/ou l'activité

économique.

En conclusion, les résultats obtenus au cours de cette étude ont bien validé le fait que les

coniferes de type Pinus nigra utilisés comme échantillonneur passif joue le réle de
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biomoniteurs efficaces des niveaux de contamination dans l'air pour les pesticides et les

HAPs.

Highlights

e Conifer needles were extracted using modified QUEChERS protocol coupled to LC-

MS/MS and GC-MS/MS analysis.
* Presence of pesticides and PAHs residues in all of the assessed regions.
e Pinus nigraare suggested to be effective biomonitors of pollution levels.
Abstract

Among the various species of vegetation, conifers play an important role as a biomonitor
of air pollution. The current study presents the determination of pesticides and polycyclic
aromatic hydrocarbons in 15 conifer samples collected in August 2018 (summer season)
from different regions in north Lebanon (Tripoli, Koura, Bcharre, and Akkar). Pollutants
were extracted based on QUEChERS-SPME followed by liquid and gas chromatography-
tandem mass spectrometry. Results showed that the samples collected from Bcharre
region had the lowest concentration in both pesticides and polycyclic aromatic
hydrocarbons with a total concentration of 50 and 66 ng g—1, while the samples collected
from the regions widely known by their agriculture (Akkar, Tripoli, and Koura areas)
were the most polluted with concentrations of 231 and 422 ng g—1, 192 and 370 ng g1,
and 127 and 98 ng g1 for pesticides and polycyclic aromatic hydrocarbons respectively.
This study revealed that conifers are suggested to be efficient biomonitors of

contamination levels in the air.

Keywords: Air pollution . Biomonitoring . Pinus nigra . Organic pollutants . QUEChERS .

Chromatography . Mass spectrometry.
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Introduction

Air pollution has become a major public health issue. It is described as the introduction
into the air of pollutants that are hazardous to the environment and humans. These
pollutants are toxic liquids, solids, or gases emitted at higher than normal concentrations
that decrease the quality of our climate. Due to their persistence and bioaccumulation,
organic pollutants are considered as a silent killers. They are present all across our
atmosphere, including human, animals, air, water, and plants (Alharbi et al. 2018).
Current epidemiological, biological, and toxicological studies confirm that exposure to air
pollutants has short- and long-term effects on health and major impacts on ecosystems
and crops (Baroudi et al. 2020a, b; Kim et al. 2018; Ghorani-Azam et al. 2016). The
concentrations of pollutants are present in any individual age group with increased levels
in the aging persons. Exposure to these pollutants causes various severe health issues,
such as cancer, hormonal disorders, obesity, respiratory diseases, diabetes,
cardiovascular diseases, and reproductive disorders (Hamanaka and Mutlu 2018;
Petrakis et al. 2017). In addition to harming human health, air pollution can cause a
variety of environmental impacts such as eutrophication, acid rain, haze, ozone depletion,
crop and forest damage, global climate change, and effects on wildlife (Manisalidis et al.

2020).

The emission of harmful organic pollutants into the environment makes it necessary to
determine their concentrations to qualitatively indicate air contamination levels. For
instance, the use of pesticides including organochlorine pesticides (OCPs) known for their
intensive agricultural activities has increased significantly and can therefore contaminate
different environmental components including the soil, the water, and the food chain due
to their dispersion throughout the air (Ozkara et al. 2016). The absorption of pesticides
from soils by plants is determined by transpiration, which is influenced by different
climatic and ecological variables, including humidity, temperature, air movement, and
sunlight intensity (Li 2020). In addition, polycyclic aromatic hydrocarbons (PAHs)
emitted to the air through combustion processes are considered as potential
contaminants for the outdoor air due to their environmental persistence,
bioaccumulation, and toxicity potential (Elaridi et al. 2020). The absorption processes of
PAHs in the plant are complicated and several aspects have an impact on accumulation

activities, including ecological condition, biological properties of the plant, and
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physicochemical characteristics of these pollutants (Luo et al. 2020; AbdelShafy and
Mansour 2016).

The use of vegetation as a biomonitor has proven to be an interesting approach for the
assessment of air contamination by pesticides and PAHs and to highlight the
impregnation of the environment (AL-Alam et al. 2019; Parmar et al. 2016; Cuny 2012;
Maatoug et al. 2012). Among different vegetation biomonitors, evergreen tree species
such as conifers gained much importance as biomonitors in pollution studies due to their
longterm usage, their needles characterized by a variety of criteria as high lipid content,
and specific waxy layer allowing them to accumulate pollutants for several years, as well
as their wide geographical distribution providing long-term information on emissions of
pollutants (Baroudi et al. 2020a, b; Ratola et al. 2014; Ratola et al. 2011a, b). A wide
variety of methods have been used to identify the air pollutants in conifers such as Soxhlet
(Bukhanko et al. 2020), accelerated solvent extraction-solid phase extraction (Al-Alam et
al. 2017; Lévy et al. 2016), microwave digestion (Alexandrino et al. 2020), and QUEChERS
method (Baroudi et al. 20204, b) that proved its efficiency for the extraction of pollutants
in such matrix. In fact, the QUEChERS extraction method has been widely applied for the
analysis of various contaminants including pesticides, persistent organic pollutants
(POPs), hormones, and antibiotics in food and environmental matrices. Compared to the
cited commonly known extraction techniques, QUEChERS allows the highest recovery
rates with the lowest solvent consumption and sample preparation steps (Musarurwa et

al. 2019; Perestrelo et al. 2019).

Accordingly, acetonitrile used in the QUEChERS method is appropriate for the extraction
of pesticides and PAHs and has a significant level of specificity and selectivity in gas
chromatography and liquid chromatography combined with mass spectrometry.
Therefore, pollutants were selected in order to cover a wide range of pollutants that may
be present in the environment. Pesticides were chosen in a way that may cover the
maximum of the pesticides that could be found in the environment based on an
assessment of the crop production in the assessed regions as well as based on an
investigation of the local pesticide market. For PAHs, the choice was made due to the fact
that the chosen 16 PAHs have been designated high priority pollutants by the

Environmental Protection Agency (EPA).
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For all these reasons, this study aims to investigate the accumulation of pesticides and
PAHs in northern Lebanon based on 15 conifer samples used as biomonitor candidates.
The chosen biomonitor was tested for the possible aggregation of pesticides and PAHs.
This contaminants were subjected to a multi-residue extraction procedure based on
QuEChERS followed by a chromatographic analysis coupled with tandem mass

spectrometry.

Materials and methods

Chemicals and reagents

The pesticide analysis included 99 semi-volatile compounds, including 21 organochlorine
pesticides (OCPs) analyzed by GC-MS/MS and 28 non-volatile compounds analyzed by LC-
MS/MS. All pesticides, except OCPs, were purchased from Sigma-Aldrich, St. Quentin
Fallavier, France. For OCP and PAH analysis, a mixtureat 0.1 gL-1of 21 OCPs and 16 PAHs
of each pollutants was purchased from Cluzeau Info Labo (St. Foy la Grande, France). The
LC-MS/MS and GCMS/MS parameters for pesticide and PAH analysis are figured in
Appendix A.

LC-MS/MS grade water and acetonitrile (ACN) were purchased from VWR Prolabo,
France. Ultrapure water was obtained through a Milli-Q system (18 MQ cm) from Elga

Veolia, France.

QuEChERS extraction kits (EN 1566 method) containing 4 g of magnesium sulfate, 1 g of
sodium chloride, 0.5 g of disodium hydrogen citrate sesquihydrate, and 1 g of trisodium
citrate dehydrate and dSPE cleanup kits (AOAC 2007 method) containing 1.2 g of
magnesium sulfate, 400 mg of primary and secondary amine (PSA), 400 mg of octadecyl
(C18), and 400 mg of graphitized carbon black were purchased (GCB), as ready to use,
from RESTEK, France.

Internal standards for LC-MS/MS (carbendazim-d*, diuron-dé, pendimethalin-d® and
nicosulfuron-d®) and GC-MS/MS (trifluralin-d'4, 4-nitrophenol-d4, atrazine-d5,
pendimethalin-d®, trans-cypermethrin-d® naphtalene-d8, phenanthrene-d19, chrysene-

d!?, and perylene-d!?) were obtained from Sigma-Aldrich, St. Quentin Fallavier, France.
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Sample collection

For the sample analysis, conifer samples were collected from four different regions of
northern Lebanon. These regions included Akkar, Tripoli, Koura, and Bcharre. Northern
Lebanon is divided into districts (Batroun, Bcharre, Koura, Miniyeh-Danniyeh, Tripoli,
Zgharta, and Akkar) and covers an area of 2024.8 km? with a population of 1,197,203.
Akkar is bounded by the Syrian governorates and constitutes the second largest
agricultural region after the Bekaa Valley. Koura district consists of a series of foothills
surrounding a low-lying plain where olive trees are cultivated and considered among the
most extensive in Lebanon. Tripoli, the capital of North Governorate and the second
capital of Lebanon, is characterized by a relatively high population density (600/km2)
and with a wide variety of crop production mainly based on citrus fruits and olives.
Lebanon is characterized by an unsustainable road transport sector, an uncontrolled
private sector of diesel generators, an insufficient database of pesticide used, and poor air
quality control. Diesel emissions (Bcharre), petrol emissions (Tripoli), fossil fuel
combustion (Tripoli and Koura), and the combustion of coal, wood, and grass (Bcharre
and Akkar) are the main sources of PAHs in these studied regions, while the absence of
all industrial activities in these areas specified for agricultural production is the main
reason for the disappearance of polychlorinated biphenyls and other residues of
pollutants issues from industrial waste. The Bcharre district is a mountainous district,
with an altitude up to 3088 m and generally dedicated to organic crops. The altitude of
Bcharre ranged from 1450 to 3088 m which is relatively higher than that of Akkar (700
m), Koura (290 m), and Tripoli (80 m). The geographical repartition of these sites over

Lebanon is illustrated in Fig. 1.

The conifer “Pinus nigra” is widely distributed and easily identified in northern Lebanon,
and the samples used were young needles collected from the same conifer species. These
needles were used according to the work previously developed by Baroudi et al. in 2020
(Baroudi et al. 20204, b). Approximately 50 g of conifers of the same age ranges from 6
months to 1 year, with only the terminal sections of the branches collected in August 2018.
These samples were wrapped in aluminum foil, stored individually in zip lock bags, and
placed in an iced cooler during transport, then placed at — 18 °C in the laboratory (Al-

Alam et al. 2017).
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Flg 1 Map showing the sampling sites

Analytical procedure The QUEChERS-SPME extraction procedure and the analysis of the
obtained extract by the LC-MS/MS or by GC-MS/MS used were based on the work of
Baroudi et al. (202043, b) for the study of pesticide and PAH residues in conifers (Baroudi
et al. 20204, b). A schematic description of the extraction procedure used is represented
in Fig. 2. The validation parameters obtained for the non-volatile pesticides analyzed by
LC-MS/MS and volatile pesticides, OCPs, and PAHs analyzed by GC-MS/MS are reported
in Appendix B.

Weigh 5 grams of conifer needles in 50 mL centrifuge tube

- L

Add 15 mL of ACN

Shake vigoEoust 1 min

Add QUEChERS citrate buffered extraction salts

Vortex for 1 min, centrifug_ed for 10 min at 5000 rpm

Add supernatant to the 15 mL of PSA tube

Vortex for 1 min, centrifug_ed for 10 min at 5000 rpm

Transfer ther clear extract to_ LC-MS/MS and GC-MS/MS

Fig. 2 Flow chart of the modified QUEChERS extraction procedure
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Results

Among the 127 pesticides and 16 PAHs, only 19 of all pollutants sought (penconazole,
pendimethalin, diflufenican, hexachlorobenzene, heptachlor, fenpropidin, deltamethrin,
lambda-cyhalothrin, ethofumesate, clofentezine, naphthalene, acenaphthylene,
phenanthrene, fluorene, pyrene, anthracene, fluoranthene, benzo[a]anthracene, and
chrysene) were found in most of the samples with varying rates among regions.
Moreover, results showed that the samples collected from the Bcharre district usually
devoted to organic crops were the less contaminated with pesticide and PAH residues,
while the highest concentration was found in Akkar valley followed by the region of

Tripoli and Koura. All these results are shown in Table 1 and in Fig. 3.

Table 1 Sum of pesticide and PAH concentrations in conifer samples (ng g-1)

Pollutants, n Bcharre (n=2) Akkar(n=4) Tripoli (n=4) Koura (n=15)

Pesticides
Penconazole 3.5 8.8 6.2 9.7
Pendimethalin 0.8 16.9 8.1 4.2
Diflufenican 18.7 22.7 11.4 5.8
Hexachlobenzene 2.6 53.7 48.8 25.7
Heptachlor - 20.6 10.5 35
Fenpropidin 9.6 34.9 12.8 6.7
Deltamethrin - 24.3 43.5 27.3
Lambda-Cyhalothrin 2.9 17.9 30.9 35.7
Ethofumesate - 12.5 8.7 3.9
Clofentezine 12.7 19.4 11.8 5.2
Sum (Pesticides), n 50.7 2315 192.5 127.6

PAHs
Naphthalene 14.9 6.9 10.5 7.3
Acenaphthylene 7.7 9.6 7.5 1.4
Fluorene 9.7 43.6 52.8 7.7
Phenanthrene 53 71.1 56.0 52.2
Anthracene 4.9 68.5 37.4 11.2
Fluoranthene 13.1 85.9 68.5 6.3
Pyrene 6.1 65.2 79.3 9.1
Chrysene 1.5 7.2 14.5 1.0
Benzo[a]anthracene 3.0 64.1 43.8 2.7
Sum (PAHSs), n 66.1 422.1 370.2 98.9
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Pesticides and PAHs concentrations (ng g*) in conifer samples
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Bcharre Akkar Tripoli Koura
[Pesticides 50.7 231.5 192.5 127.6
B PAHs 66.1 422.1 370.2 98.9
Fig. 3 Pesticide and PAH concentrations (ng g-1) in conifer samples
Discussion

The QUEChERS-SPME extraction and cleanup procedure was applied for the analysis of
15 conifer samples collected from four different areas in Lebanon in order to detect the
presence of pesticide and PAH residues. In fact, Pinus nigra species are characterized by
a wide geographical distribution allowing them to accumulate pollutants for several
years. Their needles are well known for their high lipid content and specific waxy layer
(Ratola et al. 2011). The abundance of pollutants in conifer was the result of long-term
accumulation associated with exposure period of needle in the air. The presence of a
limited number of pollutants is related to the young age of the conifers analyzed between
6 months and 1 year of age, as higher concentrations of pollutants were identified in older
needles than in younger ones, and these concentrations indicated a more significant
increase in needle age (increase with concentration by a factor of 3 in the first year, then
only by one-third between the first and the second year) (Di Guardo et al. 2003; Klanova
et al. 2009; Kylin et al. 2017). The analysis of the accumulation of pesticides and PAHs in
conifers was carried out during the month of August, however in the absence of
meteorological variations between seasons, such as precipitation and temperature, which
affect the phenomena of volatilization and degradation of pollutants. In addition, these
results show that the accumulation of pesticides in the collected conifers has occurred

after 4 months as the main pesticide pulverization season in March.
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Pesticide levels in collected samples

The majority of the investigated sites detect the presence of some pesticide residues in
most of the samples with rates varying among regions. Each of the studied regions located

in a rural area was known for its specific agricultural products.

As seen from the results obtained from this sampling campaign, Akkar valley appears to
be the most polluted area with pesticide residues. The highest pesticide residues found
belong to diflufenican, hexachlorobenzene, and fenpropidin. Furthermore, diflufenican is
usually used for preemergence and postemergence of foliar absorbed herbicide to control
annual weeds in cereal crops, while fenpropidin is a foliar fungicide which is used for
protective, curative, and eradicative activity as a fungicide for cereals, whereas the
persistence and bioaccumulation of hexachlorobenzene are due to its resistance to
degradation and high solubility. The agricultural plain of Akkar that makes the region
suitable for the cultivation of various crops such as cereals, vegetables, tobacco, and olive

explains the abundance of these pesticides (Helou et al. 2019; EL-Osmani et al. 2014).

For Tripoli and Koura, the highest pesticide residues belong to deltamethrin (43 ng g1
and 27 ng g~1) and lambda-cyhalothrin (30 ng g~ and 35 ng g—1) respectively. The
detection of these pesticides in those regions is clarified by the agricultural production in
this area that is well known for the presence of olive trees and the production of olive oil
(Amvrazi and Albanis 2008). Deltamethrin is an agricultural insecticide classified as very
toxic and harmful, which used to control a large variety of diseases in olives trees such as
the fighting pests (Jaabiri 2013). The results suggest that the less polluted with pesticide
residues were the samples collected from the regions of Bcharre. These facts mean that
the air pollution in this area, which is usually devoted to organic crops, is closely affected

by traffic volume or economic activity.

Lebanon, being not producer of pesticides, is dependent on legal imports of these
products in order to fulfill its needs for pests’ protections (Youssef et al. 2015).
Unfortunately, there are many obstacles to agricultural protection in Lebanon despite the
availability of legislation. First, there is a lack of compliance requirements for the use and
identification of pollutants and there is a deficiency of research facilities for detecting

their residues and effects, while legislative and policy control measures still need to be
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established. Certain deficiencies in the control of pollutants are that the farmers do not
have sufficient databases of pollutant use and a large number of them prefer to have high
efficiency and low cost instead of environmental effects (EI-Osmani et al. 2014). As the
risk of acute and chronic contamination increases due to the lack of precision of pesticide
targets, the farmers have limited knowledge across pollutants regarding their persistence

in the air and their harmful effects for human and animal (Chaza et al. 2018).
PAH levels in collected samples

One of the aspects for the analysis of pollutants at different sites is the assessment of the
variations in concentration along altitude gradients. The study of Davidson et al. (2003)
found that the concentrations of volatile organic compounds (VOCs) increased at higher
altitudes (Davidson et al. 2003), while other studies failed to detect the relation between
altitude and differences in some VOC concentrations (Yang et al. 2013). These
inconsistencies are caused by the proximity of the sampling sites to the sources, the
different properties of compounds, and the environmental factors (Pompa-Garcia et al.
2017). These latest observations are mainly behind the results obtained in this sampling
campaign for the assessment of conifer needles sampled from several regions at different
altitudes (Tripoli, Koura, Bcharre, and Akkar). As previously said, the altitudes of Bcharre
ranged from 1450 to 3088 m, which were relatively higher than those of Akkar, Koura,
and Tripoli (700 m, 290 m, and 80 m respectively), while the overall concentration of
PAHs for Bcharre was lower compared to that for other regions with concentrations of 66
ngg-1,422ngg-1,99ngg-1, and 370 ng g~! respectively. The spatial distribution of PAHs
influenced by their physicochemical properties, their photochemical degradation, and
their emission density reflects regional differences in accordance to population density.
For example, PAH concentrations in Akkar are higher than in Bcharre due to the
unbalanced development and the population growth (389.899 and 76.831 respectively)
(Peng et al. 2016).

To identify the source of pollution by PAHs for the four selected regions, the low molecular
weight PAHs (LMW, 2-3 rings) and high molecular weight PAHs (HMW, 4-6 rings)
produced in low- and high-temperature processes respectively (Al-Alam et al. 2017; Choi
et al. 2010) were compared with those provided by Tobiszewski and Namie$nik in 2012
(Tobiszewski and Namie$nik 2012). The distributions of the sum of the PAHs (X PAHs (ng
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g~1) =X LMW + X HMW) indicate that the concentration of the LMW PAHs in Bcharre and
Koura exceeds the concentration of the HMW PAHs, whereas the inverse is observed in
Tripoli and Akkar. In comparison, the study reveals that the anthracene/(anthracene +
phenanthrene) ratio for all regions studied was higher than 0.1, which indicates the
presence of pyrogenic sources in these areas studied. The analysis of fluorene/(fluorene
+ pyrene) enabled to conclude that car and road emissions are the sources of the diesel
emissions detected in the Bcharre area, while petrol emissions have been detected in
Tripoli due to the present port, recognizing that petrol and diesel emissions cannot be
separated and should be considered together. The fluoranthene/(fluoranthene + pyrene)
ratio has shown that pyrogenic emissions in Bcharre and Akkar are due in particular to
the combustion of coal, wood, and grass, whereas in Tripoli and Koura, they are due to
fossil fuel combustion. The diagnostic ratios for PAHs for the selected areas are presented

in Table 2.

Table 2 Diagnostic ratios of PAHs for selected areas based on the work of Tobiszewski and
Namie$nik in 2012

Bcharre Akkar Tripoli Koura
Sum PAHs, n (ng g'1) 66.1 4221 370.2 98.9
Sum LMW 42.5 199.6 164.2 79.9
Sum HMW 23,6 222.4 206 19
FL/(FL + PYR)
<0.5 Petrol emissions 0.61 0.4 0.39 0.45
>(.5 Diesel emission
ANT/(ANT +PHE)
<0.1 Petrogenic 0.48 0.49 0.4 0.17
>0.1 Pyrogenic
FLA/(FLA + PYR)
<0.4 Petrogenic 0.68 0.56 0.46 0.4

0.4-0.5 Fossil fuel combustion
>(0.5 Grass, wood, coal combustion
%~ PAHs (ngg-1) = % LMW + £ HMW
Ananthracene, Flafluoranthene, F/fluorene, Phe phenanthrene, Pyrpyrene

Several studies have described significant variations in the spatial distribution of outdoor
PAHs. The results showed that the highest concentrations of PAHs were measured in
hightraffic areas (Tripoli and Akkar), followed by urban and rural areas (Bcharre)
(Lovinsky-Desir et al. 2016; Jaward et al. 2004). Inside the city, concentrations of outdoor
atmospheric PAHs can also differ significantly, and higher atmospheric PAH
concentrations measured along main roads (Tripoli and Akkar) can be reached compared

to concentrations measured in a private street (Koura and Bcharre), many kilometers
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away (Choi et al. 2007). These results can be clarified by variations in proximity to roads
and highways and emissions from traffic sources on a relatively large scale. Our results
also presented a diversity in atmospheric PAH concentrations where the concentrations
of phenanthrene and anthracene respectively in Bcharre (5.3 ng g-! and 4.9 ng g—1) with
a daily temperature in August of 16 °C are lower compared to the concentrations of Akkar
(71 ng g~ and 68.5 ng g~1), Tripoli (56 ng g~ and 37 ng g~1), and Koura (52 ng g-! and
11 ng g—1) with a mean temperature of 26 °C. On the other side, Akkar seems to be highly
contaminated by phenanthrene due to the fact that the increase in temperature (28 °C)
also will cause the transfer and accumulation of phenanthrene in plant tissues, which rises
rapidly and reaches the maximum accumulation within a few hours (Salehi-Lisar et al.
2015; Shen et al. 2019). Indeed, it was shown that plants such as conifers can absorb
phenanthrene and some of its compounds through their needles if it is in the gaseous

and/or particulate phase, but also via their roots when it is in the soil (Srogi 2007).
Conclusion

The QUEChERS-SPME method has allowed us to analyze 15samples of conifers from
northern Lebanon in order to assess the air quality in this region based on a
biomonitoring process. Pinus nigra was used as a passive sampler and the results
obtained suggest that these species play the role of effective biomonitors of

contamination levels in the air for pesticides and PAHs.

The total concentration of 10 pesticides detected in conifers from 15 sampling sites in
Lebanon ranged from 50 to 231 ngg~1 Insecticides were the main family of chemicals
followed by fungicides and herbicides. In general, their distribution in the regions studied
revealed that the pesticides used in each of them could be different. Hexachlorobenzene,
a commonly used pesticide in Lebanon, presents the highest risk of toxicity, while
penconazole and pendimethalin present a very low risk due to their low concentrations
in some of the analyzed samples and absence in others. The total concentrations of
pesticides and PAHs in conifers recovered from Akkar and Tripoli were higher than the
samples from Bcharre due to its location in the mountain of Lebanon and its organic
production. Overall, it has been shown that conifer can serve as accurate pesticide
biomonitors in sample, but further research strategies are required to analyze their

actions further thoroughly.
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V. The use of Helix aspersaand Pinus nigra as environmental biomonitors for the study of

temporal air pollution variation in Northern Lebanon

Résumé

Ce résultat présenté sous forme d'un article soumis dans « Environmental Chemistry
Letters », présente une étude basée sur l'utilisation des escargots et des aiguilles de
coniferes pour réaliser I’évaluation de la qualité de I'air dans cinq régions au nord du
Liban. Les escargots refletent la qualité de I'air en raison de leur large distribution en
accumulant certains polluants toxiques et peuvent étre utilisés pour évaluer la
biodisponibilité des polluants atmosphériques en mesurant leur concentration sur une
période de temps spécifiée. Les aiguilles de coniferes sont également utilisées comme
biomoniteurs passifs pour étudier divers polluants organiques dans l'air en raison de leur
forte teneur en lipides, leur répartition sur une grande surface géographique et leur fort

potentiel d'accumulation de polluants organiques.

Dans cette étude, une méthode combinant QUEChERS avec SPME suivie d’'une analyse par
LC-MS/MS et GC-MS/MS a été utilisée pour analyser les pesticides, y compris les OCPs et
les HAPs. Cette méthode a été appliquée a deux matrices différentes (Helix aspersa et
Pinus nigra) pour étudier leur réle en tant que biomoniteur de la variation spatio-
temporelle de la pollution de I'air dans la région du nord du Liban (Tripoli, Batroun,
Akkar, Koura et Bcharre). Elle visait également a évaluer si les conditions
météorologiques affectent la contamination de ces matrices, en ayant considéré plusieurs
périodes différentes de prélevement allant de juillet 2019 a décembre 2019, période de
fortes variations, afin de détecter les variations spatiales temporelles de différents

polluants.

Les résultats obtenus pour les échantillons des escargots et des aiguilles de coniferes
collectés pendant six mois consécutifs avec les mémes procédures d'échantillonnage et
d'analyse, montrent que pour ces deux matrices différentes, l'absorption des pesticides et
des HAPs ne seraient pas similaire. L'étude des deux matrices montre une différence
significative entre les résultats des échantillons et que les concentrations de pesticides et
des HAPs dans les sites d’Akkar sont plus élevées que celles des sites de Batroun et de

Bcharre.
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En conclusion, les escargots et les aiguilles de coniféres ont servi comme un agent de
biomonitoring pour l'analyse de la qualité de I'air par l'accumulation de polluants
organiques. Les variations météorologiques jouent un réle important dans I'accumulation
des polluants, et les données obtenues a partir des deux matrices confirment que les

niveaux de pollution semblent varier différemment.
Highlights

 Pesticides and polycyclic aromatic hydrocarbons uptake ability was tested in snails
(Helix aspersa) and pine needles (Pinus nigra) for six months in seven sites of Northern

Lebanon.

e Helix aspersa and Pinus nigraevidenced difference accumulation trends over the study

area.

e Helix aspersa and Pinus nigra highlighted similar pollution sources based on specific

diagnostic ratios.

e The exposure time, the structure and morphology of Helix aspersa and Pinus nigra

biomonitors seems a key factor to estimate accumulation rates of pollutants.
Abstract

Land snails Helix aspersa and pine needles Pinus nigra, known as biomonitors of air
pollution, are often used to assess contamination by organic pollutants. In this regard, a
sampling campaign was conducted for the first time in Lebanon from June to December
2019, in five different regions in Northern Lebanon. For this, snails and pine needles
samples were collected monthly. The extraction of pollutants was based on QUEChERS
followed by a pre-concentration step of volatile compounds using solid phase
microextraction. Results showed that for Pinus nigra, a high concentration of pollution
was observed during the first four months of the analysis followed by a noticeable
decrease at the end of the study, while for Helix aspersa, an increasing of pollution
concentration was observed during the sampling period. Moreover, results showed that
Akkar and Tripoli could be regarded as a highly contaminated areas by pollutants
whereas Batroun and Bcharre had the lowest concentration. Furthermore, meteorological

data analysis proved the effect of climatic conditions on the bioaccumulation of pollutants
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by the chosen biomonitors. This is the first time that a comparison between two different
biomonitors is conducted while such comparison is highly required for a better

environmental biomonitoring assessment.

Keywords: Snail; Pine needle; Air pollution; Meteorological condition; Pesticide;

Polycyclic aromatic hydrocarbon.
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1. Introduction

In the last twenty years, studies have associated air pollution to respiratory diseases like
pneumonia, cardiovascular diseases such as arrhythmias and metabolic disorders such as
hepatic encephalopathy (Jiang et al. 2016; Lee et al. 2014). Air pollution consists of a
variety of contaminants issued from natural and synthetic sources and formed by the
photochemical transformation process including volatile and non-volatile organic
compounds, particulate matter and gaseous products, each causing harmful effects on

human health (Tran et al. 2020).

Pesticides, for instance, pollute the air through various processes and approximately 30
to 50 % of the quantities applied are present in the air depending on the physicochemical
characteristics of the pesticides, the climatic conditions in particular wind and
temperature and the processing equipment and procedures (Damalas and
Eleftherohorinos 2011). In general, the concentrations of pesticides in the air are
consistently higher for pesticides with high volatile characteristics, in agricultural areas
and during exposure periods (Schummer et al. 2010). Polycyclic aromatic hydrocarbons
(PAHSs) are a diverse class of persistent lipophilic organic pollutants that are generally
divided based of their physico-chemical properties into low and high molecular weight
(Dudhagara and Dave 2018; Souza et al. 2015). PAHs and their polar compounds that
arise in the air are generated mainly from natural or anthropogenic sources and disperse
far from their source through contaminated air masses in different forms (ash or smoke)
and then are dispersed in natural and animal matrices (Elaridi et al. 2020; Hasheminassab

etal. 2013).

The wide distribution of PAHs and pesticides including organochlorine pesticides (OCPs)
in the air is of great concern to the researchers now, which has contributed to the careful
monitoring of their critical studies by active samplers that have been used widely in air
monitoring (Gaga et al. 2012). However, these samplers have been recently replaced by
passive sampler among which figure the natural species such as conifer needles and snails
(Al-Alam et al. 2019). In fact, pine needles are biomonitors used to investigate various
pollutants in the air including PAHs (Wang et al. 2019; Oishi, 2018), pesticides (Luo et al.
2020; Ratola et al. 2014) and polychlorinated biphenyls (Cindoruk et al. 2020). Owing to

their high lipid content and wide specific surface area, they are spread widely in several
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regions and have a high potential to accumulate organic pollutants on a wide geographical
range (Likus-Cieslik et al. 2020; Wierzbicka et al. 2019). As well, snails, also known as
environmental biomonitors, reflect the air quality in their surroundings due to their wide
distribution by accumulating certain toxic pollutants and can be used to assess
bioavailability of air pollutants by measuring their concentration over a specified period
of time (Baroudi et al. 2020; Sturba et al. 2020). They can be easily collected and are in
contact with various organic pollutants that they absorb respiratory, digestively and
transcutaneous from plants, water and soil such as pesticides (Girones et al. 2020), PAHs

(Al-Alam et al. 2020) and polychlorinated biphenyls (Wu et al. 2019).

In this study, Helix aspersa and Pinus nigra were used as potential biomonitors of air
pollution in Northern Lebanon (Tripoli, Batroun, Akkar, Koura and Bcharre). The two
selected biomonitors were assessed for their potential accumulation of pesticides and
PAHs. These pollutants were subjected to a multi-residue extraction procedure based on
QuEChERS followed by chromatographic analysis coupled to tandem mass spectrometry.
Moreover, the impact of meteorological conditions on the contamination of these matrices
was also assessed, since the study was performed in different time periods from June to
December 2019 during which the weather widely varied. It is worth noting that, to the
best to the authors’ knowledge, a comparison between two different biomonitors was
never reported before and accordingly such comparison is highly required for a better

environmental biomonitoring assessment.
2. Experimental
2.1 Materials

Acetonitrile grade for liquid chromatography, water for chromatography, formic acid and
acetonitrile were purchased from Sigma-Aldrich (L’Isle D’Abeau, France). Ultrapure
water used was obtained through a Milli-Q system (18 M cm) from Merck, Germany.
Polyacrylate (85 pum) and polydimethylsiloxane (100 pm) coated fibers used for solid-
phase microextraction were purchased from Supelco-Sigma Aldrich (Saint Martin d’'Here

France).

2.2 Study region
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Northern Lebanon (34°26'N 35°51'E), covering an area of 2024.8 km?2 with a population
of 1197203, is divided into multiple districts Batroun, Bcharre, Koura, Minieh-Dennie,
Tripoli, Akkar and Zgharta district. The described study was conducted on five monitoring
regions (seven sites) spread over the north of Lebanon included: Akkar (Araa, Beit Hajj),
Koura (Beshmezzine, Haykaliyeh), Bcharre (Abdine), Batroun (Tannourine) and Tripoli

(Abi Samra).

Tripoli, the capital of the North Governorate and the second largest city in Lebanon, is
characterized by high population density and a wide range of crop production mainly
focused on olives and citrus fruits. Koura district is particularly known for its olive tree
cultivation and olive oil production. Akkar is bordered by the Governorates of Syria and
is the second largest agricultural area after Bekaa valley. Tannourine and Bcharre
dedicated to organic agriculture in general are mountainous districts and considered one
of Lebanon’s largest and densest cedar forests. The geographic location of sampling sites

over the north of Lebanon is illustrated in Supplementary Information (SI-1.1) (Fig. 1).
2.3 Sampling

The certified Helix aspersablank snails used for this experiment were purchased from a
farm at Bkeftine, Lebanon. All snails were kept in fully protected cages using sieve
allowing the air free flow within the cage. The cages are kept in the lands of different
studied regions where there is vegetation and besides the pine needles trees that are part
of this study. Snails were fed on pure water and cabbage purchased from farms specific in
organic products. Sampling was done monthly from July till December 2019, during which
3 snails of each cages and 10 grams of one-year old needles were collected. All samples

were freshly frozen in propylene bags at -18 °C until analysis.
2.4 Sample preparation and analysis

The QUEChERS extraction method was based on the work of Al-Alam et al. in 2020 for the
study of pesticides and PAHs residues in snails (Al-Alam et al. 2020) and the work of
Baroudi et al. in 2020 for the study of these organic pollutant’s residues in pine needles
(Baroudi et al. 2020). A schematic representation of the methods used to extract

pesticides and PAHs from matrices is shown in Supplementary Information (SI-1.1) (Fig.
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2). Chromatographic parameters for all assessed pollutants are also shown in

Supplementary Information (SI-1.2).
3. Results and Discussion
3.1 Helix aspersa and Pinus nigra contamination

For LC-MS/MS, the detected non-volatile pesticides were carbendazim, diflufenican,
diuron, penconazole and pendimethalin. The analysis of the variation of the
concentrations of these pesticides for six months shows that the maximum
concentrations obtained were in the months of November and December for snails’
analysis and in the months of July, August, September and October for pine needles
analysis. Figure 1.a shows the distribution of the concentrations of non-volatile pesticides

(ng g')) found in Helix aspersa and Pinus nigra matrices.

For wvolatile pesticides, fenpropidin, acetochlor, chlorpropham, clofentezine,
deltamethrin, diclobenil, diphenylamine, ethofumesate, kresoxim-methyl, lambda-
cyhalothrin and pyraclostrobin were detected during the six months of analysis in all the
regions studied. As for non-volatile pesticides, the maximum concentration of pesticides
was found at the last month of the campaign for snails. However, for pine needles,
comparable concentration was shown for the first four months followed by a significant
drop on December. Figure 1.b shows the distribution of the concentrations of volatile

pesticides (ng g'!) found in Helix aspersaand Pinus nigra matrices.

Regarding the OCPs, results showed that heptachlor, hexachlorobenzene and a-
endosulfan were the only compounds detected over the assessed regions. The variation
in the concentration of these OCPs, known by their high persistence, shows an increasing
concentration for the snails to obtain a maximum at the last months. For pine needles, a
similar accumulation was seen in the first four months, followed by a considerable
decrease in December. Among the OCPs assessed, none of them were found in Tannourine
for both the analyzed matrices. Figure 1.c shows the distribution of the concentrations of

OCPs (ng g'1) found in Helix aspersaand Pinus nigra matrices.

On the other side, the detected PAHs were naphthalene, acenaphthene, fluorene,

phenanthrene, anthracene, pyrene, benz[a]anthracene, benzo[e]pyrene,
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benzo(k)fluoranthene, chrysene and fluoranthene. For pine needles, results showed a
high PAHs concentration during the first 4 months of the study for Akkar and Tripoli (Abi
Samra), followed by a decrease in the fifth and sixth months of the study. For snails, the
highest concentrations were observed in Akkar and Tripoli with an increasing
concentration over time. Figure 1.d shows the distribution of the concentrations of PAHs

(ng g') found in Helix aspersa and Pinus nigra matrices.
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1.d.Variation of PAHs concentrations in 1.d.Variation of PAHSs concentrations in

Helix aspersa Pinus nigra
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Fig. 1 Monthly concentrations of pesticides and polycyclic aromatic hydrocarbons in studied areas
reporting increase of the pollutants assessed in Helix aspersa during the total duration of the
study and the decline of these pollutants during the last two months of the study in the assessed
Pinus nigra

The results show that the majority of regions contain residues of pesticides with
concentrations varying between these regions. Akkar appears to be the most polluted
region with residues of pesticides also known as an agricultural area, while Batroun was
the less polluted with residues of pesticides, considered one of the principal densest and
largest cedar forests in Lebanon. For PAHs, the high emissions levels were observed in
Akkar and Tripoli while the regions of Batroun, Koura and Bcharre were the least
contaminated. The seasonal difference, heating activities in winter, variation in
temperature, petrogenic and pyrogenic sources may be attributed to the variation in
deposition and accumulation of PAHs in each matrices. The most relevant pesticides and
PAHs residues found in the samples analyzed are shows in Supplementary Information

(SI-1.3).

3.2 Meteorological effects on pollutant concentrations

The pollutants’ uptake by the two assessed biomonitors showed, despite being different,

a similar trend in accumulation for each matrix.
Pinus nigra

For Pinus nigra, as indicated in our analysis, the concentration of both PAHs and
pesticides are approximately constant in the first four months of study that showed a high
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concentration of pollutants (July, August, September and October), then the concentration
decreased during the last two months of analysis (November and December) (Figure 1).
In order to find a reasonable explanation for this difference, meteorological conditions
were assessed and recorder during the total duration of the campaign. According to the
Lebanon Weather sites (source for weather conditions in Lebanon), the first four months
of the sampling (July - October) were categorized by favorable climatic conditions in
which no precipitation was noticeable, and the temperature was the highest compared to
the last two months (November - December) which had significant rainfall, accompanied
by severe storms, with a decrease in temperatures. In fact, weather and climate changes
during this period of year were very normal occurrences, which may be the cause for the
decrease of pollutants at the end of the study. Variations in climatic conditions (July 15 -

December 15, 2019) given by LebWeather.net are shown in figure 2.
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Fig. 2 Monthly levels of air temperature and precipitation in selected locations across the Northern
Lebanon reporting decrease temperature and significant increase of precipitation during July and
December 2019

The first reason of these results in pine needles is supposed to be the young age of the
needles chosen (< 1 year) which in the presence of successive heavy rains, these new
needles having a low accumulation of pollutants over the time are washed in abundance
before storing these pollutants and can be directly influenced by meteorological

variations (Luo et al. 2020; Al-Alam et al. 2017).

The X pesticides (non-volatile and volatile pesticides, OCPs) of seven sites between the
first and last month in Lebanon city were 1.04 - 0.35 ng g'! in Tannourine area, 16.96 -

3.77 ng g'lin Abdine area, 123.17 - 64.03 ng g'lin Araa area, 124.2 - 64.79 ng g'! in Beit
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Hajj area, 85.85 - 32.12 ng g1 in Beshmezzine area, 82.41 - 39.08 ng g! in Haykaliyeh area
and 105.31 - 35.76 ng g! in Abi Samra area, respectively. Moreover, the high
concentration of pesticides observed in the first four months are probably due to the
accumulation of these pollutants by the needles, the high concentration of which is
generally observed from the end of spring to the summer after pulverization (Luo et al.
2020; Rybicki and Jungmann 2018). In addition, many studies suggested a relation
between climate changes and concentrations of pesticides. Estellano et al. (2015) showed
that the highest concentration of pesticides in Italy were identified in samples collected
during spring and summer (Estellano et al. 2015). As well, it was shown that OCPs
concentrations depend principally on seasonal variations in which the greatest
concentration was observed during dry season while the lowest appear during the wet
season (Li et al. 2014). In addition, obtained results correlate with those reported by
Scheyer et al. (2005), indicating that the highest concentration was observed in
Strasbourg during spring and summer (Scheyer et al. 2005) while lowest concentrations

are observed during rainy seasons (Sauret et al. 2009).

It was also shown that the climatic conditions of the studied areas are the main causes of
PAHs variations (Cao et al. 2019; Zheng et al. 2019). The concentrations of ¥ PAHs from
July to December were 5.96 to 3.52 ng g1, 12.09 to 7.84 ng g1, 72.52 to 25.8 ng g'1, 75.05
to 40.62 ng g1, 13.2 to 7.42 ng g1, 11.59 to 8.23 ng gl and 79.68 to 47.69 ng g'!in
Tannourine, Abdine, Araa, Beit Hajj, Beshmezzine, Haykaliyeh and Abi Samra,
respectively. Many studies show that climatic parameters as well as the source emissions
can contribute to varying concentration of PAHs between winter and summer (Tan et al.
2006). Furthermore, the precipitation and repeated washing-out effect for pollutants
result in minimum concentrations of particulates and thus allow the reduction of PAHs

(Chang et al. 2006; Zheng et al. 2019).
Helix aspersa

Snails can be contaminated by three sources: soil or water (ingestion and cutaneous
contact), air (respiration and skin contact), and plants (digestion) (Girones et al. 2020).
The accumulation of pollutants in snails depends on the duration and time of exposure,
which means that wild snails are highly polluted due to their chronic exposure to

environmental contaminants. During the sampling period, an accumulation of pesticides
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and PAHs was observed in the snails, with an increase in concentration during the six

months to achieve a maximum peak reached in the sixth month (Figure 1).

The concentration of X pesticides of the first sampling in July were 0 ng g1 for Tannourine
and Abdine, 4.78 ng g1 for Araa, 4.98 ng g1 for Beit Hajj, 0.77 ng g1 for Beshmezzine, 2.58
ng gt for Haykaliyeh and 2.81 ng g1 for Abi Samra, respectively. Overall pesticides levels
increased during this period and ranged about several orders of magnitude from 0.16 ng
gl 3.25 ng g1, 19.96 ng g1, 17.98 ng g1, 12.22 ng g1, 15.12 ng g and 16.66 ng g7,
respectively. The transfer of pesticides in snails may be due to many different exposure
routes starting with their direct application and then through respiration and skin contact
especially to the air (Baroudi et al. 2020). The highest concentrations obtained over the
last two months dependent on the interaction of the snails with the pesticide-polluted soil
(Druart et al. 2011) present in high concentrations due to precipitation effects and
continuous washing of pesticides from the plants and trees especially the pine needles
and accumulation of these pesticides in the soil (Gill and Garg 2014). These results
correspond with those reported by Zhao etal. in 2020, showing that the pesticide residues
in soils currently planted are higher than soils previously planted or no planted. The
variations in concentrations between regions are usually due to the different pesticide
application of local farmers to improve effective harvest, the different half-life and the
degree of degradation of these pesticides in the agricultural soils, the soil pH and the soil

properties (Zhao et al. 2020).

Many researchers suggest that meteorological conditions and sources emissions, can lead
to variations in PAH concentrations between summer and winter (Zheng et al. 2019). The
total concentrations of PAHs (£ PAHs) in Tannourine is ranging from 1.09 to 3.91 ng g-1,
from 3.28 to 8.94 ng g’ in Abdine, from 12.76 to 38.16 ng g'! in Araa, from 10.2 to 34.19
ng g1 in Beit Hajj, from 2.37 to 6.61 ng g! in Beshmezzine, from 2.66 to 7.33 ng g1 in
Haykaliyeh and from 16.96 to 44.15 ng g1 in Abi Samra. These lowest concentrations of
PAHs in summer were likely caused by photo-degradation and the increased air
dispersion, while the highest concentrations of PAHs in winter were mostly caused by the
highly contaminated air movement and sources of local emissions (Chang et al. 2006; Guo
etal. 2003). Bae et al. (2002), also found that concentrations of PAHs are higher in winter
than those in spring due to the significant weather conditions and the highest emission of

stationary and mobile sources (Bae et al. 2002). It is supposed that the PAHs
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concentration is the highest during November and December due to the decreased air
temperature, slower radical degradation of PAHs and photolysis, the increased use of coal
and the inverse temperature in winter which can produce higher quantities of PAHs that
contributes to the difficulty of pollutants spread which can aggravate the pollution of
PAHs in the air (Wang et al. 2018; Zheng et al. 2019). Several studies have suggested that
a highest concentration of PAHs in the raining season can be due to an increased
condensation of PAHs at low temperatures in the gaseous phase, to the increased
consumption of fossil fuel and the limited photochemical degradation of some PAHs in

winter through solar radiation (Saeed et al. 2011; Hytonen et al. 2009).
Potential factors on accumulation of pesticides and PAHs in Helix aspersa and Pinus nigra

A multiple linear regression was performed for pesticides and PAHs concentrations with
temperature and precipitation in order to classify the control factors for pesticides and
PAHs aggregation in various matrices. The results showed that the parameters above
were significant factors in describing the variation in the concentrations of pesticides and
PAHs in pine needles and snails samples (P < 0.05). The P-value for concentrations (ng g-
1) in samples with temperature and precipitation of the sampling sites, were shown in

Supplementary Information (SI-1.3).
3.3 Residual levels of pesticides in Helix aspersaand Pinus nigra

In both matrices obtained from northern Lebanon, nineteen pesticides comprising five
non-volatile, twenty-one volatile pesticides and three OCPs were detected. The residual
levels of these pesticides differed significantly among the seven studied areas. These
findings indicate that the least polluted with pesticide residues were the samples obtained
from Tannourine, one of the largest cedar forests in Lebanon followed by the area of
Abdine which is usually devoted to organic crops. The results of the analysis show that
the concentrations of Tannourine and Abdine for pesticides and OCPs were at extremely

low concentrations, apparently due to reduced human activity (Xing et al. 2020).

In addition, Akkar, well-known for its largest agricultural production, appears to be the
most polluted region with residues from pesticides. Moreover, results showed the
presence of OCPs such as heptachlor, hexachlorobenzene and a-endosulfan which are
considered persistent in the environment, resistance to degradation and accumulated in
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the air of Araa and Beit Hajj due to its high lipid solubility (Qu et al. 2015). These
pesticides are used in this area with very lower control limit for the reason of its existence
close to the borders of Syria where farmers try to obtain high productivity with low cost
against the backdrop of environmental effects. Helou et al. (2019) show the presence of
OCPs in the Akkar district groundwater indicating the use of these pesticides in this
agricultural area (Helou et al. 2019). The presence of OCPs in the air appear to accumulate
in species, food chain and soil and can be transmitted into the surface water and
groundwater by surface runoff and agricultural drainage. Many factors influence the fate
of OCPs in soils, including the soil types, physiochemical properties and climatic

parameters (Qu et al. 2016; Yu et al. 2013).

For Koura and Tripoli, known by their agricultural production, the highest detection of
agricultural insecticide such as deltamethrin and lambda-cyhalothrin residues is
confirmed by the olive trees characterizing these regions (Lépez-Blanco et al. 2018;
Maalej et al. 2017). In fact, deltamethrin is used frequently to control a wide range of
diseases in olive trees like pest control (Jaabiri et al. 2013). The agricultural productions
of Koura area, known for its vegetables and fruits productions, justify the highest residues
of pesticides found like penconazole and diflufenican. The presence of these pesticides in
abundance in the regions of Beshmezzine and Haykaliyeh, is explain by the control of
penconazole for various molds and mildews in agricultural crops and its application to
the prevention of a variety of vegetable and fruit diseases while diflufenican is an
herbicide used for pre and post-crop emergence against herbicide for the weed control in

winter (Szpyrka et al. 2015; Zhang et al. 2019).
3.4 Residual levels of PAHs in Helix aspersaand Pinus nigra

Diagnostic ratios of PAHs have been commonly used for source distribution (Ali et al.,
2016). PAHs from various sources have different molecular compositions, and some
reports have shown that pyrogenic PAHs are more concentrated in higher molecular
weight (HMW) components, whereas petrogenic components include a higher percentage
of lower molecular weight (LMW) PAHs (Stogiannidis and Laane 2015). To assess the
sources of PAHs emission for the seven selected sites, ratios of low molecular weight PAHs
(LMW, 2-3 rings: naphthalene: NP, acenaphthene: ACE, fluorene: FL, phenanthrene: PHE,

anthracene: ANT) produced in low-temperature processes (domestic wood burning) over
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high molecular weight PAHs (HMW, 4-6 rings: pyrene: PYR, benz[a]anthracene: BaA,
benzo[e]pyrene: BeP, benzo(k)fluoranthene: BkF, chrysene: CHR, fluoranthene: FLA)
produced in high-temperature processes (fuels combustions in engines) were compared

to literature (Table 1) (Al-Alam et al. 2019; Tobiszewski and Namie$nik 2012).

For both matrices, the comparison of the ratio ¥ LMW / £ HMW for the five selected
regions confirm that the main reasons of pollutions by PAHs in Batroun, Bcharre and
Koura are the road combustions considered as petrogenic source (X LMW / £ HMW > 1),
while the principal origins of PAHs in Akkar are the pyrogenic source (£ LMW / ¥ HMW
< 1) (Zhang et al. 2008).

The study of the ratio FL/ (FL + PYR) for snails and pine needles identify that diesel
emissions (> 0.5) issued from road and vehicle emissions are the responsible of
petrogenic pollution in the areas of Bcharre, Akkar and Koura areas, while for Tripoli a
petrol emission (< 0.5) was detected due to the existence of the port considered to be

responsible for the petrol emission (Ravindra et al. 2008).

In contrast, the results of the ANT/ (ANT + PHE) ratio of all sampling sites in the two
matrices were higher than 0.1, meaning that pyrogenic sources are present in the five
areas tested (Pies et al,, 2008), while the FLA/ (FLA + PYR) ratio higher than 0.5 for all
samples implied that these pyrogenic emissions are due in particular to the combustion

of wood, coal and grass (De La Torre-Roche et al. 2009).

The BaA/ (BaA + CHR) ratio, which for the five regions was higher than 0.35 in snails as
in pine needles, confirms the importance of vehicle emissions in the environmental
contamination process by PAHs, which means that the emissions of petrol and diesel

cannot be separated and must be considered together (Akytiz and Cabuk 2010).

Table 1 Diagnostic ratios of polycyclic aromatic hydrocarbons in selected areas reporting the
petrogenic and pyrogenic source during July and December 2019 based on the work of
Tobiszewski and Namiesnik in 2012

Tannourine Abdine Araa Beit Hajj Beshmezzine Haykaliyeh Abi Samra
" Pine " Pine " Pine . Pine " Pine " Pine " Pine
Snail needle Snail needle Snail needle Snail needle Snail needle Snail needle Snail needle

Z LMW/ HMW 1.9 1.8 2.4 2.2 0.6 0.5 0.7 0.4 14 24 1.6 2.5 0.5 0.6

FI/(Fl+Pyr) - - 0.7 0.6 0.5 0.6 0.6 0.6 0.5 0.8 0.5 0.8 0.3 0.4
An/(An+Phe) 1.0 1.0 0.6 0.6 0.5 0.4 0.5 0.4 0.4 0.5 0.3 0.6 0.4 0.4
Fla/(Fla+Pyr) 0.5 0.5 0.5 0.4 0.6 0.5 0.6 0.5 0.6 0.59 0.5 0.5 0.6 0.5
BaA/(BaA+CHR) - - 0.5 0.5 0.9 0.9 0.8 0.9 0.3 0.6 0.3 0.6 0.4 0.5
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4. Conclusion

Land snails 'Helix aspersa’and pine needles 'Pinus nigra’, considered as biomonitors of
air pollution, are used for the first time in Lebanon to monitor for pesticide and persistent
organic pollutants contamination. This study shows that snails and pine needles are well
suitable for pesticides and PAHs detection of pollution inputs in different areas. Pine
needles accumulated significantly higher concentrations for all pesticides and PAHs
compared to snails. The better accumulation of the needles reflects on its long-term
persistence in the study areas relative to snails maintained at the time of study. The
specific behavior of the two matrices in pesticides and PAHs accumulation depends on
their different characteristics, specifically the high lipid content and wide specific surface
area of the pine needles that favored the storage of the pollutants. Exposure time appears
to be a crucial factor in estimating accumulation activities, as knowledge of the structure
and morphology of plant and animal species is a critical prerequisite for choosing
organisms for target contaminants in order to obtain accurate results in environmental

studies.
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Fig. S1 Geographic location of the seven sampling sites
Kits for QUEChERS (EN 1566 method): 0.5g disodium hydrogen citrate sesquihydrate, 1g
trisodium citrate dihydrate, 1g sodium chloride, 4g magnesium sulfate.
Dispersive solid phase extraction clean-up kits (AOAC 2007.01 method): 1.2g MgS04, 400
mg primary secondary amine, 400 mg graphitized carbon black, 400 mg octadecyl.
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Fig. S2 Schematic representation of the QUEChERS procedure used for the analysis of pesticides and
polycyclic aromatic hydrocarbons
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Supplementary Information (SI-1.2)

Part I: Sample analysis: Chapter II-II - Supplementary Materials - Table 1, 2 and 3.

Part II: Snails ‘Helix aspersa’ : Chapter II-1I - Supplementary Materials - Table 4, 5 and 6.

Part III: Pine needles ‘ Pinus nigra’ : Chapter II-11I - Supplementary Materials S2 - Table 1, 2 and 3.

Supplementary Information (SI-1.3)

Table S10. Variation of pesticides and polycyclic aromatic hydrocarbons concentrations in Tannourine

July ‘ August ‘ September ’ October | November | December | July ‘ August | September | October | November | December
Snails Pine needles
Carbendazim 0 0 0 0 0 0 0 0 0 0 0 0
Diflufenican 0 0 0 0 0 0 0 0 0 0 0 0
Diuron 0 0 0 0 0 0 0 0 0 0 0 0
Penconazole 0 0 0 0 0 0 0 0 0 0 0 0
Pendimethalin 0 0 0 0 0 0 0 0 0 0 0 0
Fenpropidin 0 0 0 0 0 0 0 0 0 0 0 0
Acetochlor 0 0 0 0 0 0 0 0 0 0 0 0
Chlorpropham 0 0 0 0 0 0 0 0 0 0 0 0
Clofentezine 0 0 0 0 0 0.164 | 0.866 | 1.032 1.316 0.97 0.566 0.272
Deltamethrin 0 0 0 0 0 0 0 0 0 0 0 0
Diclobenil 0 0 0 0 0 0 0 0 0 0 0 0
Diphenylamine 0 0 0 0 0 0 0 0 0 0 0 0
Ethofumesate 0 0 0 0 0 0 0 0 0 0 0 0
Kresoxim-methyl 0 0 0 0 0 0 0 0 0 0 0 0
Lambda-cyhalothrin 0 0 0 0 0 0 0 0 0 0 0 0
Pyraclostrobin 0 0 0 0 0 0 0.182 | 0.192 | 0.226 0.166 | 0.102 0.086
Heptachlor 0 0 0 0 0 0 0 0 0 0 0 0
Hexachlorobenzene 0 0 0 0 0 0 0 0 0 0 0 0
a-Endosulfan 0 0 0 0 0 0 0 0 0 0 0 0
Total Pesticides: 0 0 0 0 0 0164 | 1048 | 1.224 | 1542 | 1.136 | 0.668 0.358
Naphthalene 0.564 | 0.658 0.982 0.904 1.086 1.22 146 | 1.926 | 1.498 1.47 1.098 1.028
Acenaphthene 0.172 | 0.354 0.396 0.742 0.816 0.996 | 1.542 | 1.964 | 1.832 1.688 1.204 1.254
Fluorene 0 0 0 0 0 0 0 0 0 0 0 0
Phenanthrene 0 0 0 0 0 0 0 0 0 0 0 0
Anthracene 0 0 0.072 0.322 0.392 0.52 0.69 | 0.798 | 0.822 0.864 | 0.384 0.188
Pyrene 0.132 | 0.25 0.382 0.55 0.57 0.476 0.99 1.03 0.964 1.032 0.582 0.254
Benz[a]anthracene 0 0 0 0 0 0 0 0 0 0 0 0
Benzo[e]pyrene 0 0 0 0 0 0 0 0 0 0 0 0
Benzo(k)fluoranthene 0 0 0 0 0 0 0 0 0 0 0 0
Chrysene 0 0 0 0 0 0 0 0 0 0 0 0
Fluoranthene 0.228 0.35 0.476 0.42 0.636 0.704 1.254 | 1.408 1.226 1.316 0.762 0.796
Total PAHs: 1.096 | 1.612 2.308 2.938 3.5 3916 | 5936 | 7126 | 6.342 6.37 4.03 352
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Table S11. Variation of pesticides and polycyclic aromatic hydrocarbons concentrations in Abdine

July ‘ August ‘ September ’ October | November | December | July ‘ August ‘ September | October | November | December
Snails Pine needles
Carbendazim 0 0 0 0 0 0 0 0 0 0 0 0
Diflufenican 0 0 0.062 0.124 | 0.388 0.504 2.954 2.92 2.68 3.054 1.06 0.502
Diuron 0 0 0 0 0 0 1.006 0.89 0.762 0.824 0.724 0.21
Penconazole 0 0 0 0 0 0 0.388 | 0.438 0.57 0.61 0.446 0.426
Pendimethalin 0 0 0 0 0 0 0 0 0 0 0 0
Fenpropidin 0 0 0.182 0.248 | 0.402 0.718 3.328 | 3.136 3.052 3.068 1.018 0.586
Acetochlor 0 0 0 0 0 0 1.378 1.318 1.424 1.344 0.494 0.366
Chlorpropham 0 0 0 0 0 0 0 0 0 0 0 0
Clofentezine 0 0 0 0 0.276 0.546 2.55 3.112 3.328 3.534 1.592 0.656
Deltamethrin 0 0.126 | 0214 0 0.566 0.718 2.692 2.67 2.528 2.836 0.882 0.408
Diclobenil 0 0 0 0 0 0 0 0 0 0 0 0
Diphenylamine 0 0 0 0 0 0 0 0 0 0 0 0
Ethofumesate 0 0 0 0 0 0 0 0 0 0 0 0
Kresoxim-methyl 0 0 0 0 0 0 0 0 0 0 0 0
Lambda-cyhalothrin 0 0 0 0 0.12 0.24 1.538 1.23 1.984 1.564 0.594 0.352
Pyraclostrobin 0 0 0 0 0 0.146 0.21 0.232 0.188 0.208 0.112 0.076
Heptachlor 0 0 0 0 0 0 0 0 0 0 0 0
Hexachlorobenzene 0 0 0.038 0.102 0.144 0.384 0.918 0.794 0.544 0.482 0.23 0.192
a-Endosulfan 0 0 0 0 0 0 0 0 0 0 0 0
Total Pesticides: 0 0.126 | 0.496 0474 | 1.896 3.256 | 16.962 | 16.74 17.06 | 17.524 | 7.152 3.774
Naphthalene 0.502 | 0.656 | 0.838 0.986 1.14 1.384 2.08 2.46 2.324 2.204 1.328 1.242
Acenaphthene 0.994 | 0.848 1.196 1.112 1.426 1.508 1.93 2.57 2.346 2.536 1.64 1.704
Fluorene 0.348 | 0.724 0.716 0.846 1.756 1.826 2.232 2914 2.712 2.778 1.852 1.786
Phenanthrene 0.156 | 0.234 | 0.366 0428 | 0544 0.546 0.76 0.836 0.99 0.818 0.654 0.368
Anthracene 0.37 | 0.428 | 0.712 0.782 091 1.144 1.388 | 1.046 1.362 1.268 0.98 0.522
Pyrene 0.29 | 0.224 | 0.352 0.572 043 0.656 1.206 | 1.586 1.672 151 0.836 0.594
Benz[a]anthracene 0.13 0.23 0.36 0.378 0.596 0.632 0.832 0.862 0.758 0.792 0.504 0.536
Benzo[e]pyrene 0 0 0 0 0 0 0 0 0 0 0 0
Benzo(k)fluoranthene 0 0 0 0 0 0 0 0 0 0 0 0
Chrysene 0.156 | 0.178 0.32 0.386 0.384 0.428 0.636 0.702 0.736 0.802 0.568 0.246
Fluoranthene 0.334 | 0.298 0.616 0.648 0.79 0.824 1.034 1.456 1.494 1.092 0.816 0.842
Total PAHS: 3.28 3.82 5.476 6.138 7.976 8.948 12.098 | 14.432 | 14.394 13.8 9.178 7.84
Table S12. Variation of pesticides and polycyclic aromatic hydrocarbons concentrations in Araa
July ‘ August ‘ September | October | November | December | July l August ‘ September | October | November | December
Snails Pine needles
Carbendazim 0 0 0 0 0 0 9.232 9.502 8.308 7.602 6.086 4.65
Diflufenican 0 0.364 0.542 0.614 0.744 1.03 4.28 4.108 3.666 3.888 3.06 2.52
Diuron 0 0.126 0.256 0.428 0.496 0.702 1.45 1.486 1.342 1.386 0.93 0.412
Penconazole 0.368 0.536 0.624 0.656 0.952 0.856 2.644 2.294 2.516 2.386 1.87 1.288
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Pendimethalin 0.508 0.596 0.634 0.856 0.894 1.368 3.48 3.568 3.124 3.308 2.52 1.846
Fenpropidin 0.12 0.526 0.55 0.29 0.426 0.652 13.876 13.082 14.606 | 14.054 | 8.082 6.354
Acetochlor 0 0.184 0 0.128 0.376 0.634 4.258 4414 4114 4.62 3.422 2.71

Chlorpropham 0.42 0 0.412 0 0.668 0 4.232 4.04 4.68 4.37 2212 1.814
Clofentezine 0.256 1.186 1.446 2.15 2.856 3.704 4.974 5.508 5.898 4.616 3.704 3.05
Deltamethrin 0 0 0.414 0.658 1.436 1.366 8.288 9.48 10.066 7.138 5.934 3.848
Diclobenil 0.14 0.228 0.24 0.34 0.564 0.64 2.15 1.844 2.366 2212 1.59 0.952

Diphenylamine 0.18 1.04 1.78 0.82 2.24 1.808 3.904 4.252 4.554 4174 2.942 2.146

Ethofumesate 0 0.388 0.64 0 0.7 0.96 5.848 5.96 4.854 5.306 3.206 2.726

Kresoxim-methyl 0.74 1.44 1.18 0.94 1.22 1.26 8.046 7.692 7.328 7.746 5.29 3.828
Lambda-cyhalothrin 0.4 0.64 0.156 0.596 0.7 0.96 5.972 5.624 5.296 5.582 4.172 2.594

Pyraclostrobin 0 0 0 0 0.164 0.226 0.384 0.236 0.418 0.348 0.044 0.038

Heptachlor 0.368 0.572 0.68 0.84 1.064 0.938 5.076 5.628 4.686 4.934 3.65 2.384

Hexachlorobenzene 0.72 0.984 0.834 1.06 1.364 1.722 15.732 | 14.718 | 16.314 | 17.178 | 11.482 9.122
a-Endosulfan 0.568 0.796 0.562 0 0.946 1.138 19.346 15.698 16.93 15312 | 15.172 11.748
Total Pesticides: 4.788 9.606 10.95 10.376 17.81 19.964 | 123.172 | 119.134 | 121.066 | 116.16 | 85.368 64.03
Naphthalene 0.594 0.432 0.706 0.876 0.814 0.84 0.824 1.282 1.094 14 0.766 0.708
Acenaphthene 0.106 0.192 0.32 0.202 0.248 0.326 0.342 0.624 0.694 0.804 0.34 0.226
Fluorene 0.872 1.398 1.476 1.862 2.47 3.296 5.008 4.902 5.674 5.944 3.184 3.046

Phenanthrene 1.274 2.176 3.24 4.36 5.09 5.614 10.014 9.24 10.16 9.264 4.562 3.274

Anthracene 2.006 2.57 3.806 4.476 5.156 5.734 8.37 10.02 9.142 9.746 3.94 2.744

Pyrene 0.744 0.924 1.232 1.758 2.136 2.344 3.16 3.494 3.928 3.822 1.64 1.928
Benz[a]anthracene 0.962 1.876 2.286 3.254 4.304 5.016 7.78 7.25 7.486 8.25 4.108 3.608
Benzo[e]pyrene 3.804 5.274 5.342 6.93 7.984 8.826 29.044 31.674 32.408 | 27.978 | 10.054 7.962
Benzo(k)fluoranthene 0.546 0.836 1.134 1.498 1.794 2.118 2.56 2.832 2.664 2.852 1.964 0.638
Chrysene 0.068 0.158 0.322 0.378 0.462 0.59 0.742 0.794 0.984 1.024 0.258 0.15

Fluoranthene 1.792 2.1 2.93 2.592 3.422 3.464 4.68 5.008 5.146 5.324 1.626 1.52
Total PAHS: 12.768 | 17.936 | 22.794 | 28.186 | 33.88 38.168 | 72.524 77.12 79.38 76.408 | 32.442 25.804
Table S13. Variation of pesticides and polycyclic aromatic hydrocarbons concentrations in Beit Hajj

July ‘ August ‘ September | October | November | December l July l August ‘ September | October ‘ November ‘ December
Snails Pine needles
Carbendazim 0 0 0 0 0 0 12.81 14.304 16.688 13.85 9.44 6.366
Diflufenican 0 0 0 0 0 0 4.474 4.79 3.134 4.686 2.942 1774
Diuron 0 0 0.078 0.112 0.164 0.434 1.462 1.094 1.056 1.384 0.876 0.548
Penconazole 0 0 0 0 0 0.722 2.01 2.098 1.898 2.328 1.88 1.23

Pendimethalin 0.552 0.562 0.736 1.046 1.362 1.498 3.364 3.316 3.646 3.25 2.094 2.462
Fenpropidin 0 0.182 0 0.484 0.508 0.806 15.454 16.502 15.04 14.098 10.37 7.802
Acetochlor 0.194 0.332 0.484 0.536 0.59 0.734 5.566 5.048 6.09 5.432 3.302 2.554

Chlorpropham 0.262 0.294 0.366 0 0.648 0.748 6.48 6.36 6.94 5.948 4.26 3.248
Clofentezine 1.504 2.128 3.284 4.162 3.504 4.346 9.502 7.832 8.534 8.126 5.866 4.156
Deltamethrin 0 0.92 0.638 0.702 1.308 1.164 6.296 5.638 7.15 9.83 5.726 4.058

Diclobenil 0 0.236 0.374 0.48 0.674 0.9 1.278 1.378 151 1.008 0.742 0.406
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Diphenylamine 0.14 0.5 0.296 0.438 0.744 0.862 2.868 3.07 2.65 2.776 2.05 1.596

Ethofumesate 0 0 0 0 0 0 4.488 3.948 3.696 3.74 2.502 1.812
Kresoxim-methyl 1.64 2.26 1.62 1.536 1.9 1.698 5.516 5.102 5.954 5.56 2.406 2.884
Lambda-cyhalothrin 0 0 0.26 0.48 0.64 0 6.836 7.356 6.57 6.874 4.428 2.738
Pyraclostrobin 0 0 0 0 0.122 0.258 0.346 0.388 0.298 0.506 0.164 0.126
Heptachlor 0 0 0.128 0.254 0.572 0.84 5.034 4,104 5.226 457 2.408 2.048

Hexachlorobenzene 0.436 0.57 0.806 0.744 1.122 1.476 12.83 12.286 11.212 14.09 8.59 7.628

a-Endosulfan 0.254 0.75 0.774 0.984 1.03 1.502 17.59 18.128 19.1 15.088 | 11.942 | 11.356
Total Pesticides: 4.982 8.734 9.844 11.958 | 14.888 | 17.988 | 124.204 | 122.742 | 126.392 | 123.144 | 81.988 | 64.792
Naphthalene 0.34 0.508 0.564 0.674 0.946 0.824 1.24 1.824 1.876 1.782 1.384 1.006
Acenaphthene 0.204 0.19 0.264 0.366 0.422 0.548 0.57 0.852 1.01 0.912 0.628 0.61
Fluorene 1.076 1.572 1.706 2.016 2.392 2.92 4.462 5.586 5.438 5.592 2.742 2.848
Phenanthrene 0.858 1.936 2.472 3.67 4.166 4.428 10.368 10.472 11.276 9.886 5.396 3.828
Anthracene 2.284 2.644 3.522 4.238 4774 5.188 7.33 8.342 8.898 8.252 5.14 3.42
Pyrene 0.422 0.952 1.062 1.68 1.782 1.744 2.848 3.004 3.366 3.556 2.46 1.964
Benz[a]anthracene 0.616 | 0.958 2.364 3.606 2.984 3.612 6.08 7.24 7.15 7.4 5.832 4.992
Benzo[e]pyrene 2.284 3.384 4.712 5.796 6.57 7.754 34.428 31.87 34.29 33.306 | 19.928 | 17.054

Benzo(k)fluoranthene | 0.934 1.054 1.584 1.694 2.076 2.462 3.426 3.526 3.866 3.358 1.526 1.784

Chrysene 0.15 0.21 0.336 0.306 0.346 0.438 0.59 0.658 0.634 0.87 0.568 0.35
Fluoranthene 1.04 2.118 2.29 3.208 3.93 4.278 3.712 4.482 5.124 4.494 3.112 2.772
Total PAHSs: 10.208 | 15.526 | 20.876 | 27.254 | 30.388 | 34.196 | 75.054 | 77.856 | 82.928 | 79.408 | 48.716 | 40.628

Table S14. Variation of pesticides and polycyclic aromatic hydrocarbons concentrations in Beshmezzine

July | August | September October | November | December July l August l September October November December

Snails Pine needles
Carbendazim 0 0 0 0 0 0 7.952 9.178 10.036 9.49 4.756 3.42
Diflufenican 0.374 | 0.318 0.474 0.964 1.442 1.246 14.246 | 13.914 | 13.068 14.36 11.234 6.94
Diuron 0 0 0 0 0 0 2.058 2.186 1.896 2.176 1.376 0.804
Penconazole 0 0 0 0 0 0 4.43 4.928 5.256 4.782 3.208 2.352
Pendimethalin 0 0 0 0 0 0.55 0.984 0.892 0.858 0.906 0.312 0.256
Fenpropidin 0 0.35 0.422 0 0.504 0.578 8.224 7.858 7.324 7.582 3.246 1.972
Acetochlor 0 0 0.122 0.216 0.258 0.588 5.27 5.036 4.694 4.858 3.622 241
Chlorpropham 0 0.106 0.18 0.126 0.22 0.3 1.296 1.942 1.06 1.62 0.52 0.22
Clofentezine 0 0.42 0.588 1.368 1.584 1.73 1.39 1.846 1.96 1.614 0.766 0.406
Deltamethrin 0 0.74 0.96 1.248 1.4 1.72 10.772 | 14.306 | 15.192 | 12.508 5.738 1.972
Diclobenil 0 0 0 0 0.32 0.46 0.654 0.982 0.536 0.818 0.226 0.11
Diphenylamine 0.118 | 0.074 0.116 0.294 0.434 0.782 2.074 1.692 1.378 1.66 0.91 0.774
Ethofumesate 0 0.206 0.292 0 0.652 0.962 2.692 2.516 2.324 2434 1.686 1.468
Kresoxim-methyl 0.1 0.076 0.286 0.528 0.98 1.54 4.424 4.972 4.676 4.714 3.044 2.134
Lambda-cyhalothrin 0.18 | 0.212 0.28 0 0.634 1.022 9.85 10.634 9.702 10.898 5.282 3.278
Pyraclostrobin 0 0 0 0 0 0 0.292 0.374 0.234 0.436 0.206 0.216
Heptachlor 0 0 0 0 0.368 0.742 2.012 1.596 1.708 1.596 0.698 0.862
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Hexachlorobenzene 0 0 0 0 0 0 723 | 7458 | 6344 | 7.704 | 2752 | 2526
a-Endosulfan 0 0 0 0 0 0 0 0 0 0 0 0
Total Pesticides: 0772 | 2502 | 3.72 4744 | 8.796 1222 | 85.85 | 92.31 | 88.246 | 90.156 | 49.582 | 32.12

Naphthalene 061 | 0776 | 0986 | 1.052 | 1.348 1.306 | 1.896 | 2.278 | 2408 | 2274 | 1562 | 1.214
Acenaphthene 0.152 | 0.224 0.27 0.374 0.354 0.378 0.334 0.438 0.628 0.676 0.278 0.19
Fluorene 0.168 | 0.328 | 0.384 | 0.528 0.42 0546 | 4.128 | 4.834 | 4772 | 4648 | 4012 | 3.184
Phenanthrene 0.328 | 0.384 | 0.46 0.686 0.7 0.98 1.38 1.26 1.486 | 1714 | 0728 | 0.604
Anthracene 0.194 | 0.234 0.406 0.55 0.484 0.566 1.756 1.454 1.89 1.664 0.928 0.54
Pyrene 0.136 | 0.296 0.33 0.366 0.522 0.618 0.894 1.084 0.834 1.196 0.59 0.238
Benz[a]anthracene 0.104 | 0.048 0.178 0.276 0.394 0.334 0.504 0.76 1.04 1.028 0.366 0.194
Benzo[e]pyrene 0 0 0 0 0 0 0 0 0 0 0 0
Benzo(k)fluoranthene | 0.106 | 0.092 0.29 0.272 0.386 0.346 0.82 0.832 1.056 1.004 0.728 0.388
Chrysene 0.232 | 0.368 0.33 0.392 0.508 0.596 0.294 0.294 0.59 0.622 0.184 0.162
Fluoranthene 0.348 | 0408 | 0554 | 0562 | 0.614 0946 | 1.196 | 1.466 | 1.256 1.76 0.62 0.708
Total PAHS: 2378 | 3158 | 4.188 | 5.058 5.73 6.616 | 13.202 | 147 1596 | 16.586 | 9.996 | 7.422
Table S15. Variation of pesticides and polycyclic aromatic hydrocarbons concentrations in Haykaliyeh
July ’ August ’ September | October | November | December July August | September | October | November | December
Snails Pine needles
Carbendazim 0.414 | 0.286 0.546 0.856 1.484 1.446 4.026 3.24 3.7 4474 3.354 1974
Diflufenican 0.204 | 0.312 0.448 0.572 0.63 0.752 10.776 | 10.548 9.93 10.842 7.85 5.62
Diuron 0.582 | 0.612 0.82 0.988 1.426 1.484 2.03 1.604 2.03 2.054 1.104 0.582
Penconazole 0.12 | 0.076 0.268 0.492 1.146 141 4.008 4.256 3.942 4.3 3.362 251
Pendimethalin 0.212 | 0.364 0.472 0.588 0.974 0.848 0.684 0.95 0.66 0.864 0.336 0.216
Fenpropidin 0 0 0.16 023 | 0.374 0.498 | 7.966 | 8.784 | 9612 | 8572 | 6.374 4.438
Acetochlor 0 0 0 0 0 0 3.07 3.364 3.68 3.284 2.74 1.968
Chlorpropham 0.17 | 0.258 0.316 0.53 0.654 0.964 3.16 2.58 2.1 2.53 1.746 1.16
Clofentezine 0.232 | 0.366 0.338 0 0.584 0.75 1.098 1.226 147 1914 0.638 0.266
Deltamethrin 03 | 0614 0 0.5 1.12 1.96 11.818 | 14.024 | 13.078 | 12.262 | 9.004 5.862
Diclobenil 0 0 0 0 0.346 0.498 1.598 | 1.304 | 1.062 1.28 0.238 0.282
Diphenylamine 0 0 0 0 0.36 0.64 0.85 | 1.274 | 0956 | 1.062 0.54 0.344
Ethofumesate 0 0 0 0 0 0 1.758 | 1772 | 1.898 | 1.626 | 0.816 0.944
Kresoxim-methyl 0 0.32 0.46 0.52 1.008 1.3 4728 | 5228 4.95 4782 | 3.258 2272
Lambda-cyhalothrin | 0.022 | 0.328 | 0.278 | 0.508 | 0.74 0.98 11.438 | 9.708 8.57 9.738 | 7.148 5.444
Pyraclostrobin 0 0 0 0 0 0.074 | 0344 | 0272 | 0392 | 0292 | 0.136 0.168
Heptachlor 0 0 0 0 0 0 1.276 | 1.864 | 1564 | 1.956 | 1.024 0.772
Hexachlorobenzene 0 0 0 0 0 0 4.628 4.144 5.376 3.986 2.096 1.766
a-Endosulfan 0.328 | 0472 | 0358 | 0592 | 0.97 1.52 7.158 | 6.224 | 7.842 6.05 3.852 2.494
Total Pesticides: 2.584 | 4.008 | 4464 | 6.376 | 11.816 | 15124 | 82.414 | 82.366 | 82.812 | 81.868 | 55.616 | 39.082
Naphthalene 0542 | 0.776 | 1.07 1.208 | 1.416 1.504 2.36 2.83 2782 | 2.824 | 1568 1.404
Acenaphthene 0.206 | 0.276 | 0.38 0.45 | 0.462 0.512 0.388 | 0.472 0.75 0.54 0.258 0.248
Fluorene 0212 | 0.392 | 0472 | 0.404 | 0.628 0.784 | 3.206 | 3.744 | 3.872 3.61 2.456 2.75
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Phenanthrene 0.566 | 0.574 | 0464 | 0.638 | 0.91 1.004 0.9 1.184 | 1438 | 1278 | 0.566 0.658
Anthracene 0.182 | 0.212 | 0.382 | 0.398 | 0.434 0.49 1.728 | 1.872 | 2486 | 2248 | 1.424 1.196
Pyrene 0.246 | 0.296 | 0.248 | 0556 | 0.59 0.706 | 0.654 | 1.044 | 1.136 | 0.962 | 0.566 0.126
Benz[a]anthracene 0.148 | 0.17 0.194 0.236 0.378 0.512 0.586 0.69 0.962 1.34 0.61 0.294
Benzo[e]pyrene 0 0 0 0 0 0 0 0 0 0 0 0
Benzo(k)fluoranthene | 0.138 | 0.162 0.188 0.178 0.294 0.308 0.56 0.742 0.798 0.844 0.682 0.764
Chrysene 0.17 | 0.346 0.374 0.524 0.642 0.794 0.41 0.378 0.546 0.696 0.188 0.342
Fluoranthene 0.254 | 0368 | 0352 | 0502 | 0.624 0.722 | 0.806 | 0.95 1.224 | 1204 | 0.568 0.454
Total PAHs: 2.664 | 3572 | 4124 | 5.094 | 6.378 7.336 | 11.598 | 13.906 | 15.994 | 15546 | 8.886 8.236
Table S16. Variation of pesticides and polycyclic aromatic hydrocarbons concentrations in Abi Samra
July ‘ August ‘ September | October ’ November | December July ‘ August ‘ September ‘ October | November | December
Snails Pine needles
Carbendazim 0 0 0 0 0 0 10.244 | 9.422 9.26 10.824 6.998 5.004
Diflufenican 0.548 0.456 0.614 0.92 0.856 1.564 6.656 6.276 5.912 6.594 2.976 2.386
Diuron 0 0 0 0 0.146 0.25 0.844 | 0.922 0.78 0.762 | 0.246 0.162
Penconazole 0 0 0 0 0 0 0 0 0 0 0 0
Pendimethalin 0 0.328 | 0434 | 0764 | 0.742 1.188 2.87 | 2498 2.964 2.834 | 1.632 1.162
Fenpropidin 0 0.142 0 0.296 0.48 0.552 5.142 4.532 5.378 5.206 3.872 2.582
Acetochlor 0 0 0.206 0.216 0.248 0.294 0.948 0.846 1.052 0.768 0.276 0.592
Chlorpropham 0.268 0.396 0.348 0 0.474 1.166 3.96 3.02 3.56 2.86 2.006 1.676
Clofentezine 0 0 0 0 0 0 5.732 5.724 7.424 6.31 0.958 0.712
Deltamethrin 0 0 0.192 0.214 0.56 1.9 16.942 | 17.36 18.154 15.744 5.086 1.604
Diclobenil 0 0 0 0 0.3 0.56 2.002 1.526 1.802 1.246 0.71 0.414
Diphenylamine 0 0 0.26 0.456 0.76 0.822 2.598 1.982 2.32 1.876 1.322 0.912
Ethofumesate 0554 | 1188 | 1502 | 1678 | 2724 3.304 | 3964 | 3.724 3.528 3.728 | 1522 1.286
Kresoxim-methyl 1.44 2.12 2.36 2.74 2.6 2.9 2.868 | 3.23 3.122 291 1.854 1.498
Lambda-cyhalothrin 0 0 0 0 0 0 16.684 | 13.766 14.904 14.186 5.348 3.69
Pyraclostrobin 0 0 0 0 0 0 0.568 | 0.63 0.458 0592 | 0.158 0.134
Heptachlor 0 0 0 0 0 0 5274 | 4.788 455 3.898 | 3.796 2.328
Hexachlorobenzene 0 0.77 0.944 - 1.84 2.166 | 18.014 | 18.724 | 17508 | 16.816 | 13.928 | 9.624
a-Endosulfan 0 0 0 0 0 0 0 0 0 0 0 0
Total Pesticides: 2.81 5.4 6.86 7.284 | 11.73 | 16.666 | 105.31 | 98.97 | 102.676 | 97.154 | 52.688 | 35.766
Naphthalene 0.374 | 056 0.854 | 1.006 1.08 1.18 1.26 | 1.856 1.672 1.894 | 1.208 1.19
Acenaphthene 0.142 | 0302 | 0396 | 0.402 | 0.598 0.48 0.342 | 0.602 0.996 0.716 | 0.398 0.28
Fluorene 1912 | 1976 | 2314 | 2572 | 3276 3.812 | 8384 | 8.764 9.004 8.726 6.04 5.162
Phenanthrene 2574 | 3.254 | 2722 4.36 4872 5294 | 1046 | 11.162 | 11.834 | 10802 | 6.41 5.476
Anthracene 0944 | 1694 | 2592 3.79 4318 | 4.698 8.96 9.81 10.236 | 9.136 | 7.068 4.858
Pyrene 2136 | 4292 | 4.624 | 3.712 5.95 6.528 | 13.086 | 14.068 | 13288 | 12.632 | 9.026 6.17
Benz[a]anthracene 0.718 | 0.846 | 0904 | 1254 | 1.458 1.716 | 2.434 | 2.346 2.306 3.078 | 2.186 1.906
Benzo[e]pyrene 1452 | 2122 | 2924 | 3.714 | 4294 5224 | 13.004 | 14.036 | 13542 | 13.712 | 1047 9.656
Benzo(k)fluoranthene | 0.544 | 0.614 | 0.764 | 0.902 | 1.022 1.29 1.92 | 1.896 1.944 2424 | 1.446 1.142
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Chrysene 0.944 1.148 1.178 1.23 1.626 1.892 2.56 2.476 2.39 2.308 1.256 1.368
Fluoranthene 5.222 6.49 9.81 10.448 | 12.206 | 12.038 | 17.278 | 18.082 17.154 16.084 | 11.946 | 10.486
Total PAHSs: 16.962 | 23.298 | 29.082 33.39 40.7 44,152 | 79.688 | 85.098 | 84.366 81.512 | 57.454 | 47.694

Table S17. P-value for concentrations in samples with temperature and precipitation of the sampling sites

Tannourine  Abdine Araa  BeitHajj Beshmezzine Haykaliyeh AbiSamra

Pine needle- Temperature 0.03 0.01 0.007 0.007 0.008 0.009 0.002
Pesticides Precipitation 0.008 0.0008 0.01 0.02 0.03 0.01 0.03
Pine needle- Temperature 0.01 0.02 0.006 0.008 0.04 0.06 0.003
PAHs Precipitation 0.002 0.006 0.05 0.04 0.04 0.13 0.03
Snail- Temperature 0.06 0.002 0.04 0.03 0.08 0.05 0.01
Pesticides Precipitation 0.06 0.0001  0.005 0.03 0.003 0.03 0.02
Snail-PAHs Temperature 0.004 0.0005 0.02 0.04 0.02 0.01 0.01

Precipitation 0.03 0.01 0.003 0.004 0.002 0.08 0.001
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VL. Liquid-liquid based extraction for multiresidue determination of non-volatile

pesticides in honey as environmental biomonitors

Résumé

Ce travail, présenté sous format d’'un article soumis dans « Journal of Environmental
Science and Health, Part B » contribue au développement d’'une méthode multi-résidus
dans le but d’analyser les pesticides non volatiles a partir du miel. L'efficacité de cette
matrice dans la biosurveillance environnementale a été démontrée dans de nombreuses

études en raison de ses propriétés médicinales.

En effet, en tant qu'indicateurs biologiques, les abeilles et leurs produits de la ruche
peuvent grandement contribuer a la procédure de biosurveillance environnementale. Le
miel largement utilisé a des fins thérapeutiques et nutritionnelles, est sujet a divers types
de contamination. La contamination indirecte du miel par l'air, I'eau, le sol et les fleurs
peut se produire lors de l'application de pesticides en agriculture pendant 1'activité
quotidienne de butinage des abeilles domestiques. Ainsi, une méthode multi-résidus
basée sur I'extraction liquide-liquide a 1'aide d'acétate d'éthyle suivie d'une analyse par
LC-MS/MS pour I'analyse simultanée de 32 pesticides a été développée. Les résultats ont
montré des écarts-types relatifs intra-journalier et inter-journalier inférieurs a 5%, avec
des taux de récupérations compris entre 68 et 104%. En outre, la méthode a montré une
précision et une sensibilité élevées pour tous les pesticides analysés, avec des LOD et des

LOQ respectivement inférieures a 3 et 9 ng g-1.

En conclusion, la méthode analytique développée nous permet de séparer et d’analyser
les résidus de pesticides par une méthode rapide, simple, efficace et impliquant la
préparation directe de la matrice de miel avec un solvant non miscible a 1'eau. Les
résultats des échantillons réels de miel collectés au Liban montrent le potentiel du miel

en tant que biomoniteur pour évaluer la pollution de I'air.
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Highlights

e Application of liquid-liquid extraction for the analysis of pesticides in honey coupled

to LC-MS/MS.

e Liquid-liquid extraction was shown to be a reliable extraction procedure for the multi-

residue’s analysis of organic pollutants in honey.

* Honeyissuggested to be effective biomonitors to evaluate atmospheric contamination

in Lebanon.
Abstract

In recent years, bees’ products (nectar, honey, beeswax, pollen) are considered as
potential biomonitoring of air pollution. The efficacy of these matrices in environmental
biomonitoring especially honey has been demonstrated in many studies due to its
medicinal properties. A multi residue method based on liquid-liquid extraction using
ethyl acetate followed by an analysis using liquid chromatography coupled to tandem
mass spectrometry for the analysis of pesticides, was developed in this paper. Afterwards,
the method was validated, and results showed that the intra-day and inter-day relative
standard deviation analysis was below 5 %, and the recoveries obtained were generally
ranged from 68 to 104 %. Furthermore, the method showed high precision and sensitivity
for all target compounds, with detection and quantification limits lower 3 and 9 ng g-1
respectively. Finally, the results of real honey samples collected from Lebanon show the

potentiality of honey as a biomonitor for assessing air pollution.

Keywords: Honey; Biomonitoring; Organic pollutants; Sample extraction; Liquid

chromatography-tandem mass spectrometry.
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Introduction

Industrialization, transportation, agricultural practices and increasing population have
contributed to pollution of the global environment with changes in its compositional and
structural that have negatively impacted biodiversity, leading in behavioral damage and

physiological to living organisms, such as bees. [1.2]

Biomonitoring, a valuable tool for assessing air pollution which has gained increased
attention, is defined as the detection of pollutants in the air by its effects on ecosystems
and organisms. The air quality bioindication is the use of bioindicators (lichens, mosses,
insects, etc....) that provide quantitative information on the contamination of the air and
can evaluate directly the environmental impacts of pollutants. These study organisms also

make it possible to control their spatio-temporal distribution. [3.4]

In fact, as biological indicators, honeybees and their products can highly contribute to
environmental biomonitoring procedure. [51 Although bee populations are increasing
worldwide, multiple factors such as climate change, poisoning by chemical compounds,
reduced flower diversity and infection with pathogens have caused colony losses. (6 7]
Bees are essential pollinators for worldwide agriculture and have been widely considered
as biomonitors of pollutants from the air. [8/ During their foraging activities, these
organisms are exposed to pollutants, including pesticides, metals associated with

particles of various sizes in the air, soil, vegetation and water. [% 10]

Contaminants are transferred to the hives and can also be presented in apiary products
including wax and honey. [11] In fact, honey widely used for therapeutic and nutritional
purposes, is subject to various types of contamination. The indirect contamination of
honey by air, water, soil and flowers may occur during pesticide application in agriculture
during bees foraging activities. [121 Therefore, pesticides can be transferred into the hive
where they can result to a high mortality level among bees and contaminate the honey
unsuitable for human consumption. [13 14] Recent surveys show that bees are highly

exposed to pesticides used in crops. [15]

Organophosphate insecticides, pyrethroids and fungicides are the most common
agrochemical residues collected by bees from treated crops. [16] Like any pollutant, the
exposure of bees to sublethal doses of pesticides over long periods of time has the
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potential to harm their immune system, making them much more sensitive to parasitic

fungi and other pathogens and may also affect their products. [17. 18]

Several extraction methods have been used to investigate the contamination of honey,
such as supercritical fluid extraction, [1°1 solid-phase extraction, [201 liquid-liquid
extraction, [21] matrix solid phase dispersion, [22] pressurized solvent extraction [23] and
QuEChERS. [24] Among all these currently used extraction procedures, LLE extraction is
one of the oldest methods and most commonly used for the qualitative and quantitative

survey of honey pesticides. [2]

For those reasons, the aim of this manuscript was to develop and validate a simple
procedure for the assessment of 32 non-volatile pesticides in Acacia honey based on a
liquid-liquid extraction followed by a liquid chromatography tandem mass spectrometry
(LC-MS/MS) analysis. This validated method was applied to five reals samples of honey

collected from several regions in northern Lebanon.

Materials and methods

Chemicals and reagents

A solution of certified standard pesticides (1 g L-1) including pymetrozine, foramsulfuron,
fluroxypyr, spinosad-A, terbutryn, spinosad-D, sulcotrione, chloridazone, chlortoluron,
isoproturon, metalaxyl-M, diuron, epoxiconazole, thiacloprid, triflusulfuron-methyl,
boscalid, anilazine, carbendazim, tebuconazole, diflubenzuron, nicosulfuron,
penconazole, propiconazole, chlorfenvinphos, cyazofamid, carbetamide, isoxadifen,
pyraclostrobin, lufenuron, acetamiprid, flufenoxuron and pendimethalin was prepared in

acetonitrile (ACN).

Standard pesticides, internal standards (Carbendazim-d*, Pendimethalin-d>, Diuron-d®
and Nicosulfuron-d®), acetonitrile and PTFE membranes were obtained from Sigma

Aldrich, St, Quentin Fallavier, France.

LC-MS/MS grade water and ACN, ethyl acetate and hydrochloric acid were obtained from
VWR Prolabo, France. Ultrapure water was purchased through a Milli-Q system (18 M{Q

cm) from Elga Veolia, France.
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Sample collection

Organic Acacia honey was purchased from Lebanese local market for calibration and
method development. For the real sample study, 5 honey samples were obtained from
beekeepers in northern Lebanon (Bcharre, Akkar valley, Koura and Batroun). Samples

were collected and frozen at -18°C in propylene tubes until analysis.

Figure 1 shows the geographical partition of the 5 sampling sites.

I Koura

- ’
- Bcharre /
Batroun 4

I

Figure 1. Geographical partition of sampling sites

Method development

Preparation of spiked samples

1 gram of the organic honey, weighed in plastic centrifuge tube (50 mL), was heated at
25°C for 15 min in a water bath to reduce its viscosity and then fortify the solution with
specific concentrations of each mixture of pesticides (5, 10, 25,50, 100, 200, 300 and 500
ng g—1). Spiked honeys were kept in centrifuge tubes at 4°C until analysis for 24 h to best
fit the pesticide to the matrix.
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Extraction procedure

Organic and fortified samples underwent the modified liquid-liquid extraction method

developed by Bernal et al. [26] for the extraction of carbendazim and benomyl in honey.

The procedure used was the following: 5 mL of ethyl-acetate and 1 mL of HCI (0.05 M)
were added to 1 gram of honey. The organiclayer was collected after a mechanically shake
(15 min) and centrifugation (10 min at 4000 rpm). 5 mL of ethyl-acetate was added to the
remaining solid layer in the tube, then centrifuged to collect the organic layer combined
with the previous one. 5 mL of ethyl-acetate and 1 mL of NaOH (0.1 M) and were added
to the remaining solid layer, the tube was mechanically shacked and then centrifuged for
another 10 min in order to collect the organic layer. The three organic layers were
combined, evaporated under the hood to obtain 1 mL as a final solution. Then, the mixture
was filtered through a PTFE membrane of 0.50 um pore size (Whatman syringe filter, 25

mm diameter) prior to chromatographic analysis.
Sample analysis

A Thermo Scientific Accela Liquid Chromatography Autosampler with Surveyor pump
coupled to a TSQ Quantum Access Max triple quadrupole mass spectrometer was used.
The chromatographic separation was performed on a Macherey-Nagel™ Nucleodur™ Cis
Pyramid HPLC Column (150 mm X 3 mm; 3 um). The mobile phases consisted of 0.1%
formicacid in acetonitrile and 0.1% formic acid in water. The flow rate of the mobile phase
was maintained at 0.3 mL min-l, the injection volume was 20 puL and the column was
thermostated at 15 °C. Samples were separated using a 36 minutes gradient (30/70 for 5

min, 50/50 for 6 min, 80/20 for 7 min, 95/5 for 10 min and 30/70 for 8 min).

The LC-MS/MS analysis parameters for the assessed pesticide figure in supporting
materials (Table 1S).

Method validation

For all parameters, including linearity, limit of detection (LOD), limit of quantification

(LOQ), repeatability and reproducibility standard deviation (%RSD), the method
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developed has been validated. First, for linearity, matrix matched calibration curves were
done in triplicate using samples spiked with 5, 10, 25, 50, 100, 200, 300 and 500 ng g-1.
LOD and LOQ were defined as the lowest concentrations where accuracy and precision

were corresponded respectively to the ratio: signal/noise > 3 and signal /noise > 10.

Then, five samples, spiked with three different levels of concentrations, 10, 100 and 300
ng g1, were extracted for three consecutive days to determine inter-day and intra-day
precision (reproducibility and repeatability) that were assessed by their corresponding

relative standard deviation.

The recoveries of spiked honey were calculated according to Equation 1.

R% = (Sample concentration/Standard solution concentration) *100 (1)
Results and Discussion

The proposed LLE extraction procedure followed by liquid chromatographic analysis to
determine pesticides in honey is of great importance in the assessment of air pollution.
Results showed that all non-volatile pesticides revealed good linear regression higher
than 0.99 with LOD and LOQ lower than 3 and 9 ng g1 respectively. Calibration curves of
some analyzed pesticides figure in supporting materials (Figure.1S). Furthermore, results
showed that for repeatability (intra-day) and intermediate precision (inter-day), all these
pesticides were detected with high precision (%RSD < 5%) except fluroxypyr and good
recoveries between 68 and 104 %. Table 1 presents the validation parameters for non-

volatile pesticides analyzed by LC-MS/MS.

Table 1 Validation parameters for non-volatile pesticides analyzed by LC-MS/MS

L . % RSD
. Regression line Regression LOD LOQ % RSD Recovery
Pesticide . o Intra-
equation coefficient  (ngg?) (ngg?) Inter-Day %

Day
Pymetrozine Y =0.000160239*X 0.9951 0.57 1.90 1.52 1.16 93.24
Carbendazim Y =0.0328428*X 0.9978 0.27 0.90 0.94 1.02 98.80
Chloridazone Y =0.00131559*X 0.9987 0.07 0.23 0.83 1.21 96.70
Acetamiprid Y =0.00172956*X 0.9957 2.30 7.67 151 2.25 86.99
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Nicosulfuron

Thiacloprid

Carbetamide

Foramsulfuron

Fluroxypyr

Spinosad-A

Terbutryn

Spinosad-D

Sulcotrione

Chlortoluron

Isoproturon

Metalaxyl-M

Diuron

Epoxiconazole

Triflusulfuron-
Methyl

Boscalid

Anilazine

Tebuconazole

Y =0.000155547*X

Y =0.033226*X

Y =0.0577388*X

Y =0.000570191*X

Y =0.00806344*X

Y =0.000839845*X

Y =0.00455538*X

Y =2.93436e-
006*X

Y =0.00202121*X

Y =0.0146021*X

Y =0.0422272*X

Y =0.000765717*X

Y =0.0165449*X

Y =0.127481*X

Y =0.0557256*X

Y =0.0505686*X

Y =0.00104083*X

Y =0.0586595*X

0.9966

0.9990

0.9997

0.9976

0.9914

0.9953

0.9980

0.9915

0.9985

0.9945

0.9984

0.9973

0.9969

0.9972

0.9984

0.9988

0.9993

0.9978

0.75

0.65

0.19

0.39

0.78

0.05

1.87

1.76

0.93

0.02

0.51

0.64

0.20

0.05

0.04

0.37

0.60

202

2.50

2.17

0.63

1.30

2.60

0.17

6.23

7.13

5.87

3.10

0.07

1.70

2.13

0.67

0.17

0.13

1.23

2.00

0.82

2.75

0.31

0.94

6.38

0.77

0.84

1.12

0.93

1.68

2.24

1.47

3.39

0.76

3.15

0.85

1.37

0.99

0.61

4.73

0.42

2.23

2.65

0.74

1.23

1.85

471

4.89

3.21

3.43

4.47

3.81

3.23

411

251

2.68

74.41

83.05

72.06

92.69

84.59

85.12

104.51

90.96

69.44

74.10

80.06

68.30

84.47

81.4

70.54

94.01

93.48

70.74



Diflubenzuron Y =0.00471512*X 0.9995 0.24 0.80 1.49 3.92 72.03

Penconazole Y =0.139982*X 0.9985 0.10 0.33 241 4.23 92.72
Propiconazole Y =0.454928*X 0.9990 0.04 0.13 4.87 3.25 82.90
Chlorfenvinphos Y = 0.0755802*X 0.9989 2.50 8.33 0.75 2.33 81.31
Cyazofamid Y =0.000428225*X 0.9905 2.14 7.13 2.85 3.27 nd

Isoxadifen Y = 0.00638442*X 0.9966 1.60 5.33 1.51 4.63 72.31
Pyraclostrobin Y =0.000600441*X 0.9982 0.65 2.17 2.37 3.99 90.72
Lufenuron Y =0.000330173*X 0.9961 0.53 177 3.21 4.33 83.18
Flufenoxuron Y =0.00713239*X 0.9969 0.26 0.87 1.72 1.54 72.23
Pendimethalin Y =0.00673314*X 0.9958 1.87 6.23 1.99 3.58 95.87

nd: not detected

The use of an LLE is governed by various physicochemical parameters depending on the
solutions to be extracted which provides information on the pH, choice of solvent, type
and concentration of reagents and how those choices affect the selectivity needed for
sample clean-up. [27. 28] Several solvents such as acetonitrile, ethyl-acetate and methanol
were used for the analysis of pesticide in honey that depend on the physicochemical
characteristics of each pesticide. [29 391 In this work, the non-volatile pesticides were
extracted using ethyl-acetate, which yielded acceptable quantitative results. During
extraction, hydrochloric acid (HCI) was used to increase the solubility of pesticides while
sodium hydroxide (NaOH) was used to avoid the persistence of these compounds in this

aqueous phase after the last extraction. [31]

In fact, LLE has been a technique of sample extraction for many years involving the direct

preparation of the honey matrix with a water-immiscible solvent. [321 Among other multi
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residue processes, the method developed has proved its effectiveness. Several studies
using LLE extraction followed by liquid chromatography coupled to tandem mass
spectrometry showed an improvement in the method’s sensitivity. [251 For instance,
compared to the reference method based on the study of Bernal et al. [26] for the analysis
of benomyl and carbendazim only in honey by reversed phase high performance liquid
chromatography (HPLC), the extraction protocol used followed by liquid chromatography
coupled to tandem mass spectrometry analysis resulted in a greater number of extracted
pesticides with better limits and recoveries. For 1 gram of honey fortified with 1000 ng g-
1, the % for recovery and precision for carbendazim respectively were 97.4% and 4.1 %,
while by the presented developed method for the fortification of 1 gram by 100 ng g-! the

results were 98.8% and 1.52 % respectively.

Furthermore, comparison of our results with those provided by the LLE extraction using
acetonitrile containing 1% of formic acid followed by ultra-high-performance liquid
chromatography (UHPLC), showed improvement in limits of detection of some
compounds. For example, the LODs of boscalid and fluroxypyr analyzed using the
developed method were respectively 0.04 and 0.78 ng g1, while these limits were
respectively 50 and 25 ng g1 with the extraction using acetonitrile as solvent. [33]1 The use
of different solvents may also affect extraction efficiency and the interferences including
pigments and carbohydrates can be co-extracted and influence the recovery of the
pesticides depending on the nature and properties of the solvent. [25] Ethyl acetate seems
to be the appropriate and effective solvent for the extraction of pesticides in honey, and

in all extractions the %RSD obtained were lower than 5%.

Moreover, all RSDs of repeatability and intermediate precision obtained within this
developed method respect the validation norms for the honey matrix, 341 while the RSD%
for some pesticides were higher than 20% in the study using the QUEChERS method
followed LC-MS/MS. For example, the inter-day RSD % obtained from honey fortified at
10 ng g! for these two methods were for carbendazim 3.33% and 10%, for penconazole

4.82% and 11%, for propiconazole 2.43% and 4% and for tebuconazole 4.34% and 22%.

(35]

LC-MS/MS has also been used widely for the analysis of thermally labile pesticides in

honey due to the possibility of separating several components based on molecular weight,
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polarity and ionic mobility [3¢] and allows their detection in complex matrices at low

concentrations by improving the sensitivity and the reduction of matrix interferences. [37]
Application to real samples

The five real samples purchased from four regions of northern Lebanon underwent the
same method of extraction described above. Results showed that acetamiprid and
sulcotrione residues were observed in all honey samples. Residues of pesticides detected

in the samples analyzed are showed in table 2.

Table 2 Concentration of pesticides (ng g-1) detected in real samples

Akkar-Halba  Akkar-Fnaydek Batroun Bcharre Koura
Acetamiprid 54 61 98 14 84
Sulcotrione 39 71 18 9 30
Cyazofamid 35 82 nd nd 8
Fluroxypyr nd 4 nd nd 10
Metalaxyl-M nd nd 9 nd 12

nd= not detected

Bees and their products have been widely studied, the life cycle and geographical
distribution of the bees as well as the activities and properties of honey are well
documented. [38-40]1 Honey is increasingly used as a biomonitor of air pollution and has
been employed for a wide range of environmental pollutants, ranging from pesticides, 1

42] persistent organic pollutant, [43 44l and heavy metals. [45]
Conclusion

It is well known that the detection of pesticide in honey matrix is essential due to its
medicinal properties. Furthermore, honey is an important tool for determining
contamination by pesticides in the environment. The method developed in this work
followed by a liquid chromatography coupled to tandem mass spectrometry detector is
generally the most appropriate method for simultaneous analysis of the selected 32
pesticides in honey. This method proved its efficiency, and the validation proved its good
performance in terms of linearity, accuracy, precision, limit of detection, limit of

quantitation. Tandem mass spectrometry detector fulfills such criteria in terms of high
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sensitivity and selectivity, as well as reliable analyte identification at very low detection

limits.
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. Thiacloprid-t1
Carbetamide-t1 _ - .
Y=00577388"X R'2=09997 W:Equal Y=0033226°X R2=099%0 W Equa

: P A
% - ] -

/./ 10—: /
. o E e

5 ]

O||||||||||||||||||||||||||| 0IIII|IIII|IIII|IIII|IIII|II

0 100 200 300 400 500 0 100 200 300 400 500

207



Boscalid-t1 Anilazine-t1
Y=0.0505686*X R"2=0.9988 W:Equal Y=0.00104083*X R"2=0.9993 W: Equal

' ~
20 /,/ 04 P /
-
15 / 03
//
10 /n/ 02 A

0||||||||||||||||||||||||||| 0'0|||||||||||||||||||||||||||

0 100 200 300 400 500 0 100 200 300 400 500

Table 1S. The LC-MS/MS analysis parameters for the assessed pesticide: Chapter II-II -
Supplementary Materials - Table 1, 2 and 3.

208



Chapitre III : Discussion générale

Au Liban, les niveaux de polluants ont atteint les niveaux de « smog » visibles a 1'ceil nu
qui se forme dans l'air lorsque la forte lumiére du soleil réagit avec les oxydes d'azote et
les composés organiques volatils, produits par la combustion de combustibles et par
I'évaporation des combustibles liquides et des solvants. Le Liban n'a pas d'industries a
impact significatif, mais le développement du secteur de I'immobilier et I'augmentation
des automobiles conduisent a une aggravation de la pollution et ainsi a une dégradation
de la qualité de l'air et a une augmentation des effets sur la santé (Badaro-Saliba et al,,
2014). Au Liban, tres peu d'études ont été menées pour tenter de générer des preuves
d'une relation entre la pollution de l'air et les effets sur la santé. Cependant, aucun
protocole général n'a encore été établi pour étudier les effets de la pollution de I'air sur la
santé, compte tenu du manque de surveillance des données du systéme de santé et des
conditions environnementales spécifiques, ce qui est courant dans les pays en
développement. Les secteurs de I’agriculture, du transport et d’activités industrielles sont
les causes principales de la mauvaise qualité de l'air surtout dans les quartiers urbains

densément peuplées (Baayoun et al.,, 2019 ; Mokalled et al., 2018 ; Abi Ghanem, 2018).

Un inventaire des émissions a été établi pour le Liban en tenant compte des sources de
monoxyde de carbone, de 1'0zone troposphérique, de 1'oxyde d'azote, du dioxyde de
soufre, ainsi que des particules en suspension (PM1o; PM25). Cette étude, qui reposait sur
un comptage du trafic, en plus des informations spécifiques sur l'origine et la destination
du trajet, et une estimation approximative des émissions des générateurs diesel a estimer
la présence des concentrations de monoxyde de carbone, de dioxyde de soufre, d'ozone
troposphérique (Abdallah et al., 2016 ; Waked et al.,, 2012), des OCPs, des PCBs (Merhaby
etal, 2020 ; Helou et al., 2019) et des HAPs (Soukarieh et al ., 2018). Une autre étude qui
repose sur l'analyse de la qualité de I'’eau au Liban estime la présence des pesticides dans
les eaux de surface du a leur utilisation dans la culture d'agrumes, de fruits a pépins, de

pommiers et de légumes (Jabali et al., 2019).

Dans cette these, le travail est divisé en deux parties étroitement liées. Dans un premier
temps, une approche méthodologique de la biosurveillance et de I'analyse chimique des

échantillons a été développée. Dans un second temps, I'utilisation d'aiguilles de coniferes
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et des escargots pour la détection de la pollution de 'air et de I'environnement, a été
évaluée. Afin d’atteindre I'ensemble de nos objectifs tant au niveau de I'analyse de la
concentration des polluants dans différentes régions, de l'identification des sources de
pollution, qu’au niveau de la capacité de leurs accumulations dans les escargots et les

aiguilles de coniferes, six projets différents ont été entrepris et sont présentés ici.

1. Apports de I'approche méthodologique d’utilisation des aiguilles de coniféres et des

escargots comme des biomoniteurs pour I'étude de la pollution dans I'air

Les aiguilles de coniféres se sont révélées étre une matrice utile pour la surveillance de la
pollution dans l'air car elles récuperent les contaminants de l'atmospheére et les
accumulent dans leurs tissus sur de longues périodes de temps. Pourtant, il y a un manque
d'informations sur la dynamique de ces processus tout au long de la durée de vie des
aiguilles de coniferes. Le but de I'’étude de cette matrice était de générer des données
démontrant comment une absorption de produits chimiques sélectionnés dans les
aiguilles (Pinus nigra), leur mobilité et dégradation se traduisent par les niveaux de ces
composés déterminés dans les tissus des aiguilles a divers moments. Klanova et al. en
2009, ont montré qu'a long terme, la surveillance des aiguilles fournit des informations
trés similaires sur les tendances temporelles de la pollution atmosphérique, car la
surveillance de l'air a grand volume fournit le méme plan d'échantillonnage (age des

aiguilles, saison d'échantillonnage) et le méme protocole d'analyse.

L'age optimal des aiguilles et 1a meilleure saison d'échantillonnage sont cependant encore
inconnus. Ces données devraient améliorer notre compréhension des fluctuations
temporelles de leurs niveaux et de leurs modeles, et permettre une décision éclairée sur
le meilleur age des aiguilles et la saison optimale pour la collecte de ces dernieres a des
fins de surveillance. Des espéces végétales vertes telles que Magnoloiagrandifiora, Cedrus
deodara, Ginkgo biloba, Pinus nigra, Platanus acerifolia, Salix matsudana et Cinnamomum
camphora (Mukhopadhyay et al., 2020 ; Tian et al., 2019) qui comprennent a la fois des
arbres a feuilles larges, ainsi que des arbres a feuilles persistantes et des coniferes ont été
étudiées par les auteurs pour évaluer la concentration de polluants organiques
accumulés. Zhao et al. en 2018, ont rapporté que les profils de composition et de
distribution des polluants dans les feuilles de Sal/ix matsudana ont changé en réponse aux

parametres des feuilles et aux conditions atmosphériques et ont réussi a prouver leur
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pouvoir cumulatif efficace. En revanche, Tian et al. en 2019, ont rapporté que la
concentration de certains polluants dans les coniferes (Cedrus deodara et Sabina
chinesis) atteint une accumulation maximale par rapport a celle des especes a feuilles
larges. Par conséquent, les conclusions de beaucoup d’auteurs (Massimi et al., 2021, 2019
; Mukhopadhyay et al.,, 2020 ; Odabasi et al., 2015 ; Tian et al., 2019) fournissent un cadre
théorique pour l'initiation d'un systéme de surveillance de la qualité de l'air ambiant a
base de plantes qui sont hautement capables d'adsorber les polluants en suspension dans
l'air. Schrlau et al. en 2011, se sont également concentrés sur I'échantillonnage passif de
l'air et ont évalué la présence de polluants semi-volatils dans les aiguilles de coniféres et
ont démontré que les aiguilles plates et larges pourraient accumuler jusqu'a 71 fois plus

que les aiguilles étroites et rondes.

Plusieurs études ont rapporté la capacité des gastéropodes a accumuler les composés du
milieu environnant (Mleiki et al., 2020 ; Emilia et al., 2016 ; Krupnova et al., 2018 ; Li et
al., 2020). Dans une étude antérieure par Sturba et al. en 2018 sur l'escargot terrestre
Cornu aspersum, et dans des conditions de laboratoire contrélées, le chlorure de cadmium
vaporisé a entrainé une accumulation dans divers tissus de l'escargot (pied < corps entier
< hépatopacréas), ainsi qu'une augmentation significative de la cytotoxicité. Une
altération de la capacité de reproduction et une inhibition de la croissance ont également
été signalées chez des gastéropodes exposés a des métaux lourds a la fois sur le terrain et
dans des conditions contrélées en laboratoire (Schmielau et al., 2019). Diverses espéces
d'escargots terrestres ont été utilisées comme especes naturelles dans les études de
biosurveillance menées dans les zones urbaines touchées par les métaux lourds (Abdel-
Halim et al., 2013 ; Filippi et al., 2018). La translocation vers un site contaminé d'escargots
sains en cage a permis de reconnaitre les réponses biologiques liées a 1'exposition et
d'identifier les sources de contaminants. L'utilisation d'échantillons locaux fournit plus
d'informations sur la distribution et l'accumulation des polluants sur une période
déterminée et d’estimer les niveaux réels de contamination (Voua Otomo et al., 2011).
L’escargot s'est avéré utile pour l'identification de la source de pollution de I'air, en accord
avec des études antérieures menées avec des especes de plantes, de mousses et de lichens
comme biomoniteurs (Massini et al.,, 2019). On note également que les escargots sont
impliqués dans de multiples chaines alimentaires au Liban. Par conséquent, la

contamination des escargots par les polluants peut étre transférée aux consommateurs
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entrainant un risque d'intoxication secondaire. Pour ces raisons, l'utilisation d'escargots
sains en cage dans un programme de biosurveillance pour les dépdts de polluants
organiques semble étre un moyen idéal pour obtenir des informations appropriées et

précises sur la qualité de 'air et I'évaluation des effets a 1'échelle géographique.

2. Apports du développement d’'une méthode multi-résidus pour l'analyse des pesticides,
des hydrocarbures aromatiques polycycliques et des polychlorobiphényles chez les

escargots utilisés comme biomoniteurs environnementaux

Les polluants organiques sont aujourd'hui considérés comme toxiques pour la santé
humaine. Les teneurs maximales en résidus autorisées dans l'air, I'eau et les denrées
alimentaires sont de plus en plus strictes. Par conséquent, des techniques analytiques
sélectives et sensibles sont nécessaires pour leur quantification et leur identification. Le
but de cette étude menée au cours de nos travaux de these était de développer pour la
premiere fois une méthode analytique pour déterminer différentes classes de polluants
dans les escargots. Il s'agit d'une procédure d'extraction QUEChERS modifiée. La méthode
présentée en plus de sa nouveauté pour le dosage de pesticides et de polluants organiques
persistants est simple, rapide, précise et robuste. Le dosage des 158 composés n'a pas été
perturbé par les solvants utilisés et / ou par des effets de matrice. Pour les effets
matriciels, I'analyse de matrices biologiques, comme les escargots, peut conduire a la co-
extraction d'une certaine quantité d'autres composés (acides organiques, sucres, lipides),
dont leur élimination avant 1'étape de détermination finale est cruciale (Saraiva et al.,
2016). L'utilisation de I'ACN a prouvé son efficacité dans plusieurs analyses multi-résidus
dans des échantillons biologiques, présentant de meilleures récupérations (Al-Alam et al.,

2020 ; DeArmond et al.,, 2015).

Des études antérieures ont montré que le Cis permet 1'élimination des substances
interférentes non polaires telles que les lipides, tandis que I'amine primaire secondaire
permet d'éliminer tous les pigments polaires, les acides organiques polaires, les acides
gras et les sucres des extraits (Islam et al,, 2019 ; Dimpe et al,, 2016). La linéarité, la
précision, l'exactitude, les LOD et LOQ, la sélectivité de la méthode et la stabilité de
I'échantillon ont été établies. En outre, la gamme d'application de la méthode QUEChERS
dans différentes matrices pour l'analyse de divers types de polluants est trés large et a

permis sa comparaison avec des méthodes de référence dans différentes applications
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telles que la LLE, I'extraction solide-liquide, la SPE , I'ASE, la MAE et I'extraction assistée
par ultrasons qui dépendent essentiellement de la nature des analytes a extraire et de la
complexité de la matrice. Les méthodes mentionnées présentent toutes des inconvénients
par rapport a la méthode QuEChERS tels que le temps d’extraction et le colt
d’investissement élevé, la toxicité des solvants en fonction des molécules a extraire, la
perte et la dégradation des composés thermolabiles / volatiles par la présence d'une
température généralement élevée, présence de phénomene de saturation par
I'application de grandes quantités de solvants et le probleme de répétabilité et de
reproductibilité lors de I'utilisation de sonde a ultrasons. En effet, la méthode QUEChERS
est un choix raisonnable et performant capable de fournir des performances analytiques
similaires ou meilleures sans les inconvénients des autres méthodes, ainsi que la nécessité
de dispositifs spécifiques tels que les micro-ondes ou les ultrasons (Lozowicka et al., 2017

; Ratolaetal., 2011).

Une fois la méthode validée, nous I'avons appliquée a des échantillons réels d’escargots
de type Helix aspersa. L’ensemble de I'escargot a été prélevé de la coquille et la méme
procédure d'extraction lui a été appliquée. L’analyse des échantillons d’escargot a été
effectuée en utilisant la LC-MS/MS et la GC-MS/MS. 12 pesticides et 6 HAPs ont été
détectés dans les échantillons avec des concentrations allant de 0.43 et 85.6 ng g-! pour
les pesticides et 6.82 et 314.33 ng g! pour les HAPs. Nos résultats montrent que les
échantillons d’escargots préparés n'avaient aucun effet important sur les performances
de la méthode rapportée. Les résultats obtenus ont montré que la méthode d'extraction
et d'analyse proposée pouvait étre employée comme technique appropriée pour l'analyse
des composés représentatifs dans les échantillons des escargots. L'approche proposée
pourrait étre utile en tant que procédure analytique efficace pour une détection plus
poussée des pesticides et des polluants organiques persistantes dans les échantillons des

aiguilles de coniferes.

3. Apports du développement d'une méthode multi-résidus pour la quantification de
pesticides, d’hydrocarbures aromatiques polycycliques et de polychlorobiphényles par
chromatographie en phase liquide et en phase gazeuse couplée a une spectrométrie de
masse en tandem dans les aiguilles de coniféres utilisées comme biomoniteurs

environnementaux
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Le choix des aiguilles de coniferes dans cette étude a été basée sur le fait que ces matrices
sont les plus utilisées comme biomoniteurs de la pollution de l'air et que la méthode
d’extraction par QUEChERS n’a jamais été développée. En effet, les résultats de cette
méthode surmontent les inconvénients présentés par les méthodes d'extraction
traditionnelles utilisées. Par exemple, cette méthode s'est avérée rapide, efficace,
respectueuse de l'environnement et fiable principalement en raison de la réduction du
poids de I'échantillon et de la quantité de solvants utilisée (Gonzalez-Curbelo et al., 2015).
De plus, les récupérations obtenues semblent étre encore plus élevées que celles obtenues
par I'ASE ou la SPE notamment compte tenu de la quantité élevée de solvant utilisée dans
ces dernieres techniques (Garcia et Gotah, 2017). Les taux des récupérations obtenues
avec notre méthode étaient plus élevés que celles fournies pour l'analyse des pesticides
dans les aiguilles de coniferes a 1'aide de I’extraction sélective de liquide sous pression

(Kim etal., 2019).

Sur la base des données présentées dans la littérature, il peut étre conclu que la méthode
développée introduit une nouvelle application dans le processus de détermination d'un
large éventail de polluants (pesticides, PCBs et HAPs) dans les échantillons de coniferes
en comparaison avec d'autres méthodes déja publiées tels que I'ASE suivie d'une
extraction sélective de liquide sous pression pour l'analyse des pesticides et des PCBs
(Kim et al., 2019), le Soxhlet pour les OCPs (Quan et al., 2004), les polychlorodibenzo-p-
dioxines / furanes (Holt et al.,, 2016) et l'extraction assistée par ultrasons des HPAs
(Yamaguchi et Lee, 2010). De plus, la méthode QUEChERS a montré de meilleures
performances pour le dosage des pesticides dans le miel, les abeilles (Noth etal., 2013) et

dans les racines des plantes médicinales (Tripathy et al., 2017) que la LLE et la SPE.

En fait, nos résultats obtenus a ce niveau ont montré que la combinaison de la
chromatographie liquide et gazeuse avec la spectrométrie de masse résout la plupart des
problemes associés a 1'évaluation des résidus de polluants tels que la petite quantité
d'échantillon qui peut étre détecté, le temps d'analyse, la précision et la large gamme
d'échantillons (Liu et al,, 2016). La chromatographie est utilisée dans une large gamme
d'applications en raison de sa possibilité de séparer différents composants d'un mélange
complexe en fonction de la polarité, du poids moléculaire et de la mobilité ionique (Yang
et al,, 2008). Cependant, les deux techniques de chromatographie sont nécessaires dans

I'analyse des traces pour la détermination d'un large spectre de polluants
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environnementaux tels que les PCBs, les OCPs, les HAPs et certains autres pesticides (Issa
et al,, 2020 ; Vaaland et al.,, 2020 ; Chamkasem et al., 2016). Les résultats ont prouvé que
la combinaison QUEChERS-SPME avec les techniques chromatographiques peut étre
utilisée comme un outil de surveillance environnementale. Les méthodes développées ont
été appliquées avec succes au suivi d'échantillons réels collectés dans 15 régions du Liban.
Des polluants détectables (chloridazon, metalaxyl-M, pendimethalin, fluoranthreéne,
boscalid, naphtaléne, diflufenican, acénaphtyléne, hexachlorobenzene, terbutryn,
fenpropidin et sulcotrione) ont été trouvés dans la plupart des échantillons avec des
niveaux résiduels variables allant de 2.66 jusqu’a 523.7 ng g1 selon la zone et différents
facteurs tels que la température, I'humidité, 1'altitude et les précipitations qui peuvent

avoir un impact significatif sur la concentration de ces polluants.

4. Apports de l'utilisation d aiguilles de coniféres comme biomoniteur de la qualité de 'air

au Liban

En raison des excellentes propriétés d'absorption de leur couche cireuse, la végétation, en
particulier les aiguilles de coniferes, se distingue en tant que biomoniteur efficace pour la
quantification des composés organiques semi-volatils et volatils. Contrairement a
I'échantillonnage passif ou actif de I'air, I'utilisation d'aiguilles de coniféeres en tant que
biomoniteurs ne nécessite pas de mise en place préalable d'un site d'échantillonnage et
puisque ces aiguilles restent sur l'arbre pendant plusieurs années, elles peuvent agir

comme un «enregistreur de données biologiques» pour la qualité de I'air.

Apres avoir vérifié au préalable la méthode fiable et originale d'analyse des polluants
organiques persistants et des pesticides dans les aiguilles de coniféres, nous nous sommes
intéressés au cours d'un de nos travaux a déterminer les niveaux de 127 pesticides et 16
HAPs dans les aiguilles de Pinus nigracollectées dans 15 sites d'échantillonnage différents
au Liban. Les informations disponibles dans la littérature sur les niveaux de ces polluants
dans les aiguilles de coniferes au Liban sont inexistantes. Néanmoins, il est intéressant de
constater que les niveaux totaux de pesticides détectés répondent aux indicateurs
d'utilisation des produits agricoles au Liban, ou des zones comme Akkar ou Tripoli
présentent un taux élevé et des villes comme Bcharre et Koura ont un faible taux de
pesticides. Etant donné que ces études sont effectuées sur des sites différents, il est

acceptable que les pesticides utilisés puissent différer, vu que les cultures peuvent
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également étre différentes. Le Liban se caractérise par un secteur du transport routier
non durable, un secteur privé incontrdolé de générateurs diesel, une base de données
insuffisante sur les pesticides utilisés et un mauvais contrdle de la qualité de l'air. Les
émissions de diesel (Bcharre), les émissions d'essence (Tripoli), la combustion de
combustibles fossiles (Tripoli et Koura) et la combustion du charbon, du bois et de I'herbe
(Bcharre et Akkar), sont les principales sources des HAPs dans ces régions étudiées,
tandis que l'absence de toutes les activités industrielles dans ces zones spécifiées pour la
production agricole est la principale raison de la disparition des polychlorobiphényles et

autres résidus de polluants issus des déchets industriels.

En essayant d'évaluer les aspects comportementaux de ces polluants, certaines
corrélations avec des parametres météorologiques, géographiques et économiques ont
été tentées. Cela peut étre le reflet d'une volatilisation importante de ces composés depuis
les sols dans I'air, favorisant leur piégeage par la couche cireuse des aiguilles de coniferes.
Ces différences de concentrations des polluants pourraient étre contrélées par leurs
propriétés physico-chimiques des composés ainsi que de la présence des matrices
étudiées a proximité des sources d’émissions (Lavin et Hageman, 2012). D’autres études
ont montré que la concentration de polluants augmente proportionnellement a 1'age de
l'aiguille. Ainsi, le choix de la classe d'age des aiguilles est nécessaire pour l'indication
phytochimique de la pollution environnementale par les aiguilles de coniferes
(Chropenova et al,, 2016). L'abondance des polluants dans les aiguilles était le résultat
d'une accumulation a long terme associée a la période d'exposition des aiguilles dans I'air.
Plusieurs études ont montré que des concentrations plus élevées de polluants ont été
identifiées dans les aiguilles plus anciennes que dans les aiguilles plus jeunes dans
différentes especes d'arbres, et ces concentrations indiquent une augmentation plus

significative de 1'age des aiguilles (Kylin et al., 2017; Kldnova et al., 2009).

L'un des aspects de 1'étude des polluants dans différents sites est I'étude des différences
de concentration le long des gradients altitudinaux. Par exemple, Davidson et al. ont
constaté que les composés organiques plus volatils augmentaient a des altitudes plus
élevées, alors que les composés organiques moins volatils n'étaient pas liés a l'altitude
(Davidson et al., 2003). Ces incohérences sont causées par la proximité différente des
sources des sites d'échantillonnage, la complexité des facteurs environnementaux

régionaux et les différentes propriétés des composés (Pompa-Garcia et al,, 2017). Les
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altitudes du site de Bcharre, comprises entre 1450 et 3088 m, étaient relativement plus
élevées que les sites d'Akkar, Koura et Tripoli (600, 100 et 5 m respectivement). Les
concentrations de certains polluants (pymétrozine, sulcotrione et lufenuron) diminuent
avec une augmentation de 1'élévation. Des effets semblables indiquent que la proximité
de la source du polluant peut étre le facteur déterminant, que la source du polluant soit

éloignée ou proche de la montagne (Bradford etal., 2010).

Plusieurs études ont décrit des variations importantes dans la distribution spatiale des
HAPs et les résultats ont montré que les concentrations les plus élevées de HAPs étaient
mesurées dans les zones a fort trafic (Tripoli et Akkar), suivies par les zones urbaines et
rurales (Bcharre) (Lovinsky-Desir et al., 2016; Jaward et al., 2004 ). Ces concentrations de
HAPs atmosphériques a l'extérieur peuvent également différer considérablement, et des
concentrations plus élevées mesurées le long des routes principales (Tripoli et Akkar)
peuvent étre atteintes par rapport aux concentrations mesurées dans une rue privée
(Koura et Bcharre), a plusieurs kilometres de distance (Choi et al., 2007). Ces résultats
peuvent étre clarifiés par des variations de la proximité des routes, des automobiles et

des émissions provenant des sources de trafic a une échelle relativement importante.

En revanche, la température et les précipitations peuvent avoir une importance
significative sur la dégradation et sur la formation de résidus non extractibles qui
affectent la persistance du sol et réduisent donc la volatilisation (Loos et al., 2012). Les
basses températures n'ont pas un impact aussi fort que les températures extrémement
élevées, qui causent de grands dommages physiologiques. Yang et al. en 2008, ont montré
que la différence de concentration est principalement causée par le gradient de
température le long de l'altitude, et que la température peut également contréler
I'échange solide-gaz. Les zones les plus hautes (site de Bcharre) sont relativement plus
froides et dominent ainsi I'effet de fractionnement, ce qui pourrait diminuer I'effet du vent

sur la distribution des polluants.

La présence de HAPs dans l'air due a des sources anthropiques peut étre affectée par la
température qui joue un role important dans le taux d'échantillonnage des HAPs par
échantillonnage passif de l'air. Des températures élevées peuvent entralner une
augmentation de la diffusion moléculaire, conduisant a une augmentation de la

concentration des polluants. Ces procédures entrainent une plus grande variance dans les
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niveaux d'échantillonnage lors de la comparaison de différentes régions ou climats
(Melymuk et al, 2014; Armstrong et al, 2014). Des zones semblent étre fortement
contaminé par certains polluants en raison du fait que I'augmentation de la température
provoquant également le transfert et I'accumulation de ces polluants dans les tissus
végétaux, qui augmente rapidement et atteint l'accumulation maximale en quelques
heures (Salehi- Lisar etal.2015; Shen etal.2019). En effet, il a été démontré que les plantes
comme les coniferes peuvent absorber certains composés par leurs aiguilles si elles sont
en phase gazeuse et / ou particulaire, mais aussi via leurs racines lorsqu'elles sont dans

le sol (Srogi 2007).

De nombreuses études ont indiqué que non seulement les caractéristiques
environnementales et les propriétés physico-chimiques des polluants jouent un role
important dans leur distribution dans la végétation a 1'échelle mondiale, mais le
développement économique élevé a également laissé sa marque sur leurs distributions
environnementales. Des informations supplémentaires sur les niveaux de pesticides dans
I'air sont nécessaires pour évaluer leur pertinence respective et pour renforcer encore le
role des aiguilles de coniferes en tant que controleurs biologiques de la pollution

atmosphérique.

5. Apports de l'utilisation d'escargots et daiguilles de coniféres comme biomoniteurs
environnementaux pour 1'étude de la variation temporelle de la pollution atmosphérique

dans différentes régions géographiques du Liban

La pollution atmosphérique est devenue une préoccupation environnementale majeure
en raison de ses effets néfastes sur 1'écosysteme et la santé humaine (Manisalidis et al.,
2020 ; Ghorani-Azam et al., 2016). Il existe de nombreuses techniques utilisées pour
obtenir des informations fiables sur les caractéristiques de I'environnement et la qualité
de l'air. La biosurveillance, par rapport aux méthodes conventionnelles d'échantillonnage
de l'air, est une méthode peu cofliteuse et simple pour déterminer les composés

organiques et leur répartition sur de vastes zones (Cen, 2015 ; Gallego-Cartagena et al.,

2021).

Dans le cadre de la biosurveillance, des informations sur la qualité de 1'air de certaines

zones sont obtenues en utilisant les propriétés d'un organisme ou d'une partie de celui-ci
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(Wang et al,, 2019 ; Sturba et al., 2018). Dans cette étude, les escargots terrestres Helix
aspersa et les aiguilles de coniferes Pinus nigra, ont été choisis comme organismes de
biosurveillance. La biosurveillance des escargots et des aiguilles de coniféres a été
appliquée pour déterminer la pollution de I'air dans de nombreuses études (Luo et al,,
2020 ; Turkyilmaz et al., 2018 ; Cossi et al., 2018 ; Krupnova et al,, 2018). Il s'agit de la
premiére étude au Liban qui détermine des résidus de pesticides, des PCBs, des OCPs et

des HAPs dans ces matrices pour surveiller la qualité de l'air.

En outre, la méthodologie de biosurveillance a été appliquée pour la premiére fois dans la
région de Liban nord et ainsi pourra servir de référence pour les futures études. Les

intéréts de cette étude sont les suivants :

* la détermination de la teneur en polluants organiques ;

* la détermination des niveaux de pollution sur sept sites différents ;

* I’évaluation de la variabilité entre les mois d’échantillonnages ;

» lidentification des sources de pollution ;

* la comparaison des capacités d'accumulation de polluants dans des escargots et des

aiguilles de coniferes.

La présence de pesticides pourrait s'expliquer par les activités agricoles importantes
basées sur la culture des olives et des fruits, tandis que la présence des HAPs pourrait
s'expliquer par la position des sites d'échantillonnage a proximité d'une route avec les
émissions des véhicules lourds (Mebdoua, 2019 ; Suman et al, 2016). Différentes
caractéristiques telles qu'une couche cireuse, une teneur élevée en lipides, une large
surface spécifique pour les aiguilles de coniféres et une large distribution d'escargots
simplement collectés pourraient conduire a l'accumulation de différents polluants
organiques (Likus-Cies$lik et al., 2020 ; Sturba et al., 2020). Le tableau 1 montre les limites
maximales de résidus (LMR) pour tous les pesticides présents dans les escargots et les

aiguilles de coniféres selon les bases de données de I'Union européenne sur les pesticides.

219



Tableau 1 Résidus de pesticide et limites maximales de résidus (mg / kg)
Maximum residue levels

Pesticide residue

(mg/kg) Pinus nigra  Helix aspersa
(mg/kg) , , .
Pinus nigra  Helix aspersa
Carbendazim 0.1 0.05 0.016 0.001688
Diflufenican 0.01 0.02 0.01436 0.001564
Diuron 0.02 0.05 0.002186 0.001484
Penconazole 0.01 0.01 0.005256 0.00141
Pendimethalin 0.05 0.01 0.003646 0.001498
Fenpropidin 0.01 0.02 0.016502 0.000806
Acetochlor 0.01 0.01 0.00609 0.000734
Chlorpropham 0.01 0.05 0.00694 0.001166
Clofentezine 0.05 0.05 0.009502 0.004346
Deltamethrin 0.02 0.02 0.018154 0.00196
Diclobenil - - 0.002366 0.000674
Diphenylamine 0.05 0.05 0.004554 0.00224
Ethofumesate 0.03 0.03 0.00596 0.003304
Kresoxim-methyl 0.01 0.05 0.008046 0.00274
Lambda-cyhalothrin 0.01 0.01 0.016684 0.00102
Pyraclostrobin 0.02 0.05 0.000568 0.000258
Heptachlor 0.01 0.01 0.005628 0.001064
Hexachlorobenzene 0.01 0.01 0.018724 0.002166
a-Endosulfan 0.1 0.01 0.019346 0.00152

Par la comparaison de ces deux matrices différentes, I'accumulation des polluants ne sera
pas similaire, dans les mémes conditions climatiques et les mémes procédures
d'échantillonnage et d'analyse, et a montré une différence de variation pour les pesticides
et les HAPs pour chaque matrice. Afin de trouver une explication raisonnable a cette
différence, nous avons étudié les données météorologiques pendant la période
d'échantillonnage. Les quatre premiers mois de 1'échantillonnage (juillet - octobre) sont
connus par leur conditions climatiques favorables dans lesquelles aucune précipitation
n'était mentionnée et la température était la plus élevée avant I'échantillonnage. Par
contre, les deux derniers mois (novembre - décembre) ont connu des précipitations
importantes, accompagnées de violentes tempétes, avec une baisse des températures. En

effet, les changements météorologiques et climatiques au cours de cette période de
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I'année étaient des événements tres normausx, ce qui peut étre a l'origine de la diminution

des polluants a la fin de l'étude.

Pour Pinus nigra, la concentration élevée de pesticides observée au cours des quatre
premiers mois est probablement due a I'accumulation de ces polluants par les aiguilles,
dont la forte concentration est généralement observée de la fin du printemps a1'été apres
pulvérisation des pesticides (Luo et al., 2020 ; Rybicki et Jungmann, 2018). Nos résultats
obtenus dans ce cadre sont en corrélation avec de nombreuses études antérieures qui
suggerent une relation entre les changements climatiques et les concentrations de
pesticides. Estellano et al. en 2015, ont montré que la plus forte concentration de
pesticides en Italie a été identifiée dans des échantillons prélevés au printemps et en été.
Li etal. en 2014 ont observé une variation au niveau des OCPs par rapport aux variations
saisonnieres dont la plus grande concentration a été observée pendant la saison seche

tandis que la plus faible concentration apparaisse en présence des pluies.

De plus, les phénomeénes de photolyse, les précipitations et I'effet de lavage répété des
polluants peuvent également avoir joué un roéle important dans la diminution des HAPs.
Ce processus de photolyse peut étre accéléré par la couche cireuse d'aiguilles et
entralnent une réduction de la concentration des composés (Zheng et al.,, 2019 ; Li et al,,
2014 ; Niu et al, 2004). Cependant, en raison de linfluence des conditions
environnementales, des propriétés physicochimiques des polluants et des
caractéristiques biologiques des plantes sur les comportements d'accumulation des POPs,
les mécanismes d'absorption des ces polluants en suspension dans I'air par les plantes y
compris les aiguilles de coniferes sont compliqués (Klanova et al., 2009). Kylin et Sjodin
ont démontré en 2003, que I'accumulation de POPs dans les aiguilles était influencée par
la texture des feuilles et le temps d'exposition. Dans le cycle de vie des aiguilles de
coniferes, le comportement cumulatif est couvert par des modeles saisonniers, et des
facteurs biologiques déterminent la facon dont les aiguilles absorbent les POPs dans l'air.
En outre, Barber et al. en 2004 et Kylin et al. en 2003, ont montré que les différentes
especes de plantes accumulent différemment les POPs. Les fluctuations saisonnieres
affectent I'accumulation de polluants dans les aiguilles des coniféres, en raison du cycle
annuel de la teneur en terpene dans la cire dont le taux d'accumulation le plus élevée se

présente en été (10%) et le plus faible en hiver (1%) (Kylin et Sjodin, 2003). La figure 1
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montre la distribution des concentrations des pesticides et des HAPs (ng g1) trouvées

dans la matrice Pinus nigra.

Variation des concentrations de pesticides Variation des concentrations de pesticides
non volatils dans Pinus nigra volatils dans Pinus nigra
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Figure 1. Concentrations mensuelles de pesticides et d'hydrocarbures aromatiques polycycliques
dans les zones étudiées faisant état d'une baisse de ces polluants au cours des deux derniers mois
de 'étude dans Pinus nigra

Les aiguilles de coniféres peuvent étre utilisés a des fins variées dans les études de la
qualité de I'air et permettent aussi d’évaluer le transport des polluants a longue distance
(Chropenova et al., 2016), de détecter les sources de pollutions (Odabasi et al., 2016), de
quantifier les niveaux de contamination (Ratola et al., 2014) ainsi que d’étudier I'effet de

I’age des aiguilles sur la capacité d’accumuler les polluants (Klanova et al., 2009).

Les escargots peuvent étre contaminés par quatre sources : le sol, I'eau (ingestion et
contact cutané), l'air (respiration et contact cutané) et les plantes (Girones et al., 2020).

Au cours de la période d'échantillonnage, une accumulation de pesticides et des HAPs a
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été observée chez les escargots, avec une augmentation de la concentration au cours de
six mois pour atteindre un pic maximal au mois de décembre. Le transfert de pesticides
dans les escargots peut-étre dii a de nombreuses voies d'exposition différentes au
moment de I'application puis par contact digestif avec les plantes et le sol, en particulier

par les voies respiratoires et cutanées (Baroudi et al., 2020).

Les concentrations les plus élevées obtenues au cours des deux derniers mois dépendent
de l'interaction des escargots avec le sol pollué par les pesticides (Al-Alam et al., 2017 ;
Druart et al, 2011) présents en fortes concentrations en raison des effets des
précipitations et du lavage continu des pesticides des plantes et des arbres par la pluie,
en particulier les aiguilles de coniféres et 'accumulation de ces pesticides dans le sol (Gill
et Garg, 2014). Ces résultats correspondent a ceux rapportés par Zhao et al. en 2020,
montrant que les résidus de pesticides dans les sols actuellement cultivés sont plus élevés

que les sols non cultivés.

La concentration élevée des HAPs durant novembre et décembre est obtenue en raison
de la diminution de la température de l'air, l'utilisation accrue du charbon et du
phénomene de l'inversion du température en hiver (Wang et al., 2018 ; Zheng et al., 2019).
Lin et al. en 2018, suggerent que les conditions météorologiques et les sources
d’émissions, ainsi que la distribution des particules de gaz, peuvent entrainer des
différences de concentrations entre 1'été et I'hiver. On constate que la teneur en HAPs en
été est plus faible qu'en hiver, ce qui est cohérent avec des études précédentes (Kong et

al, 2015 ; Sharma et al,, 2007 ; Akyiiz et Cabuk, 2009).

On suppose que durant les saisons de pluie, la concentration des HAPs est la plus élevée
principalement en raison de l'augmentation de l'utilisation du charbon qui peut émettre
une plus grande quantité de ces polluants (Wang et al.,, 2018), de I'apparition fréquente
de conditions météorologiques a températures inverses en hiver qui conduit a la difficulté
de diffusion des polluants, ce qui peut aggraver la pollution atmosphérique par les
hydrocarbures, et finalement a cause de la baisse de la température ambiante, de la
photolyse lente et de la réaction de dégradation radicale des HAPs en hiver pouvant
entrainer une augmentation de leur niveau dans 'air (Cao et al., 2019). La figure 2 montre
la distribution des concentrations des pesticides et des HAPs (ng g1) trouvées dans la

matrice Helix aspersa.
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Figure 2. Concentrations mensuelles de pesticides et d'hydrocarbures aromatiques polycycliques
dans les zones étudiées faisant état d'une augmentation des polluants évalués dans Helix aspersa
pendant la durée totale de 1'étude

Une régression linéaire multiple a été effectuée pour les concentrations de pesticides et
des HAPs avec la température et la précipitation afin de classer les facteurs de controle
pour l'agrégation des pesticides et des HAPs dans diverses matrices. Les résultats ont
montré que les parametres de la température et la précipitation étaient des facteurs
significatifs pour décrire la variation des concentrations de pesticides et des HAPs dans
les échantillons d'aiguilles de coniféres et d'escargots avec des valeurs < 0,05. La figure 3
montre la valeur P pour les concentrations dans les échantillons avec la température et la

précipitation des sites d'échantillonnage.
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Figure 3. Valeur P pour les concentrations de pesticides et d'hydrocarbures aromatiques
polycycliques dans les échantillons avec la température et la précipitation des sites
d'échantillonnage

Cette étude montre que les escargots et les aiguilles de coniféres sont bien adaptés a la
détection des pesticides et des HAPs dans les différentes zones. Les aiguilles de coniféres
ont accumulé des concentrations significativement plus élevées pour tous les pesticides
et les HAPs que pour les escargots. La meilleure accumulation des aiguilles se reflete sur
sa persistance a long terme dans les zones d'étude par rapport aux escargots maintenus
au moment de I'étude. Le comportement spécifique des deux matrices dans
I'accumulation de pesticides et de HAPs dépend de leurs caractéristiques différentes,
notamment de la forte teneur en lipides et de la grande surface spécifique des aiguilles

qui ont favorisé le stockage des polluants. Le temps d'exposition semble étre un facteur
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crucial dans l'estimation des activités d'accumulation, du fait qu’au fur et a mesure que
les escargots sont exposés sur le terrain, une accumulation de polluants a été observée

avec une augmentation de leur concentration.

On constate que la connaissance de la structure et de la morphologie des especes
végétales et animales est une condition préalable essentielle au choix des organismes
pour les contaminants cibles afin d'obtenir des résultats précis dans les études
environnementales. Par conséquent, une modification de l'exposition des différents
polluants aux matrices étudiées sont étroitement corrélées aux conditions climatiques et
ainsi qu'a d'autres facteurs tels que les caractéristiques des sols et les propriétés physico-
chimiques des polluants. Les variations météorologiques jouent un role important dans
I'accumulation des polluants, et les données obtenues a partir des deux matrices

confirment que les niveaux de pollution semblent varier différemment.

6. Apports du développement d'une méthode d’extraction liquide-liquide pour la
détermination multirésidue des pesticides non volatils dans le miel en tant que

biomoniteurs environnementaux

Compte tenu de l'insuffisance d'informations dans les publications sur la présence de
pesticides et d'autres polluants organiques dans les produits apicoles biologiques au
Liban, l'intérét de cette derniére étude était le développement d’'une méthode de
préparation d'échantillons par extraction liquide-liquide suivie d'une analyse par LC-
MS/MS. La LLE estla technique de purification et d'extraction la plus couramment utilisée
pour la détermination des pesticides dans le miel (Pirard et al., 2007). Les solvants les
plus largement utilisés sont 1'ACN, le méthanol, I'AE (Lopez et al., 2014 ; Panseri et al.,
2014). La LC a couramment été utilisée pour analyser les pesticides thermiquement
labiles dans la matrice du miel, étant donné que la spectrométrie de masse estla technique
la plus efficace et la plus appropriée pour cette forme d'analyse (Al Naggar et al,, 2015 ;
Barganska et al., 2013). La MS / MS couplée a la LC permet la réduction des interférences
de la matrice et la détection dans des matrices complexes de nombreuses familles de
pesticides et d'autres polluants organiques a de faibles concentrations. D'autres types de
détecteurs appliqués dans l'analyse de quelques pesticides ou quelques classes de
pesticides ont également été utilisés, y compris le détecteur par spectrofluorimétrie

(Amendola et al., 2010) et le détecteur a barrettes de diodes (Vichapong et al., 2015).
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La technique développée dans cette étude a été utilisée pour I'extraction et I'analyse de 5
échantillons de miel collectés dans divers regions géographiques libanaises afin de
détecter la présence de résidus de pesticides, confirmant également que le miel biologique
est un indicateur approprié de pollution de I'air (Musarurwa et Tavengwa, 2020 ; El-
Nahhal et al, 2020). Il est nécessaire de déterminer les résidus chimiques dans les
aliments et l'environnement pour s'assurer que l'exposition du corps humain (en
particulier par l'apport alimentaire) aux polluants ne dépasse pas les niveaux de santé
tolérables. L'existence de nombreux résidus de pesticides dans les échantillons de miel
indique que la colonie d'abeilles de la zone étudiée est susceptible d'étre affectée par les

pesticides a long terme (Sgargi et al,, 2020 ; Ostiguy et al., 2019).

En outre, nos résultats de recherche ont montré que la présence des résidus de pesticides
dans le miel biologique peut également étre influencée par la zone géographique du
contaminant confirmant que les abeilles melliferes et les matrices de ruche sont
appropriées pour la surveillance de la pollution environnementale (Chiesa et al., 2016).
Dans les zones agricoles ou l'apiculture est développée, et en analysant les échantillons
de miel collectés, des informations utiles sur les résidus de pesticides produits et
distribués par le biais d'un traitement de protection des cultures peuvent étre obtenues

(Niell et al., 2017).
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Conclusion et perspectives

A la suite de tous les travaux de recherche réalisés au cours de cette thése de doctorat, les

conclusions suivantes peuvent étre tirées :

* La LC et GC couplée a la MS/MS est I'une des techniques les plus puissantes pour la
détermination des résidus de pesticides et des POPs dans les échantillons alimentaires
et environnementaux. L'excellente sélectivité et la sensibilité obtenues dans les
méthodes développées permettent la surveillance et la quantification des composés a
de trés faibles niveaux de concentration ;

* Une méthode basée sur QUEChERS suivie d'une SPME a été développée pour la
détermination de pesticides et des POPs et est adéquate pour surveiller leur présence
dans les échantillons des aiguilles de coniferes. Outre la détection des composés a de
faibles concentrations, I'utilisation de la LC-MS/MS et GC-MS/MS a permis d'atteindre
la sensibilité nécessaire pour valider cette nouvelle méthode ;

* Une méthode de détermination des résidus de pesticides et des POPs dans les
échantillons d’escargots basée sur la LC-MS/MS et GC-MS/MS a été également
développée. L'étape de préparation des échantillons a été critique, et ainsi, avec la
procédure optimisée, les pertes de composés ont été minimisées, de sorte que des
résultats acceptables ont été obtenus dans tous les échantillons étudiés ;

* Une méthode basée sur la technique de la LLE suivie de ’analyse par LC-MS/MS a été
développée pour la détermination spécifique des résidus de pesticides dans des
échantillons de miel. L'étape de préparation des échantillons, le choix du solvant ont
été étudiés afin de minimiser les pertes de composés, et des résultats satisfaisants ont
été obtenus pour tous les échantillons étudiés ;

* La détermination des résidus de pesticides et des POPs dans différents types de
matrices ont été mis en ceuvre. L'intérét était de déterminer la teneur en ces composés
dans les escargots terrestres Helix aspersaetles aiguilles de coniferes Pinus nigra. Les
résultats ont été évalués en fonction des changements saisonniers, de la source de
pollution et des caractéristiques de chaque site d’échantillonnages. Les données
indiquent qu'il y a un impact significatif de la variation saisonniére sur les
concentrations pour tous les composés. Des concentrations croissantes ont été

obtenues dans les escargots au cours des deux saisons. Les deux types de polluants
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étudiés ont montré des concentrations élevées (pour I'été) et faibles (pour I'automne)
pour les aiguilles de coniferes. En conséquence, différentes sources peuvent altérer la
concentration, a savoir les caractéristiques du site étudié, les sols contaminés, le trafic,
le métabolisme des aiguilles, le développement de I'escargot et la combustion du

charbon.

Les principaux avantages des études de qualité de l'air concernant la plupart des

méthodologies d'échantillonnage de biosurveillance sont :

* Une meilleure couverture spatiale et temporelle ;

* De constituer un outil puissant pour la gestion de la qualité de I'air ;

* De fournir des informations sur les polluants dans I'air dans des endroits éloignés, ou
la surveillance de la qualité de 1'air est impossible pour des raisons techniques et
économiques ;

* De fournir des informations sur la concentration des polluants présentes dans l'air et
a plusieurs niveaux ;

» D’étre utilisés pour analyser les événements de pollution passés et présentes ;

* De fournir des informations détaillées sur les sources d'émission, les processus de
transport, de dépot et les transformations chimiques des polluants ;

* D’étre utilisés pour évaluer I'exposition de la population a un polluant donné ;

* De donner un apercu des propriétés des polluants et de leur impact sur la santé et

I’environnement ;

Afin d'améliorer les études antérieures et de répondre a certaines des questions, plusieurs

perspectives peuvent étre pris en compte :

* Extension des études de biosurveillance a des échelles spatiales et temporelles plus
étendus ;

* La mise au point d’'une méthode d’extraction et d’analyse dans les sols permettant de
déterminer les concentrations de polluants lors des campagnes d’études ;

* La mise au point d’'une méthode d’extraction et d’analyse dans les aliments d’origine
végétale est nécessaire afin de pouvoir détecter les concentrations dans les plantes

ingérées par les escargots in situ ;
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La mise au point d'un développement analytique pour la détermination de la capacité
de transfert du polluant a I'ceuf puis a I'embryon d’escargots, la détermination de la
quantité de polluants transférée par unité de temps, ainsi que les études de leurs effets
sur la croissance ;

Etude de la surveillance biologique humaine afin d’évaluer 1'exposition et pour une
meilleure gestion des risques que posent I'exposition aux substances chimiques sur la

santé environnementale.
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Résumé

La pollution de l'air a des impacts importants sur la santé humaine et I’environnement et représente
aujourd’hui l'un des principaux sujets de préoccupation environnementale du monde. Ainsi, il est
nécessaire d'améliorer la compréhension de la dynamique de la pollution afin de concevoir des stratégies
efficaces pour controler la qualité de I'air et réduire I'impact de cette pollution. C’est dans ce contexte que
se situe l'objectif principal de cette thése consistant a caractériser la qualité de 1'air en développant des
méthodes d'extraction multi-résidus basées sur la biosurveillance qui utilise le vivant (organisme animal
ou végétal) comme matrice pour surveiller I’évolution, les altérations ou les modifications de la qualité de
'air dans un environnement donné. En effet, certaines especes vivantes sont sensibles a des polluants
uniques spécifiques ou a des mélanges de polluants et pourraient donc probablement étre utilisées pour
surveiller les effets des polluants en tant que biomoniteurs.

Plusieurs méthodes analytiques ont été développées dans le cadre de ces travaux de these et ont permis
I'analyse simultanée de 158 polluants environnementaux émergents du gastéropode terrestre Helix
aspersaet 172 polluants du conifére Pinus nigra. La combinaison d'une méthode d'extraction simple telle
que le QUEChERS avec un procédé de microextraction sur phase solide couplée a des techniques
chromatographiques a été valorisée au cours de ces travaux et a permis l'extraction de ce grand nombre
de polluants. Ces méthodes ont prouvé leur efficacité notamment en termes de rendement, de rapidité et
de respect de I'environnement. De plus, la méthode QUEChERS a donné des bonnes performances en
termes de linéarité, d'exactitude et de précision. Cette méthode d'extraction suivie par une analyse
chromatographie en phase liquide et/ou gazeuse couplée a la spectrométrie de masse en tandem s’est
révélée étre un outil fiable pour I'analyse en routine d'une large gamme de composés, a 1'état de traces,
dans les escargots et les aiguilles de coniferes. En outre, elle pourrait étre appliquée dans d'autres études
de biosurveillance environnementale sur d’autres matrices biologiques.

Les résultats obtenus ont montré que les coniféres et les escargots peuvent refléter des émissions
spécifiques de polluants et doivent étre considérés comme des sentinelles appropriées pour la mise en
évidence de la pollution de I'environnement, en particulier lorsque les échantillons sont prélevés dans
plusieurs zones a différentes altitudes. De méme, il a pu étre montré que les différences de concentrations
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des polluants observés pourraient étre corrélées avec les propriétés physico-chimiques des composés, la
proximité des sources et d'autres facteurs environnementaux tels que les conditions climatiques. Enfin,
les résultats obtenus au Liban confirment la nécessité de créer une législation pour les pesticides et les
polluants organiques persistants en incitant des recherches plus poussées pour identifier les principales
sources de contamination, estimer leur contribution a la contamination globale et étudier les solutions
possibles pour diminuer cette contamination.

Mots clés : Pollution de I'air - Biosurveillance environnementale - QUEChERS - Helix aspersa - Pinus nigra
- Pesticides - Polluants organiques persistants.

Résumé en anglais

Air pollution has significant impacts on human health and the environment and currently is the one of the
major environmental concern in the world. Thus, there is a need to improve understanding of the
dynamics of pollution in order to plan effective strategies to control air quality and reduce the impact of
this pollution. The main objective of this thesis is consisting in characterizing the air quality by developing
multi-residue extraction methods based on biomonitoring which uses living organisms (animal or plant
organism) as matrix to monitor the evolution, alterations or modifications of air quality in environment.
Just as some living species are sensitive to specific pollutants or mixtures of pollutants and are therefore
likely to be used to monitor the effects of pollutants as biomonitors.

Several analytical methods were developed as part of this thesis work and allowed the simultaneous
analysis of 158 environmental pollutants from the terrestrial gastropod Helix aspersaand 172 pollutants
from the Pinus nigra conifer. The combination of a simple extraction method such as QUEChERS with a
solid phase microextraction process coupled with chromatographic techniques was also valued during
this work and allowed the extraction of this large number of pollutants. These methods have proven their
effectiveness, in particular in terms of efficiency and respect for the environment. The validation of the
QuEChERS method shows also good performances in terms of linearity, accuracy and precision. This
extraction method followed by liquid and / or gas chromatographic analysis coupled with tandem mass
spectrometry has proven to be a reliable tool for the routine analysis of a wide range of compounds, at the
trace, in snails and conifer needles and can be applied in other environmental biomonitoring studies.

In addition, obtained results also showed that conifers and snails can reflect specific environmental
emissions and should be considered as appropriate sentinels for environmental pollution survey,
especially when samples are taken from several areas at different altitudes. Likewise, it have shown that
the differences in pollutant concentrations could be correlated with the physico-chemical properties of
the compounds, the proximity of sources and other environmental factors such as climatic conditions.
Finally, obtained results in Lebanon confirm the need to create a registration for pesticides and persistent
organic pollutants through initiative research to identify the main sources of contamination, estimate
their contribution to the overall contamination and study possible solutions during treatment.

Keywords: Air pollution - Environnemental biomonitoring - QUEChERS - Helix aspersa - Pinus nigra -
Pesticides - Persistent organic pollutants.
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