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Abstract

This thesis concerns the modelling of several environmental fate and (eco)toxicological
properties relevant under the European Union Registration, Evaluation, Authorisation and
Restriction of Chemical Substances Regulation (REACH, EC No 1907/2006).

Statistical models have been generated using state-of-the-art machine learning
methods, such Support Vector Machine and Random Forest and molecular descriptors. Models
have been internally and externally validated following internationally recognized guidelines,
especially the OECD principles. The models are designed to be used as valid alternative to
experimental testing and data-gap filling under the REACH regulation.

New models possess several advantages over already existing ones: (i) noticeable
larger training sets; (ii) external validation on a significant number of compounds coming from
the Industrial context (Solvay portfolio); (iii) better accuracy and extended applicability domain.

The Generative Topographic Mapping approach has been used to profile the REACH-
chemical space on the modelled properties: in such a way, it is possible to identify compounds
with an undesirable eco-toxicological and environmental fate profile.

All the models have been implemented in the ISIDA/Predictor platform, which is freely

available for the user.



() Résumé

Cette thése concerne la modélisation de propriétés environnementales et (éco)-
toxicologiques pertinentes dans le cadre du réglement de I'Union Européenne sur
I'enregistrement, I'évaluation, I'autorisation et la restriction des substances chimiques (REACH,
CE n © 1907/2006).

Des modeles statistiques ont été générés a l'aide de méthodes d'apprentissage
automatique, telles que les Séparateurs a Vaste Marge (SVM) ou les Foréts Aléatoires (Random
Forest), et des descripteurs moléculaires. Le pouvoir prédictif des modeles a été estimé suivant
des procédures de validation interne et externe, conformément aux directives internationalement
reconnues, en particulier les principes de 'OCDE. Les modeles sont congus pour étre utilisés
comme une alternative crédible aux tests expérimentaux et pour compléter les données
manguantes dans le cadre du reglement REACH.

Les nouveaux modeéles présentent plusieurs avantages par rapport aux modeles
existants: (i) ils sont construits sur des ensembles de données sensiblement plus grands; (ii) ils
sont validés sur des données externes de tailles significatives composés d’exemples issus d’un
contexte industriel (I’entreprise Solvay); (iii) la précision des modeles est améliorée et leurs
domaines d'applicabilité sont étendus.

La technique de Cartographie Topographique Générative a été utilisée pour profiler
I'espace chimique REACH sur les propriétés modélisées: de cette maniére, il est possible
d'identifier rapidement les composés risquant de présenter un profil éco-toxicologique et
environnemental indésirable.

Tous les modéles ont été implémentés dans la plate-forme ISIDA / Predictor, qui est
disponible gratuitement pour l'utilisateur.
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I Résume en francais

1.1 Introduction

En 2007, le nouveau reglement EC N° 1907/2006 concernant I’enregistrement,
I’évaluation, 1’autorisation et la restriction des substances chimiques (REACH) [1], est
entré en vigueur en Europe. Il s’agit d’une réponse a différents problémes concernant
I’industrie chimique, tels que le manque d’information suffisante pour évaluer la
dangerosité d’une substance, ’absence d’un réglement commun aux pays de 1’espace
¢conomique européen, 1’insuffisance des mesures pour contrler les risques chimiques
pesant sur la population et I’environnement. La réglementation REACH se pose comme
une réponse a ces problémes, en obligeant toutes les entreprises qui veulent produire et/ou
importer leurs substances sur le marché européen, pour des quantités supérieures ou égales
a | tonne, a les enregistrer. La procédure d’enregistrement consiste a produire un dossier
technique de la substance renseignant un certain nombre de caractéristiques
physicochimiques (e.g. solubilité dans I’eau), environnementales (e.g. persistance) et
(éco)toxicologiques (e.g. toxicité aigué). Un dossier REACH est constitué de dizaines de
ces propriétés. Le nombre de propriétés qui doivent étre étudiées est fonction du tonnage
annuel produit ou importé de la substance : plus il est élevé, plus le nombre de propriétés

a renseigner sont nombreuses et difficiles a acquérir.

Ces propriétés sont, les plus souvent, déterminées par des tests expérimentaux, qui
sont aussi éthiquement discutables en raison de ’utilisation d’un grand nombre d’animaux.
Afin de limiter le recours a ces tests, les directives de REACH soutiennent
I’implémentation de méthodologies alternatives, en particulier in-silico, comme les
modeéles Relation Quantitative Structure-Activité (QSAR). Ces outils visent a remplacer
au maximum des tests expérimentaux par des valeurs estimées. Ceux-ci doivent donc étre
validés selon des consignes précises et des protocoles proposées par des experts [2].
L’utilisation de ces méthodologies est donc importante, et il est plausible que dans un futur

relativement proche les tests sur animaux seront abandonnés et remplacés par ces méthodes
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alternatives (entre autres, in silico) [3]. La réglementation REACH impacte surtout le
secteur industriel qui est obligée d’enregistrer de nombreuses substances. Ces dernicres
années ont donc vues plusieurs modeles publiés pour I’estimation des différents endpoints
(propriétés mesurées) requis par REACH [4]. Toutefois, I’application de ces outils dans le
domaine industrielle est souvent restreinte, pour différentes raisons [4—6]:

e Lesmodeéles ont été congus pour des produits sensiblement différents de ceux dont
I’industrie a besoin et souvent, leurs prédictions ne sont pas pertinentes dans ce
contexte : ces produits sont souvent hors du domaine d’applicabilité (AD) des
modeéles ;

e Les modeles n’ont pas toujours été préparés selon les consignes éditées par les
autorités ;

e lls sont souvent insuffisamment validés sur de nouvelles données expérimentales.

Cette these propose de répondre a ces limitations : des nouveaux modeéles ont été
créés et validés sur de nouvelles données expérimentales provenant d’un contexte industriel
(fournis par Solvay S.A.). Notamment, beaucoup d’efforts ont été portés a la collecte et la
préparation de jeux de donnés les plus exhaustifs possible, afin de rendre leur AD plus
étendu et améliorer leur précision. Au total, 11 endpoints REACH ont été modélisés, en
utilisant différentes méthodes d’apprentissage automatique (Machine Learning, ML). Pour
chaque propriété, une analyse comparative avec les modeles préexistants a été effectuée,
démontrant les avantages des modeéles produits pour cette these. Entre autres, ces modeles
ont la particularité d’avoir été validés réguliérement sur des données industrielles inédites,
qui permettent de donner une estimation réaliste de leur fiabilité. Tous les modéles
développés sont désormais gratuitement disponibles sur une platforme en ligne (appelée
ISIDA/Predictor) [7], ou les utilisateurs peuvent prédire les valeurs de ces propriétés pour

leurs substances.

Les résultats de la thése sont divisés en trois parties : la lere concerne la création
des modeles [8]; la 2eme décrit 1'utilisation de la méthode Generative Topographic
Mapping (GTM) pour I’analyse et le criblage (screening) de 1’espace chimique ; le 3eme
rapporte I’implémentation des modéles et outils publiés dans la platforme ISIDA/Predictor.



1.2

Résultats et discussions

Le paragraphe 2.1 décrit brievement la méthodologie appliquée pour la création des

modeles. Les paragraphes 2.2 a 2.7 résument les résultats de la modélisation des 11

propriétés, groupes selon les articles scientifiques produits qui les concernent. Le

paragraphe 2.8 décrit 1’application de la meéthode GTM pour le criblage de ’espace

chimique des moléecules concernés par REACH. Le paragraphe 2.9 décrit I’implémentation

de ces modeles dans la plate-forme ISIDA/Predictor. Les résultats sur les performances des

modeles ont été groupés dans le Tableau 1.

Tableau 1. Sommaire des performances des modeles pour la propriété indiquée.

Endpoint Val. interne Val. externe Analysg
Type Tr. set comparative DC [%]
(acronyme) R? RMSE R? RMSE (RMSE)
Bioconcentration
1263 0.75 0.71 0.77 0.55 0.59 78 (25/31)
(BCF)
Toxicité aigué Algae
1231 0.61 0.69 0.48 1.07 0.99 72 (179/228)
® (AlgaTox)
| Toxicité aigué Daphnia
@ (DaphniaTox) 2083 0.67 0.78 0.58 0.93 1.03 76 (174/249)
Toxicité aigué Poisson
. 2152 0.67 0.73 0.54 0.97 1.09 67 (129/193)
(FishTox)
Toxicite aigué rat 11191 078 055 0.6 047 0.61 94 (186/197)
(RodentTox)
Endpoint Val. interne Val. externe Analyse_
Type Tr. set comparative DC [%]
(acronyme) BA BA (BA)
Biodégradabilité
3069 0.81 0.75 0.71 85 (307/362)
(RB)
Persistance sédiment
436 0.81 0.91 0.52 77 (101/131)
(SedP)
Persistance sol
. 630 0.71 0.76 0.62 76 (693/909)
9 (SoilP)
o Persistance aqueux
466 0.80 0.77 0.57 91 (128/140)
(WatP)
Récepteurs androgenes
o 1661 0.84 0.72 0.73 85 (3320/3882)
(AR binding)
Recepteurs estrogénes
o 1661 0.68 0.60 0.59 76 (4409/5795)
(ER binding)

REG ou CLS = régression ou classification ; R2 = coefficient de détermination ; RMSE =

racine de l’erreur quadratique moyenne ; BA = précision balancée ; Benchmarking =

performance du meilleur modelé existant ; DC = couverture de donnes, i.e. rapport entre

le nombre des molécules industrie/ dans [’AD et le nombre total ; R2 et BA peuvent étre



utilisees pour résumer le performances : le premiere varie entre 0 (aucun modeéle) et 1

(modeéle idéal) ; le deuxiéme entre 0.5 (aucun modeéle) et 1.0 (un modeéle parfait).

1.2.1 Methodologie de la création des modeéles
Un modeéle QSAR est un processus par lequel une structure chimique est corrélée avec un
effet physicochimique ou biologique bien déterminé. L'expression mathématique obtenue
peut alors étre utilisée comme moyen prédictif de I’effet de nouvelles molécules. La
relation générale d’un QSAR est de la forme : effet = f (descripteurs moléculaires). Les
descripteurs moléculaires sont des nombres qui permettent de décrire dans des termes
mathématiques la structure d’une molécule. Dans cette thése, les descripteurs ISIDA sont
utilisés ; ils comptent dans une molécule, le nombre de fois qu’apparait des motifs, i.e. des
fragments moléculaires générés en « coupant » la molécule en différentes parties. La
fonction f peut étre déterminée a 1’aide de différents algorithmes d’apprentissage
automatique : les algorithmes principaux utilisés ici sont les Foréts Aléatoires (Random

Forest, RF) et les Machines a Vecteur Support (Support Vector Machine, SVM).

La Figure 1 schématise la procédure suivie pour la création des modeles,
appliquée pour chaque propriété. Ces étapes sont ici brievement décrites : (1) les molécules
sont encodées avec les descripteurs ISIDA ; (2) le jeu d’entrainement (training set),
incluant les molécules utilisées pour entrainer le modéle, est assemblé ; (3) un algorithme
génétique est utilisé pour optimiser le choix des meilleurs descripteurs et parameétres des
méthodes utilisées ; (4) plusieurs modeles individuels (IM) sont entrainés puis (5)
assemblés en un consensus qui combine les prédictions des différents IMs ; (6) les données
industrielles sont utilisées pour une validation externe du modele ; (7) une analyse
comparative est effectuée pour comparer les nouveaux modeles aux préexistants (8) apres
leur validation, toutes le données disponibles sont assemblées pour mettre a jour les

modeles ; (9) cette version finale est implémentée dans 1’outil ISIDA/Predictor.

Les modeles créés peuvent étre divisés en deux catégories : régression (la sortie
est un nombre réel) et classification (la sortie est une valeur discréte, i.e. une classe). Pour
simplifier, les performances des modéles de régression peuvent étre réesumes par le

paramétre R? (coefficient de détermination), qui quantifie la variance expliquée par le
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modele. Ce parametre varie entre 0 (aucun modeéle) et 1 (modele idéal). Pour les modéles
de classification, la précision balancée (BA) est utilisée : elle varie entre 0.5 (aucun

modele) et 1.0 (un modele parfait).

Figure 1. Etapes principales pour la création, validation et implémentation des modéles.
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1.2.2 Destin environnementale : facteur de bioconcentration
Le BioConcentration Factor (BCF) estime la tendance d’une substance a se concentrer
dans les tissus d’un organisme vivant. Pendant une analyse comparative avec les modeles

existants, ce modele a montré un bon équilibre entre précision et domaine d’applicabilité

[4].

1.2.3 Destin environnementale : biodégradabilité primaire
Le test de Ready Biodegradability (RB) est extrémement utilisé parce qu’il donne une
premiére évaluation sur la dégradation de la substance. Si le test est positif le registrant

n’est pas obligé d’effectuer certains tests supplémentaire (e.g. toxicité chronique). Aussi,



I’avantage de ce mode¢le est d’avoir un jeu d’entrainement bien plus large que les modeles
préexistants (plus du double). Ce modéle a démontré la fiabilité de ses prédictions dans un

contexte industriel [5].

1.2.4 Destin environnementale : persistance
Les propriétés de persistance dans les compartiments environnementaux, sédiments
(SedP), sol (SoilP) et aquatique (WatP), peuvent étre considéres comme la suite
experimentale au test RB si le résultat est négatif, car ils vont déterminer précisément le
temps de dégradation dans un compartiment environnemental. Ces modeles ont le jeu
d’entrainement le plus petit d’entre tous, ce qui est significatif de la carence des données
dans les sources publiques. Donc leur applicabilité peut étre limitée dans un contexte
industriel. Pour le model SoilP, il est intéressant de remarquer que I’aptitude du modele a
détecter les substances les plus persistantes (Sensitivité = 0.50) est treés basse : ce résultat
est représentatif de 1I’état de 1’art et refléte la variabilité des mesures expérimentales, ce qui

influence négativement les modeles.

1.25 Propriétés écotoxicologiques : toxicité aigué pour les organismes

aquatiques
Ces propriétés sont essentielles dans un dossier REACH car elles caractérisent la toxicité
d’une substance sur trois espeéces considérées comme représentatives de 1’écosystéme
aquatique. Chaque dossier REACH doit au moins inclure les résultats concernant deux
espéces sur trois. Ces modeles — Algues (AlgaeTox), Crustacés (DaphniaTox) et Poissons
(FishTox) — ont des performances acceptables en validation interne (R2 = 0.61 — 0.67).
Toutefois, les performances se dégradent (R2 = 0.48 — 0.58) sur les données industrielles.
Cette différence s’explique par une surestimation importante de la toxicité des molécules
de bas poids moléculaire ou possédant moins de quatre atomes. Ce probléme est imputé a
deux facteur principaux : (1) les résultats de toxicite sur ce genre de substances présentes
une variabilité extrémement élevée (jusqu’a deux ordres de grandeur) ; (2) leur toxicité
peut étre di par une réactivité spécifique une fois dans 1I’organisme qui se refléterait mal
dans leur structure chimique. Toutefois ces résultats sont comparables a ceux de 1’état de

I’art.



1.2.6 Propriétés toxicologiques : toxicité aigué sur le rat
La détermination de la toxicité aigué sur le rat est obligatoire dans tous dossier REACH ce
qui demande 1’utilisation d’un grand nombre d’animaux. Aussi, une initiative américaine
appelée NICEATM (National Toxicology Programme Interagency Centre for the
Evaluation of Alternative Toxicological Methods) [9] a organisé une compétition a un
niveau international pour générer des modeles prédictifs sur cette propriété. Le modele crée
dans cette thése a été classé en troisieme position (sur plus de 20 participants) en termes de
précision. Par la suite, le modele a été amélioré grace a ’introduction de nouvelles données

et teste sur les données industrielles, démontrant la qualité de ses prédictions [6].

1.2.7 Propriétés toxicologiques : perturbateurs endocriniens
Des directives sur la détermination du potentiel d’une molécule d’étre un perturbateur
endocrinien n’ont été publiées que récemment [10]. Ici on s’intéresse a la capacité des
molécules a interagir avec des récepteurs clés du systéme endocrinien : les récepteurs
androgenes (AR) et estrogenes (ER). Les modéles développés représentent donc une
nouveauté dans la situation actuelle. Toutefois, il faut remarquer que ces modeéles ont une
capacité limitée a identifier certaines substances actives sur ces récepteurs (Sensitivitéar =
0.49, Sensitivitéer = 0.34) : ces limites ont pour origine une variabilité tres élevée entre les
sources des données. Ici encore, les résultats obtenus sont parfaitement comparables & ceux

des compétitions international [11,12], qui ont été intégrées a nos source de données.

1.2.8 GTM : analyse de I’espace chimique du REACH
La multitude des propriétés a évaluer dans le contexte de REACH implique la nécessité
d’avoir a disposition un modéle pour chacun d’eux (approche dite single-task). Pourtant,
un modele peut étre préparé pour prédire, pour une substance donnée, plusieurs propriétés
simultanément (approche multi-task). La méthodologie GTM est une stratégie de
cartographie basée sur un modeéle probabiliste, qui peut étre utilisée pour analyser de
grandes quantités de données mais aussi pour proposer des modéles prédictifs [8]. Elle
produit une carte 2D représentant I’espace chimique concerné, facilitant donc une analyse

de son contenu.



Plusieurs fois les limites des AD des modeles QSAR ont été évoqués et mis en
relation avec les performances et 1’utilité des modéles existants quand ils sont appliqués
dans le domaine industriel. La GTM a été utilisée pour illustrer ces observations : I’espace
chimique de toutes les données provenant de sources publiques (utilisées pour générer les
modeles) a été comparé a 1’espace chimique industriel (les données de validation externe).
La carte GTM obtenue est illustrée en Figure 2. Plus de 18000 molécules ont contribué a
caractériser cet espace chimique. Les zones rouges (soulignées par les rectangles) indiquent
que les molécules qui y sont localisées appartiennent majoritairement au contexte
industriel. Cela signifie que les modeles existants, qui sont développés exclusivement sur
des données publiques, ne peuvent pas étre appliqués sans restriction sur cet espace
chimique pertinent pour ’industrie : leur AD doit étre pris en compte. Toutefois, apres
I’inclusion des données industrielles (étape 8 en Figure 1), qui est une spécificité des
nouveaux mod¢les produits pendant cet thése, I’AD couvre mieux ce domaine particulier

de I’espace chimique.

De plus les cartes peuvent étre utilisees comme modéle prédictif : une seule et
méme carte peut étre colorée pour plusieurs propriétés distinctes. Le modéle obtenu est
alors de type multi-task. Ceci a permis d’utiliser la GTM pour établir le profil des risques
associés aux substances enregistrées dans le REACH. Une application pratique est de faire
un criblage virtuel pour identifier les substances ayant un profile (éco)toxicologique
inquiétant pour I’environnement et la santé¢ humaine. Cet avant-dernier chapitre de la these

unifie toutes les propriétés étudiées dans un unique outil de profilage des molécules.



Figure 2. Comparaison de I’espace chimique Publique vs. Industrielle.
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Les zones bleues sont peuplées par des molécules provenant de sources publiques ; les
zones rouges, de source industrielle. Les couleurs intermédiaires, sont des zones peuplées
par des composés provenant de ces deux sources. Les régions inexplorées de [’espace

chimique figurent en blanc.

1.2.9 Implémentation du logiciel ISIDA/Predictor
Tous les modeles développés sont librement accessibles sur la plateforme ISIDA/Predictor:

http://infochim.u-strasbg.fr/cgi-bin/predictor_reach.cgi. L’image 3 représente un exemple

d’utilisation de la plate-forme. Une fonctionnalité remarquable est le «ColorAtom»
[4,6,13]: cet outil assigne des couleurs aux atomes de la molécule concernée en fonction
de leur influence sur la valeur de la propriété prédite par un modele. Cette information peut
servir de support pour interpréter la prédiction d’un modele, dans ’optique d’une
«interprétation mécanistique», comme conseillé dans les directives internationales [2]. De
plus une version desktop du ISIDA/Predictor a été livré a I’entreprise Solvay S.A., qui sera

utilisé pour I’enregistrement des substances dans le cadre de REACH.


http://infochim.u-strasbg.fr/cgi-bin/predictor_reach.cgi

Figure 3. Capture d’écran du logiciel Predictor dans sa version SAS.
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1.3 Conclusion générale
Dans le cadre de cette these un total de 11 propriétés importantes dans le contexte du
reglement européen REACH ont été modélisées. Tous les modéles ont été validés selon les
directives du réglement, afin qu’ils puissent &tre utilisés comme alternative aux tests

expérimentaux.

Les modeles ont démontré leurs bonnes performances au cours d’analyses
comparatives avec les modeles préexistants. Un point fort des modeéles ici générés est
I’introduction de nouvelles données provenant d’un contexte industriel. Ainsi la précision

et la fiabilité des modeéles sur les substances d’intérét industrielle est améliorée.

Les modeles ont été implémentés dans la platforme ISIDA/Predictor, qui est
librement accessible. Une version desktop a été livrée a I’entreprise Solvay S.A. pour un

usage interne.
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1 Introduction

2.1 Context

All the products related to a given economical market have to respond to two different
kinds of regulations: the more general chemical regulation which regulates the produced
substance rather than taking into accounts its final uses; and the market regulations, that
provide specific obligations depending on the uses of a given products. For the former case,
such regulations are generally state-dependent: in Canada there is the Canadian
Environmental Protection Act [14]; in Japan the Chemical Substances Control Law [15];
in the United States the organism of reference if the Environmental Protection Agency
[16]; and in Europe there is the Registration, Evaluation, Authorisation and Restriction of
Chemicals (REACH) [1] . Despite the differences, all these regulations are linked by the
Global Harmonized System (GHS) [17], an internationally agreed-upon standard managed
by the United Nations that was set up to replace the assortment of hazardous material
classification and labelling schemes previously used around the world. Core elements of
the GHS include standardized hazard testing criteria, universal warning pictograms, and
harmonized safety data sheets which provide users of dangerous goods with a host of
information. On the other hand, the market regulations are more specific to the product
application. For instance, in Europe the EFSA (European Food Safety Agency) [18] is the
authority responsible to regulate the markets of food and biocides. When a product is put
on the market, it has to fulfil the requirements of both the chemical regulation and the

market regulations (eventually more than one).

As the topics covered by this work fall into the domain REACH Regulation, it is
described in more details. The REACH Regulation ((EC) N° 1907/2006) entered into force
in 2007 and was born to address previous issues, including:

e Lack of information about the properties of several chemicals;

e Only few thousands substances addressed by previous legislation;

e Inadequate risk control;

e Poor information regarding risk assessment procedures between EU member

Countries.
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REACH was designed to pursue also other general objectives, including mapping
of chemicals circulating over Europe, gain in depth knowledge about their effects on
human health and the environment and replacement of hazardous substances (e.g. PBT)
with safer alternatives. This system was implemented through four main actions, namely:

e Registration of substances imported or manufactured in quantities larger than
one tonne/year;

e Evaluation of substances in terms of safety;

e Authorisation for substances of very high concern (SVHC);

e Restrictions to use.

The domain of application of REACH is very broad, and the registration of
chemicals under REACH is required for: (i) all substances imported or manufactured in
quantities greater than one tonne/year; (ii) monomers in polymers if present in percentages
equal to or greater than 2% weight by weight and if the total quantity of monomer is greater
than one tonne/year; (iii) substances in articles if the total amount is greater than one

tonne/year and their release is intended under standard conditions of use.

Probably the most important modification introduced by REACH is the inversion
of the burden of proof from regulators to industry, by imposing the concept of “no data, no
market”. Producers are required to prove that their substances do not pose risks to human
health and the environment. To this end, registrants must submit to ECHA a technical
dossier, which includes information about the physico-chemical, toxicological,
ecotoxicological and environmental fate properties of the substance, as specified in
Annexes VII to X of REACH. A REACH dossier is composed by several tens of these
properties (endpoints), depending on the tonnage band: the higher the amount of substance
imported or produced, the higher the number of endpoints that need to be assessed. These
properties are normally determined experimentally, involving the use of a significant
number of animals. Therefore, in order to reduce animal testing, REACH promotes the use
of alternatives methodologies, in particular in-silico, for data-gap filling, like Quantitative
Structure-Activity Relationship (QSAR) models. REACH will accept predictions from
QSARs on their own (i.e. as replacement of measured data) only under conditions that

guarantee (with a certain confidence) that the results are relevant, reliable and adequate.
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These conditions are enunciated in Annex XI of REACH and detailed in the most
comprehensive guidance currently available for the application of QSARs within REACH,
the OECD “Guidance document on the validation of (quantitative) structure activity
relationship [(Q)SAR] models” [2].

The amount of data that needs to be generated is significant, considering the
different requirements. Therefore, in the past years the interest towards alternative
methodologies for data-gap filling and risk assessment greatly increased. They include, in-
vitro testing, data sharing, weight of evidence and read-across approaches, and in silico

modelling, among which QSARs.

2.2 OECD requirements

This document reports a list of principls that must be fulfilled in order to define the

scientific validity of QSAR models. The five principles state that:

“To facilitate the consideration of a (Q)SAR model for regulatory purposes, it should be
associated with the following information:

1. adefined endpoint;

2. an unambiguous algorithm;

3. adefined domain of applicability;

4. appropriate measures of goodness-of—fit, robustness and predictivity;

5

. @ mechanistic interpretation, if possible.”

The OECD guideline is an important track for the development and usage of QSAR models
in the context of this work. Therefore, we paid a particular attention to answer each of the
above-mentioned points.

1. Data was acquired only from verified sources and carefully curated in order to
select only those experimental measurements obtained with an appropriate
protocol, matching the OECD guideline requirements;

2. The processes of description calculation and machine learning algorithm
employment are described precisely and include the use of peer-reviewed

software;
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3.

4.

2.3

Rules for defining the applicability domain have been included in order to
discriminate less reliable measurements and each prediction is associated with
a reliability score;

Appropriate validation procedures have been followed in order to estimate not
only the models’ ability to fit the data in the training set, but also its accuracy
in predicting properties for new chemicals;

These are statistical models based solely on the chemical structure, with no a
priori hypothesis which could influence the choice of descriptors or method
parameters; an utility has been implemented in order to facilitate the

interpretation of the output value.

State of the art

During the past decades, several models have already been published on REACH-relevant

properties, and many QSAR models are nowadays implemented in commercial or freely-

available software, such as VEGA (Virtual models for property Evaluation of chemicals
within a Global Architecture) [19], Toxicity Estimation Software Tool (TEST) [20],
Estimation Program Interface (EPISuite) [21] and OPERA (OPEn (g)saR App) [22]. These

tools could represent a significant aid for the registration process, however their use within

an industrial context is often limited, for the following reasons:

2.4

The models have been generated for substances considerably different from
those of industrial interest, and therefore industrial products are outside the
applicability domain of these models;

The models have not always been generated according to the authority’s
guidelines (OECD Principles);

Insufficient external validation on new experimental data.

Organization of the thesis

This thesis aims to answer to these drawbacks, by generating new OECD-compliant models

on several important properties for REACH, validated on new data coming from an
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industrial context (provided by Solvay). A total of 11 endpoints have been taken into
account, divided into the following REACH-sections:

1. For the environmental fate and pathway section, the bioconcentration factor,
the ready biodegradability and the environmental persistence in sediment, soil
and water;

2. For the ecotoxicological section, the short-term toxicity to three trophic level
organisms (algae, daphnia and fish);

3. For the human toxicity section, the short-term toxicity to rats and properties

related to endocrine disruption (androgen and estrogen receptor binding).

Much effort has been put in collecting the largest amount of current publicly
available data, in order to constitute the most comprehensive training sets, used for models
generation. These public-data models only, were then externally validated on a substantial
number of industrial compounds and, at the same time, a benchmarking against already
existing freely-available tools has been carried out in order to compare models

performances.

All generated models showed to have strong advantages compared to state-of-the-
art tools, either in terms of prediction accuracy or extended applicability domain on
industrial data. Furthermore, they have been generated following OECD guidelines and all
relevant documentation necessary to use them as tools for data-gap filling is readily
available. All the models are now freely-available through the online platform
ISIDA/Predictor [7], where users can predict these properties for their substances.
Moreover, a desktop version of the platform with additional features has been provided to
Solvay S.A. for internal use for REACH dossier compliance. This is only a global overview
on the state-of-the-art. More detailed information can be found in each endpoint specific

section, in Chapter 2.

This thesis is comprised by three main chapters: Chapter | contains the Resumé en
francais; Chapter I1 describes the introduction to regulatory topics in the European context;
Chapter 111 describes the adopted methodology; Chapter IV reports the results on the main

projects of the thesis (i.e. the modelled properties, the application of the Generative

15



Topographic Mapping method for chemical space analysis and the software

implementation); Chapter V reports the conclusions and perspectives.

2.5 Background of Solvay

Solvay is a Belgian chemical company founded in 1863 by Ernest Solvay. In the early
1860s Solvay filed a patent for a method that involved the reaction of ammonium
bicarbonate and salt, the product being heated to yield sodium carbonate, or soda ash. This
marked the beginning of the Company’s fortune. In the future years up to present, the wide-
ranging activities of Solvay have been focused on following market areas:

e Agriculture: crop protection, plant nutrition, seed and grain care;

e Food industry: flavour, food ingredients, food packaging;

e Consumer goods: personal care, homecare, household goods, packaging (non-

food);
e Healthcare: medical equipment and instruments, pharmaceuticals;

e Industrial applications: protective coatings, surface treatment.

Chemicals account for about one-third of the company's revenues. Solvay is among
the world leaders in several commodity chemicals, including soda ash, hydrogen peroxide,
persalts, barium and strontium carbonate, and caustic soda, as well as such specialty
chemicals as fluorochemicals. In plastics, which account for about one-quarter of overall
sales, Solvay produces fluorinated polymers and elastomers, as well as vinyls. About 19
percent of revenues come from plastic processing, including automobile fuel and air intake
systems, various films, and swimming pool linings. Solvay's pharmaceutical operations,
generating about a quarter of revenues, are relatively small on a global scale, ranking about
37th among the world players in the early 2000s. Drug development efforts focus on four
main therapeutic fields: gastroenterology, hormone treatments, cardiology, and mental
health. Solvay operates in 50 countries; more than 95 percent of its revenues are generated

outside of Belgium, with 45 percent originating outside of the European Union.

As Solvay has to fulfil the REACH requirements, the use of computational
approaches would be an important asset in the registration process. They can provide

reliable predictions to be used for data-gap filling, ultimately reducing registration costs.
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Moreover, such models can be used in the research & development area, as first tier tool

to screen compounds with an undesired environmental or (eco)toxicological profile.

111  Tools and methods

This chapter explains the conceptual basis of QSAR / QSPR and their link with the REACH
regulation, as well as the methodologies used in this thesis, including: data acquisition,
curation and preparation; encoding of molecular descriptors; data visualization; model

generation, validation and applicability domain assessment; and software implementation.

3.1 QSAR: background and role in regulatory context

The study of structure-activity relationships (SARs) and their quantification (quantitative
structure-activity relationships, QSARs) owes much of its development to the research
carried out by Corwin Hansch, from the 1960s [23]. Hansch equation related the potency
of a biological effect with lipophilic, electronic and steric properties, Since the 1960s,
QSAR analysis focused more and more on the development of theoretical variables that
are not derived from experiments, the so called molecular descriptors [24]. The
development of a solely theoretical and computerised description of the molecular structure
and its properties (i.e. theoretical molecular descriptors) was partly made possible by
progresses in informatics, as well as increase in the power of computers. This development
lead to the definition of a vast number of descriptors as well as more advanced machine
learning methods, spanning from the simpler multi-linear regression to support vector

machine, random forest and artificial neural network models [25].

3.2 Considered endpoints

Table 2 lists the 11 endpoints that have been considered; briefly described in paragraphs
3.21-3.26.
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321 Bioconcentration Factor
The Bioconcentration Factor (BCF) estimates the tendency for a xenobiotic to concentrate
inside living organisms and it is defined as the process of concentration of the chemical
from the water phase through non-dietary routes, such as absorption from respiratory

surfaces (e.g. lungs/gills) or skin [4].

3.2.2 Ready Biodegradability
Biodegradability is a key process that controls the environmental fate of chemicals and, as
a consequence, potential exposure ways for living organisms to many xenobiotics. One of
the most important ways for estimating biodegradation is the determination of the so-called
“ready biodegradability” (RB) parameter, which comes from a stringent first-tier
assessment, providing a binary classification whether the substance rapidly degrades in the

environment [5].

3.2.3 Environmental persistence in Sediment, Soil and Water
Differently from the relatively cheap and fast RB assays, these high-tier simulation studies
are carried out when the substance’s degradation half-life (in a given environmental

compartment) value needs to be evaluated [26].

3.2.4 Short-term aquatic toxicity on Algae, Daphnia and Fish

These tests aim to estimate the short-term toxicity against three species belonging to
different trophic levels, considered to be representative of the aquatic ecosystem. Briefly,
the test organisms are exposed to the study substance via contaminated water media, and
the following effects are measured: (i) for Algae, the substance’s growth inhibition effect
is considered, expressed as median effective concentration (EC50) measured at 72 hours;
(ii) for Daphnia, immobilization is recorded at 48 hours and expressed as median effective
concentration (EC50); (iii) for Fish, the median lethal concentration at 96 hours is
measured (LC50).
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3.25 Short-term toxicity on Rodent
The aim is to estimate the short-term toxicity to rodent via oral administration route. The
REACH requires its assessment even for small tonnages. Consequently, this endpoint is
one of the most commonly performed animal test despite its ethically debatable interest,

which reflects its much higher data availability compared to the other endpoints [6].

3.2.6 Androgen and Estrogen receptor binding
An endocrine disrupting chemical is an exogenous substance that alters the functions of
the endocrine system and consequently causes adverse effects. In the framework of the
“Collaborative Estrogen Receptor Activity Prediction Project” (CERAPP) and
“Collaborative Modelling Project for Androgen Receptor Activity” (CoOMPARA) [11,12]
international workgroups, a large number of compounds were tested for their potency to

disrupt the AR/ER signaling pathway chains.

Table 2. Selected endpoints and data availability.

REACH ) Model Training External
section Endpoint Acronym type set set
Bioconcentration factor BCF REG 1263 31
Ready biodegradability RB CLS 3069 362
Env. fate Persistence in sediment SedP CLS 436 131
Persistence in soil SoilP CLS 630 909
Persistence in water WatP CLS 466 140
Algae acute toxicity AlgaeTox REG 1231 228
Ecotox. Daphnia acute toxicity DaphniaTox REG 2083 249
Fish acute toxicity FishTox REG 2152 193
Rodent acute toxicity RodentTox REG 11191 197

Human tox. Androgen receptor binding AR binding  CLS 1661 3882
Estrogen receptor binding ER binding ~ CLS 1661 5795
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3.3 Publicly available data sources

Several online freely available databases were queried for experimental data on REACH-

relevant endpoints. A brief description is here provided:

ChEMBL.: manually curated, freely available database of bioactive molecules with
drug-like properties. It brings together chemical, bioactivity and genomic data to
aid the translation of genomic information into effective new drugs. The database
is unique because of its focus on all aspects of drug discovery and its size,
containing information on more than 1.8 million compounds and over 15 million
records of their effects on biological systems. It was relevant for AR and ER
binding.

ECHA: European Chemicals Agency database storing all REACH registration
dossiers. The database can be queried to download experimental data on all
REACH endpoints. It counts more than 22°000 registered substances. It was
queried for all endpoints.

Already existing tools: VEGA [19], EPI Suite [21], TEST and OPERA [27],

possessing several models on different properties and their training sets are, most

of the times, easily accessible. They were relevant for all endpoints except for AR
and ER binding.

NITE [28]: Japanese National Institute of Technology and Evaluation (NITE), it
contains useful information about environmental fate endpoints, such as BCF and
RB.

PubChem [29]: database of chemical molecules and their activities against
biological assays. The system is maintained by the National Center for
Biotechnology Information (NCBI), a component of the National Library of
Medicine, which is part of the United States National Institutes of Health (NIH). It
counts more than 90 million compounds. As ChemBL, it was relevant for AR and
ER binding.

QSAR Toolbox [30]: tool specifically developed for performing read-across in the

context of REACH (Appendix 1.1). It was relevant for all endpoints except for AR
and ER binding.
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3.4 Data curation

To cross-check available chemical structure notation (i.e. SMILES) and retrieve missing
notations (for instance when only CAS/EC number was available) the PubChem project
was queried using automatized KNIME [31] workflows (Appendix 1.2). PubChem is
currently the biggest freely accessible database containing chemical structures and
identifiers and experimental measurements.

A serious source of error that can highly affect the quality of the model is related
to wrongly represented structures. Certain aspect of chemical representation, such as
stereochemistry, valence, charges and some functional groups notation (e.g. nitro groups;
Figure 4) must be taken into account and such conventions must be homogeneously apply
to all available compounds. This chemical structure “standardization” has been performed
through the KNIME workflow (Appendix 1.3).

Figure 4. Example of chemical structure standardization.
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3.5 ISIDA descriptors

The Laboratory of Chemoinformatics of the University of Strasbourg has developed
fragment descriptors consisting of sequences and augmented atoms of the atoms’ element
symbol as part of their chemoinformatics suite, named In Silico design and Data Analysis
(ISIDA) [32]. ISIDA descriptors are highly configurable, as the user can decide to generate
different types of descriptors (descriptor spaces, DS) based on different fragmentation

patterns: sequences of increasing lengths or augmented atoms of different radiuses (Figure

21



5). With this approach, several tens of different DS are generated and the most appropriate

one is chosen by Genetic Algorithm (GA) [33] optimization.

Figure 5. Example of ISIDA descriptors.
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3.6  Genetic Algorithm

The GA has been employed in order to select the most appropriate set of DSs and, at the
same time, tune the SVM hyperparameters [34] cost and gamma. GA algorithm is inspired
by evolutionary theory by Darwin. In genetic algorithm approaches (Figure 6) to parameter
space searches, chromosomes are a concatenation (vector) of the currently used operational
parameter values. To each chromosome, a fitness score is associated, reporting how
successful model building was when the respective choice of parameters was employed.
Higher scoring chromosomes (parameter configurations) represent better fitness, and are
allowed to preferentially generate “offspring”, by cross-overs and mutations, that are

predisposed to result in new, potentially improved chromosome configurations.

The fitness (objective) function (SVM model quality score) to be optimized by
picking the most judicious parameter combination should accurately reflect the ability of
the resulting model to extrapolate/predict instances not encountered during the training
stage, evaluated by 3-fold cross-validation (CV). The better the performance of this model

in CV, the higher its fitting score and, as consequence, its probability to generate offspring
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by cross-overs with other fit chromosomes. This translates into accumulation of well-cross

validating models in the population, over time.

Figure 6. General workflow of the genetic algorithm process.
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3.7 Employed machine learning methods

3.7.1 Support Vector Machines

The goal of the Support Vector Machine (SVM) [34] algorithm is to find an hyperplane in
an N-dimensional space (N = the number of features) dividing the training data into two
subsets corresponding to the experimental (binary) classes. As stated, this problem has
many degenerated solutions. A second constraint is added: the optimal hyperplane
maximizes the margin, i.e. the maximum distance between data points of both classes.
Finally, if the classification problem involves more than two classes, the SVM algorithm
is repeated for each class against all the others.

The number of features influences the dimension of the hyperplane: if the number
of input features is 2, then the hyperplane is just a line; if it is 3, then the hyperplane
becomes a two-dimensional plane; etc. Support vectors are data points that are closer to

the hyperplane and influence the position and orientation of the hyperplane. When SVM is
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employed as regression method, it is normally referred as Support Vector Regression
(SVR). Similarly to the classification case, the SVR defines a solution to the regression
problem based on instances of the training set. The function to optimize tolerates errors as
long as they are smaller than an epsilon value and is linear with the error outside. As a
consequence, the solution is based only on a subset of the training set whose members are
called support vectors.

SVM models were generated with LibSVM and were employed for regression and
classification models.

3.7.2 Random Forest
Random Forest is an ensemble learning method for classification and regression tasks that
is constituted of a multitude of random trees [35]. The model’s prediction result from a
consensus of the predictions provided by each individual tree. The idea is to combine weak,

relatively uncorrelated individual predictors into a strong one.

To achieve this result, Random Forest uses the technique of bootstrap aggregation
(bagging). Bootstrapping is a sampling technique that choses, with replacement, k samples
out of the n samples available, which are then selected as training instances for the
individual learner. This strategy limits the degree of correlation between the random trees
of the forest. Aggregating consists in combining the predictions of the individual learners
together, which can be based on different strategies depending on the problem such as, for

instance, arithmetical average, weighted average, most voted class, etc.

RF models were generated with WEKA and were employed for regression and

classification models.

3.7.3 Naive Bayesian
A Naive Bayes classifier is a probabilistic machine learning model for classification tasks.

It is based on the Bayes formula [25].

P(B|A)P(A
P(4|B) = "L (1)
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According to the theorem, it is possible to find the probability of event A
happening, given that event B has occurred. Here, B is the evidence and A is the hypothesis.
This formula does not help in practice because the evidence B is typically composed of
many more simple events, B;. For instance, B can be a long vector of molecular descriptors,
and individual events B; are the occurrence of a particular value for a given molecular
descriptor. For this reason, P(A|B) is typically under sampled and cannot be computed in
practice. For the same reason, the quantity P(B|A) is difficult to compute too. But it can
be assumed that each event that compose B are independent, which is a “naive”
assumption. In this condition, this quantity factorizes in more simple and better sampled
quantities P(B;|A) that can be evaluated. The naive assumption made here is that the
features (molecular descriptors) are independent: the realization of one particular feature

does not affect the others.

NB models were generated with WEKA and were employed for classification

models.

3.8  Employed tools

3.8.1 KNIME v.4.2
The data mining software Knonstanz Information Miner (KNIME) [31]is a graphical
workbench that allows to create exportable workflows thought the connection of such
called “nodes”. KNIME was used for data extraction and curation, file preparation (training

/ test set split) and results analysis (e.g. computing statistics).

3.8.2 ISIDA/Fragmentor v.2019
ISIDA/Fragmentor [32] has been used to generate ISIDA descriptors.
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3.83 WEKA v.3.9.3
WEKA [36] is a data mining program in Java uphelp by the Machine Learning group at
the University of Waikato, which contains several machine learning algorithms. It has been
used to generate Random Forest (RF) and Naive Bayesian (NB) models.

3.84 LibSVM v.3.21
The LibSVM [34] package developed by Chih-Chung Chang and Chih-Jen Lin, has been
used in this work to build SVM models. SVM hyperparameters (cost and gamma) have

been tuned by GA run.

3.85 ISIDA/ColorAtom v.2019

Interpretation of QSAR model is sought by chemists in order to give mechanist explanation
of the observed phenomenon. However, achieving this, simultaneously with prediction
efficiency is rare. The latter is often achieved using more complex algorithms (RF or SVM)
or a consensus of models which cannot be readily interpreted. Another approach is to use
atomic or fragment increments which sum up over the whole molecule to the predicted
property. The approach developed by Marcou et al. [32] enables the interpretation of
fragment descriptors into atomic increments by analysing partial derivatives of the
predicted value.

An example of ColorAtom coloured graph is shown in Figure 7. Red colour means
that the atom contributes to decrease the predicted property value; while blue means an

increase of its value.
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3.8.6 ISIDA/Predictor platform implementation

This tool is described in detail in section 3.10.

Figure 7. ColorAtom graph example.
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3.9 Publicly available tools

Performances of new models generated in the thesis were compared with those of already
existing tools (VEGA, EPI Suite, TEST and OPERA\). These tools contain several models
predicting various REACH properties and have been generated using different machine
learning methods and approaches to evaluate the AD. This comparison (benchmarking)
was performed on the industrial set compounds used to externally validated our models.

In such a way, it was possible to test all the models on the same set of industry-
relevant compounds. Benchmarking was performed following the rules below:
e Compounds inside the training set of the models were excluded,;
e Only predictions for compounds inside AD were considered. The definition of the
AD varies, depending on the tool;
e Performances were compared based on the RMSE (regression) or BA
(classification) parameters and the AD coveragg, i.e. the percentage of compounds

that felt inside the applicability domain of the model.

3.9.1 TEST v.4.1l
The Toxicity Estimation Software Tool (TEST) [20] contains several models predicting
physicochemical and ecotoxicological properties. Its predictions are based on a consensus

of different machine learning methods including hierarchical clustering, single model (a
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single multiple linear regression model), Food and Drug Administration (FDA) method,
nearest neighbour. Concerning applicability domain, TEST estimates toxicity using
different methods. Before any cluster model can be used to make a prediction for a test
chemical, the program checks whether the chemical falls within the AD for the model. For
the consensus method, the predicted toxicity is estimated by taking an average of the
predicted toxicities from the above QSAR methods (provided the predictions are within
the respective AD). The uncertainty in the overall prediction is calculated for each method.
A benchmarking with TEST was possible for the following properties: BCF, DaphniaTox,
FishTox, RatTox.

3.9.2 VEGAVv.1.15

The VEGA [19] platform contains several QSAR models for various endpoints using
different machine learning algorithms. The implementation of these models in VEGA
allows an estimation of the reliability of each prediction through the Applicability Domain
Index (ADI), which is a parameter that is calculated in a way independent from the QSAR
model and ranges from O (for the lowest level of confidence, i.e. the molecule is out of the
applicability domain of the model) to 1 (for the highest level of confidence). Only
compounds with an ADI > 0.85 (i.e. high reliability) were included. VEGA was employed
in benchmarking for the following endpoints: BCF, RB, AlgaeTox, DaphniaTox, FishTox,
RatTox, SedP, SoilP, WatP.

3.9.3 EPI Suite v.4.1
The Estimation Programs Interface suite [21] contains several models for estimating
environmental and ecotoxicity endpoints. The main drawback of this tool is a completely
absence of an AD verification. Despite some indications are available, such as a simple
molecular weight range limit, no automatic AD evaluation is carried out and therefore the
users cannot easily use its predictions for dossier registration. Benchmarking with EPI

Suite was carried out for: BCF, RB, AlgaeTox, DaphniaTox and FishTox.
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3.9.4 OPERAV.2.5
OPERA [27] is an open-source application collecting several models. In principle, the same
models proposed by EPI Suite have been update with the introduction of more data and an
AD verification. The latter is performed using two methods: (i) similarity threshold
between the query compound and training set compounds; and (ii) leverage approach.
OPERA was used for benchmarking on: BCF and RB.

3.10 ISIDA/Predictor platform implementation

The ISIDA/Predictor platform, accessible through the Laboratory of Chemoinformatics

website (http://infochim.u-strasbq.fr/cqgi-bin/predictor reach.cqi), is an online webservice

storing all generated models. The user can either draw a query molecule or upload several
compounds via SDF files. The platform automatically standardizes the query compound
according to the defined rules and the prediction is then performed. A 4-grade reliability
assessment (outside AD, Average, High, Optimal) is associated to each prediction, as a
function of the combination of two independent scores: (i) the % of applied individual
models (the higher, the more reliable the prediction is); (ii) the standard deviation between
the predictions (the lower, the more reliable).

A desktop version of ISIDA/Predictor has been delivered to Solvay as well for
internal use. This version includes the additional QPRF generation feature which is
essential to speed up the registration process under REACH. The QPRF (or QSAR
prediction reporting format) is a report, done according to REACH guidelines, which
contains all the information needed by the authorities to evaluate the quality of a QSAR
prediction, such as, for instance, the AD assessment, a mechanistic interpretation, model’s
description, etc. The report is automatically filled in and can be directly implemented in a

REACH dossier, justifying the model’s prediction.
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1V Results

The results chapter is divided into three part: part 1 lists all the 11 modelled
endpoints; part 2 reports the application of GTM for data visualization and screening; part

3 provides an example of application of ISIDA/Predictor.

4.1 Part 1- Modelled endpoints

4.1.1 Bioconcentration Factor
In environmental risk assessment, the Bioconcentration Factor (BCF) is a key parameter to
be considered. It estimates the tendency for a xenobiotic to concentrate inside living
organisms. It is defined as the process of concentration of the chemical from the water
phase through non-dietary routes, such as absorption from respiratory surfaces (e.g.
lungs/gills) or skin. Xenobiotics’ concentration inside organisms can thus reach hazardous
levels, with long-term deleterious effects, such as modified behaviors or impacts on
reproduction. Organisms at the upper of the food-chain (e.g. fishes) are particularly in
danger and, as a direct consequence of their consumption, man might be the ultimate

impacted species.

In this study, we analyzed whether models built on public data-only show
satisfactory performances when challenged to predict a set of compounds from Solvay’s
portfolio (“industrial set”). We aimed at getting a more precise picture of the performances
of publicly available models. We observed that the performances in this industrial context
could decrease, and we hypothesized that the applicability domain of these tools did not
match sufficiently our industrial set. Therefore, we collected the most comprehensive BCF
dataset to date by merging several publicly available datasets. It was used to generate a
new BCF-model, which was then externally validated on the industrial set’s compounds

and benchmarked against already existing tools.

Models showed mixed performances on the industrial compounds. Tools with the

highest accuracy are associated to a very narrow applicability domain, while models with
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more permissive applicability domain performed worse as measured by the RMSE (root
mean squared error). Our model scored the same accuracy (RMSE of 0.58 logBCF units)
of the most accurate tool and preserved a much larger applicability domain (78 % data
coverage). However, a general limitation of all models failed to predict some chemical
families, such as siloxanes and highly phosphonated compounds: these are unique
industrial set chemotypes which are under-sampled in the public data. In order to
compensate the individual-model limitations, the use of all the available tools in consensus

IS encouraged to reduce uncertainty and improve the accuracy.

In conclusion, our model can be a valid alternative tool for predicting the
bioconcentration factor property within an industrial context, which is characterized by a
much more heterogeneous chemical space than compounds coming from past studies,

involving most of the time classical pollutants.

" 4.1.1 Facteur de Bioconcentration

Dans I'évaluation des risques environnementaux, le Facteur de Bioconcentration (BCF) est
un parametre clé a considérer. Il estime la tendance d'un xénobiotique & se concentrer a
I'intérieur des organismes vivants. Il est défini comme le processus de concentration du
produit chimique depuis la phase aqueuse par des voies non alimentaires, comme
I'absorption des surfaces respiratoires (par exemple les poumons / branchies) ou la peau.
La concentration des xénobiotiques dans les organismes peut ainsi atteindre des niveaux
dangereux, avec des effets délétéres a long terme, tels que des modifications du
comportement ou un impact sur la reproduction. Les organismes situés en haut de la chaine
alimentaire (par exemple, les poissons) sont particulierement exposés et, par voie de

conséquences, I'nomme pourrait étre l'ultime espece touchée.

Dans cette étude, nous avons analysé si les modéles basés sur des données
publigues montrent des performances satisfaisantes lorsqu'ils sont utilisés pour prédire un
ensemble de composés du catalogue de I’entreprise Solvay («Industriel set»). Notre
objectif etait d'obtenir une image plus précise des performances des modeéles existants et
libres d’acces. Nous avons observé que les performances dans ce contexte industriel

pouvaient diminuer, et nous avons émis I'hypothése que le domaine d'applicabilité de ces
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outils ne couvrait pas ces exemples industriels. Par conséquent, nous avons collecté
I'ensemble de données BCF le plus complet a ce jour en fusionnant plusieurs jeux de
données accessibles au public. Celui-ci a été utilisé pour générer un nouveau modele BCF,
qui a ensuite été validé selon une procédure de validation externe, sur les composes du jeu

de données industriel et comparé aux outils existants.

Les modeles ont montré des performances mitigées sur les composés industriels.
Les meilleures précisions sont associées a un domaine d’applicabilité étroit, tandis que les
modeles avec plus permissifs sont associés a des erreurs (racine de 1’erreur quadratique
moyenne, RMSE) plus grandes. Notre modele a obtenu les mémes performances (RMSE
de 0,58 unités logBCF) que le meilleur parmi les autres modeles et est prédictif sur une
plus grande diversité de composés (la couverture des données de test atteint 78%).
Toutefois, une limitation générale de tous les modeles concerne certaines familles
chimiques, telles que les siloxanes et les composés hautement phosphonés. Ces chémotypes
industriels sont spécifiques aux exemples industriels et sont sous-échantillonnés dans les
bases de données publiques. Afin de compenser les limites des modéles individuels,
I'utilisation de tous les outils disponibles simultanément dans un consensus est encouragée.

Ceci a pour effet de réduire l'incertitude et d’améliorer la précision.

En conclusion, notre modéle est un outil alternatif pour prédire la propriété du
facteur de bioconcentration dans un contexte industriel, contexte qui se caractérise par un
espace chimique beaucoup plus hétérogene que les composés issus d'études antérieures,

impliquant la plupart du temps des polluants classiques.
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The bioconcentration factor (BCF), a key parameter required by the Received 9 April 2019
REACH regulation, estimates the tendency for a xenobiotic to Accepted 29 May 2019
concentrate inside living organisms. In silico methods can be KEYWORDS

valid alternatives to costly data measurements. However, in the QSAR/QSPR; generative
industrial context, these theoretical approaches may fail to predict topographic mapping

BCF with reasonable accuracy. We analyzed whether models built (GTM); bioconcentration
on public data only have adequate performances when chal- factor; REACH;
lenged to predict industrial compounds. A new set of 1129 com- benchmarking

pounds has been collected by merging publicly available datasets.
Generative Topographic Mapping was employed to compare this
chemical space with a set of new compounds issued from the
industry. Some new chemotypes absent in the training set (such as
siloxanes) have been detected. A new BCF model has been built
using ISIDA (In Sllico design and Data Analysis) fragment descrip-
tors, support vector regression and random forest machine-
learning methods. It has been externally validated on: (i) collected
data from the literature and (i) industrial data. The latter also
served as benchmark for the freely available tools VEGA, EPISuite,
TEST, OPERA. New model performs (RMSE of 0.58 log BCF units)
comparably to existing ones but benefits of an extended applic-
ability, covering the industrial set chemical space (78% data
coverage).

Introduction

In environmental risk assessment, the bioconcentration factor (BCF) is a key parameter
to be considered. It estimates the tendency for a xenobiotic to concentrate inside living
organisms and it is defined as the process of concentration of the chemical from the
water phase through non-dietary routes, such as absorption from respiratory surfaces
(e.g. lungs/gills) or skin. Xenobiotics’ concentration inside organisms can thus reach
hazardous levels, with long-term deleterious effects, such as modified behaviours,
impacts on reproduction, which in the end may lead to endanger some species [1].
Organisms at the upper of the food-chain (e.g. fishes) are particularly in danger and, as
a direct consequence of their consumption, man might be the ultimate impacted
species. BCF is defined as the ratio of the steady state concentration of the chemical
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in aquatic organisms (such as fish, mussels, algae, etc.) and the corresponding freely
dissolved chemical concentration in the surrounding water media (Equation (1)) [2].
Cr

BCF = C_w (1)
Where Cr and C,, are the concentrations at steady state of the chemical inside the fish
and the water media, expressed in mg/Kg and mg/L, respectively. The duration of the
uptake phase is usually 28 days, however it can be lengthened if necessary, or shortened
if the steady-state has been reached earlier [3]. BCF is expressed in L/Kg. Typically the
fish is used as test model due to its importance in the food web and the availability of
standardized guidelines.

The determination of BCF is a key requirement for regulatory frameworks such as the
European Union Registration, Evaluation, Authorisation and Restriction of Chemical
Substances Regulation (REACH, EC No 1907/2006) for the PBT/vPvB (Persistent
Bioaccumulative and Toxic/very Persistent very Bioaccumulative) substances assessment.
In Europe, there are two relevant bioconcentration thresholds which will usually deter-
mine if a substance fulfills the ‘bioaccumulative’ criterion or the ‘very bioaccumulative’
criterion. The former is set at a BCF value of 2000 L/Kg (or 3.3 log unit), while the latter is
set at 5000 L/Kg (or 3.7 log unit). Below 2000 L/Kg, a substance is not considered to
possess a significant bioaccumulation potential [4]. Due to the expensive nature of BCF
experiments and the high number of required animals, the use of in silico methods is
encouraged [5].

During the past decades, empirical predictors have been proposed to estimate the
BCF, which are mainly based on the octanol-water partition coefficient (log P) alone
[6-9], as it is a key-determining factor linked to this property. More recently, other types
of molecular descriptors have been employed [8,10,11], and many QSAR models are
nowadays implemented in commercial or freely-available software, such as VEGA (Virtual
models for property Evaluation of chemicals within a Global Architecture) [12], Toxicity
Estimation Software Tool (TEST) [13], Estimation Program Interface (EPISuite) [14], OPERA
(OPEn (g)saR App) [11], Chemical Properties Estimation Software System (ChemProp)
[15], CORAL [16], ACD/log D Suite [17] and OASIS-Catalogic [18]. Table 1 summarizes
other authors’ evaluations of the models considered in the present study. The number of
publications is quite high, and performances can be very different, with RMSE (Root
Mean Square Error) values reaching almost one unit of difference for the same model.
This depends on the type of chemical families, but also on the user choices about the
Applicability Domain (AD) thresholds (since for some of the tools the AD is not clearly
defined), and the exclusion of compounds already present in the model’s training set.
The work of Petoumenou et al. [19], is the only one to evaluate data coming from the
industrial context, i.e. extracted from the European Chemical Agency (ECHA) database
[20]. These results are of particular interest because: (i) during the REACH registration,
the available data was reviewed by the industries before submission and, eventually,
new data was generated to comply with endpoint requirements; (ii) this database could
potentially be more representative of the chemical families of industrial interest. To our
knowledge, this study is unique of its kind. Yet, only a small subset of ECHA was used
and there is no consideration of overlaps between the test set and the training sets of
the benchmarked tools. In addition, most of the abovementioned tools queried the
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Table 1. Overview of the existing tools considered for benchmarking.

Model performance

Model General information Compounds r* RMSE Reference
VEGA Caesar Tr. set = 473 95 078 062 [12/"°
Descriptors = 2D phys-chem descriptors 30 0.85 0.58 [21]
Algorithm = Radial basis function neural nerwork 538 - 091 [22]
(RBFNN) 45 - 157 [22]
78 0.8 046 [19]
162 - 133 [23]
VEGA KNN Tr. set = 832 152 - 081 [12™
Descriptors = 2D phys-chem descriptors 45 - 091 [23]
Algorithm = k-Nearest neighbours (kNN) 95 0.78 047 [19]
98 - 066 [23]
VEGA Meylan Tr. set = 662 146 079 066 [12]°
Descriptors = 2D phys-chem descriptors 32 0.64 0.87 [21]
Algorithm = Linear regression 349 - 099 [22]
45 - 0.99 [22]
76 0.78 043 [19]
97 - 064 [23]
TEST Tr. set = 589 - 076 066 [131"°
Descriptors = CDK descriptors® 291 0.5 0.88 [21]
Algorithm = consensus between algorithms
EPISuite Tr. set = 527 527 083 050° [14™°
Descriptors = lop P, functional groups 158 082 059° [14]"°
Algorithm = Linear regression (log P-based with 432 0.59 0.87 [21]
functional groups as correction factors) 349 - 094 [22]
45 - 133 [22]
145 045 0.89 [19]
OPERA Tr. set = 685 157 0.83 0.64 [11]

Descriptors = PaDEL Descriptorsb
Algorithm = k-Nearest neighbours (kNN)

MD information has been taken from the model’s documentation manual. *Chemistry Development Kit (CDK) descriptors
[24]. PPaDEL-Descriptors software [25].

same sources of data for training set collection [11-14]. This may limit their applicability
when confronted to chemotypes of industrial interest which are new or under-sampled
in the public data.

In this study, we analyzed whether models built on public data only show satisfactory
performances when challenged to predict a set of compounds extracted from Solvay’'s
portfolio (‘industrial set’). We aimed at getting a more precise picture of the perfor-
mances of publicly available models. We observed that the performances in this indus-
trial context could decrease, and we hypothesized that the applicability domain of these
tools did not match sufficiently our industrial set. As a consequence, we tried to collect
the most comprehensive BCF training set by merging several publicly available datasets,
used to generate a new BCF-model (ISIDA Consensus’). ISIDA Consensus was then
externally validated on the industrial set’s compounds and benchmarked against the
already existing tools (Table 1).

The Office of Economic Cooperation and Development (OECD) principles [26] for
building robust QSAR models were followed. The five OECD principles are: (i) a defined
endpoint; (ii) an unambiguous algorithm; (iii) a defined applicability domain; (iv) appro-
priate measures for goodness-of-fit, robustness, and predictivity; (v) and a mechanistic
interpretation, if possible. In this study, the endpoint (BCF) is well defined, Goodness-of-
fit, robustness and predictivity were evaluated using internal 3-fold Cross-Validation (CV)
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and against two external test sets. The AD of the models was defined using two
complementary methodologies.

Our developed model is available as a web-application, called ‘ISIDA Predictor’ [27],
available at the Laboratory of Chemoinformatics webpage: http://infochim.u-strasbg.fr.

Methods

The general workflow is shown in Figure 1. Its main steps will be detailed in the present
study.

Data collection and curation

Bioconcentration experimental data was collected from multiple sources, including several
public-available databases and literature research. Mined databases comprised: the
Japanese National Institute of Technology and Evaluation (NITE) [28], the European
Chemical Industry Council Long Range Initiative (CEFIC LRI) [29], the Canadian Domestic
Substance List (DSL) [30] and the ECOTOXicology knowledgebase of the US Environmental
Protection Agency (ECOTOX EPA) [31] (accessed through the OECD Toolbox [32]), and the
database of ECHA (accessed through the eChem portal [33]). Additional values were
retrieved from literature from the works of Arnot and Gobas [6], Dimitrov et al. [34] and
Fu et al. [35]. Finally, a BCF dataset was provided by Solvay. Table 2 reports statistics for
the given database. Detailed analysis of the populating chemotypes is given in the
dedicated Generative Topographic Maps (GTM) paragraph in the results section.
Training and test set public data are available in the SI; the industrial set compounds
cannot be provided due to confidential data.

Data collection
& curation

Molecular
descriptors

! !

[Data analysis] [ Modelling ]

[ Banchmarion Validation on ]
e Industrial data

Software implementation: ’

- Predictor
- ColorAtom

Figure 1. General workflow.
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Table 2. Sources of BCF data. The upper portion of the table is referring
to the curated dataset before their merging, while the bottom part
reports the number of compounds that constituted to the training and
the external test sets.

Nb of compounds log BCF range (min/max)

Database

NITE 268 -1.0/44
CEFIC LRI 521 -0.8/5.3
Canadian 470 -0.7/5.8
ECOTOX 470 -2.1/5.5
ECHA chem 145 -1.0/43
Literature 993 -1.7/6.0
Industrial set 72% -1.1/49
Curated dataset

Training set 1129 -1.0/6.0
External set 204 -1.7/59
Industrial set 31? -0.1/3.1

? the number is reduced since a portion of the industrial set was already comprised
in the training set.

The following entries were excluded: inorganic, polymer, Unknown or Variable com-
position, Complex reaction products or Biological materials (UVCBs) compounds.
Furthermore, when the BCF value was not reported in L/Kg of body weight, not
calculated on a whole-body measurement-basis or the test was performed on a non-
recommended OECD species, the value was excluded. Since these are important study
conditions that have to be explicitly stated [3], entries which were missing such details
were exclude as considered of lower reliability. Chemical structures were standardized
(Supplementary information, section 1.1) and duplicates were removed. When multiple
data points were available, the median was taken as representative value. The median
was computed according to the recommendation of the norm 1SO16269-7. The median
is the value at middle rank of the ordered set of observations if the set size is odd. If the
set size is even, it is the arithmetic average of the two middle ranked values of the
ordered set. Notice that for some substances the range of BCF values could reach two
log units (Supplementary information, section 1)

Generative topographic mapping

Data visualization approaches are powerful tools that allow us to reduce a high-
dimensional space to two or three dimensions which can be then more easily analyzed.
For previously published BCF models, visualization techniques (e.g. Principal Component
Analysis, PCA) were mainly employed as methods for defining the AD of the model
[36-38], but were less often used to characterize in greater details the model’s training
set composition. Herein, we employed Generative Topographic Mapping, a non-linear
mapping method [39]. As advantage, it introduces a probability density function for data
distribution, which allows to assess the robustness of the information contained in the
generated maps [39,40]. The outcome of GTM is a 2D map on which the analyzed
chemical space is projected. A data property can be added as a 3™ axis forming such
called activity (property) landscape. Each landscape position is coloured according to the
property value (either continuous or categorical); this value is the average property of the
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data subset concerned by that position on the landscape. A more detailed description of
GTM underlying algorithms can be found elsewhere [39-42]. The 2D generative topo-
graphic maps were generated with ISIDA/GTM tool [27] using ISIDA descriptors selected
for the best SVM model.

Encoding of chemical structures

ISIDA Property-Labelled Fragment [43] descriptors were employed. There are several
types of ISIDA descriptors: (i) sequences of connected atoms and bonds, or atoms only
or bonds only, (ii) ‘augmented’ atoms representing either a given atom with its close
environment or selected groups of atoms and bonds, and (iii) atom triplets [44]. This led
to the generation of several dozens of different descriptor spaces corresponding to
different fragment sizes and topologies [45].

Model generation and validation

Support vector machine (SVM) with linear and radial basis function (RBF) kernels and
random forest (RF) machine learning approaches were implemented. SYM models were
generated with libSVM (v. 3.22) [46]; instead, WEKA (v. 3.9.1) [47] was used for RF models.
The SVM parameters (Cost and Gamma) corresponding to minimal RMSE in 3-fold cross-
validation were found in genetic algorithm driven optimization. The RMSE was esti-
mated using a dedicated 3-fold CV, isolated from the cross-validation procedure used to
evaluate the final models, mentioned below. Concerning RF, default parameters of
WEKA were selected, with the number of generated trees equal to 150.

Figure 2 depicts the modelling workflow: (1) dozens of ISIDA Descriptor Spaces (DS)
were generated (different fragment sizes and topologies); (2) for each DS, SVM and RF
models were generated (individual models); (3) individual models were ranked accord-
ing to their RMSE in 3-fold CV; (4) the best performing individual model for the given DS
was retained; (5) SVM models (linear kernel) were analyzed in consensus to detect the
outliers; and (6) ‘final models’ were re-built.

Each individual model was evaluated in 3-fold CV by random splitting. This
procedure was repeated 5 times after reshuffling. Thus, BCF for each molecule was
predicted 5 times. The r* and RMSE values were assessed for each repetition followed

@ @)
Descriptor Spaces (DS) or each DS, SVM and RF
Training set Sequences, atom centred P models are generated
fragments, etc. "Individual models"

v
E Ranking by CV
Outliers Top model per DS |
analysis is retained =

Figure 2. Modeming workflow.
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by their averaging (see Table 4). During CV, no optimization of method parameters
was performed. The absence of chance correlation was checked through the
Y-scrambling procedure [48]. In this procedure, the log BCF values are randomly
assigned to molecular structures followed by the model building. This procedure
was repeated 150 times.

For the outliers, compounds consensually characterized by very high fitting errors (i.e.
difference between experimental and fitted value) were ranked by the Errorscore; =
[1&ix, where € is an absolute value of prediction error of k-th model for compound i.
k

Compounds with the highest scores were poorly predicted by most of the individual
models. For some of poorly predicted molecules we discovered that their experimental
BCF values were very different from those of their closest analogues in the training set.
Unfortunately, due to missing references in databases used, we were not able to retrieve
detailed information about BCF measurements for these molecules. Therefore, by pre-
caution, we excluded the 34 compounds from the training set, which corresponded to
some 3% of the initial training set (see the list of excluded compounds in SI). Thus, the
final training set consisted of 1095 molecules.

The analysis of model performance relies on the r* determination coefficient and the
RMSE parameters (Equations (2) and (3) respectively).

21— Zin:1(Yi—)7i)2

()
Yiim1 (yi - yavg)2

n ~\2
RMSE = Zi = (:I — yl) (3)

Where y; is the experimental value of the i-th chemical; y; is the predicted value of the
i-th chemical; ya,4 is the mean of the experimental values of the compounds in the
dataset and n is the number of compounds in the dataset.

Ensemble modelling and applicability domain

Individual models served to generate the global ISIDA consensus, and the final result is
given by the calculation of the median across all the models, excluding out of AD
predictions. The AD was evaluated based on a fragment control assessment: if a test
molecule is found to have one fragment (i.e. a determined sequence of atoms and/or
bonds) which is not present in the individual model, that molecule is marked to be
outside the AD. The number of fragments involved in given individual model depends
on selected fragmentation scheme. It varies from 300 (atom centred fragments with
radius 1) to 5917 (sequences of atoms and bonds up to 8 atoms length), with an average
of 2157. In the consensus calculation, those compounds that are predicted by less than
25% of the total generated models, are considered out of AD. Furthermore, a second
assessment based on the Median Absolute Deviation (MAD) was implemented. This can
be interpreted as a convergence degree: the lower the MAD, the more the models are in
agreement, increasing the overall confidence of the predicted value. It was decided to
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set a cut-off value for the MAD equals to 0.5: predictions above this threshold was
considered of lower quality and marked as out of AD.

Predictions graphical interpretation: ColorAtom

A related utility of the ISIDA Predictor online platform [27] is the ‘ColorAtom’ [49]: this
tool assigns a colour to each atom of the predicted molecule depending on how much,
from a mathematical point of view, it contributed to the property value, either by
increasing or decreasing it. The assigned colours are not meant to reflect how the
given structural features are correlated to the modelled property in reality; more pre-
cisely, it is a graphical representation of how the model interpreted the molecule for
calculating the predicted value. To make a comparison, this approach could be com-
pared to the fragment constant (or group contributions) models [7], which associate
numerical quantities to a specific substructure of the molecule (single atoms, functional
groups, etc.) that are subsequently arithmetically added. Here, two examples of this
application are reported: (i) comparison of excluded outliers to structurally analogue
compounds in order to highlight the specific groups at the root of the observed
differences; (ii) identification of putative chemotypes that may be associated to specific
BCF value ranges.

Benchmarking on industrial data

Predictive performance of the ISIDA Consensus model on the industrial set of 72
compounds was compared with that of publicly available tools VEGA (Caesar, Knn and
Meylan), TEST, EPISuite and OPERA tools [11-14]. Since industrial set and related training
sets were partially overlapped, only non-overlapping compounds from the industrial set
were considered for assessing the models’ performance (r* and RMSE). Moreover, the
molecules outside of applicability domain of a given model were discarded
(Supplementary information, Section 4).

We also made several pairwise comparisons of ISIDA Consensus with other tools. Each
pairwise benchmarking was performed on the part of the industrial set which didn't
overlap with the two related training sets. Unfortunately, a common subset for all tools
satisfying the above condition was too small for obtaining meaningful statistics.

Results
Overview of the curated dataset

At the end of the data cleaning procedure the number of compounds with unique BCF
value was reduced to 1333. Of them, 1129 unique compounds were identified as coming
from verified sources and constituted the training set; while, 204 compounds were
considered as of lower reliability since there was not enough information to assess
their quality (e.g. only CAS and experimental value was provided with no other stated
information) and were excluded from the training set. These compounds were used in
external validation (i.e. the ‘External set’). The Industrial set followed the same data
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curation procedure, and a total of 72 compounds were retained. Statistics of the curated
datasets are reported in Table 2.

GTM: industrial set visualization and description

Figure 3 shows the GTM log BCF property landscape of the training set onto which the
molecules from the Industrial dataset have been projected (represented by black dots);
some examples are provided in Table 4 and Supplementary information, section 2. Here,
all the 72 compounds were projected. In addition, the associated property-landscape
helps characterizing the molecules’ BCF profile.

Relevant areas populated by the industrial compounds are marked by numbered
boxes. Examples of are showed in Table 3.

e Region 1 is very heterogeneous, including as diverse species as biphenyl deriva-
tives, fluorinated compounds and aliphatic hydrocarbons. Some examples of herein
residing unique industrial set chemotypes are: (i) long chain N-alkyl acetamides
(CAS 111-57-9, 149879-98-1); (ii) aliphatic aliphatic polyphosphonic acid (CAS 2235-
43-0, 29329-71-3); (iii) substituted phosphine (CAS 603-35-0); (iv) fluorinated

logBCF
4
o ' 163702-05-4 ‘
— L]
— 163702-06-5
3
2
1

.‘o

1 .‘ ‘ 1

=1 0 1

Figure 3. Log BCF property landscape of the training set. GTM is representing the density-modulated
log BCF-landscape derived from training set compounds, onto which the industrial set compounds
have been projected (black dots). White areas are empty regions of the map. Numbered boxes
identify map regions of interest, subject to discussion.
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Table 3. Example of compounds populating a given region, as represented by the GTM map
(Figure 3). For each region, some molecules are given as examples. Below the molecule, its CAS
no. and its experimental value are reported, respectively.

Region Molecular structure

1 HO\ OH F F
b T 4
OH r \\O HO. d ¥
OQ"/\/N T O,
HO/ w c F 4
F ‘F
o
F
13

OH

2235-43-0 | 1.34 603-35-0 | 1.47 1190931-27-1 | 0.44
2 u,c\ “N,c\ /cnl,] CHy H,c\ /CH, . '_m "
We— s S CHy T T TR
;1\ /1. H’C\J \/CH, o™
"f‘;/ﬁ\‘ ;i:’f"" W=y 5 \/“\cn,
u,(/ ‘\(n, H,(,/ \:H,
540-97-6 | 4.01 556-67-2 | 4.09

Molecules on white area

163702-06-5 | 2.96 163702-05-4 | 2.96

Table 4. Summary of model statistics in cross-validation and for the external set. For the external set,
performances were evaluated with and without out-of-AD compounds. Results are reported for each
machine-learning method separately and for the consensus model. In brackets, the standard devia-
tion computed in the 3-fold CV is reported for the r* and RMSE values averaged over the number of
repetitions.

External set

3-fold CV All compounds Inside AD-only
Model algorithm r RMSE Y-scrb highest I’ r RMSE r RMSE
SVM (Linear) 0.72 (0.068) 0.78 (0.044) 0.043 0.66 0.92 0.64 0.86
SVM (RBF) 0.75 (0.039) 0.68 (0.029) 0.042 0.77 0.76 0.75 071
RF 0.74 (0.038) 0.68 (0.041) 0.170 0.73 0.82 0.74 0.72
ISIDA consensus 0.75 (0.043) 0.71 (0.051) - 0.76 0.77 0.75 0.72

sulfonamides (CAS 90076-65-6); (v) branched halogenated compounds with esters
and ethers groups (CAS 642461-49-2, 1190931-27-1).

e Regions 2 include mainly silicon-containing compounds (e.g. CAS 540-97-6, 556-67-
2 and 155633-54-8). Since average BCF values in these areas are high, these
compounds can be potentially considered of concern.

Notice that the abovementioned compounds are absent from the training set of all
studied models and contain new chemotypes which are under-sampled in the public
data.

Finally, the two labelled molecules falling into the white area should be considered.
These compounds (CAS 163702-06-5, 163702-05-4 respectively) have a multimodal
responsibility pattern, partially residing into several disparate nodes which are
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populated by analogous training set compounds. Their (X,Y) position on the map marks
the barycenter of their responsibility pattern (Supplementary information, section 2).

Descriptor selection and model fitting

Table 4 summarizes the performances on training, cross-validation and on the external
set for each employed algorithm and the ISIDA consensus model.

Multiple BCF values reported for some compounds were used to estimate experi-
mental errors of BCF measurement. For each compound with at least 2 data points,
a BCF range (maximum - minimum over reported values) was calculated, and the
average of these range widths over concerned compounds was interpreted as experi-
mental error. Estimated in such a way experimental variability was + 0.61 log units,
which is not too far from the value of + 0.75 log unit reported by the work of Dimitrov et
al. [34] for another BCF dataset. This experimental error is in line with the RMSE
calculated in cross-validation in this work (0.71).

After the Y-scrambling procedure, shuffled models were characterized by very low
determination coefficient values in cross-validation. The only exception could be ran-
dom forest, since it exhibits a significantly higher r compared to the other methodol-
ogies. Nevertheless, it is still much lower than the lowest r? of all random forest models
(0.170 vs 0.697). A decrease of performances (r* and RMSE) in cross-validation versus the
external set can be noticed, however the statistics remain comparable.

Performances on the industrial set

Table 5 reports the results on the industrial set for all the evaluated tools. Two ‘scenarios’
can be identified: (i) all the three VEGA models perform slightly better than ISIDA
Consensus but, at the same time, their applicability domain is very narrow; (i) OPERA
and EPISuite have comparable or even higher coverage than ISIDA, but their accuracy is
much worse. ISIDA Consensus may not be the best model in terms of precision (higher
RMSE of 0.58, compared to the best VEGA model of 0.44) but, at the same time, has
a much larger data coverage (ISIDA 78% vs VEGA 19%). Thus, ISIDA Consensus has an
extended AD, comparable to TEST, OPERA and EPISuite, while preserving a much lower
RMSE.

Table 5. Performances of the models on the industrial set.

Model % ofAD Coverage® rdet. RMSE
ISIDA Consensus 78 (25/31) 0.55 0.58
VEGA Caesar 16 (8/49) 0.70 0.58
VEGA Knn 37 (16/43) 0.74 0.50
VEGA Meylan 19 (9/47) 047 0.44
TEST 79 (37/47) 0.49 0.86
EPISuite 98 (45/46) 0.34 0.98
OPERA 75 (37/49) 0.40 0.91

®the first number is the data coverage in %; the number between the parentheses is
the ratio of the number of compounds inside AD and the total number of
compounds.
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Concerning performances on the mentioned unique chemotypes (Table 3): (i) silox-
anes fell outside the AD of all the models except for VEGA Knn and TEST. However, even
for the latter their prediction is error-fraught because the VEGA training set contains
only one siloxane and the AD definition of TEST is very permissive; (ii) all the models
failed to predict phosphonate compounds due to AD limitations; (iii) ISIDA Consensus
was the only model that scored good performances on the chemotypes exemplified in
Table 3.

Figure 4 shows the ‘ISIDA Consensus-predicted vs experimental’ scatter plot for the
31 ‘Industrial’ compounds not used for training. Overall, predictions are well correlated
to experimental values with the exception of one outlier, out of the AD (red point).
Based on the % of accepted according to AD individual models, a ‘traffic-light’ prediction
confidence score has been assigned. Three levels were defined: <25%, between 25 and
70% and >70%. They correspond to ‘low (out-AD)’, ‘moderate’ and ‘high confidence’,
respectively.

Table 6 reports the results of the pairwise comparison between ISIDA Consensus
versus all the other tools individually. With this evaluation, only predictions for com-
pounds not in the training set, inside the AD and predicted by both tools were
compared. In this case, ISIDA Consensus always shows a better accuracy except when
compared with VEGA KNN (0.55 vs 0.45 of RMSE, respectively).

In the case of VEGA Caesar and VEGA Meylan, the number of compounds in common
was too limited to provide a meaningful statistical evaluation and the comparison was
not performed.

# High confidence ‘_,.-"
5 @ Moderate confidence ",.-"
@ Low confidence o
| | 2*RMSE limits
4
o
L 4
®

/ T /
3 155633-54-8 /
®

/ o ege /
2725226 °
2 / ¥ A 50849-47-3/
) s ® °

s @ . 99607-70-2
/ e * .
1 /’ o @9 . 6419198
& .

ISIDA Consensus PRED BCF

4 (] 1 . 3 4 5
Industrial dataset EXP BCF

Figure 4. ISIDA consensus predicted vs industrial set experimental values. The data points labels
correspond to the CAS numbers of chemicals. Red, orange and green dots = prediction confidence
score based on the % in-AD models (<25%; 25-70% and >70%, respectively); Blue lines indicate +
2*RMSE value given by 3-fold cross-validation.
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Table 6. Pairwise comparison for overlapping compounds between ISIDA consensus vs
the given tool. Comparisons against VEGA Caesar and VEGA Meylan were not consid-
ered due to the very limited number of overlapping compounds (4 and 3 respectively),
which led to unmeaningful statistics.

Pairwise comparison between: Compounds in common rdet. RMSE
ISIDA Consensus vs 9 0.77 0.55
VEGA KNN 0.84 0.45
ISIDA Consensus vs 19 0.73 0.63
TEST 0.57 0.80
ISIDA Consensus vs 23 0.78 0.59
EPISuite 0.45 0.92
ISIDA Consensus vs 18 0.72 0.63
OPERA 0.68 0.67

ColorAtom: Graphical representations

Table 7 reports one example of BCF atom contribution-coloured outlier (CAS 2528-38-3;
with an absolute error of 1.0 log BCF) by contrast to similar but not mispredicted com-
pounds. Molecules showed the same colouration pattern, with the phosphate group and
the aliphatic residue being correlated to a decrease and increase of the BCF, respectively.
Same colouration scheme means that the molecule was predicted using the same learned
rules. However, albeit the compared species appear to be similar according to the
employed ISIDA atom fragmentation scheme, the chemist will observe that the outlier,
an ester, is a neutral species whilst the counterexamples have one ionizable -OH left and
will be anionic species at neutral pH. Note that ISIDA fragmentation schemes using
pharmacophore typing [45] are able to make this difference, but were not employed in
this study. Additional examples are provided in Supplementary information, section 3.
Figure 5 shows the ColorAtom graph for phosmet (CAS 732-11-6). In this example, all
the carbons of this molecule (also S and P, but to a lesser extent) positively contribute to
BCF, oxygens and nitrogen are strongly correlated to a decrease of BCF values. Such
a colouration pattern can also be found in other training set molecules, where these

Table 7. ColorAtom output. Example of excluded outlier with its most structurally similar com-
pounds (based on Tanimoto score) with the respective experimental and predicted BCF. The
colouration is directly referred to the modelled property (i.e. the log BCF value): blue and red
atoms played a role in increasing and decreasing it, respectively.

Top part — Outliers colouration

o o_o P~ - S
oo ©® o © o R g o 0 b0
R o OO o@ g @ 00 i
€ [ORGRC]
o ® Oo o ® 00
Excluded outlier 2 00 o °r~ =
2528-38-3 | 2.48 x 1.48 107-66-4 | 0.59 x 0.17 298-07-7 | 0.62 x 0.18 i
o0 © 0 +
oo © o @ o © O
Increasing influence
® ® 0 © 6 © 00 © Strong
©® o0 © Q ( ) Weak increasing influence
oo [e3C]
78-42-2| 1.04 x 0.28 126-72-7 | 0.38 x 0.14 Wesk décrecslog bfhotois

O Strong decreasing influence
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O\ © )

Figure 5. ColorAtom graph of phosmet. The colour scale is reported in Table 7. Numbered ellipses
mark some recurring chemotypes subjected to discussion.

chemotypes (in particular, substructures no. 1, 2 and 3, as marked by black ellipses) are
systematically following the same trend. Section 3 of Supplementary information reports
several examples of compounds containing the mentioned structural features. Molecules
in which chemotypes no. 1 and 2 are representing significant substructures are asso-
ciated to lower BCF values (e.g. CAS no. 60-51-5, 2497-06-5 and 85-41-6); while the
opposite happens for chemotype no. 3 (e.g. CAS no. 84-65-1, 829-26-5 and 40766-31-2).
This is consistent with the more general trend between increasing hydrophobicity and
bioaccumulation: the former is generally increased by aromatic rings [7].

Discussion

Applied models showed mixed performances on the industrial set. As a general trend,
most accurate models have narrow data coverage (VEGA), while models with a more
permissive AD had higher RMSE values (EPISuite and TEST). ISIDA Consensus was the
only model that managed to obtain a good balanced between accuracy and data
coverage, especially on unique chemotypes (Table 3), suggesting that its training set is
more heterogeneous and diversified compared to the other tools. As a common flaw, all
models failed to predict siloxanes and phosphonate compounds, either due to AD
limitations or prediction accuracy. The presence in our collected training set of some
silicon-containing molecules was not enough to support extension the AD to other
siloxanes. Furthermore, current methods have some difficulties in measuring and inter-
preting the bioaccumulation property for siloxanes [50]. The compound drometrizole
trisiloxane (CAS 155633-54-8; Figure 4) can be taken as example, as it showed
a prediction error of almost 2 log units. This molecule is structurally similar to drome-
trizole (CAS 2440-22-4) and octamethyltrisiloxane (CAS 107-51-7), both of which are
substructures of the former. These two compounds are present in the training set with
experimental BCF values of 2.47 and 3.73 log units, respectively. Thus, the models
learned to correlate these specific sequences of fragments to the respective experimen-
tal values, and drometrizole trisiloxane prediction is in the range of these two chemicals
(2.86 log units). On the other hand, the experimental value reported in the REACH
dossier (EC no. 422-940-4) is much lower (0.93 log units).
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ColorAtom can be used as a supporting tool to interpret the model output (OECD
principle #5): it was employed here to identify key structural features which were
recursively correlated to the same alteration trend the property BCF.

As a novelty, (i) molecules were encoded with ISIDA Fragments, a type of descriptors
never used to model this property; (ii) different machine learning algorithms were
employed (i.e. support vector machine and random forest), in contrast with most of
the already existing tools (Table 1). With the benchmarking, ISIDA Consensus proved to
possess several strong-points, such as a bigger training set, a wider AD coverage and
good accuracy (Table 6) when compared to the other models. As several structural
features were identified as unique to the industrial set; model performances will benefit
from the addition of such compounds, thanks to an extended AD.

Conclusions

In the this work we developed a new ISIDA Consensus QSAR model for the bioconcentra-
tion factor property (BCF). The model follows the OECD principles [26] and has been
internally and externally validated on two independent test sets, one of which contains
relevant chemical families of the industrial context. Models showed mixed performances
on the industrial compounds. Tools with the highest accuracy are associated to a very
narrow AD; while models with more permissive AD had much worse RMSE. Our model
scored the same accuracy (RMSE of 0.58 log BCF unit) of the most acute tool and preserved
a much larger AD (78% data coverage). However, as a general limitation all models failed to
predict some chemical families, such as siloxanes and highly phosphonate compounds:
these are unique industrial set chemotypes which are under-sampled in the public data. In
order to compensate the individual-model limitations, the use of all the available tools in
consensus is encouraged to reduce uncertainty and improve the accuracy.

Comparing the performances of ISIDA Consensus with the ones from Table 1, it is
possible to conclude that our findings corroborate those of other authors.

e Our results (Table 6) agree with Petoumenou et al. [19], who examined the
performance of VEGA and EPISuite on data provided by the industry.

e The RMSE values of TEST and EPISuite we found are similar with those reported in
Table 1.

¢ Finally, OPERA has never been evaluated by other authors, being a newly published
model. The RMSE we obtained was higher than the one provided in the model's
documentation.

In conclusion, our model can be a valid alternative tool for predicting the bioconcentra-
tion factor property within an industrial context, which is characterized by a much more
heterogeneous chemical space than compounds coming from past studies, involving
most of the time classical pollutants.
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Erratum

Table 7. ColorAtom output. Example of excluded outlier with its most structurally similar
compounds (based on Tanimoto score) with the respective experimental and predicted
BCF. The colouration is directly referred to the modelled property (i.e. the log BCF value):
blue and red atoms played a role in increasing and decreasing it, respectively.
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4.1.2 Ready Biodegradability
Biodegradability is a key process which controls the environmental fate of chemicals and,
as a consequence, potential exposure of living organisms to many xenobiotics. Indeed,
chemicals which are persistent in the environment can potentially cause a long-term
exposure to human beings and ecosystem on a large scale, for instance by reaching the

marine environment and being transported to remote areas.

One of the most important way for estimating biodegradation is determination of
the so called “Ready Biodegradability” (RB) binary classification parameter,

corresponding to either slow (nB) or fast (B) biodegradation.

With the ending of the last REACH registration deadline (June 2018) for low-
volume substances (between 1-100 tonnes) and the sharing of REACH study results, new
information is available. However, except for the recently published OPERA (2018), the
training sets (from 200 to 589 compounds) of the existing models is quite limited, and they
have not been updated since several years. In this work we present a new and extended

dataset for RB, issued from merging several public data sources.

A benchmarking against the already existing tools showed that the new model
scored the best predictive power (BA = 0.77), followed by VEGA, EPI Suite, OPERA and
ToxTree tools, with BA values of 0.74, 0.71, 0.69, 0.68 and 0.67, respectively. This
comparison demonstrated that each model has specific strong points: for example, VEGA
is able to correctly classify true positive B compounds whereas EPI Suite has the highest
data coverage among all the tools and our models the best accuracy. Nevertheless, an
important common downside to all the models was the limitation to predict several
compounds classes of industrial interest (e.g. siloxanes and organophosphonium cations),
because their training sets lack such instances.

Therefore, collected public data and the Industrial set have been merged into the
“Global” data set containing 3146 compounds which is the largest RB set reported so far

covering important representative chemotypes of the industrial context.
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‘_ ’ 4.1.2 Biodégradabilité primaire

La biodégradabilité est un processus clé qui contréle le devenir des produits chimiques
dans I'environnement et, par conséquent, les voies d'exposition potentielles des organismes
vivants a de nombreux xénobiotiques. En effet, les produits chimiques persistants dans
I'environnement peuvent induire une exposition a long terme pour les étres humains et
I'écosysteme a grande échelle (par exemple, en atteignant le milieu marin et puis en étant

transportés jusque des zones reculées).

L'un des principaux moyens d'estimer la biodégradation d’un composé¢ est la
détermination de la biodégradabilité primaire (Ready Biodegradability, RB) un parametre

de binaire, correspondant a une biodégradation lente (nB) ou rapide (B).

Avec la fin de la période d'enregistrement de REACH (juin 2018) pour les
substances de faible volume (entre 1 et 100 tonnes) et le partage des données qui en
découlent, de nouvelles informations sont disponibles. Cependant, a I'exception du modeéle
OPERA récemment publié (2018), les jeux d’entrainement des modeles existants sont
assez limités (de 200 a 589 composés) et n'ont pas été mis a jour depuis plusieurs années.
Dans ce travail, nous présentons un nouveau jeu de données plus étendu concernant le RB,

résultant de la fusion de plusieurs sources de données publiques

Une analyse comparative avec les outils existants a montré que le nouveau modeéle
avait un meilleur pouvoir prédictif (précision balancée, BA = 0,77), suivi des outils VEGA,
EPI Suite, OPERA et ToxTree, (BA =0,74,0,71, 0,69, 0,68 et 0,67, respectivement). Cette
comparaison a démontré que chague modele testé a des points forts spécifiques: par
exemple, VEGA est capable de classer correctement les composés B positifs tandis que
EPI Suite est utilisable sur la plus grande gamme de composeés chimiques, et nos modéles
ont lameilleure précision. Néanmoins, tous les modéles sont en défaut concernant plusieurs
classes de composés d'intérét industriel (par exemple les siloxanes et les cations

organophosphonium), parce qu’ils sont essentiellement absents des jeux d’entrainement.

Par consequent, les données publiques collectées et le jeu de données industriel
ont été fusionnées dans un jeu de données «Global» contenant 3146 composeés. C’est le
plus grand jeu de données concernant le RB a ce jour, couvrant d'importants chémotypes

représentatifs du contexte industriel.
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The European Registration, Evaluation, Authorization and Restriction of Received 1 October 2019
Chemical Substances Regulation, requires marketed chemicals to be Accepted 21 November 2019
evaluated for Ready Biodegradability (RB), considering in silico predic- KEYWORDS

tion as valid alternative to experimental testing. However, currently  osaR/QspR; generative
available models may not be relevant to predict compounds of indus- topographic mapping (GTM);
trial interest, due to accuracy and applicability domain restriction ready biodegradability;
issues. In this work, we present a new and extended RB dataset environmental fate; reach;
(2830 compounds), issued by the merging of several public data benchmarking

sources. It was used to train classification models, which were exter-

nally validated and benchmarked against already-existing tools on

a set of 316 compounds coming from the industrial context. New

models showed good performances in terms of predictive power

(Balance Accuracy (BA) = 0.74-0.79) and data coverage (83-91%).

The Generative Topographic Mapping approach identified several

chemotypes and structural motifs unique to the industrial dataset,

highlighting for which chemical classes currently available models

may have less reliable predictions. Finally, public and industrial data

were merged into global dataset containing 3146 compounds. This is

the biggest dataset reported in the literature so far, covering some

chemotypes absent in the public data. Thus, predictive model devel-

oped on the Global dataset has larger applicability domain than the

existing ones.

Introduction

Biodegradability is a key process which controls the environmental fate of chemicals and,
as a consequence, potential exposure ways for living organisms to many xenobiotics.
Indeed, chemicals which are persistent in the environment can potentially cause a long-
term exposure to human beings and ecosystem on a large scale [1], for instance by
reaching the marine environment and being transported to remote areas [2].

One of the most important ways for estimating biodegradation is determination of the
so called ‘Ready Biodegradability’ (RB) binary classification parameter, corresponding to
either slow (nB) or fast (B) biodegradation. There are several standardized methods for RB
determination. Among them, the most widely used guideline is the Organization for

CONTACT G. Marcou @ g.marcou@unistra.fr; A. Varnek @ varnek@unistra.fr
0 Supplemental data for this article can be accessed at https://doi.org/10.1080/1062936X.2019.1697360.
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Economic Co-operation and Development (OECD) 301 [3], which contains several screen-
ing experimental protocols that aim to evaluate if, under aerobic conditions, the test
substance can undergo easy and rapid biodegradation in the environment. Another well-
known guideline is the method developed by the Japanese Ministry of International Trade
and Industry (MITI) [3,4]. These protocols are considered as stringent first-tier assessments
providing a binary classification, rather than measuring the actual degradation rate. Pass
criteria of such tests are so strict that it can be assumed that compounds with a positive
outcome will rapidly and completely biodegrade [3].

In Europe, with the implementation of the Registration, Evaluation, Authorization and
Restriction of Chemical Substances (REACH, EC No 1907/2006) Regulation in 2007 [5],
companies that produce or import substances for more than 1 ton/year need to provide
information about their biodegradability, which would then be used for their classification
as well as the evaluation of their level of exposure in the environment. The kinetic of
biodegradation is also a key property in the identification of Persistent, Bioaccumulating
and Toxic (PBT) or very Persistent and very Bioaccumulating (vPvB) compounds [6]. Thus,
RB studies are generally performed in the very first stage of the registration process, with
the aim to conclude on the absence of a possible PBT/vPvB behaviour. REACH encourages
the use of alternative methods for data gap filling, including weight of evidence and read
across approaches, as well as QSAR modelling [5]. However, biodegradation results are
often highly dependent upon the test protocol and suffer of low reproducibility, espe-
cially when carried out by different laboratories [2,7,8]. The lack of homogeneous and
high-quality datasets is a concern when generating predictive models.

Several RB models have already been built in the past years [2]. Some of them are
nowadays implemented in freely-available tools, such as Virtual models for property
Evaluation of chemicals within a Global Architecture (VEGA) [9], Estimation Program
Interface (EPI) Suite [10], OPEn (q)saR App (OPERA) [11] and ToxTree [12]. A brief overview
of mentioned tools is reported in Table 1.

With the ending of the last REACH registration deadline (June 2018) for low-volume
substances (between 1 and 100 tonnes) and the sharing of REACH study results (https://

Table 1. Already existing freely-available tools on ready biodegradability.
Training set  Test set

Model General information size size Sn Sp BA Ref.
VEGA Descriptors: molecular fragments 582 120 077 087 082 [9]
Algorithm: rule-based approach 491 0.76 091 0.84 [13]

416 086 09 088 [14]
757  0.89 093 091 [15]
92 0.98 047 0.73 [16]

EPI Suite (Biowin 3 & 5)  Descriptors: molecular fragments 200 & 589° 295 0.87 073 0.8 [10]
Algorithm: rule-based & linear model 416 092 0.76 0.84 [13]
consensus 199 06 083 072 [16)

733 068 075 072 [17]
110 048 09 0.69 [18]

OPERA Descriptors: 2D descriptors 1197 41 0.81 0.77 079 [11]
Algorithm: k-NN
ToxTree Descriptors: molecular fragments - 21 0.65 0.79 0.72 [16]

Algorithm: rule-based approach

Sn = Sensitivity, Sp = Specificity, BA = Balanced Accuracy; °RB output is given as consensus between Biowin3 and Biowin5
models output: the two models’ training sets size are reported.
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iuclidé.echa.europa.eu/reach-study-results), new information is available. However,
except for the recently published OPERA (2018), the training sets (from 200 to 589
compounds; Table 1) of the existing models is quite limited, and they have not been
updated since several years.

In this work, we present a new and extended dataset for RB, issued from merging
several public data sources. Gradual fusion of public and industrial data drove the fitting
of successive models on steadily growing training sets, which were externally validated on
a set of compounds coming from the industrial context (‘Industrial set’). We generated
three models: the first one (‘ECHA model’) is trained only on data coming from the ECHA's
registration dossiers, which have gone careful reliability assessment; the second one (‘All-
Public model’) comprises several sources of public data and has a much higher data
coverage potential, yet at the expense of less verified data; and the last one (‘Global
model’) is the most comprehensive model that we could build: it comes from the merging
of the ECHA, the All-Public and the Industrial sets. This latter model includes important
chemotypes of the industrial context; it has a much bigger training set (3146 compounds)
compared to the existing tools (Table 1) and enlarged applicability domain.

Our models are available through the online In Silico Design and data Analysis (ISIDA)/
Predictor platform [19], available at the Laboratory of Chemoinformatics webpage: http://
infochim.u-strasbg.fr/cgi-bin/predictor_reach.cgi.

Methods
Modelling workflow

The modelling workflow is shown in Figure 1; the main steps will be detailed in the
present section.

Data collection

Experimental data were collected from several sources: the ECHA database (accessed
through the eChem portal [20]), the NITE database [4] and the training sets of already
existing tools VEGA, EPI Suite and OPERA [9,10,11]. An industrial dataset (Industrial set) on
biodegradation was provided by the industrial partner Solvay. Finally, additional RB data
(Literature set) were collected from the work of Cheng et al. [21] and Mansouri et al. [22]. For
the ECHA database, only reliable study results (i.e. with a Klimisch score [23] of 1 or 2) were
retained. Curated datasets (i.e. after the data curation and standardization procedure below
described) are listed in Table 2. Throughout the text, the three generated models (i.e. ‘ECHA’,
‘All-Public’ and ‘Global’) will be referred by the name of the dataset used for their generation.
Both ECHA and All-Public models were externally validated on the Industrial set. Due to their
different training set sizes, the number of truly external Industrial set compounds dropped
from the initial 834 to 443 and 316, respectively. External validation for the Global model
was carried out on the Literature set.

All collected public data (i.e. the All-Public set) is available on Zenodo (https://doi.org/
10.5281/zenodo.3540701); the Industrial set compounds cannot be provided due to
confidentiality reasons.
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Figure 1. General workflow. (1) merging of collected data from multiple sources; (2) ISIDA descriptors
are computed; (3) GTM is employed to compare the structural space of the datasets; (4), (5) individual
models are trained using several machine learning algorithms and combined in consensus; (6) the
Industrial set is used for external validation; (7) benchmarking against already existing tools; (8) the
‘Global set’ is issued by the merging of all collected data and (9) models are implemented in the
Predictor platform.

Table 2. Datasets after data curation and standardization procedure.

Dataset Size B/nB Ref.
NITE 861 203/658 [4]
VEGA 582 279/303 [9]
EPI SUITE 870 380/490 [10]
OPERA 1197 515/682 [
Industrial set 834 392/442 -
Literature set 362 36/326 [21, 22]
ECHA 1671 733/938 [20]
All-Public® 2830 1097/1733 -
Global® 3146 1197/1946 -

2All-Public dataset results from merging the NITE, VEGA, EPI SUITE, OPERA and ECHA datasets; “Global
dataset, results from merging the All-Public and the Industrial datasets. The name of a particular model
corresponds to the name of the dataset (e.g., ECHA model was trained on ECHA dataset).

Data curation and standardization

To check Simplified Molecular Input Line Entry System (SMILES) correctness, two online
services were queried: the CADD Group Chemoinformatics Tools and User Services [24]
and PubChem [25]. SMILES were generated, standardized and then cross-compared.
Compounds with non-matching standardized SMILES were excluded. Chemical standar-
dization included: removal of salts/solvents, neutralization, removal of explicit hydrogens,
aromatic representation for benzene rings, removal of stereo information, transformation
of -nitro and -sulpho containing groups into canonical notation. Standardization was
done with workflow implemented in the Konstanz Information Miner (KNIME) software
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[26]. Duplicates removal was based on standardized SMILES matching. In case of multiple
values per compound, the most voted class was attributed; when the repartition of the B/
nB votes was between 40 and 60%, the entry was excluded (See section 1 and Table S1 in
Supplementary Material (SM)). In total, 125 compounds with discordant RB measurement
were discarded by this filter. The full list, together with predicted values (by Global model),
is available in Table S2 of SM. All non-relevant results (e.g. different guideline than OECD
301 or MITI-l, sampling time below the guideline threshold, etc.) as well as mixtures,
polymers and ‘Unknown or Variable composition, Complex reaction products or Biological
materials’ (UVCBs) were omitted. When the global statement of the RB behaviour was not
reported but the percentage of biodegradation measured at 28 days (as requested by the
OECD guideline) was available, it was manually assigned according to the relevant guide-
line threshold. The Literature set was processed in the same way. Out of the originally
reported 1855 compounds, 362 were new to the Global model’s training set. Four
compounds were excluded as tested for inherent biodegradability; two compounds had
wrongly reported labels which, after verifying the respective ECHA registration dossier,
were corrected (Table S3 in SM). This dataset is highly unbalanced towards the nB class, as
only 11% of compounds are readily biodegradable.

Molecular descriptors

ISIDA Property-Label Molecular descriptors [27] were employed. A total of 63 ISIDA
descriptor spaces (DS) were generated, corresponding to molecular fragments of
different sizes, topologies and ‘colouration’ (elements labels, physical properties
mapped on the atoms explicit or implicit chemical bonds, atom pairs). Among this
entire pool, the DS that led to the generation of under-performing models (see Model
generation paragraph) were filtered out, retaining 19 DS (Table S4 in SM). The number
of fragments depends on selected fragmentation scheme of the given DS. It varied
from 203 (IA(2-6), sequences of atoms up to 6) for the ECHA model to 15872 (lIA(2-5),
atom-centred fragments with radius 5) for the Global model, with an average of 6115
(SM, section 2).

Generative topographic mapping (GTM)

The chemical space of the collected datasets was compared by means of the generative
topographic mapping (GTM) approach [28], a dimensionality reduction method allowing
the visualization of data distribution on a two-dimensional (2D) map. A data property can
be added as a third axis forming such called activity landscape. Each landscape ‘spot’ on
the 2D map is coloured according to the property value (either continuous or categorical);
this value is the average property of the data subset concerned by that position on the
landscape [29]. Through GTM, two types of analysis were carried out: (i) a pairwise
comparison between the Industrial set versus the other datasets (ECHA, NITE, training
set of freely-available tools and All-Public); (i) a characterization of how B and nB
compounds are positioned in the chemical space. For the former case, the goal was to
identify which chemotypes were unique to the industrial context, not represented by
public data; for the latter, to visualize how the biodegradation outcome is related to the
mapped structural space.
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The DS (IIAB 2-3) [27] associated to the best support vector machine (SVM) radial basis
function (RBF) model (in terms of Balanced Accuracy, BA) was chosen. The manifold [29]
was built on the whole available chemical space (i.e. Global set). A genetic algorithm [30]
was used for optimizing (with the goal to maximize the BA predicting B/nB compounds)
the characteristic parameters of the GTM: the number of RBF function centres (m = 19), the
RBFs width (w = 1.6) and the number of grid points, i.e. the dimension of the map (k = 19).

Model generation

SVM with linear and RBF kernels, Random Forest (RF) and Naive Bayesian (NB) machine
learning approaches were implemented. SVM models were generated with libSVM (v.
3.22) [31]; WEKA (v. 3.9.3) [32] was used for RF and for NB models. More details of the
modelling process are available in Section 2 of SM, briefly:

(1) The given dataset has been randomly split (70/30%) into training and test set, and
the 63 ISIDA DS were computed;

(2) SVM, RF and NB models have been fitted. SVM parameters (Cost and Gamma) were
tuned by an independent genetic algorithm [29]driven optimization. For RF and
NB, default WEKA settings were selected.

(3) Steps 1 and 2 were iterated 10 times. Resulting models with BA <0.70 (averaged
over the iterations) were discarded.

(4) Only the best model (in terms of BA) among the three machine-learning
approaches was kept for the given DS, unless it's BA <0.7. Fragmentation type
and optimal method parameters corresponding to the best model were retained
for the ‘individual models’ preparation.
Finally, ensembles of ‘individual models’ were built on the whole dataset, each based
on fragmentation and method parameters selected in previous step. Internal valida-
tion was carried out by three-fold CV by random splitting, performed for each
individual model. This procedure was repeated five times. Statistics were assessed
for each repetition followed by their averaging (Table 3). The influence of chance
correlations was checked through Y-scrambling [33] (with 15 iterations).

—
w
-

This process was repeated for each dataset, i.e. ECHA, All-Public and Global, resulting into
19 individual models each. Performances were evaluated through Sensitivity (Sn),
Specificity (Sp) and BA metrics, refer Section 2 in SM (Table S5).

Applicability domain

The applicability domain was evaluated through the ‘fragment control’ assessment
(Figure 2, step 2): if a test molecule is found to have one fragment (i.e. a determined
sequence of atoms and/or bonds) which was not encountered in any of the training
molecules, that molecule is marked to be outside the applicability domain, since it is
uncertain whether the model’s predictions can be extrapolated to this not yet charted
chemical space zone [27].

59



SAR AND QSAR IN ENVIRONMENTAL RESEARCH @ 7

Table 3. Model performances.

External validation”

Model Algorithm BA in 3-fold CV Sn Sp BA Data coverage (%)
ECHA SVM 0.80 0.83 0.72 0.81 81

RF 0.81 0.82 0.77 0.8 80

NB 0.78 0.84 0.7 0.77 78

Consensus 0.79 (0.014)* 0.81 0.77 0.79 80% (353/443)
All-Public SVM 0.79 0.78 0.71 0.74 89

RF 0.8 0.76 0.72 0.74 92

NB 0.77 0.81 0.62 0.72 89

Consensus 0.79 (0.028)* 0.82 0.67 0.74 91% (293/316)
Global SVM 0.8 0.62 0.84 0.73 85

RF 0.81 0.61 0.86 0.74 83

NB 0.77 0.61 0.84 0.72 81

Consensus 0.81 (0.014)° 0.65 0.85 0.75 85% (307/362)

For each algorithm and the consensus, the Sensitivity (Sn), Specificity (Sp), Balanced Accuracy (BA) values are given in
3-fold CV and external validation (on the Industrial set). ®In brackets, the standard deviation averaged over the CV
repetitions is reported. “The Industrial set was used as an ‘external test set’ for ECHA and All-Public models; while the
Literature set was used as an ‘external test set’ for the Global model.

Step 1 SVM RF NB
y
Exclusion of out-of-AD models
Step 2
(fragment control)
v
Exclusion of close-to-random
Step 3 -
threshold predictions
A\ 4
Y Stepd C(?ns?r\sus output
& reliability assessment

Figure 2. Consensus model workflow. Step 1: decisions of each algorithm (Support Vector Machine,
Random Forest, Naive Bayesian) are merged together; Step 2: predictions of models that failed the
fragment control check are not considered; Step 3: if the percentage of votes for a given class is
between 40 and 60% (i.e. close to random), the decision is rejected; Step 4: the consensus value is
given with a reliability assessment.

Ensemble modelling

The graphical representation of the employed consensus strategy is shown in Figure 2.
The ensemble decision is taken by a majority vote from the individual models of the
employed algorithms (i.e. SVM, RF and NB) considered together (step 1). All out-of-AD
decisions (based on the fragment control) are not considered for the voting (step 2). If the
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percentage of the votes for a given class (B/nB) was between 40 and 60%, the decision
was rejected since close to random (step 3); otherwise, the consensus prediction is given,
together with its reliability (step 4) [34]. The data coverage is calculated as a ratio of the
compounds accepted at steps 1 to 3 and total number in the dataset.

Benchmarking

Predictive performances on the Industrial set of the ECHA and the All-Public models were
compared with those of the publicly available tools VEGA, EPI Suite, OPERA and ToxTree.
To avoid potential overestimation, compounds already present in the training set of the
given tool (not possible for ToxTree) were excluded. Thus, we selected a common subset
of non-overlapping compounds for benchmarking. In total, seven molecules from the
Industrial set were inside the training set of at least one model, reducing the number of
usable compounds to 309. Moreover, the molecules outside of applicability domain of
a given model were not considered (See Section 4 in SM).

Another benchmarking study concerned comparison of Global model with the publicly
available tools assessed on the Literature set. At the first stage, 77 compounds from the
Literature set overlapping with the training set of, at least, one of the benchmarked tools, have
been excluded and, hence, the calculations were carried out on remaining 285 compounds.
The Literature set together with models’ predictions is reported by Table S6 in SI.

Results
GMT-driven dataset comparison

Two different types of fuzzy categorical landscapes were generated: (/) a ‘dataset compar-
ison’ landscape, displaying chemical space zones occupied exclusively by members of
a given dataset, zones never addressed by that dataset and zones where several datasets
contribute; (i) a two-class classification landscape of B versus nB compounds.

(i) Dataset comparison using generative topographic maps

Figure 3 shows a series of GTMs describing pairwise comparisons of the Industrial set
with VEGA, EPI Suite, NITE, OPERA, ECHA and All-Public dataset. Occupied blue areas are
uniquely populated by Industrial set compounds, while red ones by members of dataset x;
intermediate colours are mixed populated areas. All the maps are characterized by having
several constantly blue spots, indicating that the given areas contain Industrial set-unique
compounds. Some of these areas (identified by rectangle ‘A’, map 6) even persist in the
All-Public map: this provides a graphical interpretation of how the applicability domain
could be extended with the addition of the new compound and clearly shows that there
are some important structural differences between the Industrial set and the training set
of the existing tools. For confidentiality reasons, the Industrial set cannot be disclosed. It
comprises quite heterogeneous chemical structures, from high molecular weight com-
pounds such as long-chain aliphatic esters highly halogenated compounds to much
smaller ones such as simple alkenes. A large portion of them are silicium (e.g. siloxanes),
fluorine (e.g. PFC) and phosphorous (e.g. organophosphonium cations) containing com-
pounds, absent in public data sources. In addition, the All-Public and the Industrial
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Figure 3. Pairwise datasets comparison using GTM. Each GTM map compares Industrial set versus one
of publicly available datasets. Maps are sorted according to increasing size of a public dataset (from
upper left to bottom right). Blue regions are mainly populated by Industrial set compounds; red ones
by the public dataset compounds. White areas correspond to unpopulated regions. The manifold was
prepared with the Global set.

datasets were compared by computing all pairwise Tanimoto similarities (Tc) among all
their compounds (Section 3 in SM), using the DS IIAB(2-3). The average similarity value
between public and industrial data resulted to Tc = 0.405, with the majority of public
compounds (70%) having a Tc <0.6, indicating that the two datasets contain quite
dissimilar compounds.

Finally, it is worth mentioning that there exists a strong overlap of VEGA, EPI Suite,
OPERA and NITE sets: indeed, the models are mainly based on the same sources of data
[4,9,10,11]. On the other hand, the ECHA set has some important structural differences, as
it brings new chemotypes (rectangle ‘B’, map 5).

(ii) Ready biodegradability class landscape

Figure 4 depicts the B/nB class landscape. Readily biodegradable compounds are
mainly clustered into one large area. Despite the fact that these compounds have quite
heterogeneous structures, they share some common features, such as the absence of
halogens, of heavily branched chains and of several aromatic rings. Esters and hydroxylic
functional groups are known factors which increase the likelihood of rapid biodegrada-
tion [35]. It is interesting to observe that, the ECHA set is mainly adding nB entries, as
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Figure 4. GTM ready biodegradability landscape. B compounds are identified by red zones, while nB
by blue ones. The manifold was prepared for the Global set.

compounds in the area delimited by rectangle ‘A’ belong exclusively to this dataset (see
Figure 3, map 5). As a consequence, since this structural information is unknown to the
already existing models (Figure 3, maps 1-4), they may have missed some potentially
relevant rules linked to the biodegradation property.

Model performances

Table 3 reports performances for the three generated models (ECHA, All-Public and Global
model). Internal (three-fold CV and Y-scrambling) and external (the Industrial set) valida-
tion statistics are reported for each machine-learning algorithm and the consensus.
Performances on the Industrial set (BA = 0.74-0.79) are not too different from those
determined by CV (BA = 0.79), which supports the model robustness and absence of
overfitting. In addition, the performance of ‘scrambled’ models is close to the random
threshold (BA = 0.51-0.55; standard deviation among repetitions = 0.12-0.17), which
confirms that models are unlikely to be biased by chance correlations. In external valida-
tion, the ECHA model showed a BA of 0.79 with a data coverage, here defined as the
percentage of reliably predicted compounds (Figure 2) out of the total, of 80% (353 out of
443 compounds); while the All-Public model scored a BA of 0.74 and data coverage of 91%
(293 out of 316). Thus, the latter model has an extended applicability domain at the
expense of a lower accuracy (with a drop in BA of 5%): this supports our starting
hypothesis concerning experimental data reliability. It is important to highlight that the
two models were evaluated on a different set of compounds. Therefore, in order to strictly
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compare performances, an evaluation on exactly the same compounds should be per-
formed. A similar trend was noticed in the benchmarking comparison, which was based
only on the smallest common subset (see ‘Model benchmarking’ paragraph).

Models’ performances evaluated without any AD filter (Figure 2) are degraded, with BA
of 0.73 (Sn =0.81, Sp = 0.66) and 0.74 (Sn = 0.79, Sp = 0.68) for the ECHA and the All-Public
model, respectively.

Even though the enlarged training set of the All-Public model, some chemotypes (e.g.
siloxanes) remained unique to the Industrial set: therefore, the inclusion of new com-
pounds from the industrial context is a necessary step in order to create RB dataset as
comprehensive as possible. For this reason, the Industrial set was combined with the
available public data leading to the ‘Global set’ of 3146 compounds, which, in turn, was
externally validated on the Literature set.

Relatively small value of Sn (0.65, Table 3) resulting from the application of the Global
model on the Literature set can be explained by the imbalance of the latter (the ratio of ‘B’
over ‘nB' is only 0.11). Furthermore, we noticed that the experimental ‘B’ value for some of
the wrongly predicted compound may be uncertain: for instance, CAS 84-65-1 is considered
to be readily biodegradable even though it failed the ‘10-day window’ condition [3]; from
PubChem, [25] CAS 78-48-8 shows very high degradation half-lives in all environmental
compartments; while CAS 88-06-2 (2,4,6-trichlorophenol) is reported to be biodegradable,
despite all other chlorinated phenols family members in collected datasets are nB.

Model benchmarking

Table 4 reports the Industrial and Literature set performances for our models versus the
considered tools. On the former set, considering accuracy and data coverage, the ECHA
and the All-Public models and EPI Suite scored the best performance, with comparable BA
values (0.77, 0.74 and 0.73, respectively). VEGA had one of the highest BA (0.71) as well,
but its data coverage was rather limited to 44%. Furthermore, it has a very good
propensity to recognize B compounds (Sn = 0.95) but tends to be ‘overcautious’ with
the nB class (Sp = 0.48), often mispredicted as B. As a limitation, all models (except for EPI
Suite) failed to predict most part of exclusive chemicals of the Industrial set (e.g. organo-
phosphonium cations), due to applicability domain restrictions. This indicates that the
availability of current public RB data was not enough to cover all the main chemotypes of
the Industrial set, in agreement with the findings of GTM analysis (Figure 3).

Table 4. Benchmarking of different models on the industrial set.

Industrial set Literature set

Model Sn Sp BA Data coverage Sn Sp BA Data coverage
ECHA 0.85 0.68 0.77 83% - - - -
All-Public 0.82 0.67 0.74 91% - - - -
Global - - - - 0.88 0.93 0.91 86%
VEGA 0.95 0.48 0.71 44% 0.87 0.91 0.89 58%

EPI Suite 0.65 0.74 0.69 99% 0.58 0.96 0.77 100%
OPERA 0.71 0.65 0.68 84% 0.83 0.88 0.86 80%
ToxTree 0.61 0.73 0.67 84% 0.58 0.92 0.75 96%

Statistics are computed on the common set of non-overlapping compounds of the Industrial (309) and Literature (285)
sets. Compounds’ out-of-ADs were not considered for performances estimation.
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Figure 5. ColorAtom output representation. Colours refer to sensitivity of classification model to
presence of a given fragment or atom: the darker the colour, the more that fragment (atom) is
important for assigning the molecule to a given class.

All models with the exception of EPI Suite (BA = 0.77) and ToxTree (BA = 0.75) scored very
good performances on the Literature set (BA = 0.86-0.91). Notice that performances of
Global model on the Literature set given in Tables 3 and 4 differ because of different
number considered test set compounds. Thus, Table 3 reports calculations performed on
the entire Literature set (362 compounds), whereas in Table 4 only non-overlapping with
other tools 285 compounds were used. Much higher BA = 0.91 value reported in Table 4
compared to BA = 0.75 reported in Table 3 can be explained by filtering out some noisy
data.

Coloratom: structure-activity dependence analysis

The ‘ColorAtom’ utility assigns a colour code to each fragment or atom showing the Sn of
classification model to its presence in molecular structure [36] For a given fragment, dark
colour shows that its presence is crucial to assign the molecule to a given class, while
completely transparent colour means that the model is insensitive to its presence. As an
example, a graphical representation of Diallyl phthalate (CAS 131-17-9) is shown in Figure
5. It can be noticed that the benzene ring (ellipse A) does not affect the RB outcome, by
contrast to the two carbon chains. The ester and end-chain ethene functional groups
(ellipses B and C) were found to be particularly significant for RB determination. These
functional groups are known to be reactive in the environment [35].

Discussion

Already-existing tools performed worse on the Industrial set (Table 4) when compared to
other evaluations retrieved from the literature (Table 1). Such low performances may be
attributed to the different nature of the compounds of the Industrial set: as also high-
lighted by GTM, there exist some noticeable structural differences between the training
set of the models and the Industrial set compounds. For example, for both VEGA and
OPERA, prediction accuracy reported in the literature was be significantly higher com-
pared to our analysis (average BA of VEGA and OPERA of 0.85 and 0.79 vs. 0.71 and 0.68,

65



SAR AND QSAR IN ENVIRONMENTAL RESEARCH @ 13

respectively). Both the ECHA and the All-Public model scored the best-BA (BA of 0.77 and
0.74) and data coverage (83 and 91%) on the Industrial set. As shown by GTM, the
inclusion of the ECHA dataset brought unique structural features shared with the
Industrial set which were unknown to the other tools. Despite the fact that ToxTree is
a relatively simple ensemble of structural alert rule set, with an AD implicitly limited to
existence of rules that apply to a given compound (otherwise, outcome is ‘unknown’), it
showed reasonable accuracy. In addition, its output provides the set of rules that have
been used to generate the prediction. Data coverage on the Industrial set varies largely,
ranging from 44 to 99% for VEGA and EPI Suite, respectively. However, for the latter, its AD
is not clearly defined [37,38]. It is remarkable that some tools (e.g. OPERA and ToxTree)
have an opposite behaviour in terms of Sn and Sp: ToxTree is biased in favour of B class
assignment, with a higher rate of false positives, while OPERA would rather fail to
recognize some B compounds and thus limits the number of false positives.

Both our models possess several strengths: the ECHA model showed a wide data cover-
age and the best accuracy among the other tools, while the All-Public model has a much
higher data coverage potential, yet at the expense of prediction accuracy (Table 4). The
Global model has a much larger training set (3146 compounds) compared to all the other
already-existing tools (Table 1) and incorporates a significant subset of compounds (316)
which include important chemotypes of the industrial context.

The developed models follow the OECD principles [39]: the endpoint (RB) is well
defined; goodness-of-fit, robustness and predictivity were evaluated using three-fold
CV, Y-scrambling, and external validation [33]; the AD of the models was defined using
a fragment control assessment [27] together with a reliability scoring function.

Conclusions

In this work we reported preparation of new extended datasets for RB and related
classification models (B/nB).

Gradual fusion of public source and industrial data led to successive RB models on
steadily growing training sets. The first ‘ECHA model’ was built on 1671 compounds
collected from the ECHA database. A second ‘All-Public model’ was generated by the
merging of ECHA data with several other public databases, producing a public RB dataset
as comprehensive as possible, counting 2830 compounds. Both models were externally
validated on a set of 316 compounds coming from the industrial context provided by Solvay
(‘Industrial set’). Compared to the ECHA model, the All-Public model showed a decrease in
BA (from 0.79 to 0.74), on one hand, and an improvement in data coverage which is
consistent with the addition of new information (from 83 to 91%), on the other hand. The
former suggests that noise has been added with the merging of all the available data.

A benchmarking against the already existing tools showed that the ECHA model scored
the best predictive power (BA = 0.77), followed by the All-Public model, VEGA, EPI Suite,
OPERA and ToxTree, with BA values of 0.74, 0.71, 0.69, 0.68 and 0.67, respectively. This
comparison demonstrated that each model has specific strong points: for example, VEGA is
able to correctly classify true-positive B compounds, whereas EPI Suite has the highest data
coverage among all the tools and our models the best accuracy. Nevertheless, an important
common downside to all the models was the limitation to predict several compounds
classes of industrial interest (e.g. siloxanes and organophosphonium cations), because their
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training sets lack such instances. These structural differences of compounds in the Industrial
set and public datasets were highlighted through Generative Topographic Mapping. Finally,
collected public data and the Industrial set have been merged into the ‘Global’ dataset
containing 3146 compounds which is the biggest RB set reported so far covering important
representative chemotypes of the industrial context. The ‘Global’ model built on this dataset
was externally validated on a set of 362 new compounds taken from the literature, scoring
a BA of 0.75. Our models are available for the users at the Laboratory of Chemoinformatics
webpage: http://infochim.u-strasbg.fr/cgi-bin/predictor.cgi. Collected public data are freely
accessible on Zenodo (https://doi.org/10.5281/zenodo.3540701).
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4.1.3 Environmental persistence in Sediment, Soil and Water
Persistence is defined as the ability of a chemical substance to stay unchanged in the
environment for long time. Generally, it is expressed in terms of half-life (HL), i.e. the time
it takes for half of the initial amount of substance to be removed from the environment
[Larson, 1995]. According to the REACH, a substance fulfils the persistence (P) criterium
when it shows a degradation half-life higher than 120, 120 or 40 days for sediments, soil

or freshwater compartments, respectively.

Persistence is usually evaluated following a tiered approach, starting with
relatively cheap and fast ready biodegradability assays. Since these assays have very
stringent pass criteria and tend to underestimate the degree of degradation, a negative result
does not necessarily mean that the substance will not be degraded under more realistic
environmental conditions. In addition, those low-tier tests do not provide the required half-
lives for comparison with the P and vP criteria of the Annex XIII of REACH. Therefore,
more realistic high-tier simulation assays are carried out, with the aim to provide a better
estimation of the substance’s HL, that can be directly compared with the REACH criteria.
The three environmental media of sediment, soil and water, are considered in this context,

with degradation half-life thresholds as mentioned above to label a substance as persistent.

In the past years, several models estimating environmental persistence for pure
compounds have been reported. However, the size of the training set is a serious limitation
of existing models, as it is often restricted to specific chemical classes, such as aromatic
compounds or only hydrocarbons. These latter models provide with reasonably accurate
predictions, but their use for risk assessment purposes is quite limited, due to narrow
Applicability Domain. Despite of the large number of existing models, only few of them
have been implemented in some freely available tools. VEGA is the only one that can
estimate a compound’s persistence in a specific environmental compartment. In this work,
we present a new and extended dataset for RB, issued from merging several public data
sources. We report binary classification consensus models for persistence in sediment, soil
and water environmental media. Overall, we collected a total of 1579 unique compounds,
annotated by, at least, one experimental value for a given medium. This included subsets
of 1533, 466 and 436 compounds whose persistence was measured in soil, water and

sediment, respectively.
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Existing tool VEGA showed only mediocre performances on all compartments,
with balanced accuracy (BA) values ranging from 0.52 to 0.62. The main drawback of

VEGA is a noticeably low data coverage, which ranges from 5% (sediment) to 44% (soil).

The sediment (BAcy = 0.81, BAext = 0.91) and water (BAcv = 0.80, BAext = 0.77)
consensus models are noticeably more performant in both CV and external validation than
the soil model (BAcv = 0.71, BAext = 0.76). Lower BA values for the soil are degraded due
to the noticeably lower sensitivity value, reflecting the low agreement of reported

experimental values among data sources.

" 4.1.3 Persistance environnementale dans les sédiments, le sol et I'eau

La persistance est définie comme la capacité d'un produit chimique a rester inchangé dans
I'environnement pendant long laps de temps. Généralement, il est exprimeé en termes de
demi-vie (half-life, HL), c'est-a-dire le temps qu'il faut pour que la moitié de la quantité
initiale de substance disparaisse de I'environnement. Selon REACH, une substance remplit
le critere de persistance (P) lorsque sa demi-vie de dégradation est supérieure a 120, 120

ou 40 jours pour les sédiments d'eau douce, le sol ou I'eau douce, respectivement.

La persistance est généralement évaluée selon une approche a plusieurs niveaux,
commencant par des tests de biodégradabilité relativement bon marché et rapides. Etant
donné que ces tests ont des criteres de réussite tres stricts et tendent a sous-estimer le degré
de dégradation, un résultat négatif ne signifie pas nécessairement que la substance ne sera
pas dégradée dans des conditions environnementales plus réalistes. De plus, ces tests ne
fournissent pas les mesures de demi-vies correspondant aux criteres de persistance P et vP
de l'annexe XIII de REACH. Par conséquent, les tests de plus haut niveau, plus réalistes,
sont effectués dans le but de fournir une meilleure estimation de la demi-vie de la
substance, qui peut étre comparée aux criteres REACH. Dans ce contexte, les trois milieux
environnementaux (sédiments, sol et eau) sont considérés avec des seuils de demi-vie de
dégradation respectivement de 120, 120 ou 40 jours, définissant une substance comme

persistante.

Au cours des dernieres années, plusieurs modéles d'estimation de la persistance

de l'environnement ont été publiés. Cependant, la taille et la composition des jeux
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d'apprentissage sont des limitations récurrentes des modeles existants. Ils sont souvent
limités a des classes chimiques spécifiques, telles que les composés aromatiques ou les
hydrocarbures. Ces modeéles fournissent des prévisions raisonnablement précises, mais leur
utilisation a des fins d'évaluation des risques s’en trouve limitée, ceci se traduisant par un
étroit domaine d'applicabilité des modeéles (AD). Malgré le grand nombre de modeles
existants, un petit nombre est mis en ceuvre dans certains outils disponibles gratuitement.
VEGA est le seul & pouvoir estimer la persistance d'un composé dans un compartiment
environnemental particulier. Dans ce travail, nous avons explore si cette nouvelle source
de données de persistance peut aider a améliorer les performances des modeles QSPR.
Nous avons ainsi obtenu des modeles consensus de classification binaire pour la
persistance dans les milieux environnementaux sédiments, sol et eau. Au total, nous avons
collecté 1579 composés uniques, annotés par au moins une valeur expérimentale pour un
milieu donné. Ceux-ci se répartissent entre des sous-ensembles de 1533, 466 et 436
composés dont la persistance a été mesurée respectivement dans le sol, I'eau et les

sédiments.

Les modéles VEGA ont montré des performances médiocres sur tous les
compartiments, avec des mesures de performance (BA) allant de 0,52 a 0,62. Le principal
inconvénient de VEGA est une couverture des données faible, variant de 5% (sédiments)
a 44% (sols).

Les modeéles de consensus sédiments (BAcv = 0,81, BAext = 0,91) et eau (BAcv
= 0,80, BAext = 0,77) sont sensiblement plus performants en validation croisée et en
validation externe que le modele sol (BAcv = 0,71, BAext = 0,76). Ces performances
dégradées pour le compartiment sol traduisent une sensibilité sensiblement inférieure,
reflétant la faible concordance entre les valeurs expérimentales référencées dans les sources

de données.
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il e ; KEYWORDS
assessment. In silico predictions are valuable alternatives for com-  qsaR/QSPR: environmental
pounds screening and prioritization. However, already existing pre- fate; persistence; generative

diction tools have limitations: narrow applicability domains due to topographic mapping (GTM);
their relatively small training sets, and lack of medium-specific REACH
models. A dataset of 1579 unique compounds has been collected,

merging several persistence data sources annotated by, at least,

one experimental dissipation half-life value for the given environ-

mental medium. This dataset was used to train binary classification

models discriminating persistent/non-persistent (P/nP) compounds

based on REACH half-life thresholds on sediment, water and soil
compartments. Models were built using ISIDA (In Sllico design and

Data Analysis) fragment descriptors and support vector regression,

random forest and naive Bayesian machine-learning methods. All

models scored satisfactory performances: sediment being the most
performing one (BAqx: = 0.91), followed by water (BAqy: = 0.77) and

soil (BAex: = 0.76). The latter suffer from low detection of persistent

('P') compounds (Sney: = 0.50), reflecting discrepancies in reported

half-life measurements among the different data sources.
Generated models and collected data are made publicly available.

Introduction

Chemicals that are persistent, bioaccumulative and toxic (PBT) or very persistent and very
bioaccumulative (vPvB) are of high concern for the environment. Their low ability for
degradation lead to accumulation in the environment, possible bioaccumulation and
long-term effects in living organisms, and in some cases they can undergo long-range
transport and contaminate remote areas [1]. Persistence is defined as the ability of
a chemical to stay unchanged in the environment for a long time [2]. It is expressed in
terms of half-life, i.e. the time it takes for half of the initial amount of substance to be
removed from the environment [3]. More precisely, the degradation half-life takes into
account only degradation processes (hydrolysis, microbial degradation, photolysis, etc.);
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@ Supplemental data for this article can be accessed at: https://doi.org/10.1080/1062936X.2020.1776387.
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whereas the dissipation half-life (DTs) is preferred when also dissipation processes
(volatilization, leaching, plant uptake, etc.) played an important role in removing the
substance from the compartment.

In Europe, the Registration, Evaluation, Authorisation and Restriction of Chemicals
(REACH) Regulation [4] compels manufactures and importers to register their substances
if produced or imported for more than 1 ton/year. In addition, when the amount surpasses
10 tons/year, a Chemical Safety Assessment report must be produced by the registrant [5].
An essential point of this document is the evaluation of the substance’s persistency,
bioaccumulation and toxicity, which can lead to a potential PBT (persistent, bioaccumu-
lative and toxic) or vPvB (very persistent and very bioaccumulative) status. According to
the REACH Annexe Xl [4], a substance fulfils the persistence (P) criterion when it shows
a DTsp higher than 120, 120 or 40 days for freshwater sediment, soil compartment or
freshwater, respectively. Similarly, the very persistent (vP) thresholds are respectively 180,
180 or 60 days. Threshold values are also available for the marine compartment.

Persistence is usually evaluated following a tiered approach, starting with the ready
biodegradability assays (OECD 301 series) [5-7], which are relatively cheap and fast. Due
to their very stringent pass-criteria [7], these assays tend to underestimated the degree of
degradation and therefore a negative result does not necessarily mean that the substance
will not be degraded under more realistic environmental conditions [5]. In addition, these
tests are providing ultimate degradation results (degradation to simple molecule like CO,
and CH,) but they do not provide the required DTs, for comparison with the P and vP
criteria of the Annexe XllIl of REACH. Therefore, more realistic high-tier simulation assays
are carried out, with the aim to provide a better estimation of the substance’s DT, that
can be directly compared with the P and vP criteria. The three environmental media, i.e.
sediment, soil and water, are considered in the context of PBT assessment [5]. Such
experiments are carried out according to the OECD guidelines 307, 308 and 309 [8].

In the past years, several models estimating environmental persistence have been
reported, ranging from simple regression equations to models developed with machine
learning methods and expert systems [9,10]. However, the size of the training set is
a serious limitation of existing models, as it is often restricted to specific chemical classes,
such as aromatic compounds [11], pesticides [12], herbicides [13] or only hydrocarbons
[14]. These models provide reasonably accurate predictions, but their use for risk assess-
ment purposes is quite limited, due to narrow applicability domain (AD). Pizzo et al. [15]
compiled persistence datasets on sediment, soil and water used to generate classification
models. Similarly, the authors recognized that the main limitation was the relatively small
number of compounds, which influenced models’ performance and the relevance of
extracted structural alerts. Despite a large number of existing models, only few of them
have been implemented in freely available tools. VEGA (virtual models for property
evaluation of chemicals within a global architecture) [16] is the only one that can estimate
a compound’s persistence in particular environmental compartment. Other tools like EPI
Suite (estimation program interface) [17] and OPERA (OPEn (qg)saR App) [14] provide
quantitative estimation of persistence, but their AD is strictly limited to hydrocarbons
and no distinction between media is possible.

Recently, Latino et al. [9] described the Eawag-Soil database (ESDB) assembling com-
pounds’ DTsy values in soil, issued from mining the EFSA’s (European Food Safety
Authority) pesticides registration dossiers. In this work, we explored whether this new
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source of data can help to improve QSPR models performance. Concurrently, to comple-
ment the persistence evaluation in the context of the REACH PBT/vPvB assessment, we
generated additional models for the sediment and water media. For this purpose, we have
collected a dataset of 1579 unique compounds, annotated by, at least, one experimental
value for the given medium. Our models are available through the online ISIDA/Predictor
platform [18], accessible at the Laboratory of Chemoinformatics webpage: http://info
chim.u-strasbg.fr/cgi-bin/predictor_reach.cqi.

Methods
Data sources

Experimental DTsqo values data were collected from multiple sources (more details in
Supporting Information (Table S1): (i) the RIVM report [19], (i) the OSU Extension
Pesticide Properties Database [20], (iii) the European Chemicals Agency (ECHA) database
accessed through the eChem Portal [21], (iv) extraction from literature [15,22,23] and (v)
the training sets of VEGA [16] (hereafter referred as ‘Literature set’), (vi) the Pesticides
Properties Data Base (PPDB) [24] and (vii) the recently published ESDB [9]. Not all
sources provided information on each medium. Moreover, the format of retrieved
DTs, values varied, being either categorical (as ranges) or continuous. For instance,
the Literature set and the PPDB are the only sources addressing all the three compart-
ments. The former reports DTs, values divided into nine classes on a semi-decade
logarithmic scale basis, whereas the later provides with continuous measurements.
The largest collection is ESDB, with more than 10000 quantitative DTsge) raw data
values. One of its peculiarities is that detailed information concerning experimental test
conditions (e.g. humidity, temperature, soil texture, etc.) are associated to the given
experimental measurements, stored in the so-called ‘scenarios’. On the contrary, the
RISVM, OSU, PPDB and ECHA databases report quantitative DTsgsoiy, but no information
regarding experimental test conditions is given. All collected data is available on
Zenodo: doi 10.5281/zenodo0.3698144.

Training and test sets preparation

We decided to generate binary classification models for the following reasons: (i) only
a limited amount of compounds with continuous DT, values were available for sediment
and water media, and soil regression models provided only mediocre results (see
Discussion section); (ii) the intra- and inter-database variability residing in DT5q measure-
ments was noticeably high. Therefore, the REACH-relevant ‘P’ thresholds of 120, 120 and
40 days were selected for sediment, soil and water, respectively. The non-persistent label
(‘nP") was assigned to compounds with DTs values lower than the given cut-off; other-
wise, the compound was label as persistent (‘P’).

Raw data processing and chemical structures standardization were carried out with
a standardization workflow implemented in KNIME [25]. In case of duplicates, only one
compound was kept, and its property was computed either as the median or the mode,
for continuous and categorical DTsq assignments, respectively. For the latter case, when
the repartition of the P/nP assignments was 50%, the entry was excluded.
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Table 1. Training and test sets for the given compartment.

__ Training set _ Testset
Model Size nP/P Size nP/P log DT, [days] range
Sediment® 305 128/177 131 55/76 -
Soil® 624 529/95 909° 749/160 from -2.72 to 4
Water” 326 192/134 140 83/57 -

*Training and test set based on 70 %/30% stratified random splitting; "Training set based on the entire ESDB;
“Compounds originating from RIVM, ECHA, Literature set, VEGA and PPDB.

Table 1 summarizes the composition of curated training and test sets. Since ESDB, is
a more recent and manually curated database [9], we hypothesized that related soil
medium data are of higher quality compared to other data sources. Therefore, we used
the ESDB as training set, while the other data sources (RIVM, ECHA, Literature set, VEGA
and PPDB) were merged to constitute the external test set. For the sediment and water
media, models’ training sets were obtained by stratified (based on nP/P binary labels)
random splitting 70% and 30 %, respectively.

Molecular descriptors

ISIDA property-label molecular descriptors [26] were employed. These descriptors work as
substructures (fragment) counts of a molecule - for example, D1 = number of C = O
groups, D2 = number of C-N-C fragments, etc. The molecule can be fragmented using two
main fragmentation patterns: sequences or atom centred fragment. Moreover, in both
cases the size of the fragment (length or radius, respectively) can be varied. Each unique
fragmentation scheme is referred as descriptor space. Several tens of descriptor spaces
were generated (Figure 1, step 1). Among this entire pool, those that led to the generation
of under-performing models were filtered out (see Model generation and validation
section). The number of fragments varies as a function of selected fragmentation scheme.
It ranged from 130 ('IAB(2-3)_AP’, sequences of atoms and bonds of length up to three)
for the sediment model to 5446 ('lIAB(2-5)", atom centred fragments of with radius up
to 5) for the soil model, with an average of 1297. More details are given in Supporting
Information (Tables $2-54).

Generative topographic mapping

The generative topographic mapping (GTM) [27,28] is a dimensionality reduction method
which can be considered as a probabilistic extension of the self-organizing maps. Briefly
speaking, the algorithm injects a 2D hypersurface (manifold) [27] into an initial
D-dimensional data space. The manifold is fitted to the data distribution and each item
from the data space is projected to a 2D latent grid of K nodes, i.e. a ‘map’ showing the
projections of compounds in the considered chemical space. A data property can be
added as a 3™ axis forming such called class landscape [27]. Each landscape position is
coloured according to the property value; this value is the average property of the data
subset concerned by that position on the landscape. Therefore, to each environmental
compartment, a class landscape is associated, visualizing the repartition of nP/P com-
pounds in the chemical space. The manifold was built on the whole available chemical
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Figure 1. Model building workflow. (1) ISIDA descriptor spaces (DSs) are generated; (2) the dataset is
split in training and test set; (3) best DSs and SVM hyperparameters are chosen by GA; (4) SVM, RF and
NB individual models (IM) are fitted, and the best IM per DS is retained; (5) retained models are
ensembled in consensus and (6) externally validated on the test set; (7) selected DSs and methods
parameters are used to train the ‘final’ models, i.e. on the whole dataset.

space, i.e. by merging all the collected datasets of sediment, soil and water. GTM has four
parameters (number of nodes, number of radial basis functions (RBFs), regularization
coefficient, RBF’s width) to optimize according to some scoring function. Genetic algo-
rithm (GA) [29] was employed to select ISIDA descriptor space (among the same pool used
for model generation) and GTM parameters which maximise the cross-validated balanced
accuracy (BA) calculated as an average of cross-validated BAs obtained for the models for
sediment, soil and water. The following GTM parameters were suggested: the number of
RBF centres m = 27%*27, the RBFs width w = 1.2 and the map resolution k = 42*42 grid
nodes. Atom centred fragments with the radius of 2 were used as descriptors.

Model generation and validation

Figure 1 depicts the modelling workflow. Support vector machine (SVM) with linear and
RBF kernels, random forest (RF) and naive Bayesian (NB) machine learning approaches
were implemented. SVM models were generated with libSVM (v. 3.22) [30]; WEKA (v. 3.9.3)
[31] was used for RF and for NB models. For a given training set (Table 1), the ‘best’ ISIDA
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descriptor spaces and the optimal SVM hyperparameters (cost and gamma) have been
selected in genetic algorithm driven optimization process. In such a way, the top 15
descriptor spaces were retained (according to our experience, this threshold is a good
compromise between performance and computational speed) and used to fit an equal
number of optimized SVM, RF and NB ‘individual models’ (Figure 1, steps 2, 3, 4). For RF
and NB, default WEKA settings were selected. Finally, only the best performing individual
model corresponding to a given descriptor space was retained. Internal validation of each
individual model was carried out by 5-fold CV repeated ten times (10¥5CV) after data
reshuffling. Statistics were assessed for each repetition followed by their averaging. The
influence of chance correlations was checked through Y-scrambling [32] (with 50 repeti-
tions). The 15 selected individual models were then ensembled in consensus (Figure 1,
step 5), and external validation has been carried out on the given test set (Table 1). Tables
S2-54 report detailed information concerning consensus models set-up (employed
descriptor space and algorithm for the given individual model) for each endpoint.

Finally, related training and test sets were merged, and models were updated using the
same configuration (descriptor spaces, algorithm and method parameters) previously
determined. Validation was carried out, as previously, in 10*5CV. This process was
repeated for each dataset, i.e. sediment, soil, water. Performances were evaluated through
the analysis of the sensitivity (Sn), specificity (Sp) and balanced accuracy (BA) metrics
(Table S5 in Supporting Information).

Applicability domain and ensemble modelling

The applicability domain was evaluated based on the ‘fragment control’ assessment [26]:
if the test molecule has a fragment not present in the training set, it is considered as ‘out-
of-AD’. Generated models were assembled in consensus which outcome corresponded to
majority vote, without any consideration of out-of-AD predictions. In addition, we pro-
pose a 4-grade reliability scale system based on the % of models with positive AD out-
come, as described in our previous works [33,34]. Briefly, depending on the % of individual
models for which the compound was inside the AD a score of low (< 25 %), acceptable
(25-50 %), high (50-80 %); or very high (= 80 %,) was attributed. A compound is
considered to be inside the AD when its reliability is higher than low.

State-of-the art models comparison

VEGA was evaluated on the whole available collected data for the given medium (mer-
ging of training and test sets; Table 1). To avoid potential sources of overestimation,
molecules already present in its training set were excluded and out-of-AD predictions (i.e.
‘low reliability’, as stated by VEGA’s output) were not considered. VEGA persistence
models propose the following possible four classifications: nP (non-persistent), nP/P
(close to persistent threshold), P/vP (close to very-persistent threshold), vP (very-
persistent). The nP and vP classes come, respectively, from the PBT and vPvB thresholds
defined under REACH; while nP/P and P/vP classes refer to a borderline classification
between these two series (based on the given compartment) of thresholds. As our dataset
is based only on two classes, the output of VEGA was converted accordingly: nP and nP/P
predictions were treated as nP; whereas P/vP and vP were considered as P. Since the VEGA
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predicted classes are not perfectly comparable to our models’ output, and the models are
not evaluated on exactly the same set of compounds, this comparison is not meant to be
a benchmarking, but to provide an overall view on how already-existing models are
performing when challenged to predict persistence of new compounds.

ColorAtom structural-activity dependence analysis

The ‘ColorAtom’ utility assigns a colour code to each fragment or atom showing the
sensitivity of classification model to its presence in molecular structure [35]. For a given
fragment, dark colour means that its presence is crucial to assign the molecule to a given
class, while completely transparent colour means that the model is insensitive to its
presence. For instance, if a compound is predicted as P, dark-coloured fragments are
positively associated to a persistent behaviour, and their removal is likely to change the
classification of the compound to the other class (i.e. nP).

The ColorAtom brings insight to the models: through their interpretation, it is possible
to check the consistency between known facts and their behaviour. We selected several
compounds which contained P or nP structural alerts identified in the work of Pizzo et al.
[15] which were used to generate ColorAtom graphs. Due to relatively high number of
reported structural alerts, only the most significant were selected, i.e. those ones reported
to have the highest accuracy. For the given medium, two structural alerts are herein
reported, one for P and the other one for nP compounds.

Results
Soil dataset inter-database variability

As the soil dataset was issued by merging several sources, we analysed the degree of
agreement based on assigned nP/P labels: overlapping compounds had their reported
experimental label compared and the agreement is expressed in terms of accuracy. For
each pair database 1 (DB1) — database 2 (DB2), Table 2 reports an overlap rate = Ny/N,

Table 2. The overlap rate (OR) for different pairs of the soil

datasets.
EnviPath ECHA OSU RIVM PPDB Literature
EnviPath - na 017 063 0.75 0.25
ECHA na - na 0.80 na na
osu 0.98 1 - 0.23 036 na
RIVM 0.96 0.80  0.97 - 0.65 0.30
PPDB 0.95 1.00 099 096 - 0.22

Literature 0.84 na 0.98 1 0.98

For each pairwise comparison, OR for the persistent (orange back-
ground) and non-persistent class (blue background) is reported.
na = not available due to absence of overlapping compounds.
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where N; is the number of overlapping compounds between DB1 and DB2 having the
same label i (i = P or nP) and N the total number of overlapping compounds. The matrix's
upper (or lower) part reports an overlap rate for the class P (or nP). For some databases
combinations, the comparison could not be performed due to the absence of common
compounds. The number of overlapping compounds ranges from 11 (ECHA vs. RIVM) to
194 (PDBB vs. RIVM). Overall, the ECHA is the source showing the smallest overlapping,
which is an indication that compounds that are of industrial interest are frequently
missing from other datasets.

It can be noticed that for the nP class the agreement is noticeably high, with an average
overlap rate of 0.96. On the contrary, the average overlap rate for the P class is only 0.44.
Some examples of compounds with highly variable soil experimental values are reported
in Table 3. For some of them it was possible to report the range of continuous DTsg
measurements as well, providing that multiple ESDB scenarios were available. For exam-
ple, values for the herbicide diuron span over a range of 1.3 log unit, depending on
reported test conditions (e.g. pH varied from 4.6 to 7.3, humidity varied from 35 to 70 %,
etc.). However, we did not find a significant correlation between test conditions and
measured DTso value: the highest correlation observed was 0.22, for the temperature
parameter.

Chemical space analysis using GTM

Figure 2 shows the persistence activity landscape for each environmental compartment.
The soil data covers a larger portion of the chemical space thanks to its bigger dataset
(1555) compared to water (466) and sediment (436). Indeed, areas delimited by rectangles
‘ay’, ‘ay’ and ‘a3’ are mainly populated by compounds for which only DTsq iy measure-
ments were available. For instance, area ‘a;’ delimits a well-defined chemical family of 11
siloxanes, which uniquely belong to the ECHA dataset. They show rapid degradation, with
average DTsqisony Of 4 days. Areas ‘a,’ and ‘a3’ are populated by several insecticides and
herbicides coming from the OSU, PDBB and ESDB datasets. These compounds are mainly
nP (average DTsqioiy Of 22 days) and present quite heterogeneous structures, as they
belong to different pesticide chemical classes, such as pyrimidine (e.g. pyroxsulam and
bispyribac-sodium), sulfonylyurea (e.g. bensulfuron and amidosulfuron) or triazolone (e.g.

Table 3. Examples of compounds showing high data variability for the soil compartment.

Min/Max

Humidity log DTs nP/P
Name (use) CAS no. pH T[C [%] [days] count
Diuron (herbicide) 330-54-1  4.6-73 15-25 35-70 1.87/3.06 4/2
1,2-Dichloropropane (fumigant insecticide) 78-87-5 5-7.1 10-30 30-75 1.70/2.84 31
1,2,3-Trichloropropane (fumigant 96-18-4 5.1-8 10-30 25-75 0.43-2.36 21

insecticide)

Imazapyr (herbicide) 81,334-34-1 4.7-73 19-25 55 1.04/3.33 2/2
Trifluralin (herbicide) 1582-09-8 55-79 11-21 24-55 1.73-2.34 2/3
Napropamide (herbicide) 15299-99-7  5.5-8 10-20 40-45 1.82/2.59 2/2
Mepiquat chloride (plant growth regulator)  15302-91-7 5.3-7.9 10-20 40-70 1.22/3.00 21
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Figure 2. Class landscapes for the three environmental media. Blue regions are mainly populated by
nP compounds; red ones by P compounds. White areas correspond to unpopulated regions. Black
rectangles delimit map regions referred in the text.

thiencarbazone-methyl and azafedin). Chemicals in ‘a3’ zone, present quite unique che-
motypes, such as triphenylstannanol and some derivatives of emamectin.

Area ‘b’ is a densely populated area, as it concentrates roughly 40% of both water
and sediment datasets. Compounds located here are generally nP, though few of them
show persistence in either water or sediment medium (e.g. the herbicide fluazifop-P,
with DTsowater) Of 45 days). Within this area, 32 chemicals show non-persistence beha-
viour in all media; they are characterized by: (i) relatively low molecular weight (from 32
to 166 g/mol); (ii) presence of only C, O, N elements; (iii) being mostly aliphatic with very
few aromatic substructures; and (iv) the main encountered functional groups being
alcohols, carboxylic acids and amines. On the contrary, area ‘c’ includes 58 compounds
persistent in all media, with relatively high molecular weights (230 to 634 g/mol) and
highly halogenated structures. These chemical features are well known to enhance
persistency [36]. The GTM model was able to reproduce these known cases, which is
a necessary condition to consider the map as valid. Some examples are the pesticides
lindane and toxaphene, and the polychlorinated biphenyl decachlorobiphenyl.

Model performances

Table 4 reports models’ performances evaluated in 5-fold CV and on the external test set
(Figure 1, Step 6). The influence of chance correlation has been verified through y-scram-
bling: the values of the response variable (P/nP labels) are shuffled and randomly assigned
to difference compounds, while the descriptor values are left intact. This procedure has
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Table 4. Consensus models performances.

5-fold CV External test set
Compartment BA Sn Sp BA Sn Sp Data coverage [%]°
Sediment 0.81 (0.014) 0.81 0.80 0.91 0.92 0.90 77 (101/131)
Soil 0.71 (0.015) 0.60 0.83 0.76 0.50 0.99 76 (693/909)
Water 0.80 (0.011) 0.72 0.88 0.77 0.72 0.85 91 (128/140)

BA = Balanced Accuracy, Sn = Sensitivity, Sp = Specificity; in brackets, the standard deviation calculated on the CV
repetitions is reported. *Calculated as the ratio of the number of compounds inside AD and the total number of
compounds of the given dataset.

been repeated 15 times after reshuffling. Poor balanced accuracies values (BA = 0.49-0.51)
support the significance of obtained models.

The sediment (BAey: = 0.91) and water (BAg,: = 0.77) models are noticeably more
performant in both CV and external validation than the soil model (BAey: = 0.76). All the
models show high specificity values (Sp > 0.85) on the external test set, reflecting their
ability to discriminate true non-persistent compounds. Sensitivity values remain good for
sediment and water, but drop considerably for soil, being close to random.

In an additional comparison, Table 5 reports the Soil model performances on the
external set categorized according to the data provenance. The balanced accuracy and
more specifically, sensitivity are degraded for the ECHA subset. Persistent compounds in
soil are, in general, not correctly classified by the consensus model. This could be
explained by the fact that the prior probability of a compound to be persistent is much
lower in the ECHA dataset than in the other datasets (on 13 out of 140). This is maybe
reflecting a bias in the constitution of the training set towards non-persistent instances
compared to the situation actually observed on marketed compounds as represented by
the ECHA dataset. Changing the rules of the consensus for the ECHA dataset so that
a compound is considered persistent in soil if at least one individual model estimates it as
persistent allows to perfectly retrieve ‘P’ compounds, at the expense of a lower accuracy
for 'nP” instances (Sn =1, Sp = 0.72, BA = 0.86). This conclusion is true for the other subsets
as well (for instance, for the OSU: Sn = 1, Sp = 0.60, BA = 0.80). Interestingly, with this new
consensus approach the average performance of the model is increased, as shown by the
higher BA. However, this could be dataset dependent. Therefore, the use of the most
voted class as method to ensemble individual models’ predictions is a more robust and
better generalizable approach.

Figure 3 depicts the performance of the selected machine learning algorithms for the
given compartment. It is interesting to notice that for the sediment and water compart-
ments, more complex higher degree algorithms (SVM and RF) scored the best perfor-
mances; however, for soil the simpler Naive Bayesian obtained reasonably good
predictive power, in particular the ability to retrieve true persistent compounds, as

Table 5. Consensus models external validation performances categorized on data source.

Model Dataset BA Sn Sp Data coverage [%]

Soil PDBB 0.71 0.42 1 74 (572/768)
ECHA 0.67 0.33 1 77 (107/139)
Literature set 0.73 0.47 1 79 (244/308)
RIVM 0.75 0.50 1 71 (83/116)
0osu 0.72 0.45 0.99 65 (136/209)
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Figure 3. Selected ML algorithm performance for the given compartment.

opposed to SVM and RF. The latter algorithm was never selected (Figure 1; step 4) for the
soil model, as its poor sensitivity values degraded the balanced accuracy score.

Finally, the models were rebuilt using the whole available information (merging of the
training and test set) with the same descriptor spaces and methods’ parameters previously
determined (Tables S2-54). Performances were evaluated in 5-fold CV, with the following
results for the consensus models: BAsegiment = 0.85 (Sn = 0.85, Sp = 0.84); BA,,; = 0.74
(Sn = 0.63, Sp = 0.86); BAyater = 0.81 (Sn = 0.71, Sp = 0.91). In terms of cross-validated BA,
these updated models showed a general improvement on all compartments.

Performance comparison with already-existing tools

Table 6 reports VEGA's performances on all the available data (merging of training and test
set; Table 1) for the given environmental medium, both with and without considering the
applicability domain filter. With the exception of the soil, data coverage on the sediment
and water dataset is minimal, with only 6 and 14 compounds inside AD, respectively. All the
three VEGA models do not confuse non-Persistent compounds with Persistent ones, but
most Persistent compounds are erroneously classified as non-Persistent, as measured by the
low sensitivity values (0.29-0.57). Without considering the AD condition, we did not notice
a significant difference in BA values, with the exception of the sediment compartment, due
to the very low amount (five) of compounds inside AD.

Based on these results, our models scored much better performances, with BA values
ranging from 0.76-0.91 (Table 4). However, such low performances of VEGA could have
been caused by the approximation that had to be done in order to convert the four
output classes into a binary decision to match our collected datasets. Nevertheless,

Table 6. Performances of VEGA on the collected datasets.

Compartment BA Sn Sp Data coverage (%)
Sediment 1.00 (0.52) 1.00 (0.31) 1.00 (0.73) 5(6/143)

Soil 0.63 (0.62) 0.25 (0.60) 1.00 (0.63) 11 (14/125)
Water 0.57 (0.57) 0.18 (0.21) 0.95 (0.92) 46 (464/996)

Values in parenthesis for BA, Sn and Sp are computed on all compounds of the given dataset, i.e. without
considering the AD outcome; na = no compounds available.
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concerning AD our models have a clear advantage, being able to predict most part of the
external set (data coverage = 76-91 %, Table 4). The noticeable larger and diverse training
sets of our models contributed to extend their ADs, and make them more suitable for risk
assessment purposes.

ColorAtom analysis

Table 7 compares the selected structural alerts and the corresponding ColorAtom repre-
sentation. One can see that in most of the cases, a given structural alert is highlighted on
related ColorAtom graph as being important for class assignation (dark blue coloured).
For instance, it is known that the dioxin and the biphenyl substructures are strongly
related to a persistent behaviour. On the other hand, the coloured graphs 1, 3 and 5 show
that the chlorine atoms attached to the central skeleton are the main drivers for the
compound’s persistency. These families are indeed well-known to persist in the environ-
ment [37]. On the contrary, functional groups such as aliphatic esters, aldehydes, car-
boxylic acids and hydroxyl groups (2, 4, 6) generally lead to rapid degradation [15]. Such
moieties are also highlighted as important fragments in the ColorAtom graphs.

Model implementation

Our models are available through the online ISIDA/Predictor platform [18]: http://info
chim.u-strasbg.fr/cgi-bin/predictor_reach.cgi. The platform allows the user to either
upload a batch of compounds through structure-data file format or draw a single mole-
cule, Standardization is automatically performed. As output, the predicted value together
with the number of applied models and a confidence score is provided. If selected, the
ColorAtom graphs are generated as well (Figure 4).

Discussion

Data availability greatly varies depending on the environmental compartment: in abun-
dance (soil being the largest one) and number of sources (data coming from several
databases and published articles). We noticed significant differences in the experimental
persistence labels for the soil compartment (nP/P, assigned by comparing the reported
continuous DTso values with REACH thresholds) issued from different data sources.
However, these discrepancies are related almost exclusively to the P class, for which the
agreement between different sources ranged from 17% to 80%. On the contrary, for the
nP class, the concordance between experimental labels was higher than 90% in most of
the cases (Table 2).

Low data concordance for the soil compartment stems from significant differences in
measured DTs, data, for which the range between reported values gets up to 1.93 log unit
(Table 3), meaning an uncertainty of roughly 85 days. This can completely change the
classification of a given chemical under REACH. Performances of the soil consensus model
(Table 4) seem to reflect this problem: the relatively low balanced accuracy (BA., = 0.71) is
mainly caused by the difficulty to discriminate true persistent compounds in soil, as the
sensitivity is only slightly better than random (Sn., = 0.60). On the other hand, sediment
and water counterparts are noticeably more performant (BA., = 0.80-0.81). Our effort to
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Table 7. ColorAtom graphs for compounds matching the given structural alert.
D Dataset Structural alert
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For the given structural alert, the ColorAtom graph is depicted. Colour intensity refer to sensitivity of classification model
to presence of a given fragment or atom: the darker the colour, the more that fragment (atom) is important for
assigning the molecule to a given class. ‘AH’ stands for: “any atom, including hydrogen’.
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Figure 4. Predictor interface screenshot.

build the regression models using the Soil dataset, led to poor results: 5-fold CV determi-
nation coefficient r* = 0.22 and root mean squared error RMSE = 0.70. Latino et al. [9] built
local regression models predicting soil DTs, including experimental assays parameters
(pH, humidity, etc.) as descriptors, which led to reasonable performance (r., = 0.63-0.73).
Thus, accounting for the assays conditions parameters in the modelling can be useful. We
would recommend systematic recording these parameters along with DTs, measure-
ments in analogy with the practice of chemical biology [38]. If the physicochemical
parameters were available, then they would be interesting for the modelling. On the
other hand, since the developed models would require to input additional information
related to given compound, which might be difficult to acquire.

The remarkable difference of performance of the soil model, compared to sediment and
water ones, is even more surprising when taking into account the size of their datasets:
despite the former has a much larger training set, an improvement of its performances were
not observed. We hypothesized that this could be due to following reasons:

(i) The experimental assays in soil have more experimental conditions (such as
soil texture, content of organic carbon, etc.) that need to be taken into account
in order to create a subset of homogeneously determined measurements. As
soil data is more abundant and was extracted from more sources than sedi-
ment and water media, this contributed to increase the uncertainty of DTsq
measurements.

(i) The soil dataset is much more chemically diverse when compared to the sediment
and water ones. The latter are mainly comprised by ‘classic pollutants’ (such as
polychlorinated biphenyl, polybrominated diphenyl ethers or chlorofluorocarbons)
and substances known to be easily biodegradable, such as simple alcohols or
hydrocarbons. Therefore, it could be possible that persistence rules were more
easily determinable for these two compartments, as opposed to soil.

The soil model has hence the disadvantage of not being able to detect truly persistent

compounds but compared to the sediment and water models it has a much diverse
training set which reflects its extended AD.
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We identified high variability, which negatively impacted the modelling task. We
suppose that there is an inherent biological variability involved but in case of
persistency experiments, the differences in experimental conditions and physico-
chemical properties of the tested compounds have an especially strong influence
on the results. Therefore, the assignation of a P label is very dependant of the results
interpretation by the experts, which induce another source of variability. So, the
performance of the model in determining if a substance is persistent is comparable
to experimental testing and reflects the difficulty to conclude on persistency even
with reliable experimental data.

In our modelling approach we did not consider the vP criterion. We decided indeed to
simplify the modelling task by considering only two classes due to: (i) the high variability
of measurements; and (ii) lack a meaningful number of instances for the sediment and
water media that could be used to attribute the third very-persistent class. Therefore, the
lack of possibility to further discriminate between persistent and very-persistent com-
pound denotes a limitation of our models, which could be overcome in the future with
the generation of new persistence data.

Conclusions

In this work we report binary classification consensus models for persistence in sediment,
soil and water environmental media. Overall, we collected a total of 1579 unique com-
pounds, annotated by, at least, one experimental value for a given medium. This included
subsets of 1533, 466 and 436 compounds which persistence was measured in soil, water
and sediment, respectively.

Analysis of class landscapes on Generative Topographic Map helped us to identify
some chemotypes corresponding to persistent (or non-persistent) compounds in all three
media or in particular medium only.

The sediment (BA., = 0.81, BAg: = 0.91) and water (BA., = 0.80, BAg, = 0.77)
consensus models are noticeably more performant in both CV and external validation
than the soil model (BA., = 0.71, BA.,, = 0.76). Lower BA values for the soil are degraded
due to the noticeably lower sensitivity value, reflecting the low agreement of reported
experimental values among data sources. High data variability negatively influenced
model performances. We believe that more predictive models could be built with the
inclusion of additional parameters related to the experimental test conditions. These
variables should be reported along with the test results to allow a better selection of
reliable data.

Finally, the models were rebuilt on the entire sets resulted from the merging of related
training and test set. In cross-validation, the new models demonstrated better perfor-
mance for all three compartments (BAsediment = 0.85; BAgii = 0.74; BAyaer = 0.81) and
benefited from an enlarged applicability domain.

As only one tool (VEGA) is currently available to predict environmental media persis-
tence, our models should be a useful addition for risk assessment and PBT classification
purposes. As advantage, new models have a noticeably larger training set and were
updated with the addition of recently published data which extends their applicability
domain.
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Erratum

Table 7. ColorAtom graphs matching the given structural alert.
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4.1.4 Short-term aquatic toxicity on Algae, Daphnia and Fish

In the frame of REACH, the evaluation of acute aquatic toxicity on aquatic plants (Algae)
and invertebrates (Daphnia) is mandatory for all substances that are manufactured or
imported above 1 ton per year; while acute toxicity on vertebrates (Fish) is required when
the substance surpasses the 10 tons/year cut-off. Algae, Daphnia and Fish organisms
belong to different trophic levels, and have been considered as representative for the
aquatic ecosystem. Briefly, the test organisms are exposed to the studied substance via
contaminated water media, and the following effects are measured: (i) for Algae, the
substance’s growth inhibition effect, expressed as median effective concentration (EC50)
measured at 72 hours; (ii) for Daphnia, immobilization at 48 hours and expressed as median
effective concentration (EC50); (iii) for Fish, the median lethal concentration measured at
96 hours (LC50).

These endpoints have been extensively studied in the past years. However, many
of these models can be defined as so-called “local models”, whose training set is restricted
to few tens of compounds belonging to specific chemical families. They generally have
better prediction accuracy, but their narrow applicability domain limits their use for risk
assessment purposes. On the other hand, a “global model” has a much larger and more

chemically diverse training set.

In this work, we aimed at building new acute aquatic toxicity models on each
species based on the most comprehensive collection of available data, issued from merging
several public data sources. Models were externally validated on two test sets: the former
was created by splitting available public data, while the latter comprised proprietary
industrial data. Performances on the former datasets were acceptable (RMSE = 0.56 —
0.78), similar to those determined by cross-validation. On the other hand, prediction
accuracy on the Industrial sets were noticeably worse (RMSE = 0.92 — 1.12). The main
issue was the overestimation of the toxicity of several small molecular weight molecules
(absolute errors higher than 1.5 log units). It is hypothesised that these errors are due to
uncertainties in experimental data and to specificities of the electronic structures that are

insufficiently represented by the molecular graph of the molecules.
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In addition, a benchmarking on the Industrial sets have been carried out
considering the ECOSAR, VEGA and TEST freely available tools: our models scored one
of the best prediction accuracies coupled with a good data coverage.

Finally, public and industrial data were merged, and models were updated: the
final models’ training sets are considerably larger (1806, 2529, 2591 for Algae, Daphnia
and Fish, respectively) than those of already existing tools, thus extending their
applicability domain. In cross-validation, these models showed R2 values of 0.60, 0.72,
0.71 and RMSE values of 0.71, 0.71, 0.69 for Algae, Daphnia and Fish, respectively.

‘ . 4.1.4 Toxicité aquatique aigue pour algues, daphnies et poissons
Dans le cadre de REACH, I'évaluation de la toxicité aquatique aigué sur les plantes
aquatiques (algues) et les invertébrés (daphnies) est obligatoire pour toutes les substances
produites ou importées a plus de 1 tonne par an; tandis qu'une toxicité aigué sur les
vertébrés (poisson) est requise lorsque la substance dépasse le seuil de 10 tonnes / an. Les
algues, les daphnies et les poissons appartiennent a différents niveaux trophiques et ont été
considérés comme représentatifs de I'écosysteme aquatique. Pour résumer, les organismes
choisis dans un essai sont exposés a la substance étudiée via un milieux contaminé et les
effets suivants sont mesurés: (i) pour les algues, l'objectif est de déterminer la capacité de
la substance a inhiber la croissance, exprimée en concentration efficace médiane (CE50)
mesurée aprés 72 heures; (ii) pour la Daphnie, c’est I'immobilisation qui est observée apres
48 heures et exprimeée en concentration efficace médiane (CE50); (iii) pour le poisson, la

concentration létale médiane est mesurée apres 96 heures (CL50).

Ces parameétres ont été largement étudiés au cours des dernieres années.
Cependant, bon nombre de ces modeles peuvent étre définis comme des «<modéles locaux»,
dont le jeu d’entrainement est limité a quelques dizaines de composés appartenant & une
méme famille chimique. Bien qu'ils aient généralement une meilleure précision, leur
domaine d'applicabilité étroit limite leur intérét pour 1’évaluation des risques. D'un autre
coté, un «modéle global» est construit sur un jeu d’apprentissage beaucoup plus vaste et

plus diversifié chimiquement.
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Dans ce travail, nous avons cherché a construire de nouveaux modéles de toxicité
aquatique aigué sur chaque espece a partir de la collection de données la plus exhaustive
possible, issue de la fusion de plusieurs sources de données publiques. Les modeles ont éte
validés par une procédure de validation externe sur deux ensembles de tests: le premier est
un sous-ensemble des données publiques disponibles, tandis que le second inclus des
données industrielles propriétaires. Les performances sur le premier jeu de données étaient
acceptables (RMSE = 0,56 - 0,78) et similaires a celles déterminées par validation croisée.
En revanche, la précision des prédictions sur le second jeu de données, incluant les données
industrielles, étaient sensiblement moins bonnes (RMSE = 0,92 - 1,12). Ces résultats
traduisent une surestimation de la toxicité pour plusieurs molécules de petit poids
moléculaire (erreurs absolues supérieures a 1,5 unités logarithmiques). Nous supposons
que ces erreurs sont dues a des incertitudes dans les données expérimentales et aux
spécificités des structures électroniques insuffisamment représentées par le graphe

moléculaire des molécules.

De plus, une analyse comparative des modeles ECOSAR, VEGA et TEST a été
réalisée sur les données industrielles. Nos modeles se sont révélés parmi les plus

performant tout en bénéficiant d’une bonne couverture des données.

Enfin, les données publiques et industrielles ont été fusionnées et les modéles ont
été mis a jour: les jeux de données d’entrainement des modeles finaux sont
considérablement plus grands (1806, 2529, 2591 pour Algae, Daphnia et Fish,
respectivement) que ceux des outils déja existants, étendant ainsi leur domaine
d'applicabilité . En validation croisée, les performances de ces modeles ont été mesurées
par des valeurs de R? de 0,60, 0,72, 0,71 et des valeurs de RMSE de 0,71, 0,71, 0,69 pour
les algues, la daphnie et le poisson, respectivement.
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We report new consensus models estimating acute toxicity for Received 28 May 2020
algae, Daphnia and fish endpoints. We assembled a large collection Accepted 15 July 2020
of 3680 public unique compoupds annotatgd by, at least, one KEYWORDS
experimental value for the given endpoint. Support Vector QSAR/QSPR; acute aquatic
Machine models were internally and externally validated following toxicity; generative
the OECD principles. Reasonable predictive performances were topographic mapping (GTM);
achieved (RMSE.,; = 0.56-0.78) which are in line with those of state- REACH
of-the-art models. The known structural alerts are compared with
analysis of the atomic contributions to these models obtained using
the ISIDA/ColorAtom utility. A benchmarking against existing tools
has been carried out on a set of compounds considered more
representative and relevant for the chemical space of the current
chemical industry. Our model scored one of the best accuracy and
data coverage.

Nevertheless, industrial data performances were noticeably
lower than those on public data, indicating that existing models
fail to meet the industrial needs. Thus, final models were updated
with the inclusion of new industrial compounds, extending the
applicability domain and relevance for application in an industrial
context. Generated models and collected public data are made
freely available.

Introduction

The determination of acute aquatic toxicity is a key parameter under the European Union
Regulation for the Registration, Evaluation, Authorisation and Restriction of Chemical
Substances (REACH, EC No 1907/2006) [1]. In this context, the evaluation of the acute
toxicity towards aquatic algae and invertebrates (Daphnia) is mandatory for all substances
that are manufactured or imported above 1 ton per year; while acute toxicity on verte-
brates (fish) is required when the substance surpasses the 10 tons/year cut-off. Algae,
Daphnia and fish organisms belong to different trophic levels and have been considered
as representative for the aquatic ecosystem [2]. These ecotoxicity tests are performed
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according to the OECD guidelines no. 201 (Algae), 202 (Daphnia) and 203 (Fish) [3]. Briefly,
the test organisms are exposed to the study substance via contaminated water media,
and the following effects are measured: (i) for Algae, the purpose is to determine the
substance’s growth inhibition effect, expressed as the median effective concentration
(ECsq) measured at 72 hours; (i) for Daphnia, mortality, which is evaluated by the
immobilization of the invertebrate is recorded at 48 hours and expressed as the median
effective concentration (ECs); (iii) for Fish, the median lethal concentration measured at
96 hours is considered (LCsg).

These endpoints have been of strong interest for QSAR development in the past years.
However, many of these models can be defined as ‘local models’, whose training set is
restricted to few tens of compounds belonging to a particular chemical family [4-8].
Although this approach generally induces a better prediction accuracy for the specific
chemical family, it also narrows the applicability domain and limits the use for risk
assessment purposes. On the other hand, a ‘global model’ has a much larger and more
chemically diverse training set. Table 1 reports several already-published (global) models
on these three endpoints. Only models with a training set of at least 200 compounds, and
for which an external validation was carried out, have been considered. Some of them
have been implemented in three freely available tools: (i) Ecological Structure Activity
Relationships (ECOSAR) available through the Estimation Program Interface (EPISuite)
program [9]; (i) Virtual models for property Evaluation of chemicals within a Global
Architecture (VEGA) [10]; (iii) and Toxicity Estimation Software Tool (T.ES.T.) [11].

Fish acute toxicity is the endpoint for which models are the most numerous.
Similarly, data availability follows the same trend, with fish models having the largest
training sets compared to Algae and Daphnia ones. In this respect, the results reported
by Sheffield et al. [12] are quite interesting. The authors aimed to build a model
estimating acute fish toxicity based on the biggest possible amount of available data,

Table 1. Existing models and tools for acute aquatic toxicity prediction.
Model performance

Endpoint Descriptors Algorithm Training set Test set r RMSE Ref.
A* CDK Consensus 330 - 0.75-0.79 0.56-0.64 [2]
D CDK Consensus 426 - 0.66 0.67 [2]
F Dragon MLR 771 192 0.64 - [2]
A (VEGA) * Dragon SVM 252 109 0.64 - [10]
D (VEGA) * 2D Various 220-269 43-68 0.49-0.68 1.02-1.49 [10]
F (VEGA) 2D Various 564-652 164-382 0.54-0.64 0.89-0.90 [10]
D (TEST)* 2D Various 353 - 0.74 091 [11]
F (TEST)® 2D Various 823 0.73 0.77 [11]
A Dragon PLS 251 83 - 0.67 [13]
D 2D and 3D PLS 222 - 0.56-0.72 - [14]
D Dragon Knn 436 110 0.43-0.72 - [15]
D Fragments PNN 621 - 0.59-0.71 - [16]
D (ECOSAR) logP MLR - 480 0.44 - [9.17]
F 2D SVM 457 114 0.80 0.51 [18]
F 2D Knn 726 182 - 0.68-0.89 [19]
F Dragon MLR 841 280 0.63 0.80-0.83 [20]
- 0.58-0.66 0.81-0.89 [12]

F Padel Consensus 2124
F (ECOSAR)® logP MLR - 532 0.23 1.07 [9,12]

* A, D, F = algae, Daphnia, fish; PLS = partial least squares; CDK = chemistry development kit; Knn = k-nearest neighbours;
MLR = multiple linear regression; PNN = probabilistic neural network; SVM = support vector machine; r* = coefficient of
determination; RMSE = root mean squared error; *freely-available tool implementing several models.
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therefore without creating a subset of data experiments performed under homoge-
neous study conditions (e.g. all fish species considered, merging of different LCsq values
taken at different times, etc.). The performance of this global model was comparable to
that of more specific models. In this work, following a similar approach, we aimed to
build new acute aquatic toxicity models based on the most comprehensive collection of
available data from merging several public data sources. However, we filtered the data
in order to obtain subsets of toxicity values determined under homogeneous test
conditions, hypothesizing that a more careful data selection could help to improve
model performances.

Support Vector Machine models were generated, internally and externally validated
following the OECD principles [21] and ensembled in consensus. Additional external
validation has been carried out on a set of compounds comprising data provided by
Solvay (‘Industrial set’). Finally, public and industrial data sources have been merged in
order to build the most comprehensive models we could obtain, with training sets of 1806
(Algae), 2526 (Daphnia) and 2591 (Fish) compounds. These latter models have extended
applicability domains compared to previously published models thanks to the noticeably
bigger training sets and they include a significant subset of compounds containing
industry-relevant chemotypes representative of the diversity of chemicals found in
Chemical world.

Our models are available through the online In Silico Design and data Analysis
(ISIDA)/Predictor platform [22], available at the Laboratory of Chemoinformatics web-
page: http://infochim.u-strasbg.fr/cgi-bin/predictor_reach.cgi. The Chrome navigator is
preferred for using this service,

Methods
Data sources

Experimental ecotoxicological data have been collected from multiple sources: (i) the
European Chemicals Agency (ECHA) database accessed through the eChem Portal [23], (ii)
the Environmental Protection Agency Fathead Minnow Acute Toxicity dataset (EPAFHM;
https://pubchem.ncbi.nim.nih.gov/bioassay/1188), (iii) the Japanese National Institute of
Technology and Evaluation (NITE; https://www.nite.go.jp/en/), the (iv) ECOTOXicology
knowledgebase database (ECOTOX) [24], (v) the Aquatic OASIS database (http://oasis-
Imc.org/), the (vi) the European Centre for Ecotoxicology and Toxicology of Chemicals
(ECETOC; http://www.ecetoc.org/), (vii) the European Food Safety Authority database
(EFSA; https://www.efsa.europa.eu), (viii) extraction from the work of Cassani et al. [25],
Toropov et al. [26], Singh et al. [2], Wu et al. [27], Furuhama et al. [28], Khan et al. [7,13] and
the training sets of VEGA and T.E.S.T. tools (hereafter referred as ‘Literature sets’) and finally
(ix) data provided by Solvay (referred as ‘Industrial sets’), which are partly proprietary. The
latter naming is referred to the ensemble of the three sets of industrial compounds
available for Algae, Daphnia and Fish. Data coming from sources iii, iv, v, vi and vii were
extracted from the QSAR Toolbox software (v.4.3) [29]. Data from the QSAR Toolbox were
extracted with ‘database search’ function, by querying all the databases under the section
‘Ecotoxicological information’ (ECETOC, Japan MoE, OASIS, EFSA).
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Figure 1. Data distribution for the given endpoint. The numbers refer to the amount of unique
compound for the given data source, but there are overlaps between the data sources.

Table S1 report more information concerning database cardinality; Figure 1 graphically
resumes these findings. As illustrated, ECHA data represents a significant part of the
available data.

Data cleaning

Raw data processing and standardization were done with workflow implemented in
the Konstanz Information Miner (KNIME) software [30]. Retrieved data were cleaned in
order to retain only measurements taken under similar experimental conditions as
required by the OECD guideline of the given endpoint. The following criteria were
taken into account: the test organism must be in the list with those recommended by
the guideline; the measured effect must be growth inhibition (growth rate) measured
at 72 hours for algae; and mortality measured at 48/96 hours for Daphnia/fish; the
value must be precisely determined (i.e. values reported as ranges were excluded);
the organism life stage must be in line with the recommended stage in the OECD
guideline (e.g. toxicity studies performed on organisms at the larval stage were
discarded). The PubChem [31] online service was queried to verify SMILES correctness.
Generated SMILES were standardized with the following rules: removal of salts/sol-
vents, removal of explicit hydrogens, aromatic representation of benzene rings,
removal of stereo information and transformation of -nitro and -sulpho containing
groups into canonical notation, neutralization. Duplicates were removed based on
standardized SMILES matching. In case of multiple values per compound, the median
was taken as a representative value. When the ratio between the minimum and the
maximum reported value per compound was >10, the entry was discarded. Finally,
compounds with toxicity values higher than the experimentally determined water
solubility and those which are unstable in water were excluded (these experimental
values were retrieved from the ECHA database). We could perform this comparison for
781, 1045 and 743 compounds for Algae, Daphnia and Fish, respectively. LCs, and
ECso values originally expressed in mg/l were transformed to the inverse log of the
molar dose (pLCsg and pECsy in mMol/L).

Overall, we collected a total of 3680 unique public compounds, annotated by, at least,
one experimental value for a given trophic level. This included subsets of 1440, 2120 and
2110 compounds whose acute toxicity was measured for Algae, Daphnia and Fish,
respectively. Datasets are freely accessible on Zenodo: 10.5281/zenodo.3708082.
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Training and test set preparation

In this work, two types of models were generated: (i) 'ECHA models’ built on data coming
exclusively from the ECHA database; and (ii) ‘All-Public models’ built on all collected
public data. We took this decision under the hypothesis that the former database
comprised data of higher quality, as a reliability evaluation (i.e. the Klimisch score [32])
is performed by the registrants. In both cases, the model’s training and test sets were
obtained by stratified (based on toxicity values) random splitting 70% and 30%, respec-
tively. Table 2 summarizes the composition of the training and test sets for the given
model, as well as the Industrial sets, which were used as additional external validation
(these results are depicted by Figure S1). Industrial set compounds already inside the
models’ training sets have been excluded. For each endpoint, the external test set is
composed of industrial set compounds that are neither in the ECHA set nor in the All-
Public set.

Molecular descriptors

ISIDA Property-Label Molecular descriptors [33] were employed. Several tens of ISIDA
descriptor spaces (DS) corresponding to molecular fragment of different sizes and topol-
ogies were generated. Among this entire pool, DSs that led to the generation of under-
performing models were filtered out (see Model generation and validation section). The
number of fragments varies as a function of the selected DS. It ranged from 470 ('1AB(2-4)’,
Type | sequences of atoms and bonds of length up to four) for the ECHA Fish model to
26405 ('IAB(2-7), Type Il atom-centred fragments considering atoms and bonds with
radius up to 7) for the All-Public Fish model. More details are given in Supporting
Information (Tables 52-54).

Generative topographic mapping

Following an analogous methodology as described in our previous works [34-36] we use
Generative Topographic Mapping (GTM) [37,38] for data visualization approaches. Two
types of landscapes have been prepared: (i) the density landscape which, as the name
suggests, assigns a colour scale to the map depending on the amount of compounds
populating the given position; (ii) the property landscapes which colour the maps accord-
ing to the envisaged property, i.e. the toxicity values for three datasets of Algae, Daphnia
and Fish.

The manifold [37] was built on the whole available chemical space, i.e. by merging all
the collected datasets of Algae, Daphnia and Fish. Genetic algorithm (GA) [39] was

Table 2. Dataset compositions.

ECHA All-Public Industrial set
Endpoint Training Test PR* Training Test PR Size PR
Algae 625 268 —0.88-4.84 1007 433 —-2.00-5.99 249 —2.52-5.55
Daphnia 844 363 —0.97-4.52 1484 636 -251-8.75 228 —2.94-4.76
Fish 588 253 —2.00-3.98 1450 660 -24-6.51 193 —-3.1-4.02

*PR = pECs, for algae and Daphnia and pLC50 for fish property range.
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employed to select the most suitable ISIDA descriptor space (among the same pool used
for model generation) and GTM parameters. The following GTM parameters were sug-
gested: the number of radial basis function centres m = 4*4, the RBFs width w = 0.3 and
the map resolution k = 17*17 grid nodes. Atom centred fragments with the radius of 3,
IIAB(2-3), were used as descriptors.

Model generation and validation

The modelling workflow is depicted in Figure 2. Among other tested machine learning
algorithms, including random forest and k-nearest neighbours, support vector machine
(SVM) with radial basis function (RBF) kernel was employed as it scored the best perfor-
mances. SVM models were generated with libSVM (v. 3.22) [40]. For a given training set
(Table 2), the ‘best’ ISIDA descriptor spaces and the optimal SVM hyperparameters (cost
and gamma) have been selected in the genetic algorithm-driven optimization process.
Cross-validated determination coefficient was selected as fitness function. In such a way,
the top 15 DS spaces were retained (according to our experience, this threshold is a good
compromise between performance and computational speed) and used to fit an equal

Dataset
Algae, Daphnia, Fish

Preparation of
“final” models

v
ISIDA descriptors
spaces encoding A
Training set | | Test set )—

v IR
Genetic algorithm External validation I

- Dss selection
- SVM hyperparameters

& I Industrial set |—

SVM individual models
(IMs) fitting

¥

IMs ensembled in
consensus

®

@

Determination of most appropriate DSs
and SVM parameters

Optimal DSs and SVM parameters

Figure 2. Model building workflow. (1) ISIDA descriptor spaces (DS) are generated; (2) the dataset is
split in training and test sets; (3) optimal DSs and SVM hyperparameters are chosen by genetic
algorithm; (4) SVM individual models (IM) are fitted; (5) retained models are ensembled in consensus
and (6) externally validated on the Test and Industrial sets; (7) selected DSs and SYM parameters are
used to train the ‘final’ models, i.e. on the whole available data.
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number of optimized SVM Individual Models (IM). Internal validation of each IM was
carried out by fivefold CV repeated 10 times (10¥5CV) after data reshuffling. Statistics
were assessed for each repetition followed by their averaging. The influence of chance
correlations was checked through Y-scrambling [41] (with 50 repetitions). The 15 selected
IMs were then ensembled in consensus, and external validation has been carried out on
the given test set and, in addition, on the Industrial set (Table 2). Tables 52-54 report
detailed information concerning consensus model set-up (employed DS and SVM para-
meters for the given IM) for each endpoint. Finally, related training, test and Industrial sets
were merged, and models were updated using the same DSs and SVM parameters.
Validation was carried out, as previously, in 10¥5CV. To evaluate the models’ performance
the r* determination coefficient and the RMSE parameters are reported (formulas are
reported in Table S5).

Applicability domain and ensemble modelling

The 'fragment control’ assessment [34] is employed as a method to verify a model's
applicability domain (AD): if the test molecule has a fragment not present in the training
set, itis considered as ‘out-of-AD". Generated models were assembled in consensus whose
outcome corresponded to the mean among the IM predicted values, without any con-
sideration of out-of-AD predictions. Given the different types of descriptors employed,
each individual model has its own applicability domain, which is checked independently.
In addition, we propose a 4-grade reliability scale system [35] based on the percentage of
models with positive AD outcome. Briefly, depending on the percentage of individual
models for which the compound was inside the AD a score of Low (£25%); Average (25%—
50%); Good (50%-80%); or Optimal (=80%) was assigned. A compound is considered to be
inside the AD when its reliability is higher than Low.

State-of-the-art model comparison

The ECOSAR, VEGA and T.ES.T. freely available tools were challenged to predict the
Industrial set compounds and benchmarked against the ECHA and All-Public models.
The following conditions were taken in account: (i) molecules already present in the
model’s training set were excluded; (i) out-of-AD or low-reliability predictions were not
considered; (iii) as VEGA includes several models for each endpoint, performances are
expressed as ranges. Conditions (i) and (ii) can hardly be respected for ECOSAR as the
training sets are not readily available and AD evaluation is not automatically performed by
the software. As ECOSAR can report more than one predicted value depending on the
chemical class of the query compound, the lowest toxicity value (more conservative
approach) was selected in such instances.

ColorAtom structural-activity dependence analysis

The ColorAtom [42] can be used as support to better interpret the model output [34,35].
This utility assigns a colour code to each fragment or atom depending on whether it was
correlated to an increase (blue) or decrease (red) of the predicted value.
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As an example of application, we selected some compounds which contained
a structural alert (SA) reported to be associated to high aquatic toxicity, as identified in
the work of Gini et al. [43], which were used to generate ColorAtom graphs.

Results
Experimental data inter-database variability

As data were collected from multiple sources, it was possible to compare experimental
values of overlapping compounds between a given database pair. Figure 3 reports some
(only the first three sources that had the highest number of common elements were
considered) of these pairwise comparisons. This analysis has been performed before
duplicate removal: therefore, the same compounds with more than one experimental
value could be present in the given source. In such a way, it was possible to identify
compounds for which determined toxicity values spanned over a large range of log units
(e.g. the groups of points disposed horizontally or vertically which can be well seen in
graphs 4, 7 and 9). Fish datasets had the highest number of compounds common to
several sources when compared to algae and Daphnia ones. Moreover, the ECHA data-
base always displays the highest number of compounds common to other sources,
suggesting that it is one of the most exhaustive sources. Despite that a relatively large
RMSE has been found when comparing experimental values among the different data-
bases (RMSE up to 0.80 log unit), most data sources showed a good correlation
(r* = 0.50-0.95). This is consistent with the error of already published and of our new
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Figure 3. Experimental values comparison of inter-databases overlapping compounds. n = number of
overlapping compounds for the given pair. Red circles mark some compounds reported as examples in
Table 3.
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models, with cross-validated RMSE values ranging from 0.56 to 0.78 (see results section).
Indeed, the precision of aquatic toxicity tests is influenced by several conditions, such as
the employed species, the media pH and temperature, use of solvent, whether analytical
monitoring was performed, etc. Several studies reported that the inter- and intra-
laboratory variability could be noticeably high, up to 3 log units [17,44-47].

Compounds marked by red ellipses (Figure 3) have been taken as examples and are
reported in Table 3. We noticed that small molecules (e.g. acrolein or 2-mercaptoethanol)
tend to have highly discordant toxicity values. This may be due to the fact that such
compounds are generally volatile, and therefore it is technically more difficult to precisely
determine their concentration in the water media, especially without an analytical ver-
ification of concentrations, which was not always performed or reported.

Chemical space analysis using GTM

Figure 4 shows the density landscape for the whole chemical space, i.e. the merging of the
algae, Daphnia and fish datasets. The colour scale refers to the number of compounds
populating a given region, ranging from 0 (white areas) up to 40 (yellow areas). The most
densely populated area (zone 1) is dominated by the presence of methylated benzene
structures with varying substituents, such as -nitro or -sulpho (e.g. CAS 25241-16-1 and
99-51-4). Similarly, zone 2 exhibits high density, being mainly populated by aliphatic and
aromatic compounds with ester or ether functional group (e.g. CAS 105-53-3 and 103-60-
6). Across this zone, there is the tendency to increase the length of the aliphatic chain and
increase the aromaticity when moving horizontally. Another densely populated area is
zone 6 (red rectangle), where aliphatic and aromatic alcohols can be found (e.g. CAS 111-
27-3 and 4130-42-1). Similarly, it is possible to see a trend of increasing branching through
this area. Zones 3, 4 and 5 delimit the well-defined chemical families of highly fluorinated
aliphatic compounds (e.g. CAS 686-83-3), chlorinated phenols (e.g. CAS 88-06-2) and
amines (e.g. CAS 280-57-9), respectively. Finally, in the low-density regions, it is possible
to find compounds which present ‘rare’ chemotypes: as their structure is noticeably
different from the rest of the chemical space, they are projected into a relatively isolated
location (e.g. 116-95-0; identified by the black dot).

Figure 5 shows the property landscape for each endpoint. It can be noticed that the
algae landscape possesses larger portions of white areas, as opposed to the Daphnia and
fish ones. This indicates that the former dataset is lacking some chemotypes, reflecting its
smaller size (Table 2). Areas delimited by rectangles ‘1" and ‘2’ are populated by com-
pounds that exhibit high toxicity (pLCso or pECsy values higher 2) for the three trophic

Table 3. Compounds showing high inter- or intra-database differences.

Min/Max®
Name CAS no. Endpoint Database pLC or pECsq
2-Mercaptoethanol 60-24-2 Algae ECHA vs. NITE 0.61-2.66, 2.66
Trinonylamine 68814-95-5 Daphnia ECHA vs. ECOTOX 0.85-3.44, 3.44
Dodecanol 112-53-8 Daphnia ECHA vs. Literature set 1.66-2.68, —0.24-2.91
Acrolein 107-02-8 Daphnia ECOTOX vs. Literature set —0.25-2.90, —-0.25
2,4-Diaminotoluene 95-80-7 Fish ECHA vs. ECOTOX -1.07, -1.07-1.42
Diglycol chloroformate 106-75-2 Fish ECHA vs. Literature set —2.51-1.28, -2.51-1.67
Cetylpyridinium 123-03-5 Fish ECOTOX vs. Literature set 0.85-3.31, 3.31

“Minimum and maximum pLC or pECs; values for the first and the second databases (comma separated), respectively.
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Figure 4. Density landscape of the whole chemical space. The colour scale refers to the number of
compounds populating a determined zone. Coloured rectangles delimit map regions referred in
the text.

levels simultaneously. Among them, it is possible to identify some chemical families which
are known to be toxic for the aquatic environment [48-50], such as organochlorine
compounds and polychlorinated biphenyl derivatives (e.g. chlordecone and 2,2',5-tri-
chlorobiphenyl) and long-chain aliphatic amines and quaternary ammonium salts (e.g.
N,N-dimethylhexadecan-1-amine and trimethyl(octadecyl)azanium). On the other hand,
areas ‘3’ delimits non-toxic compounds such as aliphatic compounds with hydroxyl and
carboxylic acids functional groups (2-ketoglutaric acid and citric acid). Finally, there are
few compounds that exhibited acute toxicity for one species and were harmless for the
others. This is the case, for instance, of dioxane (highly toxic to Daphnia only) or ethyl
L-lactate (moderately toxic to fish only).

Models’ performance

Two types of models were generated for each endpoint: (i) the ECHA models, generated
using only data coming from the ECHA database; and (ii) the All-Public models, generated
using all available public data.
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Figure 5. Property landscapes for the three datasets. Blue regions are mainly populated by non-toxic
compounds; red ones by toxic compounds. White areas correspond to unpopulated regions. Black
rectangles delimit map regions referred in the text.

Table 4 reports consensus models’ performance evaluated in a fivefold CV and on the
external test sets. The y-scrambling experiments measured the performance of ‘rando-
mized’ models: r? values (r* = —0.22 - —0.15; std. dev. among repetitions = 0.06-0.11) were
very low and noticeably far from those obtained by cross-validation. Internal validation
metrics (Q%00 and Q%yoor reported in Table 3) are acceptable and close to external
validation values. In terms of prediction accuracy, ECHA models (RMSE = 0.56-0.61) are
more performant than their All-Public counterparts (RMSE = 0.69-0.78). The variance of
the All-Public dataset is also much larger than the ECHA dataset as can be deduced from
Table 2. Therefore, the determination coefficient of the All-Public (* = 0.61-0.67) models
are better than for the ECHA models (r* = 0.54-0.64). On the external test sets, the data
coverage (calculated as the ratio of the number of compounds inside AD and the total
number of compounds of the given dataset) is around 70% (65%-74%). A compound is
considered to be out-of-AD when its reliability is equal to ‘Low’. External validation
performances are comparable to those obtained by cross-validation, which supports the
absence of overfitting. Without taking into account the applicability domain, external
statistics are degraded. Respectively, for algae, Daphnia and fish dataset, the ECHA models
scored r* of 0.60, 0.67, 0.60 and RMSE of 0.59, 0.50, 0.63, while the All-Public models scored
r? of 0.56, 0.70, 0.72 and RMSE of 0.74, 0.75, 0.69.

Figure 6 depicts experimental values vs predicted values (EXP/PRED) scatter plots for
the ECHA and All-Public models for all the three endpoints. Graphs show cross-validation
predictions (grey) and external test set predictions (red). It can be noticed that the algae
models have the largest scattering of data points, reflecting their lower r* values. An
important aspect to mention is the limitation of the models to correctly predict very low
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Figure 6. Internal and external validation scatter plots for Consensus models. Grey points represent
the training set evaluated in CV; red points indicate external set compounds.

toxic compounds (i.e. with pLCso or ECCsp<-1 log unit), which are consistently over-
estimated. Some of the benchmarked models (e.g. T.E.S.T.) also had this issue. There are
two possible explanations to this drawback:

® Many low-molecular-weight molecules in these datasets (e.g. hydrogen cyanide,
iodomethane or chloroacetonitrile) have some of the lowest toxicities. We hypothe-
size that these toxicities are specific to these chemical species and are explained by
their reactivity. This could be taken into account by alternative approaches such as
quantum chemistry. In our models, these structures are encoded, so the predictions
for these will be accurate, but the models might not generalize correctly for their
analogues.

e Uncertainty of measured toxicity values: when a compound is far from regulatory
classification thresholds a looser estimation of its toxicity could be enough to fulfil
data requirements. In other cases, the limit of solubility can be taken as toxicity value

107



668 (&) F.LUNGHINIET AL.

as a worst-case approach. For instance, for 2-ethoxyethanol (110-80-5), available fish
toxicity values range from 500 up to 16000 mg/I.

This latter consideration can be applied to highly-toxic compounds as well: in such cases, the
amount of the test compound is very low and therefore it is technically more difficult to
precisely determined its concentration (for instance, it could be close to the limit of detection
of the analytical method). These factors increase the uncertainty in the data and negatively
affect model’s performance.

In the end, all the available public and industrial data were merged, and ‘final’ models
were prepared. Their performances were evaluated by fivefold CV repeated 10 times. For
alga, Daphnia and fish r* values were 0.60, 0.72, 0.71 and RMSE values were 0.71,0.71, 0.69,
respectively. With the exception of algae, final models have shown a slight overall
improvement compared to All-Public models, but their error (RMSE) is still higher than
the ECHA models.

Model performance on the industrial sets

For confidentiality reasons, this dataset cannot be disclosed, and only some general
information can be provided. It comprises quite heterogeneous chemical structures,
from high molecular weight compounds such as long-chain aliphatic surfactants and
halogenated biphenyls to much smaller ones such as phenol derivatives and simple
amides. The molecular weight ranges from 30 to 1134. A significant number of com-
pounds belong to the chemical class of surfactants, especially ethoxylated alkylphenols.
Table 5 reports ECHA and All-Public model performance on the Industrial sets.
Compared to internal and external validation performances (Table 4), the models are
performing considerably worse in predicting the Industrial sets, with RMSE values
ranging from 0.92 (Fish) to 1.12 (Algae). Data coverage is acceptable, ranging from
64% to 76%. Chemical space projections of the Industrial set compounds are depicted in
Figure 7: as expected, the majority of out-of-AD compounds are located in lower-density
regions (Figure 4).

As previously observed on public data, the risks of small and very-low toxic compounds
appear overestimated: as can be seen in Figure S2, several compounds with experimental
pLCso or pECso <-1 are predicted to be much more toxic.

Table 5. Consensus model performance on the Industrial set.
Industrial set

Endpoint Model r RMSE Data coverage® [%]
Algae ECHA 0.44 1.12 69 (172/249)
All-Public 0.48 1.07 72 (179/249)
Daphnia ECHA 0.54 0.94 73 (166/228)
All-Public 0.58 0.93 76 (174/228)
Fish ECHA 0.58 0.92 64 (124/193)
All-Public 0.54 0.97 67 (129/193)

“calculated as the ratio of the number of compounds inside AD and the total number of
compounds of the given dataset.
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Figure 7. Industrial set compounds chemical space projections. The maps show the projects on the
Industrial set compounds using the density landscape (Figure 4). Blue/red dots refer to inside/
outside AD compounds.

Table 6. Performances of considered tools on the Industrial sets.

Endpoint Tool r RMSE Data coverage® (%)
Algae ECOSAR 0.26 1.94 97
VEGA 0.29-0.33 1.17-0.99 30-32
Daphnia ECOSAR 038 1.57 99
VEGA 0.28-0.44 1.19-1.03 20-52
TEST. 0.42 0.98 66
Fish ECOSAR 0.41 1.65 96
VEGA 0.20-0.51 1.09-0.85 33-45
T.EST. 0.39 1.10 58

“calculated as the ratio of the number of compounds inside AD and the total number of compounds of
the given dataset.

Already-exiting tools performance comparison

Table 6 reports performances of the benchmarking tools on the Industrial sets. ECOSAR is
performing significantly worse than any model (RMSE = 1.57-1.94), which could be
caused by the absence of any AD filter. In terms of accuracy, our models are performing
similarly to VEGA and T.E.S.T. tools, with comparable RMSE values. Generally, VEGA shows
slightly more accurate predictions, but suffer from a narrower AD compared to our
models, with data coverage of 30%-45% vs. 64%-76%, respectively.

ColorAtom analysis

Table 7 compares the selected SAs and the corresponding ColorAtom representation. For
instance, molecule CAS 9014-90-8 (SA no. 2) exhibits moderate toxicity to invertebrates
(ECs0-paphnia = 21 mg/L). The aliphatic chains have been identified as the main drivers of the
molecule’s toxicity (dark-blue coloured): this could be caused by the fact that longer chains
tend to make the molecule more lipophilic, which is generally related to an increase of
toxicity towards aquatic organisms [19,27]. Similarly, molecule CAS 4337-75-1 (SA no 3)
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Table 7. ColorAtom graphs for compounds matching the given SA (For the given SA, the
ColorAtom graph is depicted. The colouration is directly referred to the modelled
property (i.e. the pLCso or pECsq value): blue and red circled atoms played a role in
increasing and decreasing it, respectively. AH stands for: ‘any atom, including hydrogen’).
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shows the same trend, with the polar head being less related to an increase of toxicity. For
molecule CAS 32536-52-0 (SA no. 5), bromine atoms attached to benzene rings have been
seen by the model as positively related to a toxicity increase. A total of 57 halogenated
aromatic structures matched this SA, which comprise the chemical families of polybromi-
nated diphenyl ethers or polychlorinated biphenyl. All benzene rings and their halogen
substituents show the same colouration pattern, as opposed to oxygen-containing func-
tional groups, such as ethers or carboxylic acids.

Discussion

Ecotoxicological data quality and variability are a serious issue negatively impacting
model performance, as already reported by previous authors [17,19,51,52]. Here we
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noticed that same problem, with almost 20% of all compounds having measured acute
toxicity values differing by more than 1 log unit. Often it is very time-consuming (if not
impossible), to verify available information, for instance, due to missing experimental
information. Compounds that are more difficult to test (e.g. compounds which are poorly
soluble or hydrophobic, volatiles, reactive in water) [53] were also affected by the highest
data variability. The fact that poorly predicted molecules are the same that are difficult to
test confirms the well-known concept that the model quality is highly dependent on the
dataset quality and shows that experimental measurements for these difficult substances
may actually not be more reliable than model prediction.

In an effort to extract a subset of (theoretically) more reliable compounds, we tried to
select only data coming from the ECHA database, as it includes a reliability evaluation
performed by the registrants. Indeed, despite worse determination coefficient values as
opposed to All-Public models, which can be attributed to the much narrower property
range, the average errors of the ECHA models were considerably better, with an improve-
ment of RMSE,, values of 0.08-0.22 (Table 4).

Compared to already-published models (Table 1), our new models not only show an
improvement of accuracy, but also a significant increase of training set sizes which, in
turn, means extended applicability domains.

All the employed tools showed mediocre performances on the Industrial sets, with
average an RMSE of roughly 1 log unit. This denotes a limitation of currently existing
models when applied to an industrial context and encourages the use of consensus to
reduce uncertainty and improve the accuracy.

Models failed to predict several compounds belonging to the chemical class of surfac-
tants. These compounds are generally more difficult to predict by QSAR models and also
to be handled from an experimental point of view [17,54]. Their behaviour in water is
highly dependent on the nature of their polar/non-polar portions, level of branching and
molecular weight and chain length. Surfactants tend either to concentrate at the water-air
phase, or to aggregate in micelles, which could affect the precision in determining their
water concentration. Moreover, for small organisms such as daphnids, their toxicity could
have been enhanced by a physical action of the surfactant, as the organisms could be
trapped by the micelles. In addition, surfactants tend to be mixtures rather than pure
compounds, and normally the most frequent component is taken as a representative
member to approximate their true composition [55].

The final models (merging of public and industrial data) demonstrated to have better
performances (in cross-validation) than All-Public models. Despite their error
(RMSE = 0.69-0.71) is still worse than the ECHA models (0.56-0.61), they have a much
larger training set including a substantial number of compounds bringing industrially
relevant chemotypes, which noticeably extends their applicability domains.

Conclusions

In this work, we report regression consensus models of acute aquatic toxicity towards
three trophic levels: algae, Daphnia and fish. A total of 3680 publicly available unique
compounds, annotated by at least one experimental value per endpoint, were collected.

Models were externally validated on two test set: the former was created by splitting
available public data, while the latter comprised proprietary industrial data. Performances
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on the former datasets were acceptable (RMSE = 0.56-0.78) and similar to those deter-
mined by cross-validation. On the other hand, prediction accuracy on the Industrial sets
was noticeably worse (RMSE = 0.92-1.12). The main cause was the overestimation of the
toxicity of several small molecular weight molecules (absolute errors higher than 1.5 log
units). It is hypothesised that these errors are due to uncertainties in experimental data
and to specificities of the electronic structures that are insufficiently represented by the
molecular graph of the molecules.

In addition, a benchmarking on the Industrial sets has been carried out considering the
ECOSAR, VEGA and T.ES.T. freely available tools: our models scored one of the best
prediction accuracies coupled with a good data coverage.

Finally, public and industrial data were merged and models were updated: final
models’ training sets are considerable bigger (1806, 2529, 2591 for algae, Daphnia and
fish, respectively) than those of already existing tools, extending therefore their applic-
ability domain. In cross-validation, these models showed r? values of 0.60, 0.72, 0.71 and
RMSE values of 0.71, 0.71, 0.69 for Algae, Daphnia and Fish, respectively.

Our models are available for the users at the Laboratory of Chemoinformatics web-
page: http://infochim.u-strasbg.fr/cgi-bin/predictor.cgi. Collected public data are freely
accessible on Zenodo: 10.5281/zenodo0.3708082.
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4.1.5 Short-term toxicity on Rodent

The estimation of the acute oral toxicity is a mandatory requirement in the frame of
REACH for substances manufactured or imported in quantities of 1 ton or more per year.
By the beginning of 2018, the National Toxicology Program Interagency Center for the
Evaluation of Alternative Toxicological Methods (NICEATM), as part of the effort to
support the use of alternative methods, organized a worldwide workgroup to develop in-
silico models of acute oral toxicity. Specifically, five relevant endpoints needed by
regulatory agencies were targeted. These endpoints included (i) identification of “very
toxic” chemicals (LD50 less than 50 mg/kg) and (ii) “nontoxic” chemicals (LD50 greater
than or equal to 2000 mg/kg), (iii) point estimates for LD50s, (iv) categorization of toxicity
hazard using the U.S. Environmental Protection Agency (EPA) and (v) the GHS
classification schemes.

The NICEATM collected rat oral LD50 data on over 15,000 substances from
different publicly available databases and resources. The curated dataset was split into
training and validation set. In the first stage, only the former was provided to the
participants. The validation set was later used to externally validate the submitted models.
The committee evaluated each model qualitatively with respect to the OECD principles
and quantitatively based on the predictive performance against the test set. Models were
then used to screen a large prediction set of ~40 k chemicals of interest to different agencies
and finally were also included into a consensus model, which leverages the strengths and
compensate for the weaknesses of each individual approach.

As participants, we submitted a regression model for LD50 estimation. In this
manuscript we present our modelling approach and a continuation of our work, including:
e Generation of a new multi-classification model based on GHS categories;
e Collection of additional acute oral toxicity data from several sources to extend the
model’s training set (“Global models™);
e External validation against a dataset relevant for the context of the chemical

industry (hereafter named “Industrial set”), provided by Solvay.

It has been demonstrated that both regression and classification Global models
obtained in this work (RMSE = 0.47 and BA = 0.72) perform better than the previously
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reported NICEATM models (RMSE = 0.56 and BA = 0.69) when challenged on industrial
data. Moreover, the Global models have much larger applicability domain: the data
coverage on the Industrial set is 85 % and 82 % (classification) and 94 % and 58 %
(regression) for Global and NICEATM models, respectively.

" 4.1.5 Toxicité aigué par voie orale chez le rat

L'estimation de la toxicité orale aigué est exigée dans le cadre de REACH pour les
substances fabriquées ou importées en quantités supérieure ou égale a 1 tonne par an. Au
début de 2018, le National Toxicology Program Interagency Center for the Evaluation of
Alternative Toxicological Methods (NICEATM), dans le cadre des efforts visant a soutenir
I'utilisation de méthodes alternatives, a organise un groupe de travail mondial pour
développer des modéles in silico de toxicité aigué par voie orale. En particulier, cing
criteres d'effet pertinents requis par les organismes de réglementation ont été ciblés. Ces
criteres d'évaluation comprenaient (i) I'identification de produits chimiques «trés toxiques»
(dose letale médiane, DL50 inférieure a 50 mg / kg) et (ii) des produits chimiques «non
toxiques» (DL50 supérieure ou égale a 2000 mg / kg), (iii) des estimations ponctuelles pour
les DL50 , (iv) la catégorie de risque de toxicité selon les standards de I'Environmental
Protection Agency (EPA) aux Etats-Unis et (v) les schémas de classification du GHS

(Globally Harmonized System).

Le NICEATM a collecté des données de DL50 orale sur le rat concernant plus de
15 000 substances a partir de différentes bases de données et ressources accessibles au
public. L'ensemble des données sélectionnées a été divisé en un ensemble d'apprentissage
et un ensemble de validation. Dans la premiére étape, seul le premier a été fourni aux
participants. L'ensemble de validation a ensuite été utilisé pour valider, selon une procédure
de validation externe, les modeles soumis. Le comité a évalué chaque modeéle
qualitativement par rapport aux principes de 'OCDE et quantitativement sur la base de la
performance prédictive par rapport a I'ensemble de test. Les modéles ont ensuite éte utilisés
pour cribler un ensemble prospectif de ~40k produits chimiques d'intérét pour differentes
agences. Les prédictions de chaque modele individuel ont été rassemblées dans un
consensus qui exploite les forces et compense les faiblesses de chaque approche

individuelle.
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En tant que participants, nous avons soumis un modéle de régression pour
I'estimation de la DL50. Dans ce manuscrit, nous presentons notre approche de
modélisation et la poursuite de nos travaux, notamment:

e La génération d'un nouveau modéle de classification basé sur les catégories du
GHS;

e La collection de données supplémentaires sur la toxicité orale aigué chez le rat a
partir de plusieurs sources pour étendre 1’ensemble d’entrainement des modeles
(«modeles globaux»);

e La validation externe par rapport a un ensemble des données pertinent pour le
contexte de Il'industrie chimique (ci-aprés désigné «industrial set»), fourni par

I’entreprise Solvay.

Il a été démontré que les modeles globaux de régression et de classification
obtenus dans ce travail (RMSE = 0,47 et BA = 0,72) fonctionnent mieux que les modéles
NICEATM précédemment rapportés (RMSE = 0,56 et BA = 0,69) lorsqu'ils sont utilisés
sur des données industrielles. De plus, les « modéles globaux » ont un domaine
d'applicabilité beaucoup plus large: la couverture des données sur I'ensemble industriel est
de 85% et 82% (classification) et 94% et 58% (régression) pour les « modéles globaux »
et NICEATM, respectivement.
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ABSTRACT ARTICLE HISTORY
We report predictive models of acute oral systemic toxicity represent- Received 12 July 2019
ing a follow-up of our previous work in the framework of the NICEATM Accepted 21 September 2019
project. It includes the update of original models through the addition KEYWORDS

of new data and an external validation of the models using a dataset  o5aR/QspR; generative
relevant for the chemical industry context. A regression model for LDs, topographic mapping
and multi-class classification model for toxicity classes according to the (GTM); oral rat acute toxicity;
Global Harmonized System categories were prepared. ISIDA descrip- OECD principles; REACH
tors were used to encode molecular structures. Machine learning algo-

rithms included support vector machine (SVM), random forest (RF) and

naive Bayesian. Selected individual models were combined in consen-

sus. The different datasets were compared using the generative topo-

graphic mapping approach. It appeared that the NICEATM datasets

were lacking some relevant chemotypes for chemical industry. The

new models trained on enlarged data sets have applicability domains

(AD) sufficiently large to accommodate industrial compounds. The

fraction of compounds inside the models’ AD increased from 58%

(NICEATM model) to 94% (new model). The increase of training sets

improved models’ prediction performance: RMSE values decreased

from 0.56 to 0.47 and balanced accuracies increased from 0.69 to 0.71

for NICEATM and new models, respectively.

Introduction

The estimation of the acute oral toxicity is a mandatory requirement under the Registration,
Evaluation, Authorization and Restriction of Chemicals (REACH, EC No. 1907/2006) legislation
for substances manufactured or imported in quantities of 1 ton or more per year [1]. In most
cases, this information is generated by performing an animal test according to the
Organisation for Economic Co-operation and Development (OECD) guidelines. Until 2002,
the reference guideline was OECD 401, however it was abolished for animal welfare reasons.
Nowadays, more advanced guidelines are available which demand much less testing on
animals and are likely to produce more reliable results [2]. Currently used guidelines are:
OECD 420 (fixed dose procedure), OECD 423 (acute toxic class method), OECD 425 (up and
down procedure) [3]. These guidelines are designed to classify the substances according to the
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Global Harmonized System (GHS) categories and LDs, values are only roughly estimated, at
best.

To reduce animal testing, REACH encourages the use of non-testing methodologies, such
as weight of evidence approaches, read across and QSAR modelling. In the past years,
several QSAR models have already been developed to predict Acute Oral toxicity [4-7].
Some models are nowadays implemented in both commercial and free software (Table 1).

By the beginning of 2018, the National Toxicology Programme Interagency Centre for the
Evaluation of Alternative Toxicological Methods (NICEATM) [8], as part of the effort to support
the use of alternative methods, organized a worldwide workgroup to develop in silico models
of acute oral toxicity. In particular, five relevant endpoints needed by regulatory agencies were
targeted. These endpoints included (i) identification of ‘very toxic’ chemicals (LDsq less than
50 mg/kg) and (i) ‘non-toxic’ chemicals (LDs, greater than or equal to 2000 mg/kg), (iii) point
estimates for LDsos, (iv) categorization of toxicity hazard using the U.S. Environmental
Protection Agency (EPA) [9] and (v) the GHS [10] classification schemes. The NICEATM
collected rat oral LDsy data on over 15,000 substances from different publicly available
databases and resources. The curated dataset was split into training and validation set. In
the first stage, only the former was provided to the participants. The validation set was later
used to externally validate the submitted models. The committee evaluated each model
qualitatively with respect to the OECD principles [11] and quantitatively based on the
predictive performance against the test set. Models were then employed to screen a large
prediction set of =40k chemicals of interest to different agencies and finally were also
included into a consensus model, which leverages the strengths and compensate for the
weaknesses of each individual approach [12]. More information about data preparation can
be found on the workgroup website [8] and described by Ballabio et al. [13].

As participants, we submitted a regression model for LDsq estimation. In this manu-
script we present our modelling approach and a continuation of our work, including:

(1) Generation of a new multi-classification model based on GHS categories;

(2) Collection of additional acute oral toxicity data from several sources to extend the
model’s training set;

(3) External validation against a dataset relevant for the context of the chemical
industry (hereafter named ‘Industrial set’), provided by Solvay.

Finally, all public data was merged to constitute a ‘Global set’ (counting 11981 com-

pounds) and models were updated. To the best of our knowledge, this is the largest
reported dataset used for the development of QSARs predicting acute toxicity (Table 1).

Table 1. Tools for acute oral LDs, estimation.

Model Tr. size Employed descriptors Algorithm Ref.
TEST® 7420  Chemistry Development Kit (CDK) [15] Consensus on five methods [16]
ADMET® 7150 2D, 3D molecular descriptors Artificial neural network 171
ACD/Labs® 8631  Expert knowledge and structural descriptors Expert knowledge and classification-SAR [18]
TerraBase® = 10000 Molecular structure descriptors Probabilistic Neural Network [9]
Accelrysc =~ 4000 Molecular structure descriptors Consensus on several models [20]

F = freely available; © = commercial
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Our models are available through the online ISIDA/Predictor platform [14], available
at the Laboratory of Chemoinformatics webpage: http://infochim.u-strasbg.fr/cgi-bin/
predictor.cgi.

Methods
Modelling workflow

A graphical representation of the general workflow is shown in Figure 1; its main steps
will be detailed in the present chapter.

Data collection

Curated experimental data was distributed by the NICEATM workgroup. The original
continuous LDs, training and validation set counted respectively 6734 and 2174 com-
pounds; analogously, for GHS classes 8960 and 2885 compounds were available. Additional
oral rat LDso data was collected from the database of the European Chemicals Agency
(ECHA) through the eChem portal [21], the relevant databases from the QSAR Toolbox
software (SI, Section 1) [22] and the Toxicity Estimation Software Tool (TEST) training set
[16]. Furthermore, a dataset on LDsq (Industrial set) was provided by the industrial partner
Solvay. This naming has been chosen in order to underline the existing structural differ-
ences between the compounds coming from an industrial context, which may represent
new trends in large-scale production, from those available in public databases. To support

Data collection &
curation
i e % ISIDA descriptors
T

Internal validation
- Cross validation
- Y-scrambling

GTM datasets

1
1
1
I .
1 comparison

New data inclusion
(Global set)

v
Model generation
1 8 9
Two models: Implementation
Ensemble model - LD50 estimation = = - Predictor

- GHS categories - ColorAtom

External validation
(Industrial set)

Figure 1. General workflow. (1) data is collected from different sources; (2) ISIDA descriptors
encoding; (3) GTM is employed to compare the structural space of the datasets; (4), (5) individual
models are trained and combined in consensus; (6) the Industrial set is used for external validation
(7) the ‘Global set’ is issued by the merging of all public data and (8) models are updated; (9) models
are published on the online platform.
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this statement, collected databases were analysed through GTM (results section) and
pairwise comparison of the Tanimoto similarities (SI, Section 2). Both approaches high-
lighted structural differences between their chemical spaces and the presence of unique
chemotypes. Finally, an additional dataset of 462 compounds, not overlapping with the
collected data, was provided by Solvay afterwards. This dataset (Blind set) was thus used to
externally validate the last model version built on all collected data (public + industrial).

All collected public data (i.e. a total of 13682 unique compounds after the curation
procedure) is available on Zenodo (DOI 10.5281/zenodo.3300664) with the respective
LDso and/or GHS property; the industrial compounds cannot be provided due to con-
fidentiality reasons.

Data curation and standardization

To avoid additional sources of variability, data was limited to rat-only assays. Mixtures,
polymers and UVCBs (Unknown or Variable composition, Complex reaction products or
Biological materials) were discarded. Chemical standardization included: removal of
salts/solvents, neutralization, removal of explicit hydrogens, aromatic representation
for benzene rings, removal of stereo information, standardization of -nitro and -sulpho
containing groups. This step was performed with a standardization workflow implemen-
ted in the Konstanz Information Miner (KNIME) [23]. In case of duplicates only one
structure was kept and their LDso median value was selected (computed according to
norm 1SO16269-7). Multiple LDs, values available the same compound were used to
estimate the experimental error of the measurements. For each compound with at least
2 data points, a LDso range (maximum — minimum over reported values) was calculated,
and the average of these range widths over concerned compounds was interpreted as
the experimental error. GHS classes [10] were assigned based on the continuous LDsq
value, using the following thresholds (in mg/kg): <5, class 1; >5 and <50, class 2; >50 and
<300, class 3; >300 and <2000, class 4; >2000, class 5. In order to maintain the same
NICEATM classification system, the GHS ‘not classified’ category (i.e. > 5000 mg/kg) and
GHS Category 5 (i.e. > 2000 mg/kg) were merged together in one unique class. For the
regression model, LDsq values originally expressed in mg/kg body weight were trans-
formed to the inverse log of the molar dose (pLDs, in mmol/kg body weight).

Encoding of chemical structures

ISIDA property-label molecular descriptors [24] were employed. This led to the generation
of dozens of different descriptor spaces which corresponds to different fragment sizes,
topologies and encoded chemical information, called ‘colouration’ (elements labels, phy-
sical properties mapped on the atoms explicit or implicit chemical bonds, atom pairs). The
number of fragments of the given descriptor space depends on selected fragmentation
scheme. It varied from 387 (IlAB(2-2), atom centred fragments with radius 1) to 31623 (IIAB
(2-5), atom centred fragments with radius 5), with an average of 7974 (S, section 1).
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Generative topographic mapping

The chemical space of the collected databases was compared by means of the GTM
approach [25], a dimensionality reduction method allowing the visualization of data
distribution on a 2-dimensional map. A data property can be added as a 3¢ axis forming
such called activity landscape. Each landscape ‘spot’ on the 2D map is coloured accord-
ing to the property value (either continuous or categorical); this value is the average
property of the data subset concerned by that position on the landscape [26-28]. Two
types of analysis were carried out: (i) the NICEATM dataset set was pairwise compared
with the other databases (i.e. QSAR Toolbox, TEST, etc.); (i) a map was generated on the
Global set and the LDs, value was used as property landscape. For the former, the goal
was to identify which chemotypes were unique to the industrial context and under-
represented in public available data. For the latter, the goal was to visualize how toxic
and non-toxic compounds are distributed in the chemical space. The ISIDA descriptor
space |IB(2-2) [24] associated to the best support vector machine (SVM) model (in terms
of balanced accuracy) was chosen. These descriptors are based on molecular fragments
consisting in an atom and information on the corresponding chemical bonds. The
manifold [21] was built on the whole available chemical space (i.e. the Global set).

Model generation

Employed machine learning approaches included: SVM with linear and radial basis
function kernels, random forest (RF) and multinomial naive Bayesian (NB). SYM models
were generated with libSVM (v. 3.22) [29]; WEKA (v. 3.9.3) [30] was used for RF and for NB
models. The SVM parameters (Cost and Gamma) corresponding to minimal RMSE in
3-fold CV were found by genetic algorithm driven optimization. The RMSE was estimated
using a dedicated 3-fold CV, isolated from the cross-validation procedure used to
evaluate the final models, mentioned below. Concerning RF, default parameters of
WEKA were selected, with the number of generated trees equal to 100. No strategy
was used to compensate the class imbalance in the dataset.

The modelling workflow is depicted in Figure 2: (1) dozens of ISIDA descriptor spaces
(DSs) were generated (different fragment sizes and topologies); (2) for each DS, SVM and RF
models were trained (individual models); (3) individual models were ranked according to
their root mean squared error (RMSE) in 3-fold CV; (4) the best performing individual model

i 2
5 Descriptor Spaces (DS) SVM, RF and NB
Training set ISIDA Fragments models generation
4 3 l
Internal and Top model per DS is .
external validation retained 3-fold CV ranking

Figure 2. Model generation workflow.
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for the given DS was retained; (5) models are internally and externally validated. Internal
validation was carried out by random splitting 3-fold CV. This procedure was repeated 5
times after reshuffling (i.e. the property for each molecule is predicted 5 times). The Model
quality criteria (see Figure 2) were assessed for each repetition followed by their averaging.
During CV no further optimization of SVM parameters was performed. The absence of
chance correlation was checked through the Y-scrambling procedure (repeated 100 times).

The Industrial set was used in external validation. In addition, it was predicted by the
model TEST (Table 1). To evaluate the performance of regression models, the r* deter-
mination coefficient and the RMSE parameters are reported. For multi-class classification
models, the sensitivity (Sn), specificity (Sp) and balanced accuracy (BA) are instead used.
Dealing with multi-classes, the overall values for Sn, Sp and BA were computed as the
weighted average among the classes based on the number of instances of the given
class, following the same approach implemented in WEKA (v. 3.9.3) [30].

The following terminology is adopted:

e ‘NICEATM original”: the regression LDso model generated for the workgroup. Its
training set is based solely on the NICEATM training set.

e ‘NICEATM full’: regression and multi-class classification models generated on all
NICEATM data (i.e. training plus validation set).

e ‘Global”: regression and classification models generated on all collected data,
externally validated on the Industrial set.

Applicability domain

The applicability domain was evaluated trough the so-called ‘fragment control’ assess-
ment (Figure 3, step 2): if a test molecule is found to have one fragment (i.e.
a determined sequence of atoms and/or bonds) which is not present in the individual
model, that molecule is marked to be outside the applicability domain since it is
uncertain whether the model’s predictions can be extrapolated to this not yet chartered
chemical space zone [24].

Consensus modelling

To derive the consensus decision, the following strategy was implemented (Figure 3). The
ensemble decision is taken either by computing the median (regression model) or by
a majority vote (classification model) from the individual models of the different algorithms
considered together (step 1). All out-of-AD predictions (based on the fragment control) are
excluded (step 2) and the consensus is computed (step 3). Finally, a 4-grade reliability scale
is associated to the output (step 4), based on a combined score of (i) the concordance of
the predictions and (ii) the % of individual models, out of the total, for which the
compound was inside the AD. The former was estimated by the median absolute deviation
for regression models or the entropy value for classification models (SI, section 2).
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SVM RF NB
Step 1
Exclusion of out-of-AD
Step 2 models (fragment control)
Step 3 [ Consensus output J
Reliability assessment
¥ Step 4 - Concordance of predictions

- Models with positive AD

Figure 3. Consensus model workflow. Step 1: predictions for each algorithm (SVM, RF and NB) are
merged together; Step 2 & 3: the consensus is the average of the predictions, excluding those
models identifying the compound as out of applicability domain; Step 4: reliability assessment is
associated to the output.

Graphical interpretation of predictions: coloratom

ISIDA ColorAtom [14] analyses local gradients of descriptors as reflecting their contributions
to the variation of the modelled property [31]. A colour is assigned to each atom of the
predicted molecule reflecting its positive or negative increment to the modelled property.
This is a graphical representation of how the model interpreted the molecule for calculating
the predicted value, not a mechanistic statement of the role played by each atom.

Results
Curated datasets

Table 2 reports summary statistics of the collected datasets; Figure 4 shows the dis-
tribution in the five GHS classes (SI, Section 2). The distribution pattern is the same for
NICEATM, QSAR Toolbox and TEST datasets, for which the most populated class is the
GHS class 4; on the other hand, for ECHA and the Industrial set the GHS class 5 is the
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Table 2. Statistics of the curated datasets.

Numerical pLDs, statistics GHS class repartition
Curated datasets Total no. Min Max Mean 1 2 3 4 5
NICEATM? 10863 =271 4.6 -0.48 180 650 1395 3359 2643
QSAR Toolbox 10531 -3.34 4.21 -0.53 276 760 1628 3987 3880
TEST 7315 =271 421 —-0.45 237 661 1250 2819 2348
ECHA 1717 =279 242 -0.97 4 20 131 694 868
Industrial set 1563 —4.57 1.31 -0.95 1 9 121 437 995
Blind set 462 =231 0.89 0.58 0 0 16 96 211
Global set® 11981 —4.57 4.21 -0.54 317 851 1773 4350 4690

?dataset used to build the ‘NICEATM full’ model; Pdataset used to build the ‘Global model’. The Global set® was issued
by merging of the whole public data.

0.7 ‘
- ‘ H NICEATM
: \ ¥ QSAR Toolbox
> 05 | WTESTEPA
§ \ ECHA
& oA | | ®Industrial set
‘s 03 1
2 \
-
8 0.2 1
o \
& |
0 | II. — . ’
1 2 3 4 5

Class label

Figure 4. Class frequency distribution for the classification model.

most abundant. The experimental variability, when multiple values for the same com-
pound were available, was calculated to be 0.40 log unit.

Database comparison by GTM

Once the molecules are projected, landscapes are generated according to the envisaged
property, and colours are assigned to the nodes of the map. In this context, two different
landscapes were used: (i) the compound’s database affiliation (i.e. NICEATM, QSAR
Toolbox, etc.) and (ii) the LDsy value.

Database affiliation maps

With this analysis, the NICEATM was pairwise compared against all the remaining
datasets. The goal was to verify if its set of compounds was sufficiently diverse to
cover most of the chemical space, especially when confronted to the industrial context
(i.e. the REACH registration dossiers on the ECHA database and the data provided by
Solvay). Figure 5 shows all the pairwise comparison. Red areas are uniquely populated
by the NICEATM dataset and blue by the others; intermediate colours are mixed
populated areas. As visible from the first and the second landscape, NICEATM is almost
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(a) NICEATM vs. QSAR Toolbox (b) NICEATM vs. TEST
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Figure 5. GTM database comparison. Each map compares the NICEATM vs. the other dataset: (a)
QSAR Toolbox, (b) TEST, (c) ECHA and (d) Industrial set. Red regions are mainly populated by the
NICEATM compounds and blue ones by the dataset it is compared to. White areas are empty regions
of the map.

5283-66-9

0

15416-74-7

)
)
)

completely overlapping with QSAR Toolbox and TEST datasets. Some exceptions are two
areas marked by the black rectangles ‘A’, indicative of some chemotypes under-sampled
in the NICEATM dataset. For example, molecules with methylxanthine (CAS 81250-17-1;
66172-75-6) or imidazothiazole (CAS 102410-20-8; 102410-31-1) as substructures are
almost unique to the QSAR Toolbox and TEST datasets.

For the third and fourth landscape, the situation is quite different: even though the
chemical space is mainly dominated by NICEATM compounds (since its size is almost
four times ECHA and the Industrial dataset), there are several spots dominated by ECHA
or Industrial compounds (black rectangles ‘B’). Interestingly, these areas are localized on
a similar X, Y position of the map, suggesting that the NICEATM dataset is missing some
chemotypes which are, however, shared between the Industrial set and ECHA. To
provide few examples, the chemotype containing a sequence of Halogen-Silicium-
Halogen atoms (e.g. CAS 5283-66-9) and long aliphatic chains terminating with
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Figure 6. ‘Global map’ for LDs,. The map is built by merging all the available sources of data. Very
toxic compounds are identified by red zones while less toxic compounds by blue ones.

a positively charged nitrogen-containing functional group (e.g. CAS 15416-74-7) are
unknown or under-sampled to the other databases.

LDs, property map

Figure 5 reports the Global map coloured according to the LDsq value. There are several
spots of very highly toxic chemicals (indicated by black rectangles). For example, the area
delimited by rectangle ‘A" is populated by members of the dioxine and furane family (such
as TCDD and TCDF); while in the area of the rectangle ‘B’ there is a collection of chemicals
with the benzimidazole as substructure (e.g. CAS 89427-34-9) (Figure 6).

Table 3. Model performances.

Internal validation (3-fold CV)° External validation
Regression Model r RMSE 7 Y-scrb RMSE Data coverage (%)°
NICEATM original  0.79 (0.050)  0.55 (0.051) 0.13 0.56 58 (287/479)
NICEATM full 0.77 (0.045)  0.56 (0.053) 0.15 0.51 87 (205/235)
Global model 0.78 (0.047)  0.55 (0.055) 0.12 047 94 (186/197)
TEST © - - - 0.61 90 (293/322)
Internal validation (3-fold CV)° External validation
Classification Model BA BA Y-scrb BA Sn Sp  Data coverage (%)°
NICEATM full 0.70 (0.031) 0.30 069 0.74 063 82 (669/811)
Global model 0.70 (0.029) 0.32 072 076 0.69 85 (635/744)

Regression LDs, model (upper part) and classification model (bottom part). °In brackets, the standard deviation
computed in the 3-fold CV is reported for the r* and RMSE values averaged over the number of repetitions.
External validation is based on the Industrial set. BA = balanced accuracy, Sn = sensitivity, Sp = specificity. The
first number is the data coverage in %; the number between the parentheses is a ratio of the number of compounds
inside AD and the total number of compounds. “results from the TEST model.

128



SAR AND QSAR IN ENVIRONMENTAL RESEARCH @ 889

Table 4. Performance of selected machine learning methods.

External validation

Regression Method RMSE Data coverage (%)
Random forest 0.47 94
SVM linear kernel 0.51 82
SVM RBF kernel 0.50 97
Global model 0.47 94

External validation

Classification Method BA Sn Sp Data coverage (%)
Random forest 0.74 0.82 0.66 81
SVM linear kernel 0.69 0.81 0.56 87
SVM RBF kernel 0.73 0.81 0.66 85
Naive Bayesian 0.64 0.60 0.68 80
Global model 0.72 0.76 0.69 85

Regression LDso model (upper part) and classification model (bottom part). External validation is based on the Industrial
set. BA = balanced accuracy, Sn = sensitivity, Sp = specificity.

Model performances

Table 3 reports performances of the generated models: regression LDs, model (top) and
classification model (bottom). In addition, the performances of the TEST tool are
reported for LDsp. Individual machine learning algorithms performances are reported
in Table 4. Overall, all the models scored a good prediction accuracy on the Industrial
set, with RMSE values ranging from 0.47 to 0.56 and BA values from 0.69 to 0.72. TEST
showed a good data coverage, being able to predict the 90% of the Industrial set.
However, its prediction accuracy is worse (0.61 RMSE). The addition of new data is
directly correlated to both an increase of prediction accuracy and data coverage. The
latter increased from 58% for the NICEATM original model to 94% for the Global model
(regression) and from 82 to 85% (classification models). This reflects that the NICEATM
data are more comprehensive regarding GHS data. The contamination of models by
chance correlations is limited as monitored by Y-scrambling: the maximum observed r?
and BA metrics had very low values (©* < 0.2 and BA <0.5). Overall, all the models are
robust and well generalizable: performances in external validation are comparable to
those in cross-validation and the data coverage reaches very high levels.

Performances on blind set
Finally, the last version of the model (built on all collected data, i.e. public + industrial)
was challenged to predict a new list of 462 unique compounds made available after-
wards. Of them, 224 had a precise estimation of LDso; while 347 had only the categorical
statement. Thus, both the regression and classification models were used.

For confidentiality reasons, this dataset cannot be disclosed, and only some general
information can be provided. It comprises quite heterogeneous chemical structures,

Table 5. Performances of public and industrial data ensemble models on the blind set.

Regression Classification
Blind set I RMSE Data coverage (%) Sn Sp BA Data coverage (%)
0.3 0.48 92 (207/224) 0.77 0.97 0.87 93 (303/323)

BA = balanced accuracy, Sn = sensitivity, Sp = specificity.
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from high molecular weight compounds such as long chain aliphatic surfactants and
halogenated biphenyls to much smaller ones such as phenol derivates and simple
amides. A good number of compounds are organofluorine derivatives. The molecular
weight ranges from 41 to 1094 with an experimental pLDs, from —2.31 to 0.89 log unit.
This dataset is mainly ‘non-toxic’, as almost 60% of the compounds are not classified
under the GHS system (i.e. LDso > 2000 mg/kg).

Performances for the regression model are similar to the previous external validation
(RMSEing = 0.48 vs. RMSE,,; = 0.47; Tables 3 and 5). In both instances, the prediction
accuracy is better than the one estimated through cross-validation (RMSE., = 0.55). On
the other hand, the classification model performed better (BApjing = 0.87 vs. BAgy, = 0.72,
Tables 3 and 5). This is probably due to the unbalanced nature of the Blind set, as the
majority of the compounds belong to GHS class 5.

The Blind set r* value may appear disappointing at first sight. However, it must be
noticed that its pLDso property range is considerably smaller than the Global model’s
one (—4.57-4.21). Figure 7 depicts experimental/predicted scatterplot of the Global
model’s training set (evaluated in 3-fold CV) overlapped with the Blind set. As expected,
the Blind set covers only a fraction of the entire property range: this explains the low
determination coefficient value.

5
O Cross-Validation
4 --- 2'*RMSE lines
e Blind set: inside AD

e Blind set: outside AD

PRED pLD50

-4 -3 -2 -1 0 1 2 3 4 5
EXP pLD50

Figure 7. Blind set scatterplot. Grey points represent the training set evaluated in 3-fold CV; red and

blue points indicate Blind set molecules outside and inside the AD, respectively. Blue dashed lines
mark the + 2 RMSE,,. limits.
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Table 6. ColorAtom output.
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Chloropromurite

TCDD

CAS 4129-17-3
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Colours refer to atomic contribution to the predicted value of the property (i.e. pLDsq values). Red
colour means that the atom contributes to decrease its value (lowering the toxicity); while blue
means an increase of its value (i.e. increasing the toxicity).

Model interpretation with coloratom

For in-depth structure-activity dependence analysis, Table 6 reports three molecules
chosen as examples for the ColorAtom: diphenylphosphinyl azide, chloropromurite and
TCDD. As expected, as the compounds become more toxic, ‘blue-coloured’ atoms
become dominant. For the first compound, the ‘triazo-’ substructure is the main driver
for its correct prediction as an acute toxic. Similarly, chloropromurite presents two
functional groups which are associated with enhanced toxicity: the ‘diazo’ (CNN) and
the ‘thiocyanate’ (SCN). Finally, all the atoms of TCDD are represented as promoters of
toxicity. In these cases, the colouration patterns are actually in agreement with the
mechanistical interpretation of the analysed functional groups [32,33]. SI, Section 3
reports additional examples of compounds with the same functional groups that
showed the same colouration scheme.

Discussion

Among the QSAR tools for the estimation of the oral rat acute toxicity reported in Table 1,
only one is freely available (TEST). The collaborative NICEATM workshop aimed at filling this
gap, by proposing a set of new models which will be freely available [12], implemented in
the open source platform OPERA [34]. On the Industrial set, the predictive power of the
models (regression and classification) was found to be reasonably high, with RMSE values of
0.47-0.56 and BA values of 0.69-0.71 (5 five classes) for the NICEATM and the Global models,
respectively. Data coverage was quite unsatisfactory with the original NICEATM model (58%
on the Industrial set), but after the addition of new data from several databases (QSAR
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Toolbox, TEST, ECHA) it significantly improved: reaching 85 and 94% for the classification
and the regression model, respectively. New data improved models’ predictive power as
well, with the biggest improvement for the regression model, where the RMSE decreased
from 0.56 to 0.47. Finally, new models were built on the ensemble of public data and
Industrial data. Cross-validation performances for the regression model were r* = 0.78 and
RMSE = 0.53; while for the classification model BA = 0.69. These models were also externally
validated on the Blind set (Table 5), showing good prediction accuracy and data coverage:
RMSE = 047 with 92% inside AD (regression); and BA = 0.87 with 93% inside AD
(classification).

GTM was employed to show positions of 109 ‘out-of-AD’ compounds (Table 3, bottom part)
in the public data chemical space, which constitutes the training sets of the models (Figure 8).
As expected, the majority of them are located in the regions mainly populated by external set
compounds (blue areas), indicating that their chemotypes are quite unique and non-
overlapping with those in the models’ training sets. For example, compound CAS 34762-90-
8 presents the unique chemotype — N*BCl3. Some compounds are singletons far away from the
occupied chemical space, such as CAS 24108-89, a pigment characterized by a very complex
and diverse chemical structure. On the other hand, there are some out-of-AD compounds
projected in areas of the public data chemical space. This happens when the given molecule
both shares several functional groups with the training set compound and contains new
chemotype. For example, drometrizole trisiloxane (CAS 155633-54-8), contains trisiloxane
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Figure 8. Tracking the out-of-AD compounds in the chemical space. Zones populated by the training
set and Industrial set compounds are highlighted in colour. Black points represent the projections of
109 out of AD compounds.
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Correct instances Errors

Figure 9. Venn diagrams comparing individual multi-class classification models performances in
external validation on Industrial set. Left and right diagrams correspond to correct and erroneous
predictions, respectively.

motif absent in the training set, and drometrizole motif present in several training set
compounds.

Performances of individual models for the multi-class classification in external validation on
Industrial set are represented by means of Venn diagrams (Figure 9). Comparison is performed
for both the correct (left) and for erroneous (right) predictions. These results support the
conclusion about the robustness of consensus model, since great majority of instances (238)
were simultaneously correctly predicted by all four machine-learning algorithms.

Our developed models follow the OECD principles [11]. The endpoint (LDsg) is well
defined. Goodness-of-fit, robustness and predictivity were evaluated using internal and
external 3-fold Cross-Validation (CV), Y-scrambling, and external validation [35-37].
The AD of the models was defined using a fragment control assessment [24] together
with a reliability scoring function.
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Figure 10. Continuous-LDs, and the GHS-classes distribution comparison.
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Figure 10 depicts the relative frequency distribution for the continuous-LDs and the GHS-
classes for the full NICEATM dataset (training and evaluation set). It is interesting to notice that
LDs, data is always more frequent than categorical assays for more toxic compounds, with the
biggest difference (+15%) for the medium toxicity class (GHS class 4, i.e. 300-2000 mg/kg). On
the other hand, for low toxicity values (GHS category 5, i.e. >2000 mg/kg,) categorical data
becomes much more frequent. This is related to the current regulatory requirements: in case
the substance shows high toxicity, it could be more advantageous for the registrant to have
the precise LDsq, in order to avoid a potential overestimation of the compound'’s toxicity,
leading to a less desirable GHS classification. On the other hand, when the substance is far from
GHS thresholds, a looser toxicity estimation could be enough. This bias of the data is also
reflected in the model's learned rules: we noticed that the regression LDs, model tends to
overestimate the toxicity of some very low toxic compounds. Furthermore, as mentioned in
the introduction, current guidelines do not foresee anymore the precise estimation of LDsy.
Instead, the goal is to perform limit tests (OECD 420, 423, 425) for estimating the GHS
categories, which allows the use of fewer animals. For this reason, new LDs, data is unlikely
to be generated, and future in-silico models will have to be updated based on the new
categorical data.

Conclusions

In this work we report predictive models of acute oral toxicity obtained in the context of
the National Toxicology Programme Interagency Centre for the Evaluation of Alternative
Toxicological Methods (NICEATM) workgroup [14,18].

The datasets including 11211 and 13680 compounds for ‘Global’ regression and classifica-
tion models respectively, were collected from the publicly available sources. To our knowl-
edge, these are the biggest datasets ever used for the modelling of oral acute toxicity in rodent.

The models were obtained using ISIDA fragment descriptors [24] and support vector
machine, random forest and naive Bayes machine learning methods. Compared to our
contribution to the NICEATM project in this paper (i) a new classification model based on
GHS toxicity categories was generated (ii) Global models were generated by collecting new
data.

The predictive performance of the models was assessed on independent Industrial set
provided by Solvay. It has been demonstrated that both regression and classification
Global models obtained in this work (RMSE = 0.47 and BA = 0.72) perform better than
the previously reported NICEATM models (RMSE = 0.56 and BA = 0.69). Moreover, the
Global models have much larger applicability domain: the data coverage on the
Industrial set is 85% and 82% (classification) and 94% and 58% (regression) for Global
and NICEATM models, respectively. Finally, new models built on the ensemble of public
data and Industrial dataset were validated on a set of 462 new structures provided by
Solvay. This blind test proved reasonably high predictive power of the models:
RMSE = 0.48 and BA = 0.87 for regression and classification, respectively.
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4.1.6 Androgen and Estrogen receptor binding
Endocrine hormones regulate various functions, including metabolism, sleep, growth and
development. An Endocrine Disrupting Chemical (EDC) is an exogenous substance that
alters the functions of the endocrine system and consequently causes adverse effects. The
endocrine disruption event is the result of a series of mechanisms, which can be in part
explained by the interaction with specific Nuclear hormone Receptors (NRs). The most
studied NRs include the Estrogen Receptor (ER) and the Androgen Receptor (AR).

Few models have been published in the past years. However, with the exception
of two more recent projects, the “Collaborative Estrogen Receptor Activity Prediction
Project” (CERAPP) and the “Collaborative Modelling Project for Androgen Receptor
Activity” (COMPARA), the relatively small training set sizes (ranging from 66 to 645
compounds) are symptomatic of the limitations of existing models.

Thus several models and datasets are currently available. However, this is the first
time that a meta-analysis is proposed comparing the data sources. A surprising observation
is that the dataset size seems to be unrelated with the models’ performances: the addition
of more information tends to dilute the relation between the chemical structure and the
modeled properties. In this work we search for some roots explaining this observation and
we propose an in-depth analysis about the available ER and AR data, illustrated by the
generation of QSAR models.

Binary classification models were generated using data prepared within the
CERAPP and CoMPARA frameworks. Additional external validation was carried out
based on data collected from two sources: the “Tox21 Data Challenge 2014 (hereafter
named Tox-DC) [NIH, 2014] and an extraction from PubChem database. We encountered
some interesting points worth mentioning:

e Significant discrepancies of the experimental labels when comparing the different
sources, indicating that the CERAPP and COMPARA datasets shall not be fused
with other kinds of assays;

e Biological events such as receptor binding, agonist or antagonist effects may refer

to biological phenomena that do not necessarily have an obvious causal link;
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e Some caution has to be taken considering the external validation set for the
CERAPP and CoOMPARA.

Generated models illustrated how these discrepancies have negatively impacted
performances. Binding activity models reproduced the CERAPP/CoMPARA frameworks,
showing comparable results (ER BAext = 0.60 and AR BAext = 0.73). Additional external
validation was carried out on additional Tox-DC and the PubChem datasets (BAtox-nc =
0.65 — 0.72 and BApubchem = 0.66 — 0.71). The ability of the models to detect compounds
truly recognized by a nuclear receptor are limited by the poor agreement between the data
sources. Data sources agreement is illustrated by a sensibility measure ranging from 0.34
to 0.49. It seems that different data sources are merging results of different biological
meaning, that could explain the degraded performances of the models. The
CERAPP/CoMPARA datasets are standing out particularly, suggesting that they shall not
be fused with other data sources.

This article has been submitted to the peer-reviewed journal “SAR and QSAR in
Environmental Research”; the manuscript reported here corresponds to the submitted

version.

‘ . 4.1.6 Liaison aux récepteurs nucléaires androgénes et cestrogénes

Les hormones endocrines régulent diverses fonctions, dont le métabolisme, le sommeil, la
croissance et le developpement. Un perturbateur endocrinien chimique (EDC) est une
substance exogene qui modifie les fonctions du systéme endocrinien et entraine par
conséquent des effets indésirables. La perturbation endocrinienne est le résultat d'une série
d’événements, qui peuvent s'expliquer en partie par I'interaction du composé chimique avec
des récepteurs nucléaires hormonaux (NR) spécifiques. Les NR les plus étudiés sont le

récepteur aux cestrogénes (ER) et le récepteur aux androgenes (AR).

Peu de modéles ont été publiés ces derniéres années. Cependant, a I'exception de
deux récents projets, le «Collaborative Estrogen Receptor Activity Prediction Project»
(CERAPP) et le «Collaborative Modeling Project for Androgen Receptor Activity»
(CoMPARA), la taille relativement petite des jeux d’entrainement utilisés (allant de 66 a

645 composés) est symptomatique des limites des modeles existants.
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Il existe donc plusieurs modeles et jeux de données de tailles variables
actuellement disponibles. Cependant, c'est la premiére fois qu'une méta-analyse est
proposée pour comparer les sources de données. En effet, une observation surprenante est
que la taille des jeux de données d’entrainement semble sans rapport avec les performances
des modéles: 1’ajout d’information tend méme a diluer la relation entre la structure
chimique et les propriétés modeélisées. Dans ce travail, nous recherchons des causes
expliquant cette observation ce qui nous conduit a proposer une analyse approfondie des
données ER et AR disponibles, illustrée par la génération de modeles QSAR.

Des modeéles de classification binaire ont été générés a partir de données préparées
dans les cadres a 1’occasion des collaboration CERAPP et COMPARA. Une validation
externe supplémentaire a été réalisée sur la base de données collectées a partir de deux
sources: le «Tox21 Data Challenge 2014» (ci-aprés dénommé Tox-DC) [41] et une
extraction de la base de données PubChem. Nous avons réalisé quelques observations
intéressantes qui méritent d'étre mentionnés:

e Des différences importantes entre les étiquettes expérimentales d’un méme
composé entre différentes sources, indiquant en particulier que les jeux de données
CERAPP et CoMPARA ne doivent pas étre fusionnés avec d'autres types de
données;

e Les événements biologiques tels que la liaison a récepteur, les effets agonistes ou
antagonistes peuvent se référer a des phénoménes biologiques n’ayant pas
nécessairement un lien de causalité évident;

e Une certaine prudence doit est de mise quand il s’agit de traiter les jeux de données
de validation externe issus des collaborations CERAPP et COMPARA.

Les modeles génerés ont illustré comment ces différences entre sources de
données ont eu un impact négatif sur les performances. Les modéles d'activité sur les
récepteurs nucléaires reproduisaient les conditions de CERAPP / CoMPARA, montrant
des résultats comparables (ER BAext = 0,60 et AR BAext = 0,73). Une validation externe
supplémentaire a ete effectuee sur des jeux de données Tox-DC et PubChem
supplémentaires (BATox-DC = 0,65 - 0,72 et BAPubChem = 0,66 - 0,71). La capacité des

modeles a détecter les composés vraiment reconnus par un récepteur nucléaire sont limités
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par le faible accord entre les bases de données. Cet accord est illustré par une mesure de
sensibilite allant de 0,34 a 0,49. 1l semble que différentes sources fusionnent des résultats
biologiques de signification différente, ce qui expliquerait ces performances médiocres.
Dans cet ensemble, les données CERAPP / CoMPARA ressortent particuliérement,

indiquant qu’elles ne doivent pas étre fusionnées avec d'autres sources de donnees.

Cet article a été soumis au journal a comité de lecture « SAR and QSAR in

Environmental Research » ; le manuscrit ci-dessous correspond a la version soumise.
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Abstract

In this work we present a meta-analysis of available data concerning two nuclear receptors
involved in endocrine disruption: the Estrogen (ER) and the Androgen (AR) receptor. We noticed
that the dataset size of already existing ER/AR models seems to be unrelated with the models’
performances: the addition of more information did not appear to strengthen modeled relationship
between the chemical structure and the ED properties. To analyze this issue, we collected ED-
relevant data from multiple sources, including the CERAPP/CoMPARA collaborations, the Tox21
data challenge and from ChEMBL and PubChem. The Generative Topographic Mapping approach
has been employed to compare the chemical space of considered data sources: datasets suffered
from a low agreement between experimental values, as the average concordance for binding class
labels was only 42 %.

Collected data was used to train classification binding activity and quantitative Relative Binding
Affinity (RBA) and median Inhibition Concentration (IC50) models. Models showed mixed
performances: classification models’ abilities to detect truly binding compounds are limited
(sensitivities: ER = 0.34, AR = 0.49) and RBA and IC50 models showed mediocre determination
coefficient values in external validation (R? = 0.44 — 0.76). Such low R” values were caused by the
presence of several outliers due to misinterpreted experimental endpoints or wrongly reported
values. For analogous reasons, the merging of assays having different biological meaning affected
the performances of binding activity models.

Developed models and employed training and test sets, counting a total of 6215 (ER) and 3789
(AR) unique compounds, are made freely available.

Keywords: QSAR/QSPR; Generative topographic mapping (GTM); Estrogen/Androgen
Receptor; Endocrine Disruptors, REACH
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Introduction

The endocrine system regulates a large numbers of biological functions, including metabolism,
sleep, growth and development [1] by the release of hormones and their binding to cellular
receptor. An Endocrine Disrupting Chemical (EDC) is an exogenous substance that alters the
functions of the endocrine system to the point of causing adverse effects. EDCs can exert their
effects by several ways: (i) mimicking normal hormones such as estrogens and androgens; (ii)
antagonizing hormones receptors; (iii) altering the pattern of synthesis and metabolism of
hormones or (iv) modifying hormone receptor levels [2]. Endocrine disruption (ED) can result
from the interaction of an exogenous chemical with specific Nuclear hormone Receptors (NRs).
The most studied NRs include: the Estrogen Receptor (ER), the Androgen Receptor (AR), the Aryl
hydrocarbon Receptor (AhR), the Thyroid Hormone (TA), Retinoic Acid (RAR) and Peroxisome
Proliferator-Activated Receptor (PPAR) [3].

Chemicals with an ED potential are of particular concern for human health and the environment:
for instance, under the European REACH (Registration, Evaluation, Authorization and Restriction
of Chemicals) Regulation, EDs are considered to be substances of very high concern [4]. Recently,
the European Chemicals Agency (ECHA) has developed a guidance document for ED screening
[3,5] and an OECD guidance (OECD TG 150) has been published [6]. These documents focus
mainly on the estrogenic, androgenic, thyroidal and steroidogenic (EATS) modalities, which are
pathways (but not only) of which the disruption can potentially lead to endocrine disruption. This
is because EATS modalities are currently the ones for which there is a relatively good mechanistic
understanding of how substance-induced perturbations may lead to adverse effects. As these
guidelines were published recently (2018), rigorously standardized and homogeneous data on
different ED modalities has yet to be generated. Therefore, compared with other toxicological
endpoints, the number of QSARs related to endocrine disruption is significantly lower. This is due
to the diversity and biological complexity of this family of endpoints and the fact that endocrine
disruption is not a toxicological endpoint per se, but one out of the many modes-of-action which
may result in adverse effects [4] as well as the limited amount of data on EDCs testing [7]. Three
OECD guidelines are relevant to test ER/AR binding: OECD 455, 458 and 493 [8].

In the past years several QSAR models have been generated, mainly targeting the androgen and
the estrogen receptors, due to the higher amount of available information. Table 1 reports some of
already published models on ER and AR. More details about available ED models can be find in
the work of E. Lo Piparo and A. Worth [4]. Most of them are binary classification models
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(discriminating binders “B” or non-binders “nB”); in case of continuous properties, the relative
binding affinity (RBA) is commonly used; followed by the median inhibitory concentration

(IC50).

Table I. Available models for ED screening (ER and AR).

Receptor Property Descriptors Algorithm® Size training set Test set? Ref.
IC50 2D MLR 86 R?*=0.55 [9]
IC50 Steric field PLS 81 R?=0.74 [10]
IC50 2D PLS 127 R*=0.72 [11]
£ = RBA Dragon MLR 150 R?=0.88, RMSE=0.62 [12]
¢ 2 RBA Dragon MLR 232 R?=0.79, RMSE = 0.99 [13]
;m § RBA Dragon k-NN 546 R*=0.73 [14]
RBA Dragon k-NN, RF 645 BA =0.82 [15]

ACS50 Various CERAPP
1677 BA = 0.55 — 0.66" [16]

consensus
RBA 2D & 3D COREPA* 202 BA=0.81 [17]
‘?fi; £ 1C25 Molecular fragments PLS 523 BA=0.77 [18]
_g % Binding Molecular fragments - 595 BA =0.74 [19]

Z £ AC50  Various CoMPARA

1688 BA =0.60 — 0.85" [20]

consensus

“minimum and maximum value among reported models; "MLR = Multiple Linear Regression, k-NN = k-
Nearest Neighbors, RF = Random Forest, PLS = Partial Least Squares; ‘probabilistic classification
scheme as described in [17); “Performances (external validation) have been collected from the work in the
“Ref.” column; R® = determination coefficient, RMSE = Root Mean Squared Ervor, BA = Balanced

Aceuracy.

With the exception of two more recent projects, i.e. the “Collaborative Estrogen Receptor Activity
Prediction Project” (CERAPP) [16] and the “Collaborative Modelling Project for Androgen
Receptor Activity” (CoMPARA) [20], the relatively small training set size (ranging from 66 to
645 compounds) denotes a limitation of published models, especially when compared to the huge
number of structurally different man-made and natural compounds to which we could be exposed,

e.g. under REACH, more than 22100 unique substances are registered (May, 2019) [5].
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In this work, we present a meta-analysis comparing the data sources in the context of QSAR model
development targeting AR and ER. Indeed, a surprising point shown by Table 1 is that the dataset
size seems to be unrelated with the models’ performances: the addition of more information did
not appear to strengthen modeled relationship between the chemical structure and the ED
properties. In this work we investigate some root causes explaining this observation and we present
an in-depth analysis of the available ER and AR data. Available data was checked

Binary classification models were generated using data prepared within the CERAPP and
CoMPARA frameworks. Additional external validation was carried out based on data collected
from two sources: the “Tox21 Data Challenge 2014 (hereafter named Tox-DC) [21] and an
extraction from PubChem database [22]. We encountered some interesting points worth
mentioning:

e Significant discrepancies of the experimental labels when comparing the different
sources, indicating that the CERAPP and CoMPARA datasets shall not be fused with
other kinds of assays;

e The test sets of the CERAPP and CoMPARA collaborations must be handled with care

to avoid misinterpretations;

Moreover, to get a more comprehensive picture of ED modelling, we discuss the generation of
quantitative QSAR models for estimating the ED potential: the IC50 and the RBA.
All collected datasets are freely available on Zenodo (10.5281/zenodo.3935808). Our models are

available through the online ISIDA/Predictor platform [23]., at the Laboratory of

Chemoinformatics webpage: http://infochim.u-strasbe.fr/cgi-bin/predictor_reach.cgi.

Methods

Description of the modelled properties
We modelled three separate properties for both ER and AR: the receptor’s binding activity (“B”,
binder / “nB”, non-binder), the relative binding affinity (RBA) and the median inhibitory

concentration (IC50).
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Binding activity

The CERAPP and COMPARA projects share the same data source, based on a collection of in
vitro High-Throughput Screening (HTS) assays included in the Environmental Protection Agency
(EPA) “ToxCast” program and the inter-agency “Toxicology Testing in the 21% Century”,
involving the EPA, the Food and Drug Administration (FDA), the National Institutes of Health
(NIH) and the National Toxicology Program (NTP) [24-28]. We generated a binary classification
model using CERAPP and CoOMPARA data. In this instance, it must be highlighted that the
modelled property is not, strictly speaking, binding to the receptor, but an integration of several
HTS assays exploring multiple sites in the ER / AR signaling pathway chain [16,20]. Respectively,
18 and 11 assays were selected for ER and AR. Subsequently, in order to assign a unique label, a
mathematical model was developed to integrate in vitro data in a final score (ranging from 0 to 1)
which is eventually converted into a label “active” / “inactive” meaning that a compound is
considered as a “disruptor” / “non-disruptor” of a given pathway. The cutoff on the score to assign
the labels is optimized on a Receiver Operating Characteristic (ROC) curve and is equal to 0.01
[16,25].

The CERAP and CoOMPARA challenges include also agonist/antagonist labels. Yet, generation of
models for agonist and antagonist events led to unacceptable results (see SI, Section 1). Therefore,
we decided to focus our investigations only on the general binding event to given NRs, i.e. if the

compound does interacts with the receptor (“binder”) or not (“non-binder”).

Relative binding affinity

The RBA, as defined by equation (1), compares the IC50 of a test chemical with that of the
reference compound (i.e. 17f-estradiol for ER or R1881 for AR). The IC50rr and IC50;es are the
concentrations of the reference compound and of the test compound at 50% inhibition of
radiolabeled [*H]-17B-estradiol or [*H]-R1881 binding to the estrogen or androgen receptor,
respectively. Therefore, the RBA of estradiol and R1881 is equal to 100%. In this study we
employed the logarithm of the RBA (logRBA). As reported in literature [29,30], compounds with

log RBA values >0 and <-3 can be considered strong binders and non-binders, respectively.

IC50yef
1C50¢est

RBA =

%100 (1)
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Median inhibitory concentration

The IC50 is derived from a dose response curve obtained from competitive binding experiment
with a radioligand (radio tagged 17f-estradiol or R1881). It is the ligand concentration displacing
50% of the binding of the radioligand. Although this definition cannot be easily related to a
dissociation constant, it is considered that in a given assay the values are comparable across the
tested compounds. However, the IC50 value is assay specific, thus the RBA is considered to be
more relevant when combining the output of various assays. A conservative cutoff value of
IC50>10 nM has been reported in the literature to define non-binders [31]. IC50 values originally
expressed in nM were transformed to inverse log units expressed in molar concentration (i.e. -

logIC50 or pIC50 in M),

Data collection

ER and AR data were collected from multiple sources: (i) already-curated datasets from the
CERAPP (Collaborative Estrogen Receptor Activity Prediction Project; ER data) [16] and
CoMPARA (Collaborative Modeling Project for Androgen Receptor Activity; AR data) [20]
international workgroups; (ii) data downloaded from the “Tox21 Data Challenge 2014 website
(“Tox-DC dataset”; both ER and AR data); (iii) the Endocrine Disruptor Knowledge Base (EDKB;
both ER and AR data) database [32]; (iv) PubChem (gene ID searching 2099 for ERa and 367 for
AR); (v) ChEMBL (IDs 240 for ERa and 1871 for AR); (vi) BindingDB (both ER and AR data)
[33]; and (vii) the “Receptor Mediated Effects” database, extracted from the QSAR Toolbox (both
ER and AR data) [34].

Data prepared during CERAPP and CoMPARA programs followed an analogous procedure. The
training sets were constituted from several assays from the ToxCast and Tox21 programs (18 and
11 for ER and AR, respectively), run on a library of 1855 ToxCast chemicals [16,20], and
assigning the binding activity (as described in the “Description of the modelled properties”
paragraph). This same library used to constitute the training set was also screened in the context
of the multi-agency Tox21 program. CERAPP / CoMPARA test sets were assembled, mostly,
from published literature and databases (e.g. ChEMBL) sources. Both training and test sets were
subject to a data curation procedure, as described in the respective publications.

The Tox-DC ER/AR datasets originate from a data challenge in 2014 sought to “crowdsource”

predictive models from various researchers across the globe. As these datasets come from the
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Tox21 program, there is an overlap between CERAPP / COMPARA and the Tox-DC. A qualitative

representation about the relationship of considered data sources is represented by Figure 1.

EDKB
PubChem

QSAR
Toolbox

Tox21
ToxCast

Figure 1. Qualitative representation showing overlap of compounds among the different data

sources.

The databases do not report all properties: for instance, BindingDB reports only the IC50 values,
ChEMBL the IC50 and RBA, while PubChem reports the binding activity and 1C50. Table 2
reports summary statistics of the cleaned datasets (i.e. after the data curation procedure described
below).

Raw data processing and chemical structures standardization were carried out with a
standardization workflow implemented in KNIME [35]. In case of duplicates, only one compound
was kept, and its property was computed either as the median (IC50 and RBA) or the mode
(binding activity) of the values. For the latter, when the repartition of B / nB was close to the

random threshold (i.e. between 40 - 60 %), the entry was discarded.

Consistency of experimental labels

The following analysis have been performed to better describe the available data. For the binding
activity (for both ER and AR), multiple pairwise comparisons among the different sources of data
(i.e. CERAPP / COMPARA, Tox-DC and PubChem) were carried out to verify the consistency of
reported experimental labels. Overlapping compounds were paired either by their unique ID

number (e.g. the “CERAPP_ID”) when available, or by their chemical structure after the data
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curation procedure. Finally, a given compound can be recorded simultaneously in 4 sources for
ER and 3 sources for AR, with different labels or no label.

The degree of agreement is the average number of sources that agree on the label of a compound.
For four ER, the levels are 1 (all sources agree), 0.75 (3 sources agree) and 0.5 (2 sources agree).
The number of compounds in each level value are noted Nioo, N7s and Nso. For AR, the levels are
1 and 0.66 and the corresponding populations are Nigo and Nee. N is the total number of
overlapping compounds. Using these notations, the degree of agreement for ER and AR are

summarized in the Equations 2 and 3.

N1po*1+N75%0.75+Ng50*0.5

Agreementgg = 5 2)
[
N1go*1+Ngg#0.66
Agreement p = —Lo——s6 "> = — 3)
c

Multiple IC50 and RBA values reported for the same compounds were used to estimate the overall
experimental measurement error for the given property, expressed though the Median Absolute
Deviation (MAD) value (Equation 4). Where X ji is the j value in the set of N; measures available
for compound i, N¢ is the total number of compounds with the given property and (X'} is the
average of values for the property of compound i.
MAD = -5, -S| = (x| “

Molecular descriptors

ISIDA Property-Label Molecular descriptors [36] were employed. A total of 71 ISIDA descriptor
spaces were generated, corresponding to molecular fragment of different sizes, topologies and
“coloration” (elements labels, physical properties mapped on the atoms explicit or implicit
chemical bonds, atom pairs). The number of fragments varies accordingly to the selected
fragmentation scheme of the given descriptor space. It ranged from 242 (“IIAB(2-2”), sequences
of atom of length 2) for the AR RBA model (the smallest training set) to 9013 (“I[IAB(2-4)”, atom

centred fragments with radius up to 4) for the ER IC50 model (the largest training set), with an

average of 4383 (S, section 2).
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Generative Topographic Mapping

Generative Topographic Mapping (GTM) is a dimensionality reduction method which allows to
visualize the data distribution on 2-dimensional map. A data property can be added as a 3" axis
forming such called activity landscape [37,38].

GTM was employed to graphically visualize the quantitative results obtained during the
experimental labels “agreement-analysis”. We used the binding activity (B /nB labels) as function
characterizing the landscapes. In such a way it was possible to identify clusters of compounds with
discordant experimental values. Through multiple pairwise evaluations, the chemical space of
CERAPP / CoOMPARA was compared against Tox-DC and PubChem, following the following
steps: (i) for the given pair of datasets, overlapping compounds were extracted; (ii) two landscapes
were generated, the former colored according to the first dataset’s molecules binding activity, the
latter according to the second one; (iii) graphical differences between the generated landscapes
were qualitatively highlighted. These latter areas allow the identification of groups of compounds
with discordant labels between the two datasets.

The ISIDA descriptor space “IAB(2-4)” [36], associated to the best Support Vector Machine
(SVM) model (in terms of BA), was chosen. These descriptors are based on molecular fragments
consisting in sequences of atoms and bonds up to a length four. The so-called “manifold” (which
could be seen as a two-dimensional “rubber sheet” injected into the D-dimensional descriptor
space) [37] was built on the CERAPP dataset. The GTM model was optimized for discriminating
binders from non-binders according the CERAPP labels. Most of the COMPARA training set
chemical structures are actually the same as the CERAPP ones.

Genetic algorithm [39] was used for optimizing the characteristic parameters of the GTM: the
number of Radial Basis Function centers (m = 12), the Radial Basis Functions width (w = 1.8) and
the number of grid points, i.e. the dimension of the map (k = 30). The GA fitness function was set

to the balance accuracy on the binding activity reported in CERAPP dataset.

Model generation and validation

Figure 2 depicts the modelling workflow. Support Vector Machine (SVM) with linear and Radial
Basis Function kernels, Random Forest (RF) and Naive Bayesian (NB) machine learning
approaches were implemented. SVM models were generated with libSVM (v. 3.22) [40]; WEKA
(v.3.9.3) [41] was used for RF and for NB models. For a given training set (Table 2), the “best”
ISIDA descriptor spaces and the optimal SVM hyperparameters (cost and gamma) have been

selected in genetic algorithm driven optimization process. In such a way, the top 15 descriptor
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spaces were retained (as a compromise between performance and computational speed) and used
to fit an equal number of optimized SVM, RF and NB “individual models”. For RF and NB, default
WEKA settings were selected. Finally, only the best performing individual model corresponding
to a given descriptor space was retained. Internal validation of each individual model was carried
out by 5-fold CV repeated ten times (10*5CV) after data reshuffling. Statistics were assessed for
each repetition followed by their averaging. The 15 selected individual models were then
ensembled in consensus. Tables S1(a-f) report detailed information concerning consensus models
set-up (employed descriptor space and algorithm for the given individual models) for each
endpoint.

The abovementioned procedure was followed for all the generated models: ER/AR binding
affinity, RBA and IC50. Classification and regression models’ performance was evaluated through
the analysis of the Sensitivity (Sn), Specificity (Sp), Balanced Accuracy (BA) and determination
coefficient (R?) and root mean squared error (RMSE), respectively (Table S2).

ISIDA descriptors
spaces encoding

v ; v
[ Training set (70 %) | —QValidationset(.’:O%)

Genetic algorithm
- DSs selection
- SVM hyperparameters

= 2
Models are rebuilt on
the whole dataset

AN

SVM, RF, NB individual
models (IMs) fitting

Determination of most appropriate
descriptors and machine learning methods

IMs ensembled in
consensus

Optimal descriptors and methods
parameters

Figure 2. Model generation workflow. (1) ISIDA descriptor spaces are generated; (2) best
descriptor spaces and SVM hyperparameters are chosen by genetic algorithm; (3) SVM, RF and
NB individual models (IM) are fitted, and the best IM per descriptor spaces is retained, (4)

retained models are ensembled in consensus and (5) externally validated on the test set; (6)
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selected descriptor spaces and methods parameters are used to train the “final” models, i.e. on

the whole dataset.

Training and test sei splitting

Training / test set definition modality varied according to the modelled property.

- Forthe ER / AR binding activity, we kept the same CERAPP / CoOMPARA splitting, as the
goal was to reproduce models generated within the workgroups. In addition, these two
models were externally validated on Tox-DC and PubChem data.

- For the IC50, only data coming from BindingDB was chosen to constitute the training set;
instead, compounds coming from the remaining databases (i.e. ChEMBL and PubChem)
were merged to constitute the test set. We opted for this choice under the hypothesis that
the former database comprised higher-quality data, as data is manually curated before being
imported [33].

- Forthe RBA we employed a stratified (based on the property range) random splitting, 70 %
training and 30 % test set. As we had no other information to evaluate the quality of the

data sources, we implemented a random splitting.

Applicability domain and ensemble modelling

The applicability domain (AD) was evaluated based on the so-called “fragment control”
assessment [36]: if the test molecule has one fragment (i.e. a determined sequence of atoms and/or
bonds) not present in the model’s training set, that molecule is considered out-of-AD. Generated
models were ensemble in consensus to increase the overall quality of the prediction. The consensus
outcome is provided either by computing the median (continuous model) or by a majority voting
(classification models). In these calculations, all out-of-AD predictions are excluded. In addition,
we propose a 4-grade reliability scale system based on the % of models with positive AD outcome,

as described in our previous works [42,43].

Results

Overview of the curated datasets
Tables 2 and 3 report general statistics of the curated (i.e. at the end of the data curation procedure)

datasets.
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The percentage of binders greatly varies depending on the dataset: it ranges from 4 % for PubChem
ER and Tox-DC AR, to 25 — 27 % for CERAPP test set and PubChem AR. The CoMPARA test
set has an amount of binders much more similar to its training set (11 vs. 12 %), as opposed to
CERAPP (25 vs. 14 %). The average agreement among the different sources (Equation 2 and 3) is
78 and 95 % for ER and AR, respectively.

On average, RBA and IC50 span over a range of 6 — 7 log unit. The noticeably higher MAD value
for ER RBA is caused by the presence of several compounds with significantly different reported
values. For instance, the range of values for 4'-Hydroxypropiophenone (CAS 70-70-2) is 1.66 log

unit.

Table 2. Curated datasets for model generation and validation.

Training set Test set
Data
Receptor  Property Property Property
agreement® # % B° # % B
values” values®

Binding 78 % 1677 237/ 1440 14 57958 1458/4337 25
ER 1C50 0.78 1982 32-99 7 656 4.13-9.52 6

RBA 1.12 1398 -4.56-2.98 10 600 -5.12-2.63 9

Binding 95 % 1662 198 / 1464 12 38824 428 /3323 11
AR 1C50 0.68 1622 3.34-9.70 13 355 3.38-9.15 9

RBA 0.66 233 -3.54-2.27 11 101 -3.3-2.05 12

“for the binding activity, value refers the average labels agreement (%, Equation 2 and 3); whereas for
continuous properties, lo the MAD (Equation 4, log units). "repartition between B / nB (binding property)
or min-max experimental value (pIC30 for IC50 and logRBA for RBA), ‘percentage of B labels, assigned
according to the threshold defined in the methods section for 1C30 and RBA; “CERAPP / CoMPARA

original test sel, excluding training set’s overlapping compounds.

Table 3. Additional datasets for the binding activity property.

Receptor Database # B/nB % B
Tox-DC 5408 52774881 10
ER
PubChem 95496  3750/91746 4
Tox-DC 5549 200/ 5349 4
AR
PubChem 8577 2304/ 6273 27
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Binding activity experimental label consistency

Figure 3 represents ER / AR comparison matrices for the different datasets. The matrix’s upper
part (orange background) reports the recall values for the binders (i.e. sensitivity), while the bottom
part (blue background) the recall for the non-binders (i.e. specificity). We found that the CERAPP
train and test sets had a certain degree of overlapping compounds, as they were left on purpose
during in the context of the workgroup [16]; however, this was not the case for the COMPARA
[20].

It can be noticed that already at the level of training vs. test set (CERAPP), the degree of
inconsistencies is high, especially for the binders, with an agreement of only 68 %. This agreement
decreases significantly when considering the comparison against Tox-DC (49 % and 16 % for ER
and AR) and PubChem (27 % and 37 % for ER and AR). On the other hand, the agreement of the
inactive class is almost perfect (>96 %) in all instances; the only exception is the CERAPP training

vs. test set, with only 85 %.

>
£ s & '&5}
Estrogen receptor Q\& Q\z‘ (e} & | Androgen receptor ¥ & ¢ &
A\
& F 7 f 8”& 9 o

Cfb cf(/ &0* Q\‘)o CO Cc &Oﬂ' Q\;Q
CERAPP train - 068 049 027 CoMPARA train - na 0.16 037
CERAPP test 085 - 034 020 CoMPARA test na - 040 o061
Tox-DC 096 098 - 031 Tox-DC 099 1.00 - 066
PubChem 097 100 099 - PubChem 098 098 0.96 -

Figure 3. Experimental labels comparison matrices. For each pairwise comparison, the
agreement (recall) of the binder (orange background) and non-binder class (blue background) for

the given dataset is reported. na = not available due to absence of overlapping compounds.

Table 4 reports some compounds with discordant binding activities. One reason of such
discrepancies is the combination of assay types which measure different endpoints: for instance,
molecule CAS 133-06-2 in the CERAPP test set has an assigned B label based on five
measurements (two logRBA, one AC50, one relative affinity and one unspecified data values)
while PubChem reports a total of 36 measurements (five B, 17 nB and 15 “inconclusive”); another

example is CAS 92-68-2, which has a B label in CERAPP test set based on seven measurements
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(two logRBA, two relative affinities, two cell proliferation and one unspecified data values) while

PubChem reports 13 measurements (one B, 21 nB, and 11 “inconclusive”).

Table 4. Examples compounds with discordant binding activities.

Molecule ID number?* Assigned experimental label®

Ctr/tst® | Tox-DC | PubChem  Cu*  Ctst Tox-DC  PubChem

%‘ 133-06-2 1291 | 1385 | 8607 nB B nB nB
&‘.‘m 2425-06-1 1661224217038 nB B B nB

Receptor Molecule CAS

ER )
- ﬁ’ 4. 6846:50-0 184387635 23284 B B B nB
Y
NS 137268 13006] 13325455 B B nB nB
O—O: 92-68-2 11297 20721 41690 B nB B nB
2465-27-2  1]20114(1717 B - nB nB
>
131-55-5 108213068571 B - nB B
AR
20830-75-5 1493|2934 | 2724385 nB - B B

O Q 23593-75-1 1566|9871 | 2812 nB - nB B

Q

the molecule’s ID of the given dataset is provided for the given dataset; *the assigned binding

activity experimental label. “Ctr/tst = CERAPP/CoMPARA training/test set set.
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GTM was employed to graphically visualize the results illustrated by Figure 3. Figure 4 and 5
report binding activity landscapes comparison between the considered datasets, for ER and AR
respectively. For each row, the CERAPP / CoMPARA training set is compared against: (1)
CERAPP test set (not possible for COMPARA); (2) Tox-DC and (3) PubChem, for both ER and
AR. Red areas are mainly populated by binders, while blue ones by the non-binders. Intermediate
colors are mixed populated areas, i.e. chemical space zone occupied by the same compounds with
different experimental labels. The “difference” map of the third column highlights in black
discordant areas.

The output of GTM reflect the differences which were quantitatively reported in the previous
paragraph. In particular, inter-datasets agreement for ER is significantly higher than for AR (27 —
68 % vs. 16 — 37 %; Figure 3), as highlighted by the fact that “differences” AR maps have much
more black spots (Figure 5).

CERAPP train CERAPP test Differences
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Figure 4. GTM comparison of the different sources of data for ER. The CERAPP training set is
compared against the CERAPP test set, Tox-DC and PubChem. The “Differences” maps were

generated in order to highlight the areas of the map that present the highest disagreement.
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Figure 5. GTM comparison of the different sources of data for AR. The CoMPARA training set is
compared against the Tox-DC and PubChem.

Model performances

Table 5 reports models performances for internal and external validation. Classification models
performed similarly to those reported within the two workgroups (see Tables S3(a-b) and
Discussion section), with BAcv 0.68 for ER and 0.84 for AR. Modelling of AR produced more
promising results than ER, especially for the detection of true binders (whereas the ER binding
model scored the lowest sensitivity of 0.34). By following the same CERAPP / CoMPARA
approach — i.e. removing test set compounds with less than 2 experimental assays — BA in external
validation improved, increasing to 0.63 (Sn = 0.38, Sp = 0.89) for ER and 0.82 (Sn = 0.70, Sp =
0.95) for AR. Performances on Toc-DC and PubChem (Table 6; BA = 0.65 — 0.72) are similar to
those on CERAPP / COMPARA test sets (Table 5). Again, the model’s ability to correctly predict
binders is rather low, with sensitivity values ranging from 0.40 to 0.55.

Concerning regression models IC50 models (R?ar = 0.64 — R%g = 0.77) were slightly better than
RBA ones (R?ar = 0.57 — R% =0.71). Low performance (R> = 0.43) of the ER IC50 model has
been caused by the presence of some outliers in the external set (orange rectangles A and B in

Figure 6), analyzed in the discussion section. With the exclusion of these suspicious data points
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(see Discussion section), ER IC50 performances raised to similar values obtained by cross-

validation (R2 = 0.60, RMSE = 0.66).

Table 5. Model performances.

Receptor  Property

5-fold CV

External validation

'L; BA Sn Sp Data coverage”
E ER Binding 0.68 0.60 0.34 0.87 76 % (4409 /5795)
5 AR Binding 0.84 0.72 0.49 0.95 859% (3320/3882)
5-fold CV External validation
Receptor Property
R’ RMSE R°  RMSE Data coverage”

% ER RBA 0.71 0.84 0.76  0.76 93 % (563/ 600)
Eg 1C50 0.77  0.67 043 093  78%(517/656)
& AR RBA 0.57 0.76 0.60 0.67 70%(71/101)

1C50 0.64 0.66 044  0.68 85% (266/310)

Classification (upper part) and regression models (bottom part). BA = balanced accuracy, Sn =

sensitivity, Sp = specificity. ‘In brackets, the standard deviation computed in the 5-fold CV is

reported for the given metric values averaged over the number of repetitions,” ratio of the number

of compounds inside AD and the total number of compounds.

Table 6. Additional validation for classification models.

Tox-DC PubChem
Receptor BA  Sn Sp Data coverage® BA  Sn Sp Data coverage®
ER 0.65 0.44 0.85 80% (4374/5408) 0.71 0.47 0.98 76 % (72829 /95496)
AR 0.72 0.55 0.92 81 % (4485/5549) 0.66 0.40 0.92 82 % (7100/8577)

Figure 6 depicts the scatterplots (experimental vs. predicted values) for the external validation set

of the four regression models. Molecules highlighted by orange rectangles were marked as

suspicious outliers and are analyzed with more details in the Discussion section.
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Figure 6. Experimental vs. Predicted values scatterplots. In order from upper left corner to bottom
right corner: (1) ER IC50; (2) AR IC50; (3) ER RBA; (4) ER IC50. Potential outliers were marked

by the orange rectangles “A”, “B”, “C” and “D" (see Discussion section).

Discussion

Binding activity classification models

Our modelling results on the binding affinity property (Table 5) are similar to those published
within the CERAPP and COMPARA frameworks. Table S3 in SI reports the performance for each
individual group: the average BAs of the generated models were 0.59 for ER (Sn = 0.35; Sp =
0.82) for ER and 0.73 (Sn = 0.56; Sp = 0.88) for AR. The relatively low performances in external
validation for the CERAPP and COMPARA models can be attributed to the different nature of the
validation data sets. Contrary to the training sets that are homogeneous collections of compounds
coming from the same source and processed in the same way, the validation data sets are a
collection of data from multiple literature sources and databases, whose labels are adapted to be

close (but not identical) to the training set data processing [16,20]. For example, experimental

18

159



inhibitory values of the validation data sets were considered to be approximatively equivalent to
the endocrine disruption score of the training set, i.e. the AC50 derived from the computed AUC
[16,25]. Ideally, these models should be validated with the generation of new data in an analogue
approach followed by the US EPA’s “ToxCast” and “Toxicology Testing in 21% Century” [24-28]
programs, from where the data was originally generated. Compounds should be tested on all the

individual assays and the AC50 computed to obtain really comparable labels.

IC50 and RBA regression models

As showed by Figure 6, several suspicious outliers were identified. We do not exclude the
possibility that some additional points may need revision. After carefully reviewing the sources of
some compounds, we noticed that the cause was a wrongly reported experimental value. Indeed,
values were not always referring to the displacement of labelled radiolabeled estradiol or R1881,
instead, they resulted from other kind of testing protocols. To provide an example, the clusters of
points marked by the orange rectangles A and B (Figure 6, ER IC50 graph) belong, respectively,
to the chemical families of benzoxepine and raloxifene. Both these groups of chemicals come from
two unique studies [44.45], where the authors synthetized differently substituted version of the
base scaffold. However, the tested property was not the inhibition of ER by displacement of
labelled estradiol, but the inhibition of MCF7 tumor breasts cells proliferation. Furthermore, both
families have very close structural analogues in the training set, but the average difference between
their experimental pIC50 values was about 3 and 2 log units for benzoxepine and raloxifene
compounds, respectively. For instance, the outlier-benzoxepine ChemBL188193 (pIC50 = 4.25)
is closely similar to ChemBL513397 (pIC50 = 8.06) and ChemBL470993 (pIC50 = 8.72) as
illustrated on Figure 7. Therefore, all external set compounds for which the experimental IC50 was
determined based on a cell proliferation assay were filtered out. With this filter, 138 compounds
were removed from the initial 656, and the performances improved significantly: R? increase from

0.43 to 0.60 and RMSE decreased from 0.93 to 0.66 (Table 5).
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Figure 7. Closely similar structures with different ER activity value.

For AR IC50, the only extreme point is 17a-estradiol (CAS 5864-38-0; orange rectangle in Figure
6; point C). The compound experimental pIC50 is reported at 7.8 and predicted at 5.4, an error of
2.4 log unit (SI table S4(a), PubChem CID 450). Estradiol is absent of the training set which
contains close analogs which potency ranges from 3.36 (estriol) to 7.05 (3-deoxyestradiol).
Actually, estradiol has been identified previously as an activity cliff generator and our result
confirm this analysis [46].

For AR RBA, the compound in the frame D is androstane (CAS 24887-75-0) an hydrocarbon
steroid scaffold. It has an experimental logRBA of -3.3 and is predicted at -0.09, resulting in a
significant error of 3.2 log unit (SI table S4(b), PubChem CID 123412). This experimental value
is originating from Fang et al. [29], reporting a very large IC50 of 6.35E-4 Mol/L. which could be
above the aqueous solubility limit of the compound (4.8E-8 Mol/L, estimated value by PubChem).
This prediction should not have been accepted, and this is highlighting a limitation of the
applicability domain of our models: since other compound in the training set did share this
hydrocarbon scaffold, the scaffold itself was considered as legitimate.

RBA measurements have low repeatability. This observation has been already addressed, for
instance, by Fang et al. [29] (figure 1 of their work) in comparison to Waller et al [47]. When we
applied our models to steroidal androgens, one of the largest errors was on testosterone. Actually,
testosterone is not part of our dataset because of the large variability of reported RBA values. For
instance, the RBA of testosterone is reported 12 times in ChEMBL, with 9 different values.
Investigating the associated articles [29,47-49], the RBA (calculated using R1881 as reference
compound) is about 6 %. Values are varying because of different reference ligand (for instance 37

% is reported using DHT as reference [48]); or because the reported value is not in the correct
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column (for instance the value 417 % reported from [49] refer to sex steroid binding protein and
not AR). These are some reasons explaining why RBA values are difficult to validate.

Overall, there is a lot of uncertainty associated to ED data: for instance, a search through PubChem
for ERa binding activity reveals the existence of more than 300.000 compounds tested on roughly
1200 different types of assays (gene ID 2099). Furthermore, the way of reporting ED activity is
multiple and not always straightforward, such as: inhibition concentration, potency, relative
binding affinity, Ki, efficacy, EC50 and the binary label binder/non-binder (which may be
automatically assigned by the databases based on different thresholds). All these differences
around ED-related data were also promoted by the absence of a standardized ED screening
guideline [6], which was published only recently (2018) by regulatory agencies.

Our developed models follow the OECD principles [50]: the endpoints (binding activity, IC50 and
RBA) are well defined. Goodness-of-fit, robustness and predictivity were evaluated in cross-
validation and external validation [51]. The AD of the models was defined using a fragment control
assessment [35] together with a reliability scoring function [42].

Our models are available through the online ISIDA/Predictor platform [23], available at the

Laboratory of Chemoinformatics webpage: http://infochim.u-strasbg.fr/cgi-

bin/predictor_reach.cgi.

Conclusions

In this work we presented a throughout analysis concerning endocrine disruption, focusing on the
estrogen and androgen receptors. We considered the following three properties: binding activity,
median Inhibitory Concentration (IC50) and Relative Binding Affinity (RBA).

Classification binding activity (B/nB) and quantitative IC50 and RBA datasets we collected from
multiple sources, including the CERPAP/CoMPARA collaborations, the Tox21 data challenge
(Tox-DC) and from PubChem. We noticed that datasets suffered from a low concordance between
experimental values. For the B class, the average concordance was only 42 %, ranging from 16 %
(CoMPARA training set vs. Tox-DC data) to 68 % (CERAPP training set vs. CERAPP test set).
For IC50 and RBA measurements, the average data variability ranged from 0.73 up to 1.88 log
units for ARrpa and ERicso, respectively.

To detect clusters of compounds with such discordant experimental values, the Generative
Topographic Mapping approach was employed to compare the chemical space of the collected

datasets.
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Generated models illustrated how these discrepancies have negatively impacted performances.
Binding activity models reproduced the CERAPP/CoMPARA frameworks, showing comparable
results (ER BAexw = 0.60 and AR BAew = 0.73). Additional external validation was carried out on
additional Tox-DC and the PubChem datasets (BAtox-pc = 0.65 — 0.72 and BApubchem = 0.66 —
0.71). The models’ limited ability to detect reliably binding compounds reflect the low inter-
databases concordance, with sensitivity values ranging from 0.34 to 0.49. In particular, the
merging of assays with different biological meanings was responsible of such mediocre
performances, indicating that CERAPP/CoMPARA datasets should not be fused with other data
sources when building predictive models.

Regression RBA models were more performant than their IC50 counterparts: for the former, R
values ranged from 0.60 — 0.76, while for the latter from 0.43 — 0.44. Low R? values for IC50 were
caused by the presence of several identified outliers, either due to wrongly reported information
or misinterpreted experimental endpoints. This reflects the same issues encountered during the
binding activity modelling, due to the merging of experimental data measurements of different
meaning. The generation of standardized data sets from validated assays will allow the generation
of more performant models, capable of predicting specific properties to complex and multifactorial
mode of action like endocrine disruption. On the other hand, it is possible to exploit larger datasets
based on a binary classification “binding/non-binding”. Of course, many details are lost in the
process and these datasets maybe biased when defining the classes from the interpretation of
experimental results originating from different assays.

Generated models have good predicting power when detecting non-binders. In-depth analysis of
the results demonstrate that a probable cause of low accuracy for detecting binders is the merging
of different experimental results from different assays.

All collected data is freely available on Zenodo (10.5281/zenodo.3935808), counting a total of

6215 (ER) and 3789 (AR) unique compounds listing at least one experimental. Moreover, the Tox-
DC and PubChem datasets, counting more than 100.000 compounds with binding activity label,
are provided as well. This is, to the best of our knowledge, the biggest collection of ED-relevant

data published so far.
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4.2 Part 2- REACH Chemical space profiling with
GTM

Several models have been published in the past years on REACH-relevant endpoints,
spanning from simple multiple linear regression models to more complex machine learning
methods, such as support vector machine or neural networks. However, we can highlight
few drawbacks: (i) being single-task models, the user needs to run multiple models on the
same compound, increasing the complexity of the assessment and the required time; (ii)
the use of multiple models is not always straightforward due to pre- and post-treatment of
data, for instance, for the different output generated, the differences in how the applicability
domain (AD) is evaluated; (iii) we found that for some endpoints, the AD of currently-
existing tools is rather limited when applied to an industrial context, due to the presence of

specific chemotypes poorly represented in typical training sets.

Despite there already exist few tools that can be used for hazardous prioritization,
such as Toxmatch or DART (Decision Analysis by Ranking Techniques), they are not able
to perform predictions if the experimental value of some key properties is not known: their

use is limited to endpoints for which the experimental value is known.

Hence, to overcome these drawbacks, in this work we propose an integrated
screening methodology based on Generative Topographic Mapping (GTM). GTM is a
probability-based mapping strategy, which can be applied both for large-scale data
visualization and property prediction. We chose this method as it has two important
advantages : (i) allows multi-task learning, which is quite effective in this context as several
properties can be taken into account simultaneously; (ii) produces a graphical output (i.e.
a 2D-map of the chemical space) which can be used as support to better understand the
model’s output, in the light of a mechanistic interpretation; (iii) a base model can be trained

and adapted to predict new endpoints that might even not be defined at that time.

To show the potential of GTM, the entire chemical space of the REACH-
registered substances was profiled. A total of 11 endpoints have been considered:
bioconcentration factor (BCF), ready biodegradability (RB), environmental persistence in
sediment (SedP), soil (SoilP) and water (WatP) media, acute aquatic toxicity to algae
(AlgaeTox), daphnia (DaphniaTox) and fish (FishTox), rat acute toxicity (RatTox),
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androgen and estrogen receptor binding (AR/ER Binding). The determination of this list

of properties constitutes what is a “substance's profile”.

A total of 17762 unique compounds listing at least one experimental measurement
per property have been collected into a Global dataset. Binary Hazardous (H) and non-
Hazardous (nH) labels were assigned according to relevant regulatory REACH-thresholds.
Generative Topographic Mapping has been employed as method for data analysis and
property prediction, generating single- and multi-task learning models. The chemical
spaces of the Global dataset and the REACH-registered substances (ECHA-DB) have been
compared. Despite the Global dataset was able to accommodate a large portion of the
ECHA-DB chemical space, several areas uniquely populated by ECHA-DB compounds
were found, indicating that the Global dataset was lacking important chemotypes. This
suggests the applicability domain of currently existing QSARs, which are based on public

data, may have some restrictions when applied to the REACH-chemical domain.

Concerning GTM for property prediction, so called Universal Maps trained on the
Global dataset have been generated, and their ability to classify H from nH compounds has
been tested on all the 11 endpoints. In such a way, a compound can be screened on multiple
properties simultaneously. The best Universal map showed acceptable predictive power,
ranging from 0.60 to 0.78 balanced accuracy, depending on the endpoint. However, when
more universal maps are ensembled in consensus, performances show a general
improvement, with BA ranging from 0.67 to 0.83.

This article has been submitted to the peer-reviewed journal “Molecular

Informatics”; the manuscript reported here corresponds to the submitted version.

" 4.2 Partie 2 — Profilage de I’espace chimique REACH avec la GTM

Au cours des dernieres années, plusieurs modeéles ont été publiés concernant des propriétés
pertinentes pour REACH, allant de simples modéles de régression linéaire multiple a des
méthodes d'apprentissage automatique plus complexes, telles que des machines a vecteur
support ou des reseaux de neurones. Cependant, nous pouvons souligner quelques
inconvénients: (i) ces modeles sont mono-taches, I'utilisateur doit exécuter plusieurs

modeles sur le méme composé, ce qui augmente la complexité de I'évaluation et le temps
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requis; (ii) lI'utilisation de plusieurs modeéles n'est pas toujours aisé en raison, par exemple,
des différents pré- et post-traitements des données, par exemple les différences dans la
facon dont le domaine d'applicabilité (AD) est évalué par chaque modeéle; (iii) nous avons
constaté que pour certaines propriétés, le AD des outils existants est plut6t limité lorsqu'ils
sont utilisés dans un contexte industriel car il y sont parfois présents des chémotypes

spécifiques mal échantillonnés dans les jeux de données d’entrainement.

Bien qu'il existe déja quelques outils pouvant étre utilisés pour la prioriser les
risques liés a des substances chimiques, tels que Toxmatch ou DART (Decision Analysis
by Ranking Techniques), ils ne peuvent étre utilisés que si certaines valeurs expérimentales
sont connues pour certaines propriétés stratégiques : leur utilisation est donc limitée aux

composés pour lesquelles ces valeurs sont déja connues.

Pour surmonter ces limitations, nous proposons dans ce travail une méthodologie
de criblage basée sur la cartographie topographique générative (GTM). La GTM est une
stratégie de cartographie basée sur un modeéle probabiliste des données, qui peut étre
appliquée a la fois pour la visualisation et la prédiction de propriétés. Nous avons choisi
cette méthode car elle présente deux avantages importants: (i) elle permet un apprentissage
multi-taches prenant en charge plusieurs propriétés simultanément; (ii) elle produit une
sortie graphique (c'est-a-dire une carte 2D de I'espace chimique) qui peut étre utilisée
comme support pour mieux comprendre les prédictions du modéle, a la lumiere d'une
interprétation mécanistique; (iii) un modele de base peut étre entrainer puis adapté pour
prédire de nouvelles propriétés qui pourraient n’avoir pas méme encore été envisagées

initialement.

Pour montrer le potentiel de la GTM, tout I'espace chimique des substances
enregistrées pour REACH a été profilé. Au total, 11 paramétres ont été pris en compte: le
facteur de bioconcentration, la biodégradabilité primaire, la persistance environnementale
dans les sédiments, les sols et les milieux aquatiques, la toxicité aquatique aigué pour les
algues, la daphnie et les poissons, la toxicité aigué pour le rat, la liaison aux récepteurs
nucléaires androgenes et cestrogénes. La liste des valeurs de ces propriétés pour un

composé donné définis ce qu’est son «profil de substance».
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Un total de 17762 composés uniques répertoriant au moins une mesure
experimentale parmi ces propriétés ont été collectés dans un jeu de données « Global ».
Les étiquettes binaires, dangereuses (H) et non dangereuses (nH), ont été attribuées en
fonction des seuils réglementaires fixés par REACH. La cartographie topographique
génerative a été utilisée comme méthode d'analyse des données et de prédiction des
propriétés, génerant des modéles d'apprentissage mono-tache et multi-taches. Les espaces
chimiques du jeu de données Global et des substances enregistrées pour REACH (ECHA-
DB) ont été comparés. Bien que le jeu de données Global partage une grande partie de
I'espace chimique avec ECHA-DB, plusieurs zones seulement peuplées de composés
ECHA-DB ont été localisées, indiquant qu’il manque des chémotypes importants dans le
jeu de données Global. Ceci suggere que le domaine d'applicabilité des modeles QSAR
actuels, qui sont basés sur des données publiques, peut souffrir de certaines restrictions

lorsqu'ils sont utilisés dans le contexte de REACH.

Concernant les capacités prédictives de la GTM pour les propriétés, des cartes
universelles entrainées sur I'ensemble de données Global ont été générées et leur capacité
a discriminer les composés H des composés nH a été testée sur les 11 propriétés. De cette
maniere, un compose peut étre criblé sur plusieurs propriétés simultanément. La meilleure
carte universelle a montré une capacité prédictive acceptable, allant de 0,60 a 0,78 de
précision balancée, selon la propriété. Mais, lorsque plusieurs cartes sont rassemblées dans
un consensus, les performances prédictives s’améliorent en général, la précision balancée
allant de 0,67 a 0,83.

Cet article a été soumis au journal a comité de lecture « Molecular Informatics » ;

le manuscrit ci-dessous correspond a la version soumise.
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Abstract: In the framework of REACH (Registration
Evaluation Authorization and restriction of Chemicals)
regulation, industries have generated and reported a huge
amount of (eco)toxicological data on substance produced or
imported in Europe. Thanks to this registration procedure
initiated in 2007, a large REACH database of well defined
(eco)toxicological properties has been created. Considering
a high number of chemicals and experimental data registered
under the REACH Regulation, their detailed analyses is an
important and challenging task. Here, the data distribution in
the REACH chemical space was analysed with the help of the
Generative Topographic Mapping (GTM) approach. Similarly
to geography, GTM allows to generate 2-dimensional maps
on which each object (compound) is represented as a data
point. The 3d dimension can be used in order to display a
distribution of the given (eco)toxicological property (such-
called “class landscape”), which can further be used for
property assessment of new compounds projected on the
map.

We report the “Universal REACH map” which accommodates
11 endpoints, covering environmental fate, ecotoxicological
and toxicological properties. This map is able to provide with
predictions for the above endpoints demonstrating
acceptable predictive performance: in cross-validation,
balanced accuracy ranges from 0.60 to 0.78. As case study,
the 11 endpoints profile has been computed for each
REACH-registered substance. Some concems related to
acute aquatic toxicity have been identified, whereas for
environmental fate and human health endpoints the amount
of compounds predicted as of concern was much smaller. It
has been demonstrated that superposition of several class
landscapes allows to select the zones in the chemical space
populated by compounds with a given (eco)toxicological
profile.

Keywords: REACH chemical space, Generative Topographic Mapping (GTM), environmental fate, ecotoxicology, visualisation

1 Introduction

The European REACH (Registration Evaluation Authorization
and restriction of Chemicals) regulation!', established in 2007,
requires from industry to register all substances imported or
manufactured in quantities larger than one tonne/year. To this
end, the registrants must submit to the European Chemicals
Agency (ECHA) a technical dossier that characterizes for a
given substance, its physical-chemical, environmental fate
and (eco)toxicological properties, called endpoints. In order to
decrease a need for expensive experimental tests, the
REACH regulation allows to use some alternative methods,
including predictive statistical models.

In the past years, several models predicting REACH-
relevant endpoints were obtained with the help of various
machine-learning methods like multiple linear regression,
support vector machine or neural networks 5. However,
some of them suffered from absence of technical
documentation complying with the REACH requirements!®, for
instance concerning the model's Applicability Domain (AD) or
its validation procedure®, In our recent studies®*], we found
that for some endpoints, currently-existing tools have
disappointing performances when applied to compounds
coming from an industrial context, due to their restricted AD.
Some existing tools used for the chemicals ranking according
to their environmental and toxicological concern, such as
DART (Decision Analysis by Ranking Techniques)®, use
experimental data as an input. To overcome these drawbacks,
here, we propose an integrated profiling methodology based

on Generative Topographic Mapping (GTM)®. GTM is a
probability-based mapping strategy, which can be applied
both for large-scale data visualization and property prediction.
We chose this method because of the following reasons: (i)
GTM allows multi-task learning, since several properties can
simultaneously be accounted for; (ii) it produces a graphical
output (i.e. a two-dimensional map of the chemical space)
which can be used as support to better understand the
model's output, in the light of a mechanistic interpretation.
Here, a set of curated data for 11 endpoeints prepared in our
previous studies®] ( “Global dataset”) has been used to train
the GTM model and to delineate the REACH chemical space.
The following 11 endpoints were considered: bioconcentration
factor, ready biodegradability, environmental persistence in
sediment, soil and water media, acute aquatic toxicity to algae,
daphnia and fish, rat acute toxicity, androgen and estrogen
receptor binding potential. Our goal was to demonstrate a
potential of GTM to integrate available data into a multi-task
modelling framework and to facilitate identification of the
compounds of potential concern. For this purpose, a profile
assembling selected 11 properties has been computed for
each substance registered under the REACH Regulation
(called "REACH-INV").

The manuscript is organized in the following way: firstly,
we describe the GTM model built on the Global dataset,

[a] Laboratory of Chemainformatics, University of Strasbourg,
4 Rue Blaise Pascal, 67081, Strasbourg, France

[b] Toxicological and Environmental Risk Assessment unit,
Solvay S.A., 85, avenue des Fréres Perret, 69192, St. Fons,
France

* g.marcou@unistra.fr; varnek@unistra.fr; phone no.: +33-
68851304

= Supporting Information for this article is available on the
WWW under www.molinf.com
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followed its application to profile the REACH-INV compounds.
Finally, we discuss performances of the GTM approach as
multi-task learning method, highlighting its potential as a
profiling tool.

2 Materials and methods

2.1 Considered endpoints
Table 1 reports the 11 considered endpoints. A brief
description is provided in the following paragraphs.

2.1.1 Bioconcentration Factor (BCF)

BCF estimates the tendency for a xenobiotic to concentrate
inside living organisms. It is defined as the process of
concentration of the chemical from the water phase through
non-dietary routes, such as absorption from respiratory
surfaces (e.g. lungs/gills) or skin!?l,

2.1.2  Ready biodegradability (RB)

Long term exposure for living organisms to many xenobiotics
is dependent on the environmental fate of such chemicals
which in turn is highly dependent on their biodegradation.
Biodegradability is determined by multistep procedure. This
assessment usually starts with a very stringent first-tier
assessment, providing a binary classification whether the
substance rapidly degrades in the environment, called “ready
biodegradability"“l.

213 Sediment, Soil and Water Persistence (SedP,
SoilP, WatP)

Unlike relatively cheap and fast ready biodegradability assay,
these higher-tier simulation studies are carried out when the
substance’s degradation half-life (in a given environmental
compartment) value actually needs to be evaluated!'?l,

2.1.4  Aquatic acute toxicity to Algae, Fish and Daphnia
Aquatic acute toxicity tests aim to estimate the short-term
toxicity!'" against three species belonging to different trophic
levels, considered to be representative of the aquatic
ecosystem. Briefly, the test organisms are exposed to the
studied substance via the water media, and the following
substance-induced effects are measured: (i) for Algae, growth
inhibition, expressed as median effective concentration
(EC50) measured at 72 hours; (ii) for Daphnia, immobilization
at 48 hours expressed as median effective concentration
(EC50); (iii) for Fish, the median lethal concentration at 96
hours (LC50).

2.1.5 Rat acute toxicity (RatTox)

Rat acute toxicity estimates the short-term lethality (hazard) to
humans following ingestion for which oral administration to
rodents is used as a proxy. The REACH regulation requires
its assessment even for small tonnages. Consequently, this
experimental test is one of the most commonly performed
animal tests which explains (partly) its much higher data
availability compared to the other endpointsl.

2.1.6  Androgen and Estrogen receptor binding (AR/ER
binding)
An endocrine disrupting chemical is an exogenous substance

that alters the functions of the endocrine system to the point
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of causing adverse effects. Possible ways for a chemical to
alter the endocrine system is to bind to androgen or oestrogen
receptors in an agonist or antagonist way. In the framework of
the “Collaborative Estrogen Receptor Activity Prediction
Project” (CERAPP)!'? and “Collaborative Modelling Project for
Androgen Receptor Activity” (CoMPARA)!' international
workgroups, a large number of compounds were tested for
their potency to disrupt the AR/ER signalling pathway chains.

2.2 Data collection and curation

Experimental data was collected from multiple publicly
available databases and scientific literature®4l. Among them,
the main source was the database of the European Chemical
Agency (ECHA)', which comprises the REACH-registered
substances. Raw data processing and standardization were
done with workflows implemented in the Konstanz Information
Miner (KNIME) softwarel'®. The PubCheml'®! online service
was queried to verify SMILES correctness. Generated
SMILES were then standardized with the following rules:
removal of salts/solvents, removal of explicit hydrogens,
aromatic representation of benzene rings, removal of stereo
information and transformation of -nitro and -sulpho containing
groups into canonical notation, neutralization. Duplicates were
removed based on standardized SMILES matching.

As some endpoints are typically described by continuous
values (e.g. acute toxicity) while others by categorical values
(e.g. ready biodegradability), all the former properties were
discretized into “Concern” (C) or “non-Concern” (nC) binary
classes (Table 1). For this purpose, REACH-relevant
threshold values were selected: for instance, a substance is
defined as persistent in sediment (class C) if its degradation
half-life is higher than 120 days. However, different (more
conservative) thresholds were chosen in the following
instances: aquatic acute toxicity (10 instead of 1 mg/L); acute
rat toxicity (300 instead of 2000 mg/kg b.w.); bioconcentration
factor (3 instead of 3.3 log units). This choice was taken in the
light of a precautionary approach. For the remaining endpoints,
the label C was assigned when the experimental values had
an assignment of “concern” (e.g. binding to the AR/ER
receptors or not readily biodegradable), as opposed to the nC
label.

The Global dataset results from the merging of all the
available data on the abovementioned 11 endpaints: it counts
29433 experimentally measured datapoints for 17762 unique
compounds (as one compound can have more than one
associated experimental value). This dataset has been
assembled and curated in our previous studies=*l. Table 1
reports the sizes of the endpoint subsets. The REACH-INV set
comprises the entire inventory of the substances registered
under REACH, that have been extracted from the European
Chemicals Agency database!'™], and chemical structures were
curated using the same procedure as for the Global set. As
this database has been queried in our previous works[24],
there is a certain degree of overlap between the Global
dataset and the REACH-INV set, as it is shown in section 3.3.
REACH-INV does not contain any experimental data, but only
a list of substances concerned by the Regulation. In the end,
atotal of 11951 compounds (out of 22966) have been retained.
The Global dataset and the REACH-INV are available through
Zenodo: 10.5281/zenodo.3872735.
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Table 1. Selected endpoints and data availability.
) a Unique b
Endpoint Acronym C/nC threshold compounds C/nC
Bioconcentration factor BCF 3 log units 1260 299/ 961
Ready biodegradability RB - 3069 1168/ 1901
Persistence in Sediment SedHL 120 days 436 253/183
Persistence in Soil SoilHL 120 days 630 111/519
Persistence in Water WatHL 40 days 466 1917275
Algae acute toxicity AlgaeTox 10 mg/L 1231 531 /700
Daphnia acute toxicity DaphniaTox 10 mg/L 2083 89771186
Fish acute toxicity FishTox 10 mg/L 2152 1046 / 1106
Rat acute toxicity RatTox 300 mg/kg b.w. 14784 3206 /11578
Androgen receptor binding ARbinding - 1661 198/ 1463
Estrogen receptor binding ERbinding - 1661 223 /1438
aselected threshold to discretize continuous properties into Concern (C) or nonConcern (nC) binary labels;

b repartition of C and nC compounds.

2.3 Modelling workflow
The workflow is depicted by Figure 1. Its main steps are
described in this section.

Global dataset
11 properties

1SIDA descriptors
spaces encoding
) B—
GTM parameters _ » Rankproduct
choice

3
(Fz-ru\dckumng
@

Map evaluation on
all endpoints

Vector of map
performances
Pareto front
filtering

score

Choice of the best
“universal map”

3-fold CV

7)
Activity
landscapes

-
REACH-INV
profiling

Optimal descriptors and GTM
parameters

Figure 1. Modelling workflow. (1) different ISIDA descriptor spaces
are generated for the Global dataset; (2) Genetic algorithm evaluates
different types of descriptors and GTM parameters; (3-4) predictive
performance of GTM-based models is evaluated in 3-fold cross-
validation (CV) on each of the 11 properties; (5) the Pareto front
filtering is applied to exclude all dominated solutions; (6) the rank
product score is applied to select the best “REACH Universal Map”;
(7) the chemical space is analyzed using both density and class
landscapes; (8) the REACH-INV set is profiled.

Genetic algorithm run

Density
landscape

2.3 Molecular descriptors

The Global dataset, is encoded (Figure 1, step 1) by several
types of ISIDA Property-Label Molecular descriptors!'®. These
descriptors work as substructures (fragment) counts of a
molecule — for example, D1 = number of “C=0" groups, D2
=number of “C-N-C” fragments, etc. The molecule can be
fragmented wusing two main fragmentation patterns:
sequences or atom centred fragment. Moreover, in both cases
the size of the fragment (length or radius, respectively) can be
varied. Each unique fragmentation scheme is referred as
descriptor space. Several tens of descriptor spaces were
generated. This list of different fragmentation patterns was
used as a starting pool for searching the most appropriate
descriptor space by means of genetic algorithm selection.
Table S1 reports the descriptors and parameters employed for
the given GTM model.

2.4 Generative Topographic Mapping
Generative Topographic Mapping (GTM) is a dimensionality
reduction method, corresponding to a probabilistic extension

3
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of Self-Organizing Maps!['?], which allows visualizing the data
distribution on a 2-dimensional map. A more detailed
description of GTM underlying algorithms can be found
elsewhere Pl Briefly: a squared grid of nodes is generated by
inserting a flexible 2D hyperplane, called manifold, into the
initial high-dimensional space in which items occupy specific
points defined by their attribute (descriptor vectors). The
manifold is deformed in order to match (to approach) a
maximum of these “frame” items, then it is flattened out with
the above-mentioned squared grid of points, defining the
latent space. The Glabal dataset (Figure 1, step 2) has been
used to train the GTM model (i.e. to train the manifold).
Genetic algorithm 29 was employed for selecting the best
ISIDA descriptor space and the characteristic parameters of
the GTM, as described in the next paragraph.

Once the 2D map is created, any property (here, density
or class assignment) can be added as a 3rd axis forming a
property landscapel®. Here two types of landscapes are
considered: (i) density landscape which assigns a colour code
depending on the number of compounds populating a given
GTM node; (ii) class landscapes in which the colour code is
assigned according to the repartition of C/nC compounds.

The naming “Universal Map” refers to the GTM model
showing the best overall performances for all 11 considered
endpoints, see section 2.7 Ranking the performances of GTM
models”.

2.5 GTM'’s applicability domain

The “fragment control” assessment!?! is employed as method
to define a model's Applicability Domain: if the test molecule
has a fragment not present in the GTM'’s training set (i.e. the
Global dataset), it is considered to be outside domain of the
model. The profiling on the REACH-INV compounds has been
performed only on those compounds which fulfilled the
Applicability Domain requirement. GTM models have a build-
in applicability domain: any compound projected in empty
regions of the chemical space are discarded. Empty regions
appear as white areas on GTM landscapes (Figure 5).

2.6 Genetic algorithm optimization

A Genetic algorithm-driven optimization (Figure 1, steps 3, 4
and 5)?% was run in order to choose the most appropriate
descriptor space and GTM hyperparameters, such as the
number of radial basis function centres m, the radial basis
functions width w, the dimension of the map k and the
regularization coefficient |. All these parameters are encoded
by a chromosome, i.e. a vector of settings needed to build a
given map. The genetic algorithm therefore builds hundreds
of maps based on different chromosomes. Maps’ performance
has been evaluated by cross-validated GTM-driven
classification models for each of the considered 11 endpoints.
As we are dealing with two-classes, Sensitivity (Sn),
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Specificity (Sp) and Balanced Accuracy (BA) parameters were
computed (Table S2). The latter (BA) was chosen as scoring
function for the optimization process. For each endpoint, a
property-specific cross-validated BA value is returned. To
obtain a more robust evaluation, this cross-validation
procedure is repeated three times, and the map fitness score
is based on the mean of all set-specific BAs. In the end, each
map has an associated vector of 11 BA values, one per
endpoint. The genetic algorithm uses the concept of the
Pareto-front optimization to select the optimal set of
nondominated  solutions®®'!  and filtering  redundant
configurations. The procedure resulted in 28 maps with a
unique set-up of descriptor spaces and GTM hyperparameters
(Table S1). Some of these maps can perform well on some
tasks and poorly on others. This poses two challenges: (i)
select the best possible map on all tasks (paragraph 2.7) and
(i) assembling an efficient ensemble model (paragraph 2.9).

To rationalize these choices, GTM models candidates went
through a Rank Product?? scoring procedure.

2.7 Ranking the performances of GTM models

The genetic algorithm run identifies a set of different manifolds,

each based on a particular type of ISIDA descriptors (28
descriptor spaces were considered). Since multiple endpoints

can be predicted using the same manifold, the best “all-around”

map can be selected using a score measuring overall
performance of the considered GTM-based classification
models. In principle, a mean value for the ensemble of
balanced accuracies of individual models could be used for
this purpose. However, this score can be biased toward the
best performing model.

A more representative score (Figure 1, step 6) can be
obtained by using the “Rank Product” scoring method[?2: (i)
for the given property, the considered manifolds are sorted
according to their BA values; (ii) a score S is assigned starting
from the top manifold; (iii) this process of sorting and score
assignment is repeated for each property; (iv) the overall Rank
Product is calculated as the product of each property’s score
(Rank Product = [}, S); (v) the map having the lowest Rank
Product is selected as the best, so-called “Universal Map”
(UM), reflecting its ability to have good predictive power on all
considered properties. On the other hand, the wording
“Optimal Map” (OM) refers to the map scored by the best BA
for a given property, regardless of its performances on the
others. Notice that Universal Maps result from multi-task
learning procedure because all 11 endpoints were used to
train the GTM manifold. In co, Optimal Maps result from single
learning since only one selected endpoint was used to
optimize GTM parameters.

2.8 Landscapes generation

The “best” REACH Universal Map (Figure 1, steps 7 and 8)
is based on the ISIDA descriptor space IIAB(2-2)['8], i.e. atom
centred fragments with a radius of two. The following GTM
hyperparameters were obtained in genetic algorithm
optimization: k = 20*20; m = 7*7; w = 1.2; | = 0.02884. This
map was used to visualize class landscapes and data
distribution on Figures 3-5 and 8-9. Class landscapes built on
top 5 (out of 28 considered) manifolds were used for the
REACH-INV profiling.

2.9 Consensus of GTM models

Each individual map can be used to perform predictions on all
11 properties. However, the predictive performance can be
improved using a consensus model combining ensemble of
individual predictors?®l, To this end, the obtained maps were
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included to the consensus one by one in the order defined by
the Rank Product. We observed that the performances of the
consensus model are already stable after adding five maps
(Figure S1).

2.10 Benchmarking of GTM with other machine learning
methods

Following the strategy described in our previous works>~, the
binary consensus classification models were generated on
particular training sets (one per endpoint) extracted from the
Global dataset. Each consensus model is an ensemble of
several individual models, based on a different descriptor
spaces and/or machine learning algorithm (chosen among
Random Forest, Support Vector Machine or Naive Bayesian).
In such a way, these consensus models are optimized in
terms of descriptors and methods parameters and have been
trained on the same data used for GTM modelling. Therefore,
3-fold CV performances have been computed and can be
directly compared with those of GTM (see section 3.6).
Moreover, these models have been used to replace the
missing experimental values, in order to complete the
substance’s environmental fate and ecotoxicological profile
(see section 3.4). Table S3 report the 11 consensus models
and their performances.

3 Results

3.1 Overview of the curated datasets

Figure 2 depicts: (a) the repartition of available experimental
data for 11 endpoints; and (b) the repartition of C/nC class for
each particular endpoint. The Global dataset counts a total of
17762 unique compounds listing at least one experimental
measurement for at least one property, for a total of 29433
data points.

The RatTox is the endpoint for which the amount of data was
the highest, accounting for almost 50 % of the Global dataset.
The datasets on environmental persistence (SedP, SoilP and
WatP) were the smallest, with only few hundreds of
compounds. There was a strong overlap of compounds
between the acute aquatic toxicity datasets (AlgaeTox,
DaphniaTox and FishTox): this is understandable, as for
higher tonnage bands compounds shall be evaluated on all
the three endpoints together to provide a complete acute
aquatic toxicity evaluation. On the other hand, there was
limited overlap between ready biodegradability (RB) and
bioconcentration (BCF) and environmental persistence
datasets. Normally, RB assays are conducted at the beginning
of the registration process as, if the substance is
demonstrated to be rapidly degraded in the environment,
other endpoints do not need to be evaluated, and
experimental testing can be therefore waived.

The C/nC class repartition varies as a function of endpoint:
for endocrine disruption-related properties (AR/ER binding)
the number of C compounds (i.e. binders) is rather small,
which is a typical situation for such biological targets.
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Figure 2. Datasets overview. (a) repartition of available experimental
data for 11 endpoints; (b) Concern (C) and non-Concern (nC) classes
repartition.
3.2 Density Chemical
analysis

Figure 3 depicts the density landscape of the Global dataset.
The colormap emphasizes how compounds are distributed in
the chemical space, identifying low- and high- densely
populated regions. The colour scale refers to the number of
compounds populating a given area, ranging from 0 (white
areas) up to 40 (yellow areas). Several zones have been
selected in order to characterize the chemotypes distribution
over the map.

e Zone 1 is populated by aromatic and aliphatic
halogenated substances, for instance belonging to the
chemical family of polychlorinated biphenyl.

e Zones 2a, 2b and 2c include fluorinated compounds.
However, several fluorinated molecules are also found
in a central area of the map delimited by the black
dashed rectangles. This zone is populated by small
molecules counting less than five atoms.

e Zones 3a and 3b incorporate aliphatic and aromatic
compounds mainly with the ester and ether functional
groups. Zone 3a contain more aromatic molecules
compared to 3b. Molecules providing both functional
groups are located between these two areas.

e Zones 4a and 4b agglomerate nitrogen-containing
compounds.

e The low-density regions (e.g. two molecules identified by
black dots) are populated by molecules containing “rare”
chemotypes which are noticeably different from other
compounds from the Global set.

landscape: space qualitative

molecular
informafics

Figure 3. Density landscape or the Global dataset. The colour scale
refers to the number of compounds populating a given zone. Coloured
rectangles delimit map regions referred in the text. Representative
structures populating selected zones of the map are shown.

3.3 Chemical space comparison: Global dataset vs.

REACH-INV
The inventory of substances registered under the REACH-
regulation (RECH-INV) has been projected on the manifold
trained on the Global dataset. The likelihoods distributions of
REACH-INV and the Global dataset are similar (see SI, Figure
S2) which means that the manifold well describes the REACH-
INVcompounds. Figure 4 compares data distribution of these
two databases. Blue and red colours refer to zones uniquely
populated by Global dataset and REACH-INV compounds,
respectively whereas intermediate colours indicate mixed
regions populated by compounds from both databases. A total
of 5137 out of 11951 REACH-INV compounds (43 %) are
overlapping with the Global dataset. On the other hand, 12624
out of 17992 Global dataset compounds (70 %) are new to the
REACH-INV. Even though the Global dataset was able to
accommodate a large portion of the REACH-INV chemical
space, several areas uniquely populated by REACH-INV
compounds were found, indicating that the Global dataset was
lacking important chemotypes: long aliphatic chain (CAS 416-
630-8) and highly sulphonated compounds (CAS 16470-24-9)
were under-sampled in the Global dataset. The REACH-INV
has also some unique chemotypes concerning perfluorinated
compounds (e.g. CAS 88992-45-4).

This suggests that the applicability domain of QSARs
based on public data may not include some REACH related
compounds issued from the industry. This observation is
consistent with our earlier studies 4 concerning weak
performances of existing models applied to compounds of
industrial context.

F— AN
S ﬁ ’ |
: | -~ )
CAS4715-23-5 ORI 5 6
1 ; ¢ CAS 416-630-8

CAS 2991-51-7

¥

CAS 88992-45-4

CAS 16470-24-9

. T b -
Global dataset [IVININN DM ReAcH Ny

CAS 3811-73-2

Figure 4. Global dataset and REACH-INV chemical space
comparison. Blue regions are mainly populated by Global dataset
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compounds; red ones by the REACH-INV compounds; intermediate
colors by compounds belonging to both databases. White areas
display unpopulated regions.

3.4 Global dataset class landscapes

Figure 5 shows the class landscapes of the Global dataset for
the 11 endpoints. Blue and red areas are populated,
respectively, by nC and C compounds, yellow and green
colours represent mixed populated areas in which both nC
and C compounds are present. For several endpoints (e.g.
BCF, RB, AR/ER binding) there is a clear separation of the
classes, with very few mixed areas. On the other hand, the
RatTox landscape is the one that has the worst class
separation, as reflected by its lower prediction performances
(Table S4). White areas correspond to unpopulated regions
which size is related to the absence of experimental data.
Thus, for the series of RatTox, BCF, SoilP, WatP and SedP
endpoints sorted according to the reduction of the dataset size
(Table 1), the white areas on the related landscapes increase
in the same order.

Ensemble of landscapes is a convenient tool of
compounds profiling. As an example, Figure 5 considers two
compounds: Chlordecone (CAS 143-50-0) and p-
Phenylenediamine (CAS 106-50-3) depicted by star-shaped
and circle-shaped black dots, respectively. In agreement with
experimental data, Chlordecone is classified by the
landscapes as C for 7 out of 11 endpoints (AR/ER binding,
DaphniaTox, BCF, RatTox, SedP, WatP); while p-
Phenylenediamine for 6 our of 11 endpoints (ER binding,
AlgaeTox, DaphniaTox, FishTox, RatTox, RB). Chlordecone
was used as an insecticide but was banned due to its
deleterious effects on the environment, mainly related to
persistence. Aniline derivates such as p-Phenylenediamine
are of concern due to their acute toxicity effects on aquatic life
organisms(4-28,

As mentioned above, the white areas indicate the absence
of experimental for a given zone of the chemical space.
Generation of new data may help to fill such empty zones and,
hence, to extend the area covered by the landscape. For this
purpose, in silico predictions obtained with the help of
machine-learning models described in Section 2.10, have
been used instead of experimental data. Notice that the
predicted values outside the applicability domain of the
models were discarded. This led to the decrease of the
percentage of missing data over all the 11 endpoints from
89 % to 32 %. As one may see from Figure 5 (right side), the
updated landscapes cover much larger area than the initial
ones. The biggest improvement is observed for the smallest
datasets BCF, SedP, SoilP and WatP.
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Figure 5. Class landscapes of the Global dataset for the 11 endpoints.
Blue and red regions are populated by nC and C compounds,
respectivly. White areas correspond to unpopulated regions. Black
stars and dots represent projects of two example compounds. The
landscapes of the right side of the black arrows were recomputed after
replacing missing experimental values with predicted ones obtained
with the help of consensus classification models reported in Section
2.9. All images in a large scale are available in SI.

3.5 GTM for property prediction: single-task learning
performances

Figure 6 and Table S4 reports cross-validation Balanced
Accuracies for each Optimal Map (OM). Related GTM-based
classification models demonstrates from moderate to
satisfactory performances, with BAs ranging from 0.66
(RatTox) to 0.81 (BCF). The worst performing endpoints are
ER binding and RatTox. The noticeable difference in BA
between AR/ER binding is quite surprising, as these datasets
show a high overlap of compounds. It seems that ER data are
more noisy: these results are consistent with those reported
by the CERAPP/CoMPARA workgroups 11213 (Table S3). For
all endpoints except SedP, the sensitivity (i.e. detection of truly
C compounds) is always higher than specificity. The RatTox
shows the largest difference between these two metrics
(Sensitivity = 0.83 and Specificity = 0.52), indicating that the
RatTox map frequently misclassifies nC compared to C
compounds.
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3.6 Benchmarking studies.

Figure 7 and Table S5 reports cross-validated balanced
accuracies for both the best UMs and for the Consensus of
five selected UMs. Besides, performances were benchmarked
against the 11 machine-learning models described in Section
2.10. As expected, for a given endpoint, the best Universal
Maps perform less good than related Optimal Maps. On the
other hand, Consensus of the top five Universal Maps prides
with similar to OMs results. Compared to the models obtained
with popular machine-learning methods (see Section 2.10),
GTM displays slightly worse performances.

Cross-Validation Balanced Accuracies
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Figure 7. Results of benchmarking studies for the 11 studied
endpoints. Best UM = best-performing Universal Map; Consensus 5-
UMs = the top five performing Universal Maps have been ensembled
in consensus; Machine-Learning models described in Section 2.10;
Optimal Map is the best performing GTM model for a given endpoint.

3.7 Profiling the REACH-INV dataset

The REACH-INV dataset has been profiled by the best
universal map: predictions on all properties are available on
Zenodo: 10.5281/zenodo.3872735. A total of 72 % of REACH-
INV compounds fell inside the applicability domain of GTM-
based models according to fragment control approach. Table
2 reports the number of compounds predicted as C or nC for
the given property. RB is the only property for which most of
the compounds were classified as C (not readily
biodegradable). This was expected as ready biodegradability
assays are very stringent first-tier experiments that generally
underestimate the biodegradation potential. The aquatic
toxicity endpoints have a similar behaviour, with roughly half
of the compounds predicted as C. We also found that several
chemical families, such as quaternary ammonium salts, long
chain alcohols and quinones were predicted toxic for all the
three trophic levels (Algae, Daphnia and Fish). Only a limited
amount of compounds (3-7 %) were classified of concern (C)
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persistence.

toxicity

Table 2. REACH-INV GTM profiling results for the 11 endpoints
predicted with the help of Universal Maps..

Endpoint nC C % (C)
BCF 11651 300 3
RB 3526 8425 70
SedP 9330 2621 22
SoilP 11581 370 3
WatP 11077 874 7
AlgaeTox 6972 4979 42
DaphniaTox 6462 5489 46
FishTox 6400 5551 47
RatTox 11410 541 5
AR binding 10591 1360 11
ER binding 9984 1967 17
SoilP WatpP

§

DaphniaTox

L e

RatTox

i .‘.‘";“

£ q
42 LB
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Figure 8. REACH-INV Class landscapes for the 11 endpoints

predicted with the help of Universal Maps. All images in a large scale
are available in SI.

To facilitate the chemical space analysis, the in-house
“constrained screening” tool?”] has been used. It allows to
superpose the class landscapes and, in such a way, to isolate
regions of the chemical space populated by compounds
possessing a given (eco)toxicological profile. Below, we
provide with 3 examples of specific queries considering either
all endpoints together, or only selected endpoints (e.g. aquatic
toxicity or environmental fate endpoints).

Figure 9 (a,b,c) depicts the result of the superposition
process, where the colour code refers to the Overall Concern
Score (OCS) cumulating the C labels for all considered
endpoints (here, OCS varies from 0 to 11) .

In the first case (Figure 9a), all 11 landscapes shown on
Figure 8 were used. No regions of the chemical space
populated by the compounds labelled C with respect to
endpoints were detected, the maximal OCS value was eight.
Compounds located in these regions normally show acute
toxicity to the aquatic environment, are not expected to rapidly
degrade and in several instances exhibit acute oral toxicity.
Some examples include compounds belonging the
polychlorinated biphenyls (e.g. CAS 1514-82-5) which have
been banned due to their deleterious effect on the
environment and biota.

In the second case (Figure 9b), we focused on
environmental fate landscapes (BCF and RB) aiming to
extract compounds that could persist and bioconcentrate in
the food chain. A consistent number of compounds belonging
to the chemical family of perfluorinated compounds (e.g. CAS
118-69-4) were identified and for most of them data is scarce,
especially on the bioconcentration endpoint.
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In the third case (Figure 9c) the acute aquatic endpoints
were considered. Chloro- and nitro- phenols (e.g., CAS 87-86-
5 and 38668-48-3), some biphenyls (e.g., CAS 38668-48-3)
and quaternary ammenium salts (e.g., CAS 1563-67-3) have
been identified as of potential concern.

Figure 9a
€ = =

O
-55-: CAS 311-45-5
CAS 5137-55-3 . - )
|
o

|
Figure 9b

%Y
by

CAS 118-69-4

CAS 1514-82-5

3

! CAS 38411-222

rl"é-L;

CAS 87-86-5

Figure 9¢

CAS 38668-48-3

Figure 9 (a,b,c). REACH-INV profiing maps resulted from
superposition of several class landscapes shown on Figure 8.
Different superposition scenarios have been considered: (a)
landscapes of all 11 endpoints; (b) two environmental fate endpoints;
and (c) four acute aquatic toxicity endpoints. The colour code refers
to the Overall Concern Score (OCS) cumulating the C labels for all
considered endpoints. Some compounds identified as a concern are
represented along with their CAS ID.

4 Conclusions

A Global dataset on 11 toxicologically-relevant endpoints
resulted from the merging of multiple public data sources has
been prepared. It contains: environmental fate and pathways
endpaints (bioconcentration factor, ready biodegradability,
environmental persistence in sediment, soil and water
compartment), ecotoxicological endpoints (acute aquatic
toxicity towards algae, daphnia and fish) and human health
endpoints (oral acute toxicity to rats and androgen and
estrogen receptor binding). A total of 17762 unique
compounds listing, at least, one experimental measurement
for, at least, one endpoint have been collected. Binary
Concern (C) and non-Concern (nC) labels were assigned
according to relevant thresholds. The Generative Topographic
Mapping approach has been employed as method for data
analysis and property prediction, generating single- and multi-
task learning models.

molecular
informatics
So called REACH Universal Maps trained on the Global
dataset have been generated, and their ability to classify
compounds of Concern from non-Concern has been tested on
all the 11 endpoints. In such a way, a given compound can be
profiled on multiple properties simultaneously. The best
Universal Maps display acceptable predictive performance
with balanced accuracies ranging from 0.60 to 0.78, as a
function of the endpoint. Assembling five best Universal Maps
in a consensus improves predictive performance: balanced
accuracies vary from 0.67 to 0.83. The REACH-INV dataset
containing 17762 substances registered under the REACH
Regulation have been profiled on the considered endpoints.
Superposition of several landscapes helps to identify the
zones populated by compounds of a given (eco)toxicity profile.
This work proposes a novel and unique methodology for
the identification and prioritization of compounds in the context
of the REACH regulation. New untested compounds can be
easily profiled on several endpoints using one unique model
which largely facilitates the screening process. However, as
we covered only a small fraction of the properties which
constitute a registration dossier, a perspective would be to add
even more endpoints to the profiler. The Global dataset and
the profiled REACH-INV are available through Zenodo:
10.5281/zenodo.3872735
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4.3 Part 3 - ISIDA/Predictor software implementation

This section describes the functionalities of the ISIDA/Predictor (hereafter called

“Predictor”) software. An online version is freely accessible at: http://infochim.u-

strasbqg.fr/cgi-bin/predictor_reach.cgi. All generated models have been added to the
predictor together with their QMRF (QSAR Model Reporting Format) technical

documentation and QPRF (QSAR Prediction Reporting Format) documents.

4.3.1 ISIDA/Predictor interface

The predictor interface looks like Figure 8, where:

a. Select the file containing the molecule(s) to be predicted, either in .sdf format or
.Smi;

b. Select the general class of the model (environmental fate, ecotoxicological or
human toxicological properties) and then the specific model to be applied;

c. Location where all the prediction files (including QPRFs) will be generated (one
for each molecule);

d. Select this option to generate the ColorAtom graphs;

e. Open the QMRF file of the selected model (word document);

f.  General information concerning the selected model will appear here;

g. Prediction for the input molecule(s) will appear here, together with their

applicability domain and reliability assessment.

Figure 8. Predictor interface. See paragraph 4.3.1 for labels (a) to (g).

(e~ H S
|

Ampiresubs 57827 default.cxv

Open madel QMRF

183


http://infochim.u-strasbg.fr/cgi-bin/predictor_reach.cgi
http://infochim.u-strasbg.fr/cgi-bin/predictor_reach.cgi

4.3.2 Input file
The easiest way to load molecule(s) is via the “.smi” (SMILES) file. This is simply a
common text file where each line corresponds to the SMILES of a given molecule. The file
can both have the “.txt” extension of the “.smi” extension. The latter is suggested as the
file selection window such this type is filtered by default. Another way to load molecule(s)
is with the “.sdf” (Structure-Data File) format. The advantage of this format is that it can
store additional information together with the chemical structure (such as CAS,

experimental properties, MW, etc.).

4.3.3 Results
Once the prediction process is done, the results will appear in the right part of the Predictor
(Figure 9). Each molecule will correspond to a line, following the same order of the input
file. The meaning of the columns is the following:

e Predicted value: the prediction given in standard unit ;

e Applied models: for how many individual models the query molecule fell inside

AD. The higher the value, the more reliable the prediction is.
e Prediction confidence: a 4-scale score has been implemented, possible values are
OutsideAD, Average, Good, Optimal.

e Comments: concise information about the quality of the prediction.
e ColorAtom: the atoms of the query molecule are color coded to render the influence
of this part of the molecule on the prediction. If the “Use ColorAtom” option has

not been selected, a picture of the selected molecule will appear without color code.

Figure 9. Results output. (a) illustration of a color coded molecule.
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4.3.4 Reliability of the prediction
The applicability domain of each individual model is verified through the “Fragment
control”: if a test molecule is found to have one fragment (i.e. a determined sequence of
atoms and/or bonds) which is not present in the training set of the given individual model,
that molecule is marked to be outside the applicability domain, since its structure has not
been mapped entirely. In the consensus calculation, only the predictions that fell inside the
AD of the individual model were taken into account.

A reliability assessment of the predictions is provided according to the number of
individual models with positive AD: the following percentage thresholds of <25, >25 —
<50; >50 - <80; >80 were chosen to delimit reliability values: OutsideAD, Average, Good,
Optimal.

Additionally, the standard deviation of the set of the individual models’
predictions participating in the consensus is computed: if the st.dev. is higher than 0.5, than
the prediction is considered to be OutsideAD, as the individual models are in strong

disagreement.
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V Conclusions and Perspectives

In this this work, the following projects have been completed: (i) generation of predictive
models on 11 endpoints relevant in the context of the REACH Regulation (including
environmental fate, ecotoxicological and toxicological properties); (ii) application of GTM
to the REACH-chemical space, which is the chemical space populated by compounds
registered for REACH; (iii) multi-task model building able to profile new compounds
about concerned properties; (iv) implementation of the generated models in the
ISIDA/Predictor platform. The software and models have been deployed on the industrial

site of Solvay.

Table 3 reports the endpoints that have been considered together with the models’
performance and the link to the given dataset. 17762 unique compounds have been
collected over the 11 endpoints, for a total of 29433 experimental values. This dataset has
been extensively curated : (i) chemical structures have been validated by checking the
correspondence between chemicals identifiers (e.g. SMILES ; CAS, IUPAC name) though
automatized workflows querying online databases; (ii) only experimental values coming
from reliable sources and matching the given OECD test guideline requirements were

selected.

Chemical structures have been encoded by different types of substructural
molecular fragments descriptors (ISIDA Fragments). State-of-the-art machine learning
techniques (e.g. support vector machine and random forest) have been applied for model
generation. For each property, a consensus model has been generated, consisting of several
“individual models”, each one with a specific set-up of descriptors and machine learning
method. Each individual model has its own applicability domain. A model prediction
participates in the consensus calculation only if the compound is within the applicability
domain of this model. A reliability score is defined based on the number and variance of
predictions used for the consensus calculation: the higher, the more reliable the prediction
IS.

Generated models proved to have several advantages over already-existing tools,

such as better prediction accuracy, extended applicability domain and extensive validation
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on novel data coming from an industrial context. On industrial data, new models performed
noticeably better, as demonstrated by their much larger applicability domain and increased
accuracy (Table 1). Moreover, new industrial data has been used to update the models: as
these compounds are missing from publicly-available databases, they bring new
chemotypes and contribute to extend new models’ applicability domains. All generated
models follow the OECD Principles for QSAR models validation, which ensure that they
can be used for regulatory purposes under the REACH Regulation, i.e. as valid alternatives
to experimental testing.

The Generative Topographic Mapping (GTM) technique has been extensively
used to compare the chemical space of public and industrial data sources. The GTM was
very efficient to locate and characterize important missing chemotypes in public data
sources compared to and industrial setup. A conventional strategy requiring assessment of
all pairwise similarities is too time consuming whereas GTM compares data densities
which is much faster procedure. GTM focalize on chemotypes, sets of compounds that
share common scaffolds, rather than on individual compounds. This analysis is consistent
with the results obtained during the modelling process: already-existing models (which are
built on public data-only) were reported to have a restricted applicability domain when
challenged to predict industrial data. The GTM approach was used to visualize the
REACH-chemical space. These maps were used, in turn, as a common concept for multi-
task models building able to predict all the 11 considered endpoints simultaneously. The
models, termed “REACH Universal Maps”, was used to profile the entire list of REACH-
registered substances. We identified more concerns about acute aquatic toxicity than for
environmental fate and human health. Finally, overlapping of different property landscapes
provided an intuitive graphical view of regions of the chemical space populated by

compounds with an undesirable (eco)toxicological profile.

All the models have been stored in the ISIDA/Predictor platform, which is freely

available at http://infochim.u-strasbqg.fr/cgi-bin/predictor reach.cgi. An enhanced

“desktop” version with additional features (e.g. generation of QPRF documents) has been

delivered to Solvay.
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5.1 Perspectives

This work can be further continued with the generation of new models on REACH-related
properties. Indeed, the 11 properties considered here cover only a small fraction of a
REACH dossier, constituted by tens of endpoints. The strategic bottle neck is the
acquisition of good quality data. As a next step, these properties can be added to the

REACH Universal Maps, improving the relevance of the profiling.

In this work, explicit labels values have been used. However, it is sometime
possible to deduce an endpoint value from another endpoint. For instance, if a compound
is ready biodegradable, it is automatically not persistent from the point of view of half-life
assays. This strategy can be used at larger scale to supplement the existing data with new

labels.

Besides, some physical properties should be investigated because they have an
impact on the relevance of some predictions. For instance, aqueous solubility is of

primordial importance because insoluble compounds are unlikely to have biological effect.

This PhD did not address the problems linked to metabolites and reactivity. If a
compound can be considered safe, it is worth also to investigate its most likely metabolites
to demonstrate that they are also safe. Reversely, the experimental outcome of an assay can
be modified by the presence of metabolites. Deconvoluting the effects of metabolites and
reaction products in some assays shall improve our understanding of the environmental
and toxicological fate of compounds. In turn it may improve the predictive performances
of models and improve chemical engineering toward better and safer chemical substances.

This work could be extended to the study of more complex objects, such as
mixtures, polymers, peptides, polysaccharides or proteins. Complex systems need a lot

more innovation to design a proper embedding to describe these objects.

Concerning the ISIDA/Predictor software, it can be improved with the addition of
new features, such as other methods to assess the applicability domain of the models, or a
read-across facility performing a similarity search of the query compound in the training
set. Even more, new modules for ISIDA could be added to localize the queried compounds
on a GTM of the REACH chemical space.
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Another improvement could be to investigate the recent developments in artificial
intelligence to the field of compounds generation, to automatically design of chemical
structures modifications aiming at decreasing the hazardous potential of compound of
interest.

Finally, it would be ethically better if computer-based property assessment could
be used as a replacement to animal testing. Yet, this goal is still far since it would require
the design of a rigorous experimental setup to assess the repeatability and transferability of

measurements performed on animals and to compare it to those of computer predictions.

Table 3. Summary of generated models and collected data

Endpoint Int. Val. Ext. Val.

Type (acronyme) Tr. set R? RMSE R? RMSE Zenodo DOI :
(Bécg:lg;centration factor 1263 075 071 0.77 055 106?325214368?0(1
(Aﬁszfgi;e toxiclty 1231 061 069 048 107 105;%&%;“

i“é ?S;gmaafgg oxicity 083 067 078 058 093 106.532%4668;0(1
(F;fghfgf; toxicity 2152 067 073 054 097 106&.3325015/3(2)%20(1
?g{gggﬁﬁ?}g"ity 111901 078 055 06 047 106_5323801(%%20(’

Type (aECr;(cj)Esir:te) Tr set Val. Ii3|jat\erne Val. I(;))gerne

(R;;t;y biodegradability 3069 0.81 0.75 106?325?41(/)27%10(1
B T L v
e Y T B i

e owm on S

e e om o g
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Appendix 1.1 — Data extraction from QSAR Toolbox
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Appendix 1.2 — Data extraction from Pubchem
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Appendix 1.3 - Structures standardization workflow
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