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Abstract 

This work concerns application of Generative Topographic Mapping method to 

different tasks including data analysis and visualization, virtual screening and library design. 

Performance of multi-target GTM-based classification models (uGTM) in virtual screening 

was investigated and consensus usage of several uGTMs has been suggested. Virtual 

screening involving a combination of GTM with some other chemoinformatics techniques 

allowed to discover 29 new BRD4 inhibitors, activities of which were experimentally 

confirmed. As a library design tool, GTM was compared to the MaxMin method. Although 

diversity of MaxMin libraries is systematically larger than those obtained with GTM, the 

latter is much faster and, therefore, can be recommended for large datasets. A modeling 

workflow for speciation analysis in imine-based Dynamic Combinatorial Libraries in 

absence and presence of a protein has been suggested. Developed models are publicly 

available at the site of the Laboratory of Chemoinformatics. 

  



6 

 

  



7 

 

Acknowledgements 

I would like to express my sincere gratitude to all my colleagues from the Laboratory 

of Chemoinformatics at the University of Strasbourg. Particular thanks to my supervisors 

Professor Alexandre Varnek and Professor Jean-Marie Lehn, for their patience, a plethora 

of professional advice and also for their kindness. Special thanks to Dr. Gilles Marcou for 

our talks related to the research and educational sides of the work. Special mulțumesc to Dr. 

Dragos Horvath for all the tools that he has implemented, for his help with the scripts and 

last but not least for not only helping me to not forget the hardly-learned Romanian 

language but also for teaching me some new words. Dr. Igor Baskin, thank you for your 

advice and for our productive discussions while I was working on a diverse-library project. 

I appreciate the help of Dr. Fanny Bonachera and Dr. Olga Klimchuk in organizing my 

working process and documents and for their help in some bureaucracy unrelated to work. I 

am grateful to Dr. Arkadii Lin, Dr. Alexey Orlov, Yuliana Zabolotna and William Bort for 

our friendship and for all the discussions that we had during this time. I thank all the former 

PhD students from our lab: Dr. Pavel Sidorov, Dr. Timur Gimadiev and Dr. Marta 

Glavatskikh. I cannot find the words to express how deeply grateful I am to all the members 

of the lab for their support after my father’s loss. Finally, I would like to thank all members 

of Lehn’s laboratory, especially Dr. Artem Osypenko and Bohgdan Kozybroda, for our 

fruitful discussions on the “purely-chemical” topics. It was worth mentioning another 

person: Dr. Julien Diharce, a friend of mine who encouraged and supported me from my 

first year at the University of Nice. Last but not least, I would like to thank the Région 

Grand Est for the PhD fellowship. 

 

  



8 

 

  



9 

 

Contents 

1 Résumé en français ................................................................................. 13 

1.1 Introduction ............................................................................................................. 13 

1.2 Résultats et discussions ........................................................................................... 15 

1.2.1 Application du modèle consensus GTM au criblage virtuel ............................ 15 

1.2.2 Conception assistée par ordinateur de nouveaux inhibiteurs de Bromodomaine

 16 

1.2.3 Modélisation in silico des bibliothèques combinatoires dynamiques des imines

 17 

1.2.4 Modélisation des équilibres dans une bibliothèque combinatoire dynamique . 19 

1.3 Conclusions ............................................................................................................. 21 

1.4 Liste des presentations ............................................................................................. 22 

1.5 Liste des publications .............................................................................................. 23 

2 Introduction ............................................................................................ 25 

3 Methods ................................................................................................... 33 



10 

 

3.1 QSAR /QSPR methodology ..................................................................................... 33 

3.2 Support Vector Machine .......................................................................................... 37 

3.3 Generative Topographic Mapping ........................................................................... 39 

3.3.1 GTM as a visualization method and modeling tool .......................................... 41 

3.3.2 Applicability domain of GTM-based QSAR models ........................................ 44 

3.3.3 Universal GTM.................................................................................................. 44 

3.4 SVM/GTM parameters tuning ................................................................................. 45 

4 Consensus modeling using universal maps .......................................... 47 

4.1 Introduction .............................................................................................................. 47 

4.2 Performance evaluation of universal maps .............................................................. 49 

4.3 Conclusions .............................................................................................................. 60 

4.4 Supporting information ............................................................................................ 61 

5 In silico mining for new Bromodomain inhibitors .............................. 73 

5.1 Introduction .............................................................................................................. 73 

5.2 Bromodomain 4 ........................................................................................................ 73 

5.2.1 Biological role ................................................................................................... 73 

5.2.2 BRD4 as a therapeutic target ............................................................................. 74 

5.3 Methods .................................................................................................................... 75 

5.3.1 Pharmacophore models ..................................................................................... 76 

5.3.2 Docking ............................................................................................................. 79 



11 

 

5.4 Results and discussion ............................................................................................. 81 

5.5 Conclusions ............................................................................................................. 98 

5.6 Supporting information ........................................................................................... 99 

6 In silico speciation assessment of Dynamic Combinatorial Libraries of 

imines ............................................................................................................ 107 

6.1 Application of GTM for diverse library selection ................................................. 112 

6.1.1 Introduction..................................................................................................... 112 

6.1.2 Data and methods ........................................................................................... 114 

6.1.3 Results ............................................................................................................ 120 

6.1.4 Discussion ....................................................................................................... 127 

6.2 Chemoinformatics driven assessment of speciation in dynamic combinatorial 

libraries .............................................................................................................................. 128 

6.2.1 Modeling of equilibrium constants of imines formation ................................ 129 

6.2.2 Modeling of pKi of human CA II ................................................................... 138 

6.2.3 Speciation assessment ..................................................................................... 140 

6.3 Models implementation ......................................................................................... 146 

6.3.1 Predictive models of logK of imine formation in chloroform ........................ 146 

6.3.2 Predictive models of pKi of human CA II ...................................................... 149 

6.4 Conclusions ........................................................................................................... 151 

7 Conclusion and Perspectives ............................................................... 153 



12 

 

8 References ............................................................................................. 157 

 

  



13 

 

1 Résumé en français 

1.1 Introduction 

Actuellement les bases de données chimiques incluent des millions de structures de 

composés chimiques [1, 2]. Grâce à la synthèse combinatoire et aux réacteurs en flux 

continu ce nombre augmente exponentiellement. Néanmoins ces chiffres sont 

« négligeables » en comparaison du nombre de composés que contiendrait l’espace 

chimique même en se limitant aux molécules d’intérêt thérapeutique, celui-ci étant estimé à 

1033 [3]. L’exploration et l’analyse de cet espace permet aux chimistes de mieux 

comprendre les relations structure-activité ; de plus, grâce l’analyse des régions inexplorées 

de l’espace chimique facilite l’innovation, en particulier pour la recherche de nouveaux 

candidats médicaments.  

L’une des approches qui permet d’effectuer une telle analyse est la méthode de 

cartographie topographique générative (Generative Topographic Mapping, ou GTM) [4]. 

Elle localise les structures chimiques, représentées par un espace de descripteur 

multidimensionnel initial sur un espace bidimensionnel plat, appelé une carte (Figure 1.1). 

La GTM établi en fait une correspondance entre une distribution de probabilité dans 

l’espace initial avec une distribution bidimensionnelle sur la carte. Cette dernière est 

quantifiée en des points spécifiques de la carte, appelés « nœuds ». À une molécule 

localisée dans l’espace initial correspond une distribution de probabilité sur la carte. Les 

coordonnées de la molécule sur la carte correspondent au centre de gravité de la distribution 

de probabilité qui représente le composé sur la carte. Inversement, à chaque lieu de la carte 

correspond une distribution de l’espace initial qui représente une population de structures 

chimiques. Précédemment, cette approche a été appliquée avec succès pour visualiser et 
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analyser des données chimiques [5] ainsi que pour préparer des modèles prédictifs de 

régression ou de classification [6]. 

 

L’objectif de cette thèse est d’explorer l'application de la méthode GTM à plusieurs 

tâches de la chémoinformatique : le criblage virtuel, l’analyse de l’espace chimique de 

systèmes complexes et la constitution d’une bibliothèque de composés chimiquement 

divers. La thèse est divisée en 6 Chapitres. Les chapitres 1 et 2 sont l’introduction et les 

méthodes, respectivement. Le chapitre 3 résume les résultats de l’utilisation simultanée de 

plusieurs cartes GTM dans le criblage virtuel de différentes cibles biologiques à partir de 

données issues de la base de données ChEMBL. Le chapitre 4 décrit le projet dédié à la 

conception assisté par ordinateur visant à trouver de nouveaux inhibiteurs de 

Bromodomaine. Le chapitre 5 est est dédié à la modélisation de la spéciation de 

bibliothèques combinatoires dynamiques [7, 8] en absence ou en présence d’un effecteur 

(protéine ou métal). Ici, la préparation de modèles prédictifs sont décrits, pour le calcul du 

logarithme de la constante d’équilibre logKeq pour les réactions de formation d’imines, et 

pour la formation de complexes entre des effecteurs variés et des molécules organiques. 

Dans le même chapitre la constitution d’un jeu de données structurellement divers à partir 

d’une base de données contenant plus de 42000 composés à l’aide d’une GTM, ainsi que la 

Figure 1.1 : Préparation d’une carte générative topographique (GTM) pour un espace chimique 

définie par les descripteurs moléculaires 
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comparaison de sa performance avec la méthode traditionnelle MaxMin [9] est décrite. 

Dans le chapitre 6 les conclusions générales ainsi que les perspectives sont décrites. 

1.2 Résultats et discussions 

1.2.1 Application du modèle consensus GTM au criblage virtuel 

Il a été démontré que la méthode GTM peut être utilisée pour préparer des modèles 

prédictifs de régression et de classification [6]. Dans ce projet, nous montrons que le 

consensus de cartes construites à partir de différents descripteurs moléculaires mais sur un 

même jeu de données, fournis des prédictions plus fiables par rapport à l’utilisation d’une 

carte unique basée sur un seul ensemble de descripteurs moléculaires. Nos études ont été 

menées sur les « cartes universelles » [10] qui sont capables de distinguer les composés 

actifs de composés inactifs pour plus de 600 cibles biologiques, simultanément [2]. Huit 

cartes universelles ont été obtenues à partir de différents espaces de descripteurs utilisés. 

Chaque carte universelle est capable à prédire l’activité de ligands pour plusieurs cibles 

avec de bonnes performances. Néanmoins des performances de prédiction pour une même 

cible divergent considérablement d’une carte à l’autre. Ces performances sont estimées par 

un paramètre statistique appelé « précision balancée » (Balanced Accuracy, ou BA) qui 

varie entre 0.5 (si les prédictions sont aléatoires) et 1 (si les prédictions correspondent à la 

l’expérience). Il a été trouvé qu’aucune des 8 cartes n’est capable de séparer à elle seule les 

composés actifs et inactifs pour toutes les cibles avec une BA suffisamment élevée. 

Toutefois, les prédictions de chaque carte peuvent être combinées en un consensus. Ainsi, il 

a été observé qu’un consensus de 7 cartes est suffisant pour prédire l’activité des molécules 

avec une haute fiabilité (BA>0.75) sur plus de 85% des cibles, simultanément (Figure 1.2). 

Ces cartes sont complémentaires, car les cibles moins bien prédites par une carte sont 

mieux prédites sur une autre, en exploitant les points de vus alternatifs que représentent les 

descripteurs moléculaires utilisés pour chacune. 
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1.2.2 Conception assistée par ordinateur de nouveaux inhibiteurs de 
Bromodomaine 

L'étude par criblage virtuel (Virtual Screening, ou VS) décrite ici visait à identifier de 

nouveaux ligands de Bromodomaine BRD4. Elle s'est appuyée sur le contenu de bases de 

données publiques (ChEMBL, REAXYS) pour établir, dans un premier temps, un modèle 

prédictif de l'activité BRD puis, dans un second temps, l’utilisation de ces modèles pour la 

sélection de ligands putatifs. Différentes approches chémoinformatiques (SVM, 

pharmacophores, GTM, docking) ont donc été utilisées pour filtrer la collection de 2 

millions de composés de la société Enamine. Ce partenaire industriel a ensuite testé 

expérimentalement un sous-ensemble de 2992 molécules de cette sélection. 

Figure 1.2 : La performance cumulée de cartes exprimée en nombre de cibles ayant un BA 

supérieur au seuil établi en fonction de nombre des cartes utilisées au criblage  
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Ainsi, 29 composés actifs ont été confirmés après ces tests expérimentaux, ce que 

représente 1% des candidats sélectionnés, ce qui représente une amélioration d’un facteur 

2,6 par rapport à une sélection aléatoire de composés. Ce succès est d’autant plus 

remarquable que les modèles ont été conçus pour prédire la concentration inhibitrice à 50% 

du BRD4 (IC50) et que la société ENAMINE a utlisé pour la validation expérimentale, le 

Thermal Shift Assay. Quoique apparentées, ces deux mesures sont distinctes. Cet exemple 

illustre donc comment les modèles obtenus par apprentissage automatique sont en mesure 

d’identifier des relations structure-activité pertinentes pour être exploitées dans un contexte 

de recherche industriel. 

1.2.3 Modélisation in silico des bibliothèques combinatoires dynamiques 
des imines 

1.2.3.1 Application de la méthode GTM à la constitution d’une bibliothèque de 
composés chimiquement diverse 

Les bibliothèques de composés chimiquement diverses sont particulièrement 

importantes pour recherche en chimie médicinale car un tel ensemble de composés vise à 

Figure 1.3 : Une des cartes génératives topographiques utilisées lors du VS. Les zones rouges et 

bleus sont peuplées par des composés actifs et inactifs, respectivement. Les régions ayant des 

couleurs intermédiaires correspondent aux zones peuplées simultanément par des composés de deux 

classes. 
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tester le plus grand nombre d’hypothèses quand une nouvelle activité biologique est 

recherchée et qu’il existe peu de connaissances à priori pour faire des choix rationnels. 

Habituellement, une telle collection est obtenue à partir d'une sélection des composés les 

plus différents les uns des autres, à partir d'une grande chimiothèque de composés 

accessibles commercialement ou par voie de synthèse. La dissimilarité entre deux structures 

chimiques est assimilée à la distance séparant celles-ci dans l’espace chimique, c’est-à-dire 

la distance entre les deux vecteurs de descripteurs moléculaires qui les représentent.  

Trois jeux de données ont été utilisés dans ce travail : l'un contenant 154 amines, 

l’autre – 277 aldéhydes et le troisième contenant 42658 imines qui sont les hypothétiques 

produits de réaction entre chacune des amines avec chacun des aldéhydes. Le but est de 

proposer une chimiothèque diverse de 225 imines. Deux algorithmes ont été comparés : 

l’algorithme « traditionnel » MaxMin et un algorithme innovant basé sur la GTM. 

L’algorithme MaxMin maximise les distances entre les individus de la chimiothèque 

diverse et sélectionne la molécule la plus éloigné de l’ensemble des molécules déjà choisis. 

Pour cette raison, son utilisation pour échantillonner une très grande chimiothèque conduit 

rapidement à des temps de calcul prohibitifs. L’algorithme innovant basé sur une carte 

GTM exploite les deux dimensions de la carte. En effet, sur un nombre réduit de dimension, 

une approche directe qui consiste à diviser la carte en cellules de surface égale puis à tirer 

au hasard des représentants dans chacune d’elles, est très efficace. La notion de distance 

entre individus dans la sélection est écartée, mais l’échantillon est bien plus représentatif. 

Ici, la carte était divisée en 225 zones égales, puis dans chaque zone un composé a été 

extrait aléatoirement. 

Deux critères de performance ont été utilisés : distance moyenne de Soergel (<S>) et 

le taux de couverture de données.  Le paramètre <S> est calculé comme la distance de 

Soergel moyenne entre tous les 225 composés sélectionnés. Le taux de couverture désigne 

le pourcentage de jeu de données initial (42658 imines) qui a un analogue parmi les 225 
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composés sélectionnés. Une sélection aléatoire de 225 imines a été réalisée pour servir de 

référence. Les résultats présentés dans la Figure 1.4 montrent que MaxMin permet de 

sélectionner les bibliothèques plus diverses et, pour peu que le choix ait été réalisé sur les 

produits de réaction, la sélection offre une excellente couverture du jeu de données, mais 

cela nécessite beaucoup plus de temps et de ressources informatiques. Toutefois, le taux de 

couverture des chimiothèques sélectionnées à l’aide de la GTM (98%) est supérieur à celui 

de MaxMin, mais offre des garanties sur la distance séparant les composés sélectionnés. 

Comme la méthode basée sur la GTM est une méthode bien plus rapide que MaxMin, elle 

offre des perspectives intéressantes.  

 

1.2.4 Modélisation des équilibres dans une bibliothèque combinatoire 

dynamique 

Une bibliothèque de composés qui peuvent interagir de manière réversible les uns 

avec les autres s'appelle une bibliothèque combinatoire dynamique (Dynamic 

Figure 1.4 : La comparaison de la performance de GTM (en vert) en constitution de la bibliothèque 

diverse des imines avec la méthode traditionnelle (MaxMin) appliqué aux jeux de données de 

réactant (rouge) et produits (bleu), ainsi qu’avec le choix aléatoire (violet). Le diagramme de gauche 

représente la distance de Sorgel moyenne, celui de milieu la couverture de l’échantillon et celui de 

droite la vitesse de constitution d’une bibliothèque sélectionnée. 
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Combinatorial Library, ou DCL). Tous les constituants d'une DCL [7] sont en équilibre et 

leur distribution est déterminée par leur stabilité thermodynamique. Une telle bibliothèque 

requière que les réactions impliquées dans sa formation soient réversibles et que les 

produits de réaction soient en proportions comparables. Lorsqu'une DCL est exposée à un 

« effecteur » externe (comme des protéines ou des métaux) qui agit sélectivement sur un ou 

plusieurs membres de la DLC, l'équilibre se déplace selon le principe de Le Chatelier et la 

composition du mélange change. Le but de ce projet est de pouvoir prédire la spéciation, 

c.à.d., la composition d’une solution à partir des structures chimiques des composants de 

DCL. Ce calcul passe par une étape d’estimation des constantes d’équilibre pour toutes 

réactions de la DCL. Dans ce projet les DCL basées sur la réaction de formation des imines 

ont été considérées en présence ou en absence de l’enzyme anhydrase carbonique 2 (AC2). 

Pour cela, des modèles capables de prédire les constantes de formations des imines (Keq) 

d’une part, et les constants de complexation de l’AC2 avec des imines, des aldéhydes et des 

amines (Ki), d’autre part ont été développés. Les données expérimentales sur les constantes 

de formations des imines dans le chloroforme ont été obtenues par RMN dans le laboratoire 

du prof. J.-M. Lehn pour 276 réactions. 

Le modèle consensus de régression obtenu pour logKeq regroupe 16 modèles 

individuels SVR [11, 12] (Support Vector Regression). La performance prédictive de ce 

modèle évalué en validation croisée répétée 5 fois (5*5CV) est bonne :  le coefficient de 

détermination R² = 0.93 (R² = 1 désigne un modèle parfait) et l’erreur quadratique moyenne 

RMSE = 0.63 unité logKeq. Le domaine d’application du modèle est très large : pour une 

chimiothèque virtuelle de 120000 imines issue de réactions entre 300 aldéhydes et 400 

amines les plus cités dans la littérature, ce modèle peut être appliqué à plus de 80700 

réactions. Afin de pouvoir utiliser ce modèle dans les solutions aqueuses, le rapport de 

logKeq dans l’eau et dans le chloroforme a été estimé en utilisant les énergies libres de 

solvatation des réactants et des produits dans ces deux solvants. De plus, l’espace chimique 

de la chimiothèque virtuelle de 120000 imines a été analysée à l’aide de GTM. Un modèle 
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SVR pour des logarithmes de constantes de complexation de molécules organiques avec 

l’AC2 (logKi) dans un milieu aqueux a été entrainé sur les données expérimentales extraites 

de la base de données ChEMBL. La performance prédictive de ce modèle est assez bonne 

(R2>0.7). Pour preuve de concept, l’ensemble de constantes Keq et Ki prédites pour 

différents équilibres individuels a été utilisé pour estimer les concentrations pour une DCL 

de 2 amines et 2 aldéhydes en absence et en présence de la protéine.  

 

1.3 Conclusions 

La méthode GTM a été utilisée avec succès pour l’analyse de l’espace chimique, le 

criblage virtuel et la constitution d’une chimiothèque diverse. Nous avons démontré qu’un 

consensus de modèles individuels GTM fournis des prédictions plus fiables que chaque 

Figure 1.5 : Spéciation dans un DCL hypothétique de 2 amines et 2 aldéhydes dont la spéciation 

avant / après l’addition de l’anhydrase carbonique est estimée en utilisant les constantes d’équilibre 

prédites.   
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modèle considéré séparément. Ainsi, un modèle de classification basé sur l’application 

simultanée de sept cartes universelles peut distinguer les composés actifs et des inactifs sur 

617 cibles biologiques avec une BA> 0,6 et pour 523 cibles avec une BA> 0,75. 

Afin de rechercher de nouveaux inhibiteurs de BRD4, un ensemble de méthodes 

chémoinformatiques (SVM, pharmacophores, GTM, docking) a été utilisé pour cribler 2 

millions de composés. Ceci a permis d’identifier 29 inhibiteurs de BRD4 confirmés 

expérimentalement. 

Pour la première fois, la GTM a été utilisée pour la sélection d’un échantillon divers 

d’une chimiothèque. Cette méthode a été comparée à la méthode classique MaxMin lors de 

la sélection d’une chimiothèque diverse d’imines. Les résultats montrent que la GTM a un 

comportement spécifique comparé à MaxMin. Le taux de couverture du jeu de données 

initiales par la GTM (98%) est excellent tout en garantissant que les structures chimiques 

sélectionnées soient bien séparées. De plus, les calculs avec GTM sont beaucoup plus 

rapides par rapport à ceux de MaxMin. 

La méthode SVR a été utilisée pour préparer des modèles de régression pour la 

constante de formation d’imines et la constante de complexation de molécules organiques 

avec l’enzyme anhydrase carbonique 2 (logKi). La combinaison de ces modèles permet de 

modéliser la spéciation d’une DCL d’imines sans et avec l’enzyme.  
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2 Introduction 

Nowadays, chemical databases include millions of structures of chemical compounds 

[1, 2]. Thanks to combinatorial synthesis and continuous flow reactors, this number 

increases exponentially. However, these numbers are "negligible" in comparison to the 

number of compounds that the chemical space would contain even if it were limited to 

molecules of therapeutic interest, this being estimated at 1033 [3]. The exploration and 

analysis of chemical space allow chemists to understand structure-activity relationships 

better; moreover, the study of the unexplored regions of the chemical space facilitates 

innovation, in particular for the research of new drug candidates.  

When it comes to chemical data visualization, analysis and modeling, the applied 

methods could be either descriptor-based or graph-based. In a descriptor-based approach, a 

compound is represented as a vector of descriptors, and each descriptor is describing the 

molecule in terms of physical or chemical properties (molecular weight, logP) and/or purely 

structural (number of atoms, types of bonds). These vectors of descriptors are serving as 

input for machine-learning algorithms. Some of these algorithms, like dimensionality 

reduction techniques, are designed specifically for the visualization and modeling of multi-

dimensional data. Multiple dimensionality reduction techniques are reported in the 

literature: Principal Component Analysis (PCA [13–15]), Multi-Dimensional Scaling 

(MDS [16]), Sammon mapping, Self-Organizing Maps (SOM) [17] due to their efficiency. 

In 2001 T. Oprea [18] proposed a new term – “… chemography, by analogy with 

geography, as the art of navigating chemical space.” In other words, Oprea suggested the 

usage of maps for navigation in chemical space. Such maps of chemical space, by analogy 

with the world map, should posses a universal character, i.e. the compounds are defining 

the “contours of the continents” while their properties will be defining the colors. The 
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above-mentioned dimensionality reduction methods are efficient, nevertheless they are not 

perfect. For example, SOM is producing a 2D map which is based on a non-linear model, 

PCA is also able to produce a 2D map if two principal components will be taken. However, 

PCA is efficient with datasets having internal linear correlations [19], but it could fail while 

representing vast multidimensional data [20]. MDS is another dimensionality reduction 

technique that is also linear that is using Euclidean distances [21]. Sammon maps do not 

allow the addition of the new data on already existing map, forcing the user to rebuild the 

map if the new compounds should be added [22]. 

On the other hand, graph-based approaches represent a molecule as a graph, the 

atoms and bonds corresponding to the graph’s nodes and edges, respectively. One way to 

work in graph-based chemical space is to rely on the concept of a scaffold that is defined as 

the “core part” of the structure with all the terminal chains removed [23]. These could be 

regrouped in a so-called hierarchical scaffold tree, which allows the data visualization and 

modeling [24].  

Generative Topographic Mapping (GTM) [4] is a probabilistic extension of SOM that 

considers the likelihood of the training data as the objective function. Moreover, unlike to 

SOM, the object is not associated with one particular node. In GTM, the objects are 

represented as a probability distribution over all the nodes, thus creating a vector of 

probabilities for each data point. This vector of probabilities is used for data visualization as 

well as for the building classification and regression models. GTM is a versatile method 

that can be applied in different everyday tasks of chemoinformatics like data visualization, 

libraries comparison, QSAR, de novo design; therefore, GTM could be compared to a 

Swiss army knife.  
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GTM has been used in several projects for data visualization. The hierarchical GTM 

algorithm [25] has been used [24] for the visualization of the active/inactive classes 

distribution in five different datasets issued from high-throughput screening. Large datasets 

of compounds (2.2M compounds) have been visualized for the first time by applying the 

incremental GTM [5]. In the same work, a comparison of libraries has been made. Each 

library was considered as a single object of cumulated responsibilities or properties. A 

Responsibility Pattern (RP) term has been introduced by Klimenko et al. [26]; RP allowed 

to automatically detect and extract the compounds similar in the latent space. The concept 

of “privileged substructures” (PSM) was initially introduced by BE. Evans et al. [27], 

referring to core structures that are recurrent in compounds active against a given target 

family and, therefore, associated with that biological activity. This approach has been 

applied in the analysis and modeling of antimalarial compounds [28]. PSM has been 

modified by applying the retrosynthetic rules (RECAP) [29]. The authors tried to extract 

the “frequent” RECAP cores to identify PSMs for inhibitors of protease, kinase and GPCRs. 

Figure 2.1: Ares of successful applications of GTM. 
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In recent work, GTM has been applied to visualization, analysis and comparison of the 

compounds tested against virus species, representatives of the Coronaviridae family [30]. 

GTM has been successfully applied for QSAR and QSPR modeling. Kireeva et al. 

[31] used GTM-based classification models for the prediction of the melting point of ionic 

liquids. Gaspar et al. have used GTM-based regression models [6] for the modeling of 

stability constants for metal binders, the activity of thrombin inhibitors and aqueous 

solubility. In multiple works, GTM has been compared to other popular machine-learning 

methods: SOM [32], Random Forest [33], Partial Least Squares [34], M5P regression tree 

[35], SVM [11]. It has been shown across many projects that GTM is a method that can 

compete in terms of the performance of produces target- and property-specific models with 

other machine-learning methods. In their work, Sidorov et al. [10] have shown that GTM 

can be successfully used as a multi-target predictive model. For instance, a dataset of 1.3M 

ChEMBL compounds (version 20) corresponding to 410 targets have been covered, and 

approximatively 80% of these targets have been predicted with relatively high Balanced 

Accuracy (> 0.7). Lately, Lin et al. [36] have applied the same protocol on the ChEMBL 23 

dataset and benchmarked the obtained model with popular machine-learning methods.  

Conformational sampling plays an important role in medicinal chemistry. Horvath et 

al. have described the application of GTM to conformational sampling [37]. In this work, a 

set of conformers with previously calculated total energies has been used (calculations were 

done using the general AMBER force field [38]). Torsion angles and some non-bonded 

contact energies have been used as descriptors to describe the conformers interaction 

fingerprints. The obtained map can be used for visualization and analysis of the “training” 

conformational space as well as to predict the energies for new conformers. This approach 

has been applied to the conformational space of dipeptides [39]. It was also used in a 

docking study of the ATP-binding site of CDK2 [40]. The maps have been trained to be 
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able to discriminate native from non-native ligand poses as well as to distinguish the 

potency of ligands. 

GTM has also been applied in de novo design. For the first time in 2014, Mishima et 

al. [41] used GTM for an assessment of biological activities for virtually enumerated 

structures. Another attempt of the compound generation with specific activity(ies) has been 

made with Stargate GTM [42]. Stargate GTM uses two manifolds: one is built in the 

descriptor space and another in the activities space; thus, the two spaces are bound. A 

specific mapping function allows to “warp” from the activities space to descriptors space, 

therefore identifying the values of the desirable descriptors. Once the values of the 

descriptors are found, it is needed to generate structures with high similarity to the detected 

descriptors vector, thus assuming that the generated structures would posses the searched 

activity. Recently GTM has been combined with auto-encoder, where the map was trained 

on the generated latent descriptors. Sattarov et al. [43] used this approach to generate and 

analyze the binding potency of ligands of Adenosine A2a receptors. A similar approach 

was applied to the discovery of novel chemical reactions [44]. The authors have trained a 

sequence-to-sequence autoencoder on the USPTO [45] reaction database. The autoencoder 

latent space has been visualized using GTM, the zones of the map populated by Suzuki 

reactions have been targeted. Many of the generated chemical reactions possessed reaction 

centers not present in the training set.  

During this thesis, a broader exploration of GTM capabilities in chemoinformatics 

tasks such as virtual screening and diverse library selection has been done. Sidorov et al. 

[10] have successfully built a universal map – a GTM-based multi-target classification 

model. In the first project of this thesis described in chapter 4, entitled “Consensus 

modeling using universal maps”, we have applied the same model building protocol on the 

data extracted from ChEMBL v.23 (1.5M compounds with known activities on 618 targets). 

In this project, several universal generative topographic maps have been obtained, each 
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map being built in different descriptor spaces (hence encoding different distinct structural 

features). For each target-specific subset of 618 targets, the balanced accuracy (BA) has 

been computed; the score used to quantitatively describe the predictive performance of the 

map was calculated by averaging the BA over all the 618 target-specific subsets. The 

obtained universal maps have shown similar scores. The results are shown in chapter 4, and 

they answer on the following questions: i) For a virtual screening task, is it better to use one 

sole “best map” or several maps in consensus? ii) If the latter – how many maps should be 

applied?  

The second project is presented in chapter 5, “In silico mining for new Bromodomain 

4 inhibitors”. Bromodomain 4 (BRD4) [46, 47] can be considered a difficult target for 

virtual screening because of its flexible structure – 2 α-helixes bound with two loops. 

Known inhibitors of BRD4 usually form 1 H-bond with the target, the rest of the protein-

ligand interactions being hydrophobic [46]. This project was carried out in collaboration 

with the Enamine company [48], its goal was to find new inhibitors of BRD4. Two public 

sources of data have been used to form a training set – Reaxys and ChEMBL. The obtained 

models were used for virtual screening of 2M compounds that are available at Enamine. 

Our collaborators agreed to test 3000 compounds; hence our goal was to find the top 3000 

compounds that are most likely to be BRD4 inhibitors. Here, GTM was used in rather 

complex virtual screening funnel, including SVM models [12], ligand-based 

pharmacophores [49, 50] and docking [51]. 

The third project is described in chapter 6, “In silico speciation assessment of 

Dynamic Combinatorial Libraries”. In this project, GTM performance in diverse library 

selection has been compared to the classical dissimilarity-based method – MaxMin [9]. 

Dynamic combinatorial libraries (DCL) [7, 8] are the cornerstone of the dynamic 

combinatorial chemistry. It relies on the reversible nature of the involved reactions between 

the constituents of the libraries. Briefly, a DCL is usually represented as a solution of mxn 
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reactants that can reversibly interact one with another, leading to a formation of multiple 

reaction products and their thermodynamic stability dictates their distribution. An external 

effector (e.g., biological target) is introduced in DCL; it can lead to a global change of the 

distribution of the products in solution according to Le Chatelier principle if the effector 

will selectively bind to one (or a few) members of the DCL. It can be done in order to find 

the “best binder” with a given target. In this case, the reaction products have to be in almost 

equal proportions, because for a solution where one or a few constituents are 

overrepresented, the preferred interaction of a minor DCL constituent with the target may 

not be strong enough to overturn the equilibrium. There is software that can predict the 

numerical distributions of the amount of substances in the solution. However, all of them 

require precise thermodynamic data on equilibrium constants of the involved reactions, 

which complicates their usage because of the availability of the thermodynamic data for the 

specific case. One way to overcome this constraint is the usage of QSPR models that will 

predict the equilibrium constants, but again for the training of the QSPR model, the data is 

needed. In this project, we present the first steps toward in silico DCL modeling on the 

example of imine-based DCL with human Carbonic Anhydrase II as the effector. The 

presented workflow requires data on both equilibrium constants of the involved reactions 

and binding affinities with the biological target. The data on binding affinities can be 

extracted from public databases like ChEMBL, but there is less data on equilibrium 

constants of reactions. We have selected a diverse library of imines and our collaborators 

from prof. Lehn’s laboratory synthesized and measured the equilibrium constants for over 

250 reactions corresponding to the selected pool of imines, which became the training set in 

this study.  

 



32 

 

  



33 

 

3 Methods 

In this section of the thesis, several aspects of the applied methods will be discussed. 

First of all, the basics of QSAR methodology are described, which include a brief 

description of the QSAR paradigm, some words on different types of descriptors and 

popular machine learning methods used in model building. It will be followed by a 

description Support Vector Machine (SVM) and Generative Topographic Mapping (GTM) 

used as machine-learning methods in the presented projects. 

3.1 QSAR /QSPR methodology 

Quantitative structure-activity relationship (QSAR)/Quantitative structure-property 

relationship (QSPR) modeling is one of the cornerstones of the chemoinformatics tools 

regularly used in many fields such as medicinal chemistry and material science [52]. The 

principle of the modeling is to find a mathematical function that relates a chemical structure 

to the studied property (such as logP) or activity (for a given biological target). Such 

modeling implies that the structural information of the molecule is encoded in numerical 

form – in a vector of molecular descriptors [53], and the values of these molecular 

descriptors are used to define the position of the compounds in the chemical space. All of 

the above said could be expressed by the following equation: 
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To model any possible property/activity, one needs a way to encode all (or at least most of) 

the essential structural information and a big enough dataset of compounds with known 

activity. Last but not least, a machine learning algorithm that will eventually build a 

predictive model. 
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When it comes to the calculation of molecular descriptors, there are several ways to 

do it. For instance, 1D molecular descriptors are directly obtained from the chemical 

formula of the compound. These descriptors are the most straightforward descriptors 

related to the molecule’s “fundamental properties,” such as the number of atoms and 

molecular weight. An obvious flaw of these descriptors is the impossibility to discriminate 

between isomers. 2D molecular descriptors are based on a two-dimensional representation 

of the molecule (a molecular graph). This representation provides the information on atoms 

connectivity, therefore overcoming the flaw of 1D descriptors. Topological indices and 

molecular fragments are good examples of this type of descriptors. 3D molecular 

descriptors are obtained from the 3D structure of the compound. They include the 

quantitative values obtained by quantum mechanics (such as HOMO/LUMO energies of the 

compound, dipole moment or electrostatic potential), ovality of the compound and van der 

Waals volume.  

In this work, ISIDA [54–56] descriptors are used. They are 2D descriptors that 

encode a compound structure by counting the number of occurrences of different 

substructural fragments. These fragments could be linear sequences, augmented atoms 

(central atoms with their environment) or triplets that encode the compound’s atoms and/or 

bond types. In addition to this, the fragments may be colored, adding some additional 

information: pharmacophoric types of atoms, formal charges force-field atom types, etc.  

The dataset that will be used for model training [57] is called the training set. The 

models can be divided into two groups basing on the modeled property or activity: 

regression model (when the modeled/predicted property is a numerical value) and 

classification model (when the modeled/predicted property is categorical). The machine 

learning algorithms that require a known (experimental) property are called supervised 

learning algorithms. A non-exhaustive list of these methods includes Multilinear 

Regression (MLR) [58], Random Forest (RF) [33], Support Vector Machine (SVM) [11] 
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and Artificial Neural Network (ANN) [59]. Supervised modeling occurs when the modeled 

property/activity is known for all the entries in the training set, and the training per se 

consists of fitting a function in order to minimize the prediction error. Another type of 

machine-learning algorithms is unsupervised learning, where the compound’s property is 

not used. Usually, the unsupervised methods are used in order to extract some “inherited” 

structural information basing on data distribution, to describe and interpret the data and, in 

some cases, to visualize it. This class of methods includes clustering (hierarchical clustering 

[60], k-means [61]) and dimensionality reduction (Principal Components Analysis (PCA) 

[14], Self-Organizing Maps (SOM) [17], Generative Topographic Maps (GTM) [4]).  

An important parameter of any model is its quality [62]. Usually, for regression 

models, Root Mean Squared Error (RMSE) and determination coefficient (R2) are used. 

RMSE is calculated according to the formula below, where N is the number of compounds, 

yexp,i and ypred,i are experimental and predicted property values of ith molecule respectively:  

���� =  �∑ �����, − ��"�#, $%& '( )  

R2 estimates the correspondence of experimental and predicted values. The maximal 

value of R2 is 1, which corresponds to an ideal fit of the model, i.e., all the predicted values 

are equal to experimental ones. Lower values of R2 correspond to a worse model and 

“acceptable” value of R² > 0.5 [63]. Determination coefficient is calculated by the formula 

below, where yexp,i and ypred,i are experimental and predicted property values of ith molecule 

respectively and <yexp> is the average property value of the dataset: 

�% = 1 −  ∑ �����, − ��"�#, $%& '(∑ �����, −  〈����〉$%& '(  

When it comes to classification models, the model’s quality is related to the number 

of compounds with the correctly assigned category. Usually, the classification tasks are 
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reduced to binary classification, where the compounds are split into 2 classes 

(active/inactive). In this case, to evaluate the model’s quality, a confusion matrix is used. It 

represents a table where the predicted class of the compounds is matched with their actual 

value. The cells of the table contain the number of compounds that have had a correct 

(“True”) or an incorrect (“False”) class assignment that is denoted as “Positive” and 

“Negative”.  

  Actual 
  Class 1 Class 2 

Predicted 

Class 1 True Positive (TP) False Positive (FP) 

Class 2 False Negative (FN) True Negative (TN)  

Using the confusion matrix, one can calculate the balanced accuracy (BA), which is 

a numerical characteristic of a classification model. BA takes the rate of correct predictions 

of both classes in equal proportions, and it takes values from 1 (ideal case) to 0.5 (random 

predictions). BA is used for the datasets where the predomination of one class over another 

is observed: 

-. =  12 0 1�1� + 3) + 1)3� + 1)4 

Another essential factor that is intrinsically related to model quality is its applicability 

domain (AD). The machine-learning methods perform well in interpolating tasks because 

the model is trained on a limited set of compounds. The model provides reliable predictions 

for the compounds that are similar to the ones from the training set. In every project of this 

thesis, ISIDA descriptors were used; fragment control was generally used as AD [55]. This 

approach considers any compound to be out of the AD if it has at least one descriptor (i.e., 

substructural molecular fragment) that was not present within the training set.  
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One cannot tell how well a model will perform in a “real-life scenario”, nonetheless 

basing on its performance during cross-validation (CV) [64], one can estimate the model’s 

behavior. In this thesis, k-fold cross-validation has been used. It consists of the dataset 

division into k subsets (folds); k-1 folds are used alternatively for model training, and the 

last fold is used for testing. At the end of this procedure, every molecule has received a 

prediction exactly once, and these values are used for the calculation of the model’s 

performance parameters (BA for classification, RMSE and/or R2 for regression).  

 

3.2 Support Vector Machine 

Support Vector Machine (SVM) is a popular supervised machine learning method 

that can be used in classification and regression tasks. The method has been developed and 

published by Vapnik in 1995 [11] following the idea to find a hypersurface that separates 

two classes of objects with the “gap” (called margin) as wide as possible. New objects that 

will be mapped to the same space will be assigned to one of the classes according to the 

side of the surface where they fall on. Additionally, SVM can non-linearly map the input 

vectors into higher dimensional feature space using a kernel function (the so-called kernel 

trick) and then to linearly separate them in this new feature space.  

Figure 3.1: Schematic representation of a 3-fold cross-validation procedure. The initial dataset is 

divided into three parts; on each fold, the model is trained on two parts, and it is applied to the 

associated test part. At the end of the procedure, all the predicted values of “test” subsets are used 

for the model’s evaluation. 
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However, perfect separation of classes is not possible, since “an ideal SVM” should 

produce a hyperplane able to completely separate the objects of different classes. Such 

hyperplane may result in an overfit model; therefore, new objects might be wrongly 

classified. The SVM algorithm is maximizing the margin, and in the meantime, it 

minimizes the misclassifications using the slack variable ξi. The goal of the algorithm 

becomes to maintain the slack variable at a minimal value while maximizing the margin; 

therefore the constraint and objective function becomes 

� (5 ∙ 78 + 9) : 1 −  ; , ∀ 7  ; : 0 

min (% ‖5‖% + B ∑ ;  , with C being trade-off margin  

 

In 1996 Vapnik proposed a support vector regression (SVR) [66] as the development 

of the SVM method for the prediction of a continuous variable. SVR maintains the main 

feature that characterizes the original algorithm – the maximal margin. In cases of 

regression task (� = 5 ∙ 7 + 9), a margin of error tolerance ε is set in approximation to the 

hyperplane and the algorithm is minimizing: 

Figure 3.2: A schematic representation of a separable problem in 2D space. The margin providing 

the widest separation as well as the hyperplane are defined by the support vectors [65]. 
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Where C is the cost that defines the penalty for objects whose predicted value 

deviates from the experimental value for more than ε. The constraints become: 

� −  (5 ∙ 78 + 9)  ≤  ε + ;  
(5 ∙ 78 + 9) − � ≤  ε + ; ∗ 

; ∗, ;  : 0 

3.3 Generative Topographic Mapping 

Generative Topographic Mapping (GTM) has been presented by Bishop in 1998[4] as 

a method of data visualization. GTM is a probabilistic extension of Self-Organizing Maps 

(SOM) [17], but unlike SOM, it considers the likelihood of the training data as the objective 

function. Moreover, in GTM, a single object is not associated with one particular node (and 

its neighbors), but it is associated with the probability distribution over the entire latent 

space.  

GTM finds a representation of the data distribution in the initial D-dimensional data 

space on an L-dimensional hypersurface called a manifold. Although the dimensionality of 

the manifold is usually L=2, L can take any natural value from 1 to D. To map the objects 

from the initial space to the latent space, a mapping function y(x, W) given as a grid of M 

Gaussian activation functions (radial basis functions, or RBF) is applied: 

�#(T, U) =  P U�#exp X‖T − T�‖%2Y Z[
�'(  

Where M is the number of RBFs, D is the initial space dimensionality, W is the matrix 

( � × ]) of weights connecting the initial data space and RBF grid, xm is the center of the 

m-th RBF; d takes values from 1 to D, M and σ being the parameters of the method.  



40 

 

Since the function y(x, W) is smooth (and therefore continuous), the so-called 

neighborhood behavior is observed – the objects that are close in the initial space remain 

neighbors in the latent space. Every node of the grid is associated with the center of a 

normal distribution function with inverse variance β, that corresponds to the sampling of 

the random variable t with the following probability density function: 

�(�|U, _) =  1̀ P exp 0− _2 ‖� − �(Ta, U)‖%4b
a'(  

Where K is the number of nodes, xk the coordinate of the k-th grid node in the latent space, 

�(Ta, U) – the coordinates to which it has been mapped in the initial data space and t 

covers the whole data space representing any object. The logarithm of the probability with 

which the data could be generated is called log-likelihood, and it is denoted as LLh. The 

higher the value of LLh, the better the manifold represents the data. LLh is used as the 

maximized function in the Expectation-Maximization (EM) algorithm. LLh is a function of 

two parameters, W and β: 

LLh(U, _) =  P LLhd
&

d'( =  P ln f1̀ P exp 0− _2 ‖�d − �(Ta, U)‖%4b
a'( g&

d'(  

tn is the position of the n-th object in the initial data space. Every object has a non-zero 

probability of being mapped into any node of the grid. This probability is called 

responsibility, and it is calculated using Bayes’s theorem: 

�da = �(Ta| �d) =  exp 0− _2 ‖�d − �(Ta, U)‖%4
∑ exp 0− _2 ‖�d − �(Ta, U)‖%4ba'(

 

For every object, the responsibility is normalized over the grid of nodes; therefore, 

the sum of responsibilities for a given object is 1. This vector is used for visualization and 

modeling purposes.  
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Standard GTM (sGTM) [67] algorithm is computationally expensive in the case when 

the number of the compounds and descriptors is relatively high since it takes too long to 

calculate the Euclidean distances for all the pairs “object-node”. For a small dataset of 1000 

compounds having 500 descriptors, the computing time of all the distances between all the 

compounds and 900 nodes is around 4.5s on a single CPU (Intel Core i7‐6700HQ) [68]. 

However, the computational time rises to 135s for the dataset of just 30k compounds. Since 

this procedure is done at each iteration of the EM algorithm, it renders the sGTM algorithm 

rather slow. Moreover, when it comes to extensive collections of data, a memory problem 

might appear. To overcome the constraints of sGTM, an incremental variation of GTM 

(iGTM) [5] has been proposed. In this case, the initial dataset, instead of being processed as 

a whole, is divided into many blocks, then each block is processed consecutively. The 

manifold will be trained on one single block at a time, which accelerates the procedure. In 

the current work, iGTM has been used almost exclusively. 

Recently a new approach in GTM methodology has been proposed – parallel GTM 

(pGTM) [68]. The main idea of pGTM is to extend iGTM over multiple CPUs. It is done 

by manifold initialization over all dataset, then this dataset is split into blocks, and the 

initialized manifold is fit on each block independently and simultaneously. Thus, each 

block provides an intermediate manifold that has been fitted on a given part of the data. In 

the end, an averaging of the W and β over all blocks is done.  

3.3.1 GTM as a visualization method and modeling tool 

For the visualization and modeling of the data, GTM uses the concept of landscape. 

For every compound, GTM generates a vector of normalized responsibilities that can be 

treated in the same way as molecular descriptors. The number of these descriptors will be 

equal to the number of the nodes used in the GTM grid. The landscape is obtained by 

adding a specific property of interest for the given dataset as a third dimension of the 2D 
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map. Three types of landscapes can be defined: class landscape [69], property landscape [6] 

and density landscape [68].  

 

The class landscape represents the GTM-based classification model. To obtain a 

class landscape, a class is attributed to each node of the grid by averaging the 

responsibilities rkn(Ci) over the number of compounds Nci of the training set that belongs to 

the i-th class. The conditional probability P(k|Ci) of the new object close a node k is 

calculated: 

�(Ta|B ) =  ∑ �da(B )&d'()�  

�(� |ha) = �(ha|� ) × �(� )∑ ��hai�j$ × ���j$j  

�(� ) =  )� )k	k 

Figure 3.3: Examples of three types of landscapes. The GTM has been applied to the dataset 

containing 6.7k compounds with known activities for vascular endothelial growth factor receptor 2 

(CHEMBL279). Class landscape (a) shows the distribution of compounds of two classes: active 

(red) and inactive (blue). logS (solubility) has been used as a 3rd axis to build the property landscape 

(b). Density landscape (c) shows the population of the zones of the map. 
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Where Ntot is the total number of training items, and rkn is the responsibilities of the 

members of class ci in the node k. To predict a class for a new compound q, the following 

equation is used: 

��� ilm$ = P �(� |ha) × �am
b

a'(  

To visualize a class landscape, the normalized probability of class ci is used as a 3rd 

axis (color code). The population of the nodes is taken into account by the addition of the 

transparency to the used colors.  

GTM-based regression models are relying on the property landscapes, which 

represent the distribution of a property over the latent space. The definition of property 

landscape is done by using a list of property values of compounds that correspond to a 

particular node: 

�a = ∑ �d × �ad&d'(∑ �ad&d'(  

Where pn is the property value for the compound n, and pk is the mean property value for 

the node k. The visualization of the property landscape is done by using the pk values as the 

3rd axis and interpreting them as color code. In contrast, transparency is used (same as in 

the class landscapes) to take into account the nodes population. 

The property of a new compound q is predicted similarly to the class prediction: 

�m = P �am × �a
b

a'(  

The density landscape could be viewed as a “subtype” of property landscape, where 

pk represents the sum of all compound responsibilities in the node k. This landscape is 

usually applied for the analysis of the data distribution when there is no particular property 
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to use (see chapter 6.1.2.2 Cell-based diverse-library selection using GTM) or when the 

landscape transparency is not easily readable. 

3.3.2 Applicability domain of GTM-based QSAR models 

While using GTM for modeling, one can use classical AD approaches, but GTM is 

offering several definitions of AD. Several different GTM-based AD definitions have been 

reported [6]: likelihood-based, density-based and class-dependent density. 

When applying likelihood-based AD, a compound is considered to be out of the GTM 

AD if its position is too far away from the manifold in the initial data space. To apply this 

AD concept, the LLh cutoff is determined by sorting the training compounds accordingly to 

their LLh from the higher to lower LLh value. The cutoff is set at n% of compounds 

(usually 5%) having the smallest LLh; thus, the LLh cutoff is taken as the highest LLh out 

of this “bottom” n%. 

The density-based AD discards the nodes on the GTM landscape, where the 

cumulative responsibility is below a certain threshold. This AD allows using only 

populated zones to make the predictions. This concept is the easiest to visualize and 

interpret since all the testing compounds that have been projected on the white zones of the 

map are considered to be out of AD. 

The class-dependent density AD is similar to the density-based AD. The difference is 

that the density of the winning class cbest in the node is checked, which has the highest 

conditional node probability P(xk|cbest). The ratio for this predominance is a user-defined 

variable. This AD concept is especially useful for classification models. 

3.3.3 Universal GTM 

Universal Generative Topographic Maps (uGTM) are GTM-based classification 

models that have been introduced by Sidorov et al. [10]. In this work, the authors aimed to 
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cover large chemical space defined by the ChEMBL database of version 20 using a single 

map. The main difference between uGTM and “local” GTM (GTM explicitly built for a 

dataset of compounds manifesting a particular activity) is the data used for manifold fitting. 

Usually, when one is applying GTM, the compounds of the training set share a common 

activity/property; thus, the obtained map will describe its landscape. The data used for 

uGTM contains more than 1.2M ligands with known activity for more than 400 biological 

targets. The descriptors space and the GTM parameters were selected using the Genetic 

algorithm [67, 70] described in chapter SVM/GTM parameters tuning. The results showed 

that the uGTM approach could efficiently cover a broad range of chemotypes. The best map 

selected by GA was cross-validated on 410 ChEMBL targets, showing that approximately 

80% of the targets were predicted with the mean Balanced Accuracy of 0.7.  

3.4 SVM/GTM parameters tuning 

The performance of the machine learning methods is parameter dependent. For 

instance, the SVM/SVR performance depends on the type of kernel and the regularization 

coefficient C, while the GTM has four parameters: number of nodes k, number of RBFs m, 

regularization coefficient l, and RBF’s width w. Besides these parameters, an “optimal” 

descriptor space is also needed to be found. To tune all these parameters, the genetic 

algorithm (GA) has been used in all of the projects. GA is a stochastic approach that allows 

achieving “the maximal” model performance while trying a variety of combinations of 

parameters from a pre-defined range.  

The algorithm’s details have already been described in several publications [67, 70]. 

Shortly, GA generates a set of chromosomes; each chromosome is presented by a vector of 

model’s parameter values, as well as some meta-parameters like descriptor space. Each 

attempt (chromosome) is validated using n-fold cross-validation repeated m times, and a 

fitness score (FSc) is associated with the attempt. The FSc is related to the model’s success 

with a given chromosome; for classification tasks, FSc is related to BA and for regression 
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tasks to R2. Higher scored chromosomes will be allowed to generate “children” using cross-

overs and mutations, which might result in potentially better FSc. The GA stops in two 

cases: either no FSc improvement has been observed during the last two generations, or the 

maximal number of attempts has been achieved.  

In the case of SVR- or GTM-based regression model, the FSc is defined by a cross-

validated determination coefficient. For each repetition of the n-fold cross-validation the 

Ro%  is computed. By default, the algorithm is doing 3-fold cross-validation repeated 12 

times. Then, the mean value of Ro%  (<R2>) as well as its standard deviation σ is calculated. 

The FSc is defined as: 

3�� =  〈�%〉 − 2 × σ 

When the GA is run for the optimization of the classification model, the FSc is 

calculated as follows: 

3�� =  〈-.〉 − 2 × σ 

Where <BA> is the mean value of the cross-validated BA of each repetition and σ being its 

standard deviation. 
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4 Consensus modeling using universal maps 

4.1 Introduction 

Virtual Screening (VS) [71] is a technique applied in drug discovery to search 

libraries of molecules in order to identify the compounds with the property/activity of 

interest using knowledge retrieved from the existing data. Usually, the so-called VS funnel 

has several layers of applied methods differentiating them in terms of accuracy/speed ratio. 

For instance, the methods having low accuracy but high computational speed (like filters or 

similarity search) will usually be applied in the first place in order to eliminate the 

compounds that are less likely to be active. On the other hand, methods providing high 

accuracy with the cost of slower computational speed (like docking) will be applied at “the 

bottom of the funnel” on a more restricted set of compounds since they are more likely to 

be active.  

GTM has proven to be able to produce target/property-specific models having 

comparable performance to other machine learning methods like SVM and RF. However, 

in contrast to these methods, the manifold fitting is an unsupervised process. Therefore, 

with GTM, one manifold can fit any database containing thousands or even millions of 

compounds. These compounds may have various activities/properties; hence with only one 

fitted manifold, one have access to all the landscapes representing the present compounds' 

activities/properties. This has been applied and tested in the work of Sidorov et al. [10]., 

where for the first time, the concept of universal GTM (uGTM) has been introduced.  

Here, the same protocol [10] has been applied to data extraction (ChEMBL 23) and 

standardization, as well as uGTM generation. A total number of 1.5M compounds with 
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known activities on 618 targets have been extracted. The subsets of the ligands of 236 

targets, including GPCRs, kinases, nuclear receptors etc., have been used for 3-fold cross-

validation, and 382 target-specific subsets have been used exclusively as external-validation 

sets. Directory of Useful Decoys (DUD) [72] has been used as a genuinely external-

validation set. The DUD dataset has been standardized in the same way as previously 

extracted compounds from ChEMBL. The standardization has been followed by removal 

from the DUD dataset of the compounds that are already present in ChEMBL in order to 

create orthogonal external data sets. Most targets had a complete overlap of active 

compounds when they were simultaneously present in ChEMBL and DUD. In these cases, 

corresponding target-specific sets have been discarded, however, in nine cases the DUD 

database contained sufficiently numerous original actives, thus leading to 9 target-specific 

subsets. 

Table 4-1:Description of target-specific subsets used for model training (ChEMBL) and VS (DUD).  

ChEMBL ID Target Name 

DUD dataset ChEMBL dataset 

Activ

e 
Inactive Active Inactive 

1827 Phosphodiesterase 5A 170 25334 691 1515 

1952 Thymidylate synthase 63 6113 124 455 

251 Adenosine A2a receptor 79 28001 1303 3618 

260 MAP kinase p38 alpha 100 32925 1453 2567 

279 
Vascular endothelial growth factor 

receptor 2 
94 22595 2047 4663 

301 Cyclin-dependent kinase 2 189 25675 638 2305 

4282 Serine/threonine-protein kinase AKT 52 14228 725 2619 

4338 Purine nucleoside phosphorylase 102 6334 100 111 

4439 TGF-beta receptor type I 82 8013 282 385 
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Eight uGTMs have been selected being ranked as “best maps” by genetic algorithm, 

with the scoring function being the average BA for all target-specific landscapes on 3-fold 

cross-validation. Each uGTM is based on different ISIDA descriptor space, encoding 

distinct structural features. Although the average BA of eight maps is roughly equivalent, 

the maps were showing different BAs on target-specific subsets. For instance, an individual 

map was showing high BA value for a given target-specific subset while having a relatively 

low value on another target-specific subset; moreover, another map could show the 

opposite behavior. This induced an in-depth analysis of 8 selected uGTMs.  

4.2 Performance evaluation of universal maps 

The uGTMs performance was evaluated using three scores: i) BA in 3-fold CV (using 

ChEMBL compounds) and in VS (using DUD); ii) Receiver Operating Characteristic Area 

Under Curve (ROC AUC) in VS; iii) Enrichment Factor (EF) in VS. BA has been mainly 

used during cross-validation. BA serves to assess the ability of landscapes to predict the 

correct activity class of candidates not used for landscape construction, i.e., both in 

“internal” cross-validation and “external” VS. Note that reported BA scores for individual 

maps – both in the CV and in VS applications – are always calculated on the entire target-

specific sets. It includes all DUD compounds, even those projected onto empty map zones; 

hence these molecules are out of AD, and they are considered, by default, inactive.  

However, ROC AUC is a more natural VS evaluation criterion than BA, since, in VS, 

the critical element is the relative ranking of candidates – a significant prioritization of the 

active compounds with respect to the inactive. The ranking was performed according to the 

GTM landscape-predicted probability of each compound to be active. The compounds 

falling outside the applicability domain were assigned zero probability of activity; thus, 

they were placed at the bottom of the ranking list. EF for the top 100 ranked molecules was 

calculated according to the equation below: 
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�3(qq =  .��rs��(qq 100⁄.��rs��k	ku
 )k	ku
⁄  

Where Actives100 is the number of true positives in the top 100 compounds, Activestotal is 

the total number of active compounds in the dataset, Ntotal is the total number of compounds 

in the target-specific dataset. 

Detailed description of the results is given in the article published in J. Chemical 

Informatics and Modeling, see below. 
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4.3 Conclusions 

In this work, the predictive performance of eight newly constructed uGTM models in 

a “strict” 3-fold CV and VS of nine target-specific subsets of compounds extracted from 

DUD has been assessed. It has been shown that these maps can provide a relatively good 

separation (BACV >0.6) of active and inactive for the majority of 618 ChEMBL target-

specific subsets, irrespective of whether these subsets have been used in model training or 

not. It has been found out that any individual map could not achieve consistently accurate 

predictions for each target-specific subset. However, it has been proven that these maps, 

which were each built on a different descriptor space, are highly complementary – the 

target-specific series of compounds that are being predicted poorly by one uGTM will be 

much better predicted by another. For 617 out of 618 activity classes, at least one uGTM 

provides a highly discriminatory activity landscape.  

It was observed that there is no correlation between performance in the CV and 

external predictive power of individual activity landscapes. A solution has been found – a 

consensus approach. The most important advantages of this approach are 1) 100% data 

coverage in most of the cases; 2) a significant increase in EF for the 100 top-ranked 

compounds; 3) high performance of the consensus model compared to individual models 

based on ROC AUC. Last but not least, seven uGTMs have been proven to be sufficient to 

provide complementary views of biologically relevant chemical space that resulted in the 

enhancement of the performance in VS. 
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4.4 Supporting information 

Supporting information includes a list of targets used for building of the universal 

maps (Table 4-2) and activity landscapes for 9 selected ChEMBL targets (Figures 4.1 -4.9). 

Table 4-2: 618 ChEMBL (version 23) targets used for universal maps training and validation. 

CHEMBL1075104 CHEMBL1293266 CHEMBL1790 CHEMBL1859 CHEMBL4633 

CHEMBL1075145 CHEMBL1293267 CHEMBL1795139 CHEMBL1860 CHEMBL4641 

CHEMBL1075167 CHEMBL1293289 CHEMBL1795186 CHEMBL1862 CHEMBL4644 

CHEMBL1075189 CHEMBL1293293 CHEMBL1801 CHEMBL1864 CHEMBL4657 

CHEMBL1075322 CHEMBL1615381 CHEMBL1804 CHEMBL1865 CHEMBL4660 

CHEMBL1163101 CHEMBL1741176 CHEMBL1808 CHEMBL1867 CHEMBL5084 

CHEMBL1163125 CHEMBL1741186 CHEMBL1811 CHEMBL1868 CHEMBL5103 

CHEMBL1255126 CHEMBL1741207 CHEMBL1821 CHEMBL1871 CHEMBL5113 

CHEMBL1275212 CHEMBL1741215 CHEMBL1822 CHEMBL1873 CHEMBL5122 

CHEMBL1287628 CHEMBL1781 CHEMBL1824 CHEMBL1878 CHEMBL5137 

CHEMBL1293222 CHEMBL1782 CHEMBL1825 CHEMBL1881 CHEMBL5141 

CHEMBL1293224 CHEMBL1785 CHEMBL1827 CHEMBL1889 CHEMBL5147 

CHEMBL1293255 CHEMBL1787 CHEMBL1829 CHEMBL1892 CHEMBL5776 

CHEMBL1833 CHEMBL1900 CHEMBL1947 CHEMBL1899 CHEMBL5794 

CHEMBL1835 CHEMBL1901 CHEMBL1949 CHEMBL2003 CHEMBL5804 

CHEMBL1836 CHEMBL1902 CHEMBL1951 CHEMBL2007 CHEMBL5600 

CHEMBL1844 CHEMBL1903 CHEMBL1952 CHEMBL2007625 CHEMBL5608 

CHEMBL1850 CHEMBL1904 CHEMBL1957 CHEMBL2008 CHEMBL5627 

CHEMBL1853 CHEMBL1906 CHEMBL1908 CHEMBL2016 CHEMBL5646 

CHEMBL1856 CHEMBL1907 CHEMBL1913 CHEMBL202 CHEMBL5650 

CHEMBL1968 CHEMBL1966 CHEMBL1914 CHEMBL2028 CHEMBL5658 

CHEMBL1916 CHEMBL203 CHEMBL1974 CHEMBL2243 CHEMBL5678 

CHEMBL1917 CHEMBL2035 CHEMBL1977 CHEMBL225 CHEMBL5697 

CHEMBL1918 CHEMBL2039 CHEMBL1978 CHEMBL2250 CHEMBL4767 

CHEMBL1921 CHEMBL204 CHEMBL1980 CHEMBL226 CHEMBL4769 

CHEMBL1929 CHEMBL2041 CHEMBL1981 CHEMBL2265 CHEMBL4777 

CHEMBL1936 CHEMBL2047 CHEMBL1985 CHEMBL227 CHEMBL4789 

CHEMBL1937 CHEMBL2055 CHEMBL1987 CHEMBL2276 CHEMBL4791 

CHEMBL1940 CHEMBL2056 CHEMBL1991 CHEMBL2285 CHEMBL4792 

CHEMBL1941 CHEMBL206 CHEMBL1994 CHEMBL2288 CHEMBL4793 

CHEMBL1942 CHEMBL2061 CHEMBL1995 CHEMBL2292 CHEMBL4796 

CHEMBL1944 CHEMBL2068 CHEMBL1997 CHEMBL230 CHEMBL5409 

CHEMBL208 CHEMBL2069 CHEMBL2000 CHEMBL231 CHEMBL5443 

CHEMBL2083 CHEMBL2073 CHEMBL2001 CHEMBL2318 CHEMBL5455 

CHEMBL2085 CHEMBL2074 CHEMBL2002 CHEMBL2319 CHEMBL5469 

CHEMBL209 CHEMBL232 CHEMBL220 CHEMBL2553 CHEMBL5485 
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CHEMBL210 CHEMBL2326 CHEMBL2208 CHEMBL256 CHEMBL5491 

CHEMBL2107 CHEMBL233 CHEMBL221 CHEMBL2563 CHEMBL5493 

CHEMBL211 CHEMBL2334 CHEMBL2216739 CHEMBL2568 CHEMBL6101 

CHEMBL2219 CHEMBL2337 CHEMBL2123 CHEMBL258 CHEMBL6115 

CHEMBL222 CHEMBL2343 CHEMBL213 CHEMBL2581 CHEMBL6120 

CHEMBL2231 CHEMBL2345 CHEMBL2146302 CHEMBL259 CHEMBL6136 

CHEMBL2147 CHEMBL2349 CHEMBL248 CHEMBL2593 CHEMBL5818 

CHEMBL2148 CHEMBL235 CHEMBL2487 CHEMBL2595 CHEMBL5819 

CHEMBL215 CHEMBL236 CHEMBL2492 CHEMBL2598 CHEMBL5847 

CHEMBL216 CHEMBL237 CHEMBL250 CHEMBL2599 CHEMBL5855 

CHEMBL2163176 CHEMBL2373 CHEMBL2508 CHEMBL260 CHEMBL4900 

CHEMBL2169736 CHEMBL238 CHEMBL251 CHEMBL261 CHEMBL4973 

CHEMBL217 CHEMBL2386 CHEMBL2514 CHEMBL2611 CHEMBL4977 

CHEMBL2179 CHEMBL239 CHEMBL2525 CHEMBL2617 CHEMBL5024 

CHEMBL218 CHEMBL2390810 CHEMBL2527 CHEMBL262 CHEMBL5027 

CHEMBL2185 CHEMBL240 CHEMBL253 CHEMBL2635 CHEMBL5028 

CHEMBL2189110 CHEMBL241 CHEMBL2534 CHEMBL2637 CHEMBL5038 

CHEMBL2424 CHEMBL2413 CHEMBL2535 CHEMBL2652 CHEMBL5073 

CHEMBL2426 CHEMBL2414 CHEMBL2543 CHEMBL2664 CHEMBL5703 

CHEMBL2431 CHEMBL242 CHEMBL255 CHEMBL267 CHEMBL5719 

CHEMBL2434 CHEMBL268 CHEMBL2820 CHEMBL2996 CHEMBL5742 

CHEMBL2439 CHEMBL2689 CHEMBL2828 CHEMBL3004 CHEMBL5747 

CHEMBL2468 CHEMBL2693 CHEMBL283 CHEMBL3009 CHEMBL5203 

CHEMBL2474 CHEMBL2695 CHEMBL2850 CHEMBL301 CHEMBL5247 

CHEMBL3553 CHEMBL2716 CHEMBL288 CHEMBL3012 CHEMBL5251 

CHEMBL3559 CHEMBL2717 CHEMBL2888 CHEMBL3023 CHEMBL5857 

CHEMBL3568 CHEMBL2730 CHEMBL2889 CHEMBL3024 CHEMBL5879 

CHEMBL2731 CHEMBL289 CHEMBL3025 CHEMBL3231 CHEMBL5896 

CHEMBL2736 CHEMBL2896 CHEMBL3032 CHEMBL3234 CHEMBL5903 

CHEMBL2742 CHEMBL290 CHEMBL3045 CHEMBL3238 CHEMBL5936 

CHEMBL275 CHEMBL2903 CHEMBL3055 CHEMBL3243 CHEMBL5938 

CHEMBL2778 CHEMBL2916 CHEMBL3060 CHEMBL325 CHEMBL5971 

CHEMBL2781 CHEMBL2938 CHEMBL3070 CHEMBL3250 CHEMBL5979 

CHEMBL2782 CHEMBL2939 CHEMBL308 CHEMBL3267 CHEMBL5366 

CHEMBL2789 CHEMBL2955 CHEMBL3094 CHEMBL3268 CHEMBL5378 

CHEMBL279 CHEMBL2959 CHEMBL3106 CHEMBL3272 CHEMBL5393 

CHEMBL2793 CHEMBL2964 CHEMBL3116 CHEMBL3286 CHEMBL5407 

CHEMBL2801 CHEMBL2971 CHEMBL3130 CHEMBL3308 CHEMBL5408 

CHEMBL2803 CHEMBL2973 CHEMBL3142 CHEMBL331 CHEMBL6009 

CHEMBL2808 CHEMBL298 CHEMBL3145 CHEMBL3310 CHEMBL6014 

CHEMBL2815 CHEMBL299 CHEMBL3180 CHEMBL332 CHEMBL6030 

CHEMBL3181 CHEMBL333 CHEMBL3522 CHEMBL3710 CHEMBL6032 

CHEMBL3192 CHEMBL3338 CHEMBL3524 CHEMBL3714130 CHEMBL5518 

CHEMBL3201 CHEMBL335 CHEMBL3529 CHEMBL3717 CHEMBL5522 
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CHEMBL3202 CHEMBL3351 CHEMBL3535 CHEMBL3721 CHEMBL5524 

CHEMBL321 CHEMBL3356 CHEMBL3864 CHEMBL3729 CHEMBL5543 

CHEMBL3227 CHEMBL3357 CHEMBL3869 CHEMBL3746 CHEMBL5545 

CHEMBL3230 CHEMBL3359 CHEMBL3880 CHEMBL3759 CHEMBL5568 

CHEMBL3385 CHEMBL3589 CHEMBL3764 CHEMBL3886 CHEMBL6003 

CHEMBL3397 CHEMBL3590 CHEMBL3772 CHEMBL3890 CHEMBL6007 

CHEMBL3399910 CHEMBL3616 CHEMBL3776 CHEMBL3891 CHEMBL6154 

CHEMBL340 CHEMBL3622 CHEMBL3778 CHEMBL3892 CHEMBL4895 

CHEMBL3401 CHEMBL3629 CHEMBL3785 CHEMBL3898 CHEMBL4896 

CHEMBL3426 CHEMBL3636 CHEMBL3788 CHEMBL3902 CHEMBL4897 

CHEMBL3437 CHEMBL3650 CHEMBL3795 CHEMBL3905 CHEMBL4898 

CHEMBL3438 CHEMBL3663 CHEMBL3807 CHEMBL3906 CHEMBL4899 

CHEMBL3468 CHEMBL3683 CHEMBL3816 CHEMBL3911 CHEMBL4444 

CHEMBL3474 CHEMBL3687 CHEMBL3819 CHEMBL3913 CHEMBL4461 

CHEMBL3475 CHEMBL3691 CHEMBL3820 CHEMBL3920 CHEMBL4462 

CHEMBL3476 CHEMBL3961 CHEMBL3829 CHEMBL3922 CHEMBL4465 

CHEMBL3510 CHEMBL3965 CHEMBL3831 CHEMBL3935 CHEMBL4478 

CHEMBL3514 CHEMBL3969 CHEMBL3835 CHEMBL3959 CHEMBL4481 

CHEMBL3836 CHEMBL3972 CHEMBL4051 CHEMBL4203 CHEMBL4482 

CHEMBL3837 CHEMBL3973 CHEMBL4068 CHEMBL4204 CHEMBL4501 

CHEMBL3861 CHEMBL3974 CHEMBL4071 CHEMBL4223 CHEMBL4506 

CHEMBL3863 CHEMBL3975 CHEMBL4072 CHEMBL4224 CHEMBL4801 

CHEMBL3572 CHEMBL3976 CHEMBL4073 CHEMBL4225 CHEMBL4803 

CHEMBL3582 CHEMBL3979 CHEMBL4079 CHEMBL4227 CHEMBL4804 

CHEMBL3587 CHEMBL3982 CHEMBL4080 CHEMBL4234 CHEMBL4816 

CHEMBL3983 CHEMBL4081 CHEMBL4237 CHEMBL4422 CHEMBL4581 

CHEMBL3991 CHEMBL4093 CHEMBL4247 CHEMBL4426 CHEMBL4599 

CHEMBL4005 CHEMBL4101 CHEMBL4261 CHEMBL4427 CHEMBL4600 

CHEMBL4015 CHEMBL4123 CHEMBL4270 CHEMBL4439 CHEMBL5261 

CHEMBL4016 CHEMBL4128 CHEMBL4273 CHEMBL4441 CHEMBL5282 

CHEMBL4018 CHEMBL4142 CHEMBL4282 CHEMBL4714 CHEMBL5285 

CHEMBL4026 CHEMBL4145 CHEMBL4296 CHEMBL4718 CHEMBL5314 

CHEMBL4029 CHEMBL4147 CHEMBL4302 CHEMBL4722 CHEMBL5330 

CHEMBL4036 CHEMBL4158 CHEMBL4303 CHEMBL4761 CHEMBL5331 

CHEMBL4040 CHEMBL4176 CHEMBL4306 CHEMBL4766 CHEMBL6164 

CHEMBL4045 CHEMBL4179 CHEMBL4315 CHEMBL4608 CHEMBL6166 

CHEMBL4374 CHEMBL4191 CHEMBL4338 CHEMBL4617 CHEMBL6175 

CHEMBL4375 CHEMBL4198 CHEMBL4361 CHEMBL4618 CHEMBL4698 

CHEMBL4376 CHEMBL4202 CHEMBL4367 CHEMBL4625 CHEMBL4699 

CHEMBL4393 CHEMBL4508 CHEMBL4662 CHEMBL4630 CHEMBL4852 

CHEMBL4394 CHEMBL4516 CHEMBL4674 CHEMBL4576 CHEMBL4829 

CHEMBL4398 CHEMBL4523 CHEMBL4681 CHEMBL4578 CHEMBL4835 

CHEMBL4408 CHEMBL4525 CHEMBL4683 CHEMBL4708 CHEMBL4601 

CHEMBL4822 CHEMBL4575 CHEMBL4685   
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Activity landscapes for nine studied subsets of ChEMBL targets selected from the 

DUD database are presented below. Red zones are exclusively populated by active 

molecules, blue populated by inactive molecules, whereas yellow and green colors 

characterize zones populated by both active and inactive compounds. 

 

  

Figure 4.1: Activity landscapes for ChEMBL1827. 
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Figure 4.2: Activity landscapes for ChEMBL1952. 
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Figure 4.3: Activity landscapes for ChEMBL251.  
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Figure 4.4: Activity landscapes for ChEMBL260. 
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Figure 4.5: Activity landscapes for ChEMBL279. 
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Figure 4.6: Activity landscape for ChEMBL301. 
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Figure 4.7: Activity landscapes for ChEMBL4282. 
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Figure 4.8: Activity landscapes for ChEMBL4338. 
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Figure 4.9: Activity landscapes for ChEMBL4439. 
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5 In silico mining for new Bromodomain inhibitors 

5.1 Introduction 

The goal of this project was to carry out a virtual screening (VS) of a dataset of 2M 

compounds provided by Enamine company [48], in order to find new inhibitors of 

Bromodomain 4 (BRD4) [47]. The provided dataset of 2M compounds corresponds to the 

compounds that are physically available in stocks, or that could be easily synthesized. It has 

been agreed to provide our Enamine collaborators with a dataset of 3000 compounds that 

would be tested. To get this dataset of 3000 compounds, a VS screening protocol has been 

developed, which included a consensus application of GTM and SVM classification models 

as well as ligand-based pharmacophore models.  

5.2 Bromodomain 4  

5.2.1 Biological role 

Lysine acetylation of histone proteins is a fundamental post-translational modification 

regulating chromatin structure, and it plays a significant role in gene transcription [73]. 

Readers of post-translational modifications are structurally diverse proteins than contain 

one or more effector modules that recognize covalent modifications of proteins and DNA. 

The recognition of acetylation of lysine residues is primarily initiated by bromodomains 

[46]. Bromodomains are involved in the regulation of transcriptional programmers. They 

have been identified in oncogenic rearrangements [74] that lead to highly oncogenic fusion 

proteins, which play a crucial role in the development of several aggressive types of cancer 

[46, 75] (like NUT carcinoma, leukemia and lymphoma [76, 77]).  
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Recently it has been shown what role is playing BRD4 in NUT carcinoma. NUT 

carcinoma is a very aggressive and rare form of undifferentiated squamous-cells carcinoma. 

It is considered one of the most lethal solid tumors, which typically is non-responsive to 

chemotherapy or radiotherapy and an overall survival spanning from 6 to 9 months [78]. 

This disease is genetically defined by chromosomal rearrangements involving the NUT 

gene fused to the BRD4 [78]. This creates BRD4-NUT oncogene that is considered to be a 

main pathogenetic driver of cellular transformation. It has been found that the interception 

of the BRD4-NUT fusion gene results in the slowing of the differentiation and growth of 

NUT carcinoma cells [77, 79].  

5.2.2 BRD4 as a therapeutic target 

Bromodomain modules share a conserved fold that comprises a left-handed bundle of 

four α-helices (named αZ, αA, αB and αC) [80] that are linked by diverse loop regions of 

variable charge and length (known as ZA and BC loops) which surround a central 

acetylated lysine binding site (Figure 5.1). BRD4 can be considered a difficult target for 

virtual screening because of its flexible structure. Known inhibitors of BRD4 usually form 

1 hydrogen bonds with the protein, and the rest of the protein-ligand interactions being 

hydrophobic [46]. 
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5.3 Methods  

The virtual screening protocol (Figure 5.2) of this project involved several machine 

learning methods (GTM and SVM that have already been described in the Methods 

chapter), ligand-based pharmacophores and docking. SVM classification models, uGTM 

BRD4 landscapes, “local” GTM BRD4 landscapes were used in consensus with ligand-

based pharmacophore models. Each model has treated the library of 2M compounds, and it 

ranked them by the likelihood of being active to BRD4, putting the most active compounds 

on the top of the list. Basing on the predictions of every individual model, 12000 

compounds have been selected and sent to the docking procedure. A compound was 

selected if it was ranked among the top 10 by at least two models, or it was placed among 

the top 10000 compounds by > 50% of the models.  

Figure 5.1: On the left – the structure of Bromodomain – 4 α-helices linked by two loops BC and 

ZA. On the right – BRD inhibitor (Ischemin) interactions with the protein. Binding site residues are 

shown in sticks. Note that only one hydrogen bond (red dotted line) is made with Aspargine1168 

[46].  
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5.3.1 Pharmacophore models 

IUPAC's definition of the pharmacophore model is “an ensemble of steric and 

electronic features that is necessary to ensure the optimal supramolecular interactions with 

a specific biological target structure and to trigger (or to block) its biological response” [81]. 

A pharmacophore does not represent a real molecule or a real association of functional 

groups, but a purely abstract concept that accounts for the common molecular interaction 

capacities of a group of compounds towards their target structure. The pharmacophore can 

be considered as the largest common denominator shared by a set of active molecules. The 

Figure 5.2: Applied virtual screening protocol. 
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pharmacophore features are H-bond acceptors and donors, charged or ionizable groups, 

hydrophobic groups and aromatic rings. 

The spatial relationships between the features in a 3D pharmacophore model can be 

specified as distances or distance ranges or by defining the (xyz) locations of the features 

together with some distance tolerance (typically as a spherical tolerance region). There are 

different possibilities to derive pharmacophore models: based on the three-dimensional 

structure of a ligand-protein complex (structure-based modeling) or based on the structural 

information of active compounds only (ligand-based modeling). In this project, ligand-

based pharmacophore models have been developed. 

Generally, a database is built in such a way that the molecules that it contains are 

usually (or at least it is expected) represented by a set of conformers that supposedly 

include the bioactive geometry adopted during the interaction with the target protein. All 

conformers of used compounds are superimposed, and the associated common 

pharmacophore features are generated. Then, it is up to the user to define the number and 

the types of needed pharmacophores that will form the model. Depending on the selectivity 

of the pharmacophore model, such a virtual screening of chemical databases consisting of 

millions of small molecules can result in tens to thousands of hits. For the compounds 

ranking and to model’s quality determination, the matching between the pharmacophore 

model and each molecule of the virtual screening hit list, a score is calculated. 

LigandScout [49, 50] was used in the current work. The main feature of LigandScout 

is the fast alignment algorithm due to the efficiency of the implementation and the 

advanced geometric similarity measure for the chemical features. In this algorithm, the first 

step concerns the generation of the 3D pharmacophore features (Figure 5.3) identified for 

each database conformer.  
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Then, the algorithm creates for each feature type a set of inter-feature distances. The 

distance sets created for the pharmacophore model, and the conformer pharmacophore 

features are then compared in a pairwise manner. In order to perform a pair assignment, the 

so-called Hungarian matching algorithm is executed. Finally, the feature distances between 

model and conformer are minimized using Kabsch alignment algorithm. For estimation of 

alignment quality, the pharmacophore fit score function has been used [49]: 

�v[w  =  9  −  3  ×  {r|(���}~ , 3) 

�}�v = � × )[}~ + �v[w 

Where SRMS is the matched feature pair Root Mean Squared Deviation (RMSD) score in 

range [0,9]; RMSFP is the RMSD of the matched feature pair distances; SFCR is the feature 

count/RMS distance score; c is a weighting factor for the number of matched feature pairs, 

and NMFP is the number of geometrically matched feature pairs. 

Figure 5.3: LigandScout pharmacophore features. 
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5.3.2 Docking 

The docking part of the project was done using S4MPLE (Sampling For Multiple 

Protein-Ligand Entities) software [51]. It is based on a hybrid genetic algorithm, which 

allows the simulation of one molecule (conformer generation) or many molecules (docking). 

Energy calculations are done using the AMBER force field [38] for biological 

macromolecules and its generalized version - GAFF for ligands. The ability of S4MPLE to 

indiscriminately handle inter- and intramolecular degrees of freedom is achieved through 

the appropriate design of torsional angles, rotational and translational degrees of freedom. 

In S4MPLE, a genetic operator works on some randomly chosen covalently connected (or 

not) molecular substructure. If the structure is covalently connected, then the operator will 

affect the structure in such a way that bond length and valence angles will not be changed. 

If the structure is not covalently connected, then it might be, for example, one of the ligands 

competing for the binding site. In that case, the guidance role of missing covalent bond will 

be taken by a potentially favorable contact axis, which is randomly chosen as a pair of 

atoms (one atom belonging to the external partner and another to structure itself), that 

should be brought together in order to form a hydrogen bond or a hydrophobic interaction. 

The following steps make the preparation of the active site: protein atoms have to be 

fixed by enumerating their sequence numbers. A predefined cutoff for non-bonded 

interactions was established on 12Å. Protein atoms that are too far from the active site in 

order to ever come within 12Å to any ligand atom would merely slow down calculations by 

requesting the regular update of their distances to ligand atoms. Therefore, docking was not 

run on the entire protein, but on the selection of relevant residues that have at least one 

atom at less than 10Å from any of the co-crystallized ligand, herewith used to define the 

active site region. Moreover, S4MPLE requires the user-specified input of ''hot spots'' – key 

solvent-accessible atoms, chosen preferentially at the bottom of the site cavity, which will 

be used for random prepositioning of the ligand into the active site. These may, but do not 

have to, include site atoms seen to make contacts to the co-crystallized PDB ligand. 
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Ligands, initially provided as standardized SMILES, preprocessed by the 

standardization tool of the Strasbourg virtual screening web server, undergo an automated 

conversion, using an in-house tool developed based on the ChemAxon API, to a fully 

protonated initial 3D structure. The tool relies on the tautomer and, respectively, pKa 

plugin to generate the most probable microspecies of the expected main tautomeric form. 

Users might request several tautomeric or protonation states to be generated, and each to be 

docked as an independent candidate – but the option was not used here. Explicit hydrogens 

are assigned, and the conformer plugin then generates a single conformer. Eventually, the 

charge plugin is used to assign Gasteiger charges [82] to this structure. Last but not least, 

the tool detects flexible rings and proposes, for each, the single bond to be formally 

''broken'' in order to enable intra-cyclic torsional axes to be driven by S4MPLE. 

S4MPLE docking begins by extracting all the data of a given ligand into a dedicated 

directory, then running a 200-generation evolutionary conformational search with S4MPLE, 

on the free ligand, at default settings. Next, active site data are added to this directory, and a 

brief fist simulation is run in order to calibrate the optimal cutoff for the interaction 

fingerprint dissimilarity value (minfpdiff), representing the threshold at which two 

conformers are considered as redundant, and thus pruned during the evolutionary process. 

The proper management of population diversity has been noted to be of paramount 

importance for ensuring the convergence/reproducibility of evolutionary simulations. As 

ligands vary in sizes, so does their interaction fingerprint, making it challenging to come up 

with a universally applicable threshold value – hence, the need to calibrate it for each 

system. The population initialization procedure, regularly serving as the first step for the 

evolutionary simulation, is called repeatedly (10 times). After each call, the interaction 

fingerprints of the randomly generated population members are compared to each other, 

generating the complete Hamming distance matrix for all pairs of conformers in the 

population. The lowest, mean and maximal Hamming distances for each population are 
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memorized. The minfpdiff threshold is defined as 90% of the average of the ten lowest 

intra-population Hamming distances. 

Eventually, the main docking simulation is started with the above-determined 

minfpdiff value as a population diversity control parameter. Top poses are generated and 

stored together with their energy values 〈� 
 �ud#@� k�〉. The docking index ∆E $for the 

current ligand can be directly estimated as 〈� 
 �ud#@� k�〉 −  〈� 
 �ud#〉. After completion of 

docking calculations for all ligands, these can be ordered by increasing ∆E, and the final 

ROC curve can be generated in order to determine the area under it, as the final 

benchmarking criterion. The variation of the ROC AUC as a function of the performed 

number of generations may be informative about the minimal required computational effort 

needed in typical S4MPLE docking simulations 

5.4 Results and discussion 

The structures of 3000 selected compounds have been transmitted to our Enamine 

collaborators. They were able to test 2992 compounds, and the experiments confirmed 29 

hits. While this result is objectively low, it is still 2.6 times better than the hit rate found in 

the random screening of 3200 compounds under identical conditions [83]. However, it has 

to be mentioned that the applied classification models have been trained using publically 

available SAR data on IC50 values. In contrast, our collaborators have measured the 

Thermal Shift Assay using Differential Scanning Fluorimetry (DSF). DSF is a biophysical 

method based on detecting the shift in protein denaturation temperature upon ligand 

binding, as reported by fluorescent dye interacting with the protein core exposed by heat 

denaturation. The method is a simple, label-free HTS technology applicable to most soluble 

proteins, irrespectively of their functions and activities. An in-depth analysis was performed 

in order to understand: 
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• How the public-data affinity values used for model building relate to the 

experimental hit detection criterion (∆Tm) used in DSF?  

The original dose-response (such as IC50) activity scores from public sources were 

shown to be per se rather poorly correlated to the hit selection criterion DSF-ΔTm. The fact 

that they were not used as such for model training, but first underwent conversion into a 

categorical variable has most likely had a negative impact on model performance. 

• Which of the used models are better at selecting the 29 confirmed hits? 

Seventeen hits have been ranked #1 by at least one of the GTM models, while two 

were ranked #1 by SVM. The other ten hits were selected because of “broader” consensual 

selection by multiple models that ranked them within the top of the list. 

 

 

More detailed description of the obtained results is given in our article published in 

Eur.J.Med.Chem., see below.  

 

Figure 5.4: Confirmed hits projected on one of the used GTM landscapes. The red and blue zones 

of the map are populated by, respectively, active and inactive compounds. The regions of the map 

colored in “intermediate” colors are populated by the compounds of both classes.  
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5.5 Conclusions 

A collection of 2M compounds have been subjected to a virtual screening funnel 

involving classification SVM and GTM models as well as ligand-based pharmacophores 

trained on publicly-accessible SAR data on BRD4 IC50/pKi from Reaxis and ChEMBL. 

Each model has provided a ranked list of 2M candidates according to their likelihood to be 

active. The consensus application of these approaches has been used to obtain a subset of 

12k compounds that have been submitted to a docking procedure. The docking has been 

used for a further selection of the “best” 3k compounds out of the previously selected pool 

of candidates. These 3k compounds have been experimentally screened by the Enamine 

partner using the Thermal Shift Assay method.  

Twenty-nine confirmed hits had been detected, which represents 1% of the 3k 

selected candidates. While the obtained hit rate is still 2.6 times better than the hit rate 

found in random screening under identical conditions, it is still objectively low. An in-depth 

analysis of the quality of the used data for the models’ training has been performed, as well 

as the correlation between IC50/pKi and DSF-∆Tm. First of all, it has been shown that public 

data from different sources cannot be fused into a single and rigorously defined dataset 

adapted for QSAR modeling. Moreover, it has been shown that the dose-response activity 

values reported in publicly available databases are weekly correlated with DSF-∆Tm. Last 

but not least, the retrospective hit analysis has shown that GTM models have outperformed 

SVM and ligand-based pharmacophores in terms of hits identification.  
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5.6 Supporting information 

Supporting Information includes information about (i) developed pharmacophore 

models (Table 5-1) and (ii) structures and activities of 29 hits validated experimentally 

(Table 5-2) 

Table 5-1: Used pharmacophore models depictions and the associated binding mode 2D maps. 

Model Model depiction Associated binding mode 2D map 

1 

 

 

2 
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3 

 

 

4 

 

 

5 
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Table 5-2: 29 confirmed hit structures, experimental values of ∆Tm and IC50 (if available)  

Structure ΔTm(pos) IC50 (μM) 

 

1.1 107.41 

 

0.76 63.28 

 

2.66 11.72 

 

1.82 160.03 

 

1.90 23.87 

 

1.60 33.16 
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1.60 8.81 

 

2.82 24.91 

 

1.86 19.53 

 

2.02 NA 

 

1.56 NA 
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1.72 NA 

 

0.93 NA 

 

2.12 NA 

 

1.69 NA 

 

1.76 NA 

 

1.70 NA 
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1.80 NA 

 

1.86 NA 

 

1.49 NA 

 

1.26 NA 

 

1.09 NA 
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1.49 NA 

 

1.89 NA 

 

1.56 NA 

 

1.21 NA 

 

1.78 NA 
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1.08 NA 

 

1.36 NA 
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6 In silico speciation assessment of Dynamic 

Combinatorial Libraries of imines 

The reversible combination of molecular building blocks via covalent or non-covalent 

bonds is a cornerstone of the Dynamic Combinatorial Chemistry [7]. The reversible nature 

of the reactions between the building blocks leads to the fact that their thermodynamic 

stability dictates product distribution in the mixture. Once a Dynamic Combinatorial 

Library (DCL) is exposed to an external effector (like a biological target), it might happen 

that the latter selectively binds to one (or several) members of the DCL; thus, the 

equilibrium is shifted according to Le Chatelier principle, which leads to global change of 

the solution composition. The nature of the effector is not limited to the biological target. It 

could be physical (like a change of temperature [84]), or chemical (introduction of an “alien” 

species to the solution, like a metal ion [85], a protein/enzyme [8]; change of solvent/pH 

[86]). 

For example, in a hypothetical library, only containing two pairs of building blocks, 

the outcome is easily predictable –the solution composition will reflect the relative stability 

of the reactions’ products. Once an effector is added, the library composition changes as a 

function of products affinity to the effector. In the simplest case, only one reaction product 

selective binds the given effector, leading to the shift of all equilibria in DCL in favor of the 

formation of the complexed species (Figure 6.1). 



108 

 

 

A typical example of DCL is imine formation from aldehyde and amine (Figure 6.2). 

Since this reaction is reversible, mixing m aldehydes with n amines resulting in the 

formation of mxn imines with different combinations of R1 and R2. 

 

In DCL formed by two aldehydes (A1 and A2) and two amines (B1 and B2), four 

products are expected: A1B1, A2B1, A1B2 and A2B2. As one may see from Figure 6.3, 

two pairs of “opposite products,” A1B1/A2B2 and A2B1/A1B2, are in an agonistic 

relationship (green lines), whereas “adjacent products” are in an antagonistic relationship 

(red lines). The products A1B1/A2B2 in the agonistic relationship favor the formation of 

Figure 6.1: Principle of work of a hypothetical DCL made of 2 pairs of building blocks in the 

presence of effector. Small squares and circles represent complementary chemical functions. 

Figure 6.2: Reaction of imine formation from amine and aldehyde. 
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each other, more A1B1 is formed, less non-reacted A1 and B1 building blocks remain in 

solution, therefore the concentration of A2B2 increases. When it comes to the products that 

are in an antagonistic relationship, it is the opposite. More A1B1 is formed, less A1B2 and 

A2B1 are present in the solution because of the lack of needed building blocks.  

 

Although the number of known reversible reactions is relatively high, not all of them 

can be carried out in aqueous media, which prevents their usage in protein-templated DCL. 

Moreover, the functional groups of building blocks are not supposed to react with the target 

themself. The non-exhaustive list of reversible and biocompatible reactions includes imine, 

hydrazine and acylhydrazone formation; alkene cross-metathesis; disulfide, thioether and 

boronate ester formation. Imine formation reaction was the first reaction applied to a DCL 

in the presence of bovine carbonic anhydrase II [8] as a receptor.  

Usually, when one wants to use a DCL for the identification of a “best binder,” the 

reaction products are expected to be in almost equal concentrations, since in the case of the 

biased library, where one or a few constituents would be highly favored, the preferred 

interaction of a minor constituent with the target may not be strong enough to overturn the 

Figure 6.3: A DCL composed of 2 pairs of building blocks. The pairs in an agonistic relationship 

are shown with green lines. The compounds being in an antagonistic relationship are shown with 

red lines. 
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equilibrium situation. In some cases, an experienced chemist could guesstimate what 

reactants should be chosen for the given DCL; however, this approach might be inefficient. 

The usage of the software which can estimate speciation, i.e., equilibrium concentrations of 

all species in solution. This requires a knowledge of equilibrium constants, which can be 

problematic because of the thermodynamic data availability. 

Chemoinformatics models predicting equilibrium constants could be a reasonable 

solution to assess speciation for any DCL with or without effector. In this work, DCL based 

on the reaction of imine formation is modeled with and without an external chemical 

effector. As a tribute to the seminal work [4], human carbonic anhydrase II (CA II) was 

chosen as an effector to model the adaptive behavior of the imine-containing DCL. The 

project workflow (Figure 6.4) involves several steps. At the first step, a predictive model 

for the logarithm of imine formation constant (logK) as a function of the structure is built 

using experimental data measured in chloroform solution. In the second step, a model for 

the logarithm of the binding constant (pKi) of organic molecules to human CA II should be 

prepared on experimental data extracted from the ChEMBL database. Since the latter were 

measured in water, one needs to scale the imine formation constant determined in 

chloroform to those in water solution. Once both types of models are available, predicted 

stability and binding constants obtained could be used as input to a speciation software. 

One of the important tasks was to select a representative training set for the imine formation 

constants modeling. This work is described in section 6.1, followed by the modeling part 

described in section 6.2.  
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Figure 6.4: Workflow for in silico DCL speciation.  
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Reported case studies concerned empirically designed DCLs involving a relatively 

small number of reactants. Our goal is to develop a theoretical (in silico) approach allowing 

one to predict the species concentration for DCL of any size in the presence or in the 

absence of effector. The workflow of such in silico speciation of DCL is given on Figure 

6.4. It involves two essential steps: (i) selection of a diverse library of imines which serves 

as a training set in model building, and (ii) preparation of statistical models able to predict 

equilibrium constants of imines formation and binding constants of protein-ligand 

complexes in the solution used, in turn, as an input in a speciation software. These two 

steps of the project are described in two separate sections below. 

6.1 Application of GTM for diverse library selection 

6.1.1 Introduction 

The identification of representative and diverse subsets in large libraries of 

compounds is crucial to medicinal chemistry since a diverse subset of compounds provides 

more chances to contain a compound with the required type of activity during screening 

tests. When one or several compounds from a diverse subset have been proven to show a 

certain level of activity, then a focused library of compounds is being selected. Focused 

library design implies the selection of similar compounds to the known “hits”. Traditionally 

diverse subsets have been created by having a medicinal chemist select compounds 

manually based on a series of 2D structures [87]. Although this approach could be 

successfully used on relatively small datasets, it would become extremely difficult (or 

probably impossible) when the datasets have thousands and hundreds of thousands of 

compounds. Moreover, the level of “representativity and diversity” of the manually selected 

subset could vary from chemist to chemist. The selection of a diverse library from a large 

dataset of compounds can be approached in several ways: using clustering, using 

dissimilarity-based methods or using cell-based methods. Clustering implies that the 

compounds are grouped according to some similarity measure. Then from each cluster, a 
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random compound is selected, thus leading to a library containing a representative of each 

cluster. Dissimilarity-based methods are relying on the calculation of pairwise distances for 

every compound of the initial dataset, which is followed by a one-by-one selection of 

compounds in the diverse library according to a pre-defined rule. The main feature of cell-

based selection methods is that they do not require a pairwise calculation of the distances 

for all the compounds. To provide an efficient application of a cell-based approach, the 

dimensionality of chemical space defined by the molecular descriptors is usually reduced to 

a 2D map; the map is divided into zones (cells), and from each cell, a compound is 

extracted.  

Although the diverse libraries are usually used in medicinal chemistry, one can use a 

diverse subset of compounds as a training set in structure-activity modeling. Diversity is 

not a fundamental, objective property of a compound collection, but it is a rather practical, 

problem-dependent and therefore vaguely defined concept. Usually, compound diversity is 

directly related to their dissimilarity, hence to quantitatively measure the diversity of 

selected compounds is the most straightforward to encode into chemoinformatics software. 

If molecules are objects in the descriptor space, then dissimilarity is directly related to the 

distances separating them. Depending on the descriptor space and the therein employed 

metrics, the distances may vary. At first sight, the above seems like a rigorous mathematical 

basis for compound selection: the degree of dissimilarity is typically illustrated by the 

distribution histogram of pairwise distances between the compounds.  

Despite the large number of different applications of GTM, it has never been used for 

diverse compounds library design. Since GTM is producing a 2D map, this map could be 

used in a cell-based approach for diverse library selection. In this context, GTM could be 

compared to its non-probabilistic predecessor – Kohonen Self Organizing Map (SOM). It 

has been reported that SOM is a useful tool for focused library design and combinatorial 

libraries [88, 89]. Nettekoven and Schneider [88] used SOM for the focused-library 

combinatorial design of selective purinergic receptor (A2A) antagonists. Selzer and Ertl [90] 
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used SOM to select a representative subset of 5000 compounds from a collection of 

combinatorial libraries containing nearly 100000 compounds in total. Unfortunately, in that 

work, the method performance in diverse library selection has been reported in a qualitative 

way as “low/medium/high” diversity of the selected library, which does not allow 

quantitative comparison of the results obtained with GTM to the results obtained by SOM 

in a similar task. In this section, the performance of GTM in diverse library selection has 

been compared to a classical algorithm of diverse library selection – MaxMin [9, 91]. 

6.1.2 Data and methods 

A substructural search of primary amines and aromatic aldehydes has been done on 

SciFinder; the results have been sorted by the number of citations, putting the most cited 

compounds on the top of the list. The reactants have been selected according to the 

following criteria: 

• Every compound should contain one single amine/aldehyde group, thus 

leading to only one possible reaction product. 

• In the case of amino-acids, the COOH group has been changed into COOMe. 

• Thiol containing compounds have been rejected. 

• Reactants having a molecular weight > 400 g/mol have not been taken into 

account. 

• Long-chained acetals -C(OR1)(OR2) have been changed to -C(OMe)(OMe). 

Two datasets of reactants have been obtained: the primary amines dataset containing 300 

molecules and 400 compounds dataset of aromatic aldehydes. Interaction between all the 

selected aldehydes and amines could give 120 000 imines. Since MaxMin is a very time-

consuming method of O(n2N) complexity (n and N are the numbers of objects in the initial 

set and diverse subset, respectively), we decided to perform some methodological tests on a 

smaller set containing 42658 imines resulted from reactions of 154 amines and 277 
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aldehydes. Five different ISIDA fragmentations have been used (see section 6.1.2.2 for 

details): 

 Table 6-1: Used fragmentation schemes of ISIDA descriptors and their meaning.  

Fragmentation scheme Meaning 

IA-FF-FC-2-3 
Sequences of atoms colored by force field properties and formal 
charge with a length from 2 to 3 

IAB-FC-1-6 
Sequences of atoms and bonds with a formal charge on atoms, 
with a length from 1 to 6 

IIRAB-FF-1-3 
Circular fragments of atoms and bonds with restricted length 
from 1 to 3 atoms, colored by the force field 

IAB-FC-2-4 
Sequences of atoms and bonds with a formal charge on atoms, 
with a length from 2 to 4 

IIRA-FF-FC-1-2 
Circular fragments of atoms with restricted length from 1 to 2 
colored by the force field and containing information about the 
formal charge 

6.1.2.1 Dissimilarity-based methods 

Since the task is to select the most dissimilar compounds, one should select the 

compounds that are most different from the ones already selected in the formed set. As the 

metric of dissimilarity, the Soergel distance [92, 93] has been taken. The following formula 

defines Soergel distance: 

��� = 1 −  ∑ Tj�Tj�dj'(∑ �Tj�$%dj'( +  ∑ �Tj�$%dj'( −  ∑ Tj�Tj�dj'(   
Where xjA and xjB represent descriptors vectors of compounds A and B, respectively. It has 

been shown that Soergel distance can be used as a metric only when the values of the 

descriptors are non-negative [94]; therefore the ISIDA descriptors are well adapted for this 

study. 
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Holliday et al. [9] evaluated the performance of 4 dissimilarity-based methods – 

MaxMin, MaxMax, MaxSum and MaxMed. These methods follow similar library selection 

algorithms:  

1. Calculation of all N(N-1)/2 pairwise distances (dissimilarities) for N 

compounds in the dataset. 

2. Selection of random compound (Compound 1) from the initial library and 

addition of it to the subset S. 

3. Compound 2 is the most remote compound with respect to Compound 1. 

4. Identification of the most dissimilar compound to the already selected 

compounds from the initial dataset using a distance-related score and its 

addition to the subset S.  

5. Repetition n-2 times of step 4.  

The difference between MaxMin, MaxMax, MaxSum and MaxMed concerns the 

rules used to evaluate a score used to identify the next object to be included in the subset S. 

Let Dij be the dissimilarity between the i-th molecule in the initial dataset and j-th molecule 

in the subset S. As a function of the algorithm, and the following scores are used: MIN{Dij} 

for MaxMin, MAX{Dij} for MaxMax, Σ{Dij} for MaxSum and Median{Dij} for MaxMed. 

The object having a maximal score is added to the subset S. 

It has been shown [9] that MaxMax and MaxMed often led to subsets containing too 

similar compounds. MaxSum method preferentially selected compounds that were located 

“at the corners” of the chemical space. These drawbacks are minimized within the MaxMin 

method, which ensures a relatively uniform selection of compounds from different areas of 

the chemical space. The most significant drawback of all dissimilarity-based methods is the 

necessity to calculate the distance matrix for all the compounds. The complexity is 

proportional to O(n2N) [91], where N is the number of compounds already selected, and n is 

the total number of compounds in the initial library. 
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Here, the MaxMin algorithm was applied to both reactants and products. For a 

product-based approach, the MaxMin algorithm has been directly applied, and 225 imines 

have been selected. Since the algorithm takes the first compound randomly, 100 libraries 

have been selected, each having a different seed. In the case of the reactant-based approach 

15 aldehydes and 15 amines were selected, and the corresponding imines to the pairwise 

reactions between the selected reactants were directly extracted from the imine library. 

Since the number of aldehydes and amines is rather low (277 aldehydes and 154 amines) 

and the algorithm is dependent on the choice of the first compound in the list, for the 

selection of the most diverse library of amines and aldehydes, an “exhaustive MaxMin” 

approach has been applied, where each compound has been used as the seed. Thus, the 

usage of the “exhaustive MaxMin” for the reactant-based approach ensures that the selected 

libraries of reactants are indeed the most diverse. To compare MaxMin applied on products 

and on reactants, ten the most diverse libraries of aldehydes and ten most diverse libraries 

of amines have been selected to generate 100 most diverse libraries of imines. 

6.1.2.2 Cell-based diverse-library selection using GTM 

In order to use GTM as a method for diverse library design, the compounds were 

projected on the map, and the map itself was virtually evenly divided into n cells, where n 

equals to the number of needed compounds (therefore in this study n=225). From each cell 

a random compound has been extracted. GTM parameters have to be optimized for this task 

in order to obtain a map covered as evenly as possible by all the compounds of the initial 

dataset. To do so, the same protocol of parameter optimization involving the Genetic 

Algorithm (GA) [70] described previously has been applied. In these calculations, 

normalized Shannon entropy has been used as the scoring function. The following formula 

calculates Shannon entropy [68, 95]:  

� =  − P CumRalog(CumRa)
a  
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Where CumRk is the cumulated responsibilities of compounds in the node k. However, in 

the GA optimization, the normalized Shannon entropy has been used: 

�d	"� =  �log ())  × 100 

Where N is the total number of nodes. The normalized entropy ranges within [0; 100], 

where 0 means that all the compounds are mapped into the same node, and 100 means that 

the compounds are covering the map uniformly. In other words, the Shannon entropy 

corresponds to the homogeneity of the distribution of the source library over the map area. 

The higher the entropy is, the more the objects are dispersed on the map. In such a way, 

five “best” different descriptors spaces leading to “optimal” maps have been selected 

(Table 6-1). 

6.1.2.3 Performance evaluation 

The performance of the cell-based approach using GTM has been compared to the 

performance of the MaxMin algorithm, and the library of randomly selected compounds 

has been used as the baseline. The quality of selected libraries has been considered taking 

into account the following criteria:  

• Diversity of the selected library. Here two diversity scores were used “All-

Soergel” (AllS) and “Min-Soergel” (MinS); the first calculates the average of 

pairwise distances for all selected compounds in subset S, whereas the latter 

calculates the average of the distances to the closest neighbor of each 

compound in the selected subset S.  

.��w =  1) P P � j) − 1
&�(

j' �(
&

 '(  

�r|w = P MIN�� j$)
&
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Notice that the “All-Soergel” score accounts for all pairwise distances in the 

selected library, whereas “Min-Soergel” shows how dissimilar are the closest 

neighbors. 

• Data coverage. A diverse library of 225 imines will be used to build a model 

for logK. Which, in turn, will be applied to assess this thermodynamic 

parameter for the initial set of 42658 imines. However, because of the 

fragment control applicability domain (see section 3.1), some predictions are 

considered unreliable. In such a way, data coverage is defined as a ration of 

the molecules for which predictions are considered reliable to the size of the 

initial data set.  
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6.1.3 Results 

 

According to the Min-Soergel score, MaxMin applied to the dataset of products 

selects more diverse libraries than any other studied approaches (Figure 6.6, Table 6-2). In 

contrast, MaxMin applied to reactants is much less diverse because any imine in the 

Figure 6.5: Density landscapes of a set of 42658 imines built in 5 different descriptor spaces that 

have been used for cell-based diverse library selection. Maps parameters are given, where k is the 

square root of the number of nodes, and m is the square root of the number of RBFs. 
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selected library shares a common aldehyde-substructure with 14 imines and a common 

amine-substructure with another 14 imines, which reduces the distance to the closest 

neighbor. According to both All-Soergel and Min-Soergel scores, libraries obtained by cell-

based selection are less diverse compared to those selected with the MaxMin algorithm. It 

can be explained by the fact that MaxMin maximizes the diversity of the selected subset 

explicitly, while cell-based methods do not consider the distances between the compounds 

in chemical space. Moreover, MaxMin mainly selects the objects on the “border” of 

chemical space, while GTM focuses on dense clusters of compounds, and hence, the 

objects remote from the manifold are not be adequately taken into consideration.  

 

Figure 6.6: Diversity of selected libraries according to the “All-Soergel” score (top) and “Min-

Sorgel” score (bottom). Each value is a score average of over 100 diverse libraries selected with 

different random seeds. 
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Table 6-2: Diversity of selected libraries in 5 used descriptor spaces. The diversity has been 

measured using “All-Soergel” and “Min-Soergel” scores. The first calculates the average of the 

pairwise distances for all the compounds; the latter calculates the average of the distance from each 

compound to its closest neighbor. 

   Product-based Reactant-based Cell-based Random 

    
All-

Soergel 

Min-

Soergel 

All-

Soergel 

Min-

Soergel 

All-

Soergel 

Min-

Soergel 

All-

Soergel 

Min-

Soergel 

IA
-F

F
-F

C
-2

-3
 

Mean 0,874 0,428 0,886 0,179 0,628 0,158 0,497 0,118 

Std. 

Dev 
0,002 0,003 0,005 0,003 0,011 0,006 0,024 0,010 

Median 0,874 0,428 0,889 0,179 0,629 0,158 0,495 0,119 

Min 0,869 0,419 0,874 0,172 0,591 0,141 0,463 0,106 

Max 0,881 0,435 0,893 0,187 0,655 0,173 0,547 0,139 

IA
B

-F
C

-1
-6

 

Mean 0,767 0,378 0,812 0,132 0,628 0,142 0,569 0,135 

Std. 

Dev 
0,003 0,002 0,004 0,005 0,010 0,005 0,028 0,006 

Median 0,767 0,378 0,810 0,130 0,604 0,131 0,583 0,137 

Min 0,761 0,373 0,807 0,125 0,604 0,131 0,506 0,122 

Max 0,774 0,383 0,821 0,139 0,651 0,153 0,604 0,141 

II
R

A
B

-F
F

-1
-3

  

Mean 0,787 0,399 0,825 0,173 0,610 0,158 0,525 0,150 

Std. 

Dev 
0,003 0,002 0,005 0,006 0,013 0,006 0,013 0,006 

Median 0,788 0,399 0,827 0,172 0,609 0,158 0,520 0,152 

Min 0,784 0,394 0,811 0,161 0,587 0,143 0,507 0,138 

Max 0,792 0,402 0,831 0,183 0,644 0,171 0,547 0,156 

IA
B

-F
C

-2
-4

 

Mean 0,730 0,312 0,790 0,128 0,568 0,122 0,480 0,096 

Std. 

Dev 
0,003 0,002 0,005 0,006 0,011 0,005 0,021 0,007 

Median 0,730 0,312 0,792 0,128 0,569 0,123 0,481 0,097 

Min 0,721 0,307 0,776 0,119 0,538 0,109 0,455 0,087 

Max 0,736 0,316 0,794 0,141 0,591 0,138 0,521 0,107 

II
R

A
-F

F
-F

C
-1

-2
 Mean 0,775 0,354 0,814 0,172 0,504 0,112 0,467 0,106 

Std. 

Dev 
0,003 0,002 0,006 0,004 0,017 0,006 0,021 0,003 

Median 0,775 0,354 0,813 0,173 0,505 0,113 0,470 0,106 

Min 0,766 0,349 0,799 0,162 0,446 0,095 0,424 0,101 

Max 0,780 0,359 0,824 0,177 0,541 0,128 0,497 0,111 

 

On the other hand, the diverse libraries obtained by cell-based selection have several 

advantages over the classical dissimilarity-based diverse library selection method. First of 
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all, this concerns high data coverage (Figure 6.7, Table 6-3). Since every zone of the 2D 

latent space corresponds to the related zone in the initial N-dimensional chemical space, 

regular selection objects from the “cells” on GTM corresponds to regular sampling from the 

initial space. 

 

Table 6-3: Data coverage (%) of the initial dataset of compounds provided by selected diverse 

libraries.  

  Product-based Reactant-based Cell-based Random 

IA
-F

F
-F

C
-2

-3
 Mean 92,48 32,66 98,78 99,53 

Std. Dev 0,65 6,13 1,46 0,81 

Median 92,21 34,47 99,17 100,00 

Min 92,21 20,81 95,85 97,92 

Max 94,24 39,02 100,00 100,00 

IA
B

-F
C

-1
-6

 

Mean 98,81 33,63 99,72 98,67 

Std. Dev 0,34 5,68 0,49 1,46 

Median 98,92 34,13 100,00 99,28 

Min 97,83 24,27 98,63 95,93 

Max 98,92 38,92 100,00 100,00 

II
R

A
B

-F
F

-1
-3

 

Mean 93,06 37,68 98,05 98,31 

Std. Dev 2,24 3,78 1,71 1,05 

Median 93,18 37,31 98,99 98,92 

Min 88,18 36,59 95,36 96,35 

Figure 6.7: Data coverage provided by a diverse library. In the context of this study, the chemical 

space coverage is defined according to the fragment control applicability domain approach. 



124 

 

Max 96,21 38,67 100,00 99,35 

IA
B

-F
C

-2
-4

 

Mean 100,00 34,31 99,76 99,90 

Std. Dev 0,00 3,49 0,75 0,32 

Median 100,00 33,32 100,00 100,00 

Min 100,00 31,69 97,63 98,99 

Max 100,00 41,41 100,00 100,00 

II
R

A
-F

F
-F

C
-1

-2
 Mean 97,64 32,63 99,60 99,90 

Std. Dev 2,13 3,63 0,52 0,32 

Median 98,99 33,92 100,00 100,00 

Min 93,80 29,38 98,99 98,99 

Max 100,00 37,19 100,00 100,00 

 

The second advantage of the cell-based approach over MaxMin is the high speed of 

calculations (Figure 6.8). The slowest step of the MaxMin algorithm is pairwise distance 

calculation. For instance, this step took 1h on average for the calculation of pairwise 

distances of 42658 compounds. On the other hand, in a cell-based approach, even selection 

objects on a 2-dimensional map takes several seconds. Moreover, in the latter case, the time 

of calculations does not depend on the size of the initial dataset 

 

Figure 6.8: The time needed for every approach to select a diverse library of 225 compounds on a 

computer with Intel(R) Core(TM) i7-6900K CPU and 16 GB of RAM. 
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One can also envisage a two-step workflow combining MaxMin and cell-based 

algorithms. In the first step, the cell-based method is applied in order to select an 

“intermediate” diverse library whose size is larger than of the final set (225 compounds). 

This “intermediate” set serves as a source library for the MaxMin algorithm, which will 

select 225 the most dissimilar compounds. The results show (Figure 6.9) that the 

combination of two approaches is a reasonable trade-off between the diversity of the 

selected library and the time of computations. 
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Figure 6.9: Diversity of selected library by consecutive application of cell-based approach and 

MaxMin algorithm according to Min-Soergel score. 
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6.1.4 Discussion 

The above results demonstrate that GTM is an acceptable method to select diverse 

library: it performs reasonably well, it is very fast, and its data coverage is almost 100%. 

On the other hand, all 225 imines selected with GTM may contain unique reactants. This 

may be a problem for the budget of the experimental laboratory, which needs to purchase 

225 amines and 225 aldehydes. 

In this regard, the dissimilarity-based MaxMin algorithm applied to reactants might 

be a reasonable solution despite its relatively small data coverage. Therefore, we decided to 

use the latter for the selection of a training set for logK of imines formation modeling in a 

two-steps procedure. In the first step, five different diverse libraries larger than 225 

compounds were selected using descriptors spaces mentioned in Table 6-1. Their overlap 

resulted in 15 aldehydes and 15 amines present in all five individual libraries. Then, 

because of the recommendation of experimentalists, the subset of aldehydes was extended 

to 24 aldehydes. Their pairwise combinations result in a library of 360 imines, out of which 

276 imines were synthesized, and their logK were measured using NMR spectroscopy (see 

experimental details section).  
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6.2 Chemoinformatics driven assessment of speciation in 
dynamic combinatorial libraries 

 

Structures related to logK and pKi datasets were standardized following the procedure 

implemented on the virtual screening server of the Laboratory of Chemoinformatics at the 

University of Strasbourg (infochimie.u-strasbg.fr/webserv/VSEngine.html) using the 

ChemAxon Standardizer. The evolutionary model tuning of the Support Vector Regression 

[70] approach was applied to grow both stability and CA affinity Support Vector 

Regression (SVR) models. As the approach can select the best suited molecular descriptors 

out of a user-provided pool of potentially useful descriptor sets, in both cases, the optimizer 

was given the freedom to choose its preferred descriptor spaces. However, given the 

different scopes of the approaches (stability – based on imines representing a combinatorial 

core of the envisaged DCL/affinity – based on public compounds with reported CA affinity 

data, most of them not being imines), distinct pools of ISIDA fragment descriptors were fed 

as possible input. For stability, a series of 18 customized ISIDA fragmentation schemes 

have been selected as a result of a genetic algorithm; then, in each of the 18 descriptor 

spaces, an additional evolutionary model tuning has been done. The protein binding 

predictor was grown, starting with the “default” pool of 100 ISIDA descriptors schemes 

Figure 6.10: Model building workflow applied for both logK and pKi. 
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acknowledged being potentially useful for biological activity predictions. Also, while the 

large set of affinity data supported the default “aggressive” 12x repeated 3-fold cross-

validation scheme prone by the used GA optimizer tool, logK data is less robust and was 

subjected to 5-fold cross-validation.  

6.2.1 Modeling of equilibrium constants of imines formation 

6.2.1.1 Imine formation data 

The training set for imines formation was selected using MaxMin algorithms applied 

to reactants subsets, as explained in section 6.1.4. It contains 276 imines constituted by 24 

aldehydes and 15 amines. Stability constants of imines formation (Keq) were measured 

experimentally using NMR by our collaborators in the Lehn’s laboratory (see experimental 

details below).  
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Figure 6.11: logK values distribution. Each measurement was annotated as “exact” and “estimated”. 

Experiments with no detected measuring issues were labeled “Exact”. “Estimated” label has been 

assigned because of (i) too weak concentration of reactants/products or (ii) peaks superposition, 

which leads to the difficulties in quantitative identification of compounds. 
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Figure 6.11 shows the distribution of measured logK values for 276 selected imines. 

Note that each data point is labeled either “exact” or “estimated”. These labels come from 

NMR limitations. The “estimated” label was given to those logK of imines when the 

concentration of products/reactants were hard to identify precisely. 

6.2.1.2 Experimental details 

NMR measurements. Imines were prepared directly in 5 mm NMR tubes by mixing 

200 mM stock solutions of components (60 µL each) and diluted with 480 µL of CDCl3 to 

reach the final concentration of imines of 20 mM. The NMR measurements were performed 

after 24 h of equilibration at room temperature.1H MNR spectra were recorded on 500 MHz 

Bruker spectrometer with an automated sampler, using standard parameters. 

Solvent. In this study, the deuterated chloroform CDCl3 was used to perform all the 

tests of imine formation for several reasons. Namely, (i) many organic molecules are 

soluble in chloroform; (ii) the formation of imines in this solvent, in general, is quantitative; 

(iii) it is a solvent of choice for routine NMR. Before use, chloroform was filtered through 

the pad of basic alumina to remove residual acid always present. Next, several milliliters of 

Mili-Q water were added to the bottle to obtain a saturated solution of water in chloroform. 

This strategy helps to ensure control of the water content to be relatively constant. During 

the imine formation, one molecule of water is produced, and it participates in the 

equilibrium. However, it is pretty difficult to measure precisely the amount of water by 

NMR, so saturation of chloroform with water should solve this problem.  

The concentrations of imines, as well as of reactants, were, thus, obtained by 

integrating the corresponding signals. For most of the cases, the concentrations have been 

easily identified; hence the associated logK was precisely calculated. However, in some 

“extreme” cases, the signals’ intensity was so weak (either the concentrations of both 

reactants or imine being low), that it was nearly impossible to integrate the peaks correctly. 

In this case, the obtained value of logK was labeled as “estimated”.  
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6.2.1.3 logK modeling in chloroform 

16 SVR individual models, each built in 16 selected descriptor spaces (Table 6-4), 

contributed to consensus calculations. The resulting consensus model well performs in 5-

fold cross-validation: the determination coefficient R²=0.93 and the RMSE=0.62 log units. 

A plot of experimental vs. predicted logK values is shown in Figure 6.12.  

Table 6-4: 5-fold cross-validation performance of the individual logK (in chloroform) regression 
models that form a consensus model. Fragmentation scheme nomenclature in column 1 denotes the 
fragment type (I-sequence, II-circular fragments), the nature of captured information (A-atom types 
are captured, B – bond orders are captured), the coloring scheme (FF – force field type-based 
labeling supersedes default labeling by atomic symbol), other options (FC – formal charges are 
considered). 

Descriptor space R² RMSE Data coverage of the initial set of 
120k compounds (%) 

IAB-1-3 0.92 0.66 66.56 
IIAB-1-2 0.92 0.65 52.19 

IA-FF-FC-1-2 0.92 0.64 32.62 
IAB-1-4 0.92 0.63 23.52 

IA-FF-FC-1-3 0.92 0.64 9.91 
IAB-1-5 0.92 0.65 7.42 

IIA-FF-FC-1-2 0.92 0.63 7.34 
IA-FF-FC-1-4 0.92 0.65 4.18 

IAB-1-6 0.92 0.65 4.00 
IAB-1-7 0.92 0.64 2.81 

IA-FF-FC-1-5 0.92 0.64 1.69 
IA-FF-FC-1-6 0.92 0.66 1.00 
IA-FF-FC-1-7 0.92 0.65 0.93 
IIA-FF-FC-1-3 0.92 0.64 0.43 

IIAB-1-4 0.92 0.64 0.28 
IIA-FF-FC-1-4 0.92 0.65 0.27 
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For most molecules, predicted logK values were close to the experiment, whereas the 

majority of erroneous predictions were detected for the compounds labeled as “estimated”.  

An important criterion used to estimate the quality of the obtained models is data 

coverage. Since the 276 imines have been selected from a bigger pull of 120000 imines, it 

has been decided to identify for how many imines the model can provide reliable 

predictions. For this purpose, the fragment control was used as a model’s applicability 

domain. If a compound has a structural motif not present in the training set structures, then 

this compound is considered to be out of the applicability domain of the model. Therefore, 

predictions made for this compound are considered unreliable and should be discarded. It 

has been found that the SVR consensus model trained on logK of 276 imines is able to 

provide reliable predictions for 80400 imines, which represents 67% of the entire dataset of 

120000 compounds. 

The consensus model has been uploaded to the online Predictor tool of the 

Laboratory of Chemoinformatics of the University of Strasbourg (See section 6.3 for 

details). 
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Figure 6.12: Experimental vs. predicted logK values plot of consensus model obtained from 16 
SVR models (see Table 1-4). The model’s performance is R²=0.93 and the RMSE=0.62 log units. A 
gray dotted line corresponds to ideal predictions. 
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6.2.1.4 Chemical space analysis of a set of 80400 imines 

THE developed SVR consensus model has been applied to a set of 80400 

hypothetical imines identified as being inside of its applicability domain. Distribution of the 

predicted logK values shows that only 30% of imines have logK> 3 and, therefore, are 

suited to be used in DCL.  

 

GTM has been used to visualize a chemical space of 80400 imines. The manifold has 

been built on 276 imines with experimentally determined logK values. Then all the imines 

that are in the applicability domain of the SVR consensus model have been projected on the 

map, thus creating a property landscape (Figure 6.14). One can notice that the majority of 

the compounds having negative logK values are located on the central and right-central side 

of the map (green and light/dark blue colors); the compounds having high logK values 

(orange/red) color are located on the top left and bottom right side of the map. An in-depth 

analysis of chemotypes has been done in order to see what reactants are usually linked to 

low and high logK values. Some aldehydes and amines have been identified as “inert” since 
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Figure 6.13: Distribution of predicted values of logK of imine formation in chloroform. 
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they, in 90% they produce imines with a negative logK. As a counterpart to “inert,” some 

“reactive” compounds have been found, in 80% of the cases when a “reactive” aldehyde or 

amine is involved in imine formation reaction, the outcoming logK values are usually high (> 

4). It should be noted that “inert”-amines often bear methyl ester fragment, while 3,5-

dibromobenzaldehydes are “inert” (Figure 6.15). On the other hand, “reactive” reactants 

share a common substructure of 3,4,5-trimetoxibenzene and benzodioxole (Figure 6.16). 

Last but not least, some “versatile” reactants were also identified. These reactants can be 

potentially involved in any imine formation since related logK values range from -8 to 8. 

The structures of “versatile” reactants are shown in the Figure 6.17. 

 

Figure 6.14: Property landscape of the 80k imines that are in applicability domain of the consensus 

model. The map resolution is 31x31 and the number of RBF is 19x19. Each node is colored 

according to the mean logKeq value of all the compounds that reside in it. Red lines delineate the 

zones where “reactive” compounds are located, while the blue line shows the zone populated by 

“inert”. 



135 

 

 

 

 

Figure 6.15: Examples of “inert”-amines (left) and “inert”-aldehydes (right). Their interactions with 

any other aldehydes and amines, respectively, in 90% of cases lead to negatively predicted logK. 

Figure 6.16: Examples of “reactive” amines (left) and “reactive” aldehydes (right). Their 

interactions with other aldehydes and amines, respectively, in 80% of the cases lead to logK > 4. 

Figure 6.17: Examples of “versatile” reactants. These reactants have been found to yield imines 

with a very spread range of logK (from -8 to 8). 
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6.2.1.5 Modeling of logK in water 

Since interactions imine – biological target (effector) proceed in aqueous solution, we 

need to estimate logK in water using the values predicted or measured in chloroform. For 

this purpose, a thermodynamic cycle shown in Figure 6.18 was used. The relationship 

between logK(wat) and logK(chl) is defined by equations below, which require an 

estimation of solvation energies of reactants and products of imine formation reactions in 

both solvents. 

 

∆G��
 =  ∆G � d�,��
 +  ∆G�uk�",��
 −  ∆Gu� d�,��
 −  ∆Gu
#���#�,��
 
∆G� =  ∆G � d�,� +  ∆G�uk�",� −  ∆Gu� d�,� −  ∆Gu
#���#�,� 

∆G��
�� =  ∆G� −  ∆G��
 =
= ∆G � d�,��
�� + ∆G�uk�",��
�� − ∆Gu
#���#�,��
�� − ∆Gu� d�,��
�� =
= �∆G � d�,� −  ∆G � d�,��
$ + �∆G�uk�",� − ∆G�uk�",��
$
− �∆Gu� d�,� −  ∆Gu� d�,��
$ − (∆Gu
#���#�,� − ∆Gu
#���#�,��
) 

logK�uk =  logK��
 + ∆K��
�� =  logK��
 + ∆G��
�� �1�  

For this purpose, a series of DFT calculations on two selected aldehydes and two 

amines (Figure 6.18, Table 6-5), water and four resulting imines have been performed 

using the Spartan18 software [95] with ωB97X-D functional in 6-31G* basis and 

continuous solvation model in water and a non-polar solvent (with a specified dielectric 

Figure 6.18: Thermodynamic cycle used to establish a relationship between logarithms of stability 

constant of imine formation in water and chloroform. 
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constant of 7.5). The application of the equations mentioned above resulted in ∆K
chl->w 

 ≈ 0.5 

log units. Note that in water, the solvent is a reaction product. Hence, the massive presence 

of water would displace equilibrium towards hydrolysis, and might also “capture” a part of 

the aldehyde reagent under the form of hydrates. However, at this stage, there is no 

experimental data available to support our calculations, which limits us to the debatable but 

not absurd working hypothesis that the relative order of imine stability is not too much 

affected. 

 

Table 6-5: The free energies of the compounds used in DCL modeling. 

Compound 
Water 
(hartree) 

Non-
polar 
solvent 
(hartree) 

∆G 
(hartree) 
solvation ∆G (kJ/mol) solvation 

A1 -590,293 -590,291 -0,00162 -4,30 
A2 -495,866 -495,865 -0,00154 -4,08 
B1 -557,785 -557,783 -0,00197 -5,23 
B2 -173,196 -173,195 -0,00109 -2,88 

Figure 6.19: Structures of aldehydes, amines and imines forming the DCL.  
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A1B1 -1071,67 -1071,67 -0,0031 -8,23 

A1B2 -687,08 -687,08 -0,00235 -6,22 
A2B1 -977,244 -977,24 -0,00323 -8,57 
A2B2 -592,654 -592,651 -0,00246 -6,51 
Water -76,398 -76,3965 -0,00148 -3,91 

6.2.2 Modeling of pKi of human CA II 

6.2.2.1 Data 

ChEMBL database has been used as a source for the inhibition data of human CA II; 

ChEMBL ID of the target in the 26th version of the database is CHEMBL205. For this 

target,> 8500 pKi entries are present. The data have been cleaned, the duplicates, salts and 

mixtures have been removed, resulting in 4350 unique compounds with experimentally 

measured pKi (Figure 6.20). 425 compounds out of these 4350 inhibitors of human CA II 

contain C=N fragment (imines, hydrazones, oximes and Schiff bases); 41 out of 425 

compounds having C=N fragments have been identified as imines, most of which have the 

pKi values situated between 6 and 9. 

 

Figure 6.20: The distribution of pKi values of human CA II inhibitors extracted from ChEMBL 

database. 
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6.2.2.2 Models description 

The affinity model for human CA II is publicly available within the property 

prediction tool on the web server of the laboratory of Chemoinformatics (see section 6.3). It 

is composed of a consensus predictor based on the top 5 evolved models using the top 5 

best suited ISIDA descriptor spaces. Each of the individual models (Table 6-6) is applied to 

the compounds submitted to the webserver. However, the output of the ones containing the 

compound to predict within its specific AD (according to the descriptor-specific fragment 

Control rules) is preferentially used to calculate the returned consensus (mean) value. The 

mean of all predictions, irrespectively of AD compliance, is also returned – it may be used 

as a low-trust estimator for compounds that are out of the AD of all the five individual 

models. 

Table 6-6: Cross-validation performance of the five individual pKi prediction models that form the 

consensus model used in this work to estimate the affinity of imines for the active site of the human 

carbonic anhydrase II protein.  

Descriptor space[a] RMSE Q2 

IIAB-FF-1-2 0.37 0.932 

IIA--P-FC-1-5 0.27 0.963 

IA-FF-P-FC-2-7 0.47 0.889 

IIA--1-3 0.28 0.960 

IAB-FF-P-2-6 0.40 0.918 

[a] Fragmentation scheme nomenclature in column 1 denotes the fragment type (I-sequence, II-circular fragments), the nature of 
captured information (A-atom types are captured, B – bond orders are captured), the coloring scheme (FF – force field type-based labeling 
supersedes default labeling by atomic symbol), other options (P – atom pair counts only, FC – formal charges are considered). 

 

The developed pKi model has been applied to a set of 80400 imines within the 

applicability domain of the SVR consensus model for imines equilibrium constant. The 

distribution of predicted pKi values shows that most of the imines should have a pKi value 

between 5 and 6 (see Figure 6.21).  
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6.2.3 Speciation assessment 

The ChemEqui program [96] has been used in this project. For the prediction of 

equilibrium concentration, it uses two groups of equations:  

• The law of mass action (Brinkley’s representation), where Ci is a reaction 

product i, βi is the formation constant of component i νij is the stoichiometric 

coefficient in the ith chemical equilibrium involving basic component j with 

concentration Cj and m is the number of basic components. 

B = �T� ��|_ +  P � j�|Bj
�

j'( � 

• The law of mass conservation, where C0
j and CΣj are respectively the initial 

concentration and analytical concentration of component j, r is the number of 

reactants. 

P � jB 
"

 '( =  P � jB q
"

 '( = Bj� 

Then, the following function is minimized: 

1

10

100

1000

10000

100000

]4, 5] ]5, 6] ]6, 7] ]7, 8]

N
u

m
b

e
r 

o
f 

co
m

p
o

u
n

d
s

pKi values range

Figure 6.21: Distribution of predicted pKi values of human CA II for 80400 imines. 
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6.2.3.1 DCL speciation: computational tests. 

In order to identify some trends in the variation of equilibrium concentrations of 

species as a function of equilibrium constants of imines and binding constants protein-

imine, three series of computational tests (Batch 1-3) have been performed on a model DCL 

containing two aldehydes A1 and A2 and two amines B1 and B2 in the absence and the 

presence of an effector.  

Batch 1 involved speciation simulations of DCL without effector where equilibrium 

concentrations of imines A1B1, A1B2, A2B1 and A2B2 were calculated as a function of 

logK varied in a narrow range from 4.15 to 4.50. The first simulation was performed for 

logK = 4.25 for all imines; then, this value was slightly varied. Results given in Table 6-7 

show that the equilibrium concentrations of the products are no longer quasi-equal if : 

• logK of only one imine changes on > 0.25 compared to its initial value, 
• logK of agonistic imines either both increase or both decrease on > 0.15 
• logK of antagonistic imines increases for one and decreases for another one on > 

0.10 

Table 6-7: Speciation of a DCL formed of two aldehydes and two amines as a function of the 
logarithm of equilibrium constants of imine formation reaction (logK). The logK values and the 
proportions correspond to the imines in following order A1B1/A1B2/A2B1/A2B2. The ideal case 
(equal proportions of products) is given in bold. 

logK of 4 imines Proportions of obtained imines (%) 

4.25/4.25/4.25/4.25 47.4 / 47.4 / 47.4 / 47.4 

4.25/4.20/4.25/4.25 48.7 / 45.8 / 46.1 / 48.7 

4.25/4.20/4.20/4.25 50 / 44.6 / 44.6 / 50 

4.30/4.25/4.25/4.25 48.9 / 46.1 / 46.1 / 48.6 

4.30/4.25/4.25/4.20 47.7 / 46.1 / 46.1 / 48.6 

4.35/4.25/4.25/4.15 48.5 / 47.4 / 47.4 / 46.8 

4.35/4.25/4.15/4.25 53.1 / 42.3 / 41.7 / 52.6 
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4.40/4.25/4.25/4.40 55.8 / 39.5 / 39.5 / 55.8 

4.50/4.25/4.25/4.25 55.1 / 40.8 / 40.8 / 53.8 

In batch 2, all equilibrium constants of imines were taken equal (logK = 4.25), 

whereas the negative logarithm of binding constant pKi. varied in the range of 2.5 – 4.25. 

Results given in Table 6-8 show that the effector exclusively selects only one imine from 

the solution if the pKi value for one selected imine is larger than that for the others by > 

1.75.  

Table 6-8: Speciation of a DCL formed of 2 aldehydes. 2 amines and 1 effector as a function of the 

logarithm of binding constants (pK
i
) of the effector. The pKi values and the proportions of free 

(complexated) imines correspond to the imines in following order A1B1/A1B2/A2B1/A2B2. An 

optimal case (a sole imine is selectively binding to the effector) is given in bold. 

pKi of 4 imines Proportions of free (complexed) imines (%) 

4.25/4.25/4.25/4.25 23.3 (24.9) / 23.3 (24.9) / 23.3 (24.9) / 23.3 (24.9) 

4.25/3.25/3.25/4.25 23.5 (48.9) / 23.5 (0.5) / 21.5 (0.5) / 23.5 (48.9) 

4.25/4.25/3.25/3.25 5.4 (48.9) / 5.4 (0.5) / 43.2 (0.5) / 43.2 (48.9) 

4.25/3.25/3.25/3.25 10.8 (54.6) / 21.3 (10.7) / 21.3 (10.7) / 41.9 (21.1) 

4.25/3.0/3.0/3.0 8.6 (60.9) / 20.2 (8.06) / 20.2 (8.06) / 47.6 (18.97) 

4.25/2.75/2.75/2.75 6.8 (66.4) / 19.0 (5.9) / 19.0 (5.9) / 53.2 (16.4) 

4.25/2.5/2.5/2.5 5.4 (70.8) / 17.9 (4.1) / 17.9 (4.1) / 58.7 (13.6) 

4.25/2.75/2.5/2.5 5.6 (69.3) / 16.9 (6.7) / 19.1 (4.2) / 58.0 (12.9) 

4.25/3.0/2.5/2.5 5.6 (67.0) / 16.9 (10.2) / 19.1 (4.4) / 58.0 (11.9) 

4.25/3.25/2.5/2.5 5.9 (63.8) / 13.9 (15.0) / 23.6 (4.5) / 55.3 (10.6) 

 

The third batch of simulations consisted of a DCL of 2 aldehydes. 2 amines, and an 

effector. The goal of the simulations was to determine how the speciation changes with the 

variation of logK of imines in the presence of effector. The starting simulations were 

performed with equal equilibrium constants for all four imines (logK=4.25) and with pKi 

values favoring selective binding of only one imine A1B1 (pKi = 4.25/2.5/2.5/2.5). The 
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only logK varied in the range of 2.5 – 4.25. The results (Table 6-9) have shown that the 

selective binding with the selected imine takes place if: 

• logK of selected imine drops by 1.25 with respect to its initial value. 
• logK of selected imine and its “agonistic pair” changes by 0.6 
• logK of selected imine decreases/increases and its “antagonistic pair” 

increases/decreases by 0.75  

Table 6-9: Speciation of a DCL formed of 2 aldehydes. 2 amines in the presence of an effector as a 

function of logK of the four imines. The pKi values and the proportions of free (complexated) 

imines correspond to the imines in following order A1B1/A1B2/A2B1/A2B2. 

logK of 4 imines Proportions of free (complexed) imines (%)  
4.25/4.25/4.25/4.25 5.4 (70.8) / 17.9 (4.1) / 17.9 (4.1) / 58.7 (13.6) 
4.0/4.25/4.25/4.25 4.6 (66.9) / 21.0 (5.5) / 21.0 (5.5) / 54.0 (14.0) 

3.75/4.25/4.25/4.25 3.8 (62.3) / 24.3 (7.1) / 24.3 (7.1) / 49.0 (14.3) 
3.25/4.25/4.25/4.25 2.5 (51.4) / 31.0 (11.4) / 31.0 (11.4) / 38.7 (14.2) 
3.0/4.25/4.25/4.25 2.0 (45.3) / 34.3 (14.0) / 34.3 (14.0) / 33.6 (13.8) 

3.95/4.25/4.25/3.95 3.6 (61.1) / 25.6 (7.8) / 25.6 (7.8) / 45.7 (13.8) 
3.65/4.25/4.25/3.65 2.2 (48.8) / 33.6 (13.2) / 33.6 (13.2) / 32.2 (12.6) 

4.0/4.5/4.25/4.25 3.9 (62.6) / 24.8 (7.2) / 24.2 (7.0) / 49.1 (14.2) 
3.75/4.75/4.25/4.25 2.6 (52.2) / 32.2 (11.6) / 30.1 (11.1) / 38.6 (13.8) 

3.5/5.0/4.25/4.25 1.7 (40.5) / 39.4 (17.1) / 37.6 (16.4) / 28.3 (12.3) 

 

6.2.3.2 Speciation simulation in model DCL based on predicted logK and pKi 
values. 

It follows from the above computational tests that  

• logK of considered imines should be as close as in order to obtain their quasi-

equivalent distribution.  

• pKi values should differ by at least 1.5 log units.  

Following these recommendations, four imines resulted from the interaction between 

two aldehydes, and two amines shown in Figure 6.19 have been selected. Their predicted 

logKwat  and pKi values are given in Table 6-10. 
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Table 6-10: Predicted logK and pKi of the species present in DCL. 

Compound logK in water pKi 

Aldehyde A1 - 4.63 

Aldehyde A2 - 5.57 

Amine B1 - 6.13 

Amine B2 - 3.54 

Imine A1B1 4.17 6.11 

Imine A1B2 4.26 4.63 

Imine A2B1 3.84 6.06 

Imine A2B2 3.96 4.99 

 

The modeling of the dynamic behavior of this DCL shows (Table 6-11, Figure 6.22) 

that before the addition of the human CA II the concentrations of all the imines in solution 

are almost equal. According to the predicted pKi values, the imine A1B1 has the highest 

binding affinity with the effector (pKi = 6.11), but binding with its antagonist A2B1 is 

competitive (pKi = 6.06). Initially, the concentrations of all the species (reactants + effector) 

are set to 10 mmol. Following the Le Chatelier principle, it is expected that the effector 

would mostly bind A1B1 and A2B1, thus leading to a shift of equilibria in DCL toward 

these imines. In turn, this would decrease the concentration of free reactants A1 and B1 in 

solution. The calculations well reproduce these effects, see Table 6-11. 

Table 6-11: Speciation of the DCL before and after the addition of human CA II to the solution. 

Note that initial concentrations of the two aldehydes, two amines and the effector were set to 10 

mmol/L. 

Compound 
Concentration (mmol) 

Before  After 

Aldehyde A1 0.44 0.34 

Aldehyde A2 0.88 0.64 

Amine B1 0.73 0.21 

Amine B2 0.60 0.66 

Imine A1B1 4.77 1.08 
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Imine A1B2 4.78 4.13 

Imine A2B1 4.49 0.94 

Imine A2B2 4.62 3.69 

A1-CA - 0.04 

A2-CA - 0.67 

B1-CA - 0.81 

B2-CA - 0.006 

A1B1-CA - 3.91 

A1B2-CA - 0.50 

A2B1-CA - 3.04 

A2B2-CA - 1.02 

 

Figure 6.22: Speciation of a hypothetical DCL of 2 aldehydes and 2 amines. The concentrations of 

resulting imines before/after the addition of human CA II are shown.  
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6.3 Models implementation 

6.3.1 Predictive models of logK of imine formation in chloroform 

The obtained consensus SVR models were uploaded on the Predictor service of the 

laboratory of Chemoinformatics (http://infochim.u-strasbg.fr/cgi-bin/predictor_dcl.cgi). A 

short “user-guide” (Google Chrome v. 84.0 or Mozilla Firefox v. 78.0 browsers) for proper 

usage of the implemented models is given below:  

1. First, select the “DCL model” on the left menu of the predictor and set the 

“Select a general kind of property” to DCL and “Select a property to model” 

to Imine_Formation_LogKeq_Reg.  

 

2. The user can either draw the imine for which he wants to receive a prediction 

or, in the case of multiple imines, he can give an sdf. Note that the Predictor 

tool can treat only 100 compounds. Once one of the two input possibilities 

were chosen, click on the “Submit” button. 
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3. The information on the input compounds (molecule ID and molecule name) 

and the results like the consensus prediction (Predicted value field), number of 

applied models and the prediction confidence will be shown on the new 

webpage, if needed, they can be downloaded. 
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Or in the case of an input file: 
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6.3.2 Predictive models of pKi of human CA II 

These models have been uploaded on the web server of the laboratory of 

Chemoinformatics (http://infochim.u-strasbg.fr/webserv/VSEngine.html) with the help of 

Dr. Dragos Horvath. A short “user-guide” (Google Chrome v. 84.0 or Mozilla Firefox v. 

78.0 browsers) for proper usage of the implemented models is given below:  

1.  Enter a preferred username and password in the top left corner of the 

webpage in order to connect to the web server. 

 

2. Once connected to the web server, click on “QSAR-based Property 

Predictions” located on the top left corner of the webpage.  

 

3. The webpage will be refreshed and a new field will appear. asking the user to 

enter the project name.  
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4. On a new webpage, the user can either draw a compound or provide an sdf or 

smiles file containing multiple compounds. The web server will then 

standardize the provided compound(s). Do note that for large files having 

thousands of compounds, it may take some time.  

 

5. Once the standardization is done, the user will be redirected to a webpage of 

all the implemented models on it. The model concerning the current project is 

called CarbAnhydrII-pKi-CHEMBL205. Once the model is selected, the 

user can proceed to the predictions by clicking on the “GO!” button. The 

webserver tool will start the needed descriptors generation and eventually will 

proceed to the predictions.  

 

6. Once the predictions are made, the webserver tool will generate a .csv file 

containing the predicted values.  
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7. The obtained file will contain a short description of the used model as well as 

the number of the compounds that have been sent to the prediction tool. An 

explanation for every column will also be given.  

 

6.4 Conclusions 

To understand the behavior of a DCL, the relative propensity of the formation of 

DCL products and their relative affinities for the target are needed. The first steps in this 

direction have been done, including the preparation of predictive models for imines stability 

constants and affinities of organic molecules for the human CA II. While this work 

underlies the conceptual workflow and reports useful and publicly available models, 

experimental proof of the reported here in silico approach is needed.  

The calculation of speciation of any solution does not present any technical difficulty 

due to numerous software; its utilization remains constrained by the availability of 

experimental data. The study presented herein aimed to overcome that constrain by the 

usage of current chemoinformatics methods and tools. First, from the pool of 400 most 

cited aromatic aldehydes and 300 most cited primary amines (according to SciFinder), 

diverse subsets of 24 aldehydes and 15 amines (resulting in 276 imines) have been selected. 
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These imines have been synthesized. Their logK measured and the obtained data served as 

a training set for building SVM classification and regression models. These models showed 

high “extrapolation potential” since they were able to provide reliable predictions for more 

than 80000 imines from the initial pool of 120000. 

Although the models themselves are useful and the obtained predictions can be 

already used for the speciation of a DCL without any effector, they are not sufficient 

enough for the modeling of a DCL in the presence of any effector. In order to model the 

presence of the effector, it is needed to quantitatively know the affinity of each constituent 

in solution to it for this purpose. ChEMBL database has been used as a source of binding 

affinity (pKi) on human Carbonic Anhydrase II. More than 4300 compounds have been 

extracted and used to train SVM regression models. 

Developed in this work, predictive models for logK and pKi allowed us to overcome 

the “experimental data constrain” and thus make possible the usage of speciation software. 

In considered here hypothetical DCL, the selected quartet of imines has close predicted 

values of logK, thus ensuring a quasi-equal concentration of imines. Moreover, for imines, 

related pKi values differ by at least 1.5 log units, thus ensuring a certain level of selectivity. 

It follows that on the example of “imine-based” DCL modeling, the available speciation 

software coupled to chemoinformatics tools could be, in principle, used to any type of DCL 

and any chemical/biological effector if there is a sufficient amount of data for the modeling. 
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7 Conclusion and Perspectives 

This work was devoted in the first place to the application and study of Generative 

Topographic Mapping in virtual screening. GTM has also been used in a task of selection 

of diverse libraries of imines, and the quality of the obtained libraries has been compared to 

the classic dissimilarity-based method of diverse library selection – MaxMin. Last but not 

least, the first steps towards the modeling of protein-templated dynamic combinatorial 

libraries have been made. 

Two projects focused on the application and exploration of GTM have been done. 

The first project was rather methodologically-oriented since it provided several universal 

maps (multi-target GTM-based classification models) that can accommodate more than 

1.5M compounds extracted from ChEMBL and to discriminate actives from inactives with 

high accuracy for 617 targets out of 618. Moreover, this study has shown that the maps are 

complimentary since each map has been built in different descriptor spaces; therefore, if 

certain target-specific activities are poorly predicted by one map, there would be another 

map that will be able to do it. The usage of DUD targets as external-validation sets helped 

to identify that the correlation between predictions quality in cross-validation is weak. This 

fact motivated the usage of the universal maps in the consensus model since one could not 

tell apriori what map will show better results in “real-life tasks”. It has been shown that 

universal maps applied in consensus provide undeniable advantages such as i) 100% of data 

coverage for most of the targets; ii) higher performance in cross-validation and external 

validation according to BA and ROC AUC; iii) higher enrichment factor for top 100 

predicted “active” compounds.  

The goal of another project was to find new inhibitors of Bromodomain 4 by virtually 

screening a collection of 2M compounds. In this project, a virtual screening funnel was 
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composed, including the building of ligand-based pharmacophore models, SVM and GTM-

based classification models on publicly available data extracted from REAXIS and 

ChEMBL. The obtained models have been used in consensus and selected 12k compounds 

that have been predicted by most of the models to have the highest probability of being 

active. Then, this subset of 12k compounds has been subjected to a docking procedure, 

which selected 3k most potent compounds. These compounds have been tested by our 

collaborators from Enamine. Out of 2992 tested compounds, only 29 compounds have been 

identified as “active”. While this result is still 2.6 times better than the screening of a set of 

3k randomly selected compounds, 29 confirmed hits objectively is a low success rate. First 

of all, it has been shown that public data from different sources cannot be fused into a 

single and rigorously defined dataset adapted for QSAR modeling. It has been found that 

the active/inactive labels of training data have been assigned according to pKi and IC50 

values, while the experiment has been done using Differential Scanning Fluorimetry – a 

method that measures ∆Tm (thermal denaturation temperature). Moreover, it has been 

shown that the correlation between IC50/pKi and ∆Tm. is very low. Still, it has been shown 

that GTM classification models were able to find 24 out of 29 confirmed hits. 

For the first time, GTM has been used for a selection of a diverse library of 

compounds. The quality of the selected libraries has been compared to the quality of 

libraries obtained by MaxMin – a classic dissimilarity-based method for diverse libraries 

selection. Since the term and the metrics of “diversity” are vaguely defined, a score based 

on Soergel distances of the compounds included in the diverse library has been used. It has 

been shown that GTM as an individual model cannot provide diverse libraries with the 

same level of dissimilarity as MaxMin; however, GTM-based diverse library selection 

selects a diverse library that is more “representative” than the libraries selected by MaxMin. 

Moreover, it was found that the application of GTM for a pre-selection of a bigger diverse 

library (“intermediate” diverse library) followed by the application of the MaxMin method 
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on the “intermediate” diverse library gives much better results than the application of GTM 

individually. 

The first steps were made towards the modeling of the dynamic combinatorial 

libraries. To understand the behavior of a DCL, the relative propensity of the formation of 

DCL products and their relative affinities for the target are needed. The calculation of 

speciation of any solution does not present any technical difficulty due to numerous 

software, but its utilization remains constrained by the availability of experimental data. 

First, from the pool of 400 most cited aromatic aldehydes and 300 most cited primary 

amines (according to SciFinder), diverse subsets of 24 aldehydes and 15 amines (resulting 

in 276 imines) have been selected. These imines have been synthesized, their logK 

measured, and the obtained data served as a training set for building SVM classification and 

regression models. The obtained models have shown high data coverage of the initial pool 

of 120k imines (67% of the data are in the AD of the consensus model) as well as high 

predictive performance. In order to model the presence of the effector, it is needed to 

quantitatively know the affinity of each constituent in solution to it. For this purpose, the 

ChEMBL database has been used as a source of binding affinity (pKi) on human Carbonic 

Anhydrase II. More than 4300 compounds have been extracted and used to train SVM 

regression models. Both regression models allow the overcoming of the initial 

“experimental data constrain” and thus make possible the usage of speciation software. The 

mutual usage of logK and pKi regression models, as well as ChemEqui speciation software, 

lead to a possibility of modeling a hypothetical DCL containing 2 aldehydes, 2 amines and 

human CA II as an effector. 

Perspectives  

The candidates for DCL in the presence of biological target should be selected in such 

a way that (i) neither aldehydes nor amines efficiently interact with the effector and, (ii) 

only one imine firmly binds to the protein. For this purpose, a series of ligand-to-protein 
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docking calculations could be envisaged to gain a microscopic insight into imine-protein 

interactions. 

Experimental measurements of DCL equilibria in aqueos solution are very welcome. 

They would help to build new predictive model for logK in water and to prove our 

suggested here protocol of logK rescaling from one solvent to another one.  
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Résumé 

Cette thèse concerne l’utilisation de la Cartographie Topographique Générative 
(Generative Topographic Mapping – GTM) pour l’analyse et la visualisation de jeux de 
données, le criblage virtuel et la conception de chimiothèques. La performance en criblage 
virtuel de modèles GTM de classification multi-cibles (uGTM) a été étudiée et l’utilisation 
de plusieurs uGTM en consensus a été proposée. Un criblage virtuel utilisant une 
combinaison de la GTM avec d’autres techniques de chémoinformatique a permis de 
découvrir 29 nouveaux inhibiteurs de BRD4 dont l’activité a été prouvée 
expérimentalement. La GTM a été comparée à la méthode MaxMin comme outil de 
conception de chimiothèques. Il a été trouvé que malgré le fait que les chimiothèques 
obtenues avec MaxMin sont plus diverses que celles obtenues avec la GTM, cette 
dernière est plus rapide et peut être appliquée à des jeux de données plus larges. Un 
protocole de modélisation pour l’analyse de spéciation de bibliothèques combinatoires 
dynamiques basées sur la réaction de formation d’imines en absence et en présence 
d’une protéine a été proposé. Les modèles développés sont disponibles au public sur le 
site de Laboratoire de Chémoinformatique. 

Mots-clés : GTM, QSAR ; criblage virtuel, visualisation de données, conception de 
chimiothèques, Bibliothèques Combinatoires Dynamiques. 

 

Résumé en anglais 

This work concerns application of Generative Topographic Mapping method to different 
tasks including data analysis and visualization, virtual screening and library design. 
Performance of multi-target GTM-based classification models (uGTM) in virtual screening 
was investigated and consensus usage of several uGTMs has been suggested. Virtual 
screening involving a combination of GTM with some other chemoinformatics techniques 
allowed to discover 29 new BRD4 inhibitors, activities of which were experimentally 
confirmed. As a library design tool, GTM was compared to the MaxMin method. Although 
diversity of MaxMin libraries is systematically larger than those obtained with GTM, the 
latter is much faster and, therefore, can be recommended for large datasets. A modeling 
workflow for speciation analysis in imine-based Dynamic Combinatorial Libraries in 
absence and presence of a protein has been suggested. Developed models are publicly 
available at the site of the Laboratory of Chemoinformatics. 

Key words: GTM, QSAR, virtual screening, data visualization, library design, Dynamic 
Combinatorial Libraries 


