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des temps aussi troublés.
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1.3 Modèles de magnétosphère d’un pulsar . . . . . . . . . . . . . . . . . 14
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3.1 Géométrie de la magnétosphère . . . . . . . . . . . . . . . . . . . . . 56

3.1.1 Structure du champ magnétique . . . . . . . . . . . . . . . . . 57
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3.4 Émission radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5 Courbes de lumière multifréquences . . . . . . . . . . . . . . . . . . . 90
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1.20 Détecteur d’ondes gravitationnelles . . . . . . . . . . . . . . . . . . . 33

1.21 Image radio de M87* . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.22 Effet de lentille gravitationnelle . . . . . . . . . . . . . . . . . . . . . 37

1.23 Délai Shapiro dans un système binaire composé d’un pulsar . . . . . . 38
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3.15 Points d’émission radio dans la calotte polaire avec une distribution
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4.12 Cartes d’émission pour une énergie des photons entre 1 et 3.16 GeV . 114
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4.25 Spectres haute énergie pour un intervalle de phase entre 0.8 et 0.9 et
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une zone d’émission située entre 2 et 3 R? . . . . . . . . . . . . . . . 137

4.38 Cartes des rayons de courbure pour χ = 30̊ . . . . . . . . . . . . . . 139

4.39 Cartes des rayons de courbure pour χ = 60̊ . . . . . . . . . . . . . . 139

4.40 Cartes des rayons de courbure pour χ = 60̊ . . . . . . . . . . . . . . 139
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Chapitre 1

Introduction

Les étoiles à neutrons furent prédites bien avant leur découverte en tant que
pulsars. Elles se manifestent sous différents régimes (accrétion, rotation, refroidis-
sement thermique...) mais ne furent pas reconnues en tant qu’étoiles à neutrons
immédiatement après leur observations par les chercheurs les ayant détectées. Dans
ce chapitre on va présenter ce que sont ces étoiles à neutrons et retracer l’évolution
de nos connaissances à leur sujet.

1.1 Étoile à neutrons

1.1.1 Origine des étoiles à neutrons

La destinée des étoiles de la séquence principale, dont l’énergie provient de la
fusion de noyaux d’hydrogène en noyaux d’hélium, soit par le cycle proton-proton,
soit par le cycle carbone-azote-oxygène (CNO), dépend en grande partie de leur
masse.

Les naines rouges, qui ont une masse inférieure à la moitié de la masse du So-
leil, pourraient ainsi continuer à fusionner l’hydrogène dans leur cœur pendant des
billions d’années (1012 ans). Pour comparaison l’âge estimé de l’Univers n’est que
de 13.7 milliards d’années. Les étoiles de masse similaire à celle du Soleil ont quant
à elles une ”durée de vie” de l’ordre de la dizaine de milliards d’années, le So-
leil étant lui-même âgé de 4.6 milliards d’années, celui-ci devrait donc continuer à
briller encore au moins 5 milliards d’années. Ces deux types d’étoiles, lorsqu’elles ne
disposent plus de suffisamment d’hydrogène pour continuer à produire de l’hélium,
commencent à fusionner des éléments chimiques de plus en plus lourds jusqu’à l’ob-
tention du carbone avant que leurs couches externes ne soient éjectées pour révéler
au centre de ce qui fut l’étoile son cœur effondré en une naine blanche.

Dans une étoile de la séquence principale, la pression du rayonnement libéré
par les réactions de fusion thermonucléaire contrebalance la gravité de l’étoile et
l’empêche de s’effondrer sous sa propre masse. Une naine blanche est un astre si
dense que le principe d’exclusion de Pauli s’applique entre les électrons orbitant
autour de deux noyaux atomiques générant une force contrebalançant la gravité

1
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de l’étoile que l’on appelle la pression de dégénérescence des électrons. Ces naines
blanches sont des astres denses et compacts, d’une taille comparable à celle de la
Terre, une dizaine de milliers de kilomètre de diamètre, mais d’une masse de l’ordre
de celle du Soleil et majoritairement composées de carbone, en faisant des sortes de
”diamants” cosmiques.

Certaines étoiles connaissent cependant une évolution bien différente, notam-
ment les étoiles de la séquence principale ayant une masse au moins huit fois
supérieure à celle du Soleil. Leur durée de vie est beaucoup plus courte, ces étoiles
ont généralement fini de fusionner l’hydrogène seulement quelques millions d’années
après leur formation. Comme leurs congénères moins massives, elles fusionnent alors
des éléments de plus en plus lourds à la différence qu’elles continuent de fusionner
ces éléments bien au-delà du carbone, jusqu’au noyau le plus stable, celui du fer
56Fe. L’étoile ne pouvant fusionner ces noyaux de fer, du fait de leur stabilité, elle
ne génère plus assez de pression thermique pour contrebalancer sa propre gravité, le
cœur de l’étoile s’effondre alors sur lui même pendant que les couches externes sont
expulsées lors d’un évènement explosif appelé supernova, phénomène illustré dans
la Fig. 1.1, et au cours duquel des éléments plus lourds que le fer sont formés, par
capture neutronique puis désintégration radioactive par exemple.

Si la masse restante du cœur est supérieure à une masse limite, autour de 2
à 3 M�, l’effondrement du cœur continue jusqu’à ce qu’il disparaisse derrière un
horizon des évènements, devenant alors un trou noir.

Cependant, si la masse du cœur est inférieure à cette limite, il se stabilise sous la
forme d’une étoile à neutrons : les électrons sont capturés par les protons des noyaux
atomiques qui se convertissent alors en neutrons dont la pression de dégénérescence,
supérieure de plusieurs ordres de grandeur à celle des électrons, stoppe l’effondrement
du cœur, formant ainsi un objet compact très dense d’un rayon d’une dizaine de km
et d’une densité extrême de 1018kg/m3 en moyenne, comparable voire supérieure à
celle d’un noyau atomique, soit 5 milliards de tonnes pour un volume d’une cuillère
à café. Un tel astre peut également se former par accrétion de matière sur une naine
blanche évoluant dans une binaire jusqu’à ce que celle-ci dépasse la masse limite de
Chandrasekhar (Chandrasekhar, 1931), d’une valeur approximative de 1.44 M�
(mais qui peut varier légèrement en fonction de la composition chimique de la naine
blanche). Au-delà de cette masse limite, la pression de dégénérescence des électrons
n’est plus suffisante pour contrebalancer la gravité, et la naine blanche s’effondre sur
elle-même jusqu’à sa stabilisation par la pression de dégénérescence des neutrons
frâıchement formés par réaction β-inverse (soit la capture d’un neutrino par un
proton donnant un neutron et un positon) devenant ainsi une étoile à neutrons. On
parle alors d’effondrement induit par accrétion.
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Figure 1.1 – Naissance d’une étoile à neutrons au cours de l’explosion d’une su-
pernova dont l’éjecta reste visible plusieurs milliers d’années (S. Lee, CXC, NASA).

1.1.2 Structure interne d’une étoile à neutrons

L’extrême densité de ces étoiles à neutrons en font de fascinants objets d’étude
notamment dans les domaines de la physique de la matière condensée, de la physique
nucléaire et des particules et de la mécanique quantique en général. Ces astres sont
constitués de la matière la plus dense connue dans l’Univers, impossible à reproduire
en laboratoire, au point que des phénomènes d’ordre quantique deviennent visible à
l’échelle macroscopique, comme la pression de dégénérescence des neutrons dont on
avait parlé plus tôt et qui empêche l’étoile de s’effondrer sous sa propre gravité. Il
existe de nombreuses spéculations sur les états de la matière à l’intérieur d’une étoile
à neutrons, notamment concernant leur cœur où, du fait des forces de pression tita-
nesque qui y règnent, l’on pourrait trouver de la matière et des particules exotiques
par exemple des hypérons (baryon composé d’au moins un quark étrange) voire de
la matière étrange (une forme de matière composée uniquement de quarks u, d et
s qui serait plus stable que la matière baryonique). Il est cependant généralement
admis que les couches externes des étoiles à neutrons sont quant à elles composées
de matière plus ordinaire, notamment la fine surface qui serait majoritairement
composée de fer. La croûte située juste en dessous et qui fait environ 1 kilomètre
d’épaisseur est composée d’électrons libres et de matière baryonique ionisée par la
pression qui s’enrichit en neutrons au fur et à mesure que l’on s’enfonce dans les
profondeurs de l’étoile. On rencontre ainsi d’abord des ions aux noyaux enrichis en
neutrons puis en s’enfonçant dans les parties les plus internes de la croûte ces ions et
électrons libres baignent dans un superfluide de neutrons libres. Sous cette croûte la
densité de la matière est au moins égale à celle d’un noyau atomique. On considère
que de cette région jusqu’à son cœur l’étoile est constituée d’un superfluide com-
posé essentiellement de neutrons et de quelques protons et électrons. La Fig. 1.2
représente cette structure interne d’une étoile à neutrons. Notons que les valeurs
indiquées et les couches identifiées peuvent varier en fonction de l’équation d’état
de la matière, qui reste incertaine dans le régime de pression et densité des étoiles à
neutrons.
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Figure 1.2 – Structure interne d’une étoile à neutrons, montrant les différentes
couches concentriques, de densité croissant de la surface vers le centre. La composi-
tion centrale reste incertaine. Image tirée de Rather et al., 2018.

1.1.3 Historique

Bien que communément attribuée à Lev Landau, l’existence des étoiles à neutrons
a en réalité été théorisée pour la première fois par Walter Baade et Fritz Zwicky dans
un article de 1934 (Baade et Zwicky, 1934a) où ils supposaient qu’une supernova,
terme qu’ils avaient eux-mêmes introduit dans l’article (Baade et Zwicky, 1934b),
était une phase de transition au cours de laquelle l’étoile se transformait en un astre
extrêmement dense car principalement composé de neutrons.

La première observation confirmée d’un tel astre ne survint que trois décennies
plus tard. En 1967, Jocelyn Bell découvrit, à l’aide du radiotélescope de l’observa-
toire de Mullard, en Angleterre, une source de signaux radio dont l’activité présentait
des séries de pics, ou ”pulses”, que l’on peut voir dans la Fig. 1.3, d’une durée d’envi-
ron 0.3 seconde revenant toutes les 1.337 seconde et ce avec une précision de l’ordre
du dix millionième de seconde (Hewish et al., 1968). L’extrême régularité de cette
activité fit même soupçonner, pendant un temps, une origine artificielle de ce signal
dont la source fut officieusement baptisée LGM-1 pour Little Green Men. Les ca-
ractéristiques inhabituelles de ce ”pulsar” (contraction de pulsating star soit ”étoile
pulsante”) sont tout à fait explicables si l’on considère que la périodicité de ses
pulses est due à la rotation d’un corps sur lui-même, la source de l’émission radio se
trouvant alors à la surface (ou dans l’atmosphère) de ce corps. Il faudrait cependant
que l’astre en question possède une importante vitesse de rotation, de l’ordre de la
période à laquelle sont observées les pulses, mais pour que cette vitesse de rotation
reste réaliste, donc au moins inférieure à la vitesse de la lumière c, cet astre devrait
également avoir une taille réduite.
L’hypothèse que l’astre en question puisse être une naine blanche fut avancée mais
au final seul une étoile à neutrons correspondait aux dimensions requises déterminées
par les observations de ce pulsar et possédait une densité suffisante pour mainte-
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nir son intégrité malgré la force centrifuge induite par la vitesse de rotation élevée.
La section 1.2 détaille comment cette émission radio et la pulsation associée sont
produites.

Figure 1.3 – Représentation de l’activité radio au cours de plusieurs périodes suc-
cessives du premier pulsar découvert (PSR B1919+21) tirée de Mitton, 1977.

Moins d’un an après cette découverte majeure en astrophysique, un astre simi-
laire fut observé au sein de la nébuleuse du Crabe (Staelin et Reifenstein, 1968),
le rémanent d’une supernova qui fut visible depuis la Terre en 1054 et mentionnée
par les astronomes chinois de l’époque. Un autre pulsar fut découvert la même année
au sein d’un autre rémanent de supernova : le pulsar de Vela (Large et al., 1968).
Ces observations ont confirmé qu’une étoile à neutrons est bel et bien le vestige du
cœur d’une étoile massive.

En 1974, Russell Hulse et Joseph Taylor découvrirent le premier pulsar bi-
naire, en orbite autour d’une autre étoile qui est elle aussi une étoile à neutrons
(Hulse et Taylor, 1975). Cette découverte permis notamment de vérifier une des
prédictions de la relativité générale d’Einstein : la décroissance de la période orbitale
par l’émission d’ondes gravitationnelles. Si les ondes gravitationnelles émises par ce
système binaire n’ont toujours pas été détectées, faute d’une sensibilité suffisante des
détecteurs d’ondes gravitationnelles, la décroissance orbitale observée correspondait
bien à celle prédite par la théorie de la relativité générale (Weisberg et Taylor,
2005). Ce fut donc une preuve observationnelle indirecte de l’existence des ondes
gravitationnelles.

En 1982 est découvert le premier pulsar milliseconde : un pulsar dont la période
de rotation, et donc des pulses observés, est inférieure à 10 millisecondes (Backer
et al., 1982). Il est aujourd’hui théorisé que ces pulsars ont connu une accélération
de leur vitesse de rotation par transfert de moment cinétique en accrétant de la
matière d’une étoile compagnon, d’où leur appellation de pulsar recyclé.

En 1992, Aleksander Wolszczan découvrit les premières exoplanètes en étudiant
les perturbations qu’elles induisent sur les pulses du pulsar autour duquel elles or-
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bitent (Wolszczan et Frail, 1992). Toutes ces découvertes majeures en astrophy-
sique sont le résultat d’un chronométrage précis et régulier des pulsars, une technique
de plus en plus sophistiquée qui porte ses fruits dans d’autres domaines de l’astro-
nomie (détermination de la densité et du champ magnétique galactique, découverte
de planètes).

Toujours en 1992, Robert Duncan, Christopher Thompson et Bohdan Paczynski
émirent l’hypothèse que certaines émissions répétitives de rayons gamma étaient
dus à un autre type d’étoile à neutrons possédant un champ magnétique encore plus
intense que celui de leurs congénères identifiés comme des pulsars : on les appelle
des magnétars avec des champs supérieurs à 109 T (Duncan et Thompson, 1992).

En 2006, à partir des données récupérées par le Parkes multibeam pulsar survey,
un nouveau type de pulsar fut découvert : les Rotating radio transients ou RRAT
(McLaughlin et al., 2006), les transitoires radio en rotation. Ceux-ci possèdent une
émission radio très irrégulière avec des intervalles silencieux pouvant aller jusqu’à
plusieurs heures entre deux séries d’émissions. Il a été prouvé que pour certains
RRAT, ces irrégularités étaient purement illusoires et causées par une sensibilité
trop faible des radiotélescopes utilisés, pour d’autres elles pourraient être causées
par une ceinture d’astéröıdes entourant le pulsar ou simplement par le ralentissement
de la rotation du pulsar avec le temps (voir Fig. 1.5) ce qui ferait à terme disparâıtre
son émission radio.

Le 17 août 2017 la fusion de deux étoiles à neutrons fut d’abord détectée par
les observatoires d’ondes gravitationnelles LIGO et Virgo puis par des techniques
d’observations plus ”classiques” du rayonnement électromagnétique (Abbott et
al., 2017b). Une tel évènement se produit lorsque deux étoiles à neutrons dans un
système binaire tombent l’une sur l’autre tout en tournant l’une autour de l’autre,
la période orbitale du système diminuant par émission d’ondes gravitationnelles,
jusqu’au contact entre les deux étoiles et la collision finale où les deux étoiles ex-
plosent en kilonova, libérant une importante quantité de rayonnement à travers tout
le spectre électromagnétique ainsi que des éléments lourds synthétisés au cours de
cette explosion. En fait ce genre de fusion d’étoiles à neutrons serait à l’origine de la
plupart des éléments plus lourds que le fer présents dans l’Univers. Cette découverte
permit notamment de confirmer que les ondes gravitationnelles se déplacent à la
vitesse de la lumière modulo une très faible incertitude (Abbott et al., 2017a).

Pour expliquer de telles observations, on a dû établir des modèles expliquant
l’origine de l’émission radio et haute énergie de ces pulsars que l’on explorera dans
les sections suivantes.
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1.2 Observations des pulsars

Bien que la formation d’une étoile à neutrons est une phénomène explosif très
violent, celle-ci conserve toutefois certaines propriétés de l’étoile originelle, notam-
ment son moment cinétique et son flux magnétique, entrâınant à cause de sa taille
réduite par l’effondrement, un champ magnétique et une vitesse de rotation élevés.
Ainsi une étoile à neutrons tourne sur elle-même en à peu près une seconde et son
champ magnétique, renforcé par l’effet dynamo dû à la rotation de l’étoile, dépasse
le milliard de Tesla, voire la centaine de milliards de Tesla pour les magnétars. Ce se-
rait de ce champ magnétique intense que proviendrait le rayonnement radio et haute
énergie des pulsars, le champ magnétique et l’axe de rotation étant par ailleurs ra-
rement alignés, c’est l’inclinaison de cet axe magnétique qui explique les fameuses
pulsations détectées dans le rayonnement émis par ces astres.

De nos jours plus de 2000 pulsars ont été identifiés, en général observés grâce
à leur émission radio, mais leur émission haute énergie, particulièrement dans le
domaine des rayons γ (autour du GeV), a également pu être observée (Abdo et
al., 2013 ; Aliu et al., 2008) grâce à des instruments comme le Large Array Teles-
copeembarqué sur le satellite Fermi (Fermi/LAT) ou le Major Atmospheric gamma-
ray Imaging Cherenkov Telescop (MAGIC). Comme pour les pulsars émettant en
radio, l’émission haute énergie va présenter des pulsations que l’on peut le voir sur
la Fig. 1.4 qui représente l’activité dans le domaine des rayons gamma du pulsar
de Vela observé par FERMI/LAT sur plusieurs milliers de périodes (une période
représentant une rotation du pulsar sur lui-même) ramené à une émission sur deux
périodes du pulsar.

Figure 1.4 – Courbes de lumière dans le domaine des rayons gamma (de 20 MeV
à 300 GeV) du pulsar de Vela. Image tirée de Abdo et al., 2010.

Ces observations (surtout dans le domaine radio) ont permis, comme montré en
Fig. 1.5, de déterminer non seulement la période P de rotation des pulsars mais
aussi la variation de cette période au cours du temps notée Ṗ . Ces caractéristiques
sont importantes car elles permettent de se donner une idée de l’âge et de l’intensité
du champ magnétique du pulsar.
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En effet, il est généralement admis qu’un pulsar voit sa vitesse de rotation di-
minuer par un phénomène de freinage magnétique, l’âge d’un pulsar sera alors égal
à :

τ =
P

2Ṗ
(1.1)

(si d’autres phénomènes n’ont pas modifié la période du pulsar comme l’accrétion de
matière d’une étoile compagnon pour un pulsar recyclé) et son champ magnétique

sera proportionnel à
√
PṖ (Johnston et Karastergiou, 2017) :

B =

√
3µ0c

3I

32π3R6
? sin2 χ

PṖ . (1.2)

Avec I le moment cinétique de l’étoile, χ l’angle entre l’axe de rotation et l’axe
magnétique de l’étoile à neutrons et R? le rayon de l’étoile. Ainsi les lignes en
pointillés de la Fig. 1.5 délimitent en bleu l’âge des pulsars, en vert leur champ
magnétique obtenu par la formule de freinage magnétique dans le vide de l’équation (1.2)
et en rouge la variation de leur énergie cinétique, celle-ci dépendant également de P
et Ṗ et du moment d’inertie I du pulsar :

Ėc = −I Ω Ω̇ = −4π2I
Ṗ

P 3
. (1.3)

Figure 1.5 – Répartition des pulsars, notamment ceux observés par Fermi/LAT,
en fonction de leur période (en abscisse) et de la variation de leur période au cours
du temps (en ordonnée). Image tirée de Abdo et al., 2013.
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Sur la Fig. 1.6, on remarque que les pulsars les plus jeunes sont concentrés dans
le plan galactique tandis que les pulsars plus anciens, notamment les pulsars mil-
lisecondes, se trouvent généralement en dehors de ce plan. Cela à cause du biais
d’observation : ces derniers étant plus proches de nous, d’où le fait qu’ils appa-
raissent plus âgés que des pulsars éloignés, mais aussi parce que ces pulsars plus
âgés ont eu plus de temps pour s’éloigner du plan galactique. Les pulsars se forment
dans le plan galactique avant de quitter celui-ci avec une vitesse de déplacement
souvent élevée pouvant atteindre les 1000 km/s voire plus pour une minorité. Cette
vitesse s’expliquerait par des asymétries lors de l’effondrement du cœur de l’étoile
(Burrows et Hayes, 1996) dû notamment à la distribution asymétrique du flux de
neutrinos au cours de la supernova qui a formé l’étoile à neutrons. Cette vitesse de
déplacement élevée pourrait également être d’origine purement électromagnétique,
causée par un champ magnétique du pulsar décentré qui provoquerait une asymétrie
dans son émission et donc une propulsion par pression de radiation (Harrison et
Tademaru, 1975 ; Lai et al., 2001). Quelle que soit la nature l’étoile à neutrons

Figure 1.6 – Répartition spatiale des pulsars de la Fig. 1.5 selon les coordonnées
galactiques. Image tirée de Abdo et al., 2013.

considérée, pulsar, magnétar ou simplement étoile à neutrons isolée se refroidissant,
elles émettent essentiellement dans le domaine radio, des rayons X et des rayons
gamma. Les caractéristiques de ces longueurs d’onde sont succinctement passées en
revue dans les paragraphes qui suivent.

1.2.1 Les pulsars radio

D’après le Australia Telescope National Facility (ATNF) Pulsar Catalogue (Man-
chester et al., 2005), 2720 pulsars émettent des pulses dans le domaine radio, parmi
ceux-ci, au moins 316 ont été identifiés comme membre d’un système binaire, c’est à
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dire orbitant autour d’au moins un autre corps céleste (qui peut être une autre étoile
à neutrons, une naine blanche ou une étoile de la séquence principale plus ou moins
évoluée). Le spectre en radio de ces pulsars ressemblent généralement à l’exemple
présenté en Fig. 1.7 où les points sont les valeurs observées de ce spectre (avec une
barre d’erreur observationnelle) par les radiotélescopes de l’institut Lebedev et la
ligne continue est une tentative de modélisation de ce spectre, initialement proposée
dans Malofeev et Malov, 1980, par le produit d’une loi de puissance et d’une
fonction exponentielle s’écrivant ainsi :

E(ν) = αν−Γe−τ(ν) (1.4)

avec ν la fréquence du rayonnement observé, E(ν) l’énergie totale reçue à une
fréquence ν (donc hν multiplié par le nombre de photons ayant une énergie hν),
Γ l’indice spectral et α un paramètre permettant d’ajuster la courbe aux données
récoltées. La fonction τ(ν) s’exprime ainsi :

τ(ν) =
(νmax

ν

)2−5δ Γ

2− 5δ
(1.5)

E(ν) étant maximale pour ν = νmax et δ un paramètre décrivant la dépendance de la
fréquence du rayonnement à son altitude d’émission : celui-ci est compris entre 0 et
0.4. Ces spectres vont typiquement présenter, avant νmax, une montée très abrupte
et après une descente bien plus lente.

Dans l’exemple de la Fig. 1.7, le pulsar PSR B0834+06 montre un raidissement
brutal du spectre aux alentours de 100 MHz. L’émission radio a été déterminante
pour la découverte d’une fraction importante de la population des pulsars. Paradoxa-
lement, l’énergie rayonnée en radio ne représente qu’une infime partie de l’énergie
cinétique disponible du fait de la rotation de l’étoile, de l’ordre de 10−3 à 10−6.

Figure 1.7 – Spectre radio du pulsar PSR B0834+06, image tiré de Izvekova
et al., 1981 avec ν la fréquence en MHz.
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1.2.2 Les pulsars gamma

Parmi les sources de rayons gamma observées par Fermi/LAT, qui opèrent dans la
bande 100-MeV-100 GeV, 239 ont été identifiées comme étant des pulsars (Abdol-
lahi et al., 2020). De ces observations ont pu être extraits les spectres de certains de
ces pulsars, comme celui du pulsar de Vela, qui présente un spectre assez typique de
l’émission gamma des pulsars, présenté dans la Fig. 1.8 où les points représentent les
données obtenues par l’observation de ce pulsar et la ligne continue une modélisation
du spectre à partir de ces données.

Figure 1.8 – Distribution spectrale en énergie du pulsar Vela (moyenné sur plu-
sieurs milliers de phases) dans le domaine des rayons gamma, image tiré de Abdo
et al., 2010

Cette modélisation a été effectuée dans Abdo et al., 2010 en utilisant une formule
similaire à celle de l’équation (1.4) modélisant un spectre radio :

dN(E)

dE
= αEΓ e−( E

Ec
)
β

(1.6)

avec E l’énergie d’un photon (E = hν),
dN(E)

dE
le nombre de photons d’énergie E±

dE détectés, Γ l’indice spectral de la loi de puissance, Ec l’énergie de ”coupure” au-
delà de laquelle le spectre subit une décroissance exponentielle ou sous-exponentielle
contrôlée par le paramètre β < 1 et α un autre paramètre ajustable.

Généralement, l’activité gamma présente au maximum deux pics importants
d’émission par période du pulsar comme dans le cas de la Fig. 1.4, certains pul-
sars ne présentant qu’un seul pic d’émission par période comme dans l’exemple
de la Fig. 1.9 pour PSR J0659+1414. Contrairement aux pulsars radio, les pul-
sars gamma convertissent une grande partie de leur énergie cinétique de rotation
en rayonnement gamma, avec un facteur de conversion de près de 100% pour cer-
tains d’entre eux. Ces étoiles sont particulièrement intéressantes d’un point de vue
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théorique car elles offrent une vision indirecte de l’électrodynamique à grande échelle
de la magnétosphère (accélération de particules, dissipation sous forme de rayonne-
ment).

Certains de ces pulsars gamma émettent du rayonnement à très haute énergie,
au-delà de la bande de Fermi/LAT, autour du TeV voire plus. Ils sont visibles
par les télescopes MAGIC, VERITAS et HESS-II comme par exemple le pulsar de
Vela (Djannati-Atäı et H.E.S.S. Collaboration, 2017) et le pulsar du Crabe
(Ansoldi et al., 2016) dont une pulsation à été détectée jusqu’à plusieurs TeV.
Le rayonnement inverse Compton (voir section 1.3.3) est vraisemblablement le seul
mécanisme capable de produire des photons aussi énergétiques. De telles observa-
tions fournissent des contraintes importantes et précieuses sur la structure et la
dynamique de leur magnétosphère.

Figure 1.9 – Courbe de lumière dans le domaine des rayons gamma (de 100 MeV
à 300 MeV) du pulsar PSR J0659+1414. Image tirée de Abdo et al., 2013.

Les pulsars observés simultanément en radio et en gamma fournissent des informa-
tions contraignantes sur la géométrie et la localisation des sites d’émission radio et
de haute énergie. Le profil des pulses gamma, apparaissant généralement par paire,
ainsi que le délai entre l’observation du pulse radio principal et du premier pulse
gamma restreint significativement l’espace des paramètres géométriques. Cette ap-
proche a été mise à profit dans différents travaux effectués par plusieurs auteurs
(par exemple Johnson et al., 2014 ; C. Venter et al., 2011 ; Watters et al.,
2008 ; Kalapotharakos et al., 2018 ; Pétri, 2011) en partant d’une modélisation
quantitative de la magnétosphère et du vent des pulsars utilisant des simulations
fluides et particulaires.

1.2.3 Émission thermique de surface

Certaines étoiles à neutrons évoluant au sein d’un système binaire ”volent” de la
matière à leur compagnon, cette matière formant alors un disque d’accrétion autour
de l’étoile. Entrâınée par le champ magnétique de l’étoile en rotation, cette matière
tombe sur les calottes polaires de l’étoile à neutrons, comme illustré sur la Fig. 1.10,
son énergie potentielle de gravitation est alors transformée en énergie thermique,
générant ainsi deux points chauds à la surface de l’étoile dont la température est
suffisamment élevée (de l’ordre de 106 K) pour que le rayonnement du corps noir
associé se produise en rayons X dit mous de par leur faible énergie pour des rayons
X, autour d’une centaine d’électron-volts.
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Figure 1.10 – Formation de points chauds à la surface d’un pulsar accrétant, image
tirée de X-ray Pulsar — COSMOS 2020.

On peut également retrouver des points chauds émettant des rayons X à la surface
d’un pulsar isolé, sans disque d’accrétion, où des particules chargés provenant de leur
magnétosphère vont tomber sur les pôles sous l’action du champ magnétique. L’ob-
servation de l’émission provenant de ces points chauds, grâce à l’instrument NICER
(Neutron star Interior Composition Explorer) installé à bord de l’ISS, a permis de
contraindre la masse et le rayon de certaines étoiles à neutrons comme dans Riley
et al., 2019 pour le pulsar PSR J0030+0451. NICER a aussi mis en évidence l’intérêt
des composantes multipolaires magnétiques à la surface de l’étoile, notamment pour
expliquer la forme de ces tâches chaudes en rapport avec les courbes de lumière en
rayons X.

Une explication détaillée et quantitative de cette multitude d’observations multi-
longueurs d’onde des pulsars repose sur l’activité électromagnétique dans la magnétosphère.
Nous esquissons les grandes lignes des modèles magnétosphériques dans la section
qui suit.
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1.3 Modèles de magnétosphère d’un pulsar

L’émission haute énergie et radio caractéristique des pulsars se produit au sein
de leur magnétosphère et est due à l’accélération de particules chargées dans le
champ électrique ~E généré par la rotation du pulsar et de son champ magnétique
~B. L’étoile à neutrons est entourée d’un plasma formé par des particules chargées
arrachées de sa surface par le champ électrique, plasma enrichi par un processus
de création de paires au sein de ce champ magnétique intense. D’ailleurs le facteur
e−τ(ν) de l’équation (1.4), qui permet de modéliser le spectre radio d’un pulsar, serait
dû à l’absorption des ondes radio par ce plasma entourant le pulsar (Malov, 1979).

Le plasma magnétosphérique est entrâıné par le champ magnétique est entre en
corotation avec l’étoile, du moins jusqu’à une certaine distance de celle-ci au delà de
laquelle la vitesse de corotation du plasma serait supérieure à la vitesse de la lumière.
Cette limite est appelée le cylindre lumière : l’axe de révolution de ce cylindre est
confondu avec l’axe de rotation de l’étoile et son rayon est égal à la vitesse de la
lumière dans le vide divisée par la vitesse angulaire Ω de l’étoile à neutrons :

Rcyl =
c

Ω
=
c P

2π
(1.7)

sachant que Ω = 2π
P

avec P la période de rotation de l’étoile à neutrons.

Les lignes de champ magnétique sont supposées fermées uniquement à l’intérieur
de ce cylindre lumière, celles sortant de ce cylindre sont dites ouvertes et sont
considérées comme se refermant à l’infini. On suppose que, dans la majeure par-
tie de la magnétosphère, la densité de charge de ce plasma est égale à la densité
de Goldreich-Julian ρGJ , densité introduite par Goldreich et Julian, 1969. De
l’équation de Maxwell-Gauss, on trouve pour cette densité :

ρGJ = ε0∇ · ~E ≈ 2 ε0
~Ω · ~B (1.8)

Cette approximation n’est valable qu’à proximité de l’étoile, bien à l’intérieur du
cylindre lumière r � Rcyl avec ε0 la permittivité du vide (8, 854 × 10−12 F/m).
Pour cette densité, le plasma écrante la composante du champ électrique parallèle
au champ magnétique, soit ~E · ~B = 0, la force de Lorentz exercée par les champs
magnétique et électrique sur une charge en corotation avec le pulsar sera alors nulle :

~E + (~Ω ∧ ~r) ∧ ~B = ~0. (1.9)

Il existe, dans la magnétosphère, des cavités dans lesquelles la densité de charge ρ est
différente de ρGJ , cavités situées le long des dernières lignes de champ magnétique
fermées (les lignes de champ magnétique à l’intérieur du cylindre lumière qui se
referment le plus loin de l’étoile). Il existe actuellement trois modèles principaux de
répartition de ces cavités au sein de la magnétosphère indiqués sur la Fig. 1.11 :
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Figure 1.11 – Magnétosphère d’une étoile à neutrons avec le cylindre lumière et
les cavités le long des dernières lignes de champ magnétique fermées, image tirée de
Aliu et al., 2008.

— Les cavités allongées, en bleu : cavités fines suivant les dernières lignes de
champ magnétique fermées jusqu’au cylindre lumière.

— les cavités externes, en orange : cavités situées le long de la partie extérieure
des dernières lignes de champ magnétique fermées, en contact avec le cylindre
lumière ou passant dans son voisinage proche.

— les calottes polaires, en rouge : cavités situées juste au-dessus des deux pôles
magnétiques du pulsar. Ces calottes polaires sont délimitées par les points
où les dernières lignes de champ magnétique fermées traversent la surface de
l’étoile à neutrons. Leur taille angulaire θcp déduite de la forme des lignes de

champ pour un rotateur aligné dans le vide est sin θcp =
√

R?
Rcyl
≈ θcp. Leur

taille sera donc de l’ordre de R? θcp = R∗
√

R?
Rcyl

.

Il est à noter que tous ces modèles reposent sur un champ magnétique dipolaire à
la surface de l’étoile à neutrons.

Le point essentiel à retenir est que, dans ces cavités, le champ électrique n’est
plus totalement écranté, celui-ci accélère alors les particules le long des dernières
lignes de champ magnétique fermées, produisant par la même occasion une émission
radio et de haute énergie par rayonnement synchrotron, rayonnement de courbure
ou encore par diffusion Compton inverse, voir la section 1.3.3 pour les détails sur ces
mécanismes d’émission. Cette émission, et particulièrement l’émission radio prenant
place supposément au niveau des cavités polaires, sera fortement directionnelle du
fait de la géométrie dipolaire du champ magnétique. L’effet combiné de la rotation
du pulsar et de l’inclinaison de l’axe magnétique par rapport à son axe de rotation,
produit alors un comportement que l’on peut comparer à un phare : un faisceau
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de photons nous éclairant à intervalle de temps régulier, toutes les périodes P de
rotation (ou demi période si l’inclinaison χ de son axe magnétique est proche de
90◦ pour un rotateur presque orthogonal), d’où l’observation des pulses lorsque le
”faisceau” du pulsar pointe vers la Terre.

L’accélération de particules dans ces cavités est également à l’origine du processus
de création de paires évoqué plus haut. La formation d’une cascade de paires est
illustrée sur la Fig 1.12.

Figure 1.12 – Processus de création de paires dans une cavité polaire, image tirée
de Ruderman et Sutherland, 1975.

Un photon gamma, d’énergie ε supérieure à deux fois l’énergie de masse au repos
d’un électron (ε > 2me c

2 avec me la masse de l’électron) évoluant dans un champ
magnétique intense, produit une paire électron-positon, en position 1 sur la figure,
dont le positon va rejoindre le plasma en corotation avec l’étoile en dehors de la
cavité tandis que l’électron est accéléré par le champ électrique, en position 2 sur la
figure, et produit alors un autre photon gamma par rayonnement de courbure (voir
section 1.3.3) générant à son tour une nouvelle paire électron-positron, elle aussi
accélérée par le même champ magnétique, en position 3 sur la figure. Une cascade
de paires se développe et remplit la cavité jusqu’à écrantage presque complet du
champ électrique. La création de paires faiblit alors et s’arrête.

La probabilité w par unité de longueur de conversion d’un photon en une paire
électron-positon est donnée par exemple dans Erber, 1966 ou Beskin, 2010 :

w =
3
√

3

16
√

2

e3B sin θ

~me c3
exp

(
−8m3

ec
5

ε sin θ

)
. (1.10)
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ε représente l’énergie du photon et θ l’angle de sa trajectoire avec la ligne de champ
magnétique. La répétition de ce processus de création de paires enrichit le plasma
en particules au voisinage de l’étoile et maintient sa densité autour de ρGJ en dehors
des cavités tout en fournissant des particules à l’origine du rayonnement du pulsar
par accélération dans les cavités le long des dernières lignes de champ magnétique
fermées. Ainsi on soupçonne que la différence entre l’émission radio et l’émission
haute énergie tiendrait dans le fait que l’émission radio est issue de l’accélération
de paires secondaires, issues de ce processus de création de paires, avec un facteur
de Lorentz γ bien moins élevé (γ = 1/

√
1− v2/c2 avec v la vitesse de la particule)

que la particule primaire à l’origine de la cascade de paires. On peut approximer le
facteur de Lorentz des paires secondaires grâce à cette relation (Beskin, 2010) :

γ ≈ 15Bεe~
2m3

ec
5
. (1.11)

Avec ~ = h
2π

où h est la constante de Planck (h = 6, 626× 10−34 J.s), ε l’énergie du
photon à l’origine de la création de paire et e la charge élémentaire (e ≈ 1.6× 10−19

Coulomb).

Figure 1.13 – Facteur de Lorentz des particules dans la magnétosphère du pulsar,
image tirée de Gurevich et al., 1993.

Le facteur de Lorentz des particules secondaires dont l’accélération est à l’origine
du rayonnement radio est généralement estimé comme étant de l’ordre de γ ≈ 102

dans les calottes polaires. Les particules primaires, arrachées de la surface de l’étoile
à neutrons par le champ électrique ou issues de rayons cosmiques, ont un facteur de
Lorentz estimé autour de γ ≈ 107 ce qui leur permettrait d’émettre des rayonnements
de plus haute énergie via les processus d’émissions décrits dans la section 1.3.3. Ainsi
sur la Fig. 1.13 qui montre la distribution du facteur de Lorentz des particules dans
la magnétosphère du pulsar, les particules issues du processus de création de paires
se retrouvent elles sur la gauche du graphique.

Concernant le champ magnétique du pulsar, nous n’avons utilisé dans cette thèse
que le modèle décrivant le champ magnétique d’un dipôle tournant dans le vide
(car on dispose d’une solution analytique exacte pour celui-ci), modèle que nous
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détaillerons dans la section 3.1, autrement dit nous n’avons pas pris en compte
l’influence du plasma sur le champ magnétique du pulsar, ce modèle n’est donc pas
le plus réaliste mais son expression analytique relativement compacte nous permettra
de calculer efficacement et rapidement des cartes d’émission multi-longueurs d’onde.
Il existe cependant des modèles plus réalistes prenant en compte la présence d’un
plasma dans la description de la magnétosphère, comme par exemple le modèle
force-free et des modèles dissipatifs que nous détaillons maintenant.

1.3.1 Modèle force-free

Le modèle dit force-free permet d’approximer une magnétosphère remplie de
plasma à condition de négliger l’inertie du plasma et la dissipation d’énergie, no-
tamment par émission de rayonnement. On peut alors poser la relation suivante
annulant la densité de force de Lorentz (Spitkovsky, 2006) :

~j ∧ ~B + ρc ~E = 0 (1.12)

avec ρc la densité de charge au sein du plasma et ~j son vecteur densité de courant.
Cette relation implique donc l’annulation de la force électromagnétique appliquée à
un élément fluide, d’où l’appellation force-free. Pour un plasma de densité égale à
celle de Goldreich-Julian, invoquant l’écrantage du champ électrique ( ~E · ~B = 0),
on peut déduire la densité de courant par la seule donnée des champs électrique et
magnétique. À partir de cette condition force free, on aboutit à un système clos pour
les équations de Maxwell selon :

∂ ~E

∂t
= ∇∧ ~B −~j (1.13)

∂ ~B

∂t
= −∇ ∧ ~E (1.14)

avec une densité de courant électrique fonction de ~E et ~B uniquement :

~j = ∇ · ~E
~E ∧ ~B

B2
+

( ~B · ∇ ∧ ~B − ~E · ∇ ∧ ~E) ~B

B2
(1.15)

On peut ainsi retrouver la structure de la magnétosphère en intégrant numériquement
ces équations.

Le fait qu’on a utilisé dans cette thèse les solutions pour un dipôle tournant dans
le vide plutôt que le modèle force-free ne devrait pas changer grand chose au regard
de la géométrie du champ magnétique cependant ce choix peut éventuellement jouer
sur le délai que l’on percevra entre l’activité radio et gamma du pulsar.

1.3.2 Modèle dissipatif

Le modèle force-free est simple, sans paramètre libre. Il possède malheureusement
le gros inconvénient de ne pas fournir de zones d’accélération de particules, un
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ingrédient indispensable pour produire du rayonnement radio et de haute énergie.

Des approches plus réalistes ont été tentées pour décrire la magnétosphère du
pulsar où le plasma, malgré sa densité, n’écrante pas parfaitement la composante
du champ électrique parallèle aux lignes de champ magnétique ( ~E · ~B = 0 étant une
idéalisation) afin de prendre en compte la dissipation dans la magnétosphère. Cela
induit de nouvelles expressions pour le vecteur densité de courant ~j dont on peut
trouver un exemple dans Gruzinov, 2007 :

~j =
ρc ~E ∧ ~B + (B0

~B + E0
~E)
√
ρ2
c + γ2σ2E2

0

γ2(B2
0 + E2

0)
(1.16)

avec :
— γ le facteur de Lorentz d’un référentiel où ~E devient perpendiculaire à ~B soit

γ =
1√

1− β2
où on peut définir β ainsi :

β

1 + β2
=
| ~E ∧ ~B|
B2 + E2

(1.17)

— B0 et E0 sont des invariants du champ tels que B2
0 − E2

0 = ~B2 − ~E2 et

B0E0 = ~E · ~B avec E0 > 0.
— σ représente la conductivité et dépend de E0 et B0. C’est un paramètre libre

contrôlant le taux de dissipation dans le plasma.
— ρc reste la densité de charge dans le plasma présent à l’intérieur de la magnétosphère.
On peut alors retrouver la structure de la magnétosphère en incluant cette ex-

pression de ~j dans les équations (1.13) et (1.14). D’autres expressions de ~j ont été
proposés pour prendre en compte cette dissipation, comme par exemple une de celles
données dans Kalapotharakos et al., 2012 où l’on remplace le second terme de
l’équation (1.15) par σ ~E‖ :

~j =
~E ∧ ~B

B2
+ σ ~E‖ (1.18)

avec ~E‖ le vecteur décrivant les composantes du champ électrique parallèles aux
lignes de champ magnétique soit :

~E‖ =
( ~E · ~B) ~B

B2
. (1.19)

Mais ici aussi, il faut invoquer un paramètre libre σ, une autre sorte de conductivité.

Voyons à présent les principaux mécanismes d’émission susceptibles d’expliquer le
rayonnement multi-longueurs d’onde des pulsars.

1.3.3 Mécanismes d’émission

Les trois mécanismes que nous considérons sont le rayonnement inverse Compton,
le rayonnement synchrotron et le rayonnement de courbure.
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Diffusion Compton inverse

La diffusion Compton se produit lorsqu’un photon entre en collision avec un
électron, un positon ou toute autre particule chargée, le photon transférant alors
une partie de son énergie et de son impulsion à la particule sous forme d’énergie
cinétique. On suppose une collision élastique où l’énergie totale est conservée et le
photon ”diffusé” : sa trajectoire et sa fréquence changent, sa fréquence diminuant
du fait qu’une partie de son énergie est transférée à la particule. La différence entre
la longueur d’onde du rayonnement avant λ0 et après la diffusion λ s’exprime ainsi :

λ− λ0 =
h

mc
(1− cos θ) (1.20)

avec h la constante de Planck, θ l’angle de diffusion et m la masse de la particule
diffusante. Un exemple est montré en figure 1.14 pour une diffusion Compton à
l’intérieur d’un atome mais le processus reste le même pour une diffusion sur une
particule libre.

Figure 1.14 – Exemple de diffusion Compton dans un atome sur un électron orbi-
tant autour du noyau atomique. Image tirée de Nicol, 2010.

À partir de la différence de longueur d’onde, on déduit l’énergie du photon une
fois diffusé E = hν en utilisant la relation liant la longueur d’onde à la fréquence
pour une onde électromagnétique se propageant dans le vide : ν = c/λ.

E =
E0

E0

mc2
(1− cos θ) + 1

(1.21)

Avec E0 = hν0 = h c/λ0 l’énergie initiale du photon. L’énergie cinétique de la
particule après diffusion est donc égale à la différence entre l’énergie initiale du
photon et son énergie après la diffusion (puisqu’on suppose une collision élastique
et une particule initialement au repos). Dans le cas de la diffusion Compton inverse,
la particule (généralement un électron ou un positon) se déplace à une vitesse v
relativiste avant la collision et possède donc déjà une importante énergie cinétique
dont une partie sera alors transmise au photon qui verra sa fréquence augmenter
après la diffusion. Dans le référentiel de la particule en mouvement, la relation (1.21)
est valable si on remplace E par E ′ l’énergie finale du photon dans le référentiel de
la particule, θ par θ′ l’angle entre le photon incident et le photon réémis dans le
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référentiel de la particule et E0 par :

E ′0 = γE0(1− β cos θ0) (1.22)

l’énergie initiale du photon dans le référentiel de la particule, θ0 étant l’angle entre
la trajectoire de la particule et celle du photon incident dans le référentiel d’un
observateur statique et β = v/c.

E ′ =
E ′0

E′0
mc2

(1− cos θ′) + 1
(1.23)

L’énergie E du photon pour un observateur statique sera alors :

E = γE ′(1 + β cos Θ) (1.24)

Avec Θ = θ′ + θ′0 où θ′0 est l’angle d’incidence du photon dans le référentiel de la
particule, θ′ et θ sont liés par les formules d’aberration relativistes

cos θ′ =
cos θ + β

1 + β cos θ
(1.25)

sin θ′ =
sin θ

γ(1 + β cos θ)
. (1.26)

Ces mêmes relations lient θ0 et θ′0. L’énergie maximale du photon diffusé sera de
l’ordre de l’énergie cinétique de la particule soit γm c2. Si l’énergie du photon est
petite devant l’énergie au repos de la particule (E0 � mc2 et donc E ′0 � mc2) on
pourra alors poser :

E ≈ γ2E0(1− β cos θ0)(1 + β cos Θ) ≈ γ2E0. (1.27)

Donc des photons de faible énergie peuvent suffire à la production de rayons gamma
si l’interaction se fait avec des particules ultra-relativistes, γ � 1. L’énergie du
photon prend un facteur gigantesque de γ2. Cette approximation tombe en défaut
lorsque l’énergie du photon est comparable à celle de la particule. On entre alors
dans le régime quantique de Klein-Nishina (Klein et Nishina, 1929), qui tient
compte du recul de la particule dans son référentiel de repos. Dans ce régime ultra-
relativiste, la section efficace de diffusion chute fortement comparée à sa valeur dans
le régime non relativiste de Thomson et l’énergie du photon diffusé sera de l’ordre
de γE0 (sans jamais dépasser l’énergie cinétique initiale de la particule).
La diffusion Compton inverse pourrait être à l’origine des rayonnements de très
hautes énergies (> 100 GeV) provenant des pulsars et détectés par les télescopes à
effet Cherenkov comme MAGIC (Lyutikov et al., 2012).

Rayonnement synchrotron

Le rayonnement synchrotron est produit par le mouvement de giration d’une
particule chargée (généralement électron ou positon) autour d’une ligne de champ
magnétique ce qui induit l’émission de photons due à la trajectoire circulaire de
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la particule comme représenté sur la Fig. 1.15. En effet un mouvement circulaire
induit une variation de la vitesse de la charge et donc l’émission d’un rayonnement,
celui-ci étant appelé un rayonnement synchrotron uniquement lorsque la particule
chargée se déplace à des vitesses relativistes (proches de c) comme c’est le cas dans
la magnétosphère d’un pulsar à cause du puissant champ magnétique de l’étoile à
neutrons.

Figure 1.15 – Mécanisme d’émission du rayonnement synchrotron, image tirée de
NASA’s Cosmos 2020

La puissance rayonnée par une particule accélérée est donnée par la formule de
Larmor (Bradt, 2008) :

P =
q2a2

6πε0c3
(1.28)

avec q la valeur de la charge, a son accélération et ε0 la permittivité du vide.Considérons
le référentiel R muni d’un repère (O, x, y, z) dans lequel la charge électrique a un
mouvement circulaire autour d’une ligne de champ magnétique qui est parallèle à z,
le mouvement de la particule est donc compris dans le plan xy. La force de Lorentz
nous donne :

~F = q ~E + q(~v ∧ ~B) (1.29)

avec ~v la vitesse de cette charge, ~E et ~B sont respectivement le champ électrique
et le champ magnétique dans lesquels évolue la particule, or le champ électrique
étant nul, la force exercée sur la particule est ~F = q(~v ∧ ~B). Comme le champ

magnétique représenté par le vecteur ~B est aligné avec l’axe z du repère (O, x, y, z),
~F est perpendiculaire à ~v et à l’axe z d’où le mouvement circulaire de la particule.

Considérons maintenant un référentiel R′ muni d’un repère (O′, x′, y′, z′) en mou-
vement le long de l’axe x du repère (O, x, y, z) dans le référentiel R avec une vitesse
égale à la vitesse instantanée de la particule ~v dans R. Dans le cas relativiste où v
(la norme de ~v) est non négligeable devant c, les composantes du champ électrique
~E ′ et du champ magnétique ~B′ dans le référentiel (O′, x′, y′, z′) sont alors données
par les transformations de Lorentz (The Feynman Lectures on Physics Vol. II Ch.
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26 : Lorentz Transformations of the Fields 2020)

~E ′‖ = ~E‖ ~B′⊥ = γ(~v ∧ ~B)⊥ (1.30)

~B′‖ = ~B‖ ~B′⊥ = γ

(
~B − ~v

c2
∧ ~E

)
⊥

(1.31)

avec les composantes parallèles au déplacement du repère R′ dans le repère R notées
avec l’indice ‖ et les composantes perpendiculaires à ce déplacement notées avec
l’indice ⊥. Pour un déplacement le long de l’axe x, on aura donc :

Ex′ = Ex Bx′ = Bx (1.32)

Ey′ = γ(Ey − vBz) By′ = γ(By +
v

c2
Ez) (1.33)

Ez′ = γ(Ez + vBy) Bz′ = γ(Bz −
v

c2
Ey) (1.34)

avec Ex, Ey, Ez, Bx, By et Bz les composantes des champ électrique ~E et champ

magnétique ~B dans le référentiel R, Ex′ , Ey′ , Ez′ , Bx′ , By′ et Bz′ leurs composantes

dans le référentiel R′ et γ le facteur de Lorentz de R′ dans R : γ =
1√

1− v2

c2

. Or

dans le référentiel R, les composantes de ~E et ~B sont :

~E =

0
0
0

 ~B =

 0
0
B

 (1.35)

Soit dans R′ :

~E ′ =

 0
−γvB

0

 ~B′ =

 0
0
γB

 (1.36)

Initialement la particule est au repos dans le référentiel R′ car alors la particule et
le référentiel R′ se déplacent avec la même vitesse et dans la même direction dans
le référentiel R, on a donc ~v′ = 0 donc d’après l’équation (1.29) on a ~F = q ~E et on
peut ainsi en déduire l’accélération a′ de la particule dans le référentiel R′ :

a′ =
−qγvB
m

(1.37)

avec m la masse de la particule. P ′ la puissance rayonnée par la particule dans le
référentiel R′ peut alors être calculée à partir de l’équation (1.28) :

P ′ =
q4

6πε0c3m2
γ2v2B2. (1.38)

La puissance étant invariante par transformation de Lorentz, celle rayonnée par
la particule dans le référentiel R sera alors égale à la puissance rayonnée dans le
référentiel R′ soit P ′ = P .

Pour le rayonnement synchrotron dans l’atmosphère d’un pulsar, on considère
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que l’émission est due soit à un électron soit à un positon (donc q = ±e avec e la
charge élémentaire) et que celui-ci suit une trajectoire en spirale, et non une trajec-

toire parfaitement circulaire, ~v et ~B ne sont donc pas perpendiculaires, on nomme
Φ l’angle entre ces deux vecteurs, le référentiel R′ se déplace dans le référentiel R
avec une vitesse ~v tel que :

~v =

v sin Φ
0

v cos Φ

 (1.39)

de manière à ce que ~v′ la vitesse instantanée du photon soit toujours initialement
nulle. En utilisant la formule générale pour la transformée de Lorentz des champs
électrique et magnétique des équations (1.30) et (1.31) on trouve :

~E ′ =

 0
−γvB sin Φ

0

 (1.40)

La puissance émise par la particule est alors :

P =
e4

6πε0m2c
γ2B2β2 sin2 Φ. (1.41)

Pour des vitesses non relativistes, la fréquence de rotation de la particule de charge
q et de masse m autour de la ligne de champ magnétique, aussi appelée fréquence
cyclotron, est donnée par :

νcyclo =
q B

2πm
. (1.42)

Dans le cas où la vitesse de la particule est relativiste, cette fréquence est simplement
la fréquence cyclotron divisée par le facteur de Lorentz :

νsync =
qB

γ2πm
=
νcyclo

γ
. (1.43)

Une autre fréquence remarquable pour l’émission synchrotron est la fréquence cri-
tique νc car le spectre de l’émission synchrotron présente une décroissance exponen-
tielle passé cette limite (Lee, 2020), cette fréquence du pic de l’émission synchrotron
vaut :

νc =
3

2
γ2νcyclo. (1.44)

Cela pourrait d’ailleurs expliquer la forme que prennent les spectres des pulsars dans
le domaine des rayons gamma, tel qu’on l’a vu dans la section 1.2.2, modélisé avec
une coupure sous-exponentielle avec une énergie (et donc une fréquence) de coupure
Ec dans l’équation (1.6), le paramètre β dans cette équation permettant alors de
prendre en compte le fait que l’émission est due à l’accélération de particules avec
divers facteurs de Lorentz γ.
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Rayonnement de courbure

Le rayonnement de courbure est similaire au rayonnement synchrotron en cela
qu’il est le produit de la trajectoire non rectiligne d’une particule chargée. La
différence entre les deux est que dans le cas du rayonnement synchrotron, la par-
ticule tourne autour d’une ligne de champ magnétique alors que dans le cas du
rayonnement de courbure celle-ci va suivre cette ligne de champ magnétique qui
est elle-même courbée, d’où l’émission de rayonnement due à la courbure de la tra-
jectoire. Si la trajectoire de la particule est circulaire dans le cas du rayonnement
synchrotron (perpendiculairement à la ligne de champ), ce n’est pas nécessairement
le cas pour le rayonnement de courbure.

Considérons comme sur la Fig. 1.16 le rayonnement de courbure comme une
émission synchrotron d’une particule tournant autour d’une ligne d’un champ magnétique
virtuel ~B′ avec une vitesse ~v perpendiculaire à ~B′.

Figure 1.16 – Mécanisme d’émission du rayonnement de courbure, image tirée de
Saito, 2011.

L’équation (1.43) nous donne alors la fréquence de rotation de cette particule

autour de la ligne de champ magnétique virtuelle : νsync =
eB′

2π γ m
. Sachant que

cette fréquence est l’inverse du temps que met la particule pour faire un tour autour
de la ligne de champ magnétique, on a :

eB′

2 π γ m
=

v

2πρ
(1.45)

avec ρ le rayon de courbure de la trajectoire de la particule. Dans le cas ultra-

relativiste où v ≈ c on peut alors poserB′ =
γmc

eρ
. En remplaçant dans l’équation (1.41)

l’angle Φ par π
2

et B′ par γmc
eρ

on peut ainsi retrouver la puissance rayonnée par la

particule accélérée (Kundu, 2018) :

Pcurv =
e2 γ4 c

6π ε0 ρ2
. (1.46)

On déduit de l’équation (1.42) que la fréquence cyclotron du rayonnement de cour-

bure est νcyclo =
γc

2πρ
, on peut ainsi retrouver, à partir de l’équation (1.44), la
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fréquence caractéristique du rayonnement de courbure (Gurevich et al., 1993) :

νcurv =
3

4π
γ3 c

ρ
(1.47)

au-delà de laquelle la particule ne rayonne plus significativement. Plus précisément,
la forme du spectre en énergie du rayonnement de courbure pour une particule de
facteur de Lorentz γ est donnée dans Jackson, 2001 par :

dI

dω
=

√
3

4 π ε0

e2

c
γ F

(
ω

ωc

)
avec F (x) = x

∫ +∞

x

K5/3(t) dt (1.48)

où K5/3 est une fonction de Bessel modifiée d’ordre 5/3 (Arfken et Weber, 2005).
Une très bonne approximation de la fonction est d’après Aharonian et al., 2010 :

F (x) = 2.15x1/3 (1 + 3.06x)1/6 1 + 0.884x2/3 + 0.471x4/3

1 + 1.64x2/3 + 0.974x4/3
e−x. (1.49)

La forme du spectre est représentée en figure 1.17 en ligne rouge et l’approximation
en ligne bleu. La précision étant supérieure à 0.2% dans tout l’intervalle, on ne peut
distinguer les courbes à l’œil nu.
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Figure 1.17 – Spectre du rayonnement de courbure au voisinage de la fréquence
caractéristique νcurv. L’approximation en bleu n’est pas distinguable de l’expression
exacte en rouge.

1.3.4 Au-delà du cylindre lumière

En dehors du cylindre lumière, le champ magnétique possède une géométrie es-
sentiellement toröıdale. Les lignes de champ magnétique considérées comme ouvertes
en dehors du cylindre lumière se referment en fait avant d’atteindre le milieu inter-
stellaire (Goldreich et Julian, 1969). Le plasma entourant l’étoile à neutrons est,
comme on l’a vu, issu au moins en partie du processus de création de paires dans
les cavités de la magnétosphère. Les particules formant ce plasma étant initialement
accélérées dans ces cavités, comme on peut le voir sur la Fig. 1.12, avec des fac-
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teurs de Lorentz γ � 1, ce plasma est donc animé d’une vitesse relativiste formant
ainsi un vent de matière qui s’éloigne de l’étoile à neutrons. Loin à l’extérieur du
cylindre lumière, la progression de ce vent sera finalement stoppée par la pression
du milieu interstellaire. La collision entre le plasma et ce milieu, formant un front
d’onde délimitant ce que l’on appelle une pulsar wind nebula ou ”nébuleuse de vents
de pulsar”, accélère les particules présentes dans le plasma qui vont alors générer
une émission électromagnétique, notamment par rayonnement synchrotron. Comme
dans le cas du pulsar du Crabe, l’écoulement du plasma peut également être stoppé
par la pression de la matière éjectée lors de la supernova à l’origine de l’étoile à neu-
trons, matière qui elle-même voit son expansion stoppée par la pression du milieu
interstellaire, phénomène illustré dans la Fig. 1.18 ou CSM est le milieu circumstel-
laire (Circum stellar medium) qui peut être confondu avec le milieu interstellaire :

Figure 1.18 – Nébuleuse de vents de pulsar à l’intérieur d’un rémanent de super-
nova et densité de matière en fonction de la distance à l’étoile à neutrons. Image
tirée de Slane, 2017.

Comme on peut le voir sur la Fig. 1.19, si l’inclinaison entre l’axe magnétique et
l’axe de rotation du pulsar est non nulle, un vent strié se formera (striped winds)
délimité par une couche de courant qui est la surface de séparation entre les deux
pôles magnétique du pulsar en rotation. Cette couche de courant est connectée aux
dernières lignes de champ magnétique fermées, formant avec elles un point de re-
connexion en forme de Y à la jonction entre la limite de la magnétosphère et la
base du vent (au cylindre lumière). Le vent lui-même peut être une source efficace
de rayonnement haute énergie (Lyubarskii, 1996 ; Pétri, 2012). La pulsation de
cette émission provient de l’effet combiné entre la forme spirale de cette couche et
le mouvement relativiste du vent focalisant la lumière dans le sens du mouvement
(Kirk et al., 2002).
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Figure 1.19 – Structure du vent strié d’un pulsar avec une vitesse angulaire ω et
une inclinaison χ de son champ magnétique. Image tirée de Mochol, 2017.

1.3.5 Tentatives passées

Des simulations de l’émission d’un pulsar prenant en compte le rayonnement
radio et haute énergie ont déjà été réalisées dans d’autres travaux. On peut notam-
ment citer Kalapotharakos et al., 2014 où la vitesse des particules à l’origine
de l’émission est calculée à partir d’une fonction dépendante des champs électrique
et magnétique. Il a ainsi pu en être déduit le facteur de Lorentz de ces particules
et donc l’énergie du rayonnement que l’on reçoit du pulsar ainsi que le décalage
temporel entre la réception de l’émission haute énergie et l’émission radio provenant
des calottes polaires.

On peut également citer Venter et al., 2014 où l’émission radio et haute énergie
des pulsars millisecondes ont été modélisées pour différentes géométries afin de
déterminer laquelle correspondait le plus aux données récoltées par le télescope
Fermi/LAT.

Notre nouvel apport à toutes ces études concerne l’inclusion des effets de rela-
tivité générale dont on rappelle les caractéristiques essentielles dans le paragraphe
qui suit.

1.4 Relativité générale

La physique newtonienne montre généralement ses limites lorsqu’il s’agit de
décrire le champ gravitationnel d’un astre avec un rapport masse sur rayon aussi
important que celui d’une étoile à neutrons, on doit donc recourir à la théorie de la
relativité générale pour avoir une vision plus complète des effets de la gravitation
d’un tel astre sur son voisinage. L’un des concepts de base de cette théorie est qu’il
n’existe pas de force gravitationnelle à proprement parler : la gravité peut en effet
s’expliquer par des considérations purement géométriques. C’est une force fictive au
même titre que la force centrifuge ou la force de Coriolis.

Considérons que notre Univers dispose de quatre dimensions : trois dimensions
d’espace et une de temps, et appelons cet hyperespace à quatre dimensions l’espace-
temps. D’après la théorie de la relativité générale, l’énergie d’un objet et donc sa
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masse (car les deux sont liées, de par sa masse un objet au repos à une énergie de
E = mc2) induit une déformation de l’espace-temps et cette déformation est en fait
interprétée comme étant le champ gravitationnel de l’objet.

Si on lance un objet depuis la surface de la Terre, celui-ci suivra une trajectoire
courbe, en ”cloche”, qui le fera retomber sur la surface de la planète. Dans le cadre de
la relativité générale ce n’est pas la trajectoire de cet objet qui est courbe mais bien
l’espace-temps dans lequel s’inscrit cette trajectoire. Ainsi, par exemple, la Lune ne
tournerait pas autour de la Terre mais ce serait l’espace-temps dans lequel s’inscrit
sa trajectoire qui est courbé par la masse de la Terre.

La déformation de l’espace-temps induite par le contenu en masse-énergie d’un
corps est décrite par l’équation d’Einstein :

Rµν −
1

2
gµν R + Λ gµν =

8π G

c4
Tµν (1.50)

dont les différents termes sont :
— gµν est la métrique de l’espace-temps, une généralisation tensorielle du po-

tentiel gravitationnel newtonien,
— Rµν est le tenseur de Ricci : ce tenseur exprime la courbure de l’espace temps,
— R = Rµ

µ est le scalaire de courbure : scalaire défini à partir de la trace du
tenseur de Ricci,

— Tµν est le tenseur énergie-impulsion de la matière responsable du champ gra-
vitationnel,

— Λ est la constante cosmologique : cette constante a été initialement ajoutée
pour que l’expression décrive un Univers statique, aujourd’hui elle permet
de prendre en compte l’expansion accélérée de l’Univers. Elle n’a aucune
influence sur l’espace-temps à l’échelle des étoiles à neutrons.

— G est la constante gravitationnelle (G = 6.67× 10−11 m3 kg−1 s−2 ).
On suit ici la convention de notation d’Einstein où les composantes covariantes

sont en indice et les composantes contravariantes en exposant et où Aµν est la
composante covariante de la ν-ième colonne de la µ-ième ligne de la matrice A.
Avec cette convention de notation la sommation est indiquée par une répétition
d’un exposant en indice : par exemple xµ yµ =

∑3
µ=0 x

µ yµ.

Soit xµ les composantes contravariantes d’un quadrivecteur de l’espace-temps,
c’est-à-dire un vecteur à quatre dimensions possédant une coordonnée temporelle
et trois coordonnées spatiales, alors ses composantes covariantes sont données par
xµ = gµνx

ν =
∑
gµν x

ν avec gµν les composantes covariantes de la métrique de
l’espace-temps dans lequel s’inscrit le quadrivecteur.

Les composantes contravariantes de la métrique, gµν , sont celles de la matrice
inverse de gµν , telles que gµν gνα = δµα. Ainsi pour une métrique diagonale comme
celle d’un trou noir statique (métrique de Schwarzschild), cette inversion se simplifie
en gµν = 1

gµν
.

En relativité générale, l’équivalent de la force gravitationnelle newtonienne est
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donné par les symboles de Christoffel définis à partir de la métrique considérée g :

Γαµν =
1

2
gασ

[
∂gνσ
∂xµ

+
∂gσµ
∂xν

− ∂gµν
∂xσ

]
(1.51)

On peut alors écrire le tenseur de Riemann (appelé aussi tenseur de Riemann-
Christoffel ou encore tenseur de courbure) selon ces symboles de Christoffel :

Rα
µνσ =

∂Γαµσ
∂xν

−
∂Γαµν
∂xσ

+ ΓβµσΓανβ − ΓγµνΓ
α
σγ (1.52)

Le tenseur de Ricci est une contraction de ce tenseur de Riemann :

Rµν = Rσ
µσν (1.53)

Le scalaire de courbure est lui-même une contraction du tenseur de Ricci :

R = gµν Rµν = Rµ
µ. (1.54)

Quant au tenseur énergie-impulsion, comme son nom l’indique il représente la quan-
tité de mouvement et l’énergie de la matière présentes dans l’espace-temps. Ce ten-
seur est symétrique, T µν = T νµ. Pour un espace-temps repéré par les coordonnées xµ

avec x0 la composante temporelle, ses diverses composantes possèdent la signification
physique suivante

— La composante T 00 représente la densité d’énergie.
— Les composantes T i0 représentent la densité d’impulsion ou le flux d’énergie

suivant la direction xi (idem pour les composantes T 0i par symétrie), avec
i 6= 0.

— Les composantes purement spatiales T ik, avec i 6= 0 et k 6= 0, représentent le
flux de la i-ième composante de l’impulsion suivant la direction spatiale xk.

L’énergie et l’impulsion étant conservées, l’équation du mouvement de la matière
est ∇νT

µν = 0 avec ∇ν la dérivée covariante qui généralise la dérivée partielle aux
espaces courbes.

Concernant la métrique, gµν , dans la suite de cette thèse on s’intéresse à deux
d’entre elles. La première concerne la métrique de Minkowski qui décrit un espace-
temps plat et où les effets dus au champ gravitationnel sont négligés. Cette métrique
est diagonale et vaut en coordonnées cartésiennes (c t, x, y, z) :

ηµν = diag(−1,+1,+1,+1). (1.55)

La deuxième concerne la métrique de Schwarzschild qui décrit la déformation de
l’espace-temps autour d’un objet sphérique et statique qui est une bonne approxi-
mation de la géométrie de l’espace-temps au voisinage d’une étoile à neutrons en
rotation lente (disons ν? < 600 Hz ou ν? est l’inverse de la période de l’étoile).
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1.4.1 Métrique de Schwarzschild

La métrique de Schwarzschild est une solution à symétrie sphérique des équations
d’Einstein, elle est donc statique d’après le théorème de Birkhoff ce qui veut dire
qu’elle ne dépend pas de la coordonnée temporelle ∂gµν

∂x0
= 0 et g0ν = 0 lorsque

ν 6= 0 (R. D’Inverno et L. a. t. F. o. M. S. R. D’Inverno, 1992). Considérons
l’intervalle d’espace-temps qui sépare deux évènements, et qui s’écrit dans l’espace-
temps de métrique gµν sous la forme :

ds2 = gµν dx
µ dxν . (1.56)

La métrique de Schwarzschild étant une métrique à symétrie sphérique, les coor-
données xµ d’un évènement serons alors avantageusement décrites en coordonnées
sphériques par :

xµ =


x0

x1

x2

x3

 =


ct
r
θ
φ

 (1.57)

avec r, θ et φ les coordonnées dans le repère sphérique (respectivement la distance
radiale, la colatitude et la longitude) dont l’origine est le centre de masse de l’objet
causant la déformation de l’espace-temps. L’intervalle d’espace-temps dans cette
métrique prendra alors une forme diagonale dans des coordonnées adaptées :

ds2 = g00c
2dt2 + g11dr

2 + r2(dθ2 + sin2 θdφ2) (1.58)

r2 dΩ2 = r2(sin2 θdφ2 + dθ2) étant l’intervalle entre deux évènements sur la surface
d’une sphère de coordonnée radiale r.

L’intervalle d’espace-temps dans la métrique de Schwarzschild s’écrit (la démonstration
étant donnée dans l’annexe A.1) :

ds2 = −
(

1− RS

r

)
c2dt2 +

(
1− RS

r

)−1

dr2 + r2(sin2 θdφ2 + dθ2) (1.59)

RS = 2GM
c2

est appelé le rayon de Schwarzschild de l’astre et est égal au double de
son rayon gravitationnel RG = GM

c2
. Ainsi si on se place dans cette métrique, gµν

dans l’équation (1.50) devient :

gµν =


−
(

1− RS

r

)
0 0 0

0

(
1− RS

r

)−1

0 0

0 0 r2 0
0 0 0 r2 sin2 θ

 (1.60)

Lorsqu’on s’éloigne de l’objet r → ∞ ou lorsque la masse M de celui-ci est faible
M → 0 (ce qui équivaut à RS → 0 car RS = 2GM

c2
) on retrouve bien la métrique

de Minkowski dans un repère sphérique, la courbure de l’espace-temps autour d’un
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objet massif est donc négligeable à grande distance ou lorsque la masse de cet objet
est trop faible.

La métrique de Schwarzschild représente une solution exacte des équations d’Ein-
stein dans le vide. C’est aussi la solution la plus simple, ne possédant qu’un pa-
ramètre libre, la masse totale de l’objet considéré ainsi qu’une très bonne approxi-
mation pour des étoiles sans charge et dont la rotation est faible. Sa simplicité permet
d’en extraire aisément des conclusions importantes et de portée très générale sur le
comportement des horloges et des particules dans un champ gravitationnel intense.
Voyons à présent ces effets relativistes, absents en théorie newtonienne.

1.4.2 Effets relativistes

La courbure de l’espace-temps influence notre perception de l’écoulement du
temps et de la trajectoire des particules. La grandeur fondamentale en relativité est
le temps propre que nous calculons maintenant.

Temps propre

Comme le champ gravitationnel est une déformation de l’espace-temps, l’une
des conséquences de la relativité générale est que la masse d’un objet affectera
l’écoulement du temps dans son voisinage. Ainsi le temps s’écoulera plus lente-
ment à proximité d’un astre massif qu’à distance de celui-ci. Si on considère deux
évènements avec les mêmes coordonnées spatiales mais séparés par un intervalle de
temps coordonné ∆t qui est aussi le temps ”réel” mesuré par un observateur loin-
tain, dans la métrique de Schwarzschild, d’après la relation ds2 = −c2 dτ 2 où dτ est
l’intervalle de temps propre, on aura :

− c2dτ 2 = −
(

1− RS

r

)
c2dt2. (1.61)

On peut alors en déduire le temps propre ∆τ qui sépare les deux évènements par

∆τ = ∆t

√
1− RS

r
. (1.62)

Tant que r > RS, le temps propre ∆τ entre ces deux évènements diminue au fur
et à mesure que l’on se rapproche du rayon de Schwarzschild RS. À l’inverse, on
aura ∆τ = ∆t à grande distance pour r → ∞ car la métrique de Schwarzschild,
asymptotiquement plate, y est alors similaire à la métrique de Minkowski où il n’y
a pas d’effets gravitationnels.

Précession du périastre

Comme on l’a vu dans la section précédente, pour r � RS dans la métrique de
Schwarzschild, on retrouve le comportement de la gravité en physique newtonienne et
les trajectoires des objets dans le champ de pesanteur d’un astre massif sont décrites
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par des orbites képlériennes. Cependant, dans la métrique de Schwarzschild, ces
orbites varient au cours du temps si leur excentricité e est non nulle. Plus exactement
la courbure de l’espace-temps entrâıne une précession du périastre d’un angle δ entre
deux révolutions d’un objet autour de l’astre central tel que :

δ ≈ 24π3a2

c2T 2(1− e)
(1.63)

avec a le demi-grand axe de l’orbite et T le temps que met l’objet à parcourir cette
orbite. Cette précession est donc importante pour une orbite avec une faible période
mais une forte excentricité, c’est notamment le cas de la planète Mercure qui présente
une précession purement relativiste de son périhélie de 43 secondes d’arc par siècle
qu’il faut rajouter à la précession induite par les autres planètes et la non sphéricité
du soleil.

Ondes gravitationnelles

Figure 1.20 – Fonctionnement d’un détecteur d’onde gravitationnel (ici LIGO).
Illustration réalisée par Johan Jarnestad de l’académie royale des sciences de Suède.
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La relativité générale n’autorise pas une interaction à distance avec effet immédiat.
Toute information se déplaçant à une vitesse inférieure ou égale à la vitesse de la
lumière, la relativité générale prédit alors également l’existence d’ondes gravitation-
nelles, des oscillations de l’espace-temps dues à la variation d’un champ gravita-
tionnel et se propageant à la vitesse de la lumière (on ne peut donc pas décrire ces
ondes à partir de métriques statiques comme celle de Schwarzschild). Comme on
l’a vu dans la section 1.1.3, ces ondes ont déjà été détectées indirectement par la
mesure de la décroissance de la période orbitale d’un système binaire (Weisberg
et Taylor, 2005), un tel système perdant de l’énergie par émission d’ondes gravi-
tationnelles, mais également de manière directe grâce aux détecteurs LIGO et Virgo
(Abbott et al., 2017b) qui fonctionnent sur le principe de l’interférométrie résumé
dans la Fig. 1.20 : un laser est envoyé dans les deux bras du détecteur puis est
renvoyé par un miroir pour interférer avec lui même, l’intensité du laser sera alors
annulée par les interférences destructives. Si une onde gravitationnelle passe par un
bras du détecteur, l’espace-temps et donc le bras du détecteur sera déformé pendant
un cours instant par le passage de cette onde, le trajet des photons sera modifié
et alors le laser n’interférera plus avec lui même, on détectera alors une intensité
non-nulle au point d’interférence des deux faisceaux.

Entrâınement des référentiels inertiels

Pour un astre massif tournant sur lui-même, et si son paramètre de spin a est
assez important (a = J

Mc
avec J le moment cinétique de l’astre et M sa masse), alors

d’après la théorie de la relativité générale on assiste à un phénomène d’entrâınement
des référentiels inertiels où l’espace-temps au voisinage de cet astre est entrâıné dans
son mouvement de rotation. La métrique de Schwarzschild ne prenant pas en compte
la rotation de l’astre dont la masse déforme l’espace-temps, on doit, pour décrire ce
phénomène, avoir recours à d’autres métriques comme par exemple la métrique de
Kerr :

ds2 = −
(

1− RSr

r2 + a2 cos2 θ

)
c2dt2 +

r2 + a2 cos2 θ

r2 − rRS + a2
dr2 + (r2 + a2 cos2 θ)dθ2

+

(
r2 + a2 +

RSra
2 sin2 θ

r2 + a2 cos2 θ

)
sin2 θdφ2 −

(
2RSra sin2 θ

r2 + a2 cos2 θ

)
cdtdφ. (1.64)

Il existe alors, autour de l’astre en question une ergosphère de rayon :

Rergo = RG +
√
R2
G − a2 cos2 θ (1.65)

avec RG = RS/2 le rayon gravitationnel de l’astre. Dans cette ergosphère l’espace-
temps tourne avec l’astre et tout objet qui se trouve dans cette région ne peut rester
immobile et sera également entrâıné par la rotation de l’astre.
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Trous noirs

Figure 1.21 – Image radio obtenue par l’Event Horizon Telescope du trou noir
supermassif au cœur de la galaxie Messier 87.

Une des prédictions les plus célèbres de la théorie de la relativité générale est
l’existence de trous noirs : des astres pour lesquels rien ne peut s’échapper de leur
puits gravitationnel pas même la lumière (un concept similaire avait cependant été
avancé dans un cadre newtonien dès le XVIIIème siècle par John Michell puis par
Pierre-Simon de Laplace).

L’équation (1.59) qui représente l’intervalle d’espace-temps dans la métrique de
Schwarzschild présente deux singularités en r = 0 et r = RS. Si la première est
considérée comme intrinsèque à la métrique de Schwarzschild et possédant une ori-
gine physique que l’on ne peut pas éliminer, montrant les limites de cette métrique,
on peut remédier à la seconde par l’utilisation de coordonnées alternatives comme
les coordonnées de Kruskal-Szekeres (Kruskal, 1960 ; Szekeres, 1960) ou de
Gullstrand-Painlevé (Gullstrand, 1922 ; Painlevé, 1921). On considère cepen-
dant que cette seconde singularité décrit l’horizon des évènements d’un trou noir de
Schwarzschild : soit un astre dont le rayon est inférieur à son rayon de Schwarzschild
RS, si un objet, une particule ou un photon se retrouve à une altitude inférieure
au rayon de Schwarzschild de l’astre (r < RS) alors les seules trajectoires possibles
pour cet objet sont celles qui tombent sur la singularité centrale de la métrique
r → 0, l’objet ne peut donc effectivement pas s’échapper du trou noir. La métrique
de Schwarzschild ne peut évidemment décrire qu’un trou noir statique, si le trou
noir tourne sur lui même alors, d’après la métrique de Kerr, il y a deux horizons des
évènements, un horizon interne contenu dans un horizon externe :

Rhorizon = RG ±
√
R2
G − a2 (1.66)

Les trous noirs peuvent également posséder une charge électrique, ils seront alors
décrit par des métriques telles que celles de Reissner-Nordström, pour un trou noir
statique, ou de Kerr-Newman pour un trou noir en rotation. D’ailleurs le théorème
no-hair prévoit que la masse, le moment cinétique et la charge sont tout ce dont on
a besoin pour décrire un trou noir.

Ces trous noirs peuvent se former, comme on en a déjà discuté dans la sec-
tion 1.1.1, par l’effondrement du cœur d’une étoile massive au cours d’une supernova
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lorsque celui-ci a une masse supérieure à la limite de masse d’une étoile à neutrons.
Cette masse maximale, déterminée par la limite de Tolman-Oppenheimer-Volkoff,
a été initialement théorisé autour de 0.7 M� (Tolman, 1939 ; Oppenheimer et
Volkoff, 1939), elle se situerait en fait au-delà de 2 M� (comme par exemple dans
Margalit et Metzger, 2017) lorsque l’on prend en compte l’interaction forte
entre les neutrons. Ces trous noirs peuvent aussi se former lors de collisions d’astres
massifs comme des étoiles à neutrons.

Il existe également des trous noirs dit supermassifs, comme celui de la Fig. 1.21,
que l’on trouve au cœur des galaxies et qui pèsent plusieurs millions de masses
solaires ainsi que des trous noirs intermédiaires dont la masse est comprise entre une
centaine et une centaine de milliers de masses solaires. Les mécanismes de formation
pour ces deux types de trous noirs n’ont pas encore été complètement élucidés.

Courbure des rayons lumineux

Du fait de la déformation de l’espace-temps, le rayonnement électromagnétique
est également affecté par la gravité d’un astre massif. Ainsi la trajectoire d’un photon
passant près de l’un de ces astres sera courbée par le champ gravitationnel de celui-
ci, phénomène appelé light-bending. L’une des premières preuves de la théorie de la
relativité générale fut d’ailleurs l’observation par Arthur Eddington de la déviation
des rayons lumineux des étoiles par le champ gravitationnel du Soleil lors de l’éclipse
solaire du 29 mai 1919 (Dyson et al., 1920).

C’est ce light-bending qui est à l’origine des lentilles gravitationnelles : le champ
gravitationnel d’un astre ou même d’une galaxie agit comme une lentille convergente
en courbant les rayons lumineux (même pour un rayonnement en dehors du spectre
de la lumière visible) d’un objet situé derrière celui-ci quand observé depuis la Terre
comme illustré par la Fig. 1.22. Les lentilles gravitationnelles permettent ainsi d’ob-
server des objets qui seraient invisibles sans, elles permettent également de détecter
des exoplanètes (Han et al., 2020), voire de détecter des amas de matière noire
(Jee et al., 2007) cette dernière ne pouvant être détectée directement par observa-
tion car n’interagissant, hypothétiquement, que très peu avec la matière ordinaire ou
le rayonnement électromagnétique mais étant toutefois pourvu d’une masse capable
de déformer l’espace-temps d’après la théorie de la relativité générale.
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Figure 1.22 – Effet de lentille gravitationnelle d’un astre massif (un cluster de
galaxie) sur l’image reçue sur Terre d’une galaxie avec en blanc la trajectoire réel
des rayons lumineux et en orange leur trajectoire apparente (NASA).

C’est également cet effet de light-bending qui permet de voir le disque d’accrétion
complètement entourer le trou noir de la Fig. 1.21, en effet de par son inclinaison
par rapport à la ligne de visée, ce disque devrait être en partie masqué par le trou
noir observé si il n’y avait pas courbure des rayons lumineux (Akiyama, 2019b).
Cette même courbure des rayons lumineux produit une ombre du trou noir, la partie
sombre centrale est alors plus grande que le trou noir lui-même car certains des pho-
tons émis par le disque d’accrétion verront leur trajectoire se courber pour tomber
sur le trou noir (Akiyama, 2019a).

La courbure de la trajectoire des photons entrâıne également un temps de retard
à la réception du photon par rapport à une trajectoire linéaire, ce temps de retard
est appelé le délai Shapiro. Ce retard est notamment utile pour mesurer la masse
des corps présents dans un système binaire comme on peut le voir dans la Fig. 1.23
pour un système composé d’un pulsar et d’une étoile compagnon. Lorsque le com-
pagnon passe entre le pulsar et la ligne de visée il courbe la trajectoire des rayons
lumineux de par sa masse et on peut donc déduire cette dernière du temps de retard
du rayonnement reçu. Connaissant la masse du compagnon et les caractéristiques
orbitales du système, on en déduit la masse du pulsar (Demorest et al., 2010).
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Figure 1.23 – Délai Shapiro dans un système binaire composé d’un pulsar. Image
tirée de Jacoby, 2008.

Décalage vers le rouge gravitationnel

Une autre conséquence de la théorie de la relativité générale sur le rayonnement
électromagnétique est le décalage gravitationnel vers le rouge (un effet indirect de la
dilation gravitationnelle du temps). Lorsqu’un photon s’éloigne d’un astre massif, la
fréquence du rayonnement correspondant diminue et inversement, lorsqu’il tombe sur
l’astre il verra sa fréquence augmenter. La fréquence d’une onde électromagnétique
étant l’inverse de sa période, soit la période ∆t d’une onde telle que mesurée par un
observateur lointain, considérons un observateur situé à la distance r. À partir de
l’équation (1.62), on calcule la fréquence ν qu’il percevra :

ν = ν0

√√√√1− RS
r0

1− RS
r

(1.67)

avec ν0 et r0 la fréquence et l’altitude d’émission de l’onde électromagnétique. Ainsi
si on considère que l’on se trouve toujours dans le champ gravitationnel de l’astre, il
y aura un décalage gravitationnel vers le rouge même si l’on observe le rayonnement
à r → ∞ du moment que l’altitude d’émission r0 est proche du rayon de Schwarz-
schild RS. Cet effet fut démontré expérimentalement en 1959 par l’observation des
transitions énergétiques de noyaux atomiques à différentes altitudes dans le champ
gravitationnel terrestre (Pound et Rebka, 1959).
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1.5 Objectifs de la thèse

De par leur importante densité, le rapport entre le rayon de Schwarzschild d’une
étoile à neutrons et son propre rayon R?, appelé compacité, est assez élevé, typique-
ment :

Ξ =
RS

R?

≈ 0.5 (1.68)

le champ gravitationnel de l’étoile aura donc un impact sur le rayonnement que celle-
ci émet tel que prédit par la théorie de la relativité générale. Leur paramètre de spin
a est cependant généralement trop faible pour qu’il y ait une ergosphère en dehors
de ces étoiles, même si l’entrâınement des référentiels inertiels est envisageable bien
que négligeable au voisinage des étoiles à neutrons en rotation lente (à l’exception
des pulsars millisecondes les plus rapides). La métrique de Schwarzschild est donc
suffisante pour décrire les effets du champ gravitationnel sur l’émission des pulsars
dans le cadre de la relativité générale.

Si des simulations dans la métrique de Schwarzschild ont déjà été réalisées
pour un rayonnement émis depuis la surface de l’étoile, comme dans Gonthier
et Harding, 1994, peu ont été réalisés pour le rayonnement originaire des parties
supérieures de la magnétosphère comprises dans le cylindre lumière, et aucune ne
prenant en compte le temps de retard (délai Shapiro) induit par la courbure de la tra-
jectoire des photons dans la métrique de Schwarzschild ou le décalage gravitationnel
vers le rouge de ce rayonnement. Cette thèse a pour objectif de pallier ces lacunes
particulièrement pour le rayonnement de courbure émis depuis la magnétosphère
du pulsar, ainsi les chapitres suivant présentent uniquement des travaux réalisés au
cours de cette thèse.

Nous verrons dans un premier temps comment simuler l’effet du champ gravi-
tationnel sur un rayonnement électromagnétique en calculant la trajectoire d’un
photon dans la métrique de Schwarzschild puis le temps qu’il met à parcourir
cette trajectoire. Nous utiliserons ensuite ces formules pour en déduire le rayon-
nement que l’on va recevoir du pulsar pour différentes émissions : d’abord pour une
émission thermique provenant de points chauds situés aux niveaux des calottes po-
laires, puis pour l’émission haute énergie et radio provenant de la magnétosphère, la
première provenant des cavités étroites et la seconde des cavités polaires. Nous nous
intéresserons d’ailleurs aux spectres de cette émission radio et haute énergie notam-
ment pour savoir d’où, dans la magnétosphère du pulsar, provient le rayonnement
le plus énergétique.



Chapitre 2

Émission thermique de surface

Avant de s’intéresser à l’émission magnétosphérique non thermique en radio et en
gamma des pulsars, on étudie en guise de première application l’émission thermique
de surface de l’étoile afin de tester et de vérifier notre implémentation des méthodes
de calcul en espace-temps courbe.

Pour simuler cette émission dans la métrique de Schwarzschild, on a d’abord dû
déterminer la trajectoire d’un photon dans cette métrique, dans un premier temps
en se restreignant à un plan puis, dans un deuxième temps en réorientant ce plan
contenant la trajectoire du photon dans l’espace et en tenant compte du temps de
vol du photon. On a ainsi pu réaliser une image de la surface de l’étoile à neutrons
telle que perçue dans la métrique de Schwarzschild afin de donner une idée des effets
de la courbure de la trajectoire des photons sur l’émission provenant de cette surface.
Finalement, on appliquera ces méthodes de simulation de la trajectoire et du temps
de vol des photons à l’émission thermique provenant de deux points chauds situés
au niveau des calottes polaires (ou pôles magnétiques) d’un pulsar.

2.1 Trajectoire d’un photon

2.1.1 Dans le plan équatorial

Afin de définir la manière dont le champ gravitationnel affecte le rayonnement
émis par le pulsar, on décrit d’abord le comportement d’un photon dans la métrique
de Schwarzschild centrée sur une étoile à neutrons.

La trajectoire d’un photon dans la métrique de Schwarzschild étant toujours
comprise dans un plan, du fait de la symétrie sphérique de cette métrique, on peut
dans un premier temps tracer la trajectoire du photon dans le plan équatorial où la
colatitude θ est constante et égale à π

2
soit :

ds2 = −
(

1− RS

r

)
c2dt2 +

(
1− RS

r

)−1

dr2 + r2dφ2. (2.1)

40
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La matrice gµν représentant la métrique s’écrira ainsi dans ce plan :

gµν =


−
(

1− RS

r

)
0 0

0

(
1− RS

r

)−1

0

0 0 0
0 0 r2

 (2.2)

Nous avons suivi la méthode utilisée dans Kraus, 1998 pour déterminer la trajec-
toire d’un photon à partir de l’équation (2.1) de la métrique de Schwarzschild dans
le plan équatorial, méthode que nous avons détaillée dans l’annexe A.1.1. On déduit
la trajectoire des photons à partir du paramètre d’impact b qui est défini en fonction
de α et de r0, respectivement l’angle et l’altitude d’émission du photon :

b =
r0√

1− RS
r0

sinα. (2.3)

Ce paramètre d’impact représente la distance entre la trajectoire du photon et une
droite parallèle qui passe par l’origine comme illustré dans la Fig. 2.1 :

Figure 2.1 – Le paramètre d’impact b est la distance séparant la trajectoire du
photon d’une droite parallèle passant par l’origine, image tirée de Kraus, 1998.

Pour résumer, l’angle φ de la trajectoire satisfait

dφ

dr
= ± b

r2

√
1− b2

(
1− RS

r

) . (2.4)

En intégrant l’équation (2.4), on peut retrouver la coordonnée angulaire du photon
en fonction de sa coordonnée radiale et donc en déduire sa trajectoire :

φ(r) = φ0 ±
∫ r

r0

b dr

r2

√
1− b2

r2
(1− RS

r
)

(2.5)

φ0 étant la coordonnée angulaire du point d’émission du photon. Pour un photon
s’éloignant de l’origine du repère pour partir vers l’infini, on choisit le signe positif
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tandis que pour un photon tombant sur l’origine du repère on choisit le signe négatif.
Le photon tombe sur l’origine si le paramètre d’impact b est inférieur à une valeur
critique bc tel que bc = 1.5

√
3RS.

Afin de trouver la position d’un photon à l’infini, on effectue le changement de
variable u = 1

r
. Ainsi quand la coordonnée radiale r du photon tend vers l’infini

(r →∞), on a u = 0. En posant u0 = 1
r0

, on obtient avec ce changement de variable
quand le photon part vers l’infini :

φ(u) = φ0 −
∫ u

u0

bdu√
1− b2u2(1− rsu)

(2.6)

Et quand le photon tombe sur l’origine :

φ(u) = φ0 +

∫ u

u0

bdu√
1− b2u2(1− rsu)

(2.7)

L’intégration de ces formules a été réalisée en utilisant la méthode présentée dans
l’annexe B.1. Elle est basée sur la quadrature de Clenshaw-Curtis, par projection de
la fonction à intégrer sur les polynômes de Chebyshev, voir par exemple Press et al.,
2007. Cette méthode est rapide, efficace et précise, et converge très rapidement vers
la valeur exacte comparée à une méthode classique d’intégration par les rectangles
ou les trapèzes. Notre méthode de quadrature possède aussi l’avantage d’être plus
rapide et précise qu’une intégration directe des équations du mouvement des photons
(résolution d’un système d’équations différentielles ordinaires non-linéaires).

Un cas particulier de trajectoire est donné par un photon qui dans un premier
temps se dirige vers l’origine du repère puis dans un deuxième temps repart vers
l’infini. Pour déterminer la trajectoire de ce photon, il faut diviser le mouvement en
deux parties, une phase d’approche de l’étoile suivie d’une phase de récession. On
procède donc comme indiqué ci-dessous :

— On commence par calculer rmin, la racine la plus grande du polynôme 1 −
b2

r2
(1− RS

r
) (donnée par la méthode présentée dans la section B.3), qui est la

plus petite distance entre le photon et l’origine sur la trajectoire et donc la
coordonnée radiale du point de rebroussement du photon.

— Pour obtenir la première partie de la trajectoire, celle où le photon tombe
sur l’origine, on intègre l’équation (2.7) de r0 à rmin afin de trouver φ(rmin),
la coordonnée angulaire du point de rebroussement du photon.

— Pour obtenir la seconde partie de la trajectoire, celle où le photon repart vers

l’infini, on intègre l’équation (2.6) en prenant r0 = rmin, soit u0 =
1

rmin

et

φ0 = φmin.
Cette démarche en deux étapes est nécessaire car la fonction φ(r) est multivaluée :
à un rayon r donné peuvent correspondre plusieurs valeurs de φ. On la sépare donc
en deux fonctions φ(r) monovaluée.
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La même démarche peut être suivie pour tracer la trajectoire d’un photon qui
s’éloigne initialement de l’origine avant de retomber dessus à l’exception qu’ici la
coordonnée radiale du point de rebroussement sera rmax la racine la plus petite du
polynôme et la distance maximale du photon à l’origine. Dans ce cas on intégrera
d’abord l’équation (2.6) puis l’équation (2.7) une fois rmax atteint.
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Figure 2.2 – À gauche, différentes trajectoires d’un photon autour d’un trou noir de
Schwarzschild (en noir) dans un seul plan. Les graduations de ce graphe représentent
la distance en rayons gravitationnels RG = 1

2
RS du trou noir. À droite, coordonnée

angulaire (en degrés) en fonction de la distance radiale, exprimée en rayons gravi-
tationnels RG du trou noir, pour les mêmes trajectoires.

La Fig. 2.2 représente les divers types de trajectoires du photon dans le plan
équatorial d’un trou noir de Schwarzschild que l’on peut obtenir en intégrant les
équations présentées plus haut, avec :

— en vert : la trajectoire d’un photon qui, partant de l’infini, tombe sur le trou
noir ou, parcouru dans le sens inverse, celle d’un photon émis juste au-dessus
de l’horizon des évènements qui part vers l’infini.

— en rouge : un photon émis juste au dessus l’horizon des évènements du trou
noir qui retombe sur celui-ci.

— en bleu : la trajectoire d’un photon provenant de l’infini qui dans un premier
temps tombe sur le trou noir avant de s’en éloigner.

Le phénomène de light-bending apparâıt clairement sur la partie gauche de cette
figure, les trajectoires des photons sont courbées par la proximité du corps massif.

La partie droite de la Fig. 2.2 quant à elle représente l’évolution de la coordonnée
angulaire φ en fonction de la distance radiale r pour ces trajectoires. On voit no-
tamment que la fonction φ(r) est multivaluée dans le cas du photon qui retombe sur
le trou noir ou dans le cas où le photon tombe puis finit par s’éloigner du trou noir.

Ces trajectoires ne concernent que les photons évoluant dans le plan équatorial
de l’astre. Afin de déterminer la trajectoire d’un photon quelconque, il faut replacer
ce plan dans l’espace à 3D en l’orientant par rapport à une direction fixe. C’est
l’objet du prochain paragraphe.
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2.1.2 Dans l’espace à 3D

A partir de la trajectoire du photon dans le plan équatorial, on peut retrouver
n’importe quelle trajectoire dans l’espace 3D en effectuant une rotation du plan
contenant le mouvement du photon. Cette opération de rotation sera réalisée grâce
à la matrice des rotations d’Euler :cosα cos γ − sinα cos β sin γ − cosα sin γ − sinα cos β cos γ sinα sin β

sinα cos γ + cosα cos β sin γ − sinα sin γ + cosα cos β cos γ − cosα sin β
sin β sin γ sin β cos γ cos β


(2.8)

où l’on introduit les angles d’Euler α, β et γ représentant respectivement la précession,
la nutation et la rotation propre de la normale du plan par rapport à une direction
fixe de l’espace. Cette matrice est la synthèse de trois rotations successives afin de
faire cöıncider la normale du plan de la trajectoire avec une direction fixe prise par
défaut le long de l’axe z.

Si on connâıt la position du point d’émission et la direction de propagation
initiale du photon dans un repère cartésien (O, x, y, z), avec les rotations d’Euler
on peut passer dans un repère (O, x′,y′,z′) où le point d’émission et la direction
de propagation initiale sont tous les deux contenus dans le plan z′ = 0. Soit une
droite ∆ dont le vecteur directeur est la direction de propagation du photon au point
d’émission et qui coupe le plan z = 0 en un point P , pour effectuer les rotations
nécessaires on va utiliser :

— l’angle A entre l’axe x et une droite d inscrite dans le plan z = 0 passant par
le point P et l’origine O du repère.

— l’angle B entre le plan z = 0 et la droite ∆.x′y′
z′

 =

cosA − sinA cosB sinA sinB
sinA cosA cosB − cosA sinB

0 sinB cosB

xy
z

 (2.9)

Considérons que le plan z′ = 0 est le plan équatorial d’un repère sphérique, on peut
alors déterminer les coordonnées x′ et y′ de chaque point de la trajectoire du photon
dans le plan z′ = 0 en intégrant l’équation (2.5) sachant que dans ce plan x′ = r cosφ
et y′ = r sinφ. On pourra alors retrouver les coordonnées x, y et z de chacun de ces
points dans l’espace en effectuant l’opération de rotation inverse et ainsi retrouver
la trajectoire du photon dans l’espace :xy

z

 =

 cosA sinA 0
− sinA cosB cosA cosB − sinB
sinB sinA − sinB cosA cosB

x′y′
z′

 (2.10)

Cette méthode des rotations d’Euler ne peut pas être appliquée à une métrique ne
possédant pas la symétrie sphérique. En effet, dans une telle géométrie, les trajec-
toires ne sont plus contenues dans un plan. Il faut alors effectuer une intégration 3D
complète, par exemple pour la métrique de Kerr qui prend en compte la rotation de
l’astre. Voir Rauch et Blandford, 1994 pour un exemple d’application complet
avec des formules de quadrature exactes en métrique de Kerr.
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2.1.3 Temps de vol d’un photon

Comme on l’a vu pour les coordonnées spatiales du photon, on peut retrouver
l’évolution de la coordonnée temporelle dt

dr
à partir des équations du mouvement (voir

par exemple (A.36) et(A.37)) en remarquant que dt
dr

= pt

pr
. On a alors, en gardant la

même définition du paramètre d’impact b :

dt

dr
=

1(
1− Rs

r

)√
1− b2

r2
(1− Rs

r
)

. (2.11)

En intégrant cette équation on obtient la coordonnée temporelle du photon en fonc-
tion de sa coordonnée radiale selon :

t(r) = t0 +

∫ r

r0

dr(
1− Rs

r

)√
1− b2

r2
(1− Rs

r
)

(2.12)

avec t le temps que met le photon, du point de vue d’un observateur lointain, pour
parcourir sa trajectoire et t0 le moment auquel le photon est émis. Le temps de
parcours de la trajectoire sera alors plus important dans la métrique de Schwarzschild
que dans celle de Minkowski (espace-temps plat) quand le photon passe près de
l’origine du champ gravitationnel et ce bien que la vitesse locale de la lumière dans
le vide reste la même. C’est le délai Shapiro dû à la courbure des rayons lumineux.

Ici aussi on peut appliquer le changement de variable u = 1
r

pour obtenir le
temps de vol d’un photon jusqu’à l’infini. On trouve :

t = t0 −
∫ u

u0

du

u2(1−Rsu)
√

1− b2u2(1−Rsu)
. (2.13)

Pour une trajectoire scindée en deux parties, où le photon tombe dans un premier
temps vers l’origine du repère puis s’en éloigne après avoir atteint un point de re-
broussement en r = rmin, on calculera d’abord le temps de parcours sur la première
partie de la trajectoire en intégrant l’équation (2.13) de u0 à umin = 1

rmin
puis on

ajoutera à celui-ci le temps de parcours pour la deuxième partie de la trajectoire en
intégrant l’équation (2.13) de umin à u (et en posant t0 = 0). Même chose pour le cas
d’un photon partant de l’étoile à neutrons avant de retomber dessus à part qu’ici on
intégrera dans un premier temps l’équation (2.13) de u0 à umax = 1

Rmax
puis de umax

jusqu’à u = 1
RS

.
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2.2 Distorsion de l’image d’une étoile

Pour se rendre compte des changements introduits par le phénomène de light-
bending, on a réalisé des simulations de l’image de la surface de l’étoile que rece-
vrait un observateur situé à l’infini dans un espace-temps plat et dans la métrique
de Schwarzschild. On considère l’étoile comme statique et on répartit les points
d’émission des photons à sa surface de manière à avoir un quadrillage, représenté
sur la Fig. 2.3, où chaque photon est séparé de ses voisins par un angle de 1◦ en
colatitude et longitude.

Figure 2.3 – Points d’émission à la surface de l’étoile à neutrons

Dans un espace temps plat, où on ne prend pas en compte les effets du champ
gravitationnel, il suffit de tracer une trajectoire rectiligne jusqu’à un écran faisant
figure d’observateur situé à l’infini à partir des points d’émission quand ces trajec-
toires ne passent pas par l’intérieur de l’étoile.

Dans la métrique de Schwarzschild, la trajectoire des photons est courbée par le
champ gravitationnel de l’étoile à neutrons, cet effet sera d’autant plus important
que la compacité de l’étoile (Ξ = RS

R?
avec R? le rayon de l’étoile) est grand. Pour

obtenir une image de la surface de l’étoile, on recherche, à l’aide de la fonction de
recherche de zéro décrite dans l’annexe B.2, l’angle d’émission du photon, compris
entre −90◦ et 90◦, qui nous donne Φ nul à l’infini (ce qui correspond à la position
théorique de l’observateur) pour chacun des points d’émission précédemment fixés.
À partir de cet angle d’émission θ, on en déduit le paramètre d’impact b d’après
l’équation (2.3). Le point d’impact du photon sur l’écran au niveau de l’observateur
se situera à la distance b de la ligne de visée d’après la Fig. 2.1 soit la distance
entre le point d’impact et le centre de l’écran. Par rotation du plan contenant la
trajectoire de ce photon (comme dans la section 2.1) on obtient la position du point
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d’impact sur cet écran.

Les Fig. 2.4 à 2.7 sont les images ainsi obtenues de la surface de l’étoile pour
différentes inclinaisons de la ligne de visée et différentes compacités Ξ de l’étoile.
Ainsi chacune des figures a été réalisée avec un rayon R? de l’étoile de 2 et de 4 fois
le rayon de Schwarzschild RS de l’étoile à neutrons. On peut ainsi voir que, dans
le cas relativiste, on reçoit une image plus grande de l’étoile à neutrons quand sa
compacité augmente du fait de la courbure de la trajectoire des photons, le rayon
R∞ de l’image dans la métrique de Schwarzschild pouvant d’ailleurs être calculé
ainsi :

R∞ =
R?√

1− RS
R?

. (2.14)

On voit également qu’une surface plus importante de cette étoile est visible dans la
métrique de Schwarzschild, révélant des détails alors cachés dans un espace-temps
plat, comme les régions polaires du quadrillage qui sont bien visibles dans les Fig. 2.4
et 2.5 pour des inclinaisons de 0 ou 30◦ de la ligne de visée.

Ce point est important car l’émission d’un pulsar sera alors modifiée dans la
métrique de Schwarzschild du fait que l’on reçoit des photons que l’on ne percevait
pas en espace-temps plat. Cela permet également d’illustrer le fait que plus on
s’éloigne du rayon de Schwarzschild, comme on l’a vu dans la section 1.4.1, moins
les effets liés à la déformation de l’espace-temps se font ressentir.



2.2. DISTORSION DE L’IMAGE D’UNE ÉTOILE 48

Figure 2.4 – Image à l’infini de la surface d’une étoile à neutrons de compacité
Ξ = 0.5 à gauche et Ξ = 0.25 à droite pour une inclinaison de la ligne de visée nulle
avec en noir la taille de l’image prédite par l’équation (2.14).
En rouge l’image obtenue pour un espace temps plat et en vert celle obtenue dans la
métrique de Schwarzschild.

Figure 2.5 – Image à l’infini de la surface d’une étoile à neutrons de compacité
Ξ = 0.5 à gauche et Ξ = 0.25 à droite pour une inclinaison de 30◦ avec en noir la
taille de l’image prédite par l’équation (2.14).
En rouge l’image obtenue pour un espace temps plat et en vert celle obtenue dans la
métrique de Schwarzschild.
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Figure 2.6 – Image à l’infini de la surface d’une étoile à neutrons de compacité
Ξ = 0.5 à gauche et Ξ = 0.25 à droite pour une inclinaison de 60◦ avec en noir la
taille de l’image prédite par l’équation (2.14).
En rouge l’image obtenue pour un espace temps plat et en vert celle obtenue dans la
métrique de Schwarzschild.

Figure 2.7 – Image à l’infini de la surface d’une étoile à neutrons de compacité
Ξ = 0.5 à gauche et Ξ = 0.25 à droite pour une inclinaison de 90◦ avec en noir
la taille de l’image prédite par l’équation (2.14). En rouge l’image obtenue pour un
espace temps plat et en vert celle obtenue dans la métrique de Schwarzschild.
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2.3 Flux thermique des calottes polaires

On peut se poser la question de comment le flux de rayonnement émanant des
points chauds situés aux pôles magnétiques, comme dans le cas d’un pulsar accrétant,
sera affecté par le champ gravitationnel de l’étoile à neutrons.

Le flux reçu de chacun de ces points chauds par un observateur distant peut être
calculé grâce à l’expression suivante (Bogdanov et al., 2007) :

F (ν) =

√
1− Rs

R?

η4 I cosα
∂ cosα

∂ cosψ

dS

D2
(2.15)

où I est l’intensité émise par la surface d’aire dS que l’on supposera ici isotrope
(constante), D est la distance entre le pulsar et l’observateur et η est le facteur
Doppler qui est égal à :

η =
1

γ(1− υ
c

cos ξ)
(2.16)

avec :

γ =
1√

1− υ2

c2

(2.17)

le facteur de Lorentz du point chaud,

υ =
2 π R?

P
√

1− RS
R?

sinχ (2.18)

la vitesse instantanée du point chaud qui dépend de la période de rotation P du
pulsar, χ l’angle entre l’axe de rotation et l’axe magnétique du pulsar soit l’incli-
naison du champ magnétique, ξ l’angle entre le vecteur vitesse du point chaud et la
direction de l’observateur défini par :

cos ξ =
sinα

sinψ
sin ζ sinϕ (2.19)

ζ étant l’inclinaison sous laquelle on observe l’étoile (angle entre l’axe de rotation
et la direction de l’observateur) et ϕ la phase du pulsar. La géométrie complète est
détaillée en figure 2.8.
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Figure 2.8 – Géométrie utilisée dans le calcul de la courbe de lumière d’un point
chaud, image tirée de Viironen et Poutanen, 2004.

Quant à ψ il désigne la position des calottes polaires, c’est en fait l’angle entre
la ligne de visée de l’observateur et l’axe magnétique et d’après Viironen et Pou-
tanen, 2004 celui-ci vaut :

cosψ = ±(cos ζ cosχ+ sin ζ sinχ cosϕ) (2.20)

soit pour la calotte polaire ”nord” :

cosψnord = cos ζ cosχ+ sin ζ sinχ cosϕ (2.21)

et pour la calotte polaire ”sud” :

cosψsud = − cos ζ cosχ− sin ζ sinχ cosϕ (2.22)

L’angle ψ est égal à la coordonnée angulaire du photon à l’infini φ(∞) donnée par
l’équation (2.7) quand φ0 est nul. Sachant cela, on peut retrouver l’angle d’émission
initiale du photon α en utilisant une fonction de recherche de zéro par bissection
(voir l’annexe B.2) afin de trouver pour quelle valeur de cet angle α la différence
entre les équations (2.20) et (2.7) est nulle. Connaissant α, on peut alors calculer le
flux des points chauds en posant à partir de (2.15) :

F (ν) =

√
1− Rs

R?

η4 I cosα
sinα

sinψ

∂α

∂ψ

dS

D2
(2.23)

Or à partir de l’équation (2.5), on peut calculer ∂ψ
∂α

, l’inverse de ∂α
∂ψ

, ce qui donne

∂ψ

∂α
=

∫
∞

r0

b′ dr

r2

[
1− b2

r2
(1− RS

r
)

]3/2
(2.24)
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où b′ est la dérivée du facteur d’impact en fonction de α :

b′ =
∂b

∂α
=

r0√
1− RS

r0

cosα (2.25)

soit avec le changement de variable u = 1/r :

∂ψ

∂α
= −

∫
0

u0

b′ du

[1− b2u2(1− uRS)]3/2
=

∫
u0

0

b′du

[1− b2u2(1− uRS)]3/2
(2.26)

Comme ici les photons sont émis depuis la surface de l’étoile à neutrons, le rayon
de cette étoile R? est donc l’altitude d’émission des photons soit r0 = R?. Attention
cependant, lorsque ψ est nul ou tend vers zéro, on utilisera la limite asymptotique
sinα
sinψ

=
√

1− Rs
R?

ce qui donne :

F (ν) =

(
1− Rs

R?

)
η4 I cosα

∂α

∂ψ

dS

D2
. (2.27)

Dans un espace-temps de Minkowski sans effet du champ gravitationnel on aura
cosψ = cosα, on peut donc en déduire le flux reçu du pulsar dans cette espace-
temps plat :

F (ν) =

√
1− Rs

R?

η4 I cosα
dS

D2
. (2.28)

Dans tous les cas, le flux devra être considéré comme nul si l’angle α calculé à partir
de (2.7) et (2.20) n’est pas compris entre −90◦ et 90◦ car sinon cela voudrait dire
que les photons émis traversent l’étoile, or celle-ci n’est évidement pas transparente.

Le flux reçu de l’étoile à neutrons est alors la somme du flux émis par chacun des
deux points chauds aux pôles magnétiques, les Fig. 2.9 à 2.10 présentent le flux reçu
d’une étoile à neutrons de compacité Ξ = 0.5 et dont le rayon du cylindre lumière est
10 fois plus grand que son propre rayon pour deux valeurs de χ l’inclinaison de l’axe
magnétique par rapport à l’axe de rotation, 90◦ et 45◦ et toutes les valeurs possibles
de ζ (ici appelé colatitude). L’observateur est situé à une distance de 1000 fois le
rayon du cylindre lumière, une distance à laquelle les effets du champ gravitationnel
de l’étoile sur les photons sont négligeables.
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Figure 2.9 – Flux reçu des deux calottes polaires par un observateur distant dans
un espace-temps plat à gauche et dans la métrique de Schwarzschild à droite, avec
χ = 45◦.

Figure 2.10 – Flux reçu des deux calottes polaires par un observateur distant dans
un espace-temps plat à gauche et dans la métrique de Schwarzschild à droite, avec
χ = 90◦.

À ce flux il faudra rajouter un décalage par rapport à la phase dû au temps de
vol des photons.

Dans le cas Minkowskien avec un espace-temps plat, ce décalage est égal à la
distance séparant l’étoile de l’observateur divisée par la vitesse de la lumière plus un
terme (−~nobs·~r

c
) dépendant de la direction du point d’émission à l’observateur ~nobs et

de ~r la position du point d’émission du photon (ici on a ‖~r‖ = R? comme l’émission
à lieu à la surface). Ce terme permet de prendre en compte le retard qu’il y aura
entre des photons émis depuis différentes positions autour de l’étoile à neutrons avec
différentes directions de propagation initiale. Dans le cas relativiste, ce temps de vol
peut se retrouver en intégrant une des équations (2.12) ou (2.13). Les graphiques
en Fig. 2.11 et 2.12 représentent ainsi le flux reçu avec ce décalage de phase dû au
temps de vol des photons.
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Figure 2.11 – Flux reçu des deux calottes polaires par un observateur distant dans
un espace-temps plat à gauche en dans la métrique de Schwarzschild à droite avec
χ = 45◦ en prenant en compte le temps de vol des photons.

Figure 2.12 – Flux reçu des deux calottes polaires par un observateur distant dans
un espace-temps plat à gauche en dans la métrique de Schwarzschild à droite avec
χ = 90◦ en prenant en compte le temps de vol des photons.

On a sur ces figures une répartition plus homogène du flux selon la phase et l’orien-
tation de l’observation dans le cas relativiste du fait des phénomènes de distorsion
vus dans la section 2.2 qui rendent les points chauds visibles plus longtemps lors
d’une période du pulsar.

On note également un décalage de phase des points où le flux est minimum entre
les deux modèles, celui-ci n’est cependant pas dû au retard induit par la courbure
de la trajectoire des photons (délai Shapiro) car on le retrouve sur les graphiques de
la Fig. 2.9 où on n’a pas tenu compte du temps de vol des photons. Ce décalage est
simplement dû à l’addition des flux des deux points chauds à cause de la visibilité
accrue de chacun d’entre eux dans la métrique de Schwarzschild. Le second point
chaud n’est plus totalement caché par l’étoile lorsque le premier est visible. C’est
notamment ce que l’on constate sur la Fig. 2.13 et qui révèlent le flux reçu avec et
sans prise en compte du temps de vol pour χ et ζ valant 45◦.
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Figure 2.13 – Flux reçu pour ζ = χ = 45◦ dans un espace-temps plat à gauche et
dans la métrique de Schwarzschild à droite. Les points bleus et verts représentent le
flux reçu de chacune des calottes polaires, en rouge le flux total et en violet le flux
total sans temps de vol des photons.

Figure 2.14 – Flux reçu à gauche pour ζ = χ = 45◦ et à droite pour ζ = χ = 90◦

avec en rouge le flux reçu dans un espace temps plat, en vert le flux reçu dans la
métrique de Schwarzschild et en bleu l’approximation de Beloborodov du flux reçu
dans la métrique de Schwarzschild. .

Pour obtenir le flux reçu des points chauds dans la métrique de Schwarzschild,
on peut également utiliser l’approximation de Beloborodov, 2002 :

1− cosα = (1− cosφ)

(
1− RS

R?

)
(2.29)

Que l’on peut alors comparer au flux obtenu à partir de l’équation (2.23) comme
dans la Fig. 2.14 pour une valeur fixée de l’inclinaison ζ de la ligne de visée (toujours
avec le temps de vol des photons). Cette approximation donne ainsi des résultats
très similaires à nos simulations mais fait disparâıtre certaines caractéristiques de la
variation du flux. En effet, on ne retrouve pas dans l’approximation de Beloborodov
les augmentations brutales du flux après que celui-ci ait atteint son minimum que
l’on observe en calculant le flux reçu à partir de l’équation (2.23).



Chapitre 3

Émission magnétosphérique

Les caractéristiques de l’émission thermique de surface sont très différentes de
celle de la magnétosphère. En effet, la première suit fidèlement la loi d’un corps noir
de température de l’ordre de 106 K, correspondant à des rayons X d’une énergie
de l’ordre de 100 eV. La seconde provient du rayonnement de particules chargées
accélérées dans la magnétosphère et produisant une émission non thermique mon-
trant typiquement un spectre en loi de puissance avec une coupure exponentielle
ou sous exponentielle. L’émission de surface est bornée à un petit intervalle de
fréquences autour des rayons X mous tandis que l’émission magnétosphérique ba-
laie tout le spectre électromagnétique des ondes radio aux rayons gamma durs de
l’ordre du GeV voire très durs au-delà du TeV. L’objet de ce chapitre est d’étudier
les propriétés de ce rayonnement non thermique que l’on suppose par la suite émis
depuis la magnétosphère à l’intérieur du cylindre lumière. On s’intéressera tout parti-
culièrement à l’impact quantitatif de la relativité générale sur les courbes de lumière
en radio et en gamma. Commençons tout d’abord par rappeler le modèle sous-jacent
basé sur le champ électromagnétique produit par un dipôle magnétique tournant et
évoluant dans une métrique de Schwarzschild, puis nous verrons comment en déduire
la géométrie de la magnétosphère et finalement les méthodes de détermination de
l’émission pulsée qui seront appliquées à la bande haute énergie et radio.

3.1 Géométrie de la magnétosphère

Pour simuler l’émission issue de la magnétosphère du pulsar, on doit connâıtre la
géométrie du champ magnétique de ce pulsar dans les deux cas qui nous intéressent :

1. Dans un espace-temps de Minkowski ou espace-temps plat, où le champ
magnétique n’est pas affecté par le champ gravitationnel de l’étoile à neu-
trons, pour cela on a utilisé la solution de Deutsch (Deutsch, 1955) pour le
champ magnétique d’un dipôle tournant dans le vide.

2. Dans la métrique de Schwarzschild où l’on peut s’attendre à des modifications
de la géométrie de ce champ magnétique dues à la courbure de l’espace-temps.

56
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3.1.1 Structure du champ magnétique

Le modèle de champ magnétique utilisé ici est une extension semi-analytique de
la solution de Deutsch pour la relativité générale présenté initialement dans Pétri,
2018 tel que :

~B = ~B‖ cosχ+ ~B⊥ sinχ (3.1)

avec ~B‖ le champ magnétique pour un dipôle aligné (χ = 0◦) dont les composantes
Bi
‖ dans un repère sphérique sont :

B1
‖ = −6BR3

?

[
ln

(
1− RS

r

)
+
RS

r
+
R2
S

2r2

]
cos θ

R3
S

(3.2)

B2
‖ = 3BR3

? (3.3)

B3
‖ = 0 (3.4)

La valeur de B n’est pas importante pour nos travaux car on s’intéresse à la forme
du champ magnétique, pas à son intensité, on a donc normalisé ces équations de
manière à avoir B = 1.

~B⊥ est le champ magnétique pour un dipôle avec l’axe magnétique perpendicu-
laire à l’axe de rotation (χ = 90◦) dont les composantes dans l’espace Bi

⊥ sont :
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[
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]
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1 (kr)
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avec ω̃ = Ω − ω et ω̃? = Ω − ω? où ω =
aRS

r3
et ω? =

aRS

R3
?

avec a le paramètre de

spin de l’étoile à neutrons tel que a =
J

Mc
, J étant le moment cinétique de l’étoile.
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H(1)
l (kx) sont les généralisations des fonctions sphériques de Hankel (Arfken et

Weber, 2005) dans la métrique de Schwarzschild introduites dans Pétri, 2017. Ces
fonctions décrivent la propagation d’une onde sortante, ici les champs magnétiques et
électriques, se propageant de manière sphérique vers l’extérieur de l’étoile à neutrons,
k = Ω/c étant le nombre d’onde.

On suppose que la structure interne de l’étoile à neutrons est homogène et uni-
forme, son moment d’inertie I est alors :

I =
2

5
MR2

?. (3.8)

Or le moment cinétique J est le produit du moment d’inertie I par la vitesse angu-

laire Ω, sachant que Rcyl =
c

Ω
, on a alors un paramètre de spin tel que :

a =
2

5

R2
?

Rcyl

. 0.1. (3.9)

Ce paramètre quantifie l’importance de l’entrâınement des référentiels inertiels par
un objet en rotation. Pour les pulsars, ce paramètre est très petit a� 1, sauf pour les
pulsars les plus rapides pour lesquels il devient marginalement significatif. Autrement
dit, pour la plupart des étoiles à neutrons, la rotation n’entrâıne pas une modifica-
tion significative de la courbure de l’espace-temps et la métrique de Schwarzschild
d’un corps à symétrique sphérique est tout à fait justifiée. Cependant, d’après des
simulations PIC (Particle In Cells), l’entrâınement des référentiels inertiels pour-
rait affecter la magnétosphère du pulsar, notamment l’efficacité de la production de
pairs au sein de celle-ci (Philippov et al., 2015 ; Philippov et Spitkovsky, 2018).

3.1.2 Tracé des lignes de champ

À la base de tout mon travail de thèse dans le reste de ce manuscrit se trouve le
tracé des lignes de champs magnétiques, déterminant les dernières lignes de champ
fermées, et par conséquent la forme des calottes polaires et des cavités allongées.
La géométrie de ces lignes de champs se déduit par l’intégration d’un système
d’équations différentielles ordinaires ne dépendant pas explicitement du temps et
donné en géométrie cartésienne par

dx

Bx

=
dy

By

=
dz

Bz

=
ds

B
(3.10)

où B = || ~B|| et ds2 = dx2 + dy2 + dz2 représente l’abscisse curviligne le long de
la ligne de champ considérée. En prenant cette abscisse curviligne comme variable
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indépendante, les lignes de champ sont solutions du système

dx

ds
=
Bx

B
(3.11a)

dy

ds
=
By

B
(3.11b)

dz

ds
=
Bz

B
(3.11c)

Ce système est intégré par la méthode de Jameson et al., 1981, voir par exemple
Canuto, 2006. Notons qu’il n’y a pas de singularité de coordonnées dans ce système
si on emploie les composantes cartésiennes, ce qui n’est pas le cas des composantes
sphériques données dans le paragraphe précédent. Il faut donc prévoir un passage
permanent entre les composantes sphériques et cartésiennes lors de l’intégration
numérique du système (3.11).

Dans la Fig. 3.1 on a tracé les lignes de champ dans les deux métriques de l’espace-
temps. On voit les différences induites par les deux modèles utilisés sur la géométrie
du champ magnétique pour les caractéristiques de l’étoile à neutrons que l’on a choisi
pour le reste de la thèse : une étoile de compacité Ξ = 0.5 avec un rayon du cylindre

lumière Rcyl = 10R? = 20RS soit une période de rotation P =
2π

Ω
≈ 2 ms si on

suppose que R? ≈10 km. Ce modèle a été choisi afin d’accentuer les effets du champ
gravitationnel : on a une compacité importante et donc une courbure importante
des rayons lumineux comme on l’a vu dans la section 2.2. On a également dans ce
modèle un rayon du cylindre lumière Rcyl pas trop grand afin que l’émission ayant
lieu en son sein soit suffisamment près de l’étoile à neutrons pour que les effets du
champ gravitationnel y soit significatifs dans la métrique de Schwarzschild vu que
celle-ci décrit un espace-temps quasiment plat quand on s’éloigne trop de l’étoile.
On devrait donc voir les effets relativistes devenir négligeables à grande distance de
l’étoile à neutrons.
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Figure 3.1 – A gauche, lignes de champ magnétique pour une inclinaison χ =
90◦ de l’axe magnétique par rapport à l’axe de rotation avec en rouge le champ
magnétique dans un espace-temps plat et en vert le champ magnétique dans la
métrique de Schwarzschild. A droite, lignes de champ magnétique dans le cylindre
lumière (en noir) pour une inclinaison χ = 90◦ de l’axe magnétique par rapport à
l’axe de rotation avec en rouge le champ magnétique dans un espace-temps plat et
en vert le champ magnétique dans la métrique de Schwarzschild.

3.1.3 Forme des calottes polaires

Le changement de métrique mais aussi d’inclinaison χ de l’axe magnétique en-
trâıne une modification de la forme et de la taille des calottes polaires vu qu’il s’agit
des surfaces délimitées par les points où les dernières lignes de champ magnétique tra-
versent la surface de l’étoile à neutrons. Cela pourrait influencer l’émission magnétosphérique
du pulsar vu que, on l’a vu dans la section 1.2, ces calottes polaires (et surtout les
cavités polaires situés juste au-dessus) ont un rôle à jouer dans l’accélération des
particules responsables de l’émission magnétosphérique du pulsar.

Ainsi on peut voir sur la Fig. 3.2 que la taille de la calotte polaire sera légèrement
plus grande dans un espace-temps plat que dans un espace-temps déformé par la
masse de l’étoile à neutrons. On notera surtout le changement important de la forme
de ces calottes polaires quand on passe de χ = 0◦, où la calotte polaire est quasiment
circulaire, à χ = 90◦. Cela est dû au fait que les lignes de champ magnétiques sont
entrâınées par la rotation de l’étoile à neutrons, comme on peut le voir sur la Fig. 3.1,
affectant fortement la forme des calottes polaires pour χ = 90 vu que c’est pour cette
inclinaison de l’axe magnétique que leur vélocité, et celle des lignes magnétiques les
délimitant, sera maximale à la surface de l’étoile à neutrons.
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Figure 3.2 – Forme des calottes polaires dans un espace-temps plat (métrique
de Minkowski) en rouge et dans la métrique de Schwarzschild en vert pour une
inclinaison nulle entre l’axe de rotation et l’axe magnétique (χ = 0◦) à gauche et
pour un axe magnétique perpendiculaire à l’axe de rotation (χ = 90◦) à droite.

Dans la métrique de Schwarzschild, le rayon du cylindre lumière ne sera plus égal
au rapport de c sur la vitesse angulaire Ω = dφ/dt. En effet, la limite du cylindre
lumière dépendra du temps propre que l’observateur local mesure sur son horloge

dτ = dt

√
1− RS

r
comparé à dt, celui mesuré par l’horloge d’un observateur lointain.

Pour un observateur local situé à l’altitude r, la vitesse de la lumière c pour cette

observateur sera atteinte quand rΩ = c

√
1− RS

r
. En résolvant pour r on trouve

le rayon du cylindre lumière en relativité générale par RRG
cyl =

c

Ω

√
1− RS

RRG
cyl

ce qui

donne approximativement :

RRG
cyl ≈ Rcyl

(
1− 1

2

RS

Rcyl

− 3

8

R2
S

R2
cyl

)
. (3.12)

On a donc, pour le modèle d’étoile à neutrons que l’on a choisi avec Rcyl = 10R? =
20RS, RRG

cyl qui vaut environ 97% de Rcyl, le rayon du cylindre lumière dans un
espace-temps plat.

Voyons maintenant les conséquences de cette structure magnétique sur l’émission
pulsée haute énergie et radio des pulsars millisecondes.

3.2 Temps de vol des photons et aberration

Dans chacune des deux métriques, plate et courbe, on va rechercher les coor-
données des points d’impact sur la sphère céleste des photons issus de l’émission
radio et haute énergie du pulsar. On devra alors appliquer une correction sur ces co-
ordonnées afin de prendre en compte le temps de vol mais aussi l’aberration due au
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passage d’un référentiel en mouvement (celui du pulsar en rotation) à un référentiel
fixe (celui de l’observateur représenté par la sphère céleste).

Nous rappellerons d’abord l’importance de ces effets dans un champ magnétique
dipolaire dans le vide puis nous déterminerons la façon dont on va inclure ces effets
dans nos simulations.

3.2.1 Effet d’aberration, de retard et de champ magnétique

L’émission radio et haute énergie des pulsars prennent naissance à haute alti-
tude dans la magnétosphère, bien au-delà de la surface pour les pulsars jeunes de
période P & 100 ms. La corotation de ces sites d’émission à des vitesses relati-
vistes imprime des caractéristiques uniques aux profils des pulses en impactant sur
la relation entre la géométrie des zones émettrices et leur signature observationnelle.

Phillips, 1992 a détaillé l’impact de plusieurs effets sur le temps d’arrivée des
pulses de toute nature. Considérons deux zones d’émission localisées à une altitude r1

et r2. Pour des photons s’éloignant radialement de l’étoile à neutrons, le délai intro-
duit par la différence de chemin à parcourir se concrétise par un déphasage :

∆tr
P

=
r1 − r2

2 π Rcyl

. (3.13)

L’entrâınement des zones de production de photons par la rotation du pulsar pro-
voque une projection de la direction de propagation des photons dans le sens de la
rotation d’une valeur de :

θa = arctan
(vφ
c

)
= arctan

(
r sinχ

Rcyl

)
. (3.14)

Pour les deux sites d’émission, cela introduit un délai supplémentaire de :

∆ta
P

=
1

2π

[
arctan

(
r1 sinχ

Rcyl

)
− arctan

(
r2 sinχ

Rcyl

)]
. (3.15)

Enfin, la rotation du dipole incurve les lignes de champ dans le sens inverse de la
rotation. Shitov, 1983 en a donné une expression simple telle que le retard induit
par cet effet se monte à :

∆tB
P

=
1.2 sin2 χ

2π

[(
r2

Rcyl

)3

−
(
r1

Rcyl

)3
]
. (3.16)

Le retard total est alors la somme de chacune de ces contributions ∆tΣ = ∆ta +
∆tr + ∆tB.

Blaskiewicz et al., 1991 ont étendu cette étude à la polarisation de l’émission
radio en montrant l’existence d’un délai supplémentaire entre le point d’inflexion de
l’angle de polarisation et le milieu du pulse radio. À tout cela il faudrait aussi ajouter
l’effet du courant magnétosphérique sur ce délai temporel comme l’ont souligné
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Hibschman et Arons, 2001.

3.2.2 Effet de la gravitation

Le temps de vol du photon étant égal à la longueur de sa trajectoire divisée par
la vitesse de la lumière dans le cas d’un espace-temps plat, dans nos simulations
en métrique de Minkowski, on calcule celui-ci en divisant la distance de l’étoile à
neutrons à la sphère céleste Rsphere par la vitesse de la lumière et en rajoutant,
comme on l’a vu dans la section 2.3, un terme prenant en compte la position du
point d’émission par rapport à la ligne de visée ce qui donne à grande distance du
pulsar :

tvol ≈
Rsphere

c
− ~nobs · ~r0

c
(3.17)

Rsphere est le rayon de la sphère céleste, ~r0 est le vecteur reliant l’origine au point
d’émission du photon et ~nobs est le vecteur unitaire désignant la direction de l’obser-
vateur par rapport au point d’émission. Comme ici on récupère juste les coordonnées
du point d’impact du photon sur la sphère céleste, ”l’observateur” se situe au niveau
du point d’impact et ~nobs a donc la même orientation que la trajectoire du photon
qui elle-même est la tangente aux lignes de champ magnétique. Soit ~n la direction
initiale de propagation du photon qui est le vecteur tangent unitaire aux dernières
lignes de champ magnétique fermées, on a donc ici ~nobs = ~n.
Dans le cas d’un espace-temps déformé par la masse de l’étoile à neutrons, le temps
de vol dans la métrique de Schwarzschild est calculé en intégrant l’équation (2.13).

Pour simuler l’effet de l’aberration sur le rayonnement que l’on reçoit du pul-
sar, on remplace le vecteur ~n′ donnant la direction de propagation du photon au
point d’émission dans le référentiel tournant du pulsar par ~n, le vecteur direction
de propagation du photon au point d’émission dans le référentiel de l’observateur
statique. Les composantes de ce vecteur ~n′ peuvent se retrouver par transformation
de Lorentz :

— n′‖ et n‖ sont les composants de ~n′ et ~n parallèles à ~β,

— n′⊥ et n⊥ sont les composantes de ~n′ et ~n perpendiculaires à ~β,

~β étant le vecteur vitesse normalisé du point d’émission tel que ~β =
~v

c
et comme

ici la vitesse de ce point d’émission provient du fait qu’il est en corotation avec le

pulsar, on a β =
rΩ

c
sin θ, où θ est la colatitude du point d’émission, et on pose le

facteur de Lorentz du point d’émission γ =
1√

1− β2
.

Le facteur Doppler η associé à cette rotation est η =
1

γ(1− ~β · ~n)
= γ(1 + ~β ·~n′),

on trouve ensuite la relation donnant ~n′ en fonction de ~n par décomposition en
composante parallèle et perpendiculaire à la vitesse sont :

~n′‖ = γ η (~n‖ − ~β) (3.18)

~n′⊥ = η ~n⊥ (3.19)
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ou de manière vectorielle on peut écrire ~n ainsi (Dyks et Rudak, 2003) :

~n =
1

η

[
~n′ + γ

(
γ

γ + 1
(~β · ~n′) + 1

)
~β

]
. (3.20)

Dans un espace-temps déformé par la masse de l’étoile à neutrons, la formule d’aber-
ration (3.20) reste valable à condition de remplacer la vitesse de corotation mins-
kowskienne β par la vitesse de corotation telle que mesurée par un observateur local
et notée βRG ce qui implique de remplacer aussi le facteur de Lorentz γ par γRG tel
que :

βRG =
β√

1− Rs
r

(3.21)

γRG =
1√

1− β2
RG

. (3.22)

Le terme correctif dans la vitesse provient de la dilatation du temps des horloges
se situant dans un champ gravitationnel. La vitesse corrigée est supérieure à son
homologue minskowskien car l’horloge de l’observateur local tique plus lentement.

3.3 Émission haute énergie

Dans cette section, on trace la trajectoire des photons du rayonnement haute
énergie émis depuis la magnétosphère afin de déterminer comment celui-ci est affecté
par le champ gravitationnel de l’étoile à neutrons.

Pour cela, on suppose que cette émission haute énergie provient des cavités al-
longées présentées dans la section 1.3, on admet cependant qu’il n’y a émission
que pour une distance à l’origine (le centre de l’étoile à neutrons) inférieure ou
égale à 95% du cylindre lumière afin d’éviter des effets indésirables, notamment en
terme d’aberration, dus à des photons émis trop près du cylindre lumière et dont
le facteur de Lorentz tendrait vers l’infini. Ainsi l’émission se produit le long des
dernières lignes de champ magnétique fermées, depuis la calotte polaire où elles
coupent la surface de l’étoile à neutrons jusqu’à r = 0.95Rcyl, les points d’émission
étant régulièrement espacés sur ces lignes de champ en imposant une distance d’un
dixième du rayon de l’étoile ∆` = 0.1R∗ entre chaque point d’émission d’un photon.
En appliquant cette technique d’un pôle magnétique jusqu’à l’autre, on aura alors
des points d’émission répartis sur toute cette ligne de champ fermée. Les dernières
lignes de champ magnétique sont alors les lignes de champ pour lesquelles la dis-
tance maximale de ces points à l’axe de rotation est celle du cylindre lumière. On
peut alors retrouver les calottes polaires délimitées par l’identification des pieds des
dernières lignes de champs qui se referment à la surface de l’étoile à neutrons.

On suppose également que l’émission par rayonnement de courbure est le princi-
pal mode d’émission haute énergie. On considère alors que les photons sont simple-
ment émis avec une direction de propagation initiale tangente aux dernières lignes de
champ magnétique comme illustré sur la Fig. 1.16. À partir d’un point d’émission,
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on déduit la tangente aux lignes de champ magnétique (~tB = ~B/B) d’après les
équations décrivant ce champ magnétique que l’on a vu dans la section 3.1, cette
tangente indique la direction de propagation du photon dans le référentiel tournant
~n′ph. Il faut corriger cette direction de l’effet d’aberration pour en déduire la direction
de propagation de ce photon ~nph pour un observateur lointain inertiel en appliquant
la formule d’aberration (3.20). Ce vecteur est décomposé en coordonnées sphériques
par l’introduction de deux angles φem et θem tels que :

~nph = sin θem cosφem ~ex + sin θem sinφem~ey + cos θem ~ez. (3.23)

On imagine que ce photon impacte la sphère céleste à grande distance au point de
coordonnées (φem, θem). φem est associé au temps d’arrivée des photons, il faut donc
lui rajouter une correction induite par le temps de vol de la source au détecteur.
Ce temps est donné par l’expression (3.17) en géométrie minkowskienne et par
l’intégration de (2.13) en géométrie de Schwarzschild. Ce délai temporel supplémentaire
se traduit par une phase δφem supplémentaire comparée au cas sans prise en compte
du temps de vol d’où la phase de détection (Dyks et Rudak, 2003) :

φ = −φem − δφem (3.24)

obtenue en inversant le signe de la phase pour tenir compte de la rotation de l’étoile
(une phase φem > 0 est détectée avant une phase φem < 0 donc la première arrive à
un instant antérieur à la deuxième). Il est à noter que le temps de vol n’influe pas
sur la position θem.

Figure 3.3 – Tracé de la carte des points d’impact dans le cas d’un espace-temps
plat, image tirée Saito, 2011.
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Pour simuler le rayonnement haute énergie reçu dans la métrique de Schwarz-
schild, on a calculé, à nouveau grâce aux méthodes présentées dans la section 2.1, les
coordonnées du photon quand il atteindra une distance de r = 1000Rcyl, distance
à laquelle la déformation de l’espace-temps par le champ gravitationnel de l’étoile
est quasi-nulle. On peut voir ces coordonnées comme celles du point d’impact du
photon sur une sphère céleste dont le rayon est de 1000Rcyl fois celui du cylindre
lumière. On trace ainsi des cartes de ces points d’impact sur cette sphère céleste
dans la métrique de Schwarzschild afin de comparer avec celles obtenues dans la
métrique de Minkowski où, du fait de l’espace-temps plat, l’on a juste à prolonger
les tangentes aux dernières lignes de champ magnétique jusqu’à la sphère céleste,
comme sur la Fig. 3.3, pour obtenir les coordonnées des points d’impact sur celle-ci.

3.3.1 Projection des lignes de champ

Avant de présenter les cartes d’émission obtenues à partir de la méthode ci-
dessus, on va d’abord s’intéresser aux projections des dernières lignes de champ
magnétique fermées formées par les points d’impact des photons émis le long de
celle-ci sur la sphère céleste des Fig. 3.4 à 3.7, et ce afin de bien comprendre l’impact
de la gravitation et du temps de vol sur les courbes de lumière.

Dans ces figures, l’inclinaison de l’axe magnétique est χ = 60◦ et on ne considère
que 32 de ces lignes de champ magnétiques réparties de façon à ce que les points où
ces lignes traversent la surface de l’étoile à neutrons (au niveau des calottes polaires)
soient uniformément répartis en terme de longitude dans le repère sphérique du
champ magnétique.

Une longitude de 360◦ sur la sphère céleste correspond à une phase de 1 soit
une rotation du pulsar sur lui-même. Les phases de chacune de ces cartes ont été
centrées afin que chacune ait à la phase 0 le point d’impact correspondant au photon
qui serait émis par le centre de la calotte polaire Nord.

La Fig. 3.4 est l’image obtenue dans un espace-temps plat en prenant en compte
l’aberration et en ajoutant une correction sur la phase pour le temps de vol des
photons. On y a indiqué l’angle (en degrés) entre les directions de propagation du
photon avant et après avoir pris en compte l’aberration et le temps de vol. On notera
ainsi que ces deux paramètres ne sont pas négligeables vu que l’on a des angles de
près de 180◦ entre les deux directions de propagation du photon.

La Fig. 3.5 est l’image obtenue dans la métrique de Schwarzschild en prenant
en compte l’aberration et en ajoutant une correction sur la phase pour le temps de
vol des photons. Ici on a mesuré l’angle entre la direction initiale de propagation
des photons sans aberration ni temps de vol et la direction finale de propagation du
photon lors de l’impact sur la sphère céleste en prenant en compte l’aberration et
le temps de vol du photon. On voit que les angles ainsi mesurés sont très similaires
à ceux de la Fig. 3.4, la courbure de la trajectoire des photons ne doit donc pas
être très importante, elle pourrait cependant être suffisante pour induire des effets
plus subtils sur l’émission haute énergie, on peut notamment voir ici que l’image des
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calottes polaires (où plutôt leur ombre) est sensiblement déformée et un peu plus
étendu que dans la métrique de Minkowski.

La Fig. 3.6 est l’image obtenue dans la métrique de Schwarzschild lorsque l’on
applique la correction sur la phase pour prendre en compte le temps de vol des
photons dans cette métrique. Ce temps de vol est comparé à un temps de référence,
celui que met le photon émis au centre de la calotte polaire Nord pour atteindre la
sphère céleste. Sans surprise les photons émis loin des calottes polaires (dont on peut
apercevoir la forme sur cette figure) ont l’avance la plus importante sur ce temps de
référence, non seulement parce qu’ils sont émis plus près de la sphère céleste mais
également parce que les effets du champ gravitationnel sont plus importants lorsque
l’on se rapproche de l’étoile à neutrons et donc ils subiront moins de courbure de
leur trajectoire et le délai Shapiro associé.

La Fig. 3.7 est elle aussi obtenue dans la métrique de Schwarzschild et inclut
également la correction sur la phase due au temps de vol des photons. Dans cette
image est comparé le temps de vol de chacun des photons dans la métrique de
Schwarzschild au temps de vol qu’ils auraient dans un espace-temps plat. Comme
attendu le décalage entre les deux temps de vol est plus important à proximité de
l’image des calottes polaires : les photons provenant de cette zone étant émis plus
près de l’étoile à neutrons, les effets de son champ gravitationnel sur eux est plus
important.
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Figure 3.4 – Projection à partir des lignes de champs magnétiques sur la sphère
céleste dans un espace-temps plat incluant les effets d’aberrations et le temps de vol
propre à cette géométrie. Le code couleur représente la valeur de l’angle (en degrés)
entre la direction de propagation du photon sans aberration ni temps de vol et sa
direction de propagation avec temps de vol et aberration.
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Figure 3.5 – Projection dans la métrique de Schwarzschild. Le code couleur
représente la valeur de l’angle (en degrés) entre la direction de propagation initiale
du photon sans temps de vol ni aberration et sa direction de propagation final.
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Figure 3.6 – Projection dans la métrique de Schwarzschild sans effets d’aberra-
tions. Le code couleur représente la différence (normalisé par la phase) entre le temps
de vol de chaque photon et un temps de vol de référence (celui du photon émis au
centre de la calotte polaire Nord).
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Figure 3.7 – Projection dans la métrique de Schwarzschild. Le code couleur
représente la différence (normalisé par la phase) entre le temps de vol de chaque
photon dans la métrique de Schwarzschild et leur temps de vol dans un espace-temps
plat
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3.3.2 Cavités minces

A partir des cartes d’impact des photons sur la sphère céleste, en incluant les
effets d’aberration et le temps de vol des photons propre à chaque métrique, on a
pu réaliser des cartes d’émission en trois dimensions : l’intensité du rayonnement
reçu sur la sphère céleste en fonction des coordonnées de longitude (la phase du
pulsar) et de colatitude de celle-ci I(φ, θem). L’intensité est ici déterminée comme
étant le nombre de photons reçus sur la même zone de dimension 0.5×0.5 degrés en
colatitude et longitude sur la surface de la sphère céleste. On considérera cette fois
un millier de lignes de champ magnétique afin d’avoir une résolution suffisante du
rayonnement reçu sur la sphère céleste. La Fig. 3.8 représente ces cartes d’émission,
dans un espace-temps plat (métrique de Minkowski) pour différentes inclinaisons χ

de l’axe magnétique : 90◦, 60◦ et 30◦. On y a aussi inclus les courbes de lumière,
soit une coupe de la carte d’émission en 3 dimensions suivant la colatitude, pour
différentes inclinaisons de la ligne de visée ζ qui correspond à la colatitude sur la
sphère céleste (voir la section 3.5 pour une comparaison dans les deux métriques
de certaines de ces courbes de lumière). La Fig. 3.9 représente la même chose mais
dans la métrique de Schwarzschild. Le code couleur de ces cartes d’émission dépeint
l’intensité reçue en allant du clair au sombre en partant du blanc pour une intensité
nulle, l’intensité sur les cartes d’émission et les courbes de lumière est normalisée par
l’intensité maximale reçue pour l’inclinaison χ correspondante de l’axe magnétique.

On retrouve sur ces cartes d’émission et les courbes de lumière associées les
pulses de l’émission haute énergie. On peut remarquer, et c’est particulièrement fla-
grant pour le cas χ = 90◦, que ces pulses semblent légèrement plus larges dans la
métrique de Schwarzschild que dans celle de Minkowski. Cela pourrait s’expliquer
par les phénomènes de distorsion de l’image que l’on avait introduits dans la sec-
tion 2.2 et dont on avait déjà constaté les effets dans la section 2.3 sur le flux de
rayonnements thermiques provenant des calottes polaires : la courbure des rayons
lumineux augmente la taille des images reçues et augmente la visibilité de certaines
zones d’émission. Comme pour les Fig. 3.4 à 3.7, on peut déjà voir que l’image de la
calotte polaire sera un peu plus grande dans la métrique de Schwarzschild que dans
un espace-temps plat, certainement parce que plus l’émission a lieu près de l’étoile
à neutrons, plus de photons seront capturés par son champ gravitationnel et retom-
beront sur l’étoile. Les calottes polaires sont justement la région où les dernières
lignes de champ magnétique, d’où provient l’émission, rejoignent l’étoile à neutrons.
Le tableau 3.1 montre l’intensité maximale, le nombre maximum de photons reçus
sur une même zone de la sphère céleste, pour les différentes valeurs de l’inclinaison
χ dans les deux métriques. L’on peut y voir que l’intensité maximale du rayonne-
ment haute énergie y est moins importante dans la métrique de Schwarzschild que
dans un espace-temps plat car l’émission est plus étalée sur la sphère céleste à cause
des effets de distorsion de l’image mais on peut également voir que cette différence
semble diminuer avec l’inclinaison χ de l’axe magnétique.
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Figure 3.8 – Cartes d’émission pour différentes inclinaisons de l’axe magnétique
(de haut en bas : 90◦, 60◦ et 30◦) dans un espace-temps plat avec les courbes lumières
pour différents angles d’observation ζ.
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Figure 3.9 – Cartes d’émission pour différentes inclinaisons de l’axe magnétique
(de haut en bas : 90◦, 60◦ et 30◦) dans la métrique de Schwarzschild avec les courbes
lumières pour différents angles d’observation ζ.
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Table 3.1 – Intensité maximale (en nombre de photons) du rayonnement haute
énergie pour différentes valeurs de l’inclinaison χ de l’axe magnétique

χ Minkowski Schwarzschild

90◦ 195 87
60◦ 154 75
30◦ 60 58

3.3.3 Cavités épaisses

Nous avons jusque là simulé l’émission provenant de particules accélérées le
long des dernières lignes de champ magnétique dans les cavités allongées, la zone
d’émission des photons de haute énergie était donc supposée infiniment fine. Pour
que notre modèle d’émission soit plus réaliste, on suppose une certaine épaisseur
de cette zone d’émission, les cavités allongées n’étant évidemment pas infiniment
fines, pour cela on rajoute des lignes de champ magnétique qui vont se refermer sur
l’étoile à neutrons au-dessus et en dessous des dernières lignes de champ magnétique
fermées. Un poids gaussien w(θ) est attribué aux photons émis le long de ces lignes
de champ de manière à ce que l’émission soit maximale le long de la dernière ligne
de champ magnétique fermée :

w(θ) = e
−(θ−θcp)2

δ2 (3.25)

avec δ = 1
5
∆θ, ∆θ étant la variation de la colatitude du point ou les lignes de champs

se referment sur la surface de l’étoile à neutrons (ici on a pris ∆θ = π
100

), θ étant
la colatitude du point ou la ligne de champ ”sort” de l’étoile à neutrons (là où la
ligne de champ traverse la surface de l’étoile à neutron au niveau de la calotte polaire
nord), et θcp celui du point d’où ”sort” la dernière ligne de champ magnétique fermée.
Ces colatitudes étant mesurées dans le repère sphérique du champ magnétique où
la colatitude 0 correspond à la position du pôle magnétique Nord sur la surface de
l’étoile.

C’est ainsi que l’on a pu tracer les cartes d’émission des Fig. 3.10 et 3.11 pour
une zone d’émission épaisse respectivement dans la métrique de Minkowski et dans
la métrique de Schwarzschild.
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Figure 3.10 – Cartes d’émission dans le domaine des hautes-énergies pour
différentes inclinaisons de l’axe magnétique (de haut en bas : 90◦, 60◦ et 30◦) dans un
espace-temps plat pour une épaisseur définie de la zone d’émission avec les courbes
lumières pour différents angle d’observation ζ.
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Figure 3.11 – Cartes d’émission dans le domaine des hautes-énergies pour
différentes inclinaisons de l’axe magnétique (de haut en bas : 90◦, 60◦ et 30◦) dans
la métrique de Schwarzschild pour une épaisseur définie de la zone d’émission avec
les courbes lumières pour différents angle d’observation ζ.
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On constate qu’en incluant une épaisseur de la zone d’émission, les courbes de
lumière sont moins abruptes, moins ”piquées”, et se rapprochent effectivement un
peu plus de ce que l’on peut observer pour l’émission haute énergie d’un vrai pulsar,
comme sur la Fig. 1.4 de la section 1.2, certains pics visible sur les Fig.3.8 et 3.9
vont même se confondre pour former une seul pulse plus large, notamment pour
χ = ζ = 90◦ et pour χ = 30◦ avec ζ = 60◦ (à nouveau, voir la section 3.5 pour une
comparaison dans les deux métriques de certaines de ces courbes de lumière).

On peut également noter un contraste plus élevé entre les zones sans émission
et avec émission, du fait de la multiplication des points d’émission, l’intensité du
rayonnement perçu semble donc être plus importante sur toute la sphère céleste.
Autre changement remarquable, l’apparition d’émission, et même de pulses au sein
de l’image de la calotte polaire, cette émission ne pouvant provenir des calottes
polaires elles-même, elle doit être due aux lignes de champ magnétique autour des
dernières lignes de champ magnétique fermées.

Comme pour le tableau 3.1, le tableau 3.2 représente l’intensité maximale reçue
pour différentes valeurs de l’inclinaison χ dans un espace-temps plat (métrique de
Minkowski) et dans la métrique de Schwarzschild. Contrairement à ce que l’on a pu
voir dans le tableau 3.1, ici l’intensité maximale est plus importante dans la métrique
de Schwarzschild malgré les effets de distorsion de l’image qui devraient normalement
étaler l’intensité sur la sphère céleste. Cela pourrait être dû au délai Shapiro qui,
affectant plus le rayonnement émis près de la surface de l’étoile à neutrons que
celui émis à sa périphérie, pourrait générer une concentration importante de points
d’impact de photons en certaine région de la sphère céleste.

Table 3.2 – Intensité maximale (en nombre de photons) du rayonnement haute
énergie pour différentes valeurs de l’inclinaison χ pour une zone d’émission avec
une épaisseur.

χ Minkowski Schwarzschild

90◦ 1973 2141
60◦ 1179 1484
30◦ 873 920
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3.4 Émission radio

Dans notre modèle de magnétosphère de pulsar, on admet également la présence
de cavités polaires, comme celles décrites dans la section 1.2, où l’on aura aussi
une émission par rayonnement de courbure. Dans ces cavités polaires, les particules
à l’origine du rayonnement de courbure sont principalement des particules secon-
daires issues du processus de création de paires avec un facteur de Lorentz assez
faible (de l’ordre de 102) et les lignes de champ magnétique le long desquelles elles
sont accélérées ont elle-même une faible courbure (et donc un important rayon de
courbure ρ). D’après l’équation 1.47, la fréquence du rayonnement émis devrait être
assez faible et il est en effet considéré que c’est dans la région polaire que provient
le rayonnement radio des pulsars.

On sait que le rayon approximatif d’une calotte polaire est deRcp ≈ R∗
√
R∗/Rcyl.

Le demi-angle au sommet du cône dont la base forme la calotte polaire est θcp. Les
lignes de champ ayant une inclinaison par rapport à la normale à la surface de l’étoile
et le rayonnement étant dirigé le long de ces lignes de champs, on peut montrer que
les photons sont émis dans un autre cône de demi-ouverture égale à 3

2
θcp. Cet angle

représente une bonne approximation de la largeur des pulses radio.

L’altitude d’échappement des photons de la magnétosphère n’est pas contrainte
de manière précise. Il était couramment admis que les basses fréquences proviennent
du voisinage immédiat de la surface. Mais l’accumulation de données radio de plus
plus en précises concernant la forme et la largeur des pulses montrèrent sans am-
bigüıté que pour les pulsars jeunes ces photons proviennent d’une altitude beaucoup
plus haute, comparable à une fraction non négligeable de la taille du cylindre lumière,
de l’ordre de 1-10% (Mitra, 2017). De plus l’angle d’ouverture du cône d’émission
dépend de l’altitude de provenance des photons. Les lignes de champ dipolaire étant
divergentes, un éloignement de l’étoile provoque un élargissement de ce cône et par
conséquent un étalement du profil radio. Un élargissement des profils radio est effec-
tivement observé des hautes fréquences vers les basses fréquences. Conjointement,
le rayon de courbure des lignes de champ augmente et la fréquence de courbure ca-
ractéristique associée décrôıt. Il en résulte une relation entre la fréquence et l’altitude
que l’on nomme cartographie altitude-fréquence. cette constatation sera mise à pro-
fit au prochain chapitre où nous détaillerons le calcul du rayonnement de courbure
en fonction de la fréquence en y associant l’évolution de la forme des pulses.

Pour simuler cette émission radio, un échantillonnage de la calotte polaire a
été réalisé en partant des pieds de lignes de champ jusqu’au pole magnétique.
L’échantillonnage est paramétré de manière à ce qu’entre le pôle magnétique et
chaque point d’intersection de la ligne de champ avec la surface de l’étoile à neu-
trons il y ait exactement 104 points d’émission régulièrement espacés soit, dans le
repère sphérique du champ magnétique, la colatitude de ces points est définie par :

θ − θpm = arccos

[
1− (1− cos θcp)

i

N

]
(3.26)

Dans le repère sphérique où la colatitude est mesurée à partir de l’axe magnétique,
θcp est la colatitude du point d’intersection entre la ligne de champ et la surface de
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l’étoile à neutrons, θpm est la colatitude du pole magnétique considéré (0 ou 180◦

dans ce repère) et i un entier variant entre 1 et N , N étant le nombre de points
d’émission que l’on veut entre le pôle et la calotte polaire, on aura donc :

— pour la calotte polaire nord θ ≈ θcp

√
i
N

, on peut d’ailleurs voir la répartition

des points d’émission dans cette calotte sur la Fig. 3.12,

— pour la calotte polaire sud θ ≈ π − (π − θcp)
√

i
N

.

Comme on l’a dit, on fixe dans les simulations ce nombre de points à N = 10000.

Figure 3.12 – Points d’émission radio dans la calotte polaire (limite en noir) pour
une inclinaison de l’axe magnétique de 90◦.

Il suffit d’effectuer une rotation de ce repère d’un angle égal à l’inclinaison χ

entre l’axe magnétique et l’axe de rotation pour retrouver les coordonnées de ces
points d’émission dans le repère sphérique du pulsar où la colatitude est mesurée
à partir de l’axe de rotation. La trajectoire de ces photons radio peut être alors
simulée en prenant comme direction initiale de propagation la tangente aux lignes
de champ magnétique passant par ces points d’émission et l’altitude d’émission r0

sera bien sûr égal au rayon de l’étoile R? du fait que les points d’émission sont
situés à la surface de celle-ci. On pourra alors, comme on l’a vu pour l’émission
haute énergie, soit prolonger cette tangente pour obtenir la trajectoire des photons
dans un espace-temps plat soit intégrer les équations (2.6) et (2.7) pour obtenir sa
trajectoire dans le champ gravitationnel de l’étoile à neutrons, le tout en prenant en
compte l’aberration et le temps de vol du photon grâces aux méthodes et formules
présentées dans la section 3.2.

Pour se rapprocher de l’émission radio qu’on observe des pulsars, un poids est
attribué à chaque photon émis depuis ces points d’émission en fonction de la distance
de ces points au pôle magnétique et ce de manière à ce que le profil de l’émission se
rapproche d’une gaussienne. Ainsi, lors du tracé des cartes d’émission et des courbes
de lumière associés, l’intensité reçue sur une zone de 0.5 × 0.5 degrés de la sphère
céleste ne va pas augmenter d’une unité à chaque photon reçu, à la place elle va
augmenter d’un nombre I que l’on calcule ainsi pour les photons provenant de la
calotte polaire nord :

Inord = e
−θ2/θ2cp

σ2 (3.27)
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et pour la calotte polaire sud :

Isud = e
−(π−θ)2/(π−θcp)2

σ2 (3.28)

avec σ = 1√
10

, les angles θ et θcp étant respectivement la colatitude du point
d’émission et de la limite de la calotte polaire dans le repère sphérique du champ
magnétique.

Les Fig. 3.13 et 3.14 présentent les cartes d’émission ainsi obtenues pour différentes
valeurs de l’inclinaison χ de l’axe magnétique ainsi que les courbes de lumière issues
de ces cartes d’émission pour différentes inclinaisons ζ de la ligne de visée. On y
notera que l’image de la zone d’émission semble plus grande dans la métrique de
Schwarzschild comme on déjà pu le constater auparavant.

Les pulses radio semblent également plus importantes dans cette métrique que
dans un espace-temps plat. Or, comme on peut le voir sur le tableau 3.3 où est
affiché le maximum de l’intensité reçue pour chaque métrique, l’intensité maximale
reçue dans la métrique de Schwarzschild est toujours inférieure à celle reçue dans
la métrique de Minkowski. Il faut ici se rappeler que les courbes de lumière sont
normalisées par le maximum d’intensité reçue sur la sphère céleste et donc que la
taille plus importante des pulses dans la métrique de Schwarzschild est en fait due à
une intensité maximale moindre sur la sphère céleste, ce qui n’est pas étonnant du
fait des effets de distorsion de l’image que l’on a déjà observés auparavant qui ont
tendance à ”étaler” l’émission.

Table 3.3 – Intensité maximale du rayonnement radio pour différentes valeurs de
χ.

χ Minkowski Schwarzschild

90◦ 4108 3194
60◦ 4376 3381
30◦ 2510 1986
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Figure 3.13 – Cartes d’émission dans le domaine radio pour différentes inclinai-
sons de l’axe magnétique (de haut en bas : 90◦, 60◦ et 30◦) dans un espace-temps
plat avec les courbes lumières pour différents angles d’observation ζ.
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Figure 3.14 – Cartes d’émission dans le domaine radio pour différentes inclinai-
sons de l’axe magnétique (de haut en bas : 90◦, 60◦ et 30◦) dans la métrique de
Schwarzschild avec les courbes lumières pour différents angles d’observation ζ.
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Pour obtenir une émission radio un peu plus réaliste, on a également essayé
une répartition aléatoire mais homogène par unité de surface des points d’émission
dans la calotte polaire. Pour cela on utilise la formule exacte de l’équation (3.26)
en remplaçant i

N
par un nombre aléatoire compris entre 0 et 1. Pour obtenir une

distribution aléatoire sur les deux coordonnées à la surface de l’étoile (colatitude et
longitude) dans le repère sphérique de l’axe magnétique, on a ajouté à la valeur de
la longitude de chacun des points d’émission de la Fig. 3.12 un nombre aléatoire
compris entre 0 et ∆φ, avec ∆φ l’écart longitudinal entre deux rangées de points
(écarts selon la longitude entre deux des dernières lignes de champ magnétique
fermées sur la surface de l’étoile à neutrons). La Fig. 3.15 représente la distribution
de ces points au sein de la calotte polaire Nord. On constate une nette amélioration
de l’échantillonnage autour de l’axe magnétique comparé à la Fig. 3.12.

Figure 3.15 – Points d’émission radio dans la calotte polaire (limites en noir)
pour une inclinaison de l’axe magnétique de 90◦ avec une distribution aléatoire mais
homogène des points.

Les Fig. 3.16 et 3.17 montrent les cartes d’émission et courbes de lumière obte-
nues avec cette répartition des points d’émission avec 108 points d’émissions par
calotte polaire. On retiendra de ces cartes d’émission qu’il n’y a pas vraiment
de différence significative entre les deux façons de répartir les points d’émission à
l’intérieur des calottes polaires, d’ailleurs il n’y a pas de différence importante entre
les tableaux 3.3 et 3.4 où l’on a rapporté les intensités maximales dans chacune
des métriques pour différentes valeurs de l’inclinaison χ. Dans un souci de réalisme,
l’on utilisera dorénavant uniquement la répartition présenté dans la Fig. 3.15 pour
l’émission radio.

Table 3.4 – Intensité maximale du rayonnement radio (unité arbitraire) avec la
distribution des points d’émission vue dans la Fig. 3.15 pour différente valeur de χ.

χ Minkowski Schwarzschild

90◦ 4221 3235
60◦ 4387 3435
30◦ 2552 2021



3.4. ÉMISSION RADIO 83

  

180

180

180

    0

    0

    0
    0     1    0     1    0     0    1     1

co
la

tit
ud

e 
(°

)
co

la
tit

ud
e 

(°
)

co
la

tit
ud

e 
(°

)

phase phase phase phase

Figure 3.16 – Cartes d’émission dans le domaine radio pour différentes inclinai-
sons de l’axe magnétique (de haut en bas : 90◦), 60◦ et 30◦) dans un espace-temps
plat avec les courbes lumières pour différents angle d’observation ζ. La répartition
des points d’émission dans la calotte polaire est ici aléatoire comme sur la Fig. 3.15.
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Figure 3.17 – Cartes d’émission dans le domaine radio pour différentes inclinai-
sons de l’axe magnétique (de haut en bas : 90◦), 60◦ et 30◦) dans la métrique de
Schwarzschild avec les courbes lumières pour différents angle d’observation ζ. La
répartition des points d’émission dans la calotte polaire est ici aléatoire comme sur
la Fig. 3.15.
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Si pour un pulsar milliseconde, on soupçonne que l’émission radio a lieu relati-
vement près de la surface de l’étoile à neutrons, pour les pulsars avec une période
plus élevée il est généralement admis que le siège de celle-ci se situe à plusieurs fois
le rayon de l’étoile R? au-dessus des calottes polaires. On a donc réparti des points
d’émission le long des lignes de champ magnétique passant par les points sur la ca-
lotte polaire de la Fig. 3.15, deux points sur la même ligne de champ étant séparés
par une distance d’un dixième du rayon de l’étoile (comme pour l’émission haute
énergie dans les cavités allongées).

Les Fig. 3.18 et 3.19 sont les cartes d’émission radio obtenues dans les deux
métriques, respectivement Minkowski et Schwarzschild, pour une zone d’émission
comprise entre 1 et 2 R? au-dessus de la calotte polaire (donc à une distance du
centre de l’étoile entre 2 et 3 R?). Les Fig. 3.20 et 3.21 sont quant à elles les cartes
d’émission radio dans la métrique de Minkowski et de Schwarzschild pour une zone
d’émission comprise entre 3 et 4 R? au-dessus de la calotte polaire (donc à une
distance du centre de l’étoile entre 4 et 5 R?). Ce qui est visible sur ces cartes
d’émission, et un peu aussi sur la forme des pulses des courbes de lumière, c’est que
la taille de l’image de la zone d’émission, et donc la largeur des pulses, va augmenter
avec son altitude, tout simplement parce que la zone d’émission est elle-même plus
large du fait que les lignes de champ magnétique divergent de plus en plus les unes
des autres quand on s’éloigne de l’étoile à neutrons.

On notera également un décalage de phase des pulses comparé à l’émission pro-
venant de la surface des Fig. 3.16 et 3.17 car la phase 0 est toujours définie comme
la longitude du point d’impact du photon provenant du pôle magnétique (et donc
de la surface de l’étoile à neutrons), celui-ci a alors un temps de vol plus important
que celui des photons émis au-dessus de la calotte polaire ce qui se traduit sur les
cartes d’émission par un décalage de la phase de ces photons.

Les tableaux 3.5 et 3.6 nous donnent les intensités maximales correspondantes
dans les deux métriques pour chacune des altitudes de la zone d’émission, à nouveau
l’on peut y voir que l’intensité maximale sera moins important dans la métrique de
Schwarzschild.
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Figure 3.18 – Cartes d’émission dans le domaine radio pour différentes inclinai-
sons de l’axe magnétique (de haut en bas : 90◦, 60◦ et 30◦) dans un espace-temps plat
avec les courbes lumières pour différents angles d’observation ζ. La zone d’émission
est ici comprise entre 1 et 2 R? au-dessus des calottes polaires.
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Figure 3.19 – Cartes d’émission dans le domaine radio pour différentes inclinai-
sons de l’axe magnétique (de haut en bas : 90◦, 60◦ et 30◦) dans la métrique de
Schwarzschild avec les courbes lumières pour différents angles d’observation ζ. La
zone d’émission est ici comprise entre 1 et 2 R? au-dessus des calottes polaires.
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Figure 3.20 – Cartes d’émission dans le domaine radio pour différentes inclinai-
sons de l’axe magnétique (de haut en bas : 90◦, 60◦ et 30◦) dans un espace-temps plat
avec les courbes lumières pour différents angles d’observation ζ. La zone d’émission
est ici comprise entre 3 et 4 R? au-dessus des calotte polaire.
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Figure 3.21 – Cartes d’émission dans le domaine radio pour différentes inclinai-
sons de l’axe magnétique (de haut en bas : 90◦, 60◦ et 30◦) dans la métrique de
Schwarzschild avec les courbes lumières pour différents angles d’observation ζ. La
zone d’émission est ici comprise entre 3 et 4 R? au-dessus des calottes polaires.
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Table 3.5 – Intensité maximale du rayonnement radio (unité arbitraire) pour
différente valeur de χ pour une zone d’émission comprise entre 1 et 2 R? au-dessus
des calottes polaires.

χ Minkowski Schwarzschild

90◦ 2226 2023
60◦ 2318 2071
30◦ 1461 1340

Table 3.6 – Intensité maximale du rayonnement radio (unité arbitraire) pour
différente valeur de χ pour une zone d’émission comprise entre 3 et 4 R? au-dessus
des calottes polaires.

χ Minkowski Schwarzschild

90◦ 1980 1914
60◦ 1908 1841
30◦ 1194 1086

3.5 Courbes de lumière multifréquences

Afin d’avoir une meilleure idée de l’impact du champ gravitationnel, dans le
cadre de la relativité générale, sur l’émission que l’on va recevoir du pulsar, on
a tracé les courbes de lumière pour les deux domaines d’émission, radio et haute
énergie, à partir des cartes d’émission des sections 3.3 et 3.4, ces cartes d’émission
étant, comme on l’a déjà vu dans les sections correspondantes, les courbes de lumière
pour toutes les inclinaisons de la ligne de visée. On garde la normalisation de ces
cartes d’émission par le maximum d’intensité reçu sur la sphère céleste de manière
à ce que le maximum vaille 1 pour chacun des deux types d’émission, radio et haute
énergie. Ces courbes de lumière sont étendues au-delà de la première phase (chaque
phase suivante étant supposée identique) pour une meilleure visibilité de la série de
pulses radios. A nouveau on prendra comme début de phase (ou phase 0) pour ces
courbes de lumière le moment où l’on reçoit le photon émis par pôle magnétique
nord dans chacun des deux cas, espace-temps plat et métrique de Schwarzschild.

Les courbes de lumière ainsi obtenues sont représentées dans les Fig 3.22 à 3.25
avec :

— En rouge, la courbe de lumière de l’émission radio provenant de la surface de
la calotte polaire reçue dans un espace-temps plat (métrique de Minkowski).

— En vert, la courbe de lumière de l’émission radio provenant de la surface de
la calotte polaire reçue dans la métrique de Schwarzschild.

— En orange, la courbe de lumière de l’émission haute énergie provenant des
cavités allongées reçue dans un espace-temps plat.

— En bleu, la courbe de lumière de l’émission haute énergie provenant des ca-
vités allongées reçue dans la métrique de Schwarzschild.
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Figure 3.22 – Courbes de lumière dans les domaines radio et hautes-énergies pour
χ = 90◦ et ζ = χ = 90◦ pour une zone d’émission infiniment fine.

Figure 3.23 – Courbes de lumière dans les domaines radio et haute énergie pour
χ = 60◦ et ζ = χ = 60◦ pour une zone d’émission infiniment fine.
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Figure 3.24 – Courbes de lumière dans les domaines radio et haute énergie pour
χ = 45◦ et ζ = 50◦ pour une zone d’émission infiniment fine.

Figure 3.25 – Courbes de lumière dans les domaines radio et haute énergie pour
χ = 30◦ et ζ = 60◦ pour une zone d’émission infiniment fine.
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Sur la Fig. 3.22 représentant ces courbes de lumière pour un axe magnétique et
une ligne de visée perpendiculaire à l’axe de rotation (χ = ζ = 90◦), on peut voir clai-
rement que la forme générale des pulses est plutôt bien conservée d’une métrique à
l’autre cependant on peut également voir que le décalage temporel entre l’émission
haute énergie et l’émission radio est légèrement moins important (de l’ordre de
quelques centièmes de période) dans le cas relativiste : il s’agit probablement d’une
conséquence du délai Shapiro, en effet le retard induit par la courbure de la tra-
jectoire des photons sera plus important à proximité de l’étoile à neutrons et donc
pour l’émission radio, qui ici est émis à la surface de l’étoile, par rapport à l’émission
haute énergie dont la zone d’émission s’étend jusqu’à la proximité cylindre lumière.

On constate une différence plus importante de la forme des pulses haute énergie
entre un espace-temps plat et la métrique de Schwarzschild dans la Fig. 3.23, où on
a χ = ζ = 60◦, les pulses radio eux restent relativement inchangés. Dans la Fig. 3.24
ou on a χ = 45◦ et ζ = 50◦, on voit que la distance entre deux pics constitutifs
de la pulse va varier selon la géométrie de l’espace-temps, ces deux pics vont être
plus écartés dans la métrique de Schwarzschild. La Fig. 3.25 est la seule où une
modification de la forme des pulses radio dans la métrique de Schwarzschild est
clairement visible : comme ici on a χ = 30◦ et ζ = 60◦, la ligne de visée passe à la
limite de la calotte polaire et donc on profite pleinement des effets de distorsion qui
étendent la taille de l’image de la zone d’émission radio.

Les Fig. 3.26 à 3.29 montrent les courbes de lumière dans les domaines radio et
haute énergie (avec le même code couleur que sur les figures précédentes) pour une
zone d’émission du rayonnement haute énergie avec une certaine épaisseur le long
des dernières lignes de champ magnétique fermées. Comme on en avait déjà parlé
dans la section 3.3.3, les pics d’émissions en haute énergie sont plus épais, moins
”acérés”, certains pics d’émission fusionnent même comme sur les Fig. 3.26, 3.28 et
3.29. Il y a également des cas où l’intensité relative de ces pics semblent augmenter
de manière considérable comme sur la Fig. 3.27. On constate sur les Fig. 3.26 à
3.29 l’apparition de pics d’émission hautes-énergies au sein des pulses radio, pics
plus visibles dans la métrique de Schwarzschild mais également présents dans un
espace-temps plat, phénomène dû a ce que l’on pouvait déjà observer sur les cartes
d’émission des Fig. 3.10 et 3.11 où l’on voyait apparâıtre des composantes haute
énergie dans ”l’ombre” des calottes polaires lorsque l’on rajoute une épaisseur à
la zone d’émission haute énergie. A nouveau on peut constater, en comparant les
courbes oranges et bleues, que le délai sera légèrement moins important entre les
pulses radios et hautes-énergies dans la métrique de Schwarzschild.
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Figure 3.26 – Courbes de lumière dans les domaines radio et haute-énergie pour
χ = 90◦ et ζ = χ = 90◦ pour une zone d’émission haute énergie avec une certaine
épaisseur.

Figure 3.27 – Courbes de lumière dans les domaines radio et haute énergie pour
χ = 60◦ et ζ = χ = 60◦ pour une zone d’émission haute énergie avec une certaine
épaisseur.
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Figure 3.28 – Courbes de lumière dans les domaines radio et haute énergie pour
χ = 45◦ et ζ = 50◦ pour une zone d’émission haute énergie avec une certaine
épaisseur.

Figure 3.29 – Courbes de lumière dans les domaines radio et haute énergie pour
χ = 30◦ et ζ = 60◦ pour une zone d’émission haute énergie avec une certaine
épaisseur.
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On peut quantifier le décalage temporel entre l’émission radio et haute énergie
ainsi : soit deux photons émis à deux altitudes différentes r1 et r2, si ceux-ci s’éloignent
de l’étoile à neutrons, le décalage temporel ∆t21 entre la réception des deux signaux
(qui ne dépend pas de la distance à laquelle l’étoile est observée), l’intervalle espace-
temps d’un photon étant toujours nul (ds2 = 0), alors l’intervalle espace-temps pour
des photons avec une trajectoire purement radial sera dans la métrique de Schwarz-
schild :

−
(

1− RS

r

)
c2dt2 +

(
1− RS

r

)−1

dr2 = 0 (3.29)

Ce qui nous donne :

c dt =
dr

1− RS

r

(3.30)

En intégrant cette équation on peut alors calculer ∆t21, le décalage temporel entre
deux photons émis à deux altitudes différentes r1 et r2. La différence d’altitude
initiale entre les deux photons étant ∆r21 = r1 − r2, en normalisant par la période

de rotation du pulsar P =
2πRcyl

c
on obtient :

∆t21

P
=
r1 − r2

2π Rcyl

+
RS

2π Rcyl

ln

(
r1 −RS

r2 −RS

)
. (3.31)

Le premier terme correspond au temps de vol du photon dans un espace-temps
plat tel que donné par l’équation (3.13), c’est le second terme qui rend compte
du délai Shapiro. La Fig. 3.30 montre ce délai pour diverses valeurs du paramètre
de rotation R?/Rcyl ainsi que pour différentes altitudes r1 d’émission du premier
photon, le deuxième photon étant émis depuis la surface (r2 = R?).
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Figure 3.30 – Décalage ∆t21/P entre la réception de deux photons émis à deux
altitudes différentes pour différentes valeur du paramètre de R?/Rcyl et pour une
altitude d’émission initale du premier photon à R? en trait plein et 10R? en pointillé.

On peut voir sur cette figure que le décalage temporel a une croissance plus
importante quand le rapport R?/Rcyl n’est pas trop faible, or comme le rayon du

cylindre lumière est égal à
c

Ω
avec Ω la vitesse angulaire de l’étoile à neutrons, on en

déduit que les décalages entre photons seront plus importants pour une étoile avec
une vitesse de rotation élevée et donc une petite période P de rotation. Rajouté à
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cela que le décalage est plus important lorsque les photons sont émis plus près de la
surface de l’étoile et on en déduit donc que le décalage entre les émissions provenant
des environs de la surface de l’étoile et des parties supérieures de la magnétosphère
devrait être plus important pour des étoiles à neutrons avec une compacité et une
vitesse de rotation importante.



Chapitre 4

Caractérisation fréquentielle de
l’émission magnétosphérique

Dans le chapitre précédent, notre attention s’est portée sur la forme des pulses
émis en radio et en gamma, en montrant explicitement l’impact de la gravitation sur
la géométrie des profils et sur le déphasage entre le pulse radio principal et le premier
pulse gamma. Nous n’avons pas tenu compte des caractéristiques fréquentielles de
cette émission, fonction du point d’émission et plus particulièrement de la courbure
des lignes de champ. Mais qu’en est-il de leur distribution en fréquence c’est-à-
dire du spectre radio et gamma ? Comment évolue la forme des pulses en fonction
de la fréquence ? Ce chapitre tente de répondre à ces questions en apportant des
résultats quantitatifs précis si l’émission provient du rayonnement de courbure. Dans
un premier temps, on reprend la solution du champ électromagnétique en espace-
temps plat et donnée par Deutsch, 1955. Les effets gravitationnels et notamment
le décalage gravitationnel vers le rouge n’ont pas été abordés par manque de temps,
ce chapitre présentant des travaux toujours en cours.

4.1 Un modèle multi-longueurs d’onde cohérent

La modélisation multi-longueurs d’onde des pulsars en radio et en gamma se
contente généralement de calculer conjointement une courbe de lumière en radio
et une autre en gamma. Bien que cette stratégie permette déjà de contraindre les
paramètres géométriques de la magnétosphère, ceci n’est guère satisfaisant car les
profils de pulses évoluent en fonction de la fréquence ou de l’énergie. Une investiga-
tion multi-fréquences détaillée, incluant de manière cohérente le calcul des spectres
radio et gamma à partir par exemple du rayonnement de courbure s’avère beau-
coup plus contraignante et permettra de relier physiquement et quantitativement
la géométrie des lignes de champ, l’altitude des sites de production de photons, les
fonctions de distribution des particules émettrices ainsi que les courbes de lumière
associées.

Dans ce dernier chapitre, on s’intéresse en profondeur à cette vision détaillée
des processus d’émission à large bande de fréquences. Pour cela, on commence par

98
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un rappel de la méthode de calcul des propriétés de l’émission de courbure, sa
puissance et sa fréquence caractéristique, appliqué à la magnétosphère d’un pulsar.
Puis on déterminera le spectre haute énergie autour du GeV, donc de la bande de
Fermi/LAT, ainsi que quelques courbes de lumière caractéristiques pour conclure
sur le spectre et les profils radio.

4.2 Calcul du rayonnement de courbure

Dans la section 1.3.3, on a vu que le calcul de la fréquence du rayonnement de
courbure se fait à partir du rayon de courbure ρ de la trajectoire de la particule le long
de la ligne de champ magnétique, qui n’est autre chose que le rayon de courbure de
cette ligne de champ, en utilisant l’équation (1.47). Dans notre modèle, on suppose
que les particules suivent les lignes de champ dans le référentiel en corotation avec
l’étoile, la fréquence du rayonnement de courbure ν ′c est donc celle du référentiel en
mouvement. Afin de trouver la fréquence du rayonnement émis par notre pulsar en
rotation et telle que mesurée par un observateur lointain inertiel et immobile νc,
il faut tenir compte de l’effet Doppler et effectuer une transformation de Lorentz
du référentiel en corotation vers le référentiel inertiel de l’observateur. Ceci revient
à multiplier l’équation (1.47) par un facteur Doppler que l’on note η dû à cette
rotation. On aura ainsi νc = η ν ′c avec le facteur Doppler de manière générale mis
sous la forme :

η =
1

γ (1− ~β · ~n)
(4.1)

~n étant le vecteur unitaire donnant la direction de propagation initiale du photon
(tangent à la ligne de champ magnétique) telle que vue dans le référentiel de l’ob-
servateur et prenant en compte l’aberration, ainsi ~n est donné par l’équation (3.20).

Dans la suite de ce chapitre, on se restreint à un espace-temps plat qui ne tient
pas compte des effets de gravitation. À terme, on envisage de généraliser cette étude
à une métrique de Schwarzschild comme dans les chapitres précédents.

4.2.1 La courbure

Par définition, le rayon de courbure ρ est égal à l’inverse de la courbure notée ρ =
1/κ des lignes de champ magnétique.

Une trajectoire ou une ligne dans l’espace possède une courbure ainsi qu’une
torsion. Localement, en un point de cette courbure, on associe un trièdre (~T , ~N, ~B)
encore appelé repère de Frenet. La courbure κ indique le changement dans le vecteur
tangent ~T et la torsion τ indique la variation dans le plan osculateur au même point.
En résumé les formules de Frenet donnant les variations des vecteurs de base du
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trièdre sont :

d~T

ds
= κ ~N (4.2a)

d ~N

ds
= −κ ~T + τ ~B (4.2b)

d ~B

ds
= −τ ~N (4.2c)

La torsion n’intervient pas dans le calcul du rayonnement de courbure des particules.
La courbure elle-même se déduit donc de la dérivée de la tangente ~T = ~B/B aux
lignes de champ en fonction de l’abscisse curviligne s le long de ces lignes de champ :

κ =
1

ρ
=

∥∥∥∥∥d~T (s)

ds

∥∥∥∥∥ . (4.3)

On rappelle que la variation de l’abscisse curviligne ds est reliée aux variations des
coordonnées de la trajectoire (dx, dy, dz) par ds2 = γik dx

i dxk dans une géométrie
spatiale quelconque donnée par la métrique spatiale γik qui est la projection spa-
tiale de la métrique spatio-temporelle gik par rapport à un observateur donné. Dans
l’espace-temps de Minkowski en coordonnées cartésiennes, cette expression se sim-
plifie en ds2 = dx2 + dy2 + dz2.

Pour des courbes de géométrie connue, cette courbure peut être déterminée ana-
lytiquement, comme par exemple pour un dipôle statique pour lequel l’équation des
lignes de champ est connue, les lignes étant elles-mêmes chacune contenues dans un
plan. Pour un dipôle en rotation comme celui de Deutsch ou en relativité générale, il
n’est pas possible d’obtenir une expression analytique de cette courbe. Il faut l’esti-
mer numériquement en approximant la dérivée (4.3). Concrètement, on calcule cette

courbure en mesurant la variation ∆~T du vecteur tangent ~T aux lignes de champ
magnétique lorsque l’on se déplace le long de celles-ci d’une valeur ∆s de l’abscisse
curviligne s suffisamment petite pour que la différence finie représente une bonne
approximation de la dérivée. Typiquement une fraction du rayon de l’étoile ∆s . R∗
est suffisante. On remplace alors κ dans l’équation (4.3) par une version discrétisée
selon :

κ ≈

∥∥∥∆~T
∥∥∥

∆s
. (4.4)

Afin de minimiser les erreurs de discrétisation, on choisit une méthode aux différences
finies centrées telle que la variation du vecteur tangent dépendant de l’abscisse cur-
viligne soit :

∆~T ≈ ~T (s+ ∆s/2)− ~T (s−∆s/2) + o(∆s2). (4.5)

Connaissant le rayon de courbure local et la valeur du champ magnétique au point
d’émission dans le référentiel tournant, on remonte au spectre du rayonnement de
courbure dans le référentiel inertiel de l’observateur en imposant encore une fonction
de distribution en énergie pour les leptons émetteurs de photons. La situation la plus
simple consiste à prendre une distribution mono-énergétique de particules et dont
le spectre a été rappelé au chapitre 1.
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La forme des courbes de lumière et des spectres dépend fortement de la distri-
bution en énergie de ces particules. Les modèles actuels d’accélération de particules
primaires et de création de paires secondaires et de génération supérieure (tertiaires,
quaternaires,...) prédisent un pic du facteur de Lorentz autour de 107 pour les pri-
maires et de 102 pour les autres. Bien que notre démarche s’accommode facilement
d’une distribution quelconque de particules, dans ce chapitre, nous ne considérerons
que des particules mono-énergétiques. Les particules primaires seront responsables
de l’émission haute énergie au GeV tandis que les particules secondaires issues des
cascades produiront l’émission radio.

Dans un cadre plus réaliste d’une distribution quelconque en énergie des parti-
cules et non mono-énergétique, le rayonnement étant additif linéairement, le calcul
des spectres et des courbes de lumière suivra le même schéma d’addition linéaire des
contributions mono-énergétiques individuelles avec des poids respectifs correspon-
dants aux poids de la fonction de distribution. Par exemple, pour une population
contenant N1 particules d’énergie γ1 et N2 particules d’énergie γ2, l’émission totale
sera N1 fois celui du spectre mono-énergétique à γ1 auquel se superpose N2 fois celui
du spectre mono-énergétique à γ2. Une distribution continue est alors sub-divisée en
plusieurs intervalles de particules mono-énergétiques.

Passons maintenant en revue les résultats concernant les spectres mono-énergétiques
haute énergie et radio : pour chacun des deux cas, nous supposerons qu’à chaque
point d’émission, situé comme indiqué précédemment tout le long des dernières lignes
de champ magnétique avec un espacement curviligne ∆` entre chaque point, il y a
émission par rayonnement de courbure que l’on considérera provenir d’une particule
avec un facteur de Lorentz γ fixé pour chaque type d’émission. On considérera à
nouveau qu’il n’y a pas d’émission pour les points situés à plus de 95% de Rcyl de
l’origine.

L’estimation classique du facteur de Lorentz maximum atteignable par les parti-
cules dans le champ électromagnétique prend en compte le freinage par la réaction
de rayonnement pour compenser l’accélération par le champ électrique parallèle E‖
présent dans les cavités. La valeur précise de ce champ est fortement dépendante de
la dynamique au sein de cette cavité. En égalant la puissance rayonnée (1.46) et la
puissance fournie par ce champ électrique eE‖, le facteur de Lorentz devient :

γmax =

(
6π ε0

E‖ ρ
2

e

)1/4

≈ 107. (4.6)

Dans notre modèle du vide, E‖ ≈ 1012 V/m correspond à la limite supérieure, celle
du champ de Deutsch où le champ électrique n’est pas du tout écranté. En réalité,
cette valeur est bien moindre mais le facteur de Lorentz maximum ne varie qu’en
E

1/4
‖ , il est donc très peu sensible à une variation importante de ce champ.

4.2.2 L’émissivité

Dans un premier temps, le calcul des spectres que nous présentons dans ce qui
suit ne tient pas compte de l’éventail de fréquences auxquels les photons sont émis.
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Nous approximons le spectre par une distribution de Dirac centrée sur la fréquence
caractéristique νc et dont l’intensité correspond à la puissance totale du rayonnement
intégrée sur toutes les fréquences du vrai spectre continu. Autrement dit, le spectre
est approximé par

dIcurv

dω
= Pcurv δ(ω − ωc). (4.7)

Chaque point sur une ligne de champ émet des photons à fréquence unique donnée
par la fréquence caractéristique locale ωc(ρ) (1.47) associée à la courbure locale de
cette même ligne de champ. Le nombre de photons à considérer est proportionnel à la
puissance totale émise Pcurv(ρ). Ceci contraste fortement avec le chapitre précédent
où chaque position sur une ligne de champ donnée ne produisait qu’un seul photon
d’énergie indéterminée. Dans ce chapitre, nous levons l’ambigüıté sur la fréquence en
incorporant les détails du mécanisme d’émission, fréquence et puissance. L’émissivité
ne sera plus constante le long d’une ligne de champ mais variera en fonction de la
courbure locale.

Dans un deuxième temps, nous envisagerons d’utiliser l’expression complète du
spectre du rayonnement de courbure donné par l’approximation (1.49). Enfin, dans
une dernière étape, la situation la plus réaliste devra tenir compte d’une distribu-
tion énergie des particules sous la forme d’une loi de puissance telle que le nombre
de particules de facteur de Lorentz entre γ et γ + dγ est donné entre une valeur
minimale γmin et une valeur maximale γmax par

dN

dγ
∝ γ−p avec γ ∈ [γmin, γmax] (4.8)

où p est l’indice spectral de la loi de puissance. Cette distribution de particule
produira une autre loi de puissance pour l’émissivité jcurv telle que

jcurv =

∫
γ−p

dIcurv

dω
dγ ∝ ω−(p−2)/3. (4.9)

Il existe donc une relation simple entre l’indice spectral de la distribution en loi de
puissance des particules et celui des photons. Au-delà de la fréquence de coupure
associée à γmax l’émissivité chute exponentiellement selon e−ω/ω

max
c . En dessous de

la fréquence de coupure associée à γmin l’émissivité décrôıt selon une autre loi de
puissance indépendante de la distribution des particules selon (ω/ωmin

c )1/3.

4.2.3 Luminosité des calottes polaires

La luminosité radio des pulsars semble relativement constante à travers le dia-
gramme P − Ṗ avec une valeur de l’ordre de Lradio ≈ 1022 W (Szary et al.,
2014). Bien sûr, cette valeur est entachée d’erreur puisqu’on ne connâıt pas exacte-
ment l’angle solide réellement balayé par le faisceau radio. Rappelons que nous ne
détectons que les photons émis le long de notre ligne de visée. Il faut donc extra-
poler la forme de ce faisceau pour d’autres angles d’où l’incertitude. Malgré cela,
essayons d’estimer la luminosité provenant des calottes polaires en appliquant les
valeurs standards pour une calotte vide (Ruderman et Sutherland, 1975).
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Supposons que les particules rayonnent en radio sur une hauteur typique h de
l’ordre de 100 m d’après Ruderman et Sutherland, 1975. Le nombre de particules
dans les calottes est donc :

Nh = 2nGJ ∆V =
2π ε0

e

B R3 h

R2
cyl

. (4.10)

Le volume ∆V = π r2
cp h correspond à celui d’un cylindre de hauteur h dont la base

est la surface d’une calotte polaire de rayon rcp . L’émission radio est cohérente, ce
qui signifie que l’intensité radio sera proportionnelle à N2 et non à N . Mais cela
impose aussi une taille des régions émettrices inférieure à la longueur d’onde λ� h
bien inférieure à la hauteur h des cavités. Ces ondes radio étant observées dans la
gamme de fréquence de 10-1000 MHz environ, ceci implique une taille moyenne de
1 m au-delà de laquelle le rayonnement perd sa cohérence et chute brutalement en
intensité. Le nombre de particules participant à la cohérence sera donc plutôt de
Ncoh = λ

h
Nh. La luminosité totale devient alors :

Lradio ≈ N2
coh Pcurv =

3

2
N2

coh αsf γ
4 ~ c2

ρ
. (4.11)

avec αsf la constante de structure fine :

αsf =
e2

4πε0~c
≈ 1

137
(4.12)

En appliquant ces valeurs aux pulsars millisecondes et aux pulsars jeunes, en prenant
γ ≈ 100, on retrouve les bons ordres de grandeur de la luminosité radio typique
observée par Szary et al., 2014. On remarque que pour un rayonnement incohérent,
cette luminosité serait divisée par un facteur énorme de Ncoh ≈ 10 ce qui montre
bien l’importance de la cohérence dans le mécanisme d’émission radio.

4.2.4 Luminosité des cavités allongées

On peut refaire une même estimation pour la luminosité gamma du rayonnement
de courbure dans les cavités allongées. Les caractéristiques essentielles qui changent
sont le facteur de Lorentz typique γ ≈ 107, le rayon de courbure et surtout le
rayonnement qui devient incohérent puisque aux énergies du MeV et au-delà, la
taille des agrégats de particules ne peut pas dépasser 10−12 m rendant la cohérence
impossible à ces énergies. La luminosité dépendra donc linéairement du nombre
total de particules rayonnantes Np dans le volume des cavités. Toujours en ordre de
grandeur, ce volume est estimé en prenant un anneau à la base de la cavité, de rayon
rpc, de largeur de l’ordre de rpc/10 et de longueur Rcyl ce qui donne un volume :

∆VSG = 2π rpc
rpc

10
Rcyl ≈ R3. (4.13)
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Le nombre total de particules est alors :

Np ≈
2 ε0 ΩB

e
R3 ≈ Rcyl

h
Nh � Nh. (4.14)

Lgamma ≈ Np Pcurv =
3

2
N2

p αsf γ
4 ~ c2

ρ
. (4.15)

La luminosité gamma ainsi obtenue se situe autour de 1028 W en accord avec les
résultats de Fermi/LAT.

Soulignons que les chiffres estimés en radio et en gamma ne donnent qu’une indi-
cation sur la luminosité réelle de chaque pulsar dans chacune des longueurs d’onde.
Ces calculs montrent néanmoins que le rayonnement de courbure peut expliquer
simultanément l’émission radio (nécessairement cohérente) et l’émission gamma (in-
cohérente).

Ayant vérifié l’énergétique du rayonnement, voyons à présent la forme quantita-
tive détaillée des spectres et des courbes de lumière à haute énergie et en radio.

4.2.5 Test du calcul de la courbure

Pour vérifier que notre algorithme calculant le rayon de courbure fonctionne
correctement, nous l’avons appliqué sur des formes géométriques simples comme
par exemple une hélice de rayon R et de pas p dont le rayon de courbure est ρtheo =

R
[
1 +

(
p

2πR

)2
]
. La Fig.4.1 nous donne ainsi l’erreur relative de notre algorithme de

calcul du rayon de courbure en fonction de l’incrément d’abscisse curviligne ∆s (en
unité de R) pour une hélice dont on a fixé numériquement le rayon à R = 1 et le
pas à p = 6π, cette erreur étant définie par :

ε =
|ρtheo − ρ|
ρtheo

. (4.16)

On constate que notre méthode est bien d’ordre 2 comme il se doit pour une
différence finie centrée, c’est-à-dire que ε ∝ ∆s2. Cette pente est représentée dans
la Fig. 4.1 en noir. Prendre un pas d’espace ∆s égale à une fraction de la longueur
typique du système (ici le rayon de l’hélice r) permet d’obtenir une précision suffi-
sante pour le calcul de l’émission. Dans la suite on fixe ce pas d’espace à 10% du
rayon de l’étoile à neutrons R?.
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Figure 4.1 – A gauche : hélice de rayon 1, à droite : erreur relative du calcul du
rayon de courbure en fonction de ∆s en rouge et courbe de pente ∝ ∆s2 en noire.

4.3 Émission haute énergie

L’émission haute énergie que nous étudions se trouve dans la bande du Fermi/LAT,
soit entre 100 MeV et 100 GeV. 239 pulsars gamma ont été détectés avec des spectres
très semblables comme on l’a rappelé dans l’introduction. À terme, on pourra com-
parer nos courbes de lumière et spectres avec des pulsars radio et gamma.

4.3.1 Spectres d’une cavité mince

Commençons par étudier les spectres et les cartes d’émission sans tenir compte
du poids attribué à chaque photon en fonction de la puissance rayonnée. Dans ces
conditions, on obtient par exemple la carte de la Fig. 4.2 montrant la répartition en
énergie des photons provenant des cavités allongées reçus par un observateur loin-
tain, en échelle logarithmique, l’énergie Ec = h νc étant obtenue en multipliant la
fréquence du rayonnement observé νc par la constante de Planck h. Les paramètres
utilisés supposent une inclinaison de χ = 60̊ et un facteur de Lorentz γ de 107

pour les particules accélérées dans ces cavités, valeurs typiques citées par exemple
dans Becker, 2009 et dans Gurevich et al., 1993. Pour chaque point de la carte
repéré par la phase et l’inclinaison de la ligne de visée (φ, ζ), en fait une zone de
taille 0.5◦×0.5◦, on affiche uniquement l’énergie du photon le plus énergétique en ce
point. Cette carte dévoile donc l’efficacité de production de photons au GeV pour
chaque couple (φ, ζ) mais sans donner la moindre indication sur la forme réelle des
spectres pour chaque phase et chaque angle de la ligne de visée. Nous détaillerons
ces caractéristiques plus loin.



4.3. ÉMISSION HAUTE ÉNERGIE 106

Figure 4.2 – Carte d’émission représentant l’énergie des photons reçus par un
observateur lointain pour une inclinaison χ de l’axe magnétique de 60◦.

En examinant cette carte, seules deux régions se démarquent avec des photons
de très hautes énergies, autour de 50 GeV, près des points (φ = 0.1, ζ = 90◦) et
(φ = 0.6, ζ = 90◦). Ces régions se trouvent à haute altitude, proche du cylindre
lumière. Le reste de l’émission semble ne présenter, en comparaison, que peu de
variation de l’énergie avec la phase ou l’angle d’inclinaison de la ligne de visée. Le
résultat de cette carte est une combinaison non triviale de la courbure qui varie
de manière non monotone avec l’altitude, voir la Fig 4.31, et du facteur Doppler
produisant un décalage vers le bleu ou vers le rouge en fonction de la ligne de champ
considérée, voir la Fig 4.32. En conséquence, les photons les plus énergétiques sont
repoussés vers le cylindre lumière, mais uniquement dans les régions pour lesquelles
le facteur Doppler est favorable, c’est-à-dire pour des particules se déplaçant le long
des lignes de champ dans le même sens que celui de la rotation, voir la Fig. 4.30, le
cas inverse produisant des photons de plus basse énergie (décalage vers le rouge).

La Fig. 4.3 représente la distribution moyennée sur la phase et la ligne de visée
de l’énergie des photons issus de ces cavités allongées pour différentes inclinaisons χ

de l’axe magnétique. On retrouve une distribution cohérente avec ce que l’on avait
vu sur la Fig. 4.2 pour une inclinaison de 60◦ (courbe en vert) avec très peu de
photons du côté des plus hautes énergies, au-delà de 50 GeV et une concentration
importante de photons au centre du spectre, autour de quelques GeV. L’étendue du
spectre varie aussi sensiblement en fonction de l’inclinaison du dipôle magnétique.
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Figure 4.3 – Spectres de l’émission haute énergie du pulsar, en bleu pour χ = 30◦,
en vert pour χ = 60◦ et en rouge pour χ = 90◦.

Néanmoins, d’un point de vue observationnel et aussi plus réaliste, il est préférable
de ne pas moyenner sur les angles de la ligne de visée puisqu’un observateur parti-
culier ne verra que la partie de la carte d’émission en Fig. 4.2 correspondant à un
angle ζ fixé (autrement dit une droite horizontale dans cette carte). Un exemple de
la variation du spectre intégré en phase (c’est-à-dire sur toute la période du pulsar)
pour χ = 60̊ est montré en Fig. 4.4 pour différentes valeurs de l’inclinaison de la
ligne de visée ζ = 30̊ , 60̊ , 90̊ . On remarque une grande disparité dans la forme et
les bornes des spectres bien que le maximum reste approximativement à la même
énergie, aux environs de 4 GeV. La plus faible inclinaison de 30̊ montre le spectre
le plus resserré avec un intervalle d’énergie restreint à la bande [3, 7] GeV. Une incli-
naison plus élevée de 60̊ déplace cette borne inférieure à plus basse énergie jusqu’à
environ 1 GeV tandis que la borne supérieure augmente jusqu’à 8-9 GeV. De plus,
on constate l’apparition d’un spectre en forme de double pic, avec un pic à basse
énergie, autour de 1.5 GeV et l’autre restant à 4 GeV. Nous verrons plus loin que
la prise en compte de la puissance réelle rayonnée par les particules éliminera ce
deuxième pic à basse énergie. Une inclinaison encore plus élevée de 90̊ décale le
spectre en direction opposée, vers les plus hautes énergies avec une borne inférieure
de 4 GeV et une borne supérieure de 30 GeV. On en conclut que le point de vue
de l’observateur, par sa ligne de visée, impacte fortement le spectre moyen détecté.
L’allure de ces spectres est une conséquence directe de la géométrie des lignes de
champ, de leur visibilité par l’observateur, des effets d’aberration et Doppler.
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Figure 4.4 – Spectres intégrés pour χ = 60̊ et une inclinaison de la ligne de visée
ζ = 30̊ , 60̊ , 90̊ respectivement en bleu, en vert et en rouge.

La carte d’émission de la Fig. 4.2 et les spectres des Fig. 4.3 et 4.4 ont été réalisés
en partant du principe que pour chaque point d’émission le long des dernières lignes
de champ magnétique fermées un seul photon est émis, c’est-à-dire en appliquant la
même procédure que dans le chapitre précédent, les points successifs étant distants
d’une certaines longueur ∆s le long de la ligne de champ et imposée arbitrairement
par le code d’intégration numérique.

Une vision plus conforme à la réalité doit tenir compte de l’efficacité de ce rayon-
nement de courbure. En effet, puisque l’on connâıt le rayon de courbure des lignes
de champ magnétique en chaque point, on peut en déduire la puissance rayonnée par
une particule accélérée le long de celles-ci grâce à l’équation (1.46). Pour l’instant,
nous n’avons pas indiqué la densité de particules dans les régions émettrices, nous
ne pouvons donc pas calculer un flux précis détecté sur Terre mais nous pouvons
donner à titre indicatif la distribution E dN/dE en énergie des photons produits par
le rayonnement de courbure. Les unités restent arbitraires, nous les noterons en UA.

En reprenant la même démarche que précédemment, on obtient un exemple de
spectre tel que montré en Fig. 4.5. Comme nous n’avons utilisé qu’une valeur pour le
facteur de Lorentz, on constate sur ces spectres des diminutions et des augmentations
assez abruptes de l’intensité en fonction de la fréquence. On retrouve, comme sur
le spectre de la Fig. 4.3, un faible flux de photons d’énergie supérieure à 50 GeV
et un flux important de photons pour une énergie au voisinage de 5 GeV. La prise
en compte de la modulation de l’intensité du spectre en fonction de la puissance
rayonnée localement ne change pas la gamme de fréquence des photons émis. C’est
pourquoi les limites inférieures et supérieures des spectres sont identiques dans les
Fig. 4.3 et 4.5.



4.3. ÉMISSION HAUTE ÉNERGIE 109

Figure 4.5 – Spectres du rayonnement haute énergie, en bleu pour χ = 30◦, en vert
pour χ = 60◦ et en rouge pour χ = 90◦.

Comme précédemment, ces spectres sont moyennés sur la phase et l’inclinaison de
la ligne de visée. Un observateur réel ne mesurera que le spectre associé à une valeur
fixe de la ligne de visée ζ. En suivant la même procédure que pour la distribution
intégrée en photons, un autre exemple de spectre intégré en phase et tenant compte
de la puissance du rayonnement de courbure est montré en Fig 4.6 pour χ = 60̊
et pour différentes lignes de visée ζ = 30̊ , 60̊ , 90̊ . Les limites des spectres restent
identiques à ceux de la Fig. 4.4 puisque l’énergie des photons rayonnés ne change
pas, seul leur nombre est modifié par la prise en compte de la puissance de courbure.
Le spectre en bleu pour ζ = 30̊ est très similaire à son homologue sans prise en
compte de la puissance. En revanche, pour ζ = 60̊ en vert, le pic à basse énergie
a disparu pour ne faire ressortir qu’un pic intense autour de 4-8 GeV, sous forme
d’un plateau. Enfin, pour ζ = 90̊ , la composante haute énergie autour de 30 GeV
ressort très nettement et devient comparable à la composante autour de 4-8 GeV.
Cet exemple souligne l’importance de la puissance rayonnée sur la pondération du
spectre réel d’un pulsar. On ne peut se contenter de compter des photons émis
isolément en chaque point.
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Figure 4.6 – Spectres intégrés pour χ = 60̊ et ζ = 30̊ , 60̊ , 90̊ respectivement en
bleu, en vert et en rouge.

Grâce à ces méthodes de calcul du rayonnement, on peut aussi extraire les
spectres résolus en phase pour une inclinaison de l’axe magnétique χ donnée et une
ligne de visée ζ d’un observateur particulier.On a donc découpé le spectre intégré en
phase ci-dessus en 10 intervalles réguliers et de longueur 10% de la période chacun
∆t = 0.1P . Les Fig. 4.7 à 4.11 représentent ces spectres pour des observations sur
un dixième de la période.

Figure 4.7 – Spectres intégrés pour une valeur de la phase comprise entre 0 et 0.1
à gauche et entre 0.1 et 0.2 à droite avec χ = 60̊ et ζ = 30̊ , 60̊ , 90̊ respectivement
en bleu, vert et rouge.
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Figure 4.8 – Spectres intégrés pour une valeur de la phase comprise entre 0.2 et 0.3
à gauche et entre 0.3 et 0.4 à droite avec χ = 60̊ et ζ = 30̊ , 60̊ , 90̊ respectivement
en bleu, vert et rouge.

Figure 4.9 – Spectres intégrés pour une valeur de la phase comprise entre 0.4 et 0.5
à gauche et entre 0.5 et 0.6 à droite avec χ = 60̊ et ζ = 30̊ , 60̊ , 90̊ respectivement
en bleu, vert et rouge.

Figure 4.10 – Spectres intégrés pour une valeur de la phase comprise entre 0.6 et
0.7 à gauche et entre 0.7 et 0.8 à droite avec χ = 60̊ et ζ = 30̊ , 60̊ , 90̊ respective-
ment en bleu, vert et rouge.
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Figure 4.11 – Spectres intégrés pour une valeur de la phase comprise entre 0.8 et
0.9 à gauche et entre 0.9 et 1 à droite avec χ = 60̊ et ζ = 30̊ , 60̊ , 90̊ respectivement
en bleu, vert et rouge.

Sur la Fig. 4.7, les phases correspondent aux intervalles [0, 0.1] et [0.1, 0.2] : On
constate déjà une forte variation de la forme du spectre pour une ligne de visée
inclinée à ζ = 90̊ , représentée par les courbes rouges. L’énergie des photons monte
à plus de 30 GeV dans l’intervalle [0, 0.1] et chute en-dessous de 9 GeV dans l’in-
tervalle suivant [0.1, 0.2]. Ces variations sont beaucoup moins perceptibles pour des
inclinaisons plus faibles de 30̊ , les courbes bleues sur nos spectres, et de 60̊ , les
courbes vertes.

Dans la Fig. 4.8, les phases correspondent aux intervalles [0.2, 0.3] et [0.3, 0.4] :
Tous les spectres rétrécissent sensiblement avec un pic étroit en énergie autour de
5 GeV quelle que soit l’inclinaison ζ sur la courbe de gauche. Puis le spectre s’élargit
à nouveau légèrement vers les plus hautes énergies sur la courbe de droite.

La séparation de ces spectres devient de plus en plus visible aux phases suivantes,
par exemple en [0.4, 0.5] à gauche de la Fig. 4.9. Les énergies au-delà de 30 GeV
dominent à nouveau pour ζ = 90̊ dans la phase [0.5, 0.6] tandis que les deux autres
spectres s’élargissent vers les basses énergies.

La séparation des spectres redevient très nette en phase [0.6, 0.7], sur la courbe
gauche de la Fig. 4.10. À la phase suivante an [0.7, 0.8],soit la courbe de droite, les
spectres se rejoignent de plus en plus pour se recentrer autour de 7 GeV.

Cette tendance continue sur les deux intervalles de phase suivants, [0.8, 0.9] et [0.9, 1],
sur la Fig. 4.11 avec une disparition de la pulsation pour ζ = 60̊ en phase [0.9, 1] sur
la courbe de droite car c’est ici que se trouve l’ombre de la calotte polaire, visible
notamment sur la Fig. 4.2, qui forme alors un creux d’émission.

Notons que l’intensité maximale du spectre est peu sensible à la phase, quelles
que soit l’inclinaison et la phase considérées, le maximum des spectres se situe entre
1 et 10 en unité arbitraire. Seul l’angle de ζ = 60̊ semble montrer une forte am-
plitude voire une disparition du signal pour une phase donnée. À partir de la puis-
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sance rayonnée par une particule, on peut en déduire le nombre de photons émis en
chaque point d’émission et ainsi réaliser des cartes d’émission en utilisant les mêmes
méthodes que dans les sections 3.3 et 3.4, à la différence qu’on n’incrémentera plus
l’intensité d’une unité pour chaque point d’impact reçu sur une zone de 0.5◦ × 0.5◦

de la sphère céleste mais du nombre de photons calculé à partir de la puissance
du rayonnement de courbure pour une particule. Vu que l’on connâıt également la
fréquence ν de chaque photon, on peut alors réaliser ces cartes d’émission en fonction
de la fréquence ν des photons impactant la sphère céleste. On peut ainsi associer
une carte d’émission pour chaque fréquence du rayonnement. Mais en pratique, on
choisit un intervalle de fréquence ν ∈ [ν1, ν2] pour construire ces cartes afin de ce
conformer aux observations qui elles aussi ne montrent des courbes de lumière que
pour des intervalles en fréquence (en radio) ou en énergie (au MeV/GeV).

Dans le domaine des rayons gamma, on a décidé de couper les bandes d’énergie
en intervalles régulièrement espacés en échelle logarithmique. Chaque décade a été
coupée en deux intervalles de sorte que les valeurs successives suivent une progression
géométrique de raison r = 101/2 ≈ 3.16. Les intervalles sont donc de la forme
[rnE0, r

n+1 E0] avec n un entier positif et E0 une énergie caractéristique fixée par
défaut à E0 = 1 GeV. Dans l’ordre, on choisit les intervalles suivants : de 1 à√

10 ≈ 3.16 GeV, de
√

10 ≈ 3.16 à 10 GeV, de 10 à
√

100 ≈ 31.6 GeV et de√
100 ≈ 31.6 à 100 GeV.

Les Fig. 4.12, 4.13, 4.14 et 4.15 représentent les cartes d’émission ainsi réalisées
pour différentes inclinaisons χ de l’axe magnétique, ainsi que quelques courbes de
lumière associées pour différentes valeurs de l’inclinaison ζ de la ligne de visée.
Chacune de ces cartes ne prenant en compte que les photons compris dans une
certaine gamme d’énergie que l’on choisit sous forme de suite géométrique (c’est-
à-dire des intervalles de largeur constante en échelle logarithmique). Comme on
l’avait déjà vu avec les spectres, la majeure partie de l’émission est concentrée entre
3.16 et 10 GeV avec quelques points d’émission de haute énergie pouvant monter
au-delà de 31.6 GeV. On notera d’ailleurs que ces points d’émission de très haute
énergie semblent se situer au niveau des pulses que l’on peut voir sur la Fig. 3.8 qui
représente elle l’intensité du rayonnement pour toutes ces fréquences.



4.3. ÉMISSION HAUTE ÉNERGIE 114
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Figure 4.12 – Cartes d’émission des photons avec une énergie comprise entre 1 et
3.16 GeV pour différentes inclinaisons de l’axe magnétique (de haut en bas : 90◦,
60◦ et 30◦) dans un espace-temps plat avec les courbes de lumière pour différents
angles d’observation ζ.
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Figure 4.13 – Cartes d’émission pour des énergies comprises comprise entre 3.16
et 10 GeV pour différentes inclinaisons de l’axe magnétique (de haut en bas : 90◦,
60◦ et 30◦) dans un espace-temps plat avec les courbes de lumière pour différents
angles d’observation ζ.
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Figure 4.14 – Cartes d’émission pour des énergies comprises comprise entre 10 et
31.6 GeV pour différentes inclinaisons de l’axe magnétique (de haut en bas : 90◦,
60◦ et 30◦) dans un espace-temps plat avec les courbes de lumière pour différents
angles d’observation ζ.
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Figure 4.15 – Cartes d’émission pour des énergies comprises entre 31.6 et 100 GeV
pour différentes inclinaisons de l’axe magnétique ((de haut en bas : 90◦, 60◦ et 30◦)
dans un espace-temps plat avec les courbes lumières pour différents angles d’obser-
vation ζ.
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4.3.2 Spectres d’une cavité épaisse

Les spectres et cartes d’émission des Fig. 4.2 à 4.15 ont été réalisés avec une
zone d’émission infiniment fine le long des dernières lignes de champ magnétique.
La Fig. 4.16 présente le spectre de l’émission haute énergie pour une zone d’émission
possédant une certaine épaisseur, en utilisant la même méthode que celle qui nous
a permis de tracer la carte d’émission de la Fig. 3.10.

Figure 4.16 – Spectre du rayonnement haute énergie, en bleu pour χ = 30◦, en vert
pour χ = 60◦ et en rouge pour χ = 90◦ pour une zone d’émission épaisse.

D’après ce spectre, quand on inclut une épaisseur transversale à la zone d’émission,
on reçoit un rayonnement supplémentaire incluant des énergies plus basses et plus
élevées que celles d’une cavité mince. Au spectre de la zone infiniment mince se
rajoute donc d’autres spectres issus de lignes de champ voisines mais dont la cour-
bure varie légèrement en augmentant ou en diminuant en fonction de la nature de la
ligne de champ : ouverte ou fermée, ce qui va évidemment entrâıner des variations
de la puissance rayonnée et de l’énergie du rayonnement. Les différences dans la
forme des spectres des Fig. 4.5 et 4.16 s’expliquent aussi en partie par la modu-
lation de l’intensité sous l’influence du facteur gaussien que nous avons introduit
dans l’équation (3.25) et que l’on a également utilisé ici. Ainsi pour chaque point
d’impact sur la sphère céleste, l’intensité mesurée est la puissance rayonnée par la
particule multipliée par cette fonction gaussienne.

Les Fig. 4.17 à 4.20 représentent les cartes d’émission pour des cavités allongées
d’une certaine épaisseur et pour différents intervalles d’énergie, les mêmes que ceux
des Fig. 4.12 à 4.15, et différentes inclinaisons χ de l’axe magnétique.
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Figure 4.17 – Cartes d’émission pour des énergies comprises comprise entre 1 et
3.16 GeV pour différentes inclinaisons de l’axe magnétique (de haut en bas : 90◦, 60◦

et 30◦) dans un espace-temps plat avec les courbes lumières pour différents angles
d’observation ζ avec une zone d’émission épaisse.
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Figure 4.18 – Cartes d’émission pour des énergies comprises comprise entre 3.16
et 10 GeV pour différentes inclinaisons de l’axe magnétique (de haut en bas : 90◦,
60◦ et 30◦) dans un espace-temps plat avec les courbes lumières pour différents angle
d’observation ζ avec une zone d’émission épaisse.
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Figure 4.19 – Cartes d’émission pour des énergies comprises comprise entre 10
et 31.6 GeV pour différentes inclinaisons de l’axe magnétique (de haut en bas :
90◦, 60◦ et 30◦) dans un espace-temps plat pour une épaisseur définie de la zone
d’émission avec les courbes lumières pour différents angles d’observation ζ avec une
zone d’émission épaisse.
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Figure 4.20 – Cartes d’émission pour des énergies comprises entre 31.6 et 100 GeV
pour différentes inclinaisons de l’axe magnétique (de haut en bas : 90◦, 60◦ et 30◦)
dans un espace-temps plat pour une épaisseur définie de la zone d’émission avec
les courbes lumières pour différents angles d’observation ζ avec une zone d’émission
épaisse.
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Les Fig 4.21 à 4.25 représentent l’évolution du spectre haute énergie sur différents
intervalles de phase pour une inclinaison χ = 60◦ et plusieurs valeurs fixées de l’angle
d’observation ζ. On peut y voir que l’émission y est visible pour tous les angles
d’observations et pour toutes les phases contrairement aux spectres réalisés pour
une émission haute énergie sans épaisseur de la zone d’émission, notamment pour la
phase [0.9, 1] de la Fig. 4.11, car comme on peut le voir sur les Fig. 3.10 ou encore
4.18, on reçoit de l’émission haute énergie au niveau de l’ombre de la calotte polaire.

Figure 4.21 – Spectres intégrés pour une valeur de la phase comprise entre 0 et 0.1
à gauche et entre 0.1 et 0.2 à droite avec χ = 60̊ et ζ = 30̊ , 60̊ , 90̊ respectivement
en bleu, vert et rouge pour une zone d’émission épaisse.

Figure 4.22 – Spectres intégrés pour une valeur de la phase comprise entre 0.2 et
0.3 à gauche et entre 0.3 et 0.4 à droite avec χ = 60̊ et ζ = 30̊ , 60̊ , 90̊ respective-
ment en bleu, vert et rouge pour une zone d’émission épaisse.



4.3. ÉMISSION HAUTE ÉNERGIE 124

Figure 4.23 – Spectres intégrés pour une valeur de la phase comprise entre 0.4 et
0.5 à gauche et entre 0.5 et 0.6 à droite avec χ = 60̊ et ζ = 30̊ , 60̊ , 90̊ respective-
ment en bleu, vert et rouge pour une zone d’émission épaisse.

Figure 4.24 – Spectres intégrés pour une valeur de la phase comprise entre 0.6 et
0.7 à gauche et entre 0.7 et 0.8 à droite avec χ = 60̊ et ζ = 30̊ , 60̊ , 90̊ respective-
ment en bleu, vert et rouge pour une zone d’émission épaisse.

Figure 4.25 – Spectres intégrés pour une valeur de la phase comprise entre 0.8 et
0.9 à gauche et entre 0.9 et 1 à droite avec χ = 60̊ et ζ = 30̊ , 60̊ , 90̊ respectivement
en bleu, vert et rouge pour une zone d’émission épaisse.
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Quant à la Fig. 4.26 elle représente l’évolution de la forme de la courbre de lumière
observée pour χ = ζ = 60◦ pour différentes valeurs de l’énergie, pour chacune de ces
valeurs on normalise la courbe de lumière par son maximum. On y voit clairement
que la forme et la largeur des pulses va dépendre de la gamme d’énergie à laquelle
elles sont observées.

Figure 4.26 – Courbes de lumière pour χ = ζ = 60◦ pour différents intervalles
d’énergie des photons : en rouge entre 1 et 3.16 GeV, en vert entre 3.16 et 10 GeV,
en bleu entre 10 et 31.6 GeV et en violet entre 31.6 et 100 GeV.

Nous allons maintenant déterminer de quelle altitude dans la magnétosphère du
pulsar provient cette émission pulsée de haute énergie.

4.3.3 Altitude d’émission et énergie du rayonnement

Comme on a calculé la fréquence du rayonnement de courbure émis au sein
des cavités allongées et vu que l’on connâıt la position des points d’émission le
long des dernières lignes de champ, on peut en déduire de quelle altitude dans la
magnétosphère provient quelle énergie du rayonnement. Les Fig. 4.27 à 4.29 per-
mettent de visualiser cette répartition pour une zone d’émission infiniment mince et
pour différentes inclinaisons de l’axe magnétique. Chacune de ces cartes représente
les points d’impact sur la sphère céleste de photons émis entre deux altitudes
différentes séparées d’une distance équivalente à une fois le rayon de l’étoile R?.
On relève l’altitude de cette couronne sphérique à chaque fois de R? jusqu’au cy-
lindre lumière de rayon 10R?. Le code couleur de ces figures reflète l’énergie observée
pour les photons à l’origine de chaque point d’impact. Ainsi chacune de ces trois
figures se présente avec l’arrangement ci-dessous pour l’intervalle de la position r du
point d’émission des photons :

[R?, 2R?] [2R?, 3R?] [3R?, 4R?]
[4R?, 5R?] [5R?, 6R?] [6R?, 7R?]
[7R?, 8R?] [8R?, 9R?] [9R?, 10R? = Rcyl]
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Figure 4.27 – Cartes d’émission pour une inclinaison χ = 30◦ avec l’énergie
des photons reçus, chaque carte représente la contribution d’une partie de la
magnétosphère : celle située dans une couronne sphérique d’épaisseur R? dont on
augmente l’altitude entre chaque carte de R?.
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Figure 4.28 – Cartes d’émission pour une inclinaison χ = 60◦ avec l’énergie
des photons reçus, chaque carte représente la contribution d’une partie de la
magnétosphère : celle située dans une couronne sphérique d’épaisseur R? dont on
augmente l’altitude entre chaque carte de R?.
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Figure 4.29 – Cartes d’émission pour une inclinaison χ = 30◦ avec l’énergie
des photons reçus, chaque carte représente la contribution d’une partie de la
magnétosphère : celle située dans une couronne sphérique d’épaisseur R? dont on
augmente l’altitude entre chaque carte de R?.
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On voit sur ces images que les photons les plus énergétiques sont émis loin de
la surface de l’étoile et donc près du cylindre lumière, ce qui pourrait également
indiquer que les dernières lignes de champ magnétiques fermées sont plus courbées
à grande distance de l’étoile à neutrons. On retrouve d’ailleurs les deux régions
d’émission à haute énergie qu’on a rencontré sur la Fig. 4.15 de la section précédente
dans la Fig. 4.30 qui représente la distribution des points d’émission dans les cavités
externes avec l’énergie du rayonnement émis. On y voit que ces points sont situés
dans les parties les plus éloignées de la magnétosphère et que leur haute énergie
pourrait être due à l’entrâınement du champ magnétique par la rotation de l’étoile
à neutrons qui génère une courbure importante des lignes de champs magnétique.
On retrouve en effet une courbure importante des lignes de champ magnétique au
niveau des points d’émission de haute énergie sur la Fig. 4.31 où est indiqué le rayon
de courbure des lignes de champ magnétique calculé à chaque point d’émission (plus
le rayon de courbure est petit, plus la courbure des lignes de champ magnétique est
importante). Cependant, on voit que les points d’émission de haute énergie ne sont
pas les seuls à présenter un rayon de courbure faible, si les zones d’émission de plus
haute énergie sont situées dans la partie supérieure de la magnétosphère, c’est peut
être aussi du fait de l’effet Doppler du à la rotation du pulsar. Le facteur Doppler
η donné par l’équation (4.1) sera en effet plus important pour des points d’émission

situés à grande distance du pulsar car leur vélocité ~β sera plus importante. La
Fig. 4.32 donne une carte des points d’émission avec la valeur du facteur Doppler
calculée pour chacun de ces points, ce facteur y est plus important à proximité des
points d’émission de haute énergie.

Si on a une émission de plus haute énergie près du cylindre lumière, ce serait
donc dû à une combinaison de plusieurs effets : une courbure favorable des lignes de
champ magnétique et un facteur Doppler plus important.
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Figure 4.30 – Points d’émission du rayonnement haute énergie projetés dans le
plan équatorial (pour χ = 90◦) avec l’énergie du rayonnement émis en chacun de
ces points.

Figure 4.31 – Points d’émission du rayonnement haute énergie projetés dans le
plan équatorial (pour χ = 90◦) avec le rayon de courbure des lignes de champs
magnétiques en chacun de ces points. L’unité de longueur pour le rayon de courbure
est Rcyl).
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Figure 4.32 – Points d’émission du rayonnement haute énergie projetés dans le
plan équatorial (pour χ = 90◦) avec la valeur du facteur Doppler η en chacun de ces
points.

4.4 Émission radio

Comme on l’a déjà vu dans les sections 1.2 et 3.4, l’émission radio dans les ca-
vités polaires serait due à l’accélération de paires secondaires, des particules générées
par avalanches de paires dans le champ magnétique du pulsar à partir des pho-
tons gamma de son émission haute énergie, le facteur de Lorentz de ces particules
serait alors de l’ordre de γ = 102, comme affirmé dans Gurevich et al., 1993.
Dans ce qui suit, on prendra plus précisément un facteur de Lorentz γ = 30 pour
que les fréquences calculées avec la formule de l’équation (1.46) ne soient pas trop
élevées. On a également conservé le facteur gaussien vu dans les équations (3.27) et
(3.28) de la section 3.4 afin de garder des pulses de formes gaussiennes et le maxi-
mum d’émission au centre de la calotte polaire. Comme pour le rayonnement haute
énergie, la Fig. 4.33 nous donne ainsi le spectre du rayonnement radio du pulsar pour
différentes valeurs de l’inclinaison χ du champ magnétique. Les points d’émission se
situent, pour ce spectre de l’émission radio, à la surface de l’étoile et avec une même
répartition que celle présentée dans la Fig. 3.15.
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Figure 4.33 – Spectre du rayonnement radio, en bleu pour χ = 30◦, en vert pour
χ = 60◦ et en rouge pour χ = 90◦.

Sur cette Fig. 4.33, on voit que la plage de fréquences de l’émission radio dépend
fortement de l’inclinaison χ, certainement à cause de la courbure des lignes de champ
magnétique, plus prononcée dans le cas du rotateur perpendiculaire χ = 90̊ com-
paré à un rotateur presque aligné χ = 30̊ . En effet, c’est pour un axe magnétique
perpendiculaire à l’axe de rotation que les fréquences sont les plus élevées or les
calottes polaires magnétiques se trouvant alors au niveau de l’équateur, les lignes
de champ magnétique passant par celles-ci devraient être fortement entrâınées, et
donc courbées, par la rotation du pulsar (comme on le constate sur la Fig. 3.1).
Les lignes de champ magnétique sont incurvées vers l’arrière, en sens inverse de la
rotation comme montré par Shitov, 1983, avec une dépendance en sin2 χ et en
(r/Rcyl)

3 selon la formule (3.16). L’effet Doppler contribue aussi en partie puisque
la vitesse linéaire de corotation vcp = rΩ sinχ est plus importante pour le rotateur
perpendiculaire à cause du bras de levier de longueur r sinχ. L’amplitude de cet
effet Doppler est de βcp = (r/Rcyl) sinχ. De manière générale donc, la fréquence
radio caractéristique νradio dépend du rapport (r/Rcyl) et de sinχ. On en déduit
donc en effet que la gamme des ondes radio autour de νradio se comporte comme
une fonction croissante de sinχ. D’autre part, cette translation du spectre vers les
hautes fréquences serait atténuée pour des rotateurs plus lents que ceux étudiés
durant cette thèse. En effet, pour des pulsars jeunes, de période plus grande que
100 ms, le rapport entre le rayon de l’étoile et le cylindre lumière est beaucoup plus
petit que un, (r/Rcyl) � 1, d’où une variation en fréquence moins perceptible en
fonction de sinχ.

Dans l’image présentée ci-dessus, les photons s’échappent directement de la sur-
face de l’étoile. Dans nos simulations, la période de rotation du pulsar est limitée à
2 ms à cause du temps de calcul prohibitif pour une étoile de période plus grande.
La surface est fixée à 0.1Rcyl. Pour un pulsar lent, ce rayon de 0.1Rcyl correspond
à l’altitude réelle moyenne de provenance des photons radio (elle est en fait un peu
inférieure, de l’ordre de 0.05Rcyl, voir Mitra, 2017). La largeur des pulses ainsi
que le délai entre le pic radio et le premier pic gamma reste donc réaliste malgré la
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période trop courte. Toutefois, l’hypothèse d’une production du rayonnement radio
à une altitude fixée n’est pas totalement correcte. On sait en effet que les plus hautes
fréquences naissent à plus basse altitude à cause de la cartographie rayon-fréquence
(Phillips, 1992). Il conviendra donc par la suite d’ajouter un degré de liberté
supplémentaire sur la position exacte des photons radio en instaurant par exemple
un intervalle d’altitudes variables comme cela a été effectué en haute énergie.

La Fig. 4.34 représente donc ce spectre pour différentes valeurs de χ, lorsque
la zone d’émission est située au dessus des calottes polaires, respectivement lorsque
celle-ci est comprise entre 1 et 2 R? au-dessus à gauche et entre 3 et 4 R? au-dessus
à droite. Comparé à la Fig. 4.33, l’émission ne se produit plus en un rayon r donné
mais pour un intervalle entier de rayons r ∈ [r1, r2]. L’émission n’est plus intégrée
sur une surface (la calotte polaire) mais dans tout un volume. Il en résulte une plage
plus vaste de valeurs de rayons de courbure et par conséquent une émission radio
plus étendue avec un spectre plus étalé, quelle que soit la valeur de χ. Cet étalement
est maximal pour χ = 30̊ et moindre pour d’autres valeurs de l’inclinaison de l’axe
magnétique comme 60̊ et 90̊ . Déplacer le volume d’émission à plus haute altitude
produit un étalement supplémentaire du spectre, visible en comparant les courbes
de gauche et de droite de la Fig. 4.34.

Figure 4.34 – À gauche, le spectre du rayonnement radio émis entre R? et 2R?

au-dessus de la calotte polaire, en bleu pour χ = 30◦, en vert pour χ = 60◦ et en
rouge pour χ = 90◦. À droite, le même spectre mais entre 3 et 4R?.

On retiendra de ces spectres que plus la zone d’émission radio est éloignée de la
surface de l’étoile à neutrons, plus la plage de fréquences du rayonnement radio reçu
est large, ce phénomène est d’ailleurs très important pour l’inclinaison la plus faible
qui est de χ = 30◦.
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Cet élargissement des spectres peut simplement être dû au fait que nos zones
d’émission au-dessus de la calotte ont une certaine épaisseur et est donc le résultat
de la variation de la courbure d’une ligne de champ magnétique quand on parcourt
celle-ci. D’autres phénomènes ont cependant pu affecter la forme de ces spectres,
comme la géométrie des lignes de champ qui est certainement différente en altitude
par rapport à celle de la surface ou le facteur Doppler qui dépend de la vitesse de
rotation instantanée ~v = ~Ω∧~r et augmentant avec l’altitude du fait de la corotation
de la magnétosphère avec l’étoile à neutrons.

Déterminons à présent l’évolution des cartes d’émission radio en fonction de la
fréquence afin d’étudier l’évolution fréquentielle des pulses telle que mesurée par un
observateur lointain. Les Fig. 4.35 à 4.37 montrent des exemples de cartes ainsi que
les courbes de lumière correspondantes obtenues pour une émission radio provenant
d’un volume situé entre 1 et 2 R? au-dessus des calottes polaires pour différents
intervalles de fréquences. Notez que le découpage en intervalles de fréquences n’est
pas identique pour les différentes valeurs de χ parce que les spectres n’ont ni la même
étendue, ni les mêmes bornes inférieures et supérieures. On a optimisé le choix des
fréquences pour faire ressortir au mieux les cartes d’intensité.
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Figure 4.35 – Cartes d’émission radio (et quelques courbes de lumière) pour une
émission provenant d’entre 1 et 2R? au-dessus des calottes polaires pour une incli-
naison χ = 30◦. De haut en bas, ces cartes représentent l’émission reçue entre 30 et
120 MHz, entre 120 et 210 MHz et entre 210 et 300 MHz.
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Figure 4.36 – Cartes d’émission radio (et quelques courbes de lumière) pour une
émission provenant d’entre 1 et 2R? au-dessus des calottes polaires pour une incli-
naison χ = 60◦. De haut en bas, ces cartes représentent l’émission reçue entre 200
et 270 MHz, entre 270 et 340 MHz et entre 340 et 410 MHz.
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Figure 4.37 – Cartes d’émission radio (et quelques courbes de lumière) pour une
émission provenant d’entre 1 et 2R? au-dessus des calottes polaires pour une incli-
naison χ = 90◦. De haut en bas, ces cartes représentent l’émission reçue entre 330
et 450 MHz, entre 450 et 570 MHz et entre 570 et 690 MHz.
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D’après ces cartes, et tout particulièrement celles de la Fig. 4.37, les basses
fréquences sont émises plutôt en bordure de la zone d’émission tandis que les com-
posantes de plus haute fréquence du rayonnement radio sont émises vers le centre
de la zone d’émission. Ceci peut parâıtre contre-intuitif puisque pour un dipôle sta-
tique, le centre du pulse, correspondant à l’axe magnétique, est une ligne droite de
courbure nulle et donc de fréquence et de puissance nulle. En clair, dans la limite
statique, il n’y a pas d’émission au centre de la calotte. Les fréquences et la puis-
sance augmentent en s’éloignant de l’axe. Mais pour un dipôle tournant, comme
par exemple pour la solution de Deutsch que nous avons employée ici, le champ
magnétique subit un effet de retard qui incurve toutes les lignes de champ, même
celles associées à l’axe magnétique. Pour pouvoir visualiser cet effet, on a tracé les
Fig. 4.38, 4.39 et 4.40 qui représentent les cartes des rayons de courbure (en unité de
Rcyl) au point d’émission des photons pour χ = 30◦, 60◦, 90◦. On n’affiche sur chaque
zone de 0.5◦ sur 0.5◦ que le photon avec la valeur de la courbure de la ligne de champ
maximale (et donc le plus petit rayon de courbure) à son point d’émission. Deux
altitudes sont montrées, à gauche pour [1, 2] R? et à droite pour [3, 4] R?. Le fait que
les plus hautes fréquences se situent plutôt vers le centre des calottes polaires semble
donc bien dû à la courbure des lignes de champ magnétique induite par la rotation
de l’étoile. Le rayon de courbure sur les lignes de champ issues des calottes polaires
est minimal dans le cas du rotateur perpendiculaire χ = 90̊ et atteint 0.032Rcyl.
Il crôıt quand l’axe magnétique rejoint l’axe de rotation, c’est-à-dire lorsque χ di-
minue. Par exemple, pour χ = 30̊ ce rayon minimal est 0.05Rcyl et se déplace en
dehors du centre de la calotte. Conjointement le rayon de courbure maximal aug-
mente significativement lorsque le rotateur est proche de la configuration alignée.
Il n’est que de 0.048Rcyl pour χ = 90̊ et atteint 0.35Rcyl pour χ = 30̊ soit une
augmentation de près d’un ordre de grandeur. Les photons produits seront beaucoup
moins énergétiques dans ce second cas. Dans la limite d’un rotateur parfaitement
aligné χ = 0̊ , le rayon de courbure devient infini au centre de la calotte, sur l’axe
magnétique et le rayonnement de courbure s’éteint en son centre.

Ces cartes révèlent aussi un rétrécissement du profil des pulses vers les hautes
fréquences puisque ces photons proviennent des régions les plus profondes de la
magnétosphère. On remarque aussi une asymétrie est-ouest dans ces profils entre
la rampe montante et la rampe descendante. On observe parfois deux pulses dans
le profil, parfois un seul. Soulignons que ces résultats ne sont que préliminaires
et qu’une éventuelle comparaison avec des observations devra tenir compte d’une
distribution en énergie des particules sous forme de loi de puissance et ne pas sim-
plement utiliser une distribution mono-énergétique comme c’est le cas actuellement.
La fréquence de courbure caractéristique devra aussi être remplacée par le spectre
continue centré sur cette fréquence typique. La variation fréquentielle du profil des
pulses n’en sera que plus lisse et la transition entre les bandes de fréquences plus
continue.



4.4. ÉMISSION RADIO 139

Figure 4.38 – Cartes des rayons de courbure (en unité de Rcyl) pour une inclinaison
de χ = 30◦, à gauche pour une altitude de la zone d’émission entre 1 et 2 R? et à
droite entre 3 et 4 R? au-dessus des calottes polaires.

Figure 4.39 – Cartes des rayons de courbure (en unité de Rcyl) pour une inclinaison
de χ = 60◦, à gauche pour une altitude de la zone d’émission entre 1 et 2 R? et à
droite entre 3 et 4 R? au-dessus des calottes polaires.

Figure 4.40 – Cartes des rayons de courbure (en unité de Rcyl) pour une inclinaison
de χ = 90◦, à gauche pour une altitude de la zone d’émission entre 1 et 2 R? et à
droite entre 3 et 4 R?.
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L’altitude de production des photons et leur détachement de la magnétosphère
en direction de l’observateur ne sont pas contraint de manière précise par les ob-
servations. Les données de polarisation radio fournissent quelques indications pour
les pulsars jeunes, mais la barre d’erreur reste appréciable. Il existe donc une cer-
taine liberté dans le choix de la hauteur des sites d’émission au-dessus des calottes
polaires. C’est pourquoi nous avons aussi tracé des cartes d’émission et des courbes
de lumière pour une altitude comprise dans l’intervalle [3, 4] R? comme représentées
dans les Fig. 4.41 à 4.43 pour les mêmes intervalles de fréquence au-dessus des ca-
lottes polaires.

Repousser l’altitude d’émission plus loin de l’étoile entrâıne un étalement du profil
des pulses radio puisque les lignes de champ sont divergentes. On retrouve le fait
que les hautes altitudes produisent les plus basses fréquences en rapport avec des
pulses plus larges tandis que les basses altitudes produisent les fréquences les plus
élevées en rapport avec des pulses plus étroits, en accord avec le modèle de carto-
graphie altitude-fréquence. Mais dans notre cas, on s’affranchit du dipôle statique
pour tenir compte de tous les effets dus à la rotation du champ magnétique, des
effets d’aberration et de retard du signal, voir le paragraphe 3.2.1.
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Figure 4.41 – Cartes d’émission radio (et quelques courbes de lumière) pour une
émission provenant d’entre 3 et 4R? au-dessus des calottes polaires pour une incli-
naison χ = 30◦. De haut en bas, ces cartes représentent l’émission reçue entre 30 et
120 MHz, entre 120 et 210 MHz et entre 210 et 300 MHz.
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Figure 4.42 – Cartes d’émission radio (et quelques courbes de lumière) pour une
émission provenant d’entre 3 et 4R? au-dessus des calottes polaires pour une incli-
naison χ = 60◦. De haut en bas, ces cartes représentent l’émission reçue entre 30 et
120 MHz, entre 120 et 210 MHz et entre 210 et 300 MHz.
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Figure 4.43 – Cartes d’émission radio (et quelques courbes de lumière) pour une
émission provenant d’entre 3 et 4R? au-dessus des calottes polaires pour une incli-
naison χ = 90◦. De haut en bas, ces cartes représentent l’émission reçue entre 330
et 450 MHz, entre 450 et 570 MHz et entre 570 et 690 MHz.
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Figure 4.44 – Courbes de lumière de l’émission radio pour χ = 60◦, ζ = 120◦ et
une zone d’émission située entre 1 et 2 R? au dessus des calottes polaires. En rouge
pour le rayonnement compris entre 200 et 270 MHz, en vert entre 270 et 340 MHz
et en bleu entre 340 et 410 MHz.

Afin de faciliter la visualisation de l’évolution des pulses radio en fonction de la
fréquence, on a tracé en Fig. 4.44 la forme d’une courbe de lumière selon l’intervalle
de fréquence considéré, ici celles obtenues avec une zone d’émission comprise entre
1 et 2 R? au-dessus des calotte polaires et pour une inclinaison χ = 60◦ de l’axe
magnétique et ζ = 120◦ de la ligne de visée. Le maximum du profil en bleu dans
l’intervalle [340,410] MHz est en avance de phase par rapport au profil en vert
dans l’intervalle [270,340] MHz qui lui-même est en avance de phase par rapport au
pulse rouge dans l’intervalle [200,270] MHz. Cette avance de phase est significative
puisqu’elle représente 5 à 10% de la période du pulsar. Elle est la conséquence d’une
part de l’incurvation des lignes de champ magnétique dans le sens rétrograde par
rapport à la rotation stellaire et d’autre part de la production des photons haute
fréquence à basse altitude, où les lignes de champ sont moins incurvées par rapport
aux photons de basse fréquence produit à plus haute altitude où les lignes de champ
sont plus incurvées. Cet effet dépend du rapport (R∗/Rcyl), il est négligeable pour
les pulsars jeunes mais sa signature observationnelle devrait être perceptible pour
les pulsars les plus rapides, les pulsars millisecondes.

Ce décalage de phase peut être calculé à partir des équations (3.13), (3.15) et
(3.16) du paragraphe 3.2.1. Le décalage maximum ainsi calculé (donc pour un pho-
ton émis à 1 R? au-dessus de la surface et un autre émis à 2 R? et toujours avec
χ = 60◦) est de l’ordre de 4% de la phase. Ces effets ne peuvent donc suffire pour
expliquer le décalage du pic d’émission radio de la Fig. 4.44 mais ils peuvent ce-
pendant certainement jouer un rôle dans l’émission radio que l’on observe dans les
zones d’émissions étudiées.



Chapitre 5

Conclusions et perspectives

5.1 Travail effectué

Dans cette thèse, j’ai réalisé des simulations de la trajectoire d’un photon dans
la métrique de Schwarzschild, une métrique décrivant un espace-temps déformé par
un objet massif à symétrie sphérique et statique. De par leur densité extrême, on
s’attend à ce que l’espace-temps au voisinage des étoiles à neutrons présente une
telle déformation, cette courbure de l’espace-temps étant le champ gravitationnel
de l’étoile d’après la théorie de la relativité générale. J’ai donc utilisé ces simula-
tions pour déduire la façon dont le champ gravitationnel de ces étoiles affecte le
rayonnement pulsé qu’elles émettent.

J’ai commencé par le calcul de l’image de la surface de l’étoile à neutrons
déformée par le champ gravitationnel en traçant la trajectoire des photons à partir de
points répartis en ”quadrillage” à la surface de l’étoile. Ceci m’a permis de tester ma
méthode et les résultats sur un cas d’école déjà bien documenté dans la littérature
sur les points chauds et l’émission thermique de surface en rayons X. J’ai en effet
reproduit l’émission provenant de points chauds situés aux calottes polaires. Cette
émission est prévue notamment pour un pulsar accrétant où de la matière tombe
sur les pôles magnétiques. J’ai ainsi simulé le flux que l’on recevra de ces points
chauds dans la métrique de Schwarzschild pour prendre en compte l’influence du
champ gravitationnel, que j’ai pu comparer avec une approximation analytique de
Beloborodov, rendant compte des effets de la courbure de l’espace-temps, et vérifier
la précision de cette expression approchée.

J’ai ensuite simulé, toujours en traçant la trajectoire des photons dans la métrique
de Schwarzschild, l’émission non-thermique magnétosphérique d’un pulsar dans les
domaines radio et hautes énergies. Pour cela je suis parti de modèles connus du
champ électromagnétique d’un pulsar et j’ai supposé une production de photons par
rayonnement de courbure le long des dernières lignes de champ magnétique fermées
pour l’émission haute énergie. J’ai ainsi réalisé des cartes d’émission et des courbes
de lumière pour différentes géométries c’est-à-dire pour diverses inclinaisons de l’axe
magnétique par rapport à l’axe de rotation, d’abord pour une cavité allongée infi-
niment mince (les points d’émission étant simplement répartis le long des dernières
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lignes de champ magnétique fermées) puis pour une cavité allongée d’une certaine
épaisseur et centrés autour des dernières lignes de champ magnétique fermées. Pour
l’émission radio, j’ai réparti des points d’émission à l’intérieur et au-dessus des ca-
lottes polaires, dans une zone délimitée par ces dernière lignes de champ fermées.

J’ai également déterminé à partir de la géométrie du champ magnétique la
fréquence d’émission du rayonnement de courbure, mais pour l’instant uniquement
dans un espace-temps plat donc en négligeant l’influence du champ gravitationnel.
J’ai ainsi pu en déduire les spectres de l’émission magnétosphérique du pulsar ainsi
que la relation altitude/fréquence d’une manière quantitative précise.

5.2 Conclusion

Les cartes d’émission de ces différentes simulations montrent que le champ gra-
vitationnel de l’étoile à neutrons modifie sensiblement l’émission perçue par un ob-
servateur lointain, ces effets étant bien évidemment plus importants lorsque l’on se
rapproche de l’étoile à neutrons. La courbure de l’espace-temps entrâıne une cour-
bure de la trajectoire des photons qui s’inscrit dans cet espace-temps, modifiant la
visibilité de l’étoile à neutrons et des régions aux alentours, un point à la surface
de cette étoile pourra alors être visible même situé sur la face opposée par rapport
à l’observateur. Ainsi certaines régions d’émission seront visibles plus longtemps au
cours d’une rotation de l’étoile à neutrons sur elle-même. Un autre élément à prendre
en compte est le délai Shapiro : le temps de vol des photons qui augmente à cause de
la courbure de leur trajectoire. Comme les photons émis près de la surface de l’étoile
à neutrons sont plus affectés par son champ gravitationnel ceux-ci seront beaucoup
plus retardés que des photons émis à haute altitude. Cela n’entrâıne pas un simple
décalage global des courbes de lumière imperceptible par des mesures mais va bien
en modifier certaines caractéristiques et notamment le délai entre le pic radio et
le premier pic en gamma. Ainsi, à cause de ce retard supplémentaire, des photons
émis près de l’étoile à neutrons pourront être reçus en même temps que des photons
émis plus haut dans la magnétosphère, pouvant ainsi provoquer des pics d’intensité
élevée du rayonnement perçu.

J’ai également déterminé la répartition en fonction de la fréquence des régions
d’émission dans la magnétosphère du pulsar avec les plus hautes fréquences émises
loin de la surface de l’étoile. Cela pourrait indiquer que les composantes les plus
énergétiques du spectre d’un pulsar sont moins affectées par le champ gravitationnel
de celui-ci bien que nous ne pouvons vraiment le conclure car nous n’avons étudié le
spectre du pulsar que dans le cadre d’un espace-temps plat sans influence du champ
gravitationnel.

5.3 Les limites et développements possibles

Comme évoqué dans la section 1.4.1, j’ai employé la métrique de Schwarzschild
pour décrire le champ gravitationnel de l’étoile à neutrons. Cette métrique décrit
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la géométrie de l’espace-temps au voisinage d’un objet statique et ne prend pas
en compte l’entrâınement de l’espace-temps du fait de la rotation de l’astre. Bien
que l’on ne s’attende pas à ce que cet entrâınement soit important au voisinage
d’une étoile à neutrons, sauf éventuellement pour les pulsars millisecondes les plus
rapides, l’utilisation de la métrique de Kerr permettrait toutefois de prendre en
compte ce phénomène. Mais il faudra alors tracer directement la trajectoire du
photon dans l’espace à trois dimensions car celle-ci ne sera plus contenue dans un
plan (la métrique de Kerr ne respecte pas la symétrie sphérique rendant impossible
l’existence de trajectoires uniquement contenues dans un plan).

Bien que différents mécanismes d’émission ont lieu au sein de la magnétosphère,
seul le rayonnement de courbure a été étudié ici et uniquement en provenance
des cavités allongées et des cavités polaires le long des dernières lignes de champ
magnétique à l’intérieur du cylindre lumière. Il pourrait être utile, afin d’avoir une
vision plus complète de l’émission magnétosphérique, d’ajouter l’émission par rayon-
nement synchrotron et par diffusion Compton inverse à de futures simulations ainsi
que d’inclure d’autres modèles avec différentes zones d’émission, comme par exemple
avec des cavités externes le long des dernières lignes de champ magnétique ou le
vent strié au-delà du cylindre lumière. Il ne sera cependant pas forcément utile d’in-
clure les effets de la gravitation pour l’émission provenant de l’extérieur du cylindre
lumière car, au vu des résultats obtenus, on ne s’attend pas à ce que le champ
gravitationnel y ait des effets remarquables.

Les spectres obtenus pour l’émission magnétosphérique n’ont été réalisés que
pour un espace-temps plat. Pour savoir à quoi ressembleront ces spectres dans la
métrique de Schwarzschild, il faudra non seulement calculer le rayon de courbure
des lignes de champ magnétiques dans cette métrique mais également prendre en
compte le décalage vers le rouge gravitationnel prédit par la théorie de la relativité
générale qui modifiera sensiblement le spectre émanant de la surface de l’étoile.
Le calcul des spectres gagnera aussi en réalisme lorsque j’aurai implémenté non
plus une distribution mono-énergétique de particules mais une distribution en loi
de puissance et remplacé l’approximation du spectre de courbure par sa densité
spectrale de puissance (1.48).

La polarisation de l’émission pulsée pourrait être ajoutée à mes simulations des
émissions radio et haute énergie. Dans le domaine radio, cette polarisation permet
déjà de contraindre la géométrie du dipôle magnétique à haute altitude pour les
pulsars lents. L’observation imminente de la polarisation en rayons X apportera une
nouvelle contrainte forte sur la partie haute énergie du spectre, sa localisation à
l’intérieur du cylindre lumière ou dans le vent.

Finalement, il faudra évidement discuter les résultats de ces simulations en rap-
port avec les observations des pulsars afin de déterminer la signature de ces effets
relativistes en comparant par exemple les courbes de lumière et spectres en radio et
gamma pour les pulsars détectés simultanément dans ces deux bandes d’énergie.
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Becker, Werner, éd. (2009). Neutron stars and pulsars. Astrophysics and space
science library 357. OCLC : ocn305127637. Berlin : Springer. 697 p. isbn : 978-
3-540-76964-4 978-3-540-76965-1.

Beloborodov, Andrei M. (20 fév. 2002). “Gravitational Bending of Light Near
Compact Objects”. In : The Astrophysical Journal 566.2, p. L85-L88. issn :
0004637X, 15384357. doi : 10.1086/339511.

Beskin, V. S. (2010). MHD Flows in Compact Astrophysical Objects : Accretion,
Winds and Jets. Astronomy and Astrophysics Library. Berlin Heidelberg : Springer-
Verlag. isbn : 978-3-642-01289-1. doi : 10.1007/978-3-642-01290-7.

Blaskiewicz, M., J. M. Cordes et I. Wasserman (1991). “A relativistic model
of pulsar polarization”. In : ApJ 370, p. 643-669. issn : 0004-637X. doi : 10.
1086/169850.

Bogdanov, Slavko, George B. Rybicki et Jonathan E. Grindlay (1er nov. 2007).
“Constraints on Neutron Star Properties from X-Ray Observations of Millisecond
Pulsars”. In : The Astrophysical Journal 670, p. 668-676. issn : 0004-637X. doi :
10.1086/520793.

Bradt, Hale (22 sept. 2008). Astrophysics Processes : The Physics of Astronomi-
cal Phenomena. Google-Books-ID : 5ikrxCcdja4C. Cambridge University Press.
504 p. isbn : 978-0-521-84656-1.

Burrows, Adam et John Hayes (1er jan. 1996). “Pulsar Recoil and Gravitational
Radiation Due to Asymmetrical Stellar Collapse and Explosion”. In : Physical
Review Letters 76, p. 352-355. issn : 0031-9007. doi : 10.1103/PhysRevLett.
76.352.
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Comptes Rendus Academie des Sciences (serie non specifiee) 173, p. 677-680.

Pétri, J. (11 avr. 2011). “A unified polar cap/striped wind model for pulsed radio
and gamma-ray emission in pulsars”. In : Monthly Notices of the Royal Astrono-
mical Society 412.3. Publisher : Oxford Academic, p. 1870-1880. issn : 0035-8711.
doi : 10.1111/j.1365-2966.2010.18023.x.

— (11 déc. 2017). “Multipolar electromagnetic fields around neutron stars : general-
relativistic vacuum solutions”. In : Monthly Notices of the Royal Astronomical
Society 472.3, p. 3304-3336. issn : 0035-8711. doi : 10.1093/mnras/stx2147.

— (11 juin 2018). “General-relativistic pulsar magnetospheric emission”. In : Monthly
Notices of the Royal Astronomical Society 477.1, p. 1035-1064. issn : 0035-8711.
doi : 10.1093/mnras/sty620.
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Annexe A

Métrique de Schwarzschild

A.1 Schwarzschild

Comme cela a notamment été fait dans Moore, 2012, on peut trouver l’ex-
pression de l’intervalle espace-temps dans la métrique de Schwarzschild à partir
de l’intervalle d’espace-temps d’une métrique à symétrie sphérique et statique de
l’équation (1.58), de l’équation d’Einstein et de l’équation géodésique qui établit
que pour tout objet de coordonnées spatio-temporels xσ, on a :

d2xσ

dτ 2
+ Γσµν

dxµ

dτ

dxν

dτ
= 0. (A.1)

On voudrait que la métrique de Schwarzschild soit diagonale, notamment pour sim-
plifier le passage des composantes contravariantes aux composantes covariantes, or
comme g01 = 0, on doit également avoir g10 = 0. On peut alors prendre une coor-
donnée temporelle qui donnerait la composante g10 nulle, ainsi en posant ct′ = ct+f
avec f une fonction dépendante de r et ct ce qui implique :

cdt′ = cdt+
∂f

∂r
fdr +

1

c

∂f

∂t
cdt (A.2)

On peut alors réécrire l’équation (1.58) en posant :

cdt =
cdt′ − ∂f

∂r
dr

1 +
1

c

∂f

∂t

(A.3)

Ce qui nous donne :

ds2 = g′00c
2dt′2 + 2g′10drdt

′ + g′11dr
2 + r2(dθ2 + sin2 θdφ2) (A.4)
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avec :

g′00 = g00

(
1 +

1

c

∂f

∂t

)−2

(A.5)

g′10 = g10

(
1 +

1

c

∂f

∂t

)−1

− g00
∂f

∂r

(
1 +

1

c

∂f

∂t

)−2

(A.6)

g′11 = g11 + g00

(
1 +

1

c

∂f

∂t

)−2

− 2g10
∂f

∂r

(
1 +

1

c

∂f

∂t

)−1

(A.7)

On peut alors prendre f tel que
∂f

∂r
=
g10

g00

(
1 +

1

c

∂f

∂t

)
ce qui donnerait bien g′10 = 0.

Ainsi par un changement de coordonnées, nous pouvons réécrire l’équation (1.58) :

ds2 = g00dt
2 + g11dr

2 + r2(dθ2 + sin2 θdφ2) (A.8)

Où t, g00 et g11 correspondent respectivement au t′, g′00 et g′11 de l’équation (A.4).
Si l’on prend g00 = −1 et g11 = 1, l’équation (A.4) décris alors l’intervalle d’espace-
temps pour la métrique de Minkowski en coordonnées sphériques, métrique qui cor-
respond à un espace-temps plat donc sans influence gravitationnelle :

ds2 = −c2dt2 + dr2 + r2(sin2 θdφ2 + dθ2). (A.9)

La métrique de Schwarzschild est à symétrie sphérique ce qui veut dire que g00 et
g11 sont indépendants de θ et φ, on peut donc déduire des équations (1.52) et (1.53)
la forme que prendra le tenseur de Ricci associé à la métrique de Schwarzschild :

Rµν =


R00 R01 0 0
0 R11 0 0
0 0 R22 0
0 0 0 R33

 (A.10)
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avec :

R00 =
1

2g11

[
−∂

2g00

∂r2
+

1

2g00

(
∂g00

∂r

)2

+
1

2g11

∂g00

∂r

∂g11

∂r
− 2

r

∂g00

∂r

− 1

c2

∂2g11

∂t2
+

1

2c2g11

(
∂g11

∂t

)2

+
1

2c2g00

∂g00

∂t

∂g11

∂t
]

] (A.11)

R11 =
1

r

(
1

g00

∂g00

∂r
+

1

g11

∂g11

∂r

)
+
g11

g00

R00 (A.12)

R22 = − 1

2g00g11

∂g00

∂r
+

1

2g2
11

∂g11

∂r
+ 1− 1

g11

(A.13)

R33 = R22 sin2 θ (A.14)

R01 =
1

rcg11

∂g11

∂t
(A.15)

Dans le cas d’un espace-temps vide, soit Tµν = 0, si on néglige la constante cosmo-
logique Λ, alors l’équation (1.50) implique que Rµν = 0. On peut en déduire que
g11 est indépendant du temps car si R01 = 0 alors d’après l’équation (A.15) ce n’est

possible que si
∂g11

∂t
= 0.

Comme pour un espace-temps vide on aR00 = R11 = 0, on en déduit de l’équation (A.12)
que :

g00

g11

∂g11

∂r
= −∂g00

∂r
(A.16)

Et donc on a, à partir de l’équation (A.13) :

1

g2
11

∂g11

∂r
+ 1− 1

g11

= 0 (A.17)

Soit ∂
∂r

(
r
g11

)
= 1 que l’on peut intégrer pour obtenir :

g11 =

(
1 +

K

r

)−1

(A.18)

Avec K une constante d’intégration.

La métrique de Schwarzschild étant statique, et g00 devant être du signe opposé
aux autres composantes de la matrice, avec le bon choix de coordonnée temporel on
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peut alors poser à partir de l’équation (A.16) :

g00 = −
(

1 +
K

r

)
(A.19)

L’intervalle espace-temps s’écrira alors :

ds2 = −
(

1 +
K

r

)
c2dt2 +

(
1 +

K

r

)−1

dr2 + r2(sin2 θdφ2 + dθ2) (A.20)

Pour trouver la valeur de K, on va utiliser la quadrivitesse uk d’un objet au repos de
coordonnées xk, la quadrivitesse étant l’équivalent du vecteur vitesse dans l’espace-
temps :

uk =
dxk

dτ
(A.21)

avec τ le temps propre observé par cette objet. L’intervalle infinitésimal de temps
propre de cette objet dτ pouvant s’écrire ainsi (Müller-Kirsten, 2008) :

ds2 = −c2dτ 2 (A.22)

Le produit par elle même de la quadrivitesse vaudra alors −c2 soit :

gµνu
µuν = −c2 (A.23)

Pour un objet au repos, toutes les composantes spatiales de la quadrivitesse sont
nulles, on a donc g00u

0u0 = −c2 soit u0 = c√
−g00 . En appliquant l’équation des

géodésiques définis dans l’équation (A.1) aux coordonnées xk de cet objet au repos,
on peut poser :

d2xk

dτ 2
= Γk00

c2

g00

(A.24)

ce qui équivaut à :
d2r

dτ 2
= − c2

g00g11

∂g00

∂r
(A.25)

Soit en remplaçant g00 par −(1 + K
r

) et g11 par 1
1+K

r

:

d2r

dτ 2
=
Kc2

2r2
(A.26)

Afin de retrouver les lois newtoniennes lorsque l’on se retrouve à une distance
importante de l’astre dont la masse déforme l’espace-temps, on doit donc avoir

K = −2GM

c2
. En effet, en supposant que l’on ait plus d’effets relativistes dus au

champ gravitationnel pour r → ∞, on verra alors que le temps propre τ tendra à
être égal au temps t pour un observateur au repos, ce qui donnera bien :

d2r

dt2
= −GM

r2
(A.27)

Soit l’accélération d’un objet dans un champ de pesanteur en mécanique newto-
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nienne.

A.1.1 Trajectoire d’un photon dans le plan équatorial

Pour tracer la trajectoire du photon dans le plan équatorial de la métrique de
Schwarzschild, que l’on peut alors écrire sous la forme présentée dans l’équation (2.1),
on commence par retrouver les composantes du quadrivecteur quantité de mouve-
ment de ce photon que l’on peut déduire du fait que la trajectoire du photon entre
deux points de l’espace-temps obéit à l’équation géodésique (A.1). Supposons que
les coordonnées du photon xi (ici ct, r, φ et θ = π

2
) soient paramétrisées par la

variable λ soit xi(λ) tel que la quantité de mouvement de ce photon s’écrive pi = dxi

dλ

avec pi les composantes du vecteur quantité de mouvement du photon, on peut alors
déduire de l’équation (A.1) :

dpi

dλ
+ Γiµν p

µ pν = 0 (A.28)

Ce qui nous donne :

dp0

dλ
+

RS

r2(1− RS
r

)
p0p1 = 0 (A.29)

dp1

dλ
+
RS(1− Rs

r
)

2r2
(p0)2 − RS

2r2(1− RS
r

)
(p1)2 − r

(
1− RS

r

)
(p3)2 = 0 (A.30)

dp3

dλ
+

2

r
p3p1 = 0 (A.31)

En intégrant ces équations on peut ainsi retrouver les composantes du vecteur quan-
tité de mouvement du photon (p2 étant évidemment nulle comme la coordonné θ est
constante dans le plan équatoriale) :

p0 =
A

1− RS
r

(A.32)

p1 = ±

√
A2 +B2

(
1− RS

r

)
− C2

r2

(
1− RS

r

)
(A.33)

p2 = 0 (A.34)

p3 =
C

r2
(A.35)

AvecA,B et C des constantes d’intégration paramétrisant l’orbite du photon. Comme
un photon a une géodésique nulle (ds2 = 0), alors le quadrivecteur pµ doit avoir une
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norme nulle or pµ pµ = gµνp
µpν = 0 uniquement si B = 0, on en déduit donc :

p0 =
A

1− RS
r

(A.36)

p1 = ±

√
A2 − C2

r2

(
1− RS

r

)
(A.37)

p2 = 0 (A.38)

p3 =
C

r2
(A.39)

Soit E = −gµνvµpν l’énergie du photon où vµ est la quadrivitesse de l’observateur

statique avec comme on l’a vu à la section 1.4.1, v0 =
c√
−g00

donc l’énergie du

photon est E =
cA√

1− Rs
r

. Quand r → ∞, on a donc A = E
c
, A est donc égale à

l’énergie du photon à l’infini divisée par c.

On peut déduire de la quantité de mouvement du photon la dérivée de la coor-
donnée angulaire du photon par sa coordonnée radiale dφ

dr
= p3

p1
ce qui donne :

dφ

dr
= ± C

r2

√
A2 − C2

(
1− RS

r

) (A.40)

On pose b = C
A

le paramètre d’impact du photon :

dφ

dr
= ± b

r2

√
1− b2

(
1− RS

r

) (A.41)

Pour un photon émis à l’altitude r0, l’angle α entre sa direction de propagation ini-
tiale et la direction radiale peut être exprimé à partir des quadrivecteurs de quantité
de mouvement radiale et angulaire, quadrivecteurs qui ont une seule composante non
nulle, respectivement p0 et p3, et qui sont donc perpendiculaire l’un par rapport à
l’autre :

tanα =
‖~pangulaire‖
‖~pradiale‖

=

√
g33 p3 p3√
g11 p1 p1

(A.42)

à partir des équations (A.37) et (A.39), on peut ainsi en déduire que :

tanα =

b

r0√
1

1− RS
r0

− b2

r2
0

(A.43)
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A partir de l’identité trigonométrique 1 + tan2 x = 1
cos2 x

, on peut alors poser :

sinα =
b

r0

√
1− RS

r0

(A.44)



Annexe B

Méthodes et outils numériques

Les algorithmes présentés ici sont tirés de Press et al., 2007.

B.1 Méthode d’intégration

L’algorithme que l’on a utilisé pour intégrer les équations tout au long de cette
thèse se base sur la quadrature de Clenshaw-Curtis décrite initialement dans Clen-
shaw et Curtis, 1960.
Soit le polynôme de Tchebychev d’ordre n :

Tn(x) = cos(n arccos(x)) (B.1)

A partir de cette définition et des identités trigonométriques, on peut retrouver le
polynôme de rang n+ 1, pour n ≥ 1 :

Tn+1(x) = 2xTn(x)− Tn−1(x) (B.2)

Chaque polynôme de Tchebychev de rang n va être nul n fois sur l’intervalle [−1, 1],
chacune des valeurs xk de x pour lesquels ces polynômes sont nuls sont données par
la formule :

xk = cos

(
π(k + 1

2

n

)
(B.3)

pour k un entier compris entre 0 et n− 1.

Les polynômes de Tchebychev obéissent à la relation d’orthogonalité suivante (pour
a < n et b < n) :

n−1∑
k=0

Ta(xk)Tb(xk)


0 pour a 6= b
n
2

pour a = b 6= 0
n pour a = b = 0

(B.4)
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On peut alors approximer toute fonction f(x) définie sur l’intervalle [−1; 1] sous la
forme :

f(x) ≈ −1

2
c0 +

N−1∑
j=0

cjTj(x) (B.5)

Avec cj les coefficients de Tchebychev de la fonction tel que :

cj =
2

N

N−1∑
k=0

f(xk)Tj(xk) (B.6)

Soit en y incluant les équations (B.1) et (B.3) :

cj =
2

N

N−1∑
k=0

f

[
cos

(
π(k + 1

2
)

N

)]
cos

(
πj(k + 1

2

N

)
(B.7)

L’approximation de l’équation (B.5) sera exacte quand on prend un des xk de
l’équation (B.3) comme valeur de x.

La quadrature de Clenshaw-Curtis permet d’intégrer cette fonction f(x) entre les
bornes a et b à l’aide de ses coefficients de Tchebychev, mais comme le calcul de
ces coefficients grâce à la formule de l’équation (B.7) n’est possible que pour une
fonction définie entre −1 et 1, on doit effectuer un changement de variable :

y =
x− 1

2
(b+ a)

1
2
(b− a)

(B.8)

L’intégrale de cette équation peut ainsi s’écrire :∫ a

b

f(y)dy = (b− a)
N∑
k=0

−1

(2k + 1)(2k − 1)
c2k (B.9)

Pour des soucis de ressources de calculs et de précision, un compromis pour la
valeur de N fixée à 512 a été utilisé tout au long de cette thèse.

B.2 Recherche de zéro par bissection

On a fait appel dans cette thèse à un algorithme de recherche de zéro par bis-
section lorsque l’on avait besoin de connâıtre, pour une fonction f(x), x0 tel que
f(x0) = 0.
D’abord on recherche un intervalle [x1, x2] où la fonction change de signe et donc ou
celle-ci s’annule au moins une fois (si la fonction est continue sur cette intervalle).
Si on cherche x0 dans l’intervalle [xa, xb], alors on peut circonscrire cette recherche
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dans un intervalle [x1, x2], pour cela on calcule f(xn) avec :

xn = xn−1 + δx (B.10)

où δx vaut :

δx =
xa − xb
n

(B.11)

jusqu’à ce que f(xn) soit du signe opposé à f(xn−1) (soit f(xn−1)× f(xn) < 0), on
enregistrera alors xn−1 et xn comme les bornes de l’intervalle dans lequel se situe x0,
respectivement x1 et x2, n étant un entier que l’on a pris allant de 0 à 100.

Maintenant que l’on a circonscrit nos recherches dans un intervalle [x1, x2] on peut
utiliser la méthode de la bissection pour trouver x0 pour laquelle f(x0) = 0. On
calcule pour cela l’image f(xm) du point médian xm :

xm =
x1 + x2

2
(B.12)

Si f(xm) est du même signe que f(x1) (f(x1)× f(xm) > 0), alors on pose x1 = xm
, sinon on pose x2 = xm.
On recommence l’opération en calculant l’image du point médian du nouvel intervalle
[x1, x2] jusqu’à ce que la différence entre les deux valeurs x1 et x2 encadrant notre
racine soit inférieure à une certaine valeur que l’on a fixée à 10−7 et l’on supposera
alors que x0 ≈ x1.

B.3 Résolution de polynôme du troisième degré

Pour trouver la racine x d’un polynôme du troisième degré tel que :

x3 + ax2 + x+ c = 0 (B.13)

où a, b et c sont des réels, on doit d’abord poser Q et R :

Q =
a2 − 3b

9
(B.14)

R =
2a3 − 9ab+ 27c

54
(B.15)

A partir de ces deux quantités, on peut calculer θ et A :

θ = arccos

(
R√
Q3

)
(B.16)

A = −
[
R +

√
R2 −Q3

]− 1
3

(B.17)
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Si R2 < Q3, alors l’équation (B.13) à trois solutions x1, x2 et x3 :

x1 = −2
√
Q cos

(
θ

3

)
− a

3
(B.18)

x2 = −2
√
Q cos

(
θ + 2π

3

)
− a

3
(B.19)

x1 = −2
√
Q cos

(
θ − 2π

3

)
− a

3
(B.20)

Soit B tel que B = 0 si A = 0, B =
Q

A
sinon.

Si R2 ≥ Q3 alors l’unique solution à l’équation (B.13) sera :

x = (A+B)− a

3
(B.21)



Quentin GIRAUD

Corrections général-relativistes à
l’émission radio et haute énergie

d’un pulsar

Résumé

Les étoiles à neutrons sont des astres extrêmement denses, plus denses qu’un noyau atomique,
formés  au  cours  d’une  supernova.  Un  étoile  à  neutrons  typique  concentre  ainsi  une  masse
supérieure à celle du Soleil dans son diamètre d’une vingtaine de kilomètres. D’après la théorie de la
relativité  générale,  qui  décrit  la  gravité  comme  une  déformation  de  l’espace-temps,  le  champ
gravitationnel  de  ces  étoiles  devrait  affecter  de  manière  non  négligeable  les  rayonnements
électromagnétiques à proximité de celles-ci. Au cours de ma thèse, j’ai simulé les émissions radio et
haute énergie provenant de l’accélération de particules le long des lignes de champ magnétique
d’une étoile à neutrons dans la métrique de Schwarzschild pour savoir comment le rayonnement
ainsi produit allait  être affecté par les déformations de l’espace-temps au voisinage de l’étoile à
neutrons.

Résumé en anglais

Neutron stars are very dense objects, denser than an atomic nucleus, formed during a supernova. A
typical neutron star concentrates a mass superior to the one of the Sun in its diameter of around
twenty kilometers. According to general relativity, which describes gravity as a space-time distorsion,
the  gravitational  field  of  those  stars  should  have  a  non-negligible  impact  on  electromagnetic
radiations  close  to  them.  During  my  thesis,  I  have  simulated  radio  and  high-energy  emission
originating from particules accelerated along the magnetic field lines of the neutron star inside the
Schwarzschild metric to have an insight of how this kind of radiations would be affected by space-
time distorsions in the vicinity of the neutron star.
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