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Chapitre 1

Introduction

Les étoiles a neutrons furent prédites bien avant leur découverte en tant que
pulsars. Elles se manifestent sous différents régimes (accrétion, rotation, refroidis-
sement thermique...) mais ne furent pas reconnues en tant qu’étoiles & neutrons
immédiatement apres leur observations par les chercheurs les ayant détectées. Dans
ce chapitre on va présenter ce que sont ces étoiles a neutrons et retracer I’évolution
de nos connaissances a leur sujet.

1.1 Etoile & neutrons

1.1.1 Origine des étoiles a neutrons

La destinée des étoiles de la séquence principale, dont 1’énergie provient de la
fusion de noyaux d’hydrogene en noyaux d’hélium, soit par le cycle proton-proton,
soit par le cycle carbone-azote-oxygene (CNO), dépend en grande partie de leur
masse.

Les naines rouges, qui ont une masse inférieure a la moitié de la masse du So-
leil, pourraient ainsi continuer a fusionner I’hydrogene dans leur coeur pendant des
billions d’années (10'? ans). Pour comparaison 1'age estimé de 1'Univers n’est que
de 13.7 milliards d’années. Les étoiles de masse similaire a celle du Soleil ont quant
a elles une "durée de vie” de l'ordre de la dizaine de milliards d’années, le So-
leil étant lui-méme agé de 4.6 milliards d’années, celui-ci devrait donc continuer a
briller encore au moins 5 milliards d’années. Ces deux types d’étoiles, lorsqu’elles ne
disposent plus de suffisamment d’hydrogene pour continuer a produire de I'hélium,
commencent a fusionner des éléments chimiques de plus en plus lourds jusqu’a 1’ob-
tention du carbone avant que leurs couches externes ne soient éjectées pour révéler
au centre de ce qui fut I’étoile son coeur effondré en une naine blanche.

Dans une étoile de la séquence principale, la pression du rayonnement libéré
par les réactions de fusion thermonucléaire contrebalance la gravité de 1’étoile et
I’empéche de s’effondrer sous sa propre masse. Une naine blanche est un astre si
dense que le principe d’exclusion de Pauli s’applique entre les électrons orbitant
autour de deux noyaux atomiques générant une force contrebalancant la gravité
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de 1’étoile que I'on appelle la pression de dégénérescence des électrons. Ces naines
blanches sont des astres denses et compacts, d’une taille comparable a celle de la
Terre, une dizaine de milliers de kilometre de diametre, mais d’une masse de 1’ordre
de celle du Soleil et majoritairement composées de carbone, en faisant des sortes de
”diamants” cosmiques.

Certaines étoiles connaissent cependant une évolution bien différente, notam-
ment les étoiles de la séquence principale ayant une masse au moins huit fois
supérieure a celle du Soleil. Leur durée de vie est beaucoup plus courte, ces étoiles
ont généralement fini de fusionner ’hydrogene seulement quelques millions d’années
apres leur formation. Comme leurs congéneres moins massives, elles fusionnent alors
des éléments de plus en plus lourds a la différence qu’elles continuent de fusionner
ces éléments bien au-dela du carbone, jusqu’au noyau le plus stable, celui du fer
%TFe. L’étoile ne pouvant fusionner ces noyaux de fer, du fait de leur stabilité, elle
ne génere plus assez de pression thermique pour contrebalancer sa propre gravité, le
ceeur de I’étoile s’effondre alors sur lui méme pendant que les couches externes sont
expulsées lors d’un évenement explosif appelé supernova, phénomene illustré dans
la Fig. 1.1, et au cours duquel des éléments plus lourds que le fer sont formés, par
capture neutronique puis désintégration radioactive par exemple.

Si la masse restante du cceur est supérieure a une masse limite, autour de 2
a 3 Mg, leffondrement du coeur continue jusqu’a ce qu’il disparaisse derriere un
horizon des évenements, devenant alors un trou noir.

Cependant, si la masse du cceur est inférieure a cette limite, il se stabilise sous la
forme d’une étoile a neutrons : les électrons sont capturés par les protons des noyaux
atomiques qui se convertissent alors en neutrons dont la pression de dégénérescence,
supérieure de plusieurs ordres de grandeur a celle des électrons, stoppe 'effondrement
du ceceur, formant ainsi un objet compact tres dense d’un rayon d’une dizaine de km
et d’'une densité extréme de 10"®kg/m? en moyenne, comparable voire supérieure a
celle d’'un noyau atomique, soit 5 milliards de tonnes pour un volume d’une cuillere
a café. Un tel astre peut également se former par accrétion de matiere sur une naine
blanche évoluant dans une binaire jusqu’a ce que celle-ci dépasse la masse limite de
Chandrasekhar (CHANDRASEKHAR, ), d’une valeur approximative de 1.44 M
(mais qui peut varier légerement en fonction de la composition chimique de la naine
blanche). Au-dela de cette masse limite, la pression de dégénérescence des électrons
n’est plus suffisante pour contrebalancer la gravité, et la naine blanche s’effondre sur
elleeméme jusqu’a sa stabilisation par la pression de dégénérescence des neutrons
fraichement formés par réaction [S-inverse (soit la capture d’'un neutrino par un
proton donnant un neutron et un positon) devenant ainsi une étoile a neutrons. On
parle alors d’effondrement induit par accrétion.



1.1. ETOILE A NEUTRONS 3

Birth of a Neutron Star and Supernova Remnant

=

neuiromn SLar

)

Core Implosion — Supernova Explosion = Supernova Remnant

red l_-:i.lnl

FIGURE 1.1 — Naissance d’une étoile a neutrons au cours de l’explosion d’une su-
pernova dont l’éjecta reste visible plusieurs milliers d’années (S. Lee, CXC, NASA).

1.1.2 Structure interne d’une étoile a neutrons

L’extréme densité de ces étoiles a neutrons en font de fascinants objets d’étude
notamment dans les domaines de la physique de la matiere condensée, de la physique
nucléaire et des particules et de la mécanique quantique en général. Ces astres sont
constitués de la matiere la plus dense connue dans I’Univers, impossible a reproduire
en laboratoire, au point que des phénomenes d’ordre quantique deviennent visible a
I’échelle macroscopique, comme la pression de dégénérescence des neutrons dont on
avait parlé plus tot et qui empéche 1'étoile de s’effondrer sous sa propre gravité. Il
existe de nombreuses spéculations sur les états de la matiere a I'intérieur d’une étoile
a neutrons, notamment concernant leur cceur o, du fait des forces de pression tita-
nesque qui y regnent, ’on pourrait trouver de la matiere et des particules exotiques
par exemple des hypérons (baryon composé d’au moins un quark étrange) voire de
la matiere étrange (une forme de matiere composée uniquement de quarks u, d et
s qui serait plus stable que la matiere baryonique). Il est cependant généralement
admis que les couches externes des étoiles a neutrons sont quant a elles composées
de matiere plus ordinaire, notamment la fine surface qui serait majoritairement
composée de fer. La crotite située juste en dessous et qui fait environ 1 kilometre
d’épaisseur est composée d’électrons libres et de matiere baryonique ionisée par la
pression qui s’enrichit en neutrons au fur et a mesure que 'on s’enfonce dans les
profondeurs de ’étoile. On rencontre ainsi d’abord des ions aux noyaux enrichis en
neutrons puis en s’enfoncant dans les parties les plus internes de la crotite ces ions et
électrons libres baignent dans un superfluide de neutrons libres. Sous cette crotite la
densité de la matiere est au moins égale a celle d'un noyau atomique. On considere
que de cette région jusqu’a son cceur 1'étoile est constituée d'un superfluide com-
posé essentiellement de neutrons et de quelques protons et électrons. La Fig. 1.2
représente cette structure interne d’une étoile a neutrons. Notons que les valeurs
indiquées et les couches identifiées peuvent varier en fonction de ’équation d’état
de la matiere, qui reste incertaine dans le régime de pression et densité des étoiles a
neutrons.
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FIGURE 1.2 — Structure interne d’une étoile a neutrons, montrant les différentes
couches concentriques, de densité croissant de la surface vers le centre. La composi-
tion centrale reste incertaine. Image tirée de RATHER et al.,

1.1.3 Historique

Bien que communément attribuée a Lev Landau, ’existence des étoiles a neutrons
a en réalité été théorisée pour la premiere fois par Walter Baade et Fritz Zwicky dans
un article de 1934 (BAADE et ZWICKY, ) ot ils supposaient qu’une supernova,
terme qu’ils avaient eux-mémes introduit dans I’article (BAADE et ZWICKY, ),
était une phase de transition au cours de laquelle 1'étoile se transformait en un astre
extréemement dense car principalement composé de neutrons.

La premiere observation confirmée d’un tel astre ne survint que trois décennies
plus tard. En 1967, Jocelyn Bell découvrit, a 1'aide du radiotélescope de I'observa-
toire de Mullard, en Angleterre, une source de signaux radio dont I'activité présentait
des séries de pics, ou ”pulses”, que I'on peut voir dans la Fig. 1.3, d’une durée d’envi-
ron 0.3 seconde revenant toutes les 1.337 seconde et ce avec une précision de 'ordre
du dix millionieme de seconde (HEWISH et al., ). L’extréme régularité de cette
activité fit méme soupconner, pendant un temps, une origine artificielle de ce signal
dont la source fut officieusement baptisée LGM-1 pour Little Green Men. Les ca-
ractéristiques inhabituelles de ce ”"pulsar” (contraction de pulsating star soit ”étoile
pulsante”) sont tout a fait explicables si 'on considére que la périodicité de ses
pulses est due a la rotation d’un corps sur lui-méme, la source de I’émission radio se
trouvant alors a la surface (ou dans I’atmosphere) de ce corps. Il faudrait cependant
que l'astre en question possede une importante vitesse de rotation, de l'ordre de la
période a laquelle sont observées les pulses, mais pour que cette vitesse de rotation
reste réaliste, donc au moins inférieure a la vitesse de la lumiere ¢, cet astre devrait
également avoir une taille réduite.

L’hypothese que I'astre en question puisse étre une naine blanche fut avancée mais
au final seul une étoile a neutrons correspondait aux dimensions requises déterminées
par les observations de ce pulsar et possédait une densité suffisante pour mainte-
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nir son intégrité malgré la force centrifuge induite par la vitesse de rotation élevée.
La section 1.2 détaille comment cette émission radio et la pulsation associée sont
produites.
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FIGURE 1.3 — Représentation de ’activité radio au cours de plusieurs périodes suc-
cessives du premier pulsar découvert (PSR B1919+21) tirée de MITTON,

Moins d’un an apres cette découverte majeure en astrophysique, un astre simi-
laire fut observé au sein de la nébuleuse du Crabe (STAELIN et REIFENSTEIN, ),
le rémanent d’une supernova qui fut visible depuis la Terre en 1054 et mentionnée
par les astronomes chinois de I’époque. Un autre pulsar fut découvert la méme année
au sein d'un autre rémanent de supernova : le pulsar de Vela (LARGE et al., ).
Ces observations ont confirmé qu’une étoile a neutrons est bel et bien le vestige du
coeur d’'une étoile massive.

En 1974, Russell Hulse et Joseph Taylor découvrirent le premier pulsar bi-
naire, en orbite autour d’une autre étoile qui est elle aussi une étoile a neutrons
(HULSE et TAYLOR, ). Cette découverte permis notamment de vérifier une des
prédictions de la relativité générale d’Einstein : la décroissance de la période orbitale
par I’émission d’ondes gravitationnelles. Si les ondes gravitationnelles émises par ce
systeme binaire n’ont toujours pas été détectées, faute d'une sensibilité suffisante des
détecteurs d’ondes gravitationnelles, la décroissance orbitale observée correspondait
bien a celle prédite par la théorie de la relativité générale (WEISBERG et TAYLOR,

). Ce fut donc une preuve observationnelle indirecte de 'existence des ondes
gravitationnelles.

En 1982 est découvert le premier pulsar milliseconde : un pulsar dont la période
de rotation, et donc des pulses observés, est inférieure a 10 millisecondes (BACKER
et al., ). I est aujourd’hui théorisé que ces pulsars ont connu une accélération
de leur vitesse de rotation par transfert de moment cinétique en accrétant de la
matiere d'une étoile compagnon, d’ou leur appellation de pulsar recyclé.

En 1992, Aleksander Wolszczan découvrit les premieres exoplanetes en étudiant
les perturbations qu’elles induisent sur les pulses du pulsar autour duquel elles or-
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bitent (WOLSZCZAN et FRAIL, ). Toutes ces découvertes majeures en astrophy-
sique sont le résultat d’'un chronométrage précis et régulier des pulsars, une technique
de plus en plus sophistiquée qui porte ses fruits dans d’autres domaines de 'astro-
nomie (détermination de la densité et du champ magnétique galactique, découverte
de planetes).

Toujours en 1992, Robert Duncan, Christopher Thompson et Bohdan Paczynski
émirent ’hypothese que certaines émissions répétitives de rayons gamma étaient
dus a un autre type d’étoile a neutrons possédant un champ magnétique encore plus
intense que celui de leurs congéneres identifiés comme des pulsars : on les appelle
des magnétars avec des champs supérieurs a 10° T (DUNCAN et THOMPSON, ).

En 2006, a partir des données récupérées par le Parkes multibeam pulsar survey,
un nouveau type de pulsar fut découvert : les Rotating radio transients ou RRAT
(MCLAUGHLIN et al., ), les transitoires radio en rotation. Ceux-ci possedent une
émission radio tres irréguliere avec des intervalles silencieux pouvant aller jusqu’a
plusieurs heures entre deux séries d’émissions. Il a été prouvé que pour certains
RRAT, ces irrégularités étaient purement illusoires et causées par une sensibilité
trop faible des radiotélescopes utilisés, pour d’autres elles pourraient étre causées
par une ceinture d’astéroides entourant le pulsar ou simplement par le ralentissement
de la rotation du pulsar avec le temps (voir Fig. 1.5) ce qui ferait a terme disparaitre
son émission radio.

Le 17 aout 2017 la fusion de deux étoiles a neutrons fut d’abord détectée par
les observatoires d’ondes gravitationnelles LIGO et Virgo puis par des techniques
d’observations plus ”classiques” du rayonnement électromagnétique (ABBOTT et
al., ). Une tel évenement se produit lorsque deux étoiles a neutrons dans un
systeme binaire tombent 1'une sur 'autre tout en tournant I'une autour de l'autre,
la période orbitale du systeme diminuant par émission d’ondes gravitationnelles,
jusqu’au contact entre les deux étoiles et la collision finale ou les deux étoiles ex-
plosent en kilonova, libérant une importante quantité de rayonnement a travers tout
le spectre électromagnétique ainsi que des éléments lourds synthétisés au cours de
cette explosion. En fait ce genre de fusion d’étoiles a neutrons serait a ’origine de la
plupart des éléments plus lourds que le fer présents dans I'Univers. Cette découverte
permit notamment de confirmer que les ondes gravitationnelles se déplacent a la
vitesse de la lumiere modulo une trés faible incertitude (ABBOTT et al., ).

Pour expliquer de telles observations, on a dia établir des modeles expliquant
I'origine de I’émission radio et haute énergie de ces pulsars que 'on explorera dans
les sections suivantes.
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1.2 Observations des pulsars

Bien que la formation d’une étoile a neutrons est une phénomene explosif tres
violent, celle-ci conserve toutefois certaines propriétés de 1’étoile originelle, notam-
ment son moment cinétique et son flux magnétique, entrainant a cause de sa taille
réduite par I'effondrement, un champ magnétique et une vitesse de rotation élevés.
Ainsi une étoile a neutrons tourne sur elle-méme en a peu pres une seconde et son
champ magnétique, renforcé par 'effet dynamo du a la rotation de 1’étoile, dépasse
le milliard de Tesla, voire la centaine de milliards de Tesla pour les magnétars. Ce se-
rait de ce champ magnétique intense que proviendrait le rayonnement radio et haute
énergie des pulsars, le champ magnétique et I'axe de rotation étant par ailleurs ra-
rement alignés, c’est l'inclinaison de cet axe magnétique qui explique les fameuses
pulsations détectées dans le rayonnement émis par ces astres.

De nos jours plus de 2000 pulsars ont été identifiés, en général observés grace
a leur émission radio, mais leur émission haute énergie, particulierement dans le
domaine des rayons v (autour du GeV), a également pu étre observée (ABDO et
al., ; ALIU et al., ) grace a des instruments comme le Large Array Teles-
copeembarqué sur le satellite Fermi (Fermi/LAT) ou le Major Atmospheric gamma-
ray Imaging Cherenkov Telescop (MAGIC). Comme pour les pulsars émettant en
radio, I’émission haute énergie va présenter des pulsations que l'on peut le voir sur
la Fig. 1.4 qui représente 'activité dans le domaine des rayons gamma du pulsar
de Vela observé par FERMI/LAT sur plusieurs milliers de périodes (une période
représentant une rotation du pulsar sur lui-méme) ramené & une émission sur deux
périodes du pulsar.
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FIGURE 1.4 — Courbes de lumiéere dans le domaine des rayons gamma (de 20 MeV
a 300 GeV) du pulsar de Vela. Image tirée de ABDO et al.,

Ces observations (surtout dans le domaine radio) ont permis, comme montré en
Fig. 1.5, de déterminer non seulement la période P de rotation des pulsars mais
aussi la variation de cette période au cours du temps notée P. Ces caractéristiques
sont importantes car elles permettent de se donner une idée de 1’age et de 'intensité
du champ magnétique du pulsar.
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En effet, il est généralement admis qu'un pulsar voit sa vitesse de rotation di-
minuer par un phénomene de freinage magnétique, I’age d’un pulsar sera alors égal
a:

P

T = —=

2P

(si d’autres phénomenes n’ont pas modifié la période du pulsar comme I’accrétion de
matiere d’'une étoile compagnon pour un pulsar recyclé) et son champ magnétique

sera proportionnel & \/ PP (JOHNSTON et KARASTERGIOU, 2017) :

(1.1)

3o

o
32m3 RS sin® X

(1.2)

Avec I le moment cinétique de I’étoile, X I'angle entre I'axe de rotation et 1'axe
magnétique de 1’étoile a neutrons et R, le rayon de I'étoile. Ainsi les lignes en
pointillés de la Fig. 1.5 délimitent en bleu 1’age des pulsars, en vert leur champ
magnétique obtenu par la formule de freinage magnétique dans le vide de I’équation (1.2)
et en rouge la variation de leur énergie cinétique, celle-ci dépendant également de P

et P et du moment d’inertie I du pulsar :

. : P
E,=-10Q= —4n21ﬁ. (1.3)
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FIGURE 1.5 — Répartition des pulsars, notamment ceuz observés par Fermi/LAT,
en fonction de leur période (en abscisse) et de la variation de leur période au cours
du temps (en ordonnée). Image tirée de ABDO et al., 2015.
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Sur la Fig. 1.6, on remarque que les pulsars les plus jeunes sont concentrés dans
le plan galactique tandis que les pulsars plus anciens, notamment les pulsars mil-
lisecondes, se trouvent généralement en dehors de ce plan. Cela a cause du biais
d’observation : ces derniers étant plus proches de nous, d’ou le fait qu’ils appa-
raissent plus agés que des pulsars éloignés, mais aussi parce que ces pulsars plus
agés ont eu plus de temps pour s’éloigner du plan galactique. Les pulsars se forment
dans le plan galactique avant de quitter celui-ci avec une vitesse de déplacement
souvent élevée pouvant atteindre les 1000 km /s voire plus pour une minorité. Cette
vitesse s’expliquerait par des asymétries lors de I'effondrement du coeur de 1'étoile
(BURROWS et HAYES, 1990) di notamment a la distribution asymétrique du flux de
neutrinos au cours de la supernova qui a formé 1’étoile a neutrons. Cette vitesse de
déplacement élevée pourrait également étre d’origine purement électromagnétique,
causée par un champ magnétique du pulsar décentré qui provoquerait une asymétrie
dans son émission et donc une propulsion par pression de radiation (HARRISON et
TADEMARU, 1975; LAI et al., 2001). Quelle que soit la nature 1’étoile a neutrons

Other pulsars

LAT radio-loud pulsar
LAT radio-quiet pulsar
Radio MSP fram LAT UniD

A LAT millisecond pulsar

FIGURE 1.6 — Répartition spatiale des pulsars de la Fig. 1.5 selon les coordonnées
galactiques. Image tirée de ABDO et al., 2015.

considérée, pulsar, magnétar ou simplement étoile a neutrons isolée se refroidissant,
elles émettent essentiellement dans le domaine radio, des rayons X et des rayons
gamma. Les caractéristiques de ces longueurs d’onde sont succinctement passées en
revue dans les paragraphes qui suivent.

1.2.1 Les pulsars radio

D’apres le Australia Telescope National Facility (ATNF) Pulsar Catalogue (MAN-
CHESTER et al., 2005), 2720 pulsars émettent des pulses dans le domaine radio, parmi
ceux-ci, au moins 316 ont été identifiés comme membre d’un systeme binaire, c’est a
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dire orbitant autour d’au moins un autre corps céleste (qui peut étre une autre étoile
a neutrons, une naine blanche ou une étoile de la séquence principale plus ou moins
évoluée). Le spectre en radio de ces pulsars ressemblent généralement a ’exemple
présenté en Fig. 1.7 ou les points sont les valeurs observées de ce spectre (avec une
barre d’erreur observationnelle) par les radiotélescopes de l'institut Lebedev et la
ligne continue est une tentative de modélisation de ce spectre, initialement proposée
dans MALOFEEV et MALOV, , par le produit d’une loi de puissance et d'une
fonction exponentielle s’écrivant ainsi :

E(v) =av Te ™™ (1.4)

avec v la fréquence du rayonnement observé, E(v) l'énergie totale reque a une
fréquence v (donc hrv multiplié par le nombre de photons ayant une énergie hv),
I' I'indice spectral et a un parametre permettant d’ajuster la courbe aux données
récoltées. La fonction 7(v) s’exprime ainsi :

yo T 05

) = (%5 250

v
E(v) étant maximale pour v = v, et § un parametre décrivant la dépendance de la
fréquence du rayonnement a son altitude d’émission : celui-ci est compris entre 0 et
0.4. Ces spectres vont typiquement présenter, avant v,,,,, une montée tres abrupte
et apres une descente bien plus lente.

Dans I'exemple de la Fig. 1.7, le pulsar PSR B0834+4-06 montre un raidissement
brutal du spectre aux alentours de 100 MHz. L’émission radio a été déterminante
pour la découverte d’'une fraction importante de la population des pulsars. Paradoxa-
lement, I’énergie rayonnée en radio ne représente qu’une infime partie de ’énergie
cinétique disponible du fait de la rotation de ’étoile, de I’ordre de 1073 & 1076.
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FIGURE 1.7 — Spectre radio du pulsar PSR B0834+06, image tiré de 1ZVEKOVA
et al., avec v la fréquence en MHz.
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1.2.2 Les pulsars gamma

Parmi les sources de rayons gamma observées par Fermi/LAT, qui opeérent dans la
bande 100-MeV-100 GeV, 239 ont été identifiées comme étant des pulsars (ABDOL-
LAHI et al., ). De ces observations ont pu étre extraits les spectres de certains de
ces pulsars, comme celui du pulsar de Vela, qui présente un spectre assez typique de
I’émission gamma des pulsars, présenté dans la Fig. 1.8 ou les points représentent les
données obtenues par 1’observation de ce pulsar et la ligne continue une modélisation
du spectre a partir de ces données.
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FIGURE 1.8 — Distribution spectrale en énergie du pulsar Vela (moyenné sur plu-
sieurs milliers de phases) dans le domaine des rayons gamma, image tiré de ABDO
et al.,

Cette modélisation a été effectuée dans ABDO et al., en utilisant une formule
similaire & celle de I’équation (1.4) modélisant un spectre radio :

INGE) o ey
d—E—aE e (%) (1.6)

AN(E)

avec F I'énergie d'un photon (E = hv), le nombre de photons d’énergie F +

dE détectés, I' I'indice spectral de la loi de puissance, E,. ’énergie de ”coupure” au-
dela de laquelle le spectre subit une décroissance exponentielle ou sous-exponentielle
controlée par le parametre 5 < 1 et a un autre parametre ajustable.

Généralement, l'activité gamma présente au maximum deux pics importants
d’émission par période du pulsar comme dans le cas de la Fig. 1.4, certains pul-
sars ne présentant qu’'un seul pic d’émission par période comme dans ’exemple
de la Fig. 1.9 pour PSR J0659+1414. Contrairement aux pulsars radio, les pul-
sars gamma convertissent une grande partie de leur énergie cinétique de rotation
en rayonnement gamma, avec un facteur de conversion de pres de 100% pour cer-
tains d’entre eux. Ces étoiles sont particulierement intéressantes d’un point de vue
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théorique car elles offrent une vision indirecte de ’électrodynamique a grande échelle
de la magnétosphere (accélération de particules, dissipation sous forme de rayonne-
ment).

Certains de ces pulsars gamma émettent du rayonnement a tres haute énergie,
au-dela de la bande de Fermi/LAT, autour du TeV voire plus. Ils sont visibles
par les télescopes MAGIC, VERITAS et HESS-IT comme par exemple le pulsar de
Vela (DJANNATI-ATAI et H.E.S.S. COLLABORATION, ) et le pulsar du Crabe
(ANSOLDI et al., ) dont une pulsation a été détectée jusqu’a plusieurs TeV.
Le rayonnement inverse Compton (voir section 1.3.3) est vraisemblablement le seul
mécanisme capable de produire des photons aussi énergétiques. De telles observa-
tions fournissent des contraintes importantes et précieuses sur la structure et la
dynamique de leur magnétosphere.
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FIGURE 1.9 — Courbe de lumiére dans le domaine des rayons gamma (de 100 MeV
a 300 MeV) du pulsar PSR J0659+1414. Image tirée de ABDO et al.,

Les pulsars observés simultanément en radio et en gamma fournissent des informa-
tions contraignantes sur la géométrie et la localisation des sites d’émission radio et
de haute énergie. Le profil des pulses gamma, apparaissant généralement par paire,
ainsi que le délai entre 1'observation du pulse radio principal et du premier pulse
gamma restreint significativement 1’espace des parametres géométriques. Cette ap-
proche a été mise a profit dans différents travaux effectués par plusieurs auteurs
(par exemple JOHNSON et al., : C. VENTER et al., ; WATTERS et al.,

; KALAPOTHARAKOS et al., : PETRI, ) en partant d’'une modélisation
quantitative de la magnétosphere et du vent des pulsars utilisant des simulations
fluides et particulaires.

1.2.3 Emission thermique de surface

Certaines étoiles a neutrons évoluant au sein d’un systeme binaire ”volent” de la
matiere a leur compagnon, cette matiere formant alors un disque d’accrétion autour
de I'étoile. Entrainée par le champ magnétique de 1’étoile en rotation, cette matiere
tombe sur les calottes polaires de 1’étoile a neutrons, comme illustré sur la Fig. 1.10,
son énergie potentielle de gravitation est alors transformée en énergie thermique,
générant ainsi deux points chauds a la surface de ’étoile dont la température est
suffisamment élevée (de l'ordre de 10° K) pour que le rayonnement du corps noir
associé se produise en rayons X dit mous de par leur faible énergie pour des rayons
X, autour d’une centaine d’électron-volts.
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FIGURE 1.10 — Formation de points chauds a la surface d’un pulsar accrétant, image
tirée de X-ray Pulsar — COSMOS 2020.

On peut également retrouver des points chauds émettant des rayons X a la surface
d’un pulsar isolé, sans disque d’accrétion, ou des particules chargés provenant de leur
magnétosphere vont tomber sur les poles sous l'action du champ magnétique. L’ob-
servation de ’émission provenant de ces points chauds, grace a 'instrument NICER
(Neutron star Interior Composition Explorer) installé a bord de I'ISS, a permis de
contraindre la masse et le rayon de certaines étoiles a neutrons comme dans RILEY
et al., 2019 pour le pulsar PSR J0030+0451. NICER a aussi mis en évidence l'intérét
des composantes multipolaires magnétiques a la surface de I’étoile, notamment pour
expliquer la forme de ces taches chaudes en rapport avec les courbes de lumiere en
rayons X.

Une explication détaillée et quantitative de cette multitude d’observations multi-
longueurs d’onde des pulsars repose sur I’activité électromagnétique dans la magnétosphere.
Nous esquissons les grandes lignes des modeles magnétosphériques dans la section

qui suit.
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1.3 Modeles de magnétosphéere d’un pulsar

L’émission haute énergie et radio caractéristique des pulsars se produit au sein
de leur magnétosphere et est due a l'accélération de particules chargées dans le
champ électrique E généré par la rotation du pulsar et de son champ magnétique
B. L’étoile a neutrons est entourée d’un plasma formé par des particules chargées
arrachées de sa surface par le champ électrique, plasma enrichi par un processus
de création de paires au sein de ce champ magnétique intense. D’ailleurs le facteur
e~ ™) de Iéquation (1.4), qui permet de modéliser le spectre radio d’un pulsar, serait
da a absorption des ondes radio par ce plasma entourant le pulsar (MALOV, ).

Le plasma magnétosphérique est entrainé par le champ magnétique est entre en
corotation avec 1’étoile, du moins jusqu’a une certaine distance de celle-ci au dela de
laquelle la vitesse de corotation du plasma serait supérieure a la vitesse de la lumiere.
Cette limite est appelée le cylindre lumiere : I'axe de révolution de ce cylindre est
confondu avec 'axe de rotation de ’étoile et son rayon est égal a la vitesse de la
lumiere dans le vide divisée par la vitesse angulaire {2 de 1’étoile a neutrons :

c cP

Ren=5=57

(1.7)

sachant que €2 = 2?” avec P la période de rotation de I’étoile a neutrons.

Les lignes de champ magnétique sont supposées fermées uniquement a l'intérieur
de ce cylindre lumiere, celles sortant de ce cylindre sont dites ouvertes et sont
considérées comme se refermant a l'infini. On suppose que, dans la majeure par-
tie de la magnétosphere, la densité de charge de ce plasma est égale a la densité
de Goldreich-Julian pg;, densité introduite par GOLDREICH et JULIAN, . De
I’équation de Maxwell-Gauss, on trouve pour cette densité :

pGJ:€0V-E%28OQ'§ (1.8)

Cette approximation n’est valable qu’a proximité de ’étoile, bien a l'intérieur du
cylindre lumiere r < Rey avec ¢ la permittivité du vide (8,854 x 1072 F/m).
Pour cette densité, le plasma écrante la composante du champ électrique parallele
au champ magnétique, soit E-B = 0, la force de Lorentz exercée par les champs
magnétique et électrique sur une charge en corotation avec le pulsar sera alors nulle :

—

E+(QAP)AB=0. (1.9)

Il existe, dans la magnétosphere, des cavités dans lesquelles la densité de charge p est
différente de pg s, cavités situées le long des dernieres lignes de champ magnétique
fermées (les lignes de champ magnétique a l'intérieur du cylindre lumiere qui se
referment le plus loin de I’étoile). 1l existe actuellement trois modeles principaux de
répartition de ces cavités au sein de la magnétosphere indiqués sur la Fig. 1.11 :
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FIGURE 1.11 — Magnétosphere d’une étoile a neutrons avec le cylindre lumiére et
les cavités le long des derniéres lignes de champ magnétique fermées, image tirée de
ALIU et al.,

— Les cavités allongées, en bleu : cavités fines suivant les dernieres lignes de
champ magnétique fermées jusqu’au cylindre lumiere.

— les cavités externes, en orange : cavités situées le long de la partie extérieure
des dernieres lignes de champ magnétique fermées, en contact avec le cylindre
lumiere ou passant dans son voisinage proche.

— les calottes polaires, en rouge : cavités situées juste au-dessus des deux poles
magnétiques du pulsar. Ces calottes polaires sont délimitées par les points
ou les dernieres lignes de champ magnétique fermées traversent la surface de
I'étoile a neutrons. Leur taille angulaire 6., déduite de la forme des lignes de

champ pour un rotateur aligné dans le vide est sinf,, = }?*l ~ 0. Leur
cy

taille sera donc de 'ordre de R, 0., = R, }f*l.

Il est a noter que tous ces modeles reposent sur un champ magnétique dipolaire a
la surface de I’étoile a neutrons.

Le point essentiel a retenir est que, dans ces cavités, le champ électrique n’est
plus totalement écranté, celui-ci accélere alors les particules le long des dernieres
lignes de champ magnétique fermées, produisant par la méme occasion une émission
radio et de haute énergie par rayonnement synchrotron, rayonnement de courbure
ou encore par diffusion Compton inverse, voir la section 1.3.3 pour les détails sur ces
mécanismes d’émission. Cette émission, et particulierement I’émission radio prenant
place supposément au niveau des cavités polaires, sera fortement directionnelle du
fait de la géométrie dipolaire du champ magnétique. L’effet combiné de la rotation
du pulsar et de I'inclinaison de I’axe magnétique par rapport a son axe de rotation,
produit alors un comportement que 'on peut comparer a un phare : un faisceau
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de photons nous éclairant a intervalle de temps régulier, toutes les périodes P de
rotation (ou demi période si 'inclinaison X de son axe magnétique est proche de
90° pour un rotateur presque orthogonal), d’ou I'observation des pulses lorsque le
"faisceau” du pulsar pointe vers la Terre.

L’accélération de particules dans ces cavités est également a l'origine du processus
de création de paires évoqué plus haut. La formation d'une cascade de paires est
illustrée sur la Fig 1.12.

FILLED CHARGE-
SEPARATED
MAGNE TOSPHERE

X STELLAR SURFAC
B8 =0\ %

FIGURE 1.12 — Processus de création de paires dans une cavité polaire, image tirée
de RUDERMAN et SUTHERLAND, /9705.

Un photon gamma, d’énergie € supérieure a deux fois ’énergie de masse au repos
d’un électron (e > 2m, ¢* avec m, la masse de I'électron) évoluant dans un champ
magnétique intense, produit une paire électron-positon, en position 1 sur la figure,
dont le positon va rejoindre le plasma en corotation avec 1’étoile en dehors de la
cavité tandis que 1’électron est accéléré par le champ électrique, en position 2 sur la
figure, et produit alors un autre photon gamma par rayonnement de courbure (voir
section 1.3.3) générant a son tour une nouvelle paire électron-positron, elle aussi
accélérée par le méme champ magnétique, en position 3 sur la figure. Une cascade
de paires se développe et remplit la cavité jusqu’a écrantage presque complet du
champ électrique. La création de paires faiblit alors et s’arréte.

La probabilité w par unité de longueur de conversion d’un photon en une paire
électron-positon est donnée par exemple dans ERBER, 1966 ou BESKIN, 2010 :

3v/3 e3Bsin6 8m3cP
w = exp | —— .
16y/2 hmec3 gsinf

(1.10)
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¢ représente 1’énergie du photon et 6 ’angle de sa trajectoire avec la ligne de champ
magnétique. La répétition de ce processus de création de paires enrichit le plasma
en particules au voisinage de ’étoile et maintient sa densité autour de pg; en dehors
des cavités tout en fournissant des particules a l'origine du rayonnement du pulsar
par accélération dans les cavités le long des dernieres lignes de champ magnétique
fermées. Ainsi on soupgonne que la différence entre 1’émission radio et 1’émission
haute énergie tiendrait dans le fait que ’émission radio est issue de 'accélération
de paires secondaires, issues de ce processus de création de paires, avec un facteur
de Lorentz v bien moins élevé (y = 1/4/1 — v?/c? avec v la vitesse de la particule)
que la particule primaire a l'origine de la cascade de paires. On peut approximer le

facteur de Lorentz des paires secondaires grace a cette relation (BESKIN, )
15Beeh
mic

Avec I = 4= ol h est la constante de Planck (h = 6,626 x 1073 J.s), £ I'énergie du
photon & lorigine de la création de paire et e la charge élémentaire (e &~ 1.6 x 10719
Coulomb).
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FIGURE 1.13 — Facteur de Lorentz des particules dans la magnétosphére du pulsar,
image tirée de GUREVICH et al.,

Le facteur de Lorentz des particules secondaires dont 1'accélération est a l'origine
du rayonnement radio est généralement estimé comme étant de I'ordre de v &~ 102
dans les calottes polaires. Les particules primaires, arrachées de la surface de 1’étoile
a neutrons par le champ électrique ou issues de rayons cosmiques, ont un facteur de
Lorentz estimé autour de v ~ 107 ce qui leur permettrait d’émettre des rayonnements
de plus haute énergie via les processus d’émissions décrits dans la section 1.3.3. Ainsi
sur la Fig. 1.13 qui montre la distribution du facteur de Lorentz des particules dans
la magnétosphere du pulsar, les particules issues du processus de création de paires
se retrouvent elles sur la gauche du graphique.

Concernant le champ magnétique du pulsar, nous n’avons utilisé dans cette these
que le modele décrivant le champ magnétique d’un dipole tournant dans le vide
(car on dispose d’une solution analytique exacte pour celui-ci), modele que nous
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détaillerons dans la section 3.1, autrement dit nous n’avons pas pris en compte
I'influence du plasma sur le champ magnétique du pulsar, ce modele n’est donc pas
le plus réaliste mais son expression analytique relativement compacte nous permettra
de calculer efficacement et rapidement des cartes d’émission multi-longueurs d’onde.
Il existe cependant des modeles plus réalistes prenant en compte la présence d’un
plasma dans la description de la magnétosphere, comme par exemple le modele
force-free et des modeles dissipatifs que nous détaillons maintenant.

1.3.1 Modéele force-free

Le modele dit force-free permet d’approximer une magnétosphere remplie de
plasma a condition de négliger I'inertie du plasma et la dissipation d’énergie, no-
tamment par émission de rayonnement. On peut alors poser la relation suivante
annulant la densité de force de Lorentz (SPITKOVSKY, )

FAB+p.E=0 (1.12)

avec p. la densité de charge au sein du plasma et j son vecteur densité de courant.
Cette relation implique donc I’annulation de la force électromagnétique appliquée a
un élément fluide, d’ou 'appellation force-free. Pour un plasma de densité egale a
celle de Goldreich-Julian, invoquant 1’écrantage du champ électrique (E B = 0),
on peut déduire la densité de courant par la seule donnée des champs électrique et
magnétique. A partir de cette condition force free, on aboutit a un systeme clos pour
les équations de Maxwell selon :

BI) L

= B—; 1.1
5 = VAB—J (1.13)
0B ﬂ

5;——VAE (1.14)

avec une densité de courant électrique fonction de E et B uniquement :

EANB (B-VAB—E-VAE)B
B B

j=V-E (1.15)
On peut ainsi retrouver la structure de la magnétosphere en intégrant numériquement
ces équations.

Le fait qu’on a utilisé dans cette these les solutions pour un dipodle tournant dans
le vide plutot que le modele force-free ne devrait pas changer grand chose au regard
de la géométrie du champ magnétique cependant ce choix peut éventuellement jouer
sur le délai que I'on percevra entre 'activité radio et gamma du pulsar.

1.3.2 Modele dissipatif

Le modele force-free est simple, sans parametre libre. Il possede malheureusement
le gros inconvénient de ne pas fournir de zones d’accélération de particules, un
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ingrédient indispensable pour produire du rayonnement radio et de haute énergie.

Des approches plus réalistes ont été tentées pour décrire la magnétosphere du
pulsar ou le plasma, malgré sa densité, n’écrante pas parfaitement la composante
du champ électrique parallele aux lignes de champ magnétique (E . B = 0 étant une
idéalisation) afin de prendre en compte la dissipation dans la magnétosphere. Cela
induit de nouvelles expressions pour le vecteur densité de courant j dont on peut
trouver un exemple dans GRUZINOV,

peE N B+ (ByB + EyE)\/p? + 7202 E?
B! (1.16)
’YZ(BO + Eo)

j =

avec !

— 7 le facteur de Lorentz d’un référentiel ot E devient perpendiculaire a B soit
1

T E

ol on peut définir [ ainsi :

B |EAB
1+,82_BZ+E2

(1.17)

—

— By et Ey sont des invariants du champ tels que B — EZ = B? — E? et
BoEy = E - B avec Ey > 0.

— o représente la conductivité et dépend de Fy et By. C’est un parametre libre
controlant le taux de dissipation dans le plasma.

— pe reste la densité de charge dans le plasma présent a I'intérieur de la magnétosphere.

On peut alors retrouver la structure de la magnétosphere en incluant cette ex-
pression de j dans les équations (1.13) et (1.14). D’autres expressions de j ont été
proposés pour prendre en compte cette dissipation, comme par exemple une de celles
données dans KALAPOTHARAKOS et al., ou 'on remplace le second terme de
I'équation (1.15) par UE_]| ;

(1.18)

avec EII le vecteur décrivant les composantes du champ électrique paralleles aux
lignes de champ magnétique soit :

(1.19)
Mais ici aussi, il faut invoquer un parametre libre o, une autre sorte de conductivité.

Voyons a présent les principaux mécanismes d’émission susceptibles d’expliquer le
rayonnement multi-longueurs d’onde des pulsars.

1.3.3 Mécanismes d’émission

Les trois mécanismes que nous considérons sont le rayonnement inverse Compton,
le rayonnement synchrotron et le rayonnement de courbure.
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Diffusion Compton inverse

La diffusion Compton se produit lorsqu’un photon entre en collision avec un
électron, un positon ou toute autre particule chargée, le photon transférant alors
une partie de son énergie et de son impulsion a la particule sous forme d’énergie
cinétique. On suppose une collision élastique ou I'énergie totale est conservée et le
photon ”diffusé” : sa trajectoire et sa fréquence changent, sa fréquence diminuant
du fait qu'une partie de son énergie est transférée a la particule. La différence entre
la longueur d’onde du rayonnement avant Ay et apres la diffusion A s’exprime ainsi :

h
A—X=—(1—cosb 1.20
o=~ (1~ cost) (1.20)
avec h la constante de Planck, 6 I'angle de diffusion et m la masse de la particule
diffusante. Un exemple est montré en figure 1.14 pour une diffusion Compton a
I'intérieur d’'un atome mais le processus reste le méme pour une diffusion sur une
particule libre.

E= hVﬂ

FIGURE 1.14 — Ezemple de diffusion Compton dans un atome sur un électron orbi-
tant autour du noyau atomique. Image tirée de NICOL,

A partir de la différence de longueur d’onde, on déduit 1’énergie du photon une
fois diffusé F = hv en utilisant la relation liant la longueur d’onde a la fréquence
pour une onde électromagnétique se propageant dans le vide : v = ¢/\.

Ey

E = 1.21
Lo (1 —cosf) +1 (1.21)

Avec Ey = hvy = hc/)g U'énergie initiale du photon. L’énergie cinétique de la
particule apres diffusion est donc égale a la différence entre 1’énergie initiale du
photon et son énergie apres la diffusion (puisqu’on suppose une collision élastique
et une particule initialement au repos). Dans le cas de la diffusion Compton inverse,
la particule (généralement un électron ou un positon) se déplace a une vitesse v
relativiste avant la collision et possede donc déja une importante énergie cinétique
dont une partie sera alors transmise au photon qui verra sa fréquence augmenter
apres la diffusion. Dans le référentiel de la particule en mouvement, la relation (1.21)
est valable si on remplace E par E’ I’énergie finale du photon dans le référentiel de
la particule, 6 par 6’ I'angle entre le photon incident et le photon réémis dans le
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référentiel de la particule et Ey par :
E) = vEy(1 — Bcosby) (1.22)

I’énergie initiale du photon dans le référentiel de la particule, 6, étant ’angle entre
la trajectoire de la particule et celle du photon incident dans le référentiel d'un
observateur statique et § = v/c.
E/
E'=— g (1.23)
0. (1 —cost) +1

mc2

L’énergie E du photon pour un observateur statique sera alors :
E =~E'(1+ BcosO) (1.24)

Avec © = 0" 4 6}, ou 6} est 'angle d’incidence du photon dans le référentiel de la
particule, ' et 6 sont liés par les formules d’aberration relativistes

6+
o= P70 1.2
o8 1+ [cos (1.25)
sing — om0 (1.26)

Y(1+ Bcosh)

Ces mémes relations lient 6y et 6. L’énergie maximale du photon diffusé sera de
I'ordre de 1'énergie cinétique de la particule soit ym c?. Si 'énergie du photon est
petite devant 'énergie au repos de la particule (Ey < mc? et donc Ej < mc?) on
pourra alors poser :

E =~ +?Ey(1 — Bcosby) (1 + BcosO) =~ v*Ej. (1.27)

Donc des photons de faible énergie peuvent suffire a la production de rayons gamma
si l'interaction se fait avec des particules ultra-relativistes, v > 1. L’énergie du
photon prend un facteur gigantesque de v2. Cette approximation tombe en défaut
lorsque I’énergie du photon est comparable a celle de la particule. On entre alors
dans le régime quantique de Klein-Nishina (KLEIN et NISHINA, ), qui tient
compte du recul de la particule dans son référentiel de repos. Dans ce régime ultra-
relativiste, la section efficace de diffusion chute fortement comparée a sa valeur dans
le régime non relativiste de Thomson et I’énergie du photon diffusé sera de 1'ordre
de vEy (sans jamais dépasser ’énergie cinétique initiale de la particule).

La diffusion Compton inverse pourrait étre a l'origine des rayonnements de tres
hautes énergies (> 100 GeV) provenant des pulsars et détectés par les télescopes a
effet Cherenkov comme MAGIC (LYUTIKOV et al., ).

Rayonnement synchrotron

Le rayonnement synchrotron est produit par le mouvement de giration d’une
particule chargée (généralement électron ou positon) autour d’une ligne de champ
magnétique ce qui induit ’émission de photons due a la trajectoire circulaire de
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la particule comme représenté sur la Fig. 1.15. En effet un mouvement circulaire
induit une variation de la vitesse de la charge et donc ’émission d’un rayonnement,
celui-ci étant appelé un rayonnement synchrotron uniquement lorsque la particule
chargée se déplace a des vitesses relativistes (proches de ¢) comme c’est le cas dans
la magnétosphere d'un pulsar a cause du puissant champ magnétique de 1'étoile a
neutrons.

Non-thermal
Radiation

is‘ Polarization
Electron

Magnetic Field

Non-thermal
Radiation

FIGURE 1.15 — Mécanisme d’émission du rayonnement synchrotron, image tirée de

La puissance rayonnée par une particule accélérée est donnée par la formule de
Larmor (BRADT, )
¢2a?
P = 1.28
6meged ( )

avec ¢ la valeur de la charge, a son accélération et € la permittivité du vide.Considérons
le référentiel R muni d’un repeére (O, z,y, z) dans lequel la charge électrique a un
mouvement circulaire autour d’une ligne de champ magnétique qui est parallele a z,
le mouvement de la particule est donc compris dans le plan xy. La force de Lorentz

nous donne :
F =qE + q(V A\ B) (1.29)

avec U la vitesse de cette charge, E et B sont respectivement le champ électrique
et le champ magnétique dans lesquels évolue la particule, or le champ électrique
étant nul, la force exercée sur la particule est F = q(v A E) Comme le champ
magnétique représenté par le vecteur B est aligné avec l'axe z du repere (O, z,vy, 2),
F est perpendiculaire a ¥ et a ’axe z d’ou le mouvement circulaire de la particule.

Considérons maintenant un référentiel R muni d’un repere (O, 2,1/, 2’) en mou-
vement le long de 'axe = du repere (O, z,y, z) dans le référentiel R avec une vitesse
égale a la vitesse instantanée de la particule v dans R. Dans le cas relativiste ou v
(la norme de ) est non négligeable devant ¢, les composantes du champ électrique
E’ et du champ magnétique B’ dans le référentiel (O, 2',y/,2") sont alors données
par les transformations de Lorentz (
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E| = E| B, =~(@AB), (1.30)

L . U S

B|/| = B Bj_ =7 (B T2 A E)J_ (1.31)
avec les composantes paralleles au déplacement du repere R’ dans le repere R notées

avec 'indice || et les composantes perpendiculaires a ce déplacement notées avec
I'indice L. Pour un déplacement le long de I’axe x, on aura donc :

Ey=E, By =B, (1.32)
(%

Ey/ = ’)/(Ey — 'UBZ) By/ = ’)/(By + C—2Ez) (133)
(%

avec I,, B, E,, B,, B, et B, les composantes des champ électrique E et champ
magnétique B dans le référentiel R, B, £y, E.., By, By et B, leurs composantes

1
dans le référentiel R’ et v le facteur de Lorentz de R’ dans R : v = ———. Or
v2
dans le référentiel R, les composantes de E et B sont :
. 0 B 0
E=10 B=10 (1.35)
0 B
Soit dans R’ :
0 B 0
E' = | —wB B'=|0 (1.36)
0 vB

Initialement la particule est au repos dans le référentiel R’ car alors la particule et
le référentiel R’ se déplacent avec la méme vitesse et dans la méme direction dans
le référentiel R, on a donc v/ = 0 donc d’apres I’équation (1.29) on a F = qE et on
peut ainsi en déduire l'accélération a’ de la particule dans le référentiel R’ :

r_ _Q’YUB
aqa = ——
m

(1.37)

avec m la masse de la particule. P’ la puissance rayonnée par la particule dans le
référentiel R peut alors étre calculée a partir de I'équation (1.28) :

4

P/_ q

2 22

La puissance étant invariante par transformation de Lorentz, celle rayonnée par
la particule dans le référentiel R sera alors égale a la puissance rayonnée dans le
référentiel R’ soit P’ = P.

Pour le rayonnement synchrotron dans I’atmosphere d’un pulsar, on considere
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que I’émission est due soit a un électron soit a un positon (donc ¢ = +e avec e la
charge élémentaire) et que celui-ci suit une trajectoire en spirale, et non une trajec-
toire parfaitement circulaire, U et B ne sont donc pas perpendiculaires, on nomme
® I’angle entre ces deux vecteurs, le référentiel R’ se déplace dans le référentiel R
avec une vitesse v tel que :
vsin @
U= 0 (1.39)
vcos P

de maniere a ce que ¥ la vitesse instantanée du photon soit toujours initialement
nulle. En utilisant la formule générale pour la transformée de Lorentz des champs
électrique et magnétique des équations (1.30) et (1.31) on trouve :

0
E' = | —yvBsin® (1.40)
0

La puissance émise par la particule est alors :

e4

P v?B?B3*sin” . (1.41)

- 6megm2e
Pour des vitesses non relativistes, la fréquence de rotation de la particule de charge
q et de masse m autour de la ligne de champ magnétique, aussi appelée fréquence
cyclotron, est donnée par :

qB

_ 1.42
2mm ( )

Veyelo =

Dans le cas ou la vitesse de la particule est relativiste, cette fréquence est simplement
la fréquence cyclotron divisée par le facteur de Lorentz :

qB _ Veyclo
y2mm v

(1.43)

Vsyne =

Une autre fréquence remarquable pour I’émission synchrotron est la fréquence cri-
tique v, car le spectre de I’émission synchrotron présente une décroissance exponen-

tielle passé cette limite (LEE, ), cette fréquence du pic de I’émission synchrotron
vaut : 5
Ve, = 572ycydo. (144)

Cela pourrait d’ailleurs expliquer la forme que prennent les spectres des pulsars dans
le domaine des rayons gamma, tel qu’on I’a vu dans la section 1.2.2, modélisé avec
une coupure sous-exponentielle avec une énergie (et donc une fréquence) de coupure
E. dans I'équation (1.6), le parametre 5 dans cette équation permettant alors de
prendre en compte le fait que 1’émission est due a ’accélération de particules avec
divers facteurs de Lorentz ~.
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Rayonnement de courbure

Le rayonnement de courbure est similaire au rayonnement synchrotron en cela
qu’il est le produit de la trajectoire non rectiligne d’une particule chargée. La
différence entre les deux est que dans le cas du rayonnement synchrotron, la par-
ticule tourne autour d’une ligne de champ magnétique alors que dans le cas du
rayonnement de courbure celle-ci va suivre cette ligne de champ magnétique qui
est elle-méme courbée, d’ou I’émission de rayonnement due a la courbure de la tra-
jectoire. Si la trajectoire de la particule est circulaire dans le cas du rayonnement
synchrotron (perpendiculairement a la ligne de champ), ce n’est pas nécessairement
le cas pour le rayonnement de courbure.

Considérons comme sur la Fig. 1.16 le rayonnement de courbure comme une
émission synchrotron d’ une particule tournant autour d’une ligne d’un champ magnétique
virtuel B’ avec une vitesse ¢ perpendiculaire a B’.

Synchrotron Radiation Curvature Radiation

®B

Mag. Field

X *F
Virtual Strong Curved
Mag. Field Mag. Field

FIGURE 1.16 — Mécanisme d’émission du rayonnement de courbure, image tirée de
SAITO,

L’équation (1.43) nous donne alors la fréquence de rotation de cette particule
eB’

2mym

cette fréquence est 'inverse du temps que met la particule pour faire un tour autour

de la ligne de champ magnétique, on a :

autour de la ligne de champ magnétique virtuelle : Vg, = . Sachant que

eB’ v
= (1.45)
2mym  27mp
avec p le rayon de courbure de la trajectoire de la particule. Dans le cas ultra-
R ,  ymc D
relativiste ou v & ¢ on peut alors poser B’ = ——. En remplagant dans I’équation (1.41)
ep
I'angle ® par § et B’ par Ve—p on peut ainsi retrouver la puissance rayonnée par la
particule accélérée (KUNDU, )
2.4
Py = — 1€ (1.46)
67 € p?

On déduit de I’équation (1.42) que la fréquence cyclotron du rayonnement de cour-

bure est veyco = , on peut ainsi retrouver, a partir de 1’équation (1.44), la

2mp
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fréquence caractéristique du rayonnement de courbure (GUREVICH et al., |k

3 4cC

Vewrv = 77 —
47r7 p

(1.47)

au-dela de laquelle la particule ne rayonne plus significativement. Plus précisément,
la forme du spectre en énergie du rayonnement de courbure pour une particule de
facteur de Lorentz v est donnée dans JACKSON, par :

dl _ V3 ¢ F<i) avec  F(r)==x +OOK5/3(t)dt (1.48)

dw 4dmeg ¢ We .

olt K5/3 est une fonction de Bessel modifiée d’ordre 5/3 (ARFKEN et WEBER, ).
Une tres bonne approximation de la fonction est d’apres AHARONIAN et al.,

16 14 0.8842%% + 0471 2% .
1+ 1.6422%/3 +0.974 24/3

F(z) =2152"3 (1 + 3.06 2) -, (1.49)
La forme du spectre est représentée en figure 1.17 en ligne rouge et I’approximation
en ligne bleu. La précision étant supérieure a 0.2% dans tout l'intervalle, on ne peut
distinguer les courbes a I’ceil nu.

1f‘ T T — T T — T T “i

0.50 - B

F(v 1 Vou)

0.005 0.010 0.050 0.100 0.500 1

V1 Vo
FIGURE 1.17 — Spectre du rayonnement de courbure au voisinage de la fréquence
caractéristique Veyr . L’approximation en bleu n’est pas distinguable de l’expression
exacte en rouge.

1.3.4 Au-dela du cylindre lumiere

En dehors du cylindre lumiere, le champ magnétique possede une géométrie es-
sentiellement toroidale. Les lignes de champ magnétique considérées comme ouvertes
en dehors du cylindre lumiere se referment en fait avant d’atteindre le milieu inter-
stellaire (GOLDREICH et JULIAN, ). Le plasma entourant 1’étoile & neutrons est,
comme on ’a vu, issu au moins en partie du processus de création de paires dans
les cavités de la magnétosphere. Les particules formant ce plasma étant initialement
accélérées dans ces cavités, comme on peut le voir sur la Fig. 1.12, avec des fac-
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teurs de Lorentz v > 1, ce plasma est donc animé d’'une vitesse relativiste formant
ainsi un vent de matiere qui s’éloigne de 1’étoile a neutrons. Loin a l'extérieur du
cylindre lumiere, la progression de ce vent sera finalement stoppée par la pression
du milieu interstellaire. La collision entre le plasma et ce milieu, formant un front
d’onde délimitant ce que 'on appelle une pulsar wind nebula ou ”nébuleuse de vents
de pulsar”, accélere les particules présentes dans le plasma qui vont alors générer
une émission électromagnétique, notamment par rayonnement synchrotron. Comme
dans le cas du pulsar du Crabe, ’écoulement du plasma peut également étre stoppé
par la pression de la matiere éjectée lors de la supernova a l'origine de 1’étoile a neu-
trons, matiere qui elle-méme voit son expansion stoppée par la pression du milieu
interstellaire, phénomene illustré dans la Fig. 1.18 ou CSM est le milieu circumstel-
laire (Clircum stellar medium) qui peut étre confondu avec le milieu interstellaire :

] 8
5 3
E] 3
= &
8 4

Shocked CSM
Unshacked CSM

Unshocked
Ejecta

8 12 16
Distance (x 102 cm)

FIGURE 1.18 — Nébuleuse de vents de pulsar a l'intérieur d’un rémanent de super-
nova et densité de matiere en fonction de la distance a l’étoile a neutrons. Image
tirée de SLANE, 2017.

Comme on peut le voir sur la Fig. 1.19, si I'inclinaison entre 1’axe magnétique et
I'axe de rotation du pulsar est non nulle, un vent strié se formera (striped winds)
délimité par une couche de courant qui est la surface de séparation entre les deux
poles magnétique du pulsar en rotation. Cette couche de courant est connectée aux
dernieres lignes de champ magnétique fermées, formant avec elles un point de re-
connexion en forme de Y a la jonction entre la limite de la magnétosphere et la
base du vent (au cylindre lumiere). Le vent lui-méme peut étre une source efficace
de rayonnement haute énergie (LYUBARSKII, 1996 ; PETRI, 2012). La pulsation de
cette émission provient de l'effet combiné entre la forme spirale de cette couche et
le mouvement relativiste du vent focalisant la lumiere dans le sens du mouvement
(KIRK et al., 2002).
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current sheet -

meridional plane equatorial plane

FIGURE 1.19 — Structure du vent strié d’un pulsar avec une vitesse angulaire w et
une inclinaison X de son champ magnétique. Image tirée de MOCHOL,

1.3.5 Tentatives passées

Des simulations de I’émission d’un pulsar prenant en compte le rayonnement
radio et haute énergie ont déja été réalisées dans d’autres travaux. On peut notam-
ment citer KALAPOTHARAKOS et al., ou la vitesse des particules a 1’'origine
de I’émission est calculée a partir d’une fonction dépendante des champs électrique
et magnétique. Il a ainsi pu en étre déduit le facteur de Lorentz de ces particules
et donc I'énergie du rayonnement que l'on recoit du pulsar ainsi que le décalage
temporel entre la réception de ’émission haute énergie et 1’émission radio provenant
des calottes polaires.

On peut également citer VENTER et al., ol I’émission radio et haute énergie
des pulsars millisecondes ont été modélisées pour différentes géométries afin de
déterminer laquelle correspondait le plus aux données récoltées par le télescope
Fermi/LAT.

Notre nouvel apport a toutes ces études concerne 'inclusion des effets de rela-
tivité générale dont on rappelle les caractéristiques essentielles dans le paragraphe
qui suit.

1.4 Relativité générale

La physique newtonienne montre généralement ses limites lorsqu’il s’agit de
décrire le champ gravitationnel d’un astre avec un rapport masse sur rayon aussi
important que celui d’une étoile a neutrons, on doit donc recourir a la théorie de la
relativité générale pour avoir une vision plus complete des effets de la gravitation
d’un tel astre sur son voisinage. L'un des concepts de base de cette théorie est qu’il
n’existe pas de force gravitationnelle a proprement parler : la gravité peut en effet
s’expliquer par des considérations purement géométriques. C’est une force fictive au
meéme titre que la force centrifuge ou la force de Coriolis.

Considérons que notre Univers dispose de quatre dimensions : trois dimensions
d’espace et une de temps, et appelons cet hyperespace a quatre dimensions I’espace-
temps. D’apres la théorie de la relativité générale, 1’énergie d’'un objet et donc sa
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masse (car les deux sont liées, de par sa masse un objet au repos a une énergie de
E = m c?) induit une déformation de I'espace-temps et cette déformation est en fait
interprétée comme étant le champ gravitationnel de 1’objet.

Si on lance un objet depuis la surface de la Terre, celui-ci suivra une trajectoire
courbe, en ”cloche”, qui le fera retomber sur la surface de la planete. Dans le cadre de
la relativité générale ce n’est pas la trajectoire de cet objet qui est courbe mais bien
I’espace-temps dans lequel s’inscrit cette trajectoire. Ainsi, par exemple, la Lune ne
tournerait pas autour de la Terre mais ce serait ’espace-temps dans lequel s’inscrit
sa trajectoire qui est courbé par la masse de la Terre.

La déformation de I'espace-temps induite par le contenu en masse-énergie d’un
corps est décrite par I’équation d’Einstein :

RHV - %gm/R—FAg/w - 87CT—40TMV (150)
dont les différents termes sont :

— guv est la métrique de 'espace-temps, une généralisation tensorielle du po-
tentiel gravitationnel newtonien,

— R, est le tenseur de Ricci : ce tenseur exprime la courbure de I’espace temps,

— R = R*, est le scalaire de courbure : scalaire défini a partir de la trace du
tenseur de Ricci,

— T, est le tenseur énergie-impulsion de la matiere responsable du champ gra-
vitationnel,

— A est la constante cosmologique : cette constante a été initialement ajoutée
pour que l’expression décrive un Univers statique, aujourd’hui elle permet
de prendre en compte 'expansion accélérée de 1'Univers. Elle n’a aucune
influence sur I'espace-temps a 1’échelle des étoiles a neutrons.

— @ est la constante gravitationnelle (G = 6.67 x 1071 m3 kg=! 572 ).

On suit ici la convention de notation d’Einstein ou les composantes covariantes
sont en indice et les composantes contravariantes en exposant et ou A,, est la
composante covariante de la r-ieme colonne de la p-ieme ligne de la matrice A.
Avec cette convention de notation la sommation est indiquée par une répétition
d’un exposant en indice : par exemple 2y, = Zi:o Y.

Soit z# les composantes contravariantes d’'un quadrivecteur de ’espace-temps,
c’est-a-dire un vecteur a quatre dimensions possédant une coordonnée temporelle
et trois coordonnées spatiales, alors ses composantes covariantes sont données par

— | Z— v . 7 .

Ty = gut’ = Y gux” avec g, les composantes covariantes de la métrique de
I’espace-temps dans lequel s’inscrit le quadrivecteur.

Les composantes contravariantes de la métrique, g"”, sont celles de la matrice
inverse de g,,, telles que g"” g,, = d%. Ainsi pour une métrique diagonale comme
celle d'un trou noir statique (métrique de Schwarzschild), cette inversion se simplifie

pry 1
en gt = .

En relativité générale, I’équivalent de la force gravitationnelle newtonienne est
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donné par les symboles de Christoffel définis a partir de la métrique considérée g :

1 dg dg dg
Fa — _ 00 vo oK 1224 151
e 29 oz + oxV o0x° ( )

On peut alors écrire le tenseur de Riemann (appelé aussi tenseur de Riemann-
Christoffel ou encore tenseur de courbure) selon ces symboles de Christoffel :

are ore
o _ po nv B Pa o
R uvo 8;5” - —axo_ + F“U v - FZVFU'Y (152)

Le tenseur de Ricci est une contraction de ce tenseur de Riemann :
R, = R’ 160 (1.53)
Le scalaire de courbure est lui-méme une contraction du tenseur de Ricci :
R=g¢" R, = R",. (1.54)

Quant au tenseur énergie-impulsion, comme son nom 'indique il représente la quan-
tité de mouvement et 1’énergie de la matiere présentes dans I'espace-temps. Ce ten-
seur est symétrique, T = T"*. Pour un espace-temps repéré par les coordonnées z*
avec 2° la composante temporelle, ses diverses composantes possedent la signification
physique suivante
— La composante T% représente la densité d’énergie.
— Les composantes T représentent la densité d’impulsion ou le flux d’énergie
suivant la direction z* (idem pour les composantes T% par symétrie), avec
i # 0.
— Les composantes purement spatiales T%, avec i # 0 et k # 0, représentent le
flux de la i-ieme composante de I'impulsion suivant la direction spatiale z*.
L’énergie et I'impulsion étant conservées, 1’équation du mouvement de la maticre
est V, T = (0 avec V, la dérivée covariante qui généralise la dérivée partielle aux
espaces courbes.

Concernant la métrique, g,,, dans la suite de cette these on s’intéresse a deux
d’entre elles. La premiere concerne la métrique de Minkowski qui décrit un espace-
temps plat et ou les effets dus au champ gravitationnel sont négligés. Cette métrique
est diagonale et vaut en coordonnées cartésiennes (ct,x,y, z) :

N = diag(—1, +1, +1, +1). (1.55)

La deuxieme concerne la métrique de Schwarzschild qui décrit la déformation de
I’espace-temps autour d’'un objet sphérique et statique qui est une bonne approxi-
mation de la géométrie de 'espace-temps au voisinage d’une étoile a neutrons en
rotation lente (disons v, < 600 Hz ou v, est l'inverse de la période de Iétoile).
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1.4.1 Meétrique de Schwarzschild

La métrique de Schwarzschild est une solution a symétrie sphérique des équations
d’Einstein, elle est donc statique d’apres le théoreme de Birkhoff ce qui veut dire
qu’elle ne dépend pas de la coordonnée temporelle %7;0” = 0 et g% = 0 lorsque
v # 0 (R. D’INVERNO et L. a. t. F. o. M. S. R. D’INVERNO, ). Considérons
I'intervalle d’espace-temps qui sépare deux évenements, et qui s’écrit dans I’espace-

temps de métrique g, sous la forme :

ds® = g,, da' dz". (1.56)

La métrique de Schwarzschild étant une métrique a symétrie sphérique, les coor-
données z* d’un évenement serons alors avantageusement décrites en coordonnées
sphériques par :

ot =

0
1
, | = (1.57)
3

8 8 8 8

avec r, 0 et ¢ les coordonnées dans le repere sphérique (respectivement la distance
radiale, la colatitude et la longitude) dont l'origine est le centre de masse de 'objet
causant la déformation de l’espace-temps. L’intervalle d’espace-temps dans cette
métrique prendra alors une forme diagonale dans des coordonnées adaptées :

ds* = gooc®dt* + gridr® + r*(d6* + sin® 0d¢p?) (1.58)

r2d0? = r%(sin® 0d¢? + dh?) étant 'intervalle entre deux événements sur la surface
d’une sphere de coordonnée radiale 7.

L’intervalle d’espace-temps dans la métrique de Schwarzschild s’écrit (la démonstration
étant donnée dans I'annexe A.1) :

—1
ds? = — (1 — &> Adt? + (1 - &) dr? + r*(sin® 0d¢?® + db?) (1.59)

r r
Rg = Q%M est appelé le rayon de Schwarzschild de 'astre et est égal au double de
son rayon gravitationnel Rg = fi—y Ainsi si on se place dans cette métrique, g,

dans 'équation (1.50) devient :

R\ !
G = 0 (1 - —S) 0 0 (1.60)
r
0 0 r? 0
0 0 0 r?sin?6
Lorsqu’on s’éloigne de 'objet » — oo ou lorsque la masse M de celui-ci est faible
M — 0 (ce qui équivaut & Rg — 0 car Rg = Q%M ) on retrouve bien la métrique

de Minkowski dans un repere sphérique, la courbure de I’espace-temps autour d’un
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objet massif est donc négligeable a grande distance ou lorsque la masse de cet objet
est trop faible.

La métrique de Schwarzschild représente une solution exacte des équations d’Ein-
stein dans le vide. C’est aussi la solution la plus simple, ne possédant qu'un pa-
rametre libre, la masse totale de 'objet considéré ainsi qu’une tres bonne approxi-
mation pour des étoiles sans charge et dont la rotation est faible. Sa simplicité permet
d’en extraire aisément des conclusions importantes et de portée tres générale sur le
comportement des horloges et des particules dans un champ gravitationnel intense.
Voyons a présent ces effets relativistes, absents en théorie newtonienne.

1.4.2 Effets relativistes

La courbure de l'espace-temps influence notre perception de 1’écoulement du
temps et de la trajectoire des particules. La grandeur fondamentale en relativité est
le temps propre que nous calculons maintenant.

Temps propre

Comme le champ gravitationnel est une déformation de l'espace-temps, 1'une
des conséquences de la relativité générale est que la masse d’un objet affectera
I’écoulement du temps dans son voisinage. Ainsi le temps s’écoulera plus lente-
ment a proximité d'un astre massif qu’a distance de celui-ci. Si on considere deux
évenements avec les mémes coordonnées spatiales mais séparés par un intervalle de
temps coordonné At qui est aussi le temps "réel” mesuré par un observateur loin-
tain, dans la métrique de Schwarzschild, d’apres la relation ds? = —c? d7r? o dr est
I'intervalle de temps propre, on aura :

—cdr? = — (1 - E) cdt?. (1.61)
r

On peut alors en déduire le temps propre A7 qui sépare les deux évenements par

AT = At 1—%. (1.62)
Tant que r > Rg, le temps propre A7 entre ces deux évenements diminue au fur
et a mesure que 'on se rapproche du rayon de Schwarzschild Rg. A I'inverse, on
aura A7 = At a grande distance pour r — oo car la métrique de Schwarzschild,
asymptotiquement plate, y est alors similaire a la métrique de Minkowski ou il n’y
a pas d’effets gravitationnels.

Précession du périastre

Comme on I’a vu dans la section précédente, pour r > Rg dans la métrique de
Schwarzschild, on retrouve le comportement de la gravité en physique newtonienne et
les trajectoires des objets dans le champ de pesanteur d'un astre massif sont décrites
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par des orbites képlériennes. Cependant, dans la métrique de Schwarzschild, ces
orbites varient au cours du temps si leur excentricité e est non nulle. Plus exactement
la courbure de ’espace-temps entraine une précession du périastre d'un angle § entre
deux révolutions d’un objet autour de l'astre central tel que :

247302

~ 20— o) (1.63)

avec a le demi-grand axe de 'orbite et T' le temps que met 'objet a parcourir cette
orbite. Cette précession est donc importante pour une orbite avec une faible période
mais une forte excentricité, ¢’est notamment le cas de la planete Mercure qui présente
une précession purement relativiste de son périhélie de 43 secondes d’arc par siecle
qu’il faut rajouter a la précession induite par les autres planetes et la non sphéricité
du soleil.

Ondes gravitationnelles

LIGO — A GIGANTIC INTERFEROMETER
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FIGURE 1.20 - Fonctionnement d’un détecteur d’onde gravitationnel (ici LIGO).
Lllustration réalisée par Johan Jarnestad de l’académie royale des sciences de Suéde.
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La relativité générale n’autorise pas une interaction a distance avec effet immédiat.
Toute information se déplagant a une vitesse inférieure ou égale a la vitesse de la
lumiere, la relativité générale prédit alors également 'existence d’ondes gravitation-
nelles, des oscillations de I'espace-temps dues a la variation d'un champ gravita-
tionnel et se propageant a la vitesse de la lumiére (on ne peut donc pas décrire ces
ondes a partir de métriques statiques comme celle de Schwarzschild). Comme on
I’a vu dans la section 1.1.3, ces ondes ont déja été détectées indirectement par la
mesure de la décroissance de la période orbitale d'un systeme binaire (WEISBERG

et TAYLOR, ), un tel systeme perdant de I’énergie par émission d’ondes gravi-
tationnelles, mais également de maniere directe grace aux détecteurs LIGO et Virgo
(ABBOTT et al., ) qui fonctionnent sur le principe de I'interférométrie résumé

dans la Fig. 1.20 : un laser est envoyé dans les deux bras du détecteur puis est
renvoyé par un miroir pour interférer avec lui méme, 'intensité du laser sera alors
annulée par les interférences destructives. Si une onde gravitationnelle passe par un
bras du détecteur, ’espace-temps et donc le bras du détecteur sera déformé pendant
un cours instant par le passage de cette onde, le trajet des photons sera modifié
et alors le laser n’interférera plus avec lui méme, on détectera alors une intensité
non-nulle au point d’interférence des deux faisceaux.

Entrainement des référentiels inertiels

Pour un astre massif tournant sur lui-méme, et si son parametre de spin a est
assez important (a = Mic avec J le moment cinétique de 'astre et M sa masse), alors
d’apres la théorie de la relativité générale on assiste a un phénomene d’entrainement
des référentiels inertiels ou ’espace-temps au voisinage de cet astre est entrainé dans
son mouvement de rotation. La métrique de Schwarzschild ne prenant pas en compte
la rotation de 'astre dont la masse déforme 1’espace-temps, on doit, pour décrire ce
phénomene, avoir recours a d’autres métriques comme par exemple la métrique de

Kerr :

Rgr r2 + a? cos? 0
2 _ 2 1,2 2 2 2 2 2
dS ——(1—m)Cdt +mdr +<T + a” cos (9)d9
Rgra?sin? 6 2Rgrasin® 6
2 22— 7 ) sin?0de? — | ——2———" ) cdtdd. (1.64
—l—(r T +r2+a2cos29)sm ¢ 2+ a2cos?f ) © 9. (1.64)

Il existe alors, autour de I'astre en question une ergosphere de rayon :

Rergo = R + \/Ré — a?cos? (1.65)

avec Rg = Rg/2 le rayon gravitationnel de l'astre. Dans cette ergosphere I’espace-
temps tourne avec 'astre et tout objet qui se trouve dans cette région ne peut rester
immobile et sera également entrainé par la rotation de I’astre.
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Trous noirs

FIGURE 1.21 - Image radio obtenue par I’Event Horizon Telescope du trou mnoir
supermassif au ceeur de la galaxie Messier 87.

Une des prédictions les plus célebres de la théorie de la relativité générale est
I'existence de trous noirs : des astres pour lesquels rien ne peut s’échapper de leur
puits gravitationnel pas méme la lumiére (un concept similaire avait cependant été
avancé dans un cadre newtonien des le XVIII®*™ siecle par John Michell puis par
Pierre-Simon de Laplace).

L’équation (1.59) qui représente I'intervalle d’espace-temps dans la métrique de
Schwarzschild présente deux singularités en r = 0 et r = Rg. Si la premiere est
considérée comme intrinseque a la métrique de Schwarzschild et possédant une ori-
gine physique que 'on ne peut pas éliminer, montrant les limites de cette métrique,
on peut remédier a la seconde par 1'utilisation de coordonnées alternatives comme
les coordonnées de Kruskal-Szekeres (KRUSKAL, ; SZEKERES, ) ou de
Gullstrand-Painlevé (GULLSTRAND, : PAINLEVE, ). On considere cepen-
dant que cette seconde singularité décrit ’horizon des éveénements d’un trou noir de
Schwarzschild : soit un astre dont le rayon est inférieur a son rayon de Schwarzschild
Rg, si un objet, une particule ou un photon se retrouve a une altitude inférieure
au rayon de Schwarzschild de l'astre (r < Rg) alors les seules trajectoires possibles
pour cet objet sont celles qui tombent sur la singularité centrale de la métrique
r — 0, 'objet ne peut donc effectivement pas s’échapper du trou noir. La métrique
de Schwarzschild ne peut évidemment décrire qu'un trou noir statique, si le trou
noir tourne sur lui méme alors, d’apres la métrique de Kerr, il y a deux horizons des
évenements, un horizon interne contenu dans un horizon externe :

Rhorizon = RG’ + \/ R%‘ —a? (166)

Les trous noirs peuvent également posséder une charge électrique, ils seront alors
décrit par des métriques telles que celles de Reissner-Nordstrom, pour un trou noir
statique, ou de Kerr-Newman pour un trou noir en rotation. D’ailleurs le théoreme
no-hair prévoit que la masse, le moment cinétique et la charge sont tout ce dont on
a besoin pour décrire un trou noir.

Ces trous noirs peuvent se former, comme on en a déja discuté dans la sec-
tion 1.1.1, par I'effondrement du cceur d’une étoile massive au cours d’une supernova
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lorsque celui-ci a une masse supérieure a la limite de masse d’une étoile a neutrons.
Cette masse maximale, déterminée par la limite de Tolman-Oppenheimer-Volkoff,
a été initialement théorisé autour de 0.7 My (TOLMAN, ; OPPENHEIMER et
VOLKOFF, ), elle se situerait en fait au-dela de 2 M, (comme par exemple dans
MARGALIT et METZGER, ) lorsque 'on prend en compte l'interaction forte
entre les neutrons. Ces trous noirs peuvent aussi se former lors de collisions d’astres
massifs comme des étoiles a neutrons.

Il existe également des trous noirs dit supermassifs, comme celui de la Fig. 1.21,
que 'on trouve au coeur des galaxies et qui pesent plusieurs millions de masses
solaires ainsi que des trous noirs intermédiaires dont la masse est comprise entre une
centaine et une centaine de milliers de masses solaires. Les mécanismes de formation
pour ces deux types de trous noirs n’ont pas encore été completement élucidés.

Courbure des rayons lumineux

Du fait de la déformation de I’espace-temps, le rayonnement électromagnétique
est également affecté par la gravité d’un astre massif. Ainsi la trajectoire d’un photon
passant pres de I'un de ces astres sera courbée par le champ gravitationnel de celui-
ci, phénomene appelé light-bending. L’une des premieres preuves de la théorie de la
relativité générale fut d’ailleurs ’observation par Arthur Eddington de la déviation
des rayons lumineux des étoiles par le champ gravitationnel du Soleil lors de I’éclipse
solaire du 29 mai 1919 (DYSON et al., ).

C’est ce light-bending qui est a I'origine des lentilles gravitationnelles : le champ
gravitationnel d’un astre ou méme d’une galaxie agit comme une lentille convergente
en courbant les rayons lumineux (méme pour un rayonnement en dehors du spectre
de la lumiére visible) d’un objet situé derriére celui-ci quand observé depuis la Terre
comme illustré par la Fig. 1.22. Les lentilles gravitationnelles permettent ainsi d’ob-
server des objets qui seraient invisibles sans, elles permettent également de détecter
des exoplanetes (HAN et al., ), voire de détecter des amas de matiere noire
(JEE et al., ) cette derniere ne pouvant étre détectée directement par observa-
tion car n’interagissant, hypothétiquement, que tres peu avec la matiere ordinaire ou
le rayonnement électromagnétique mais étant toutefois pourvu d’une masse capable
de déformer I'espace-temps d’apres la théorie de la relativité générale.
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FIGURE 1.22 — Effet de lentille gravitationnelle d’un astre massif (un cluster de
galazie) sur l'image recue sur Terre d’une galazie avec en blanc la trajectoire réel
des rayons lumineuz et en orange leur trajectoire apparente (NASA).

C’est également cet effet de light-bending qui permet de voir le disque d’accrétion
completement entourer le trou noir de la Fig. 1.21, en effet de par son inclinaison
par rapport a la ligne de visée, ce disque devrait étre en partie masqué par le trou
noir observé si il n’y avait pas courbure des rayons lumineux (AKIYAMA, ).
Cette méme courbure des rayons lumineux produit une ombre du trou noir, la partie
sombre centrale est alors plus grande que le trou noir lui-méme car certains des pho-
tons émis par le disque d’accrétion verront leur trajectoire se courber pour tomber
sur le trou noir (AKIYAMA, ).

La courbure de la trajectoire des photons entraine également un temps de retard
a la réception du photon par rapport a une trajectoire linéaire, ce temps de retard
est appelé le délai Shapiro. Ce retard est notamment utile pour mesurer la masse
des corps présents dans un systeme binaire comme on peut le voir dans la Fig. 1.23
pour un systeme composé d'un pulsar et d’une étoile compagnon. Lorsque le com-
pagnon passe entre le pulsar et la ligne de visée il courbe la trajectoire des rayons
lumineux de par sa masse et on peut donc déduire cette derniere du temps de retard
du rayonnement recu. Connaissant la masse du compagnon et les caractéristiques
orbitales du systéme, on en déduit la masse du pulsar (DEMOREST et al., ).
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FIGURE 1.23 — Délai Shapiro dans un systeme binaire composé d’un pulsar. Image
tirée de JACOBY,

Décalage vers le rouge gravitationnel

Une autre conséquence de la théorie de la relativité générale sur le rayonnement
électromagnétique est le décalage gravitationnel vers le rouge (un effet indirect de la
dilation gravitationnelle du temps). Lorsqu’un photon s’éloigne d’un astre massif, la
fréquence du rayonnement correspondant diminue et inversement, lorsqu’il tombe sur
I’astre il verra sa fréquence augmenter. La fréquence d’une onde électromagnétique
étant I'inverse de sa période, soit la période At d’une onde telle que mesurée par un
observateur lointain, considérons un observateur situé a la distance r. A partir de
I'équation (1.62), on calcule la fréquence v qu'il percevra :

(1.67)

avec vy et rq la fréquence et I’altitude d’émission de I'onde électromagnétique. Ainsi
si on considere que 'on se trouve toujours dans le champ gravitationnel de ’astre, il
y aura un décalage gravitationnel vers le rouge méme si I’on observe le rayonnement
a r — oo du moment que 'altitude d’émission ry est proche du rayon de Schwarz-
schild Rg. Cet effet fut démontré expérimentalement en 1959 par 1'observation des
transitions énergétiques de noyaux atomiques a différentes altitudes dans le champ
gravitationnel terrestre (POUND et REBKA, ).
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1.5 Objectifs de la these

De par leur importante densité, le rapport entre le rayon de Schwarzschild d’une
étoile a neutrons et son propre rayon R,, appelé compacité, est assez élevé, typique-

ment :
Rs

R*
le champ gravitationnel de I’étoile aura donc un impact sur le rayonnement que celle-
ci émet tel que prédit par la théorie de la relativité générale. Leur parametre de spin
a est cependant généralement trop faible pour qu’il y ait une ergosphere en dehors
de ces étoiles, méme si 'entrainement des référentiels inertiels est envisageable bien
que négligeable au voisinage des étoiles a neutrons en rotation lente (a I'exception
des pulsars millisecondes les plus rapides). La métrique de Schwarzschild est donc
suffisante pour décrire les effets du champ gravitationnel sur ’émission des pulsars
dans le cadre de la relativité générale.

[1]

0.5 (1.68)

Si des simulations dans la métrique de Schwarzschild ont déja été réalisées
pour un rayonnement émis depuis la surface de 1’étoile, comme dans (GONTHIER
et HARDING, , peu ont été réalisés pour le rayonnement originaire des parties
supérieures de la magnétosphere comprises dans le cylindre lumiere, et aucune ne
prenant en compte le temps de retard (délai Shapiro) induit par la courbure de la tra-
jectoire des photons dans la métrique de Schwarzschild ou le décalage gravitationnel
vers le rouge de ce rayonnement. Cette these a pour objectif de pallier ces lacunes
particulierement pour le rayonnement de courbure émis depuis la magnétosphere
du pulsar, ainsi les chapitres suivant présentent uniquement des travaux réalisés au
cours de cette these.

Nous verrons dans un premier temps comment simuler I'effet du champ gravi-
tationnel sur un rayonnement électromagnétique en calculant la trajectoire d'un
photon dans la métrique de Schwarzschild puis le temps qu’il met a parcourir
cette trajectoire. Nous utiliserons ensuite ces formules pour en déduire le rayon-
nement que ’on va recevoir du pulsar pour différentes émissions : d’abord pour une
émission thermique provenant de points chauds situés aux niveaux des calottes po-
laires, puis pour 1’émission haute énergie et radio provenant de la magnétosphere, la
premiere provenant des cavités étroites et la seconde des cavités polaires. Nous nous
intéresserons d’ailleurs aux spectres de cette émission radio et haute énergie notam-
ment pour savoir d’ou, dans la magnétosphere du pulsar, provient le rayonnement
le plus énergétique.



Chapitre 2

Emission thermique de surface

Avant de s’intéresser a I’émission magnétosphérique non thermique en radio et en
gamma des pulsars, on étudie en guise de premiere application ’émission thermique
de surface de ’étoile afin de tester et de vérifier notre implémentation des méthodes
de calcul en espace-temps courbe.

Pour simuler cette émission dans la métrique de Schwarzschild, on a d’abord di
déterminer la trajectoire d'un photon dans cette métrique, dans un premier temps
en se restreignant a un plan puis, dans un deuxieme temps en réorientant ce plan
contenant la trajectoire du photon dans I’espace et en tenant compte du temps de
vol du photon. On a ainsi pu réaliser une image de la surface de 1’étoile a neutrons
telle que pergue dans la métrique de Schwarzschild afin de donner une idée des effets
de la courbure de la trajectoire des photons sur I’émission provenant de cette surface.
Finalement, on appliquera ces méthodes de simulation de la trajectoire et du temps
de vol des photons a I’émission thermique provenant de deux points chauds situés
au niveau des calottes polaires (ou poles magnétiques) d’un pulsar.

2.1 Trajectoire d’un photon

2.1.1 Dans le plan équatorial

Afin de définir la maniere dont le champ gravitationnel affecte le rayonnement
émis par le pulsar, on décrit d’abord le comportement d’un photon dans la métrique
de Schwarzschild centrée sur une étoile a neutrons.

La trajectoire d'un photon dans la métrique de Schwarzschild étant toujours
comprise dans un plan, du fait de la symétrie sphérique de cette métrique, on peut
dans un premier temps tracer la trajectoire du photon dans le plan équatorial ou la
colatitude 6 est constante et égale a 5 soit :

r r

1
ds? = — (1 _ &) Adt? + (1 — &) dr? + r2dgz§2. (2.1)

40
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La matrice g,, représentant la métrique s’écrira ainsi dans ce plan :

G = 0 (1 - &> B 0 (2.2)

r
0 0 0
0 0 r?

Nous avons suivi la méthode utilisée dans KRAUS, pour déterminer la trajec-

toire d'un photon a partir de I’équation (2.1) de la métrique de Schwarzschild dans
le plan équatorial, méthode que nous avons détaillée dans I’annexe A.1.1. On déduit
la trajectoire des photons a partir du parametre d’impact b qui est défini en fonction
de a et de ry, respectivement ’angle et 1'altitude d’émission du photon :

,
b= ——2 sina. (2.3)
1— Bs
To
Ce parametre d’impact représente la distance entre la trajectoire du photon et une
droite parallele qui passe par l'origine comme illustré dans la Fig. 2.1 :

FIGURE 2.1 — Le paramétre d’impact b est la distance séparant la trajectoire du
photon d’une droite paralléle passant par ['origine, image tirée de KRAUS,

Pour résumer, 'angle ¢ de la trajectoire satisfait

@ _ b . (2.4)

e o (1 - A

En intégrant 1’équation (2.4), on peut retrouver la coordonnée angulaire du photon
en fonction de sa coordonnée radiale et donc en déduire sa trajectoire :

" bdr
¢(r) = do £ (2.5)
0 /TO T2\/1_g_§(1_%)

¢ étant la coordonnée angulaire du point d’émission du photon. Pour un photon
s’éloignant de l'origine du repere pour partir vers I'infini, on choisit le signe positif




2.1. TRAJECTOIRE D’'UN PHOTON 42

tandis que pour un photon tombant sur I'origine du repere on choisit le signe négatif.
Le photon tombe sur 'origine si le parametre d’impact b est inférieur a une valeur
critique b, tel que b, = 1.5v3Rg.

Afin de trouver la position d’un photon a 'infini, on effectue le changement de
variable u = % Ainsi quand la coordonnée radiale r du photon tend vers l'infini
(r = o0), on au = 0. En posant uy = %, on obtient avec ce changement de variable
quand le photon part vers I'infini :

“ bdu
u) = @y — 2.6
#u) = o wo /1= bPu2(1 — rou) (26)
Et quand le photon tombe sur 'origine :
v bdu
P(u) = ¢o + (2.7)

w /1 —b2u2(1 —reu)

L’intégration de ces formules a été réalisée en utilisant la méthode présentée dans
I’annexe B.1. Elle est basée sur la quadrature de Clenshaw-Curtis, par projection de
la fonction a intégrer sur les polynomes de Chebyshev, voir par exemple PRESS et al.,
. Cette méthode est rapide, efficace et précise, et converge tres rapidement vers
la valeur exacte comparée a une méthode classique d’intégration par les rectangles
ou les trapezes. Notre méthode de quadrature possede aussi 'avantage d’étre plus
rapide et précise qu'une intégration directe des équations du mouvement des photons
(résolution d’un systeme d’équations différentielles ordinaires non-linéaires).

Un cas particulier de trajectoire est donné par un photon qui dans un premier
temps se dirige vers l'origine du repere puis dans un deuxieme temps repart vers
I'infini. Pour déterminer la trajectoire de ce photon, il faut diviser le mouvement en
deux parties, une phase d’approche de I’étoile suivie d’'une phase de récession. On
procede donc comme indiqué ci-dessous :

— On commence par calculer r;,, la racine la plus grande du polynome 1 —
i’—z( 1— %) (donnée par la méthode présentée dans la section B.3), qui est la
plus petite distance entre le photon et 1’origine sur la trajectoire et donc la
coordonnée radiale du point de rebroussement du photon.

— Pour obtenir la premiere partie de la trajectoire, celle ou le photon tombe
sur lorigine, on integre I'équation (2.7) de 7¢ & ruy;, afin de trouver ¢(rmin),
la coordonnée angulaire du point de rebroussement du photon.

— Pour obtenir la seconde partie de la trajectoire, celle ou le photon repart vers

et

I'infini, on integre I’équation (2.6) en prenant rq = 7y, Soit uy =
(bO = (brnin-
Cette démarche en deux étapes est nécessaire car la fonction ¢(r) est multivaluée :

a un rayon r donné peuvent correspondre plusieurs valeurs de ¢. On la sépare donc
en deux fonctions ¢(r) monovaluée.

Tmin
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La méme démarche peut étre suivie pour tracer la trajectoire d'un photon qui
s’éloigne initialement de l'origine avant de retomber dessus a 'exception qu’ici la
coordonnée radiale du point de rebroussement sera .. la racine la plus petite du
polynome et la distance maximale du photon a l'origine. Dans ce cas on intégrera
d’abord I’équation (2.6) puis I'équation (2.7) une fois 7.y atteint.
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FIGURE 2.2 - A gauche, différentes trajectoires d’un photon autour d’un trou noir de
Schwarzschild (en noir) dans un seul plan. Les graduations de ce graphe représentent
la distance en rayons gravitationnels Rg = %RS du trou noir. A droite, coordonnée
angulaire (en degrés) en fonction de la distance radiale, exprimée en rayons gravi-
tationnels Rg du trou noir, pour les mémes trajectoires.

La Fig. 2.2 représente les divers types de trajectoires du photon dans le plan
équatorial d’un trou noir de Schwarzschild que I'on peut obtenir en intégrant les
équations présentées plus haut, avec :

— en vert : la trajectoire d’'un photon qui, partant de 'infini, tombe sur le trou
noir ou, parcouru dans le sens inverse, celle d'un photon émis juste au-dessus
de I'horizon des évenements qui part vers l'infini.

— en rouge : un photon émis juste au dessus 1’horizon des évenements du trou
noir qui retombe sur celui-ci.

— en bleu : la trajectoire d’un photon provenant de I'infini qui dans un premier
temps tombe sur le trou noir avant de s’en éloigner.

Le phénomene de light-bending apparait clairement sur la partie gauche de cette
figure, les trajectoires des photons sont courbées par la proximité du corps massif.

La partie droite de la Fig. 2.2 quant a elle représente 1’évolution de la coordonnée
angulaire ¢ en fonction de la distance radiale r pour ces trajectoires. On voit no-
tamment que la fonction ¢(r) est multivaluée dans le cas du photon qui retombe sur
le trou noir ou dans le cas ou le photon tombe puis finit par s’éloigner du trou noir.

Ces trajectoires ne concernent que les photons évoluant dans le plan équatorial
de I'astre. Afin de déterminer la trajectoire d’un photon quelconque, il faut replacer
ce plan dans l'espace a 3D en l'orientant par rapport a une direction fixe. C’est
I’'objet du prochain paragraphe.

20
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2.1.2 Dans ’espace a 3D

A partir de la trajectoire du photon dans le plan équatorial, on peut retrouver
n’importe quelle trajectoire dans l'espace 3D en effectuant une rotation du plan
contenant le mouvement du photon. Cette opération de rotation sera réalisée grace
a la matrice des rotations d’Euler :

cosacosy —sinacos fsiny —cosasiny —sinacosfcosy  sinasinf
sin v cosy 4+ cosacos fsiny  —sinasiny 4 cosacos fcosy — cosasinf
sin §siny sin [ cos 7y cos f3
(2.8)

ol 'on introduit les angles d’FEuler «, 3 et v représentant respectivement la précession,
la nutation et la rotation propre de la normale du plan par rapport a une direction
fixe de l'espace. Cette matrice est la synthese de trois rotations successives afin de
faire coincider la normale du plan de la trajectoire avec une direction fixe prise par
défaut le long de I'axe z.

Si on connait la position du point d’émission et la direction de propagation
initiale du photon dans un repere cartésien (O, z, y, z), avec les rotations d’Euler
on peut passer dans un repere (O, z’,y/,z") ou le point d’émission et la direction
de propagation initiale sont tous les deux contenus dans le plan 2z’ = 0. Soit une
droite A dont le vecteur directeur est la direction de propagation du photon au point
d’émission et qui coupe le plan z = 0 en un point P, pour effectuer les rotations
nécessaires on va utiliser :

— l'angle A entre 'axe = et une droite d inscrite dans le plan z = 0 passant par

le point P et l'origine O du repere.

— l'angle B entre le plan z = 0 et la droite A.

x cosA —sinAcosB sinAsin B T
y | =|sinA cosAcosB —cosAsinB | |y (2.9)
Z 0 sin B cos B z

Considérons que le plan 2z’ = 0 est le plan équatorial d'un repere sphérique, on peut
alors déterminer les coordonnées z’ et ¢’ de chaque point de la trajectoire du photon
dans le plan 2z’ = 0 en intégrant ’équation (2.5) sachant que dans ce plan ' = r cos ¢
et ¥y’ = rsin¢. On pourra alors retrouver les coordonnées z, y et z de chacun de ces
points dans ’espace en effectuant 'opération de rotation inverse et ainsi retrouver
la trajectoire du photon dans I’espace :

x cos A sin A 0 x
y| =| —sinAcosB cosAcosB —sinB Yy’ (2.10)
z sin BsinA —sinBcosA cosB 2!

Cette méthode des rotations d’Euler ne peut pas étre appliquée a une métrique ne
possédant pas la symétrie sphérique. En effet, dans une telle géométrie, les trajec-
toires ne sont plus contenues dans un plan. Il faut alors effectuer une intégration 3D
complete, par exemple pour la métrique de Kerr qui prend en compte la rotation de
I’astre. Voir RAUCH et BLANDFORD, pour un exemple d’application complet
avec des formules de quadrature exactes en métrique de Kerr.
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2.1.3 Temps de vol d’un photon

Comme on I’a vu pour les coordonnées spatiales du photon, on peut retrouver

I’évolution de la coordonnée temporelle % a partir des équations du mouvement (voir

par exemple (A.36) et(A.37)) en remarquant que % = z—i. On a alors, en gardant la

d —
méme définition du parametre d’impact b :

dt 1

dr R \/ b '
1— 2 )y/1-5(1 -2

En intégrant cette équation on obtient la coordonnée temporelle du photon en fonc-
tion de sa coordonnée radiale selon :

(2.11)

dr

t<r>:t0+/¢: (1_&) \/1—b—2<1—&>

r r2 T

(2.12)

avec t le temps que met le photon, du point de vue d’un observateur lointain, pour
parcourir sa trajectoire et ty le moment auquel le photon est émis. Le temps de
parcours de la trajectoire sera alors plus important dans la métrique de Schwarzschild
que dans celle de Minkowski (espace-temps plat) quand le photon passe pres de
I'origine du champ gravitationnel et ce bien que la vitesse locale de la lumiere dans
le vide reste la méme. C’est le délai Shapiro di a la courbure des rayons lumineux.

Ici aussi on peut appliquer le changement de variable u = % pour obtenir le
temps de vol d’un photon jusqu’a l'infini. On trouve :

t =t —/ du . (2.13)
w U2(1 — Ryu)/1 — b2u2(1 — Ru)

Pour une trajectoire scindée en deux parties, ou le photon tombe dans un premier
temps vers l'origine du repere puis s’en éloigne apres avoir atteint un point de re-
broussement en r = r;,, on calculera d’abord le temps de parcours sur la premiere
partie de la trajectoire en intégrant I’équation (2.13) de ug & Upn = Tnlﬂn puis on
ajoutera a celui-ci le temps de parcours pour la deuxieme partie de la trajectoire en
intégrant I’équation (2.13) de umi, a u (et en posant ¢y = 0). Méme chose pour le cas
d’un photon partant de I’étoile a neutrons avant de retomber dessus a part qu’ici on

intégrera dans un premier temps I’équation (2.13) de up & Upax = RL puis de Umax
max

. 9N _ 1
jusqua u = Rs"
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2.2 Distorsion de I'image d’une étoile

Pour se rendre compte des changements introduits par le phénomene de light-
bending, on a réalisé des simulations de I'image de la surface de 1’étoile que rece-
vrait un observateur situé a 'infini dans un espace-temps plat et dans la métrique
de Schwarzschild. On considere 'étoile comme statique et on répartit les points
d’émission des photons a sa surface de maniere a avoir un quadrillage, représenté
sur la Fig. 2.3, ou chaque photon est séparé de ses voisins par un angle de 1° en
colatitude et longitude.
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FIGURE 2.3 — Points d’émission a la surface de l’étoile a neutrons

Dans un espace temps plat, ou on ne prend pas en compte les effets du champ
gravitationnel, il suffit de tracer une trajectoire rectiligne jusqu’a un écran faisant
figure d’observateur situé a l'infini a partir des points d’émission quand ces trajec-
toires ne passent pas par l'intérieur de 1’étoile.

Dans la métrique de Schwarzschild, la trajectoire des photons est courbée par le
champ gravitationnel de 1’étoile a neutrons, cet effet sera d’autant plus important
que la compacité de 1'étoile (= = g—f avec R, le rayon de ’étoile) est grand. Pour
obtenir une image de la surface de I’étoile, on recherche, a I'aide de la fonction de
recherche de zéro décrite dans 'annexe B.2, I'angle d’émission du photon, compris
entre —90° et 90°, qui nous donne ® nul & I'infini (ce qui correspond & la position
théorique de I'observateur) pour chacun des points d’émission précédemment fixés.
A partir de cet angle d’émission 8, on en déduit le parametre d’impact b d’apres
I’équation (2.3). Le point d’impact du photon sur I’écran au niveau de I'observateur
se situera a la distance b de la ligne de visée d’apres la Fig. 2.1 soit la distance
entre le point d'impact et le centre de I’écran. Par rotation du plan contenant la
trajectoire de ce photon (comme dans la section 2.1) on obtient la position du point
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d’impact sur cet écran.

Les Fig. 2.4 a 2.7 sont les images ainsi obtenues de la surface de 1’étoile pour
différentes inclinaisons de la ligne de visée et différentes compacités = de ’étoile.
Ainsi chacune des figures a été réalisée avec un rayon R, de I’étoile de 2 et de 4 fois
le rayon de Schwarzschild Rg de 1’étoile a neutrons. On peut ainsi voir que, dans
le cas relativiste, on recoit une image plus grande de 1’étoile a neutrons quand sa
compacité augmente du fait de la courbure de la trajectoire des photons, le rayon
R, de I'image dans la métrique de Schwarzschild pouvant d’ailleurs étre calculé
ainsi :

R,

S
Vi-f

On voit également qu'une surface plus importante de cette étoile est visible dans la
métrique de Schwarzschild, révélant des détails alors cachés dans un espace-temps
plat, comme les régions polaires du quadrillage qui sont bien visibles dans les Fig. 2.4
et 2.5 pour des inclinaisons de 0 ou 30° de la ligne de visée.

Roo = (2.14)

Ce point est important car 1’émission d’un pulsar sera alors modifiée dans la
métrique de Schwarzschild du fait que 1’on recoit des photons que I'on ne percevait
pas en espace-temps plat. Cela permet également d’illustrer le fait que plus on
s’éloigne du rayon de Schwarzschild, comme on I’a vu dans la section 1.4.1, moins
les effets liés a la déformation de I'espace-temps se font ressentir.
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FIGURE 2.4 — Image a linfini de la surface d’une étoile a neutrons de compacité
== 0.5 a gauche et = = 0.25 a droite pour une inclinaison de la ligne de visée nulle
avec en noir la taille de 'image prédite par l’équation (2.14).

En rouge l'image obtenue pour un espace temps plat et en vert celle obtenue dans la
métrique de Schwarzschild.
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FIGURE 2.5 — Image a linfini de la surface d’une étoile a neutrons de compacité
= = 0.5 a gauche et = = 0.25 a droite pour une inclinaison de 30° avec en noir la
taille de l'image prédite par l’équation (2.14).

En rouge l'image obtenue pour un espace temps plat et en vert celle obtenue dans la
métrique de Schwarzschild.
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FIGURE 2.6 — Image a linfini de la surface d’une étoile a neutrons de compacité
= = 0.5 a gauche et = = 0.25 a droite pour une inclinaison de 60° avec en noir la
taille de l'image prédite par l’équation (2.14).

En rouge l'image obtenue pour un

métrique de Schwarzschild.
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FIGURE 2.7 — Image a linfini de la surface d’une étoile a neutrons de compacité
= = 0.5 a gauche et = = 0.25 a droite pour une inclinaison de 90° avec en noir
la taille de l'image prédite par équation (2.14). En rouge 'image obtenue pour un
espace temps plat et en vert celle obtenue dans la métrique de Schwarzschild.
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2.3 Flux thermique des calottes polaires

On peut se poser la question de comment le flux de rayonnement émanant des
points chauds situés aux poles magnétiques, comme dans le cas d'un pulsar accrétant,
sera affecté par le champ gravitationnel de 1’étoile a neutrons.

Le flux recu de chacun de ces points chauds par un observateur distant peut étre
calculé grace a I'expression suivante (BOGDANOV et al., )

R, , dcosa dS
F(v) = \/1—5*7] I COSQ@COS@D D3 (2.15)

ou I est l'intensité émise par la surface d’aire dS que 'on supposera ici isotrope
(constante), D est la distance entre le pulsar et I'observateur et n est le facteur
Doppler qui est égal a :

_ ! (2.16)
77_fy(l—l—c’cosf) '
avec : .
V= — (2.17)
02
le facteur de Lorentz du point chaud,
2m R, .
v= T ginx (2.18)
Py/1—4s

la vitesse instantanée du point chaud qui dépend de la période de rotation P du
pulsar, X I'angle entre ’axe de rotation et I’axe magnétique du pulsar soit I'incli-
naison du champ magnétique, & ’angle entre le vecteur vitesse du point chaud et la
direction de l’observateur défini par :

sz sin ¢ sin ¢ (2.19)

cosé = —
¢ étant I'inclinaison sous laquelle on observe 1'étoile (angle entre 1’axe de rotation
et la direction de I'observateur) et ¢ la phase du pulsar. La géométrie complete est
détaillée en figure 2.8.
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FIGURE 2.8 — Géométrie utilisée dans le calcul de la courbe de lumiere d’un point
chaud, image tirée de VIIRONEN el POUTANEN,

Quant a v il désigne la position des calottes polaires, c¢’est en fait ’angle entre
la ligne de visée de I'observateur et I’axe magnétique et d’apres VIIRONEN et POU-
TANEN, celui-ci vaut :

cos 1) = %(cos  cos X + sin ¢ sin X cos ) (2.20)
soit pour la calotte polaire "nord” :

€OS Yyora = €08 € cos X + sin ¢ sin X cos (2.21)
et pour la calotte polaire "sud” :

COS Yguq = — cos € cos X — sin ¢ sin X cos (2.22)

L’angle 1 est égal a la coordonnée angulaire du photon a l'infini ¢(o0) donnée par
I'équation (2.7) quand ¢, est nul. Sachant cela, on peut retrouver I'angle d’émission
initiale du photon «a en utilisant une fonction de recherche de zéro par bissection
(voir 'annexe B.2) afin de trouver pour quelle valeur de cet angle a la différence
entre les équations (2.20) et (2.7) est nulle. Connaissant «, on peut alors calculer le
flux des points chauds en posant a partir de (2.15) :

B R, 4 sina o dS
F(v)= \/1—577 [Cosasinw%ﬁ (2.23)

Or a partir de I"équation (2.5), on peut calculer g—ﬁ, I'inverse de 2_37 ce qui donne

[e.9]

onp b dr

da 2 3/2
T0 7’2 [1 — 6—2(1 — ﬁ)‘|

(2.24)

r T
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ou ' est la dérivée du facteur d’impact en fonction de « :

b
v = g—a = ﬁ cos & (2.25)
To
soit avec le changement de variable v = 1/r :
0 uo
0 vd vd
% _ _ L - " o (220
dav [1—b2u?(1 — uRg)] : [1—b0?u?(1 — uRg)]
ug

Comme ici les photons sont émis depuis la surface de ’étoile a neutrons, le rayon
de cette étoile R, est donc laltitude d’émission des photons soit rq = R,. Attention
cependant, lorsque 1 est nul ou tend vers zéro, on utilisera la limite asymptotique

sina __

_ R i .
sy = 1 — 3 ce qui donne :

A AN da dS

Dans un espace-temps de Minkowski sans effet du champ gravitationnel on aura
cosy = cosa, on peut donc en déduire le flux recu du pulsar dans cette espace-

temps plat :
Ry 4 ds
F(V):Ul_R_*n Icosaﬁ. (2.28)

Dans tous les cas, le flux devra étre considéré comme nul si 'angle « calculé a partir
de (2.7) et (2.20) n’est pas compris entre —90° et 90° car sinon cela voudrait dire
que les photons émis traversent 1’étoile, or celle-ci n’est évidement pas transparente.

Le flux recu de I’étoile a neutrons est alors la somme du flux émis par chacun des
deux points chauds aux poles magnétiques, les Fig. 2.9 a 2.10 présentent le flux recu
d’une étoile a neutrons de compacité = = 0.5 et dont le rayon du cylindre lumiere est
10 fois plus grand que son propre rayon pour deux valeurs de X l'inclinaison de ’axe
magnétique par rapport a l'axe de rotation, 90° et 45° et toutes les valeurs possibles
de ¢ (ici appelé colatitude). L’observateur est situé a une distance de 1000 fois le
rayon du cylindre lumiere, une distance a laquelle les effets du champ gravitationnel
de I'étoile sur les photons sont négligeables.
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FIGURE 2.9 — Fluz recu des deux calottes polaires par un observateur distant dans
un espace-temps plat a gauche et dans la métrique de Schwarzschild a droite, avec
X = 45°.
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FIGURE 2.10 - Flux recu des deux calottes polaires par un observateur distant dans
un espace-temps plat a gauche et dans la métrique de Schwarzschild a droite, avec
X = 90°.

A ce flux il faudra rajouter un décalage par rapport a la phase di au temps de
vol des photons.

Dans le cas Minkowskien avec un espace-temps plat, ce décalage est égal a la
distance séparant 1’étoile de I'observateur divisée par la vitesse de la lumiere plus un
terme (%”F) dépendant de la direction du point d’émission a 1’observateur 7, et
de 7 la position du point d’émission du photon (ici on a ||7]| = R, comme I’émission
a lieu a la surface). Ce terme permet de prendre en compte le retard qu’il y aura
entre des photons émis depuis différentes positions autour de I’étoile a neutrons avec
différentes directions de propagation initiale. Dans le cas relativiste, ce temps de vol
peut se retrouver en intégrant une des équations (2.12) ou (2.13). Les graphiques
en Fig. 2.11 et 2.12 représentent ainsi le flux recu avec ce décalage de phase di au
temps de vol des photons.
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FIGURE 2.11 — Flux recu des deuz calottes polaires par un observateur distant dans
un espace-temps plat a gauche en dans la métrique de Schwarzschild a droite avec
X = 45° en prenant en compte le temps de vol des photons.
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FIGURE 2.12 — Flux recu des deuz calottes polaires par un observateur distant dans
un espace-temps plat a gauche en dans la métrique de Schwarzschild a droite avec
X = 90° en prenant en compte le temps de vol des photons.

On a sur ces figures une répartition plus homogene du flux selon la phase et ['orien-
tation de 'observation dans le cas relativiste du fait des phénomenes de distorsion
vus dans la section 2.2 qui rendent les points chauds visibles plus longtemps lors
d’une période du pulsar.

On note également un décalage de phase des points ot le flux est minimum entre
les deux modeles, celui-ci n’est cependant pas di au retard induit par la courbure
de la trajectoire des photons (délai Shapiro) car on le retrouve sur les graphiques de
la Fig. 2.9 ot on n’a pas tenu compte du temps de vol des photons. Ce décalage est
simplement du a I'addition des flux des deux points chauds a cause de la visibilité
accrue de chacun d’entre eux dans la métrique de Schwarzschild. Le second point
chaud n’est plus totalement caché par 1’étoile lorsque le premier est visible. C’est
notamment ce que l'on constate sur la Fig. 2.13 et qui révelent le flux recu avec et
sans prise en compte du temps de vol pour X et ¢ valant 45°.
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FIGURE 2.13 - Flux recu pour ( = X = 45° dans un espace-temps plat a gauche et
dans la métrique de Schwarzschild a droite. Les points bleus et verts représentent le
flux recu de chacune des calottes polaires, en rouge le flur total et en wviolet le flux
total sans temps de vol des photons.
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FI1GURE 2.1} — Fluz recu a gauche pour ( = X = 45° et a droite pour ( = X = 90°
avec en rouge le flux recu dans un espace temps plat, en vert le flur recu dans la
métrique de Schwarzschild et en bleu ['approrimation de Beloborodov du flux recu
dans la métrique de Schwarzschild. .

Pour obtenir le flux regu des points chauds dans la métrique de Schwarzschild,
on peut également utiliser ’approximation de BELOBORODOV,

1 —cosa=(1—coso) (1 — %) (2.29)

Que I'on peut alors comparer au flux obtenu a partir de I’équation (2.23) comme
dans la Fig. 2.14 pour une valeur fixée de 'inclinaison ¢ de la ligne de visée (toujours
avec le temps de vol des photons). Cette approximation donne ainsi des résultats
tres similaires a nos simulations mais fait disparaitre certaines caractéristiques de la
variation du flux. En effet, on ne retrouve pas dans I’approximation de Beloborodov
les augmentations brutales du flux apres que celui-ci ait atteint son minimum que
'on observe en calculant le flux regu a partir de I’équation (2.23).



Chapitre 3
Emission magnétosphérique

Les caractéristiques de I’émission thermique de surface sont tres différentes de
celle de la magnétosphere. En effet, la premiere suit fidelement la loi d’un corps noir
de température de 'ordre de 10° K, correspondant & des rayons X d’une énergie
de T'ordre de 100 eV. La seconde provient du rayonnement de particules chargées
accélérées dans la magnétosphere et produisant une émission non thermique mon-
trant typiquement un spectre en loi de puissance avec une coupure exponentielle
ou sous exponentielle. L’émission de surface est bornée a un petit intervalle de
fréquences autour des rayons X mous tandis que I’émission magnétosphérique ba-
laie tout le spectre électromagnétique des ondes radio aux rayons gamma durs de
l'ordre du GeV voire tres durs au-dela du TeV. L’objet de ce chapitre est d’étudier
les propriétés de ce rayonnement non thermique que 'on suppose par la suite émis
depuis la magnétosphere a l'intérieur du cylindre lumiere. On s’intéressera tout parti-
culierement a I'impact quantitatif de la relativité générale sur les courbes de lumiere
en radio et en gamma. Commencons tout d’abord par rappeler le modele sous-jacent
basé sur le champ électromagnétique produit par un dipole magnétique tournant et
évoluant dans une métrique de Schwarzschild, puis nous verrons comment en déduire
la géométrie de la magnétosphere et finalement les méthodes de détermination de
I’émission pulsée qui seront appliquées a la bande haute énergie et radio.

3.1 Géométrie de la magnétosphere

Pour simuler 1’émission issue de la magnétosphere du pulsar, on doit connaitre la
géométrie du champ magnétique de ce pulsar dans les deux cas qui nous intéressent :

1. Dans un espace-temps de Minkowski ou espace-temps plat, ou le champ
magnétique n’est pas affecté par le champ gravitationnel de 1’étoile a neu-
trons, pour cela on a utilisé la solution de Deutsch (DEUTSCH, ) pour le
champ magnétique d'un dipole tournant dans le vide.

2. Dans la métrique de Schwarzschild ot ’on peut s’attendre a des modifications
de la géométrie de ce champ magnétique dues a la courbure de I'espace-temps.

26
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3.1.1 Structure du champ magnétique

Le modele de champ magnétique utilisé ici est une extension semi-analytique de

la solution de Deutsch pour la relativité générale présenté initialement dans PETRI,
tel que :

ézén cos X + B, sin X (3.1)

avec §|| le champ magnétique pour un dipdle aligné (X = 0°) dont les composantes
Bﬁ dans un repere sphérique sont :

Rg Rs R%] cosf
Bl = —6BR}|In|1- =2 R AR i i 2
I 6 R*|:H( , >+ ” +2’f‘2:| Rg (3 )
Bjf = 3BR;
Bﬁ’zO

La valeur de B n’est pas importante pour nos travaux car on s’intéresse a la forme
du champ magnétique, pas a son intensité, on a donc normalisé ces équations de
maniere a avoir B = 1.

B, est le champ magnétique pour un dipole avec ’axe magnétique perpendicu-
laire & I'axe de rotation (X = 90°) dont les composantes dans 'espace B* sont :

6
Bi:——[

r

- (1) |
In(1 - R,) R*} Hy (k) sin e’ (3.5)

N
R, 2 | #HW(kR,)

R 1)
= oMU R I o (i)
R, 2] [r1Vkr,)  Or
- 3.6)
) 1 (
so RAHY (o) (O (7H ()

_l’_
R / R or
02<1——f> 1-—fs .

cos fet?

B - B J1- B o (k)

R, 2 rH P (kR,) or
1) a( 1 (k) - &
Vs T 2 T > .
WO R Hy (k) . 0520 | ¢t
R R r
(1)1 o .
R R
avecw =N —-—wetw, =0 —w, ol w = a_gs et w, = aRgs avec a le parametre de
r

*

J
spin de I'étoile a neutrons tel que a = Ve J étant le moment cinétique de 1’étoile.
c
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Hl(l) (kz) sont les généralisations des fonctions sphériques de Hankel (ARFKEN et
WEBER, ) dans la métrique de Schwarzschild introduites dans PETRI, . Ces
fonctions décrivent la propagation d'une onde sortante, ici les champs magnétiques et
électriques, se propageant de maniere sphérique vers 'extérieur de 1’étoile a neutrons,
k = Q/c étant le nombre d’onde.

On suppose que la structure interne de 1’étoile a neutrons est homogene et uni-
forme, son moment d’inertie I est alors :

2
1= MR}, (3.8)

Or le moment cinétique J est le produit du moment d’inertie I par la vitesse angu-
laire €2, sachant que R, = Qg ona alors un parametre de spin tel que :

2 R?
= <01 3.9

a

Ce parametre quantifie I'importance de I’entrainement des référentiels inertiels par
un objet en rotation. Pour les pulsars, ce parametre est tres petit a < 1, sauf pour les
pulsars les plus rapides pour lesquels il devient marginalement significatif. Autrement
dit, pour la plupart des étoiles a neutrons, la rotation n’entraine pas une modifica-
tion significative de la courbure de I'espace-temps et la métrique de Schwarzschild
d’un corps a symétrique sphérique est tout a fait justifiée. Cependant, d’apres des
simulations PIC (Particle In Cells), I'entrainement des référentiels inertiels pour-
rait affecter la magnétosphere du pulsar, notamment 'efficacité de la production de
pairs au sein de celle-ci (PHILIPPOV et al., ; PHILIPPOV et SPITKOVSKY, ).

3.1.2 Tracé des lignes de champ

A la base de tout mon travail de these dans le reste de ce manuscrit se trouve le
tracé des lignes de champs magnétiques, déterminant les dernieres lignes de champ
fermées, et par conséquent la forme des calottes polaires et des cavités allongées.
La géométrie de ces lignes de champs se déduit par l'intégration d’un systeme
d’équations différentielles ordinaires ne dépendant pas explicitement du temps et
donné en géométrie cartésienne par

de. dy dz ds

_ az _ds 1
B, B, B. B (3.10)

ot B = ||B|| et ds* = da® + dy? + d=? représente I'abscisse curviligne le long de
la ligne de champ considérée. En prenant cette abscisse curviligne comme variable
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indépendante, les lignes de champ sont solutions du systeme

de B

— == 3.11

ds B ( 2)

dy B,

— == 3.11b

ds B ( )

dz B,

— == 3.11

ds B ( c)
Ce systeme est intégré par la méthode de JAMESON et al., , Voir par exemple
CANUTO, . Notons qu’il n’y a pas de singularité de coordonnées dans ce systeme

si on emploie les composantes cartésiennes, ce qui n’est pas le cas des composantes
sphériques données dans le paragraphe précédent. Il faut donc prévoir un passage
permanent entre les composantes sphériques et cartésiennes lors de l'intégration
numérique du systeme (3.11).

Dans la Fig. 3.1 on a tracé les lignes de champ dans les deux métriques de ’espace-
temps. On voit les différences induites par les deux modeles utilisés sur la géométrie
du champ magnétique pour les caractéristiques de 1’étoile a neutrons que I'on a choisi

pour le reste de la these : une étoile de compacité = = 0.5 avec un rayon du cylindre

2
lumiere R, = 10R, = 20Rg soit une période de rotation P = — ~ 2 ms si on

suppose que R, ~10 km. Ce modele a été choisi afin d’accentuer les effets du champ
gravitationnel : on a une compacité importante et donc une courbure importante
des rayons lumineux comme on ’a vu dans la section 2.2. On a également dans ce
modele un rayon du cylindre lumiere R, pas trop grand afin que I’émission ayant
lieu en son sein soit suffisamment pres de I'étoile a neutrons pour que les effets du
champ gravitationnel y soit significatifs dans la métrique de Schwarzschild vu que
celle-ci décrit un espace-temps quasiment plat quand on s’éloigne trop de 1'étoile.
On devrait donc voir les effets relativistes devenir négligeables a grande distance de
I’étoile a neutrons.
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FIGURE 8.1 — A gauche, lignes de champ magnétique pour une inclinaison X =
90° de l’axe magnétique par rapport a l'axe de rotation avec en rouge le champ
magnétique dans un espace-temps plat et en wvert le champ magnétique dans la
métrique de Schwarzschild. A droite, lignes de champ magnétique dans le cylindre
lumiére (en noir) pour une inclinaison X = 90° de ’axe magnétique par rapport a
l’aze de rotation avec en rouge le champ magnétique dans un espace-temps plat et
en vert le champ magnétique dans la métrique de Schwarzschild.

3.1.3 Forme des calottes polaires

Le changement de métrique mais aussi d’inclinaison X de I’axe magnétique en-
traine une modification de la forme et de la taille des calottes polaires vu qu’il s’agit
des surfaces délimitées par les points ot les dernieres lignes de champ magnétique tra-
versent la surface de I’étoile a neutrons. Cela pourrait influencer I’émission magnétosphérique
du pulsar vu que, on I’a vu dans la section 1.2, ces calottes polaires (et surtout les
cavités polaires situés juste au-dessus) ont un role a jouer dans Iaccélération des
particules responsables de 1’émission magnétosphérique du pulsar.

Ainsi on peut voir sur la Fig. 3.2 que la taille de la calotte polaire sera légerement
plus grande dans un espace-temps plat que dans un espace-temps déformé par la
masse de I’étoile a neutrons. On notera surtout le changement important de la forme
de ces calottes polaires quand on passe de X = 0°, ou la calotte polaire est quasiment
circulaire, a X = 90°. Cela est du au fait que les lignes de champ magnétiques sont
entrainées par la rotation de I’étoile a neutrons, comme on peut le voir sur la Fig. 3.1,
affectant fortement la forme des calottes polaires pour X = 90 vu que c¢’est pour cette
inclinaison de ’axe magnétique que leur vélocité, et celle des lignes magnétiques les
délimitant, sera maximale a la surface de ’étoile a neutrons.



3.2. TEMPS DE VOL DES PHOTONS ET ABERRATION 61

0.04 0.04
0.03 b 0.03
0.02 b 0.02
0.01 b 0.01
0 b 0
0.01 1 0.01
-0.02 b -0.02
-0.03 1 -0.03
0.04 -0.04
-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
FIGURE 3.2 — Forme des calottes polaires dans un espace-temps plat (métrique

de Minkowski) en rouge et dans la métrique de Schwarzschild en vert pour une
inclinaison nulle entre l'aze de rotation et l'axe magnétique (X = 0°) a gauche et
pour un axe magnétique perpendiculaire a 'axe de rotation (X = 90°) a droite.

Dans la métrique de Schwarzschild, le rayon du cylindre lumiere ne sera plus égal
au rapport de ¢ sur la vitesse angulaire 2 = d¢/dt. En effet, la limite du cylindre
lumiere dépendra du temps propre que l'observateur local mesure sur son horloge

R
dr = dty/1 — = comparé a dt, celui mesuré par '’horloge d’un observateur lointain.
r

Pour un observateur local situé a l'altitude r, la vitesse de la lumiere ¢ pour cette

) / R ,
observateur sera atteinte quand rQ2 = ¢y/1 — 5 En résolvant pour r on trouve
r

R
le rayon du cylindre lumiere en relativité générale par Rgﬁ = é 1 - R—I% ce qui
cy
donne approximativement :
1 R 3 R?
REC~ Ry |1—2=>—= 2. 3.12
vt 4 ( 2 Rcyl 8 ngl ( )

On a donc, pour le modele d’étoile a neutrons que l'on a choisi avec R, = 10R, =
20Rg, R@? qui vaut environ 97% de Ry, le rayon du cylindre lumiere dans un
espace-temps plat.

Voyons maintenant les conséquences de cette structure magnétique sur I’émission
pulsée haute énergie et radio des pulsars millisecondes.

3.2 Temps de vol des photons et aberration

Dans chacune des deux métriques, plate et courbe, on va rechercher les coor-
données des points d’impact sur la sphere céleste des photons issus de I’émission
radio et haute énergie du pulsar. On devra alors appliquer une correction sur ces co-
ordonnées afin de prendre en compte le temps de vol mais aussi 'aberration due au
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passage d’un référentiel en mouvement (celui du pulsar en rotation) a un référentiel
fixe (celui de 'observateur représenté par la sphere céleste).

Nous rappellerons d’abord I'importance de ces effets dans un champ magnétique
dipolaire dans le vide puis nous déterminerons la facon dont on va inclure ces effets
dans nos simulations.

3.2.1 Effet d’aberration, de retard et de champ magnétique

L’émission radio et haute énergie des pulsars prennent naissance a haute alti-
tude dans la magnétosphere, bien au-dela de la surface pour les pulsars jeunes de
période P 2 100 ms. La corotation de ces sites d’émission a des vitesses relati-
vistes imprime des caractéristiques uniques aux profils des pulses en impactant sur
la relation entre la géométrie des zones émettrices et leur signature observationnelle.

PHILLIPS, a détaillé I'impact de plusieurs effets sur le temps d’arrivée des
pulses de toute nature. Considérons deux zones d’émission localisées a une altitude 7,
et r9. Pour des photons s’éloignant radialement de 1’étoile a neutrons, le délai intro-
duit par la différence de chemin a parcourir se concrétise par un déphasage :

At, T —1y
P 27 Ry
L’entrainement des zones de production de photons par la rotation du pulsar pro-

voque une projection de la direction de propagation des photons dans le sens de la
rotation d’une valeur de :

in X
6, = arctan <%) = arctan (T o ) . (3.14)

c cyl

(3.13)

Pour les deux sites d’émission, cela introduit un délai supplémentaire de :

At, 1 ry sin X ro sin X
= — |arctan — arctan . 3.15
P 2T |: ( Rcyl ) ( Rcyl ( )
Enfin, la rotation du dipole incurve les lignes de champ dans le sens inverse de la
rotation. SHITOV, en a donné une expression simple telle que le retard induit

par cet effet se monte a :

Atp  1.2sin*X
P 2T

3 3
) 1
(Rcyl) <Rcyl)
Le retard total est alors la somme de chacune de ces contributions Aty = At, +

At, + Atp.

(3.16)

BLASKIEWICZ et al., ont étendu cette étude a la polarisation de 1’émission
radio en montrant ’existence d’un délai supplémentaire entre le point d’inflexion de
Pangle de polarisation et le milieu du pulse radio. A tout cela il faudrait aussi ajouter
leffet du courant magnétosphérique sur ce délai temporel comme 'ont souligné
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HIBSCHMAN et ARONS,

3.2.2 Effet de la gravitation

Le temps de vol du photon étant égal a la longueur de sa trajectoire divisée par
la vitesse de la lumiere dans le cas d’un espace-temps plat, dans nos simulations
en métrique de Minkowski, on calcule celui-ci en divisant la distance de 'étoile a
neutrons a la sphere céleste Rgphere par la vitesse de la lumiere et en rajoutant,
comme on l'a vu dans la section 2.3, un terme prenant en compte la position du
point d’émission par rapport a la ligne de visée ce qui donne a grande distance du
pulsar :

Rsphere ﬁobs : 7:’0

tvol ~ - (317)

C C

Ryphere €st le rayon de la sphere céleste, 7 est le vecteur reliant 1'origine au point
d’émission du photon et 774, est le vecteur unitaire désignant la direction de ’obser-
vateur par rapport au point d’émission. Comme ici on récupere juste les coordonnées
du point d’impact du photon sur la sphere céleste, "I’observateur” se situe au niveau
du point d’impact et 7, a donc la méme orientation que la trajectoire du photon
qui elle-méme est la tangente aux lignes de champ magnétique. Soit 7 la direction
initiale de propagation du photon qui est le vecteur tangent unitaire aux dernieres
lignes de champ magnétique fermées, on a donc ici 75 = 7.

Dans le cas d'un espace-temps déformé par la masse de ’étoile a neutrons, le temps
de vol dans la métrique de Schwarzschild est calculé en intégrant 1’équation (2.13).

Pour simuler l'effet de ’aberration sur le rayonnement que I'on recoit du pul-
sar, on remplace le vecteur 7’ donnant la direction de propagation du photon au
point d’émission dans le référentiel tournant du pulsar par 7, le vecteur direction
de propagation du photon au point d’émission dans le référentiel de I’observateur
statique. Les composantes de ce vecteur 7’ peuvent se retrouver par transformation
de Lorentz :

— nh et n) sont les composants de 7’ et 7 paralleles a 5,

— n/| et ny sont les composantes de 77’ et 7 perpendiculaires a 3,

—

5z . .y . s > v

[ étant le vecteur vitesse normalisé du point d’émission tel que f = — et comme
c

ici la vitesse de ce point d’émission provient du fait qu’il est en corotation avec le

r(}
pulsar, on a f = —sin#, ou 6 est la colatitude du point d’émission, et on pose le
c

1
facteur de Lorentz du point d’émission v = ———

V1-p52
Le facteur Doppler n associé a cette rotation est n = m = (1 +E- n'),
yL—=0-n
on trouve ensuite la relation donnant n’ en fonction de 7i par décomposition en
composante parallele et perpendiculaire a la vitesse sont :

i =y (i) — B) (3.18)



3.3. EMISSION HAUTE ENERGIE 64

ou de maniere vectorielle on peut écrire 7 ainsi (DYKS et RUDAK, ) :
A=l W4y ——(F- i) +1) 5. (3.20)
n v+1

Dans un espace-temps déformé par la masse de I’étoile a neutrons, la formule d’aber-
ration (3.20) reste valable a condition de remplacer la vitesse de corotation mins-
kowskienne [ par la vitesse de corotation telle que mesurée par un observateur local
et notée Bra ce qui implique de remplacer aussi le facteur de Lorentz v par vgqg tel
que :

Bre = (3.21)

Rs
1 T

1
VRG = ———
V1= Bte

Le terme correctif dans la vitesse provient de la dilatation du temps des horloges
se situant dans un champ gravitationnel. La vitesse corrigée est supérieure a son
homologue minskowskien car ’horloge de I'observateur local tique plus lentement.

(3.22)

3.3 Emission haute énergie

Dans cette section, on trace la trajectoire des photons du rayonnement haute
énergie émis depuis la magnétosphere afin de déterminer comment celui-ci est affecté
par le champ gravitationnel de 1’étoile a neutrons.

Pour cela, on suppose que cette émission haute énergie provient des cavités al-
longées présentées dans la section 1.3, on admet cependant qu’il n'y a émission
que pour une distance a l'origine (le centre de l’étoile a neutrons) inférieure ou
égale a 95% du cylindre lumiere afin d’éviter des effets indésirables, notamment en
terme d’aberration, dus a des photons émis trop pres du cylindre lumiere et dont
le facteur de Lorentz tendrait vers 'infini. Ainsi ’émission se produit le long des
dernieres lignes de champ magnétique fermées, depuis la calotte polaire ou elles
coupent la surface de I'étoile a neutrons jusqu’'a r = 0.95 Ry, les points d’émission
étant régulierement espacés sur ces lignes de champ en imposant une distance d’un
dixieme du rayon de I’étoile A¢ = 0.1 R, entre chaque point d’émission d’un photon.
En appliquant cette technique d’un pole magnétique jusqu’a l'autre, on aura alors
des points d’émission répartis sur toute cette ligne de champ fermée. Les dernieres
lignes de champ magnétique sont alors les lignes de champ pour lesquelles la dis-
tance maximale de ces points a l'axe de rotation est celle du cylindre lumiere. On
peut alors retrouver les calottes polaires délimitées par I'identification des pieds des
dernieres lignes de champs qui se referment a la surface de ’étoile a neutrons.

On suppose également que ’émission par rayonnement de courbure est le princi-
pal mode d’émission haute énergie. On considere alors que les photons sont simple-
ment émis avec une direction de propagation initiale tangente aux dernieres lignes de
champ magnétique comme illustré sur la Fig. 1.16. A partir d’'un point d’émission,



3.3. EMISSION HAUTE ENERGIE 65

on déduit la tangente aux lignes de champ magnétique (£ = B/B) d’aprés les
équations décrivant ce champ magnétique que l'on a vu dans la section 3.1, cette
tangente indique la direction de propagation du photon dans le référentiel tournant
1, 11 faut corriger cette direction de I'effet d’aberration pour en déduire la direction
de propagation de ce photon 71, pour un observateur lointain inertiel en appliquant
la formule d’aberration (3.20). Ce vecteur est décomposé en coordonnées sphériques
par l'introduction de deux angles ¢, et O tels que :

Tiph = SIN Oem COS Pern €y + SN Oy SIN P €y + €OS Gey €. (3.23)

On imagine que ce photon impacte la sphere céleste a grande distance au point de
coordonnées (Pem, bem ). Pem €st associé au temps d’arrivée des photons, il faut donc
lui rajouter une correction induite par le temps de vol de la source au détecteur.
Ce temps est donné par l'expression (3.17) en géométrie minkowskienne et par
I'intégration de (2.13) en géométrie de Schwarzschild. Ce délai temporel supplémentaire
se traduit par une phase d¢,, supplémentaire comparée au cas sans prise en compte
du temps de vol d’ou la phase de détection (DYKS et RUDAK, )

¢ = _¢em - 5¢em (324)

obtenue en inversant le signe de la phase pour tenir compte de la rotation de I’étoile
(une phase ¢e, > 0 est détectée avant une phase ¢e, < 0 donc la premiere arrive a
un instant antérieur a la deuxieme). Il est a noter que le temps de vol n’influe pas
sur la position Ogy,.

and abberatiof
correction |
1

Last (losed Lines

Tangential line

\ Pulsar

FIGURE 3.3 — Tracé de la carte des points d’impact dans le cas d’un espace-temps
plat, image tirée SAITO,



3.3. EMISSION HAUTE ENERGIE 66

Pour simuler le rayonnement haute énergie requ dans la métrique de Schwarz-
schild, on a calculé, a nouveau grace aux méthodes présentées dans la section 2.1, les
coordonnées du photon quand il atteindra une distance de r = 1000 R,,;, distance
a laquelle la déformation de ’espace-temps par le champ gravitationnel de ’étoile
est quasi-nulle. On peut voir ces coordonnées comme celles du point d’impact du
photon sur une sphere céleste dont le rayon est de 1000 R,,; fois celui du cylindre
lumiere. On trace ainsi des cartes de ces points d’impact sur cette sphere céleste
dans la métrique de Schwarzschild afin de comparer avec celles obtenues dans la
métrique de Minkowski ot, du fait de I'espace-temps plat, I'on a juste a prolonger
les tangentes aux dernieres lignes de champ magnétique jusqu’a la sphere céleste,
comme sur la Fig. 3.3, pour obtenir les coordonnées des points d’impact sur celle-ci.

3.3.1 Projection des lignes de champ

Avant de présenter les cartes d’émission obtenues a partir de la méthode ci-
dessus, on va d’abord s’intéresser aux projections des dernieres lignes de champ
magnétique fermées formées par les points d’impact des photons émis le long de
celle-ci sur la sphere céleste des Fig. 3.4 a 3.7, et ce afin de bien comprendre I'impact
de la gravitation et du temps de vol sur les courbes de lumiere.

Dans ces figures, I'inclinaison de I’axe magnétique est X = 60° et on ne considere
que 32 de ces lignes de champ magnétiques réparties de facon a ce que les points o
ces lignes traversent la surface de 1’étoile a neutrons (au niveau des calottes polaires)
soient uniformément répartis en terme de longitude dans le repere sphérique du
champ magnétique.

Une longitude de 360° sur la sphere céleste correspond a une phase de 1 soit
une rotation du pulsar sur lui-méme. Les phases de chacune de ces cartes ont été
centrées afin que chacune ait a la phase 0 le point d’impact correspondant au photon
qui serait émis par le centre de la calotte polaire Nord.

La Fig. 3.4 est 'image obtenue dans un espace-temps plat en prenant en compte
I’aberration et en ajoutant une correction sur la phase pour le temps de vol des
photons. On y a indiqué I'angle (en degrés) entre les directions de propagation du
photon avant et apres avoir pris en compte I’aberration et le temps de vol. On notera
ainsi que ces deux parametres ne sont pas négligeables vu que 'on a des angles de
pres de 180° entre les deux directions de propagation du photon.

La Fig. 3.5 est 'image obtenue dans la métrique de Schwarzschild en prenant
en compte 'aberration et en ajoutant une correction sur la phase pour le temps de
vol des photons. Ici on a mesuré I'angle entre la direction initiale de propagation
des photons sans aberration ni temps de vol et la direction finale de propagation du
photon lors de I'impact sur la sphere céleste en prenant en compte 'aberration et
le temps de vol du photon. On voit que les angles ainsi mesurés sont tres similaires
a ceux de la Fig. 3.4, la courbure de la trajectoire des photons ne doit donc pas
étre tres importante, elle pourrait cependant étre suffisante pour induire des effets
plus subtils sur I’émission haute énergie, on peut notamment voir ici que 'image des
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calottes polaires (ou plutot leur ombre) est sensiblement déformée et un peu plus
étendu que dans la métrique de Minkowski.

La Fig. 3.6 est 'image obtenue dans la métrique de Schwarzschild lorsque 1’on
applique la correction sur la phase pour prendre en compte le temps de vol des
photons dans cette métrique. Ce temps de vol est comparé a un temps de référence,
celui que met le photon émis au centre de la calotte polaire Nord pour atteindre la
sphere céleste. Sans surprise les photons émis loin des calottes polaires (dont on peut
apercevoir la forme sur cette figure) ont 1’avance la plus importante sur ce temps de
référence, non seulement parce qu’ils sont émis plus pres de la sphere céleste mais
également parce que les effets du champ gravitationnel sont plus importants lorsque
I’on se rapproche de 'étoile a neutrons et donc ils subiront moins de courbure de
leur trajectoire et le délai Shapiro associé.

La Fig. 3.7 est elle aussi obtenue dans la métrique de Schwarzschild et inclut
également la correction sur la phase due au temps de vol des photons. Dans cette
image est comparé le temps de vol de chacun des photons dans la métrique de
Schwarzschild au temps de vol qu’ils auraient dans un espace-temps plat. Comme
attendu le décalage entre les deux temps de vol est plus important a proximité de
I'image des calottes polaires : les photons provenant de cette zone étant émis plus
pres de I'étoile a neutrons, les effets de son champ gravitationnel sur eux est plus
important.
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FIGURE 3.4 — Projection a partir des lignes de champs magnétiques sur la spheére
céleste dans un espace-temps plat incluant les effets d’aberrations et le temps de vol
propre a cette géométrie. Le code couleur représente la valeur de l’angle (en degrés)
entre la direction de propagation du photon sans aberration ni temps de vol et sa
direction de propagation avec temps de vol et aberration.
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FIGURE 3.5 — Projection dans la métrique de Schwarzschild. Le code couleur

représente la valeur de 'angle (en degrés) entre la direction de propagation initiale
du photon sans temps de vol ni aberration et sa direction de propagation final.
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FIGURE 3.6 — Projection dans la métrique de Schwarzschild sans effets d’aberra-
tions. Le code couleur représente la différence (normalisé par la phase) entre le temps
de vol de chaque photon et un temps de vol de référence (celui du photon émis au
centre de la calotte polaire Nord).
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FIGURE 3.7 — Projection dans la métrique de Schwarzschild. Le code couleur

représente la différence (normalisé par la phase) entre le temps de vol de chaque
photon dans la métrique de Schwarzschild et leur temps de vol dans un espace-temps
plat
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3.3.2 Cavités minces

A partir des cartes d’impact des photons sur la sphere céleste, en incluant les
effets d’aberration et le temps de vol des photons propre a chaque métrique, on a
pu réaliser des cartes d’émission en trois dimensions : l'intensité du rayonnement
requ sur la sphere céleste en fonction des coordonnées de longitude (la phase du
pulsar) et de colatitude de celle-ci (¢, Oem ). L'intensité est ici déterminée comme
étant le nombre de photons recus sur la méme zone de dimension 0.5 x 0.5 degrés en
colatitude et longitude sur la surface de la sphere céleste. On considérera cette fois
un millier de lignes de champ magnétique afin d’avoir une résolution suffisante du
rayonnement recu sur la sphere céleste. La Fig. 3.8 représente ces cartes d’émission,
dans un espace-temps plat (métrique de Minkowski) pour différentes inclinaisons X
de I'axe magnétique : 90°, 60° et 30°. On y a aussi inclus les courbes de lumiere,
soit une coupe de la carte d’émission en 3 dimensions suivant la colatitude, pour
différentes inclinaisons de la ligne de visée ¢ qui correspond a la colatitude sur la
sphere céleste (voir la section 3.5 pour une comparaison dans les deux métriques
de certaines de ces courbes de lumiere). La Fig. 3.9 représente la méme chose mais
dans la métrique de Schwarzschild. Le code couleur de ces cartes d’émission dépeint
I'intensité recue en allant du clair au sombre en partant du blanc pour une intensité
nulle, 'intensité sur les cartes d’émission et les courbes de lumiere est normalisée par
I'intensité maximale reque pour l'inclinaison X correspondante de I’axe magnétique.

On retrouve sur ces cartes d’émission et les courbes de lumiére associées les
pulses de ’émission haute énergie. On peut remarquer, et c¢’est particulierement fla-
grant pour le cas X = 90°, que ces pulses semblent légerement plus larges dans la
métrique de Schwarzschild que dans celle de Minkowski. Cela pourrait s’expliquer
par les phénomenes de distorsion de I'image que 'on avait introduits dans la sec-
tion 2.2 et dont on avait déja constaté les effets dans la section 2.3 sur le flux de
rayonnements thermiques provenant des calottes polaires : la courbure des rayons
lumineux augmente la taille des images recues et augmente la visibilité de certaines
zones d’émission. Comme pour les Fig. 3.4 a 3.7, on peut déja voir que 'image de la
calotte polaire sera un peu plus grande dans la métrique de Schwarzschild que dans
un espace-temps plat, certainement parce que plus I’émission a lieu pres de 'étoile
a neutrons, plus de photons seront capturés par son champ gravitationnel et retom-
beront sur 1’étoile. Les calottes polaires sont justement la région ou les dernieres
lignes de champ magnétique, d’ou provient I’émission, rejoignent 1’étoile a neutrons.
Le tableau 3.1 montre I'intensité maximale, le nombre maximum de photons recus
sur une méme zone de la sphere céleste, pour les différentes valeurs de I'inclinaison
X dans les deux métriques. L’on peut y voir que l'intensité maximale du rayonne-
ment haute énergie y est moins importante dans la métrique de Schwarzschild que
dans un espace-temps plat car ’émission est plus étalée sur la sphere céleste a cause
des effets de distorsion de I'image mais on peut également voir que cette différence
semble diminuer avec l'inclinaison X de ’axe magnétique.
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FIGURE 3.8 — Cartes d’émission pour différentes inclinaisons de [’axze magnétique

(de haut en bas : 90°, 60° et 30°) dans un espace-temps plat avec les courbes lumiéres
pour différents angles d’observation (.
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FIGURE 3.9 — Cartes d’émission pour différentes inclinaisons de [’aze magnétique
(de haut en bas : 90°, 60° et 30°) dans la métrique de Schwarzschild avec les courbes
lumieres pour différents angles d’observation (.
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TABLE 3.1 — Intensité mazimale (en nombre de photons) du rayonnement haute
énergie pour différentes valeurs de l’inclinaison X de ’axe magnétique

X Minkowski Schwarzschild

90° 195 87
60° 154 75
30° 60 28

3.3.3 Cavités épaisses

Nous avons jusque la simulé ’émission provenant de particules accélérées le
long des dernieres lignes de champ magnétique dans les cavités allongées, la zone
d’émission des photons de haute énergie était donc supposée infiniment fine. Pour
que notre modele d’émission soit plus réaliste, on suppose une certaine épaisseur
de cette zone d’émission, les cavités allongées n’étant évidemment pas infiniment
fines, pour cela on rajoute des lignes de champ magnétique qui vont se refermer sur
I’étoile a neutrons au-dessus et en dessous des dernieres lignes de champ magnétique
fermées. Un poids gaussien w(f) est attribué aux photons émis le long de ces lignes
de champ de maniere a ce que ’émission soit maximale le long de la derniere ligne
de champ magnétique fermée :

—(9—9cp)2
w(f) =e 2 (3.25)
avec 0 = %AQ, A0 étant la variation de la colatitude du point ou les lignes de champs
se referment sur la surface de I'étoile a neutrons (ici on a pris A6 = 75), 6 étant

la colatitude du point ou la ligne de champ ”sort” de I’étoile a neutrons (la ou la
ligne de champ traverse la surface de 1’étoile a neutron au niveau de la calotte polaire
nord), et ., celui du point d’ott ”sort” la derniere ligne de champ magnétique fermée.
Ces colatitudes étant mesurées dans le repere sphérique du champ magnétique ou
la colatitude 0 correspond a la position du pole magnétique Nord sur la surface de
I’étoile.

C’est ainsi que l'on a pu tracer les cartes d’émission des Fig. 3.10 et 3.11 pour
une zone d’émission épaisse respectivement dans la métrique de Minkowski et dans
la métrique de Schwarzschild.
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FIGURE 3.10 — Cartes d’émission dans le domaine des hautes-énergies pour
différentes inclinaisons de l’aze magnétique (de haut en bas : 90°, 60° et 30°) dans un
espace-temps plat pour une épaisseur définie de la zone d’émission avec les courbes
lumieres pour différents angle d’observation (.
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FIGURE 3.11 — Cartes d’émission dans le domaine des hautes-énergies pour
différentes inclinaisons de l’aze magnétique (de haut en bas : 90°, 60° et 30°) dans
la métrique de Schwarzschild pour une épaisseur définie de la zone d’émission avec
les courbes lumieres pour différents angle d’observation C.
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On constate qu’en incluant une épaisseur de la zone d’émission, les courbes de
lumiere sont moins abruptes, moins ”piquées”, et se rapprochent effectivement un
peu plus de ce que 'on peut observer pour I’émission haute énergie d’un vrai pulsar,
comme sur la Fig. 1.4 de la section 1.2, certains pics visible sur les Fig.3.8 et 3.9
vont méme se confondre pour former une seul pulse plus large, notamment pour
X = (¢ =90° et pour X = 30° avec ( = 60° (& nouveau, voir la section 3.5 pour une
comparaison dans les deux métriques de certaines de ces courbes de lumiere).

On peut également noter un contraste plus élevé entre les zones sans émission
et avec émission, du fait de la multiplication des points d’émission, l'intensité du
rayonnement percu semble donc étre plus importante sur toute la sphere céleste.
Autre changement remarquable, I’apparition d’émission, et méme de pulses au sein
de I'image de la calotte polaire, cette émission ne pouvant provenir des calottes
polaires elles-méme, elle doit étre due aux lignes de champ magnétique autour des
dernieres lignes de champ magnétique fermées.

Comme pour le tableau 3.1, le tableau 3.2 représente l'intensité maximale recue
pour différentes valeurs de I'inclinaison X dans un espace-temps plat (métrique de
Minkowski) et dans la métrique de Schwarzschild. Contrairement & ce que I'on a pu
voir dans le tableau 3.1, ici I'intensité maximale est plus importante dans la métrique
de Schwarzschild malgré les effets de distorsion de I'image qui devraient normalement
étaler 'intensité sur la sphere céleste. Cela pourrait étre di au délai Shapiro qui,
affectant plus le rayonnement émis pres de la surface de 1’étoile a neutrons que
celui émis a sa périphérie, pourrait générer une concentration importante de points
d’impact de photons en certaine région de la sphere céleste.

TABLE 3.2 — Intensité mazimale (en nombre de photons) du rayonnement haute
énergie pour différentes valeurs de [’inclinaison X pour une zone d’émission avec
une épaisseur.

X ‘Minkowski Schwarzschild
90° 1973 2141

60° 1179 1484
30° 873 920
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3.4 Emission radio

Dans notre modele de magnétosphere de pulsar, on admet également la présence
de cavités polaires, comme celles décrites dans la section 1.2, ou 'on aura aussi
une émission par rayonnement de courbure. Dans ces cavités polaires, les particules
a l'origine du rayonnement de courbure sont principalement des particules secon-
daires issues du processus de création de paires avec un facteur de Lorentz assez
faible (de l'ordre de 10?) et les lignes de champ magnétique le long desquelles elles
sont accélérées ont elleeméme une faible courbure (et donc un important rayon de
courbure p). D’apres I’équation 1.47, la fréquence du rayonnement émis devrait étre
assez faible et il est en effet considéré que c’est dans la région polaire que provient
le rayonnement radio des pulsars.

On sait que le rayon approximatif d’une calotte polaire est de R, =~ R, \/R./Rey.
Le demi-angle au sommet du cone dont la base forme la calotte polaire est 0,. Les
lignes de champ ayant une inclinaison par rapport a la normale a la surface de 1’étoile
et le rayonnement étant dirigé le long de ces lignes de champs, on peut montrer que
les photons sont émis dans un autre cone de demi-ouverture égale a % Ocp. Cet angle
représente une bonne approximation de la largeur des pulses radio.

L’altitude d’échappement des photons de la magnétosphere n’est pas contrainte
de maniere précise. Il était couramment admis que les basses fréquences proviennent
du voisinage immédiat de la surface. Mais I'accumulation de données radio de plus
plus en précises concernant la forme et la largeur des pulses montrerent sans am-
biguité que pour les pulsars jeunes ces photons proviennent d’une altitude beaucoup
plus haute, comparable a une fraction non négligeable de la taille du cylindre lumiere,
de l'ordre de 1-10% (MITRA, ). De plus I'angle d’ouverture du cone d’émission
dépend de I'altitude de provenance des photons. Les lignes de champ dipolaire étant
divergentes, un éloignement de 1’étoile provoque un élargissement de ce cone et par
conséquent un étalement du profil radio. Un élargissement des profils radio est effec-
tivement observé des hautes fréquences vers les basses fréquences. Conjointement,
le rayon de courbure des lignes de champ augmente et la fréquence de courbure ca-
ractéristique associée décroit. Il en résulte une relation entre la fréquence et ’altitude
que 'on nomme cartographie altitude-fréquence. cette constatation sera mise a pro-
fit au prochain chapitre ot nous détaillerons le calcul du rayonnement de courbure
en fonction de la fréquence en y associant 1’évolution de la forme des pulses.

Pour simuler cette émission radio, un échantillonnage de la calotte polaire a
été réalisé en partant des pieds de lignes de champ jusqu’au pole magnétique.
L’échantillonnage est paramétré de maniere a ce qu’entre le pole magnétique et
chaque point d’intersection de la ligne de champ avec la surface de 1’étoile a neu-
trons il y ait exactement 10* points d’émission régulierement espacés soit, dans le
repere sphérique du champ magnétique, la colatitude de ces points est définie par :

0 — 0,,, = arccos |1 — (1 — cosf,,) % (3.26)

Dans le repere sphérique ot la colatitude est mesurée a partir de ’axe magnétique,
0., est la colatitude du point d’intersection entre la ligne de champ et la surface de



3.4. EMISSION RADIO 78

I'étoile a neutrons, 6, est la colatitude du pole magnétique considéré (0 ou 180°
dans ce repere) et ¢ un entier variant entre 1 et N, N étant le nombre de points
d’émission que 1'on veut entre le pole et la calotte polaire, on aura donc :
— pour la calotte polaire nord 6 ~ 6., \/% , on peut d’ailleurs voir la répartition
des points d’émission dans cette calotte sur la Fig. 3.12,
— pour la calotte polaire sud 6 &~ m — (1 — 6) 1/ %
Comme on 'a dit, on fixe dans les simulations ce nombre de points a N = 10000.
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FIGURE 3.12 — Points d’émission radio dans la calotte polaire (limite en noir) pour
une inclinaison de l'are magnétique de 90°.

Il suffit d’effectuer une rotation de ce repere d’un angle égal a l'inclinaison X
entre ’axe magnétique et ’axe de rotation pour retrouver les coordonnées de ces
points d’émission dans le repere sphérique du pulsar ou la colatitude est mesurée
a partir de 'axe de rotation. La trajectoire de ces photons radio peut étre alors
simulée en prenant comme direction initiale de propagation la tangente aux lignes
de champ magnétique passant par ces points d’émission et 1'altitude d’émission r
sera bien str égal au rayon de l'étoile R, du fait que les points d’émission sont
situés a la surface de celle-ci. On pourra alors, comme on I’a vu pour 1’émission
haute énergie, soit prolonger cette tangente pour obtenir la trajectoire des photons
dans un espace-temps plat soit intégrer les équations (2.6) et (2.7) pour obtenir sa
trajectoire dans le champ gravitationnel de ’étoile a neutrons, le tout en prenant en
compte 'aberration et le temps de vol du photon graces aux méthodes et formules
présentées dans la section 3.2.

Pour se rapprocher de 1’émission radio qu’on observe des pulsars, un poids est
attribué a chaque photon émis depuis ces points d’émission en fonction de la distance
de ces points au pole magnétique et ce de maniere a ce que le profil de I’émission se
rapproche d’une gaussienne. Ainsi, lors du tracé des cartes d’émission et des courbes
de lumiere associés, l'intensité recue sur une zone de 0.5 x 0.5 degrés de la sphere
céleste ne va pas augmenter d’une unité a chaque photon recu, a la place elle va
augmenter d’'un nombre I que l'on calcule ainsi pour les photons provenant de la
calotte polaire nord :

-602/02,

Lnorg = € o2 (3.27)
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et pour la calotte polaire sud :

—(7=6)%/(n—0cp)°?

Lua=e¢ 2 (3.28)

avec 0 = \/LTO’ les angles 6 et 0., étant respectivement la colatitude du point
d’émission et de la limite de la calotte polaire dans le repere sphérique du champ
magnétique.

Les Fig. 3.13 et 3.14 présentent les cartes d’émission ainsi obtenues pour différentes
valeurs de l'inclinaison X de ’axe magnétique ainsi que les courbes de lumiere issues
de ces cartes d’émission pour différentes inclinaisons ¢ de la ligne de visée. On y
notera que l'image de la zone d’émission semble plus grande dans la métrique de
Schwarzschild comme on déja pu le constater auparavant.

Les pulses radio semblent également plus importantes dans cette métrique que
dans un espace-temps plat. Or, comme on peut le voir sur le tableau 3.3 ou est
affiché le maximum de l'intensité recue pour chaque métrique, I'intensité maximale
regue dans la métrique de Schwarzschild est toujours inférieure a celle regue dans
la métrique de Minkowski. Il faut ici se rappeler que les courbes de lumiere sont
normalisées par le maximum d’intensité recue sur la sphere céleste et donc que la
taille plus importante des pulses dans la métrique de Schwarzschild est en fait due a
une intensité maximale moindre sur la sphere céleste, ce qui n’est pas étonnant du
fait des effets de distorsion de I'image que 'on a déja observés auparavant qui ont
tendance a ”étaler” 1’émission.

TABLE 3.3 — Intensité maximale du rayonnement radio pour différentes valeurs de
X.

X \ Minkowski Schwarzschild
90° 4108 3194
60° 4376 3381
30° 2510 1986
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FIGURE 3.13 — Clartes d’émission dans le domaine radio pour différentes inclinai-
sons de l'aze magnétique (de haut en bas : 90°, 60° et 30°) dans un espace-temps
plat avec les courbes lumieres pour différents angles d’observation (.
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FIGURE 3.1/ — Clartes d’émission dans le domaine radio pour différentes inclinai-
sons de l'aze magnétique (de haut en bas : 90°, 60° et 30°) dans la métrique de
Schwarzschild avec les courbes lumiéres pour différents angles d’observation (.
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Pour obtenir une émission radio un peu plus réaliste, on a également essayé
une répartition aléatoire mais homogene par unité de surface des points d’émission
dans la calotte polaire. Pour cela on utilise la formule exacte de I’équation (3.26)
en remplacant ﬁ par un nombre aléatoire compris entre 0 et 1. Pour obtenir une
distribution aléatoire sur les deux coordonnées a la surface de 1’étoile (colatitude et
longitude) dans le repere sphérique de 1’axe magnétique, on a ajouté a la valeur de
la longitude de chacun des points d’émission de la Fig. 3.12 un nombre aléatoire
compris entre 0 et A¢, avec A¢ écart longitudinal entre deux rangées de points
(écarts selon la longitude entre deux des dernieres lignes de champ magnétique
fermées sur la surface de ’étoile a neutrons). La Fig. 3.15 représente la distribution
de ces points au sein de la calotte polaire Nord. On constate une nette amélioration
de I’échantillonnage autour de I’axe magnétique comparé a la Fig. 3.12.
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FIGURE 3.15 — Points d’émission radio dans la calotte polaire (limites en mnoir)
pour une inclinaison de l'axe magnétique de 90° avec une distribution aléatoire mais
homogéne des points.

Les Fig. 3.16 et 3.17 montrent les cartes d’émission et courbes de lumiere obte-
nues avec cette répartition des points d’émission avec 10® points d’émissions par
calotte polaire. On retiendra de ces cartes d’émission qu’il n’y a pas vraiment
de différence significative entre les deux facons de répartir les points d’émission a
I'intérieur des calottes polaires, d’ailleurs il n’y a pas de différence importante entre
les tableaux 3.3 et 3.4 ou l'on a rapporté les intensités maximales dans chacune
des métriques pour différentes valeurs de 'inclinaison X. Dans un souci de réalisme,
I’on utilisera dorénavant uniquement la répartition présenté dans la Fig. 3.15 pour
I’émission radio.

TABLE 3.4 — Intensité mazimale du rayonnement radio (unité arbitraire) avec la
distribution des points d’émission vue dans la Fig. 3.15 pour différente valeur de X.

X \Minkowski Schwarzschild
90° 4221 3235

60° 4387 3435
30° 2552 2021
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FIGURE 3.16 — Clartes d’émission dans le domaine radio pour différentes inclinai-
sons de l'aze magnétique (de haut en bas : 905y, 60, et 30,) dans un espace-temps
plat avec les courbes lumieres pour différents angle d’observation . La répartition
des points d’émission dans la calotte polaire est ici aléatoire comme sur la Fig. 3.15.
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FIGURE 3.17 — Clartes d’émission dans le domaine radio pour différentes inclinai-
sons de l'aze magnétique (de haut en bas : 905y, 60, et 30,) dans la métrique de
Schwarzschild avec les courbes lumiéres pour différents angle d’observation (. La
répartition des points d’émission dans la calotte polaire est ici aléatoire comme sur
la Fig. 3.15.
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Si pour un pulsar milliseconde, on soupconne que ’émission radio a lieu relati-
vement pres de la surface de 1’étoile a neutrons, pour les pulsars avec une période
plus élevée il est généralement admis que le siege de celle-ci se situe a plusieurs fois
le rayon de I’étoile R, au-dessus des calottes polaires. On a donc réparti des points
d’émission le long des lignes de champ magnétique passant par les points sur la ca-
lotte polaire de la Fig. 3.15, deux points sur la méme ligne de champ étant séparés
par une distance d'un dixieme du rayon de 1’étoile (comme pour I’émission haute
énergie dans les cavités allongées).

Les Fig. 3.18 et 3.19 sont les cartes d’émission radio obtenues dans les deux
métriques, respectivement Minkowski et Schwarzschild, pour une zone d’émission
comprise entre 1 et 2 R, au-dessus de la calotte polaire (donc a une distance du
centre de Iétoile entre 2 et 3 R,). Les Fig. 3.20 et 3.21 sont quant a elles les cartes
d’émission radio dans la métrique de Minkowski et de Schwarzschild pour une zone
d’émission comprise entre 3 et 4 R, au-dessus de la calotte polaire (donc & une
distance du centre de 'étoile entre 4 et 5 R,). Ce qui est visible sur ces cartes
d’émission, et un peu aussi sur la forme des pulses des courbes de lumiere, c¢’est que
la taille de 'image de la zone d’émission, et donc la largeur des pulses, va augmenter
avec son altitude, tout simplement parce que la zone d’émission est elle-méme plus
large du fait que les lignes de champ magnétique divergent de plus en plus les unes
des autres quand on s’éloigne de 1’étoile a neutrons.

On notera également un décalage de phase des pulses comparé a I’émission pro-
venant de la surface des Fig. 3.16 et 3.17 car la phase 0 est toujours définie comme
la longitude du point d’impact du photon provenant du pole magnétique (et donc
de la surface de I’étoile a neutrons), celui-ci a alors un temps de vol plus important
que celui des photons émis au-dessus de la calotte polaire ce qui se traduit sur les
cartes d’émission par un décalage de la phase de ces photons.

Les tableaux 3.5 et 3.6 nous donnent les intensités maximales correspondantes
dans les deux métriques pour chacune des altitudes de la zone d’émission, a nouveau
I’on peut y voir que l'intensité maximale sera moins important dans la métrique de
Schwarzschild.
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FIGURE 3.18 — Clartes d’émission dans le domaine radio pour différentes inclinai-
sons de l'axe magnétique (de haut en bas : 90°, 60° et 30°) dans un espace-temps plat
avec les courbes lumiéeres pour différents angles d’observation . La zone d’émission
est ici comprise entre 1 et 2 R, au-dessus des calottes polaires.
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FIGURE 3.19 — Clartes d’émission dans le domaine radio pour différentes inclinai-
sons de l'aze magnétique (de haut en bas : 90°, 60° et 30°) dans la métrique de
Schwarzschild avec les courbes lumieres pour différents angles d’observation (. La
zone d’émission est ict comprise entre 1 et 2 R, au-dessus des calottes polaires.
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FIGURE 3.20 — Clartes d’émission dans le domaine radio pour différentes inclinai-
sons de l'axe magnétique (de haut en bas : 90°, 60° et 30°) dans un espace-temps plat
avec les courbes lumiéeres pour différents angles d’observation . La zone d’émission
est ici comprise entre 3 et 4 R, au-dessus des calotte polaire.
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FIGURE 3.21 — Clartes d’émission dans le domaine radio pour différentes inclinai-
sons de l'aze magnétique (de haut en bas : 90°, 60° et 30°) dans la métrique de
Schwarzschild avec les courbes lumieres pour différents angles d’observation (. La
zone d’émission est ict comprise entre 3 et 4 R, au-dessus des calottes polaires.
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TABLE 3.5 — Intensité mazimale du rayonnement radio (unité arbitraire) pour
différente valeur de X pour une zone d’émission comprise entre 1 et 2 R, au-dessus
des calottes polaires.

X ‘Minkowski Schwarzschild

90° 2226 2023
60° 2318 2071
30° 1461 1340

TABLE 3.6 — Intensité mazimale du rayonnement radio (unité arbitraire) pour
différente valeur de X pour une zone d’émission comprise entre 3 et 4 R, au-dessus
des calottes polaires.

X ‘Minkowski Schwarzschild

90° 1980 1914
60° 1908 1841
30° 1194 1086

3.5 Courbes de lumiere multifréquences

Afin d’avoir une meilleure idée de 'impact du champ gravitationnel, dans le
cadre de la relativité générale, sur 1’émission que 1'on va recevoir du pulsar, on
a tracé les courbes de lumiere pour les deux domaines d’émission, radio et haute
énergie, a partir des cartes d’émission des sections 3.3 et 3.4, ces cartes d’émission
étant, comme on I’a déja vu dans les sections correspondantes, les courbes de lumiere
pour toutes les inclinaisons de la ligne de visée. On garde la normalisation de ces
cartes d’émission par le maximum d’intensité regu sur la sphere céleste de maniere
a ce que le maximum vaille 1 pour chacun des deux types d’émission, radio et haute
énergie. Ces courbes de lumiere sont étendues au-dela de la premiere phase (chaque
phase suivante étant supposée identique) pour une meilleure visibilité de la série de
pulses radios. A nouveau on prendra comme début de phase (ou phase 0) pour ces
courbes de lumiere le moment ou l'on regoit le photon émis par pole magnétique
nord dans chacun des deux cas, espace-temps plat et métrique de Schwarzschild.

Les courbes de lumiere ainsi obtenues sont représentées dans les Fig 3.22 a 3.25
avec :

— En rouge, la courbe de lumiere de ’émission radio provenant de la surface de
la calotte polaire reque dans un espace-temps plat (métrique de Minkowski).

— En vert, la courbe de lumiere de ’émission radio provenant de la surface de
la calotte polaire reque dans la métrique de Schwarzschild.

— En orange, la courbe de lumiere de 1’émission haute énergie provenant des
cavités allongées recue dans un espace-temps plat.

— En bleu, la courbe de lumiere de I’émission haute énergie provenant des ca-
vités allongées recue dans la métrique de Schwarzschild.
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FIGURE 3.22 — Courbes de lumiére dans les domaines radio et hautes-énergies pour
X =90° et ( =X =90° pour une zone d’émission infiniment fine.
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FIGURE 3.23 — Courbes de lumiere dans les domaines radio et haule énergie pour
X =60° et ( =X =60° pour une zone d’émission infiniment fine.
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FIGURE 3.2/ — Courbes de lumiéere dans les domaines radio et haute énergie pour
X = 45° et ( = 50° pour une zone d’émission infiniment fine.
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FIGURE 3.25 — Courbes de lumiere dans les domaines radio et haute énergie pour
X = 30° et ( = 60° pour une zone d’émission infiniment fine.
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Sur la Fig. 3.22 représentant ces courbes de lumiere pour un axe magnétique et
une ligne de visée perpendiculaire a I’axe de rotation (X = ¢ = 90°), on peut voir clai-
rement que la forme générale des pulses est plutot bien conservée d’une métrique a
I’autre cependant on peut également voir que le décalage temporel entre I’émission
haute énergie et 1’émission radio est légerement moins important (de l'ordre de
quelques centiemes de période) dans le cas relativiste : il s’agit probablement d’une
conséquence du délai Shapiro, en effet le retard induit par la courbure de la tra-
jectoire des photons sera plus important a proximité de 1’étoile a neutrons et donc
pour ’émission radio, qui ici est émis a la surface de 1’étoile, par rapport a I’émission
haute énergie dont la zone d’émission s’étend jusqu’a la proximité cylindre lumiere.

On constate une différence plus importante de la forme des pulses haute énergie
entre un espace-temps plat et la métrique de Schwarzschild dans la Fig. 3.23, ou on
a X = ( = 60°, les pulses radio eux restent relativement inchangés. Dans la Fig. 3.24
ou on a X = 45° et ( = 50° on voit que la distance entre deux pics constitutifs
de la pulse va varier selon la géométrie de I'espace-temps, ces deux pics vont étre
plus écartés dans la métrique de Schwarzschild. La Fig. 3.25 est la seule ou une
modification de la forme des pulses radio dans la métrique de Schwarzschild est
clairement visible : comme ici on a X = 30° et ¢ = 60°, la ligne de visée passe a la
limite de la calotte polaire et donc on profite pleinement des effets de distorsion qui
étendent la taille de I'image de la zone d’émission radio.

Les Fig. 3.26 a 3.29 montrent les courbes de lumiere dans les domaines radio et
haute énergie (avec le méme code couleur que sur les figures précédentes) pour une
zone d’émission du rayonnement haute énergie avec une certaine épaisseur le long
des dernieres lignes de champ magnétique fermées. Comme on en avait déja parlé
dans la section 3.3.3, les pics d’émissions en haute énergie sont plus épais, moins
"acérés”, certains pics d’émission fusionnent méme comme sur les Fig. 3.26, 3.28 et
3.29. Il y a également des cas ou l'intensité relative de ces pics semblent augmenter
de maniere considérable comme sur la Fig. 3.27. On constate sur les Fig. 3.26 a
3.29 l'apparition de pics d’émission hautes-énergies au sein des pulses radio, pics
plus visibles dans la métrique de Schwarzschild mais également présents dans un
espace-temps plat, phénomene du a ce que 'on pouvait déja observer sur les cartes
d’émission des Fig. 3.10 et 3.11 ou l'on voyait apparaitre des composantes haute
énergie dans "'ombre” des calottes polaires lorsque 'on rajoute une épaisseur a
la zone d’émission haute énergie. A nouveau on peut constater, en comparant les
courbes oranges et bleues, que le délai sera légerement moins important entre les
pulses radios et hautes-énergies dans la métrique de Schwarzschild.
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FIGURE 3.26 — Courbes de lumiére dans les domaines radio et haute-énergie pour
X =90° et ( =X = 90° pour une zone d’émission haute énergie avec une certaine
épaisseur.
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FIGURE 3.27 — Courbes de lumiere dans les domaines radio et haute énergie pour
X = 60° et ( = X = 60° pour une zone d’émission haute énergie avec une certaine
Epaisseur.
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FIGURE 3.28 — Courbes de lumiéere dans les domaines radio et haute énergie pour
X = 45° et ¢ = 50° pour une zone d’émission haute énergie avec une certaine
épaisseur.
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FIGURE 3.29 — Courbes de lumiere dans les domaines radio et haute énergie pour
X = 30° et ¢ = 60° pour une zone d’émission haute énergie avec une certaine
Epaisseur.
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On peut quantifier le décalage temporel entre I’émission radio et haute énergie
ainsi : soit deux photons émis a deux altitudes différentes r; et r, si ceux-ci s’éloignent
de I’étoile a neutrons, le décalage temporel Atq; entre la réception des deux signaux
(qui ne dépend pas de la distance a laquelle I’étoile est observée), I'intervalle espace-
temps d’un photon étant toujours nul (ds* = 0), alors l'intervalle espace-temps pour
des photons avec une trajectoire purement radial sera dans la métrique de Schwarz-

schild : )
— (1 — @> cdt* + (1 — @> dr* =0 (3.29)

T T

Ce qui nous donne :
dr
Rg

1— 22
r

cdt =

(3.30)

En intégrant cette équation on peut alors calculer Atyy, le décalage temporel entre

deux photons émis a deux altitudes différentes r; et ry. La différence d’altitude

initiale entre les deux photons étant Ary; = r; — ro, en normalisant par la période
Rcyl
c

de rotation du pulsar P = on obtient :

At _m—re  Rs <r1 - RS) . (3.31)

P _277Rcyl+27TRcyl TQ—RS

Le premier terme correspond au temps de vol du photon dans un espace-temps
plat tel que donné par I'équation (3.13), c’est le second terme qui rend compte
du délai Shapiro. La Fig. 3.30 montre ce délai pour diverses valeurs du parametre
de rotation R,/R., ainsi que pour différentes altitudes r; d’émission du premier
photon, le deuxieme photon étant émis depuis la surface (ro = R,).

log1g R/r.

0.010 ¢ — -3

0.001 ¢

Aty /P

P | M L
0.001 0.100

nin

FIGURE 3.30 — Décalage Aty /P entre la réception de deux photons émis a deux
altitudes différentes pour différentes valeur du paramétre de R./R., et pour une
altitude d’émission initale du premier photon a R, en trait plein et 10R, en pointillé.

On peut voir sur cette figure que le décalage temporel a une croissance plus
importante quand le rapport R,/R., n’est pas trop faible, or comme le rayon du

. N , . C . . TR TR
cylindre lumiere est égal a — avec € la vitesse angulaire de I’étoile a neutrons, on en

déduit que les décalages entre photons seront plus importants pour une étoile avec
une vitesse de rotation élevée et donc une petite période P de rotation. Rajouté a
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cela que le décalage est plus important lorsque les photons sont émis plus pres de la
surface de I’étoile et on en déduit donc que le décalage entre les émissions provenant
des environs de la surface de 1’étoile et des parties supérieures de la magnétosphere
devrait étre plus important pour des étoiles a neutrons avec une compacité et une
vitesse de rotation importante.



Chapitre 4

Caractérisation fréquentielle de
I’émission magnétosphérique

Dans le chapitre précédent, notre attention s’est portée sur la forme des pulses
émis en radio et en gamma, en montrant explicitement 'impact de la gravitation sur
la géométrie des profils et sur le déphasage entre le pulse radio principal et le premier
pulse gamma. Nous n’avons pas tenu compte des caractéristiques fréquentielles de
cette émission, fonction du point d’émission et plus particulierement de la courbure
des lignes de champ. Mais qu’en est-il de leur distribution en fréquence c’est-a-
dire du spectre radio et gamma ? Comment évolue la forme des pulses en fonction
de la fréquence? Ce chapitre tente de répondre a ces questions en apportant des
résultats quantitatifs précis si I’émission provient du rayonnement de courbure. Dans
un premier temps, on reprend la solution du champ électromagnétique en espace-
temps plat et donnée par DEUTSCH, . Les effets gravitationnels et notamment
le décalage gravitationnel vers le rouge n’ont pas été abordés par manque de temps,
ce chapitre présentant des travaux toujours en cours.

4.1 Un modele multi-longueurs d’onde cohérent

La modélisation multi-longueurs d’onde des pulsars en radio et en gamma se
contente généralement de calculer conjointement une courbe de lumiere en radio
et une autre en gamma. Bien que cette stratégie permette déja de contraindre les
parametres géométriques de la magnétosphere, ceci n’est guere satisfaisant car les
profils de pulses évoluent en fonction de la fréquence ou de ’énergie. Une investiga-
tion multi-fréquences détaillée, incluant de maniere cohérente le calcul des spectres
radio et gamma a partir par exemple du rayonnement de courbure s’avere beau-
coup plus contraignante et permettra de relier physiquement et quantitativement
la géométrie des lignes de champ, 'altitude des sites de production de photons, les
fonctions de distribution des particules émettrices ainsi que les courbes de lumiere
associées.

Dans ce dernier chapitre, on s’intéresse en profondeur a cette vision détaillée
des processus d’émission a large bande de fréquences. Pour cela, on commence par

98
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un rappel de la méthode de calcul des propriétés de 1’émission de courbure, sa
puissance et sa fréquence caractéristique, appliqué a la magnétosphere d’un pulsar.
Puis on déterminera le spectre haute énergie autour du GeV, donc de la bande de
Fermi/LAT, ainsi que quelques courbes de lumiere caractéristiques pour conclure
sur le spectre et les profils radio.

4.2 Calcul du rayonnement de courbure

Dans la section 1.3.3, on a vu que le calcul de la fréquence du rayonnement de
courbure se fait a partir du rayon de courbure p de la trajectoire de la particule le long
de la ligne de champ magnétique, qui n’est autre chose que le rayon de courbure de
cette ligne de champ, en utilisant 1’équation (1.47). Dans notre modele, on suppose
que les particules suivent les lignes de champ dans le référentiel en corotation avec
'étoile, la fréquence du rayonnement de courbure v est donc celle du référentiel en
mouvement. Afin de trouver la fréquence du rayonnement émis par notre pulsar en
rotation et telle que mesurée par un observateur lointain inertiel et immobile v,
il faut tenir compte de l'effet Doppler et effectuer une transformation de Lorentz
du référentiel en corotation vers le référentiel inertiel de 1’observateur. Ceci revient
a multiplier I’équation (1.47) par un facteur Doppler que 'on note n du a cette
rotation. On aura ainsi v, = nv. avec le facteur Doppler de maniere générale mis

sous la forme : .

P —— (4.1)
v(1—3-)

71 étant le vecteur unitaire donnant la direction de propagation initiale du photon

(tangent a la ligne de champ magnétique) telle que vue dans le référentiel de ’ob-

servateur et prenant en compte ’aberration, ainsi 77 est donné par I’équation (3.20).

Dans la suite de ce chapitre, on se restreint a un espace-temps plat qui ne tient
pas compte des effets de gravitation. A terme, on envisage de généraliser cette étude
a une métrique de Schwarzschild comme dans les chapitres précédents.

4.2.1 La courbure

Par définition, le rayon de courbure p est égal a 'inverse de la courbure notée p =
1/k des lignes de champ magnétique.

Une trajectoire ou une ligne dans l’espace possede une courbure ainsi qu’'une
torsion. Localement, en un point de cette courbure, on associe un triedre (f, N, E)
encore appelé repere de Frenet. La courbure x indique le changement dans le vecteur
tangent T et la torsion 7 indique la variation dans le plan osculateur au méme point.
En résumé les formules de Frenet donnant les variations des vecteurs de base du
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triedre sont :

dT .

% = HN (423“)
dN L

dB .

o =-—7N (4.2¢)

La torsion n’intervient pas dans le calcul du rayonnement de courbure des particules.
La courbure elle-méme se déduit donc de la dérivée de la tangente T = B/B aux
lignes de champ en fonction de ’abscisse curviligne s le long de ces lignes de champ :

dT(s)
ds

K= — =
p

‘ . (4.3)

On rappelle que la variation de I'abscisse curviligne ds est reliée aux variations des
coordonnées de la trajectoire (dx, dy, dz) par ds* = v, dz' dx* dans une géométrie
spatiale quelconque donnée par la métrique spatiale 7;; qui est la projection spa-
tiale de la métrique spatio-temporelle g;; par rapport a un observateur donné. Dans
I’espace-temps de Minkowski en coordonnées cartésiennes, cette expression se sim-
plifie en ds? = dz? + dy? + dz>.

Pour des courbes de géométrie connue, cette courbure peut étre déterminée ana-
lytiquement, comme par exemple pour un dipole statique pour lequel 1’équation des
lignes de champ est connue, les lignes étant elles-mémes chacune contenues dans un
plan. Pour un dipole en rotation comme celui de Deutsch ou en relativité générale, il
n’est pas possible d’obtenir une expression analytique de cette courbe. Il faut 1’esti-
mer numériquement en approximant la dérivée (4.3). Concretement, on calcule cette
courbure en mesurant la variation AT du vecteur tangent T aux lignes de champ
magnétique lorsque 'on se déplace le long de celles-ci d’'une valeur As de I’abscisse
curviligne s suffisamment petite pour que la différence finie représente une bonne
approximation de la dérivée. Typiquement une fraction du rayon de I’étoile As < R,
est suffisante. On remplace alors x dans I’équation (4.3) par une version discrétisée
selon :

HAT
As
Afin de minimiser les erreurs de discrétisation, on choisit une méthode aux différences

finies centrées telle que la variation du vecteur tangent dépendant de ’abscisse cur-
viligne soit :

R~

(4.4)

AT ~ T(s+ As/2) — T(s — As/2) + o(As?). (4.5)

Connaissant le rayon de courbure local et la valeur du champ magnétique au point
d’émission dans le référentiel tournant, on remonte au spectre du rayonnement de
courbure dans le référentiel inertiel de I’observateur en imposant encore une fonction
de distribution en énergie pour les leptons émetteurs de photons. La situation la plus
simple consiste a prendre une distribution mono-énergétique de particules et dont
le spectre a été rappelé au chapitre 1.
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La forme des courbes de lumiere et des spectres dépend fortement de la distri-
bution en énergie de ces particules. Les modeles actuels d’accélération de particules
primaires et de création de paires secondaires et de génération supérieure (tertiaires,
quaternaires,...) prédisent un pic du facteur de Lorentz autour de 107 pour les pri-
maires et de 102 pour les autres. Bien que notre démarche s’accommode facilement
d’une distribution quelconque de particules, dans ce chapitre, nous ne considérerons
que des particules mono-énergétiques. Les particules primaires seront responsables
de I’émission haute énergie au GeV tandis que les particules secondaires issues des
cascades produiront I’émission radio.

Dans un cadre plus réaliste d'une distribution quelconque en énergie des parti-
cules et non mono-énergétique, le rayonnement étant additif linéairement, le calcul
des spectres et des courbes de lumiere suivra le méme schéma d’addition linéaire des
contributions mono-énergétiques individuelles avec des poids respectifs correspon-
dants aux poids de la fonction de distribution. Par exemple, pour une population
contenant N; particules d’énergie v; et Ny particules d’énergie 7o, I’émission totale
sera N fois celui du spectre mono-énergétique a ; auquel se superpose N, fois celui
du spectre mono-énergétique a 7,. Une distribution continue est alors sub-divisée en
plusieurs intervalles de particules mono-énergétiques.

Passons maintenant en revue les résultats concernant les spectres mono-énergétiques
haute énergie et radio : pour chacun des deux cas, nous supposerons qu’a chaque
point d’émission, situé comme indiqué précédemment tout le long des dernieres lignes
de champ magnétique avec un espacement curviligne A¢ entre chaque point, il y a
émission par rayonnement de courbure que I'on considérera provenir d’une particule
avec un facteur de Lorentz v fixé pour chaque type d’émission. On considérera a
nouveau qu’il n’y a pas d’émission pour les points situés a plus de 95% de R, de
'origine.

L’estimation classique du facteur de Lorentz maximum atteignable par les parti-
cules dans le champ électromagnétique prend en compte le freinage par la réaction
de rayonnement pour compenser ’accélération par le champ électrique parallele E)
présent dans les cavités. La valeur précise de ce champ est fortement dépendante de
la dynamique au sein de cette cavité. En égalant la puissance rayonnée (1.46) et la
puissance fournie par ce champ électrique e £, le facteur de Lorentz devient :

By o 1/4
Ymax = <67T50 L ) ~ 107 (46)

e

Dans notre modele du vide, E) ~ 10'2 V/m correspond a la limite supérieure, celle
du champ de Deutsch ou le champ électrique n’est pas du tout écranté. En réalité,
cette valeur est bien moindre mais le facteur de Lorentz maximum ne varie qu’en
E‘l‘ / 4, il est donc tres peu sensible a une variation importante de ce champ.

4.2.2 L’émissivité

Dans un premier temps, le calcul des spectres que nous présentons dans ce qui
suit ne tient pas compte de I’éventail de fréquences auxquels les photons sont émis.
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Nous approximons le spectre par une distribution de Dirac centrée sur la fréquence
caractéristique v, et dont I'intensité correspond a la puissance totale du rayonnement
intégrée sur toutes les fréquences du vrai spectre continu. Autrement dit, le spectre

est approximé par
d-[Curv

dw
Chaque point sur une ligne de champ émet des photons a fréquence unique donnée
par la fréquence caractéristique locale w.(p) (1.47) associée a la courbure locale de
cette méme ligne de champ. Le nombre de photons a considérer est proportionnel a la
puissance totale émise P, (p). Ceci contraste fortement avec le chapitre précédent
ou chaque position sur une ligne de champ donnée ne produisait qu'un seul photon
d’énergie indéterminée. Dans ce chapitre, nous levons 'ambiguité sur la fréquence en
incorporant les détails du mécanisme d’émission, fréquence et puissance. L’émissivité
ne sera plus constante le long d’une ligne de champ mais variera en fonction de la
courbure locale.

= Pryry 0(w — we). (4.7)

Dans un deuxieme temps, nous envisagerons d’utiliser ’expression complete du
spectre du rayonnement de courbure donné par I’approximation (1.49). Enfin, dans
une derniere étape, la situation la plus réaliste devra tenir compte d’une distribu-
tion énergie des particules sous la forme d’une loi de puissance telle que le nombre
de particules de facteur de Lorentz entre v et v + dy est donné entre une valeur
minimale 7v,;, et une valeur maximale Y. par

dN
W ox vy P avec Y € [Vmin, Ymax) (4.8)

ou p est l'indice spectral de la loi de puissance. Cette distribution de particule
produira une autre loi de puissance pour I’émissivité j..., telle que

d[CurV — —
o = [ 77 Sy oD, (4.9)
W

Il existe donc une relation simple entre I'indice spectral de la distribution en loi de

puissance des particules et celui des photons. Au-dela de la fréquence de coupure
.z N 5z . YRS . _w/wmax

associée a Ymax 1'émissivité chute exponentiellement selon e <. En dessous de

la fréquence de coupure associée a Vi, 1’émissivité décroit selon une autre loi de

puissance indépendante de la distribution des particules selon (w/w™™)!/3,

4.2.3 Luminosité des calottes polaires

La luminosité radio des pulsars semble relativement constante a travers le dia-
gramme P — P avec une valeur de l'ordre de Liagioc ~ 102 W (SZARY et al.,
). Bien str, cette valeur est entachée d’erreur puisqu’on ne connait pas exacte-
ment I'angle solide réellement balayé par le faisceau radio. Rappelons que nous ne
détectons que les photons émis le long de notre ligne de visée. Il faut donc extra-
poler la forme de ce faisceau pour d’autres angles d’ou l'incertitude. Malgré cela,
essayons d’estimer la luminosité provenant des calottes polaires en appliquant les
valeurs standards pour une calotte vide (RUDERMAN et SUTHERLAND, ).
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Supposons que les particules rayonnent en radio sur une hauteur typique h de
I’ordre de 100 m d’apres RUDERMAN et SUTHERLAND, . Le nombre de particules
dans les calottes est donc :

2mey BR?*h
e R% .

cyl

Nh:2n(}JAV:

(4.10)

Le volume AV =7 rfp h correspond a celui d’un cylindre de hauteur h dont la base
est la surface d'une calotte polaire de rayon 7., . L’émission radio est cohérente, ce
qui signifie que l'intensité radio sera proportionnelle & N2 et non a N. Mais cela
impose aussi une taille des régions émettrices inférieure a la longueur d’onde A < h
bien inférieure a la hauteur h des cavités. Ces ondes radio étant observées dans la
gamme de fréquence de 10-1000 MHz environ, ceci implique une taille moyenne de
1 m au-dela de laquelle le rayonnement perd sa cohérence et chute brutalement en
intensité. Le nombre de particules participant a la cohérence sera donc plutot de
Neon = %Nh. La luminosité totale devient alors :

3 hc?
Lradio ~ (:20h Pcurv = 5 Nc20h Qlf ’74 TC (411)

avec agr la constante de structure fine :

e? 1

=~ 4.12
dreghe 137 ( )

Qgf

En appliquant ces valeurs aux pulsars millisecondes et aux pulsars jeunes, en prenant
v =~ 100, on retrouve les bons ordres de grandeur de la luminosité radio typique
observée par SZARY et al., . On remarque que pour un rayonnement incohérent,
cette luminosité serait divisée par un facteur énorme de N, =~ 10 ce qui montre
bien I'importance de la cohérence dans le mécanisme d’émission radio.

4.2.4 Luminosité des cavités allongées

On peut refaire une méme estimation pour la luminosité gamma du rayonnement
de courbure dans les cavités allongées. Les caractéristiques essentielles qui changent
sont le facteur de Lorentz typique v ~ 107, le rayon de courbure et surtout le
rayonnement qui devient incohérent puisque aux énergies du MeV et au-dela, la
taille des agrégats de particules ne peut pas dépasser 10712 m rendant la cohérence
impossible a ces énergies. La luminosité dépendra donc linéairement du nombre
total de particules rayonnantes N, dans le volume des cavités. Toujours en ordre de
grandeur, ce volume est estimé en prenant un anneau a la base de la cavité, de rayon
Tpe, de largeur de ordre de rp./10 et de longueur Ry ce qui donne un volume :

AVsg = 27 Tpe == Ry ~ R®. (4.13)

T'pc
10
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Le nombre total de particules est alors :

26002 B R,
Np ~ EOT R3 ~ hyl Nh >> Nh' (414)
3 4, hc?
Lgamma ~ Np Powrv = 5 p Xst Y 7 (415)

La luminosité gamma ainsi obtenue se situe autour de 10?® W en accord avec les
résultats de Fermi/LAT.

Soulignons que les chiffres estimés en radio et en gamma ne donnent qu'une indi-
cation sur la luminosité réelle de chaque pulsar dans chacune des longueurs d’onde.
Ces calculs montrent néanmoins que le rayonnement de courbure peut expliquer
simultanément 1’émission radio (nécessairement cohérente) et I’émission gamma (in-
cohérente).

Ayant vérifié I'énergétique du rayonnement, voyons a présent la forme quantita-
tive détaillée des spectres et des courbes de lumiere a haute énergie et en radio.

4.2.5 Test du calcul de la courbure

Pour vérifier que notre algorithme calculant le rayon de courbure fonctionne
correctement, nous l’avons appliqué sur des formes géométriques simples comme
par exemple une hélice de rayon R et de pas p dont le rayon de courbure est pipeo =

R [1 + (ﬁf . La Fig.4.1 nous donne ainsi l'erreur relative de notre algorithme de

calcul du rayon de courbure en fonction de I'incrément d’abscisse curviligne As (en
unité de R) pour une hélice dont on a fixé numériquement le rayon a R = 1 et le
pas a p = 67, cette erreur étant définie par :

¢ lptheo =l (4.16)
Ptheo

On constate que notre méthode est bien d’ordre 2 comme il se doit pour une
différence finie centrée, c’est-a-dire que € oc As?. Cette pente est représentée dans
la Fig. 4.1 en noir. Prendre un pas d’espace As égale a une fraction de la longueur
typique du systeme (ici le rayon de I’hélice r) permet d’obtenir une précision suffi-
sante pour le calcul de I’émission. Dans la suite on fixe ce pas d’espace a 10% du
rayon de l’étoile a neutrons R,.
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FIGURE /.1 — A gauche : hélice de rayon 1, a droite : erreur relative du calcul du
rayon de courbure en fonction de As en rouge et courbe de pente o< As?® en noire.

4.3 Emission haute énergie

L’émission haute énergie que nous étudions se trouve dans la bande du Fermi/LAT,
soit entre 100 MeV et 100 GeV. 239 pulsars gamma ont été détectés avec des spectres
tres semblables comme on I’a rappelé dans I'introduction. A terme, on pourra com-
parer nos courbes de lumiere et spectres avec des pulsars radio et gamma.

4.3.1 Spectres d’une cavité mince

Commencons par étudier les spectres et les cartes d’émission sans tenir compte
du poids attribué a chaque photon en fonction de la puissance rayonnée. Dans ces
conditions, on obtient par exemple la carte de la Fig. 4.2 montrant la répartition en
énergie des photons provenant des cavités allongées regus par un observateur loin-
tain, en échelle logarithmique, ’énergie F. = hv, étant obtenue en multipliant la
fréquence du rayonnement observé v, par la constante de Planck h. Les parametres
utilisés supposent une inclinaison de X = 60° et un facteur de Lorentz v de 107
pour les particules accélérées dans ces cavités, valeurs typiques citées par exemple
dans BECKER, et dans GUREVICH et al., . Pour chaque point de la carte
repéré par la phase et l'inclinaison de la ligne de visée (¢, (), en fait une zone de
taille 0.5° x 0.5°, on affiche uniquement I’énergie du photon le plus énergétique en ce
point. Cette carte dévoile donc 'efficacité de production de photons au GeV pour
chaque couple (¢, () mais sans donner la moindre indication sur la forme réelle des
spectres pour chaque phase et chaque angle de la ligne de visée. Nous détaillerons
ces caractéristiques plus loin.



4.3. EMISSION HAUTE ENERGIE 106

100

colatitude
GeV

s

0.1

phase

FIGURE 4.2 - Carte d’émission représentant l’énergie des photons recus par un
observateur lointain pour une inclinaison X de l'axe magnétique de 60°.

En examinant cette carte, seules deux régions se démarquent avec des photons
de tres hautes énergies, autour de 50 GeV, pres des points (¢ = 0.1, = 90°) et
(¢ = 0.6,¢ = 90°). Ces régions se trouvent a haute altitude, proche du cylindre
lumiere. Le reste de I’émission semble ne présenter, en comparaison, que peu de
variation de I'énergie avec la phase ou I’angle d’inclinaison de la ligne de visée. Le
résultat de cette carte est une combinaison non triviale de la courbure qui varie
de maniere non monotone avec l'altitude, voir la Fig 4.31, et du facteur Doppler
produisant un décalage vers le bleu ou vers le rouge en fonction de la ligne de champ
considérée, voir la Fig 4.32. En conséquence, les photons les plus énergétiques sont
repoussés vers le cylindre lumiere, mais uniquement dans les régions pour lesquelles
le facteur Doppler est favorable, c¢’est-a-dire pour des particules se déplacant le long
des lignes de champ dans le méme sens que celui de la rotation, voir la Fig. 4.30, le
cas inverse produisant des photons de plus basse énergie (décalage vers le rouge).

La Fig. 4.3 représente la distribution moyennée sur la phase et la ligne de visée
de I'énergie des photons issus de ces cavités allongées pour différentes inclinaisons X
de I'axe magnétique. On retrouve une distribution cohérente avec ce que l'on avait
vu sur la Fig. 4.2 pour une inclinaison de 60° (courbe en vert) avec tres peu de
photons du coté des plus hautes énergies, au-dela de 50 GeV et une concentration
importante de photons au centre du spectre, autour de quelques GeV. L’étendue du
spectre varie aussi sensiblement en fonction de I'inclinaison du dipole magnétique.
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FIGURE 4.3 — Spectres de ’émission haute énergie du pulsar, en bleu pour X = 30°,
en vert pour X = 60° et en rouge pour X = 90°.

Néanmoins, d'un point de vue observationnel et aussi plus réaliste, il est préférable
de ne pas moyenner sur les angles de la ligne de visée puisqu’un observateur parti-
culier ne verra que la partie de la carte d’émission en Fig. 4.2 correspondant a un
angle ( fixé (autrement dit une droite horizontale dans cette carte). Un exemple de
la variation du spectre intégré en phase (c’est-a-dire sur toute la période du pulsar)
pour X = 60° est montré en Fig. 4.4 pour différentes valeurs de I'inclinaison de la
ligne de visée ¢ = 307,607, 90°. On remarque une grande disparité dans la forme et
les bornes des spectres bien que le maximum reste approximativement a la méme
énergie, aux environs de 4 GeV. La plus faible inclinaison de 30” montre le spectre
le plus resserré avec un intervalle d’énergie restreint a la bande [3, 7] GeV. Une incli-
naison plus élevée de 60" déplace cette borne inférieure a plus basse énergie jusqu’a
environ 1 GeV tandis que la borne supérieure augmente jusqu'a 8-9 GeV. De plus,
on constate 'apparition d’un spectre en forme de double pic, avec un pic a basse
énergie, autour de 1.5 GeV et I'autre restant a 4 GeV. Nous verrons plus loin que
la prise en compte de la puissance réelle rayonnée par les particules éliminera ce
deuxieme pic a basse énergie. Une inclinaison encore plus élevée de 90" décale le
spectre en direction opposée, vers les plus hautes énergies avec une borne inférieure
de 4 GeV et une borne supérieure de 30 GeV. On en conclut que le point de vue
de I'observateur, par sa ligne de visée, impacte fortement le spectre moyen détecté.
L’allure de ces spectres est une conséquence directe de la géométrie des lignes de
champ, de leur visibilité par I’observateur, des effets d’aberration et Doppler.
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FIGURE 4.4 — Spectres intégrés pour X = 60" et une inclinaison de la ligne de visée
¢ =30°60"90" respectivement en bleu, en vert et en rouge.

La carte d’émission de la Fig. 4.2 et les spectres des Fig. 4.3 et 4.4 ont été réalisés
en partant du principe que pour chaque point d’émission le long des dernieres lignes
de champ magnétique fermées un seul photon est émis, ¢’est-a-dire en appliquant la
méme procédure que dans le chapitre précédent, les points successifs étant distants
d’une certaines longueur As le long de la ligne de champ et imposée arbitrairement
par le code d’intégration numérique.

Une vision plus conforme a la réalité doit tenir compte de 'efficacité de ce rayon-
nement de courbure. En effet, puisque l'on connait le rayon de courbure des lignes
de champ magnétique en chaque point, on peut en déduire la puissance rayonnée par
une particule accélérée le long de celles-ci grace a I’équation (1.46). Pour l'instant,
nous n’avons pas indiqué la densité de particules dans les régions émettrices, nous
ne pouvons donc pas calculer un flux précis détecté sur Terre mais nous pouvons
donner a titre indicatif la distribution F dN/dE en énergie des photons produits par
le rayonnement de courbure. Les unités restent arbitraires, nous les noterons en U A.

En reprenant la méme démarche que précédemment, on obtient un exemple de
spectre tel que montré en Fig. 4.5. Comme nous n’avons utilisé qu'une valeur pour le
facteur de Lorentz, on constate sur ces spectres des diminutions et des augmentations
assez abruptes de l'intensité en fonction de la fréquence. On retrouve, comme sur
le spectre de la Fig. 4.3, un faible flux de photons d’énergie supérieure a 50 GeV
et un flux important de photons pour une énergie au voisinage de 5 GeV. La prise
en compte de la modulation de l'intensité du spectre en fonction de la puissance
rayonnée localement ne change pas la gamme de fréquence des photons émis. C’est
pourquoi les limites inférieures et supérieures des spectres sont identiques dans les
Fig. 4.3 et 4.5.
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FIGURE 4.5 — Spectres du rayonnement haute énergie, en bleu pour X = 30°, en vert
pour X = 60° et en rouge pour X = 90°.

Comme précédemment, ces spectres sont moyennés sur la phase et I'inclinaison de
la ligne de visée. Un observateur réel ne mesurera que le spectre associé a une valeur
fixe de la ligne de visée (. En suivant la méme procédure que pour la distribution
intégrée en photons, un autre exemple de spectre intégré en phase et tenant compte
de la puissance du rayonnement de courbure est montré en Fig 4.6 pour X = 60°
et pour différentes lignes de visée ¢ = 30°,60°,90". Les limites des spectres restent
identiques a ceux de la Fig. 4.4 puisque I’énergie des photons rayonnés ne change
pas, seul leur nombre est modifié par la prise en compte de la puissance de courbure.
Le spectre en bleu pour ( = 30" est tres similaire a son homologue sans prise en
compte de la puissance. En revanche, pour ( = 60° en vert, le pic a basse énergie
a disparu pour ne faire ressortir qu'un pic intense autour de 4-8 GeV, sous forme
d’un plateau. Enfin, pour ¢ = 90", la composante haute énergie autour de 30 GeV
ressort tres nettement et devient comparable a la composante autour de 4-8 GeV.
Cet exemple souligne 'importance de la puissance rayonnée sur la pondération du
spectre réel d’un pulsar. On ne peut se contenter de compter des photons émis
isolément en chaque point.
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FIGURE 4.6 — Spectres intégrés pour X = 60" et { = 30°,60°,90° respectivement en
bleu, en vert et en rouge.

Grace a ces méthodes de calcul du rayonnement, on peut aussi extraire les
spectres résolus en phase pour une inclinaison de I’axe magnétique X donnée et une
ligne de visée ( d’'un observateur particulier.On a donc découpé le spectre intégré en
phase ci-dessus en 10 intervalles réguliers et de longueur 10% de la période chacun
At = 0.1 P. Les Fig. 4.7 a 4.11 représentent ces spectres pour des observations sur
un dixieme de la période.
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FIGURE 4.7 — Spectres intégrés pour une valeur de la phase comprise entre 0 et 0.1
a gauche et entre 0.1 et 0.2 a droite avec X = 60" et ¢ = 30°,60°,90 " respectivement
en bleu, vert et rouge.
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FIGURE 4.8 — Spectres intégrés pour une valeur de la phase comprise entre 0.2 et 0.3
a gauche et entre 0.3 et 0.4 a droite avec X = 60" et ¢ = 3060 °,90 " respectivement
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FIGURE 4.9 — Spectres intégrés pour une valeur de la phase comprise entre 0.4 et 0.5
a gauche et entre 0.5 et 0.6 a droite avec X = 60° et ( = 30°,60°,90 " respectivement
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FIGURE 4.10 — Spectres intégrés pour une valeur de la phase comprise entre 0.6 et
0.7 a gauche et entre 0.7 et 0.8 a droite avec X = 60" et ( = 30°,60°,90° respective-
ment en bleu, vert et rouge.
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FIGURE 4.11 — Spectres intégrés pour une valeur de la phase comprise entre 0.8 et
0.9 a gauche et entre 0.9 et 1 a droite avec X = 60" et ¢ = 307,60 90 ° respectivement
en bleu, vert et rouge.

Sur la Fig. 4.7, les phases correspondent aux intervalles [0,0.1] et [0.1,0.2] : On
constate déja une forte variation de la forme du spectre pour une ligne de visée
inclinée a ¢ = 90°, représentée par les courbes rouges. L’énergie des photons monte
a plus de 30 GeV dans l'intervalle [0,0.1] et chute en-dessous de 9 GeV dans l'in-
tervalle suivant [0.1,0.2]. Ces variations sont beaucoup moins perceptibles pour des
inclinaisons plus faibles de 30°, les courbes bleues sur nos spectres, et de 60°, les
courbes vertes.

Dans la Fig. 4.8, les phases correspondent aux intervalles [0.2,0.3] et [0.3,0.4] :
Tous les spectres rétrécissent sensiblement avec un pic étroit en énergie autour de
5 GeV quelle que soit I'inclinaison ¢ sur la courbe de gauche. Puis le spectre s’élargit
a nouveau légerement vers les plus hautes énergies sur la courbe de droite.

La séparation de ces spectres devient de plus en plus visible aux phases suivantes,
par exemple en [0.4,0.5] a gauche de la Fig. 4.9. Les énergies au-dela de 30 GeV
dominent & nouveau pour ¢ = 90° dans la phase [0.5,0.6] tandis que les deux autres
spectres s’élargissent vers les basses énergies.

La séparation des spectres redevient trés nette en phase [0.6,0.7], sur la courbe
gauche de la Fig. 4.10. A la phase suivante an [0.7,0.8],s0it la courbe de droite, les
spectres se rejoignent de plus en plus pour se recentrer autour de 7 GeV.

Cette tendance continue sur les deux intervalles de phase suivants, [0.8,0.9] et [0.9, 1],
sur la Fig. 4.11 avec une disparition de la pulsation pour ¢ = 60° en phase [0.9, 1] sur
la courbe de droite car c’est ici que se trouve 'ombre de la calotte polaire, visible
notamment sur la Fig. 4.2, qui forme alors un creux d’émission.

Notons que l'intensité maximale du spectre est peu sensible a la phase, quelles
que soit I'inclinaison et la phase considérées, le maximum des spectres se situe entre
1 et 10 en unité arbitraire. Seul 'angle de ( = 60" semble montrer une forte am-
plitude voire une disparition du signal pour une phase donnée. A partir de la puis-
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sance rayonnée par une particule, on peut en déduire le nombre de photons émis en
chaque point d’émission et ainsi réaliser des cartes d’émission en utilisant les mémes
méthodes que dans les sections 3.3 et 3.4, a la différence qu’on n’incrémentera plus
I'intensité d’une unité pour chaque point d’impact regu sur une zone de 0.5° x 0.5°
de la sphere céleste mais du nombre de photons calculé a partir de la puissance
du rayonnement de courbure pour une particule. Vu que 'on connait également la
fréquence v de chaque photon, on peut alors réaliser ces cartes d’émission en fonction
de la fréquence v des photons impactant la sphere céleste. On peut ainsi associer
une carte d’émission pour chaque fréquence du rayonnement. Mais en pratique, on
choisit un intervalle de fréquence v € [vy, 1] pour construire ces cartes afin de ce
conformer aux observations qui elles aussi ne montrent des courbes de lumiere que
pour des intervalles en fréquence (en radio) ou en énergie (au MeV/GeV).

Dans le domaine des rayons gamma, on a décidé de couper les bandes d’énergie
en intervalles régulierement espacés en échelle logarithmique. Chaque décade a été
coupée en deux intervalles de sorte que les valeurs successives suivent une progression

géométrique de raison r = 102 ~ 3.16. Les intervalles sont donc de la forme
[r™ Eo, 7" Ejy] avec n un entier positif et Fy une énergie caractéristique fixée par
défaut a Ey = 1 GeV. Dans l'ordre, on choisit les intervalles suivants : de 1 a

V10 ~ 3.16 GeV, de V10 ~ 3.16 a4 10 GeV, de 10 & V100 ~ 31.6 GeV et de
V100 =~ 31.6 & 100 GeV.

Les Fig. 4.12, 4.13, 4.14 et 4.15 représentent les cartes d’émission ainsi réalisées
pour différentes inclinaisons X de I'axe magnétique, ainsi que quelques courbes de
lumiere associées pour différentes valeurs de l'inclinaison ¢ de la ligne de visée.
Chacune de ces cartes ne prenant en compte que les photons compris dans une
certaine gamme d’énergie que 1'on choisit sous forme de suite géométrique (c’est-
a~dire des intervalles de largeur constante en échelle logarithmique). Comme on
I’avait déja vu avec les spectres, la majeure partie de I’émission est concentrée entre
3.16 et 10 GeV avec quelques points d’émission de haute énergie pouvant monter
au-dela de 31.6 GeV. On notera d’ailleurs que ces points d’émission de tres haute
énergie semblent se situer au niveau des pulses que 'on peut voir sur la Fig. 3.8 qui
représente elle I'intensité du rayonnement pour toutes ces fréquences.
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FIGURE 4.12 — Cartes d’émission des photons avec une énergie comprise entre 1 et
3.16 GeV pour différentes inclinaisons de ’aze magnétique (de haut en bas : 90°,
60° et 30°) dans un espace-temps plat avec les courbes de lumiéere pour différents
angles d’observation C.
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FIGURE 4.13 — Cartes d’émission pour des énergies comprises comprise entre 3.16
et 10 GeV pour différentes inclinaisons de l'axe magnétique (de haut en bas : 90°,
60° et 30°) dans un espace-temps plat avec les courbes de lumiére pour différents
angles d’observation C.
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FIGURE 4.1/ — Cartes d’émission pour des énergies comprises comprise entre 10 et
31.6 GeV pour différentes inclinaisons de ’aze magnétique (de haut en bas : 90°,
60° et 30°) dans un espace-temps plat avec les courbes de lumiéere pour différents
angles d’observation C.
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FIGURE 4.15 — Cartes d’émission pour des énergies comprises entre 31.6 et 100 GeV
pour différentes inclinaisons de l’aze magnétique ((de haut en bas : 90°, 60° et 30°)
dans un espace-temps plat avec les courbes lumieres pour différents angles d’obser-
vation C.
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4.3.2 Spectres d’une cavité épaisse

Les spectres et cartes d’émission des Fig. 4.2 a 4.15 ont été réalisés avec une
zone d’émission infiniment fine le long des dernieres lignes de champ magnétique.
La Fig. 4.16 présente le spectre de 1’émission haute énergie pour une zone d’émission
possédant une certaine épaisseur, en utilisant la méme méthode que celle qui nous
a permis de tracer la carte d’émission de la Fig. 3.10.
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FIGURE 4.16 — Spectre du rayonnement haute énergie, en bleu pour X = 30°, en vert
pour X = 60° et en rouge pour X = 90° pour une zone d’émission épaisse.

D’apres ce spectre, quand on inclut une épaisseur transversale a la zone d’émission,
on re¢oit un rayonnement supplémentaire incluant des énergies plus basses et plus
élevées que celles d'une cavité mince. Au spectre de la zone infiniment mince se
rajoute donc d’autres spectres issus de lignes de champ voisines mais dont la cour-
bure varie légerement en augmentant ou en diminuant en fonction de la nature de la
ligne de champ : ouverte ou fermée, ce qui va évidemment entrainer des variations
de la puissance rayonnée et de I'énergie du rayonnement. Les différences dans la
forme des spectres des Fig. 4.5 et 4.16 s’expliquent aussi en partie par la modu-
lation de l'intensité sous l'influence du facteur gaussien que nous avons introduit
dans I'équation (3.25) et que l'on a également utilisé ici. Ainsi pour chaque point
d’'impact sur la sphere céleste, I'intensité mesurée est la puissance rayonnée par la
particule multipliée par cette fonction gaussienne.

Les Fig. 4.17 a 4.20 représentent les cartes d’émission pour des cavités allongées
d’une certaine épaisseur et pour différents intervalles d’énergie, les mémes que ceux
des Fig. 4.12 a 4.15, et différentes inclinaisons X de ’axe magnétique.
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FIGURE 4.17 — Cartes d’émission pour des énergies comprises comprise entre 1 et
3.16 GeV pour différentes inclinaisons de l'axe magnétique (de haut en bas : 90°, 60°
et 30°) dans un espace-temps plat avec les courbes lumiéres pour différents angles
d’observation ( avec une zone d’émission épaisse.
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FIGURE 4.18 — Cartes d’émission pour des énergies comprises comprise entre 3.16
et 10 GeV pour différentes inclinaisons de 'axe magnétique (de haut en bas : 90°,
60° et 30°) dans un espace-temps plat avec les courbes lumiéres pour différents angle
d’observation ( avec une zone d’émission épaisse.
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FIGURE 4.19 — Cartes d’émission pour des énergies comprises comprise entre 10
et 31.6 GeV pour différentes inclinaisons de l'axe magnétique (de haut en bas :
90°, 60° et 30°) dans un espace-temps plat pour une épaisseur définie de la zone
d’émission avec les courbes lumiéres pour différents angles d’observation  avec une
zone d’émission épaisse.
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FIGURE 4.20 — Cartes d’émission pour des énergies comprises entre 31.6 et 100 GeV
pour différentes inclinaisons de l'axe magnétique (de haut en bas : 90°, 60° et 30°)
dans un espace-temps plat pour une épaisseur définie de la zone d’émission avec
les courbes lumiéeres pour différents angles d’observation ¢ avec une zone d’émission
épaisse.
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Les Fig 4.21 a 4.25 représentent 1’évolution du spectre haute énergie sur différents
intervalles de phase pour une inclinaison x = 60° et plusieurs valeurs fixées de ’angle
d’observation (. On peut y voir que I’émission y est visible pour tous les angles
d’observations et pour toutes les phases contrairement aux spectres réalisés pour
une émission haute énergie sans épaisseur de la zone d’émission, notamment pour la
phase [0.9, 1] de la Fig. 4.11, car comme on peut le voir sur les Fig. 3.10 ou encore
4.18, on recoit de I’émission haute énergie au niveau de I’ombre de la calotte polaire.
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FIGURE 4.21 — Spectres intégrés pour une valeur de la phase comprise entre 0 et 0.1
a gauche et entre 0.1 et 0.2 a droite avec X = 60" et ( = 307,60°,90" respectivement
en bleu, vert et rouge pour une zone d’émission €paisse.
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FIGURE 4.22 — Spectres intégrés pour une valeur de la phase comprise entre 0.2 et
0.3 a gauche et entre 0.3 et 0.4 a droite avec X = 60" et ( = 30°,60°,90° respective-
ment en bleu, vert et rouge pour une zone d’émission épaisse.
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FIGURE 4.23 — Spectres intégrés pour une valeur de la phase comprise entre 0.4 et
0.5 a gauche et entre 0.5 et 0.6 a droite avec X = 60" et ( = 30°,60°,90° respective-
ment en bleu, vert et rouge pour une zone d’émission épaisse.
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FIGURE 4.2/ — Spectres intégrés pour une valeur de la phase comprise entre 0.6 et
0.7 a gauche et entre 0.7 et 0.8 a droite avec X = 60° et ¢ = 307,60°,90° respective-
ment en bleu, vert et rouge pour une zone d’émission épaisse.
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FIGURE 4.25 — Spectres intégrés pour une valeur de la phase comprise entre 0.8 et
0.9 a gauche et entre 0.9 et 1 a droite avec X = 60" et { = 30°,60°,90° respectivement
en bleu, vert et rouge pour une zone d’émission €paisse.
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Quant a la Fig. 4.26 elle représente 1’évolution de la forme de la courbre de lumiere
observée pour xy = ¢ = 60° pour différentes valeurs de 1’énergie, pour chacune de ces
valeurs on normalise la courbe de lumiere par son maximum. On y voit clairement
que la forme et la largeur des pulses va dépendre de la gamme d’énergie a laquelle
elles sont observées.
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FIGURE 4.26 — Courbes de lumiére pour x = ¢ = 60° pour différents intervalles
d’énergie des photons : en rouge entre 1 et 3.16 GeV, en vert entre 3.16 et 10 GeV,
en bleu entre 10 et 31.6 GeV et en violet entre 31.6 et 100 GeV.

Nous allons maintenant déterminer de quelle altitude dans la magnétosphere du
pulsar provient cette émission pulsée de haute énergie.

4.3.3 Altitude d’émission et énergie du rayonnement

Comme on a calculé la fréquence du rayonnement de courbure émis au sein
des cavités allongées et vu que l'on connait la position des points d’émission le
long des dernieres lignes de champ, on peut en déduire de quelle altitude dans la
magnétosphere provient quelle énergie du rayonnement. Les Fig. 4.27 a 4.29 per-
mettent de visualiser cette répartition pour une zone d’émission infiniment mince et
pour différentes inclinaisons de I’axe magnétique. Chacune de ces cartes représente
les points d’impact sur la sphere céleste de photons émis entre deux altitudes
différentes séparées d'une distance équivalente a une fois le rayon de 1'étoile R,.
On releve l'altitude de cette couronne sphérique a chaque fois de R, jusqu’au cy-
lindre lumiere de rayon 10 R,. Le code couleur de ces figures reflete I’énergie observée
pour les photons a l'origine de chaque point d’impact. Ainsi chacune de ces trois
figures se présente avec I'arrangement ci-dessous pour l'intervalle de la position r du
point d’émission des photons :

[R..2R.] [2R. 3Rl BR,4R,]
[4R,5R,] [5R.,6R,] 6 R,.7R,]
[7R..8R, [8R..9R,] [9R. 10R, = Ry
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des photons recus, chaque carte représente la contribution d’une partie de la
magnétosphere : celle située dans une couronne sphérique d’épaisseur R, dont on
augmente l'altitude entre chaque carte de R,.
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Cartes d’émission pour une inclinaison X = 60° avec [’énergie

des photons recus, chaque carte représente la contribution d’une partie de la

magnétosphere :

celle située dans une couronne sphérique d’épaisseur R, dont on
augmente l'altitude entre chaque carte de R,.
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FIGURE 4.29 -

Cartes d’émission pour une inclinaison X = 30° avec [’énergie

des photons recus, chaque carte représente la contribution d’une partie de la

magnétosphere :

celle située dans une couronne sphérique d’épaisseur R, dont on
augmente l'altitude entre chaque carte de R,.
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On voit sur ces images que les photons les plus énergétiques sont émis loin de
la surface de 1’étoile et donc pres du cylindre lumiere, ce qui pourrait également
indiquer que les dernieres lignes de champ magnétiques fermées sont plus courbées
a grande distance de l'étoile a neutrons. On retrouve d’ailleurs les deux régions
d’émission a haute énergie qu’on a rencontré sur la Fig. 4.15 de la section précédente
dans la Fig. 4.30 qui représente la distribution des points d’émission dans les cavités
externes avec 1’énergie du rayonnement émis. On y voit que ces points sont situés
dans les parties les plus éloignées de la magnétosphere et que leur haute énergie
pourrait étre due a l’entrainement du champ magnétique par la rotation de I’étoile
a neutrons qui génere une courbure importante des lignes de champs magnétique.
On retrouve en effet une courbure importante des lignes de champ magnétique au
niveau des points d’émission de haute énergie sur la Fig. 4.31 ol est indiqué le rayon
de courbure des lignes de champ magnétique calculé a chaque point d’émission (plus
le rayon de courbure est petit, plus la courbure des lignes de champ magnétique est
importante). Cependant, on voit que les points d’émission de haute énergie ne sont
pas les seuls a présenter un rayon de courbure faible, si les zones d’émission de plus
haute énergie sont situées dans la partie supérieure de la magnétosphere, c’est peut
étre aussi du fait de 'effet Doppler du a la rotation du pulsar. Le facteur Doppler
n donné par 1'équation (4.1) sera en effet plus important pour des points d’émission
situés a grande distance du pulsar car leur vélocité B sera plus importante. La
Fig. 4.32 donne une carte des points d’émission avec la valeur du facteur Doppler
calculée pour chacun de ces points, ce facteur y est plus important a proximité des
points d’émission de haute énergie.

Si on a une émission de plus haute énergie pres du cylindre lumiere, ce serait
donc du a une combinaison de plusieurs effets : une courbure favorable des lignes de
champ magnétique et un facteur Doppler plus important.
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FIGURE 4.30 — Points d’émission du rayonnement haute énergie projetés dans le
plan équatorial (pour X = 90°) avec l’énergie du rayonnement émis en chacun de
ces points.
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FIGURE 4.31 — Points d’émission du rayonnement haute énergie projetés dans le
plan équatorial (pour X = 90°) avec le rayon de courbure des lignes de champs
magnétiques en chacun de ces points. L’unité de longueur pour le rayon de courbure

est Reyr).
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FIGURE 4.32 - Points d’émission du rayonnement haute énergie projetés dans le
plan équatorial (pour X = 90°) avec la valeur du facteur Doppler n en chacun de ces
points.

4.4 Emission radio

Comme on I'a déja vu dans les sections 1.2 et 3.4, I’émission radio dans les ca-
vités polaires serait due a ’accélération de paires secondaires, des particules générées
par avalanches de paires dans le champ magnétique du pulsar a partir des pho-
tons gamma de son émission haute énergie, le facteur de Lorentz de ces particules
serait alors de l'ordre de v = 10?, comme affirmé dans GUREVICH et al., 1993.
Dans ce qui suit, on prendra plus précisément un facteur de Lorentz v = 30 pour
que les fréquences calculées avec la formule de 1’équation (1.46) ne soient pas trop
élevées. On a également conservé le facteur gaussien vu dans les équations (3.27) et
(3.28) de la section 3.4 afin de garder des pulses de formes gaussiennes et le maxi-
mum d’émission au centre de la calotte polaire. Comme pour le rayonnement haute
énergie, la Fig. 4.33 nous donne ainsi le spectre du rayonnement radio du pulsar pour
différentes valeurs de I'inclinaison X du champ magnétique. Les points d’émission se
situent, pour ce spectre de ’émission radio, a la surface de I’étoile et avec une méme
répartition que celle présentée dans la Fig. 3.15.
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FIGURE 4.33 — Spectre du rayonnement radio, en bleu pour X = 30°, en vert pour
X = 60° et en rouge pour X = 90°.

Sur cette Fig. 4.33, on voit que la plage de fréquences de 1’émission radio dépend
fortement de I'inclinaison X, certainement a cause de la courbure des lignes de champ
magnétique, plus prononcée dans le cas du rotateur perpendiculaire X = 90" com-
paré a un rotateur presque aligné X = 30°. En effet, c’est pour un axe magnétique
perpendiculaire a I’axe de rotation que les fréquences sont les plus élevées or les
calottes polaires magnétiques se trouvant alors au niveau de I'équateur, les lignes
de champ magnétique passant par celles-ci devraient étre fortement entrainées, et
donc courbées, par la rotation du pulsar (comme on le constate sur la Fig. 3.1).
Les lignes de champ magnétique sont incurvées vers l'arriere, en sens inverse de la
rotation comme montré par SHITOV, , avec une dépendance en sin’X et en
(7/Rey1)? selon la formule (3.16). Leffet Doppler contribue aussi en partie puisque
la vitesse linéaire de corotation v, = r {2 sin X est plus importante pour le rotateur
perpendiculaire a cause du bras de levier de longueur r sin X. L’amplitude de cet
effet Doppler est de ., = (r/Rcy) sin X. De maniere générale donc, la fréquence
radio caractéristique vyaqio dépend du rapport (r/Rcy) et de sinX. On en déduit
donc en effet que la gamme des ondes radio autour de 14,4;, S€ comporte comme
une fonction croissante de sin X. D’autre part, cette translation du spectre vers les
hautes fréquences serait atténuée pour des rotateurs plus lents que ceux étudiés
durant cette these. En effet, pour des pulsars jeunes, de période plus grande que
100 ms, le rapport entre le rayon de ’étoile et le cylindre lumiere est beaucoup plus
petit que un, (r/R.) < 1, d’ou une variation en fréquence moins perceptible en
fonction de sin X.

Dans I'image présentée ci-dessus, les photons s’échappent directement de la sur-
face de I’étoile. Dans nos simulations, la période de rotation du pulsar est limitée a
2 ms a cause du temps de calcul prohibitif pour une étoile de période plus grande.
La surface est fixée a 0.1 Rgy1. Pour un pulsar lent, ce rayon de 0.1 Ry correspond
a l'altitude réelle moyenne de provenance des photons radio (elle est en fait un peu
inférieure, de l'ordre de 0.05 Ry, voir MITRA, ). La largeur des pulses ainsi
que le délai entre le pic radio et le premier pic gamma reste donc réaliste malgré la
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période trop courte. Toutefois, I’hypothese d'une production du rayonnement radio
a une altitude fixée n’est pas totalement correcte. On sait en effet que les plus hautes
fréquences naissent a plus basse altitude a cause de la cartographie rayon-fréquence
(PHILLIPS, ). II conviendra donc par la suite d’ajouter un degré de liberté
supplémentaire sur la position exacte des photons radio en instaurant par exemple
un intervalle d’altitudes variables comme cela a été effectué en haute énergie.

La Fig. 4.34 représente donc ce spectre pour différentes valeurs de X, lorsque
la zone d’émission est située au dessus des calottes polaires, respectivement lorsque
celle-ci est comprise entre 1 et 2 R, au-dessus a gauche et entre 3 et 4 R, au-dessus
a droite. Comparé a la Fig. 4.33, I’émission ne se produit plus en un rayon r donné
mais pour un intervalle entier de rayons r € [ry,rs]. L’émission n’est plus intégrée
sur une surface (la calotte polaire) mais dans tout un volume. Il en résulte une plage
plus vaste de valeurs de rayons de courbure et par conséquent une émission radio
plus étendue avec un spectre plus étalé, quelle que soit la valeur de X. Cet étalement
est maximal pour X = 30° et moindre pour d’autres valeurs de l'inclinaison de ’axe
magnétique comme 60° et 90°. Déplacer le volume d’émission a plus haute altitude
produit un étalement supplémentaire du spectre, visible en comparant les courbes
de gauche et de droite de la Fig. 4.34.
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FIGURE 4.3/ - A gauche, le spectre du rayonnement radio émis entre R, et 2 R,
au-dessus de la calotte polaire, en bleu pour X = 30°, en vert pour X = 60° et en
rouge pour X = 90°. A droite, le méme spectre mais entre 3 et 4 R,.

On retiendra de ces spectres que plus la zone d’émission radio est éloignée de la
surface de I’étoile a neutrons, plus la plage de fréquences du rayonnement radio recu
est large, ce phénomene est d’ailleurs tres important pour I'inclinaison la plus faible
qui est de X = 30°.
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Cet élargissement des spectres peut simplement étre di au fait que nos zones
d’émission au-dessus de la calotte ont une certaine épaisseur et est donc le résultat
de la variation de la courbure d’une ligne de champ magnétique quand on parcourt
celle-ci. D’autres phénomenes ont cependant pu affecter la forme de ces spectres,
comme la géométrie des lignes de champ qui est certainement différente en altitude
par rapport a celle de la surface ou le facteur Doppler qui dépend de la vitesse de
rotation instantanée @ = QA7 et augmentant avec l'altitude du fait de la corotation
de la magnétosphere avec 1’étoile a neutrons.

Déterminons a présent 1’évolution des cartes d’émission radio en fonction de la
fréquence afin d’étudier I’évolution fréquentielle des pulses telle que mesurée par un
observateur lointain. Les Fig. 4.35 a 4.37 montrent des exemples de cartes ainsi que
les courbes de lumiere correspondantes obtenues pour une émission radio provenant
d’un volume situé entre 1 et 2 R, au-dessus des calottes polaires pour différents
intervalles de fréquences. Notez que le découpage en intervalles de fréquences n’est
pas identique pour les différentes valeurs de X parce que les spectres n’ont ni la méme
étendue, ni les mémes bornes inférieures et supérieures. On a optimisé le choix des
fréquences pour faire ressortir au mieux les cartes d’intensité.
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FIGURE 4.35 — Cartes d’émission radio (et quelques courbes de lumiére) pour une
émission provenant d’entre 1 et 2R, au-dessus des calottes polaires pour une incli-
naison X = 30°. De haut en bas, ces cartes représentent [’émission recue entre 30 et
120 MHz, entre 120 et 210 MHz et entre 210 et 300 MHz.
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FIGURE 4.36 — Cartes d’émission radio (et quelques courbes de lumiére) pour une
émission provenant d’entre 1 et 2R, au-dessus des calottes polaires pour une incli-
naison X = 60°. De haut en bas, ces cartes représentent [’émission recue entre 200
et 270 MHz, entre 270 et 340 MHz et entre 340 et 410 MHz.
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FIGURE 4.37 — Cartes d’émission radio (et quelques courbes de lumiére) pour une
émission provenant d’entre 1 et 2R, au-dessus des calottes polaires pour une incli-
naison X = 90°. De haut en bas, ces cartes représentent [’émission recue entre 330
et 450 MHz, entre 450 et 570 MHz et entre 570 et 690 MHz.
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D’apres ces cartes, et tout particulierement celles de la Fig. 4.37, les basses
fréquences sont émises plutot en bordure de la zone d’émission tandis que les com-
posantes de plus haute fréquence du rayonnement radio sont émises vers le centre
de la zone d’émission. Ceci peut paraitre contre-intuitif puisque pour un dipole sta-
tique, le centre du pulse, correspondant a ’axe magnétique, est une ligne droite de
courbure nulle et donc de fréquence et de puissance nulle. En clair, dans la limite
statique, il n’y a pas d’émission au centre de la calotte. Les fréquences et la puis-
sance augmentent en s’éloignant de I'axe. Mais pour un dipdle tournant, comme
par exemple pour la solution de Deutsch que nous avons employée ici, le champ
magnétique subit un effet de retard qui incurve toutes les lignes de champ, méme
celles associées a ’axe magnétique. Pour pouvoir visualiser cet effet, on a tracé les
Fig. 4.38, 4.39 et 4.40 qui représentent les cartes des rayons de courbure (en unité de
R.y1) au point d’émission des photons pour x = 30°,60°,90°. On n’affiche sur chaque
zone de 0.5° sur 0.5° que le photon avec la valeur de la courbure de la ligne de champ
maximale (et donc le plus petit rayon de courbure) a son point d’émission. Deux
altitudes sont montrées, a gauche pour [1, 2] R, et a droite pour [3, 4] R,. Le fait que
les plus hautes fréquences se situent plutot vers le centre des calottes polaires semble
donc bien dii a la courbure des lignes de champ magnétique induite par la rotation
de I’étoile. Le rayon de courbure sur les lignes de champ issues des calottes polaires
est minimal dans le cas du rotateur perpendiculaire X = 90 et atteint 0.032 Rcy.
Il croit quand I’axe magnétique rejoint 1’axe de rotation, c’est-a-dire lorsque X di-
minue. Par exemple, pour X = 30" ce rayon minimal est 0.05 Ry et se déplace en
dehors du centre de la calotte. Conjointement le rayon de courbure maximal aug-
mente significativement lorsque le rotateur est proche de la configuration alignée.
Il n’est que de 0.048 Ry pour X = 90" et atteint 0.35 Ry pour X = 30" soit une
augmentation de pres d’un ordre de grandeur. Les photons produits seront beaucoup
moins énergétiques dans ce second cas. Dans la limite d’un rotateur parfaitement
aligné X = 0", le rayon de courbure devient infini au centre de la calotte, sur 'axe
magnétique et le rayonnement de courbure s’éteint en son centre.

Ces cartes révelent aussi un rétrécissement du profil des pulses vers les hautes
fréquences puisque ces photons proviennent des régions les plus profondes de la
magnétosphere. On remarque aussi une asymeétrie est-ouest dans ces profils entre
la rampe montante et la rampe descendante. On observe parfois deux pulses dans
le profil, parfois un seul. Soulignons que ces résultats ne sont que préliminaires
et qu'une éventuelle comparaison avec des observations devra tenir compte d’une
distribution en énergie des particules sous forme de loi de puissance et ne pas sim-
plement utiliser une distribution mono-énergétique comme c’est le cas actuellement.
La fréquence de courbure caractéristique devra aussi étre remplacée par le spectre
continue centré sur cette fréquence typique. La variation fréquentielle du profil des
pulses n’en sera que plus lisse et la transition entre les bandes de fréquences plus
continue.
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FIGURE /.38 — Cartes des rayons de courbure (en unité de Ry ) pour une inclinaison
de X = 30°, a gauche pour une altitude de la zone d’émission entre 1 et 2 R, et a
droite entre 3 et 4 R, au-dessus des calottes polaires.
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FIGURE 4.39 — Cartes des rayons de courbure (en unité de Ry ) pour une inclinaison
de X = 60°, a gauche pour une altitude de la zone d’émission entre 1 et 2 R, et a
droite entre 3 et 4 R, au-dessus des calottes polaires.
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de X = 90°, a gauche pour une altitude de la zone d’émission entre 1 et 2 R, et a

droite entre 3 et 4 R, .



4.4. EMISSION RADIO 140

L’altitude de production des photons et leur détachement de la magnétosphere
en direction de 'observateur ne sont pas contraint de maniere précise par les ob-
servations. Les données de polarisation radio fournissent quelques indications pour
les pulsars jeunes, mais la barre d’erreur reste appréciable. Il existe donc une cer-
taine liberté dans le choix de la hauteur des sites d’émission au-dessus des calottes
polaires. C’est pourquoi nous avons aussi tracé des cartes d’émission et des courbes
de lumiere pour une altitude comprise dans I'intervalle [3,4] R, comme représentées
dans les Fig. 4.41 a 4.43 pour les mémes intervalles de fréquence au-dessus des ca-
lottes polaires.

Repousser I'altitude d’émission plus loin de 1’étoile entraine un étalement du profil
des pulses radio puisque les lignes de champ sont divergentes. On retrouve le fait
que les hautes altitudes produisent les plus basses fréquences en rapport avec des
pulses plus larges tandis que les basses altitudes produisent les fréquences les plus
élevées en rapport avec des pulses plus étroits, en accord avec le modele de carto-
graphie altitude-fréquence. Mais dans notre cas, on s’affranchit du dipole statique
pour tenir compte de tous les effets dus a la rotation du champ magnétique, des
effets d’aberration et de retard du signal, voir le paragraphe 3.2.1.
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émission provenant d’entre 3 et 4R, au-dessus des calottes polaires pour une incli-
naison x = 30°. De haut en bas, ces cartes représentent [’émission recue entre 30 et
120 MHz, entre 120 et 210 MHz et entre 210 et 300 MHz.
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FIGURE 4.44 — Courbes de lumiere de l’émission radio pour x = 60°, ( = 120° et
une zone d’émission située entre 1 et 2 R, au dessus des calottes polaires. En rouge
pour le rayonnement compris entre 200 et 270 MHz, en vert entre 270 et 340 MHz
et en bleu entre 340 et 410 MHz.

Afin de faciliter la visualisation de 1’évolution des pulses radio en fonction de la
fréquence, on a tracé en Fig. 4.44 la forme d’une courbe de lumiere selon I'intervalle
de fréquence considéré, ici celles obtenues avec une zone d’émission comprise entre
1 et 2 R, au-dessus des calotte polaires et pour une inclinaison X = 60° de 'axe
magnétique et ¢ = 120° de la ligne de visée. Le maximum du profil en bleu dans
I'intervalle [340,410] MHz est en avance de phase par rapport au profil en vert
dans l'intervalle [270,340] MHz qui lui-méme est en avance de phase par rapport au
pulse rouge dans I'intervalle [200,270] MHz. Cette avance de phase est significative
puisqu’elle représente 5 & 10% de la période du pulsar. Elle est la conséquence d'une
part de I'incurvation des lignes de champ magnétique dans le sens rétrograde par
rapport a la rotation stellaire et d’autre part de la production des photons haute
fréquence a basse altitude, ou les lignes de champ sont moins incurvées par rapport
aux photons de basse fréquence produit a plus haute altitude ou les lignes de champ
sont plus incurvées. Cet effet dépend du rapport (R./Rcy), il est négligeable pour
les pulsars jeunes mais sa signature observationnelle devrait étre perceptible pour
les pulsars les plus rapides, les pulsars millisecondes.

Ce décalage de phase peut étre calculé a partir des équations (3.13), (3.15) et
(3.16) du paragraphe 3.2.1. Le décalage maximum ainsi calculé (donc pour un pho-
ton émis a 1 R, au-dessus de la surface et un autre émis a 2 R, et toujours avec
X = 60°) est de 'ordre de 4% de la phase. Ces effets ne peuvent donc suffire pour
expliquer le décalage du pic d’émission radio de la Fig. 4.44 mais ils peuvent ce-
pendant certainement jouer un role dans 1’émission radio que 1’on observe dans les
zones d’émissions étudiées.



Chapitre 5

Conclusions et perspectives

5.1 Travail effectué

Dans cette these, j’ai réalisé des simulations de la trajectoire d’'un photon dans
la métrique de Schwarzschild, une métrique décrivant un espace-temps déformé par
un objet massif a symétrie sphérique et statique. De par leur densité extréme, on
s'attend a ce que l'espace-temps au voisinage des étoiles a neutrons présente une
telle déformation, cette courbure de I'espace-temps étant le champ gravitationnel
de 'étoile d’apres la théorie de la relativité générale. J’ai donc utilisé ces simula-
tions pour déduire la fagon dont le champ gravitationnel de ces étoiles affecte le
rayonnement pulsé qu’elles émettent.

J’ai commencé par le calcul de l'image de la surface de 1’étoile a neutrons
déformée par le champ gravitationnel en tragant la trajectoire des photons a partir de
points répartis en " quadrillage” a la surface de I’étoile. Ceci m’a permis de tester ma
méthode et les résultats sur un cas d’école déja bien documenté dans la littérature
sur les points chauds et ’émission thermique de surface en rayons X. J’ai en effet
reproduit I’émission provenant de points chauds situés aux calottes polaires. Cette
émission est prévue notamment pour un pulsar accrétant ou de la matiere tombe
sur les poles magnétiques. J’ai ainsi simulé le flux que l'on recevra de ces points
chauds dans la métrique de Schwarzschild pour prendre en compte l'influence du
champ gravitationnel, que j’ai pu comparer avec une approximation analytique de
Beloborodov, rendant compte des effets de la courbure de I’espace-temps, et vérifier
la précision de cette expression approchée.

J’ai ensuite simulé, toujours en tracant la trajectoire des photons dans la métrique
de Schwarzschild, I’émission non-thermique magnétosphérique d’un pulsar dans les
domaines radio et hautes énergies. Pour cela je suis parti de modeles connus du
champ électromagnétique d’un pulsar et j'ai supposé une production de photons par
rayonnement de courbure le long des dernieres lignes de champ magnétique fermées
pour I’émission haute énergie. J’ai ainsi réalisé des cartes d’émission et des courbes
de lumiere pour différentes géométries c¢’est-a-dire pour diverses inclinaisons de I'axe
magnétique par rapport a I’axe de rotation, d’abord pour une cavité allongée infi-
niment mince (les points d’émission étant simplement répartis le long des dernieres
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lignes de champ magnétique fermées) puis pour une cavité allongée d’une certaine
épaisseur et centrés autour des dernieres lignes de champ magnétique fermées. Pour
I’émission radio, j’ai réparti des points d’émission a l'intérieur et au-dessus des ca-
lottes polaires, dans une zone délimitée par ces derniere lignes de champ fermées.

J’ai également déterminé a partir de la géométrie du champ magnétique la
fréquence d’émission du rayonnement de courbure, mais pour I'instant uniquement
dans un espace-temps plat donc en négligeant 1'influence du champ gravitationnel.
J’ai ainsi pu en déduire les spectres de 1’émission magnétosphérique du pulsar ainsi
que la relation altitude/fréquence d’'une maniere quantitative précise.

5.2 Conclusion

Les cartes d’émission de ces différentes simulations montrent que le champ gra-
vitationnel de ’étoile a neutrons modifie sensiblement 1’émission percue par un ob-
servateur lointain, ces effets étant bien évidemment plus importants lorsque 1’on se
rapproche de I’étoile a neutrons. La courbure de ’espace-temps entraine une cour-
bure de la trajectoire des photons qui s’inscrit dans cet espace-temps, modifiant la
visibilité de 1’étoile a neutrons et des régions aux alentours, un point a la surface
de cette étoile pourra alors étre visible méme situé sur la face opposée par rapport
a 'observateur. Ainsi certaines régions d’émission seront visibles plus longtemps au
cours d’une rotation de I’étoile a neutrons sur elle-méme. Un autre élément a prendre
en compte est le délai Shapiro : le temps de vol des photons qui augmente a cause de
la courbure de leur trajectoire. Comme les photons émis pres de la surface de 1’étoile
a neutrons sont plus affectés par son champ gravitationnel ceux-ci seront beaucoup
plus retardés que des photons émis a haute altitude. Cela n’entraine pas un simple
décalage global des courbes de lumiere imperceptible par des mesures mais va bien
en modifier certaines caractéristiques et notamment le délai entre le pic radio et
le premier pic en gamma. Ainsi, a cause de ce retard supplémentaire, des photons
émis pres de I’étoile a neutrons pourront étre recus en méme temps que des photons
émis plus haut dans la magnétosphere, pouvant ainsi provoquer des pics d’intensité
élevée du rayonnement percu.

J’ai également déterminé la répartition en fonction de la fréquence des régions
d’émission dans la magnétosphére du pulsar avec les plus hautes fréquences émises
loin de la surface de 1'étoile. Cela pourrait indiquer que les composantes les plus
énergétiques du spectre d’un pulsar sont moins affectées par le champ gravitationnel
de celui-ci bien que nous ne pouvons vraiment le conclure car nous n’avons étudié le
spectre du pulsar que dans le cadre d’un espace-temps plat sans influence du champ
gravitationnel.

5.3 Les limites et développements possibles

Comme évoqué dans la section 1.4.1, j’ai employé la métrique de Schwarzschild
pour décrire le champ gravitationnel de 1’étoile a neutrons. Cette métrique décrit
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la géométrie de l'espace-temps au voisinage d'un objet statique et ne prend pas
en compte 'entrainement de ’espace-temps du fait de la rotation de 'astre. Bien
que 'on ne s’attende pas a ce que cet entrainement soit important au voisinage
d’une étoile a neutrons, sauf éventuellement pour les pulsars millisecondes les plus
rapides, l'utilisation de la métrique de Kerr permettrait toutefois de prendre en
compte ce phénomene. Mais il faudra alors tracer directement la trajectoire du
photon dans 'espace a trois dimensions car celle-ci ne sera plus contenue dans un
plan (la métrique de Kerr ne respecte pas la symétrie sphérique rendant impossible
'existence de trajectoires uniquement contenues dans un plan).

Bien que différents mécanismes d’émission ont lieu au sein de la magnétosphere,
seul le rayonnement de courbure a été étudié ici et uniquement en provenance
des cavités allongées et des cavités polaires le long des dernieres lignes de champ
magnétique a l'intérieur du cylindre lumiere. Il pourrait étre utile, afin d’avoir une
vision plus complete de I’émission magnétosphérique, d’ajouter I’'émission par rayon-
nement synchrotron et par diffusion Compton inverse a de futures simulations ainsi
que d’inclure d’autres modeles avec différentes zones d’émission, comme par exemple
avec des cavités externes le long des dernieres lignes de champ magnétique ou le
vent strié au-dela du cylindre lumiere. Il ne sera cependant pas forcément utile d’in-
clure les effets de la gravitation pour ’émission provenant de I'extérieur du cylindre
lumiere car, au vu des résultats obtenus, on ne s’attend pas a ce que le champ
gravitationnel y ait des effets remarquables.

Les spectres obtenus pour I’émission magnétosphérique n’ont été réalisés que
pour un espace-temps plat. Pour savoir a quoi ressembleront ces spectres dans la
métrique de Schwarzschild, il faudra non seulement calculer le rayon de courbure
des lignes de champ magnétiques dans cette métrique mais également prendre en
compte le décalage vers le rouge gravitationnel prédit par la théorie de la relativité
générale qui modifiera sensiblement le spectre émanant de la surface de 1’étoile.
Le calcul des spectres gagnera aussi en réalisme lorsque j'aurai implémenté non
plus une distribution mono-énergétique de particules mais une distribution en loi
de puissance et remplacé l'approximation du spectre de courbure par sa densité
spectrale de puissance (1.48).

La polarisation de I’émission pulsée pourrait étre ajoutée a mes simulations des
émissions radio et haute énergie. Dans le domaine radio, cette polarisation permet
déja de contraindre la géométrie du dipole magnétique a haute altitude pour les
pulsars lents. L’observation imminente de la polarisation en rayons X apportera une
nouvelle contrainte forte sur la partie haute énergie du spectre, sa localisation a
I'intérieur du cylindre lumiere ou dans le vent.

Finalement, il faudra évidement discuter les résultats de ces simulations en rap-
port avec les observations des pulsars afin de déterminer la signature de ces effets
relativistes en comparant par exemple les courbes de lumiere et spectres en radio et
gamma pour les pulsars détectés simultanément dans ces deux bandes d’énergie.
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Annexe A

Métrique de Schwarzschild

A.1 Schwarzschild

Comme cela a notamment été fait dans MOORE, , on peut trouver l'ex-
pression de lintervalle espace-temps dans la métrique de Schwarzschild a partir
de lintervalle d’espace-temps d’une métrique a symétrie sphérique et statique de
I'équation (1.58), de I’équation d’Einstein et de ’équation géodésique qui établit
que pour tout objet de coordonnées spatio-temporels 27, on a :

d*x° dx* dx¥

—+ 1Y, ———=0. (A.1)

dr? Wodr dr
On voudrait que la métrique de Schwarzschild soit diagonale, notamment pour sim-
plifier le passage des composantes contravariantes aux composantes covariantes, or
comme go; = 0, on doit également avoir g;p = 0. On peut alors prendre une coor-
donnée temporelle qui donnerait la composante g nulle, ainsi en posant ct’ = ct+ f
avec [ une fonction dépendante de r et ct ce qui implique :

f 10f

, 0
cdt’ = cdt + Efdr + EECdt (A.2)

On peut alors réécrire 'équation (1.58) en posant :

of

cdt’ — Edr
cdt = 1 1 g (A.3)
c Ot
Ce qui nous donne :
ds® = ghc*dt” + 2godrdt’ + giydr® + r*(d6* + sin® 6d¢?) (A.4)

156
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avec :

: AN

9oo = Yoo [ 1 + ot (A.5)
ro= 1+la_f _1_ ﬁ 1+18_f - (A.6)

910 = 910 c ot 9oo ar C ot .
, 19\ 2 of 19\

911 = 911 + Joo 1+EE —29105 1+E§ (A7)

1
On peut alors prendre f tel que g — 0y + _ﬁ ce qui donnerait bien ¢;, = 0.
or  goo c Ot

Ainsi par un changement de coordonnées, nous pouvons réécrire I’équation (1.58) :
ds® = goodt® + gridr® + r?(d6* + sin? 0dp?) (A.8)

Ou t, goo et g11 correspondent respectivement au t', gg, et gj; de I'équation (A.4).
Si Pon prend goo = —1 et g11 = 1, I'équation (A.4) décris alors 'intervalle d’espace-
temps pour la métrique de Minkowski en coordonnées sphériques, métrique qui cor-
respond a un espace-temps plat donc sans influence gravitationnelle :

ds* = —c*dt? + dr® + r?(sin® 0d¢? + d6?). (A.9)

La métrique de Schwarzschild est a symétrie sphérique ce qui veut dire que ggo et
g11 sont indépendants de 6 et ¢, on peut donc déduire des équations (1.52) et (1.53)
la forme que prendra le tenseur de Ricci associé a la métrique de Schwarzschild :

Ry Rpn 0 0
o Ry 0 0
Bo=| 0 0 Rw 0 (A.10)
0

0 0 Rag
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avec :
Ro — 1 _82900 n 1 9900 2 1 0goo 9911 _zagoo
00 2911 or? 2900 \ Or 2g11 Or Or r Or
) (A.11)
_ i82911 1 dgn 1 9goo 8911]
2 Ot? 2c2g11 \ Ot 2c2go0 Ot Ot
1 10 10
Ry= (_&+_ﬂ) LY (A12)
r \ goo Or g1 Or goo
1 9guo 1 9gn 1
Roy = — + +1 - — A.13
- 2g00g11 Or 29%1 or g11 ( )
R33 = R22 sin2 0 (A14)
1 Ogn
Ry = 7= A.15
01 rcgn Ot ( )

Dans le cas d'un espace-temps vide, soit 7}, = 0, si on néglige la constante cosmo-
logique A, alors I’équation (1.50) implique que R,, = 0. On peut en déduire que
g11 est indépendant du temps car si Ry; = 0 alors d’apres I’équation (A.15) ce n’est

g1

ossible que si —— = 0.
p q ot
Comme pour un espace-temps vide on a Rog = Ry; = 0, on en déduit de I’équation (A.12)
que :
Yoo dg11 _ dgoo

= A.16
g1 Or or ( )
Et donc on a, a partir de ’équation (A.13) :
1 dgn 1
gt Or g1 (A17)

Soit % <gﬁ> = 1 que l'on peut intégrer pour obtenir :

e (105) s

Avec K une constante d’intégration.

La métrique de Schwarzschild étant statique, et ggg devant étre du signe opposé
aux autres composantes de la matrice, avec le bon choix de coordonnée temporel on
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peut alors poser a partir de I’équation (A.16) :

goo = — (1 - 5) (A.19)

r

L’intervalle espace-temps s’écrira alors :
2 K\ 5.0 K\~ 2 202 2 2
ds*=— (14— |cdt*+ 14+ — | dr®+r*(sin” 0do” + db*) (A.20)
r r

Pour trouver la valeur de K, on va utiliser la quadrivitesse u* d’un objet au repos de
coordonnées ¥, la quadrivitesse étant I’équivalent du vecteur vitesse dans 1’espace-
temps :

d k
ub =4 (A.21)
dr
avec 7 le temps propre observé par cette objet. L’intervalle infinitésimal de temps
propre de cette objet dr pouvant s’écrire ainsi (MULLER-KIRSTEN, )
ds* = —c*dr? (A.22)
Le produit par elle méme de la quadrivitesse vaudra alors —c? soit :
g’ = —c? (A.23)

Pour un objet au repos, toutes les composantes spatiales de la quadrivitesse sont

nulles, on a donc gypu’u’ = —c? soit u’ = —~—. En appliquant I'équation des

gbéodésiques définis dans 1’équation (A.1) aux coordonnées z* de cet objet au repos,
on peut poser :

2.k 2
% = ’goi (A.24)
ce qui équivaut a :
O (A.25)
dr? Joogi1 Or
Soit en remplagant goo par —(1 4+ £) et gi1 par ﬁ :
d*r  Kc?
piaiews (A.26)

Afin de retrouver les lois newtoniennes lorsque 'on se retrouve a une distance

importante de l'astre dont la masse déforme l’espace-temps, on doit donc avoir
2GM
K= —
2
champ gravitationnel pour r — oo, on verra alors que le temps propre 7 tendra a
étre égal au temps ¢ pour un observateur au repos, ce qui donnera bien :

. En effet, en supposant que l'on ait plus d’effets relativistes dus au

d?r _GM

a2 72

(A.27)

Soit 'accélération d’un objet dans un champ de pesanteur en mécanique newto-
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nienne.

A.1.1 Trajectoire d’un photon dans le plan équatorial

Pour tracer la trajectoire du photon dans le plan équatorial de la métrique de
Schwarzschild, que 'on peut alors écrire sous la forme présentée dans 1’équation (2.1),
on commence par retrouver les composantes du quadrivecteur quantité de mouve-
ment de ce photon que I'on peut déduire du fait que la trajectoire du photon entre
deux points de l'espace-temps obéit a ’équation géodésique (A.1). Supposons que

les coordonnées du photon z' (ici ct, r, ¢ et § = Z) soient paramétrisées par la

2 i
variable A soit () tel que la quantité de mouvement de ce photon s’écrive p' = %=
avec p’ les composantes du vecteur quantité de mouvement du photon, on peut alors

déduire de I’équation (A.1) :

i

dp

n + FLV pp’ =0 (A.28)
Ce qui nous donne :
dpo RS 0.1
ax tagomrr =0 429
dp' | Rs(1-— &> 0\2 Ry 1)2 Ry 312
s ST A S 4 — —rll1—-— = A.
dp®> 2 4,

En intégrant ces équations on peut ainsi retrouver les composantes du vecteur quan-
tité de mouvement du photon (p? étant évidemment nulle comme la coordonné 6 est
constante dans le plan équatoriale) :

A
P’ = —E (A.32)
2
p' :i\/A2+B2 (1—&) —0—2 <1—&) (A.33)
T T r
p* =0 (A.34)
C

Avec A, B et C' des constantes d’intégration paramétrisant ’orbite du photon. Comme
un photon a une géodésique nulle (ds* = 0), alors le quadrivecteur p* doit avoir une
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norme nulle or p* p, = g, p'p” = 0 uniquement si B = 0, on en déduit donc :

A
0_
P =1 Es (A.36)
C? R
Pt = i\/A2 - = (1 - —S> (A.37)
r r
P’ =0 (A.38)
C
,
Soit B = —g,,v*p” 'énergie du photon ot v est la quadrivitesse de 'observateur
statique avec comme on l'a vu & la section 1.4.1, v° = donc 'énergie du
—900
A
photon est F = @ Quand r — oo, on a donc A = %, A est donc égale a
1— Bs

.
I’énergie du photon a l'infini divisée par c.

On peut déduire de la quantité de mouvement du photon la dérivée de la coor-

donnée angulaire du photon par sa coordonnée radiale % = f}—f ce qui donne :
3_97% =4 ¢ (A.40)
r2yfA4r—C2 (1 - Bs)
On pose b = % le parametre d’impact du photon :
dé =+ b (A.41)

N ()

Pour un photon émis a l’altitude ry, I’angle « entre sa direction de propagation ini-
tiale et la direction radiale peut étre exprimé a partir des quadrivecteurs de quantité
de mouvement radiale et angulaire, quadrivecteurs qui ont une seule composante non
nulle, respectivement p° et p3, et qui sont donc perpendiculaire I'un par rapport a

Iautre :
”ﬁangulaire” _ VY33 P p’ (A.42)
||ﬁmdiale|| V gllp1 pl

a partir des équations (A.37) et (A.39), on peut ainsi en déduire que :

tana =

tana = 10 (A.43)
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1

—=5> on peut alors poser :

A partir de I'identité trigonométrique 1 + tan?z =

sina = b 1- s (A.44)
To To



Annexe B

Méthodes et outils numériques

Les algorithmes présentés ici sont tirés de PRESS et al.,

B.1 Meéthode d’intégration

L’algorithme que 'on a utilisé pour intégrer les équations tout au long de cette
these se base sur la quadrature de Clenshaw-Curtis décrite initialement dans CLEN-
SHAW et CURTIS,

Soit le polynome de Tchebychev d’ordre n :

T, (x) = cos(n arccos(z)) (B.1)

A partir de cette définition et des identités trigonométriques, on peut retrouver le
polynome de rang n + 1, pour n > 1 :

Toi1(z) = 22T, (z) — T () (B.2)

Chaque polynome de Tchebychev de rang n va étre nul n fois sur U'intervalle [—1, 1],
chacune des valeurs z, de z pour lesquels ces polynomes sont nuls sont données par

la formule : Ll
_|_ =
T = COS <7T( 2) (B.3)

n

pour k un entier compris entre 0 et n — 1.

Les polynémes de Tchebychev obéissent a la relation d’orthogonalité suivante (pour
a<netb<mn):

n—1 0 poura##b
ZTa(xk)Tb(xk) 5 poura=>b#0 (B.4)
k=0 n poura=>b=0

163
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On peut alors approximer toute fonction f(z) définie sur l'intervalle [—1; 1] sous la
forme :

fla)~ 3o+ Y e Ty(a) (85)

Avec ¢; les coefficients de Tchebychev de la fonction tel que :

o= 23 STy (B6)

Soit en y incluant les équations (B.1) et (B.3) :

o 2 o (DY (ZE) e

L’approximation de I’équation (B.5) sera exacte quand on prend un des zj de
I'équation (B.3) comme valeur de z.

La quadrature de Clenshaw-Curtis permet d’intégrer cette fonction f(x) entre les
bornes a et b a 'aide de ses coefficients de Tchebychev, mais comme le calcul de
ces coefficients grace a la formule de I’équation (B.7) n’est possible que pour une
fonction définie entre —1 et 1, on doit effectuer un changement de variable :

z—3(b+a)

T -

L’intégrale de cette équation peut ainsi s’écrire :

/f Jdy=(b=a)) (2k + 1 Qk—l) (B.9)

k:O

Pour des soucis de ressources de calculs et de précision, un compromis pour la
valeur de N fixée a 512 a été utilisé tout au long de cette these.

B.2 Recherche de zéro par bissection

On a fait appel dans cette these a un algorithme de recherche de zéro par bis-
section lorsque l'on avait besoin de connaitre, pour une fonction f(z), zo tel que
(o) = 0.

D’abord on recherche un intervalle [z1, 5] ol la fonction change de signe et donc ou
celle-ci s’annule au moins une fois (si la fonction est continue sur cette intervalle).
Si on cherche xy dans U'intervalle [z, xp], alors on peut circonscrire cette recherche
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dans un intervalle [z1, z5], pour cela on calcule f(z,) avec :
Tp = Tp_1+ 0T (B.10)

ou dx vaut :
Tg — Ty

dr = (B.11)

n
jusqu’a ce que f(xz,) soit du signe opposé a f(x,_1) (soit f(x,_1) X f(z,) < 0), on
enregistrera alors x,,_1 et x,, comme les bornes de I'intervalle dans lequel se situe x,
respectivement x; et xo, n étant un entier que 'on a pris allant de 0 a 100.

Maintenant que 'on a circonscrit nos recherches dans un intervalle [z, x| on peut
utiliser la méthode de la bissection pour trouver z, pour laquelle f(zp) = 0. On
calcule pour cela 'image f(z,,) du point médian z,, :

T+ 22

5= (B.12)

Si f(z,) est du méme signe que f(z1) (f(z1) X f(xm,) > 0), alors on pose z1 = z,
, sinon on pose Ty = Xy,.

On recommence 'opération en calculant I'image du point médian du nouvel intervalle
(1, x5] jusqu’a ce que la différence entre les deux valeurs x; et xs encadrant notre
racine soit inférieure & une certaine valeur que ’'on a fixée & 107 et I’on supposera
alors que xg ~ ;.

B.3 Résolution de polynéme du troisieme degré

Pour trouver la racine  d’un polynome du troisieme degré tel que :
2 +ar* +rx+c=0 (B.13)

ou a, b et ¢ sont des réels, on doit d’abord poser @) et R :

2 3)
Q=43 (B.14)
9
3 _
R 2a 9526 + 27c (B.15)

A partir de ces deux quantités, on peut calculer 6 et A :

0 = arccos (\;%) (B.16)

A=— [R + \/W} ) (B.17)

W=
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Si R? < @3, alors I’équation (B.13) & trois solutions xy, zs et 3 :
0 a
=2 ) -2 B.18
T Q) cos (3) 3 ( )
0+2
Tg = —24/() cos Tem) ¢ (B.19)
3 3
0—2
1 = —24/Q) cos ( 3 W) - % (B.20)
Soit B tel que B=0si A=0, B= % sinon.
Si R? > @? alors 'unique solution & I'équation (B.13) sera :
r=(A+B)— < (B.21)

3
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I’émission radio et haute énergie
d’un pulsar

Résumeé

Les étoiles a neutrons sont des astres extrémement denses, plus denses qu’un noyau atomique,
formés au cours d'une supernova. Un étoile a neutrons typique concentre ainsi une masse
supérieure a celle du Soleil dans son diameétre d’une vingtaine de kilométres. D’aprés la théorie de la
relativité générale, qui décrit la gravitt comme une déformation de l'espace-temps, le champ
gravitationnel de ces étoiles devrait affecter de maniere non négligeable les rayonnements
électromagnétiques a proximité de celles-ci. Au cours de ma thése, j'ai simulé les émissions radio et
haute énergie provenant de I'accélération de particules le long des lignes de champ magnétique
d’'une étoile a neutrons dans la métrique de Schwarzschild pour savoir comment le rayonnement
ainsi produit allait étre affecté par les déformations de I'espace-temps au voisinage de I'étoile a
neutrons.

Résumé en anglais

Neutron stars are very dense objects, denser than an atomic nucleus, formed during a supernova. A
typical neutron star concentrates a mass superior to the one of the Sun in its diameter of around
twenty kilometers. According to general relativity, which describes gravity as a space-time distorsion,
the gravitational field of those stars should have a non-negligible impact on electromagnetic
radiations close to them. During my thesis, | have simulated radio and high-energy emission
originating from particules accelerated along the magnetic field lines of the neutron star inside the
Schwarzschild metric to have an insight of how this kind of radiations would be affected by space-
time distorsions in the vicinity of the neutron star.
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