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Résumé étendu

Introduction

Les maladies cardiovasculaires sont la première cause de mortalité dans le
monde. Les coûts de ces maladies pour les sociétés sont humain et économique,
ils sont déjà importants (chiffrés en plusieurs centaines de milliards de dollars)
et ne cessent de croître1 2. Le vieillissement et l’augmentation de la population
mondiale sont des facteurs contribuant à l’augmentation de ces pathologies.
Pour y faire face, la recherche est poussée à mieux connaître ces maladies et
développer de nouveaux traitements plus efficaces.

Dans ce contexte, les approches modernes en chirurgie vasculaires sont basées
sur des opérations mini-invasives guidées par l’image et sur l’implantation de
biomatériaux (dont l’élément le plus connu est le stent). On parle de chirurgie
endovasculaire. Ces nouveaux types d’intervention offrent une alternative à
la chirurgie ouverte classique. Cependant, la chirurgie endovasculaire, déjà
largement pratiquée, soulève des questions auxquelles la recherche n’a actuelle-
ment que des réponses trop partielles. Ces questions concernent aussi bien le
comportement mécanique des biomatériaux dans le corps du patient et leur
implantation par le chirurgien, que la correction d’images scanner illisibles et
l’utilisation per-opératoire de ces images.

Les problématiques présentées ci-dessus relèvent d’une recherche fortement
pluri-disciplinaire. Dans cette thèse, nous présentons des contributions aux
traitement des images médicales. Ces contributions ont pour but de perme-
ttre la création de nouveaux outils qui doivent servir à d’autres chercheurs
(biomécaniciens, chirurgiens, spécialistes du textile, radiologues, histopatholo-
gistes, ...) pour, in fine, mieux connaître les maladies cardiovasculaires, leur
traitement et leur prévention. Nos contributions sont liées à une principale
application : celle de la segmentation des images médicales.

Les images que nous traitons dans la thèse sont de type Computed Tomogra-
phy (CT) ou micro-Computed Tomography (mCT). Les principaux défis dans la
segmentation des images médicales en chirurgie vasculaire concernent la com-
plexité et les dégradations subies par images à rayons-X lorsque celles-ci con-
tiennent un biomatériau métallique, la disponibilité limitée des données et la
taille des données à traiter. Dans la section suivante, nous décrivons plus en dé-
tails ces problèmes, en mettant en avant les méthodes graphiques probabilistes
utilisées pendant la thèse pour les traiter. La Figure 0.2 illustre un cas typique

1https://healthmetrics.heart.org/wp-content/uploads/2017/10/

Cardiovascular-Disease-A-Costly-Burden.pdf
2https://www.bhf.org.uk/what-we-do/our-research/heart-statistics/

heart-statistics-publications/cardiovascular-disease-statistics-2017
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Chapter 0. Résumé étendu

Calcifications Stent Artifacts

Figure 0.2.: Coupe de CT scan typique des données à traiter. Le stent se
trouve dans un environnement complexe, entouré de calcifications
et d’artéfacts. Notons qu’un bruit corrélé est une modélisation per-
tinente de ce phénomène.

des données de chirurgie vasculaire que nous souhaitons pouvoir segmenter.

Méthodes

Dans les modèles graphiques probabilites appliqués à la segmentation des im-
ages, des sommets du graphe sont associés à des variables aléatoires qui représen-
tent l’image observée, et d’autres sommets sont associés à des variables aléa-
toires qui correspondent aux classes dans l’image segmentée. Les arêtes du
graphe représentent une relation de dépendance entre les deux variables reliées.
Les arêtes peuvent être orientées ou non-orientées ce qui modifie la formulation
probabiliste du modèle (Murphy, 2012).

Les modèles graphiques probabilistes les plus connus pour la segmentation
sont ceux de la famille des modèles de Markov cachés (Baum and Petrie,
1966). Parmi les modèles de Markov cachés les plus populaires, nous notons
les chaînes et arbres de Markov (Baum and Petrie, 1966) (Laferté et al., 2000)
(modèles graphiques orientés) et les champs de Markov (Kato and Zerubia,
2012) (modèle graphique non-orienté). Nous étudions largement ces modèles
et leurs extensions : les modèles de Markov cachés couples et triplets (Pieczyn-
ski and Tebbache, 2000) (Lanchantin et al., 2011) (Gorynin, Gangloff, et al.,
2018). Les modèles probabilistes markoviens offrent un moyen simple et intuitif
d’introduire de la dépendance entre les pixels de l’image, ils sont une réponse
pertinente aux problématiques posées par les images étudiées pendant la thèse.

Nous passons maintenant en revue les principales notions théoriques sur les
modèles probabilistes graphiques, à la lumière des problématiques propres à
notre application.

Modèles probabilistes et segmentation d’images bruitées

Une problématique particulière à laquelle nous devons faire face est celle des
artéfacts. Lors de l’acquisition des images à rayons-X, les biomatériaux mé-

2



talliques présents dans le corps du patient vont intéragir avec les rayons-X ce
qui va créer, à la sortie de l’algorithme de reconstruction CT, de forts arté-
facts. Ces derniers empêchent de discerner facilement l’anatomie environnante.
D’un point du vue du traitement du signal les artéfacts peuvent être modélisés
comme du bruit spatialement corrélé. Ce type bruit peut être naturellement
modélisé dans certains modèles graphiques probabilistes comme les nouveaux
modèles de Markov couples et triplets (Gorynin, Gangloff, et al., 2018) qui sont
présentés dans la thèse. En parallèle, les corrélations spatiales sont classique-
ment étudiées dans les modèles de type Gaussian Markov Random Fields (Rue
and Held, 2005) (GMRF) qui sont également étudiés dans notre travail.

Modèles probabilistes et disponibilité des données

Les biomatériaux sont récents et leur étude par l’imagerie après explantation n’a
débutée que récemment. Ainsi, la quantité de données est encore relativement
restreinte et les données sont, pour la plupart, non-annotées3.

Dans de tels cas, les approches non-supervisées sont privilégiées, voire néces-
saires. Les modèles probabilistes graphiques sont souvent utilisés car ils bénéfi-
cient d’algorithmes relativement efficaces dans les cas où les données sont rares
ou manquantes. En contexte non-supervisé, les paramètres des distributions de
probabilité des variables aléatoires du modèle graphique doivent être estimés
à l’aide seulement de l’observation. Dans ce contexte, les approches de type
Expectation-Maximization (Dempster et al., 1977) (EM) qui ont pour objectif
de maximiser la vraisemblance des données sont les plus connues. Plusieurs
versions de ces algorithmes existent et elles sont déclinables pour les modèles
graphiques orientés et non-orientés (Celeux et al., 1995) (Tieleman, 2008). Nous
nous intéressons, dans notre travail, à ce type d’approches non-supervisées et
leur procédure d’estimation de paramètres.

Le cas où une base de données annotées est disponible (approche supervisée)
est aussi étudié dans la thèse. La segmentation des images bidimensionnelles
est faite par un réseau de neurones convolutionnel (Srinidhi et al., 2019). Ces
approches qui relèvent de l’apprentissage profond sont introduites dans la thèse.
En effet, elles donnent les meilleurs résultats dans un grand nombre de prob-
lèmes de segmentation supervisée et sont devenues incontournables dans le
domaine. En revanche, l’étape ultérieure qui correspond à la reconstruction
d’images segmentées tridimensionnelles est plus complexe. Elle nécessite des
approches plus fines, notamment des associations de modèles d’apprentissage
profond et de modèles probabilistes graphiques, que nous étudions également
dans le manuscrit (Ben-Cohen et al., 2016) (Kamnitsas et al., 2017) (Novikov
et al., 2018).

3Les travaux de cette thèse utilisent la base de données d’explants du laboratoire Geprovas
(https://geprovas.org) qui a vu le jour grâce à son programme de collecte et d’analyse
d’explants.

3



Chapter 0. Résumé étendu

Modèles probabilistes et le coût de l’inférence

Les images de chirurgie vasculaire de type mCT (qui offrent une bien meilleure
résolution spatiale que les images CT) sont de très grande taille. Les tâches
d’inférence dans les modèles graphiques probabilistes associés à des images
de grande taille peuvent être très coûteuses en temps de calcul, voire même
infaisables.

De nombreuses approches sont alors fondées sur une approximation de l’étape
d’inférence. Par exemple, la technique de l’inférence variationnelle approche
la distribution de probabilité pour laquelle l’inférence est coûteuse par une
distribution simplifiée. Les recherches sur cette approche sont aujourd’hui très
actives (C. Zhang et al., 2018) et l’inférence variationnelle est étudiée en détail
dans notre travail pour des modèles graphiques orientés et non-orientés.

Les champs de Markov cachés sont les modèles graphiques probabilistes les
plus populaires pour la segmentation non-supervisée d’images médicales. Or
l’inférence dans les modèles graphiques non-orientés (auxquels appartiennent les
champs de Markov) ne peut se faire, sauf dans des cas particuliers, de manière
directe. L’inférence dans ces modèles repose sur des calculs indirects (qui peu-
vent être approximants ou non) comme l’approche itérative de l’échantillonneur
de Gibbs (S. Geman and D. Geman, 1984). Les chaînes de Markov cachées
peuvent alors être une alternative judicieuse car leur structure intrinsèquement
unidimensionelle et les possibilités d’inférence exacte offrent des coûts calcula-
toires faibles relativement aux approches classiques d’inférence dans les champs.
Ces propriétés sont rencontrées dans (Bricq et al., 2008) (Courbot, Rust, et al.,
2015) et vues dans cette thèse également.

Contributions

Après avoir introduit les principales notions sur les modèles graphiques proba-
bilistes, nous donnons ici les principales contributions de la thèse.

Le modèle Gaussian Pairwise Markov Fields

Nous présentons un nouveau modèle de champs de Markov couples cachés,
nommé Gaussian Pairwise Markov Fields (GPMF), qui permet la segmen-
tation non-supervisée d’images corrompues par du bruit spatialement corrélé
modélisé par un GMRF (Rue and Held, 2005). Nous étudions, théoriquement
et expérimentalement, dans quelle mesure ce modèle est une généralisation du
modèle de champ de Markov caché classique. Nous proposons également un al-
gorithme stochastique itératif pour l’estimation non-supervisée des paramètres.
Le modèle est utilisé pour segmenter la matière organique dans des images mCT
touchées par des artéfacts de stents. La Figure 0.3 illustre cet axe de recherche.
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Figure 0.3.: Segmentation non-supervisée de la matière organique. De gauche
à droite : le mCT observé, la segmentation par champ de Markov
caché classique, la segmentation par le nouveau modèle GPMF. La
résolution des artéfacts par le modèle GPMF est bien meilleure,
elle réduit le nombre de faux-positifs et faux-négatifs.

Ys

Xs

Figure 0.4.: Arbre de Markov caché classique (gauche) et STMT (droite). Les
arbres sont de taille 4. Les variables cachées sont en rond, les vari-
ables visibles en carré grisé et les variables auxiliaires en losange.
Nous notons les corrélations directes bien plus riches dans le mod-
èle STMT où l’inférence reste cependant exacte.

Le modèle Spatial Triplet Markov Tree

Dans cette thèse, nous développons également un nouveau modèle d’arbre de
Markov triplet nommé Spatial Triplet Markov Tree (STMT) basé sur (Cour-
bot, Monfrini, et al., 2018). Ce modèle intègre des variables aléatoires auxili-
aires afin d’enrichir les possibilités de modélisations. Le modèle STMT est une
généralisation des arbres de Markov caché classique.

De plus nous étudions ses liens avec les champs de Markov cachés classiques.
Le nouveau modèle semble en effet exhiber des corrélations semblables aux
champs mais offre des possibilités d’inférence exacte grâce à la structure d’arbre.
Une telle propriété a pour principal avantage d’éviter le recours à des procé-
dures itératives souvent approximantes, plus longues et induisant des pertes
de précision. Nous étudions les corrélations à l’intérieur du nouveau modèle
STMT avec la technique de l’inférence variationnelle à variables aléatoires aux-
iliaires. Le modèle STMT est aussi utilisé dans le cadre de la segmentation de
calcifications sur des images mCT. La Figure 0.4 illustre les modèles d’arbres
de Markov.
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Chapter 0. Résumé étendu

(a) (b)

Figure 0.5.: Exemples de modèles probabilistes graphiques plus généraux.
Gauche : Spatial Bayes Network. Droite : fully-connected Condi-
tional Random Field. Les ronds blancs représentent une variable
cachée et les carrés gris représentent une variable observée.

Inférence variationnelle dans des modèles plus complexes

Nous étudions des modèles plus généraux dans le sens où plus de dépendances
directes sont modélisées entre les variables aléatoires.

Pour les modèles graphiques orientés, alors que tous les modèles de Markov
cachés classiques sont associés à des graphes ne présentant ni cycles ni semi-
cycles, nous proposons un nouveau modèle qui contient des semi-cycles appelé
Spatial Bayes Network. La représentation graphique de ce modèle est donnée
Figure 3.9. L’introduction de semi-cycles rend l’inférence beaucoup plus com-
plexe et nous résolvons ce problème en ayant recours à l’inférence variationnelle.

Pour les modèles graphiques non-orientés, il est possible de complexifier le
modèle en ajoutant des dépendances conditionnelles entre les variables qui
agrandissent les voisinages. Le modèle des fully-connected Conditional Ran-
dom Fields est un modèle probabiliste populaire en segmentation d’images qui
est associé à un graphe totalement connecté (voir Figure 0.5b). Nous étudions
à nouveau plusieurs techniques d’inférence variationnelle afin de pouvoir mener
l’inférence dans ce modèle.

Segmentation de stents

Dans les images CT, les stents peuvent apparaître fortement déformés à cause
des artéfacts qui les entourent. Nous proposons une modélisation basée sur
les chaînes de Markov cachées et un modèle de bruit particulier qui permet de
segmenter finement le stent dans un environnement complexe (tel que celui de
la Figure 0.2). Notre approche opère de manière non-supervisée et est entière-
ment automatique grâce à l’algorithme d’estimation des paramètres que nous
développons également. Une illustrations des résultats de cet algorithme est
donnée dans la Figure 0.6.

Segmentation histologique tridimensionnelle d’artères

Dans une dernière partie, nous mettons au point un protocole pour la créa-
tion de la première base de données d’images annotées d’artères explantées
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Figure 0.6.: Segmentation d’un stent explanté par notre approche.

Figure 0.7.: Segmentation tridimensionnelle d’une artère pathologique. Haut :
Image rayons-X originale. Bas : Notre segmentation histologique.

touchées par l’athérosclérose. Ensuite, nous développons un réseau de neu-
rones convolutionnel de type U-Net (Ronneberger et al., 2015) afin de procéder
à la segmentation bidimensionnelle histologique des images. L’objectif de ce
projet unique est de permettre une première analyse histologique de l’artère
uniquement à l’aide du scanner.

Une reconstruction tridimensionnelle propre est obtenue grâce à un post-
traitement basé sur une inférence variationnelle dans un modèle de champs
aléatoires conditionnels (Krähenbühl and Koltun, 2011). Nous étudions égale-
ment une amélioration de cette dernière procédure d’inférence variationnelle
utilisant les chaînes de Markov. Un exemple de segmentation tridimensionnelle
d’une artère est visible dans la Figure 0.7.

Conclusion

Les modèles développés au cours de la thèse apportent des contributions sur
des enjeux cruciaux de la modélisation des images par modèles graphiques
probabilistes tout en répondant à des problématiques modernes de la chirurgie
vasculaire.
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Introduction

Advances in vascular surgery and current issues

Cardiovascular Diseases

Cardiovascular Diseases (CVDs) are a major cause of mortality in the world,
and particularly in developed countries, with an increasing human and mone-
tary cost for societies. In 2016, approximately 17.9 million people died world-
wide from CVDs, which represents 31% of all deaths4. In 2015, 49 million
people (9.6% of the population) in the European Union where living with a
CVD, the total costs are estimated to e210 billion with e111 billion of direct
health care costs and e99 billion indirect costs (productivity loss and informal
care of people)5. A major cause of the rise of CVDs is also the increasing
lifetime: this causes new diseases, related to old age, to be seen more widely
and needing to be treated. But CVDs are also often linked with life hygiene:
smoking, sedentarity and nutrition are habits with direct effects on health in
general and more particularly on the cardiovascular system6.

CVDs include a number of heart and blood vessel conditions. Among the
most prevalent conditions, one can note ischemic heart disease, stroke and
high blood pressure. These conditions often relate to another condition called
atherosclerosis. Atherosclerosis is a disease of the arterial wall (not restricted to
coronary arteries). It consists in the formation of plaques, called atheromatous
plaques, which mostly contain lipids, macrophage cells, connective tissues and
calcium (Rafieian-Kopaei et al., 2014). The deposition of calcium contributes
to the plaque hardening and the sclerosis of the artery, but it is also what
makes the plaque clearly visible on X-ray images. Therefore, one commonly
refers to the atheromatous plaques as calcifications since the latter are the most
easily identifiable elements of the plaques. Those plaques may grow and/or
break which disturbs or, in the most severe cases, stops the blood flow (total
occlusion of the artery, rupture of the artery, etc.). These situations are medical
emergencies (Rosenfeld, 2000). However, in some cases, atherosclerotic plaques
can remain stable and/or regress (Dave et al., 2013). Much is yet to discover
about this phenomenon which is summarized in Figure 0.8.

In this thesis, our research will be applied to pathologies affecting the arteries
of the lower limbs, as well as their surgeries and their treatments, which are
described in the next section. More precisely, we will focus on the superficial

4https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
5http://www.ehnheart.org/cvd-statistics.html
6https://healthmetrics.heart.org/wp-content/uploads/2017/10/

Cardiovascular-Disease-A-Costly-Burden.pdf
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Figure 0.8.: Summary of the atherosclerotic process. From (CNX, 2016).

femoral artery and the popliteal artery which are located in the human body
in Figure 0.9. The choice of the femoropopliteal arterial segment was made
because it is still the most challenging area for treatment, it is also the most
often affected segment in the arterial tree.

Remark: Strictly speaking, cardiovascular refers to the heart and its main
arteries and veins. Hence, we will use the adjective vascular to refer to the ar-
teries of the lower limb. However, the problematics and pathologies that affect
the vessels are identical or very similar.

Remark: Veins will not be mentioned in this thesis since they do no develop
atherosclerosis (G. Saul and Gerard, 1991).

Vascular surgery: open and endovascular approaches

Vascular surgery began with the first attempt to control a bleeding
vessel. (S. G. Friedman, 2005)

The traditional approach in vascular surgery, often called open surgery, relies
in opening the patient body up to the affected vessel. The vessel is then repaired
or replaced. This approach can lead to high-risk interventions and might not
be tolerated by already weak patients such as old patients or patients with a
chronic illness. In such cases, the latter have increased chances of complications,
including death, following the intervention.

A more recent approach is endovascular surgery, in which new interventions
and protocols are regularly created since the last two decades of the 20th cen-
tury. In this interventional technique, the vessel is reached and treated from
the inside. With an incision in a peripheral artery, the surgical tools and treat-
ments are brought to the desired location, by the inside of the blood vessel,
following the patient’s vascular tree. The treatment often includes a biomate-
rial. Biomaterials are introduced in the next section.
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Figure 0.9.: Arteries of the lower limbs (anterior view). From (CNX, 2016).

Endovascular interventions rely heavily on imaging to see inside the patient
which is not opened: the terms image-guided surgery and mini-invasive are
then often associated with endovascular surgery. This surgical technique is of-
ten a solution proposed to patients who cannot undergo open surgery. The
risk of medical complications and the patient’s traumatism following an en-
dovascular procedure is reduced (Nichols and Wei, 2011). While endovascular
techniques have classically been linked with a higher monetary cost than open
surgery procedures, the gradually decreasing cost of the treatment and of the
patient’s length of stay becomes an additional asset for endovascular proce-
dures (Sternbergh III and Money, 2000) (Brinster et al., 2020).

Note that interventional techniques, either from endovascular or open surgery,
are constantly improved and updated. A complete reference to endovascular
history, techniques and biomaterials is available in (Jing et al., 2018).

Endovascular surgery is a modern approach which raises new questions on
biomaterials and new challenges on the per-operative use of imagery during
surgical interventions and at all the other stages of the patient’s treatment.
Those questions are the motivations behind this thesis.

Biomaterials and related problematics

Biomaterials

[A biomaterial is] a systemically and pharmacologically inert sub-
stance designed for implantation within or incorporation with living
systems. (J. Park and Lakes, 2007)
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(a) (b) (c)

Figure 0.10.: Common biomaterials in vascular surgery: (a) a stent manufac-
tured by Cook8, (b) a stentgraft manufactured by Bard9, (c) a
vascular prosthesis manufactured by Gore10.

Biomaterials are found in many medical fields: knee or hip prosthesis in
orthopedic surgery, intraocular lens in ocular surgery, heart valve in cardiac
surgery, etc. We focus here in biomaterials in vascular surgery. Following (Jing
et al., 2018), we list the most common biomaterials:

• Stents are metallic biomaterials widely used to solve problems such as
stenosis or dissection of the artery. Once they have been brought to the
location of the lesion via the intravascular path, they are released. They
are either self-expandable or expanded with a surgical balloon. A stent
is illustrated in Figure 0.10a.

• Stentgrafts are distinguished from the (bare) stents described above by
the covering (most of the time in polytetrafluoroethylene or polyethy-
lene terephthalate7) added over the stent. Stentgrafts are used mainly in
aneurysm repairs or aortic dissections for their capacity to seal the vessel
wall. The Figure 0.10b depicts a stentgraft.

• In the most severe cases of lesions, such as complete stenosis or occlusion,
the vessel can be replaced with vascular protheses. They may originate
from an autogenous vein (the ideal case for biocompatibility) or from
an artificial prosthesis which can again be made of PTFE or PET. Note
that, as opposed to stents and endografts, an implantation of a vascular
prosthesis involves an open-surgery procedure. However they offer better
performance and stability than stentgrafts in terms of biocompatibility,
fracture resistance and ability to seal the vessel wall. A vascular prosthesis
can be seen in Figure 0.10c.

To treat a given lesion, the choice of the model and size of the biomaterial
depends mainly on the patient’s imaging analysis and the surgeon’s experience.

7Polytetrafluoroethylene (PTFE) and Polyethylene Terephthalate (PET) are thermoplas-
tics. Note that their biocompatibility with the human body is debated (Nabil Chakfé
et al., 2020).
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Figure 0.11.: Explanted stent from a superficial femoral artery. The stent itself
can be seen, it is encapsulated in a biological material (artery).

Remark: In this thesis, we will mainly work with medical images of ex-
plants. In vascular surgery, explanting is the act of removing an implanted bio-
material or a part of a blood vessel. Note that when a biomaterial is explanted,
it is almost always encapsulated in some biological material. An explant can
be seen in Figure 0.11.

Problematics

Biomaterials in vascular surgery are recent treatments. While these devices
benefit from constant improvements and are increasingly implanted, many ques-
tions remain unanswered:

• The mechanical behavior of the implanted stents are almost unknown.
Simulations, or in vitro experiments, only partially reflect the reality of
the constraints applied on a biomaterial implanted in a living body. In
vivo mechanical data are still very much ignored and biomaterial man-
ufacturers would greatly take advantage of such data. For example, the
optimal stent design is still much debated (Raffort et al., 2020).

• The choice of the endovascular procedure is still very dependent on the
experience of the surgeon. Objective mathematical tools and databases
to guide clinicians are still lacking (Ohana et al., 2014).

• In many cases, the cause(s) of failure of the vascular biomaterials are
ignored or unclear. Why did the stentgraft covering tear? Why did
the stent fracture? This highlights the need of new analysis tools for
explanted biomaterials to investigate biomaterial failures (Chakfé and
Heim, 2017) (Lejay et al., 2018).

• Although the whole branch of endovascular surgery relies heavily on im-
ages, those medical images remain widely unused. Indeed we could
benefit from deeper, large-scale and automated analyses, carried by new
tools that researchers in image processing could provide (Raffort et al.,
2020). The perspectives of image processing for vascular surgery are the

8https://www.cookmedical.com/products/224e3666-308f-4244-8695-6fd23bbd671c/
9https://www.crbard.com/Peripheral-Vascular/en-US/Products/

FLUENCY-Plus-Endovascular-Stent-Graft
10https://www.goremedical.com/me/products/vgstretch

13



Introduction

central motivation for this thesis and are discussed in depth later in this
introduction.

We have only listed a small sample of questions arising today in the field of
vascular surgery. Yet, addressing these questions already requires joint work
from research teams from many fields (biomechanics, image processing, vas-
cular surgery, textile sciences, artificial intelligence, histolopathologists, etc.).
However, this translational research is also dependent on the availability of data
(explanted biomaterials, explanted arteries, patient’s clinical images, patient’s
clinical data, antecedents and outcomes, etc.). Since this research involves hu-
man subjects on a new topic, the data is scarce and sometimes unavailable due
to legal issues. Availability of the data is a crucial point in the field of image
processing as we will see later.

The Geprovas laboratory

The Geprovas11 laboratory (Groupe Européen de Recherche sur les Prothèses
liées à la Chirurgie Vasculaire), located in Strasbourg, France, has been founded
in 1993 by Professor Nabil Chakfé. It has become a worldwide actor in the
field of biomaterials, with an original and unique expertise for devices from
vascular surgery. The Geprovas is organized around four activities: the collect
and analysis of explants, the innovative research on biomaterials, the medical
education program and the clinical analysis program. One of the main goals
of Geprovas is to remove barriers and motivate translational research to help
answer questions in medical research such as the questions we listed in the
previous section.

The work presented in this thesis is initiated and supported by the explant
analysis program of the Geprovas. In this context, our work benefited from the
wide knowledge of the Geprovas experts as well as from its unique database of
explants from vascular surgery.

Medical image processing and new challenges

In the previous section, we mentioned medical imaging and its key role in the
modern approaches in vascular surgery. In this second part of the introducion,
we present medical imaging in more details. We start with very general defini-
tions and gradually shift our focus towards the mathematical methods linked
with image analysis studied in this thesis. The goal is to develop approaches
which are automated. Automated analysis is indeed the modern way to pro-
cess images relying on the power of computers to support medical practice and
research.

11https://geprovas.org
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Medical image processing

Main concepts and vocabulary

A bidimensional (respectively tridimensional) image is a set of values arranged
on a rectangular (respectively cubic) grid12. For numerical images, the grid is
discretized. If the values are scalars, the image is called grayscale, if the values
are vectors, the image is a color image in some color space (Fieguth, 2010).

The most common medical image processing operations are image segmen-
tation, which consists in dividing an image into non-overlapping regions with
homogeneous properties, image registration, which deals with associating the
objects/features in one image with those in one or more other images, and im-
age denoising, which aims at estimating a noise-reduced image given an image
corrupted by noise (Fieguth, 2010). Image segmentation is the task studied in
this thesis and all the methods we develop can be linked with the final goal of
segmentation.

A numerical image has to be constructed with some devices, in medical image
processing, it is related to the notion of image modality.

Medical imaging modalities

The observed image that we have to process can be of different types in medical
research. Those are called the imaging modalities: they are acquired with
different devices relying on different physical phenomena to form the image.
Thus, the imaging of the same physical object will result in different images
with different properties according to the modality. Following (Suetens, 2017),
the main medical imaging modalities for diagnosis and treatment13 are now
listed:

• X-ray Computed Tomography (CT) is an imaging technique based on X-
rays. X-rays are electromagnetic waves with wavelengths around 10−10m
which are attenued differently according to the matter it interacts with.
The computation of the attenuations undergone by X-rays at certain lo-
cations of the space are at the foundation of X-ray images. Computed
Tomography (CT) refers to the technique of the computations of the at-
tenuations. X-rays have been used in medical imaging starting from the
end of the 19th century. Figure 0.12a shows a typical CT scan image from
vascular surgery.

• Magnetic Resonance Imaging (MRI) is an imaging modality introduced in
the medical field in the 1970s. In MRI, the reconstructed image illustrates
the magnetic properties of the object of interest. In normal operating
conditions, MRI is safer for patients than CT imaging or PET imaging
(see next item) because MRI does not rely on ionizing radiations.

12The definition straightforwardly extends to higher dimensions.
13The use of these modalities for medical diagnosis and treatment defines the medical field

of radiology.
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• Positron Emission Tomography (PET) is a technique from the field of
nuclear medical imaging. It uses a tracer molecule that will be involved
in a metabolic process of the body. The tracer molecule is injected to the
patient and can be localized because some identified radioactive atoms
of the molecule emit γ-rays (wavelength below 10−11m). This way, an
abnormal metabolism can be detected. PET is used clinically since the
2000s.

Note that some modalities describe the anatomy, this is called structural
imaging and this is the case for most CT and MRI performed. Others depict a
function, this is called functional imaging ; PET is a functional imaging modal-
ity. In more specific contexts, a modality can be ambivalent and relate to both
structural and functional imaging.

In this thesis, we will only develop approaches for X-ray images. Indeed,
X-ray images are more common than any other modalities in vascular surgery
notably because current MRI devices can be unsafe for patients with a metallic
implant. Indeed, MRI might induce stent dislodgement, heating and important
image artifacts (Jabehdar Maralani et al., 2020). X-ray images have also the
advantage of being a totally non-invasive technique14, the body of the patients
does not need to be touched.

Our work will be more particularly focused on the potential assets of micro-
computed tomography (mCT or microCT) X-ray images used for the research
in vascular diseases. The formation of mCT images follows the same principles
as CT X-ray images described above but they are suited for the imaging of
small objects (animals 15, stones, wood, etc.). Notably, mCT modality deals
particularly well with the imaging of explanted arteries. Those images offer
a much greater spatial resolution than classic CT scans since pixel sizes are
on the scale of the micrometer (Flannery et al., 1987). The first report of a
microtomographic image dates back to 1982 in (J. C. Elliott and Dover, 1982).
Figure 0.12b shows a mCT image of an arterial cross-section.

Remark: We will also mention optical microscopy, which is an image modal-
ity that uses light to image a very thin section of an object of interest, which
often cannot be analyzed or seen by the naked eyes (Davidson and Abramowitz,
2002). Figure 0.12c describes an arterial cross-section seen in optical mi-
croscopy. The work in this thesis will not deal with a direct processing such
images, however microscopic images will be essential in the project described
in Chapter 5.

Main challenges

In this section, we describe the difficulties linked with medical image processing
that motivate the approaches we developed during the thesis.

14Provided we tolerate the ionizing radiations which are problematic for some pa-
tients (Pearce et al., 2012) but also clinicians (Brun et al., 2018).

15Some illustrations of the possibilities offered by mCTs in the imaging of small animals are
depicted in (Roque-Torres, 2020).
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(a) CT: slice of a CT scan which depicts an abdominal cross-
section of a human body. A stent implanted in the aorta
is visible at the center of the image. Artifacts are also
visible, see Figure 0.13 for more details.

(b) mCT: cross-section of a stented
and explanted superficial femoral
artery.

(c) Microscopy: histological cross-
section of an explanted, stented
and totally occluded superficial
femoral artery.

Figure 0.12.: Illustrations of the CT, mCT and microscopy medical imaging
modalities with examples from vascular surgery.
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(a) CT scan (b) mCT scan

Figure 0.13.: Metallic artifacts in X-ray scans hiding the underlying anatomy.
Elements around the stent parts are hardly discernible. Green,
red and blue arrows respectively indicate stent metallic artifacts,
stent components and calcification components.

Metallic biomaterials and artifacts

We have discussed above that metallic stents (and metallic biomaterials in
general) are an issue for MRI scanning but some problems also arise in CT
scans. Due to high variations of attenuations in metallic parts according to
the X-ray energy level, the CT reconstruction algorithms introduce artifacts
in the reconstructed images. The artifacts are problematic since they hide the
underlying anatomy. Figure 0.13 illustrates stent metallic artifacts in vascular
X-ray scans. This issue is becoming increasingly important because of the
development of biomaterials (orthopedic prostheses, stents, pacemakers, etc.).
To answer this problem, many approaches to Metal Artifact Reduction (MAR)
have been developed in the literature. See (H. S. Park et al., 2015) for an
introduction on stent metallic artifacts and MAR.

Availability of the data

In some medical applications data are scarce while in other fields data abound.
This variable then plays a role on the processing approach to follow and on the
problem complexity. In vascular surgery, biomaterials were usually destroyed
after explantation or patient’s death and relatively little research could be car-
ried. As stated earlier, the goal of the explant analysis program of the Geprovas
is precisely to collect such data, and make it available in a database that can
be used in subsequent studies.

An image analysis task in which no images can be used to learn the algo-
rithm parameters, i.e., where the algorithm has to work with the observed
image alone, is called unsupervised. In the opposite case, it is called a super-
vised task. Both approaches will be seen in the thesis. Note that a supervised
problem requires a human interaction at some stage, for example, to add an-
notations to the data.
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Remark: Collections of biological samples used for scientific investigation,
or biobanks, are initiatives that are slowly gaining popularity (PW Scholtes et
al., 2011).

Computational costs

Image processing can rapidly become a computationally intensive task, espe-
cially for medical images. We encounter this problem in our work dealing with
mCT images which are big, high resolution images. In other problematics,
when a database with hundreds of elements must be processed, the treatments
must be wisely chosen. In this thesis, some of the works study the problem of
computational complexity.

Remark: Our developments are however not constrained by speed consid-
erations. Our primary data are images of explanted materials, thus the time
constraint is not comparable at all to developments linked with videos or real-
time analyses such as (Nwoye et al., 2019).

Image processing and probabilistic modeling

In this thesis, the main contributions will be focused on probabilistic graphical
models applied to image segmentation, particularly Hidden Markov Models
(HMM) (Baum and Petrie, 1966) and their extensions to Pairwise and Triplet
Markov Models (Pieczynski and Tebbache, 2000) (Lanchantin et al., 2011)
(Gorynin, Gangloff, et al., 2018). Markovian models offer a simple and intuitive
way to introduce dependencies between the pixels of the images and thus, they
can be a relevant answer to the problematics previously presented.

For example, it will be seen that stent metallic artifacts (illustrated in Fig-
ure 0.13) can be modeled by spatially correlated noise: a pixel value at a
location is highly dependent on the neighboring pixel values. Such a noise is
naturally taken into account in Pairwise and Triplet Markov Models. Such
correlations are also studied in models based on Gaussian Markov Random
Field (Rue and Held, 2005) (GMRF). In this thesis, these models are then
studied as possible improvements to MAR algorithms and as a way to perform
segmentation in images degraded with spatially correlated noise.

A second asset to probabilistic models is that they are relatively efficient in
unsupervised problems. Following the popular Expectation Maximization (Demp-
ster et al., 1977) (EM) algorithm, there is a rich literature of learning algorithms
in unsupervised context for graphical models (Celeux et al., 1995) (Tieleman,
2008). They are then competitive methods for problems with scarce and/or
missing data.

Probabilistic models also benefit from a very active research community fo-
cusing on optimization methods. Efficient approaches exist to approximate
computations that cannot be done exactly. See for example (C. Zhang et al.,
2018) which deals with Variational Inference (VI). They also offer much mod-
elization power with possibly auxiliary random variables (Lanchantin et al.,
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2011) and can then fit many complex real life problems (Courbot, Monfrini,
et al., 2018).

Probabilistic graphical models will be introduced in depth in Chapter 1.

Outline of the thesis

This thesis is composed of five chapters and their appendices.
Chapter 1 consists in a literature review of the main concepts and devel-

opments around probabilistic modeling with graphical models with a special
focus on image segmentation. This chapter sets up all the definitions and no-
tations that will be used more in depth in subsequent chapters. Chapters 2,
3 and 4 present the core research of this thesis dealing with the improvement
and development of new probabilistic models for image segmentation. Chap-
ter 2 proposes a new model of Markov Fields, called Gaussian Pairwise Markov
Fields (GPMF), for the unsupervised segmentation of regions that are corrupted
with long-spatially correlated noise. The model is tested on both artificial and
real datasets. Chapter 3 describes a new model of Markov Trees, called Spa-
tial Triplet Markov Tree (STMT), aiming at being a deterministic counterpart
to Markov Fields, which are also used in the context of unsupervised image
segmentation. Theoretical results and applications on real data are provided.
STMTs make use of auxiliary random variables, the enhanced correlations they
introduce are largely studied. Chapter 4 proposes a review on Deep Learning
for medical imaging and describes the development of a Convolutional Neural
Network for semantic segmentation. This segmentation is subsequently im-
proved by a new approximate inference approach for a model of Conditional
Random Fields that is also presented in Chapter 4. Chapter 5 illustrates the
applications to vascular surgery of the probabilistic graphical models developed
along the thesis.

The appendix of each chapter gives the full details of calculations and addi-
tional observations.

List of publications

During this thesis, several journal and conferences articles have been written.
They are listed below according to the part of the thesis they deal with. For
completeness, the other publications from the author of the thesis are also listed
even if their topic is not directly related to the content of this thesis.

First we list the publications primarily directed to the signal processing com-
munity:

• Chapter 2:

– Under review: Unsupervised Segmentation with Gaussian Pair-
wise Markov Fields, H. Gangloff, J.-B. Courbot, E. Monfrini, C.
Collet, Computational Statistics & Data Analysis, 2020.
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– (Gangloff, Courbot, et al., 2019): Segmentation non-supervisée dans
les champs de Markov couples gaussiens, H. Gangloff, J.-B. Courbot,
E. Monfrini, C. Collet, Colloque GRETSI, 2019.

• Chapter 3:

– Under review: Unsupervised Image Segmentation with Spatial
Triplet Markov Trees, H. Gangloff, J.-B. Courbot, E. Monfrini, C.
Collet, International Conference on Acoustics, Speech, and Signal
Processing, 2021.

– (Gangloff, Courbot, et al., 2020): Spatial Triplet Markov Trees for
auxiliary variational inference in Spatial Bayes Networks, H. Gan-
gloff, J.-B. Courbot, E. Monfrini, C. Collet, Stochastic Modeling
Techniques and Data Analysis, 2020.

• Chapter 4:

– Under review: Markov Chain Variational Inference in Fully-Connected
Conditional Random Fields, H. Gangloff, E. Monfrini, C. Collet, In-
ternational Conference on Acoustics, Speech, and Signal Processing,
2021.

• Chapter 5:

– (Gangloff, Monfrini, Collet, et al., 2020): Unsupervised segmenta-
tion of stents corrupted by artifacts in medical X-ray images, H.
Gangloff, E. Monfrini, C. Collet, N. Chakfé, International Confer-
ence on Image Processing Theory, Tools and Applications, 2020.

– (Gangloff, Monfrini, Collet, et al., 2019): Segmentation de stents
dans des données médicales à rayons-X corrompues par les artéfacts,
H. Gangloff, E. Monfrini, C. Collet, N. Chakfe, Colloque GRETSI,
2019.

• Not in the thesis:

– (Gorynin, Crelier, et al., 2016): Performance comparison across hid-
den, pairwise and triplet Markov models’ estimators, I. Gorynin,
L. Crelier, H. Gangloff, E. Monfrini, W. Pieczynski, International
Conference on Applied and Computational Mathematics, 2016.

– (Gorynin, Gangloff, et al., 2018): Assessing the segmentation perfor-
mance of pairwise and triplet Markov models, I. Gorynin, H. Gan-
gloff, E. Monfrini, W. Pieczynski, Signal Processing, 2018.

– (Gangloff, Monfrini, Ghariani, et al., 2020): Improved Centerline
Tracking for new descriptors of atherosclerotic aortas, H. Gangloff,
E. Monfrini, M.Z. Ghariani, M. Ohana, C. Collet, N. Chakfé, Inter-
national Conference on Image Processing Theory, Tools and Appli-
cations, 2020.

We then present the publications primarily directed to the vascular surgery
community:

21



Introduction

• Chapter 5:

– (Kuntz et al., 2020): Co-registration of peripheral atherosclerotic
plaques assessed by conventional CT-angiography, micro-CT and
histology in CLTI patients, S. Kuntz, H. Jinnouchi, M. Kutyna,
S. Torii, A. Cornelissen, Y. Sato, M. E. Romero, F. Kolodgie, A.
V. Finn, A. Schwein, M. Ohana, H. Gangloff, A. Lejay, N. Chakfé,
R. Virmani, European Journal of Vascular & Endovascular Surgery,
2020.

– Under review: Automated histological segmentation on micro-
computed tomography images of atherosclerotic arteries, S. Kuntz*,
H. Gangloff*, H. Naamoune, E. Monfrini, C. Collet, A. Lejay, M.
Kutyna, R. Virmani, N. Chakfé, European Journal of Vascular &
Endovascular Surgery, 2020.
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Chapter 1. Main concepts in probabilistic modeling

1.1. Introduction

This chapter introduces probabilistic modeling with a focus on Hidden Markov
Models and on applications to probabilistic image segmentation. More in-depth
introductions can be found in popular books on the topic such as (C. M. Bishop,
2006) (Goodfellow et al., 2016) (Koller and N. Friedman, 2009) (Murphy, 2012)
(Wainwright and Michael I Jordan, 2008).

1.2. Graphical modeling

1.2.1. Main definitions

Elements of graph theory

A graph G = (S, E) is formed by a set of vertices S, that we also refer to as sites
or nodes, and by a set of edges E . We have E ⊂ S ×S, since, in general, not all
vertices are connected by an edge. The set of vertices connected to a vertice
s ∈ G is called the neighborhood of s and is denoted Ns. Note that we have
s /∈ Ns. A clique is a subset of S with the property that every two elements are
connected by an edge. A clique is then a fully-connected subset. A maximal
clique of G is clique of G which cannot accept any more vertice from G without
breaking the clique property. A tree is a connected graph without any cycle. In
a graph G, the edges can either be directed, undirected or a mix of both. This
leads to different families of probabilistic models which we discuss in the next
sections. In the graphical representation of the probabilistic graphical models
we will use arrows to represent directed edges. The absence of arrow represents
an undirected edge. These first definitions are illustrated in Figure 1.1.

In a probabilistic graphical model, each vertice s of G is associated with a
random variable whose name then contains the name of the vertice as subscript,
for example, Xs.

a b c

d e f

g h i

An undirected graph

S = {a, b, c, d, e, f, g, h, i}
c = {a, b, d, e} is a clique
The subset c is fully connected

Ne = {a, b, c, d, f, g, h, i}
Na = {b, d, e}

Figure 1.1.: Examples and notations of graph theory I.

Elements of probability theory

Let X be a random variable from a probability to space, equipped with a
probability measure p, to a measurable space (E, E). If E is a finite or countable
set, then X is said to be a discrete random variable. If E is an uncountable
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1.2. Graphical modeling

set, then X is said to be a continuous random variable. In both cases, we
are interested in measuring the probability of X taking certain values, i.e., we
want to evaluate the quantities of the type PX(A) = p(X ∈ A), ∀A ∈ E . Such
computations involve PX another probability measure. PX is called the law of
X which is more precisely called distribution in the discrete case and density
in the continuous case. The definitions are similar for random vectors. When
considering the law of random vectors made of both continuous and discrete
random variables, we may use indistinctly the term distribution or density. If
PX is the law of a random variable X, we may write X ∼ PX .

If X is a discrete random variable, we denote by x its realization, ∀x ∈ E .
When A is a singleton, i.e., A = x, ∀A ∈ E , we have p(X ∈ A) = p({X = x}).
When there is no ambiguity we write p({X = x}) = p(X = x) or even p({X =
x}) = p(x)1 to denote the probability of a realization x of X. Similarly, if X
is a continuous random variable, in case of no ambiguity, we might use p(x) to
refer to the density of X. If X ∼ PX , we denote the expectation of X by E[X],
which can also be written, with a slight notation abuse, Ex∼p(x)[x].

The conditioning of a probability law on the realization of some other random
variable(s) will be written classically with a vertical bar |. For example, using
the notation shortcuts mentioned above, the law of X given the realization y
of random variable Y will be written p(x|y).

All our definitions extend to the multivariate case: random variables then
become random vectors. Some of the random vectors we will work with are
more precisely stochastic processes. However, stochastic processes and their
properties are out of the scope of this thesis and little will be said about them.

1.2.2. Directed Graphical Models

Directed Graphical Models (DGMs), also known as Beliefs Networks, have di-
rected edges represented by an arrow between two vertices. Let (s, s′) ∈ S2,
if there is a directed edge from s to s′ then s is called the father node of s′,
conversely, s′ is called the child node of s. A node s may have several fathers,
which are refered to as the set of parents of s, denoted P(s). A node for which
the parent set is empty is refered to as a root node. Furthermore we denote S̄
the set of vertices which have at least one father. Figure 1.2 illustrates the new
notions we have just introduced.

The notion of Directed Acyclic Graph (DAG), also known as Bayesian Net-
works, refers to graphs where all the edges are directed and where the graphs
do not contain directed cycles. The directed edges of a DGM leads to a partial
ordering of its vertices (Wainwright and Michael I Jordan, 2008). A directed
tree is a DAG which does not contain any directed cycles and not any semi
cycles. A semi cycle is the DAG that has been obtained after reversing some
arrow directions of a directed cycle.

In this thesis we will focus on several kinds of directed rooted trees, called
arborescences. In such graphs the root vertice is unique, it is then the only

1Note that this last notation shortcut then confuses p with PX but no ambiguity is raised
in the work of this thesis.
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Chapter 1. Main concepts in probabilistic modeling

a c

d e

g h

A directed graph

S = {a, c, d, e, g, h}
S̄ = {d, e, g, h}
a and c are root nodes

a is the father of d
d is the son of a
P(d) = {a, e, g}
{d, g, h} forms a directed cycle

Figure 1.2.: Examples and notations of graph theory II.

a c

d e

g h

A DAG
{d, g, h} is a semi cycle

a c

d e

g h

A directed tree

a

d e

g h

An arborescence

a b c d

A directed chain

Figure 1.3.: Examples and notations of graph theory III.

vertice with no edge pointing towards it, and all the other edges are directed
away from it. Note that in arborescences, the fact that there is only one root
node implies that all the other non-root nodes have exactly one father. When
all the vertices of an arborescence have one son (except for the last vertice),
we obtain a directed chain. Figure 1.3 shows examples of the newly defined
graphs.

DGMs are specified by local conditional probabilities which are given for ev-
ery random variables associated to every site: ∀s ∈ S the associated conditional
probability is p(xs|xxxxxxxP(s)). If r is a root node, the associated conditional prob-
ability is p(xr). The joint probability distribution defining a DGM is obtained,
using the definition of conditional probabilities, by multiplying the local con-
ditional probabilities:

p(xs1 , xs2 , . . . , xsN ) =
∏

r∈S\S̄

p(xr)
∏

s∈S

p(xs|xxxxxxxP(s)), (1.1)

where s1, . . . , sN are the N vertices of S.
Sampling in a DGM is performed by ancestral sampling : starting from the

root nodes we follow the partial order over the nodes, and we sample each
time the associated random variable using the local conditional probability
(Goodfellow et al., 2016).
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1.2. Graphical modeling

Conditional independence of random variables given other random variables
(or Markov property) is an important property when dealing with graphical
models. The procedure of d-separation can determine whether there is condi-
tional independence (Murphy, 2012). A particular result of this procedure that
will be underlying many of our studies is for arborescences: let A, B and C be
subsets of S. ∀a ∈ A, ∀c ∈ C, the random variables {Xa}a∈A and {Xc}c∈C are
said to be conditionally independent given B if every path (without considering
the direction of the edges) between a and c goes through a vertice from B.

1.2.3. Undirected Graphical Models

Undirected Graphical Models (UGMs), also known as Markov Random Fields
(MRFs), have undirected edges. They are defined differently from DGMs. We
call potential functions, or factors or unnormalized probability distributions, a
real non-negative function φC({xs}s∈C) = φC(xxxxxxxC) associated with a clique
C. Potential functions describe the interactions between random variables. We
then have that an UGM is defined by a set of random variables XXXXXXX which admits
for joint distribution:

p(xxxxxxx) =
1

Z

∏

C∈C

φC(xxxxxxxC), (1.2)

where C is the set of all cliques of G and Z is the partition function or normal-
ization constant, defined as:

Z =
∑

xxxxxxx

∏

C∈C

φC(xxxxxxxC). (1.3)

The partition function ensures that the distribution sums to 1. As a special
parametrization, a probability distribution which takes the form of Equation 1.4
is known as a Gibbs distribution:

p(xxxxxxx) =
1

Z
exp (−E(xxxxxxx)/T ) =

1

Z
exp

(
− 1

T

∑

C∈C

ψC(xxxxxxxC)

)
(1.4)

where E is called the energy function, ψC are some potential functions and T
is a parameter called the temperature (with T > 0). All the MRFs seen in this
thesis will follow a Gibbs distribution.

An equivalent definition for UGMs is possible due to the Hammersley-Clifford
theorem (Hammersley and Peter, 1971). A set of random variables XXXXXXX, defined
such that: {

p(xxxxxxx) > 0, for all set of realizations XXXXXXX = xxxxxxx,

p(xs|xxxxxxxS\{s}) = p(xs|xNs
), ∀s ∈ S, (1.5)

forms an UGM or MRF, with respect to the neighborhood N . The MRF defini-
tion of Equation 1.5 is called the full conditional definition. The Hammersley-
Clifford theorem proves that the definitions of Equations 1.4 and 1.5 are equiv-
alent. It then appears that the conditional independence property (Markov
property) for UGMs is simpler than for DGMs. A random variable at site s,
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Chapter 1. Main concepts in probabilistic modeling

given the realizations of the random variables located in its neighborhood Ns, is
conditionally independent from all the remaining random variables (i.e., from
all the vertices in S \ Ns).

Sampling realizations from UGMs is not as straightforward as for DGMs.
Except from few exceptions where sampling can be done without approxima-
tions (Stoehr, 2017), Markov Chain Monte Carlo (MCMC) approaches are the
most popular way for this task. The Gibbs sampler is a widely used algorithm
to sample from UGMs. It belongs to the MCMC approaches and is a special
case of the Metropolis-Hastings algorithm (S. Geman and D. Geman, 1984).
The Gibbs sampler relies on the full conditional probabilities and generates a
Markov chain of samples which is proved to converge to the joint distribution.
The Gibbs sampler is interesting when samples from the joint distribution can-
not be directly drawn, as it is the case in general. The algorithm is given in
Algorithm A.1.

Extensions of the Gibbs sampler algorithm are an active research topic, no-
table examples are the chromatic Gibbs sampler (Gonzalez et al., 2011) or
the blocked Gibbs sampler (Brown et al., 2019). Another extension for the
Gibbs sampler consists in improving the exploration of the modes of the joint
distribution using tempered transitions (Salakhutdinov, 2009). Lastly, in the
particular case of Gaussian Markov Random Fields studied in Chapter 2, sam-
pling can be done in a single iteration of a fully-blocked Gibbs sampler or a
single sampling from a standard normal distribution followed by Fourier-based
transformations (Rue and Held, 2005).

Remark: The notions of trees and chains also exist for UGMs, they will
not be mentioned in this chapter for brevity.

Remark: In practice, many models, such as those studied in this thesis,
have both directed and undirected edges. In such cases, the associated proba-
bility distribution, the parameter estimation process and the inference process
for these mixed models will straightforwardly follow either from the DGM the-
ory or UGM theory.

Remark: Note that Factor Graphs (Frey, 2003) are a popular kind of graphi-
cal models that aims at unifying UGMs and DGMs. Factor Graphs are however
out of the scope of this thesis.

1.3. Inference in probabilistic models

Inference in a probabilistic model can refer to several closely related computa-
tional tasks:

• Computing a marginal distribution p(xxxxxxxA), A ⊂ S.

• Computing a conditional distribution p(xxxxxxxA|xxxxxxxB), A ⊂ S, B ⊂ S and A 6=
B.
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1.3. Inference in probabilistic models

• Computing a function of a probability distribution. Two important infer-
ence problems are:

– Marginal inference2: ∀s ∈ S, x̂s = argmaxxs
p(xs).

– Maximum A Posteriori (MAP) inference: x̂xxxxxx = argmaxxxxxxxxp(xxxxxxx).

In Section 1.5.2, these two inference problems will be studied in a Bayesian
context.

Inference rapidly becomes a computationally intractable task for general
graphs, hence the need for approximate computations in order to relieve the
computational burden. Exact computations are however possible in DAGs and
is still the subject of ongoing research for more general graphs. We use the
term exact, or direct, for an inference process which benefits from exact com-
putations, and approximate, or indirect, for an inference process which requires
approximate computations. In the next sections, we first review key concepts
for exact inference, then for approximate inference.

1.3.1. Exact inference

One of the basics of exact inference is the Variable Eliminitation algorithm
which enables computing isolated marginals in arbitrary DGMs or UGMs (N. L.
Zhang and Poole, 1994) (Michael I Jordan, 2004). However in most of the
cases we are interested in several marginals and running many times the VE
algorithm becomes computationally prohibitive and a waste of resources (most
of the operations are the same throughout the instances of the algorithm).

In order to compute several marginals, the principle of the Variable Elimi-
nation algorithm is reformulated into a message-passing algorithm called Sum
Product algorithm (or Belief Propagation algorithm with summations) (Pearl,
1982) (Gormley and Eisner, 2015). The Sum Product algorithm is the basis
for exact marginal inference in undirected acyclic graphs. In the case of MAP
inference in undirected acyclic graphs, the Max Product algorithm (or Belief
Propagation with maximizations) (Loeliger, 2004) is the basic approach.

In the case of marginal inference applied to arborescences, the Sum Product
algorithm becomes equivalent to the popular Forward Backward (FB) algo-
rithm (Baum, Petrie, et al., 1970), generalized in the Upward Downward (UD)
algorithm (J.-B. Durand and Gonçalves, 2001) (Laferté et al., 2000). The FB
algorithm is the foundation to many extensions following its principles. The
FB and the UD algorithms are frequently used for inference in particular ar-
borescences: the Markov Chains and the Markov Trees that will be presented
in Section 1.6 and studied in this thesis. The FB and UD algorithms are pre-
sented respectively in Algorithm A.2 and in Algorithm 3.1. In the case of MAP
inference in arborescences, the Viterbi algorithm (Viterbi, 1967) is a popular
approach (a version of the Max Product algorithm dedicated to arborescences).
The Viterbi algorithm has been generalized to Markov Trees in (Laferté et al.,
2000).

2Also called Maximum Posterior Mode (MPM).
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Chapter 1. Main concepts in probabilistic modeling

1.3.2. Approximate inference

Approximate inference is the general approach for all the cases but those men-
tioned in the previous section. The first approach we refer to is the direct
extension of the BP algorithm to arbitrary graphs: the Loopy Belief Propaga-
tion algorithm (Gormley and Eisner, 2015). Despite being a popular approach
to approximate inference, the convergence of the Loopy Belief Propagation al-
gorithm is not guaranteed: the message massing procedure can never terminate
on arbitrary graph structures.

Variational Inference has been introduced more recently. It recasts approx-
imate inference into a deterministic optimization problem (Michael I Jordan
et al., 1999) (Lauritzen and Spiegelhalter, 1988) (L. K. Saul et al., 1996). In
this context, a probability distribution p in which inference is complex is ap-
proximated by a variational distribution q in which inference is easy (often
exact using the methods from Section 1.3.1). The optimization problem con-
sists in finding q which minimizes the reverse Kullback-Leibler (KL) divergence
between p and q. More on Variational Inference will be seen in Chapters 3 and
4. We can note that it is a very active research topic (C. Zhang et al., 2018).

Let us now mention popular approaches for approximate inference in UGMs
defined by a Gibbs distribution. Well-known approaches for the computation of
the mode of a density are the simulated annealing approaches (Kirkpatrick et
al., 1983). Serial Gibbs Simulated Annealing (SA) (S. Geman and D. Geman,
1984) is a probabilistic approach based on samplings from a Gibbs distribu-
tion (Equation 1.4) with a varying temperature to ease the exploration of the
modes of the distribution. The algorithm is theoretically guaranteed to con-
verge towards the mode of the distribution, but putting SA into practice can
be cumbersome and one can end up with an approximation of the optimum we
want to find. SA is described in Algorithm A.3. The literature on simulated
annealing approaches is large. (Delahaye et al., 2019) offers a good introduction
on the topic. The Gibbs sampler presented in Section 1.2.3, as well as other
sampling approaches, are then often part of an inference process. Additional
comments on inference will be made in Section 1.5.2.

Remark: There are other popular approaches from different subfields to
answer inference problems, in particular for MAP inference which seems more
studied for image segmentation. For example, two other main approaches are
based on linear programming (Komodakis et al., 2010) or graph-cut (Kappes
et al., 2016). However such approaches are out of scope of our work.

1.4. Parameter estimation

Either local conditional probabilities of DGMs or potential functions of UGMs
include some parameters that need to be estimated. This section is devoted to
the estimation of those parameters.

Remark: This section on parameter estimation does not cover the topic
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1.4. Parameter estimation

of learning the structure of the graphical models (Drton and Maathuis, 2017)
which is a closely related topic. We also do not mention how parameters can
be estimated in a fully-Bayesian statistics context (see Section 1.5.2).

1.4.1. Maximum Likelihood estimation

In a graph G, if the realizations of all the random variables are available, or
observed, then we say that we possess the complete data. If the realizations of
some random variables are not available, or hidden, then we say that we have
incomplete data.

Let XXXXXXX the vector of the hidden variables of the model and YYYYYYY the vector of
the observed variables. ZZZZZZZ = (XXXXXXX,YYYYYYY ) is then the vector of the completed data.
In this section, the parameters of the model are stacked into a vector θθθθθθθ, the
dependence of the distributions on the parameters will be made explicit by
using the notation p(yyyyyyy; θθθθθθθ). The likelihood of a probabilistic model is a function
of the parameters θθθθθθθ defined by:

L(θθθθθθθ; yyyyyyy) = p(yyyyyyy; θθθθθθθ). (1.6)

The Maximum Likelihood (ML) estimator seeks the vector of parameters θθθθθθθ∗

which maximizes the likelihood function. It is equivalent and often more easy
to maximize the log likelihood function, then:

θθθθθθθ∗ = argmaxθθθθθθθL(θθθθθθθ; yyyyyyy) = argmaxθθθθθθθ logL(θθθθθθθ; yyyyyyy). (1.7)

Using the ML parameters follows the intuition that the parameters which max-
imizes the probability of the observed variables are the best. The rest of this
section focuses on the ML estimation of the parameters for both DGMs and
UGMs.

1.4.2. Estimation for DGMs

Supervised parameter estimation

We talk about supervised parameter estimation when we possess the complete
data. Then, let yyyyyyy be the realizations of the random vector associated to a DGM
where all the variables are observed (complete data). The Equation 1.7 can be
used by plugging in the joint distribution of the DGM (Equation 1.1). The ML
estimation then becomes:

θθθθθθθ∗ = argmaxθθθθθθθ
∑

r∈S\S̄

p(yr)
∑

s∈S

p(ys; yyyyyyyP(s)). (1.8)

We then maximize Equation 1.8 as a function of θθθθθθθ. In some cases, it is possible
to derive a closed form solution to the ML estimation. If no closed form solution
exists one must use iterative methods such as a gradient descent or the BFGS3

algorithm to solve this numerical optimization problem (Nocedal and Wright,
2006).
3Broyden-Fletcher-Goldfarb-Shanno, the names of the main contributors to the algorithm.
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Unsupervised parameter estimation

We talk about unsupervised parameter estimation when we do not possess the
complete data. Some random variables are hidden and the ML estimation of
the parameters is more complex. Indeed, in order to plug the joint distribution
of a DGM in Equation 1.7, one must sum over all the hidden variables:

θθθθθθθ∗ = argmaxθθθθθθθL(θθθθθθθ; yyyyyyy),
= argmaxθθθθθθθ log

∑

xxxxxxx

p(xxxxxxx, yyyyyyy; θθθθθθθ). (1.9)

Because of the logarithm that ties together the parameters, maximizing Equa-
tion 1.9 is much harder than maximizing Equation 1.8. The Expectation Max-
imization (EM) algorithm (Dempster et al., 1977) is an iterative approach to
perform such a maximization in the case of hidden data. It alternates between
an E-step in charge of inferring the missing values and a M-step which performs
the actual maximization with the completed data. The EM algorithm is guar-
anteed to converge to a point of null gradient (local maximum or saddle point).
Note that the E-step is a step of probabilistic inference, and the methods seen
in Section 1.3 need to be used. The EM algorithm is given in Algorithm A.4.

1.4.3. Parameter estimation for UGMs

In general, the parameter estimation techniques for DGMs cannot be applied
to UGMs for mainly one reason: the partition function is intractable for UGMs
and computations must always be approximate. The algorithms we review here
are stochastic approximations of the previous algorithms or modified versions
of the ML estimation.

Remark: In some exceptions the partition function is tractable (see for
example (Sutton and McCallum, 2012)), then one can apply the techniques of
Section 1.4.2 to UGMs.

Stochastic versions of gradient descent

Let us first consider fully-observed models. In order to apply a gradient descent
based method to estimate the parameters θθθθθθθ, let us consider the gradient of the
log likelihood with respect to θθθθθθθ in the case of a UGM (Equation 1.2):

∇θθθθθθθ log p(yyyyyyy; θθθθθθθ) = ∇θθθθθθθ log
∏

C∈C

φC(yyyyyyyC ; θθθθθθθ)−∇θθθθθθθ logZ(θθθθθθθ). (1.10)

It can be shown that:

∇θθθθθθθ logZ(θθθθθθθ) = Eyyyyyyy∼p(yyyyyyy;θθθθθθθ)∇θθθθθθθ log
∏

C∈C

φC(yyyyyyyC ; θθθθθθθ). (1.11)

This identity is used in several algorithms using MCMC approximations to
compute the expectation in the gradient expression. A popular example is the

32



1.5. Probabilistic models for image segmentation

Stochastic Maximum Likelihood (Younes, 1999), also discovered as Persistent
Contrastive Divergence (Tieleman, 2008).

Identity 1.11 can also be used to approximate the untractable summation
which appears in the case of ML estimation with hidden variables (see Equa-
tion 1.9). This then extends the Stochastic Maximum Likelihood and Persistent
Contrastive Divergence algorithms to the case of incomplete data.

Pseudolikelihood

One way to avoid the problem of the partition function is to change the objective
function so that there is no more partition function to compute. This concept
is known as the pseudolikelihood approach.

There exists many different pseudolikelihoods. A popular choice introduced
in (J. Besag, 1975) is the pseudolikelihood where the joint distribution is a
simple product of the factors:

PL(θθθθθθθ; yyyyyyy) = log
∏

c∈C

φC(yyyyyyyC). (1.12)

The difficulty involved by the partition function is now discarded and one may
continue the optimization with the approaches from Section 1.4.2.

Alternative forms for the EM algorithm

In the EM algorithm introduced in Section 1.4.2. Both the inference (E) and
maximization (M) step can be complex for UGMs for all the reasons we have
given so far. Moreover the other well-known limitations of the EM algorithm,
such as its dependence to initial parameters and slow convergence, has mo-
tivated the development of stochastic versions of the EM algorithm (Celeux
et al., 1995). Among them, the Stochastic Expectation Maximization (SEM)
(Celeux, 1985) algorithm will be studied in this thesis. Its principle is to replace
the E-step by sampled realizations of the hidden variables to complete the data.
The algorithm is not proved to converge, however it empirically behaves well
in practice. Algorithm A.5 describes the SEM algorithm.

When the inference step (E) is intractable, another common idea is to approx-
imate this step with variational approximations of the EM algorithm (Michael I
Jordan et al., 1999).

Remark: Stochastic versions of the EM algorithm can also be applied to
DGMs.

1.5. Probabilistic models for image segmentation

1.5.1. Definitions and context

In this section we give the general setting in which probabilistic graphical mod-
els can be used for image segmentation.
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For each pixel of the image, the associated graph will contain two vertices,
both at site s. An observed variable Ys is associated with the first vertice and
its realization is taken equal to the pixel value at site s. A hidden variable Xs is
associated with the second vertice, Xs has value in the set of classes. The total
number of sites is also the number of pixels and is taken equal to N . Then,
more formally, XXXXXXX is a hidden process with value in ΩΩΩΩΩΩΩN the set of classes of the
image, XXXXXXX forms the segmented image. YYYYYYY is the observed process with value in
R

N or Z
N depending on the pixel values.

The setting we have just described is the foundation for many works in image
segmentation. In particular, Hidden Markov Models described in Section 1.6
are popular for image segmentation.

1.5.2. Bayesian image segmentation

In this section we focus our development on Bayesian inference applied to the
context of image segmentation. We are interested in the posterior distribution
of XXXXXXX given the observed process YYYYYYY . Using Bayes theorem:

p(xxxxxxx|yyyyyyy) ∝ p(xxxxxxx)p(yyyyyyy|xxxxxxx), (1.13)

where p(xxxxxxx) is called the prior distribution and p(yyyyyyy|xxxxxxx) is the conditional likeli-
hood distribution.

Once the posterior distribution is computed, a decision needs to be taken
to produce the actual segmentation. This is done in the context of Bayes de-
cision theory. We first need to define a loss function L which measures the
compatibility of an estimation with the hidden truth. In the case of image
segmentation, L measures the compatibility between the estimated segmenta-
tion x̂xxxxxx and the hidden class image xxxxxxx. The optimal estimation, having observed
YYYYYYY = yyyyyyy, is defined to be that minimizing the posterior expected loss, L̃(x̂xxxxxx|yyyyyyy):

L̃(x̂xxxxxx|yyyyyyy) = Exxxxxxx∼p(xxxxxxx|yyyyyyy)[L(x̂xxxxxx, xxxxxxx)] =
∑

xxxxxxx

p(xxxxxxx|yyyyyyy)L(x̂xxxxxx, xxxxxxx). (1.14)

One common loss function, not restricted to image processing, is the zero-one
loss function defined by:

L1(x̂xxxxxx, xxxxxxx) =

{
0, if x̂xxxxxx = xxxxxxx,

1, otherwise.
(1.15)

It can be shown that the estimation which minimizes L̃(x̂xxxxxx|yyyyyyy) when L = L1, is
the Maximum A Posteriori (MAP) (S. Geman and D. Geman, 1984) estimate,
i.e.:

x̂xxxxxxMAP = argmaxxxxxxxxp(xxxxxxx|yyyyyyy). (1.16)

Another loss function, less widely known, aims at minimizing the number of
misclassifications:

L2(x̂xxxxxx, xxxxxxx) =
∑

s∈S

(1− δx̂s
xs
), (1.17)

34



1.6. Hidden Markov Models

where δx̂s
xs

the Kronecker function. This loss function leads to the Maximum
Posterior Mode (MPM) (Marroquin et al., 1987) estimator, also known as the
Marginal MAP estimator (Liu and Ihler, 2013):

∀s ∈ S, x̂MPM
s = argmaxxs

p(xs|yyyyyyy). (1.18)

Algorithm A.6 from (Marroquin et al., 1987) offers an approach for the MPM
computation.

Remark: The Bayesian framework of estimation (centered around the use of
prior distributions) still holds in a more general setting than image segmenta-
tion. In particular, prior distributions can be used over the model parameters
themselves in the case of fully Bayesian parameter estimation, which is not
covered in this thesis. See (Zoubin Ghahramani, 2002) for an introduction
and (Morris et al., 1997) (Dobigeon et al., 2009) (Vacar and Giovannelli, 2019)
for study examples.

1.5.3. Discriminative and generative models

We conclude this section by noting the difference between discriminative and
generative modeling (Minka, 2005) (Sutton and McCallum, 2012).

In the case of image segmentation, computing the posterior distribution
p(xxxxxxx|yyyyyyy) is the end goal in order to effectively segment the image. There are
two ways of doing so. On the one hand, one can directly model the posterior
distribution p(xxxxxxx|yyyyyyy), this is called discriminative modeling. Chapter 4 of the
thesis deals with such a modeling approach. On the other hand, one can model
the joint distribution p(xxxxxxx, yyyyyyy) first, which is, by Bayes rule, the product of a
prior p(xxxxxxx) and a conditional likelihood p(yyyyyyy|xxxxxxx). The posterior is then obtained
with Equation 1.13. This is called generative modeling and Chapters 2 and 3
study generative models.

While it is hard to predict which type of modeling will perform best on a
given dataset, it is commonly admitted that generative modeling is more suited
to unlabeled datasets or small datasets where modeling a prior can be beneficial
and have a regularizing effect. However, on larger annotated datasets, discrim-
inative models tend to perform more accurately (Ng and Michael I Jordan,
2002).

1.6. Hidden Markov Models

Hidden Markov Models (HMMs) (Baum and Petrie, 1966) are the most popular
type of probabilistic graphical models. HMMs are generative models which
relate to the Bayesian formulation with a prior and a conditional likelihood
presented in Section 1.5.2. The image processing context is generalized here.
HMMs are a central element of this thesis, and this section is dedicated to these
models and some of their extensions.
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X1

Y1

Figure 1.4.: Graphical model corresponding to a HMC with Independent Noise
(HMC-IN) for N = 5. X1 is the root node. The white circled ver-
tices are associated with the hidden process XXXXXXX. The gray squared
vertices correspond to the variables from the observed process YYYYYYY .

1.6.1. Main families of HMMs

Hidden Markov Chains

A Hidden Markov Chain (HMC) (Baum and Petrie, 1966) is a probabilistic
model particularly suited for sequence modeling. The associated graph G is
here a directed chain, called, in this context, Markov Chain (MC). Let XXXXXXX =
(X1, X2, . . . , XN ) be a random vector or process. More precisely we have that
XXXXXXX is a MC if:

p(xs|xs−1, . . . , x1) = p(xs|xs−1), ∀s ∈ {2, . . . , N}. (1.19)

Equation 1.19 means that the realization of the random variable at site s, given
the preceding realizations in the chain, depends only on the realization of the
random variable at site s− 14. Using the conditioning property, one can show
that the joint distribution of the MC XXXXXXX is then:

p(xxxxxxx) = p(x1)p(x2|x1) . . . p(xN |xN−1). (1.20)

Note that in our work we will consider MCs that are homogeneous: p(xs|xs−1)
is the same ∀s ∈ {2, . . . , N}, see (Brémaud, 2017) for more details. A MC is
then defined by a root distribution and transition distribution.

In the HMC model, XXXXXXX then is a MC whose variables are hidden in which
we want to perform an inference task (p(xxxxxxx) is the prior). It is associated to an
observed process YYYYYYY whose variables are taken, in the most common case, inde-
pendent given xxxxxxx (p(yyyyyyy|xxxxxxx) is the conditional likelihood) and depending only of the
hidden realization at the same site. This is the hypothesis of the Independent
Noise (IN). The joint distribution (XXXXXXX,YYYYYYY ) of such HMC-IN is then:

p(xxxxxxx, yyyyyyy) = p(x1)
∏

s∈{2,...,N}

p(xs|xs−1)
∏

s∈{1,...,N}

p(ys|xs). (1.21)

In HMCs, inference is directly computed with the Forward Backward (FB)
algorithm. In an unsupervised context, using the EM algorithm with FB at the
E-step is known as the Baum Welch algorithm (Jelinek et al., 1975). Figure 1.4
illustrates a HMC with Independent Noise.

The HMC has been used in a wide variety of contexts, famous ones are gene
prediction (Stanke et al., 2006), speech processing (Toda, 2011) or stock option
4s− 1 is the father node of s in the associated gaphical representation, see Figure 1.4.
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forecasting (Gupta and Dhingra, 2012). In Chapter 5 of this thesis, we develop
a model of HMC for image processing.

Hidden Markov Trees

We focus on two particular arborescence graphs which are known as Markov
Trees (MTs) (Laferté et al., 2000):

• Dyadic MT: all the vertices of the arborescence have two sons (except on
the last layer).

• Quadtree MT: all the vertices of the arborescence have four sons (except
on the last layer).

Let S = {S1, . . . ,SL} be the layer-wise subdivision of the set of vertices. S1 is
the first layer containing only one vertice, the root r. Dyadic or Quadtree MTs
then have similar factorizations to MCs. Let XXXXXXX be a MT, then, ∀s ∈ S̄:

p(xs|xxxxxxxs′∈S,s′ 6=s) = p(xs|xP(s)). (1.22)

Equation 1.22 is the direct extension of Equation 1.19 to general arborescences.
Recall that in arborescences, the set of parent of a vertice is either empty or
contains only one vertice denoted s−. The joint distribution of a MT XXXXXXX is then:

p(xxxxxxx) = p(xr)
∏

s∈S̄

p(xs|xs−). (1.23)

Hidden Markov Trees (HMTs) are similarly defined as HMCs by a root dis-
tribution and a transition distribution. In a HMT, the hidden process XXXXXXX has
MT joint distribution. The conditional likelihood distribution implying the
observed process YYYYYYY can be freely formed, but in the most popular case, it is
taken as independent given XXXXXXX realizations and depending only on realizations
of XXXXXXX at the same site (case of Independent Noise as in Section 1.6.1). The joint
distribution (XXXXXXX,YYYYYYY ) for such a HMT-IN is then:

p(xxxxxxx, yyyyyyy) = p(xr)
∏

s∈S̄

p(xs|xs−)
∏

s∈S

p(ys|xs). (1.24)

Figure 1.5 shows the graphical model of a dyadic HMT-IN.
HMTs and derived models, known as Latent Tree Models, are popular in

multi-resolution analysis (Kinebuchi et al., 2001) (J.-B. Durand and Gonçalves,
2001) and in phylogenetic analysis (Mourad et al., 2013) (Zwiernik, 2015). To
a lesser extent, HMTs have also been used for image processing (Laferté et
al., 2000) (Hanzouli et al., 2013). Models based on HMTs are presented in
Chapter 3 of this thesis.

Hidden Markov Fields

Hidden Markov Fields (HMFs) (S. Z. Li, 2009) are UGMs but they are con-
structed as the other previously described HMMs. In HMFs, the hidden process
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Ys

Xs

Xr

Figure 1.5.: Graphical model corresponding to a dyadic HMT with Independent
Noise (HMT-IN) for L = 4. Xr is the root node. The white
circled vertices are associated with the hidden process XXXXXXX. The
gray squared vertices correspond to the variables from the observed
process YYYYYYY .

Y1

X1

Figure 1.6.: Graphical model corresponding to a HMF with Independent Noise
(HMF-IN) for N = 5. The white circled vertices are associated
with the hidden process XXXXXXX. The gray squared vertices correspond
to the variables from the observed process YYYYYYY .

XXXXXXX has the joint distribution of a Markov Field (Section 1.2.3). As an example,
using the same conditional likelihood as before, i.e, an Independent Noise, we
get the classical joint distribution (XXXXXXX,YYYYYYY ) of a HMF with Potts prior (J. Besag,
1986)5 and independent Gaussian noise:

p(xxxxxxx, yyyyyyy) =
1

Z
exp



∑

s∈S

∑

s′∈
Ns∪{s}

βδxs′
xs

+
∑

s∈S

[
log
(√

2πσxs

)
− (ys − µxs

)2

2σ2
xs

]

 .

(1.25)
In the last equation, δ is the Kronecker function and β, µ and σ are the model
parameters (the parameters will be seen in depth in Chapter 2). The graphical
model of a HMF with Independent Noise can be seen in Figure 1.6.

From the pioneering works of (S. Geman and D. Geman, 1984) and (Marro-
quin et al., 1987), HMFs have been used a lot in image processing fields such

5The Potts and Ising (J. E. Besag, 1972) models are equivalent when the hidden stochastic
process is binary valued.
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as image segmentation (Schmitt et al., 1996) (Mignotte et al., 1999) (Kato and
Zerubia, 2012) or computer vision (Wang et al., 2013).

1.6.2. Pairwise and Triplet extensions

Pairwise HMMs make the hypothesis that the joint distribution (XXXXXXX,YYYYYYY ) of the
HMM is a Markov Chain/Markov Tree/Markov Field.

For example, considering chains, making the Pairwise Markov Chain assump-
tion leads us to the general joint distribution of a Pairwise Markov Chain:

p(xxxxxxx, yyyyyyy) = p(x1, y1)
∏

s∈{2,...,N}

p(xs, ys|xs−1, ys−1) (1.26)

It appears that this equation is a strict generalization of the classic HMC (Equa-
tion 1.21). This means that more correlations between random variables can be
modeled. In particular, XXXXXXX is not restricted to be a Markov process anymore.
Similar observations can be made in the case of Pairwise Markov Trees and
Pairwise Markov Fields.

Triplet HMMs go one step further by introducing a third auxiliary random
process VVVVVVV with values in ΛN . We then make the assumption that the triplet
(XXXXXXX,VVVVVVV , YYYYYYY ) is a Markov Chain/Markov Tree/Markov Field. Again, in the case
of the chains, a Triplet Markov Chain has for joint distribution:

p(xxxxxxx, vvvvvvv, yyyyyyy) = p(x1, v1, y1)
∏

s∈{2,...,N}

p(xs, vs, ys|xs−1, vs−1, ys−1) (1.27)

Again, the greater generality of TMCs over HMCs (Equation 1.21) but also
over PMCs (Equation 1.27) is to be noted. In particular, neither XXXXXXX, VVVVVVV , (YYYYYYY , VVVVVVV ),
(XXXXXXX,YYYYYYY ) nor (XXXXXXX,VVVVVVV ) is necessarily a Markov process anymore.

New pairwise models are developed in Chapter 2 of the thesis, while devel-
opments around triplet models can be found in Chapter 3. In the literature,
applications of pairwise and triplet HMMs are much less numerous, but they
exhibit each time better performances than the classical HMMs (Pieczynski,
Hulard, et al., 2003) (Pieczynski and Tebbache, 2000) (Courbot, Mazet, et al.,
2019) (Hanzouli-Ben Salah et al., 2017) (Gorynin, Monfrini, et al., 2017) (Cour-
bot, Monfrini, et al., 2018) (Lanchantin et al., 2011) (Gorynin, Gangloff, et al.,
2018).

Remark: Auxiliary random variables are central to deep probabilistic models.
Triplet Markov Trees and Spatial Bayes Networks developed in Chapter 3 can
be seen as belonging to this family of models. Other deep probabilistic models
will not be studied in this thesis and we refer the reader to (Goodfellow et al.,
2016) for an in-depth overview.

1.7. Conclusion

Probabilistic graphical models are powerful approaches to express direct de-
pendencies within a set of random variables capable of modeling a complex
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phenomenon. Using graphical models is a way to control the expressiveness of
the direct dependencies between random variables and the tractability of the
models thanks to the conditional independencies. A successful model is based
on two important tasks: the estimation of the parameters of the probability
distribution and the inference task. Such tasks have been introduced in this
first chapter. As we have seen, it is little to say that there is a wide variety of
approaches to solve these challenges and put into practice probabilistic models.

Our presentation also focused on probabilistic graphical models which are
very propular in the signal processing field: the Hidden Markov Models. Indeed,
the latter offer a good compromise between the dependencies they introduce
and their computational performances. HMMs are a family of models which is
central in this thesis.

Many of our contributions presented in the next chapters are new probabilis-
tic models that enrich the dependencies between the random variables. Our
goal is to model more complex phenomena to address problems from real world
applications.

40



Chapter 2.

Gaussian Pairwise Markov Fields

Contents

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . 42

2.2. Gaussian Pairwise Markov Fields . . . . . . . . . 44

2.2.1. Model definition . . . . . . . . . . . . . . . . . . 44

2.2.2. Description of the GPMF distribution . . . . . . 45

2.2.3. The GPMF conditional likelihood . . . . . . . . . 46

2.2.4. The model parameters . . . . . . . . . . . . . . 47

2.3. Related models: the PMF model family . . . . . 48

2.4. Parameter estimation . . . . . . . . . . . . . . . . 50

2.4.1. Stochastic Parameter Estimation . . . . . . . . . 50

2.5. Experiments and Results . . . . . . . . . . . . . . 53

2.5.1. Improved sampling with Tempered-Gibbs sampler 54

2.5.2. Supervised segmentation of semi-real images with
the PMF models . . . . . . . . . . . . . . . . . 57

2.5.3. Unsupervised segmentation on semi-real images . 57

2.5.4. On real world images . . . . . . . . . . . . . . . 60

2.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . 63

41



Chapter 2. Gaussian Pairwise Markov Fields

2.1. Introduction

Probabilistic models for spatially correlated random variables

This chapter studies the task of unsupervised image segmentation, in the con-
text of Bayesian image segmentation presented in Section 1.5.2, when strong
spatially correlated noise corrupts the image. In this case, classical approaches
reach their limits and new dedicated models need to be considered to improve
the accuracy of the segmentation. We will focus on Pairwise Markov Fields
(PMFs) presented in Section 1.6.2. Such models relax the Markovian assump-
tion on the hidden process, which enables the modeling of more complex corre-
lations, while keeping Bayesian inference easily available. Figure 2.1 depicts the
undirected graphical models of the classical HMF model and of several PMF
models.

We introduce Gaussian Random Fields (GRFs) and Gaussian Markov Ran-
dom Fields (GMRFs) (Rue and Held, 2005) which are powerful probabilistic
models capable of dealing with a large variety of correlated random variables
and especially with long-range spatial correlations between pixels in images.
GRFs and GMRFs are Undirected Graphical Models (UGMs) defined with re-
spect to a graph G. Let XXXXXXX = (X1, . . . , Xn)

T , n < ∞, XXXXXXX is a GRF with mean
µµµµµµµ (a (n× 1) vector) and Symmetric Positive-Definite (SPD) covariance matrix
Σ (a (n × n) matrix), if, and only if, its density is a multivariate Gaussian
function:

p(xxxxxxx) = (2π)−
n
2 det (Σ)

− 1
2 exp

(
−1

2
(xxxxxxx− µµµµµµµ)Σ−1(xxxxxxx− µµµµµµµ)

)
. (2.1)

While the graphical representation of a GRF is a fully connected graph, a
conditional independence assumption (Markov property) is made to define a
GMRF. The latter is defined as a GRF with respect to G but in which a vertice
s is only connected to the vertices of a subsetNs ⊂ S called the neighborhood of
s. The associated random variable, Xs, is then independent of Xs′ , ∀s′ ∈ S\Ns,
given the realizations of Xs′′ , ∀s′′ ∈ Ns. In such case, Qs′,s′′ = 0 with Q = Σ−1,
where Q is called the precision matrix.

Then formally, the density of a GMRF with mean µµµµµµµ and precision matrix Q
is given by:

p(xxxxxxx) = (2π)−
n
2 det

(
Q−1

)− 1
2 exp

(
−1

2
(xxxxxxx− µµµµµµµ)Q(xxxxxxx− µµµµµµµ)

)
. (2.2)

The conditional independence assumption is a way to alleviate the computa-
tional cost of the probabilistic model. Indeed, smaller neighborhoods (few edges
in G) lead to a sparse Q which makes computations based on Equation 2.2 much
easier. Appendix B recalls the main definitions and properties of GRFs and
GMRFs.

Researches have been carried for regression and classification using condi-
tional GMRF, i.e., these studies consider a discriminative probabilistic model
(Radosavljevic et al., 2010) (Vemulapalli et al., 2016) (Petrović et al., 2019).
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However, to the best of our knowledge, there exists no literature on generative
probabilistic models using GMRF for image segmentation. This chapter aims
at proposing such a new probabilistic modelization. Indeed, generative models
might be advantageous when no training dataset is available, for example, in
the case of unsupervised image segmentation.

We introduce a new model, called Gaussian Pairwise Markov Fields (GPMF),
which belongs to the PMF family. It combines a generalization of the classi-
cal HMF model and the ability to model strongly correlated variables as a
GMRF, while preserving tractability. First, we show that the PMF hypothe-
sis is a natural way to answer the problem of modeling correlated noise and
introducing long correlations by using the GMRF model as conditional likeli-
hood. Secondly, the new model introduces depencies between the observed and
latent processes which generalize the usual Markovianity hypothesis of the hid-
den process. Besides, we handle the unsupervised image segmentation problem
which requires a crucial step of parameter estimation. To this end, we propose
a stochastic parameter estimation algorithm for the PMF models. In the case
of unsupervised image segmentation, the GPMF model performs better than
other classical unsupervised approaches.

Remark: Pairwise Markov Field models have been defined independently
in (Dimitrova and Kocarev, 2018) and (Y. Park et al., 2017). However, those
works mostly focus on structure learning without latent variables (Drton and
Maathuis, 2017), which significantly modifies the work hypothesis. To the best
of our knowledge, there is no work on structure learning in Pairwise Markov
Fields with latent variables. Thus, despite similar model names, the content of
our chapter deals with a different problem since latent variables are central to
our work.

Link with image processing in vascular surgery

In the context of mCT X-rays scans of human arteries that contain a metallic
stent. These images are very noisy because of the strong artifacts caused by the
interactions between the X-rays and the metallic stent. To improve the design
of biomaterials and their implantation in the human body, it is crucial to an-
alyze, in situ, the biomaterial when it fails and when it needs to be explanted
from the patient body. In such analyses, we need to precisely segment, the
stent, the organic material and the background despite the strong noise in the
image. The scarcity of such data requires the use of an unsupervised approach
as developed in this chapter. In this image processing problem, the stent arti-
facts are modeled as a correlated noise. An automatization of the segmentation
process could help processing more data and create enhanced inputs for biome-
chanical studies (such as 3D meshes) carried to increase the knowledge about
the vascular diseases.

In Section 2.5.4, we present the application of the new probabilitic model
dedicated to handle correlated noise in the task of unsupervised segmentation
of mCT images in presence of metallic artifacts.
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XXXXXXX

YYYYYYY

(a) HMF-IN

XXXXXXX

YYYYYYY

(b) PMF

XXXXXXX

YYYYYYY

(c) PMF-UN

XXXXXXX

YYYYYYY

(d) HMF-CN

Figure 2.1.: Graphical Models of the classical Hidden Markov Field with Inde-
pendent Noise (HMF-IN) (a), the Pairwise Markov Field (PMF)
with full direct dependencies (b), the Pairwise Markov Field-
Uncorrelated Noise (PMF-UN) (c), and the Hidden Markov Field-
Correlated Noise (HMF-CN) (d). Within the PMF models, (XXXXXXX,YYYYYYY )
is the Markov process. GPMFs belongs to the PMF family, as
well as PMFs-UN and HMFs-CN which are intermediate cases be-
tween the HMF and PMF (with full direct dependencies) models
in terms of direct dependencies. PMFs-UN and HMFs-CN will be
introduced and studied in Section 2.3. We note the numerous cor-
relations that can be introduced between random variables when
the pairwise assumption holds.

2.2. Gaussian Pairwise Markov Fields

2.2.1. Model definition

XXXXXXX = (X1, . . . , XN ) is a discrete-valued random vector with values in ΩN , with
Ω = (ω0, . . . , ωK−1). YYYYYYY = (Y1, . . . , YN ) is a real-valued random vector with
values in R

N . (XXXXXXX,YYYYYYY ) is a stationary Markov process on a graph, whose vertices
are indexed by S such that |S| = N . The Markov process is defined with
respect to the neighborhood N and we have N = (NX ∪ N Y ) ⊂ S. Indeed,
in general, neighborhoods are different if we consider the hidden or observed
variables, thus, a neighborhood can be decomposed on a part linked to the
hidden variables (NX) and another to the observed variables (N Y ).

We use the notation p̃ to refer to factors (or unnormalized probability distri-
butions, see Section 1.2.3). The classical Hidden Markov Field model with In-
dependent Noise (HMF-IN) is defined by the joint distribution of Equation 1.25
that we rewrite as:

p(xxxxxxx, yyyyyyy) ∝
∏

s∈S

p̃(xs|xxxxxxxNX
s
)p̃(ys|xs). (2.3)

The undirected graphical model of a HMF-IN is given in Figure 2.1a.
The PMF family of models generalizes the HMF-IN model as mentioned in

Section 1.6.2. Recall that in the PMF family, the assumption of (XXXXXXX,YYYYYYY ) being
a Markov field is made. Note that this implies that XXXXXXX given some realizations
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yyyyyyy of YYYYYYY is a Markov field. A PMF is defined by the distribution:

p(xxxxxxx, yyyyyyy) ∝
∏

s∈S

p̃(xs, ys|xxxxxxxNX
s
, yyyyyyyNY

s
), (2.4)

The greater generality of the pairwise fields hypothesis enables the modeling
of more complex correlations between variables. Indeed, neither XXXXXXX nor YYYYYYY is
necessarily Markovian.

Following the notations of Section 1.5, the XXXXXXX are the hidden variables, and
the YYYYYYY are the observed variables. The new GPMF model then offers new
modelization properties, notably, it is capable of handling Gaussian spatially
correlated noise. Moreover, in the context of Bayesian image segmentation, an
estimation of the hidden truth will be done under the MAP criterion (Equa-
tion 1.16) and the MPM criterion (Equation 1.18). The MAP estimator is here
classicaly estimated with the Simulated Annealing (Algorithm A.3). The MPM
will be approximated by the Marroquin algorithm (Algorithm A.6) (Marroquin
et al., 1987) using the local expression of the posterior Markov field:

p(xs|xxxxxxxNX
s
, yyyyyyy) =

p̃(xs, ys|xxxxxxxNX
s
, yyyyyyyNY

s
)∑

x′s
p̃(x′s, ys|xxxxxxxNX

s
, yyyyyyyNY

s
)
. (2.5)

2.2.2. Description of the GPMF distribution

In our new Gaussian Pairwise Markov Field (GPMF) model we define the factor
of Equation 2.4 by, ∀s ∈ S:

p̃(xs, ys|xxxxxxxNX
s
, yyyyyyyNY

s
) = exp

(
−
(
2
∑

s′∈NX
s

V (xs, ys) +
1

2
Qs,sȳ

2
s

+
∑

s′∈NY
s

Qs,s′ ȳsȳs′
))

,

(2.6)

where we denote ȳs = ys − µxs
and the potential function V is given by:

V (xs, ys) = −δxs′
xs
β

(
1− 1

2
(ȳs − ȳs′)2

)
, (2.7)

with δxs′
xs the Kronecker delta function. Equation 2.6 is parametrized by a gran-

ularity parameter β, spatially varying means µxs
, and a precision matrix Q.

These model parameters are detailed in Section 2.2.4.

Remark: The potential function of Equation 2.7 can be seen as an enhanced
Potts potential (S. Z. Li, 2009) (Pereyra et al., 2013) where the granularity
coefficient β is adjusted to the observations available in the neighborhood of
each site.
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2.2.3. The GPMF conditional likelihood

The local expression of the Pairwise Markov Field of Equation 2.4 derives from
the following joint Gibbs distribution (see Appendix C.1 for a proof):

p(xxxxxxx, yyyyyyy) =
1

Z
exp

(
− E(xxxxxxx, yyyyyyy)

)
, (2.8)

where E(xxxxxxx, yyyyyyy) is the joint energy and Z is the normalization constant. It can
be shown that:

E(xxxxxxx, yyyyyyy) =
∑

s∈S

∑

s′∈
NX

s ∪{s}

[
− δxs′

xs
β

(
1− 1

2
(ȳs − ȳs′)2

)]

+
∑

s∈S

∑

s′∈
NY

s ∪{s}

[
1

2
Qs,s′ ȳsȳs′

]
− β

(
1− 1

2
(ȳs − ȳs)2

)
,

=
∑

s∈S

∑

s′∈
NX

s ∪{s}

−δxs′
xs
β +

∑

s∈S

∑

s′∈
NX

s ∪{s}

[
1

2
δxs′
xs
β(ȳs − ȳs′)2

]

+
∑

s∈S

∑

s′∈
NY

s ∪{s}

[
1

2
Qs,s′ ȳsȳs′

]
− β.

(2.9)

Using standard calculus rules, one can show that:

∑

s∈S

∑

s′∈
NX

s ∪{s}

1

2
δxs′
xs
β(ȳs − ȳs′)2 =

1

2
ȳyyyyyyTP ȳyyyyyy, (2.10)

where P is a matrix with elements:

Ps,s′ =





2
∑

s′∈NX
s
δ
xs′
xs β, if s = s′,

−2δxs′
xs β, if s′ ∈ NX

s ,

0 otherwise.

(2.11)

We have l = |NX |+2. Note that, P approximates a diagonally banded matrix
for two reasons. First, beyond a certain range (the NX neighborhood), all the
terms in P are null, starting from the diagonal. Second, among the remaining
terms, some are null because xs 6= xs′ . Hence, with the restriction β ∈ R

∗
+, P

has the property of diagonal dominance which makes P a SPD matrix. If Q
is also a SPD matrix, R = P + Q is a SPD matrix1. The energy can then be

1The conditions on β and Q for the SPDness of R are respected, see Section 2.2.4.
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written:

E(xxxxxxx, yyyyyyy) =
∑

(s,s′)∈S2

[
1

2
Ps,s′ ȳsȳs′

]
+

∑

(s,s′)∈S2

[
1

2
Qs,s′ ȳsȳs′

]

−
∑

s∈S

∑

s′∈
NX

s ∪{s}

δxs′
xs
β,

=
∑

(s,s′)∈S2

[
1

2
Rs,s′ ȳȳs′

]
−
∑

s∈S

∑

s′∈
NX

s ∪{s}

δxs′
xs
β.

(2.12)

The last term of the energy gets canceled between the denominator and the
numerator in Equation (3). Using the result of the integral of the multivariate
Gaussian, we finally have:

p(yyyyyyy|xxxxxxx) = 1√
(2π)Ndet(R−1)

exp

(
−1

2
ȳyyyyyyTRȳyyyyyy

)
, (2.13)

which is the density of a Gaussian Markov Random Field (GMRF) with non-
stationary mean µµµµµµµxxxxxxx and precision matrix R = P + Q (Cressie and Verzelen,
2008) (Rue and Held, 2005). R corresponds to the precision matrix Q which is
perturbed by P .

While we need to restrict β ∈ R
∗
+, typical values of β are much smaller than 1.

Hence, in practice, the non-zero entries in P are much smaller than the entries
of Q at the same site. Then, one assumes R = P + Q ≈ Q. Since R is the
precision matrix of a GMRF, it is sparse and so is Q. This approximation is the
foundation for the parameter estimation procedure we propose, see Section 2.4.

2.2.4. The model parameters

We now detail the model parameters introduced in the previous section. The
non-stationary mean vector µµµµµµµ, associated with the GMRF, is dependent on xxxxxxx,
the realizations of the field XXXXXXX, such that ∀s ∈ S, µs = µxs

∈ R.
β ∈ R

∗
+ is a coefficient whose role is similar to the granularity parameter in

a classic Potts model (Pereyra et al., 2013).
Q is a SPD matrix which is approximated to be the precision matrix of the

GMRF defined by the conditional likelihood, i.e., R ≈ Q, as explained in Sec-
tion 2.2.3. This approximation leads to a much simpler parameter estimation
procedure.

In order to use computationally efficient spectral methods for matrix ma-
nipulations, we also make a periodic boundary assumption. A detailed presen-
tation of the periodic boundary assumption and its consequences is given in
Appendix B.2. Then Q is a block-circulant matrix with circulant blocks whose
inverse is the covariance matrix Σ = Q−1. Σ is defined as a stationary covari-
ance matrix with variance σ ∈ R

∗
+, and associated to an exponential correlation

function with decay r ∈ R
∗
+ defined in Equation B.3. The Euclidean distance

47



Chapter 2. Gaussian Pairwise Markov Fields

on the torus (whose dimensions are the size of the image) is then used as defined
in Equation B.11. The assumption of Markovianity for (XXXXXXX,YYYYYYY ), which leads to
the Markovianity of YYYYYYY given a realization of XXXXXXX, implies that Q is a sparse ma-
trix. This leads to efficient computations of the GPMF model equations.

Remark: The variance of the GMRF is stationary, as opposed to the mean
of the GMRF. The simulation of the GMRF must be carried through its condi-
tional equations (Rue and Held, 2005) (Brown et al., 2019) which are updated
at each iteration since the neighbor values change. In this context it is known
that introducing a non-stationary variance is very complex (Fuglstad et al.,
2015) and is out of scope of this thesis.

2.3. Related models: the PMF model family

In this section we continue to consider (XXXXXXX,YYYYYYY ) as a Markov process and we
present several models related to GPMF, and show that GPMF generalizes
them. Using the conditioning formula we know that:

p(xs, ys|xxxxxxxNX
s
, yyyyyyyNY

s
) =p(xs|xxxxxxxNX

s
, yyyyyyyNY

s
)p(ys|xxxxxxxNX

s
, yyyyyyyNY

s
, xs). (2.14)

Thus, the factor of Equation 2.4 can be split according to Equation 2.14 and,
after normalization, a PMF has a distribution that can be written as:

p(xxxxxxx, yyyyyyy) ∝
∏

s∈S

p̃(xs|xxxxxxxNX
s
, yyyyyyyNY

s
)p̃(ys|xxxxxxxNX

s
, yyyyyyyNY

s
, xs). (2.15)

The last equation is a way to look at PMFs which highlights their greater
generality and the more complex direct dependencies between variables than
in HMFs (compare with Equation 2.3).

Then we propose new models based on Equation 2.14, by new factors with
different conditional independence assumptions. These new intermediate mod-
els will be less general than the GPMF model but could also perform well at
a smaller computational cost. We first present some new factors and then we
use them to define models within the PMF model family with Equation 2.14.

Let us recall the Potts prior for Markov fields (Kato and Zerubia, 2012), it
is based on the following local conditional probabilities:

p̃(xs|xxxxxxxNX
s
) = exp


−2

∑

s′∈NX
s

V P (xs, xs′)


 , (2.16)

where V P is the Potts potential function (J. Besag, 1986) involving of a gran-
ularity coefficient β:

V P (xs, xs′) = −δxs′
xs
β. (2.17)

Let us also recall the independent Gaussian conditional likelihood (Kato and
Zerubia, 2012) which leads to the local conditional probabilities:

p̃(ys|xs) = exp

(
− ln(

√
2πσ)− ȳ2s

2σ2

)
. (2.18)
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We also have the strict multivariate generalization of Equation 2.18 to the
conditional GMRF likelihood in its local form (Rue and Held, 2005) (Brown
et al., 2019):

p̃(ys|xs, xxxxxxxNX
s
, yyyyyyyNY

s
) = exp

(
− ln

(√
2πVs

)
− (ys −Ms)

2

2Vs

)
, (2.19)

with

Ms = µxs
− Vs

∑

s′∈S
s′ 6=s

Qs,s′ ȳs′ and Vs = Q−1
s,s.

(2.20)

Let us introduce a generalized version of the Potts potential taking into account
the spatial context:

p̃(xs|ys, xxxxxxxNX
s
, yyyyyyyNY

s
) =

exp

(
−
(
2
∑

s′∈NX
s

−δxs′
xs
β

(
1− 1

2
(ȳs − ȳs′)2

)))
.

(2.21)

Given the local conditional probabilities stated so far, three models belonging
to the PMF family can be designed:

• Potts-Independent Noise (P-IN), with local distributions given by Equa-
tions 2.16 and 2.18, which is a HMF-IN model (Figure 2.1a). It corre-
sponds to the most popular model of HMF-IN (Kato and Zerubia, 2012)
(S. Z. Li, 2009).

• Pairwise Markov Field with Uncorrelated Noise (PMF-UN), with local
distributions given by Equations 2.21 and 2.18 (Figure 2.1c). A similar
model has already been studied in (Courbot, Mazet, et al., 2019).

• Potts-Gaussian Markov Field (P-GMRF)2, with local distributions given
by Equations 2.16 and 2.19, which belongs to the HMF-CN family (de-
picted in Figure 2.1d). We are not aware of similar models in the litera-
ture.

Table 2.1 summarizes the local distributions of these models. Note that GPMF,
PMF-UN and P-GMRF all introduce more direct dependencies than the P-IN
model. PMF-UN enhances the local distributions for the hidden variables and
P-GMRF for the observed variables. Besides, note that all these models are
submodels of the GPMF in the sense that they have direct dependencies that
are ignored with respect to the GPMF direct dependencies. The submodels all
ignore some direct dependencies that the pairwise factorization of Equation 2.4
integrates.
2Following Appendix C.1, it can be shown that the P-GMRF model arises from the joint

energy E′:

E′(xxxxxxx, yyyyyyy) =
∑

s∈S

∑

s′∈

NX
s

−δ
xs′
xs β +

∑

s∈S

∑

s′∈NY
s

[

1

2
Qs,s′ ȳsȳs′

]

.
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Model p(xs, ys|xxxxxxxNs
yyyyyyyNs

) factorizes using
P-IN Eq. 2.16 and Eq. 2.18
PMF-UN Eq. 2.21 and Eq. 2.18
P-GMRF Eq. 2.16 and Eq. 2.19

Table 2.1.: Factorization of the related intermediate models.

2.4. Parameter estimation

2.4.1. Stochastic Parameter Estimation

In this section, we develop an algorithm for the unsupervised parameter esti-
mation task in the GPMF model. Without loss of generality, in the following
development, we consider K = 2, i.e. Ω = {ω0, ω1}. Therefore the model is
described with 5 parameters. Let θθθθθθθ ∈ Θ be the vector of parameters, then:

θθθθθθθ = {µω0
, µω1

, β, σ, r} , {µ0, µ1, β, σ, r},
with Θ = R

2 × (R∗+)
3.

(2.22)

We develop a variation of the Stochastic Expectation Maximization algorithm
(Celeux, 1985), which we call Stochastic Parameter Estimation (SPE). We first
give the statistical estimators of the parameters given the complete data (xxxxxxx, yyyyyyy).

Generalization of the Linear Least Square estimator for GPMF

A generalization3 of the approach of (Derin and H. Elliott, 1987) is established
to retrieve the parameter β in the PMF family, using the Linear Least Square
(LLS) estimator (J. Friedman et al., 2001) and a completed pair of realizations
of (xxxxxxx, yyyyyyy). The derivation is done for the GPMF model and is similar for the
other models.

First note that, ∀s ∈ S:

p(xs, xxxxxxxNX
s
|yyyyyyy)

p(xxxxxxxNX
s
|yyyyyyy) = p(xs|xxxxxxxNX

s
, yyyyyyy),

=
p(xs, ys|xxxxxxxNX

s
, yyyyyyyNY

s
)∑

x′s∈Ω
p(x′s, ys|xxxxxxxNX

s
, yyyyyyyNY

s
)
,

=
p̃(xs, ys|xxxxxxxNX

s
, yyyyyyyNY

s
)∑

x′s∈Ω
p̃(x′s, ys|xxxxxxxNX

s
, yyyyyyyNY

s
)
.

(2.23)

Here the second equality has been seen in Equation 2.5. Then we have, ∀s ∈ S:

p̃(xs, ys|xxxxxxxNX
s
, yyyyyyyNY

s
)

p(xs, xxxxxxxNX
s
|yyyyyyy) =

∑
x′s
p̃(x′s, ys|xxxxxxxNX

s
, yyyyyyyNY

s
)

p(xxxxxxxNX
s
|yyyyyyy) , (2.24)

3This constitutes a generalization of the approach since we derive the estimators starting
from the posterior distributions as opposed to the prior distribution as done in the original
article.
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where we can make the same key observation as in (Derin and H. Elliott, 1987):
the right-hand side of the last equation is independent of the realization xs ∈ Ω.
Then so is the left-hand side. Then, ∀s ∈ S, ∀(xs, x′s) ∈ Ω2, we can write:

p̃(xs, ys|xxxxxxxNX
s
, yyyyyyyNY

s
)

p(xs, xxxxxxxNX
s
|yyyyyyy) =

p̃(x′s, ys|xxxxxxxNX
s
, yyyyyyyNY

s
)

p(x′s, xxxxxxxNX
s
|yyyyyyy) ,

⇐⇒
p̃(xs, ys|xxxxxxxNX

s
, yyyyyyyNY

s
)

p̃(x′s, ys|xxxxxxxNX
s
, yyyyyyyNY

s
)
=
p(xs, xxxxxxxNX

s
|yyyyyyy)

p(x′s, xxxxxxxNX
s
|yyyyyyy) .

(2.25)

Now, taking the exponential on each side, and using the expression of Equa-
tion 2.6, ∀s ∈ S, ∀(xs, x′s) ∈ Ω2:

ln

(
p(xs, xxxxxxxNX

s
|yyyyyyy)

p(x′s, xxxxxxxNX
s
|yyyyyyy)

)
+

1

2
Qs,sȳ

2
s+

∑

t∈NY
s

Qs,tȳsȳt −
1

2
Qs,s(ȳ

′
s)

2 −
∑

t∈NY
s

Qt,sȳ
′
sȳt =

2
∑

t∈NX
s

V (xs, ys)− 2
∑

t∈NX
s

V (x′s, ys),

(2.26)

where we define ȳ′s = (ys − µx′s
) which gives:

ln

(
p(xs, xxxxxxxNX

s
|yyyyyyy)

p(x′s, xxxxxxxNX
s
|yyyyyyy)

)
+

1

2
Qs,sȳ

2
s+

∑

t∈NY
s

Qs,tȳsȳt −
1

2
Qs,s(ȳ

′
s)

2 −
∑

t∈NY
s

Qt,sȳ
′
sȳt =

β

(
2
∑

t∈NX
s

δxt
xs

(
1− 1

2
(ȳs − ȳt)2

)
−

2
∑

t∈NX
s

δxt

x′s

(
1− 1

2
(ȳ′s − ȳt)2

))
.

(2.27)

The last equation can be written for each site s, ∀(xs, x′s) ∈ Ω2. All these
equations can be put in the form:

aaaaaaa = bbbbbbbβ, (2.28)

where β ∈ R
∗
+ and aaaaaaa, bbbbbbb are real vectors with N elements with generic term,

∀s ∈ S, ∀(xs, x′s) ∈ Ω2:

as = ln

(
p(xs, xxxxxxxNX

s
|yyyyyyy)

p(x′s, xxxxxxxNX
s
|yyyyyyy)

)
+

1

2
Qs,sȳ

2
s+

∑

t∈NY
s

Qs,tȳsȳt −
1

2
Qs,s(ȳ

′
s)

2 −
∑

t∈NY
s

Qt,sȳ
′
sȳt,

(2.29)
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and

bs =
∑

t∈NX
s

(
2δxt

xs
− 2δxt

x′s
+ (µx′s

− µxs
)(−ȳ′s − ȳs + 2ȳt)

)
. (2.30)

with ȳ′s = (ys − µx′s
). The probabilities p(xs, xxxxxxxNX

s
|yyyyyyy), ∀xs ∈ Ω, denote the

probability of encountering a certain configuration of hidden variables at site
s and its neighboring sites. These probabilities are independent of s and are
estimated using the frequency estimator. The LLS estimator then gives that:

β̂ = (aaaaaaaTaaaaaaa)−1aaaaaaaT bbbbbbb. (2.31)

Estimator for the other parameters

The Maximum Likelihood (ML) estimator is used to estimate µ0, µ1, σ. The
expressions are, for i ∈ {0, 1}:

µ̂i =
1∑

s∈S {xs=i}

∑

s∈S

ys {xs=i}, (2.32)

and

σ̂ =

(
1

|S|
∑

s∈S

(ys − µ̂xs
)
2

) 1
2

. (2.33)

Let us now write an estimator of the range of the exponential correlation
function, r, given the completed data. As given in (Cressie, 1992)[Section 2.4],
the correlogram of the field can be estimated by:

Ĉ(d) =
1

|D(d)|
∑

(s,s′)∈N(d)

1

σ̂2
(ys − µ̂xs

)(ys′ − µ̂xs′
), (2.34)

where D(d) is the set of pixel pairs whose Manhattan distance on the torus is
d ∈ N

+, i.e.:

D(d) = {(s, s′) ∈ S2 : min(|s1 − s′1|, L1 − |s1 − s′1|)+
min(|s2 − s′2|, L2 − |s2 − s′2|) = d}. (2.35)

where L1 and L2 are the lengths of the sides of the image we treat. The expo-
nential correlation function has the form u = e−

d
r , where u is the correlation

value, d the distance (between 0 and N) and r the range to estimate. There is
no constant in front of the exponential since the GMRF has been standardized,
so we will estimate r ∈ R

+∗ by fitting the exponential correlation function to
the data points Ĉ(d) (Bjørnstad and Falck, 2001). Using the LLS estimator
again we get:

r̂ = ((eeeeeeeT eeeeeee)−1eeeeeeeTwwwwwww)−1, (2.36)

with eeeeeeeT =
(
O . . . N

)
and wwwwwwwT =

(
log Ĉ(0) . . . log Ĉ(N)

)
.
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In the context of latent variables, we only possess the observations and not
the complete data. Thus the SPE algorithm successively repeats two steps.
The first consists in simulating an estimation of the hidden layer, x̂xxxxxx, which
is then used to form the completed data (x̂xxxxxx, yyyyyyy), to approximate the complete
data4. The second step uses the parameter estimators defined previously over
the completed data. Algorithm 2.1 details the steps of the procedure.

SPE is a variant of the Stochastic Expectation Maximization (SEM) (Celeux,
1985). SPE differs from SEM because β and r are not estimated using a ML
estimator. In SPE, at each iteration we sample from the posterior law to get
the completed data, using Gibbs sampling, run during K(t) iterations. We set
K(t) = t as proposed in (Carreira-Perpiñan and Hinton, 2005). In practice we
stopped the SPE algorithm after 30 iterations, such a number was enough for
the estimators to converge to a value.

Algorithm 2.1: The Stochastic Parameter Estimation (SPE) procedure
to train the GPMF model.
Data: θθθθθθθ0 = {β0, µ0

0, µ
0
1, σ

0, r0}, the initial set of parameters,
yyyyyyy, the observations,
x̂xxxxxx0, the initial configuration for Gibbs sampler.

Result: θ̂θθθθθθ = {β̂, µ̂0, µ̂1, σ̂, r̂}, the estimated parameters.
t← 1
while convergence is not attained do

/* Posterior sampling with a Gibbs sampler initialized at x̂xxxxxxt−1 and
run during K(t) steps */
x̂xxxxxxt ∼ p(xxxxxxx|yyyyyyy; θθθθθθθt−1)
/* Estimation */
LLS estimator for βt (Eq.2.31).
ML estimator for µt

0 and µt
1 (Eq.2.32).

ML estimator for σt (Eq.2.33).
Estimation via correlogram for rt (Eq.2.36).
θθθθθθθt ← {βt, µt

0, µ
t
1, σ

t, rt}
t← t+ 1

end

Remark: The same estimation procedure can be used to estimate the
parameters of the other related models described in Section 2.3.

2.5. Experiments and Results

This section illustrates the models from the PMF family in the practical task
of image segmentation in situations of various complexity. These models are
also compared to other methods from the literature of unsupervised image
segmentation.
4This step of inference is here carried stochastically since an exact analytical expression has

not been established.
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In this section we consider real-world images but also semi-real images. The
latter are real binary images artificially corrupted by correlated noise, in order
to test the relevance and tractability of the new model and its counterparts.
The images used come from the "1070-Binary Shape Database"5. We want
to evaluate the capacity of our model to handle correlated noise, the main
purpose of this work, but also to test the parameter estimation procedures
with the proposed SPE algorithm (Algorithm 2.1). Thus, from the natural
binary image we construct an observation with an additive correlated Gaussian
noise over the image. Such a noise is modeled by a GRF.

Beforehand, we discuss the efficiency of sampling from the probabilistic mod-
els.

2.5.1. Improved sampling with Tempered-Gibbs sampler

In this section we study more in depth the problematic of sampling from the
new distributions. Indeed, it is known that the classic Gibbs sampler procedure
(or other MCMC-based sampling approaches) suffers from a poor exploration
of the probability distribution. The algorithm is moreover dependent on the
initialization of the Gibbs sampler. Running several Gibbs sampler with differ-
ent random initializations might not be satisfactory. These issues are discussed
in (Neal, 1996) which also introduces parallel tempering. The idea of parallel
tempering is to run in parallel several Gibbs samplers at different temperatures
(in the same meaning as in Simulated Annealing (S. Geman and D. Geman,
1984) presented in Algorithm A.3). Samples from the Gibbs samplers at high
temperature can swap and become the current state of a Gibbs sampler of a
lower temperature. At high temperature the distribution is less severely peaked
and the Gibbs sampler might explore more easily this distribution. This idea
at the origin of parallel tempering is represented in Figure 2.2. This approach
is called the Tempered Gibbs sampler (T-Gibbs sampler).

In our case we use the parallel tempering approach to improve the sam-
pling procedures from the P-GMRF and GPMF models. We develop a similar
methodology as (Cho et al., 2010) where the temperature factor was used to
rescale some precise terms of the energy function rather than the whole en-
ergy. In the algorithm that we propose, the energy is tempered (multiplied by
a positive scalar inferior to one) so that, at high temperature the probability
distribution of the complex model tends towards the distribution of the P-IN
model. We follow this idea since sampling is easier in the P-IN model. This
uses the fact that the PMF models are more general than the P-IN model. To
do so we modify the potentials and make them dependent on a temperature
parameter that we explicitly add in the notation:

5https://vision.lems.brown.edu/content/available-software-and-databases
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T1 < T2 < T3 = ∞

T1

T2

T3

Figure 2.2.: The parallel tempering approach: as the temperature increases, the
probability distribution (of the family Equation 1.4) is flattened. It
ultimately tends towards an uniform probability distribution as the
temperature tends towards infinity. In a less multimodal distribu-
tion, the Gibbs sampler might more easily explore the distribution
and produce interesting samples.

• Equations 2.6 and 2.7 become:

p̃T (xs, ys|xxxxxxxNX
s
, yyyyyyyNX

s
) = exp

(
−
(
2
∑

s′∈NX
s

VT (xs, ys) +
1

2
Qs,sȳ

2
s

+
1

T

∑

s′∈NY
s

Qs,s′ ȳsȳs′
))

,

(2.37)

where

VT (xs, ys) = −δxs′
xs
β

(
1− 1

2T
(ȳs − ȳs′)2

)
. (2.38)

• Equation 2.19 becomes:

p̃T (ys|xs, xxxxxxxNX
s
, yyyyyyyNY

s
) = exp

(
− ln

(√
2πVs

)
− (ys −MT,s)

2

2Vs

)
, (2.39)

with

MT,s = µxs
− Vs
T

∑

s′∈S
s′ 6=s

Qs,s′ ȳs′ and Vs = Q−1
s,s. (2.40)

The tempered versions of the potentials we have just defined are used to sam-
ple from the GPMF and P-GMRF model, in the T-Gibbs sampler, according
to Table 2.2.

Finally, Algorithm 2.2 details the T-Gibbs sampler. In this algorithm, let
K be the number of Gibbs samplers that we run in parallel. We then have K
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Model Equations used in T-Gibbs
P-GMRF Eq. 2.16 and Eq. 2.39
GPMF Eq.2.37

Table 2.2.: Equations used to sample from the models with the T-Gibbs.

associated and ordered temperatures starting from the temperature at which
the probabilistic model is defined; which is 1 in our case. Two chains with
successive temperatures can swap with probability:

αk(xxxxxxxi+1
k , xxxxxxxi+1

k+1) = min

(
exp

(
(
1

Tk
− 1

Tk+1
)(E(xxxxxxxi+1

k )− E(xxxxxxxi+1
k+1))

)
, 1

)
. (2.41)

In our experiments, the set of temperatures is fixed, for all the PMF models,
to 16 linearly spaced temperatures ranging from 1 to 20 (Salakhutdinov, 2009).

Algorithm 2.2: Tempered Gibbs sampler

Data: {Tk}k=K
k=1 , a set of ordered temperatures,

{xxxxxxx1k}k=K
k=1 , initial states of the parallel Markov chains.

Result: xxxxxxxi1, the sample at the model temperature.
i← 1
while not converged do

/* Gibbs sampler for each chain */
for k ∈ {K, . . . , 1} do

xxxxxxxi+1
k drawn by Gibbs sampler from pTk

(xxxxxxx) with initialization at
xxxxxxxik

end

/* Test to swap chains */
for k ∈ {K − 1, . . . , 1} do

xxxxxxxi+1
k ← xxxxxxxi+1

k+1 with probability αk(xxxxxxxi+1
k , xxxxxxxi+1

k+1)

end

i← i+ 1
end

The T-Gibbs sampler can replace the classic Gibbs sampler in the Marroquin
algorithm for MPM computation (Marroquin et al., 1987).

Remark: The tempered Gibbs sampler is clearly much more computation-
ally intensive than the classical Gibbs sampler. This constitutes an important
current drawback despite the improved performance that we will study in the
next section.

Remark: An additional experiment characterizing the T-Gibbs sampler is
available in Appendix C.2.
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2.5. Experiments and Results

2.5.2. Supervised segmentation of semi-real images with the
PMF models

In this section the task of image segmentation is performed with the models
from the PMF family in the context of supervised segmentation. The pair of
complete data (xxxxxxx, yyyyyyy) is then available to estimate θ̂θθθθθθ from it (with the estimators
described in Section 2.4) before estimating x̂xxxxxx using yyyyyyy and θ̂θθθθθθ.

The PMF models are here tested in the case of supervised image segmentation
according to the two segmentation algorithms MAP, MPM. The MPM will be
computed either with the Marroquin’s algorithm (Marroquin et al., 1987) or
the T-Gibbs algorithm. We compute the average error rate for each PMF
model in the segmentation of a series of images from the dataset with varying
noise levels. Recall that the noise is modeled by the realization of a GRF for
the semi-real image formation. In the first case, the noise parameter that is
varying is ∆µ = |µ1 − µ0|, in the second case, the range r of the noise is the
variable. The experiments are summed up in Figures 2.3 and 2.4 and we now
describe and interpret the results.

First of all, we note the overall reduced error rate thanks to the new pairwise
models over the classical P-IN model. The GPMF model leading to the best
segmentations for all noise levels. This behavior illustrates the capacity for the
new model to take into account the correlated noise.

Note that in the case of varying ranges, for the two segmentation criteria (es-
pecially for the MAP), the GPMF and P-GMRF models perform worse than
the P-IN model at the smallest correlation ranges. Two reasons might explain
the phenomenon. First, the model definitions: when r → 0, the GPMF model
does not totally tend towards the P-IN model, for example. Second, conver-
gence issues with the Gibbs sampler can happen: the error rates vary impor-
tantly between the three algorithms used to compute the criteria6. The MPM
computed with T-Gibbs exhibits the best error rates for GPMF and P-GMRF
(as expected from an improved sampling procedure). Notably, in the critical
zone where r < 2, the averaged error rates are increased by several points for
these two models. This issue is, however, unlikely to appear in practical cases
when the noise is sure to be correlated, such as our applications. Indeed, we
here highlight a theoretical drawback linked with the limits of stochastic Gibbs
sampling.

2.5.3. Unsupervised segmentation on semi-real images

In this section, we address the problem of unsupervised image segmentation.
We use the semi-real images previously introduced but consider only the ob-
servations YYYYYYY = yyyyyyy. We here consider the GPMF model and the MPM criterion
computed with Marroquin’s algorithm: it is the best compromise between seg-
mentation performance and aomputation time. To compare the GPMF model,
we used three approaches developed for unsupervised image segmentation:

6MPM has already been recognized as more stable in practical applications that the MAP
estimator (Courbot, Mazet, et al., 2019).

57



Chapter 2. Gaussian Pairwise Markov Fields

0 0.25 0.5 0.75 1 1.25

0.00

0.10

0.20

0.30

0.40

0 0.25 0.5 0.75 1 1.25

0.00

0.10

0.20

0.30

0.40

0 0.25 0.5 0.75 1 1.25

0.00

0.10

0.20

0.30

0.40

P-IN PMF-IN P-GMRF GPMF

∆µ

∆µ

∆µ

M
A

P
E

rr
or

ra
te

M
P

M
(M

ar
ro

qu
in

’s
)

E
rr

or
ra

te
M

P
M

(T
-G

ib
bs

)
E

rr
or

ra
te

Figure 2.3.: Error rate in function of varying ∆µ parameters and of several es-
timators in the supervised segmentation of the ’dude’ images of the
dataset. Each row, from top to bottom, respectively corresponds to
the MAP, MPM (Marroquin’s algorithm) and MPM (T-Gibbs al-
gorithm) segmentation criteria. The other parameters of the GRF
noise were fixed to σ = 0.5 and r = 2. The dashed red lines are
common between the graphs of Figure 2.4, for each row respec-
tively.
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Figure 2.4.: Error rate in function of varying r parameters and of several esti-
mators in the supervised segmentation of the ’dude’ images of the
dataset. Each row, from top to bottom, respectively corresponds
to the MAP, MPM (Marroquin’s algorithm) and MPM (T-Gibbs
algorithm) segmentation criteria. The other parameters were fixed
to µ0 = 0, µ1 = 0.6 and σ = 0.5. The dashed red lines are common
between the graphs of Figure 2.3, for each row respectively.
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• The classical Hidden Markov Field model with Potts prior and Indepen-
dent Noise (P-IN) (S. Z. Li, 2009) (Kato and Zerubia, 2012), which is also
the member of the PMF model family with the less direct dependencies
between random variables (see Section 2.3).

• The KMeans clustering7 algorithm (Arthur and Vassilvitskii, 2007).

• The pyImSegm8 (pyIS) segmentation algorithm proposed in (Borovec et
al., 2017). The core of this technique relies on a Markov Random Field en-
ergy minimization problem using super-pixel based and graph-cut based
approaches.

• Based on the recent developments of (Rubel et al., 2018) for correlated
noise reduction (which were not available online), we propose to combine
the Block-Matching 3D filter9 from (Dabov et al., 2009) and the graph-cut
algorithm10 from (Boykov and Kolmogorov, 2004). This approach is then
the combination of a popular noise reduction technique and a popular
graph-cut based segmentation. We call this approach BM3D+GC.

Let us now compare the unsupervised segmentations obtained with the GPMF
model with the results given by other models. Figure 2.5 illustrates the segmen-
tation performance of the models for a varying noise level. Figure 2.6 depicts
some segmentations of images from the database. We notice, in all cases, the
superiority of the new probabilistic model GPMF in its capacity to handle the
correlated noise, improving the segmentation error and giving stable results.
The GPMF model always performs best or equally best at all noise levels. In
the best scenarii, the GPMF model increases the average error rate by about
four points. The BM3D+GC and pyIS approaches are more unstable and per-
form worse when dealing with an image corrupted with correlated noise, despite
manually tuned hyperparameters. Finally, note that, as expected, the overall
error rates are higher in this unsupervised segmentation experiment than in the
supervised segmentation experiment of Section 2.5.2.

2.5.4. On real world images

We now present the model in a real world application from the medical field,
where unsupervised image segmentation needs to be done on strongly spatially
corrupted data. The context of these experiments has been presented in Sec-
tion 2.1. To the best of our knowledge, there is no counterpart of our model
in the medical literature involving spatially-correlated noise for stent segmen-
tation in medical images. We treat 512× 512-pixel 2D images.

The goal of the experiment is to segment precisely the organic material from
the background of the images. The two classes we wish to distinguish are
visible by the naked eye, but they are very corrupted by the artifacts and

7Implementation from https://opencv.org.
8Implementation from https://github.com/Borda/pyImSegm.
9Implementation from http://www.cs.tut.fi/~foi/GCF-BM3D/.

10Implementation from https://github.com/shaibagon/GCMex/.
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Figure 2.5.: MPM (Marroquin’s algorithm) unsupervised segmentation over the
’dude’ images of the dataset. For the ∆µ row, the other parameters
of the GRF noise were fixed to σ = 0.5 and r = 2. For the r row,
they were fixed to µ0 = 0, µ1 = 0.6 and σ = 0.5. The dashed red
lines highlight the situations when the parameter configuration is
identical in both graphs. As expected, in such cases, we notice that
the models have identical performances relative to each other.
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xxxxxxx

Ground truth

yyyyyyy

Observations

x̂xxxxxxKM

26.3% 19.8% 26.3%

x̂xxxxxxBM3D+GC

11.0% 4.5% 7.7%

x̂xxxxxxpyIS

5.1% 6.6% 13.0%

x̂xxxxxxP−IN

3.5% 4.1% 5.5%

x̂xxxxxxGPMF

3.3% 3.2% 3.7%

Figure 2.6.: Unsupervised segmentation of images from the dataset with the
new model and 4 other models. The segmentation criterion is MPM
with Marroquin’s algorithm. The error rates with respect to the
ground truth appear below each sample. For the 3 images, the
noise parameters are µ0 = 0, µ1 = 2, σ = 1, r = 3.
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2.6. Conclusion

FN FP
BM3D+GC 0.14 0.01

P-IN 0.08 0.08
GPMF 0.08 0.04

(a) Case 1

FN FP
BM3D+GC 0.05 0.07

P-IN 0.02 0.14
GPMF 0.02 0.07

(b) Case 2

Table 2.3.: FN and FP rates computed in the blue areas, for each model, for
each case of Figure 2.7.

are challenging to segment using automatic unsupervised algorithms. Such
a processing would help identify the nature of the elements in contact with
the stent, to precisely understand the possible interactions of the stent that
could have lead to its failure. A dedicated model needs to be created since the
artifacts hide the underlying material.

Figure 2.7 depicts the results obtained by three methods described from
the previous section (BM3D+GC, P-IN and GPMF). The results of the pyIS
method were essentially similar to the results of BM3D+GC and are omit-
ted here for brevity, as well as the results form the KMeans algorithm which
are omitted because of the poor performance of the algorithm studied in Sec-
tion 2.5.3. The P-IN and the BM3D+GC results are particularly prone to
misclassifications because of the artifacts.

While the overall error rate is in favor of the GPMF model, it does not truly
reflects the capacity of the model to resolve correlated noise and to offer a proper
segmentation. Therefore we consider the organic material as the true class and
the background as the false class. We then compute the False Negative (FN)
and False Positive (FP) percentages of pixels in the areas of interest, around
the stent where the correlations are the strongest. Those data are given in
Table 2.3. We can see that the GPMF model best captures the correlated noise
and resolves much of the stent artifact problem: it offers the best compromise
between the FN and FP scores. In addition the results obtained with the
GPMF model were also judged very satisfying by the pathologists.

The GPMF model and its application to real world images is further discussed
in Chapter 5.

2.6. Conclusion

In this chapter we proposed a new probabilistic model and two new submodels
which belong to the PMF family. We have seen that the PMF assumption
can lead to modelization embedding much more complex correlations between
random variables than the modelizations based on HMFs. This was used to
construct a generative latent variable model with a GMRF based likelihood.
By proposing a new parameter estimation procedure, the GPMF model then
offered the best results, in the unsupervised segmentation of images corrupted
with strongly correlated noise, when compared with other classical unsuper-
vised segmentation techniques.
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yyyyyyy xxxxxxx x̂xxxxxxBM3D+GC (2.2%)

x̂xxxxxxP−IN (1.6%) x̂xxxxxxGPMF (1.4%)

(a) Case 1

yyyyyyy xxxxxxx x̂xxxxxxBM3D+GC (2.3%)

x̂xxxxxxP−IN (2.6%) x̂xxxxxxGPMF (1.7%)

(b) Case 2

Figure 2.7.: Unsupervised segmentations of organic material in corrupted X-
rays images. For these 2 cases, which illustrate different explanted
stents, we have: the real image yyyyyyy, the ground truth image xxxxxxx, the
BM3D-GC segmentation, the P-IN segmentation and the GPMF
segmentation. The segmentation criterion for the probabilistic
models is the MPM. The stent parts (brightest pixels in yyyyyyy) were
segmented beforehand by a thresholding technique and then con-
sidered as image borders. They appear in red on the segmented
images and did not take part in the segmentation. The ground
truth could be provided by experts since a histological analysis
is available. Error rates with respect to the ground truth on the
whole image appear in parenthesis.
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2.6. Conclusion

As an application of this model to real world data, we were able to solve
the problem of organic material segmentation in an image where strongly cor-
related noise is caused by metallic biomaterials. The GPMF model deals well
with correlated noise and limits the number of misclassifications, as opposed to
methods unsensitive to the spatial context of pixels.
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Chapter 3.

Spatial Triplet Markov Trees
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Chapter 3. Spatial Triplet Markov Trees

3.1. Introduction

This chapter introduces probabilistic models that belong to the Directed Graph-
ical Model (DGM) family. We will study both direct and approximate inference.
We have seen in the previous chapters some difficulties that arise when infer-
ence must be approximate. That is why, the main focus of this chapter is to
develop a new model called Spatial Triplet Markov Tree (STMT) in which we
elaborate enhanced correlations with the help of auxiliary random variables,
but we preserve the possibility of performing the inference directly.

The enhancement of correlations in the Markov Tree (MT) structure are
local, spatial, in the same sense of the correlations found in classical Markov
Random Fields models (such as the models from the previous chapter). The
STMT model is then particularly suited for image segmentation, we show that
it performs better than the classical MT model. The presentation of the new
model and its application to image segmentation is done in the first part of this
chapter.

In the second part of the chapter, Variational Inference (VI) is developed
more in depth. VI (Lauritzen and Spiegelhalter, 1988) is an approach to per-
form (approximate) inference with a complex probability distribution where
exact computations are not available. VI recasts the inference problem as an
optimization problem which relies on a simpler distribution, the variational dis-
tribution, used to approximate the complex one. Additional approaches to VI
consist in constructing a variational distribution with a certain complexity in
itself (direct dependencies between random variables) which might, moreover,
involve auxiliary random variables. Such developments might lead to further
improvements in the inference (Agakov and Barber, 2004). We will apply these
principles and we will also use VI as a way to better understand the STMT
model.

3.2. Markov Tree models

This section focuses on particular MT models. The purpose of this section
is to present the models that will be used in the context of Bayesian image
segmentation (Section 1.5.2). We continue to denote XXXXXXX as the hidden process
and YYYYYYY as the observed process. We focus our work on dyadic and quadtree
MTs whose layers of sites are S = {S1, . . . ,SL}.

3.2.1. Hidden Markov Trees

Recall the introduction of HMTs made in Section 1.6.1. The joint distribution of
a HMT with Independent Noise (HMT-IN) is given in Equation 1.24. Figure 1.5
depicts the graphical model of a dyadic HMT-IN.

As mentioned earlier, the inference tasks can be done with exact compu-
tations in HMTs. This can be done with the Upward Downward (UD) al-
gorithm1 (Monfrini, Lecomte, et al., 2003) (J.-B. Durand, Goncalves, et al.,
1The UD algorithm can be interpreted in two ways. Either as a generalization of the Forward
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3.2. Markov Tree models

Algorithm 3.1: Upward-Downward algorithm
Data: yyyyyyy, a realization of the observed process,

p(xs|xs−), ∀s ∈ S̄, transitions of the hidden process,
p(xr), r ∈ S1, distribution at the root vertice.

Result: p(xs|xs− , yyyyyyy), ∀s ∈ S̄, posterior transitions,
p(xs|yyyyyyy), ∀s ∈ S, posterior marginals.

/* Compute recursively β(xs) = p(yyyyyyysssssss++ |xs), ∀xs ∈ Ω, ∀s ∈ S */
{
β(xs) = p(ys|xs), if s ∈ SN ,

β(xs) =
∏

t∈sssssss+

(∑
xt
β(xt)p(xt|xs)

)
otherwise.

(3.1)

/* Compute the remaining posterior transitions β(xs), ∀(xs, xs−) ∈ Ω2,
∀s ∈ S̄ */

p(xs|xs−, yyyyyyy) =
β(xs)p(xs|xs−)∑
xs
β(xs)p(xs|xs−)

, (3.2)

/* Compute the posterior marginal at root, ∀xr ∈ Ω */

p(xr|yyyyyyy) =
β(xr)p(xr)∑
xr
β(xr)p(xr)

. (3.3)

/* Compute the remaining posterior marginals, ∀xs ∈ Ω, ∀s ∈ S̄ */

p(xs|yyyyyyy) =
∑

x
s−

p(xs− |yyyyyyy)p(xs|xs− , yyyyyyy). (3.4)

2004). It enables structured parallel retrieval of the posterior transition dis-
tributions (p(xs|xs− , yyyyyyy), ∀s ∈ S) and of the posterior marginal distributions
(p(xs|yyyyyyy), ∀s ∈ S). Algorithm 3.1 describes the UD algorithm which makes use
of an intermediate quantity β(xs) = p(yyyyyyysssssss++ |xs), ∀xs ∈ Ω, ∀s ∈ S, where sssssss++

denotes the set of all the descendants of s (vertices that can be reached from s
by following the directed edges) (Pieczynski, 2002).

Remark: Algorithm 3.1 is written for the HMT-IN model (Monfrini,
Lecomte, et al., 2003) (Laferté et al., 2000) where observed variables are asso-
ciated to hidden variables on the last layer only (as drawn in Figure 1.5). This
algorithm is easily adapted if there is no, more or less observed variables (J.-B.
Durand, Goncalves, et al., 2004).

3.2.2. Spatial Triplet Markov Trees

Spatial Triplet Markov Trees (STMTs) is a model of MTs based on a triplet
Markov process that we have defined in Section 1.6.2. Along with the previously

Backward algorithm used for Hidden Markov Chains, or as a principled message passing
schedule in the Belief Propagation algorithm.
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introduced processes XXXXXXX and YYYYYYY , let VVVVVVV be a discrete-valued random process with
values in ΛN . VVVVVVV plays the role of an auxiliary process. In the Bayesian approach
to image segmentation that we follow, VVVVVVV is part of the hidden process, along
with XXXXXXX. Let TTTTTTT be a process such that TTTTTTT = (XXXXXXX,VVVVVVV , YYYYYYY ). STMTs then have for
general distribution:

p(ttttttt) = p(tttttttr)
∏

s∈S̄

p(ttttttts|ttttttts−). (3.5)

Equation 3.5 reveals (similarly to Equation 1.27 in the case of chains) the triplet
assumption: TTTTTTT = (XXXXXXX,VVVVVVV , YYYYYYY ) is a Markov process.

A generalized version of the UD algorithm (Algorithm 3.1) can be proposed
for STMTs: it suffices to replace the occurences of the XXXXXXX process by the new
hidden process (XXXXXXX,VVVVVVV ). Then, to recover information on the original process
XXXXXXX, one needs to marginalize over the auxiliary random variables, ∀s ∈ S:

p(xs) =
∑

vs∈Λ

p(xs, Vs = vs). (3.6)

The rest of this section is dedicated to the definition of the STMT model in
its dyadic and quadtree versions2. The STMT model takes advantage of the
triplet structure for exact inference with UD. It also takes advantage of aux-
iliary random variables to introduce much richer correlations between random
variables as compared to the classical HMT model. More precisely, the model
aims at introducing local, spatial correlations similarly to MRFs (Section 1.6.1).
However, as already mentioned, the model preserves direct computations of the
inference tasks, as opposed to MRFs.

Remark: The STMT model will be described in a general form containing
the visible process YYYYYYY only at the last resolution and the Independent Noise
hypothesis will always hold.

The dyadic model

We now describe the construction of the dyadic STMT model whose graphical
representation is given in Figure 3.1 (in case of Independent Noise). We consider
that the observations are only associated with vertices of the lowest layer, with
the hypothesis of the independent noise.

A node at site s ∈ S̄ \SL is a triplet (Xs, V
←
s , V→s ); we then assume that we

have the factorization:

p(ttttttts|ttttttts−) = p(xs, vvvvvvvs|xs− , vvvvvvvs−),
= p(xs|xs− , vvvvvvvs−)p(v←s |xs− , vvvvvvvs−)p(v→s |xs− , vvvvvvvs−).

(3.7)

However, a node at site s ∈ SL is a quadruplet (Xs, V
←
s , V→s , Ys); we then

2This section is a new model which builds upon and redefines the only occurence of the
STMT prior to our work, found in (Courbot, Monfrini, et al., 2018).
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(V←r , Xr, V
→
r )

(a)

TTTTTTT r

TTTTTTT s−

TTTTTTT s

(b)

Figure 3.1.: Graphical model corresponding to a dyadic STMT with Indepen-
dent Noise. (a) depicts all the correlations, (b) gives a condensed
view highlighting the preserved MT structure. In (b), a node TTTTTTT s,
its father TTTTTTT s− and the root node TTTTTTT r have been annotated. The
shadowed squares correspond to the variables from the observed
process.
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← →

s−

L← →

sL

R← →

sR

X

V with outer

inner

Figure 3.2.: Details of the STMT construction: a father node s− linked to its
2 sons (sL, sR). The directionality of the Vs is specified as well as
their type (inner or outer).

assume that we have the factorization:

p(ttttttts|ttttttts−) = p(xs, vvvvvvvs, ys|xs− , vvvvvvvs− , ys−),
= p(xs, vvvvvvvs|xs− , vvvvvvvs− , ys−)p(ys|xs, vvvvvvvs, xs− , vvvvvvvs− , ys−),
= p(xs, vvvvvvvs|xs− , vvvvvvvs−)p(ys|xs),
= p(xs|xs− , vvvvvvvs−)p(v←s |xs− , vvvvvvvs−)p(v→s |xs− , vvvvvvvs−)p(ys|xs).

(3.8)

To further define the transition laws of each of the variables, we define the
notion of inner and outer variables for the V variables. We define that, within
Left (L) (resp. Right (R)) sons, V←

sL
(resp. V→

sR
) is an outer variable and V→

sL

(resp. V←
sL

) is an inner variable. Figure 3.2 illustrates these concepts for a
particular node.

We now detail Equations 3.7 and 3.8, according to the variable type (left,
right, inner or outer). For Xs sons:

{
p(xLs |xs− , vvvvvvvs−) = p(xLs |Xs− = xs− , Vs− = v←

s−
),

p(xRs |xs− , vvvvvvvs−) = p(xRs |Xs− = xs− , Vs− = v→
s−

),
(3.9)

for inner Vs sons:
{
p(v→

sL
|xs− , vvvvvvvs−) = p(v→

sL
|xs− = xs− , Vs− = v→

s−
),

p(v←
sR
|xs− , vvvvvvvs−) = p(v←

sR
|Xs− = xs− , Vs− = v←

s−
),

(3.10)

and for outer Vs sons:
{
p(v←

sL
|xs− , vvvvvvvs−) = p(v←

sL
|Xs− = v←

s−
, Vs− = xs−),

p(v→
sR
|xs− , vvvvvvvs−) = p(v→

sR
|Xs− = v→

s−
, Vs− = xs−).

(3.11)

Remark: The conditioning of the Vs variables can be seen as being the same
conditioning the nearest X neighbor of Xs on a same resolution. The triplet
tree framework then provides a way to simulate X variables conditionally to
the realizations of V variables which behave similarly to the neighboring X
variables. This is notable since such links are strictly impossible in classical

72



3.2. Markov Tree models

Type of son
at s

Inner Vs sons
at s

Outer I Vs sons
at s

Outer II Vs sons
at s

NW V→s , Vցs , V ↓s V←s , Vտs , V ↑s Vրs , Vւs
NE V ↓s , Vւs ,V←s V ↑s , Vրs , V→s Vտs , Vցs
SE V←s , Vտs , V ↑s V→s , Vցs , V ↓s Vրs , Vւs
SW V ↑s , Vրs , V→s V←s , V ↓s , Vւs Vտs , Vցs

Table 3.1.: Definitions of the inner, outer I and outer II Vs sons for the quadtree
model.

MTs.

Finally for the root node s ∈ S1, p(xs, vvvvvvvs) is chosen as a discrete distribution
on Ω× Λ2.

The quadtree model

We now describe the construction of the quadtree STMT. Again, we consider
that the observations are only associated with vertices of the lowest layer, with
the hypothesis of the independent noise.

Each father s− has four sons sNW , sNE , sSE and sSW , where NW, NE,
SE and SW stand respectly for North West, North East, South East and
South West. For example, at site sNW , the random variables are XsNW

and
VVVVVVV sNW

. The composition of the octuplet VVVVVVV sNW
is again spatially described

by VVVVVVV sNW
= (V←sNW

, VտsNW
, V ↑sNW

, VրsNW
, V→sNW

, VցsNW
, V ↓sNW

, VւsNW
). Similarly to

the dyadic case we define inner and outer V variables for each type of father
node. However the outer type is now divided in two categories outer I and
outer II. The definitions are given in Table 3.1.

At a site s ∈ S̄, should it be North West or North East or South East
or South West, we find the couple (Xs, VVVVVVV s). The transition distributions are
similar to Equation 3.7 (when s ∈ S̄ \SL) and Equation 3.8 (when s ∈ SL, case
with observed random variables3), however p(xs, vvvvvvvs|xs− , vvvvvvvs−) is now assumed
to factorize as:

p(xs, vvvvvvvs|xs− , vvvvvvvs−) =p(xs|xs− , vvvvvvvs−)p(v←s |xs− , vvvvvvvs−)p(vտs |xs− , vvvvvvvs−)
p(v↑s |xs− , vvvvvvvs−)p(vրs |xs− , vvvvvvvs−)p(v→s |xs− , vvvvvvvs−)
p(vցs |xs− , vvvvvvvs−)p(v↓s |xs− , vvvvvvvs−)p(vւs |xs− , vvvvvvvs−).

(3.12)

This factorization is independent of the type of the father. However, we will
now specify the conditioning variables in these transition laws and the latter
will be dependent on the type of the father as in the dyadic case. Thus, we will
propagate the homogeneity of the realizations at one resolution.

3In such case the Y process is taken into account and we consider the probability of a
decuplet (Xs, VVVVVVV s, Ys), ∀s ∈ SL.
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Chapter 3. Spatial Triplet Markov Trees

Each father s− has four sons sNW , sNE , sSE and sSW , with, for the Xs sons:





p(xsNW
|xs− , vvvvvvvs−) = p(xsNW

|xs− = xs− , VVVVVVV s− = (v←
s−
, vտ

s−
, v↑

s−
)),

p(xsNE
|xs− , vvvvvvvs−) = p(xsNE

|xs− = xs− , VVVVVVV s− = (v↑
s−
, vր

s−
, v→

s−
)),

p(xsSE
|xs− , vvvvvvvs−) = p(xsSE

|xs− = xs− , VVVVVVV s− = (v→
s−
, vց

s−
, v↓

s−
)),

p(xsSW
|xs− , vvvvvvvs−) = p(xsSW

|xs− = xs− , VVVVVVV s− = (v↓
s−
, vւ

s−
, v←

s−
)).

(3.13)

We now detail the transition laws for the inner Vs sons at site sNW :





p(v→sNW
|xs− , vvvvvvvs−) = p(v→sNW

|Xs− = xs− , VVVVVVV s− = (v↑
s−
, vր

s−
, v→s−)),

p(vցsNW
|xs− , vvvvvvvs−) = p(vցsNW

|Xs− = xs− , VVVVVVV s− = (v→
s−
, vց

s−
, v↓

s−
)),

p(v↓sNW
|xs− , vvvvvvvs−) = p(v↓sNW

|Xs− = xs− , VVVVVVV s− = (v↓
s−
, vւ

s−
, v←

s−
)).

(3.14)

The same remark as for Equation 3.10 needs to be made for Equation 3.14:
given a father s− and two sons s, s′, ∀s ∈ {NW,NE, SE, SW}, the inner Vs
sons take the same conditioning as the nearest Xs′ (neighbor of Xs) on the
same resolution. Since inner Vs will always have the same conditioning as a
Xs′ whose father is also at site s−, we have s 6= s′.

Outer I Vs sons take the same conditioning as the nearest Xs′ but under a
switching condition concerning the conditioning: the Vs− with the same direc-
tion as Vs is switched with Xs− . This gives the transition laws of the outer I
Vs sons at site sNW :





p(v←sNW
|xs− , vvvvvvvs−) = p(v←sNW

|Xs− = v←
s−
, VVVVVVV s− = (xs− , v

տ
s−
, v↑

s−
)),

p(vտsNW
|xs− , vvvvvvvs−) = p(vտsNW

|Xs− = vտ
s−
, VVVVVVV s− = (v←

s−
, xs− , v

↑
s )),

p(v↑sNW
|xs− , vvvvvvvs−) = p(v↑sNW

|Xs− = v↑
s−
, VVVVVVV s− = (v←

s−
, vտ

s−
, xs−)).

(3.15)

Outer II Vs sons take the same conditioning as the nearest Xs′ , for s and
s′ two nodes which are sons of s− (leading again to s 6= s′). Moreover we
also have a switching condition: the only Vs− variable which plays a role in
the conditioning of both Xs and Xs′ is switched with Xs− . This gives the
transition laws for the outer II Vs sons at site sNW :

{
p(vրsNW

|xs− , vvvvvvvs−) = p(vրsNW
|Xs− = v↑

s−
, VVVVVVV s− = (xs− , v

ր
s−
, v→

s−
)),

p(vւsNW
|xs− , vvvvvvvs−) = p(vւsNW

|Xs− = v←
s−
, VVVVVVV s− = (xs− , v

↓
s−
, vւ

s−
)),

(3.16)

To illustrate Equations 3.13, 3.14, 3.15 and 3.16 (and the other transition
laws that have not been written), Figure 3.3 illustrates a transition between a
node s− and its 4 sons sNW , sNE , sSE and sNW with the spatial context.

Finally for the root node s ∈ S1, p(xs, vvvvvvvs) is chosen as a discrete distribution
on Ω× Λ8.

Remark: In all the thesis, when dealing with image segmentation, the
quadtree version of the STMT model (as well as the HMT model) will be used.
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3.3. Image segmentation

←

տ ↑ ր

→

ց↓ւ

s−

NW←

տ ↑ ր

→

ց↓ւ

sNW

NE←

տ ↑ ր

→

ց↓ւ

sNE

SW←

տ ↑ ր

→

ց↓ւ

sSW

SE←

տ ↑ ր

→

ց↓ւ

sSE

X

V with outer I

inner

outer II

Figure 3.3.: A father node s− linked to its 4 sons (sNW , sNE , sSE , sSW ) in the
STMT model. Each node is composed of 9 random variables Xs

and Vs. The directionality of the Vs is specified as well as their
type (inner, outer I or outer II).

3.3. Image segmentation

The models introduced in the previous section will be tested in the context of
image segmentation. In this section we present the family of functions used to
define the transitions in HMTs and in STMTs, as well as a method to estimate
the parameters of these distributions in an unsupervised context.

3.3.1. The Potts-like transition distributions

Definition

Recall the Potts potential function (J. Besag, 1986) defined in Equation 2.16.
Let us define conditional probabilities in arborescences that follow this function.
Then, in the HMT model, we can form a transition distribution that we call
Potts-like distribution:

p(xs|xs−) ∝ exp(αδ
x
s−

xs ), (3.17)

where α ∈ R+ is a parameter which regulates the similarity between two linked
realizations of the hidden process in the HMT model. The higher α the more
probable is the fact that the realizations will be equal. A Potts-like distribution
for the STMT model is defined by:

p(xs|xs− , vvvvvvvs−) ∝ exp


αδxs−

xs +
∑

v
s−∈vvvvvvvs−

βδ
v
s−

xs


 , (3.18)
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Chapter 3. Spatial Triplet Markov Trees

where α ∈ R+ and β ∈ R+ are parameters with the same role as before. In all
the following work, the transitions of the HMT and STMT models will use the
Potts-like transition distributions. Moreover, the transitions will be considered
homogeneous: ∀s ∈ S̄, they are Potts-like transitions equally parametrized.

Remark: Note that when β = 0, Equations 3.17 and 3.18 are equal and
the HMT and STMT models thus become equivalent.

Linear Least-Square estimator of the Potts-like transition parameter

We now establish an estimator for the α and the β parameters based on the Lin-
ear Least-Square (LLS) estimator first proposed in (Derin and H. Elliott, 1987).
The method requires the complete data, hidden and observed, which correspond
to the pair (XXXXXXX = xxxxxxx, YYYYYYY = yyyyyyy) for HMT and the triplet (XXXXXXX = xxxxxxx, VVVVVVV = vvvvvvv, YYYYYYY = yyyyyyy)
for STMT. Note that the derivation of the LLS estimator for the granularity
coefficient of the GPMF model (Section 2.4.1) is close to the equations that we
now establish.

In the case of the α estimation for HMTs, we can write, ∀s ∈ S̄:

p(xs, xs− |yyyyyyy)
p(xs− |yyyyyyy)

= p(xs|xs− , yyyyyyy), (3.19)

which gives, ∀s ∈ S̄, ∀(xs, x′s) ∈ Ω2:

p(xs|xs− , yyyyyyy)
p(x′s|xs− , yyyyyyy)

=
p(xs, xs− |yyyyyyy)
p(x′s, xs− |yyyyyyy)

. (3.20)

From now on, only the sites s such that s ∈ SL will be considered4. From
the Upward Downward algorithm (Algorithm 3.1), we know that in the present
case of the independent noise, we have ∀s ∈ SL:

p(xs|xs− , yyyyyyy) =
p(ys|xs)p(xs|xs−)∑
xs
p(ys|xs)p(xs|xs−)

. (3.21)

Then Equation 3.20 becomes, ∀s ∈ SL, ∀(xs, x′s) ∈ Ω2:

p(ys|xs)p(xs|xs−)
p(ys|x′s)p(x′s|xs−)

=
p(xs, xs− |yyyyyyy)
p(x′s, xs− |yyyyyyy)

. (3.22)

Taking the natural logarithm on both sides, plugging the potential from
Equation 3.17, using the definition of the independent Gaussian noise and re-
arranging, we finally get:

α(δ
x
s−

xs − δxs−

x′s
) = ln

p(xs, xs− |yyyyyyy)
p(x′s, xs− |yyyyyyy)

− ln
1√

2πσ2
xs

+
(ys − µxs

)2

2σ2
xs

+

ln
1√

2πσ2
x′s

+
(ys − µx′s

)2

2σ2
xs

.
(3.23)

4Equations from sites from other resolutions could be derived and integrated to the LLS
however we found out that they do not contribute significantly to the final solution.
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3.3. Image segmentation

The probabilities of the type p(xs, xs− |yyyyyyy), ∀(xs, xs−) ∈ Ω2, are estimated
with the frequency estimator. Then the same LLS procedure as described in
Section 2.4.1 can be used to find α̂.

Then, following strictly the same procedure for the STMT model, starting
from, ∀s ∈ S̄:

p(xs, xs− , vvvvvvvs− |yyyyyyy)
p(xs− , vvvvvvvs− |yyyyyyy)

= p(xs|xs− , vvvvvvvs− , yyyyyyy), (3.24)

we can write, in the case of the independent Gaussian noise, ∀s ∈ S̄, ∀(xs, x′s) ∈
Ω2:

α(δ
x
s−

xs − δxs−

x′s
) + β


 ∑

v
s−∈vvvvvvvs−

(
δ
v
s−

xs − δvs−x′s

)

 = ln

p(xs, xs− , vvvvvvvs− |yyyyyyy)
p(x′s, xs− , vvvvvvvs− |yyyyyyy)

−

ln
1√

2πσ2
xs

+
(ys − µxs

)2

2σ2
xs

+ ln
1√

2πσ2
x′s

+
(ys − µx′s

)2

2σ2
xs

.

(3.25)

Again, the probabilities of the type p(xs, xs− , vvvvvvvs− |yyyyyyy) are estimated with the
frequency etimator. The LLS procedure presented in Section 2.4.1 is adapted
to handle two unknown variables and to estimate α̂ and β̂.

3.3.2. Iterative Parameter Estimation for Trees

This section describes fully the Iterative Parameter Estimation for Trees (IPET)
algorithm which will be used to estimate the parameters in unsupervised prob-
lems of image segmentation. This procedure is a deterministic iterative pro-
cedure close to the SEM algorithm (Celeux, 1985). Moreover, we describe
the IPET method for the STMT model, its adaptation for the HMT model is
straightforward.

Without loss of generality, in the following developments we consider a two
class segmentation problem, i.e., Ω = {ω0, ω1}, and the case of Gaussian in-
dependent noise parametrized by the class of the realization of the underlying
hidden variable. This noise model adds four parameters to the modelizations:
µ0 , µω0 , µ1 , µω1 , σ0 , σω0 , σ1 , σω1 . Finally for the STMT model, this
leads to six parameters to estimate. Let θθθθθθθ ∈ Θ be the vector of parameters,
then:

θθθθθθθ = {α, β, µ0, µ1, σ0, σ1},
with Θ = (R+)

2 × (R)2 × (R∗+)
3.

(3.26)

We use the Maximum Likelihood (ML) estimators µ0 and µ1, ∀i ∈ {0, 1}:

µ̂i =
1∑

s∈S {xs=i}

∑

s∈S

ys {xs=i}. (3.27)

The ML estimators are also used for σ0 and σ1, ∀i ∈ {0, 1}:

σ̂i =

(
1∑

s∈S {xs=i}

∑

s∈S

{xs=i} (ys − µ̂xs
)
2

) 1
2

. (3.28)
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The IPET algorithm for unsupervised parameter estimation in STMTs is
then described in Algorithm 3.2.

Remark: The main difference between the SPE algorithm for parameter
estimation in Markov Random Fields (Section 2.4.1) and the IPET algorithm
for parameter estimation in MTs is that the expectation step is done in an exact
manner. It is taken equal to the result of the MPM criterion (Section 1.5.2)
readily accessible in MTs with the UD algorithm (Equation 3.4). The IPET
algorithm is deterministic.

Algorithm 3.2: Iterative Parameter Estimation for Trees (IPET) for
STMTs.
Data: θθθθθθθ0 = {α0, β0, µ0

0, µ
0
1, σ

0
0 , σ

0
1}, an initial set of parameters,

yyyyyyy, the observations.
Result: θθθθθθθ∗ = {α∗, β∗, µ∗0, µ∗1, σ∗0 , σ∗1}, the estimated parameters.
t← 1
while convergence is not attained do

1. MPM estimation:
x̂MPM,t
s = argmaxxs

p(xs|yyyyyyy, θθθθθθθt−1), ∀s ∈ S
2. Estimation with the complete data (x̂xxxxxxMPM,t, yyyyyyy):
• LLS estimator for αt and βt (Eq.3.25).
• ML estimator for µt

0 and µt
1 (Eq.3.27).

• ML estimator for σt
0 and σt

1 (Eq.3.28).
θθθθθθθt ←= {αt, βt, µt

0, µ
t
1, σ

t
0, σ

t
1}

t← t+ 1
end

3.3.3. Experiments and Results

Synthetic data experiment

In this first experiment, we assess experimentally the strict generalization of
STMTs over HMTs-IN in the case of the Potts-like potential. We sample re-
alizations of the STMT model and segment the observed images with both
models. The segmentation criterion is the MPM and the parameters used for
the segmentation are the parameters used for the simulation, the true param-
eters. We are in the context of supervised segmentation. Again the hypothesis
of the independent Gaussian noise parametrized by the underlying class (Sec-
tion 3.3.2) is done for both models. Let us denote the segmentation error rate
of the HMT-IN model, resp. STMT model, errHMT−IN , resp. errSTMT .

In the first experiment, α and β are the varying parameters in the STMT
samples. We plot the quantity errHMT−IN − errSTMT as a function of α and
β in Figure 3.4. We first notice that the values taken by the surface are always
positive which means that the STMT segmentations are always better or equal
to the HMT-IN segmentations (the maximal value is a 4-point improvement in
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Figure 3.4.: errHMT−IN − errSTMT as a function of α and β. The other pa-
rameters were fixed to µ0 = 0, µ1 = 0.6 and σ0 = σ1 = 0.5. We
note a segmentation gain (in terms of error rates) raising up to 4
points in favour of the STMT model.

favor of STMT). Note the strict equivalence between the models when β = 0,
this fact already mentioned earlier is now confirmed empirically. Furthermore
we can see that as β increases, i.e., the importance of the realization of the
random variables which are neighbors to the father increases, the advantage
of the STMT model increases. This was to be expected since the HMT-IN
model cannot take into account such spatial and local correlations. However, a
bigger α, i.e., the dependence on the realization of the father random variable
increases, leads to a smaller advantage for the STMT model. This is due to the
fact that, with a bigger α, the importance of the neighbors is lowered in the
Potts-like transitions. In such cases the HMT-IN model is more relevant.

In the second experiment, let us fix σ = σ0 = σ1 and ∆µ = |µ0 − µ1|.
Then σ and ∆µ are the varying parameters in the STMT samples. We plot in
Figure 3.5 the quantity errHMT−IN − errSTMT as a function of ∆µ and σ. We
can see that for all the noise levels, the error rates are in favor of the STMT
model. Moreover we note that the smaller the noise levels, the more similar
the performances of both models.

Semi-real image experiment

In this section, we work in the context of unsupervised image segmentation
on semi-real images from the "1070-Binary Shape Database"5 already used in
Chapter 2. We aim at highlighting the apparent capacity for the STMT model
to take into account the spatial context. The observations yyyyyyy in this section

5https://vision.lems.brown.edu/content/available-software-and-databases
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Figure 3.5.: errHMT−IN − errSTMT as a function of ∆µ and σ. We note a
segmentation gain (in terms of error rates) raising up to 14 points.

are then the binary images from the data corrupted with an additive Gaussian
noise. The noise level will be varying during our experiment.

The parameters of the HMT and STMT models are computed unsupervisedly
with the IPET algorithm (Algorithm 3.2). The tree models are then compared
to the results of a Hidden Markov Field with Independent Noise (HMF-IN).
This probabilistic model is indeed a reference to model local spatial correlations
and the motivation behind the STMT model. In the binary classification task
we consider (Ω = {ω0, ω1}), the HMF-IN model is defined with a prior factor
taken as a Potts factor (J. Besag, 1986) with bias:

p̃(xs|xxxxxxxNX
s
) = exp


−δω0

xs
α− 2

∑

s′∈NX
s

−δxs′
xs
β


 , (3.29)

where α ∈ R is the bias parameter6 and β ∈ R
∗
+ is the granularity parameter,

and by the conditional likelihood factor:

p̃(ys|xs) = exp

(
− ln(

√
2πσ)− ȳ2s

2σ2

)
. (3.30)

The description and parameter estimation for a HMF-IN model without bias
has been developed in Section 2.3. The extension to estimate the bias parameter
α is straightforward by considering a two-unknown-variable LLS as already
mentioned in Section 3.3.1.
6Strictly speaking, there should be a bias parameter for each of the class. However, in this

binary classification context, the proposed parametrization can be seen as forcing the
bias parameter for class ω1 to be 0. α is then the bias parameter for class ω0 and it is
estimated under this constraint.
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Figure 3.6.: Error rate in unsupervised segmentation

Figure 3.7.: Unsupervised segmentation of semi-real images with HMTs,
STMTs and HMFs. The figure depicts the error rate of the three
models with a varying additive Gaussian noise level. It appears
that the STMT model always performs equally or better than the
HMT model, offering up to a 5 point improvement in the error
rates with respect to the HMT model. The HMF model is the best
performing model offering up to a 10 point gain over the STMT
model.

Figure 3.7 illustrates, for a varying noise level, the error rates in the unsu-
pervised segmentation task for each model. This experiment clearly attests the
advantage of the STMT model over the HMT model in unsupervised segmen-
tation, the STMT model always performs equivalently or better than the HMT
model. This result confirms the conclusions made on simulated data in Sec-
tion 3.3.3. The HMFs remain the best performing model for σ ≤ 1.0. However,
it then performs worse than STMTs at high noise levels, this might be due to
the failures of the stochastic algorithms that we use for the models. Indeed,
HMFs rely on indirect stochastic inference and parameter estimation which
might fail at such noise levels. It is then notable that the STMT improvement
is obtained while keeping a direct and analytical inference process. Figure 3.8
reports selected graphical examples of the experiment described above.

Experiments of atherosclerotic calcification segmentation are given in Chap-
ter 5.

3.4. Spatial Triplet Markov Trees for Auxiliary

Variational Inference in Spatial Bayes

Networks

This section now offers a more theoretical study of the distribution of the
original hidden process XXXXXXX within the STMT model. In order to understand the
much more complex and richer correlations that the STMT model introduces,
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xxxxxxx

yyyyyyy

σ = 0.5 σ = 0.9 σ = 1.3

x̂xxxxxxHMF−IN

2.5% 5.0% 44.1%

x̂xxxxxxHMT−IN

12.6% 20% 30.9%

x̂xxxxxxSTMT

5.7% 7.9% 19.2%

Figure 3.8.: Unsupervised segmentation of semi real images with the HMF,
HMT and STMT models. Ground truths are on the first row.
The percentages indicate the segmentation error rate.
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we first define a new model of Bayesian network (or Directed Acyclic Graph
(DAG)) which differs from the previous MT models. We call this new model
Spatial Bayes Network (SBN) and we will study its relationship to the STMT
model.

More precisely, as will see in the next section about the model definition,
SBNs exhibit directly the spatial correlations that we want to model (but can-
not directly model without breaking the Markovian assumption on the process)
in the STMT construction. This comes at the price of an inference process that
cannot be done through direct computations. However, since the direct compu-
tations are available within the STMT model, the pair of models SBN/STMT
can be used in the context of Variational Inference (VI) as we will see in Sec-
tion 3.4.2.

Remark: The following development focuses on a study of the hidden and
auxiliary processes, therefore, there will be no mention of a visible process, and
the latter will not be drawn in the graphical representations. This can also be
interpreted as working in graphical models where all the variables are visible.

3.4.1. Spatial Bayes Networks

The SBN model is a DAG based on the MT model but SBNs contain semi cycles.
SBNs are not arborescences anymore and the computation for the inference step
must be approximate. The additional edges have the purpose to better capture
local correlations between random variables.

The dyadic model

In order to distinguish between the two sons of a father node s− in a dyadic
tree: let sL and sR be respectively the left and right son of s−. We also define
s← (resp. s→) as the left (resp. right) neighboring node of s. Let v : S̄ → S̄ be
a mapping from a node to a neighboring node of its father, such that:

v : s 7→
{

(s−)← if s is a left node,
(s−)→ if s is a right node.

(3.31)

The SBN model (illustrated in Figure 3.9) has the following distribution:

p(xxxxxxx) =p(xr)
∏

s∈S̄

p(xs|xs− , xv(s)). (3.32)

The quadtree model

The development above, dedicated to dyadic trees, can be straightforwardly
extended to quadtrees, to form the quadtree SBN. There are 4 types of nodes
(except from the root), which we call North West (NW), North East (NE),
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Xr

Xs−
X(s−)← X(s−)→

Xs

Figure 3.9.: Graphical model corresponding to a dyadic SBN. As an illustration,
a node s, its father s−, the left neighbor of its father (s−)←, the
right neighbor of its father (s−)→ and the root node r have been
annotated.

Figure 3.10.: Local illustrations of the correlations within the quadtree SBN
model: all the sons of a father vertice.

South East (SE) and South West (SW). Now the v function is redefined as a
mapping from S̄ to S̄3 with:

v : s 7→





((s−)←, (s−)տ, (s−)↑) if (s−) NW node,
((s−)↑, (s−)ր, (s−)→) if (s−) NE node,
((s−)→, (s−)ց, (s−)↓) if (s−) SE node,
((s−)↓, (s−)ւ, (s−)←) if (s−) SW node.

The joint distribution p(xxxxxxx) of the quadtree SBN uses this newly defined v
function. It is then written as:

p(xxxxxxx) =p(xr)
∏

s∈S̄

p(xs|xs− , xxxxxxxv(s)). (3.33)

For clarity, we only illustrate locally the quadtree SBN model. Figure 3.10
depicts the relations between a father vertice and all its sons.

Exploring the model similarities by sampling

We propose to explore the capacity of the STMT, SBN and MT models to take
into account the spatial context by clamped sampling in these models. Recall
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MRF ...
Average difference rate

to MRF

SBN ... 7.2%

STMT ... 6.8%

MT ... 14.2%

Figure 3.11.: Clamped samplings of the originalXXXXXXX process (last layer only) from
the SBN, STMT and MT models. The first row represents the
MRF reference simulations. The other rows represent the clamped
samplings. The average difference rate between the realizations of
each model and the MRF reference realization is computed over
100 simulations (from which only two are graphically depicted).

that in all this section, we do not consider any visible process (YYYYYYY ). Clamped
sampling in these layered models means that we fix a layer to a given realization
and sample the next generation(s) by ancestral sampling. We fix a realization
to be that of a MRF with a Potts potential since it is our reference for modeling
local spatial interactions.

Figure 3.11 illustrates the experiment and provides an averaged difference
rate. From this score, and also the two visual examples of the figure, we can say
that the SBN and STMT models seem to better capture the spatial context than
the MT model whose realizations are farther away from the MRF reference.
Indeed, the difference rate between the MT realizations and MRF reference is
more than twice the difference rate between the STMT realizations and the
MRF reference.

This experiment provides a first insight on the similarity between STMT and
SBN. The next section and the rest of the chapter study this similarity more
in depth in the context of Variational Inference.
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3.4.2. Variational inference

Variational Inference (VI) (Lauritzen and Spiegelhalter, 1988) (Michael I Jor-
dan et al., 1999) (Murphy, 2012) (Blei et al., 2017) (C. Zhang et al., 2018) is
an approach to perform inference in probabilistic models where direct compu-
tations are not feasible. In the general context the goal is to find a variational
distribution q(xxxxxxx) which approximates well a posterior p(xxxxxxx|yyyyyyy) in which computa-
tions for inference need to be approximated. To do so, VI casts an optimization
problem which aims at minimizing the Kullback Leibler (KL) divergence be-
tween the two distributions; it is denoted KL(q(xxxxxxx)||p(xxxxxxx|yyyyyyy)). By definition:

KL(q(xxxxxxx)||p(xxxxxxx|yyyyyyy)) = Exxxxxxx∼q(xxxxxxx)[log q(xxxxxxx)]− Exxxxxxx∼q(xxxxxxx)[log p(xxxxxxx|yyyyyyy)]. (3.34)

The variables of this optimization problem are the factors of the q distribution.
The structure of q is chosen so that inference in q is easier than in p. Most of
the time, q is simple enough for inference tasks in q to be directly computable.
Therefore, at the end of the optimization problem, when q is fitted to p in the
sense of the KL divergence, the complex inference in p will be approximated
by an easier inference in q. It can be shown (Blei et al., 2017) that minimizing
Equation 3.34 is equivalent to maximizing the Evidential Lower BOund (ELBO)
quantity defined as:

ELBO(q) = log p(yyyyyyy)−KL(q(xxxxxxx)||p(xxxxxxx|yyyyyyy)),
= Exxxxxxx∼q(xxxxxxx)[log p(xxxxxxx, yyyyyyy)]− Exxxxxxx∼q(xxxxxxx)[log q(xxxxxxx)]. (3.35)

Remark: As stated above, the rest of this section will not consider any
visible process YYYYYYY , hence the conditioning on yyyyyyy in the equations, such as Equa-
tion 3.34, will drop. Note however that all the results could be readily extended
to integrate a visible process. Then, we have that:

ELBO(q) = Exxxxxxx∼q(xxxxxxx)[log p(xxxxxxx)]− Exxxxxxx∼q(xxxxxxx)[log q(xxxxxxx)],

= −KL(q(xxxxxxx)||p(xxxxxxx)). (3.36)

Therefore, in what follows, we will refer to the optimization problem as maxi-
mizing the opposite of the KL divergence:

−KL(q(xxxxxxx)||p(xxxxxxx)) = Exxxxxxx∼q(xxxxxxx)[log p(xxxxxxx)]− Exxxxxxx∼q(xxxxxxx)[log q(xxxxxxx)]. (3.37)

Remark: The rest of this section will consider the MT and SBN models
in their dyadic version. All the results can also be written for the quadtree
versions of the models.

In our case, p(xxxxxxx) is the joint distribution of a dyadic SBN given in Equa-
tion 3.32. In the context of structured VI (introduced in the next paragraph),
we will reparametrize and work with another representation of Equation 3.32.
Indeed, we need to use a concise notation embedding the notion of clusters of
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variables for each of the terms of the product. The notations are adapted from
(C. Bishop and Winn, 2003). We can write Equation 3.32 as:

p(xxxxxxx) =
∏

ds

pds
(3.38)

where ds represents the cluster of variables (xs, xs− , xv(s−)) (note that these
clusters overlap) and pds

is a shortcut for p(ds). In the following we develop the
necessary material to approximate Equation 3.32 by a variational distribution:

1. with totally independent random variables (Section 3.4.3).

2. with a MT structure (Section 3.4.4).

3. with a STMT structure (Section 3.4.5).

The first option is the most popular and is called Mean Field VI (Michael I
Jordan et al., 1999). The two other options give the variational distribution a
structure, it is called structured VI (Wiegerinck, 2000) (C. Bishop and Winn,
2003) (Z. Ghahramani and M. I. Jordan, 1996) (Olariu et al., 2009). It con-
sists in using a structured variational distribution, but which is still simpler
than the distribution p, in order to better approximate the correlations in the
original intricate distribution. Structured VI can lead to dramatic increases
in performances thanks to the improved modeling of the correlations. In the
structured VI scenarii of this study, we take advantage of the MT and STMT
structures and of the direct inference computations.

Algorithmically, the steps of the VI procedure for a variational distribution
q can be summarized:

1. Initialize all the factors of q.

2. Update each factor of q with the expression that minimizes the KL diver-
gence.

3. Check convergence and repeat step 2 if needed.

The convergence can be assessed, e.g., by monitoring the values of the cost
function (the KL divergence) or monitoring stationarity in the estimated vari-
ational parameters.

Remark: Once the terms of the variational distribution are learnt, a final
inference task still needs to be done. For example, one could compute the MPM
of the variational distribution, which would be used to approximate the MPM
of the original intractable distribution.

3.4.3. Mean Field Variational Inference in SBNs

Let q be the variational distribution. If q is subject to the Mean Field (MF)
assumption, all the random variables are independent:

q(xxxxxxx) =
∏

i

qi(xi). (3.39)
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The quantity to maximize (Equation 3.37) becomes in this case:

−KL(q(xxxxxxx)||p(xxxxxxx)) = Exxxxxxx∼q(xxxxxxx)[log p(xxxxxxx)− log q(xxxxxxx)],

=
∑

xxxxxxx

∏

i

qi(xi)

[
log p(xxxxxxx)−

∑

k

log qk(xk)

]
,

(3.40)

where p is the joint dyadic SBN distribution 3.32. MF is the most popular form
of VI. The derivation of the update equations to solve the MF optimization
problem is done in Appendix D.1.

3.4.4. Markov Tree Variational Inference in SBNs

Let r be the variational distribution. r is here defined with the structure of a
MT, it then follows a distribution of the form of Equation 1.23. Using a MT
structure as a posterior to approximate the complex posterior p is a compromise
between additional structure that might better reflect the correlations in p
and tractability. Indeed, once the posterior transitions are learnt through the
VI optimization, the posterior marginals are easily computable with the UD
algorithm.

We then reparametrize the MT expression in terms of clusters:

r(xxxxxxx) =
∏

cs

rcs , (3.41)

where cs represents the cluster of variables (xs, xs−). Note that the clusters
overlap.

The quantity to maximize (Equation 3.37) becomes in this section:

−KL(r(xxxxxxx)||p(xxxxxxx)) = Exxxxxxx∼r(xxxxxxx)[log p(xxxxxxx)− log r(xxxxxxx)],

=
∑

xxxxxxx

∏

cs

rcs

(
log p(xxxxxxx)−

∑

ck

log rck

)
.

(3.42)

The derivation of the update equations for this optimization problem is given
in Appendix D.2.

3.4.5. Auxiliary variable Variational Inference

We now study VI with auxiliary random variables whose first occurence in the
literature is in (Agakov and Barber, 2004). Let VVVVVVV be the auxiliary process,
both the target distribution, p, and the variational distribution, which we call
here t, will be augmented with variables from VVVVVVV 7.

Remark: As stated in (Agakov and Barber, 2004), in this thesis, we aug-
ment p with the condition that p(xxxxxxx, vvvvvvv) = p(xxxxxxx)p(vvvvvvv|xxxxxxx). This ensures an easy

7Note that if p is not augmented with auxiliary random variables, certain terms of t involving
the distributions of auxiliary random variables cannot be updated.
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marginalization of the VVVVVVV process in order to compare the distributions of the
XXXXXXX process. In Section 3.4.7 we show how to integrate auxiliary random vari-
ables in p, following the previous joint distribution decomposition when p is a
SBN.

Then, considering again temporarily observed random variables for general-
ity, the new KL divergence with auxiliary random variables to minimize is:

KL(t(xxxxxxx, vvvvvvv)||p(xxxxxxx, vvvvvvv|yyyyyyy)) = E(xxxxxxx,vvvvvvv)∼t(xxxxxxx,vvvvvvv)[log t(xxxxxxx, vvvvvvv)]− E(xxxxxxx,vvvvvvv)∼t(xxxxxxx,vvvvvvv)[log p(xxxxxxx, vvvvvvv|yyyyyyy)],
= E(xxxxxxx,vvvvvvv)∼t(xxxxxxx,vvvvvvv)[log t(xxxxxxx, vvvvvvv)]− E(xxxxxxx,vvvvvvv)∼t(xxxxxxx,vvvvvvv)[log p(xxxxxxx|yyyyyyy)]−

E(xxxxxxx,vvvvvvv)∼t(xxxxxxx,vvvvvvv)[log p(vvvvvvv|xxxxxxx, yyyyyyy)].

(3.43)

Following (Kingma, 2017), we give the relation with the previous objective
(without auxiliary variables), i.e., the KL divergence of Equation 3.34:

KL(t(xxxxxxx, vvvvvvv)||p(xxxxxxx, vvvvvvv|yyyyyyy)) = E(xxxxxxx,vvvvvvv)∼t(xxxxxxx,vvvvvvv)[log t(xxxxxxx, vvvvvvv)]− E(xxxxxxx,vvvvvvv)∼t(xxxxxxx,vvvvvvv)[log p(xxxxxxx|yyyyyyy)]−
E(xxxxxxx,vvvvvvv)∼t(xxxxxxx,vvvvvvv)[log p(vvvvvvv|xxxxxxx, yyyyyyy)]

= E(xxxxxxx,vvvvvvv)∼t(xxxxxxx,vvvvvvv)[log t(xxxxxxx)] + E(xxxxxxx,vvvvvvv)∼t(xxxxxxx,vvvvvvv)[log t(vvvvvvv|xxxxxxx)]−
E(xxxxxxx,vvvvvvv)∼t(xxxxxxx,vvvvvvv)[log p(xxxxxxx|yyyyyyy)]− E(xxxxxxx,vvvvvvv)∼t(xxxxxxx,vvvvvvv)[log p(vvvvvvv|xxxxxxx, yyyyyyy)]

= KL(t(xxxxxxx)||p(xxxxxxx|yyyyyyy)) +KL(t(vvvvvvv|xxxxxxx)||p(vvvvvvv|xxxxxxx, yyyyyyy))︸ ︷︷ ︸
≥0 (non-negativity)

,

≥ KL(t(xxxxxxx)||p(xxxxxxx|yyyyyyy)).
(3.44)

This allows us to draw a conclusion similar to (Kingma, 2017): the use of
auxiliary random variables leads to the minimization of an objective function
that is worse as concerns the original hidden variables of interest. However, the
use of auxiliary variables offers much more flexibility in the modelization and
enables the practitioner to add rich correlations between the variables of inter-
est. The use of a well structured distribution also reduces local optima, which
often helps since VI leads, in general, to a non convex optimization problem
(C. Zhang et al., 2018). Those advantages outweight, in practice, the fact that
we are optimizing an objective function with a worse lower bound.

Remark: Note that, in Equation 3.44, we also used the factorization
t(xxxxxxx, vvvvvvv) = t(xxxxxxx)t(vvvvvvv|xxxxxxx). However, in the case of a STMT variational distribution
t, an explicit expression t(xxxxxxx) as not been established yet and will be part of
further research on the topic. Therefore Equation 3.44 constitutes here a the-
oretical insight but cannot be used directly.

Remark: The conditioning on yyyyyyy that appears in Equations 3.45 and 3.44
will disappear in the following development. Then, for reasons seen in the

89



Chapter 3. Spatial Triplet Markov Trees

previous section, we will refer to the optimization problem as maximizing the
opposite of the KL divergence with auxiliary random variables:

−KL(t(xxxxxxx, vvvvvvv)||p(xxxxxxx, vvvvvvv)) = E(xxxxxxx,vvvvvvv)∼t(xxxxxxx,vvvvvvv)[log p(xxxxxxx, vvvvvvv)]− E(xxxxxxx,vvvvvvv)∼t(xxxxxxx,vvvvvvv)[log t(xxxxxxx, vvvvvvv)].
(3.45)

3.4.6. STMT auxiliary variable Variational Inference in SBNs

In this section we propose a STMT distribution t as the variational distribution
for auxiliary variable VI in SBNs. We do not include the observed process in
the modelization. Then we have:

t(xxxxxxx, vvvvvvv) =
∏

s∈S

t(xs, vvvvvvvs|xs− , vvvvvvvs−),

=
∏

s∈S

t(xs|xs− , vvvvvvv1s−)t(v←s |xs, vvvvvvv2s−)t(v→s |xs, vvvvvvv3s−),
(3.46)

which corresponds to Equation 3.7 without the observed process. VVVVVVV 1
s−

, VVVVVVV 2
s−

and VVVVVVV 3
s−

are different subsets of VVVVVVV s− . Recall that at the end of the VI proce-
dure, exact marginal computation can be done, again with a generalized UD
algorithm.

For the cluster parametrization, we have:

t(xxxxxxx, vvvvvvv) =
∏

cs

tcs
∏

c′s

tc′s

∏

c′′s

tc′′s , (3.47)

with cs = (xs, xs− , vvvvvvv
1
s−

), c′s = (v←s , xs− , vvvvvvv
2
s−

) and c′′s = (v→s , xs− , vvvvvvv
3
s−

). As pre-
viously mentioned, the clusters overlap.

Remark: We separated the auxiliary process, at each site, using their Left
or Right attribute. However this choice is arbitrary and it is only done here for
clarity. It can be omitted without modifying the optimization problem.

We want to maximize Equation 3.45, which becomes, with p the distribution
of a SBN augmented with auxiliary random variables8:

−KL(t(xxxxxxx, vvvvvvv)||p(xxxxxxx, vvvvvvv)) = E(xxxxxxx,vvvvvvv)∼t(xxxxxxx,vvvvvvv)[log p(xxxxxxx, vvvvvvv)− log t(xxxxxxx, vvvvvvv)],

=
∑

xxxxxxx,vvvvvvv

∏

cs

tcs
∏

c′s

tc′s

∏

c′′s

tc′′s

(
log p(xxxxxxx)−

(∑

ck

log tck +
∑

c′
k

log tc′
k
+
∑

c′′
k

log tc′′
k

))
.

(3.48)

The derivations of the update equations are given in Appendix D.3.

8In Section 3.4.7, we show how p can integrate auxiliary random variables in the SBN case.
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3.4.7. Experiments & Results

Small SBN example

We now consider variational inference on the small SBN network given in Fig-
ure 3.12a. Similar experiments have been conducted in the same context, to
evaluate a VI approximation, for example in (Lauritzen and Spiegelhalter,
1988). Due to its small size the SBN of Figure 3.12a represents a slightly
modified probability distribution from that the SBN used up to now. Indeed,
we needed to treat in a specific fashion the root node to induce SBN-like corre-
lations on a network with three layers only. It follows that p has the following
distribution:

p(a, a←, a→, b, c, d, e, f, g) =p(a)p(a←)p(a→)p(b|a, a←)p(c|a, a→)

p(d|b)p(e|b, c)p(f |c, b)p(G|c). (3.49)

We are interested in retrieving the marginals in the SBN using VI. We suc-
cessively consider three VI techniques: MF VI (Figure 3.13a), MT VI (Fig-
ure 3.13b) and STMT VI (with auxiliary nodes) (Figure 3.13c).

The developments of the previous sections are used to conduct VI with
MT and STMT. Note that for the STMT VI, we also need to provide the
SBN with auxiliary nodes (Agakov and Barber, 2004). We need to keep the
property that p(xxxxxxx, vvvvvvv) = p(xxxxxxx)p(vvvvvvv|xxxxxxx), where xxxxxxx = {a, a←, a→, b, c, d, e, f, g} and
vvvvvvv = {b←, b→, c←, c→, d←, d→, e←, e→, f←, f→, g←, g→} in order to ensure that
p(xxxxxxx) (Equation 3.49) is the same between the three VI procedures. In STMT
VI, p is then defined so that the auxiliary random variables have the same
structure of dependencies in p as in t, the STMT variational distribution. We
then have:

p(xxxxxxx, vvvvvvv) =p(xxxxxxx)p(b←|b, a→)p(b→|a, a→)p(c←|a, a←)p(c→|a, a←)

p(d←|c→, b←)p(d→|b←, c→)p(e←|b→, c←)p(e→|c←, b→)

p(g←|c→, b←)p(g→|b←, c→)p(f→|b→, c←)p(f←|c←, b→),

(3.50)

with 



p(b|a, a←) = p(b←|a, a←) = p(c←|a, a←),

p(c|a, a→) = p(b→|a, a→) = p(c→|a, a→),

p(d|b) = p(d←|b←) = p(e←|b←),

p(e|b, c) = p(d→|b←, b→) = p(f←|c←, b→),

p(f |c, b) = p(g←|c→, c←) = p(e→|b→, c←),

p(g|c) = p(f→|c→) = p(g→|c→).

(3.51)

The model p with auxiliary nodes is described in Figure 3.12b.
The random variables are chosen with values in {0, 1}. Our goal is to estimate

the true marginals p(x = 1), ∀x ∈ xxxxxxx of the SBN of Figure 3.12a. In this
synthetic example those true marginals are given as well as the transitions in p
(we do not cover the parameter estimation problem). Moreover, the transitions
of Equation 3.49 which also totally define Equation 3.50 are taken randomly.
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AA← A→

B C

D E F G

(a)

AA← A→

BB← B→ CC← C→

DD← D→ EE← E→ FF← F→ GG← G→

(b)

Figure 3.12.: Target distributions in the VI procedures: (a) SBN, (b) Adapted
SBN with auxiliary nodes.

AA← A→

B C

D E F G

(a)

AA← A→

B B

D E F G

(b)

AA← A→

BB← B→ CC← C→

DD← D→ EE← E→ FF← F→ GG← G→

(c)

Figure 3.13.: Variational distributions for the VI procedure: (a) MF VI, (b)
MT VI and (c) STMT VI.
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Figure 3.14.: Values of the cost function (KL divergence values) of the min-
imization problem for the three VI procedures. Note that the
STMT VI cost function integrates auxiliary variables and is not
comparable with the others, hence it is plotted in another graph.

Results

We define a marginal error for a variational distribution q and a random vari-
able x by eq(x) = p(x = 1)− q(x = 1). These errors are computed and stored
over 1000 different SBNs p whose transitions are randomly chosen. Figure 3.14
depicts the values of the KL divergence of the three VI procedures. We see a
rapid convergence which is related to the small size of the considered SBN. We
then choose to stop the VI process after 30 iterations. The value for MF VI and
MT VI are comparable and are shown on the same graph. The minimization is
better in the case of MT VI, the structured VI; this is reflected in Figure 3.15
which illustrates the goodness of the estimated marginals.

The boxplots of Figure 3.15 illustrates the interest of the STMT structure
to approximate the marginals of SBN: this VI procedure exhibits in all cases
the smallest error with respect to the true marginals. In absolute value, this
error is remarkably very small. We can also conclude that progressively adding
structure increases the quality of the approximation since MF VI performs
worse than MT VI which performs in turn worse than STMT VI. Note that
the left/right symmetry of the SBN can be found in the behavior of the error
rates: D is similar to G, E is similar to F , and so on.

3.5. Conclusion

This chapter was dedicated to the development, study and application of a
new probabilistic model, the STMT model. This model combines the benefits
of the triplet structure and auxiliary random variables modeling to introduce
rich correlations between random variables while preserving exact inference
computations. More precisely, we have seen that the correlations modeled are
close to the spatial correlations of MRFs, making the new model particularly
suited for image processing. In particular, the STMT model outperforms the
classical HMT model.
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Figure 3.15.: Boxplots of the dispersion of the error around the true marginal,
for each vertice, for the three VI procedures. We show the results
over 1000 different experiments (different p transitions randomly
chosen).
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3.5. Conclusion

In the second part of this chapter, the developement of the new SBN model
and the use of the STMT/SBN pair of models in the context of VI offers an
even better understanding of the correlations among the STMT model. The
correlations of the XXXXXXX process in SBNs are experimentally found to be very close
to the correlations of XXXXXXX in STMTs. Hence the richness of the STMT model.

95





Chapter 4.

Image segmentation with Deep

Learning and Conditional

Random Fields

Contents

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . 98

4.2. Convolutional Neural Networks . . . . . . . . . . 101

4.2.1. The Deep-Learning approach . . . . . . . . . . . 101

4.2.2. Network definition . . . . . . . . . . . . . . . . . 101

4.3. Fully-connected Conditional Random Fields . . . 104

4.3.1. Model definition . . . . . . . . . . . . . . . . . . 104

4.3.2. Optimized Mean Field Variational Inference for fc-
CRFs . . . . . . . . . . . . . . . . . . . . . . . 105

4.4. Markov Chain Variational Inference for fcCRFs . 107

4.4.1. Markov Chains for image processing . . . . . . . 108

4.4.2. Scanning the data with Markov Chains . . . . . . 108

4.5. Experiments and Results . . . . . . . . . . . . . . 111

4.5.1. Segmentation via Deep Learning . . . . . . . . . 111

4.5.2. Experimental comparisons of MF VI and MC VI on
semi-real images . . . . . . . . . . . . . . . . . . 112

4.5.3. Post-processing with fcCRFs . . . . . . . . . . . 115

4.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . 120

97



Chapter 4. Image segmentation with Deep Learning and Conditional Random Fields

4.1. Introduction

Supervised segmentation

In this chapter we study some supervised segmentation approaches. To this ex-
tent, the developed methodologies will differ from those of the previous chap-
ters which focused on unsupervised segmentation methods. Deep Learning
(DL) (Goodfellow et al., 2016) will also be introduced in this chapter; it is
the core segmentation approach for the practical problem that we will address.
Subsequent to the DL approach, in order to refine the results, we rely on a
discriminative UGM model called Conditional Random Fields (CRFs) (Sutton
and McCallum, 2012).

Remark: The content of this chapter has been developed after the creation
of an annotated dataset of mCT images during the course of the thesis. Thanks
to this valuable dataset we were able to study the complementarity of DL ap-
proaches with probabilistic graphical models. As we will see in this chapter,
state of the art approaches in medical image segmentation often rely on mixing
both of these approaches.

The purpose of the dataset is to gather knowledge to answer the problem of
histological classification of the biological components on the mCT images of
femoropopliteal arteries (see Figure 0.9 for the location of these arteries in the
lower limbs). The end goal of the project is to perform a first automatic 3D
histological analysis of the explant by just using a mCT image. Such an algo-
rithm could save time, money and help process a growing number of biological
data. Figure 4.1 depicts the dataset. To the best of our knowledge, there exists
no similar study in the literature.

The whole project was created from scratch at the Geprovas laboratory since
2018: starting from the explantations of the arteries from human bodies to the
output of the segmentation algorithms. The project is presented in two parts
in this thesis. The rest of this chapter focuses on the mathematical aspects
of this study, while details about the medical background of the project, the
protocols and the full results are given in Chapter 5.

Deep Learning approaches for histopathological image
analysis

During the last decade, the interest of the researchers towards DL approaches
have skyrocketed, particularly in the field of image segmentation and analysis.
The mathematical basics of DL is given in Section 4.2.1. Our study deals
with the application of DL to medical image processing, and more precisely,
histopathological image processing. Reviews of image processing techniques
in this field are published on a regular basis, and more frequently since the
beginning of the DL era which was popularized in (Krizhevsky et al., 2012).
One can compare a pre-DL era review of histopathological image analysis such
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4.1. Introduction

(a) (b)

(c)

Figure 4.1.: A specimen from the created dataset: (a) the histological ground
truth (optical microscopy), (b) the mCT scan and (c) the anno-
tated mCT scan. Recall that the histological ground truth is not
used by the methods described in this chapter. It is only needed
for the human expert to correctly annotate the mCT image. The
labels on the annotated image are soft tissue, fatty tissue, sheet
calcification, nodular calcification, thrombus, specimen holder and
background, respectively in blue, green, purple, pink, red, lime and
cyan (see Figure 5.15). In the segmentation problem described in
Section 4.5.1, the thrombus and soft tissue classes are merged.
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Chapter 4. Image segmentation with Deep Learning and Conditional Random Fields

as (Gurcan et al., 2009) with a recent one such as (Komura and Ishikawa, 2018)
to understand the important role that DL now plays in the field.

In the context of histopathological image segmentation with DL, Convolu-
tional Neural Networks (CNNs) are the reference approach which yields state
of the art results (Srinidhi et al., 2019) (Haque and Neubert, 2020). The
seminal paper (Krizhevsky et al., 2012) demonstrated that these approaches
can learn features in the data that can outperfom expert modelizations from
researchers which were traditionally proposed in machine learning. The math-
ematical foundations and a description of the CNN we use in our study are
given in Section 4.2.

3D data segmentation with deep learning approaches

To conclude this introduction, we now focus on a particular point which is
crucial to our application and for which CNNs currently reach their limits: the
problem of volumetric semantic segmentation. Most often in the literature,
CNNs work hand-in-hand with another machine learning approach in order to
perform the volumetric segmentation. The final goal of this study is also to
reconstruct a 3D volume using the 2D annotations that we possess.

This is unsurprisingly a common topic of interest in medical imaging. In
general, the two main difficulties in this problem are, first, that the 3D annota-
tions are almost inexistent, mainly because they are too complicated to make
for human experts. Second, working with fully 3D CNNs is also computation-
ally prohibitive. Several approaches built on 2D CNNs or related models have
been proposed to provide the final 3D segmentations, we review them now.

The first type of approaches is to train directly a CNN to perform 3D convo-
lutions to reconstruct a final 3D volume. The methodology can use a single fully
3D CNN (Çiçek et al., 2016) or use the 3D convolutions in hybrid approaches
making use of previous results from 2D CNNs (Yang et al., 2018) (X. Li et al.,
2018). Then because of the computational cost of 3D convolutions, one can
note 2.5D approaches which aim at integrating spatial data with strong restric-
tions. For example, one can find propositions to consider successively small 3D
chunks of consecutive slices (Ben-Cohen et al., 2016). One also finds the idea
of combining segmentations from the three axes of the data cube to produce
a segmentation that can take into account more spatial context than a single
2D segmentation (Zhao et al., 2017). Another type of popular approaches are
based on Recurrent Neural Networks (RNNs) (Goodfellow et al., 2016) which
process iteratively the slices through the datacube in successive passes to pro-
vide a segmentation taking into account all the axes (Novikov et al., 2018) (Cai
et al., 2017). The final methodology that has been popularized during the last
years and that we will follow is the 3D refinement with fully-connected Gaus-
sian CRFs (Krähenbühl and Koltun, 2011) of 2D segmentations produced by
a CNN. The first occurence of such a work can be found in (Kamnitsas et al.,
2017). In Section 4.3, we present an approach built on a 3D refinement of the
2D dimensional segmentations with the fully-connected Gaussian CRFs.
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4.2. Convolutional Neural Networks

Remark: A mathematical equivalence between computations in RNNs and
Mean Field inference computations in CRFs has been demonstrated (Zheng et
al., 2015). This thus brings these two approaches closer.

4.2. Convolutional Neural Networks

4.2.1. The Deep-Learning approach

DL is based on the paradigm that computers learn by themselves from the data
the features that optimally answer the problem (Litjens et al., 2017). A DL
model is composed of many layers that transform the input data up to an out-
put layer which realizes the required task. Among DL models in the context of
unsupervised learning (not treated in this thesis) one can cite Restricted Boltz-
mann Machines (Hinton, 2012), Deep Belief Networks (Bengio et al., 2007), or
Variational Autoencoders (Kingma and Welling, 2013). CNNs (Fukushima and
Miyake, 1982) (Krizhevsky et al., 2012) are deep models trained in a supervised
setting. CNNs are the most popular deep models for medical image process-
ing, they are described in 4.2.2. Another supervised technique for this task
are the RNN (Hochreiter and Schmidhuber, 1997) approach which is gaining
popularity (Litjens et al., 2017). RNNs are nonetheless out of the scope of this
thesis.

4.2.2. Network definition

The U-Net network

In this work we construct a CNN based on the U-Net architecture (Ronneberger
et al., 2015). Since its conception, the U-Net network has yielded state of the art
results in the field of hispathological slice analysis and has become a reference
approach (Falk et al., 2019) upon which many other architectures were proposed
(Jégou et al., 2017) (Oktay, Schlemper, et al., 2018) (Zhou et al., 2018). The
U-Net architecture is depicted in Figure 4.2.

The U-Net network retains the key elements of a CNN, particularly in the
first part of the network, the contractive path or encoder. Convolution lay-
ers are the foundations of the network, they are parametrized by weights and
biases and play the role of filters that extract features from the data. Each con-
volution layer is followed by a non-linear activation layer and a max-pooling
layer. The latter successively reduces the dimension of the previous filtering
operation, or feature map. This dimension reduction enables, in particular, to
learn higher-level features (at different depths), which are likely to be more
invariant to each training sample. Thus, the CNN predictions are more prone
to generalize on unseen data. The expansive path, or decoder, is the second
part of the network specific to network architectures from the U-Net family. In
the decoder we find upsampling and concatenation operations which combine,
respectively, the contextual, higher-order, features acquired in the encoder part
with a precise higher resolution image. The network ends with a feature map
of the size of the original image where all the pixels are assigned a score of
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Figure 4.2.: The U-Net architecture. Data flow from left to right and first go
through the contractive path (encoder) and then the expansive
path (decoder). The network presented here has input images of
size 256 × 256 (which is adjustable). Note that the Batch Nor-
malization layer is not present in the original article (Ronneberger
et al., 2015). Following the contractive path, the layers lose width
and height but gain depth: we build a more condensed and higher-
level representation of the data.
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4.2. Convolutional Neural Networks

belonging to a certain class.

Remark: In our U-Net modelization we added Batch Normalization layers
(Ioffe and Szegedy, 2015) after each convolution layer.

U-Net training and evaluation

The U-Net network is trained in a supervised manner by solving an optimization
problem over the parameters (weights and biases) of the network with the help
of the back-propagation algorithm (Rumelhart et al., 1986). The loss function
of the optimization problem varies depending on the problem. The Dice loss
function is a popular approach in the case of imbalanced dataset1 such as ours
(Salehi et al., 2017) (Sudre et al., 2017). The Dice score D is defined by:

D(A,B) =
2|A ∩B|
|A|+ |B| , (4.1)

where A and B are two images. We have the property that ∀A,B,D(A,B) ∈
[0, 1]. In the case where A and B are two segmentation maps for a same
semantic class, a perfect segmentation, i.e., a perfect superposition of A and
B, yields D(A,B) = 1. In the worst case, i.e., when A and B have no common
pixel, we have D(A,B) = 0. From the Dice score we form the Dice loss D̄ as
∀A,B, D̄(A,B) = 1 −D(A,B) ∈ [0, 1]. The Dice metric has the advantage of
being insensitive to the absolute number of pixels in a class, hence its popularity
in case of imbalanced data set.

For a multi-class segmentation problem, we consider a generalized Dice score,
the mean Dice score which is defined by the mean of the Dice scores (Fidon
et al., 2017). For a L-label problem, where the segmentation maps to evaluate
are organized as AAAAAAA = (A1, . . . , AL) and BBBBBBB = (B1, . . . , BL), the mean Dice score
is defined by:

mD(AAAAAAA,BBBBBBB) =
1

L

∑

l∈L

D(Al, Bl). (4.2)

Since ∀Al, Bl, D(Al, Bl) ∈ [0, 1], we have that mD(AAAAAAA,BBBBBBB) ∈ [0, 1]. The mean
Dice loss is defined by ∀AAAAAAA,BBBBBBB,mD̄(AAAAAAA,BBBBBBB) = 1 − mD(AAAAAAA,BBBBBBB). The latter is the
loss function we use in the rest of this thesis.

The training is done on the training set which is composed of original slices
but also augmented slices which come from data augmentation techniques
(Shorten and Khoshgoftaar, 2019) (rotation, rescaling and gamma correction)
applied to the original slices. Medical applications rely heavily on data aug-
mentation techniques since medical data is often scarce, hard to gather and
complex to annotate (Morra et al., 2019). A small portion2 of the training
set, the validation set, is kept apart and is not used in the back-propagation
algorithm. It serves as a means to tune hyperparameters of the neural network
such as the number of iterations, or epoches, in the learning process.

1In the sense that some semantic classes appear much less often than others.
2Typically 10% of the training set.
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Chapter 4. Image segmentation with Deep Learning and Conditional Random Fields

Once the training is achieved the network is evaluated on a third dataset,
the test set, which have been totally held out during the training process not to
introduce any biases in the performance evaluation. The score obtained on the
test set then reflects the generalization capability of the network to segment
unseen data.

4.3. Fully-connected Conditional Random Fields

4.3.1. Model definition

In this section we define the CRF model from (Krähenbühl and Koltun, 2011)
that we use in a post-processing step to reconstruct segmented 3D volumes.
We call this model fully-connected CRF (fcCRF). Recall the introduction on
discriminative models from Section 1.5.3. The fcCRF model is a discriminative
model that we then define with a Gibbs distribution:

p(xxxxxxx|yyyyyyy) = 1

Z
exp (−E(xxxxxxx|yyyyyyy)) , (4.3)

where Z is a normalization constant. The energy function E(xxxxxxx|yyyyyyy) is composed
of unary and pairwise factors:

E(xxxxxxx|yyyyyyy) =
∑

s∈S

ψu(xs) +
∑

(s,s′)∈S2

ψp(xs, xs′). (4.4)

To avoid complicated expressions, the dependency of the factors on the obser-
vations YYYYYYY = yyyyyyy will not explicitly appear. The unary potentials ψu(xs), ∀s ∈
S, ∀xs ∈ Ω, are taken as the label map outputs from the CNN classifier de-
scribed in the previous section. The pairwise potentials are defined, ∀(s, s′) ∈
S2, ∀(xs, xs′) ∈ Ω2, by:

ψp(xs, x
′
s) = (1− δxs′

xs
)

2∑

m=1

wmkm(fffffffs, fffffffs′),

= (1− δxs′
xs

)

[
w1 exp

(
−|s− s

′|2
2θ2α

− |ys − ys′ |
2

2θ2β

)

︸ ︷︷ ︸
k1(fffffffs,fffffffs′ )

+

w2 exp

(
−|s− s

′|2
2θ2γ

)

︸ ︷︷ ︸
k2(fffffffs,fffffffs′ )

]
.

(4.5)

fffffffs, ∀s ∈ S, is a feature vector whose components are the location, s, and the
observed value at this location, ys. The weights w1 and w2 multiply, respec-
tively, an appearance kernel, k1, parameterized by θα and θβ , and a smoothness
kernel, k2 parametrized by θγ . More precisely, the appearance kernel is the
kernel used in bilateral filters (Paris, Kornprobst, et al., 2009) which is the
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4.3. Fully-connected Conditional Random Fields

product of a Gaussian parametrized by the spatial distance and a Gaussian
parametrized on the pixel intensity distance. This results in a filter capable of
smoothing while preserving edges.

4.3.2. Optimized Mean Field Variational Inference for
fcCRFs

The Mean Field Variational Inference algorithm

In this section, we study an approximate inference procedure for estimating
marginals in the fcCRF model. The fully-connected property of the networks
forbids any kind of exact computations and requires several approximations for
the problem to be tractable. The standard approach is to perform Mean Field
(MF) Variational Inference (VI) in the fcCRF model. We already introduced
MF VI in Section 3.4.3. Here, observed random variables need to be consid-
ered. We minimize the quantity KL(q(xxxxxxx)||p(xxxxxxx|yyyyyyy)), or, equivalently, maximize
its opposite, with p(xxxxxxx|yyyyyyy) given in Equation 4.3 and q(xxxxxxx) =

∏
i qi(xi).

By following similar steps as in Appendix D.1 but integrating visible random
variables, and using the energy from Equation 4.4, we find that3, ∀j ∈ S,
∀xj ∈ Ω:

qj(xj) =
1

Zj

exp


−ψu(xj)−

∑

x′∈Ω

(1− δx′xj
)

2∑

m=1

wm

∑

i 6=j

km(fffffffj , fffffffi)qi(x
′)


 ,

(4.6)
where Zj is a normalization constant. The segmentation is then performed
following the MPM criterion such that, ∀j ∈ S:

x̂MFV I
j = argmaxx∈Ωqj(xj). (4.7)

The particular ordering of the summations in Equation 4.6 enables a MF
algorithm divided in three steps which can be further optimized. The MF al-
gorithm is given in Algorithm 4.1.

Remark: The update of all the qj terms in Algorithm 4.1 can be done in
a parallel fashion.

Optimization via approximate convolutions

In this section, we study the optimization proposed in (Krähenbühl and Koltun,
2011) for an efficient MF inference in fcCRFs. In terms of computational per-
formances, the bottleneck of Algorithm 4.1 is the message passing step.

3The full demonstration can also be found in the supplementary material of (Krähenbühl
and Koltun, 2011).
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Algorithm 4.1: MF VI for fcCRFs (Krähenbühl and Koltun, 2011)
Data: w1, w2, θα, θβ , θγ , the model parameters,

yyyyyyy, the observations.
Result: q(xxxxxxx), the MF approximation of p(xxxxxxx|yyyyyyy).
/* Initialize q */
qj(xj)← exp (−ψu(xj)) , ∀j ∈ S, ∀xj ∈ Ω
while convergence is not attained do

for j ∈ S do
/* Message passing */
for x′ ∈ Ω do

for m ∈ {1, 2} do
q̃j,m(x′)←∑

i 6=j km(fffffffj , fffffffi)qi(x
′) (Optimized in

Section 4.3.2)
end

end

for xj ∈ Ω do
/* Compatibility transform */
q̂j(xj)←

∑
x′∈Ω(1− δx

′

xj
)
∑2

m=1 wmq̃j,m(x′)
/* Local update */
qj(xj)← exp (−ψu(xj)− q̂j(xj))

end

Normalize qj
end

end
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We first start by rewriting the message passing step in terms of a convolution.
For m = 1 we have:

q̃j,1(x
′) =

∑

i 6=j

k1(fffffffj , fffffffi)qi(x
′),

=
∑

i∈S

k1(fffffffj , fffffffi)qi(x
′)− qj(x′),

= [Ġθα,θβ ∗ q̇(x′)](fffffffj)− qj(x′),

(4.8)

where ∗ is the convolution operator, Ġθα,θβ is a Gaussian kernel in the aug-
mented space and q̇ is the q distribution in the augmented space. The notion of
augmented space is needed to interpret the appearance kernel as a convolution.
Details about the augmented space are given in Appendix E.1. For m = 2 we
have:

q̃j,2(x
′) =

∑

i 6=j

k2(fffffffj , fffffffi)qi(x
′),

=
∑

i∈S

k2(fffffffj , fffffffi)qi(x
′)− qj(x′),

= [Gθγ ∗ q(x′)](fffffffj)− qj(x′),

(4.9)

where Gθγ is a Gaussian kernel of parameter θγ . In this case of the smoothing
kernel, the interpretation in terms of a convolution is straightforward.

For tractability of the MF VI algorithm, the methodology of (Paris and F.
Durand, 2006) is used to approximate the convolutions. The observation is that
a convolution acts as a low-pass filter, hence its result can be approximated by
performing a convolution on a downsampled version of the filtered object. The
result is then upsampled again. In practice, the downsampling step is taken
equal to the kernel standard-deviation and the downsampling is done via aver-
aging.

Remark: A further optimization consists in performing the multidimen-
sional Gaussian filtering independently on each axis due to the separability of
the Gaussian kernel. Note also that the parameters θα and θγ can be vary on
each axis such that we have θθθθθθθα = (θα,x, θα,y, θα,z) and θθθθθθθγ = (θγ,x, θγ,y, θγ,z).

4.4. Markov Chain Variational Inference for

fcCRFs

Chapter 3 illustrated the dramatic increase in performances in structured VI
procedures over MF VI procedures. That is why in this section we propose to
study the gain in the classical MF VI for fcCRFs with a Markov Chain (MC)
structured VI inference approach. This is an original approach that we propose;
to the best of our knowledge there is no study in the literature that deals with
structured VI in fcCRFs.
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4.4.1. Markov Chains for image processing

While MCs are intrinsically unidimensional data structures, they have been nu-
merous examples of their use to process data of higher dimension (Bricq et al.,
2008) (Meriem Yahiaoui et al., 2016) (Giordana and Pieczynski, 1997) (Lan-
chantin et al., 2011) (Fjortoft et al., 2003). The advantage of the MC structure
resides in the small computational cost and the exact inference procedures that
are available. The key step is to scan the higher dimensional space with a well
designed path. The most common approach is to scan the space with space
filling curves such as the Hilbert-Peano scan (Sagan, 2012). This is used in a
2D context in (Giordana and Pieczynski, 1997) and in a 3D context in (Bricq
et al., 2008). However the path could be adapted, according to the specific
application, for a better statistical segmentation (Courbot, Rust, et al., 2015)
(Meriem Yahiaoui et al., 2016).

4.4.2. Scanning the data with Markov Chains

We developed the MC VI approach for inference in fcCRFs to answer the strong
and limiting assumption of fully independent random variables in the varia-
tional distribution of the MF approach. Indeed, with the goal in mind to refine
3D segmentations produced by a simple stacking of 2D slices segmented by the
CNN, it seems important to take as much spatial context as possible in the
post-processing step. We introduced the concept of a MC scan in Section 4.4.1.
In this section, we define another way to use MCs in the processing of higher
dimensional data which is based on parallel and independent MCs. Indeed,
for computational reasons, it is prohibitive to perform a Peano scan such as
defined in (Bricq et al., 2008) for 3D volumes inside a VI procedure.

The variational distribution that we propose is made of independent MCs
that goes through the data cube following one of the cube axes. This follows
an idea also found in the Factorial Hidden Markov Models introduced in (Z.
Ghahramani and M. I. Jordan, 1996). There is, however, no reason to privi-
lege an axis over another, we then propose to perform parallel MC VIs along
each axis and then to merge their result. More precisely, for a 3D image with
dimensions M × N ×K, respectively the height, width and depth. Then, we
propose to perform six parallel MC VIs, one in each direction of each axis. This
is illustrated in Figure 4.3.

For a given MC VI procedure, e.g., in the cases top-down or down-top (N×K
MCs of length M), the variational distribution is (recall the definition of a MC
given in Equation 1.20):

l(xxxxxxx) =

N×K∏

n=1

ln1 (x
n
1 )

M∏

m=2

lnm(xnm|xnm−1). (4.10)

The quantity to maximize, −KL(l(xxxxxxx)||p(xxxxxxx|yyyyyyy)), then becomes in this section:

−KL(l(xxxxxxx)||p(xxxxxxx|yyyyyyy)) = Exxxxxxx∼l(xxxxxxx)[log p(xxxxxxx|yyyyyyy)− log l(xxxxxxx)]. (4.11)
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M

N
K

(a) (b) (c)

Figure 4.3.: The different MC VIs in the image data cube that can be run in
parallel. (a) depicts the MC VIs of types front-back and back-front,
each involving M × N MCs of length K in both directions of the
third dimension. (b) depicts the MC VIs of types top-down and
down-top (N ×K MCs of length M in both directions of the first
dimension). (c) depicts the MC VIs of types left-right and right-
left (M × K MCs of length N in both directions of the second
dimension).

The details of the derivation of the update equations for the MC VI approach
are given in Appendix E.2. Once the update equations are found we use the
same approach as shown in Section 4.3.2, that is, we interpret the bottleneck
equation (summation over all the sites) as a convolution. Algorithm 4.2 sum-
marizes the MC VI for fcCRFs. The update of all the terms of the variational
distribution in Algorithm 4.2 can be done in a parallel fashion; this is the
foundation of the practical MC VI methodology we present in Section 4.4.2.

Performing the MC VI procedures yields six posterior marginal probability
distributions. Let these distributions be ∀s ∈ S, ∀xs ∈ Ω, lbfs (xs), lfbs (xs),
ltds (xs), ldts (xs), llrs (xs) and lrls (xs), associated, respectively to the front-back,
back-front, top-down, down-top, left-right and right-left MC VI procedure. Then
the final posterior marginal probability distribution results from taking the
product of each MC VI, at each site and for each class. That is, the final
marginal probability distribution is defined by, ∀s ∈ S, ∀xs ∈ Ω:

l̊s(xs) = lbfs (xs)l
fb
s (xs)l

td
s (xs)l

dt
s (xs)l

lr
s (xs)l

rl
s (xs). (4.12)

From l̊ we perform the final segmentation following the MPM criterion such
that, ∀s ∈ S:

x̂MCV I
s = argmaxx∈Ω l̊s(xs). (4.13)

Remark: Other merging rules were tested such as a majority voting for
each pixel based on the segmentations provided by each MC VI, or taking
the maximal probability between each MC VI, at each site and for each class.
Those criteria performed worse than Equation 4.12 and their results will not
be reported.

Remark: The approach we propose is straightforwardly transposed in the
context of 2D images by performing four parallel MC VIs (top-down, down-
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Algorithm 4.2: MC VI for fcCRFs (example of top-down or down-top
cases)
Data: w1, w2, θα, θβ , θγ , the model parameters,

yyyyyyy, the observations.
Result: l(xxxxxxx), the MC approximation of p(xxxxxxx|yyyyyyy).
/* Initialize l */
lnm(xnm|xnm−1)← exp (−ψu(x

n
m)) , ∀n ∈ {1, . . . , N ×K}, ∀m ∈

{1, . . . ,M}, ∀(xnm, xnm−1) ∈ Ω2

Forward Backward (Algorithm A.2) to get the marginals of l
while convergence is not attained do

for n ∈ {1, . . . , N ×K} do

for m ∈ {1, . . . ,M} do

for x′ ∈ Ω do

for r ∈ {1, 2} do

l̃nm,r(x
′)←∑

(m′,n′) 6=(m,n) kr(fffffff
n
m, fffffff

n′

m′)
∑

x′′∈Ω l
n′

m′−1(x
′|x′′)ln′m′−1(x

′′)

(Optimized in Section 4.3.2 by recognizing a
convolution)

end

end

for (xnm, x
n
m−1) ∈ Ω2 do

l̂nm(xnm|xnm−1)←
[∑

x′∈Ω(1− δx
′

xn
m
)
∑2

r=1 wr l̃
n
m,r(x

′)+∑
xn
m−1∈Ω

lnm−1(x
n
m−1|xnm−1)l

n
m−2(x

n
m−2)×

log lnm−1(x
n
m−1|xnm−2)

]

lnm(xnm|xnm−1)← exp
(
−ψu(x

n
m)− l̂nm(xnm|xnm−1)

)

end

Normalize lnm
end

end

Forward Backward (Algorithm A.2) to get the marginals of l
end
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top, left-right and right-left). The final posterior marginal distribution is also
computed by adapting Equation 4.12 to a product of four terms.

4.5. Experiments and Results

4.5.1. Segmentation via Deep Learning

We here describe the experiment of histological image segmentation and its
results with the CNN described in Section 4.2.

Experimental set-up

The medical context surrounding this application is described in Chapter 5,
the focus in this section is on the mathematical aspects of the problem.

The annotated dataset is made of 91 original slices of the type shown in Fig-
ure 4.1. We consider a 6-class segmentation problem; the mCT image pixels are
then assigned to one of the 6 labels: soft tissue, fatty tissue, sheet calcification,
nodular calcification, specimen holder and background. The class acronyms are
respectively ST, FT, SC, NC, SH, Ba. Among the 91 annotated slices, 10 are
held apart from the beginning of the experiment, they form the test set. The
remaining 81 original annotated slices form the training set. Then the train
and test sets undergo data augmentation algorithms (rescaling, rotation and
gamma correction) (Shorten and Khoshgoftaar, 2019). This raises the train
and test set to respectively 1620 and 200 elements. Eventually the train set is
split into the actual train set and a validation set whose size is set to 10% of
the former training set. The network we use is the same as in Figure 4.2 but
with inputs of size 512× 512 (images are cropped to fit this size). The network
is then trained with respect to the mean Dice loss function. The experiments
are coded in Python3 using the Tensorflow4 library.

Results

Figure 4.4 illustrates the evolution of the mean Dice loss on the train and val-
idation set during training. We can see that, after 50 iterations, the loss is
stabilized and the training stops. Table 4.1 gives the Dice score for each class
on the test set. We can see some important discrepancies in the results be-
tween the classes. These discrepancies reflect the intrinsic complexity of the
dataset. Indeed, the latter presents high class imbalances, high similarities be-
tween classes and notable differences between the image dynamic ranges. Note
however that one key goal was to distinguish, on mCT images, the two types
of calcifications namely, SC and NC. This is an important histopathological
aspect. While such a task seems extremely complex for the naked eye, our
DL approach can, to some extent, answer this problem. Future research might
further improve this point. An example of a 2D prediction made by the CNN
on a slice from the test set is given in Figure 4.5.

4https://www.tensorflow.org
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Figure 4.4.: Mean Dice loss values on the train and validation set as a function
of the epoches. Recall that the training is stopped according to the
behavior of the validation loss.

ST FT SC NC SH Ba
Dice 0.94 0.41 0.85 0.64 0.86 0.99

Table 4.1.: Dice scores on test set for each class.

More results and in-depth discussions about this semantic segmentation prob-
lem and some histopathological interpretations are available in Chapter 5.

4.5.2. Experimental comparisons of MF VI and MC VI on
semi-real images

Before applying the fcCRF VI procedures on real data, we evaluate the relative
performance of MF VI and MC VI on synthetic data. We consider the case
of unsupervised grayscale two-class image segmentation corrupted by additive
Gaussian noise. The set of hidden classes is Ω = {ω1, ω2}. The additive
Gaussian noise is parametrized by a mean and a standard deviation for each
class: (µω, σω), ∀ω ∈ Ω. A first segmentation is performed using a Gaussian
Mixture Model (GMM) (Murphy, 2012). The posterior probabilities of the
GMM are used for the initialization of the unary potentials of the fcCRF model,
for each pixel and for each class.

We define as errGMM , errMFV I−Pe and errMCV I−Pa the error rates in the
segmentation with, respectively, the GMM, the fcCRF model with MF VI, the
fcCRF model with MC VI with Peano scan and the fcCRF model MC VI with
parallel MCs. In all cases we fix the number of iterations in the VI procedures
to 50. In the following, we provide experiments offering a general overview of
the behavior of the models.

In Figure 4.6 we plot the error rates of the approaches for the unsupervised
segmentation of images. First we emphasize the fact the MC VI approach
appears as more efficient for inference in fcCRFs than the classical MF VI
approach both with the parallel MCs and the Peano scan implementations. In
particular, in the case of Figure 4.6b, MC VI offers up to a 8 point gain in the
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(a) MicroCT slice (b) CNN predictions (c) Ground truth

Figure 4.5.: Example of 2D prediction by the CNN on a sample from the test
set. It is the same sample as illustrated in Figure 4.1 where, as
noted, the classes soft tissue and thrombus have been merged. The
colormap is given in Figure 5.15.

error rate over MF VI, and provides a better or equivalent error rate for all
noise levels. We also note that the GMM approach is not competitive against
the three others, its main drawback lies in its inability to take into account any
spatial context. The fcCRF approach appears as an efficient post-processing
technique which is built upon the probability map given by the GMM method.
The fcCRF approach significantly improves the GMM segmentation with more
than 10 point gains in segmentation error. Figure 4.6 provides evidence of the
similar performances of the parallel MCs and Peano scan implementations of
the MC VI procedures in terms of error rate. However they are not equivalent
in terms of computational cost. Indeed, in Figure 4.7 we plot the time taken
for each procedures as a function of the size of the image5. The Peano scan
approach suffers mainly from the fact that it cannot be parallelized and must
process very long MCs. This experiment discards the use of the Peano scan in
favour of our proposed parallel MCs scan.

In Figure 4.8 we plot the surface whose points are defined by errMFV I −
errMCV I−Pa where the varying parameters are the kernel weights w1 and w2

6.
Except for the pathologic case w1 = 0, the surface error is always above 0,
suggesting that the MC VI (with parallel MCs) approach that we propose
always gives better results that the classical MF VI approach for inference in
fcCRFs.

Finally, in Figure 4.9 we illustrate graphically the results on particular im-
ages. The images come from the "1070-Binary Shape Database"7.

We conclude this section by noting the evidence of the advantage in favour
of the MC VI procedures (both with Peano scan and parallel MCs) for fcCRFs
in the case of image segmentation. While we did not work on finding the op-

5Note, moreover, that the use of the Peano scan can only be done on images whose dimen-
sions are a power of two, thus making this approach less practical.

6We empirically found that these parameters are more critically related to the segmentation
performance than the kernel standard deviations.

7https://vision.lems.brown.edu/content/available-software-and-databases
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Figure 4.6.: Error rates in unsupervised segmentation of the two VI procedures
as a function of the noise level σ = σω1

= σω2
. The other param-

eters are fixed to µω1
= 0, µω2

= 1, θα = θβ = θγ = 1. The new
MC VI methodologies appear to be the best performing methods
for all noise levels. The results are here averaged on 10 randomly
chosen images from the dataset.
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Figure 4.7.: Timing of the VI procedures as a function of the size of the image
(a size n means an image of dimensions 2n × 2n).
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Figure 4.8.: errMFV I − errMCV I as a function of w1 and w2. The other param-
eters are µω1

= 0, µω2
= 1, σω1

= σω2
= 1.5, θα = θβ = θγ = 1.

The results are averaged over 10 simulations.

timal set of parameters for the models, we performed several experiments that
exhibited better results for the MC VI for any non-pathological parameter set.
Similarly to the conclusion of Chapter 3, the structured VI approach seems
to better take into account the spatial context thanks to the MCs, leading to
better segmentation rates.

Remark: In the following, all references to MC VI will refer to the parallel
MCs version of MC VI.

4.5.3. Post-processing with fcCRFs

The rest of this chapter is dedicated to improving the CNN segmentation with
a post-processing method based on fcCRFs. We here compare the results in
the segmentations provided by the CNN (Section 4.2.2), by a fcCRF post-
processing based on MF VI (Section 4.3.2) and by a fcCRF post-processing
based on the new MC VI (Section 4.4).

MF VI with fcCRFs for segmented 3D volumes

In this section we employ the fcCRFs with MF VI to segment 3D data: the
whole artery can be reconstructed in 3D. Figure 4.10 illustrates the resulting
segmentation on a mCT from a test artery. The post-processing enables taking
into account the third axis to reconstruct a volume with spatial context from
all the dimensions. More segmentation are provided in Chapter 5.
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xxxxxxx

yyyyyyy

σ = 0.3 σ = 1 σ = 1.7

x̂xxxxxxGMM

0.042% 31.8% 41.9%

x̂xxxxxxMFV I

0.2% 5.7% 28.4%

x̂xxxxxxMCV I−Pa

0.2% 4.6% 24.3%

Figure 4.9.: Unsupervised segmentation of semi-real images with the two VI
procedures on variable images and noise levels σ = σω1

= σω2
. We

have w1 = 1, w2 = 2, µω1
= 0, µω2

= 1, and θα = θβ = θγ = 1.
The parallel MCs approach was taken for the MC VI.

116



4.5. Experiments and Results

Figure 4.10.: Example of a 3D prediction by the CNN on a mCT from a test
artery. We note that the irregularities found in the fatty tissue
class in green are to be expected since this class exhibit the worst
Dice score. The support class has been made invisible for clarity
and the opacity of the soft tissue class has been lowered. The
colormap from Figure 5.15 is used.

The soft tissue class misclassifications

We focus on the problem of correcting spurious classifications from the CNN
which erratically misclassifies the soft tissue class into the background class lead-
ing to an inhomogeneous segmented volume. This problem is similar to (Kam-
nitsas et al., 2017), which also uses the fcCRFs to a similar end. The problem
is described in Figure 4.11.

(Kamnitsas et al., 2017) uses fcCRFs and MF VI to process the CNN output.
They rely on the smoothing capabilities and the modeling of the 3D context
provided by the fcCRFs to solve the misclassifications. Illustration of such
process is done in Figure 4.12a. However, MF VI does not seem suitable in
our case: it results in the loss of the small calcification pixels which are essen-
tial in our application. Those unsatisfactory results made us consider a new
methodology based on MC VI. It is described in the next section.

Using MC VI with fcCRFs to recover the missing soft tissue class

In this section we describe the processing based on MC VI. MC VI offers the
additional possibility to refine the segmentation with known constraints from
the application. Indeed, the VI procedure produces a non-stationary transition
matrix between the states in Ω. One then has an understable view of the model
that has been learnt before the final inference in the variational distribution
with the Forward Backward algorithm. Since a MC transition matrix is easily
comprehensive, we also propose to adjust the probabilities that are learnt in
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(a) mCT image (b) CNN segmentation

Figure 4.11.: Illustration of spurious classifications CNN of the soft tissue class.
While clearly visible by the naked eye, the soft tissue class is only
partially segmented on this slice. A major cause of this problem
might be the lack of context from the depth axis in the slice-by-
slice segmentation performed by the CNN. The color code from
Figure 5.15 is used.

order to correct learnt transitions that does not fit the desired application.
We want to penalize the predictions made in favour of the background class

in the areas were the soft tissue class is missing. This can be done thanks to
the transition matrix of the MCs that are learnt during the MC VIs processes.
A similar idea of matrix adjustment to exhibit class relationships to improve
classifications predictions can be found in (Fidon et al., 2017) for example.

We start by detecting the areas where the soft tissue is missing by using a
binary closing operator. Then, within these areas denoted A, at each iteration
of the MC VI, the probability of transitioning from any class to the background
class is lowered so that, for the transition matrix of any MC VI, with ωbck being
the background class:

∀ω ∈ Ω \ {ωbck}, ∀s ∈ A, ls(ωbck|ω) = min
ω′∈Ω

ls(ω
′|ω). (4.14)

Such an adjustment improved greatly the segmentations enabling the soft
tissue class to be recovered thanks to the spatial context brought by each VI.
An example of MC VI is given in Figure 4.12b (single slice illustrated) and in
Figure 4.13c (3D segmented volume). We note how the MC VI methodology
leads to the most refined results. It is also computationally efficient since both
the MC VI procedures and the processing of each MC inside each of the pro-
cedure are parallelized. The computational bottleneck of MC VI remains the
same as in MF VI, namely, the bilateral filtering step.

Remark: Such an adjustment in the MC VI procedure does not possess
an equivalent adjustment within the MF VI procedure. The closest experiment
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(a) x̂xxxxxxMFV I (b) x̂xxxxxxMCV I

Figure 4.12.: Illustration of fcCRF post-processings in 3D of the image in Fig-
ure 4.11. In (a), the case of the MF VI, we can see that the
spatial context offers some improvement to solve the misclassi-
fication from the soft tissue class. However this comes at the
price of high kernel variances for smoothing which leads to loss
of details in the calcifications parts which are the most impor-
tant components of the image. However in (b), the case of the
MC VI with modified transition matrix, we can see that our pro-
posed approach offers the best improvements while preserving the
most the details within the segmented calcifications. None of the
approaches could recover the missing calcification in the segmen-
tation. For both VIs the parameters were set to w1 = 2, w2 =
2, θα,x = θα,y = θα,z = 4, θγ,x = θγ,y = θγ,z = θβ = 2. The color
code from Figure 5.15 is used.

(a) CNN segmentation (b) x̂xxxxxxMFV I (c) x̂xxxxxxMCV I

Figure 4.13.: Illustration of fcCRF post-processings in 3D (full volumes). The
same parameters and colormap as in Figure 5.15 are used. The
smoothest segmentation is obtained in (c) with the proposed MC
VI approach thanks to its ability to better correct the spurious
CNN classifications.
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Figure 4.14.: KL values (up to a constant) for the VI procedures as a function
of the iterations regarding the experiment from Figure 4.12. We
can see that all the procedures converge in a few iterations.

that was carried consisted in a direct modification of the estimated marginal
probabilities qs(xs), ∀s ∈ S, in the same way as done in Equation 4.14, which
resulted in bad performances.

Remark: In all this section, as suggested by (Kamnitsas et al., 2017),
the parameters were manually tuned. Further developments might consider an
optimization procedure for automatic fcCRF parameter selection.

Convergence of the VI procedures

Finally we give an insight about the convergence of all the VI approach. This is
in done in Figure 4.14. We can see that in all cases the convergence is very quick
to happen. As discussed in the supplementary material of (Krähenbühl and
Koltun, 2011), the KL values (Equation 4.11) are computed up to a constant
because the partition function of p(xxxxxxx|yyyyyyy) cannot be computed. The partition
function can be discarded since it appears as an additive term which only
depends on the observations yyyyyyy and the CRF parameters which are constant
accross the VIs.

4.6. Conclusion

In this chapter we treated an unique dataset of mCT of atherosclerotic arteries,
whose histological ground truths have been annotated by an expert during
the course of the thesis. That is why we studied supervised segmentation
approaches and more precisely, deep learning approaches. We also studied the
complementary of deep learning and probabilistic approaches.

We first processed the data and trained a CNN to segment any new mCT
data of atherosclerotic data into six histologically meaningful classes. We then
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studied the problem of using the CNN outputs to reconstruct a 3D segmented
volume. We used the fcCRF probabilistic model with both its classical MF VI
procedure and a new structured MC VI procedure. The latter seems to enable
a much better use of the spatial context than the former, leading to better
results, both on synthetic and real data. Thus, we brought new solutions to
the problem of volumetric semantic segmentation introduced at the beginning
of the chapter.

More medical context, interpretations and results, as well as illustrations of
this study are available in Chapter 5.
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5.1. Introduction

The previous chapters were dedicated to the mathematical presentations of
new probabilistic models motivated by new challenges in the field of image
processing for medical imaging. In this chapter, the focus is on the application
of some of the models discussed previously on real problems and real data
collected in the field of vascular surgery.

The first section describes the development of a Hidden Markov Chain model
for the precise segmentation of stents corrupted by artifacts in X-ray images.
We then present additional results of the applications of the Gaussian Pairwise
Random Field model (Chapter 2) and of the Spatial Triplet Markov Tree model
(Chapter 3) for the segmentation of organic material and calcifications in X-
ray images. The third section completes the presentation and evaluation of
the U-Net Convolutional Neural Network (Chapter 4) with more background
on the histologic problem, on the dataset construction as well as additional
illustrations.

5.2. Unsupervised segmentation of stents

corrupted by artifacts

5.2.1. Context and motivation

In this section, we describe a statistical approach based on the Hidden Markov
Chain (HMC) model, introduced in Section 1.6.1, to finely segment stents in
medical images corrupted by strong artifacts.

Medical context

The in vivo behavior of the stent is far from being fully understood (Lejay et al.,
2018). However, the amount of medical images is constantly growing, offering
new opportunities to learn from clinical cases. The interactions between the
stent struts and the calcifications are believed to be a major cause of failure
of the treatments based on the implantation of a stent. The study of such
interactions by combining information of both CT and mCT scans is a new
approach to the problem, it requires the development of new imaging tools
which can finely segment the metallic stent components.

The most complex images to process often include a broken stent in a calcified
environment. Images are also often corrupted by strong artifacts. Figure 5.1
illustrates the typical images from which one needs to segment the stent. It
appears that the task of unsupervised segmentation in X-ray scans is a complex
problem. Notably, artifact and calcification pixels are close to the stent pixels
both in intensity, geometry and localization, which tends to produce stent False-
Positive classifications with traditional segmentation methods as we will see in
Section 5.2.3.
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(a) mCT scan

(b) CT scan

Figure 5.1.: Example of input data (2D views), we see the complex environ-
ment in which the stent lies: artifacts and calcifications are notable.
Some stent, calcification and artifact components are indicated by,
respectively, red, blue and green arrows. We note the spatial reso-
lution differences between CT scans and mCT scans.

Related literature

To the best of our knowledge, there exists no dedicated method to confidently
segment stents in such images in an unsupervised fashion1. As a consequence,
people still use simple approaches such as manual thresholding which fails in
complex cases. Thus, such cases are discarded from clinical datasets despite
their medical interest (Perrin et al., 2016).

Relatively few works deal directly with the topic. Works such as (Klein et al.,
2012) or (Langs et al., 2011) that also address stent segmentation are not suit-
able for us since they do not consider the stent in a calcified environment. In
our case, the calcifications and the stent are so close in appearance and some-
times in geometry that dedicated methods need to be developed to distinguish
both classes during segmentation. Moreover, we have to discard approaches
such as (Demirci et al., 2011) since they are stent specific and we need our
method to be independent on the stent model to process our data.

However, the problem of stent segmentation is somehow very close to the
problem of blood vessel segmentation (see (Lesage et al., 2009) for a review on
the topic which concerns traditional approaches). Notably, some multi-scale
filters have met success in the task of blood vessel segmentation (Frangi et al.,
1998) (Merveille et al., 2014), these methods will be used for comparisons in the
result section. During the last years, Deep Learning approaches are performing
1When this project was carried at the beginning the thesis, we had very few and only

unannotated data at our disposal.
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Figure 5.2.: The HMC path, to transform 3D data into 1D data, illustrated on
3 successive slices.

state of the art results in the context of supervised segmentation. Results using
this technique are also available for 3D vessel segmentation (Livne et al., 2019),
and could potentially be adapted to 3D stent segmentation. However, this goes
out of the scope of this work which deals with unsupervised segmentation.

Finally, a point should be made about a very close and active research topic
which is Metal Artifact Reduction (MAR) (Verburg and Seco, 2012) (Y. Zhang
and Yu, 2018). MAR focuses on improving the quality of images corrupted by
metallic artifacts. Many MAR approaches first rely on a segmentation of the
metallic elements in the image, the work presented in this section contributes
to the improvement of MAR techniques. The final result after the MAR step
will be used to assess the quality of the stent segmentation in Section 5.2.3.

5.2.2. A HMC dedicated to handling strong artifacts

The HMC path

We already mentioned in Section 4.4.1 the importance of the transformation of
higher dimensional data into one dimensional data, so that the latter can be
processed by a MC.

In this section we propose a new kind of path dedicated to handling the
artifacts. Each connected component (of the stent class from the initial seg-
mentation) of each slice is visited using a snail path (snail paths are described
in (M. Yahiaoui et al., 2014)). The sense of rotation is alternated between each
snail path. This way, physical continuity in the path is simulated, gathering
all the stent parts in a 1D sequence which allows efficient computation. Such
a path is particularly suited to get a smoothed and regular surface for tubular
structures (Courbot, Rust, et al., 2016). Moreover, in the HMC model one has
to learn the transition probabilities between the classes. A small morphologic
dilation is then performed over the result of the initial segmentation (see the
end of this section) for the snail path to be a little bigger than the connected
components isolated during the initial segmentation. Thus, we make sure that
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5.2. Unsupervised segmentation of stents corrupted by artifacts

all the voxels belonging to the stent class are part of the sequence of pixels to
classify.

Figure 5.2 illustrates our choice for the path of the MC through the slices of
our data cubes.

The HMC statistical model

The segmentation problem presented in this section aims at classifying pixels
into two classes, stent and rest, in an unsupervised fashion. Recall the context
of Bayesian image segmentation introduced in Section 1.5.2. Let XXXXXXX be the
vector of hidden random variables of the class image taking their value in
Ω = {stent, rest}. Let YYYYYYY be the vector of random variables representing the
observed grayscale image (the X-ray scan), the elements of YYYYYYY take their value
in R.

If the hypothesis of independent Gaussian noise is made then the parameters
that we need to learn are the initial probabilities of the MC, the transition
probabilities of the MC, the mean and the standard deviation of the Gaussian
distribution associated with each class. The parameters are learnt unsuper-
visedly with the SEM algorithm (Algorithm A.5) similarly to the parameter
estimation steps described in Chapters 2 and 3. The statistical inference step
is performed by the FB algorithm (Algorithm A.2) followed by the MPM algo-
rithm (Algorithm A.6).

Improving the noise model to handle strong artifacts

Classically, such as in (Courbot, Rust, et al., 2016), the noise model in a HMC,
also called conditional likelihood, is chosen to be a mixture of Gaussian distri-
butions (MoG). Using developments on generalized mixture models in Hidden
Markov Models such as (Delignon et al., 1997) and (Pieczynski, Bouvrais, et
al., 2000), we propose to work with a noise model involving mixture of expo-
nential distributions (MoE) to improve the results. MoEs have already been
explored for Hidden Markov Trees in (Monfrini and Pieczynski, 2005). Indeed,
the "all-or-nothing" behavior enabled by using the exponential distribution
seemed particularly suited to handle the strongest artifacts. The exponential
probability density function is given by:

f(x;λ, δ) =

{
λ exp (−λ (x− δ)) x > δ,

0 x ≤ δ,
(5.1)

where (λ, δ) ∈ (R+∗,R) are the new parameters to estimate for each class in
the SEM procedure.

Moreover, a Bayesian Information Criterion (BIC) (Wit et al., 2012) score
comparison was conducted and we showed that a MoE fitted better the em-
pirical distribution (obtained after the coarse segmentation) for the stent class
and the rest class than a MoG. It is described in Appendix F.1.
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Figure 5.3.: Diagram of the fine stent segmentation step.

The complete segmentation approach

The HMC needs to be initialized by an initial segmentation, we propose that its
initialization correspond to the response of a Frangi filter (Frangi et al., 1998)
followed by a region growing algorithm and a watershed algorithm (Haidekker,
2011). This forms the Preprocessing part of Figure 5.3.

The Frangi filter is first performed and we keep only voxels whose probability
to belong to a tubular structure is above a certain threshold (dependent on
the nature of the image we want to segment). A region-growing algorithm is
performed in 3D to select only the biggest connected component (the pixels
from the stent class). A watershed algorithm is performed on every slice to
separate connected components that should be disjoint but still appear stuck
together because of the artifacts.

Figure 5.3 summarizes the complete segmentation approach.

Remark: A step of upsampling is needed for images of very low resolution
such as CT scans (see, e.g, Figure 5.1b). The idea is that the stent parts on
the image should be increased up to a certain width (we used 10 pixels in our
applications) so that the successive filters used for segmentation show responses.

Remark: The Frangi filter is the most important part of the Preprocessing
algorithm. The subsequent HMC algorithms can be seen as a statistical refine-
ment of the Frangi filter response, increasing the robustness of the latter and
making it fully automatic.
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5.2. Unsupervised segmentation of stents corrupted by artifacts

Thresh. MoG MoE

Stent 1

Stent 2

Stent 3

Figure 5.4.: 3D segmentation of stents via manual thresholding (Thresh.), MoG
approach and MoE approach.

5.2.3. Results

We begin by illustrating segmentations by our fine segmentation method. We
start by considering the refinement introduced by using a noise model involving
a mixture of exponential distributions, which better reflects the nature of the
artifacts in the images. Indeed, as depicted in Figure 5.4 on several cases
with very strong artifacts, the recovered stent structure is much thinner and
much more circular as the original metallic structure of the stent. Figure 5.5
illustrates some more segmented 3D meshes of broken stents.

As stated in the introduction, we can apply our new metal segmentation
method to improve Metal Artifact Reduction (MAR) procedures. Beam Hard-
ening Correction (BHC) is built upon the Linear Interpolation technique and
they form the most classical approaches to MAR (Verburg and Seco, 2012) (Y.
Zhang and Yu, 2018). We show, with Figure 5.6, on various CT scans, restored
images with reduced artifacts using our fine statistical segmentation approach
followed by BHC. Results are compared to a manual segmentation, to a seg-
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Figure 5.5.: 3D views of segmented mCT and CT stent images from the
database.
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5.2. Unsupervised segmentation of stents corrupted by artifacts

mentation based on Frangi filter2 (Frangi et al., 1998) and to a segmentation
based on the RORPO filter2 (Merveille et al., 2014), all three followed by BHC.
Note that all methods operate in 3D but 2D slices are presented for a better
visual assessment of the results. Such results highlight the importance of the
metallic segmentation step in MAR problems.

The absence of ground truth forces us to make a qualitative assessment of the
segmentations. Our algorithm is the most likely to offer a precise refinement
over the stent pixels as well as avoiding False-Positive classifications resulting
from calcifications or artifacts. The precise segmentation that we propose re-
duces the remaining artifacts at the end of the MAR procedure.

Remark: It is notable that the results from the three methods used for
comparisons depend on a final step of manual thresholding. On the contrary,
the proposed HMC does not need such manual intervention since the statistical
refinement is fully automatic, avoiding a time consuming step for the expert
which is also subject to the operator subjectivity.

2This filter response over the data cube is manually segmented afterwards, with a global
threshold.
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Slice 1 Slice 2 Slice 3

Original
slices

Manual
thresh.
+ BHC

RORPO
+ BHC

Frangi
+ BHC

Our fine
segmen-
tation +

BHC

Figure 5.6.: MAR with the BHC algorithm when using different stent segmen-
tation techniques. The last row, which is the one including our
segmentation technique, shows restored images less affected by the
artifacts. This can be seen especially in the center region of the
stent. Artifacts may be hard to see on the original slices because of
the image dynamic range. The scales used in the Frangi filter are
{3, 6, 9}. The scales used in the RORPO filter are {100, 150, 200}.
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5.3. Unsupervised segmentation of the organic material and calcifications

FN FP

Case 1
P-IN <0.01 0.16

GPMF 0.03 0.03

Case 2
P-IN 0.10 0.02

GPMF 0.07 0.02

Case 3
P-IN 0.03 0.11

GPMF 0.02 0.02

(a) From Figure 5.7.

FN FP

Case 4
P-IN 0.03 0.03

GPMF 0.04 0.01

Case 5
P-IN <0.01 0.19

GPMF <0.01 0.08

(b) From Figure 5.8.

Table 5.1.: FN and FP rates computed in the blue areas for each model, for
each case of Figures 5.7 and 5.8.

5.3. Unsupervised segmentation of the organic

material and calcifications

5.3.1. Organic material segmentation with GPMFs

In this section we provide some more illustrations on real world images of
segmentations using the GPMF model. We discuss the current performances
of the model and explore its current limits. Recall the context of Section 2.5.4,
the goal is to segment the organic biomaterial in mCTs of stented arteries
corrupted by spatially correlated noise.

In this context, Figures 5.7 and 5.8 illustrate some more segmentations with
the classical HMF model, the Potts-Independent Noise (P-IN) model, and the
new GPMF model. It is notable that the overall performance of the GPMF
model seems worst in Figure 5.8 than in Figure 5.7. Indeed, the latter segmen-
tations are examples of the current limitations of the GPMF model that we
associate with the noise stationarity assumption made in the model.

A closer examination of the data seems to reveal that a bad performance
of the GPMF is mainly caused by a smoothing effect that entails a quite sub-
stancial loss of details in the segmentation. The stationarity assumption might
explain the problem, indeed, the model might reflect poorly the reality in zones
where there is no or very few spatial correlation.

We might argue that the most interesting zones are the ones directly around
the stents. Indeed, an important biomechanical question that initiated this
work is whether the stent is in contact with calcifications. Such kind of interac-
tions are believed to be of crucial importance in many cases of the failure of the
treatment such as stent fracture. Hopefully, at such locations of the images the
GPMF model is performing well in all cases: see the FN/FP rates computed
in Table 5.1.

Remark: It also seems that the most complex cases for the GPMF model
are the ones where the artifacts are the strongest, or more spread on the image.
However this last remark has not currently been explored since the literature
seems to lack a good measure of the metallic artifacts on an image.
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Remark: A comparison with the results we obtained on semi-real images
in Section 2.5.2 corroborates the fact that the stationarity assumption in the
GPMF model is the most limiting factor. Indeed, in the semi-real experiment,
the noise stationarity assumption holds and we do not observe any of the prob-
lems that we observe here.
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5.3. Unsupervised segmentation of the organic material and calcifications

case 1 case 2 case 3

yyyyyyy

xxxxxxx

x̂xxxxxxP−IN

2.6% 8.1% 2.6%

x̂xxxxxxGPMF

1.8% 6.1% 1.4%

Figure 5.7.: P-IN and GPMF segmentations of organic material in mCT on
more examples. The blue areas correspond to the areas of FN/FP
computations. The indicated percentage represents the error rate
in the segmentation computed over the whole image.
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case 4 case 5

yyyyyyy

xxxxxxx

x̂xxxxxxP−IN

2.5% 6.2%

x̂xxxxxxGPMF

2.9% 4.3%

Figure 5.8.: P-IN and GPMF segmentations of organic material in mCT on
more examples in the limiting cases for the GPMF model. The
blue areas correspond to the areas of FN/FP computations. The
indicated percentage represents the error rate in the segmentation
computed over the whole image.
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5.3. Unsupervised segmentation of the organic material and calcifications

(a) Case A (b) Case B (c) Case C

Figure 5.9.: Ground truths for the experiment of unsupervised segmentation of
calcifications.

5.3.2. Unsupervised calcification segmentation with STMTs

In this section, we work in the context of unsupervised image segmentation
with STMTs. We want to compare, on real images, their relative performance
with the HMF and HMT models. The goal of the experiment is to segment the
atherosclerotic calcifications on a mCT image: the brightest parts of the mCT
images (see Figure 5.9).

We also add additive independent Gaussian noise to form more diverse obser-
vations YYYYYYY = yyyyyyy. Such a construction reflects situations where the mCT image
would be of less good quality. Our objective is to evaluate, on real images,
the capacity of STMTs to take the spatial context into account spatial con-
text while offering fully deterministic inference computations. That is why the
segmentation of atherosclerotic calcifications is the chosen objective: they are
very homogeneous and rounded shapes which is expected to favor modelizations
which can take into account the spatial context.

In this experiment we compare the HMF-IN model defined in Equations 3.29
and 3.30, the (quadtree) HMT-IN model, defined in Equation 1.24, and the
(quadtree) STMT with Independent Noise, defined in Equations 3.5. The
parameters are estimated unsupervisedly, with the IPET algorithm (Algo-
rithm 3.2), as described in Section 2.3 for HMFs-IN and Section 3.3.2 for STMTs
and HMTs-IN.

Figures 5.10, 5.11 and 5.12 depict such an experiment. The HMF-IN model
seems to better segment the proposed shapes. However, for the higher noise
levels, as stated in Chapter 3, we also encounter the issues arising from the
stochasticity of the HMF-IN inference and parameter estimation procedures.
Indeed, the results can differ a lot between two runs of the same experiment.

We also see that STMTs seem more prone to capture the spatial correlations
than the HMT-IN model. As a result they offer better segmentations than
the HMT-IN model as the noise level increases. At the lowest noise levels,
STMTs and HMTs-IN perform similarly. When slightly better error rates are
in favor of the HMT-IN model versus the STMT model, as in the first column
of Figure 5.12, we find a contradiction with the results on synthetic data of
Chapter 3. We might argue that this is due to the real world data we treat:
the noise model might not be the best modelization for the image. The LLS
estimation of the parameters might also be a limiting factor.
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yyyyyyy

Original mCT σ = 50 σ = 100

x̂xxxxxxHMF−IN

4.4% 4.0% 12.8%

x̂xxxxxxHMT−IN

7.1% 7.2% 24.9%

x̂xxxxxxSTMT

6.5% 3.0% 10.7%

Figure 5.10.: Case A. Unsupervised segmentations of atherosclerotic calcifica-
tions. The percentages below the segmentations indicate the error
rates with the ground truth. The ground truth is shown in Fig-
ure 5.9a.
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yyyyyyy

Original mCT σ = 50 σ = 100

x̂xxxxxxHMF−IN

1.8% 2.2% 26.0%

x̂xxxxxxHMT−IN

2.5% 4.9% 22.9%

x̂xxxxxxSTMT

2.2% 3.7% 20.7%

Figure 5.11.: Case B. Unsupervised segmentations of atherosclerotic calcifica-
tions. The percentages below the segmentations indicate the error
rates with the ground truth. The ground truth is shown in Fig-
ure 5.9b.

139



Chapter 5. Applications to vascular surgery

yyyyyyy

Original mCT σ = 50 σ = 100

x̂xxxxxxHMF−IN

2.2% 3.2% 3.2%

x̂xxxxxxHMT−IN

1.6% 3.8% 23.3%

x̂xxxxxxSTMT

2.1% 2.1% 19.3%

Figure 5.12.: Case C. Unsupervised segmentations of atherosclerotic calcifica-
tions. The percentages below the segmentations indicate the error
rates with the ground truth. The ground truth is shown in Fig-
ure 5.9c.
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5.4. Histological segmentation of microCT with Deep Learning

5.4. Histological segmentation of microCT with

Deep Learning

In this section we provide more context, details and results to the original
project presented in Chapter 4.

5.4.1. Motivation

Our goal is to study peripheral obstructive artery diseases in femoropopliteal
arteries. They are common affections of the blood vessels which are still not
well understood (Yahagi et al., 2016) (Torii et al., 2019). On the one hand,
microCT has been proven to be a valuable tool for the recognition of the dif-
ferent atherosclerotic components (Jinnouchi et al., 2018). On the other hand,
histology, which is the gold standard to analyze and study the atherosclerotic
process is a destructive technique and requires a skilled expert. Therefore, in
this project we aim for an automatic histologic segmentation of microCT im-
ages based on artificial intelligence and, more precisely, Deep Learning (DL)
which has become the state of the art approach for biomedical semantic image
segmentation. With the algorithm we developed, the classic histologic process
might be replaced by an automatic and non-invasive segmentation for a first
analysis. Such an algorithm will save time and enable to process more data
in a shorter time, since the histopathologists will be guided towards the most
interesting biological materials. Eventually, the algorithm would help develop
knowledge of the atherosclerotic process that would lead to better and more
personalized treatments.

5.4.2. Protocol and database construction

In this section we give the main steps of the protocol that we set up for the con-
struction of the database that was used as learning data for the DL algorithm.
The steps are illustrated with images in Figure 5.14. In all the descriptions
of this work, the colormap used for the histologic segmentation is given in
Figure 5.15.

The steps of the proposed protocol are:

1. Retrieval of femoropopliteal arteries from amputated legs from patients
who had undergone transfemoral amputations3. These explanted arteries
were collected thanks to the Geprovas collaborative retrieval program.
Figure 5.13 shows explanted arteries from the study.

2. The microCT 3D images of the arteries were acquired at the CVPath
Institute, Inc, (Gaithersburg, MD, USA) using a Nikon X-Tek XT H
225ST4.

3We started our study with six explanted arteries.
4https://www.nikonmetrology.com/en-gb/product/xt-h-255-st
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3. Histology was then performed on the specimens as described in (Torii
et al., 2019). Some histologic slices are depicted in Figure 5.14a.

4. Co-registration was subsequently performed manually between the mi-
croCT images and the histologic slices obtained during the two steps
described above. This was performed with VGSTUDIOMAX 3.05 and
ImageJ6. The result of this step consists in pairs of data: the microCT
2D image with its histologic ground truth. Some co-registered microCT
images are illustrated in Figure 5.14b.

5. An expert then annotated the microCT images using the histologic ground
truths in the GIMP software7. It was decided to segment the data into 11
classes. It has then been decided with the histopathologists that 6 classes
were of interest to develop a first version of the algorithm. We now list
the 6 classes, with the subclasses that possibly compose them:

• soft tissue (ST ): soft tissue, formaldehyde, thrombus, fibrous plaque.

• fatty tissue (FT ): fatty tissue, lipid pool.

• sheet calcification (SC ).

• nodular calcification (NC ).

• specimen holder (SH ).

• background (Ba): background, true lumen.

In the list above, we also specify the acronym that might be used to refer
to the class. This step results in the creation of data pairs (microCT image
and the corresponding class image) that are the data the DL algorithm
will be trained on. Some annotated slices are illustrated in Figure 5.14c.

The subsequent steps of the project are described in Chapter 4. Those steps
deal with the set-up and training of a Convolutional Neural Network (CNN)
to achieve the automatic segmentation goal we described in Section 5.4.1. We
now focus on the analysis of the resulting segmentations provided by the CNN.

Remark: The choice to reduce the number of classes from 11 to 6 has been
made for various reasons. It is essentially a compromise between providing a
segmentation meaningful from a histologic viewpoint but also to set up a solv-
able problem from a DL viewpoint. Indeed, this project represents exploratory
work where data are rare, highly imbalanced and the some classes exhibit high
similarity in images.

5https://www.volumegraphics.com/
6https://imagej.nih.gov/ij/
7https://www.gimp.org
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5.4. Histological segmentation of microCT with Deep Learning

Figure 5.13.: Pictures of two explanted arteries after amputation, the first step
of our protocol.

5.4.3. Results

2D segmentation on the test set

Table 4.1 references the Dice scores on the test set. These results indicate
several degrees of difficulties in the automatic recognition of the classes. First
of all, the soft tissue, background and specimen holder classes are well segmented
(Dice scores > 0.86). Secondly, the CNN is capable of responding quite well
to a crucial histologic analysis: the differenciation of the calcification classes,
sheet calcification and nodular calcification, whose Dice scores are, respectively,
0.85 and 0.64. This ability is remarkable since the differenciation is almost
impossible by the naked eye, even for a trained expert. Finally, we note that
the fatty tissue class is the most complex to segment (Dice score of 0.41). This
can be explained by the fact that this class is really similar in appearance to
the soft tissue class. It is also under represented in the training data, which
might be another cause for the high number of misclassifications.

To go further in the analysis, we give in Table 5.2 the multiclass confusion
matrix associated with the segmentations of the CNN on the test set. We can
then be more precise about the comments we made on the Dice scores. Looking
at the SC and NC rows of the table we see that the main source of errors in
the segmentation of the calcifications comes from a confusion between the two
calcification types. Interestingly, by reading the FT row, we get that the reason
for the bad FT score is that this class is most of the time misclassified as the
ST class.

By considering the segmentation of each class as a binary One versus the rest
classification problem we can compare the segmentation of each class using the
Precision Recall (PR) curve and the Area Under Curve (AUC). A bigger AUC
reveals a better classifier for a given class. PR curves and AUCs are given in
Figure 5.16. This analysis exhibits the same hierarchy between classifiers as
the Dice scores discussed above. Note that because of the high class imbalance
the Receiver Operating Characteristic (ROC) curves are not exploitable, they
are biased by the huge number of negatives from the Ba class and cannot be
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(a) Three histologic slices resulting from Step 3.

(b) Three microCT images correlated with their histologic truth after Step 4.

(c) Three expert annotated microCT images obtained after Step 5.

Figure 5.14.: Illustrations of the different steps of the protocol on three exam-
ples.

soft tissue (ST ) fatty tissue (FT )

sheet calcification (SC ) nodular calcification (NC )

specimen holder (SH ) background (Ba)

Figure 5.15.: Colormap for the histologic classes.
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❳
❳
❳
❳

❳
❳
❳

❳
❳
❳

Truth
Pred.

ST FT SC NC SH Ba

ST 9.94 0.13 0.07 0.02 0.02 0.2
FT 0.50 0.31 0.002 0.0006 0.002 0.004
SC 0.06 0.007 0.78 0.11 0.0009 0.0005
NC 0.05 0 0.17 0.25 0.001 0.002
SH 0.15 0.34 0.008 0.003 2.73 0.32
Ba 0.17 0.06 0.003 0.001 0.19 83.4

Table 5.2.: Multiclass confusion matrix of the CNN results of the test set. Each
cell has been normalized by the total number of pixels in the test
set so that the sum of all the cells gives 1. The numbers in the cells
must be multiplied by ×10−2.
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Figure 5.16.: Precision-Recall curves and their AUCs obtained by the CNN for
each class on the test set.

properly compared. See (Murphy, 2012) for more details on PR and ROC
curves.

To conclude this section on the 2D segmentations, Figure 5.17 depicts some
segmented slices by the CNN that illustrate the detailed discussion we give
above. The illustrations reflect the complexity to correctly classify pixels from
the FT class and the confusion that sometimes arises when classifying pixels
into one of the calcification classes.

3D segmentation on test femoropopliteal arteries

We now provide in Figure 5.18, some examples of the complete segmentation of
an artery by the CNN after fcCRF and MF VI post-processing (see Chapter 4).
Such results are directly understandable by the histopathologists who can then
analyze the explant at a histologic level with a microCT acquisition only. The
expert can then decide how to go further in their analysis.
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(a) MicroCT slice / CNN predictions / Ground truth

(b) MicroCT slice / CNN predictions / Ground truth

Figure 5.17.: Examples of 2D predictions by the CNN on samples from the test
set. Colormap is given in Figure 5.15.
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(a) All classes (except Ba) / ST + FT + SC + NC / SC + NC

(b) All classes (except Ba) / ST + FT + SC + NC / SC + NC

Figure 5.18.: 3D histological reconstructions of two arteries by combining the
results of the CNN with a post-processing based on fcCRFs. The
colormap is given in Figure 5.15.
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5.5. Conclusion

In this chapter we offered an applicative perspective on the probabilistic models
described along the thesis. Our goal was to show to what extent they could be
the foundation of new tools used in the field of vascular surgery to develop and
enhance the medical research as well as the clinical workflow. The results in
this chapter are founded on CT, mCT and histological images. This highlights
the importance of the imagery and the processing of the produced images in
vascular surgery. The key role of images is expected to grow with time.
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Conclusions and Perspectives

Gaussian Pairwise Markov Fields

Family of the probabilistic model studied:

Hidden Markov Fields
Model, innovation:

Gaussian Pairwise Markov Fields
Issue that has been addressed:

Unsupervised segmentation of images corrupted with spatially correlated noise
Perspective that have been opened in medical research:

Fine automated analysis of the biological environment of explanted stents

The GPMF model introduced in Chapter 2 is a way to confidently segment
organic biomaterial in a scan corrupted by long-spatially correlated noise. We
showed that GPMFs handle the stent artifacts and can offer the best com-
promise to limit the number of False Positive and False Negative pixels, as
compared to other classical approach of segmentation.

We can give two perspectives based on this work. The first would be to
introduce a spatial non-stationarity for the range and the variance, i.e., to
allow these parameters to vary according to the location on the images. This
would indeed better reflect the correlated noise observed on the images since its
strenght is not the same everywhere. One could then expect further improve-
ments in the segmentations by, for example, reducing the undesired smoothing
effect that can happen. One way to study this issue is to complexify the cor-
relation function so that it integrates non-stationarities (Fouedjio et al., 2015)
(Kleiber, 2016) (Nychka et al., 2018). Another approach might consider build-
ing a probabilistic graphical model which can switch between submodels with
different parameters (Courbot, Monfrini, et al., 2018) (Vacar and Giovannelli,
2019). Another perspective is based on the construction of an annotated dataset
(described in Section 5.4.2) of the images we want to segment8. This would
enable us to construct a discriminative version of the GPMF model related to
other models of CRFs recently developed (Radosavljevic et al., 2010) (Krähen-
bühl and Koltun, 2011) (Vemulapalli et al., 2016) (Petrović et al., 2019). Such
a discriminative formulation of the model would potentially improve the result-
ing segmentations (Ng and Michael I Jordan, 2002) and offer a computational
advantage for the inference process.

8This dataset was not available at the time of the work on the GPMF model.
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Stent segmentation in X-ray images

Family of the probabilistic model studied:

Hidden Markov Chains
Model, innovation:

Hidden Markov Chain with specific noise model and path
Issue that has been addressed:

Unsupervised segmentation of deformed elements without prior information
Perspective that have been opened in medical research:

Automated analysis of stent deformations and fractures

The fine segmentation of stents in CT and mCT images developed in Chap-
ter 5 faces the problem of artifacts which are a common type of corruption in
image processing of biomaterials. We proposed a statistical model dedicated
to handling these artifacts and restore the original smooth and tubular stent
shape.

On the signal processing aspect, the model we developed could be improved
with a noise model which explicitly takes into account the correlated noise such
as Pairwise or Triplet Markov models (Gorynin, Gangloff, et al., 2018). One
could also algorithmically improve the Markov Chain path, which is currently
based on a slice-by-slice processing, by extending the path computation algo-
rithm so that it works in full 3D. The problem of stent segmentation could also
be approached in a supervised fashion if a database of annotated images were
developed. A first Deep Learning algorithm for stent segmentation has been
proposed recently for X-ray images in (Breininger et al., 2018).

On the medical aspect, being able to confidently segment stents in artifacts
paves the way to further automated stent analyses. The main challenge would
consist in using the extracted 3D stent as a basis for numerical biomechanical
analyses carried to understand the cause of the stent failures and improve the
treatments (Langs et al., 2011) (Koenrades et al., 2019). Other types of auto-
mated processing over the 3D segmented stent could consist in an automated
stent model recognition or stent fracture localization. Such algorithms would
enhance the Geprovas workflow of explant analysis.
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Spatial Triplet Markov Tree

Family of the probabilistic model studied:

Hidden Markov Trees
Model, innovation:

Spatial Triplet Markov Tree
Issues that has been addressed:

Enhancing the correlations in Hidden Markov Trees in a local and spatial man-
ner, increasing the knowledge on the relation between the Markov tree and
Markov field models
Perspective that have been opened in medical research:

More efficient treatments of large medical images

The STMT model from Chapter 3 illustrates the interest of auxiliary random
variables in probabilistic models. We explored to what extent this model could
be a close alternative to MRF models with the capability of performing exact
inference. This could be an asset over an approximate inference algorithm when
dealing with large data such as medical images. For a better understanding of
STMTs, we showed its closeness to the SBN model in the context of auxiliary
random variable VI.

Further research on the proximity of STMTs and SBNs might follow the
direction of deriving theoretical results quantifying the relations between the
two models. One might also consider extending our auxiliary random variable
VI algorithm to quadtrees to process images. Such an algorithm is expected to
be very efficient based on the preliminary results that we obtained in the case
of dyadic trees.
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Conclusions and Perspectives

Histologic segmentation of atherosclerotic

arteries with Deep Learning

Family of the probabilistic model studied:

Conditional Random Fields
Model, innovation:

Improved inference in Conditional Markov Random Fields
Issue that has been addressed:

Improving the inference in a probabilistic model for post-processing the bidi-
mensional segmentations of a Convolutional Neural Network to reconstruct a
tridimensional segmentation
Perspective that have been opened in medical research:

A first histological analysis of the vascular segment using the X-ray image only

Thanks to the U-Net approach and the fcCRF post-processing described in
Chapter 4, we reconstructed tridimensional arteries with annotated histologic
elements. This study confirms the important role that microCT images could
have in vascular research.

The main perspectives in this work is first to increase the score in the seg-
mentation of each of the classes (particularly, in the current implementation of
our model, the fatty tissue class) but also to integrate more classes and offer a
more detailed histologic segmentation. As an example, it would be interesting
to treat arteries containing a stent. The neural network approach, combined
with a pre- or post-processing approach, could additionally segment the stent
in the images as well as to handle the artifacts such images would contain. To
this end, one could consider exploring recent advances in CNN, such as more
recent versions of the U-Net network (Alom et al., 2018) (Oktay, Schlemper,
et al., 2018). One could also study the interest of including shape priors within
the CNN (Nosrati and Hamarneh, 2016) (Oktay, Ferrante, et al., 2017) (Ravis-
hankar et al., 2017). Shape priors could be elaborated jointly with the experts
collaborating on the project.
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Appendix A.

Main algorithms in probabilistic

modeling

Algorithm A.1: Gibbs sampler (S. Geman and D. Geman, 1984) to
sample from an UGM using the full conditionals.
Data: p(xs|xxxxxxxNs

), ∀s ∈ S, the full conditional equations of an UGM
distribution p(xxxxxxx).

Result: Series of samples xxxxxxx0, xxxxxxx1, . . . , xxxxxxxn.
n← 1
Initialize xxxxxxx0

while convergence is not attained do
/* Initialize the new samples */
xxxxxxxn ← xxxxxxxn−1

/* Update at each site */
for s ∈ S do

xns ∼ p(xns |xxxxxxxnNs
)

end

n← n+ 1
end
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Appendix A. Main algorithms in probabilistic modeling

Algorithm A.2: Forward Backward (FB) algorithm, rescaled version
from (Devijver, 1985). The original unscaled algorithm from (Baum,
Petrie, et al., 1970) is prone to underflows; it lacks the rescaling by
the term κs. Note that in the original unscaled version of FB we have
α(xs) = p(xs, y1, . . . , ys) and β(xs) = p(ys+1, . . . , yN |xs), ∀s ∈ S.
Data: yyyyyyy, a realization of the observed process,

p(xs|xs−), ∀s ∈ S̄, transitions of the hidden process,
p(xs|xs−), ∀s ∈ S̄,

p(xr), distribution at the root vertice.
Result: p(xs|yyyyyyy), ∀s ∈ S, the posterior marginals.
/* Compute the rescaled forward probabilities α∗(xs) = p(xs|y), ∀s ∈ S,
the recursion is defined by */

α∗(x1) =
p(x1)p(y1|x1)∑
x′1
p(x′1)p(y1|x′1)

,

α∗(xs+1) =
1

κs+1

∑

xs∈Ω

α∗(xs)p(xs+1|xs)p(ys+1|xs+1),

∀s ∈ {2, . . . , N}.

(A.1)

/* Compute the rescaled backward probabilities
β∗(xs) =

p(ys+1,...,yN |xs)
p(xs+1,...,xN |y1,...,ys)

. The recursion is defined by */

β∗(x1) = 1,

β∗(xs) =
1

κs+1

∑

xs+1∈Ω

β∗(xs+1)p(xs+1|xs)p(ys+1|xs+1),

∀s ∈ {1, . . . , N − 1}.

(A.2)

/* In Equations A.1 and A.2, the rescaling factor is */

κs+1 =
∑

xs+1

∑

xs∈Ω

α∗(xs)p(xs+1|xs)p(ys+1|xs+1). (A.3)

/* Compute the posterior marginals */

p(xs|yyyyyyy) = α∗(xs)β
∗(xs), ∀s ∈ S. (A.4)
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Algorithm A.3: Simulated Annealing via serial Gibbs sampling (S.
Geman and D. Geman, 1984). This algorithm allows only changes in
the states towards a state of lower energy. We then easily get stuck
in local minima. A practical implementation usually relies on sev-
eral runs of the algorithm starting from different initial configurations.
In Equation 1.4, we make the temperature parameter explicit so that:
pT (xxxxxxx|yyyyyyy) = 1

Z
exp(−E(xxxxxxx|yyyyyyy)/T ). The parameter schedule may vary (De-

lahaye et al., 2019).

Data: xxxxxxx0, an initial configuration of the Gibbs sampler,
T 0, an initial temperature,
yyyyyyy, the observations.

Result: x̂xxxxxxMAP = argmaxxxxxxxxp(xxxxxxx|yyyyyyy).
t← 1
while convergence is not attained do

/* Sample a realization at temperature T t */

xxxxxxxt ∼ pT t(xxxxxxx|yyyyyyy). (A.5)

/* Update the temperature according to the schedule. C is a
constant that may be determined by trial and errors */

T t =
C

log(1 + t)
. (A.6)

end

Algorithm A.4: Expectation Maximization (Dempster et al., 1977).

Data: θθθθθθθ0, an initial set of parameters,
yyyyyyy, the observations.

Result: θ̂θθθθθθ, the set of estimated parameters.
t← 1
while convergence is not attained do

/* E-step
Define Q(θθθθθθθ|θθθθθθθt−1) by */

Q(θθθθθθθ|θθθθθθθt−1) = Exxxxxxx∼p(xxxxxxx|yyyyyyy;θθθθθθθt−1)[log p(xxxxxxx, yyyyyyy; θθθθθθθ)]. (A.7)

/* M-step
Estimate the new set of parameters */

θθθθθθθt = argmaxθθθθθθθQ(θθθθθθθ|θθθθθθθt−1). (A.8)

t← t+ 1
end
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Appendix A. Main algorithms in probabilistic modeling

Algorithm A.5: Stochastic Expectation Maximization (Celeux, 1985).

Data: θθθθθθθ0, an initial set of parameters,
yyyyyyy, the observations.

Result: θ̂θθθθθθ, the set of estimated parameters.
t← 1
while convergence is not attained do

/* Stochastic E-step */
Compute p(xxxxxxx|yyyyyyy; θθθθθθθt−1).
Draw samples to complete the data: xxxxxxxt ∼ p(xxxxxxx|yyyyyyy; θθθθθθθt−1).
/* M-step */
Maximum Likelihood estimation θθθθθθθt on the completed data (xxxxxxxt, yyyyyyy).
t← t+ 1

end

Algorithm A.6: Marroquin algorithm for the MPM computation (Mar-
roquin et al., 1987) using the Gibbs sampler.
Data: p(xs|xxxxxxxNs

), ∀s ∈ S the full conditional equations of an UGM
distribution p(xxxxxxx),
K, the number of Gibbs samples.

Result: x̂xxxxxx the MPM estimator of p(xxxxxxx).
while convergence is not attained do

for k ∈ {1, . . . ,K} do

xxxxxxxk ← last sample from Gibbs sampling with p(xxxxxxx)
end

Frequency estimator of p̂(xs = ω), ∀s ∈ S, ∀ω ∈ Ω using the
realizations (xxxxxxx1, . . . , xxxxxxxK)
x̂MPM
s = argmaxω∈Ωp̂(xs = ω)

end
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Appendix B.

Complements on GMRFs

B.1. Stationary GRFs and GMRFs

In this section we introduce GRFs and GMRFs, the latter is derived from GRFs
with an important assumption that is made about the covariance matrix.

First, we need to define the notion of positive-definite function. A positive-
definite function of a real variable is a complex-valued function f : R → C

such that for any numbers y1, . . . , yn, the n × n matrix A = (ai,j)
n
i,j=1, ai,j =

f(yi − yj) is positive semi-definite. In our application, f : R → R and the
resulting A will be a real SPD.

A GRF or GMRF is called stationary if the following conditions hold:

• the mean vector is constant (does not depend on the vertice s, ∀s ∈ S).

• the covariance between two random variables in the field only depends
on the norm (ℓ1, Euclidian...) between those two points, such that, for
some positive-definite function f :

Σ(i,j),(i′,j′) = Cov(xi,j , xi′,j′) = f(‖yi,j − yi′,j′‖), (B.1)

In Equation B.1, f is also called the covariance function. In the case of station-
ary GRFs or GMRFs, the covariance function is directly linked to a correlation
function c such that:

Cov(a, b) = σ2c(a, b). (B.2)

where σ2 ∈ R+ is a constant variance (imposed for stationary GRFs or GMRFs
(Abrahamsem, 1997)). Note that for unitary variance, the correlation function
and the covariance function are equal.

By definition, we require the covariance function to be a positive-definite
function, then Equation B.2 shows that a correlation function c is also a
positive-definite function. Let ‖h‖ be a distance function (Euclidean or ℓ1
for example1). Some classical correlation functions are, ∀(s, s′) ∈ S2:

• the exponential correlation function:

c (s, s′; r) = exp

(
−‖s− s

′‖
r

)
, ∀r > 0, σ2 ≥ 0. (B.3)

1Potentially taken on the torus, see Section B.2.3.
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• the Gaussian correlation function:

c (s, s′; r) = exp

(
−2
(‖s− s′‖

r

)2
)
, ∀r > 0, σ2 ≥ 0. (B.4)

The parameter r is called the correlation length, decay or range. Note that the
Gaussian and exponential correlation functions can both be derived from the
Matérn correlation function (Abrahamsem, 1997), a more general correlation
function. Moreover, these correlation functions are given under their isotropic
form. An example of anisotropic Gaussian or exponential correlation function
would consist in setting different correlation lengths according to the direction.
This is considered for example in (Dietrich and Newsam, 1997).

In this thesis, to perform segmentation with the GPMF model, we consider
isotropic stationary covariance functions but with non-stationary mean vector.
This is a case of non-stationarity much easier to handle than a non-stationary
covariance matrix (Fuglstad et al., 2015).

Remark: The modeling of non-stationary GRFs and GMRFs is an ac-
tive research area out of scope of this thesis. One can see (Gelfand et al.,
2010)[Chapter 10] or (Risser, 2016) for an overview.

B.2. Spectral methods for GMRFs

This section is a condensed view of the development made in (Rue and Held,
2005) to establish computationally efficient formulas for GMRF manipulation,
which is essential for the tractability of the algorithms developed in Chapter 2.
These formulas are based on the Fourier transform and on a periodic boundary
assumption, also called torus assumption. The latter assumption leads to a
special form of the covariance matrix. We start by reviewing key elements of
algebra over these matrices.

B.2.1. Circulant matrices

We here introduce circulant matrices and their related spectral properties. A
n× n matrix C is circulant if, and only if, it has the form:

C =




c0 c1 c2 . . . cn−1

cn−1 c0 c1 . . . cn−2

...
...

...
...

c1 c2 c3 . . . c0


 , (B.5)

for some vector ccccccc = (c0, c1, . . . , cn−1)
T . ccccccc is called the basis of C. A circulant

matrix is fully specified by its basis. A Nn × Nn matrix C is block-circulant
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B.2. Spectral methods for GMRFs

with N ×N blocks, if, and only if, it can be written as:

C =




C0 C1 C2 . . . CN−1

CN−1 C0 C1 . . . CN−2

...
...

...
...

C1 C2 C3 . . . C0


 , (B.6)

where Ci is a circulant n× n matrix with base ccccccci. The base of C is the n×N
matrix

Cb = (ccccccc0, ccccccc1, . . . , cccccccN−1). (B.7)

A block-circulant matrix is fully specified by its base or one block column or
one block row.

B.2.2. Spectral properties

The following properties linked with the Fourier transform are available for cir-
culant and block-circulant matrices. We will recall the ones for block-circulant
matrices, hence we will use the bidimensional Fourier transform.

Let C be a block-circulant matrix with base Cb, then we have that C−1 has
base (C−1)b with:

(C−1)b = IDFT2(DFT2(Cb) • (−1)). (B.8)

Let C and D be two block-circulant matrices with bases Cb and Db, then we
have

CD = IDFT2(DFT2(Cb)⊙DFT2(Db)). (B.9)

Let C be a block-circulant matrix with base Cb, then

Λ = DFT2(Cb) (B.10)

is the matrix of the eigenvalues of C.

B.2.3. Torus assumption for GRFs and GMRFs

The torus assumption, also known as periodic boundary assumption supposes
that the boundaries of the grid (formed by the image) are joined together as
on a torus. Figure B.1 illustrates the process. The main consequence2 of the
torus assumption for a stationary GRF/GMRF is that its covariance matrix is
then block-circulant and each block is circulant itself. As a consequence, all
the spectral properties for circulant matrices presented in Section B.2.2 can
be used. The most used property in our study is the computationally efficient
matrix inversion given in Equation B.8.

On toruses, one has to modify the distance used. For example, on a two
dimensional torus, the Euclidean distance becomes, for aaaaaaa = (x1, y1) and bbbbbbb =

2Under an appropriate ordering of the indices, see Section B.2.4.
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x0,0 x0,1 . . . x0,lj

x1,0 x1,1 . . . x1,lj

...
...

...

xli,0 xli,1 . . . xli,lj

Figure B.1.: The torus assumption on an image: the three new neighbors of
the top right corner are indicated by an arrow. The torus can be
thought as a wrapping of a 2D image.

(x2, y2) on the surface of this torus formed by wrapping a grid of dimension
li × lj :

dtorus(aaaaaaa, bbbbbbb) =

√
min (|x1 − x2|, li − |x1 − x2|)2 +min (|y1 − y2|, lj − |y1 − y2|)2.

(B.11)
All the MRF models of Chapter 2 are developed under the torus assumption.

Remark: Another approach to using the spectral properties of circulant
matrices without making the torus assumption is via circulant embedding. The
method is based on the observation that, in the example of the 2D case, the
covariance matrix of the GMRF will be block-Toeplitz with Toeplitz blocks3.
This matrix is then embedded in a block-circulant with circulant block matrices
and the spectral methods can be used. A presentation of this method in the
1D case is available in (Dietrich and Newsam, 1997) where the method was
introduced and in (Kroese and Botev, 2013) for the 2D case.

B.2.4. Indices ordering

As noted before, for a Toeplitz or circulant matrix structure to appear for the
covariance matrix, one needs to use an appropriate indexing of the matrix.

Focusing on covariance matrices of two dimensional GRF/GMRF, an entry
in the covariance matrix will be stored in row major order, the mathematical

3Under an appropriate ordering of the indices, see Section B.2.4.
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


x0,0 x0,1 . . . x0,lj
x1,0 x1,1 . . . x1,lj

...
...

...
xli,0 xli,1 . . . xli,lj




x0 1 . . .
xx1 1 . . .

.
xli 1 . . .

(a) The image representation with a matrix



Σ(0,0),(0,0) . . .Σ(0,0),(0,lj) Σ(0,0),(1,0) . . .Σ(0,0),(1,lj) . . . Σ(0,0),(li,0) . . .Σ(0,0),(li,lj)

...
...

...
Σ(0,lj),(0,0) . . .Σ(0,lj),(0,lj) Σ(0,lj),(1,0) . . .Σ(0,lj),(1,lj) . . . Σ(0,lj),(li,0) . . .Σ(0,lj),(li,lj)

Σ(1,0),(0,0) . . .Σ(1,0),(0,lj) Σ(1,0),(1,0) . . .Σ(1,0),(1,lj) . . . Σ(1,0),(li,0) . . .Σ(1,0),(li,lj)

...
...

...
Σ(1,lj),(0,0) . . .Σ(1,lj),(0,lj) Σ(1,lj),(1,0) . . .Σ(1,lj),(1,lj) . . . Σ(1,lj),(li,0) . . .Σ(1,lj),(li,lj)

...
...

...
...

...
...

Σ(li,0),(0,0) . . .Σ(li,0),(0,lj) Σ(li,0),(1,0) . . .Σ(li,0),(1,lj) . . . Σ(li,0),(li,0) . . .Σ(li,0),(li,lj)

...
...

...
Σ(li,lj),(0,0) . . .Σ(li,lj),(0,lj) Σ(li,lj),(1,0) . . .Σ(li,lj),(1,lj) . . . Σ(li,lj),(li,0) . . .Σ(li,lj),(li,lj)




. . .Σ(0 0) (0,l ) Σ(0 0) (1 0) . . .. . .. . . . . .. . .. . . . . .. . .. . .

j j j)

j j j)



j j j)

j j j) j j j)

j j j) j j j)

j j j) j j j)

(b) The associated covariance matrix

Figure B.2.: Building the covariance matrix of an image: the blue arrow high-
lights the order in which we will consider the neighbors of x0,0 in
the image and their order of appearance in the covariance matrix.

indexing relation is then, for a li × lj two dimensional grid:

Cov(xi,j , xi′,j′) = Σ(i,j),(i′,j′), ∀(i, i′) ∈ {0, . . . , li}2, ∀(j, j′) ∈ {0, . . . , lj}2.
(B.12)

B.3. Application to GMRF simulation

In this section we illustrate GMRFs by drawing samples from the models in the
2D case using the Fourier based formulas of Section B.2.2.

We start by constructing a valid covariance matrix for the field. This can be
done by specifying the variance of the field, choosing a correlation function c,
parametrized by a range r, and following Algorithm B.1. In Algorithm B.2, we
give the algorithm that can be followed to draw samples from the zero-mean
Gaussian random field with base precision matrix qqqqqqq.

As an illustration, Figure B.3 depicts samples from different stationary GM-
RFs. For complete introductions to GRF simulation, one can read (Pichot,
2016), (Brown et al., 2019) or (Kroese and Botev, 2013).
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Algorithm B.1: Construction of qqqqqqq
Result: qqqqqqq, the base of the precision matrix for the GMRF.
for i = {1 . . . li} do

for j = {1 . . . lj} do
qqqqqqqi,j ← σc (dtorus((0, 0), (i, j)), r)

end

end

Algorithm B.2: Sampling a GMRF with via the Fourier transform
properties
Data: qqqqqqq, the base of the precision matrix of the model.
Result: xxxxxxx, a sample of the GMRF.
Sample zzzzzzz, a 0-mean complex field with independent elements
distributed according to: ℜ(zi) ∼ N (0, 1),ℑ(zi) ∼ N (0, 1)

/* Matrix of the eigenvalues */
Λ← DFT2(qqqqqqq)
/* Perform the sampling */
xxxxxxx← ℜ

(
DFT2

((
Λ • − 1

2

)
⊙ zzzzzzz
))

(a) σ = 0.5, r = 9 (b) σ = 5, r = 9 (c) σ = 0.5, r = 18

Figure B.3.: Samples from stationary GMRFs with exponential correlation
function and zero mean.
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C.1. Derivation of the single site equations

In this section we give details on the derivation of the single site equations for
the GPMF model, starting from the joint distribution of (XXXXXXX,YYYYYYY ) given under its
energy form in Equation 2.9. The process can be applied for all the processes
with a similar energy definition, in particular the other models from the GPMF
family.

We start using by the definition the conditional probabilities, for a fixed site
s ∈ S we have:

p(xs, ys|xNX
s
, yNY

s
) = p(xs, ys|xS\{s}, yS\{s}), ((XXXXXXX,YYYYYYY ) Markovian),

=
p̃(xxxxxxx, yyyyyyy)∑

xs∈Ω

∫
R
p(xs, ys, xS\{s}, yS\{s})dys

,

=
p̃(xxxxxxx, yyyyyyy)∑

xs∈Ω

∫
R
p̃(xxxxxxx, yyyyyyy)dys

since

{
xxxxxxx = (xs, xS\{s}),

yyyyyyy = (ys, yS\{s}).

(C.1)

Note that in the denominator, we sum over all the realizations of Xs and
integrate over the domain of Ys, s is fixed; this summation and integration do
not happen at other sites. Now, using Equation 2.9 and developing all the
terms, we have

p(xs, ys|xNX
s
, yNY

s
) =

exp
(
−
(∑

s∈S

∑
s′∈NX

s
V (xs, x

′
s) . . .

∑
xs

∫
R
exp

(
−
(∑

s∈S

∑
s′∈NX

s
V (xs, xs′) . . .

· · ·+ 1
2

∑
s∈S

∑
s′∈S Qs,s′(ys − µxs

)(ys′ − µxs′
)
))

· · ·+ 1
2

∑
s∈S

∑
s′∈S Qs,s′(ys − µxs

)(ys′ − µxs′
)
))

dys

,
N

D
(C.2)

Focus on the denominator D, we can extract all the terms that do not imply
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the fixed site s from the sum and the integral:

D = exp

(
−
(∑

s′∈S
s′ 6=s

∑

s′′∈NX
s′

s′′ 6=s

V (xs′ , xs′′)

+
1

2

∑

(s′,s′′)∈S2

s′ 6=s∧s′′ 6=s

Qs′,s′′(ys′ − µxs′
)(ys′′ − µxs′′

)

))

×
∑

xs

∫

R

exp

(
−
( ∑

(s′,s′′)∈S×NX
s′

s′=s∨s′′=s

V (xs′ , xs′′)

+
1

2

∑

(s′,s′′)∈S2

s′=s∨s′′=s

Qs′,s′′(ys′ − µxs′
)(ys′′ − µxs′′

)

))
dys.

(C.3)

The first exponential term in D now gets simplified with terms from the numer-
ator N . What remains then in N is the same terms as in the second exponential
in D. So we can write:

p(xs, ys|xNX
s
, yNY

s
) =

exp
(
−
(∑

(s′,s′′)∈S×NX
s′

s′=s∨s′′=s

V (xs′ , xs′′) . . .

∑
xs

∫
R
exp
(
−
(∑

(s′,s′′)∈S×NX
s′

s′=s∨s′′=s

V (xs′ , xs′′) . . .

· · ·+ 1
2

∑
(s′,s′′)∈S2

s′=s∨s′′=s

Qs′,s′′(ys′ − µxs′
)(ys′′ − µxs′′

)
))

· · ·+ 1
2

∑
(s′,s′′)∈S2

s′=s∨s′′=s

Qs′,s′′(ys′ − µxs′
)(ys′′ − µxs′′

)
))

dys.

(C.4)

The denominator is now a constant and can be discarded. We focus on the
expression:

p(xs, ys|xNX
s
, yNY

s
) ∝ exp

(
−
( ∑

(s′,s′′)∈S×NX
s′

s′=s∨s′′=s

V (xs′ , xs′′)

+
1

2

∑

(s′,s′′)∈S2

s′=s∨s′′=s

Qs′,s′′(ys′ − µxs′
)(ys′′ − µxs′′

)
))
.

(C.5)

Before further simplifications, note the fact that to get Equations C.3, C.4 and
C.5 we used the following equality on sets, for a fixed s ∈ S:

{(s′, s′′) : s′ ∈ S ∧ s′′ ∈ S} ={(s′, s′′) : s′ ∈ S ∧ s′′ ∈ S ∧ (s′ 6= s ∧ s′′ 6= s)}
∪ {(s′, s′′) : s′ ∈ S ∧ s′′ ∈ S ∧ (s′ = s ∨ s′′ = s)}.

(C.6)
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For a fixed s ∈ S, it can also be rewritten:

{(s′, s′′) : s′ ∈ S ∧ s′′ ∈ S} = {(s′, s′′) : s′ ∈ S ∧ s′′ ∈ S ∧ (s′ 6= s ∧ s′′ 6= s)}
∪ {(s′, s′′) : s′ ∈ S ∧ s′′ ∈ S ∧ (s′ = s ∨ s′′ = s) ∧ ¬(s′ = s ∧ s′′ = s)}
∪ {(s, s)}.

(C.7)

Now it is important to note the following relation on cardinality, caused by the
symmetry of the elements. For a fixed s ∈ S:

|{(s′, s′′) : s′ ∈ S ∧ s′′ ∈ S ∧ (s′ = s ∨ s′′ = s) ∧ ¬(s′ = s ∧ s′′ = s)}| =
2 |{(s′, s′′) : s′ = s ∧ s′′ ∈ S ∧ s′′ 6= s}| .

(C.8)

The same equalities slightly modified can be written for the set involving the
set of the neighbors (recall that, by definition, the set of neighbors of the site
s does not contain s), for a fixed s ∈ S:

{(s′, s′′) : s′ ∈ S ∧ s′′ ∈ Ns′} = {(s′, s′′) : s′ ∈ S ∧ s′′ ∈ Ns′ ∧ (s′ 6= s ∧ s′′ 6= s)}
∪ {(s′, s′′) : s′ ∈ S ∧ s′′ ∈ Ns′ ∧ (s′ = s ∨ s′′ = s)},

(C.9)

with the following relation on cardinality:

|{(s′, s′′) : s′ ∈ S ∧ s′′ ∈ Ns′ ∧ (s′ = s ∨ s′′ = s)}| =
2 |{(s′, s′′) : s′ = s ∧ s′′ ∈ Ns′ = Ns}| .

(C.10)

By definition, in Equations C.9 and C.10, both s′ and s′′ can not simultaneously
be equal to s. Finally, using the preceding remarks on sets, we can rewrite
Equation C.5 in a simplified form, always for s ∈ S fixed:

p(xs, ys|xNX
s
, yNY

s
) ∝ exp

(
−
(
2
∑

s′∈NX
s

V (xs, xs′) +
1

2
Qs,s(ys − µxs

)2 . . .

· · ·+ 1

2
2
∑

s′∈S
s′ 6=s

Qs,s′(ys − µxs
)(ys′ − µxs′

)
))
.

(C.11)

Remark: Note that Equations C.10 and C.11 only consider the current case
where all the cliques are of size 2.

C.2. T-Gibbs sampler complementary experiment

In this section, we consider the P-GMRF model which tends to produce, for
particular initializations, samples that worsen. This can be stabilized using the
T-Gibbs sampler and the parametrization described in Section 2.5.1.
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xxxxxxx yyyyyyy x̂xxxxxxKM

Figure C.1.: Initial data for the T-Gibbs experiment: the ground truth xxxxxxx, the
observations yyyyyyy and the Kmeans segmentation x̂xxxxxxKM . In both cases
the parameters of the simulated additive GMRF are µ0 = 0, µ1 =
1, σ = 1 and r = 3.

We consider the supervised segmentation of the dude12occ4 and dog45 images
from the dataset with the P-GMRF model. Figure C.1 depicts the ground
truth, the observed image and the KMeans segmentation which serves as an
initialization for the Gibbs and T-Gibbs samplers. In this supervised context
the parameters were estimated with the complete data (xxxxxxx, yyyyyyy).

The results presented in Figure C.1 are largely in favour of the T-Gibbs
sampler. They illustrate two typical practical behaviors of the algorithms. The
first is a total loss of the image details which occurs with the Gibbs sampler
and not with the T-Gibbs sampler. The second is a faster convergence of the
T-Gibbs sampler over the Gibbs sampler.
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T-Gibbs sampler Gibbs sampler

(a) Error rate as a function the iterations of Gibbs and T-Gibbs sampler in the seg-
mentation of the observed images of Figure C.1 with the P-GMRF model. The
purple vertical lines indicate iterations explored in (b), where we represent, from
left to right, Iteration 0, Intermediate iteration and Iteration 30.

Iteration 0 Intermediate iteration Iteration 30
x̂xxxxxxT−Gibbs = x̂xxxxxxGibbs x̂xxxxxxT−Gibbs x̂xxxxxxGibbs x̂xxxxxxT−Gibbs x̂xxxxxxGibbs

(b) Illustration of some iterations given in (a) to highlight the different behaviors of
the Gibbs and T-Gibbs samplers.

Figure C.2.: Supervised segmentation experiment with the P-GMRF model, to
compare the T-Gibbs and Gibbs samplers in typical cases. The
final segmentation after 30 iterations of both samplers is better in
the case of the T-Gibbs sampler. In a first typical scenario (found
in the dude12occ4 case) the T-Gibbs sampler avoids a total loss of
the image details and ends up with a much better error rate. The
second case (dog45 case) illustrates, in the case of the T-Gibbs, a
faster convergence and a final result which conserves more details
despite a similar error rate to the Gibbs sampler.
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Appendix D.

Complements on Variational

Inference

D.1. Mean Field Variational Inference in SBNs

In the section we derive the parameter update equations that are needed to
solve the maximization of the opposite of KL divergence of Equation 3.40. We
first isolate terms involving qj from the other:

−KL(q(xxxxxxx)||p(xxxxxxx)) =
∑

xj

qj(xj)
∑

xxxxxxx\xj

∏

i 6=j

qi(xi) log p(xxxxxxx)

−
∑

xj

qj(xj)
∑

xxxxxxx\xj

∏

i 6=j

qi(xi)


∑

k 6=j

log qk(xs) + log qj(xj)


 .

(D.1)

To maximize −KL(q||p) with the constraints ∀i ∈ S,∑xi
qi(xi) = 1, we intro-

duce Lagrangian multipliers λi, ∀i ∈ S, (for each of the constraints) and we
define the new target to maximize:

− K̃L(q(xxxxxxx)||p(xxxxxxx)) = −KL(q(xxxxxxx)||p(xxxxxxx)) +
∑

i

λi

(
∑

xi

qi(xi)− 1

)
. (D.2)

We now consider the functional derivative of −K̃L(q(xxxxxxx)||p(xxxxxxx)) with respect to
qj , and then the derivative with respect to λj , both derivatives ∀j ∈ S. Term
by term we have:

∂

∂qj




∑

xj

qj(xj)
∑

xxxxxxx\xj

∏

i 6=j

qi(xi) log p(xxxxxxx)



 =

∑

xxxxxxx\xj

∏

i 6=j

qi(xi) log p(xxxxxxx), (D.3)

∂

∂qj




∑

xj

qj(xj)
∑

xxxxxxx\xj

∏

i 6=j

qi(xi)
∑

k 6=j

log qk(xs)



 =

∑

xxxxxxx\xj

∏

i 6=j

qi(xi)
∑

k 6=j

log qk(xs),

(D.4)
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∂

∂qj




∑

xj

qj(xj)
∑

xxxxxxx\xj

∏

i 6=j

qi(xi) log qj(xj)



 =

∑

xxxxxxx\xj

∏

i 6=j

qi(xi) (log qj(xj) + 1) ,

= log qj(xj) + 1,

(D.5)

∂

∂qj

{
∑

i

λi

(
∑

xi

qi(xi)− 1

)}
=
∑

i

λi, (D.6)

where Equation D.3 depends on qj through p(xxxxxxx), Equation D.4 depends on qj
but Equations D.5 and D.6 do not depend on qj . The second derivative gives:

∂

∂λj

{
−K̃L(q(xxxxxxx)||p(xxxxxxx))

}
=
∑

xj

qj(xj)− 1. (D.7)

We set the derivatives to 0, and we then need to solve the following system for
qj , ∀j ∈ S:





∑

xxxxxxx\xj

∏

i 6=j

qi(xi)
[
log p(xxxxxxx)−

∑

k 6=j

log qk(xs)
]
−

log qj(xj)− 1 +
∑

i

λi = 0,

∑
xj
qj(xj)− 1 = 0.

(D.8)

With elementary manipulations we get:





qj(xj) = exp

(
∑

i

λi − 1

)
exp

(∑

xxxxxxx\xj

∏

i 6=j

qi(xi)
[
log p(xxxxxxx)−

∑

k 6=j

log qk(xs)
])
,

∑
xj
qj(xj) = 1.

(D.9)

By integrating the first equation (i.e. summing on all the xj ∈ Ω) and injecting
the second in the first we get:

exp

(
∑

i

λi − 1

)
∑

xi

exp


∑

xxxxxxx\xj

∏

i 6=j

qi(xi)


log p(xxxxxxx)−

∑

k 6=j

log qk(xs)




 = 1,

(D.10)
which becomes:

exp

(
−
∑

i

λi + 1

)
=
∑

xi

exp


∑

xxxxxxx\xj

∏

i 6=j

qi(xi)


log p(xxxxxxx)−

∑

k 6=j

log qk(xs)




 ,

(D.11)
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and finally:

∑

i

λi = 1− log


∑

xi

exp


∑

xxxxxxx\xj

∏

i 6=j

qi(xi)


log p(xxxxxxx)−

∑

k 6=j

log qk(xs)






 .

(D.12)
Plugging Equation D.12 in the first line of Equation D.9, ∀j ∈ S, ∀xj ∈ Ω:

qj(xj) =
1

Z
exp


∑

xxxxxxx\xj

∏

i 6=j

qi(xi)


log p(xxxxxxx)−

∑

k 6=j

log qk(xs)




 , (D.13)

where

Z =
∑

xj

exp


∑

xxxxxxx\xj

∏

i 6=j

qi(xi)


log p(xxxxxxx)−

∑

k 6=j

log qk(xs)




 . (D.14)

Now we remark that all the terms that do not involve xj get simplified. We
can start by simplifying the second term of the exponential:

qj =
1

Zj

exp
(
E{xi}i 6=j∼

∏
i 6=j qi(xi) [log p(xxxxxxx)]

)
, (D.15)

with Zj a normalization constant.
We now turn to the precise case of our study: p is the distribution of a SBN

(using Equation 3.38). Equation D.15 can be further simplified, ∀j ∈ S:

qj(xj) =
1

Zj

exp
(
E{xi}i 6=j∼

∏
i 6=j qi(xi) [log p(xxxxxxx)]

)
,

=
1

Zj

exp

(
E{xi}i 6=j∼

∏
i 6=j qi(xi)

[
∑

ds

log pds

])
, (reparametrization)

=
1

Z ′j
exp


E{xi}i 6=j∼

∏
i 6=j qi(xi)


 ∑

dj∈Dj

log pdj




 , (simplifications)

(D.16)

where Dj is the set of clusters of variables containing variable xj . The expec-
tation distributes over the terms of Dj , let us now make explicit one of these
expectation terms. For a particular dj = (xs1 , xs2 , xs3), we have that one of
the three variables is xj . Without loss of generality, if xs1 = xj :

E{xi}i 6=j∼
∏

i 6=j qi(xi)

[
log pdj

]
=

∑

xs2 ,xs3

qs2(xs2)qs3(xs3) log p(xj ,xs2 ,xs3 )
. (D.17)

Using this result in the general expression of the variational parameter, ∀j ∈
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S, ∀xj ∈ Ω:

qj(xj) =
1

Z ′j
exp


 ∑

(xj ,xs2 ,xs3 )=dj∈Dj

E{xi}i 6=j∼
∏

i 6=j qi(xi)

[
log pdj

]

 ,

=
1

Z ′j
exp


 ∑

(xj ,xs2 ,xs3 )=dj∈Dj

∑

xs2 ,xs3

qs2(xs2)qs3(xs3) log p(xj ,xs2 ,xs3 )


 .

(D.18)

We emphasize that the choice of xs1 = xj is purely arbitrary and made to
illustrate the fact that one of the variables in dj is xj , ∀dj ∈ Dj .

Remark: Due to the sparsity of the connections in SBNs, the summations
induced by the expectations can be computed exactly. However, in denser
graphical models, some additional approximations must be introduced for the
tractability of these expectations. These approximations consider a modified
objective function which constitutes an upper bound to the KL divergence
to minimize. Such procedures to obtain a coarser but more tractable objec-
tive function often consist in the simplification (e.g. linearization) of the term
log p(xxxxxxx). See for example (Wiegerinck, 2000) or (Depraetere and Vandebroek,
2017).

Finally the MF inference in SBN is done according to the following steps:

1. Initialize q for all factors.

2. ∀j ∈ S, update qj with the expression that maximizes Equation 3.40, i.e.,
Equation D.18.

3. Check convergence and repeat step 2 if needed.

Following this procedure, the divergence is proved to decrease at each update
of qj , ∀j ∈ S (Wiegerinck, 2000).

D.2. Markov Tree Variational Inference in SBNs

This section gives details to solve the optimization problem given in Equa-
tion 3.42.

We first isolate one of the factors, rcj of the variational distribution r. This
leads to splitting sums and products according to the different clusters ci, ∀i ∈
S. It follows:
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−KL(r(xxxxxxx)||p(xxxxxxx)) =
∑

xj ,xj−

rcj
∑

xxxxxxx\{xj ,xj−}

∏

ci 6=cj

rci

(
log p(xxxxxxx)−

∑

ck

log rck

)
,

=
∑

xj ,xj−

rcj
∑

xxxxxxx\{xj ,xj−}

∏

ci 6=cj

rci log p(xxxxxxx)

−
∑

xj ,xj−

rcj
∑

xxxxxxx\{xj ,xj−}

∏

ci 6=cj

rci log rcj

−
∑

xj ,xj−

rcj
∑

xxxxxxx\{xj ,xj−}

∏

ci 6=cj

rci
∑

ck 6=cj

log rck ,

(D.19)

where we used the fact that
∑

ck
rck =

∑
ck 6=cj

rck + rcj . We want to maximize
this quantity with the constraints

∑
xi

= r(xi|xi−) =
∑

xi
rci = 1, ∀i ∈ S.

Therefore, similarly to Section D.1, we introduce Lagrangian multipliers λi, ∀i ∈
S, and the quantity to maximize becomes:

− K̃L(r(xxxxxxx)||p(xxxxxxx)) = −KL(r(xxxxxxx)||p(xxxxxxx)) +
∑

i

λi

(
∑

xi

rci − 1

)
. (D.20)

We now need to find the functional derivative of Equation D.20. Plugging
Equation D.19 in Equation D.20, we exhibit the functional derivatives with
respect to each rcj for each of the terms:

∂

∂rcj




∑

xj ,xj−

rcj
∑

xxxxxxx\{xj ,xj−}

∏

ci 6=cj

rci log p(xxxxxxx)



 =

∑

xxxxxxx\{xj ,xj−}

∏

ci 6=cj

rci log p(xxxxxxx),

(D.21)

∂

∂rcj




∑

xj ,xj−

rcj
∑

xxxxxxx\{xj ,xj−}

∏

ci 6=cj

rci log rcj



 =

∑

xxxxxxx\{xj ,xj−}

∏

ci 6=cj

rci(log rcj + 1),

= log rcj + 1,

(D.22)

∂

∂rcj




∑

xj ,xj−

rcj
∑

xxxxxxx\{xj ,xj−}

∏

ci 6=cj

rci
∑

ck 6=cj

log rck



 =

∑

xxxxxxx\{xj ,xj−}

∏

ci 6=cj

rci
∑

ck 6=cj

log rck ,

(D.23)

∂

∂rcj

{
∑

i

λi

(
∑

xi

rci − 1

)}
=
∑

i

λi. (D.24)
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It follows that the functional derivative of Equation D.20 is, ∀j ∈ S:

∂

∂rcj

{
−K̃L(r(xxxxxxx)||p(xxxxxxx))

}
=E{rci}ci 6=cj

∼
∏

ci 6=cj
rci

[
log p(xxxxxxx)− log rcj − 1

−
∑

ck 6=cj

log rck +
∑

i

λi


 .

(D.25)

And the derivative of Equation D.20, with respect to λj , is, ∀j ∈ S:

∂

∂λj

{
−K̃L(r(xxxxxxx)||p(xxxxxxx))

}
=
∑

xj

rcj − 1. (D.26)

We set Equations D.25 and D.26 equal to 0 and, following the same manipu-
lations as done from Equation D.8 to Equation D.13, we can find the expression
of the variational factor rcj minimizing the divergence, ∀j ∈ S:

log rcj =
1

Z
exp


E{rci}ci 6=cj

∼
∏

ci 6=cj
rci


log p(xxxxxxx)−

∑

ck 6=cj

log rck




 , (D.27)

where Z is a normalization constant. This expression can be simplified because
many of the terms do not depend on cj . Let Dj be a set whose elements are
clusters of variables dj containing xj , Bj a set of clusters of variables bj also
containing xj but with the condition bj 6= cj . Equation D.27 simplifies in:

rcj = r(xj |xj−),

=
1

Zj

exp


E{rci}ci 6=cj

∼
∏

ci 6=cj
rci


 ∑

dj∈Dj

log pdj
−
∑

bj∈Bj

log rbj




 .

(D.28)

with Zj a normalization constant.
The expectation appearing in Equation D.28 requires to sample from the

joint law xxxxxxx \ {xj , xj−} given xj and xj− . Such a sampling can be done when
r is a MT because of the straightforward and sparse decomposition. Note also
that, in fact, we only need to sample the variables in each cluster (upon which
the expectation is computed, i.e. dj or bj). Then XXXXXXX does not need to be
fully sampled if we recompute the local marginal distributions and the local
transition distributions between the MT VI procedure. Note that further de-
velopments would consider rewriting Equation D.28 similarly to Equation D.17.

To summarize the steps of the MT-structured variational inference in SBNs:

1. Initialize r for all factors.
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2. ∀j ∈ S, update rcj with the expression that maximizes Equation 3.42,
i.e., Equation D.28.

3. Check convergence and repeat step 2 if needed.

Remark: Because r is not fully factorized, we observe, in the update Equa-
tion D.28, as opposed to the MF variational inference, a dependency on vari-
ables of r itself. Moreover, for a given update of rcj , the variables of p and r
which play a role are all in the Markov blanket of xj .

D.3. STMT auxiliary variable Variational

Inference in SBNs

As opposed to the previous sections, we now need to derive the update equations
of three variational parameters tci , tc′i and tc′′i , ∀i ∈ S, to solve the maximization
of Equation 3.45.

Update for tcj

We have, by isolating a particular tcj :

−KL(t||p) =
∑

xj ,xj− ,v
n(j−)

tcj
∑

xxxxxxx\{xj ,xj−}

vvvvvvv\{v
n(j−)}

∏

ci 6=cj

tci
∏

c′s

tc′s

∏

c′′s

tc′′s

(
log p(xxxxxxx, vvvvvvv)−


∑

ck

log tck +
∑

c′
k

log tc′
k
+
∑

c′′
k

log tc′′
k




 ,

=
∑

xj ,xj− ,v
n(j−)

tcj
∑

xxxxxxx\{xj ,xj−}

vvvvvvv\{v
n(j−)}

∏

ci 6=cj

tci
∏

c′s

tc′s

∏

c′′s

tc′′s log p(xxxxxxx, vvvvvvv) (A)

−
∑

xj ,xj− ,v
n(j−)

tcj
∑

xxxxxxx\{xj ,xj−}

vvvvvvv\{v
n(j−)}

∏

ci 6=cj

tci
∏

c′s

tc′s

∏

c′′s

tc′′s

∑

ck 6=cj

log tck (B)

−
∑

xj ,xj− ,v
n(j−)

tcj
∑

xxxxxxx\{xj ,xj−}

vvvvvvv\{v
n(j−)}

∏

ci 6=cj

tci
∏

c′s

tc′s

∏

c′′s

tc′′s

∑

c′
k

log tc′
k

(C)

−
∑

xj ,xj− ,v
n(j−)

tcj
∑

xxxxxxx\{xj ,xj−}

vvvvvvv\{v
n(j−)}

∏

ci 6=cj

tci
∏

c′s

tc′s

∏

c′′s

tc′′s

∑

c′′
k

log tc′′
k

(D)

−
∑

xj ,xj− ,v
n(j−)

tcj
∑

xxxxxxx\{xj ,xj−}

vvvvvvv\{v
n(j−)}

∏

ci 6=cj

tci
∏

c′s

tc′s

∏

c′′s

tc′′s log tcj (E).

(D.29)
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As previously done, we rewrite this objective to maximize introducing a
Lagrange multipliers λi, ∀i ∈ S, to fulfill the constraints, ∀i ∈ S:

∑

xi,v
←
i ,v→i

t(xi|xi− , vvvvvvvi−)t(v←i |xi− , vvvvvvvi−)t(v→i |xi− , vvvvvvvi−) =
∑

xi,v
←
i ,v→i

tcitc′itc′′i = 1.

(D.30)
We then want to maximize:

−K̃L(t(xxxxxxx, vvvvvvv)||p(xxxxxxx, vvvvvvv)) = −KL(t(xxxxxxx, vvvvvvv)||p(xxxxxxx, vvvvvvv)) +
∑

i

λi


 ∑

xi,v
←
i ,v→i

tcitc′itc′′i − 1




︸ ︷︷ ︸
F

,

= A−B − C −D − E + F.

(D.31)

Plugging Equation D.29 into Equation D.31, the functional derivatives of
each term, with respect to tcj , are:
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∏
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tci

∏
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i
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i

∏
c′′
i
tc′′
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[log tcj + 1],

= log tcj + 1,

∂

∂tcj
{F} =

∑

i

λi.

(D.32)

The derivative of Equation D.31 with respect to λj , ∀j ∈ S, is:

∂

∂λj

{
−K̃L(t(xxxxxxx, vvvvvvv)||p(xxxxxxx, vvvvvvv))

}
=

∑

xj ,v
←
j ,v→j

tcj tc′j tc′′j . (D.33)

We set Equations D.32 and D.33 equal to 0 and, following the same manipu-
lations as done from Equation D.8 to Equation D.13, we can find the expression
of the variational factor tcj minimizing the divergence, ∀j ∈ S:
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tcj =
1

Z
exp


E∏
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∏
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]
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(D.34)

where Z and Z ′ are different normalization constants. Indeed some simplifica-
tions were made on on the terms of the sums which do not involve cj .

Following the same developments as for other VI procedures, we can exhibit
easily the fact that many more terms which do not involve cj can be simpli-
fied. Indeed, since STMTs still have a relatively sparse and highly structured
associated graph, by carefully selecting the subsets of the variables involved
in the expectations, we can straightforwardly simplify the last expression as
previously done.

Update for tc′j

Similarly we find:
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(D.35)

where Z and Z ′ are different normalization constants. Again, further simplifi-
cations can be made straightforwardly.
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Update for tc′′j

Similarly we find:

tc′′j =
1

Z
exp

(
E∏

ci
tci

∏
c′
i
tc′

i
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c′′
i
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tc′′
i

[
log p(vvvvvvv|xxxxxxx)−
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∑
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log tc′
k
−
∑
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k
6=c′′j

log tc′′
k

]


(D.36)

where Z is a normalization constant. Again, further simplifications can be
made straightforwardly.

Remark: We can conclude this section recalling the remark at the end of
the section on MT VI: in the final update equations for STMT VI we see
more dependencies on the distribution t itself than in Equation D.28. Indeed
this comes from the fact that t, which follows a STMT distribution, has more
direct dependencies between its random variables than r which follows a MT
distribution.
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Complements on fcCRFs

E.1. Augmented space for the bilateral kernel

computations

In this section we demonstrate how the term
∑

i∈S k1(fffffffj , fffffffi)qi(x
′), ∀x′ ∈ Ω,

∀j ∈ S (from Equation 4.8) can be interpreted as a convolution so that it can be
approximated with the approach seen in Section 4.3.2. Recall that k1 is defined
in Equation 4.5 and is called the bilateral kernel. It is the product of a Gaussian
on the spatial distance and a Gaussian on the pixel value difference (Paris,
Kornprobst, et al., 2009). The concept of augmented space has been defined
in (Chen et al., 2007) based on (Paris and F. Durand, 2006). We now study
how the derivations from the latter adapt to our case.

We have, ∀x′ ∈ Ω, ∀j ∈ S:

q̃j,1(x
′) =

∑

i∈S

k1(fffffffj , fffffffi)qi(x
′)− qj(x′),

=
∑

i∈S

exp

(
−|j − i|

2

2θ2α
− |yj − yi|

2

2θ2β

)
qi(x

′)− qj(x′),

=
∑

i∈S

Gθα(|j − i|)Gθβ (|yj − yi|)qi(x′)− qj(x′),

(E.1)

where Gθα(|s − s′|) and Gθβ (|ys − ys′ |) are the two Gaussian kernels respec-
tively on the spatial distance and pixel value difference. The augmented space
technique now appears by summing over an auxiliary variable defined in the
space of the pixel intensities I1. The so-called augmented space is the product
space S × I. It follows, with δ the Kronecker function:

q̃j,1(x
′) =

∑

i∈S

∑

ξ∈I

Gθα(|j − i|)Gθβ (|yj − ξ|)δyi

ξ qi(x
′)− qj(x′). (E.2)

We can see that Ġθαθβ = Gθα(|j − i|)Gθβ (|yj − ξ|) defines a Gaussian kernel
on S × I. Then, ∀x′ ∈ Ω, define the augmented space variational distribution
q̇(x′) with, ∀(i, ξ) ∈ S × I:

q̇i,ξ(x
′) = δyi

ξ qi(x
′), (E.3)

1Typically I = [0, 255] for grayscale images, or another integer interval depending on the
image format. I can also be vectorial for color images.

179



Appendix E. Complements on fcCRFs

It follows that we can finally write Equation E.1 as a convolution in the aug-
mented space:

q̃j,1(x
′) = [Ġθαθβ ∗ q̇(x′)](fffffffj)− qj(x′). (E.4)

As an illustration, if I is an unidimensional space (grayscale image) and S
the set of vertices of a d-dimensional image, the augmented space variational
distribution q̄(x′),∀x′ ∈ Ω has d+ 1 finite dimensions. The data cube it forms
is sparse, it is null everywhere except at one point of the augmented axis I, for
each site i of the image in S, where it takes the value qi(x′). We then have:

q̇i,ξ(x
′) =

{
0, ∀i ∈ S, ∀ξ ∈ I \ {yi},
qi(x

′), ∀i ∈ S, if ξ = yi.
(E.5)

E.2. Markov Chain Variational Inference in

fcCRFs

In this section we derive the equations to solve the optimization problem of
Equation 4.11. In what follows, N is the number of parallel MCs and M is
their length. The initial steps of the derivation are similar to the Markov
Tree VI update equations in Appendix D.2. However, we need to consider the
visible random variables. We get, ∀n ∈ {1, . . . , N}, ∀m ∈ {2, . . . ,M}2 and
∀(xnm, xnm−1) ∈ Ω2:

lnm(xnm|xnm−1) =
1

Z
exp
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Exxxxxxx−m∼ln1 (x

n
1 )

∏
m′ 6=m ln
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n
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1 )

])
,
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∏
m′ 6=m ln

m′
(xn

m′
|xn

m′−1
)

[
−
∑

s∈S

ψu(xs)−

∑

(s,s′)∈S2

ψp(xs, xs′)−
∑

m′′ 6=m

log lnm′′(x
n
m′′ |xnm′′−1) + ln1 (x

n
1 )

])
,

=
1

Z ′′
exp

(
− ψu(x

n
m) + Exxxxxxx−m∼ln1 (x

n
1 )

∏
m′ 6=m ln

m′
(xn

m′
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)
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−

∑

m′,n′

(m′,n′) 6=(m,n)

ψp(x
n
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m′)−
∑

m′′ 6=m

log lnm′′(x
n
m′′ |xnm′′−1) + ln1 (x

n
1 )

])
,

(E.6)

where Z,Z ′ and Z ′′ are normalizing constants. xxxxxxx−m is a short notation for the
vector (x1, . . . , xm−1, xm+1, . . . , xM ). We used Equations 4.3 and 4.4 which
2The case m = 1 can be straightforwardly derived.
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were successively simplified by discarding the constant terms with respect to
lnm.

Further simplifications involve the last summation term inside the exponen-
tial. There is only one lnm′′ term such that m′′ ∈ {2, . . . ,M} and m′′ 6= m and
that plays a role with lnm: lnm−1(x

n
m−1|xnm−2). That is, in the last line of Equa-

tion E.6,
∑

m′′ 6=m log lnm′′(x
n
m′′ |xnm′′−1) can be simplified in log lnm−1(x

n
m−1|xnm−2).

Note also that ln1 (x
n
1 ) gets simplified since, for brevity, we also consider m′′ 6= 1.

Thus, ∀n ∈ {1, . . . , N}, ∀m ∈ {2, . . . ,M} and ∀(xnm, xnm−1) ∈ Ω2:

lnm(xnm|xnm−1) =
1

Z
exp

(
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∑
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A
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m−1|xnm−2)l
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m−2(x

n
m−2) log l

n
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n
m−1|xnm−2)

)
,

(E.7)

where Z is a new normalization constant. Let mmmmmmm−− denotes the set {m −
1,m−2, . . . , 1} The last equation is established by taking into account the chain
structure: we only sample the variables of interest using the local marginal and
transition distributions. Indeed we know that:

∑

(xn′

m′
,xn′

m′−1
)∈Ω2

ln
′

m′(x
n′

m′ |ln
′

m′−1)l
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xxxxxxxn
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−−|
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n
2 |xn1 )ln1 (xn1 ),

(E.8)

and, for a fixed xnm−1:

∑

xn
m−2∈Ω

lnm−1(x
n
m−1|xnm−2)l

n
m−2(x

n
m−2) ≈

∑
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|(m−1)−−|
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2 (x

n
2 |xn1 )ln1 (xn1 ).

(E.9)

These approximations can be done at each iteration of the update algorithm
using the Forward Backward (FB) algorithm (Algorithm A.2)3 to compute the

3Note that in this case, we use the FB algorithm without any observations, this is equivalent
to taking all the conditional likelihood terms of the equations of Algorithm A.2 as equal
to 1.
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marginal distributions that are used. These approximations are obvious for
computational reasons.

We now focus on the term A of Equation E.7 which requires a summation
on all the sites:

A =
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(E.10)

The manipulation performed in Equation E.10 was already seen in Sec-
tion 4.3.2. It enables the reinterpretation of the equation as a convolution.

Remark: For completeness, let us give Equation E.6 when formulated in
terms of clusters of variables as we did in all the other VI derivations of this
thesis. We have, ∀j ∈ S:

182



E.2. Markov Chain Variational Inference in fcCRFs
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with ck s.t. ck ∩ cj 6= ∅ and ck 6= cj ,

(E.11)

Constant terms with respect to cj are successively simplified. We have, from
the condition on ck, that the only possibility for ck to have a non-empty in-
tersection with cj is that ck = (cj− , c(j−)−). This also leads to Equation E.7.
Note that the last line of Equation E.11, without the last summation on log lck ,
∀ck 6= cj , falls back on the derivation of the MF updates given in Equation 4.6.
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Complements on the applications

to vascular surgery

F.1. Fine stent segmentation: exponential

mixture models

In this section we show that a mixture of exponential (MoE) distributions fits
better the observed realizations of random variables (the image) that we want
to segment. Works such as (Delignon et al., 1997) (Pieczynski, Bouvrais, et al.,
2000) and (Monfrini and Pieczynski, 2005) involve the use of the exponential
distribution in Hidden Markov Models and motivated the work we present here.

Remark: Our work does not make directly use of the notion of general-
ized mixture models introduced in the articles cited above. Within generalized
models the distributions that compose the mixture have to be decided statis-
tically according to given rules. In our case, since the observed realizations
vary weakly between images to segment, it is reasonable to fix a given mixture
beforehand. This way we avoid the additional complexity of estimating the
mixture type before estimating its parameters.

Recall the definition of the likelihood given in Equation 1.6. It becomes, for
yyyyyyy = (y1, . . . , yn) the observed independent realizations of the random process
that represents the image:

L(θθθθθθθ; yyyyyyy) =

n∏

i=1

p(yi; θθθθθθθ), (F.1)

where:

θθθθθθθ =

{
(µ, σ2) ∈ R× R

∗
+, for Gaussian distributions,

(λ, δ) ∈ R
∗
+ × R, for exponential distributions.

(F.2)

We will use the BIC score (Wit et al., 2012) as a way to find the best fitting
mixture to our data. The BIC score for a model is defined as:

BIC = −2 lnL(θθθθθθθ; yyyyyyy) + p lnn, (F.3)

where p is the number of parameters estimated in the model and n is the size of
the sample. The BIC values are computed with the resulting MLE parameters
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❵
❵
❵

❵
❵
❵

❵
❵

❵
❵
❵

❵
Class

Mixture model
MoG MoE-G MoE

stent and rest 77.39 · 107 77.37 · 107 63.97 · 107

Table F.1.: BIC values for different mixtures of distributions on a typical 3D
image. In the case of the mixture of exponential-Gaussian (MoE-G),
the exponential distribution is attributed to the stent. It appears
that the MoE fits better the data (lower BIC value).

found for each distribution. The latter were computed with the stent and
rest segmentations given by the preprocessing Frangi-based step. We know
that a lower BIC value indicates a better fitting model (more likely to be the
true model). The results illustrated in Table F.1 show that a lower BIC value
is attained for the MoE. Figure F.1 gives the histograms of the pixel values
according to the two classes of the segmentation problem. It is notable that
the histogram associated with each class has an exponential shape.

186



F.1. Fine stent segmentation: exponential mixture models

0.00

1.00

2.00

D
en

si
ty

·
1
0
−
3

stent class

0.00

1.00

2.00

3.00

4.00

D
en

si
ty

·
1
0
−
2

rest class

−0.5 0 0.5 1 1.5 2 2.5 3

Pixel intensity · 104

0.00

1.00

2.00

3.00

4.00

D
en

si
ty

·
1
0
−
2

stent and rest class

00

00

00

D
en

si
ty

1
0

stent class

00

00

00

00

00

D
en

si
ty

1
0

rest class

0

Pixel intensity 10

00

00

00

00

00

D
en

si
ty

1
0

stent and rest class

Figure F.1.: Histograms for the realizations of the random variables for the stent
and rest classes, on a typical data slice, after the preprocessing
segmentation. The density values are divided by the total number
of pixel in the slice on the three histograms.
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