
UNIVERSITY OF STRASBOURG

DOCTORAL SCHOOL MSII
MATHEMATIQUES, SCIENCES DE L'INFORMATION

ET DE L'INGENIEUR

P H D T H E S I S
to obtain the title of

PhD of Science

of the University of Strasbourg

Specialty : Computer Science

Defended by

Amine Mohamed Falek

E�cient Route Planning for
Dynamic & Multimodal
Transportation Networks

prepared at ICUBE, Network Team

defended on 11th December, 2020

Jury :

Advisors : Dr. Fabrice Théoleyre - CNRS, France

Prof. Cristel Pelsser - Université de Strasbourg, France

Co-advisor : Prof. Antoine Gallais - Université Polytechnique

Hauts-de-France, France

Reviewers : Prof. Marco Fiore - IMDEA Networks Institute

Prof. Hervé Rivano - INSA Lyon

Examinators : Prof. Houda Labiod - Telecom ParisTech

Dr. Diego Cattaruzza - Ecole Centrale Lille

i

Résumé

Les performances du monde socio-économique sont étroitement liées à notre capacité
à déplacer les personnes et les marchandises. Ainsi, la mobilité a toujours été un
enjeu crucial pour bâtir des sociétés prospères. Un essor important des technologies
de l'information et de la communication à permis d'adresser divers problèmes de
mobilité tels que la gestion de tra�c et la prévention d'accidents. La plani�cation

d'itinéraire désigne un calcul optimisant une ou plusieurs métriques à la fois tel
que la durée du trajet, la distance parcourue, et les dépenses encourues. Sur un
réseau routier dynamique, il est nécessaire de prendre en compte la congestion pour
adapter l'itinéraire en fonction du tra�c. Ceci requiert donc la collecte ainsi que le
traitement des données de tra�c, souvent en temps-réel.

Les données de tra�c sont principalement obtenues via des dispositifs
de positionnement GPS, sujets à des erreurs de localisation importantes
[Von Watzdorf & Michahelles 2010]. Pour répondre à des besoins, tels que le
guidage de véhicules en temps réel, divers algorithmes probabilistes permettent le
traitement de traces GPS, émises par le véhicule en question, a�n de le position-
ner sur une carte digitale. Toutefois, il est important de corriger toute erreur et
d'écarter les mesures ambiguës. Nous nous sommes intéressés à ce problème, une
étape essentielle pour la suite de nos travaux.

Le calcul d'itinéraire dynamique consiste à calculer et mettre à jour en continu
le meilleur itinéraire entre un point de départ et d'arrivée �xes. Il correspond à un
vaste sujet de recherche et les algorithmes proposées sont divers. Néanmoins, en
termes d'évaluations, l'état de l'art contient principalement des simulations basées
sur des données de tra�c synthétiques, ou sinon, les études ne se focalisent que sur
de petites régions géographiques. Nous avons donc exploité des données de tra�c
réelles, collectées sur une durée de plusieurs mois sur plusieurs réseaux routiers.
Notre objectif étant de comprendre l'impact qu'a la congestion sur diverses stratégies
de routage.

En réalité, les trajets combines souvent plusieurs modes de transports. Un
réseau, dit multimodal, incorpore divers modes tel que les voitures, les transports
publics, la marche à pied, et les vélos. La plani�cation d'itinéraires sur des réseaux
multimodaux a reçu peu de contributions en recherche. Ceci est dû notamment
au fait que les contraintes utilisateur spéci�ant les modes souhaités ne sont connus
que lorsque sa requête est émise. De ce fait, les techniques de pré calcul appliqués
aux réseaux monomodaux ne sont pas facilement adaptables. À cela s'ajoute le
fait que les applications de calcul d'itinéraires sont en pratique interactive et né-
cessitent des temps de requêtes rapides, de l'ordre de millisecondes. De surcroît, la
prise en compte de la dynamique du tra�c requiert un prétraitement algorithmique
facilement adaptable. Ainsi, un bon compromis entre le temps de requête et de
prétraitement est aussi un facteur de performance important.

ii

Contributions

Nos contributions concernent le traitement de données de tra�c, la plani�cation
d'itinéraires dynamiques, et la plani�cation d'itinéraires multimodaux. Nous détail-
lons ci-dessous nos principales contributions :

Map Matching: La généralisation globale des dispositifs de positionnement
a révolutionné le domaine du transport. La géolocalisation a en e�et per-
mis une multitude d'applications telles que la détection d'incidents, le suivi de
�otte et la surveillance en temps-réel du tra�c routier. Néanmoins, en fonc-
tion de facteurs environnementaux, la localisation GPS est souvent imprécise
[Von Watzdorf & Michahelles 2010]. Par conséquent, pour e�cacement exploiter
un ensemble de données GPS, il est crucial, au préalable, de corriger les données
recueillies en identi�ant la localisation réelle associée à chaque mesure. Ce processus
est connu sous le nom de Map Matching.

Il existe divers algorithmes de map matching destinés à des applications variées
telles que les systèmes de guidage en temps réel, l'analyse du tra�c et le suivi du fret.
Pour la plupart des algorithmes proposés, le but est d'identi�er le chemin dans le
graphe qui correspond au mieux à une trace de mesures GPS. Cependant, pour cer-
taines applications, un map matching exact, plutôt que probable, est essentiel. Par
exemple, l'association d'une vitesse mesurée au mauvais tronçon de route impacte
négativement la précision des mesures sur le réseau routier. Cela a suscité notre
intérêt pour le développement d'un algorithme de map matching non ambigu. Es-
sentiellement, notre approche consiste à calculer des sous-chemins entre la première
paire de mesures de la trace que nous étendons itérativement pour chaque mesure
supplémentaire. Nous montrons que la contrainte temporelle utilisée pour écarter
les sous-chemins "impossibles" se renforce à chaque mesure supplémentaire. Grâce
à des évaluations expérimentales basées sur des traces GPS simulées et réelles, nous
sommes en mesure de faire un matching exact de plus de 90% de nos traces GPS.

Stratégies de Routage pour Réseaux Routiers Dynamiques: La plani�ca-
tion d'itinéraire dynamique consiste en général à résoudre le problème du chemin le
plus court en tenant compte de la congestion du tra�c en tant que phénomène évo-
lutif. La littérature est abondante sur ce sujet en terme d'algorithmes d'évitement
de la congestion. Néanmoins, les évaluations à grande échelle des stratégies de re-
routage des véhicules sont rares. Plus précisément, la plupart des études reposent sur
des ensembles de données synthétiques ou se concentrent sur de petites régions géo-
graphiques et négligent donc les e�ets de congestion d'un point de vue global. Pour
combler ce manque, nous avons collecté un vaste ensemble de données de pro�ls de
vitesses de tra�c réels pour di�érents réseaux routiers sur une période de 3 mois. Nos
données ont été �nement échantillonnées et nous ont permis de mener une évalua-
tion approfondie. Nous avons comparé quatre stratégies de routage : statique, sans
re-routage, re-routage continu et routage optimal. Cette dernière stratégie corre-
spond à une borne inférieure du temps de parcours, émulant des prédictions idéales.

iii

Elle constitue une référence de comparaison. Notre évaluation expérimentale prouve
qu'un échantillonnage de 5 à 10 min est su�sant pour obtenir un routage quasi op-
timal, en utilisant la stratégie de re-routage continu. De plus, nous avons identi�é
des points précis, dits de divergence, indiquant les emplacements géographiques où
le re-routage continu diverge souvent de l'itinéraire optimal en raison d'un réachem-
inement inexact. Plus important encore, nous montrons les écarts entre les données
de tra�c réelles et synthétiques, souvent utilisées en recherche.

Plani�cation des Itinéraires pour Réseaux Multimodaux: De nombreux
algorithmes permettent un calcul d'itinéraire en quelques microsecondes seulement,
sur des réseaux à échelle continentale. La plupart des solutions ne sont toutefois
adaptées, qu'aux réseaux routiers ou bien aux transport en commun [Bast 2009]. Les
algorithmes de calcul d'itinéraires multimodaux sont donc nécessaires pour exploiter
la diversité de l'infrastructure des réseaux de transport. Néanmoins, les solutions
actuelles manquent encore en performances pour gérer e�cacement des requêtes in-
teractives dans des conditions réalistes incluant les embouteillages et les délais de
transit, souvent imprévisibles. Nous avons proposé MUSE, un nouvel algorithme
multimodal basé sur les séparateurs de graphes. Il partitionne le réseau en plusieurs
régions indépendantes, permettant ainsi un prétraitement rapide et parallèle. La
partition est indépendante des conditions de tra�c de sorte que le prétraitement
n'est exécuté qu'une seule fois. MUSE considère également la séquence de modes
fournie par l'utilisateur pour contraindre l'itinéraire. Nous augmentons également
notre algorithme avec des heuristiques pendant la phase de requête pour obtenir de
meilleurs temps de calcul sans compromettre l'exactitude de l'itinéraire. Nous four-
nissons des résultats expérimentaux sur le réseau multimodal Français, comprenant
les réseaux piétons, routiers, cyclables et divers transports en commun.

Conclusion et Travaux Futurs

Nous avons exploré au cours de cette thèse plusieurs sujets liés à la plani�cation
d'itinéraires pour les réseaux de transport dynamiques et multimodaux. Nous avons
basé nos recherches autant que possible sur des mesures de tra�c réels a�n d'éviter
les biais et les hypothèses inhérents à de nombreux ensemble de données synthé-
tiques. Pour améliorer la précision de notre algorithme de map matching, nous
prévoyons d'analyser l'impact de la topographie locale. Dans les réseaux routiers
urbains à topologie dense, il peut exister plusieurs itinéraires alternatifs di�ciles à
distinguer de l'itinéraire réel. C'est généralement le cas pour certains réseaux tels
que celui de Manhattan. Idéalement, nous cherchons à fournir une technique adap-
tative, capable d'ajuster la fréquence d'échantillonnage de manière dynamique en
fonction d'un ensemble de métriques locales. Quant au routage dynamique, nous
prévoyons de proposer une stratégie pouvant prendre en compte le gain de temps de
trajet, en fonction des caractéristiques de l'itinéraire et de la zone locale. De plus,
il serait possible d'adapter le temps d'échantillonnage GPS suivant la localisation

iv

du véhicule. Pour améliorer les temps de requête de MUSE, le partitionnement
multiniveau pour graphes multimodaux est une prochaine étape intéressante. Ceci
permet de réduire la zone de recherche sur le graphe en explorant les cellules source
et cible via les niveaux élevés de la partition.

Liste de Publications

Cette thèse s'est traduite académiquement par deux conférences francophones, une
conférence internationale (rang B), un article de journal (Journal of ITS), et un
article soumis dans un autre journal (Transportation Science).

• "MUSE: Multimodal Separators for E�cient Route Planning." Transportation
Science (soumis). Impact Factor de 4,6.

• "MUSE: une plani�cation d'itinéraires inspirée de Séparateurs Multimodaux."
ALGOTEL 2020�22èmes Rencontres Francophones sur les Aspects Algorith-
miques des Télécommunications. 2020.

• "To Re-Route, or not to Re-Route: Impact of Real-Time Re-Routing in Ur-
ban Road Networks." Journal of Intelligent Transportation Systems: Technology,
Planning, and Operations (2020). Impact Factor de 3,2.

• "De l'(in) utilité du temps-réel pour le calcul d'itinéraire dans les réseaux
routiers." Algotel 2019. 2019.

• "Unambiguous, Real-Time and Accurate Map Matching for Multiple Sensing
Sources." WiMob 2018-14th International Conference on Wireless and Mobile
Computing, Networking and Communications. 2018.

v

Abstract

The performance of the socio-economic world is closely linked to our ability to
move people and goods. Thus, mobility has always been a crucial requirement for
building prosperous societies. A signi�cant boom in information and communication
technologies has made it possible to address various mobility problems such as tra�c
management and accident prevention. Route planning designates a system that
optimizes one or a combination of metrics simultaneously, such as the duration of
the travel time, the travel distance, and the incurred expenses. On a dynamic road
network, it is necessary to take congestion into account to adapt the route according
to the tra�c conditions. This, therefore, requires the collection and processing of
tra�c data, often in real-time.

Tra�c data is mainly obtained via GPS positioning devices, subject to signi�-
cant localization errors. To address applications such as real-time vehicle guidance,
various probabilistic algorithms allow the processing of GPS traces, emitted by the
vehicle in question, to locate it on a digital map. However, it is often required
to guarantee correctness and, therefore, correct any errors and rule out ambiguous
measurements. This has sparked our interest in the map matching problem, an
essential step to pursue our research on route planning.

Dynamic route calculation consists of computing and continuously updating the
best route between a departure and arrival locations. It corresponds to a vast
research topic, and the proposed algorithms are diverse. However, in terms of ex-
perimental evaluations, the state-of-the-art mainly consists of simulations based on
synthetic tra�c data or only focuses on small geographical areas. We instead fo-
cused on a data-driven approach that relies mainly on real tra�c data, collected over
several months for several road networks. Our goal is to understand the impact that
congestion has on various routing strategies.

In practice, journeys often combine several modes of transportation. A multi-

modal network incorporates various modes such as cars, public transit, walking, and
bicycles. Route planning on multimodal networks has received few contributions.
This is due in particular to the fact that user constraints specifying the desired
modes are only known during query-time. As a result, the preprocessing techniques
applied to unimodal networks are not easily adaptable.

vi

Acknowledgments

Terminus. I embarked on this incredible journey on January's 1st 2017. Back then,
I had no idea what I had gotten myself into. I am astonished how time �ies when I
recall that this thesis represents a signi�cant part of my life now, 14% to be precise.

Manelle, my love, I would certainly have gone mad without your infallible sup-
port. Thank you for having to put up with me throughout all those years. Having
you by my side has given meaning to it all.

I had the pleasure of being surrounded by incredible people during this thesis.
My dear supervisors: Fabrice Théoleyre, Cristel Pelsser, and Antoine Gallais, thank
you. Your guidance and benevolence were precious. It truly is a unique experience
getting my defective ideas destroyed during our meetings. I learned so much from
you, I cannot thank you enough.

This CIFRE thesis would not have been possible without my supervisors at
Technology & Strategy. Stéphane Klein, who recruited and supervised me early
during the thesis, and Sébastien Julien, thank you for your counsel. I could always
count on your support.

To my wonderful parents, Salima and Salah, look, I have made it! You instilled
the love of science in me and sacri�ced so much for us. I owe you my successes and
always keep you in my thoughts. My sister, Lina, you have always been my best
friend. You are a constant source of inspiration, even when you wake me up at 4 in
the morning to admire Venus in the freezing cold weather. I extend my thanks to
all my family members in France and Khenchela, who never ceased to support me.

I thank all my colleagues who lifted my spirits during the precious co�ee mo-
ments. My friends: Ahmed Krizou, Rodrigo, Julian, Sebastian, Andréas, Jean-
Romain, Renato, Loic, and Odnan, thank you for the debates, the laughs, and the
chess games. I wish you all success and happiness.

Contents

1 Introduction 1

1.1 Context . 1
1.2 Contribution . 3

1.2.1 Map Matching: . 4
1.2.2 Dynamic re-Routing: . 4
1.2.3 Multimodal Route Planning: 5

1.3 Overview . 5

2 Related Work 7

2.1 Graph Theory Concepts . 8
2.2 Modeling Transportation Networks 9

2.2.1 The FIFO property . 9
2.2.2 Time-Independent Models . 10
2.2.3 Time-Dependent Models . 11
2.2.4 Multimodal Network Model 13

2.3 Map Matching . 16
2.3.1 Similarity-based Map Matching 16
2.3.2 Probabilistic-based Map Matching 17
2.3.3 Machine Learning-based Map Matching 17

2.4 The Shortest Path Problem . 18
2.4.1 Dijkstra's algorithm . 19
2.4.2 Bidirectional search . 20
2.4.3 Goal Direction . 21

2.4.3.1 A?, Landmarks, Triangle inequality (ALT) 22
2.4.3.2 Arc Flags (AF) . 23

2.4.4 Hierarchy . 25
2.4.4.1 Contraction Hierarchies (CH) 25

2.4.5 Hybrid Algorithms . 27
2.4.6 Journey Planning in Time-Dependent Networks 27

2.4.6.1 Round Based Public Transit Routing (RAPTOR) . 28
2.4.6.2 Connection Scan Algorithm (CSA) 28

2.5 Dynamic Route Planning . 28
2.5.1 Re-routing in road networks 29
2.5.2 Real-time data sources . 29
2.5.3 Tra�c prediction . 30
2.5.4 Experimental evaluations on dynamic networks 31

2.6 Multimodal Route Planning . 31
2.6.1 Access-Node Routing . 32
2.6.2 State-Dependent ALT (SDALT) 32

viii Contents

2.6.3 User Constrained Contraction Hierarchies (UCCH) 33
2.7 Conclusion . 33

3 Unambiguous Map Matching 35

3.1 Models and Assumptions . 36
3.2 Map Matching Algorithm . 37

3.2.1 Pre-processing . 38
3.2.2 Selecting edge candidates for each measurement 39
3.2.3 Constructing valid routes from a list of edge candidates . . . 39

3.2.3.1 Constructing the subroutes 41
3.2.3.2 Verifying the cost of a subroute 42
3.2.3.3 Appending a subroute to a valid route 43

3.2.4 Computing shared road segments in valid routes 44
3.3 Experimental Evaluation . 44

3.3.1 Emulated GPS traces . 44
3.3.2 Real GPS trace (Seattle) . 47

3.4 Conclusion . 48

4 Dynamic Route Planning 49

4.1 Methodology . 51
4.1.1 Assumptions and Model . 51
4.1.2 Route Planning Strategies . 53

4.1.2.1 Static Route Planning 53
4.1.2.2 No re-Routing Route Planning 53
4.1.2.3 Continuous re-Routing Route Planning 53
4.1.2.4 Ideal Prediction Based Route Planning 55

4.1.3 Evaluation Work�ow . 55
4.1.4 Datasets . 58
4.1.5 Metrics for the Performance Evaluation 59

4.1.5.1 Identi�cation of congestion 59
4.1.5.2 Travel Time Stretch and Gain Factors 59
4.1.5.3 Identi�cation of divergences 60

4.2 Experimental Evaluation . 60
4.2.1 Absolute Travel Time and Rush Hours 60
4.2.2 Travel Time Stretch and Gain Factors 61
4.2.3 Impact of Sampling Rate on Travel Time 63
4.2.4 Route Divergence Patterns 64

4.3 Conclusion . 66

5 Multimodal Route Planning 67

5.1 Model and Assumptions . 68
5.1.1 Road Network (private cars, taxis, and rental vehicles 70
5.1.2 Foot Network . 70
5.1.3 Bicycle Network . 70

Contents ix

5.1.4 Public Transit Network . 71
5.1.5 Assembling the Multi-modal Network 72

5.2 MUSE: The Algorithm . 74
5.2.1 Stage 1: Partitioning The Graph 75
5.2.2 Stage 2: Computing The Overlay 77
5.2.3 Stage 3: Computing Queries 83

5.3 Experimental Evaluation . 84
5.3.1 Evaluation Setup . 84
5.3.2 Preprocessing . 85
5.3.3 Queries . 88

5.4 Conclusion . 93

6 Conclusion 95

6.1 Future Work . 96
6.1.1 Short term perspectives . 97
6.1.2 Long term perspectives . 98

List of Figures 101

List of Tables 104

Bibliography 105

Chapter 1

Introduction

1.1 Context

Transportation systems ful�ll two fundamental functions that enable societies to
exist: moving people and moving goods. Thus, mobility has a far-reaching impact
on socio-economic welfare, and thereby, transportation e�ciency has always been
a crucial human endeavor to travel faster, cheaper, and safer. However, growing
metropolitan areas accelerated the urbanization rate, which grew from 39% to 52%
over the past 30 years and is expected to reach 66% by 2050 [Shi et al. 2019]. Con-
sequently, tra�c congestion became a global challenge as a natural outcome of the
overload of the transport infrastructure. Tra�c congestion is an emergent phe-
nomenon resulting from unique and often unpredictable interactions between trav-
elers. It can be classi�ed as either recurring or non-recurring congestion. Recurring
congestion corresponds mainly to rush-hour tra�c, while non-recurring congestion
results from a variety of factors such as accidents and incidents (bad weather con-
ditions, road repairs, vehicle stalling), and accounts for more than 50% of the total
congestion [Afrin & Yodo 2020].

Worldwide, the total number of personal and commercial vehicles in use grew
from 892 million in 2005 to 1.3 billion by 2015 [OICA 2018]. In the United States,
while the population size doubled over the past 70 years, the number of vehicles in
operation had grown six times fold during the same period [Boundy 2019]. Increas-
ing infrastructure capacity has been undertaken to curb congestion by widening and
building new highways costing hundreds of billions annually. Nonetheless, conges-
tion levels are still worsening. In essence, the average drivers are traveling twice as
much since 1980 because of the overall distance increase between housing and other
locations [TFA 2020].

Intelligent Transportation Systems (ITS) designate the application of Informa-
tion and Communication Technology (ICT) to the transport sector to improve safety
and mobility [Sªadkowski & Pamuªa 2016]. It represents an ecosystem relying on in-
formation exchange between people, vehicles, and the network, which bene�ts var-
ious applications such as tra�c management and congestion forecast. The United
States Department of Transportation (USDOT) created the ITS Joint Program
O�ce (ITSJPO) in 1991 to research, develop, and test ITS. Currently, ITSJPO
serves millions of users and achieved substantial economic bene�ts that are esti-
mated to $2.3 billion annually [ITSJPO 2020]. A fundamental characteristic of ITS
is monitoring the network to acquire road segment speeds, vehicle counts, and ac-
cident detection. This data is processed to subsequently serve various applications

2 Chapter 1. Introduction

[ITSJPO 2020], such as tra�c forecasting and route planning systems, to inform
users and help coordinate tra�c.

Smart Roadside is a mobility system part of the ITS plan that aims at enhancing
truck transport e�ciency. It targets commercial routes to suppress long queues of
commercial vehicles that build-up at inspection stations. Instead, it relies on real-
time electronic screening technology through wireless communication between the
trucks and the infrastructure. Mobility-On-Demand program is another ITS project
that focuses on the need for alternative forms of transportation. The goal is to
develop �exible transportation systems that incorporate shared-use and multimodal
integration. The New York City Connected Vehicle Pilot program was initiated in
2015 as a measure to reduce tra�c incidents in the Manhattan area where 73% of all
fatalities involved pedestrians compared to 14% nationwide. It implements Vehicle-
to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) safety applications to assist
the driver in several scenarios such as alert in case of an imminent crash, detect
blind-spot adjacent lane vehicles, assess if crossing an intersection is safe, and alert
upon reaching a designated work or school area with high speed. ITS is, however,
a broad topic comprising a variety of open problems: how to faithfully model tra�c

conditions through large volumes of acquired tra�c data? how to e�ciently exploit

such data to avoid congestion? how to incorporate user constraints to achieve route

planning across several modes of transportation?

These are the questions we tackle in this thesis. As entitled, our focus lies on
e�cient route planning strategies for realistic use-case scenarios that consider tra�c
congestion and exploit transportation networks' diversity. Nonetheless, route plan-
ning is also contingent on accurate tra�c information. Therefore, we also address
the Map Matching problem [Chao et al. 2020]: processing raw GPS measurements
to accurately aggregate the paths of vehicles in the network onto a common digital
map. Our map matching approach is particularly useful for research applications as
it guarantees correctness, and therefore, provides a strong foundation for the subse-
quent route planning problems we addressed that required experimental evaluation
based on real tra�c data.

The term route planning refers to identifying the most cost-e�ective route in the
network where cost is either a unique metric or a combination of several metrics
such as travel time, distance, number of transfers, and monetary expense. Histor-
ically, Dijkstra's algorithm [Dijkstra 1959], designed to compute shortest-paths on
graph structures, has become a fundamental building block to modern route plan-
ning techniques. The movement of public access to transportation data over the
past 20 years has further catalyzed the �eld, especially for routing in road net-
works [Sanders & Schultes 2007]. Consequently, current algorithms are operated on
continental-scale networks, computing a route in mere microseconds. Applications
such as Google Maps, TomTom, HERE, PTV, and countless other industries serve
millions of users daily, a testament to remarkable progress.

However, the vast majority of contributions to the �eld of route planning are
disproportionately tailored to road networks compared to public transit networks.
Although road network route planning techniques can often be adapted and ap-

1.2. Contribution 3

plied to public transit networks, their performance drops signi�cantly because of
the structural di�erences between these distinct networks [Bast 2009]. For instance,
hierarchy is a strong feature observed in road networks and is a consequence of the
infrastructure's intentional design. In contrast, public transit networks are inher-
ently time-dependent and operate according to a prede�ned schedule. They do not
present any notable hierarchy, and therefore, hierarchical speedup techniques are
signi�cantly less e�ective when applied to public transit networks.

Nonetheless, in practice, trips are multimodal: they consist of a combination
of walking, riding a bicycle, driving a car, and using public transit. According to
the U.S Department of Transportation [DOT 2015], 40% of all traveled passenger-
kilometers consist of commuting. While commuting distances are increasing, average
speeds are, however, decreasing due to steadily rising congestion. By 2015, the av-
erage commuter typically spent 40 hours every year stuck in tra�c, costing $121

billion annually. For decades, personal-vehicle travel has been, and remains, the
dominating trend: 105 million American commuters rely mostly on driving while
the remaining 32 million depend on all other transportation modes. Nevertheless,
public transit, although accounting for only 5% of the overall commute trips, is
vital to alleviating congestion. The same report indicates that if public transit
users in major metropolitan areas of the united states suddenly reverted to driving,
congestion is estimated to increase by 24% and cost an additional $17 billion an-
nually. Fortunately, over the past two decades, public transportation thrived with
a registered 25% increase in public transit ridership. Enhanced access to informa-
tion signi�cantly improved transit networks, and thus, steered urban populations to
consider better alternatives to their private cars.

A personal use-case scenario depicted my multimodal journey upon arriving in
France a few years ago. Mainly, I had to plan every step of my trip carefully: I
�rst booked my Algiers-Paris �ight ticket and matched the correct Paris-Strasbourg
train with enough transfer time in case of any delays. Considering the heavy tra�c
congestion during the �rst part of my Boumerdes-Algiers trip, I drove to the airport
earlier than usual to not miss my �ight. To achieve such planning, one must refer
to several applications, each dedicated to a unique transportation network, and
manually construct the trip. Because of the computational complexity that arises
from combining several transportation networks, the �eld of multimodal shortest
path algorithms has been neglected for decades. In recent years, few contributions
were put forth but often only evaluated on small scale networks.

1.2 Contribution

The need for more e�cient and practical multimodal algorithms has initially moti-
vated this work both in research and industry (CIFRE thesis). Nonetheless, route
planning is a broad subject, and over the course of the thesis, we identi�ed speci�c
topics to contribute to the literature of route planning in transportation networks.
Speci�cally, this thesis took part in a time interval during which access to transport

4 Chapter 1. Introduction

data has become less secretive and, therefore, providing an opportunity to conduct
data-driven research. Consequently, our main contributions are:

• a map matching algorithm that can be used to construct an accurate model of
tra�c conditions based on GPS traces;

• an extensive evaluation of the dynamic routing problem based on real tra�c data;

• a multimodal route planning algorithm called MUSE that relies on graph separa-
tors to achieve fast preprocessing times and therefore handle unpredictable tra�c
congestion and transit delays.

We further detail each contribution in the following sections.

1.2.1 Map Matching:

The global spread of positioning devices has revolutionized the �eld of ITS. Geolo-
cation has indeed enabled a multitude of applications such as incident detection,
�eet monitoring, and real-time road tra�c surveillance. GPS measurements are,
however, not accurate and follow a Gaussian error distribution model. The problem
of map matching is, therefore, the task of associating each GPS-trace to a correct
sequence of road segments. Nonetheless, most of the literature's map matching al-
gorithms are designed to compute the path that matches best a given GPS trace.
However, for some applications, exact map matching is required. This sparked our
interest in developing a new map matching algorithm.

We follow a topological approach that relies on the timestamps of the GPS-
trace to prune inconsistent matchings. Mainly, for each GPS measurement, we
compute a set of edge candidates in its vicinity. There is a single edge among such
candidates, denoting the actual road segment the measurement should be matched
to. Using Breadth-First-Search, we iteratively construct subroutes that �t the time
measurement constraints of the GPS-trace. Lastly, we discard all ambiguous paths
denoting two or more valid matchings for a given measurement. We conduct an
experimental evaluation on both a simulated dataset (synthetic measurements) and
real GPS measurements and successfully match 90% of the traces.

1.2.2 Dynamic re-Routing:

Route planning represents a major challenge with a substantial impact on safety,
economy, and even climate. An ever-growing urban population caused a signi�cant
increase in commuting times, therefore, stressing the prominence of e�cient real-
time route planning. In essence, the goal is to compute the fastest route to reach the
target location in a realistic environment where tra�c conditions are time-evolving.
Consequently, a large volume of tra�c data is potentially required, and the route
is continuously updated. We base our study on a real dataset, comprising the
travel times of the road segments of New York, London, and Chicago, collected
over three months. We implement an optimal algorithm that assesses future tra�c

1.3. Overview 5

conditions with regard to departure time to compute the lower bound of travel
time. It depicts an ideal routing algorithm with exact predictions and serves as a
reference to compare a static, no re-routing, and continuous re-routing strategies
based on their achieved travel time gains. We show that a continuous re-routing
strategy with a low sampling rate (5 to 10 min intervals) provides enough accuracy
to compute the best route while reducing the computational cost. Furthermore, we
identify a small number of crossroads where re-routing often occurs but leads to sub-
optimal routes. Ultimately, we determine when, how often, and where is re-routing
worthwhile.

1.2.3 Multimodal Route Planning:

Many algorithms compute shortest-path queries in mere microseconds on
continental-scale networks. Most solutions are, however, tailored to either road
or public transit networks in isolation. To fully exploit the transportation infras-
tructure, multimodal algorithms are sought to compute shortest-paths combining
various modes of transportation. Nonetheless, current solutions still lack perfor-
mance to e�ciently handle interactive queries under realistic network conditions
where tra�c jams, public transit cancelations, or delays often occur. We present
MUSE, a new multimodal algorithm based on graph separators. It partitions the
network into independent, smaller regions, enabling a fast and scalable preprocess-
ing. The partition is common to all modes and independent of tra�c conditions so
that the preprocessing is only executed once. MUSE also considers the sequence of
modes provided by the user to constrain the shortest path during the online phase
accordingly. We also augment our algorithm with heuristics during the query phase
to achieve further speedups without trading-o� correctness. We provide experimen-
tal results on France's multimodal network containing the pedestrian, road, bicycle,
and public transit networks.

1.3 Overview

The thesis is organized into six chapters. Initially, in chapter 2, we provide the
necessary background and related work to support the subsequent chapters. We
begin by presenting the fundamental graph theory concepts and the recurring no-
tation throughout the thesis. We discuss techniques to model time-independent,
time-dependent, and multimodal transportation networks with varying degrees of
realism. We then focus on the Shortest Path Problem (SPP), a pivotal notion in this
thesis, and describe several strategies and speedup techniques that address it. Then,
we review the relevant associated literature. We begin by introducing state-of-the-
art map matching algorithms. We grouped a multitude of techniques into three
categories: geometrical, topological, and statistical map matching. After that, we
focus on the dynamic route planning problem. We review several re-routing strate-
gies and the few studies aimed at evaluating the e�ciency of each technique. In the
last section, we review multimodal shortest path algorithms.

6 Chapter 1. Introduction

In chapter 3, we present our unambiguous map matching algorithm. We describe
our model and the four stages of the algorithm, mainly: preprocessing the raw data,
selecting edge candidates for each GPS measurement, computing valid subroutes for
the trace, and �nally computing the matching path. We provide the results of an
experimental evaluation on simulated and real GPS measurements.

In chapter 4, we discuss the dynamic routing problem. We compare four routing
strategies using extensive tra�c datasets for several road networks. Throughout the
experimental evaluation, we systematically compare the results obtained from real
measurements to a simulated dataset for the same road network.

In chapter 5, we explain our approach to solving the multimodal route planning
problem. We explain how we assemble a multimodal network as a layered graph of
unimodal networks. We describe the three stages of our algorithm, MUSE, which
consist of graph partitioning, a preprocessing to compute an overlay, and a query
phase. We conduct an experimental evaluation on a country scale network and
discuss our results.

Finally, in chapter 6, we summarize our results and discuss possible future work,
either extending our current contributions or relying on them to address other in-
teresting problems. We also provide links to our repositories containing useful tools
developed throughout the thesis to run new experiments or replicate some of our
results.

bonne lecture.

Chapter 2

Related Work

Contents

2.1 Graph Theory Concepts . 8

2.2 Modeling Transportation Networks 9

2.2.1 The FIFO property . 9

2.2.2 Time-Independent Models . 10

2.2.3 Time-Dependent Models . 11

2.2.4 Multimodal Network Model 13

2.3 Map Matching . 16

2.3.1 Similarity-based Map Matching 16

2.3.2 Probabilistic-based Map Matching 17

2.3.3 Machine Learning-based Map Matching 17

2.4 The Shortest Path Problem 18

2.4.1 Dijkstra's algorithm . 19

2.4.2 Bidirectional search . 20

2.4.3 Goal Direction . 21

2.4.4 Hierarchy . 25

2.4.5 Hybrid Algorithms . 27

2.4.6 Journey Planning in Time-Dependent Networks 27

2.5 Dynamic Route Planning . 28

2.5.1 Re-routing in road networks 29

2.5.2 Real-time data sources . 29

2.5.3 Tra�c prediction . 30

2.5.4 Experimental evaluations on dynamic networks 31

2.6 Multimodal Route Planning 31

2.6.1 Access-Node Routing . 32

2.6.2 State-Dependent ALT (SDALT) 32

2.6.3 User Constrained Contraction Hierarchies (UCCH) 33

2.7 Conclusion . 33

We review in this chapter all relevant literature to clearly put in context our con-
tributions in the upcoming chapters. We initially provide the necessary background
covering the fundamental aspects of route planning. We review in section 2.1 rele-
vant graph theory de�nitions as well as the recurring terms and notation throughout

8 Chapter 2. Related Work

the remaining chapters. In section 2.2, we detail the di�erent techniques to model
transportation networks. We present di�erent versions of the time-independent
model, which is often used to represent road networks, and the time-dependent
model, speci�cally tailored to public transit networks. We further explain how to
construct a multimodal network as a layered graph structure composed of several
unimodal networks. In section 2.4, we review the Shortest Path Problem (SPP) and
detail a variety of algorithms and speedup techniques to solve it. In section 2.3, we
explain the map matching problem and its applications. We classify map matching
algorithms into three categories: similarity-based, statistical models, and machine
learning techniques. In section 2.5, we review dynamic routing strategies for road
networks. Mainly, our goal is to present studies that assess the performance of such
strategies either based on simulated or real tra�c data. In section 2.6, we detail the
challenges of multimodal route planning and describe the proposed state-of-the-art
solutions. Finally, section 2.7 concludes the chapter.

2.1 Graph Theory Concepts

A signi�cant number of contributions to route planning rely on graph theory
to model transportation networks [Dijkstra 1959, Thomson & Richardson 1995,
Cherkassky et al. 1996]. Mainly because graphs are simple and intuitive structures
to abstract various types of networks. Nevertheless, mostly, graph theory o�ers a
large panoply of theorems and algorithms that can be leveraged to devise e�cient
route planning solutions.

A Graph G(V,E) consists of a set of vertices v ∈ V , and a set of edges (v, w) ∈ E,
such that each edge connects two vertices v, w ∈ V . An undirected graph is a graph
whose edges consists of a pair of unordered vertices, that is, edges (v, w) and (w, v)

are the same. In contrast, a directed graph, or digraph, has directed edges. An edge
(v, w) is an ordered pair of vertices v, w referred to as the tail and head, respectively.
Two vertices v, w are said to be adjacent if they form an edge (v, w) and the degree
of a vertex v is the number of its adjacent vertices. In a digraph, we distinguish the
in-degree and out-degree of v, denoting the number of incoming (v is the head) and
outgoing (v is the tail) edges. A simple graph is a graph with no parallel edges or
loops i.e., edges of the form (v, v). Throughout the remainder of the dissertation,
all graphs are considered directed and not simple, unless otherwise speci�ed.

The Edge Cost The set of edges in a graph are labeled with weights c(v, w, τ)

denoting the cost associated to (v, w) at time τ . The edge cost c(v, w, τ) is modeled
using a positive piece-wise linear function fvw : Π → R+ mapping the cost for all
times τ ∈ Π. If fvw is constant, then (v, w) is a time-independent edge, otherwise,
it is time-dependent.

A Path P = {v0, v1, .., vk}, also written Pv0vk , is an ordered sequence of vertices.
In a time-independent graph, its cost c(P) =

∑k−1
i=0 c(vi, vi+1) is evaluated as the

sum of the costs of the individual edges that make up the path. If the graph is

2.2. Modeling Transportation Networks 9

time-dependent, the cost is recursively evaluated based on the departure time τ at
vertex v0, and is given by c(P, τ) = c(v0, v1, τ) + c

(
{v1, .., vk}, τ + c(v0, v1, τ)

)
. Let

P be the set of all Pst paths with a departure time τ . P ∗st ⊆ P denotes the paths
of smallest cost, that is, c(P ∗st, τ) ≤ c(Pst, τ)∀Pst ∈ P. We call Pst, a shortest path

and use the notation d(s, t, τ) to denote its cost.

2.2 Modeling Transportation Networks

Graphs are useful to encode the structural and topological properties of transporta-
tion networks. The set of vertices V abstracts physical entities such as road junctions
or public transit stations. The set of edges E represents road segments or public
transit routes such as bus or train lines. In that context, the cost associated with
each edge often denotes travel-time or other metrics such as distance or fare ex-
penses. Figure 2.1 illustrates the graph denoting the road network of the Illkirch
region in Strasbourg, France.

We distinguish two categories of transportation networks: time-independent net-
works such as road and pedestrian networks and time-dependent networks consisting
of all types of public transit networks, which are schedule-based in nature. Although
the road network is subject to tra�c congestion, which impacts edge costs, the road
network can still be modeled using time-independent graphs, albeit inaccurately. In
contrast, public transit networks are inherently time-dependent: one cannot traverse
an edge except at speci�c discrete times denoting shuttle departures. We review in
the following sections 2.2.2 and 2.2.3 the details of transportation networks and their
graph-based models ranging from the most basic to more realistic.

2.2.1 The FIFO property

Route planning in transportation networks often consists of computing the short-
est path between two given locations [Bast et al. 2016b]. In time-dependent net-
works, it is known as the Time-Dependent Shortest Path (TDSP) problem. The
algorithmic complexity of TDSP depends on the cost functions used to model the
time-dependency of the network. Kaufman and Smith [Kaufman & Smith 1993]
investigated this problem and showed that the network must be a FIFO-network
to solve TDSP in polynomial time. The FIFO property, also known as the non-
overtaking property, states that for any edge (v, w) in the network, a vehicle A
departing from v toward w at any time τ1 cannot be overtaken by another vehicle B
departing from v at a later time τ2 ≥ τ1. Formally, for all times τ1, τ2 ∈ Π such that
τ1 ≤ τ2 then τ1 + fvw(τ1) ≤ τ2 + fvw(τ2). Hence, waiting at a vertex never pays-o�.

In practice, transportation networks are not necessarily FIFO-networks, but the
underlying graph can be adapted to adhere to the FIFO property without loss of
accuracy. For instance, a separate parallel edge can be inserted into the graph to
account for a high-speed train that may be scheduled to overtake another train.
Therefore, we can search for edges that exhibit non-FIFO behavior and correct the
graph accordingly.

10 Chapter 2. Related Work

Figure 2.1: Graph representation of Illkirch's road network in Strasbourg, France.
The dots are the graph's vertices and the segments are the edges, drawn to preserve
the original shape of the road segments.

2.2.2 Time-Independent Models

A directed graph G(V,E) with constant edge weights is often used as a basic struc-
ture to model time-independent networks [Sanders & Schultes 2007]. Each edge
(v, w) ∈ E represents a segment connecting vertices v and w and allowing tra�c to
�ow from v towards w.

More realistic approaches [Geisberger & Vetter 2011] tend to incorporate turn

penalties to account for the additional time required to perform a turn based on
the speed and turn angle. Furthermore, turn restrictions must be enforced to abide
by tra�c laws. The pseudo-dual graph [Winter 2002] is derived by transforming
the edges in G into vertices, and then, the edge-set is built by adding an edge for
each valid turn. However, as depicted in �gure 2.2, this approach results in a much
larger graph as a single edge in the original graph, embeds several turns. Another,
more compact approach [Delling et al. 2011a], consists in associating a turn table to
each vertex v ∈ V . The turntable stores the permutations of all v's incoming and
outgoing edges and is used to check for valid turns. The advantage of this approach
is that turn restrictions are, most of the time, the same across similar junctions.
Hence, a single turntable can be shared by a subset of vertices.

The time-independent graph is often used to model the road, cycling, and pedes-
trian networks. To account for tra�c �uctuations on the road network, edge weights,
instead of scalars, are augmented into time-dependent cost functions without any
additional alteration to the time-independent graph structure [Zhao et al. 2008].

2.2. Modeling Transportation Networks 11

(a) Without turn restrictions (b) Enforcing turn restrictions

Figure 2.2: Pseudo-dual graph derived from the original graph (in bold) denoting
all possible turns (left) and its reduced version containing only valid turns (right).

2.2.3 Time-Dependent Models

Time-dependent networks are modeled according to timetable information
[Müller-Hannemann et al. 2007]. The timetable is periodic and consists of a set
of shuttles Z, a set of stations B, and elementary connections C. Given two stations
S and S′, an elementary connection is a 5-tuple c = {Z, S, S′, td, ta} and de�nes
a shuttle Z departing from S at time td and arriving at S′ at time ta without a
stop at any intermediate station. A trip is an ordered set of elementary connections
and de�nes the route of a unique shuttle Z. Typical graph representations for such
networks are the time-expanded and time-dependent graph models.

The time-expanded model is illustrated in �gure 2.3 and built as a directed
graph with each vertex denoting a speci�c event occurring at a particular time.
In the basic version of the model (�gure 2.3a), an event is either a departure or
an arrival. To construct the graph, we iterate over all elementary connections
{Z, S, S′, td, ta} ∈ C and add a departure vertex v assigned to station S with times-
tamp td and an arrival vertex w assigned to station S′ with timestamp ta. Each
station S is subsequently formed by a set of departure and arrival vertices that are
chronologically sorted, as shown in �gure 2.3a. All vertices within the station are
connected using internal edges with a Zero-weight, and the last vertex is connected
to the �rst to preserve connectivity.

Route edges model connections, their weight denotes the travel-time between two
consecutive stations. Given a route edge (v, w), its weight is given by the function
in equation (2.1), where Π is the period of the timetable:

fvw(td, ta) =

{
ta − td if ta ≥ td,
Π + ta − td otherwise

(2.1)

Although the basic time-expanded model is useful in describing the structural as-
pects of the network, it assumes, however, that all transfers are feasible. As illus-
trated in �gure 2.3a, upon arriving at vertex va at 10h00, the basic model allows for

12 Chapter 2. Related Work

10:00

10:00

10:10

va

10:05

0

route edge

transfer
edge

0

0

0

0

0

0

0

Station

vd

(a) Basic model

10:00

10:00
5

6

0

va

vd

0

0

0

10:05

10:10

vt

route edge

transfer edge

Station

(b) Realistic model

Figure 2.3: Time-expanded model of a public transit station. Vertices colored in
yellow, green, and purple denote arrivals, departures, and transfers, respectively.

catching the departure scheduled at 10h05 even though 5 minutes are not enough
to achieve the transfer.

For that matter, the realistic model [Pyrga et al. 2004, Pyrga et al. 2008] incorpo-
rates additional, transfer vertices, to account for transfer times. The realistic model
is shown in �gure 2.3b. Each departure vertex vd is paired to a transfer vertex vt such
that c(vt, vd) = 0. Furthermore, each arrival vertex va is either directly connected
to a departure vertex denoting no transfer with no additional cost c(va, vd) = 0,
otherwise, it is connected to the �rst transfer vertex vt such that the transfer is
feasible and its cost is given by c(va, vt). In �gure 2.3b, upon arriving at vertex
va at 10:00, the realistic model restricts the transfers by allowing only those that
are feasible: the earliest transfer (va, vt) costs 6 minutes and allows to catch the
departure from vd, scheduled at 10:10.

The time-dependent model is a compact representation of the transit network
[Brodal & Jacob 2004]. A station S ∈ B is abstracted with a single station vertex
s ∈ V , and a set of route vertices are added to the station to account for the various
routes transiting through S. Hence, edges are considered as either transfer edges or
route edges. A transfer edge connects two vertices belonging to the same station, and
its associated weight denotes the required transfer time. A route edge connects two
route vertices belonging to two distinct stations. Figure 2.4a illustrates the described
model. As depicted, transfer costs are attached to outgoing edges from the station

2.2. Modeling Transportation Networks 13

vs

v1 v2

v3 v4

transfer
edge

route
edge

Station

00

00

(a) Constant transfers

v1 v2

v3 v4

transfer
edge

route
edge

Station

(b) Conditional transfers

Figure 2.4: Time-dependent graph representation of a public transit station using
either constant (left) or conditional (right) transfer times.

vertex, while incoming transfer edges have a zero cost and preserve connectivity.
This depiction assumes constant transfers throughout the whole station, which is
not necessarily realistic. Indeed, in a train station, for instance, platforms that are
distant from each other incur additional time to achieve the transfer. The more
realistic model shown in �gure 2.4b employs conditional transfers but also requires
additional edges. The weight of a route edge (v, w) is modeled with a periodic
piecewise linear function fvw : Π → R+ with a slope dfvw/dt = −1 for all the
segments of the function, as shown in �gure 2.5. At any given time t ∈ Π, fvw(t)

maps the associated travel time, taking into account the necessary waiting time
to catch the earliest departure. Footpaths are also added via foot edges to model
transfers between nearby stations [Pyrga et al. 2008].

2.2.4 Multimodal Network Model

Routing, in practice, often involves combining several means of transportation such
as walking, driving, riding a train, �ying, and cycling. Networks that enable such
combinations are modeled using multimodal graphs. A multimodal graph embeds
a set of unimodal graphs, one for each transportation mode. Figure 2.6 illustrates
this layered structure containing, for instance, the road, foot, cycling, and public
transit networks. The multimodal graph is, in fact, a directed labeled graph denoted
G(V,E,Σ). Every edge (v, w) ∈ E holds a unique label σ ∈ Σ denoting the trans-
portation mode it carries. We denote by Gσ(Vσ, Eσ) the unimodal graph labeled
σ ∈ Σ. The vertex-set of the multi-modal graph G is given by V = ∪σ∈ΣVσ and
its edge-set E = ∪σ∈ΣEσ ∪Elink where Elink denotes a set of link edges allowing to
transfer from on transportation mode to another.

Intuitively, any transition from one network to another should be mediated

14 Chapter 2. Related Work

t

fvw

Figure 2.5: Piecewise linear function representing the travel time associated to a
route edge (v, w) in a time-dependent graph.

via the foot network, as some walking is usually required. We �nd in the lit-
erature, however, multimodal graph structures that do not satisfy this condition
[Delling et al. 2009, Dibbelt et al. 2015]. In that case, the authors insert link edges
directly between the road and the public transit network. In the remainder of the
dissertation, we stick to the former de�nition to explicitly account for walking dur-
ing transfers. Nonetheless, transitions to and from the foot network are only allowed
at speci�c locations, and thus, we select a subset of link vertices V link

σ ⊆ Vσ from
each graph Gσ:

Foot ↔ Road: The road network is accessible everywhere a car is allowed to park.
Furthermore, rental vehicles are accessible at rental stations and thus all parking
spots and rental stations are marked as link vertices Vclink = Vc

park ∪ Vcrent.

Foot ↔ Bicycle: Considering that bicycles can be used almost everywhere walking
is possible (except on stairways, for instance), every vertex v ∈ Vb is a link vertex
from which we can access the foot network. Hence, Vb

link = Vb∪Vbrent which includes
rental stations as well.

Foot ↔ Public Transit: Public transit stations are accessible via station vertices.
Hence, ∀vS ∈ Vp where vS is a station vertex, we label it as a link vertex and add it
to Vplink.

Then, for each vertex v ∈ V link
σ∈Σ, we must compute the closest vertex w ∈ Vf in

the foot network and add the link edges (v, w), (w, v) ∈ Elink. Additional labels are
added to Σ as we label link edges according to the type of transfer:

• link edges (v, w)|v ∈ Vf and w ∈ Vcrent denote transfers to car-rental stations are
labeled with cr.

• link edges (v, w), (w, v)|v ∈ Vf and w ∈ Vbrent are labeled with lab(v, w) = br and
lab(w, v) = bs which imply renting and restoring the bicycle respectively.

2.2. Modeling Transportation Networks 15

Ro
ad

Bic
ycl

e
Pu

blic
 Tr

ans
it

Foo
t

Figure 2.6: The multimodal graph consists of individual unimodal networks that
are combined together using link edges (dashed arrows) transiting through the foot
network.

• the remaining link edges (v, w) are labeled lab(v, w) = t denoting a regular modal
transfer.

Relying on a brute force approach to compute link edges is costly: we have to
scan the whole foot network to identify the closest foot-vertex for each vertex in the
bicycle network, leading to a quadratic complexity of O(Vb×Vf). A better approach
consists of clustering the foot vertices using a 2d-tree [Bhatia & Others 2010] based
on latitude and longitude, which is a suitable data structure for solving the nearest
neighbor problem in logarithmic time.

The cost of a link edge c(v, w) is �xed and depends on the type of transfer. It
includes the required walking-time to transfer to or from the foot network and an
additional cost to consider either parking-time, processing at a rental station, or for
instance, the time it takes to secure a bicycle. Nonetheless, we must also ensure
path feasibility. That is, if the private car (bicycle) is left behind at some point
during the trip in favor of using the bus, we would not be able to use our private car
(bicycle) again. Similarly, a scenario in which the private car is used after taking
a train is not valid. Nevertheless, the road (bicycle) network remains accessible
via other means such as a taxi or from a rental station. Such constraints are not
embedded within the graph but, rather, must be dealt with separately.

16 Chapter 2. Related Work

2.3 Map Matching

The global widespread of positioning devices revolutionized transportation systems
by enabling a plethora of applications [Chao et al. 2020], such as incident detection,
�eet tracking, and tra�c sensing. Nonetheless, depending on environmental factors,
GPS localization is not accurate [Von Watzdorf & Michahelles 2010]. For instance,
GPS-enabled mobile phone accuracy drops from a few meters to hundreds of me-
ters depending on the number of visible satellites and the surrounding landscape.
Consequently, in order to bene�t from the large data sets of raw GPS information,
we must accurately map each measurement to a correct associated geographical
location. This process is known as Map Matching.

In the context of route planning applications, map matching is often used in a
preprocessing phase during which individual GPS traces are matched onto a common
digital map. A trace de�nes a sequence of measurements sampled from the trajectory
of a unique vehicle. The sampling frequency ranges from a few seconds to several
minutes as a tradeo� of memory requirements and targeted matching accuracy. Map
matching is also extensively used for crowdsensing applications in smart cities. For
instance, Li et al. [Li et al. 2017a] infer tra�c conditions from map matching on
a large dataset of GPS traces. Lehmann et al. [Lehmann & Gross 2016] exploit
crowd-sensing to predict tra�c, and thus the pollution peaks. Map matching can
also serve in merging di�erent data sources: Aly et al. [Aly et al. 2017] proposed to
use individual traces to enrich a base map with semantic information.

2.3.1 Similarity-based Map Matching

Early map matching techniques [Bernstein et al. 1996, White et al. 2000,
Greenfeld 2002] rely on the geometric similarities of the GPS-trace and the
underlying graph structure to identify the road segment every GPS measurement
should be matched to. Often referred to as point-to-point or point-to-curve map
matching, the intuition is to match each measurement to the closest vertex, or
alternatively edge, in the graph. These techniques are, however, not robust in dense
graph regions with close parallel road segments.

In contrast, topological-based algorithms [Yin & Wolfson 2004, Yu et al. 2010]
rely on the structural con�guration of the trace with regard to the graph: in addition
to geometrical similarities, the road segment's connectivity and contiguity are also
considered. Other topological approaches [Quddus et al. 2003] additionally assess
the speed and heading of the vehicle, inferred from the timestamps of the GPS
measurements, to prune unfeasible routes. Zhu et al. [Zhu et al. 2017] compute the
shortest path between the trace's endpoints and a similarity score of the trace and
the obtained shortest path. If the score is lower than a prede�ned threshold, the
trace is subdivided into several smaller GPS sequence measurements, and the same
process is repeated for each sequence. The overall matching is then obtained by
concatenating the shortest paths that maximize the similarity score of the trace.

2.3. Map Matching 17

2.3.2 Probabilistic-based Map Matching

GPS localization is subject to erroneous measurements, for instance, due to cover-
age and weather conditions. Therefore, each GPS measurement is projected onto
neighboring road segments denoting the geographical locations that the measure-
ment can potentially be matched to. Each projection is referred to as a state and
is marked with the measurement's timestamp. The emission probability of a given
state represents its likelihood of being a correct match. It follows a gaussian dis-
tribution centered around the measurement, and therefore, states that are closer to
the measurement receive a higher probability. Furthermore, considering two succes-
sive measurements, we, therefore, can compute several paths between each pair of
their respective states. A path represents a transition and is assigned a transition
probability. The Hidden Markov Model (HMM) constructs a temporal graph whose
vertices and edges represent states and transitions, respectively, and embeds all the
possible paths that might be matched to the trace.

In general, HMM map matching algorithms di�er in the way transition probabil-
ities are evaluated. Newson and Krumm [Newson & Krumm 2009a] observed that
the shortest path distance for successive GPS measurements is close to the great
circle distance between them, i.e., the beeline distance embedded on the earth's sur-
face. They subsequently derive an exponential probability distribution function to
compute the transition between successive states in the HMM. Using dynamic pro-
gramming, notably the Viterbi algorithm [Forney 1973], they compute the matching
path in the HMM that maximizes the joint probability of the path's states and tran-
sitions. Depending on the probability transition model, other techniques make use
of Kalman [Ochieng et al. 2003] or particle [Gustafsson et al. 2002] �lters.

Nonetheless, for low-frequency sampling, HMM techniques su�er from the selec-
tion bias problem [Hunter et al. 2013], which causes the HMM to assign a strong
weight to long road segments with low network connectivity (such as highways)
compared to the surrounding segments. The Conditional random �eld model (CRF)
[Xu et al. 2015] addresses this problem and produces a better matching, although
at the cost of a higher computational e�ort.

2.3.3 Machine Learning-based Map Matching

HMM-based algorithms are subject to latency issues when augmented for real-
time applications, the reason being that future measurements need to be ac-
counted for to identify the best transition. Therefore, another approach consists
of training algorithms to learn matching from historical data sets. Osogami et al.
[Osogami & Raymond 2013] use inverse reinforcement learning to model a transition
probability distribution for the HMM that incorporates additional metrics such as
vehicle turns. Goh et al. [Goh et al. 2012] rely on Support Vector Machine (SVM)
to derive the emission and transition probability functions based on several features
such as measured speed, speed limit, vehicle heading direction and, road width.

There exist a wide variety of map matching algorithms [Chao et al. 2020,

18 Chapter 2. Related Work

Hashemi & Karimi 2014], and the presented classi�cation is mostly meant to un-
derline the dominant characteristic common to many map matching algorithms.
Nonetheless, most techniques favor a probabilistic approach because the targeted
application is often real-time navigation. In that context, correctness is not nec-
essarily the ultimate objective, but rather, the goal is to match e�ciently and as
accurately as permissible.

2.4 The Shortest Path Problem

The Shortest Path Problem (SPP) is a famed topic in graph theory
[Madkour et al. 2017] with a wide range of applications, especially useful for route
planning. In essence, given a graph G(V,E), solving the one-to-one SPP consists
of computing the path with minimum cost from a single source vertex s ∈ V to a
single target vertex t ∈ V . The cost represents any chosen metric attached to the
set of edges E and often denotes travel time or traveled distance. Other metrics
such as travel fare or the number of transfers are particularly valuable if the graph
models a public transit network. There exist other variants of the problem, mainly,
the one-to-many SPP requires computing a set of shortest paths between a single
source s and a set of target vertices T ⊆ V . Lastly, the many-to-many SPP gener-
alizes the problem to a set of source and target vertices S, T ⊆ V , where the goal is
to solve the one-to-many SPP for each source s ∈ S. For time-dependent networks,
the solution to the SPP further depends on departure time. In that context, the
earliest arrival problem consists of computing the path departing at a time τ from
the source and reaching the target as early as possible. In contrast, the pro�le prob-
lem consists of computing the shortest path as a function of time τ ∈ [τa, τb] for a
range of potential departures.

Dijkstra's algorithm [Dijkstra 1959] is, historically, the classical solution to the
shortest path problem. Also known as a label-setting algorithm, it greedily explores
the graph but settles each vertex only once. That is, when the shortest path to a
given vertex v is identi�ed, v in never processed again, and hence the complexity
of the algorithm is bounded by the size of the input graph. For large networks,
however, with up to millions of vertices and edges, Dijkstra's algorithm is too slow
for practical applications. Therefore, over the course of the past decades, a race
toward faster, more e�cient algorithms lead to speedup techniques that are several
orders of magnitude faster than Dijkstra's. Notably, the 9th Dimacs Challenge
[Demetrescu et al. 2009] fueled the research by providing a common infrastructure
for experimentation on large scale road networks. To run faster, most speedup
techniques operate in two distinct stages: in an o�ine preprocessing step, speci�c
information is extracted from the graph and subsequently leveraged to accelerate
the online query step. This additional information is derived from speci�c features
that transportation networks possess.

In the following sections, we review several shortest path algorithms, grouped by
their common underlying speedup technique. In each section, we �rst present the

2.4. The Shortest Path Problem 19

original version of the algorithm, designed for time-independent networks. We then
discuss the necessary alterations to adapt it to time-dependent networks. Although
most algorithms can be adapted to handle time-dependency, their performance often
drops signi�cantly due to the discrepancies observed in time-independent and time-
dependent models [Bast 2009]. For that matter, the last section of this chapter is
dedicated to algorithms that were speci�cally designed for time-dependent networks
and rely on other data structures than graphs.

2.4.1 Dijkstra's algorithm

Given a time-independent graph G(V,E) and a source vertex s ∈ V , Dijkstra's algo-
rithm [Dijkstra 1959] solves, by design, the one-to-many SPP. It assigns a distance
label k(v) denoting the tentative cost to reach vertex v from the source vertex s.
All vertices are inserted into a priority queue (PQ) and their labels are initialized
such that k(s) = 0 and k(v) = +∞ for all remaining vertices. Then, at each iter-
ation, the algorithm extract from the PQ the vertex v with the smallest distance
label k(v). From that vertex, it scans each neighboring vertex w, and assesses if
the tentative cost k(w) can be improved via the outgoing edge (v, w). That is, if
k(v) + c(v, w) < k(w), the tentative cost is updated to k(w) = k(v) + c(v, w). Up-
dating the tentative cost is referred to as relaxing the edge. After scanning all of v's
outgoing edges, vertex v becomes settled, and its tentative cost cannot be improved
anymore. Hence, it corresponds to the actual cost of the shortest path P (s, v). The
algorithm then extracts another vertex from the PQ, and the whole procedure is
repeated.

When a vertex is settled, it is never scanned again and therefore, the algorithm
may terminate as soon as the target vertex t is settled (in the case of the one-to-one
SPP) or until the PQ is emptied (one-to-all SPP), at which point the shortest paths
to all vertices in the graph are known. Retrieving the actual shortest path is known
as path unpacking. In the case of Dijkstra's algorithm, each vertex is also assigned
another label p(v) denoting its parent vertex, i.e., when an edge (u, v) is relaxed, it
sets p(v) = u. Hence, the shortest path P (s, t) is obtained through a recursive call
to parent vertices from the target t.

There exists a multitude of priority queue implementations that support
the basic operations needed to implement Dijkstra's algorithm [Williams 1964,
Fredman et al. 1986, Fredman & Tarjan 1987]. Choosing the best implementation
is, however, not straightforward. The performance of the algorithm is a�ected by
the structure of the graph itself (sparse, dense, planar), the additional overhead,
and the individual complexities of the priority queue operations [Chen et al. 2007].
With a binary heap (most widely used), the deleteMin operation allows extracting
the vertex with the smallest distance label from the queue in constant time O(1).
Extracting a vertex requires, however, rearranging the structure of the queue by
�oating the next vertex with the smallest distance label to the top of the queue.
This is done in O(log n), where n is the number of vertices in the queue. Further-
more, relaxing an edge consists of updating the distance label of a vertex inside the

20 Chapter 2. Related Work

queue. This is known as a decrease-key, which is an amortized constant time opera-
tion with complexity O(m) where m denotes the number of times the decrease-key
operation is performed. Consequently, the overall complexity of the algorithm is
O(n log n+m), where n is the number of settled vertices and m the sum of outgoing
edges of all settled vertices. For the one-to-all SPP or a worst-case scenario of the
one-to-one SPP, all the vertices in the graph are settled, and therefore n is bounded
by |V |, the size of the vertex-set.

Time-dependent Dijkstra. Augmenting Dijkstra for time-dependent networks
is straightforward [Cooke & Halsey 1966]. The goal is to compute d(s, t, τ) denoting
the cost of the shortest path from the source s to the target t when departing at
time τ . The algorithm proceeds as previously described, except that relaxing an
edge (v, w), requires evaluating its weight at time k(w) = τ + d(s, v, τ).

2.4.2 Bidirectional search

Bidirectional search [Dantzig & Thapa 2006] is a fundamental strategy, often cou-
pled to other speedup techniques. As depicted in �gure 2.7a, the plain version of
Dijkstra's algorithm, also known as unidirectional Dijkstra, scans and then settles
the nearest vertices to the source until it reaches the target vertex. Therefore, its
search space representing the set of settled vertices is a "disk-like" shape centered
at the source.

Bidirectional search improves upon unidirectional Dijkstra by running a forward
search at the source, and a backward search from the target. In essence, it consists
of two simultaneous Dijkstra algorithms, each with their own priority queues where
the forward search is run on the graph G(V,E) and the backward search is run on
the reverse graph

←−
G(V,

←−
E), obtained by �ipping the direction of all edges (v, w) ∈

E. When the forward (alternatively the backward) search settles a vertex v that
has already been settled by the backward (alternatively the forward) search, the
algorithm is stopped, and the shortest path P (s, t) = (s, .., v, .., t) is obtained by
concatenating the subpaths P (s, v) and P (v, t). As illustrated in �gure 2.7b, the
search space of bidirectional Dijkstra is two smaller disks with overall half the size of
that of unidirectional Dijkstra, and therefore, yields queries that are approximately
twice as fast.

Time-dependent Bidirectional Dijkstra. Intuitively, the analogous implemen-
tation of bidirectional search on time-dependent networks would suggest running
both a forward and backward time-dependent searches to compute d(s, t, τd) and
d(t, s, τa) respectively, where τd is the departure time and τa is the arrival time.
Evidently, the arrival time τa is not known beforehand, and thus, the backward
search requires further re�nement. Instead of a time-dependent Dijkstra, the
backward search is run on the reverse time-independent lower bound graph

←−
G

[Nannicini et al. 2008]. To construct such graph, each edge (v, w) ∈ E is reversed,
and its weight is set to c(w, v) = min{fvw(τ) | τ ∈ Π} denoting the lower bound

2.4. The Shortest Path Problem 21

s t

(a) Unidirectional Dijkstra

s tv

(b) Bidirectional Dijkstra

Figure 2.7: The search space of Dijkstra's algorithm in time-independent networks

of the time-dependent cost function fvw(τ). The algorithm is summarized in three
phases:

1. During the �rst phase, the forward search runs as a regular time-dependent Dijk-
stra at the source and the backward search as a time-independent Dijkstra from
the target. Let M denote the set of vertices settled by the backward search.
Phase 1 ends when the search spaces intersect at a given vertex v.

2. In the second phase, the algorithm evaluates the cost µ of the preliminary shortest
path P ∗(s, t, τd) passing through vertex v. Although P ∗ is not necessarily the
shortest path we seek to compute, its cost µ ≥ d(s, t, τd) is an upper bound of the
actual shortest path. The algorithm resumes until the backward search settles
a vertex w such that

←−
d (w) ≥ µ. That is, the cost to reach all the remaining

vertices from the target exceeds the cost of the preliminary shortest path. At
that point, the backward search terminates, and the additional vertices that it
settled are subsequently added to M .

3. The forward search resumes but is restricted to only scan vertices belonging to
M . The algorithm terminates when the forward search settles the target t.

In practice, however, bidirectional Dijkstra is even slower than unidirectional
Dijkstra [Nannicini et al. 2008]. Nonetheless, it achieves speedups if we are willing
to trade correctness and accept approximate solutions.

2.4.3 Goal Direction

Knowing the location of the target allows for making informed decisions while search-
ing for the shortest path. Instead of "blindly" expanding from the source, the in-
tuition behind goal direction is to use heuristics to guide the search by prioritizing
vertices that are closer to the target.

22 Chapter 2. Related Work

When settling a vertex v, unlike Dijkstra which only considers the shortest dis-
tance between the source s and v, A? (pronounced `A-star') [Appi 1966] is a goal
directed algorithm that estimates the total cost of the path Pst constrained to go
through vertex v, as given by equation (2.2):

k(v) = g(v) + π(v) (2.2)

The vertices in the queue are extracted in non-decreasing order based on their
key value k(v). The �rst part g(v) denotes the cost of the currently known shortest
path Psv from the source s to vertex v. The second part π(v) is called a potential
function and estimates the cost of the shortest path Pvt, to reach the target t from
v. To guarantee correctness, the heuristic must be admissible, meaning that it must
not overestimate the cost of the shortest path and hence, satis�es π(v) ≤ d(v, t).
A heuristic is said to be consistent if π(v) ≤ c(v, w) + π(w) for all v, w ∈ V where
c(v, w) is the cost of edge (v, w). Consistency implies admissibility and guarantees
that g(v) = d(s, v) for each settled vertex v. Therefore, the algorithm settles each
vertex only once, yielding faster execution times.

Setting, for instance, π(v) = 0 ∀v ∈ V is both consistent and admissible and
is a special case where A? behaves exactly like Dijkstra's algorithm. Often, when
dealing with physical distances, π(v) is set as a measure of the Euclidean distance
dEuc(v, t), which is by de�nition consistent in the case of transportation networks
as a consequence of the triangle inequality. If the cost represents travel time, we
can set π(v) = dEuc(v, t) / speedmax, where speedmax denotes the upper bound of
the speed in the network.

2.4.3.1 A?, Landmarks, Triangle inequality (ALT)

ALT [Goldberg & Harrelson 2005] uses the same approach as A?; however, it
achieves faster speedups by computing better lower bounds for the potential func-
tion. In a preprocessing step, a small set of vertices called landmarks L ⊆ V are
selected. Then, for each landmak l ∈ L, the algorithm computes the cost of all
shortest paths Plv and Pvl for all vertices v ∈ V . This is accomplished using two
independent instances of Dijkstra's algorithm with l being the source vertex: the
�rst is executed on the regular graph G and computes the forward shortest paths Plv
while the second is run on the reverse graph

←−
G to compute the backward shortest

paths Pvl.
During the query, the triangle inequality property guarantees that:

d(v, t) + d(v, l) ≥ d(t, l) (2.3)

d(l, v) + d(v, t) ≥ d(l, t) (2.4)

therefore, the potential function of vertex v with respect to landmark l can be set
to the best lower bound of d(v, t) as de�ned in equation 2.5. The overall best
potential function is then obtained by scanning over the set of landmarks, that is,
π(v) = max{πl(v) | ∀l ∈ L}.

2.4. The Shortest Path Problem 23

πl(v) = max{d(t, l)− d(v, l), d(l, t)− d(l, v)} (2.5)

The performance of the algorithm relies signi�cantly on the quality of the land-
marks L. A good landmark provides better lower bounds and consequently restricts
the search space during the query. For road networks, landmarks that are geomet-
rically located "before" the source vertex or "behind" the target vertex tend to be
good landmarks [Goldberg & Harrelson 2005]. Consider an st query using a land-
mark l that lies beyond the target t from the perspective of the source s. In such
con�guration, the left side of the triangle inequality d(s, l) − d(t, l) ≤ d(s, t) is a
good estimation of the true d(s, t) distance.

Even though �nding optimal landmarks is NP-hard [Fuchs 2010], there exist
several landmark selection strategies [Goldberg & Harrelson 2005], and their per-
formance is a tradeo� between the quality of the produced lower bounds and the
required preprocessing time. Randomly selecting a set of landmarks is the fastest
strategy but provides the worst results in terms of query times. Even then, random
landmark selection is still signi�cantly faster than a plain A? algorithm. The far-
thest landmark selection strategy consists of identifying a set of k landmarks such
that the distance between any pair of landmarks {li, lj} is maximized. It proceeds
iteratively and evaluates at each step the vertex in the graph that is farthest from
the set of already selected landmarks. In general, good landmarks tend to be lo-
cated at the periphery of the graph, and therefore, the planar landmark selection
strategy splits the graph into k pie-like slices such that all regions are balanced in
size. Then, it picks one landmark located at the outer border of each region such
that, overall, all landmarks are mutually far one from another. There exist several
other techniques and optimizations for landmark selection but often at the cost of
a signi�cant increase in preprocessing time.

Time-dependent ALT. In a time-dependent network, we must ensure that the
potential function π remains admissible for any departure time τ . Therefore, one
approach consists of precomputing the landmark distances on the lower bound time-
independent graph G. Therefore d(v, l) = d(v, l, τl) ≤ d(v, l, τ), where τl is the time
when d(v, l) is minimum, compared to all other times τ .

2.4.3.2 Arc Flags (AF)

Arc Flags [Hilger et al. 2009] is one of the fastest goal directed algorithms
[Delling et al. 2013]. In a preprocessing step, it computes a partition of the vertex-
set V denoted C = {C0, C1, .., Ck}, where each element Ci is referred to as a cell.
The intuition behind Arc Flags is to label all edges to assess, during query time, if
an edge (v, w) is worth exploring to reach the intended target vertex. To do so, every
edge (v, w) is labeled with a k−bit vector denoted AF (v, w) such that the ith bit
is set (AFi(v, w) = 1) only if (v, w) lies on a shortest path leading to some vertex
belonging to cell Ci. Initially, all own-cell �ags are set: for all edges (v, w) ∈ E

such that v, w ∈ Ci, the cell's arc �ag is set, that is, AFi(v, w) = 1. Furthermore,

24 Chapter 2. Related Work

C1 C2 C3

C4 C5 C6

border
vertex

s

t

1010
11

110100

v

w

Figure 2.8: The graph is partitioned into six regions and their border vertices are
outlined. The shortest st path is shown in bold blue edges. During the query, Arc
Flags algorithm prunes edge (s, w) because the third bit-�ag is not set.

intuitively, any shortest path terminating inside a cell Ci must cross its borders.
Given a cell Ci, a vertex b ∈ Ci is called a boundary vertex if there exists an edge
(v, b) such that v ∈ Cj 6= Ci. Therefore, the remaining arc �ags are computed by
growing, from each boundary vertex b, a shortest-path tree Tb rooted at b by running
Dijkstra's algorithm on the reverse graph

←−
G . The arc �ag of an edge (v, w) is set

for a cell Ci if (v, w) is a tree edge for at least one shortest-path tree, grown from a
given boundary vertex b of cell Ci.

During the query phase, a Dijkstra-like algorithm works by pruning all edges,
not leading to the cell containing the target vertex, signi�cantly shrinking the search
space compared to plain Dijkstra. This process is illustrated in �gure 2.8: the third
bit-�ag of all the edges along the shortest st-path (shown in bold) is set because
t ∈ C3. Therefore, initially at vertex s, Arc Flags only scans the neighboring
vertex v but skips vertex w. However, once the target cell is reached, arc �ags
are not bene�cial anymore, and AF behaves exactly like Dijkstra. Therefore, as
an improvement, multilevel partitions [Möhring et al. 2007] are used to split the
graph into �ner cells further. Upon reaching the target cell, the algorithm accesses
arc �ags of a higher level in the partition until the target is reached. Although
currently among the fastest goal-directed algorithms, Arc Flags' major drawback is
its preprocessing time, which requires up to several hours on large graph instances.

Time-dependent AF. To address time-dependency, the simplest approach is to
set the arc �ag AFi(v, w) = 1 of an edge (v, w) if it lies on a shortest path toward

2.4. The Shortest Path Problem 25

cell Ci for at least one departure time τ ∈ Π, where Π denotes the time period of the
graph. Although signi�cantly less e�ective than in the time-independent scenario,
this approach still allows edge pruning during the query, based on the departure
time. To fully incorporate time-dependency to arc �ags, instead of computing re-
verse shortest-path trees, we compute a reverse pro�le graph for each boundary
vertex b of every cell. The reverse pro�le graph

←−
G b for the boundary vertex b en-

codes all shortest paths Pvb(τ) for all vertices v ∈ V and times τ ∈ Π. Therefore,
during the query, time-dependent AF consists of a time-dependent Dijkstra with
the additional feature of pruning non-bene�cial edges evaluated using the precom-
puted pro�le graphs. Nonetheless, running pro�le queries is time-expensive, and
therefore, preprocessing time increases signi�cantly, rendering time-dependent AF
not practical for large graph instances. Another approach consists of computing
approximate pro�les but trades o� correctness for the sake of preprocessing time
[Delling & Wagner 2009].

2.4.4 Hierarchy

Road networks are intently designed to maximize tra�c �ow: interstate highways
are built to support a high load and accommodate fast tra�c in order to minimize
travel-time for long-distance trips. In contrast, urban roads are smaller and much
more restrictive in terms of speed. They tolerate dense tra�c and are suitable for
navigating the city. This hierarchy, inherent to road networks, can be exploited to
signi�cantly speedup shortest path queries. Typically, if the source and target ver-
tices are su�ciently far from each other, the shortest path, starting at the departure
location, gradually converges into more important roads. Similarly, once close to
the target location, the shortest path merges back to smaller roads.

2.4.4.1 Contraction Hierarchies (CH)

The intuition behind Contraction Hierarchies [Geisberger et al. 2008] algorithm is
to remove unimportant vertices from the graph and insert shortcut edges that pre-
serve shortest path distances. Hence, during a query, the added shortcuts allow to
skip over most of the network resulting in a signi�cant speedup. This vertex removal
process is called a contraction: a vertex v is temporarily removed from the graph
and for each pair of edges (u, v), (v, w), incident to v, such that (u, v, w) is the
shortest uw-path, a shortcut edge (u,w) is added. Figure 2.9 illustrates the process
of a vertex contraction and the resulting contraction hierarchy. During preprocess-
ing, the algorithm contracts, in some prede�ned order, all of the graph's vertices.
The obtained shortcut edges together with the original graph form a contraction

hierarchy.
Nonetheless, the order of contraction signi�cantly impacts the performance of

the algorithm. Therefore, each vertex is assigned an importance (a rank), and
subsequently, all vertices are contracted from least to most important. Geisberger
et al. [Geisberger et al. 2008] list several criteria to evaluate the importance of a

26 Chapter 2. Related Work

v

w

1u y

x

2 1

3 2

(a) Before contracting vertex v

w

u y

x

1

2

3

4

(b) After contracting vertex v

Figure 2.9: Contracting vertex v: two shortcut edges (u,w) and (u, x) are inserted.
However, no shortcut is added between vertices w and x because (w, v, x) is not a
shortest path.

vertex:

1. Edge di�erence: when a vertex is contracted, its incident edges are removed, and
new shortcut edges are inserted. This edge di�erence is a metric that captures
the density of the hierarchy as a consequence of the contraction order. The goal
is to achieve a vertex order that minimizes edge di�erence to produce a sparse
contraction hierarchy. The vertices are scanned twice: during the �rst pass, the
edge di�erence of each vertex is evaluated, then, during the second pass, vertices
are contracted from smallest to largest edge di�erence.

2. Uniformity: relying on a single criterion such as edge di�erence is not e�cient.
In that case, the �rst vertex to be contracted corresponds to the tip of a dead-
end road because no additional shortcut edges are required. This triggers a linear
contraction of the whole road segment, and although edge di�erence is minimized,
no speedup will be achieved during the query because of the lack of shortcuts.
One approach consists of counting for each vertex the number of its neighbors
that have already been contracted to achieve a uniform contraction throughout
the graph.

3. Contraction cost: to contract a vertex v with incident edges (u, v) and (v, w), we
must verify if (u, v, w) is indeed the shortest uw-path in order to insert a shortcut
edge (u,w). This veri�cation consists of running a local shortest-path search.
Depending on the local topology in the neighborhood of v, this shortest-path
search may be expensive. Therefore, a good strategy to reduce preprocessing
time is to contract expensive vertices last because the graph gets smaller (as
contracted vertices are removed), and therefore, the shortest-path search is faster.

During the query phase, a bidirectional variant of Dijkstra's algorithm is em-
ployed: both the forward and backward search process vertices that are higher-up
in the hierarchy until they settle a common vertex (the shortest path vertex with
the highest rank).

2.4. The Shortest Path Problem 27

Time-dependent CH. Contraction Hierarchies is correct, no matter the vertex
ordering. Therefore, we can order vertices as in the time-independent case. Fur-
thermore, considering that the query phase is a bidirectional search, we augment it
as explained in section 2.4.2, except that both forward and backward searches must
always process vertices that higher up in the hierarchy.

2.4.5 Hybrid Algorithms

Each shortest path speedup technique relies on particular graph properties, them-
selves derived from the fundamental characteristics of transportation networks such
as topology, planarity, and hierarchy. Therefore, it is often possible to combine sev-
eral shortest path techniques to achieve even better speedups [Goldberg et al. 2006,
Goldberg et al. 2007]. This opens a new realm of possibilities considering the al-
ready great variety of shortest path algorithms. Individual speedup techniques can
be thought of as "�avors" that can be manipulated together to derive better recipes
for the shortest path problem.

CHASE algorithm [Bauer et al. 2010] combines the principles of contraction hi-
erarchies and arc �ags. During preprocessing, it computes the graph's contraction
G′, then, a subgraph H ⊂ G′ is extracted and consists of the VH vertices of the
highest rank. Finally, it computes the arc �ags of the partition on the subgraph H.
The size of VH is a tuning parameter and was set to 5% as computing arc �ags is
time-consuming. During a query, the bidirectional search is halted when a vertex v
belonging to H is reached. When both the forward and the backward searches stop,
the search is resumed using the precomputed arc �ags.

2.4.6 Journey Planning in Time-Dependent Networks

Route planning in public transit networks is often referred to as journey planning :
routes between stations are usually �xed (bus lines, train rails), and therefore, the
goal is to compute the most cost-e�ective sequence of trips. In this context, a trip
denotes part of a journey from the moment a passenger embarks onto the bus, for
instance, until the moment he disembarks at a given stop. Furthermore, unlike in
road networks where travel time is often the single most important metric to optimize
for, journey planning is usually a multicriteria problem. Not only are passengers
concerned with travel time, but the number of transfers as well as the monetary
cost are important factors to consider. Consequently, optimizing several criteria
simultaneously consists of computing a Pareto set of non-dominating journeys. A
journey J1 dominates another journey J2 if J1 is either equal or better than J2 for
all the considered criteria.

Dijkstra can in fact be augmented into the Layered Dijkstra (LD) algorithm
[Brodal & Jacob 2004] to optimize both travel time and number of transfers or the
Multi-Label Correcting (MLC) algorithm [Pyrga et al. 2008] for arbitrary criteria.
Nonetheless, non-graph based methods that rely on dynamic programming to di-
rectly parse the public transit timetable data are usually signi�cantly faster.

28 Chapter 2. Related Work

2.4.6.1 Round Based Public Transit Routing (RAPTOR)

RAPTOR [Delling et al. 2015] is a journey planning algorithm that optimizes, in
the simplest version of the algorithm, both travel time and the number of transfers.
Each stop p is labeled with a vector (τ0(p), τ1(p), .., τK(p)) where τi(p) designates
the earliest arrival time at p after i transfers at most and K is the prede�ned upper
bound on the number of rounds. For a given round k, RAPTOR computes τk(p)
for all stops p ∈ P. A public transit route is a sequence of stops traversed by
several shuttles according to a timetable schedule. Hence, RAPTOR scans each
route, exactly once, to extend the journeys evaluated during the previous round. At
the end of each round, footpaths connecting nearby stations are considered: in case
walking up to a given stop improves its arrival time.

Other versions of RAPTOR address the range problem denoting a window of po-
tential departure times (rRAPTOR) and multicriteria queries that further optimize
monetary cost and walking time (McRAPTOR). Considering that RAPTOR does
not require preprocessing, it is suitable for dynamic queries where unpredictable de-
lays can occur. Furthermore, route scanning can be parallelized across many CPU
cores for non-con�icting routes.

2.4.6.2 Connection Scan Algorithm (CSA)

The time-expanded graph model seen in section 2.2.3 is acyclic. In fact, instead of
adding an edge between the last and �rst vertex at each station, we can unwrap

the timetable to add additional vertices for repeated events beyond the timetable's
period Π. Connection Scan Algorithm [Dibbelt et al. 2013] exploits this property:
instead of using a graph model, it sorts all connections into an array data structure
denoted C, based on departure time. Consequently, given a source stop ps and
a departure time τ , CSA initializes the earliest arrival time to all other stops in
the network to τ(p) = ∞ | ∀p ∈ P. It then scans C, in order, starting from
the connection ci whose departure time τi ≥ τ . It subsequently evaluates for each
connection c ∈ C if it is reachable and, in that case, if it improves the arrival time
of the connection's target stop. Once the array is scanned, the computed τ(p) is
correct for all stops.

2.5 Dynamic Route Planning

The ubiquity of tra�c data accelerated the development of Intelligent Transporta-
tion Systems (ITS). Large volumes of information such as road segment speeds,
tra�c counts, lane density, and accident detection are compiled into datasets to
enable informed navigation and tra�c forecasting. At regular time intervals, some-
times in seconds, a global snapshot of the up-to-date tra�c conditions in the network
is recorded. This data often bene�ts route planning systems that help commuters
minimize their end-to-end travel time. Nonetheless, congestion is still a contempo-
rary problem: the 2015 urban mobility scorecard [Schrank et al. 2015] reports that

2.5. Dynamic Route Planning 29

urban Americans traveled an extra 6.9 billion hours and had to purchase an extra
3.1 billion gallons of fuel. To reliably arrive on time, travelers had to plan 48 min-
utes for a trip that should last only 20 minutes in light tra�c. The estimated cost
of congestion is steeply increasing since reported in 1982, with a cost of $42 billion
against a total of $160 billion in 2015.

To alleviate congestion, several strategies are undertaken, for instance, increas-
ing the network's capacity by redesigning bottlenecks [Systematics 2005], managing
tra�c �ow through dynamic control of tra�c lights [Li & Sun 2019], and relaying
tra�c data to travelers. Nonetheless, congestion is an emergent phenomenon due to
complex and often unpredictable interactions in the network. It is estimated that
50% of travel time delays are linked to non-recurring congestion [Güner et al. 2012];
thus, accurate tra�c forecast remains a challenging problem.

Route planning systems address this problem, often sel�shly, by continuously re-
routing each user to avoid congested areas [Cabannes et al. 2017]. The continuous
assessment of each query as tra�c data evolve in real-time requires signi�cant pro-
cessing resources. E�ective routing in the dynamic context is, therefore, contingent
on e�cient management of tra�c information.

2.5.1 Re-routing in road networks

The �eld of shortest path algorithms �ourished in the last decade, with continuous
improvement in execution times. Pre-processing consists of transforming the initial
graph to reply e�ciently to route queries [Bast et al. 2016a]. However, using real-
time information implies that the preprocessing phase has to be re-executed.

[Gmira et al. 2019] proposes to construct a delivery plan for the Dynamic Vehicle
Routing Problem (DVRP). Their solution collects speed values in real-time and
update the path for a vehicle only if it becomes infeasible. However, they do not
investigate the sub-optimality cost, i.e., a route is not updated if no constraint is
violated, even if its travel time is not minimal. Understanding when to re-route
vehicles is critical to reducing the re-computation cost. [Pan et al. 2013] propose an
infrastructure-based approach: when congestion is detected, the system asks nearby
vehicles to re-compute their shortest route. Congestion threshold, as well as the set
of vehicles to re-route, impact the e�ciency of this proposal signi�cantly.

In the Dynamic Shortest Path problem (DSP), a re-routing algorithm tries to up-
date the shortest path to handle multiple edge weight updates [Chan & Yang 2009].
Such an approach is much more e�cient than re-executing the shortest path algo-
rithm from scratch.

2.5.2 Real-time data sources

Collecting travel-time measurements of each road segment in real-time is a challeng-
ing task. One approach is to rely on the GPS trajectories of a collection of vehi-
cles to deduce the speci�c travel time of each road segment [Sanaullah et al. 2016,
Duan et al. 2018]. For this purpose, each trajectory has to be mapped to a

30 Chapter 2. Related Work

set of road segments while minimizing the mismatch ratio [Falek et al. 2018].
[Ladino et al. 2016] propose to merge heterogeneous data sources (e.g., cameras,
induction loops) to create a combined, more accurate dataset. Furthermore, impu-
tation techniques [Chen et al. 2018] help to reconstruct missing data (e.g., a road
segment is not crossed for a short time period).

Distributed ITS infrastructures try to estimate the level of congestion of each
area locally. [Wang et al. 2016] use, for instance, a multi-agent system, where
each vehicle is an agent, exchanging its measurements locally via Vehicle-to-Vehicle
communications. However, this approach is less accurate than collecting all the
travel times in real-time. The accuracy depends on the strategies to collect real-
time data [Mathew & Xavier 2014] relying on: i) RFID tags, ii) image processing,
iii) an extensive collection of wireless sensors, iv) instrumented connected vehi-
cles, v) cellular networks, vi) GPS. [Lai & Kuo 2016] proposes to exploit the cel-
lular network statistics to estimate the position and the speed of each vehicle.
[D'Andrea et al. 2015] even infer the tra�c conditions from a social network ap-
plication (Twitter). With machine learning, they try to identify tweets related to
tra�c incidents. However, all these solutions relying on indirect data are unreliable
by nature and cannot accurately forecast congestion.

Recent techniques propose to adopt a synthetic model. Typically, the SUMO
simulator [Behrisch et al. 2011] is used to generate the mobility pattern of a large
number of devices, using realistic urban points of interest. Travel and Activity PAt-
terns Simulation (TAPAS) was used to generate the well-known TAPAS-Cologne
dataset [Uppoor et al. 2014]. However, to the best of our knowledge, no study has
been conducted to verify the accuracy of these simulations. In [Kamga et al. 2011],
the authors use simulated data from VISTA [Ziliaskopoulos et al. 1999] to determine
the impact of incidents on travel times. Other tra�c simulation software such as Dy-
nameq [dyn 2020] and TRANSIMS [Barrett et al. 2002] provide simulated datasets
of the travel times in a road network.

2.5.3 Tra�c prediction

Recently, tra�c prediction has received much attention in order to provide pre-

diction as a service [Liebig et al. 2017]. These techniques try to consider the in-
herent characteristics of road networks (e.g., �ow conservation) to predict future
trends accurately. Predictions rely on computationally intensive techniques such
as, e.g., bee colony optimization [Dell'Orco et al. 2016], or spatiotemporal random
�eld [Liebig et al. 2017]. Alternatively, [Wang et al. 2019] propose to predict end-
to-end travel-times directly but limiting its practical interest for route computation.

However, congestion is highly variable: [Coifman & Mallika 2007] highlight that
48% of the congestion is di�cult to predict. [Li et al. 2014] concludes that accidents
are impossible to predict and even complicated to detect early.

2.6. Multimodal Route Planning 31

2.5.4 Experimental evaluations on dynamic networks

Congestion is complicated to model; however, the vast majority of experimental
evaluations in the literature rely on simulation models to study the impact that
congestion has on routing performance in dynamic networks. Mostly, this is due to
the secrecy surrounding access to tra�c information. [Smith et al. 2014] evaluates
the impact of accidents on tra�c congestion using a vehicular simulation and high-
lights the need for using actual tra�c conditions to predict the travel time. Similarly,
[Wang et al. 2013] provides a performance analysis of di�erent route planning algo-
rithms (i.e., Dijkstra, static A∗, dynamic Dijkstra, and dynamic A∗) in smart cities.
Their experiments use the TAPAS-Cologne dataset [Uppoor et al. 2014], which was
built by generating tra�c demand using TAPAS and Gawron's algorithm for tra�c
assignment. They consider a rush hour during a weekday to evaluate the impact of
tra�c jams. [McArdle et al. 2012] attempts to simulate tra�c in the Greater Dublin
region. Typically, each vehicle selects its destination according to a radiation model
that estimates the probabilities of interactions between di�erent regions.

In recent years, more access has been gradually granted to the research commu-
nity. Nonetheless, most studies are conducted on small geographical areas, focusing
on the tra�c patterns of a few selected highways only. [Güner et al. 2012] proposes
dynamic routing models to improve delivery performance. They rely on a simulated
network of South-East Michigan freeways. Although they incorporate historical
tra�c data, the overall network consists of 30 vertices and 98 edges only, which
is too small to capture the impact of congestion. [Liang et al. 2018] model a trip
assignment system for automated taxis to assess its impact on congestion. They
develop a case-study city for Delft, Netherlands, using a survey dataset comprising
origin and destination trends and typical departure and arrival times. Nonetheless,
the road network they model consists of 46 vertices and 66 edges only.

As shown throughout this section, the dynamic routing problem is a vast topic
and a longstanding problem in research. Although access to tra�c information
has signi�cantly bene�ted the research community, e�cient tra�c management to
mitigate congestion remains a complex task. Furthermore, so far, we only focused
on road networks. Nonetheless, means of transportation are diverse, and thus,
augmenting the dynamic routing problem to multimodal networks is even more
di�cult.

2.6 Multimodal Route Planning

Many algorithms compute shortest-path queries in mere microseconds on
continental-scale networks. Most solutions are, however, tailored to either road
or public transit networks in isolation. To fully exploit the transportation infras-
tructure, multimodal algorithms are sought to compute shortest-paths combining
various modes of transportation.

Transit [Antsfeld & Walsh 2012] operates on a graph combining di�erent public
transit networks and evaluates the shortest path based on the associated risk of

32 Chapter 2. Related Work

transfers (probability to miss one transfer and its impact on travel time) on a com-
bination of transit networks. We believe, however, that true multimodal networks
must combine both unrestricted networks such as road and pedestrian networks,
and schedule-based networks such as trains, trams, and buses. Otherwise, a classi-
cal time-dependent variant of Dijkstra's algorithm [Bauer et al. 2011] would su�ce
to solve the problem.

2.6.1 Access-Node Routing

ANR [Delling et al. 2009] was designed for long-range trips with the assumption
that the road network is only used at the beginning and end of the trip while most
of the distance in-between is covered using some type of public transportation. Con-
sidering that the subgraph designating the road network in a multimodal graph is
usually far bigger (and denser) than the public transit network, ANR relies on table
lookups to skip the road network and focus the search on the much smaller, public
transit network. It precomputes access-nodes: a set of vertices A ⊂ V in the multi-
modal graph forming a boundary between the road and the public transit network.
Then, for each vertex v in the road network, it precomputes all shortest paths Pva
for all access nodes a ∈ A. Therefore, during the query phase, it skips the road
network by performing table lookups and runs a many-to-many version of Dijkstra's
algorithm on the public transit network. For each vertex in the road network, a
pro�le-graph consisting of the shortest paths to all access-nodes is precomputed, re-
quiring signi�cant additional memory. An alternative technique, core-based ANR,
hierarchically contracts the road network �rst. Subsequently, access-nodes are only
evaluated for the core, i.e., the contracted graph, with signi�cantly fewer vertices.

2.6.2 State-Dependent ALT (SDALT)

State-Dependent ALT (SDALT) [Kirchler et al. 2011] solves the Label Constrained
Shortest Path Problem (LCSPP) by adapting ALT [Goldberg & Harrelson 2005], a
popular goal directed algorithm (discussed in section 2.4.3.1), to solve multimodal
queries. The intuition is to speed up Dijkstra with a heuristic based on the triangle
inequality observed in transportation networks. In essence, it computes during
preprocessing, a set of landmark vertices, then, for each landmark, it constructs a
constrained shortest-path tree to (and from) all other vertices in the graph. During
query time, the preprocessed shortest path costs are used to assign a potential to
each vertex representing the tentative distance to reach the target vertex. It relies
on DRegLC [Barrett et al. 2000], a multimodal version of dijkstra, constrained with
prede�ned automata. The complexity of the automaton impacts both preprocessing
and query times. The main drawback of this approach is scalability: computing
landmark distances becomes too costly for large graph instances.

2.7. Conclusion 33

2.6.3 User Constrained Contraction Hierarchies (UCCH)

User Constrained Contraction Hierarchies (UCCH) [Dibbelt et al. 2015] is a hierar-
chical technique originally designed for road networks. The main idea is to contract
during preprocessing the graph vertices ordered by their measured importance. For
each contracted vertex, a shortcut edge is inserted between its neighboring vertices
and whose weight preserves the cost of the shortest path containing the contracted
vertex. To solve a query, the algorithm runs a bidirectional Dijkstra, only scanning
vertices with higher importance, until the forward and the backward search meet.
To separate modal constraints from preprocessing, the authors initially split all ver-
tices into di�erent sets based on their labels. They contract each set of vertices
separately to make sure that all shortcut edges have a unique label.

2.7 Conclusion

We reviewed in this chapter all the background we deemed necessary to support the
material in the upcoming chapters. In essence, depending on the type of network,
certain graph representations are more suitable to capture the network's structural
characteristics. Nonetheless, most speedup techniques that perform well in time-
independent networks are often several orders of magnitude slower when adapted to
time-dependent networks. Because of the strong structural discrepancies between
the road and public transit networks, algorithms that are based on bidirectional
search, goal direction, and hierarchy, for instance, are signi�cantly slower on public
transit networks. Instead, specialized algorithms that are usually non-graph based
are better at solving the shortest path problem in public transit networks. Further-
more, shortest path algorithms often consist of a preprocessing, o�ine phase, prior
to resolving queries. The performance of the algorithm then becomes a tradeo�
between preprocessing times (and memory requirements) and the resulting query
times. Developing new algorithms is, therefore, contingent upon all the stated con-
siderations.

The ubiquity of tra�c information and the movement toward open access to
mobility data over the recent years enabled further research into the map matching
and the dynamic routing problems. Nonetheless, most contributions are based on
simulations with inaccurate assumptions about the nature of tra�c congestion. Fur-
thermore, augmenting route planning solutions to handle multimodal networks is not
trivial due to the structural discrepancies of time-dependent and time-independent
networks. We researched over the course of the thesis these topics and provided in
the upcoming chapters a detailed description for each of our contributions.

Chapter 3

Unambiguous Map Matching

Contents

3.1 Models and Assumptions . 36

3.2 Map Matching Algorithm . 37

3.2.1 Pre-processing . 38

3.2.2 Selecting edge candidates for each measurement 39

3.2.3 Constructing valid routes from a list of edge candidates . . . 39

3.2.4 Computing shared road segments in valid routes 44

3.3 Experimental Evaluation . 44

3.3.1 Emulated GPS traces . 44

3.3.2 Real GPS trace (Seattle) . 47

3.4 Conclusion . 48

The concept of Smart City refers to modern cities relying on ICT for increased
e�ciency [Gharaibeh et al. 2017]. A myriad of deployed devices allow cities to per-
form tra�c light management, tra�c congestion avoidance and smart transporta-
tion. Based on the produced data, the smart city services can exploit a real time
road map (e.g. speed, congestion level). In particular, dynamic route planning
needs real time tra�c conditions to guide vehicles and users through the optimal
route [Liebig et al. 2017]. Yet, deploying thousands of tra�c sensors is particularly
expensive.

Participatory sensing [Guo et al. 2016] relies on individual bodies to collect a
large dataset of measurements. Unfortunately, each participant provides indepen-
dent sequences of measurements, which have to be merged to construct a consistent,
real time view of the whole road or street network. A map matching algorithm aims
to map all these distinct traces onto a common base map, so that we create a
global dataset from a set of individual traces [Ahmed et al. 2015]. Openstreetmap1

is commonly used as a base map [Jokar Arsanjani et al. 2015].
Map matching algorithms exploit an ordered sequence of waypoints (geograph-

ical coordinates) obtained with a cellular or GPS positioning system. Thus, each
point is riddled with measurement errors. Typically, GPS-enabled smartphones pro-
vide an accuracy of 4.9 m in ideal conditions (open sky) [van Diggelen & Enge 2015].
Most map matching algorithms identify the most probable path corresponding to a

1http://www.openstreetmap.org

http://www.openstreetmap.org

36 Chapter 3. Unambiguous Map Matching

given individual sequence. However, trajectory planning requires a precise mapping
of congestion information on the map for highly accurate travel time estimation.

Because acquiring a GPS location is very energy consuming, participatory sens-
ing shall bene�t from a low sampling rate GPS trace. However, reducing this sam-
pling rate negatively impacts the accuracy [Quddus & Washington 2015], thus jeop-
ardizing the identi�cation of the most probable route for a given trace. For a dense
map, multiple similar paths may exist between two data points, and no argument
can fairly di�erentiate the actual path from its alternative.

In this chapter, we propose an unambiguous map matching, to identify all
the possible paths corresponding to a sequence of waypoints. Indeed, a probabilistic
method is to our mind insu�cient: identifying the wrong route implies that a bias
is created. For instance, an urban planner may need to count the actual number of
vehicles for a speci�c street. Here we choose not to resolve ambiguities. We rather
not consider segments between waypoints that we can not match de�nitely.

To the best of our knowledge, we propose the �rst unambiguous map matching
method. The contributions of this chapter are:

1. we propose a map matching algorithm for sparse traces, enabling real-time map-
ping with a low computation time;

2. instead of a probabilistic method, we adopt here an unambiguous approach: we
consider that the map matching has partially failed when several path candidates
are obtained, and we thus identify the subroute which was used for sure by the
trace ;

3. we thoroughly evaluate our solution, on emulated GPS traces on the London,
Paris and Luxembourg maps. We always identify the initial path (no false nega-
tive), while reaching a small set of candidates (false positive), with a reasonable
sampling period (under 50s).

4. we illustrate the performance of our algorithm on real GPS traces. We show its
robustness to increasing sampling rates in the face of real-life GPS measurement
errors.

3.1 Models and Assumptions

We analyze the case of a vehicle equipped with a GPS measuring device and moving
on a given road network. The sampling frequency of the GPS can be adjusted to
generate these measurements (i.e. latitude and longitude coordinates) at a constant
rate T . A GPS trace is a sequence of such measurements with T seconds intervals
from the start until the end of the journey. We use the term true route to refer to
the real route used by the vehicle during its journey. Our goal is to reconstruct the
true route from the issued trace.

Let us model the road network with a directed graph G(V,E), V denoting the set
of vertices, and E the set of edges. Each road intersection corresponds to a vertex

3.2. Map Matching Algorithm 37

Preprocessing
Map Data

Selecting Edge
Candidates

Computing all
valid routes

Computing
shared edges of

valid routes

Figure 3.1: Map Matching algorithm process

in the graph. Each road segment is an edge between the corresponding vertices.
To each vertex is associated a geographical coordinate, and a road segment may be
subdivided into small segments to preserve the geographical shape of the road. The
weight of an edge is the time (in seconds) elapsed to join the two corresponding
vertices, at the speed limit of the road section. We call a couple of two consecutive
data points, the tail and the head vertices, respectively. Besides, we denote by path

a sequence of connected vertices and edges in the map.
We use here Openstreetmap as base map, since this opendata project provides

a free access to a huge and accurate collection of road networks.

3.2 Map Matching Algorithm

Our objective is to map a trace to a set of valid routes that are proven to be feasible
for the journey. Then, we extract the set S of all shared edges among valid routes.
We prove that ∀e ∈ S, e ∈ true route. We use the notation described in table 3.1.
Our map matching algorithm relies on four pipelined steps (Figure 3.1):

1. Preprocessing map data: we �rst organize the map into a regular grid to
accelerate the identi�cation of edges close to a given location;

2. Selecting edge candidates for each measurement: each measurement Zi in
the trace allows us to approximate the actual position Pi to a disk centered on
Zi with a radius Egps (which is �xed to consider the measurement error). Then,
we identify all the edge candidates (Cand(Zi)) that correspond to Zi. More
precisely, any edge that crosses the boundary of the disk is an edge candidate.
We make the distinction between the incoming (their tail is outside the disk) and
the outgoing (their head is outside the disk) edges.

3. Identifying valid routes from the set of edge candidates: we then have
to compute routes, which include one edge candidate for each Zi, and which
respect a time delay constraint. For each pair of consecutive measurements Zi
and Zi+1, a Breadth First Search (BFS) calculates all the possible subroutes i.e
a sequence of edges that start with an incoming edge candidate for Zi and �nish
with an outgoing edge candidate of Zi+1. The cost of a subroute must respect the
elapsed time between measurements Zi and Zi+1. Finally, the di�erent subroutes
are assembled and we verify the end-to-end time delay constraint.

4. Extracting common segments for all the possible routes: we identify the

38 Chapter 3. Unambiguous Map Matching

edges which are for sure on the journey, constituting a set of common segments.
The longer the segments, the more accurate our algorithm: ideally one single
segment would cover the whole route meaning that a single option matches our
constraints.

Table 3.1: Notation used in this chapter

notation de�nition

Egps maximum GPS error for a data measurement
σgps standard deviation of the GPS error (Gaussian dis-

tribution)
∆speed security coe�cient of speed excess authorized for

the trace

Z = {Zi}i∈[0,|Z|] GPS trace, with |Z| data points
tail(e) / head(e) tail (respectively head) of the edge e
C(e) cost (in seconds) to join tail(e) and head(e)

Cand(Zi) set of candidate edges for the measurement point
Zi

Outgoing(Zi) outgoing edge candidates for the measurement
point Zi

Incoming(Zi) incoming edge candidates for the measurement
point Zi

R = {ei}i∈[0,k] a valid route from the edge e0 to ek
subRoute(ei, ej) valid subroute between the candidate edges ei and

ej
D(Zi) disk centered on Zi with a radius Egps
δcell size of a cell in the grid in degrees of latitude and

longitude

3.2.1 Pre-processing

Identifying the edges close to a given location would require to fetch the whole graph,
and to compute the distance of each of them. Thus, to accelerate the computation,
we organized the map into geographical cells, i.e. rectangles of δcell degrees of width
and height. We compute for each edge its set of cells by using a modi�ed version of
the Bresenham's algorithm [Bresenham 1965]. More precisely, an edge belongs to a
cell if both of its end-vertices lie inside the cell, or if the edge crosses its boundaries.
When searching for all the edges at a maximum distance of a speci�c location, we
just have to scan all the edges belonging to the cells around the location.

3.2. Map Matching Algorithm 39

3.2.2 Selecting edge candidates for each measurement

GPS typically follows a Gaussian distribution with standard deviation
σgps [Heng et al. 2011]. Thus, the true position of the vehicle may be located any-
where in a disk centered on the measurement (Zi) with the radius:

Egps = 3× σgps (3.1)

which accounts for a 99.9 % certainty that the disk area contains the true position
Pi.

An edge candidate is any edge that allows accessing and/or exiting the area
that contains the true position of the vehicle. In other words, any edge that crosses
the disk centered at Zi. Thus, Zi and the closest point of an edge candidate are
separated by a distance smaller than Egps. Let us denote by d(u, v) the Euclidean
distance between the points u and v. An edge e is a candidate if one of the following
conditions holds:

1. the head is outside the disk: e in an outgoing edge candidate;

(d(tail(e), Zi) ≤ Egps) ∧ (d(head(e), Zi) > Egps) (3.2)

2. the tail is outside the disk: e is an incoming edge candidate;

(d(head(e), Zi) ≤ Egps) ∧ (d(tail(e), Zi) > Egps) (3.3)

3. both the head and tails are outside the disk but the edge intersects the disk: e
is both an incoming and outgoing edge candidate.

(d(proj(e, Zi), Zi) < Egps) ∧ (d(tail(e), Zi) > Egps)
∧ (d(head(e), Zi) > Egps) (3.4)

where tail(e) and head(e) denote the tail and head of the edge e respectively, and
proj(e, Zi) denotes the projection of Zi on the edge e.

3.2.3 Constructing valid routes from a list of edge candidates

We have now to infer the global route which corresponds to a sequence of edge
candidates, and which also respect the time delay constraint. Formally, a route R
is an ordered sequence of edges E = {ei}i∈[0,k] such that ∀i ∈ [0, k − 1], head(ei) =

tail(ei+1).
We make a distinction between:

• A True route: this corresponds to the set of edges which were followed during the
journey;

• Valid routes: all the possible routes which respect the constraints. The true route
is included in the set of valid routes, thus preventing us from a false negative.

40 Chapter 3. Unambiguous Map Matching

Z0

Z2

Z3

Z1

True
position

Intersection
point

Measured
position

True route

P0
a2

a3 a4 a5

d2

e1 e2

d3
d4

a6
a7

f1

d1
c2

c1
b3

a1

b1
b2

P2

P1

P3

Figure 3.2: Example illustrating the process of appending subroutes.

We propose an iterative approach, where the route is grown step by step, ap-
pending subroutes from one measurement to the next. More formally, a subroute is
a sequence of consecutive edges such that:

subRoute(ei, ei+1) = {ek | head(ek) = tail(ek+1)}
s.t. ei ∈ Incoming(Zi) ∧ ei+1 ∈ Outgoing(Zi+1) (3.5)

Remark 1 For the �rst pair of measurements (Z0, Z1), a subroute begins with an

outgoing edge candidate of Z0. This exception is due to the fact that the �rst mea-

surement Z0 might not possess any incoming edge candidate, since the journey has

started inside the disk, possibly in a dead-end street.

To compute all the valid routes, we propose an iterative two step approach:

1. calculating subroutes, for a pair of consecutive measurements. We also verify that
they are valid concerning the timestamps (time delay constraint). Typically, in
Figure 3.2, the subroute (a3, a4, a5, a6, a7) is a valid subroute from Z1 to Z2.

2. appending the corresponding subroute to all the already computed valid routes,
and then verifying the end-to-end delay constraint. In Figure 3.2, the subroute
(a3, a4, a5, a6, a7) can be combined to the valid route (a2, a3), creating a new
route (a2, a3, a4, a5, a6, a7) from Z0 to Z2.

Remark 2 We later retract the new route until we reach an incoming edge of

measurement Z2. In our example we would obtain (a2, a3, a4, a5, a6) after retract-

ing the route. We explain why in the next subsection.

When the algorithm reaches the last measurement ZN , all the valid routes are
identi�ed.

3.2. Map Matching Algorithm 41

3.2.3.1 Constructing the subroutes

The objective now is to construct all the possible subroutes between two edge can-
didates. We have to verify that a subroute is valid, i.e. the vehicle is able to join
the two measurement points without exceeding the speed limit.

To identify all the valid subroutes, we apply a Breadth First Search (BFS)
approach starting from each incoming edge candidate for the measurement Zi, and
stopping after either of the two conditions:

1. an outgoing edge candidate for the measurement Zi+1 is visited (a valid subroute
is discovered). We will explain below why we have to stop at an outgoing edge
candidate;

2. the cost of the subroute exceeds the delay constraint (the exploration has to
stop, backtracking to the other edges to discover). We will explain in the next
subsection how the cost of a subroute is actually computed.

The BFS algorithm evaluates all the subroutes in the graph starting from every
incoming edge e of Zi, such that e corresponds to the end of a route that was
calculated earlier. All the neighbors are recursively explored, their id being pushed
on top of a stack. In parallel, our algorithm maintains the minimum time cost to
walk the explored subroute to verify the delay constraint. As soon as an outgoing
edge for the next measurement point is scanned, the stack is saved: a new subroute
was discovered.

When either a subroute has been discovered, or the delay constraint is violated,
the BFS backtracks to the previous neighbor to explore. We implement a simple
stack of unexplored neighbors since we have to make a complete exploration to
detect all the possible subroutes.

Let us consider the example in Figure 3.2. A valid route has been constructed
up to the head of the edge c1. We apply the BFS strategy, and we obtain recursively
the subroutes (c1, c2, a5, a6, a7) and (c1, d1, e1, e2, a7). Assuming that the subroutes
(c1, c2, a5, d3, d4), (c1, d1, d2, d3, d4) and (c1, d1, d2, a6, a7) have been discarded be-
cause they violated the time constraints.

Remark 3 Please note that we stop the BFS only when scanning an outgoing edge

for Zi+1. If the two measurement points are very close because of a small sampling

period or large measurement inaccuracies, the two corresponding disks may overlap,

preventing the algorithm from �nding a subroute that ends with an incoming edge

at Zi+1.In Figure 3.2, the disks of Z2 and Z3 overlap. In particular, the incoming

edge a6 of Z2 for the valid route is after the incoming edge a5 of Z3. Thus, we

cannot compute a subroute that begins and ends with incoming edges at Z2 and Z3

respectively. On the contrary, we can safely stop at the �rst outgoing edge of Z3,

which is always located after the incoming edge of Z2, as demonstrated below.

Let Zmin be the minimum index such that the disks centered on Z0 and Zmin
respectively do not overlap. Similarly, let Zmax be the maximum index such that

42 Chapter 3. Unambiguous Map Matching

the disks centered on Z|{Zi}|−1 and Zmax do not overlap. For example, in �gure 3.2,
Zmin corresponds to Z1 and Zmax corresponds to Z1 aswell.

Lemma 1 For any pair of consecutive measurements (Zi, Zi+1)i∈[Zmin,Zmax], there

exists a sequence of connected edges such that the �rst is an incoming edge candidate

of Zi and the last one is an outgoing edge candidate of Zi+1

Proof 1 The true route corresponds to a sequence of edges {ek}k∈[0,|R|−1] in the

graph. By construction, at least one edge of the true route is at a maximum distance

of Egps from Zi (min < i < max). Let Ei = {ek} denote this set, and kmin be the

minimum index. ekmin is an incoming edge for Zi.

Let us prove it by contradiction. If ekmin is not an incoming edge, ekmin−1 is also

in the set Ei, which is impossible since kmin is minimum. Besides, kmin > 0, since

at least one edge is in the disk centered on Z0 and not in the set Ei, by construction

of Zmin. Thus, ekmin has to be an incoming edge for Zi.

We demonstrate similarly that an edge ekmax of the true route is an outgoing edge

for Zi+1. Moreover, the incoming edge for Zi has been traversed before the timestamp

Ti corresponding to the measurement Zi (�rst arrival in the disk). Inversely, the

outgoing edge has been visited after Ti+1, and by de�nition, Ti < Ti+1, thus kmin ≤
kmax.

The sequence of the edges in the true route, from ekmin to ekmax, forms a valid

subroute, which will be scanned by the BFS.

Remark 4 We cannot assume that the true route enters in the �rst disk, and exits
from the last one. Thus, we scan all the edges inside or crossing the �rst and last

disks. This exhaustive search increases slightly the computation time, but only for

the �rst and last measurement points.

3.2.3.2 Verifying the cost of a subroute

We have to compute the minimum time to travel a corresponding subroute. Thus,
we de�ne the cost for an edge e as the time required to join the tail and the head
vertices with the speed limit of the corresponding edge.

∀e ∈ E,C(e) = C (head(e), tail(e)) =
d(head(e), tail(e))

speed(e) ∗∆speed
(3.6)

with speed(e) the speed limit associated to the edge e in the map, and ∆speed a safety
margin to take into account speed excesses. By extension, the cost of a subroute
corresponds to the sum of the costs of its edges.

Because the exact location corresponding to a measurement is by de�nition
imprecise, we do not know the exact distance travelled between two GPS measure-
ments. We know that the minimum distance is the distance between the intersection
points of the outgoing edge candidate of Zi and the incoming edge candidate of Zi+1

with the disks D(Zi) and D(Zi+1) respectively (positions P0 and P1 in Figure 3.2).
Thus, we need to calculate the cost for the section of the subroute that lies outside

3.2. Map Matching Algorithm 43

the area enclosed by the disks D(Zi) and D(Zi+1). This cost has to be below the
time between two GPS samples (Tsampling) for the subroute to be feasible.

In �gure 3.2, for the subroute (a2, a3, a4, a5), this cost corresponds to the sum of
costs from the intersection of a2 with D(Z0) to the intersection of a3 with D(Z1).

Lemma 2 The true route always corresponds to at least one valid subroute.

Proof 2 Let us consider the true route de�ned by a sequence of edges R =

{ei}i∈[0,|R|]. Let Pout (resp. Pin) be the intersection of the last outgoing (resp.

incoming) edge in R with the disk centered on Zi (resp. Zi+1). Pout is by de�nition

the latest possible position of the vehicle along the true route at the timestamp Ti,

which leads to the measurement Pi. Similarly, Pin is the earliest possible position

for the timestamp Ti+1. Thus,
∑

ek∈(Pin,Pout)
C(e) ≤ Ti+1 − Ti = Tsampling. In con-

clusion, the true route will not be discarded by this condition, and is discovered with

the BFS (lemma 1).

3.2.3.3 Appending a subroute to a valid route

We now have to assemble the subroute with the set of valid routes to extend them
until the last measurement point. Because we start the next subroute from an
incoming edge (sequentiality constraint), we cannot assemble the subroute directly.
We thus propose to:

1. prune all the edges in the subroute until (i) an incoming edge for Zi+1 is scanned,
or (ii) the end of a valid route is detected. The second condition holds to still
consider the case for which the two disks overlap, and stopping earlier the back-
tracking is more e�cient;

2. append this pruned subroute at the end of all the existing valid routes stopping
at the corresponding edge candidate;

3. verify the end-to-end delay constraint for each valid route created in this way.

Then, the next measurement point will be considered.
We have to verify that the subroute respects the time constraint:∑

e∈s
C(e) ≤ i ∗ Tsampling (3.7)

with s being the sequence of edges in the valid route, from the last outgoing edge
of Z0 until the �rst incoming edge of Zi.

Remark 5 The �rst and last measurements in the trace Z0 and Z|Z| respectively,

are treated separately because neither can we guarantee that Z0 possesses incoming

edge candidates nor Z|Z| possesses outgoing edge candidates. Indeed, the journey

could start and terminate at a dead-end street.

44 Chapter 3. Unambiguous Map Matching

3.2.4 Computing shared road segments in valid routes

Once all valid routes for the journey are established, we aim to compute the subset
which is common to all the routes: we are sure that the vehicle has followed these
speci�c edges.

More formally, let V R denote the set of valid routes. We compute the set of
edges S such that:

∀e ∈ S, ∀r ∈ V R, e ∈ r (3.8)

We use the term correct matching ratio (cmr) to de�ne the ratio of all edges in
S (weighed by their length) to the total length of the true route:

cmr =

∑
e∈S d(e)∑
e∈T d(e)

(3.9)

with T being the true route.

3.3 Experimental Evaluation

We carried out two di�erent experiments to evaluate our algorithm. In the �rst
experiment, we emulated GPS traces and used OpenstreetMap2 as a common map.
In the second experiment, we used a real GPS trace from a publicly available
dataset [Newson & Krumm 2009b].

3.3.1 Emulated GPS traces

We �rst evaluate the accuracy of our unambiguous map matching method by em-
ulating GPS traces. Prior to using the OSM data for our experiment, we cleaned
it from duplicate entries and missing information. Speci�cally, we remove all the
isolated vertices, i.e. not part of the largest connected component. These private or
disconnected roads constitute less than 5% of the vertices of the graph. Finally, we
precompute the grids for the OSM map (a tile corresponds to 0.001◦).

Table 3.2: Dataset

Road Network London Paris Luxembourg

Number of vertices 836,271 169,879 27,306
Number of edges 1,637,300 284,246 50,607
Degree 8 6 5

We used 3 di�erent cities (Tab. 3.2) with di�erent characteristics to evaluate
the robustness of our method. For each city, we generated 500 GPS traces in the
following way:

1. we pick randomly two waypoints (A and B), located approximatively 8km apart;

2https://www.openstreetmap.org/

https://www.openstreetmap.org/

3.3. Experimental Evaluation 45

Table 3.3: Evaluation setup

σgps 4.07 m (standard deviation of the GPS chipset)
∆speed 1.2 (safety margin for the speed limit, cf. section 3.2.3.2)
δcell 0.001◦ (size of the grid for the precomputation)
Tsamp ∈ [1, 50] (sampling rate of the GPS trace)
CPU Core i7-4600U CPU @ 2.10 GHz

memory 16 GB RAM
software Java 8, Eclipse IDE Oxygen.2 Release (4.7.2)

2. we compute the shortest path from A to B. We emulate the movement of a
vehicle, by following the path with the speed limit of each segment, as given by
openstreetmap. A sample is saved every 1 second;

3. for each waypoint, we emulate a real GPS measurement, i.e. the actual
location with an additionnal error caused by the GPS system. The loca-
tion inaccuracy follows a Gaussian distribution with a standard deviation of
4.07m [Heng et al. 2011].

4. we �nally subsample the GPS trace with a period comprised between 1 and 50
seconds. We can thus compare the di�erent sampling rates: they correspond to
the same journey.

We consider here only regular sampling periods to more easily interpret the results.
Indeed, an irregular sampling would correspond to a mix of di�erent cases, making
the results more di�cult to interpret. Tab. 3.3 summarizes our evaluation setup.

We measured the following metrics:

• correct matching ratio: we compute the weighted subset of edges which are
common to all the valid routes (cf. section 3.2.4). cmr = 1 corresponds to a
perfect match (i.e. there is only one valid route which happens to be the true
route). Similarly, cmr = 0 means that even though we did not discard the true
route, there exists at least one valid route that does not share any edge with the
rest of the valid routes.

• computation time: time required to compute the set of valid routes.

We then analysed the e�ect of road junctions density (i.e. number of edges)
around a speci�c waypoint on the correct matching ratio. Figure 3.3 illustrates
the correct matching ratio of London, Paris and Luxembourg, for sampling periods
ranging from 1 to 50 seconds. The true route is always in the set of valid routes.
In addition, for very small sampling periods, it is often the only valid route. Con-
sequently, we are able to identify the whole true route. The accuracy decreases for
higher sampling periods. Above a sampling of 15 to 20 seconds (depending on the
city), some measurement points are far from each other, and several valid subroutes
exist to join them.

46 Chapter 3. Unambiguous Map Matching

1 2 3 4 5 10 15 20 30 50
Sampling period [s]

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

ct
 m

at
ch

 ra
tio

(a) London

1 2 3 4 10 15 20 30 50
Sampling period [s]

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

ct
 m

at
ch

 ra
tio

(b) Paris

1 2 3 4 5 10 15 20 30 50
Sampling period [s]

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

ct
 m

at
ch

 ra
tio

(c) Luxembourg

Figure 3.3: Correct matching ratio for London, Paris, Luxembourg road networks.

matched unmatched
GPS measurements

0

2

4

6

8

Nu
m

be
r o

f r
oa

d
ju

nc
tio

ns
 a

t d
ist

an
ce

 R

(a) London

matched unmatched
GPS measurements

0

2

4

6

8

Nu
m

be
r o

f r
oa

d
ju

nc
tio

ns
 a

t d
ist

an
ce

 R

(b) Luxembourg

Figure 3.4: Road junction vertices density near matched and unmatched measure-
ments (R = 4× Egps).

Our algorithm is unambiguous and does not pick randomly one of these possible
routes. However, even for very large sampling rates (one GPS measurement every
50 s), more than 95% of the true route is accurately identi�ed. In the worst case,
for some cities, such as London, we are able to identify 80% of the true route.
In conclusion, our unambiguous algorithm is very e�cient to exploit sparse GPS
measurements.

We also identify the metrics that a�ect the success or failure of the matching
process. We suspect that the number of road junctions near a given measurement
Zi, increases the odds of computing more subroutes which decreases the probability
of matching Zi to a single route i.e the true route. For London and Luxembourg
experiments, we measured the number of road junctions at a distance d < 4× Egps
of matched and unmatched measurements. For each experiment we matched ap-
proximately 12,000 measurements distributed over a dataset of 500 journeys. We
observe in �gure 3.4 that there is indeed more road junctions near unmatched mea-
surements. Though, we still need to thouroughly test this hypothesis to be sure it
holds for various road networks.

Figure 3.5b illustrates the computation time (for London experiment) when vary-
ing the sampling period. Whatever the conditions, we identify accurately the true

3.3. Experimental Evaluation 47

1 2 3 4 5 10 15 20 30 50
Sampling period [s]

0

10

20

30

40

50

60

70

80
Ex

ec
ut

io
n

tim
e

[m
s]

Computing Edge Candidates
Computing Subroutes
Appending Subroutes

(a) Average execution time of main

methods of map matching algorithm

1 2 3 4 5 10 15 20 30 50
Sampling period [s]

0

10

20

30

40

50

60

70

Ex
ec

ut
io

n
tim

e
[m

s]

(b) Execution time distribution

Figure 3.5: Performance of map matching algorithm based on execution time.

route in less than 80ms. Our algorithm is thus e�cient for online strategies, where
the reactiveness is of primary importance. We can observe in �gure 3.5a the aver-
age execution time for the three main methods of the algorithm. For low sampling
periods, we have many measurement points to consider, which increases the com-
putation time for computing all edge candidates. Inversely, large sampling periods
imply a larger computation time for the BFS, to identify all the possible subroutes,
and verifying their cost. The computation time remains below 20ms for a sampling
period of 5 s, which corresponds also to a close to perfect correct matching ratio.

These results were obtained with emulated GPS traces, whose parameters (e.g.,
measurement uncertainty, car speed) remained �xed throughout the emulation. We
thus aimed at validating our proposition on real-world traces, whose dynamics may
impact our results.

3.3.2 Real GPS trace (Seattle)

We here evaluate our algorithm in a real case scenario, by using data sampled
at 1 Hz using a RoyalTek RBT-2300 GPS logger during a road trip in Seattle,
WA [Newson & Krumm 2009b]:

• Road Network: The 2009 road network representation of Seattle, Washington,
USA area.

• GPS trace: 7531 GPS points collected over 2 hours of driving (80 km)3.

• Ground Truth: The true sequence of road segments that correspond to the GPS
trace.

The error in the GPS measurements is not a metric we control (as for the emu-
lated trace) but is rather due to the GPS measuring device and environment.

3
The details of the trace are available on: https://www.microsoft.com/en-us/research/

publication/hidden-markov-map-matching-noise-sparseness/

https://www.microsoft.com/en-us/research/publication/hidden-markov-map-matching-noise-sparseness/
https://www.microsoft.com/en-us/research/publication/hidden-markov-map-matching-noise-sparseness/

48 Chapter 3. Unambiguous Map Matching

Such real-world measures allowed us to take into account the dynamics of the
road network which would cause the vehicle to slow down or even halt instead of
traveling at the allowed speed limit for the whole trip.

Figure 3.6 depicts the performance results of our algorithm for matching a real
GPS trace. The results corroborate the �rst part of our evaluation using emulated
GPS data. At small sampling periods (less than 5 seconds), we are almost able to
reconstruct the true route in its entirety. The correct match ratio decreases to 85%
with a sampling period of 50 seconds.

12345 10 15 20 30 50
Sampling period [S]

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

ct
 m

at
ch

 ra
tio

Figure 3.6: Correct matching ratio for Seattle network using real GPS trace data.

3.4 Conclusion

We presented a time-e�cient map matching algorithm, to reconstruct the route from
a sequence of data points. We proposed an unambiguous method: we do not aim to
�nd the most probable route, but rather to identify the road segments that were used
for sure. This way, we can merge heterogeneous traces, extracted for instance from a
crowd-sensing application. Thus, our algorithm relies on identifying candidate edges
for each data point, and computing routes among them which respect a time delay
constraint. Our algorithm is time-e�cient, and can be used for real-time situations.
Our performance evaluation shows that our map matching technique unambiguously
identi�es more than 85% of the true route for a sampling period up to 50 seconds.
When the data points are too inter-spaced, our algorithm terminates with several
routes that cannot be di�erentiated.

Now that we are capable of correctly matching a signi�cant proportion of real
GPS traces, we can construct a dynamic representation of the network by matching
measurements of a prede�ned area at regular time intervals. We address the problem
of dynamic route planning in the following chapter.

Chapter 4

Dynamic Route Planning

Contents

4.1 Methodology . 51

4.1.1 Assumptions and Model . 51

4.1.2 Route Planning Strategies . 53

4.1.3 Evaluation Work�ow . 55

4.1.4 Datasets . 58

4.1.5 Metrics for the Performance Evaluation 59

4.2 Experimental Evaluation . 60

4.2.1 Absolute Travel Time and Rush Hours 60

4.2.2 Travel Time Stretch and Gain Factors 61

4.2.3 Impact of Sampling Rate on Travel Time 63

4.2.4 Route Divergence Patterns 64

4.3 Conclusion . 66

Route planning algorithms [Bast et al. 2016a] compute a route, which consists of
a sequence of road segments between a departure and arrival locations, and a travel-
time, denoting its associated end-to-end cost. Historically, mobile navigation devices
were used to guide the driver by autonomously computing a suitable route. With the
wide adoption of smartphones, though, many applications nowadays bene�t from
the cloud where all computations are performed [Li et al. 2017c].

Route planning requires tra�c information (estimated speed, vehicle counts)
gathered from various sensors and probes within the network. Some mobile navi-
gation devices rely on the median recorded travel-times of a set of monitored road
segments to predict congestion. Smartphones and vehicles which usually embed GPS
devices are also exploited by regularly relaying tra�c measurements to the cloud so
that a real-time model of the road network can be constructed [Ahsani et al. 2019].
Real-time tra�c information is particularly valuable to reduce the cost of urban
freight transportation [Flamini et al. 2018].

Prediction as a service aims at predicting the travel time of each road segment,
based on past measurements [Wu et al. 2016]. That way, a vehicle would use an
alternative, faster route if congestion has been predicted along its primary route.
Uncertainty may also be considered to compute a route with a given latest time of
arrival [Lee et al. 2019]. While long-term prediction algorithms exist in the litera-
ture [Chen et al. 2019], short-term predictions are still challenging. Tra�c jams are

50 Chapter 4. Dynamic Route Planning

complicated to predict [Hu et al. 2017], and their impact on travel time depends on
various local factors (e.g., speed limit, type of street, neighboring local roads).

While vehicle re-routing may reduce the impact of congestion, relying on real-
time data can be computationally expensive. Computing a route, directly on a small
embedded device is inconvenient as tra�c data must be downloaded �rst, which
may correspond to a large volume of data when the target location is geographically
far away. Practically, this means that hundreds of weights have to be collected
periodically, even if the target is in the same urban area. This represents a massive
amount of data when considering a large collection of users. Alternatively, the route
computation can be executed directly in the cloud: centralized servers reply in real-
time to queries. Thereby continuously re-evaluating the route of each vehicle until it
reaches its destination. Consequently, the load in the cloud is roughly proportional
to the sampling rate used to refresh the real-time data. In particular, it becomes
challenging to exploit route planning algorithms that rely on pre-processed data
because of the continuous tra�c changes measured on the network.

In this chapter, we quantify the bene�t of using dynamic shortest path algorithms
that re-route vehicles when congestion increases. Indeed, alternative paths may
provide a faster route, but can only be identi�ed when using real-time information.
For this purpose, we exploit a real dataset comprising the travel times of the road
segments of several cities (i.e., New-York, London, Chicago, and Cologne). To
compare simulations with these real datasets, we also used the TAPAS (simulated)
dataset [Uppoor et al. 2014]. The contributions of this chapter are as follows:

1. we quantify the travel-time gain when using real-time data to re-route vehicles,
compared to a no re-routing approach that prohibits diverting from the path
evaluated at the departure. Our dataset highlights that re-routing is very seldom
required real conditions, even during rush hours;

2. we provide an optimal algorithm to compute a lower bound for the travel time
between any pair of locations. The algorithm replays the real dataset to mimic
ideal predictions. The gain of using ideal predictions is below 10% compared
with a continuous re-routing solution, even for the worst route;

3. we compare the impact of re-routing based on two types of datasets (a real
dataset vs. the simulated TAPAS dataset). Surprisingly, and contrary to current
belief, we obtain very di�erent behaviors when studying re-routing strategies.
Simulations tend to exacerbate the randomness of travel time. Thus, simulations
seem to not accurately capture the complexity of urban road network dynamics,
proving the relevance of exploiting real datasets;

The remainder of this chapter is organized as follows. We present the methodol-
ogy in section 4.1. We introduce our assumptions and model in section 4.1.1. Then,
we describe four route planning strategies in section 4.1.2. In section 4.1.3, we ex-
plain our evaluation work�ow for each routing strategy. We detail our datasets in
section 4.1.4 and present a set of metrics to assess the performance of each routing
strategy in section 4.1.5. Section 4.2 summarizes our experimental evaluation results

4.1. Methodology 51

with regard to each performance metric. We conclude and discuss future work in
section 4.3.

4.1 Methodology

A route planning solution identi�es a path to follow for a vehicle. Most solutions
can be classi�ed into:

1. embedded devices help to compute a route, sometimes after having downloaded
real-time data about the congestion of the road network [Wang et al. 2015];

2. cloud-based infrastructures receive a collection of queries from the vehicles that
they have to handle in real-time [Li et al. 2017b]. Continuously reconsidering the
route because of real-time data is also expensive in a cloud serving a large number
of customers, where additional resources have to be provisioned.

Each route planning strategy has to solve individual queries, returning a route
with minimal travel time. Formally, we de�ne a query as q = (s, d, ts)|s, d ∈ V and
ts ∈ T , where s, d and ts represent the departure location, the destination location
and the departure time respectively. Likewise, a route is de�ned as an ordered list
of vertices (road segments) in the graph.

In this chapter, we consider the following strategies, ordered by the volume of
resources (bandwidth and computation) they require:

1. static: we do not have any knowledge of the actual tra�c conditions (i.e., no
data is exchanged);

2. no re-routing: we know the travel time of each road segment precisely just
before the vehicle leaves its starting point. For the sake of limiting computational
cost, the vehicle does not reconsider its decision after departure;

3. continuous re-routing: we have continuous access to the most recent real-time
data. A vehicle may be redirected to a di�erent (shorter) route as soon as tra�c
conditions change;

4. prediction based routes: we are able to predict the tra�c conditions perfectly.
Consequently, we can identify the shortest ideal route, which constitutes our lower
bound;

4.1.1 Assumptions and Model

A road network is de�ned by a list of road segments. Each of them consists of a set
of consecutive coordinates (latitude and longitude) that de�ne its shape. We use
a dynamic directed graph GT = (V,E,WT) to represent the road network, where
v ∈ V is a vertex representing a physical intersection of two or more road segments,
eij ∈ E a directed edge from vertex i to j, and wij(t) ∈ WT the weight assigned

52 Chapter 4. Dynamic Route Planning

Table 4.1: Keywords & symbols de�nitions.

Keywords &

symbols

De�nition

eij Directed edge from vertex i to j
dij Length [m] of eij
sij(t) Speed [m/s] of eij at time t
wij(t) Travel time [s] of eij at time t
T Number of timeslots in a given dataset
δt = 60 sec Sampling rate of the datasets
∆t ≥ δt Variable sampling rate
ri = {u, v, .., w} De�nes a road segment
R = q(s, d, ts) Route in reply to the query from vertex s to d at timeslot

ts
R = {u, v, w, .., z} A route is an ordered set of vertices
TTime[q or R] Travel time of a query q (or a route R)
algo Designates one of four algorithms: static/no re-

routing/continuous re-routing/ideal
TTime[q, algo] Travel time of q using algorithm algo

t ≥ 0 ∈ R Represents the time in seconds
0 ≤ tk ≤ T ∈ N Timeslot index of a real-time data update

to eij , as a function of time t ∈ T . Table 5.1 contains de�nitions of the recurring
keywords and symbols used throughout the chapter.

For the sake of clari�cation, we use the term dynamic to refer to a graph whose
structure remains the same (no edges are deleted or inserted), but edge weights
change over the period T . We consider road networks with tra�c congestion, but
we neglect the new roads that may appear.

We exploit a dataset where the speed of each road segment is monitored pe-
riodically and synchronously. Thus, we denote by timeslot the discretized time,
during which the speeds for all the road segments remain unchanged. An edge
weight wij(t) = dij/sij(t) represents the travel time in seconds required to join the
vertices i and j, where dij and sij(t) represent the length of the edge eij and its
corresponding speed at time t respectively.

A road segment ri = {u, v, w, .., z} ∈ V consists of an ordered list of vertices in
the graph. When the speed on the road segment ri changes, it a�ects the weights
of all the edges associated with that road segment. Hence, in our implementation,
every edge in the adjacency list points to a speci�c road segment in the road segments
map.

4.1. Methodology 53

4.1.2 Route Planning Strategies

We now describe in more detail the route computation algorithms we use in the
rest of the chapter to evaluate the importance of real-time speed data along with
road segments. Real-time information implies that vehicles may change their route
when congestion occurs. Practically, drivers may be progressively aware of current
incidents because they use di�erent data sources [RafaªKucharski & Gentile 2019].
We neglect here the mutual impact of their decisions, i.e., travel-time may increase
if all the drivers take the same decision. We model in the rest of this section di�erent
families of routing algorithms, taking into consideration tra�c information.

Each strategy corresponds to a given travel time formulation. The here pre-
sented route planning strategies (i.e., static, no re-routing, continuous re-routing,
and ideal prediction based) respectively deal with travel times that are either time-
independent (i.e., no knowledge of tra�c conditions), evolution-independent (i.e.,
knowledge of tra�c conditions at the initial computation time only), time-aware
(i.e., knowledge of initial tra�c conditions and regular updates throughout the jour-
ney) or ideal (perfect forecast of tra�c conditions).

4.1.2.1 Static Route Planning

We assume here the system has no knowledge about tra�c conditions (e.g., an em-
bedded device disconnected from the Internet). It represents our worst but thrifty
strategy and provides a baseline for comparison. Thus, it will use the maximum
speed for each road segment to compute the fastest route. The weights are time-
independent, and hence wij represents the travel time from vertex i to j, where
sij is the speed limit in this particular case. For a given query q(s, d, ts), the de-
parture time ts is meaningless since the algorithm would always return the same
route for a departure from s toward the destination d. We use Dijkstra's algo-
rithm [Dijkstra 1959] to compute the route with the shortest travel time.

4.1.2.2 No re-Routing Route Planning

The system has here a complete knowledge of the travel times but never reconsiders
its decision. It mimics an embedded navigation system that is disconnected after
departure or cloud infrastructure that executes the query only once. Thus, we apply
the same strategy as previously, just executing Dijkstra's algorithm, with the travel
time of each road segment at departure. This way, we can quantify the gain of using
up-to-date information before departure.

4.1.2.3 Continuous re-Routing Route Planning

We continuously reconsider the routing decision by trying to compute a better route
with shorter travel time, modeling the approach proposed by [Chen et al. 2010].
This strategy helps to bypass congested areas when they appear, but it also consumes
more resources. If the computation is delocalized, the device has to retrieve all the

54 Chapter 4. Dynamic Route Planning

Algorithm 1: Fastest Route with continuous re-Routing.
Data: departure vertex (s), destination vertex (d), departure time (ts),

sampling rate (∆t)
Result: shortest route as an ordered list of vertices (route)
/* Set current position to vertex s and current time to ts */

1 here← s;
2 tnow ← ts;
3 do

/* updates the route, from here to the destination */

4 route← dijkstra(here, d, tnow) ;
/* true if a new data sample occurs */

5 isNewSample← false;
/* traverse the route until a new data sample occurs */

6 while !isNewSample do
/* next edge in shortest route */

7 evw ← getNextEdge(route) ;
8 lg ← getLength(evw) /* get length of edge evw */

9 while lg > 0 do
/* maximum distance that can be covered by next speed change */

10 lgmax ← speed(evw, tnow) ∗ (∆t− tnow mod ∆t);
11 if lg < lgmax then /* crossroad reached before next sample */

12 lg ← 0 ;

13 tnow ← tnow + lg
getSpeed(evw,tnow) ;

14 else /* crossroad not reached before next sample */

15 isNewSample← true;
16 lg ← lg − lgmax;
17 tnow ← tnow + lgmax

getSpeed(evw,tnow) ;

18 here← getHeadV ertex(evw);

19 while here 6= d;
/* we reached d */

20 return (route)

travel times periodically for its area. In a cloud, this means that the query has to
be re-executed continuously, consuming computational resources.

Let ∆t be the sampling rate of the real-time tra�c data. The route planning al-
gorithm will re-compute the optimal route toward the destination at each crossroad.
We use a dynamic version of Dijkstra's algorithm as detailed in algorithm 1:
1. we use a time-dependent graph model, where the weight of each edge is time-

variant. When executing Dijkstra's algorithm, we pick the most recent weights;

2. the route is reconsidered when a new data sample occurs, i.e., it corresponds to
an update of speed data. In that case, the shortest route to the destination from

4.1. Methodology 55

the current position is computed (line 4);

3. we traverse the graph, following the current route (lines 7-17). We have to verify
if we can reach the next crossroad before the next speed sample occurs (line 11);

4. if we cannot, we have also to consider the upcoming speed updates to re�ect the
actual travel time (line 14).

5. when a new sample occurs, we set the upcoming crossroad as the new position
(line 18) from which we re-evaluate the route (step 1).

This version accommodates any sampling rate. This way, we can compare the
impact of the data accuracy on the travel time.

4.1.2.4 Ideal Prediction Based Route Planning

As mentioned earlier, tra�c congestion forecasting is a technique used by most
advanced route planning algorithms. By incorporating predictions, one could predict
recurrent tra�c jams, and thus, plan the route accordingly at departure time.

We propose here to model such prediction-based routing algorithm [Liu 2017].
More precisely, our goal is to quantify the maximal bene�t attainable when using
a perfect forecast. Thus, we use an ideal prediction algorithm to compute the
maximum gain achieved by any prediction-based routing algorithm. To do so, we
depart a vehicle in the past by replaying the recorded measurements a posteriori.

We propose to use Algorithm 2:

1. we insert all vertices into a priority queue keeping the vertex with earliest arrival
time at the head (line 2). The arrival time of the source vertex s is set to the
departure time ts. All other vertices are initially considered as unreachable and
assigned an in�nite arrival time.

2. at each iteration, we poll a vertex v from the queue and insert it into the settled
set (line 5);

3. we compute the travel time required to reach each of its neighbors w (lines 7-18).
In particular, we traverse each edgevw, and we update its speed when a new
sample occurs before reaching the next crossroad (lines 15-17);

4. we re-insert w into the queue with its corresponding parent vertex v and the
updated arrival time tw (line 18);

5. when the destination vertex is settled, we construct the route by browsing back-
ward all the parent vertices starting at the destination until we reach the depar-
ture vertex (lines 20-23).

4.1.3 Evaluation Work�ow

To fairly compare di�erent route planning strategies, we need to compute enough
routes using each strategy to cover most roads in the road network. To do so, we

56 Chapter 4. Dynamic Route Planning

Algorithm 2: Optimal Route with ideal predicion routing.
Data: departure vertex (s), destination vertex (d), departure time (ts)
Result: shortest route as an ordered list of vertices (route)
/* settled is the set of vertices for which the shortest route was found */

1 settled← {};
/* priority queue contains triplets of the form (a vertex, its parent, its

arrival time). The source's arrival time is set to ts while all other

vertices are initially unreachable and with unknown parents */

2 queue← {(s, s, ts)} ∪ {(v,∅,∞)|v 6= s ∈ V };
3 route← {d}; /* add destination to the route */

4 do
/* extract vertex v with smallest arrival time from the queue and insert

it into the settled list with departure time tv */

5 settled.add((v, u, tv)← queue.poll());
/* iterate over all outgoing edges from v */

6 for e ∈ getOutgoingEdges(v) do

7 w ← getHeadV ertex(evw);
8 tw ← tv; /* initialize arrival time at w */

9 lg ← getLength(evw); /* get length of evw as lg */

/* compute travel time of edge evw */

10 while lg > 0 do
/* maximum distance which can be covered by next speed change */

11 lgmax ← speed(evw, tw) ∗ (∆t− tw mod ∆t);
12 if lg < lgmax then /* w is reached before next sample */

13 lg ← 0 ;

14 tw ← tw + lg
getSpeed(evw,tw) ;

15 else /* next sample occurs before reaching w */

16 lg ← lg − lgmax;
17 tw ← tw + lgmax

getSpeed(evw,tw) ;

18 queue.push((w, v, tw));

19 while d 6∈ settled;
/* browse parent vertices starting at d until s is reached */

20 parent← getParentV ertex(d);
21 while parent 6= s do

22 route.add(parent); /* insert into head of route */

23 parent← getParentV ertex(parent);

24 return (route)

generate a massive number of queries and solve each of them with our four routing
strategies. Hence, for a given route R = q(s, d, ts), by varying the departure time ts,
we can track the changes of R as a vehicle experiences congestion along the route

4.1. Methodology 57

Figure 4.1: Work�ow for the stretch factor quanti�cation of not using real-time
data.

from s to d, at di�erent times of the day.
We insist on the fact that we do not simulate the deployment of multiple vehicles

on the road network at once. Indeed, we do not have any means to incorporate the
added congestion due to those vehicles, as one might expect in a mobility simulation
tool. Instead, we consider each query as representing a probe vehicle, to measure
the impact of the measured tra�c (from our datasets) on its route (and not the
inverse).

We apply here the following work�ow to quantify the interest in exploiting real-
time data (Figure 4.1):

1. we use real vs. simulated (TAPAS) datasets, and emulate di�erent sampling
rates (from 1 to 30 min) by subsampling the datasets;

2. we randomly select 1000 pairs of source and destination vertices in each road
network;

3. for every (source, destination) pair, we generate a broad set of queries at di�erent
timestamps (every 1 min for the simulation and every 10 min on the real dataset);

4. for each query, we execute each route planning strategy to extract the route to
follow;

5. we then emulate a vehicle moving along the route returned by the algorithm in
the previous step. This way, we can accurately evaluate the actual end-to-end
travel time for each strategy at di�erent times of the day.

Finally, we use the previous results to compare the static, no re-routing, contin-
uous re-routing and ideal prediction strategies, detailed in sections 4.1.2.1, 4.1.2.2,

58 Chapter 4. Dynamic Route Planning

s1 d1

s2 d2

s3 d3

0/1 1/1

2/3 1/2

1/1

2/30/1

1/1 1/1 1/1

1/2

0/1 1/1

Diverging vertexRoute using ideal prediction

0/1 0/1 0/1 0/1

0/1 1/1 1/1 1/1 1/1

0/1

1/1 1/1 1/1 1/1

1/1 0/1 0/1

div. routes
total routes

= 2/3

Route using continuous re-routing

Diverging route segments

Figure 4.2: Diagram illustrating the process of computing the divergence ratio of a
cell.

4.1.2.3 and 4.1.2.4 respectively.
We ran all our experiments on the High-Performance Computing (HPC) at the

University of Strasbourg. We generated thousands of jobs that were executed on
Intel Xeon Sandy-Bridge nodes with 16 cores and 64GO of RAM. The combined
computation e�ort required approximately 50,000 CPU-hours.

4.1.4 Datasets

To evaluate the impact of the di�erent route planning strategies, we use real travel
times for a broad set of road segments. Additionally, we also use a simulated dataset
for comparison purposes. We rely upon:

1. the simulated TAPAS dataset: [Uppoor et al. 2014] focuses on a small Ger-
man City (Cologne), during a weekday (24 hours). It relies on the simulator
SUMO to simulate the tra�c from a large set of emulated vehicles, pseudoran-
domly selecting pairs of sources and destinations (e.g., home, o�ce). We run
the simulation using SUMO to generate a dump �le specifying the speed along
every road segment at 1-sec intervals. We subsample the dataset to get the same
sampling rate used in the real dataset.

2. a real dataset: we use the dataset of three major cities (New York, London,
and Chicago) for which HERE [HERE Technologies 2018] provides a �ne-grain
estimation of the speeds for the most important road segments. We collected
three months (i.e., from September 21st to December 18th 2017) worth of data
at a sampling rate of 1 min, which allows an accurate estimation of the actual
travel time experienced by users. Additionally, we also use the city of Cologne,
for the same geographical area and during the same time window as the TAPAS
dataset for a fair comparison.

4.1. Methodology 59

4.1.5 Metrics for the Performance Evaluation

We now detail the metrics we used to compare the di�erent routing strategies.

4.1.5.1 Identi�cation of congestion

To identify the rush hour period, we compute the Congestion Factor (CF) of each
query as the ratio of the optimal travel time (using the ideal routing strategy) to the
free-�ow travel time. In the TAPAS dataset, the free-�ow speed of a road segment
corresponds to its speed limit. In the real dataset, the free-�ow speed was provided
as the average measured speed during low-volume periods and depends on the road
characteristics such as lane width.

Hence, given a query R = q(s, d, ts), the congestion factor of the end-to-end
route R is de�ned as:

CF [R] =
TTime[R, ideal]

TTime[R, freeflow]
(4.1)

To analyze more clearly the behavior of each routing strategy, we need to clas-
sify the routes according to their congestion level. For this purpose, we de�ne for
each route its tra�c �ow (TF) metric, which represents the congestion of its most
congested road segment. For each route R = q(s, d, ts), we measure the level of
congestion of each road segment ri ∈ R. More precisely, the congestion level corre-
sponds to the relative speed decrease compared with free-�ow conditions:

TF [r] = max

(
speed(ri, t)

speedff (ri)

)
ri∈R

(4.2)

where speed(ri, t) corresponds to the speed at time t for the road segment ri, and
speedff (ri) to its speed in ideal conditions (i.e., free �ow). TF = 1 corresponds to
free-�ow conditions, and TF = 0 corresponds to a complete halt of all vehicles on
one of its road segments.

4.1.5.2 Travel Time Stretch and Gain Factors

We will use the stretch factor in travel time to compare the di�erent strategies.
The ideal strategy provides, by de�nition, the lowest end-to-end travel time and
represents our lower bound. The stretch factor for a query q(s, d, ts) is de�ned as:

SF [q] =
TTime[q, algo]

TTime[q, ideal])
(4.3)

where TTime[q, algo] represents the end-to-end travel time for the route returned by
the algorithm algo (static/no re-routing/continuous re-routing/ideal) for the query
q. Notice that SF [q] ≥ 1, and hence, the higher the stretch factor gets, the worse
is the performance of algorithm algo compared to the ideal.

To speci�cally focus on the gain achieved by re-routing vehicles after their depar-
ture, we also compute the gain factor. It corresponds to the relative gain in travel
time through the path selected by the prediction-based and the redirecting strategies
compared with the static one (i.e., without redirection after the departure).

60 Chapter 4. Dynamic Route Planning

4.1.5.3 Identi�cation of divergences

We focus on the continuous re-routing strategy to precisely determine where a vehicle
is practically re-routed because the congestion has changed. Practically, we identify
the divergence vertices, i.e., geographical locations where the next edge is di�erent
with or without rerouting. Formally, given two routes R1 and R2 that share at
least the same �rst and last vertices, we de�ne their diverging vertices as the set
{j ∈ V | ∃i, k, w ∈ V | (eij , ejk) ∈ R1 ∧ (eij , ejw) ∈ R2 ∧ k 6= w}.

We construct a grid overlay where each cell is a 10 × 10 square meters. We
consider a large number of route queries (pairs of sources/destinations). We execute
the route computation for each query at di�erent instants covering to cover the
whole dataset. For each cell celli, we consider all the routes that cross this cell.
We compute its divergence ratio (0 ≤ div[celli] ≤ 1) as the ratio of the number of
diverging routes to the number of total routes. A route is diverging if the routes
with and without the re-routing strategy are di�erent for at least one instant of the
dataset. Hence, a cell with a high divergence ratio means that more vehicles are
re-routed when crossing this cell.

Some cells may be traversed by only a few routes, leading to statistically mean-
ingless results. Thus, we only consider cells traversed by a signi�cant number of
routes (300 in this case).

4.2 Experimental Evaluation

In a road network with no congestion, all routing strategies should return optimal
routes. Hence, our �rst goal is to distinguish the critical parts of the dataset by
identifying the rush hours in each city. The remainder of the chapter will solely
focus on evaluating the presented routing strategies during rush hours only.

We also provide a visual, interactive interface to showcase a sample of the NYC
dataset and obtained results at http://its-icube.com/. Each query is represented
individually, to visually represent the temporal characteristics of each route all along
the week. In particular, we can identify the diverging vertices, as well as the evolu-
tion of the congestion.

4.2.1 Absolute Travel Time and Rush Hours

Figure 4.3 illustrates the CF in the Cologne TAPAS dataset. As expected, we
identify the rush hours in the morning (6:00-9:00) and afternoon (15:00-19:00) of
the working day. The optimal travel time is almost six times longer than the free-
�ow travel time during these two periods.

Figure 4.4 illustrates the congestion factor for the experimental datasets. We
focused uniquely on Thursday, Friday, Saturday, and Sunday to provide readable
charts (the remaining weekdays display similar characteristics to Thursday). We
can derive the following observations:

http://its-icube.com/

4.2. Experimental Evaluation 61

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time [hour]

1

2

3

4

5

6
Co

ng
es

tio
n

Fa
ct

or

Figure 4.3: Congestion Factor distribution in Cologne simulation, Germany, over a
period of 24 hours.

1. some queries bene�t from travel times smaller than the free-�ow. They corre-
spond to very short distances (a few hundred meters) when streets are empty;

2. we observe the rise in congestion starting at 6:00 and intensifying in the afternoon
with a peak at 17:00.

3. we can easily make a distinction between working days and weekends, which are
much less congested.

Similar observations hold for London and Chicago.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time [Hour]

1.0
free-flow

1.5

2.0

2.5

3.0

3.5

4.0

Co
ng

es
tio

n
Fa

ct
or

Week Day
Thursday
Friday
Saturday
Sunday

Figure 4.4: Congestion Factor distribution in New York, based on weekday and
daytime over a period of 3 months.

4.2.2 Travel Time Stretch and Gain Factors

We now compare the achieved travel time for each routing strategy. In particular,
Fig. 4.5 illustrates the stretch factor for the TAPAS dataset (left) vs. the real
datasets (right). The stretch factor denotes the travel time increase compared with
the shortest path, with an ideal dataset (i.e., with ideal predictions). We clipped
the plot at SF = 3, as it reaches ≈ 6 in the simulation.

62 Chapter 4. Dynamic Route Planning

Cologne_sim Cologne New York London Chicago
1.0

1.5

2.0

2.5

3.0
S
tr

e
tc

h
 F

a
ct

o
r

Algorithm
static

no re-routing

continuous re-routing

Figure 4.5: Stretch factor of the static, no re-routing and continuous re-routing
algorithms on both the TAPAS (left) and the real (right) datasets.

10 20 30 40 50 60 70 80 90 100
Traffic Flow [%]

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Tr
av

el
 T

im
e

Ga
in

 F
ac

to
r

n:15384 n:13598 n:11002 n:9608 n:9214 n:6258 n:3186 n:3034 n:2260 n:920

Algorithm
continuous re-routing gain
ideal routing gain

Figure 4.6: Travel time gain of continuous re-routing and ideal routing algorithms
over the no re-routing algorithm as function of tra�c �ow in New York

The static routing strategy provides, as expected, the longest travel time. How-
ever, the distribution is signi�cantly di�erent between the simulation and the real
dataset. With TAPAS, 28% of the queries have an SF greater than 1.5. In contrast,
we only report 1.6% of the queries in Cologne and approximately 4% in New York,
London, and Chicago. In Cologne, the SF using either the no re-routing or continu-
ous re-routing strategies yields optimal travel times most of the time. Only ≈ 12%

of the queries are characterized with a stretch factor greater than 1. In TAPAS,
though, more than 75% of the queries have a SF > 1 even when using continuous
re-routing. Moreover, for several queries in the simulation, travel time is worse when
using continuous re-routing rather than no re-routing. The high variability of con-
gestion profoundly a�ects re-routing in the simulation as a vehicle might engage in
a seemingly faster alternative route only to become more congested than the initial
route. In New York, London, and Chicago, approximately 75% of the queries bene�t
from ideal travel times when using continuous re-routing.

To further comprehend when continuous re-routing is advantageous, we pinpoint
the travel time gain it o�ers (compared to no re-routing) based on the congestion
level (Fig. 4.6). We normalize the travel time di�erence of using continuous re-
routing (and ideal routing for reference) over the no re-routing strategy.

4.2. Experimental Evaluation 63

As expected, re-routing is relevant only when congestion occurs. The gain is,
however, often negligible when the actual speed is close to 50% the speed limit. For
very congested routes (TF ≤ 10%), we reduce the travel time signi�cantly by re-
routing the vehicle. Exploiting ideal predictions allows the gain to be even higher,
to choose a better route: the best route is selected, before the congestion's increase.

Conclusion: continuous re-routing signi�cantly reduces travel time for most
queries. In New York City, we can reduce by 15% (1st quartile), which seems to
justify the usage of a smart route planning strategy. However, predictions only
marginally decrease the travel time for all the measured datasets. The tra�c con-
ditions seem to evolve smoothly, and redirecting the vehicle when the congestion
occurs appears as a su�cient strategy. Clearly, continuous re-routing is essential
to re-route around highly congested road segments. When the road network is less
congested (TF ≥ 40%), the gain factor quickly converges to zero.

4.2.3 Impact of Sampling Rate on Travel Time

For the continuous re-routing algorithm, the sampling rate ∆t impacts both travel
and execution times. For �ne-grained values, the algorithm is aware of the latest
changes in tra�c congestion and can re-route accordingly. However, it may also
re-compute unnecessarily the routes, increasing execution time signi�cantly. Our
goal is thus to determine the right sampling rate for a good travel/execution time
trade-o�.

By varying the sampling rate ∆t from 1 to 30 minutes, we re-compute the queries
we generated using continuous re-routing. We only consider queries with a travel
time TTime[q] ≥ 60min to make sure re-routing has potentially occurred for the
largest sampling rate ∆t = 30.

Figure 4.7a illustrates the distribution of the stretch factor as a function of the
sampling rate. Obviously, a higher sampling rate means inaccurate speed values.
Thus, the route planning strategy will take sub-optimal decisions. However, the
re-routing strategy performs well, even for average sampling rates. Surprisingly, in
New York, for instance, the road network variations can be e�ciently handled even
if measurements are reported every 10 minutes.

Figure 4.7c illustrates the execution time for New York. At ∆t = 10min, the
execution time drops from ≈ 500ms to less than 50ms, which provides a good
trade-o� between travel time and execution time. Of course, there exists a myriad
of algorithmic techniques in the literature, capable of signi�cantly reducing the
execution time. Considering that ∆t dictates the number of times we have to re-
compute the route, we are only interested here in the rate of the change of execution
time as ∆t increases.

Figure 4.7b represents the execution time for the TAPAS dataset. In complete
contradiction with the real dataset results, the stretch factor distribution is almost
the same regardless of the sampling rate value. Again, we observe that congestion
changes too fast throughout the whole road network (even at ∆t = 1min), causing
the algorithm to inevitably re-route through highly congested road segments.

64 Chapter 4. Dynamic Route Planning

1 2 3 4 5 10 15 20 25 30
Sampling Rate [min]

1.0

1.2

1.4

1.6

1.8

2.0

S
tr

e
tc

h
 F

a
ct

o
r

Road Network
New York

London

Chicago

(a) Travel time stretch factor in New York, London and Chicago

1 2 3 4 5 10 15 20 25 30
Sampling rate [min]

1.00

1.25

1.50

1.75

2.00

2.25

St
re

tc
h

Fa
ct

or

(b) Cologne simulation stretch factor

1 2 3 4 5 10 15 20 25 30
Sampling Rate [min]

0

500

1000

1500

Ex
ec

ut
io

n
Ti

m
e

[m
s]

(c) New York execution time

Figure 4.7: Impact of sampling rate on travel time in Cologne simulation, New York
and London (a, c and d) and execution time in Cologne simulation (b) using the
continuous re-routing algorithm.

Conclusion: we can accommodate average sampling rates when using real-time
data. Five minutes provide enough accuracy (for all our road networks) to identify
the best routes while reducing the computational or bandwidth cost.

4.2.4 Route Divergence Patterns

Figure 4.8 illustrates the distribution of the diverging vertices in each road network,
as de�ned in section 4.1.5.3. A divergence vertex corresponds to a crossroad where
at least one vehicle has been re-routed to reduce travel time (i.e., tra�c congestion
has changed since its departure). The divergence ratio counts the ratio of routes
(source/destination) for which the path diverges when crossing the cell, with and
without the re-routing strategy.

The road networks in the real dataset exhibit a small set of diverging vertices
with a high divergence ratio, typically almost all diverging vertices have a divergence
ratio ≤ 0.5. This means that only 50% of the routes that cross these cells are re-
routed at least once during the whole duration of the dataset.

Inversely, the simulated dataset (with TAPAS) exhibits a signi�cant number of
diverging vertices. TAPAS generates pseudorandomly the tra�c and estimates the
level of congestion, and the speed for each road segment. It seems that TAPAS
exhibits a very di�erent pattern compared with the real datasets.

Figure 4.9 summarizes the obtained divergence patterns for both the TAPAS

4.2. Experimental Evaluation 65

Cologne_sim Cologne New York London Chicago

0.0

0.2

0.4

0.6

0.8

1.0

V
e
rt

e
x
 D

iv
e
rg

e
n
ce

 R
a
ti

o

n:6575 n:108 n:6771 n:4677 n:5902

Figure 4.8: Diverging vertices divergence ratio distribution.

5 km

(a) Cologne simulation

5 km

(b) Cologne

10 km

(c) New York

Figure 4.9: Diplaying the divergence ratio level (proportional to the red shade in-
tensity). The yellow dots depict diverging vertices with a divergence ratio ≥ 0.5.

and real datasets. We only represent here New-York City since other real datasets
behave similarly. Each graph corresponds to a heat map (a red cell corresponds to a
cell with a high divergence ratio). We also highlighted the divergence vertices with
a divergence ratio ≥ 0.5 (yellow dots).

Remark: while we identify many cells with a high divergence ratio in all regions,
we notice in the TAPAS dataset that the divergence seems present everywhere. We
assume that this unrealistic behavior is a consequence of Gawron's tra�c assign-
ment algorithm [Gawron 1998] used to generate the dataset. In fact, the raw dataset
required several adjustments [Uppoor et al. 2013] to repair inconsistent tra�c be-
havior. It includes, for instance, adjusting the O/D matrix to only account for the
estimated vehicular tra�c in the region and adapting the rate of injected vehicles
during the simulation to reduce excessive congestion. In practice, routing strategies
seem more complex, and the trips seem to follow a uniform distribution.

Conclusion: many cells exhibit a large divergence ratio, and we cannot di-
rectly use this metric to trigger the route re-computation e�ciently. However, we
identi�ed only a small number of diverging vertices. Thus, we would be able to
execute the computation only when the route crosses these speci�c points, making
the computation much more e�cient. We would reduce the processing load without
increasing the end-to-end travel time.

66 Chapter 4. Dynamic Route Planning

4.3 Conclusion

Modern intelligent systems guide vehicles through the fastest routes to avoid con-
gested areas. However, they need to exploit real-time data, where the speed of each
road segment has to be known precisely. Even worse, this real-time feature has a
cost, in bandwidth (data collection), and computation (re-computation of the route
to the destination). Interestingly, the no re-routing strategy provides close to ideal
travel times most of the time. Using the continuous re-routing strategy can further
improve travel time by avoiding very congested areas when they appear.

We also used a simulated dataset (TAPAS) that leads to very di�erent results
concerning the travel time and the re-rerouting gain. TAPAS seems not able to
capture the road network characteristics accurately, and particularly its dynamics.
This observation speaks in favor of working with real datasets to model realistic
environments.

Addressing the problem of route planning in dynamic road networks is cru-
cial for developing practical applications based on realistic features of the network.
Nonetheless, most trips often combine several means of transportation such as cy-
cling and public transit. In the following chapter, we extend the problem of route
planning to multimodal networks.

Chapter 5

Multimodal Route Planning

Contents

5.1 Model and Assumptions . 68

5.1.1 Road Network (private cars, taxis, and rental vehicles 70

5.1.2 Foot Network . 70

5.1.3 Bicycle Network . 70

5.1.4 Public Transit Network . 71

5.1.5 Assembling the Multi-modal Network 72

5.2 MUSE: The Algorithm . 74

5.2.1 Stage 1: Partitioning The Graph 75

5.2.2 Stage 2: Computing The Overlay 77

5.2.3 Stage 3: Computing Queries 83

5.3 Experimental Evaluation . 84

5.3.1 Evaluation Setup . 84

5.3.2 Preprocessing . 85

5.3.3 Queries . 88

5.4 Conclusion . 93

Multimodal algorithms are of increasing importance for route planning to exploit
the diversity of transportation infrastructure fully. The goal here is to compute a
route that combines several modes of transportation according to prede�ned user
constraints. Transportation modes that are typically considered are walking, cy-
cling, driving, and public transit. We also consider rental vehicles and bicycles. A
crucial aspect of multimodal routing is the route feasibility, that is, we must exclude
impossible trips such as driving the private car between two bus rides. E�cient
multimodal route planning a di�cult task considering the large size of multimodal
networks, the structural discrepencies between the road and public transit networks,
the user modal constraints, and path feasibility.

Customizable Route Planning (CRP) [Delling et al. 2011a] is a road network
algorithm based on multilevel separators. Initially, the graph is partitioned, aiming
to minimize the number of boundary vertices. Then, an overlay is constructed by
computing full-cliques across all boundary vertices within each cell in the partition.
Finally, during a query, bidirectional-Dijkstra is run on the query graph combining
the source and target cells and the overlay, allowing to skip most of the vertices in
the underlying graph.

68 Chapter 5. Multimodal Route Planning

We detail here MUSE, a MUltimodal SEparators-based algorithm, extending
CRP to handle the multimodal travel computation. By combining label constraints
with a pro�le label correcting algorithm during preprocessing, we can handle modal
constraints and time-dependency e�ciently. Our main contributions are the follow-
ing:

• We present a multimodal graph partitioning approach, with a label correcting
algorithm to compute multimodal time-dependent cliques e�ciently;

• We associate the multimodal graph to a labeled automaton, to reduce the number
of vertices in the product graph. It reduces the memory footprint, and achieves
faster preprocessing times;

• We experimentally evaluate our algorithm on a country-scale network with di�er-
ent heuristics for faster queries.

• We provide an open-source tool to construct multimodal networks and a uni�ed
dataset to serve as a benchmark for multimodal route planning algorithms.

We �rst detail in section 5.1 the model we used to represent a realistic multi-
modal network. In section 5.2, we explain each stage of our solution. Mainly, we
discuss partitioning in section 5.2.1, the process of computing a multimodal overlay
in section 5.2.2, and the algorithm and heuristics used to answer queries in section
5.2.3. The experimental setup, the results, and associated discussion are available
in section 5.3. Finally, in section 5.4, we detail our conclusion and possible future
work.

5.1 Model and Assumptions

Transportation networks are usually modeled with graph structures for
their intuitiveness and the extensive algorithmic toolbox of graph theory
[Thomson & Richardson 1995]. Mainly, we model a multimodal network using a
labeled directed graph with time-dependent edge costs. It consists of multiple lay-
ers of unimodal networks that are interconnected via link edges.

We detail in sections 5.1.1 through 5.1.4 each unimodal network followed by the
process of computing link edges in section 5.1.5 to obtain the multimodal graph.
For better readability, we summarize recurring notation in table 5.1. Following are
de�nitions consistently used throughout the chapter:

A directed Graph G(V,E) consists of a set of vertices v ∈ V , and directed edges
(v, w) ∈ E connecting vertices v, w ∈ V . A vertex is an abstraction of a physical
entity in the network: an intersection of road segments in the road network or
a station in the public transit network. Throughout the chapter, all graphs are
considered directed unless otherwise speci�ed.

The Edge Cost Function c(v, w, τ) (also written fvw(τ) in the literature) rep-
resents the time required to travel when departing at time τ from vertex v to w,

5.1. Model and Assumptions 69

Table 5.1: keywords and symbol de�nitions

notation de�nition

G(V,E) or G Directed graph with V vertices and E edges.
G(V,E,Σ) or GΣ Directed graph, labeled with alphabet set Σ.

(v, w) ∈ E Directed edge from vertex v to w.
c(v, w) The cost, represents travel time [s] of (v, w).
c(v, w, τ) Time dependent cost of (v, w) at time τ .
len(v, w) Physical length [m] of (v, w).
lab(v, w) Label attached to (v, w).
P = {v0, v1, .., vk} or Pv0vk A path is an ordered set of vertices vi ∈ V (G).
c(P, τ) The cost of path P when departing at time τ .
d(r, t, τ) The cost of the shortest path Prt departing at τ .
word(P) = ∪k−1

i=0 lab(vi, vi+1) The sequence of edge labels associated to path P .

A = {S,Σ, δ, s0, F} Non-deterministic Finite Automaton (NFA) con-
sists of a set of states S and alphabet Σ, a tran-
sition function δ, an initial state s0, and a set of
�nal states F . See section 5.2.2.

G(V ×, E×) or G× = GΣ ×GA Product graph merging graph GΣ and graph au-
tomaton GA.

〈v, s〉 ∈ V × Product vertex is a pair of vertex v ∈ V (GΣ) and
a state s ∈ S(A).(

〈v, s〉, 〈w, s′〉
)
∈ E× Product edge, requires a valid transition s′ ∈

δ(s, lab(v, w)).

which is referred to as the travel-time. The cost is a periodic positive piece-wise
linear function f : Π → R+ where Π = [0, p] ⊂ R with a period p ∈ N. If f is
constant, then the edge belongs to a time-independent network such as the foot
or bicycle networks; otherwise, the edge is said to be time-dependent. In public
transportation, the period is typically one week. In any case, the FIFO property is
maintained to ensure polynomial complexity [Kaufman & Smith 1993]. Also known
as the non-overtaking property, it holds that for all τ1, τ2 ∈ Π such that τ1 ≤ τ2

then τ1 + f(τ1) ≤ τ2 + f(τ2). In other words, waiting at a vertex never pays-o�.

A Path P = {v0, v1, .., vk}, also written Pv0vk , is an ordered sequence of vertices
vi ∈ V . Its associated cost is recursively evaluated with the edge cost of its edges
by c(v0, v1, τ) + c

(
{v1, .., vk}, τ + c(v0, v1, τ)

)
when departing from v0 at time τ . For

a query q(r, t, τ) with r, t ∈ V , our goal is to compute the shortest path P with the
smallest cost denoted by d(r, t, τ).

70 Chapter 5. Multimodal Route Planning

5.1.1 Road Network (private cars, taxis, and rental vehicles

Structurally, road networks consist of intersecting road segments. Each segment is
characterized by its length and a speci�c speed-limit, which can be used to derive the
cost function. In its graph representation G(V,E), each edge (v, w) ∈ E represents
a road segment, and the vertices v, w ∈ V mark the junction of two or more road
segments.

For a realistic model, though, dynamic tra�c conditions must be taken into
account as speed can unpredictably vary. Thus, we rely on speed measurements to
construct the cost function. For each segment, we collect a set of speed values over
a time window Π sampled at a �ne-grained rate ∆t (we detail our dataset in the
experimental evaluation of section 5.3). Then, for each edge (v, w) we construct its
speed pro�le as a piece-wise linear function fvw. During query time, we compute
the cost c(v, w, τ1) of departing from v at time τ1 by evaluating the area under
the speed-curve, adjusting the arrival time τ2 such that:

∫ τ2
τ1
fvwdt = len(v, w)

where len(v, w) is the length of the edge. This is a trivial geometric computation
considering the function is piecewise linear. Solving the integral for τ2, travel-time
is given by c(v, w, τ1) = τ2 − τ1.

Moreover, getting onto or o� of a car is only permissible where parking is possible.
Hence, for each vertex belonging to a road segment where parking is authorized
(typically excludes highways, tunnels, bridges, and sidewalks), we label it as an
eligible parking spot v ∈ V park ⊂ V . Furthermore, instead of restricting the road
network to private driving only, we consider alternative options, including rental
vehicles and on-demand services such as Uber and taxis. While on-demand vehicles
are typically accessible at every vertex v ∈ V park (we discuss the additional incurred
waiting cost in section 5.3), rental vehicles are only available at rental stations.
Thus, we add a vertex v ∈ V rent ⊂ V for each rental station and insert an edge
(v, w) ∈ E to connect the station to the closest junction w in the road network.

5.1.2 Foot Network

The foot network is represented by a time-independent graph G(V,E). Vertices V
represent junctions and edges E are added for each footpath including sidewalks,
bridges, and stairs. The cost of an edge (v, w) is thereby a constant given by
c(v, w) = len(v, w)/Swalk where Swalk represents the average pedestrian walking
speed.

5.1.3 Bicycle Network

Similar to a foot network, the bicycle network is based on a time-independent graph
G(V,E) where vertices V represent junctions and edges E depict either cycling lanes
or road segments where biking is allowed (typically non-motorway road segments).
The cost c(v, w) = len(v, w)/Sbicycle is evaluated based on average cycling speed
Sbicycle.

5.1. Model and Assumptions 71

Station A Station B

0

vA vB

v1

v2

v3

v4

v5
route 3

route 1

route 2 transfer

transfertransfer

transfer

0

0

0

0transfer
conditional

station vertex

route
vertex

Figure 5.1: Time-dependent graph representing the public transit network

In addition to private bicycles though, bicycle-sharing systems are very common
in urban cities and are e�cient for fast transfers between nearby public transit
stations. Rental bicycles must, however, often be picked up and returned at speci�c
locations (bicycle stations). Thus, we add a vertex v ∈ V rent ∈ V for each rental
station and an edge (v, w) between the station and its closest junction in the bicycle
network.

5.1.4 Public Transit Network

The public transit network is based on a timetable T = (Z,S, C) which consists of
a set of shuttle vehicles Z, a set of stations S, and a set of elementary connections

C. An elementary connection is a 5-tuple c = {Z, Sd, Sa, td, ta} ∈ C and represents
a unique shuttle Z ∈ Z departing from a station Sd ∈ S at time td and arriving at
another station Sa ∈ S at time ta without a stop at any intermediate station.

We de�ne a trip as a sequence of elementary connections {c0, c1, .., ck} ful�lled
by a single shuttle such that ∀i = 1, 2, .., k if ci = {Z(i), Sd(i), Sa(i), td(i), ta(i)}
then Z(i) = Z(i− 1) and Sd(i) = Sa(i−1). A trip typically denotes the itinerary of
a single vehicle scheduled at a particular time. We group multiple trips into a single
route, which is time-independent and denotes an ordered sequence of stations. To
obtain the set of routes R, we iterate over all trips and extract for each of them, a
route r = {S0, S1, .., Sk} that we add to R i� r /∈ R. We denote by RS ⊂ R the
subset of routes passing through station S ∈ S, that is ∀r ∈ RS , S ∈ r.

We have to model the transfers between di�erent trips and routes, to construct
a realistic time-dependent graph G(V,E) from the timetable T . We proceed as
follows:

• ∀s ∈ S we add a station vertex vs ∈ VS ⊂ V . Let us denote by fsta(S)→ VS the
bijective function connecting each station s ∈ S to its station vertex vs ∈ VS .

• ∀s ∈ S, ∀r ∈ RS , we add a route vertex vr ∈ VS , modeling the platform in the
station for the corresponding route. Let us denote by froute : (S, RS) → VS the
bijective function connecting each pair of station and route to its route vertex.

72 Chapter 5. Multimodal Route Planning

• ∀s ∈ S, we add conditional transfer edges (vri , vrj) between route vertices
vri , vrj ∈ VS of the same station. Their cost is the transfer time (walking time)
from one platform to another;

• ∀s ∈ S, ∀r ∈ RS , we add a transfer edge (fsta(s), froute(s)) ∈ E between the route
vertex and its corresponding station vertex. If the transfer time is not known ex-
actly, we cannot create conditional transfer edges. Thus, we compute the average
walking time to go to a central point in the station, denoting a �xed transfer cost
c(froute(s), fsta(s)) toward any other platform. As c(froute(s), fsta(s)) includes the
full transfer cost, we add an edge (fsta(s), froute(s)) with c(fsta(s), froute(s)) = 0

to preserve the connectivity: we consider that the transfer time has already been
considered when the passenger arrives at the station vertex.

These transfer edges are also used when a passenger exits the transit network.

• ∀c ∈ C, we add a connection edge representing one "edge" of a route (served by a
collection of shuttles). A connection edge (vri , vrj) is inserted between the route
vertices vri ∈ VI and vrj ∈ VJ where I = Sd(c) and J = Sa(c) (a shuttle leaves
Sd(c) and arrives at Sa(c)). Its cost c(vri , vrj , τ) = ta(c)−td(c) is time dependent,
and depends on the timetable.

The resulting graph is illustrated in �gure 5.1. A hypothetical journey may
begin at station A at τ = 8:30. There, we wait for the next train departing from
the second platform (vertex v2) towards station B via route 2. The cost function
of edge (v2, v4) denoted fv2v4 is depicted in �gure 5.2. Hence, the total cost for the
traversal of (v2, v4) at t = τ is c(v2, v4, τ) = fv2v4(t = 8:30) = 135min, comprising
both the waiting and travel time. Because the slope dfv2v4(t)/dt = −1, waiting
time is given by the elapsed time between arrival and the next departure (8:30 →
9:45). Upon arriving to station B at 10:45, we disembark on the platform denoted
by vertex v4 and proceed to transfer to another train traveling along route 3, costing
us c

(
v4, vB, τ + c(v2, v4, τ)

)
additional time.

5.1.5 Assembling the Multi-modal Network

The multimodal network combines all of the road, foot, bicycle, and public transit
networks within a single data structure: a labeled directed graph G(V,E,Σ). To
distinguish the networks, we attach a unique label σ ∈ Σ = {c, f, b, p} to each edge,
where c, f , b, and p stand for car, foot, bicycle, and public respectively. Let us
denote by Gσ(Vσ, Eσ) the uni-modal graph labeled σ ∈ Σ. The vertex-set of the
multi-modal graph G is given by V = ∪σ∈ΣVσ and its edge-set E = ∪σ∈ΣEσ ∪Elink

where Elink contains the set of link edges allowing modal changes inG, such as taking
a bus after a short walk, by linking the di�erent uni-modal networks together.

Intuitively, any transition from one network to another should be mediated via
the foot network, as some walking is usually required for any modal change. De-
pending on the network however, transitions to and from the foot network are only

5.1. Model and Assumptions 73

t

60 min

f v

travel-time

w
ai

ti
ng

-t
im

e

//

//

30 min

9h458h30

2v4

Figure 5.2: Piecewise linear function describing the cost of edge (v2, v4) from �gure
5.1. Six trains are scheduled: four regular trains of 60 min travel-time and two fast
trains of 30 min travel-time. Upon arriving to the station at 8:30, the next shuttle
is a regular train scheduled to depart at 9:45.

allowed at speci�c locations, and thus, we select a subset of link vertices V link
σ ⊆ Vσ

from each graph Gσ:

Foot ↔ Road: The road network is accessible everywhere a car is allowed to park.
Furthermore, rental vehicles are accessible at rental stations and. Thus, all parking
spots and rental stations are marked as link vertices Vclink = Vc

park ∪ Vcrent.

Foot ↔ Bicycle: Considering that bicycles can be used almost everywhere walking
is possible (except on stairways, for instance), every vertex v ∈ Vb is a link vertex
from which we can access the foot network. Hence, Vb

link = Vb∪Vbrent which includes
rental stations as well.

Foot ↔ Public Transit: Public transit stations are accessible via station vertices.
Hence, ∀vS ∈ Vp where vS is a station vertex, we label it as a link vertex and add it
to Vplink.

Then, for each vertex v ∈ V link
σ∈Σ, we must compute the closest vertex w ∈ Vf in

the foot network and add the link edges (v, w), (w, v) ∈ Elink. Additional labels are
added to Σ as we label link edges according to the type of transfer:

• link edges (v, w)|v ∈ Vf and w ∈ Vc
rent denote transfers to car-rental stations,

and are labeled with the label cr.

• link edges (v, w), (w, v)|v ∈ Vf and w ∈ Vbrent are labeled with lab(v, w) = br and
lab(w, v) = bs which imply renting and restoring the bicycle respectively.

• the remaining link edges (v, w) are labeled lab(v, w) = t denoting a regular modal
transfer.

74 Chapter 5. Multimodal Route Planning

Relying on a brute force approach to compute link edges is costly: we have to
scan the whole foot network to identify the closest foot-vertex for each vertex in the
bicycle network, leading to a quadratic complexity of O(Vb×Vf). A better approach
relies on clustering the foot vertices using a 2d-tree [Bhatia & Others 2010] based
on latitude and longitude, which is a suitable data structure for solving the nearest
neighbor problem in logarithmic time.

It is worth noting that this preprocessing is executed once, even if the tra�c
congestion evolves later: multimodal links are not time-dependent. Thus, the cost
of a link edge c(v, w) is �xed and depends on the type of transfer. It includes the
required walking-time to transfer to or from the foot network and an additional cost
to consider either parking-time, processing at a rental station, or for instance, the
time it takes to secure a bicycle. Nonetheless, we must also ensure path feasibility.
That is, if the private car (bicycle) is left behind at some point during the trip in
favor of using the bus, we would not be able to use our private car (bicycle) again.
Similarly, a scenario in which the private car is used after taking a train is not valid.
However, the road (bicycle) network remains accessible via other means such as a
taxi or from a rental station. Such constraints are not embedded within the graph
but rather, are dealt with using an automaton, as detailed in the upcoming section.

5.2 MUSE: The Algorithm

We detail here MUSE, a speedup technique to Regular Language Constrained Di-

jkstra (DRegLC) based on graph separators, to solve the multimodal shortest path
problem. By dividing the multimodal graph GΣ into multiple smaller regions, we
can precompute an overlay graph H signi�cantly smaller than GΣ and use it to
compute queries much faster. MUSE runs in three stages: (i) partitioning the graph,
(ii) computing the overlay, and (iii) solving queries. The �rst two stages belong to
the preprocessing phase.

In the �rst stage of the preprocessing, we partition the graph GΣ to split it into
k cells {C0, C1, .., Ck} so that we minimize the average number of boundary vertices
per cell (section 5.2.1). Regardless of the time-dependent nature of GΣ, partitioning
is run only once, as it only depends on the topology of the graph. In the second stage
of preprocessing, we compute for each cell a full clique, essentially adding a directed
edge for each pair of boundary vertices (section 5.2.2). It is worth noting that the full
clique has to be recomputed when the weights change. The overlay graph consists
of all cliques and cut edges, i.e., edges connecting two di�erent cells. The cliques are
constrained by an automaton, that de�nes the sequences of modes that are allowed
by the user. Furthermore, considering that the graph contains time-dependent edges,
the weight of clique edges can also, possibly, be time-dependent. Therefore, we run
pro�le queries to compute the cost function of each clique edge. Even though pro�le
queries are costly, cliques are independent, and the computations are parallelized,
allowing to compute the whole overlay H for large instances in a few minutes only.

During the query phase, we compute the shortest path P = q(r, t, τ) by running

5.2. MUSE: The Algorithm 75

DRegLC on the query graph Gq = Gr∪H∪Gt which consists of the subgraphs Gr and
Gt, induced by the cells containing the source and target vertices r and t, respectively
and the overlay H. We can improve query times with a goal-directed version of the
algorithm called MUSE?. Better speed ups are possible using heuristics (MUSESV)
with a tradeo� on correctness (section 5.2.3).

5.2.1 Stage 1: Partitioning The Graph

Planar graphs (i.e., graphs that can be drawn on a �at surface without any intersect-
ing edges) belong to a class of sparse graphs with valuable topological properties.
Most importantly, planar graphs can be partitioned in linear time with small sepa-
rators [Djidjev 1982].

Given an undirected graph G(V,E), a partition on G is a collection
{C1, C2, .., Ck} where each element Ci ⊆ V is referred to as a cell. Partition-
ing breaks apart the vertex-set V into k cells V = ∪ki=1Ci with no overlap
Ci ∩ Cj = ∅|i 6= j. Most importantly, the goal is to compute a partition such
that the number of boundary vertices is minimized. An edge (v, w) is a cut edge if
both v and w are boundary vertices belonging to two di�erent cells.

Road networks, although not planar (due to overpasses and tunnels), can also
be e�ciently partitioned [Eppstein & Goodrich 2008, Sanders & Schulz 2012]. In a
multimodal graph, the vast majority of the vertices belong to the road network. In
fact, most foot and bicycle vertices are duplicates of road vertices (think of sidewalks
along a road segment, for instance); therefore, partitioning remains viable.

Computing ideal partitions is, however, NP-hard [Garey & Johnson 2002]; thus,
we recourse to approximations that have exhibited good results for transportation
networks. METIS [Karypis & Kumar 1998] is a Multilevel Graph Partitioning al-
gorithm that runs in three stages, as depicted in �gure 5.3. The �rst, coarsening
stage, aims at reducing the size of the graph by repeatedly merging neighboring
vertices and collapsing edges. Each iteration i, produces a coarser graph Gi than
its predecessor Gi−1. The second stage, partitioning, is run on the coarsest graph.
Finally, during the uncoarsening and re�ning stage, the graph is expanded at each
iteration i, and the partition is re�ned until the graph reaches its initial size.

Setup: our objective is to minimize the overall number of boundary vertices, re-
gardless of the number of incoming and outgoing cut edges at each cell. Therefore,
we transform the directed labeled graph GΣ into an undirected graph G(V,E) with
no labels. Furthermore, considering that the public transit network is modeled as a
time-dependent graph, the partitioning process might break apart the route vertices
of a single station across multiple cells. To avoid this, we contract all the substations
to a single vertex vs ∈ V , corresponding to a station. We also keep an undirected
edge (vs, vs′) ∈ E if there exists at least one elementary connection between any
substation of vs and any substation of v′s.

Coarsening is an iterative process where pairs of vertices are contracted together
to reduce the size of the graph. At each iteration i we obtain a coarser graph

76 Chapter 5. Multimodal Route Planning

G0

G1

G2

G3

G2

G1

G0

coarsening

partitioning

uncoarsening

Figure 5.3: Multilevel graph partitioning.

Gi(Vi, Ei), so that |Vi| < |Vi−1|. Initially, ∀v ∈ G we attribute a size label s(v) = 1.
Contracting two vertices v, w means replacing them with a new vertex x such that
s(x) = s(v) + s(w). To contract multiple vertices simultaneously, a set of edges
M ⊂ Ei is selected, such that no two edges share the same vertex, also known
as a matching. Thus, at each iteration, we compute the maximal matching, i.e.,
a matching such that no additional edge can be added, and contract all vertices
v, w|(v, w) ∈ M . Coarsening is halted when the size of the graph is su�ciently
small. Most importantly, we must ensure that |Vi| ≥ k where k represents the
number of desired cells in the partition.

Partitioning: the coarsest graph Gc(Vc, Ec) can be partitioned using Breadth-
First-Search (BFS) starting from a random vertex v ∈ Vc and growing a tree T ⊂ Vc
until |T | ' 1/2|Vc|. To obtain k partitions, the initial partitions are then recur-
sively partitioned log2(k) times. [Kernighan & Lin 1970] use a heuristic to polish
the partitioning by exchanging vertices between cells producing a smaller cut-size.

Uncoarsening and Re�ning: at each iteration i, a less coarse graph Gi is ob-
tained by expanding Gi−1. For all vertices x ∈ Vi−1, we expand x to obtain vertices
v, w ∈ Vi, and assign them to the same cell x belonged to. Kernighan Lin's heuristic
is then run again to re�ne the partition. After the last iteration, we expand the
station vertices to retrieve the public transit network and transform the undirected
partitioned graph G back to the multimodal graph GΣ.

We obtain a partitioned multimodal graph, as illustrated in �gure 5.4, where each
layer corresponds to a speci�c type of transportation. The cells of the partition are,
therefore, multimodal cells with boundary vertices located in di�erent layers.

5.2. MUSE: The Algorithm 77

Figure 5.4: Multimodal graph partition with cut edges shown in bold segments. The
multimodal cell spans across all unimodal networks. The vertices u, v, and w are
boundary vertices and the shortest paths Puw and Pvw share the subpath {x, y, ..w}.

5.2.2 Stage 2: Computing The Overlay

The partition produces a set of cells, where each cell Ci contains a set of boundary
vertices V b

i ⊂ Ci. The overlay graph H(V H , EH) of GΣ has the vertex-set V H =

∪ki=1Vi
b which consists of all boundary vertices. The goal is to compute for each

pair of boundary vertices v, w ∈ V b
i belonging to the same cell Ci, a shortcut edge

(v, w) denoting the shortest path Pvw.
Computing all shortcuts within a cell produces a clique. After computing all

cliques, the edge-set of the overlay EH = Ecut ∪ki=1 (v, w) | v, w ∈ V b
i consists of all

edge cuts Ecut together with the clique edges. This explains why we minimize the
number of boundary vertices when partitioning the graph. Computing a clique edge
(v, w) requires, however, solving the two following problems:

• The shortest path Pvw between v and w is multimodal. Therefore, we must solve
the Label Constrained Shortest Path Problem [Barrett et al. 2000] (LCSPP) to
restrict the modal sequence of Pvw.

• Edges can be time-dependent, hence, the cost of Pvw varies based on departure
time. Therefore, we must compute the pro�le of (v, w) denoting its associated
cost for all departure times.

We solve both problems simultaneously using a label correcting algorithm, which
produces a Constrained Pro�le Clique (CPC) for each cell in the partition. We �rst
detail each problem separately, then delve into the details of the algorithm.

Solving the LCSPP: Using formal languages [Harrison 1978], we can de�ne
modal constraints using regular expressions to prune prohibited edge transitions

78 Chapter 5. Multimodal Route Planning

while computing clique edges. In language theory, an alphabet Σ is a �nite set of
letters σ ∈ Σ. A word, is thereby any sequence of letters over Σ and the collection
of all possible words is the set Σ∗. A language L ⊆ Σ∗ is a subset of words that
comply to a set of speci�c rules and is considered regular if there exists a regular
expression R whose language L(R) = L.

De�nition 1 Regular Expression. A regular expression R is a set of algebraic rules

denoting a regular language L(R). Given an alphabet Σ:

1. the empty set ∅ is a regular expression.

2. any letter σ ∈ Σ is a regular expression.

3. if R1 and R2 are regular expressions, then (R1∪R2), (R1.R2), and (R1)∗ are also

regular expressions, where ∪, ., and ∗ denote the or, and, and kleene operators,

respectively.

Moreover, any regular expression can be written in the form of a non-deterministic
�nite state automaton (NFA) [Brüggemann-Klein 1993]. Formally, an NFA is a 5-
tuple A = {S,Σ, δ, s0, F} which consists of a �nite number of states S, an alphabet
Σ, a transition function δ : S × Σ → 2S , an initial state s0, and a set of accepting
states F ⊆ S. Therefore, given a directed labeled graph GΣ and an NFA A, MUSE
solves the LCSPP by computing a path in GΣ such that (i) its cost is minimum
and (ii) the word obtained by concatenating its edge labels (sequence of modes) is
accepted by A (i.e., it corresponds to an acceptable sequence of modes).

Conveniently, A can be implemented as a directed labeled graph GA. Thus, we can
solve the LCSPP with DRegLC [Barrett et al. 2000], a regular language constrained
Dijkstra algorithm, deployed on the product graph G(V ×, E×) where V × are vertices
and E× edges. The product graph G× = GΣ×GA is a composition of the underlying
graph GΣ and the automaton graph GA. A product vertex 〈v, s〉 ∈ V × is a pair of
a vertex v ∈ V (GΣ) and a state s ∈ S(A). A product edge (〈v, si〉, 〈w, sj〉) ∈ E×
is added i� there exists an edge (v, w) ∈ E(GΣ) such that si × lab(v, w) → sj is a
valid transition of δ ∈ A.

Computing a shortest path pro�le (Dp): In this section we use the term dis-

tance label of a vertex v, written l(v), to designate the tentative cost to reach v

from a source vertex r (not to be confused with multimodal labels). In a unimodal
time-dependent graph G, we call Dp a label correcting version of Dijkstra's algo-
rithm [Orda & Rom 1990] allowing to compute the pro�le function d∗(r, t) denoting
the minimum travel time of the shortest path Prt for all departure times τ . Because
of time-dependency, the algorithm does not necessarily settle a vertex v after it is
extracted from the queue. Rather, it propagates its pro�le d∗(r, v) to its neighbors
and potentially, re-inserts v into the queue (label correction) if d∗(r, v) is improved
for some departure time τ .

In that context, performing edge relaxations requires additional operations to manip-
ulate functions, rather than scalars. Therefore, we de�ne the following operations:

5.2. MUSE: The Algorithm 79

• evaluate: given a piece-wise linear function f and a time τ , evaluation returns
f(τ) in O(log|f |).
• link: given two edges (v, w) and (w, x) with cost functions f and g, respectively,
linking returns the cost function f ∗ g = f + g ◦ (f + τ) of the path (v, w, x)

with complexity O(|f | + |g|). The operator ◦ designates the composition of two
functions.

• merge: given two parallel edges (v, w) and (v, w)′, with cost functions f and g,
respectively, merging returns the cost function h = min(f, g), with minimal travel
time from u to v for any time τ . That is, merge(f, g) = min{f(τ), g(τ) | ∀τ ∈ Π}
with complexity O(|f |+ |g|).

Performing the merge operation, in particular, is computationally expensive because
we have to compute all segment intersections of the input functions f and g. This is
done using a line sweep algorithm [Bentley & Ottmann 1979] over the breakpoints
of f and g. Computing intersections is required because the merged functions are
not necessarily homogeneous, that is, the slope of the piecewise linear functions
f and g can be di�erent, rendering the merge operation non-trivial. Figure 5.5
illustrates the outcome of the link and merge operations. In this example, we are
merging (and linking) the cost function f of a road network edge with the cost
function g of a public transit edge. As illustrated, the merged function in �gure
5.5b contains breakpoints belonging to either f or g (for instance the �rst and last
breakpoint) but also breakpoints corresponding to the segment-intersections of f
and g. Furthermore, the resulting function has more breakpoints than either f or g,
and thus, memory requirements become a concern after successive merge-operations.

Nonetheless, merging can be avoided if one of the functions dominates the other;
that is, if f ≥ g, then g is kept as the result of the merge. Similarly, explicit linking
can be avoided if either function is constant. If both f and g are constant, linking is
a trivial addition. If only one function is constant, we distinguish two cases: if f is
constant, we simply translate all g segments upwards by the constant. If otherwise,
g is constant, we additionally translate all f segments left by the constant. Only if
f and g are non-constant functions, we scan their breakpoints and perform the link
operation.

Algorithm 3 details the steps of Dp, which is very analogous to the classic label
setting Dijkstra algorithm with a few adaptations to handle vertex labels which
are piecewise linear functions. At each iteration, the vertex v with the smallest
key key(v) = d∗(r, v) (i.e., it has the highest priority) is extracted from the queue
(line 4) and all of its neighboring vertices are scanned (line 7). For each outgoing
edge (v, w), we compute the distance label l(w) = d∗(r, v) ∗ fvw (link operation)
and check if it improves d∗(r, w) for some departure time. In that case, we update
the distance label, with the merge operation: d∗(r, w) = merge(d∗(r, w), l(w)) and
compute key(w) = d∗(r, w) (line 8-10). If w is scanned for the �rst time, we insert
it into the queue; otherwise, we just update its key inside the queue (11-15). This
whole process is repeated until a vertex v is extracted from the queue such that

80 Chapter 5. Multimodal Route Planning

t

f

g

(a) cost functions fuv of a road network edge,

and fvw of a public transit edge.

t

link(fuv, fvw)

merge(fuv, fvw)

(b) the resulting functions after linking or

merging fuv and fvw.

Figure 5.5: Illustrating the outcome of the linking and merging non-homogeneous
edge cost functions f and g.

d∗(r, v) > d∗(r, t) holds (line 5). Therefore, the target's distance label cannot be
improved anymore, the algorithm is stopped, and d∗(r, t) is correct. Similarly, for a
set of targets T , the same condition must hold for each t ∈ T for the algorithm to
stop.

Algorithm 3: Dp (Pro�le Dijkstra)

Input : graph G(V,E), source vertex r, set of target vertices T
Output: pro�le function d∗(r, t) for all t ∈ T

1 d∗(r, v) ≡ ∞ | ∀v ∈ V and scanned(v) = false;
2 d∗(r, r) ≡ 0, set key(r) = 0 and insert r into priority queue Q;

3 while Q not empty do

4 extract vertex v with smallest key from Q;
5 if d∗(r, v) > d∗(r, t)∀t ∈ T then // stop when v cannot improve any target

t ∈ T

6 return

7 foreach outgoing edge (v, w) do

8 if d∗(r, v) ∗ fvw < d∗(r, w) then // (u,w) yields an improvement for

some departure τ

9 d∗(r, w) = merge(d∗(r, w), d∗(r, v) ∗ fvw); // update profile of

w

10 key(w) = d∗(r, v); // set key to global minimum of the profile

function

11 if not scanned(w) then

12 insert w into Q;
13 scanned(w) = true;

14 else

15 update key(w) inside Q;

16 end

17 end

5.2. MUSE: The Algorithm 81

Constrained Pro�le Clique Algorithm (lcDpRegLC): Given a cell Ci, we
have to compute the shortest path pro�les from each boundary vertex v ∈ V b

i to-
ward all other boundary vertices. Since GΣ is a labeled graph, we must also ensure
that all shortest paths abide by the regular language of automaton A. Let us call
DpRegLC the regular language constrained version of Dp, which computes pro�les of
constrained shortest paths. Hence, one approach is to run DpRegLC , |V b

i |×|S| times,
from each product vertex 〈v, s〉 where v ∈ V b

i and s ∈ S(A). In other words, the
algorithm would compute a path from any boundary vertex, the path being possibly
di�erent for any state of the NFA. However, this approach is wasteful in terms of
memory usage since a vertex v cannot necessarily be combined to any state s of the
NFA.

Consider A2, the automaton shown in �gure 5.6b. A vertex v whose label lab(v) = r

(corresponds to the road network) is not compliant with the state s2 that corresponds
to the public transit network, and that is only attainable from either itself or s1 (the
foot network). Therefore, we design the automaton such that each state is attributed
a unique label {f, r, b, p} designating a speci�c type of network. Hence, the product
vertex 〈v, s〉 is valid only if lab(v) = lab(s). This way, we obtain a smaller set V ×bi

of boundary vertices in the product graph.

Moreover, instead of running DpRegLC a number of |V ×bi | times (once for each valid
product boundary vertex), we are better o� using a multiple source approach to
compute the whole clique in a single run. To understand the appeal of using a
multiple-source approach over multiple calls to single-source shortest path algo-
rithm, consider the diagram of �gure 5.4. Vertices u, v, and w are boundary vertices
belonging to the same cell and the edge (x, y) is common to both shortest paths Puw
and Pvw. With a multiple source approach, each vertex is attributed one distance
label for each source vertex. Hence, when scanning vertex y, we can update both
d∗(u, y) and d∗(v, y) at once. This approach is favored when the set of source ver-
tices are close to one another, increasing the likelihood of overlapping shortest paths.
Thereby, particularly e�ective to compute our constrained cliques considering that
in practice, boundary vertices are tightly packed, outlining the boundary of the cell
they belong to, as illustrated in �gure 5.11e.

We call our multiple-source algorithm lcDpRegLC , which stands for label-correcting
Regular Language Constrained pro�le Dijkstra. As shown in Algorithm 4, lcDpRegLC

takes as input the multimodal graph GΣ, the automaton A and a set of source
vertices R. Since we are manipulating product vertices, the distance label of vertex
〈v, s′〉 with respect to a source vertex 〈r, s〉 is written dr,s∗ (v, s′).

The �rst block (line 1-5) initializes, for each source vertex 〈r, s〉, its own distance
label to dr,s∗ (r, s) ≡ 0 and that of all other vertices dr,s∗ (v, s′) ≡ ∞ (with respect
to the source 〈r, s〉). Then, all source vertices are added to the queue. At each
iteration, the vertex 〈v, s′〉 with the smallest key is extracted from the queue (line
7). Then, for each outgoing product edge (〈v, s′〉, 〈w, s′′〉) (line 8-9), we check if the
distance label of 〈w, s′′〉 can be improved with respect to each source vertex 〈r, s〉.
That is, if dr,s∗ (v, s′) ∗ fvw < dr,s∗ (w, s′′) holds for any departure time τ , then the

82 Chapter 5. Multimodal Route Planning

Algorithm 4: lcDpRegLC (label correcting DpRegLC)

Input : Graph G(V,E,Σ), Automaton A(S,Σ, δ, s0, F), and Source set
R ⊆ V

Output: Constrained shortest path pro�les dr,s∗ (v, s′) | ∀〈r, s〉 ∈ R× S and
∀〈v, s′〉 ∈ V × S

1 foreach source 〈r, s〉 ∈ R× S do

2 dr,s∗ (r, s) ≡ 0; // set distance label of 〈r, s〉 to 0

3 dr,s∗ (v, s′) ≡ ∞ | ∀〈v, s′〉 6= 〈r, s〉; // set distance label of all other

vertices to infinity

4 set key(r, s) = 0 and add 〈r, s〉 to priority queue Q;

5 end

6 while Q not empty do

7 extract product vertex 〈v, s′〉 with smallest key from Q;
8 foreach outgoing edge (v, w) do

9 foreach transition s′ × lab(v, w)→ s′′ do

10 updated = false;
11 foreach source 〈r, s〉 do // compute distance labels of 〈w, s′′〉 for

each source 〈r, s〉
12 if dr,s∗ (v, s′) ∗ fvw < dr,s∗ (w, s′′) then // relax product edge

(〈v, s′〉, 〈w, s′′〉)
13 dr,s∗ (w, s′′) = merge(dr,s∗ (w, s′′), dr,s∗ (v, s′) ∗ fvw);
14 updated = true;

15 end

16 if updated then
// set key to the global minimum among all distance labels of

〈w, s′′〉
17 key(w, s′′) = min{dr,s∗ (w, s′′) | ∀〈r, s〉 ∈ R× S};
18 add 〈w, s′〉 to Q if not in Q, otherwise update its key;

19 end

20 end

21 end

edge is relaxed (line 13). In that case, we update the key key(w, s′′) to the smallest
dr,s∗ (w, s′′) among all source vertices 〈r, s〉 and add 〈w, s′′〉 to the queue (line 16-19).

To compute the clique of a cell Ci, we de�ne the set of source vertices as the boundary
vertices R = V b

i . We also de�ne a set of targets T = V b
i and stop the algorithm

when the next extracted vertex 〈v, s′〉 respects rule key(v, s′) > dr,s∗ (t, s′′) for all
targets 〈t, s′′〉 ∈ T ×S. This means that we cannot �nd a shorter path for the most
distant boundary vertex.

5.2. MUSE: The Algorithm 83

5.2.3 Stage 3: Computing Queries

Algorithm 5: MUSE (query algorithm)

Input : graph G(V,E,Σ), partition {C1, C2, .., Ck}, overlay H, NFA
A = {S,Σ, δ, s0, F}, source r ∈ V , target t ∈ V , departure time τ

Output: cost of shortest path Prt(τ)

1 Let Gq(V q, Eq) = Cr ∪H ∪Ct; // Gq is the query graph and Cr and Ct are

the source and target subgraphs induced by

their respective cells

2 d(v, s) =∞ | ∀〈v, s〉 ∈ V q × S; // set distance label of all vertices to

infinity

3 d(r, s0) = 0; // set distance label of source vertex to 0

4 add source 〈r, s0〉 to priority queue Q

5 while Q not empty do

6 extract product vertex 〈v, s〉 with smallest key d(v, s) from Q;
7 if v = t and s ∈ F (A) then

8 return d(v, s); // v is the target and s is a final state

9 foreach outgoing edge (v, w) ∈ Eq do
10 foreach transition s× lab(v, w)→ s′ do

11 if d(v, s) + fvw(τ + d(v, s)) < d(w, s′) then

12 d(w, s′) = d(v, s) + fvw(τ + d(v, s)); // relax the product edge

(〈v, s〉, 〈w, s′〉)
13 key(w, s′) = d(w, s′) + π(w);
14 add 〈w, s′〉 to Q if not in Q, otherwise update its key;

15 end

16 end

17 end

During the online phase, MUSE solves a query q(r, t, τ) by running DRegLC on
the query graph Gq = Gr ∪H ∪Gt which consists of the overlay H (precomputed in
the previous stage) and the subgraphs Gr and Gt, induced by the cells containing
the source and target vertices r and t, respectively. As Gq is signi�cantly smaller
than the original multimodal graph, MUSE computes the shortest path Prt(τ) fast
enough for interactive queries. Algorithm 5 details the �ow of execution.

Nonetheless, knowing the location of the target allows for making informed de-
cisions while searching for the shortest path. Instead of "blindly" expanding from
the source, the intuition behind goal direction is to use heuristics to guide the
search by prioritizing vertices that are closer to the target. We call MUSE? (pro-
nounced `MUSE-star') the goal directed version of the algorithm (analogous to A?

[Appi 1966]) which uses Euclidean distances to compute the potential function. The
potential function π(v) of a vertex v represents an estimate of the remaining cost to
reach the target vertex t. To guarantee correctness however, the potential function

84 Chapter 5. Multimodal Route Planning

must be admissible, which means that it must underestimates the true cost, that is,
π(v) ≤ cost(Pvt) where Pvt denotes the shortest path between v and t.

Another variant called MUSESV applies the same strategy but relies on the
Sedgewick-Vitter heuristic [Sedgewick & Vitter 1984], which trades o� correctness
for the sake of speed. The potential function is evaluated as π(v) = α× dEuc(v, t) /
Speedmax where dEuc(v, t) denotes the Euclidean distance between v and the target
t, Speedmax the highest speed in the network and α a tuning parameter. Setting
α > 1 may potentially overestimate the cost of the shortest path, which impacts
correctness, but results in a smaller search space overall.

5.3 Experimental Evaluation

We report in this section, the performance evaluation of MUSE and its associated
heuristic-based variants, namely MUSE? and MUSESV .

5.3.1 Evaluation Setup

To assess scalability, we run all algorithms on two graph instances: the Ile-de-France
region denoted Gidf and a country-size graph Gfr representing France. Table 5.2
summarizes the graph characteristics based on each transportation layer. The graphs
were modeled by combining:

1. a topological dataset from OpenstreetMap [Mooney et al. 2017], an open-
access dataset built through the e�ort of crowd-sensing and accessible via the
GeoFabric [Geofabrik 2019] online platform. We use it to construct the road,
cycling, and pedestrian graphs. It consists of latitude and longitude coordinates
denoting roads, parking spots, and even bicycle and car rental service stations.

2. a General Transit Feed Speci�cation (GTFS) dataset represents the standard
format used to encode public transit schedule information. For the Ile-de-
France graph instance, we rely on the Ile-de-France mobilités (IdFm) dataset
[de France Mobilités 2020], an online platform providing up-to-date data in
GTFS format combining train, RER, subway, tramways, and bus networks in
the region. For the public transit network of France, we combine four GTFS
datasets covering the whole country and obtained via the open-source platform
Navitia [Data 2020].

To model common use case multimodal trips, we de�ne several automata that
are depicted in �gure 5.6:

A1 depicts the combination of walking and all types of public transportation.

A2 depicts trips that rely on the private car only, for the whole trip;

A3 extends A1 with faster transfers, using rental bicycles, mostly available in the
city center at speci�c locations. An additional state s2 is reachable via link edges
labeled lb to either retrieve or return the rental bicycle before pursuing the trip;

5.3. Experimental Evaluation 85

Table 5.2: Graph characteristics. For the road and bicycle networks, the stations
column designates the number of rental stations.

Transportation Network Vertices edges stations

Gidf Gfr Gidf Gfr Gidf Gfr

Foot (Gf) 519 558 8 048 695 1 363 995 20 157 922 - -
Road (Gr) 457 406 7 252 489 1 018 814 16 712 036 249 899
Bicycle (Gb) 406 711 7 354 519 1 000 591 18 292 964 800 3 324
Public Transit (Gp) 60 959 255 872 351 551 1 089 911 18 836 251 685

Foot-Road edges (Elink
r) - - 44 270 431 470 - -

Foot-Bicycle edges (Elink
b) - - 813 422 14 665 980 - -

Foot-Public edges (Elink
p) - - 37 672 192 886 - -

Multimodal (GΣ) 1 444 634 22 911 575 4 630 315 71 543 169 - -

A4 excludes the public transit network. It allows using the private bicycle initially
followed by a rental car for the remaining part of the trip;

A5 combines all means of transportation. The private car is used only initially,
followed by any combination of walking, public transportation, and rental bicycles.

We ran all our experiments on the High-Performance Computing (HPC) of the
University of Strasbourg. We generated a unique job for each partition and au-
tomaton that was executed on an Intel Haswell node totaling 24 cores and 32 GB
of RAM.

5.3.2 Preprocessing

Graph partitioning results are reported in table 5.3. We tested various partition
sizes ranging from 100 - 500 cells for Gidf and 800 - 6 000 cells for Gfr. The size
of the partition, i.e., the number of cells, impacts both preprocessing and query
times. Increasing the partition size yields smaller cells with fewer border vertices
but produces a larger overlay graph, which slows the queries. In contrast, a smaller
partitioning results in large cells, which increases the preprocessing times. Con-
sequently, selecting the adequate partition is a tradeo� between preprocessing and
query times.

Once the graph is partitioned, the cells are independent of each other and there-
fore preprocessing bene�ts from parallelism. For instance, �gure 5.11c depicts a
partitioning of the Gfr graph into 100 cells. As illustrated, the number of nodes of
each cell varies according to the density of the graph. Given a cell with N border
product vertices, we evaluate two strategies to compute its clique:

One-to-Many Strategy: runs a pro�le regular language constrained Dijkstra
DpRegLC algorithm from each border product vertex. The algorithm is run N times
to compute the clique.

86 Chapter 5. Multimodal Route Planning

s0 s1

f p

l

l

(a) A1: walking and public transportation.

s0 s1 s2

f fr

l l

(b) A2: walking and private car.

s1

p

l

l

s2

b

s0

f

lb lb

(c) A3: walking and public transportation

with the possibility of using rental bicycles.

s1

r

s2

b

s0

f

l

s3

f

l

lr lr

(d) A4: walking and private bicycle followed

by a rental car for the last part of the trip.

s0 s1 s2

f fr

l l s3

p

l

l

s4

b

lb lb

(e) A5: the private car is used for the �rst part of the trip, followed by any combination of

walking, public transportation and rental bicycles.

Figure 5.6: Set of Automata depicting four scenarios used to constrain preprocessing
and queries.

Many-to-Many Strategy: runs lcDpRegLC only once. It simultaneously com-
putes all the shortest path pro�les of the clique in a single call.

Given that the density of the graph is not uniform, preprocessing time varies
signi�cantly (few milliseconds to seconds) from one cell to another within the same
partition. Using the one-to-many strategy, we make the computation in parallel for
each border vertex, i.e., we do not need to allocate all the border vertices of a cell
to the same CPU. However, the one-to-many strategy does not leverage the fact
that the shortest paths of a clique are likely to share common subpaths. Therefore,
vertices that are shared by several shortest paths are processed several times.

In contrast, the many-to-many strategy is more e�cient as it simultaneously
processes all the shortest paths of the clique. However, it prohibits load balancing

5.3. Experimental Evaluation 87

(a) France multimodal network partition
(b) boundary vertices of a single

cell

Figure 5.7: A multimodal partition of France separating the underlying graph into
100 cells. (a) Boundary vertices belonging to the foot, bicycle, road and public
transit networks are displayed in blue, green, red, and yellow dots, respectively. (b)
boundary vertices of the area highlighted in red in �gure (a)

because it allocates a whole cell to a single CPU.
Figure 5.8 depicts the clique computation time distribution in the Ile-de-France

region using the one-to-many (left) and many-to-many (right) strategies for each
partition and automaton. As expected, preprocessing time decreases when the par-
tition size gets larger. Additionally, larger automata require more processing time
(for instance, A5 compared to A1) because it increases the size of the product graph,
in addition to computing one shortest path for each available state. An interest-
ing result is that lcDpRegLC is an order of magnitude faster compared to running
DpRegLC multiple times. This con�rms our previous hypothesis and shows that
within a cell, there is indeed a signi�cant number of shortest paths of the clique
that do share common subpaths.

For a clearer comparison, we compute the Preprocessing Gain Factor (PGF) for
each clique, denoting the ratio of computation time using the one-to-many strategy
to that of using the many-to-many strategy. The results are shown in �gure 5.9 and
suggest that the gain depends mainly on the type of automaton used to constrain
the preprocessing. The gain is smaller on automata that rely, partially, on using
the road network (A5) and smallest for automata that exclude the public transit
network (A2 and A4). In our setup, the road and public transit networks are the
dominating means of transportation, that is, if all means are allowed, the shortest
path between two locations is comprised, mostly, of road network and public transit
edges (fastest alternatives). Furthermore, since the road network is much denser
and larger than the public transit network, the shortest paths that make up a clique
overlap less when constrained by the road network compared to the public transit

88 Chapter 5. Multimodal Route Planning

Table 5.3: Computational time for di�erent partition sizes and the associated num-
ber of border vertices.

Graph Partition size # Border vertices Time [s]

min med max tot

100 124 239 428 24 518 1.023
200 65 180 344 36 975 1.278

Gidf 300 52 159 407 49 102 1.474
400 56 134 263 55 303 1.673
500 29 122 308 63 081 1.874

800 13 91 317 94 897 16.471
1 000 13 91 317 94 897 18.351

Gfr 2 000 3 67 331 141 104 19.742
4 000 4 47 191 194 352 24.598
6 000 2 38 183 239 639 33.366

100 200 300 400 500
Partition Size

10 3

10 2

10 1

100

101

102

103

Cl
iq

ue
 C

om
pu

tat
io

n
Ti

m
e [

s]

1

2

3

4

5

(a) one-to-many algorithm (DpRegLC)

100 200 300 400 500
Partition Size

10 3

10 2

10 1

100

101

102

103

Cl
iq

ue
 C

om
pu

tat
io

n
Ti

m
e [

s]

1

2

3

4

5

(b) many-to-many algorithm (lcDpRegLC)

Figure 5.8: Computational time for the pro�le cliques of Gidf as a function of
partition size and automaton.

network. Hence, the gain factor is signi�cant for automata A1 and A3.
For the France region, we experimentally selected the partitions such that the cell

sizes are equivalent to those of the Ile-de-France region, and therefore, preprocessing
times are similar when one CPU is dedicated to each cell in both cases.

5.3.3 Queries

After precomputing an overlay graph will all the partitions and automata, we
generate 10 000 random queries q(r, t, τ) where r, t are the source and target ver-
tices respectively, and τ is the departure time. We compare MUSE with DRegLC

5.3. Experimental Evaluation 89

100 200 300 400 500
Partition Size

100

101

Pr
ep

ro
ce

ss
in

g
Ga

in
 F

ac
to

r
1

2

3

4

5

Figure 5.9: The preprocessing Gain Factor denoting the speedup of the many-to-
many (lcDpRegLC) over the one-to-many (DpRegLC) strategy for each automaton
and partition size. The horizontal red line corresponds to a gain of 1 and imply no
speedup.

Table 5.4: List of algorithms used in the query phase of the experimental evaluation.

DRegLC Regular Language Constrained Dijkstra [Barrett et al. 2000].

MUSE similar to DRegLC but runs on the query graph Gq = Gr ∪ H ∪ Gt,
formed by the overlay H and the source and target induced subgraphs
Gr and Gt, respectively.

MUSE? augments MUSE to obey Goal-Direction principles, similar to
A? [Appi 1966].

MUSESV similar to MUSE? but implements the Sedgewick-Vitter heuris-
tic [Sedgewick & Vitter 1984] to tradeo� correctness for the sake of
speed.

[Barrett et al. 2000], a multimodal version of Dijkstra (Table 5.4). Figure 5.10a
depicts query times of both algorithms on the Ile-de-France region, for all queries,
regardless of the constraining automaton. MUSE achieves a speedup of almost two
orders of magnitude over DRegLC .

By organizing the queries according to their range (Euclidean distance between
the source and the target), we observe that the speedup increases with the distance
range (�gure 5.10b). This is expected because the query time not only depends on
the partition size but also on the location of the source and target vertices. Recalling
that the query graph Gq = Gr∪H ∪Gt combines the subgraphs Gr and Gt, induced
by the cells containing the source and target vertices r and t, respectively and the
overlay H, MUSE always explores Gr and Gt. Therefore, if the cells are large or if
the source and target are either located inside the same cell or within adjacent cells,

90 Chapter 5. Multimodal Route Planning

then MUSE does not bene�t from the overlay to skip over the rest of the graph.
Hence, MUSE performs best for long-range queries, as shown in �gure 5.10b.

100 200 300 400 500
Partition Size

10 1

100

101

102

103

Qu
er

y
Ti

m
e [

m
s]

DRegLC

MUSE

(a) Query times distribution of DRegLC and MUSE for all automata.

0-5 5-20 20-50 50-100 100-150
Distance Range [km]

10 1

100

101

102

Qu
er

y
Ga

in
 F

ac
to

r

Partition Size
100
200

300
400

500

(b) The Query Gain Factor represents the achieved speedup of MUSE over DRegLC for

di�erent partitions and query distance ranges (Euclidean distance).

Figure 5.10: Performance comparison of DRegLC and MUSE on the Ile-de-France
region graph.

To achieve further speedups during the query step, MUSE can be augmented
using any technique from the literature that does not require a preprocessing. We
considered bi-directional search, that is, simultaneously running a forward-search
(from the source) and backward-search (from the target) to reduce the search space.
Although bi-directional search usually reduces the query time by half on static
graphs, it was shown to be ine�cient (and often results in speed-downs) on time-
dependent graphs [Nannicini et al. 2008].

Instead, we focus here on goal direction and implemented MUSE? and MUSESV

(Table 5.4), as already discussed in section 5.2.3. For the MUSESV variant, we tested
three values for the heuristic tuning parameter α1 = 1.2, α2 = 1.5, and α3 = 1.8.
We provide the results in �gure 5.11, depicting the query time distribution of all
MUSE variants for each automaton and partition size.

5.3. Experimental Evaluation 91

100 200 300 400 500
Partition Size

0

10

20

30

40

50

Qu
er

y
Ti

m
e [

m
s]

MUSE
MUSE

MUSE SV1.2

MUSE SV1.5

MUSE SV1.8

(a) Automaton A1

100 200 300 400 500
Partition Size

0

10

20

30

40

50

Qu
er

y
Ti

m
e [

m
s]

MUSE
MUSE

MUSE SV1.2

MUSE SV1.5

MUSE SV1.8

(b) Automaton A2

100 200 300 400 500
Partition Size

0

10

20

30

40

50

Qu
er

y
Ti

m
e [

m
s]

MUSE
MUSE

MUSE SV1.2

MUSE SV1.5

MUSE SV1.8

(c) Automaton A3

100 200 300 400 500
Partition Size

0

10

20

30

40

50

Qu
er

y
Ti

m
e [

m
s]

MUSE
MUSE

MUSE SV1.2

MUSE SV1.5

MUSE SV1.8

(d) Automaton A4

100 200 300 400 500
Partition Size

0

10

20

30

40

50

Qu
er

y
Ti

m
e [

m
s]

MUSE
MUSE

MUSE SV1.2

MUSE SV1.5

MUSE SV1.8

(e) Automaton A5

Figure 5.11: Query times distribution for the Ile-de-France region for each automa-
ton of �gure 5.6. Each plot depicts the running times of MUSE, MUSE?, and
MUSESV (with a heuristic factor of 1.2, 1.5, and 1.8) for each partition size of the
preprocessing.

We notice that query times on A2 and A4 are faster and keep decreasing when
the partition size increases. In contrast, an optimal partition size (200 cells) exists
for the automata A1, A3, and A5. Ultimately, query times are bound to increase
again beyond a certain threshold of the partition size. The largest possible partition
is, in fact, |V | (the size of the graph) with each cell containing a single vertex. Hence,
the query graph is the whole graph, and MUSE degrades to DRegLC . Considering

92 Chapter 5. Multimodal Route Planning

that A2 and A4 exclude the public transit network, the link and merge operations,
which are the bottleneck of the algorithm, are trivial, which explains why the queries
are signi�cantly faster.

Goal direction does not seem to be a good strategy to accelerate queries in the
Ile-de-France region. In fact, [Delling et al. 2011a] seem to obtain similar results for
small partitions on unimodal road networks using Precomputed Cluster Distances
(PCD) [Maue et al. 2010], another goal directed algorithm.

1 2 3 4 5
Automaton

100

101

102

103

104

105

Qu
er

y
Ti

m
e [

m
s]

DRegLC

MUSE
MUSE
MUSE SV1.2

MUSE SV1.5

MUSE SV1.8

Figure 5.12: On the France region, we �x the partition size to 1 000 cells and report
the query times distribution of DRegLC versus MUSE and all of its variants, for each
automaton.

In the France region, we �x the partition size to 1 000 cells and provide the
query times in �gure 5.12. As query the distance range increases signi�cantly (up
to 1 000 km), the computational gain of MUSE over DRegLC reaches up to 3 orders
of magnitude, especially on automata that include the public transit network (A1,
A3, and A5). Furthermore, on the same automata, MUSE? provides a signi�cant
speedup.

Using the Sedgewick-Vitter heuristic allows us to reduce query times by half in
Ile-de-France and up to an order of magnitude in France depending on the automaton
and partition size (Fig. 5.12). This is, however, at the cost of sacri�cing the travel
time correctness. We report in �gure 5.13 the Travel Time Error (in minutes)
for each MUSESV variant, across all automata. MUSESV1.2 , the less aggressive
overestimating variant, provides paths that are 99% of the times only a few seconds
longer than the shortest paths. In the worst case, we measure a travel time error
of 5 minutes. Interestingly, even MUSESV1.5 and MUSESV1.8 behave well if the
automata do not allow using the public transit network (A2 and A4). Since the
travel time function of public transit graph edges is non-continuous (�gure 5.2),
missing a connection results in a sudden increase of travel time, which explains
the large errors observed on the remaining automata. Thus, this variant should be
carefully exploited.

5.4. Conclusion 93

1 2 3 4 5
Automaton

10 1

100

101

102

Tr
av

el
Ti

m
e E

rro
r [

m
in

]

MUSE SV1.2

MUSE SV1.5

MUSE SV1.8

(a) Ile-de-France region

1 2 3 4 5
Automaton

10 2

10 1

100

101

102

Tr
av

el
Ti

m
e E

rro
r [

m
in

]

MUSE SV1.2

MUSE SV1.5

MUSE SV1.8

(b) France region

Figure 5.13: Travel Time Error distribution on the Ile-de-France and France regions
for each automaton based on the heuristic factor setting of MUSESV .

5.4 Conclusion

We presented MUSE, a new approach to solve the multimodal shortest path problem
via graph partitioning and language theory. Its main advantage is scalability, as it
splits large graph instances into several independent cells that can be processed in
parallel. We also provide di�erent strategies to improve the performance of both
the preprocessing and the query phases. We achieve preprocessing and query times
that are fast enough to process a cell as well as resolve a query in only a few
milliseconds. Hence, MUSE is a viable solution for real-time multimodal route
planning. We experimentally tested our implementation and achieved a speedup of
up to two orders of magnitude compared to DRegLC , the label constrained version of
Dijkstra's algorithm for multimodal networks. Using goal direction and heuristics,
we further accelerate the queries and show that the obtained paths are most of the
time, only a few seconds longer than the shortest paths.

Chapter 6

Conclusion

We explored over the course of this thesis several topics related to routing in trans-
portation networks. Speci�cally, we based our research as much as possible on real
tra�c information to avoid the inherent bias and assumptions of many simulated
datasets. Our main contributions relate to the map matching problem (chapter 3),
an extensive evaluation of re-routing strategies in dynamic road networks (chapter
4), and e�cient multimodal route planning (chapter 5) based on graph separators
and language theory.

Map Matching is a long-standing problem and a crucial component of most route
planning systems. Consequently, the literature is abundant in algorithms for various
applications such as real-time guiding systems, tra�c analytic, and freight tracking.
For most of the proposed algorithms, the aim is to identify the graph's path that
best matches a raw GPS-trace. However, for some applications such as research,
correct, rather than probable, matching is critical. This prompted the need for a
unambiguous map matching algorithm. In essence, our approach consists of com-
puting candidate subpaths between the �rst pair of measurements in the trace that
we iteratively extend for each subsequent GPS measurement. We show that the
temporal constraint used to prune non-feasible subpaths gets stronger for each ad-
ditional measurement. Through experimental evaluations using both simulated and
real GPS traces, we are able to match 90% of the traces correctly.

Dynamic Route Planning attempts at solving the Shortest Path Problem (SPP)
by taking into account tra�c congestion as a time-evolving phenomenon. The liter-
ature is abundant in tra�c-aware algorithms and congestion avoidance techniques.
Nonetheless, large scale evaluations of vehicle re-routing strategies are not com-
mon. Speci�cally, most studies either rely on simulated datasets with synthetic
tra�c information or focus on small geographical regions and therefore overlook
congestion patterns at the scale of a whole city. To address this gap, we collected
a large dataset of real tra�c speed pro�les for various road networks for a period
of 3 months. Our data was �nely sampled and allowed us to conduct a thorough
evaluation. We compared four routing strategies: static, no re-routing, continuous
re-routing, and optimal routing. The latter technique is not realistic but emulates
ideal predictions and was used as a reference to compute the absolute travel time
gain factor for the remaining strategies. Our experimental evaluation showed that a
sparse sampling of 5-10 min was enough to achieve almost optimal routing using the
continuous re-routing strategy. Furthermore, we identi�ed divergence vertices for
each graph, denoting the geographical locations where continuous re-routing often

96 Chapter 6. Conclusion

diverges from the optimal route due to inaccurate re-routing. Most importantly, we
show the discrepancies between real and synthetic tra�c data.

Multimodal Route Planning adapts the SPP to networks that combine several
modes of transportation. Consequently, traditional preprocessing techniques are
not straightforward to adapt since the user modal constraints are only known at
query time. Additionally, the size of the multimodal graphs is signi�cantly larger
than the unimodal graphs, which slows queries. Our goal was to devise a scalable
preprocessing to address multimodal queries on large scale graphs. We, therefore,
developed MUSE, a label constrained shortest path algorithm based on graph sepa-
rators. Using graph separators allows us to take advantage of parallelism. We use a
many-to-many label correcting shortest path algorithm to accelerate the preprocess-
ing of each cell in the partition. To solve a query, we use the precomputed overlay
to construct, on the �y, a query graph signi�cantly smaller than the original graph.
We experimentally evaluate our technique and provide several heuristic-based query
algorithms to achieve further speedups. On the French multimodal network com-
bining road, foot, bicycle, and all types of public transportation, MUSE achieves a
speedup of up to 3 orders of magnitude over DRegLC .

Throughout the thesis, we also reviewed many shortest path techniques and
often had to implement several state-of-the-art algorithms to fairly compare their
performance and gain a better insight on their advantages and disadvantages. Sub-
sequently, we developed a graphical desktop application to visually inspect, on a
digital map, shortest path queries, and their associated statistics based on the used
algorithms. This tool became essential throughout our work, and we, therefore, ex-
tended it for other purposes: to display interactive results for the dynamic re-routing
problem or to automatically construct multimodal graphs from publicly accessible
datasets and visualize multimodal queries. We believe these tools could bene�t other
researchers that seek to replicate some of our results or run their own experiments.
We summarize the list of the developed tools in table 6.1.

6.1 Future Work

The research related to route planning in transportation networks is vast and covers
a multitude of problems according to the type of networks being considered, their
size, the nature of the optimized metrics, and the intended applications. Our main
goal is to develop a route planning algorithm that enables three fundamental fea-
tures for practical applications: multimodality, multicriteria, and real-time tra�c
updates. Ultimately, all of these requirements should be integrated e�ciently to
answer queries on a global scale.

In the following sections, we discuss our perspectives, �rst, considering goals
that expand on the contributions presented in this thesis, then, we discuss broader
ideas, extending our gained knowledge in route planning to a new territory: Space.

6.1. Future Work 97

6.1.1 Short term perspectives

First, to further improve the accuracy of our map matching algorithm, we plan to
analyze the impact of the local topography. In urban road networks with a dense
topology, there might exist several alternative routes that cannot be distinguished
from the actual route. This is usually the case in grid-like networks such as in
Manhattan. Ideally, we seek to provide an adaptive technique, able to tune the
sampling rate dynamically depending on a set of local metrics, to reduce the energy
consumption of many crowd-sensing applications. The sampling frequency could,
for instance, be increased for parts of the network where matching is ambiguous.

For the dynamic routing problem, we plan to incorporate historical tra�c pat-
terns to further improve the continuous re-routing strategy. Our goal is to adapt
the sampling rate for each query, based on the route evaluated at departure time. In
essence, by considering tra�c congestion and keeping track of diverging vertices, we
plan to propose a technique that automatically adapts the GPS sampling rate based
on the location of the vehicle. An interesting approach might be a machine learning
model that leverages the computed query factors (travel time gain, divergence ratio,
stretch factor) to automatically trigger re-routing.

Lastly, on the multimodal route planning problem, we recognized that the parti-
tioning is critical for the performance of both the preprocessing and the query. We
�rst tested our own implementation of the PUNCH algorithm [Delling et al. 2011b]
but switched later on to METIS, the general graph partitioning algorithm, which
was more reliable and provided better results. Therefore, a formal analysis of graph
partitioning algorithms tailored to transportation networks, and especially to mul-
timodal networks, is essential to improve our current results. Furthermore, to im-
prove query times, multilevel partitioning for multimodal graphs is an interesting
next step. It allows skipping over most of the network using the overlay edges on the
low level of the partition while reducing the search space in the source and target
cells by exploring the high levels of the partition. During preprocessing, we also
need to compute multimodal pro�le cliques. We observed that the merge and link

operations are the bottleneck of lcDpRegLC due to a rapidly increasing number of
breakpoints in the travel time functions. An interesting work perspective would be
to rely on heuristics [Strasser 2017] to simplify these operations and evaluate the
tradeo� between computational speed and impact on correctness.

Furthermore, considering the schedule-based nature of public transit networks,
missing a departure because of a limited transfer time can result in a sudden sig-
ni�cant increase in the overall travel time. Therefore evaluating the risk associated
with a route is an important factor, and in practice, the user should be able to
select a route from a few alternatives. Additionally, we plan to develop an e�cient
technique to monitor cells and correct the preprocessing according to tra�c updates.

SNCF, the French National Railway Company, seeks to develop a new applica-
tion that enables multimodal route planning by coordinating the e�orts of di�erent
agencies. They, in fact, showed great interest in our work, and thanks to the CIFRE
aspect of this thesis, we discussed potential collaboration in the upcoming months.

98 Chapter 6. Conclusion

So far, in this thesis, we reviewed the characteristics of dynamic routing and
proposed an e�cient multimodal routing algorithm capable of handling tra�c vari-
ations. However, we currently only optimize a single metric: travel time. From a
practical point of view, users may be inclined to also minimize monetary costs, walk-
ing time, and public transit transfers. Our approach, MUSE, is currently capable
of handling certain constraints such as the maximum number of allowed transfers.
We manage this by adding transitions in the automaton. Nonetheless, Incorpo-
rating several metrics is not trivial because paths that minimize di�erent criteria
are not comparable, and therefore we must compute Pareto sets of non-dominated
paths. Such paths are, however, numerous, especially in a multimodal network.
[Müller-Hannemann & Weihe 2001] study the problem of multicriteria single-source
shortest path problem and show that there exist certain characteristics in practical
scenarios related to railway networks that limit the number of Pareto optimal sets.
We believe the next exciting step is to further augment this study to the multimodal
problem in a dynamic environment.

6.1.2 Long term perspectives

Accurate tra�c prediction is a long-standing problem of paramount importance for
several applications such as tra�c �ow management, transport navigation, and taxi
dispatch. In urban areas, road networks are often actively monitored using a variety
of dedicated sensors. Fixed sensors are embedded within the network and consist of,
for instance, inductive loops, radars, and surveillance cameras. Depending on the
type of sensors, they can provide tra�c volumes and density, road segment speeds,
and even vehicle category. Nonetheless, their deployment and maintenance are not
sustainable due to the high monetary cost.

We are interested in tra�c inference [Lin et al. 2017] as a process of estimating
tra�c conditions for non-monitored road segments based on known tra�c informa-
tion for a subset of road segments in the network. Considering the road segment's
Spatio-temporal dependencies, we would like to answer the following question: which
segments should we monitor to infer tra�c globally? We already ran a few exper-
iments based on Dynamic Time Warping (DTW) and machine learning to cluster
road segments based on their speed pro�les as time series functions. Currently, the
number of clusters we obtain is too high due to the stochastic nature of tra�c data.
We believe that prior to clustering, we should develop a method to �rst identify
recurring vs. non-recurring congestion.

Route planning is evidently not exclusive to transportation networks. In fact,
solving the shortest path problem is required in a plethora of applications such
as the game industry, social networks, and IP routing. Being inclined to space
technology, we believe we could contribute to the problem of multilayer satellite
routing [Xiaogang et al. 2016], which is rather analogous to the multimodal shortest
path problem.

Currently, there are approximately 2 000 satellites orbiting Earth. In the up-
coming years, however, tens of thousands of additional satellites are planned for

6.1. Future Work 99

launch. For the ambitious goal of providing global internet access, the Starlink
project [McDowell 2020], for instance, will deploy 12 000 satellites, a number that
will potentially be extended to 42 000 satellites. In fact, a space-race toward the
same objective is currently taking place and includes other projects such as Kuiper
and OneWeb [Winslett 2019], which will deploy their own satellite networks.

In that context, inter-satellite routing is required to e�ciently transmit informa-
tion in a highly dynamic environment, subject to transmission delays and limited
on-board processing power. A multilayer satellite network is composed of satel-
lites with di�erent orbits, mainly: Low Earth Orbit (LEO), Medium Earth Orbit
(MEO), and Geostationary Earth Orbit (GEO) satellites. In such networks, data
can be transmitted either through intra-plane (same layer satellites) or inter-layer
(satellites on di�erent layers) links. Nonetheless, satellites are orbiting at di�er-
ent speeds and inclinations, and therefore, the overall topology of the network is
constantly changing.

Our goal is to partition space into cells that are �xed with respect to Earth's
rotation. For each cell, we can compute the di�erent topologies of satellites it
contains at di�erent time intervals during which the topology is maintained. We can
then adapt the ideas behind the MUSE algorithm to compute constrained shortest
paths in each cell to achieve load-balancing.

100 Chapter 6. Conclusion

Table 6.1: List of useful applications developed throughout the thesis.

Application Description

SPAGUI Shortest Path Algorithms Graphical User Interface (SPAGUI) is
a desktop application that enables downloading maps from Open-
StreetMap (.osm �les) and automatically generates a directed graph
representing the road network of the chosen region. SPAGUI also
implements several shortest path algorithms and therefore serves as
a benchmark.
https://github.com/aminefalek/spagui

DYNAMO a graphical interface allows the user to construct a dynamic road
network model by combining OpenStreetMap data for the topology
and tra�c data (road segment speed pro�les) from a third-party API.
It allows the user to generate and resolve shortest path queries using
the routing strategies seen in chapter 4. The results are interactively
displayed and shared with a common cloud infrastructure to collect
and exploit experimental results from other researchers.
https://github.com/aminefalek/dynamo

ICube-ITS a web application used to display some of our results for the dynamic
re-routing problem.
http://its-icube.com/

MUSE extends SPAGUI to create multimodal graphs from OpenStreetMap
and GTFS datasets automatically.
https://github.com/aminefalek/muse

GTA Graph Theory App was developed to complement the teaching ma-
terial of a graph theory class. It provides means to draw arbitrary
graphs and visualize classical algorithms such as Dijkstra, Kosaraju,
and Kruskal. It also enables the students to code each algorithm
themselves and visually debug their implementation.
https://github.com/aminefalek/gta

https://github.com/aminefalek/spagui
https://github.com/aminefalek/dynamo
http://its-icube.com/
https://github.com/aminefalek/muse
https://github.com/aminefalek/gta

List of Figures

2.1 Graph representation of Illkirch's road network in Strasbourg, France.
The dots are the graph's vertices and the segments are the edges,
drawn to preserve the original shape of the road segments. 10

2.2 Pseudo-dual graph derived from the original graph (in bold) denoting
all possible turns (left) and its reduced version containing only valid
turns (right). 11

2.3 Time-expanded model of a public transit station. Vertices colored in
yellow, green, and purple denote arrivals, departures, and transfers,
respectively. 12

2.4 Time-dependent graph representation of a public transit station using
either constant (left) or conditional (right) transfer times. 13

2.5 Piecewise linear function representing the travel time associated to a
route edge (v, w) in a time-dependent graph. 14

2.6 The multimodal graph consists of individual unimodal networks that
are combined together using link edges (dashed arrows) transiting
through the foot network. 15

2.7 The search space of Dijkstra's algorithm in time-independent networks 21
2.8 The graph is partitioned into six regions and their border vertices are

outlined. The shortest st path is shown in bold blue edges. During
the query, Arc Flags algorithm prunes edge (s, w) because the third
bit-�ag is not set. 24

2.9 Contracting vertex v: two shortcut edges (u,w) and (u, x) are in-
serted. However, no shortcut is added between vertices w and x

because (w, v, x) is not a shortest path. 26

3.1 Map Matching algorithm process . 37
3.2 Example illustrating the process of appending subroutes. 40
3.3 Correct matching ratio for London, Paris, Luxembourg road networks. 46
3.4 Road junction vertices density near matched and unmatched mea-

surements (R = 4× Egps). 46
3.5 Performance of map matching algorithm based on execution time. . . 47
3.6 Correct matching ratio for Seattle network using real GPS trace data. 48

4.1 Work�ow for the stretch factor quanti�cation of not using real-time
data. 57

4.2 Diagram illustrating the process of computing the divergence ratio of
a cell. 58

4.3 Congestion Factor distribution in Cologne simulation, Germany, over
a period of 24 hours. 61

102 List of Figures

4.4 Congestion Factor distribution in New York, based on weekday and
daytime over a period of 3 months. 61

4.5 Stretch factor of the static, no re-routing and continuous re-routing
algorithms on both the TAPAS (left) and the real (right) datasets. . 62

4.6 Travel time gain of continuous re-routing and ideal routing algorithms
over the no re-routing algorithm as function of tra�c �ow in New York 62

4.7 Impact of sampling rate on travel time in Cologne simulation, New
York and London (a, c and d) and execution time in Cologne simu-
lation (b) using the continuous re-routing algorithm. 64

4.8 Diverging vertices divergence ratio distribution. 65

4.9 Diplaying the divergence ratio level (proportional to the red shade
intensity). The yellow dots depict diverging vertices with a divergence
ratio ≥ 0.5. 65

5.1 Time-dependent graph representing the public transit network 71

5.2 Piecewise linear function describing the cost of edge (v2, v4) from
�gure 5.1. Six trains are scheduled: four regular trains of 60 min
travel-time and two fast trains of 30 min travel-time. Upon arriving
to the station at 8:30, the next shuttle is a regular train scheduled to
depart at 9:45. 73

5.3 Multilevel graph partitioning. 76

5.4 Multimodal graph partition with cut edges shown in bold segments.
The multimodal cell spans across all unimodal networks. The vertices
u, v, and w are boundary vertices and the shortest paths Puw and Pvw
share the subpath {x, y, ..w}. 77

5.5 Illustrating the outcome of the linking and merging non-homogeneous
edge cost functions f and g. 80

5.6 Set of Automata depicting four scenarios used to constrain prepro-
cessing and queries. 86

5.7 A multimodal partition of France separating the underlying graph
into 100 cells. (a) Boundary vertices belonging to the foot, bicycle,
road and public transit networks are displayed in blue, green, red,
and yellow dots, respectively. (b) boundary vertices of the area high-
lighted in red in �gure (a) . 87

5.8 Computational time for the pro�le cliques of Gidf as a function of
partition size and automaton. 88

5.9 The preprocessing Gain Factor denoting the speedup of the many-to-
many (lcDpRegLC) over the one-to-many (DpRegLC) strategy for each
automaton and partition size. The horizontal red line corresponds to
a gain of 1 and imply no speedup. 89

5.10 Performance comparison of DRegLC and MUSE on the Ile-de-France
region graph. 90

List of Figures 103

5.11 Query times distribution for the Ile-de-France region for each au-
tomaton of �gure 5.6. Each plot depicts the running times of MUSE,
MUSE?, and MUSESV (with a heuristic factor of 1.2, 1.5, and 1.8)
for each partition size of the preprocessing. 91

5.12 On the France region, we �x the partition size to 1 000 cells and report
the query times distribution of DRegLC versus MUSE and all of its
variants, for each automaton. 92

5.13 Travel Time Error distribution on the Ile-de-France and France re-
gions for each automaton based on the heuristic factor setting of
MUSESV . 93

List of Tables

3.1 Notation used in this chapter . 38
3.2 Dataset . 44
3.3 Evaluation setup . 45

4.1 Keywords & symbols de�nitions. 52

5.1 keywords and symbol de�nitions . 69
5.2 Graph characteristics. For the road and bicycle networks, the stations

column designates the number of rental stations. 85
5.3 Computational time for di�erent partition sizes and the associated

number of border vertices. 88
5.4 List of algorithms used in the query phase of the experimental eval-

uation. 89

6.1 List of useful applications developed throughout the thesis. 100

Bibliography

[Afrin & Yodo 2020] Tanzina Afrin and Nita Yodo. A Survey of Road Tra�c Con-

gestion Measures towards a Sustainable and Resilient Transportation System.
Sustainability, vol. 12, no. 11, page 4660, 2020. 1

[Ahmed et al. 2015] Mahmuda Ahmed, Sophia Karagiorgou, Dieter Pfoser and Car-
ola Wenk. A comparison and evaluation of map construction algorithms using

vehicle tracking data. GeoInformatica, vol. 19, no. 3, pages 601�632, jul 2015.
35

[Ahsani et al. 2019] Vesal Ahsani, Mostafa Amin-Naseri, Skylar Knickerbocker and
Anuj Sharma. Quantitative analysis of probe data characteristics: Coverage,

speed bias and congestion detection precision. Journal of Intelligent Trans-
portation Systems, vol. 23, no. 2, pages 103�119, 2019. 49

[Aly et al. 2017] H Aly, A Basalamah and M Youssef. Automatic Rich Map Seman-

tics Identi�cation Through Smartphone-Based Crowd-Sensing. IEEE Trans-
actions on Mobile Computing, vol. 16, no. 10, pages 2712�2725, oct 2017.
16

[Antsfeld & Walsh 2012] Leonid Antsfeld and Toby Walsh. Finding multi-criteria

optimal paths in multi-modal public transportation networks using the transit

algorithm. In Proceedings of the 19th ITS World Congress, page 32, 2012.
31

[Appi 1966] J Math Anal Appi. A formal basis for the heuristic determination of

minimum cost paths. 1966. 22, 83, 89

[Barrett et al. 2000] Chris Barrett, Riko Jacob and Madhav Marathe. Formal-

language-constrained path problems. SIAM Journal on Computing, vol. 30,
no. 3, pages 809�837, 2000. 32, 77, 78, 89

[Barrett et al. 2002] Chris Barrett, Keith Bisset, Riko Jacob, Goran Konjevod and
Madhav Marathe. Classical and Contemporary Shortest Path Problems in

Road Networks: Implementation and Experimental Analysis of the TRAN-

SIMS Router. In European Symposium on Algorithms (ESA), pages 126�138,
2002. 30

[Bast et al. 2016a] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias
Müller-Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner and
Renato F Werneck. Algorithm engineering. chapter Route Plan, pages 19�
80. Springer, 2016. 29, 49

[Bast et al. 2016b] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias
Müller-Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner and

106 Bibliography

Renato F Werneck. Route planning in transportation networks. In Algo-
rithm engineering, pages 19�80. Springer, 2016. 9

[Bast 2009] Hannah Bast. Car or public transport�two worlds. In E�cient Algo-
rithms, pages 355�367. Springer, 2009. iii, 3, 19

[Bauer et al. 2010] Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schiefer-
decker, Dominik Schultes and Dorothea Wagner. Combining hierarchical and
goal-directed speed-up techniques for dijkstra's algorithm. Journal of Experi-
mental Algorithmics (JEA), vol. 15, pages 2�3, 2010. 27

[Bauer et al. 2011] Reinhard Bauer, Daniel Delling and Dorothea Wagner. Experi-
mental study of speed up techniques for timetable information systems. Net-
works, vol. 57, no. 1, pages 38�52, 2011. 32

[Behrisch et al. 2011] Michael Behrisch, Laura Bieker, Jakob Erdmann and Daniel
Krajzewicz. Sumo�simulation of urban mobility. In The Third International
Conference on Advances in System Simulation (SIMUL 2011), Barcelona,
Spain, volume 42, 2011. 30

[Bentley & Ottmann 1979] Jon Louis Bentley and Thomas A Ottmann. Algorithms
for reporting and counting geometric intersections. IEEE Transactions on
computers, no. 9, pages 643�647, 1979. 79

[Bernstein et al. 1996] David Bernstein, Alain Kornhauseret al. An introduction to

map matching for personal navigation assistants. 1996. 16

[Bhatia & Others 2010] Nitin Bhatia and Others. Survey of nearest neighbor tech-

niques. arXiv preprint arXiv:1007.0085, 2010. 15, 74

[Boundy 2019] Robert Gary Boundy. Transportation Energy Data Book: Edition

37. Technical report, Oak Ridge National Lab.(ORNL), Oak Ridge, TN
(United States), 2019. 1

[Bresenham 1965] J E Bresenham. Algorithm for computer control of a digital plot-

ter. IBM systems journal, vol. 4, no. 1, pages 25�30, 1965. 38

[Brodal & Jacob 2004] Gerth Stølting Brodal and Riko Jacob. Time-dependent net-
works as models to achieve fast exact time-table queries. Electronic Notes in
Theoretical Computer Science, vol. 92, pages 3�15, 2004. 12, 27

[Brüggemann-Klein 1993] Anne Brüggemann-Klein. Regular expressions into �nite

automata. Theoretical Computer Science, vol. 120, no. 2, pages 197�213,
1993. 78

[Cabannes et al. 2017] Théophile Cabannes, Marco Antonio Sangiovanni Vincen-
telli, Alexander Sundt, Hippolyte Signargout, Emily Porter, Vincent
Fighiera, Juliette Ugirumurera and Alexandre M Bayen. The impact of

Bibliography 107

GPS-enabled shortest path routing on mobility: a game theoretic approach

2. University of California, Berkeley, 2017. 29

[Chan & Yang 2009] E P F Chan and Y Yang. Shortest Path Tree Computation in

Dynamic Graphs. IEEE Transactions on Computers, vol. 58, no. 4, pages
541�557, apr 2009. 29

[Chao et al. 2020] Pingfu Chao, Yehong Xu, Wen Hua and Xiaofang Zhou. A Survey

on Map-Matching Algorithms. In Australasian Database Conference, pages
121�133. Springer, 2020. 2, 16, 18

[Chen et al. 2007] Mo Chen, Rezaul Alam Chowdhury, Vijaya Ramachandran,
David Lan Roche and Lingling Tong. Priority queues and dijkstra's algo-
rithm. Computer Science Department, University of Texas at Austin, 2007.
19

[Chen et al. 2010] Yanyan Chen, Michael G H Bell and Klaus Bogenberger. Risk-

Averse Autonomous Route Guidance by a Constrained A* Search. Journal of
Intelligent Transportation Systems, vol. 14, no. 3, pages 188�196, 2010. 53

[Chen et al. 2018] C Chen, S Jiao, S Zhang, W Liu, L Feng and Y Wang. TripIm-
putor: Real-Time Imputing Taxi Trip Purpose Leveraging Multi-Sourced Ur-

ban Data. IEEE Transactions on Intelligent Transportation Systems, vol. 19,
no. 10, pages 3292�3304, oct 2018. 30

[Chen et al. 2019] Che-Ming Chen, Chia-Ching Liang and Chih-Peng Chu. Long-

term travel time prediction using gradient boosting. Journal of Intelligent
Transportation Systems, vol. 0, no. 0, pages 1�16, 2019. 49

[Cherkassky et al. 1996] Boris V Cherkassky, Andrew V Goldberg and Tomasz
Radzik. Shortest paths algorithms: Theory and experimental evaluation.
Mathematical programming, vol. 73, no. 2, pages 129�174, 1996. 8

[Coifman & Mallika 2007] Benjamin A Coifman and Ramachandran Mallika. Dis-
tributed surveillance on freeways emphasizing incident detection and veri�-

cation. Transportation research part A: policy and practice, vol. 41, no. 8,
pages 750�767, 2007. 30

[Cooke & Halsey 1966] Kenneth L Cooke and Eric Halsey. The shortest route

through a network with time-dependent internodal transit times. Journal of
mathematical analysis and applications, vol. 14, no. 3, pages 493�498, 1966.
20

[D'Andrea et al. 2015] Eleonora D'Andrea, Pietro Ducange, Beatrice Lazzerini and
Francesco Marcelloni. Real-time detection of tra�c from twitter stream anal-

ysis. IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 4,
pages 2269�2283, 2015. 30

108 Bibliography

[Dantzig & Thapa 2006] George B Dantzig and Mukund N Thapa. Linear program-
ming 2: theory and extensions. Springer Science & Business Media, 2006.
20

[Data 2020] Navitia Open Data. France public transport data, 2020. 84

[de France Mobilités 2020] Ile de France Mobilités. Données O�re de transport Ile-
de-France Mobilités au format GTFS, 2020. 84

[Delling & Wagner 2009] Daniel Delling and Dorothea Wagner. Time-dependent

route planning. In Robust and online large-scale optimization, pages 207�
230. Springer, 2009. 25

[Delling et al. 2009] Daniel Delling, Thomas Pajor and Dorothea Wagner. Acceler-
ating multi-modal route planning by access-nodes. In European Symposium
on Algorithms, pages 587�598. Springer, 2009. 14, 32

[Delling et al. 2011a] Daniel Delling, Andrew V Goldberg, Thomas Pajor and Re-
nato F Werneck. Customizable route planning. In International Symposium
on Experimental Algorithms, pages 376�387. Springer, 2011. 10, 67, 92

[Delling et al. 2011b] Daniel Delling, Andrew V Goldberg, Ilya Razenshteyn and
Renato F Werneck. Graph partitioning with natural cuts. In 2011 IEEE
International Parallel & Distributed Processing Symposium, pages 1135�
1146. IEEE, 2011. 97

[Delling et al. 2013] Daniel Delling, Andrew V Goldberg, Andreas Nowatzyk and
Renato F Werneck. PHAST: Hardware-accelerated shortest path trees. Jour-
nal of Parallel and Distributed Computing, vol. 73, no. 7, pages 940�952,
2013. 23

[Delling et al. 2015] Daniel Delling, Thomas Pajor and Renato F Werneck. Round-
based public transit routing. Transportation Science, vol. 49, no. 3, pages
591�604, 2015. 28

[Dell'Orco et al. 2016] Mauro Dell'Orco, Mario Marinelli and Mehmet Ali Silgu. Bee
Colony Optimization for innovative travel time estimation, based on a meso-

scopic tra�c assignment model. Transportation Research Part C: Emerging
Technologies, vol. 66, pages 48�60, 2016. 30

[Demetrescu et al. 2009] Camil Demetrescu, Andrew V Goldberg and David S John-
son. The Shortest Path Problem: Ninth DIMACS Implementation Challenge,
volume 74. American Mathematical Soc., 2009. 18

[Dibbelt et al. 2013] Julian Dibbelt, Thomas Pajor, Ben Strasser and Dorothea
Wagner. Intriguingly simple and fast transit routing. In International Sym-
posium on Experimental Algorithms, pages 43�54. Springer, 2013. 28

Bibliography 109

[Dibbelt et al. 2015] Julian Dibbelt, Thomas Pajor and Dorothea Wagner. User-

constrained multimodal route planning. Journal of Experimental Algorith-
mics (JEA), vol. 19, pages 1�19, 2015. 14, 33

[Dijkstra 1959] Edsger W Dijkstra. A note on two problems in connexion with

graphs. Numerische mathematik, vol. 1, no. 1, pages 269�271, 1959. 2,
8, 18, 19, 53

[Djidjev 1982] Hristo Nicolov Djidjev. On the problem of partitioning planar graphs.
SIAM Journal on Algebraic Discrete Methods, vol. 3, no. 2, pages 229�240,
1982. 75

[DOT 2015] U S DOT. Beyond tra�c 2045: Trends and choices. US: DOT, 2015.
3

[Duan et al. 2018] Z Duan, Y Yang, K Zhang, Y Ni and S Bajgain. Improved Deep

Hybrid Networks for Urban Tra�c Flow Prediction Using Trajectory Data.
IEEE Access, vol. 6, pages 31820�31827, 2018. 29

[dyn 2020] Tra�c simulation software your city can plan on, 2020. 30

[Eppstein & Goodrich 2008] David Eppstein and Michael T Goodrich. Studying

(non-planar) road networks through an algorithmic lens. In Proceedings of
the 16th ACM SIGSPATIAL international conference on Advances in geo-
graphic information systems, page 16. ACM, 2008. 75

[Falek et al. 2018] M Falek, C Pelsser, A Gallais, S Julien and F Theoleyre. Un-

ambiguous, Real-Time and Accurate Map Matching for Multiple Sensing

Sources. In International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob). IEE, nov 2018. 30

[Flamini et al. 2018] Marta Flamini, Marialisa Nigro and Dario Pacciarelli. The

value of real-time tra�c information in urban freight distribution. Journal
of Intelligent Transportation Systems, vol. 22, no. 1, pages 26�39, 2018. 49

[Forney 1973] G David Forney. The viterbi algorithm. Proceedings of the IEEE,
vol. 61, no. 3, pages 268�278, 1973. 17

[Fredman & Tarjan 1987] Michael L Fredman and Robert Endre Tarjan. Fibonacci
heaps and their uses in improved network optimization algorithms. Journal
of the ACM (JACM), vol. 34, no. 3, pages 596�615, 1987. 19

[Fredman et al. 1986] Michael L Fredman, Robert Sedgewick, Daniel D Sleator and
Robert E Tarjan. The pairing heap: A new form of self-adjusting heap.
Algorithmica, vol. 1, no. 1-4, pages 111�129, 1986. 19

[Fuchs 2010] Fabian Fuchs. On Preprocessing the ALT-Algorithm. Student the-
sis, Faculty of Computer Science, Institut for Theoretical Informatics (ITI),
Karlsruhe Institute of Technology (KIT), 2010. 23

110 Bibliography

[Garey & Johnson 2002] Michael R Garey and David S Johnson. Computers and
intractability, volume 29. wh freeman New York, 2002. 75

[Gawron 1998] Christian Gawron. An iterative algorithm to determine the dynamic

user equilibrium in a tra�c simulation model. International Journal of Mod-
ern Physics C, vol. 9, no. 03, pages 393�407, 1998. 65

[Geisberger & Vetter 2011] Robert Geisberger and Christian Vetter. E�cient rout-

ing in road networks with turn costs. In International Symposium on Exper-
imental Algorithms, pages 100�111. Springer, 2011. 10

[Geisberger et al. 2008] Robert Geisberger, Peter Sanders, Dominik Schultes and
Daniel Delling. Contraction hierarchies: Faster and simpler hierarchical

routing in road networks. In International Workshop on Experimental and
E�cient Algorithms, pages 319�333. Springer, 2008. 25

[Geofabrik 2019] OpenStreetMap Geofabrik. OpenStreetMap data extract, 2019. 84

[Gharaibeh et al. 2017] A Gharaibeh, M A Salahuddin, S J Hussini, A Khreishah,
I Khalil, M Guizani and A Al-Fuqaha. Smart Cities: A Survey on Data

Management, Security, and Enabling Technologies. IEEE Communications
Surveys Tutorials, vol. 19, no. 4, pages 2456�2501, 2017. 35

[Gmira et al. 2019] M Gmira, M Gendreau, A Lodi and J.-Y. Potvin. Managing in

real-time a vehicle routing plan with time-dependent travel times on a road

network. Technical report 2019-4, CIRRELT, 2019. 29

[Goh et al. 2012] Chong Yang Goh, Justin Dauwels, Nikola Mitrovic, Muham-
mad Tayyab Asif, Ali Oran and Patrick Jaillet. Online map-matching based
on hidden markov model for real-time tra�c sensing applications. In 2012
15th International IEEE Conference on Intelligent Transportation Systems,
pages 776�781. IEEE, 2012. 17

[Goldberg & Harrelson 2005] Andrew V Goldberg and Chris Harrelson. Comput-

ing the shortest path: A search meets graph theory. In Proceedings of the
sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 156�
165. Society for Industrial and Applied Mathematics, 2005. 22, 23, 32

[Goldberg et al. 2006] Andrew V Goldberg, Haim Kaplan and Renato F Werneck.
Reach for A*: Shortest Path Algorithms with Preprocessing. In The Shortest
Path Problem, pages 93�140, 2006. 27

[Goldberg et al. 2007] Andrew V Goldberg, Haim Kaplan and Renato F Werneck.
Better landmarks within reach. In International Workshop on Experimental
and E�cient Algorithms, pages 38�51. Springer, 2007. 27

[Greenfeld 2002] Joshua S Greenfeld. Matching GPS observations to locations on a

digital map. In 81th annual meeting of the transportation research board,
volume 1, pages 164�173. Washington, DC, 2002. 16

Bibliography 111

[Güner et al. 2012] Ali R Güner, Alper Murat and Ratna Babu Chinnam. Dynamic
routing under recurrent and non-recurrent congestion using real-time ITS

information. Computers & Operations Research, vol. 39, no. 2, pages 358�
373, 2012. 29, 31

[Guo et al. 2016] B Guo, C Chen, D Zhang, Z Yu and A Chin. Mobile crowd sensing

and computing: when participatory sensing meets participatory social media.
IEEE Communications Magazine, vol. 54, no. 2, pages 131�137, feb 2016. 35

[Gustafsson et al. 2002] Fredrik Gustafsson, Fredrik Gunnarsson, Niclas Bergman,
Urban Forssell, Jonas Jansson, Rickard Karlsson and P-J Nordlund. Particle
�lters for positioning, navigation, and tracking. IEEE Transactions on signal
processing, vol. 50, no. 2, pages 425�437, 2002. 17

[Harrison 1978] Michael A Harrison. Introduction to formal language theory.
Addison-Wesley Longman Publishing Co., Inc., 1978. 77

[Hashemi & Karimi 2014] Mahdi Hashemi and Hassan A Karimi. A critical review

of real-time map-matching algorithms: Current issues and future directions.
Computers, Environment and Urban Systems, vol. 48, pages 153�165, 2014.
18

[Heng et al. 2011] Liang Heng, Grace Xingxin Gao, Todd Walter and Per Enge.
Statistical characterization of GPS signal-in-space errors. In International
Technical Meeting of the Institute of Navigation (ION ITM), pages 312�319,
San Diego, CA, 2011. 39, 45

[HERE Technologies 2018] HERE Technologies. Real-Time Tra�c.
\url{https://www.here.com}, 2018. 58

[Hilger et al. 2009] Moritz Hilger, Ekkehard Köhler, Rolf H Möhring and Heiko
Schilling. Fast point-to-point shortest path computations with arc-�ags. The
Shortest Path Problem: Ninth DIMACS Implementation Challenge, vol. 74,
pages 41�72, 2009. 23

[Hu et al. 2017] Wenbin Hu, Liping Yan, Huan Wang, Bo Du and Dacheng Tao.
Real-time tra�c jams prediction inspired by Biham, Middleton and Levine

(BML) model. Information Sciences, vol. 381, pages 209�228, 2017. 50

[Hunter et al. 2013] Timothy Hunter, Pieter Abbeel and Alexandre Bayen. The path
inference �lter: model-based low-latency map matching of probe vehicle data.
IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 2,
pages 507�529, 2013. 17

[ITSJPO 2020] Intelligent Transportation Systems Joint Program O�ce ITSJPO.
ITS Research Fact Sheets, 2020. 1, 2

112 Bibliography

[Jokar Arsanjani et al. 2015] Jamal Jokar Arsanjani, Peter Mooney, Alexander Zipf
and Anne Schauss. Quality Assessment of the Contributed Land Use Infor-
mation from OpenStreetMap Versus Authoritative Datasets, pages 37�58.
Springer International Publishing, Cham, 2015. 35

[Kamga et al. 2011] Camille Kamga, Kyriacos Mouskos and Robert Paaswell.
A methodology to estimate travel time using dynamic tra�c assignment

{(DTA)} under incident conditions. Transportation Research Part C: Emerg-
ing Technologies, vol. 19, no. 6, pages 1215�1224, dec 2011. 30

[Karypis & Kumar 1998] George Karypis and Vipin Kumar. A fast and high quality

multilevel scheme for partitioning irregular graphs. SIAM Journal on scien-
ti�c Computing, vol. 20, no. 1, pages 359�392, 1998. 75

[Kaufman & Smith 1993] David E Kaufman and Robert L Smith. Fastest paths in
time-dependent networks for intelligent vehicle-highway systems application.
Journal of Intelligent Transportation Systems, vol. 1, no. 1, pages 1�11, 1993.
9, 69

[Kernighan & Lin 1970] Brian W Kernighan and Shen Lin. An e�cient heuristic

procedure for partitioning graphs. Bell system technical journal, vol. 49, no. 2,
pages 291�307, 1970. 76

[Kirchler et al. 2011] Dominik Kirchler, Leo Liberti, Thomas Pajor and Roberto
Wol�er Calvo. UniALT for regular language contrained shortest paths on a

multi-modal transportation network. In 11th Workshop on Algorithmic Ap-
proaches for Transportation Modelling, Optimization, and Systems. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2011. 32

[Ladino et al. 2016] A Ladino, A Kibangou, H Fourati and C C de Wit. Travel

time forecasting from clustered time series via optimal fusion strategy. In
European Control Conference (ECC), pages 2234�2239, 2016. 30

[Lai & Kuo 2016] Wei-Kuang Lai and Ting-Huan Kuo. Vehicle Positioning and

Speed Estimation Based on Cellular Network Signals for Urban Roads. ISPRS
International Journal of Geo-Information, vol. 5, no. 10, page 181, 2016. 30

[Lee et al. 2019] Haengju Lee, Saerona Choi, Hojin Jung, Byungkyu Brian Park and
Sang H Son. A route guidance system considering travel time unreliability.
Journal of Intelligent Transportation Systems, vol. 23, no. 3, pages 282�299,
2019. 49

[Lehmann & Gross 2016] A Lehmann and A Gross. Using crowd sensed data as

input to congestion model. In International Conference on Pervasive Com-
puting and Communication Workshops (PerCom Workshops), pages 1�6.
IEEE, mar 2016. 16

Bibliography 113

[Li & Sun 2019] Xiang Li and Jian-Qiao Sun. Multi-objective optimal predictive con-

trol of signals in urban tra�c network. Journal of Intelligent Transportation
Systems, vol. 23, no. 4, pages 370�388, 2019. 29

[Li et al. 2014] Y Li, D Jin, P Hui, Z Wang and S Chen. Limits of Predictability

for Large-Scale Urban Vehicular Mobility. IEEE Transactions on Intelligent
Transportation Systems, vol. 15, no. 6, pages 2671�2682, 2014. 30

[Li et al. 2017a] Weizi Li, Dong Nie, David Wilkie and Ming C Lin. Citywide es-

timation of tra�c dynamics via sparse GPS traces. IEEE Transactions on
Intelligent Transportation Systems, jul 2017. 16

[Li et al. 2017b] Z Li, R Al Hassan, M Shahidehpour, S Bahramirad and A Kho-
daei. A Hierarchical Framework for Intelligent Tra�c Management in Smart

Cities. IEEE Transactions on Smart Grid, vol. PP, no. 99, page 1, 2017. 51

[Li et al. 2017c] Z Li, I V Kolmanovsky, E M Atkins, J Lu, D P Filev and Y Bai.
Road Disturbance Estimation and Cloud-Aided Comfort-Based Route Plan-

ning. IEEE Transactions on Cybernetics, vol. 47, no. 11, pages 3879�3891,
nov 2017. 49

[Liang et al. 2018] Xiao Liang, Gonçalo Homem de Almeida Correia and Bart van
Arem. Applying a model for trip assignment and dynamic routing of auto-

mated taxis with congestion: system performance in the City of Delft, The

Netherlands. Transportation Research Record, vol. 2672, no. 8, pages 588�
598, 2018. 31

[Liebig et al. 2017] Thomas Liebig, Nico Piatkowski, Christian Bockermann and
Katharina Morik. Dynamic route planning with real-time tra�c predictions.
Information Systems, vol. 64, pages 258�265, 2017. 30, 35

[Lin et al. 2017] Lu Lin, Jianxin Li, Feng Chen, Jieping Ye and Jinpeng Huai. Road
tra�c speed prediction: a probabilistic model fusing multi-source data. IEEE
Transactions on Knowledge and Data Engineering, vol. 30, no. 7, pages 1310�
1323, 2017. 98

[Liu 2017] Jingmeng Liu. LSTM network: a deep learning approach for short-term

tra�c forecast. IET Intelligent Transport Systems, vol. 11, pages 68�75(7),
2017. 55

[Madkour et al. 2017] Amgad Madkour, Walid G Aref, Faizan Ur Rehman, Mo-
hamed Abdur Rahman and Saleh Basalamah. A survey of shortest-path

algorithms. arXiv preprint arXiv:1705.02044, 2017. 18

[Mathew & Xavier 2014] Joseph Mathew and P M Xavier. A survey on using wire-

less signals for road tra�c detection. International Journal of Research in
Engineering and Technology, vol. 3, no. 1, 2014. 30

114 Bibliography

[Maue et al. 2010] Jens Maue, Peter Sanders and Domagoj Matijevic. Goal-directed
shortest-path queries using precomputed cluster distances. Journal of Exper-
imental Algorithmics (JEA), vol. 14, pages 2�3, 2010. 92

[McArdle et al. 2012] Gavin McArdle, Aonghus Lawlor, Eoghan Furey and Alexei
Pozdnoukhov. City-scale Tra�c Simulation from Digital Footprints. In ACM
SIGKDD International Workshop on Urban Computing, pages 47�54, 2012.
31

[McDowell 2020] Jonathan C McDowell. The Low Earth Orbit Satellite Population

and Impacts of the SpaceX Starlink Constellation. The Astrophysical Journal
Letters, vol. 892, no. 2, page L36, 2020. 99

[Möhring et al. 2007] Rolf H Möhring, Heiko Schilling, Birk Schütz, Dorothea Wag-
ner and Thomas Willhalm. Partitioning graphs to speedup Dijkstra's algo-

rithm. Journal of Experimental Algorithmics (JEA), vol. 11, pages 2�8, 2007.
24

[Mooney et al. 2017] Peter Mooney, Marco Minghini and Others. A review of Open-

StreetMap data. 2017. 84

[Müller-Hannemann & Weihe 2001] Matthias Müller-Hannemann and Karsten
Weihe. Pareto shortest paths is often feasible in practice. In International
Workshop on Algorithm Engineering, pages 185�197. Springer, 2001. 98

[Müller-Hannemann et al. 2007] Matthias Müller-Hannemann, Frank Schulz,
Dorothea Wagner and Christos Zaroliagis. Timetable information: Models

and algorithms. In Algorithmic Methods for Railway Optimization, pages
67�90. Springer, 2007. 11

[Nannicini et al. 2008] Giacomo Nannicini, Daniel Delling, Leo Liberti and Dominik
Schultes. Bidirectional A* search for time-dependent fast paths. In Interna-
tional Workshop on Experimental and E�cient Algorithms, pages 334�346.
Springer, 2008. 20, 21, 90

[Newson & Krumm 2009a] Paul Newson and John Krumm. Hidden Markov map

matching through noise and sparseness. In Proceedings of the 17th ACM
SIGSPATIAL international conference on advances in geographic informa-
tion systems, pages 336�343, 2009. 17

[Newson & Krumm 2009b] Paul Newson and John Krumm. Hidden Markov Map

Matching Through Noise and Sparseness. In 17th ACM International Confer-
ence on Advances in Geographic Information Systems (SIGSPATIAL GIS),
pages 336�343, Seattle, WA, nov 2009. 44, 47

[Ochieng et al. 2003] Washington Y Ochieng, Mohammed Quddus and Robert B
Noland. Map-matching in complex urban road networks. Revista Brasileira
de Cartogra�a, vol. 55, no. 2, 2003. 17

Bibliography 115

[OICA 2018] Organisation Internationale des Constructeurs d' OICA. Automo-

biles.(2018b). World vehicles in use�all vehicles. OICA, 2018. 1

[Orda & Rom 1990] Ariel Orda and Raphael Rom. Shortest-path and minimum-

delay algorithms in networks with time-dependent edge-length. Journal of the
ACM (JACM), vol. 37, no. 3, pages 607�625, 1990. 78

[Osogami & Raymond 2013] Takayuki Osogami and Rudy Raymond.Map matching

with inverse reinforcement learning. In Twenty-Third International Joint
Conference on Arti�cial Intelligence, 2013. 17

[Pan et al. 2013] J Pan, I S Popa, K Zeitouni and C Borcea. Proactive Vehicular

Tra�c Rerouting for Lower Travel Time. IEEE Transactions on Vehicular
Technology, vol. 62, no. 8, pages 3551�3568, oct 2013. 29

[Pyrga et al. 2004] Evangelia Pyrga, Frank Schulz, Dorothea Wagner and Chris-
tos D Zaroliagis. Experimental Comparison of Shortest Path Approaches for

Timetable Information. In ALENEX/ANALC, pages 88�99. Citeseer, 2004.
12

[Pyrga et al. 2008] Evangelia Pyrga, Frank Schulz, Dorothea Wagner and Christos
Zaroliagis. E�cient models for timetable information in public transportation

systems. Journal of Experimental Algorithmics (JEA), vol. 12, pages 2�4,
2008. 12, 13, 27

[Quddus & Washington 2015] Mohammed Quddus and Simon Washington. Short-
est path and vehicle trajectory aided map-matching for low frequency GPS

data. Transportation Research Part C: Emerging Technologies, vol. 55, pages
328�339, 2015. 36

[Quddus et al. 2003] Mohammed A Quddus, Washington Yotto Ochieng, Lin Zhao
and Robert B Noland. A general map matching algorithm for transport

telematics applications. GPS solutions, vol. 7, no. 3, pages 157�167, 2003. 16

[RafaªKucharski & Gentile 2019] RafaªKucharski and Guido Gentile. Simulation of

rerouting phenomena in Dynamic Tra�c Assignment with the Information

Comply Model. Transportation Research Part B: Methodological, vol. 126,
pages 414�441, 2019. 53

[Sanaullah et al. 2016] Irum Sanaullah, Mohammed Quddus and Marcus Enoch.
Developing travel time estimation methods using sparse GPS data. Journal
of Intelligent Transportation Systems, vol. 20, no. 6, pages 532�544, 2016.
29

[Sanders & Schultes 2007] Peter Sanders and Dominik Schultes. Engineering fast

route planning algorithms. In International Workshop on Experimental and
E�cient Algorithms, pages 23�36. Springer, 2007. 2, 10

116 Bibliography

[Sanders & Schulz 2012] Peter Sanders and Christian Schulz. Distributed evolution-
ary graph partitioning. In 2012 Proceedings of the Fourteenth Workshop on
Algorithm Engineering and Experiments (ALENEX), pages 16�29. SIAM,
2012. 75

[Schrank et al. 2015] David Schrank, Bill Eisele, Tim Lomax and Jim Bak. Score-
card, Urban Mobility. Technical report, The Texas A&M Transportation In-
stitute and Inrix, \url{https://tti.tamu.edu/documents/mobility-scorecard-
2015.pdf}, 2015. 28

[Sedgewick & Vitter 1984] R Sedgewick and J S Vitter. Shortest Paths In Euclidean

Graphs. In 25th Annual Symposium onFoundations of Computer Science,
1984., pages 417�424, 1984. 84, 89

[Shi et al. 2019] Ge Shi, Jie Shan, Liang Ding, Peng Ye, Yang Li and Nan Jiang.
Urban road network expansion and its driving variables: a case study of Nan-

jing City. International journal of environmental research and public health,
vol. 16, no. 13, page 2318, 2019. 1

[Sªadkowski & Pamuªa 2016] Aleksander Sªadkowski and Wiesªaw Pamuªa. In-
telligent transportation systems-problems and perspectives, volume 303.
Springer, 2016. 1

[Smith et al. 2014] David Smith, Sou�ene Djahel and John Murphy. A SUMO based

evaluation of road incidents' impact on tra�c congestion level in smart cities.
Proceedings - Conference on Local Computer Networks, LCN, vol. 2014-
Novem, no. November, pages 702�710, 2014. 31

[Strasser 2017] Ben Strasser. Dynamic time-dependent routing in road networks

through sampling. In 17th Workshop on Algorithmic Approaches for Trans-
portation Modelling, Optimization, and Systems (ATMOS 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017. 97

[Systematics 2005] Cambridge Systematics. Tra�c congestion and reliability:

Trends and advanced strategies for congestion mitigation. Technical report,
United States. Federal Highway Administration, 2005. 29

[TFA 2020] Transportation for America TFA. The Congestion Con. How more lanes

and more money equals more tra�c, 2020. 1

[Thomson & Richardson 1995] Robert C Thomson and Dianne E Richardson. A

graph theory approach to road network generalisation. In Proceeding of the
17th international cartographic conference, pages 1871�1880, 1995. 8, 68

[Uppoor et al. 2013] Sandesh Uppoor, Oscar Trullols-Cruces, Marco Fiore and
Jose M Barcelo-Ordinas. Generation and analysis of a large-scale urban ve-

hicular mobility dataset. IEEE Transactions on Mobile Computing, vol. 13,
no. 5, pages 1061�1075, 2013. 65

Bibliography 117

[Uppoor et al. 2014] Sandesh Uppoor, Oscar Trullols-Cruces, Marco Fiore and
Jose M Barcelo-Ordinas. Generation and analysis of a large-scale urban ve-

hicular mobility dataset. IEEE Transactions on Mobile Computing, vol. 13,
no. 5, pages 1061�1075, 2014. 30, 31, 50, 58

[van Diggelen & Enge 2015] Frank van Diggelen and Per Enge. The World's �rst

GPS MOOC and Worldwide Laboratory using Smartphones . In International
Technical Meeting of The Satellite Division of the Institute of Navigation
(GNSS), pages 361�369. ION, 2015. 35

[Von Watzdorf & Michahelles 2010] Stephan Von Watzdorf and Florian Micha-
helles. Accuracy of positioning data on smartphones. In Proceedings of the
3rd International Workshop on Location and the Web, pages 1�4, 2010. i, ii,
16

[Wang et al. 2013] Shen Wang, Sou�ene Djahel, Jennifer Mcmanis, Cormac
Mckenna and LiamMurphy. Comprehensive Performance Analysis and Com-
parison of Vehicles Routing Algorithms in Smart Cities. In Global Informa-
tion Infrastructure Symposium (GIIS), pages 1�8, Trento, Italy, 2013. 31

[Wang et al. 2015] C Wang, J Pan, H Xu, J Jia and Z Meng. An Improved A*

Algorithm for Tra�c Navigation in Real-Time Environment. In International
Conference on Robot, Vision and Signal Processing (RVSP), pages 47�50,
nov 2015. 51

[Wang et al. 2016] Shen Wang, Sou�ene Djahel, Zonghua Zhang and Jennifer Mc-
Manis. Next Road Rerouting: A Multiagent System for Mitigating Unexpected

Urban Tra�c Congestion. IEEE Transactions on Intelligent Transportation
Systems, vol. 17, no. 10, pages 2888�2899, 2016. 30

[Wang et al. 2019] Hongjian Wang, Xianfeng Tang, Yu-Hsuan Kuo, Daniel Kifer
and Zhenhui Li. A Simple Baseline for Travel Time Estimation Using Large-

scale Trip Data. ACM Trans. Intell. Syst. Technol., vol. 10, no. 2, pages
19:1�-19:22, jan 2019. 30

[White et al. 2000] Christopher E White, David Bernstein and Alain L Kornhauser.
Some map matching algorithms for personal navigation assistants. Trans-
portation research part c: emerging technologies, vol. 8, no. 1-6, pages 91�
108, 2000. 16

[Williams 1964] John William Joseph Williams. Algorithm 232: heapsort. Commun.
ACM, vol. 7, pages 347�348, 1964. 19

[Winslett 2019] Christopher Winslett. OneWeb Satellites. 2019. 99

[Winter 2002] Stephan Winter. Modeling costs of turns in route planning. GeoIn-
formatica, vol. 6, no. 4, pages 345�361, 2002. 10

118 Bibliography

[Wu et al. 2016] Yao-Jan Wu, Feng Chen, Chang-Tien Lu and Shu Yang. Ur-

ban Tra�c Flow Prediction Using a Spatio-Temporal Random E�ects Model.
Journal of Intelligent Transportation Systems, vol. 20, no. 3, pages 282�293,
2016. 49

[Xiaogang et al. 2016] QI Xiaogang, MA Jiulong, WU Dan, LIU Lifang and
HU Shaolin. A survey of routing techniques for satellite networks. 2016.
98

[Xu et al. 2015] Ming Xu, Yiman Du, Jianping Wu and Yang Zhou. Map matching

based on conditional random �elds and route preference mining for uncertain

trajectories. Mathematical Problems in Engineering, vol. 2015, 2015. 17

[Yin & Wolfson 2004] Huabei Yin and Ouri Wolfson. A weight-based map match-

ing method in moving objects databases. In Proceedings. 16th International
Conference on Scienti�c and Statistical Database Management, 2004., pages
437�438. IEEE, 2004. 16

[Yu et al. 2010] Meng Yuet al. Improved positioning of land vehicle in ITS using

digital map and other accessory information. 2010. 16

[Zhao et al. 2008] Liang Zhao, Tatsuya Ohshima and Hiroshi Nagamochi. A* Algo-
rithm for the time-dependent shortest path problem. In WAAC08: The 11th
Japan-Korea Joint Workshop on Algorithms and Computation, 2008. 10

[Zhu et al. 2017] Lei Zhu, Jacob R Holden and Je�rey D Gonder. Trajectory seg-

mentation map-matching approach for large-scale, high-resolution GPS data.
Transportation Research Record, vol. 2645, no. 1, pages 67�75, 2017. 16

[Ziliaskopoulos et al. 1999] Athanasios Ziliaskopoulos, Steven Waller and Curtis
Barrett. VISTA, Visual Interactive System for Transportation Algorithms.
Technical report, UC Berkeley Transportation Library, 1999. 30

	Introduction
	Context
	Contribution
	Map Matching:
	Dynamic re-Routing:
	Multimodal Route Planning:

	Overview

	Related Work
	Graph Theory Concepts
	Modeling Transportation Networks
	The FIFO property
	Time-Independent Models
	Time-Dependent Models
	Multimodal Network Model

	Map Matching
	Similarity-based Map Matching
	Probabilistic-based Map Matching
	Machine Learning-based Map Matching

	The Shortest Path Problem
	Dijkstra's algorithm
	Bidirectional search
	Goal Direction
	A, Landmarks, Triangle inequality (ALT)
	Arc Flags (AF)

	Hierarchy
	Contraction Hierarchies (CH)

	Hybrid Algorithms
	Journey Planning in Time-Dependent Networks
	Round Based Public Transit Routing (RAPTOR)
	Connection Scan Algorithm (CSA)

	Dynamic Route Planning
	Re-routing in road networks
	Real-time data sources
	Traffic prediction
	Experimental evaluations on dynamic networks

	Multimodal Route Planning
	Access-Node Routing
	State-Dependent ALT (SDALT)
	User Constrained Contraction Hierarchies (UCCH)

	Conclusion

	Unambiguous Map Matching
	Models and Assumptions
	Map Matching Algorithm
	Pre-processing
	Selecting edge candidates for each measurement
	Constructing valid routes from a list of edge candidates
	Constructing the subroutes
	Verifying the cost of a subroute
	Appending a subroute to a valid route

	Computing shared road segments in valid routes

	Experimental Evaluation
	Emulated GPS traces
	Real GPS trace (Seattle)

	Conclusion

	Dynamic Route Planning
	Methodology
	Assumptions and Model
	Route Planning Strategies
	Static Route Planning
	No re-Routing Route Planning
	Continuous re-Routing Route Planning
	Ideal Prediction Based Route Planning

	Evaluation Workflow
	Datasets
	Metrics for the Performance Evaluation
	Identification of congestion
	Travel Time Stretch and Gain Factors
	Identification of divergences

	Experimental Evaluation
	Absolute Travel Time and Rush Hours
	Travel Time Stretch and Gain Factors
	Impact of Sampling Rate on Travel Time
	Route Divergence Patterns

	Conclusion

	Multimodal Route Planning
	Model and Assumptions
	Road Network (private cars, taxis, and rental vehicles
	Foot Network
	Bicycle Network
	Public Transit Network
	Assembling the Multi-modal Network

	MUSE: The Algorithm
	Stage 1: Partitioning The Graph
	Stage 2: Computing The Overlay
	Stage 3: Computing Queries

	Experimental Evaluation
	Evaluation Setup
	Preprocessing
	Queries

	Conclusion

	Conclusion
	Future Work
	Short term perspectives
	Long term perspectives

	List of Figures
	List of Tables
	Bibliography

