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Introduction

Optical microscopy is one of the oldest scientific methods of observation used
today. A microscope can reveal information about the structure of materials
and tissues that are too small to be visible to the naked eye. It is useful
in many applications, including medicine, physics, materials science, and the
study of biological processes. The basic mechanisms of microscopy have been
known since the seventeenth century and progress in this field has never ceased
since. Scientists and engineers around the world are constantly developing
instruments and methods that offer innovative tools for tissue analysis.

Motivation and objectives
The fundamental operating principle of optical microscopy is the measurement
of interactions between light and a sample of interest. However, some infor-
mation on these interactions is inevitably lost due to the limitations imposed
by both the laws of physics and the current capabilities of instruments.

A microscope system offering a good compromise between manufacturing
cost and the amount of relevant information retrieved would be of great interest
in many application areas. The objective of this thesis is to propose and
develop such a measuring instrument and the corresponding data processing
methods. The chosen field of application is biology and medicine, in order to
provide original tools for the analysis of biological tissues.

To achieve this goal, the first objective is to build a microscope with high
spatial resolution and wide field of view and to develop methods for recon-
structing scenes of interest. To this end, we have chosen to implement Fourier
ptychographic microscopy (FPM). In addition to improving the resolution of
a captured intensity image, this technique also provides phase information.

The second objective is to confront the constructed microscope with an-
other imaging modality, the Mueller matrix polarimetric microscopy. This
step aims to give a comprehensive view of the interaction of light with the
sample by complementing the phase and intensity information (from Fourier
ptychography) with the polarization information.

The work of this thesis thus implies the elaboration of a general framework
for the implementation of such an imaging system.

9
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High resolution microscopy and phase imaging
The ideal optical microscope would allow us to observe an area of the desired
size and have the required spatial resolution. At the same time, it would
provide a complete description of the response of a medium to light excitation.
Measurements would be performed instantaneously and without the need for
expert training. Of course, it is not possible to build such a microscope.
Moreover, the complexity of the manufacturing process and the cost of the
system increase with the approach of this idealized version.

To avoid price increases while maintaining performance, the focus can be
placed on computer imaging techniques rather than hardware advances. In
this work, Fourier Ptychography is chosen to overcome some of the physical
limitations of conventional light microscopy through digital processing. This
technique therefore belongs to a group of computational imaging methods. One
of the main reasons for this choice is the possibility of partially overcoming
a compromise between the dimensions of the observed area and the desired
resolution. In addition, this method also provides access to information on the
optical phase of the sample.

This approach was initially proposed in 2013 [244] and has since attracted
many theoretical and experimental developments [246]. We built our version
of a Fourier ptychographic microscope from scratch.

Multi-modal imaging and polarimetric microscopy
We first demonstrate the super resolution capabilities of the constructed Fourier
ptychographic microscope. We then conduct a study confirming the quantita-
tive phase imaging capabilities of the device.

Pursuing the idea of developing a multimodal imaging system, we demon-
strate the motivation to combine polarimetric microscopy with FPM. A part of
the present study is therefore devoted to the confrontation of these two optical
modalities.

Polarimetric imaging techniques, like quantitative phase imaging, have
many applications, particularly in the analysis of biomedical tissues. We use
a Mueller matrix microscope to access, as its name implies, a Mueller ma-
trix of the sample. This provides the complete response of the specimen to
polarized light. The recovered Mueller matrix is then used to calculate the
physical parameters of the studied tissues, such as dichroism, retardance and
depolarization.

We are particularly interested in the complementarity between the phase
delays observed with the Fourier ptychographic microscope (optical phase) and
the polarimetric microscope (retardance). We aim to show that the combina-
tion of the two gives richer information than their use in isolation.
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Applications
Both FPM and polarimetric microscopy can be used in a wide range of appli-
cations.

Reported uses of FPM include counting white blood cells [36] and circu-
lating tumor cells [220], monitoring the movement of dopaminergic neurons
[98], distinguishing between healthy and cancerous cells [79], and many oth-
ers. Photonic crystal imaging is an example of non-biomedical applications
[171]. More broadly, any quantitative phase imaging technique can be used for
digital staining of transparent tissue through deep learning [166].

Furthermore, the classic configuration of the FPM can be modified to allow
numerous extensions, thus widening the possible field of use. In addition, the
technique can be combined with other imaging modalities, such as fluorescence
microscopy. In the current work, we discuss the prospects of merging Fourier
ptychographic microscopy with polarimetric imaging.

Work scope

Research context of the team
This research work was carried out in the engineering, computer science and
imaging laboratory ICube (UMR 7357). The project is part of a collaboration
between two teams - IMAGeS and TRIO.

The TRIO team (Remote Sensing, Radiometry and Optical Imaging) is a
multidisciplinary group that focuses on the extraction of physical information
contained in the signal. One of its areas of research is the physics of optical
imaging. In this field, several projects concerning the development of instru-
ments for microscopy, holography and polarimetric imaging are underway.

Meanwhile, the IMAGeS team (IMages, leArning, Geometry and Statistics)
works mainly on image modelling and processing as well as computer vision.
Its research areas include approaches such as statistical analysis, probabilistic
models, inverse problems and interpretation of digital image data.

The current project is the first in the field of computational microscopy
for both teams. The instruments I worked on were built after my arrival at
the laboratory. The expertise of the TRIO team proved particularly useful
for the physics and engineering part of the current project, while the IMAGeS
team contributed significantly to the development of the corresponding data
processing methods.

A short overview of the state of the art
The technique that we use to achieve wide-field, high-resolution imaging –
Fourier ptychographic microscopy (FPM) – was originally proposed by G.
Zheng et al. [244] in 2013. It is a recent but highly active research topic
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that has given rise to many theoretical and experimental developments. Ac-
cording to Web of Science Core Collection data at this date (22 September
2020), the original article has already been cited more than 600 times. More
than 60% of these articles have been released between the beginning of my
thesis and the current date.

Although there is a thorough theoretical description of the fundamental
principles of the method provided by Zheng in his book Fourier Ptychographic
Imaging [243], some aspects related to experimental conditions [25, 26, 27, 49,
149, 178, 202, 230] and numerical methods [26, 86, 94, 203, 218] are still under
active development.

From an algorithmic point of view, this technique belongs to a set of prob-
lems called "Phase Retrieval", which dates back to the 1970s. Despite its age,
this area of research is still active [121, 134, 212], indicating that the problem
is not completely solved.

The graph in Figure 1(a) shows the number of articles citing Zheng’s orig-
inal paper published per year. The graph in Figure 1(b) shows the same
characteristic for articles on the topic "Phase Retrieval". Both numbers in-
crease each year. This trend is evident in the case of Fourier Ptychography
and there is no indication that this tendency will reverse in the coming years.

(a) (b)

Figure 1: Number of articles published per year. (a) Citing Zheng’s original
paper [244] (FPM). (b) On the topic "Phase Retrieval". According to data
from the Web of Science Core Collection, September 22, 2020.

Contributions
The contributions of this thesis concern both the experimental developments
related to the implementation of devices and the developments of the different
parts of the data processing chain.

We particularly focused on the realization of the Fourier ptychographic mi-
croscope and on the corresponding processing methods. Although many sig-
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nificant advances have been made in FPM over the last years, various sources
of imaging noise and errors occurring in the actual experimental situation can
still seriously distort the results of the recovery. We classified and compared
several reconstruction algorithms and proposed system calibration schemes
adapted to our microscope configuration. We demonstrated the super resolu-
tion and quantitative phase imaging capabilities of the device. As part of this
demonstration, we conducted a study on a fabricated sample of large optical
thickness. This research led to a publication in a peer-reviewed journal [110].

In a second step, we used a Mueller matrix microscope to access polarimet-
ric properties of samples. We have experimentally validated the complemen-
tarity of the information extracted by the two constructed optical modalities.
This part of the work has been the subject of an international communication
with a published act [19].

Outline of thesis
The remainder of this work is outlined as follows. In the first chapter, the foun-
dations and the limits of optical microscopy are laid out in order to highlight
the contribution of Fourier ptychography. In the second chapter, we explain
in detail the idea of the FPM method and its physical model. We continue
by addressing the numerical aspects of the problem and investigating different
reconstruction methods. The third chapter presents the experimental set-up
of our Fourier ptychographic microscope. We then propose methods for its
characterization and calibration. The fourth chapter introduces the quanti-
tative phase imaging study performed. Next, the Mueller matrix microscope
is presented, followed by a description of the comparative study. Finally, we
draw conclusions and present the perspectives of the work accomplished.
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Chapter 1

Optical microscopy

The general definition of an optical (or light) microscope is a device for obtain-
ing enlarged images of objects invisible to the naked eye. Microscopes come in
many different types and categories, however. The choice of a suitable device
must be made according to the application and constraints such as budget,
portability or the need for training.

One of the biggest differences in the design of any imaging system is the
lighting mode. A distinction is made between reflection imaging (also called
epi-illuminated) and transmission imaging (trans-illuminated). Everything in
this chapter applies to both configurations, however, only transmission mi-
croscopy is employed in current work.

The operation principles and components of an optical microscope are sum-
marized in this chapter, following an introduction to optical imaging methods
and the properties of light.

1.1 Fundamentals of optical imaging
Optics is a branch of physics that studies light and its interactions with matter.
As part of this work, we focus mainly on geometrical optics and wave optics
[9].

Geometric optics, also called ray optics, is interested in light rays and treats
them rather as an abstract entity with measurable position and direction. On
the other hand, wave optics, sometimes called physical optics, express light in
the form of waves and deal with all the consequences of such a representation.

1.1.1 Light
According to the most general definition given by physics, light is electromag-
netic radiation. Depending on phenomena under consideration, the light can
be studied using models with different levels of complexity.

In the second half of the 19th century, James Clerk Maxwell constructed
the famous equations to describe the electromagnetic field and its disturbances

15
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mathematically. One of the conclusions of his theory was the existence of
synchronized oscillations propagating in space in coupled electric and magnetic
fields in a wave-like pattern. A variable electric field is always associated with
a variable magnetic field.

On the most fundamental level, light exhibits a so-called wave-particle du-
ality. This principle holds fact that, from the point of view of quantum me-
chanics, light can not be considered only as a group of particles and can not be
characterized solely as a wave. This duality is the characteristic of all quantum
entities, including light particles called photons [44].

In the context of this work, unless otherwise indicated, by "light", we only
refer to the wave properties of electromagnetic radiation.

Properties of light

Among the fundamental attributes of light to which we refer in this work are
direction of propagation, amplitude, phase, frequency and polarization.

The definition of polarization is given later in Chapter 4.
The direction of propagation is simply a vector that indicates where the

light wave is heading. Disturbances in electric and magnetic fields oscillate
perpendicular to the direction of propagation and perpendicular to each other,
which means that these waves are transverse. Electric and magnetic fields are
vector fields. Their oscillations are described as changes in the amplitude and
direction of a vector at each point in space.

Consider the simplest form of a one-dimensional wave signal which is a
sinusoidal function y(z, t) defined at the point z and the propagation time t.
It is characterized by its amplitude A, angular frequency ω, phase constant δ
and the wave number k [64]:

y(z, t) = A cos[kz − ωt+ δ] (1.1)

The wavelength λ of such a wave can be expressed using the wave number
k: λ = 2π/k. The angular frequency ω is the number of oscillations per unit
time expressed in radians. The ordinary frequency ν of the wave, which is the
inverse of the period (the duration of one full cycle) is related to the angular
frequency ω as following : ν = ω/2π. It is measured in hertz. The wave
described by the Eq. (1.1) is monochromatic, meaning that it is defined by a
single frequency ω.

The intensity of light is defined as a square of the amplitude of the wave
I = A2.

A more practical way to represent the wave, avoiding working with the
sinusoidal function, is to use the Euler formula and complex numbers. From
the Euler’s formula z = r(cosφ + i sinφ) = reiφ. The equation (1.1) can then
be rewritten as :

y(z, t) = Re[Aei(kz−ωt+δ)] (1.2)
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Figure 1.1: Refraction of a light beam. Reprinted from wikipedia.org.

Another definition, which will be used in the next chapter, is that of com-
plex amplitude Ã.

Ã = Aeiδ (1.3)
Finally, another type of wave that will be mentioned in Chapter 2 is the

monochromatic plane wave. Such a wave is defined as a wave with a flat
wavefront. In turn, the wavefront refers to the set of points that took the
same time to propagate from the source. The electric and magnetic fields of
such a plane wave can be written as follows:

E(z, t) = Re[Ẽ0e
i(kz−ωt)],

B(z, t) = Re[B̃0e
i(kz−ωt)] (1.4)

where Ẽ0 and B̃0 are the complex amplitudes.
The propagation of a plane wave is therefore described by a complex ex-

ponential.

Light-matter interactions

Light can interact with matter in a variety of ways. It can be reflected, ab-
sorbed, transmitted, refracted, diffracted, scattered and even emitted. All
these interactions can modify the properties of the original light beam.

We will rely mainly on refraction, transmission, reflection, absorbance and
diffraction to describe the functioning of the systems built. It is therefore
useful to state these definitions here.

Refraction Refraction is the deviation of a light beam when its velocity
changes as it passes between two media, see Fig. 1.1.

The refractive index n is a number that characterizes the speed of light
propagation in the medium. More precisely, n = c/v, where c is a universal
physical constant indicating the speed of light in vacuum and v is the phase
velocity of light in the given medium. The value of the index depends on the
composition of the medium and the wavelength of the light.

The refractive index of air is about n = 1.00028 for visible light frequencies.
In the course of ongoing work, we will approximate this value to 1.

https://en.wikipedia.org/wiki/Refractive_index
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The amount of the deviation of the light beam angle is given by the Snell
law :

sin θ1

sin θ2
= v1

v2
= n1

n2
(1.5)

The difference in propagation speed between two media with different opti-
cal properties leads to changes in the optical path of the light passing through
them. It creates a phase shift with respect to a wave that has not changed
the medium. This phenomenon can be quantified by a quantity called optical
path length Λ, which is the refractive index of a material n multiplied by its
physical thickness s: Λ = ns.

Another related descriptor of the optical properties of a material is the
complex refractive index n∗ = n + ik. It describes not only the delay in the
phase velocity of wave propagation (which is a real index of refraction n) but
also the amount of attenuation of the wave (the extinction coefficient k). In
this work, we refer only to the real part of the refractive index.

Transmission, reflection and absorbance Transmission is simply the
passage of light through a medium. The efficiency of transmission depends
on the wavelength of the light used and the properties of the medium.

It is quantified by transmittance T , which is the ratio between the intensity
of radiation transmitted through matter I and the incident intensity I0 : T =
I/I0. For a totally transparent object, the transmittance is equal to 1, i.e. the
amplitude of visible light is not attenuated.

At the atomic level, transmission, as well as reflection, occurs when the
electrons of the atoms making up the medium do not vibrate at the same
frequency as the incident light. If the frequencies match, absorption occurs.

Absorption is defined as a transition from the radiant power of incident
light to another form of energy. In most cases it becomes thermal energy. The
quantity directly related to transmission and absorption is called absorbance
A. It describes the ability of the medium to attenuate light of a specific
wavelength. It encompasses all the physical processes that could lead to the
failure of electromagnetic radiation transmission, such as absorption, reflection
and scattering. By definition, A = − log10 T .

Diffraction Diffraction describes the behaviour of light when it passes through
a slit or encounters an obstacle whose dimension is of the same order of mag-
nitude as its wavelength. This encounter is accompanied by a bending and
spreading of the wave propagation directions. Diffraction is an important ele-
ment in understanding Fourier optics and the limit of resolution.

Transmission, reflection and refraction are the basic phenomena on which
geometric optics is based, while diffraction is an essential part of wave optics.
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It is important to note that some materials are sensitive to the polariza-
tion state of a wave. These materials are said to be optically anisotropic. This
means that the refractive index, absorption coefficient, and other optical prop-
erties can vary depending on the polarization state of light. We will discuss
the interactions of polarized light with anisotropic materials in Chapter 4.

Note also that the above definitions are given assuming that scattering (or
diffusion), which is the process of deflecting a single beam of light into several
beams, does not occur during refraction, reflection and transmission.

1.1.2 Optical imaging techniques and their applications

Human eye

The human eye is sensitive, up to a certain variation, to electromagnetic waves
of wavelengths from 380 nm to 740 nm.

The structure of the eye is somewhat similar to that of a microscope with
a camera. Light enters the eye through a hole of varying size in the iris called
"pupil". It then passes through a lens and is projected onto the retina at the
back of the eye. Some intermediate stages of this process have been deliberately
left out.

The retina contains two types of photoreceptor cells: cones and rods. In low
light conditions, only the rods are primarily activated, creating monochromatic
vision. The cones function in high light conditions, allowing us to appreciate
daytime vision. In humans, there are 3 types of cones, each type respond the
most to one of the 3 possible frequencies, which results in colour perception.

The cons and rods are stimulated when enough photons of the specific wave-
length are absorbed. Therefore, the human eye is sensitive to two properties
of light: intensity and specific spectrum bands. Another piece of information
that the brain can reconstruct using both eyes is the depth of a scene, that is,
the interactions between light and the 3D world.

Common optical instruments

There are a wide variety of optical instruments, including devices that are
used to create and manipulate light or to analyze and capture it. Only the
instruments encountered in the course of the work in progress will be cited
below.

Light emitters Among the light emitters used in this thesis are lasers, LEDs
and lamps.

A word laser stands for "Light Amplification by Stimulated Emission of
Radiation". It is a device that converts the energy of a source into a narrowly
directed stream of light radiation that is coherent in space and time. The
characteristics of a laser can be very different depending on the application.
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Tungsten and xenon halogen lamps are the most commonly used light
sources in optical microscopy. Both create incoherent electromagnetic radi-
ation with a continuous spectrum. The voltage and thus the illumination
power can usually be controlled. Depending on the type of lamp and the man-
ufacturer, the spectrum range and the highest intensity band may differ. As
an example, Thorlabs’ Fiber-Coupled Xenon Light Source emits light from 240
nm to 1200 nm with intense lines in the spectral region of 600 to 1200 nm.

Recently, LEDs have become an important part of microscopic research,
especially in fluorescence microscopy [120, 129]. LED is an acronym for "Light
Emitting Diode". It is a device that generates electromagnetic radiation when
an electric current flows through it (in the forward direction). Even if the illu-
mination produced is not perfectly coherent, it can be considered monochro-
matic because the spectral band remains narrow. The advantages of LEDs over
the light sources listed above include lower price, smaller size, lower power con-
sumption and faster switching. Furthermore, some manufacturers offer LEDs
with high luminous efficiency and in the ultraviolet and infrared wavelengths
in addition to visible light.

Light analysers and light modification Different instruments are avail-
able to analyze the light, modify its properties or improve the image for visual-
ization. Optical elements used in current work include: lenses, mirrors, optical
filters, polarizers, optical retarders. Among the composite devices: micro-
scopes and microscope objectives, spectrometer, refractometer, polarimeter.

Optical filters are used to select light in a desirable wavelength range. In
the case of an absorbing filter, all light that does not fall within its spectrum
is absorbed and the rest is transmitted through.

Polarizers, optical retarders or waveplates and other optical devices capable
of changing the polarization state of light will be discussed in Chapter 4.

A spectrometer is a device used to measure the spectral components of
incident light. It works by separating the radiation into individual narrow
bands within certain wavelengths and measures the intensity of each band.

A Refractometer is capable of measuring the refractive index of a medium.

Lenses A lense is the basic and, until recently, the essential element of an
optical microscope [17, 165]. Therefore, in order to understand imaging in
microscopy and its performance limitations, it is useful to look at lenses from
the point of view of geometric optics.

A lens uses the laws of refraction to deflect the light beam that has passed
through the object. The simplest type of lens is a spherical lens whose axis is
located at its physical centre. These lenses have two surfaces, each of which
can be flat (does not deflect rays), convex (converges rays) or concave (diverges
rays).

Lenses are generally characterized by their focusing points, focal length and
optical power (reciprocal of focal length).
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The focal point F is a point where the rays, coming from a point light
source S on one side and passing through the lens on the other side, converge
and form an image of the point S.

Focal length f is the distance from the center of the lens to its focal point
F .

Light detectors Photodetectors, i.e. sensors for electromagnetic radiation,
used in current work include a photon counter, a CCD (Charged Coupling
Devices) camera and a CMOS (Complementary Metal Oxide Semiconductor)
camera. Their sensors convert light signals into electrons.

Like the human eye, the sensors in digital cameras are only sensitive to the
intensity of incoming light in a specific wavelength range. They are limited in
terms of spatial and temporal resolution, frequency sensitivity and dynamic
range.

The CCD sensor consists of a 2D array of light-sensitive photodiodes. When
a photon in a given frequency band reaches a sensor pixel, it is absorbed and
an electron charge is generated according to the photovoltaic effect [62]. After
exposure, this charge is transported through the entire sensor field, from pixel
to pixel, and is read at the output angle of the matrix.

On the contrary, in CMOS sensors, one or more transistors are attached to
each pixel (a photodioid). This allows each pixel to be read out separately by
moving the charge through wires attached to the transistors.

Conventional photodetectors can only detect variations in light intensity
within a certain frequency range. Information about the change in polarization
of the light and its phase is lost.

1.2 Fundamentals of microscopy systems
Figure 1.2 shows an example of a commercially available clinical microscope,
Leica DM1000. This device will be used as a reference for a professionally de-
signed microscope with which to compare the performance of our built system.

The main components of any optical microscope are an optical part and
an illumination unit. Their composition is given below.

1.2.1 Optical Components of a Microscope
The objective of a microscope (Figure 1.2 b3) is one of the most important
parts of a microscope that largely defines its final performance. It consists of
a lens or a lens system constructed in such a way that the image produced is
magnified [135]. An eyepiece (Figure 1.2 b1) is another component of a typical
optical microscope. It works together with an objective to project a magnified
image onto an eye or sensor. Like an objective, it consists of lenses.

Objectives may differ greatly in design, characteristics and applications. In
order not to plunge into the internal design of objectives, we simply mention
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(a) Photo (b) Schema

Figure 1.2: Clinical microscope Leica DM1000. (1) – eyepiece, (2) – nosepiece,
(3) – objectives, (4) – condenser, (5) – collector, (6) – lamp. Reprinted with
modifications and annotations from leica-microsystems.com.

that only refractive (as opposed to reflective) objectives are used in this work.
Objectives can also be classified as a finite conjugate and an infinite conjugate
(corrected to infinity).

Early microscope objectives were all finite conjugate, meaning that the im-
age was formed at a fixed distance from the objective lenses. The distance
between the part of a microscope to which the objectives are attached (the
nosepiece, Figure 1.2 b2) and the top of the eyepiece tubes is called the me-
chanical tube length. The standard has been set at a value of 160 millimetres
for more than 100 years.

Infinity corrected objectives form an image at infinity. Their invention
was particularly useful for applications involving a large distance between the
objective lenses and the image plane, allowing the insertion of other optical
elements between the two. Such objectives require a secondary lens to focus
on a sample and produce the image.

1.2.2 Light source Components of a Microscope
The design and adjustment of illumination can be as critical to the overall
performance of an imaging system as its optics [67]. Important characteristics
of a light source component include its brightness, spectrum, uniformity of
illumination in the field of view, illumination angles, presence of artifacts such
as glare, etc.

Kohler illumination The most common illumination used in optical mi-
croscopy today is the Köhler illumination [131]. It was proposed in 1893 and
practically replaced the critical illumination method used previously.

The main problem with critical illumination was the inhomogeneity of the
brightness that led to the appearance of the light source in the observed image

https://www.leica-microsystems.com/products/light-microscopes/p/leica-dm1000/
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Figure 1.3: Finite conjugate and an infinite conjugate objectives. Reprinted
from theonlinethoughts.com.

of the sample. The new technique solved this problem by providing a com-
pletely defocused light source image at the sample plane and thus uniform
illumination.

Köhler illumination unit consists of a lamp (e.g. a halogen lamp, Figure 1.2
b6), a collector (Figure 1.2 b5) and a condenser (Figure 1.2 b4). The collector
consists of a lens and a field diaphragm and is used to focus the incoming light
at the plane of the condenser diaphragm. The condenser, in turn, diverges the
light rays and projects them further through the plane of the sample. It also
consists of a lens and a diaphragm. Its diaphragm defines the angle of the cone
of light rays reaching the sample. The lighting produced is incoherent.

When the condenser diaphragm is adjusted so that the illumination angles
(illumination NA) perfectly match the maximum accepted angles of the ob-
jective (collection NA), the final resolution of the system is optimized. Note,
however, that this is only true for bright-field microscopy, the rules for the con-
denser diaphragm design are very different for dark-field and phase imaging
[67].

1.3 Bright-field microscopy performance and
limitations

A microscope in the example above (Fig. 1.2) is a bright-field microscope.
This means that visible light is used to illuminate the sample in the range of
angles collected by the optics. The image is then formed by contrasting the

https://theonlinethoughts.com/2018/07/06/finite-and-infinite-conjugate-objectives/
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amount of light transmitted/attenuated (or reflected/absorbed in the case of
epi illumination) by the sample at different spatial positions.

The performance of a bright-field microscope is not evaluated by a sin-
gle parameter, but rather is estimated as a combination of several important
characteristics that will be discussed below.

1.3.1 Characteristics of the microscope system
Magnification The magnification of a microscope, or magnification power,
can be defined as the ratio between the dimensions of the observed image
and the dimensions of the object. The amount of enlargement is related to
the optical power, or equivalently, the focal lengths, of its optical components
(lenses).

Field of View The field of view (FoV) simply describes the size of the
observed portion of the sample. It is mainly determined by the objective
magnification and is inversely proportional to it.

When using a digital camera, the practical FoV is often limited by the size
of the sensor. In this case, it can be calculated by dividing the camera sensor
size by the lens magnification.

Numerical Aperture The numerical aperture (NA) is a dimensionless quan-
tity describing the range of light angles that can pass through the system at a
fixed distance, Eq. (1.6) [131].

NA = n sin θ, (1.6)
where
n is the refractive index of the medium between the sample and the lens,
θ is the aperture angle of a lens, it is half the maximum light angle accepted
by the entrance lens.

The microscopes used in this work do not use immersion oil, so the medium
is simply air with nair = 1. Therefore, when we refer to NA in the consequent
passages, we will emit the refractive index n in the Eq. 1.6. In the case of
a simple thin lens (Fig. 1.4), the opening angle θ is related to the lens focal
length f and the diameter of its entrance pupil D

tan θ = D

2f (1.7)

The numerical aperture of the microscope largely defines the final resolution
of the system. High NA objectives, accepting wide oblique angles, make it
possible to distinguish smaller structures.

The effective numerical aperture of a classical bright-field microscope is de-
fined as the sum of the cone of light delivered by the condenser and the max-
imum cone of light accepted by the objective: NA = NAcondenser + NAobjective
[131].
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Figure 1.4: The numerical aperture of a thin lens working in air is defined by
the angle θ. Reprinted from wikipedia.org.

Resolution Resolution, or resolving power, is one of the most important
performance characteristics of a microscope system. In simple terms, it defines
the system’s ability to discriminate details.

Several phenomena can limit the resolution of an optical system [131],
including fundamental physical limitations of imaging, such as diffraction in-
troduced by the interaction of light with the sample, and system properties
such as the ability of the lens to capture rays, lens aberration, various types
of noise, and so on. The causes of these phenomena will be discussed in the
next subsection, while only the definitions are given here.

Multiple associated descriptions can be used to quantify resolution, includ-
ing angular resolution, spatial resolution, and Rayleigh criterion.

Angular resolution is the definition most often used in the context of optical
microscopy and is described by the smallest angular distance δθ between two
neighbouring points in space that can be clearly regarded as distinct.

The Rayleigh criterion mathematically defines this smallest distance. For
the circular aperture, it is given by Eq. 1.8:

δθ = 1.22λ
D

, (1.8)

where
δθ is the minimum resolvable angle (in radians),
D is the diameter of the circular opening, see Fig. 1.4,
λ is the illumination wavelength, the wavelength is therefore part of the defi-
nition of resolution.

Another quantitative standard often used in microscopy is the spatial res-
olution r, which is based on the concept of numerical aperture.

r = 1.22λ
NAcondenser + NAobjective

, (1.9)

where
r is the smallest resolvable distance between two objects,
NA = NAcondenser + NAobjective is the effective numerical aperture of the micro-
scope.

https://en.wikipedia.org/wiki/Numerical_aperture
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Using the Eqs. (1.6-1.9), the angular resolution can be converted to spa-
tial. Spatial resolution also indicates the maximum spatial frequency that the
optical system can detect. The relationship between these two notions will be
discussed in the next chapter, after introducing the concept of Fourier optics.

The resolution criteria mentioned above apply to the diffraction limit of op-
tical microscopy. Another unrelated factor that decreases resolution in practice
is lens aberration.

Aberrations An aberration is an error in the image produced by the actual
system caused by the deviation of the beam from the direction predicted for
the ideal system. These errors are mainly related to the interactions of the
light with the lens material.

All aberrations can be considered as belonging to one of the following two
categories: chromatic or monochromatic aberrations.

Chromatic aberrations are attributed to the dispersion that is caused by
variations in the refractive index of the lens material for different wavelengths
of light.

Monochromatic aberrations describe the deviation of light caused by the
shape of the lenses and the alignment of the point source and its image with
respect to the optical axis. Among the most common monochromatic aberra-
tions are: spherical, coma, astigmatism, field curvature and distortion [131].
These aberrations will be discussed in more detail in Chapter 3 with respect
to the constructed system.

Well-corrected lenses can offer larger numerical apertures and greater re-
solving power than uncorrected lenses of the same magnification.

Depth of Field The depth of field (DOF) Z describes the axial resolution of
the system, measured parallel to the optical axis. It contrasts with the lateral
resolution, measured in the plane of the sample perpendicular to the optical
axis, to which we have referred when defining spatial or angular resolution
above.

It is defined as the maximum distance between two slices in the object
plane within which all points are in focus. In other words, DOF refers to
the ability of the microscope to maintain focus while axially repositioning the
object within a specified limit Z. One of the possible quantitative metrics for
Z can be given by Eq. 1.10 [131]:

Z = λ

NA2 , (1.10)

As a result, low numerical aperture lenses have a greater depth of field.
The criterion above is sometimes referred to as wave optical depth of field.

However, it is not sufficient in the context of low numerical aperture lenses
where the geometrical optical depth of field also plays an important role. The
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total depth of field is then defined as follows [41] :

Ztot = λ

NA2 + e

mNA , (1.11)

where m is a system magnification, e is the smallest resolvable distance in the
intermediate image plane.

Depth of Focus The notion of depth of focus is linked to the notion of
depth of field. It refers to the ability of the system to maintain focus while
moving the sensor within a certain distance, as opposed to moving the object.
Depth of field can be defined as the range in which the plane of a sensor must
be in order for the image of an object in focus to be sharp [135].

Working distance The working distance is simply the distance between the
lens and the object on which the object must be placed in order to obtain a
sharp image. High-magnification lenses tend to have a small working distance.

Space-Bandwidth Product An important performance characteristic of
optical systems is its space-bandwidth product (SBP) [132]. SBP is particu-
larly relevant in the context of Fourier Ptychography and other computational
imaging techniques.

This criterion comes from information theory and describes the amount of
content transmitted by the system.

A common definition of SPB can be given [12] as a ratio between a total
field of view A and a square of system resolution r, Eq. 1.12:

SPB = 2A
r2 (1.12)

Another possible definition uses the number of resolvable pixels. It defines
the SPB as the number of effective pixels needed to image the given area A at
full resolution.

Neither of these two definitions takes into account the signal-to-noise ratio
(SNR), which is acceptable in the present work.

The design of a microscope is often optimized to obtain the highest SPB
for the given price.

1.3.2 Limitations of Conventional Microscopy and State
of the Art Performance

In order to understand the need for and benefits of computational imaging,
the nature of the physical limitations as well as the state-of-the-art features of
commercially available optical microscopes should be examined.
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Space-Bandwidth Product limit

As mentioned above, the resolution of any optical system is intrinsically limited
by the wave nature of light, see Eq. 1.9. According to Abbe’s imaging theory
[131], three main components contribute to this limitation: diffraction caused
by the interaction of light with the internal structures of the sample, diffraction
caused by the edges of the lens aperture, and constructive and destructive
interference of light waves in the image plane.

Thus, an optical microscope is a diffraction-limited system. Moreover, the
lens manufacturing process does not allow to build aberration-free objectives
with an arbitrary large aperture.

The numerical aperture values in conventional optical microscopes range
from 0.025 to about 1.35 [41, 136, 195]. Zeiss offers a 100x lens with NA =
1.57 [161]. Objectives with NA> 1 are generally designed to operate in oil
immersion mode.

The minimum value of the visible spectrum is 380 nm for violet light.
Considering a system with numerical aperture of 0.6 (corresponds roughly to
magnification of x40), the diffraction limit given by the Eq. 1.9 is about λ/2 =
190 nm. Even taking into account the best available NA and oil immersion,
the resolution of a bright field microscope still does not fall below 100 nm for
any of the visible light frequencies.

Such resolution is acceptable for imaging biological cells (1 to 100 microns)
and bacteria (500 nanometers to 5 micrometers), but is not sufficient for viruses
(20 and 300 nanometres) and smaller structures.

Magnification and resolution cannot be directly deduced from each other.
In practice, however, the lens manufacturer often ensures that the magnifica-
tion is proportional to the numerical aperture, given the same level of optical
aberration correction [41].

The objective magnification of commercially available light microscopes
ranges from 1x to 150x [136, 161]. The final magnification of the system also
depends on the eyepiece, which usually provides an additional factor of 10x,
resulting in a maximum useful magnification of 1500x.

The magnification of a single lens is inversely proportional to its working
distance and, therefore, the field of view of the lens is inversely proportional to
the square of the magnification [63]. In addition, high NA lenses introduce a
significant amount of geometrical aberrations, especially spherical aberrations,
which also limits the area where image quality is acceptable.

This leads to the famous compromise between the observable area and the
resolution of the system. Since the spatial bandwidth product describes both
FOV and resolution, it is a good metric to describe the performance of the
microscope with respect to this trade-off.

As analyzed in [12], a standard commercially available microscope objective
has an SBP (as defined by Eq. 1.12) of the order of megapixels. And this
holds true regardless of magnification, FOV or numerical aperture. Solutions
to increase the SPB will be reviewed in the next subsection.
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Loss of Information

Of all the interactions of the light with the specimen, the only possible infor-
mation to be recorded is the intensity of the wavefront that reaches the camera
sensor. This is due to the intrinsic limitations of digital cameras and will be
discussed in more detail in Chapter 2. For transparent samples, this means
that the information will simply not be captured by the system.

A common way to overcome this problem in the context of histological
slides is tissue staining, which enhances contrast in samples by dyeing distinct
cell structures. However, staining requires the intervention of a biologist and
can damage the tissue. In addition, some staining is not compatible with cell
life.

At the same time, the interactions of the light and the sample produce
changes in the polarization state of the wave and also in its phase. Therefore,
by using techniques that can reveal these changes, it is possible to shed light
on lost information and/or avoid staining of the tissue.

The 3D information on the sample is also reduced to a single 2D image.

1.4 Exceed the limits
The race to increase the quantity and quality of information transmitted and
to recover lost light-matter interactions has been going on since the very birth
of microscopy. Many methods have been proposed to address some of these
issues one by one or to find the optimal trade-offs.

1.4.1 Exceed the limits by hardware modifications
Increase Space-Bandwidth Product Motorized scanning systems are an
obvious solution that offers high resolution with a wide field of view. An
example of such a system would be a mechanical scanning microscope or a
digital pathology scanner [160]. They rely primarily on the ability to scan a
sample from one point to another within the area of interest. These systems
are expensive, difficult to manufacture, require precise calibration, and take
up a lot of space.

Increase contrast and recover lost information Conventional bright-
field transmission microscopy depends primarily on the absorption of light
by the non-transparent parts of the sample. Dark-field microscopy, on the
other hand, aims to capture only those light beams that have been deflected
rather than absorbed. The operation of a dark field microscope is based on
eliminating the undeflected wave components by placing a stop under the
sample and thus blocking direct illumination. This method allows the imaging
of low-contrast samples, in particular the highlighting of edges and surface
defects.
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In the 1930s, a new method called phase-contrast microscopy was developed
and virtually replaced dark-field microscopy. It allows the phase to be visu-
alized by converting the underlying phase shifts produced by the sample into
intensity differences. Phase-contrast microscopy requires a specialized objec-
tive with a phase plate and a condenser annular diaphragm. While a darkfield
microscope tends to emphasize external details, a phase contrast microscope
is equally excellent for revealing internal structures.

One disadvantage of phase contrast microscopy is the appearance of a
bright diffraction halo around structures. Differential interference contrast
microscopy aims to solve this problem. The configuration is very different
from that of a brightfield, darkfield or phase contrast microscope. Imaging is
based on polarization optics and double-beam interference, resulting in costly
hardware modifications.

Finally, polarization microscopy is used to capture changes in the polariza-
tion state of the light lost by the detector. Its principles of operation will be
explained in Chapter 4, after introducing the basics of polarization.

In addition, there is fluorescence microscopy, which is based on the emission
of light in response to the excitation of a pre-prepared sample. An overview
of other optical techniques, like modulation contrast microscopy or confocal
laser scanning microscopy can be found in [131]

1.4.2 Exceed the limits by computational imaging
Computational imaging techniques seek to overcome the physical limitations
of traditional imaging due to digital data processing. We are particularly
interested here in improving resolution and phase retrieval.

In terms of improving resolution, a family of techniques called super-resolution
is widely used. The objective is to increase resolution down to the nanometer
scale. The first methods were based on fluorophores excitation. Examples
include stimulated emission depletion (STED) microscopy, [74] photoactivated
localization microscopy (PALM) [75] and structured illumination microscopy
(SIM) [70], to name a few. However, sample preparation by application of
fluorescence markers was required. Non-fluorescent analogues of some of these
techniques were later proposed [32], but they still relied on the contrast present
in the sample due to artificial or natural staining.

Phase imaging, on the other hand, can work with optically transparent
samples without adding additional contrast. There are many different tech-
niques for phase recovery using computational imaging [173, 175]. Many of
them additionally improve the resolution of the system [128]. Examples in-
clude conventional ptychography [168], digital holography [23], quantitative
phase structured illumination microscopy [33], quantitative interferometric mi-
croscopy [172] and many others.

However, Fourier ptychography, proposed by G. Zheng et al. in 2013 [244],
has several important advantages. The most significant are cost effectiveness,
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improved resolution without sacrificing the field of view (FOV), simplicity of
hardware configuration, and recovery of both phase and intensity information.
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Chapter 2

The phase problem and Fourier
ptychography

Fourier Ptychography procedure seeks to reconstruct a complex, high-resolution
signal from a set of low-resolution intensity images corrupted by noise. This
complex signal can be decomposed into amplitude (square root of intensity)
and phase.

This technique belongs to the family of information loss problems, called
"phase problem". A procedure for solving the "phase problem", that is to
say the phase reconstruction from intensity measurements of an object or,
alternatively, its Fourier magnitudes, is called "phase retrieval".

On the other hand, the technique also belongs to the group of super-
resolution methods.

2.1 Phase retrieval applications and techniques
Solutions to the phase problem are sought not only in optical imaging, but
also in many other scientific fields [87, 175].

In general, this problem occurs during physical measurements of phenom-
ena which can be described as waves. Most current measurement methods,
such as detection using digital cameras, can only record the intensity of the
wavefront. In addition, this phaseless data is, in real life, corrupted by noise.
The exact reasons for the inaccessibility of the phase are specific to each field
of application.

In this section, we give a brief overview of phase recovery techniques in
optical imaging and other fields. We also describe conventional Ptychography,
a forerunner of the Fourier Ptychography method.

2.1.1 Examples of phase problems
X-ray Crystallography X-ray crystallography is one of the first fields to
highlight the benefits of phase retrieval. The idea of using phase information
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to evaluate the atomic arrangements in crystal samples dates back to 1912
[169].

The initial objective of crystallography was to recover the structure of
molecules arranged in a crystal lattice. Most approaches were based on the
periodicity of such structures.

Indeed, such a periodicity is reflected in the Fourier domain of the object.
The Fourier information is in turn obtained from measurements of diffracted
waves in the far field. For the moment, we do not explain this phenomenon
but we come back to it in Section 2.2.2.

The reconstruction algorithms still needed specific domain knowledge in
order to correctly estimate the phase.

X-ray crystallography was then extended to more general non-crystalline
samples, such as biological molecules in the end of 20th century [126].

Various techniques have been developed to solve the phase problem in crys-
tallography, but we will limit ourselves to what has been said above and discuss
in more detail the optical phase extraction at visible light frequencies.

X-ray Coherent Diffraction Imaging Coherent diffraction imaging is an-
other phase recovery technique using X-ray light sources to image structures at
the nanoscale. It can also be used to detect defects such as strain of materials
[154]. Unlike the case of X-ray crystallography, the sample does not have to
be crystalline and periodic.

The technique does not use lenses which make it possible to avoid signif-
icant aberrations in X-ray optics. The material and computer advances of
recent years have alleviated some of the limits of conventional crystallography.
We can thank the emergence of more powerful X-ray sources and detectors and
the development of algorithmic approaches for the birth of coherent diffraction
imaging [127]. Modern coherent diffraction imaging techniques are capable of
reconstructing quantitative 3D images at the nanoscale using iterative inver-
sion methods.

Astronomy As in many other imaging fields, phase information in optical
astronomy is unavailable or very limited.

One of the most widely used methods for collecting spatial images are
the techniques of radio interferometry. An astronomical interferometer consist
of several telescopes working together. This intensity interferometric signals,
combined, offer a higher resolution and the possibility to reconstruct the lost
phase information [53].

Phase recovery algorithms are also used to align optics in space telescopes.
In the case of the Hubble telescope, these algorithms have made it possible
to determine the aberrations and to correct the distortion of the image [55].
In the James Webb space telescope, phase retrieval will be used to calculate
the precise positions of the hexagonal mirror segments, and then adjust these
segments using micro-motors [1].
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2.1.2 Phase problem in optical imaging
As mentioned in the previous chapter, the wavelengths of visible light are
between 400 and 700 nm, which corresponds to a frequency range of about 430
to 750 terahertz (THz). No measuring device can directly record oscillations of
such a high frequency [175]. Modern digital cameras are only able to measure
the amplitude squared of the light field.

In the context of optical imaging, the quantitative phase establishes a direct
link between the reconstructed image and the delay of the electromagnetic
output wave. This quantity in turn describes the product of the refractive
index of the material and its thickness, which are among the important physical
parameters of a sample.

As mentioned in Chapter 1, phase data can be visualized using optical
techniques such as the phase contrast microscope or differential interference
contrast microscopy. The phase images obtained do not give quantitative
information, i.e. the intensity value of a pixel does not correspond directly
to the amount of underlying phase shift. This is partly due to the mixing
of the intensity differences introduced by the phase shifts with the intensity
variations introduced by the transmittance of the sample.

Quantitative phase imaging, on the other hand, transforms the optical path
difference of light passing through a sample into phase shifts in degrees. Such
a phase image can be distinctly separated from the amplitude information.
These techniques apply, in most cases, algorithmic approaches.

Systems providing phase contrast in the form of intensity variations rely
mainly on hardware solutions, while quantitative phase imaging is mainly
based on calculations.

Although there exist camera-like instruments for quantitative phase imag-
ing [251], they also rely on algorithmic approaches via real-time computing
and will not be discussed here.

There are numerous distinct techniques of retrieving the phase by compu-
tational imaging [173]. Some of these methods rely on recording the intensity
of the interference patterns. Examples of such techniques include Scanning
Diffraction Imaging (conventional Ptychography) [168] and Holography [23].
As in the case of X-ray crystallography and X-ray Coherent Diffraction Imag-
ing, the recorded interference patterns represent the information on the spec-
trum of the sample. Other methods directly record intensity images in the
conventional spatial domain, such as Fourier Ptychography or Structured Illu-
mination Microscopy [33].

Digital holography Digital holography refers to a series of interferometric
imaging techniques [193]. It captures holograms (interference patterns con-
taining information about the diffracted wavefront of an object) using a digital
camera. The intensity and the phase images are then reconstructed numer-
ically. Among holographic microscopy methods mentioned in this work are
phase-shifting digital holography and digital in-line holography. Both will be
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discussed in more details in Section "Quantitative phase imaging" of Chapter
4.

2.1.3 Real-space ptychography
It is important to consider Conventional Ptychography because it is a direct
precedent of the Fourier Ptychography imaging. Or, at least, we can say that
this method has largely inspired the development of Fourier Ptychography. In
addition, it has been shown that the developments in Conventional Ptychog-
raphy, sometimes also called real-space Ptychography, can be directly applied
in the context of Fourier Ptychography [69].

Although the idea of Ptychography was proposed around the 1970s, proof
of principle and inversion methods were only developed after about 25 years
[167].

Ptychography is a lenseless computational microscopic imaging technique,
but lenses can and are often used in experimental set-ups.

There are many optical configurations for Ptychography. Most of them can
be classified as a scanning imaging technique. In the simplest case of single
aperture Ptychographic microscopy, the operating principle is as follows.

An object is lit with a known lighting function. This sample is then shifted
several times by a known amount. The intensity of an interference pattern
produced is recorded by the detector for each of these movements. Usually the
interference pattern is in the form of a Fraunhofer diffraction which is obtained
by placing the camera in the far field of the object. Fraunhofer diffraction will
be described in more detail in the next section. A set of these patterns is
then converted into high-resolution images of the phase and amplitude of the
object. It is important to note that a strong overlap of the recorded diffraction
patterns must be preserved when moving the object.

In recent years there has been a growing interest in the development of
iterative phase recovery algorithms, which has contributed to the popularity
of Ptychography.

Ptychography in real space is a distinct technique with its own advantages,
and Fourier Ptychography does not replace it, but rather offers a different
conceptual point of view. Despite the differences that will be discussed below,
these techniques are closely related. More precisely, their datasets are linked
by a linear transformation in the case of ideal illumination conditions [80].

2.2 Fourier ptychographic microscopy
The Fourier ptychographic microscopy (FPM) was originally proposed by G.
Zheng et al. [244] to produce a wide-field, high-resolution image of the ampli-
tude and phase of a sample. Like classical Ptychography, Fourier ptychographic
microscopy is a computational imaging technique.
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It allows to bypass some physical limits of a medium-quality microscope by
adding a simple light-emitting diode (LED) matrix to the conventional setting
and performing the digital processing. The cost efficiency of this solution has
recently attracted extensive research interests.

Before discussing the details of this method and its relationship with the
real-space Ptychography, let us first illustrate the phase problem with an ex-
ample of a 1D signal.

2.2.1 The phase problem (the forward model) in 1D
In order to conveniently manipulate the phase and amplitude of the wave as a
single value, complex numbers may be used. It is a common representation in
signal processing, physics and other fields. In the case of optical imagery, the
use of complex numbers reflects the wave property of electromagnetic radiation.

In addition to complex numbers, this section is largely based on two im-
portant notions: the frequency domain and signal filtering. The definition of
these concepts will not be presented in this thesis as they can be easily found
in any book on signal processing.

The signal To simplify, let us first consider a real 1D signal, that is to say
that its phase is equal to zero. Such a signal f(x) ∈ < is defined only by its
amplitude values. In Figure 2.1a, we use as an example a profile of an image
of a biological sample.

Fourier Domain Any signal can be represented in its frequency domain
by calculating its Fourier transform, Eq. (2.1). In practice, we operate with
discrete signals and apply a discrete Fourier transform using a fast Fourier
transform algorithm.

f̂(ξ) = FT (f(x)) =
∫ ∞
−∞

f(x)e−2πixξdx (2.1)

where
x – the spatial coordinate;
ξ – the frequency coordinate in the Fourier plane;
f(x) - the signal in the spatial domain;
f̂(ξ) – the 1D Fourier transform of the signal f(x).

Even if the original signal f(x) in this example contains only real values, the
signal f̂(ξ) is complex in the Fourier domain and must still be defined by both
the amplitude and the phase. To illustrate the importance of the phase part of
the Fourier domain of the signal, we can perform an inverse Fourier transform
operation only on the amplitude part, i.e. g(x) = FT −1(|f̂(ξ)|). The result of
this operation is depicted in the Fig 2.2. As we can see, the inverted signal g(x)
does not look at all like the original one f(x), which underlines the importance
of phase information.
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(a) 1D signal example f(x) (a profile of an image of a biological sample)

(b) Its Fourier transform f̂(ξ) = FT (f(x))

Figure 2.1: A 1D real signal f(x) ∈ < in the spatial domain (left a) and its
complex counterpart f̂(ξ) ∈ C in the frequency domain (left b).

Figure 2.2: Inverse Fourier transform of the amplitude part of the signal in
the frequency domain g(x) = FT −1(|f̂(ξ)|).
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We discuss in the next section how the optical Fourier transform is effected
by a pupil of the objective in a microscope system.

Low-pass filtering Before a signal can be recorded, most physical measure-
ment systems apply some sort of filtering. In conventional optical microscopes,
a low-pass filtering is carried out. In our 1D example, we use a boxcar function
P (ξ) to emulate such a filter in the frequency domain, Eq. (2.2).

P (ξ) =
1, if |ξ| ≤ ξc

0, if |ξ| > ξc
(2.2)

where ξc is a cut-off frequency of the filter.
This cuts off the high frequencies, so the low frequencies only reach a

recorder:

f̂c(ξ) = f̂(ξ)× P (ξ) (2.3)

where f̂c(ξ) is the filtered version of the original spectrum f̂(ξ), Figure 2.3.

Figure 2.3: 1D low-pass filtering, only the amplitude part is shown.

In the case of conventional Ptychography, the intensity of this cut Fourier
spectrum |f̂c(ξ)|2 is recorded by the camera (as a 2D image of a diffraction
pattern under real experimental conditions). However, in the case of conven-
tional optical devices, the signal (an image) is captured in the spatial domain.
Hence we need to perform the inverse Fourier transform on the filtered signal,
Figure 2.4.

fc(x) = FT −1(f̂c(ξ)) =
∫ ∞
−∞

f̂c(ξ)e2πixξdξ (2.4)

where fc(x) is a low resolution version of the original signal f(x), corresponding
to the cut spectrum f̂c(ξ).

Lost high frequencies cause signal blurring and loss of resolution. The
cutoff frequency of the filter, or equivalently the width of the spectral band,
defines the final resolution of the system.
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Figure 2.4: Inversion of the filtered signal f̂c(ξ), only the amplitude part is
shown.

Detection It is still not the filtered signal fc(x) that is measured in imaging,
but its intensity, which is the amplitude squared |fc(x)|2. In the example given,
there is no difference between measuring the signal strength rather than the
signal itself because the original signal f(x) is real and is entirely defined by
its intensity.

On the other hand, an optical signal, which is an electromagnetic wave,
is a complex signal, hence the phase is also necessary to fully define it. Two
signals of the same intensity but of different phases might correspond to very
different spectra, Fig. 2.5. Consequently, the loss of phase information makes
it impossible to access the spectrum by a simple Fourier transformation.

Spectrum shift Without a doubt, we want any system to be able to record
as much information as possible. In the example above, we would like to have
access to the phase of the signal lost in the detection stage and to the high
frequencies lost in the filtering stage. The width of the spectral band is intrin-
sic to the measurement system used and in many cases impossible to expand
without compromising the other characteristics of the system. However, we
can indirectly access those high frequencies by shifting the zero frequency com-
ponent of the spectrum, or, equivalently, by shifting the spectral band, Fig.
2.6.

It follows from the properties of the Fourier transform that the frequency
shift can be effected by multiplying the signal in the spatial domain by a
complex exponential:

FT (f(x)e2πixξ0) = f̂(ξ − ξ0) (2.5)
.

The corresponding intensity signal |fs1(x)|2 is still of low resolution, but
this time it contains the high frequency information, Fig 2.7.

fs1(x) = FT −1(f̂(ξ − ξ0)× P (ξ)) (2.6)
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(a) Signal f1(x) and its spectrum f̂1 (ξ)

(b) Signal f2(x) and its spectrum f̂2(ξ)

Figure 2.5: Two signals f1(x) and f2(x) of the same amplitude |f(x)| but of
different phases might correspond to very different spectra.
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Figure 2.6: Part of the spectrum corresponding to the shifted spectral band,
only the amplitude part is shown.

where fs1(x) is a complex low resolution signal corresponding to the spectrum
cut by a spectral band shifted to ξ0.

The amplitude values of this signal |fs1(x)| are lower than the values of
the signal corresponding to the central spectral frequency band |fc(x)|. This
occurs due to the behavior of the power spectrum of this particular example
(which is a profile of an image of a biological sample). Indeed, the signal f(x)
has a higher concentration of spectral energy at low frequencies.

Figure 2.7: Amplitude of the signal |fs1(x)| (on the right, the orange curve)
corresponding to the shifted spectral band (on the left). Only the amplitude
part of the spectrum is represented. The green dotted curve corresponds to
the central spectral band.

Signal recovery Now, the two amplitude (or intensity) signals captured
(|fs1(x)| and |fc(x)|) together represent an enlarged spectral bandwidth. There-
fore, if we could have direct access to the corresponding parts of the spectrum,
the final system resolution would be higher.

Unfortunately, the loss of phase information leads to inaccessibility of the
spectrum. As we have shown above, two signals of the same amplitude but
of different phases can correspond to very different spectra. This introduces
ambiguity in phase recovery. Therefore, we need an overlap between two neigh-
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boring parts of the "measured" spectrum to remove some of the ambiguity. This
results in "redundancy" in the captured data set.

The same reasoning applies to the recovery of the signal only from the
intensities of the spectrum, which is the case of real-space Ptychography, where
the overlap between the recorded diffraction patterns is also necessary.

The process of capturing intensity signals corresponding to different fre-
quency shifts is the basis of the idea of Fourier Ptychography. How to imple-
ment it using optics will be described in the next section.

Finally, we will have to apply an algorithm to perform the reconstruction
of the high resolution complex signal. The inversion methods, as well as the
data redundancy conditions will be discussed in Section 2.3.

2.2.2 The principle of Fourier ptychographic microscopy
The 1D model described above can be extended to the 2D variant of this
problem, namely imaging systems.

The signal In transmission mode systems, a light wave emerging from an
illumination source and passing through the sample is a complex object o(x, y).
It is defined at every point (x, y) of the sample by its amplitude and its phase.

The amplitude is directly related to the transmittance of the material. For
the fully transparent object, the amplitude is constant at each point. Ampli-
tude and phase can be two independent images, however, in real situations,
some information often overlaps.

For illustration purposes, we take two classic images as an example, the
USAF target for amplitude and the cameraman normalized from −π to π for
phase, Fig. 2.9. As in the case of the 1D signal, the phase information is a
crucial part of the description of the object.

Fourier Domain and Fourier optics To understand the properties of the
optical Fourier transform and the optical spectrum shift, it is important to
first study the concept of Fourier optics.

Fourier optics considers light as a wave and studies it by spectral analysis.
This means that the light passing through the object is considered as a sum of
spatial sine waves at different frequencies [152]. Two common approximations
to the scalar diffraction theory connects the diffraction patterns to the Fourier
transform in Fourier optics [62]. These are Fresnel and Fraunhofer approxima-
tions, only the latter, also called the far field approximation, will be discussed
here.

Consider an object illuminated by a plane wave with normal incidence.
Fraunhofer’s approximation is an approach to describe the field as observed at
infinity with respect to an aperture of the system. In this condition, according
to Fraunhofer’s formula, the strength of the field is proportional to the two-
dimensional Fourier transform of the object performed with respect to the
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coordinates x and y in the plane of the object (up to a scaling constant and a
change of coordinates).

Fraunhofer diffraction has also been shown to be observed in the focal plane
of a positive (converging) lens. Indeed, one can place a lens at a focal distance
from the sample and observe the Fraunhofer diffraction at a focal distance from
the lens, which is, again, equivalent to the Fourier transform of the sample.
The use of lenses then makes it possible to get rid of the condition of being
placed at infinity.

In the same way, a lens can also be used to perform the inverse Fourier
transform and obtain the image in the spatial domain. This is the principle of
a 4-f system which is a two lens imaging system, Fig. 2.8. A classic Fourier
Ptychographic microscope has optical configuration of the 4-f system.

It is important to note that Fourier optics remains true only for time in-
variant and linear imaging systems.

Object Objective Fourier Tube Image
plane lens plane lens plane

Figure 2.8: 4-f imaging system. The object plane is the front focal plane of
the first lens. This is the objective lens in microscope systems. It performs
a Fourier transform which forms in its back focal plane, this is where the
Fourier plane of the object is located (also called the pupil plane). The inverse
Fourier transform is performed by the second lens (in microscope systems, this
is generally the tube lens). The image plane is in the back focal plane of this
second lens.

In order to simulate the Fourier plane of the optical system, we apply a
two-dimensional Fourier transform to the complex object using a fast Fourier
transform algorithm. With the example images, we can observe that the phase
of the Fourier domain seems almost random. However, just like in the case
of a 1D signal, it stores a significant part of the information on the original
object.

The two-dimensional Fourier transform:

O(kx, ky) = FT (o(x, y)) =
∫ ∞
−∞

∫ ∞
−∞

o(x, y)e−2πi(xkx+yky)dxdy (2.7)

where
(x, y) – the spatial coordinates in the sample plane;
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(kx, ky) – the spatial frequency coordinates in the Fourier plane;
o(x, y) – the sample;
O(kx, ky) – the 2D Fourier transform of the sample.

It might also be noted that a real object with a zero phase has a symmet-
rical Fourier transform. It is the phase differences at different points in the
sample that cause changes in the direction of light propagation and result in
asymmetries in the spectrum [201].

Figure 2.9: The complex 2D image o(x, y) is defined by its amplitude |o(x, y)|
and phase ∠o(x, y), on the right. On the left, its Fourier transform O(kx, ky)
is shown. The zero-frequency component is shifted to the centre of the output.

Low-pass filtering The classic Fourier ptychographic platform is a coherent
microscopy imaging system, which means that the lighting is considered to be
spatially coherent.

As has already been said in Chapter 1, any microscope has a resolution
limit, imposed mainly by the objective lens. This resolution limit can also be
explained using the concepts of Fourier optics and the frequency domain.

Consider a simple linear imaging system. Let the lighting to be a tem-
porally and spatially coherent point source. We use a phasor (a complex
amplitude) o(x, y) to describe the light field created by this source and passed
through the sample. A phasor is simply a complex number representation of
a sinusoidal function whose amplitude, phase and frequency do not depend on
time.

Let us also consider that an infinitely thin sample is placed at the working
distance of the pupil, so that the sample is in focus. A complex amplitude of
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the electric field transformed by the imaging system ooutput(x, y) is formed in
the image plane.

It is known that for coherent systems, the output light field ooutput(x, y) is
obtained in the form of convolution of the input field o(x, y) with the spatial
implulse response function of the imaging system h(x, y), Eq. (2.8) [243].
The spatial impulse response function, also called in optics the point spread
function (PSF), is a function that describes the response of an imaging system
to a point source.

ooutput(x, y) = h(x, y) ~ o(x, y) (2.8)
where ~ stands for the 2D convolution operation.

Convolution in Fourier domain becomes a multiplication:

Ooutput(kx, ky) = H(kx, ky)×O(kx, ky) (2.9)

where
Ooutput(kx, ky) = FT (ooutput(x, y)) – the spectrum of the complex amplitude of
the output field,
O(kx, ky) = FT (o(x, y)) – the complex amplitude of the input field in the
Fourier plane of the system,
H(kx, ky) = FT (h(x, y)) – the spectrum of the point spread function, we
call it the coherent transfer function or the amplitude transfer function of the
microscope.

In 4-f systems, the normalized coherent transfer function H(kx, ky) is math-
ematically identical to the pupil function P (kx, ky), scaled to the output coor-
dinates. From now on, we will use the pupil function P (kx, ky) instead of the
transfer function H(kx, ky) to describe the imaging model. The pupil function
P (kx, ky) describes the properties of light transmission through the lens and
acts as a low-pass filter for spatial frequencies. For the moment, we assume the
absence of aberrations and other imperfections in our optical system. Under
these conditions, the pupil can be defined as a circular opening of radius R
with unity inside and zero outside the aperture, Eq. (2.10).

P (kx, ky) =
1, ∀(kx, ky) :

√
k2
x + k2

y ≤ R2

0, ∀(kx, ky) :
√
k2
x + k2

y > R2 (2.10)

However, it should be borne in mind that the pupil function is generally a
complex object which indicates that the optical system can deviate not only
the amplitude of the light, but also its phase.

The radius of the pupil function depends on the numerical aperture of the
objective and the wavelength of the lighting: R = 2πNA

λ
. This value defines the

system cutoff frequency of the system, the features defined by the frequencies
outside the aperture are not resolved. Consequently, the spatial filtering is
carried out, Fig. 2.10.
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While the cutoff frequency defines the theoretical resolution of the system,
the actual resolution is also affected by imperfections of the optical elements
and other errors and noises.

As it was discussed above, after the high frequencies are cut, the tube lens
gets back the image to the spatial domain by performing the inverse Fourier
transform.

Figure 2.10: The complex 2D image o(x, y) is filtered in the Fourier domain,
only the low frequencies falling inside the aperture have passed through the
system. The images (both the amplitude and the phase) in the spatial domain
have fewer resolved features. Only the amplitude part is shown.

Detection A digital camera is only sensitive to the intensity of the light
field, so the phase information is lost. Finally, a low-resolution intensity image
Ic of the thin sample is captured. This process can be modelled as follows:

Ic(x, y) = |FT −1{P (kx, ky)O(kx, ky)}|2 (2.11)
where
(x, y) – the spatial coordinates in the sample plane;
Ic(x, y) – the real-valued intensity measurement (the captured image, consid-
ered noiseless for the moment);
(kx, ky) – the spatial frequency coordinates in the Fourier plane;
O(kx, ky) – the 2D Fourier transform of the sample’s transmission function
o(x, y), i.e. O(kx, ky) = FT {o(x, y)};
P (kx, ky) – the pupil function of the objective lens;
FT −1 – the inverse 2D Fourier transform operator.

Spectrum shift As suggested before, in the description of the 1D problem,
it is possible to "capture" a part of the spectrum corresponding to a higher
cut-off frequency by shifting the spectrum and combining the shifted images.

We know that multiplying a signal by a complex exponential produces
a desired spectrum shift. It is also known that a plane light wave can be
modelled as a complex exponential. Consequently, by illuminating a sample
at an oblique angle of incidence with a wave whose front has a flat shape, the
expected result is obtained.
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For the light source to be validly approached by a plane wave, it must be
far enough from the sample. We also want our lighting to be a coherent point
source. These conditions are well approximated by a LED element placed at
a sufficient distance below the object.

Hence, a LED element offset from the optical axis of the imaging system
is used to produce a shift in the object’s output Fourier spectrum, Fig. 2.11.

Figure 2.11: A shift in the output Fourier spectrum caused by oblique illumi-
nation.

As in the case of our 1D example, a natural image produced by a microscope
tends to have a higher concentration of spectral energy at low frequencies [204].
This is at least the case for most biological samples. In addition, when the
lighting angle is outside the pupil cut-off frequency, only the scattered light
passes through the system, which gives a dark-field image. Such an image has
values much lower than a bright-field image produced by direct lighting.

Complete forward problem in 2D To cover a large part of the spectrum
by varying the lighting angles, we use a LED matrix.

The image acquisition process for the Fourier Ptychography can be de-
scribed as follows. For each LED element, and correspondingly for each illumi-
nation angle, the low-resolution intensity image of the thin sample is captured
by the camera.

An intensity image Il, captured for the l-th LED is then modelled as below:

Il(x, y) ≈ |FT −1 {P (kx, ky)O(kx − kxl
, ky − kyl

)} |2, l = 1, ..., L, (2.12)
where
Il(x, y) – on of the L real-valued noisy intensity measurements (a captured
image);
(kxl

, kyl
) – the spatial frequency corresponding to the illumination angle of the

l-th LED;
O(kx−kxl

, ky−kyl
) – the shifted version of the Fourier spectrum of the object.

The other variables are noted in the same way as for Eq. (2.11). The sign
≈ in the images formation equations (2.12) reflects the fact that the recorded
intensities are always corrupted by at least a small amount of camera noise,
pupil aberrations and other errors so that observed data are only approximated
by the model.
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2.2.3 Assumptions, approximations and limitations
Assumptions So far, we have made several assumptions both about the
properties of the imaging system and the observed sample. In addition, the
forward model described is of course only an approximation of a real physical
process.

Among the approximations made on the properties of illumination, we
assume that the LED element is an infinitely small point source emitting per-
fectly spatially coherent light. We also assume that when the light reaches the
sample its wavefront is flat.

Regarding the optical elements, we considered that all the lenses were ideal
and without aberration. However, we can change the model by introducing
aberrations into the expression of pupil function. This point will be discussed
in Chapter 3.

We also assume for the moment that the camera produces no noise and
perfectly transforms the intensity of the light field into image intensity values
at each pixel up to a scaling constant. The sampling criteria are assumed to be
satisfied. The actual camera noise will be discussed and analysed in Chapter
3.

In addition, we assume that the system parameters necessary to calculate
the spectrum shift are known precisely and that no misalignment is produced.
This is of course not the case in real experimental environments. Uncertainties
of parameters and system calibration methods will be discussed in Chapter 3.

Lastly, the sample itself is assumed to be infinitely thin. The limits of the
thickness of the sample and its influence on the reconstruction will be discussed
in Chapter 3.

Limitations The most obvious and perhaps the main limitation of the method
is the long acquisition time. Combined with the processing time required for
the reconstruction process and the large memory demands for data storage,
real-time imaging becomes difficult [196].

Other constraints follow mostly from the assumptions discussed above.
For example, even if the condition of the coherent light is relaxed compared

to conventional Pytychography, classical Fourier Ptychography still does not
allow incoherent imaging techniques such as fluorescence.

The possible solutions for these limitations will be addressed in Section
"Extensions and improvements" of Chapter 4.

2.2.4 Patents
Several patents related to different aspects of Fourier Ptychography were issued
[34, 37, 81, 82, 99, 100, 138, 139, 142, 245, 246].
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2.2.5 Conclusion
The Ptychographic Imaging Framework To summarize, the classic Fourier
ptychographic platform is a coherent imaging system. It consists of an opti-
cal microscope with low numerical aperture (NA) lens and a CCD camera.
The conventional light source is replaced by a matrix of LEDs that are lit
sequentially one at a time, allowing different angle illumination.

Finally, FPM procedure seeks to reconstruct a high resolution complex
signal from a set of phase-less corrupted by noise low-resolution images. To
this end, digital processing in the form of a phase recovery algorithm is applied.

Comparison to the Conventional Ptychography We can now list the
main differences between conventional Ptychography and Fourier Ptychogra-
phy.

Conventional ptychography captures the intensity of the diffraction pat-
terns which is equivalent to a Fourier transform of the light field. Fourier
Ptychography, on the other hand, detects the intensities of the light field it-
self.

Then, conventional Ptychography mechanically moves the camera to pro-
duce the offset in the Fourier domain, while Fourier Ptychography achieves
this by using variable angle lighting.

The final resolution is defined by the maximum lighting angles of a Fourier
Ptychographic microscope and by the range of movement of the camera for
conventional Ptychography.

As it has been analyzed in [243], Fourier Ptychography has a less strict
requirement for the coherence of the illumination which allows the use of LED
elements instead of a laser.

Despite the differences, the techniques are very similar, especially from
the point of view of reconstruction; developments in one method can often be
directly applied to another.
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2.3 Numerical aspects of FPM phase retrieval
The FPM procedure is a non-convex non-linear inverse problem in which the
data consists of several linear intensity measurements of the unknown complex
signal. Hence, in general, there is no guarantee of reaching a global minimum
[175]. In addition, the data has a wide dynamic range due to the presence of
both dark-field and bright-field images and is corrupted by noise and aberra-
tions. Moreover, misalignments and approximations of the observation model
are inevitable in real experimental situations [16]. Furthermore, the measure-
ments and the recovered signal are of a large size. In our experiments, 256
images of 2048 x 2048 pixels each are captured, from which a complex image
of 8192 x 8192 pixels is reconstructed. Although the problem is solved for
several smaller segments rather than for full field of view images, the size of
the variables remains high even after this division.

2.3.1 Overview of the state of the art
Many phase recovery algorithms have been proposed to solve the reconstruc-
tion difficulties of FPM [226]. These includes projection-based algorithms
[244, 252], various gradient [14, 22, 192, 237] or Hessian-based methods [111,
196, 226, 247], convex relaxation methods [21, 77] and, more recently, deep
learning approaches [90, 95, 133, 174, 191]. In addition, these methods can
be further differentiated by the choice of the cost function [104], the gradient
truncation strategy [11, 30, 211], the step size calculation [252], the initializa-
tion procedure [22, 198], the use of a complete dataset versus a single image
per iteration [102], the regularization constraints [14], etc.

2.3.2 Optimization formulation
We are looking for an object that, given our model, would have produced the
images closest to our captured data.

It is convenient to reformulate the image formation model using linear
algebra, Fig. 2.12. The equation (2.12) can be thus vectorized [225], [226]:

Il ≈ |F−1diag(P)QlO|2 ≡ |gl|2, l = 1, ..., L, (2.13)

where
Il ∈ Rm

2×1 – real-valued noisy intensity measurements obtained by rearranging
each of the captured images Il(x, y) into a vector;
O ∈ Cn2×1 – the vectorized version of the Fourier space of the object to recover
O(kx, ky);
Ql ∈ R

m2×n2 – a down-sampling matrix, it extracts a part of the spectrum
vector corresponding to the LED l;
P ∈ Cm2×1 – the vectorized version of the pupil function;
diag(v) – an operator that produces a square matrix with the elements of the



52

vector v on the main diagonal;
F−1 ∈ Cm2×m2 – the inverse 2D Fourier transform operator;
|(·)|2 – the element-wise amplitude squared operator.

Figure 2.12: The forward imaging model expressed in a vector notation.
Adapted from [241].

We can further simplify the notation and reformulate the forward problem
(2.13) in a compact form. Let I = [I1, ..., IL]T = [I1,1, ..., IL,m2 ]T ∈ RLm2×1,
where Il,j accesses the j pixel of the vectorized version of a captured image I l.
A = [A1, ...,AL]T ∈ CLm2×n2 , whereAl = [aHl,1, ...,aHl,m2 ]T with al,i ∈ Cn

2×1

a single row of the matrix A.

I ≈ |AO|2 (2.14)

(·)T denotes transpose operation, (·)H is a Hermitian transpose.
We call A a linear sampling matrix or a design matrix. It represents the

model of image formation : A = F−1∗diag(P )∗Q, whereQ = [Q1, ...,QL]T ∈
R
Lm2×n2 .
Many of the phase retrieval algorithms are described as an optimization

problem. The FPM reconstruction procedure can be then formulated as follows
in the general case:

min
O

f(O,A, I), (2.15)

where f is a chosen cost function. We are looking for such an object O that
would minimize the norm of the difference between the captured images I
and the ones that would have been produced given the design matrix A. The
solution is sought in the Fourier space (O rather than o) for convenience. One
of the most intuitive formulation is a quadratic loss function :

min
O

∥∥∥|AO|2 − I∥∥∥2
, (2.16)

where ‖A‖ =
√∑

i

∑
j |ai,j|2 is the Frobenius norm (sometimes also called the

Euclidean norm).
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2.3.3 Inverse problem analysis
The known data represent only the magnitude of several measurements of the
unknown complex signal and are corrupted by noise. The FPM procedure seeks
to uniquely recover the original signal. Due to the loss of phase information, the
presence of noise, and the limiting nature of the pupil function, this problem
is, in general, ill-posed.

It has been shown that for the 1D phase problem, there is no single solution
[210] [175]. The uniqueness can nevertheless be achieved for the 2D variant of
this problem. However, this requires a large number of measurements, much
larger than the size of the original signal sought, i.e. Lm2 � n2. Shechtman,
Eldar et al. have summarized in [175] the conditions for the uniqueness of
the phase retrieval problem. Given a complex original signal, 4n2 − 4 ran-
dom noiseless measurement are sufficient for bijectivity. For the noisy data,
this number is estimated to be on the order of n2 log(n2). For the generic,
non-random measurements, a lower limit is found to be 2n2 − 1. The trivial
ambiguities inherent in any ptychographic imagery are not addressed by this
analysis. These ambiguities are the operations preserving the amplitude of
the Fourier spectrum: a global phase shift, a conjugate inversion and a spatial
shift.

To better understand the issue of stability, we analyze the conditioning of
the design matrix A. Indeed, in the case of a linear inverse problem, described
by an equation I = AO, the condition number can be calculated by performing
a singular value decomposition (SVD) of A. In our case, a non-linearity comes
from the loss of phase : I = |AO|2. However, we can still analyse the matrix
A to get an overall assessment of the stability of the FPM problem. The
condition number is defined as a ratio of the maximum singular value to the
minimum singular value.

The matrix A in the particular case of m = 30, n = 60, L = 64 (only
8x8 LEDs are used) has a structure depicted in Fig. 2.13(a). The imaging
parameters needed to construct the sampling matrix Q and the pupil function
matrix P correspond to the final version of our system. The matrix AHA has
most of its non-zero entries on and along the main diagonal, Fig. 2.13(b). An
SVD decomposition A = UΣV H yields the following images of orthonormal
basis matrices U and V : Fig. 2.13(c,d). All of these matrices are highly struc-
tured and certainly do not correspond to random measurements. Yet, analysis
based on the assumptions of random Gaussian measurements is sometimes
used in the context of a more general case of ptychographic phase recovery
algorithms [21, 87]. The condition number of a matrix A calculated for the
FPM configuration above is 3.7e+17. For comparison, a design matrix A with
random Gaussian complex entries has a condition number of 1.7 for one of the
realizations, see Fig. 2.13(e-h).



54

(a)

(b) (c) (d) (e) (f) (g)

(h)

Figure 2.13: Analysis of an FPM design matrix A (a-d) and comparison with
a random complex matrix of the same size (e-h). (a) The matrix A = F−1 ∗
diag(P ) ∗Q (the axis aspect ratio x:y is 3:1, the image is rotated). (b) The
matrix AH ∗A, log scale. (c) The matrix U from A = UΣV H , log scale. (d)
The matrix V from A = UΣV H , log scale. (h) The random matrix A. Its
(e) AH ∗A, (f) U and (g) V matrices from A = UΣV H , log scale. Only the
absolute values of matrices are shown.

2.3.4 Sampling criteria for FP reconstruction process
The stability and quality of the reconstruction is highly dependent on the
sampling chosen. Two categories of sampling issues need to be considered [243].
First, there is the potential for aliasing on low-resolution images. Second,
the degree of overlap in the frequency domain influences the quality of the
reconstructed image, especially in the presence of noise.

Spatial aliasing

The first question, concerning spatial aliasing, is defined by the Nyquist crite-
rion. If the highest spatial frequency of the signal is equal to or greater than
half the sampling frequency, the recorded signal will contain aliasing artifacts.
This distortion will subsequently degrade the reconstruction quality. The max-
imum signal frequency is defined by the optical system and the illumination.
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The sampling frequency is defined by the characteristics of the digital camera.
A common criterion for measuring aliasing in FPM is the spatial-sampling-

ratio Rcam, introduced in [187]. It is defined as following :
* Rcam = fcam

fobj
, where

* fcam = m
2p – the spatial cut-off frequency of the camera, where m – actual

objective magnification, p – pixel size of the camera.
* fobj = NA

λ
– the spatial cut-off frequency defined by the objective lens NA

and the LED wavelength λ.
The spatial-sampling-ratio Rcam should be more than 1 to satisfy the

Nyquist criterion. A straightforward solution to overcome the problem of
aliasing, should it occur, would be to increase the magnification factor m by
changing the microscope objective. However, this would sacrifice the field of
view. Instead, the violation of the Nyquist criterion can be overcome numeri-
cally in the case of FPM. One of such algorithms is referred to as "sub-sampled
scheme" [243] [45]. The camera pixel pitch p is assumed to be halved. Only 1
sub-pixel out of 4 is then updated during the reconstruction. This algorithm
has not been implemented in the current work.

Fourier space overlap requirement

In a conventional FPM, a LED matrix is rectangular and only one LED is lit
for each captured image.

The requirement for spectrum overlap in the FPM is often expressed in two
quantities [187]. The spectrum-sampling-ratio RLED describes the density of
Fourier space exploration :
* RLED = fobj

fLED
, where

* fLED = 1
λ

DLED√
D2

LED+h2 – the minimum angular difference between two LEDs,
where DLED is the gap between the LEDs, h is the distance from the center
of the LED matrix to the sample.
In particular, the value RLED < 1/2 identifies geometries that sample non-
overlapping bands.

Another variable, called the aperture recovery rate Roverlap, quantifies the
spectral redundancy between two adjacent spectral bands [187] :

Roverlap = 1
π

2 arccos
( 1

2RLED

)
− 1
RLED

√
1−

( 1
2RLED

)2
 (2.17)

The Roverlap is defined as 0 for RLED < 1/2.
The minimum value of Roverlap required for correct phase recovery varies

depending on the phase retrieval technique, i.e. the mode of ptychography and
the reconstruction algorithm. For a general sequential algorithm applied to a
classical ptychography (ptychographic iterative engine), the overlapping opti-
mal condition in terms of reconstructed image quality is Roverlap ∈ (60, 85)%
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[20]. The algorithm can still converge with as little overlap as Roverlap = 30%,
but the reconstruction error would be significantly higher.

A similar analysis was also made for a more specific case of Fourier Ptychog-
raphy [117, 187, 213]. Regardless of the technique it is agreed that a minimum
of Roverlap = 32% is required for correct phase retrieval. Reconstruction error
decreases as the percentage of overlap increases. The value of Roverlap = 60%
is considered an optimal value in terms of the trade-off between image quality
and convergence speed. The reconstruction error decreases to a value of ap-
proximately Roverlap = 80%, after which the error tends to increase. It is also
noted that the optimal overlap value for FPM moves as a function of noise
level, wavelength mixing, but also the presence of aliasing.

The above requirements are for a uniform, rectangular LED pattern, with
one LED lit at a time. However, it is possible to use a more efficient sampling
scheme or LED matrix geometry. It is also possible to significantly reduce the
overlap requirement by using deep learning methods. Those questions will be
addressed in Section 4.4.

2.3.5 Complex gradient
The design matrix and the object sought in the optimization problem Eq.
(2.15) have complex values. This means that the general non-convex opti-
mization methods have to be adapted to the case of a function with a complex
value variable. One of the frameworks for doing this is called the Wirtinger
calculus.

A Wirtinger derivative relaxes the definition of an ordinary derivative [2].
It allows complex-variable functions to be treated in almost the same way as a
differential function with real variables. Optimization based on the Wirtinger
gradient is widely used to solve the phase retrieval problem [11, 14, 22, 26, 93,
102, 115, 222, 227, 228].

A Wirtinger gradient g of a scalar-valued function f(O) of a complex vari-
able O ∈ CN×1 is defined as follows [22]:

g = δf(O)
δO∗

=
[
δf

δO∗1
, ...,

δf

δO∗N

]T
(2.18)

with
δf(O)
δO∗n

= 1
2

(
δf

δ<(O∗n) + j
δf

δ=(O∗n)

)
, n = 1, ..., N (2.19)

where <(·) and =(·) designate respectively a real and imaginary part of a
complex number.

2.4 Reconstruction methods
Many phase recovery algorithms have been proposed to solve this non-convex
problem [226].
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The initial solution of the Fourier Ptychography problem proposed by G.
Zheng et al. [244] is an alternating projections algorithm which is a sequential
approach based on ptychographical iterative engine (PIE) [123]. Modifications
to the original alternative projections have since been proposed. One of the
suggestions is to adjust the step size of the update if the error is not reduced
enough [252].

Another widely used sequential algorithm is the Newton’s method [196,
247]. This is a second-order method, which means that it uses the second
derivative, a Hessian matrix during the update. In practice, it is implemented
as a quasi-Newton method with a Hessian matrix approximation.

The term "sequential" refers to the mode of operation of the algorithm,
where an update step is performed for each image, one at a time. In contrast
to "global" algorithms where an update uses the complete set of images for
each iteration.

Many of the non-projections algorithms are global and described as an
optimization problem with a certain cost-function. In 2015, a solution to the
phase retrieval problem based on Wirtinger calculus and termed Wirtinger
flow was proposed [22] and then adapted to the FPM framework [14].

Various other algorithms based on a gradient have also been proposed,
different in particular in the optimization algorithm, the cost function, the
initialization method, the step size of the update, the regularization constraints
and others settings.

Another group of solvers are convex-based methods. They promise to reach
the global minimum at the expense of reformulating the problem in higher
dimensions. The PhaseLift method [21] was first proposed for a general phase
retrieval problem. Its adapted version was then applied to the FPM recovery
[77]. However, in practice, the solution is calculated using the L-BFGS method
[226].

Lastly, methods based on neural networks are increasingly used in the re-
cent years [90, 95, 133, 174, 191].

Finally, it is important to note that Fourier Ptychography is closely linked
to conventional Ptychography. The many algorithmic developments underway
in conventional Ptychography can often be directly applied to its Fourier coun-
terpart [80, 121]. The methods of the more general problem of phase recovery
can also be adapted for the FPM framework [66, 87, 88, 214]. In addition,
in theory, any optimization algorithm for a non-convex problem could poten-
tially be suitable. Research in this area is ongoing and new procedures are
constantly being proposed.

There are several important aspects to keep in mind when choosing a re-
construction method. The first and most obvious is the quality of the recon-
structed images of phase and amplitude. This can be measured by various
criteria and parameters, including visual validation. Another crucial issue is
the speed of convergence in terms of iterations and also in terms of computing
time. Depending on the machine used, calculation memory requirements can
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also become a limiting factor. Stability in the presence of noise and errors is
essential. As well as the predictability of the behaviour of the algorithm given
different data sets.

Furthermore, there are different possible configurations of FPM. The ques-
tion arises whether we want the algorithm to be adapted to our specific case,
or even to the type of datasets, or whether we want it to be as universal as
possible. The amount of spectrum overlap, the NA of the objective, the num-
ber of bright field images, the error levels and other factors can influence the
choice of the optimal reconstruction method. The reproducibility of results
must also be taken into account. This includes the number of parameters to
be tuned, the need for additional prior information but also the widespread
use of the chosen algorithm.

Finally, as part of the work in progress, it was important for us to be
able to easily integrate modifications and physically interpret the stages of
the reconstructions. Overall, there is no simple and universal answer to the
question of which algorithm is the best choice.

From the results of the literature review, it was possible to deduce different
bricks which, in combination, constitute existing algorithms (in most cases).
The main components that characterize the methods are as follows:

– optimization engine algorithm,
– the incremental versus global approach,
– step size selection strategy,
– initialization method,
– underlying assumptions of the noise model,
– gradient regularization by truncation,
– presence of regularization term in the cost function,
– processing of optical aberrations and other errors.
Most of these bricks have been implemented to some extent. This makes

it possible to compare and combine different approaches in order to choose an
optimal algorithm for the given device.

2.4.1 Optimization algorithm
Existing optimization algorithms can be categorized according to different
characteristics. One of the biggest differences can be attributed to the ex-
plicit calculation of a gradient of a cost function versus the use of non-gradient
methods. We will first discuss the latter type of approaches.

Alternating projection algorithm

The initial solution of the Fourier Ptychography problem proposed by G. Zheng
et al. [244] is an alternating projection algorithm. It is often referred to as the
Gerchberg-Saxton phase retrieval approach. Another name "ptychographical
iterative engine" indicates its original adaptation of classical ptychography.
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The workflow The main workflow of the algorithm is illustrated in Fig.
2.14. The idea can be summarized as follows [243]. The Fourier transform of
an enlarged version of the central LED captured amplitude image is used as
the first estimate of the object spectrum O(0)(kx, ky). Then, two nested loops
take effect.

Figure 2.14: A flowchart of the basic PIE algorithm for FPM reconstruction.

The internal loop is traversed for each of the L LED angles. The image
update sequence seq is chosen in advance and will be discussed below. A
complex low-resolution image g(t)

l (x, y) is computed at each step l according
to the observation model given by Eq. (2.20):

g
(t)
l (x, y) = |FT −1

{
P (kx, ky)O(t)(kx − kxl

, ky − kyl
)
}
|2. (2.20)

The notations are the same as for Eq. (2.12). The (·)(t) notation indicates an
iteration t of the outer loop. The amplitude |gl(x, y)| of the generated object
is then swapped with the amplitude

√
Il(x, y) of the corresponding captured

image:

g̃l(x, y) =
√
Il(x, y)eiφl(x,y), where φl(x, y) = arg(gl(x, y)). (2.21)

The Fourier transform of the resulting object g̃l(x, y) is then used to update
the corresponding band of the previous spectrum estimate O(kx, ky) according
to the Eq. 2.22:

O
(t+1)
l (kx, ky) = O

(t)
l (kx, ky) +∇O(t)

l (kx, ky) (2.22)

where we note
O

(t)
l (kx, ky) = O(t)(kx − kxl

, ky − kyl
);

∇O(t)
l (kx, ky) = G̃

(t)
l (x, y)− P (kx, ky)O(t)

l (kx, ky) and
G̃

(t)
l (x, y) = FT

{
g̃

(t)
l (x, y)

}
.

Another proposal for the update step reflects at the same time a better
step size and the fact that the pupil function may contain aberrations [196].



60

The aberrations themselves and the ways to address them will be discussed in
the next chapter. The update becomes:

O
(t+1)
l (kx, ky) = O

(t)
l (kx, ky) + P ∗(kx, ky)

(|P ∗(kx, ky)|2)max
∇O(t)

l (kx, ky) (2.23)

The outer loop executes the inner loop until convergence is achieved.

Recovery sequence An important parameter to consider in the PIE algo-
rithm is the images update sequence during the internal loop. The sequence
of recovery is not only important for the speed and quality of reconstruction,
but may even be entirely detrimental to convergence due to stagnation in local
minima. Several options are proposed in the literature, including the order-
ing based on the Hilbert fractal curve [27]. However, we stick to the original,
classic proposal [243]. It consists in arranging the images according to spiral
lines starting from the LED closest to the center of the optical axis and going
outwards.

The traditional Gerchberg-Saxton algorithm above and its variations is prob-
ably the most commonly used method in Fourier ptychography research. It
is not posed as a minimization procedure (2.15) with a specific cost function.
However, it can be shown that the algorithm can also be obtained by opti-
mizing the amplitude-based cost function via the majorization-minimization
framework [163, 226].

Several important advantages contribute to its popularity. First of all, it
is computationally efficient. Only one low-resolution image is processed at a
time and the number of calculations performed is the minimum of what can
be expected from a phased retrieval method. Second, this approach is highly
flexible; changes in the forward model can be easily incorporated into the
reconstruction process [252]. There are also a number of extensions that make
the basic algorithm more efficient and more stable in the presence of noise
[121, 134, 252].

Instructions for implementing the alternating projection algorithm in Mat-
lab can be found in the book "Fourier Ptychographic Imaging, Matlab Tutorial"
[243].

Adaptive step size strategy

One of these extensions improves noise and misalignment tolerance by simply
modifying the step size of the update. Indeed, the problem of non-convergence
and local optima can be decreased through an adaptive step size approach.
[252]. The idea is to adjust the step if the error is not sufficiently reduced.

The classical version, described above, adds an updated part of the spec-
trum to the previously estimated object:

O
(t+1)
l (kx, ky) = O

(t)
l (kx, ky) + α(t) P ∗(kx, ky)

(|P ∗(kx, ky)|2)max
∇O(t)

l (kx, ky) (2.24)
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with a unitary constant step size αk = 1.
The adaptive strategy, on the other hand, calculates the step size αk at the

beginning of each outer loop by evaluating the quality of the descent using a
previous estimate.

α(t+1) =
{

α(t)

2 if E(t−1)−E(t)

E(t−1) < 0.1
α(t) otherwise (2.25)

where E(t) =
∥∥∥|g(t)

l (x, y)|2 − I(x, y)
∥∥∥2

is a quadratic loss function at iteration
t.

Note that other error metrics for (Eq 2.25) are also possible. Unlike what
is proposed in the original work, our criterion uses an amplitude-based cost
function instead: E(t) =

∥∥∥|g(t)
l (x, y)| −

√
I(x, y)

∥∥∥2
. The reason is that this

measure is consistent with the cost function implicitly minimized by the PIE
algorithm. It was also used in [148]. Another option would be a convergence
index, which will be presented later.

Other non-gradient-based algorithms

Many other improvements to the PIE core have since been proposed to solve
the problem of ptychographic phase recovery [65, 121, 214]. Not all of them
have been tested for the FPM configuration, but they are expected to be
adaptable to the case of Fourier ptychography.

Another type of a non-gradient-based phase retrieval is a hybrid input-
output (HIO) algorithm [54]. A combination of HIO with an error reduction
method can also be cited [130]. However, these methods are less commonly
used and will not be addressed in the current work.

Wirtinger flow

The Wirtinger calculus enables the problem of phase retrieval to be approached
from the perspective of classical gradient-based optimization. One of the first
algorithms to solve a ptychography in this framework was called "Wirtinger
flow" [22]. It was soon adapted to a more specific case of FPM reconstruction
[14].

It is essentially a classic gradient descent algorithm with a specific step size
and a relaxed definition of a gradient [14, 22]. A steepest descent looks for a
minimum of a function f(O) starting with an initial guess O0 and updating
the estimate Ot at each step t according to :

O(t+1) = O(t) − γtg(t) (2.26)

where g(t) = ∇f(O(t)).
In early versions of the Wirtinger flow algorithm, the quadratic loss function,
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also called "intensity-based" cost, was used. It aims to minimize the difference
between measured intensity images and estimated intensities.

fI(O,A, I) =
∥∥∥|AO|2 − I∥∥∥2

. (2.27)

For the purpose of this discussion, we omit the noise relaxation constraints
present in some literature. Note that |AO|2 = (AO)H � (AO), where � is a
dot product. The Wirtinger gradient with respect toO for such a cost function
is then calculated as follows:

∇fI(O) = 2AH
[(
|AO|2 − I

)
� (AO)

]
. (2.28)

A method for estimating the initial guess O(0)(kx, ky) has also been pro-
posed as part of the Wirtinger Flow algorithm. However, this will be discussed
in a later section.

Different proposals for γt exist, but the original works propose to use the
following scheme:

γt =
min

(
1− e−t/t0 , γmax

)
‖O(0)(kx, ky)‖2 , (2.29)

the authors suggest to use t0 = 330 and γmax = 0.4 [14, 22]. The idea is to
use small steps at the beginning, since the noise is too high, and to gradually
increase the step value as the global minimum is expected to be approached.
The proposed constant parameters are chosen experimentally.

Other gradient-based global optimization

Wirtinger derivatives can be used not only with a classical gradient descent
method, but also with many other gradient based optimization methods.

For example, the nonlinear conjugate gradient algorithm is sometimes used
in the context of phase retrieval problem [111, 162, 218, 219, 222, 237]. The
steepest descent type update, used in the Wirtinger flow, takes a negative
gradient direction that is always perpendicular to the previously calculated
trajectory. Conjugate gradient descent, on the other hand, constructs its route
in such a way that the new direction is conjugated with all the previously
calculated paths [159], Eq. (2.30).

O(t+1) = O(t) + γtd(t), (2.30)

where γt is a step size, often defined by a line search method and d(t) is the
conjugate search direction. The next direction d(t+1) is determined using the
previously calculated path d(t) as follows:

d(t+1) = β(t)d(t) − g(t), d(0) = −g(0). (2.31)
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Several options are possible for the coefficient β. Two commonly used in the
context of ptychography are the coefficient of Hestenes-Stiefel [111]:

β(t) =
<
(
gH(t)(g(t) − g(t−1))

)
<
(
dH(t−1)(g(t) − g(t−1))

) (2.32)

and the coefficient of Polak-Ribière [219]:

β(t) =
<
(
gH(t)(g(t) − g(t−1))

)
‖g(t−1)‖2 . (2.33)

The conjugate gradient algorithm has also been employed to treat angular
misalignments in the FPM [206].

Another common method to achieve greater robustness and convergence is
to use a second order gradient method. This involves calculating the Hessian
matrix of a function in addition to the gradient of the function. Wiritinger
calculus is likewise used to derive an analytical expression of a Hessian. Global
Newton algorithm is used by some authors [226]. However, the cost of calcu-
lation becomes too high for this method to be used in a practical context. For
this reason, second-order methods have not been implemented in the current
work.

At the same time, a group of quasi-Newton methods can provide an alterna-
tive solution to Newton method. Indeed, these algorithms seek to approximate
a Hessian matrix or an inverse of the Hessian matrix in order to avoid its direct
calculation at each iteration. One of these methods is the L-BFGS (memory
limited Broyden-Fletcher-Goldfarb-Shanno) algorithm. Implementation de-
tails of L-BFGS for the broader problem of phase retrieval can be found in
[111]. Gauss-Newton method or its variations are also popular [196, 226].

Gradient-based sequential optimization

For the projection-based algorithms, only one image is taken into account
at each upgrade. They belong to the family of sequential algorithms. Global
approaches, on the other hand, refer to optimization procedures where all data
are used for each upgrade process. It is implicit in Gerchberg-Saxton type
algorithms that an underlying optimization problem iteratively uses only one
component of the gradient of a global cost function [226]. On the other hand,
global methods calculating an entire gradient are more expensive in terms of
computation. At the same time, a number of results show that sequential
algorithms could perform as well as global algorithms while offering additional
advantages. [225, 226].

In theory, a global gradient descent algorithm with any explicit cost func-
tion can be transformed into a sequential one [102, 226]. A sequential version
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of a global Wirtinger flow is often referred to as an incremental Wirtinger
flow [102]. In addition to reducing computational requirements, sequential
algorithms allow greater flexibility in introducing adjustments to the model.
It has also been shown that sequential algorithms could be more effective in
avoiding the stagnation of local minima [121, 134]. At the same time, se-
quential algorithms are expected to be less robust against noise and model
misalignments [226].

Finally, it is noteworthy that a majorization-minimization (MM) frame-
work offers yet another perspective on sequential optimization [163]. Indeed,
it is a procedure for constructing an iterative optimization problem so that an
original non-convex model is divided into a set of simpler surrogate functions.
A sequential algorithm called "PRIME-Power" is proposed using this approach
[163].

In the current work, however, we have not implemented gradient-based
sequential optimization for an explicit cost function. Nor have we implemented
methods derived by the MM technique.

Other methods

Two other major groups of solvers available for the FPM problem are convex
optimization approaches and deep learning methods.

Convex lift The greatest advantage of convex programming is the theoret-
ical guarantee of reaching a global minimum. The biggest disadvantage is a
huge computational requirement. Indeed, the algorithms proposed for pty-
chography, such as PhaseLift and PhaseCut, involve raising a problem in a
higher dimension [21, 77, 82]. Given the already large size of the variables in
an FPM, this raises a real question about the suitability of these methods for
any practical application. This is why proposals for actual implementation are
usually only an approximation of the convex version of the problem, which
discards global minimum guarantees [226].

Deep learning Following a growing trend in neural network research, a
number of solutions have also been proposed for Fourier ptychographic re-
construction [90, 95, 133, 174, 191, 232]. All the methods described in the
previous sections are based on modelling the underlying physical process. Ma-
chine learning methods, on the other hand, have historically taken a different
approach based on statistics and data training. The physics-based methods
offer an interpretability and robustness. On the other hand, deep learning can
offer faster reconstruction at the cost of a large set of training data and no
theoretical guarantee of the physical accuracy of the result. Some algorithms
for ptychography successfully combine the two approaches to propose an opti-
mal compromise. Without going into detail, we only note that deep learning
approaches to FPM are applied to both the design of the acquisition process
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as well as the reconstruction procedure. These algorithms also often result in
a reduction in the spectrum sampling requirement.

A number of other strategies have also been proposed and are still being ac-
tively researched. These include an alternate direction method of multipliers
[86], an acceleration of the Wirtinger flow algorith based on Nesterov accel-
eration [222], methods designed for graphical processing unit computing [233]
and many more.

The approaches in this subsection are quite different from those using al-
ternative projection or gradient-based optimization. It was decided not to
implement in the current work all the available solvers for phase retrieval.

Step size

This subsection deals only with the step size γt of gradient-based optimization
procedures. The step size of an alternative projection algorithm has already
been discussed in Subsection 2.4.1. The appropriate choice of step size is
particularly important when the data is noisy or the model is imperfect. Many
different strategies have been proposed, ranging from a simple constant value
to an empirically chosen value and line search methods.

The basic form is a constant step: γt = γ for all t. Despite its simplicity,
this method can give descent results when the selected value is small enough
to avoid divergence [104].

The Wirtinger Flow approach introduced a heuristic scheme with an in-
creasing step size, given by Eq. (2.29). The two constants t0 and γmax must
however be chosen experimentally. Other formulas for the ascending step are
also proposed in the literature, but are not implemented in current work.

Another widely used approach is line search methods [30, 206, 227, 241].
In the case of a gradient descent alorithm, a line search looks for such a step
γt that minimizes the objective h(γt) = f(O(t) − γtg(t)), where f(O) is a cost
function of the reconstruction procedure, Eq. (2.15). This problem can be
solved in several ways. The most common proposals are a backtracking line
search [227] (not implemented), Wolfe conditions [111, 180] and a Golden-
section search [159].

While line search methods have the potential to perform better and to
reduce the number of iterations to achieve convergence, they are expensive
to use in the case of the FPM. Indeed, a cost function must be calculated at
each update stage. This involves, among other things, an expensive Fourier
transform operation applied to every captured image.

We use codes provided by Sorber et al. [180] to implement a congujate
gradient algorithm and a Strong Wolfe line search method.

In addition, some of the proposed modifications to the original Wirtinger
Flow algorithm take advantage of an analytically derived optimal step size
[93, 222]. This step size must be calculated for a given cost function. This
strategy is not implemented in the current work.
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2.4.2 Initial guess
Several methods for generating an initial object guess have been proposed in
the literature. As a general ruse, only the amplitude image is estimated while
the phase is defined as a matrix of zeros.

The simplest proposal is to simply upscale a low-resolution amplitude image
corresponding to the smallest LED angle Ic(x, y) [243]. Most interpolation
methods would provide a solution. We use a bicubic interpolation provided
by Matlab libraries. As the object O(kx, ky) is estimated in Fourier space, a
Fourier transformation of the generated image is necessary. Alternatively, the
Fourier transform of a central amplitude image FT {Ic(x, y)} can be directly
placed at the center of a high-resolution spectrum estimate O(kx, ky).

The next often used procedure is called a spectral method [22]. It is based
on the eigenvectors of a carefully constructed matrix formed by measurements,
a design matrix and its inverse [163]. It was not implemented in the current
work.

Instead, we use an initialization by a central amplitude image Ic(x, y) fol-
lowed by several iterations of the basic PIE algorithm. Indeed, alternate projec-
tion methods are arguably more robust against the stagnation of local minima
than global algorithms when the solution is too far away. We therefore adopt
this scheme to compare the reconstruction algorithms.

A quite different approach focuses on the estimation of the initial phase.
Indeed, depending on the type of specimen, it may be desirable to obtain a
correct initial phase image evaluation. For mainly transparent samples, the
information is contained in the phase part rather than the amplitude part
of the signal. As noted in [202], it may be more problematic for the FPM
procedure to reconstruct the low frequencies of the phase rather than the
high frequencies. Although the spectral method also attempts to generate a
phase estimate, it is fundamentally similar to the reconstruction procedure. A
proposal has been made by Tian et al. [198, 202] to use a LED array as a
means of calculating low phase frequencies by the differential phase contrast
(DPC) deconvolution. Four additional measurements of the semi-squares of
the LED matrix (left, right, top, and bottom) are needed to estimate the DPC
phase, Fig. 2.15(a). However, in the case of sequential acquisition (one image
corresponds to one LED), these images can be simply generated by adding up
the captured images of the corresponding LEDs, Fig. 2.15(b). The details of
the DPC initialization procedure can be found in [200]. The source code is
provided by Laura Waller computational imaging lab.

2.4.3 Cost function
The optimization algorithms described above could produce their own recon-
struction artifacts. However, the quality of the reconstruction depends even
stronger on the underlying noise model and thus on the choice of a cost func-
tion. The optimization problem 2.15 can be solved based on a number of
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(a) (b)

(c) (d)

Figure 2.15: (a) LED source masks. The images corresponding to the masks
are added together to simulate the images captured when the half squares of
the LED array are lit. (b) The generated images corresponding to the half-
squares. The sample is a glass microsphere that will be presented in Section
4.1. (c) DPC deconvolution estimation of low-resolution amplitude and phase
images. (d) The estimated phase profile.

possible objective functions f(O).
The most often used cost functions [104] are the intensity-based [14], the

amplitude-based, the Poisson-likelihood-based [11, 226] and mixed Poisson-
Gaussian-likelihood-based approximated by a variance stabilizing transform
[241]. They are based on noise assumptions with different statistics. An adap-
tive cost function has been proposed to mitigate the need for noise statistics
[105]. Gradient truncation in various forms is also often applied [11, 30, 102,
211, 227] to prevent the reconstruction divergence, which in some sense indi-
rectly alters the initial cost function.

As we will see in detail in the next chapter, the appropriate noise model for
the FPM measurements is a mixed Poisson-Gaussian noise with a significant
Poisson component. With this in mind, it is worth considering how this may
influence the choice of a cost function.
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Intensity-based cost function

The most straightforward approach consists of minimizing the difference be-
tween intensity measurements and estimated intensities.

fI(O) =
∥∥∥|AO|2 − I∥∥∥2

. (2.34)

It has already been introduced above as a quadratic cost function, Eq. (2.16).
The cost fI(x) is known as the intensity-based cost function. This is a good
choice under the assumption that the measurements are corrupted by additive
Gaussian noise nσ only, i.e. I = |AO∗|2 + nσ, where O∗ is a true object
spectrum.

The solution of the optimization problem based on fI(O) is addressed in the
literature by different approaches such as Wirtinger Flow [22, 93], MM [163]
and convex relaxation [77]. Its gradient has already been presented in Eq.
(2.28). Several modifications to the intensity-based cost function have been
proposed, including the incorporation of noise relaxation [14] and background
subtraction [196].

Amplitude-based cost function

The amplitude-based cost function fA(O) is one of the most widely used ob-
jectives [163, 252]. It aims at minimizing the difference between the measured
amplitude (the square root of the intensity of the captured images) and the
estimated amplitude:

fA(O) =
∥∥∥|AO| − √I∥∥∥2

. (2.35)

This formulation is standard in the context of coherent imaging systems.
Its gradient is calculated as follows:

∇fA(O) = AH

(
AO −

√
I � AO

|AO|

)
. (2.36)

Such a cost function does not explicitly assume any noise statistics. How-
ever, its gradient was compared to the gradient of the Poisson likelihood-based
cost function (see next subsection) in [226]. Significant similarities between the
two were found. At the same time, it was also shown that the amplitude cost
can be considered as a special case of a variance stabilizing transform for Pois-
son distributed measurements [104]. It can therefore be concluded that the
amplitude-based cost function is well suited to handle intensity images cor-
rupted by Poisson noise.

As it was already noted above, the classical PIE (Gerchberg-Saxton) algo-
rithm for FPM indirectly optimizes the amplitude-based cost function. Indeed,
each step of an internal loop of the algorithm is somewhat analogous to a step
of a sequential gradient descent optimization minimizing an amplitude cost.
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Given the strong Poisson component of noise in FPM measurements, an
amplitude-based cost function fA(O) is more appropriate than an intensity
one fI(O) [11].

Poisson-likelihood-based cost function

In order to directly take into account the Poisson-statistics hypothesis of the
FPM data, a proposal has been made by Yeh et al. to use a maximum likeli-
hood framework [226]. The assumption here is that each pixel Il,j of a captured
image I l can be modelled as independent random variable following the Pois-
son distribution with parameter |〈al,j,O∗〉|2 :

I ∼ Pois
(
|AO∗|2

)
. (2.37)

where Pois(·) indicates that each element of a vector follows the Poisson dis-
tribution.

We note p[Il,j|O] the probability to measure a pixel Il,j, l = 1...L, j = 1...m2

given the estimated signal O. The corresponding cost function then comes
from a negative log-likelihood of this probability:

fPoisson(O) =
L∑
l=1

m2∑
j=1

[
|〈al,j ,O〉|2 − Il,j log

(
|〈al,j ,O〉|2

)]
. (2.38)

And its gradient:

∇fPoisson(O) = 2AH

(
|AO|2 − I
AO

)
. (2.39)

Details of its derivation can be found in [30] or [226].
This cost function is actively used recently [11, 30, 226, 228] due to the

fact that, in general, the noise statistics in experimental data of FPM is more
consistent with a Poisson model rather than with a Gaussian model. Unfortu-
nately, solving the optimization problem directly based on the cost fPoisson(O)
could lead to the divergence [104]. One way to prevent it is to truncate the
gradient of the function. This issue will be addressed in Subsection 2.4.3.

Mixed Poisson-Gaussian-likelihood-based cost function

As we will show in the next chapter, our FPM measurements are not corrupted
by a single type of noise, but rather by a mixture of noises. Indeed, the camera
introduces noise of Poisson-Gaussian statistics.

Each pixel of an observed image I l can then be seen as an independent ran-
dom Poisson variable pl, scaled by αl > 0 and distorted by additive Gaussian
noise nµl,σl

of mean µl and standard deviation σ2
l :

I l = 1
αl
pl + nσl

, l = 1, ..., L, (2.40)
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where pl ∼ Pois
(
αl |〈Al,O

∗〉|2
)
and nσl

∼ N(µl, σ2
l ).

The number of photons received by a pixel of a camera’s sensor follows
the Poisson distribution. This number is then transformed into an intensity
value of a captured image, which is linearly proportional but not necessarily
equal to the photon count. A scale factor αl represents the coefficient of this
transformation [10]. It could also vary for different images if the acquisition
times were not the same. Therefore, the actual pixel value might follow the
Poisson distribution of a different "power". It is likewise not obvious that
all captured images suffer from the same amount of additive noise, especially
in the case of uneven acquisition times. Therefore, σi could potentially be
different for dark and bright field images. To our knowledge, this question is
not addressed in the literature on Fourier ptychography.

An attempt was made to derive and test cost functions considering a possi-
ble non-unitary Poisson scale αl and σl variations. The experimental identifi-
cation of these two parameters will be discussed in the next chapter. However,
no promising results in terms of reconstruction quality were observed during
the first trials. It was decided that this issue would not be fully explored in
the ongoing work. However, it may be interesting to investigate this point in
future work, particularly in the case of variable acquisition times.

We therefore assume that αl = 1, σl = σ and µl = 0 for all L captured
images, which leads to the following model:

I l = pl + nσ, l = 1, ..., L. (2.41)

This is the model first presented for FPM by Zhang et al. in [240].
As the authors have shown, the log-likelihood corresponding to such a dis-

tribution would be difficult to handle directly. Instead, a generalized Anscombe
transformation (GAT) is used to approximate the model (2.41):

∼
I l =

√
I l + 3/8 + σ2, l = 1, ..., L. (2.42)

Using this approximation, the Poisson-Gaussian-likelihood-based cost func-
tion is derived by a log-likelihood approach:

fGAT (O) = −2
L∑
l=1

m2∑
j=1

[ ∼
Il,j

√
|〈al,j ,O〉|2 + 3/8 + σ2 −

(
|〈al,j ,O〉|2 + 3/8 + σ2

)]
.

(2.43)
As in the case of the Poisson-likelihood-based cost function, the gradient

truncation is proposed as a part of an optimization algorithm.
We note that other variance-stabilized cost functions are also proposed in

the literature [104].

Gradient truncation

The Poisson-based cost functional takes into account a noise statistic of the
data. However, there is a challenge with the derived optimization problem.
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As many papers have pointed out, the gradient ∇fPoisson(O) of this func-
tion is uncontrollable [11, 30, 115, 241]. This can lead to the degeneration of
the solution by outliers. The same problem has also been observed for the
Gaussian-Poisson-based cost [240] and the amplitude cost [211].

Gradient truncation in the form of a pixel-wise thresholding operation is
adopted as a classic strategy for dealing with outliers in the phase retrieval
problem. Several formulations have been proposed in the literature. Each cost
function is usually associated with its own outliers.

The classical truncated gradient proposed for the Poisson optimization
problem has the following form:

∇T fPoisson(O) = AHv, vi =
2 |〈ai,O〉|2−Ii

〈ai,O〉 , i ∈ T (O)
0, otherwise

, (2.44)

where the notation Ii and ai with i = 1...Lm2 is used instead of Il,j and al,j
with l = 1...L, j = 1...m2.

The key point here is to update only those pixels of the object that belong
to a subset T (O) of non-aberrant directions [30]. The decision whether or
not to update the pixel is made on the basis of the data and the current
estimate. One of the most common formulas for defining these acceptable
gradient components is:

T (O) = ξi1(O) ∩ ξi2(O) (2.45)
with

ξi1(O) =
{
alb ≤ |〈ai,O〉|

‖O‖2 ≤ aub
}
, (2.46)

ξi2(O) =
{∣∣∣Ii − | 〈ai,O〉 |2∣∣∣ ≤ ah

∥∥∥I − |AO|2∥∥∥
1

|〈ai,O〉|
‖O‖2

}
, (2.47)

where alb, aub and ah are experimentally chosen parameters. Moreover, these
constants must be chosen differently depending on the step size strategy and,
of course, on a minimized cost function.

The truncation procedure, Eq. (2.45), is based on the law of large numbers,
a detailed explanation of the underlying principles of this method can be found
in [30]. Another common version [11] does not take into account the subset
ξi1(O). Note, that other rules for T (O) exist [102, 115, 211, 228], but we have
only implemented the one given by Eq. (2.45). In addition, a similar approach
can in theory be applied to any cost function.

To illustrate the importance of this truncation in the case of Poisson-based
cost function optimization, we can examine the percentage of truncated pix-
els in the vector v, Eq. (2.44). A set of simulated image data presented
at the beginning of this chapter is used for demonstration purposes. In the
first step, with a basic initialization strategy (a low-resolution resized image),
up to 20% of the pixels can be truncated. This figure decreases significantly
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for subsequent iterations, as the estimate becomes better, and varies around
0.3% and 2%, see Fig. 2.16(a). Fig. 2.16(b) shows a distribution of trun-
cated pixels as a function of the position of a LED. Each square represents
the percentage of truncated pixels for an image l = 1...L of the corresponding
gradient component. By one component here we understand a part of the vec-
tor v that corresponds to one illumination angle. While some components are
completely intact, others suffer from up to 20% truncated pixels. The most
affected components correspond to the LEDs at the edge of the bright/dark
field area. These edge LEDs also produce images with a high value variance.
As an example, Fig. 2.16(c) shows a gradient component with a highest num-
ber of outliers. Fig. 2.16(d) shows its truncated pixels. And the Fig. 2.16(e)
shows the same gradient component after the application of truncation. Out-
liers could be expected to be random pixels corrupted by noise in the original
captured images. But this is not the case, and the truncated values rather
correspond to structures in the signal.

(a) (b)

(c) (d) (e)

Figure 2.16: Gradient truncation. The ground source object for the simulated
data set is a USAF target image for amplitude and the cameraman for phase.
The optimization procedure is a Wirtinger flow algorithm with a Poisson cost
function and an increasing step size. (a) The percent of truncated pixels in
the vector v at each iteration. (b) The distribution of truncated pixels as
a function of the position of a LED, calculated at the 10th iteration. The
squares inside the green outline correspond to simulated bright field images.
(c) A calculated gradient component with a highest number of outliers (at the
10th iteration). (d) Its truncated pixels mask. (e) The gradient component
after the application of truncation. The colormap limits are the same for the
image (c) and (e).

We have also considered an alternative idea of using a weighted trunca-
tion instead of the binary one. The proposed procedure is mainly based on
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the assumption that the outlier search directions within the components have
been computed correctly, but their values are too elevated relative to the sur-
rounding pixels. For this reason, we suggest reducing the influence of these
components instead of inactivating them completely. This translates into the
following rule, which simply implies setting a threshold for all pixels considered
abnormally high :

∇T fPoisson(O) = AH < v,w >, wi =


1, i ∈ T (O)
ah‖I−|AO|2‖1

|〈ai,O〉|
|Ii−|〈ai,O〉|2|‖O‖2 , otherwise

,

(2.48)
In this way, a criterion ξ2, Eq. 2.47, is always satisfied, but the modified
gradient components do not contain abrupt fluctuations in values.

We also note that an analogous gradient reweighting procedure has been
proposed for a Wirtinger flow algorithm with a cost function based on the am-
plitude [212, 227]. However, the rules for calculating the weights are different.
The weights would also be applied to the cost function. These rules have not
been implemented in the current work.

The effects of those gradient truncation will be explored in Section 2.4.4.
While the gradient truncation approach works well in practice, it has obvious
drawbacks. First of all, it is necessary to choose the parameters experimen-
tally. Second, such a procedure indirectly alters the minimized cost function.
Therefore, strictly speaking, we no longer optimize the cost function based on
the Poisson noise statistics (or another cost), but a version of it that we do
not have access to.

Denoising and regularization

A number of constraints and regularizations could improve the robustness of
the algorithms to noise and increase performance. We give a brief overview of
the possible modifications of the cost functions. However, none of them are
implemented in the current work, so they will not be discussed in detail.

Re-weighting The re-weighting of the updates for the alternate projection
algorithm is somewhat similar to the re-weighting of the gradient in the case
of gradient-based optimization. Several studies have been proposed in this
direction [92, 179, 214].

Other studies propose to re-weight directly the cost functions. For exam-
ple, a much higher weight could be set for the components of a cost function
corresponding to bright-field images and a lower weight for dark-field entries
[94]. Another method involves giving greater weight to regions of captured
images having a high SNR [237].
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Noise relaxation Several works have proposed to introduce an additive
noise relaxation constraint [14, 26]. Such a constraint is most often a form of
l2 regularization of a noise model term that is optimized for.

De-noising Zhixin Li et al. have adapted a framework called "regularization
by denoising" to FPM. Their regularizer is constructed using a BM3D denoiser
engine. [114]. A method based on the BM3D denoiser has also shown promis-
ing results in the context of compression phase retrieval with a limited number
of measurements [125]. David Ren et al. use total variation regularization
on both amplitude and phase of the object in the spatial domain [164]. This
translates into two additional terms in the cost function.

Sequential algorithms The above approaches are intended for global gra-
dient algorithms. Several denoising and regularization methods have also been
developed for alternating projections like sequential algorithms. For example,
a noise discrimination factor can be introduced as an additional step in a PIE
algorithm [51]. Another approach is proposed by Laura Waller et al. [196]
by adding a regularization constant in a denominator of a spectrum update
step. This is essentially equivalent to a l2 regularization. Yongbing Zhang et
al. introduced a regularization term based on a sparse constraint [236].

To conclude, the regularization of a cost function is a fairly common solution
in the FPM reconstruction. It would be worthwhile to adopt some of these
methods in future work.

2.4.4 Comparison and choice of methods

Simulated data

We use 3 data sets of numerically simulated images to compare the methods.
The first set S1 : I = |AO∗|2, l = 1...L is a noiseless simulation with

perfect model parameters, given by the Eq. (2.12). This scenario is, of course,
never observed in practice.

The second set S2 is corrupted by Poisson noise and Gaussian additive
noise, S2 : I l = pl + nσl

, l = 1, ..., L. The notations is defined by the
Eq. 2.40. In order to be consistent with other works, we set αl = 1, µl = 0
and σl = σ for all l = 1...L. Although many studies use Poisson noise and
Gaussian noise as separate cases for model analysis, we argue that this is not
consistent with experimental data. Indeed, the actual noise in the case of FPM
measurements is a mixture of the two, as we illustrate in the next chapter. We
set σ = 2.2 which results in around 10% noise corruption according to the
formula ∑ |Inoisy−Iperfect|

Iperfect
.

The third data set S3 is what we define as being close to the observed
data. The data are corrupted by scaled camera noise (αl 6= 1) and model
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misalignments. The set is defined as

S3 : I l = cl

( 1
αl
pl + nσl

)
, l = 1, ..., L, (2.49)

with pl ∼ Pois
(
αl
∣∣∣〈Ãl,O

∗
〉∣∣∣2), where Ãl is a component of a design matrix

with misalignments. All model deviations and errors, as well as an intensity
variation coefficient cl, will be presented in detail in the next chapter after the
characterization of the constructed instrument.

We use the USAF target and the cameraman images as the amplitude and
the phase of the ground truth object. The system parameters correspond to
the configuration of our microscope. More precisely, a pixel size is 6.5 µm x
6.5 µm, the NA is 0.07, the magnification is 2.03, the wavelength is 629 nm.
The centre of the LED matrix is located between 4 LEDs. The segment size
is 100 x 100 pixels. The pixel size ratio is fixed at 3.5 as 16x16 central LEDs
are used for this analysis.

Error metrics

Several error metrics have been proposed in the literature to assess the quality
of reconstruction. Here we present only those measures that take into account
the ground truth. Quality assessment for experimental data will be discussed
in Section 3.3.

A common measure for the phase retrieval problem is the Euclidean dis-
tance metric [22]:

dist(O,O∗) = min
[0,2π)

∥∥∥Oe−jφ −O∗∥∥∥ , (2.50)

where O is an estimated complex solution, and O∗ is the ground truth. The
term e−jφ reflects one of the trivial ambiguities of phase recovery. Indeed, the
solutions O and Oe−jφ are equivalent.

For the FPM, the most widely adapted metric is perhaps the relative error
[226]:

RE(O,O∗) = ‖O −O
∗‖2 ,

‖O∗‖2 (2.51)

Or its more correct variant, taking into account the global phase recovery
ambiguity [11]:

REφ(O,O∗) =
min[0,2π)

∥∥∥Oe−jφ −O∗∥∥∥2
,

‖O∗‖2 (2.52)

Alternatively, these errors could also be calculated in the spatial domain.
Other metrics, such as the normalized invariant field root mean square error
[92, 237] are also used.
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Method comparison

In this section, we study the performance of the implemented algorithms under
different error levels by means of simulation. All our programs are written
in Matlab. Separate aspects of methods are tested against each other, as
opposed to a mixture of methods. For the data sets with errors (S3), we focus
on assessing the quality of the reconstruction rather than the convergence
behaviour.

First, we compare the convergence of methods for a noise-free data set (S1)
and for a data sets with only Poisson-Gaussian noise (S2). The relative error
given by the Eq. (2.52) is plotted as a function of the number of iterations.
Then we compare the approaches one-by-one under noise and error conditions
(S3). For this, we generate 100 realizations of the noise and plot the rela-
tive error as a function of the realization. A maximum of 100 iterations are
performed.

The influence of the following algorithmic features is reported here: the
choice of the spectrum update step (the optimization algorithm), the size of
the update step, the initialization strategy, the cost function and the gradient
truncation rule.

The computer used has 64 GB of RAM and 2 processors with a 2.10 GHz
base frequency.

Optimization algorithm The following optimization algorithms are com-
pared:

a) the PIE (alternating projections) with a constant update step given by
Eq. (2.23);

b) the PIE with an adaptive step size;

c) the steepest gradient descent;

d) the conjugate gradient descent with a coefficient of Polak-Ribière;

e) the conjugate gradient descent with a coefficient of Hestenes-Stiefel;

f) the L-BFGS.

We use the same initialization and the same cost function (amplitude-
based) without truncation. The step size is also the same, it increases accord-
ing to the rule given by Eq. (2.29). The exception is alternative projection
algorithms which, strictly speaking, should not be directly compared in the
same way to global gradient-based algorithms. Essentially, a comparison be-
tween gradient-based algorithms only looks at the direction of descent.

The results for the noiseless case are shown in the Fig. 2.17 (a,b) The
relative error is plotted against the iteration number. The same metric eval-
uated on a reconstruction from the data corrupted by Poisson-Gaussian noise
is shown in Fig. 2.17 (c,d).
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The Fig. 2.18 shows objects reconstructed by different algorithms from
the data set S2. The visual quality of reconstruction corresponds well to the
relative error metric. For example, the images (b) and (f) corresponding to
the PIE with an adaptive step size and the L-BFGS algorithms are practically
visually indistinguishable and have close final error. The image (e) showing the
result of the conjugate gradient descent with a coefficient of Hestenes-Stiefel
contains the most artifacts and has the biggest error.

And lastly, we simulate 100 different realizations of a data set S3 with
noise and errors. The relative error calculated at the final stage of the recon-
struction procedure is plotted as a function of the noise realization, Fig. 2.19.
The PIE with an adaptive step and the L-BFGS outperform on average the
other schemes tested. However, there are some instances where this is not the
case. These realizations correspond to datasets where misalignments result in
abnormally high levels of generated model error.

The runtime for a reconstruction on S2 data is measured at 53 s, 39 s,
104 s, 104 s, 105 s and 109 s in the respected order of the algorithms listed
above. We note that adaptive step PIE has a different convergence metric
and has converged faster than conventional PIE. Otherwise, it takes a little
longer to perform an iteration because the step size reduction descision has
to be computed. It should also be noted that additional resources are used
because we save the data at each iteration and display intermediate results. In
addition, there is room for improvement regarding code optimization, which
could further reduce computation time.

Simulation results suggest that, given our FPM configuration, the PIE al-
gorithm with adaptive step size is superior to all other optimization algorithms
tested and under all noise conditions tested. Both in terms of reconstruction
quality (i.e. the smallest relative error REφ(O,O∗)) and in terms of computing
time. However, this comparison is not entirely fair due to the different nature
of the algorithms (sequential vs. global) and the choice of step size for global
algorithms.

The conjugate gradient descent performs better with the coefficient of
Polak-Ribière rather then the coefficient of Hestenes-Stiefel in our simulations.
However, as we can see, the Polak-Ribière conjugate gradient produces results
almost equivalent to those of the steepest descent, assuming that the coefficient
may simply be too small for the conjugate direction to be taken into account.
The Hestenes-Stiefel conjugate gradient diverges in the case of perfect data,
but the problem is mitigated for noisy conditions. That being said, conjugate
gradient algorithms are supposed to be used with a line search strategy. It
would be interesting to test the different β(t) coefficients with another step
size implementation.

Among the gradient based methods, the L-BFGS algorithm is the most
powerful, which is not surprising. Indeed, it is based on the approximation of
a Hessian matrix which yields better search directions.

We note that we build our implementation of conjugate gradient and L-
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(a) (b)

(c) (d)

Figure 2.17: The relative error plotted as a function of the number of iterations.
(a) The results for the noiseless case S1. (b) A zoom on the magenta zone to
highlight the differences between PIE and PIE with the adaptive step meth-
ods. (c) Evaluation on a reconstruction from the data corrupted by Poisson-
Gaussian noise S2. (d) A zoom on the PIE and PIE with the adaptive step
methods.

BFGS methods on the basis of the open-source project "Unconstrained opti-
mization of real functions in complex variables" by Sorber et al. [180]. The
basic algorithm of alternate projections for FPM is given in the book "Fourier
Ptychographic Imaging" by Guoan Zheng [243]. We have also adapted codes
for the quasi-Newton method provided by Laura Waller’s team [196]. How-
ever, we do not test it against our methods because the proposed algorithm has
too many additional components such as regularization, pupil reconstruction,
background noise removal, etc. The comparison would therefore not be fair.

Step size The step sizes are tested under the steepest gradient descent al-
gorithm. The cost function is amplitude-based. We have studied the following
rules:

a) the constant step size µ = 1;

b) the constant step size µ = 0.1;

c) the increasing step given by Eq. (2.29), t0 = 330 and γmax = 0.4;
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(a) (b) (c)

(d) (e) (f)

Figure 2.18: Examples of images reconstructed from the simulated set S2. The
top image of each sub-figure is the reconstructed amplitude, the bottom image
is the phase. The order of the methods corresponds to the list given above
(2.4.4).
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Figure 2.19: The relative error plotted for different realizations of a simulated
set S3 with noise and errors.

d) the Golden-section line search.

The results for the S2 mixed camera noise dataset are presented in figure
2.20(a). The figures are very similar for the noiseless case S1 and are therefore
not presented here. An evaluation on a S3 set with camera noise and model
error is shown in Fig. 2.20(b).

(a) (b)

Figure 2.20: Step size strategies evaluation. (a) The relative error plotted as a
function of the number of iterations, based on the data corrupted by Poisson-
Gaussian noise S2. (b) The relative error plotted for different realizations of a
simulated set S3 with noise and errors.

The results indicate that the choice of the step size is indeed an impor-
tant parameter to take into account when choosing a reconstruction approach.
However, even a simple constant step could be a good choice if the chosen
size is appropriate. A line search method (here the golden section) produces
the fastest convergence in terms of number of iterations and the best quality
of reconstruction but on the extent of costly additional calculations. It slows
down the reconstruction by a factor of 6 in our experiments.

Cost function The cost functions are tested under the steepest gradient
descent algorithm with an increasing step size. The cost functions considered
are:
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a) the intensity-based, Eq. (2.34);

b) the amplitude-based, Eq. (2.35);

c) the Poisson-likelihood-based, Eq. (2.38);

d) the mixed Poisson-Gaussian-likelihood-based, Eq. (2.43).

We used a classical parameter of t0 = 330 for the step size with all cost
functions except a cost based on intensity. Indeed, such a step is too small
for the intensity-based cost. The parameter t0 = 10 is used instead. The
comparison results are shown in the Fig. 2.21. As we see, the final errors
are quite close for all four cost functions, Fig. 2.21(a). The Poisson-based
reconstruction deviates for some realizations of the set S3, Fig. 2.21(b).

(a) (b)

Figure 2.21: Cost function choice evaluation. (a) The relative error plotted as
a function of the number of iterations, based on the data corrupted by Poisson-
Gaussian noise S2. (b) The relative error plotted for different realizations of a
simulated set S3 with noise and errors.

In future work, a relationship between the cost function and the optimiza-
tion procedure, in particular the step size strategy, should be examined in
detail.

Gradient truncation The gradient truncation strategy was originally pro-
posed for the Poisson cost function as it suffers the most from possible outliers.
We therefore test this strategy for the Poisson functional. The algorithm is
once again the steepest gradient descent with an increasing step size. The
truncation rules tested are the following:

a) no truncation applied;

b) the classical truncation for the Poisson cost function, Eq. (2.44), the
parameters are alb = 0.3, aub = 25 and ah = 25;

c) its modified weighted version, Eq. (2.48).



82

The results for the simulated set S2 are shown in the Fig. 2.22. The effi-
ciency of the truncation was also evaluated on 100 different realizations of a
data set S3 with noise and errors. The relative error calculated at the final
stage of the reconstruction procedure is plotted as a function of the noise real-
ization. Figure 2.22(b) shows the error taking into account a global shift ambi-
guity REφ(O,O∗). Figure 2.22(c) shows the simple relative error RE(O,O∗).
If we consider only the first formula REφ(O,O∗), we could conclude that a
pure Poisson cost function performs better than the classical truncation strat-
egy. However, looking at the relative error calculated with the basic formula
RE(O,O∗), the situation is reversed. Visual validation clearly indicates that
the application of truncation strategies is beneficial, see Figure 2.23. This
example shows that the choice of the error measure is not obvious, even in
the case of a known ground truth. The choice of a correct error metric can
influence the interpretation of the quality of the reconstruction.

(a) (b)

(c)

Figure 2.22: Truncation strategies evaluation. (a) The relative error plotted
as a function of the number of iterations, based on the data corrupted by
Poisson-Gaussian noise S2. (b) The relative error accounting for a global shift
ambiguity REφ(O,O∗) plotted for different realizations of a simulated set S3
with noise and errors. (c) The simple relative error RE(O,O∗) plotted for
different realizations of a simulated set S3 with noise and errors.

The steepest descent with increasing step size, Poisson cost function and
gradient truncation is know under the name "truncated Poisson Wirtinger
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Figure 2.23: Examples of images reconstructed with a Poisson cost function
from the simulated set S3. The top image of each sub-figure is the reconstructed
amplitude, the bottom image is the phase. (a) No truncation is applied, REφ =
0, 14, RE = 0, 57. (b) The classical truncation, Eq. (2.44), REφ = 0, 21, RE =
0, 56. (c) The weighted truncation, Eq. (2.48), REφ = 0, 15, RE = 0, 52.

Fourier ptychographic reconstruction" [11]. Its code is provided for free access
by Liheng Bian et al. It is a little bit different from our implementation, having
only ξi2 subset considered for the truncation, Eq. (2.47).

2.4.5 Conclusions
We have implemented several approaches, some of which could be combined
with each other. There is no single clear and obvious answer as to which algo-
rithm or aspect of an algorithm is the best choice under all possible conditions
and constraints. For the present thesis, the decision was made to use a PIE
(alternating projections) method with an adaptive step size strategy.

Several reasons contributed to this choice. First, it is one of the most ro-
bust methods. It reconstructs consistently and with satisfactory results most
of the data sets we have tested, including the experimental ones. Secondly,
it is the fastest of our implemented methods, with rapid convergence and low
memory requirements. Given the number of pixels to be treated and recon-
structed, this becomes a significant advantage. Third, alternative projection
algorithms are used extensively in FPM research. Fourth, it implicitly min-
imizes an amplitude-like cost function, which proves to be a good choice for
data corrupted by Poisson noise. Finally, the PIE framework allows great
flexibility and a more intuitive interpretation of iteration results. It is easy
to incorporate modifications and test the effects directly at the update stage.
While this is not considered an advantage for the final application of the in-
strument, it was important for us to have a visual representation of each sub



84

iteration in order to identify potential problems. On the other hand, global
methods are more sensitive to initialization and can get stuck in global min-
ima. As the whole data set is processed at each iteration, it requires more
calculations than an iterative method. In addition, most algorithms require
fine tuning of the parameters. Moreover, the number of options to be taken
into account, such as the cost function, the truncation of the gradient, the size
of the update step, makes it difficult to justify all these small choices.

We note that the reason we found the PIE algorithm so successful may be
related to the amount of spectrum overlap in our FPM configuration. Indeed,
it has been suggested that sequential methods may perform better when there
is considerable data redundancy.

The relationship between algorithms performance and spectrum overlap
need to be further investigated. Numerous other aspects must also be assessed
in order to confirm with certainty the choice of a reconstruction method. Dif-
ferent combinations of elements examined separately in Section 2.4.4 should
be tested against other combinations. That is, a more in-depth analysis would
be required with a mixture of parameters and configurations. Other data sets
should be additionally tested. These include different types of ground truths,
such phase-only objects or objects simulating biological tissues. In addition,
as shown in the simulations with 100 noise realizations, the algorithms behave
differently depending on errors and noise levels and conditions. This needs
to be carefully examined and explained. We also stress the importance of
the choice of the error metric used during validation, even when the ground
truth is known. It is possible to misinterpret the results when no visual con-
firmation is additionally used. And, of course, similar tests should also be
conducted with experimental data sets and with data that are available on
internet. Furthermore, popular algorithms such as a quasi-Newton sequential
method should be implemented as they are often used for comparison in FPM
research [196]. It would also be worth implementing a sequential version of the
global algorithms, especially for second-order methods. Indeed, some studies
have shown that this could be beneficial for FPM [104].

Undoubtedly, all these aspects of numerical methods deserve further study.
However, in the context of the time constraints of this thesis, it was decided to
stick to a single optimization strategy and to further develop the experimental
part and multimodal imaging capabilities. Especially since a number of studies
comparing reconstruction procedure have already been carried out, both for
the general phase retrieval problem [221] and for the more specific case of FPM
[104, 226].



Chapter 3

Realization of the Fourier
Ptychographic microscope

Upon my arrival to the laboratory, there was no device in the team to perform
Fourier Ptychography or any other phase recovery technique. The following
specifications and constraints for the design of the device have been adopted:

– It should make it possible to implement a classic Fourier Ptychography
technology;

– The device must have the fewest components and be as simple as possible
in order to obtain better knowledge and better control of the experimental
conditions;

– It should have a low price, at least in its simplest original configuration;
– The working distance shall be long enough to ensure a wide field of view

and a place to insert additional optical elements;
– It should allow interchangeability of components and be easy to maintain.
Based on these constraints and the experience of the TRIO team in the

development of optical devices, it was decided to build the microscope from
scratch instead of buying and modifying an existing microscope.

Consequently, the following design steps must be implemented: the system
diagram must be proposed, the equipment must be ordered and the mechanical
parts manufactured, the device must be correctly assembled, calibrated and
characterized.

3.1 Instrument introduction
The hardware components of the device and the acquisition process will be
described in this section. As well as the calibrations that are performed outside
the reconstruction algorithm.

85
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3.1.1 System diagram
Following the proposal of the classical configuration of FPM, the basic compo-
nents of the system should include: a matrix of LED elements, a microscope
objective, an extension tube, a camera, as well as mechanical parts to hold a
specimen and optical components. To this end, the diagram of the mechanical
parts was designed in the SolidWorks software by the members of the TRIO
team, Fig. 3.1.

(a) 45◦ view (b) Front view (c) Side view

Figure 3.1: The diagram of the mechanical parts of the device.

3.1.2 Extension tube manufacture
The length of the extension tube can be calculated theoretically given the
specification of the objective and the lens tube. However, any small deviation
in the distance between the optical elements or in the actual lens focal lengths
may cause the focal point to shift. The purpose of this part is to manufacture
an extension tube of fixed length that allows a projection of the focused image
exactly at the level of the camera sensor plane. To this end, the work is
divided into two stages. Firstly, the working distance of the objective A is
defined. Secondly, flange focal distance of the camera B is measured for the
lens tube used.

The first part is used to find the actual working distance at which the lens
forms an image at infinity. This is crucial for correct measurements in the
second step. Our set-up is based on a classical autocollimation method, Fig.
3.2(a). First, a point source is generated using a laser (1), a 20x microscope
objective (2) and a 30 µm pinhole (3). We place the microscope 2x objective
(4) on a moving rail. The mirror (5) is used to reflect back the beam of light.
The exact working distance is then defined by analysing the light reflected on
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the pinhole screen. The measurements are consistent with the manufacturer’s
data and give a value of A = 34 mm.

The second stage, Fig. 3.2(b), involves a tube lens (2) a an adapter ring
(3), a variable length extension tube (4) and the camera (5). A focal length
of 200 mm of the tube lens suggest that the distance C between the centre
of that lens (2) and the camera sensor (6) should be exactly 200 mm. Given
that we could deduce theoretically the flange distance B from the edge of
the adaptor ring to the camera tube adapter. However, there may be a small
discrepancy in measurements or an error in the manufacturer’s specifications of
components (2), (3) or (6). We therefore decided to confirm the distance B on
an experimental basis. To do this, the length of the extension tube is modified
(4) until the finest point is formed on the camera image. The extension tube
length deducted is B = 174 mm.

(a)

(b)

Figure 3.2: Diagram of the set-up used to calibrate the length of the extension
tube. The components are described in the text. (a) The definition of the
working distance A of the objective. (b) The definition of the flange-to-flange
distance B.

3.1.3 Device description
Fig. 3.3 shows and annotates the parts of the assembled experimental setup.
The choice and characteristics of the components are described below.

The camera used in the initial configuration is the Prosilica GE2040 from
Allied Vision. It has a 12-bit CCD sensor of 2048 x 2048 pixels with a pixel
size of 7.4 µm x 7.4 µm. The other cameras studied will be presented in Section
3.2.4.

A wide FOV is ensured by a 2x long working distance objective from Ed-
munds Optics (2X Mitutoyo Plan Apo Infinity Corrected Long WD Objective,
EO 59875). It is infinity corrected and combined with an f = 200 mm lens
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(1) – Camera

(2) – Extension tube

(3) – Tube lens
(4) – Microscope objective
(5) – Sample

(6) – LED array

Figure 3.3: Our first configuration of the FPM platform. It consists of a
CCD camera (1), an extension tube (2), a tube lens (3), an optical microscope
objective with low NA lens (4) and a matrix of LED elements used as a light
source (6).

tube (AC254-200-A-ML). The objective is apochromatic and the tube lens is
achromatic doublet. Which means that the effects of chromatic and spherical
aberration are partially corrected. The long working distance (34 mm) allows
additional optical elements to be inserted between the sample and the obser-
vation head. In addition, the small aperture and high correction for optical
aberrations ensure that specimen-induced angular deviations are not exagger-
ated by the lens. The depth of focus provided by the manufacturer is 91 µm.

We use a 32x32 RGB LED matrix panel from Adafruit. The LEDs are
arranged in a grid with a spacing of 6 mm. Each element of the matrix consists
of a triplet of 3 diodes.

The numerical aperture (NA) value given by the manufacturer is 0.055.
However, the experimentally induced value is greater, around 0.07. The details
of its estimation will be given in the next section. The use of a low NA lens
means that the high frequencies are cut off, resulting in low spatial resolution.
At the same time, however, it allows a wide field of view to be obtained.

A sample is positioned on a stage that is h = 245 mm above the LEDs.
The distance h is chosen so as to favour the overlap in Fourier space. The
parallel position of the sample holder plane with respect to the plane of the
LED matrix is controlled using the level instrument, as suggested in [249].

According to our observations, only 22 x 22 LEDs can provide sufficient
light on the sample in this configuration.
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The final version of the system is shown in Figure 3.4. The CCD camera is
replaced by a sCMOS pco.edge 4.2. It is equipped with a sCMOS (Scientific
complementary metal-oxide-semiconductor) sensor of 2048 x 2048 elements, a
pixel size of 6.5 µm x 6.5 µm and a 16-bit converter. All figures for this work
will be given taking into account the final congiguration, unless otherwise
specified. The light scattered by the rails of the specimen holder platform is
reduced by a non-reflective fabric. The camera support and focus distance
control are stabilized by the incorporation of additional mechanical elements,
see Fig. 3.4(b). It should be noted that there is some instability in the position
of the optical axis in relation to the centre of the LED array. This is different
from FPM platforms built by modifying a professional microscope system. The
optical axis calibration is discussed in Section 3.1.5.

(a) (b)

Figure 3.4: Final version of the system. (a) Front view. (b) Side view, only
the upper part is shown. A micro-metric screw allowing micro-displacements
of the objective and a lower fixing block have been added.

3.1.4 Acquisition process and user control
The camera and the LED matrix are controlled by an image acquisition pro-
gram written in LabVIEW by members of the TRIO team. Fig. 3.5 shows the
user interface of the first version of the program.

The LED matrix has been programmed in such a way that it has 2 bright-
ness modes. Normal intensity provided by the manufacturer and modified
high intensity. Only the default brightness was available in the first system
configuration.

Given the dynamic range of some cameras, it might be necessary to adjust
the acquisition times to account for differences in signal intensity. This is
the case of the 12-bit GE2040 camera used for the initial configuration. The



90

Figure 3.5: The first version of the user interface of the image acquisition
program.

PCO.edge camera has a dynamic range of 16 bits and allows data acquisition
with the same exposure time for all LEDs.

Exposure times can either be calculated by the image acquisition program
or pre-calculated in advance. In the first case, images are captured as bright
as possible while avoiding saturated pixels. In the latter case, an assumption
is made about the similarity of the brightness distribution of the spectrum
of different biological specimens. For most biological samples examined and
normal LEDs brightness, this translates into exposure times ranging from 200
ms to 10 seconds.

Another way to reduce acquisition time is to increase the camera gain.
However, after several experiments, this idea was abandoned. The reason is
that a significant decrease in the signal-to-noise ratio (SNR) of the captured
images was observed.

We generally capture a total of 20x20 grayscale images under sequential red
light illumination. The acquisition time depends on the sample and the system
configuration. For the GE2040 camera and the default LED brightness mode,
it is on average 4 hours for a typical semi-transparent biological sample. This
time also includes the search for the correct exposure value for each image,
while only 30 to 40 minutes are spent on the acquisition process itself. For
the PCO.edge camera, this figure is about 20 minutes . Thanks to the high-
intensity LED mode, the acquisition time can be further reduced by a factor
of 5.

The captured images can be divided into two categories: high intensity
"bright-field" data; and "dark-field" images produced primarily by the scattered
light [243]. Some images, however, contain a transition area. They can be
classified as bright-field or dark-field depending on the segment selected, see
Fig. 3.6. In the final configuration of the instrument, the bright-field angle is
about 4◦. This gives 26 bright-field images for the central segment of 100x100
pixels.

It is also important to acknowledge that, the presence of "semi-dark", "semi-
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bright" images is not taken into account in the classic FPM model. Moreover,
as demonstrated by Pan et al. in [150], these transition images have a vi-
gnetting effect. This could be particularly significant when using a low-power
objective, as in our case. They proposed a modified imaging model to overcome
this issue. However, this model is not implemented in the current work.

(a) (b) (c)

Figure 3.6: Examples of captured images. The sample is a stained histological
slide of mouse breast tissue. Red illumination is used. (a) A bright-field image.
(b) A dark-field image. (c) An images with a transition area. The segment
delimited by a cyan square is dark-field, the segment delimited by a yellow
square is bright-field. The size of the images is 2048 x 2048 pixels, which
corresponds to 7.4 mm x 7.4 mm at the object plane.

3.1.5 Pre-acquisition calibrations

Adjusting the focus distance

In microscopy, it is essential to set the focal distance correctly. The system
can introduce blurring, aberrations and other errors when the sample is refo-
cused. This is particularly important in the context of computational imaging
if correction of the focus error is not performed during the reconstruction pro-
cedure. Fortunately, the FPM platform offers a way to control the focus prior
to acquisitions.

Indeed, defocusing generates geometric shifts in bright field images when
the sample is illuminated by an oblique wave. The structures of the focused
sample do not move with the change in illumination angle, see Fig. 3.7 (a-d).
If the structures of the specimen are below the focal plane, there is a positive
movement in the direction of the angle inclination. For example, if the sample
is placed 130 µm below the focal plane and illuminated by a LED located above
the central LED, the structures will move downward relative to their position
in the central illuminated image, see Fig. 3.7 (e). They move upwards when
the lighting on the opposite side is used, see Fig. 3.7 (g, h). The movement of
the structures changes direction when the sample is above the focus plane.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.7: A small area of the USAF target sample captured under different
lighting angles. In the first line (a-d), the sample is located in the focal plane.
The second row (e-f), the sample is located 130 µm above the focal plane.
The first column (a, e) corresponds to the images captured by the LED (17,
14) which is a central upper LED in a bright field. The images in the second
column (b, f) are captured by a central LED (17, 17). The third column (c,
g) corresponds to the images captured by the LED (17, 19) which is a lower
central LED in a bright field. The last column (d,h) shows the differences
between the images in the first and third columns to highlight the displacement
of structures.

Based on this observation, a displacement criterion can be used to physi-
cally adjust the focus prior to acquisitions. For this, at least 2 images must be
captured for each focus position tested by LEDs corresponding to the opposite
edges of the bright field. An image registration procedure is used to calculate
the displacement between this two images. This can be done, for example, by
means of the Matlab image registration optimizers. In this case, the procedure
must be set to the "monomodal" mode. The transformation sought is transla-
tion. The adjustment is then guided by the minimization of a criterion. This
criterion can be a norm of translation distance over x and y calculated for each
focus position.

In practice, however, we no longer apply the method described above to its
full extent. Indeed, we still examine the 2 opposite images in the bright field
for rough adjustments of the focus distance. However, we no longer calculate
the displacement metric. The reason for this is that digital defocus compen-
sation is used instead. This avoids the need for time-consuming physical focus
adjustment.
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Optical axis calibration

As mentioned above, our system has a certain degree of instability with respect
to the optical axis. By optical axis, we mean here a line passing through the
center of the LED matrix and perpendicular to it, see Fig. 3.8. We call an
optical axis pixel an intersection of the camera sensor plane with the optical
axis.

Figure 3.8: The pixel corresponding to the optical axis of the system is indi-
cated by the orange cross. In the ideal system, the blue cross, indicating the
centre of the camera sensor, would coincide with the orange cross.

By touching the camera or the objective, the optical axis can be accidentally
tilted. It is assumed that the camera plane, the lens planes and the plane of
the LED matrix are perfectly parallel to each other. However, the LED array
can also be installed with a slight tilt or displacement. None of this is the case
in systems where all components are rigidly connected and fixed. Since most
research in this field obtains the FPM platform by modifying a professional
optical microscope, this issue is rarely addressed.

In addition to mechanical misalignments of the system itself, a sample, not
infinitely thin in real life, also introduces angular deviations. This results in
an extra shift of the optical axis.

The main idea of the calibration procedure is based on the transition be-
tween bright-field and dark-field areas in the captured images. Indeed, as
noted above, LEDs can produce bright-field, dark-field, or transition images,
see Fig. 3.6. The pixel limit of the light field is determined by the maximum
light angle accepted by the lens. This transition curve is symmetrical about
the optical axis.

Fig. 3.9 (a) shows an image, Istitched, formed by stitching together captured
full-FOV raw images. Only 8x8 LEDs are used to produce this example. Each
red square corresponds to an image captured by a single LED. The position of
a square reflects the index of its LED in the plane of the LED matrix. In this
example, the optical axis pixel coincides with the center pixel of the camera
and the system is aligned. Figure 3.9 (b) shows the case of the system with a
displaced optical axis.

The idea is to calculate the position of the optical axis pixel by a precise
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(a) (b)

Figure 3.9: 8x8 raw images stitched together. (a) The optical axis of the
system is correctly aligned. (b) The optical axis is displaced.

localization of the center of the bright-field area. However, it is quite problem-
atic to analyze this area directly from the images shown in Fig. 3.9 because
of its irregular shape. This shape depends on the size of the captured image,
the system sampling and the pupil cut-off frequency.

The full FOV is 2048x2048 pixels for the camera PCO.edge. For this case,
a detection of the bright-field contour is bothered by disconnected parts. Fig.
3.10(c) shows a binary version of the image Istitched. The binarization threshold
is an average over all pixels. When the images used to produce Istitched are
cropped in a central region of 100x100 pixels, the transition images almost
disappear and the detection of the edge of the brigh field is no longer accurate
enough, (a). However, by increasing the size of a segment, the area becomes
almost perfectly circular for a segment of 1200x1200 pixels, (b). A circle can be
easily fitted to this shape and its center coordinate can later on be converted
into a pixel shift of the optical axis.

In order to determine the optimal segment size (ls) to be used for bright
field center detection, a circularity criterion Lcircularity is minimized :

Lcircularity(ls) = ‖1− P (ls)2

4πA(ls)
‖ (3.1)

where A(ls) - area of the bright-field zone; P (ls) - its perimeter. The binarized
image is used to determine the perimeter and the area.

Figure 3.10 (d) shows the circularity criterion on a logarithmic scale as a
function of segment size on a logarithmic scale. The optimal segment size for
centre detection is then 1200x1200 pixels. The studied configuration is the one
with the PCO.edge camera.

The following observations allow the subsequent detection of the optical
axis pixel. When the original images are cut not at the center but at a corner,
the circular area moves. When the optical axis is aligned, the circular area is
located in the center of the stitched images Istitched. The area moves when the
optical axis is not perfect. The method proposed is based on the estimation
of the centres of the bright field area Istitched for image segments cropped in
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(a) 100x100 (b) 1200x1200 (c) 2048x2048 (d) Lcircularity, log

Figure 3.10: (a-c) Binary version of images Istitched stitched from segments of
different sizes cropped in a central region. (d) The circularity criterion used
to define the optimal crop size.

different parts of a complete FOV image. See Fig. 3.11. The size of a crop
corresponds to the optimal size ls = 1200 pixels defined above. The cutting
coordinates of the segments are evenly spaced from the upper left corner (1,1)
to the position (2048 - ls, 2048 - ls). A line is then placed on the displacement
of the found centers as a function of the center position of the cut segment.
The intersection of this line with a zero gives the optical axis pixel sought.

(a) x coordinate (b) y coordinate

Figure 3.11: Estimation of the optical axis pixel. The example data set is the
same as in Fig. 3.9 (b).

A few other works propose to use a bright-filed border localization to esti-
mate the alignment of the system.

A somewhat related calibration procedure has been proposed by Zhou et
al. in [249]. It is based on four-point detection. These locations correspond to
the points furthest from the edge of the light field along x and y. It has been
used to perform an approximate mechanical alignment of the position of the
LED array. However, it is less robust than our circular adjustment combined
with linear regression. Besides, our system does not have an xy translation
stage for the LED array.

Another procedure, also based on detecting the bright-field area on the
sample plane, was proposed in [231]. In our case, 12 images are classified as
bright-field for the whole FOV and the circular area on Istitched is formed at
about half the size of the sensor. Only 4 bright-field images are available in the
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case of the paper in question. Our method would be rather difficult to apply
on such a data set. Instead, the authors use particle swarm optimization and
random sample consensus algorithms.

The global shift of the optical axis can also be retrieved as 2 additional
parameters (x and y sifts) during reconstruction [150, 186, 249].

Our method estimates the optical axis pixel during the calibration stage,
before the phase retrieval procedure. It is robust and fast given the config-
uration of our system. We use it to mechanically align the optical axis by
physically tilting the camera support rail. This is not a perfect procedure as
it is rather cumbersome and time-consuming. Building a system with rigidly
attached components could partly solve this problem. This is planned for the
next version of our microscope.

All alignments are made for the red LED, but the centers in this case
appear to be shifted for the other 2 wavelengths, see Fig. 3.12. In addition,
deviations caused by a sample can also be estimated by the same method. In
all cases, knowing the position of the optical axis shift allows the displacement
to be corrected numerically.

(a)

(b)

Figure 3.12: Diodes layout. (a) An image of a LED matrix element. (b)An
example of estimated optical axis pixel position for 3 wavelengths used.

3.2 Device characterisation
The built system consists of three main components: the lighting unit, the
optical part and the digital camera. Each of these components must be care-
fully characterized in order to obtain the correct imaging model and reduce
the influence of errors.

Errors in any experimental system can be divided into systematic and ran-
dom non-systematic [226]. In FPM, differences in LED irradiance, optical
aberrations and dark current noise can be classified as systematic. Fluctua-
tions in LED brightness and camera noise, with the exception of dark current
and hot pixels, are non-systematic errors. Angular misalignments can be clas-
sified as both systematic and non-systematic. Indeed, a part of the deviations
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is due to mechanical imperfections of the constructed system and an error
in estimating the parameters, and another part is due to deviations caused
by a sample. The same reasoning can be applied to the NA misalignments
attached to each LED. On the one hand, the NA depends on the applied il-
lumination and optics, and on the other hand, it seems that a thick specimen
can also influence the aperture variations. Some of these errors can probably
be reduced by modifying and adjusting the instrument mechanically, but this
would increase the cost of installation.

3.2.1 LED matrix characterisation
Relative irradiance The geometry of the LED matrix used is a simple
rectangle. As a result, the amount of light arriving at the sample from a distant
LED is different from that arriving from a LED close to the optical axis. This
difference can be partially explained by a radiation pattern of a LED. Fig. 3.13
shows the normalized light intensity as a function of the emission angle. This
data is provided by the manufacturer of the LED matrix.

Figure 3.13: Radiation pattern of a LED.

In the imaging model (2.12), it is assumed that the sample receives the
same quantity of light regardless the LED position. In order to get around
this assumption, the captured images must be normalized to account for the
difference in light energy.

The radiometric units concerned [64] will be briefly presented here before
the normalization coefficient is calculated. Radiant power, or radiant flux,
describes the amount of radiant energy Q received per unit of time δt : Φ =
δQ/δt (Watt). This quantity is proportional to a photon flux Φph which is a
number of photons per unit of time. Radiant intensity Ie, referred to above
as light intensity, is the radiant power Φ emitted or received per unit of solid
angle Ω : Ie = δΦ/δΩ. Irradiance is a density of the radiant power received
by a surface per unit area δS : E = δΦ/δS (Watt/m2).

We first calculate the relative irradiance level E on a sample for each light-
ing angle. In the current section, we note θ being the angle between the
direction of the emitted beam and its normal, Fig. 3.14. The relative irradi-
ance E(θ)/E(θ0 = 0) is then converted into a normalization coefficient c(θ) to



98

adjust intensity images captured by a camera.
In addition to the angular dependence, the intensity of the light is also

a function of the distance r from the source. The energy emitted by a light
source will be distributed over an increasingly large area. The irradiance of the
surface will therefore be inversely proportional to the square of the distance to
the source r and will depend on its radiation pattern, Eq. (3.2).

E(θ) = δΦ(θ)/δS = Ie(θ)
cos θ
r2 (3.2)

Given the system configuration, r = h/cos θ, see Fig. 3.14. Therefore, the
irradiance for the angle θ become E(θ) = Ie(θ)cos3 θ/h2, where Ie(θ) is defined
by the radiation pattern of a LED, see Fig. 3.13. The relative irradiance for
the system is then defined by the following ratio :

E(θ)
E(θ0 = 0) = Ie(θ) cos3 θ (3.3)

Figure 3.14: LED angle notations.

A photodiode is used for experimental validation of the dependence of
the amount of light received by the sample on the illumination angle. The
photodiode is placed on the sample holder. The voltage V is generated in the
diode by the light reaching its surface from the LED matrix. It is measured
in volts. In a simple photodiode model, the photocurrent, and thus also the
voltage, is linearly proportional to the irradiance [71]. This holds true within
a specific wavelength range and is valid in our case. Therefore, the measured
relative voltage can be meaningfully compared with the calculated relative
irradiance.

Fig. 3.15(a) shows a measured relative voltage map V (θ)/V (θ0 = 0) mea-
sured for red LEDs. The result is averaged over 100 realizations. The LED
matrix is placed at the usual distance h = 245 mm and works in the "normal
intensity" mode. Fig. 3.15(b) shows the voltage profiles for the red, green and
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blue LEDs. The voltage value for the central line of the LED matrix is under-
stood by profile here. Measured relative voltage profile for red LEDs (dash-dot
line) is plotted against relative irradiance profile simulated by Eq. (3.3) (solid
line), Fig. 3.15(c).

As can be seen, the simulated relative irradiance is underestimated com-
pared to the measured relative voltage. This may be due to a incorrect radia-
tion pattern Ie(θ) provided by the LED matrix manufacturer. The dark cur-
rent of the measuring photodiode could also influence the observed deviation.
Nevertheless, we decided to keep the calculations with the radiation diagram
provided. Another thing to note is the inhomogeneity of the brightness of the
LEDs. This issue will be addressed in Section 3.5.5. The asymmetry of the
profiles results from the imperfect positioning of the photodiode in relation to
the centre of the LED matrix.

(a) (b)

(c)

Figure 3.15: (a) Relative voltage measured as a function of LED position, for
red LEDs. (b) Voltage profiles measured as a function of LED position, for
red, green and blue LEDs. (c) Measured relative voltage profile (dash-dot line)
plotted against simulated relative irradiance profile (solid line), for red LEDs.

Finally, the relative irradiance is used to determine the normalization co-
efficients c1, ..., cL for captured images I1, ..., IL. The intensity recorded by the
camera is proportional to the square of the amplitude of the electromagnetic
field which, in turn, is proportional to the irradiance, thus :

∼
Il = Il ∗ cl = Il

(
E(θ0 = 0)
E(θl)

)2

= Il
I2
e (θl) cos6 θl

, l = 1, ..., L, (3.4)

where θl is the angle corresponding to the LED l;
∼
Il, l = 1, ..., L, are cor-

rected images that will be used for the reconstruction procedure. In practice,
this correction should be applied after the background noise pre-treatment.
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LEDs spectre A portable spectrometer was used to measure the center
frequency and assess the coherence of the LEDs. Fig. 3.16 plots the measured
values.

The full width at half maximum method is used to determine the spectral
band. Amplitude of spectrum curves f(λ) are first normalized to one. Next, a
profile is traced at half the maximum height (at 1/2). The width of the spectral
band is then defined by the difference between the maximum and minimum
argument of this profile. The wavelengths measured give values of 621-636 nm
for red, 494-533 nm for green and 454-476 nm for blue with peaks at 632, 515
and 465 nm respectively. These numbers are different from the specification
given by the manufacturer of the LED matrix.

Figure 3.16: Measured LED frequencies. The power is normalized.

The coherence length is inversely proportional to the width of the spectral
band. It is therefore different for the 3 coloured diodes. Coherence is lowest
for the green LED.

LED matrix configurations It should be noted that most publications use
an array of LEDs with a spacing between LEDs ranging from 2.5 mm to 4 mm.
In this case, the sample is often positioned at 70-90 mm. Our matrix has a
spacing of 6 mm and we position the sample at 245 mm. The total number
of LEDs is 32x32. According to our observations, only a maximum of 22 x 22
provide sufficient light on the sample in our configuration.

3.2.2 Optical elements characterisation

Determination of the numerical aperture

The NA value given by the manufacturer of the objective is 0.055. However,
when the captured images are examined, it appears that the actual NA of the
system is different, Fig. 3.17. Modern bright-field microscopes operate under
Kohler illumination using a condenser. This allows the resolution performance
of the system to be optimized. In the case of FPM, the lighting is provided by
a single LED. It is modelled as a coherent point source producing a plane light
wave. In reality, however, a LED produces a cone of light resulting in non-zero
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illumination NA. This is particularly remarkable in our configuration, given
the large distance between the LED matrix and a specimen. The effective NA
of the system should therefore be redefined experimentally. At the same time,
to the best of our knowledge, none of the articles on Fourier Ptychography
describe the problem of the incorrectly provided NA value.

(a) (b) (c)

Figure 3.17: (a) A captured image of a sector star target sample. (b) An
image simulated with a manufacturer NA = 0.055. (c) An image simulated
with NA = 0.07. The effective NA of the system appears to be higher than
that provided by the manufacturer. The size of the region shown is 100 x 100
pixels, which corresponds to 0.32 mm x 0.32 mm at the object plane.

The concepts of NA, maximum acceptable illumination angle θmax and cut-
off frequency kxmax are interconnected in Fourier optics :
kxmax = k0 sin θmax = k0NA

Therefore, we could determine NA by examining θmax by means of variable
angle lighting or by looking at the Fourier spectrum of the captured images.

The first method identifies the angle θmax by observing a transition from a
bright field to a dark field. In the final configuration of the system, 12 images
are classified as fully illuminated in red light. If a segment of 100x100 pixels is
considered, 24 bright field images are obtained. The farthest LED in this series
corresponds to an angle θ = 3.6 deg, which corresponds to an NA value close
to 0.063. For greater accuracy, the radius of the bright field area of Istitched is
examined, see Section 3.1.5. It is compared to simulations with different NA
value, Fig. 3.18.

We refine the results of the first method by estimating NA numerically
during the reconstruction procedure. The value found for most datasets varies
between 0.069 and 0.0712. This technique is described in detail in Section 3.5.

The second approach estimates the NA corresponding to each captured
image of its Fourier spectrum. A procedure was developed by the members of
the TRIO team and will be discussed in Section 3.5.4. Here we present only the
results of the analysis for one of the data sets used, Fig. 3.19. We have observed
that different LEDs seem to produce different NA values, ranging from 0.065
to 0.075. To our knowledge, this is not mentioned in the literature. The
influence of discrepancies in NA values needs to be further analysed and the
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(a) (b) (c) (d)

Figure 3.18: (a) An image, Istitched, formed by stitching together captured
1200x1200 images segments. (b) Istitched, formed by images simulated with a
manufacturer NA = 0.055. (C) Istitched, formed by images simulated with an
NA = 0.07. (d) A comparison of the rcaptured radius of the bright field area of
captured images Istitched with the rcaptured radius of the simulated bright field
area with different NA. The radius of the bright field area of the captured
images is closer to the simulations with NA = 0.07.

adapted imaging model needs to be considered. We expect these adjustments
to produce promising results in future work.

Figure 3.19: Estimation of the NA for bright images as a function of the
illumination angle of a LED. The LED angle here is defined as follows θ =
180◦

π
arctan

√
x2

LED+y2
LED

h
, where xLED and yLED are x and y coordinates of the

LED element respectively. The estimation method is discussed in Section 3.5.4.

Determination of other parameters

Magnification The magnification factor is calibrated using a microscope
micrometer calibration ruler slide, Fig. 3.20. The determined value is 2.03.

Depth of Field We use a 1951 USAF resolution test chart to experimentally
determine the depth of field (DOF) of the system. A unit consisting of the
objective, the lens, the extension tubes and the camera moves on the rail by
manually adjusting the position of a screw. The 420 µm range is covered with
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Figure 3.20: Microscope micrometer calibration ruler slide. The separation
between 2 indicated points is 6mm.

a 30 µm step. We estimate the contrast for several USAF groups, Fig. 3.21.
The resolution of a group (in line pairs / mm ) is given by the expression:
rUSAF = 2group+(element−1)/6. We define an experimental DOF as the width of
the displacement range producing a contrast greater than the maximum con-
trast value divided by two. As we can see, the value of the DOF depends on
the resolution of the USAF group under study, Fig. 3.21 (b). The sampling
of the system does not allow to calculate the contrast for elements with a res-
olution higher than 70 lp/mm. The DOF for the minimum resolvable element
is estimated to be about 180 µm.

We then calculate the total DOF theoretically, Eq. (1.11). Considering NA
= 0.055 (the manufacturer value), λ = 630 nm, m = 2.03 and taking e = 6.5
µm being the pixel pitch of the camera sensor : Ztot = 266.5 µm. This value
becomes smaller, when NA = 0.07 is supposed : Ztot = 174.3 µm. This value
is in accordance with the experimentally defined DOF.

In addition, the Tamura Coefficient (TC) criterion and a 146 µm micro-
sphere was used to confirm this value, Fig. 3.22. The TC for the image I is
defined as follows [242]:

TC(g) =

√√√√ σ(I)
mean(I) , (3.5)

where σ(I) is the standard deviation of I, mean(I) is the mean value of I.
Like in the previous case, the experiment consists of gradually translating the
objective along its axis. Only a quarter of the microsphere is used to calculate
the criterion, Fig. 3.22 (c-g). We have estimated the DoF by assessing the
width of the resulting curve at its half value. It equals 212 µm, which is close to
the value found by the DOF estimate with the USAF target. The fabrication of
a slide with the microsphere and its application to quantitative phase imaging
will be discussed in Section 4.1.

Such a high DOF makes it possible to obtain sharp images of thick samples.
In addition, one of the advantages of the Fourier Ptychography is that the
FOV can be further extended numerically by performing a defocus aberration
correction.
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(a) (b)

(c) (d) (e)

Figure 3.21: DOF estimation using a USAF target. (a) The USAF target,
complete FOV and zoom in on the three groups presented below. (b) The width
of the displacement range producing a contrast greater than the maximum
value divided by two as a function of the resolution of the USAF group studied.
(c-e) Contrast curves for (c) the group 5-1, (d) the group 5-5, and (e) the group
6-2. The size of the full FOV image is 2048 x 2048 pixels, which corresponds
to 6.6 mm x 6.6 mm at the object plane.

3.2.3 System characterisation

Sampling

An aperture overlap rate [187] is 78% when using red LEDs and the camera
PCO.edge, see Section 2.3.4. The maximum illumination angle is about 20◦.

The Nyquist criterion is fulfilled for red and green illumination. It is,
however, violated for the blue light with a spatial-sampling-ratio of a system
Rcam = 0.99 < 1.

Segment centres calculation

The reconstruction procedure does not directly use the whole FOV images,
but breaks them down into smaller segments. The illumination angles must
then be calculated for each segment separately.

Theoretically, this should not be a problem because these angles can be
calculated in a purely geometric way. The wavevector formula for a segment
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(a) (b)

(c) (d) (e) (f) (g)

Figure 3.22: DOF estimation using a 146 µm microsphere. (a) A 200 x 200
pixels segment of one of the captured images containing the microsphere. The
size is 0.65 mm x 0.65 mm at the object plane. (b) The TC as a function
of axial translation. (c-d) Images segments used to calculate the TC (in false
color). The axial position are : (c) -240 µm, (d) -120 µm, (e) 0 µm, (f) 120
µm, (g) 240 µm.

centered on a position (xc, yc) is given by [186, 244]:

klx = 2π
λ

(xc − xl)√
(xc − xl)2 + (yc − yl)2 + h2

kly = 2π
λ

(yc − yl)√
(xc − xl)2 + (yc − yl)2 + h2

,

(3.6)

where (xl, yl) is a position of the l-th LED in the LED matrix plane. It is
calculated as (xl, yl) = (hlxd, hlyd), where hlx and hly are the led indices in x
and y directions respectively counting from the centre of the LED array, d is a
spacing between neighbouring LEDs. The position of a segment centre (xc, yc)
is also given by a straightforward geometric relation :

xc = x0 −NxPp

yc = y0 −NyPp,
(3.7)

where (Nx, Ny) are number of pixels from the segment center to optical axis
pixel (x0, y0) of the full FOV raw image and Pp is a pixel pitch at the object
plane. The ideal optical axis would be at position (x0, y0) = (0, 0).
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(xc, yc)

(xl, yl)

Figure 3.23: The illumination angle corresponding to the same LED is different
for an optical axis segment (blue rectangle) than for a corner segment (orange
rectangle).

However, when this formula is applied on our data, we observe strong
artifacts on the reconstructed phase images for segments far away from the
optical axis pixel, Fig. 3.24(a). Indeed, the stripes become denser and denser
as the distance from the optical axis increases. We assume that the reason
for this is that the center of a segment undergoes a displacement greater than
NpixelsLpixel. This could be due to the deflection of the illumination beams by
a sample or optics. We propose therefore to introduce a correcting coefficient
kc accounting for this additional displacement.

xc = x0 − kcNxPp

yc = y0 − kcNyPp.
(3.8)

The coefficient is determined by minimizing a difference between the bright
field border locations of the measured and simulated images. For most of our
data sets, this value is estimated to be close to kc = pi/4. Reconstruction with
an applied coefficient has much less stripes on the phase, Fig 3.24(b).

We note that a similar issue has also been encountered in other research.
Zhou et al. formulated it as a problem of independent deviation of the central
position of each segment [249]. In such a case, two additional parameters (off-
sets of xc and yc) are estimated during reconstruction. However, by examining
the reported values of the reconstructed offsets for different segments, we sug-
gest that a correction coefficient kc might also be a good approximation for
their data sets.

While our method works well in practice, it lacks a solid theoretical basis.
The exact nature of this phenomenon should be examined in more detail. A
possible explanation could have been provided by Pan et al. They also observed
distinct stripes on the reconstructed segments in the border regions of the
FOV [150]. However, they approach this problem from a completely different
perspective. The authors question the imaging model itself by arguing that
the spatially invariant approximation on FPM is not appropriate.
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(a) (b)

(c) (d)

Figure 3.24: The results of the reconstruction. A corresponding low-resolution
bright field image can be found in Fig. 3.6. The orange dot indicates the
optical axis pixel for the data set used. The phase (a) and the amplitude (c)
given the standard formula for the segment position, Eq. (3.7). The phase (b)
and the amplitude (d) given the applied coefficient, Eq. (3.8).

3.2.4 Camera study
To our knowledge, none of the authors have studied noise statistics for Fourier
ptychographic microscopy. This section focuses on characterising the electrical
noise of the camera. A number of studies assume the correct type of noise,
namely a mixed Poisson-Gaussian noise [203, 240, 241]. However, this as-
sumption is not universal. Most papers presume that the data are corrupted
by noise following the Poisson distribution [11, 226], some even consider simple
Gaussian noise. This section aims to clarify the issue of electronic (camera)
noise, one of the main sources of error in Fourier Ptychography measurements.

There are several reasons for conducting this study. First of all, it is useful
for the confirmation of the choice of the cost function used in the optimization
procedure. Secondly, it gives us the correct information for the simulations
and thus the validation of the methods implemented. Finally, at the time this
study was conducted, the final configuration of the FPM system had not yet
been decided. Having several CCD cameras and a sCMOS camera, we aimed
for the optimal one according to the parameters and the observed noise.
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Camera characteristics The Table 3.1 lists the sensor and pixel sizes of
the cameras studied as well as their dynamic range (ADC). Ideally, we would
like to have the biggest sensor size. The smaller the pixel size, the better
the resolution and the higher the system’s spatial-sampling ratio (the Nyquist
criterion is better met considering the other parameters fixed). At the same
time, cameras with a larger pixel size may have a better SNR since the signal
is integrated over a larger area. Prosilica GE-1050 was excluded from the
analysis for a small FOV. Hitachi HV-F202GV camera is RGB, while others
have a monochrome sensor. Since the FPM allows a wave multiplexing strategy
(see Section 4.4), these cameras were considered despite their weak FOV.

Camera Sensor size, mm2 Pixel size, µm2 ADC
1 Prosilica GE-2040 15.10 x 15.10 7.4 x 7.4 12 bit
2 Hitachi HV-F202GV I 7.04 x 5.28 4.4 x 4.4 12 bit
3 Manta G-145B 8.95 x 6.70 6.4 x 6.4 12 bit
4 Prosilica GE-1050 5.63 x 5.63 5.5 x 5.5 12 bit
5 PCO.edge 13.31 x 13.31 6.5 x 6.5 16 bit

Table 3.1: Available camera specifications

First, we review all the types of noise that could be generated by a digital
camera. These include :

• Additive Gaussian noise. It arises from disturbances of the actual light
signal by noise in the sensor electronics, often related to the temperature
of the camera.

• Poisson shot noise. It is a signal-dependent noise due to poor counting of
independent photons by a sensor. These variations are often attributed
to quantum fluctuations.

• Dark current. This type of noise is due to leakage current, i.e. electrons
generated in the sensor independently of the light signal. Captured im-
ages are subsequently corrupted by a constant offset which itself follows
a Poisson distribution.

• Hot pixels and salt-and-pepper noise. If the sensor is damaged, some
of its pixels may no longer follow the linear response curve, producing
values much higher than the expected signal level. If the load capacity
of a pixel is exceeded, its value can be reset to zero producing salt-and-
pepper noise.

• Other. Quantization noise is always present in discrete measurements,
but it is not significant for FPM compared to shot noise. Anisotropic or
periodic noises may also be observed.
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We therefore look for the presence and levels of these noises in order to estimate
the significant sources that most influence FPM reconstructions. To begin
with, we estimate the dark current image, the presence of hot pixels and the
possible anisotropy of the noise. Next, we determine the statistical distribution
of the noise.

Dark frame We calculate the dark current image by simply averaging 103

of images taken in the absence of light. The result, Fig. 3.25, indicates that
all cameras have different average noise levels and different anisotropy profiles.
Different integration times were also examined to ensure the consistency of
results. The statistical properties of the resulting dark image also indicate that
the captured raw images must be processed differently before reconstruction.
For example, the dark image of the PCO.edge camera has a variance value of
less than 3 and can be approximated by a constant (its mean value 100.4),
while the GE2040 (variance value 47) and the Hitachi (variance value 140)
cameras require dark image subtraction. Different integration periods were
also examined to ensure consistency of findings.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.25: Camera’s dark frame. Top row - the estimated image, bottom
row - mean vertical (blue) and horisontal (orange) profiles of that image. (a)
The Prosilica GE2040 camera. Mean dark image value – 38.7, value variance
– 47.0. (b) The Hitachi HV-F202GV camera. Mean dark image value – 100.4,
value variance – 2.9. (c) The Prosilica G145 camera. Mean dark image value –
1.4, value variance – 1.0. (d) The PCO.edge camera. Mean dark image value
– 100.4, value variance – 2.9.

Hot pixels Of all the devices tested, the Prosilica GE2040 had the largest
hot pixel problem. These pixels must first be identified and then treated. All
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the data in this paragraph will be examined for this camera.
Several methods can be considered to define if a pixel is "hot". One of the

simplest definitions is to find the pixels in the dark image that are greater than
10 times its median value. Both the mean intensity and the number of these
pixels increase with the integration time, Fig. 3.26. At t = 10s, up to 0.03%
of the pixels are classified as "hot". However, this value depends largely on the
threshold value of the classification. Another observation is the appearance of
a zero value pixel to the right of a hot pixel.

(a) (b)

Figure 3.26: (a) Mean value of the intensity of a hot pixel as a function of the
integration time. (b) Number of hot pixels as a function of integration time.

At the same time, a large number of pixels produce values that give higher
intensities than the average background noise over a long exposure time. These
values are not large enough to be classified as "hot" and too numerous to be
interpolated without losing a significant portion of the signal. Given that the
camera GE2040 requires integration times of longer than 5s for distant dark-
field images, this issue is susceptible to compromise the reconstruction results
and has to be treated.

Statistical law of noise In order to determine the noise law, we take 103

images of the same scene for each camera. We calculate the variance of the
intensities for each pixel xi,j of these j = 1..100 images and relate it to the mean
value of a pixel xi,j. Indeed, one of the properties of the Poisson distribution
is the equality of the expected value of the event to its variance. On the other
hand, the variance of a given Gaussian distribution is constant with respect to
the expected value.

Figure 3.27 shows the result of plotting the variance against a pixel mean
for 103 simulated images. Each point on the graphs represents a pixel of the
image with its mean and variance calculated from 100 noise realizations. The
images that produced the first figure (b) are corrupted by Gaussian noise.
The second figure (c) represents the images whose pixels follow the Poison
distribution, Eq. 2.37.

The 4 following figures (d-g) show the same analysis for the experimental
data from the cameras tested. For all cameras, the conclusion is that the noise
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(a) (b) (c)

(d) (e) (f) (g)

Figure 3.27: Determination of the noise law. (b-g) Scatterplots of pairs (E,
σ2), where each dot is calculated as E = mean(xi,k), σ2 = var(xi,k), where
i = 1...m2 is a pixel position, k = 1...K is a noise realisation number. (a)
Example ofK = 100 simulated images used for analysis. The noise is generated
for each pixel (xi,k) independently. (b) Results for 100 realizations of Gaussian
noise. The green and pink squares represent the pair (E, σ2) for 2 distinct
pixels shown in the figure (a). (c) Results for 100 realizations of Poisson noise.
The same scene captured with the camera (d) Prosilica GE2040, (e) Hitachi
HV-F202GV, (f) Prosilica G145, (g) PCO.edge.

has both Poisson and Gaussian components. A Gaussian noise component is
deduced from the fact that the curve corresponding to a Poisson component is
elevated, as opposed to a variance baseline at 0. Three out of the four cameras
studied produced curves resembling those simulated under the hypothesis of a
mixed Poisson-Gaussian noise. That is to say that each pixel could be modelled
by the Eq. 2.40. The Hitachi color camera, however, gave unexpected results.

Such an analysis also provides quantitative noise measures. Indeed, when a
linear regression is performed, the slope of the line indicates a scale coefficient
α of the Poisson distribution and the elevation is a measure of the standard
deviation σ2 of the Gaussian component.

As can be seen, the mean of a pixel is equal to its variance up to a scaling
coefficient, which is different for all the cameras studied. This indicates that
the current assumption in the FPM of a Poisson noise component with a unit
scale [11, 226] is not entirely accurate. As far as we know, this issue has
not been addressed in the literature, even when the mixed noise hypothesis
is used. However, it is important at least for a correct simulation of noise,
when validating methods. Furthermore, this observation needs to be studied
in greater detail in order to possibly propose a new cost function. This is
particularly relevant when different integration times are used.
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These tests were performed under different scenes, different illumination
angles, different wavelengths, different exposure times, but also outside the
microscope system to make sure that this noise is not related to the optics.

It should be acknowledged that Poisson-Gaussian noise is often used to
model the signal errors of CCD and CMOS camera sensors [124]. In addition,
the Poisson probability distribution function (PDF) could be approximated by
a Gaussian PDF for large numbers. If the dataset contained only bright field
images, the Gaussian noise hypothesis might be sufficient. A more accurate
noise model is required due to the presence of low-intensity dark field images.

It should also be noted that, following the completion of this study, another
work has proposed a method for estimating the standard deviation of the
Poisson or Gaussian components for FPM [146]. The study did not attempt
to determine the degree of similarity of the actual noise to the mixed Poisson-
Gaussian distribution. The noise was regarded as being either purely Poisson
or purely Gaussian.

Camera response curve The dynamic range of the GE2048 camera re-
quires different acquisition times depending on the LED used. It is therefore
necessary to control the linearity of the response curve of this camera in order
to ensure a correct normalization of the intensity images, Fig. 3.28. A camera
response curve identifies the relationship between the intensity measured by
the camera and the relative radiance of the scene. The Debevec-Malik algo-
rithm, often used in the context of high dynamic range images generation, is
used for this analysis [42]. Without going into details, we only mention that
several images of the same scene must be taken with different exposure times.

Figure 3.28: GE2048 camera response curve.

Camera choice We first opted for Prosilica GE-2040 which provides the
largest FOV. However, we then decided to sacrifice the edge of the FOV to re-
duce the acquisition time as a result of a higher dynamic range of the PCO.edge
camera. The higher noise levels of the GE-2040 compared to the PCO.edge
were also taken into account in this decision.
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3.3 Quality assessment
The question of evaluating the results of experimental reconstruction is not
obvious. In particular because of system uncertainties, noise and the fact that
the physical model used is only an approximation. Qualitative observations
are therefore still taken into account in the FPM, for example by assessing the
morphology of blood cells [143, 226].

Perhaps the most common quantitative metrics is what is known as the
"convergence index" (CI) [69, 244]:

CI =
∑
l

meanx,y
(√

gl(x, y)
)

∑
x,y

∣∣∣√Il(x, y)−
√
gl(x, y)

∣∣∣ , (3.9)

where Il(x, y) are captured images, l = 1..L; gl(x, y) are images generated from
the resulting object estimate O(kx, ky) according to the Eq. (2.20). CI value
is the highest for the "best" result.

We also use the value of the objective functions, indicated in Section 2.4.3,
to control the quality of the results. We underline once again that the metric
values depend not only on the reconstructed object itself but also on the chosen
system parameters intervening in the Eq. (2.20). It is therefore difficult to
draw conclusions on the results even if the metric chosen was appropriate.

3.4 Data pre-treatment
Some recent research efforts have been devoted to the pre-processing of FPM
data [51, 84, 146, 239].

The mixed Poisson-Gaussian nature of the electrical noise is a non-systematic
error that cannot be addressed in the data pre-processing stage. Indeed, it
would be unwise to de-noise the raw images, as this could disturb the fre-
quency properties of the signal and lead to the loss of its part. However, the
hot pixels and dark frame could and should be eliminated before reconstruc-
tion.

3.4.1 Normalization, hot pixels and dark frame
First of all, if different exposure times are used, the images must be re-
normalized to match the observation model. As was shown above, the GE2048
camera has a linear response curve. Therefore, we simply multiply the captured
images by a normalization coefficient kt = tmax/tl where tl is the exposure time
used to capture the image l = 1..L and tmax is the maximum exposure time
used. We note that such normalization calls into question the estimated law
of noise. This issue needs to be studied and addressed in further research.

Hot pixels and the dark frame are eliminated by the methods described in
Section 3.2.4.
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3.4.2 Offsets
While our first attempts only dealt with the issues described above, we then
realized that another part of the signal, related to differences in lighting, also
had to be suppressed. In fact, there is a constant offset on the captured images.
The value of this offset depends on the lighting angle. It is higher for bright
field images and lower for remote LEDs. Several authors have also reported
this issue [51, 84, 146, 196, 239].

We follow the proposal of Lei Tian et al [196]. The offset is determined for
each LED by evaluating an average value of some region of the sample. This
region is chosen so that it has uniform intensity in bright field images and no
signal in dark field images. The authors proposed to set an empirically defined
threshold on the resulting offsets. Negative value resulting after subtraction
of offsets are set to 0.

(a) (b)

(c)

Figure 3.29: Offsets determination. (a) A full FOV image of a histological
slide. The coloured squares indicate the homogeneous regions used to calculate
offsets. (b) Estimated offset values before thresholding. A blue dot represents
a pair (LED angle θ, average intensity over the regions). The red curve is fitted
to this data, indicating the dependence of the offset value on the illumination
angle. The green line indicates the shift from bright field to dark field images,
determined by the system NA. (c) The first X = 0.2 percentile traced against
the average value over the regions.

Fig. 3.29(a) shows an example of two regions taken to perform the mean
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value calculation. Two regions are used instead of one to increase robustness.
Fig. 3.29 (b) shows the values obtained as a function of the illumination
angle θ. As can be seen, the value of the offset decreases noticeably as the
illumination becomes more and more oblique. A vertical line represents the
numerical aperture angle.

We choose the threshold constant to be equal to the minimum offset value
over a disc of dark-field LEDs around the bright-field circle. This choice is
better than an empirical value, but it is also not entirely justified.

Some samples do not exhibit a uniform area large enough to perform the
above procedure. The first X percentile can be used in this case instead of the
average value over a region, Fig. 3.29(c).

Zhang et al. proposed a slightly different data pre-processing procedure
[239]. Instead of subtracting the dark frame image and estimating the resid-
ual offsets after, they scaled the dark frame image by a weighted coefficient.
This coefficient is, as in our case, defined on the basis of the average value of
two uniform sub-regions. The authors also suggested detecting stray light in
order to exclude the detected pixels from the updates of the reconstruction
procedure.

Noise suppression during reconstruction Lexin Hou et al. followed a
different path and proposed to estimate compensations iteratively during the
reconstruction process rather than as a data pre-processing step [84]. Offsets
are determined by comparing the captured images with those simulated from
the current object estimate. Yao Fan et al. also introduced background sup-
pression as part of the reconstruction [51]. They estimate the background noise
in the form of an image for each LED rather than a constant offset. These
incremental approaches promise to avoid eliminating a useful signal along with
the noise. However, they indirectly modify the underlying objective function
and are only integrated into projection-type algorithms.

Another way to perform an adaptive background suppression is to include
the additive noise directly into the image formation model [14]. In this way,
the measurement noise, as well as a relaxation constraint, are treated as op-
timization variables. Such an approach has the disadvantage of adding 2L of
additional variables (a noise image and a relaxation image per LED) to the
reconstruction procedure.

3.4.3 Results and discussion
Figure 3.30 shows the results of the reconstruction with different pre-processing
steps applied. Initially, the reconstruction is performed directly after normal-
izing the exposure times and removing the hot pixels, (a). The dark frame
is then subtracted from the captured images, (b). Finally, the estimated off-
sets are subtracted and the negative values are subjected to a threshold, (c).
When angular-dependent offsets are not processed, we see its influence as a
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(a) (b) (c)

Figure 3.30: Reconstruction with different pre-processing steps applied. A
region of interest from the sample in Fig. 3.6 is used. The size of the raw
image region used is 150 x 150 pixels, which corresponds to 0.5 mm x 0.5
mm at the object plane. Top row - amplitude image, bottom row - Fourier
spectrum (log of the absolute value). (a) Normalizing the exposure times and
removing the hot pixels. (b) The dark frame is then subtracted. (c) The
estimated offsets are subtracted and the negative values are subjected to a
threshold.

disc in the Fourier spectrum of the reconstructed object (bottom line). This
disc disappears when the offsets are subtracted.

While in practice, after testing different options, we find that our data
processing method gives satisfactory results, it lacks theoretical foundations
and should be examined in greater depth. In addition, other methods available
in the literature should be implemented and tested. We also note that another
noise-related problem, namely background interferences, should also be studied
[83].
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3.5 Numerical recovery of system parameters
and aberrations

Methods for characterizing system parameters in a data pre-processing step
have been described above. However those estimations are still not perfect and
deviations can happen in actual experimental setup. In addition, we have not
proposed a method to characterize the optical aberration of the constructed
microscope. Fortunately, the redundancy of the collected data makes it possi-
ble to numerically estimate system parameters as well as aberrations.

3.5.1 Embedded pupil function recovery
Historically, one of the first estimates of this type was the wavefront correction,
proposed for the classical projection type algorithm. The method was termed
"Embedded pupil function recovery" [143].

The idea can be summarized as follows. Along with the reconstruction
of the object O(kx, ky) itself, a procedure for retrieving the pupil function
P (kx, ky) is applied to correct the optical aberrations. This is a currently stan-
dard practice for the FPM procedure. The flowchart of the classical projection-
based algorithm, Fig. 2.14, therefore contains an additional step, Fig. 3.31.
Given the use of the adaptive steps strategy, the update equations for O(kx, ky)
and P (kx, ky) become1:

O
(t+1)
l (kx, ky) = O

(t)
l (kx, ky) + α(t) P ∗(kx, ky)

(|P ∗(kx, ky)|2)max
∇O(t)

l (kx, ky) (3.10)

P (t+1)(kx, ky) = P (t)(kx, ky) + β(t) O
(t)∗
l (kx, ky)

(|O(t)∗
l (kx, ky)|2)max

∇O(t)
l (kx, ky) (3.11)

where
β(t+1) = α(t+1)

√
L

(3.12)

is the step size of the pupil update [252].
Similarly, the embedded pupil function recovery can be implemented with

gradient-based algorithms. In this case, the gradient is calculated for each cost
function over the variable P (kx, ky) and the joint optimization is applied. We
haven’t implemented this feature in our work, since we have chosen to work
with the projection-based methods.

1The notations used are similar to [186]
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Figure 3.31: A flowchart of the PIE algorithm with embedded pupil function
recovery for FPM reconstruction.

3.5.2 Modeling aberrations with Zernike polynomials
Another way to recover the pupil is to model its aberrations using Zernike
polynomials. Indeed, the phase component of the pupil function W (kx, ky) is
supposed to be decomposable into Zernike polynomials Z(m,n) with different
coefficients a(m,n) [243] :

W (kx, ky) =
∑(

a(m,n)Z(m,n)
)

(3.13)
The pupil function in the imaging model can then be rewritten as follows :

P (kx, ky) = Pc(kx, ky)eiW (kx,ky) (3.14)
where Pc is the circular opening function defined by Eq. (2.10). The Zernike
mode coefficients a(m,n) are then treated like any other variable system param-
eter and their estimation is described in the next section.

According to our observations, the most important optical defect to be
corrected is out-of-focus aberration. It is also the aberration which, in our
experience, varies the most according to the position of the segment in the
field of vision. In addition, the ability to correct the defocus extends the
depth of field of the objective lens used. It can be modelled as a second-order
Zernike mode Z(2, 0). Fig. 3.32 shows a biological sample reconstructed with
and without defocus correction, as well as the defocus coefficient estimation
curve. While other work suggests that other Zernike modes may also be quite
strong [16, 178], we have not observed this for our system. This may be due
to the use of optics with strong aberration corrections.

Pengming Song et al. went further and proposed to estimate Zernike co-
efficients taking into account the position of the segment in the field of view,
instead of estimating them for each segment independently [178]. The de-
pendence of the aberrations on the position can be modelled by introducing
the segment coordinate (x, y) into the classical wavefront aberration function
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(a) (b) (c)

Figure 3.32: The influence of defocusing aberration. The example is a segment
of a stained biological human kidney tissue, the raw images contain 100x100
pixels, which corresponds to 0.36 mm x 0.36 mm at the object plane. The
focus distance for the acquisition has been set approximately, without using the
technique described in Section 3.1.5. (a) Convergence index values plotted as
function of defocus coefficients. The coefficient optimized is z = −43. (b) The
result of reconstruction without correction of defocusing. Only the amplitude
part is shown. (c) Reconstruction using aberrations modeled by Z(2, 0) with
the coefficient z = −43. The structures are clearly better resolved.

: W (kx, ky, x, y). This algorithm has not been implemented in current work,
but is likely to be beneficial when strong optical aberrations are expected.

3.5.3 System parameters estimation
This section describes the recovery of uncertain system parameters and Zernike
mode coefficients. Several schemes have been proposed in the literature [16,
148, 178, 186, 237, 249]. The methods are mainly based on the idea of compar-
ing simulated data with real data using a metric to be optimized. The most
common measure used is the convergence index, Eq. (3.9).

The simplest and most robust scheme is to simply perform the reconstruc-
tion under different parameter values and calculate the metric for each result
[16]. Fig. 3.33 shows the estimation of several system parameters, including
NA, distance between the sample and the LED matrix h, wavelength λ, mag-
nification and optical axis shifts ∆x, ∆y. The most basic PIE algorithm is
used to avoid possible distortion of the evaluation of the results by the aberra-
tion and/or adaptive step size recovery strategy. The resulting curves are not
convex for some parameters. In addition, it is not obvious that the conver-
gence index is the best metric to optimize. While this measure addresses the
ambiguity of phase shift, it does not reflect the correct noise model. A metric
based on amplitude or Poisson cost may be more appropriate. An additional
difficulty is the interconnection of system parameters. Indeed, if, for example,
the distance between the sample and the LED matrix is overestimated, the
recovered NA value will be underestimated.
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(a) (b) (c)

(d) (e) (f)

Figure 3.33: Estimation of system parameters. Three curves are drawn here
for each parameter: the negative convergence index (blue), the amplitude-
based cost function (red) and the Poisson-based cost function (yellow). The
parameters considered are : (a) NA, (b) distance between the sample and the
LED matrix h, (c) wavelength λ, (d) magnification, (e) optical axis shifts ∆x,
(f) ∆y.

We note that the above method is hardly suitable for real-life applications
because the run time of the reconstruction becomes too long. Zichao Bian et
al. proposed to use the Generalized Pattern Search algorithm instead of the
brute force strategy used in the current work [16]. Another proposal is the
simulated annealing algorithm [226, 249].

An alternative approach to reducing uncertainties in the design matrix
is to directly estimate the resulting angle (x and y component) of each LED
separately. This leads however to an increase in the number of variables. Thus,
instead of estimating 6 system parameters for each segment, we would have
to estimate 2L (hundreds additional variable). An Pan et al. proposed to
combine the two methods. The angles are first estimated using a simulated
annealing algorithm and the system parameters are then deduced by linear
regression [148]. More details on the correction of angular misalignment will
be given below.

3.5.4 Angles misalignment correction
The estimation of the parameters presented above is based on the assumption
that the individual LEDs have little or no misalignment. The possible angle
deviations are supposed to be due to a wrong estimation of any of the 6 global
parameters of the system: optical axis shift ∆x, ∆y, height h, wavelength
λ, NA and magnification. However, this may not reflect reality. Mechanical
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misalignments in the positioning of the LED elements and optical imperfections
can introduce individual angle deviations. In addition, the specimen itself may
reflect a beam unevenly in its different parts due to local optical thickness
variations or refraction of the internal interfaces [202]. At the same time, even
a small deviation in the angle of a single LED can lead to a deterioration in
the quality of the reconstruction, Fig. 3.34. This is particularly true for LEDs
at the edge of bright field and black field areas, where an incorrect estimation
of the angle can lead to misclassification of the captured image.

(a)

(b) (c)

Figure 3.34: Influence of the angle deviation of a single LED. (a) LEDs angles.
The blue dots represent perfectly calibrated angles. The orange point is a
misaligned angle, the position error is about 40% in the x-direction. The
erroneous LED is located near the bright field boundary and the deviation
causes it to be classified as a dark field instead of a bright field. (b,c) The
results of the reconstruction from a set of simulated data. (b) The angles are
perfect. (c) Only one LED (indicated by the orange dot) is misaligned. The
artifacts are particularly visible in the phase image but the amplitude image
is also affected because of the leakage between the real and imaginary parts
during reconstruction.

Two distinct families of methods address the problem of misalignment of
individual angles.

The first group of techniques is based on the optimization of an image
quality metric. This is similar to the global system parameters estimation.
The convergence index and amplitude cost are the measures most often used
for the optimization. The simulated annealing method seeking the best angle
correction is often applied at each step (corresponding to each captured image)
of a sequential optimization scheme [148, 186, 226]. Another option is to use
a derivative of the image quality metric with respect to the angle (or rather
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the spectrum shifts components kxl and kyl). Gradient-based optimization
can then be performed [116, 230]. Sining Chen et al. proposed yet another
iterative approach, based on a feedback parameter controlling the portion of
information used at each step [25]. The misalignments themselves are inferred
using a cross-correlation function. All methods in this group, however, are
prone to get stuck in the local minima due to the large number of parameters
to be optimized.

The second family of methods consists in correcting the angles before the
reconstruction stage. Regina Eckert et al. were the first to propose analyzing
the spectrum of captured images to estimate the corresponding angle [49, 50].
The algorithm works in a two-step process. The angles are first deduced for
bright field LEDs based on the detection of circles in Fourier domain. In-
deed, when bright-field LEDs are used to illuminate the sample, the spectra
of the captured images feature a pair of discs symmetrical with respect to the
frequency origin, Fig. 3.35. The center (kxl, kyl) and the radius rl of the
observed discs correspond respectively to the illumination angle of the LED k
(or rather its carrier frequency) and the NA. The angles are then iteratively
re-estimated for all LEDs using joint optimization of the object and angles.
This stage belongs to the first family of angles correction strategies.

(a) (b) (c)

Figure 3.35: Examples of circular regions in Fourier domain for bright-field
angles. The sample is a 150 um microsphere, more information about this
sample in the next chapter. Top row - a region of the captured intensity
image. Bottom row - its Fourier transform. The size of the region used is 280
x 280 pixels, which corresponds to 0.9 mm x 0.9 mm at the object plane. The
illumination angle x and y components are (a) [0.8◦, 0.5◦]; (b) [3.6◦, 0.5◦]; (c)
[0.8◦, 3.3◦].
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Despite the promising benefits of the Regina Eckert method, we found that
it does not work with our data. Indeed, the first step of the algorithm fails to
correctly identify Fourier-domain circular regions. This is due to the fact that
our circles tend to be noisier and have fuzzy contours with open arcs. This is
not the case with the data provided by the team of Regina Eckert and Laura
Waller, Fig. 3.36.

A new method with encouraging results is currently being developed by
the TRIO team. Like in the case of the algorithm above, our method allows
to recovery triplets (kxl, kyl, rl) from spectral images. The Fourier transform
of captured images is symmetrical because the images are real. We introduce
these symmetries into band limited cost functions which permit to stick to
non perfect contours. This also allows for rapid convergence and improved
robustness. Fig. 3.37 shows the results of bright-field angles estimation using
the method developed. We plan to report on the details of the algorithm in a
forthcoming work.

(a) (b) (c)

Figure 3.36: Comparison of spectra for 2 different FPM systems. Top row
- an image segment captured in bright field, oblique lighting. Bottom row -
its Fourier transform (a logarithm of the amplitude is shown). (a) Histolog-
ical slide data provided by the Laura Waller team. (b) 150 µm microsphere
captured with our system. (b) Mouse breast tissue slide captured with our
system.

In conclusion, we underline the importance of angle corrections, especially
for border images. We also note once again that individual angle correction can
compensate for misalignments in the global system parameters. It has been
reported [202] that the benefits are even more pronounced for thick samples
and/or 3D reconstruction. Although these methods are not yet fully integrated
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(a) (b)

Figure 3.37: Results of the estimation of bright field angles by the method
currently being developed. The sample is a 150 µm microsphere. (a) Plot of
estimated angles. The circles are the theoretical values of the angles. The green
circles correspond to bright field LEDs. The red crosses indicate the angles
estimated from the captured images. (b) A circle fitted on the spectrum of
one of the captured images.

into current work, the results of simulations and preliminary study of experi-
mental data suggest that angle correction is an essential element of artifact-free
reconstruction.

3.5.5 LEDs intensities
We have already mentioned above (Section 3.2.1) the differences in irradiance
of different LEDs. Moreover, different parts of the field of view receive different
amounts of light. In addition to this fixed pattern of illumination differences,
we also observe random fluctuations on individual acquisitions. This problem
has also been reported in the FPM literature [16, 148].

A conventional way of dealing with uncertainties related to the amount
of illumination is the introduction of an intensity correction coefficient. The
observation model (Eq. 2.12) can be subsequently modified as follows :

Il(x, y) ≈ 1
cl
|FT −1 {P (kx, ky)O(kx − kxl

, ky − kyl
)} |2 ≡ 1

cl
gl(x, y), l = 1, ..., L,

(3.15)
where cl is the intensity correction factor.

This leads to the modification of the reconstruction cost function. For ex-
ample, the new amplitude cost (Eq. 2.35) is now stated as (in a non-vectorized
form):

fA =
L∑
l=1

∥∥∥∥√clIl(x, y)−
√
gl(x, y)

∥∥∥∥2
, (3.16)

The optimal value for the correction factor cl can be found by minimizing
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the cost function with respect to cl, from which it is derived:

cl =
∑
x,y gl(x, y)∑
x,y Il(x, y) (3.17)

(a) (b)

Figure 3.38: Results of the reconstruction of a region of a biological tissue
sample. The same sample as in Fig. 3.6 is shown. The size of the raw image
region used is 150 x 150 pixels, which corresponds to 0.54 mm x 0.54 mm
at the object plane. Top row - amplitude, bottom row - phase. (a) The
PIE algorithm described by a flowchart 3.31 without the intensity correction
routine.(b) 4 iterations of the intensity correction routine are performed. Each
iteration includes 50 steps of the PIE algorithm. Fewer artifacts are visible.

The classic way to introduce this intensity correction is to update the cap-
tured images at the end of each iteration step of the PIE algorithm, starting
with the 2nd step [16]: Ĩl(x, y) = clIl(x, y). We follow a similar procedure, but
instead of updating the measurements at each step, we do it every 25 steps
after the initial 25 iterations without the intensity correction. This approach is
slower because it requires more iterations, but we found it to be more robust.
We also found that more than 5 iterations of the intensity correction routine
typically result in the loss of high-frequency information and decreased phase
contrast for our data. Indeed, coefficients of images corresponding to high
lighting angles tend to become quite low. The results of reconstruction with
and without intensity correction are shown in the Fig. 3.38.
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3.6 Importance of light coherence
The imaging equations imply a coherent single wavelength system. However,
as we have seen with LED spectrum measurements, such an approximation
may not be adequate in our case. Green LEDs, for example, have a spectral
width of 22 nm and can hardly be considered perfectly coherent. Addressing
this incoherence could potentially improve the quality of the reconstruction.

We test this hypothesis by performing an incoherent sum on coherent re-
constructions within the actual wavelength range. We observe that the image
quality metrics are lower despite the visual improvements, see Fig. 3.39. How-
ever, the metrics must also be adjusted to reflect the incoherence of LEDs. The
technique described above is more an indication of potential improvements in
the imaging model than a fully developed algorithm.

(a) (b)

Figure 3.39: Illustration of the importance of taking into account the non-
coherence of light. The same sample as in Fig. 3.38 is shown. The size of
the raw image region used is 150 x 150 pixels, which corresponds to 0.54 mm
x 0.54 mm at the object plane. Top row - amplitude, bottom row - phase.
(a) Single reconstruction. (b) The images are calculated as an incoherent sum
over 25 coherent reconstructions in the wavelength range.

Although the problem of LEDs incoherence is rarely mentioned in the ma-
jority of the FPM literature, it is still addressed in several research papers.
Among the first works in this direction, Siyuan Dong et al. developed a
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method called coherent state decomposition [48]. While the reported appli-
cations are intended for color-multiplexed FPM imaging, the authors suggest
that a similar technique could also be used to solve the incoherence problem
for monochrome imaging. Their method is likewise based on the idea of an
incoherent summation. Each captured image is regarded as a sum of three
target images corresponding to red, blue and green wavelength. We could con-
sider our configuration as a sum of several acquisitions corresponding to close
wavelengths within the spectral band, as opposed to a sum of three distant
wavelengths. In such a case, the forward imaging model, Eq. (2.12), becomes:

Il(x, y) ≈
J∑
j=1
|FT −1

{
P (kx, ky)O(kx − kxl,j

, ky − kyl,j
)
}
|2, l = 1, ..., L,

(3.18)
where (kxl,j

, kyl,j
) – the spatial frequency corresponding to the illumination an-

gle of the l-th LED given the wavelengths λj ∈ [λmin, λmax] within its spectral
band. Considering the similarity of this method to the one described above
and the results obtained, we assume that the implementation of a coherent
state decomposition algorithm could considerably improve the quality of our
reconstructions. This is one of the subjects of our future research.

Another point of view involves changing the pupil function in the imaging
system equations 2.12. Indeed, in a classical FPM, the pupil function is a
coherent point spread function (with aberrations). This model can be modified
to reflect the partially incoherent nature of LEDs, like it is done in several works
[29, 144]. This point is not included in the current work, but it is likely to be
beneficial and should therefore be explored in future work.

3.7 Whole field of view reconstruction

3.7.1 Segment size choice
When the image segment is small, it can be approximated by a point receiving
light from a LED at a certain angle. However, when the segment is large, this
model is no longer valid. At the same time, reconstruction cannot be performed
when the number of pixels is insufficient (say 10x10 pixels). The lower limit is
therefore defined by the sampling required to meaningfully perform a discrete
Fourier transform operation on the captured intensity images. The upper
limit is set by the adequacy of the plane light wave approximation which is
also related to the coherence length of the LED. Another reason for using
small segments is the ability to recover space-dependent lens aberrations and
fine-tune local system parameters. Finally, memory requirements are reduced
when smaller segments are used and parallel processing can be applied.

We define the exact number experimentally by performing a reconstruction
for segments from 50x50 pixels to 300x300 pixels and choosing the best one for
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each data set. Nevertheless, a more rigorous procedure for choosing the size
of the segments must be proposed and justified in future work.

3.7.2 Segments stitching
Abrupt changes between regions can be easily observed when the reconstructed
segments are assembled together, Fig. 3.40 (a). This effect can be mitigated
by blending border parts of neighbouring segments. The most commonly used
method is alpha blending [190, 198]. Some authors suggest using up to 160
pixels of border overlap between regions (given the segment size of 360 x 360
pixels). However, more details are generally not given.

The method, as we use it, can be described as follows. The border overlap is
set to 10 pixels from each segment side. First, we stitch the segments together
horizontally and then combine the created lines to reconstruct the complete
FOV image. Phase and amplitude images are processed separately to avoid
leakage between the two. A linear mask is applied to allow 2 segments to
gradually fade into each other, Fig. 3.40 (b). Half of the overlap area is then
cut on each side.

(a) (b)

Figure 3.40: (a) Half of the overlapping portions of the boundary are cut on
each side in a binary manner. (b) The linear blending mask is applied.

The final result of the stitching could still appear non-homogeneous. In-
deed, one of the reasons is the different overall intensity level of the recon-
structed segments due to the iterative nature of the reconstruction algorithms.
An improved alpha blending method, combined with the image consistency
correction [8], could be applied to resolve this issue. In addition, trivial phase
ambiguities, such as constant phase shift, should also be addressed when as-
sembling the phase image.
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3.7.3 Phase unwrapping
When the optical phase difference is greater than 2π, phase jumps appear on
the reconstruction, Fig. 3.41. A phase unwrapping algorithm removes these
jumps and restores the physical continuity of the phase image as well as its real
quantitative value. We use Goldstein branch cut [61] algorithm when execution
time is limited. Otherwise, quality guided path following phase unwrapping
[60] provides more robust results. Both methods are available as open source
software [182].

(a) (b)

Figure 3.41: An example of a phase unwrapped by means of a guided path
following method. (a) Original phase. (b) Unwrapped image.

It should be noted that some phase jumps may be unrelated to physical
changes in optical thickness. Indeed, in areas where amplitudes are close to
zero, the recovered phase is not reliable and may appear random on the recon-
structed phase image [14].

3.8 More realistic simulations
As we have seen, the perfect imaging model described by the equations (2.12)
does not reflect all experimental realities. In order to correctly evaluate the
behaviour of different algorithms, these realities must be taken into account
when using simulated data sets. Similarly, the reconstruction pipeline should
also address experimental issues. Among the most prevalent sources of error
are: different types of camera noise, lens and wavefront aberrations, angu-
lar positions of the LEDs resulting partly from misalignments of the system
parameters, uneven distribution of illumination, fluctuations in illumination
brightness and lighting incoherence.

In practice, sample thickness is also a source of difficulties. Indeed, the
angular deviations of the different internal slices and the relationships between
these slices are not taken into account in the classical FPM. However, these
issues are addressed in the 3D version of the technique [78].
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3.8.1 Noise generation procedure
Based on the above device characterization, we propose the following procedure
to simulate images approximating the data captured with our configuration.

System misalignments are first modelled by disturbing the general parame-
ters (like NA and wavelength), then adding a local displacement to each angle.
We note Ãl, l = 1...L a component of a design matrix with misalignments.
The intermediate images are then generated as follows yl =

∣∣∣〈Ãl,O
∗
〉∣∣∣2 . Scaled

Poisson noise is then applied on the simulated images pl = 1
αl

Pois (αlyl). The
scale αl is defined by the slope of the regression line in the variance-to-mean
(σ2, E) scatter plot and differences in exposure times. This value depends
on the camera used. Gaussian noise nσl

is then added. Finally, the images
are scaled by random intensity fluctuation coefficients cl to represent uneven
lighting. This results in the simulated images I l, l = 1, ..., L referred to as the
set S3 in the previous chapter : I l = cl

(
1
αl
pl + nσl

)
.

We note, however, that this noise generation procedure has to be more
complete in case a new reconstruction algorithm is proposed. This way, the
light incoherence should be modelled using the Eq. (3.18). The deviations of
the light rays caused by the interactions of the internal slices of a not infinitely
thin sample must also be simulated.

3.8.2 Plausible simulated data sets
One of the complications of simulating a realistic data set is related to the
variety of samples that can be studied. Even among purely biological samples,
segments with very diverse characteristics can be found, Fig. 3.42. The biggest
difference for reconstruction algorithms is whether the sample is described as
phase only (transparent) or as amplitude (most of the information is contained
in its brightness variations and not in the phase). The latter difference can be
particularly important when designing a specific lighting model, as opposed to
a sequence of individual LED acquisitions used in the current work [97]. Fur-
ther, variations in intensity within a region can be strong or rather smooth.
The sample can be homogeneous or present a variety of structures. The thick-
ness of the sample also greatly influences the quality of the reconstruction.
In addition, syntetic samples and microscope targets have dissimilar spectral
properties to those of natural biological tissues. These differences are impor-
tant not only for reconstruction algorithms, but also for the methods used to
recover parameters and angles.

Figure 3.42: Examples of biological sample segments.
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3.9 Results and conclusion
The FPM technique promises easy installation and a simple imaging model.
One of the difficulties, however, resides in the precise characterization of all
the components of the constructed instrument. Moreover, while basic algo-
rithms work well on noise-free simulated data, the experimental realities of
our microscope required a few supplementary steps. For this reason, it is im-
portant to correctly calibrate the instrument, set up the acquisition phase,
pre-process the data, choose a suitable reconstruction procedure and combine
the reconstructed segments.

As for the reconstructed procedure, we chose the version of a PIE (Gerchberg-
Saxton) algorithm with adaptive step size strategy, defocusing modeling, aber-
ration recovery and intensity correction routine. The global system parameters
are optimized for a central segment. The correcting coefficient for segment cen-
tres has chosen to be equal to kc = pi/4, however it can be optimized for each
acquisition to allow a better accuracy.

Typical run time on a standard desktop PC is approximately 30 seconds
for segment reconstruction from 400 low-resolution 100x100 pixel images. We
recognise that the speed of the algorithms can be greatly improved, but this
was not the focus of the current work.

Figure 3.43 shows the comparison of the results of the basic PIE algorithm
without background subtraction with the proposed reconstruction procedure.
The same system parameters are used for both reconstructions, except that
no correction for the segment centres was used in the first case (kc = 1). The
sample in the example is a stained histological slide of mouse breast tissue.
The thickness is 6 µm. The Prosilica GE2040 is used. Exposure times ranges
from 230 ms to 10 seconds. Under sequential red light illumination (λ = 630
nm), a total of 400 images have been recorded this way. The estimated NA is
0.071. The segment size is set to 100 x 100 pixels plus 10 pixels on each side
of the segment to allow alpha blending stitching.

Additional reconstruction results can be found in the appendix. Examples
include biological tissues, the URSAF 1951 and star resolution targets. As
can be seen, some artifacts are still present on both amplitude and phase
images. We believe that the implementation of some of the features indicated
in this chapter will eliminate these imperfections and improve the quality of the
reconstruction. During our investigations involving simulations of misaligned
noisy images, we found that artifacts caused by different sources often look
similar. There is therefore no simple answer to the question of which correction
strategy would allow for a perfect reconstruction. However, both the literature
review and our experimental research indicates that special efforts need to be
made to overcome the effects of partial illumination coherence and to resolve
misalignments of individual angles.
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(a) (b) (c)

(d) (e) (f)

Figure 3.43: Results of the reconstruction. Top row - amplitude, bottom row
- phase. (a,d) A low-resolution bright field image. (b,e) Results obtained with
the basic PIE algorithm (no segment correcting coefficient kc). (c,f) Results
with the proposed reconstruction procedure. (e,f) The images of a region
of interest (zoomed images) are calculated as a sum over 25 reconstructions
within the wavelength range. The size of the raw image region used is 120 x
120 pixels, which corresponds to 0.43 mm x 0.43 mm at the object plane.



Chapter 4

Polarized light microscopy and
multi-modal imaging

As discussed in previous chapters, FPM can provide more complete infor-
mation than conventional bright-field microscopy [79]. The constructed mi-
croscope provides high-resolution bright-field imaging and quantitative phase
contrast.

In order to evaluate the quantitative imaging capabilities of the constructed
microscope, we are conducting a comparative study using an object of great
optical thickness. The imaging modality chosen for this confrontation is a holo-
graphic microscope. The analyzed sample is a soda lime microsphere immersed
in Canada balsam.

Furthering the idea of developing a multimodal imaging system, we ex-
plore the complementarity and eventual integration of ptychographic Fourier
microscopy with polarimetric microscopy. The main motivation for this re-
search is the ability of polarimetric microscopy to access additional physical
properties of samples that are not available in conventional optical microscopy
or FPM. Indeed, some materials, including some biological tissues, do not react
in the same way to light of different polarization states. These materials may
exhibit birefringence, dichroism or optical activity. This data can be an im-
portant piece of information, for example, for the analysis of biological tissues
and for medical diagnosis. In order to obtain the most complete description
of the response of a medium to polarized light, we must calculate the Mueller
matrix of this medium [131]. For this we use a Mueller microscope built by
members of the TRIO team.

This chapter first presents the quantitative phase imaging study conducted.
Then, the Mueller matrix microscope is presented, followed by a description
of the comparative study. Finally, improvements in FPM and its extensions
to other modalities are discussed.
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4.1 Quantitative phase imaging
As already mentioned, Fourier ptychography is able to recover quantitative
phase images 1. Retrieving quantitative phase information from a transparent
object is an essential and important issue for biological tissue imaging.

In the past decades, a number of quantitative phase imaging (QPI) tech-
niques have been introduced [151]. With the development of computational
imaging, QPI with simple optical setups can be achieved and still rapidly
expanding. Here, we aim to validate the QPI capability of our Fourier ptycho-
graphic microscope by comparing the resulting phase images with the images
obtained by a Lensless inline digital holographic microscope. Lensless inline
digital holographic microscopy (LI-DHM) is one of the widespread quantita-
tive phase imaging techniques. Both methods have been used in various fields,
particularly for imaging biological slides because of their simplicity in use,
stability in structure and also large field of view.

Small (several to tenth of microns in diameter) transparent microbeads
have frequently been used as standards for QPI calibration and validation pur-
poses. This is partly due to the fact that a spherical phase response (from HeLa
cells for example [109]) is commonly observed in biological imaging. However,
phase imaging of their large counterparts (beads of hundreds of microns in
diameter) using either LI-DHM or FPM has not been reported so far. We are
aiming to analyze the phase response of a 146 µm soda lime microsphere. It
has been immersed in Canada balsam so as to reduce phase difference and to
avoid overexposed diffraction rings. The estimation of the LI-DHM phase was
approached using a Gerchberg-Saxton (G-S) type algorithm and an inverse
problem-based procedure. Confronting the results confirms the QPI capabil-
ity for both imaging techniques to assess phase responses from such a large
transparent object.

4.1.1 Inline holography introduction
Inline holography was first introduced by D. Gabor in 1948 [57]. Due to the
twin image distortion, this technique was neglected for a long time. After 2000,
due to the improvement of computational imaging techniques along with the
development of digital cameras, retrieval of phase information and reduction
of the twin image effect have been made possible [43]. Recently, LI-DHMs
have become popular. With samples positioned as close as possible to the
camera, the demand for light coherency may be reduced. With magnification
nearly equals to 1, a high FOV that embraces the sensor can be obtained
[229]. Also, subpixel super resolution techniques have been applied to improve
performances [229]. Rigid and compact microscopes have been built with those

1Some sentences in this section are taken from our article "Lensless inline digital holog-
raphy versus Fourier ptychography: phase estimation of a large transparent bead" [110].
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on chip LI-DHMs [40]. They are cost effective and at the same time, maintain
performances comparable with conventional QPI microscopes [177].

Details of our LI-DHM experimental set-up as well as the imaging model
and reconstruction algorithms for the constructed device can be found in the
published article "Lensless inline digital holography versus Fourier ptychogra-
phy: phase estimation of a large transparent bead" [110]. The part of this
study concerning the construction of the holographic microscope and its phase
recovery was mainly carried out by Hongyu Li 2. Only a brief overview of the
LI-DHM, the results and the comparison with the FPM will be presented in
the current manuscript.

To the best of our knowledge, there seems to be no report on a quantitative
analysis of QPI capability of LI-DHM and FPM for relatively large transparent
objects (more than a hundred of microns). Due to the similarity of the optical
setups, it could be valuable to assess the performances of both techniques.

4.1.2 Transparent phase sample
For QPI validation purpose, several objects have been considered as standards:
red blood cells [17, 140], laser lines etched on glass [17], commercial phase
standards [183], and samples with known refractive index such as optical fibers
[89] or polystyrene microbeads [140] immersed in oil.

We chose to fabricate our own standard by isolating a single soda-lime (re-
fractive index nglass = 1.522 at 633 nm) microsphere on a slide, immersed in
Canada balsam for immobilization. The diameter provided by the manufac-
turer is 150 µm with a standard deviation-to-mean ratio of 10%. The exact
diameter of the sphere is then inferred from images captured with a phase-
contrast microscope as shown in Fig. 4.1(b). To set the focus plane at the
middle of the sample, we have analyzed the captured images at a vicinity of
the microsphere boundary and maximized the sharpness of the observed arc.
The estimated diameter is 146 µm. The refractive index of the Canada bal-
sam has been measured separately using a refractometer. Depending on the
experiments, variations ranging from 1.523 to 1.533 have been observed in the
red band. For that reason, we have chosen to compare phase responses re-
trieved by each of our instruments. The microsphere and Canada balsam have
close refractive index values. This reduces the phase difference so as to avoid
overexposed diffraction rings.

The sample’s response can be approximated by a complex transmittance for
incident waves that are almost plane. The phase distribution P (r) across the
sample may be obtained by evaluating the delay undertaken by each directly

2Hongyu LI is a PhD student of the TRIO team of ICube laboratory. He is currently
working on his thesis about digital holography and surface plasmonic resonance.
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(a) (b)

Figure 4.1: Images of microsphere from conventional microscope. Diameter of
the sphere is 146 µm. Image under (a) bright-field microscope and (b) phase-
contrast microscope.

transmitted ray and can be described by Eq. (4.1):P (r) = Pmax

√
1−

(
r

R

)2
, if r < R

P (r) = 0 , otherwise
(4.1)

with r =
√

(x2 + y2). R is the radius of the sphere, and Pmax identifies the
maximum phase shift that is produced by the difference of refractive indexes
between glass and optical glue.

4.1.3 Lensless inline digital holographic microscope
Image formation and experimental setup The schematic of the LI-DHM
built by the TRIO team members is shown in Fig. 4.2(a). The classic Gabor
configuration was chosen. The picture of the device can be found in Fig. 4.2(b)

The operating principle can be briefly described as follows. The interfer-
ence pattern is recorded on a hologram. It is modelled as a mixture of the
reference wave R(x, y) and the object wave O(x, y). In cases where phase
only (transparent) objects are considered, the object term may be neglected
compared with the reference wave. The last ones carry informations to be re-
trieved. In the LI-DHM configuration where a point-source is used, the waves
diffracted by the object are captured in O(x, y). The undiffracted light will
serve as the reference R(x, y). Because of the well-known twin effect, a phase
image cannot be recovered directly from an inline hologram. As with the FPM,
a reconstruction procedure is required.

The full description of the LI-DHM system parameters can be found in the
published article [110]. The resulting resolution 2δx = λ/(NA) and depth of
field 2δz = λ/NA2 are respectively equal to 2δx = 15.4 µm and 2δz = 377 µm.

Reconstruction Two well-established methods were employed for phase es-
timation. They are only briefly presented in this section, while details of both
are provided in the published article [110].
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Figure 4.2: Gabor LI-DHM built by members of the TRIO team (a) Schematic
diagram (b) Experimental setup.

The first one lies on the commonly used G-S type iterative phase retrieval
method [59]. The second one is based on an inverse problem approach [56].
The procedure involving G-S projection includes two steps. To start with, an
autofocusing algorithm is applied to get the right focusing position. Once the
focus has been estimated, the G-S algorithm is launched and coupled with the
so called positive absorption constraint [106]. The latter consists of imposing
the limit of 1 to all pixel values that surpass 1 in the two-dimensional (2-D)
transmittance that approximates the object. Since the size of the microsphere
is known, an object support may be introduced to accelerate the convergence
of the algorithm [85].

As for the second investigation, a parameter-based inverse problem algo-
rithm has been used since the regular geometrical shape of the microsphere
involves very few variables [56]. It is more robust than the general approach
that consists of reconstructing the transmittance distribution directly. It was
introduced by Soulez et al. [181] to track the traces of particles and to estimate
their size. With the object plane far enough from the camera, the sample may
be considered as a phase disk that follows Eq. (4.1). This model can therefore
be integrated into the cost function. The optimization is performed using a
sequential quadratic programming algorithm.

Phase retrieval results The distance between the object plane and the
sensor plane retrieved by the autofocusing method is 17.881 cm. After ensuring
such a reliability for the auto-focusing technique, the iterative phase retrieval
procedure has been launched. The reconstructed phase distribution is shown
in Fig. 4.3 (a). In Fig. 4.3 (b), the maximum phase shift Pmax is clearly
visible. It has been inferred to be about -10.10 rads. These outcomes reflect
the QPI performances of the LI-DHM. It is worth mentioning that because of
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the restricted support introduced in the object domain (18 pixels larger than
the object in radius), the algorithm converges with only 10 iterations.
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Figure 4.3: Reconstruction of G-S-based iterative phase retrieval algorithm:
(a) reconstructed phase distribution. (b) Curve with red circles is a scan
through the center of (a). Curve with blue squares is theoretical phase distri-
bution calculated according to Eq. (4.1), with magnified diameter of 816.1 µm
(measured diameter 146 µm times magnification factor of 5.59) and maximum
phase shift of -10.10 rads. (c) Root-mean-square error (RMSE) as a function
of iteration number. Convergence has been attained after 10 iterations.

The focus position and the maximum phase shift have then been used as an
initial guess for the optimization process of the inverse problem. The minimum
of the cost function has been found to be located at ~p = (17.878,−9.87). It
means that the microsphere is 17.878 cm away from the camera, and the
maximum phase shift it induces is -9.87 rads. Consistency with the result
from the SOG autofocusing technique combined with the G-S phase retrieval
method has been maintained.

As shown in Fig. 4.4, the cost function exhibits a minimum at -9.87 rads.
However, two other local minimums (-25.88 rads and -18.36 rads) have been
found as the maximum phase shift is scanned from -30 to -6, with the object
kept at 17.878 cm. For those values of Pmax, three holograms were simulated for
comparison purposes with the captured hologram. The comparison between
the simulated diffraction rings and those captured by the camera indicates
that the oscillations presented for Pmax = −9.87 are closer to the experimental
data. It signifies that such a phase shift would probably be the one sought
after.

4.1.4 FPM phase retrieval results and comparison
The FPM configuration used for the study in this section corresponds to the
final version of our microscope. Specifically, the camera used is PCO.edge, the
position of the specimen holder, as measured by a ruler, gives a length of 245
mm between the object and the LED array, the position of the optical axis is
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Figure 4.4: Normalized cost function obtained by scanning maximum phase
shift while keeping axial position at 17.878 cm.

manually adjusted. For ongoing investigations, 20 x 20 grayscale images are
captured using red illumination.

Fig. 4.5 shows phase retrieval results from FPM. The procedure has been
executed patch by patch of 280 x 280 pixels each. The object has been enlarged
by four times as compared to the original. With the measured magnification
of 2.034 for the optical system and the camera’s pixel pitch (PP) of 6.5 µm,
the PP of a raw image is 3.196 µm. Consequently, the reconstructed image has
a PP of 3.196/4 = 799 nm. Those dimensions are taken in the object plane.
The diameter of the phase disk is 148.6 µm and the maximum phase shift is
-8.3 rads (points with noncontinuous phase variation are neglected).

Phase curves obtained from the three methods (LI-DHM with G-S algo-
rithm, LI-DHM with inverse problem approach, and FPM with G-S algorithm)
are shown in Fig. 10. Good consistency between LI-DHM results may be ob-
served. The results from both LI-DHM and FPM exhibit variations that follow
Eq. (4.1) with diameter 148 µm (radius R = 74 µm). However, here, FPM
appears to underestimate the maximum phase shift by 2 rads. As the sample
is optically thick, this result could be produced by an irrelevant approximation
of a three-dimensional response by a 2-D function o(x, y). The phase extent
Pmax associated with o(x, y) may be estimated by integrating lightpaths within
the object. Based on the axial index profile reported by Horstmeyer et al. [78]
[Fig. 4(a) therein], a value lower than the maximum phase extent could be ob-
tained. The introduction of image formation model of Fourier ptychographic
tomography would permit to test such a hypothesis. Such a model is not im-
plemented as part of the current work, but will be discussed later in Section
4.4.

Conclusion In this study, optical phase response from a large transparent
object has been investigated with LI-DHM and compared to FPM. The sample
is a 146-µm glass microsphere. A G-S type phase retrieval algorithm with pos-
itive absorption constraint has been used. A parameter-based inverse problem
approach has also been applied to the same captured hologram. Reliability of
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Figure 4.5: Results from FPM. (a) Image captured as the center LED is
switched on. (b) Amplitude spectrum of (a). (c) AC (blue squares) and
CI (red circles) as functions of iteration number. Convergence is attained
when the former is minimized and the latter maximized. (d) Amplitude of
reconstructed complex image. (e) Amplitude spectrum of (d) (logarithmic
scale). (f) Reconstructed phase.

the G-S recovered phase distribution has been assessed through focusing (ob-
ject) position and maximum value of the phase shift induced by the sample.
Analysis of LI-DHM and FPM maps reveals that both instruments are capa-
ble of providing phase distributions that would be expected from a microbead,
confirming their QPI capability. FPM seems to provide smaller amplitudes as
for the phase extent.

We speculate that such a difference could be due to the approximation
of an optically thick sample by an infinitely thin 2D model. It is crucial to
introduce the 3D model of Fourier ptychography tomography in our FPM
project in order to test this hypothesis. This aspect should therefore be one
of the main focuses of the forthcoming research. Another possible source of
this difference is the misalignments of the individual LEDs, which confirms the
importance of implementing an angular misalignment correction procedure.
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Figure 4.6: Phase curves recovered by LI-DHM and FPM. Curve with red
circles is obtained by LI-DHM G-S algorithm. Curve with blue squares is
phase distribution simulated according to Eqs 4.1, with diameter estimated
from Fig. 4.1 and maximum phase shift provided by LI-DHM inverse problem
approach. Curve with green diamonds represents phase retrieved from FPM
G-S algorithm.

4.2 Polarized light microscopy
Like FPM, Mueller Matrix Microscopy (MMM) can also access some infor-
mation about the phase delays experienced by light as it passes through a
sample [131]. In this section, we focus on the complementarity between FPM
and MMM phase delays and highlight their differences3. The experimental
validation is focused on a histological slide of mouse mammary tissue.

4.2.1 Basics of polarization of light
As indicated in Chapter 1, light can be described by wave-like vibrations prop-
agating as coupled electric and magnetic fields [205]. These fields are per-
pendicular to each other. The polarization of light describes the preferential
distribution of the orientation of the oscillations of electromagnetic waves. By
convention, when we refer to polarization in current work, we refer to the
oscillations of the electric field.

Types of polarization Light from common sources such as the sun or an
incandescent lamp is a radiation composed of multiple waves with different
and random polarization states. These waves form unpolarized light, meaning

3Some sentences in this section are taken from our conference paper "Fourier ptycho-
graphic microscopy and Mueller matrix microscopy: differences and complementarity" [19].
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that the direction of the electric field fluctuates randomly over time. The LEDs
we use in our Fourier ptychographic microscope produce a partially coherent
unpolarized light.

There are three main types of polarization: linear, elliptical and circular
(which is a case of elliptical polarization). In linear polarization, the electric
field oscillates in a single direction, see Fig. 4.7. When the orientation of the
electric field rotates around the axis of propagation of the wave, it is called
circular or elliptical polarization.

Figure 4.7: Polarization types: linear, circular and elliptical. Reprinted from
[58].

Polarizers Polarized light can be obtained by passing unpolarized light
through a polarizer. This projects the waves of all polarization states into a
single polarization state. The orientation is defined by the axis of the polarizer.

There are several types of polarizers that fall into different categories. They
can be divided according to the type of polarization they produce: linear or
elliptical (mainly circular). Another possible category concerns the physical
phenomena through which they act: birefringence, dichroism or reflection. In
the context of this work, unless otherwise specified, when we mention polariz-
ers, we refer to a linear dichroic polarizer.

When unpolarized light passes through an ideal linear polarizer, its inten-
sity is halved. This is the consequence of Malus’s law which gives the relation
between the intensity of a linearly polarized light beam before and after its
passage through a polarizer:

I = I0 cos2 θ, (4.2)

where I is the initial intensity of the linearly polarized beam, I0 is its intensity
after passing through the polarizer whose axis is at the angle θ with respect
to the initial polarization direction.

Waveplates Polarization of elliptical or circular type can be obtained by
using a waveplate. A retarder, or a waveplate, is an element that forces one
orthogonal component of the electric field to be retarded relative to another.
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It is therefore characterized by two axes, slow and fast, and by the magnitude
of the delay produced. The latter quantity is called retardance.

An ideal waveplate does not attenuate or deflect the beam and only pro-
duces the delay. A quarter-wave plate causes a 90 deg phase shift between the
two components of the polarization state.

Anisotropic media Polarizers and waveplates could be used to reveal the
optical anisotropies exhibited in certain samples and other polarization prop-
erties. The polarimetric response of a sample can be described by three main
properties: birefringence, dichroism and depolarization.

Anisotropic media having different refractive indices as a function of the
polarization state are said to be birefringent. These media divide an incident
ray into two components that take different paths. They therefore change the
state of polarization, for example from circular or linear to elliptical. Among
the most common anisotropic materials are crystals and plastics under stress.
In the case of biological tissues, it is mainly ordered cell structures that exhibit
anisotropy [131]. These include different types of fibrous structures, actin and
myosin filaments, starch condensates, collagen and elastin.

The quantity called retardance quantifies the birefringence. It measures
the magnitude of the delay that the sample produces between the orthogonal
components of the electric field. A birefringent material therefore behaves like
a retarder, hence the name retardance.

A material is said to exhibit dichroism when it absorbs light unevenly
depending on the polarization state of the light. Dichroism or diattenuation is
therefore the ability of the medium to attenuate the intensity of light according
to its polarization state. We call linear dichroism the attenuation of linearly
polarized light.

Depolarization is the ability of the medium to depolarize the wave passing
through it. A polarizer, for example, exhibits dichroism but does not depolarize
the beam.

Mueller matrix The polarimetric properties of light and its interactions
with the medium can be described by means of the Stokes-Muller formalism.
The Stokes vector, or the Stokes parameters, is used to describe the polariza-
tion state of the light. It consists of 4 elements: ~S = (S0, S1, S2, S3). Those
parameters can be expressed as a function of the total intensity of the beam
(S0 = I), its degree of polarization and parameters related to the shape of
the polarization ellipse [184]. Thus, the light arriving at the sample can be
described by a Stocks vector ~Sin. The sample changes its state, the outgoing
light is designated by ~Sout: ~Sout = M~Sin, see Fig. 4.8.

As for the Mueller matrix M , it allows a complete characterization of the
polarimetric properties of the medium, in the absence of non-linear effects
[153]. It is a 4x4 real matrix. At least 16 intensity measurements are required
to determine a Mueller matrix at each point of a sample.
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~Sin ~SoutM

Figure 4.8: Stocks-Mueller formalism.

A Mueller matrix M can be further interpreted physically using a polar
decomposition proposed by Lu and Chipman as follows [118]: M = MδMRMD,
where Mδ is a diattenuator, MR is a retarder and MD is a depolarizer. In such
a context, a sample would be described by a combination of these matrices.
Retardance can be calculated from the retarder element of the Mueller matrix
MR [216]. Moreover, linear retardance and circular retardance can also be
deduced from MR.

4.2.2 Applications of polarization microscopy
Polarization microscopy has been used in many areas, including chemistry,
geology, materials science and, of course, biology and medicine [131]. First
Mueller matrix imaging techniques were developed in the 1990s. Its main
principle of operation is based on the interaction of polarized light with the
bonds of the ordered molecules in a direction-sensitive manner [131].

In the biomedical context, many different applications of polarimetric imag-
ing have been considered. For example, a reflection polarization microscope
is often used to detect abnormalities in hair structure to diagnose trichoth-
iodystrophy [207]. An low-cost polarized transmission microscope, based on a
cell phone, has recently been proposed to diagnose malaria [158]. It has also
been shown that 3D polarized light imaging is capable of performing structural
reconstructions of the entire human brain at the microscopic scale [7].

For the present study, we were particularly interested in the birefringence
of biological samples obtained with a Mueller matrix microscope. However,
other properties, for example the degree of depolarization, may also be useful
in biomedical imaging [208].

4.2.3 Mueller matrix microscope
MMM retrieve the polarization properties of a sample. It does this by a com-
plete measurement of the Mueller matrix. Thus, it has access to the changes
in polarimetric state that occur between the incidence of the light beam and
its appearance after the passage of the sample. The main operating principle
of the polarizing microscope is the interaction of the polarized light with the
bonds of ordered molecules in a direction sensitive manner [131].

We used a spectral Mueller matrix microscope built by members of the
TRIO team. It produces polarimetric images at several wavelengths. It
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should be noted that over the last few years, the TRIO team has worked
on three polarimetric imaging projects: Polaris, Dermapol and Mueller mi-
croscopy. Polaris is one of the first polarimetric imaging devices developed
by the TRIO team to analyze biological samples, especially cancerous tissues
[96]. The Dermapol project started in 2017 [208]. Broadly speaking, it is
a compacted and improved version of Polaris. It is designed to detect ma-
lignancy of suspicious dermatological lesions. The operating principle of the
built Mueller matrix microscope is close to that of the Polaris imager. The two
main differences are: the scale is microscopic rather than macroscopic; and the
illumination mode is transmission rather than reflection.

Presentation and components

The Mueller microscope used is depicted on Fig. 4.9. Its components and the
imaging principle can be summarized as follows (in the case of a single pair of
generated/analyzed polarization states for a single wavelength).

(a) Photograph (b) Scheme (see text)

Figure 4.9: Mueller Matrix Microscope.

A collimated source (1) emits an unpolarized white light. The beam passes
through a polarization state generator (PSG) consisting of a linear polarizer
(2) and two liquid crystal variable retarders (LCVR) (3,4). By applying the
appropriate amount of voltage to these 2 LCVRs, we are able to generate any
polarization state on the Poincaré sphere. An infinity corrected 10x Mitutoyo
objective (7) is then used to collect the response of the specimen. The light
then enters a polarization state analyzer (PSA). It consists, just like the PSG,
of two LCVRs (8,9) and a linear polarizer (10). A motorized optical filter
wheel (11) selects the appropriate band to study (500 nm, 550 nm, 600 nm,
650 nm, 700 nm). Finally, an achromatic 200 mm lens tube (12) focuses the
image onto the monochrome sCMOS camera pco.edge 4.2 (13).
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Given a well-chosen distribution of 4 PSA and 4 PSG states on the Poincaré
sphere4, 16 images are sufficient to extract the Mueller matrixM of the sample.
Those 16 measurements can be put in the form of a 4x4 matrix IN (at each
point of the sample). The following relationship is consequently established :

IN = AMW, (4.3)

where A is a matrix containing 4 incoming Stocks vectors, it describes the
states of the light generated by the PSG. The W matrix consists of 4 Stocks
vectors equivalent to the PSA states.

Reconstruction and calibration

Theoretically, to obtain the Mueller matrix M of the sample, one can perform
a simple inversion and multiplication of the matrices :

M = A−1INW
−1. (4.4)

However, two conditions must be satisfied in order to perform this operation.
First, the matrices A and W should be well conditioned. This requirement

is ensured by a careful selection of PSG and PSA configurations for each ac-
quisition. Indeed, the optimal conditioning is obtained when the 4 generated
states and the 4 analyzed states are both represented as the vertices of a tetra-
hedron on the Poincaré sphere. This essentially corresponds to the states of
polarization that are most different from each other. In order to obtain these
states, we mechanically fix the appropriate axes of the LCVRs (45◦ for ele-
ments 3 and 9 of the Fig. 4.9(b), and 22.5◦ for elements 4 and 8) and apply
the required amount of voltage for each acquisition. The procedure used for
the determination of voltages for our microscope is similar to that described
in Mark Karnokin’s thesis on the Polaris instrument [96].

Secondly, the A and W matrices must be known with a high degree of ac-
curacy. The characterization of the instrument must therefore be carried out.
A procedure called Eigenvalues Calibration Method (ECM) [38] is applied for
this purpose. To this end, 4 known calibration targets are used: the empty
space (no sample), a linear polariser with the axis oriented at 0◦, a polariser
at 90◦ and a waveplate with the axis at 30◦. The matrices A and W are deter-
mined from four measurements made on these reference samples. However, the
procedure is not straightforward because it is difficult to place the calibration
targets perfectly on the sample holder. Fortunately, ECM circumvents this
problem by determining not only the polarimetric parameters of the targets,
but also their orientations. Details of the algorithm can be found in Mark
Karnokin’s thesis. Note that in the case of Polaris, a mirror was used as the
first calibration target instead of empty space.

4The Poincaré sphere, is a graphical representation of the polarization of light, where
three Stokes parameters (S1, S2, S3) are plotted in a 3D unitary sphere surface.
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The Mueller matrix is then decomposed into dichroism, retardance and
depolarization featured by the studied medium.

4.3 Fourier Ptychographic and Mueller Ma-
trix Microscopes: comparison

This section focuses mainly on the investigation of the complementarity be-
tween the optical phase and the polarimetric retardance. These physical quan-
tities are retrieved by two constructed devices, namely the Fourier ptycho-
graphic microscope and the Mueller matrix microscope. The observations on
the histological slides are presented for experimental validation.

As already mentioned, QPI transforms the optical path differences under-
gone by electromagnetic waves exiting a medium into a reconstructed image
of these phase shifts in degrees. This quantity in turn describes the product
of the refractive index of the medium and its thickness. This can provide an
important piece of information for biomedical analysis [39].

Both QPI and polarimetric imaging techniques have many applications
in biomedical tissue analysis; combining the two could yield even richer in-
formation. The ability of our ptychographic Fourier microscope to retrieve
quantitative phase images has been successfully demonstrated in Section 4.1.

Although reports comparing and even combining QPI techniques with po-
larimetric methods can be found in the literature, to the best of our knowledge,
this work is the first to assess the complementarity of Fourier ptychographic
and Mueller matrix microscopes.

In the view of the expected complementarity between quantitative phase
and polarimetric information, a number of research efforts have been made
to explore the possibility of combining the two. Many of these have focused
on a determination of a Jones matrix, which is another polarimetric formal-
ism. Various multimodal devices, mainly relying on holographic microscopy
to achieve QPI capabilities, have been proposed [72, 101, 217, 224]. Other
relevant instruments include, for example, a device based on a shearing inter-
ferometer to measure phase images enriched with birefringence information [4]
or a quantitative polarization interference microscope [18].

There are also studies that combine polarimetric imaging with conventional
ptychography, a technique closely related [69] to FPM [6, 18, 52, 234]. However,
so far, no device has yet been proposed to couple Fourier ptychography with
Mueller matrix measurements. In addition, no investigation focuses on the
study of birefringent samples by FPM or the potential effects of anisotropy
on phase reconstruction. Therefore, it may be worthwhile to present evidence
of the complementarity of these two techniques in the context of histological
imaging.

We note that while retardance is the focus of the polarization aspect of
this study, other properties, such as the degree of depolarization, may also be
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useful in biomedical imaging [208]. It should also be noted that other research
fields could benefit from the fusion of QPI and polarimetry. For example,
one of the current projects in collaboration with the MaCEPV (Materials for
electronic and photovoltaic devices) team at the ICube laboratory aims to use
constructed microscopes to characterize photovoltaic elements.

4.3.1 Complementarity
In order to demonstrate the complementarity of the two techniques, we use a
stained histological slide of mouse breast tissue (6 µm thick). Despite staining
with H&E (hematoxylin and eosin), the sample reveals low contrast in visible
light. This is the same sample that we used in the previous chapter (Fig. 3.6).

The first configuration of the FPM device is used to produce the images
from the current section. In other words, the camera is the Prosilica GE2040
and the optical axis is not mechanically aligned. Under sequential red light
illumination, a total of 400 images have been recorded.

The result of the FPM procedure is shown in Fig. 4.10 (b, c). The top row
represents the entire FOV, the bottom row shows a selected region of interest
(the size of raw image (a) is 120 x 120 pixels). Patches of 100 x 100 pixels were
used for independent reconstructions which were then stitched together. The
initial pixel size in the sample plane is 3.6 µm. The reconstructed image is
four times larger than the raw images so as to include all recovered frequencies.
This gives a pixel size of 720 nm in the same plane. The size of the area under
observation is 7.4 mm x 7.4 mm.

Fig. 4.10 (d) shows the same area captured with a 40x phase contrast mi-
croscope. Both Fourier ptychography and phase contrast modalities produce
images with sharp edges; the layering and the thickness of the internal struc-
tures are made visible. However, the image obtained by the phase contrast
microscope is not quantitative.

Numerous polarimetric parameters can be computed from the Mueller ma-
trix of a specimen. However, we are only interested in phase retardation (bire-
fringence) for the present study.

Fig. 4.11 represents 4 different parameters recovered from the same sample
in the red band (λ = 630 nm for the FPM and λ = 650 nm for the MMM).
The intensity image recovered by the FPM (a) is what can be observed with a
monochromatic conventional microscope. The intensity (a) shows low contrast.
On the other hand, the structures within the purple and cyan ovals can be
easily distinguished from the surroundings for MMM (b, c) and FPM (d) phase
images. These structures correspond to collagen and produce equal amounts of
linear retardance (b). At the same time, some of these fibres, whose alignment
is different, are contrasted by opposite values on the circular retardance image
(c), see the purple oval and the cyan oval. The quantitative phase obtained
by FPM (d) highlights all the structures present in the specimen. This is
manifested by roughly equal values within all ovals.
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Raw x2 FPM x2 Phase contrast x40

(a) (b) (c) (d)

Figure 4.10: FPM reconstruction results. Top row – the entire FOV, bottom
row – region of interest of 0.43 mm in the object plane. (a) Raw intensity
image corresponding to the central LED. (b) Reconstructed high resolution
intensity image. (c) Reconstituted quantitative phase. (d) Image obtained by
a 40x phase contrast microscope.

We also note that the images in the Fig. 4.11 have almost equivalent
resolution. However, the FOV of the Fourier ptychographic microscope is
about 5 times higher than the FOV of the Mueller matrix microscope.

4.3.2 Discussion
We have demonstrated the complementarity of a Fourier ptychographic micro-
scope and a Mueller matrix microscope. A mouse breast tissue slide was used
for experimental validation.

We have observed that the FPM phase highlights thicknesses and shapes of
the structures. These are the rather geometric properties of the sample. The
polarimetric retardance represents the birefringence of the medium. It allows
to improve differentiation between different types of tissues. This in turn gives
greater access to the cellular composition of the sample. In addition, the
circular retardance can also reveal the alignment of tissue fibres.

Visual validation confirmed the contribution of information between the
two modalities. A quantitative assessment is planned for future work. In
addition, a more in-depth study involving a simpler birefringent sample with
perfectly identified properties would also be of great interest.

Our two instruments have been constructed with almost the same spatial
resolution. This allows for a meaningful comparative analysis. It has yet to be
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(a) (b) (c) (d)

Figure 4.11: Mouse mammary tissue studied with different modalities. (a)
Intensity, λ = 630 nm; (b) Linear retardance, λ = 650 nm; (c) Circular
retardance, λ = 650 nm; (d) Quantitative phase, λ = 630 nm. Scales are
in degrees.

demonstrated whether an enrichment of information would still be observed
with higher magnification. Furthermore, although the current discussion has
focused on a single wavelength, multispectral analysis is feasible with both
instruments. The extent of complementarity would be investigated for a wider
range of wavelengths.
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4.4 Extensions and improvements
Recent advances in FPM have shown the potential not only to improve the
quality of reconstruction, but also to extend the classical configuration to other
imaging modalities. Due to the limited duration of the current PhD thesis,
it was not possible to study all possible improvements. Nevertheless, we dis-
cuss here the most promising ones and indicate those that are prioritized for
implementation given our configuration.

4.4.1 3D Fourier Ptychography
As indicated in our QPI study with a microsphere, it is important to consider
the thickness of the sample in order to obtain a reliable reconstruction. Fortu-
nately, the collected data already contains 3D information about the sample
[199]. This information is encoded in the redundancy of the overlapping spec-
tra and can be used to perform 3D Fourier ptychographic tomography.

Several different models and methods have been proposed in the literature
to achieve 3D reconstruction. On of the first work in this direction proposed
to divide the sample into two slices, which constituted the proof of concept
for future work on 3D FPM [113]. As an extension of this idea, a so-called
"multi-slice" approach has been proposed [199, 235]. The development of this
method came as no surprise, since it is a well-known technique in conventional
ptychography [122], the real-space counterpart of the FPM. The main idea is
to represent a thick sample as a stack of multiple infinitely thin samples with
an empty space between them. The imaging model is then modified to take
into account the interaction of light propagation through these slices. The
reconstruction algorithm is also modified accordingly.

Another method, called "Fourier ptychographic tomography" uses a 3D
model based on the first Born approximation for mainly transparent samples.
Unlike a multi-slice approach, such a model also takes into account backscat-
tered light and does not directly specify the number of slices [78]. Recently,
Chao Zuo et al. demonstrated an even more sophisticated technique called
"Fourier ptychographic diffraction tomography" [253]. Among other features,
their imaging model uses a more accurate Rytov approximation.

It is also possible to perform a 3D reconstruction in FPM by modifying
the original configuration. The aperture scanning FPM [137] or coupling with
light field microscopy [107, 112, 194] can be cited as an example. As part of
our project, we suggest that a multi-slice model be implemented first because
of its simplicity.

4.4.2 Other modalities
It has been successfully demonstrated that a large number of other imaging
modalities can be coupled to FPM. Perhaps the easiest extension to implement
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would be the dark field microscopy [200].
As already mentioned, multi-channel colour imaging can also be achieved

[91]. In its simplest from, red, green and blue channel can be captured and
reconstructed separately, Fig. 4.12. However, information from all three chan-
nels can also be captured at the same time and broken down during the re-
construction process [48, 185]. A color correction strategy could improve the
quality of the separation [91, 215].

(a) (b) (c) (d)

Figure 4.12: Reconstruction of a region of a mouse breast tissue sample. The
same sample is presented in the results of the previous chapter. (a) Red chan-
nel. (b) Green channel. (c) Blue channel. (d) Assembled colour image, the
weights of the channels are normalized.

The FPM device can be designed to operate in reflective mode (Epi-Illuminated
Fourier Ptychography) instead of conventional transmission [144, 145].

It has been shown that FPM can also work with wavelengths of the spec-
trum outside of visible light. For example, telecommunication wavelengths [3],
near-infrared [170] and X-rays [176, 209] imaging have been successfully tested.

Fluorescence imaging, an important modality of biomedical research, can
also be incorporated into Fourier ptychography [35, 47]. Fluorescence being an
incoherent imaging technique, the original method must therefore be modified
accordingly. This is usually done by introducing non-uniform lighting patterns
or by coupling with structured illumination microscopy [46, 69].

The principles of Fourier ptychography can also be applied to macroscopic
imaging of objects up to 200 meters away [76, 223].

While our research has focused on a small NA objective, FPM can also
work with high numerical aperture lenses [141], oil-immersion [190], or no lens
at all [254].

4.4.3 Better illumination design
A rectangular LED array is far from being an optimum lighting configura-
tion. Indeed, it is prone to the problem of raster grid artifacts [243] (not
exposed in this thesis). More importantly, it does not take into account the
non-uniformity of illumination from different angles, outlined in Section 3.2.1.
Several lighting configurations have been proposed in the literature to cir-
cumvent these problems. Most of them share similar hemisphere geometry
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[5, 28, 147, 155, 156, 157]. We have built our own lighting unit that we plan
to use for our future work, Fig. 4.13. Among its features, the individual LEDs
all point to the center of a sample and the brightness of elements is much
higher. In addition, it may be advantageous to use denser sampling for bright
field LEDs than for dark field LEDs [68]. This is due to the fact that typical
histological samples have most of the signal strength in the low frequencies.
According to some reports, a new design of the illuminator can significantly
reduce the artifacts encountered.

Figure 4.13: A dome-shaped LED array designed by TRIO team members.

4.4.4 Reducing acquisition time
One of the main drawbacks of our FPM device is a long acquisition and process-
ing time. Fortunately, it has been shown that a ptychographic microscope can
be configured to allow high-speed, and even real-time imaging [197, 198, 250].

One of the main adjustments proposed to allow for this acceleration con-
cerns illumination changes [198]. Specifically, several LEDs must be lit si-
multaneously, so that each captured image contains several regions in Fourier
space. This approach is referred to as multiplexed illumination [196]. A num-
ber of researches have focused on the search for optimal illumination patterns
and corresponding reconstruction methods [31, 97, 188, 189, 202]. Likewise,
multicolor LEDs could be lit simultaneously to enable a so-called wavelength
multiplexing scheme [185, 250].

In addition, it has been shown that the number of acquisitions can be
reduced with almost no loss of quality by selective lighting [146] and/or by
changing the sampling configuration of the LED array [243]. In fact, only
LEDs corresponding to the most informative parts of the spectrum could be
used in this case [13, 24, 133, 238, 248].

In any case, it is important to increase the brightness of LEDs and ensure
that the camera has a high dynamic range to achieve high-speed imaging.

Another way is to modify more radically the classical configuration, for
example by introducing a lens array [108], a multi-aperture paradigm [103] or
a diffractive beam splitting [73].
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4.4.5 Other improvements
As mentioned in Section 3.2.3, the Nyquist criterion is violated for blue LEDs
due to our system configurations. In addition, the analysis of the spectra of the
images captured in red and green light also showed a slight aliasing problem,
despite theoretical predictions. This problem can be solved by a so-called
"upsampled" strategy [187]. The implementation of this approach is supposed
to improve the reconstruction quality of our instrument, especially for blue
light.

Several reports have shown the increase in reconstruction quality due to the
application of high dynamic range (HDR) imaging [13, 243, 244]. In general,
the signal-to-noise ratio can be improved by applying HDR techniques. This is
particularly pronounced in the case of FPM datasets, where the captured im-
ages have a remarkably different dynamic range. As can be seen in Fig. 3.6(c),
images featuring a transition zone are not captured in optimal conditions: to
avoid overexposing the bright field region, the dark field region must be un-
derexposed. Combining images captured with three different exposure times
would solve this problem.

The FPM can be used to image unstained living cells. Since several inde-
pendent images are captured sequentially, motion correction may be necessary.
The compensation procedures have been proposed in the literature and can be
implemented with our configuration, if necessary [15, 119].

4.5 Conclusion
In conclusion, we have demonstrated a potential for multi-modal imaging with
our constructed Fourier Ptychographic microscope.

In particular, we conducted a study confirming the QPI capabilities of the
device, in addition to the super resolution capabilities demonstrated in the
previous chapter. At the same time, thanks to the comparison with digital
holographic microscopy, we highlighted the need to implement a 3D version
of the imaging model. The reconstruction algorithms must be modified ac-
cordingly. Given the amount of overlap provided by our configuration and
the literature review, no hardware modifications are required to obtain 3D
capabilities with our microscope.

Pursuing the idea of multimodal imaging, we used a Mueller matrix micro-
scope built in the team. We conducted a comparative study of the constructed
Fourier ptychographic microscope with the polarimetric microscope. The re-
sults show the complementarity of the two techniques. Experimental validation
is done on biological tissues. The motivation to merge the two modalities be-
ing confirmed, this will be one of the next steps in our research. Preliminary
studies have been carried out to equip the built FPM device with Stocks po-
larimetric imaging capabilities. This investigation is briefly presented in the
next chapter when the perspectives of the current thesis are discussed. It
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constitutes the basis for a major future work of the TRIO team.
Finally, we presented additional possible extensions and improvements of

the constructed Fourier ptychographic microscope. Among the first upgrades
to be integrated, there should be a transition to a dome-shaped LED array
manufactured by TRIO team members. The 3D model and the "upsampled"
strategy are of equal importance. This complements the aspects already indi-
cated in the previous chapter and provides guidance for future work.
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Chapter 5

Conclusion and Future Work

5.1 General Conclusion

5.1.1 Overview
During this thesis work, we focused on the development of a microscope system
offering a large amount of relevant information retrieved at an affordable cost.
In particular, we built our version of the Fourier ptychographic microscope, a
recent computational imaging technique. We then used another optical modal-
ity, the Mueller matrix microscope, in order to highlight the complementary
nature of the information obtained by two devices.

This work is the first in the field of computational microscopy carried out in
the research groups that hosted me. On the one hand, the IMAGeS team has
expertise in inverse problems and image processing, and on the other hand, the
TRIO team is skilled in the construction of optical devices and polarimetric
imaging. This thesis, being at the intersection of the two fields, opens a new
research topic for both teams.

The implementation of the Fourier ptychographic microscope required not
only the construction of the instrument from scratch, but also the implemen-
tation of the methodological workflow for its calibration, data pre-processing
and reconstruction. The Mueller polarimetric matrix microscope, on the other
hand, is an almost straightforward extension of the Polaris macroscopic imag-
ing system to the microscopic one. While the author was involved in all stages
of the development of the FPM device, the construction of the second micro-
scope was mainly carried out by other members of the TRIO team. As a result,
this document places more emphasis on the first system.

A fully functional system has been developed and its capabilities have been
demonstrated. Its complementarity with a Mueller matrix microscope was re-
vealed, which validates the interest of their prospective fusion. In addition,
although it has not been possible to carry out all the improvements and re-
search we would have liked, we provide clear guidelines for future work. Some
of this work has already begun within the teams.

157
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5.1.2 Contributions
The contributions of this thesis concern both the experimental developments
related to the deployment of the devices and the developments of different
parts of the data processing chain.

The Chapter 1 served as the theoretical basis for this project. Since the
author had no background in optics, the completion of the first chapter was
important for her understanding of the principles and limitations of light mi-
croscopy.

The main operational principle of the FPM technique is then outlined and
detailed in Chapter 2. One of the main premises of the method is to solve
a so-called "phase problem". In order to obtain a deeper and more intuitive
understanding of the topic, a 1d variant of this problem was introduced and
analyzed. The imaging model of the FPM is then explained in detail. The same
chapter continues by examining the numerical aspects of the problem and the
methods for solving it. Thus, popular reconstruction procedures were broken
down into different building blocks that could be combined with each other.
Many of these elements were implemented and tested. This made it possible
to compare the algorithms and to justify an optimal one for the constructed
microscope. Specifically, the PIE method (alternating projections) with an
adaptive step size strategy was retained.

Chapter 3 describes all the steps performed for the realization of our Fourier
ptychographic microscope. We first presented the hardware specifications, the
instrument design and its experimental implementation. An important part of
this chapter is devoted to various procedures for characterizing and calibrating
the instrument. Indeed, in the course of this work, we were able to appreciate
how crucial the calibration step is for the proper functioning of computational
imaging techniques. Among the procedures proposed are the calibration of the
optical axes, the characterization of the LED matrix, the determination of the
numerical aperture and the introduction of a correction coefficient for the cal-
culation of segments centers. We also conducted a study on the noise statistics
of the available cameras. The results of this survey confirmed the chosen op-
timization procedure, provided the correct information for methods validation
and supported the choice of the optimal camera. Subsequently, several meth-
ods to address the experimental realities of our microscope were proposed and
validated on real data. As part of these developments, we have implemented
data pre-processing methods, an essential step in obtaining clean reconstructed
images. Then, aberration correction, a well-documented procedure in FPM,
was introduced into the algorithms and the importance of defocus correction
for our device was emphasized. We then discussed procedures for correcting
angular misalignment, a major source of errors in our configuration. We pro-
posed to evaluate the LEDs angles by carefully estimating the global system
parameters. However, as we realized later, a correction of individual angles
may also be necessary. Work on a suitable method to solve this problem has
started in the team. We have also adopted a method to compensate for the
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difference in brightness of individual LEDs. Then, we demonstrated the im-
portance of taking into account the partial coherence of our illumination unit.
Afterwards, we provided the methods we have adapted for the final stages
of reconstruction, i.e. phase unwrapping and segments stitching techniques.
Finally, we completed this chapter by transforming the identified errors into
realistic data simulation procedures. This last step is important for the correct
validation of the procedures developed for our instrument.

Chapter 4 presents the second device involved, the polarimetric Mueller
matrix microscope. It also explains the optical modalities implemented by
the devices built during this thesis and presents comparative studies. Indeed,
while Chapter 3 demonstrated the super-resolution capability of the Fourier
ptychographic microscope, the last chapter evaluates its quantitative imaging
modality. For this purpose, we have studied a sample of great optical thick-
ness, which we have manufactured ourselves. Importantly, we compared the
results obtained with another optical modality, namely lensless inline digital
holographic microscopy. This research led to a publication in a peer-reviewed
journal. It also revealed the importance of extending a conventional 2D imag-
ing model to its 3D version. Although this extension was not foreseen at the
beginning of this thesis, we speculate that it could be an important step to-
wards obtaining correct quantitative phase values. Finally, the Mueller matrix
microscope was installed and its operating principle explained. We then ex-
perimentally validated the complementarity of the information extracted by
FPM and MMM. From an application point of view, we made sure to show
the relevance of this research on biological samples. This part of the work
was the subject of an international communication with a published act. In
addition, improvements to the FPM and its extension to other modalities are
discussed.

Overall, we find that a wide range of aspects have been covered, particularly
in the case of FPM. This brought a new research topic to the teams and set
directions for future work on the project.

5.1.3 Authors contributions
Several people have contributed to the current work.

Jean Dillinger helped me enormously all along this thesis with the exper-
imental part of it. He designed the scheme of the mechanical elements of
the Fourier ptychographic microscope. He also programmed its LabView im-
age acquisition programme. In addition, he was the main contributor to the
construction and calibration of the Mueller matrix microscope.

Mark Torzanski was the one who led the manufacturing process for the
extension tubes, he also helped me with the irradiance measurements of the
LED array. Cemal Draman programmed the LED array and fabricated the
dome of LEDs.

Yoshitate Takakura and Hongyu Li led the Lensless digital online holo-
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graphic microscope part of this study. Yoshitate Takakura provided additional
mechanical elements to reinforce the first version of the FPM device. He also
contributed to the mechanical alignment procedure of its optical axis. In addi-
tion, he helped me with valuable discussions on the experimental results. He is
also working on the spectral analysis procedure for angle estimation mentioned
in this study (Fig. 3.37).

Both Jihad Zallat and Christian Heirich, as my scientific advisor, have
greatly participated in this study. Their contributions on the general direction
of this project were particularly valuable.

5.2 Future Work
This work opens up possibilities for future research at different levels. These
include prospects related to the improvement of the FPM device, the develop-
ment of a new measurement system that would combine Fourier ptychography
and polarimetric imaging, as well as opportunities in terms of applications.

Improvements to the FPM device Although our Fourier ptychographic
instrument is functional, some artifacts still remain. Getting rid of them should
be one of the first short-term objectives of the current project. As indicated
throughout this document, there are many procedures that could be imple-
mented to potentially improve the quality of reconstruction. This concerns
both hardware and software. Here we summarise the most promising ones
according to our assessment.

First of all, the development of the method for estimating individual an-
gles must be continued and applied to the reconstruction. Next, we propose
to implement the 3D version of FPM. This is useful not only for the volumet-
ric reconstruction per se, but also to diminish the 2D reconstruction artifacts
by correcting multiple scattering effects. We also expect that addressing the
effects of partial illumination coherence could produce cleaner results. The de-
velopment of such a technique and the provision of evidence of its effectiveness
would be a valuable research outcome.

As far as hardware improvements are concerned, a new version of the mi-
croscope should incorporate the manufactured dome of LEDs. Note that this
also includes the development of a routine for at least a rough estimate of the
positions of the new LEDs.

In less urgent terms, the reconstruction algorithms can be further improved
and completed. Some of the promising avenues are described in Chapter 2.
For example, adding a regularisation to the optimization procedure or imple-
menting a sequential version of the global algorithms could be worthwhile. In
addition, even if methods based on convex relaxation are not practical because
of their run time, it is still desirable to implement one for comparison purposes.
Also, as we have shown, the removal of offset background noise is an impor-
tant step. However, some details of our procedure could still be improved. It
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might also be interesting to implement a method of noise suppression during
reconstruction in order to compare the resulting offsets. In addition to the
points indicated above, it would be interesting, from a research point of view,
to examine the issue of calculating segment centres. Indeed, we had to in-
troduce a correction coefficient because of the artifacts observed for segments
far from the pixel on the optical axis. At the same time, our method lacks a
solid theoretical basis. Revealing the exact nature of this phenomenon could
provide valuable publication material.

Fourier ptychographic and polarimetric imaging system We presented
evidence of the complementarity of Fourier ptychographic microscopy with po-
larimetric microscopy. The next major milestone is the investigation of the
possibility of coupling these optical modalities into a single device. Biblio-
graphical research has shown that this has never been done.

Such an imaging system deserves in-depth theoretical and experimental
research before it can be proposed, even as a prototype. Nevertheless, we
present here our first drafts for future work in this direction. We propose to
use Stokes imagery to give polarimetric capabilities to our FPM device. As its
name suggests, Stokes imaging is capable of recovering a Stokes vector of the
light beam exiting the sample. As in the case of Mueller matrix determination,
the Stokes vector is recovered from a set of intensity measurements.

Stokes imaging requires the insertion of a polarization state analyser (PSA)
between the sample and the observation head. Fortunately, the long working
distance of the 2x objective chosen for our FPM instrument allows such an
insertion, see Figure 5.1. Unlike the compound PSA used in our Mueller ma-
trix microscope, this prototype uses a simple thin waveplate with controllable
orientation of the axis. The light arriving at the sample must be linearly po-
larised, so a polariser has to be fixed underneath the sample holder platform.
The diagram of this configuration is shown in the Figure 5.1(a).

We suggest that the analysis focuses on the same microsphere sample as
presented for our QPI study. Indeed, this allows the results to be compared
with theoretical calculations of the microsphere response in polarisation. In-
cidentally, the cleanest possible reconstruction is particularly important for
this fusion research. Indeed, this study should ensure that the polarimetric re-
sponse is unambiguously identified from any possible reconstruction artifacts.

Other perspectives and applications Other instrumental perspectives
for this study include the use of higher magnification objectives for both FPM
and MMM devices. Consideration should also be given to moving towards a
more practical FPM for actual clinical or industrial use. Indeed, as discussed
in Chapter 4, both acquisition and reconstruction time can be considerably
reduced. The LED multiplexing should be the first strategy to be applied in
this respect. As a related project, the FPM can also be used to improve the
resolution of another optical modality available in the TRIO team, light field
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(a) (b)

Figure 5.1: TA preliminary prototype proposed for the fusion of FPM and
polarimetric imaging. (a) The imaging diagram. (b) The photo.

microscopy.
Finally, a whole range of applications, from biomedical imaging to mate-

rials science, remains to be explored. These may include, for example, tissue
identification and labeling and the analysis of reconstructed scenes.



Appendix A

Additional FPM reconstruction
results

In the following we include some of the reconstruction results obtained with
our FPM device. The samples are :

• Unstained human kidney tissue. Fig. A.1 demonstrates the ability of the
microscope to retrieve information from unstained biological samples.

• Stained human kidney tissue. Fig. A.2 demonstrates the ability of the
microscope to obtain super-resolution for biological samples where the
information is concentrated in the amplitude part, rather than in the
phase part.

• Minor staining of mouse kidney tissue. Fig. A.3 demonstrates the con-
tribution of phase information in some samples despite the presence of
dye.

• Laser grating. Fig. A.4 confirms the accuracy of the complex image
reconstructed by correctly identifying the word "NanOptron" decoded in
the Fourier transform of the sample.

• 1951 USAF resolution test chart. Fig. A.5 features a reconstruction of a
standard microscope resolution test target.

• Sector Star Target. Fig. A.6 features another common resolution test
target.
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(a) (b) (c)

(d) (e) (f)

Figure A.1: Human kidney tissue, unstained. Illumination with green light,
20x20 LEDs used. The size of the raw segment is 1020 x 1020 pixels, which
corresponds to 3.7 mm x 3.7 mm at the object plane. The magnified region is
80 x 80 pixels, the corresponding reconstructed region is 400 x 400 pixels. (a,d)
The amplitude of a low-resolution bright field segment. (b,e) The reconstructed
amplitude. (c,f) The reconstructed phase. (d-f) Zoom on the area indicated
by the red square in image (a).
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(a) (b) (c)

(d) (e) (f)

Figure A.2: Human kidney tissue, pink coloring. Illumination with red light,
16x16 LEDs used. The acquisition is performed with the focusing distance
adjusted to blue light, which resulted in a high defocusing coefficient value
z = −116. The size of the raw segment is 1020 x 1020 pixels, which corresponds
to 3.7 mm x 3.7 mm at the object plane. The magnified region is 80 x 80 pixels,
the corresponding reconstructed region is 280 x 280 pixels. (a,d) The amplitude
of a low-resolution bright field segment. (b,e) The reconstructed amplitude.
(c,f) The reconstructed phase. (d-f) Zoom on the area indicated by the red
square in image (a).
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(a) (b) (c)

(d) (e) (f)

Figure A.3: Mouse kidney tissue, 6 µm light yellow coloring. Illumination
with green light, 20x20 LEDs used. The size of the raw segment is 1020 x
1020 pixels, which corresponds to 3.7 mm x 3.7 mm at the object plane. The
magnified region is 80 x 80 pixels, the corresponding reconstructed region is
400 x 400 pixels. (a,d) The amplitude of a low-resolution bright field segment.
(b,e) The reconstructed amplitude. (c,f) The reconstructed phase. (d-f) Zoom
on the area indicated by the red square in image (a).



167

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure A.4: Laser grating featuring the word "NanOptron" in its diffraction
pattern. Illumination with green light. The size of the raw segment is 790 x
790 pixels, which corresponds to 2.5 mm x 2.5 mm at the object plane. The
magnified region is 60 x 60 pixels, the corresponding reconstructed region is
300 x 300 pixels. (a,d) The amplitude of a low-resolution bright field segment.
(b,e) The reconstructed amplitude. (c,f) The reconstructed phase. (d-f) Zoom
on the area indicated by the red square in image (a). (g) Fourier transform of
the reconstructed object. (e) Zoom on the central part of the Fourier transform
(the image is rotated and flipped). This particular reconstruction is obtained
with the quasi-Newtonian algorithm proposed by Laura Waller’s team.
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(a) (b)

(c) (d)

(e)

Figure A.5: 1951 USAF resolution test chart. Illumination with red light,
16x16 LEDs used. The size of the raw segment is 360 x 360 pixels, which
corresponds to 1.15 mm x 1.15 mm at the object plane. The magnified region
is 80 x 80 pixels, the corresponding reconstructed region is 280 x 280 pixels.
The reconstruction was performed without the intensity correction routine
because it produced artifacts. On the other hand, the spectrum of this sample
is very different from that of a typical biological tissue. (a,c) The amplitude
of a low-resolution bright field segment. (b,d) The reconstructed amplitude.
(c,d) Zoom on the area indicated by the red square in the image (a). (e)
Profile traced across the orange line in the image (c). All selected elements
of the reconstructed image have the same contrast, while the contrast of the
captured image decreases as smaller line pairs are processed.
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(a) (b)

(c) (d)

Figure A.6: Sector star target. Illumination with red light, 16x16 LEDs used.
The size of the raw segment is 540 x 540 pixels, which corresponds to 1.7 mm
x 1.7 mm at the object plane. The magnified region is 80 x 80 pixels, the
corresponding reconstructed region is 280 x 280 pixels. (a,c) The amplitude
of a low-resolution bright field segment. (b,d) The reconstructed amplitude.
(c,d) Zoom on the area indicated by the red square in the image (a).
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Résumé étendu

Introduction et objectifs
Un principe fondamental de la microscopie optique est la mesure des inter-
actions entre la lumière et un échantillon d’intérêt. Cependant, certaines in-
formations sur ces interactions ne sont pas accessibles en raison des limites
imposées à la fois par les lois de la physique et par les capacités actuelles des
instruments. Un système de microscopie offrant un bon compromis entre le
coût de fabrication et la quantité d’informations recueillies serait d’un grand
intérêt. Le but de cette thèse est de proposer un tel instrument de mesure
et de développer des méthodes de traitement de données correspondantes. Le
domaine d’application choisi est la biologie et la médecine, afin d’améliorer
l’analyse des tissus biologiques.

Pour atteindre ce but, le premier objectif est de réaliser un microscope à
haute résolution et de développer des méthodes de reconstitution de scènes
d’intérêt. Dans le cadre de cette thèse, nous avons choisi la Microscopie Pty-
chographique de Fourier (MPF) pour obtenir une image ayant à la fois un large
champ de vue et une haute résolution spatiale. Cette technique appartient à
un groupe de méthodes de l’imagerie numérique et, comme son nom l’indique,
repose essentiellement sur le traitement numérique. Le deuxième objectif est
de confronter le microscope construit avec une autre modalité d’imagerie, la
microscopie polarimétrique de Mueller. Cette étape vise à donner une vi-
sion complète de l’interaction de la lumière avec l’échantillon en complétant
les informations de phase et d’intensité (issues de la Ptychographie) avec les
informations de polarisation.

Contexte
Ce travail de recherche a été réalisé au sein du Laboratoire des sciences de
l’ingénieur, de l’informatique et de l’imagerie ICube (UMR 7357). Le projet
s’inscrit dans le cadre d’une collaboration entre deux équipes - IMAGeS et
TRIO. Ce travail est le premier dans le domaine de la microscopie numérique
pour les deux équipes. Les contributions de cette thèse concernent à la fois les
développements expérimentaux liés à la mise en œuvre des dispositifs et les
développements des différentes parties de la chaîne de traitement des données.
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Nous nous sommes particulièrement concentrés sur la réalisation du microscope
ptychographique de Fourier et sur les méthodes de traitement correspondantes.
En deuxième lieu, nous avons utilisé un microscope de Mueller pour accéder
aux propriétés polarimétriques des échantillons. Nous nous sommes notam-
ment intéressés à la complémentarité des informations extraites par ces deux
modalités optiques construites.

Organisation du mémoire
La thèse contient 5 chapitres.

La première partie de la thèse a pour objectif de poser les bases et les
limites de la microscopie optique afin de mettre en évidence la contribution de
la ptychographie de Fourier. Dans le deuxième chapitre, nous expliquons en
détail le fonctionnement de la MPF et son modèle physique. Nous poursuivons
en examinant les aspects numériques du problème et les différentes méthodes
de reconstruction. Le troisième chapitre présente le dispositif expérimental
qui met en œuvre la MPF. Nous proposons ensuite des méthodes pour sa
caractérisation et son étalonnage. Le quatrième chapitre présente une étude
portant sur l’imagerie en phase quantitative. Ensuite, le microscope à matrice
de Mueller est présenté, suivi d’une description de l’étude comparative. Enfin,
nous tirons des conclusions et présentons les perspectives du travail accompli.

Chapitre 1 – Microscopie optique
Les principes de fonctionnement et les composants d’un microscope optique
sont d’abord résumés, après une introduction aux méthodes d’imagerie op-
tique et aux propriétés de la lumière. Cette discussion conduit à présenter les
méthodes capables de dépasser les limites de l’imagerie conventionnelle.

L’optique est une branche de la physique qui étudie la lumière et ses in-
teractions avec la matière. Dans le cadre de ce travail, nous nous concen-
trons principalement sur l’optique géométrique et l’optique d’onde. Parmi
les attributs fondamentaux de la lumière auxquels nous nous référons dans
ce travail figurent la direction de la propagation, l’amplitude, la phase, la
fréquence et la polarisation. La lumière peut interagir avec la matière de dif-
férentes manières. Nous nous appuierons principalement sur la réfraction, la
transmission, la réflexion, l’absorbance et la diffraction pour décrire le fonc-
tionnement des systèmes construits. Ces notions sont donc exposées dans le
premier chapitre.

Ensuite, les instruments optiques rencontrés au cours des travaux réalisés
sont présentés. Les principaux composants d’un microscope optique sont égale-
ment détaillés. Les microscopes utilisés dans ce travail sont des microscopes
à transmission. Un microscope optique classique est un microscope à champ
clair. Cela signifie que la lumière visible est utilisée pour éclairer l’échantillon.
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Seuls les angles d’éclairage dans la plage de l’ouverture numérique sont accep-
tés par l’optique. L’image est ensuite formée en contrastant la quantité de
lumière transmise/atténuée par l’échantillon à différentes positions spatiales.
Le manuscrit poursuit en décrivant les caractéristiques et les limites de ce type
de microscopie. En effet, la performance d’un microscope à champ clair n’est
pas évaluée par un seul paramètre, mais plutôt comme une combinaison de
plusieurs caractéristiques importantes. Celles-ci sont indiquées.

Ensuite, la nature des limites physiques de la microscopie classique est ex-
aminée. Dans le même temps, de nombreuses méthodes ont été proposées par
les chercheurs pour remédier à certaines de ces limites une par une ou pour
trouver les meilleurs compromis. L’état de l’art de ces méthodes est exposé.
Les variations matérielles qui permettent de faire évoluer la configuration clas-
sique sont présentées en premier lieu. Ensuite, les avantages de l’imagerie
numérique sont examinés.

Les techniques d’imagerie numérique cherchent à surmonter les limites
physiques de l’imagerie traditionnelle par le traitement numérique des données.
Nous sommes particulièrement intéressés par l’amélioration de la résolution et
de la récupération de la phase. Les techniques permettant de résoudre chacun
de ces problèmes sont présentées. La méthode de ptychographie de Fourier
choisie pour les travaux actuels cible les deux problèmes en même temps.

Chapitre 2 – Problème de la phase et la pty-
chographie de Fourier
Nous présentons ensuite en détail l’une des principales limites de la micro-
scopie optique qui est la perte d’informations sur la phase. Nous expliquons
comment la ptychographie de Fourier permet d’estimer la phase. Cette tech-
nique a été initialement proposée en 2013 et a depuis fait l’objet de nombreux
développements théoriques et expérimentaux.

Sa mise en œuvre instrumentale ne suppose qu’une modification matérielle
d’un microscope classique. Il s’agit du remplacement de l’éclairage standard
par une matrice de diodes électroluminescentes (DELs). Cela permet d’utiliser
un éclairage à angle variable. Un autre avantage majeur d’un tel microscope
est le faible coût de la solution. Nous montrons également comment cette
technique surmonte partiellement un compromis entre un large champ de vue
et une haute résolution spatiale.

Récupération de phase
Nous donnons d’abord un bref aperçu des techniques de récupération de phase
en imagerie optique et dans d’autres domaines. Nous décrivons également la
Ptychographie conventionnelle, précurseur de la méthode de la Ptychographie
de Fourier.
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Dans le contexte de l’imagerie optique, la phase quantitative établit un
lien direct entre l’image reconstruite et le retard de l’onde électromagnétique
de sortie. Cette quantité décrit à son tour le produit de l’indice de réfraction du
matériau et de son épaisseur. Les techniques d’imagerie de phase quantitative
appliquent, dans la plupart des cas, des approches algorithmiques.

Il existe de nombreuses techniques différentes pour la récupération de phase
à l’aide de l’imagerie numérique. Certaines de ces méthodes reposent sur
l’enregistrement de l’intensité des figures d’interférence. D’autres méthodes
enregistrent directement des images conventionnelles d’intensité dans le do-
maine spatial. La ptychographie de Fourier, utilisée dans cette thèse, est l’une
de ces dernières.

Microscopie ptychographique de Fourier
Pour expliquer le modèle de la ptychographie de Fourier plus en profondeur,
nous simplifions le problème direct de la formation des images 2D à sa ver-
sion 1D. La dérivation de ce modèle est décrite en détail dans le manuscrit.
Elle peut être résumée comme suit. Afin de manipuler facilement la phase et
l’amplitude de l’onde comme une seule valeur, des nombres complexes sont
utilisés. Tout signal peut être représenté dans son domaine fréquentiel en
calculant sa transformée de Fourier. En pratique, nous travaillons avec des
signaux discrets et appliquons une transformée de Fourier discrète1. Nous ex-
pliquons ensuite comment le signal passe à travers le filtrage passe-bas, ce qui
entraîne une perte de résolution. Nous montrons que ce n’est pas le signal filtré
qui est mesuré en imagerie, mais son intensité, qui est le carré de l’amplitude.
Cette perte d’informations de phase rend impossible l’accès au spectre par une
simple transformation de Fourier.

La fréquence de coupure du filtre, ou de manière équivalente la largeur de la
bande spectrale, définit la résolution finale du système. La largeur de la bande
spectrale est intrinsèque au système de mesure utilisé et, dans de nombreux cas,
impossible à élargir sans compromettre les autres caractéristiques du système.
Cependant, nous pouvons accéder indirectement à ces hautes fréquences en dé-
calant la composante de fréquence zéro du spectre ou, de manière équivalente,
en décalant la bande spectrale. Il découle des propriétés de la transformée de
Fourier que le décalage de fréquence peut être effectué en multipliant le signal
dans le domaine spatial par une exponentielle complexe. Ce principe de cap-
ture de signaux d’intensité correspondant à différents décalages de fréquence
est à la base de l’idée de la Ptychographie de Fourier.

Il est ensuite décrit comment mettre en œuvre un analogue 2D du problème
direct en utilisant l’optique. Pour cela, le concept d’optique de Fourier est
d’abord étudié, ce qui est nécessaire pour comprendre les propriétés de la
transformée de Fourier optique. Puis, le processus d’acquisition d’images pour

1Aucune équation n’est donnée dans le présent document. Celles-ci se trouvent dans la
version complète du manuscrit.
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la ptychographie de Fourier est décrit. En bref, une matrice des DELs est
utilisée pour couvrir une grande partie du spectre en faisant varier les angles
d’éclairage. Pour chaque élément DEL, et donc pour chaque angle d’éclairage,
l’image à faible résolution est capturée par la caméra. Un échantillon imagé
doit être fin.

Nous continuons en énumérant les hypothèses, les approximations et les
limites de la procédure donnée ci-dessus. Nous énumérons également les prin-
cipales différences entre la ptychographie conventionnelle et la ptychographie
de Fourier.

Aspects numériques
Après avoir étudié et approfondi le problème direct, nous présentons le prob-
lème inverse. La procédure de reconstruction d’images en MPF est un prob-
lème non linéaire et non convexe dans lequel les données consistent en plusieurs
mesures de l’intensité du signal complexe inconnu. Il n’y a donc, en général,
aucune garantie d’atteindre un minimum global. En outre, les données ont
une large gamme dynamique due à la présence d’images en fond noir et en
fond clair et sont corrompues par le bruit et les aberrations. De plus, des
désalignements et des approximations du modèle d’observation sont inévita-
bles dans des situations expérimentales réelles. Pour rendre le problème encore
plus complexe, les mesures et les images reconstituées sont de grande taille.
Bien que le problème soit résolu pour plusieurs petits segments plutôt que pour
des images à plein champ de vision, la taille des variables reste élevée même
après cette division.

Nous formulons d’abord le problème inverse comme une procédure d’optimisation.
Nous recherchons un tel objet qui minimiserait la norme de la différence entre
les images capturées et celles qui auraient été produites compte tenu de la
matrice de conception. La matrice de conception représente le modèle direct,
c’est-à-dire le processus de formation des images.

On vise à récupérer le signal original de manière unique. Nous analysons
donc la question de la stabilité et de l’unicité de ce problème. Les exigences
relatives à l’échantillonnage sont également discutées. Tout d’abord, il y a le
risque du repliement de spectre. Deuxièmement, le degré de chevauchement
dans le domaine des fréquences influence la qualité de l’image reconstruite.

De nombreux algorithmes de récupération de phase ont été proposés pour
résoudre ce problème non convexe. Celles-ci comprennent diverses familles
d’algorithmes d’optimisation, allant des méthodes basées sur la projection aux
approches d’apprentissage profond. Par ailleurs, ces méthodes peuvent être
différenciées par le choix de la fonction de coût, la stratégie de troncature du
gradient, le calcul de la taille du pas, la procédure d’initialisation, l’utilisation
d’un ensemble de données complet par rapport à une seule image par itération,
les contraintes de régularisation, etc.

La solution initiale du problème de la Ptychographie de Fourier est un al-
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gorithme de projections alternées. C’est une approche séquentielle basée sur
le "moteur itératif ptychographique" (parfois appelé Gerchberg-Saxton). Des
modifications aux projections alternées originales ont été proposées depuis lors.
Un autre algorithme séquentiel largement utilisé est la méthode de Newton. Le
terme "séquentiel" fait référence au mode de fonctionnement de l’algorithme,
où une étape de mise à jour est effectuée pour chaque image, une à la fois.
Par opposition aux algorithmes "globaux" où une mise à jour utilise l’ensemble
complet des images pour chaque itération. De nombreux algorithmes sont
globaux et décrits comme un problème d’optimisation avec une certaine fonc-
tion de coût. En 2015, une solution au problème de récupération des phases
basée sur le calcul de Wirtinger et appelée flux de Wirtinger a été proposée puis
adaptée au cadre de la MPF. Divers autres algorithmes basés sur un gradient
ont également été proposés. Un autre groupe de solveurs sont des méthodes
basées sur la convexité. Elles promettent d’atteindre le minimum global au
détriment de la reformulation du problème dans des dimensions supérieures.
Dans la pratique, cependant, la solution est calculée à l’aide d’une méthode
non convexe. Les méthodes basées sur les réseaux de neurones sont égale-
ment de plus en plus utilisées ces dernières années. Enfin, il est important de
noter que la Ptychographie de Fourier est étroitement liée à la Ptychographie
conventionnelle. Les nombreux développements algorithmiques en cours dans
la Ptychographie conventionnelle peuvent souvent être directement appliqués
à son homologue de Fourier. Les méthodes du problème plus général de la
récupération de phase peuvent également être adaptées pour le cadre de la
MPF. En outre, en théorie, tout algorithme d’optimisation pour un problème
non convexe pourrait potentiellement convenir. La recherche dans ce domaine
est en cours et de nouvelles procédures sont constamment proposées.

Les résultats de l’analyse bibliographique ont permis de déduire différentes
briques qui, en combinaison, constituent des algorithmes existants (dans la
plupart des cas). Les principales composantes qui caractérisent les méth-
odes sont les suivantes : algorithme du moteur d’optimisation, approche in-
crémentale versus globale, stratégie de sélection de la taille de pas, méthode
d’initialisation, hypothèses sous-jacentes du modèle de bruit, régularisation de
gradient par troncature, présence de terme de régularisation dans la fonction
de coût, traitement des aberrations optiques et autres erreurs. Bien qu’il ne
soit pas envisageable de mettre en œuvre toutes les méthodes possibles dans
une seule étude doctorale, nous déployons certaines des approches les plus im-
portantes de notre point de vue. Cela nous a permis de comparer différentes
approches et de choisir un algorithme optimal pour le dispositif construit.

Il n’existe pas de réponse unique, claire et évidente quant à l’algorithme ou
l’aspect d’un algorithme qui constitue le meilleur choix dans toutes les condi-
tions et contraintes possibles. Pour la présente thèse, la décision a été prise
d’utiliser une méthode de projections alternées avec une stratégie de taille de
pas adaptative. Plusieurs raisons ont contribué à ce choix. Premièrement, il
s’agit d’une des méthodes les plus robustes. Elle permet de reconstituer de



vii

manière cohérente et avec des résultats satisfaisants la plupart des ensembles
de données que nous avons testés, y compris les ensembles expérimentaux.
Deuxièmement, c’est la plus rapide des méthodes que nous avons mises en œu-
vre, avec une convergence rapide et de faibles besoins en mémoire. Étant donné
le nombre de pixels à traiter et à reconstruire, cela devient un avantage signifi-
catif. Troisièmement, des algorithmes de projections alternées sont largement
utilisés dans la recherche sur la MPF. Quatrièmement, elle minimise implicite-
ment une fonction de coût de type amplitude, ce qui s’avère être un bon choix
pour les données corrompues par le bruit de Poisson. Enfin, le cadre des algo-
rithmes de projections permet une grande flexibilité et une interprétation plus
intuitive des résultats des itérations.Il est facile d’intégrer les modifications et
de tester leurs effets directement à chaque étape de mise à jour de l’algorithme.
D’autre part, les méthodes globales sont plus sensibles à l’initialisation et peu-
vent se retrouver bloquées dans les minima globaux. Comme l’ensemble des
données est traité à chaque itération, il nécessite plus de calculs qu’une méth-
ode itérative. En outre, la plupart des algorithmes, autres que la méthode
des projections, nécessitent un réglage fin des paramètres. De plus, le nombre
d’options à prendre en compte dans ces algorithmes, telles que la fonction de
coût, la troncature du gradient, la taille du pas de mise à jour, rend difficile la
justification de tous ces choix.

Chapitre 3 – Réalisation du microscope pty-
chographique de Fourier
Cette partie du mémoire traite des développements expérimentaux de l’appareil
ptychographique. Cela implique la conception et l’assemblage de l’instrument,
ainsi que sa caractérisation et la recherche de méthodes pour aborder les prob-
lèmes de désalignement et de bruit.

Introduction de l’instrument
Nous donnons d’abord les spécifications et les restrictions retenues pour la
conception de l’appareil. Sur la base de ces contraintes et de l’expérience de
l’équipe TRIO dans le développement de dispositifs optiques, il a été décidé
de construire le microscope à partir de zéro plutôt que d’acheter et de modifier
un microscope existant. En conséquence, les étapes de conception suivantes
ont été mises en œuvre : le schéma du système a été proposé, l’équipement a
été commandé et les pièces mécaniques ont été fabriquées, le dispositif a été
assemblé, étalonné et caractérisé.

Nous présentons d’abord les composants de l’appareil construit. Suivant
la proposition de la configuration classique de la MPF, les composants du
système comprennent : une matrice des DELs, un objectif de microscope,
un tube d’extension, une caméra, ainsi que des pièces mécaniques pour tenir
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un échantillon et des composants optiques. À cette fin, le schéma des pièces
mécaniques a été conçu dans le logiciel SolidWorks par les membres de l’équipe
TRIO. Nous décrivons également la fabrication du tube d’extension. La caméra
et la matrice de DELs sont contrôlées par un programme d’acquisition d’images
écrit en LabVIEW par les membres de l’équipe TRIO.

Nous présentons ensuite les étalonnages de pré-acquisition et la procédure
d’acquisition. En microscopie, il est essentiel de régler correctement la distance
focale. Le système peut introduire des flous, des aberrations et d’autres erreurs
lorsque l’échantillon est de-focalisé. Ceci est particulièrement important dans
le contexte de l’imagerie numérique. On décrit alors un moyen de contrôler
la mise au point avant les acquisitions. En outre, notre système présente, par
construction, un certain degré d’instabilité par rapport à l’axe optique. Par
axe optique, nous entendons ici une ligne passant par le centre de la matrice
de DELs et perpendiculaire à celui-ci. Nous proposons donc une méthode
qui permet d’estimer le pixel de l’axe optique. Nous l’utilisons pour aligner
mécaniquement l’axe optique en inclinant physiquement le rail de support de
la caméra. Mais aussi pour estimer les angles des DELs avant la procédure de
récupération de phase.

Caractérisation du dispositif
Ensuite, nous détaillons autres étalonnages effectués. Certaines de ces méth-
odes sont inspirées par la littérature, d’autres sont nos contributions. Le sys-
tème construit se compose de trois éléments principaux : l’unité d’éclairage,
la partie optique et la caméra numérique. Chacun de ces composants doit
être soigneusement caractérisé afin d’obtenir le modèle d’imagerie correct et
de réduire l’influence des erreurs.

Les erreurs dans tout système expérimental peuvent être divisées en er-
reurs systématiques et aléatoires non systématiques. Dans la MPF, les dif-
férences d’irradiation des DELs, les aberrations optiques et le bruit du courant
d’obscurité peuvent être classées comme systématiques. Les fluctuations de
la luminosité des DELs et du bruit de la caméra, à l’exception du courant
d’obscurité et des pixels chauds, sont des erreurs non systématiques. Les dés-
alignements angulaires peuvent être classés comme systématiques et non sys-
tématiques. En effet, une partie des déviations est due à des imperfections mé-
caniques du système construit et à une erreur d’estimation des paramètres, et
une autre partie est due à des déviations causées par un échantillon. Le même
raisonnement peut être appliqué aux dés-alignements de l’ouverture numérique
(ON) attachés à chaque DEL. D’une part, l’ON dépend de l’éclairage et de
l’optique, et d’autre part, un échantillon épais peut également influencer les
variations d’ouverture. Certaines de ces erreurs peuvent probablement être
réduites en modifiant et en ajustant mécaniquement l’instrument, mais cela
augmenterait le coût de la fabrication.

On propose donc, d’abord, des méthodes de caractérisation de la matrice
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des DELs. La géométrie de la matrice des DELs utilisée est un simple rectangle.
Par conséquent, la quantité de lumière arrivant à l’échantillon depuis une DEL
distante est différente de celle arrivant d’une DEL proche de l’axe optique.
Nous avons mesuré la tension relative de chaque DEL et simulé l’irradiance
relative en nous basant sur la géométrie de la matrice des DELs. Ces valeurs
sont utilisées pour déterminer les coefficients de correction pour les intensités
des images capturées. Ensuite, un spectromètre portable a été utilisé pour
mesurer la fréquence centrale et évaluer la cohérence des DELs. Nous avons
constaté que les chiffres mesurés sont différents de la spécification donnée par
le fabricant de la matrice des DELs.

Ensuite, des méthodes de caractérisation des éléments optiques sont mises
en œuvre. Il s’agit notamment de la redéfinition expérimentalement du ON
effectif. Nous estimons également le grossissement et la profondeur de champ
du système.

Un autre aspect important de la caractérisation du système est le calcul
des centres de segments. En effet, la procédure de reconstruction n’utilise
pas directement les images du champ de vision entier, mais les décompose en
segments plus petits. Les angles d’éclairage doivent ensuite être calculés pour
chaque segment séparément. Théoriquement, cela ne devrait pas poser de prob-
lème car ces angles peuvent être calculés de manière purement géométrique.
Cependant, lorsque les formules classiques sont appliquées à nos données, nous
observons de forts artefacts sur les images de phase reconstruites pour les seg-
ments éloignés du pixel de l’axe optique. Nous proposons donc d’introduire un
coefficient de correction tenant compte de la déviation observée.

Nous avons également étudié la question du bruit électronique, l’une des
principales sources de bruit dans les mesures de la MPF. À notre connaissance,
aucune étude sur les statistiques de bruit pour la microscopie ptychographique
de Fourier n’a été proposée dans la littérature. Un certain nombre d’études
supposent le type de bruit correct, à savoir un bruit mixte Poisson-Gaussien.
Cependant, cette hypothèse n’est pas universelle. La plupart des articles sup-
posent que les données sont corrompues par le bruit suivant la distribution de
Poisson, certains considèrent même un simple bruit gaussien. Toutefois, il est
important de connaître ces statistiques afin de valider le choix de la fonction
de coût utilisée dans la procédure d’optimisation. Mais aussi pour proposer la
production correcte de simulations de données pour la validation des méthodes.
Nous clarifions ainsi cette question.

Pré-traitement des données
Nous soulignons également l’importance d’une autre problématique, à savoir
le pré-traitement des images capturées.

Tout d’abord, si des temps d’exposition différents sont utilisés, les images
doivent être re-normalisées pour correspondre au modèle d’observation. En-
suite, les pixels chauds et le bruit de fond pourraient et devraient être éliminés
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avant la reconstruction.
Si nos premières tentatives n’ont porté que sur les problèmes décrits ci-

dessus, nous avons ensuite réalisé qu’une autre partie du signal, liée aux dif-
férences d’éclairage, devait également être supprimée. En effet, on observe un
décalage constant sur les images capturées. La valeur de ce décalage dépend
de l’angle d’éclairage. Il est plus élevé pour les images en champ clair et plus
faible pour les DELs distantes. Nous mettons donc en œuvre une méthode
pour l’élimination de ces offsets angulairement variables.

Récupération des paramètres et des aberrations
La partie précédente du chapitre 3 portait sur les méthodes de caractérisation
des paramètres du système lors d’une étape de prétraitement des données.
Toutefois, ces estimations ne sont pas encore parfaites et des écarts peuvent
se produire dans le cadre d’une installation expérimentale réelle. En outre,
nous n’avons pas proposé de méthode pour caractériser l’aberration optique
du microscope construit. Heureusement, la redondance des données collec-
tées permet d’estimer numériquement les paramètres du système ainsi que les
aberrations.

Historiquement, l’une des premières estimations de ce type a été la correc-
tion du front d’onde, proposée pour l’algorithme classique de type projection.
Cette méthode était appelée "récupération intégrée de la fonction de la pupille".
Une autre façon de récupérer la pupille est de modéliser ses aberrations à l’aide
de polynômes de Zernike. Nous expliquons ces deux méthodes et les mettons
en œuvre.

Ensuite, nous abordons la récupération des paramètres incertains du sys-
tème et des coefficients des polynômes de Zernike. Les méthodes sont princi-
palement basées sur l’idée de comparer des données simulées avec des données
réelles en utilisant une métrique à optimiser. Nous discutons aussi des dévia-
tions angulaires individuelles. Ces dernières peuvent être introduites par des
dés-alignements mécaniques dans le positionnement des DELs et des imper-
fections optiques.

Nous discutons également de la compensation des fluctuations de la lumi-
nosité des DELs. En dernier lieu, nous montrons comment la prise en compte
de l’incohérence de la lumière pourrait améliorer la qualité de la reconstruction.

Sur la base de la caractérisation du dispositif ci-dessus, nous proposons
une procédure pour simuler des images approchant les données capturées avec
notre microscope. Les dés-alignements du système sont d’abord modélisés en
perturbant les paramètres globaux (comme l’ON et la longueur d’onde), puis
en ajoutant un décalage local à chaque angle. Le bruit de Poisson est appliqué
sur les images simulées. Le bruit gaussien est ensuite ajouté. Enfin, les images
sont mises à l’échelle par des coefficients de fluctuation d’intensité aléatoire
représentant un éclairage inégal.
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Résultats
La technique de la MPF promet une fabrication facile et un modèle d’imagerie
simple. L’une des difficultés réside toutefois dans la caractérisation précise de
tous les composants de l’instrument construit. De plus, si les algorithmes de
base fonctionnent bien sur des données simulées sans bruit, les réalités expéri-
mentales de notre microscope ont nécessité quelques étapes supplémentaires.
Pour cette raison, il est important de étalonner correctement l’instrument, de
régler la phase d’acquisition, de prétraiter les données, de choisir une procédure
de reconstruction appropriée et de combiner les segments reconstruits.

En ce qui concerne la procédure de reconstruction, nous avons choisi un
algorithme de projections alternées (moteur itératif ptychographique). La ver-
sion de base est enrichie d’une stratégie de taille de pas adaptative, d’une
modélisation de défocalisation, d’une méthode de récupération d’aberration et
d’une routine de correction d’intensité. Les paramètres globaux du système
sont optimisés pour un segment central. Un facteur de correction est également
appliqué pour le calcul des centres de segments.

Enfin, nous comparons l’algorithme de projections alternées de base sans
soustraction de bruit avec la procédure de reconstruction proposée. L’échantillon
utilisé dans l’exemple est une lame histologique colorée de tissu mammaire de
souris. L’épaisseur est de 6 µm. Les résultats montrent clairement que la ver-
sion enrichie proposée est supérieure en termes de qualité de la reconstruction.

Chapitre 4 – Microscopie en lumière polarisée
et imagerie multimodale
Comme nous l’avons montré, la MPF peut fournir des informations plus com-
plètes que la microscopie classique en champ clair. Le microscope construit
fournit une imagerie en champ clair à haute résolution et un contraste de phase
quantitatif. Afin d’évaluer les capacités d’imagerie quantitative du microscope
construit, nous menons une étude comparative en utilisant un objet de grande
épaisseur optique. La modalité d’imagerie choisie pour cette confrontation est
un microscope holographique. L’échantillon analysé est une microsphère de
chaux sodée immergée dans du baume du Canada. Cette étude a fait l’objet
d’un article publié.

Poursuivant l’idée de développer un système d’imagerie multimodal, nous
explorons la complémentarité et l’intégration éventuelle de la microscopie de
Fourier ptychographique avec la microscopie polarimétrique. La principale
motivation de cette recherche est la capacité de la microscopie polarimétrique
à accéder à des propriétés physiques qui ne sont pas disponibles en MPF. En
effet, certains matériaux, y compris certains tissus biologiques, ne réagissent
pas de la même manière à la lumière de différents états de polarisation. Ces
matériaux peuvent présenter une biréfringence, un dichroïsme ou une activité
optique. Ces données peuvent constituer une information importante, par
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exemple, pour l’analyse des tissus biologiques et pour le diagnostic médical.
Afin d’obtenir la description la plus complète de la réponse d’un milieu à la
lumière polarisée, nous devons calculer la matrice de Mueller de ce milieu.
Pour cela, nous utilisons un microscope Mueller construit par les membres de
l’équipe TRIO.

Ce chapitre présente d’abord l’étude d’imagerie de phase quantitative. En-
suite, le microscope à matrice de Mueller est présenté, suivi d’une description
de l’étude comparative. Enfin, les améliorations de la MPF et ses extensions
à d’autres modalités sont discutées.

Imagerie de phase quantitative
La récupération d’informations quantitatives sur la phase d’un objet trans-
parent est une question essentielle et importante pour l’imagerie des tissus
biologiques.

Au cours des dernières décennies, un certain nombre de techniques d’imagerie
de phase quantitative (IPQ) ont été introduites. Ici, nous visons à valider la
capacité de l’IPQ de notre microscope ptychographique de Fourier. Pour cela,
on compare les images de phase de la MPF avec les images obtenues par
un microscope holographique numérique sans lentilles (Lensless inline digital
holographic microscopy or LI-DHM en anglais). LI-DHM est l’une des tech-
niques d’imagerie quantitative de phase les plus répandues. Les deux méthodes
ont été utilisées dans divers domaines, notamment pour l’imagerie des lames
biologiques, en raison de leur simplicité d’utilisation, de leur stabilité de con-
struction et aussi de leur grand champ de vision.

De petites micro-billes transparentes (de plusieurs dizaines de microns de
diamètre) ont souvent été utilisées comme référence pour l’étalonnage et la
validation de l’IPQ. Cela est dû en partie au fait qu’une réponse de phase
sphérique (provenant des cellules HeLa par exemple) est couramment observée
en imagerie biologique. Cependant, l’imagerie de phase de leurs homologues
de grande taille (perles de centaines de microns de diamètre) utilisant soit
LI-DHM soit la MPF n’a pas été signalée jusqu’à présent. Nous cherchons à
analyser la réponse de phase d’une microsphère de chaux sodée de 146 µm. Elle
a été immergée dans du baume du Canada afin de réduire la différence de phase
et d’éviter les anneaux de diffraction surexposés. L’estimation de la phase par
LI-DHM a été abordée en utilisant un algorithme de type Gerchberg-Saxton
et une procédure basée sur un problème inverse.

L’analyse des images reconstruites par LI-DHM et la MPF révèle que les
deux instruments sont capables de fournir les distributions de phase que l’on
attendrait d’une micro-bille, confirmant ainsi leur capacité de l’IPQ. La FPM
semble fournir des amplitudes de l’étendue de la phase plus faibles que LI-
DHM. Nous spéculons qu’une telle différence pourrait être due à l’approximation
d’un échantillon optiquement épais par un modèle 2D infiniment mince.
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Microscopie en lumière polarisée
Nous abordons d’abord brièvement la théorie de l’imagerie polarimétrique. La
lumière peut être décrite par des vibrations de type ondulatoire se propageant
sous forme de champs électriques et magnétiques couplés. Ces champs sont
perpendiculaires les uns aux autres. La polarisation de la lumière décrit la
distribution préférentielle de l’orientation des oscillations des ondes électro-
magnétiques. Nous décrivons brièvement d’autres notions de base nécessaires
pour comprendre le fonctionnement du microscope polarimétrique. Il s’agit no-
tamment des définitions des types de polarisation, des polariseurs, des plaques
d’onde, des milieux anisotropes et de la matrice de Mueller.

Nous présentons ensuite le microscope de Mueller utilisé et décrivons son
principe de fonctionnement. Le microscope de Mueller permet de récupérer les
propriétés de polarisation d’un échantillon. Il le fait par une mesure de la ma-
trice de Mueller. La matrice de Mueller est ensuite décomposée en dichroïsme,
retard et dépolarisation du milieu étudié. Nous ne nous focalisons pas sur le
développement du microscope de Mueller, car c’est une technologie que l’équipe
maîtrise déjà. L’accent est plutôt mis sur la complémentarité entre les deux
systèmes conçus et sur l’intérêt éventuel de les combiner.

Microscopes ptychographique de Fourier et de polarisa-
tion : comparaison
Les techniques d’imagerie polarimétrique et la MPF ont toutes deux de nom-
breuses applications dans l’analyse des tissus biomédicaux ; la combinaison des
deux pourrait donner des informations encore plus riches. Nous étudions la
complémentarité entre les retards de phase observés avec le MPF (la phase op-
tique) et la microscopie de Mueller (le retardance). Nous mettons en évidence
leurs différences. Des observations sur des lames histologiques sont présentées
pour une validation expérimentale. Cette partie de travail a fait l’objet d’une
communication internationale avec un acte publié.

Bien que des études comparant et même combinant les techniques de l’IPQ
avec les méthodes polarimétriques puissent être trouvées dans la littérature, à
notre connaissance, ce travail est le premier à évaluer la complémentarité des
microscopes ptychographiques de Fourier et à matrice de Mueller.

Afin de démontrer la complémentarité des deux techniques, nous utilisons
une lame histologique colorée de tissu mammaire de souris (6 µm d’épaisseur).
Malgré la coloration par H&E (hématoxyline et éosine), l’échantillon révèle un
faible contraste en lumière visible. C’est le même échantillon que nous avons
utilisé dans le chapitre précédent.

Nous avons observé que la phase de la MPF met en évidence les épaisseurs
et les formes des structures. Ce sont les propriétés plutôt géométriques de
l’échantillon. Le retard polarimétrique représente la biréfringence du milieu.
Il permet d’améliorer la différenciation entre les différents types de tissus. Cela
donne à son tour un meilleur accès à la composition cellulaire de l’échantillon.
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En outre, le retard circulaire peut également révéler l’alignement des fibres
tissulaires. La validation visuelle a confirmé l’apport d’informations entre les
deux modalités. Nos deux instruments ont été construits avec presque la même
résolution spatiale. Cela permet une analyse comparative significative.

La motivation de fusionner les deux modalités étant confirmée, ce sera
l’une des prochaines étapes de notre recherche. Des études préliminaires ont
été menées pour équiper l’appareil FPM construit de capacités d’imagerie po-
larimétrique de Stokes.

Extensions et améliorations
Les progrès récents en matière de la MPF ont montré qu’il était possible non
seulement d’améliorer la qualité de la reconstruction, mais aussi d’étendre la
configuration classique à d’autres modalités d’imagerie. En raison de la durée
limitée de la thèse de doctorat actuelle, il n’a pas été possible d’étudier toutes
les améliorations possibles. Néanmoins, dans la dernière partie du manuscrit,
nous discutons des améliorations les plus prometteuses et indiquons celles qui
sont prioritaires pour la mise en œuvre compte tenu de notre configuration.
Nous discutons, entre autres, de la ptychographie de Fourier 3D, du couplage
avec d’autres modalités, d’une meilleure architecture d’éclairage et des tech-
niques permettant de réduire le temps d’acquisition.

Chapitre 5 – Conclusions
Au cours de ce travail de thèse, nous nous sommes concentrés sur le développe-
ment d’un système de microscope offrant une grande quantité d’informations
pertinentes récupérées à un coût abordable. En particulier, nous avons con-
struit notre version du microscope ptychographique de Fourier, une technique
d’imagerie numérique récente.

Nous avons ensuite utilisé une autre modalité optique, le microscope à
matrice de Mueller, afin de mettre en évidence la nature complémentaire des
informations obtenues par deux appareils.

La mise en œuvre du microscope ptychographique de Fourier a nécessité
non seulement la construction de l’instrument à partir de zéro, mais aussi la
mise en place du flux de travail méthodologique pour son étalonnage, le pré-
traitement des données et la reconstruction. Alors que l’auteur a participé à
toutes les étapes du développement du dispositif de la MPF, la construction du
microscope polarimétrique à matrice de Mueller a été principalement réalisée
par d’autres membres de l’équipe TRIO. Par conséquent, ce document met
davantage l’accent sur le premier système.

Du point de vue de l’application, nous nous sommes assurés de montrer la
pertinence de ces recherches sur les échantillons biologiques. En outre, nous
présentons en annexe les résultats des reconstructions obtenues sur différents
types d’échantillons.
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Un système pleinement fonctionnel a été mis au point et ses capacités ont
été démontrées. Sa complémentarité avec un microscope à polarisation a été
mise en évidence, ce qui valide l’intérêt de leur fusion prospective. De plus, bien
qu’il n’ait pas été possible de réaliser toutes les améliorations et recherches que
nous aurions souhaitées, nous fournissons des lignes directrices claires pour les
travaux futurs. Une partie de ce travail a déjà commencé au sein des équipes.
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Résumé 

Un système de microscopie offrant un bon compromis entre le coût de fabrication et la 
quantité d'informations recueillies est d'un grand intérêt pour un domaine de l'imagerie 
biomédicale. Le but de cette thèse est de proposer un tel instrument de mesure et de 
développer des méthodes de traitement de données correspondantes. 

Pour atteindre ce but, nous avons d'abord réalisé un microscope ptychographique de 
Fourier. Cette technique repose essentiellement sur le traitement numérique. L'un de ses 
principaux avantages est la capacité d'obtenir une image ayant à la fois un large champ de 
vue et une haute résolution spatiale. 

Ensuite, nous avons confronté le microscope construit avec un microscope polarimétrique 
de Mueller. Cette étape a permis de compléter les informations de phase et d'intensité 
(issues de la ptychographie) avec les informations de polarisation. 
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Résumé en anglais 

A microscopy system offering a good compromise between the manufacturing cost and the 
amount of information retrieved is of great interest for a field of biomedical imaging. The aim 
of this thesis is to propose such a measuring instrument and to develop corresponding data 
processing methods. 

To reach this goal, we first realized a Fourier ptychographic microscope. This technique 
relies mainly on digital processing. One of its main advantages is the ability to obtain an 
image with both a wide field of view and high spatial resolution. 

Next, we compared the microscope built with a polarimetric Mueller matrix microscope. This 
step allowed us to complete the phase and intensity information (obtained by the 
ptychography) with the polarisation information. 
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