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ABSTRACT 

This thesis raises questions on how knowledge constructed through previous experience 

influences the learning and teaching of mathematics. In our literature review, we first tackle the 

subject of conceptual development with a specific focus on intuitive conceptions, and we look at 

the intuitive conceptions that make it possible to grasp arithmetic concepts taught in elementary 

school. We then examine the characteristics of mathematical knowledge being acquired in school, 

as well as the factors influencing its acquisition. Afterward, we explore how informal arithmetic 

abilities serve as a basis for the development of principle-based arithmetic proficiency. Notably, 

we explore how the semantic context influences the representation of arithmetic problems and the 

strategies used to solve them. The last part presents an overview of different frameworks used to 

approach teachers’ pedagogical competence.  

The empirical research conducted in this thesis explores how informal knowledge 

influences students’ solving processes on arithmetic problems and teachers’ judgments about 

students’ strategies. We conducted six experiments consisting of collective classroom studies, 

verbal reports, and retrospective think-aloud questionnaires with a total of 673 elementary school 

students, 36 teachers, and 36 lay adults. Our findings reveal that students have higher performance 

on problems that are easy to solve through a mental simulation of the encoded representation than 

on problems for which this mental simulation is challenging. The informal solving strategies that 

they use to find the solution do not require the use of arithmetic knowledge. Nevertheless, we 

demonstrate that students who have participated in an arithmetic intervention program working on 

the encoding of a problem’s representation and its recoding when this initial representation leads 

to costly solving strategies increased the use of solving strategies that reflect the use of arithmetic 

principles. Yet, when we questioned teachers about the strategies students use to solve such 

problems, our findings revealed that they overlooked the difficulties that intuition-consistent 

problems can pose for students. 

The role that intuitive conceptions play in the students’ representational processes is then 

discussed, and a processing model about students’ arithmetic problem solving strategies is 

proposed. The notion of ‘intuitive blind spot’ in teachers’ diagnostic judgments is introduced as 

contrasting to the ‘expert blind spot.’ We conclude on some educational entailments based on our 

findings. 

Keywords: informal knowledge; intuitive conceptions; analogical encoding; mathematical 

cognition; pedagogical content knowledge; teachers’ cognition; arithmetic problem solving  



Résumé | 5 

RESUME 

Cette thèse porte sur la manière dont les connaissances acquises grâce à l'expérience 

antérieure influencent l'apprentissage et l'enseignement des mathématiques. La revue de la 

littérature aborde dans un premier temps la question du développement conceptuel en mettant 

l'accent sur les conceptions intuitives sous-tendant les concepts arithmétiques enseignés à l'école. 

Nous examinons ensuite les facteurs qui influencent l’acquisition des notions mathématiques 

enseignées à l’école, puis la manière dont les compétences arithmétiques informelles peuvent venir 

en appui du développement des notions scolaires. Nous explorons notamment comment le contexte 

sémantique influence la construction de la représentation des problèmes arithmétiques et les 

stratégies mise en œuvre pour les résoudre. Un dernier chapitre présente une variété d’approches 

de la compétence pédagogique des enseignants.  

La partie empirique de la thèse porte sur la façon dont les connaissances informelles 

influencent les processus de résolution des problèmes arithmétiques des élèves, ainsi que sur 

l’évaluation par les enseignants des stratégies mises en place par les élèves. Six expériences sont 

présentées, comprenant des études collectives en classe, le recueil de protocoles verbaux ainsi que 

de questionnaires auprès de 673 élèves du primaire, 36 enseignants et 36 adultes tout venant. Nos 

résultats montrent que les élèves ont une meilleure performance sur des problèmes dont la 

résolution est facilitée par une simulation mentale de la représentation encodée, par rapport aux 

problèmes pour lesquels cette simulation mentale est trop coûteuse pour être mise en œuvre. Ces 

stratégies informelles n'exigent pas l'utilisation de connaissances arithmétiques. Pourtant, nous 

montrons que les élèves qui ont participé à une intervention visant à travailler l'encodage de la 

représentation d'un énoncé et son recodage lorsque cette représentation initiale conduit à des 

stratégies de résolution coûteuses, utilisent plus fréquemment des stratégies reflétant l'utilisation 

de principes arithmétiques. En revanche, lorsque les enseignants sont interrogés sur les stratégies 

utilisées par les élèves pour résoudre ces problèmes, leurs réponses indiquent un manque de prise 

en compte des difficultés que des problèmes conformes à l'intuition peuvent poser aux élèves. 

Nous discutons du rôle que jouent les conceptions intuitives dans les processus 

représentationnels des élèves et proposons un modèle des processus de résolution par les élèves. 

Nous introduisons également la notion d’angle mort de l’intuition dans les jugements des 

enseignants et concluons sur les implications pédagogiques de nos travaux. 

Mots-clés : connaissances informelles ; conceptions intuitives ; l’encodage analogique ; 

cognition mathématique ; connaissances pédagogiques du contenu ; cognition des enseignants ; 

résolution de problèmes arithmétiques 
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INTRODUCTION 

Customarily the fields of psychology and mathematics education had divergent aims (De 

Corte, Greer, & Verschaffel, 1996). In psychology, the study of mathematical cognition would not 

address issues regarding educational applications, whereas mathematics educators would strive to 

find ways to change the educational practice. Yet, there is growing attention paid to developing 

specific lines of research on the cognitive and neurological processes involved in learning and 

teaching in school settings which would have translational aims and an evidence-based attitude 

(Davidesco & Milne, 2019; Higgins et al., 2019; Pasquinelli, Zalla, Gvozdic, Potier-Watkins, & 

Piazza, 2015). Indeed, numerous research programs have emerged sharing built upon a better 

understanding of the psychological mechanisms involved in the mathematics learning in order to 

change educational practices (e.g., Carpenter, Fennema, & Franke, 1996; Van den Heuvel-

Panhuizen & Drijvers, 2014). There is a diversity of theoretical approaches shaping the intention 

with which such research is conceptualized (Lerman, 2006). This leads to sometimes prioritizing 

improved understanding, focusing on the processes of individual knowledge construction, and at 

other times prioritizing improved practice, focusing on teachers’ mediation of the development of 

knowledge in students. Reframing classroom issues into a research question, as well as developing 

the adequate methodological design to tackle the issue, remain challenging endeavors. We believe 

that two conceptual shifts significantly contribute to establishing a dialogue and setting joint aims. 

One is the increasing importance given to situated approaches in psychology, and the other is 

revisiting the role of formalisms in education. 

In the field of psychology, the nature of knowing and learning has varied historically, 

depending on different approaches. Greeno, Collins, and Resnick (1996) identified three general 

perspectives in the literature. The first is the behaviorist/empiricist perspective, where knowledge 

is “an organized accumulation of associations and components of skills” (p. 16). The second is the 

cognitivist/rationalist perspective, where knowing is emphasized as “the organization of 

information in cognitive structures and procedures” (p.16). The third is the situative/pragmatist-

sociohistoric perspective, which sees knowledge as “being distributed among people and their 

environment, including objects, artifacts, tools, books, and the communities of which they are a 

part” (p.17). Nevertheless, in recent decades cognitivist and situative perspectives have grown 

closer together. This reconciliation can be seen in approaches that see cognition as embodied 

(Lakoff & Johnson, 1999). The relevance of this coupling can also be seen in the influence that 
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context plays in making meaning of a situation (Barsalou, 1982). Bridging the gap is seen as a way 

to take into consideration the mental structures that are constructed, while also accounting for the 

flexibility, malleability and distributed nature of concepts (Vosniadou, 2007). In our view, adopting 

a situated cognitive perspective brings the field of psychology closer to constructing shared aims 

with educational research by acknowledging that cognitive processes are largely influenced by the 

context in which they develop and are modulated by the content that they operate on. 

Nathan (2012) proposed an elaborate critique of a widely held belief in education and 

society, which takes the form of a formalism first approach to learning. The belief on which the 

formalisms first view is based on is that knowledge about the formalisms of a domain is a 

prerequisite to apply the knowledge. Formalisms are regarded in both their narrow sense, referring 

to specialized representational forms that are conventionally used in a field such as symbolic 

equations, and in their broad view, where they refer to scientific theories and formal principles. 

The prevalence of this view can be observed in teachers’ predictions about student performance on 

arithmetic and algebra problems. Teachers consistently ranked problems presented in their formal 

form – symbolic equations – as easier for students than problems that were further away from their 

formal form – verbal story and word problems (Nathan, Koedinger, & Alibali, 2001; Nathan & 

Petrosino, 2003). This, however, is not always true when we look at student performance. 

Formalisms undoubtedly have a critical role in education, yet, adopting a formalism first view 

considers that “conceptual development proceeds from the formal to the applied” (Nathan, 2012, 

p. 128). This does not provide an adequate view of conceptual development, which is one of the 

main reasons why the formalism first approach is inappropriate. We, therefore, think that any 

attempt to conduct joint research in the field of psychology and educational sciences needs to have 

at least a moderate view of the role of formalisms in formal education. 

We believe that studying teaching and learning needs to take into consideration both the 

development of the conceptual understanding of new content and how it relates to previously held 

knowledge, as well as the implicit beliefs held by educators and how they shape their practice. In 

order to tackle these very broad questions, we enter the field of analogical reasoning, which in our 

view provides a unifying theory for the informal, formal, and situated dimensions of school 

learning. In contrast to historical views of analogies as proportional relations, contemporary 

approaches see analogy making as a means to understand one thing by referring to something else 

(Holyoak & Thagard, 1995). Analogies make it possible to go beyond a singular experience of a 
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situation by creating mental categories that can guide the interpretation of new situations 

(Hofstadter & Sander, 2013). For example, if one adopts a traditional Socratic point of view and 

states ‘a teacher is like a midwife1’, they are making an analogy. Providing such an analogy makes 

it possible to view teaching by referring to a different profession, that might be more familiar, and 

that lends its properties to ‘a teacher’. This statement entails that the person doing the teaching only 

brings out the knowledge that is already implicit in students. Furthermore, to make such an analogy 

means that a person is not referring to a specific teacher, but a general category that instantiates the 

teaching profession (Glucksberg & Keysar, 1990).  

THESIS OUTLINE 

The first four chapters of this thesis present the theoretical background of research related 

to mathematics learning and teaching in the field of cognitive and educational psychology. In the 

first chapter, we tackle the subject of conceptual development with a specific focus on intuitive 

conceptions. The perspective that we adopt is that analogical reasoning is a central cognitive 

mechanism that organizes the conceptual system of learners and teachers by creating mental 

categories. Following this approach, we explain how intuitive conceptions can be regarded as 

analogical sources. We then describe the mechanisms that lead to inferences about unknown 

concepts. With this foundation, the second chapter focuses on domain-specific theories of intuitive 

conceptions. We look at the different intuitive conceptions that make it possible to grasp arithmetic 

concepts taught in elementary school. The third chapter of this thesis examines the characteristics 

of mathematical knowledge being acquired in school, as well as the different factors influencing 

its acquisition. We look at the main types of knowledge determining one’s arithmetic competence 

– the knowledge of procedures and underlying principles. Afterward, we explore how informal 

arithmetic abilities serve as a basis for the development of principle-based arithmetic proficiency. 

The second part of this chapter focuses on the mediating role of situational knowledge for the use 

of different solving strategies and arithmetic principles. Notably, we explore how the semantic 

context can influence the representation of arithmetic problems and the strategies used to solve 

them. The last part of the third chapter explores some activities that can help solvers develop the 

capacity to use the most appropriate strategy on a given problem. The fourth chapter represents an 

overview of different approaches used to understand teachers’ pedagogical competence. We 

 
1A reminder that 'midwife' is a term describing a health professional, regardless of their gender. 
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present the different types of knowledge that have been identified to play an important role in 

teachers’ judgments about student performance and address the question of what causes their 

judgment to be misaligned with students’ actual performance. This extensive literature review 

raises questions about how knowledge constructed through previous experience influences the 

learning and teaching mathematics. 

The empirical research conducted in this thesis explores how informal knowledge 

influences students’ solving processes on arithmetic problems and teachers’ judgments about 

students’ strategies. In Chapters 5 to 7, we present six experiments that we have conducted with a 

total of 673 first and second-grade students in classroom contexts, with 36 elementary school 

teachers and 36 adults.  

In Chapter 5, we studied the processes involved in solving arithmetic problems. We 

proposed that, based on the semantic relations described in the problems, different conceptions 

would guide the construction of a representation that solvers use to find the solution to a problem. 

Based on this representation a mental simulation would lead solvers to use informal strategies. 

When the mental simulation would bear low cost, then the informal strategy would easily provide 

the solvers with a numerical solution. However, when the mental simulation bears high cost, then 

solvers would need to use formal solving strategies. We expected to find higher performance rates 

on problems that are easy to simulate mentally than problems whose mental simulation bears high 

cost. Furthermore, we expected to observe more informal strategies on low cost mental simulation 

problems than on high cost mental simulation problems and more formal strategies on high cost 

mental simulation problems than on low cost mental simulation problems.  

In Chapter 6, we present a research-based arithmetic intervention program that substituted 

the regular arithmetic curriculum in first-grade classes. The problem solving syllabus aimed to 

promote the use of the most adequate strategy for finding the solution on different problems, and 

namely to promote the use of formal strategies when they are the most appropriate choice. In our 

empirical assessment, we compared the performance of students who participated in the 

intervention to students from regular classes. We expected that students who were part of the 

intervention would have higher performance and use more formal solving strategies.  

In Chapter 7 of this thesis, we investigated how teachers’ prior knowledge influences their 

diagnostic judgments of student performance. We presented participants with arithmetic word 

problems for which there is strong empirical evidence regarding the strategies students use to solve 
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them and their performance rates on such problems. The participants were asked to evaluate the 

relative difficulty of the problems that were presented and explain what makes certain problems 

more difficult than others. We expected that when a problem relates to prior-knowledge that is 

intuition-consistent, then teachers would be less successful in determining the difficulties it poses 

for students than on problems that are intuition-inconsistent. 
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CHAPTER 1 – DEVELOPMENT OF INTUITIVE CONCEPTIONS 

MAIN APPROACHES TO INTUITIVE CONCEPTIONS 

Widespread domains of intuitive conceptions 

Through daily life experience, children come to develop intuitive understandings about the 

functioning of various phenomena and they come to acquire vast knowledge about concepts based 

on the interactions with their surroundings. For example, in the domain of biology children explain 

the behavior of animate and inanimate objects even though they have not encountered them before, 

by conceiving them as living and conscious entities like humans. These kinds of animist theories 

that children develop are characterized by their anthropocentric thinking (Piaget, 1960). Many 

terms have been used to describe the intuitive knowledge that is acquired without formal teaching 

about the topics that children come to intuitively understand: intuitive theories (Carey, 1985; 

McCloskey & Kargon, 1988), naive analogies (Hofstadter & Sander, 2013), framework theories 

(Vosniadou, 2012; Vosniadou, Vamvakoussi, & Skopeliti, 2008), misconceptions (Smith, diSessa, 

& Roschelle, 1993), naive or “old” ideas (diSessa, 1993), lay cognition (Shtulman, 2015), folk 

theories (Kempton, 1987), theory theory (Gopnik & Wellman, 1994), intuitive rules (Tirosh & 

Stavy, 1999), mental models (Vosniadou & Brewer, 1992), cognitive construals (Coley & Tanner, 

2012). Whenever we talk about intuitive conceptions, we refer to knowledge that is acquired with 

little or no effort, no teaching and which is not necessarily aligned with the culturally and 

scientifically accepted notions. The different descriptions of intuitive conceptions often have the 

term “theory” attached to them, because, just like scientific theories, they lead to inferences which 

make it possible to provide explanations for the observed phenomena and make predictions about 

future outcomes (Gopnik & Wellman, 1994; Vosniadou, 2017). Yet, these initial understandings 

lack the explanatory power and internal consistencies of scientific theories and are not 

systematically challenged for falsification (Vosniadou, 2014). Intuitive conceptions are widespread 

across various domains, including physics, biology (Shtulman, 2006), mathematics and even 

psychology and pedagogy (Fischbein, 1987; Olson & Bruner, 1996; Shtulman, 2017). Studying 

them is mainly domain specific in regard to the ontological stances of the topic but addressing their 

characteristics and mechanisms of actions from a psychological point of view is common across 

all domains. This notably makes it possible for scholars to study the ways in which intuitive 

conceptions can influence the acquisition of new knowledge, since it is important to know when 
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they facilitate the acquisition of a new concept, and when they are rather harmful. Several 

researchers have attempted to identify the mechanisms and structures underlying intuitive 

conceptions. 

Intuitive theories 

Carey’s (1985) work initially investigated if children actually hold certain naïve theories 

about biology and physiological functioning. She initially focused on explaining if Piaget’s 

animistic interpretation truly relies on a form of naïve biology, or if they rather rely on their naïve 

psychology to explain biological processes. Yet, whether we consider children’s naïve biology or 

naïve psychology as a frame of reference, this does not undermine the fact that children hold 

intuitive conceptions that influence their way of thinking and the way in which they acquire new 

knowledge. In Susan Carey’s (2009) view, intuitive theories are conceptual structures in which 

conceptual representations – symbolic content that is not a perceptual or sensory representation –

are embedded. In her view, the acquisition of intuitive theories is not dependent on any previously 

held form of knowledge (including domain-specific core knowledge). She refrains from calling 

such representations knowledge since they are not required to be aligned with truthful facts. 

Secondly, a fundamental aspect of intuitive theories is their inferential role through which these 

initial representations are extended. This inferential capacity of the constructed conceptual 

representation can lead to the construction of new concepts that transcend the initial 

representations. In Carey’s view, this is a process of conceptual change within which an individual 

concept is changed by transforming and restructuring the initial representation. In this way, two 

previously distinct representations can also be integrated. This conceptual change occurs when the 

initial representations can only provide partial interpretations for newly encountered concepts and 

require new representational machinery to provide stable predictions. For instance, young 

children’s intuitive theories about biological functioning before 4 years of age mainly rely on their 

knowledge about humans. They do not make predictions about animal behavior based on 

similarities with other animals, but only based on human characteristics. However, between the 

ages of 4 and 10, children start making predictions about animal behaviors based on their 

similarities to other animals (Carey, 1985). In Carey’s view, this is due to a fundamental 

restructuration in children’s representation of biological functioning. 
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Knowledge in pieces  

Another characterization of intuitive conceptions that is quite different from that of Susan 

Carey’s has been advanced by Andrea diSessa (1993, 2017). In his view, in order to fully grasp 

what characterizes intuitive conceptions, it remains problematic to consider them as coherent, 

theory-like structures and at the same time to consider that they are fragmented (diSessa, 2009). 

He proposes a different set of mechanisms involved in the construction and overcoming of intuitive 

ideas which he terms knowledge in pieces. Through his work about intuitive ideas in physics, he 

explains that the knowledge that students initially expressed in the domain can be isolated into 

separate elements (diSessa, 1993). These elements are knowledge structures called 

phenomenological primitives (p-prims), which are relatively small, usually self-explanatory and 

mainly emerge from superficial interpretations of encountered phenomena. They constitute the 

essential elements with a minimal degree of abstraction, upon which a set of simple cognitive 

mechanisms act. On their own they are unstructured, meaning that there are no elements that have 

a more important role than other elements. Specific cues can lead to their recognition which triggers 

certain activations. The successive activation of distinct elements creates certain cueing priorities 

and influences future activations. Their appropriate activation is what ultimately leads to learning. 

When the p-prims can no longer satisfy their self-explanatory character, their function changes and 

they are integrated, encoded into more complex knowledge structures in which different kinds of 

relations can be established among them depending on the context, while at the same time 

continuing to exist as distinct intuitive elements at the p-prime level. In his example of learning 

mechanical physics, diSessa (diSessa, 1993) has listed more than 10 elements which represent p-

prims that can interact through more than a dozen of heuristic principles which shift the function 

that these elements initially have in their naïve state.  

Even though there are certain differences, diSessa’s approach has commonalities with other 

widely spread frameworks of intuitive conceptions. Other authors have interpreted diSessa’s 

proposals concerning p-prims as corresponding to the multiple sensory percepts that make up our 

experiential knowledge (Vosniadou, 2002; Vosniadou & Ioannides, 2002). The knowledge in 

pieces approach does admit the existence of conceptual networks where connections between p-

prims are made following different experiences and interactions with the environment. The core 

distinction in these approaches seems to actually raise the question of the “grain size” of mental 
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entities that are tracked (diSessa, 2009), which leads to different speculations about the coherence 

in one’s intuitive conceptions.  

INTUITIVE CONCEPTIONS AND ANALOGICAL REASONING 

Useful and misleading aspects of intuitive conceptions 

Whichever framework is adopted for understanding the emergence or the overcoming of 

intuitive conceptions, most authors agree that they constitute dynamic conceptual systems that have 

an influence on newly encountered knowledge. Some pioneering studies about the naïve theories 

in biology illustrate how children’s intuitive conceptions are transposed when they need to make 

predictions about unknown entities. Following Piaget’s (1960) claims that children have a strong 

tendency toward animistic and personifying tendencies, Inagaki and Hatano (1987) have explored 

how children actually use their knowledge about human beings to make educated guesses about 

animate objects (grasshoppers and plants) which might be less familiar to them. They illustrated in 

which ways using their intuitive conceptions about humans for predicting and explaining animal 

behavior can at times lead to reasonable predictions, while at other times the conclusions drawn 

from this animistic theory are misleading (Inagaki & Hatano, 1991). In their study, children were 

presented with situations that varied in their degree of similarity to animate objects’ reactions and 

humans’ behavior in specifically designed situations. In the first set of situations, humans and 

animate objects would react in the same way, while in the other two sets of situations they would 

have dissimilar reactions. If the children’s predictions were the same as the ones made by at least 

a quarter of the adult population, they were deemed as reasonable. Indeed, when six-year-old 

children relied on the person analogy in situations where humans and animate objects would react 

similarly, they produced reasonable responses about their behavior. However, when they relied on 

the person analogy in dissimilar cases concerning the mental life of animate objects, they would 

produce unreasonable predictions. This goes to show that relying on intuitive conceptions has a 

certain domain of validity: using it to make predictions can at times provide answers that are 

compatible with the target domain, however it also has certain constraints since using it will, at 

other times, produce inferences not valid in the target domain. Furthermore, Inagaki and Hatano 

found that children did not rely on the personifying analogy in situations where it would lead 

children to make predictions about the reactions of animate objects contradictory to their existing 

knowledge about them. According to other studies conducted by these authors, one reason why the 

personifying analogy was not observed was that they used a different kind of analogy which was 
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not envisioned in this study (Inagaki & Hatano, 1987). Nevertheless, their findings indicate that 

the constraints imposed by intuitive conceptions mainly arise when subjects lack factual knowledge 

about the target domain. 

Intuitive conceptions as analogical sources 

One explanation of why children rely on intuitive conceptions when they encounter new 

situations can be found in the processes underlying analogical reasoning. Scholars in this field put 

great focus on the influence that existing knowledge has on cognitive processing. In broad terms, 

current approaches to analogical reasoning in psychology consider it as a set of processes that make 

it possible to understand one thing by referring to something else (Holyoak & Thagard, 1995). 

These processes are considered to rely on mappings between an unknown or less familiar entity – 

a target – and a more familiar entity – a source (Gentner, 1989; Holyoak & Thagard, 1995). Even 

though in the field of analogical reasoning less research has addressed it, a first step in establishing 

this relationship relies on encoding the representation of the target (Chalmers, French, & 

Hofstadter, 1992; Sander, 2000). With it occurs the retrieval of the analog source. There exist 

different accounts for the similarities that lead to establishing the relations between the two 

(Holyoak & Morrison, 2005). Once the relations between the two are established, they enable one 

to draw inferences about the target entity. These inferences undergo an evaluation process, and 

when the inferences are compatible with other knowledge held about the target domain it can lead 

to learning by enhancing the target concept, whereas they can be disregarded when they are not. 

Following this evaluation, certain re-representational processes may occur through which not only 

is the representation of the target enhanced, but also the representation of the source.   

However, one fact might be surprising when considering that analogical reasoning provides 

a relevant framework for understanding the influence that intuitive conceptions have on making 

inferences about newly encountered situations. When studying analogical reasoning, most studies 

are based on experimental paradigms involving an explicit comparison between the analog source 

and the target (Sander, 2000). Typically, when considering this preponderant experimental 

paradigm, the alignment of different concepts is put at the core through the solicited comparisons. 

This experimentally induced comparison process relies on the controlled sources of analogies and 

leaves almost no space for understanding the spontaneous evocation of different sources such as 

the influence that intuitive conceptions have even when they have not been explicitly solicited. 

Hofstadter and Sander (2013) have advocated that this evocation process of making analogical 
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associations with sources that come to mind is a crucial aspect of analogical thinking where all 

previously acquired words, phrases and more broadly concepts can be mobilized for understanding 

a new situation. They, therefore, consider that, even though there is no deliberate mapping between 

two situations, relying on intuitive conceptions as sources in order to interpret an unfamiliar 

concept and make sense of a new situation falls directly within the process of analogy-making. 

Indeed, these naïve analogies which are used automatically and effortlessly provide a good 

foundation for understanding the influence of intuitive conceptions. For instance, in the 

aforementioned study about children’s intuitive biology (Inagaki & Hatano, 1991), in order to 

explain the target behavior of animate objects children relied on their knowledge about human 

behavior as the source of analogy. Through this analogy, when they lacked factual knowledge, they 

made inferences about the target. Even though the children in the study were not asked to compare 

the animate objects to humans, their responses clearly indicated that they made predictions based 

on their knowledge about humans. Sometimes these inferences provided reasonable predictions 

and the analogy, therefore, has a domain of validity of the target entities, whereas at other times 

the inferences provided unreasonable predictions for which the analogy was not valid in the target 

domain.  

Analogical encoding 

Once intuitive conceptions are considered as sources of analogies, it makes it possible to 

address their influence on knowledge acquisition through insights of how prior knowledge 

influences the understanding of inherently incomplete input encountered in daily life. Ross and 

Bradshaw (1994) have conducted a set of studies investigating at which moment prior knowledge 

intervenes when understanding new situations. First, they presented adult participants with three 

target stories, each was ambiguous and had two possible interpretations. For example, they 

presented a story describing a protagonist’s routines, the actions sequences and his relations to 

them, but did not give an explicit context in which the protagonist was found. The actions described 

were compatible with a jailbreak scenario as well as with a wrestling match. The targets were 

preceded by source stories. For every target story, there were two possible source stories, each of 

which could lead to one of the two possible interpretations of the target story. For the previous 

target example, one source story would describe a retirement party for a reporter who covered a 

jailbreak story, while another source story would describe a protagonist who’s passionate about 

wrestling matches and Shakespeare. One version of each source story was presented to the 
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participants, along with filler stories. After the target task, the participants were asked to describe 

what they thought the story was about. What they found was that there were significantly more 

participants who gave interpretations of the target stories consistent with the presented source 

stories than those who had inconsistent interpretations. The presentation of the source stories 

affected the interpretation of the target stories. The prior knowledge sharing superficial similarities 

affected the interpretation of target stories. Secondly, they looked directly at how participants 

processed the information of the target stories through their reading times. They constructed critical 

sentences, half of which were consistent with the first interpretation of the target story (and 

inconsistent with the second) and half of which were consistent with the second interpretation (and 

inconsistent with the first). The results revealed that the sentences consistent with the source story 

that was read by the participants had significantly shorter reading times. According to the previous 

literature, this was interpreted as a sign that these sentences were consistent with the participants' 

current understanding of the situation. These findings therefore reveal not only that previous 

knowledge affects how a target situation is understood, but that prior knowledge influences the 

actual processing of the target. Their findings endorse the view that specific instances of prior 

knowledge enrich the representation of a situation directly during the initial encoding. Intuitive 

conceptions, as cases of analogical sources, can therefore be considered to intervene during the 

initial encoding. 

Indeed, the overextension of intuitive conceptions can be explained by the process of 

analogical encoding (Gentner, Loewenstein, & Thompson, 2003). Just like any form of analogical 

reasoning, analogical encoding considers that observing commonalities between different entities 

is essential for learning. In order to investigate this process, in one study participants were presented 

with a source example illustrating one explicitly stated principle about negotiation techniques 

followed by a target example illustrating the same principle in a different domain, but without any 

explicit explanations. They were encouraged to compare the two examples and express in detail 

the underlying commonalities between the compared materials. When the participants had to 

provide a solution to a test example that could be solved by three different negotiation principles, 

they indeed solved the example following the principle they had previously acquired in the 

comparison activity. The authors further demonstrated that the abstraction of the schema common 

to the two examples had transfer benefits to the test notably when there was a comparison training, 

and most importantly one aiming at analogical encoding, rather than studying the examples 
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separately. The first specificity of analogical encoding demonstrated by these results is that the 

source does not have to be a rich set of knowledge or fully acquired in order to be transferred. It 

can indeed even be faulty, and it is through the comparison with the target that the source can be 

apprehended to a greater extent as well. This is the case of intuitive conceptions, which are usually 

faulty since they are not aligned with culturally accepted knowledge about specialized notions. The 

authors stress the importance that learning abstract schemas and transferring strategies to new cases 

depend on analogy making processes. Yet another important aspect of analogical encoding stresses 

that the initial encoding of a situation has an important influence when encountering new situations 

that it can relate to. Indeed, following the current approaches to analogical reasoning there is a 

growing number of studies that support the enrichment of not only the target but also the source 

analog.  

Not only does the encoding of the target influence the abstraction of commonalities between 

different examples, but this encoding of the target’s representation is that studies have paid much 

less attention to (Sander, 2000). Hofstadter and Sander (2013) have stressed the importance that 

the encoded characteristics of the situation have for evoking the situation in the future. This 

encoding includes both salient details specific to the situation, and also some salient abstract 

characteristics. Just like there can be multiple details specific to the situation that is encoded, there 

is more than one abstract structure that can be stored in memory during the encoding process. Each 

situation can have multiple abstract structures that are contained in it. In the previous study the test 

target situation ultimately had a wide variety of potential encodings, and it was the previously 

acquired structure that had the greatest influence on the encoding made by the participants. This 

encoding process highlights the importance that previously held knowledge has on how the 

representation of the target is constructed. Indeed, as an important process in analogical reasoning, 

the initial encoding of a representation is not only dependent on preexisting conceptual structures, 

but the encoded characteristics also influence the source that will be retrieved. Undeniably the 

different encodings of one representation can each lead to different inferences. 

THE INFERENCES STEMMING FROM INTUITIVE CONCEPTIONS  

Conceptual metaphors as a form of categorization 

Metaphors have been seen as cases of analogies that provide a way of establishing 

correspondence between concepts that are usually seen as belonging to semantically different 

domains (Bowdle & Gentner, 2005). Taking a situated perspective on how people come about to 
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establish and grasp abstract concepts, Lakoff and Johnson (1999) argued that conceptual metaphors 

play a fundamental role. They later put emphasis on the importance that familiar, embodied, human 

activities have in constructing them. Lakoff and Johnson’s approach considers that the metaphors 

conveyed in language are not just figures of speech that have rhetoric qualities, but actually reflect 

the conceptual system of the speaker. In their view, conceptual metaphors are central cognitive 

mechanisms for structuring conceptions. They are defined as grounded, inference-preserving 

mappings across different domains. They reflect the physical, spatial system in which they are 

represented such as knowing is seeing which is later used in sayings such as “see what I mean” as 

a way of conveying the metaphorical content – act of knowing – rather than the literal expression 

– the act of seeing. Even though significant debate exists about the embodiment of metaphors, it 

should be acknowledged that conceptual metaphors could emerge from different levels of 

experience and are still useful for grasping abstract concepts (Gibbs, 2009). Hundreds of 

conceptual metaphors have been studied in detail by looking at the kinds of attributes that are used 

in order to conceptualize abstract terms, like physical closeness used to conceptualize similarity 

through expressions like “This is a big issue” or “It’s a small matter, we can ignore it”. Conceptual 

metaphors can therefore also provide a method for studying the underlying conceptions held by 

people. 

Glucksberg and Keysar (1990) have proposed that categorization is the mechanism that 

accounts for how metaphorical content is understood in a communicative context. They consider 

that in order to understand a metaphor such as My job is a jail, one doesn’t just access the numerous 

mental categories in which the source of the metaphorical analogy “jail” can be classified. They 

propose that one actually derives an abstract ad-hoc metaphoric category. This metaphoric category 

does not have a conventional name but is based on a set of properties that are exemplified by the 

source and can be attributed to the target, for example, as ‘a set of unpleasant situations that are 

difficult to get out of’. It has the same structure and function as any ordinary mental category. 

Therefore, the target concept, in this example “my job”, once assigned to this metaphoric category 

can be understood since, as a subordinate concept, it inherits the properties of the category.  

Categorization makes it possible to make inferences 

Categorization is indeed considered to be a key process in conceptual development. Eleanor 

Rosch (1978) qualified categorization as an automatic process through which perceived 

information is structured into a system creating a mental category that provides a maximum amount 



34 | Chapter 1 – Development of intuitive conceptions  

of information about the categorized entity with the least cognitive effort. The possibility to easily 

make inferences and predictions about a newly encountered entity simply by considering it as 

belonging to a certain category is indeed the most important quality of categorization (Murphy & 

Ross, 1994). Rosch (1978) described mental categories as having a gradual structure, meaning that 

certain entities can be considered more easily as belonging to a certain category than others. She 

describes the vertical dimension of a category that determines its level of inclusiveness: the more 

abstract the level of categorization is, the more inclusive it is; however, all levels of abstraction are 

useful. This dimension makes it possible for conceptual categories to have hierarchies. On the 

horizontal dimension, a category contains at its center a “prototype”, and the further we move away 

from it the less representative the entity is of the category. The prototype is not necessarily a 

specific instance of the category, but rather represents an image of what is considered the most 

prototypical item of the category. The prototype imposes constrains when evaluating other objects: 

an item that is inconsistent with the prototypical attributes of the category probably will not be 

recognized as a member of the same category. Yet, how we categorize an entity largely depends 

on the context in which categorization takes place (Barsalou, 1982), as well as the level of 

proficiency one has with the concepts at play (Chi, Feltovich, & Glaser, 1981).  

Eleanor Rosch’s initial work mainly focused on the category structures regarding concrete 

objects or events, considering that a category is generally designated by a name. However, as we 

have seen, a mental category can also be defined by the set of properties it represents (Glucksberg 

& Keysar, 1990). Hofstadter and Sander (2013) have considered that categories outnumber words, 

since they are most often difficult to lexicalize and are sometimes represented in the form of 

proverbs or idiomatic expressions. Mental categories can even be constituted to represent 

experienced situations, grammatical patterns, and many different forms of abstract entities. In fact, 

they consider categorization to play a key role in the conceptual structuring of human thought 

which is carried out by analogy making (Hofstadter & Sander, 2013). They propose that the degree 

of abstractness of the source category is the crucial element that will make it possible to understand 

the target, which does not necessarily require the creation of a new metaphoric category. They 

consider that most concrete categories also exist in an abstract category form, which does not 

contain all the properties of the concrete category. In their view, new ad-hoc categories are only 

created when the concrete concept does not already exist in the form of an abstract category. This 

goes well with Glucksberg and Keysar’s descriptions of metaphoric categories which usually have 
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an abstract character and provide an account as to how Lakoff and Johnson’s conceptual metaphors 

can create categories for abstract concepts. The inferences that are drawn from a category are not 

just formal logical deductions, but more broadly they can simply be seen as a certain aspect of the 

activated concept that is brought to one’s attention (Hofstadter & Sander, 2013).  

Different conceptions lead to different inferences 

Regarding intuitive conceptions, numerous studies have demonstrated that different 

conceptions entail different inferences. For instance Vosniadou and Brewer (1992) studied the 

conceptions that elementary school students have about the Earth’s shape. They conducted 

individual interviews with first, third and fifth grade students in which they asked them questions 

about the Earth’s shape and elicited drawings that would illustrate the shape of the Earth. Besides 

asking factual questions about the Earth’s shape, which could simply have been facts that students 

retained without any theoretical implications, they also asked generative questions in which 

students had to explain different phenomena that would reflect their understanding about the 

Earth’s surface. For instance, even if a student would say that the earth is a sphere, they would ask 

them what would happen if they walked in a straight line for many days or used different 

transportation modes. These questions would allow the researchers to detect inconsistencies about 

alternative notions that they associate with the concept of the earth’s surface. Vosniadou and 

Brewer identified five alternative mental models that students have about the shape of the earth 

which did not correspond to the scientifically, culturally accepted sphere model. Each one of these 

models entailed different misconceptions concerning the inferences that can be generated from 

such models. Furthermore, students answered questions with generative inferences that were 

consistent with their mental model of the Earth’s surface. For instance, students who believed that 

the earth was a flattened sphere considered that you can walk around the world and end up in the 

same spot, but explained the inconsistency about seeing a flat surface by describing it as a thick 

pancake with a flat surface and rounded ends. 

In order to understand the prerequisites for grasping the model of Earth having a spherical 

shape (Vosniadou & Skopeliti, 2005) looked at how students spontaneously categorize Earth. Frank 

Keil (1989) has previously proposed that children classify knowledge according to different 

ontological categories and when these categories are theory-driven lead to inductive 

generalizations. Considering that at a certain stage children’s conceptual knowledge is theory-

based, Vosniadou and Skopeliti (2005) considered that categorizing the Earth as a physical object 
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will lead to different inferences than if the Earth was categorized as a solar object. They presented 

first and fifth grade students with a categorization task in which they were asked to categorize the 

Earth, astronomical and physical objects as they considered it adequate. Their findings revealed 

that, when asked to group ‘things that go with the Earth and things that do not’, children categorized 

the Earth with other objects based on their theory of the Earth being either a solar object or a 

physical object. They were then asked the same set of questions as in Vosniadou and Brewer's 

(1992) study for which students would respond based on the inferences drawn from how they 

categorized the Earth. The results revealed a significant correlation between the students’ 

categorization of the Earth and their responses concerning the shape of the Earth. When Earth is 

categorized as a physical object, the inferences regarding its solidity and lack of self-initiated 

movement apply, whereas when it is re-categorized physical-astronomical object it can be 

considered to obey the same inferences as the ones we make about other planets. 

Based on these and similar findings, the framework theory (Vosniadou, 2014; Vosniadou 

et al., 2008) considers intuitive conceptions in physics and mathematics are structured into a 

coherent system and that when the principles stemming from intuitive conceptions are violated this 

can lead to conceptual change. Conceptual change occurs gradually, creating in the process 

fragmented or synthetic conceptions either by distorting scientific information or assimilating it to 

fit with the intuitive conceptions. This approach differentiates misconceptions, which emerge when 

previously held conceptions violate culturally accepted knowledge, from preconceptions, that were 

initially constructed through everyday experience. Notably, the framework theory considers that in 

order to achieve conceptual change and fully understand a scientifically accepted concept, such as 

the one of Earth being a sphere, an ontological category shift, such as re-categorizing the Earth 

from a physical to a solar object, has to take place first. 

Persistence of intuitive conceptions 

Vosniadou and Brewer (1992) suggest that conceptual change implies that intuitive 

knowledge is organized into theories and that these theories can change. However, the mere 

exposure to the correct knowledge is not sufficient in order for the intuitive theory to change. In 

fact, numerous researches have shown that intuitive conceptions are not easy to un-learn and that 

intuitive conceptions are robust and resistant to instruction. For example, before acquiring 

knowledge about biology, young children falsely consider inanimate objects that possess 

autonomous motion as living things. In school, extensive knowledge is acquired about metabolic 
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processes and it could be assumed that distinction between living and non-living things would no 

longer depend on their mobility. However, it seems that this intuitive conception still continues to 

operate even when formal knowledge has been acquired. Babai, Sekal and Stavy (2010) presented 

10th grade students with a task where they had to classify items as living or non-living objects. 

They made a cross selection of items that were either living or non-living entities, moving or non-

moving. The great majority of the students did manage to classify the objects correctly as living or 

non-living. However, the reaction times revealed that they took longer to classify plants, which are 

not mobile objects, as living than they did animals. It also took them longer to categorize as non-

living mobile inanimate objects, such as celestial bodies, than it did for static ones, such as tools. 

A similar method revealed that this intuitive conception has also affected undergraduate students’ 

judgments about living and non-living objects, and even biology professors’ judgments, although 

to a significantly smaller extent (Goldberg & Thompson-Schill, 2009).  

This persistence of intuitive conceptions has been demonstrated in a wide range of domains. 

Shtulman and Harrington (2016) have put to the test intuitive conceptions that contradict scientific 

knowledge in 10 different domains, ranging from fractions to astronomy. They wanted to see if the 

influence of intuitive conceptions contradictory to scientific knowledge diminishes with age, so 

they recruited two groups of participants, young adults around the age of 20, and adults about 45 

years older than them. They expected that since older adults acquired knowledge about the relevant 

scientific theories earlier in life and had more opportunities to use them in their daily life, the 

intuitive conceptions would have faded in strength and relevance. They measured the reaction times 

on statements that were intuition-consistent, and those that were intuition-inconsistent. What they 

expected to observe was smaller lag between the reaction times on intuition consistent and 

inconsistent statements among older participants. However, it is not only that the lag in response 

times was still present, it even increased. Longer reaction times on intuition-inconsistent than 

consistent statements among professional scientists. There is no actual consensus on why intuitive 

conceptions are so resilient. There is even neural evidence that although participants do not exhibit 

behavioral proof of intuitive conceptions in physics as being influential, brain imaging reveals 

activations in areas associated with the detection of inconsistent information (Dunbar, Fugelsang, 

& Stein, 2007).  
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CHAPTER 2 – INTUITIVE COMPREHENSION OF MATHEMATICS 

THEORIES OF INTUITIVE CONCEPTIONS IN MATHEMATICS 

Taking intuitive conceptions into account in school learning 

Since before entering school students already have a rich source of analogies that they can 

use to understand the scientific concepts they are being taught, it is useful to understand how these 

sources might influence student learning. With this ambition, Tirosh and Stavy (Stavy & Tirosh, 

2000; Tirosh & Stavy, 1999) have elaborated the intuitive rules theory in an attempt to explain the 

errors that occur on a variety of tasks in science and mathematics. Intuitive rules are considered to 

be self-evident, and more broadly, to have predictive and explanatory power since the intuitive 

rules can account for the different alternative conceptions observed in mathematics. They are 

supposed to be applicable in any context where the rule matches the situation. Tirosh and Stavy 

explain that these rules are used beyond their range of applicability. One such intuitive rule is 

‘Same A–same B’ which leads to the reasoning that if two objects contain the same quantity of A, 

which is salient in a given task, then they will contain the same quantity of B, even if A and B are 

completely unrelated. This rule is typically observed in Piagetian conservations tasks where 

children are asked to compare two lengths that begin and finish in parallel points. In the case where 

both lines are straight it is indeed helpful in finding the answer. However, when children are 

comparing a straight and a wavy line, the misuse of this intuitive rule will lead to errors. Tirosh 

and Stavy noted that this intuitive rule is also observed and can predict student performance in 

different mathematics tasks regarding proportions, areas and perimeters of geometrical shapes. 

Tirosh and Stavy consider that identifying the intuitive rules which implicitly guide the students 

“enables researchers, teachers, and curriculum planners to foresee students’ inappropriate reactions 

to specific situations, and this can help them plan appropriate sequences of instruction” (Tirosh & 

Stavy, 1999, p. 64). 

Tacit models 

As we have seen, children rely on intuitive conceptions in order to interpret unfamiliar 

concepts. When they start school, they are faced with scientific concepts for the first time in a 

formal setting and there exist different theories that propose a description of how these intuitive 

and scientific concepts interact. As we have previously seen, Tirosh and Stavy's (1999) intuitive 

rules are a task oriented theory that attempts to explain how intuitive rules systematically influence 
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performance depending on the different features of the given tasks. Yet, before their proposal, 

Fischbein (1987) elaborated a theory that addresses the role of intuition in mathematics learning 

oriented towards the conceptualization of mathematical content. 

Fischbein acknowledges that mathematics constitutes a coherent body of scientific 

knowledge, but the main consideration in his theory is that mathematics is an essentially human 

activity. He therefore distinguishes three components of mathematical knowledge: formal, 

algorithmic and intuitive (Fischbein, 1993). The formal component represents the axioms, 

definitions, theorems, and proofs that constitute the formal body of mathematical knowledge as a 

science, while the algorithmic component represents the solving procedures required to solve 

mathematical problems. The third intuitive component finds its roots in and is shaped by 

experience. This generates a system of automatized reactions and beliefs that Fischbein refers to in 

terms of intuitive cognition. Intuitions are characterized by their self-evident nature: their content 

is accepted without the need for any further justification. Most of the time they are automatically 

created and used tacitly.  

Besides self-evidence, Fischbein (1987) described intuitive cognitions as having intrinsic 

certainty, perseverance, coerciveness, theory status, extrapolativeness, globality and implicitness. 

With all these characteristics, intuitive knowledge exceeds the mathematical facts encountered in 

a given situation and makes it possible to extrapolate information about mathematical notions that 

are not directly accessible, and moreover believe in its absoluteness. For instance, after noting that 

the opposite angles of two intersecting lines are equal, the universality of this property is accepted 

intuitively. In Fischbein’s view this is supported by considering that mental behavior, including 

mathematical activities, is based on the belief in the absoluteness of an empirical external reality 

that leads us to organize concepts following an internal consistency. This gives place to a large 

body of intuitions created by generalizing certain properties of certain elements to a whole 

category. Depending on their origin, they can be classified into primary and secondary intuitions, 

both being learned cognitive capacities. Primary intuitions are those that develop from personal 

experience independently of any systematic instruction, while secondary intuitions are those where 

an interpretation from a learned conception has been transformed into a belief. An example 

Fischbein gives for secondary intuitions is the equivalence of an infinite set and one of its sub-sets 

which becomes self-explanatory among mathematicians. Neither of the two types of intuitions are 

considered innate nor a priori by Fischbein; he rather proposes a continuum ranging from naturally 
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acquired concepts to complex, counter-intuitive ones. The secondary intuitions can also vary in 

their degree of abstractness, and once such a mathematical, mainly counter-intuitive concept is no 

longer a mere formal acquisition, it can be considered a secondary intuition. As opposed to some 

other approaches to how intuitive conceptions are structured such as diSessa’s approach, Fischbein 

considers that it is possible to develop new cognitive beliefs that are an outcome of systematic 

scientific training. 

Fischbein (1987) proposed that different tacit, intuitive models are created in order to 

substitute notions that are intuitively unacceptable. They make it possible to encode in one’s own 

terms data regarding the mathematical notion. One of the examples, which we will take a closer 

look later on, is seeing subtraction as the action of taking away. These models shape the intuitively 

acceptable cognitions and can be distinguished along different dimensions. One of these 

dimensions provides a classification of intuitive models regarding the types of similarities observed 

between the intuitive model and mathematical concept. This leads to the distinction between 

analogical and paradigmatic models. In both cases there are systematic similarities observed 

between the intuitive model and the original notion it substitutes. In the case of analogical models, 

Fischbein considers that the intuitive model and the original notion belong to different conceptual 

systems and the similarities are observed at the structural level, making it possible to make 

inferences. The analogies can be both intramathematical, numerical-algebraic symbols or 

geometrical representation, and extramathematical, mainly material representation of mathematical 

concepts. As for paradigmatic models, Fischbein considers that the intuitive model is an exemplar 

or sub-class of the original notion, defined by its function rather than its intrinsic attributes. The 

importance is given to the exemplars that are attached to a mathematical concept. These exemplars 

shape the meaning of the concept and those that are the most familiar for a person become the tacit 

model itself, influencing interpretations and solutions. By considering that there is a tendency to 

see a whole category of a concept through the particular example which becomes the paradigmatic 

intuitive model, Fischbein joins Rosch’s prototype take on concepts.  

These tacit models in mathematics act as mental models substituting for a complex, abstract 

notion, imposing their properties and constraints (Fischbein, 1989). By assigning properties of the 

intuitive models to mathematical entities, Fischbein considers that these analogies can become 

sources of misconceptions – for instance if we use graphic representations, we might intuitively 

tend to derive that each graphical function is intuitive. The intuitive models can at times be in 
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accordance with formal justifications accepted by the scientific community, but at other times, 

incompatibilities between the two can arise. When there is a conflict between intuitive and formal 

components, an epistemological obstacle emerges leading to misconceptions and systematic 

mistakes. These misconceptions can arise in all aspects of mathematics, starting from the execution 

of algorithms in arithmetic calculation to interpreting arithmetic problems. The fact that there are 

conceptually based systematic mistakes makes it possible to conduct analyses through which the 

categories of mistakes are identified and classify the types of errors in order to avoid the misleading 

effects of seemingly evident statements. 

Embodied mathematics 

In opposition to abstract models such as formulas and functions, Fischbein considers that 

intuitive models can be perceived, represented or manipulated like concrete objects (Fischbein, 

1987). In his view the sensory nature of intuitive conceptions comes from everyday experience. 

Lakoff and Núñez (2000) share the view that abstract properties of arithmetic are not directly 

accessible, yet they take a slightly different angle for explaining the origin of mathematical intuitive 

conceptions. Following Lakoff and Johnson (1999), Lakoff and Núñez (2000) take an embodied 

perspective for explaining how conceptual metaphors come to yield arithmetic abstract properties. 

They admit that there are certain simple cognitive capacities such as subitizing, approximation and 

perception of simple arithmetic relationships, that are essential for mathematical cognition, yet they 

view conceptual metaphors as the central cognitive mechanism through which basic arithmetic is 

extended to sophisticated mathematics. In their view mathematical cognition is grounded through 

language and action, which makes it possible to establish a conceptual mapping with a situated 

model that is used for guiding the acquisition of new arithmetic concepts.  

They distinguish two types of metaphors: grounding metaphors, which yield basic, directly 

grounded ideas by projecting from everyday experience onto abstract notions (for instance piling 

objects and addition). One of the main cognitive gains that conceptual metaphors provide is that 

they preserve inference structures. In arithmetic grounding metaphors the metaphorizing capacity 

leads to extend arithmetic beyond subitizing and simple additions and subtractions made on this 

basis. All grounding metaphors extend arithmetic capacities beyond small amounts, and entail 

inferences not only about numbers, but about many different aspects of arithmetic as well. The first 

grounding metaphor that (Lakoff & Núñez, 2000) describe is that of arithmetic as object collection. 

In this grounding metaphor there is a precise mapping from the physical objects to the number 
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domain. Collecting objects through piling them together and taking them apart acts as a source and 

arithmetic capacities based on subitizing are the target domain between which a mapping occurs. 

Correlating with these kinds of everyday activities makes it possible to conceptualize numbers as 

collections and make inferences about them based on everyday knowledge about object collections. 

For instance, this leads to inferences where the number size is like the size of a collection and 

therefore greater numbers are like bigger collections. The second grounding metaphor that they 

propose is arithmetic as object construction in which the source domain is not just a collection of 

objects, but object construction. Since constructing objects requires collecting parts together, this 

metaphor preserves the same inferences from the first grounding metaphor. However, it makes it 

possible to conceptualize numbers as wholes that are made up of parts and therefore this metaphor 

makes it possible to make inferences about fractions as well. The third grounding metaphor is the 

measuring stick metaphor in which the source domain is simply the use of a measuring stick in 

daily life activities. This source which represents a physical segment of a line in space has the 

characteristic of being unidimensional and continuous, therefore it entails different inferences from 

the previous two. Through this metaphor, numbers are conceived as physical segments, and when 

a unit length is fixed, then numbers can be associated with the segments that sequentially follow. 

Lastly, the fourth grounding metaphor is that of arithmetic as motion along a path with the source 

being moving straightforwardly from one point to another. One important inference that is drawn 

from this metaphor and different from the others is that zero is conceived as a point-location since 

the origin of a movement is in fact a point-location. It also provides an extension to negative 

numbers since it is possible to imagine that along the line a person is moving, it extends in the 

opposite direction as well, on which there are also different points. Lakoff and Johnson note that 

this metaphor is often observed in language when people ask for instance if two numbers are close 

or say that a result is around a number.  

In this thesis manuscript, we will bear interest on mathematical concepts that are 

constructed through these grounding metaphors. However, it should be noted that Lakoff & Núñez 

also describe linking metaphors, which yield more sophisticated ideas linking arithmetic to other 

mathematical branches. These metaphors extend aspects of mathematics that have a direct 

grounding to branches that can only be indirectly grounded, such as the concept of limit.    
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INTUITIVE CONCEPTIONS OF ARITHMETIC OPERATIONS 

Even tough Fischbein’s and Lakoff and Núñez’s theories cover a wide area of mathematics, 

from algebra to geometry, in the present chapter we will focus on different intuitive conceptions in 

arithmetic. With Fischbein’s theory of tacit models and Lakoff and Núñez’s conceptual metaphors 

we have seen some main theoretical contributions about intuitive conceptions in mathematics, but 

the different conceptions that we will present will not be limited to their proposals. Indeed, different 

lines of research in psychology (Sophian, 2008) as well as in didactics of mathematics (Blum, 

Artigue, Alessandra, Rudolf, & Van den Heuvel-panhuizen, 2019; Selter, Prediger, Nührenbörger, 

& Hußmann, 2012) converge to provide a better understanding of the primary forms that 

mathematical concepts take in the mind of learners and the gaps that exist between different 

conceptions and the mathematical object. 

Subtraction and addition 

Both Fischbein (1989) in his theory of tacit models and Lakoff and Núñez (2000) in their 

conceptual metaphor approach identify the most prominent intuitive conception of subtraction as 

taking away. In Fischbein’s view where the intuitive model substitutes for the arithmetic operation, 

when subtraction is intuitively performed, we are calculating how much is left after taking away a 

subset from a larger set. This kind of action is also described in the first three grounding metaphors 

of arithmetic, where it’s either a smaller collection that is taken away from a larger one, forming 

another object, either a shorter segment taken away from a larger segment.  Accordingly, the minus 

sign in a formal subtraction would intuitively prompt this conception of taking away (van den 

Heuvel-Panhuizen & Treffers, 2009). The solution to a subtraction stemming from this model of 

subtraction would be referred to as the remainder (Usiskin, 2008). Fischbein (1993) proposed 

different inferences that are entailed from this conception. If one is guided by the primitive model 

of subtraction as taking-away, if we need to take away a quantity B from a quantity A (A – B), this 

can only be done if B < A. He proposes that if the opposite is true (B > A), then if a student sticks 

to this model of subtraction then they might proceed in several ways. Either they will take-away as 

much as possible, either they will reverse the subtraction into B – A. Indeed bugs reflecting 

systematic procedural mistakes that children make when they solve multidigit column subtractions 

have been documented (Brown & VanLehn, 1980; Resnick, 1983). Fischbein analyzed these 

mistakes on conceptual level and indeed found that they can be explained by the conception of 

subtraction as taking-away. When students haven’t mastered the principle of borrowing, then this 
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conception indeed explains the bug such as  
    326
−117
   211

  where the smaller is taken away from the larger 

and 
    542
−389

   200
  where students take out as much as possible. It also provides semantic explanations for 

bugs after students have learned the borrowing principle. 

The intuitive conception of subtraction as taking away is the most widespread one since it 

is most often encountered in daily-life experiences (Fischbein, 1987; Selter et al., 2012). Yet it is 

not the only conception people can have of subtraction and sticking only to this conception has 

been described as too one-sided (van den Heuvel-Panhuizen & Treffers, 2009). Alternatively, 

subtraction has also been conceived as determining the difference (Selter et al., 2012). The fourth 

grounding metaphor of arithmetic as motion along a path explains this conception by referring to 

the source that the distance in moving from point A to B is the same as the distance when moving 

from B to A. When a subtraction is performed following this conception a person is calculating 

how much is needed to reach from one quantity to another. This conception has been also described 

in the comparison model of subtraction, where the answer to the subtraction is referred to as the 

difference (Usiskin, 2008). Indeed, when a subtraction corresponding to the determining the 

difference conception is performed, a distance is bridged from a smaller quantity to a larger 

quantity by adding on (van den Heuvel-Panhuizen & Treffers, 2009). This conception of 

subtraction can indeed provide additional explanations for the errors observed on subtraction 

problems. Indeed, Sander (2001) has analyzed the different bugs made by second and third grade 

students by taking into account both conceptions of subtraction for the semantic explanation of 

students’ errors. He ran a simulation that would consider the procedural interpretation of the errors 

students made and later the semantic errors students made. The findings revealed that taking into 

account the different conceptions of subtraction could provide more accurate predictions of the 

errors students made. The verbal reports provided by students supported these findings and 

corresponded to both the take-away conception and that of determining the difference. This goes 

to show that taking into account students’ intuitive conceptions can indeed lead to more accurate 

explanations for their mistakes. 

Addition is probably the least empirically studied arithmetic operation regarding the 

intuitive conceptions that are involved in its conceptualization and the entailments that it leads to, 

which does not make this operation any less prone to them. The first three grounding metaphors of 

arithmetic entail a conception of addition as putting together since either collections, either physical 
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segments can be put together in order to form larger ones. Yet, this conception of addition does not 

lead to appropriate inferences in all additive situations. Usiskin (2008) gives an example where the 

temperature was -4°C and increases by 15°. If the conception of addition as putting-together was 

to guide a solver in finding how much the temperature increased, then it would not provide the 

correct answer since putting together -4 and 15 would provide the answer 11, instead of the increase 

in 19°. In such cases, an alternative conception of addition would be more appropriate, the 

conception of a shift or slide. Lakoff and Núñez's (2000) description of the fourth grounding 

metaphor indeed entails such an alternative conception of addition, where we base addition on the 

source of the distance reached from point A to point B.  

Multiplication and division 

Fischbein (1987) described the intuitive conception of multiplication to be repeated 

addition. This entails that intuitively multiplication is considered to ‘make bigger’. Yet, when we 

multiply with a decimal number smaller than one, then multiplication in fact makes the initial 

quantity smaller. If one therefore sticks to the intuitive conception, multiplication involving a 

decimal smaller than one or a negative number has no intuitive meaning. It also does not view 

multiplication as commutative (Fischbein, Deri, Nello, & Marino, 1985). As for division, Fischbein 

et al. (1985) identified sharing as an intuitive conception, which considers that division cuts an 

object into equal parts. This partitive view of division sees division as ‘making smaller’ since each 

fragment would be smaller than the initial quantity. If dividing is assimilated with partitioning, it 

entails that the divisor must be smaller than the dividend and must be a whole number, and that the 

result must be smaller than the dividend. However, the latter is not the case if the divisor is a 

positive number smaller than 1. Alternatively, division can be conceived as a measurement where 

the search is for how many times one quantity is contained in a larger quantity. This quotative 

conceptions of division has less constraints, only that the dividend should be larger than the divisor. 

When the quotient (the result of the division) is a whole number, then this kind of division can be 

conceived as repeated subtraction. Lakoff and Núñez (2000) analysis also concur with these 

intuitive conceptions. They described that there are two ways of extending the metaphors which 

ground addition and subtraction to multiplication and division. The first extension is through an 

iterative process, entailing repeated addition as the conception on which multiplication is based 

and repeated subtraction as the conception on which division is based. The second extension is 

made through a pooling process in which collections or segments are fitted together or split apart, 
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entailing a conception of multiplication that produces a pooled collection and division as splitting 

a collection through the sharing process. The inferences that can be drawn from each of these 

conceptions have indeed been shown to impact performance on multiplication and division 

problems. 

A large study was conducted by Fischbein et al. (1985)  with the aim to test the influence 

that the different inferences drawn from these conceptions. The study included 5th, 7th, and 9th grade 

students. They were presented with multiplication and division word problems whose numerical 

values were either compatible or incompatible with different inferences drawn from the different 

conceptions of the arithmetic operation. The students’ task was to write down the operation used 

to solve the problem. The authors reported that students made fewer errors on problems where the 

inferences about the operands were compatible multiplication as making bigger (i.e. when it was a 

whole number), than when it was not compatible with their intuitive inference about the operand 

(i.e. when it was a decimal number smaller than one). For example, students made fewer errors on 

the problem “From 1 quintal of wheat you get 0.75 quintal of flour. How much flour do you get 

from 15 quintals of wheat?” (on average 16.67% of errors in writing down the operation) than on 

the problem “1 kilo of a detergent is used in making 15 kilos of soap. How much soap can be made 

from 0.75 kilo of detergent?” (on average 50.67% errors). As for partitive division, students made 

more errors when the problem violated the implicit rule that the dividend must be larger than the 

divisor such as “15 friends together bought 5 kg of cookies. How much did each one get?” (an 

average of 69.67% errors), where they would mostly invert the division that needs to be done (15/5 

instead of 5/15) compared to problems where this violation was not made (on average only 6.3% 

of errors on the problem “With 75 roses you can make 5 equal bouquets. How many roses will be 

in each bouquet?”. They also made more errors (on average 40.67%) when the operator was a 

decimal number (decimal divisor) such as “I spent 900 lire for 0.75 hg of cocoa. What is the price 

of 1 hg?”. However, when the operator was a decimal number on quotative division problems, 

where this does not violate the constraints that the quotative conception entails, for example on the 

problem such as “The walls of a bathroom are 3 m high. How many rows of tile are needed to cover 

the walls if the width of each row is 0.15 m?”, were on average easier for students (on average 

53.44% correct operations written down) than on the case of partitive division (29% correct 

responses on average). The authors also noted that when no violations occurred, quotative division 
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problems were harder than partitive division problems, yet experimental design did not allow to 

conclude further on these points.  

Another study looked at how children solve multiplication problems considering the 

numbers and structure involved (De Corte, Verschaffel, & Van Collie, 1988).  Taking into account 

the entailments of the intuitive conception of multiplication, the numerical values of the multiplier 

were either integers (compatible with the constraint of the intuitive conception), either decimal 

numbers smaller than one (incompatible with the constraint of the intuitive conception) or larger 

than one (compatible with the constraint of the intuitive conception, but harder for students to 

solve). The wording of the problems could describe an asymmetric case as in the problem “One 

pencil costs 12 Bfr. Ann buys 4 pencils. How much does she have to pay?” where 12 would be the 

multiplier since the asymmetrical relations would lead us to consider 4 times 12 Bfrs. The problem 

could also describe a symmetric case, where the roles played by the different quantities that needed 

to be multiplied could be interchangeable as in the problem “A hen-house has a length of 9 metres 

and a breadth of 4 metres. What is the area of that hen-house?”. Concerning the type of number 

involved in the problem, the analyses conducted on the choice of appropriate strategy and free 

response indeed showed that problems where the multiplier was a decimal smaller than 1 were 

overall the hardest. This finding is indeed consistent with (Fischbein et al., 1985)’s findings 

advocating for the influence of the intuitive conception of multiplication as repeated addition and 

the constraints it imposes on the product of the multiplication – that it should make bigger, and on 

the nature of the multiplier – that it should be an integer. However, when the researchers looked at 

the interaction between the mentioned variables more precisely this effect was present in 

asymmetric problems but not on symmetric problems. Putting aside the possibility that the students 

mindlessly applied multiplication to the situations, the authors proposed that this could mean that 

when a problem does not require the attribution of the role of multiplier and multiplicand to the 

values, such as it is the case of symmetrical problems, maybe the intuitive conception does not 

impose its constraints. Alternatively, students’ performance might have been influenced by another 

primitive model of multiplication, which is the rectangular pattern, which does not entail the same 

constraints as the repeated addition model. Indeed, conceptualizing the product of multiplication 

in a rectangular form has been proposed in the educational literature as a mean for separating 

multiplication from addition and is considered as a way of making the multiplication of fractions 

more intuitive (Freudenthal, 1973). The pooling extension towards multiplication of the grounding 
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metaphors is indeed completely compatible with this view, except that Lakoff & Núñez didn’t 

envision any specific rectangular form in their proposed extension. 

Educational perspective regarding arithmetic intuitive conceptions 

Many researchers concur that the introduction of mathematical concepts in initial 

instruction most often uses the intuitive conceptions of the school notions being taught (De Corte 

& Verschaffel, 1996; Fischbein, 1987; Freudenthal, 1973). According to Fischbein and 

collaborators (1985) “each fundamental operation of arithmetic generally remains linked to an 

implicit, unconscious, and primitive intuitive model. Identification of the operation needed to solve 

a problem […] takes place not directly but as mediated by the model” (p. 4). This implies that these 

intuitive conceptions are robust and will persist after instruction if the necessary measures aren’t 

taken. Even though the influence of intuitive conceptions becomes modulated, their persistence is 

indeed supported by a variety of empirical data. Indeed, even when adults holding at least a 

secondary education degree correctly answer a mathematics task, the inferences drawn from the 

intuitive conceptions impact their performance (Vamvakoussi, Van Dooren, & Verschaffel, 2013). 

Namely, adults were presented with mathematical statements for the four arithmetic operations, 

each containing an unknown value. This was followed by a statement about the possible outcome 

of each operation which could either be mathematically true, for example “5+2x can be greater than 

5”, or false “1+10t is always greater than 1”. What was manipulated experimentally was the 

congruency of the response with the assumed intuition. The statement “5+2x can be greater than 

5” was considered congruent since the response based on the intuition that addition makes bigger 

would lead to a correct judgment of the statement being true, while the statement “1+10t is always 

greater than 1” was considered incongruent since the same intuition would lead to an incorrect 

judgment of the statement being true. The results showed that not only did adults make there fewer 

correct judgments on incongruent statements, but among these correct responses, participants took 

longer to make this correct judgment.  

What may be even more surprising is that not only adults are influenced by the intuitive 

conceptions, but also populations of pre-service and in-service teachers. For example, one study 

presented pre-service teachers with quotative and partitive division word problems (Tirosh & 

Graeber, 1991). Half of the problems contained numerical values that respected the constraints 

imposed by the intuitive conception (for example “Five bottles contain 6.25 liters of rootbeer. How 

many liters of rootbeer are in each bottle?”). The other half of the problems violated the constraint, 
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common to both conceptions of division, that the dividend needs to be greater than the divisor (for 

example “Peanuts are shipped in 5 pounds boxes. How much of a box is filled with .65 pounds of 

peanuts?”). Additionally, participants were presented with four numerical division statements (e.g. 

6 ÷ 3), half of which violated the constraints of the intuitive conception (e.g. 2 ÷ 6), and were asked 

to write down word problems in order to determine the pre-service teachers’ preference and access 

to the different types of division problems. On average, pre-service teachers had significantly 

higher performance when solving partitive division problems (80.62%) than quotative division 

problems (56.5%), but overall they also had significantly more success on problems whose 

numerical values did not challenge the primitive models (85.87%) than on problems that violated 

the constraint (51%). Even though there was no interaction between these two variables, on 

partitive division problems 94% of the pre-service teachers successfully solved problems consistent 

with the inferences made from the intuitive conception, compared to 67% when this was not the 

case, and on quotitive division problems this was respectively observed 78% and 35% of the time. 

Among the correctly invented word problems, most teachers invented problems in line with the 

partitive conception of division, while problems in line with the measurement conception were 

mostly observed when the division in the given operation was a decimal (4 ÷ .5). The interviews 

conducted with a part of the population aiming to shed light on the difficulties and errors made by 

the participants are reported by the authors as support for the strong influence of the intuitive 

conception being division as sharing, even on measurement problems.  

Whatever the theoretical approach we take, the fact that these intuitive conceptions persist 

in adulthood, even among future teachers, can be explained by their strong rooting in everyday life 

experience (Fischbein et al., 1985; Graeber, Tirosh, & Glover, 1989; Lakoff & Núñez, 2000). One 

basic factor why intuitive conceptions persevere is the same as their origin: experience. The 

previously mentioned authors would agree that most of the time in daily life when we are 

subtracting we are searching for the remainder, when we are adding we are putting different 

elements together, when we are multiplying we are making bigger and when we are dividing we 

are partitioning. It is of great educational importance for students to learn to detach the 

mathematical operation from their intuitive models in order to grasp these operations in their formal 

context (Fischbein, 1987). Fischbein describes that through teaching, students are first presented 

with mathematical concepts closely related to the intuitive models, which seems necessary in order 

to grasp the concept, and only later with abstract meaning. He therefore recommends that in order 
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to prepare students to understand the formal meaning of the concept being taught, a first step should 

be to reveal relationships between closely related concepts and explicitly present their common 

underlying structures. For example, Fischbein (1987) stressed that “addition and subtraction are 

intuitively based on opposite practical operations” (p. 209) but are still deeply related. Sometimes 

a problem including addition is solved by subtraction and vice versa. Indeed, the conception of 

addition as putting-together and that of subtraction as taking-away could also be addressed through 

a single conception of a part-whole model (Sophian, 2008; Usiskin, 2008). And furthermore the 

slide conception of addition and difference conception of subtraction can also be joined in a single 

conception of start-shift-finish (Usiskin, 2008). In a similar manner, Fischbein (1987) proposes that 

multiplication and division, as inverse aspects of the same underlying structure, should be treated 

together and in relation to proportional reasoning. 

Even though the primary intuitive conceptions are shown to persist, Fischbein (1987) 

considers that formal knowledge can also become intuitive, creating secondary intuitions. Both 

primary and secondary intuitions are indeed learned, however these secondary intuitions do not 

have “natural roots” as Fischbein describes it, in the sense that they will not develop through 

everyday experiences independently of any instruction. A secondary intuition is constructed once 

certain non-intuitive mathematical knowledge becomes self-explanatory, like for instance when 

expert mathematicians come to integrate the belief of the equivalence between infinite sets and one 

of their sub-sets.  
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CHAPTER 3 – CONCEPTUAL, PROCEDURAL, AND SITUATIONAL ASPECTS OF 

ARITHMETIC LEARNING 

GOING FROM INFORMAL TO FORMAL ARITHMETIC 

Distinguishing and measuring conceptual and procedural knowledge 

Any mathematics educator must have encountered situations where they had the 

impression that students can do a certain task, but do not understand what they are doing, and at 

other times they might have had the impression that their students have the necessary knowledge 

to solve a task but yet do not know how to put their knowledge into practice or commit certain 

errors when they manage to do so. Influenced by these considerations, mathematics knowledge 

has been, in the broadest terms, distinguished into two categories: conceptual knowledge and 

procedural knowledge (Hiebert, 1986). These two types of knowledge are not always easy to 

separate, and can be considered as two ends of a continuum (Rittle-Johnson, Siegler, & Alibali, 

2001). 

A comprehensive review conducted by Crooks and Alibali (2014) identified 6 main 

characteristics crucial for defining conceptual knowledge in the domain of mathematics: 

connecting knowledge within the domain, knowing general principles including rules and 

definitions, knowing principles underlying procedures, knowing the categories around which 

information is organized, knowing the meanings of symbols, and knowing the structure of 

mathematics. This covers a very wide spectrum of knowledge that can be considered conceptual 

in nature, and different definitions cover at least one of these aspects, if not several. The first three 

characterizations of conceptual knowledge are the most commonly present in studies that address 

it and there is a general agreement that it can be either implicit or explicit (and as such 

verbalizable). Crooks and Alibali (2014) proposed to distinguish conceptual knowledge into two 

type, one general, not specific to any particular math problem, and one procedure-specific. The 

first category is general principle knowledge which is defined as “fundamental laws or regularities 

that apply within a problem domain” (Prather & Alibali, 2009, p. 222). This covers all the 

aforementioned main characteristics except for what would be the second type, knowledge of 

principles underlying procedures. This second type of conceptual knowledge captures knowing 

why a procedure is applied to certain problems and why each step of the procedure is relevant. 

Knowledge of principles underlying procedures would also mobilize knowledge about 
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connections, since it addresses the conceptual underpinnings for why the different steps in the 

procedure are taken, and knowledge about categories, since the correct categorization of a problem 

has implications for selecting the solving procedure.  

Procedural knowledge on the other hand is currently consensually described as “the ability 

to execute action sequences (i.e., procedures) to solve problems” (Rittle-Johnson, 2019, p. 126). 

In the past it has sometimes been oversimplified and loosely equated to knowledge memorized by 

rote (Baroody, Feil, & Johnson, 2007). Even though procedures are developed through practice, 

which might be why it was considered a product of rote memory, they cover a wide range of 

competency. Procedures, as the steps necessary for achieving a goal, can be “algorithms – a 

predetermined sequence of actions that will lead to the correct answer when executed correctly or 

(2) possible actions that must be sequenced appropriately to solve a given problem (e.g., equation-

solving steps)” (Rittle-Johnson, 2019, p. 126). Even though procedural knowledge is tied to 

specific types of problems, contrary to conceptual knowledge, and as such less generalizable, it is 

a valuable skill in itself (Baroody et al., 2007). 

A question that is most often raised bears on the relations between these two knowledge 

categories, in terms of their causal relations and developmental precedence. Previously there have 

been views which considered one to precede the other, or even that they develop independently 

from one another. A current dominant take is the iterative view which considers that the relations 

between conceptual and procedural knowledge are bidirectional (Rittle-Johnson, 2019; Rittle-

Johnson et al., 2001). In this view, conceptual and procedural knowledge are intricately and 

dynamically related, and acquiring proficiency in either one can improve the other. Indeed, 

numerous empirical findings provide evidence that gains in one type of knowledge predict the 

gains in the other type (Baroody & Ginsburg, 1986; Rittle-Johnson et al., 2001; Schneider, Rittle-

Johnson, & Star, 2011; for an overview see Rittle-Johnson, 2019). This bidirectional relationship 

between conceptual and procedural knowledge persists over time, yet it is not always symmetrical. 

Even though some studies have found that there was no difference in strength of one knowledge 

type predicting the other (Schneider et al., 2011), other studies focusing on instructional 

interventions found that conceptual instruction lead to greater gains in procedural knowledge than 

the other way around (Rittle-Johnson, Fyfe, & Loehr, 2016). Nevertheless, when procedural 

instruction is carefully structured it can have a significant impact on students’ conceptual gains, 

therefore supporting the iterative account (Canobi, 2009).  
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With this kind of iterative relationship and with theoretical distinctions between conceptual 

from procedural knowledge varying among researchers, it is indeed challenging to make clear-cut 

distinctions when measuring these two categories of knowledge. Procedural knowledge is mostly 

measured through accuracy and procedure use on familiar tasks. On the other hand, there is a very 

large variability of tasks used to measure conceptual knowledge. Among the numerous tasks which 

exist in the literature, (Crooks & Alibali, 2014) identified explanation of concepts and evaluation 

of examples tasks to be well suited for measuring general principle knowledge. The first one 

involves asking participants, older children or adults, to provide verbal explicit definitions, not 

only for symbols, but also provide explanations for rules and elements of domain structures, like 

what it means for two operations to be inverse. Yet it should be noted that since conceptual 

knowledge can be both explicit and implicit, some researchers find tasks that ask participants to 

provide explicit verbalizations of a concept might underestimate the actual conceptual knowledge 

they hold  (Greeno, 1993). Evaluating examples is on the other hand a more implicit measure in 

which performance demands are low. This kind of task can involve recognizing examples, 

definitions or statements of principles. As for measuring conceptual knowledge about the 

principles underlying procedures, Crooks and Alibali (2014) pointed out the task of applying and 

justifying procedures, as well as the evaluation of procedures. They suggest that the first one 

should not only require participants to solve a problem in one way, but also involve a non-

performance-based task in order to have a comprehensive assessment. As for the evaluation of 

procedures, they suggest asking participants to consider and justify procedures that they did not 

generate themselves. Yet, as we can see from the description of these tasks aiming to separately 

measure conceptual and procedural knowledge, we have to acknowledge that it is difficult to 

evaluate one by excluding the other. Engaging with procedures to solve problems often requires 

conceptual knowledge to interpret the problem, and on the other hand making evaluations of the 

underlying conceptions requires understanding the steps involved in the solving process. Thus, as 

Rittle-Johnson (2019) summarizes, items don’t usually tap into a single category of knowledge, 

but are predominant measures of one type of knowledge over the other. 

Informal arithmetic solving strategies  

Before starting to acquire formal conceptual and procedural knowledge in schools, children 

already develop certain forms of early arithmetic. One informal ability that leads to early arithmetic 

is a child’s ability to find the cardinal value of a set by counting the elements that compose it 
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(Baroody & Ginsburg, 1986). Five to six-year-old children usually engage in these counting 

strategies without following a specific order in which the items are counted, however this is not a 

manifestation of them understanding the order-irrelevance principal of cardinality, but simply a 

form of a tagging rule which respects order-indifference. Indeed, children do not realize that if a 

different counting order is made, the cardinal designation of the set will remain the same  (Baroody, 

1984). Children initially use these counting procedures to find answers to arithmetic problems 

(Resnick, 1989). In fact, young children can use these counting procedures to find answers to 

arithmetic word problems before receiving any formal mathematics education (Carpenter & 

Moser, 1982). Before instruction on arithmetic operations, when solving addition problems first 

grade students indeed predominantly count all of the elements of the two sets in order to find the 

answer (Carpenter, Hiebert, & Moser, 1981). This is called the counting all strategy. On 

subtraction problems that describe a situation where one quantity is taken away from another, 

students mainly separate the set that needs to be taken away and then count the elements of the 

remaining set and this is called the separating strategy. Another strategy is the matching strategy 

in which students match the elements of a set one-to-one and count the unmatched elements 

(Carpenter et al., 1981). These strategies constitute children’s initial informal solving procedures 

and when counting one by one is extended to adding or taking-away one by one, Baroody and 

Ginsburg (1986) consider this to represent children’s early informal arithmetic.  

This informal arithmetic is first manifest when using objects or even fingers, and these 

concrete computing procedures also take a mental form leading to the development of informal 

mental calculations (Baroody & Ginsburg, 1986; Carpenter et al., 1981; Resnick, 1989). One of 

the most basic forms of mental arithmetic procedures is the counting on strategy. In the first 

variation students will count on from the first addend and will keep track of how much they need 

to count on. For example, when they are calculating 2 + 4 with this strategy students will start from 

2 and perform: 3(+1), 4(2), 5(+3), 6(+4). The cost of keeping track is reduced when students adopt 

a strategy of counting on from the larger addend. For the previous example this means that students 

will start from 4 and perform: 5(+1), 6(+2), finding the answer 6 more easily. This is also termed 

as the min strategy in the literature (Shrager & Siegler, 1998). In the case of subtraction, students 

develop separating to strategies in which they no longer count the remainder after taking out a 

sub-set but count the sub-set out by counting backwards from the largest quantity while keeping 

track. For example, if students needed to solve 6 – 4 they would start from 6 and count: 5(-1), 4(-
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2), 3(-3), 2(-4) and find the answer 2. Another strategy is the adding on strategy where the child 

engages in a forward counting sequence starting from the smaller and ending with the larger 

number, while keeping track of the counting steps for giving the answer. In the previous case this 

would mean starting from 4 and counting up: 5(+1), 6(+2).  

Some authors have suggested that the different mental arithmetic strategies mainly develop 

through pattern recognition where children realize that counting on from one of the addends is 

redundant with its cardinal designation (Baroody & Ginsburg, 1986). In this view, students adopt 

new strategies in order to reduce the work-load and gain in cognitive economy. Other research has  

attempted to describe the development of children’s arithmetic abilities by proposing 

computational models for strategy choices that students make when solving problems (Shrager & 

Siegler, 1998; Siegler & Araya, 2005). These models focus on the strategies children use and their 

reinforcement, all the while attempting to outline basic cognitive mechanisms that are involved in 

choosing among alternative strategies. These models are therefore in line with theories about 

associative-learning and information-processing (Baroody, 2003). This body of research provides 

a description of the developmental trajectory of how children move away from counting strategies 

to retrieval strategies that resemble more closely adult-like performance. 

The Strategy Choice and Discovery Simulation model (SCADS) (Shrager & Siegler, 1998) 

describes that initially the counting all, or as the authors call it sum strategy is used on initial trials, 

mobilizing a lot of attentional resources. When enough attentional resources are freed up, then new 

strategies can be discovered and if they meet the requirements of including both addends and 

providing the result which corresponds to their addition, then the new strategy is added to the 

repertoire. Later, strategies in which redundant processing is perceived are progressively 

eliminated from the strategy repertoire, such as the counting all strategy. This approach therefore 

puts a crucial value on receiving feedback about the use of a strategy in order to generalize its 

application and it assumes practically no conceptual input other than the requirements tested by 

the metacognitive system if we were to regard them as principles. The SCADS* model (Siegler & 

Araya, 2005) extends the previous models of strategy choice and discovery. On simple additions 

it also considers a decomposition strategy in which the problem 3 + 5 can be solved as 4 + 4. It 

also extends the SCADS model to include strategies used on inversion tasks such as 18 + 16 – 16 

which require a solver to realize that there is no need to engage in the computation of + 16 – 16.  

Even though the model included additional basic cognitive mechanisms such as priming in the 
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simulation, it still does not stipulate a role for conceptual understating. Indeed, both models predict 

that the combination of associative and metacognitive processes would be sufficient to generate 

adaptive choices in strategy use when they are available. 

Yet, a different take considers the development of counting based strategies to be linked to 

the development of implicit conceptual knowledge about number principles (Resnick, 1989). 

Resnick (1992) considers that children’s thinking about numbers is progressively done in four 

different contexts. They start in the object context where objects represent proto-quantities, then 

the second stage is a verbal context, the third a symbolic context where children think with 

numbers, and last an abstract context in which they grasp operators. She considers that children 

display knowledge of principles in each context before understanding it in the next one, and that 

the basis of this comes from the fact that each number is a composition of other numbers. This 

compositional character of numbers is already present in the object context and provides a basis 

for understating arithmetic principles. For example, she considers that when kindergarten children 

perform addition by verbally counting on instead of counting all, they are already manifesting an 

implicit appreciation of arithmetic principles. In this view informal arithmetic knowledge is 

transformed into formal mathematics by thinking about numbers in different contexts and the 

conceptual component of understanding arithmetic principles is the motor of change. 

Formal arithmetic solving strategies 

Knowing arithmetic principles 

One thing that can be regarded as common to these different descriptions of the 

development of informal arithmetic strategies is the detection of regularities, which is exactly what 

defines principles (Prather & Alibali, 2009). The principles inherent to the domain of mathematics 

therefore take part in the construction of a learner’s conceptualization of the domain. They may be 

explicitly taught or simply inferred from experience, which does not change the fact that learners 

can rely on these regularities to solve problems. In order to assess the relationship between the 

knowledge of these principles and the strategies students use, it is important to create opportunities 

for solvers to display behavior that would be characteristic of such principled knowledge. Truly 

grasping the conceptual knowledge that learners hold about arithmetic principles would mean 

testing them not only in symbolic contexts but also in object and verbal contexts, and comparing 

them in order to understand how the knowledge about arithmetic principles develops. We will now 
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focus on two arithmetic principles extensively studied in the literature: commutativity and the 

complement principle between addition and subtraction. 

Findings concur that applying mathematical principles can facilitate computation by 

reducing computational effort and increasing solution accuracy and speed when solving arithmetic 

problems (Baroody, Ginsburg, & Waxman, 1983; Baroody, Torbeyns, & Verschaffel, 2009). For 

example, the commutativity principle states that the order of the operands is irrelevant for 

operations that are commutative. This is the case of addition and multiplication and it allows 

numbers to be combined in any order to find the result. Most studies interested in understanding 

the use and development of the commutativity principle take the use of procedures that imply 

knowledge of it. A great proportion of studies examining commutativity would present participants 

with problems they need to solve and would examine if the used procedures are consistent with 

the commutative principle. For example, following such a design, when a child solves both 3 + 5 

and 5 + 3 by counting-up from the larger addend, or even when they use the count all procedure 

but first count up to five, it is considered to imply knowledge of commutativity because the order 

of the addends is regarded as irrelevant (Prather & Alibali, 2009). Alternatively, other task designs 

might include the looking back paradigm. In this design, when a participant is solving a problem, 

they can also see the previous problem they solved, which could be consistent with an arithmetic 

principle applicable for solving the current problem (for example, being able to see a + b while 

solving b + a). When participants would demonstrate a benefit in this case and not when the 

previous problem is not helpful, then this would be taken as a sign that children have knowledge 

of the arithmetic principle. 

Another principle that is widely studied is the complement principle which describes the 

inverse relation between addition and subtraction. This refers to the consideration that if a + b = c, 

then c − b = a or c − a = b or that the difference c − b = ? can be efficiently determined by 

considering what can be added to b to make c (Baroody et al., 1983). Some scholars use the broader 

term of inversion to describe the subtraction as addition relation. For example, the problem ‘7 – 3 

= ?’ can be solved by a direct subtraction strategy, where subtraction is straightforwardly used to 

solve the problem – the subtrahend is directly subtracted from the minuend). Alternatively, the 

problem can be solved as ‘3 + ? = 7’, direct addition strategy, where it is determined how much 

needs to be added to the minuend to reach the subtrahend. In both cases, the formal arithmetic 

operation that underlies the solution process is the same (Campbell, 2008). Switching between 
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direct subtraction and indirect addition is made possible through the complement principle 

(Baroody et al., 2009).   

Using arithmetic principles 

Baroody et al. (1983) conducted a study in order to investigate if first, second and third 

graders have knowledge about arithmetic principles by evaluating if they are able to recognize 

opportunities where it is beneficial to use them. They presented children with games in which they 

were asked to find the answers to addition and subtraction problems. One of the sessions tested 

the commutativity principle. The students were first presented with a card containing an item in 

which the first addend was the larger addend, such as 13 + 6. The students were instructed to 

respond quickly since the experimenter timed their responses and were asked to describe their 

solution strategies to the experimenter.  The answers were noted on the card and it was placed face 

up so that the student could see it when the next problem was presented. The following card was 

either a target item or a test item. On the target items, the calculation would be a commutative in 

regard to the previous item, in this case 6 + 13. On test items, the student could not rely on the 

commutativity principle to find the answer from the previous calculation they did. They found that 

most children from all three grade levels relied on the commutativity principle to find the answer 

to target items at least on three out of the four target items. This was concluded either from the 

student’s description of the strategy which corresponded to the commutative principle, either if the 

student looked at the previous card and responded within 3 seconds. It is interesting to note that 

students relied on the commutativity principle even when students previously relied on counting 

for finding the solution to the non-target items.  

Another session in the same study, following the same design, tested the complement 

principle. In this case the first card would present a problem such as 9 + 9 while the target card 

would present a problem for which applying the complement principle would allow the student to 

avoid computing the solution, such as 18 – 9. The findings were less consistent among the three 

grade levels in this session. It was only in third grade that students recognized the utility of the 

complement principle in the majority of trials and found the solution to the target problems based 

on it. Almost all of them used the principle consistently after the first use. It was only about half 

as many first and second graders that used the principle on most of the trials. As opposed to what 

was found on the commutative principle, the majority of students who relied on the complement 

principle in the target problems did so after having used strategies on the previous item that are 
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more developmentally advanced strategies compared to the counting strategy (such as computing 

with no evident counting or solutions provided from memory). It should be noted that all the 

problems involved doubles in this series, therefore it is not as surprising that students initially used 

the memory strategy. However, when students did use counting on from the initial item, it was 

only on a minority of cases that students would rely on the complement principle.  

Many studies since have been interested in understanding how these principles develop. 

Following different accounts that children have access to arithmetic principles at different 

moments during development and that their access to the principle is influenced by the context in 

which these principles are assessed (Canobi, 2005, 2009; Resnick, 1992). One study aimed at 

understanding the patterns of individual differences in the development of children’s additive 

concepts, namely the commutative and complement principles, by studying them in different 

contexts (Ching & Nunes, 2017). First grade children were presented with tasks to evaluate their 

additive reasoning and calculation abilities. The first one, the conceptual judgment task, presented 

students with a story problem such as “Mary has 3 fish and her mother gave her 5 more. How 

many fish does Mary have now?”. A puppet would solve the base problem by counting very 

quickly to find the response. A target problem was then presented, and the experimenter would 

ask the students if the puppet would need to count again to solve the problem or could look back 

to the base problem to find the answer. The target problems included 12 test items, which were 

related to the previous base problem by the commutativity principle (for example “Mary has 5 fish 

and her mother gave her 3 more. How many fish does Mary have now?”) or by the complement 

principle (for example “Mary has 8 fish and her mother took away 5 from her. How many fish 

does Mary have now?”). Among the target problems there were also an equal amount of control 

items that served as a correction for possible biases that might have occurred on the test items (for 

example if the participant responded that the test item could be solved by looking back simply 

because it contained the same numbers). Points were only awarded if the student responded 

correctly to both the test and control item. The problems were presented in a concrete context, 

where bricks represented the addends, and an abstract context, without bricks. In the second task 

students had to solve calculations and word problems. This was also repeated approximately 10 

months later, in second grade. Control variables including demographic characteristics, working 

memory, procedural counting and general intelligence measures were also included at the first time 

of testing. 
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The authors conducted latent profile analyses in order to uncover groups of children with 

similar performance on the conceptual reasoning tasks (both concrete and abstract) and identified 

a four-class model as the best fit for their findings. The first group of students had best performance 

on problems involving the commutativity principle in the concrete context, the second group had 

high performance on the commutativity principle in both concrete and abstract tasks but not on the 

complement principle, the third group had low performance only on the complement principle 

when tested in the abstract context, and the last group had high performance on all four evaluations. 

All four categories also revealed significantly different mean scores on the calculation tasks in first 

grade. Additionally, the identified profiles in first grade predicted performance on calculation tasks 

in second grade beyond the effects of the control variables. The authors therefore interpret these 

findings as revealing a developmental trend where knowledge of commutativity and complement 

principles develops first within the concrete context. They also propose that the commutativity 

principle is understood before the complement principle, and that children acquire knowledge of 

the commutativity principle in an abstract context before they start to acquire knowledge of the 

complement principle. This indeed goes well with other studies suggest arithmetic principles are 

first acquired in concrete contexts before abstract ones (Resnick, 1992). They also support findings 

which indicate that not all arithmetic principles are acquired at the same time (Brissiaud & Sander, 

2010; Robinson, Dubé, & Beatch, 2017). But it raises the question of what leads a solver to 

consider the application of an arithmetic principle as relevant for solving a problem. 

Usefulness of applying arithmetic principles 

Previous research provided evidence that the complement principle is involved in 

switching between indirect addition and direct subtraction strategies. Just as it is a general 

consideration that the application of arithmetic principles facilitates the computation required 

when solving problems, a switch between direct subtraction and indirect addition is considered to 

provide computational advantage. Namely it has been suggested that this computational advantage 

is gained on subtraction problems that have operands with a small difference between the 

subtrahend and the minuend such as ‘81 – 79 = ?’ (Torbeyns, De Smedt, Stassens, Ghesquière, & 

Verschaffel, 2009). Even though students’ verbal reports of strategy use did not reveal a high use 

of indirect addition strategies for solving subtraction problem, their response times and accuracies 

seem to indicate that they might simply not report using different strategies. Peters, De Smedt, 

Torbeyns, Ghesquière and Verschaffel (2013) therefore established an experimental design in 
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which the response times of the participants could reveal the use of different strategies on 

subtraction problems by creating linear regression models to assess the data. They presented fourth 

to sixth grade students with subtraction problems for which they varied the numerical values of 

the operands and the presentation format. The problems were either presented in their standard 

subtraction format (83 – 4 = ?) and the ‘unusual’ indirect addition format (4 + ? = 83). As for the 

numerical values they manipulated them on two dimensions: the size of the distance between the 

subtrahend (S) and the difference (D) (small or large), and the relative magnitude of the subtrahend 

compared to the difference (S < D or S > D). This yielded four problem types: (1) large distance S 

< D (34 – 8 = 26 or 8 + ? = 34), (2) large distance S > D (31 – 28 = 3 or 28 + ? = 31), (3) small 

distance with S < D (31 – 15 = 16 or 16 + ? = 31), and (4) small distance S > D (32 – 17 = 15 or 

17 + ? = 32). 

If students systematically used the direct subtraction strategy, then they should have longer 

response times when the subtrahend was large, and the problems was presented in the direct 

subtraction format. In opposition to that, if they mainly used the indirect addition strategy, then 

they should have longer reaction times when the difference was large. Alternatively, if the 

participants switch between the two strategies, then they should have the longest reaction times 

when the subtrahend has the value close to the minuend. And indeed, the model that best predicted 

the reaction times of the participants was the switch model. This model supposed that participants 

would switch between direct subtraction and indirect addition based on the relative size of the 

subtrahend and therefore predicted that problems with relatively small and those with relatively 

large subtrahends (problems for which the distance between S and D was large) would be solved 

faster than problems with intermediate size subtrahend (those for which the distance between the 

S and D was small). Secondly, the researchers compared students’ reaction times on the two 

presentation formats in order to gather additional evidence for the changes in students’ strategies. 

The results revealed a three-way interaction between the presentation format, the magnitude of S, 

and the numerical distance between S and D. For large distance problems, in the case of S > D 

(e.g. 83 – 79 = ?) problems were solved faster when presented in the indirect addition format than 

subtraction format, while in the case of S < D (e.g. 84 – 4 = ?) the problems were solved faster in 

the subtraction format than in the indirect addition format. The authors proposed that this was due 

to the mental re-arrangement of the problem into the opposite format. However, when the distance 

between S and D was small, the presentation format had no effect on the reaction times, since 
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neither of the two strategies yield a clear computational advantage. The authors suggest that 

students rely on fast and quasi-automatic estimation processes in evaluating the relative size of the 

subtrahend and make a choice based on their knowledge of a strategy’s efficiency on a specific 

problem. It should however be noted, that only the participants who were able to solve problems 

in their indirect addition format at a pre-test were included in this study, therefore this does not 

provide information about the development of strategy use, but it does provide strong evidence 

that when these strategies are available to students, they mobilize them in solving arithmetic 

problems. These findings confirmed that switching between direct subtraction and indirect 

addition solving strategies is largely determined by the magnitude of the subtrahend. Based on 

these findings it is also possible to have delimitation of the numerical factors which influence 

students’ strategy preferences on subtraction problems. Furthermore, recent findings using non-

verbal measures of reaction times as well as verbal reports on the looking back task suggest that 

third and fourth grade students do use their knowledge of the complement principle when changing 

between the indirect addition and direct subtraction strategies  (Torbeyns, Peters, De Smedt, 

Ghesquière, & Verschaffel, 2016). Since applying several solving strategies can lead to more 

optimal solving strategies, gaining proficiency in the complement principle has important 

educational stakes.  

MEDIATING ROLE OF SITUATED KNOWLEDGE 

Influence of semantics on solving strategies 

Along with conceptual and procedural knowledge, de Jong and Ferguson-Hessler (1996) 

identify situational knowledge or knowledge about situations as they appear. Such knowledge 

serves to create a representation of a problem from which conceptual and procedural knowledge 

can be invoked. Other authors agree that such situational knowledge should be considered in order 

to grasp the complex relations between procedural and conceptual knowledge (Baroody et al., 

2007). Situational knowledge is often observed in the way math content is presented to 

participants. As we have seen, the presentation format of an arithmetic problem has an impact on 

the strategies used by students to solve arithmetic two-digit subtraction problems (Peters et al., 

2013). The way of presenting a problem strongly impacts  how it is encoded (Mcneil & Alibali, 

2004). 

The most robust effects of content on solving strategies have been observed in the semantic 

structure of word problems. Numerous studies have documented that semantic knowledge 
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illustrated through the problem’s statement can guide the choice of procedures put in place to solve 

a problem. Indeed, Carpenter et al. (1981) took into account the solving strategies that children use 

before instruction based on counting models and investigated if the use of these strategies differed 

based on the semantic characteristics of word problems. They identified two dimensions along 

which the word problems differed semantically: (1) description of action or static relationships, 

and (2) set inclusion relationship. The first dimension was based on the description of action (e.g. 

“Leroy had A pieces of candy. He gave B pieces to Jenny. How many pieces of candy did he have 

left?”), or static relationships between the quantities in the problem (e.g. “Some children were ice-

skating. There was an A number of girls and a B number of boys. How many children were skating 

altogether?”). The second dimension was based on the set inclusion relationship, where either two 

quantities make up a third quantity, one of them being unknown (just as it is the case in the last 

example), or the sets described in the problem are completely separate (e.g. “Ralph has A pieces 

of gum. Jeff has B more pieces than Ralph. How many pieces of gum does Jeff have?”). According 

to the study, the most commonly used solving strategy modelled the relationship or action 

described in the problem. In the first example students mainly used separating strategy (direct 

subtraction), while in the second example, students mainly used the count-all strategy. Thus, the 

semantic structure of the problem was the main determinant of the solution strategy.  

Riley, Greeno and Heller (1983) were also interested in the complexities of children’s 

conceptual and procedural knowledge, namely how it is attributed if children have certain 

procedural or conceptual knowledge based on their problem-solving performance. They highlight 

previous findings that even when it appears as though children lack the understanding of a concept 

on one task, their performance on another task can reveal that they actually do have knowledge 

about the concept which was considered to lack. Riley et al. argue that children’s skills in solving 

arithmetic word problems improve with their understanding of the semantic relationships, since 

problems with the same arithmetic structures but different wordings can lead to substantial 

differences in difficulties for children. Indeed, arithmetic word problems identify quantities and 

describe relationships among them. For problems involving one-step additions or subtractions,     

Table 1: Categories of word problems taken from Riley, Greeno and Heller (1983) 

Action Static 

CHANGE COMBINE 

Result unknown Combine value unknown 
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1.    Joe had 3 marbles.  1.     Joe has 3 marbles. 

Then Tom gave him 5 more marbles.  Tom has 5 marbles. 

How many marbles does Joe have now? How many marbles do they have altogether? 

2.    Joe had 8 marbles. Subset unknown 

Then he gave 5 marbles to Tom. 2.    Joe and Tom have 8 marbles altogether.  

How many marbles does Joe have now? Joe has 3 marbles.  

Change unknown How many marbles does Tome have? 

3.    Joe had 3 marbles. COMPARE 

Then Tom gave him some more marbles. Difference unknown 

Now Joe has 8 marbles. 1.    Joe has 8 marbles. 

How many marbles did Tom give him? Tom has 5 marbles. 

4.    Joe had 8 marbles. 

How many marbles does Joe have more 

than Tom? 

Then he gave some marbles to Tom.  2.      Joe has 8 marbles.  

Now Joe has 3 marbles.  Tom has 5 marbles. 

How many marbles did he give to Tom? How many marbles does Tom have less 

than Joe? 

Start unknown Compared quality unknown 

5.    Joe had some marbles.  3.     Joe has 3 marbles.  

Then Tom gave him 5 more marbles.  Tom has 5 more marbles than Joe. 

Now Joe has 8 marbles.  How many marbles does Tom have? 

How many marbles did Joe have in the 

beginning? 

4.      Joe has 8 marbles. 

Tom has 5 marbles less than Joe.  

How many marbles does Tom have? 

6.     Joe had some marbles. Referent unknown 

Then he gave 5 marbles to Tom. 5.     Joe has 8 marbles.  

Now Joe has 3 marbles.  He has 5 more marbles than Tom.  

How many marbles did Joe have in the 

beginning? 

How many marbles does Tom have? 

EQUALIZING 6.     Joe has 3 marbles.  

1.     Joe has 3 marbles.  He has 5 marbles less than Tom.  

Tom has 8 marbles. How many marbles does Tom have? 

What could Joe do to have as many 

marbles as Tom? 
 

(How many marbles does Joe need to have 

as many as Tom?)  
2.     Joe has 8 marbles.   

Tom has 3 marbles.   

What could Joe do to have as many 

marbles as Tom?   

different semantic relations involving increases, decreases, combinations or comparisons of 

different quantities have been widely used in the literature, and summarized by Riley, Greeno and 

Heller (1983) into one of the most well-known typologies of word problems (cf. Table 1).  
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Change problems describe sequential actions that cause an increase or decrease of one 

quantity over time, and the question can bear on either the initial quantity, the change, or the 

modified quantity (e.g. “Joe had 3 marbles. Then Tom gave him 5 more marbles. How many 

marbles does Joe have now?”). Combine problems contain either two distinct quantities that are 

combined into a whole, either the total quantity is presented along with one of the quantities that 

is combined, and the solver is asked to identify the second quantity (e.g., “Joe and Tom have 8 

marbles altogether. Joe has 3 marbles. How many marbles does Tom have?”). Compare problems 

contain a relational statement and describe a comparison between two separate quantities, and the 

question applies either to the difference between the quantities, or to one of the compared quantities 

(e.g., “Joe has 3 marbles. Tom has 5 more marbles than Joe. How many marbles does Tom have?”). 

In equalizing problems there are two separate quantities, just as in compare problems, except that 

the question bears on how can one set be modified in order to be equal to the other (e.g., “Joe has 

3 marbles. Tom has 8 marbles. How many marbles does Joe need to have as many as Tom?”). 

Numerous studies have provided evidence for the psychological validity of this classification 

scheme (Fuson, 1992; Verschaffel, Greer, & De Corte, 2007). These different categories are also 

widely recognized in the educational literature and can be found in what Vergnaud and Durand 

(1976) described as additive word problem categories in which two measures combine to make a 

third measure or transformations that operate on a quantity providing a new measure, and a similar 

classification, bearing different names, has been proposed by (Vergnaud, 1982). 

A variety of studies have provided evidence that the semantic structures described in these 

problem categories have an influence on student performance. Although the underlying structure 

of certain problems is the same, they use different solving strategies. De Corte and Verschaffel 

(1987a) found that over the first school year, the semantic structure of subtraction as well as 

addition problems determined the material, verbal and mental solving strategies that students used 

to find the answers. A progressive level of internalization (going from material to mental 

strategies) was observed during the year, but the influence of the semantic structure continued to 

influence students’ strategies. An examination of the different material strategies used by students 

when solving addition problems revealed that students mostly used count-all strategies, and that 

the semantic structure lead students to use the counting-all strategy differently. Students would 

add blocks to the first set on the dynamic Change 1 problem but join two sets or not move them at 

all on the static Combine 1 problem. As for the verbal and material solution strategies they found 
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that more students solve the addition problem by starting with the larger addend (compared to 

starting with the addend represented first in the problem) on Combine 1 problems than on Change 

1 problems. Along with other findings (De Corte & Verschaffel, 1987b) the authors proposed that 

the semantics of the problem also influence the ease with which students interchange the two given 

quantities in the problem, since in the Change 1 problem the two quantities have different functions 

(the start set and change set), whereas in the Combine 1 problems both quantities are sub-sets. As 

for subtraction problems, the Change 2 problem was mainly solved through separating from or 

counting down material and verbal strategies, whereas when mental strategies were used, they 

were mostly direct subtraction strategies. On the Change 3 and Combine 2 problem the main 

material strategies were adding on or counting up strategies, while the matching strategy was the 

dominant one on the Compare 1 problem. As for mental solving strategies, students predominantly 

used indirect addition when solving these problems.  

Indeed, the dominant solving strategies observed on each problem directly modeled the 

semantic structure of the problem. As for the difficulty of each problem category, Riley, Greeno, 

and Heller (1983) documented that most Change problems are easier and that students succeed on 

them earlier than on the vast majority of other problem categories. And even when the solution to 

a problem involves a simple addition, Compare problems 3 and 6 are more difficult for children 

than either Combine 1 problems or Change 1 problems. Indeed, compare problems are considered 

as more difficult and cognitively demanding than change problems (Verschaffel, De Corte, & 

Pauwels, 1992), while Combine problems have been less studied, probably because combine 

superset problems have a high success rate as of early age (Riley et al., 1983). Most of these 

problems can even be solved before students have acquired any formal instruction about the 

arithmetic operations (Carpenter et al., 1981). However, even though the difficulties are 

systematically observed, identifying which problems are more difficult than others does not 

provide information as to why a problem is difficult. Different theoretical and empirical attempts 

have followed in order to explain student performance on word problems.  

Arithmetic word problem solving processes 

Schema theory 

Various descriptions of the problem solving processes children engage in have been put 

forward. Kintsch and Greeno (1985) followed the general principles of a discourse processing 

theory (van Dijk & Kintsch, 1983) in order to attempt to understand which processes take place 
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when a word problem statement is read or heard. The main task in solving word problems 

according to Kintsch and Greeno’s (1985) approach is comprehending the text of the problem 

which interacts with the selection of strategies. They focus on how solvers construct a mental 

representation with the necessary information from which the solving process can operate. This 

representation coordinates among two structures: a text base, where the linguistic cues in the text, 

namely the propositions describing the relations among the elements, are captured and form a 

propositional representation, and on the other hand a problem model in which the solver selects 

and infers the information, based on the schemata triggered by the text base propositions, that is 

needed for solving the problem. Based on the propositions contained or derived in this 

representation, a schema representing properties and relations in a general form can be activated. 

Each schema has a procedure associated with it, which are then put in place and operate on the 

numerical values in order to find the solution to the problem. For example, the propositions ‘have 

more than’ and ‘have less than’ in Compare problems activate a more-than or less-than schemata 

which contain a small set, large set and a difference set to which the numerical values presented 

in the problem are attributed. The strategy that is then triggered is the difference schema strategy 

though which the two sets are compared by the match-separate procedure. This procedure matches 

the objects in the small to the large set and counts the objects in the larger set that are not matched 

with the smaller set. Although it provides a solution to the Compare 1 & 2 problems, Kintsch and 

Greeno propose that a conversion into another schemata for the rest of the Compare problems is 

needed. This kind of problem schemata have been described to contain situational, conceptual and 

procedural knowledge (de Jong & Ferguson-Hessler, 1996).  

However, subsequent studies revealed important content effects that influence children’s 

solution processes and performance on word problems. For example, in one study the wording of 

Combine 2, Compare 3 and Change 5 problems was reformulated in such a way that made the 

semantic relations more explicit, without changing the underlying semantic or mathematical 

structure (De Corte, Verschaffel, & De Win, 1985). Even though the applicable schema was not 

modified through such a rewording, the difficulty and errors made by students were. In both first 

and second grade students succeeded better on the reworded problems than on their classical 

formulation. This goes to show that the semantic structure of word problems does more than 

activate a schema through which the problem is solved. In fact, Bassok, Chase and Martin (1998) 

have shown that knowledge about semantic relations inferred from real-world objects influences 
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college students’ reasoning about arithmetic even when they are not solving, but inventing 

problems. The participants were asked to create simple addition or division word problems that 

contain different object sets: either sets that have symmetrical relations, such as tulips and 

daffodils, either asymmetric sets, such as tulips and vases. The semantic (a)symmetry of the sets 

indeed influenced the mathematical structure of the problems that were created: when the sets had 

symmetric relations, the participants created direct addition problems more frequently than 

division problems, whereas in the asymmetric case participants created more division problems 

than addition problems. This kind of semantic alignment between the semantic relations of the 

entities in word problems and the arithmetic operation was also observed in textbooks for grades 

1 to 8. Even more, presenting such categorically related or unrelated word-pairs as primes before 

addition problems influences the activation of addition facts (Bassok, Pedigo, & Oskarsson, 2008). 

Indeed, when presenting categorically related word-pairs, which are semantically aligned with 

addition, there was a priming effect not observed when they were misaligned. All these findings 

suggest that the semantic influence observed on word problem solving is related to more complex 

representational processes that schema activations. Thus, the schema theory does not account for 

all the representational processes that seem to be at play and are not based on text-based schema 

activations.  

Mental models – the situation model 

Alternatively, the model developed by Reusser (1985, 1990a) aimed to shift focus from the 

linguistic and situation comprehension cues a priori linked to solving strategies to the interaction 

between world/content knowledge and mathematical knowledge in the construction of the 

representation. The model called the Situation-Problem-Solver builds on Johnson-Laird's (1983) 

mental model theory, which considers that solvers construct a representation analogous to the 

described situation, not dependent on pre-developed schemas. This analogous representation of 

the real world preserves the structural relations between the perceived objects. Reusser (1985, 

1990) proposed that solvers construct a non-mathematical representation based on their 

comprehension of the situation, through which a person can access the mathematical problem 

model and calculation strategies. This way, a textually based problem is transformed into an 

equation via the situation model. The difference with Kintsch and Greeno’s (1985) model is that 

the activated schema is already a mathematical structure, whereas in Reusser’s model the 

mathematization and calculation are separate part of the solving process. In Reusser’s (1990) view 
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the representation of the situation is a bridging element between linguistic input and mathematical 

output, where concrete actions become abstract actions through access to the mathematical model 

of the problem which itself is connected to a solution equation.  

Thevenot (2010) had tested the relevance of the construction of a mental model of the 

situation as it is described by Johnson-Laird for arithmetic word problem solving. University 

students were presented with Compare 1 and Compare 2 problems, with the question of the 

problem preceding the rest of the text so that they would memorize the protagonists:  

- “How many marbles does Louis have more than Jean? Louis has 33 marbles. John has 

17 marbles” (Compare 1)  

- “How many marbles does Marc have less than Paul? Marc has 14 marbles. Paul has 31 

marbles” (Compare 2). 

The participants were asked to solve the problems and then they were presented with an 

unexpected task asking them to recognize if the questions were presented ‘word for word’ in the 

problems that they had to solve. The questions were either: paraphrased while still describing the 

same relations (for example “How many marbles does Jean have less than Louis?” for the Compare 

1 problem); inconsistent with the initial mental model but with the same linguistic expression 

(“How many marbles does Jean have more than Louis?”); inconsistent with both the initial mental 

model and linguistic expression (“How many marbles does Louis have less than Jean”); or the 

same as the original questions. The original questions were recognized the most often, but the 

paraphrased questions consistent with the initial mental model were more often recognized than 

any of the inconsistent questions. These findings illustrate that it is the representation of the 

situation that solvers encode when solving problems, and not necessarily the linguistic cues 

themselves. However, constructing a representation of the situation does not seem to be sufficient 

for finding the answer. For example, Schliemann, Araujo, Cassundé, Macedo and Nicéas (1998) 

found that teenage street-vendors who attended school irregularly were successful in solving 

certain word problems such as “A boy wants to buy chocolates. Each chocolate costs 50 cruzeiros. 

He wants to buy 3 chocolates. How much money does he need?” but not problems that elicit the 

same mental representation but involve different numerical values, such as “A boy wants to buy 

chocolates. Each chocolate costs 3 cruzeiros. He wants to buy 50 chocolates. How much money 

does he need?”. Among the younger street vendors, multiplication was almost never used to solve 

the first problem. The findings indicate that they actually used repeated addition, and therefore 
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were not able to find the answer to the second problem by applying commutativity to the initially 

represented situation.  Though it is potentially surprising, that solvers correctly represented the 

problems in the first case, but did not find the solution in the second, this is in line with numerous 

studies demonstrating that the strategies children use to solve arithmetic word problems when they 

have not acquired knowledge of the arithmetic operation are informal and situation-based 

(Brissiaud & Sander, 2010; Verschaffel, Greer, & De Corte, 2000). 

Situation Strategy First framework 

 Brissiaud and Sander (2010) proposed the Situation Strategy First (SSF) framework which 

explains that solvers will initially construct a non-mathematical representation of the situation 

which leads to a situation-based solving strategy (either double-counting strategies, derived or 

known number facts, or simply trial-and-error). If this strategy is efficient, the solver will then 

provide a numerical answer. For example, when solving the Change 2 problems such as "Luc is 

playing with his 22 marbles at recess. During the recess, he loses 4 marbles. How many marbles 

does Luc have now?" solvers would use the situation-based strategy that mentally simulates taking 

away 4 from 22 (21 (1), 20 (2), 19 (3), 18 (4)). This is indeed the direct subtraction strategy, which 

in this case is efficient for finding the solution to the problem. On Change 3 problems, such as 

“Mary has 18 euros in her moneybox. For her birthday, she receives more euros and puts them in 

her moneybox. Now, she has 22 euros in her moneybox. How many euros did Mary get for her 

birthday?”, the situation model leads to the strategy of adding on and the use of indirect addition 

as an informal situation-based solving strategy through which the answer is easily provided. Since 

the situation-based strategy is efficient, these problems are called Situation (Si) problems. All 

problems sharing the same wording will initially lead to the same situation model and situation-

based solving strategy, yet this strategy may not always lead efficiently to the solution. What the 

Situation Strategy First framework proposes is that when the situation-based strategy is not 

efficient, it is necessary to modify the initial representation in order to find the solution, either by 

using arithmetic principles, or by explicitly evoking the formal arithmetic operation (cf. Figure1).  
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Figure 1: Architecture of the Situation Strategy First framework taken from Brissiaud and Sander (2010) 

This is what would happen when the numerical values of the problem are changed and 

make the mental calculation modelling the described situation difficult to execute. Consider the 

previous examples, the Change 2 problem in which “Luc is playing with his 22 marbles at recess. 

During the recess, he loses 18 marbles. How many marbles does Luc have now?” finding the 

answer through the informal situation-based strategy would not be efficient, as it would require 

taking away 18 from 22. Yet, by applying relevant arithmetic knowledge this problem becomes 

easy to solve, which is why such problems are referred to as Mental Arithmetic (MA) problems. In 

this case the answer can be easily found if the complement principle is applied and the solution is 

found by performing indirect addition ‘18 + ? = 22’. This logic applies to the Change 3 problem 

“Mary has 3 euros in her moneybox. For her birthday, she receives more euros and puts them in 

her moneybox. Now, she has 22 euros in her moneybox. How many euros did Mary get for her 

birthday?”. The situation-based strategy of adding on is not efficient, but when the complement 

principle is applied the solver can find the answer by simply performing a direct subtraction of 22 

– 3 = ?. The distinction between Si-problems and MA-problems therefore distinguishes the 

efficiency of different solving strategies. 

The empirical assessment of the Situation Strategy First framework presented second grade 

students with Change 2, 3 and 5, as well as multiplication problems, and quotative and partitive 
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division problems, at the beginning and the end of the school year (Brissiaud & Sander, 2010). 

The findings first revealed that at the beginning of the school year students performed 2.32 times 

better on additive Si-problems than on their MA counterparts, and 3.46 times better on the 

multiplicative problems. At the end of the school year, after having received more instruction on 

subtraction and having learned formal multiplication for the first time, this hierarchy of difficulty 

distinguishing Si- and MA problems remained prevalent. Additive Si-problems were on average 

1.73 times easier than the corresponding MA-problems, and multiplicative problems were on 

average 2.15 times easier. A third experiment was conducted with third grade students at the 

beginning of the school year in order gain better insight into the hypothesized strategies following 

the Situation Strategy First framework. The participants were presented with the same problems 

and were asked to solve them and then write down the number sentence that corresponds to how 

they found the solution. On Si-problems, students predominantly wrote down number sentences 

which directly model the situation described in the text, while overall on MA-problems, number 

sentences which reflect the use of arithmetic principles were predominant. These findings confirm 

that the first step students engage in when solving arithmetic word problems is an attempt to 

simulate the situation described in the text. When this simulation is not possible, then they resort 

to using relevant arithmetic knowledge. Brissiaud and Sander (2010) further argued that 

contrasting Si- and MA-problems makes it possible to specify how using procedural knowledge 

depends on conceptual knowledge. The Situation Strategy First framework indeed considers that 

when students fail on MA-problems, it is not necessarily that they lack knowledge about the 

relevant procedures for solving the problem, but rather the conceptual arithmetic knowledge, i.e. 

the ability to apply arithmetic principles. So how do students come to succeed on problems where 

the informal solving strategy is costly? How do they succeed in applying the strategy that is most 

suitable? 

SOLVING ARITHMETIC PROBLEMS ADAPTIVELY 

Adaptive strategy use 

In order to acquire formal mathematics knowledge and attain proficiency, it is important to link 

new mathematical knowledge to preexisting informal knowledge (Baroody & Wilkins, 1999). 

Students’ informal strategies are considered the basis for developing formal mathematics 

knowledge (Van den Heuvel-Panhuizen & Drijvers, 2014). Putting aside informal, situation-based 

strategies when they are inefficient and using a different solving strategy represents an important 
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objective for mathematics education that is not easily achieved. This kind of process regarding 

strategy selection has received much attention in the many considerations about conceptual and 

procedural knowledge. In his reconsideration of procedural knowledge, Star (2005) draws 

attention to an important aspect worth considering in mathematics education – the notion of 

flexibility. He defines deep procedural knowledge as “knowledge of procedures that is associated 

with comprehension, flexibility, and critical judgment and that is distinct from (but possibly related 

to) knowledge of concepts.” This association of knowing multiple procedures as well as choosing 

the most appropriate one given a problem’s features has also been termed with procedural 

flexibility (Kilpatrick, Swafford, & Findell, 2001). However, the term ‘flexibility’ is sometimes 

used to simply refer to a smooth switch between different strategies. When it comes to selecting 

the most appropriate strategy, and not merely using multiple strategies, the term ‘adaptivity’ is 

more often emphasized (Verschaffel, Luwel, Torbeyns, & Van Dooren, 2009).  

Flexibility in the use of different strategies is most valued in mathematics education when 

it is done in regards to the task characteristics and utilizes an understanding of numbers and 

arithmetic operations (Threlfall, 2009). On the other hand, Verschaffel et al. (2009) have proposed 

that task characteristics alone do not grasp the complexity involved in solving problems adaptively 

and identify three main factors that play an important role when operationalizing adaptive 

expertise: the task, the subject and the context. When operationalizing the adaptive use of strategies 

regarding task characteristics, the different strategies that can be used to solve additions and 

subtractions are distinguished. Their advantages and disadvantages are analyzed, and then define 

for which problem types each strategy provides the greatest gain, therefore considering it adaptive 

on that task (Blote, Van der Burg, & Klein, 2001). Taking into account the characteristics of the 

individual who is solving the task often requires observing participants’ performance when they 

can freely use the strategy they want and when they must use a particular strategy. Comparing 

participants' performance in terms of accuracy and speed on these two conditions provides insight 

into how well they master the different strategies (Torbeyns, Verschaffel, & Ghesquiere, 2005). 

Thirdly, the context in which problems are solved can also modulate the adaptive use of strategies. 

Indeed, solving problems within classroom settings doesn’t just emphasize the task goals, but also 

the social goals through the didactical contract (Brousseau, 1997). With these considerations, 

Verschaffel and collaborators (2009, p. 343) proposed that to be adaptive in one’s strategy choice 

means to consciously or unconsciously “select and use the most appropriate solution strategy on a 
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given mathematical item or problem, for a given individual, in a given socio-cultural context.”  

Even though the authors emphasize that ‘the most appropriate strategy’ does not simply refer to 

the strategy that will provide the quickest correct answer, most empirical research focuses on the 

efficiency and ease of execution as a determinant of appropriateness (Selter, 2009).  

The construct of adaptive expertise has been considered to integrate both conceptual and 

procedural knowledge (Baroody, 2003). This integration had already been theoretisized outside of 

mathematics by Hatano, who considered that “flexibility and adaptability seem to be possible only 

when there is some corresponding conceptual knowledge to give meaning to each step of the skill 

and provide criteria for selection among alternative possibilities for each step within the 

procedures.” (Hatano, 1982, p. 16). Indeed, learning to take into account the properties of a given 

situation in order to find the solution to a problem requires a conceptual change (Clément, 2009). 

More recent empirical findings are also favorable that achieving adaptivity by inventing new 

strategies or choosing between existing ones inextricably taps into conceptual knowledge (Blote 

et al., 2001; Rittle-Johnson et al., 2001; Verschaffel et al., 2007).  

Comparison activities as a way of developing adaptive expertise  

A promising path that could foster adaptive expertise in mathematics is working with 

different types of comparisons tasks (Rittle-Johnson & Star, 2011; Rittle-Johnson, Star, & Durkin, 

2017). Comparison tasks favor analogical encoding which is not achieved when examples are 

separately studied (Gentner et al., 2003).  There is a wide range of comparison activities that 

promote different aspects of mathematical proficiency. The comparison of problem categories with 

focus on how these problems differ can help students distinguish between problem categories that 

are easily confused (Vander-Stoep & Seifert, 1993). Comparison of incorrect methods with correct 

ones focusing on why one method works and the other doesn’t has been shown to lead to less 

errors based on misconceptions (Durkin, 2009). While studying different examples that share the 

same underlying concept with focus on what is shared among them can lead to the acquisition of 

this concept (Hattikudur & Alibali, 2010). Achieving procedural flexibility in mathematics 

problem solving can also be achieved through comparison activities in which multiple procedures 

for solving the same problem, with focus on their efficiency, are compared (Rittle-Johnson & Star, 

2007, 2009). In this kind of activity, students are presented with problems that have two worked 

out solving strategies. One of the worked-out examples illustrates a conventional solving strategy 

and the other one a shortcut method. By using specifically designed intervention materials the 
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comparison task focuses students on understanding when and why is one method easier or more 

efficient than another. Engaging students in this task has been shown to benefit not only procedural 

knowledge and flexibility but also conceptual knowledge. This, however, is not the only form of 

comparison activities that can lead to greater mathematical proficiency. There have also been 

demonstrated benefits from comparing informal self-invented and formal procedures on problem 

solving that led to greater conceptual understanding (Hattikudur, Sidney, & Alibali, 2016).  

Alibali, Phillips, and Fischer (2009) were interested in understanding what helps children 

shift from inefficient strategies for solving problems to more efficient ones. They considered that 

one main reason for failure is that they fail to accurately represent key features (Mcneil & Alibali, 

2004), but also, that just as conceptual and procedural knowledge have a bidirectional relationship, 

they take that the problem representation and strategy use also affect each other in both directions. 

In their study they focused on how fourth-grade students solving of equation problems develops 

after participation in different types of lessons focused on the use of strategies that are new for 

students. Two lessons types focused on different common correct strategies through which the 

answer can be efficiently provided, one lesson focused on both of these strategies, and the last 

group did not receive any instruction. Prior to the lessons, students’ problem solving and problem 

representation capacities were assessed. During the lessons, the students did indeed adopt the 

taught strategies, which was reflected in their better performance on problems after the lesson and 

on the post-test (with no significant difference between these two time-points), so it was possible 

to asses if this led to improvement of problem representations. Their findings revealed that indeed 

students had improved on their problem encodings, compared to their initial representations on the 

pre-test, after having learned the new equalizing strategy. However, this was not the case with the 

other, add-subtract strategy. According to the authors, it appears that the equalize strategy lead 

students to focus on elements of the problem (the ‘sides’ of the equation) that they usually fail to 

understand, whereas the add-subtract strategy encouraged students to simply use a different 

strategy on features that they already encoded well before this specific instruction. It seems that 

by learning new, more efficient strategies students can learn also to encode different features of 

the problem, leading to different representations. This favors the importance of re-representational 

processes in attaining adaptive expertise. 

However, switching between two strategies in order to gain computational advantage 

involves a cognitive cost (Luwel, Schillemans, Onghena, & Verschaffel, 2009). The reason for 
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this cost might lie in the re-representational processes that different lines of research have 

considered to support such a switch. Thevenot and Oakhill (2005) have demonstrated that when 

participants are engaged in a cognitively more demanding task, they construct an alternative 

mental representation of the situation. They presented participants with word problems that they 

had to solve such as “How many more marbles do John and Tom have altogether than Paul? John 

has 44 marbles. Tom has 24 marbles. Paul has 41 marbles.”. The participants used an algorithmic 

strategy that would correspond to the initial description of the situation and would perform the 

calculation ‘(44 + 24) – 41’. Clearly, a less cognitively demanding strategy in regard to the mental 

computation would have been consider that Paul has 3 marbles less than John and calculate first 

‘44 – 41’ and then add Tom’s 24 marbles. Yet, participants were more likely to construct this 

alternative representation and use this more efficient strategy only when the numbers were much 

higher (“John has 749 marbles. Tom has 323 marbles. Paul has 746 marbles”). Furthermore, 

empirical research has demonstrated that conceptual rewording of word problems, which aimed to 

highlight the underlying mathematical relations, improved children’s performance, while this was 

not achieved with mere situational rewording (Vicente, Orrantia, & Verschaffel, 2007). This 

stresses the importance of re-representational processes that rely on conceptual understanding in 

order to overcome the tendency to apply informal strategies. 

Semantic recoding 

Achieving adaptive expertise via re-representation process that lead to a conceptual change 

in fact describes the process of semantic recoding (Gamo, Sander, & Richard, 2010): accessing a 

representation different from the one initially evoked by the situation. Gamo, Sander and Richard 

(2010) conducted a study with 4th and 5th graders on specific problems whose initial encoding 

usually leads to the use of costly strategies and wanted to see how the use of more efficient 

strategies can be achieved. In the first experiment they first gathered measures about students’ 

strategy use on two categories of problems sharing the same formal structure (problems that can 

be solved by performing a one-step subtraction), but whose wording is known to influence two 

possible encodings leading to either a one-step strategy either a three-step strategy. For example, 

when a problem describes the relations between numbers of elements (e.g. “In the Richard family, 

there are 5 persons. When the Richards go on vacation with the Roberts, there are 9 persons at the 

hotel. In the Dumas family, there are 3 fewer persons than in the Richard family. The Roberts go 

on vacation with the Dumas. How many will they be at the hotel?”), then the privilege encoding 
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of subtraction is complementation which leads solvers to calculate the size of all the different sets 

(e.g. 9 – 5 = 4; 5 – 3 = 2; 4 + 2 = 6), instead of using a more direct matching strategy (9 – 3 = 6). 

However, when a problem describes relations between different ages (e.g. “‘Antoine took painting 

courses at the art school for 8 years and stopped when he was 17 years old. Jean began at the same 

age as Antoine and took the course for two years less. At what age did Jean stop?”), solvers 

privilege encoding situation as a comparison of different ages which leads solvers to only look for 

the difference between the quantities relative for finding the solution (e.g. 17 – 2 = 15). One group 

of the participants then took part in two training sessions. In the first session the number of 

elements problem was studied by comparing the two possible strategies. The students were asked 

to explain why the result was the same. They then had to solve an isomorphic problem with both 

strategies and the teacher led them to understand the notion of the common part and how it links 

to the matching strategy. The next session followed a similar design but started with problems 

describing heights and graphical representations highlighting the common part was introduced. 

One of the following isomorphic problems studied was a height problem and the second a number 

of elements problem. The results revealed that this led to the increase in use of the matching 

strategy which was more efficient since it only requires a single calculation. Yet, a question that 

remained unanswered was if this increase is actually due to a semantic recoding of the problem 

initially represented as a complementation into a comparison, making it possible to use the 

matching strategy. Alternatively, students could have only learned to use the one-step strategy and 

learned how to apply this new strategy. Therefore, in the second experiment, children were simply 

instructed to solve the different problems by using a one-step strategy. This however did not help 

them discover the matching strategy.  

The authors conclude that the recoding the initial representation of a problem into an 

alternative one is important for producing the transfer of strategies. Semantic recoding could thus 

be of great importance in developing an adaptive expertise in elementary mathematics education 

because accessing a different representation and using arithmetic knowledge opens the path to the 

use of an efficient solving strategy on problems which cannot be easily solved through informal 

situation-based strategies. Therefore, this is a promising direction for designing pedagogical 

interventions that will foster students' re-representational processes. This kind of learning would 

also lead students to consider the abstract relations between the presented elements. 
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CHAPTER 4 – TEACHERS’ CONCEPTIONS OF STUDENT LEARNING 

CONCEPTUALIZING TEACHERS’ KNOWLEDGE 

Pedagogical content knowledge 

For a long time, research on teaching bore on the content being taught and as such, was not 

really the subject of research in psychology. A shift was made when teaching effectiveness started 

to become the subject of research and policy making, and what was observed was how different 

teaching behaviors result in student achievement. Yet this did not give much importance to the 

subject matter and still did not bear on teachers’ thought processes, but rather on their practice. 

Consequently, the question of how teachers’ knowledge about the subject matter is transformed 

into the content of instruction did not receive great attention. Nor were the specific ways of 

translating this knowledge related to how students come understand or misconstruct the content. 

Shulman (1986) found that the lack of focus on this topic is a missing paradigm in research on 

teachers. He criticized the often-made sharp distinction between pedagogy and content and 

considered it essential to understand how teachers transform their understanding of knowledge that 

needs to be taught according to the curricular, into something that students can comprehend. He 

proposed that content knowledge is one category of knowledge that teachers hold, and it refers to 

how knowledge is organized in the mind of the teacher. Not merely the facts and concepts, but 

also the different underlying structures of the subject matter which focus on why it is worth 

knowing it and how it relates to other content. On the other hand, Shulman introduced a notion 

that has since become a very influential concept – pedagogical content knowledge (PCK). 

Pedagogical content knowledge is subject matter knowledge for teaching. It still relies on 

content knowledge, but it is content knowledge that is most relevant for its teachability. This 

category of knowledge includes “the most regularly taught topics in one's subject area, the most 

useful forms of representation of those ideas, the most powerful analogies, illustrations, examples, 

explanations, and demonstrations” (Shulman, 1986, p. 9) which all contribute to making the 

subject matter comprehensible to others. Furthermore, this also requires the teacher to understand 

what makes learning a specific topic difficult or easy. Pedagogical content knowledge, therefore, 

reduces the foremost importance given to mere content knowledge and draws the attention to 

knowledge that teachers have which differs from that of content specialists. Shulman proposes that 

this category of knowledge specific to teachers also requires them to know what are the 
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preconceptions that students have about the subject matter at different stages in their development, 

especially since these preconceptions can often be misconceptions and require the teacher to apply 

strategies which will help students reorganize their knowledge. In fact, given the abundant number 

of studies focusing on exactly these aspects of learning, Shulman considers that this should be at 

the very heart of teachers’ pedagogical understanding of the subject matter. Besides these two 

main categories Shulman (1987) also considered other categories to constitute teachers’ 

knowledge: curriculum knowledge, knowledge of educational contexts, knowledge of learners and 

their characteristics, and knowledge of educational purposes and values. 

Since then, many researchers working on teacher education bore focus on understanding 

PCK, proposing what distinguishes other categories of teacher knowledge from it, and how they 

relate. The different factors that influence teachers' classroom interactions are indeed contextual 

factors, teacher-centered considerations such as their general and subject-specific pedagogical 

beliefs, including pedagogical content knowledge, and lastly their judgments about students, 

namely their performance and comprehension (Wanlin & Crahay, 2012).  Magnusson, Krajcik and 

Borko (1999) followed the work of Grossman (1990) and proposed that PCK is, in fact, the 

transformation of other knowledge categories – knowledge about the subject matter, pedagogy and 

context – into knowledge specific of the teaching profession which helps teachers understand how 

to help students learn the subject matter (Figure 2). This goes well with studies that have 

highlighted the involvement of reconstructive and interpretative processes in teachers’ 

understanding of students’ conceptions (Prediger, 2010). For this purpose, teachers need to make 

sense of “the analogies, metaphors, images, and logical constructs” that influence the acquisition 

of the notion being taught (Davis & Simmt, 2006, p. 300). Even though there is no clear consensus 

on the categories of knowledge that are necessary for teachers to faithfully address students’ 

thinking processes, PCK is still one of the most prominent overarching models of teachers’ 

competence.  
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Figure 2: Magnusson, Krajcik and Borko’s (1999) adaptation of Groosman’s (1990) modeling of the 

relationship between PCK and other domains of teacher knowledge 
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Mathematical Knowledge for Teaching 

The most prominent reconceptualization of PCK in the domain of mathematics education 

was proposed by researchers at Michigan University and is called mathematical knowledge for 

teaching (MKT)  (Ball, Phelps, & Thames, 2008; Hill, Ball, & Schilling, 2008; Hill, Schilling, & 

Ball, 2004). This taxonomy is an ad-hoc model shaped by their previous studies and their effort to 

conceptualize one of the primary elements in Shulman’s PCK – knowledge of how students think 

about the content being taught. The MKT taxonomy is notably useful in order to gain insight into 

the multidimensionality of teachers’ knowledge and the different contributions of content 

knowledge and PCK to teachers’ knowledge. MKT makes a major distinction between subject 

matter knowledge and PCK (Figure 3). The latter does not contain any knowledge forms that are 

specific to students or teaching itself. It covers different aspects of mathematical knowledge 

varying in their degree of expertise. Within it we find common content knowledge which is used 

by adults and teachers in the same way and specialized content knowledge which is specific 

mathematical knowledge for teaching; however, it is related only to the underlying mathematical 

concepts and not pedagogical practice. On the other hand, their description of PCK refers to 

knowledge that teachers should hold in order to be good teachers in mathematics, and it is not 

something that all adults would intuitively know and contains several categories. They subdivide 

it into three categories knowledge of content and teaching, knowledge of curriculum and that which 

has received the most attention - knowledge of content and students (KCS). KCS focuses on 

teachers’ understanding of how a student learns certain content and is defined as “content 

knowledge intertwined with knowledge of how students think about, know, or learn this particular 

content” (Hill et al., 2008, p. 375). One main merit of MKT is that it stems from empirical research 

on the knowledge teachers need in order to teach mathematics. There is even an MKT task 

measuring teachers’ mathematical knowledge for teaching that has been validated. It typically 

assesses all aspects of MKT apart from knowledge of content and curriculum and knowledge at 

the mathematical horizon. Items mainly relate to content regarding knowledge about number 

concepts, operations, and algebra and patterns (Hill et al., 2004, 2005).  
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Figure 3: Mathematical knowledge for teaching taken from Hill et al. (2008) 

Teachers’ diagnostic competence 

While MKT is a useful framework for looking into the construct of teacher knowledge, not 

all research in mathematics education adopts this approach. Nevertheless, when conceptualizing 

teachers’ PCK in mathematics education, there some common characteristics have been identified, 

irrelevant of the adopted framework. A review by Depaepe, Verschaffel, and Kelchtermans (2013) 

investigated how PCK is pervaded in mathematics education research. They found that there are 

four common characteristics of how this kind of knowledge is conceptualized. A first commonality 

on which scholars agree is that PCK connects content knowledge to pedagogical knowledge. 

Second, it deals with the knowledge necessary to achieve the teaching objective. Third, it is 

specific to the content being taught and represents the teachers’ pedagogical translation of it. And 

fourth, content knowledge is a prerequisite for teachers’ PCK. Notably the kind of content 

knowledge considered important is that which allows teachers to be able to make connections 

among different mathematical ideas and to flexibly think in multiple ways about the specific 

concepts being taught. KCS involves teachers focusing on both the specific content being taught 

and learners’ particularities. What Shulman described as central to PCK indeed finds its 

equivalence in this knowledge category. Hill and collaborators (2008) describe KCS as 

encompassing knowing how students typically learn the topic of study, what are the common 

mistakes they make and what misconceptions often arise. Investigating KCS requires tasks through 

which participants would need to rely on their knowledge of student thinking about certain 
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mathematical notions and not their own knowledge about the subject itself. Following this 

definition, another crucial aspect of evaluating teachers’ KCS is relying on empirical evidence 

about students’ performance and how they learn.  

Measuring and quantifying the conformity of teachers’ judgments to objective data about 

student performance is also widely studied in research on teachers’ diagnostic competence 

(Leuders, Philipp, & Leuders, 2018). Teachers’ diagnostic competence are mobilized in diagnostic 

activities which “comprise the gathering and interpretation of information on the learning 

conditions, the learning process or the learning outcome, either by formal testing, by observation, 

by evaluating students’ writings or by conducting interviews with students” (Leuders, Dörfler, 

Leuders, & Philipp, 2018, p. 4). Their aim is to assure teachers have valid knowledge about 

individual students and groups of students so that they can provide students with the necessary 

tools for learning. When given tasks of judging non-specific student groups, as opposed to judging 

the performance of familiar students, the focus bears on the requirements of the task. Diagnostic 

competences mobilize various categories of knowledge, including general and topic-specific 

categories for analyzing student thinking processes through relevant theoretical background 

(Prediger & Zindel, 2017). They are used in assessments on formal tests, but they are also 

commonly used in any classroom practice in order to assess students’ learning processes. They are 

considered to be an important prerequisite for constructing and selecting activities that will 

correspond to students’ abilities and help them overcome potential difficulties (Südkamp, Kaiser, 

& Möller, 2012). This important activity that teachers engage corresponds to what Shulman 

described as ‘knowledge of students' (mis)conceptions’ and ‘knowledge of learners and their 

characteristics’, which was further differentiated as KCS in Mathematical Knowledge for 

Teaching. Some studies have shown that after extensively working with teachers on understanding 

students’ development in the subject matter, their judgments about the students’ thought processes 

improved, and in their classroom practice also evolved in order to favor student development 

(Carpenter, Fennema, Peterson, Chiang, & Loef, 1989). Yet, this correlation has not always been 

observed in later studies (Gabriele, Joram, & Park, 2016). Teachers’ diagnostic judgments are 

nevertheless considered essential to student-centered teaching approaches (Davis & Simmt, 2006), 

the mechanisms of how the diagnostic competence impact students learning need more 

investigation. 
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TAKING ON A STUDENT’S POINT OF VIEW 

Studying Knowledge of Content and Students 

One of the first studies that actually investigated teachers’ views regarding their students’ 

conceptions and learning processes in mathematics was conducted by Carpenter, Fennema, 

Peterson, and Carey (1988). They questioned first-grade teachers about the difficulty of addition 

and subtraction word problems, and about the strategies children use when solving them in a series 

of tasks. The tasks mainly relied on different semantic categories of word problems, for which 

there is a well-established hierarchy of difficulty and knowledge about the strategies students use. 

First, they asked teachers to invent word problems for given number sentences. Second, they 

presented pairs of problems and asked teachers to judge which one is more difficult for students. 

Third they were shown videos of students’ strategies while solving problems and had to propose a 

description of how the students would solve related problems. The findings revealed that the 

teachers were able to propose word problems for which the provided number sentences directly 

models the solution, therefore indicating they are aware of the wide diversity of word problem 

categories. They were also able to identify the kind of strategies used by students when viewing 

videos of them solving problems – for instance viewing a student solve a problem through a 

counting strategy and identify it as such. However, after comparing two problems in order to assess 

their difficulty in the second task, distinctions between problem types were not the dominant 

explanatory factors when it came to explaining why one problem is more difficult than another. 

They often focused on keywords rather than on children’s representations of the problem and 

therefore had difficulties in articulating why some problems are more difficult. The authors explain 

that the teachers did not categorize problems according to the strategies children use.  

The influence of teachers’ own knowledge  

Along with understanding how teachers evaluate students’ reasoning about the content, 

researchers have looked into how teachers’ own knowledge about the task impacts their diagnostic 

competencies of student performance. Some scholars have proposed that having highly proficient 

content knowledge will impact teachers PCK (Nathan et al., 2001). This proposal has been defined 

in the expert blind spot hypothesis which states that “educators with advanced subject-matter 

knowledge of a scholarly discipline tend to use the powerful organizing principles, formalisms, 

and methods of analysis that serve as the foundation of that discipline as guiding principles for 
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their students’ conceptual development and instruction, rather than being guided by knowledge of 

the learning needs and developmental profiles of novices” (Nathan & Petrosino, 2003, p. 906). As 

it has been proposed in Chapter 3, students arithmetic reasoning is considered to first develop in 

verbal contexts developing in a symbolic and abstract context, and the semantic context also 

influences the conceptual development in arithmetic. Yet, several studies have shown that pre-

service teachers with an advanced subject matter knowledge (Nathan & Petrosino, 2003) as well 

as high-school teachers (Nathan & Koedinger, 2000a, 2000b) defend pedagogical approaches 

which focus on symbolic reasoning since they view this as ‘pure mathematics’, whereas when they 

do rely on a verbal context they considered it as ‘mathematical applications’. One study put this 

gap to the test in a study by asking pre-service teachers with advanced mathematics knowledge to 

rank the difficulty of different algebra and arithmetic problems (Nathan & Petrosino, 2003). The 

problems they used were either presented in their symbolic form, either in a verbal form (a story 

problem or word equation). The problems that they had to rank according to their expectations of 

ease or difficulty for students all shared the same mathematical relations. What they found was 

that pre-service teachers with advanced mathematics education deemed that students would be best 

at solving equations and worst at story problems. This contradicts the repeatedly observed findings 

that there are contexts in which students typically perform better on arithmetic word problems than 

on symbolic algebra problems. The authors interpret these findings indeed reflect the teachers’ 

‘expert blind spot’ and propose teachers made judgments about student performance through a 

domain-centric lens. 

Indeed, gaps between prospective teachers’ PCK and content knowledge are not rare 

(Depaepe et al., 2015). An overestimation of students' solution rates, where teachers consider 

certain problems to be easier than they actually are for students, than has been observed in other 

domains of mathematics for example studies bearing on graphs and function (Leinhardt, 

Zaslavsky, & Stein, 1990). Estimating the difficulty of a task is also studied in light of processes 

involved in social judgments by considering that the diagnostic competences of teachers are an 

ability to take on a students’ perspective. Making judgments about other people’s knowledge is 

not exclusive to teachers in educational settings and there already exist conceptual models of how 

people make judgments about the knowledge of others. For example, in Nickerson's (1999) model, 

one’s own knowledge plays the role of a default model and integrates what the person knows 

differentiates their own knowledge from that of others. It is only later on that the judgment is 
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adjusted by one’s knowledge about specific others in order to create a working model of others’ 

knowledge on which one can rely when making judgments. This process of anchoring and 

adjustment is supported by the availability heuristic (Tversky & Kahneman, 1974) through which 

it could be considered that for experts, their extensive knowledge of the domain is so easily 

accessible that it overrules another one’s perspective. In Nickerson’s model this would mean that 

people tend to appraise their own knowledge as more common than it actually is and could thus 

explain the expert blind spot. For this reason, Ostermann and collaborators (2017) proposed a 

translation of this model for understanding mathematics teachers’ judgments. 

Figure 4: Ostermann, Leuders and Nuckles' (2017) model of teachers’ judgments about what students know 

Ostermann and collaborators consider that in making diagnostic judgments, teachers 

mobilize two main categories of MKT: specialized content knowledge and knowledge of content 

and students. The follow Nickerson’s model and consider teachers’ comprehensive expertise as 

the initial input (Figure 4). This initial input is then modulated by what is considered the unusual 

aspects of their knowledge – being aware of what content knowledge they as a teacher poses but 

not students. This is where their specialized content knowledge comes into play. Further on, 

knowledge of content and students influences the teachers’ initial representation of specific groups 

of students. All of these elements contribute to constructing long-term knowledge about specific 

others. In any given situation, these elements constitute the foundation of the working model with 

which teachers make their diagnostic judgments. In the cases when teachers’ judgments are 

overestimations of student performance, it is their extensive knowledge in the subject matter that 
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anchors the diagnostic process and creates the illusion of simplicity of the task for students. 

Osterman et al. (2017) propose that being familiar with this tendency to overestimate students’ 

performance may help teachers to select a more adequate task when teaching and evaluating. 

 

Even though these lines of research are gaining more attention and stress the importance 

of understanding teachers’ knowledge so that they can better address students' misconceptions the 

fact that these intuitive conceptions about the subject matter persist in the adult population has not 

yet gained interest. One of the few studies to take this into account  proposed to combine Shulman’s 

framework of PCK and Fischbein’s theory of tacit models (Tsamir & Tirosh, 2008). They highlight 

that since students’ intuitive, formal and algorithmic knowledge are often inconsistent and that this 

should be implemented and used to refine the tools for evaluating teachers’ PCK and subject matter 

knowledge. Prospective and in-service teachers were questioned about some common mistakes 

that students make when multiplying and dividing fractions. They were presented with different 

calculations and were asked to first list the common mistakes students make and then to describe 

the possible sources for each of the mistakes. The analysis bore on problems for which algorithmic, 

formal and intuitively based mistakes have been identified in the literature. What the first observed 

was that the majority of the teachers stated that they didn’t know what the sources of the mistakes 

are. Interestingly, when they did mention the mistake sources, the majority of the teachers 

mentioned algorithmically-based mistakes, which describe various computing ‘bugs’ and rarely 

intuitively based mistakes. It is true that the lack of reference to intuitively based mistakes could 

have been due to the algorithmic nature of the presented expressions. Additionally, in a study of 

pre-service teachers’ knowledge of students’ misconceptions regarding the division of fractions, 

teachers did not show awareness of the conceptual errors students made and did not identify the 

intuitive knowledge children hold (Tirosh, 2000). This contrasts with the finding that students 

make conceptually based errors when evaluating the numerical value of fractions (Stafylidou & 

Vosniadou, 2004). We believe that it is important to better understand how the widespread intuitive 

conceptions impact teachers' judgments of student strategies and more broadly their PCK.
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AIMS AND OBJECTIVES 

The empirical research conducted in this thesis explores how different facets of analogical 

reasoning are mobilized in arithmetic word problem solving and teaching. Intuitive conceptions 

constitute mental categories constructed on the basis of previous experience and these categories 

can be used to apprehend new concepts and situations (cf. Chapter 1). Yet, besides intuitive 

conceptions, there are other informal processes that influence school performance. Even before 

instruction young children solve arithmetic word problems with small numerical values based on 

their daily-life experience and by using a variety of informal strategies. Behind these informal 

strategies lay complex representational processes. Understanding these representational processes 

is part of a crucial category of teachers’ knowledge and their diagnostic competence which is 

considered to greatly influence their practice (cf. Chapter 3).  

When solving arithmetic word problems, the construction of a situation model is based on 

solvers’ real-world knowledge and represents a step that enables solvers to construct a 

mathematical model and eventually note the corresponding number sentence or operation, making 

it possible to find the solution (Reusser, 1990b; Verschaffel et al., 2000). If we take the example 

of Change 2 and 3 problems from Riley et al.’s (1983) classification, the construction of the 

mathematical operation for solving the problem evolves in parallel with the described situation 

(Reusser 1985, 1990). For the Change 2 problem “Luc is playing with his 22 marbles at recess. 

During the recess, he loses 4 marbles. How many marbles does Luc have now?” solvers almost 

exclusively find the solution to the problem by taking away 4 from 22 (Brissiaud & Sander, 2010; 

De Corte & Verschaffel, 1987a), which corresponds to the mathematical operation of direct 

subtraction ‘22 – 4 = ?’. On the other hand, on Change 3 problem such as “Mary has 18 euros in 

her moneybox. For her birthday, she receives more euros and puts them in her moneybox. Now, 

she has 22 euros in her moneybox. How many euros did Mary get for her birthday?”, most students 

find the solution by adding up from 18 to 22 (Brissiaud & Sander, 2010; De Corte & Verschaffel, 

1987a), which corresponds to the mathematical operation of indirect addition. These informal 

situation-based strategies that straightforwardly model the situation are also related to different 

conceptions of subtraction. Namely, the Change 2 problems is consistent with the intuitive 

conception of subtraction as taking away, while the Change 3 problem is inconsistent with the 
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intuitive conception of subtraction. The Change 3 problem is however within the conception of 

subtraction as determining the difference.  

Furthermore, the numerical values embedded in the problem statements interfere with the 

difficulty of the problem, not only due to their size but due to their effect on the problem’s 

representation. Specific problems can be efficiently solved with the strategy provided by the 

situation model, while at other times the informal solving strategy is inefficient. When the informal 

solving strategy is inefficient, solvers who succeed in finding the answer use formal strategies that 

require the use of conceptual arithmetic knowledge. This raises two questions. Firstly, what does 

it take to succeed in using a formal solving strategy when the initial representation of the problem 

leads to an inefficient informal solving strategy? Secondly, how is the situation model constructed 

when there are no sequences of actions described in the problem? If the construction of a situation 

model only occurs in parallel with a description of changes to a quantity, does one solve static 

problems by directly accessing the mathematical solution, as it would be suggested by Reusser’s 

model? And if not, what provides the solver with an informal solving strategy on static problems? 

Within the educational context, another question that emerges is how do teachers interpret student 

performance on such tasks? 

We propose that it is the process of mental simulation that leads to the use of an informal 

solving strategy. Namely, we propose that the mental simulation isn’t simply situation-based, but 

that it operates on the encoded representation of the problem. This makes it possible for the mental 

simulation to provide solvers with an informal solving strategy even on problems which depict a 

static situation. Furthermore, we propose that encoding a problem’s representation depends on 

both the format it is presented in and the arithmetic conception associated with the problem. When 

the problem is intuition-consistent, this conception will be used as a first resort for the encoding. 

However, when a problem is intuition-inconsistent, other available conceptions will be used in the 

encoding. The encoded representation provides a base on which the mental simulation can operate 

and delivers an informal strategy through which the solver can attempt to find the solution. When 

the mental simulation of the initial encoding is costly, in order to find the answer in a more efficient 

manner, the solver will need to resort to formal solving strategies. The solver will either engage 

with different arithmetic strategies, such as decomposition in order to facilitate the calculation, 

either in a recoding of the initial representation which can diminish the computational difficulty of 

the problem. We propose that in order to achieve this re-representation, the conception of the 
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arithmetic operation used in the initial encoding will need to be put aside and accessing a different 

conception of the arithmetic operation will allow the solver to achieve a semantic recoding of the 

problem. The semantic recoding captures the importance of detaching from the problem’s initial 

semantics and the arithmetic conception associated with it, in order to access a different encoding 

(cf. Chapter 3). This recoded representation will then make it possible for the solver to use a 

different, formal, solving strategy. Following this proposal, even when solvers have gained 

sufficient mathematical proficiency and can easily access a formal solving strategy that efficiently 

provides them with the numerical solution, they would have had to rely on an arithmetic conception 

that is not connected with the one exemplified by the problem. In teachers’ judgments of students' 

solving strategies, it is their own process of encoding the problems’ representations that will be 

used as a default model in order to reason about the strategies students use. 

The empirical research conducted in this thesis explores how informal knowledge 

influences students’ solving processes on arithmetic problems and teachers’ judgments about 

students’ strategies.  We have conducted a series of studies among students and teachers aiming 

to investigate how different arithmetic conceptions influence the encoding of arithmetic word 

problems, both for the purpose of solving them, as well as for evaluating their difficulty for 

students. In Chapters 5 to 7, we present six experiments that we have conducted with a total of 673 

first and second-grade students in classroom contexts, with 36 elementary school teachers and 36 

adults.  

In Chapter 5, we studied the processes involved in solving arithmetic problems. We 

proposed that, based on the semantic relations described in the problems, different conceptions 

would guide the construction of a representation that solvers use to find the solution to a problem. 

We proposed that students attempt to solve problems by performing a mental simulation upon the 

encoded representation. We measured the performance of second-grade students on different 

problem types in collective classroom studies. We expected to observe greater success on problems 

whose initial encoding could be easy to simulate mentally than on problems whose initial encoding 

would lead to a costly mental simulation. By using verbal reports, we then studied and analyzed 

the solving strategies students put in place. We expected to find more informal solving strategies 

on problems that are easy to simulate mentally and formal solving strategies when they succeed 

on high cost mental simulation problems.    
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In Chapter 6, we present a research-based arithmetic intervention program that substituted 

the regular arithmetic curriculum in first-grade classes. The problem solving syllabus aimed to 

promote the use of the most appropriate strategy for finding the solution to different problems. 

Through the use of arithmetic word problems, students worked on the encoding of a problem’s 

representation and its recoding when this initial representation leads to costly solving strategies. 

We conducted a collective classroom experiment with students from the intervention group and 

students who followed the regular curriculum. We looked at both their performance and the 

strategies they wrote down. We expected that students from the intervention group would have 

higher performance and use formal strategies more frequently. 

In Chapter 7, we investigated if the arithmetic conceptions that guide the encoding of 

arithmetic word problems in students will also impact teachers’ diagnostic judgments. Based on 

the previous empirical evidence of students’ solving strategies we selected arithmetic word 

problems that have the potential to mobilize both intuitive conceptions and informal solving 

strategies. The participants were asked to evaluate the relative difficulty of the problems that were 

presented and explain what makes certain problems more difficult than others. Since intuitive 

conceptions persist among the adult population, but it is only teachers who have specialized 

knowledge regarding pedagogical issues of understanding students’ strategies, we compared the 

performance of elementary-school teachers to lay adults. We expected that when the content of the 

problem is intuition-consistent, then teachers will have performance like lay adults, since they will 

have a harder time explaining what difficulties the problem poses for students.  
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CHAPTER 5 – MENTAL SIMULATION IN THE DRIVING SEAT OF ARITHMETIC 

PROBLEM SOLVING 2 

INTRODUCTION 

The current study investigated the processes behind students solving strategies on 

arithmetic problems. We propose that the informal strategies on arithmetic problems reflect the 

mental simulation of a specific problem encoding. The process of mental simulation is not 

unfamiliar in the cognitive science literature. According to Barsalou (1999, p. 586), mental 

simulation consists of the construction of “specific images of entities and events that go beyond 

particular entities and events experienced in the past”. In this view, encountering a situation 

activates a simulation of actions and perceptions associated with it, which are not necessarily 

present in the perceptual surrounding. Landriscina (2013) pointed out that mental models can make 

information available to other cognitive subsystems by way of mental simulation. The involvement 

of dynamic and perceptual simulations in text comprehension and the processing of abstract 

concepts has great support (Barsalou & Wiemer-Hastings, 2005; Zwaan, Madden, Yaxley, & 

Aveyard, 2004). The theory of gestures as simulated action (Hostetter & Alibali, 2008) considers 

this close link between action and perception, and advocates even that the meaning of a sentence 

is simulated in physical terms through gestures, even when there is no physical movement 

described in the sentence. This simulation is characterized by the activation of motor and 

perceptual systems in the absence of external input (Hostetter & Alibali, 2018). Together these 

findings support the proposal that a mental simulation does not have to occur only in the presence 

of action sequences and provides a foundation for considering that on arithmetic word problem 

solving a mental simulation occurs on the encoded representation. 

Mental simulation has actually been previously associated with arithmetic word problem 

solving (Brissiaud & Sander, 2010; Orrantia & Múñez, 2013). Orrantia and Múñez (2013) propose 

that during word problem solving, a simulation, which they refer to synonimously as an analog 

representation, is involved in the processing of magnitudes of the quantities contained in a 

problem. Magnitude processing takes a central role in this mental simulation given the importance 

 
2 Results from experiments 1, 2 and 4 have been published in: Gvozdic, K., & Sander, E. (2017). Solving 

additive word problems: Intuitive strategies make the difference. In B. C. Love, K. McRae, & V. M. Sloutsky (Eds.), 

Proceedings of the 39th Annual Conference of the Cognitive Science Society. London, UK: Cognitive Science 

Society. 
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of numerical magnitudes in the development of numerical capacities (Ansari, 2008) and the strong 

influence a reader’s experience of the world has on their language comprehension (Zwaan et al., 

2004). Their study does provide evidence for the construction of a mental representation of a 

described situation and illustrates its importance in preserving the relationship between the 

described elements. Yet, the mental simulation of the encoded magnitudes cannot not explain the 

different performance rates and strategies observed when semantically different problems contain 

the same numerical magnitudes. The Situation Strategy First framework on the other hand 

proposed a different characterization of the mental simulation taking place in arithmetic word 

problem solving. It proposed that solvers engage in a mental simulation of the depicted situation 

and provides the solver with situation-based solving strategies. The numerical magnitudes within 

the problem can influence the difficulty of the mental simulation, making the situation-based 

solving strategy computationally inefficient. The different situation-based and arithmetic strategies 

observed in a study testing the Situation Strategy First framework are in line with what would have 

been predicted by the Switch model (Peters et al., 2013) about performance on such calculations. 

The switch model describes which combination of the magnitude of the subtrahend, the numerical 

distance between the subtrahend and the minuend, and the presentation format of the arithmetic 

operation yield the switch from one strategy, direct subtraction or indirect addition, to the other, 

the computationally advantageous one. For example, the switch from direct subtraction used on 

the Si-problem to indirect addition on the MA-counterpart would have been predicted by the 

switch model based on the numerical characteristics. Together these findings point to the 

importance of how the problem is encoded as the determinant of the costliness posed for the mental 

simulation.   

When students solve Si-problems the situation model already provides them with the 

optimal format for solving it, be it direct subtraction or indirect addition. Solvers are only in need 

of a correct encoding on which the mental simulation can operate.  These problems mainly evaluate 

the execution of different solving strategies. On the other hand, finding the solution to MA-

problems is not solely based on executing a solving strategy. In order to solve these problems in 

the most efficient manner, solvers need to resort to a different solving strategy than the informal 

one initially provided by the situation model.  
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THE ENCODING AND SIMULATION OF A REPRESENTATION 

We propose that behind solvers' informal strategies on arithmetic problems lies the mental 

simulation of a specific problem encoding. This representation of the problem is encoded 

depending on the format of the presentation and the arithmetic conception embedded in the 

problem. As such, the encoded representation then initiates a mental simulation through which the 

solver attempts to find a solution. When the mental simulation bears low cost for the solver, they 

find the solution to the problem based on the initial encoding. This constitutes an informal solving 

strategy. On the other hand, when it is not possible for the solver to easily find an answer through 

the informal strategy, an arithmetic strategy needs to be used. When the encoded representation 

bears a high cost for the mental simulation, the solvers either rely on the initial encoding but apply 

computational strategies to render the calculation possible, either they re-represent the problem. In 

order to re-represent the problem, the solver would need to recode the initial representation, 

mobilizing conceptual arithmetic knowledge, leading to a recoded representation, which the solver 

can again attempt to mentally simulate. Recoding the representation of the problem is more 

favorable when it leads to a computational advantage and makes the problem easy to simulate 

mentally in this recoded representation. Previous findings on arithmetic word and non-word 

problems indeed fit well with this process. If we take the example of Change 2 problems on both 

low and high cost mental simulation problems, the solver would encode the representation with 

the help of the taking away conception of subtraction and engage in a mental simulation of this 

encoding. In the case of the low cost mental simulation problem such as “Luc is playing with his 

22 marbles at recess. During the recess, he loses 4 marbles. How many marbles does Luc have 

now?”, the solver would easily find the numerical solution to the problem by the informal strategy 

of taking away 4 from 22. This informal strategy is made possible by mentally simulating the 

encoded representation. On high cost mental simulation problems such as “Luc is playing with his 

22 marbles at recess. During the recess, he loses 18 marbles. How many marbles does Luc have 

now?”, the same encoded representation leads to mentally simulate taking away a large quantity, 

taking away 18 from 22. In this case, the mental simulation of the initial encoding is not 

computationally efficient for finding the answer. In order to access a more efficient solving 

strategy, a different conception of arithmetic needs to take part in the recoding – the conception of 

subtraction as searching for the difference. Therefore, what makes high cost mental simulation 

problems bear high cost is that their encoding would be influenced by a conception that does not 
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allow access to the optimal solving strategy – i.e., the strategy that the initial encoding leads to 

cannot be easily performed in the same format as it is encoded in.  

The same process would occur on non-word problems, for instance calculating ‘42 – 39’. 

The initial encoding of the representation would be in line with the taking away conception of 

subtraction, and the solver would engage its mental simulation. In this case, when the solver 

attempts to mentally simulate taking away 39 from 42, it would be rather costly to provide a 

numerical answer. If the solver sticks to this encoding, they would need to resort to different 

calculation strategies and decompose the subtraction into sub-steps in order to provide an answer. 

On the other hand, the solver could recode the problem relying on an alternative conception – that 

of searching for the difference – allowing them to mentally simulate a computationally favorable 

solving strategy. This proposal provides an account for the re-representational processes brought 

forward in the literature on arithmetic problem solving, such as the Situations Strategy First 

framework (Brissiaud & Sander, 2010) or the Switch model (Peters et al., 2013). It also gives an 

explanation for the processes involved in solving problems that do not describe action sequences.   

One example of static problem would be the Compare 2 problem (cf. Table 2). In this case 

the encoding of the problem is influenced by the implicit selection of the determining the 

difference conception, which gives place to the mental simulation of the distance between the 

largest quantity (31) and the second operand: in the low cost mental simulation problem this mental 

simulation would be efficient. The students would describe their solving process as starting from 

31 and counting down 30(1), 29(2), 28(3), 27(4), or counting up 28(1), 29(2), 30(3), 31(4), bearing 

the answer 4, and would be represented as ‘31 – ? = 27’. Yet in the high cost mental simulation 

problem, using the same informal strategy and mentally simulating this initial encoding through is 

a computationally costly strategy. When students would use this informal strategy, they would 

describe the same solving process: starting at 31 and counting down 30 (1), 29(2), 28(3), ... 5(26), 

4(27), finding the answer 27. This would correspond to the indirect subtraction strategy ‘31 – ? = 

4’. Nevertheless, by selecting the conception of subtraction as taking away, the solver will be able 

to take away 4 from 31 and provide the correct numerical answer to this problem. The result would 

no longer be the number of times a solver counted how much there is between the two quantities, 

but how much is left after taking away. We thus consider that the description corresponding to a 

number sentence that differs from the one that directly models the initial encoding indicates the 

use of an arithmetic strategy, which would be noted as ‘31 – 4 = ?’ in this case.  
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PRESENT STUDIES 

The studies presented in this chapter were designed to test the role of mental simulation 

following the problem’s encoded representation, stipulating a strong influence of arithmetic 

conceptions solicited by the presented problem. Reusser (1990) described that the actions 

described in the problem lead to accessing the mathematical model of the problem. Therefore, in 

order to test if it is the influence of the arithmetic conception that influences the mental simulation 

of the encoded representation and not just the described situation, we used problems that do not 

describe actions. In a set of four experiments, we used word problems, whose wording does not 

favor a mental simulation of the described actions, and we used non-word problems, which do not 

contain contextual elements favorable for a mental simulation. Depending on different arithmetic 

conceptions hypothesized to be involved in the encodings, we built high and low cost mental 

simulation versions of each problem: a version that could be easily solved through the mental 

simulation of the initially encoded representation and a version for which a recoded representation 

would lead to the most efficient solving strategy.  

In this chapter, we report the collective classroom studies conducted in order to measure 

the performance on different problems, as well as verbal protocols in order to get insight into the 

encoded representations and solving strategies. Our rationale was that problems encoded following 

arithmetic conceptions related to part-whole relations (namely subtraction as taking away and 

addition as combining quantities into a whole) would, through the mental simulation, be described 

as direct arithmetic operations. Whereas the mental simulation of problems encoded following the 

determining the difference conception would give place to indirect arithmetic operations as 

informal solving strategies. We predict different performance rates and strategies depending on 

the cost of the mental simulation, supporting the importance of the encoding which goes beyond 

propositional statements and numerical processing. On problems where the mental simulation of 

the initial encoding is inefficient and bears a high cost, we expect to find lower performance rates 

and formal solving strategies – those that do not reflect the initial encoding. We also expect to 

observe informal solving strategies that reflect the mental simulation of the initial encoding of the 

problem on low cost mental simulation problems, and formal strategies reflecting the mental 

simulation of a recoded representation mainly on high cost mental simulation problems. 
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EXPERIMENT 1 

In the first experiment, we evaluated second-grade students’ performance on arithmetic 

word problems that do not depict a change in the quantity appearing over time. We postulated 

which conception of arithmetic would be mobilized by each problem category based on its 

wording, proposing that arithmetic conceptions of part-whole relations would guide the encoding 

of Combine 1, Compare 4 and Compare 3 problems, whereas conceptions referring to differences 

would guide the encoding of Combine 2, Compare 1 and 2, Equalize 1 and 2. We went on to create 

two versions of each problem, one that would bear a low mental simulation cost, and one that 

would bear a high mental simulation cost. We predicted that students would succeed better on low 

cost than on high cost mental simulation problems because they can be easily solved through the 

informal strategy of mentally simulating the encoded representation. High cost mental simulation 

problems would be harder to solve because they would require the solvers to recode the initial 

representation of the problem by selecting a different conception of arithmetic and solve it by using 

formal strategies. Therefore, this re-representation process would cause these problems to be more 

difficult for students. Indeed, if this performance gap between low and high cost mental simulation 

problems would be observed on static problem categories it would testify to the importance of the 

initial encoding, as guided by the different arithmetic conceptions, which can be mentally 

simulated. It would also highlight the need for re-representational processes in order to use formal 

strategies when this initial encoding is not efficient. 

Method 

Participants. 341 second-grade students from 16 classes coming from 11 elementary 

schools from working-class neighborhoods in France participated in the study. The average age of 

the children in January was 7.60 years (SD = 0.33, 177 girls). 

Material. There were 8 addition and subtraction problem types belonging to 3 major 

categories corresponding to Compare problems 1, 2, 3, 4, Combine problems 1, 2, and Equalizing 

problems 1 and 2 from Riley et al.’s (1983) classification (cf. Table 2). High and low cost mental 

simulation versions of each problem category were created. The number triplets involved in the 

data and the solution are (31, 27, 4), (33, 29, 4), (41,38, 3), and (42, 39, 3). The subtraction 

problems involved two numbers, a and b (a > b). The numerical values for a were either 42, 41, 

33 or 31, while in order to differentiate between low and high cost mental simulation problems the 

values for b were either kept small (3 or 4) or were close to a (39, 38, 29 or 27). To create low cost 
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mental simulation problems the small value of b was used for the Compare 4, while the b value 

close to a was used for Compare 1, 2, Equalizing 1, 2, and Combine 2 problems. To create high 

cost mental simulation problems, the alternative b value was respectively used for each problem, 

since it would make the mental simulation computationally costly. The addition problems 

Compare 3 and Combine 1 involved two numbers, b and b' (b > b'). Both b and b' had the same 

characteristics as b for subtraction problems, while the unknown value was equivalent to a. To 

create low cost mental simulation problems the value close to a (b) was presented first, while the 

small value (b') was presented second. To create high cost mental simulation problems, they were 

presented in the opposite order, making the mental simulation costly.  

The number size was not the determining factor for distinguishing the cost of the mental 

simulation. In the case of the low cost mental simulation Compare 4 problem there was a small b 

value, contrary to the rest of the subtraction problems where b was presented in the close to a 

value. Therefore if the determining factor of difficulty had the b value close to a, like in the 

majority of the problems, we should observe an inverse trend on the Compare 4 problem: we would 

observe higher success rates on the high cost mental simulation Compare 4 problem than on its 

low cost counterpart. Furthermore, in a previous study using word problems that could be 

contrasted by their ease of mental simulation (Brissiaud & Sander, 2010), the small b values, and 

the ones close to a were equally present in the low and high-cost mental simulation problems. Four 

contexts were used for the wording of each problem: marbles, euros, flowers, and fruits. Each 

problem was only presented in one context. 

Design. There was a total of 16 problems: 8 problem categories in two different variants, 

one low and one high cost mental simulation. Children solved a total of 8 problems created by 

combining the 8 problem categories in either one of these versions. Each student, therefore, solved 

4 low cost mental simulation problems and 4 high cost mental simulation problems. To control for 

the impact of position, numerical sets and context, 8 different problem sets were created. Another 

8 problem sets were 'mirror' sets in which the low cost version of one problem would be presented 

in its high cost counterpart, while the high cost problem would be presented in its low cost 

counterpart. Thus, 16 groups of problem sets were created all together and counterbalanced across 

classrooms. Due to a technical error, the Compare 2 was not passed in two classes, since the 

Compare 1 problem was printed out instead of it. The responses to these instances were disregarded 

from the analyses. 
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Table 2: Example of the arithmetic word-problems for the number set (31, 27, 4) 

Problem categories 
Low cost mental simulation 

problems 

High cost mental simulation 

problems 

Comparison 

problems 

Compare 

1 

 

There are 27 roses and 31 daisies 

in the bouquet. How many daisies 

are there more than roses in the 

bouquet? 

There are 4 roses and 31 daisies 

in the bouquet. How many 

daisies are there more than roses 

in the bouquet? 

Compare 

2 

 

There are 31 oranges and 27 pears 

in the basket. How many pears are 

there less than oranges in the 

basket? 

There are 31 oranges and 4 pears 

in the basket. How many pears 

are there less than oranges in the 

basket? 

Compare 

3 

 

James has 27 marbles. Steve has 4 

marbles more than James. How 

many marbles does Steve have? 

James has 4 marbles. Steve has 

27 marbles more than James. 

How many marbles does Steve 

have? 

Compare 

4 

 

Anna has 31 euros. Susan has 4 

euros less than Anna. How many 

euros does Susan have? 

Anna has 31 euros. Susan has 27 

euros less than Anna. How many 

euros does Susan have? 

Equalizing 

problems 

Equalizing 

1 

 

There are 27 oranges and 31 pears 

in the basket. How many oranges 

should we add to have as many 

oranges as we do pears? 

There are 4 oranges and 31 pears 

in the basket. How many 

oranges should we add to have 

as many oranges as we do pears? 

Equalizing 

2 

 

There are 31 roses and 27 daisies 

in the bouquet. How many roses 

should we take away in order to 

have as many roses as we do 

daisies? 

There are 31 roses and 4 daisies 

in the bouquet. How many roses 

should we take away in order to 

have as many roses as we do 

daisies? 

Combine 

problems 

Combine 

2 

 

Mary has 27 euros in her 

piggybank and she has euros in 

her pocket. In total, Mary has 31 

euros. How many euros does 

Mary have in her pocket? 

Mary has 4 euros in her 

piggybank and she has euros in 

her pocket. In total, Mary has 31 

euros. How many euros does 

Mary have in her pocket? 

Combine 

1 

 

There are 27 blue marbles and 4 

red marbles in Marc's bag. How 

many marbles are there in Marc's 

bag? 

There are 4 blue marbles and 27 

red marbles in Marc's bag. How 

many marbles are there in Marc's 

bag? 

Design. There was a total of 16 problems: 8 problem categories in two different variants, 

one low and one high cost mental simulation. Children solved a total of 8 problems created by 
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combining the 8 problem categories in either one of these versions. Each student, therefore, solved 

4 low cost mental simulation problems and 4 high cost mental simulation problems. To control for 

the impact of position, numerical sets and context, 8 different problem sets were created. Another 

8 problem sets were 'mirror' sets in which the low cost version of one problem would be presented 

in its high cost counterpart, while the high cost problem would be presented in its low cost 

counterpart. Thus, 16 groups of problem sets were created altogether and counterbalanced across 

classrooms. Due to a technical error, the Compare 2 was not passed in two classes, since the 

Compare 1 problem was printed out instead of it. The responses on these instances were 

disregarded from the analyses. 

Procedure. The experiment was conducted in January and was administered in the 

students' classrooms. Each child received an 8 page booklet. There was a square in the middle of 

each page in which they wrote their answer. Each problem was read aloud twice to the whole 

classroom, reducing the demand on students’ reading skills, and children then had one minute to 

write down the number that was the solution; the next problem was then read aloud. 

Scoring. The solutions provided by the children were scored with 1 point when the 

numerical answer was exact or, in order to allow for mistakes in counting procedures, within the 

range of plus or minus one of the exact value. Admitting values of +/-1 of the exact answer has 

been used in previous studies (Brissiaud & Sander, 2010; Rittle-Johnson et al., 2016). Any other 

answers received 0 points. 

Results 

A first analysis was conducted in order to compare students’ success rates on low and high cost 

mental simulation problems. The analyses were conducted using R software. Since the data points 

for the responses were binary and recorded in a repeated design (with low and high cost mental 

simulation problems), we conducted random-effects logistic regressions. We constructed a 

generalized linear mixed model (GLMM) with a binary distribution with the cost of mental 

simulation (low vs. high) as the fixed factors, while participants and problem categories were 

included as the random effects. The analyses showed a highly significant main effect of the cost 

of mental simulation on performance (β = 1.05, z = 11.12, p < .001). Students succeeded on average 

on 45.58% of the low cost mental simulation problems and on 27.10% of the high cost mental 

simulation problems. The low cost mental simulation problems had a 1.69 times higher success 

rate than high cost mental simulation problems. 
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Figure 5: Performance per problem category 

Furthermore, we tested our hypothesis on each problem category by conducting GLMMs 

with a binary distribution and the cost of the mental simulation as the fixed factor, and subjects as 

the random effect. The results revealed that the low cost mental simulation problems (Compare 2, 

3, 4, Equalizing 1, 2, Combine 2) were significantly easier than the corresponding high cost mental 

simulation problems (0.55 < β < 1.78 , 2.49 < z < 6.35, p < .01). The performance rates are 

presented in Figure 5. On problem categories for which there was a significant difference, the low 

cost mental simulation problems were 1.38 to 4.07 times easier than their high cost counterparts. 

The Compare 1 problem seemed to be harder than others at this time of testing when only a 

tendency towards a difference was observed (β = .4, z = 1.69, p = .09): 32.5% success rate on low 

cost mental simulation problem and 24.4% on high cost mental simulation problem. While the 

Combine 1 problem seemed to be particularly easy, given that there was no effect of Problem type 

(β = .28, z = 1.2, p > .1), and the success rates on both problem types were highest (72.3% on the 

low cost mental simulation problem and 66.3% on the high cost mental simulation problem). 
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Discussion 

The results revealed that the hypothesized efficiency of the mental simulation following 

the problems’ encodings led to different performance rates among second-grade students, 

distinguishing high and low cost mental simulation problems for most problem categories. This 

was observed on almost all of the tested problems that do not contain scenarios with dynamic 

sequences that could favor the mental simulation and would not be possible if the encoded 

representation did not create a dynamic mental model that could be simulated. The two problem 

categories for which the distinction was not observed seemed to be particularly hard or particularly 

easy for students at this time of testing. The difficulty could stem from different reasons, certain 

of them being linguistic in nature. If this is the case, then we expect the efficiency of the mental 

simulation to be a relevant factor on Compare 1 problems later in the school year, when we expect 

students to have significantly higher performance on low cost mental simulation problems than on 

high cost ones. 

Combine 1 problems, on the other hand, had a relatively high success rate. We proposed 

that they would be encoded with the help of the part-whole arithmetic conception, which is 

important for understanding commutativity (Resnick, 1989). The wording of the problem is also 

in coherence with this metaphor, since the problem describes two parts that are being combined 

into a whole. It, therefore, appears that these problems are easier for solvers to encode in a flexible 

way which makes these properties salient, and can then easily mentally simulate taking into 

account commutativity. These types of strategies, counting on from the larger quantity, are 

considered to imply knowledge of commutativity (Prather & Alibali, 2009). 

EXPERIMENT 2 

Findings from the previous experiment provide evidence for our proposal about the nature 

of the informal strategies and re-representational processes needed in order to access arithmetic 

strategies for facilitating the resolution of problems where the initial solving strategy is costly. In 

the following experiment, we replicated the same study design at the end of the school year, 6 

months later, in order to gather confirmatory evidence about the persistence of problems’ initial 

encodings even after students have received subsequent instruction in math classes. We expect 

that, even at the end of the school year, students will have better performance on the low cost 

mental simulation problems than on high cost ones since they will continue to encode the problems 

in the same way they initially did, leading to higher performance rates when the informal solving 
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strategy is efficient. We expect that this difference in performance will also be present on Compare 

1 problems. 

Method 

A total of 269 second-grade students from 13 classes coming from 7 elementary schools 

from working-class neighborhoods in France passed the second test, all of whom had passed the 

first experiment. The average age of these students in June was 8.02 years (SD  =  0.33, 138 girls). 

The materials, design, and procedure were strictly identical to the first experiment. 

Results 

A first analysis was conducted in order to compare children's success rates on low and high 

cost mental simulation problems at the end of the school year, followed by analyses regarding the 

progression since the first experiment. We constructed a generalized linear mixed model (GLMM) 

with a binary distribution with the cost of mental simulation (low vs. high) as the fixed factors, 

while participants and problem categories were included as the random effects. In accordance with 

our hypotheses, the analyses revealed a highly significant main effect of the cost of mental 

simulation on performance (β = 1.33, z = 12.22, p < .001). Students succeeded on average on 

59.8% of the low cost mental simulation problems and on 37.6% of the high cost mental simulation 

problems. The low cost mental simulation problems had a 1.59 times higher success rate than high 

cost mental simulation problems.  

Furthermore, we tested our hypothesis on each problem category by conducting GLMMs 

with a binary distribution and the cost of the mental simulation as the fixed factor, and subjects as 

the random effect. for each of the eight problem categories. The results revealed that all of the low 

cost mental simulation problems were significantly easier than the corresponding high cost mental 

simulation problems (0.51 < β < 1.8, 2.05 < z < 6.82, p < .01), except for the Combine 1 problem. 

This included the Compare 1 problem (44.7% success rate on the low cost mental simulation 

problem and 23.1% on the high cost mental simulation version) (β = 0.99, z = 3.74, p < .001). 

Indeed, on problem categories for which there was a significant difference, the low cost mental 

simulation problems were 1.36 to 2.62 times easier than their high cost counterparts at the end of 

the school year (cf Figure 6). The single exception remained the Combine 1 problem for which no 

significant difference was observed (β = 0.24, z = 0.89, p = .35), (77.4% success rate on low cost 

mental simulation and 72.8% on the high cost mental simulation problem). 
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Figure 6: Performance per problem category in June 

Discussion 

The findings from this experiment testify to the role of mental simulation in solving 

arithmetic word problems influenced by the problem’s encodings. Even though the wording of the 

problems did not describe action sequences, the presented problems differed in the efficiency of 

the mental simulation. Indeed, more school experience in mathematics was not sufficient to change 

how the presented problems are encoded as it was hypothesized according to different arithmetic 

conceptions. At the end of the school year, it was even on Compare 1 problems that students would 

solve the low cost mental simulation version more easily than the high cost one, which was not the 

case at the beginning of the year. The only case where there was no difference in the efficiency of 

the mental simulation following the encoded representation was on Combine 1 problems. These 

problems already had a markedly high success rate in the first experiment, as well as for the second 

one. Furthermore, as argued in the previous experiment, the wording of the problem is also more 
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favorable for encoding a representation compatible with a part-whole conception of arithmetic, 

through which the commutativity principle can be easily applied. Overall these findings agree well 

with our proposal about the encoding and mental simulation processes on arithmetic problem 

solving, since it gives a central place to the problem’s representation as a determinant for the 

efficiency of the mental simulation, instead of schema activations and computational strategies. 

EXPERIMENT 3  

In order to test if the encoded representations in our first two studies correspond indeed to 

those that were hypothesized, we went on to see if the gap between low and high cost mental 

simulation problems would prevail on students’ performance on non-word problems. We expected 

that the non-word problems would also be represented as influenced by a specific conception and 

mentally simulated in the same way as word problems. We predict that the part-whole conception 

would be activated in the encoding of direct addition and direct subtraction problems, while the 

searching for the difference conception would influence the encoding of indirect addition and 

indirect subtraction problems. We then created versions of each problem for which the mental 

simulation would either be of low or high cost following these representations. If the participants 

successfully solved low cost mental simulation problems for direct arithmetic operations, then this 

indicates that they have the necessary strategies for solving high cost mental simulation problems 

of indirect arithmetic operations available to them, and vice versa for low-cost mental simulation 

problem of indirect operation. If having access to a solving strategy would have been the main 

factor that influences a problem’s difficulty on high cost mental simulation problems, then we 

should observe no difference in performance rates between low and high cost mental simulation 

problems. However, since we expect that it is not the strategies that solvers lack, but rather that 

they attempt to mentally simulate the encoded representation and do not recode the problem, we 

expect higher performance on low cost mental simulation problems than on high cost mental 

simulation problems. 

Method 

Participants. 75 Grade 2 students from 4 classes coming from 2 different schools from 

working-class neighborhoods in France participated in the study. The test occurred in June and the 

average age of the children at the moment they passed the test was 8.01 years (SD = 0.34, 32 girls).  
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Material. There were 8 addition and subtraction arithmetic problems used in the 

experiment. They corresponded to all the computational possibilities in the first two experiments. 

Thus, number triplets involved in the data and the solution are (31, 27, 4), (33, 29, 4), (41,38, 3), 

and (42, 39, 3). Table 3 represents an overview of the used items. 

Table 3: Example of the problems read out-loud for the number set (31, 27, 4) 

Mental calculation strategy 

Problem type 

Low cost mental simulation High cost mental simuation 

Direct addition 27 + 4 = 4 + 27 = 

Direct subtraction 31 - 4 = 31 - 27 = 

Indirect addition 27 + how much = 31 4 + how much = 31 

Indirect subtraction 31 - how much = 27 31 - how much = 4 

 

Design. Children solved all 8 problems. To control for the impact of position, numerical 

sets and context, 4 different problem sets were created. 

Procedure. The experiment was administered in the students' classrooms. Each child 

received an 8 page booklet. There was a square in the middle of each page in which they wrote 

their answer. Each arithmetic calculation was read aloud twice to the whole classroom and children 

had to write down the number that was the solution, corresponding to the same administration 

format as the arithmetic word problems in the first two experiments. 

Scoring. The solutions provided by the children were scored with 1 point when the 

numerical answer was exact, or within the range of plus or minus one of the exact value, in order 

to take into account mistakes in counting. Any other answer received 0 points.  

Results 

We constructed a generalized linear mixed model (GLMM) with a binary distribution with 

the cost of mental simulation (low vs. high) as the fixed factors, while participants and calculation 

strategy presented were included as the random effects. In accordance with our hypotheses, the 

analyses revealed a highly significant main effect of the cost of mental simulation on performance 

(β = 1.61, z = 7.25, p < .001). Students succeeded on average on 67% of the low cost mental 

simulation problems and on 40.3% of the high cost mental simulation problems. The low cost 

mental simulation problems had a 1.66 times higher success rate than high cost mental simulation 

problems.  
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Furthermore, we tested our hypothesis on each calculation type by conducting GLMMs 

with a binary distribution and the cost of the mental simulation as the fixed factor, and subjects as 

the random effect. for each of the four calculation types. The results revealed that all of the low 

cost mental simulation problems were significantly easier than the corresponding high cost mental 

simulation problems (1.29 < β < 2.87, 2.72 < z < 4.08, p < .01), except for direct addition. Low 

cost mental simulation problems were easier than their high cost counterparts 2.1 times on indirect 

addition problems, 2.16 times on indirect subtraction problems and 3.05 times easier for direct 

subtraction problems. Just as it was the case for the Combine 1 word problem in the first two 

experiments, direct addition problem was an exception and no difference was observed among the 

two problem types (β = 0.59, z = 1.17, p > .01), for which there seemed to be a ceiling effect 

(82.67% success rate on low cost mental simulation problems and 76% on high cost mental 

simulation problems). 

Discussion 

The findings support our proposal regarding the encodings of arithmetic problems and the 

mental simulations that they lead to. This third experiment converged with the evidence that even 

non-word arithmetic problems undergo a mental simulation of the encoded representation, since 

the low cost mental simulation problems were indeed much easier than the high cost ones. It has 

previously been demonstrated that switching flexibly between direct subtraction and indirect 

addition is not easy for students (Peters, De Smedt, Torbeyns, Ghesquière, & Verschaffel, 2012). 

These findings do however point to the fact that it is not a lack of strategies that cause students to 

have significantly lower performance rates on high cost mental simulation problems, but rather the 

lack of conceptual knowledge that would make it possible for solvers to use a different solving 

strategy. 

Our current proposal can provide an explanation for the kind of processes that need to be 

put in place in order to succeed in flexibly switching between different solving strategies. It is 

interesting to observe that the highest gap between performance rates on low and high cost mental 

simulation problems was on the direct subtraction problem. Indeed the minus sign of the direct 

subtraction is closely related to a taking away conception of subtraction (van den Heuvel-

Panhuizen & Treffers, 2009), and might make it the most difficult for solvers to attempt to detach 

from the initially encoded representation and recode the problem in line with a different conception 

into a new representation that they would mentally simulate to determine the difference between 
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the two quantities. On the other hand, the smallest, and non-significant, gap in performance on the 

low and high cost mental simulation problems was on direct addition problems. It might also be 

the case that this problem format is the most compatible for understanding part-whole relations, 

and is the most in coherence with the part-whole arithmetic conception, favoring a flexible 

encoding that the solver can mentally simulate in an efficient way. Yet more information about 

how solvers proceed with their resolution is needed in order to strengthen our proposal. 

EXPERIMENT 4 

A fourth experiment was conducted in order to provide evidence for the informal and 

formal solving strategies, based on the encodings of the problems’ representations that are 

mentally simulated. For this purpose, we conducted verbal protocols concerning the strategies 

students actually use when solving arithmetic word problems which would reflect the way they 

encode a problem. The verbal protocols can reveal if low cost mental simulation problems are 

easier because they are actually solved through informal strategies, where the mental simulation 

operates on the initial encoding. It is also a good way to reveal if high cost mental simulation 

problems are indeed harder because students re-represent the problem in order to use formal 

strategies to solve it. Among the formal strategies, we can find (1) re-representation strategies, 

solving strategies which require the application of either the complement principle on subtraction 

problems, either the commutativity principle on addition problems; and 2) other types of strategies 

that differ from the mental simulation of the initial encoding. If informal and arithmetic strategies 

were indeed used to a different extent, this would provide confirmatory evidence that the difference 

in difficulty between low and high cost mental simulation problems actually results from an initial, 

non-flexible encoding of the problem.  

We predicted that the informal strategies which directly simulate the initial encoding of the 

problem would be predominant for low cost mental simulation problems, but that the use of formal 

strategies would reflect a recoded representation and would be observed mainly on high cost 

mental simulation problems. 

Method 

Participants. 42 Grade 2 students from 4 classes coming from 2 different schools from 

working-class neighborhoods in France participated in the study. The test occurred in June and the 
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average age of the children at the moment they passed the test was 7.93 years (SD = 0.26, 23 girls). 

None of the participants participated in the previous experiments. 

Material & Design. The same material and design were used as in the first experiment. 

Procedure. The procedure was identical to the first experiment, except that the test was 

conducted individually with each student in a separate classroom, and after writing down the 

numerical answer, each student was asked to explain aloud how he or she found the solution and 

their oral responses were recorded. 

Scoring. The solutions provided by the children were scored with 1 point when the 

numerical answer was exact or, in order to allow for mistakes in counting procedures, within the 

range of plus or minus one of the exact value. The informal strategies corresponded to the mental 

simulation of the initial encoding, and the formal strategies corresponded to strategies that did not 

correspond to the initial encoding. Table 4 provides an overview of the informal solving strategies 

that directly correspond to the encoded representation and other number sentences that students 

used. Two separate coding were done, one for the informal strategy and one for the formal strategy. 

When the student provided an informal strategy, this was scored as 1 point for the informal 

strategy. When a student described a formal solving strategy, this was scored as 1 for the formal 

strategy. . No points were attributed if a student did not provide a correct response and/or did not 

describe any strategy after providing the correct answer (only 7.5% of the correct responses were 

not accompanied by a strategy description).  

Two coders evaluated the solving strategies of 10 students by writing down the number 

sentence they considered corresponds to the descriptions children gave. The initially obtained 

inter-rater reliability was 98.75% with the Cohen's kappa score of 0.982, providing an almost 

perfect level of agreement. The only divergent case was when the student provided an accurate 

answer but reported number that was not stated in the problem (reported taking away 8 instead of 

38). The coders attributed this to an error in number restitution (given that the student provided 

the correct answer and could have not done that had he used the reported value). This kind of 

explanation provided by students occurred twice in the overall population and the strategy was 

coded as if there was no error in the restitution of the numbers provided in the problem.  

Table 4: Classification of strategies for each problem type 

Problem 

category 

Cost of mental 

simulation 
Informal strategies Formal strategies 
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Combine 1 

[b + b'= . ] 

Low 27 + 4 = □ 4 + 27 = □ 

High 4 + 27 = □ 27 + 4 = □ 

Combine 2  

[b + . =a] 

Low 27 + □ = 31 31 – □ = 27 31 – 27 = □ □ + 27 = 31 

High 4 + □ = 31 31 – □ = 4 31 – 4 = □ □ + 4 = 31 

Compare 1  

[b + □ =a] 

Low 27 + □ = 31 31 – □ = 27 31 – 27 = □ □ + 27 = 31 

High 4 + □ = 31 31 – □ = 4 31 – 4 = □ □ + 4 = 31 

Compare 2  

[a - . =b] 

Low 31 – □ = 27 27 + □ = 31 31 – 27 = □ □ + 27 = 31 

High 31 – □ = 4 4 + □ = 31 31 – 4 = □ □ + 4 = 31 

Compare 3 

[b + b'= . ] 

Low 27 + 4 = □ 4 + 27 = □ 

High 4 + 27 = □ 27 + 4 = □ 

Compare 4  

[a - b= . ] 

Low 31 – 4 = □ 4 + □ = 31 31 – □ = 4 

High 31 – 27 = □ 27 + □ = 31 31 – □ = 27 

Equalizing 1  

[b + . =a] 

Low 27 + □ = 31 31 – □ = 27 31 – 27 = □ □ + 27 = 31 

High 4 + □ = 31 31 – 4 = □ □ + 4 = 31 

Equalizing 2  

[a - . =b] 

Low 31 – □ = 27 27 + □ = 31 31 – 27 = □ □ + 27 = 31 

High 31 – □ = 4 4 + □ = 31 31 – 4 = □ □ + 4 = 31 
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Results  

First, the experiment replicated the previous findings, confirming that low cost mental 

simulation problems were easier for children than high cost mental simulation problems. 

Respectively the overall success rates were 63.69% and 39.28%. A GLMM with a binary 

distribution, with the cost of the mental simulation as the fixed factor and participants and the 

problem categories as the random effects, confirmed this difference was significant (β = 1.4, z = 

789.6, p < .001) The performance for each problem type is available in Figure 7 

 

Figure 7: Rate of use of informal and formal strategies 

We further conducted two GLMMs, one with the informal strategies and one with the 

formal strategies. Both were GLMMs with a binary distribution and the cost of mental simulation 

as the fixed factor and participants and the problem categories as the random effects. The average 

scores for each strategy type are presented in Figure 7. As predicted, both differences were 

significant. Informal strategies were used significantly more on low cost mental simulation 

problems than on high cost mental simulation problems (β = 3.12, z = 8.04, p < .001). Formal 

strategies were used significantly more on high cost mental simulation problems than on low cost 

ones (β = -3.95, z = -4.99, p < .001). The rate for both strategies obtained on each problem type 

among students that gave a correct numerical response are presented in Figure 8. 
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Figure 8: Rate of different strategy use on correctly solved problems with strategies 

Discussion  

The findings from the verbal protocols provided evidence for the hypothesized encoding 

of the presented word problems. Firstly, the analyses of the reported student strategies confirmed 

that informal solving strategies that directly simulate the encoded representation were predominant 

for low cost mental simulation problems, while arithmetic solving strategies revealing a recoded 

representation were predominant for high cost mental simulation problems. Secondly, when taking 

a closer look at the solving strategies used on each problem category, we can see through the 

frequency of informal solving strategies on low cost mental simulation problems, that the encoded 

representations did give place to solving strategies that correspond to the proposed arithmetic 

conceptions through which they are encoded, and almost never to the re-represented format. On 

the other hand, we can see through the frequency observed of arithmetic strategies that their use 

mainly relied on a re-representation of the initial encoding. It is not problematic that some students 

still stick with the initial encoding on high cost mental simulation problems and use informal 

strategies since their overall success rate was much lower than the one on low cost mental 

simulation problems. The informal strategy consisting in the mental simulation of the initial 

encoding remains possible, however, bears a high cost, and the initial encoding could have also 

given place to different calculation strategies following the same format. Together, findings from 
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this experiment testify that the difference in difficulty between low and high cost mental simulation 

problems stems from the mental simulation of the encoded representation.  

DISCUSSION OF CHAPTER 5 

Various accounts exist for the central role of a solver’s problem representation for finding 

the solution to an arithmetic word problem (see Thevenot & Barrouillet, 2015). Notably it is 

proposed that the solving process unfolds in parallel with the described actions (Reusser, 1990b). 

Nevertheless, it remains unclear how this representation is encoded when the description of a 

problem does not involve a dynamic sequence of actions. The literature is also convergent about 

the existence of re-representational processes when the initial solving strategies are not efficient 

(Brissiaud & Sander, 2010; Peters et al., 2013). The present study investigated how the initial 

representation of a problem influences the efficiency of the mental simulation used to solve it, 

accounting for the informal strategies used for solving arithmetic problems, and provides evidence 

for the re-representational processes that take place when this mental simulation is costly. We 

proposed that the problem’s presented format triggers different conceptions of arithmetic that 

determine the encoding of the arithmetic word and non-word problems. In order to test these 

proposals, we conducted classroom studies in four experiments with second-grade students. First, 

we demonstrated that the efficiency of the mental simulation does depend on the problem’s 

encoded representation, suggesting that the low performance rates on problems that cannot be 

easily simulated have a high cost because they require the solver to re-represent the problem in 

order to attempt an easier mental simulation. Second, we provided evidence for the persistence of 

the aforementioned phenomenon: even after subsequent instruction during the school year, 

students still better solved problems that have low mental simulation cost than they did high cost 

ones. Third, we showed that the superiority induced by the efficiency of the mental simulation 

occurs even on non-word problems: the format of the problem triggers a specific encoding that 

appears to be the basis for a mental simulation, the efficiency of which determines the easiness of 

resolution. Fourth, we provided evidence for the initial encoded representations and re-

representations that are mentally simulated by addressing students’ verbal reports of the strategies 

they used. Overall, the experiments conducted in the present indicate that the process behind 

student’s use of informal solving strategies is a non-mathematical mental simulation of the 

encoded representation, while the use of arithmetic strategies is dependent on the recoding of the 

initial representation done through the use of a different arithmetic conception. 
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The significant difference that was observed between low and high cost mental simulation 

problems fits with the previous findings on Change problems (Brissiaud & Sander, 2010), and 

confirms that the mental simulation does not only occur when the problem illustrates a dynamic 

sequence of events. Contrary to Kintsch & Greeno’s (1985) schema theory of problem solving 

which considers that the “abstract-problem representation, the problem model, which contains the 

problem-relevant information from the text base in a form suitable for calculation strategies that 

yield the problem solution” (p. 111), our findings provide evidence that the abstract representation 

constructed based on a problem’s textual input is not always suitable for finding the solution. Our 

studies illustrated that, even though the construction of magnitude-based mental representations 

provides an explanation for how the relationships between the described elements are preserved 

(Orrantia & Múñez, 2013), it cannot explain why problems with the same numeric values have 

such a difference in performance rates. And even though the Switch model (Peters et al., 2013) 

could have predicted that the high cost mental simulation problems are more efficiently solved if 

the solver uses a different strategy then the format they are encoded in, the processes behind this 

strategy switch have not been demonstrated. The systematic gap between success rates among low 

and high cost mental simulation problems could not be explained accumulating experience in 

problem solving, such as could be expected in certain strategy selection models in mental 

calculation, for instance the Strategy Choice and Discovery Simulation model (SCADS) (Shrager 

& Siegler, 1998) or SCADS* (Siegler & Araya, 2005). These models would predict that the 

combination of associative and metacognitive processes would be sufficient to generate adaptive 

choices in strategy use when they are available, and our results indicated that it is not the strategies 

that students lack, but rather their inability to select them with a given problem. Instead, our 

findings indicate that there are more complex processes involved in the encoding of an arithmetic 

problem and its mental simulation. 

To a certain extent, our findings do challenge the traditional classification of arithmetic 

word problems according to which a problem’s difficulty depends mostly on the problem category 

determined by their semantics (Riley et al., 1983). Yet, in all our experiments on word problems, 

we found that there was one problem category that was particularly easy for students, the 

Combine 1 problem, indicating that there are still important semantic factors at play. For this 

problem category, the success rates of the low cost mental simulation version were the highest in 

each experiment, and more importantly, the ratio between the success rates on low and high cost 
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mental simulation problems was the lowest. We argued that the wording of this problem has 

semantic characteristics that are the closest to the part-whole conception of arithmetic, since it 

describes two parts joined together to form a larger quantity. The consistency between the semantic 

nature of the problem and the arithmetic conception may indeed allow the solver to encode a more 

flexible representation of the problem, such as the ones that usually undergo a recoding, allowing 

the solver to easily access different mental simulations of the problem. This was even observed on 

non-word problems involving direct addition. 

A conceptual understanding necessary for achieving mathematical proficiency involves the 

comprehension of concepts, operations, and relations (Baroody et al., 2009) and it is crucial for 

flexible behavior in mathematics (Baroody & Dowker, 2003). As for the relation of conceptual 

knowledge to procedural knowledge, be it the concept-first view, inactivation view or iterative 

view, conceptual knowledge has a great importance in contributing to the increase of procedural 

knowledge (Rittle-Johnson & Schneider, 2014; Rittle-Johnson et al., 2001). Distinguishing the 

processes behind informal and arithmetic solving strategies through the efficiency of the mental 

simulation stresses that low cost mental simulation problems do not mobilize a rich conceptual 

knowledge of mathematics. Yet the procedures used on solving these problems can be useful for 

enriching the conceptual knowledge students have, which would in turn lead to an amelioration of 

their arithmetic knowledge. For example, working on students’ informal strategies on low cost 

mental simulation problems can be a good tool for developing the students’ repertoire of solving 

strategies, whereas working on high cost mental simulation problems would be a more appropriate 

tool to work on students’ conceptual understanding of arithmetic. This should help students 

remediate to what was identified as a restricted conceptual representation of addition and 

subtraction (Stern, 1993). It is also a good way to not simply rely on the distinction between 

abstract and concrete representations, but actually connect representation to previous types of 

understanding (Lampinen & McClelland, 2018). 

Several studies have documented the beneficial effect of learning by comparing strategies 

(Gentner et al., 2003; Rittle-Johnson & Star, 2007). As stated in the introduction, for the different 

problems that have been studied, there is a common arithmetic structure while it is only the 

encoded format stemming from the semantic characteristics and arithmetic conceptions that is 

different. There is evidence that studying problems sharing the same formal structure by 

comparing the solving procedures used to solve them can lead to the transfer of strategy use (Gamo 
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et al., 2010). Also, comparing informal and formal procedures on problem solving in mathematics 

can lead to greater gains in conceptual knowledge among learners who do not like mathematics 

(Hattikudur et al., 2016). In this view, our findings suggest that there is a great interest in studying 

Combine problems in order to attain proficiency in different strategies, but also to work on the 

conceptual aspects behind the recoding into a different representation that comes easier to students 

on these than on other problems. This can further help students as a support for them to solve 

problems for which there is a greater gap between informal and arithmetic strategies. Additionally, 

since the wording of Change problems has a semantic structure that is the closest to the intuitive 

conception of taking away, we believe there would be more benefit of studying these problem 

categories after students have already gained certain procedural and conceptual efficiency which 

should help them more easily recode the initial encoding that was strongly influenced by the 

intuitive conception of subtraction. 
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ARITHMETIC COMPREHENSION IN ELEMENTARY SCHOOL (ACE) INTERVENTION PROGRAM 

In this chapter we will look at how working on the encoding of a problem’s representation 

and its recoding has been put in place in an intervention program called ‘Arithmetic 

Comprehension in Elementary school’ (ACE). ACE is a math research-based teaching program 

developed in France with the objective to promote arithmetic teaching in first grade math classes 

(Fischer, Sander, Sensevy, Vilette, & Richard, 2018; Joffredo-Le Brun, Morellato, Sensevy, & 

Quilio, 2018; Vilette et al., 2017). It was designed to replace the regular arithmetic curriculum in 

math classes. Its elaboration followed the requirements of the French National Education’s official 

program for teaching math. It encompassed 150 hours of arithmetic teaching, just like in regular 

mathematics classes. ACE was composed of four major teaching domains – number acquisition, 

word problem solving, estimation and mental calculation. Teachers of the participating classes 

took part in a professional development program. This training took place during two days at the 

beginning of the school year when they were also given the needed materials for implementing the 

program in their classrooms. They later attended 5 half-day sessions throughout the school year 

during which they met with the researchers leading the project and discussed their practice.  

Previous studies have already supported the general effectiveness of the ACE program, testifying 

to long-term (Vilette et al., 2017) and cumulative benefits among students who participated 

(Fischer et al., 2018). All domains were treated in classes throughout the school year, however, 

the present study focuses on the twofold objectives specific to the word problem solving domain: 

introducing students to the analysis of the semantic content in arithmetic problem solving tasks, 

and working on semantic recoding in order to favor the re-representation of the situation. Overall, 

the problem solving domain represented about a quarter of the arithmetic curriculum. Although 

other subdomains of the program may have influenced student overall performance on arithmetic 

word problem solving, it is the problem solving domain that was specifically designed to develop 

students’ adaptive expertise by using the most efficient strategies regardless of the semantic 

influence induced by the problem statement. 

 
3 The results presented in this chapter have been included in: Gvozdic, K., & Sander, E. (accepted). Learning 

to be an opportunistic word problem solver: Going beyond informal solving strategies. ZDM Mathematics Education. 

 



124 | Chapter 6 – Overcoming informal solving strategies  

Among the different approaches to mathematics instruction, the problem-solving approach 

considers mathematics to be a way of thinking and a search for patterns in order to find solutions 

to problems and focuses on reasoning and problem solving as a form of incidental learning 

(Baroody, 2003). It is different from approaches that focus mostly on skill learning where 

instruction is usually done without context. The problem solving curriculum within the ACE 

intervention was mainly inspired by findings from the Situation Strategy First framework 

(Brissiaud & Sander, 2010) and work on semantic recoding (Gamo et al., 2010). It started by 

engaging students in the analysis of the relations described in word problems, firstly with Combine 

problems – where two elements are combined to form a whole, and the question bears either on 

one of the parts or on the whole. Part-whole relations are essential for understanding 

commutativity, associativity and the complementary relation between addition and subtraction on 

problem solving (Resnick, 1989). Therefore, these problems, due to their static nature, were 

considered to optimally encourage the mental representation of part-whole relations, favorable for 

later generalizations and applications of arithmetic operations in different situations (Sophian, 

2008). Secondly, compare problems, where two quantities are compared and the question bears on 

their difference, were introduced. Lastly, Change problems, depicting an action sequence leading 

to the change of one quantity over time, were studied. These problems were considered to most 

strongly solicit a mental simulation of the described situation since their semantic description 

already contains action verbs which describe a dynamic change. The semantic analyses of the 

problems discussed in class lead students to consider the abstract relations between the elements 

presented in problem solving tasks and work on the semantic encoding of the situation: after 

reading the problems the teachers would systematically discuss with the students what were the 

known and unknown quantities described in the problem, what were their relations and what needs 

to be done in order to find the unknown quantity. The number sentence which models the analyzed 

situation was then written down. 

Two tools were introduced when working on the different problem categories in order to 

favor a conceptual generalization of the features encoded on the different problems: the number 

line and the number box (Figure 9). The number line was used to schematize part-whole relations 

(Verschaffel et al., 2007; Wolters, 1983). The semantic relations described in the problems were 

represented with arches on the number line: the largest arch would represent the largest quantity 

and two smaller arches would represent the two quantities that make up the largest one (Figure 9). 
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The number box designed for the ACE program was a rectangular representation divided into three 

parts – the bottom half divided into two parts and the upper half. The upper half would contain the 

largest quantity presented in the problem, while the lower half would contain the two quantities, 

that, when added together, would be equal to the largest value (Figure 9). This kind of 

representation was introduced in order to provide an abstract representation of the part-whole 

relations, which can be found in all one-step additive word problems (Riley & Greeno, 1988). 

When using both representational tools, the students would draw a blank circle in the position of 

the unknown quantity. 

A key curricular phase was the semantic recoding phase. Teachers presented various high 

cost mental simulation problems. The relations described in the problem were analyzed, as it had 

been done in class until then, and the number sentence modeling the problem was written down 

along with the solution. The students were then urged to search if there is an easier way to find the 

solution. Rather than explicitly focusing on the equivalence of the arithmetic operations of direct 

subtraction and indirect addition for the various possible procedures, the informal and arithmetic 

strategy were then discussed with a focus on how they relate to the problem’s semantics and 

solving strategies (see bottom part of Figure 9). Students were asked to choose which solving 

strategy was the easiest to perform in order to provide a correct response. Previous interventions 

have shown that creating and discussing student-invented solution procedures is beneficial for 

acquiring multiple solving strategies (Blote et al., 2001) and that the instruction on multiple 

procedures rather than single-procedure instruction favors conceptual understanding (Alibali & 

Rittle-Johnson, 1999). This specific kind of activity through which the different student-proposed 

strategies were discussed would allow students to reconsider their initial representation of the 

situation and informal strategies and to re-represent the situation in order to perform a more 

favorable solving procedure (Gamo, et al., 2010). For instance, a problem such as the one in which 

Luc loses 18 marbles from his 22 marbles would be recoded in such a way that the student would 

look for the number that should be added to 18 when trying to reach 22, instead of looking for the 

result after taking away 18 from 22 (Brissiaud & Sander, 2010; Peters et al., 2013). The semantic 

recoding activity was a key component of the problem solving domain in ACE since they were 

worked on in 30% of the lessons within the domain.  
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A. Low cost mental simulation problem 

 

Luc is playing with his 22 marbles at recess. During the recess, he loses 4 marbles. How many marbles does Luc have 

now? 

Informal situation-based solving strategy 

 

   

The informal situation-based strategy is to simulate the action described in the text: losing 4 marbles. It, therefore, consists 

in mentally counting down 4 from 22. This is then noted as the subtraction 22 – 4. In the case of this low cost mental 

simulation problem, this mental simulation is easy to perform. 

B. High cost mental simulation problem 

 

Luc is playing with his 22 marbles at recess. During the recess, he loses 18 marbles. How many marbles does Luc have 

now? 

 

Informal situation-based solving strategy Formal solving strategy 

 

 
 

 

The informal situation-based strategy is to simulate the action 

described in the problem: losing 18 marbles. It therefore 

consists in mentally counting down 18 from 22. This is noted 

as direct subtraction 22 – 18. In the case of the presented 

problem this is too costly to perform by mental simulation, 

so the students were asked if there is a different way in which 

they could find the solution. 

The formal arithmetic strategy relies on disengaging from the 

semantic context and changing how the situation is addressed, 

leading students to solve the problem by searching for the 

distance between 18 and 22. This entails recoding a direct 

subtraction situation into an indirect addition which is then 

noted as 18 + 4 = 22. Students are then asked which strategy 

they prefer to use on this problem. 

Figure 9: Descriptions of the solving strategies studied in class 

A. Working with the representational tools in the ACE problem solving domain.  

B. Outcome of semantic recoding on a high cost mental simulation problem by comparing 

the informal and formal solving strategies. 
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AIM OF THE STUDY 

The current study investigated the influence of the encoded representation on students’ 

arithmetic word problem solving strategies and more specifically the ability to recode the initial 

representation when it is opportunistic. Since the solving procedures behind informal strategies 

can sometimes be costly, it is important to know how to use a different solving strategy when this 

is the case. Semantic analysis and recoding activities were considered to enhance the availability 

of formal strategies, and therefore higher performance as a reflection of the greater use of formal 

strategies. We first predicted that students would have better performance on problems for which 

the use of informal strategies easily provides a solution than on problems for which the informal 

strategy is costly. This first prediction was also suitable for a replication of the empirical findings 

from Chapter 5 and from Brissiaud and Sander’s (2010) study in the business as usual (BAU) 

classes. Secondly, we predicted that students who participated in the ACE program would have 

better overall performance than the BAU group, since they had extensive practice in analyzing the 

abstract relationships between the elements presented in the problem and in practicing semantic 

encoding, allowing them to mentally simulate each problem more easily. Yet, when it comes to 

high cost mental simulation problems, having facilitated access to the encoded representation is 

not enough to provide an answer since solving the problem with an informal strategy is costly. On 

these problems, using formal strategies is efficient. Our third prediction was therefore that formal 

strategies would be used to a greater extent on high cost mental simulation problems than on low 

cost mental simulation problems in both groups, since it is on these problems that they provide a 

considerable gain in strategy efficiency. And fourth, we expected the ACE group to use formal 

strategies more frequently than the BAU group, since the extensive training in semantic recoding 

would have developed their ability to use the most appropriate solving strategy. We also expected 

that in the ACE group this greater use of formal strategies would be observed notably on the high 

cost mental simulation problems. In addition to their performance on formal word problems, ACE 

students were expected to have gained proficiency in part-whole reasoning more generally and 

were therefore expected to perform better on a transfer task regarding it. 
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METHOD 

Participants 

The current study was conducted in 10 first-grade classes with a total of 215 students. 

Seven students were eliminated from the analysis on the criteria that they did not successfully 

complete the current school year and were to be held back in the same grade the following school 

year. In total the analyses were conducted on 208 participants (5 ACE classes with 103 students, 

mean age = 7.05, SD = 0.28, girls = 60; 5 BAU classes with 105 students, mean age = 7.03, SD = 

0.31, girls = 57). The elementary schools were from working-class neighborhoods in France. The 

experimental and control classes were paired according to the socio-economic status of the 

population and academic performance of the schools by the regional school inspector from a large 

sample of participating classes. The teachers who participated in the intervention program, as well 

as teachers from BAU classes who participated in the current study, did so on a voluntary basis. 

Material 

Arithmetic word problems 

Six addition and subtraction problem categories were tested. According to Riley et al.'s 

(1983) classification, these problems were: Combine 1, Combine 2, Compare 1, Compare 2, 

Change 2, Change 3. 

The subtraction problems involved two numbers, a and b (a > b). The numerical values for 

a were either 11, 12, 13, 21 or 22, while in order to differentiate between low and high cost mental 

simulation problems the values for b were either kept small (2, 3 or 4) or were close to a (8, 9, 18 

or 19). To create low cost mental simulation problems, the small value of b was used for the 

Change 2 problem, while the b value close to a was used for Compare 2, Compare 3, Change 3 

and Combine 2 problems (cf. Table 5). To create high cost mental simulation problems, the 

opposite b value was respectively used for each problem, since it would make the informal 

situation-based strategy costly to execute. The addition Combine 1 problem involved two numbers, 

b and b'. Both numbers had the same characteristics as b for subtraction problems, while the 

unknown value was equivalent to a. To create low cost mental simulation problems, the b value 

close to a was presented first, while the small b value (b') was presented second. To create high 

cost mental simulation problem, they were presented in the opposite order. The high cost mental 

simulation problems created in this way required the application of the commutativity principle if 
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they were to be solved in the most efficient manner. This material has been used and validated in 

previous research which has robustly demonstrated that the number size alone was not the 

determining factor for the difficulty of the mental simulation (Brissiaud & Sander, 2010; Chapter 

5). Three semantic contexts were used for the wording of the problems: marbles, euros, and 

flowers. 

Control tasks 

Previous studies containing over 100 classes evaluating the global and specific gains of the 

ACE intervention showed no advantage of experimental classes as compared to BAU during pre-

tests (Fischer et al., 2018; Vilette et al., 2017). In order to limit the researchers’ intervention in the 

schools and not take time out of the teachers’ curriculum, there was no pre-test in the present study. 

The current sample of ACE and BAU classes was chosen by the regional inspector from the same 

schools evaluated in the previous studies (Fischer et al., 2018; Vilette et al., 2017). She took into 

consideration the socio-economic status of the population as well the academic performance of the 

schools, with the aim of selecting classes that were the most comparable. We also deemed 

necessary to introduce certain control measures in the current study and used four exercises 

regarding aspects of mathematics not worked on in the ACE program. The tasks were taken from 

standardized tests available from the French Ministry of Education. In the first task students had 

to copy a figure following gridlines. In the second task they had to identify different geometric 

forms in a complex shape. In the third exercise students needed to identify the appropriate card 

following a set of rules. In the fourth exercise, students had four "identify the intruder" tasks among 

5 different elements. Since the ACE program covered most of the mathematics curriculum, these 

tasks were inevitability quite marginal in terms of the evaluated content. We expected that the two 

groups would not differ in their performance.  
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Table 5: Problems used in the study and the corresponding informal and formal strategies. 

Problem 

category 

Cost of 

mental 

simulation 

Problem statement 
Informal 

strategies 

Formal 

strategies 

Combine 

1 

Low 
There are 7 blue marbles and 4 red marbles in Marc's 

bag. How many marbles are there in Marc's bag? 7 + 4 = □ 4 + 7 = □ 

High 
There are 4 blue marbles and 7 red marbles in Marc's 

bag. How many marbles are there in Marc's bag? 
4 + 7 = □ 7 + 4 = □ 

Combine 

2 

Low 

Mary has 7 euros in her piggybank and she has euros 

in her pocket. In total, Mary has 11 euros. How 

many euros does Mary have in her pocket? 

7 + □ = 11 11 – 7 = □ 

11 – □ = 7 □ + 7 = 11 

High 

Mary has 4 euros in her piggybank and she has euros 

in her pocket. In total, Mary has 11 euros. How 

many euros does Mary have in her pocket? 

4 + □ = 11 11 – 4 = □ 

11 – □ = 4 □ + 4 = 11 

Compare 

1 

Low 

There are 7 roses and 11 daisies in the bouquet. How 

many daisies are there more than roses in the 

bouquet? 

7 + □ = 11 11 – 7 = □ 

11 – □ = 7 □ + 7 = 11 

High 

There are 4 roses and 11 daisies in the bouquet. How 

many daisies are there more than roses in the 

bouquet? 

4 + □ = 11 11 – 4 = □ 

11 – □ = 4 □ + 4 = 11 

Compare 

2 

Low 
Pierre has 11 marbles and Jack has 7 marbles. How 

many marbles does Jack have less than Pierre? 
11 – □ = 7 11 – 7 = □ 

7 + □ = 11 □ + 7 = 11 

High 
Pierre has 11 marbles and Jack has 4 marbles. How 

many marbles does Jack have less than Pierre? 
11 – □ = 4 11 – 4 = □ 

4 + □ = 11 □ + 4 = 11 

Change 

2 

Low 

There are 11 flowers in the bouquet. Sophie takes 

out 4 flowers from the bouquet. How many flowers 

are in the bouquet now?  
11 – 4 = □ 

4 + □ = 11 

11 – □ = 4 

High 

There are 11 flowers in the bouquet. Sophie takes 

out 7 flowers from the bouquet. How many flowers 

are in the bouquet now? 
11 – 7 = □ 

7 + □ = 11 

11 – □ = 7 

Change 

3 

Low 

Mary has 7 euros in her moneybox. For her birthday, 

she receives more euros and puts them in her 

moneybox. Now, she has 11 euros in her moneybox. 

How many euros did Mary get for her birthday? 

7 + □ = 11 

11 – 7 = □ 

□ + 7 = 11 

High 

Mary has 4 euros in her moneybox. For her birthday, 

she receives more euros and puts them in her 

moneybox. Now, she has 11 euros in her moneybox. 

How many euros did Mary get for her birthday? 

4 + □ = 11 

11 – 4 = □ 

□ + 4 = 11 
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Transfer task 

In order to measure students’ reasoning about part-whole relations, a transfer task was 

created by adapting a classical Piagetian class inclusion task to a paper and pencil format. Students 

were presented with two exercises containing different groups of items:  

1. 5 cats and 4 dogs; 

2. 9 circles and 12 triangles.  

The task was to count and write how many items were in each group. Then they were asked 

a class inclusion question for each exercise: 1. “Are there more cats or more animals?”; 2. “Are 

there more triangles or more shapes?”. Students provided the answer by circling their choice in the 

provided booklet. Since the ACE word problem solving program had a strong focus on part-whole 

relations, we expected that it would also have an impact on students’ conceptual understanding of 

part-whole relations outside the mathematics domain. The ACE group was therefore expected to 

have better performance than the BAU group. 

Procedure 

Students solved a total of 12 arithmetic word problems (one problem per category in the 

low cost mental simulation version and one problem per category in the high cost mental 

simulation version). To control for the impact of position, numerical sets and context, 5 different 

problem sets were created. The students performed all of the control tasks and the transfer task. 

The experiment was administered in the students' classroom three to four weeks before the 

end of the school year. Each student received a 12 page booklet for solving the arithmetic word 

problems. There was a square in the middle of each page in which they wrote their answer and a 

rectangle for them to write their solving strategy. Each problem was read aloud twice to the whole 

classroom and children had 30 seconds to write down the number that was the solution and what 

procedure they undertook in order to find the answer. The arithmetic word problems were divided 

into two sets of 6 problems, between which the participants solved the first three control tasks. The 

fourth control task and the transfer task were administered after the second arithmetic word 

problem series. 
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Scoring  

Arithmetic word problems 

The solutions provided by the children were scored with 1 point when the numerical answer 

was exact or, in order to allow for mistakes in counting procedures, within the range of plus or 

minus one of the exact value. Admitting values of +/-1 of the exact answer has been used in 

previous studies (Brissiaud & Sander, 2010; Rittle-Johnson et al., 2016). Any other answers 

received 0 points. Depending on the category of the problem, the strategies that the students noted 

were classified according to Table 5. Two coders, blind to the experimental groups, categorized 

10% of the strategies randomly sampled from the cases where the participants wrote down a 

solving strategy. The inter-rater reliability was 100%. When a student noted an formal strategy on 

a given problem, it was scored with 1 point, and 0 points for the informal strategy or otherwise 

(meaning that no points were attributed when the participant did not provide a strategy, or when 

he or she simply noted the numbers from the problem statement into mathematically incorrect 

equations).4  

 

Control tasks 

Each exercise was broken down into a set of steps or subtasks, which when scored 

according to well-defined scales could obtain one point per exercise.  For instance, on the identify 

the intruder exercise containing four subtasks, each received 0.25 points for the correctly identified 

intruder. There was no ambiguity in the coding of the correct responses. A global score was 

computed by adding the different sub-scores and used in the analysis. The control task score could 

therefore range from 0 to 4. 

 

Transfer task 

In each exercise one point was attributed if the student responded by choosing the 

superordinate category as the response to the categorization question. Since there were two 

exercises in the transfer task, the score could thus range from 0 to 2. 

 
4 In order to display the distribution of the strategies among the correct answers in Figure 10, we counted the 

number of occurrences of informal strategies and the number of occurrences where no strategy was written down. 
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RESULTS 

Analysis of control tasks 

As expected, the t-test with the control task score as the dependent variable revealed no 

significant difference between the two groups (t(205.84) = 1.88 , p >.05, ƞ² = .01). Indeed, the 

average score of the ACE group was 2.76 (SD = 0.63) and of the BAU group was 2.59 (SD = 

0.66). 

Analysis of responses and strategies on arithmetic word problems 

Since the data points for responses and strategies were binary and recorded in a repeated 

design (with low and high cost mental simulation problems), we conducted random effects logistic 

regressions. Unless mentioned otherwise, participants and problem categories were included as the 

random effects in the models. Firstly, we focused on the participants’ responses. We investigated 

the performance of students from the BAU group by conducting a generalized linear mixed model 

(GLMM) with a binary distribution with the cost of mental simulation (low vs. high) as the fixed 

factors. The results replicated previous research about the costliness of the mental simulation 

influencing the difficulty of the problems, since high cost mental simulation problems were 1.42 

times harder than low cost mental simulation ones (β = 0.77, z = 5.44, p < .001). We then analyzed 

the response performance of both groups, by conducting a GLMM with a binary distribution with 

cost of mental simulation and group (ACE vs. BAU) as the fixed factors. As predicted in the first 

hypothesis, low cost mental simulation problems were generally easier than high cost mental 

simulation problems (β = 0.76, z = 5.45, p < .001). Overall, performance on low cost mental 

simulation problems was 52.72%, while on high cost mental simulation problems it was 40.06%. 

Furthermore, as predicted in the second hypothesis, the ACE group performed better overall than 

the BAU group (β = 1.22, z = 5.41, p < .001). The interaction between the problem type and group 

was not significant (β = –0.00, z = –0.02, p = .98). Students from the ACE group succeeded on 

63.43% of the low cost mental simulation problems and 50.48% of the high cost ones, while the 

students from the BAU group had an average success rate of 42.22% on low cost mental simulation 

problems and 29.84% on high cost mental simulation problems. The success rates for each problem 

category are displayed in Figure 10. 
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Figure 10: Success rates and distribution of strategy use per problem category and cost of mental simulation A. 

BAU group, B. ACE group 



Results | 135 

Further analyses were conducted on the strategies used by the students. The main analyses 

looked at the strategies used by students when they responded correctly to a problem. In such cases 

they wrote down a strategy 71.3% of the time in the ACE group and 61.67% of the time in the 

BAU group. With this data we conducted a GLMM with a binary distribution with the cost of the 

mental simulation and group as the fixed factors. Among these correct responses, there was an 

overall effect of the cost of mental significant (β = –1.64, z = –7.24, p < .001), confirming our third 

hypothesis that formal strategies are used significantly more often on high cost than on low cost 

mental simulation problems (cf. Figure 11). There was also an overall effect of group (β = 1.44, z 

= 4.49, p < .001), confirming our fourth hypothesis that the ACE group uses formal strategies 

significantly more than the BAU group (cf. Figure 11). Since the high cost mental simulation 

problems were those that would benefit the most from the use of formal strategies, in line with our 

fourth hypothesis, we further analyzed the strategies used on correctly solved high cost mental 

simulation problems. We conducted a GLMM with a binary distribution with the group as the 

fixed factor, and participants and the problem category as the random effects. As expected, the 

ACE group used formal strategies on high cost mental simulation problems significantly more than 

the BAU (β = 1.32, z = 3.52, p < .001). The rate of informal and formal strategies for each problem 

category can be found in Figure 10. Since the ACE group used more formal strategies than the 

BAU group, we were interested in understanding the way in which these strategies are used. For 

each problem category we conducted GLMMs with a binary distribution and the cost of the mental 

simulation as the fixed factor, and subjects as the random effect. On 4 out of 6 problems students 

used more formal strategies on high cost mental simulation problems than on low cost mental 

simulation problems (2.4 < z < 3.8, p < .05). Among the two remaining ones, there was a tendency 

to use more formal strategies on high cost mental simulation problems than on low cost ones for 

the Compare 2 problem (β = –1.13, z = –1.74, p < .1,), whereas there was no difference in the rate 

of use of formal strategies among the two cases for the Combine 2 problem. 

Analysis of the far transfer tasks 

We performed a variance analysis with the transfer score as the dependent variable. As 

expected, there was a significant difference between the two groups (t(205.93) = 3.86, p < .001), 

with the ACE group having an average score of 1.26 (SD = .97) and the BAU group 0.74 (SD = 

.97). This suggests that students in the ACE group developed a better understanding of part-whole 

relationships than the BAU group even outside the arithmetic domain. 
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Figure 11: Rate of different strategy use on correctly solved problems 

DISCUSSION 

The current study was designed to evaluate how lessons aiming for the development of 

adaptive expertise can promote the success on arithmetic word problems when the mental 

simulation does not provide an adequate strategy. Performance and strategies were compared 

among BAU first grade classes and those who participated in an arithmetic intervention program 

(ACE). The intervention was designed to teach students to be less dependent on informal solving 

strategies which directly model the described situation, and instead to favor formal strategies when 

they would be more efficient for providing the solution to the problem. This was done by engaging 

students in the semantic analysis of arithmetic word problems and studying why different strategies 

can be used to solve the problems through semantic recoding activities. Our findings first provided 

confirmatory evidence for our first hypothesis that problems which can easily be solved through 

informal situation-based strategies are easier than problems that bear a high cognitive cost if the 

same strategy is used. This replicated previous findings which highlight the difference between 

low and high cost mental simulation problems. In line with our second hypothesis, we also found 

that there was an overall higher performance in the ACE group. When looking at the strategies 

students used, in line with our third hypothesis we found that there were more formal strategies on 

high cost problems than on low cost problems. Furthermore, as predicted in our fourth hypothesis, 
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students from the ACE group used more formal strategies than students from the BAU group. 

Lastly, our results indicated that students from the ACE group performed better when reasoning 

about part-whole relations. 

Extending the research questions raised in the study, it would have been interesting to 

explore the strategies that students use when they fail to find the solution. Understanding if they 

fail to solve high cost mental simulation problems because they continue to use informal strategies 

would reflect that they do not manage to re-represent the problem. However, it should be noted 

that the analysis of the strategies students used on correctly solved problems was only available 

for about one third of all items, whereas this percentage was extremely low on problems that were 

not correctly solved. This does calls for caution when generalizing the interpretations of the 

findings, but it also leads us to consider alternative ways of collecting data on student strategies, 

such as verbal protocols, in order to dispose of higher rates of strategy use. It should also be noted 

that for most of the problems in the current study, indirect addition was the informal strategy, and 

therefore subtraction was the formal strategy. It is therefore possible that these confounding factors 

influenced student performance. Given that students had lower performance on high cost mental 

simulation problems, which mainly solicit the use of formal strategies, it is thus conceivable that 

students had lower performance on high cost mental simulation problems because they have more 

difficulties when using subtractions than indirect addition. Some previous research has 

demonstrated that when adults solve subtractions by means of indirect addition, they perform 

significantly better, even when it is not clear if using indirect addition provides computational 

gains (Torbeyns, Ghesquière, & Verschaffel, 2009). On the other hand, elementary school students 

hardly apply the indirect addition strategy for finding the solution to subtractions (Torbeyns, De 

Smedt, Ghesquière, & Verschaffel, 2009). Future research investigating semantic recoding should 

use experimental protocols that provide equal opportunities to use subtraction and indirect addition 

on low cost mental simulation problems, and symmetrically on high cost ones. This would make 

it possible to straightforwardly assess the importance of re-representational processes in 

developing adaptive expertise.  

A noteworthy shortcoming of the current study is linked to the context in which it was 

conducted. The ACE word problem solving intervention was part of a larger research project that 

had high practical relevance. It was administered in the classes by teachers during regular school 

hours and was aligned with the learning objectives prescribed by the French National Education’s 
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official program for elementary school teaching. As for the current study, we compare the 

performance of classes that participated in the intervention program to classes that followed the 

regular curricular. We took precautions, first by pairing the experimental and control classes in the 

same way as it had previously been done and revealed no advantage of ACE classes (Fischer et 

al., 2018; Vilette et al., 2017), and second by using control tasks. Even though the difference 

between the two groups on the control tasks was non-significant, additional evidence would have 

been a better guarantee that the participating classes had comparable mathematics performance at 

the beginning of the school year. However, given the complex circumstances of implementing the 

intervention, there were time constraints on the researchers’ intervention in the classrooms that 

precluded conducting a pre-test. This, therefore, gives the study high ecological validity but 

necessitated to make compromises in terms of its internal validity. 

The present study provides insight into the solving processes on arithmetic word problems. 

As expected, students from the BAU classes very rarely used formal strategies on low cost mental 

simulation problems, contrary to the ACE group. However, informal solving strategies were 

observed on high cost mental simulation problems in both groups, but the ACE group used 2.2 

times more formal strategies than the BAU group. It is possible to find the solution to high cost 

mental simulation problems through the mental simulation of the situation, yet the informal solving 

strategies are not the most efficient in this case, which might also have contributed to the lower 

performance rates in the BAU group on these problems. This stresses the importance of finding 

adequate means for guiding students to efficiently find the solution. The ACE intervention had the 

specificity of challenging students to set aside their informal strategies on arithmetic word 

problems: it provided students with the opportunity to use procedures in various contexts and not 

in isolation. Low cost mental simulation problems made it possible for students to work on their 

existing procedural knowledge mobilized in their informal solving strategies, while high cost 

mental simulation problems lead them to invent and search for alternative strategies. This might 

have favored the development of arithmetic conceptual knowledge while practicing known 

procedures, which contributes to knowledge retention (Baroody et al., 2007).  

The findings from the study orientate towards a closer look at the semantic recoding 

approach to conceptual change in order to enhance students’ use of formal strategies when solving 

word problems. Semantic recoding considers a change of representation to be the main key for 

going beyond informal situation-based strategies in favor of formal strategies (Brissiaud & Sander, 
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2010; Gamo et al., 2010). In the present study this approach seems to have encouraged the flexible 

shifting among different representations and favored adaptive expertise, since students from the 

ACE classes used formal strategies more than twice as much as the BAU classes, and more 

importantly the formal strategies in the intervention classes were more frequently used on most 

high cost problems, which were supposed to benefit from a semantic recoding.  

This study provides indications on how using research findings involving an empirical and 

theoretical background about the cognitive processes involved can be of benefit to educational 

settings and provide fruitful gains to students solving strategies and learning outcomes. The main 

theoretical issue was to propose a way for students to develop an opportunistic take on solving 

strategies within the context of one-step additive and subtractive arithmetic word problems. 

Besides the educational material that was provided in the intervention program, another crucial 

aspect of the program’s success was having teachers’ who were adequately trained to foster 

students’ mathematical development. It would, therefore, be promising to study the development 

of students’ and teachers’ conceptions side by side. 
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CHAPTER 7 – THE INTUITIVE BLIND SPOT IN TEACHERS’ JUDGMENTS 5 

Despite abundant studies in mathematics education conducted with students (e.g., Lerman, 

2014; Thevenot & Barrouillet, 2015), teachers’ views regarding their students’ conceptions and 

learning processes have been much less studied. All the while, the importance of teachers’ 

diagnostic judgments is considered essential to student-centered teaching approaches (Davis & 

Simmt, 2006; Ostermann, Leuders, & Nuckles, 2017; Prediger & Zindel, 2017). Intuitive 

conceptions in mathematics, such as tacit models (Fischbein, 1987, 1993) or intuitive rules (Tirosh 

& Stavy, 1999) are considered to have both an explanatory and predictive power on student 

performance, in the sense that their identification provides a prediction and an explanation for the 

difficulty of a task – easy if the application of intutive knowledge leads to a correct result and 

difficult if not. As such, Tsamir and Tirosh (2008) considered tacit models to provide an 

appropriate framework for studying mathematical thinking processes and identifying the sources 

of some common errors students make. 

Furthermore, the strategies children use and the errors they make when solving word 

problems have been repeatedly investigated, providing an empirical basis to assess teachers’ PCK 

by comparing teachers’ predictions with empirical findings. Arithmetic word problems provide an 

appropriate methodological tool for studying the influence of intuitive conceptions. They mobilize 

both students’ informal solving strategies and formal ones. Arithmetic word problems can also be 

consistent with intuitive conceptions, for example that of subtraction as taking away, and some 

were not. Thus, arithmetic word problems can be characterized by their adequacy with the intuitive 

conception, but also by their ease of mental simulation. 

According to the intuitive rules theory, we would expect that intuition-consistent problems 

would be easy for students, while intuition-inconsistent problems would be more difficult. Yet, as 

empirical findings have shown (Chapters 5 & 6; Brissiaud & Sander, 2010) problems consistent 

with the intuitive conception are not always easier than the ones inconsistent with the intuitive 

conception. Any high cost mental simulation problem is harder for students to solve than any low 

cost mental simulation problem (Brissiaud & Sander, 2010). This holds true for high cost mental 

 
5 The results from this study have been published in: Gvozdic, K., & Sander, E. (2018). When intuitive 

conceptions overshadow pedagogical content knowledge: Teachers' conceptions of students' arithmetic word problem 

solving strategies. Educational Studies in Mathematics. 98(2), 157-175. 
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simulation problems consistent with the intuitive conception, which are harder than low cost 

mental simulation problems inconsistent with the intuitive conception. 

AIM OF THE STUDY 

In the present study, we investigated teachers' PCK on arithmetic word problems and how 

intuitive conceptions influence their assessment of students’ solving strategies. We recruited 

teachers and non-teachers, in order to determine if teachers, guided by their knowledge of content 

and students, judge students' solving strategies differently than non-teachers; or reversely, to 

determine if in some contexts intuitive conceptions can overshadow teachers’ PCK and lead them 

to judge students' performance like non-teachers do, making predictions based on the believed 

explanatory power of intuitive conceptions. The participants were presented with different 

arithmetic word problems and had to choose which ones they thought would have a higher success 

rate among second-grade students. Later, the participants were asked to explain their choices by 

describing what makes a given problem easier than another, which opened the route for explaining 

their view regarding children’s strategies. As a control task, the participants also had to solve 

arithmetic word problems, in order to assess the use of informal and formal solving strategies 

amongst both populations. 

Since the influence of intuitive conceptions in mathematics is robust and persists in 

adulthood, we expect that both teachers and non-teachers will be influenced by intuition-consistent 

content when judging students' performance and when assessing the strategies students undertake 

to solve problems. We expect that when judging a problem's difficulty for students, the widespread 

belief that problems consistent with the intuitive conception are easier than problems inconsistent 

with this conception should constrain both teachers’ and non-teachers' judgments. Thus, we first 

hypothesize that, in order to judge a problem’s difficulty for students, both populations will base 

their judgment on the consistency of the problem with the intuitive conception. 

Secondly, in addition to intuitive conceptions being present in both populations, teachers 

possess KCS as part of their PCK, they should understand how students solve problems (Shulman, 

1986), which leads us to believe that there will be a difference between the two populations in their 

understanding of the strategies students use. We expect that both populations will be inclined to 

judge intuition-consistent problems as “easy” and will provide explanations compatible with the 

intuitive conception while ignoring the influence of the efficiency of mental simulation (left arrows 

of Figure 12.a. and Figure 12.b.). In this case, teachers’ PCK will be overshadowed by their 
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believed explanatory power of intuitive conceptions. On the contrary, when a problem is intuition-

inconsistent, we expect that, thanks to their PCK, teachers will be more apt than non-teachers in 

identifying the difficulty of the mental simulation of the problem and describing students’ informal 

solving strategies (right arrows of Figure 12.a. and Figure 12.b.).  

Thirdly, a control task was introduced in order to preclude the possibility that differences 

between teachers’ and non-teachers’ conceptions of children’s arithmetic word problem solving 

strategies could be attributable to their own arithmetic word problem solving strategies. The 

overall privileged status given to informal strategies does not entail any assumptions regarding the 

specificity of strategy use for teachers compared to non-teachers. Thus, no differences were 

expected amongst the two populations in the rate of informal strategies on low cost mental 

simulation problems, nor formal strategies on high cost ones. 

 

Figure 12: Non-teaching adults (a.) and teachers (b.) predictions about the determinants of problem 

difficulty and strategy use among students. 

METHOD 

Participants 

In total, there were 72 participants in the study:  36 teachers (26 women, mean age = 41.75, 

SD = 9.23) and 36 non-teachers (26 women, mean age = 23.72, SD = 3.76). The teachers recruited 

for this study participated on a voluntary basis. All teachers were currently teaching in French 

elementary schools in working-class neighborhoods, with student populations from a variety of 

socioeconomic backgrounds. Teachers with a wide span of teaching experience were included in 
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the study ranging from 1 to 40 years of experience (mean age of teaching experience = 9.23 years, 

SD = 13.25). The non-teachers were recruited in libraries, and all of them were enrolled or have 

already obtained a university degree. None of the participants – neither the teachers nor the non-

teachers - majored in mathematics at university.  

Since there is a greater percentage of woman than men in the French National Education 

(67.3% of overall teachers in the public sector are female, 83.4% female teachers in elementary 

school as documented for the school year 2016-2017 (Direction de l’évaluation, de la prospective 

et de la performance, 2017), our study included more woman (72.22%) than men in both 

populations.  

Material 

Three tasks involving subtraction word problems were presented. In the first task, the 

participants had to judge the difficulty of arithmetic word problems for students; in the second 

task, they justified their judgments and in the previous task, they solved arithmetic word problems 

and explained their own solving strategies. 

The same items were used in the first two tasks. Each item contained two arithmetic word 

problems, that could each belong to one of the two following categories: the first category involved 

a semantic context consistent with the common intuitive conception of subtraction (taking away) 

and the second category involved a semantic context inconsistent with the intuitive conception 

(determining the distance)(Table 6). In each item, one of the paired problems was a low cost mental 

simulation problem and the other a high cost one. This pairing gave place to 4 items: two contained 

problems from different categories and two contained problems from the same category (Table 7). 

Based on previous empirical evidence for these problem categories (Brissiaud & Sander, 2010; 

Chapter 6), the low cost mental simulation problem was by far the easier problem in every item. 

Two sets of number values on items were counterbalanced within and between subjects: 

(31, 27, 4) and (42, 39, 3). Each time, two of the values were provided within the text of the 

problem and the third one was the solution. The higher value was always in the text and the second 

given value determined the costliness of the mental simulation of the problem. Within each item, 

the set of numerical values was the same. Two contexts were used (marbles or euros) and held 

constant within subjects. The problems were presented in a random order, alternatively with 

problems from a different study. 



Method | 145 

Table 6: Examples of arithmetic word problems used in the experiment, sorted along the easiness of the 

mental simulation and the status regarding the consistency with the intuitive conception 

 

Table 7: Items constructed by pairing different types of word problems 

 Item 1 2 3 4 

Low cost mental 

simulation problem 

 Intuition-

consistent 

Intuition-

inconsistent 

Intuition-

consistent 

Intuition-

inconsistent 

High cost mental 

simulation problem 

 Intuition-

consistent 

Intuition-

consistent 

Intuition-

inconsistent 

Intuition-

inconsistent 

 

In the third task, two problems – one intuition-consistent and one intuition-inconsistent – 

in either the low cost and high cost version, were presented, in a random order, in the different 

context than the one previously used. The participants also responded to a questionnaire 

concerning their age, gender and education. 

Procedure 

The participants passed each task individually with the experimenter. The material was 

presented to the participants in the form of a booklet with one item per page, and the experimenter 

interviewed them orally. Audio responses were recorded and later transcribed. 

Problem type Problem category Example of problem 

Low cost mental 

simulation problem 

Intuition-

consistent 

“Luc is playing with his 42 marbles at recess. 

During the recess, he loses 3 marbles. How many 

marbles does Luc have now?” 

Intuition-

inconsistent 

“Mary has 39 euros in her moneybox. For her 

birthday, she receives more euros and puts them 

in her moneybox. Now, she has 42 euros in her 

moneybox. How many euros did Mary get for her 

birthday?” 

High cost mental 

simulation problem 

Intuition-

consistent 

“Luc is playing with his 42 marbles at recess. 

During the recess, he loses 39 marbles. How 

many marbles does Luc have now?” 

Intuition-

inconsistent 

“Mary has 3 euros in her moneybox. For her 

birthday, she receives more euros and puts them 

in her moneybox. Now, she has 42 euros in her 

moneybox. How many euros did Mary get for her 

birthday?” 
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Task 1. The first task was constructed to assess if intuitive conceptions influence the 

participants' judgment of a problem’s difficulty. Participants were asked to compare the paired 

problems in each item according to their difficulty for second-grade students. The experimenter 

asked them to judge which problem would have a higher success rate if presented to second-grade 

students. They responded by choosing between one of the two problems or by choosing the option 

that they have an equivalent success rate. 

We did not proceed directly with a forced choice between the problems as not to influence 

the participants' decision processes. 

Task 2. The second task was constructed in order to assess if there is a difference between 

the two populations in identifying the strategies students use to solve problems. A retrospective 

think-aloud technique (Sudman, Bradburn, & Schwarz, 1996) was used. The participants were first 

asked to describe the thought processes they underwent when making their judgment for all items 

in the first task, and afterwards to readdress the items for which they chose equal success rates. In 

the latter case, they were informed that one problem actually had a higher success rate and were 

asked to choose which one they thought it was and why.  

Task 3. The third task was designed in order to document the strategies participants use 

when solving arithmetic word problems and determine if there is a difference between the two 

populations in their strategy use. All participants were asked to solve each problem and then 

describe orally the strategy they used to find the solution. 

Scoring 

In the first task, the response on items score was scored with 1 point when the participant 

chose the low cost mental simulation problem as having a higher success rate than the high cost 

one, and no points were given when the participant chose the high cost mental simulation problem. 

In cases where participants readdressed problems on which they initially judged the success rate 

as equal, the updated responses were rated using the same scoring. 

On the second task, a congruency measure related the participants’ justifications to the 

strategies students use when solving problems, similarly to Hill, Dean and Goffney (2007). An 

answer was considered as congruent when an individual chose the low cost mental simulation 

problem (with the empirically higher success rate among students) and gave a justification that 

revealed comprehension of students' modeling strategies, yielding 1 point to the justification score. 

An answer was considered incongruent when a participant chose the correct answer (low cost 
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mental simulation problem) but did not provide a correct description of the informal strategies 

students put into place, meaning they did not demonstrate a comprehension of the difficulties 

formal strategies pose for students (see Table 8 for examples of congruent and incongruent 

justifications). In the cases where the participant chose the high cost mental simulation problem as 

having a higher success rate, it was considered incongruent because this judgment was in 

contradiction with empirical evidence about students' performance, and the justifications could 

therefore not be congruent with students' intuitive modeling strategies. When participants had to 

readdress items to which they responded by choosing the equivalent success rate, the justifications 

were updated and scored in the same way. 

Regarding the third task, the participants received 1 point when they reported an informal 

strategy on a low cost mental simulation problem, while they received no points if they reported a 

formal strategy on a low cost mental simulation problem, and vice-versa for a high cost mental 

simulation problem. The points obtained on the low cost mental simulation problems were used to 

compute the informal strategy score, while the points obtained on the high cost mental simulation 

problems were used to compute the formal strategy score.  

Table 8: Examples of participants’ congruent and incongruent justifications 

Item 

Intuition-

(in)consistency 

Examples of congruent 

justifications 

Examples of incongruent 

justifications 

1 

Both problems 

intuition-

consistent 

"We need to take away a small 

quantity from a large one, so I 

think that in the first case they 

will count with their fingers: 40, 

39, 38. While for the second one, 

they will take away 39 from 42 

and I think that's too much to 

count." 

"The only difference is in one 

number, and that number is 

smaller in the first problem." 

"In both cases they will count 

downwards, therefore the first 

one will be easier. I don't think 

they will count from 39 to 42 in 

the second case." 

"Subtracting a two-digit number is 

harder than subtracting a single 

digit number." 
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Item 

Intuition-

(in)consistency 

Examples of congruent 

justifications 

Examples of incongruent 

justifications 

2 

Intuition-

consistent high 

cost mental 

simulation 

problem  

"I think it is easier for children to 

count how much they will add to 

39 to arrive to 42 than to take 

away 39 from 42. Indeed they 

could subtract in both cases, but 

this is easier." 

"Many teachers teach subtraction 

by using indirect addition and that 

makes it easy." 

"The first problem has an 

additive structure, while in the 

second one we take away 39. 

The first problem is easier 

because we have to add a small 

amount, while the second one 

requires to imagine the problem 

differently in order for it to be 

easy." 

"Counting forward is easier than 

subtracting. Adding something is 

more intuitive for children than 

losing." 

3 

Intuition-

inconsistent 

high cost 

mental 

simulation 

problem 

"In the first problem there are 42 

marbles and we have to take 

away 3, so children will count 

backwards. While in the second 

one, the instructions are longer, 

and more importantly, children 

will start at 3 and will count up 

to 42, and it is complicated to 

count that much." 

"In both cases the operation is 42-

3, but I chose the first one as 

easier." 

"In the second problem children 

will count from 3 to 42 and it 

would be more complicated to 

do a mental subtraction that is 

easy to do in this particular case, 

while in the first one they will 

simply take away 3." 

"I think doing a simple subtraction 

is easier than to have an unknown, 

to find the missing addendend."  

"It's easier to count-down a small 

amount"  

"They won't understand that they 

have to subtract." 

4 

Both problems 

intuition-

inconsistent 

"In one problem we start at 3 and 

go up to 42, while in the other 

one we only have to start at 39 

and reaching 42 is easy." 

"The numbers are smaller." 

"I don't think that children will 

think of subtracting in this 

problem, so I think that the first 

one is easier because there are 

fewer numbers to count." 

"It is easier to do the operation 

with a number that has one digit 

than to do a subtraction with a 

two-digit number" 
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The participants' justifications on the second task and the strategies described by them in 

the third task were coded by two independent raters. The initially obtained inter-rater reliability 

for the justification scoring was 95.49% with the Cohen's kappa score of 0.91, providing an almost 

perfect level of agreement. The inter-rater reliability for the strategies used by the participants in 

the third task was 98.61% with Cohen's kappa score of 0.97. By discussion, the raters arrived to a 

mutual consent about coding the items on which they initially diverged. 

Data analysis 

The first set of analyses explored the responses on items in order to assess if intuitive 

conceptions influence the perceived difficulty of the problems. We compared judgments of both 

populations on the two problems where the high cost mental simulation problems was intuition-

consistent (items where only the high cost mental simulation problem is intuition-consistent, and 

items where both problems are intuition-consistent) to problems where the high cost mental 

simulation problems was intuition-inconsistent (items where only the low cost mental simulation 

problem is intuition-consistent, and items where both problems are intuition-inconsistent). The 

average of such item groupings was computed. We predicted that participants would have more 

adequate judgments on the latter. We then tested if there were differences between the groups on 

each of the grouped items. 

The second set of analyses explored the justifications of items in order to assess if intuitive 

conceptions overshadow teachers' PCK, biasing the teachers' capacities to identify the strategies 

children put into place. We measured if teachers' references to intuitive strategies in their 

justifications differed from those of non-teachers. We predicted that when the high cost mental 

simulation problem was intuition-consistent, the intuitive conception would overshadow teachers' 

PCK and they would not differ significantly from non-teachers. The average of the justification on 

items score was computed following this grouping, just as this was done for the responses on items. 

We tested for a group effect on items. Further on, we studied if there was an overall difference in 

the justifications of the groups on items where the high cost mental simulation problem was 

intuition-consistent and on items where the high cost mental simulation problem was intuition-

inconsistent. 

Finally, analyses were conducted in order to see if both populations resorted to intuitive 

modeling strategies when solving low cost mental simulation problems, and arithmetic strategies 
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when solving high cost mental simulation problems. Non-teachers and teachers were not expected 

to differ in their strategy use.  

RESULTS 

Response on items analyses  

The difference between the average of the response scores for both populations was in 

favor of problems where the high cost mental simulation problem was intuition-inconsistent (M = 

0.89, SD = 0.23) compared to problems where the high cost mental simulation problem was 

intuition-consistent (M = 0.76, SD = 0.28) (Figure 13). A repeated measure GLM was conducted 

with the average scores of the responses as dependent variables and the group factor (teacher 

versus non-teacher) and counterbalanced factors as between-subject variables. As expected there 

was an overall significant effect of items (F(1,56) = 15.446, p < .001) and no main effect of group 

(F(1,56) = 0.148, p = .702) or any other counterbalanced factor, and no interaction between the 

items and the groups (F(1,56) = .987, p = .325). This lack of a significant difference between the 

two groups supports our hypothesis that the participants tend to consider intuition-consistent 

problems as easier for children. 

 

Figure 13: Average response on items 

Univariate analyses of variance for the responses as the dependent variable and group and 

the counterbalanced factors as the between-subject variables were conducted in order to test for a 

difference between groups. The results revealed no significant effect of the group factor for items 

where the high cost mental simulation problem was intuition-consistent (F(1,56) = .080, p = .779) 

or where the high cost mental simulation problem intuition-inconsistent (F(1.56) = 1.284, p = 
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.262), confirming that there was no difference between the two populations when judging a 

problem’s difficulty for students. 

Justifications of items analyses 

Testing for a group effect on items, we conducted a repeated measure GLM with 

justifications on items as repeated measures and the group and counterbalanced factors as between-

subject variables. The results indicated a significant main effect of the group factor (F(1, 56) = 

6.959, p < .05), a main effect of justifications of items (F(3,56) = 11.179, p < .001), and no 

significant interaction between justifications on items and the group factor (F(3,56) = 1.549, p = 

.204). As expected, this revealed that the justifications differed across the two populations and 

from one item to another. 

Further on, studying the overall difference in the justifications of the groups, a repeated 

measure GLM was conducted with the average of the justification of items scores as dependent 

variables and the group and counterbalanced factors as between-subject variables. As expected, 

there was an overall significant effect of the items (F(1,56) = 8.347, p = .004) and a main effect of 

group (F(1,56) = 6.959, p = .011), and there was also a significant interaction between the items 

and the group (F(1,56) = 3.907, p = .05) (none of the counterbalanced factors had a significant 

effect) (Figure 14). 

We further conducted univariate analyses of variance for the justification of items where 

the high cost mental simulation problem was intuition-consistent and items where the high cost 

mental simulation problem was intuition-inconsistent as the dependent variable, and group and the 

counterbalanced factors as the between-subject variables. There was a significant effect of group 

on items where the high cost mental simulation problem was intuition-inconsistent (F(1,56) = 

12.981, p < .001), but no effect of group on the items where the high cost mental simulation 

problem was intuition-consistent (F(1,56) = 0.638, p = .428).  

This thus reveals that teachers show a better understanding of students' problem-solving 

strategies than non-teachers only when the content they evaluate is intuition-inconsistent. This 

further supports our hypothesis that the consistency of a problem with the intuitive precludes 

teachers' use of their PCK. 
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Figure 14: Average justification of items 

Use of informal and formal solving strategies 

A univariate analysis of variance was conducted for the informal and formal strategy score 

as the dependent variables, with group and the rest of the counterbalanced factors as between 

subject variables. As expected, no group effect (F(1,56) = .344, p = .560) was revealed for the 

informal strategy score nor formal one (F(1,56) = 0.004, p = .949) (see Figure 15). 

 

Figure 15: Informal and formal strategy scores 
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DISCUSSION 

The study was conducted in order to investigate how mathematical intuitive conceptions 

influence teachers’ understanding of students' processes. Despite the well documented literature 

on students’ arithmetic word problem solving processes, research on the knowledge teachers hold 

about their students' solving strategies is scarce. In the present study, we hypothesized that 

teachers’ diagnostic competences would be biased by intuitive conceptions. This would be 

manifest when the intuitive conception leads to contradictory predictions compared to predictions 

derived from assessing the efficiency of informal solving strategies. Despite the fact that only the 

latter would correctly predict the solver’s behavior, we expected that intuition-consistent problems 

would overshadow teachers’ PCK when they come into play. In order to test this hypothesis, 

teachers and non-teachers were asked to compare the difficulties of problems and describe the 

strategies they thought students use when solving these problems. The problems were either 

consistent or inconsistent with the intuitive conception of the arithmetic operation. 

Problems were presented in pairs: a problem that is easy to solve by using informal 

modeling strategies (low cost mental simulation problems) and a problem that would be difficult 

to simulate through informal strategies, but would be easy to solve if arithmetic principles were 

applied (high cost mental simulation problems). As it has been empirically demonstrated, low cost 

mental simulation problems have higher success rates than high cost mental simulation problems 

(Brissiaud & Sander, 2010; Chapters 5 and 6). Problems were paired so that either both problems 

were intuition-consistent, only the low cost mental simulation problem was intuition-consistent, 

only the high cost mental simulation problem was intuition-consistent, or both problems were 

intuition-inconsistent. 

In order to see if intuitive conceptions influence the judgment of a problem's difficulty, 

participants compared the difficulty of the paired problems for students and later provided a 

rationale for their choices, revealing if they understood the actual strategies students put in place. 

Finally, participants had to solve problems themselves, in order to verify that both populations use 

intuitive and arithmetic strategies to the same extent. 

The analysis of the responses to the items revealed more accurate judgments on items 

where the problem that is the most difficult for children (the high cost mental simulation problem) 

was intuition-inconsistent. This means that the participants believed in the explanatory power of 

the intuitive conception when choosing which problem was easier, even when the intuition-
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consistent problem was actually more difficult for children. Because both groups shared the belief 

of the ‘superiority’ effect of the intuitive conception regarding a problem’s difficulty, there was 

no demonstration of a benefit from PCK on this matter. 

The study of justifications confirmed our predictions given that no difference was observed 

between the populations on items where the high cost mental simulation problem was intuition-

consistent. However, teachers gave more congruent justifications than non-teachers about students' 

strategies on items where the high cost mental simulation problem was intuition-inconsistent. This 

means that teachers were able to accurately address the informal strategies primarily used by 

children, but only when the intuitive conception did not interfere with the task. Indeed, the findings 

suggest that teachers’ PCK was overshadowed by mathematical intuitive conceptions. 

Additionally, there was no difference in the use of informal or formal strategies between the two 

populations when they solved problems, therefore the difference in performance could not have 

been influenced by preferential use of one strategy among one group. 

The obstacles to understanding children's performance and strategies are not surprising 

since empirical research about arithmetic word problems often remains unrecognized in teacher 

education programs. Intuition-consistent problems for which the informal strategies are efficient 

favor students’ successful resolutions. Yet, they do not challenge them to analyze the mathematical 

structure of the problem and apply relevant arithmetic knowledge. Thus their successful resolution 

is not as satisfactory as it might seem for assessing the mastery of the underlying mathematical 

notion. Some frameworks aiming to draw teachers' attention to specific aspects of student thinking 

that go beyond executing procedures can enhance teachers' abilities to make diagnostic judgments 

(e.g. Carpenter et al., 1988; Walkoe, 2014). Instructing teachers about the informal strategies 

induced by the problem’s representation can therefore be a promising path in providing lessons 

that will both challenge students' intuitive conceptions and allow them to overcome their modeling 

strategies by applying arithmetic principles, since it can promote an adaptable behavior in strategy 

use for problem solving and favor conceptual understanding. 

Another interesting observation is that non-teachers did demonstrate certain components 

of PCK in the response and justification tasks. If non-teachers did not possess any aspect of PCK, 

they might have simply made no predictions, nor provided explanations. Indeed, just as previous 

research outlined the importance of teachers' own knowledge in providing assumptions about what 

students know (Ostermann et al., 2017), it seems that this also enables non-teachers to make some 
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diagnostic judgments. Furthermore, some theories have suggested that teaching is a natural 

cognitive ability (Strauss & Ziv, 2012), and even proposed that folk pedagogy stems from folk 

psychology (Olson & Bruner, 1996). Even though in Shulman’s conceptualization, PCK is a type 

of knowledge specific to teachers, this raises the question of what aspects of PCK actually rely on 

abilities that are shared among the general non-teaching populations. 
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DISCUSSION 

SYNTHESIS OF THE MAIN FINDINGS 

The current thesis sought out to understand the role that different intuitive and informal 

knowledge play in mathematics teaching and learning. We investigated how different conceptual 

categories constructed through prior experience influence the representational processes in the 

course of arithmetic problem solving. We considered that the process of analogical encoding, in 

which features of a situation are put in correspondence to previously constructed mental categories, 

is a key process guiding the construction of the represented situation.  

We conducted a series of empirical studies that were aimed at understanding how different 

conceptions mobilized in the encoding of arithmetic problems influence students’ strategy use and 

teachers’ judgments. In Chapter 5, we proposed that a crucial step in solving arithmetic word 

problems is the mental simulation of the encoded representation. We made predictions about the 

conceptions that will be mobilized in a problem’s encoding and the efficiency of the mental 

simulation operating on this encoding. We then carried out a series of experiments that tested this 

effect on students’ solving strategies. We found that when the mental simulation of the encoded 

representation had low cost, second graders almost exclusively used informal solving strategies 

and had higher performance. When the encoded representation led to a mental simulation that has 

high cost, students predominantly reported formal solving strategies that did not reflect the 

encoded representation.  

In Chapter 6, we studied what it takes to succeed on high cost mental simulation problems. 

We proposed that succeeding on high cost mental simulation problems is facilitated when solvers 

rely on an arithmetic conception different than the one that guided the initial encoding. This was 

expected to lead to the semantic recoding of a problem’s representation and make it possible to 

use a more efficient solving strategy than the one used based on the initial encoding. We compared 

the performance of first-grade students who participated in an arithmetic intervention program to 

students from business as usual classes.  The intervention was focused on semantic encoding and 

recoding exercises by using arithmetic word problems. We found that students who had benefited 

from the intervention had higher performance on high cost mental simulation problems and used 

formal solving strategies more frequently.  
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In Chapter 7, we sought to explore if the conceptions that influence the encoding of 

arithmetic word problems also have an impact on teachers’ judgments of student performance. 

Teachers’ knowledge of content and students is considered to provide teachers with the necessary 

understanding of students’ solving strategies. However, we observed that when the intuitive 

conception of subtraction is involved in the encoding of an arithmetic problem, teachers had a 

harder time understanding what makes it difficult for students to use a more efficient solving 

strategy. 

THEORETICAL IMPLICATIONS 

The role of intuitive conceptions in encoding 

Following Fischbein’s (1987) view, intuitive conceptions can take the form of an 

analogical or paradigmatic model, both characterized by the systematic similarities between the 

intuitive model and the notion it substitutes. In what he proposed, there are many similarities with 

our current take on analogical reasoning (Hofstadter & Sander, 2013). In Fischbein’s analogical 

model, the original notion and the intuitive conception belong to different conceptual fields and 

are observed through similarities, while in his paradigmatic model, the exemplar becomes the 

prototype of the mathematical notion. In our view, they can both be seen as products of different 

categorization processes that support analogical reasoning. In Fischbein’s analogical model, the 

intuitive model can be considered as a category to which the mathematical concept is assimilated, 

just as it is the case in paradigmatic models. Therefore, there would be no need for a differentiation 

between the analogical and paradigmatic models, since the primary determinant would be the 

degree of abstraction with which the categorization is done. Furthermore, Fischbein’s description 

of formal and algorithmic knowledge stresses the importance of associating meanings and skills, 

which is also highlighted in the literature regarding conceptual and procedural knowledge in 

mathematics (Alibali & Rittle-Johnson, 1999; Rittle-Johnson et al., 2001). The intuitive models 

described by Fischbein are conceptual in nature but are rarely considered when we investigate how 

conceptual knowledge influences procedural knowledge. It would be interesting to explore how 

adding this component to the study of conceptual knowledge could inform both research and 

practice.  

Going from action-based external modeling to reasoning based on part-whole relations is 

essential for understanding commutativity, associativity and complementary relations of addition 

and subtraction (Resnick, 1989). However, reasoning based on part-whole relations is certainly 
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not an easy task, since students continue to perform poorly on problems that require the use of 

formal strategies reflecting the use of conceptual arithmetic knowledge. One obstacle in the 

learning and solving processes may be the intuitive conceptions of arithmetic, which operate in 

the background and conflict with the formal and the algorithmic components of mathematical 

activities (Fischbein, 1993). In the case of the intuitive conception of subtraction as taking away, 

this could mean that presenting a problem whose wording has a semantic structure that is the 

closest to this taking away conception, the problem should be more difficult for students to recode 

because it would be more challenging to change one’s point of view when the content is intuition-

consistent. The problem that would have the closest wording to this conception would be a Change 

2 problem, such as those tested in Chapter 6 and by Brissiaud and Sander (2010). By looking at 

the data on Change problems, it is indeed the Change 2 – result unknown problem – that 

systematically had the highest performance gap on low and high cost mental simulation problems 

in Brissiaud and Sander’s study, as well as among our BAU population. The observed performance 

in the ACE classes had the second-highest gap between low and high cost mental simulation 

problems. In the third experiment of Chapter 5, direct subtraction problems had the highest gap in 

performance rates, suggesting that the minus sign is closely related to the taking away conception 

of subtraction. In the case when the intuitive conception is mobilized in the encoding of a problem, 

the consistency between the semantic characteristics of the problem and the arithmetic conception 

may lead to an encoding that is more difficult for solvers to re-code. This provides an insight into 

the mediating effects that the problem semantics can have in the encoding of the problem, but it 

can also provide a way to look at how the conceptual intuitive knowledge might influence the 

persistence of certain strategies. 

Towards a model of arithmetic problem solving 

The current thesis proposed which conception would guide the arithmetic solving process 

by participating in the encoding. We observed that these different encodings had an impact on the 

difficulty of the problems since different encodings led to different strategies. These findings are 

in line with research proposing that the specific instances of prior knowledge enrich the 

representation of the situation as it is being processed (Gentner et al., 2003; Ross & Bradshaw, 

1994). Our findings suggest that the abstraction processes which lead to the encoding of arithmetic 

problems, both word and non-word, involve the selection of an arithmetic conception. 

Furthermore, we proposed that it is this encoded representation that a solver will first attempt to 
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mentally simulate in order to find a solution. When the mental simulation is efficient, this will lead 

the solvers to find a numerical solution. Finding the answer in this manner does not require any 

formal arithmetic knowledge, for this reason these are considered informal solving strategies. Yet, 

finding the solution to a problem by mentally simulating the encoded representation is not always 

simple. When the mental simulation is difficult to execute, the solvers will need to mobilize 

arithmetic knowledge. A modeling of this process is presented in Figure 16 and will be detailed in 

the following paragraphs.  

In the present thesis, we have studied problems where a recoded representation would lead 

to a more efficient solving strategy. We proposed that when the mental simulation bears high cost, 

then in order to find a more optimal solving strategy, the solver would need to recode the initial 

representation of the problem. This means that the solver would have to rely on an arithmetic 

conception different than the one initially used and with its help, the solver would semantically 

recode the problem’s representation. This recoded representation can undergo again the process of 

mental simulation, and in the case of the problems studied in the current thesis, this would 

efficiently lead to the numerical solution. Yet, it should be noted that sometimes, even when the 

informal strategy is inefficient, recoding the initial representation will not lead to an efficient 

solving strategy. In these cases, solvers would need to rely on formal solving strategies that do not 

require a recoding. For instance, if a problem contains numerical values which the Switch model 

described to have the longest reaction times (small distance with S < D (31 – 15 = 16 or 16 + ? = 

31), and small distance S > D (32 – 17 = 15 or 17 + ? = 32)), then engaging in a recoding will not 

diminish the computational cost of the problem.  

Nevertheless, there exist different accounts for the strategies students use which involve 

number manipulations that make finding the answer computationally easier to execute (e.g. Blöte, 

Klein, & Beishuizen, 2000). For example, solvers may use decomposition strategies in which they 

split both operands into tens and units and will operate on them separately, for example ‘45 -13 = 

?’ will be solved as ‘40 – 10 = 30, 5 – 3 = 2, 30 + 2 =32’. Solvers can also use sequential strategies, 

where they split one of the operands and sequentially solve the problem such as ’45 – 10 = 35 – 3 

= 32’. Alternatively, they can flexibly adapt the numbers based on their knowledge of the 

properties of arithmetic operations, for example, ‘45 – 9 = ?’ will be solved as ’45 – 10 = 35 + 1 = 

36’. Such strategies can be undertaken instead of strategies requiring a conceptual recoding and 

can even be more beneficial in these cases. However, it still remains unknown what kind of an 
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encoding determines if a solver will recode the initial representation or engage in number 

manipulation strategies. 

It should, however, be noted that this proposal of arithmetic problem solving processes 

does not address certain aspects. Firstly, it does not address text comprehension processes but takes 

them as a pre-requisite for the solver to engage in the problem solving process. If the solver does 

not comprehend the vocabulary or mathematical symbols used in the problem, they cannot encode 

the problem. On the other hand, if the problem is comprehended, but there are no arithmetic 

conceptions at the solvers’ disposal, the representation of the problem will not be able to evolve 

beyond the initial one, making only informal solving strategies available.  

 

Figure 16: Modeling the encoding and recoding processes in arithmetic problem solving 
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Conceptualizing teachers’ competences 

The expert blind spot hypothesis advocates that educators with greater subject-matter 

knowledge seem to “view student development through a domain-centric lens” which causes them 

to inaccurately predict students' problem-solving behaviors (Nathan & Petrosino, 2003, p. 918). 

The authors proposed that teachers with high content knowledge do not draw on general principles 

of intellectual development when forming a model of student mathematical development, but draw 

on the ontological structure of the discipline, which overrides their underspecified PCK. However, 

elementary school teachers are rarely expert mathematicians (for instance, none of the teachers in 

Chapter 7 majored in mathematics prior to becoming teachers). In the present thesis, we showed 

that teachers' understanding of children's solving strategies on arithmetic word problems was 

overshadowed by the intuitive conception of the arithmetic operation. Teachers considered 

problems consistent with the intuitive conception to be easier for children, just like non-teachers, 

and did not have more success than non-teaching adults to identify the strategies children put into 

place when influenced by the intuitive conception. 

Our findings highlighted that in a parallel way as described by the expert blind spot, 

teachers’ PCK was overridden in some contexts when the intuitive conception was involved. We 

propose that teachers' PCK is subject to two effects of opposing origins but entailing similar 

consequences: expertise and intuitive conception. The first entails the expert blind spot 

phenomena, while the second entails an intuitive blind spot. Each one induces a non-flexible point 

of view concerning students’ performance, operating as a guiding principle for assessing students' 

behavior and overshadowing teachers' PCK. Following the model of teachers’ assumptions on 

what students know proposed by Ostermann and collaborators (2017) suggests that when the 

content is consistent with the intuitive conception, teachers simply regard this content as being 

easy and use the intuitive model as the working model for assessing the difficulty problems pose 

for students. Indeed, teachers who are subject to the intuitive blind spot do not necessarily lack 

subject matter knowledge or PCK. Their PCK may rather be underspecified, which would lead 

them to make predictions based on the perceived ease of content consistent with the intuitive 

conception. In this view, we believe that attention should also be drawn to simultaneously working 

on students' intuitive conceptions in classrooms but also drawing teachers' attention to the 

phenomena. 
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OPEN ISSUES AND EDUCATIONAL ENTAILMENTS 

About knowledge evaluation 

While focusing on the processes involved in solving arithmetic tasks in this thesis, we have 

seen that students dispose of a wide variety of informal knowledge that they bring to class, present 

in both their conceptual and procedural learning. On the procedural side, students’ informal 

arithmetic solving strategies are based on the early arithmetic abilities such as counting with 

objects but also mentally (Baroody & Ginsburg, 1986; Carpenter et al., 1981; Resnick, 1989). 

Likewise, the notions taught at school already find their roots and are shaped by previous 

experience, which has been conceptualized in the form of intuitive conceptions (Fischbein, 1987; 

Lakoff & Núñez, 2000). Our studies in Chapters 5 and 6 showed that the content of the problems 

determined what informal solving strategy would be used. Compare 1 problems would lead to the 

use of indirect addition or indirect subtraction as the informal solving strategy, whereas Compare 

4 problems would lead to the use of direct subtraction as the informal solving strategy. 

Furthermore, we showed that there is a great gap in performance depending on whether the task 

requires the use of informal or formal arithmetic knowledge. When we would explain the stakes 

behind these different problem types to the teachers of the classes in which we conducted our 

experiments, they were often left asking if in their tests, they should mainly be using problems that 

require formal strategies.  

The question that our teachers asked us, while it can be seen as an example of the 

formalisms first approach (Nathan, 2012) – considering it necessary to evaluate the use of formal 

principles but not that of informal strategies – is a valid concern. The answer to it requires 

consideration, since understanding what types of tasks are best suited for evaluating the learning 

objectives is an important and complex challenge, especially because the benefits that could be 

gained by working with students’ informal strategies in the classroom should not be disregarded. 

In Chapter 6, we saw that students who participated in an arithmetic intervention during the school 

year used formal strategies to a greater extent than students who followed the regular first-grade 

arithmetic curriculum. Yet, the design of our study did not make it possible to determine to which 

degree progress on informal solving strategies contributed to the higher the use of formal 

strategies. A current view in cognitive psychology is that the relations between conceptual and 

procedural knowledge are bidirectional and that progressing on one also leads to progress on the 

other (Rittle-Johnson, 2019; Rittle-Johnson et al., 2001). Furthermore, connecting new 
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mathematical knowledge to informal knowledge favors students’ understanding (Baroody & 

Wilkins, 1999; Van den Heuvel-Panhuizen & Drijvers, 2014).  

Nevertheless, an essential objective in mathematics education regards the selection of the 

most appropriate strategy for finding the solution to a problem (Threlfall, 2009; Verschaffel et al., 

2009). If the aim is to evaluate the adaptive strategy use in mathematics, then introducing problems 

that would benefit the most from the use of formal strategies would be the optimal way to 

operationalize such an aim. Indeed, a correct answer to a problem that can easily be solved through 

the use of informal strategies is a poor cue for assessing the use of arithmetic principles, and this 

is even more the case when problems that are intuition-consistent, such as Change 2 problems, are 

used. For example, the problem “There are 21 flowers in the bouquet. Sophie takes out 3 flowers 

from the bouquet. How many flowers are in the bouquet now?” directly provides the encoding ‘21 

– 3’ and therefore does not challenge the solvers’ conceptual understanding of the arithmetic 

notion. Yet, if ‘Sophie takes out 19 flowerers’ then it would be more beneficial to recode the 

problem by using arithmetic principles and solve it with the strategy ‘19 + ? = 21’. It is therefore 

important to take note that if students knowledge is assessed through problems that can be easily 

solved with informal solving strategies it is misleading to assume that a student is applying 

arithmetic knowledge, since the processes involved in finding the solution do not at all indicate 

that they are able to flexibly choose between different strategies. What does have higher 

pedagogical relevance, regarding adaptive expertise, is to use tasks on which different solving 

strategies would be revealing of the kinds of knowledge students use to solve the problems, such 

as the high cost mental simulation problems used in this thesis.  

It should, however, be noted that this way of emphasizing adaptive expertise mainly 

concerns task characteristics (Threlfall, 2009). As we have seen in Chapter 3, along with the task 

characteristics, the subject and the context are also important in grasping the complexity of 

selecting the most appropriate solution (Verschaffel et al., 2009). A future perspective would be 

to also consider the specific classroom conditions and what kind of didactical contract is put in 

place between teachers and students. Indeed, an alternative interpretation to the use of informal 

strategies on problems that could benefit from a recoding, such as using indirect addition on the 

Change 2 problem instead of direct subtraction, may be that the teacher does not admit indirect 

addition as a correct formal strategy. Adding this information to the analyses would not 

compromise the robust effects concerning the gap between the use of informal and formal solving 
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strategies, nor the relevance they have for evaluating students’ knowledge. It would however 

provide more details about the factors influencing students’ strategy choices. 

About teachers’ professional development 

One thing that does remain unclear about the intuitive blind spot is whether it is caused by 

teachers’ own intuitive conceptions about the concept, or it is triggered by the fact that the content 

itself is intuition-consistent. We have seen that intuitive conceptions do persist among the adult 

population (Tirosh & Graeber, 1991; Vamvakoussi et al., 2013). Intuition-consistent content 

impacts the accuracy and reaction times with which adults perform on various tasks (Dunbar et 

al., 2007; Goldberg & Thompson-Schill, 2009; Shtulman & Harrington, 2016). A study we are 

currently conducting also joins this line of research. In particular, we asked participants to create 

word problems that correspond to different subtractions such as ‘8 – 3 = ?’. They were instructed 

to think of two problems as different as possible. In the next step, we asked them if it is possible 

to imagine a subtraction problem whose wording describes a gain. This rule is inconsistent with 

the inferences that can be derived from the intuitive conception of subtraction as taking away 

(Fischbein, 1987). Change 5 problems from Riley, Greeno and Heller’s (1983) classification with 

the start unknown typically correspond to this description (e.g., “Joe had some marbles. Then Tom 

gave him 5 more marbles. Now Joe has 8 marbles. How many marbles did Joe have in the 

beginning?”). Our preliminary findings reveal that 26 out of 87 teacher trainers, 35 out of 120 

high-school teachers and 23 out of 56 pre-service teachers answered that it is not possible to 

propose such a problem. While the analysis regarding the categories of problems that the 

participants proposed is still ongoing, this testifies to the robustness that the intuitive conception 

has.  

These studies focus on teachers’ knowledge, but not their judgment of student performance 

and thinking processes, which is the main focus when assessing teachers’ PCK. It is true that 

studies supporting the extent to which intuitive conceptions are mobilized in the adult and teacher 

population are not sufficient in order to solve the dilemma whether it is teachers’ own intuitive 

conception of the intuition-consistent content that leads to the intuitive blind spot. Nevertheless, it 

does highlight that since intuitive conceptions persist, they continue to be a viable analogical 

source among teachers. As we have seen, it is during the processing of a situation itself that prior 

knowledge can influence how a situation is interpreted (Ross & Bradshaw, 1994). Furthermore, 

when the situation being processed is consistent with previously held knowledge, there is greater 
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ease in processing the situation. This leads us to consider that, even though teachers are not solving 

a problem, they are evaluating a problem’s difficulty for students, and this requires that a 

representation be encoded. When the content is intuition-consistent, then the intuitive conception 

guides the encoding of what is used as the initial model that guides teachers’ assumptions of what 

students know as it has been described in Ostermann, Leuders and Nuckles's (2017) model. It is 

therefore at this initial stage that the intuitive blind spot casts a shadow on teachers’ PCK and 

sensitizing teachers to its existence could be beneficial for strengthening teachers’ diagnostic 

competence. This does not mean that we should aim to eliminate teachers’ intuitive conceptions 

since as we have seen, they seem to be very resistant and persist until late in life (Shtulman & 

Valcarcel, 2012). The solution can rather be found in reinforcing knowledge about the intuitive 

blind spot and its mechanisms of action should be reinforced in teachers’ PCK. 
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CONCLUSION 

We want to conclude on some broader considerations regarding the educational practices 

that emerge from this thesis. First, a current topic in education revolves around differentiating 

one’s teaching in order to take into account individual learning trajectories. A differentiated 

instruction focuses on student characteristics by recognizing the differences among students and 

responding proactively to them (Langa & Yost, 2007; Tomlinson, 2001). Considering individual 

differences in the classroom is not taken as an end in itself, but a means to: ensure that all students 

acquire the basic and necessary knowledge, fight against school failure, and help learners reach 

their potential (Forget, 2018). Therefore, to differentiate in one’s pedagogical practice is not the 

same as to diversify since the teacher does not vary their instruction at random but strives to do so 

in response to the identified needs of the students. We believe that studying the psychological 

processes behind students’ performance and behaviors in learning situations can provide a way of 

operationalizing such issues.  

First, this thesis provided predictions about how students will apprehend the content being 

taught and what meaning it will have for them, which is very helpful for any approach that strives 

to address individual differences among students. Secondly, it makes it possible to determine the 

cognitive requirements of tasks and items used in instruction, as well as in the evaluation of student 

learning. For example, we relied on knowledge about the psychological mechanisms involved in 

the construction of a mental representation of a situation and the processes that act upon such 

representations. This led us to determine the costliness of different arithmetic problems. As a 

function of this costliness, we were able to determine which tasks reflect students’ informal 

knowledge that they had even prior to instruction on arithmetic operations and which tasks reflect 

comprehension of the educational notions at stake. If in the latter case students persist in their use 

of informal strategies, it informs us they did not manage to go beyond the initial representation of 

the problem. Understanding the individual differences regarding the representations that students 

abstract from a situation could be useful in order to adapt the intervention that would follow as a 

way of helping students who face difficulties with the task. The framework that was proposed 

offers the possibility to assess if students always stick to the initial encoded representation on 

different problems. In this case it reveals that the intervention needs to focus more broadly on 

recoding activities through the comparison of informal to formal strategies. Yet, if a student 

succeeds in achieving such a recoding on one type of problem but not another which requires the 
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same principle, then the teacher could rather focus on the comparison between the two different 

formal strategies in relation to the problem structure.  

A second topic we want to address bears on the relation between findings related to the 

content itself and those regarding general processes for which the connections to the content being 

taught are sparse. The possibility of relying on general processes for promoting learning is debated. 

For instance, recent findings suggest that it is neither students’ intrinsic nor extrinsic motivation 

that is correlated to academic achievement (Taylor et al., 2014). The motivational component that 

is most strongly negatively associated with school achievement over time is students’ amotivation. 

Amotivation is not the opposite of intrinsic and extrinsic motivation; it is instead the lack of either 

kind of motivation: the lack of intention to act on a given task. Students who are amotivated tend 

to see their failures as a lack of self-competence (Leroy & Bressoux, 2016). A solution that seems 

to be a remedy to falling into the amotivational trap is encouraging students’ active engagement 

with the tasks (Reeve, 2013). In such a view, it might be essential to consider the possibility of 

evaluating students who have particular difficulties with a subject matter mainly on tasks that 

mobilize informal knowledge, in order to favor their sense of competence. Nevertheless, the 

contribution that such amotivational antidotes bring to student achievement cannot substitute for 

other sources of progress that are more directly related to the content being taught: cross-

disciplinary teaching practices such as those that promote active engagement and a focus on the 

content of the knowledge being acquired have every reason to be articulated with one another 

(Sander, Gros, Gvozdic, & Scheibling-Sève, 2018). For this purpose, adding a degree of 

refinement in the analysis of the content being taught and evaluated, as we aimed to in this thesis, 

is crucial for gaining insights into the representations that students generate about the content and 

finding ways to foster the development of initial representations, as well as their flexible adaptation 

to the demands of a task. 
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RESUME EN FRANÇAIS 

INTRODUCTION 

Initialement, les domaines de la psychologie et de l'enseignement des mathématiques 

avaient des objectifs divergents (De Corte, Greer et Verschaffel, 1996). En psychologie, l'étude de 

la cognition mathématique n'abordait pas les questions relatives aux pratiques pédagogiques, 

tandis que les éducateurs en mathématiques visaient à trouver des moyens de modifier la pratique 

pédagogique. Les recherches portant sur les processus impliqués dans l’apprentissage, 

caractérisées par la poursuite d’un objectif translationnel tout en étant fondées sur des preuves, 

font néanmoins l’objet d’un intérêt croissant (Davidesco et Milne, 2019 ; Higgins et al, 2019 ; 

Pasquinelli, Zalla, Gvozdic, Potier-Watkins, et Piazza, 2015). En effet, de nombreux programmes 

de recherche ont émergé visant une meilleure compréhension des mécanismes psychologiques 

impliqués dans l'apprentissage des mathématiques afin de changer les pratiques éducatives (p. ex. 

Carpenter, Fennema, & Franke, 1996 ; Van den Heuvel-Panhuizen & Drijvers, 2014). Cette ligne 

de recherche a été empruntée par différentes approches théoriques, qui vont ainsi donner la priorité 

à différents aspects (Lerman, 2006). L’objectif est parfois avant tout de permettre une meilleure 

compréhension de l’apprentissage, en se focalisant sur les processus de construction des savoirs 

individuels, ou plutôt d’améliorer des pratiques, en se focalisant sur le rôle joué par les enseignants 

dans le développement des connaissances des élèves. Formuler une question de recherche à partir 

des enjeux de la classe et élaborer une méthodologie adéquate pour s’emparer de ce problème 

demeurent des défis importants. Nous pensons que deux changements conceptuels contribuent de 

manière significative à établir un dialogue et à poursuivre des objectifs communs. L'un concerne 

l'importance croissante accordée aux approches situées en psychologie, et l'autre a trait à 

l’évolution du rôle accordé aux formalisations dans l'éducation. 

Dans le domaine de la psychologie, la conception du savoir et de l'apprentissage a évolué 

historiquement avec l’apparition de différentes approches. Greeno, Collins et Resnick (1996) ont 

ainsi dégagé trois perspectives générales dans la littérature. La première est la perspective 

behavioriste/empiriste, où le savoir est « une accumulation organisée d'associations et de 

composantes de compétences » (p. 16). La seconde est la perspective cognitiviste/rationaliste, où 

le savoir est perçu comme « l'organisation de l'information dans les structures et procédures 

cognitives » (p.16). La troisième est la perspective situationnelle/pragramtique-sociohistorique, 



186 | Résumé en français  

qui voit le savoir comme étant « distribué entre les personnes et leur environnement, y compris les 

objets, les artefacts, les outils, les livres et les communautés dont ils font partie » (p.17). 

Néanmoins, au cours des dernières décennies, les perspectives cognitivistes et situationnelles se 

sont rapprochées. Cette réconciliation s’observe dans des approches qui considèrent la cognition 

comme incarnée (Lakoff & Johnson, 1999). La pertinence de ce couplage se manifeste aussi dans 

l'influence du contexte sur la signification d'une situation (Barsalou, 1982). Combler le fossé est 

considéré comme un moyen de prendre en considération les structures mentales qui sont 

construites, tout en tenant compte de la flexibilité, de la malléabilité et de la nature distribuée des 

concepts (Vosniadou, 2007). Selon nous, l'adoption d'une perspective cognitive située rapproche 

le champ de la psychologie de la construction d'objectifs communs avec les recherches en 

éducation, car elle reconnait que les processus cognitifs sont largement influencés par le contexte 

dans lequel ils se développent et sont modulés par le contenu sur lequel ils agissent. 

Nathan (2012) a proposé une critique d'une croyance répandue dans l'éducation et la 

société, qui se manifeste à travers une approche formaliste de l'apprentissage. La croyance sur 

laquelle repose ce point de vue est que la connaissance des formalismes d'un domaine est une 

condition préalable à l'application de cette connaissance. Les formalismes sont considérés à la fois 

au sens étroit, se référant à des formes de représentations spécialisées qui sont 

conventionnellement utilisées dans un domaine tel que les équations symboliques, et à la fois au 

sens large, où ils se réfèrent à des théories scientifiques et des principes formels. La prévalence de 

ce point de vue peut être observée dans les prédictions des enseignants concernant les 

performances des élèves en arithmétique et en algèbre. Les enseignants classent systématiquement 

les problèmes présentés en fonction de leur structure formelle. En effet, ils considèrent les 

équations symboliques comme plus faciles pour les élèves que les problèmes plus éloignés de leur 

structure formelle, tels que les problèmes à énoncés verbaux et narratifs (Nathan, Koedinger, & 

Alibali, 2001 ; Nathan & Petrosino, 2003). Ce n'est toutefois pas toujours le cas lorsqu'on examine 

les performances des élèves. Les formalismes ont sans aucun doute un rôle critique dans 

l'éducation, pourtant, adopter une vision des formalismes en premier abord revient à considérer 

que « le développement conceptuel passe du formel à l'appliqué » (Nathan, 2012, p. 128). Cela ne 

donne pas une vision adéquate du développement conceptuel, ce qui est l'une des principales 

raisons pour lesquelles cette approche est inappropriée. Nous pensons donc que toute tentative de 
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mener des recherches conjointes dans le domaine de la psychologie et des sciences de l'éducation 

doit avoir une vision au moins modérée du rôle des formalismes dans l'éducation scolaire. 

RESUME DE L’ETAT DE L’ART (CHAPITRES 1 A 4) 

Nous considérons premièrement que l'étude de l'enseignement et de l'apprentissage doit 

tenir compte à la fois du développement conceptuel et de la compréhension du nouveau contenu 

en lien avec les connaissances antérieures. Deuxièmement, nous considérons que cette étude doit 

tenir compte également des croyances implicites des enseignants et de la façon dont ils façonnent 

leur pratique. Afin d'aborder ces questions, nous nous appuyons sur le champ du raisonnement 

analogique qui, selon nous, fournit une théorie unificatrice des dimensions informelle, formelle et 

située de l'apprentissage scolaire. Contrairement à la vision historique des analogies en tant que 

relations proportionnelles, les approches contemporaines la considèrent comme un moyen de 

comprendre une chose en se référant à autre chose (Holyoak & Thagard, 1995). L’analogie est vu 

comme un processus par lequel on établit une correspondance entre une entité inconnue ou moins 

connue – une cible – et une entité plus connue – une source (Gentner, 1989 ; Holyoak & Thagard, 

1995). Les analogies permettent de dépasser l'expérience singulière d'une nouvelle situation en se 

référant à des catégories mentales guidant son interprétation (Hofstadter & Sander, 2013). Par 

exemple, si l'on adopte un point de vue socratique traditionnel et que l'on déclare : « un·e 

enseignant·e est comme une sage-femme », on fait une analogie. Une telle analogie permet 

d'envisager l'enseignement en se référant à une profession différente, qui pourrait être familière, et 

qui confère ses propriétés à « l'enseignant ». Cette affirmation implique que la personne qui 

enseigne ne ferait ressortir que des connaissances qui sont déjà implicites chez les élèves. De plus, 

faire une telle analogie signifie qu'une personne ne fait pas référence à un enseignant en particulier, 

mais à une catégorie générale qui instancie la profession enseignante (Glucksberg et Keysar, 

1990). 

Grâce à cette capacité de faire des liens par analogie dans leur vie quotidienne, les enfants 

développent une compréhension intuitive du fonctionnement du monde qui les entourne (Carey, 

2009; diSessa, 1993, 2017; Piaget, 1960; Shtulman, 2017). Ces conceptions intuitives sont 

considérées comme étant spécifiques à un domaine (ex : la biologie, les mathématiques, etc). 

Cependant, leurs caractéristiques et mécanismes d'action sur le plan psychologique sont communs 

aux différents domaines. Cela permet notamment aux chercheurs d'étudier comment les 

conceptions intuitives peuvent influencer l'acquisition de nouvelles connaissances, puisqu'il est 
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important de savoir quand elles facilitent l'acquisition d'un nouveau concept, et quand elles lui sont 

plutôt néfastes. Le point de vue que nous adoptons est que les conceptions intuitives constituent 

des notions fortement familières qui sont utilisées pour appréhender de nouvelles connaissances, 

par analogie (Hofstadter & Sander, 2013). Lorsque nous considérons une connaissance intuitive 

comme une source d’analogie, cela rend possible de comprendre comment elles exercent une 

influence sur l’acquisition de connaissances ultérieures. Il est important de reconnaitre qu’une 

conception intuitive a un domaine de validité : l'utiliser pour faire des prédictions peut parfois 

fournir des réponses qui sont adaptées pour le domaine cible. Cette utilisation vient néanmoins 

avec certaines limites, car elle produira, à d'autres moments, des inférences non valides dans le 

domaine cible (Hatano & Inagaki, 1987). Les connaissances intuitives en tant que connaissances 

antérieures impactent la façon dont une situation cible est comprise, mais elles interviennent même 

directement dans le traitement de la cible en temps réel. En fait, les connaissances préalables 

enrichissent la représentation d'une situation dès l'encodage initial (Ross & Bradshaw, 1994). 

Les conceptions intuitives ont été identifiées dans une diversité de domaines enseignés à 

l’école, y compris les mathématiques. Fischbein (1987), ainsi que Lakoff et Núñez (2000) ont par 

exemple identifié la conception soustraire c'est enlever comme étant la conception intuitive la plus 

répandue de la soustraction. Selon Fischbein, lorsque la soustraction est effectuée par le biais de 

l’utilisation de la conception intuitive, le calcul qui est effectué vise en fait à déterminer la quantité 

restante après avoir retiré un sous-ensemble d'un ensemble plus large. Ce type d'action est 

également décrit dans les métaphores conceptuelles décrivant l’arithmétique comme une collection 

d’objets, où la plus petite quantité est retirée d'une collection plus grande, formant un autre objet 

(Lakoff & Núñez, 2000). Par conséquent, le signe « moins » d'une soustraction formelle 

déclencherait intuitivement cette conception soustraire c’est enlever (van den Heuvel-Panhuizen 

& Treffers, 2009). Dans ces cas, c’est le modèle intuitif qui se substitue à l'opération arithmétique. 

La solution à une soustraction découlant de ce modèle de soustraction serait appelée le reste 

(Usiskin, 2008). Fischbein (1993) a proposé différentes inférences à partir de cette conception. Si 

l'on est guidé par ce modèle intuitif de soustraction, si l'on a besoin d'extraire une quantité B d'une 

quantité A (A – B), cela ne peut se faire que si B < A. Il propose que si cela n’est pas respecté (B 

> A), alors un élève qui tient à ce modèle de soustraction pourrait procéder de plusieurs manières. 

Soit, il enlèvera autant d’unités que possible, soit il inversera la soustraction en B - A. En outre, 

une conception alternative de la soustraction, moins répandue, existe, celle de l’écart. Ces deux 
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conceptions peuvent conduire à des réponses correctes, mais peuvent aussi amener à commettre 

des erreurs (Sander, 2001). 

Les notions enseignées à l'école trouvent donc déjà leurs racines et sont façonnées par les 

expériences antérieures, prenant la forme de conceptions intuitives (Fischbein, 1987 ; Lakoff & 

Núñez, 2000). De même, les élèves disposent d'une grande variété de connaissances informelles 

avec lesquelles ils arrivent en classe, qui se manifestent dans leurs apprentissages tant conceptuels 

que procéduraux. Quant aux connaissances procédurales, les stratégies informelles mises en place 

par les élèves sont fondées sur les habiletés arithmétiques précoces telles que compter en utilisant 

des objets ou compter mentalement (Baroody et Ginsburg, 1986 ; Carpenter et al., 1981 ; Resnick, 

1989).  Une habileté informelle qui mène à une forme précoce d'arithmétique réside dans la 

capacité de l'enfant à trouver la valeur cardinale d'un ensemble en comptant les éléments qui le 

composent (Baroody et Ginsburg, 1986). Les enfants de cinq à six ans s'engagent généralement 

dans des stratégies de comptage sans respecter un ordre précis dans lequel les objets sont comptés. 

Pourtant cela ne signifie pas nécessairement qu'ils comprennent le principe de la cardinalité, qui 

consiste à ne pas respecter l'ordre. Cette arithmétique informelle se manifeste d'abord par 

l'utilisation d'objets ou de doigts, et ces procédures concrètes mènent au développement du calcul 

mental informel (Baroody & Ginsburg, 1986 ; Carpenter et al, 1981 ; Resnick, 1989). 

Dans l’apprentissage des mathématiques à l’école élémentaire, la résolution de problèmes 

arithmétiques à énoncés verbaux permet de donner du sens et d’appliquer en situation réelle des 

concepts et des opérations arithmétiques. De nombreuses recherches empiriques s’intéressent aux 

processus mobilisés lors de tâches de résolution de problèmes, nous renseignant sur les stratégies 

mises en place (Brissiaud & Sander, 2010 ; Carpenter, Ansell, Franke, Fennema, & Weisbeck, 

1993 ; Riley, Greeno, & Heller, 1983 ; Verschaffel & De Corte, 1997). La lecture d’un problème 

arithmétique à énoncé verbal donne lieu à l’élaboration d’une représentation mentale qui tient 

compte des relations entre les éléments décrits dans le problème (Reusser, 1990). Avant d’être 

scolarisés en primaire, les enfants réussissent à résoudre certains problèmes arithmétiques en ayant 

recours à des stratégies de résolution informelles (Verschaffel & De Corte, 1997). Ces stratégies 

informelles consistent en des procédures qui ne mobilisent pas les formalisations mathématiques 

mais reflètent les situations décrites dans l’énoncé, et excluent l’application de principes 

arithmétiques tels que la commutativité (Verschaffel & De Corte, 1997). On pourrait penser qu’une 

fois les compétences arithmétiques acquises durant la scolarisation, ces stratégies informelles font 
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place à d’autres, plus formelles. Cependant, des travaux sur les stratégies utilisées par les élèves 

de CE1 et CE2 ont mis en évidence que les stratégies informelles persistent, y compris suite à 

l’enseignement en classe de stratégies plus formelles (Brissiaud & Sander, 2010). 

Le cadre théorique de la Primauté des Stratégies de Situation6 (Brissiaud & Sander, 2010) 

décrit les processus de résolution de problèmes arithmétiques et souligne l’importance de la 

représentation que se fait un individu tentant de résoudre un problème. Notamment, le cadre prédit 

que la résolution d’un problème fasse appel à des processus qui modélisent les actions décrites 

dans l’énoncé et représentent donc des stratégies informelles. Dans le cas des problèmes additifs, 

les individus vont essayer en premier lieu de faire un comptage soit en avançant, soit à rebours, 

selon ce qui est décrit dans le texte. Cependant, cette stratégie informelle n’est pas toujours 

optimale et peut engager des procédures de calcul couteuses. Dans ce cas résoudre le problème 

nécessite de recourir à l’arithmétique mentale, et donc de mobiliser des stratégies de résolutions 

formelles. Le cadre PSS a permis de mettre en avant que les stratégies informelles continuent à 

être utilisées en premier recours même si elles sont couteuses et même lorsque les connaissances 

arithmétiques qui auraient facilité leur résolution sont acquises en classe. 

Malgré le grand nombre de recherches qui ont étudié les conceptions présentes chez les 

élèves et les processus par lesquels les élèves acquièrent des connaissances en mathématiques, les 

conceptions des enseignants à l'égard de leurs élèves ont été beaucoup moins étudiées. Les 

connaissances intuitives persistent malgré les apprentissages scolaires et continuent à se manifester 

dans des contextes spécifiques. Par exemple, les adultes prennent plus de temps pour évaluer la 

justesse d’opérations de soustraction et de division lorsque les problèmes présentés sont 

incompatibles avec les connaissances intuitives des opérations que l’inverse, suggérant un effet 

facilitateur (Vamvakoussi, Van Dooren, & Verschaffel, 2013). Par ailleurs, Tirosh & Graeber 

(1991) ont mis en évidence que les connaissances intuitives persistaient même chez des 

enseignants en formation : ceux-ci réussissent nettement mieux des problèmes compatibles avec 

la connaissance intuitive de la division (94% de réussite), par rapport aux problèmes non 

compatibles avec cette connaissance intuitive (67% de réussite). En outre, lorsque des enseignants 

en formation devaient décrire les sources des erreurs commises par les élèves sur des problèmes 

de division, les enseignants décrivaient majoritairement des sources algorithmiques et rarement 

des sources intuitives (Tsamir & Tirosh, 2008).  

 
6 Situation Strategy First en anglais 
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Il est possible que les conceptions intuitives en arithmétique aient un impact sur la 

Connaissance Pédagogique du Contenu7 (CPC) des enseignants (Shulman, 1986). Cette CPC 

s'appuie sur la connaissance du contenu qui est enseigné, mais c'est la connaissance du contenu 

qui est la plus pertinente pour son enseignement. Par ailleurs, enrichir sa CPC implique aussi que 

l'enseignant comprenne ce qui rend l'apprentissage d'une personne difficile ou facile. La CPC, par 

conséquent, réduit l'importance accordée à la connaissance du contenu et attire l'attention sur les 

connaissances des enseignants, qui ne se confondent pas avec celles des spécialistes du domaine. 

Shulman propose que cette catégorie de connaissances propres aux enseignants exige également 

qu'ils sachent quelles sont les idées préconçues que les élèves ont sur le sujet à différentes étapes 

de leur développement. Et cela d’autant plus que ces connaissances antérieures peuvent être 

inappropriées et demandent des enseignants qu’ils mettent en œuvre des stratégies qui aideront les 

élèves à réorganiser leurs connaissances. 

RESUME DU CHAPITRE 5 – LA SIMULATION MENTAL AU VOLANT DE LA RESOLUTION DES PROBLEMES 

ARITHMETIQUES 8 

La présente étude porte sur les processus qui sous-tendent la résolution de problèmes 

arithmétiques. Nous proposons que les stratégies informelles utilisées pour résoudre les problèmes 

arithmétiques reflètent la simulation mentale de l'encodage d'un énoncé. Cet encodage est 

influencé par la forme de présentation du problème et de la conception arithmétique associée. 

Ainsi, la représentation initialement encodée va déclencher une simulation mentale par laquelle 

l’individu tente de trouver une solution. Lorsque la simulation mentale est peu coûteuse pour 

l’individu, il trouve la solution au problème sur la base de cet encodage initial. Il s'agit d'une 

stratégie de résolution informelle. Ces problèmes sont donc concordants avec la simulation 

mentale. D'autre part, lorsqu'il n'est pas possible pour l’individu de trouver facilement une réponse 

par le biais de la simulation mentale, une stratégie formelle doit être utilisée. Ces problèmes sont 

donc discordants avec la simulation mentale. Lorsque la représentation encodée porte un coût 

élevé pour la simulation mentale, les individus soit s'appuient sur le codage initial mais appliquent 

des stratégies de calcul pour rendre le calcul possible, soit ils recodent la représentation du 

 
7 Pedagogical Content Knowledge en anglais 
8 Les résultats des expériences 1, 2 et 4 ont été publiés dans : Gvozdic, K., & Sander, E. (2017). Solving 

additive word problems: Intuitive strategies make the difference. In B. C. Love, K. McRae, & V. M. Sloutsky (Eds.), 

Proceedings of the 39th Annual Conference of the Cognitive Science Society. London, UK: Cognitive Science 

Society. 
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problème. Pour créer une nouvelle représentation du problème, l’individu devrait recoder la 

représentation initiale, en mobilisant les connaissances arithmétiques conceptuelles, ce qui 

conduirait à une représentation recodée, que l’individu pourrait à nouveau essayer de simuler 

mentalement. Le recodage de la représentation du problème est plus favorable lorsqu'il conduit à 

un avantage computationnel et rend cette représentation recodée facile à simuler mentalement.  

Si nous prenons l'exemple des problèmes de Transformation 2 de la typologie de Riley, 

Greeno, et Heller (1983) tel que « Luc joue avec ses 22 billes à la récréation. Pendant la récréation, 

il perd 4 billes. Combien de billes Luc a-t-il maintenant ? », l’individu encoderait la représentation 

à l'aide de la conception soustraire c’est enlever. On s’engagerait ensuite dans la simulation 

mentale de cet encodage, qui aurait un faible coût. Dans le cas de ce problème concordant avec la 

simulation mentale, l’individu trouverait facilement la réponse par la stratégie informelle qui 

consiste à enlever 4 billes à 22. Cependant, pour les problèmes tels que « Luc joue avec ses 22 

billes à la récréation. Pendant la récréation, il perd 18 billes. Combien de billes Luc a-t-il 

maintenant ? », l’individu encoderait la représentation à l'aide de la même conception soustraire 

c’est enlever, mais sa simulation mentale aurait un coût élevé car elle conduit à enlever une grande 

quantité de billes, 18 de 22. Dans le cas de ce problème discordant avec la simulation mentale, 

l’encodage initial n'est pas efficace pour trouver la réponse. Pour accéder à une stratégie de 

résolution plus efficace, une conception différente de l'arithmétique doit participer au recodage - 

la conception de la soustraction comme écart. Par conséquent, ce qui fait qu’un problème soit 

discordant avec la simulation mentale, c'est que son encodage initial serait influencé par une 

conception qui ne permet pas l'accès à la stratégie de résolution optimale, c'est-à-dire que la 

stratégie à laquelle mène l’encodage initial ne peut pas être facilement réalisée dans le même 

format que celui dans lequel il était encodé.  

Reusser (1990) a proposé que les actions décrites dans un problème conduisent au modèle 

mathématique du problème. Brissiaud et Sander (2010) ont émis l’hypothèse que c’est la 

simulation de la situation décrite dans le texte d’un problème qui mène une solution. Cependant, 

ce que nous proposons est que la simulation mentale se fait à partir de la représentation encodée 

et pas uniquement à partir de la situation décrite par l’énoncé d’un problème. Par conséquent, afin 

de tester si la simulation mentale opère bien sur la représentation encodée, telle qu’elle est 

influencée par la conception arithmétique mobilisée par le problème, nous avons utilisé des 

problèmes qui ne décrivent pas des séquences d’actions. En fonction des différentes conceptions 
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arithmétiques supposées être impliquées dans les encodages, nous avons construit des problèmes 

concordants et discordants avec la simulation mentale.  

Dans une première expérience, nous avons évalué les performances des élèves de CE1 sur 

les problèmes arithmétiques à énoncés verbaux qui ne décrivent pas un changement dans la 

quantité qui apparaît au fil du temps. Nous avons postulé la conception de l'arithmétique mobilisée 

pour chaque catégorie de problème en fonction de sa formulation. Nous avons ensuite créé deux 

versions de chaque problème, un concordant et l'autre discordant avec la simulation mentale. Nous 

avions prédit que les élèves réussiraient mieux les problèmes concordants avec la simulation 

mentale que les problèmes discordants. Les problèmes discordants avec la simulation mentale 

seraient plus difficiles à résoudre parce qu'ils exigeraient que les individus recodent la 

représentation initiale du problème en s’appuyant sur une conception différente. Par conséquent, 

ce processus de re-représentation rendrait ces problèmes plus difficiles. En effet, si cet écart de 

performance entre les problèmes concordant et discordants avec la simulation mentale était 

observé sur des catégories de problèmes statiques, il témoignerait de l'importance de l’encodage 

initial, guidé par les différentes conceptions arithmétiques, qui peuvent être simulées mentalement. 

Il soulignerait également la nécessité du processus de re-représentation afin d'utiliser des stratégies 

formelles lorsque cet encodage initial n'est pas efficace. 

Méthode 

Participants. Seize classes de CE1 ont participé à l’étude, comportant 314 élèves. L'âge 

moyen des enfants en janvier était de 7,60 ans (écart-type = 0,33, 177 filles). 

Matériaux. Il y avait 8 types de problèmes additifs appartenant à 3 grandes catégories 

correspondant aux problèmes de Comparaison 1, 2, 3, 4, Combinaison 1, 2 et Égalisation 1 et 2 de 

la classification de Riley et al. (1983) (voir Tableau 2). Des versions concordantes et discordantes 

avec la simulation mentale ont été créées. Les triplets impliqués dans les données et la solution 

sont (31, 27, 4), (33, 29, 4), (41, 38, 3), et (42, 39, 3). La taille des nombres n'était pas le facteur 

décisif pour déterminer la concordance avec la simulation mentale. Quatre contextes ont été 

utilisés pour la formulation de chaque problème : billes, euros, fleurs et fruits. Chaque problème a 

été présenté dans un seul contexte. 

Design. Il y avait un total de 16 problèmes : 8 catégories de problèmes dans deux variantes 

différentes – concordants ou discordants avec la simulation mentale. Les élèves ont résolu un total 

de 8 problèmes créés en combinant les 8 catégories de problèmes dans l'une ou l'autre de ces 
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versions. Chaque élève a donc résolu 4 problèmes concordants avec la simulation mentale et 4 

problèmes discordants avec la simulation mentale. Pour contrôler l’effet de l’ordre, les valeurs 

numériques et le contexte, 8 ensembles de problèmes différents ont été créés. Huit autres 

ensembles de problèmes étaient des ensembles ‘miroirs’ dans lesquels la concordant était présentée 

dans son équivalent discordants, tandis que le problème discordant était présenté dans son 

équivalent concordant. Ainsi, 16 groupes d'ensembles de problèmes ont été créés et contrebalancés 

parmi les différentes classes.  

Procédure. L'expérience a été menée en janvier et a été administrée dans les salles de 

classe des élèves. Chaque enfant a reçu un livret de 8 pages. Il y avait un carré au milieu de chaque 

page dans lequel ils écrivaient leur réponse. Chaque problème a été lu deux fois à haute voix à 

toute la classe, ce qui a réduit la charge de travail des élèves en lecture, et les élèves ont ensuite eu 

une minute pour noter le chiffre qui était la solution ; le problème suivant a ensuite été lu à haute 

voix. 

Notation. Lorsque résultat était exact ou à +/-1, 1 point était attribué à l’élève. Toute autre 

réponse recevait 0 point. 

Résultats 

Une première analyse a été effectuée afin de comparer les taux de réussite des élèves sur 

des problèmes concordants et discordants avec la simulation mentale. Nous avons effectué des 

régressions logistiques à effets aléatoires. Nous avons construit un modèle linéaire mixte 

généralisé (MLMG) avec une distribution binaire avec la concordance de la simulation mentale 

(concordant vs. discordant) comme facteurs fixes, tandis que les participants et les catégories de 

problèmes ont été inclus comme effets aléatoires. Les analyses ont montré un effet principal 

significatif de la concordance avec la simulation mentale sur la performance (β = 1,05, z = 11,12, 

p < 0,001). Les étudiants ont réussi en moyenne sur 45,58 % des problèmes concordants et 27,10 

% des problèmes discordants avec la simulation mentale. Les problèmes concordants avec la 

simulation mentale avaient un taux de réussite 1,69 fois plus élevé que les problèmes discordants. 
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Tableau 2 en français : Exemples d’énoncés de problèmes utilisés dans l’étude 

Catégorie de problème 
Problèmes concordants avec la 

simulation mentale 

Problèmes discordants avec la 

simulation mentale 

Comparison 

Comparaison 

1 

Il y a 27 roses et 31 marguerites 

dans le bouquet. Combien y a-

t-il de marguerites de plus que 

de roses ? 

Il y a 4 roses et 31 marguerites 

dans le bouquet. Combien y a-

t-il de marguerites de plus que 

de roses ? 

Comparaison 

2 

Il y a 31 oranges et 27 poires 

dans le panier. Combien y a-t-il 

de poires de moins que d’ 

oranges ? 

Il y a 31 oranges et 4 poires dans 

le panier. Combien y a-t-il de 

poires de moins que d’oranges ? 

Comparaison 

3 

Pierre a 27 billes. Jacques a 4 

billes de plus que Pierre. 

Combien de billes Jacques a-t-

il ? 

Pierre a 4 billes. Jacques a 27 

billes de plus que Pierre. 

Combien de billes Jacques a-t-il 

? 

Comparaison 

4 

Anne a 31 euros. Carole a 4 

euros de moins que Anne. 

Combien d'euros Carole a-t-elle 

? 

Anne a 31 euros. Carole a 27 

euros de moins que Anne. 

Combien d'euros Carole a-t-elle 

? 

Egalisation 

Egalisation 1 

Dans le panier il y a 27 oranges 

et il y a 31 poires. Combien 

d'oranges doit-on ajouter pour 

avoir autant d'oranges que de 

poires ? 

Dans le panier il y a 4 oranges 

et il y a 31 poires. Combien 

d'oranges doit-on ajouter pour 

avoir autant d'oranges que de 

poires ? 

Egalisation 2 

Dans le bouquet il y a 31 roses 

et il y a 27 marguerites. 

Combien de roses doit-on 

enlever pour avoir autant de 

roses que de marguerites ? 

Dans le bouquet il y a 31 roses 

et il y a 4 marguerites. Combien 

de roses doit-on enlever pour 

avoir autant de roses que de 

marguerites ? 

Combinaison 

Combinaison 

2 

Dans sa tirelire Céline a 27 

euros et elle a des euros dans sa 

poche. Au total, Céline a 31 

euros. Combien d'euros Céline 

a-t-elle dans sa poche ? 

Dans sa tirelire Céline a 4 euros 

et elle a des euros dans sa 

poche. Au total, Céline a 31 

euros. Combien d'euros Céline 

a-t-elle dans sa poche ? 

Combinaison 

1 

Dans le sac de Léo il y a 27 

billes rouges et 4 billes bleues. 

Combien de billes y a-t-il dans 

le sac de Léo ? 

Dans le sac de Léo il y a 4 billes 

rouges et 27 billes bleues. 

Combien de billes y a-t-il dans 

le sac de Léo ? 
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Discussion 

Dans cette première expérience, les résultats ont montré que l'efficacité de la simulation 

mentale issue de l'encodage proposé a conduit à des taux de réussite différents, ce qui a permis de 

distinguer les problèmes concordants des problèmes discordants avec la simulation mentale. Ceci 

a été observé sur presque tous les problèmes testés, qui ne contiennent pas de scénarios avec des 

séquences d’actions qui pourraient favoriser la simulation mentale de la situation. Cette simulation 

mentale ne serait possible que si la représentation encodée ne créait pas un modèle mental 

dynamique qui pourrait être simulé. Nous avons mené ensuite trois autres expériences en classes 

de CE1. Dans ces autres expériences, nous avons fourni des preuves de la persistance du 

phénomène de la simulation mentale de la représentation encodée : même après l'enseignement 

ultérieur durant l'année scolaire, les élèves résolvent encore mieux les problèmes concordants avec 

la simulation mentale que ceux qui sont discordants. Ensuite, nous avons montré dans une 

troisième expérience que la facilité induite par la concordance avec la simulation mentale 

s’observe aussi sur des problèmes arithmétiques non-verbaux : le format du problème déclenche 

un encodage spécifique qui semble être la base d'une simulation mentale, dont l'efficacité 

détermine la facilité de résolution. Dernièrement, nous avons étudié les stratégies réellement 

utilisées par les élèves en récoltant des protocoles verbaux dans une quatrième expérience. Les 

résultats reflétaient les stratégies correspondant à l’encodage initiale lorsque le problème était 

concordant avec la simulation mentale, et les stratégies formelles correspondant à une 

représentation recodée du problème. Dans l'ensemble, les expériences menées indiquent que le 

processus responsable des stratégies de résolution informelles est une simulation mentale non-

mathématique de la représentation encodée, tandis que l'utilisation de stratégies formelles dépend 

du recodage de la représentation initiale, effectué par le biais d'une autre conception arithmétique. 

Ces résultats confirment que la simulation mentale ne se produit pas seulement lorsque le problème 

illustre une séquence dynamique d'événements. 
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RESUME DU CHAPITRE 6 – VERS LE DEPASSEMENT DES STRATEGIES INFORMELLES 9 

Les recherches ont mis en évidence que la comparaison de différentes procédures lors de 

la résolution de problèmes a des effets bénéfiques pour les apprentissages (Rittle-Johnson & Star, 

2011). En outre, la comparaison entre procédures informelles et formelles s’est avérée favorable à 

une conceptualisation adéquate (Hattikudur, Sidney, & Alibali, 2016). L’accès à une 

représentation autre que celle initialement évoquée par la situation a été rendue possible par des 

activités de comparaison en classe (Gamo, Sander, & Richard, 2010). Ce type de re-représentation 

décrit le processus de recodage sémantique. Ce processus pourrait être d’une grande importance 

dans le développement d’une « l’expertise adaptative », souligné comme un des principaux défis 

dans l’enseignement des mathématiques élémentaires (Verschaffel, Luwel, Torbeyns, & Van 

Dooren, 2009, p.1). Ainsi le recodage sémantique peut être mobilisé pour aider les élèves à aller 

au-delà de l’utilisation des stratégies informelles et à faire appel à des connaissances arithmétiques, 

nécessaires pour résoudre les problèmes discordants avec la simulation mentale. 

La recherche-action Arithmétique et Compréhension à l’École Élémentaire (ACE) a 

élaboré un programme d’enseignement ayant pour objectif de favoriser l’apprentissage 

arithmétique à l’école primaire. Le programme comportait quatre grands domaines 

d’enseignement : un travail autour de situations « fil rouge », l’estimation, le calcul mental et la 

résolution de problèmes. Le domaine de la résolution de problème avait deux objectifs principaux : 

initier les élèves à l’analyse sémantique dans les tâches de résolution de problèmes et travailler sur 

le recodage sémantique afin de développer des stratégies optimales de résolution de problèmes. 

Le programme commençait en engageant les élèves dans l’analyse des relations décrites 

dans les énoncés, d’abord sur des problèmes de Combinaison – dans lesquels deux éléments sont 

regroupés pour former un tout et la question porte sur un des éléments ou sur le tout ; en 

poursuivant avec des problèmes de Comparaison, dans lesquelles deux quantités sont comparées 

et la question porte sur la différence entre les deux. Ces problèmes encouragent la construction 

d’une représentation mentale des relations partie-tout, qui est considérée comme favorable pour la 

généralisation ultérieure et l’application des opérations arithmétiques dans d’autres contextes 

(Sophian, 2007). Les problèmes de Transformation étaient étudiés ensuite – où une quantité évolue 

 
9 Les résultats de cette étude ont été acceptés pour publication dans : Gvozdic, K., & Sander, E. 

(accepted). Learning to be an opportunistic word problem solver: Going beyond informal solving strategies. ZDM 

Mathematics Education. 
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au cours du temps. Dans la résolution de problèmes comme dans l’ensemble du programme ACE, 

les situations étudiées étaient modélisées à l’aide de deux outils afin de présenter schématiquement 

les relations entre les éléments du problème : un schéma-ligne et un schéma-boîte (cf. Figure 17).  

Le recodage sémantique constituait une étape clé. Les enseignants présentaient divers 

problèmes discordants avec la simulation mentale et incitaient leurs élèves à trouver la stratégie la 

plus courte pour les résoudre. Les stratégies étaient comparées et discutées en classe (cf. Figure 9 

– problème discordant), et les élèves devaient choisir quelle procédure permettraient de trouver la 

réponse le plus facilement. Cette comparaison permettait aux élèves d’aller au-delà de leur 

encodage initial de la situation et de se re-représenter la situation afin de mettre en œuvre une 

procédure de résolution plus favorable (Gamo et al., 2010). 

Dans cette étude nous avons cherché à évaluer l’efficacité d’activités de classe centrées sur 

le recodage sémantique. Les performances des élèves sur les problèmes concordants et discordants 

avec la simulation mentale étaient évalués, ainsi que leurs stratégies de résolution. La prédiction 

était que les élèves des classes ACE auraient des performances supérieures à celle des élèves des 

classes tout venants (TV), et notamment que les élèves ACE utiliseraient plus de stratégies 

formelles. 
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C. Problème concordant avec la simulation mentale 

 

Nicolas va en récréation avec ses 22 billes. Pendant la récréation, il perd 4 billes. Combien Nicolas a-t-il de billes 

maintenant ? 

Stratégie informelle 

 

   

La stratégie informelle est de simuler mentallement la représentation encodé à partir de la situation décirt dans le problème 

– enlever 4 billes. Par conséquent, la stratégie informelle est de partiri de 22 et de compter à rebours de 4. Cela est noté 

comme une soustraction directe ‘22 – 4’. Dans le cas d’un problème concordant avec la simulation mentale, cette stratégie 

est facile à mettre en place. 

A. Problème discordant avec la simulation mentale 

 

Luc is playing with his 22 marbles at recess. During the recess, he loses 18 marbles. How many marbles does Luc have 

now? 

 

Stratégie infromelle Stratégie formelle 

 

 
 

 

La stratégie informelle est de simuler mentallement la 

représentation encodé à partir de la situation décirt dans le 

problème – enlever 18 billes. Par conséquent, la stratégie 

informelle est de partiri de 22 et de compter à rebours de 18. 

Cela est noté comme une soustraction directe ‘22 – 18’. Dans 

le cas d’un problème discordant avec la simulation mentale, 

cette stratégie est difficile à mettre en place. On demandait 

aux élèves de chercher s’il y avait un autre moyen de trovuer 

la solution. 

La stratégie formelle consiste à se désengager du contexte 

sémantique et à changer la façon dont la situation est abordée, 

ce qui amène les élèves à résoudre le problème en recherchant 

l’écart entre 18 et 22. Ceci implique le recodage d'une 

situation de soustraction directe en une addition à trou qui est 

alors notée comme 18 + 4 = 22. On demande ensuite aux 

élèves quelle stratégie ils préfèrent utiliser pour résoudre ce 

problème. 

 

Figure 9 en français : Descriptions des stratégies de résolution travaillées en classe 
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Méthode 

Dix classes de CP ont participé à l’étude, comportant 208 élèves (5 classes ACE : 103 

étudiants, âge moyen = 7.05, ET = 0.3, 60 filles ; 5 classes TV : 105 étudiants, âge moyen = 7.03, 

ET = 0.31, 57 filles).  

Six catégories de problèmes à structure additive ont été présentées aux élèves. Chaque 

catégorie de problème était présentée dans sa version concordant et dans sa version discordant 

avec la simulation mentale. Les élèves résolvaient donc 12 problèmes arithmétiques, avec des 

contrebalancements de l’ordre de présentation, des valeurs numériques et de l’habillage des 

énoncés. Afin de s’assurer de la comparabilité des deux populations, les élèves devaient aussi 

résoudre des tâches contrôles, qui contenaient des exercices de géométrie, domaine non-travaillé 

dans le programme ACE. 

Les passations expérimentales avaient lieu 3 à 4 semaines avant la fin de l’année scolaire. 

Chaque élève recevait un carnet pour écrire ses résultats et les opérations réalisées. Un autre carnet 

contenait les tâches de géométrie. Chaque problème était lu à voix haut à l’ensemble de la classe 

et répété deux fois. 

Lorsque résultat était exact ou à +/-1, 1 point était attribué à l’élève. Selon la catégorie du 

problème, les stratégies que les élèves ont notées ont été classées selon le Tableau 2. Lorsqu'un 

élève notait une stratégie formelle sur un problème donné, il obtenait 1 point, et 0 point pour la 

stratégie informelle ou autre. L’ensemble des tâches contrôles étaient notés sur 4 points, 

conformément à une grille de codage.  
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Tableau 5 en français : Enoncés de problèmes avec les stratégies 

Catégorie de 

problème 

Concordance 

avec la 

simulation 

mentale 

Enoncé de problème 
Stratégie 

informelle 

Stratégie 

formelle 

Combinaison 1 

Concordant 

Dans le sac de Léo il y a 7 billes rouges et 4 

billes bleues. Combien de billes y a-t-il dans le 

sac de Léo ? 
7 + 4 = □ 4 + 7 = □ 

Discordant 

Dans le sac de Léo il y a 4 billes rouges et 7 

billes bleues. Combien de billes y a-t-il dans le 

sac de Léo ? 
4 + 7 = □ 7 + 4 = □ 

Combinaison 2 

Concordant 

Dans sa tirelire Céline a 7 euros et elle a des 

euros dans sa poche. Au total, Céline a 11 euros. 

Combien d'euros Céline a-t-elle dans sa poche ? 

7 + □ = 11 11 – 7 = □ 

11 – □ = 7 □ + 7 = 11 

Discordant 

Dans sa tirelire Céline a 4 euros et elle a des 

euros dans sa poche. Au total, Céline a 11 euros. 

Combien d'euros Céline a-t-elle dans sa poche ? 

4 + □ = 11 11 – 4 = □ 

11 – □ = 4 □ + 4 = 11 

Comparaison 1 

Concordant 

Il y a 7 roses et 11 marguerites dans le bouquet. 

Combien y a-t-il de marguerites de plus que de 

roses ? 

7 + □ = 11 11 – 7 = □ 

11 – □ = 7 □ + 7 = 11 

Discordant 

Il y a 4 roses et 11 marguerites dans le bouquet. 

Combien y a-t-il de marguerites de plus que de 

roses ? 

4 + □ = 11 11 – 4 = □ 

11 – □ = 4 □ + 4 = 11 

Comparaison 2 

Concordant 
Pierre a 11 billes. Jacques a 7 billes. Combien 

Jacques a-t-il de billes de moins que Pierre ? 
11 – □ = 7 11 – 7 = □ 

7 + □ = 11 □ + 7 = 11 

Discordant 
Pierre a 11 billes. Jacques a 4 billes. Combien 

Jacques a-t-il de billes de moins que Pierre ? 
11 – □ = 4 11 – 4 = □ 

4 + □ = 11 □ + 4 = 11 

Transformation 

2 

Concordant 

Dans un bouquet, il y a 11 fleurs au total. Sophie 

enlève 4 fleurs du bouquet. Combien de fleurs y 

a-t-il dans le bouquet maintenant ? 
11 – 4 = □ 

4 + □ = 11 

11 – □ = 4 

Discordant 

Dans un bouquet, il y a 11 fleurs au total. Sophie 

enlève 7 fleurs du bouquet. Combien de fleurs y 

a-t-il dans le bouquet maintenant ?  
11 – 7 = □ 

7 + □ = 11 

11 – □ = 7 

Transformation 

3 

Concordant 

Marie a 7 euros dans sa tirelire. Pour son 

anniversaire, elle reçoit d’autres euros et elle les 

met dans sa tirelire. Maintenant, elle a 11 euros. 

Combien Marie a-t-elle reçu d’euros pour son 

anniversaire ? 

7 + □ = 11 

11 – 7 = □ 

□ + 7 = 11 

Discordant 

Marie a 4 euros dans sa tirelire. Pour son 

anniversaire, elle reçoit d’autres euros et elle les 

met dans sa tirelire. Maintenant, elle a 11 euros. 

Combien Marie a-t-elle reçu d’euros pour son 

anniversaire ? 

4 + □ = 11 

11 – 4 = □ 

□ + 4 = 11 
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Résultats 

Nous avons analysé la performance des deux groupes, en exécutant un MLMG avec une 

distribution binaire avec concordance avec la simulation mentale et le groupe (ACE vs TV) comme 

facteurs fixes. Comme prévu, les problèmes concordants avec la simulation mentale étaient 

généralement plus faciles à résoudre que les problèmes discordants (β = 0,76, z = 5,45, p < ,001). 

De plus, le groupe ACE a obtenu de meilleurs résultats globaux que le groupe TV (β = 1,22, z = 

5,41, p < ,001). Les étudiants du groupe ACE ont réussi 63,43 % des problèmes concordants avec 

la simulation mentale et 50,48 % des problèmes discordants, tandis que les étudiants du groupe 

TV ont obtenu un taux de réussite moyen de 42,22 % pour les problèmes concordants et 29,84 % 

pour les problèmes discordants. 

Nous avons également effectué des analyses sur les stratégies utilisées par les élèves. Les 

principales analyses ont porté sur les stratégies utilisées par les élèves lorsqu'ils répondent 

correctement à un problème. Dans de tels cas, ils ont noté une stratégie 71,3 % du temps dans le 

groupe ACE et 61,67 % du temps dans le groupe TV. Avec ces données, nous avons effectué un 

MLMG avec une distribution binaire avec la concordance avec la simulation mentale et le groupe 

comme facteurs fixes. Parmi ces bonnes réponses, il y avait un effet global de la concordance avec 

signification mentale (β = -1,64, z = -7,24, p < 0,001), confirmant notre hypothèse que les stratégies 

formelles sont utilisées significativement plus souvent sur des problèmes discordants que sur des 

problèmes concordants. Il y a également eu un effet global du groupe (β = 1,44, z = 4,49, p < 

0,001), confirmant notre hypothèse que le groupe ACE utilise des stratégies formelles 

significativement plus que le groupe TV. Puisque les problèmes discordants avec la simulation 

mentale étaient ceux qui bénéficieraient le plus de l'utilisation de stratégies formelles, nous avons 

analysé davantage les stratégies utilisées pour résoudre correctement les problèmes discordants 

avec la simulation mentale. Nous avons effectué un MLMG avec une distribution binaire avec le 

groupe comme facteur fixe et les participants et la catégorie de problèmes comme effets aléatoires. 

Comme prévu, le groupe ACE a utilisé des stratégies formelles sur les problèmes discordants 

beaucoup plus que le groupe TV (β = 1,32, z = 3,52, p < 0,001).  

Discussion 

Cette étude nous renseigne sur des processus de résolution des problèmes à énoncés 

verbaux. Comme prévu, les étudiants des classes TV ont très rarement utilisé des stratégies 

formelles sur des problèmes concordants avec la simulation mentale, contrairement au groupe 
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ACE. Cependant, des stratégies de résolution informelles ont été observées sur des problèmes 

discordants dans les deux groupes, mais le groupe ACE a utilisé 2,2 fois plus de stratégies 

formelles que le groupe BAU. Il est possible de trouver la solution à des problèmes discordants 

par la simulation mentale, mais les stratégies de résolution informelles ne sont pas les plus efficaces 

dans ce cas, ce qui contribuait à la baisse des taux de performance dans le groupe TV sur ces 

problèmes. Ceci souligne l'importance de trouver des moyens appropriés pour guider les élèves 

dans la recherche de la stratégie la plus efficace. L'intervention ACE avait la particularité de mettre 

les élèves au défi d’écarter l’utilisation des stratégies informelles en leur donnant l'occasion 

d'utiliser des procédures dans divers contextes. Les problèmes concordants ont permis aux élèves 

de travailler sur leurs connaissances procédurales, tandis que les problèmes discordants les ont 

amenés à inventer et à rechercher des stratégies alternatives. Cela aurait pu favoriser le 

développement de connaissances conceptuelles arithmétiques tout en pratiquant des procédures 

connues, ce qui contribue à la rétention des connaissances (Baroody et al., 2007).  

Les résultats de l'étude s'orientent vers un examen plus approfondi du recodage sémantique 

qui vise un changement conceptuel afin d'améliorer l'utilisation des stratégies formelles par les 

élèves pour résoudre les problèmes à énoncés verbaux. Le recodage sémantique considère le 

changement de représentation comme la clé principale pour aller au-delà des stratégies informelles 

basées sur des situations et passer à des stratégies formelles (Brissiaud & Sander, 2010 ; Gamo et 

al., 2010). Dans cette étude, le recodage sémantique semble avoir favorisé le changement flexible 

entre les différentes représentations, puisque les étudiants des classes ACE utilisaient plus de deux 

fois plus de stratégies formelles que les classes BAU, et surtout, les stratégies formelles des classes 

d'intervention étaient plus fréquemment utilisées pour les problèmes les plus coûteux, qui devaient 

bénéficier d'un recodage sémantique. 
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RESUME DU CHAPITRE 7 – LES CONNAISSANCES PEDAGOGIQUES DES ENSEIGNANTS DANS L’ANGLE 

MORT DE L’INTUITION 10 

Cette recherche a évalué si un contenu compatible avec la connaissance intuitive influence 

les interprétations que font les enseignants des stratégies utilisées par les élèves pour résoudre les 

problèmes arithmétiques. Les connaissances intuitives sont présentes chez les adultes tout venants 

et chez les enseignants, cependant seuls les enseignants possèdent des CPC. Nous avons recruté 

les deux populations afin de déterminer si les enseignants, guidés par leurs CPC, évaluent 

différemment les stratégies de résolution mises en place par les élèves que des adultes tout venants, 

ou inversement pour déterminer si leurs connaissances intuitives masquent leur CPC. Nous avons 

présenté des paires de problèmes arithmétiques à énoncés verbaux. La tâche était de choisir lequel 

des deux problèmes était mieux réussi par les élèves et de justifier leur choix. Une hypothèse était 

que les enseignants identifieraient mieux que les adultes tout venants les stratégies mises en place 

par les élèves grâce à leur CPC. En revanche, nous avons également postulé que les connaissances 

intuitives biaiseraient leur compréhension de ces stratégies. Plus précisément, nous avons prédit 

que les CPC des enseignants ne pourraient pas s’exprimer sur les énoncés compatibles avec la 

connaissance intuitive et qu’ils auraient des difficultés à identifier correctement les stratégies mises 

en place par les élèves. Au contraire, nous avons fait l’hypothèses que lorsque le problème n'est 

pas compatible avec la connaissance intuitive les enseignants mobiliseraient leurs CPC et 

identifieraient mieux que les adultes tout venants les stratégies des élèves.  

Méthode 

L’étude a été réalisée auprès de 36 professeurs d’école élémentaire et de 36 adultes tout 

venants (âge moyen de 32.67 ans, 52 femmes, et les groupes étaient appariés par sexe). 

Les items étaient construits par appariement de variantes d’un même énoncé, issues de 

l'étude de Brissiaud et Sander (2010), pour lesquelles les taux de réussite et stratégies déployées 

par les élèves sont connus : la variante concordante étant toujours mieux réussie que la variante 

discordante. Deux types de problèmes étaient utilisés, un énoncé dont le contexte était compatible 

avec la connaissance intuitive de la soustraction, et un deuxième dont le contexte sémantique n'était 

pas compatible avec la connaissance intuitive. 

Cet appariement a conduit à la construction de 4 items :  

 
10  Les résultats de cette étude ont été publiés dans : Gvozdic, K., & Sander, E. (2018). When intuitive 

conceptions overshadow pedagogical content knowledge: Teachers' conceptions of students' arithmetic word problem 

solving strategies. Educational Studies in Mathematics. 98(2), 157-175. 
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• Un item où les deux problèmes appariés étaient du même type, compatibles tous deux 

avec la connaissance intuitive, 

• Un item où le problème concordant n'était pas compatible avec la connaissance 

intuitive alors que le problème discordant l'était, 

• Un item où le problème concordant était compatible avec la connaissance intuitive et 

le problème discordant non compatible, 

• Un item où les deux problèmes appariés n'étaient pas compatibles avec la connaissance 

intuitive. 

 Dans un premier temps les participants se prononçaient sur la difficulté relative des 

énoncés proposés dans chaque item. Ensuite les participants devaient justifier chaque choix. Nous 

avons analysé les justifications pour les items à propos desquels les participants ont choisi 

correctement que le problème concordant était mieux réussi. Lorsque les justifications étaient 

congruentes avec les stratégies mises en place par les élèves, on attribuait un score de 1, et de 0 

lorsqu’elles étaient non-congruentes. 

Conformément à nos hypothèses, nous avions prédit que pour les items dans lesquels le 

problème discordant était compatible avec la connaissance intuitive, il n'y aurait pas de différence 

entre les deux populations. Au contraire, lorsque le problème discordant n'était pas compatible 

avec la connaissance intuitive, notre prédiction était que les enseignants réussiraient mieux que les 

adultes tout venants à identifier les stratégies des élèves. 

Résultats  

Nous avons cherché à identifier un éventuel effet groupe sur les performances des 

participants, en effectuant un Modèle Linaire Généralisé (MLG) à mesure répétées sur le score des 

justifications, avec le facteur groupe et les facteurs contrebalancés comme variables inter-sujets. 

Les résultats ont indiqués un effet principal du facteur groupe (F(1, 56) = 6.959, p <.05), un effet 

principal des justifications (F(3,56) = 11.179, p < .001), et pas d'interaction entre les justifications 

et le facteur groupe (F(3,56) = 1.549, p = .204). Ces résultats montrent que les justifications 

différaient d'une population à l'autre et d'un item à l'autre. 

Nous avons aussi étudié s'il y avait une différence entre les deux populations sur la 

justification des items lorsque le problème discordant était compatible avec la connaissance 

intuitive et ceux pour lesquels le problème discordant n'était pas compatible avec la connaissance 

intuitive. Un MLG a été réalisé sur la moyenne des justifications aux items comme variable 
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dépendante et la variable groupe et les variables contrebalancés comme variables inter-sujets. 

Comme prédit, un effet global significatif des items (F(1,56) = 8.347, p < .01) a été observé, ainsi 

qu’un effet principal de groupe (F(1,56) = 6.959, p = .011). Une interaction significative entre les 

items et les groupes F(1,56) = 3.907, p =.05) a également été notée.  

Discussion 

L'analyse des justifications des participants a montré qu'il n'y avait pas de différence dans 

les jugements des populations lorsque le problème discordant était compatible avec la 

connaissance intuitive de la soustraction. Les enseignants avaient toutefois de meilleures 

performances que les adultes tout venants sur les items pour lesquelles les problèmes discordants 

n'étaient pas compatibles avec les connaissances intuitives. Cela indique que les enseignants 

identifient plus correctement les stratégies des élèves pour résoudre les problèmes lorsque leurs 

connaissances intuitives n'entrent pas en compétition avec leur CPC.  

Le fait que les enseignants aient des difficultés à accéder aux stratégies de résolution mises 

en place par les élèves n'est pas forcement surprenant compte tenu du fait que les connaissances 

issues des recherches sur la résolution des problèmes arithmétiques à énoncés verbaux ne sont 

toujours pas prises en compte dans les manuels scolaires ou dans les formations des enseignants, 

même si leurs implications sont conséquentes sur le plan éducatif. Cette étude montre l’importance 

d’intégrer l'enseignement sur les connaissances intuitives en mathématiques dans la formation des 

enseignants. Cela pourrait aider les enseignants à être moins sujets aux biais observés ici, et 

également contribuer à un travail pour faire évoluer les connaissances intuitives de leurs élèves. 

RESUME DE LA DISCUSSION GENERALE 

La présente thèse visait à comprendre le rôle que les connaissances informelles jouent dans 

l'enseignement et l'apprentissage des mathématiques. Nous avons examiné comment différentes 

catégories conceptuelles construites à partir des expériences antérieures influencent les processus 

représentationnels qui ont lieu au cours de la résolution de problèmes arithmétiques. Nous avons 

considéré que le processus d'encodage analogique, par lequel les caractéristiques d'une situation 

sont mises en correspondance avec des catégories mentales préalablement construites, est un 

processus clé qui guide la construction d’une représentation mentale de la situation.  

Nous avons mené une série d'études visant à montrer comment les différentes conceptions 

mobilisées dans l’encodage des problèmes arithmétiques influencent les stratégies de résolution 



Résumé en français | 207 

de problèmes par des élèves et les jugements des enseignants sur les stratégies utilisées par les 

élèves. Dans le Chapitre 5, nous avons proposé que la simulation mentale de la représentation 

encodée est une étape cruciale dans la résolution de problèmes arithmétiques à énoncés verbaux. 

Nous avons fait des prédictions concernant les conceptions qui seront mobilisées dans l'encodage 

d'un problème et concernant l'efficacité de la simulation mentale opérant sur cet encodage. Nous 

avons ensuite effectué une série d'expériences qui ont testé l’effet que la concordance ou 

discordance avec la simulation mentale a sur les stratégies de résolution des élèves. Nous avons 

constaté que les élèves de CE1 utilisaient quasi exclusivement des stratégies de résolution 

informelles et avaient des meilleures performances sur les problèmes concordants pour lesquels la 

simulation mentale de la représentation encodée était peu coûteuse. Lorsque la représentation 

encodée menait à une simulation mentale coûteuse, ce qui était le cas sur les problèmes 

discordants, les élèves ont surtout signalé des stratégies de résolution formelles qui ne 

correspondaient pas à la représentation initialement encodée, mais reflétaient une représentation 

recodée. 

Dans le Chapitre 6, nous avons étudié comment les élèves parviennent à résoudre des 

problèmes dont la simulation mentale a un coût élevé. Nous avons proposé que la réussite à des 

problèmes discordants est facilitée lorsque les individus utilisent des stratégies qui s'appuient sur 

une conception arithmétique différente de celle qui était impliquée dans l'encodage initial. Le 

recodage sémantique de la représentation initiale du problème devait permettre l’utilisation d’une 

stratégie de résolution plus efficace. Nous avons comparé les performances et les stratégies des 

élèves de CP qui ont participé à une recherche-action en arithmétique à ceux des élèves des classes 

tout venants. L’enseignement dans l’intervention arithmétique s'est concentré sur des exercices 

d'encodage et de recodage sémantique en utilisant des problèmes arithmétiques à énoncés verbaux. 

Nous avons constaté que les élèves qui ont bénéficié de l'intervention avaient de meilleures 

performances sur les problèmes discordants, pour lesquels la simulation mentale était coûteuse, et 

ces élèves utilisaient plus fréquemment des stratégies de résolution formelle. 

Dans le Chapitre 7, nous avons cherché à déterminer si les conceptions qui influencent 

l'encodage des problèmes arithmétiques influencent également le jugement des enseignants sur les 

performances des élèves et les stratégies qu’ils utilisent. Les Connaissances Pédagogiques du 

Contenu (CPC) des enseignants sont censées leur fournir des moyens pour comprendre les 

stratégies de résolution des problèmes des élèves. Cependant, nous avons observé que lorsque la 
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conception intuitive de la soustraction est impliquée dans l'encodage d'un problème arithmétique, 

les enseignants ont plus de difficulté à comprendre ce qui rend le problème difficile pour les élèves, 

c’est-à-dire le coût que porte l’utilisation des stratégies formelles. Dans cette thèse nous avons 

identifié certaines conceptions devant guider la résolution de problèmes arithmétiques en 

participant à leur encodage. Nous avons observé que ces différents encodages avaient un impact 

sur la difficulté des problèmes puisque différents encodages conduisaient à des stratégies 

différentes. Ces résultats suggèrent que des connaissances préalables enrichissent la représentation 

mentale d’une situation telle qu'elle est perçue (Gentner et al., 2003 ; Ross & Bradshaw, 1994). 

Nos résultats suggèrent que les processus d'abstraction qui conduisent à l'encodage de problèmes 

arithmétiques, qu'ils soient ou non des problèmes verbaux, impliquent la sélection d'une 

conception arithmétique. De plus, nous avons proposé que c'est cette représentation encodée qu'un 

individu tentera de simuler mentalement afin de trouver une solution. Lorsque la simulation 

mentale est efficace, cela amène les individus à trouver une solution numérique. Trouver la réponse 

de cette manière ne nécessite pas de connaissances arithmétiques formelles. Pour cette raison, 

quand la stratégie de résolution reflète la simulation mentale, ces stratégies sont considérées 

comme des stratégies de résolution informelles. Pourtant, trouver la solution à un problème en 

simulant mentalement la représentation encodée n'est pas toujours simple. Lorsque la simulation 

mentale est difficile à exécuter, les individus devront mobiliser des connaissances arithmétiques. 

Ce processus de résolution est décrit dans la Figure 16. 

Répercussions théoriques 

Dans cette thèse, nous avons étudié des problèmes où une représentation recodée conduirait 

à une stratégie de résolution plus efficace. Nous avons proposé que lorsque la simulation mentale 

a un coût élevé, les individus doivent recoder leur représentation initiale du problème pour trouver 

une stratégie de résolution plus optimale. Cela signifie que les individus doivent s'appuyer sur une 

conception arithmétique différente de celle utilisée dans l’encodage initiale et qu'avec son aide, ils 

recodent sémantiquement la représentation du problème. Cette représentation recodée peut subir à 

nouveau le processus de simulation mentale et, dans le cas des problèmes étudiés dans cette thèse, 

cela conduit efficacement à la solution numérique. Cependant, il convient de noter que parfois, 

même lorsque la stratégie informelle est inefficace, le recodage de la représentation initiale ne 

conduit pas à une stratégie de résolution efficace. Dans ces cas, les individus devraient avoir 

recours à des stratégies de résolution formelles qui n’exigent pas un recodage. 
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Figure 16 en français : Modélisation des processus d'encodage et de recodage dans la 

résolution de problèmes arithmétiques 

 

Pour comprendre la commutativité, l'associativité et la complémentarité entre l’addition et 

la soustraction, il est essentiel d’adopter un raisonnement fondé sur des relations partie-tout 

(Resnick, 1989). Cependant, s’engager dans un raisonnement fondé sur des relations partie-tout 

n'est pas une tâche facile, puisque les élèves continuent à avoir de mauvaises performances sur les 

problèmes qui nécessitent l'utilisation de stratégies formelles reflétant l'utilisation de 

connaissances arithmétiques. Les conceptions intuitives de l'arithmétique, qui opèrent en arrière-
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plan et entrent en conflit avec les composantes formelle et algorithmique des activités 

mathématiques (Fischbein, 1993), peuvent constituer un obstacle dans l’apprentissage et la 

résolution. Dans le cas de la conception intuitive soustraire c’est enlever, cela pourrait signifier 

qu'en présentant un problème dont la formulation a une structure sémantique qui est la plus proche 

de cette conception, le problème devrait être plus difficile à recoder pour les élèves, car il serait 

plus difficile de changer son point de vue lorsque le contenu est conforme à leur intuition.  

Les problèmes qui se rapprocheraient le plus de cette conception seraient les problèmes de 

type Transformation 2, comme ceux testés dans le Chapitre 6 et par Brissiaud et Sander (2010). 

En effet, la formulation dans ce type de problème porte sur la quantité qui reste après avoir ôté. En 

examinant les performances pour chaque problème, c'est en effet sur les problèmes Transformation 

2 que l’on observait systématiquement l'écart de réussite entre les problèmes concordants et 

discordants avec la simulation mentale la plus élevée. C’était le cas dans l'étude de Brissiaud et 

Sander, ainsi que dans notre population d’élèves de classes tout-venant dans le Chapitre 6. Dans 

la troisième expérience du Chapitre 5, les problèmes de soustraction directe présentaient un écart 

de réussite sur les problèmes les plus élevés, ce qui suggère que le signe moins est étroitement lié 

à la conception de la soustraction. Dans le cas où la conception intuitive est mobilisée dans 

l'encodage d'un problème, la compatibilité entre les caractéristiques sémantiques du problème et 

la conception arithmétique peut conduire à un encodage qui sera plus difficile à recoder par les 

individus. Cela donne un aperçu des effets médiateurs que la sémantique du problème peut avoir 

dans l'encodage du problème, mais cela permet aussi d’illustrer comment la connaissance intuitive 

peut influencer la persistance de certaines stratégies. 

Par ailleurs, nous avons observé dans cette thèse que les conceptions intuitives impactent 

non seulement les stratégies de résolution des élèves, mais également les jugements des 

enseignants. Les recherches antérieures ont mis en évidence que les enseignants ayant une 

expertise élevée du contenu ne s’appuient pas sur les principes du développement des élèves pour 

juger la difficulté des exercices mathématiques (Nathan et Petrosino, 2003, p. 918). À la place, 

leurs jugements reflétaient plutôt leur vision de la complexité ontologique de la discipline, ce qui 

les amenait à faire des prédictions inexactes sur la façon dont les élèves résolvent les problèmes. 

Ce phénomène était intitulé par les chercheurs l'angle mort de l'expertise. Cependant, quand il 

s’agit de l’école élémentaire, les enseignants sont rarement des experts mathématiciens (par 

exemple, aucun des enseignants qui a participé dans l’étude du Chapitre 7 ne s'est spécialisé en 
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mathématiques avant de devenir enseignant). Dans la présente thèse, nous avons montré que la 

compréhension qu'ont les enseignants des stratégies des élèves en résolution de problèmes 

arithmétiques à énoncés verbaux était éclipsée par la conception intuitive de la soustraction. Les 

enseignants considéraient que les problèmes liés à la conception intuitive étaient plus faciles pour 

les élèves, tout comme le pensaient les non-enseignants, et ils n'avaient pas plus de succès que les 

adultes tout venants pour identifier les stratégies mises en place par les élèves dans ce contexte. 

Nos résultats ont mis en lumière le fait que, parallèlement à ce qui est prédit par l'angle 

mort de l’expertise, les CPC des enseignants ont été occultées dans certains contextes lorsque la 

conception intuitive entrait en jeu. Nous proposons que les CPC des enseignants soient influencées 

par deux facteurs d'origines opposées mais aux conséquences similaires : l'expertise et la 

conception intuitive. Le premier implique le phénomène de l'angle mort de l’expertise, tandis que 

le second implique l’angle mort de l’intuition. Chacun induit un point de vue non flexible quant 

aux évaluations des processus des élèves, servant comme principe qui guide l'évaluation du 

comportement des élèves et éclipsant les CPC des enseignants. Si on suit le modèle de décision 

que Ostermann et ses collaborateurs (2017) ont proposé pour les processus par lesquels passe le 

jugement des enseignants, cela suggère que lorsqu’un contenu est cohérent avec la conception 

intuitive, les enseignants considèrent simplement ce contenu comme étant facile. Les enseignants 

utilisent donc le modèle intuitif pour évaluer les difficultés que le contenu pose aux élèves. 

Néanmoins, quand un contenu tombe dans l'angle mort de l’intuition, les enseignants ne manquent 

pas nécessairement de connaissance sur ce contenu ni de CPC. Leurs CPC peuvent être plutôt sous-

spécifiés, ce qui les amèneraient à faire des prédictions basées sur la facilité perçue du contenu 

compatible avec la conception intuitive. Dans cette optique, nous pensons qu'il convient également 

d'attirer l'attention sur le fait qu'il faut simultanément travailler sur les conceptions intuitives des 

élèves dans les salles de classe tout en attirant l'attention des enseignants sur ce phénomène. 

Répercussions éducatives 

L’un des aspects qu’il reste à élucider au sujet de l'angle mort de l'intuition, concerne son 

origine. Provient-il de la conception intuitive propre à l'enseignant, ou du fait que le contenu lui-

même soit conforme à cette conception intuitive ? Nous avons vu que les conceptions intuitives 

persistent dans la population adulte (Tirosh & Graeber, 1991 ; Vamvakoussi et al., 2013). Un 

contenu conforme à l'intuition a un impact sur la performance et le temps de réaction avec lequel 

les adultes effectuent diverses tâches (Dunbar et al., 2007 ; Goldberg & Thompson-Schill, 2009 ; 
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Shtulman & Harrington, 2016). Bien que la persistance des connaissances intuitives ne soit pas 

suffisante pour déterminer si l’angle mort de l’intuition provient de la conception intuitive des 

enseignants ou de la cohérence du contenu avec l'intuition, ces études soulignent que les 

conceptions intuitives continuent d'être une source d'analogie utilisable par les enseignants. 

Comme nous l'avons vu, c'est au cours du traitement d'une situation que les connaissances 

préalables peuvent influencer la façon dont une situation est interprétée (Ross & Bradshaw, 1994). 

De plus, lorsque la situation en cours de traitement est conforme aux connaissances antérieures, il 

est plus facile d'interpréter la situation. Cela nous conduit à considérer que, même si les enseignants 

ne résolvent pas un problème, ils évaluent sa difficulté pour les élèves, ce qui exige qu'une 

représentation soit encodée. Lorsque le contenu est conforme à une connaissance intuitive, celle-

ci guide l'encodage qui lui-même influencera les hypothèses des enseignants sur ce que les élèves 

savent. C'est donc à ce stade initial que l'angle mort de l'intuition jette une ombre sur la CPC des 

enseignants. Sensibiliser les enseignants à son existence pourrait être bénéfique pour renforcer 

leurs compétences diagnostiques. 

Quant aux élèves et à l’évaluation de leurs connaissances, bien que nous nous soyons 

centrés sur les processus impliqués dans la résolution de problèmes arithmétiques, nous avons vu 

que les élèves disposent d'une variété de connaissances informelles, à la fois dans leur 

apprentissages conceptuel et procédural. Nos études dans les Chapitres 5 et 6 ont montré que le 

contenu des problèmes détermine la stratégie informelle utilisée. Le problème Comparaison 1 

conduirait à l'utilisation de l'addition à trou ou de la soustraction à trou comme stratégie de 

résolution informelle, tandis que le problème Comparaison 4 conduirait à l'utilisation de la 

soustraction directe comme stratégie de résolution informelle. De plus, nous avons montré qu'il y 

a une grande différence de performance selon que la tâche nécessite l'utilisation de connaissances 

arithmétiques formelles ou informelles.  

Nos observations amènent à réfléchir au type de tâche qui convient le mieux pour évaluer 

les objectifs de l'apprentissage. Dans le chapitre 6, le paradigme utilisé ne nous permettait pas de 

nous prononcer sur la mesure dans laquelle le progrès sur les stratégies informelles contribuait à 

l'utilisation accrue des stratégies formelles. Cependant, il ne faut pas négliger les avantages qui 

peuvent résulter du travail en classe sur les stratégies informelles des élèves. Le point de vue 

dominant en psychologie cognitive est que les relations entre les connaissances conceptuelles et 

procédurales sont bidirectionnelles et que progresser sur l'une mène aussi au progrès sur l'autre 
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(Rittle-Johnson, 2019 ; Rittle-Johnson et al., 2001). De plus, lier les nouvelles connaissances 

mathématiques aux connaissances informelles favorise la compréhension des élèves (Baroody et 

Wilkins, 1999 ; Van den Heuvel-Panhuizen et Drijvers, 2014).  

Cependant, un objectif primordial de l'enseignement des mathématiques est de choisir la 

stratégie la plus appropriée pour trouver la solution à un problème (Threlfall, 2009 ; Verschaffel 

et al., 2009). Si l'objectif est d'évaluer l'utilisation des stratégies adaptées aux problèmes, alors il 

est préférable d'utiliser des problèmes qui bénéficieraient le plus de l'utilisation de stratégies 

formelles. En effet, une réponse correcte à un problème qui peut facilement être résolu par 

l'utilisation de stratégies informelles ne constitue pas une bonne indication lorsqu'on cherche à 

évaluer l'utilisation des principes arithmétiques, et c'est d'autant plus le cas si ces problèmes sont 

compatibles avec des connaissances intuitives, comme les problèmes Transformation 2.  

Par exemple, le problème « Il y a 21 fleurs dans le bouquet. Sophie retire 3 fleurs du 

bouquet. Combien y a-t-il de fleurs dans le bouquet maintenant ? » fournit directement l’encodage 

'21 - 3' et ne prouve donc pas la compréhension conceptuelle de la connaissance arithmétique 

formelle. Pourtant, si « Sophie enlève 19 fleurs », il serait plus avantageux de recoder le problème 

en utilisant des principes arithmétiques et de le résoudre avec la stratégie '19 + ? = 21'. Il est donc 

important de noter que si les connaissances des élèves sont évaluées par le biais de problèmes qui 

peuvent être facilement résolus par des stratégies de résolution informelles, il est trompeur de 

supposer que ces élèves ont appliqué des connaissances arithmétiques. Ce qui est plus pertinent 

d'un point de vue pédagogique, en ce qui concerne la sélection de la stratégie la plus appropriée 

pour résoudre un problème, c'est d'utiliser des tâches pour lesquelles différentes stratégies de 

résolution révéleraient la compréhension ou non des principes arithmétiques, comme les 

problèmes discordants avec la simulation mentale pour lesquels l’utilisation de la stratégie 

informelle n’est pas optimale.  

 

 

 

 

 


