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Abstract

The prediction of the microstructure evolution during irradiation ageing of structural
materials of nuclear reactors is a key issue for the nuclear industry. In this work, a
phase field approach is used to simulate the microstructure evolution of materials under
irradiation conditions at the mesoscopic scale. We are interested at first in the calculations
of the sink strength which describes the ability of microstructural defects (dislocations,
cavities, etc) to absorb point defects (PDs). These calculations take into account the
elastic interactions between point defects and sinks and are performed in pure metals Al,
Ni and Fe. Additional precision in the calculations is provided by incorporating in the
model the change of the PD migration energy due to the sink strain field, also known as
elastodiffusion. PDs are elastically modelled through their elastic dipole tensors and the
role of the anisotropy of these dipole tensors at saddle state is investigated. The results
show that the PD dipole tensor anisotropy at saddle state is a key parameter in the accurate
sink strength calculations. Subsequently, our interest is focused on the development of a
PF model of dislocation climb under irradiation. The model allows to simulate dislocation
loop growth or shrinkage by absorption of both PDs (vacancies and self-interstitial atoms).
The analysis of the validation tests shows the limit of the model, and adjustments are
carried out. This new model is applied to simulate the growth of an interstitial loop in
pure Fe. The temperature, dislocation density, loop orientation and elastodifusion effects
on the loop growth rate are studied. The results show, in particular, an increase of the loop
growth rate with the combined effects of the increase of the temperature and the decrease
of the dislocation density. The new PF model of dislocation climb under irradiation is
also used to simulate the radiation induced segregation (RIS) phenomenon in Fe-Cr alloy
near an interstitial dislocation loop during its growth. We show that the RIS prediction
depends on the sink mobility and on the surrounding microstructure (multi-sink effects).

Keywords: modelling and simulation, metallic alloys, irradiation, point defects, sink
strength, dislocation climb, radiation induced eegregation, phase-field, elastodiffusion

Résumé

La prévision de l’évolution de la microstructure au cours du vieillissement par irradiation
des matériaux de structure des réacteurs nucléaires est une question clé pour l’industrie
du nucléaire. Dans ce travail, une approche par champ de phase est utilisée pour simuler
l’évolution de la microstructure de matériaux dans des conditions d’irradiation à l’échelle
mésoscopique. Nous nous intéressons tout d’abord aux calculs de la force de puits, c’est-à-
dire la capacité des défauts de la microstructure (dislocations, cavités, etc) à absorber les
défauts ponctuels (DPs). Ces calculs prennent en compte les interactions élastiques entre
les défauts ponctuels et les puits et sont réalisés dans les métaux purs d’ Al, Ni et Fe.
Une précision supplémentaire dans ces calculs est fournie en incorporant dans le modèle
le changement de l’énergie de migration des DPs en raison du champ de déformation dû
au puits, encore appelé élastodiffusion. Les DPs sont modélisées élastiquement par leurs
tenseurs dipolaires élastiques et le rôle de l’anisotropie de ces tenseurs dipolaires au point
de col est étudié. Les résultats montrent que l’anisotropie du tenseur dipolaire au point col
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est un paramètre clé dans les calculs précis de la force de puits. Par la suite, notre intérêt
est centré sur le développement d’un modèle champ de phase de montée de dislocation
sous irradiation. Le modèle permet de simuler la croissance ou le retrait d’une boucle de
dislocation par absorption des deux DPs (lacunes et atomes auto-interstitiels). L’analyse
des tests de validation montre la limite du modèle et des ajustements sont effectués. Ce
nouveau modèle est appliqué pour simuler la croissance d’une boucle interstitielle dans le
Fer pur. Les effets de la température, de la densité de dislocations, de l’orientation de
la boucle et de l’élastodifusion sur le taux de croissance de la boucle sont étudiés. Les
résultats montrent notamment une augmentation du taux de croissance de la boucle avec
les effets combinés de l’augmentation de la température et de la diminution de la densité de
dislocations. Le nouveau modèle de montée de dislocation sous irradiation développé est
également utilisé pour simuler le phénomène de ségrégation induite par irradiation (SII)
près d’une boucle de dislocation interstitielle au cours de sa croissance, dans des alliages
Fe-Cr. Nous montrons que la prédiction de la SII dépend de la mobilité du puits et de la
microstructure environnante (effets multi-puits).

Mots clés: modélisation et simulation, alliages métalliques, irradiation, défauts ponctuels,
force de puits, montée de dislocation, segregation induite par irradiation, champ de phase,
élastodiffusion
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Introduction

Structural materials of nuclear reactors are subject to rough operating conditions such
as fast neutron irradiation, high temperatures and mechanical stresses. Thus, their func-
tional properties deteriorate due to irradiation ageing which limits the operating time of
components. Therefore, understanding and predicting the evolution of the properties of
these structural materials are crucial issues for the safety and security of nuclear reactors.

During irradiation ageing, several phenomena are observed such as irradiation creep,
swelling, radiation induced segregation (RIS), etc. These phenomena can be explained
by the evolution of microstructural defects. For instance, dislocation loop growth allows
to explain irradiation creep, cavity growth is responsible for swelling, and the coupling
between the fluxes of point defects (PDs) and the ones of atoms allows to explain RIS. The
challenge is then to predict the evolution of these microstructural defects. For this purpose,
modelling techniques are developed and are good alternatives compared to experiments
because of several reasons such as the cost and security. To treat the different physical
phenomena occurring at different time scales and length scales such as the PD migration
mechanism which occurs at the atomic scale and the dislocation loop growth which can
be described at the mesoscopic scale, a multiscale approach is generally used.

The present work is dedicated to the simulation of microstructure evolution under
irradiation using a phase field (PF) approach. The evolution of microstructural defects
depends on their ability to absorb PDs, known as sink strength. The first objective is thus
to compute the sink strength by taking into account elastic interactions between PDs and
sinks. The influence of the modification of the PD migration rate by an elastic strain field
is investigated. Recently, PF models were developed to describe dislocation climb [1, 2, 3].
They are limited to climb via vacancy diffusion and are not adapted to irradiation condi-
tions. The second objective is thus to develop a new PF model of dislocation climb based
on the previous ones [1, 2, 3] to simulate dislocation loop evolution (growth/shrinkage)
under irradiation. The final objective is to simulate the RIS phenomenon near an inter-
stitial dislocation loop during its growth by means of the new PF model developed. This
manuscript is organized as follows:

In chapter 1 microstructural defects intrinsic to the materials or formed under irradia-
tion by PD agglomeration are described. Different simulation methods of microstructure
evolution are also presented in this chapter.
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INTRODUCTION

The sink strength is calculated in chapter 2 for straight dislocations, low-angle sym-
metric tilt grain boundaries and spherical cavities in fcc (Al, Ni) and bcc (Fe) pure metals.
These calculations take into account the elastic interactions between PDs and sinks like in
the PF model of Rouchette et al. [4]. In addition to this model [4], elastodiffusion effects
are incorporated and a particular emphasis is placed on the role of the PD anisotropy at
saddle state.

In chapter 3, a new PF model of dislocation climb under irradiation is developed. This
new model is based on the one developed by Geslin et al. [1] and is adapted to deal with
both vacancy and self-interstitial atom (SIA) diffusion. Several tests are performed to
validate this new model under irradiation conditions, and some adjustments are proposed
to overcome the problems encountered. Thereafter, the model is applied to simulate
the growth of an interstitial dislocation loop in pure bcc iron. The temperature, loop
orientation and elastodiffusion effects on the loop growth rate are investigated.

Finally, the RIS phenomenon near an interstitial dislocation loop is simulated in chap-
ter 4 in Fe-Cr alloys. The elastic effects are taken into account as well as the loop growth
rate by means of the climb model developed in chapter 3.
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1.1. IRRADIATED MATERIALS CHAPTER 1. IRRADIATION EFFECTS

Under irradiation, microstructural defects such as dislocation loops, grain boundaries
and cavities evolve through different mechanisms and this evolution leads to the change in
the mechanical properties of nuclear materials. In this chapter, microstructural defects are
first described. Secondly, the phenomena which are observed during the microstructure
evolution are presented, as well as, the different modelling techniques which allow to
predict it.

1.1 Irradiated materials

Metallic alloys are used for the reactor component structure in the nuclear industry. To
ensure the safety and security of the nuclear reactors, these structural materials are cho-
sen according to several criteria such as stability under irradiation, corrosion and swelling
resistance, manufacturing cost, etc. For example, zirconium alloys and austenitic steels
are used respectively for the fuel cladding structure and the internal reactor vessel struc-
ture in pressurized water reactor. Ferritic/martensitic steels and nickel based alloys are
candidate materials for innovative reactor systems [5]. The prediction of the evolution of
these structural materials is then a key issue for the nuclear industry. The evolution of
microstructure is controlled by the evolution of its defects which can be intrinsic (lattice
defects) or formed under irradiation. These different microstructural defects are described
below.

1.1.1 Lattice defects

All real materials contain imperfections that can be point, line, surface or volume defects.
In this thesis, the discussions will mainly focus on point defects (PDs) and dislocations
(line defects).

Point defects

Two PDs are intrinsic to the material: vacancy and self-interstitial atom (SIA). Vacancy
is an atom missing from a lattice site which is normally occupied in a perfect lattice. SIA
is an atom that occupies a place outside the normal lattice position. In this thesis, typical
fcc (Al and Ni pure metals) and bcc (Fe pure metal and Fe-Cr alloys) structure materials
will be particularly studied. The possible configurations of SIA in these structures are the
following: octahedral, tetragonal, dumbbell where two atoms share a single lattice site,
and crowdion where N+1 atoms share N single lattice sites which leads to the extended
distortion of the crystal lattice in the <111> direction (first noted by Paneth [6]). The
most stable SIA configuration in fcc structure is generally the <100>-dumbbell [7] and
in bcc structure the <111>-dumbbell, but in bcc iron it is the <110>-dumbbell which
is more stable due to magnetism [8]. The PD diffusion in a crystal lattice occurs by a
displacement from an equilibrium configuration to a nearest neighbor one. During this
transition, the energy landscape presents a maximum and the PD configuration which
corresponds to this maximum is the called saddle state. The required energy for this
transition is the migration energy Em and it is the difference between the energy at the
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CHAPTER 1. IRRADIATION EFFECTS 1.1. IRRADIATED MATERIALS

saddle Esad and stable Ee states:

Em = Esad − Ee (1.1)

Vacancy migrates through the motion of an atom located initially on the final stable
configuration of vacancy. The 12 (respectively 8) possible jumps in fcc (respectively bcc)
structure are then accessible. The dumbbell migration mechanism is more complex than
the one of vacancy. The most favorable one is a mechanism of translation-rotation from
an initial orientation to a different one, for the metals specified above. Therefore, for a
given initial dumbbell orientation in fcc (respectively bcc) structure, 8 (respectively 4)
possible jumps are energetically accessible. The possible PD transitions in fcc (Al, Ni)
and bcc (Fe) structures are depicted in Figs. 1.1 and 1.2, and all the corresponding jump
directions are given in table 1.1.

[100]

vacancy 

dumbbell

[100] to [010]

[100]

[010]

[001]
x

[010]

Figure 1.1: Possible PD transitions in pure fcc metals. The allowed target sites are marked
in red.

Dislocations

Dislocations are linear defects which exist in materials and allow understanding plastic
deformation. A dislocation is characterised by its vector line l and Burgers vector b
(deformation amplitude transported by the dislocation) and there are two basic types of
dislocation: edge dislocation and screw dislocation as illustrated on Fig. 1.3. In gen-
eral dislocation has a mixed character. Only edge dislocations will be addressed in this
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1.1. IRRADIATED MATERIALS CHAPTER 1. IRRADIATION EFFECTS

[110]

vacancy 

dumbbell
[110] to [011]

[100]

[010]

[001]
x

[011]

Figure 1.2: Possible PD transitions in pure bcc metal Fe. The allowed target sites are
marked in red.

Table 1.1: Possible jump directions of PD in R0([100],[010],[001]) space.

Jump direction h

Al and Ni (fcc) Fe (bcc)

Vacancy [110], [1̄10], [11̄0], [1̄1̄0] [111], [1̄11], [11̄1], [111̄]
[011], [01̄1], [011̄], [01̄1̄] [1̄1̄1], [11̄1̄], [1̄11̄], [1̄1̄1̄]
[101], [1̄01], [101̄], [1̄01̄]

Dumbbell [100] in Al, Ni [110], [1̄10], [11̄0], [1̄1̄0] [111], [111̄], [1̄1̄1], [1̄1̄1̄]
and [110] in Fe [101], [1̄01], [101̄], [1̄01̄]

manuscript. The vectors b and l define a plane which is called the glide plane of the edge
dislocation. An edge dislocation can be visualized as an extra half-plane of atoms in a
lattice as shown in Fig. 1.3. The ability of materials to deform depends on the mobility
of dislocations. Edge dislocation can move in its glide plane which is called glide, or out
of its glide plane which is called climb. Dislocation glide is a conservative motion which
does not involve PD, while dislocation climb is a non-conservative motion which requires
PD. Dislocation climb sometimes plays an important role in plastic deformation since it
enables edge dislocations to circumvent otherwise insurmountable obstacles.
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b (Burgers vector)

(a)
(b)

Figure 1.3: Illustration of a) an edge dislocation and b) a screw dislocation [9] in a simple
cubic crystal.

Under irradiation, isolated defects will aggregate and form larger defects. A non ex-
haustive list of them is given below.

1.1.2 Irradiation effects

Irradiation of materials with high energy particles leads to particle-atom collisions and the
atom called the primary knock-on atom (PKA) is displaced from its regular position in
lattice. There is an energy transfer between the particle and the atom. If this transferred
energy is smaller than the required energy to move an atom from a lattice site, then the
atom keeps its position and the energy is converted in heating. On the other hand, if
the transferred energy is higher than the displacement energy, the atom is ejected from
its site which produces a vacancy and the atom becomes a SIA. Frenkel pairs (vacancy
+ SIA) are then created and this type of defect generation corresponds typically to the
electron irradiation [10]. In the case where the transferred energy is high enough, the
atom becomes itself a projectile. Further collisions are then possible occurring with a
transfer of the excess atom displacement energy. The displacements generated by these
successive atom collisions are called displacement cascades. During the cascade, isolated
defects will agglomerate which leads to the formation of other defects such as dislocation
loops (2D) and cavities (3D) (see Figs. 1.4 and 1.5). Dislocation loops can be of vacancy
or interstitial type and their nucleation and/or growth/shrinkage can be explained by the
mechanisms of PD clustering and/or PD absorption (discussed in chapter 3). Cavities
are microstructural defects that consist of 3D aggregation of vacancies. During the evo-
lution of these microstructural defects, many macroscopic phenomena are observed such
as irradiation creep, swelling, radiation induced segregation (RIS), radiation induced pre-
cipitation (RIP), etc. For example, dislocation loop growth allows to explain irradiation
creep and swelling is related to cavity growth. RIS (discussed in chapter 4) is a non-
equilibrium phenomenon which consists in the local redistribution of alloying elements
near microstructural defects such as dislocation loops, grain boundaries or cavities. The
redistribution of alloying elements can lead to the observation of other physical phenomena
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Figure 1.4: Dislocation loops observed for irradiation temperatures of 623-773 K in
neutron-irradiated iron, transmission electron microscopy (TEM) observations (from [11]).
The length of the arrow equals 500 nm.

Figure 1.5: Cavity microstructures observed with TEM in neutron-irradiated iron (from
[11]). The length of the arrow equals 200 nm.

such as precipitation.
In order to better understand microstructure evolution under irradiation, modelling

techniques are increasingly used due to several advantages compared to experimental stud-
ies such as the cost, the security issues, the access to smaller time and space scales. Some
of these modelling techniques which are mentioned in this work are presented below.

1.2 Modelling techniques of microstructure evolution

To simulate the microstructure evolution, multiscale modelling tools are developed. The
physical phenomena observed under irradiation occur at different time and length scales
thus, different simulation methods are developed and used. In this manuscript, the follow-
ing methods are mentioned: ab initio/DFT, kinetic Monte Carlo (KMC) methods, phase
field (PF) and mean field simulations. A brief description of these methods is given below.
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1.2.1 Ab initio/DFT

Ab initio calculations are techniques which are based on the resolution of the Schrödinger
equation (Eq. 1.2) in order to obtain atomic and molecular structures directly from the
first principles of quantum mechanics:

Hψ = Eψ (1.2)

where H, E and ψ are respectively the system Hamiltonian, energy and wave function. The
main advantage of the methods used to solve Eq. 1.2 is the non implementation of ad-
justable parameters derived from experiments. However, the exact resolution of Eq. 1.2 is
difficult (manybody problem) and a certain number of approximations is adopted. The first
approximation conventionally used is the adiabatic approximation of Born-Oppenheimer
which assumes that the motion of ions can be dissociated from that of electrons. Ions
are heavier than electrons and therefore have a much slower motion than the electrons.
Thus, equation 1.2 can be solved on many electrons for a given configuration of many
ions. The Born-Oppenheimer approximation is not enough on its own because electrons
interact strongly and their motions can not be decorrelated. Two methods are used to
describe the quantum states of many electrons: the Hartree-Fock method [12] and the den-
sity functional theory (DFT) that we describe below because it is mentioned in this thesis.
The density functional theory (DFT) introduces by Hohenberg and Kohn [13] states that
the ground state energy of a many-electron system can be expressed as a unique function
of the electron density. For this purpose, Kohn and Sham [14] proposed a reformulation
of the problem by replacing the system of many electrons with a system of independent
electrons evolving in an effective potential. The energy of the system is then written as a
functional of the electronic state density and contains an exchange-correlation functional
term. The local density approximation (LDA) or the generalized gradient approximation
(GGA) are commonly used to express the functional of exchange-correlation. PF approach
described in section 1.2.3 is used in this manuscript to simulate microstructure evolution
and requires data from DFT calculations such as the PD formation and migration energy,
or the PD elastic dipole tensor (see section 2.1.2).

1.2.2 Kinetic monte Carlo

Kinetic Monte Carlo (KMC) methods are stochastic approaches which derive from the
Monte Carlo (MC) techniques and allow to simulate the microstructure time evolution.
KMC methods have the advantage that spatial correlations during PD migration for in-
stance are explicitly taking into account. These methods are applicable to multiple time
and space scales. Thus, the evolution of atom or PD positions can be simulated using
atomic kinetic Monte Carlo (AKMC). In the AKMC approach, the system evolution is
a consequence of the PD and/or atom migrations. All the spatial correlations between
successive PD jumps are accounted for, which limits the size of the studied system. To
simulate larger defects such as dislocation loops and cavities formed under irradiation,
object kinetic Monte Carlo (OKMC) models are used. The OKMC method proceeds like
the AKMC, except that instead of making atoms and PDs evolve individually, clusters of
PDs evolve on a lattice site or not as a whole as one single object. Many of the KMC
techniques are based on the residence time algorithm (RTA)[15, 16, 17]. At each time
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step, different events such as PD jump (AKMC) or PD cluster jump (OKMC) can occur
with the event (thermally activated) frequency:

Γi = νi exp(−Eai
kBT

) (1.3)

where νi is the attempt frequency, kB is Boltzmann’s constant, T the temperature and
Eai the activation energy of the jump i. The probabilities of all the possible system
transitions are calculated, and one of them is chosen by extracting a random number
r ∈]0, 1], according to its probability. The associated time step δt and the average time
step ∆t are the following:

δt = − ln r∑
i

Γi
; ∆t = 1∑

i
Γi

(1.4)

1.2.3 Phase field

Phase field (PF) methodologies have been proposed by Cahn and Hilliard [18] and first
applied to simulate phase transformations [19, 20]. Recently, PF methods become a pow-
erful computational approach to model and predict microstructure evolution in materials
especially under irradiation [21, 22, 23], since diffusion processes are naturally incorpo-
rated. In the PF approaches, the microstructure evolution is described by a set of variable
and continuous fields so called order parameters. For example, these order parameters can
refer to the PD fractions or to the identification function of a dislocation loop (see section
2.3.1) in the system. Thus at each time step, the local state of the system (microstructure)
is described by the values of the order parameters. The system evolves by the minimisation
of its total free energy which is written as a function of the order parameters. The tem-
poral and spatial evolution of the order parameters is governed by the Cahn-Hilliard-type
equation [24] for conserved order parameters and by the Allen-Cahn-type equation [25]
for non-conserved order parameters. An order parameter is conserved when its average
value in the simulation domain is conserved during system evolution, and non-conserved
in the opposite case. For example, the dislocation loop growth/shrinkage due to the PD
absorption is a non-conservative process (change in the loop size/shape). Therefore, the
order parameter associated to the loop is non-conserved while, the total PD fraction in the
bulk and absorbed/emitted by the loop is a conserved order parameter (see section 3.2.3).
Geslin et al. [1] have recently developed a PF model describing dislocation climb via the
vacancy diffusion. In section 3.2.3, the model of Geslin is generalized to both vacancies
and SIAs and applied to simulate the growth/shrinkage of prismatic dislocation loops.
The main advantage of the PF methods is that the different elastic interactions that may
exist can easily be incorporated through the microelasticity theory [26]. To sum up, three
steps are usually followed in a PF approach: the definition of the order parameters which
allow to describe the microstructure, the total free energy of the system and the evolution
equations. In this manuscript, a PF approach is used to simulate microstructure evolution.

1.2.4 Mean field rate theory (MFRT)

Mean field simulations are deterministic approaches like PF methods, based on the resolu-
tion of the defect (PD, PD clusters, ...) evolution equations given in the rate theory (RT)
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models of irradiated materials [27, 10]. These kinetic equations are related not to the local
PD fractions but to their average value (see section 2.1.1). The mean field rate theory
(MFRT) has been used successfully to predict microstructure evolution under irradiation
[28, 29, 30, 31]. The MFRT methods have the advantage that large defects can be mod-
elled which provides the opportunity to compare the numerical results with experimental
observations. However, the spatial correlations in defect production are not accounted
for and the model requires input parameters computed at lower scales such as the sink
strengths (see Eqs. 2.1 and 2.2).

1.3 Summary
In this chapter, we have described the microstructural defects which can be intrinsic or
formed under irradiation. We have seen that the formation of defects such as dislocation
loops and cavities is due to PD clustering and during the evolution of these defects, several
phenomena are observed such as irradiation creep, swelling and RIS. These phenomena
are responsible for the change of the mechanical properties and predicting them is an
important issue. The modelling techniques allowing to simulate the evolution of these
defects during radiation aging have also been presented. These modelling techniques make
it possible to describe phenomena occurring from the atomic scale to the macroscopic scale
and multiscale approach is generally used to model the microstructure evolution.
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The ability of microstructural defects to absorb PDs (sink strength) is a key parameter
to better understand and predict the evolution of these microstructural defects under
irradiation. This ability strongly depends on the elastic interactions between sinks and
PDs. The sink strength is computed in this chapter for different microstructural defects
(edge dislocations, array of edge dislocations and cavities) by using a PF approach. The
computations include the elastic interactions and the modification of the PD migration
rate by a strain field.

2.1 Bibliography

2.1.1 Sink strength: definition and calculations

Under irradiation point defects (PD), vacancies and self-interstitial atoms (SIAs), are
created and diffuse towards microstructural defects such as dislocations, grain boundaries,
cavities, etc. These microstructural defects will evolve according to their ability to absorb
PD, also known as sink strength. The sink strength can be calculated using different
methods: by the analytical solution of the PD diffusion equation around the considered
sink [27, 32], by performing object kinetic Monte Carlo (OKMC) simulations [33, 34, 35],
or by using a phase field (PF) approach [4, 36, 37, 38]. In the methods presented below,
the PD diffusion is considered isotropic in an unstrained system.

In the rate theory models of irradiated materials [27, 10], the kinetic equations are
related to the average atomic fraction X̄d of PD d:

dX̄V

dt
= KV

0 −RVIX̄VX̄I −
∑
s

k2
s,VDV(X̄V −Xs

V) (2.1)

dX̄I

dt
= KI

0 −RVIX̄VX̄I −
∑
s

k2
s,IDI(X̄I −Xs

I ) (2.2)

where V and I refer respectively to vacancies and SIAs. Kd
0 is the generation rate of

PD d (d = V, I), RVI is the rate of mutual recombination between PD and is related to the
PD diffusion coefficient Dd through the relation:

RVI = 4πrc(DV +DI)
Vat

(2.3)

with rc the distance of recombination and Vat the atomic volume. Xsd is the atomic fraction
of PD d at sink s. k2

s,d is the sink strength of sink s for PD d.
At steady state (t → ∞), dX̄d

dt = 0. Equations 2.1 and 2.2 become, by assuming the
recombination term negligible and considering one type of sink:

Kd
0 − k2

s,dDd(X̄d(t→∞)−Xs
d) = 0 (2.4)

which leads to the following expression of the sink strength:

k2
s,d = Kd

0
Dd(X̄d(t→∞)−Xs

d)
(2.5)
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The average atomic fraction at steady state X̄d(t→∞) depends on the shape and volume
of the sink, on the sink free region shape and volume, on the diffusion rate properties
of PD, and on the possible elastic interactions between PD and sink. Several analytical
expressions of the sink strength for various sinks have been obtained by solving equations
2.1 and 2.2 using different boundary conditions [27]. In table 2.1 the analytical solutions
of the sink strength of a straight dislocation and a spherical cavity are given. The sink of
radius r0 is contained in a region or reservoir of radius R free of any other sink as illustrated
in Fig. 2.1. The reservoir has the same symmetry as the sink. In the models of Laplace,

R
θ

Straight dislocation

R
r0

Spherical cavity

r0

(

Figure 2.1: Sink geometry for analytical solutions of the sink strength (cylindrical and
spherical symmetry for straight dislocation and cavity respectively).

Poisson and Wiedersich, the sink strength is obtained when the elastic interactions be-
tween PD and sink are neglected. Wiedersich’s model is known to be more realistic than
the models of Laplace and Poisson [27, 4]. The difficulty in the analytical models is to
incorporate the elastic interactions. When the elastic interactions are taken into account,
the system energy is modified as well as the PD migration energy (elastodiffusion) as de-
scribed in sections 2.1.2 and 2.2.2. The model proposed by Rauh and Simon [32] for the
sink strength calculation of edge dislocations takes into account the elastic interactions
through an elastic drift term in the diffusion equation (see table 2.1). In this formulation,
only the system energy is affected by the elastic interactions. The PD migration rate re-
mains unchanged. The model of Rauh is limited to isotropic systems and PDs. In the case
of a spherical cavity in an isotropic medium, Borodin et al. [39] have proposed a solution
which incorporates the elastic interactions. The strain field generated by a spherical cavity
in an isotropic medium verifies Tr(εij) = 0 [40, 39]. As Tr(εij) = 0, the elastic energy in
the stable state given by E = -Peijεij in the case of isotropic PD (Peij = Pe0δij) is then zero.
Peij is the PD elastic dipole tensor at the stable configuration described in section 2.1.2.
The elastic drift term is consequently zero but still, some elastic interactions remain and
are taken into account through the PD migration rate (see table 2.1). The PD diffusion
tensor has been rewritten in order to introduce the elastic interactions between PDs and
the cavity. The model is based on the one of Dederichs and Schroeder [41] (see section
2.1.2) who first proposed a model of PD diffusion in stressed systems. It must be pointed
out that the solution of Borodin is very simple, it depends on the elastic dipole tensor
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of PD at saddle point and varies as 1/r0 (see table 2.1). Like in the model of Rauh, the
model of Borodin et al. is limited to isotropic systems.

In the OKMC simulations, different methods [34, 35, 42, 33] exist to calculate the
sink strength. One of them [34, 35] consists in the following. A sink is located in a
3-dimensional box with periodic boundary conditions. PDs are generated uniformly at
a constant rate K0 and migrate in the box by successive atomic jumps until they are
absorbed by the sink. The sink is assumed immobile and does not evolve by absorption of
PDs. The recombination of PDs and their emission by the sink are neglected. The possible
events are the creation of PD or an atomic jump from a stable position to a neighboring
one. The next event is chosen according to the residence time algorithm [15, 16]. The sink
strength is calculated when the steady state is reached and is given by:

k2
s,d = K0

DdN̄d

(2.6)

where N̄d is the average number of PD d still present in the box. In the other method
[42, 33], one migrating PD is present in the simulation box containing a sink at a given
time. The PD trajectory is followed before it’s absorbed by the sink. A new PD of the
same type is introduced after the previous one has been absorbed. The sink strength is
obtained as:

k2
s,d = 2Ndim

d2 < n >
(2.7)

where Ndim is the PD migration dimensionality, d the jump length and <n> the average
number of jumps before the absorption.

The PF approach to compute the sink strength is detailed in section 2.2 and the
obtained expression is similar to equations 2.4 and 2.5.

Another interesting quantity is the sink bias Bs defined as [43]:

Bs = 1−
k2
s,v

k2
s,i

(2.8)

The sink bias allows explaining irradiation dislocation loop growth/shrinkage, irradiation
void swelling, or irradiation creep [44, 28, 45]. For example, straight dislocations are
known to be biased: SIAs are more absorbed than vacancies. Voids are known to produce
shorter range stress fields and are usually considered as neutral sinks i.e. they absorb the
same amount of vacancies and SIAs if they are produced or available at the same rate [10].
The preferential absorption of SIAs by the dislocations leads to a net flux of vacancies to
voids and thus to void growth mechanism known as irradiation swelling.

The main advantage of the OKMC and PF simulations compared to the analytical
solutions is the possibility to take into account the elastic interactions and anisotropic
diffusion in complex microstructures.

In this section, the sink strength has been defined and the methods which allow to
calculate it have also been presented. It has been shown that elastic interactions
that may exist between sinks and PDs modify the sink strength. Thus to correctly
calculate the sink strength, these elastic interactions must be properly described. In
section 2.1.2, we present how a strain field which can be due to a sink modifies the
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PD diffusion.

2.1.2 PD diffusion modified by the sink strain field

During the diffusion of PDs towards the sink, there are elastic interactions between PD
and the stress field produced by the sink. As a consequence, the system energy is modified
and includes an elastic energy which acts as a driving force for PD diffusion. Moreover, the
migration energy of PD is also modified by the stress field, this dependence being called
elastodiffusion. Elastodiffusion has first been investigated by Dederichs and Schroeder
[41]. Considering a crystal and PD with cubic symmetry, the PD diffusion tensor in the
unstrained system is given by:

D0
ij = N

6 h
2ν exp(−βEm0 )δij (2.9)

with δij the Kronecker symbol and β = 1/kBT . N is the number of nearest neighbour
sites, ν the attempt frequency, h the jump length. Em0 is the PD migration energy which
is the difference between the energy at the saddle and stable configurations:

Em0 = Esad0 − Ee0 (2.10)

In the presence of an elastic field εkl(r) due to the sink, the saddle and stable point
energies are modified as follows at the first order (differences in the elastic properties
between those of the PD and those of the matrix are neglected):

Ee = Ee0 −
∑
kl

P̄eklεkl(re) (2.11)

Esad = Esad0 −
∑
kl

Psadkl (h)εkl(rsad) (2.12)

Em = Esad − Ee = Em0 − [
∑
kl

Psadkl (h)εkl(rsad)−
∑
kl

P̄eklεkl(re)] (2.13)

where Pekl and Psadkl (h) are respectively the elastic dipole tensors of PD at stable and saddle
point for the jump direction h. The PD anisotropy at stable point is ignored in this model,
which justifies the choice of P̄ekl instead of Pekl where P̄ekl is given by:

P̄ekl = Tr(Pekl)δkl/3,Tr(Pij) =
∑

i,j(i=j)
Pij (2.14)

It can then be demonstrated that the PD diffusion tensor is as follows:

Dij(r) = h2ν

2
∑

h
uh
i u

h
j exp(−βEm) (2.15)

with uh
i the ith component of unit vector in the direction of the jump h. Using the

expression given by Eq. 2.13, the diffusion tensor becomes:

Dij(r) = h2ν

2
∑

h
uh
i u

h
j exp(−βEm0 ) exp[β

∑
kl

(P sadkl (h)− P̄ ekl)εkl(re)] (2.16)
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assuming that εkl(rsad) ' εkl(re). This new diffusion tensor can be expressed as a function
of the unstrained diffusion coefficient D0:

Dij(r) = 3D0

N

∑
h
uh
i u

h
j exp[β

∑
kl

(P sadkl (h)− P̄ ekl)εkl(re)] (2.17)

with D0 = N
6 h

2ν exp(−βEm0 ). In the case of isotropic PD at saddle point, P sadkl (h) = P sadkl ,
relation 2.17 leads then to a diagonal diffusion tensor:

Dij(r) = 3D0

N
exp[β

∑
kl

(P sadkl − P̄ ekl)εkl(re)]
∑

h
uh
i u

h
j (2.18)

since ∑
h
uh
i u

h
j = 0, if i 6= j. (2.19)

On the contrary, for anisotropic PD at saddle point, Dij can have off-diagonal terms
whereas D0

ij does not. In the case where Psadkl depends on the initial and final PD orien-
tations, a similar expression of Eq. 2.17 is obtained:

Dij(r) = 3D0

NZ

∑
h

∑
ξψ

uh
i u

h
j exp[β

∑
kl

(P sadkl (h
ξψ)− P̄ ekl)εkl(re)] (2.20)

where ξ and ψ refer respectively to the PD orientation in the initial and final stable
configurations and Z is the number of pairs (ξ,ψ).

The Pij-tensors can be determined from atomistic calculations. For this purpose,
a perfect simulation cell of volume V with periodic boundary conditions is considered.
One PD is introduced in the box and the supercell vectors are kept fixed. After atomic
relaxation, the Pij-tensors are deduced from the residual stress σij induced by the PD on
the box through the relation [46, 34, 35]:

Pij = V(σij − σ0
ij) (2.21)

where σ0
ij is the residual stress on the perfect supercell after relaxation. Generally, σ0

ij is
not zero due to the finite convergence criteria used for the simulations. An alternative
though more time consuming way is to determine Pij from the strain field of the supercell
if it is allowed to relax in volume and shape (see Eq. 2.25 for instance). The elastic dipole
tensors can be also determined from experiments, but requires a combination of several
experimental techniques [35].

The elastodiffusion effects on sink strength of various sink types have been investigated
analytically [47] and using OKMC simulations [46, 34]. The results obtained mainly show
that taking into account elastodiffusion can have significant effects on the sink strength.
Skinner and Woo [47] have studied the elastodiffusion effects on sink strength of edge
dislocations in fcc copper and bcc iron. They performed analytical calculations in the case
of isotropic and anisotropic PD at saddle point. Their results showed the increase of sink
strength with the PD anisotropy for both materials and the effects are more important for
high dislocation densities. The PD anisotropy effects are more pronounced for vacancies
than SIAs in copper while the effects are comparable for both PDs in iron. The results
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obtained by Carpentier et al. [34] using OKMC simulations in Al are qualitatively the same
of that obtained in copper by Skinner for edge dislocations. Carpentier et al. have also
performed the OKMC simulations in the case of a spherical cavity. The results revealed
the increase of the sink strength with the PD anisotropy at saddle point which leads to
a cavity bias around 30 %, whereas cavity is commonly considered as an unbiased sink.
Elastodiffusion effects on sink strength of grain boundaries have also been investigated by
Vattré et al. [46]. In this case, the effects are visible for high grain boundary densities.
The studies of Vattré [46] and Carpentier [34] also showed that the PD trajectory towards
the sink is modified when elastodiffusion is taken into account. All these results show
that the elastodiffusion effects on sink strength and PD trajectories depend on several
parameters such as: the Pij-tensors anisotropy at saddle point, the crystal anisotropy, the
sink strain field properties, etc.

The elastodiffusion has been described in this section. Thus, in addition to the elastic
drift term, the elastodiffusion allows to take into account the elastic effects in the PD
diffusion tensor. A comparison of the sink strength calculations without and with
elastodiffusion will allow to quantify the elastodiffusion effects on the sink strength.
For that, we use a PF approach whose description is given in the following section
(section 2.2).

2.2 PF methodology
A single crystal is considered in which one type of sink is introduced. The production of
PDs is simulated through a generation rate term. PD will diffuse inside the matrix and
will be absorbed by the sink. To describe the system evolution, the order parameters, the
total free energy of the system and the evolution equations are defined successively, as
usually done in a PF approach.

2.2.1 Order parameters

The necessary order parameters to describe the system evolution are the following:

• The site fractions of PDs Xd , d = I for SIAs or V for vacancies. PDs are created at
a uniform and constant generation rate K0 (s−1).

• The elastic shape function ηs associated to the sink s and which allows to generate
the corresponding stress field.

• The shape function λs of the capture zone of sink s (equal to 0 inside the matrix and
1 in the capture zone). This parameter allows a precise control of the sink geometry,
which is essential to correctly calculate the sink strength.

2.2.2 Energy of the system

The system evolves by minimisation of the total free energy F. Strictly speaking, this is
only true close enough to equilibrium, an hypothesis that we assume in the following. F
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includes the chemical free energy Fchem associated to PD and the elastic energy Fel:

F (Xd, ηs) = Fchem(Xd) + Fel(Xd, ηs) (2.22)

In our system description, the sink evolution due to the PD absorption is not taken into
account, and the sink is assumed unchanged and immobile. This assumption justifies the
fact that the self-energy associated to the sink is ignored in Eq. 2.22.

Chemical free energy

In the limit of dilute systems, the chemical free energy of the system is written as [10]:

Fchem(Xd) = 1
Vat

∑
d

∫
V
EdfXd + kBT[Xd lnXd + (1−Xd) ln(1−Xd)]dV (2.23)

where Edf is the PD formation energy and V is the volume of the system.

Elastic energy

The elastic energy is calculated via the microelasticity theory [26]. It is a function of the
elastic strain which is the difference between the total strain εij(r) and the total eigenstrain
ε0,tot
ij (r). The total eigenstrain is given by:

ε0,tot
ij (r) =

∑
d

ε0,Xd
ij Xd(r) + ε0,ηs

ij ηs(r) (2.24)

where ε0,Xd
ij and ε0,ηs

ij are respectively the eigenstrain associated to the PD d and the sink
s. The PD eigenstrain and its dipole tensor at the equilibrium state are connected by the
relation:

P e,dij = VatCijklε
0,Xd
kl (2.25)

where Cijkl are the elastic constants of the system. In this manuscript, the system is
considered homogeneous which means that the elastic constants are independent of space.
The PD relaxation volume Ωd is given by:

Ωd = VatTr(ε0,Xd
kl ) (2.26)

ε0,Xd
kl can be determined from atomic-scale calculations of the Pij tensors (see Eq. 2.25).
Elastic equivalences between a given sink and an inclusion are used to determine the
corresponding eigenstrain ε0,ηs

ij [48, 40]. Examples will be given in section 2.3.1.
The expression of the elastic energy is as follows:

Fel = 1
2

∫
V
Cijkl[εij(r)− ε0,tot

ij (r)][εkl(r)− ε0,tot
kl (r)]dV (2.27)

The total strain εij(r) can be decomposed into two parts, the heterogeneous part of the
strain δεij(r) and the average strain εij :

εij(r) = εij + δεij(r) (2.28)
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it can be demonstrated that in an elastically homogeneous system,

εij =
∑
d

ε0,Xd
ij Xd(r) + ε0,ηs

ij ηs(r) (2.29)

The heterogeneous strain δεij(r) derives from the displacement field ui(r), and for small
strains is given by:

δεij(r) = 1
2[∂ui
∂rj

+ ∂uj
∂ri

](r) (2.30)

The displacement field is obtained by solving the mechanical equilibrium equation:

div σij(r) = 0 (2.31)

where σij(r) is the elastic stress:

σij(r) = Cijkl(εkl(r)− ε0,tot
kl (r)) (2.32)

Eq. 2.31 becomes using Eq.2.32 and Eq.2.30:

Cijkl
∂2uk(r)
∂rj∂rl

= Cijkl[
∑
d

ε0,Xd
kl

∂Xd

∂rj
(r) + ε0,ηs

kl

∂ηs
∂rj

(r)] (2.33)

The Fourier space is used to solve Eq.2.33 due to its simple form in this space:

[Gik(q)]−1ũk(q) = −icCijkl[
∑
d

ε0,Xd
kl qjX̃d(q) + ε0,ηs

kl qj η̃s(q)] (2.34)

with [Gik(q)]−1 = Cijklqjql and ic is the imaginary complex number defined as (ic)2 = −1.
φ̃ is the Fourier transform of the field φ and q is the wave vector. Gik(q) is the Fourier
transform of the Green function used in anisotropic elasticity. φ̃ is given by:

φ̃(q) =
∫
V
φ(r) exp(−icq.r)dV (2.35)

The elastic energy is also computed in the Fourier space and it can be demonstrated that:

Fel = 1
2V

∑
m

Cijklε
0,θm
ij ε0,θm

kl θm −
1
2V

∑
m

∑
n

Cijklε
0,θm
ij ε0,θn

kl θmθn

− 1
2

∑
m

∑
n

∫
d3q

(2π)3 qjσ
0,θm
ij Gik(q)σ0,θn

kl qlθ̃m(q)θ̃n(q) (2.36)

where σ0,θm
ij = Cijklε

0,θm
kl . θm refers to the order parameter (XI, XV, ηs) associated to

the defect m (I, V, s). The use of the Fourier space implies periodic conditions at the
boundaries of the simulation domain.
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2.2.3 Kinetic equations

The PD fraction Xd is assumed to be conserved in the matrix and its evolution equation
is of a Cahn-Hilliard type. The generation rate term K0 and the absorption term Jabss,d (r, t)
are added in this equation to simulate the PD creation by irradiation and absorption by
the sink. The resulting equation is given by:

∂Xd

∂t
(r, t) =

∑
i

∇i.[
∑
j

Md
ij(r, t)∇j

δF (Xd, ηs)
δXd

(r, t)] +K0 − Jabss,d (r, t) (2.37)

with Md
ij(r, t) the PD mobility tensor of type d which in the case of the simple free energy

expressed by Eq. 2.23 can be written as:

Md
ij(r, t) = Xd(r, t)

kBT
Dd
ij(r) (2.38)

where Dd
ij is the PD diffusion tensor given by equation 2.20. The recombination between

PDs is neglected and the PD diffusion equations are solved independently. Jabss,d is defined
by using the shape function λs as:

Jabss,d (r, t) = λs(r)λeff (Xd(r, t)−Xsd) (2.39)

λeff is an efficiency factor equal to 1/δt in the case of a perfect sink, δt being the time
step used to solve the kinetic equation of PDs. Xsd is the atomic fraction of PD inside the
sink which is fixed at a constant value usually taken as the thermal equilibrium fraction of
the PD since the sink is assumed unchanged. Substituting the total energy into Eq. 2.37
and taking the first variational derivatives with respect to the PD fraction Xd, we obtain:

∂Xd

∂t
(r, t) =

∑
i

∇i[
∑
j

Dd
ij(r)

VatkBT
Xd(r, t)∇j(µdchem(r, t) + µdel(r, t))] + K0 − Jabss,d (r, t) (2.40)

where
µdchem = Vat

δFchem
δXd

(2.41)

In the low PD fraction approximation:

µdchem = Ef + kBT lnXd (2.42)

µdel = Vat
δFel
δXd

(2.43)

µdel is calculated in the Fourier space and has the following simple form:

µ̃I
el(q) = BII(q)X̃I(q) +BIV(q)X̃V(q) +BIηs(q)η̃(q) (2.44)

µ̃V
el(q) = BVV(q)X̃V(q) +BVI(q)X̃I(q) +BVηs(q)η̃(q) (2.45)

where
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BII(q) = σ0,XI
ij ε0,XI

ij − qjσ0,XI
ij Gik(q)σ0,XI

kl ql

BVV(q) = σ0,XV
ij ε0,XV

ij − qjσ0,XV
ij Gik(q)σ0,XV

kl ql

BIV(q) = σ0,XI
ij ε0,XV

ij − qjσ0,XI
ij Gik(q)σ0,XV

kl ql

BVI(q) = σ0,XV
ij ε0,XI

ij − qjσ0,XV
ij Gik(q)σ0,XI

kl ql

BIηs(q) = σ0,XI
ij ε0,η

ij − qjσ
0,XI
ij Gik(q)σ0,ηs

kl ql

BVηs(q) = σ0,XV
ij ε0,η

ij − qjσ
0,XV
ij Gik(q)σ0,ηs

kl ql

(2.46)

The local PD flux Jd, which is a function of driving forces is given by:

Jdi (r, t) = −
∑
j

Dd
ij(r)Xd(r, t)
VatkBT

∇j(µdchem(r, t) + µdel(r, t)) (2.47)

The evolution equations of the order parameters ηs and λs are not required due to the
fact that they do not evolve. The sink strength k2

s,d can be deduced from Eq. 2.40 when
steady state is reached. It is a function of the absorption rate Js,d and the average site
fraction Xd [10]:

k2
s,d = Js,d

D0,d(Xd −Xs
d)

(2.48)

with
Js,d = 1

V

∫
V
Jabss,d (r, t)dV (2.49)

To solve equation 2.40, the following dimensionless parameters are introduced:

r∗ = r/a0, ∇∗i = a0∇i
Dd,∗
ij = Dd

ij/D
0,d

t∗ = t/t0, t0 = a2
0/D

0,d

K∗0 = t0K0

Jabs,∗s,d = t0J
abs
s,d

C∗ijkl = Cijkl/(kBTVat
), µ∗ = µ

kBT

(2.50)

where a0 is the length of a unit PF cell. The dimensionless form of Eq. 2.40 is given
by:

∂Xd
∂t∗

(r∗, t∗) =
∑
i

∇∗i [
∑
j

Dd,∗
ij (r∗)Xd∇∗j (µ

d,∗
chem(r∗, t∗) + µd,∗el (r∗, t∗))] +K∗0 − J

abs,∗
s,d (r∗, t∗)

(2.51)
Specific numerical schemes and algorithms are required to treat Eq. 2.51. More details
on this issue are given in Appendix A.
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The PF methodology being described, applications are made to the sink strength
calculations for various sinks in differents materials in section 2.3.

2.3 Applications to pure Al, Ni (fcc) and Fe (bcc)

In this section, the PF model described in section 2.2 has been applied to investigate
the elastodiffusion effects on sink strength in different pure cubic metals and for different
sink types: straight dislocations, low angle tilt grain boundaries and spherical cavities.
Firstly, the sinks are described and the corresponding PF stress fields are compared with
the existing analytical solutions for validation. The sink strength is computed in the case
of a straight dislocation and a spherical cavity to validate our model. Secondly, pure
aluminium, nickel (fcc) and iron (bcc) are considered. The PD flux and atomic fraction
maps are plotted to study the elastodiffusion effects on the PD trajectories and depletion
region. Finally, the sink strength is computed and the results are compared with those
available in the literature.

2.3.1 Sinks description, stress field and sink strength validation

The sinks are defined by the order parameters ηs and λs. Isotropic material is considered
for stress field validation due to the fact that analytical solutions are easier to obtain in
this case. The parameters used are given in table 2.2.

Table 2.2: Physical parameters for stress field validation.

T 600 K
b 0.3 nm
Shear modulus µ 33 GPa
Poisson ratio ν 0.33
Atomic volume Vat 2.3× 10−29 m3

Vacancy relaxation volume, ΩV -0.6Vat
SIA relaxation volume, ΩI 1.2Vat

Straight dislocations

PF simulations of dislocations became possible thanks to the equivalence established by
Nabarro [48] and have been performed first in [49, 50]. Nabarro has shown that a disloca-
tion loop is elastically equivalent to a platelet inclusion with thickness d and whose border
corresponds to the dislocation line (see Fig. 2.2). The eigenstrain ε0,ηs

ij associated to the
platelet is defined as:

ε0,ηs
ij = binj + bjni

2d (2.52)
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=
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η= 1

η= 0

d

Figure 2.2: Elastic equivalence between a dislocation loop and a platelet.

where bi and nj are respectively the ith component of the Burgers vector and the jth
component of the unit vector normal to the habit plane of the loop. The field ηs allows
to describe the platelet: it is equal to 0 inside the matrix, and 1 inside the platelet and
varies from 0 to 1 at the platelet border as illustrated in Fig. 2.2. The platelet border
which corresponds to the dislocation loop core is therefore modelled as a diffuse interface
of width w. The dislocation loop can be mimicked in 2 dimensions by a dipole of edge
dislocations as illustrated in Fig. 2.3. ηs is given by:

b

N1 

2
N

N2

b-

e1

2 e

3e

= N1/2

r
0

r
0

Figure 2.3: 2D simulation domain of size N1×N2 containing a dipole of edge dislocations.
r0 is the radius of the capture region.

ηs(x1, x2) = 1
2δ(x2 − xc2)[tanh(2(x1 − xc1

1 )
w )− tanh(2(x1 − xc2

1 )
w )] (2.53)

where (xc1
1 ,xc2) and (xc2

1 ,xc2) are the coordinates of the two lines of dislocations and δ the
Dirac function (δ(x = 0) = 1, δ(x 6= 0) = 0). An example of the profile of ηs is given in
Fig. 2.4. The dislocation core width is set to w = 4b. The platelet thickness d and the
size of a unit PF cell a0 have been taken equal to the length of the Burgers vector b. The
dislocation density ρ depends on the simulation box dimensions as (N1 = 2N2):

ρ = 1
N2

2a
2
0

(2.54)

The capture region of the PD by the dislocation cores corresponds to 2 cylinders of radius
r0. λ(r) is equal to 0 outside the cylinder and 1 inside. The stress field has been computed

42



CHAPTER 2. ELASTODIFFUSION 2.3. APPLICATIONS

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

5 10 15 20 25 30 35 40

η

x1 (nm)

W W

s

Figure 2.4: Example of ηs profile, passing through the dislocation cores along e1 in the
case of straight dislocations.

for a simulation domain size of 330.75× 165.37 nm2. The dislocation cores are located at
(82.68, 82.68) nm and (248.06, 82.68) nm. For an edge dislocation in an isotropic medium,
the analytical solution of the stress field is given by:

σ11(x1, x2) = − µb
2π(1−ν)

x2(3x2
1+x2

2)
(x2

1+x2
2)2

σ22(x1, x2) = µb
2π(1−ν)

x2(x2
1−x

2
2)

(x2
1+x2

2)2

σ12(x1, x2) = − µb
2π(1−ν)

x1(x2
1−x

2
2)

(x2
1+x2

2)2

σ33(x1, x2) = ν(σ11 + σ22)(x1, x2)

σ13 = σ23 = 0

(2.55)

where the origin of the coordinates coincide with the position of the dislocation. The stress
field obtained by PF and the analytical solution are plotted in Fig. 2.5. The profiles of
Fig. 2.5 show a good agreement between the PF and the analytical solution. The radius
r0 is chosen such that the extremum values of the stress field are contained in this region
as suggested in [4]. Typically, r0 corresponds to the dislocation core width w (r0 = 4b).
The sink strength of cylindrical sinks (edge dislocations without elastic interactions) is
plotted in Fig. 2.6. The PF results are compared to the solutions of Laplace, Poisson
and Wiedersich. A good agreement is obtained with the Wiedersich solution as expected
[27, 4] and allows to validate our PF approach of sink strength calculations.

Grain boundaries

A grain boundary (GB) is an interface between two crystals which differ by their orien-
tations. A certain number of parameters are needed to crystallographically caracterize a
grain boundary:

• The rotation angle between the two single crystals.
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Figure 2.5: Profiles of the stress field components of edge dislocation a) σ11 along e1
(xc2 = 82.68 nm), b) σ22 along e1 (xc2 = 82.68 nm), and c) σ12 along e2 (xc11 = 82.68 nm).

• The rotation axis, identified by its Miller indices [uvw].

• The orientation of the GB plane defined by its normal (hkl).

Thus, GB can be denoted (hkl)[uvw] where (hkl) refers to the normal of the GB plane and
[uvw] to the rotation axis. Among the different types of GBs, the most simple ones to de-
scribe are symmetric tilt grain boundaries (STGBs), where (grains are rotated by opposite
angles) the rotation axis is contained in the grain boundary plane. In the Read–Shockley
model [51], STGBs with low tilt angles can be described as an array of edge dislocations
separated by a distance h. The tilt angle θ is connected to h through the relation:

h = b

2 sin(θ/2) '
b

θ
(2.56)

As it is possible to model dislocations using PF, we thus focused on STGBs with small
tilt angles. GB is modelled in 2D, the rotation axis and the normal to the GB plane
correspond respectively to the dislocation line and the Burgers vector. A PF simulation
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Figure 2.6: Sink strength as a function of the dislocation denstity without elastic interac-
tions.

box containing a STGB with a low misorientation is illustrated in Fig. 2.7. Each dipole
is defined using the parameters η and λ introduced in the case of a straight dislocation.
The inter-spacing between dislocations was set to h = 6b in the simulations in order to
compute and validate the stress field. The simulation box size is 46.51×23.25 nm2. Along
direction e1 the GBs are located at 11.62 nm and 34.88 nm. The parameters of table 2.2
have been used. The analytical solution of the stress field generated by an array of edge

2e

3e

2N
h

b

N1

d = N1/2

{low-angle STGB

e1

r
0

Figure 2.7: 2D simulation box of size N1×N2 containing an array of edge dislocation
dipoles (low-angle STGBs).

dislocations is expressed as follows [52]:
σ11(x1, x2) = −τ sin(2πX2)(cosh(2πX1)− cos(2πX2) + 2πX1 sinh(2πX1))
σ22(x1, x2) = −τ sin(2πX2)(cosh(2πX1)− cos(2πX2)− 2πX1 sinh(2πX1))
σ12(x1, x2) = 2πτX1(cosh(2πX1) cos(2πX2)− 1)

(2.57)

where X1 = x1/h, X2 = x2/h and τ = µb
2h(1−ν)(cosh(2πX1)−cos(2πX2))2 .
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The profiles of the stress field obtained by PF and the analytical solution are represented
in Fig. 2.8. Globally, a good agreement is observed between the profiles.
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Figure 2.8: Profiles of the stress field components of low angle STGB a) σ11 along e1 at
x2 = 10.8 nm, b) σ11 along e2 at x1 = 12 nm, c) σ22 along e1 at x2 = 10.8 nm, d) σ22
along e2 at x1 = 12 nm, e) σ12 along e2 at x1 = 12 nm.
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Spherical cavities

The elastic PF description of a cavity, like in the case of a dislocation loop, requires
the knowledge of the corresponding eigenstrain. The determination of the eigenstrain
of a spherical cavity in cubic medium has been done by Chiang [53] using the inclusion
model of Eshelby [54]. In this model, an ellipsoidal domain Γ with the elastic constants
C′ijkl in an infinite material with the elastic constants Cijkl is considered. The elastic
constants of the domain Γ differ from those of the matrix and the domain is called an
ellipsoidal inhomogeneity. The presence of this inhomogeneity induces a stress σij with
the corresponding strain εij . The existence of an external stress σAij with the corresponding
strain εAij leads to the total stress σij + σAij defined as:

σij + σAij = C
′
ijkl(εkl + εAkl) in Γ (2.58)

The inclusion equivalence consists in the fact that the stress σij due to an inhomogeneity
in an external stress σAij can be simulated by an eigenstrain associated to inclusion with
the same elastic constants as the ones of the matrix. Then, an infinite material, homo-
geneous with the elastic constants Cijkl and containing a domain Γ with an eigenstrain
ε0,η
ij is considered. The eigenstrain ε0,η

ij is introduced in order to simulate elastically the
inhomogeneity. In this new system, in the presence of an external stress σAij , the total
stress σij + σAij is given by:

σij + σAij = Cijkl(εkl + εAkl − ε
0η
kl ) in Γ (2.59)

Thus, the inhomogeneity problem is elastically equivalent to the homogeneous inclusion
problem if:

C
′
ijkl(εkl + εAkl) = Cijkl(εkl + εAkl − ε

0,η
kl ) in Γ (2.60)

Eshelby has shown that the strain εij and the eigenstrain ε0,η
ij are linked in the following

way:

εij = Sijklε
0,η
kl (2.61)

where Sijkl is called the Eshelby tensor and is given by [53, 54]:

Sijmn = Cklmn
8π

∫ π

0
sin θ̃dθ̃

∫ 2π

0
[G−1

ik (q)qjql +G−1
jk (q)qiql]dφ̃ (2.62)

where θ̃ and φ̃ are the spherical coordinates in the Fourier space. In the case where a
spherical cavity of radius Rcav is the inhomogeneity, with a surface tension γ and in which
C′ijkl = 0, equation 2.60 becomes:

Cijkl(Sklmnε0,η
mn + εAkl − ε

0,η
kl ) = 0 (2.63)

=⇒ Cijkl(Sklmn − Iklmn)ε0,η
mn = −σAij (2.64)

with Iklmn the unit tensor. For a cubic system and a hydrostatic pressure (σAij = −pAδij),
Eq. 2.64 becomes:
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ε0,η
ij = pA

(C11 + 2C12)(S11 + 2S12 − 1)δij (2.65)

In the absence of an external pressure, pA is simply equal to:

pA = 2γ
Rcav

(2.66)

The eigenstrain ε0,η
ij of the cavity is thus given by:

ε0,η
ij = 2γ

Rcav(C11 + 2C12)(S11 + 2S12 − 1)δij (2.67)

In the case of an isotropic matrix:

C11 = λ+ 2µ; C12 = λ; S11 = 7− 5ν
15(1− ν) ; S12 = 5ν − 1

15(1− ν) [53] (2.68)

where λ and µ are the Lamé constants. ε0,η
ij is thus reduced to:

ε0,η
ij = − 2γ

Rcav

3(1− ν)
4µ(1 + ν)δij (2.69)

The 3D simulation box used for the stress field validation is represented in Fig. 2.9. The

e1
2e

3e

N

N

N

Rcav

Figure 2.9: 3D simulation domain of size N3 containing a spherical cavity.

simulation box size is N3 cells and the cavity density corresponds to ρ = 1/N3. The cavity
surface is modelled as a diffuse interface and the order parameter ηs is written in the same
way as in the case of dislocations:

ηs(x1, x2, x3) = 1
2(1− tanh[2(r − Rcav)

w ]) (2.70)

with r2 = x2
1 + x2

2 + x2
3 and w = 4a0. An example of ηs profile is shown in Fig. 2.10. The

capture region corresponds to a sphere of radius rc and is also chosen such as the extrema
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Figure 2.10: Example of ηs profile, passing through the center of the cavity along e1 in
the case of a spherical cavity of radius Rcav.

values of the stress field are within this zone, r0 = Rcav + w. The stress field is calculated
in a box of size 41.3443 nm3. The parameters of table 2.2 are used. The cavity radius
is set at Rcav = 1.2 nm (4a0) and γ to the typical value of 1 J.m−2 [39, 34]. The cavity
is located in the center of the box. The analytical solution of the stress field is obtained
by solving the mechanical equilibrium equation for a spherical shell with interior radius
Rcav and exterior radius R∞ subjected to an interior pressure pi = 2γ

Rcav
and an exterior

pressure pe = 0, and is given by:

σij(x1, x2, x3) = − 2γ
Rcav

R3
cav

R3
∞ −R3

cav

[(R
3
∞

2r3 + 1)δij −
3R3
∞xixj
2r5 ] (2.71)

with R∞ the radius of the sphere which is equivalent to the simulation domain (4πR3
∞/3 =

(Na0)3). The stress field profiles are plotted in Fig. 2.11 for the PF and analytical
solutions. The fit is good for each stress component represented out of the capture region.
In Fig. 2.12 the sink strength is plotted using the parameters of table 2.2. The sink
strengths obtained for both PDs with elastic interactions are practically the same and
correspond to the sink strengths without elastic interactions as expected. The Wiedersich
and Laplace solutions (see Tab. 2.1) are also plotted, and it is seen that our results (PF)
are in good agreement with the Wiedersich solution.

2.3.2 Physical parameters for applications

After the sink description and the corresponding stress field validation, the input param-
eters for applications to real materials are defined as follows. All the simulations were
performed at temperature T = 300 K and with the dimensionless PD generation rate
K∗0 = 3 × 10−8. The PD atomic fraction inside the sink Xsd was taken close to zero. The
elastic and Eshelby constants, the PD relaxation volume and the PD elastic dipole tensor
are given in table 2.3. The elastic dipole tensors of PD in Ni and Fe were computed by
DFT simulations [55] using the VASP code [56, 57]. The calculations were performed in a
periodic simulation box with 256±1 and 250±1 atoms for Ni and Fe respectively. The pro-
jector augmented wave method (PAW) was used and the exchange-correlation functional
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Figure 2.11: Profiles of the stress field components for a spherical cavity a) σ11 along e1
at x2 = 20.67 nm, b) σ11 along e2 at x1 = 20.67 nm, and c) σ12 along e1 at x2 = 20.67
nm.
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Figure 2.12: Sink strength as a function of the cavity density.
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was evaluated with the Perdew-Burke-Ernzerhof (PBE). The plane wave energy cutoff was
set to 350 eV for Ni and 300 eV for Fe, and the k-point grid mesh to 3× 3× 3 grid. The
migration of [100] and [110]-dumbbell respectively in (Al, Ni) and Fe is a mechanism of
translation-rotation from [100] to [010] and from [110] to [011] respectively in (Al, Ni)
and in Fe as described in Figs. 1.1 and 1.2. The elastic dipole tensors of each migration
direction are deduced from each other by space rotations. The PF basis RPF(e1, e2, e3)
generally does not correspond to the crystallographic basis R0([100],[010],[001]). Thus, all
the tensors can be rewritten in the PF basis using the following relations:

ei(RPF) = Mijej(R0)

Pij(RPF) = MikMjlPkl(R0) (2.72)

Cijkl(RPF) = MigMjhCghmn(R0)MkmMln

where Mij is the transformation matrix from R0 to RPF. Different cases of simulations are
chosen to investigate the elastodiffusion effects:

• Case 1: no elastodiffusion (Psadij = Peij).

• Case 2: isotropic PD at saddle point (Psadij ≡ 1
3Tr(P

sad
ij )δij).

• Case 3: full elastodiffusion (real Psadij -tensors).

The comparison of the results obtained in cases 2 and 3 allows assessing the importance
of the PD anisotropy at saddle point.

2.3.3 Results

The PD diffusion equation 2.51 is solved to calculate the sink strength. The sink strength
is first calculated in the case of a straight dislocation and a spherical cavity for validation
with the parameters of table 2.2. Secondly, the sink strength is calculated in the materials
Al, Ni and Fe. Discussing the sink strength calculations in these materials, the PD flux
and atomic fraction maps are represented to better understand the elastodiffusion effects.

2.3.3.1 Straight dislocation

A dipole of edge dislocations is considered as illustrated in Fig. 2.13. The glide system
{111}<1̄10> and {110}<1̄11> in fcc (Al, Ni) and bcc (Fe) respectively are considered.
Each dislocation is characterised by:

• its line vector: l = 1√
6 [1̄1̄2̄] (fcc), 1√

6 [1̄12̄] (bcc)

• its normal vector to the glide plane: n = 1√
3 [111̄] (fcc), 1√

2 [110] (bcc)

• its Burgers vector: b = ±a
2 [1̄10] (fcc), ±a

2 [1̄11] (bcc), a is the lattice parameter.
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Figure 2.13: 2D simulation box containing a dipole of edge dislocations.

The PF basis RPF corresponds to:
e1 = 1√

2 [1̄10]
e2 = 1√

3 [111̄]
e3 = 1√

6 [1̄1̄2̄]
(fcc),


e1 = 1√

3 [1̄11]
e2 = 1√

2 [110]
e3 = 1√

6 [1̄12̄]
(bcc) (2.73)

The radius of the capture region is set to r0 = 4a0 (see section 2.3.1).
The PD fluxes are plotted in Fig. 2.14 for each material Al, Ni and Fe without (case 1)

and with full elastodiffusion (case 3). Globally, for both cases, SIAs migrate preferentially
towards the tension region of dislocations. On the contrary, vacancies are more attracted
to the compression region as expected. When the elastodiffusion is taken into account, the
flow of SIAs changes hardly for all the materials. The trajectory of vacancies in Al, Ni and
Fe is more affected by the elastodiffusion especially in the compression region. The flow
intensity of vacancies decreases and its orientation changes near the compression region
as shown in Fig. 2.14-b), Fig. 2.14-d) and Fig. 2.14-f).

The atomic fraction maps of PDs are represented in figures 2.15 for Al, 2.16 for Ni and
2.17 for Fe. As shown by the PD flux maps, SIAs are more depleted in the compression
zone of dislocations while vacancies are more depleted in the tension zone. The size of
the PD depletion region increases and its shape changes with full elastodiffusion. This
leads to a decrease of the average atomic fraction. The elastodiffusion effects are more
pronounced for vacancies than SIAs in the case of Al and Ni (see Fig. 2.15 and Fig. 2.16).
In the case of Fe, the atomic fraction maps of SIAs and vacancies are strongly affected
by the elastodiffusion as shown in Fig. 2.17. The sink strength representation allows to
quantify the elastodiffusion effects.

In figures 2.18, 2.19 and 2.20 the sink strengths and the corresponding biases are
plotted in the studied materials. The sink strength is higher with full elastodiffusion
(case 3) compared to the case without elastodiffusion (case 1) in each material and for
each PD. This difference is amplified with the density of dislocations. The elastodiffusion
effects are more significant for vacancies in all the materials. The intermediate case 2
which corresponds to isotropic PD at saddle point is examined to study the effects of
PD anisotropy at saddle point. In case 2, the effects of elastodiffusion is due only to the
change in the PD relaxation volume between stable and saddle points. The sink strengths
obtained in cases 1 and 2 are very close for SIAs in all the materials. In the case of

53



2.3. APPLICATIONS CHAPTER 2. ELASTODIFFUSION

SIAs Vacancies

5
10
15
20
25
30
35

10 20 30 40 50 60 70

x 2
(n

m
)

x1 (nm)

case 3
case 1

(a)

5
10
15
20
25
30
35

10 20 30 40 50 60 70

x 2
(n

m
)

x1 (nm)

case 3
case 1

cα

Δh

(b)

A
l

N
i

Fe

5
10
15
20
25
30

10 20 30 40 50 60

x 2
(n

m
)

x1 (nm)

case 3
case 1

(c)

5
10
15
20
25
30

10 20 30 40 50 60

x 2
(n

m
)

x1 (nm)

case 3
case 1

C

α

hΔ

(d)

5
10
15
20
25
30

10 20 30 40 50 60

x 2
(n

m
)

x1(nm)

case 3
case 1

(e)

5
10
15
20
25
30

10 20 30 40 50 60

x 2
(n

m
)

x1 (nm)

case 3
case 1

cα

(f)

Figure 2.14: Fluxes of a) SIAs and b) vacancies in Al, c) SIAs and d) vacancies in Ni, e)
SIAs and f) vacancies in Fe, without elastodiffusion (case 1) and with full elastodiffusion
(case 3) for a dipole of edge dislocations. The length of the vector is proportional to the
norm of the flux ‖J‖ =

√
J2

1 + J2
2 .

vacancies, it is observed a decrease of the sink strength between cases 1 and 2 as shown
in Figs. 2.18-b), 2.19-b) and 2.20-b) in all the materials and this decrease is more marked
in Ni. The relative difference of the relaxation volume (Ωs − Ωe)/Ωe for SIAs in all the
materials and for vacancies in Fe is less or equal to 10% (see table 2.3). Thus the elastic
interactions between PDs and dislocation at stable and saddle state configurations are
practically the same in case 2 which explains the small change of the sink strength between
cases 1 and 2. However, the relaxation volume of vacancies in Al and Ni at saddle state
is significantly lower than at stable point. This leads to a strong decrease of the elastic
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Figure 2.15: Atomic fraction maps of SIAs and vacancies respectively without elastodif-
fusion (case 1) a) and c), and with full elastodiffusion (case 3) b) and d) in Al for a dipole
of edge dislocations.
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Figure 2.16: Atomic fraction maps of SIAs and vacancies respectively without elastodif-
fusion (case 1) a) and c), and with full elastodiffusion (case 3) b) and d) in Ni for a dipole
of edge dislocations.
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Figure 2.17: Atomic fraction maps of SIAs and vacancies respectively without elastodif-
fusion (case 1) a) and c), and with full elastodiffusion (case 3) b) and d) in Fe for a dipole
of edge dislocations.
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Figure 2.18: Sink strength as a function of the dislocation density for a) SIAs and b)
vacancies, and c) bias in Al. Case 1: no elastodiffusion, case 2: elastodiffusion with
isotropic PD at saddle point, case 3: full elastodiffusion.

interactions and thus to a decrease of the sink strength in case 2 in comparison to case 1.
The comparison between cases 1, 2 and 3 shows an increase of the sink strength with the
PD anisotropy at saddle point. This increase is strongly significant with the dislocation
density for vacancies in Al and Ni, and for both PDs in Fe. Therefore the bias decreases
with the PD anisotropy at saddle point in Al and Ni as illustrated in Figs. 2.18-c) and
2.19-c). Fig.2.20-c) shows a decrease of the sink bias in Fe with full elastodiffusion due to
a stronger effects for vacancies than for SIAs. The solution of the sink strength proposed
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Figure 2.19: Sink strength as a function of the dislocation density for a) SIAs and b)
vacancies, and c) bias in Ni. Case 1: no elastodiffusion, case 2: elastodiffusion with
isotropic PD at saddle point, case 3: full elastodiffusion.
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Figure 2.20: Sink strength as a function of the dislocation density for a) SIAs and b)
vacancies, and c) bias in Fe. Case 1: no elastodiffusion, case 2: elastodiffusion with
isotropic PD at saddle point, case 3: full elastodiffusion.

by Rauh and Simon [32] is represented in figures 2.18, 2.19 and 2.20 for each material.
The results are comparable at low dislocation densities, but considerable differences are
observed for high densities. These differences are due to several reasons mentioned by
Rouchette [4]:

• The Rauh solution is only valid for isotropic systems and PDs.

• To obtain the Rauh solution, the choice of the boundary conditions are similar to
the Laplace’s model. The PD atomic fraction X̄d(t → ∞) used to compute the
sink strength Eq. 2.4 corresponds to the atomic fraction at the boundaries of the
reservoir X(R) instead of X̄ as in the PF model.

• The Rauh model ignores the elastic interactions between the dislocations, which
limits its validation to low dislocations densities.

Thus, the Rauh and Simon solution allows to have a qualitative description of the sink
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strength and bias evolution with dislocation density. The results obtained by Carpentier
[34] for sink strength and bias in Al using OKMC simulations are represented in figure 2.18.
The results are in good agreement for low dislocation densities but differences between
OKMC and PF are observed at high densities. This discrepancy can be explained by the
fact that the radius r0 of the PD capture region used in the OKMC simulations is equal
to 2b while in the present study it is 4b. In our PF model, r0 = w where w is the width
of dislocation core which is modelled as a diffuse interface, and it is difficult to simulate
an interface with less than 3 or 4 cells.

Discussion

The results obtained above show that elastodiffusion has effects on the PD flow toward
the sink, on the size and shape of the PD depletion region, and on the sink absorption
and bias. The magnitude of these effects depends strongly on the PD anisotropy at saddle
point. Especially the sink strength increases by taking into account the PD anisotropy at
saddle point (case 3) compared to the other cases of simulations (cases 1 and 2). In all
the materials, vacancies are more affected by the full elastodiffusion and a decrease of the
sink bias is obtained but this decrease remains small. The saddle point anisotropy effects
on the sink strength have been investigated by Skinner and Woo [47] in fcc Cu and bcc Fe
at 500 K. They concluded that, the sink strengh increases by a small amount for each PD
and in each material. It should be noted that in the study of Skinner, a <100>-dumbbell
is considered as SIAs in Cu and Fe while a <110>-dumbbell is considered in Fe for this
study. The results obtained for Cu are very similar to those obtained in this study for
Al and Ni. A generalization of the results could be made for materials with PDs having
the same anisotropy properties at stable and saddle points. Chen [61] has shown that
the PD anisotropy at saddle point effects on sink strength can be treated by defining an
"effective relaxation volume". This effective relaxation volume allows to describe the PD
dipole tensor anisotropy at saddle state and its choice is therefore crucial. As shown by
the results obtained when the PD at saddle point is isotropic, the sink strength decreases
(see Figs. 2.18 and 2.19). On the other hand the sink strength increases when the PD
anisotropy at saddle state is considered.

The normalized diffusion coefficients Dij/D0 are plotted in figures 2.21, 2.22 and 2.23
to better investigate the full elastodiffusion effects on PD diffusion. As shown by equation
2.16, the diffusion coefficients result from a coupling between the Pij-tensor and the strain
field due to the sink. The profiles of Figs. 2.21 and 2.22 show stronger variations of
the ratios Dij/D0 for vacancies than SIAs in Al and Ni, especially in Ni. These higher
variations of the ratios Dij/D0 for vacancies than SIAs allow to explain the decrease of
the sink bias in Al and Ni with full elastodiffusion compared to the case without. In Fe,
the magnitudes of the ratios D11/D0 and D12/D0 for both PDs are very close. Significant
differences are observed for the ratio D22/D0, higher for SIAs than vacancies in some
points (see Fig. 2.23-b)). But finally, a small decrease of the sink bias is observed with full
elastodiffusion in Fe. The contribution of each jump direction to the diffusion coefficients
(see Eq. 2.16) has been investigated. In table 2.4 the weight of each PD possible jump
direction relative to the diffusion coefficients is reported. It can be seen that in Al, all
the possible jump directions have almost the same contribution for both PDs (exponential
expression in table 2.4). This may be due to the low anisotropy factor of Al. Contrariwise,
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Figure 2.21: Profiles of the normalized diffusion coefficients b) D11/D0 along L1 (x2 =
21.22 nm), c) D22/D0 along L2 (x1 = 21.22 nm) and d) D12/D0 along L1 (x2 = 21.22 nm)
with full elastodiffusion (case 3) in Al for a dipole of edge dislocations.
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Figure 2.22: Profiles of the normalized diffusion coefficients a) D11/D0 along L1 (x2 = 18.67
nm), b) D22/D0 along L2 (x1 = 18.67 nm) and c) D12/D0 along L1 (x2 = 18.67 nm) with
full elastodiffusion (case 3) in Ni for a dipole of edge dislocations (see Fig. 2.21-a) for L1
and L2 axis).

in Ni and Fe where the anisotropy ratio is higher, some directions contribute much more
than others, especially in Fe. Thus PD migrates preferentially in the directions where
the contribution is more significant. We also calculated the sink strength for another
possible glide system {001}<100> in all the metals [?]. In Fig. 2.24 the sink bias with
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Figure 2.23: Profiles of the normalized diffusion coefficients D11/D0 along e1 (x2 = 18.67
nm), D22/D0 along e2 (x1 = 18.67 nm) and D12/D0 along e1 (x2 = 18.67 nm) with full
elastodiffusion (case 3) in Fe for a dipole of edge dislocations (see Fig. 2.21-a)) for L1 and
L2 axis).

full elastodiffusion for the different glide systems in all the materials is plotted. The
bias changes hardly in Al and Fe with the glide system while the variation is stronger in
Ni. To better understand these results, the profile of the normalized diffusion coefficient
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Figure 2.24: Sink bias as a function of the dislocation density for different orientations of
the Burgers vector with full elastodiffusion in a) Al, b) Ni and c) Fe.

D11/D0 is plotted for each glide system in Fig. 2.25. In Al and Fe, the ratio D11/D0

varies slightly with the glide system for each PD which can explain the low bias variation
in these materials. In Ni, the ratio D11/D0 is almost the same for each glide system in
case of SIAs. But for vacancies the ratio D11/D0 increases highly for the glide system
{001}<100> compared to the other one. This leads to the bias decrease in the glide
system {001}<100> compared to the other one as shown in Fig. 2.24.
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Table 2.4: Contribution of the possible jump directions h to the diffusion coefficients (Eq.
2.16) for a dipole of edge dislocations. (xp1, xp2) = (75, 64)a0 (see Fig. 2.21-a)) with a0
the size of the corresponding unit PF cell.

h β
∑
kl

(P sadkl − P̄ ekl)εkl(xp1, xp2) exp(β
∑
kl

(P sadkl − P̄ ekl)εkl(xp1, xp2))

Al; Ni
Vacancies
[110] [1̄1̄0] -1.0269×10−3; 2.664×10−2 0.9989; 1.0270
[11̄0] [1̄10] -6.6339×10−4; -1.3127×10−3 0.9993; 0.9986

[011] [01̄1] [011̄] [01̄1̄]
[101] [1̄01] [101̄] [1̄01̄] -5.2367×10−3; 0.26894 0.9947; 1.30857

Dumbbell [100]
[110] [1̄1̄0] 1.2062×10−3; -5.2201×10−2 1.00120; 0.9491
[11̄0] [1̄10] -3.9413×10−3; 0.1436 0.9960; 1.1544
[101] [1̄01̄] -8.4050×10−4; 3.6963×10−2 0.9991; 1.0376
[1̄01] [101̄] -8.4050×10−4; 4.4840×10−2 0.9991; 1.0458

Fe
Vacancies

[111] [111̄] [1̄1̄1] [1̄1̄1̄] -0.1904 0.8266
[11̄1] [1̄11] [11̄1̄] [1̄11̄] 0.3134 1.3681

Dumbbell [110]
[111] [111̄] [1̄1̄1] [1̄1̄1̄] 0.4088 1.5050
[11̄1] [1̄11] [11̄1̄] [1̄11̄] -0.4768 0.6207

In summary of this section, the sink strength of straight dislocations increases when
full elastodiffusion is taken into account compared to the case where it is not in all
the studied materials. The PD trajectory and depletion region are also modified. In
all the materials, full elastodiffusion effects on sink strength are more significant for
vacancies which leads to the decrease of the sink bias compared to the case without
elastodiffusion. The plots of the diffusion coefficients with and without elastodiffusion
allowed to explain these results. It has also been shown that the elastodiffusion
effects depend on the glide system. In particular, the bias changes slightly with full
elastodiffusion when the glide system changes from {111}<1̄10> to {001}<100> in
Al and from {110}<1̄11> to {001}<100> in Fe. In Ni, the bias changes with the glide
system is more significant. The profiles of the diffusion coefficients have also allowed
to explain these bias modifications with the glide system. The case of an array of
straight dislocations is studied in the following section (section 2.3.3.2).
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Figure 2.25: Profiles of the normalized diffusion coefficients D11/D0 along L1 (see Fig.
2.21-a)) respectively for SIAs a) Al, c) Ni and e) Fe, and for vacancies b)Al, d) Ni and
f)Fe with full elastodiffusion for different Burgers vector orientations.

2.3.3.2 Grain boundary

A STGB with low misorientation is considered as illustrated in Fig. 2.7. Each dislocation
has the same characteristics listed in the case of straight dislocations (Burgers vector, line
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vector and vector normal to the glide plane). The interspacing between dislocations h
was set to 6b which corresponds to a misorientation of θ = 9.55◦(h ' b/θ). The radius
r0 of the capture zone is still equal to 4b for each dislocation. The STGB in Al and Ni
corresponds to the (1̄10)[1̄1̄2̄] GB and in Fe to the (1̄11)[1̄12̄] GB.

The PD fluxes towards the GB are plotted in Fig. 2.26. As in the case of isolated
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Figure 2.26: Fluxes of a) SIAs and b) vacancies in Al, c) SIAs and d) vacancies in Ni, e)
SIAs and f) vacancies in Fe, without elastodiffusion (case 1) and with full elastodiffusion
(case 3) for low angle STGB. The length of the vector is proportional to the norm of the
flux ‖J‖ =

√
J2

1 + J2
2 .

straight dislocations (θ → 0◦), SIAs migrate preferentially in the tension region of each
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dislocation for each case of simulation and material. Contrariwise, vacancies migrate
preferentially to the compression zone. The SIA trajectory changes very little in Al and
Ni when full elastodiffusion is taken into account (case 3) compared to the case without
(case 1). The same result is obtained for vacancies in Fe. However, the vacancy trajectory
is strongly affected near the low angle STGB with full elastodiffusion in Ni, which is also
the case for SIAs in Fe.

In Figs. 2.27, 2.28 and 2.29 are represented the PD atomic fraction maps respectively
in Al, Ni and Fe without (case 1) and with full elastodiffusion (case 3). There are no
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Figure 2.27: Atomic fraction maps of SIAs and vacancies respectively without elastodiffu-
sion (case 1) a) and c), and with full elastodiffusion (case 3) b) and d) in Al for low angle
STGB.

remarkable differences in the shape and size of the PD depletion regions between the two
cases of simulations in Al for both PDs, in Ni for SIAs and in Fe for vacancies. A noticeable
difference is observed for vacancies in Ni and for SIAs in Fe as predicted by the PD flow
plots.

The sink strength for SIAs and vacancies, and the sink bias are given in Figs. 2.30, 2.31
and 2.32. The analytical solution of the sink strength of a continuous planar sink (no elastic
interactions) given by k2 = 12/(d − e)2 [62] is also plotted. e is the width of the planar
sink which corresponds to the width of the capture region 2r0 in our simulations, d is the
interplanar spacing. The sink strengths for both PDs, in all the cases of simulations and
in all the materials are very close to the analytical solution for large STGB inter-spacing
(d > 30 nm). The bias for these STGB inter-spacings is less than 10 %. For low STGB
inter-spacings (d < 30 nm), the elastic effects become significant which leads to a strongly
biased STGB. Especially for d ' 5 nm, the sink strength for vacancies is approximately two
times greater than the analytical solution for all the simulation cases, while the increase of
the sink strength for SIAs is more significant than that of vacancies. The sink strength is
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Figure 2.28: Atomic fraction maps of SIAs and vacancies respectively without elastodiffu-
sion (case 1) a) and c), and with full elastodiffusion (case 3) b) and d) in Ni for low angle
STGB.
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Figure 2.29: Atomic fraction maps of SIAs and vacancies respectively without elastodif-
fusion (case 1) a) and c), and with elastodiffusion (case 3) b) and d) in Fe for low angle
STGB.
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Figure 2.30: Sink strength as a function of STGB inter-spacing for a) SIAs and b) vacan-
cies, and c) bias in Al. Case 1: no elastodiffusion, case 2: elastodiffusion with isotropic
PD at saddle point, case 3: full elastodiffusion.

SIAs Vacancies

 0

 2

 4

 6

 8

 10

 12

 14

 0  10  20  30  40  50  60  70

k2  (
nm

-2
)

d (nm)

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 15  30  45  60

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  10  20  30  40  50  60  70

k2  (
nm

-2
)

d (nm)

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 15  30  45  60

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  10  20  30  40  50  60  70

B
ia

s

d (nm)

case 3

case 2

case 1

analytical sol

 0.01

 0.045

 0.08

 0.115

 0.15

 15  30  45  60

(c)

Figure 2.31: Sink strength as a function of STGB inter-spacing for a) SIAs and b) vacan-
cies, and c) bias in Ni. Case 1: no elastodiffusion, case 2: elastodiffusion with isotropic
PD at saddle point, case 3: full elastodiffusion.

higher when full elastodiffusion (case 3) is taken into account compared to the cases where
PD is isotropic at saddle point (case 2) and where there is no elastodiffusion (case 1), like
in the case of isolated dislocations. In Al, the sink strengths calculated in cases 1 to 3 are
close for both PDs and the biases are almost the same for all the simulations. In the case
of Ni, full elastodiffusion effects are more significant especially for vacancies and induce a
strong decrease of the bias compared to the other cases. In Fe, elastodiffusion in cases 2
has no effects on the sink strength for vacancies, in case 3 an increase is observed for small
STGB inter-spacings. For SIAs elastodiffusion does not change the sink strengths when
SIAs are considered isotropic at saddle point. However, with full elastodiffusion, the sink
strength increases strongly for small STGB inter-spacings and leads to strong variations
of the STGB bias as shown in Fig. 2.32-c) (bias ' 70 % for d ' 5 nm).
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Figure 2.32: Sink strength as a function of the STGB inter-spacing for a) SIAs and b)
vacancies, and c) bias in Fe. Case 1: no elastodiffusion, case 2: elastodiffusion with
isotropic PD at saddle point, case 3: full elastodiffusion.

Discussion

The elastodiffusion effects on the sink strength and bias have been investigated near a
low angle STGB. The results obtained show that for high STGB inter-spacings, the sink
strengths for both PDs are weakly affected by elastodiffusion compared to the case without
elastodiffusion (case 1) and without any elastic interactions (analytical solution). As a
consequence the STGB can be considered as a neutral sink for high inter-spacings. GBs
are usually considered as neutral sinks in the literature [10], but for low GB inter-spacings,
this consideration is no longer valid and GBs act as biased sinks (see Figs. 2.30-c), 2.31-c)
and 2.32-c)). The stress field generated by a low angle STGB decays exponentially far from
the STGB [52]. Thus, there are no long-range stresses which allows to explain why there
are no effect of the elastic interactions on the sink strength for high STGB inter-spacings.
The normalized PD diffusion coefficients Dij/D0 obtained with full elastodiffusion are
plotted in Figs. 2.33, 2.34 and 2.35. As the STGB does not produce any long-range
stress, the diffusion coefficients change only in the vicinity of the STGB. In Al and Ni, the
variations of the ratio Dij/D0 are more important for vacancies than SIAs as in the case
of isolated dislocations. But these variations of the ratio Dij/D0 are small and remain
comparable for both PDs in Al which explains the small change of the sink strength and
bias (see Fig. 2.30). In Ni, the variations are more remarkable for vacancies compared
to SIAs and this explains the strong effects of full elastodiffusion on sink strength for
vacancies in this case. The ratio Dij/D0 in Fe varies strongly for both PD (see Fig. 2.35).
The variations are more pronounced for SIAs which leads to the more noticeable effects of
full elastodiffusion on sink strength for SIAs in Fe. The contribution of each possible jump
direction on the diffusion coefficients has also been studied. Table 2.5 shows that in Al
and Ni, all jump directions bring on average the same contribution. In Fe, there are some
directions which contribute more remarkably than the others to the diffusion coefficients.

The misorientation angle effects on the sink strength have been investigated by per-
forming simulations with various values of the dislocation spacing h. Figure 2.36 shows
the sink strength and bias for all the materials as a function of the misorientation angle,
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Figure 2.33: Profiles of the normalized diffusion coefficients along L1 (at x2 = 10.75 nm)
a) D11/D0, b) D22/D0 and c) D12/D0 with full elastodiffusion (case 3) in Al for a low angle
STGB.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 10  20  30  40  50  60  70

D
11

/D
0

x1(nm)

SIAs

Vacancies

 0

 0.5

 1

 1.5

 2

 20  40  60

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 10  20  30  40  50  60  70

D
22

/D
0

x1(nm)

SIAs

Vacancies

 0

 1

 2

 3

 4

 20  40  60

(b)

-12

-10

-8

-6

-4

-2

 0

 2

 4

 10  20  30  40  50  60  70

D
12

/D
0

x1(nm)

SIAs

Vacancies

-2

-1

 0

 1

 2

 20  40  60

(c)

Figure 2.34: Profiles of the normalized diffusion coefficients along L1 (at x2 = 9.462 nm,
see Fig. 2.33-a)) for L1 axis) a) D11/D0, b) D22/D0 and c) D12/D0 with full elastodiffusion
(case 3) in Ni for a low angle STGB.

for a chosen GB inter-spacing. The results are qualitatively the same in Al, Ni and Fe.
For vacancies in Al and Fe, the sink strength increases with the misorientation angle and
tends towards a constant value when θ becomes greater than approximately 3◦. In the
case of SIAs for all the materials, there is an increase followed by a decrease of the sink
strength with θ, the maximum is obtained for θ ' 3◦, which is also the case for vacancies
in Ni. The representation of the bias given in Fig. 2.36-c) shows a decrease with the mis-
orientation angle. These results are very similar to those obtained by Jiang et al. [62] in
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Figure 2.35: Profiles of the normalized diffusion coefficients along L1 (at x2 = 9.31 nm, see
Fig. 2.33-a)) for L1 axis) a) D11/D0, b) D22/D0 and c) D12/D0 with full elastodiffusion
(case 3) in Fe for a low angle STGB.
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Figure 2.36: Sink strength and bias as a function of the misorientation angle at a given
STGB inter-spacing d.

fcc Cu. In the study of Jiang, the maximum of the sink strength for SIAs is around θ = 2◦.
As explained by Jiang, the maxima in the GB sink strength is the result of 2 antagonistic
effects: the sink strength increases with the dislocation density (ρdislo = 1/hd = θ/bd) and
consequently with θ as obtained in the case of straight dislocation. Contrariwise, for high
dislocation densities (small h or high θ), the stress fields of neighboring GB dislocations
overlap more strongly which leads to a mutual cancellation. Thus, the GB tends to act
as a neutral planar sink for high dislocation densities (high misorientation angles). The
maximum is less visible for vacancies due to their small relaxation volume compared to
the one of SIAs which implies weak elastic interactions [62].

Crystal anisotropy effects have also been studied by changing the plane orientation
i.e. its normal n which is parallel to the Burgers vector b. The results of the GB bias
calculations with full elastodiffusion are given in Fig. 2.37. In Al, the bias does not
change a lot with the GB orientation. In Ni and Fe the bias changes strongly with the
GB orientation, especially in Ni the bias changes its sign for low GB inter-spacings. To
better understand these results, the profile of the normalized diffusion coefficient D11/D0

69



2.3. APPLICATIONS CHAPTER 2. ELASTODIFFUSION

Table 2.5: Contribution of the possible jump direction h to the diffusion coefficients (Eq.
2.16) for a low angle STGB. (xp1, xp2) = (38, 72)a0 (see Fig. 2.33-a)) whith a0 the size of
the corresponding unit PF cell.

h β
∑
kl

(P sadkl − P̄ ekl)εkl(xp1, xp2) exp(β
∑
kl

(P sadkl − P̄ ekl)εkl(xp1, xp2))

Al; Ni
Vacancies
[110] [1̄1̄0] -1.0963×10−2; -1.5552×10−3 0.9891; 0.9984
[11̄0] [1̄10] -7.0822×10−3; 7.6614×10−5 0.9929; 1.0000

[011] [01̄1] [011̄] [01̄1̄]
[101] [1̄01] [101̄] [1̄01̄] -5.5906×10−2; -1.5696×10−2 0.9456; 0.9844

Dumbbell [100]
[110] [1̄1̄0] 1.7463×10−2; 3.1794×10−3 1.0176; 1.0031
[11̄0] [1̄10] -3.7497×10−2; -8.2513×10−3 0.9632; 0.9917
[101] [1̄01̄] -4.3900×10−3; -2.0245×10−3 0.9956; 0.9979
[1̄01] [101̄] -1.8142×10−2; -2.4842×10−3 0.9820; 0.9975

Fe
Vacancies

[111] [111̄] [1̄1̄1] [1̄1̄1̄] 1.9830×10−2 1.0200
[11̄1] [1̄11] [11̄1̄] [1̄11̄] -3.2637×10−2 0.9678

Dumbbell [110]
[111] [111̄] [1̄1̄1] [1̄1̄1̄] -4.2570×10−2 0.9583
[11̄1] [1̄11] [11̄1̄] [1̄11̄] 4.9653×10−2 1.0509

is plotted for each GB orientation in Fig. 2.38. It can be seen that, in Al the ratio
D11/D0 changes slowly with the GB orientation for both PDs which leads to the slow
bias change. In Ni, D11/D0 is higher for the (100)[001] than for the (1̄10)[1̄1̄2̄] GB in the
case of vacancies while the variations are comparable for SIAs. Then the sink strength
of vacancies increases strongly for the (100)[001] GB which leads to a significant decrease
of the bias as shown in Fig. 2.37-b). In Fe, the D11/D0 decreases for both PDs in the
(100) orientation compared to the (1̄10) orientation. Thus the bias decrease in the (100)
compared to the (1̄10) GB orientation as illustrated in Fig. 2.37-c).

In conclusion of this section, like in the case of straight dislocations, the sink strength
of low angle STGB is higher with full elastodiffusion compared to the case where
elastodiffusion is not considered. The full elastodiffusion effects on sink strength are
more important for vacancies in Al and Ni like for straight dislocations, which leads to
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Figure 2.37: Sink bias as a function of STGB inter-spacing for different STGB orientations
with full elastodiffusion in a) Al, b) Ni and c) Fe.

the sink bias decrease compared to the case without. This sink bias decrease with full
elastodiffusion is more visible in Ni. In Fe, an increase of the STGB bias is obtained
with full elastodiffusion compared to the case without, while a sink bias decrease has
been obtained for straight dislocations. This difference in the sink bias modifications
with full elastodiffusion can be explained by the following argument. As shown by
the diffusion coefficients profiles, the full elastodiffusion effects on the ratio D11/D0

are comparable for SIAs and vacancies in the case of isolated dislocations, whereas
in the case of STGB, D11/D0 for SIAs is affected more strongly than for vacancies
when full elastodiffusion is considered. The misorientation angle effects on STGB
sink strength and bias have also been studied. The results show the existence of two
regimes: a regime at low θ (θ < 3◦) where the sink strength increases with θ and a
second regime θ > 3◦ where the sink strength decreases with θ. Lastly, the effects
of the STGB orientation have been investigated. It emerged that the STGB bias is
slightly modified when the STGB changes from the orientation (1̄10)[1̄1̄2̄] to (100)[001]
in Al. But in Ni and Fe, the bias is highly modified when the STGB changes from
the orientation (1̄10)[1̄1̄2̄] to (100)[001] and from (1̄11)[1̄12̄] to (100)[001] in Ni and
Fe respectively. In the section below 2.3.3.3, the case of a spherical cavity is treated.

2.3.3.3 Spherical cavity

A spherical cavity is located at the center of a cubic PF simulation domain as illustrated
in Fig. 2.9. The cavity radius was set to Rcav = 1 nm (4a0). The cavity surface was
modelled as a diffuse interface with a width of 1 nm (w = 4a0). The radius of the capture
region thus corresponds to r0 = 2 nm (r0 = Rcav + w). The PF basis is given by:

e1 = [100]
e2 = [010]
e3 = [001]

(2.74)

The PD flows towards the cavity are represented on Fig. 2.39 in the x1x2-plane for a given
cavity density. The trajectories of both PDs are normal to the cavity in all the cases of
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Figure 2.38: Normalized diffusion coefficients D11/D0 along L1 (see Fig. 2.33-a)) respec-
tively for SIAs a) (at x2 = 10.75 nm) Al, c) (at x2 = 9.462 nm) Ni and e) (at x2 = 9.31
nm) Fe, and for vacancies b)Al, d) Ni and f)Fe with full elastodiffusion for different GB
orientations.

simulations and for all the materials. The SIA trajectory does not change remarkably
with the saddle point anisotropy in all the systems, the same behavior is observed in
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Figure 2.39: Fluxes in the x1x2-plane of a) SIAs and b) vacancies in Al, c) SIAs and
d) vacancies in Ni, e) SIAs and f) vacancies in Fe, without elastodiffusion (case 1) and
with full elastodiffusion (case 3) for a spherical cavity according to the x1x2-plane passing
through the center of cavity. The length of the vector is proportional to the norm of the
flux ‖J‖ =

√
J2

1 + J2
2 .
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the trajectory of vacancies in Fe. On the other hand, a significant change is noted in
the vacancy flow near the cavity in Al and Ni. As shown in Figs. 2.39-b) and 2.39-d)
the vacancy trajectory is deflected in the vicinity of the cavity with the PD anisotropy
at saddle point. Carpentier et al. [34] have obtained the same effects of the Pij-tensor
anisotropy at saddle point on the PD trajectories near a spherical cavity in Al.

Figs. 2.40, 2.41 and 2.42 show the atomic fraction maps of PD around the cavity in the
x1x2-plane. In case 1, the shape of the vacancy depletion region is almost the same when
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Figure 2.40: Atomic fraction maps of SIAs and vacancies respectively without elastodiffu-
sion (case 1) a) and c), and with full elastodiffusion (case 3) b) and d) in Al for a spherical
according to the x1x2-plane passing through the center of cavity.

there is no elastic interactions (spherical symmetry) in all the materials. On the contrary,
the shape of the depletion zone for SIAs is different from that without elastic interactions,
especially for Ni and Fe. This difference is due to the elastic constant anisotropy and the
magnitude of this change depends on the PD relaxation volume. The relaxation volume
of vacancies is smaller than the one of SIAs and thus the shape of the vacancy depletion
region is less affected by the elastic interactions. Moreover, the shape of the depletion
region of SIAs in Al has almost a spherical symmetry around the cavity. This is due to
the lower anisotropy factor of Al compared to Ni and Fe (see table 2.3 for anisotropy
factors). The shape of the depletion region does not change significantly with the saddle
point anisotropy (case 3) for both PDs in all the systems. The size of the depletion region
for vacancies decreases with full elastodiffusion which means a slower absorption, whereas
the size of the depletion zone of SIAs is practically unchanged.

The sink strengths and biases are plotted in Figs. 2.43, 2.44 and 2.45. The sink
strengths obtained for both PDs in cases 1 and 2 are close to the Wiedersich solution for
all the systems. The bias in these cases is less than 5% and the cavity can be considered
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Figure 2.41: Atomic fraction maps of SIAs and vacancies respectively without elastodiffu-
sion (case 1) a) and c), and with full elastodiffusion (case 3) b) and d) in Ni for a spherical
according to the x1x2-plane passing through the center of cavity.
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Figure 2.42: Atomic fraction maps of SIAs and vacancies respectively without elastodiffu-
sion (case 1) a) and c), and with full elastodiffusion (case 3) b) and d) in Fe for a spherical
cavity according to the x1x2-plane passing through the center of cavity.
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Figure 2.43: Sink strength as a function of the cavity density for a) SIAs and b) vacancies,
and bias c) in Al. Case 1: no elastodiffusion, Case 2: isotropic PD at stable and saddle
points, Case 3: full elastodiffusion (real Pij-tensors).
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Figure 2.44: Sink strength as a function of cavity density for a) SIAs and b) vacancies,
and bias c) in Ni. Case 1: no elastodiffusion, Case 2: isotropic PD at stable and saddle
points, Case 3: full elastodiffusion (real Pij-tensors).

as a neutral sink [10]. The results in the case of full elastodiffusion (case 3) show an
increase of the sink strength for SIAs and a decrease for vacancies compared to the cases
1 and 2. The sink bias increases and is around 20% in Al and 10% in Ni and Fe for the
corresponding cavity radius. Thus, a cavity cannot be considered again as a neutral sink
when all the elastic effects are taken into account (full elastodiffusion). It should also be
noted that the bias varies slightly with the cavity density because a cavity produces a
strain with a short range (see Eq. 2.71).

Discussion

The results of the sink strength and bias computations of cavity with elastodiffusion show
that the PD anisotropy at saddle point leads to a significant change of the sink strength
and bias. Therefore cavity can no longer be considered as a neutral sink. In cases 1 and
2 the bias is modified but remains less than 5 %. The normalized diffusion coefficients
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Figure 2.45: Sink strength as a function of cavity density for a) SIAs and b) vacancies,
and bias c) in Fe. Case 1: no elastodiffusion, Case 2: isotropic PD at stable and saddle
points, Case 3: full elastodiffusion (real Pij-tensors).

Dij/D0 are plotted in Figs. 2.46, 2.47 and 2.48 in the case of full elastodiffusion. The
ratios Dij/D0 are very close to 1 for diagonal terms (i = j) and to 0 for off-diagonal terms
(i 6= j) in all the systems. These small changes of the diffusion coefficients are due to the
small strain field generated by the cavity.

The bias evolution with the cavity radius Rcav has been investigated. The results of
Carpentier et al. [34] and the analytical solution of Borodin et al. [39] are also reported
in Fig. 2.49. In the Borodin solution, the radius of the capture region corresponds to the
radius of the cavity (r0 = Rcav). In the study of Carpentier, r0 stays close to Rcav, r0 = Rcav
+ RPD where RPD is the point defect radius (RPD = 0.16 nm). In our study, the capture
radius of cavity is r0 = Rcav + w where w is the width of the cavity surface. The width of
the cavity surface then was set to 4a0 (a0 = 0.25 nm) and the capture radius corresponds to
r0 = Rcav + 1 nm. The bias is represented in function of the sink capture radius r0 in Fig.
2.49. The results show a decrease of the cavity bias with its radius. This can be explained
by the fact that the eigenstrain of the cavity is proportional to 1/Rcav (see Eq. 2.67) and
the corresponding strain field decreases with Rcav. As a consequence the bias decreases
with the cavity radius, since the elastic interactions decrease. In the cases of Al and Ni,
we have a good agreement with the Borodin solution for large cavities. For small cavities,
the elastic strain field becomes stronger and the differences in the results are growing.
The results of Carpentier in Al are very close to the analytical solution of Borodin for
large cavities and differ for small cavities. In Fe, there is a large difference between our
results and the analytical solution. Several reasons may explain these discrepancies with
the solution of Borodin:

• The Borodin solution depends only on the elastic dipole tensor at saddle point and
varies as 1/Rcav.

• SIAs and vacancies are assumed to have the same Pij-tensor symmetry at saddle
point in the Borodin solution. In our simulations, this is not the case for vacancies
and dumbbells in Fe.

• The strain field around the cavity given in the Borodin solution corresponds to the
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Figure 2.46: Normalized diffusion coefficients D11/D0, D22/D0 and D12/D0 respectively
for SIAs a), b) and c), and for vacancies d), e) and f) in Al in the x1x2-plane passing
through the center of the cavity.

one obtained considering an infinite isotropic medium and is assumed small.

The discrepancies observed with the results of Carpentier are may be due to the fact that
like in the Borodin solution, the strain field is given for the cavity in an infinite isotropic
medium.

In summary of this section, the sink bias of a spherical cavity is low (< 5%) without
elastodiffusion, but when full elastodiffusion is taken into account, the sink strength
for SIAs increases while it decreases for vacancies in all the materials which leads
to a significant sink bias increase (close to 10%). It has also been shown that the
cavity bias decreases when the cavity radius increases. This is due to the fact that
the eingenstrain of a spherical cavity is inversely proportional to its radius and then
the strain field that it generates decays with Rcav. Thus for large cavity radius, the
cavity tends to act as a neutral sink.

2.4 Conclusion

In this chapter, a systematic study of PD diffusion modified by a stress field due to
microstructural defects, including elastodiffusion, has been done in fcc (Al, Ni) and bcc
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Figure 2.47: Normalized diffusion coefficients D11/D0, D22/D0 and D12/D0 respectively
for SIAs a), b) and c), and for vacancies d), e) and f) in Ni in the x1x2-plane passing
through the center of the cavity.

(Fe) metals. PD was described by its elastic dipole tensor at stable and saddle point. Many
cases of simulations have been performed to investigate the role of the PD anisotropy at
saddle point. The PD trajectory, atomic fraction map towards the sink, the sink strength
and bias have been represented in the case of straight dislocations, low-angle STGB and
spherical cavities. The results show a change in the PD trajectory, PD depletion region
(size and shape) and sink strength. Globally, the sink strength of straight dislocations
and STGB increases for both PD with the PD anisotropy at saddle point. In the case of
a spherical cavity, the sink strength increases for SIAs but decreases for vacancies with
full elastodiffusion. The PD anisotropy at saddle point has strong effects on sink strength
of straight dislocations and STGB for vacancies compared to SIAs in fcc metals Al and
Ni. In bcc Fe, the same result as in Al and Ni has been obtained for straight dislocations,
but not for STGB. This leads to a decrease of the sink bias of straight dislocations in
all the metals. The sink bias of STGB decreases significantly in Ni, while in Al and Fe
the bias change slightly. As with full elastodiffusion the sink strength of cavity increases
for SIAs and decreases for vacancies, the cavity bias increases in all the metals. An
important point to emphasize is that, STGBs and cavities are biased sinks when all the
elastic interactions are taken into account. In particular, the STGB bias increases strongly
for low GB inter-spacings (high densities). Finally, these results indicate that the PD
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Figure 2.48: Normalized diffusion coefficients D11/D0, D22/D0 and D12/D0 respectively
for SIAs a), b) and c), and for vacancies d), e) and f) in Fe in the x1x2-plane passing
through the center of the cavity.
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Figure 2.49: Sink bias as a function of the cavity capture radius r0 with full elasto diffusion
in a) Al, b) Ni and c) Fe.

anisotropy at saddle point plays an important role in the sink strength calculations when
all the elastic interactions are taken into account. Another important factor is the system
anisotropy. As shown by the results of the bias calculations in cases of straight dislocations
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and STGB, the bias can vary strongly with the glide system of the dislocation like in the
case of Ni, and with the STGB orientation like in the case of Ni and Fe.
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In chapter 2, the effects of elastic interactions between PDs and microstructural de-
fects on the sink strengths have been investigated. However, the sink strengths has been
calculated assuming immobile sinks. But the sink evolution due to the PD absorption
is also known to be responsible for many observed phenomena such as irradiation creep
[63, 64, 65, 66]. In this chapter, we propose a new PF model of dislocation climb and we
apply it to describe the dislocation loop evolution under irradiation.

3.1 Bibliography
Dislocation climb is a mechanism which allows to better understand the plastic defor-
mation of materials. The climb process occurs by absorption or emission of PDs at the
dislocation cores. This process is more common at high temperature due to the high
PD concentration especially the one of vacancies and becomes an essential part of high
temperature creep [67, 68]. The PD absorption/emission by the dislocation takes place at
specific defects along the dislocation line called jogs. In the case of high jog density, the
kinetic of attachment/detachment of PD at dislocation cores is instantaneous compared
to the PD diffusion towards dislocation cores. The local equilibrium of PD around the
dislocation core is maintained along the dislocation line [9, 69, 70] and dislocations act as
perfect sinks/sources. The climb process is then limited by the PD diffusion. For low jog
density, the assumption of local equilibrium of PD along the dislocation line is no longer
verified. PD will migrate along the dislocation line which is so called pipe diffusion. The
PD diffusion towards the dislocation is no longer invariant along the dislocation line due
to the PD flux along this line. The climb process is then limited by the mechanism of
PD absorption/emission. To quantify the climb process, the dislocation climb velocity is
generally calculated. The climb rate can be determined analytically, by experiments or by
performing simulations.

In the analytical models [69, 71], the climb rate is determined by solving the vacancy
diffusion equation around an infinite straight dislocation of Burgers vector b as illustrated
in Fig. 3.1:

∂X

∂t
= ∇.M(X)∇µ (3.1)

where µ is the chemical potential of vacancies and M(X) their mobility given by:

M(X) = D

kBT
X (3.2)

In the assumption that there is no elastic interaction between dislocation and vacancies,
µ can be written as:

µ = ln(X/Xeq)/β (3.3)

with β = 1/kBT and Xeq the atomic fraction of vacancies at equilibrium. The vacancy
diffusion towards the dislocations is assumed to be a faster process than the dislocation
motion. Thus, the vacancy profile around the dislocations is not modified by the disloca-
tion motion in the stationary state where ∂X

∂t = 0. Eq. 3.1 becomes:

∆X = 0 (3.4)
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R
r0

(

X(R)

X(r)0
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0
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Figure 3.1: Geometry of straight dislocation used to determine the analytical expression
of the climb velocity.

To solve Eq. 3.4, the vacancy fraction at the domain boundaries is fixedX(r = R) = X(R).
The vacancy fraction in the vicinity of dislocations is determined in the assumption of
local equilibrium (perfect sink/source): X(r0) is chosen such as the chemical potential of
vacancies is equal to the work due to the Peach and Koehler force:

ln(X(r0)/Xeq)/β = FPkVat/b

=⇒ X(r0) = Xeq exp(βFPkVat/b)
(3.5)

where
FPk = ((σb) ∧ l).n (3.6)

with σ the local stress, l the line vector and n the vector normal to the glide plane of the
dislocation. The vacancy fraction is then given by [10, 72]:

X(r) = X(R) + (X(R)−X(r0)) ln(r/R)
ln(R/r0) (3.7)

The climb velocity is obtained by integrating the vacancy flow arriving on dislocation and
is given by [72, 1]:

v = 2πXeqD

b ln(R/r0) [X(R)
Xeq

− exp(βFPkVat/b)] (3.8)

Eq. 3.8 shows that the dislocation climb can occur if:

• The vacancy atomic fraction in the bulk is different from its equilibrium value (su-
persaturation). The driving force is chemical and given in term of X(R)/Xeq.

• The system is constrained by an external/internal stress σ. The driving force is
mechanical and given in terms of FPk.

The experimental measure of dislocation climb rate has been done in several studies
[73, 74, 75]. Tartour and Washburn [74] have studied the climb kinetics of prismatic
dislocation loops annealing in Al using transmission electron microscopy techniques. The
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climb rate was deduced from the linear evolution of the dislocation loop area with time.
Tartour and Washburn have observed that the perfect loops shrink by conserving their
circular shape. They have suggested a rapid diffusion of vacancies along the dislocation
line to explain the shape conservation of dislocation loops during the shrinkage. The rapid
diffusion of vacancies along the dislocation line implies high jog densities. The kinetics
measured is in good agreement with the analytical solution obtained under the assumption
of local equilibrium of vacancies along the dislocation.

Dislocation climb is extensively studied using numerical simulations which are based
on the diffusion theory. Among the simulation methods used, the most popular are dis-
crete dislocation dynamics (DDD) [72, 76, 77] and more recently PF approaches [2, 1, 3].
Mordehai et al. [72] have introduced dislocation climb model by bulk diffusion (Eq. 3.8)
in DDD simulations in the case of perfect sinks. Through their implementation, Mordehai
et al. have modelled the shrinkage and expansion of circular prismatic dislocation loops in
Al. The results obtained have shown the shrinkage of vacancy loop with a constant sur-
face shrinkage rate. They have compared their results to the experimental ones and they
obtained a good agreement. Yulan Li et al. [23] have simulated interstitial loop growth
in bcc iron under irradiation using PF approach. The evolution equations describing the
vacancy and SIA diffusion, and the dislocation motion through climbing are written and
solved simultaneously. They obtained a linear loop growth with time which is in good
agreement with experimental observations. Moreover, Li et al. have investigated the ef-
fects of elastic interaction and it appears that elastic interaction speeds up the loop growth
kinetics and also causes anisotropic growth rates. However, the model of Li et al. does not
ensure the balance between the PD fluxes in the bulk and the dislocation loop evolution.
They also have assimilated the interstitial loop as a platelet-shaped precipitate with a
composition of 100% of SIAs. This choice may introduce artificial SIA composition at the
interface between the loop and the matrix and also influence the climb rate calculation.

In the PF models [2, 1, 3], the balance between the quantity of vacancies absorbed or
emitted by the dislocation and the dislocation motion is explicitly guaranteed through a
coupling term between the evolution equations. The PF approach is particularly suitable
to study the dislocation climb because the diffusion process and the elastic interactions
are incorporated in its formalism. In the PF studies [2, 1, 3], the dislocation climb is
only due to the vacancy diffusion and high temperatures are considered. The role of SIAs
on climb is neglected compared to vacancies, since the atomic fraction of SIAs at high
temperature remains low compared to the one of vacancies. Under irradiation, vacancies
and SIAs are created in higher quantities and both contribute to the dislocation climb.
Dislocation climb can occur at low temperatures and allows to understand irradiation
creep [63, 64, 65, 66]. In section 3.2 we present a new PF method based on the previous
ones [2, 1, 3] to describe the dislocation climb in a single crystal. This new model includes
the effects of both PDs (vacancies and SIAs) on climb and is adapted to deal with low PD
atomic fractions which are common at low temperatures. The model allows to simulate
the evolution of interstitial/vacancy dislocation loops under irradiation.
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3.2 PF methodology
The evolution of one dislocation loop by the absorption/emission of PDs as shown in Fig.
3.2 is investigated in a single crystal. The system is assumed free of any applied stress.
As done in section 2.2, we define successively the order parameters, the total free energy
and the evolution equations.
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Figure 3.2: Schematics illustrating the evolution of an interstitial dislocation loop by
absorption of PD.

3.2.1 Order parameters

The necessary order parameters to describe the system evolution are the following:
• The atomic fraction of vacancies XV and SIAs XI inside the matrix.

• The fields ηlV and ηlI which are related respectively to the atomic fraction of vacancies
and SIAs absorbed or emitted by the loop.

• The order parameter ηl: classically, in PF methods a dislocation loop is identified
on the boundary between a platelet of thickness d (see Fig. 2.2), within which the
plastic field ηl = 1 and the matrix within which ηl = 0. Dislocation loops according
to their types (interstitial or vacancy) grow or shrink through the net absorption or
emission of SIAs or vacancies. Then, the order parameter ηl defined as follows:

ηl = 1
X∗ sg(l)(ηlI − ηlV) (3.9)

is the plastic field associated with the loop. sg(l) = 1 for interstitial loop and -1
for vacancy loop, and X∗ = b/d is the number of PDs required for a unitary climb
process, b is the length of the Burgers vector.

3.2.2 Energy of the system

The total free energy of the system F is given by the sum of three contributions, namely
the chemical energy of PDs Fchem, the dislocation core energy Fcore and the elastic energy
Fel:

F(Xd, ηl) = Fchem(Xd) + Fcore(ηl) + Fel(Xd, ηl) (3.10)
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Chemical free energy

The chemical free energy is determined in the limit of dilute solution as in section 2.2 and
is given by [10]:

Fchem(Xd) = 1
Vat

∑
d

∫
V
EdfXd + kBT[Xd lnXd + (1−Xd) ln(1−Xd)]dV (3.11)

Dislocation core energy

The dislocation core energy is expressed as the sum of a crystalline and a gradient energy
term, a simple double-well function is used for the crystalline energy:

Fcore(ηl) = Fcry + Fgrad =
∫
V
H(ηl)2(1− ηl)2 + γ

2 |n ∧∇ηl|2dV (3.12)

with n the normal to the habit plane of the loop. The coefficients H (J/m3) and γ (J/m)
allow to control the dislocation core energy Ecore and width w through the following
expressions:

w =
√

8γ
H
, Ecore = b

√
Hγ

12 (3.13)

The gradient of ηl is projected on the habit plane of the loop to eliminate any energy
contribution along n. This expression of the dislocation core energy is limited to a single
loop and a single slip plane. To simulate a system with multiple dislocations and slip
planes, the formulation proposed by Wang et al. [49] and successfully applied can be used.

Elastic energy

The elastic energy is calculated in the same way as in section 2.2:

Fel(Xd, ηl) = 1
2

∫
V
Cijkl[εij(r)− ε0,tot

ij (r)][εkl(r)− ε0,tot
kl (r)]dV (3.14)

The total eigenstrain ε0,tot
ij is given by:

ε0,tot
ij (r) =

∑
d

ε0,Xd
ij Xd(r) + ε0,ηl

ij f(ηl(r)) (3.15)

where ε0,Xd
ij is the tensor of the Vegard’s coefficients of PD d and ε0,ηl

ij the eigenstrain of
the loop given by (Eq. 2.52):

ε0,ηl
ij = binj + bjni

2d (3.16)

Instead of η in Eq. 2.24, an interpolation function f(ηl) defined as f(ηl) = ηl and f ′(ηl) = 0
if ηl is an integer i.e. in the bulk and inside the loop, is used in Eq. 3.15. The derivative of
f(ηl) must be zero in the bulk and inside the loop to ensure that the elastic contribution
does not modify the energy minima in these regions [1, 3]. A non-linear function which
verifies the properties listed above is given by [78, 79]:

f(ηl) = ηl − 1
2π sin(2πηl) (3.17)
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The calculation of the total strain εij(r) remains the same as in section 2.2. The Fourier
space is used to solve the mechanical equilibrium (Eq. 2.31) and to compute the elastic
energy (Eq. 3.14).

3.2.3 Kinetic equations

As described in the existing models [1, 3], during the exchange of PD between the loop and
the matrix, the fields Xd and ηld are not conserved, but the system evolves such that the
total PD atomic fraction in the matrix and absorbed/emitted by the loop φd = Xd + ηld
is conserved. The field φd is then a conserved parameter and is governed by a Cahn-
Hilliard-type equation. Moreover, ηld is a non-conserved order parameter and follows the
Allen-Cahn equation usually used in PF models to simulate dislocation dynamics. The
evolution equations are written according to the driving forces deriving from the total
energy F(φI, φV, η

l
I, η

l
V):

∂φI

∂t
= ∇.[MI∇δF (φI, φV, η

l
I, η

l
V)

δφI
] (3.18)

∂φV

∂t
= ∇.[MV∇δF (φI, φV, η

l
I, η

l
V)

δφV
] (3.19)

∂ηI

∂t
= −LI

ηl
δF (φI, φV, η

l
I, η

l
V)

δηI
(3.20)

∂ηV

∂t
= −LV

ηl
δF (φI, φV, η

l
I, η

l
V)

δηV
(3.21)

where Md is the mobility of the PD defined as:

Md = βDdXd (3.22)

Ld
ηl

denotes the coefficient that accounts for the kinetics of PD absorption/emission by
the dislocation cores and can be chosen to reproduce quantitatively the climb rate of a
jogged dislocation [3] as discussed in section 3.2.3.1. In our simulations, Ldηl is assumed
proportional to Md in order to ensure numerical stability:

Ldηl = ζdηlM
d (3.23)

The link between the PF parameter ζd
ηl

(consequently Ldηl) and the jog inter-spacing dj
(dislocation atomic scale property) is established in section 3.2.3.1. To write the evolution
equations in function of the natural parameters (XI, XV, η

l
I, η

l
V), it is necessary to make

a variable change F(φI, φV, η
l
I, η

l
V) to F(XI, XV, η

l
I, η

l
V). The calculations are detailed in

appendix B and allow to obtain the following contracted evolution equations:

∂Xd

∂t
= ∇.[Md∇(µdchem + µdel)]−

∂ηld
∂t

(3.24)

∂ηld
∂t

= −Ldηl [
1
X∗ sg(l)sg(d)(µηlcore + µη

l

el )− (µdchem + µdel)] (3.25)
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where sg(d) = 1 for SIAs and -1 for vacancies. The expression of the driving forces
µdchem, µdel, µ

ηl

el and µη
l

core are given in appendix B. The evolution equations 3.24 and
3.25 show the coupling between the PD diffusion and the dislocation motion through the
absorption/emission term ∂ηld

∂t .

The loop growth/shrinkage given by ∂ηld
∂t is then the result of the competition between

the driving forces due to the dislocation core and the elastic energies (µηlcore+µη
l

el ) and
the driving force (µdchem + µdel) so called osmotic force.

3.2.3.1 Determination of the coefficient Ld
ηl

As mentioned above, Ld
ηl
is a coefficient which controls the kinetics of PD absorption/emission

by the dislocation cores. To access the coefficient Ld
ηl
, Geslin et al. [3] proposed to com-

pare the climb velocity established analytically and the one obtained by the PF method.
The analytical solution of the climb rate is obtained by solving the vacancy diffusion for
the bulk and dislocation core (cylindrical geometry see Fig. 3.1) [3]:

v =
2πXeqDV

B
b [X(R)

Xeq
− exp(βVatσ)]

ln(R/r0) + l2B
r2

0
[1 + 2α2( dj

2αlC coth dj
2αlC − 1)]

(3.26)

with

l2C = DV
Cr0
aν

exp(βEC-B), l2B = DV
Br0
aν

exp(βEB-C), α2 = l2B + r2
0 ln(R/r0)
2l2B

(3.27)

where DV
B and DV

C are respectively the vacancy diffusion coefficient in the bulk and in the
core, EB-C and EC-B are respectively the exchange energy barriers from the bulk to the core
and from the core to the bulk. ν is the Debye frequency, a the interatomic distance and dj
the average distance between jogs. The climb rate in the PF model can be determined by
two methods. The vacancy fraction is considered quasistatic and the field ηl is assumed
to conserve its shape during climb. The first method consists in multiplying Eq. B.13 by
the derivative of ηl and integrating this equation in the vicinity of the dislocation core
(D = w× b) where the vacancy fraction XV is assumed constant and equal to X(r0). This
leads to the following climb rate [3]:

vPF = 3w
2 LV

ηl [
1

Vatβ
ln(X(r0)

Xeq
)− σ] (3.28)

The second PF expression of the climb rate is obtained by integrating the vacancy flow
arriving on dislocation as described in section 3.1:

vPF = 2πXeqD
V
B

b ln(R/r0) [X(R)
Xeq

− X(r0)
Xeq

] (3.29)
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Expressions 3.28 and 3.29 are equal and allow to fix X(r0):

X(r0)
Xeq

=
exp[W ( Γ

ζV
ηl
b2
X(R)
Xeq

exp[ Γ
ζV
ηl
b2 − βVatσ])]

exp[ Γ
ζV
ηl
b2 − βVatσ]

(3.30)

with
Γ = 4πb

3w ln(R/r0) (3.31)

ζV
ηl

is related to LV
ηl

through the relation (see Eq. 3.23 for XV = X(r0)):

LV
ηl = βVatD

V
Bζ

V
ηlX(r0) (3.32)

W is the Lambert function which is the reciprocal function of f(x) = xex (W (xex)=x).
The PF climb velocity is then given by:

vPF = 2πXeqD
V
B

b ln(R/r0) [X(R)
Xeq

−
exp[W ( Γ

ζV
ηl
b2
X(R)
Xeq

exp[ Γ
ζV
ηl
b2 − βVatσ])]

exp[ Γ
ζV
ηl
b2 − βVatσ]

] (3.33)

Identification of Eqs. 3.26 and 3.33 allows to give a link between the coefficient ζV
ηl
(respec-

tively the coefficient LV
ηl
) and the jog inter-spacing dj . The expression of Eq. 3.33 differs

from that of [80] due to the assumption that LV
ηl

is proportional to Xd in our approach.

3.2.3.2 Irradiation conditions

The irradiation conditions are reproduced by adding an effective source term of PD Kd
0 in

the evolution equation of Xd. The PDs recombination is neglected. Edge dislocations are
known to be biased sinks (see section 2.3.3.1). Thus in the stationary state, a net flow of
one type of PD is obtained near the dislocation cores as shown in section 3.2.5 which leads
to the loop evolution. To simulate the presence of another sink noted s, we introduce in
the PD diffusion equation an additional absorption term. The sink is assumed perfect,
not evolving by the absorption of PD and immobile. The absorption term is thus defined
using the expression of Eq. 2.39:

Jabss,d (r, t) = λs(r)λeff (Xd(r, t)−Xs
d) (3.34)

Eqs. 3.24 and 3.25 are solved in their dimensionless form using the following dimensionless
parameters (noted with ∗):

F ∗ = F/H, µ∗ = µ/VatH

Dd,∗ = Dd/D0, ζd,∗
ηl

= βHVata
2
0ζ
d
ηl

∇∗ = a0∇, γ∗ = γ/(Ha2
0)

td,∗ = td/t0

Kd,∗
0 = Kd

0 t
d
0, Jabs,∗s,d = td0J

abs
s,d

(3.35)
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where t0 is the reference time which corresponds to the minimum of td0, td0 is the charac-
teristic time associated to the PD d diffusion defined in section 3.2.4. The dimensionless
evolution equations are then the following:

∂Xd

∂td,∗
= βHVat∇∗.[Dd,∗Xd∇∗(µd,∗chem + µd,∗el )]− ∂ηld

∂td,∗
+Kd,∗

0 − Jabs,∗s,d (3.36)

∂ηld
∂td,∗

= −ζd,∗
ηl
Dd,∗Xd[

1
X∗ sg(l)sg(d)(µηl,∗core + µη

l,∗
el )− (µd,∗chem + µd,∗el )] (3.37)

3.2.4 Numerical scheme and multi-time step algorithm

A finite difference scheme is used for the spatial discretization of equations 3.36 and 3.37.
For the temporal discretization, an explicit Euler scheme is used as defined in section A.
Generally, the PD diffusion is much faster than the climb process. In bcc iron for example,
Duparc et al. [81] have measured experimentally the dislocation loop growth rate under
irradiation. At 700 K, the loop growth rate is of the order of vηl ' 10−10m/s. The diffusion
coefficients of PDs are DI = 1.1×10−8m2/s and DV = 7.2×10−11m2/s. For a given time of t
= 100 s, we have the diffusion length lI =

√
DIt = 1.04×10−3m, lV =

√
DVt = 8.48×10−5m

and vηlt = 10−8m. These values show that
√
DIt >

√
DVt � vηlt which means both PDs

diffuse faster than the loop growth process and SIAs diffuse faster than vacancies. Usually,
the evolution equations 3.36 and 3.37 are solved simultaneously using a single time step δt
chosen such as δt = min(δtI, δtV, δtη

l). δtd and δtηl are determined such that the following
stability criteria are verified:

δtd

td0
<

1
2Ndim

(3.38)

δtη
l

tη
l

0
< 1 (3.39)

where Ndim is the system dimension, td0 and tη
l

0 the characteristic time associated respec-
tively to the PD diffusion and the dislocation motion:

td0 = a2
0/D

d, tη
l

0 = a0/vηl (3.40)

These stability criteria are based on the fact that the PD diffusion length ld and the length
of a climb process lηl (= vηlδt

ηl) must be smaller than the grid spacing a0 during one time
step. With the Fe parameters given above, it can be seen that δtI < δtV � δtη

l for a grid
spacing comparable to the nanometer. Thus, to reach the steady state and observe the
loop evolution, a huge number of iterations at δtI would be required. A similar problem
has been encountered by Piochaud et al. [82] in the study of radiation induced segregation
(RIS) near a planar sink. In this study, PD diffusion is much faster than solute diffusion. A
multi-time step algorithm has been proposed in [82] to accelerate the convergence towards
the steady state. This multi-time step algorithm is adapted to our study and can be
described as follows. At a time t∗, all the system variables are supposed to be known.
First, the PD evolution equations are integrated with δtd,∗ to reach the quasi-steady state,
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for some given value of ηl(t∗) (which is not at steady state). The convergence criterion on
the PD evolution equations is given by:

|1− Xt
∗+ndδtd,∗
d

Xt
∗+(nd−1)δtd,∗
d

| < ε (3.41)

where nd is the number of iterations needed to reach the quasi-steady state, Xd the average
value of the PD atomic fraction in the system and ε a constant set at 10−7. During this
stage, all the properties depending on Xd are reevaluated at each time step δtd,∗. In the
second stage, the evolution equation of ηl is integrated with the time step δtηl,∗. The field
Xt∗+δtη

l,∗

d is simply equal to Xt
∗+ndδtd,∗
d at the end of the second stage. These stages are

then repeated. Fig. 3.3 illustrates the multi-time step algorithm.
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Figure 3.3: Schematic representation of the multi-time step algorithm.

3.2.5 Analytical expressions of the climb velocity

The determination of the dislocation climb velocity in the case of supersaturation or under
applied stress requires the resolution of the PD diffusion equation as mentioned in section
3.1. Under irradiation, the climb rate can be calculated easily. At steady state, we have:

∂Xd

∂t
= −∂η

l
d

∂t
− Jabss,d +Kd

0 = 0 (3.42)

which implies:
∂ηld
∂t

= −Jabss,d +Kd
0 (3.43)

Jabss,d can be written as (see Eq. 2.48):
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Jabss,d = k2
s,dD

d(X̄d −Xs
d) (3.44)

where k2
s,d is the sink strength of the sink s for PD d, Xsd the atomic fraction of PD at

the sink s and Xd the average atomic fraction of PD in the system. The loop evolution is
given by ηl which is related to ηld through Eq. 3.9. Then:

∂ηl

∂t
= 1

X∗ sg(l)[(k2
s,VD

V(X̄V −XsV)− k2
s,ID

I(X̄I −XsI )) + (KI
0 −KV

0 )] (3.45)

For a given 2D edge dislocation dipole, the average value of ηl can be seen as the dipole
volume fraction in the system:

ηldipole = Vdipole
V

(3.46)

where Vdipole and V are respectively the representative volume of the dipole and the system
volume. Vdipole is given by:

Vdipole = 2Ra2
0 (3.47)

with R the half of the distance between the dislocations. Then we have:

∂ηl

∂t
= 2a2

0
V

∂R

∂t
(3.48)

By combining Eq. 3.48 and Eq. 3.45 we obtain:

2a2
0

V

∂R

∂t
= 1

X∗ sg(l)[(k2
s,VD

V(X̄V −XsV)− k2
s,ID

I(X̄I −XsI )) + (KI
0 −KV

0 )] (3.49)

The dislocation climb velocity vηl = ∂R
∂t is then given by:

vηl = V

2X∗a2
0
sg(l)[(k2

s,VD
V(X̄V −XsV)− k2

s,ID
I(X̄I −XsI )) + (KI

0 −KV
0 )] (3.50)

Eq. 3.50 shows that, to obtain a loop evolution at steady state, two types of simulation
are possible:

• Simulation type 1: the system is assumed to be free of any other sinks (Jabss,d = 0)
and the PD effective generation rates are chosen non equal KI

0 6= KV
0 :

vηl = V

2X∗a2
0
sg(l)(KI

0 −KV
0 ) (3.51)

In this case, the climb rate is simply controlled by the PD effective generation rates
for a given system volume V.
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• Simulation type 2: PDs are created at the same generation rate K0 and the presence
of another sink allows to obtain a loop evolution (which is more realistic):

vηl = V

2X∗a2
0
sg(l)[(k2

s,VD
V(X̄V −XsV)− k2

s,ID
I(X̄I −XsI ))] (3.52)

It can be seen that the climb rate depends on the PD diffusion coefficients, the PD
average atomic fraction in the system and the sink strength of the sink s, for a given
system volume V. The average atomic fraction X̄d can be estimated assuming that
X̄d is not modified by the dislocation motion. The approximation of static sink can
be used for dislocations in comparison to the PD diffusion:

∂ηld
∂t

= k2
dislo,dD

d(X̄d −Xdislo
d ) (3.53)

with k2
dislo,d the sink strength of dislocations and Xdislod the atomic fraction of PD at

the dislocation cores. Eq. 3.42 becomes:

k2
dislo,dD

d(X̄d −Xdislo
d ) + k2

s,dD
d(X̄d −Xs

d) = K0 (3.54)

X̄d is then given as follows:

X̄d =
K0 +Dd(k2

dislo,dX
dislo
d + k2

s,dX
s
d)

Dd(k2
dislo,d + k2

s,d)
(3.55)

Thus, the dislocation climb rate at the stationary state will depend also on the sink
strength of dislocations. For Xdislo

d and Xs
d close to zero, X̄d is reduced to:

X̄d = K0
Dd(k2

dislo,d + k2
s,d)

(3.56)

The climb rate is then given by the following simplified expression:

vηl = V K0
2X∗a2

0
sg(l)[

k2
s,V

k2
dislo,V + k2

s,V
−

k2
s,I

k2
dislo,I + k2

s,I
] (3.57)

Usually, dislocations absorb more SIAs than vacancies (k2
dislo,I > k2

dislo,V). In the
case where s is a neutral sink (k2

s,I = k2
s,V = k2

s), Eq. 3.57 becomes:

vη = V K0
2X∗a2

0
sg(l)[ k2

s

k2
dislo,V + k2

s

− k2
s

k2
dislo,I + k2

s

] (3.58)

Eq. 3.58 shows that a growth is obtained in the case of an interstitial loop. In
figure 3.4 the evolution of the climb rate given by Eq. 3.58 is illustrated for a given
system volume V of 256 × 512 a3

0 with a0 = 0.283nm (bcc iron lattice parameter)
which corresponds to a dislocation density of ρdislo = 1.905×1014m−2 (ρdislo = 2a0

V ).
K0 was set at 10−5dpa.s−1 and the temperature at 700 K. The sink strength of
dislocations was calculated using the solution of Rauh and Simon [32] (see table 2.1)
and the one of planar sink by k2

s = 12/d2 where d the interplanar spacing. Fig. 3.4
shows an increase of the climb rate with the interplanar spacing d.
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Figure 3.4: Evolution of the climb rate of dislocations (see Eq. 3.58) as a function of the
interplanar spacing d in the case of system containing a dipole of edge dislocations and a
planar sink (simulation type 2) for a dislocation density of ρdislo = 1.905×1014m−2. ρdislo
is related to the system volume by the relation ρdislo = 2a0

V .

3.3 Validation and limitations of the model

The model was tested before the application to a real material to verify its validity and
limitations. For simplicity, subscript l has been suppressed in the notation of η. The
growth of a prismatic interstitial loop by a net absorption of SIAs is simulated. The loop
is represented by a dipole of edge dislocations as illustrated in Fig. 3.5-a). The dislocations
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Figure 3.5: a) 2D simulation mimicking an interstitial dislocation loop and b) initial profile
of η along the dipole.

are located initially at (17.4 nm, 9.6 nm) and (24 nm, 9.6 nm). The necessary parameters
for the simulations are given in table 3.1. The order parameter η was initialized using Eq.
2.53 and schematized in Fig. 3.5-b). The equilibrium atomic fraction of PD was set close
to zero (Xeqd = 0). The grid spacing a0 and the platelet thickness d were taken equal to

97



3.3. MODEL TESTS CHAPTER 3. DISLOCATION CLIMB

the length of the Burgers vector b.

Table 3.1: Necessary parameters for the PF climb model validation.

T 700 K
b, a0 0.3 nm
dislocation core energy [1:10] eV.Å−1

dislocation core width 2.4 nm
domain size 38.4 × 19.2 nm2 (128 × 64 cells)
initial loop radius R0 4.8 nm
Shear modulus µ 33 GPa
Poisson ratio ν 0.33
Atomic volume Vat 2.3× 10−29 m3

DI, DV 10−15 m2.s−1

We first tested the model without elastic interactions.

3.3.1 Without elastic interactions

The simulations of type 1 (KI
0 > KV

0 ) were performed firstly using the parameters of table
3.1 with ζd,∗η = 1. The PD effective generation rates were KI

0 = 4.45 × 10−4 s−1 and
KV

0 = 3.45× 10−4 s−1 which corresponds to an analytical climb rate of vη = 1.23× 10−10

m.s−1 (see Eq. 3.51). The average atomic fractions of PDs are plotted in Fig. 3.6 and do
not reach any steady-state value, contrary to what is expected. The PD atomic fraction
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Figure 3.6: Evolution of the average atomic fraction X of PD during simulation type 1
without elastic interactions.

maps and the profile of η at t = 450 s are represented in Fig. 3.7. The PD atomic
fraction maps show a bad sink behavior of dislocation cores. Especially, an enrichement
is observed at dislocation cores for vacancies (see Fig. 3.7-b). Moreover, there is a non
physical enrichment (respectively depletion) of SIAs (respectively vacancies) in the habit
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plane of the loop. The field η varies in the bulk and inside the loop as shown in Fig. 3.7-c)
and adopts values different from 0 in the bulk and 1 inside the loop which explains the bad
sink behavior. The examination of the evolution equation of η (see Eq. 3.25) shows that
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Figure 3.7: Atomic fraction maps of a) SIAs and b) vacancies, and c) profile of η in the
habit plane (x2 = 9.6 nm) at t = 450 s in the case of simulation type 1 without elastic
interactions.

this particular evolution of η is due to an unphysical osmotic force contribution far from
the dislocation cores. Thus, the field η does not remain at its value 0 or 1 in the bulk and
inside the loop. To overcome this undesired effect, we introduce a shape function λ(η) in
front of the osmotic force to ensure its value is zero outside the dislocation cores:

λ(η) =
{

1 inside the core region
0 outside (3.59)

We made the choice to delimit the dislocation core region by 0.1 ≤ η ≤ 0.9 as illustrated
in Fig. 3.8. The evolution equations are rewritten as follows:

∂Xd

∂t
= ∇.[Md∇(µdchem + µdel)]−

∂ηd
∂t

+Kd
0 − Jabss,d (3.60)

∂ηd
∂t

= −Ldη[
1
X∗ sg(l)sg(d)(µηcore + µηel)− λ(η)(µdchem + µdel)] (3.61)
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Figure 3.8: Profile of η and delimitation of the dislocation core region given by the shape
function λ.

The simulations were performed with this new formulation by keeping the same parame-
ters. The atomic fraction maps of PD and the profile of η at steady state are plotted in
Fig. 3.9. No shift from the values 0 and 1 in the bulk and inside the loop is observed on
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Figure 3.9: Atomic fraction maps of a) SIAs and b) vacancies, and c) profile of η in the
habit plane (x2 = 9.6 nm) at t = 45 s, with the shape function λ(η) in front of the osmotic
force (µdchem + µdel) (simulation type 1 without elastic interactions).

100



CHAPTER 3. DISLOCATION CLIMB 3.3. MODEL TESTS

the profile of η and the atomic fraction maps show a good sink behavior of the dislocation
cores. The average value of η is represented in Fig. 3.10 and its evolution is linear with
time. The climb rate vη is deduced from the slope of the linear curve of Fig. 3.10 and
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Figure 3.10: Evolution of η (simulation type 1, no elasticity) as a function of time.

is equal to 1.33 × 10−10m.s−1. This value is in good agreement with the one predicted
analytically vη = 1.23× 10−10 m.s−1 and allows to validate our model.

A shape function in front of the osmotic force (see Eq. 3.61) is then necessary to
ensure that the dislocation climb occurs due to the osmotic force only at dislocation
cores. It must be noticed that this shape function is an ad hoc function introduced
in the model, and does not come from the variational derivation of the PF model
described in section 3.2.3. A more physical approach could focus on an alternative
formulation of the free energy F allowing to introduce a counterpart of this shape
function in the kinetic equations.

3.3.1.1 Influence of the coefficient ζdη (simulation type 1)

The influence of the coefficient ζdη (respectively Ldη, see Eq. 3.23) has been investigated by
varying the dimensionless coefficient ζd,∗η . The average atomic fraction of PD is plotted in
Fig. 3.11 as a function of time for differents values of ζd,∗η . This figure shows a decrease
of the average atomic fraction when the dimensionless coefficient ζd,∗η that accounts for
the kinetics of PD absorption increases. Periodic oscillations are also observed on the
evolution of the average atomic fraction of PD given in Fig. 3.11. These oscillations occur
after each unitary climb process.

The profiles of the PD atomic fraction along the dipole given in Fig. 3.12 show that
Xd tends to stay close to the equilibrium value (Xeqd ' 0) in the vicinity of the dislocation
cores when ζd,∗η is high. The analytical expression of the climb rate as a function of the
jog inter-spacing dj (see Eq. 3.26) has been plotted for different values of ζd,∗η in Fig. 3.13.
To compute the climb rate given by Eq. 3.26, the value of X(R) was necessary. X(R) has
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Figure 3.11: Average atomic fraction of a) SIAs and b) vacancies as a function of time,
without elastic interactions for differents values of ζd,∗η in the case of simulation type 1.
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Figure 3.12: Atomic fraction profile in the habit plane (x2 = 9.6 nm) of a) SIAs b) vacancies
at t = 45 s, without elastic interactions for differents values of ζd,∗η in the case of simulation
type 1.

been calculated using the solution of the PD fraction at steady state for cylindrical sinks
given by [10]:

Xd(r) = Xd(r0) + Kd
0R

2

2Dd
[ln(r/r0)− r2 − r2

0
2R2 ] (3.62)

As expressions 3.28 and 3.29 are equal, Xd(r0) has been determined using the solution of
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X(R):

Xd(r0) = Xd
eq

exp[W (VatβHΓ
Xd
eqζ

d,∗
η

Kd
0R

2

2Dd [ln(R/r0)− R2−r2
0

2R2 ] exp(−βVatσ))]

exp(−βVatσ) (3.63)

where Γ is given by Eq. 3.31 and Ldη (see Eq. 3.23) was subtituted by Ddζd,∗η Xd(r0)/Hb2
in Eq. 3.28. The parameters EC−B = 0.4 eV, ν = 9.3 × 1013 s−1 given in [3] have been
considered to perform calculations. These parameters were necessary for the calculations
and make it possible to get an idea of the climb rate value as a function of a given jog inter-
spacing dj . The core diffusion coefficient DC

V was chosen higher than the bulk diffusion
coefficient as in [3], DC

V = 100DB
V. Fig. 3.13 shows that, for each value of ζd,∗η is associated
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Figure 3.13: Climb rate vη as a function of jog inter-spacing dj (see Eq. 3.26) for different
values of ζ∗η (EC−B = 0.4 eV, ν = 9.3× 1013 s−1, DC

V = 100DB
V).

a jog inter-spacing dj (respectively a jog density ρj = 1/dj) by identification of the climb
rate obtained by the PF simulations and given by the analytical solution (see Eq. 3.26). It
can be seen that when ζd,∗η increases, the jog inter-spacing dj decreases for the chosen PF
climb rate. Thus, our model verifies that, for high values of ζdη (consequently Ldη) which is
equivalent to a high jog density, the local equilibrium of PD around the dislocation cores
is maintained [9, 69, 70]. The dislocation cores act as perfect sinks for ζd,∗η � 1 (Ld,∗η � 1).
The average value of η and the η profiles along the dipole are also represented in Fig. 3.14.
It can be seen that the climb rate at quasi-steady state is the same for all the values of
ζd,∗η used. Indeed the climb rate, in the case of a system free of any other sink (simulation
type 1), depends only on the PD effective generation rates (see Eq. 3.51).

The effects of ζd,∗η (respectively jog inter-spacing) on the PD atomic fraction have been
studied in the case of simulation type 1 (climb rate fixed). The results have shown the
perfect sink behavior of dislocation cores when ζd,∗η increases (as equivalently when
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Figure 3.14: a) Average value of η and b) profile of η along the dipole (x2 = 9.6 nm) at t
= 45 s without elastic interactions for differents values of ζ∗η in the case of simulation type
1.

the jog density increase). To investigate the effects of the coefficient ζd,∗η on the climb
velocity, simulations of type 2 have also been performed and are analyzed in section
3.3.2.

3.3.2 With elastic interactions

The simulations of type 1 described in section 3.3.1 are now performed by taking into
account the elastic interactions with ζd,∗η = 100 (perfect sink). The PD relaxation volumes
are ΩI = 1.2Vat and ΩV = −0.6Vat. The temporal evolution of Xd is plotted in Fig. 3.15
and the maps of Xd and the profile of η along the dipole are represented in Fig. 3.16 at t
= 31.5 s. The PD atomic fraction map of SIAs shows an enrichment in the tension region
of the dislocations and depletion in the compression region, which is expected, while the
opposite behavior is observed in the case of vacancies. The absorption of SIAs by an
interstitial loop leads to the loop growth while the vacancies absorption leads to the loop
shrinkage. As the local distribution of Xd around the dislocation cores is heterogeneous
due to elasticity, the evolution of η is also heterogeneous along the interface as shown in
Fig. 3.16-c) due to the dependence of Ldη with Xd (see Eqs. 3.22 and 3.23). The part of
the interface located in the tension zone moves faster than the other one located in the
compression zone. To conserve the shape of η during loop evolution, the average value of
Xd is considered inside the core region to compute Ldη (see Eq. 3.23) during the temporal
integration of the evolution equation of ηd:

ηd(t+ δt) = ηd(t) + [∂ηd
∂t

]corrδt+ τ (3.64)

with

[∂ηd
∂t

]corr = −ζd,∗η Dd,∗Xcorr
d [ 1

X∗ sg(l)sg(d)(µη,∗core + µη,∗el )− λ(µd,∗chem + µd,∗el )] (3.65)
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Figure 3.15: Evolution of the average atomic fraction X of PD during simulation of type
1 with elastic interactions.

SIAs Vacancies

2
4
6
8

10
12
14
16
18

5 10 15 20 25 30 35

x 2
(n

m
)

x1 (nm)
0
0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

(a)

2
4
6
8

10
12
14
16
18

5 10 15 20 25 30 35

x 2
(n

m
)

x1 (nm)
0
2x10-5
4x10-5
6x10-5
8x10-5
0.0001
0.00012
0.00014

(b)

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35

η

X1 (nm)

t = 31.5 s
initial

(c)

Figure 3.16: Atomic fraction maps of a) SIAs and b) vacancies, and c) profile of η along
the dipole (x2 = 9.6 nm) at t = 31.5 s with elastic interactions in the case of simulation
type 1.
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Xcorr
d =


∫
V
λXddV∫
V
λdV

inside the core region

Xd outside

(3.66)

τ is a corrective term to ensure the conservation of the field Xd + ηd:

τ = (λ/λ)([∂ηd
∂t

]corr − ∂ηd
∂t

)δt (3.67)

The dislocation core energy Ecore can be also artificially increased to conserve the shape
of η as suggested by Geslin [80]. The dislocation core structure which is modelled as a
diffuse interface is modified due to the elastic interactions. Typically, the dislocation core
energy is increased in our simulations by a factor within the range of values 1-10. After
the application of Eq. 3.64 to conserve the shape of η, Xd, the maps of Xd and the profile
of η along the dipole are plotted in Figs. 3.17 and 3.18 with the effective dislocation core
energy Eeffcore = 8Ecore. The interface width w was conserved. Practically, only the value
of H was increased by a factor 8 in the PF code. The profile of η (see Fig. 3.18-c) shows
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Figure 3.17: Evolution of the average atomic fraction X of PD during simulation type 1
as a function of time, with elastic interactions after application of Eq. 3.64 to conserve
the shape of η.

its shape conservation during dislocation climb. The PD atomic fraction maps are also
different from that of Fig. 3.16. The evolution of η is linear with time as shown in Fig.
3.19. The climb rate obtained is the same as the one obtained without elastic interactions,
which is expected (simulation type 1, see Eq. 3.51).

To summarize, the shape of η (or equivalently the dislocation core structure) is mod-
ified when the elastic interactions are taken into account. To conserve the shape
of η during climb, Eq. 3.64 is applied and the dislocation core energy is artificially
increased.
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Figure 3.18: Atomic fraction maps of a) SIAs and b) vacancies, and c) profile of η along
the dipole (x2 = 9.6 nm) at t = 31.5 s, with elastic interactions after application of Eq.
3.64 to conserve the shape of η (simulation type 1).
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In the preliminary study presented above, the growth of an interstitial dislocation loop
has been simulated. Another test to validate our model is the simulation of the loop
shrinkage. Simulation of type 1 was performed by using the parameters of table 3.1 and
ζd,∗η = 100. The effective generation rate of vacancies was chosen higher than the one of
SIAs in order to obtain an interstitial loop shrinkage at steady state, KI

0 = 3.45×10−4s−1

and KV
0 = 4.45×10−4s−1. These generation rates correspond to an analytical climb rate of

vη = −1.23× 10−10m.s−1 (see Eq. 3.51). The evolution of the profile of η along the dipole
as a function of time is plotted in Fig. 3.20 and shows the shrinkage of the loop until the
dipole annihilation. The PF climb rate obtained at steady state is of −1.36× 10−10m.s−1

which is in a good agreement with the analytical solution.
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Figure 3.20: Profile of η as a function of time along the dipole (x2 = 9.6 nm) in the case
of interstitial loop shrinkage (simulation type 1).

3.3.2.1 Influence of the coefficient ζdη on the climb rate (simulation type 2)

To investigate the effects of ζdη and Ωd on the climb rate, simulations of type 2 were
performed. PDs are created at the same effective generation rate K0 = 3.45×10−4s−1. As
edge dislocations absorb more SIAs than vacancies, the presence of a neutral sink like a low-
angle STGB (see section 2.3.3.2) should lead to the interstitial loop growth (see Eq. 3.58).
The low-angle STGB is modeled as a planar sink as illustrated on Fig 3.21. Parameters
of table 3.1 have been used. The simulations were performed for different values of ζd,∗η
(ζV,∗
η = ζ I,∗

η ) with ΩI = 1.2Vat, ΩV = −0.6Vat. Figs. 3.22-a) and 3.22-b) show a decrease
of the average atomic fraction at the stationary state when ζd,∗η increases like in the case
of simulation type 1 (see Fig. 3.11). The average value of η decreases also when ζd,∗η
increases as illustrated on Fig. 3.22-c). Thus the climb rate decreases when ζd,∗η increases
(i.e. when dj decreases) in this type of simulations as shown in Fig. 3.22-d). The decrease
of the climb rate with the coefficient ζd,∗η (ζV,∗

η = ζ I,∗
η ) can be explained as follows. When

ζd,∗η increases, the kinetics of PD attachment at dislocation cores increases also. Thus, the
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Figure 3.21: 2D simulation cell mimicking an interstitial dislocation loop near a planar
sink (low-angle STGB).
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Figure 3.22: Average atomic fractions of a) SIAs anb b) vacancies, c) the average value of
η and d) the climb rate as a function of ζ∗ in the case of simulation type 2 (dipole of edge
dislocations + planar sink).
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rate absorption of PD at steady state increases with ζd,∗η which leads to the increase of
the climb rate through vacancy and SIA absorption as shown in Fig. 3.23. Moreover, the
increase of the climb rate with ζd,∗η via the vacancy absorption is more important than
via the SIA absorption. Indeed, as SIAs are more attracted towards the dislocation cores
than vacancies due to the elastic drift term (|ΩI| > |ΩV|), the absorption rate of SIAs is
therefore less affected by the variations of ζd,∗η than the absorption rate of vacancies, since
the absorption rate depends also on the PD flow towards the sinks. Finally, the net climb
rate (difference between the climb rate via SIA diffusion and vacancy diffusion) decreases
when ζd,∗η increases.
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Figure 3.23: Climb rate through SIA and vacancy diffusion as a function of ζd,∗ in the
case of simulation type 2 (dipole of edge dislocations + planar sink), vηd = V

2a2
0

∂ηd
∂t (see

Eq. 3.48).

The analytical solution of the climb rate of Eq. 3.58 corresponds to the case of perfect
sinks (ζ∗d → ∞) since the sink strength used to calculate it were established under this
assumption, and is represented in Fig. 3.22-d). This figure shows that the good order of
magnitude of the climb rate is obtained, but a discrepancy is observed between the PF
solution for ζd,∗η = 100 and the analytical solution. This discrepancy may be due to the
fact that the solution of Rauh and Simon for dislocation sink strength calculations [32]
(see table 2.1) deviates from the PF solution. Several reasons mentioned by Rouchette et
al. [4] and listed in section 2.3.3.1 allow to explain this difference.

3.3.2.2 Influence of the PD relaxation volume Ωd on the climb rate (simulation
type 2)

The effects of the PD relaxation volume Ωd on the climb velocity were investigated by
performing simulations for different values of ΩV with ΩI fixed at 1.2Vat and ζd,∗η = 100.
Fig. 3.24 represents the average atomic fraction of vacancies which decreases at steady
state with |ΩV|. This result is expected knowing that the sink strength (inversely propor-
tional to X̄, Eq. 2.48) of edge dislocations increases with |Ω| as obtained in section 2.3.3.1.
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Figure 3.24: Average atomic fraction of vacancies as a function of time for different values
of ΩV in the case of simulation type 2 (dipole of edge dislocations + planar sink).

It means that at higher values of |ΩV|, more vacancies are absorbed by the dislocations,
which induces a lower climb rate of the loop as illustrated in Fig. 3.25. This tendency is
in qualitative accordance with the analytical solution given by Eq. 3.58, but significant
differences between PF and analytical results especially for higher values of |ΩV| can be
noticed (see Fig. 3.25-b)). As mentioned in section 3.3.2.1, these differences may be due
to the solution of Rauh and Simon for dislocation sink strength which deviates from the
PF solution, used to compute the analytical climb rate.
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Figure 3.25: a) Average value of η as a function of time and b) climb rate for different
values of ΩV in the case of simulation type 2 (dipole of edge dislocations + planar sink).
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In summary of this section, several tests were carried out with the PF model of
dislocation climb under irradiation. They showed the limits of existing models and
adjustments were therefore necessary. In particular, a shape function to ensure the
existence of the osmotic force only at the dislocation cores was introduced in the
model. Taking into account the elastic effects destabilizes the dislocation core struc-
ture (modification of the shape of the η profile). To overcome this difficulty, Eq. 3.64
was applied and the dislocation core energy was also increased artificially. The influ-
ence of the parameters ζd,∗η (related to the jog inter-spacing) and Ωd on the climb rate
has been studied by performing simulations of type 2. The results showed that, when
the coefficient ζd,∗η which refers to the kinetics of PD absorption increases, the climb
rate through each PD increases also. This increase is more significant for vacancies
which leads to the decrease of the net climb rate with ζd,∗η . The results also showed
that as the sink strength increases with |Ωd|, the climb rate via each PD increases also
and then for |ΩI| fixed the net climb rate of the interstitial loop decreases with |ΩV|.
In section 3.4, the PF model of dislocation climb is applied to simulate the evolution
of interstitial loops in bcc pure iron.

3.4 Application to bcc iron

Experimental studies [83, 84, 11] have shown that under neutron irradiation, more inter-
stitial loops are observed than vacancy loops in α-Fe. Edge dislocations are biased sinks
(see section 2.3.3.1), SIAs being more absorbed than vacancies. Thus the growth (respec-
tively shrinkage) of interstitial (respectively vacancy) loops is favored, which allows to
explain the experimental observations. Two types of interstitial loops have been observed
at low temperatures [84]: <100>-type (b = a<100>) and <111>-type (b = a

2<111>)
interstitial loops, a being the lattice parameter, but at high temperatures (T > 573 K),
only <100>-type loops are present [83, 11].

In this section, the PF model of dislocation climb under irradiation is applied to study
the interstitial loop evolution in pure α-Fe. First, the growth of <100>-type interstitial
loop is considered with and without any surrounding microstructure corresponding respec-
tively to simulation type 1 and 2 (see section 3.2.5). The dislocation density, temperature,
loop orientation and elastodiffusion effects on the climb rate are then investigated.

3.4.1 Growth of a <100>-type interstitial loop in a system free of any
other sink (simulation type 1)

A dipole of edge dislocations was used to mimic an interstitial dislocation loop as illustrated
on Fig. 3.5-a). The growth of the loop is simulated by choosing Kd

0 such as KI
0 > KV

0
(see Eq. 3.51). The order of magnitude chosen for Kd

0 corresponds to electron irradiation
conditions. The physical parameters for simulations are given in table 3.2. ζd,∗η was set
to 400 for both PDs to reproduce a perfect sink i.e. a high jog density. The analytical
climb rate at the stationary state given by Eq. 3.51 is vη = 1.16 × 10−11m.s−1 for these
corresponding conditions.

The average atomic fractions of PD and the average value of the field η as a function of
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Table 3.2: Physical parameters for the simulations

T 700 K
b 2.83 Å
dislocation core energy 8 eV.Å−1

dislocation core width 2.264 nm
domain size 36.2 nm × 18.1 nm
initial loop radius R0 4.528 nm
KI

0, KV
0 2× 10−5, 10−5 dpa.s−1

DI, DV 1.1× 10−8, 7.2× 10−11 m2.s−1 [82]
C11, C12, C44 243, 145, 116 GPa [59, 60]
Ωi, Ωv 1.86Vat, -0.3Vat [55]
Vat 1.13× 10−29 m3

XI
eq, XV

eq 3.28× 10−29, 1.21× 10−14 [82]

time are plotted in Fig. 3.26 and there is linear evolution of η̄. The atomic fraction maps
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Figure 3.26: a) Average atomic fraction of PD and b) average value of η as a function of
time (simulation type 1).

of PDs are plotted in Fig. 3.27 at the time t = 596 s. These maps show a depletion of SIAs
in the compression region of dislocations which is expected, while the opposite behavior is
observed for vacancies. The angular dependence of the profiles of the PD atomic fraction
around the dislocation and visible in Fig. 3.27 is due to the elastic constant anisotropy.
The system anisotropy effects are not remarkable in the case of vacancies due to their low
relaxation volume. The evolution of the PD atomic fraction profiles and the profile of η
along the dipole as a function of time are represented in Fig. 3.28. During the loop growth,
the PD atomic fractions increase inside the loop and decrease in the bulk (see Figs. 3.28-a)
and 3.28-b)) at the same time as the dislocations move away as shown in Fig. 3.28-c).
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Figure 3.27: Atomic fraction map of a) SIAs and b) vacancies at t = 596 s (simulation
type 1).
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The spatial PD fraction in the simulation domain is influenced by the sink position: the
PD fraction is higher in regions far from the sink than in regions close to it. Thus, the
increase of the PD fraction inside the loop is due to the remoteness of the dislocations
and the decrease in the bulk to their rapprochement since periodic boundary conditions
are used. The PF stationary climb rate obtained is vη = 1.12 × 10−11 m.s−1 which is in
good agreement with the one predicted analytically 1.16 × 10−11 m.s−1. The climb rate
evolution as a function of the dislocation density ρ = 2/N1N2a

2
0 is plotted in Fig. 3.29.

The analytical solution of the climb rate (see Eq. 3.51) as a function of dislocation density
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Figure 3.29: Climb rate as a function of the dislocation density in the case of simulation
type 1.

is given by (simulation type 1):

vη = 1
a0ρ

(KI
0 −KV

0 ) (3.68)

Fig. 3.29 shows that the climb rate decreases when the dislocation density increases. This
result can be explained as follows: for small systems (high dislocation densities), the PD
fraction in the bulk (reservoir) is weak at steady-state. The osmotic driving force for
dislocation climb is then low which leads to low climb rates. Contrariwise, the greater the
reservoir (low dislocation density), the more available PDs in the bulk. Thus, there is a
high osmotic driving force and consequently a high climb rate.

3.4.2 Growth of an interstitial loop in a system containing a planar sink
(simulation type 2)

A planar sink is introduced in the system as shown in Fig. 3.21 to simulate the growth of
an interstitial loop (see Eq. 3.57). PDs are created at an irradiation rate of K0 = 10−5

dpa.s−1. The physical parameters of tables 3.2 and 3.3 are used and ζ∗d was fixed to 400
for both PDs as in section 3.4.1. The temperature, loop orientation and elastodiffusion
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Table 3.3: Diffusion coefficients and thermal equilibrium fraction of PDs [82].

T (K) DI, DV (m2.s−1) XI
eq, XV

eq

600 4.42× 10−9, 1.07× 10−11 5.88× 10−34, 2.94× 10−17

700 1.1× 10−8, 7.2× 10−11 3.28× 10−29, 1.21× 10−14

800 2.32× 10−8, 3.02× 10−10 1.2× 10−25, 1.11× 10−12

900 4.03× 10−8, 9.2× 10−10 7.11× 10−23, 3.73× 10−11

effects on the climb rate are successively studied.

3.4.2.1 Temperature effect

Simulations were performed for different temperatures for the <100>-type loop orienta-
tion. The PD thermal equilibrium fractions were fixed to zero (typically 10−30) and to
their real values given in table 3.3 to investigate their effects on the climb rate. In Fig.
3.30 the climb rate is represented as a function of the temperature and it can be seen that
for Xdeq = 10−30, the climb rate decreases linearly with the temperature. The analytical
solution of Eq. 3.58 is also represented on Fig. 3.30 and shows the same linear variation
of the climb rate with temperature. For Xdeq close to zero the analytical solution of Eq.
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Figure 3.30: Climb rate of a <100>-type interstitial loop as a function of temperature
in the case of simulation type 2, for a dislocation density of 3.048 × 1015m−2 and an
interplanar spacing of 18 nm.
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3.58 depends only on the sink strength, V and K0 being fixed. Thus, as the dislocation
sink strength decreases with temperature due to the attenuation of elastic interactions, the
climb rate decreases also. When the real PD thermal equilibrium fractions are considered,
Fig. 3.30 shows a decrease followed by an increase of the climb rate with temperature.
This evolution of the climb rate with temperature by considering the real Xdeq can be
explained as follows. At low temperatures T < 800 K, the average fraction X̄d at steady
state is far from the thermal equilibrium fraction for both PDs as shown in Figs. 3.31
and 3.32. Thus, there is an important osmotic driving force for climb for both PDs due
to the large excess of PD fraction available in the bulk. The climb rate evolution with
temperature is therefore mainly controlled by the elastic interactions in this range of tem-
perature. Consequently, the climb rate decreases with temperature for T < 800 K, like in
the case of previous simulations for which Xdeq = 10−30. For high temperatures T > 800
K, the vacancy fraction at steady state doesn’t exceed anymore the thermal equilibrium
value, while the opposite behavior is observed for SIAs (see Figs. 3.31 and 3.32), since
the SIA thermal equilibrium fraction remains small. The osmotic force due to vacancy
tends to zero in this range of temperature (T > 800 K), while the one due to SIAs remains
significant. Since the osmotic force due to vacancy contributes to the decrease of the climb
rate of the interstitial loop, its decrease with the temperature leads therefore to the climb
rate increase (see Fig. 3.30). These results show that the PD equilibrium fraction plays
a significant role on the loop growth rate estimation, especially at high temperatures.
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Figure 3.31: Vacancy fraction as a function of the temperature at thermal equilibrium (red
square) and at steady state in the PF simulations of type 2 (blue circle), for a dislocation
density of 3.048× 1015m−2 and an interplanar spacing of 18 nm.

The evolution of the climb rate as a function of the dislocation density and temperature
is plotted in Fig. 3.33. This figure shows that the climb rate globally increases when the
dislocation density decreases which is expected for the reasons given in section 3.4.1.
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Figure 3.32: SIA fraction as a function of the temperature at thermal equilibrium (red
square) and at steady state in the PF simulations of type 2 (blue circle), for a dislocation
density of 3.048× 1015m−2 and an interplanar spacing of 18 nm.
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Figure 3.33: Climb rate of a <100>-type interstitial loop as a function of dislocation
density and temperature, for an interplanar spacing of 18 nm (simulation type 2).

3.4.2.2 Loop orientation effect

The loop orientation effect on the climb rate is investigated in this section. The climb
rate as a function of temperature has been plotted for the <100> and <111>-type loop
orientations in Fig. 3.34. It can be seen that the loop growth rate of the <100>-type
is greater than that of the <111>-type for T < 900 K, but smaller at T = 900 K. The
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differences observed are weak at low temperature (T < 900 K) but significant at high
temperature (T = 900 K).
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Figure 3.34: Climb rate as a function of temperature and loop orientation, for a dislocation
density of 3.048× 1015m−2 and an interplanar spacing of 18 nm (simulation type 2).

3.4.2.3 Elastodiffusion effect

Simulations were performed without and with elastodiffusion for the <100>-type loop
orientation and the climb rate as a function of temperature is represented in Fig. 3.35.
The results show for T≤ 800 K that the climb rate of the <100>-type loop decreases when
elastodiffusion effects are taken into account as illustrated in Fig. 3.35 which is consistent
with the results of sink strength calculations obtained in section 2.3.3.1. Indeed, the
results presented in section 2.3.3.1 showed that the sink bias of edge dislocations in pure
Fe decreases when elastodiffusion effects are taken into account compared to the case
without, which leads to a decrease of the climb rate. Furthermore, there is a significant
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Figure 3.35: Climb rate of a <100>-type interstitial loop as a function of temperature
without and with elastodiffusion effects, for a dislocation density of 3.048× 1015m−2 and
an interplanar spacing of 18 nm (simulation type 2).

decrease of the climb rate with elastodiffusion at 600 K due to the strong effects of elasticity
at low temperature. As the sink strength increases with elastodiffusion, at 800 K elasticity
keeps playing a predominant role for simulations characterised by a decrease of the climb
rate, while the climb rate increases for simulations without elastodiffusion. At 900 K
elasticity effects are strongly attenuated for both types of simulations especially without
elastodiffusion and as there is no more significant osmotic force for vacancy, the climb
rate increases for both cases of simulations and is higher in the case with elastodiffusion
compared to the case without.

3.4.3 Discussion

The growth of an interstitial loop in pure iron was simulated. The temperature effect on
the climb rate was investigated by performing simulations for a system containing an edge
dislocation dipole mimicking the interstitial loop and a planar sink. The results showed
a decrease of the climb rate followed by an increase when the temperature increases for a
given dislocation density of 3.048 × 1015m−2 and interplanar spacing of 18 nm (see Fig.
3.30). The evolution of the climb rate with the dislocation density showed globally an
increase of the climb rate with the decrease of dislocation density for all the temperatures
(see Fig. 3.33). The temperature dependence of the growth rate of interstitial loop in
iron has been measured experimentally on a single thin foil by electron irradiation in [81].
The results of Duparc et al. [81] showed an increase of the growth rate as temperature
increases and this increase was following an Arrhenius law as predicted by their analytical
solution. The analytical solution of the climb rate given in [81] was obtained using Eqs.
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2.1 and 2.2 for Xs
d ' 0:

v = dR

dt
= 2Vat

b
(ZIDIX̄I − ZVDVX̄V), Zd = k2

dislo,d/ρ (3.69)

and under the assumptions that DI � DV, DIX̄I ' DVX̄V at the stationary state, and PD
recombination is predominant DIX̄I =

√
K0DV/4πVatrc which led to:

v = 2
b

(ZI − ZV)
√
K0VatDV

4πrc
with DV = D0V exp(− EmV

kBT
) (3.70)

Zd was computed using the solution of Laplace given in table 2.1. Furthermore, a trans-
mission electron microscopy (TEM) study of neutron irradiated iron [11] has revealed a
decrease of the dislocation density with the temperature increasing about an order of
magnitude for each 50 K (see Fig. 1.4). For example the dislocation density at 623 K
was about 1014m−2 for irradiation damage of 0.88 dpa and at 773 K about 3 × 1011m−2

for irradiation damage of 0.74 dpa. Fig. 3.33 shows that when the temperature increases
and the dislocation density decreases the climb rate increases, which is qualitatively in
good agreement with the results of Duparc et al. [81]. Regarding the order of magnitude
of the climb rate, the results obtained in [81] showed a variation range of [10−11 − 10−9]
m.s−1 for a temperature range of [573−873] K. The climb rate in our simulations varies as
[10−13−10−11] m.s−1 for a temperature range of [600−900] K and for a dislocation density
range of [1015 − 1016] m−2 as illustrated on Fig. 3.33. The dislocation density evolution
as a function of temperature obtained in [11] is about [1014 − 1011] m−2 for temperature
increasing from 623 to 773 K. Thus, our range of dislocation density is not representative
of what is observed experimentally in [11]. To explore low dislocation densities, large
systems are required which is time consuming. However, it can be seen that the order
of magnitude of the climb rate obtained in [81] could be obtained by extrapolating the
results of Fig. 3.33 to low dislocation densities. Furthermore, the results of Fig. 3.33
were obtained for a fixed interplanar spacing consequently for a fixed sink strength of the
surrounding microstructure. As illustrated in figure 3.4 the climb rate depends also on the
sink strength of the surrounding microstructure (multi-sink effects). It must be noticed
that the climb rate does not necessarily follow an Arrhenius law like in the case of Duparc
et al. [81] due to several reasons:
• The assumptions used by Duparc to establish the analytical solution of Eq. 3.70 are

not systematically valid and depend on the irradiation conditions. Especially, the
kinetic regime was assumed dominated by the PD recombination. In the opposite,
the kinetic regime was assumed dominated by sinks in our simulations and therefore
PD recombination was neglected.

• The solution used to compute the sink strength of dislocations does not incorporate
elastic interactions which depend on the temperature. In addition, the Fig. 3.35
showed that elastodiffusion can affect the climb rate.

3.5 Conclusion
A PF model of dislocation climb under irradiation was developed and presented in this
chapter. The model is based on previous ones dealing with dislocation climb via the va-
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cancy diffusion [2, 1, 3] suitable for high temperatures. Several tests were carried out in
order to validate the new PF model of dislocation climb under irradiation. Especially, a
shape function was introduced to ensure the existence of the osmotic force only at the
dislocation cores. The model was also adjusted to overcome the modification of the dislo-
cation core structure due to elasticity by applying Eq. 3.64 and by increasing artificially
the dislocation core energy. After the model validation, the growth of a prismatic intersti-
tial loop under electron irradiation conditions was investigated. The results showed that
the PD equilibrium fraction inside the sink plays a significant role on the loop growth
rate calculations especially at high temperatures when the equilibrium vacancy fraction
is high as illustrated on Fig. 3.30. The results also showed that the climb rate increases
with the combined effects of the decrease of the dislocation density and the increase of the
temperature (see Fig. 3.33) for the chosen simulation conditions.
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A new PF model of dislocation climb under irradiation has been presented and applied
to simulate dislocation loop evolution in pure Fe in chapter 3. In this chapter, the phe-
nomenon of radiation induced segregation (RIS) is studied near dislocation cores in Fe-Cr
alloys. By means of the new PF model of dislocation climb, climb velocity effects on RIS
predictions are investigated.

4.1 Bibliography

Radiation induced segregation (RIS) is a common phenomenon in irradiated materials and
plays an important role on the microstructure evolution of these materials. The mobile
PDs produced under irradiation migrate towards sinks such as dislocations, dislocation
loops and GBs. PD migration is due to atom displacement: the PD fluxes are thus coupled
to the atom fluxes. RIS results from this coupling and leads to a local redistribution of the
alloying elements near sinks [85, 86]. The depletion or enrichment of each element in the
vicinity of sinks occurs according to its relative interaction with the PD fluxes. RIS was
first predicted by Anthony [87]. Anthony showed in the framework of the thermodynamics
of irreversible process (TIP) [87, 88, 89, 90] that the segregation tendencies are controlled
by the phenomenological coefficients Lij of the Onsager matrix. The predictions of Antony
have been first experimentally observed by Okamoto et al. [91] in an austenitic stainless
steel Fe-18Cr-8Ni-1Si during electron and ion irradiation. Anthony’s model suggested that
segregation is due to the coupling between atom fluxes and the flux of excess vacancies,
however the observations of Okamoto et al. [91] suggested that undersized atoms Ni
and Si which can more accommodate in interstitial sites were diffusing towards sinks,
while oversized atoms such as Cr were diffusing away. Thus, in addition to the RIS
mechanism through the fluxes of vacancies, Okamoto and Wiedersich [92] proposed a new
RIS mechanism involving interstitial atoms. Other experiments [93] allowed to verify this
new RIS model.

The Onsager coefficients Lij represent the kinetic response of an alloy subjected to
thermodynamic forces and thus allow to obtain the fluxes as described in section 4.2.3.
They depend on several parameters such as temperature, PD concentrations, local alloy
concentrations and stress field. The Lij-coefficients can be determined from diffusion
experiments but for multicomponent and concentrated alloys it is quite difficult to obtain
them [86]. Theoretical models have been developed to determine the Onsager matrix.
The most popular are the self-consistent mean-field (SCMF) theory based on atomic jump
frequencies and the model based on the generalized Einstein relation [94, 95]. In the
SCMF theory, Lij are written as a function of the PD migration frequencies which can
be computed at the atomic scale (using ab initio calculations, interatomic potentials,
broken-bond models) [86]. Tucker et al. [96] for example, computed the atom jump
frequencies to access Lij in alloys with a fcc structure (Ni-Cr, Ni-Fe) within the limit of
dilute solid solution. In the case of concentrated alloys, the number of jump frequencies
becomes large, and approximations are made to compute Lij [97]. The model based on
the generalized Einstein relation is particularly suitable to the atomic kinetic Monte Carlo
(AKMC) simulations.

RIS has been predicted using SCMF [98] and AKMC [99, 100, 101] simulations. In
the AKMC simulations, the PD jumps are described individually and these types of sim-
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ulations are time consuming and limited to nanoscale systems [86]. Thus to simulate
large systems, it is necessary to rest on continuous descriptions. PF model is particularly
adapted to study RIS because diffusion processes are naturally incorporated and elastic
interactions can be properly described. This approach has been used by Piochaud et al.
[82] to model RIS near a GB assimilated to a planar sink (no elastic interactions) in Fe-Cr
alloys. In this study [82], the kinetic equations used in the PF model to simulate RIS are
based on the Onsager formalism. The Onsager transport coefficients Lij and the driving
force parameters (equilibrium PD concentrations, thermodynamic factors) were computed
at the atomic scale using AKMC simulations fitted on DFT calculations. Piochaud et al.
compared the prediction obtained by PF method and AKMC simulations, and found a
good agreement for all range of compositions and temperatures investigated as illustrated
on Fig. 4.1. They also showed that a quantitative PF prediction of RIS requires a precise

Figure 4.1: RIS profiles obtained using AKMC (symbols) and PF (lines) in Fe–15%Cr at
900 K (left) and in Fe-10%Cr at 700 K (right), as a function of the distance from the grain
boundary, x, and for different irradiation doses at K0 = 10−5dpa.s−1 [82].

parameterization of the Onsager coefficients, equilibrium PD concentrations and thermo-
dynamic factors. More recently, Thuinet et al. [102] used the kinetic parameterization
of [82] to investigate RIS near a dipole of edge dislocations mimicking an interstitial dis-
location loop. The results showed that without taking into account elastic interactions
between PDs and dislocations, the tendency and the level of segregation near the disloca-
tion cores are comparable to the ones obtained at a planar sink. However, with the elastic
interactions, the segregation tendency and level around the cores change strongly. These
results illustrate that RIS strongly depends on the elastic interactions between PDs and
dislocations. Thus, the criteria established for RIS prediction near neutral sinks based
only on kinetic arguments [85] must be reconsidered for biased sinks like dislocations. Z.
Li and D. R. Trinkle [103] studied the modification of the Si solute segregation near an
edge dislocation due to its strain field via the vacancy diffusion in Ni under irradiation
using a mesoscopic approach. They showed that Si atoms segregate in the compression
region of the dislocation core despite the fact that Si is an oversized solute in Ni. In these
latter studies [102, 103], dislocations act as perfect sinks and are assumed to be static
which is also a questionable assumption. This hypothesis would be justified if kinetics
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related to PD and atom diffusion was greater than the dislocation climb velocity. It is the
case for PDs in most of the cases, but not always verified for atoms.

In this chapter, the RIS prediction using the PF method is investigated near prismatic
interstitial dislocation loop in Fe-Cr alloys. Thanks to the PF model of dislocation
climb under irradiation presented in chapter 3, the effect of climb rate on RIS predic-
tion is investigated. In section 4.2 we present the PF methodology. Thereafter, we
apply the PF model in section 4.3 to simulate RIS near a dipole of edge dislocations
mimicking a dislocation loop in 2D.

4.2 PF methodology
In this section, the PF model of section 3.2 is extended to the study of RIS in a binary
A-B alloy. We first define the order parameters, the total free energy and the evolution
equations are again defined as in section 3.2 by including the chemical species.

4.2.1 Order parameters

The necessary order parameters of the system are the ones described in section 3.2.1
(XI,XV, ηI, ηV, η

l) to which the atomic fractions XA and XB of chemical species A and B
respectively are added.

4.2.2 Energy of the system

The total free energy of the system F defined in section 3.2.2 is generalized to a binary
system:

F (Xα, Xd, η
l) = Fch(Xα,Xd) + Fcore(ηl) + Fel(Xα,Xd, ηl) (4.1)

where α stands for the chemical species A and B. The chemical free energy is given by:

Fch(Xα,Xd) = kBT
Vat

(
∑
α

∫
V
Xα ln(γαXα)dV +

∑
d

∫
V
Xd ln( Xd

Xd
eq

)dV ) (4.2)

where γα is the activity coefficient of the alloying element α. The dislocation core energy
Fcore(ηl) is given by Eq. 3.12. To compute the elastic energy Fel(Xα,Xd, ηl) (see Eq.
3.14), the total eigenstrain (see Eq. 3.15) is written by taking into account the eigenstrain
of the alloying elements ε0,Xα :

ε0,tot
ij (r) =

∑
α

ε0,Xα
ij Xα(r) +

∑
d

ε0,Xd
ij Xd(r) + ε0,ηl

ij f(ηl(r)) (4.3)

4.2.3 Kinetic equations

The evolution equations of the atomic fractions of PDs and chemical species in an A-B
binary alloy are given by [86, 82, 102]:

∂Xd

∂t
= −Vat∇.Jd(r, t) (4.4)
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∂Xα

∂t
= −Vat∇.Jα(r, t) (4.5)

where Jd and Jα are respectively the fluxes of PDs and chemical species. These fluxes
are related to the fluxes of chemical species mediated by PDs Jdα through the following
equations:

Jd = sg(d)
∑
α

Jdα (4.6)

Jα =
∑
d

Jdα (4.7)

with sg(d) = 1 for SIAs and -1 for vacancies. In the framework of the TIP [104], Jdα are
assumed to be a linear combination of the thermodynamic driving forces ∇µβ and ∇µd,
and the Onsager kinetic coefficients Ldαβ:

Jdα = −
∑
β

Ldαβ(∇µβ + sg(d)∇µd) (4.8)

The Onsager matrix of coefficients Ldαβ is symmetric and positive [105], and depends on the
temperature, alloy composition, and internal/external stresses. The evolution equations
become, by taking into account the effective PD generation rates, dislocation climb and
the presence of other sinks (see sections 3.2.3 and 3.3):

∂Xd

∂t
= ∇.[

∑
α

∑
β

ldαβXd

kBT
(sg(d)∇µβ + ∇µd)]− ∂ηld

∂t
− Jabss,d + Kd

0 (4.9)

∂ηld
∂t

= −VatD
dXd

kBT
ζdηl [

1
X∗ sg(l)sg(d)µηl − λ(ηl)µd] (4.10)

∂Xα

∂t
= ∇.[

∑
d

∑
β

ldαβXd

kBT
(∇µβ + sg(d)∇µd)] (4.11)

where ldαβ are the coefficients of the normalised Onsager matrix given by:

ldαβ = VatkBT

Xd
Ldαβ (4.12)

Jabss,d is given by Eq. 3.34, λ(ηl) is a shape function associated to the dislocation core
defined by Eq. 3.59. The potentials µβ, µd and µηl are defined as follows:

µβ = Vat
δF (Xα, Xd, η

l)
δXβ

; µd = Vat
δF (Xα, Xd, η

l)
δXd

; µη
l = Vat

δF (Xα, Xd, η
l)

δηl
(4.13)

The loop evolution is given by:

∂ηl

∂t
= sg(l)

X∗
(∂η

l
I

∂t
− ∂ηlV

∂t
) (4.14)
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The following dimensionless parameters (see Eq. 3.35) are introduced to solve Eqs. 4.9 -
4.11 in their dimensionless form:

F ∗ = F/H, µ∗ = µ/VatH

ld,∗αβ = ldαβt0/a
2
0, ζd,∗

ηl
= HVata

2
0ζ
d
ηl
/kBT

∇∗ = a0∇, γ∗ = γ/(Ha2
0)

td,∗ = td/t0, tα,∗ = tα/t0

Kd,∗
0 = Kd

0 t0, Jabs,∗s,d = t0J
abs
s,d

(4.15)

t0 is the reference time and chosen such as t0 = min(td0, tα0 , t
ηl

0 ) where td0, tα0 and tη
l

0 are
respectively the characteristic time associated to the PD diffusion, atom diffusion and
dislocation motion:

td0 = a2
0

maxr(Dd) (4.16)

tα0 = a2
0

maxr(Dα) (4.17)

tη
l

0 = a0
vηl

(4.18)

maxr refers to the spatial maximum. The diffusion coefficient of atom Dα is given by
[86, 82]:

Dα = φ
∑
d

( l
d
αα

Xα
−
ldαβ
Xβ

)Xd −
∑
d

sg(d)(
ldαα + ldαβ
Xα

)Xd

∂ lnXd
eq

∂ lnXα
(4.19)

with φ the thermodynamic factor:

φ = 1 + ∂ ln γα
∂ lnXα

(4.20)

The PD diffusion coefficients Dd are simply written as:

Dd =
∑
α

∑
β

ldαβ, Dd,∗ =
∑
α

∑
β

ld,∗αβ (4.21)

vηl is the climb velocity which is estimated under irradiation condition in section 3.2.5.
In practice, t0 corresponds to a2

0/maxr(DI) due to the fact that SIA diffusion is generally
faster than vacancy diffusion, atom diffusion and dislocation motion. The dimensionless
evolution equations are:

∂Xd

∂td,∗
= VatH

kBT
∇∗.[

∑
α

∑
β

ld,∗αβXd∇∗(sg(d)µβ,∗ + µd,∗)]− ∂ηld
∂td,∗

− Jabs,∗s,d +Kd,∗
0 (4.22)

∂ηld
∂td,∗

= −ζd,∗
ηl
Dd,∗Xd[

1
X∗ sg(l)sg(d)(µηl,∗ − λ(ηl)µd,∗] (4.23)

∂Xα

∂tα,∗
= VatH

kBT
∇∗.[

∑
d

∑
β

ld,∗αβXd∇∗(µβ,∗ + sg(d)µd,∗)] (4.24)

To conserve the shape of the plastic field ηl associated with the loop during climb when
elastic interactions are taken into account (see section 3.3), Eq. 3.64 is applied and the
dislocation core energy is also artificially increased.
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4.2.4 Numerical scheme and multi-time step algorithm

The set of Eqs. 4.22 - 4.24 are spatially discretized using a staggered grid as in [82] and
described in appendix A. The multi-time step algorithm described in section 3.2.4 is also
used to accelerate the convergence towards the steady state. The time steps δtd, δtα and
δtη

l are chosen such that the following stability criteria are verified:

δtd

td0
<

1
2Ndim

(4.25)

δtα

tα0
<

1
2Ndim

(4.26)

δtη
l

tη
l

0
< 1 (4.27)

The dimensionless stability criteria are rewritten according to the reference time t0 =
a2

0/maxr(DI) as follows:

δtI,∗ <
1

2Ndim
(4.28)

δtV,∗ <
1

2Ndim

maxr(DI)
maxr(DV) (4.29)

δtα,∗ <
1

2Ndim

maxr(DI)
maxr(Dα) (4.30)

δtη
l,∗ <

1
2Ndim

maxr(DI)
a0vηl

(4.31)

As described in section 3.2.4, the PD evolution equations are integrated with δtd,∗ to
reach the steady state during the first stage for some given value of ηl and Xα. In the
second stage, the evolution equations of Xα and ηl are integrated with the same time step
which corresponds to the minimum between δtα,∗ and δtηl,∗. The field Xt

∗+min(δtα,∗,δtηl,∗)
d

is equal to Xt
∗+ndδt∗d
d during this stage, with nd is the number of iterations needed to

reach the steaty state. This multi-time step algorithm is illustrated in Fig. 4.2. During
the simulations, we chose to set δtI,∗ to 10−3, δtV,∗ = δtI,∗maxr(DI)/maxr(DV), δtα,∗ =
δtI,∗maxr(DI)/maxr(Dα), δtηl,∗ = δtI,∗maxr(DI)/a0vηl to satisfy the stability criteria.

Now that we have presented the PF methodology describing the evolution of the
position-dependent solute and PD atomic fractions coupled to dislocation climb, we
apply the model to simulate RIS in Fe-Cr alloys in the vicinity of an interstitial
dislocation loop in section 4.3. The elastic interactions and dislocation motion effects
on RIS prediction are investigated.
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Figure 4.2: Schematic representation of the multi-time step algorithm including PD dif-
fusion, atom diffusion and dislocation motion.

4.3 RIS prediction in Fe-Cr alloys near <100>-type pris-
matic interstitial dislocation loop

The 2D simulation box mimicking the interstitial dislocation loop is illustrated in Fig. 4.3.
The thermodynamic and kinetic parameters (Xeqd ,Ldαβ, φ) available in [82] were used. The

N1 

2
N

b b-

2R

e1
2 e

3e
// [100]

// [010]

// [001]

0

Figure 4.3: 2D simulation mimicking a <100>-type interstitial dislocation loop.

other necessary parameters for the simulations are given in table 4.1. The eigenstrains of
the chemical species were set to zero (ε0,Xαij = 0) to compute the elastic interactions due
to the negligible difference between the lattice parameters of iron and chromium. ζd,∗

ηl
was

set to 100 for both PDs to reproduce a perfect sink behavior of the dislocations. In section
4.3.1, RIS is predicted assuming that the Cr segregation profiles are not affected by the
dislocation motion i.e that atom diffusion is faster than dislocation motion. In section
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Table 4.1: Simulation parameters.

b 2.83 Å
dislocation core energy 8 eVÅ−1

dislocation core width 2.264 nm
domain size 36.2 nm × 18.1 nm
initial loop radius R0 4.528 nm
C11, C12, C44 243, 145, 116 GPa [59, 60]
Ωi, Ωv 1.1Vat, -0.05Vat [106]
Vat 1.13× 10−29 m3

4.3.2, the dislocation motion effects on Cr segregation profile are investigated.

4.3.1 RIS prediction under the assumption of static dislocations

In this part, RIS prediction is simulated without dislocation climb (the loop evolution
equation 4.14 is not integrated). We focus first on the Fe-11%Cr alloy at 700 K and
Fe-15%Cr alloy at 900 K because these two alloys have been shown to produce opposing
effects concerning the Cr segregation near a planar sink [82]: Cr enrichment for Fe-11%Cr
and Cr depletion for Fe-15%Cr. PDs are generated at an irradiation rate K0 = 10−5

dpa.s−1 which corresponds to electron irradiation conditions. Simulations were performed
without and with elastic interactions. Furthermore, in order to study the effect of the PD
equilibrium composition, Xeqd were set close to zero and to their real values.

The Cr atomic fraction maps and profiles without and with elasticity are represented
in Figs. 4.4 (Fe-11%Cr at 700 K) and 4.5 (Fe-15%Cr at 900 K). It can be seen that,
without elasticity and for Xeqd = 10−30, the Cr segregations obtained are qualitatively in
good agreement with the results obtained at planar sink [82] for both alloys: in all regions
around the dislocation core, Cr enrichment for Fe-11%Cr alloy at 700 K (Fig. 4.4-a) and
c)) and Cr depletion for Fe-15%Cr at 900 K (Fig. 4.5-a) and c)). With elastic interactions
and for Xeqd = 10−30, the Cr segregation tendency is modified: we obtain a Cr enrichment
in the traction region of dislocations and Cr depletion in the compression region for both
alloys (see Fig. 4.4-d and f)) and 4.5-d) and f)). These results can be explained by the
following arguments: vacancies are attracted in the compression zone of dislocation and
expelled from the tension zone, while the opposite behavior is observed for SIAs. The
fluxes of alloying elements are coupled to the ones of PDs: in the same direction for SIAs
and in the opposite direction for vacancies (see Eqs. 4.6 and 4.7). As a consequence, atom
enrichment is due to SIAs and depletion due to vacancies. Thus, with elastic interactions,
atom enrichment is expected in the tension zone and depletion in the compression zone
of the dislocation. Without elasticity, Cr enrichment is obtained in Fe-11%Cr at 700 K
(respectively depletion in Fe-15%Cr at 900 K) which means that Cr migrates preferentially
through SIAs in Fe-11%Cr at 700 K (respectively through vacancies in Fe-15%Cr at 900 K).
Finally, when elastic interactions are taken into account, the Cr segregation is the result
of the competition between the kinetic (Onsager coefficients) and the elasticity effects.
Thus, in Fe-11%Cr at 700 K there is competition between Cr enrichment-enrichment in
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Figure 4.4: Atomic fraction maps of Cr without elasticity a) Xeqd = 10−30, b) real Xeqd and
with elasticity d) Xeqd = 10−30, e) real Xeqd , and the corresponding profiles along the L1
axis passing through the dislocation cores c) without elasticity and f) with elasticity in
Fe-11%Cr alloy at 700 K for a dose of 0.34 dpa, K0 = 10−5 dpa.s−1.
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Figure 4.5: Atomic fraction maps of Cr without elasticity a) Xeqd = 10−30 , b) real Xeqd
and with elasticity d) Xeqd = 10−30, e) real Xeqd , and the corresponding profiles along the
L1 axis passing through the dislocation cores c) without elasticity and f) with elasticity in
Fe-15%Cr alloy at 900K for a dose of 9.5× 10−3 dpa, K0 = 10−5 dpa.s−1.
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the tension region and enrichment-depletion in the compression region. This leads finally
to Cr enrichment in the tension zone and depletion in the compression zone (see Fig. 4.4-
d)). In the same way, there is competition between Cr depletion-enrichment in the tension
region and depletion-depletion in the compression region of dislocations in Fe-15%Cr at
900 K which leads to Cr enrichment in the tension region and depletion in the compression
region (see Fig. 4.5-d)).

These results show that the Cr segregation is globally controlled by the elasticity
effects. Especially, for the Fe-11%Cr alloy, in the tension region where Cr is enriched,
the Cr composition locally exceeds the solubility limit (see 4.4-f)) which is not the case
without elasticity, and precipitation of the α′ phase is expected in this zone. In Fe-15%Cr,
the Cr composition in the compression region is close to zero (see 4.5-f)) which can induce
locally a sharp decrease in the hardening or corrosion resistance, since Cr improves the
hardening of Fe-Cr alloys [107]. Moreover, in the region where kinetic and elasticity
effects are antagonists, elasticity plays a predominant role for RIS in the studied alloys.
The results presented above are qualitatively the same as those of [102] with the difference
that simulations in [102] were performed using Eq. 2.39 for the sink description and the
atom fluxes were set to zero inside the core region.

Regarding the effect of Xeqd , simulations have also been performed for the real value of
Xeqd . The results show that, in Fe-11%Cr at 700 K, the RIS prediction doesn’t change by
considering the real Xeqd or zero as illustrated on Figs. 4.4-c) and 4.4-f). On the contrary,
in Fe-15%Cr at 900 K, RIS is almost annihilated when the real value of Xeqd is considered
(see Figs. 4.5-c) and 4.5-f)), while RIS takes place for Xeqd = 10−30. This significant RIS
reduction has been obtained in [82] under the conditions Xeqd fixed to zero and Xeqd set to
its real value near a planar sink at temperatures above 880 K for K0 = 10−5 dpa.s−1. As
mentioned by Piochaud et al. [82], at high temperatures, steady-state PD concentrations
may no longer exceed the equilibrium concentrations and the PD driving forces tend to
zero (consequently the atom driving forces also). It is the case for vacancies in Fe-15%Cr
at 900 K for the chosen PD generation rate, but not for SIAs which explains the low Cr
segregation observed on Fig. 4.5-c) and f). The vacancy concentration at steady state,
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Figure 4.6: Evolution of the average atomic fraction of vacancies as a function of dose in
Fe-15%Cr at 900 K for the real value of Xeqd , K0 = 10−5 dpa.s−1.
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Figure 4.7: Atomic fraction maps of vacancies in Fe-15%Cr at 900 K (real value of Xeqd )
a) without elasticity, c) with elasticity, and the corresponding profiles along the dipole b)
without elasticity, d) with elasticity, at a dose of 9.5× 10−3 dpa, K0 = 10−5 dpa.s−1.
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in this case, is very close to the thermal equilibrium value (see Fig. 4.6). There is no
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Figure 4.9: Atomic fraction maps of Cr without elasticity a) K0 = 10−5dpa.s−1, b)
K0 = 10−3dpa.s−1 and with elasticity d) K0 = 10−5dpa.s−1, e) K0 = 10−3dpa.s−1, and
the corresponding profiles along L1 axis passing through the dislocation cores c) without
elasticity and f) with elasticity in Fe-15%Cr alloy at 900K for a dose of 9.5 × 10−3 dpa
and for the real value of Xeqd .
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Figure 4.10: 2D simulation box mimicking a <100>-type interstitial dislocation loop co-
existing with other sinks represented by the mean sink strength k2

s .

significant concentration gradient of vacancies due to their absorption near the dislocation
cores (see Fig. 4.7) which leads to the non significant Cr segregation as shown in Figs. 4.5-
c) and 4.5-f). To further explore this issue, the simulations of RIS prediction in Fe-15%Cr
at 900 K were performed again but with a PD generation rate of K0 = 10−3 dpa.s−1.
The vacancy concentration at steady state is in this case higher than the thermal value as
shown in Fig. 4.8. The Cr maps and profiles along the dipole are plotted in Fig. 4.9 and
it can be seen that RIS occurs for the new PD generation rate. Thus, the PD equilibrium
concentration plays an important role on RIS prediction especially at high temperatures
as shown by the results above.

To conclude this section, RIS was predicted near dislocation cores in a regime where
the atom diffusion is faster than the dislocation motion (quasi-static dislocations).
The results obtained show that, the prediction changes significantly when elastic in-
teractions are taken into account. It has also been shown that the equilibrium PD
fraction at the sink plays an important role. In section 4.3.2, the dislocation motion
due to PD absorption is taken into account and we investigate the climb rate effects.

4.3.2 Effects of the dislocation climb rate on RIS prediction

To investigate the effects of dislocation climb on the RIS prediction, simulations described
in section 3.2.5 were done: simulation type 1 (system free of any other sink and KI

0 6= KV
0 )

and 2 (system including another sink and KI
0 = KV

0 ). So far, to simulate the presence of
another sink, the latter was explicitly introduced in the system (simulation type 2) and
the additional term Jabss,d was not used in the PD evolution equations. Another possibility
is to use the following expression of Jabss,d :

Jabss,d = k2
sD

d(Xd −Xs
d) (4.32)

where k2
s is the sink strength of the surrounding microstructure assumed neutral. Thus,

the edge dislocation dipole evolves in a system with a mean sink strength k2
s associated to

the other sinks as illustrated in Fig. 4.10. This configuration will be referred as simulation
type 3 in the following. The PD equilibrium composition Xeqd were set to their real values.
The subscript l was suppressed in the notation of η for simplicity.
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4.3.2.1 Simulation type 1: system containing a dipole of edge dislocations
free of any other sink

To obtain a climb velocity at steady state, simulations of type 1 described in section 3.2.5
were first performed (system free of any other sink and KI

0 6= KV
0 ). KI

0 and KV
0 were chosen

such as KI
0 > KV

0 to obtain an interstitial loop growth. The order of magnitude of Kd
0 was

chosen such that RIS can occur, according to the results of section 4.3.1. The evolution
equations of atom compositions Xα and dislocation loop order parameter η were integrated
simultaneously as indicated in the multi-time step algorithm described in section 4.2.4.
It clearly appears that two kinetic regimes are possible: the kinetic regime in which the
atom diffusion is faster than the dislocation motion tα0 < tη0, and the other one where the
atom diffusion is slower than the dislocation motion tα0 > tη0. The variations of the ratio
tη0/tα0 were estimated at the nominal composition as a function of KI

0 for a fixed value of
KV

0 . t
η
0 was easily calculated since in simulation of type 1, the climb rate depends only on

the PD generation rates and the system volume (see Eq. 3.51). To compute Dα (see Eq.
4.19) and access tα0 given by Eq. 4.17, the following solution of the PD fraction at steady
state for cylindrical sinks (see Fig. 3.1) was used [10]:

Xd(r) = Xd(r0) + Kd
0R

2

2Dd
[ln(r/r0)− r2 − r2

0
2R2 ] (4.33)

The spatial maximum of Dα was considered. Fig. 4.11 shows the variations of the ratio
tη0/tα0 in the alloys and thus gives an indication on the choice of KI

0 for KV
0 fixed to observe

the two kinetic regimes mentioned above. To distinguish these two regimes, the following
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Figure 4.11: Variations of the ratio tη0/tα0 at the nominal composition as a function of KI
0

in a) Fe-11%Cr at 700 K for KV
0 = 10−5 dpa.s−1 and b) Fe-15%Cr at 900 K for KV

0 = 10−3

dpa.s−1.

values of KI
0 were chosen: KI

0 = 1.05× 10−5 dpa.s−1 (tα0 < tη0) and KI
0 = 2× 10−5 dpa.s−1

(tα0 > tη0) for Fe-11%Cr at 700 K (KV
0 = 10−5 dpa.s−1), KI

0 = 1.05×10−3 dpa.s−1 (tα0 < tη0)
and KI

0 = 2 × 10−3 dpa.s−1 (tα0 > tη0) for Fe-15%Cr at 900 K (KV
0 = 10−3 dpa.s−1).

These PD generation rates correspond to a climb rate of 5.79× 10−13 m.s−1 (tα0 < tη0) and
1.16 × 10−11 m.s−1 (tα0 > tη0) for Fe-11%Cr at 700 K, 5.79 × 10−11 m.s−1 (tα0 < tη0) and
1.16× 10−9 m.s−1 (tα0 > tη0) for Fe-15%Cr at 900 K.

138



CHAPTER 4. RIS 4.3. PREDICTION NEAR DISLOCATION LOOP

In the kinetic regime where atoms diffuse faster than the dislocation motion, the size
and the shape of the Cr atmosphere around the dislocation cores for both alloys are weakly
affected by the dislocation motion as shown by the iso-concentrations of the maps of Figs.
4.12 and 4.13, which is expected. The corresponding Cr profiles for static and moving
dislocations given in Fig. 4.12-c) and Fig. 4.13-c) show also that the Cr segregation level
is practically unchanged with the dislocation motion. The evolution of the Cr profile
as a function of dose in this regime is illustrated in Fig. 4.14 for Fe-11%Cr at 700 K,
and shows that the Cr segregation at a given point and dose depends on the dislocation
position at this dose. For example, a point located at a given dose in the tension region of
the dislocation is Cr enriched but at the passage of the compression region by this point,
there is Cr depletion.
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Figure 4.12: Atomic fraction map of Cr for a) static and b) dynamic dislocations, and c)
the corresponding profiles along L1 axis at a dose of 0.058 dpa, in the kinetic regime where
the atom diffusion is faster than the dislocation motion (tα0 < tη0) for Fe-11%Cr at 700 K,
KI

0 = 1.01× 10−5 dpa.s−1 and KV
0 = 10−5 dpa.s−1.

In the kinetic regime where dislocation moves faster than the atom diffusion, there is a
significant change in the size and shape of the Cr atmosphere around the dislocation cores
for both alloys as illustrated by the iso-concentrations of the Cr maps of Figs 4.15 and
4.16. Indeed, these iso-concentrations are flattened due to the fast motion of dislocation
compared to the atom diffusion. The Cr segregation level is also affected by the dislocation
motion as shown in Figs. 4.15-c) and 4.16-c). In Fe-15%Cr at 900 K, the Cr segregation
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Figure 4.13: Atomic fraction map of Cr for a) static and b) dynamic dislocations, and c)
the corresponding profiles along L1 axis at a dose of 0.01 dpa, in the kinetic regime where
the atom diffusion is faster than the dislocation motion (tα0 < tη0) for Fe-15%Cr at 900 K,
KI

0 = 1.01× 10−3 dpa.s−1 and KV
0 = 10−3 dpa.s−1.
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Figure 4.14: Atomic fraction profile of Cr along L1 axis for dynamic dislocations at different
doses, in the kinetic regime where the atom diffusion is faster than the dislocation motion
(tα0 < tη0) for Fe-11%Cr at 700 K, KI

0 = 1.05× 10−5 dpa.s−1 and KV
0 = 10−5 dpa.s−1.

level along the dipole changes slightly with the dislocation motion (see Fig. 4.16-c)). This
may be due to the fact that, for the chosen SIA effective generation rate of 2×10−3dpa.s−1,
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the ratio tη0/tα0 is not far enough from 1 as shown in Fig. 4.11-b). On the other hand, in
Fe-11%Cr at 700 K the ratio tη0/tα0 is further away from 1 (see Fig. 4.11-a)), which allows
to explain the remarkable change of the Cr segregation profile as shown in Fig. 4.15-c),
especially in the compression region where there is no more Cr depletion compared to the
static profile for the dose reached (see Fig. 4.15-c)). The evolution of the Cr profile along
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Figure 4.15: Atomic fraction map of Cr for a) static and b) dynamic dislocations, and c)
the corresponding profiles along L1 axis at a dose of 0.012 dpa, in the kinetic regime where
the atom diffusion is slower than the dislocation motion (tα0 > tη0) for Fe-11%Cr at 700 K,
KI

0 = 2× 10−5 dpa.s−1 and KV
0 = 10−5 dpa.s−1.

the dipole as a function of dose during the loop growth is plotted in Figs. 4.17 and 4.18.
In Fe-15%Cr at 900 K, the Cr profile hardly changes with dose as shown in Fig. 4.18. In
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Figure 4.16: Atomic fraction map of Cr for a) static and b) dynamic dislocations, and c)
the corresponding profiles along L1 axis at a dose of 0.011 dpa, in the kinetic regime where
the atom diffusion is slower than the dislocation motion (tα0 > tη0) for Fe-15%Cr at 900 K,
KI

0 = 2× 10−3 dpa.s−1 and KV
0 = 10−3 dpa.s−1.

Fe-11%Cr at 700 K, it can be seen that the static Cr profile tends to be established at
the beginning of the loop growth (see Fig. 4.17): Cr enrichment in the tension region and
depletion in the compression region of dislocation. During loop growth, the Cr depletion
in the compression region is no longer observed and there is only Cr enrichment in all sides
of the dislocation. This can be explained by the fact that the compression region moves
towards the position where the tension region was previously during loop growth. As the
tension region was initially enriched in Cr, this region will become progressively depleted
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Figure 4.17: Atomic fraction profile of Cr along L1 axis for dynamic dislocations at different
doses, in the kinetic regime where the atom diffusion is slower than the dislocation motion
(tα0 > tη0) for Fe-11%Cr at 700 K, KI

0 = 2× 10−5 dpa.s−1 and KV
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Figure 4.18: Atomic fraction profile of Cr along L1 axis for dynamic dislocations at different
doses, in the kinetic regime where the atom diffusion is slower than the dislocation motion
(tα0 > tη0) for Fe-15%Cr at 900 K, KI

0 = 2× 10−3 dpa.s−1 and KV
0 = 10−3 dpa.s−1.

in Cr in order to establish the Cr segregation profile of the compression zone observed in
the static case. But due to the faster motion of dislocations, the establishment of this Cr
profile in the compression region (depletion) does not have time to fully occur (see Fig.
4.17).

4.3.2.2 Simulation type 2: system containing a dipole of edge dislocations
and a planar sink

The system containing the dipole of edge dislocations and the planar sink is illustrated
in Fig. 3.21. The effects of the resulting loop growth rate due to biased dislocations (see
section 3.2.5) on the RIS prediction were investigated. The PD generation rates were set
to Kd

0 = 10−5dpa.s−1 for Fe-11%Cr at 700 K and Kd
0 = 10−3dpa.s−1 for Fe-15%Cr at 900

K. In Figures 4.19 and 4.20 the Cr atomic fraction maps and profiles for both studied
alloys in static and dynamic regimes are plotted.
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In [82], the case of the static regime (immobile sink), the isolated planar sink (free of
any surrounding sink) is enriched in Cr in Fe-11%Cr at 700 K, while depletion is obtained
in Fe-15%Cr at 900 K [82] (see Fig. 4.1). Furthermore, the results of section 4.3.1 indicate
Cr enrichment in the tension region of dislocation and depletion in the compression zone
for both alloys in the system containing only a dislocation dipole. In the case where the
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Figure 4.19: Atomic fraction map of Cr for a) static and b) dynamic dislocations, and the
corresponding profiles along c) L1 d) L2 and e) L3 axis at a dose of 0.031 dpa for Fe-15%Cr
at 900 K, Kd

0 = 10−3dpa.s−1.
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Figure 4.20: Atomic fraction map of Cr for a) static and b) dynamic dislocations, and the
corresponding profiles along c) L1 d) L2 and e) L3 axis at a dose of 0.047 dpa for Fe-11%Cr
at 700 K, Kd

0 = 10−5dpa.s−1.

system contains both a dislocation dipole and a planar sink, the Cr map (see Fig. 4.19-a))
and profiles (see Figs. 4.19-c), d) and e)) in Fe-15%Cr at 900 K show Cr depletion along
the planar sink, Cr enrichment in the tension zone and depletion in the compression zone of
dislocations in the static regime, which is qualitatively similar to the tendencies observed
when these sinks are not interacting. Furthermore, the Cr segregation level is modified in
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the compression region when the planar sink is introduced in the system compared to the
case of isolated dislocations (see Fig. 4.19-c)). This is due to the fact that the total Cr
flux (see Eq. 4.7) towards the compression region of dislocations is strongly affected by
the presence of the planar sink, while the Cr flux in the tension region changes weakly as
shown in Fig. 4.21.
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Figure 4.21: Total Cr flux in static regime for a system containing a) an isolated dipole
of edge dislocations and b) a dipole of edge dislocations and a planar sink. The length of
the vector is proportional to the norm of the flux ‖J‖ =

√
J2

1 + J2
2 .

In Fe-11%Cr at 700 K, there is Cr enrichment and depletion respectively in the tension
and compression region of dislocations (see Figs. 4.20-a) and b)) like in the case of isolated
dislocations (see Fig. 4.4-d) and f)). However, Cr enrichment is not always obtained
along the planar sink (see Figs. 4.20-a), d) and e)) like in the case of a free planar sink.
Indeed, the Cr profiles of Figs. 4.20-d) and e) for static dislocations show the Cr depletion
in the region of the planar sink located below the tension zone of dislocation, and Cr
enrichment in the region of the planar sink located below the compression zone. This
can be explained as follows. As SIAs (respectively vacancies) are more attracted towards
the tension (respectively compression) region of the dislocation, and as atom fluxes are
coupled to PD fluxes (see Eqs. 4.7 and 4.6), the Cr fluxes due to vacancies and SIAs are
then affected. Especially, Cr atoms are more drifted towards the tension region due to
SIAs (see Fig. 4.22-a) and more expelled from the compression region due to vacancies
(see Fig. 4.22-b)). The planar sink being located close to dislocations, the Cr fluxes via
SIAs and vacancies along it are consequently affected especially near the part located
below the dislocations as shown in Fig. 4.22-a) and b). As the total Cr flow is the sum
of the Cr flow due to vacancies and SIAs (see Eq. 4.7), the resulting Cr flow given in Fig.
4.22-c) is also affected along the planar sink which leads to the local dependence of the
Cr segregation along it. This result shows that the RIS prediction depends also on the
surrounding microstructure.

During the dynamic regime of dislocations, the size and the shape of the Cr atmosphere
around dislocations are strongly affected in Fe-11%Cr at 700 K as illustrated on Fig. 4.20-
b), but not remarkably in Fe-15%Cr at 900 K as shown on Fig. 4.19-b). Globally, the Cr
profiles of Figs. 4.19-c), d), e) and Fig. 4.24 show that the Cr segregation level doesn’t
change with dislocation motion in Fe-15%Cr alloy. In Fe-11%Cr, the Cr segregation level
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Figure 4.22: Cr flow through a) SIAs, b) vacancies and c) the total Cr flow (see Eq. 4.7)
in the static regime of dislocations for Fe-11%Cr at 700 K. The length of the vector is
proportional to the norm of the flux ‖J‖ =

√
J2

1 + J2
2 , Kd

0 = 10−5dpa.s−1.

along the dipole changes weakly as shown by the Cr profiles of Fig. 4.20-c) and Fig. 4.23,
however the Cr profiles along the axis passing through the planar sink and the different
regions of dislocations (see Fig. 4.20-d) and e)) show a significant change compared to the
static profiles.
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Figure 4.23: Atomic fraction profile of Cr along L1 axis for dynamic dislocations at different
doses for Fe-11%Cr at 700 K, Kd

0 = 10−5dpa.s−1.
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Figure 4.24: Atomic fraction profile of Cr along L1 axis for dynamic dislocations at different
doses for Fe-15%Cr at 900 K, Kd

0 = 10−3dpa.s−1.

4.3.3 Simulation type 3: system containing a dipole of edge dislocations
with a mean sink strength k2

s associated to the other sinks

Simulations were performed for the Fe-14%Cr and Fe-18%Cr alloys at 800 K (K0 =
10−3dpa.s−1) because RIS was recently observed experimentally in these alloys near dislo-
cation lines [108]. The climb rate and the average Cr atomic fraction XdisloCr computed on a
given domain D as illustrated in Fig. 4.10 are represented in Fig. 4.25 as a function of k2

s .
The results of Fig. 4.25 show a good agreement between the climb rate obtained in our
simulations and the one predicted analytically. These results show also that globally there
is Cr enrichment in Fe-14%Cr and Cr depletion in Fe-18%Cr at dislocations for all the val-
ues of k2

s, which corresponds to the Cr segregation tendencies observed in [108]. It should
be noted that the average Cr atomic fraction computed in our case depends on the choice
of the domain D, which is at this stage arbitrary and therefore a more rigorous criterion
for the choice of D will be necessary. Furthermore, Fig. 4.25 shows an increase followed
by a decrease of the average Cr atomic fraction near dislocations in Fe-14%Cr with the
increase of k2

s, while only an increase is obtained in Fe-18%Cr. To better understand this
evolution of X̄disloCr with k2

s, the Cr maps and profiles are plotted in Figs. 4.26 and 4.27.
These figures show globally that the size, the shape and the level of the Cr segregation
around the dislocation core depend strongly on the values of k2

s. When we observe the
profile of Fig. 4.26-d) the negative segregation zone corresponding to the compression one
becomes less intense when k2

s increases. The same tendency is observed for Fe-18%Cr but
however the average segregation around the dislocation remains negative in this case. On
the whole, the segregation is globally positive (respectively negative) in the vicinity of
the dislocation for Fe-14%Cr alloys (respectively Fe-18%Cr alloys) at T = 800 K. These
tendencies are in good agreement with the experimental work of [108], which also reports
Cr enrichment around dislocations in Fe-14%Cr at this temperature and Cr depletion in
Fe-18%Cr. It must be pointed out that for these two alloys at T = 800 K, the study of
[108] also reports a negative segregation at the grain boundaries, which is an experimental
evidence that the RIS at dislocations and GBs is different. From the simulation results
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Figure 4.25: Climb rate (blue circle) and average Cr atomic fraction near the dislocation
core on the domain D (see Fig. 4.10) (red square) as a function of k2

s in a) Fe-14%Cr (D
= 4.528× 2.264 nm2) and in b) Fe-18%Cr at 800 K (D = 6.792× 3.396 nm2).

obtained, the phase field model incorporates features (dislocation motion, multi-sink ef-
fects,...) allowing to predict RIS near dislocations.

In summary of this section, the loop growth rate effects on the RIS prediction were
investigated. Simulations of type 1 in which the system contained only a dipole of
edge dislocations and KI

0 6= KV
0 were first performed. We showed by an analytical

approach that a suitable choice of KI
0 for a fixed value of KV

0 allowed to observe
the kinetic regime where atoms diffuse faster than the dislocation motion, and the
opposite one. The results showed that in the kinetic regime where the atom diffusion
is slower than the dislocation motion, the size and the shape of the Cr atmosphere
around dislocations are strongly modified, as well as the Cr segregation level: the RIS
prediction then depends on the sink mobility. Secondly, simulations of type 2 in which
the system contained a dipole of edge dislocations and a planar sink and KI

0 = KV
0 , were

performed. These simulations showed that the local Cr segregation near sink can be
changed significantly when another sink is nearby (multi-sink effects). Finally, a third
type of simulations was proposed, in which other sinks present in the microstructure
are represented by a mean sink strength k2

s. It was applied on Fe-14%Cr and Fe-18%Cr
alloys, for which data on RIS at dislocations are available. The simulation results are
promising since the obtained segregation tendencies at dislocations are similar to the
experimental ones.
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Figure 4.26: Cr atomic fraction in Fe-14%Cr for a) k2
s = 5× 1015 m−2, b) k2

s = 2.5× 1016

m−2, c) k2
s = 1017 m−2, and d) the corresponding profiles along the dipole.

4.4 Conclusion

A PF method allowing to predict RIS phenomenon near moving dislocations has been
presented in this chapter. The model has been applied to simulate RIS in Fe-Cr alloys,
and the main conclusions are the following. The RIS prediction can be strongly affected
when elastic interactions are taken into account as shown by the results of section 4.3.1.
Indeed, Cr enrichment and Cr depletion are predicted near dislocation cores respectively
in Fe-11%Cr at 700 K and in Fe-15%Cr at 900 K without elasticity. However with elas-
ticity, there is Cr enrichment in the tension region of dislocations and depletion in the
compression region for both alloys which shows that elasticity has a predominant role on
RIS prediction. The climb rate effects have been also investigated in section 4.3.2. The
results of section 4.3.2.1 showed that, in the kinetic regime where dislocations move faster
than atom diffusion, the size and shape of the solute atmosphere, the solute segregation
level and tendency around dislocation cores are modified. Furthermore, the results of
sections 4.3.2.2 and 4.3.3 also showed that the solute segregation level and tendency at
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Figure 4.27: Cr atomic fraction in Fe-18%Cr for a) k2
s = 5× 1015 m−2, b) k2

s = 2.5× 1016

m−2, c) k2
s = 1017 m−2, and d) the corresponding profiles along the dipole.

a given sink can be strongly modified due to the surrounding microstructure (multi-sink
effects).
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Conclusions and perspectives

This thesis was devoted to the modelling of microstructure evolution under irradiation
using a PF approach. As described in chapter 1, during irradiation ageing several phe-
nomena are observed such as dislocation loop growth/shrinkage, RIS, swelling, irradiation
creep and are explained by the evolution of microstructural defects (PDs, dislocation loops,
cavities, ...). The evolution of these microstructural defects depends on their ability known
as sink strength to absorb PDs. Thus, a precise prediction of microstructural evolution
requires an accurate computation of sink strengths. Furthermore, the different phenomena
can occur at the same time and therefore correlation effects may exist. For example, RIS
can occur near a dislocation loop during its growth and the RIS prediction can depend
on the loop growth rate. The purpose of this work was first to compute accurately the
sink strength for various sinks in pure metals by taking into account the elastic interac-
tions between PDs and sinks (see chapter 2). This type of calculation was already done
by Rouchette et al. [4] who took into account elastic effects in the total free energy of
the system, however Dederichs and Schroeder [41] showed that the PD diffusion tensor
is also modified in a strained system, which is known as elastodiffusion. Our simulations
incorporated the elastodiffusion effects and the role of PD anisotropy at saddle state was
investigated. Secondly, based on the PF model of dislocation climb of Geslin et al. [1] a
new model was developed and generalized to vacancies and SIAs which allows to simulate
dislocation loop growth/shrinkage under irradiation (see chapter 3). Finally, this new PF
model of dislocation climb under irradiation was coupled to atom diffusion in chapter 4
to predict RIS near a growing interstitial dislocation loop and investigate the climb rate
effects on the prediction.

Summary of the results

The sink strength was computed for edge dislocations, low-angle STGBs (array of edge
dislocations) and spherical cavities in pure fcc (Al, Ni) and bcc (Fe) metals by including
elastodiffusion effects in chapter 2. During the calculations, by solving the PD diffusion
equation, we used a staggered grid scheme to compute the strain field and the PD flux
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to handle the appearance of artifact oscillations and numerical instabilities which can
occur due to sharp variations of the diffusion tensor coefficients in the vicinity of the sink.
The results showed globally an increase of the sink strength with full elastodiffusion (real
elastic dipole tensor of PD at saddle point) for both PDs in the case of edge dislocations
and low-angle STGB compared to the case without elastodiffusion, and an increase for
SIAs and a decrease for vacancies in the case of cavities for all the metals investigated.
The results showed also a decrease of the sink bias with full elastodiffusion in the case
of edge dislocations for all the materials, a decrease for Al and Ni and an increase for Fe
in the case of STGB, and an increase in the case of cavities for all the materials. The
order of magnitude of the cavity bias obtained for all the materials with full elastodiffusion
('10%) showed that these defects can be no longer considered as neutral sinks as it is the
case in [10]. Otherwise, the results of the STGB sink biases obtained showed also that
STGBs with low inter-spacing (d < 30 nm) are biased sinks when elastic interactions are
considered. These results showed globally that the elastodiffusion plays an important role
on the sink strength calculation and its effects depend on the PD elastic dipole properties
at saddle point.

In chapter 2 the sink strength was calculated under the assumption of immobile sinks,
however the climb of edge dislocations occurs by absorption of PDs for example. Chapter
3 was dedicated to the development of a new PF model of dislocation climb under irra-
diation inspired from that of Geslin [1], and application of this new model to simulate
the growth of an interstitial dislocation loop in pure iron. Several tests were performed
to validate the new model and these tests led to the introduction of a shape function to
ensure that the climb process occurs due to the existence of the osmotic driving force only
at dislocation cores. Furthermore, the dislocation core structure modelled as a diffuse
interface is modified during climb when elastic interactions are taken into account and to
overcome this change the dislocation core energy had to be artificially increased and Eq.
3.64 applied. The application in pure iron to simulate the growth of an interstitial loop
showed that the PD equilibrium fraction inside the sink plays a significant role on the
loop growth rate calculations especially at high temperatures when the equilibrium va-
cancy fraction is high. A direct comparison of our results of the climb rate evolution with
the irradiation temperature, with those of the literature [81] was not possible due to the
differences in irradiation conditions. Nevertheless, we saw that the order of magnitude of
the climb rate obtained experimentally in [81] can be reached by extrapolating our results
to low dislocation densities.

The phenomenon of RIS was studied in Fe-Cr alloys near an interstitial dislocation loop
in chapter 4. The elasticity effects on RIS prediction were investigated and by means of the
new PF climb model developed in chapter 3, the climb rate effects were also studied. The
results showed a predominant role of elasticity on RIS prediction compared to the kinetic
effects. For example, under the assumption of immobile sinks the precipitation of the α′

phase is locally expected in the tension region of dislocation in Fe-11%Cr alloy at 700 K
when elasticity is taken into account which was not the case without elasticity. When
we take into account motion of the dislocation, we showed that when the atom diffusion
is faster than the dislocation motion, the solute atmosphere around the dislocation cores
and the level of segregation do not change during the loop growth. In the opposite case,
the solute atmosphere and the level of segregation are strongly modified. Preliminary
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comparisons between PF and experimental results on Fe-Cr alloys around dislocations are
encouraging, and illustrate the relevance of the PF method to investigate RIS in complex
microstructures.

Perspectives
In this work, different points were addressed namely the sink strength calculations, disloca-
tion loop evolution and RIS prediction. The results obtained made it possible to provide
some answers in the understanding and PF modelling of the microstructure evolution
under irradiation and they open new perspectives at the same time.

The sink strength calculations presented in chapter 2 which take into account the
elastodiffusion effects could be performed by considering the PD polarizability. Indeed,
in the presence of an elastic strain field such as the one generated by a dislocation, the
elastic dipole tensor of PD is modified [35, 109, 110]:

Pij(εkl) = P0
ij + αijklεkl (4.34)

where P0
ij is the permanent elastic dipole in an unstrained system and αijkl the PD di-

aelastic polarizability tensor. As we showed that the elastic dipole tensor anisotropy at
saddle state plays an important role on the sink strength calculations, the dependence of
the Pij-tensor with the local strain could have significant effects.

The PF model of dislocation climb developed in chapter 3 was applied to simulate the
growth of an interstitial loop in 2 dimensions in pure bcc iron. The study could be extended
to 3D simulations and the multi-sink effects on the climb rate could be also investigated
especially in the presence of 3D defects such as cavities. However, the assumption that
dislocations are perfect sinks which means a high jog density was considered in application
but for low jog density, this assumption is no longer valid. The PD diffusion towards the
dislocation is no longer invariant along the dislocation line due to the PD flux along this
line. The climb process is then limited by the mechanism of PD absorption/emission at
jogs. As a consequence, the shape of the dislocation loop may change during its evolution.
The dislocation loop border could be discretized into different segments, each of which
being characterized by a kinetic coefficient Ld

ηl
. Furthermore, our model is limited to

a single loop and a single slip plane, and its reformulation for multiple dislocations is
necessary to get closer to a realistic creep situation.

The RIS simulations presented in chapter 4 showed that local precipitation of a new
phase is expected near dislocations due to elasticity. A future work could be to incorporate
precipitation in the model. In chapters 2 and 3, we showed that elastodiffusion can have
significant effects on the PD fluxes and on the climb rate. Thus, the effects of the Onsager
coefficients dependence with the local strain (elastodiffusion) on the RIS prediction and
on the loop growth rate could be investigated. For the binary alloys Fe-Cr considered,
the difference between the lattice parameters of Fe and Cr is negligible and the atomic
size effects on the climb rate and RIS prediction were not studied. To study the effect of
atomic size, other chemical species could be considered.

In this work, the PD recombination and the PD emission by the sink were neglected and
could be taken into account in future works. Finally, the systems studied were considered
free of any external strain/stress and strained systems could also be considered.
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Appendix A

Numerical scheme and algorithm to treat
the diffusion equation when elastodiffusion

is considered

An explicit Euler scheme is used to solve Eq. 2.51:

Xt∗+δt∗
d = Xt∗

d + (∂Xd
∂t∗

)t∗δt∗ (A.1)

A finite difference scheme is used for the spatial discretization. The mechanical equi-
librium equation 2.34 in dimensionless form and the diffusion equation 2.51 have been
solved using the classical derivative operators:

∇∗1φ(r∗1, r∗2, r∗3) = [φ(r∗1 + 1, r∗2, r∗3)− φ(r∗1 − 1, r∗2, r∗3)]
2 (A.2)

∇̃∗1φ̃(q∗1, q∗2, q∗3) = [exp(icq∗1)− exp(−icq∗1)]
2 φ̃(q∗1, q∗2, q∗3) (A.3)

∇̃∗i is the Fourier transform of the gradient operator ∇∗i . ∇∗2 and ∇∗3 (respectively ∇̃∗2
and ∇̃∗3) are defined in the same way as ∇∗1 (respectively ∇̃∗1). Firstly, the strain field
generated by the sink (dipole of edge dislocations for example) has been computed in the
case of istropic system using the input parameters given in table 2.2. Simulations have
been performed in a 2 dimension box containing a dipole of edge dislocations as illustrated
in Fig. A.1-a). In Fig. A.1-b) the map of the component ε11(r) is illustrated. This map
shows artifact oscillations, which are similar to those expected in [111]. To eliminate these
oscillations, shifted derivative operators [111, 112, 113] are introduced and defined as:

∇∗,+1 φ(r∗1, r∗2, r∗3) = φ(r∗1 + 1, r∗2, r∗3)− φ(r∗1, r∗2, r∗3) (A.4)

∇∗,−1 φ(r∗1, r∗2, r∗3) = φ(r∗1, r∗2, r∗3)− φ(r∗1 − 1, r∗2, r∗3) (A.5)
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Figure A.1: a) 2D simulation domain containing a dipole of edge dislocations. Map of the
strain field component ε11(r) b) without staggered grid and c) with staggered grid. d)
Corresponding profiles along L1.

∇̃∗,+1 φ̃(q∗1, q∗2, q∗3) = (exp(icq∗1)− 1)φ̃(q∗1, q∗2, q∗3) (A.6)

∇̃∗,−1 φ̃(q∗1, q∗2, q∗3) = (1− exp(−icq∗1))φ̃(q∗1, q∗2, q∗3) (A.7)
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The displacement and the strain fields are thus evaluated on staggered grids schematized
in Fig. A.2. An important fact about using staggered grids is that: one staggered grid
(centers of the PF cells) is dedicated to the diagonal components of the strain tensor, and
one for each off-diagonal component (see Fig. A.2). The heterogeneous strain δεij(q∗)

kkε (i,j,k)

13ε (i,j,k)

12ε (i,j,k)

ε23
(i,j,k)

u (i,j,k)
1

u (i+1,j,k)
1

u (i,j,k)
3

u (i,j,k+1)
3

u (i,j+1,k)
2

u (i,j,k)
2

Figure A.2: Staggered finite difference grids [111]. The total volume represent a unit PF
cell.

given by Eq. 2.30 is then written in the Fourier space using the shifted derivative operators
as follows:

δε̃kl(q∗) = 1
2[∇̃∗,±l ũk + ∇̃∗,±k ũl](q∗) where ∇∗,±l,k =


∇̃∗,+l,k if k = l

∇̃∗,−l,k if k 6= l

(A.8)

The mechanical equilibrium (equation 2.31) becomes:

∇̃∗,±j C∗ijkl(εkl(q∗)− ε
0,tot
kl (q∗)) = 0 where ∇̃∗,±j =


∇̃∗,−j if i = j

∇̃∗,+j if i 6= j

(A.9)

Using Eq. A.8 and Eq. 2.24, Eq. A.9 leads to:

C∗ijkl∇̃
∗,±
j ∇̃

∗,±
l ũk(q∗) = C∗ijkl[

∑
d

ε0,Xd
kl ∇̃

∗,±
j X̃d(q∗) + ε0,ηs

kl ∇̃
∗,±
j η̃s(q∗)] (A.10)

with

∇̃∗,±j =


∇̃∗,−j if i = j

∇̃∗,+j if i 6= j

and ∇̃∗,±l =


∇̃∗,+l if k = l

∇̃∗,−l if k 6= l

(A.11)

Eq. A.10 can be written as:

[G∗,±ik (q∗)]−1ũk(q∗) = C∗ijkl[
∑
d

ε0,Xd
kl ∇̃

∗,±
j X̃d(q∗) + ε0,ηs

kl ∇̃
∗,±
j η̃s(q∗)] (A.12)
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where

[G∗,±ik (q∗)]−1 = C∗ijkl∇̃
∗,±
j ∇̃

∗,±
l =



C∗ijkl∇̃
∗,−
j ∇

∗,+
l if i = j and k = l

C∗ijkl∇̃
∗,−
j ∇

∗,−
l if i = j and k 6= l

C∗ijkl∇̃
∗,+
j ∇

∗,+
l if i 6= j and k = l

C∗ijkl∇̃
∗,+
j ∇

∗,−
l if i 6= j and k 6= l

(A.13)

The oscillations are then overcome as illustrated by the map in Fig. A.1-c) obtained using
the staggered grids. The suppression of the oscillations does not affects significantly the
values of the strain far from the sink as shown by the profiles plotted in Fig. A.1-d).

The dimensionless elastic energy (see Eq. 2.36) is also rewritten using the shifted
derivative operators:

F ∗el = 1
2

∑
m

C∗ijklε
0,θm
ij ε0,θm

kl θm −
1
2

∑
m

∑
n

C∗ijklε
0,θm
ij ε0,θn

kl θmθn

− 1
2

∑
m

∑
n

∫
∇̃∗,±j σ0,θm∗

ij G∗,±ik (q∗)σ0,θn∗
kl ∇̃∗,±l θ̃m(q)θ̃n(q)d3q∗ (A.14)

with ∇̃∗,±j =
{
∇̃∗,+j si i = j

∇̃∗,−j si i 6= j
, ∇̃∗,±l =

{
∇̃∗,−l si k = l

∇̃∗,+l si k 6= l
To prevent the appearance of artifact oscillations during the resolution of the diffusion

equation, a staggered grid is employed to compute the PD flux as done in [82]. This new
scheme allows to handle numerical instabilities which can occur due to sharp variations of
the diffusion tensor coefficients when elastodiffusion is taken into account. The PD flux is
rewritten using the shifted derivative operators:

Jd,∗+i (r∗, t∗) = −
∑
j

Dd,∗+
ij,j (r∗)X+

d,j(r
∗, t∗)∇∗,+j (µd,∗chem(r∗, t∗) + µd,∗el (r∗, t∗)) (A.15)

Jd,∗−i (r∗, t∗) = −
∑
j

Dd,∗−
ij,j (r∗)X−d,j(r

∗, t∗)∇∗,−j (µd,∗chem(r∗, t∗) + µd,∗el (r∗, t∗)) (A.16)

with 

Dd,∗+
ij,1 (r∗1, r∗2, r∗3) = Dd,∗ij (r∗1+1,r∗2 ,r∗3)+D∗ij(r

∗
1 ,r
∗
2 ,r
∗
3)

2

Dd,∗+
ij,2 (r∗1, r∗2, r∗3) = Dd,∗ij (r∗1 ,r∗2+1,r∗3)+D∗ij(r

∗
1 ,r
∗
2 ,r
∗
3)

2

Dd,∗+
ij,3 (r∗1, r∗2, r∗3) = Dd,∗ij (r∗1 ,r∗2 ,r∗3+1)+D∗ij(r

∗
1 ,r
∗
2 ,r
∗
3)

2

(A.17)


Dd,∗−
ij,1 (r∗1, r∗2, r∗3) = D∗ij(r

∗
1 ,r
∗
2 ,r
∗
3)+D∗ij(r

∗
1−1,r∗2 ,r∗3)

2

Dd,∗−
ij,2 (r∗1, r∗2, r∗3) = D∗ij(r

∗
1 ,r
∗
2 ,r
∗
3)+D∗ij(r

∗
1 ,r
∗
2−1,r∗3)

2

Dd,∗−
ij,3 (r∗1, r∗2, r∗3) = D∗ij(r

∗
1 ,r
∗
2 ,r
∗
3)+D∗ij(r

∗
1 ,r
∗
2 ,r
∗
3−1)

2

(A.18)
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X+
d,1(r∗1, r∗2, r∗3, t∗) = Xd(r∗1+1,r∗2 ,r∗3 ,t∗)+Xd(r∗1 ,r∗2 ,r∗3 ,t∗)

2

X+
d,2(r∗1, r∗2, r∗3, t∗) = Xd(r∗1 ,r∗2+1,r∗3 ,t∗)+Xd(r∗1 ,r∗2 ,r∗3 ,t∗)

2

X+
d,3(r∗1, r∗2, r∗3, t∗) = Xd(r∗1 ,r∗2 ,r∗3+1,t∗)+Xd(r∗1 ,r∗2 ,r∗3 ,t∗)

2

(A.19)


X−d,1(r∗1, r∗2, r∗3, t∗) = Xd(r∗1 ,r∗2 ,r∗3 ,t∗)+Xd(r∗1−1,r∗2 ,r∗3 ,t∗)

2

X−d,2(r∗1, r∗2, r∗3, t∗) = Xd(r∗1 ,r∗2 ,r∗3 ,t∗)+Xd(r∗1 ,r∗2−1,r∗3 ,t∗)
2

X−d,3(r∗1, r∗2, r∗3, t∗) = Xd(r∗1 ,r∗2 ,r∗3 ,t∗)+Xd(r∗1 ,r∗2 ,r∗3−1,t∗)
2

(A.20)

where Jd,∗+i and Jd,∗−i are respectively the ith component of the PD flux shifted to the
right and to the left. In other words, the PD flux is evaluated at the middle of the PF cell
boundaries as illustrated in Fig. A.3. Diffusion equation 2.51 becomes:

J+
2,1

J+
1,1 ;

J-
2,1

J-
1,1 ;

J+
2,2

J+
1,2 ;

J-
2,2

J-
1,2 ;

J+
1,1

-
1

J-
1,1

+
1

J-
2,2

+
2

J+
2,2

-
2

J+
1,2

+
1 ;

J+
2,1

+
2

J-
1,2

+
1 ;

J+
2,1

-
2

J+
1,2

-
1 ;

J-
2,1

+
2

J-
1,2

-
1 ;

J-
2,1

-
2

Figure A.3: 2D representation of the staggered grid used to compute the PD flux and its
divergence.

∂Xd
∂t∗

(r∗, t∗) = −
∑
i

∑
j

∇∗,∓i Jd,∗±i,j (r∗, t∗) +K∗0 − J
abs,∗
s,d (r∗, t∗) (A.21)

with
Jd,∗±i,j (r∗, t∗) = Dd,∗±

ij,j (r∗)X±d,j(r
∗, t∗)∇∗,±j µd,∗(r∗, t∗) (A.22)

where

∇∗,∓i Jd,∗±i,j =


−∇∗,−i Jd,∗+i,i or equivalently

−∇∗,+i Jd,∗−i,i if i = j
(A.23)
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and

∇∗,∓i Jd,∗±i,j = −1
4[∇∗,−i Jd,∗+i,j +∇∗,−i Jd,∗−i,j +∇∗,+i Jd,∗−i,j +∇∗,+i Jd,∗+i,j ]

if i 6= j (A.24)

For the diagonal terms of the diffusion tensor, the divergence of the PD flux given by
∇∗,∓i Jd,∗±i,j is evaluated at the center of the PF cells. On the other hand for off-diagonal
terms, ∇∗,∓i Jd,∗±i is calculated at the corner of the PF cell boundaries as shown in Fig.
A.3. To have the divergence of the PD flux at the center of the PF cells, an average value
of all the terms ∇∗,∓i Jd,∗±i,j given at each corner is done. In practice, the discretization
scheme is more stable when it is only the chemical flux Jd,∗chem which is evaluated on shifted
grids. This may due to the fact that the elastic potential µd,∗el is computed using the
shifted derivative operators, and the diffusion coefficients Dd,∗

ij are also computed using
the shifted derivative operators via the strain field.
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Appendix B

Dislocation climb: derivation of the
evolution equations

The total differential of F(φI, φV, η
l
I, η

l
V) is given by:

dF (φI, φV, η
l
I, η

l
V) = δF

δφI
dφI + δF

δφV
dφV + δF

δηlI
dηlI + δF

δηlV
dηlV (B.1)

Using the relations dφI = dXI + dηlI and dφV = dXV + dηlV, Eq. B.1 becomes:

dF (φI, φV, η
l
I, η

l
V) = δF

δφI
dXI + δF

δφV
dXV + ( δF

δφI
+ δF

δηlI
)dηlI + ( δF

δφV
+ δF

δηlV
)dηlV (B.2)

Moreover, dF(XI,XV, η
l
I, η

l
V) is given by:

dF (XI, XV, η
l
I, η

l
V) = δF

δXI
dXI + δF

δXV
dXV + δF

δηlI
dηlI + δF

δηlV
dηlV (B.3)

knowing that dF(φI, φV, η
l
I, η

l
V) = dF(XI,XV, η

l
I, η

l
V), equations B.2 and B.3 are equivalent

and the following relations emerge:

δF (XI,XV,η
l
I,η

l
V)

δXI
= δF (φI,φV,η

l
I,η

l
V)

δφI

δF (XI,XV,η
l
I,η

l
V)

δXV
= δF (φI,φV,η

l
I,η

l
V)

δφV

δF (XI,XV,η
l
I,η

l
V)

δηlI
= δF (φI,φV,η

l
I,η

l
V)

δφI
+ δF (φI,φV,η

l
I,η

l
V)

δηlI

δF (XI,XV,η
l
I,η

l
V)

δηlV
= δF (φI,φV,η

l
I,η

l
V)

δφV
+ δF (φI,φV,η

l
I,η

l
V)

δηlV

(B.4)

The evolution equations 3.18 - 3.21 become by using relations B.4 and ∂φd
∂t = ∂Xd

∂t + ∂ηld
∂t :
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∂XI

∂t
= ∇.[MI∇δF (XI, XV, η

l
I, η

l
V)

δXI
]− ∂ηlI

∂t
(B.5)

∂XV

∂t
= ∇.[MV∇δF (XI, XV, η

l
I, η

l
V)

δXV
]− ∂ηlV

∂t
(B.6)

∂ηlI
∂t

= −LI
ηl [
δF (XI, XV, η

l
I, η

l
V)

δηlI
− δF (XI, XV, η

l
I, η

l
V)

δXI
] (B.7)

∂ηlV
∂t

= −LV
ηl [
δF (XI, XV, η

l
I, η

l
V)

δηlV
− δF (XI, XV, η

l
I, η

l
V)

δXV
] (B.8)

The loop evolution is given by the plastic field ηl (see Eq. 3.9) and ηld can be seen as an
intermediate parameter which allows to give the loop evolution through the PD d. Since
the free energy of the system is given as a function of ηl and not ηd, it is more convenient
to write the evolution of ηl. The following relations are verified using Eq. 3.9:

δF (XI,XV,η
l
I,η

l
V)

δηlI
= sg(l)

X∗
δF (XI,XV,η

l)
δηl

δF (XI,XV,η
l
I,η

l
V)

δηlV
= − sg(l)

X∗
δF (XI,XV,η

l)
δηl

(B.9)

Finally, the evolution equations are as follows:

∂XI

∂t
= ∇.[MI∇δF (XI, XV, η

l)
δXI

]− ∂ηlI
∂t

(B.10)

∂XV

∂t
= ∇.[MV∇δF (XI, XV, η

l)
δXV

]− ∂ηlV
∂t

(B.11)

∂ηlI
∂t

= −LI
ηl [
sg(l)
X∗

δF (XI, XV, η
l)

δηl
− δF (XI, XV, η

l)
δXI

] (B.12)

∂ηlV
∂t

= −LV
ηl [−

sg(l)
X∗

δF (XI, XV, η
l)

δηl
− δF (XI, XV, η

l)
δXV

] (B.13)

The loop evolution is simply given by ∂ηl

∂t = sg(l)
X∗ (∂η

l
I

∂t −
∂ηlV
∂t ). Substituting the total

energy into Eqs. B.10 - B.13 and taking the first variational derivatives with respect to
Xd and ηl, we obtain the following contracted evolution equations:

∂Xd

∂t
= ∇.[Md∇(µdchem + µdel)]−

∂ηld
∂t

(B.14)

∂ηld
∂t

= −Ldηl [
1
X∗ sg(l)sg(d)(µηlcore + µη

l

el )− (µdchem + µdel)] (B.15)

where sg(d) = 1 for SIAs and -1 for vacancies and:

µdchem = Vat
δFchem
δXd

= Edf + kBT lnXd = kBT ln( Xd

Xd
eq

) (B.16)
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with Xdeq the thermal equilibrium value of PD d, related to its formation energy by the
relation:

Xd
eq = exp(−

Edf
kBT

) (B.17)

µdel = Vat
δFel
δXd

, µη
l

el = Vat
δFel
δηl

(B.18)

µdel and µη
l

el are calculated in the Fourier space in which they have the following simple
form:

µ̃I
el(q) = BII(q)X̃I(q) +BIV(q)X̃V(q) +BIηl(q)f̃(η̃l)(q) (B.19)

µ̃V
el(q) = BVV(q)X̃V(q) +BVI(q)X̃I(q) +BVηl(q)f̃(η̃l)(q) (B.20)

µ̃η
l

el (q) = f̃
′(η̃l)[BηlI(q)X̃I(q) +BηlV(q)X̃V(q) +Bηlηl(q)f̃(η̃l)(q)] (B.21)

with 

BII(q) = σ0,XI
ij ε0,XI

ij − qiσ0,XI
ij Gjm(q)σ0,XI

mn qn

BVV(q) = σ0,XV
ij ε0,XV

ij − qiσ0,XV
ij Gjm(q)σ0,XV

mn qn

BIV(q) = σ0,XI
ij ε0,XV

ij − qiσ0,XI
ij Gjm(q)σ0,XV

mn qn

BVI(q) = σ0,XV
ij ε0,XI

ij − qiσ0,XV
ij Gjm(q)σ0,XI

mn qn

BIηl(q) = σ0,XI
ij ε0,η

l

ij − qiσ
0,XI
ij Gjm(q)σ0,ηl

mn qn

BVηl(q) = σ0,XV
ij ε0,η

l

ij − qiσ
0,XV
ij Gjm(q)σ0,ηl

mn qn

BηlI(q) = σ0,ηl
ij ε0,XI

ij − qiσ0,ηl
ij Gjm(q)σ0,XI

mn qn

BηlV(q) = σ0,ηl
ij ε0,XV

ij − qiσ0,ηl
ij Gjm(q)σ0,XV

mn qn

Bηlηl(q) = σ0,ηl
ij ε0,η

l

ij − qiσ
0,ηl
ij Gjm(q)σ0,ηl

mn qn

(B.22)

where σ0,Xd
ij = Cijklε

0,Xd
kl and σ0,ηl

ij = Cijklε
0,ηl
kl . µ̃ is the Fourier transform of µ and q the

wave vector as defined in section 2.2.

µη
l

core = Vat
δFcore
δηl

= Vat(
δFcry
δηl

+ δFgrad
δηl

) (B.23)

with

δFcry
δηl

= 2Hηl(1− ηl)(1− 2ηl), δFgrad
δηl

= γ

2
δ(|n ∧∇ηl|2)

δηl
(B.24)
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