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Résumé

L'essor de grands réseaux sociaux en ligne (comme Facebook, Twitter) a

permis la constitution de grands jeux de données temporelles. Ces nou-

veaux jeux de données ont donné l'occasion aux chercheurs de développer

de nouveaux modèles pour décrire et prédire l'évolution de ces systèmes

sociaux au cours du temps suivant la dynamique des acteurs sociaux et

de leurs interactions. Pour résoudre ce problème, plusieurs modèles ont

été proposés dans la littérature, tels que les modèles d'attachement préfé-

rentiel et les modèles probabilistes, ou d'autres intégrant des modèles de

Markov ou des méthodes spectrales.

Mais une question importante qui doit être abordée est la pertinence de ces

modèles d'évolution pour les réseaux sociaux personnels en ligne (OPNs),

qui présentent des caractéristiques di�érentes à la fois structurelles et

comportementales, présentant souvent le comportement opposé à celui

du réseau social auquel ils participent. Plus précisément, nous sommes in-

téressés à explorer les caractéristiques structurelles de ces réseaux et leur

relation/in�uence sur leur évolution.

Dans ce contexte, nous abordons deux questions principales : la caracté-

risation et la prédiction de l'évolution des réseaux personnels. Le premier

enjeu nécessite d'explorer l'évolution des réseaux sociaux personnels au

moyen d'une analyse de leur topologie basée sur des métriques structu-

relles. Le deuxième vise, à travers les propriétés découvertes qui régissent

les réseaux personnels et leur évolution, à proposer de nouveaux modèles

d'évolution adaptés aux OPNs. Pour cela, nous étudions le cas des ré-

seaux de co-auteurs (ou de collaboration) et nous considérons le réseau

personnel de chaque auteur du réseau.

Les principales contributions de cette thèse peuvent être résumées comme

suit :



(i) Un ensemble de dé�nitions des réseaux personnels en ligne. Tout

d'abord, nous introduisons un ensemble de nouvelles dé�nitions des

OPNs qui prennent en compte la diversité des réseaux personnels qui

existent aujourd'hui, caractérisés par la force et le sens de l'interac-

tion entre deux acteurs sociaux.

(ii) Une étude approfondie de l'évolution des réseaux personnels en ligne.

Nous étudions l'évolution d'un vaste ensemble de données de réseaux

personnels de collaboration d'auteurs à partir de publications scien-

ti�ques. L'analyse a été menée en deux volets : une première analyse

a été menée en étudiant l'évolution d'un ensemble de métriques dé-

crivant la topologie des réseaux, et une seconde analyse a été menée

sur l'évolution structurelle des réseaux en se concentrant sur leur

décomposition en cliques maximales. Les analyses e�ectuées nous

ont fourni une série de découvertes intéressantes nous permettant de

comprendre comment ces réseaux évoluent.

(iii) L'implémentation du logiciel PERSONA qui a été utilisé pour me-

ner l'étude précédente. Le framework PERSONA, qui a été conçu

et développé dans le cadre de cette thèse, est complet et opération-

nel. Il sert d'outil pour l'analyse des réseaux personnels, et comprend

un ensemble de métriques pour l'analyse de l'évolution des réseaux

personnels et un ensemble de modèles/algorithmes d'évolution à ap-

pliquer sur les réseaux.

(iv) Un modèle d'évolution, appelé PERSONEM. Les résultats de l'étude

approfondie menée sur les réseaux personnels de collaboration nous

ont permis de développer un nouveau modèle d'évolution des réseaux

personnels, appelé PERSONEM, qui prédit un réseau personnel au

temps t + 1, à partir du réseau personnel au temps t et du nombre

de n÷uds qui doivent être ajoutés. PERSONEM est basé sur l'idée

qu'un nouveau ou un ancien n÷ud se connectera toujours à une clique

existante.

(v) Une étude expérimentale évaluant l'e�cacité du modèle d'évolution

PERSONEM. Pour cela, nous avons utilisé des données réelles et

volumineuses. L'expérience a été réalisée en utilisant un ensemble

diversi�é de réseaux personnels de collaboration réels a�n de prédire
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leur évolution. En�n, nous montrons que les résultats obtenus sont

satisfaisants.

En résumé, cette thèse est un premier e�ort pour comprendre les carac-

téristiques et l'évolution des réseaux sociaux personnels en ligne et pour

fournir des algorithmes et des modèles pour cela. Alors que nous nous

sommes concentrés sur les réseaux personnels de collaboration en ligne

avec des caractéristiques spéci�ques (co-auteurs), les résultats produits

pourraient être utilisables par la communauté dans son ensemble.

Keywords : Réseaux Sociaux, Réseaux Sociaux Personnels, Modèles d'Evo-

lution, Réseaux de Collaboration
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Abstract

The rise of numerous online social networks has led to the creation of

large datasets that have given researchers the opportunity to develop new

models to describe and predict the evolution of these social systems over

time according to the dynamics of the social interactions. To address this

problem, several models were proposed in the literature, such as prefer-

ential attachment and probabilistic models, or others integrating Markov

models or spectral methods.

But one important question that needs to be addressed is the suitability of

these evolution models for online personal social networks (OPNs), which

carry di�erent characteristics both structural and behavioral, many times

exhibiting the opposite behavior than the social network they participate

to. More precisely, we are interested in exploring the structural charac-

teristics of those networks and their relation/in�uence on their evolution.

In this context, we address two main issues: the characterization and the

prediction of the evolution of OPNs. The �rst issue requires to explore

the evolution of personal social networks by means of metrics-based and

structural analysis of their topology. The second issue aims at, by means

of the discovered properties that govern the online personal networks and

their evolution, proposing new evolution models �tting OPNs. To this

end, we study the case of co-authorship (or collaboration) networks and

we consider the personal network of each author in the network.

The main contributions of this work can be summarized as follows:

(i) A set of de�nitions for online personal networks. First, we introduce

a set of new de�nitions for online personal networks that take into

account the diversity of personal networks that exist today charac-

terized by the strength and the direction of the interaction between

two social actors.



(ii) An extensive study of online personal networks evolution. We study

the evolution of a large dataset of personal collaboration networks

of authors from scienti�c publications. The analysis was conducted

twofold: a �rst analysis was carried by studying the evolution of a set

of metrics describing the networks' topology, and a second analysis

was conducted on the structural evolution of the networks focusing

on their decomposition in maximal cliques. The performed analyses

provided us a series of interesting discoveries allowing us an under-

standing of how these networks evolve.

(iii) The implementation of the PERSONA software framework that was

used to conduct the previous study. The PERSONA framework, that

was designed and developed as part of this thesis, is complete and

operational, and it serves as a tool for personal network analysis,

including a set of metrics for OPN evolution analysis and a set of

evolution models/algorithms to apply on the networks.

(iv) An evolution model, called PERSONEM. The results of the exten-

sive study conducted on personal collaboration networks allowed us

to develop a new personal network evolution model, called PER-

SONEM, predicting a personal network in time t+1, starting from

the personal network in time t and the number of nodes that have to

be added. PERSONEM is based on the idea that a new or old node

will always connect to an existing clique.

(v) An experimental study assessing the e�ectiveness of the PERSONEM

evolution model. For this purpose, we used real-life and large data .

The experiment was carried out by using a diverse set of real personal

collaboration networks in order to predict their evolution. Finally,

we show that the results obtained are satisfactory.

In summary, this thesis is a �rst e�ort to understand the characteristics

and the evolution of Online Personal Social Networks and to provide al-

gorithms and models for it. While we have focused on online personal

collaboration networks with speci�c characteristics (co-authorships), the

results produced could be usable by the greater community.

Keywords: Social Networks, Personal Social Networks, Evolution Mod-

els, Collaboration Networks

xi



Contents

1 Introduction 1

1.1 Research Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Social Networks and Personal Networks 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Social Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Social Networks Representation . . . . . . . . . . . . . . . . . 9

2.2.2 Social Networks Analysis . . . . . . . . . . . . . . . . . . . . . 10

2.3 Personal networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 O�ine Personal Networks . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Online Personal Networks (OPNs) . . . . . . . . . . . . . . . . 23

2.3.3 Personal networks de�nitions . . . . . . . . . . . . . . . . . . 25

2.3.4 Personal networks analysis . . . . . . . . . . . . . . . . . . . . 30

2.4 Evolution of OSNs and OPNs . . . . . . . . . . . . . . . . . . . . . . 36

2.4.1 Evolving networks . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.2 Temporal networks . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.3 First evolving network model - Scale-free networks . . . . . . . 38

2.4.4 Evolution models for OSNs . . . . . . . . . . . . . . . . . . . 39

2.4.5 Evolution studies of OPNs . . . . . . . . . . . . . . . . . . . . 41

2.5 Co-authorship networks topology and evolution studies . . . . . . . . 43

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Online Personal Networks De�nitions: A proposal 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 From Dunbar's model for personal networks to new de�nitions of online

personal networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xii



3.3 Undirected online personal networks . . . . . . . . . . . . . . . . . . 49

3.4 Directed online personal networks . . . . . . . . . . . . . . . . . . . . 52

3.4.1 Incoming online personal networks . . . . . . . . . . . . . . . 53

3.4.2 Outgoing online personal networks . . . . . . . . . . . . . . . 55

3.5 Weighted online personal networks . . . . . . . . . . . . . . . . . . . 56

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Co-authorship Personal Networks Evolution: Analysis 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Data set description . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.2 Data storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.3 The co-authorship network and its evolution . . . . . . . . . . 64

4.3 Analysis of 1-level co-authorship personal networks evolution via links

characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Metrics-driven Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.1 Chosen metrics and motivations . . . . . . . . . . . . . . . . . 69

4.4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.3 Metrics evolution trends . . . . . . . . . . . . . . . . . . . . . 75

4.4.4 Results summary and discussion . . . . . . . . . . . . . . . . . 110

4.5 Analysis of co-authorship personal networks evolution via cliques . . . 113

4.5.1 Number of cliques . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.5.2 Cliques' size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.5.3 Clique size power law . . . . . . . . . . . . . . . . . . . . . . . 126

4.5.4 Evolution of the size of cliques . . . . . . . . . . . . . . . . . . 128

4.5.5 Minimum cliques size . . . . . . . . . . . . . . . . . . . . . . . 129

4.5.6 Maximum cliques size . . . . . . . . . . . . . . . . . . . . . . 130

4.5.7 Connection between new nodes and (maximal) cliques . . . . . 131

4.5.8 Results summary and discussion . . . . . . . . . . . . . . . . . 133

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xiii



5 PERSONEM - a New Evolution Model 139

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.2 Clique-superposition evolution model [134] . . . . . . . . . . . . . . . 140

5.2.1 Clique-superposition concept . . . . . . . . . . . . . . . . . . . 140

5.2.2 Model's description . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2.3 Vertex cover algorithm for random clique �nding - KEWLS

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.2.4 The clique-superposition model applied on co-authorship per-

sonal networks . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.3 PERSONEM : a new evolution model for personal co-authoring net-

works evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.3.1 Limitations of the clique-superposition model . . . . . . . . . 148

5.3.2 Solutions to the outlined limitations: towards a predictive evo-

lution model . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.3.3 The description of the proposed evolution model, PERSONEM 158

5.3.4 PERSONEM model's parameters . . . . . . . . . . . . . . . . 161

5.3.5 Example of application of the PERSONEM model against the

clique-superposition model . . . . . . . . . . . . . . . . . . . . 166

5.4 PERSONEM model's experimental results . . . . . . . . . . . . . . . 166

5.4.1 Methodology and objectives . . . . . . . . . . . . . . . . . . . 166

5.4.2 Results for personal co-authoring networks with k = 1 . . . . . 171

5.4.3 Results for personal co-authoring networks with k = 2, 3, 4 . . 174

5.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

5.5 PERSONEM model's performance . . . . . . . . . . . . . . . . . . . 214

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

6 The Software Framework PERSONA 221

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

6.2 Existing tools for personal networks analysis . . . . . . . . . . . . . . 221

6.3 The choice of Technical Solutions . . . . . . . . . . . . . . . . . . . . 223

6.3.1 JGraphT Library . . . . . . . . . . . . . . . . . . . . . . . . . 223

6.3.2 Additional Libraries . . . . . . . . . . . . . . . . . . . . . . . 224

6.4 PERSONA's design and implementation . . . . . . . . . . . . . . . . 225

6.5 Modules Development . . . . . . . . . . . . . . . . . . . . . . . . . . 226

6.5.1 (Personal) Network Management/Storage Module . . . . . . . 228

6.5.2 Personal Network Retrieval Module . . . . . . . . . . . . . . . 228

xiv



6.5.3 Metrics Computation Module . . . . . . . . . . . . . . . . . . 229

6.5.4 Evolution Models Management Module . . . . . . . . . . . . . 231

6.5.5 Network visualisation Module . . . . . . . . . . . . . . . . . . 232

6.5.6 Personal Network Exportation Module . . . . . . . . . . . . . 233

6.6 PERSONA framework's usage with DBLP data . . . . . . . . . . . . 233

6.6.1 Global network storage . . . . . . . . . . . . . . . . . . . . . . 233

6.6.2 Connection to the global network . . . . . . . . . . . . . . . . 235

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

7 Conclusion and Perspectives 237

Bibliography 241

xv



List of Figures

2.1 Example of a Social Network Graph. . . . . . . . . . . . . . . . . . . 10

2.2 Clique and maximal clique examples in a social network graph. . . . . 13

2.3 Geodesic distance example in a social network. . . . . . . . . . . . . . 14

2.4 Star and Complete subgraphs. . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Local clustering coe�cient example in a social network. . . . . . . . . 16

2.6 Triplet and triangle examples in a social network. . . . . . . . . . . . 17

2.7 Degree centrality example in a social network. . . . . . . . . . . . . . 19

2.8 Closeness and betweenness centralities example in a social network. . 20

2.9 Dunbar circles [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.10 Example of the 1-personal network of Paul. . . . . . . . . . . . . . . . 23

2.11 1-level ego-network examples. . . . . . . . . . . . . . . . . . . . . . . 26

2.12 Example of a Personal Network with k = 3 for ego node '0'. . . . . . 29

2.13 Example of a clique in the Personal Network of Ego '0', k=3. . . . . . 31

2.14 Example of Two Step Reach in the Personal Network of Ego '0', k=3. 32

2.15 Example of a Personal Network with k = 3 for ego node '0'. . . . . . 33

2.16 Example of a Structural Hole [137]. . . . . . . . . . . . . . . . . . . . 34

2.17 Brokerage Roles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.18 Evolving Network Snapshots. . . . . . . . . . . . . . . . . . . . . . . 37

2.19 Example of a Time Varying Graph (TVG) [120]. . . . . . . . . . . . . 37

2.20 Scale-free Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.21 EgoLines visualization tool. . . . . . . . . . . . . . . . . . . . . . . . 42

2.22 EgoSlider visualization tool. . . . . . . . . . . . . . . . . . . . . . . . 43

2.23 Personal network of author "Fabrice Arnal". . . . . . . . . . . . . . . 44

2.24 Dunbar circles [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 From Dunbar circles to OPNs de�nition. . . . . . . . . . . . . . . . . 50

3.2 Undirected Personal Network Example. . . . . . . . . . . . . . . . . . 51

3.3 Directed (incoming and outgoing) 3-personal network of ego "0". . . . 52

3.4 The incoming personal network of ego "0", k=4. . . . . . . . . . . . . 54

xvi



3.5 The outgoing personal network of ego "0", k=3. . . . . . . . . . . . . 56

3.6 Directed 4-personal network of ego "0". . . . . . . . . . . . . . . . . . 57

3.7 Weighted 2-personal network of ego node "0". . . . . . . . . . . . . . 58

4.1 Citation and Co-authorship Networks. . . . . . . . . . . . . . . . . . 64

4.2 Giant Component of Computer Networks Co-authoring Graph. . . . . 65

4.3 Types of edges, connecting the alters, in 1-level personal networks of

authors in dataset1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Density values on 2006, k = 4, for authors starting publishing on 2004

(dataset1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Density distribution on 2006, k = 4, for authors starting publishing on

2004 (dataset1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Distribution of the number of nodes on 2009, k = 3, for authors starting

publishing on 2004 (dataset1). . . . . . . . . . . . . . . . . . . . . . . 76

4.7 Distribution of the number of edges on 2009, k = 3, for authors starting

publishing on 2004 (dataset1). . . . . . . . . . . . . . . . . . . . . . . 77

4.8 Density distribution on 2006, k = 1, for authors starting publishing on

2004 (dataset1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.9 Density distribution on 2009, k = 1, for authors starting publishing on

2004 (dataset1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.10 Density values on 2006, k = 4, for authors starting publishing on 2004

(dataset1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.11 Density values on 2009, k = 4, for authors starting publishing on 2004

(dataset1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.12 Density values on 2012, k = 4, for authors starting publishing on 2004

(dataset1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.13 Global clustering coe�cient for k = 1, year = 2006, for authors start-

ing publishing on 2004 (dataset1). . . . . . . . . . . . . . . . . . . . . 83

4.14 Global clustering coe�cient values on 2006, k = 5 (dataset1). . . . . . 85

4.15 Global clustering coe�cient values on 2009, k = 5 (dataset1). . . . . . 86

4.16 Global clustering coe�cient values on 2012, k = 5 (dataset1). . . . . . 86

4.17 Average clustering coe�cient for k = 1, year = 2006, for authors

starting publishing on 2004 (dataset1). . . . . . . . . . . . . . . . . . 88

4.18 Windmill graph example, W = (3, 4). . . . . . . . . . . . . . . . . . . 89

4.19 Cliques formation in the personal network of "EGO" between 2004 and

2005, k = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xvii



4.20 Average clustering coe�cient values on 2006, k = 5 (dataset1). . . . . 90

4.21 Average clustering coe�cient values on 2009, k = 5 (dataset1). . . . . 91

4.22 Average clustering coe�cient values on 2012, k = 5 (dataset1). . . . . 91

4.23 Example of a clique formation. . . . . . . . . . . . . . . . . . . . . . . 94

4.24 Power law distribution test for k = 1 to 5, from 2006 to 2013 (dataset1). 95

4.25 Poisson degree distribution test for k = 1...5, and years 2006 to 2013,

for dataset1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.26 Poisson Distribution vs Power Law Degree Distribution, for k = 1...5,

and years 2006 to 2013, for dataset1. . . . . . . . . . . . . . . . . . . 98

4.27 k −max's distribution over the years for OPNs in dataset1. . . . . . 99

4.28 k −max vs. the number of nodes over the years, for OPNs in dataset1. 100

4.29 Distribution of ego degree centrality on 2006, for dataset1. . . . . . . 101

4.30 Distribution of ego degree centrality on 2012, for dataset1. . . . . . . 102

4.31 Average degree of egos for k = 1 on year = 2006 and year = 2012, for

dataset1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.32 Average degree of egos for k = 3 on year = 2006 and year = 2012, for

dataset1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.33 Ego betweenness centrality for k = 1 and year =2006 and 2012, for

dataset1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.34 Ego betweenness centrality for k = 2 and year =2006 and 2012, for

dataset1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.35 Ego betweenness centrality for k = 4 and year =2006 and 2012, for

dataset1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.36 Personal network of ego "EGO", for k = 4, year=2008 . Example for

low ego betweenness. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.37 1-Personal network of an ego with 2 alters. . . . . . . . . . . . . . . . 112

4.38 Number of OPNs having a speci�c number of maximal cliques for year

2006 (pink) and year 2012 (blue) and for k=1, 2, 3, 4, 5. . . . . . . . 114

4.39 Number of OPNs vs number of maximal cliques for year=2006 and

k=1-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.40 Number of OPNs vs number of maximal cliques for year=2006 and

year=2012 limited to 100 maximal cliques. . . . . . . . . . . . . . . . 116

4.41 Number of OPNs vs number of cliques for year=2006 (top) and year=2012

(bottom) for k = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.42 Number of OPNs vs number of maximal cliques for year=2006 and

year=2012 limited to 65 OPNs and 100 maximal cliques. . . . . . . . 119

xviii



4.43 Number of OPNs vs number of cliques for year=2006 and year=2012

limited to 10 cliques. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.44 Personal network of the ego 27967 with 6 cliques, k = 4, 2012. . . . . 121

4.45 Number of cliques vs number of nodes per OPN. . . . . . . . . . . . . 122

4.46 Number of OPNs' nodes vs number of cliques for k = 4 and year=2010. 123

4.47 Number of OPNs' edges vs number of cliques for k = 4 and year=2010. 123

4.48 The number of cliques of a given size in each OPN in 2006 when k =

1, 2, 3 (top, middle and bottom). . . . . . . . . . . . . . . . . . . . . . 124

4.49 The number of cliques of a given size in each OPN in 2012 when k =

1, 2, 3 (top, middle and bottom). . . . . . . . . . . . . . . . . . . . . . 125

4.50 Clique size distribution, k = 3, 2012, dataset1. . . . . . . . . . . . . . 126

4.51 Power law distribution for the clique size, dataset1. . . . . . . . . . . 127

4.52 Poisson distribution for the clique size, dataset1. . . . . . . . . . . . . 127

4.53 Number of OPNs vs size of cliques in 2006 and 2012, all k. . . . . . . 128

4.54 Number of OPNs vs minimum size of cliques in 2006 and 2012, all k. 129

4.55 Number of OPNs vs maximum size of cliques in 2006 and 2012, all k. 131

4.56 New nodes connection to a whole clique (blue) or to a sub-clique (red),

for k = 1...5, and years 2006 to 2012. . . . . . . . . . . . . . . . . . . 132

4.57 Percentage of clique nodes to whom new nodes connect to, for k = 4,

year= 2009. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.58 Number of cliques to whom new nodes connect to, k = 3, year = 2010. 134

5.1 Clique-superposition example. . . . . . . . . . . . . . . . . . . . . . . 141

5.2 Example of application of the clique superposition model on the OPN

of ego 1244, for k = 2 and year = 2008. . . . . . . . . . . . . . . . . . 147

5.3 Distribution of the number of nodes. . . . . . . . . . . . . . . . . . . 149

5.4 Distribution of the number of edges. . . . . . . . . . . . . . . . . . . 150

5.5 KEWLS algorithm running time in order to �nd a 5-clique withmaxSteps =

200, when k = 3 and year = 2008, for dataset1. . . . . . . . . . . . . 150

5.6 Percentages of new nodes connections (a, b), and old nodes connections

(c) to whole/sub-clique, from 2006 to 2011, dataset1. . . . . . . . . . 164

5.7 Power law β exponent e�ect. . . . . . . . . . . . . . . . . . . . . . . . 164

5.8 Clique size power law exponent for OPNs in dataset1, for k = 2, 3, 4,

and year = 2006, 2008, 2010. . . . . . . . . . . . . . . . . . . . . . . . 165

5.9 Example of application of the clique-superposition model and PER-

SONEM model on the OPN of ego 1244, for k = 2 and year = 2008. 167

xix



5.10 Distribution of the number of nodes of OPNs in dataset1. . . . . . . . 169

5.11 Distribution of the number of edges of OPNs in dataset1. . . . . . . . 170

5.12 Metrics di�erence between predicted and real OPNs for k = 1, year =

2008. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.13 Number of edges: di�erence between predicted and real OPNs (abso-

lute value), for k = 2 (1st row), k = 3 (2nd row), and k = 4 (3rd

row). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.14 Number of edges: predicted (red dots) and real (green dots) OPNs, for

k = 2 (1st row), k = 3 (2nd row), and k = 4 (3rd row). . . . . . . . . 177

5.15 Number of edges: zoom on predicted (red dots) and real (green dots)

OPNs, for k = 4 and year = 2006. . . . . . . . . . . . . . . . . . . . . 178

5.16 Real and predicted OPNs of Ego="15370" on 2011. . . . . . . . . . . 180

5.17 Density: predicted OPNs, for k = 2 (1st row), k = 3 (2nd row), and

k = 4 (3rd row). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.18 Density: di�erence in absolute value between predicted and real OPNs,

for k = 2 (1st row), k = 3 (2nd row), and k = 4 (3rd row). . . . . . . 182

5.19 Density: predicted (red dots) and real (green dots) OPNs, for k = 2

(1st row), k = 3 (2nd row), and k = 4 (3rd row). . . . . . . . . . . . . 183

5.20 Density: zoom on predicted (red dots) and real (green dots) OPNs, for

k = 4 and year = 2006. . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.21 Average degree: predicted OPNs, for k = 2 (1st row), k = 3 (2nd row),

and k = 4 (3rd row). . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.22 Average degree: di�erence in absolute value between predicted and real

OPNs, for k = 2 (1st row), k = 3 (2nd row), and k = 4 (3rd row). . . 187

5.23 Average degree: predicted (red dots) and real (green dots) OPNs, for

k = 2 (1st row), k = 3 (2nd row), and k = 4 (3rd row). . . . . . . . . 188

5.24 Ego degree: predicted OPNs, for k = 2 (1st row), k = 3 (2nd row),

and k = 4 (3rd row). . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5.25 Ego degree: di�erence in absolute value between predicted and real

OPNs, for k = 2 (1st row), k = 3 (2nd row), and k = 4 (3rd row). . . 191

5.26 Ego degree: predicted (red dots) and real (green dots) OPNs, for k = 2

(1st row), k = 3 (2nd row), and k = 4 (3rd row) . . . . . . . . . . . . 192

5.27 Ego betweenness: predicted OPNs, for k = 2 (1st row), k = 3 (2nd

row), and k = 4 (3rd row). . . . . . . . . . . . . . . . . . . . . . . . . 195

5.28 Ego betweenness: di�erence in absolute value between predicted and

real OPNs, for k = 2 (1st row), k = 3 (2nd row), and k = 4 (3rd row). 196

xx



5.29 Ego betweenness: predicted (red dots) and real (green dots) OPNs, for

k = 2 (1st row), k = 3 (2nd row), and k = 4 (3rd row). . . . . . . . . 197

5.30 Betweenness: predicted (red dots) and real (green dots) OPNs, for

k = 4 and year = 2006. . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.31 Power law degree distribution: test on the predicted OPNs. . . . . . . 200

5.32 Example of the OPN of ego 22, for k = 4 and year = 2006. . . . . . . 203

5.33 GCC: predicted OPNs, for k = 2 (1st row), k = 3 (2nd row), and k = 4

(3rd row). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

5.34 GCC: di�erence in absolute value between predicted and real OPNs,

for k = 2 (1st row), k = 3 (2nd row), and k = 4 (3rd row). . . . . . . 205

5.35 GCC: predicted (red dots) and real (green dots) OPNs, for k = 2 (1st

row), k = 3 (2nd row), and k = 4 (3rd row). . . . . . . . . . . . . . . 206

5.36 GCC: zoom on predicted (red dots) and real (green dots) OPNs, for

k = 4 and year = 2006. . . . . . . . . . . . . . . . . . . . . . . . . . . 207

5.37 Average LCC: predicted OPNs, for k = 2 (1st row), k = 3 (2nd row),

and k = 4 (3rd row). . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

5.38 Average LCC: di�erence in absolute value between predicted and real

OPNs, for k = 2 (1st row), k = 3 (2nd row), and k = 4 (3rd row). . . 211

5.39 Average LCC: predicted (red dots) and real (green dots) OPNs, for

k = 2 (1st row), k = 3 (2nd row), and k = 4 (3rd row). . . . . . . . . 212

5.40 PERSONEM running time vs number of nodes (a), number of edges

(b), and number of new nodes (c) for predicted OPNs, for k = 3 and

year = 2010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

5.41 PERSONEM running time vs number of edges for predicted OPNs,

for k = 3 and year = 2010. . . . . . . . . . . . . . . . . . . . . . . . . 219

6.1 PERSONA System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

6.2 PERSONA's UML class diagram. . . . . . . . . . . . . . . . . . . . . 227

6.3 Retrieval Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

6.4 Network Type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

6.5 Metrics Computation Module. . . . . . . . . . . . . . . . . . . . . . . 231

6.6 Evolution Models Module. . . . . . . . . . . . . . . . . . . . . . . . . 231

6.7 Example of an OPN visualization with GraphStream library. . . . . . 232

6.8 Exportation Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

6.9 Papers table for dblp database. . . . . . . . . . . . . . . . . . . . . . 234

xxi



Chapter 1

Introduction

1.1 Research Context

Nowadays, people participate in many and diverse Online Social Networks (OSNs),

which becomes a necessity, since each one serves a di�erent objective: e.g. Facebook

is used to share private information with friends, LinkedIn is used to build a profes-

sional network and Twitter is used to have access to latest news/information and to

share short messages. Inside each of these networks, the user has his/her own per-

sonal connections which we call a personal (or ego) network (we will use these terms

interchangeably throughout the manuscript), i.e. a network that is composed of the

user as its focal point (or ego) and of these actors that the ego is interacting with

directly or indirectly.

Research and applications on OSNs have been thriving the last few years following

the increase of the user base and the fact that a vast amount of data is being produced

based on users' interactions. Works in this area consider for the analysis a single

OSN as a whole. But the OSN can also be seen from a di�erent perspective: as a

collection and connection of di�erent smaller online personal networks (OPNs) that

are brought together and share some common users. Where whole network analysts

typically concentrate on uncovering the structure and composition of one big network,

personal network analysts almost always study a sample of many smaller personal

networks. Thus the egocentric approach �ts studies about entities across di�erent

networks.

The study of OPNs started in Social Science and got extended in Computer Sci-

ence. On the one hand, the available literature in the Computer Science domain

concerning the study of OPNs is rather limited and mainly focuses on a representa-

tion of these networks restricting an individual's personal network to its immediate

circle of acquaintances (1-level personal networks). On the other hand, literature
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from the Social Science didn't deal with a high volume of data, the size of the cor-

responding graphs and with the dynamics of such networks, making these studies

widely inappropriate (while still relevant) when considering OPNs.

Thus, these establishes the fact that there is a real need in reconsidering personal

networks in the online settings in order to propose new suitable de�nitions, making

new analysis, and developing new models for this particular kind of OSNs.

In particular, we are interested to the understanding of the dynamics of OPNs,

where each OPN is a result of a process of construction and re-composition that

takes place over time. OSNs carry many dynamic characteristics and they change

over time in terms both of structure (e.g. nodes or connections with other nodes

are added/deleted) and weight of the links (e.g. strength of exchanges between two

nodes). Understanding the dynamic nature of OSNs has been widely addressed in

the literature and many evolution models were proposed to capture this evolution.

Most of these models are based on properties that concern the OSN structure as a

whole, e.g. the global clustering coe�cient. But for an individual, what happens

to the whole network is less important than what happens to his/her corner of this

online world. So, they are more interested on how their personal network will evolve

over time and how this evolution will a�ect them in terms of their local communities

or the information that will reach them.

The dynamics of personal networks can provide insights at various levels. Firstly,

at the level of the ego, it can show how the ego is a�ecting or is a�ected by his

alters over time and how this a�ects the evolution of the entire OPN. For instance,

it has been demonstrated that having more friends over time is associated with an

improvement in health [102].Secondly, at the level of the personal network, we are

interested in �nding if and how di�erent new sub-groups are been developing as the

network evolves and how this a�ects the importance of the ego in the functioning of

the personal network.

The study of OPNs evolution is still young and only a few set of works was devoted

to, while this can o�er a di�erent view on the evolution of an OSN, by seeing it not as

a global network that evolves but as a collection of individual networks that change

over time both independently and collectively.

In addition, from the limited existing works on OPNs evolution, it is still not

clear if their evolution is comparable to the evolution of the whole OSN, and if the

traditional social network properties are applicable in the OPN setting.

Thus, we identi�ed the need of discovering the evolution patterns that govern the

change of OPNs' structure over time. The discovered properties can then be exploited
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to build new evolution models for OPNs.

1.2 Contributions

In order to overcome the lacks in the literature discussed in the previous paragraphs

concerning OPNs formalization and evolution, we address in this thesis the issues

detailed hereafter.

The �rst issue is the missing of an adequate formalism to de�ne OPNs in their

diversity. Indeed, 1-level personal networks' models are inadequate [109] since in

OSNs, users can easily interact beyond their immediate social circle (beyond level

1) which changes extensively the notion of the personal network. In addition, exist-

ing de�nitions are focusing on undirected networks while current OSNs are in some

cases better represented with directed graphs (allowing for unilateral communica-

tions). Another important aspect of OSNs is the intensity of a relationship between

individuals, since it allows us to di�erentiate the connections; this is what we usually

capture using the tie strength (of the link). Thus, we propose an extension of the

de�nition initially used in social science of personal/egocentric networks for the online

setting. Second, the structural properties of evolving OPNs were not enough studied

by previous works, and thus, we performed a large scale analysis of OPNs extracted

from real data consisting in a set of co-authoring personal networks describing the

personal network of a given scienti�c publication's author. Third, in order to perform

the analysis, we needed to use an adequate tool, which led us to implement a new

software named PERSONA. Finally, based on the discovered properties revealed by

the performed analysis and starting from an existing evolution model, we propose a

new evolution model for OPNs that is based on clique dimension, where a clique is a

group of individuals in the OPN where everybody is connected directly to everyone

else. The clique dimension is a common pattern in co-authoring networks where a

publication among a set of authors induces systematically the formation of a clique

in the co-authoring network. The proposed model is among the rare e�orts in the

literature that tempted to model OPNs' evolution. In the following we summarize

the contributions of this thesis as follows.

1. A new set of formal de�nitions for OPNs

We provided a set of de�nitions that are �exible in order to cover current OPNs

and to be extensible for the future. We are presenting three de�nitions: the �rst

one focuses on undirected OPNs, the second de�nition is for directed OPNs and
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the third one extends the �rst and the second ones and de�nes weighted OPNs

where the links are enriched by a value representing a given property.

2. A large scale analysis on real OPNs

We performed an experimental analysis over a large set of real online personal

networks by the mean of the computation of metrics that characterise their

structure. The OPNs were extracted from a large co-authoring social network

that captures collaboration among scientists who have at some point in time

coauthored a publication. We examine how the computed metrics behave when

the personal networks change over time in order to detect the properties driving

the evolution of personal networks' structure. These conclusions would help us

in providing evolution models dedicated to OPNs. To this end, we realized three

types of analysis: analysis by the characterization of the edges appearing during

1-personal networks evolution, analysis via topological metrics at the ego level

and at the personal network level, and analysis by considering the composition

of personal networks in cliques.

3. Implementation of PERSONA tool

We developed a framework named PERSONA: PERSonal Online social Net-

works' Analytics, where the proposed formal de�nitions for OPNs have been

implemented. PERSONA allows us to extract OPNs based on any of the def-

initions presented. This allows �rst to validate the de�nitions and secondly to

o�er a versatile tool to anyone who wants to perform computations on OPNs.

PERSONA holds various computation capabilities via a large set of metrics and

algorithms allowing to understand the OPNs, and a visualization feature of the

extracted OPNs.

4. A new clique-based model for OPNs evolution

The results we obtained via the performed experimental analyses, comfort us

with the need to propose a new model of evolution adapted to personal net-

works. We propose PERSONEM, a new evolution model for OPNs based on

the clique structuring of the network. This model is an extension of the clique-

superposition model proposed in [134].

5. Experimental study

The experimental study evaluates the proposed evolution model on the predic-

tion of the evolution of real OPNs of scientists extracted from the collaboration
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network. The results of application of the model show a good performance

given that the predicted networks depicts the same topological and evolution

patterns as the real networks with some exceptions that we discuss and propose

to overcome in order to increase the model e�ciency.

1.3 Thesis Organization

This thesis is organized as follows:

Chapter 2 is concerned with social networks representation and existing personal

networks de�nitions both in the o�ine and online settings. We give here an overview

of the main theoretical concepts governing o�ine as well as online social networks.

We discuss the most important approaches proposed in the literature on the evolution

of OSNs and OPNs and on the particular example of co-authorship network.

Chapter 3 introduces the set of the new OPNs' formal de�nitions we propose for

the undirected, directed, and weighted cases with illustrative examples.

Chapter 4 describes the methodology followed to perform the di�erent experimental

analysis we performed. We give details about the used data and present the obtained

conclusions.

Chapter 5 describes PERSONEM, the proposed evolution model for OPNs. To this

end, this chapter introduces the clique superposition concept and describes the origi-

nal associated model given in [134] with an evaluation of this model when considering

OPNs and discusses its limits. We propose our adaptation of this model to OPNs

and present the results of the model application on co-authorship personal networks.

Chapter 6 provides the architecture of the PERSONA tool that includes the im-

plementation of the de�nitions, metrics, algorithms, and evolution models. Also, it

details the technical choices that were made.

Chapter 7 draws our conclusions and perspectives. One of the most important

perspectives is to improve the model performance from a computational point of

view and to evaluate it on a di�erent online personal networks data.
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Chapter 2

Social Networks and Personal

Networks

2.1 Introduction

Nowadays, the use of the term social networks in everyday language has become more

and more common in terms of community web sites or online social networks like Face-

book or Twitter or YouTube, while initially, the social network concept represented

traditional means of communication such as face-to-face interaction or communication

by phone. Disciplines, from social psychology to anthropology and communication,

and from politics and organizational studies, have analyzed the range of applications

emanating from such social networks. Researchers in these disciplines have studied

not only social actors but the social relationships among these actors. Of all the

research, one fundamental �nding stands out: many important aspects of societal life

are organized as networks [128]. The importance of networks in society has put social

network analysis at the forefront of social and behavioral science research.

Online Social Networks are networks of interactions or relationships among in-

dividuals on a given internet-based system. The advent of di�erent social media

platforms, like Facebook, Twitter, LinkedIn, is creating new opportunities for the

analysis of social networks. Their analysis can provide new insights into our social

behaviour. Indeed, social media are generating a completely new online social envi-

ronment, where social relationships do not necessarily map preexisting relationships

established face-to-face and might have di�erent properties. These properties are

discussed later in Section 2.2.

Social networks analysis consider the social network from two perspectives de-

veloped by the late 1930s as reported by Chung et al. in [32]. The �rst approach,

known as the socio-centred approach was introduced by a group at Harvard University
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working on ways to �nd subgroups of people in larger groups. This approach aims in

examining the overall network structure to �nd out answers about the organization of

the links within a social group or among social groups. The second approach, known

as the ego-centred approach, and originated from a group of anthropologists at the

University of Manchester which paved the way for community studies, focuses on the

individual actor and its immediate neighborhood. The overall network structure can

then be seen as a collection of (overlapping) local structures.

Thus, a given actor has his/her own personal connections which we call a personal

(or ego) network, i.e. a network that is composed of the actor as its focal point (or

ego) and of these actors that the ego is interacting with (called alters).

There is a signi�cant literature coming from the social sciences studying personal

networks, e.g. [43], [58], [125], [85] but on the contrary, we will see in this chapter that

the study of personal networks in the online environment has received less attention so

far. Moreover, we will show in Section 2.3 that personal networks are a good example

to highlight the di�erences between the o�ine and online social environments.

Another important feature that was neglected so far concerning online personal

networks is their dynamic nature since these networks are not static but they evolve

over time as new people join or quit them and as new relationships are established or

as old ones are broken. In Section 2.4, we give an overview of the works dealing with

overall online social networks evolution and online personal networks evolution.

Finally, one example of social networks is the co-authorship network. In our work

we focus on this kind of data. So, we present in Section 2.5 some existing works that

have analyzed this particular social network as a whole network or have focused on

the analysis of the personal networks of authors.

2.2 Social Networks

In sociology, a Social Network (an o�ine social network) is de�ned by: a speci�c

set of linkages among a de�ned set of persons, with the additional property that the

characteristics of these linkages as a whole may be used to interpret the social behavior

of the persons involved [93]. Other de�nitions exist and de�ned it by: a social network

is a structure of relationships linking social actors [87] or: a social network is the set

of actors and the ties among them [129].

Thus, an o�ine social network requires some kind of personal or mediated connec-

tion. For example, networks built through face to face interactions and phone calls.
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Studies of these classic social networks are characterized by being rather restricted to

small systems, and often view the networks as static.

Online Social Networks (OSNs) are considered as a particular type of virtual com-

munities [44] and of social software 1 [110]. Given the fact that the presence of OSNs

is related to the Web 2.0, there is not one single well-established de�nition for OSNs.

We report the one given by Schneider et al. in [114]: OSNs form online communi-

ties among people with common interests, activities, backgrounds, and/or friendships.

Most OSNs are Web-based and allow users to upload pro�les (text, images, and videos)

and interact with others in numerous ways.

Thus, an OSN is the social network formed of users of a given social media, and

the links between them. A large variety of OSNs is available and each OSN serves

for a given purpose. For example, we have OSNs designed for building online social

connections that group together social identities, individuals or organizations. This

kind of OSNs can be general (e.g. Facebook, Google+ ) or professional (e.g. LinkedIn,

Viadeo). Another kind of OSNs groups micro-blogging platforms (e.g. Twitter) or

content sharing services (e.g. Youtube and Dailymotion for videos, Deezer and Spotify

for music, Pinterest, Flickr and Instagram for photos, Slideshare for documents).

Regardless their kind, all these OSNs consist of users' pro�les, relational patterns,

and features to interact with other users.

2.2.1 Social Networks Representation

A social network (o�ine or online) is formally represented as a social graph. In the

beginning until 1946, graph theory remains the domain of mathematics. Then, with

the military researches related to the world con�ict of 1939-45, operational research

is born causing a development of graph theory as models of concrete problems; this

aspect is further reinforced in the following years by the development of economics

and management sciences. On 1953, Harary and Norman [70] were among the �rst

mathematicians who built mathematical models of o�ine social networks based on

graph theory and established the relation between sociograms (a concept proposed

by Moreno in 1933 [94] consisting in representing people by points and relationships

by lines) and graphs.

During the 1960s, with the development of information and communication sci-

ences, many computer scientists participated in providing algorithms for graphs as

well as modeling problems generated by the new sciences in term of graphs.

1A social software refers to software that has been designed to support the interactions of people
in enterprise work groups [110].
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Figure 2.1: Example of a Social Network Graph.

So, with the arrival of communication networks (internet network, email network)

and online social networks afterwords, graphs and graph theory background have been

used to represent and study their structure.

We give in De�nition 2.2.1 a de�nition of a social network as a graph.

De�nition 2.2.1 A Social Network is a simple graph G(V,E) where V is the set

of nodes representing the social actors and E is the set of edges representing the

links between them (simple graph means that there is at most one edge between two

distinct nodes and no loop). The number of nodes and edges composing G are noted

respectively by n and m.

Example 1 Figure 2.1 represents a social network described by the graph G(V,E)

where: V = {0, 1, 2, . . . , 15} and E is composed of the following links between nodes in

V : E = {{0, 1}, {0, 7}, {0, 9}, {0, 13}, {1, 2}, {1, 3}, {2, 3}, {3, 4}, {3, 5}, {3, 6}, {5, 6},
{7, 8}, {9, 10}, {9, 13}, {10, 11}, {11, 12}, {12, 13}, {12, 15}, {13, 14}, {14, 15}}.

2.2.2 Social Networks Analysis

During the last decades, the interest in Social Network Analysis (SNA) has increased

due to the application of graph theory and statistical models in addition to the avail-

ability of various software. SNA allows to analyze relationships to understand how

10



the actors are communicating, sharing resources and interests and collaborating to-

gether. Understanding the patterns of how individuals interact can serve many real

life applications. For instance, SNA can be used for detecting human behavior as

crime through people's relations and interactions given the fact that criminal organi-

zations communicate via OSNs [91]. It can also be useful to detect when and where

epidemics are spreading based on the messages shared by people evoking the disease

[53]. Another important application of SNA is the marketing area [67] where the iden-

ti�cation of communities and in�uencing users might represent interesting aspects for

designing marketing campaigns since it allows targeting the products to the right sets

of people in the OSN. Many other applications are possible using SNA as building

recommendation systems (of friends, contents, trajectories, recipes, etc.) [28], propos-

ing predictive models (e.g. for fraud detection [31], users retention), understanding

online communities emergence [29], etc.

McGloin and Kirk [90] identi�ed three categories of social network analysis: using

descriptive graphs, using network measures, and using advanced network modeling.

The �rst two methods are descriptive methods of the network's structure that trans-

late theoretical concepts into formal measures. In contrast to a descriptive approach,

the third category that uses advanced modeling techniques assume that there is some

probabilistic mechanism that governs network data. We describe the three categories

in the following.

� Descriptive graphs: Descriptive graphs often termed sociograms (a concept

proposed by Moreno in 1933 [94] consisting in representing people by points

and relationships by lines), are simple visualizations of social networks and the

connections that exist among the individual actors. Sociograms operate much

like a map, providing a picture of relationships between individuals.

� Network measures: The second category of SNA involves network measures.

Network measures are central to understanding the overall structure of a net-

work, as well as identifying key players within a network. Such analytic tasks

are facilitated through a broad array of social network measures. Some mea-

sures capture qualities of the network as a whole, such as density (i.e., cohesion),

while other measures concern individual's position (or whatever the node is) in

the network. For instance, network measures can identify what people are the

most popular members of a network (i.e., degree) and to what degree commu-

nication in a network must go through certain individuals (i.e., betweenness

centrality).
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� Advanced network modeling: Descriptive methods of network analysis are

important for illuminating structural features of a given network, but they can-

not be used to build and/or test theories about the generation of networks.

Thus, inferential methods of network analysis can be used to �nd probabilistic

models that accurately describe the overall features of a network [50].

In the thesis, we focus on the descriptive method using network measures that

are based on theoretical concepts. These theoretical concepts governing o�ine as

well as online social networks, are coming from social sciences that appear in most

applications of social networks. Next, we discuss two main approaches to social

networks with giving the related formalization from graph theory that are the cohesion

and the centrality.

2.2.2.1 Cohesion

Social cohesion suggests that the members of a social network are forming cohesive

subgroups (or communities, modules) consisting of densely connected sections inside

the network. Members of a given subgroup interact more intensively and more fre-

quently with each other than the members of a di�erent subgroup. Graph theory o�ers

di�erent ways for identifying cohesive subgroups at the level of the overall network

structure and for measuring the cohesion within a subgroup. The most important

ones are the cliques, the reachability, the density, and the clustering. We describe

them hereafter.

Cliques. A clique is a subset of V whose elements are pairwise adjacent. In other

words, a clique is a complete subgraph of G. The smallest clique in a graph is

composed of two actors (dyad).

De�nition 2.2.2 A graph G(V,E) has a clique of size s if there exists a subset

V ′ ⊆ V , with |V ′| = s, such that for all u, v ∈ V ′, the edge {u, v} ∈ E. In other

words, the induced sub graph on the nodes in V ′ is a complete graph of s nodes [3].

A maximal clique is a clique whose cardinal is the largest (no node can be added

to the sub-graph without violating the criterion).

De�nition 2.2.3 A maximal clique in a graph G(V,E) is a clique of G given by

the subset V ′ ⊆ V , such that there is no other clique given by the subset V ′′ ⊆ V that

contains all of V ′ and at least one other node [3].
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Figure 2.2: Clique and maximal clique examples in a social network graph.

The clique (and the maximal clique) constitute the most strict approach to a

cohesive subgroup. There can be more than one maximal clique in a graph.

Example 2 Based on the network given in Figure 2.2, the subgroup made of the

nodes set V ′ = {1, 2, 3} is a maximal clique of size 3, while the nodes set V ′′ = {1,

2} represents a clique of size 2.

Reachability. Two nodes are reachable from the one to the other if there exists a

path between them. The reachability measures the dyadic cohesion (between a pair

of nodes). The most fundamental reachability is the edge connecting a pair of nodes.

If there is no edge connecting the pair of nodes than the geodesic distance that is the

length of the shortest path connecting the pair of nodes is used to capture how close

the two nodes are. If the graph is weighted, it is a path with the minimum sum of

edge weights.

It is important to outline that there might be more than one shortest path between

a pair of nodes, all of the same length. Shortest paths might be found using for

example Dijkstra's algorithm [38]. For instance the geodesic distance between nodes

0 and 15 in the graph given in Figure 2.3 is equal to 3. So, the shorter the geodesics

between nodes pair, the more cohesive the subgroup is. A variation on this form of

cohesion is the diameter of the graph, which is the length of the largest shortest path

(the diameter of the network in Figure 2.1 equals 6).
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Figure 2.3: Geodesic distance example in a social network.

Density. In a network, more links among its members yield to a tighter structure.

The density captures that. It measures how many edges are in the set E compared

to the maximum possible number of edges among nodes in V . It can be computed

on the entire network or on a given subgroup of individuals. Maximum density is

found in a complete network (an example is given in Figure 2.4b), that is a network

in which all pairs of nodes are linked with an edge. We give in De�nition 2.2.4, the

de�nition of the density as proposed in [58] for an undirected graph G(V,E) where

V represents the set of nodes, and E represents the set of bidirectional edges.

De�nition 2.2.4 The density D of an undirected graph G(V,E) is:

D = 2×m
n×(n−1) , where m and n are respectively the number of edges and of nodes of

the network.

Example 3 A complete network as the one given in Figure 2.4b has the highest

density (equal to one) as all possible edges among nodes exist.

Clustering. Clustering techniques allow to detect cohesive subgroups or clusters

of nodes characterized by the presence of many edges among them and few edges

with other clusters. The division of network's actors into groups or sub-structures

is an important aspect of social structure. It allows to understand how the network

as a whole is likely to behave. From the variety of available clustering techniques,

we mention the hierarchical clustering, k-means clustering, distribution-based and
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Figure 2.4: Star and Complete subgraphs.

density-based clustering [19]. These techniques allow starting from a given network

to get a set of clusters.

In social networks triads, that are complete subgraphs of size three, are very

frequent and re�ect the tendency that two nodes connected to one same node have a

high probability of being linked. In SNA, in order to evaluate how much clustered is

a network we use the clustering (or transitivity) coe�cient metric. The transitivity

indicates that if a node u is connected to v and v is connected to w, then nodes u

and w are likely to be connected.

The clustering coe�cient metric measures the degree to which nodes in a graph

tend to cluster together. There are three versions, the local clustering coe�cient to

capture the transitivity in the neighborhood of a given node, and the average Watts-

Strogatz clustering coe�cient [130] which gives an indication of the embeddedness of

single nodes as it averages the local clustering coe�cients overall the nodes inside

the network, and the global clustering coe�cient (transitivity index) [99] which gives

an overall indication of the clustering in the network. Next, we give the de�nitions

for the local clustering coe�cient (De�nition 2.2.5), the average clustering coe�cient

(De�nition 2.2.6), and the global clustering coe�cient (De�nition 2.2.9).

Local clustering coe�cient (Watts-Strogatz clustering coe�cient [130]).

The local clustering coe�cient is computed at the node level to detect the transitivity

inside a node's immediate neighborhood, as de�ned hereafter.

De�nition 2.2.5 The local clustering coe�cient of a node v (LCC(v)) in the undi-

rected graph G(V,E) is:

LCC(v) = 2×mv

deg(v)(deg(v)−1) , where mv is the number of edges between neighbors of

v, and degv is the degree of v.
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Figure 2.5: Local clustering coe�cient example in a social network.

The local clustering coe�cient ranges between 0 and 1. It equals 0 in case no edge

exists among v's neighbors and 1 in case all v's neighbors are connected to each other.

Example 4 As an example, if we take as node v, the node 1 in Figure 2.5, its local

clustering coe�cient LCC(1) = 0, 33, since mv = 1 because there is only one link

between neighbors of node 1 (the edge (2,3)), and deg(1) = 3 because node 1 has

three neighbors. While LCC(6) = 1 as all neighbors (nodes 3 and 5) of node 6

are connected, and LCC(7) = 0 because there is no link between nodes 0 and 8 the

neighbors of node 7.

Average Clustering Coe�cient (Average Watts-Strogatz Clustering Coef-

�cient). This metric, introduced in [130] and de�ned in De�nition 2.2.6, allows

to characterize how much, in average, a network is locally clustered. The metric is

computed by averaging the local clustering coe�cients (de�ned above) of the nodes.

De�nition 2.2.6 The average clustering coe�cient 〈LCC〉 of an undirected network

G(V,E) is:

〈LCC〉 =
∑

v∈V LCC(v)

n
, where LCC(v) is the local clustering coe�cient of node v,

∀v ∈ V and n is the number of nodes.

〈LCC〉 ranges between zero and one. A value close to zero means that in aver-

age, the nodes are part of limited transitive relationships, while a value close to one

indicates that the nodes participate in many transitive relationships (i.e. in complete

OPNs, such as Figure 2.4b it equals 1).
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Figure 2.6: Triplet and triangle examples in a social network.

Example 5 For example, the average clustering coe�cient of the network given in

Figure 2.5 〈LCC〉 = 0, 26.

Global Clustering Coe�cient (Transitivity Index). The global clustering co-

e�cient (GCC), introduced in [86] and de�ned in De�nition 2.2.9, quanti�es the

transitivity in graphs.

In a network, these structures are called triangles (or closed triplets). The global

clustering coe�cient is three times the number of triangles (or 3 X triangles) over

the total number of triplets (or triads). Before giving the de�nition of GCC, we give

bellow the de�nitions of a triplet and a triangle.

De�nition 2.2.7 A triplet consists of three connected nodes.

Example 6 For example, nodes {3, 4, 5} or {1, 2, 3} in Figure 2.6 form a triplet.

De�nition 2.2.8 A triangle includes three closed triplets, one centered on each of

the nodes.

Example 7 In Figure 2.6, nodes 1,2,3 form a triangle as it includes three closed

triplets, the �rst is centred on node 1, the second on node 2, and the third on node 3.
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De�nition 2.2.9 The global clustering coe�cient of G(V,E) (undirected graph) is

de�ned as:

GCC = 3×T
C

, where T is the number of triangles in G and C is the number of

triplets in G [86].

The global clustering coe�cient in a complete graph equals 1.

Example 8 For instance, the global clustering coe�cient of the graph given Figure

2.6, GCC = 0, 21 as it contains 3 triangles and 41 triplets in total.

2.2.2.2 Centrality

Centrality is a fundamental concept in SNA and it was formally proposed by Bave-

las in 1948 [17]. Being central in a social network is associated to the prominence

and in�uence of the actors. In 1979, Freeman [57] advanced three ideas about what

being central means translated into three metrics, the degree centrality, the close-

ness centrality, and the betweenness centrality. We describe them separately in the

following.

Degree centrality. The degree of a node is the number of edges the node has. A

node maintaining many connections indicates that it is active and important within

the network. In a network where information is exchanged the actor with a high

degree centrality accesses more sources of information. We give in De�nition 2.2.10,

the de�nition of the degree centrality of a node, introduced by Freeman [57], which

is de�ned as the number of connections that the node has in the network. We can

de�ne it also as the number of paths of length equal to one that start from the node

of interest.

De�nition 2.2.10 The degree centrality (or simply degree) of node u (deg(u)) in an

undirected graph G(V,E) is given by deg(u) =
∑

vmuv, where muv = 1 if an edge

exists between the nodes u and v ∈ V , and muv = 0 otherwise.

Example 9 For example, the degree centrality of node 3 in the graph given in Figure

2.7, deg(3) = 5 since it is connected to �ve nodes (nodes 1, 2, 4, 5, 6).

Closeness centrality. The second centrality metric suggests that the more central

a node is, the closer it is to all other nodes in the overall network. It is calculated

as the reciprocal of the sum of the shortest paths length (geodesic distance) between

the given node and all other nodes in the graph. The formal de�nition proposed by

Freeman in [57] as the reciprocal of the farness, is given in De�nition 2.2.11.
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Figure 2.7: Degree centrality example in a social network.

De�nition 2.2.11 The closeness centrality of node u (C(u)) in an undirected graph

G(V,E) is given by C(u) = 1∑
v d(v,u)

, where d(v, u) is the distance between vertices v

and u.

Example 10 For example, the closeness centrality of node 0 in Figure 2.8 C(0) =

0, 48, while the closeness centrality of node 11 C(11) = 0, 26 which is less close to the

rest of nodes than node 0 as we can observe from the �gure.

Betweenness centrality. The third centrality metric introduced in [57] argues

that being important means being part of many paths between the other nodes in

the network. For example, in a telecommunication network, a node having a high

betweenness centrality would have more control over the network, since more informa-

tion will pass through that node. Betweenness centrality is calculated as the fraction

of shortest paths between node pairs that pass through the node of interest. The

highest betweenness (equal to 1) is found in the star network when considering the

node in the centre (an example of a star network is given in Figure 2.4a). Thus, the

betweenness centrality assesses the extent to which a node is between all the other

nodes in the network. A formal de�nition is given in De�nition 2.2.12.

De�nition 2.2.12 The betweenness centrality of node u (B(u)) inside an undirected

graph G(V,E) is B(u) =
∑

u6=v 6=w
Sv,w(u)

Sv,w
for every pair (v, w); v, w ∈ V ′; where Sv,w

is the number of shortest paths between v and w in G, and Sv,w(u) is the number of

those passing through u.
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Figure 2.8: Closeness and betweenness centralities example in a social network.

Example 11 As an example, the node 0 in the network given in Figure 2.8 have the

highest betweenness centrality B(0) = 0, 64 because node 0 belongs to many of the

shortest paths that are connecting nodes pairs.

In this section, two concepts conducting the majority of works on SNA were presented

i.e. cohesion and centrality. More particularly, works aiming in understanding how

social networks' structure changes over time and trying to propose models capturing

that evolution are based on these two fundamental concepts and necessarily include

some of the discussed metrics in the modeling process. In Section 2.4, we give an

overview about works on networks dynamics and show how the cohesion and the

centrality are exploited for expressing the change of network' structure. But, before

that, we discuss next in Section 2.3 personal networks and we will see how the cohesion

and the centrality are applied to this particular kind of networks (Section 2.3.4).

2.3 Personal networks

2.3.1 O�ine Personal Networks

Studies in social sciences considering personal networks are interested in the social

relations of individuals with their acquaintances (family, friends, etc.). Generally, to

collect data, interviews are made on a set of people, and respondents are asked to

list the names of their family, friends, colleagues and other eventual acquaintances.
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These respondents have no relationships between each other. For instance kinship

networks were collected in [43] and [111], or individuals contacts by Christmas cards

in [73]. Collecting such personal network data can be time-consuming and expensive.

From the �rst considerable works on personal network, we have the work of Kill-

worth et al. in [77]. Killworth et al. conducted a series of studies that extended

the work of Stanley Milgram [92], who discovered that the average number of links

between any two randomly chosen Americans is on average between �ve and six (the

known six degrees of separation). In this work the authors showed that the links in

the chains were in fact not random, and that the choice of links made by people was

typically guided by their location and occupation.

One of the most complete works on personal networks was done by Claude Fischer

in [55]. Based on a large representative survey conducted in California, Fisher showed

how personal networks operated in all aspects of life (work, religion and attitude

formation) and discussed the ways network composition and structure change as we

age.

Another line of research concerned a set of methods to estimate the size of hard-to-

count populations. Using personal networks, they were able to estimate the network

size of each respondent and use these results to estimate how large a hard-to-count

population, such as the homeless, would have to be in line with the network-size

estimate [82].

During the past three decades many researches have used personal networks as a

way to render operational social support. Research into social support is one of the

most important applications of personal-network methods. For instance, to explain

variability in depression [18], to demonstrate how social support mediates the e�ects

of certain psychological and physical conditions such as stroke [20], or to show the

in�uence of the personal network on gun-carrying behavior among Black adolescents

[95].

Personal-network methods are also used extensively in studies of infectious disease

like the one in [124] where the authors has used variety of the characteristics of per-

sonal networks to explain contraceptive use among women in Cameroon. Also, in [96]

to show the relationship between IV drug consummation and HIV virus transmission.

Another important work was done by Robin Dunbar [43]. Dunbar suggests that

the ability of people to know other people is constrained by time and resources, as

well as the organization of family, friends and acquaintances in memory, to an average

of 150 people (known as the Dunbar's number). He points to the tendency for various

human social groups to �ssion at around the same size.
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Figure 2.9: Dunbar circles [8].

More recently, topics like the e�ect of personal networks on voting behaviour [101]

were studied.

Thus, we can see that personal networks in social sciences �elds have been applied

to research problems in many ways.

It is important to note that in all these studies the personal network they consider

is composed of the ego and the alters directly connected to it; thus we have 1-level

connections and 1-level personal networks. An example of a 1-level personal network

is given in Figure 2.10. This example re�ects the friendship personal network of 'Paul'

(the ego). 'Paul' has 5 friends that are 'Mary', 'Alex', 'Bob', 'Leila', and 'Sam' (the

alters). Few extensions of this de�nition were proposed. Among the e�orts done in

that respect we mention the work of Dunbar who proposed a layered structure to

represent personal networks. Indeed, he represented an ego-network' alters set into

four layers, each layer re�ects the intimacy level alters have with ego as represented

in Figure 2.9. Dunbar identi�ed several layers: support clique, sympathy group,

band and active network (the whole network) with average sizes of 5, 12, 35 and 150

respectively. In this work Dunbar highlighted the fact that the structure of personal

networks is determined by cognitive constraints of the human brain since maintaining

an active social relationship requires time and, more generally, cognitive resources

used for interacting with the alters. Moreover, he found that there is a relationship

between the time invested in a relationship and the level of emotional closeness.

McCarty and Molina de�ned in their book [89] personal networks as in the fol-

lowing, Personal networks are about the unbounded networks surrounding individuals,

but without giving additional explanation about what unbounded term means.

In the next section, we are looking to online personal networks. We will discuss

applications that consider personal networks that are extracted from online settings

and will focus on how personal networks are de�ned in the online environment, do
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Figure 2.10: Example of the 1-personal network of Paul.

they use the same de�nition than the one initially provided by social science or is there

a di�erent de�nition? Then, we present the approaches used in SNA for analyzing

OPN.

2.3.2 Online Personal Networks (OPNs)

With the arrival of online communication platforms, the question that have interested

researchers regarding personal networks is whether these new means of communication

modify their properties or not. Two hypothesis can be formulated. On the one hand,

one could argue that OSN constitute a new form of communication which will generate

new types of personal networks, possibly with totally di�erent structural properties.

On the other hand, one could in the contrary argue that OSN are just other means

of communication among users, and thus will not a�ect the way humans interact or

have an impact on the resulting structural properties of users' personal networks.

This later hypothesis was supported by a set of works that compared the properties

of o�ine and online personal networks and found some correlations between them.

Speci�cally, Pollet, Roberts, and Dunbar [106] wanted to discover the e�ect that

the use of social media have on the size of each o�ine personal network layer based

on Dunbar's de�nition reported in the previous section. The authors investigated

whether instant messaging and Online Social Networks (OSN) increase the average

size of o�ine personal networks based on a sample of 117 individuals aged 18 to 63

years old, and they concluded that this is not the case.
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Arnaboldi et al. [9] analyzed a quite large Facebook data set (3.097.165 users),

aiming at identifying whether personal networks of Facebook users present similar

layered structures as the ones found in human social networks. Results show a striking

similarity between the structure of ego networks in online and o�ine settings. This

similarity was depicted by the presence of concentric layers of decreasing intimacy

and contact frequency, and increasing size as explained in Section 2.3.

Other works found evidence of the presence of the Dunbar's number in Facebook

[12] and Twitter [64], as a proof of the similarity of the personal networks in physical

and cyber environments.

A deeper analysis of Twitter users' personal networks [10] revealed that the size of

their layers is very similar to the ones found in Facebook and in o�ine environments.

However, the contact frequency of the layers in Twitter is more than twice those for

Facebook and o�ine personal networks which could be attributed to the nature of

Twitter communication, which is characterized by short but frequent messages.

Again, based on Dunbar's de�nition, another kind of works have proposed gen-

erative models to produce realistic synthetic personal networks ([105], [36]). These

algorithms are based on the key structural properties of personal networks model

proposed by Dunbar in the anthropology literature, and the properties of the social

relationships between individuals.

Apart from this kind of works on comparing o�ine and online personal networks,

online personal networks have not received a lot of attention so far. From the rare ap-

plications in the literature, Cook et al. [37] have made regression analyses to examine

the relationship between online personal networks characteristics (i.e., characteristics

of the alters directly related to the focal participant plus the relationships shared

among alters within the online network) and alcohol. Moreover, Chung et al. [33]

developed a theoretical model to investigate the association between social network

properties, content richness (CR) in academic learning discourse, and performance.

CR is the extent to which one contributes content that is meaningful, insightful and

constructive to aid learning. Analysis of data collected from an e-learning environ-

ment shows that rather than performance, social learning correlates with structural

properties (as the density), with the position of individuals, and with relationship

properties of social networks (tie strength).

Finally, another family of works have proposed tools dedicated to online personal

networks analysis as Ego-net digger [80], which is a Facebook application for the

analysis of personal networks. Ego-net digger collects users' social data and gives

a representation of their personal social networks according to the Dunbar's circles
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model. EgoNav [71] is a visual analytic system that characterizes egos based on the

relationship structure of their ego-networks and presents the results as a spatialization.

EgoNav allows to visually summarizing a collection of personal networks. Gao and

Berendt [61] proposed an exploratory tool that help its users to categorize friends

more e�ectively in their online personal networks. At last, E-NET [69] is a software

designed for personal network analysis. It o�ers a view of the key measures for

personal network analysis such as size, composition and structure.

In the next section, we focus on how online personal networks are de�ned among

all these works. Is there one common de�nition or di�erent ones? Is their de�nition

corresponding to the one provided in social sciences? In the following, we present

two sets of de�nitions that exist in the literature: 1-personal networks and k-personal

networks.

2.3.3 Personal networks de�nitions

2.3.3.1 1- personal networks

The de�nition of the 1-personal network in the o�ine settings discussed in section

2.3.1 inspired many researches in OSNs ([35], [12], [9], [10]) who provided a series

of de�nitions of 1-level online ego-networks, di�erentiated by the links that they are

considering.

2.3.3.1.1 Ego-networks with ego-alter and without alter-alter links. The

work in [9] focuses on 1-level ego-networks that do not take into account the alter-alter

links.

De�nition 2.3.1 A personal network is de�ned as a graph EN e = (V ′, E ′) centred

around the focal node e and composed of the set of nodes V ′ and the set of edges E ′.

The set of nodes of the 1-level ego-network EN e of the ego node e is composed of

the focal individual e and the individuals that are directly connected to (referred to as

alters):

V ′ = {x ∈ V | {e, x} ∈ E} ∪ {e}
The set of edges of an ego-network EN e of the ego node e having V ′ as set of nodes,

is composed of the connections between e and all the alters:

E ′ = {{e, x} ∈ E | x ∈ V ′ \ {e}}

Example 12 If we consider the OSN in Figure 2.1, the 1-level ego-network of the

node 0 (e), according to the De�nition 2.3.1, is composed of the node set V ′ =
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Figure 2.11: 1-level ego-network examples.

{0, 1, 7, 9, 13}, and the edge set E ′ = {{0, 1}, {0, 7}, {0, 9}, {0, 13}} representing the

connections between the ego node e and his alters. This 1-level ego-network is given

in Figure 2.11a

Investigating the similarity of structures of online and o�ine social networks, the

studies in [12] and [10] have used the above de�nition given initially by the human

sciences' community. Firstly in [12], an ego-network in Facebook was de�ned by the

set of nodes composed of the ego and his Facebook friends, where the friendship

relation describes the ego-alter links. Secondly, in [10], an ego-network in Twitter

was de�ned for a focal user by specifying alters as the Twitter users to whom the ego

had replied at least once. It is important to note that the alter-alter links are not

included.

2.3.3.1.2 Ego-networks without ego-alter and with alter-alter links. In

[121], the authors propose to take into account for 1-level ego-networks the alter-alter

links and not the ego-alters links. Thus, we can consider the following de�nition.

De�nition 2.3.2 An ego-network EN e of the ego node e is composed of the set of

nodes V ′ = {x ∈ V | {e, x} ∈ E} ∪ {e} , and the set of edges E ′ that is composed of

the connections between the alters:

E ′ = {{x, y} ∈ E | x ∈ V ′ \ {e} ∧ y ∈ V ′ \ {e}}
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Example 13 Using the example in Figure 2.1, the ego-network corresponding to the

above de�nition is described by the set of nodes V ′ = {0, 1, 7, 9, 13}, and the set of

edges E ′ = {{9, 13}}.

Compared to De�nition 2.3.1 only one link is part of the set of links, as it is the

only one connecting a pair of alters. The links between the ego and his alters are not

included into the ego-network (Figure 2.11b).

The authors justify their proposal under the hypothesis that the relations between

the ego and its alters were not useful as the authors were interested in detecting

communities inside the ego-network of a user.

2.3.3.1.3 Ego-networks with all types of links. The previous de�nitions were

describing an ego-network where the set of edges was composed only of ego-alter links

or only of alter-alter links. Other studies ([135], [109]), consider both types of links

as part of the ego-network.

De�nition 2.3.3 An ego-network EN e of the ego node e is composed of the set of

nodes V ′ = {x ∈ V | {e, x} ∈ E} ∪ {e} , and the set of edges that is composed of the

connections between alters, and between ego and alters:

E ′ = {{x, y} ∈ E | x ∈ V ′ ∧ y ∈ V ′}

Example 14 For the OSN example in Figure 2.1, the 1-ego-network de�ned by Def-

inition 2.3.3 is given in Figure 2.11c. The 1-ego-network is composed of the node

set V ′ = {0, 1, 7, 9, 13}, and the link set E ′ = {{0, 1}, {0, 7}, {0, 9}, {0, 13}, {9, 13}}.
Comparing this to the ego-network in Example 12, the set of edges has the extra link

between the alters 9 and 13. Unlike to the Example 13 of the De�nition 2.3.2, the

ego-alter links {0, 1}, {0, 7}, {0, 9}, {0, 13} are added to the alter-alter link {9, 13}.

This de�nition is justi�ed by the authors by the fact that the work's goal is to do quan-

titative analysis on OSN data to measure network metrics such as network constraint

(re�ects the extent to which ego links to other nodes that are already connected to

each other) that involve interconnections between alters and those between ego and

alters [109] or to check the overlap between ego and alters neighborhoods [135]. So

they need for this kind of measurement to have both ego-alters and alters-alters con-

nections.

In this section we presented three de�nitions for a 1-level ego-network that di�er

by the links that they consider, each one used for di�erent goals. These de�nitions
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are inspired by the de�nition used in sociology that implies to take the immediate

neighborhood of the ego node but they remains dissimilar with regard to the way

they are considering the edges as part of the ego network or not.

But these de�nitions are inadequate for OSNs, which go beyond the 1st level

and where users might interact with users not directly related to them since people

communicate beyond physical contact. Indeed, considering only the alters directly

connected to the ego brings a strong limitation, since it will not allow to correctly

represent the ego-network of a user who might interact with individuals not directly

connected. For example, on Twitter, if two users do not have a direct connection

(following link), they still can communicate via a common friend (e.g.: followed by

both of them) or in an indirect way through the use of e.g. a retweet. Consequently,

there is a real need to expand the 1-level ego-network de�nitions to cover these cases.

2.3.3.2 k-personal networks

The three de�nitions presented above have the speci�city to focus on the ego-networks

composed only of the ego node and the alters with whom the ego has a direct link.

In addition to 1-level ego-networks, recent works ([121], [62]) propose to de�ne ego-

networks by including potential alters which are at a maximum distance k from the

ego (what is called a k-ego-network).

De�nition 2.3.4 The k-ego-network of an ego e is the network of the individual e

consisting of (1) e and the individuals situated at a maximum distance k of e (namely

V ′), and (2) all the edges between the two individuals (alters) in the k-ego-network

except those with e (namely E ′) [121]:

V ′ = {x ∈ V | dG(e, x) ≤ k} ∪ {e},
E ′ = {(x, y) ∈ E | x ∈ V ′ \ {e} ∧ y ∈ V ′ \ {e}}.

Example 15 If we consider the example in Figure 2.12, k is equal to 3 (maximum

distance between the ego node '0' and the other nodes is 3). The node set will contain

all nodes (V ′ = V ) and the link set will cover all the links in E ′ except those connecting

e (E ′ = E \ {{0, 1}, {0, 7}, {0, 9}{0, 13}}}.

In [62], the authors also considered k-ego-networks but for Twitter's following graph.

The structure adopted could be seen as a particular case of the previous de�nition

since it includes the links with the ego and omits those between alters situated at the

ego-network last level. Based on the running example in Figure 2.1, the link (5, 6)

will be omitted. Despite extending the de�nitions from 1- to k-level ego-networks,
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Figure 2.12: Example of a Personal Network with k = 3 for ego node '0'.

omitting connections or not specifying their direction renders them incomplete and

limits their applicability only in speci�c cases.

In this section, de�nitions for ego-networks proposed in the literature were pre-

sented in order to assess their suitability to represent OPNs. We identi�ed several

limitations of these de�nitions were identi�ed:

� Existing de�nitions are very often focusing on undirected networks while current

OSNs are usually better represented with directed graphs (allowing for unilateral

communications);

� 1-level ego-networks' models are inadequate [109] since in OSNs users can easily

interact beyond their immediate social circle (beyond level 1). This changes

extensively the notion of the personal network (considering it as a network of

interacting actors) and this is not covered in the presented de�nitions;

� The intensity of a relationship/link between persons/nodes is important since

it allows us to di�erentiate the connections; this is what we usually capture

using the tie strength (of the link). The tie strength is prominent in studying

social in�uence between individuals [7], [13], but also it a�ects the information

di�usion process as demonstrated in [52]. The inability to express tie strength,

limits our ability to properly describe the OPNs.
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In the next chapter (Chapter 3), we propose a set of formal de�nitions for di�erent

types of OPNs, which carry characteristics that have been insu�ciently or not at all

addressed above.

2.3.4 Personal networks analysis

In section 2.2.2, we presented the main approaches to social networks analysis, the

cohesion, and the centrality. Next, we discuss these two concepts but in the case of

personal networks analysis.

2.3.4.1 Cohesion

Similarly to overall social networks analysis, personal networks analysis tries to cap-

ture the cohesion within personal networks via the same concepts, but projected on

an individual's network. In the following, we present the set of metrics used in the

literature to quantify the cohesion of personal networks as usually de�ned i.e. 1-level

personal networks.

Cliques. A clique was involved as a personal network-level graph-based met-

ric in [88]. A very recent work in [76], have used the clique as a new framework for

representing ego-networks. Indeed, they constructed "cliques complexes" correspond-

ing to node neighborhoods (ego-networks) and then analyzed this topology of clique

complex by computing the Betti numbers [59], which is a metric that measures the

number of connected component in the resulting clique complex topology, presented

in that work as an alternative to the clustering coe�cient metric.

Based on the de�nition given in De�nition 2.2.2 for social networks graphs, we

give the de�nition of a clique in a personal network:

De�nition 2.3.5 We consider a personal network as a sub-graph G′(V ′, E ′) of the

graph G(V,E), where V ′ ∈ V and E ′ ∈ E. This network has a clique of size s if

there exists a subset of nodes V ′′ ∈ V ′, with |V ′′| = s, such that for all u, v ∈ V ′′, the
edge (u, v) ∈ E ′. In other words, the sub-graph composed of nodes in V ′′ is a complete

graph of s nodes.

According to the same principle, we de�ne a maximal clique in a personal network

starting from De�nition 2.2.3 proposed in [3] as a clique of the personal network whose

cardinal is the largest.

De�nition 2.3.6 We consider a personal network as a sub-graph G′(V ′, E ′) of the

graph G(V,E), where V ′ ∈ V and E ′ ∈ E. A maximal clique in the personal
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Figure 2.13: Example of a clique in the Personal Network of Ego '0', k=3.

network G′(V ′, E ′) is a clique of G′ given by the subset V ′′ ⊂ V ′, such that there is

no other clique given by the subset V ′′ ∈ V ′ that contains all of V ′′ and at least one

other node.

Example 16 Based on the personal network of ego node '0' given in Figure 2.13,

the subgroup made of the nodes set V ′ = {3, 5, 6} is a maximal clique of size 3, while

the nodes set V ′′ = {5, 6} represents a clique of size 2.

Reachability. As presented for social networks, two nodes are reachable from

the one to the other if there exists a path between them. The reachability inside a

personal network is restricted since in the common de�nition of a personal network

limited to 1-level personal networks, all the nodes (alters) are known to be at distance

one from the ego and at distance of maximum 2 from each other.

However, several studies tempt to compute the two-step reach ([72], [137]), de�ned

as the percentage of all actors in the whole network that are within two steps of ego.

The two-step reach can also be normalized by the size of the personal network and

gives what it is called the reach e�ciency [137]. A high reach e�ciency indicates that

ego's alters are in�uential in the network.

Example 17 In Figure 2.14, we outlined the nodes inside the 3-personal network of

ego node '0' that are at two steps from that ego which consists in the set of nodes

{3, 2, 8, 14, 12, 10}. The two step reach is thus equal to 40% as there are 6 nodes at

two steps from the ego and the network here has 15 nodes (by excluding the ego).
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Figure 2.14: Example of Two Step Reach in the Personal Network of Ego '0', k=3.

Density. In social networks, the density measures the amount of existing edges

compared to the maximum possible number of edges between nodes. The density

as de�ned in De�nition 2.2.4, was presented in [88] as one of the most widely used

structural metrics for personal networks. The de�nition of the density for personal

networks is given below.

De�nition 2.3.7 We consider the personal network EN e of an ego e. The density D

of a personal network given by the undirected sub-graph G′(V ′, E ′) of the undirected

graph G(V,E) is:

D = 2×m
n×(n−1) , where m and n are respectively the number of edges and of nodes of

the personal network.

As we can observe, while previously we de�ned the density for the entire graph

G(V,E), here we capture the density of a sub-graph G′(V ′, E ′) of the graph G(V,E).

Example 18 The density of the 3-personal network of the ego node '0' given in

Figure 2.15, D = 0, 16.

2.3.4.2 Centrality

Centrality metrics seen in Section 2.2.2.2 (eg. degree, closeness and betweenness

centrality) were applied on personal networks either to compute them at the level of

the ego as in [87] or at the level of a given alter as in [88]. We report hereafter the
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Figure 2.15: Example of a Personal Network with k = 3 for ego node '0'.

three de�nitions one for each centrality measure adapted for the personal network'

ego node.

De�nition 2.3.8 We consider the personal network EN e of an ego e. The degree

centrality of the ego node e (deg(e)) in the personal network given by the sub-graph

G′(V ′, E ′) is given by:

deg(e) =
∑

ymxy, where mey = 1 if an edge exists between the nodes e and y ∈ V ′,
and mey = 0 otherwise.

De�nition 2.3.9 We consider the personal network EN e of an ego e. The closeness

centrality of the ego node e (C(e)) in the personal network given by the sub-graph

G′(V ′, E ′) is given by:

C(e) = 1∑
y d(y,e)

, where d(y, e) is the distance between nodes y in the personal

network and ego e inside the personal network sub-graph.

De�nition 2.3.10 We consider the personal network EN e of an ego e. The between-

ness centrality of ego node e (B(e)) inside the personal network given by the sub-graph

G′(V ′, E ′) is:

B(e) =
∑

e6=y 6=z
Sy,z(e)

Sy,z
for every pair of nodes (y, z), y, z ∈ V ′, where Sy,z is the

number of shortest paths between y and z in G, and Sy,z(e) is the number of those

passing through e.
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Figure 2.16: Example of a Structural Hole [137].

Example 19 Starting from the example of the personal network of ego node '0' given

in Figure 2.15, the degree centrality, the closeness centrality and the betweenness

centrality of the ego node '0' are respectively: deg(0) = 4, C(0) = 0, 03 , and B(0) =

0, 64.

2.3.4.3 Structural holes

The term "structural holes" was introduced by Ronald Stuart Burt in [23]. It suggests

that the ways an individual is connected with its neighborhood reveal information

about holding certain positional advantages/disadvantages and so, can be useful in

understanding the in�uence, the power, and dependency e�ects. A "hole" is a gap

between two individuals B and C both connected to node A. In this situation, A has

an advantaged position resulting from the "structural hole" between B and C since

A has two alternative partners for exchanging information; while B and C have only

one choice. An illustration of this example is given in Figure 2.16.

Next, we give the de�nition for measures related to structural holes as proposed

in [137].

E�ective size.

De�nition 2.3.11 We consider the personal network EN e of an ego e. The e�ective

size is the number of alters na the ego node has, minus the "redundancy" with alters

given by 2×t
na

, where t represents the number of ties between alters.

E�ciency.

De�nition 2.3.12 The e�ciency norms the e�ective size of a personal network to

the size of the personal network na.

Constraint. Captures the extent to which the ego is linked to alters who are also

connected with each other [23].

Hierarchy. Measures how the constraint measure is distributed across neighbors

[23].
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Figure 2.17: Brokerage Roles.

2.3.4.4 Brokerage

Fernandez and Gould [66] had another di�erent approach than the one given by Burt

[23]. The focus this time is on the ego and the role he plays in connecting groups.

The ego "broker" is the node in the middle of a directed triad. Depending on the

group to which each node composing the triad belongs, the ego broker node can act

into �ve possible roles as presented in Figure 2.17.

In this section, we presented the di�erent concepts used to characterize personal

networks structure. In the next section, we discuss another important aspect of

online social networks in general and online personal networks in particular that is

their dynamic nature. Indeed, understanding OPN structure should not be restricted

to their static state. It is important to discover how their structure changes over time

and what properties are governing these changes. We present in the following works

that discovered patterns characterizing OSN evolution and proposed a set of models.

Then, we give an overview of works that have studied OPN evolution and highlight

the limitations we �nd in that area.
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2.4 Evolution of OSNs and OPNs

Social networks are dynamic. Individuals create or break relationships, communicate,

join or quit the network, and so a�ect its structure. In the last years, numerous

studies in SNA have been devoted to understanding the evolution (or dynamics) of

social networks. The main issue in this area is the de�nition of mathematical models

able to capture and to reproduce properties observed on the real networks.

Before going into the details of these models, we should �rst distinguish between

two well studied concepts: evolving networks and temporal networks. While they seem

to have the same meaning, these two concepts are actually approaching di�erently

the time-changing nature of networks in general.

2.4.1 Evolving networks

An evolving (or dynamic) network is de�ned as a sequence of static networks, where

each network represents the state of the network at a given time step. For example

in Figure 2.18, we give a sequence for a network that evolves over three time steps t,

t+ 1, and t+ 2. In such networks, the change of the topology over time occur when

for instance people create or break a relationship. If we consider a social network

at time t with a graph Gt = (Vt, Et), the evolving graph is given by the following

de�nition proposed in [115].

De�nition 2.4.1 An evolving graph G[ti, tj] in a time interval [ti, tj] is a sequence

{Gti , Gti+1
, ..., Gtj} of graph snapshots.

Example 20 In Figure 2.18, the evolving graph G[t, t + 2] from time step t to time

step t+ 2 is de�ned by the sequence {Gt, Gt+1, Gt+2}. Where from time step t to time

step t + 1, edges {3, 6}, {7, 8}, {8, 9} where added to Gt. Then, from time step t + 1

to time step t+ 2, edge {6, 7} was added, and edge {5, 6} was removed from Gt+1.

2.4.2 Temporal networks

A temporal (or time-varying) network, is a network whose links last relatively for a

short moment or are instantaneous (e.g. e-mails, phone calls). Temporal networks

are relevant to spreading processes such as the spread of a virus or a message where

the time ordering of the induced links is important. Usually, we represent a tempo-

ral network with a Time-Varying Graph (TVG). Hereafter, we report the de�nition

proposed in [112].
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Figure 2.18: Evolving Network Snapshots.

Figure 2.19: Example of a Time Varying Graph (TVG) [120].

De�nition 2.4.2 A time-varying graph is a structure G = (V,E, T , ρ), where T
represents the time span over which relationships are assumed to take place, and

ρ : E×T 7→ {0, 1}, called presence function, indicates whether a given edge is present

at a given time.

Example 21 In Figure 2.19, we have a time varying graph G with T = 4 (panel a),

and its projection into a static graph (panel b).

Thus, evolving networks are those evolving slowly over time and snapshot analysis can

be performed e�ectively, while temporal networks are created by transient interactions

and require real-time methods to be analyzed [2]. In this thesis, we are interested

in evolving social networks where the evolution concerns the addition or the deletion

of individuals and/or relationships. Such changes occur on the time-scale of days,

months or even years. So, our work is assigned to evolving networks approach rather

than temporal networks approach. Next, we discuss the main �ndings about evolving

networks models.
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Figure 2.20: Scale-free Network.

2.4.3 First evolving network model - Scale-free networks

The �rst model that have been widely accepted to produce scale-free networks is the

one proposed by Barabasi and Albert on 1999 [14]. This model only integrates the

addition of edges by adding new nodes to the graph. A scale-free network is a network

whose degree distribution follows a power law. Barabasi-Albert model is based on

the preferential attachment (PA) where new nodes added to the network are more

likely to connect to highly connected nodes with a probability proportional to their

degree. We give an example of a scale-free network in Figure 2.20. This "rich get

richer" principle induces power-law degree distributions as new arriving nodes will

tend to connect to nodes having a high degree, which will lead to the appearance of

some highly connected nodes in the network and many weakly connected nodes.

Formally, the fraction P (k) of nodes in the network having k connections to other

nodes goes for large values of k:

P (k) ∼ k−α, where α represents the power law's exponent and depends on the

details of the model whose value is typically in the range 2 < α < 3 .

Many real networks have been reported to be scale-free such as the network of

citations between scienti�c papers [107], the movie actors network [42], the biological

networks [4], the World Wide Web network [14], and the Internet [49]. Moreover,

it has been found that online social networks follow a power law degree distribution

as proved in [83] for four OSNs: Flickr, delicious, Yahoo! Answers and LinkedIn.

Thus, the majority of works that have attempted to propose models for online social

networks evolution are based on Barabasi-Albert model. We give an overview of these

works in the following section.
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2.4.4 Evolution models for OSNs

The availability of online social networks o�ered new opportunities to researchers

coming from di�erent domains interested in proposing evolution models. Thus, a

variety of methods has been applied to formalize the idea of evolution.

Snijders proposed in [116], [117] to use classical stochastic models, mainly the

Markov model [56] to model networks dynamics. This method was extended in [26]

where a multi-layer Hidden Marcov Models (HMMs) was applied as a solution to

model the social dynamics of digital ecosystems (DE). Precisely, the authors tried

to predict the evolution of relationships inside the overall network (outer layer), by

considering the evolution of prede�ned sub-networks (inner layer) in terms of their

nature (according to user's interest) and their intensity. The dynamics of the network

are formulated by transition probabilities between hidden states of the sub-networks

that have to be recognized (appearance, increase, decrease, equality or disappearing

of a sub-network). The proposed model was evaluated on Yahoo! Groups data and

has achieved a good level of prediction accuracy.

Spectral methods were also applied to model networks' evolution as in [79], where

the evolution is expressed using a link prediction function that translates the eigen-

values decomposition of the adjacency matrix representing the network. So, the

proposed spectral evolution model tries to predict where new edges will be added as

the network grows over time. Experiments to evaluate link prediction accuracy were

conducted over di�erent social networks including online social networks as Facebook,

Epinions, YouTube or Flicker on which good performances have been observed.

The remaining and prevailing set of works covers probabilistic models built on the

basis of Barabasi-Albert PA model discussed in the previous section. Barabasi-Albert

model provides a general mechanism to predict a network whose degree distribution

follows a power law but it is insu�cient to describe real online social networks. Indeed,

it only focuses on the role of nodes' degree but su�ers from the lack of constraints

integration about links and local structures formation and of e�ects that in�uence

the creation of links among users.

This fact led the researchers to integrate notions as the transitivity which suggests

that social networks' actors will tend to create relationships with actors to whom their

neighbors (immediate connections) are connected to as in [75]. In addition, other

e�ects that might in�uence user's behaviour were integrated in the model proposed

in [75] for social rating networks 2 as the social in�uence suggesting that users adopt

2A social rating network is a social network in which edges represent social relationships and
users (nodes) express ratings on some items [75].
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the same rating behaviour as their friends or the selection which hints that people

form relationships with people similar to them. The proposed generative model tries

to reproduce a network having the properties observed on real social rating networks

(Flicker and Epinions).

Gong et al. in [65] proposed a preferential attachment and triangle closing based

generative model for social attribute networks 3. In this work, �rst, the authors made

a set of observations on Google+ network where by using a set of metrics like the den-

sity, the diameter, the clustering coe�cient, and the degree distribution they tried

to see the impact of the attribute structure on the social structure. Then, a model

including two components i.e, attribute-augmented PA and attribute-augmented tri-

angle closing was proposed on the basis of the observations derived from Google+.

Other works incorporated the spatial factor as an additional constraint that fos-

ters the creation of social links in OSNs like in [5]. In this work, the authors proposed

an approach to estimate for each new edge, the probability that it would be created

according to a given model among di�erent tested models: attachment by node de-

gree (PA), age, distance or by node degree and distance, triangle creation between

two nodes at random, proportionally to the number of common friends, inversely

proportional to the geographic distance. The objective was to identify among these

models the one with the highest likelihood to explain the data from Gowalla OSN.

They found that the geographic distance plays an important role in the creation of

new social connections since connections arise among users visiting the same places.

In addition to the cited e�ects in�uencing the evolution of social networks, users'

social activities inside the OSN were considered in [118]. Enriching the social network

with user activity information can provide a more �ne-grained understanding of on-

line social networks evolution. The proposed model in [118] formalizes two concepts:

the social actions of hobbies searching and friend recommendation in a social net-

work, assuming that they constitute common ways for meeting friends and forming

communities. The proposed topology evolution model could reproduce several key

network topological properties.

As outlined, all the models we discuss in this section are based on properties that

concern the OSN structure as a whole, while in our work we are interested on how a

personal network of a given individual will evolve over time. In that respect, we give

3A social attribute network is a social network augmented with social attributes, in which nodes
represent either social actors or social attributes (e.g. a�liation, city..etc), and edges represent social
links among social nodes or attribute links between social nodes and attribute nodes [65].
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in the next section an overview of works aiming in understanding and studying the

evolution of OPNs.

2.4.5 Evolution studies of OPNs

In the previous section, we presented the di�erent methods used to model the evolu-

tion of OSN over time. We have seen that most of these works attempted to develop

generative models for large networks that reproduce the properties revealed by the

analysis of di�erent online networks, such as their scale-free nature in degree distri-

bution, their high clustering coe�cient, and their low average shortest path length

that separates nodes (so called the small-world phenomenon [122, 123]). However,

studies on understanding the evolution of OPNs are still young and only a few works

were devoted to that, while studying personal networks dynamics allows to go back

to the processes that engendered the structures, the movements and particularities

instead of seeking patterns and �xed forms in the overall network structure that do

not capture the dynamics nor the mechanisms that generate it [104].

Personal networks' evolution has already been studied in social sciences, as done by

Bidart et al. in [21] in order to explore the relation between the evolution of personal

networks of a set of young people and life events by the way of a longitudinal survey

on data collected via repeated interviews of the same set of individuals made every 3

years. Next, we discuss the available literature that has dealt with the evolution of

personal networks in the online environment.

In [8], Arnaboldi et al. aimed to discover how the size and the structure of personal

networks' layers change over time based on Dunbar's de�nition [119], where a layer is

composed of the alters having the same degree of intimacy with the ego. In this work,

the authors studied Twitter data in order to assess whether o�ine personal networks'

properties are also valid in Twitter's OPNs. Thus, they outlined that the number

of active relationships maintained by the ego remains constant due to the limited

cognitive capacity of human brain. Furthermore, they noted that when the ego joins

the OSN, the number of ego's relationships shows an important burst that converges

to a constant value. A small set of these relationships is strong and is maintained

over time, while most of them become weaker shortly after their creation. The later

has also been observed by Viswanath et al. in [126] where the authors analyzed the

evolution of the Facebook interaction graph and found that personal networks links

are rapidly activated and deactivated and that the strength of those links decreases

over time soon after they were created.
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Figure 2.21: EgoLines visualization tool.

Although these conclusions can be helpful when modeling the evolution of rela-

tionships' strength in personal networks, they remain limited since they do not re�ect

how OPNs graph structure is a�ected over time when nodes and edges are added or

deleted. Moreover, by considering only the relationships between the individual (ego)

and his direct connections (personal networks with k = 1), these studies restrict

the information about the evolution of the personal network since many times the

evolution appears not on the level 1 but on levels 2 and above.

Visualization techniques help in understanding the evolution of OPNs. In that

respect, in [113] the authors propose techniques to visualize large scale personal net-

works evolution by considering the data as continuous streams. The visualization

software EgoLines, presented in [136] (Figure 2.21), proposes a dynamic analysis of

personal networks. These tools allow to isolate a personal network and analyze its

evolution with a visual support, but they are lacking the capabilities of performing

massive scale analysis. The system EgoSlider [132] (Figure 2.22) allows to analyze a

set of dynamic personal networks by summarizing their properties at the network, in-
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Figure 2.22: EgoSlider visualization tool.

dividual or temporal-based level. Unfortunately, the integrated metrics (e.g. number

of alters, edges between alters, etc.) are limited and provides only generic information

about the OPN.

2.5 Co-authorship networks topology and evolution

studies

A co-authorship network is a social network made of researchers connected with each

other if they have co-authored one or more papers together. These networks were

studied by di�erent disciplines including physics, bio-medical research and computer

science.

The co-authorship networks are of general interest for understanding the topolog-

ical and dynamical laws governing complex networks, as they represent one of the

largest publicly available computerized social networks. One of the very �rst stud-

ies conducted on co-authoring networks was performed by Newman in 2001 [97] and

re�ned in 2004 [100]. These two �rst works studied the structure of the network by

computing the number of authors, the mean papers per authors and the authors' de-

gree. Three of the main observations were outlined in this paper. First, the networks

are scale-free with some deviations because the degrees' distribution follow a power

law with some deviations. Second, the networks are small world networks as the aver-

age separation of the network (average of length of the shortest path between pairs of

nodes) is of 6. And last, the networks have a very strong clustering e�ect given that
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Figure 2.23: Personal network of author "Fabrice Arnal".

the global clustering coe�cient or transitivity index [99] is very high. Later, other

works studied the structure of static co-authoring networks producing comparable

results, such as [133], [127].

In his studies, Newman was only interested in the study of the structure of the

static co-authoring network. The work of Barabasi et al. in 2002 [15] was the �rst one

to study the evolution of such networks where the evolution of a collaboration network

is seen as the possible addition of new nodes and new links in the network. In this

work, topological characteristics of two collaboration networks in Mathematics and

Neuro-Science were discovered. Indeed, they found that these networks are scale-free

and their evolution is driven by the preferential attachment (explained earlier) and

that the average degree of the nodes increases over time while the node separation,

given by the average shortest path between pairs of nodes, decreases. A model that

captures the network's time evolution was proposed. Another work in [74], found that

the growth of the collaboration network for the Computer Science �eld is governed

by the scale-free degree distribution and the small world phenomenon.

The studies presented above dealt with the co-authoring networks in their totality

when studying its structure or evolution.

Co-authorship personal networks were also of interest for a set of studies that

aimed to discover static co-authoring ego-networks properties. For example, the re-
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Figure 2.24: Dunbar circles [8].

cent work in [11] aimed to discover if the structure from sociological ego-networks

following Dunbar's de�nition [8] (which represents an ego-network' alters set into

four layers, each layer re�ects the intimacy level alters have with ego, as represented

in Figure 2.24) are present in the co-authoring ego-networks. In this work, they base

their research on the limitation imposed on humans by cognitive and time constraints.

Notice that here an ego-network of an author is limited to its co-authors and without

integrating the links between its co-authors (as in De�nition 2.3.1) weighing each link

with a measure of strength of their collaboration.

Another work in [103] was interested in analyzing the relationship between research

impact and the structural properties of personal co-author networks. In contrary to

the considered personal network in [11], the links among an author collaborators

(alters) were part of the personal network (as in De�nition 2.3.3). A set of measures

including centrality measures as the betweenness and the degree were performed on

a set of 500 authors with some other measures at the overall network level (average

clustering coe�cient, density, average path length). They found that in sparse ego-

networks characterized by a high ego betweenness centrality, the central authors have

more control on their collaborators being more selective in their recruitment and

concluding that this behaviour has positive implications in the research impact.

A similar work in [54] provided, after the visualization of the co-authorship net-

work, a set of descriptive statistics at three levels; i.e. the individual level where

ego-networks according to De�nition 2.3.3 were considered, the group level and the

network level. Then, they developed and tested seven hypotheses associated to the

researchers' embeddedness in the co-authorship network with the number of the re-

searcher's citations. For example, one of the seven hypothesis suggest that the higher

an author's degree centrality, the more that author is cited. Finally, the work by
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Chakraborty in [27], proposed an approach to automatically detect circles in ego-

networks where a circle represents a densely knit community of researchers. The

considered ego-networks follows De�nition 2.3.2, i.e. the links between the ego and

its co-authors were excluded from the ego-network. Other similar research exploring

ego-networks structure in co-authorship network can be found in [1], [45], [22], [133],

[30].

While the structure of personal co-authorship networks has been investigated over

the set of studies cited in the previous paragraph, few works were devoted to the

understanding and modeling of their evolution over time. This question was addressed

in [98] by Newman for estimating the number of neighbors at distance 2 from the

ego (2-level ego-networks) based on the degree distribution and clustering coe�cient

estimated on the 1-level personal network of a given author. The proposed formulas

were able to make accurate estimates, on real social networks, of how many people

your friends will be friends with.

2.6 Conclusion

In this chapter, we presented o�ine and online social networks and highlighted the

di�erences between them with a projection on both overall OSNs and OPNs. We

gave an overview of SNA' concepts for these two related but di�erent perspectives of

social networks. We demonstrated that the available literature is lacking of adequate

de�nitions that capture the diversity of today's OPNs. In the next chapter (Chapter

3), we provide formal de�nitions for di�erent types of OPNs. Our contribution is to

provide inclusive and usable de�nitions that suit di�erent needs.

In addition, as stated earlier, we are interested in the evolution of OPNs and at

the best of or knowledge there is no evolution model dedicated to these particular

networks and we believe that the existing literature is missing such model. Thus,

understanding how online personal networks are evolving is still missing in the current

literature, while social networks evolution in general was widely addressed and many

models were proposed.

Moreover, from the set of evolution models for OSNs we discussed in this chapter,

it is clear that all these models are exploiting properties about the whole OSN struc-

ture and might not work when considering OPNs. Indeed, we will see in Chapter 4,

where we report the results of an experimental analysis over a large set of real online

personal networks by the mean of the computation of metrics that characterizes their

structure, that OPNs show di�erent properties.
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Chapter 3

Online Personal Networks

De�nitions: A proposal

3.1 Introduction

In the previous chapter, and precisely in section 2.3.3, we presented an overview of

how personal networks are de�ned in the literature and discussed two sets of de�ni-

tions for: 1-personal networks and k-personal networks. On the one side, 1-personal

networks constitute the most common way to de�ne personal networks in the exist-

ing works restricting an individual's personal network to its immediate acquaintances.

On the other side, a couple of works used the second set of de�nitions for k-personal

networks which constitute an extended form in the sense that more people are part

of an individual's personal network, who are not necessarily directly connected to

him/her. However, we outlined important limitations of all these existing de�nitions.

We remind them in the following:

� Restricting an individual's personal network, to its direct connections as given

by the de�nition set of 1-personal networks constitutes an old model attributed

to social sciences. The characteristics of nowadays OSNs have changed the

way people interact, making possible a communication with others that are

not necessarily in our immediate circle of friends. In addition, restricting a

personal network at the �rst level might hide useful information when trying to

understand a variety of research problems, as how the information �ows within

the personal network, how people are getting in�uenced, or how the personal

networks evolve over time. So, extending the current de�nition is a necessity.

� Still, in social sciences, studies on personal networks concern most of the time

kinship, friends, acquaintance relations which are symmetric relationships, which
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means that if individual a is friend with individual b, then individual b is also

friend with individual a. Users' relationships in OSNs are not always symmetric

as it is the case for example in Twitter where the users follow each other, but

the follow relationship can be in only one direction. More precisely, for a given

user u we might have two distinct types of relationships: the �rst one for the

users that user u is following (followees of u), and the second for the users that

follow the user u (followers of u). Thus, we need to de�ne a personal network

accordingly to the type of the relationship among users.

� The relationships in real OSNs can be quanti�ed with a weight re�ecting a

given characteristic of the underline relationship or the exchange between users.

Thereby, when considering OPNs we should also take into account that the

links might be weighted. This allows us to capture links of varying types and

strengths re�ecting more about a relationship than just saying that it either

exists or not. For example, if we take two Facebook users, the weight of their

connection given by the frequency of contact between them can tell us about

how close to each other these two users are.

In this chapter, we introduce a new set of de�nitions; the de�nitions are �exible

enough to cover current OPNs, while they remain easily extensible for the future. We

are presenting three de�nitions:

1. the �rst one focuses on undirected OPNs

2. the second de�nition is for directed OPNs

3. the third de�nition extends the �rst and the second and de�nes weighted OPNs

where the links are enriched by a weight representing a given property.

3.2 From Dunbar's model for personal networks to

new de�nitions of online personal networks

Let's consider the Dunbar model for 1-personal networks given in Figure 3.1. In this

model a personal network is made of layers where each layer consists of a set of users

that are the alters directly connected to the ego. Each layer in Dunbar's model re�ects

the intimacy level alters have with ego. The inner layer is composed of individuals

who are the most intimate with the ego, while the outer layer is made of those who

are less intimate with the ego.
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Based on this model, instead of having layers built on the level of intimacy between

the ego and its alters, we consider them as referring to the distance of the ego with

the rest of the nodes in the personal network computed as the shortest path length.

Thus, the �rst inner layer groups 1-level alters that are directly connected to the ego,

the second layer contains alters at the second level that are not directly connected to

the ego but to his 1-level alters in the former inner layer and so on. An illustration of

this modeling is given in Figure 3.1. Notice that, for instance, an alter that is in the

outer layer is at distance 4 from the ego which means that there is no other way for

reaching that alter by traversing from the ego to an alter in layer A then to an alter

in layer B then to an alter in layer C then to the �nal alter in layer D rendering the

distance less than 4. However, many di�erent ways of distance 4 might exist from the

ego to that alter in layer D through layers A, B, and C.

With this representation, we can see that we are extending the notion of a personal

network in the sense that not all the alters are necessarily connected immediately to

the ego. We can de�ne this way 1-personal networks, but also 2-personal networks,

3-personal networks, 4-personal networks, and so on.

We give bellow, a formalization of this modeling by distinguishing 3 di�erent

de�nitions. The 3 de�nitions depend on the type of the connections inside the personal

network. The �rst one concerns undirected personal networks where the connections

are represented by symmetric edges. The second de�nition groups two distinct types,

one type for representing connections emanating from the ego given by outgoing edges

and the second type for representing connections having as target the ego given by

incoming edges. At last, the third de�nition corresponds to the case where personal

network connections are characterized by a given property and thus weighted edges

are used to represent such connections.

3.3 Undirected online personal networks

Let's consider an online social network given by a graph G(V,E) where V is the

set of nodes representing the social actors and E is the set of (undirected) edges

representing the links between them. Next, we give the de�nition of an undirected

personal network of a given user e ∈ V .

De�nition 3.3.1 We de�ne a k-undirected personal network k − PN e of an ego

individual e as being a sub-network of the online social network de�ned by G(V,E) and

composed of the ego and the individuals who are connected to it directly or indirectly
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Figure 3.1: From Dunbar circles to OPNs de�nition.

(named alters), and of all the connections between e and his alters, and between the

alters. The personal network k − PN e is de�ned by:

k − PN e = G′(V ′, E ′) with V ′ ⊂ V , and E ′ ⊂ E

V ′ = {u ∈ V | dG(e, u) ≤ k ∧ ∃v ∈ V, dG(e, v) = k} ∪ {e}
E ′ = {{u, v} ∈ E | u ∈ V ′ ∧ v ∈ V ′}
where;

� V ′ represents the set of nodes composed of the ego node e and all nodes that are

connected to e via a shortest path of maximum length k, with the condition that

at least one node v is at a k distance from e,

� E ′ is the set of all edges connecting the couples of nodes in V ′. The shortest

path is computed by dG(e, u) as the number of edges contained in the shortest

path connecting e to u.

It is important to note that we use here the function dG in order to restrict the selection

of set of nodes of the personal network of an ego e; nevertheless, once the set of nodes

V ′ selected, we will consider in the personal network all the existing edges between

the selected nodes. This means that the resulting network might contain nodes that

are connected to the ego e via a path longer than k (dG > k), but via a shortest

path shorter or equal to k (dG ≤ k). The function dG will have the same role in the

following de�nitions.

De�nition 3.3.1 is close to the one given in [62] for Twitter, where Maira et al.

analyzed information di�usion, without the restriction of excluding links between

last-level alters. Compared to the de�nition given by [121] for k-personal networks

including ego-alter links but excluding alter-alter links that we presented in section

2.2.2, our de�nition considers in addition to alter-alter links, the links between the

ego node and its direct alters as part of the ego-network. This is important if we aim
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(a) Example of an undirected OSN.
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(b) Extracted 2-personal network of ego
node "0".

Figure 3.2: Undirected Personal Network Example.

for example to study information �ow between nodes in the OPN, then we need to

have the ego-alter connections. Thus, our de�nition expands the notion of a personal

network allowing to better represent diverse current OPNs unlike [62], where the

de�nition was solely for Twitter.

Example 22 Based on our new de�nition, we can extract from the undirected net-

work in Figure 3.2a, the personal network of the ego node 0 with k=2. The set of

nodes V ′ will be composed of:

� the ego node 0.

� all the nodes that are at distance ≤ 2 from ego node 0 with the condition that

there is at least one node that is at distance = 2 from ego node 0. Thus, nodes 1,

7, 9, 13 are part of V ′ since they are at distance 1 from ego node 0, in addition

to nodes 2, 3, 8, 10, 12, 14 that are at distance 2 from ego node 0.

The set of edges E ′ is then composed of the links that existed in E between nodes in

V ′.

The resulting 2-personal network is given in Figure 3.2b. This ego-network con-

sists of: the node set V ′ = {0, 1, 2, 3, 7, 8, 9, 10, 12, 13, 14}, and the link set E ′ =

{{0, 1}, {1, 2}, {1, 3}, {2, 3}, {0, 7}, {7, 8}, {0, 9}, {9, 10}, {0, 13}, {9, 13}, {10, 12},
{12, 13}, {13, 14}}.
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Figure 3.3: Directed (incoming and outgoing) 3-personal network of ego "0".

3.4 Directed online personal networks

The previous de�nition introduces undirected ego-networks allowing to describe their

nodes and connections. In these networks, the connections are symmetric (i.e. in

Facebook, if you have a friend in your list, this person will have you in his/her list), but

if we take Twitter as example, the connections are not following anymore a symmetric

model as you can follow someone without him/her following you back. Thus, in case

of Twitter, we have a directed relationship and so, we propose a de�nition based on

directed graphs. To this end, we need to de�ne two distinct concepts: incoming and

outgoing OPNs.

The incoming OPN of a given individual e is the network made of e and other

individuals in the network such that it exists a directed path starting from each of

these individuals and ending at the ego e.

Similarly, the outgoing OPN of an ego e is the network made of e and other

individuals in the network such that it exists a directed path starting at the ego

e and ending at each of these individuals. The union of the incoming and outgoing
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personal networks of e gives its full directed OPN. Next, we give the formal de�nitions

of incoming and outgoing OPNs.

3.4.1 Incoming online personal networks

De�nition 3.4.1 An k-incoming personal network k−PN e
in of an ego e is a directed

sub-graph G′(V ′, E ′) of the directed graph G(V,E), composed of the set of individuals

u that are connected to e via a shortest path of maximum length k, where u is the

start node and e the end node, and the set of links composed of the links being part of

the incoming paths to e:

k − PN e
in = G′(V ′in, E

′
in) with V ′in ⊆ V , and E ′in ⊆ E

V ′in = {u ∈ V | dG(u, e) ≤ k ∧ ∃v ∈ V, dG(v, e) = k} ∪ {e}
E ′in = {(u, v) ∈ E | u ∈ V ′in \ {e} ∧ v ∈ V ′in}
where:

� V ′in is composed of e and all the nodes (1 or more) with the condition that for

each node, there exists an incoming (i.e. a path for which the end node is the

ego) shortest path of maximum length k from the given node to e,

� E ′in is the set of directed edges linking nodes in V ′in.

We notice that, in the de�nition above, we cannot have cycles involving the ego node.

This is guaranteed by the exclusion of the ego from the starting endpoints of the

edges in E ′in(x ∈ V ′in \ {e}). This avoids the confusion with outgoing edges having

as starting point the ego that forms the outgoing OPN that we will de�ne in the

next subsection. However, cycles that do not involve the ego are possible inside the

incoming OPN.

Through the de�nition of an incoming ego-network, we can model the �ow of the

information explicitly received by a particular user (the ego). For example, we could

be interested in investigating whether this particular user is getting information from

con�icting sources or if the obtained information a�ects its participation in various

communities or even we could determine the path followed by the information. It

is important to note that this type of analysis was not possible with the de�nitions

presented in Section 2.3.3 of Chapter 2 due to the lack of de�nition of directed ego-

networks.
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Example 23 Based on the graph in Figure 3.3, the directed sub-graph with white

nodes and directed edges situated in the upper frame on top of the ego node e = 0, in

addition to the ego node e = 0 and its incoming edges, corresponds to an incoming

ego-network using the de�nition of k − PN e
in(V ′, E ′) with k=4. It is given in Figure

3.4.

The node set V ′in is composed of:

� the ego node 0

� nodes 1 and 7 that are at distance 1 from ego node 0

� nodes 2,3, and 8 that are at distance 2 from ego node 0

� node 6 that is at distance 3 from ego node 0

� node 5 that is at distance 4 from the ego node 0

Thus V ′in = {0, 1, 2, 3, 5, 6, 7, 8}; all the nodes in V ′in are at a shortest path with maxi-

mum length 4 from the ego.

The set of directed edges E ′in is composed of the directed edges among nodes in

V ′in. Thus, E
′
in = {(1, 0), (2, 1), (3, 1), (3, 2), (6, 3), (3, 5), (5, 6), (7, 0), (8, 7)}.

2
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6

8

7

9

Figure 3.4: The incoming personal network of ego "0", k=4.
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3.4.2 Outgoing online personal networks

De�nition 3.4.2 A k-outgoing ego-network PN e
out of an individual ego e is a directed

sub-graph G′(V ′, E ′) of the directed graph G(V,E) composed of the set of individuals

u that are connected to e via a shortest path of length of maximum k going from e to

u, and the set of links composed of the links being part of the outgoing paths from e:

k − PN e
out = G′(V ′out, E

′
out) with V

′
out ⊆ V , and E ′out ⊆ E

V ′out = {u ∈ V | dG(e, u) ≤ k ∧ ∃v ∈ V, dG(e, v) = k} ∪ {e}
E ′out = {(u, v) ∈ E | u ∈ V ′out ∧ v ∈ V ′out \ {e}}
where:

� V ′out is composed of the ego node e and all the nodes at a maximum outgoing

shortest path length k from it such that there exists an outgoing shortest path

from e to each one of these nodes,

� E ′out is the set of directed edges linking nodes in V ′out.

With the de�nition of outgoing ego-networks, we provide a way to consider only

the out�ow of information from a single ego node. This model can be used for

understanding the spread of information starting from a speci�c source.

Example 24 Given the example in Figure 3.3, the directed sub-graph with grey nodes

and edges situated in the frame that is under the ego node e = 0, in addition to

the ego node e = 0 and its ongoing edges, corresponds to an outgoing ego-network

k − PN e
out(V

′
out, E

′
out) with k=3. It is given in Figure 3.5.

The node set V ′out is composed of:

� the ego node 0

� nodes 9 and 13 that are at distance 1 from ego node 0

� nodes 10, 12, and 14 that are at distance 2 from ego node 0

� nodes 11 and 15 that are at distance 3 from ego node 0

Thus, V ′out = {0, 9, 10, 11, 12, 13, 14, 15}; since these nodes are at a maximum shortest

path length 3 from the ego.

Also, the set of directed edges is composed of directed edges between nodes in V ′out.

Thus, E ′out = {(0, 9), (0, 13), (9, 13), (9, 10), (13, 14), (13, 12), (14, 15), (15, 12), (12, 10),

(12, 11)}.
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Figure 3.5: The outgoing personal network of ego "0", k=3.

Thus, the k-directed ego-network k − PN e
d(V ′, E ′) of the ego node e is given by the

following property.

Property 1 A directed ego-network k − PN e
d(V ′, E ′) of an individual e is the union

of the incoming and outgoing ego-networks:

k − PN e
d = k − PN e

in ∪ k − PN e
out,

which is translated by: V ′ = V ′in ∪ V ′out, E ′ = E ′in ∪ E ′out.

Example 25 The example given in Figure 3.6 constitute the directed OPN of the ego

node 0 with k = 4. The set of nodes V ′=V ′in∪V ′out = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15} and the set of edges E ′ = E ′in∪E ′out = {(1, 0), (2, 1), (3, 1), (3, 2), (6, 3), (3, 5),

(5, 6), (7, 0), (8, 7), (0, 9), (0, 13), (9, 13), (9, 10), (13, 14), (13, 12), (14, 15), (15, 12),

(12, 10), (12, 11)}.

Thereby, we proposed a de�nition for directed ego-networks, while distinguishing

between incoming and outgoing ego-networks which was not possible with previous

de�nitions and thus capture the complex reality of OSNs.

3.5 Weighted online personal networks

De�nition 3.5.1 A k-undirected and weighted ego-network is the undirected ego-

network k−PN e of an ego node e given in De�nition 3.3.1 having as an extra element
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Figure 3.6: Directed 4-personal network of ego "0".

a function f which assigns to each undirected edge in G′ a value representing the tie

strength of the edge.

k − PN e
uw = G′(V ′, E ′) ⊆ G(V,E) |V',E' as de�ned in De�nition 3.3.1

∃f , f : E ′ → R

f({u, v}) = a, where {u, v} ∈ E ′ and a ∈ R.

It is important to note that the de�nition of dG remains the same as in De�nition

3.3.1. This means that we do not use the weights of the edges in order to compute

the shortest paths when building the set V ′, but we only count the number of edges

which are part of the shortest path.

Example 26 The ego-network graph in Figure 3.2b can be seen as a weighted graph

corresponding for instance to the 2-personal undirected Facebook graph of the user

e="0" and that on each edge between two users in the social graph we have an integer

value representing the number of private messages exchanged between them during a
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Figure 3.7: Weighted 2-personal network of ego node "0".

certain period. The resulting graph is given in Figure 3.7. For example, users 9 and

10 have exchanged four messages on Facebook.

The same process can respectively be applied to de�ne a weighted and directed

ego-network. We give bellow, the de�nition of a directed and weighted ego-network.

De�nition 3.5.2 A k-directed and weighted ego-network is the directed ego-network

PN e of an ego node e given in Property 1 having as an extra element a function f

which assigns to each directed edge in G′ a value representing the tie strength of the

edge.

k − PN e
dw = G′(V ′, E ′) ⊆ G(V,E) |V',E' as de�ned in Property 1

∃f , f : E ′ → R

f({u, v}) = a, where {u, v} ∈ E ′ and a ∈ R.

Thus, these de�nitions provide a tool to study topics around the strength of the

connections among online social network users.

3.6 Conclusion

In this chapter 2, we proposed a set of formal de�nitions for online personal social

networks (OPNs). The de�nitions are independent of any application or online social

network and capture all diverse existing cases, including weighted, directed (incoming
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and outgoing) and undirected OPNs. To the best of our knowledge there is no other

systematic and formal recording of these concepts in a way that provides a universal

framework for studying personal online social networks in general. The de�nitions

were published in [39]. In the following chapters, we use these de�nitions for extracting

and studying personal networks.
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Chapter 4

Co-authorship Personal Networks

Evolution: Analysis

4.1 Introduction

As pointed out in Chapter2, understanding how online personal networks are evolving

is still missing in the current literature, while the evolution of networks as a whole

was widely addressed and many models were proposed. In this chapter, we propose

to �ll this gap by studying the evolution of OPNs by means of 3 di�erent analysis.

First, we present analysis that concern 1-level personal network. In these analysis,

we wanted to characterize the new links made among alters as the personal networks

evolve which is important to understand in order to know how links are organized

among alters.

Second, we perform an experimental analysis on a large set of real online personal

networks by the mean of the computation of metrics that characterize their structure.

We examine how these metrics behave when the personal networks change over time in

order to discover the properties driving the evolution of personal networks' structure.

Finally, we present the analysis we did on the same set of real online personal

networks to discover the patterns governing these evolving personal networks when

considering maximal clique. Indeed, with the second bloc of analysis, we found that

cliques can explain many of the metric observations.

Before detailing these 3 di�erent analysis, we present next the data on which we

worked to perform the analysis.
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4.2 Data set description

4.2.1 Data collection

We have chosen to perform the analysis on data from DBLP (Digital Bibliography

& Library Project) available on aminer plateform1. The dataset we selected is a

DBLP citation network in its 7th version initially composed of 2.244.021 papers and

4.354.534 citation relationships collected on 2014-05-25. This dataset groups a set

of 10 instances depending on the domain of the papers (Arti�cial Intelligence, Com-

puter Graphics and Multimedia, Computer Networks, Database with Data-mining

and information retrieval, High Performance Computing, Human Computing Inter-

action and Ubiquitous Computing, Information Security, Interdisciplinary Studies,

Software Engineering and Theoretical Computer Science). We selected to work on

the DBLP citation network on the domain of Computer Networks containing 16222

papers presented in a text �le where each paper is represented with some information

in the following format:

#* � Paper title

#@ � Authors

#t � Year

#c � Publication venue

#index � Index id of this paper

#% � The id of references of this paper

#! � Abstract

An example for a paper is given bellow:

#*Introduction to the User Requirements Notation: learning by example.

#@Daniel Amyot

#t2003

#cComputer Networks

#index793184

#%118406

#%1099051

#%1127648

#!

In the text �le containing the papers, an empty line separates the papers.

1https://aminer.org/citation
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The issue we had with this instance of dataset of papers in Computer Networks

domain is that the majority of references of papers are not necessary part of the �eld of

Computer Network and thus are not represented in the data and only 5.980 were there.

In order to have a complete data, we extracted and added the entries corresponding

to those referenced papers from the other domains but also their respective references

that are not represented in the initial citation network in Computer Networks. At

the end we obtained a dataset of 38.134 papers.

4.2.2 Data storage

Starting from the �le containing the 38.134 papers, we built an SQL database named

dblp. The database groups a set of relational tables. In the following, we describe

these tables and their corresponding attributes:

� papers: idPaper, yearPaper, title, venue

� citations: citedPaper, idPaper, where each entry represents a citation relation-

ship. We obtained in total 60.950 citation relationships.

� authors: idAuthor, nameAuthor. The idAuthor attribute was created since

only the names of authors are given in the original data �le. The table contains

23.010 authors.

� author_paper: idAuthor, idPaper. An entry here links each author to the paper

she/he participated in. A given author might participate to more than one

paper.

� coauthors: idAuthor, idCoAuthor, weight. In this table, we represented the

co-authoring relationship among the authors of the same paper. Each record

re�ects a co-authoring relationship between two authors of a same paper with

an attribute weight representing the number of papers co-authored by these two

authors. This table contains 101.204 co-authoring ralationships.

Using this database, two distinct networks can be built:

1. The citation network based on the citation table that stores citation rela-

tionships. The corresponding graph is a directed graph where nodes represent

the papers and a directed edge from a given paper p1 to a given paper p2 re�ects

the fact that paper p1 cites paper p2. An example is given in Figure 4.1a.
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(a) Citation network is
represented with a directed

graph.

(b) Co-authorship network is
represented with an undirected

graph.

Figure 4.1: Citation and Co-authorship Networks.

2. The co-authorship network is built starting from authors table. The corre-

sponding graph is an undirected graph where nodes represent the authors and

an undirected edge between two given authors a1 and a2 means that authors

a1 and a2 have written at least a paper together. An example is given in Figure

4.1b.

In the rest of this chapter, we focus on the co-authorship network.

4.2.3 The co-authorship network and its evolution

Co-authorship network to study. As described in the previous section, we con-

structed the network of co-authorships with connections between pairs of authors who

share at least one publication in the �eld of Computer Networks. The corresponding

co-authorship network graph that is undirected, since relationships are symmetric,

was initially composed of 23.010 nodes (authors) and 101.204 edges (co-authorships).

The co-authorships were made on papers published in the period 1971-2013. The

�rst analyse of this graph have allowed to identify a set of 2348 separated compo-

nents. The largest graph component that constitute the giant component of the graph

is composed of 13854 nodes (authors) and 32946 edges (co-authorships). Figure 4.2

gives an overview of the giant component. The next large component have a size of

55 nodes followed by smaller components. Thus, the co-authorship network graph

we are studying in the following is made of authors who do not belong to indepen-

dent communities but belong to the giant component of the whole graph of scienti�c

collaborations in Computer Networks area from 1971 until 2013.

Co-authorship network evolution. The evolution of a scienti�c collaboration

network from time t to time t + 1 consists in the addition of new authors (nodes)

that join the network and create new collaborations (edges) with existing authors
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Figure 4.2: Giant Component of Computer Networks Co-authoring Graph.

that were in the network at time t. New edges can also appear between two authors

already in the network at time t, as well as between two new authors joining the

network at time t + 1. In this context, the t parameter corresponds to the year in

which a co-authorship was established (year of the published paper). Thus, one can

capture the co-authorship network at a given starting time point and observe how

this network evolves by the addition of nodes and edges until a �nal time point.

Co-authorship personal networks evolution. In our case, the aim is not to

study the evolution of the collaboration network as a whole, but to study the evolu-

tion of the personal collaboration networks of a set of individual authors (egos) over

time in an e�ort to understand for example if the evolution of the personal networks

shares common characteristics, patterns or trends or if the behavior is speci�c to

some particular personal networks. The personal co-authoring network of a given

author based on De�nition 3.3.1, given in Chapter 3, of an undirected personal net-

work, is made of that focal author (ego) and all those authors with whom she/he

co-authored at least one paper in addition to their respective co-authors and so on

depending on parameter k. Thus, a personal co-authoring network of a given author

is extracted from the entire co-authoring network in Computer Networks �eld stored

in dblp database we described above.
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Dataset Year of �rst appearance Number of analyzed authors Time window

dataset 1 2004 560 2006 to 2013

dataset 2 2005 594 2007 to 2013

dataset 3 2006 1096 2008 to 2013

dataset 4 2007 1029 2009 to 2013

dataset 5 2008 1256 2010 to 2013

Table 4.1: The description of the di�erent parts of the used DBLP data set.

Dataset of co-authoring personal networks to study. In order to obtain

a cohesive set of co-authoring personal networks for studying the evolution, we �rst

have �xed the period on which we want to study the personal networks evolution to

be between 2004 and 2013. Thus, we have split our data into 5 parts; each part is

composed of a set of authors (egos) that have started publishing on a given year. For

example:

� dataset1 holds authors that had their �rst publication in 2004,

� dataset2 contains authors that had their �rst publication in 2005, and so on.

In Table 4.1, we give a description of the 5 datasets. The third column of the table

gives the number of authors analyzed per dataset, while the last column contains the

time window on which we studied the evolution for each dataset.

We started studying the evolution of each dataset two years after the dataset's

authors joined the network since we have observed that during the �rst two years a

considerable fraction of personal networks remains unchanged (do not evolve in terms

of nodes' and edges' addition).

In the next section, we describe the methodology we used to analyze the described

data and present the obtained results and the corresponding conclusions for the three

following types of analysis:

1. Analysis of 1-level co-authorship personal networks evolution via links charac-

terization

2. Metric-driven analysis, which relies on most of the metrics we presented in

Chapter 2, focusing on understanding personal collaboration networks' evolu-

tion.

3. Analysis of co-authorship personal networks evolution via cliques.
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4.3 Analysis of 1-level co-authorship personal net-

works evolution via links characterization

4.3.1 Methodology

As a �rst step to understand the dynamics of personal networks, we have focused on

1-level personal network in order to study the types of new edges that can be created

among the alters during the evolution from time t to time t+ 1.

Given the evolution of the co-authorship network that is characterized by only

the addition (deletion is not possible) of new nodes (authors) and thus new edges

(co-authoring between two authors), every new node at time t+ 1 will connect to the

ego in a 1-level personal network. Thus, in addition to the edges made between new

nodes joining the 1-level personal network at t + 1 and the ego, we identi�ed three

possible types of new edges that can be made among the alters within the 1-level

personal network:

1. Edge between 2 new nodes: where two authors a1 and a2 are added to a per-

sonal network at time t+ 1, because they co-authored a paper with an existing

author a3 at time t. Thus, authors a1 and a2 join the personal network already

connected with an edge.

2. Edge between a new node and old node: based on the same example as for the

�rst type of edges, this time we are referring to the edge that is created between

a new author at t+ 1, for example a1, and an old one, here a3.

3. Edges between old nodes: the last type of edges that we can identify is the edge

made at time t + 1 between two old nodes a0 and a3 existing in the personal

network at time t.

In the following, we report the results of the computation of the proportions of these

3 types of edges on the 1-personal networks of authors in dataset1 that started pub-

lishing on 2004.

4.3.2 Results

On the set of 560 authors from dataset1, we computed, in each time period (2006-

2007, 2007-2008, 2008-2009, 2009-2010, 2010-2011, 2011-2012, and 2012-2013), the

percentage of each type of edge for each personal network and averaged the percent-

ages overall the personal networks in a given time period. The results are represented
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in Figure 4.3. On the period 2012-2013 only a few set of 1-personal network evolve,

so, we decided to not present the corresponding graphic.

Figure 4.3: Types of edges, connecting the alters, in 1-level personal networks of
authors in dataset1.

We can note, for each period, that the proportion of edges between new alters

joining the 1-level personal network is the largest with more than 50%, followed by

the proportion of edges between a new alter and an existing alters (old) with less

than 40%. Finally, edges made between old alters are very few since their proportion

does not exceed 4% (the highest proportion registered was from 2009 to 2010 with

3.8%).

To conclude, the analysis of new links among alters in 1-level co-authorship per-

sonal networks shows that most of the new links are formed among new coming nodes

which reveals that nodes join the network under the form of cliques. Thus, a new

collaboration involves most of the time new authors that were not in the network at

time t with inevitably the ego author (because we consider 1-level personal networks)

and eventually his alters (old nodes) which explains the second important proportion

of edges made between new and old nodes. However, we found that it is unlikely for

two old authors not connected at time t to connect at time t+ 1 given the very small

proportion of links made between old alters.

In the next chapter, we will see that such knowledge is helpful for an evolution

model since it allows to guide the creation of new links among nodes in the personal
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network. However, characterizing the evolution based on edges is not enough and do

not capture the evolution of the global structure of personal networks especially if we

look at levels above (k = 2, 3...). Thus, in the next section, we perform experimental

analysis based on a set of metrics that describes better the structure of the personal

networks.

4.4 Metrics-driven Analysis

The most common way of analyzing personal networks is attribute-based. Indeed,

socio-demographic variables such as age, sex, and race are often collected for personal

networks members, and these variables are then summarized as averages or percent-

ages. For example, the average age of alters or, the proportion of alters who are

women.

The application of structural analyses that are traditionally used on whole (so-

ciocentric) networks data may prove fruitful. The utility of this approach becomes

apparent when the sample of network members considered is relatively large as we

will see further in this section.

4.4.1 Chosen metrics and motivations

From the set of metrics available in the literature and from the once discussed in

Chapter 2 for capturing the structure of social networks in general and personal

networks in particular, we selected those that we believe better represent the structure

of online personal networks, but also the ones that can provide some insights or

patterns on their dynamics. The choice of these metrics is discussed hereafter.

4.4.1.1 Metrics at ego level

Ego degree centrality. We compute the degree centrality for the ego node (De�ni-

tion 2.3.8, Chapter 2, Section 2.3.4) in order to capture how the egos' direct connec-

tions number is evolving over time.

Betweenness centrality. When the personal network is evolving, we would like to

observe whether the importance of the ego is a�ected (if it decreases or increases) via

the computation of its betweenness centrality (De�nition 2.3.10, Chapter 2, Section

2.3.4). This will give us more information about the structural changes in the network

while evolving, because, for example, an ego with a decreasing betweenness implies

that in its personal network alters become more and more connected over the years

(thus ego becomes less important over the years).
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Local clustering coe�cient (Watts-Strogatz clustering coe�cient [130]).

The local clustering is computed at a node's level to detect the transitivity inside a

node's immediate neighborhood (De�nition 2.2.5, Chapter 2, Section 2.3.4). Thus,

when the personal network evolves, our aim by computing this metric is to observe

the changes in the 1st level ego's alters connections rate (given that all 1-level alters

are connected directly with the ego) which a�ects ego's importance.

E�ective size. As for the local clustering coe�cient, the e�ective size/e�ciency

(De�nitions 2.3.11 and 2.3.12, Chapter 2, Section 2.3.4) allows us to capture the

degree of connectedness between ego's alters and so the loss or gain of importance of

the ego when the 1-personal network evolves over time.

4.4.1.2 Metrics at personal network level

Number of nodes and edges.

De�nition 4.4.1 If G′(V ′, E ′) is an OPN as de�ned in De�nition 3.3.1, then n =

|V ′| and m = |E ′| are, respectively, the number of nodes and the number of edges

composing the OPN.

We compute the number of nodes and edges to capture the size of the personal

network and to detect its change over time as it is modi�ed by the addition of nodes

and edges. In this way, we can assess the evolution of the personal network in terms

of the number of nodes and edges.

Density. The utility of computing the density (De�nition 2.3.7, Chapter 2, Section

2.3.4) on personal networks is to evaluate the connectedness of nodes composing the

personal network. A high density means that the nodes are well connected, while a low

density re�ects the presence of a low amount of edges among the nodes composing the

personal network. Thus, the value of the density when the personal network evolves

provides us an insight on how their connectedness is changing depending on whether

the value of the density increases or decreases.

Global Clustering Coe�cient (Transitivity Index). We want to compute the

global clustering coe�cient on personal networks (De�nition 2.2.9, Chapter 2, Section

2.3.4) in order to see how it is structured when considering triplets of nodes and if

the friend of my friend is likely to be my friend principle, proved for random graphs,

is also valid for personal networks we are investigating. The triangle structure was

observed as being present in many real social networks and represent one of the

main properties that researchers consider when providing models for social networks
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evolution. Our aim is to verify if it is also a property that can characterize personal

networks, and if so, how?

Average Clustering Coe�cient (Average Watts-Strogatz Clustering Coef-

�cient). For personal networks, it is interesting to perform the computation of

both clustering coe�cients, i.e., the global clustering coe�cient (transitivity index)

and the average clustering coe�cient (Watts-Strogatz average clustering coe�cient),

which both re�ect the personal network clustered architecture, to see if they behave

similarly when the personal network is evolving or if they evolve di�erently over time.

Indeed, the Watts-Strogatz average clustering coe�cient (De�nition 2.2.6, Chapter

2, Section 2.3.4) might transpose more precisely the connectivity of nodes in personal

networks because it focuses on the local connectivity, while the transitivity index is

computing the connectivity over the whole network.

Degree centrality and average degree centrality. We are interested in comput-

ing the degree centrality (De�nition 2.2.10, Chapter 2, Section 2.3.4) over all personal

network nodes for two purposes:

1. to check the presence of power law distribution for personal network nodes

degrees, the importance of this element is discussed hereafter,

2. to compute the average degree of all the nodes inside the personal network.

Power law distribution. The fact that nodes'degrees follow a power law distri-

bution is a property that appears in many real OSNs. For a network, it consists in

having few nodes with a high degree and many nodes with low degree. This property

implied a new one named the preferential attachment, largely used in the majority of

evolution models.

In order to verify if the nodes' degrees are following a power law distribution, we

compute the degrees (as described in De�nition 2.2.10, Chapter 2, Section 2.3.4) of

all the nodes in the OPN. Then we verify that nodes' degree distribution takes the

form P (x) = cx−α, where P (x) denotes the fraction of nodes in the OPN having

degree x, c is a normalization constant and α represents the exponent of the power

law distribution function. If an OPN has a power law degree distribution, it means

that the number of nodes with degree x is proportional to x−α and α is the slope of

the distribution and ranges typically around 2 or 3. When α is high, the number of

nodes with high degree is smaller than the number of nodes with low degree.

For OPNs, our aim is to check if the power law distribution holds, as in the case

of OSNs. This information will allow us to validate whether the evolution models
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based on preferential attachment are suitable for OPNs and to what extend, or not.

Ego's maximum degree of separation (k-max). In the De�nition 3.3.1, Chapter

3 of OPNs, the parameter k is used to limit the nodes part of the OPN, since only

the alters that are at a maximum distance k from the ego can be part of the k-

personal network of the ego. For a 2-personal networks, k = 2 and the alters are at

a maximum distance of 2 from the ego. Note that by distance between two nodes,

we mean the shortest path length between those nodes. By k-max, de�ned below in

De�nition 4.4.2, we capture the maximum distance between the ego node and all alters

reachable from the ego, and we observe how k-max changes when the OPN evolves.

Moreover, we check if the 6-degree of separation principle [122, 123], validated in real

world OSNs [81, 63], is satis�ed for OPNs. The 6-degree of separation, known as the

small world phenomenon, suggests that each pair of nodes inside an OSN is connected

via a shortest path of average length 6.

De�nition 4.4.2 The ego's e maximum degree of separation (k-max) in a undirected

personal network G′(V ′, E ′) is given by k −max = maxu∈E′(d(e, u)), where d(e, u) is

the shortest path length between the ego node e and each node u reachable from e.

4.4.2 Methodology

The analysis of the set of selected online personal networks is performed via the

computation of the set of metrics described in the previous section over the di�erent

time-steps (each time-step corresponds to a year in our case). At the end, we consol-

idate the observed behavior of the metrics over the personal networks and over the

years in order to reach, wherever possible, a common conclusion.

To this end, we use PERSONA (PERSonal Online social Networks' Analytics)

platform that will be described in details in Chapter 6, in order to extract from the

entire network of collaborations, the desired personal network of a given ego, and then

to compute all metrics on the extracted network. To extract a personal network, we

need to specify the dataset of which the ego is part (e.g. dataset1), the year (possible

values depending on the dataset, as presented in Table 4.1) and the k value (we

distinguish �ve values for k, from 1 to 5).

We chose to use for k, values from 1 to 5 because we observed that there are

very few personal networks with k-max values of 6 and 7, no personal networks with

k-max between 8 and 13, and for k-max > 13, the personal networks join the giant

component. This element will be detailed in the next section when discussing the
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Number of computed

metrics

Number of k

values

Number

of authors

Number

of years

Number of computations

per metric

Metrics computed

at 1-level OPNs
3 1 560 8 4480

Metrics computed

at k-level OPNs
7 5 560 8 22400

Table 4.2: Summary of metrics' computation methodology on dataset 1

evolution trend of ego's maximum degree of separation. This observation means that

the ego-alter distance of 5 seems the best threshold up to which one can capture the

characteristics of an individual's personal network. As outlined in [76], where the

distance 5 from a given central node was set as a limit for analyzing road networks

justifying this choice by the fact that a distance beyond �ve would capture non-local

properties, since neighbourhoods would include a large fraction of nodes belonging to

the entire network.

Thus, for a given dataset and a speci�c metric, we will compute all the values

of the metric for the authors (i.e. the ego/personal networks) for each year value

and each k. For example, if we consider dataset1, the density is computed for the

personal network of each author inside dataset1 on each year from 2006 to 2013

and for each k = 1, 2 . . . , 5. For the case of the e�ective size, the local clustering

coe�cient and the degree centrality, we use only k = 1 since these metrics are relevant

only for 1-level personal networks. Table 4.2 gives a summary of how we performed

metrics' computation on dataset1. The last column of the table shows the number of

computations we obtain per metric.

Then, in order to assess the evolution of each metric through the years for the

personal networks of the same dataset, we make two types of plots (for each couple

(year, k)):

� The �rst plot is a cloud of dots where on the x axis we have the ids of egos

(authors) representing the personal networks, and on the y axis we have the

value of the metric for each personal network. An example of this type of plots

is given in Figure 4.10. The plot represents the value of the density for all

personal networks belonging to dataset1, on 2006 for k = 4.

� The second type of plot is a bar plot for describing the distribution of the

value of a given metric among the personal networks. Each bar describes the

proportion of personal networks having that value of metric. As an example,

we give in Figure 4.5, the distribution of the density over the personal networks

belonging to dataset1, on 2006 for k = 4.
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Figure 4.4: Density values on 2006, k = 4,
for authors starting publishing on 2004 (dataset1).

By using both types of plots, we can observe the tendency that a given metric

has in terms of increasing or decreasing through the years and observe the behavior

when k changes.

Then, in order to consolidate and con�rm the visual observed evolution trends

from the graphics, we performed for each metric a Signed Rank Wilcoxon test at

three points in time: 2006, 2008, and 2010 for k = 2 to 5. The Signed Rank Wilcoxon

test is a non parametric test that compares two paired samples (paired means that

both samples consist of the same test subjects). The test essentially calculates the

di�erence between sets of pairs and analyzes these di�erences to establish if they are

statistically signi�cantly di�erent from one another.

More precisely, we consider two populations X and Y of respective size nx and

ny. We assume that the observations are independent and have an order relation. We

want to test the following hypothesis:

H0 (equality of the two samples): The probability that an observation of popu-

lation X is greater than an observation of population Y is equal to the probability

that an observation of population Y is greater than an observation of population X:

P (|X| > |Y |) = P (|Y | > |X|).
Using the software R, we are able to perform the test by providing the vectors
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Figure 4.5: Density distribution on 2006, k = 4,
for authors starting publishing on 2004 (dataset1).

representing both paired samples. We set the parameter (paired) at TRUE. In addi-

tion, we can specify the alternative hypothesis to the null hypothesis (that assumes

that both samples are equal) which must be one of "two.sided" (default), "greater"

or "less" as in the following:

wilcox.test(X, Y, alternative = c("two.sided", "less", "greater"), paired = TRUE)

The output of this function in R consists of V representing the value of the test

statistic, and the p-value that allows to reject or not the null hypothesis.

In our case, we apply the Wilcoxon test on the values of a given metric for a given

k at two points in time t and t+ 1 (vectors X and Y) to con�rm whether it increases

or decreases using the alternative hypothesis "less" (which means that the metric

increases from time t to time t + 1), and "greater" (which means that the metric

decreases from time t to time t+ 1).

In the next section, we provide the results of these analyzes and discuss the ob-

served behavior of each metric.

4.4.3 Metrics evolution trends

Before presenting the �ndings for each metric, we precise that the obtained results

for all the metrics are the same for all the 5 datasets. Thus, in the following, we
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choose to report the results observed on dataset1 which has the largest time window

for studying the evolution.

Number of nodes and edges. In co-authorship networks nodes and edges are only

added over time and cannot be removed. By analyzing the co-authorship personal

network of dataset1, we found that the distribution of nodes and edges had the same

shape whatever k and whatever the year. We give in Figures 4.6 and 4.7 an example

of the distribution of nodes and edges respectively, for k = 3 on 2009 for authors in

dataset1 that started publishing on 2004. In order to have an idea on the size of the

personal networks, in term of number of nodes and edges, of the authors in dataset1
and how it evolves, we recap in Table 4.3 the minimum and maximum number of

nodes (n) and edges (m) over the personal networks for all k values and all the years.

We can notice that the smallest OPN has 2 nodes and one single edges when k = 1,

and that the biggest OPN is composed of 8650 nodes and the number of edges can

reach 22668 when k = 5 on 2013.

With analysing the co-authorship personal network of dataset1, we couldn't iden-

tify a single rate with which nodes and edges are added over the years. However, the

role of edges in shaping the evolving structure of a personal network, will be further

clari�ed as we discuss the rest of the metrics that follow.

Figure 4.6: Distribution of the number of nodes on 2009, k = 3,
for authors starting publishing on 2004 (dataset1).
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Figure 4.7: Distribution of the number of edges on 2009, k = 3,
for authors starting publishing on 2004 (dataset1).

Density. The density quanti�es how well connected the nodes composing the per-

sonal networks are. In the following, we split the observations we draw for density

evolution into two parts: the �rst part concerns the evolution of the personal networks

regarding the value of k, and the second part concerns observations over the years.

� Observations regarding k: When k = 1, which is a particular case as we

will see that through the evolution of many of the metrics we are analyzing, we

observe a large proportion of personal networks with a density equal to 1, as we

can see in Figure 4.8, with density distribution on 2006 (we obtained the same

distribution on the other years) which means that all the nodes are connected

with each other, forming complete networks. At this level, personal networks

are frequently composed of only few nodes.

� Observations over years: When k=1, the proportion of personal networks

with a density value equal to 1 decreases as the personal networks grow with

nodes that are joining them but that do not necessarily connect to all the

existing nodes. This can be observed on Figure 4.9 where the number of personal

networks on 2009 having a density equal to 1 is about 300, while in 2006 it was

about 400 as we can see it in Figure 4.8. Even if in 2013, we still have density

77



Year metric k=1 k=2 k=3 k=4 k=5

2006 min n 2 3 6 8 10

max n 22 69 197 469 1020

min m 1 2 5 8 14

max m 165 328 570 1123 2229

2007 min n 2 3 6 8 12

max n 22 93 290 689 1476

min m 1 2 5 8 14

max m 165 335 721 1604 3414

2008 min n 2 3 6 8 12

max n 29 119 382 1064 2444

min m 1 2 5 8 14

max m 221 378 951 2528 5876

2009 min n 2 3 6 9 13

max n 33 213 670 2018 4049

min m 1 2 5 10 19

max m 221 562 1651 4869 9891

2010 min n 2 3 6 9 13

max n 33 240 794 2487 5050

min m 1 2 5 10 19

max m 269 600 2013 6127 12630

2011 min n 2 3 6 9 13

max n 47 360 1261 3736 7386

min m 1 2 5 10 19

max m 269 1020 3326 10408 19205

2012 min n 2 3 6 9 14

max n 47 414 1518 4539 8394

min m 1 2 5 10 19

max m 269 1054 3906 12213 22149

2013 min n 2 3 6 9 14

max n 47 425 1561 4676 8650

min m 1 2 5 10 19

max m 269 1076 4021 12631 22668

Table 4.3: Minimum and maximum number of nodes (n) and edges (m), dataset1.

value of 1 for a set of personal networks, in general the density value decreases

with years.

For k = 2, 3, 4, 5, we observed that the density decreases over the years. This

tendency is also valid where no personal network has a density equal to 1 and

all of them get it decreasing to reach very low values at the last years (Figures

4.10, 4.11 4.12).

The Wilcoxon test con�rms the decreasing tendency of the density over years
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as we can observe it in Table 4.4 where we give the results of the test applied

on the density of personal networks between 2006 and 2008, and between 2008

and 2010 for k = 2 to 5. In Table 4.4, we give the value of V the statistic value

of the Wilcoxon test and the values p − valuedecreasing and p − valueincreasing

representing the p-value of the Wilcoxon test whether we give as alternative

hypothesis "greater" or "less" respectively. We can see that p − valueincreasing
equals always 1 which indicates that the increasing trend cannot explain the

evolution of the density, while p − valuedecreasing that is < 2.2e-16 consolidate

the observed decreasing trend as it is signi�cantly lower than 5% (the threshold

we use to reject the null hypothesis).

Year 2006-2008 2008-2010

k=2

V = 94067,

p − valuedecreasing < 2.2e − 16,

p − valueincreasing = 1

V = 89291,

p − valuedecreasing < 2.2e − 16,

p − valueincreasing = 1

k=3
V = 132480, p − valuedecreasing < 2.2e − 16,

p − valueincreasing = 1

V = 134110,

p − valuedecreasing < 2.2e − 16,

p − valueincreasing = 1

k=4

V = 151380,

p − valuedecreasing < 2.2e − 16,

p − valueincreasing = 1

V = 148780,

p − valuedecreasing < 2.2e − 16,

p − valueincreasing = 1

k=5

V = 155690,

p − valuedecreasing < 2.2e − 16,

p − valueincreasing = 1

V = 138660,

p − valuedecreasing < 2.2e − 16,

p − valueincreasing = 1

Table 4.4: Wilcoxon test on the Density, dataset1

This decreasing trend is justi�ed by the fact that generally when authors publish

for the �rst times (two �rst years), they link to the set of authors with whom they

share these �rst publications which explains at the beginning the emergence of com-

plete networks at k = 1. Then, as years pass, if an author has new collaborations,

they will not include necessarily all the previous collaborators of the author, and so

the density decreases, and this happens regardless of the k. The behaviour is the

same with the one reported in [6] for the whole collaboration network extracted from

a collection of papers in High Energy Physics Theory.
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Figure 4.8: Density distribution on 2006, k = 1,
for authors starting publishing on 2004 (dataset1).

Figure 4.9: Density distribution on 2009, k = 1,
for authors starting publishing on 2004 (dataset1).
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Figure 4.10: Density values on 2006, k = 4,
for authors starting publishing on 2004 (dataset1).

Figure 4.11: Density values on 2009, k = 4,
for authors starting publishing on 2004 (dataset1).
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Figure 4.12: Density values on 2012, k = 4,
for authors starting publishing on 2004 (dataset1).
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Global clustering coe�cient and average clustering coe�cient.

As presented in Section 4.4.1, we want to measure the transitivity inside co-

authorship personal networks via two metrics: (1) the global clustering coe�cient

(transitivity index) and (2) the average Watts-Strogatz clustering coe�cient. While

the �rst one captures the global transitivity of the personal network and the second

one expresses the transitivity around the nodes, we want to assess if both metrics

behave the same or not.

Thus, in our work, we aim to test if for co-authoring personal networks the two

metrics behave in the same way.

Figure 4.13: Global clustering coe�cient for k = 1, year = 2006,
for authors starting publishing on 2004 (dataset1).

We will discuss the observed trend for each metric separately regarding the value

of k and over the years.

� Global clustering coe�cient evolution:

� Observations regarding k: As observed for the density, at k = 1, a

high proportion of author's personal networks have a global clustering

coe�cient that is equal to 1 because personal networks at this level are

usually complete. This proportion, as again observed for the density, is

not present anymore for k = 2. We also distinguish at k = 1, a set of
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personal networks with a global clustering coe�cient of 0 as presented in

Figure 4.13. This is due to the absence of triangles because we are in the

case of a personal network with only two nodes and one edge connecting

them. But, as the personal networks grow over time, triangle are formed

and so, the global clustering of such personal networks will get a value

di�erent than 0.

� Observations over years: Concerning the trend over the years, the

global clustering coe�cient decreases which means that there is less tran-

sitivity caused by the fact that there are fewer connections among the

alters regardless the value of k. These observations are consistent with the

earlier discussion about the density. In Figures 4.14,4.15, and 4.16, we give

an example of the evolution of the global clustering coe�cient for authors

starting publishing on 2004 for k = 5 over years 2006, 2009, and 2012

respectively. From these graphics, we can see the decrease of the global

clustering coe�cient over the years.

The Wilcoxon test con�rms the decreasing global clustering coe�cient ten-

dency over years. The test results are given in Table 4.5 for the global clus-

tering coe�cient value of personal networks between 2006 and 2008, and

between 2008 and 2010 for k = 2 to 5. The values p − valuedecreasing and
p − valueincreasing representing the p-value of the Wilcoxon test whether

the alternative hypothesis is "greater" or "less" respectively are given. We

can see that p − valueincreasing equals always 1 which indicates that the

increasing trend cannot explain the evolution of the global clustering coef-

�cient, while p− valuedecreasing that is < 2.2e-16 consolidate the observed

decreasing trend as it is signi�cantly lower than 5% (the threshold we use

to reject the null hypothesis).
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Year 2006-2008 2008-2010

k=2

V = 71266,

p − valuedecreasing < 2.2e − 16,

p − valueincreasing = 1

V = 93353,

p − valuedecreasing < 2.2e − 16,

p − valueincreasing = 1

k=3

V = 84214,

p − valuedecreasing < 2.2e − 16,

p − valueincreasing = 1

V = 134110,

p − valuedecreasing < 2.2e − 16,

p − valueincreasing = 1

k=4

V = 95899,

p − valuedecreasing < 2.2e − 16,

p − valueincreasing = 1

V = 98258,

p − valuedecreasing < 2.2e − 16,

p − valueincreasing = 1

k=5

V = 102450,

p − valuedecreasing < 2.2e − 16,

p − valueincreasing = 1

V = 115400,

p − valuedecreasing < 2.2e − 16,

p − valueincreasing = 1

Table 4.5: Wilcoxon test on the Global Clustering Coe�cient, dataset1

Figure 4.14: Global clustering coe�cient values on 2006, k = 5 (dataset1).
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Figure 4.15: Global clustering coe�cient values on 2009, k = 5 (dataset1).

Figure 4.16: Global clustering coe�cient values on 2012, k = 5 (dataset1).
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� Average clustering coe�cient evolution:

� Observations regarding k: For k = 1, and in the early years, a signif-

icant set of personal networks hold the maximum average clustering co-

e�cient value (equal to 1), because these personal networks are complete

graphs. Similarly, we observed some personal networks with an average

clustering coe�cient equal to 0 due to the absence of triads around the

nodes as we can observe it in Figure 4.17.

� Observations over years: We notice that in general ∀k = 1..5, the value

of the average clustering coe�cient is high with a tendency of increasing

through the years. Figures 4.20, 4.21, and 4.22 illustrate this behaviour

for authors in dataset1, for k = 5 over years 2006, 2009, and 2012. The

same tendency was observed in previous works for the whole collaboration

networks in the Mathematics and Neural Sciences �elds in [15].

The Wilcoxon test con�rms the increasing average clustering coe�cient

tendency over years. The test results are given in Table 4.6 for personal

networks between years 2006 and 2008, and between 2008 and 2010 for k =

2 to 5. We can see that p− valuedecreasing equals always 1 which indicates

that the decreasing trend cannot explain the evolution of the average clus-

tering coe�cient, while p− valueincreasing is < 0.05. However, we notice a

di�erent behaviour for k = 5 from 2008 to 2010 where p − valueincreasing
approaches 1, which indicates that the average clustering coe�cient is not

increasing while p− valuedecreasing< 0.05. Thus, we conclude that for this

case in particular, the average clustering coe�cient is decreasing.

Thus, when the personal networks are evolving over time, the global clustering co-

e�cient and the average one exhibit opposite behaviors, since the �rst one decreases

and the second one increases. We can notice that, while the average clustering coef-

�cient is high and gets higher with years, the global one gets lower and lower.

This observation is not compatible with what is usually claimed in the literature

since in real networks both clustering coe�cients tend to some positive constant as

the networks grow as reported in [108], or in [84], where the authors claimed that both

metrics represent the clustered architecture of the network, with a small di�erence

on value scaling.

However, we found that a recent work done by Estrada in [48], reported that for

certain classes of graphs, global clustering coe�cient and the average one diverge.
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Year 2006-2008 2008-2010

k=2

V = 37430 ,

p − valuedecreasing = 1,

p − valueincreasing = 1.652e − 05

V = 38819 ,

p − valuedecreasing = 0.9945,

p − valueincreasing = 0.005497

k=3

V = 48898 ,

p − valuedecreasing = 1,

p − valueincreasing = 9.93e − 09

V = 46040 ,

p − valuedecreasing = 1,

p − valueincreasing = 8.583e − 11

k=4

V = 42409 ,

p − valuedecreasing = 1,

p − valueincreasing < 2.2e − 16

V = 61459 ,

p − valuedecreasing = 0.9999,

p − valueincreasing = 0.0001041

k=5

V = 36651 ,

p − valuedecreasing = 1,

p − valueincreasing < 2.2e − 16

V = 84175 ,

p − valuedecreasing = 0.03741,

p − valueincreasing = 0.9626

Table 4.6: Wilcoxon test on Average Clustering Coe�cient, dataset1

Figure 4.17: Average clustering coe�cient for k = 1, year = 2006,
for authors starting publishing on 2004 (dataset1).

More precisely, Estrada was referring to the windmill graphs as an example of graphs

in which this phenomenon occurs, which is also veri�ed for our personal networks.

Hereafter, we give the de�nition of a windmill graph.

De�nition 4.4.3 A windmill graph W (k, n) is an undirected graph characterized by

a central node that is surrounded by n cliques of size k suhc that k ≥ 2 and n ≥ 2
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[60]. These cliques are composed of nodes that are completely connected with each

other and with the central node but that do not have any connections with the other

cliques (or have few connections in real world networks where cliques are overlapping).

The central node is shared by all the cliques of the windmill graph.

An example of a windmill graph W (3, 4), is presented in Figure 4.18 where k = 3,

and n = 4.

Figure 4.18: Windmill graph example, W = (3, 4).

We believe that such structure can arise in personal networks especially when com-

ing from scienti�c collaboration networks as stated in [48], where the author proved

the presence of windmill graph structures inside both collaboration and citation net-

works, and showed the divergence of the two clustering metrics.

For our case, the underlined observations are explained by the fact that in the

personal networks of co-authoring, a publication will involve the creation of a clique

between the authors of that publication where each pair of nodes is connected which

explains the high average local clustering coe�cient around nodes. But, the fact that

a given author can over time have publications with new collaborators that will not

in the most of cases, concern his/her old co-authors, will imply:

1. From the one hand, the decrease of the global clustering inside the personal

network, and

2. From the other hand, the increase of the average clustering coe�cient.

An example of such situation is given in Figure 4.19. This could be explained by the

fact that scientists during their career are led to change institutions and work places,

collaborate with new authors (e.g. PhD students) and even change their research
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focus. Thus, studying how cliques evolve over time for this type of data is interesting.

On the left, we have the personal network of ego=22 on 2004, and on the right the personal
network of ego=22 on 2005. We can see that two new cliques appear: the �rst clique have
a size of 3 and is formed of node "24" with new nodes "25100" and "25101". The second
new clique has a size of 2 and is formed between node "23" and the new node "24412".

Figure 4.19: Cliques formation in the personal network of "EGO"
between 2004 and 2005, k = 2.

Figure 4.20: Average clustering coe�cient values on 2006, k = 5 (dataset1).
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Figure 4.21: Average clustering coe�cient values on 2009, k = 5 (dataset1).

Figure 4.22: Average clustering coe�cient values on 2012, k = 5 (dataset1).
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Power law distribution. In order to check the existence of a power law distribution

over the degrees of nodes part of co-authorship personal networks, we have used the

approach proposed by Clauset et al. in [34] who presented a statistical framework for

discerning and quantifying power-law behavior in empirical data.

This approach combines maximum-likelihood �tting methods with goodness-of-�t

tests based on the Kolmogorov�Smirnov (KS) statistic and likelihood ratios. More

precisely, the approach works as follow: the algorithm proposed in [34] will generate

a large number of synthetic data like the input data for which we want to test the

existence of a power law distribution and �t a model to it. Then a Kolmogorov-

Smirnov (KS) goodness-of-�t test is performed between the generated data and the

�tted model to estimate the xMin parameter (the data point for which the resulting

distribution has the smallest KS statistic to the data). The exponent α of the power

law is thus estimated using a maximum likelihood estimator for that xMin value.

Then, in order to conclude on whether the power law model is a proper model, we

compute the significance. A high significance value means that the power law is a

good �t. Clauset and co-authors [34] suggest that for a p-value below 0.01 the power

law hypothesis should be rejected. If the resulting p-value is greater than 0.1, the

power law is a plausible hypothesis for the data, otherwise it is rejected.

Thus, the application of this approach for our case will translate in providing as

input a vector of discrete values representing the degrees of nodes of the personal

network for which we want to perform the test, and we get as output the answer

of the test (true if the personal network follows a power law distribution, false if

not) depending on the significance parameter computed by the algorithm, and the

estimated parameter α of the power law distribution function.

It is important to note that, the fact that the degrees follow a power law distri-

bution is translated as in the following in the evolution process:

When new nodes join the personal network, they will tend to connect to nodes

having a high degree, which will lead to the appearance of few highly connected nodes

in the personal networks and many weakly connected nodes (preferential attachment).

� Observations regarding k: Figure 4.24 represents, for each k from 2 to 5 and

along the period 2006-2013, the proportion of personal networks that follows

(in blue) or not (in red) a power law distribution in their degrees. Computing

the power law distribution test for personal networks of k = 1 was not possible

because the networks were too small and the computation did not make any

sense since as mentioned in [34], the approach is suitable for a data observation
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values above 50 (translated in our case into personal network with more than 50

nodes). While, the personal networks at k = 1 have a number of nodes below

50, and this overall the years. Thus, we concentrate on the evolution of the

power law test from k = 2 to k = 5.

We notice that the power law distribution of personal networks can be con-

sidered as veri�ed in the cases of k = 2, 3, 4 even if the false proportion gets

increasing when k grows and more signi�cantly starting with k = 4. At k = 5,

the tendency is completely inverted from 2011 since the proportion of personal

networks having the power law test to false becomes larger. 84.73 80,20

� Observations regarding the years: The power law distribution for k = 2, 3 is

followed and this for all years as we can observe in Figure 4.24 with a proportion

of 84.73% on average for k = 2, and of 80.2% on average for k = 3. For k = 4, it

is also followed, because the true proportion is higher with an average of 65,61%

over the years. For k = 5, the results are not so conclusive and the tendency

is inverted starting with 2011 when the proportion of personal networks having

the power law test to false overpasses true.

This later observation is interesting since we expected that, larger personal

networks as it is the case when k = 5, to con�rm the properties that were

observed for global networks as the power law distribution of networks' nodes

degrees as proved in [15] for the case of scienti�c collaboration networks.

We also observed that the proportion of personal networks that returned false

was increasing with k (for k = 4 and k = 5) and over the years. We were unable

to verify the main reason why this happens and this behavior is the opposite

than the expected one. One possible explanation could be that the evolution of

personal networks connects previously existing cliques (see the clique between

the 15 nodes labeled from 1589 to 1603 in the example Figure 4.23). In a

clique, each node is highly connected locally so the merging of two cliques into

one creates a new, bigger and more connected clique; thus we have more nodes

with higher degrees and subsequently the power law distribution tests fail for

all these networks. This behavior is compatible with what happens in many

cases in co-authorship networks, where we frequently see collaborations among

groups and a new publication has as authors all (or almost all) the members of

both groups. This explanation will be veri�ed later in this chapter with cliques

analysis.
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If we consider the co-authors network as a whole, the degrees' distribution

follows a power law (as observed in [15]), this comes from the fact that at a

large scale the proportion of such highly connected authors becomes negligible

compared to the majority of authors that have a small amount of collaborations.

As a conclusion, the power law distribution is describing the distribution of the

degrees of our personal networks for k = 2, 3 but less for k = 4, 5. This fact is

important since it does not go with the majority of real networks studied in the

literature, including personal networks, where the power law distribution was valid

and governed the proposed evolution models that are all based on the preferential

attachment principle. Thus, such model would not be suitable for the evolution of

co-authorship personal networks we are studying.

Figure 4.23: Example of a clique formation.

Checking Poisson distribution

Given the obtained results we discussed in the previous section, it is obvious that

the power law distribution does not characterize the studied personal networks in

particular for k = 4, 5. Thus, we decided to check if the Poisson distribution explains

our degree distribution as it is the case for random graphs of Erd®s and Rényi [47].

To do so, we computed on dataset1 over years from 2006 to 2013 and over k from 1

to 5, the fraction of personal networks following a Poisson distribution at 1%, 5%,

and 10% loss. The obtained results are represented in the plots Figure 4.25. The
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Figure 4.24: Power law distribution test for k = 1 to 5, from 2006 to 2013 (dataset1).

variables l1, l2, and l3 in the plots corresponds to 1%, 5%, and 10% loss respectively.

For personal networks with k = 1, we observe a tendency of increasing over the years

of the percentage of personal networks following a Poisson distribution reaching the

highest values (more than 35%). We will further see that these personal networks are

a particular case comparing to the other k values. Indeed, the percentages are then

decreasing over the years and over k with a very low amount of personal networks �t-

ting to the Poisson distribution at k=5, becoming equal to 0 after 2009. The outlined

behaviours are similar among the three loss values. Notice that the percentages are

always higher at 1% loss if not equal to the ones at 5 and 10% loss. Followed by the

percentages at 5% loss which is higher if not equal to the percentages at 10% loss.

Poisson vs Power law distribution. In this part, we are trying to discover if the

same networks are following both power law and Poisson distributions or if there are
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(a) k=1 (b) k=2

(c) k=3 (d) k=4

(e) k=5

Figure 4.25: Poisson degree distribution test for k = 1...5,
and years 2006 to 2013, for dataset1.

particular personal networks that are governed by one of the distributions, or more,

if in some cases none of these distributions is valid. Thus, we computed the following

four values: v1, v2, v3, and v4 representing respectively the proportions of personal

networks following Poisson and Power law distributions, Poisson distribution only,

Power law distribution only, and nor Poisson nor Power law distributions. The corre-

sponding plots are given in Figure 4.26. The �rst prominent observation whatever the
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value of k is that the proportion of co-authorship personal networks following only a

power law distribution in their degrees (given by v3) constitute the largest tendency

except in two situations: (1) at the starting year of observation, 2006, where it is

exceeded by the proportion of networks following both distributions in their degrees,

and (2) when k equals 5, we see that, on 2010, the proportion given by v3 becomes

equal to the one given by v4 which represents the set of networks not following nor

a power law nor a Poisson distribution in their degrees. This last proportion is then

leading starting from 2011. We notice that v2 proportion (networks following Poisson

distribution only) is less represented in our data.

Thus, following the observations above, it is clear that the Poisson distribution is

not explaining the cases where the power law test failed in explaining the data. The

power law remains a better choice so far to describe the degree distribution except

for k = 1, where Poisson is a plausible distribution. A particular case however stands

out concerning co-authorship personal networks at k=5 in the last years starting with

2009, where the degree distribution seems to follow a particular distribution di�erent

from the power law and Poisson since v4, meaning that nor power law, nor Poisson

distributions explain the data, is the largest proportion among the other combina-

tions. Unfortunately, we could not have from our analysis any indication about the

statistical distribution that could explain the degree distribution of the personal net-

works at this stage.
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(a) k=2 (b) k=3

(c) k=4 (d) k=5

Figure 4.26: Poisson Distribution vs Power Law Degree Distribution, for k = 1...5,
and years 2006 to 2013, for dataset1.
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Ego's maximum degree of separation (k-max).

As presented in Section 4.4.1, we would like to know the maximum shortest path

from the ego observed in the whole network. We performed the computation of

k − max on our dataset1 for each ego and for each year from 2006 to 2013. The

plot in Figure 4.27 gives the distribution of k − max value over all the years. We

distinguish two phases: (1) the �rst around k−max = 4 to 7 with very few personal

networks having such values, and (2) the second one ranges from k−max = 13 to 25.

We notice that no personal network has a k−max value between 8 and 12, whatever

the year. The evolution of k−max over the years reveals that after reaching a certain

Figure 4.27: k −max's distribution over the years for OPNs in dataset1.

size, the number of nodes composing the personal network will remain stable while

k−max can vary (the maximum k−max achieved equals 25). This size corresponds

to the whole network giant component size for each year (Figure 4.28). The fact that

no k −max value is between 8 and 12 is due to the interconnection among existing

personal networks which makes jump k − max from 7 to a value ≥ 13. As we

Year 2006 2007 2008 2009 2010 2011 2012 2013

Average k − max 18.18 18.39 18.00 16.61 17.82 16.18 15.82 15.81

Table 4.7: Average k −max per year, for OPNs in dataset1.

report in Table 4.7, the average k −max computed for each year from 2006 to 2013
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Figure 4.28: k −max vs. the number of nodes over the years,
for OPNs in dataset1.

ranges between 15 and 19 approximately, which means that in all cases, the average

is higher than 6. We conclude that the 6-degrees of separation property that char-

acterizes small world networks does not hold in our case and thus the collaboration

network we are studying does not represent a small world network. On the contrary,

in [46], the authors found that the 6-degrees of separation phenomenon is valid when

they studied the collaboration network of scientists who publish in the Database area.

Ego degree centrality and personal networks average degree. After comput-

ing the degree centrality over personal networks's nodes to check the existence of a

power law distribution, we now present the observations on the evolution of both the

degrees of the ego, and the average degree for all personal network's nodes.

� Degree of the egos: we observed that in general only few egos are very highly

connected while most of them have low degrees (Figure 4.29). The distribution

remains almost the same even when years pass (Figure 4.30).

� Average degree: for the average degree over all the nodes composing the personal

networks, we would like to check if it increases over time when considering

personal networks instead of full networks as it was found by Barabasi in [15]
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Figure 4.29: Distribution of ego degree centrality on 2006, for dataset1.

when studying the evolution of the whole network of scienti�c collaboration

in both Mathematics and Neural Sciences �elds (in both networks the average

degree increases over time).

� Observations regarding k: We found that for k = 1, the average degree

remains low (important number of values around 1 and 2) even when the

personal network grows as we can see in Figure 4.31. Then, from k = 2,

we have seen that there are fewer values around 1 and 2 as we can observe

it in Figure 4.32 for k = 3.

� Observations regarding the years: From k = 2, the average degree

increases to concentrate around a value of 4 - 5 (as shown in Figure 4.32

for k = 3).

The Wilcoxon test con�rms that the average degree increases over years.

The test results are given in Table 4.8 for the average degree in personal

networks between 2006 and 2008, and between 2008 and 2010 for k = 2 to

5. The values p− valuedecreasing and p− valueincreasing representing the p-
value of the Wilcoxon test whether the alternative hypothesis is "greater"

or "less" respectively are given. We can see that p− valuedecreasing equals
always 1 which indicates that the decreasing trend cannot explain the

evolution of the average degree, while p− valueincreasing that is < 2.2e-16
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Figure 4.30: Distribution of ego degree centrality on 2012, for dataset1.

consolidates the observed increasing trend as it is signi�cantly lower than

0.05.

Our results are consistent with what was found by Barabasi in [15]. The increase

of the average degree over time is explained by the fact that when a new publication

is registered, its authors form necessarily a clique (all coauthors of the same publica-

tion are connected between them); then when another publication comes with mainly

the same authors and some new ones, these new ones are added to the clique. This

results in increasing the average degree among the alters of a personal network with

the same k.

Year 2006-2008 2008-2010

k=2

V = 26058 ,

p − valuedecreasing = 1,

p − valueincreasing < 2.2e − 16

V = 21594 ,

p − valuedecreasing = 1,

p − valueincreasing =< 2.2e − 16

k=3

V = 37386 ,

p − valuedecreasing = 1,

p − valueincreasing < 2.2e − 16

V = 27746 ,

p − valuedecreasing = 1,

p − valueincreasing < 2.2e − 16

k=4

V = 38206 ,

p − valuedecreasing = 1,

p − valueincreasing < 2.2e − 16

V = 24680 ,

p − valuedecreasing = 1,

p − valueincreasing < 2.2e − 16

k=5

V = 36402 ,

p − valuedecreasing = 1,

p − valueincreasing < 2.2e − 16

V = 23385 ,

p − valuedecreasing = 1,

p − valueincreasing < 2.2e − 16

Table 4.8: Wilcoxon test on the Average Degree, dataset1
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(a) k=1, 2006

(b) k=1, 2012

Figure 4.31: Average degree of egos for k = 1 on year = 2006 and year = 2012, for
dataset1.
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(a) k=3, 2006

(b) k=3, 2012

Figure 4.32: Average degree of egos for k = 3 on year = 2006 and year = 2012, for
dataset1.
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Betweenness centrality. We evaluate the ego betweenness centrality over time in

order to observe how its importance is a�ected when the personal network is evolving.

� Observations regarding k: For k = 1, we observed that a signi�cant number

of egos have a betweenness of 1 in their personal networks as we can observe in

Figure 4.33, which re�ects the case of star networks where the ego is the unique

intermediate between its alters.

Then, from k =2 to 5, this trend is not present anymore, as more nodes are

included in the personal networks. We also observed, that many egos have a

betweenness of 0 regardless of k, which denotes that no shortest path between

any pair of nodes is passing through the ego as presented in Figure 4.34 for

k = 2 either on 2006 and 2012. In this situation, the ego is considered as

not important since its alters can reach each other without passing through

it. This is an important conclusion for the information di�usion in personal

networks because it shows that many times the personal network evolves without

the active participation of the initiating node and that the ego node does not

in�uence signi�cantly after a point in time the other members of the network.

� Observations regarding the years: The ego betweenness evolution over time

seems from the graphics increasing for k = 2 and k = 3 and decreasing for k = 4

and k = 5.

We performed a Wilcoxon test to verify the observed trends for the betweenness

evolution. The test results are given in Table 4.9 for the betweenness value of

personal networks between 2006 and 2008, and between 2008 and 2010 for k =

2 to 5. The values p − valuedecreasing and p − valueincreasing representing the

p-value of the Wilcoxon test whether the alternative hypothesis is "greater" or

"less" respectively are given. We conclude the following:

� k=2 : p− valuedecreasing equals 1, while p− valuedecreasing is less then 0.05

which con�rms the increasing trend of the betweenness for k = 2.

� k=3: from 2006 to 2008, p−valuedecreasing equals 1, while p−valuedecreasing
is less then 0.05. This con�rms the observed increasing tendency of the

betweenness. However, from 2008 to 2010 the null hypothesis can not be

discarded and the alternative ones cannot be retained as p−valueincreasing
and p− valuedecreasing are higher than 0.05. This could mean that there is

not a signi�cant change of the betweenness between 2008 and 2010.
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(a) k=1, 2006

(b) k=1, 2012

Figure 4.33: Ego betweenness centrality for k = 1 and year =2006 and 2012, for
dataset1.

� k=4: from 2006 to 2008, p − valuedecreasing approaches 1 which indicates

that the betweenness is not decreasing as we could observe from the graph-

ics. It is not neither increasing as p − valueincreasing=0.0663 > 0.05, but

p − valueincreasing remains close to 0.05 which indicates a willingness to

decreasing. Indeed, from 2008 to 2010, the betwenness decreases since
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p − valueincreasing=1, while p − valuedecreasing is signi�cantly lower than

0.05.

� k=5: the betweenness is decreasing since p− valueincreasing is approaching
(0.9793 from 2006 to 2008) or is equal to 1 (from 2008 to 2010), while

p− valuedecreasing is lower than 0.05.

Thus, we can conclude that the Wilcoxon test allowed us to con�rm the obser-

vations from the graphics with more precision as in the case of k = 3 and k = 4

the evolution trend was not obvious at a given period in time.

We explain the fact that it increases for k = 2 and k = 3 by the addition of

new nodes that connect to ego's alters but, in order for these new nodes to

reach the other alters of the ego, they have to go by the ego and thus ego's

importance is increasing. We give in Figure 4.34, an example for the increasing

of the betweenness for k = 2.

Year 2006-2008 2008-2010

k=2

V = 5053.5 ,

p − valuedecreasing = 1,

p − valueincreasing = 1.28e − 10

V = 10784 ,

p − valuedecreasing = 0.9998,

p − valueincreasing = 0.000163

k=3

V = 7137.5 ,

p − valuedecreasing = 1,

p − valueincreasing = 8.859e − 06

V = 16490,

p − valuedecreasing = 0.2419,

p − valueincreasing = 0.7584

k=4

V = 9000 ,

p − valuedecreasing = 0.9339,

p − valueincreasing = 0.0663

V = 20700 ,

p − valuedecreasing = 2.125e − 10,

p − valueincreasing = 1

k=5

V = 11274 ,

p − valuedecreasing = 0.0208,

p − valueincreasing = 0.9793

V = 20588 ,

p − valuedecreasing < 2.2e − 16,

p − valueincreasing = 1

Table 4.9: Wilcoxon test on the Betweenness, dataset1

In the context of scienti�c collaborations, this situation is taking place when, for

example, one of ego's co-authors makes a new collaboration with a new set of

authors. Then, the path between one of the new collaborators and an old ego's

co-author includes necessarily the ego. For k = 4 or 5, one plausible explanation

is that since (as discussed earlier) cliques have already started forming then in

this case of personal networks, new collaborations happen between cliques in

a more complete way (two groups collaborating) and thus the evolved network

contains a new bigger clique. Having local cliques decreases the importance of

the ego.
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(a) k=2, 2006

(b) k=2, 2012

Figure 4.34: Ego betweenness centrality for k = 2 and year =2006 and 2012, for
dataset1.

Another plausible explanation could be that the ego is not getting new connec-

tions (collaborations) as the ego in the network in Figure 4.36, or are making

few ones, where one (or more) of his alters (co-authors) are leading the main

dynamics inside its personal network (as the alter "383" inside the circle). We

give in Figure 4.35, an example for the decreasing of the betweenness for k = 4.
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(a) k=4, 2006

(b) k=4, 2012

Figure 4.35: Ego betweenness centrality for k = 4 and year =2006 and 2012, for
dataset1.

Local clustering coe�cient & E�ciency. We group the discussion about the

results of the local clustering coe�cient de�ned in De�nition 2.2.5, and the e�ciency

de�ned in De�nition 2.3.12 because both metrics are computed at the ego level and

concern only 1-personal networks (k = 1).

We have observed that both the local clustering coe�cient and the e�ciency
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Figure 4.36: Personal network of ego "EGO", for k = 4, year=2008 .
Example for low ego betweenness.

decrease over the years, when new nodes integrate the 1-personal networks. This

indicates that ego's alters are less connected with each other over time; and it means

that new collaborations for 1-level personal networks happen mainly with the ego

and usually do not involve many of the other existing collaborators. This explains

also the fact that the average clustering coe�cient in a 1-level personal network is

increasing; the new connections are usually "complete" either with the ego or with

the ego and few of the existing collaborators so we have all the possible triangles

materialized (the local clustering coe�cient of the alters equals 1 which increases the

average clustering coe�cient of the 1-personal network). One the other hand, for the

ego this means that it has a lot of incomplete triangles since the new nodes will not

participate in materializing the majority of the possible triangles with the rest of the

alters.

4.4.4 Results summary and discussion

In Table 4.10, we summarize the main observations that we made in the previous

section, regarding the evolution of the metrics in the co-authorship personal networks.

We report in the second column the observations regarding the parameter k, while in

the third column we present the observed evolution trends for each metric over the

di�erent time steps (years).

In the following subsections, we �rstly discuss the metrics' evolution of co-authors
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personal networks for the special case when k=1 and then we discuss the more general

case of k > 1.

Metric Observations regarding k Observations over years

Ego Degree Centrality (dege)
(only for k = 1)

few egos with a high degree,
low degree (2 or 3) frequent

OPN keeps the same tendency
while evolving

Local Clustering Coe�cient
(Ce) (only for k = 1)

many networks have Ce = 1
some have Ce = 0

decreasess

E�ciency (only for k = 1) - decreases

Density (D) ∀k ∈ {1, 2}, D is high ∀k, decreases
Global Clustering Coe�cient
(GCC)

k = 1, high GCC ∀k, decreases

Average Clustering Coe�cient
(< C >)

∀k, high < C > ∀k, increases

Number of nodes and edges - ∀k, both increase

Average Degree
for k = 1, around 1, 2
for k ≥ 2, around 4, 5

∀k ∈ {2, 3, 4, 5}, increases

Ego Betweenness Centrality
(Be)

k = 1, for many networks Be = 1
∀k, for many networks Be = 0

∀k ∈ {2, 3}, increases
∀k ∈ {4, 5}, decreases

Power law distribution
∀k ∈ {1, 2}, veri�ed
∀k ∈ {3, 4, 5}, less veri�ed

∀k ∈ {1, 2},∀year, veri�ed in
more than 80% of cases
∀k ∈ {3, 4}, less veri�ed
especially for year ≥ 2011
for k = 5,∀year ≥ 2011, not
veri�ed

K −max -
∀year ≥ 2011, k −max > 13
for all the personal networks

Table 4.10: Summary of the observations of metrics' evolution.

4.4.4.1 Observations for the evolution of 1-personal networks

From our observations, 1-personal networks constitute a particular case. Indeed, a

signi�cant proportion of 1-level personal networks are small star networks with few

nodes characterized with an ego betweenness centrality of Be = 1 along with a weak

ego degree. For example, if an ego has 2 connections as in Figure 4.37 for ego "5"

connected to nodes "3" and "8", these two connections correspond to two indepen-

dent collaborations, the ego in this case plays a key role given its important position.

Furthermore, in other cases we observe the exact opposite phenomenon: a consider-

able set of 1-personal networks is consisting of complete graphs, characterized by an

ego betweenness of Be = 0, because of the co-authorship network's speci�city where

when we have many coauthors in a paper, these coauthors are connected in a com-

plete subgraph. In Table 4.11, we give the percentages of egos having a betweenness
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equal to 0 and a betweenness equal to 1 over the years (from 2006 to 2013), when

k = 1.

Figure 4.37: 1-Personal network of an ego with 2 alters.

For both the egos' degrees and egos' betweenness, when the network evolves over

time, the situation remains the same. More precisely, the evolution a�ects mostly the

connections among alters who were characterized at the beginning with an impor-

tant number of connections and then become less connected over time as new alters

join the 1-level personal network (the density, the local clustering and the e�ciency

decrease). Moreover, the addition of nodes (alters) keeps the average degree of the

1-level personal network low.

4.4.4.2 Observations for the evolution of personal networks with k > 1

The personal networks with k = 2, 3, 4, 5 are characterized by both a decreasing

density and global clustering coe�cient over the years. The nodes joining the personal

network over the years create fewer edges compared to the possible number of edges

that can be created, and thus the density gets lower, as well as the transitivity at the

personal network level.

At the local level, the average clustering coe�cient was observed to be high and

gets higher when the personal networks are growing which indicates a high local

clustering around the nodes. We can explain that by the fact that co-authorships are

made generally between 3, 4 or 5 authors and the emergence of a new collaboration

implies the creation of a highly clustered local structure since all the authors that

made this collaboration are going to be already connected with each other. The trends

we discussed so far concerns all personal networks with k from 2 to 5. Nevertheless,

ego's betweenness centrality behaves di�erently: it was increasing for k = 2, 3, but

decreases for k = 4, 5. On the one side, the increase for k = 2, 3 is due to the addition

of nodes around the ego that form disconnected groups of alters (as the windmill
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Betweenness 2006 2007 2008 2009 2010 2011 2012 2013

0 58.57 53.21 49.64 46.07 42.86 41.07 39.64 39.64

1 13.39 12.14 11.25 10.71 10.71 10.71 10.71 10.71

Table 4.11: Ego betweenness extreme values percentages over years, k = 1.

graph example) and the ego plays the role of a linker between them. On the other

side, when we consider a k = 4 or 5, as discussed above, existing cliques might merge

into bigger and more connected ones and thus the ego's betweenness decreases. This

hypothesis was not validated experimentally yet.

Additionally, the power law distribution of degrees is better satis�ed when k = 2, 3

than k = 4, 5. In addition, for k = 5, the networks are not following a power law

degree distribution starting from 2011.

4.5 Analysis of co-authorship personal networks evo-

lution via cliques

In the previous chapter, the metrics' evolution put forward the fact that the co-

authorship personal networks are strongly locally clustered and less clustered glob-

ally; these conclusions were outlined from the evolution of the average and the global

clustering coe�cients but also from the evolution of the ego's betweeness. The evo-

lution of both clustering coe�cients allowed us also to understand that the personal

networks that we are studying have the form of windmill graphs, and that can be

explained by the nature of the networks, because they are co-authorship networks.

Indeed, in a co-authorship network, a new publication joining the network implies

the creation of a clique: all the coauthors of the publication are connected with each

other, whether if they are new members of the network or already part of.

Given these conclusions made in the previous analysis, in this second analysis we

are interested in discovering the patterns governing co-authorship personal networks

when considering maximal cliques, i.e. the largest cliques. Our aim is to verify if the

hypothesis with which we explained the behaviour of the metrics previously are valid,

but also to �nd out new characteristics of the networks through the composition and

its evolution of networks in cliques. In the following, we present the set of analysis

done to cover these elements.

We would like to remind that the computations were performed on the same

data, more precisely on the set of 560 personal networks of the authors who started
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publishing on 2004 evolving from 2006 until 2013. The graphics that will be presented

in this section focus on the evolution between 2006 and 2012. The choice of not

analyzing the complete period (from 2004 to 2013) was governed by the fact that we

noticed that during the 2 �rst years the networks were not evolving a lot and this can

be explained by the fact that during the �rst years the researches tempt to publish

generally with the same persons. We also noticed that the evolution from 2012 to

2013 is quite limited. It is also important to note that we study maximal cliques

composed of minimum 3 nodes.

The notion of cliques and maximal cliques was introduced in Chapter 2 as a form

of cohesion in social networks. In the following, we use cliques to designate maximal

cliques.

4.5.1 Number of cliques

In order to understand if the networks are more locally clustered, we will observe the

number of the cliques per OPN. If this number is important, we can conclude that

the networks are locally clustered. To observe the number of the cliques per OPN

and its evolution, we plot the number of OPNs having a speci�c number of cliques in

2006 and in 2012 for k = 1...5. The result is given in Figure 4.38.
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Figure 4.38: Number of OPNs having a speci�c number of maximal cliques for year
2006 (pink) and year 2012 (blue) and for k=1, 2, 3, 4, 5.
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This �gure, di�cult to analyze given the density of the points, allows us never-

theless to make the following conclusions:

1. in an OPN, we can have from 1 till 4000 maximal cliques and that these values

are distributed quite uniform for both years in the tail of the curve;

2. the OPNs that have between 3000 and 4000 cliques are from 2012 and they have

k = 5. The maximum number of cliques in 2006 is much less than 1000, but

this is not clear from the current graphics and it needs further investigation;

3. more than 100 OPNs with k = 1 has a speci�c small number of cliques: in

2006, they are more than 350 OPNs, and in 2012 more than 250 OPNs. This

observation should be further investigated in order to understand why these

networks are not locally clustered;

4. for more than 3000 cliques, the density of OPNs decreases, while before 1000

cliques the density of OPNs increases. This latter part should be further inves-

tigated;

5. we should also further investigate the cases where the OPNs have a small number

of cliques (close to 0) in order to understand, as said previously, why these

networks are not locally clustered.

In the following, we will focus on some parts of the graphics in Figure 4.38 in

order to better understand the phenomenons described above.

Number of cliques on 2006. In this part, we will try to conclude on the 2nd

point above related to the maximal number of cliques that an OPN in 2006 can have.

From Figure 4.39, showing only the OPNs in 2006, we can observe that the maximum

number of cliques that we can have in an OPN in 2006 is a bit higher than 300, and

only OPNs with k = 5 have more than 200 cliques. Nevertheless, we can consider the

OPNs in the tail of this graphic as locally clustered.

Maximum of 100 cliques. To answer the questions on the points 3 and 5 in

the above conclusions concerning of having networks not locally clustered, we focus

in Figure 4.40 on the OPNs having a maximum number of cliques of 100 because in

Figure 4.39 we can see that between 1 and 100 we have a high number of networks

but also more dynamics on the number of networks.

Figure 4.40 allows us to conclude on several subjects:

� �rst of all, we can indeed observe with the focus on the graphic of Figure 4.39,

given in Figure 4.40, more change than in the tail of the graphic.
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Figure 4.39: Number of OPNs vs number of maximal cliques for year=2006 and
k=1-5.
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Figure 4.40: Number of OPNs vs number of maximal cliques for year=2006 and
year=2012 limited to 100 maximal cliques.

� last, we can see that there is one or two small values of the number of maximal
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cliques contained in OPNs corresponding to a high number of OPNs (more than

50 OPNs, till 350 OPNs). This can contradict the conclusion from the previous

chapter stating that the studied networks are locally clustered. In addition, we

can also outline that the OPNs containing this number of maximal cliques have

k = 1.

Maximum 5/16 cliques and k=1. Given the previous conclusion, it is inter-

esting now to understand how many cliques exist in OPNs when k = 1 for each year.

Figure 4.41 represents the number of OPNs vs the number of cliques only when k = 1

for each year. From this graphic, we can outline the fact that:

� in 2006, OPNs have 5 cliques maximum, and in 2012, OPNs have 16 cliques

maximum, when k = 1;

� moreover, over the 560 OPNs, we can conclude that, in 2006, more than 350

OPNs have 1 maximal clique, and in 2012, a bit less than 250 OPNs have 1

maximal clique. This corresponds to the conclusions that we had in the previous

section regarding the fact that the OPNs with k = 1 are very often complete

networks. This allows us to outline that OPNs with k = 1 have a di�erent

structure than the OPNs with a higher k, and thus they can have a di�erent

behaviour.

� we can also note that the number of OPNs decreases with the increase of the

number of maximal cliques. This outlines that OPNs with k = 1 and a high

number of cliques are not very numerous.

Maximum 100 cliques and maximum 65 OPNs. To have a clear understand-

ing on the evolution of the number of maximal cliques, we propose to focus on the

OPNs having maximum 100 cliques, but also on a maximum of 65 OPNs because we

already concluded that the numerouse OPNs having a small number of cliques have

k = 1. This graphic is given in Figure 4.42, and we can make several observations.

One observation concerns the fact that between 15 and 65 OPNs with k = 1, 2, 3

contains between 1 and 20 cliques which is quite reasonable because OPNs with

k = 1, 2, 3 are smaller than the OPNs with k = 4, 5 and can form less cliques. In

order to understand which number of cliques gathers an important number of OPNs,

we limit the number of cliques to 10. The result is given in Figure 4.43, and it allows

us to understand that:
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Figure 4.41: Number of OPNs vs number of cliques for year=2006 (top) and
year=2012 (bottom) for k = 1.

� in 2006 and when k = 1, around 350 OPNs have only one clique, and around

120 OPNs have two cliques; this con�rms our previous conclusions.

� in 2012 and when k = 1, around 250 OPNs have only one clique, and around

90 OPNs have two cliques; this also con�rms our previous conclusions.
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Figure 4.42: Number of OPNs vs number of maximal cliques for year=2006 and
year=2012 limited to 65 OPNs and 100 maximal cliques.
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Figure 4.43: Number of OPNs vs number of cliques for year=2006 and year=2012
limited to 10 cliques.

� OPNs with a high k are on the bottom of the graphic, which means that very
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few OPNs with a high k have a small number of cliques. Nevertheless, we could

also point out that a set of OPNs (around 30) with k = 4 (represented by the

rectangle) have also a small number of cliques, less than 10; this case will the

treated below.

The �rst conclusion stating that for k = 1, on the 560 OPNs, in 2006, 470 OPNs,

and, in 2012, 340 OPNs have only one or two cliques is very important since it

validates some of metrics evolution analysis results discussed in the previous section.

Indeed, we previously mentioned that when k = 1, we had a considerable set of

personal networks for which the value of certain metrics was extreme as it was the

case for the local clustering coe�cient where many networks had Ce = 1, and for the

betweenness centrality where Be = 1 for multiple OPNs. The OPNs exhibiting this

behaviour are complete networks and so made of a unique clique. Thus, we proved

via the analysis of the cliques that OPNs made of one clique are frequent when k = 1.

High k, low number of cliques. To study more closer the networks with k = 4

having few cliques, in Figure 4.44, we give an example of the personal network of the

ego 27967 with k = 4 on 2012 having only 6 cliques which is the smallest number of

cliques in an OPN with k = 4 in 2012. This example shows that OPNs can be of a

small size even when k = 4 and this explains why they hold fewer cliques.

We can also notice the way cliques are connected: indeed, the connection between

cliques is a bit particular since each pair of cliques shares only one node except the

two 3-cliques to which the ego belongs which share two nodes (the ego and his alter

'756'). Thus, we can con�rm that, even if the network with k = 4 has a small number

of maximal cliques, the network is still locally clustered. For this particular ego 27967,

we observed the evolution for k=1 to 5 from 2006 to 2012. We found that the OPN

does not evolve when considering k=1,2,3, and 4 along the years. The only evolution

happens with k=5 where one single node and one single edge are added on 2007.

Number of cliques reported to number of nodes and edges. We analyzed

the relationship between the number of cliques and the number of nodes composing

the personal networks for the di�erent k values and the di�erent years. We discovered

that there is a linear relationship between the number of nodes of a personal network

and the number of cliques it contains, and this whatever k, and whatever the year. We

give in Figure 4.45 the graphics illustrating this linear relationship. The relationship

between the number of cliques and the number of edges is linear as well for all k

values and whatever the year as we can see in Figure 4.47 for k = 4 on 2010.
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Figure 4.44: Personal network of the ego 27967 with 6 cliques, k = 4, 2012.

4.5.2 Cliques' size

In this section, we propose to understand if the OPNs behave the same when taking

into account their composition in cliques. To this end, we produced in Figure 4.48 a

graphics that represents the number of cliques of a given size in each OPN.

By observing the graphics for k = 1, k = 3 and k = 5, we can conclude that the

OPNs contain in general more small cliques than big cliques. When k = 1, we can

note that OPNs contain maximum 5 cliques of size 3, when k = 3, the OPNs can

contain 40 cliques of size 3, and when k = 5 the number of 3-cliques in some OPN

can be close to 200.

Besides the increase of the number of cliques per OPN with k, we can also note

that the increase is not linear. Indeed, when k = 3, for the cliques of size 3, there

are holes between the 30 and 40, which means that there are no OPNs containing for

example 33 of 3-cliques.

For the same OPNs, in 2012, the situation is comparable to the one in 2006; the

number of cliques with a given size in OPNs is decreasing with the size of the clique,

and we can note important holes in the increase of the number of cliques per size of

clique, as presented in Figure 4.49.
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(a) k=1, 2006 (b) k=1, 2012

(c) k=2, 2006 (d) k=2, 2012

(e) k=5, 2006 (f) k=5, 2012

Figure 4.45: Number of cliques vs number of nodes per OPN.
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Figure 4.46: Number of OPNs' nodes vs number of cliques for k = 4 and year=2010.

Figure 4.47: Number of OPNs' edges vs number of cliques for k = 4 and year=2010.
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The number of cliques contained in each OPNs of a specific size 
 for each k=1, year=2006, authors started publishing in 2004 (560 authors).
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The number of cliques contained in each OPNs of a specific size 
 for each k=3, year=2006, authors started publishing in 2004 (560 authors).
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The number of cliques contained in each OPNs of a specific size 
 for each k=5, year=2006, authors started publishing in 2004 (560 authors).

Figure 4.48: The number of cliques of a given size in each OPN in 2006 when k = 1, 2, 3
(top, middle and bottom). 124
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The number of cliques contained in each OPNs of a specific size 
 for each k=1, year=2012, authors started publishing in 2004 (560 authors).
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The number of cliques contained in each OPNs of a specific size 
 for each k=3, year=2012, authors started publishing in 2004 (560 authors).
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The number of cliques contained in each OPNs of a specific size 
 for each k=5, year=2012, authors started publishing in 2004 (560 authors).

Figure 4.49: The number of cliques of a given size in each OPN in 2012 when k = 1, 2, 3
(top, middle and bottom). 125



4.5.3 Clique size power law

In Figure 4.50, we give the distribution of the size of the cliques for k = 3 on 2012.

This distribution is characterized by the important presence of small sized cliques

while big sized cliques are less and less frequent (the same distribution was observed

for other k values and other years). Thus, we wanted to check both power law and

Poisson distributions to verify which of these theoretic distributions represents better

the distribution of clique size in our data. The test was performed for all k values

and all the years over dataset1.

Figure 4.50: Clique size distribution, k = 3, 2012, dataset1.

The result of the test are represented in the graphics in Figure 4.51 and Figure 4.52

for the power law and Poisson distributions respectively, and are presented hereafter:

� Power law distribution: the power law distribution is well veri�ed when k equals

1, 2, and 3 and less for k = 4 and 5, and this whatever the year.

� Poisson distribution: the Poisson distribution is acting as complementary to the

power law distribution given that it better represents the data when k equals

4, and 5 than when it equal 2 and 3. While we can see that it does not at all

represent the data for k = 1 from 2008 to 2012.
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Figure 4.51: Power law distribution for the clique size, dataset1.

Figure 4.52: Poisson distribution for the clique size, dataset1.

As a conclusion, the power law distribution can be used for reproducing the clique

size distribution of the data when we consider k = 1, 2, 3, while for k = 4, and k = 5

the Poisson distribution is better representative.
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4.5.4 Evolution of the size of cliques

In Figure 4.53 we provide a graphics of the number of OPNs vs the size of their

cliques. A clique is used in the computation if it appears at least one time in the

OPN, so no redundant information is used in the graphics. The observations in this

graphics are very important:

� we can note that, per year, when k increases, the number of OPNs progresses to

the right and to the top. This means that with k, the size of cliques is growing,

but also the number of OPNs containing the cliques is growing.

� we can also outline that, comparing the OPNs in 2006 (blue) and 2012 (pink),

the pink color is progressing to the left-top corner, which means that the more

the year increases, the more the size of cliques increases and the number of

OPNs containing the cliques increases.

� we can also point out, that the progression is not linear. A set of sizes of cliques

is not very present in the OPNs, such as: the 9-cliques, the 12-cliques, the 13-

cliques, the 17-cliques, and the 19-cliques, so it is maybe interesting to study

sections of the data, like for example the one having OPNs with cliques of size

from 3 to 8.
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Figure 4.53: Number of OPNs vs size of cliques in 2006 and 2012, all k.
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4.5.5 Minimum cliques size

For the minimum size of cliques, we plot the number of OPNs vs the minimum size

of cliques; to compute the minimum size of cliques we computed, for all the OPNs,

the minimum among the size of the cliques composing an OPN. The graphics is given

in Figure 4.54 and it allow us to outline the following observations:
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Figure 4.54: Number of OPNs vs minimum size of cliques in 2006 and 2012, all k.

� �rst of all, for a high number of OPNs the minimum size of its cliques is 3 (more

than 500); this is valid whatever k. We recall that we discarded cliques of size

2 made between solely two nodes (which are actually edges).

� second, we can notice 4 important values of minimum value for the size of

cliques: 10, 11, 15 and 17. The four of them appear in OPNs in 2006 when

k = 1, and also in 2012 (except 15) in OPNs when k = 1. It is surprising to have

cliques composed with 17 nodes which consists in the ego and its direct alters

from the beginning as the authors start publishing and thus building their own

personal networks. For these particular cases, the authors in question integrates

the entire collaboration networks by doing a publication which brings together

a large number of co-authors (10, 11, 15 or 17). The fact that such clique

(among cliques of size 10, 11, and 17) remains the one holding the minimum
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size even after some time as years pass and so as the network evolves means

that no other new node joined the personal network and connects to the ego as

we are considering the personal networks at k = 1. Which is not the case of the

clique of size 15 which is not anymore the one of minimum size of any personal

network on 2012 because new connections to the ego created new cliques (at

least one) of smaller size.

� last, we can also outline the fact that the OPNs in both years have a comparable

behaviours when coming to the minimum size of their cliques.

4.5.6 Maximum cliques size

As for the minimum size of cliques, we do the same for the maximum cliques size by

plotting the number of OPNs vs the maximum size of cliques; computed for all the

OPNs, as the maximum among the size of the cliques composing an OPN. From the

graphic given in Figure 4.55, we outline the following observations:

� the set of around 170 OPNs in 2006 with k = 1 have a maximum size of their

cliques of 3. This means that these OPNs should be composed only by cliques

of size 3 (one or more) or have in addition some edges (cliques of size 2) but no

clique of size bigger than 3.

� a high number of OPNs contains cliques with a maximum size of 18 or 20

(around 160 and respectively 190 OPNs). As all the authors we are evaluat-

ing belong to the giant component these large cliques are probably the same

appearing in many personal networks.

� the previous situation is more surprising when the year is 2006 (given by the

blue dots) as we can observe it for k = 2, 3, 4, and 5 where cliques of size 18 for

example are there as the personal network is created. We explain the presence

of such big cliques at the �rst phases of the personal network construction by

the collaborations gathering a large set of authors for a unique paper so the

formation of these cliques is not a consequence of merging of some smaller

cliques but join to the network directly bigger as it is.

� however, large cliques of size 20 were not present in any personal network on

2006. Thus, we can conclude that these cliques of size 20 are a consequence of

the merging of preexisting cliques.
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� �nally, we can notice that large cliques are more frequent when k equals 4 and

5 (more than 150 OPNs have cliques of size 18 when k=5).
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Figure 4.55: Number of OPNs vs maximum size of cliques in 2006 and 2012, all k.

We particularly �nd very interesting the last point. Indeed, the fact that OPNs

with k=4 and 5 hold an important set of large cliques con�rms the hypothesis we

did previously (in the section of metrics evolution analysis) to explain the changing

behaviour of OPNs at k=4 and 5 regarding two metrics: the betweenness centrality

and the power law distribution of the degrees. We recall that for the betweenness

centrality we found that it increases when k=2 and 3 but decreases when k=4 and 5,

and for the power law distribution of OPNs' nodes degree is considerably less veri�ed

when k=4 and 5 than when k=1, 2 or 3. So, the changing evolution tendency of these

two metrics is e�ectively explained by the creation of large cliques.

4.5.7 Connection between new nodes and (maximal) cliques

In order to understand how new nodes connect to the existing cliques of the personal

network, we performed a set of experiments that we describe in the following.

First of all, we tested whether new nodes connect to all the nodes composing an

existing clique (thus, we say that the node connects to the whole clique) or to only

few of them (thus, we say that the node connects to a sub-clique). The results of this
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test are given in Figure 4.56. A graphic in the Figure 4.56 presents, over the total

number of new nodes on the discussed OPNs, the percentage of new nodes connecting

to whole cliques (blue) and the percentage of new nodes connecting to sub-cliques.

This graphics allows us to conclude that new nodes tend to connect to sub-cliques

rather than to whole cliques.

(a) k=1 (b) k=2

(c) k=3 (d) k=4

(e) k=5

Figure 4.56: New nodes connection to a whole clique (blue) or to a sub-clique (red),
for k = 1...5, and years 2006 to 2012.

Second, we computed the percentage of the nodes in the existing cliques to which
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new nodes connect to. We found that new nodes connect more often to around

30%-50% of the clique nodes, and rarely above 50% of them. Figure 4.57 gives the

corresponding graphic for k = 4, and year = 2009. A similar tendency is observed

for the other k values and years.

Figure 4.57: Percentage of clique nodes to whom new nodes connect to, for k = 4,
year= 2009.

Last, we computed the number of cliques to which new nodes connect to. We

found that new nodes are more tended to connect to few cliques (1, 2, or 3) that to

a large number of cliques, as we can observe on Figure 4.58 for k = 3, on 2010 (the

same tendency was observed for the other k values and the other years).

4.5.8 Results summary and discussion

From the cliques analysis, we could con�rm the �ndings from the metric analysis of

the co-authorship personal networks and discover new interesting patterns.

First, we con�rmed the fact that OPNs with k = 1 are particular and have a

di�erent structure since they are characterized by a few number of cliques composing

them and we found that the size of cliques in 1-personal networks does not exceed

3. In addition, a large number of them are composed of only one single clique which

proves that these networks are complete and which explains the fact that from the

metrics analysis we had a considerable set of personal networks for which the value
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Figure 4.58: Number of cliques to whom new nodes connect to, k = 3, year = 2010.

of certain metrics was extreme as it was the case for the local clustering coe�cient

- many networks had Ce = 1, and for the betweenness centrality - many networks

with Be = 1. Thus, we proved via the analysis of the cliques that OPNs made of one

clique are frequent when k = 1.

Second, for higher k values (k = 2, 3, 4, 5), we discovered a linear relationship

between the number of cliques and the number of nodes as well as with the number of

edges. We also found that, in general, co-authorship OPNs have more small cliques

than big ones, and that the number of cliques of a given size is increasing with k but

the increase is not linear. Moreover, with the year, the size of cliques increases and

the number of OPNs containing the cliques increases. In addition, we saw that for

a high number of OPNs the minimum size of its cliques is 3 (more than 500); this

is valid whatever k, while a high number of OPNs contains cliques with a maximum

size of 18 or 20 which constitute the same cliques appearing in di�erent OPNS as

they belong to the giant component.

An important �nding concerns the discovering of a di�erent behaviour between

OPNs with k = 2, 3 and OPNs with k = 4, 5 as it was the case with metrics analysis

concerning the betweenness centrality (increasing when k = 2, 3, and decreasing for

k = 4, 5) and the degree distribution of nodes composing the OPNs (the power law

holds for k = 2, 3 but not holds for k = 4, 5). Indeed, we found that clique's size
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is following a power law distribution when k = 2, 3 but a Poisson distribution when

k = 4, 5. Moreover, we con�rmed that OPNs with k = 4, 5 are often characterized by

the presence of large cliques. So, the changing evolution tendency of the betweenness

centrality and the power law distribution of the degrees is e�ectively explained by the

creation of large cliques. Thus the discovered patterns when considering cliques is a

plausible explanation of the changing behaviour of the betweenness and the power

law distribution of the degrees we obtained via metrics analysis.

Finally, by analyzing the connections between new nodes and cliques, we could

identify that:

� new nodes tend to connect to sub-cliques rather than to whole cliques.

� new nodes connect more often to around 30%-50% of the clique nodes, and

rarely above 50% of them.

� new nodes are more tended to connect to few cliques (1, 2, or 3) than to a large

number of cliques.

We will see in the next chapter that such patterns are useful when proposing models

for OPNs evolution based on cliques.

4.6 Conclusion

Along this chapter, the �rst obvious observation that we notice is that 1-personal

networks constitute a particular case and have a di�erent structure and thus evolution

trends for the following reasons:

1. A signi�cant proportion of 1-level personal networks (around 11%) are small star

networks with few nodes. These networks describe independent ego's publica-

tions with distinct alters (co-authors). Such personal networks are characterized

with an ego betweenness centrality of Be = 1 along with a weak ego degree.

The ego in this case plays a key role given its important position.

2. A more signi�cant set of 1-personal networks is consisting of complete sub-

graphs (around 46%), which translates in one single publication grouping the

ego and his/her alters (co-authors). These networks are characterized by an ego

betweenness of Be = 0 and a local clustering coe�cient Ce = 1. In addition, we

proved via the analysis of the cliques that these complete networks corresponds

indeed to OPNs made of one single clique.
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3. The evolution of 1-personal networks a�ects mostly the connections among al-

ters who were characterized at the beginning with an important number of

connections and then become less connected over time as new alters join the

1-level personal network (the density, the local clustering and the e�ciency de-

crease), while egos' degrees and egos' betweenness are not a�ected. Moreover,

the addition of nodes (alters) keeps the average degree of the 1-level personal

network low.

4. Finally, the analysis of new links among alters in 1-level co-authorship personal

networks shows that most of the new links are formed among new coming nodes

which reveals that nodes join the network under the form of cliques. Thus,

a new collaboration involves most of the time new authors that were not in

the network at time t with inevitably the ego author (because we consider 1-

level personal networks) and eventually his alters (old nodes) which explains

the second important proportion of edges made between new and old nodes.

However, we found that it is unlikely for two old authors not connected at time

t to connect at time t+1 given the very small proportion of links made between

old alters.

The metrics analysis (published in [40]), and cliques analysis of personal networks

with k = 2, 3, 4, 5, allowed us to discover interesting �ndings concerning the topology

and the evolution of co-authorship personal networks. These �nding are summarized

in the following:

1. The density and global clustering coe�cient are both decreasing over the years.

The nodes joining the personal network over the years create fewer edges com-

pared to the possible number of edges that can be created, and thus the density

gets lower, as well as the transitivity at the personal network level.

2. At the local level, the average clustering coe�cient was observed to be high

and gets higher when the personal networks are growing which indicates a high

local clustering around the nodes. We can explain that by the fact that co-

authorships are made generally between 3, 4 or 5 authors and the emergence of a

new collaboration implies the creation of a highly clustered local structure since

all the authors that made this collaboration are going to be already connected

with each other. We also found that the average degree of nodes are increasing

over years.
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3. We saw that for a high number of OPNs the minimum size of its cliques is 3,

while a high number of OPNs contains cliques with a maximum size of 18 or 20

which constitute the same cliques appearing in di�erent OPNS as they belong to

the giant component. Furthermore, we discovered a linear relationship between

the number of cliques and the number of nodes as well as with the number

of edges. We also found that, in general, co-authorship OPNs have more small

cliques than big ones, and that the number of cliques of a given size is increasing

with k and with the years.

4. Ego's betweenness centrality behaves di�erently depending on k since it was

increasing for k = 2, 3, but decreases for k = 4, 5. On the one side, the increase

for k = 2, 3 is due to the addition of nodes around the ego that form disconnected

groups of alters (as the windmill graph example) and the ego plays a key role

among them. On the other side, when we consider a k = 4 or 5. This behaviour

is justi�ed by the fact that OPNs with k = 4, 5 are often characterized by the

presence of large cliques as discovered with cliques analysis.

5. As for the betweenness, the degree power law distribution test results are dif-

ferent depending on k as it is better satis�ed when k = 2, 3 than for k = 4, 5.

In addition, for k = 5, the networks are not anymore following a power law

degree distribution starting from 2011. We explained this changing behaviour

when we analyzed the composition of the OPNs when considering cliques, as

we found that OPNs with k = 4, 5 are often characterized by the presence of

large cliques.

6. Another di�erent pattern between k = 2, 3 and k = 4, 5 was discovered about

the clique's size, which is following a power law distribution when k = 2, 3 but

a Poisson distribution when k = 4, 5.

7. Finally, by analyzing the connections between new nodes and cliques, we could

identify that new nodes tend to connect to sub-cliques rather than to whole

cliques and they connect more often to around 30%-50% of the clique nodes,

and rarely above 50% of them. At last, new nodes are more tended to connect

to few cliques (up to 3) than to a large number of cliques.

All the �ndings mentioned above contribute to bringing a better understanding

around the structure and evolution of personal networks. Such a deep investigation

has not been carried out before. In addition, the discovered patterns constitute a
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su�cient baggage to approach modeling the evolution of the studied networks. In

particular, we distinguish that the organization of nodes and edges in the personal

networks in the form of cliques is a dominant characteristic during the evolution of

these networks given the nature of the data. Thereby, our target when thinking about

an evolution model for personal networks has to take mainly into account the clique

dimension in addition to the other discovered properties. Thus, we propose in the

next chapter a new evolution model for personal networks based on cliques.
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Chapter 5

PERSONEM - a New Evolution

Model

5.1 Introduction

In the previous chapter, we concluded that cliques dominate co-authorship personal

networks' structure and play a key role in their evolution. This lead us to investigate

whether previous works on networks evolution have considered this dimension when

proposing models. A limited number of works are based on cliques, and the reason

might come from the fact that the computational problem of �nding cliques in a graph

is NP-complete and might constitute a real constraint when considering large social

network graphs. In our case, we are dealing with personal networks that are less large.

Thus, working towards an evolution model based on cliques is less problematic. In

that perspective, the work done by Yan et al. in [134] is the only one proposing a

model based on cliques. In addition, this work was interesting for us because they

consider the co-authorship network. However, the proposed model is a generative

model designed for generating arti�cially social networks graphs, while in our case,

the objective is di�erent since we would like to predict the evolution of a personal

network, in particular, from a given point in time t to a next point in time t+ 1.

Indeed, the model we would like to build can be summarized as follows: at time

t , an OPN has nt nodes and mt edges; at times t + 1, δn = nt+1 − nt new nodes

are entering the personal network and the evolution model should predict how these

nodes will connect to the network and what other links are created in the network.

In addition, if at time t, the maximum distance from the ego is equal to k, then at

time t + 1, it may be equal to k + i, as new nodes connect to existing nodes that

are at k distance from the ego. Thus, the model should account of that in order to

maintain the same k as at time t.
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In this chapter, we will present in the �rst place the clique-superposition model

proposed by Yan et al. in [134], and discuss in details why this model cannot work

for predicting the evolution of personal networks. Then, based on this model, we

will show how starting from the generative model of Yan et al., we build a new

predictive model we named PERSONEM for the evolution of personal networks that

we presented in [41]. Later in this chapter, we present the results of application

of the new clique-based predictive model dedicated to OPNs, and �nally discuss its

e�ciency and its performance.

5.2 Clique-superposition evolution model [134]

The clique-superposition model, proposed in [134], is a generative model for undi-

rected weighted networks that reproduces real social networks properties. This model

proposes to construct a network with N nodes by using the clique-superposition con-

cept that we describe in the following section.

5.2.1 Clique-superposition concept

In 1981, Feld [51] studied the organization of ties within a social network. He pointed

out that a social link is more likely to be formed between two individuals having some

intersection. This fact comes from the theory claiming that the relevant aspects of the

social environment are like foci around which individuals organize their relationships

where a focus is de�ned as a social, psychological, legal, or physical entity around

which joint activities are organized [51] (eg. workplaces, families, etc.). Consequently,

a group of individuals whose activities are organized around the same focus will

tend to become tied to each other and form a cluster hence the concept of focused

organization titling the paper of Feld in [51].

In addition, Feld distinguished between the simply focused situation where each

individual is related to one single focus and thus, each focus is represented by a cluster

and links among clusters are just random, and the situation that is more complex but

most common where an individual acquires over time multiple focus at the same

time. In this last situation, clusters form a complex interpenetration or superposition

structure. This is from where came the idea of providing a generative model that

simulates the clique-superposition evolution behaviors of social networks.

To illustrate the superposition of cliques, we give the following example. Let us

assume that we have a clique and a new node comes to join that clique, then the new

node links to all clique members and altogether form a bigger clique. If we suppose
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that the new node belongs to other cliques through its former activity, thus the cliques

are superposed at that new node. For example, in Figure 5.1, cliques C1 and C2 are

superposed in node 3. In the next section, we present the clique-superposition model

and discuss in details how this model works.

Figure 5.1: Clique-superposition example.

5.2.2 Model's description

As stated previously, the clique-superposition model is a generative model and is

based on three assertions. The �rst assertion assumes that social links are driven by

social intersections, an example to illustrate this assertion is the friendship link where

a new friendship is formed because two individuals share one common friend or share

a common social environment as the workplace; this assertion was translated by the

social intersection. The second assertion concerns the fact that social networks evolve

in the form of superposition of cliques. This assertion is related to the �rst one since

from a friendship for instance between two individuals, we can move to a triangular

relationship that includes the common friend. Another example, presented in [134]

as the extreme example for illustrating the clique-superposition, is the co-authoring

networks where authors of the same paper are present in the co-authoring network

as a clique and thus the co-authoring network is the result of superposed clique of

di�erent sizes. Finally, the third assertion is the fact that the co-relationship network

is a kind of social network as it was demonstrated in the literature for the scienti�c

collaboration network [99] or the �lm co-acting network [68] that have the same

structural properties (high clustering coe�cient, power law degree distribution, and

small diameter) as social networks in their usual sens of acquaintance networks.

The clique-superposition model proposed in [134] is given in Algorithm 1, and in

the following we will describe the steps of the algorithm.
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Algorithm 1: Clique-superposition model
Input : Ginit, k, β, pnode, psample, N
Output: G

1 begin
2 Graph G←newGraph();
3 while G.getNodes() < N do
4 if Random() < pnode then
5 Node current← newNode();
6 G.addNode(current);
7 else
8 Node newMember ← G.getRandomNode();
9 k ← GetCliqueSize();

10 Clique C ← FindClique(G,k);
11 if C 6= null then
12 if Random < psample then
13 Clique C ′ ← Sample(C);
14 else
15 Clique C ′ ← C;
16 end
17 for i = 1, . . . ,Size(C ′) do
18 G.addEdge(newMember, C ′.node[i]);
19 // if the edge already existing, the edge weight plus 1
20 end
21 end
22 end
23 end
24 return G;
25 end

The algorithm gets as an input the personal network at time t (Ginit), the value

k for this network, the parameter of the power law distribution of the cliques' size β,

the pnode value corresponding to the probability of having a nodes or edges evolution

phase, psample value corresponding to the probability that a new node connects to a

cliques or a sub-clique, the number of nodes of the �nal graph G (N). The output

of the algorithm is the graph G, corresponding to the predicted personal network at

time t+ 1 of the initial network.

The initial graph is instantiated via the method newGraph(). Then, while the

initial graph do not reach N nodes, the following steps are executed (line 3).

A random number is generated and compared to pnode. If the random number

is less than pnode, the node evolution step starts (line 4). In a node evolution

steps, a new node is created and added to the graph G (and the generated graph

size is incremented) (lines 5, 6). If the random number is grater than pnode, the edge
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evolution step starts (line 7).

The evolution step runs as following. A node, from the existing nodes, is randomly

selected as newMember (line 8) in order to be connected to a clique or a sub-clique.

The value q, corresponding to the size of the clique, is extracted from the power law

distribution of the clique sizes (line 9). Then, using KEWLS algorithm, a random

clique of size q is selected (line 10); KEWLS which is a vertex cover �nding algorithm

that will be detailed in the next section. KEWLS algorithm has as input three

parameters: the complementary graph G of the initial graph G, the size of the vertex

cover (|V | − q), and the number of maximum steps to be executed in order to �nd a

vertex cover.

In case KEWLS did not succeed in �nding a vertex cover (and so a random

clique), the edge evolution step ends (lines 12, 13) and the algorithm goes back to

line 3. Otherwise, the vertex cover and the q-clique are returned (lines 14, 15). To

know if the newMember node will connect to the complete clique or a sub-clique of

the returned clique, a random number is generated. If the random number is less

than psample, a sub-cliques is sampled; otherwise, the full q-clique is taken as sample

clique. The sampling method works as follows: q-sample are picked randomly in the

range [1, q− 1], a smaller clique of size q-sample is constructed by selecting q-sample

nodes from the original clique nodes set and add edges between all the selected nodes

to for a new smaller clique.

Finally, edges between sampled clique nodes and newMember are added, if no

edge already exists among them (line 18), otherwise, the weight of the existing edge

is incremented (line 19).

5.2.3 Vertex cover algorithm for random clique �nding - KEWLS
algorithm

KEWLS is an heuristic proposed [134] and based on the EWLS algorithm proposed

in [24] for solving the vertex cover problem. The vertex cover problem is related to

the random clique �nding problem since �nding a random clique of size k in a graph

G(V,E) consists in �nding a vertex cover of size |V | − k in the complementary graph

G. We describe in the following the di�erent steps of KEWLS, given in 2.

The �rst phase of KEWLS algorithm is the initialization of the following entities:

� the number of steps is set to 1 (line 2);

� the list of uncovered edges l is initialized with the whole set of edges (line 2);
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� all edges weight are set at 1 (line 3);

� all edges age is set at 0;

� the k vertex cover is initialized with a random vertex set of size k (line 4).

Then, a loop is executed until maxsteps, which indicates the maximum number of

steps for executing the loop, is reached (line 5) with the following steps: constructing

the set l of uncovered edges (not covered by the vertex cover). If this set is empty,

it means that the initialization of the vertex cover is actually a vertex cover. If not,

a list containing the uncovered edges endpoints is de�ned. Afterwords, the function

chooseExPair is called, which �nds a pair of nodes (u, v) such that u belongs to the

vertex cover and v belongs to the list of uncovered edges endpoints (line 6). Finally,

two cases are possibles:

1. If (u, v)! = (0, 0), the vertex u is removed from vertex cover and the vertex v

is added (line 7).The edge age of edges of vertex v (that were uncovered) are

incremented.

2. If (u, v) = (0, 0), a local optima was found, thus the weight of all edges is

incremented (line 11) and a random walk is processed (line 12) which exchanges

a random vertex u in C and a random vertex v in lendpoints list.
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Algorithm 2: KEWLS(G, k, maxSteps) [134]
Input : G, k, maxSteps
Output: k-vertex cover of G

1 begin
2 step← 0; L← E;
3 initialize edge weights;
4 construct C randomly until| C |= k;
5 while step < maxSteps and L 6= ∅ do
6 if ((u,v) ← ChooseExPair(C, L)) 6= (0,0) then
7 C ← [C\ {u}] ∪ {v};
8 tabuAdd← u;
9 tabuRemove← v;

10 else
11 update edge weights;
12 take a random walk;
13 end
14 step← step+ 1;
15 end
16 return C;
17 end

The function ChooseExchangePair. The function ChooseExchangePair �nds

a pair of nodes (u, v) such that u belongs to the vertex cover and v belongs to the

list of uncovered edges endpoints, and score(u, v) > 0. The score(u, v) is computed

as follows:

Given a graph G = (V,E) and a current candidate solution C, for a pair of vertices

u, v ∈ V , where u ∈ C and v 6∈ C,
score(u, v) = dscore(u) + dscore(v) + w(e(u, v)) if e(u, v) ∈ E, and
score(u, v) = dscore(u) + dscore(v) otherwise.

Such as: dscore(v) = cost(G,C)− cost(G,C ′),
where cost(G,C) =

∑
e∈E and e is not covered by Cw(e), w(e) determines the weight of

edge e.

In this function, presented in Algorithm 3, the vertex v to put in C is chosen

from endpoints of the oldest uncovered edge e∗(v∗1, v
∗
2) ∈ L. If there exists at least

one vertex pair u ∈ C and v ∈ (v∗1, v
∗
2) such that score(u, v) > 0, the function

returns one of them randomly (line 3). If not, it goes to check the edges in UL,

according to the order from old to young. If for some edge e(v1, v2) in UL, the set

S := {(u, v)|u ∈ C, v ∈ {v1, v2} and score(u, v) > 0 is not empty, then the function

returns one vertex pair (u, v) ∈ S randomly (line 10). Finally, if the function fails to

�nd such a vertex pair, it returns (0,0) (line 14).
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Algorithm 3: function ChooseExchangePair(C, L, UL)

Input : current candidate solution C, uncovered edge set L, edge set UL of
uncovered edges unchecked in the current local search stage

Output: a pair of vertices
1 begin
2 if S := {(u, v)|u ∈ C, v ∈ {v∗1, v∗2} and score(u, v) > 0} 6= ∅ then
3 return random(S);
4 else
5 foreach e(v1, v2) ∈ UL, from old to young do
6 if S := {(u, v)|u ∈ C, v ∈ {v1, v2} and score(u, v) > 0} 6= ∅ then
7 return random(S);
8 end
9 end

10 end
11 Return (0, 0)
12 end

5.2.4 The clique-superposition model applied on co-authorship
personal networks

Let us consider the OPN of ego 1244 with k = 2 evolving from 2008 to 2009. The

number of new nodes added from 2008 to 2009 is 4. Figure 5.2a gives the OPN of

ego 1244 in 2008 with k = 2, and Figure 5.2b gives the OPN of ego 1244 in 2009 with

k = 2. The latter should be predicted by the clique-superposition model.

Thus, we applied on the OPN of ego 1244 given in Figure 5.2a the clique su-

perposition model proposed in [134] using the following parameters pnode = 0.1,

psample = 0.6, beta = 2.5 (used in the original work). The result is given in Figure

5.2c.
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(a) Real OPN on 2008. (b) Real OPN on 2009.

(c) Predicted OPN on 2009 with
clique-superposition model.

Figure 5.2: Example of application of the clique superposition model on the OPN of
ego 1244, for k = 2 and year = 2008.

5.3 PERSONEM : a new evolution model for per-

sonal co-authoring networks evolution

Let us consider a personal network PNt at time t. Our objective is to predict PNt+1

at time t+ 1 after the addition of a set of new nodes; the number of the new nodes is

given. Thus, to model should predict the new edges in the network, and, indirectly,

how many edges are added. This way, we are not generating a network but we start

from a personal network and a given amount of nodes to add and we have as output

the personal network at the next time step.

The clique-superposition model presented in section 5.3 is a generative model of

social networks based on the organization of the connections among users in terms

of cliques and sub-cliques. In our work, we are interested in modeling the evolution

of personal co-authoring networks. Inspired by the work in [134], we built a pre-

dictive model taking into account the speci�city and the properties of personal and
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co-authoring networks.

To this end, �rstly we tested the clique-superposition model on our data; the

results were given above. Hereafter we will provide a set of observations made on

the results of the tests performed; these observations concern the limitations of the

superposition cliques model when applied on personal co-authoring networks.

5.3.1 Limitations of the clique-superposition model

5.3.1.1 Isolated nodes

The clique-superposition model tolerates having isolated nodes, i.e. nodes that are

not connected to any other node in the network (with a degree equal to 0) as we

can see it from the example of application of the clique superposition model given in

Figure 5.2c. A simple illustration of this fact is to imagine that we have as a last step

in the model a node evolution step which means that we add a node but this added

node will stand disconnected because there is no edge evolution step afterwords that

can eventually connect that node.

In the case of personal networks, isolated nodes are not accepted because by def-

inition all nodes within a personal network are connected to the ego via a path of a

given distance depending on k. So, to be applied on personal networks, the clique-

superposition model should be adapted to avoid having isolated nodes.

5.3.1.2 The k level of the personal network

The second problem outlined when running the clique-superposition model on per-

sonal co-authoring networks is to take into account the parameter k, the maximum

geodesic distance that separates the ego node from the rest of nodes in the personal

network.

Indeed, the network predicted by the clique-superposition model at time t + 1

might have a k value di�erent from the initial k value of the personal network at

time t. But, the way we de�ned the predictive model we would like to have, that we

presented in the introduction of this chapter, does not allow to overpass k.

5.3.1.3 KEWLS algorithm's performance

The vertex cover algorithm, KEWLS, used in the clique-superposition model for ran-

dom clique �nding problem has important limitations regarding performance in terms

of running time and memory especially when dealing with large networks. Thus, we
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tested the algorithm KEWLS separately on a sample of the personal networks of au-

thors in dataset1. In order to select the sample, we performed a k-means clustering on

the personal networks of dataset1 for k = 3 on 2008 (set of 560 OPNs whose number

of nodes and number of edges distributions are given in Figure 5.3, and Figure 5.4

respectively) after discarding personal networks that were not evolving from 2007 to

2008 (set of 466 OPNs). We chose the data for k = 3 on 2008 because it represents

the central point in terms of k and years providing a representative set of networks

in terms of size.

In the k-means algorithm, we used the following metrics to characterize an OPN:

number of nodes and edges, density, global clustering coe�cient, average clustering

coe�cient, betweenness centrality, and the average degree. We obtained 5 clusters

and we took randomly 50% of the OPNS from each cluster and we got at the end 230

representative personal networks. Then we applied KEWLS algorithm to search for

cliques of size 5 to 6, and used di�erent values for maxSteps parameter (7, 20, 100,

200).

Figure 5.3: Distribution of the number of nodes.

It is important to outline that the personal networks under the scope are not huge

and contain a maximum of 349 nodes and 798 edges. From the graphic in Figure 5.5

representing KEWLS performed for searching cliques of size 5 with maxSteps of 200,

we can see that the running time increases exponentially with the number of nodes.
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Figure 5.4: Distribution of the number of edges.

Figure 5.5: KEWLS algorithm running time in order to �nd a 5-clique with
maxSteps = 200, when k = 3 and year = 2008, for dataset1.

While the time is acceptable for small networks (with less than 100 nodes), the fact

that performing KEWLS on a network of about 300 nodes takes about two hours is

150



problematic since the networks on which we work could be much bigger in addition

to the fact that if we run the clique-superposition model, we might involve the call of

KEWLS algorithm many times until we reach the desired network of size. Thus, we

need to replace KEWLS algorithm with a more performing alternative for �nding a

vertex cover.

5.3.1.4 Model's parameters values

It is important to note that the authors propose in [134] to use in the clique-superposition

model for the three parameters with possible open values the following values:

� pnode = 0.1 which indicates that the model performs a node evolution step in

10% of cases and an edges evolution step in 90% of cases;

� psample = 0.6 which indicates that in 60% of cases the model connects the new

member to a sub-clique rather than the entire clique;

� β = 2.5 which indicates the power law parameter of cliques size distribution.

This values should be revised in order to match the personal co-authorship networks.

5.3.2 Solutions to the outlined limitations: towards a predic-
tive evolution model

To �t the personal co-authorship networks particularities, several adjustments have

to be made on the clique-superposition model. Next, we discuss how we overcome

the limitations described in the previous section.

5.3.2.1 Isolated nodes

Previously, we saw that with the clique-superposition model it was possible to have

one or more isolated nodes. These isolated nodes constitute new nodes that remains

disconnected.

In the case of personal co-authorship networks, we start with a connected graph

(personal network at time t), and we should have as output a connected graph as well

(at time t+ 1) without any isolated nodes. Thus, to avoid having isolated nodes after

the classic run of the model (lines 3-23 in Algorithm 1), we propose to run the model

two times.
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The �rst run will correspond to the classic one presented in the Algorithm 1 in

lines 3-23 that will launch both the node and edge evolution steps, thus allowing to

add all the nodes to the graph in order to achieve the N number of nodes.

The second run will take place after the line 23, and will have as main goal

to connect all the remaining isolated nodes; thus, the run launches only the edge

evolution step without the node evolution step, since all new nodes are already added.

Moreover, instead of selecting a random node from the whole nodes list, we select a

random node only from the isolated nodes list.

The choice of proposing two runs of the algorithm instead of having one single

run, comprising the two steps of evolution, and bring in a set of constraints was

motivated by the fact that we wanted to modify as less as possible the original clique-

superposition model.

5.3.2.2 The k level of the personal network

As already stated, in our work we formalized and analyzed the evolution of personal

networks as following: we consider, in time t, a k-personal network with a number

of nodes and edges, and this network evolves in time t + 1 to a k-personal network

generally with a di�erent number of nodes and/or edges. It is important to note that

both personal networks have the same depth, k. The clique-superposition model does

not respect this constraint because, the networks predicted in time t+1 have a depth

(k value) higher or equal than the network's depth in time t.

To account of this constraint, we propose to add the following constraint in line

10 in Algorithm 1: in the edge evolution step, we consider that a node was selected

and has to be connected to a clique or a sub-clique. When a q-clique is selected in

line 10, we select a q-clique only if it has at least a node at a distance less than q. If

it is not the case, we continue searching for a solution . Then, on the next lines, if we

have to select a sub-clique, we select a sub-clique having at least a node at a distance

less than q.

This new constraints allow us to ensure that the new added nodes will not cause

the over-passing of the depth (k value) of the personal network. We note that for

personal networks with k = 1, for a clique in a 1-personal network the nodes are

necessarily connected to the ego. Thus, we skip dealing with this new constraint

when considering OPNs with k = 1.
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5.3.2.3 KEWLS algorithm's performance

As stated in the previous section, the KEWLS algorithm is lacking of performance

especially when applied on networks with more than 100 nodes. New heuristics have

been proposed since and had been demonstrated as outperforming KEWLS algorithm

(an overview is given in [131]). The NuMVC algorithm [25] was proposed as a more

e�cient algorithm than KEWLS for the minimum vertex cover problem. Next, we

will present the NuMVC algorithm and provide a comparison between NuMVC and

KEWLS algorithms performed on our data.

NuMVC description. NuMVC algorithm was introduced in [25] as a more e�cient

new local search heuristic algorithm for solving the Minimum Vertex Cover (MVC)

problem. NuMVC proposes two new strategies to cover two drawbacks of existing in

previous MVC solvers approaches as KEWLS.

The �rst drawback consists in the fact of selecting a pair of vertices to exchange

simultaneously as done in KEWLS where a pair of vertices with score(u, v) > 0 is

selected randomly. In [25], the authors outlined that this technique is time consuming

since it leads to a quadratic neighborhood for candidate solutions. In addition, the

evaluation of a pair of vertices depends on dscore between the two vertices, but also

involves the relationship between the two vertices, like �do they belong to a same

edge�. Thus, evaluating all candidate pairs of vertices is rather time-consuming. To

address this issue, the NuMVC algorithm uses a two-stage exchange strategy and

selects the two vertices for exchanging separately in two stages, i.e. a removing

stage and an adding stage. The removing stage consists in selecting a vertex from

the current candidate solution and removing it, while the adding stage consists in

selecting a vertex in a random uncovered edge and adding it to the current solution.

This two stages exchange strategy yields an e�cient two-pass move operator for MVC

local search, in which the �rst pass is a linear-time search for the vertex-to-remove,

while the second pass is a linear time search for the vertex-to-add.

The second drawback consists in the edge weighting technique; KEWLS increases

the weights of uncovered edges only when reaching a local optima. However, KEWLS

or other algorithms do not have a mechanism to decrease the weights which could be

de�cient because the weighting decisions made too long ago may mislead the search

as stated in [25]. In the NuMVC algorithm, the authors propose to use an edge

weighting with forgetting technique by increasing the weights of uncovered edges by

one at each step. Then, when the averaged edge weight achieves a threshold (γ), it
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reduces weights of all edges by multiplying a constant factor ρ (0 < ρ < 1) to forget

the earlier weighting decisions.

The NuMVC algorithm is given in Algorithm 4 and it is described in the following.

Algorithm 4: NuMVC(G, cuto�)
Input : G, cuto� time
Output: vertex cover of G

1 begin
2 initialize edge weights and dscores of vertices;
3 initialize the confChange array as an all-1 array;
4 construct C greedily until it is a vertex cover;
5 C* := C;
6 while elapsedTime < cuto� do
7 if there is no uncovered edge then
8 C* := C;
9 remove a vertex with the highest dscore from C;

10 continue;
11 end
12 choose a vertex u ∈ C with the highest dscore, breaking ties in favor of

the oldest one;
13 C := C\ {u}, confChange(u) := 0 and confChange(z) := 1 for each

z ∈ N(u);
14 choose an uncovered edge e randomly;
15 choose a vertex v ∈ e such that confChange(v) = 1 with higher dscore,

breaking ties in favor of the older one;
16 C := C ∪ {v}, confChange(z) := 1 for each z ∈ N(v);
17 w(e) := w(e) + 1 for each uncovered edge e;
18 if w ≥ γ then
19 w(e) := bρ · w(e)c for each edge e;
20 end
21 end
22 return C*;
23 end

NuMVC starts with an initialization phase by setting all edges weights at 1

and computing dscores accordingly. Moreover, NuMVC maintains a boolean array

confChange(v) initialized at 1 for each vertex v. The confChange array handles the

con�guration checking (CC) strategy which avoid cycling problem in local search .

Then, NuMVC constructs the current candidate solution C by iteratively adding the

vertex with the highest dscore, until it becomes a vertex cover and the best solution

C∗ is initialized as C.

After the initialization, a loop is executed until the cuto� time is reached (lines
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6 to 19). The cuto� time is the time over which we stop searching for a solution

(a vertex cover). During the search procedure, if there is no uncovered edge (C is a

vertex cover), NuMVC updates the best solution C∗ as C (line 8). Then it removes

one vertex with the highest dscore from C (line 9), to go on to search for a vertex

cover of size |C| = |C∗| − 1. Then, the two-exchange strategy is executed (lines 12 to

16) it �rst selects a vertex u ∈ C with the highest dscore to remove, then chooses an

uncovered edge e uniformly at random, and selects one of e's endpoints to add into

C as follows: If there is only one endpoint whose confChange is 1, then that vertex

is selected; if the confChange values of both endpoints are 1, then NuMVC selects

the vertex with the higher dscore. After the two-exchange step confChange array

is updated as well as all uncovered edges weights which are increased by 1 (lines 16,

17).

Afterwords, the forgetting mechanism is performed (line 18, 19) for decreasing the

weights. At this step, if the averaged weight of all edges reaches a threshold γ, then

all edge weights are multiplied by a constant factor ρ (0 < ρ < 1) and rounded to an

integer (edge weights are de�ned as integers in NuMVC).

q-NuMVC algorithm: an adaptation of the NuMVC algorithm for the

k-vertex cover problem. The NuMVC algorithm presented above returns the

minimum vertex cover a graph G. In the context of the clique-superposition model, we

need to �nd a clique of size k. This task is undertaken by a MVC algorithm (currently

the KEWLS algorithm), which allows to extract a vertex cover of size |V | − k in the

complimentary graph G. Thus, in order to replace the KEWLS algorithm with the

NuMVC one, we needed to adapt the NuMVC algorithm so that it returns a minimum

vertex cover of a given size.

In the Algorithm 5, we give the pseudo-code of the new corresponding version of

NuMVC that we call q-NuMVC we are proposing, where k represents the size of the

minimum vertex cover we search for.

The �rst di�erence between NuMVC and q-NuMVC resides in the initialization of

the candidate solution C (line 4) where instead of constructing C greedily as a vertex

cover, we initialize it as a random vertex set of size k.

The second change concerns the test on whether there is no uncovered edge at

line 7 of NuMVC from which we remove vertices with high dscore from C. This

test is ine�cient in q-NuMVC since arriving to a k-sized set C with no uncovered

edges means that we got the desired solution and there is no need to remove vertices

otherwise the solution C would be of size less than k.
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Algorithm 5: q-NuMVC(G, k, cutoff)
Input : G, k, cutoff
Output: k vertex cover of G

1 begin
2 initialize edge weights and dscores of vertices;
3 initialize the confChange array as an all-1 array;
4 construct C randomly until | C |= k;
5 C* := C;
6 while elapsedTime < cuto� do
7 if there are uncovered edges then
8 choose a vertex u ∈ C with the highest dscore, breaking ties in favor

of the oldest one;
9 C := C\ {u}, confChange(u) := 0 and confChange(z) := 1 for each

z ∈ N(u);
10 choose an uncovered edge e randomly;
11 choose a vertex v ∈ e such that confChange(v) = 1 with higher

dscore, breaking ties in favor of the older one;
12 C := C ∪ {v}, confChange(z) := 1 for each z ∈ N(v);
13 w(e) := w(e) + 1 for each uncovered edge e;
14 if w ≥ γ then
15 w(e) := bρ · w(e)c for each edge e;
16 end
17 end
18 end
19 return C*;
20 end

Then, the remaining steps in q-NuMVC (from line 8 to 15 in Algorithm 5) are the

same as in NuMVC (from line 12 to 19 in Algorithm 4) as we exchange two vertices

iteratively until C becomes a vertex cover.

Thus, we performed only limited changes on the original version of the NuMVC

algorithm and we believe that this change will not a�ect the performance of the al-

gorithm. In the following, we test the q-NuMVC and KEWLS for the k-vertex cover

problem.

q-NuMVC performance against KEWLS. Above, we proposed to use the q-

NuMVC algorithm instead of KEWLS for random clique �nding in the clique-superposition

model because of their performance in terms of running time (this test was performed

in [25]). Hereafter, we will test both algorithms on their e�ciency for �nding a solu-

tion.
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To do so, we have considered a sample of 230 personal networks from the set of

authors in dataset1 evolving from 2008 to 2009 for k = 3; the sample is the same

produced in Section 5.3.1.3. On these personal networks we applied KEWLS and q-

NuMVC algorithms to search for cliques of size 2, 3, 4, and 5. For KEWLS, we used

the parameter maxSteps witht the values 7, 20, 100, and 200, while for q-NuMVC,

we used for the parameter cutoff the values 10, 100, 200, 1000.

For the KEWLS algorithm, we computed the number of OPNs that contains a

given clique size (2, 3, 4, and 5) that KEWLS could �nd as well as the number of

OPNs containing a given clique size but that KEWLS could not �nd. For the OPNs

that belong to the later category, we run KEWLS again with maxSteps equal to 20,

100 and 200 if necessary. The results are given in Table 5.1.

MaxSteps Clique found 2-clique 3-clique 4-clique 5-clique

230 networks 230 networks 230 networks 221 networks

7 false 147 202 220 216

true 83 28 10 5

20 false 76 167 197 203

true 154 63 33 18

100 false 6 61 121 174

true 224 169 109 47

200 false 1 26 91 122

true 229 204 139 99

Table 5.1: Performance results of the KEWLS algorithm.

For q-NuMVC, the same strategy is followed since we computed the number of

OPNs that contains a given clique size (2,3,4, and 5) that q-NuMVC could �nd, as

well as the number of OPNs containing a given clique size but that q-NuMVC could

not �nd starting with cutoff = 10. For the OPNs that belong to the later category,

we run q-NuMVC again with a cutoff equal to 100. The results are given in Table

5.2.

cutoff Clique found 2-clique 3-clique 4-clique 5-clique

230 networks 230 networks 230 networks 221 networks

10 false 2 0 2 10

true 228 230 228 211

100 false 0 0 0 0

true 230 230 230 221

Table 5.2: Performance results of the q-NuMVC algorithm.
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It is important to point out that, in both cases, we only search for a clique of a

given size that do exist in the personal networks.

For the KEWLS algorithm, we can see that its e�ciency improves with the increase

of maxSteps parameter. However, as the size of cliques to �nd increases, KEWLS has

more di�culty to �nd such cliques. We should also note that, increasing maxSteps

means also increasing the time needed to �nd cliques.

For the q-NuMVC, starting with a cutoff = 10sec, the results are already very

good and with a cutoff = 100sec, q-NuMVC is able to �nd all the cliques in all the

networks whatever the size. Thus, we proved based on our data that q-NuMVC is a

more e�cient algorithm than KEWLS.

5.3.3 The description of the proposed evolution model, PER-
SONEM

In this section, we present the new evolution model for personal co-authoring net-

works that we propose, called PERSONEM (PERSonal cO-authoring social Networks

Evolution Model). PERSONEM is based on the clique-superposition model and in-

tegrates the solutions described previously in Section 5.3.2, including the q-NuMVC

algorithm for random k-clique �nding that we discussed in Section 5.3.2.3 and that

was given in Algorithm 5.

The pseudo-code of the new PERSONEM evolution model is given in Algorithm

6. The new model takes as an input a personal network at time t and predicts its

structure at time t+ 1, under the form of a personal network with a given number of

nodes. Thus, the model predicts to which nodes these new nodes will connect, and,

indirectly, the number of new connections.

The PERSONEM model takes as input the parameters Ginit - the personal net-

work at time t, k - the depth of Ginit, pnode probability, psampleNew and psampleOld

probabilities, N - the number of nodes of the predicted network and β - the param-

eter of the power law distribution, and it provides as output the personal network

graph G with N nodes. The predicted personal network graph G is initialized with

the personal network graph at time t, Ginit, given by newGraph() (line 2).

The PERSONEM evolution model, based on the clique-superposition model, fol-

lows the two phases described hereafter:

1. the �st phase allows to randomly add a new node to the network, or connect a

randomly chosen node to a (sub)-clique. This phase corresponds to the clique-

superposition model, with several modi�cations that we will describe below.
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Algorithm 6: PERSONEM (PERSonal cO-authoring social Networks Evo-
lution Model) evolution model.
Input : Ginit, k, pnode, psampleNew, psampleOld, N , β
Output: G

1 begin
2 Graph G← Ginit;
3 while G.getNodes() < N do
4 if Random() < pnode then
5 Node current← newNode();
6 G.addNode(current);
7 else
8 Node newMember ← G.getRandomNode();
9 q ← SamplePowerlaw(β);

10 while ! valid_q_clique do
11 Clique C ← V/q-NuMVC(Ḡ, |V| - q);
12 if newNodes.contains(newMember) then
13 psample = psampleNew;
14 else
15 psample = psampleOld;
16 end
17 if C 6= null then
18 if Random < psample then
19 Clique C ′ ← SampleValidSubClique(C);
20 else
21 Clique C ′ ← C;
22 end
23 for i = 1, . . . ,Size(C') do
24 G.addEdge(newMember, C ′.node[i]);
25 //if the edge already existing, the edge weight plus 1
26 end
27 end
28 end
29 end
30 end
31 connectIsolatedNodes(G);
32 Return G;
33 end

2. the second phase allows to connect the new nodes that, after the �rst phase,

are isolated, to a (sub)-clique.

As in the clique-superposition model, the �rst phase is composed of two steps:

the node evolution step and the edge evolution step. The execution of one of the
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two steps is driven by the probability pnode, and the steps are performed till the total

number of nodes of the network N is reached. The node evolution step (lines 5 and

6) consists in adding a new node the G, as in the clique-superposition model.

In the edge evolution step, we start by selecting randomly a node (newMember)

from G to connect (line 8) and a random value q from a power law distribution of

parameter β (line 9). The value q corresponds to the size of the clique that the model

should retrieve next from the network; the goal here is that the node newMember

should connect to a clique of size q, or a sub-clique of this clique.

Once the value q generated, PERSONEM model searches for a valid k-clique

in G (line 10). A valid clique is de�ned as a clique having at least one node at

distance less that k from the ego of the personal network. In order to �nd the q-

clique, the PERSONEM using the q-NuMVC algorithm that takes as arguments the

complementary graph Ḡ, and |V | − q representing the size of the vertex cover to �nd
by q-NuMVC (line 11).

In the next step, the PERSONEM model should decide, by using a probability, if

the node newMember will get connected to the whole clique retrieved or a sub-clique

of it. This probability, psample, is determined according to whether newMember is a

new or an existing node in G at time t (line 12 to 16). We recall that the original

clique superposition model integrates one single value for psample without making a

distinction whether newMember is a new or an old node. Depending on the value

of psample, the node newMember will connect either to the entire clique C, or to a

sample clique (sub-clique) C ′ retrieved using the function SampleValidSubClique(C)

(line 18 to 22). Moreover, the retrieved sub-clique should be valid, which means that

it has at least a node at a distance less than k from the ego.

We notice that the constraint of selecting a valid q-clique and to sample a valid

sub-clique from that q-clique does not exist in the original clique superposition model.

We are adding this constraint in order to not overpass k and maintains a k−personal
network as discussed in section 5.3.2.

Finally, edges are added between newMember and nodes composing the clique C

or sub-clique C ′ (line 23 to 26).

At the end of the �rst phase of the PERSONEM model, we might have nodes

in G that are isolated. In order to connect them, we add the second phase with

the function connectIsolatedNodes(G) (line 31). This step consists in repeating edge

evolution steps until all new nodes are connected. This di�erence between the edge

evolution step from the �rst phase (from line 8 to 28 in Algorithm 6) and the one in
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the second phase consists in the selection of the newMember node. In the second

phase, we select randomly a node from the isolated set of nodes. Thus, the line:

Node newMember ← G.getRandomNode();

from the �rst phase, is replaced with:

Node newMember ← isolatedNewNodesList.getRandomNode();

in the second phase, in Algorithm 6. This step using the function connectIso-

latedNodes(G) contributes to solving the problem of disconnected nodes observed

with the original clique superposition model discussed in section 5.3.2 since personal

networks cannot have disconnected nodes.

During this work, an important study was carried in order to �nd the right values

for the parameters of the model. In the next section, a large discussion on this

subject will be carried. This discussion, will be followed by the presentation of the

evaluation of the results for the prediction of real personal co-authoring networks by

the PERSONEM model.

5.3.4 PERSONEM model's parameters

The PERSONEM model that we proposed and discussed previously uses a set of pa-

rameters. In the following, we present the chosen values for each of these parameters;

generally, the values are computed from the data that the model is applied on, in our

case the DBLP personal co-authoring personal networks that we already described.

q-NuMVC algorithm's parameters. Below, we will discuss the values that we

use in the algorithm q-NuMVC. Three parameters are concerned, and our decisions

are detailed hereafter:

� cutoff time: when comparing KEWLS and q-NuMVC algorithms, we discussed

the e�ect of the variation of cutoff time parameter in q-NuMVC algorithm.

Indeed, we presented in Table 5.2 the results of application of the q-NuMVC

algorithm to search for cliques of size 2, 3, 4, and 5 in a set of a set of sampled

personal co-authoring networks from the authors in dataset1 evolving from 2008

to 2009 for k = 3 (230 personal networks). We used for the parameter cutoff

the values 10, 100, 200, 1000, and we concluded that for cutoff = 10sec the

results are already very good, and for cutoff = 100sec, the q-NuMVC algorithm

is able to �nd all the cliques in all the networks whatever the size. Thus, we

kept for the application of q-NuMVC in our model the value cutoff = 100.
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� γ and ρ: the NuMVC algorithm uses the forgetting mechanism to decrease

edges weights periodically. In detail, if the averaged weight of all edges achieves

a threshold γ, then all edge weights are multiplied by a constant factor ρ. In the

q-NuMVC, we use the same values used by Cai et al. [25] in their experiments of

the NuMVC algorithm : γ = 0.5|V |, where |V | represents the number of nodes
of the network on which we search for a vertex cover, and ρ = 0.3. We chose

to use the same values because in [25], the authors performed a comparative

test of NuMVC with various parameter combinations (γ, ρ) for the forgetting

mechanism on 7 data instances having a size which can correspond to the size

of our personal networks, and found that the parameter combination (0.5|V |,
0.3) yields relatively good performance among di�erent other combinations for

all instances, and exhibits a better robustness.

PERSONEM evolution model parameters. When possible, we used our data

to estimate or to have an indication on the model parameters to select. Below, we will

provide discuss the values of the three parameters used in the PERSONEM model:

pnode, psample and β.

� pnode: in the �rst phase of the model, this parameter allows to determine whether

we perform a node evolution step or an edge evolution step. In the clique-

superposition model, the value used was pnode = 0.1 which indicates that the

model performs in 10% of cases a node evolution step, and in 90% of cases an

edge evolution step. This is an information that we cannot derive from our

data; indeed, it is impossible to do in some sorts a reverse engineering on this

process.

Thus, in order to give more chance to the addition of nodes instead of the

addition of edges, we �xed it at pnode = 0.4 instead of 0.1 as done in the original

clique superposition model.

� psample: in the �rst phase of the mode, this parameter permits to choose whether

we connect the newMember node to the entire selected q − clique or to a sub-
clique of the q− clique. In the clique-superposition original model, the authors

uses psample = 0.6, which indicates that in 60% of cases the model connects the

selected node to a sub-clique, and in 40% of cases to the entire clique.

We decided to use two values: psampleNew and psampleOld, corresponding respec-

tively to the connection probability of a new node arriving in the network at

time t+ 1, and of an old existing node in the network at time t.
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In order to estimate the two values, we computed on OPNs of dataset1 for each

k (1 to 5) and each year from 2006 to 2011, the percentages of connections

between new nodes and cliques and between old nodes and cliques. We found

that there is a di�erence of pattern connection whether the node to connect is

a new or an old node. More precisely, we found that if the node that connects

to the clique is a new node, it will connect in minimum in 92,71% of cases to

a sub-clique (as it is the case on 2006 for k = 1 as given in Figure 5.6a), and

up to 99,52% of cases to a sub-clique (as it is the case on 2009 for k = 3 as

given in Figure 5.6b). While if the node is an old node, it has in average 75%

of chances to connect to a sub-clique as we can observe it for k = 3 on Figure

5.6c (approximately, the same average was observed for the other k values).

While the value of psampleOld = 0.75 seems appropriate, the one of psampleNew we

observed on the data is very restrictive as it only gives 1% of chances to connect

to a whole clique. However, we think that the situation where a new node

connects to the entire cliques members is expected in our data (for example,

in case a prior publication between 3 authors led to the creation of a 3-sized

clique, with the arrival of new colleague, a next publication took place between

this new colleague and the 3 other authors). So, in order to allow such situation

we prefer to decrease psampleNew value. Thus, we decided to use the following

values: psampleNew = 0.9 and psampleOld = 0.75.

� β: the power law parameter β we use for the model was �xed starting from

the power law distribution that the clique size of our data is following which is

around β = 3.4 in average while most of β values are concentrated on 3.5 as we

can observe it in Figure 5.8 for k = 2, 3, 4 on 2006, 2008, and 2010. However,

the clique-superposition model uses a value of β = 2.5, and if we compare with

the value found in our data, we can see that our β is too high and risks to limit

the random selection of the clique size q from the power law distribution to very

law values (2 or 3). We give in Figure 5.7 a graphics showing the e�ect of the

power law parameter. We can see from this �gure that the more we increase

β, the less we have chances to select higher values from the tail on the x axis.

Thus, we made the choice of setting its value to β = 3.0.
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(a) Percentages of new nodes connections to
whole/sub-clique, k = 1.

(b) Percentages of new nodes connections to
whole/sub-clique, k = 3.

(c) Percentages of old nodes connections to
whole/sub-clique, k = 3.

Figure 5.6: Percentages of new nodes connections (a, b), and old nodes connections
(c) to whole/sub-clique, from 2006 to 2011, dataset1.

Figure 5.7: Power law β exponent e�ect.
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5.3.5 Example of application of the PERSONEM model against
the clique-superposition model

We consider the OPN of ego 1244 evolving from 2008 to 2009 for k = 2. The number

of new nodes added from 2008 to 2009 is 4. Figure 5.9a shows the OPN of ego 1244

in 2008, and Figure 5.9b show the OPN of ego 1244 in 2009.

We applied on the OPN of ego 1244 in 2008 given in Figure 5.9a both the clique-

superposition model and the PERSONEM model in order to predict the network in

2009.

For the clique-superposition model, we used the parameters pnode = 0.1, psample =

0.6, β = 2.5 used in the paper presenting the model [134], and the result is given

in Figure 5.9c. From the �gure, we can see two of the problems explained earlier:

the isolated nodes, and the fact that depth of the network, k = 2, is over-passed

in the predicted network. Indeed, from the four new nodes to connect, only two

of them were connected (new_35310 and new_35312) while the two remaining new

nodes (new_35313 and new_35311) are isolated. In addition, the connection of node

new_35312 makes the network having a depth of k = 3.

For the PERSONEM model, we used the parameters pnode = 0.4, psampleNew = 0.9,

psampleOld = 0.75, β = 3.0; we can observe in Figure 5.9d that all the new nodes were

connected and that the depth of the network, k, is still equal to 2.

5.4 PERSONEM model's experimental results

5.4.1 Methodology and objectives

In the following, we present the results of application of the PERSONEM evolution

model on the personal networks of authors that started publishing on 2004 (dataset1)

for k = 1, 2, 3, and 4 on three di�erent years 2006, 2008, and 2010 in order to pre-

dict the personal networks on the next year (year + 1), i.e. 2007, 2009, and 2011

respectively. We notice that we stopped at k = 4 since we found from the analysis

presented in Chapter 4, that the personal networks of authors at k = 4 and k = 5

can be assimilated given their common structural and evolution properties.

The graphics in Figure 5.10 and Figure 5.11 present a characterization of the

networks analyzed via the distribution of the number of nodes and the distribution

of the number of edges respectively. The analyzed personal networks have a size in

terms of number of nodes and edges that grows with k value and with the years as
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(a) OPN in 2008. (b) OPN in 2009.

(c) Predicted OPN in 2009 with
clique-superposition model.

(d) Predicted OPN in 2009 with
PERSONEM.

Figure 5.9: Example of application of the clique-superposition model and
PERSONEM model on the OPN of ego 1244, for k = 2 and year = 2008.

bigger networks of a size that can reach two thousands of nodes, and more than 4500

edges for k = 4 on 2010.

We �rst evaluate the results of prediction of the model via a set of metrics com-

puted on each predicted OPN. The computed metrics are: the number of edges, the

density, the global clustering coe�cient, the average local clustering coe�cient, the

average degree, the ego degree and betweenness.

For each metric, we perform three di�erent types of graphics:

� The value of the metric for each predicted OPN in order to check whether we

detect the same evolution trends as the ones discovered on the real data.

� The di�erence in absolute value between the value of the metric in the predicted
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OPNs and its value in the real OPNs (delta = |predicted − real|). This will

allow us to see if the value of the metrics of the real and the predicted OPNs

are close or not.

� The value of the metric in both the real and predicted OPNs on the same

graphics with two di�erent colors in order to observe more precisely for each

OPN the value of the metric in both real and predicted cases.
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5.4.2 Results for personal co-authoring networks with k = 1

1-level personal networks that we analyzed are a particular case. In fact, we found

that the majority of the OPNs on the three years 2006, 2008, and 2010 constitute

complete networks. The exact percentages are given in Table 5.3.

The problem with complete networks when applying our clique model is that in

case we start with an edge evolution step, the model will run inde�nitely trying to

search for vertex cover with q-NuMVC inside a disconnected complementary graph

where no edge exist among the nodes. Thus, the model is not applicable as it is on

complete networks.

The remaining set of OPNs on which the model can work is rather small and

risks to render the establishment of conclusions limited. We report in Figure 5.12

the results of computation of the di�erence of metrics values (not in absolute value)

between the predicted and real OPNs on year = 2008, where we have the largest set

of OPNs (about 60 OPNs) comparing to the other years. We notice that we obtained

more or less the same results on 2006 and 2010.

Figure 5.12 gives the graphics with the di�erence between predicted and real OPNs

(predicted - real) of each of the following metrics as presented in the Figure 5.12 from

the top left to the top right and from the top to the bottom: number of edges, density,

average degree, ego degree, ego betweenness, GCC, and ALCC. We discuss the results

for each metric hereafter.

1. Number of edges: From the corresponding graphic, we can see that the majority

of the values are around zero. We can also notice that when the model do not

predict the exact number of edges, this one is lower than the real number of

edges which means that the model assigns less edges than needed.

2. Density: The density of the predicted 1-level OPNs remains close to the one of

the real 1-OPNs as the di�erence �uctuates around 0.

3. Average degree: As for the number of edges, the average degree is a bit lower

than the average degree of real OPNs when it is not around 0. This observation

is thus consistent with the fact that the model assigns less edges than needed.

4. Ego degree: There is a considerable proportion of predicted networks where the

degree of the ego is exactly the same as in real networks. However, in many

other networks the ego degree is lower. This again joins the fact that the model

assigns in general less edges including edges with the ego.
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Year 2006 2008 2010

Complete OPNs 90.86% 84.62% 87.84%
Analyzed OPNs 9.13% 15.36% 12.15%

Table 5.3: Percentage of complete OPNs and analyzed OPNs, k = 1.

5. Ego betweenness: The betweenness of the ego remains in most of the predicted

1-OPNs close to the betweenness in real OPNs with some cases where it can be

either higher or lower.

6. GCC: The global clustering coe�cient is also well maintained by the model as

most of the values of GCC of the predicted OPNs are close to the values of real

OPNs. The di�erence exceeds rarely 0.2 (in absolute value).

7. ALCC: From the last graphics in Figure 5.12, we can �rst observe that the

average clustering coe�cient of the predicted OPNs is lower. In addition, while

for a set of OPNs the di�erence is situated between 0 and -0.2, a considerable

set of OPNs have a higher di�erence that is between -0.2 and -0.4 .

As we have advanced, it is di�cult to conclude on whether the model works well

or bad on 1-level personal networks given the small size of the set on which we applied

it. We are thus enable to con�rm strongly a given tendency except the fact that the

model assigns less edges. In addition, we might not be able to support the discussed

observation when looking on the other levels (k = 2, 3, ..) of the OPNs since 1-personal

networks are a particular case as we saw it in Chapter 4.
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5.4.3 Results for personal co-authoring networks with k =
2, 3, 4

In the following, we discuss the observations for each metric, for the di�erent values

of k = 2, 3, 4 and year = 2006, 2008, 2010.

Number of edges. For the number of edges, we did not plot the value for each

predicted OPN since it is obvious that the evolution trend over the years would be

the increase of the number of edges. Thus we concentrate on the di�erence between

the number of edges in the predicted and real OPNs. From �gure 5.13, we can notice

that the prediction is better for k =2 and k = 3 than for k = 4. We can conclude

that for OPNs with k = 2, 3, the di�erence between the two number of edges is close

to 0 in many cases, and in speci�c cases the di�erence can be close to 200 edges. In

comparison, for k = 4 the di�erence between the predicted and the real number of

edges can reach important values such as 800. The di�erence between the predicted

and real number of edges can seem important, but we are more interested in validating

that the networks keep the same structure, than having exactly the same number of

edges.

In addition, from Figure 5.14, we can observe that in OPNs with a high number of

edges the model assigns in most of cases more edges (red dots) than in the real OPNs

(green dots). For a better visibility of the later observation, we split the graphic for

k = 4 and year = 2006 into three graphics: in the �rst one we focus on the 100 �rst

OPNs (Figure 5.15a), then in the second on the 100 next OPNs (Figure 5.15b), and

�nally in the third graphic on the remaining set of OPNs (Figure 5.15c). In these

three graphics, it is easier to observe that the red dots (the number of edges for the

predicted OPNs) are above the green dots (the number of edges for the real OPNs).

However, we notice that the di�erence in the number of edges is not so large in

general when focusing on each single OPN. To have a better idea on how important

is the di�erence, we computed the percentage of OPNs with k = 4 on year = 2006

having a di�erence in absolute value of the number of edges between the real and

predicted value that is between 0 and 50, 50 and 100, and between 100 and 200.

The percentages are respectively of 70.34%, 22.46%, and 6.99%. Thus, the majority

of predicted OPNs has a di�erence of number of edges with the real OPNs that is

between 0 and 50, and only a small proportion is characterized by a large di�erence.

It is important to notice that even if the predicted OPNs do not have exactly the

same number of edges as real OPNs, what we are interested in is rather predicting
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OPNs that have the same structure as the real OPN, that will be veri�ed by evaluating

the rest of the metrics.
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(a) Zoom on OPNs 0-100.

(b) Zoom on OPNs 100-200.

(c) Zoom on OPNs 200-530.

Figure 5.15: Number of edges: zoom on predicted (red dots) and real (green dots)
OPNs, for k = 4 and year = 2006.
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Density. Following the same methodology as previously, we study the density of the

of the predicted OPNs comparing to the real OPNs. We analyze the density via three

phenomena: evolution tendency, di�erence in absolute value, and value for predicted

vs. real OPNs, as describe hereafter:

1. Density evolution tendency: from Figure 5.17, the density of the predicted

OPNs decreases over years as we observed it for real OPNs for k =2, 3 and 4.

Its value is low in general.

In order to con�rm the decreasing tendency of the density observed from the

graphics, we realized a Wilcoxon test as we did it on real OPNs in Chapter 4 to

con�rm the evolution trends of the di�erent metrics. The results of the Wilcoxon

test are given in Table 5.4. The table gives the results of the test applied on the

density of the predicted personal networks evolving between 2006 and 2008, and

between 2008 and 2010 for k = 2 to 4. We give the value of V the statistic value

of the Wilcoxon test and the values p − valuedecreasing and p − valueincreasing

representing the p-value of the Wilcoxon test whether we give as alternative

hypothesis "greater" or "less" respectively. We can see that p − valueincreasing
equals always 1 which indicates that the increasing trend cannot explain the

evolution of the density, while p − valuedecreasing that is < 2.2e-16 consolidate

the observed decreasing trend as it is signi�cantly lower than 5% (the threshold

we use to reject the null hypothesis). Thus, as for real personal networks, the

predicted personal networks by the model have also a decreasing density.

Year 2006-2008 2008-2010

k = 2

V = 29155,

p − valuedecreasing < 2.2e − 16,

p − valueincreasing = 1

V = 18716,

p − valuedecreasing < 2.2e − 16,

p − valueincreasing = 1

k = 3

V = 96538 ,

p − valuedecreasing < 2.2e − 16,

p − valueincreasing = 1

V = 88681 ,

p − valuedecreasing < 2.2e − 16,

p − valueincreasing = 1

k = 4

V = 120430,

p − valuedecreasing < 2.2e − 16,

p − valueincreasing = 1

V = 62963,

p − valuedecreasing < 2.2e − 16,

p − valueincreasing = 1

Table 5.4: Wilcoxon test on the density of predicted OPNs, dataset1.

2. Density di�erence in absolute value: from Figure 5.18, we can observe that there

are only few cases where the di�erence of the density between the predicted and

real OPNs is above 0.05, otherwise the density is well reproduced by the model.

179



The most intriguing case concerns the OPN with k = 2 in 2010 where we

registered a di�erence of 0.3 which is the highest di�erence observed for the

density. By looking more closely to this network, we found that it is about a

very small OPN with only 5 nodes and 8 predicted edges instead of 5 in the real

OPN which resulted in a high density (equal to 0.8). The real and predicted

networks are given in Figure 5.16.

Figure 5.16: Real and predicted OPNs of Ego="15370" on 2011.

3. Density value in predicted and real OPNs: from Figure 5.19, we can observe

that the values of the density in real and predicted OPNs are corresponding.

As done previously for the number of edges, we make a zoom on the graphic

of OPNs with k = 4 in 2006 in order to better observe the di�erences of the

density values between predicted and real OPNs. The graphics are given in

Figures 5.20a, 5.20b, and 5.20c. From these three graphics we can observe that

the density values in real and predicted OPNs is very close and overlap in many

cases. This demonstrates that even if we had in some cases a higher number of

edges in the predicted OPNs, this does not a�ect the density of the networks.
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(a) Zoom on OPNs 0-100.

(b) Zoom on OPNs 100-200.

(c) Zoom on OPNs 200-530.

Figure 5.20: Density: zoom on predicted (red dots) and real (green dots) OPNs, for
k = 4 and year = 2006.
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Average degree. Following the same methodology as previously, we study the

average degree of the of the predicted OPNs comparing to the real OPNs. We analyze

the average degree via three phenomena: evolution tendency, di�erence in absolute

value, and value for predicted vs. real OPNs, as describe hereafter:

1. Average degree evolution tendency: in Figure 5.21, we can seen that the average

degree of the predicted OPNs increases then concentrates around the values 3,

4 and 5 as for real data.

As done for the density, we performed a Wicoxon test to con�rm the increase

of the averge degree of the predicted personal networks over time. The results

of the test are given in Table 5.5. We can observe that p− valuedecreasing equals
always 1 (or approaches 1 in the case of k = 4 between 2006 and 2008) which

indicates that the increasing trend explains indeed the evolution of the average

degree, while p−valueincreasing is less than the threshold 5%. This con�rms the
observed evolution behaviour from the graphics and joins the one explaining

real personal networks given in chapter 4.

Year 2006-2008 2008-2010

k = 2

V = 6940,

p − valuedecreasing = 1,

p − valueincreasing = 4.679e − 14

V = 6311,

p − valuedecreasing = 1,

p − valueincreasing = 8.798e − 06

k = 3

V = 30168,

p − valuedecreasing = 1,

p − valueincreasing = 3.889e − 13

V = 32497,

p − valuedecreasing = 1,

p − valueincreasing = 1.171e − 07

k = 4

V = 55506,

p − valuedecreasing = 0.9675,

p − valueincreasing = 0.03253

V = 19700,

p − valuedecreasing = 1,

p − valueincreasing = 1.121e − 10

Table 5.5: Wilcoxon test on the average degree of predicted OPNs, dataset1

2. Average degree di�erence in absolute value: in Figure 5.22, we can observe that

there is no big di�erence among the predicted and real OPNs as it remains in

the majority of OPNs between 0 and 0.5 and can reach from 1 to 4 only in very

few cases.

3. Average degree value in predicted vs. real OPNs: Figure 5.23 shows that the

value of the average degree per OPN is almost similar for the predicted and

real OPNs. However we notice that the predicted OPNs have an average degree

that is a little bit higher than the average degree of real OPNs.
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Ego degree. Following the same methodology as previously, we study the ego degree

of the of the predicted OPNs comparing to the real OPNs. We analyze the ego degree

via three phenomena: evolution tendency, di�erence in absolute value, and value for

predicted vs. real OPNs, as describe hereafter:

1. Ego degree value: in Figure 5.24, we can see that the ego degree is low in

general, and only few egos have a high degree. The tendency is similar among

the years.

2. Ego degree absolute di�erence: Figure 5.25 shows that there is a low di�erence

between the ego degree in real and predicted OPNs concentrated around 0.

3. Ego degree value in predicted vs real OPNs: in Figure 5.26, we can observe that

the value of ego degree of the predicted OPNs �ts its value in real OPNs, but

sometimes it is higher.
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Ego betweenness. Following the same methodology as previously, we study the ego

betweenness of the predicted OPNs comparing to the real OPNs. We analyze the ego

betweenness via three phenomena: evolution tendency, di�erence in absolute value,

and value for predicted vs. real OPNs, as describe hereafter:

1. Betweenness evolution tendency: in Figure 5.27, we can observe a higher ego

betweenness for small k. The tendency of decreasing/increasing over the years

is not clear from the graphic.

We performed a Wilcoxon test to discover more accurately how the betweenness

of the predicted personal networks evolve over time. The results of the test are

given in Table 5.6. We comment the results in the following:

� k = 2: p− valuedecreasing and p− valueincreasing are both > 0.05 from 2006

to 2008. Thus, we cannot reject the null hypothesis nor establish whether

the betweennes increases or decreases. But, between 2008 and 2010 the

betweenness is increasing as p−valueincreasing < 0.05 and p−valuedecreasing
approaches 1. Thus, the increasing betweenness of the predicted personal

network joins what we discovered about real personal networks.

Year 2006-2008 2008-2010

k = 2

V = 12732,

p − valuedecreasing = 0.4459,

p − valueincreasing = 0.5545

V = 6635.5,

p − valuedecreasing = 0.9845,

p − valueincreasing = 0.01556

k = 3

V = 44515,

p − valuedecreasing = 5.152e − 06,

p − valueincreasing = 1

V = 28284,

p − valuedecreasing = 0.9796,

p − valueincreasing = 0.0204

k = 4

V = 55768,

p − valuedecreasing = 1.255e − 07,

p − valueincreasing = 1

V = 21271,

p − valuedecreasing = 0.05199,

p − valueincreasing = 0.9481

Table 5.6: Wilcoxon test on the betweenness of predicted OPNs, dataset1

� k = 3: the betweenness decreases between 2006 and 2008 as p−valueincreasing
=1 and p − valuedecreasing <0.05. However, it is increasing from 2008 to

2010 given that p−valueincreasing < 0.05 and p−valuedecreasing approaches
1. We recall that for real personal networks we could not conclude on the

evolution trend of the betwenness for k = 3 between 2008 and 2010, while

between 2006 and 2008 it was increasing.
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� k = 4: the betweenness decreases as in real personal networks since p −
valueincreasing equals or approaches 1 while p − valuedecreasing is almost

equal or less than 0.05. This joins what we discovered when we considered

real personal networks for k = 4 between 2008 and 2010 and for k = 5.

We can conclude that the Wilcoxon test allowed us to clarify the evolution

trend of the betweenness of the predicted networks. These trends join the ones

observed on the betweenness of real personal networks.

2. Betweenness absolute di�erence: we can observe in Figure 5.28, that in the ma-

jority of OPNs, the di�erence of the ego betweenness between real and predicted

networks is very low and �uctuates around 0. But, there are cases where the

di�erence is higher and ranges between 0.2 and 0.6, and can exceed 0.6 is some

cases.

3. Betweenness value in predicted vs real OPNs: Figure 5.29 con�rms the ob-

servation on the previous �gure. However, we could not con�rm whether the

betweenness value of the predicted OPNs is higher or lower comparing to real

OPNs. To this end, we give in Figures 5.30a, 5.30b, and 5.30c a focus on the

OPNs with k = 4, in 2006 with both predicted and real value of the between-

ness. Again, from these graphics, it is still not clear whether we predict OPNs

having a higher or a lower ego betweenness since both situations take place.

Thus, in order to conclude on this point, we computed the percentage on the

di�erences of the betweenness between predicted and real OPNs (not the abso-

lute value) to see what is the dominant percentage among positive and negative

value for the OPNs with k = 4 on 2006. This way we can conclude on whether

the model predicts OPNs with higher or lower ego betweenness. The obtained

percentages are the following:

� 30.38% of predicted OPNs have an ego betweenness exactly equal to the

ego betweenness in real OPNs,

� 44.19% of predicted OPNs have an ego betweenness that is higher than

the ego betweenness in real OPNs, and

� 25.41% of predicted OPNs have an ego betweenness that is lower than the

ego betweenness in real OPNs.

So, we can conclude that when the ego betweenness is not maintained by the

model, it is higher in 44.19% of cases.
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(a) Zoom on OPNs 1-100.

(b) Zoom on OPNs 100-200.

(c) Zoom on OPNs 200-530.

Figure 5.30: Betweenness: predicted (red dots) and real (green dots) OPNs, for
k = 4 and year = 2006.
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Power law degree distribution. We tested if the degree distribution of the pre-

dicted networks follows a power law. The results of the test are given in Figure 5.31.

From the �gure we can easily con�rm that the degree distribution of the predicted

networks follows a power law for k = 2, 3, and 4. However, we can notice that the

proportion of predicted personal networks that do not follow a power law degree dis-

tribution is higher for k = 4. These observations join what we observed for real OPNs

where the personal networks at k = 2 and 3 were following a power law degree dis-

tribution, while at k = 4, the proportion of personal networks not following a power

law degree distribution was higher.
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Global clustering coe�cient. Following the same methodology as previously, we

study the global clustering coe�cient of the of the predicted OPNs comparing to

the real OPNs. We analyze the global clustering coe�cient via three phenomena:

evolution tendency, di�erence in absolute value, and value for predicted vs. real

OPNs, as describe hereafter:

1. GCC evolution trend: From Figure 5.33, it is not obvious from this graphic if

the GCC is decreasing (as for real data) or increasing over the years.

However, using the Wilcoxon test, we could �nd that the global clustering coef-

�cient of the predicted personal networks is decreasing over the years whatever

k as it was the case for real personal networks. Indeed, the results of the

Wilcoxon test given in Table 5.7 allows to conclude that the tendency of de-

creasing is veri�ed since p − valuedecreasing is lower than 0.05 (so we reject the

null hypothesis), and p − valueincreasing equals or approaches 1 indicating that

the evolution tendency cannot be the increase of the global clustering value over

years.

Year 2006-2008 2008-2010

k=2

V =21354,

p − valuedecreasing = 1.73e-08,

p − valueincreasing =1

V = 12406,

p − valuedecreasing = 2.311e-05,

p − valueincreasing= 1

k=3

V = 65598 ,

p − valuedecreasing = 3.826e-11,

p − valueincreasing =1

V = 48822 ,

p − valuedecreasing = 0.08006,

p − valueincreasing= 0.92

k=4

V = 78931 ,

p − valuedecreasing= 1.031e-08,

p − valueincreasing =1

V = 34817 ,

p − valuedecreasing =0.03886,

p − valueincreasing = 0.9612

Table 5.7: Wilcoxon test on the global clustering coe�cient of predicted OPNs,
dataset1

2. GCC di�erence in absolute value: Figure 5.34 shows that in most of time, the

di�erence between predicted and real OPNs regarding the GCC is low and is

rarely above 0.2.

3. GCC value in predicted vs. real OPNs: Figure 5.35 shows that the GCC of the

predicted networks is lower than real networks' GCC especially for k = 4.

In order to validate the previous conclusion, we take the graphic for the OPNs

with k = 4 in 2006 and zoom on the 100 �rst OPNs, the 100 next OPNs, and
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the rest of OPNs as done previously. The resulting graphics are given in Figures

5.36a, 5.36b, and 5.36c respectively. From these graphics, we can easily con�rm

that the GCC of predicted OPNs is lower than the GCC of real OPNs, However,

by looking at the networks one by one, we can see that the di�erence is rarely

signi�cant. Indeed, we have:

� 44.19% of cases where the di�erence is less that 0.1,

� 44.56% of cases where it is between 0.1 and 0.2, and

� 11.23% of cases only where it is above 0.2.

Next, we would like to explain the previous conclusion: the PERSONEM evolution

model predicts networks with a lower GCC. In the �rst phase of the PERSONEM

model, in the edge evolution step a node is selected in order to be connected to a

(sub)-clique; when we select the size of the clique from the power law distribution to

retrieve with q-NuMVC (q), we observed that it corresponds very often to the values

3 or 4. Moreover, the two psample parameters promote the connection of the node to

a sub-clique, rather to an entire clique. Thus, very often, the model will connect the

selected node to one single node of the sub-clique which means that we disfavor the

creation of triangles and augment the number of connected triples; thus, the GCC

gets lower.

We give an example to illustrate this argumentation. Let us consider an OPN

in 2006 with k = 4 to which 5 new nodes need to be added in 2007. We give in

Figures 5.32a, 5.32b, and 5.32c the visual representation of the personal network of

the author with the id = 22 (the ego) corresponding to the real OPN in 2006, the real

OPN in 2007, and respectively the predicted OPN in 2007. The new added nodes

in 2007 are surrounded by a green circle in the �gures. From Figure 5.32c, we can

see that 4 among the 5 new nodes where added to the OPN via a single connection

forming a 2-sized clique with an old node of the OPN and only one new node (43019)

created multiple connections (4 connections) and formed a 5-clique with the old nodes

of the OPN. This node contributes in increasing the number of triangles and thus the

GCC of the network, while the four other added nodes will increase the number of

connected triple and thus decrease the GCC of the network.
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(a) Real OPN in 2006. (b) Real OPN in 2007.

(c) Predicted OPN in 2007.

Figure 5.32: Example of the OPN of ego 22, for k = 4 and year = 2006.
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(a) Zoom on OPNs 1-100.

(b) Zoom on OPNs 100-200.

(c) ZOom on OPNs 200-530.

Figure 5.36: GCC: zoom on predicted (red dots) and real (green dots) OPNs, for
k = 4 and year = 2006.
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Average local clustering coe�cient. Following the same methodology as previ-

ously, we study the average local clustering coe�cient of the of the predicted OPNs

comparing to the real OPNs. We analyze the average local clustering coe�cient

via three phenomena: evolution tendency, di�erence in absolute value, and value for

predicted vs. real OPNs, as describe hereafter:

1. ACC evolution tendency: From Figure 5.37, we can observe that the ACC is

high as for real OPNs. However, it has not clear if it has a tendency of increasing

over the years as for real OPNs.

With the Wilcoxon test, we are able to clarify more the evolution tendency of

the average clustering coe�cient. Indeed, the results of the test given in Table

5.8 indicate that the average clustering coe�cient increases over years for k = 2

since p− valueincreasing is less than 0.05, while p− valuedecreasing equals 1.

For k = 2, 3, and 4, the average clustering coe�cient increases over years from

2008 to 2010. But, we cannot keep this a�rmation for predicted personal net-

works evolving from 2006 to 2008 since p − valueincreasing is higher than 0.05

(very sightly for k = 3 where p−valueincreasing = 0.05209), even if the decreasing

tendency cannot hold because p− valuedecreasing is close to 1.

Year 2006-2008 2008-2010

k = 2

V = 10650,

p − valuedecreasing = 1,

p − valueincreasing = 3.484e − 05

V = 5696,

p − valuedecreasing = 1,

p − valueincreasing = 3.249e − 07

k = 3

V = 44998,

p − valuedecreasing = 0.948,

p − valueincreasing = 0.05209

V = 27598,

p − valuedecreasing = 1,

p − valueincreasing = 1.026e − 12

k = 4

V = 57628,

p − valuedecreasing = 0.8652,

p − valueincreasing = 0.1348

V = 25124,

p − valuedecreasing = 0.9998,

p − valueincreasing = 0.0002335

Table 5.8: Wilcoxon test on the average clustering coe�cient of predicted OPNs,
dataset1

2. ACC di�erence of absolute values: Figure 5.38 shows however a large di�erence

between the predicted and real value of the ACC. If we take the example of

k = 4 in 2006, we have 37.93% of cases where the di�erence is less than 0.2,

56.53% of cases where the di�erence is between 0.2 and 0.4, and 5.52% of cases

where the di�erence is above 0.4. So, the larger proportion con�rms a large

di�erence of the ACC between the predicted and real OPNs.
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3. ACC value in predicted vs real OPNs: from Figure 5.39, we can easily distin-

guish that the model predicts OPNs with a lower average ACC comparing to

real OPNs. This observation is in line with the observation about the lower

GCC of the predicted OPNs. Indeed, the fact that the model generates less

triangle (as illustrated in Figure 5.32c) means also that the produced networks

are locally less clustered in average.
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5.4.4 Discussion

In the previous sections, we discussed the results of application of PERSONEM for

the prediction of the evolution of real personal networks of authors of scienti�c publi-

cations. First, we discussed the results of application of PERSONEM on 1-personal

networks (k = 1), and concluded that for this particular type of OPNs it was di�cult

to draw conclusions given that most of 1-OPNs of the dataset were complete (more

than 80%), rendering not possible the application of the model, and we could test the

model only on a small set. For this later set, we found that the model assigns less

edges than needed but the density remains close to the one of real OPNs as well as

the global clustering coe�cient and the ego betweenness. In additon, we found that

the predicted OPNs have a bit lower average degree and a lower average clustering

coe�cient.

Nevertheless, for personal networks with k = 2, 3, 4, we were able to prove that

PERSONEM constitute a good model for predicting the evolution of co-authors per-

sonal networks given the results we obtained. Indeed, even if we have notice that the

predicted OPNs by PERSONEM have a little less edges than expected, the structure

of the predicted OPNs maintains the same characteristics as the one of the real OPNs.

More precisely, density's values of the predicted OPNs are corresponding to its values

in real OPNs and it is decreasing over years as well. The average degree per OPN for

the predicted is almost similar to the average degree of the real OPNs and its evolu-

tion tendency is the same, i.e, increasing over years. The degree distribution of the

predicted networks follows a power law. However, we can notice that the proportion

of predicted personal networks that do not follow a power law degree distribution is

higher for k = 4. This joins what we observed for real OPNs.

At the ego level, we found that ego degree of the predicted OPNs �ts its value in

real OPNs, and that there is a small di�erence for the ego betweenness between real

and predicted networks. When the ego betweenness is not maintained by the model,

it is a bit higher. The evolution trend of the betweenness for k =2 and 3 was not

increasing as for real data between 2006 and 2008, but it was between 2008 and 2010.

While for k = 4, the betweenness decreases as in real data.

Finally, concerning the transitivity inside the predicted OPNs, we found that

PERSONEM predicts OPNs with lower GCC and ACC. While the di�erence is not

very signi�cant for the GCC, it is more important for the ACC (even if its value is

high as in real OPNs). About the evolution of these two metrics, on the one hand, the

Wilcoxon test allowed to conclude that the GCC of the predicted personal networks

is decreasing over years whatever k as it was the case for real personal networks. On
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the other hand, with the Wilcoxon test, we found that the ACC increases for k = 2,

but for k = 3, and 4, it increases only between 2008 and 2010. We explain this by the

fact that in general, there are less nodes that are added to the OPNs between 2006

and 2008 than between 2008 and 2010.

However, the fact that the predicted personal networks have a lower ACC con-

stitute a limitation of PERSONEM. As mentioned earlier, the model generates less

triangle (as illustrated in Figure 1.32c) which means also that the produced net-

works are locally less clustered in average. This comes from the fact that very often,

the model will connect the selected node to one single node of the sub-clique which

means that we disfavor the creation of triangles and augment the number of connected

triples; thus, the GCC gets lower but also the ACC. A lower psample parameter could

overcome this situation. We could also modify the β parameter, corresponding to the

power law exponent parameter in order to search for cliques of higher size.

5.5 PERSONEM model's performance

For the current discussion, we allowed our-self to provide again, in Algorithm 7, the

PERSONEM evolution model that we proposed.

The part of the PERSONEM model that a�ects the most its performance consists

in the q−NuMV C function allowing to �nd cliques in a graph. Indeed, as mentioned

in the introduction of this chapter, �nding cliques in a graph is an NP-complete

problem and constitute a real constraint especially when the graphs have an important

size. Thus, given that PERSONEM is using q−NuMV C for �nding random cliques

of size q, we could con�rm that it becomes time consuming as the personal networks

graphs given as input have an important size in terms of nodes and edges number,

but also as the number of new nodes to add becomes high.

Moreover, it is important to note that in PERSONEM we call q−NuMV C many

times. In the following, we provide the di�erent steps of the algorithm that require

performing q −NuMV C:

� In each edges evolution step, the q − NuMV C is called in order to provide a

clique of size q (line 11 in Algorithm 7).

� Then, in the same edges evolution step, after the �rst call of q−NuMV C, the

provided clique is tested for validity. If the clique is not valid, the q−NuMV C

is called until a valid clique is found (while loop from line 10 to 28 in Algorithm

7).
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� Once the size of N nodes of the predicted personal network is reached, a set

of additional edge evolution steps are performed for connecting the eventual

disconnected nodes (line 31 in Algorithm 7). In this steps, the q −NuMV C is

called.

When performing q−NuMV V , we observed that the majority of running time is

used in computing vertices dscore during the initialization part (line 2 of Algorithm

5), and updating vertices dscores once we modify uncovered edges weights (line 15

of Algorithm 5).

Besides the performance of the model related to the q −NuMV C algorithm, we

can also note that the model runs the step of nodes evolution and the step of edges

evolution (with the probability pnode) till the predicted network has the required N

nodes. Thus, we can not provide an exact number of executions of each step, but

we know that the nodes evolution step is executed with a probability of 40%, while

the edges evolution step is executed with a probability of 60%. Eventually, the nodes

evolution step will be executed a maximum of N times, if the initial graph does not

contain any nodes. Given the probability of 40%-60% between the steps, the edges

evolution step should be executed a maximum of 1.5 ∗ N times. In addition, the

edges evolution step will be also executed in the connectIsolatedNodes(G) function

a number of time equal to the number of isolated nodes in the graph and that the

maximum can be N . Thus, we can conclude that:

� the nodes evolution step is executed a maximum of N times;

� the edges evolution step is executed a maximum of 2.5 ∗N .

In Figure 5.40, we provide the graphics describing the running time of PER-

SONEM as a function of the number of nodes (Figure 5.40b), the number of edges

(Figure 5.40a), and the number of new nodes (Figure 5.40c) of the predicted personal

networks with k = 3 on 2010.

From these graphics we can observe that the running time is related to the size

of the personal networks in terms of number of nodes and edges, but also to the

number of new nodes that need to be added. Indeed, the running time is increasing

as personal networks have more nodes and edges and as the number of new nodes is

growing. For a better visualization of such linear relationship, we focus on the graphic

in Figure 5.40b on personal networks having a number of edges less than 1500 and a

running time less than 9000 seconds (about 91% of the predicted networks). Then on

personal networks having a number of edges less than 1000 and a running time less
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than 2500 seconds (about 80% of the predicted networks). The corresponding plots

are given in Figure 5.41a and Figure 5.41b respectively. These �gures show that the

prediction of the majority of the predicted networks with PERSONEM is performed

in a time less than 2000 seconds (about half an hour) for personal network whose

edges number approaches 1000 edges.

It is important to notice that q − NuMV C performance is compatible with the

original NuMV C since we could observe a similar running time for networks of a

same size.
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Algorithm 7: PERSONEM (PERSonal cO-authoring social Networks Evo-
lution Model) evolution model.
Input : Ginit, k, pnode, psampleNew, psampleOld, N , β
Output: G

1 begin
2 Graph G← newGraph();
3 while G.getNodes() < N do
4 if Random() < pnode then
5 Node current← newNode();
6 G.addNode(current);
7 else
8 Node newMember ← G.getRandomNode();
9 q ← SamplePowerlaw(β);

10 while ! valid_q_clique do
11 Clique C ← V/q −NuMV C(Ḡ, |V | − q);
12 if newNodes.contains(newMember) then
13 psample = psampleNew;
14 else
15 psample = psampleOld;
16 end
17 if C 6= null then
18 if Random < psample then
19 Clique C ′ ← SampleValidSubClique(C);
20 else
21 Clique C ′ ← C;
22 end
23 for i = 1, . . . ,Size(C ′) do
24 G.addEdge(newMember, C ′.node[i]);
25 // if the edge already existing, the edge weight plus 1
26 end
27 end
28 end
29 end
30 end
31 connectIsolatedNodes(G);
32 Return G;
33 end
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(a) PERSONEM running time in second vs number of nodes.

(b) PERSONEM running time in second vs number of edges.

(c) PERSONEM running time in second vs number of new nodes.

Figure 5.40: PERSONEM running time vs number of nodes (a), number of edges
(b), and number of new nodes (c) for predicted OPNs, for k = 3 and year = 2010.
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(a) PERSONEM running time limited to OPNs with running time of 9000s and 1500
edges.

(b) PERSONEM running time limited to OPNs with running time of 2500s and 1000
edges.

Figure 5.41: PERSONEM running time vs number of edges for predicted OPNs, for
k = 3 and year = 2010.

5.6 Conclusion

In this chapter, we presented PERSONEM, a new evolution model for personal co-

authoring networks evolution based on the clique dimension that constitute a key

substructure characterizing co-authorship personal networks' structure as concluded

in Chapter 4. PERSONEM was presented in [41].

PERSONEM was designed starting from the clique superposition generative model

proposed by Yan et al. in [134]. PERSONEM predicts a personal network at time

t + 1 starting from the personal network at time t. It is based on the principle that
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a node (new arriving one or an old one) will connect to the network by the mean

of connections to cliques. The new evolution model is based on two evolution steps:

the nodes evolution step allowing to add a node to the network, and the edges evo-

lution step allowing to connect a node (new or old) to a clique. PERSONEM uses

q−NuMV C algorithm (instead of the KEWLS algorithm used in the clique superpo-

sition model), a vertex cover �nding algorithm that we adapted to the case of personal

networks that allows to �nd a random clique of a given size.

We applied PERSONEM on a set of co-authoring personal networks in order to

predict their evolution. These networks have a size that can reach two thousands of

nodes, and more than 4500 edges.

The obtained results show that PERSONEM predicts personal networks with

k = 2, 3, 4 having a structure which resembles the one of real personal networks.

In addition, the predicted personal networks exhibit the same evolution trends we

observed on real co-authoring personal networks. Thus, we believe that PERSONEM

is a solution to problem of prediction of the evolution of personal networks such as co-

authorship networks. However, some limitations were identi�ed. The most important

one is the fact that the predicted personal networks are locally less clustered in average

comparing to real personal networks.

To overcome these limitations, several running of the model with a variation of

the parameters are needed to evaluate the prediction and �nd mode appropriate pa-

rameters. In this work, the performance constraints prevented us to perform more

runnings. Indeed, clique �nding problem (or vertex cover �nding problem) is time con-

suming when the networks are of bigger size. A more performing algorithm adapted

to personal networks could improve the running time of PERSONEM, and so, would

allow us to adjust the model's parameters for a better prediction e�ciency.
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Chapter 6

The Software Framework PERSONA

6.1 Introduction

In the previous Chapters, we built a large-scale experiment for analyzing the evolu-

tion of OPNs. To do so, we needed to compute a set of metrics and perform some

algorithms on a large number of OPNs for several years. To this end, we �rst needed

to retrieve a large set of personal networks from the whole social networks of authors

that started publishing on a given year and we needed an automatic way for this task.

Existing softwares dealing with personal networks are not numerous and limited

to extract personal networks �tting the traditional de�nition, i.e. the one including

only the ego and its immediate alters at distance one or two plus the relationships

among them.

Thus, we developed a software framework named PERSONA (PERSonal Online

social Networks' Analytics) that allows us to extract OPNs from any networks and

based on any of the de�nitions presented previously in Chapter 3. PERSONA allows

to compute a set of metrics and perform algorithms on these OPNs. The development

of the tool allowed us �rstly to validate the de�nitions and secondly to perform the

di�erent analysis presented in Chapter 4. With PERSONA, we o�er a versatile tool

to anyone who wants to perform research around OPNs.

6.2 Existing tools for personal networks analysis

Most often, tools for analyzing networks as graphs o�er only few functionalities for

personal networks which are limited to highlighting the ego and its immediate connec-

tions (1-personal networks) with displaying basic statistics as the number of alters,

the number of edges between alters, as it is the case of Gephi [16].
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Some dedicated tools to personal networks exist. These tools are more evolution

visualization oriented. For example, in [113] the authors propose techniques to visu-

alize large scale personal networks evolution by considering the data as continuous

streams. Furthermore, the visualization software EgoLines, presented in [136], pro-

poses a dynamic analysis of personal networks. The system EgoSlider [132] allows

to analyze a set of dynamic personal networks by summarizing their properties at

three levels: a macroscopic level that concerns the entire personal network data, a

mesoscopic level to capture speci�c individuals' personal network evolution, and a

microscopic level providing detailed temporal information about the egos and their

alters.

These tools allow to isolate a personal network and analyze its evolution with a

visual support, but they are lacking the capabilities of performing massive scale anal-

ysis. Moreover, the integrated metrics (e.g. number of alters, edges between alters,

etc.) are limited and provides only generic information about the OPN. Another

important point is the fact that the considered personal networks are those of level

1 or two (1-personal networks or 2-personal networks) at most. But, in our case, we

wanted to be able to extract personal networks following the de�nitions we proposed

in Chapter 3. The only tool we found that allows to retrieve a personal network with

specifying the radius (k) is EgoNav [71], a visual analytics system that allows to sum-

marize a collection of personal networks in addition to the possibility of highlighting

the network of a speci�c user in the whole network to allow the visualization and the

analysis of its personal network properties. But, this tool focuses on the visualization

and does not hold a lot of analyzing capabilities.

Given the limits of existing tools, we developed PERSONA software that allows:

� to connect to any database storing the whole network

� to extract personal networks according to the de�nitions proposed in Chapter

3

� to perform computations on OPNs via metrics and algorithms

� to visualize personal networks

� to export personal networks into a given graph format (GraphML, GML, DOT,

CSV)

The software is presented in details in the rest of the chapter.
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6.3 The choice of Technical Solutions

The framework PERSONA was implemented using the Java programming language

under the development framework Eclipse. Choosing Java as programming language

was decided by the numerous APIs available for graph representing and processing.

We o�er two versions, one as a standalone desktop tool and another as a set of web

services that allows us to manipulate OPNs over the web and build the functionality

into other applications and tools.

In the following, we present the main library JGraphT. that we used to deal with

graph structure and the additional libraries we needed to perform more computations

and algorithms missing in JGraphT .

6.3.1 JGraphT Library

JGraphT 1 is a Java library of graph theory data structures and algorithms which has

the advantages of being �exible, powerful and e�cient. Indeed, it is �exible because

it allows to de�ne nodes and edges with any object type. It enables having undirected

edges as well as directed and weighted edges within a simple graph, multigraph, or

a pseudograph. JGraphT is powerful as it implements specialized iterators for graph

traversal (DFS, BFS, etc) and multiple algorithms for clique detection, path �nding,

coloring, centrality and the list goes on. It also o�ers exporters and importers for

popular external representations such as GraphViz 2. Finally, JGraphT is an e�cient

library because of its optimization of memory and its speed of performance.

Thus, these qualities motivated our choice for this library. In addition, a lot of

libraries were built on top of JGraphT and thus brought the missing functionalities

which render JGraphT a library that is quite complete when dealing with graphs and

answers di�erent needs. Another important advantage is that JGraphT is continu-

ously updated and new versions are published.

In PERSONA software we use the version 1.1.0 of JGraphT. Due to all the ad-

vantages mentioned earlier about this library, we could de�ne our personal networks

sub-graphs with an appropriate data structure. The sub-graphs representing the per-

sonal networks were de�ned under the SimpleWeightedGraph < V,E > class for

the case of an undirected personal network The parameters V and E represent respec-

tively the graph vertex type and the graph edge type which are user-de�ned types. In

1https://jgrapht.org/
2https://www.graphviz.org/
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our case, the vertices are of integer type (ids) and the edges are of the type Default-

WeightedEdge, a prede�ned type available with JGraphT for representing weighted

edges such that the extremities of an edge are of integer type. When querying the

database for the personal network of a given ego, the obtained result consisting in

a set of nodes and edges is integrated to the data structure by using the methods

addVertex(v) to add a vertex v and addEdge(u,v) to add an edge between nodes u

and v. The edge weight w is set using setEdgeWeight(e, w) for a given edge e.

In addition to using the data structure o�ered with JGraphT, we could perform

many computations thanks to the integrated metrics and algorithms.

6.3.2 Additional Libraries

In the following, we give a description of the libraries we required in addition to

JGraphT to show the computational needs we had to integrate to PERSONA for

implementing metrics and evolution models.

uncommons-maths. The Uncommons Maths library provides high-performance

pseudorandom number generators (RNGs). Using the included probability distribu-

tion wrappers, these RNGs (and the standard JDK ones) can be used to generate

values from Uniform, Normal, Binomial, Poisson and Exponential distributions.

jdistlib. A Java package that provides routines for various statistical distribu-

tions. It o�ers for instance the computation of the density (pdf), cumulative (cdf),

quantile, and random variates of many popular statistical distributions (Chi square,

Exponential, Normal, Poisson, etc), normality tests such as Kolmogorov-Smirnov and

Anderson-Darling tests.

sorend-jgrapht-sna. This library implements several algorithms used in social

network analysis (SNA) on top of the JGraphT library. The focus for this library was

mainly on the centrality measures it implements as degree centrality, closeness cen-

trality, betweenness centralty, eigenvector centrality, etc, and the improved support

for GraphML import/export (weighted and directed) it includes.

jgrapht-metrics. Like the previous library, this one o�ers various metrics for

JGraphT graphs like the average degree, the average weighted degree, the average

neighbour degree, the average path length, the local clustering coe�cient and the

assortativity coe�cient.

powerlaws. This is a java library for the analysis of power law distributed data.

The methods implemented are all taken form the paper Power-Law Distributions in

Empirical Data by Clauset, Shalizi and Newman (2007) [34]. It contains facilities

for estimating parameters, uncertainty and signi�cance and for generating power law
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distributed data. All methods are implemented for continuous data, discrete data

and the approximation of discrete data with a continuous distribution.

neo4j-algorithms-master. Graph algorithms are used to compute metrics for

graphs, nodes, or relationships. Neo4j Graph Algorithms is a library that provides

e�ciently implemented common graph algorithms. Many graph algorithms are itera-

tive approaches that frequently traverse the graph for the computation using random

walks, breadth-�rst or depth-�rst searches, or pattern matching. Due to the exponen-

tial growth of possible paths with increasing distance, many of the approaches also

have high algorithmic complexity. Fortunately, optimized algorithms exist that uti-

lize certain structures of the graph, memorize already explored parts, and parallelize

operations. Neo4j integrates these optimizations. As an example of the algorithms it

holds, we cite centrality, community detection, or path �nding algorithms.

In the next section, we describe PERSONA system and provide details on its

implementation and the di�erent modules it involves.

6.4 PERSONA's design and implementation

PERSONA is a tool dedicated to automatically retrieve and analyze personal net-

works. It integrates the de�nitions we proposed presented in Chapter 3 and the

di�erent metrics and algorithms discussed in Chapter 4 and Chapter 5. It also inte-

grates the evolution model presented in Chapter 5. With PERSONA, the user can

analyze both the extracted OPN and the whole social network in order to compute

various network metrics that might be useful in order to better understand the net-

works and further analyze them. Furthermore, PERSONA can perform a task on a

large dataset of OPNs while existing tools focus on one single OPN [20] or only on a

few set of OPNs [19].

Figure 6.1 gives an overview of PERSONA system. On a network stored as a graph

in a database composed of a node table and an edge table, PERSONA performs the

following tasks:

1. retrieve the personal network of a speci�c network member;

2. convert the personal network into a graph data structure;

3. perform a set of processing on the extracted personal network with a set of

computations;

4. instantiate an evolution model and apply it on the personal network;

225



Figure 6.1: PERSONA System.

5. export of the personal network in a given format;

6. provide the visualization of the personal network graph.

6.5 Modules Development

The system presented in the previous section was implemented following the UML

diagram given in Figure 6.2. The di�erent modules of the framework will be presented

in details in the following.

226



F
ig
ur
e
6.
2:

P
E
R
SO

N
A
's
U
M
L
cl
as
s
di
ag
ra
m
.

227



6.5.1 (Personal) Network Management/Storage Module

The data representing the whole networks is stored in a database. Then, PERSONA

is able to access the database in order to extract either the overall network or the

personal network of a given node in the network. Depending on the type of the

database storing the network, nodes and edges between nodes have to be represented

in the database in a form that makes easy the access to them.

In its current implementation, PERSONA uses a relational database to store the

nodes and the edges in a set of tables, but di�erent databases can be imagined with

limited modi�cation in the implementation.

6.5.2 Personal Network Retrieval Module

The retrieval module allows to set the exact con�guration for the access to the

database storing the network and to specify the parameters of the retrieval. It also

has the task to convert the retrieved data into the corresponding data structure.

In Figure 6.3, we provide the structure of the retrieval module. MySQLAccess class

ensures the connection with the MySQL database, via its address. Then, PERSONA

queries the database via an SQL query and gets the answers from the database.

RetrieveNetwork class sends a speci�c request and takes in charge the answer from

the database in order to convert it into the correct data structure. In this sens, the

abstract class Network is used to contain the retrieved network and o�ers a set of

generic operations, independently from the type of the network, as computing the

number of nodes and edges, or the density of the network. This class allows also to

visualize the retrieved network.

Depending on the query, the network retrieved can be of two types, as shown in

Figure 6.4:

1. Undirected personal network, which are represented by the UndirectedNetwork

class and implements all the operations applicable on undirected networks.

2. Directed personal network corresponds to the incoming, the outgoing or to the

merge of the incoming and outgoing networks as de�ned in Chapter 3. Direct-

edNetwork class implements all the functionalities that are proper to directed

networks.
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Figure 6.3: Retrieval Module.

Figure 6.4: Network Type.

6.5.3 Metrics Computation Module

In order to analyze the extracted networks (OPNs or the overall network), we needed

to compute a certain number of metrics. A set of them was already de�ned in the

JGraphT library, and for the others, we needed either to implement them or to use

other libraries. Moreover, some metrics needed to be adapted to ego-networks or to

a given task. With PERSONA, we can expand the set of metrics in order to include

additional ones and this makes the framework extensible. Figure 6.5 shows that some

metrics are generic for all undirected networks, while, there are some that are speci�c
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for undirected personal networks. The metrics that PERSONA implements so far on

a given network are:

� Number of nodes and edges

� Density

� Degree of nodes

� Average degree

� Local clustering coe�cient of nodes

� Average local clustering coe�cient

� Global clustering coe�cient

� Number of triangles

� Number of connected triples

� Nodes weight

� Check the power law distribution

� Check Poisson distribution

� Betweenness centrality

� Closeness centrality

� Geodesic distance

� kmax

� E�ective size

These metrics were already de�ned in Chapter 2. This list does not include metrics

that are proper to the data we used.

230



Figure 6.5: Metrics Computation Module.

6.5.4 Evolution Models Management Module

PERSONA integrates a module allowing to apply the evolution models over the per-

sonal networks. The class EvolutionModel allows to instantiate a given evolution

model and to apply it on a given personal network as shown in Figure 6.6. More pre-

cisely, the class takes an original network (composed of nodes and edges) and returns

a new network that was changed by following the evolution model that was applied

on the original network.

To this end, a set of evolution models existing in the literature were implemented

as the model proposed by [118], and the one proposed by [78], but also to the clique

model we proposed in Chapter 5 and all the di�erent versions of this later that we

tested. In addition to the algorithms used by the model (KEWLS, NuMVC) and to

the original clique superposition model proposed by [134].

Figure 6.6: Evolution Models Module.
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6.5.5 Network visualisation Module

When analyzing personal networks, we need to visualize them in order to explain

some special cases regarding a given metric for instance. To this end, a visualization

tool is required in order to observe how nodes and edges composing the networks are

organized.

In PERSONA, we made the choice of using GraphStream3 library to manage

networks' visualization. GraphStream is a java library for graph allowing modeling

and processing in addition to visualizing graphs. Moreover, it allows the modeling

of the dynamics of graphs as stream of graph events. GraphStream provides a set

of properties to display graphs and the elements of the displayed graphs can be

customized. Although GraphStream was not built on the top of JGraphT since it

de�nes its proper way for representing graphs, it allows to store any kind of data

attribute on the graph elements: numbers, strings, or any object.

We precise that in the PERSONA framework we only exploit the visualization

functionality of GraphStream in order to visualize the OPNs and we use a standard

dispaly comparing to the multiple possibilities of customizing graphs with Graph-

Stream.

Figure 6.7: Example of an OPN visualization with GraphStream library.

3http://graphstream-project.org/
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The method we use is Graph.display() which is a shortcut that creates a viewer.

This method by default will try to place the nodes automatically in space to make

the graph as readable as possible. In Figure 6.7, we give an example of an OPN

visualization using GraphStream library.

6.5.6 Personal Network Exportation Module

After the extraction of an OPN, in addition to the analyzing and visualization func-

tionality provided by PERSONA, we o�er the ability to export it in a set of di�erent

formats. Exporting an OPN allows to save that personal network graph to avoid

retrieving it from the database a second time for example. It also allows to use it

with another software following the extraction format. We thus render the extracted

OPNs usable for another purpose and even built a new graph-formatted database.

Among the possible exporting graph formats we cite GraphML, GML, DOT, CSV,

etc. The exportation module is given in Figure 6.8.

Figure 6.8: Exportation Module.

6.6 PERSONA framework's usage with DBLP data

6.6.1 Global network storage

The framework can connect to any kind of relational database, it can retrieve the

necessary data, independently of the kind of the network or the rest of its charac-
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teristics. In our case, the overall network of collaboration in the �eld of computer

networks was stored within a MYSQL relational database that we named dblp. In

order to keep all the information about this network, we needed to create the three

main tables allowing us to represent the graph, and a set of �ve additional tables

helping us with the computations. These tables described in the following.

The main tables are:

� authors (nameAuthor, idAuthor). In this table we associate to each au-

thor name a unique identi�er. The identi�er (id) is used to retrieve, from the

database, the personal network of a given author.

� papers (idPaper, title, yearPaper, venue). The papers This table contains

each publication or paper with the corresponding information. In our case we

have the title of each paper, the year of its publication, and the venue on which

it has been published. A screen-shot of this table is given Figure 6.9.

� author_paper (author_id, paper_id). This table makes the link between

each author and the paper(s) he/she wrote.

Figure 6.9: Papers table for dblp database.

The additional tables are:
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� authors_apparition (idAuthor, year_apparition). The table allows us

to know the year of apparition of authors, i.e. the year on which each author

of the underlined network has published for the �rst time. We built this table

because when studying the evolution, it is important to know when a given

author joined the network.

� authors_component (idAuthor, idComponent). In the network of col-

laboration in the Computer Networks domain, we detected more than one com-

ponent (a component is a sub-graph such that it exists a path between every

nodes pair belonging to that component) including a giant component. Thus,

in order to deal only with those authors that belong to the giant component,

we created the table authors_component which tells us to which component

belong each author of the network.

� citations (citedPaper, idPaper). The table citations contains for each pa-

per, the paper(s) that have cited it.

� coauthors (egoAuthor, coAuthor, weight, yearPaper). This table is

the one de�ning collaboration relationship among network's authors since it

records for each author, its coauthor(s). In addition, it records the year of

the collaboration (year when both have written a paper together) and also the

number of time they collaborate together (number of paper with each other)

that can be used for weighting the links between authors.

6.6.2 Connection to the global network

In order to connect to the dblp database, we used the JDBC driver for MYSQL 4,

version 5.1.38. Once the connection established, the software query the database for

retrieving a given information. We mainly query the database via an SQL query

for retrieving a personal network of a given author but it is also possible to ask

for the entire co-authorship network, or for a speci�c information as the number of

publications of a given author or the maximum number of authors per publication.

In the case of retrieving the personal network of a given author, we need not only

to specify its id but we need also to specify k to get its k-personal network and the

year in order to get its personal network at a given point in time. We give below an

example of the query allowing to get a personal network for the DBLP case.

4https://dev.mysql.com/
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Example 27 SQL query: select egoAuthor, coAuthor from coauthors where egoAu-

thor=59 && yearPaper ≤ 2010 group by coAuthor

Output:

egoAuthor coAuthor

59 56

59 57

59 58

59 7879

59 8240

59 32027

59 33427

In this example, we retrieve from dblp database the set of coauthors of the author

having id=59 by querying the coAuthors table which constitute the table storing the

edges where each edge is given by the pair (egoAuthor, coAuthor). egoAuthor and

coAuthor are the nodes represented in the node table that is authors. The second

condition, in addition to ego's id, is to specify the year, for example 2010, which

means that we are asking for the personal network of the ego 59 until 2010. The

condition regarding k is not part of the query as we can see. Indeed, after retrieving

the set of co-authors of the ego author (k=1) we will recursively do the same for

each one of its co-authors to get the second level (k=2) and so one until reaching the

desired k level.

By using another query, we can retrieve additional properties existing within the

database for the nodes (as the names of authors) and, for the edges (as the weights

according to De�nition 3.5.1).

6.7 Conclusion

In this chapter, we presented the software framework PERSONA for OPNs' extrac-

tion, visualization and analysis. With PERSONA, we could validate the de�nition

presented in Chapter 3. This framework was designed in a way to support further

extensions as connecting to di�erent types of databases, or supporting additional met-

rics, and allowing for building on top of it evolutionary predictive models to express

the dynamics of OPNs. Thus, PERSONA can be used by anyone wishing to perform

analysis and computation on any personal network data.
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Chapter 7

Conclusion and Perspectives

Online social networks area is of great interest for the researchers in recent years given

the availability of large amounts of users interaction data. Works in this area have

mainly analyzed the whole graph representing the users' interaction. More precisely,

for many years, scientists have been interested in the dynamics of OSNs and a large

set of evolution models was proposed. However, discovering what is happening in

an individual's personal online social network through time has not been enough

investigated and there are no models devoted to OPNs' evolution.

In this thesis we focused on understanding the dynamics of OSNs at the individual

user level, i.e. at the user' OPN level in the aim of proposing new evolution models.

To do so, we �rst needed to de�ne OPNs since existing de�nitions have limita-

tions. Thus, we proposed a set of formal de�nitions for OPNs. The de�nitions are

independent of any application or OSN and capture all diverse existing cases. To

the best of our knowledge there is no other systematic and formal recording of these

concepts in a way that provides a universal framework for studying OPNs in general.

Then, we performed an analytical study of a large set of personal networks of

authors of scienti�c publications, with the goal to use the results of this study to

understand the evolution of the corresponding personal networks. First, we analyzed

the way edges are organized among new nodes entering the personal networks at the

�rst level, and nodes that already exist. We found that most of the new edges are

formed among new coming nodes which reveals that nodes join the personal network

under the form of cliques. Thus, a new collaboration involves most of the time

new authors that were not in the network at time t with inevitably the ego author

(because we consider 1-level personal networks) and eventually his alters (old nodes)

which explains the second important proportion of edges made between new and old

nodes. However, we found that it is unlikely for two old authors not connected at

time t to connect at time t+ 1 given the very small proportion of links made between
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old alters. These �ndings gave us a �rst a hint about the way edges evolve over time

at the �rst level of the personal networks but was not su�cient to describe the change

of the overall structure of these networks.

Thus, in a second stage, we selected a set of metrics that characterizes personal

networks' structure and that allowed us to capture the change over time of this

structure. We were interested to understand not only the speci�c values of the metrics

but mainly how these values change over time when considering k-personal network

with k varying from 1 to 5. These analysis were performed using PERSONA, an

extensible software framework for OPNs' extraction, visualization and analysis that

we developed. From the metrics analysis, we could discover important properties:

� We �rst distinguished a clear di�erence in the topology of 1-level personal net-

works comparing to upper levels (2 to 5) since 1-level personal networks can have

a very speci�c structure as complete networks or star networks. The evolution

of 1-personal networks a�ects mostly the connections among alters who were

characterized at the beginning with an important number of connections and

then become less connected over time as new alters join the 1-level personal

network (the density, the local clustering and the e�ciency decrease), while

egos' degrees and egos' betweenness are not a�ected. Moreover, we found that

the addition of nodes (alters) keeps the average degree of the 1-level personal

network low.

� k-personal networks (k=2 to 5) are characterized by a decreasing density and

transitivity at the personal network level (GCC). While, at the local level, the

average clustering coe�cient was observed to be high and gets higher when

the personal networks are growing. This divergence in the evolution trend

between the global clustering coe�cient and the average clustering coe�cient is

a very important �nding as it characterizes a particular structure of networks

which is the windmill graph structure as demonstrated by Estrada in [48]. This

demonstrates that our k-personal networks have a structure reassembling the

one of the windmill graphs.

� Another interesting �nding concerns the di�erent evolution behaviour between

k = 2, 3, and k = 4, 5 regarding two metrics, the betweenness centrality and the

power law degree distribution. Ego's betweenness centrality was increasing for

k = 2, 3, but decreases for k = 4, 5. On the one side, the increase for k = 2, 3

is due to the addition of nodes around the ego that form disconnected groups
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of alters (as the windmill graph example) and the ego plays a key role among

them. On the other side, when we consider a k = 4 or 5. This behaviour is

justi�ed by the fact that OPNs with k = 4, 5 are often characterized by the

presence of large cliques as discovered with cliques analysis that we discuss in

the following.

The degree power law distribution test results are di�erent depending on k as

it is better satis�ed when k = 2, 3 than for k = 4, 5. In addition, for k = 5, the

networks are not anymore following a power law degree distribution starting

from 2010. Again, we explained this changing behaviour when we analyzed the

composition of the OPNs when considering cliques, as we found that OPNs with

k = 4, 5 are often characterized by the presence of large cliques. We discuss

cliques analysis in the following.

The last bloc of analysis is based around the composition of personal networks

in terms of cliques. Via these analysis, we could e�ectively justify the behaviour of

the metrics evolution trends (betweenness, power law degree distribution) discussed

above. It also allowed us to discover interesting characteristics about personal network

in terms of their composition of cliques. Indeed, we saw that for a high number of

OPNs the minimum size of its cliques is 3, while a high number of OPNs contains

cliques with a maximum size of 18 or 20 which constitute the same large cliques

appearing in di�erent OPNS as they belong to the giant component. Furthermore,

we discovered a linear relationship between the number of cliques and the number

of nodes as well as with the number of edges. We also found that, in general, co-

authorship OPNs have more small cliques than big ones, and that the number of

cliques of a given size is increasing with k and with the years. Finally, by analyzing

the connections between new nodes and cliques, we could identify that new nodes

tend to connect to sub-cliques rather than to whole cliques and they connect more

often to around 30%-50% of the clique nodes, and rarely above 50% of them. At last,

new nodes are more tended to connect to few cliques (up to 3) than to a large number

of cliques.

The �ndings from all these analysis outlined above contributed to bringing us a

better understanding around the structure and evolution of personal networks. Such

a deep investigation has not been carried out before. In addition, the discovered

patterns constituted a su�cient baggage to approach modeling the evolution of the

studied networks.
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To do so, given the dominance of the clique structure in the analyzed personal

networks and its role during their evolution, we proposed a new evolution model

for personal networks based on cliques. Evolution models in general including the

clique dimension are very rare in the existing literature and such a model constitute

a di�erent approach for modeling the evolution. The evolution model we proposed,

PERSONEM, is a predictive model that is based on the clique superposition model

proposed by Yan in [134]. PERSONEM predicts starting from a personal network

at time t the resulting personal network at time t + 1. It allows to connect the N

new nodes entering the personal network at time t+1 with the cliques composing the

network. It integrates k − NuMV C algorithm for random k-clique �nding that we

propose as an extension of NuMV C algorithm of Cai in [25]. PERSONEM parame-

ters were �xed from our data and integrates �ndings discovered via the experimental

analysis we performed.

The results of applying PERSONEM on our data show good results; indeed, the

metrics of the predicted personal networks have, in general, similar values and com-

parable evolution tendency than the metrics of the real personal networks (with some

di�erences stated in the manuscript); we based our results on the following metrics:

number of edges, density, average degree, power law distribution, ego degree and be-

tweenness. However, some lacks were detected concerning the limited expression of

the transitivity at the global level and at the local level since we obtain a lower GCC

and ACC than in real personal networks. We explain this result by the fact that,

during the creation of the edges, PERSONEM is less tended to close triangles which

induces less transitivity in the resulting network both at the global and local levels.

To overcome this lack, multiple runnings of the model with varying the parameters β

and psample could be performed. Another limitation of PERSONEM is its low perfor-

mance in term of execution time; when personal networks grow in size, k−NuMV C

might be needed to be run several times. A more e�cient algorithm for clique �nding

problem adapted to personal networks will make PERSONEM performing faster.

At last, this thesis is a �rst e�ort to understand the characteristics and the evo-

lution of Online Personal Social Networks and to provide algorithms and models for

it. While we have focused on online personal collaboration networks with speci�c

characteristics (co-authorships), the results produced could be usable by the greater

community.
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