Matériaux et dispositifs organiques flexibles et extensibles pour application dans l'optoélectronique émergente

par Emilie Dauzon

Thèse de doctorat en Chimie - Cergy

Sous la direction de Fabrice Goubard et de Cédric Plesse.

Le jury était composé de Fabrice Goubard, Cédric Plesse, Aram Amassian, Laurence Vignau, Bernard Ratier, Thomas Anthopoulos, Stefaan De Wolf, Wei You.

Les rapporteurs étaient Aram Amassian, Laurence Vignau, Bernard Ratier.


  • Résumé

    Les nouvelles technologies nécessiteront de plus en plus de matériaux conformes capables de s'adapter à des surfaces incurvées, de s'étirer et de résister mécaniquement aux mouvements de notre corps pour des applications portatives et de peaux artificielles. À cet égard, ce travail discute des stratégies pour induire l'extensibilité dans les matériaux. Nous avons concentré notre attention sur l'amélioration de l'élasticité des électrodes conductrices transparentes (ETC) à base de PEDOT: PSS et des semi-conducteurs (couche active) pour les cellules solaires organiques.Premièrement, il a été démontré que l'introduction du DMSO et du Zonyl en tant qu'additifs dans PEDOT: PSS produisait des électrodes conductrices hautement transparentes (FoM> 35) avec un module d'Young faible et une densité de charges élevée. Nous avons étudié la relation entre les propriétés de transport du PEDOT: PSS et la morphologie et la microstructure de ses films. La combinaison des deux additifs améliore la nature fibrillaire et les agrégations de PEDOT et PSS.Deuxièmement, les ETC à base de PEDOT: PSS ont été fabriquées en utilisant une approche innovante qui combine un réseau polymère interpénétré d'oxyde de polyéthylène et du Zonyl. La présence d'une matrice tridimensionnelle a fourni une conductivité électrique, une élasticité et une durabilité mécanique élevées. Le potentiel de cette électrode a été démontré avec des cellules solaires sans oxyde d'indium-étain (ITO) avec une efficacité de conversion similaire à celle de l'ITO.Enfin, la recherche a été complétée par l'intégration d'un réticulant ou d'un élastomère dans la couche active pour améliorer son extensibilité tout en conservant d'excellentes performances photovoltaïques. En particulier, l'élastomère SEBS présentait une élasticité adaptée avec divers accepteurs et donneurs composé de fullerène et de non fullerène: P3HT: PC61BM, PCE10: PC71BM et PCE13: IT-4F. Cette approche polyvalente met en évidence la facilité de fabrication et d’évolutivité obtenues par des processus en solution ainsi qu'une compatibilité élevée avec différents mélanges d’accepteurs et donneurs.

  • Titre traduit

    Flexible and stretchable organic materials and devices for application in emerging optoelectronics


  • Résumé

    New technologies will require more and more compliant materials capable of conforming to curved surfaces, i.e., able to stretch and mechanically resist body motions for wearable and on-skin applications. In this regard, this work discusses strategies to induce stretchability in materials. We focused our attention on improving the elasticity of transparent conducting electrodes (TCE) based on PEDOT:PSS and semiconductors (active layer) for organic solar cells.Firstly, the introduction of DMSO and Zonyl as additives into PEDOT:PSS was shown to produce highly transparent conducting electrodes (FoM > 35) with low Young’s modulus and high carrier density. We investigated the relationship between the transport properties of PEDOT:PSS and the morphology and microstructure of its films. The combination of the two additives enhances the fibrillary nature and the aggregations of both PEDOT and PSS components of the films.Secondly, stretchable TCEs based on PEDOT:PSS were fabricated using an innovative approach that combines an interpenetrated polymer network-based on polyethylene oxide and Zonyl. The presence of three-dimensional matrix provided high electrical conductivity, elasticity, and mechanical recoverability. The potential of this electrode was demonstrated with indium-tin-oxide (ITO)-free solar cells with a power conversion efficiency similar to ITO.Finally, the research was completed by integrating a cross-linker or an elastomer into the active layer to enhance its stretchability while maintaining excellent photovoltaic performance. In particular, SEBS elastomer exhibited a tailored elasticity with various fullerene and non-fullerene blends: P3HT:PC61BM, PCE10:PC71BM and PCE13:IT-4F. This versatile approach highlights the ease of manufacturing and scalability achieved by the solution casting processes along with a high compatibility of acceptor and donor blends.


Le texte intégral de cette thèse n'est pas accessible en ligne.
Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : CY IUT. Service commun de la documentation. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.