Some aspects of representation theory of walled Brauer algebras

par Daria Bulgakova

Thèse de doctorat en Physique théorique et mathématique

Sous la direction de Oleg Ogievetsky.

Le président du jury était Robert Coquereaux.

Le jury était composé de Valeria Shiheeva.

Les rapporteurs étaient Sergei Khoroshkin, Maud De Visscher.

  • Titre traduit

    Quelques aspects de la théorie des représentations des algèbres de Brauer murées


  • Résumé

    L'algèbre de Brauer murée est une algèbre unitaire associative. Il s’agit d’une algèbre de diagramme engendré par des diagrammes «murés» particuliers. Cette algèbre peut être définie par des générateurs et des relations. Dans le premier chapitre de la thèse, nous construisons la forme normale de l'algèbre de Brauer murée - un ensemble de monômes de base (mots) dans les générateurs. Nous introduisons une modification “ordonnée” du fameux lemme du diamant de Bergman, à savoir, nous présentons un ensemble de règles qui, étant appliquées dans un certain ordre, permet de réduire tout monôme dans les générateurs à un élément de la forme normale. Nous appliquons ensuite la forme normale pour calculer la fonction génératrice du nombre de mots avec une longueur minimale donnée.Une procédure de fusion donne une construction de la famille maximale d'idempotents orthogonaux minimaux par paire dans l'algèbre et, par conséquent, fournit un moyen de comprendre les bases dans les représentations irréductibles. Nous construisons la procédure de fusion pour l'algèbre de Brauer murée, à savoir, tous les idempotents primitifs est trouvé par les évaluations consécutives de fonction rationnelle en plusieurs variables.Dans le deuxième chapitre, nous étudions le produit tensoriel mixte des représentations fondamentales tridimensionnelles de l'algèbre de Hopf U_q sl(2|1). L'un des principaux résultats consiste à établir des formules explicites pour la décomposition des produits tensoriels de tout module de U_q sl(2|1) simple ou projectif avec les modules générateurs. Un autre résultat important consiste à décomposer le produit tensoriel mixte en un bimodule.

    mots clés mots clés

  • .

  • Résumé

    The walled Brauer algebra is an associative unital algebra. It is a diagram algebra spanned by particular ‘walled’ diagrams with multiplication given by concatenation. This algebra can be defined in terms of generators, obeying certain relations. In the first part of the dissertation we construct the normal form of the walled Brauer algebra - a set of basis monomials (words) in generators. This set is constructed with the aid of the so-called Bergman’s diamond lemma: we present a set of rules which allows one to reduce any monomial in generators to an element from the normal form. We then apply the normal form to calculate the generating function for the numbers of words with a given minimal length.A fusion procedure gives a construction of the maximal family of pairwise orthogonal minimal idempotents in the algebra, and therefore, provides a way to understand bases in the irreducible representations. As a main result of the second part we construct the fusion procedure for the walled Brauer algebra and show that all primitive idempotents can be found by evaluating a rational function in several variables. In the third part we study the mixed tensor product of three-dimensional fundamental representations of the Hopf algebra U_q sl(2|1). One of the main results consists in the establishing of the explicit formulae for the decomposition of tensor products of any simple or any projective U_q sl(2|1)-module with the generating modules. Another important outcome consists in decomposing the mixed tensor product as a bimodule.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université d'Aix-Marseille. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.