Sur les jeux dynamiques : jeux stochastiques, recherche-dissimulation et transmission d'information

par Tristan Garrec

Thèse de doctorat en Mathématiques et Applications

Sous la direction de Jerôme Renault.

Soutenue le 11-07-2019

à Toulouse 1 , dans le cadre de École doctorale Mathématiques, informatique et télécommunications (Toulouse) , en partenariat avec TSE-R (Toulouse) (équipe de recherche) .


  • Résumé

    Dans cette thèse, nous étudions divers modèles de jeux dynamiques. Ceux-ci modélisent des processus de décisions prises par des agents rationnels en interactions stratégiques et dont la situation évolue au cours du temps. Le premier chapitre est consacré aux jeux stochastiques. Dans ces derniers, le jeu courant dépend d’un état de la nature, qui évolue d’une étape à la suivante de manière aléatoire en fonction de l’état courant ainsi que des actions des joueurs, qui observent ces éléments. On étudie des propriétés de communication entre les états, lorsque l’espace d’états est sous la forme d’un produit X ×Y, et que les joueurs contrôlent la dynamique sur leur composante de l’espace d’états. On montre l’existence de stratégies optimales dans tout jeu répété un nombre suffisant d’étapes, c’est-à-dire l’existence de la valeur uniforme, sous hypothèse de communication forte d’un côté. On montre en revanche la non converge de la valeur du jeu escompté, qui implique la non existence de la valeur asymptotique, sous hypothèse de communication faible des deux côtés. Les deux chapitres suivants sont consacrés à des modèles de jeux de recherche-dissimulation. Un chercheur et un dissimulateur agissent sur un espace de recherche. L’objectif du chercheur est typiquement de retrouver le dissimulateur le plus rapidement possible, ou alors de maximiser la probabilité de le trouver en un temps imparti. L’enjeu est alors de calculer la valeur et les stratégies optimales des joueurs en fonction de la géométrie de l’espace de recherche. Dans un jeu de patrouille, un attaquant choisit un temps et un lieu à attaquer, tandis qu’un patrouilleur marche continûment. Lorsque l’attaque survient, le patrouilleur a un certain délai pour repérer l’attaquant. Dans un jeu de recherche-dissimulation stochastique, les joueurs se trouvent sur un graphe. La nouveauté du modèle est qu’en raison de divers évènements, à chaque étape, certaines arêtes peuvent ne pas être disponibles, de sorte que le graphe évolue de façon aléatoire dans le temps. Enfin, le dernier chapitre est consacré à un modèle de jeux répétés à information incomplète dit de contrôle dynamique de l’information. Un conseiller a une connaissance privée de l’état de la nature, qui évolue aléatoirement avec le temps. Chaque jour le conseiller choisit la quantité d’information qu’il dévoile à un investisseur au travers de messages. À son tour, l’investisseur choisit d’investir ou non afin de maximiser son paiement quotidien espéré. En cas d’investissement, le conseiller reçoit une commission fixe de la part de l’investisseur. Son objectif est alors de maximiser la fréquence escomptée de jours où a lieu l’investissement. On s’intéresse à une stratégie de dévoilement d’information particulière du conseiller dite stratégie gloutonne. C’est une stratégie stationnaire ayant la propriété de minimiser la quantité d’information dévoilée sous contrainte de maximiser le paiement courant du conseiller.

  • Titre traduit

    On Dynamic Games : Stochastic Games, Search Games and Information Provision


  • Résumé

    In this thesis, we study various models of dynamic games. These model decision-making processes taken by rational agents in strategic interactions and whose situation changes over time. The first chapter is devoted to stochastic games. In these, the current game depends on a state of nature, which evolves randomly from one stage to the next depending on the current state as well as the actions of the players, who observe these elements. We study communication properties between states, when the state space is in the form of a product X × Y, and players control the dynamics on their components of the state space. The existence of optimal strategies in any long enough repeated game, i.e., the existence of the uniform value, is proved under the assumption of strong communication on one side. We prove the non-convergence of the value of the discounted game, which implies the non-existence of the asymptotic value, under the assumption of weak communication on both sides. The next two chapters are devoted to models of search games. A searcher and a hider act on a search space. The searcher’s objective is typically to find the hider as quickly as possible, or to maximize the probability of finding him in a given time. The challenge is then to calculate the value and optimal strategies of the players according to the geometry of the search space. In a patrolling game, an attacker chooses a time and place to attack, while a patroller walks continuously. When the attack occurs, the patroller has a fixed amount of time to locate the attacker. In a stochastic search game, players act on a graph. The novelty of the model is that due to various events, at each stage, some edges may not be available, so the graph evolves randomly over time. Finally, the last chapter is devoted to a model of repeated games with incomplete information called dynamic control of information. An advisor has a private knowledge of the state of nature, which changes randomly over time. Every day, the advisor chooses the amount of information he discloses to an investor through messages. In turn, the investor chooses whether or not to invest in order to maximize her daily expected payoff. In the event of an investment, the advisor receives a fixed commission from the investor. His objective is then to maximize the discounted frequency of days on which investment takes place. We are interested in a specific information disclosure strategy of the advisor called the greedy strategy. It is a stationary strategy with the property of minimizing the amount of information disclosed under the constraint of maximizing the advisor’s current payoff.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Toulouse 1 Capitole. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.