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I. HEPATITIS C - An Introduction

Hepatitis C is an infectious liver disease caused by the hepatitis C virus (HCV) that in most subjects
chronically infects the human liver. HCV infection is one of the major etiologies, besides hepatitis B
virus (HBV) infection, alcoholic liver disease (ALD) and non-alcoholic fatty liver disease, resulting
in chronic hepatitis and progressive liver disease and thereby leading to development of lethal
complications, i.e. cirrhosis and hepatocellular carcinoma (HCC), the second leading cause of cancer
mortality worldwide (El-Serag and Davila 2011; Ryerson, Eheman et al. 2016).

HCV itself is mainly transmitted through direct blood-to-blood contact occurring through medical
treatment with unsterilized needles, blood transfusions and more recently through needle-sharing
drug abuse, also through sexual contact and mother-to-child transmission. Upon its discovery in 1989
(Choo, Kuo et al. 1989), enormous progress has been made in the field to develop diagnostic and
therapeutic strategies for HCV treatment. These efforts resulted in the development of highly efficient
direct-acting antivirals (DAAS) targeting specific HCV proteins and enabling cure in more than 95%
of infected individuals by achieving sustained virologic response (SVR) since 2013. Indeed, the
combination of different DAAs resulted in cure rates over 96% regardless of the HCV genotype of
patients and with a relative short duration of treatment (Bourliere, Pietri et al. 2018). Nevertheless,
major clinical and scientific challenges still remain: DAA therapy is cost-intensive and still only
available to a fraction of HCV-infected patients (Chung and Baumert 2014), some infected individual
developed resistance to DAAs, and an urgently needed HCV vaccine to prevent the global spread of
infection is still lacking due to the high diversity of the virus, limited models for testing vaccines and
a partial knowledge of protective immune response (Bailey, Barnes et al. 2019). Of note, HCC risk
remains high for decades even after SVR (Morgan, Baack et al. 2013; Kanwal, Kramer et al. 2019).

An estimated 71 million individuals are persistently infected with HCV with big geographical
differences worldwide (WHO Global hepatitis report, 2017). The prevalence of chronic HCV
infection is high, including developed countries as shown in Figure 1.
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Figure 1. Estimated global HCV prevalence in 2015.
In general, there are variations in prevalence across and within countries. One could observe a higher affection of the European and
Eastern Mediterranean regions by HCV infection (WHO Global Hepatitis Report, 2017).



1.1 Pathogenesis of HCV infection

Hepatitis C is caused by HCV infection of hepatocytes resulting in acute (20-30% of infected patients)
or more often in chronic HCV infection (70-80% of infected patients) (reviewed in Zeisel, Cosset et
al. 2008). The difference between both outcomes of infection is in principle pretty simple: Acute
infections consequently lead to clearance of virus through an effective immune response mediated by
HCV-specific neutralizing antibodies and T-cell responses, contrarily in chronic infections the
immune system is not able to clear the virus resulting in high levels of viral replication and in
dysfunctionality of the immune system (see Figure 2) (reviewed in Zeisel, Cosset et al. 2008; Park
and Rehermann 2014).
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Figure 2. Acute (resolving) HCV infection versus chronic HCV infection.

While in resolving HCV infection the HCV RNA levels decrease due to effective immune responses through rapid induction of
neutralizing antibodies and HCV-specific T-cell responses (left), while the contrary result can be observed during chronic HCV
infection (right). (Zeisel, Cosset et al. 2008).

Obviously, chronic HCV predisposes to progressive fibrosis, cirrhosis and HCC either directly
through changes of the cellular metabolism or indirectly as a result of persistent chronic inflammation.

Approximately 1-4% of patients with HCV-related cirrhosis develop HCC (NIH 2002) which is, per
basic definition, a randomly occurring genomic and epigenomic change leading to an alteration of
cellular gene expression and an abnormal proteome. Epigenetic and gene expression alterations
observed in hepatitis C patients can be associated with high risk to HCC, even after the virus could
be eradicated by treatment with DAAs (Hamdane, Juhling et al. 2019; Perez, Kaspi et al. 2019).
Additionally to epigenetic changes , four pathways and biological processes can be involved in the
progression of hepatocarcinogenesis: (i) oxidative stress pathways, (ii) p53 cell cycle pathways, (iii)
PI3K/Akt/mTOR and MAPK pathways as well as (iv) WNT/B-catenin pathways (Zucman-Rossi,
Villanueva et al. 2015).



1.2 HCV - Basic virology

| 1.2.1 Genomic organization of HCV RNA

HCV, a member of the Flaviviridae family, is an enveloped, single-stranded positive-sense RNA
virus that is mainly restricted to hepatocytes. Its genome encompasses approximately 9.6 kb encoding
a single polyprotein precursor of around 3000 amino acids (aa) and is flanked by 5’-and 3’-
untranslated regions (UTRs). The internal ribosome entry site (IRES), located at the 5’UTR of the
genome, mediates cap-independent translation of the polyprotein contributing to an efficient
translation (Tsukiyama-Kohara, lizuka et al. 1992; Wang, Sarnow et al. 1993). Moreover, miR-122,
a crucial liver-enriched host factor, binds to two target sites close to the 5’UTR promoting HCV
translation (Henke, Goergen et al. 2008) and replication (Jopling, Yi et al. 2005) by stabilizing HCV
RNA (Shimakami, Yamane et al. 2012) (see Figure 3).

The synthesized polyprotein is co-and post-translationally processed by host and viral proteases into
at least ten viral proteins: The three structural proteins Core, and the glycoproteins E1 and E2 building
up the virion as well as the seven nonstructural (NS) protein mainly involved in replication and
assembly through distinct enzymatic activities, namely p7, NS2, NS3, NS4A, NS4B, NS5A and
NS5B (see Figure 3).
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Figure 3. Overview of (A) HCV genome organization and IRES-dependent translation into polyprotein and (B) viral proteins and their
function.

Scissors indicate proteolytic cleavage sites of the polyprotein. UTR: untranslated region; IRES: internal ribosome entry site; C: Core;
NS: nonstructural (adapted from Dubuisson and Cosset 2014; Paul, Madan et al. 2014).



1.2.2 Genetic diversity of HCV — One challenge for vaccine design

HCV can be classified into seven genotypes and several subtypes demonstrating its high degree of
genetic heterogeneity and thereby the challenges for research regarding efficient vaccine design: (i)
HCV is able to rapidly mutate and (ii) to closely interact with the host lipid metabolism, both leading

to escape from protective immune responses.

The genotypes (gt) are numbered from 1 to 7, whereas a variable number of sub-genotypes is
designated with a lower case letter forming the basis of classifying HCV into genotypes such as 1a,
1b etc. (Simmonds, Bukh et al. 2005; Smith, Bukh et al. 2014). There is a designated distribution of
all HCV strains worldwide: While genotype 1, the (from global perspective) most common genotype
(almost half of all infections), dominates in Europe and the Americas, genotype 3, the second most
common genotype (around 20-30% of infections), is mostly found in Asia and Northern Europe.
Genotype 2 and 4 are less widespread but often found in North Africa and Middle East (around 10%
of infections) (Gower, Estes et al. 2014).

1.2.3 HCV virion structure: The lipoviral particle

HCV is an enveloped virus that contains core proteins forming a nucleocapsid around the viral RNA
genome which is surrounded by an endoplasmic reticulum (ER)-derived envelope with incorporated
viral glycoproteins E1 and E2 which are involved in binding and entry into host cells (reviewed in
Lindenbach 2013).

One outstanding characteristic of HCV particles is their tight link with the host cell lipid metabolism;
even more their close association with host lipoproteins (Felmlee, Hafirassou et al. 2013; Lavie and
Dubuisson 2017). To understand why one speaks of an important hallmark of the virus, it is absolutely
essential to understand the process underlying the lipid homeostasis taking place in the liver: Lipids
(e.g. triacylglycerides) are synthesized within the liver and their transport through aqueous medium
(blood) is enabled through binding with proteins. A process in which triacylglycerides are pooled
together with cholesterol and a variable number of proteins into hydrophilic lipoprotein complexes
which can be subdivided upon their density into five groups: Chylomicrons (mostly generated in the
intestine), very low density lipoproteins (VLDL), intermediate density lipoproteins (IDL), low
density lipoproteins (LDL) and high density lipoproteins (HDL). The association of lipids with these
so-called apolipoproteins (Apo) is not only important for the transport of lipids through the organism

to their organs of need but also for the uptake process into cells through specific membrane receptors.



In the process of VLDL assembly, ApoB and microsomal triglyceride transfer protein (MTP) are
required: After synthesis and translocation into the rough ER lumen (rER), ApoB is charged with
phospholipids and cholesterol via MTP leading to formation of a neutral lipid core that is transformed
into a sphere-shaped particle. This so called VLDL2 contains exchangeable ApoE and ApoC and can
be released after movement to a distal compartment in the secretory pathway. Alternatively, luminal
lipid droplets (luLDs) are formed as second precursors at the smooth ER (SER) following triglyceride
enrichment via MTP and close association with ApoE but not with ApoB. Fusion of VLDL2 with this
second precursors is leading to a triglyceride-rich lipoprotein (TLR), namely VLDL1 (reviewed in
Olofsson, Bostrom et al. 2009; Shelness and Sellers 2001. Due to the differences in density,

lipoproteins can be separated via ultracentrifugation.

To come back to HCV, the virus itself hijacks the host cell lipid metabolism, more particularly, parts
of the VLDL and LDL secretion pathway for production of infectious virions. In fact, infectious viral
particles could be found in patient-derived serum associated with VLDLs or LDLs forming a so-
called lipoviral particle (LVP) (Thomssen, Bonk et al. 1992; Andre, Komurian-Pradel et al. 2002;
Nielsen, Bassendine et al. 2006). As a consequence, LVPs show distinct biophysical properties than
VLDLs or LDLs: (i) obviously, LVPs are rich in cholesterol and triacylglycerides displaying (very)
low density, and (ii) are containing apolipoproteins (e.g. ApoB, ApoA, ApoE and ApoC) and more
interestingly, (iii) patient-derived HCV particles differ in density between 1.25g/ml to below 1.06g/ml
with infectivity inversely correlated to density meaning that low-density viruses are more infectious.
In fact, infectious LVPs have a density between 1.03 to 1.10g/ml and thus can be separated as well
as lipoproteins via density gradient ultracentrifugation (Gastaminza, Cheng et al. 2008; Piver, Boyer
et al. 2017; Catanese, Uryu et al. 2013; Meunier, Russell et al. 2008) (see Figure 4). Findings that
could be confirmed using in vivo (Nielsen, Bassendine et al. 2006; Thomssen, Bonk et al. 1992;
Andre, Komurian-Pradel et al. 2002) as well as in vitro (Gastaminza, Kapadia et al. 2006;
Lindenbach, Meuleman et al. 2006; Merz, Long et al. 2011) model systems. Interestingly, recent
evidence suggests that HCV LVPs contain several exchangeable ApoE and one non-exchangeable

ApoB molecule (Piver, Boyer et al. 2017).
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Figure 4. Infectious LVP versus VLDL.
Infectious HCV particles (LVP, right) are composed of ApoE and ApoB, which are also part of very-low-density lipoproteins (VLDL,
left), and viral components. Consequently LVPs share common features with VLDLs (Felmlee, Hafirassou et al. 2013).

Consequently, through the association with VLDLs or LDLs and different kinds and amounts of
apolipoproteins, HCV particles are heterogeneous and thus vary in shape and size ranging from 40 to
80 nm in diameter.

In fact, the association with ApoB and ApoE does not only lead to the masking of viral epitopes
preventing the virus to be neutralized by HCV-specific antibodies (Catanese, Uryu et al. 2013; Merz,
Longetal. 2011; Fauvelle, Felmlee et al. 2016) but even more this association helps to facilitate HCV

entry into hepatocytes (reviewed in Zeisel, Felmlee et al. 2013).

1.2.4 The HCV life cycle

a. Virion attachment and entry

The initial step of the HCV life cycle is its attachment and entry into hepatocytes, a complex,
multistep process involving both viral envelope glycoproteins E1/E2 and lipoprotein components
which makes it difficult to entirely clear the exact sum of events and details that occur during this
first step of the life cycle. The process itself can be subdivided into three key steps: (i) viral attachment

to the hepatocyte, (ii) receptor-mediated endocytosis, and (iii) endosomal fusion.

Since LVPs are transported via bloodstream, initial attachment occurs at the basolateral membrane
of the hepatocytes through binding of virion-associated ApoE to cell surface heparan sulfate
proteoglycan (HSPGs) syndecan-1 or syndecan-4 and low-density lipoproteins receptor (LDLR)
(Jiang, Cun et al. 2012; Shi, Jiang et al. 2013; Lefevre, Felmlee et al. 2014; Xu, Martinez et al. 2015;
Grigorov, Reungoat et al. 2017).



Four main host-derived entry factors have been described, namely tetraspanin CD81 (Pileri, Uematsu
et al. 1998), scavenger receptor Bl (SR-BI) (Scarselli, Ansuini et al. 2002), and the tight junction
proteins Claudin 1 (CLDN1) (Evans, von Hahn et al. 2007) and Occludin (OCLN) (Ploss, Evans et
al. 2009), as well as numerous cofactors, especially two receptor tyrosine kinases, epidermal growth
factor receptor (EGFR) and ephrin receptor A2 (EphA2) (Lupberger, Zeisel et al. 2011). Interactions
of virion-associated ApoB-100 with SR-BI is proposed to induce lipoprotein-HCV dissociation
(Scarselli, Ansuini et al. 2002; Dreux, Dao Thi et al. 2009; Maillard, Huby et al. 2006) leading to
direct interaction of HCV glycoprotein E2 with SR-BI and CD81 (Dao Thi, Granier et al. 2012;
Scarselli, Ansuini et al. 2002; Pileri, Uematsu et al. 1998; Bartosch, Vitelli et al. 2003). At this stage
of HCV entry, additional entry factors are required: CLDN1 and OCLN (Evans, von Hahn et al. 2007;
Ploss, Evans et al. 2009; Liu, Yang, Shen et al. 2009). Two models have been proposed. Recently,
imaging-based studies in a three-dimensional polarized hepatoma system reported that an initial co-
localization of HCV with SR-BI, CD81 and EGFR at the basolateral membrane occurs, leading to
trafficking and accumulation of HCV virions at the tight junctions, where the interaction with CLDN1
and OCLN takes place (Baktash, Madhav et al. 2018). Furthermore, HCV may also interact with
CLDN1 on the basolateral membrane of hepatocytes. Indeed, although CLDN1 and OCLN are
classified as tight junction proteins, a minority of these proteins can be found on the basolateral
membrane (reviewed in Zeisel, Dhawan et al. 2018). Using a CLDN1-targeting monoclonal antibody
(mAb) and confocal microscopy, Mailly et al could observe a minority pool of CLDN1 found on
basolateral membrane of hepatocytes in chimeric mouse liver as well as in normal liver tissue (Mailly,
Xiao et al. 2015). Interestingly, fluorescence resonance energy transfer-based studies could show that
using CLDNZ1-sprecific mAb leads to the perturbation of CD81-CLDNL1 co-receptor formation at
hepatocyte basolateral membrane and inhibition of HCV entry (Mailly, Xiao et al. 2015; Fofana,
Krieger et al. 2010).

Host cell kinases have been shown to contribute to the regulation of viral entry by promoting co-
receptor association between CD81 and CLDN1 which is essential for HCV entry (Harris, Farquhar
et al. 2008; Harris, Davis et al. 2010; Farquhar, Harris et al. 2008; Lupberger, Zeisel et al. 2011).
Indeed, inhibition of EGFR and EphA2 via the protein kinase inhibitors erlotinib and dasatinib,
respectively, led to disruption of CD81-CLDN1 co-receptor formation resulting in inhibition of HCV
entry (Lupberger, Zeisel et al. 2011). These results propose the direct contribution of EGFR and
EphA2 in CD81-CLDN1 co-receptor complex (Lupberger, Zeisel et al. 2011) and moreover, the
identification of HRas, a GTPase acting downstream of EGFR signaling, and its association with
CD81 and CLDNL1 supports the model that kinase signaling pathways play a role in this formation
process (Zona, Lupberger et al. 2013). In fact, CD81-CLDN1 complex formation could also been
disrupted using a protein kinase A inhibitor leading to an intracellular localization of CLDN1 and



consequently to an impaired viral entry (Farquhar, Harris et al. 2008). It could also be shown that
binding to CD81 triggers the autophosphorylation of EGFR (Diao, Pantua et al. 2012), resulting in
basolateral diffusion of CD81; which in turn leads to an association with CLDN1 and the formation
of the CD81-CLDN1 co-receptor complex (Harris, Farquhar et al. 2008; Harris, Davis et al. 2010).
In contrast to CD81, SR-BI and CLDNL, the role of OCLN in the viral entry process has been less
well studied. Nonetheless, one group was able to create mutants of OCLN proteins blocking HCV
cell entry via specific antibodies. It could be demonstrated that OCLN is required in late steps of
HCV entry and may be directly interacting with HCV virions in vitro (Sourisseau, Michta et al. 2013).
Indeed, Shimizu et al. were able to develop functional mAbs directed against extracellular domains
of OCLN confirming that OCLN is required in late steps of HCV entry, and inhibition of OCLN via
mADbs resulted in inhibition of HCV infection in vitro and in vivo. Moreover, by using these mAbs
HCV cell-free and cell-to-cell transmission was efficiently blocked (Shimizu, Shirasago et al. 2018).
CD81-CLDN1 bound HCV virions are internalized via clathrin- and dynamin-dependent endocytosis
(Blanchard, Belouzard et al. 2006; Farquhar, Hu et al. 2012), a process in which EGFR-signaling
appears to be required (Baktash, Madhav et al. 2018).

These processes describe the complex mechanism of cell-free HCV entry, while an alternative route
of HCV entry is cell-cell transmission (Timpe, Stamataki et al. 2008; Brimacombe, Grove et al. 2011).
In contrast to cell-free HCV entry, HCV cell-cell transmission is insensitive to most neutralizing
antibodies and thus represents the main mode of viral spread. There is an overlap of host factors
required for both entry routes; however, while cell-free HCV entry is strictly dependent on CD81
interactions, cell-cell transmission can also occur in a CD81-independent mode of action (Witteveldt,
Evans et al. 2009; Jones, Catanese et al. 2010). Consequently, HCV-infected hepatocytes are found
in discrete clusters inside the liver in an abundance of one to fifty-four percentage of all hepatocytes
(Wieland, Makowska et al. 2014).
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Figure 5. HCV attachment and entry into hepatocytes (Wrensch, Crouchet et al. 2018).



Membrane fusion is mediated by viral glycoproteins E1 and E2, after acidification of HCV-bearing
endosomes leading to uncoating and cytoplasmic release of the genome (Douam, Dao Thi et al. 2014;
Lavillette, Bartosch et al. 2006; Sharma, Mateu et al. 2011).

b. Genome translation and co-translational processing

Upon its release into the cytoplasm, the positive-strand HCV RNA genome directly serves as a
template for viral polyprotein synthesis at the rough ER. Basically, a polyprotein precursor of 3000
aa in length is synthesized and co-and post-translationally cleaved by cellular (e.g. signal peptidases)

and viral proteases (NS2, NS3-4A heterodimer) into 10 mature viral proteins.

In contrast to eukaryotic messenger RNA (MRNA), HCV RNA genome lacks a 5’-terminal cap and
a 3’-terminal poly(A) tail. To overcome this genetic differences, the 5’UTR shows some special
structural finesse: (i) the presence of a functional IRES within the 5’UTR of the viral genome allows
to anchor in the ribosome and ensure cap-independent translation initiation (Lukavsky 2009), and (ii)
the direct targeting of liver-enriched miR-122, on two target sites within the 5’UTR as well as three
additional target sites in the coding region and the 3’UTR, stabilizes HCV RNA and contributes to
HCYV translation and replication (Niepmann, Shalamova et al. 2018; Jopling, Yi et al. 2005); even
more, this interaction prevents degradation of the viral genome by host degradation machinery
through exo -and endonucleases (reviewed in Li, Yamane et al. 2015). miRNAs are a class of small
non-coding RNA molecules that normally target specific mRNA by base-pairing with a
complementary site typically located at the 3’UTR, thus post-transcriptionally regulating gene
expression (Saliminejad, Khorram Khorshid et al. 2019). In fact, miR-122 acts completely contrary
to normal destabilizing actions of miRNAs on host mMRNAs by the binding and stabilization of the
5’UTR of HCV RNA genome and thus promoting viral replication and persistence (reviewed in Li,
Yamane et al. 2015).

After initiation of translation, protein synthesis is blocked by a signal sequence between core and E1
targeting the ribosome to the translocon complex of the ER where translation proceeds. The nascent
polypeptide is cleaved by the signal peptidases of the ER and the 191 aa core precursor is released
into the cytosolic side of the ER (Santolini, Migliaccio et al. 1994) and further processed into the
mature core protein of 21 kDa size by an ER-residing cellular protease (McLauchlan, Lemberg et al.
2002). E1 and E2 are the next viral proteins that are released from the polyprotein precursor after
cleavage by host signal peptidases, both containing a large N-terminal ectodomain and a C-terminal
hydrophobic anchor (Dubuisson 2000). E1 and E2 assemble to form a non-covalent heterodimer

(Dubuisson 2000); additionally, the C-termini of both glycoproteins are co-translationally integrated
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and anchored into the ER membrane resulting in protruding of their ectodomains into the ER lumen
(Cocquerel, Op de Beeck et al. 2002). NS2 is able to release itself from the polyprotein by its
autocatalytic activity (Grakoui, McCourt et al. 1993), while the remaining nonstructural proteins are
cleaved by NS3-4A protease (Tomei, Failla et al. 1993). All nonstructural viral proteins are anchored

within the ER and oriented towards the cytosolic side.

Of note, one could see miR-122 as well as the presence and expression rates of the HCV entry factors
(see p.7) and the close association with host-derived lipoproteins (see p.5) as possible reasons

explaining the strict hepatotropism of HCV (Dubuisson and Cosset 2014).

c. Genome replication

Importantly, the HCV genome does not integrate into the host genome and therefore continuous
replication of the viral genome is required for the maintenance of chronic infection. After processing
of the viral proteins, the nonstructural proteins NS3 to NS5B induce distinct membrane alterations

that contain the sites of viral RNA replication.

Through this enormous rearrangements of intracellular ER membranes, the HCV replication
complex, also known as membranous web, is formed by activity of viral NS4B (Gouttenoire, Penin
etal. 2010) and of the cellular lipid kinase phosphatidylinositol-4-kinase (PI14Ka), whose lipid kinase
activity is initiated by interaction with NS5A and NS5B (Paul, Hoppe et al. 2013; Ferraris, Beaumont
et al. 2013; Reiss, Rebhan et al. 2011). Additionally, the activated replication machinery also requires
NS4A acting as a co-factor forming a heterodimer with NS3 and triggering NS3 protease function
(Bartenschlager, Lohmann et al. 1995), and host factor cyclophilin A (CyPA) (Liu, Yang, Robotham
et al. 2009; Kaul, Stauffer et al. 2009). Of note, the viral RNA-dependent RNA polymerase, NS5B,
plays the key role in HCV RNA synthesis (Lohmann, Korner et al. 1997; Behrens, Tomei et al. 1996).
The membranous web is a typical morphological feature of positive-strand RNA viruses (Miller and
Krijnse-Locker 2008), and can be visualized via electron microscopy of HCV-infected hepatocytes,
often in close proximity with lipid droplets (LDs) indicating the tight link of HCV with host cell lipid
metabolism (see Figure 6); indeed HCV core (McLauchlan, Lemberg et al. 2002) and NS5A (Shi,
Polyak et al. 2002) could be found in association with LDs implicating a possibly key role in
coordination of viral replication and virion morphogenesis (Bartenschlager, Penin et al. 2011) (see
p.13).
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Figure 6. HCV replication and formation of the membranous web (adapted from Dubuisson and Cosset 2014).

In the primer-independent initiation step of RNA replication, a negative-strand of the genome is
generated serving as template for progeny positive-strand viral genomes. After formation of a
dinucleotide that acts as a primer, elongation of the nascent negative-strand RNA chain occurs
mediated by NS5B proceeding in a 3’-to-5" direction resulting in a positive-strand RNA molecule
without the help of other factors (Lohmann 2013). About termination only little is known, but one
can imagine that the polymerase dissociates from the template after reaching its end. Of note, the
polymerase NS5B does not work properly, but rather error-prone resulting in high genetic variability
of HCV isolates. The newly generated positive-strand RNA copies either serve as template for
continuing viral protein synthesis or move to LDs resulting in assembly of progeny virions or they
remain within the membranous web undergoing negative-strand RNA synthesis for replication
(Lohmann 2013). HCV is able to create an environment conducive to its replication and assembly:
the formation of the membranous web is one example. Moreover, the ratio of neutral to membrane
lipids is reduced upon HCV infection and membrane lipids as cholesterol and phospholipids were
gathered in microsomal fractions of HCV-infected cells (Hofmann, Krajewski et al. 2018).
Additionally, HCV seems to recruit various cytoplasmic nuclear pore complexes (Nups) to site of
replication where they could be found in increased numbers and accumulated at the membranous web
and even more co-localized with core or NS5A (Levin, Neufeldt et al. 2014; Neufeldt, Joyce et al.
2013). It is proposed that cytoplasmic Nups form channels across the double membrane structures of
the membranous web to serve as gatekeepers by facilitating movement of several HCV proteins and
host proteins without being recognized by the pattern recognition receptors (PRRS) of the innate
immune system (see Figure 7) (Levin, Neufeldt et al. 2014; Neufeldt, Joyce et al. 2013). Upon Dengue
and hepatitis A virus (HAV) infection, a similar redistribution of cytoplasmic Nups could be observed
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implicating a possible conserved role of cytoplasmic Nups upon positive-strand RNA virus infections
(Neufeldt, Joyce et al. 2013).

HOW Repiication Cometes 28

Prf _'- Care, MS5A |
Nuschpar : |
EaiAins l- 52 NS3

[ %)

Figure 7. Potential function of the cytosolic nuclear pore complexes in HCV replication and assembly (Neufeldt, Joyce et al. 2013).

d. Viral assembly and egress

After replication of the viral genome, RNA progeny can be used for encapsulation into new virions
which can be released using a noncytolytic pathway related to the VLDL secretory pathway (Chang,
Jiang et al. 2007; Jiang and Luo 2009; Gastaminza, Cheng et al. 2008; Huang, Sun et al. 2007).
Several viral and host proteins are involved in the viral assembly process that can be divided into an
early and late phase of assembly, whereupon detailed information on different steps is still lacking.
During the early phase, the nucleocapsid is formed by the involvement of different recruitment
processes with the aim to localize in close proximity to LDs and to the assembly site in the ER lumen:
(i) Shuttle between HCV core protein and LDs , (ii) movement of the replication complex through
action of NS5A, (iii) recruitment of glycoproteins E1 and E2 by interaction with NS2 (reviewed in
Popescu, Riva et al. 2014).

HCV core protein attaches to LDs through its hydrophobic domain, replacing adipose differentiation-
related protein (ADRP, Figure 6) leading to an accumulation of LDs in perinuclear regions (Boulant,
Douglas et al. 2008; Boulant, Montserret et al. 2006). In terms of assembly efficiency, core-LD
association is a crucial step resulting in downstream recruitment of viral proteins (Miyanari,

Atsuzawa et al. 2007). However, an inverse correlation of core-LD motility and assembly efficacy of
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HCV was determined implicating that core is see-sawing from LD-ER interface to the ER or vice-
versa (Shavinskaya, Boulant et al. 2007). Diacylglycerol acyltransferase 1 (DGAT1) is the key host
factor involved in this step of assembly by facilitating recruitment of core onto the LD by direct core-
DGATL1 interaction (Herker, Harris et al. 2010).

Since HCV RNA replication takes plays within the membranous web, two possible models are
proposed where assembly starts at ER membrane or at the surface of cytosolic LDs (cLDs): (1)
Transfer of HCV core protein onto the surface of cLDs and re-recruitment to ER membrane at
assembly sites where interaction of core with NS5A occurs concluding that cLDs might serve as
trafficking vehicles to transport core from sites of translation and replication to sites of viral assembly;
or (2) Initiation of nucleocapsid formation occurs on the surface of cLDs, while distributions of HCV
RNA to core protein is mediated by NS5A that is colocalized onto surface of cLDs. Currently,
discrimination between both hypotheses is not easy by considering the low assembly efficiency of

HCV per cell (reviewed in Bartenschlager, Penin et al. 2011).

NS5A as well as DGAT1 seem to play a central role in the early stage of viral assembly. Indeed, an
interaction between the hyperphosphorylated form of NS5A and core could be observed leading to
the relocation of NS5A to LDs (Masaki, Matsunaga et al. 2014), while the hypophosphorylated form
of NS5A correlates with genomic replication (Evans, Rice et al. 2004). Given the direct interaction
of core-DGATL, also NS5A directly interacts with DGATL1 resulting in its recruitment to LDs
(Camus, Herker et al. 2013). Additionally, an interaction between NS5A and ApoE is also suggested
to contribute to the recruitment of this apolipoprotein to assembly sites (Benga, Krieger et al. 2010).
Besides, NS5A was also reported to interact with Rab18, a small G protein, to facilitate its recruitment
to LD and HCV assembly site (Salloum, Wang et al. 2013). The transition from replication to
assembly is represented by the recruitment of NS5A together with the replication complex to LDs

(reviewed in Lindenbach and Rice 2013).

The last step of the early phase, and in fact the first step of late phase, of viral assembly is the
recruitment of envelope proteins at assembly sites. Several groups reported that the viral envelope
glycoproteins E1 and E2 are bound in complexes composed of NS2, p7 and NS3 (Jirasko, Montserret
et al. 2010; Popescu, Callens et al. 2011; Stapleford and Lindenbach 2011; Ma, Anantpadma et al.
2011) resulting in an accumulation of these complexes in close proximity of NS5A, core and LDs
(Jirasko, Montserret et al. 2010; Popescu, Callens et al. 2011). However, the concrete nature and
composition of this complex is not yet fully understood, however, it could be determined that NS2
and HCV E2 are associated with detergent-resistant membranes (DRMs) which are required for
efficient HCV assembly (Shanmugam, Saravanabalaji et al. 2015); moreover, the entire replication

complex as well as the HCV structural proteins could be shown to be associated with those DMRs
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(Aizaki, Morikawa et al. 2008; Aizaki, Lee et al. 2004; Paul, Hoppe et al. 2013; Shi, Polyak et al.
2002). Recently, Boyer et al had a deeper look on the nature of this NS2 complex and found a direct
protein-protein interaction of NS2 and E1E2 using immunoprecipitation assays revealing an
association of NS2 with NS3 via DRMs. Contrarily, NS5A and E1E2 do not associate but rather
interact separately with NS2-E1-E2-NS3 complex via unstable DMRs (Boyer, Dreneau et al. 2019).
Interestingly, core was found to interact with NS2 and E1E2 through unstable DMRs suggesting a
crucial role of DMRs transporting the NS2-E1-E2-NS3-NS5A-core complex for HCV assembly
initiation (Boyer, Dreneau et al. 2019).

The late phase of viral assembly is the maturation and release of HCV particles in tight association
with the host VLDL pathway within the ER lumen (Chang, Jiang et al. 2007; Jiang and Luo 2009;
Gastaminza, Cheng et al. 2008; Huang, Sun et al. 2007). Indeed, it could be shown that HCV core
accumulates in lipid fractions which contain high amounts of cholesterol and sphingolipids (Matto,
Rice et al. 2004); these two lipids are observed to be enriched in viral particles and in turn involved
in their infectivity (Aizaki, Morikawa et al. 2008). The nucleocapsid could be integrated into the core
of luminal LDs (luLDs); however, how E1 and E2 are integrated into virions remains unclear. It is
proposed that there is an interaction between NS3, E1 and E2 by either NS2 alone or together with
p7 (Yi, Maetal. 2009; Phan, Beran et al. 2009). Indeed, two studies observed that NS2 brings together
E1l, E2, p7, NS3 and NS5A in close proximity of LD by protein-protein interactions between all
involved components (Jirasko, Montserret et al. 2010; Ma, Anantpadma et al. 2011). Since HCV E2
is the well-studied HCV glycoprotein that plays the major role for neutralization of HCV-specific
antibodies and the binding capacity to CD81, the involvement of HCV E1 in HCV replication cycle
still remains to be elucidated. By studying the role of E1 for viral morphogenesis, Haddad et al used
mutants of E1 observing first a shift in the receptor usage from CLDN1 to CLDNG6 for two mutants,
and second virus carrying one mutant (D263A) was assembled and released but devoid of viral RNA
revealing a crucial role for E1 in incorporating HCV RNA into the nucleocapsid (Haddad, Rouille et
al. 2017). The step in which the apolipoproteins incorporate into mature infectious particles is also
not fully clear. It is assumed that ApoB-positive precursors, formed in the rough ER (rER), fuse
together with ApoB-negative precursor which incorporate the viral nucleocapsid resulting in LVPs
associated with nonexchangeable ApoB (see p.5). ApoE and ApoC, both exchangeable
apolipoproteins, could be associated to the LVPs within the ER lumen. However, there are differences
between HCV particles depending in which cell type they are produced (detailed comparison is found
on p.20).
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ER-Lumen

Figure 8. Model of the formation of LVPs and comparison to cell culture-derived HCV (HCVcc).

Precursors are formed: (1) VLDL2 resulted from the translocation of nascent ApoB into the ER lumen and the association with
phospholipids, triglycerides and ApoE/C which are not shown for clarity (left), (2) luminal LD (IuLD) is generated at the smooth ER
(SER) or the membranous web (m.w.) and enriched with triglycerides via MTP (right). E1 and E2 associate with luLD after release
from the ER membrane and the nucleocapsid is proposed to insert within the hydrophobic core of the luLD. In primary human
hepatocytes the nucleocapsid-loaded luLD fuses with the VLDL2 resulting in a LVP, while in the cell culture model VLDL1 formation
is lacking, cell culture-derived (HCVcc) is released without ApoB association (more details of in vitro models see on p.20). For clarity
reasons, VLDL1 is generated as a fusion of VLDL with the triglyceride-riche luLD (Bartenschlager, Penin et al. 2011.

LVPs are transported along the VLDL secretory pathway (reviewed in Bartenschlager, Penin et al.
2011) to the Golgi, where the HCV glycoproteins E1 and E2 are post-translationally modified
(reviewed in Vieyres, Dubuisson et al. 2014). The exact mechanism of HCV budding at the plasma
membrane is still lacking. Immunoprecipitation and electron microscopy (EM) analysis revealed that
HCV LVPs assemble in the ER and are transported to Golgi through vesicular transport mediated by
COPII vesicles to enter the Golgi secretory pathway (Syed, Khan et al. 2017). In line with these
findings, Takacs et al could observe that the secretion of ApoE and ApoB is differentially controlled
by Rablb which is a major regulator of transport from the ER to Golgi, and thus regulates secretion
of HCV as well (Takacs, Andreo et al. 2017). Golgi protein 73 (GP73) has been demonstrated to be
involved in HCV secretion: normally as a Golgi membrane resident protein and upregulated upon
HCV infection, GP73 is colocalized with the HCV replication complex in Huh7.5.1 cells and is able
to directly mediate an interaction of NS5A and ApoE and thus promoting the secretion of HCV
(Zhang, Wang et al. 2016). These studies all supported the idea that HCV secretion and budding
occurs through the Golgi secretion pathway. However, on the other hand could be demonstrated that
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HCV is hijacking proteins of the endosomal sorting complex required for transport (ESCRT), e.g.
hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), for budding at the plasma
membrane. Indeed, HRS is able to directly interact with NS2 and NS5A in HCV-infected cells
supporting efficient viral assembly as well as viral budding (Barouch-Bentov, Neveu et al. 2016). In
line with this, another group found viral particles and structural proteins in endosomal compartments
but not in compartments of the Golgi assuming that release of HCV occurs through noncanonical
secretory route which is different from the canonical Golgi-mediated secretion (Bayer, Banning et al.
2016).

In sum, the above described processes followed the hypothesis that virions exist as hybrid lipoviral
particles protecting from neutralization with HCV-specific antibodies (Andre, Komurian-Pradel et al.
2002). However, in a proposed two-particle model, the virus and serum lipoproteins stably interact
as separate particles via protein-protein interaction. Indeed, when cholesterol is chemically removed
from HCVcc particles their infectivity is lost, while adding back exogeneous cholesterol led to
restorage (Aizaki, Morikawa et al. 2008). Additionally, another group could observe a rapid shift of
buoyant density of viral particles in serum of fasting HCV patients concluding that virions and serum
lipoproteins associate in a transient and exchangeable way (Felmlee, Sheridan et al. 2010). Both

hypotheses could be imaginable, but they still need to be confirmed.

1.3  Model systems to study HCV

1.3.1 Invitro model systems

After its discovery in 1989 (Choo, Kuo et al. 1989), several efforts to culture HCV in vitro failed
through lacking robustness, inefficient replication and thus failure for detailed molecular studies of
the viral life cycle (reviewed in Bartenschlager and Lohmann 2000). After ten years of research,
several breakthrough developments led to improvement to study the virus in vitro: the replicon system
in 1999 followed by retroviral pseudoparticles in 2003 and finally the cell culture system

recapitulating the entire viral lifecycle in 2005 (see Figure 9).

a. HCV replicon system

The establishment of sub-genomic replicons that autonomously amplify in cultured human hepatoma
cells was a first major breakthrough to study viral replication: the genotype 1b HCV genome that was
derived from a chronically infected patient was trimmed to those components essential for replication
(NS3 to NS5B), while the viral structural genes (core, E1, E2) as well as p7 and NS2 were deleted
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(see Figure 9). Practically, this shortened HCV genome was cloned into a plasmid resulting in a
replicon encoding the 5’UTR of HCV, the first 12 codons of the core protein fused with a G418
selection cassette, the IRES from encephalomyocarditis virus (EMCV) allowing translation of the
non-structural proteins, as well as viral NS3, NS4A, NS4B, NS5A, NS5B, and 3’UTR. After
undergoing in vitro transfection, the construct is transfected into human hepatoma 7 (Huh7) cells (see
p.20) resulting in direct translation of viral RNA and G418 selection of those Huh7 cells displaying
high levels of HCV RNA replication (Lohmann, Korner et al. 1999). Subsequently, full length HCV
replicons were developed, ultimately leading to the establishment of recombinant full-length
infectious HCV (see HCVcc below).

b. HCV Pseudoparticles (HCVpp)

Four years after developing the replicon system, the next important achievement was the generation
of retroviral pseudoparticles displaying functional HCV glycoproteins, E1 and E2, for dissection of
HCV entry process. In basic principal, pseudoparticles are retroviral capsids with incorporated viral
glycoproteins in their envelopes. Consequently, these pseudoparticles allow to study the relevance
and need of those glycoproteins in viral attachment and entry processes; the latter can be easily
quantified using a reporter gene located inside the pseudoparticles. HCVpp could be successfully
developed by integrating HCV glycoproteins in retroviral particles: A system in which 293T cells are
co-transfected with expression vectors encoding HCV E1 and E2, the gag-pol proteins of either
murine leukemia virus (MLV) or human immunodeficiency virus (HIV), and a retroviral genome
encoding a reporter gene such as green fluorescent protein (GFP) or luciferase (Bartosch, Dubuisson
et al. 2003; Hsu, Zhang et al. 2003) (see Figure 9). Using HCVpp is an elegant way to study HCV
entry independently of the entire viral life cycle which in turn highlights the limitation of HCVpp to
the entry process: they are produced in a non-liver cell line and thus assemble as retroviruses on
plasma membranes without getting associated with lipoproteins, contrarily liver-generated HCV

particles assemble in the ER in close association with lipoproteins (see p.5 and 13).

c. Cell culture-derived HCV (HCVcc)

After successful development of sub-genomic replicons and the HCVpp system, the challenge to
establish an HCV permissive cell culture system remained.

The initial production of cell culture-derived HCV particles is based on the genotype 2a HCV strain,
namely JFH1 (Japanese Fulminant Hepatitis 1) that was isolated from a Japanese patient with acute
viral hepatitis (Kato, Furusaka et al. 2001). Based on the wild-type JFH1 genome or chimeras

consisting of the JFH1 replicase genes (NS3 to NS5B) and core to NS2 regions of alternative HCV
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genomes, three groups proposed a robust in vitro system recapitulating the entire HCV life cycle in
Huh7 cells (Lindenbach, Evans et al. 2005; Wakita, Pietschmann et al. 2005; Zhong, Gastaminza et
al. 2005) which since then is the laboratory standard for in vitro HCV studies. These produced
particles, well-known as cell culture-derived HCV (HCVcc), are able to infect new target cells,
thereby completing the entire HCV life cycle (see Figure 9). This achievement led to the development
of several chimeras that consist of JFH1 replicase genes NS3 to NS5B and core to NS2 of alternative
HCV genomes allowing to study HCV entry, neutralization and assembly of all seven known HCV
genotypes. Among all these chimeras, Jcl, consisting of the JFH1 nonstructural proteins (NS3 to
NS5B) and core-E1-E2-p7 and partially NS2 of J6 (HCV gt 2a), produces infectious virus titers that
are around 100 to 1000-fold higher than the original JFH1 strain (Pietschmann, Kaul et al. 2006).
Over the years, chimeras of all seven known genotypes of HCV based on JFH1 have been developed
giving the possibility to study the entire viral life cycle and additionally, neutralization via HCV-
specific antibodies (Gottwein, Jensen et al. 2011; Gottwein, Scheel et al. 2009; Scheel, Gottwein et
al. 2008; Scheel, Gottwein et al. 2011; Jensen, Gottwein et al. 2008; Gottwein, Scheel et al. 2007),
however, with differences concerning infectivity. In order to rapidly and efficiently detect viral
replication and infection, reporter genomes of different HCV chimeric genomes containing luciferase
or GFP were generated (reviewed in Vieyres and Pietschmann 2013). Furthermore, non JFH1-based
HCVcc enabling the production of recombinant HCV of different genotypes have been established
but JFH1-based HCVcc remain the most widely used and efficient models.
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Figure 9 In vitro HCV cell culture models.

In vitro HCV cell culture models to investigate different steps of the viral life cycle: HCV pseudoparticle system (left) to study viral
entry, the HCV replicon (middle) system to study viral replication, and full-length recombinant cell culture-derived HCV (right) system
to investigate the entire viral replication cycle. (Adapted from Steinmann and Pietschmann 2013).
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d. HCV-permissive host cells

Since HCV primarily replicates in human hepatocytes, cultured primary human hepatocytes (PHH)
from liver resection of patients represent the most physiological in vitro model closest to the natural
host (Ploss, Khetani et al. 2010). However, PHH display several disadvantages that make them not
easy to handle in laboratories: difficult to obtain, high donor-dependent variability and limited time
of culture (time-dependent dedifferentiation and approximately two weeks before apoptosis occurs);
even worse, once infected with HCV PHH only show low-level replication (Fournier, Sureau et al.
1998; Molina, Castet et al. 2008; Rumin, Berthillon et al. 1999), hence making it difficult to conduct

complex experiments.

Thus, the most HCV-permissive and widely used cell line are Huh7 human hepatoma cells that were
originally isolated from HCC of a Japanese patient (Nakabayashi, Taketa et al. 1982). Several Huh7
subclones with increased HCV permissiveness could be obtained, by selection of replicon-containing
Huh7 cells. The subclones Huh7.5 (Blight, McKeating et al. 2002), Huh7.5.1 (Zhong, Gastaminza et
al. 2005), and Huh7-Lunet (Friebe, Boudet et al. 2005) cells were obtained after cure of the HCV-
transfected Huh7 cells from the replicon via treatment with INF-a, INF-y or selective inhibitors. It is
not entirely clear why these Huh7 subclones yield higher levels of HCV RNA replication. However,
in case of Huh7.5 cells mutations in the retinoic acid-inducible gene | (RIG-I) were shown to be

involved in increased viral replication (Sumpter, Loo et al. 2005).

However, Huh7-derived cells are dedifferentiated and asynchronously dividing cancer cells, in
contrast to primary hepatocytes which are differentiated and quiescent (Michalopoulos and
DeFrances 1997). However, they show hepatocyte-specific gene expression and arrested cell growth
by adding 1% of dimethyl sulfoxide (DMSO) to the culture medium, while permissiveness to HCV
is maintained (Sainz and Chisari 2006); and thus are closer to hepatocytes.

Importantly, cultured Huh7-derived cells and in vivo hepatocytes show differences in their capability
in producing lipoproteins, and thus HCV particles differ in their properties in dependency of the cells
in which they are produced. In infected patients, the heterogenous density of circulating HCV
particles and their infectivity is negatively correlated meaning low-density viruses are more infectious
(Bradley, McCaustland et al. 1991; Hijikata, Shimizu et al. 1993). Those HCV particles can be
immunoprecipitated via ApoB-specific antibodies confirming the association of HCV with
triglyceride-rich lipoproteins (TRLs) within hepatocytes and their circulation via the bloodstream as
LVPs (Andre, Perlemuter et al. 2005; Nielsen, Bassendine et al. 2004). In comparison to patient-
derived LVPs, the negative correlation for density and infectivity could also been shown for HCVcc
(Miyanari, Atsuzawa et al. 2007; Podevin, Carpentier et al. 2010; Haid, Pietschmann et al. 2009).
Nevertheless, HCVcc were shown to be captured via ApoE (Chang, Jiang et al. 2007; Merz, Long et
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al. 2011) - and not ApoB-specific antibodies (Merz, Long et al. 2011; Huang, Sun et al. 2007)
highlighting the tight association of HCVcc with ApoE and ApoC and the inefficiency of Huh7-
derived cells in producing authentic VLDL (reviewed in Bartenschlager, Penin et al. 2011; Vieyres
and Pietschmann 2019). However, Piver et al described that at least a small fraction of HCVcc
derived from Huh7.5 cells displayed ApoB and ApoE as well as E1E2 on the surface after
immunogold staining following immunocapture (Piver, Boyer etal. 2017). Recently, it was confirmed
that Huh7.5 cells growing in serum-free medium produced immature HCV particles, however, when
incubating those cells/particles with physiological serum conditions and concentrations of
lipoproteins resulted in the maturation of HCV particles to fully lipidated and notably, ApoB-
containing infectious virions displaying low density very similar to patient-derived LVPs (Denolly,
Granier et al. 2019). In addition to HCV maturation through the cell secretory pathway, also
extracellular lipidation of particles may occur through serum itself properly after egress (Denolly,
Granier et al. 2019). In contrast, HCV nucleocapsids derived from patients and cell culture appeared
to be similar in size and structure and interestingly those nucleocapsids are found to be surrounded
by an irregular, detergent-sensitive crescent which may be consistent with lipids (Piver, Boyer et al.
2017).

1.3.2 Invivo model systems

Cell culture model systems to study HCV are of high importance, however, the complex
immunological host responses and liver disease progression cannot be fully answered in vitro. Since
lacking control parameters such as time and dose of infection strongly limited clinical research in
patients, attention of research was directed to animal models such as chimpanzees, tree shrews and
rodents by keeping in mind that ideally, similarly to HCV-infected patients, HCV-infected animals
should develop chronicity followed by liver disease progression towards cirrhosis and HCC.

Chimpanzees (Pan troglodytes) are with more than 98% genetic identity the closest living relatives
to human and susceptible to HCV infection (Abe, Kurata et al. 1993), and therefore represented an
ideal model to study HCV in vivo for over 20 years. After HCV infection, viremia as well as antiviral
innate and adaptive immune responses are detectable following a mild acute hepatitis. In contrast to
humans, chimpanzees rarely develop chronicity (Bassett, Brasky et al. 1998; Major, Dahari et al.
2004), and thus do not develop progressive liver disease (Walker 1997). High costs and increased
ethical concerns limited the use of this animal model (National Research Council Committee on the

Use of Chimpanzees in and Behavioral 2011), although it is the only well-studied model to study
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protective immunity against HCV, probably leading to vaccine development (Cooper, Erickson et al.
1999).

The tree shrew (Tupaia belangeri), a squirrel-like mammal originally found in South-East Asia, has
also been shown to be susceptible to HCV infection (Xu, Chen et al. 2007; Xie, Riezu-Boj et al. 1998)
followed by chronicity and development of liver disease in some tree shrews (Amako, Tsukiyama-
Kohara et al. 2010). Moreover, ethical concern and lack of tool to analyze HCV-host interactions in

these animals preclude a wide usage of this model.

Rodent models represent a cheap and easy to breed model to study HCV. In general, mice and rats
are not susceptible for HCV infection and need to undergo experimental modifications. The most
commonly used rodent models can be divided into (i) the human liver-chimeric mouse models and

(ii) the transgenic mouse models:

(i) In human liver-chimeric models, mouse livers are humanized by xenotransplantation of primary
human hepatocytes or hepatoma cell lines resulting in a subsequent susceptibility to HCV infection.
To successfully xenograft human hepatocytes into mouse livers, the xenograft recipients require
specific genetic defects leading to death of the original mouse hepatocyte and to dysfunctionality of
the mouse immune system. Currently, two major types of mice are used: first, mice overexpressing
the urokinase plasminogen activator (UPA) gene under albumin promotor control were crossed with
mice that suffer from a severe combined immunodeficiency syndrome (SCID) resulting in uPA-SCID
mice; once xenografted with human hepatocytes, these mice are efficiently infected with HCV
followed by chronic infection (Mercer, Schiller et al. 2001) and led to achievements concerning
preclinical studies of antiviral compounds (Mailly, Xiao et al. 2015) and understanding of steps in
the viral lifecycle (e.g. composition of LVPs, role of HCV-specific antibodies or viral entry) in vivo
(Lindenbach, Meuleman et al. 2006; Vanwolleghem, Bukh et al. 2008; Lacek, Vercauteren et al.
2012; Meuleman, Catanese et al. 2012).

Second, mice that have fumarylacetoacetate hydrolase (Fah™) deficiency accumulate hepatotoxic
metabolites consequently leading to liver failure (Grompe, al-Dhalimy et al. 1993). These Fah”" mice
were crossed with mice suffering from severe immune system dysfunctionality (Rag2” IL2Ry™!")
resulting in FRG mice. The liver degeneration resulting from depletion of Fah can be prevented by a
drug, namely NTBC (2-(2-nitro-4-trifluoromethylbenzoyl)1,3-cyclohexanedione)). Hence, this
model provides an advantage over uPA-SCID mice: the timing of human hepatocyte transplantation
can be anticipated by removing NTBC (Azuma, Paulk et al. 2007; Bissig, Le et al. 2007).

(ii) In contrast to human liver-chimeric mouse model, where mice show severe immune defects, the

genetically humanized mouse models serve basically to study adaptive immune responses and
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immunoevasion mechanisms. The mouse livers in these model systems are provided with all human
host factors required to enable (parts of) the HCV replication cycle in mouse hepatocytes. Expression
of SR-BI, OCLN, CLDN1 and CD81 under an albumin promotor enables to detect HCV entry in
mouse livers (see p.7); of note, in line with results from in vitro experiments (see p.7) expression of
human OCLN and CD8L1 is the minimum requirement enabling the study of viral entry in mouse
livers (Dorner, Horwitz et al. 2011). Additionally, knockout of STATL, IRF1, IRF7 and IFNARL, all
important players in innate immunity, results in low-level HCV RNA replication and production of

infectious virus in mice (Dorner, Horwitz et al. 2013).

1.4 HCV treatment

As we now deep dived into the HCV molecular biology to which knowledge has markedly advanced,
molecular mechanisms of disease progression and vaccine development still needs to be figured out.
By thinking about viral infection, the aim of every viral therapy is eradication of virus, known in
hepatitis C clinical context as sustained virologic response (SVR) which is defined as undetectable
HCV RNA levels over 12 to 24 weeks after end of therapy.

Throwback to the 80’s and 90’s, the only available therapy for HCV infection was based on interferon
(INF). INF-a exerts its antiviral effect by inducing IFN-stimulated genes that in turn inhibit HCV
replication. Until 1998, three INF-a injections a week for up to 48 weeks were the therapy of choice,
unfortunately resulting in cure of only one-fifth of infected patients (Carithers and Emerson 1997;
Hoofnagle and di Bisceglie 1997). This application was improved by injection of INF-o combined
with orally taken ribavirin up to 24 to 48 weeks, an antiviral medication which could increase the
antiviral effect of INF-a resulting in around 35-45% of cure in infected patients (McHutchison,
Gordon et al. 1998). The addition of polyethylene glycol to INF-a (PEG-INF-a) gave rise to increased
half-life of the drug and in combination with ribavirin an increased effectivity (Manns, McHutchison
etal. 2001) was achieved replacing the standard INF-a for more than ten years. Of note, HCV-infected
patients responded differently to the PEG-INF-a/ribavirin therapy depending on their HCV genotype:
while a SVR of around 50% was achieved for patients infected with HCV genotype 1, up to 80% of
SVR was shown for patients infected with genotypes 2, 3, 5 and 6 (Antaki, Craxi et al. 2010).
Nevertheless, the INF-based therapy had many side-effects including flu-like symptoms, gastritis or
even worse depression (Manns, Wedemeyer et al. 2006).

The achievement of uncovering key viral proteins involved in the HCV replication cycle led to the
development of direct-acting antivirals (DAAs) which are specifically targeting nonstructural

proteins of HCV. DAAs can be classified into four main groups: NS3/NS4A protease inhibitors,
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NS5B nucleoside and non-nucleoside polymerase inhibitors and NS5A inhibitors. In 2011, a NS3/4A
protease inhibitor was combined with the PEG-INF-o/ribavirin increasing SVRs for genotype 1.
Nevertheless, this triple therapy was only available for genotype 1-infected patients combined with
severe side-effects (Bacon, Gordon et al. 2011; Jacobson, McHutchison et al. 2011; Zeuzem,
Andreone et al. 2011). In 2014-2015, new interferon-free DAA regimen, including sofosbuvir (NS5B
inhibitor) and daclatasvir or ledipasvir (NS5A inhibitor), became much more efficient (SVR around
90%) with the big plus of only little side-effects (Afdhal, Zeuzem et al. 2014; Afdhal, Reddy et al.
2014; Sulkowski, Gardiner et al. 2014). The combination of different DAAs - that are now the current
standard of care - lead to highly improved SVR rates and shortened therapy duration; moreover,
defined DAA combinations are efficient for all HCV genotypes resulting in SVR rates of 95%
(reviewed in (Asselah, Boyer et al. 2016; Li and De Clercq 2017). Currently recommended DAAS
are: dasabuvir (DSV), elbasvir (EBR), glecaprevir (GLE), grazoprevir (GZR), ledipasvir (LDV),
ombitasvir (OBV), pibrentasvir (PIB), paritaprevir (PTV), ritonavir (r), sofosbuvir (SOF), velpatasvir
(VEL) and voxilaprevir (VOX). Among all these recommended DAAs, the indication is depended on
the HCV genotype, the severity of liver disease as well as prior therapy. Combinations of DAAs are
very efficient, even if combinations of 2 regimens is preferred to triple combination in order to avoid

drug-drug interactions and severe side-effects (see Table 1) (EASL 2018).

Pangenotypic regimens Genotype-specific regimens

SOF/ oBw/
senowpe SOFl Giepe vew  SOF SZR pry,
VOx Dsv
Genotype 1a Yes Yes Yes® Yes® -
Genotype 1b Yes Yes Yes Yes Yes
Genotype 2 Yes Yes
Genotype 3 Yes® Yes
Genotype 4 Yas Yes
Genotype 5 Yes Yas
Genotype 6 Yes Yes

Table 1. Combinational DAA treatment.

Combination of DAA treatment. Recommendation for treated and non-treated patients without or with compensated cirrhosis (a-e).
*Triple combination. DSV: dasabuvir, EBR: elbasvir, GLE: glecprevir, GZR: grazoprevir, LDV: ledipasvir, OBV: ombitasvir, PIB:
pibrentasvir, PTV: paritaprevir, r: ritonavir, SOF: sofosbuvir, VEL: velpatasvir, VOX: voxilaprevir (EASL 2018).

Even if may appear that with the achievement of DAAs HCV research could be disregarded, there
are still some important challenges that remain (reviewed in Bartenschlager, Baumert et al. 2018).
First, DAAs are only available to around 10% of infected patients (Edlin 2016) and the high costs of
DAA-based therapies limit the access to a minority (lyengar, Tay-Teo et al. 2016). Second, there are

some difficult-to-treat patient populations existing with decreased SVR in response to DAAS, even
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more in the presence of advanced liver disease progression. These patients are less able to clear the
virus suggesting that there is still need to investigate the fine tuning of optimal DAA combination,
treatment duration and dosages for difficult patient populations (Hezode, Fontaine et al. 2013; Ferenci
2015). Third and in line with the second limitation, the risk to develop HCC can be reduced after
SVR, but HCC can occur after years of viral clearance suggesting that there is a “point-of-no-return”
when virus-induced liver disease came to the point where HCC will develop even in the absence of
HCV (Baumert, Juhling et al. 2017). Fourth, a minority of patients can develop resistance to DAA
due to the error-prone HCV RNA polymerase which creates a pool of genetic variants in each patient
leading to viral polymorphism in DAA-targeted regions resulting in resistance to DAAs (Esposito,
Trinks et al. 2016; Pawlotsky 2016).

In addition to DAAs, the standard of care for chronic hepatitis C, alternative strategies have been
developed. When reminiscing about the HCV replication cycle, several host factors play a crucial
role in different steps. When reminiscing about the HCV replication cycle, several host factors play
a crucial role in different steps.

Indeed, host-targeting agents (HTAs) appeared to be of therapeutic interest. Monoclonal antibodies
specifically targeting CD81 (Fofana, Xiao et al. 2013), CLDN1 (Mailly, Xiao et al. 2015; Fofana,
Krieger et al. 2010) or SR-BI (Meuleman, Catanese et al. 2012; Zahid, Turek et al. 2013) were
developed and could be shown to efficiently inhibit viral entry in vitro and in vivo in liver chimeric
mice. Additionally, small molecule inhibitors of SR-BI, ITX 5061 and ITX 7650, could efficiently
block HCVcc and HCVpp infection of PHH or human hepatoma cell lines (Syder, Lee et al. 2011).
ITX 5061 has been evaluated in phase 1 clinical trials (ClinicalTrials.gov identifier: NCT01165359
and NCT01292824). Moreover, a monoclonal CLDN1-specific antibody was shown to cure chronic
HCV infection in the uPA-SCID chimeric mouse model (Mailly, Xiao et al. 2015; Colpitts, Tawar et
al. 2018). Of note, synergy between host-targeting entry inhibitors combined with DAA-based
treatment could be demonstrated (Xiao, Fofana et al. 2015; Paciello, Urbanowicz et al. 2016).
Another important host factor for the HCV life cycle is liver-enriched miR-122 that has been shown
to play a crucial role in the stabilization of HCV RNA and consequently in HCV replication and
translation (Jopling, Yi et al. 2005). miR-122 antagonists significantly decrease HCV replication
(Jopling, Yi et al. 2005; Jopling, Schutz et al. 2008) and miravirsen and RG-101 demonstrated
efficacy against HCV in clinical trials (van der Ree, de Vree et al. 2017; Stelma, van der Ree et al.
2017). In fact, these inhibitors can be regarded as pan-genotypic antivirals due to the conserved miR-
122 binding sites across HCV genotypes (Li, Gottwein et al. 2011; van der Ree, de Vree et al. 2017).
Cyclophilin A (CypA) inhibitors, namely alisporivir or DEB025, could efficiently block CypA
interaction with NS5A leading to inhibition of HCV replication and additionally, these inhibitors are
able to rehabilitate the innate immune response against HCV (Daito, Watashi et al. 2014; Hopkins,
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Bobardt et al. 2012; Naoumov 2014). Phase 3 clinical trials that examined a triple therapy with
alisporivir (DEB025), PEG-INF and RBV have been completed (ClinicalTrials.gov identifier:
NCT01446250, NCT01318694).

In fact, the given examples represent only a small overview of HTAs that have been studied for their
ability to improve antiviral treatment, several other host factors involved in the viral life cycle are at
different stages of preclinical or clinical development (reviewed in Crouchet, Wrensch et al. 2018;
Zeisel, Crouchet et al. 2015; Zeisel, Lupberger et al. 2013 (see Figure 10).
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Figure 10. Host-targeting agents (HTAS) at different steps of the HCV replication cycle (Crouchet, Wrensch et al. 2018).
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Taken together, HCV infection can now be regarded as curable disease, although some limitations
and challenges still exist. Since HCC can develop even after successful eradication of HCV, a current
question is what kind of molecular imprinting is left by HCV in the host genome that drives

carcinogenesis even after SVR in patients (see HEPATITIS C — An Introduction).
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II. PROTEIN GLYCOSYLATION

2.1 Post-translation modifications of HCV proteins

Post-translational modifications (PTMs) are as the name implies covalent and enzymatic
modifications of proteins after completed translation and needed for protein maturation and
activation. Different PTMs are known, some occur more often than others: e. g. phosphorylation,
glycosylation, ubiquitination, sumoylation, nitrosylation, methylation, acetylation and lipidation;
proteolysis can also be regarded as a PTM. In general, proteins are either directly modified after
translation for stabilization, mediation of correct folding or recruitment of the nascent protein to their
cell compartment of need; or PTMs occur after folding and localization to activate or inactivate
proteins (cell signaling) contributing to the biological activity of the protein. Of note, both
possibilities how and when PTMs takes place do not exclude each other but are often combined in a

stepwise mechanism. While protein PTMs can be reversible, proteolysis processes are permanent.

Since HCV replication cycle is depended on the interaction with several host cell factors, it is not
surprising that HCV proteins undergo PTMs for protein function and regulation as well. One can
summarize a few key modifications that occur during the viral replication cycle: the proteolytic
cleavage of the polyprotein, glycosylation of the HCV envelope glycoproteins E1 and E2, as well as
some PTMs of the nonstructural proteins. Among the latter, phosphorylation of NS5A has been well-
described: NS5A is found in a hypo-or hyper-phosphorylated form which is important for regulation
of its function (Chong, Hsu et al. 2016; Appel, Pietschmann et al. 2005). Indeed, it could be shown
that knockout of kinases important for this phosphorylation consequently led to reduced NS5A
phosphorylation resulting in lower HCV RNA levels (Lee, Chen et al. 2016), suggesting that the
phosphorylation status of NS5A plays a crucial role for HCV replication (Appel, Pietschmann et al.
2005). It is suggested that PTMs are important for the location of HCV proteins, however, questions
about the function and biological relevance of these PTMs still need to be answered (reviewed in
Hundt, Li et al. 2013).

The focus here are glycosylation and to a small extent phosphorylation, the most common PTMs, that
could compete for the same target protein/residue.

Phosphorylation is defined in simple words as the dynamic and reversible addition or removal of
phosphate residues to tyrosine, serine and threonine residues by kinases and phosphatases,
respectively, resulting in activation or inactivation of proteins. Glycosylation, on the other hand, is
the addition of sugar-moieties to proteins, ranging from simple monosaccharide modifications to

highly complexed branched polysaccharide changes. The sugar-moieties are added either to amino
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group of asparagine (N-linked) in the ER or to the hydroxyl group of serine/threonine (O-linked) of
nuclear and cytoplasmic proteins (reviewed in Levine and Walker 2016) (see Figure 11).
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Figure 11. Basic principle of N-and O-linked glycosylation, and phosphorylation.
-R: sugar residues, -POs: phosphate residues (adapted from Levine and Walker 2016).

When looking retrospectively at section 1.2.2, it was mentioned that the big challenges of HCV
vaccine development are the genetic heterogeneity of the virus, its ability to rapidly mutate and its
close interaction with the host lipid metabolism leading to escape from protective immune responses.
However, another important key challenge regarding vaccine design is high glycosylation of the
ectodomains E1 and E2 with N-glycans resulting in a glycan shield and representing one-third of the
heterodimer mass (Goffard, Callens et al. 2005) (reviewed in Lavie, Hanoulle et al. 2018). This shield
enables the virus to avoid recognition by the humoral immune response and prevents neutralization

by HCV-specific antibodies, since glycans are host-derived and thus recognized as self-patterns.

There are N-glycosylation sites that are conserved among the seven genotypes but there are some N-
glycosylation sites present only in distinct genotypes, however all of the N-glycosylation sites have
been confirmed to be engaged by glycans (Goffard, Callens et al. 2005). Four N-glycosylation sites
can be found for E1 at positions 196 (E1IN1), 209 (E1IN2), 234 (E1N3), and 305 (E1N4) on the
reference strain H77 (gt 1a), additionally N-glycosylation sites at position 250 (gt 1b and 6) and
position 299 (gt 2b) could be found (Helle, Goffard et al. 2007). Whereas E2 contains nine conserved
N-glycosylation sites at position 417 (E2N1), 423 (E2N2), 430 (E2N3), 448 (E2N4), 532 (E2N6),
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556 (E2N8), 576 (E2N9), 623 (E2N10), and 645 (E2N11); two additional glycosylation sites can be
detected at position 476 (E2N5) (except for gt 1b) and position 540 (E2N7) (gt 3 and 6) (see Figure
12).
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Figure 12. Schematic representation of N-glycosylation sites of E1 and E2.

Numbers and verticals bars correspond to position of glycosylation sites with the reference strain H77 (gt 1a). TM: Transmembrane
domain, HVR1: Hypervariable region 1. | (412-423), 11 (427-446) and 111 (523-535) represent the three major neutralizing epitopes on
E2 (Lavie, Hanoulle et al. 2018).

There are three major N-glycans on HCV E1E2 based on N-acetylglucosamines and associated with:
(i) several mannose residues (high mannose glycans), (ii) galactose, and sometimes sialic acid and
fucose (complex oligosaccharides), and (iii) galactose, mannose and probably sialic acid (hybrid
glycans). In fact, the latter two are produced during the transfer of proteins through the Golgi by
enzymatic addition or removal of sugar residues mediated by glycosidases and glycosyl transferases.
Indeed, after assembly in the ER and during transport along the VLDL secretory pathway, HCV
glycoproteins are modified by the two latter enzymes. Differences in their glycosylation patterns
could be observed between HCVpp and HCVcc resulting from the different assembly processes of
HCVpp and HCVcc in the post-Golgi compartment or in an ER-derived compartment, respectively:
while E1E2 derived from HCVpp contain a majority of complex-type glycans, HCVcc-derived E1E2
display high-mannose and complex N-linked glycans (Vieyres, Thomas et al. 2010) suggesting a
diverse glycan processing and a different organization of proteins on the surface of HCVpp or HCVcc
(reviewed in Lavie, Hanoulle et al. 2018). As a consequence, HCVpp and HCVcc act differently
during their entry processes (Johansson, Voisset et al. 2007; Kapadia, Barth et al. 2007; Russell,
Kawaguchi et al. 2009; Albecka, Montserret et al. 2011; Wasilewski, Ray et al. 2016).

Two benefits of N-glycans on HCV glycoproteins E1 and E2 are obvious: First, N-glycans, normally
involved in protein folding (Helenius and Aebi 2001), can affect the binding affinity of E1E2 for
receptors. Second, N-glycans on E1E2 are effective in shielding E1 and E2 from the humoral immune
response and thus prevent the virus from being neutralized by HCV-specific antibodies, consequently
to a non-effective immune response (de Jong, Dorner et al. 2014). In fact, HCV E2 is the main target
of neutralizing antibodies (reviewed in Ball, Tarr et al. 2014). When looking again at Figure 12, the

three major neutralizing epitopes of E2 (mentioned as I-111) are N-glycosylated resulting in an
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effective shield of those epitopes and an evasion of the host immune response. Additionally, one
group could observe escape mutants from an E2-specific antibody (AP33) displaying a glycan shift
(Pantua, Diao et al. 2013) suggesting that the N-glycosylation of HCV glycoproteins and the evasion

of the host immune response is not a fixed but rather dynamic process.

Apart from N-glycosylation, O-glycosylation sites have been predicted on the E2 envelope protein as
well (Bandiera and Zeisel, unpublished data and (reviewed in Lavie, Hanoulle et al. 2018), however,

they have not been well-described.

2.2 O-linked N-acetylglucosaminylation (O-GIcNAcylation)

O-linked N-acetylglucosaminylation (O-GIcNAcylation) is a dynamic and reversible PTM that
mainly takes place in the cytoplasmic, mitochondrial, and nuclear compartments of the cell (Issad,
Masson et al. 2010), and appears to show similar features to phosphorylation, since the modification
sites for both are serine and threonine residues. Indeed, an extensive crosstalk between O-
GlcNAcylation and phosphorylation could be observed, either by competing for the same serine or
threonine residue or by O-GIlcNAcylation influencing phosphorylation of adjacent residues (Leney,
El Atmioui et al. 2017) (see Figure 13).

The substrate of O-GIcNAcylation, Uridine-diphosphate N-acetylglucosamine (UDP-GIcNAC) is
synthesized as an end product of the hexosamine biosynthetic pathway (HBP); an alternative pathway
within the glucose metabolic pathway that converts up to 2%-5% of cellular glucose into UDP-
GIcNAc involving several enzymes (reviewed in Buse 2006). UDP-GICNAC serves as the donor for
the addition of GIcNACc to serine and threonine residues mediated by O-linked N-acetylglucosamine
transferase (OGT), whereas the removal of O-GIcNAc is mediated by O-GIcNAc hydrolase (OGA)
(reviewed in Levine and Walker 2016). Of note, OGT and its counterpart OGA are the unique

enzymes regulating O-GIcNAc levels within cells (see Figure 13).
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Figure 13. O-GIcNAcylation versus phosphorylation.
Dynamic addition and removal of O-GIcNAc mediated solely by OGT and its counterpart OGA. For some target proteins, O-GIcNAc
and phosphorylation compete for serine and threonine residues (adapted from Zachara, Akimoto et al. 2015).

OGT is found in three isoforms in mammals (i) nucleocytoplasmic (ncOGT, 116 kDa), (ii)
mitochondrial (mOGT, 103 kDa), and (iii) short (SOGT, 78 kDa), all containing a N-terminal domain
consistent of tetraticopeptide repeat (TPR) motifs which are important to recognize the different
protein substrates, and a C-terminal domain implying the glycosyltransferase activity (reviewed in
Joiner, Li etal. 2019; Liu, Dai et al. 2015) (see Figure 14). In addition to its role in O-GIcNAcylation
of nuclear, cytoplasmic and mitochondrial proteins, OGT has scaffold function and promotes the

stable binding of proteins in multiprotein complexes (Hart, Housley et al. 2007).
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Figure 14. The three isoforms of OGT.

N-terminal domain contains tetraticopeptide repeat (TPR) motifs which are important for the recognition of protein substrates, while
the C-terminal domain consists of the glycosyltransferase activity. Nucleocytoplasmic OGT (ncOGT, 116 kDa), mitochondrial OGT
(mOGT, 103 kDa) and short OGT (SOGT, 78 kDa) (adapted from Lazarus, Love et al. 2006.
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OGA, on the other hand, is expressed as two isoforms (i) long, nucleocytoplamic (OGA-L, 102 kDa)
and (ii) short, nuclear (OGA-S, 76 kDa) (reviewed in Liu, Dai et al. 2015).

Since knockout of OGT in mammals (Shafi, lyer et al. 2000) and OGA in mice (Yang, Song et al.
2012) is lethal on a developmental or single cell level, respectively, the design of effective inhibitors
raised the ability to study O-GIcNAcylation in vivo. Gloster et al. generated metabolic inhibitors of
glycosyltransferases within cells using sugar analogues. After its uptake, Ac-5SGIcCNAc -one of those
inhibitors- is converted to UDP-5SGIcNAc which inhibits activity of OGT by direct binding leading
to decreased levels of O-GIcNAc in cells (Gloster, Zandberg et al. 2011). Other small molecules to
inhibit OGT have been reported with controversial observations: (i) alloxan that completely blocks
activity of OGT in vitro but is not specific and inhibits other critical enzymes (Lee, Alborn et al.
2006), (ii) benzoxazolinone also inhibits OGT by forming a carbonyl crosslink in the OGT active site
which is an irreversible process (Jiang, Lazarus et al. 2011), (iii) OSMI-1, which is a cell-permeable
molecule that is able to inhibit OGT in several mammalian cell lines (Ortiz-Meoz, Jiang et al. 2015),
however, high cytotoxicity was observed in human hepatoma cells (Herzog and Zeisel, unpublished
data) or (iv) ST045849, which leads to decrease of total O-GIcNAcylation in prostate cancer cells
(Itkonen, Gorad et al. 2016), while in human hepatoma cells increased levels of O-GIcNAcylation
have been observed (Herzog and Zeisel, unpublished data). On the other hand, O-GIcNAcylation in
cells is increased by efficient inhibition of OGA via Thiamet G (Yuzwa, Macauley et al. 2008) and
GlcNAcstatin C (Dorfmueller, Borodkin et al. 2006) in vitro (Mariappa, Sauert et al. 2011) as well
asinvivo (Yuzwa, Shanetal. 2012). Recently, a metabolic precursor inhibitor that acts as an analogue
of N-acetylglucosamine, termed 5SGIcNHex, was shown to decrease O-GIcNAc levels in time-and
dose-dependent manner in various tissues. Moreover, a correlation between decreased O-GIcCNAc
levels and lower levels of transcription factor Spl and satiety-induced hormone leptin could be
demonstrated in vitro in adipocytes as well as in vivo in mice proposing an association between
decreased O-GIcNAc levels and nutrient sensing in peripheral tissues of mammals (Liu, Zandberg et
al. 2018).

O-GIcNAcylated proteins of different functional classes have been detected, including transcription
factors, metabolic enzymes and signaling proteins (see Figure 15) highlighting a crucial role of O-
GIcNAcylation in many biological processes as transcription, translation, metabolism, signal
transduction and autophagy (Butkinaree, Park et al. 2010; Ferron, Denis et al. 2018). Additionally,
proteins with intrinsic disorders can be non-specifically modified by OGT as well (e.g. tau and nuclear

pore proteins) (reviewed in Yang and Qian 2017).

33



Protein har il y
processing %l%:r Unllénq:;vn i
{7%) Nuclear
pore
(7%)

Stress W
{11%)

Signaling &
Cell cycle w (8%)
(2%])

Structural
(14%)

Transeription/
translation
(26%)

Metabolism &
(13%)

Figure 15. Functional distribution of identified O-GIcNAcylated proteins (adapted from Zachara, Akimoto et al. 2015).

2.3 OGT and O-GIcNAcylation in disease and cancer- Current knowledge for liver
disease and HCC

O-GIcNAcylation plays a crucial role in many different biological processes and is solely performed
by OGT and OGA; due to this fact, it is obvious that deregulated O-GIcNAcylation has been
associated with a variety of human diseases ranging from diabetes and neurodegenerative and
cardiovascular diseases to cancer (reviewed in Banerjee, Lagerlof et al. 2016; Pinho, Verde et al.
2018; de Queiroz, Carvalho et al. 2014; Fardini, Dehennaut et al. 2013). However, detailed
knowledge how and which O-GIcNAcylation contributes to these diseases remains incomplete.

In fact, the present thesis is based on HCV and virus-host interactions. Since it is known that HCV
infection, even after SVR, can lead to progressive liver disease and HCC, | will focus here, for clarity
reasons, on the current knowledge about O-GIcNAcylation and its contribution to cancer

development, especially for HCC development.

Basically, cancer cells are characterized by uncontrolled proliferation and show a specific metabolic
phenotype in which ATP is primarily produced through anaerobic glycolysis rather than through
oxidative phosphorylation. The metabolic shift is widely known as “Warburg effect”, after the
discovery made by Otto Warburg resulting in an up-regulation of glucose uptake and consequently
in increased flux of metabolites through the HBP (Warburg 1956). This phenomenon of metabolic
shift is characterized through an increased O-GIcNAcylation, observed in a wide range of cancers,
resulting in an altered glycosylation profile leading to deregulated signaling and transcriptional
pathways (reviewed in (Ferrer, Sodi et al. 2016; Liberti and Locasale 2016) (see Table 2).

Tumorigenesis, invasion and metastasis of breast, lung and colon cancer is enhanced through aberrant
O-GIcNAcylation (Caldwell, Jackson et al. 2010; Gu, Mi et al. 2010; Mi, Gu et al. 2011; Ferrer, Lu
etal. 2017). It has been demonstrated that aberrant flux through HBP (reviewed in Bond and Hanover
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2015) resulted in alteration of cell surface O-Glycans (Alisson-Silva, Freire-de-Lima et al. 2013) as
well as N-Glycans (Dennis, Lau et al. 2009), however, the focus here is on O-GIcNAcylation. One
outcome of the deregulated signaling pathways is the gain of function of oncogenes and a loss of
function of tumor suppressors. Indeed, it could be demonstrated that O-GIcNAcylation is able to
modify several tumor-associated proteins as for example Nuclear factor kB (NF-kB), c-Myc, B-
catenin, p53 and Ras (reviewed in de Queiroz, Carvalho et al. 2014; Nie and Yi 2019). Additionally,
it has been demonstrated that several HBP genes were overexpressed in human prostate cancer as
well (Itkonen, Minner et al. 2013).

HCC is the most frequently occurring primary liver malignancy worldwide, in fact liver
transplantation (LT) is the only treatment of choice available for patients with early stage of HCC
(reviewed in El-Serag and Davila 2011; EI-Serag and Rudolph 2007). Nevertheless, tumor recurrence
following LT remains so far un unsolved problem preventing patients from long-term survival. The
addressed question is which are the molecular mechanism of tumor recurrence after LT? Zhu et al.
tried to elucidate this question by studying O-GIcNAcylation levels in HCC tissues of patients with
different etiologies (Zhu, Zhou et al. 2012). Indeed, it has been shown that O-GIcNAcylation levels
of HCC tissues was significantly increased as compared to healthy liver tissue; moreover, HCC tissue
of those patients that suffered from tumor recurrence after LT had significantly enhanced O-
GIcNAcylation levels (Zhu, Zhou et al. 2012). While OGT expression could not be correlated with a
prognosis for HCC recurrence after LT, low OGA expression in tumors has been elevated with an
increased risk of tumor recurrence after LT (Zhu, Zhou et al. 2012).

NF-kB, a transcription factor known to play a crucial role in cancer-related processes as cell
proliferation, apoptosis ad metastasis (reviewed in Patel, Horgan et al. 2018) displays two O-
GIcNAcylation sites at its subunit p65, at threonine 322 and 352. The latter glycosylation site is
responsible for an increased transcriptional activity (Yang, Park et al. 2008). Interestingly, another
group observed a tumor-promoting role of OGT in fatty liver-associated HCC by regulating lipid
metabolism through increasing palmitic acid leading to ER stress and ER-related NF-«xB signaling
pathways proposing an oncogenic role for OGT in fatty-liver associated HCC (Xu, Zhang et al. 2017).
Most recently, another group could reveal an increase of total O-GIcNAcylation and an increase of
OGT protein expression in HCC (Cao, Duan et al. 2019). Moreover, it could be shown that eukaryotic
initiation factor 4E (elF4E), a key translation factor of protein synthesis, is O-GIcNAcylated by OGT
leading to stability of protein and protection against proteasomal degradation; as a result, it is
proposed that O-GIcNAcylation contributes to a stem-like cell potential of hepatoma cells (Cao, Duan
et al. 2019).
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Taken together, O-GIcNAcylation has a crucial role for reprogramming metabolic networks of cancer

cells and in turn in promoting tumor growth and carcinogenesis. Table 2 gives an overview of

deregulated O-GIcNAcylation and aberrant OGT/OGA protein expression in different kind of

cancers.
Tumor type O-GIcNAC/OGT/OGA References
_ Cao, Duan et al. 2019; Xu, Zhang et al. 2017;
Liver cancer ik
Zhu, Zhou et al. 2012
Liu, Huang et al. 2017; Ferrer, Lu et al. 2017,
Breast cancer ks Caldwell, Jackson et al. 2010; Gu, Mi et al. 2010;
Barkovskaya, Seip et al. 2019
Kamigaito, Okaneya et al. 2014; Itkonen, Minner
Prostate cancer A\l et al. 2013; Itkonen, Gorad et al. 2016; Lynch,
Ferrer et al. 2012; Itkonen, Urbanucci et al. 2019
Yehezkel, Cohen et al. 2012; Mi, Gu et al. 2011,
Phueaouan, Chaiyawat et al. 2013; Biwi, Clarisse
Colon cancer 11| _
et al. 2019; Fuentes-Garcia, Castaneda-Patlan et
al. 2019
Wang, Chen et al. 2018; Rozanski, Krzeslak et al.
Bladder cancer NI/T/|
2012
Leukemia TINI/NI Shi, Tomic et al. 2010
Endometrial cancer NI/ Krzeslak, Wojcik-Krowiranda et al. 2012
) Ma, Vocadlo et al. 2013; Sharma, Gupta et al.
Pancreatic cancer ks
2019
Mi, Gu et al. 2011; Szymura, Zaemes et al. 2019;
Lung cancer T/1/IND o
Lin, Linetal. 2018
_ Krzeslak, Jozwiak et al. 2011; Zhang, Wang et al.
Thyroid cancer LINIIT

2015; Cheng, Li et al. 2016

Table 2. O-GIcNAc dynamics in different types of cancer.

1:increase; |: decrease; ND: No difference; NI: Not identified.

Even if an increased global O-GIcNAcylation and increased OGT protein expression could be shown

to contribute to cancer development, downregulation of O-GIcNAcylation could be demonstrated to

drive tumorigenesis as well (e.g. thyroid cancer). Overall, one can assume that uncovering key O-

GIcNAcylated proteins and deregulated OGT/OGA expression could reveal novel biomarkers for
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early detection of cancer, and especially for HCC these potential markers could help to predict patient

risk of recurrence and could be potential targets for efficient therapy.
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I11. OBJECTIVES

Infection of human hepatocytes is a complex process involving both viral and host factors involved
in the HCV replication cycle such as microRNAs (miRNAs). Within the past years, it has been shown
that to establish chronic infection, HCV hijacks and modulates host cell-derived miRNAs that are
required for the viral life cycle. Uncovering host factors hijacked by HCV contributes to a better
understanding of virus-host interactions underlying the HCV life cycle and involvement in the
establishment of chronic HCV infection as well as to the identification of potential targets for
treatment of liver disease and prevention of HCC (Zeisel and Baumert 2017; Zeisel, Crouchet et al.
2015).

To systematically uncover human miRNAs affecting the HCV replication cycle, the laboratory had
performed a genome-wide screen in human hepatoma Huh7.5.1 cells using a genomic miRNA mimic
library and a two-step infection assay with a Renilla luciferase reporter HCV virus (JcR2a) (Herzog,
Bandiera et al. 2019, figure 1A). Through this miRNA mimic screen 427 miRNAs could be identified
that significantly modulated HCV infection (Herzog, Bandiera et al. 2019, figure 1C). One hundred
eighty-six miRNAs out of the 427 miRNAs affected HCV entry and replication, while the remaining
309 miRNAs modified viral assembly and release (including 68 hits affecting both HCV

entry/replication and assembly/release) (Figure 16).

427

. Entry and replication
q O Assembly and infectivity J
186 (1 No effecton the HCV life cycle
miRNA mimic library
(2588 miRNAS) >

Figure 16. miRNAs involved in the HCV life cycle and expression in Huh7.5.1 cells.

miRNA expressed in Huh7.5.1 cells

Thus, it was decided to focus on miRNA hits that modulated late steps of the HCV replication cycle
since these processes steps still remain incompletely understood. Among the 309 miRNAs, miR-501-
3p and miR-619-3p appeared to markedly enhance HCV infection suggesting that these miRNAs may
target host genes which contribute to control virus assembly and release (Herzog, Bandiera et al.
2019, figure 1D). By using a combination of computational and functional approaches to study

miRNA targeting, OGT was uncovered as a common target for miR-501-3p and miR-619-3p and

A miRNA notexpressedin Huh7.5.1 cells
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demonstrated to be markedly involved in assembly and infectivity (Herzog, Bandiera et al. 2019,

table 1 and figure 2).

Hence, the aim of my PhD project was to characterize the role of OGT in HCV-host interactions. The
specific aims of my PhD project were i) to analyze the interplay of miR-501-3p and miR-619-3p with
their predicted target OGT, ii) to unravel how OGT may contribute to HCV morphogenesis and, iii)
to investigate the role of miR-501-3p and OGT in HCV-induced liver disease and HCC development.
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IV. RESULTS

To systematically uncover miRNAs that could play a role in HCV infection, the team of Mirjam
Zeisel and Thomas Baumert had conducted a genome-wide screen in human hepatoma Huh7.5.1 cells
using a genomic miRNA mimics library and a two-step infection assay with a luciferase reporter virus
(JcR2a), which allowed us to functionally assess the role of miRNAs during the early steps (viral
entry/translation/replication) and the late steps (viral assembly/release/infectivity) of the HCV life
cycle. This screen identified a set of miRNAs whose overexpression overall impairs HCV infection
by affecting early and/or late steps of the HCV replication cycle. The analysis was focused on
miRNAs that modulate late steps of the HCV life cycle, as the molecular mechanisms underlying
HCV assembly/release still remain only partially understood. The screen had identified 11 miRNAs
that increased and 230 miRNAs that decreased late steps of HCV infection without affecting early
steps of infection. Among the miRNAs that increased HCV infection, miR-140-3p, miR-501-3p,
miR-619-3p and miR-4778-5p had not been associated with HCV before. The effect of two out of
these 4 miRNAs, namely miR-501-3p and miR-619-3p, on late steps of the HCV life cycle were
confirmed in independent experiments. The targets of these two miRNAs were predicted using
several bioinformatics tools and the list of potential targets were refined by considering only those
genes that are i) expressed in Huh7.5.1 cells as assessed using a microarray analysis and ii) belonging
to pathways potentially involved in infectious virus production, such as lipid metabolism and
cholesterol biosynthesis, protein maturation and processing at the ER and components of the
endosomal sorting complex. This led to a list of 28 candidate targets whose functional role in HCV
infection was subsequently assessed using a two-step infection assay with a luciferase reporter virus
(JcR2a) and siRNA directed against these 28 targets. Interestingly, only the silencing of OGT
phenocopied the effect of miR-501-3p and miR-619-3p on HCV infection, suggesting that OGT
modulates HCV assembly, release and/or infectivity.

During my PhD, to assess whether OGT could be indeed targeted by miR-501-3p and miR-619-3p,
OGT expression was analyzed at both the mRNA and the protein levels in Huh7.5.1 cells following
overexpression of miR-501-3p and miR-619-3p. We demonstrated that neither miRNA had an impact
onthe OGT mRNA levels (Herzog, Bandiera et al. 2019, figure 3A) but that miR-501-3p significantly
decreased OGT protein expression (Herzog, Bandiera et al. 2019, figure 3B). Using a dual luciferase
reporter construct, we showed that co-transfection of miR-501-3p mimic with the wild-type 3’'UTR
reporter (RLuc wt OGT 3’UTR) significantly decreased luciferase activity as compared to the empty
vector while the repression was lost when the reporter with the mutated miR-501-3p binding site
(RLuc mt OGT 3’UTR) was used (Herzog, Bandiera et al. 2019, figure 3C). These data indicate that
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miR-501-3p mediates post-transcriptional regulation of OGT by decreasing its expression at the

protein level.

To investigate the effect(s) of OGT on HCV assembly, release and/infectivity, we determined
infectious virus titer (TCID50), HCV RNA levels and the specific infectivity of HCVcc particles
generated in Huh7.5.1 cells with silenced OGT. We observed a significant increase in the TCID50 as
well as in the specific infectivity of HCVcc generated in OGT-silenced Huh7.5.1 cells as compared
to control HCVcc (Herzog, Bandiera et al. 2019, figure 4A). Furthermore, using pharmacological
inhibitors to inhibit either OGT (Acs5s-GICNAc) or its counterpart OGA (Thiamet G), we
demonstrated that O-GIcNAcylation modulates HCVcc infectivity.

By analyzing the structural and biophysical properties of HCVcc produced in OGT-silenced Huh7.5.1
cells, we demonstrated that silencing of OGT led to the production of more infectious HCVcc with
higher density (Herzog, Bandiera et al. 2019, figure 5A-B) as well as higher ApoE concentrations
(Herzog, Bandiera et al. 2019, figure 5C) suggesting that OGT/O-GIcNAcylation affects the
biophysical properties of HCVcc. Electron microscopy (EM) analysis and counting of HCVcc
particles revealed a shift towards bigger size of sucrose-cushion purified HCVcc generated in OGT-
silenced Huh7.5.1 cells as compared to control HCVcc (Herzog, Bandiera et al. 2019, figure 6A-B)
suggesting that OGT-silencing affects the lipidation of HCVcc.

Since the silencing of OGT promotes HCVcc infectivity, we also assessed whether HCV infection in
turn had an effect on miR-501-3p and OGT expression. In Huh7.5.1 cells, HCV infection led to
significant decrease of OGT mMRNA as well as proteins levels, while a small but significant increase
of miR-501-3p expression could be observed (Herzog, Bandiera et al. 2019, figure 7A-B and
supplementary figure 1B) which may promote viral infection given the proviral and antiviral roles of
miR-501-3p and O-GIcNAcylation, respectively (Herzog, Bandiera et al. 2019, figure 1C-D and 4D).
In liver tissue from HCV-infected patients, HCV RNA levels were not correlated with OGT
expression suggesting that in patients there is likely no direct effect of HCV on OGT expression
(Herzog, Bandiera et al. 2019, figure 7C).

Given the fact that O-GIcNAcylation has been associated with a variety of cancers, we also studied
OGT expression in chronic liver disease and HCC. While a trend of increased OGT expression in
liver tissue from HCV-infected patients with fibrosis and inflammation could be observed (Herzog,
Bandiera et al. 2019, figure 7D-E), OGT levels were markedly and significantly elevated in the tumor
tissue of patients chronically infected with HCV or hepatitis B virus, and patients with alcoholic liver
disease or non-alcoholic fatty liver disease as compared to non-tumor tissue (Herzog, Bandiera et al.
2019, figure 7F). These data suggest that OGT expression increases in HCC in an etiology-
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independent manner. Taken together, these results suggest that OGT expression likely increased in

HCV-induced liver disease and cancer trough inflammation and fibrosis rather than by HCV itself.

These results have been published in Herzog*, Bandiera* et al. “Functional microRNA screen
uncovers O-linked N-acetylglucosamine transferase as a host factor modulating hepatitis C virus
morphogenesis and infectivity” Gut 2019.
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Abstract

Objective: Infection of human hepatocytes by the hepatitis C virus (HCV) is a multistep
process involving both viral and host factors. microRNAs (miRNAs) are small non-coding
RNAs that post-transcriptionally regulate gene expression. Given that miRNAs were
indicated to regulate between 30% and 75% of all human genes, we aimed to investigate the
functional and regulatory role of miRNAs for the HCV life cycle.

Design: To systematically reveal human miRNAs affecting the HCV life cycle, we performed
a two-step functional high-throughput miRNA mimic screen in Huh7.5.1 cells infected with
recombinant cell culture-derived HCV. miRNA targeting was then assessed using a
combination of computational and functional approaches.

Results: We uncovered miR-501-3p and miR-619-3p as novel modulators of HCV
assembly/release. We discovered that these miRNAs regulate O-linked N-acetylglucosamine
(O-GIcNACc) transferase (OGT) protein expression and identified OGT and O-GIcNAcylation
as regulators of HCV morphogenesis and infectivity. Furthermore, increased OGT
expression in patient-derived liver tissue was associated with HCV-induced liver disease and
cancer.

Conclusion: miR-501-3p and miR-619-3p and their target OGT are previously undiscovered
regulatory host factors for HCV assembly and infectivity. In addition to its effect on HCV
morphogenesis, OGT may play a role in HCV-induced Iliver disease and

hepatocarcinogenesis.



Significance of this study

What is already known about this subject?

w To establish chronic infection, the hepatitis C virus (HCV) hijacks cellular factors

including microRNAs (miRNAs), known to post-transcriptionally regulate gene
expression.

mMiRNAs may positively or negatively modulate HCV infection either by directly
targeting the viral genome or indirectly by regulating virus-associated cellular

pathways.

What are the new findings?

w A functional miIRNA mimic screen uncovered miR-501-3p and miR-619-3p to

enhance late steps of HCV infection.

miR-501-3p regulates the expression of O-linked N-acetylglucosamine transferase
(OGT) at the protein level.

Silencing of OGT expression or inhibition of O-linked N-acetylglucosaminylation (O-
GIcNAcylation) leads to an increase in the infectivity and size of HCV patrticles.
OGT expression increases in patient-derived liver tissue during liver disease

progression and cancer.

How might it impact on clinical practice in the foreseeable future?

w As upregulation of OGT and increased O-GlcNAcylation of proteins have been

associated with various forms of cancer, OGT may play a dual role in HCV
morphogenesis as well as pathogenesis of HCV-induced liver disease and

carcinogenesis.
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Introduction

Chronic hepatitis C is a major cause of chronic liver disease and hepatocellular carcinoma
(HCC). Since the approval of pan-genotypic direct-acting antivirals (DAAS), it is considered a
curable disease in more than 90% of treated patients. Nonetheless, an estimated 71 million
individuals are still infected by the hepatitis C virus (HCV) and several challenges remain;
viral cure reduces but does not eliminate the HCC risk in patients with advanced fibrosis[1],
the majority of infected patients has limited access to therapy and DAA failure/viral
resistance has been reported in a subset of patients[2, 3]. To overcome these limitations,
approaches to target host factors involved in HCV infection and pathogenesis are
developed[4, 5]. Interestingly, defined host factors that contribute to the establishment of
chronic HCV infection and represent potential antiviral targets, e.g. epidermal growth factor
receptor[6], also play a role in liver disease pathogenesis and represent candidate targets for
treatment of advanced liver disease and HCC prevention[7]. Thus, uncovering host factors
usurped by HCV not only contributes to a better understanding of virus-host interactions
underlying the HCYV life cycle but also to the identification of potential targets for treatment of
liver disease and prevention of HCC.

The establishment of various models to study HCV infection has shed light on the
molecular mechanisms that govern the HCV life cycle, which can be subdivided into early
steps, including viral entry, translation and replication as well as late steps, including
assembly and release of new virions. Each step of the HCV replication cycle relies on
specific virus-host interactions that involve host proteins and microRNAs (miRNAS)[5], small
non-coding RNAs that regulate gene expression at the post-transcriptional level. One miRNA
can target numerous messenger RNAs (mMRNAs) by base-pairing with a complementary site
that is typically located within the 3’ untranslated region (3'UTR) of the mRNA. Accumulating
evidence indicates that miRNAs participate to HCV replication by exerting pro- or antiviral
effects. The breakthrough discovery of the direct targeting of HCV by miR-122, the most
abundant miRNA in the liver, revealed the crucial role of this miRNA for HCV
translation/replication that contributes to progression to chronic HCV infection[8, 9]. miR-122
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antisense oligonucleotides were subsequently developed as host-targeting antivirals[10, 11].
Other miRNAs can indirectly target HCV by regulating host factors that participate in antiviral
responses and immune surveillance[12, 13, 14]. Since up to 60% of all human protein-coding
genes were reported to be under miRNA-mediated regulation and miRNAs are involved in
basically every biological process, we hypothesized that miRNAs provide a tool for loss-of-
function approaches to uncover novel HCV host factors. We performed genome-wide high-
throughput modulation of the human miRNome and analyzed their impact on HCV infection

by combining computational and functional approaches.

Material and methods

Cells, cell culture conditions, viruses, virus purification, infectivity assays, miRNAs,
antagomiRs, siRNAs, antibodies, immunoblot, immunocapture, electron microscopy
analysis of viral particles and gene expression analysis in liver tissue are described in

the Supplementary information.

Functional miRNA/SiRNA screens. Huh7.5.1 cells were transfected with the miRIDIAN
human miRNA mimic library (mIRBase 19) comprising more than 2000 mature miRNAs or 28
ON-TARGETplus smart pool siRNAs (20 nM, Dharmacon) using Interferin HTS (Polyplus) in
a 96-well format[6]. After 48h, a viability test (Presto Blue, Thermo Scientific) was performed
prior to a two-step infection assay[15, 16, 17]. During part 1 of the protocol, 50 uL of HCV cell
culture-derived particles (HCVcc, JcR2a) were incubated with cells during 4h. The inoculum
was removed and cells were incubated with 150 pl of medium for 48h. In part 2, supernatants
from part 1 cells were transferred onto naive Huh7.5.1 cells and part 1 cells were lysed to
determine luciferase activity[17, 18]. After 72h, part 2 cells were lysed to determine luciferase
activity[17]. siCD81 (20 nM), antagomiR-122 (100 nM) and siApoE (20 nM) were used as
positive controls[17]. A non-targeting SiRNA with no sequence complementarity to any

human gene or homology to any human miRNA was used as negative control.
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Inhibitor treatment. Four hours following HCV RNA electroporation[6], Huh7.5.1 cells were
incubated with vehicle or inhibitors of OGT (peracetylated 5-thio-N-acetylglucosamine
(Acs5S-GIcNAC)[19]) or OGA (Thiamet G (Sigma))[20]. After 96h, supernatants were
transferred onto naive Huh7.5.1 cells for 72h prior to determination of luciferase activity while

electroporated cells were lysed to determine luciferase activity.

Gene expression analyses. Total RNA was purified[17] and transcribed into cDNA using
Maxima reverse transcriptase (Thermo Scientific). GAPDH and OGT mRNA was detected by
real time gPCR using iTaq™ Universal Probes Supermix (Bio-Rad) and TagMan Gene
Expression Assay (Thermo Scientific). Relative OGT/GAPDH gene expression was

calculated by the AACt method[21].

Dual luciferase reporter gene assay. The human OGT 3'UTR sequence was retrieved from
NCBI (NM_181672.2) and Ensembl genome browser (ENST00000373719.3). A fragment of
the OGT 3'UTR (positions 3380-3837, NM_181672.2) (Thermo Fisher Scientific GENEART)
was cloned between the Notl and Xhol sites downstream of a Renilla luciferase cassette in a
psiCHECK?2 plasmid (Promega). A mutated version of this construct (9-bp substitution in the
predicted miR-501-3p target site) was generated as described[22]. The functionality of the
OGT 3'UTR was assessed as described[23]. The miRIDIAN mimic negative control 1 was
used as control. Renilla and firefly luciferase activity was assessed 48h after transfection into

HelLa cells using Dual-Luciferase Reporter assay (Promega).

Bioinformatic and statistical analysis. Data analysis and statistical treatment for the
MiRNA mimic screen were performed in R (www.r-project.org). Cell measurement data used
in further analysis were cell viability and luciferase activity. In total 26 sets of plates
(performed in triplicate) were tested. The presence of multiple wells with negative and
positive controls on each plate allowed stepwise normalization intra- and inter-plate. First,
intra-plate zonal bias was examined and a model of median effects across the entire screen
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determined using the median-polish algorithm[24] and all plates corrected accordingly. Then
the dataset was examined for outlier plates, i.e. plates where all individual measurements
correlate very poorly with the other remaining replicates. Three and 9 plates were excluded
for part 1 and part 2 of the screen, respectively, based on poor median correlation (r < 0.7)
so that the remaining plates correlation improved substantially (> 40%). Next, the plates were
normalized inter replicates using the particularly robust quantile-quantile approach[25].
Finally, the data were tested using a moderated t-test (empirical Bayes shrinkage, R-
package limma[26]) for the null-hypothesis of no change of a given miRNA compared to the
negative control. The resulting p-values for independent testing of each miRNA where
corrected for the multiple testing situation and expressed as local false discovery rate (Ifdr,
R-package fdrtool[27]). The testing was performed independently for part 1 and 2 of the
screen and candidate miRNAs selected for each part. For data from part 1, a Ifdr threshold of
0.00027 was used. Data from part 2 were subject to increase inherent stochastic noise and
for this reason the minimum acceptable relative risk of false positives was increased to
0.1226 (i.e. maximum 15% risk for each of the retained hits).

Other datasets were analyzed using the two-tailed Mann-Whitney test, Wilcoxon test,
Spearman correlation or the two-tailed unpaired t-test for data with normal distribution as
assessed by D'Agostino and Pearson omnibus and Shapiro-Wilk normality tests (GraphPad

Prism v.6 package).

Results

Genome-wide identification of human miRNAs affecting the HCV life cycle. We
performed a genome-wide screen in human hepatoma Huh7.5.1 cells using a genomic
mMiRNA mimics library and a two-step infection assay[17] with a luciferase reporter virus
(JcR2a), which allowed us to functionally assess the role of miRNAs during the early steps
(part 1 - viral entry/translation/replication) and the late steps (part 2 - viral
assembly/release/infectivity) of the HCV life cycle (Fig. 1A). Silencing of CD81 and ApoE,
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two essential host factors required for HCV entry or assembly, respectively, was performed
in parallel using small interfering RNA (siRNA) as controls. Silencing of CD81 resulted in a
reduction of HCV infection in part 1 and consequently in part 2 of the screen since reduced
viral entry in the first part of the assay leads to a reduced production of viral particles (Fig.
1B)[17]. Silencing of ApoE resulted in a marked inhibition of HCV infection only in part 2 of
the assay, consistent with the role of ApoE in HCV assembly (Fig. 1B)[17]. The screen
identified 427 miRNAs (corresponding to about 16% of the library) that significantly
modulated HCV infection (Ifdr < threshold, Supplementary Table 1 and Fig. 1C): 186 miRNAs
affected HCV infection in part 1, 309 miRNAs affected HCV infection in part 2, including 68
hits in part 1 and part 2. The limited humber of part 1 and 2 hits may be due to the fact that a
single miRNA may modulate the expression of several proteins, which may have different
roles in the viral life cycle. Most hits were observed to dampen HCV infection independently
of any significant alteration of cell viability (data not shown). The 186 miRNAs modulating the
early steps of HCV infection all decreased viral infection. Among the 309 miRNAs that had
an impact in part 2, 11 miRNAs increased HCV infection by at least 3-fold while 298 miRNAs
inhibited HCV infection by at least 2.7-fold. Hits from the screen included the let-7 family[12,
28], miR-27a[29] and miR-29 family[30] that were already shown to inhibit HCV infection, as
well as miR-21[31] and miR-146a-5p[17] that were shown to stimulate HCV infection thus
supporting the relevance of our findings. Collectively, our screen identified a set of miRNAs
whose  overexpression overall impairs HCV infection by affecting viral

entry/translation/replication and/or virion assembly/egress/infectivity.

miR-619-3p, MiR-501-3p and OGT play a role in late steps of the HCV life cycle. We
focused our analysis on miRNAs that modulate late steps of the HCV life cycle, as the
molecular mechanisms of HCV assembly/release remain only partially understood. Our
screen identified 241 miRNAs that modulated late steps without affecting early steps of
infection: 11 miRNAs increased HCV infection while 230 miRNAs decreased HCV infection.
Among the miRNAs that increased HCV infection, miR-140-3p, miR-501-3p, miR-619-3p and
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miR-4778-5p have not yet been associated with HCV. Since they enhanced HCV infection in
part 2 without affecting part 1, these miRNAs may target host genes that control virus
assembly/egress/infectivity. We first confirmed the effect of these miRNAs in independent
experiments using the same protocol as for the screen. Overexpression of miR-619-3p or
miR-501-3p consistently led to an increase in the infection of progeny virions (Fig. 1D) while
infection was decreased with progeny virions from antagomiR-transfected cells
(Supplementary Figure S1A). miR-619-3p or miR-501-3p were thus selected for further
investigation. To study the molecular mechanisms by which these miRNAs affect HCV
infection, we generated a list of predicted miRNA targets using DIANA, TargetScan Human
v6.2 and miRDB databases, and selected candidate targets based on their expression in our
Huh7.5.1 cells as assessed by microarray (data not shown). Ingenuity Pathway Analysis
enabled us to refine the gene list by selecting 28 genes involved in the following functional
networks or pathways that contribute to the HCV life cycle[32, 33, 34]: lipid metabolism and
cholesterol biosynthesis, protein maturation and processing at the endoplasmic reticulum
(ER), components of the endosomal sorting complex, adipocyte biogenesis, cellular
morphology and cell inflammation (Table 1).

To assess whether knock-down of these 28 candidate targets affects virus
production, we performed a siRNA-based screen using siRNA pools exhibiting strong
silencing without cytotoxicity (Fig. 2). Silencing of CD81 and antagomiR-122 served as
controls for part 1; knock-down of ApoE served as control for part 2 (Fig. 2). Hits were
defined as genes whose knock-down modulated HCV infection in at least one part of the
screen with high significance (Fig. 2, p-value < 0.0001, Mann-Whitney U-test). HCV
entry/translation/replication was significantly modulated by silencing of PPP3CA, CEBPA,
MID1, WDFY3, DCX and SLC35D1. HCV assembly/egress/infectivity was significantly
modulated by knock-down of PPP3CA, CSDE1, GAN, USP37, CEBPA, MID1, WDFY3, DCX,
MAPK9, SLC35D1, DCC, RNF144A, PPP2R2C and OGT. Strikingly, only the silencing of
OGT was associated with an enhancement of HCV assembly/release/infectivity (p-value =
0.0002), while that of the other hits was associated with reduced HCV infection (Fig. 2).
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These results indicate that the down-regulation of OGT phenocopies the effect of miR-501-
3p and miR-619-3p on HCV infection (Fig. 2) and suggest OGT as a novel player in the HCV

life cycle.

miR-501-3p post-transcriptionally regulates OGT expression. To study whether miR-501-
3p and miR-619-3p target OGT, we analyzed OGT RNA and protein levels in Huh7.5.1 cells
following overexpression of miR-501-3p or miR-619-3p. While neither miRNA had an impact
on OGT RNA levels (Fig. 3A), up-regulation of miR-501-3p significantly decreased OGT
protein expression by ~65% (Fig. 3B, p-value < 0.05, t-test). miR-619-3p also decreased
OGT expression but less robustly than miR-501-3p (Fig. 3B), prompting us to focus our
investigation on miR-501-3p. To assess whether OGT is a functional target of miR-501-3p,
we subcloned a fragment of the OGT mRNA 3'UTR that harbors the predicted miR-501-3p
target site in the Renilla luciferase expression cassette (RLuc) of a dual luciferase reporter
construct. Co-transfection of miR-501-3p mimic with the wild-type 3'UTR reporter (RLuc wt
OGT 3'UTR) significantly decreased luciferase activity as compared to the empty vector (Fig.
3C, p-value < 0.05, t-test). In contrast, the repression of luciferase expression was lost when
the reporter with mutated miR-501-3p binding site (RLuc mt OGT 3'UTR) was used (Fig. 3C).
These data are consistent in indicating that miR-501-3p mediates post-transcriptional

regulation of OGT.

O-GIcNAcylation modulates HCVcc infectivity. To investigate whether OGT modulates
HCV assembly and/or infectivity, we determined infectious virus titer (TCID50) and HCV RNA
levels to calculate the specific infectivity of HCVcc particles generated in OGT-silenced
Huh7.5.1 cells. Interestingly, OGT-silencing led to a significant increase in the TCID50 and
the specific infectivity of HCVcc (Fig. 4A, p-value < 0.05, Mann-Whitney test). Noteworthy,
the effect of OGT on HCVcc infectivity was genotype-independent as demonstrated by
increased infectivity of HCVcc bearing the envelope glycoproteins of genotypes 1a, 1b and
2a upon OGT-silencing (Fig. 4B). We next sought to investigate how OGT could modulate
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HCVcc infectivity. OGT is the only enzyme that catalyzes the addition of N-
acetylglucosamine (O-GIcNAC) to serine and threonine residues of proteins. Moreover, OGT
has a scaffold function and promotes binding of proteins in multiprotein complexes[35]. To
assess whether the enzymatic activity of OGT modulates HCVcc infectivity, we used
pharmacological inhibitors of OGT (Ac45S-GIcNAc) or O-GIcNAcase (OGA) (Thiamet G), the
OGT counterpart that removes O-GIcNAc (Fig. 4C). Acs5S-GIcNAc led to a significant
enhancement of HCVcc infectivity in a dose-dependent manner, while the opposite effect
was observed with Thiamet G (Fig. 4D, p-value < 0.05, Mann-Whitney test). Collectively,

these results demonstrate that O-GIcNAcylation modulates HCVcc infectivity.

OGT-silencing affects HCVcc biophysical properties and size distribution. To further
assess how OGT may impact HCVcc morphogenesis, we analyzed the structural and
biophysical properties of HCVcc produced in siCtrl- and siOGT-transfected Huh7.5.1 cells
following iodixanol gradient ultracentrifugation. Silencing of OGT led to the production of
more infectious HCVcc with higher density (Fig. 5A-B) as well as higher ApoE concentrations
(Fig. 5C) suggesting that OGT/O-GIcNAcylation affects the biophysical properties of HCVcc.
No change in apoB concentrations were observed between HCVcc produced from siCtrl- or
siOGT-transfected cells (Fig. 5D), in line with the model that HCV lipoviroparticles contain
several exchangeable ApoE molecules and one non-exchangeable apoB[36]. We also
visualized HCVcc by electron microscopy (EM) following anti-E2 antibody
immunocapture[36] to assess whether OGT-silencing had an impact on HCVcc size. Particle
size distribution was assessed from a series of randomly acquired electron micrographs. A
shift towards bigger sizes was observed for sucrose-cushion purified HCVcc generated in
OGT-silenced Huh7.5.1 cells as compared to control HCVcc (Fig. 6A-B). This shift was also
observed in different fractions of iodixanol gradient-separated HCVcc (Fig. 6C-F) in line with
the higher infectivity and ApoE concentrations of HCVcc generated in OGT-silenced
Huh7.5.1 cells (Fig. 5A-C). These data suggest that OGT-silencing affects the lipidation of
HCVcc.
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OGT expression increases in liver disease. Since silencing of OGT promotes HCV
infectivity, we assessed whether HCV infection in turn had an effect on miR-501-3p and OGT
expression. In Huh7.5.1 cells, HCV infection lead to small but significant increase of miR-
501-3p and decrease of OGT levels (Fig. 7A-B and Supplementary Fig. 1B; p-value < 0.05,
Mann-Whitney test), which may promote viral infection given the pro- and antiviral roles of
miR-501-3p and O-GIcNAcylation, respectively (Fig. 1C-D and 4D). In contrast, no significant
difference of OGT expression was observed between the livers of HCV transgenic and wild-
type mice[37] (data not shown) suggesting that HCV proteins do not directly modulate OGT
expression. In liver tissue from HCV-infected patients, HCV RNA levels were not correlated
with OGT expression (Fig. 7C, Spearman correlation: 0.06004019, p-value = 0.7661)
suggesting that in patients there is likely no direct effect of HCV on OGT expression.
O-GIcNAcylation has been associated with a variety of cancers, including HCC
recurrence linked to increased O-GIcNAcylation after liver transplantation[38]. We therefore
investigated OGT expression in chronic liver disease and HCC. While there was a trend for
increased OGT expression in liver tissue from HCV-infected patients with fibrosis and
inflammation (Fig. 7D-E), OGT levels were markedly and significantly elevated in the tumor
liver tissue of patients chronically infected with HCV or hepatitis B virus and patients with
alcoholic liver disease or non-alcoholic fatty liver disease as compared to non-tumor tissue
(Fig. 7F, p-value < 0.05, Wilcoxon test). These data suggest that OGT expression increases
in HCC in an etiology-independent manner. Collectively, these results suggest that OGT
expression is likely increased in HCV-induced liver disease and cancer through inflammation

and fibrosis rather than by HCV itself.

Discussion

By focusing on miRNAs affecting late steps of the viral life cycle, we uncovered that i) miR-
501-3p regulates the expression of OGT,; ii) silencing of OGT expression or inhibition of its
enzymatic activity increases the infectivity of HCV particles; and iii) OGT knock-down leads

13



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

to the release of bigger HCV particles. Our data suggest that O-GIcNAcylation affects HCV
morphogenesis and infectivity.

While we were characterizing the role of OGT/O-GIcNAcylation for HCV
morphogenesis, Li and colleagues published their functional genomics study of HCV-miRNA
interactions[12]. By conducting genome wide miRNA mimic and hairpin inhibitor screens,
they identified a set of miRNAs exhibiting a pro- or antiviral effect on HCV. Characterization
of the underlying molecular processes showed that miR-25, let-7 and miR-130 families
restrict viral infection by decreasing the expression of cellular HCV co-factors[12]. Despite
similarities in the cell type and HCV infection models used here and by Li and colleagues,
our screen only displays a small overlap with their study (9% common miRNA hits). This is
not surprising given the small overlap between previous siRNA screens to uncover HCV host
factors[6, 15] and is likely due i) to the different sizes of miRNA mimic libraries as the library
used here was more than 2-times larger than the one used by Li and co-workers, and ii) to
the markedly distinct pipelines for hit selection that were used in the two studies.
Nonetheless, both screens were consistent in confirming the proviral role of miR-146a-5p in
promoting HCV assembly/egress that we previously reported[17] and the global multistep
inhibitory effects of the let-7 family on HCV infection[28], further corroborating the
involvement of these miRNAs in fine-tuning the HCV life cycle. Both studies also consistently
indicated that miR-518a-5p, miR-517-3p, miR-185 and members of the miR-302 family inhibit
early steps of HCV infection, while miR-586, miR-620 and members of the miR-200 family
inhibit late steps of viral infection. Since none of these miRNAs except miR-185 has been
previously associated with HCV infection[39], it might be interesting to further characterize
the involvement of these miRNAs in HCV-host interactions. Interestingly, an overall proviral
effect of miR-501-3p was also observed by Li and colleagues[12], however the mechanism of
action was not studied. By characterizing the role of miR-501-3p in the HCV life cycle, we
uncovered OGT as a miR-501-3p target in liver-derived cells and showed for the first time a

link between O-GIcNAcylation and HCV infection. These results indicate that genome-wide
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mMiRNA functional screens represent a powerful strategy to dissect the role of miRNAs in
pathogen-host interactions.

While N-glycosylation of HCV envelope glycoproteins plays an important role for
escape from virus-neutralizing antibodies[40], so far no functional association between HCV
and O-glycosylation has been reported. In contrast to N-linked glycosylation that consists of
the attachment of a glycan to a nitrogen of an asparagine residue of proteins in the ER/Golgi
prior to their trafficking to the plasma membrane and/or their secretion, the glycosylation of
serine and threonine residues with O-GIcNAc is a post-translational modification (PTM) of
intracellular proteins that are localized in the nucleus, cytoplasm or mitochondria. The O-
glycosylation/deglycosylation of proteins is catalyzed by a single pair of nucleo-cytoplasmic
enzymes, OGT/OGA. O-GIcNAcylation is complementary to protein
phosphorylation/dephosphorylation, another more broadly known abundant protein PTM that
involves numerous kinases/phosphatases. OGT/OGA are often found in protein complexes
that also include kinases/phosphatases and a protein can be either O-GIcNAcylated or
phosphorylated on a same residue to fine-tune cellular signaling[41]. O-GIcNAcylation and
phosphorylation on the same or neighboring serine or threonine residue is known as yin yang
site[42].

O-GIcNAcylation plays a major role in the regulation of metabolic pathways in the
liver, including insulin signaling, bile acid metabolism and lipogenesis[35]. The large number
of OGT/OGA substrates and cellular pathways regulated by O-GIcNAcylation hampers a
detailed characterization of the role of these proteins in HCV infection. Since i) HCV
assembly takes place at ER-derived membranes, ii) OGT/OGA are not known to localize in
the ER lumen, and iii) O-GIcNAcylation of extracellular proteins containing EGF-like domains
is catalyzed by EGF domain-specific OGT (EOGT) in the ER lumen in an OGT-independent
manner[43]), OGT/OGA most likely modulate HCV infection by post-translationally modifying
one or several cellular factors required for HCV morphogenesis rather than by affecting viral
proteins, although HCV glycoproteins contain putative O-GIcNAcylation sites as determined
using OGIcNAcScan, OGTsite and YingOYangl.2 bioinformatics tools (data not shown).
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Regarding HCV host factors that may be regulated by OGT/OGA, O-GIlcNAcylation
sites have been predicted in human CLDN1[44] and OCLN at serine sites that can also be
phosphorylated and this has been suggested to potentially play a role for HCV entry[45].
However, in our experimental setting we did not observe a significant effect of OGT-silencing
on the early steps of HCV infection, suggesting that O-GIcNAcylation of CLDN1 and/or
OCLN likely does not play a major role in HCV infection. Other host factors important for the
HCV life cycle are well-known O-GIcNAcylated proteins, as for example various nuclear pore
complex proteins (Nups) including Nup98, Nup153 and Nupl155 that are involved in HCV
replication and assembly and/or may be associated with viral particles[46, 47, 48]. However,
since depletion of Nups was reported to alter HCV replication and/or assembly but to have
no impact on the specific infectivity of HCV particles[46] in contrast to the depletion of OGT
as shown here, it is unlikely that a modulation of Nup O-GIcNAcylation accounts for the
effects of OGT-silencing and/or OGT/OGA inhibitors on HCVcc infectivity observed in our
study. This is in line with our observation that OGT knock-down had no effect on Dengue
virus (DENV) replication and infectivity (data not shown), although Nup98 had been
suggested to potentially play a role for DENV infection[46]. These data suggest that OGT
does not broadly modulate the infectivity of viruses of the Flaviviridae family.

However, OGT and/or O-GIcNAcylation have been reported to play a role in the
infection with other viruses[49, 50, 51]. Interestingly, while OGT expression modulates the
levels of human papillomavirus 16 (HPV16) oncoproteins E6 and E7[52], E6 in turn can up-
regulate OGT to increase O-GIcNAcylation and the oncogene activities of HPV[53],
suggesting that OGT/O-GIcNAcylation could play a role in virus-induced cancer. In cell
culture, HCV infection appeared to be associated with a minor decrease in OGT expression
in line with an antiviral role of O-GIcNAcylation. In contrast, an increased OGT expression
was observed in HCC tissues of HCV-infected patients. Since OGT has been suggested to
activate oncogenic signaling pathways in non-alcoholic steatohepatitis-related HCC[54] and
O-GIcNAcylation has been associated with HCC recurrence linked to increased O-
GIcNAcylation after liver transplantation[38], these data suggest that in addition to their effect
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on the HCV life cycle, OGT/O-GIcNAcylation may also play a role in HCV-induced

hepatocarcinogenesis.
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Figure legends

Figure 1. High-throughput screen identifies human miRNAs that regulate the HCV life
cycle. (A) Schematic outline of the miRNA mimic screen strategy. Huh7.5.1 cells were
transfected with miRNA mimics or controls prior to infection with Renilla luciferase HCVcc
(JcR2a) two days later (part 1). Cell supernatants of part 1 were used to inoculate naive
Huh7.5.1 cells (part 2). Cells from part 1 and part 2 were lysed at the end of each infection
step (2 and 3 days post infection, respectively) to determine luciferase activity. (B)
Modulation of HCV entry and replication (part 1) and/or assembly and infectivity (part 2) upon
transfection of control non-targeting siRNA (siCtrl, negative control), siCD81 (inhibiting viral
entry) or siApoE (inhibiting viral assembly). By inhibiting HCV entry, siCD81 impacts part 1
as well as part 2. In contrast, by specifically impairing late steps of HCV replication cycle,
SIApOE inhibits HCV infection only in part 2. The box plots show the sample lower quartile
(25th percentile; bottom of the box), the median (50th percentile; horizontal line in box) and
the upper quartile (75th percentile; top of the box) of relative light units (RLU) in each lysate.
The whiskers indicate s.d. Data are from three independent experiments. (C) Effects of
MiRNA overexpression on each part of the HCV life cycle. Data were tested using a
moderated t-test (empirical Bayes shrinkage, R-package limma[26]) for the null-hypothesis of
no change of a given miRNA compared to the negative control. The resulting p-values for
independent testing of each miIRNA where corrected for the multiple testing situation and
expressed as local false discovery rate (Ifdr, R-package fdrtool[27]). miRNAs having a
significant effect on either part 1 or 2 of the screen are below the thresholds indicated by
dashed lines (Ifdr < 0.00027 or 0.1226, respectively). miRNAs that were previously reported
to impact on HCV infection as well as miR-140-3p, miR-501-3p, miR-619-3p and miR-4778-
5p are highlighted in blue (Log2(FC) < 0) or red (Log2(FC) > 0). Data are from three
independent experiments. (D) Effect of miR-140-3p, miR-501-3p, miR-619-3p and miR-4778-
5p on the HCV life cycle. Huh7.5.1 cells were transfected with siCtrl (Ctrl), miR-140-3p, miR-
501-3p, miR-619-3p or miR-4778-5p and infection experiments were carried out as described
in A. HCV infection was determined as luciferase activity. Results represent mean
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percentage + s.d. from three independent experiments in triplicate. The dashed line indicates
values from control-transfected cells set at 100%. Statistics: *, p-value < 0.05, Mann-Whitney

test.

Figure 2. OGT is a novel host cell factor involved in the late steps of the HCV life cycle.
Huh7.5.1 cells were transfected with a set of sSiRNAs against 28 predicted targets of miR-
501-3p and/or miR-619-3p, and infected with HCVcc JcR2A according to the two-step
protocol depicted in Fig. 1A. siCD81, antagomiR-122 and siApoE were used as loss-of-
function controls to perturb HCV entry, translation/replication and assembly, respectively.
miR-501-3p and miR-619-3p, which were ineffective in part 1 of the screen but enhanced
HCV infection in part 2, were transfected in parallel. HCV infection was quantified as fold
change of luciferase activity with respect to negative control (siCtrl). Results for different
replicates are shown as individual points. For each gene, median fold change of luciferase
activity £ s.d. is shown as black horizontal lines. The dashed line indicates a fold change of
1. Data are from three independent experiments in triplicate. Results for miR-501-3p, miR-
619-3p and siOGT that increase HCV infection in part 2 are depicted in red. Results for
SiRNA targeting PPP3CA, CEBPA, MID1, WDFY3, DCX, SLC35D1, CSDE1, GAN, USP37,
MAPK9, DCC, RNF144A, or PPP2R2C that significantly modulated HCV infection in part 1
and/or part 2 but did not phenocopy the effect of miR-501-3p and miR-619-3p are depicted in

blue.

Figure 3. miR-501-3p mediates post-transcriptional regulation of OGT by decreasing
its expression at the protein level. Huh7.5.1 cells were transfected with siCtrl (Ctrl), a pool
of siRNA against OGT, miR-501-3p or miR-619-3p. After 96h, RNA and proteins were
purified, and OGT expression analyzed by RT-gPCR and Western blot. (A) Percentage of
OGT mRNA expression in miRNA-transfected cells as compared to negative control. Results
are presented as mean * s.d. and are from three independent experiments in triplicate. The
dashed line indicates values from control-transfected cells set at 100%. Statistics: *, p-value
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< 0.05, t-test (B) OGT protein expression. Left: percentage of OGT protein expression in
siRNA- or miRNA-transfected cells as assessed by quantification of Western blots. OGT
levels were normalized to actin levels using ImageLab™ 5.2.1 software (BioRad). Results
are presented as mean = s.d. and are from three independent experiments. The dashed line
indicates values from control-transfected cells set at 100%. Statistics: *, p-value < 0.05, t-
test. Right: representative Western blot analysis. (C) Analysis of miRNA targeting of OGT
expression by dual luciferase reporter assay. Left: HeLa cells were co-transfected with a
miR-501-3p mimic and a dual luciferase reporter plasmid containing either wild type miR-
501-3p (RLuc wt OGT 3'UTR) or mutated miR-501-3p binding site (RLuc mt OGT 3'UTR) to
modulate RLuc expression. Co-transfection of the miR-501-3p mimic and empty RLuc vector
was used as control. Data are expressed as mean percentage of Renilla luciferase activity +
s.d. normalized to firefly luciferase, and relative to co-transfection of the vectors with non-
targeting miRNA (miR-Ctrl). Results are from three independent experiments in triplicate.
The dashed line indicates values from control-transfected cells set at 100%. Statistics: *, p-

value < 0.05, t-test. Right: Schematic representation of the used constructs.

Figure 4. Silencing of OGT affects HCV morphogenesis and infectivity. (A) Analysis of
HCV infectivity. Huh7.5.1 cells were transfected with siCtrl, a pool of siRNA against OGT or
ApoE as a loss-of-function control to perturb HCV assembly, prior to infection with HCVcc
(Jcl) two days later (entry and replication). Mock-transfected cells were used as control
(Ctrl). After another 48h, intra- and extracellular HCVcc particles were used to infect naive
Huh7.5.1 cells (assembly and infectivity). Virus supernatants of Huh7.5.1 cells were assayed
by (left) endpoint dilution assay (TCID50). Intra- and extracellular HCV RNA was purified and
analyzed by RT-gPCR to calculate (right) the specific infectivity (TCID50/RNA). Data are
expressed as mean percentage as compared to control = s.d. Results are from four
independent experiments in triplicate. The dashed line indicates values from control-
transfected cells set at 100%. Statistics: *, p-value < 0.05, Mann-Whitney test. (B) Genotype-
independent effect of OGT on HCV infection. Huh7.5.1 cells were transfected with siCtrl or
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siOGT prior to infection with HCVcc JcR2a (genotype 2a), H77R2a (genotype 1a) or
ConlR2a (genotype 1b). Experiments were carried out and analyzed as described in A. Data
are expressed as mean percentage of Renilla luciferase activity as compared to control + s.d.
Results are from three independent experiments in quadruplicate. The dashed line indicates
values from control-transfected cells set at 100%. Statistics: *, p-value < 0.05, Mann-Whitney
test. (C) Activity of OGT/OGA inhibitors on O-GIcNAcylation. The activity of Acs5S-GICNAc
(OGT inhibitor) or Thiamet G (OGA inhibitor) on O-GIcNAcylation of proteins in Huh7.5.1
cells was demonstrated by Western blot as described in Supplementary Methods. (D) Effect
of O-GIcNAcylation on HCV infectivity. Huh7.5.1 cells were electroporated with HCVcc
(JcR2a), prior to treatment with increasing concentrations of Acs5S-GIcNAc (OGT inhibitor,
left) or Thiamet G (OGA inhibitor, right) 4h later. After 96h, supernatants were transferred
onto naive Huh7.5.1 cells and electroporated cells were lysed to determine luciferase
activity. Luciferase activity in infected Huh7.5.1 cells was assessed 72h later. Data are
expressed as mean percentage as compared to control + s.d. Results are from three
independent experiments in quadruplicate. The dashed line indicates values from vehicle-

treated cells set at 100%. Statistics: *, p-value < 0.05, Mann-Whitney test.

Figure 5. Silencing of OGT modulates HCVcc biophysical properties. (A) Separation of
HCVcc by iodixanol density gradient ultracentrifugation. HCVcc were produced in non-
targeting siRNA control- or siOGT-transfected Huh7.5.1 cells. After overlaying HCVcc
(JcR2A) on a 4%-40% iodixanol step gradient and ultracentrifugation for 16h, fractions of
HCV particles were used to infect naive Huh7.5.1 cells in order to determine TCID50. HCV
RNA of each fraction was purified and analyzed by RT-qPCR. Data are expressed as mean +
s.d. from three independent experiments. (B) Specific infectivity (TCID50/RNA) was
calculated and the density was determined by weighting each fraction. Specific infectivity of
each fraction is expressed as fold change as compared to the total infectivity of the control.
Data are expressed as mean * s.d. from three independent experiments. (C-D) ApoE and

ApoB concentrations in the individual fractions were determined by ELISA. The dashed lines
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indicate limits of quantification of the assays. Data are expressed as mean * s.d. from three

independent experiments.

Figure 6. Silencing of OGT increases the size of HCVcc. (A) Representative pictures of
HCV particles generated in Huh7.5.1 cells transfected with non-targeting siRNA (siCtrl) or
sSiOGT. (B-F) Comparative analysis of particle size distribution for immunocapture (IC) from
HCV particles produced in Huh7.5.1 cells transfected with siCtrl or siOGT prior to infection
with HCVcc (JcR2a) following sucrose-cushion purification (B) or iodixanol gradient
fractionation (C-F) of HCVcc. HCVcc were transferred via anti-E2 antibody AR3A on electron
microscopy (EM) grids through IC. Particle size distribution was assessed from a series of
randomly acquired electron micrographs with Image-J software (NIH). Results from one of
three (A-B) or two (C-F) independent experiments are shown. Black lines: size distribution of
immunocaptured HCVcc produced in siCtrl-transfected cells. Grey lines: size distribution of

immunocaptured HCVcc produced in siOGT-transfected cells.

Figure 7. OGT expression increases in HCC. (A-B) Huh7.5.1 cells were infected with HCV
(JcR2a). After 72h, RNA and proteins were purified, and OGT expression analyzed by RT-
gPCR and Western blot. (A) Percentage of OGT mRNA expression relative to uninfected
Huh7.5.1 cells (Ctrl). Results are presented as mean + s.d. from three independent
experiments in duplicate. The dashed line indicates values from uninfected Huh7.5.1 cells
set at 100%. Statistics: *, p-value < 0.05, Mann-Whitney test. (B) OGT protein expression.
Left: percentage of OGT protein expression relative to uninfected Huh7.5.1 cells (Ctrl)
following quantification of Western blots as described in Supplementary Methods. Results
are presented as mean = s.d. from three independent experiments. The dashed line
indicates values from uninfected Huh7.5.1 cells set at 100%. Statistics: *, p-value < 0.05,
Mann-Whitney test. Right: representative Western blot analysis of OGT and actin. (C) OGT
expression and viral load in liver tissue from 22 HCV-infected patients and 6 patients not
infected with HCV and normal histology (see Supplementary Material and Methods).
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Spearman correlation: rho = 0.06004019, p-value = 0.77. (D-E) OGT expression in liver
tissue from 22 HCV-infected patients and 6 patients not infected with HCV and normal
histology according to fibrosis (D) or activity (E) scores (see Supplementary Material and
Methods). Wilcoxon test: F1 vs FO p-value = 0,38; F2 vs FO p-value = 0,18; F3 vs FO p-value
=0,43; F4 vs FO p-value = 0,17; Al vs AO p-value = 0,28; A2 vs AO p-value = 0,23; A3 vs A0
p-value = 0,09. (F) OGT expression in tumor (HCC) and non-tumor (Ctrl) liver tissue from
HCV-infected patients (34 tumor samples including 5 paired tumor/non-tumor samples),
hepatitis B virus (HBV)-infected patients (76 tumor samples including 7 paired tumor/non-
tumor samples), patients with alcoholic liver disease (ALD) (72 tumor samples including 8
paired tumor/non-tumor samples) and patients with non-alcoholic fatty liver disease (NAFLD)
(11 tumor samples including 2 paired tumor/non-tumor samples) as described in

Supplementary Methods. *, p-value < 0.05, Wilcoxon test.

28



Table 1. Computational analysis of miR-501-3p and miR-619-3p targets and pathway

enrichment.

miRNA 1D Target gene symbol Pathway or network

miR-501-3p MEF2A; PPP3CA; PPP3CC Calcium signaling
HMGCS1 Cholesterol biosynthesis
AFF4; CHMP1B; CUX1; DCLK1; Inflammatory response, dermatological
LMX1A; PTBP2; RBMS1; RC3H1; diseases and conditions, inflammatory
SCN2A; SEC63; ZFHX4 disease
CDK6; CSDE1; GLI2; HOXD10; Cellular development, nervous system
LSM5; MEF2A; MYCN; OGT; development and function; organ
PPP2R2C; PPP2R5E; SEMA3C,; morphology
TFDP2
CIT; COL10A1; FNBP1L; GAN; Cell death and survival; cellular
HERCL1; KPNA4; NONO; SHPRH; compromise; free radical scavenging
STRN; TARDBP; UBE2H; USP37
ATXN1; CBLL1; CEBPA; DCC; Cell morphology, cellular assembly and
PEX5L; RCC2; RNF144A; ZC3H12C organization; cellular function and

maintenance
miR-619-3p RUNX1T1; SMAD3 Adipocyte biogenesis

FOXG1,; GPBP1; MID1; MKL2; MSI1,

PCBP2; WDFY3

ACVR2B; DCX; ESRRG; MAPKO9;
OGT,; PCBP1; PDE3B; SMAD3;
SMARCC1,; TGFB3; PAPOLA

RUNX1T1; SHANK2; SLC35D1

Cell cycle; organismal injury and
abnormalities; cancer
Carbohydrate metabolism, energy

production; small molecule biochemistry

Gene expression, lipid metabolism, small

molecule biochemistry
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Supplementary Material and methods

Cells and cell culture conditions. The source and culture conditions of Huh7.5.1 cells have
been described[1]. HeLa cells were purchased from ATCC and cultured in Dulbecco’s
modified Eagle medium (Gibco® DMEM GlutaMAX™, ThermoFisher Scientific) containing 1%

sodium pyruvate as described for Huh7.5.1 cells[1].



Viruses and infectivity assays. Cell culture-derived recombinant cell culture-derived
hepatitis C virus (HCVcc) Jcl (genotype 2a/2a chimera), H77R2a (genotype la/2a chimera
engineered for Renilla luciferase expression), Con1R2a (genotype 1b/2b chimera engineered
for Renilla luciferase expression), and JcR2a (genotype 2a/2a chimera engineered for Renilla
luciferase expression) were generated in Huh7.5.1 cells as described[1, 2, 3, 4]. HCVcc
infectivity was determined by calculating the 50% tissue culture infectious dose (TCID50)
using anti-NS5A antibody as described[5, 6] or by assessing luciferase activity. HCVcc were
used at 10°-10° TCID50/mL throughout the study. HCV RNA was purified using a QIAmp viral
RNA minikit (Qiagen) and analyzed by one-step RT-qPCR using a Sensi Fast NO ROX kit
(Bioline) according to the manufacturer’s instructions. Standard curves were performed using

10-fold dilution series of HCV RNA.

Purification of HCVcc particles using sucrose cushion or iodixanol density gradient.
HCVcc (JcR2a) were concentrated 10-fold using a Vivaspin column (GE Healthcare). For
sucrose cushion purification, HCVcc were purified by overlaying 3.5 mL of culture media on
1.5 mL of 20% sucrose, and by ultracentrifuging samples for 4h at 40,000 rpm on a SW-55
rotor (Beckman Coulter). Purified HCVcc were resuspended in 30 pL of PBS for analysis via
immunocapture and electron microscopy. Density distributions of infectious HCVcc were
determined by overlaying 0.5 mL culture media on a 5 mL, 4%-40% iodixanol step gradient,
and ultracentrifuging samples for 16h at 40,000 rpm on a SW-55 rotor (Beckman Coulter): 625
ul fractions were carefully harvested from the top of each tube, and density was determined
by weighing. Infectivity of each fraction was quantified by TCID50 using anti-NS5A antibody
as described[5, 6], while HCV RNA of fractions was purified and analyzed as described above.
ApoB and ApoE concentrations of fractions were determined by enzyme-linked
immunosorbent assay (Human Apolipoprotein B or E ELISAPRC kit, Mabtech) undiluted or in a

1:50 dilution, respectively, according to the manufacturer’s instructions (Mabtech).



miRNA mimics and siRNAs. Non-targeting control miRNA, miR-501-3p mimic, miR-619-3p
mimic, antagomiR-122, antagomiR-501-3p, non-targeting control antagomiR, non-targeting
control siRNA, siRNAs targeting OGT, CD81 or apoliporotein E (ApoE) and a library of 28
custom ON-TARGETplus smart pool siRNAs were purchased from Dharmacon (GE

Healthcare).

MiRNA expression analysis. Total RNA (100 ng) was purified from control or HCV-infected
Huh7.5.1 cells using Tri reagent® (Thermo Scientific) and Direct-zol™ RNA purification kit
(Zymo Research). Total RNA was first polyadenylated and reverse transcribed using a
miScript Il RT system (Qiagen) according to the manufacturer’s instructions. The obtained
cDNA was subjected to RT-gPCR using miScript SYBR Green kit (Qiagen). Primers were the
mature miRNA sequence for the forward primer (Thermo Scientific) and the universal miScript
primer (Qiagen) for the reverse primer. Data were analyzed by the AACt method using small
nucleolar RNA, C/D box 61 (SNORD61) as an endogenous reference and the non-infected

samples as a calibrator[7].

Antibodies. Rabbit anti-OGT antibodies DM-17 and AL24 were purchased from Sigma or
kindly provided by Dr. G. W. Hart and Dr. S. Hardivillé (Johns Hopkins University School of
Medicine, Baltimore, MD)[8], respectively. Mouse anti-b-actin antibody was purchased from
Abcam and mouse, rabbit or sheep HRP-conjugated secondary antibodies (A9044, A0545
and A3415, respectively) were purchased from Sigma. Sheep anti-NS5A serum for
determination of TCID50 was a kind gift from M. Harris[9]. Human anti-E2 (AR3A) antibody[10]
for electron microscopy analysis was kindly provided by Mansun Law (SCRIPPS, California,

USA).

Western blotting. OGT and actin protein expression in human cells was assessed by
Western blot as described[8] with some modifications. Briefly, cells were lysed in lysis buffer

no. 6 (R&D Systems) according to the manufacturer's instructions. Equal amounts of protein



(40 pg) were size-separated through a Mini PROTEAN® TGX Stain-Free™ gel electrophoresis
(Bio-Rad) and transferred to PVDF membranes (Bio-Rad). Immunoblots were performed
using rabbit anti-OGT (1:2000) and mouse anti-b-actin (1:1000) antibodies[8, 11]. Antigen-
antibody complexes were detected by incubating the membrane with the appropriate HRP-
conjugated secondary antibodies (1:5000; 1:10,000) and imaged by enhanced
chemiluminescence with a ChemiDoc MP imager (Bio-Rad). Quantification of protein
expression was performed using ImageLab™ 5.2.1 software (BioRad). For analysis of OGT
and GAPDH expression in liver tissue from HCV transgenic (FL-N/35) or wild-type mice[12],
crude protein extracts were prepared by homogenization of frozen mouse livers (50-100 ug)
in tissue lysis buffer from the Ambion PARIS RNA (Thermo Scientific) and protein isolation Kit,
supplemented with protease inhibitors (cOmpleteTM EDTA-free protease inhibitor mixture,
Sigma-Aldrich) and phosphatase inhibitors (PhosSTOPTM, Sigma-Aldrich), using a tissue
homogenizer (MP Fast Prep24, MP Biomedicals, Santa Ana, CA) and MP Lysing Matrix A
tubes. Proteins were quantified using the BCA assay (Thermo Fisher Scientific). Western

blotting was performed as described above.

Immunocapture and electron microscopy analysis of viral particles. Sucrose-cushion
purified or iodixanol gradient fractionated HCVcc (JcR2a) produced in cells transfected with a
non-targeting siRNA control or a pool of siRNA against OGT were transferred via anti-E2
antibody AR3A on electron microscopy (EM) grids through immunocapture (IC) as
described[13]. Particles were stained with uranyl acetate dihydrate and observed in a JEOL
1230 electron microscope. Series of electron micrographs were acquired at random from IC
EM grids. The images were then analyzed with Image-J software, to determine the particle

size distribution.

Gene expression analysis in patient-derived liver tissue. For OGT expression analysis in
patient’'s samples, raw data were retrieved from the Gene Expression Omnibus (GSE84346)

and re-analyzed by quality-trimming (cutadapt) and mapping (HISAT2) to human genome



assembly hgl19. Reads mapping to Gencode v.19 genes were counted using htseg-count and
normalized applying DESeq2. Activity and fibrosis scores as well as viral load were taken from
the supplemental data of[14] including 22 HCV-infected patients and 6 patients not infected
with HCV and normal histology who underwent liver biopsy due to unclear hepatopathy (n=4),
metastasis of breast cancer (n=1), or metastasis of lung cancer (n=1) as described in[14]. To
analyze OGT expression in liver tissue of patients with chronic liver disease, FPKM values
and clinical data were retrieved from The Cancer Genome Atlas (TCGA,
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga). This
data set includes samples from HCV-infected patients (34 tumor samples including 5 paired
tumor/non-tumor samples), hepatitis B virus (HBV)-infected patients (76 tumor samples
including 7 paired tumor/non-tumor samples), patients with alcoholic liver disease (ALD) (72
tumor samples including 8 paired tumor/non-tumor samples) and patients with non-alcoholic

fatty liver disease (NAFLD) (11 tumor samples including 2 paired tumor/non-tumor samples).
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Supplementary figure legends
Figure S1. (A) Effect of miR-501-3p inhibition on HCV infectivity. Huh7.5.1 cells were

transfected with control antagomiR (Ctrl), antagomiR-122 as loss-of-function control to perturb



HCV replication and antagomiR-501-3p, prior to infection with HCVcc (JcR2a) according to
the two-step protocol depicted in Fig. 1A. After 48h, supernatants were transferred onto naive
Huh7.5.1 cells. After 72h, Renilla Luciferase activity of infected Huh7.5.1 cells was
determined. Data are expressed as mean percentage as compared to Ctrl £ s.d. Results are
from four independent experiments in quadruplicate. The dashed line indicates values from
vehicle-treated cells set at 100%. Statistics: *, p-value < 0.05, Mann-Whitney test. (B) miR-
501-3p expression upon HCV infection. Huh7.5.1 cells were infected with HCVcc (JcR2a).
After 72h, RNA was purified and miR-501-3p expression analyzed by RT-gPCR. Percentage
of miR-501-3p expression relative to uninfected Huh7.5.1 cells (Ctrl). Results are presented
as mean * s.d. from three independent experiments in duplicate. The dashed line indicates
values from uninfected Huh7.5.1 cells set at 100%. Statistics: *, p-value < 0.05, Mann-Whitney

test.

Supplementary Table 1. A genome-wide miRNA mimic screen identifies cellular
miRNAs modulating HCV infection. Log2(FC), Ifdr and effect on HCV infection in part 1 and
part 2 of the screen are shown for the individual miRNAs of the miRNA mimic library. In red:

proviral effect, in blue: antiviral effect. FC: fold change, Ifdr: local false discovery rate
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Part 1

Part 2

miRNA ID Mature Sanger ID [Library ID Mature Sequence
Log2(FC) Ifdr Effect on HCV |Log2(FC) Ifdr Effect on HCV

hsa-let-7a MIMAT0000062 C-300473-05 [UGAGGUAGUAGGUUGUAUAGUU -1.70171935969617 3.9917e-05 TRUE -3.28400225976063 0.0018396 TRUE
hsa-let-7b MIMAT0000063 C-300476-05 [UGAGGUAGUAGGUUGUGUGGUU -1.74684091191792 8.3715e-05 TRUE -3.61453853652595 0.009387 TRUE
hsa-let-7d MIMAT0000065 C-300478-07 [AGAGGUAGUAGGUUGCAUAGUU -1.53075932976348 0.00023985 TRUE -2.74632167025162 0.057617 TRUE
hsa-let-7e MIMAT0000066 C-300479-05 [UGAGGUAGGAGGUUGUAUAGUU -1.30271875995011 0.0014577 FALSE -1.90993819018051 0.081661 TRUE
hsa-let-7f MIMAT0000067 C-300480-05 [UGAGGUAGUAGAUUGUAUAGUU -2.22178435619614 6.7884e-06 TRUE -3.76872186786763 0.014453 TRUE
hsa-let-7g MIMAT0000414 C-300583-05 [UGAGGUAGUAGUUUGUACAGUU -1.91269526615093 6.7884e-06 TRUE -2.71878759599202 0.057617 TRUE
hsa-miR-101 MIMAT0000099 C-300518-07 [UACAGUACUGUGAUAACUGAA -0.886376348041933 |0.0030028 FALSE -1.9796810124946 0.11887 TRUE
hsa-miR-103-as MIMAT0007402 C-301453-00 [UCAUAGCCCUGUACAAUGCUGCU -1.11208100417218 0.0074787 FALSE -2.91287954813545 0.057617 TRUE
hsa-miR-106a* MIMAT0004517 C-301159-01 [CUGCAAUGUAAGCACUUCUUAC -1.32520114049511 3.9917e-05 TRUE -2.3773966141336 0.11887 TRUE
hsa-miR-1178 MIMAT0005823 C-301319-00 [UUGCUCACUGUUCUUCCCUAG -1.22556728667978 0.00061109 FALSE -2.3126959903038 0.08542 TRUE
hsa-miR-1178-5p MIMAT0022940 C-301922-00 [CAGGGUCAGCUGAGCAUG -1.16672245017752 0.00026644 TRUE -0.780775920183507 |0.72813 FALSE
hsa-miR-1185 MIMAT0005798 C-301317-00 [AGAGGAUACCCUUUGUAUGUU -1.2315368528283 8.3715e-05 TRUE -0.721316088104541 |0.76975 FALSE
hsa-miR-1200 MIMAT0005863 C-301326-00 [CUCCUGAGCCAUUCUGAGCCUC -1.24866404694154 0.00054279 FALSE -2.09711908610931 0.08542 TRUE
hsa-miR-1205 MIMAT0005869 C-301331-00 [UCUGCAGGGUUUGCUUUGAG -0.801511472736558 |0.0053924 FALSE -3.77846481724539 0.0018396 TRUE
hsa-miR-1207-3p MIMAT0005872 C-301334-00 [UCAGCUGGCCCUCAUUUC -1.10040811819955 0.00013963 TRUE -1.69117584901668 0.26604 FALSE
hsa-miR-122 MIMAT0000421 C-300591-05 [UGGAGUGUGACAAUGGUGUUUG -0.70369537171691 0.040577 FALSE -3.13425305602985 0.028781 TRUE
hsa-miR-122* MIMAT0004590 C-301046-01 [AACGCCAUUAUCACACUAAAUA -0.557131436052541 |0.037103 FALSE -1.83404561163316 0.11887 TRUE
hsa-miR-1226 MIMAT0005577 C-301284-01 [UCACCAGCCCUGUGUUCCCUAG -0.741744822716559 |0.0099219 FALSE -1.89688153334356 0.11887 TRUE
hsa-miR-1228* MIMAT0005582 C-301287-01 [GUGGGCGGGGGCAGGUGUGUG -0.947568053691086 |0.0049772 FALSE -2.29154418859234 0.11887 TRUE
hsa-miR-1237-5p MIMAT0022946 C-302618-00 [CGGGGGCGGGGCCGAAGCGCG -0.956259568604456 |0.021994 FALSE -2.34546898601693 0.057617 TRUE
hsa-miR-1244 MIMAT0005896 C-301865-00 [AAGUAGUUGGUUUGUAUGAGAUGGUY-1.17945761818024 6.1693e-05 TRUE -0.989861012597079 |0.5811 FALSE
hsa-miR-1245b-3p MIMAT0019951 C-302405-00 [UCAGAUGAUCUAAAGGCCUAUA -0.414846848981959 |0.32544 FALSE -2.27819747964432 0.081661 TRUE
hsa-miR-1255b-2-3p |MIMAT0022725 C-301882-00 [AACCACUUUCUUUGCUCAUCCA -0.427268737714942 0.061384 FALSE -2.58892190360625 0.023579 TRUE
hsa-miR-1258 MIMAT0005909 C-301384-00 [AGUUAGGAUUAGGUCGUGGAA -1.57210875214914 1.5894e-05 TRUE -1.63979276673705 0.36109 FALSE
hsa-miR-125b-2* MIMAT0004603 C-301061-01 [UCACAAGUCAGGCUCUUGGGAC -0.858902068537019 |0.0052694 FALSE -1.87406855538924 0.11887 TRUE
hsa-miR-1260b MIMAT0015041 C-301716-00 [AUCCCACCACUGCCACCAU -0.476317862532308 ]0.10991 FALSE 2.46099391534969 0.057617 TRUE
hsa-miR-1270 MIMAT0005924 C-301867-00 [CUGGAGAUAUGGAAGAGCUGUGU -1.23553336541613 3.9917e-05 TRUE -2.24160380684469 0.11887 TRUE
hsa-miR-1277 MIMAT0005933 C-301411-00 [UACGUAGAUAUAUAUGUAUUUU -0.745198002045239 |0.0074787 FALSE -3.58615793633136 0.014453 TRUE
hsa-miR-1278 MIMAT0005936 C-301417-00 [UAGUACUGUGCAUAUCAUCUAU -0.494528345361641 |0.089234 FALSE 1.60846287059147 0.12226 TRUE
hsa-miR-1283 MIMAT0005799 C-301315-00 [UCUACAAAGGAAAGCGCUUUCU -0.538161112092319 |0.061384 FALSE -2.67520055202511 0.08542 TRUE
hsa-miR-1284 MIMAT0005941 C-301423-00 [UCUAUACAGACCCUGGCUUUUC -0.412436737654723 |0.099257 FALSE -2.28002191497783 0.11527 TRUE
hsa-miR-1287 MIMAT0005878 C-301341-00 [UGCUGGAUCAGUGGUUCGAGUC -1.20683701032783 0.00023985 TRUE -1.98393331688063 0.08542 TRUE
hsa-miR-1288 MIMAT0005942 C-301424-00 [UGGACUGCCCUGAUCUGGAGA -0.704889827052788 0.0021076 FALSE -2.89790974514386 0.057617 TRUE
hsa-miR-129-3p MIMAT0004605 C-301063-01 [AAGCCCUUACCCCAAAAAGCAU -0.999602920325089 |0.0021076 FALSE -1.88681635888787 0.11887 TRUE
hsa-miR-1291 MIMAT0005881 C-301345-00 [UGGCCCUGACUGAAGACCAGCAGU |-1.21284220826454 0.00061109 FALSE -2.02374608043906 0.11887 TRUE
hsa-miR-1293 MIMAT0005883 C-301347-00 [UGGGUGGUCUGGAGAUUUGUGC -1.39687224389743 0.00026644 TRUE -2.31295737423138 0.057617 TRUE
hsa-miR-1294 MIMAT0005884 C-301348-00 [UGUGAGGUUGGCAUUGUUGUCU -1.44051810095446 8.3715e-05 TRUE -1.95652126826796 0.057617 TRUE
hsa-miR-1295 MIMAT0005885 C-301349-00 [UUAGGCCGCAGAUCUGGGUGA -1.2640855905457 0.00087976 FALSE -2.34227893604624 0.11887 TRUE
hsa-miR-1295b-5p MIMAT0022293 C-302563-00 [CACCCAGAUCUGCGGCCUAAU -0.454374224389677 |0.17522 FALSE -2.73444344828677 0.023579 TRUE
hsa-miR-1298 MIMAT0005800 C-301318-00 [UUCAUUCGGCUGUCCAGAUGUA -0.26688230187125 0.32544 FALSE -2.44553337713544 0.11887 TRUE
hsa-miR-1302 MIMAT0005890 C-301869-00 [UUGGGACAUACUUAUGCUAAA -1.35138412635794 3.6715e-05 TRUE -2.60359528922327 0.057617 TRUE
hsa-miR-1302 MIMAT0005890 C-301354-00 [UUGGGACAUACUUAUGCUAAA -1.11168868347783 0.00013793 TRUE -1.29913904583381 0.51048 FALSE
hsa-miR-1307 MIMAT0005951 C-301434-00 [ACUCGGCGUGGCGUCGGUCGUG -1.12000717587297 0.00054279 FALSE -2.10295176202445 0.057617 TRUE
hsa-miR-1307-5p MIMAT0022727 C-301875-00 [UCGACCGGACCUCGACCGGCU -0.803481003211417 ]0.0030028 FALSE -1.76491161834359 0.11887 TRUE
hsa-miR-1322 MIMAT0005953 C-301436-00 |[GAUGAUGCUGCUGAUGCUG -1.23817643374983 6.1693e-05 TRUE -1.29920754317295 0.46329 FALSE
hsa-miR-1323 MIMAT0005795 C-301311-00 [UCAAAACUGAGGGGCAUUUUCU -0.756897047236657 |0.096607 FALSE -2.43084213259459 0.11887 TRUE
hsa-miR-135b* MIMAT0004698 C-301200-01 [AUGUAGGGCUAAAAGCCAUGGG -1.49530939618539 0.0018747 FALSE -2.98188718020305 0.050122 TRUE
hsa-miR-139-3p MIMAT0004552 C-301036-03 [UGGAGACGCGGCCCUGUUGGAGU  |-1.02065377094153 0.00079918 FALSE -2.77458369079406 0.019699 TRUE
hsa-miR-140-3p MIMAT0004597 C-301055-01 [UACCACAGGGUAGAACCACGG -0.172675601522775 |1 FALSE 2.56894688372309 0.11887 TRUE
hsa-miR-142-3p MIMAT0000434 C-300610-03 [UGUAGUGUUUCCUACUUUAUGGA -1.00474764620935 0.00023985 TRUE -1.7577126946261 0.22566 FALSE
hsa-miR-146a MIMAT0000449 C-300630-03 [UGAGAACUGAAUUCCAUGGGUU 0.279820319960687 |0.17522 FALSE 1.66479155066337 0.11887 TRUE
hsa-miR-150* MIMAT0004610 C-301067-01 [CUGGUACAGGCCUGGGGGACAG -1.46501526099695 0.00023985 TRUE -1.19620229448666 0.40677 FALSE




hsa-miR-151b MIMAT0010214 C-301973-00 [UCGAGGAGCUCACAGUCU -1.03668648961171 3.9917e-05 TRUE -2.8985532020104 0.057617 TRUE
hsa-miR-182 MIMAT0000259 C-300557-07 [UUUGGCAAUGGUAGAACUCACACU |-0.581360116993454 |0.03164 FALSE -1.81305061189634 0.11887 TRUE
hsa-miR-184 MIMAT0000454 C-300635-03 [UGGACGGAGAACUGAUAAGGGU -1.31700777618768 3.9917e-05 TRUE -1.52851322717993 0.36109 FALSE
hsa-miR-185 MIMAT0000455 C-300636-07 [UGGAGAGAAAGGCAGUUCCUGA -1.59673044023595 0.00013963 TRUE -1.74454670174015 0.1633 FALSE
hsa-miR-18b* MIMAT0004751 C-301187-01 [UGCCCUAAAUGCCCCUUCUGGC -0.825568919117559 10.0027607 FALSE -2.30862554668178 0.023579 TRUE
hsa-miR-1909 MIMAT0007883 C-301456-00 [CGCAGGGGCCGGGUGCUCACCG -0.511863313449074 0.17522 FALSE 2.49877552994666 0.11887 TRUE
hsa-miR-1915* MIMAT0007891 C-301466-00 [ACCUUGCCUUGCUGCCCGGGCC -1.71935071114424 8.3715e-05 TRUE -1.13532112712663 0.46329 FALSE
hsa-miR-196b* MIMAT0009201 C-301305-00 [UCGACAGCACGACACUGCCUUC -0.949306838412525 10.00054279 FALSE -3.1358874675771 0.023579 TRUE
hsa-miR-19b MIMAT0000074 C-300489-03 [UGUGCAAAUCCAUGCAAAACUGA -1.01461439258753 0.00013793 TRUE -2.75192926226938 0.014453 TRUE
hsa-miR-19b-1* MIMAT0004491 C-301021-01 [AGUUUUGCAGGUUUGCAUCCAGC -1.68388148726454 0.0030028 FALSE -2.85695043305243 0.014453 TRUE
hsa-miR-19b-2* MIMAT0004492 C-301139-01 [AGUUUUGCAGGUUUGCAUUUCA -0.594068837054281 0.037103 FALSE -2.06967686748099 0.11887 TRUE
hsa-miR-200b* MIMAT0004571 C-301144-01 [CAUCUUACUGGGCAGCAUUGGA -1.05721574165849 0.0074787 FALSE -4.59657299807562 0.0018396 TRUE
hsa-miR-203b-5p MIMAT0019813 C-302277-00 [UAGUGGUCCUAAACAUUUCACA -1.0335612225008 0.00016067 TRUE -2.13526669981558 0.08542 TRUE
hsa-miR-208a MIMAT0000241 C-300537-03 [AUAAGACGAGCAAAAAGCUUGU -0.823665097293502 10.0030028 FALSE -1.54639877799123 0.11887 TRUE
hsa-miR-21 MIMAT0000076 C-300492-03 [UAGCUUAUCAGACUGAUGUUGA -0.768228630205262 10.096607 FALSE 3.29607415881261 0.057617 TRUE
hsa-miR-211-3p MIMAT0022694 C-301905-00 [GCAGGGACAGCAAAGGGGUGC -0.812107428438748 10.0027607 FALSE -2.21028883028492 0.08542 TRUE
hsa-miR-2114 MIMAT0011156 C-301489-00 [UAGUCCCUUCCUUGAAGCGGUC -0.958796902783202 10.00016326 TRUE -1.5768286317563 0.26604 FALSE
hsa-miR-2114* MIMAT0011157 C-301490-00 [CGAGCCUCAAGCAAGGGACUU -1.02419077915881 0.00013793 TRUE -2.57866858794879 0.057617 TRUE
hsa-miR-2117 MIMAT0011162 C-301496-00 [UGUUCUCUUUGCCAAGGACAG -0.806177347742896 10.00054279 FALSE -2.55943646917884 0.057617 TRUE
hsa-miR-216a-3p MIMAT0022844 C-301886-00 [UCACAGUGGUCUCUGGGAUUAU -1.47806207137632 8.3715e-05 TRUE -1.62257411616963 0.1633 FALSE
hsa-miR-22 MIMAT0000077 C-300493-03 [AAGCUGCCAGUUGAAGAACUGU -1.14812626998085 0.00054279 FALSE -2.8254651928315 0.009387 TRUE
hsa-miR-220b MI0005529 C-301218-01 [CCACCACCGUGUCUGACACUU -1.10856445415353 0.12653 FALSE -2.50799687656707 0.11887 TRUE
hsa-miR-221* MIMAT0004568 C-301163-01 [ACCUGGCAUACAAUGUAGAUUU -1.0647285020049 0.00016067 TRUE 0.493351763855846  10.86349 FALSE
hsa-miR-223* MIMAT0004570 C-301197-01 [CGUGUAUUUGACAAGCUGAGUU -0.596047980424722 10.0074787 FALSE -2.64001675119474 0.057617 TRUE
hsa-miR-2276 MIMAT0011775 C-301481-00 [UCUGCAAGUGUCAGAGGCGAGG -1.23563628890583 3.9917e-05 TRUE -0.719842576977581 10.76975 FALSE
hsa-miR-2277-3p MIMAT0011777 C-301482-00 [UGACAGCGCCCUGCCUGGCUC -1.22725149342576 3.9917e-05 TRUE -2.2780178572373 0.11887 TRUE
hsa-miR-23a* MIMAT0004496 C-301025-01 [GGGGUUCCUGGGGAUGGGAUUU -0.773715976814457 10.0018747 FALSE -2.22574058493535 0.11887 TRUE
hsa-miR-25* MIMAT0004498 C-301183-01 [AGGCGGAGACUUGGGCAAUUG -1.14410824968417 0.0018747 FALSE -2.13159960818718 0.057617 TRUE
hsa-miR-2681-3p MIMAT0013516 C-301978-00 [UAUCAUGGAGUUGGUAAAGCAC -0.84154241088718 0.00023985 TRUE -0.564927523090931 10.86349 FALSE
hsa-miR-2681-5p MIMAT0013515 C-301977-00 [GUUUUACCACCUCCAGGAGACU -1.20496402288836 3.6715e-05 TRUE -2.40988448605506 0.057617 TRUE
hsa-miR-2682-3p MIMAT0013518 C-301980-00 [CGCCUCUUCAGCGCUGUCUUCC -0.908772237664288 10.00013793 TRUE -1.43184476418853 0.29187 FALSE
hsa-miR-2682-5p MIMAT0013517 C-301979-00 [CAGGCAGUGACUGUUCAGACGUC -1.24830345350196 1.5894e-05 TRUE -2.80779774369284 0.014453 TRUE
hsa-miR-26b MIMAT0000083 C-300501-07 [UUCAAGUAAUUCAGGAUAGGU -0.405072630482104 10.12653 FALSE -2.50877510131769 0.081661 TRUE
hsa-miR-27a MIMAT0000084 C-300502-03 [UUCACAGUGGCUAAGUUCCGC -1.32790971119818 3.9917e-05 TRUE -1.95676458087438 0.1633 FALSE
hsa-miR-27a* MIMAT0004501 C-301028-01 [AGGGCUUAGCUGCUUGUGAGCA -0.887009503478049 10.0052694 FALSE -3.44308089121935 0.028781 TRUE
hsa-miR-27b* MIMAT0004588 C-301154-01 [AGAGCUUAGCUGAUUGGUGAAC -1.00848877755825 0.0014577 FALSE -2.34115081043794 0.050122 TRUE
hsa-miR-28-5p MIMAT0000085 C-300503-05 [AAGGAGCUCACAGUCUAUUGAG -0.358344656239635 10.17522 FALSE -1.5918060993224 0.11887 TRUE
hsa-miR-2861 MIMAT0013802 C-301642-00 [GGGGCCUGGCGGUGGGCGG -0.615484847088555 10.0046172 FALSE -2.44784331747309 0.081661 TRUE
hsa-miR-2964a-3p MIMAT0019748 C-302218-00 [AGAAUUGCGUUUGGACAAUCAGU -1.13977573653624 6.1693e-05 TRUE -0.558827938583115 0.76975 FALSE
hsa-miR-298 MIMAT0004901 C-301212-01 [AGCAGAAGCAGGGAGGUUCUCCCA |-0.456122353506126 |0.54004 FALSE -2.83068032162142 0.11887 TRUE
hsa-miR-299-5p MIMAT0002890 C-300854-03 [UGGUUUACCGUCCCACAUACAU -1.25864926851518 0.00023985 TRUE -0.317867194423722 |1 FALSE
hsa-miR-29a* MIMAT0004503 C-301178-01 [ACUGAUUUCUUUUGGUGUUCAG -1.35357089379682 0.0021076 FALSE -2.75349311494331 0.057617 TRUE
hsa-miR-29b-1* MIMAT0004514 C-301150-01 [GCUGGUUUCAUAUGGUGGUUUAGA |-0.970652939446982 [0.015067 FALSE -2.38342736203068 0.11887 TRUE
hsa-miR-301b MIMAT0004958 C-301252-01 [CAGUGCAAUGAUAUUGUCAAAGC -0.837318501823261 10.0014577 FALSE -2.28547978225747 0.11887 TRUE
hsa-miR-302b* MIMAT0000714 C-300668-07 [ACUUUAACAUGGAAGUGCUUUC -0.550910910384927 0.037103 FALSE -1.76045353694163 0.12226 TRUE
hsa-miR-302f MIMAT0005932 C-301410-00 [UAAUUGCUUCCAUGUUU -1.5960005623826 1.5894e-05 TRUE -3.17802223827817 0.014453 TRUE
hsa-miR-30b MIMAT0000420 C-300590-03 [UGUAAACAUCCUACACUCAGCU -0.759206041294187 10.0018747 FALSE -2.5817157170778 0.057617 TRUE
hsa-miR-30c-1* MIMAT0004674 C-301199-01 [CUGGGAGAGGGUUGUUUACUCC -1.43787786865803 8.3715e-05 TRUE 0.291968781990601 |1 FALSE
hsa-miR-30c-2* MIMAT0004550 C-301034-01 [CUGGGAGAAGGCUGUUUACUCU -1.18964958597662 8.3715e-05 TRUE -0.203715081689554 |1 FALSE
hsa-miR-30d MIMAT0000245 C-300543-03 [UGUAAACAUCCCCGACUGGAAG -0.469794284958227 10.061384 FALSE -2.24325814749711 0.08542 TRUE
hsa-miR-3115 MIMAT0014977 C-301644-00 [AUAUGGGUUUACUAGUUGGU -0.595634685516391 10.0052694 FALSE -2.22531374934429 0.11887 TRUE
hsa-miR-3116 MIMAT0014978 C-301645-00 [UGCCUGGAACAUAGUAGGGACU -1.61818516940984 6.7884e-06 TRUE -1.27627977004857 0.51048 FALSE
hsa-miR-3117 MIMAT0014979 C-301647-00 [AUAGGACUCAUAUAGUGCCAG -1.07944692693698 6.1693e-05 TRUE 0.0583708702116637 |1 FALSE
hsa-miR-3119 MIMAT0014981 C-301651-00 [UGGCUUUUAACUUUGAUGGC -0.77136494055742 0.00087976 FALSE -2.20041353445194 0.11887 TRUE




hsa-miR-3121 MIMAT0014983 C-301654-00 [UAAAUAGAGUAGGCAAAGGACA -0.550473953423974 10.0074787 FALSE -2.06892978205979 0.11887 TRUE
hsa-miR-3124 MIMAT0014986 C-301657-00 [UUCGCGGGCGAAGGCAAAGUC -1.13549064733399 3.9917e-05 TRUE -0.910461837996433 0.5811 FALSE
hsa-miR-3126-5p MIMAT0014989 C-301661-00 [UGAGGGACAGAUGCCAGAAGCA -1.43373948465677 1.5894e-05 TRUE -0.744651597941774 10.76975 FALSE
hsa-miR-3127 MIMAT0014990 C-301662-00 [AUCAGGGCUUGUGGAAUGGGAAG -0.992180086498039 10.00013793 TRUE -1.20167440176899 0.51048 FALSE
hsa-miR-3130-3p MIMAT0014994 C-301665-00 [GCUGCACCGGAGACUGGGUAA -0.645251817092445 10.0021076 FALSE -3.33421355039417 0.023579 TRUE
hsa-miR-3130-5p MIMAT0014995 C-301666-00 [UACCCAGUCUCCGGUGCAGCC -1.12058237373742 6.1693e-05 TRUE -2.44166606880781 0.11887 TRUE
hsa-miR-3131 MIMAT0014996 C-301669-00 [UCGAGGACUGGUGGAAGGGCCUU -1.10475333868087 6.1693e-05 TRUE -0.776623344642163 0.76864 FALSE
hsa-miR-3132 MIMAT0014997 C-301670-00 [UGGGUAGAGAAGGAGCUCAGAGGA |-1.0649683988313 8.3715e-05 TRUE -2.09592053963675 0.11887 TRUE
hsa-miR-3136 MIMAT0015003 C-301676-00 [CUGACUGAAUAGGUAGGGUCAUU -0.837973854149906 10.00054279 FALSE -2.76623087444917 0.057617 TRUE
hsa-miR-3137 MIMAT0015005 C-301678-00 [UCUGUAGCCUGGGAGCAAUGGGGU |-1.05179643968079 8.3715e-05 TRUE -1.1088570611196 0.51579 FALSE
hsa-miR-3138 MIMAT0015006 C-301679-00 [UGUGGACAGUGAGGUAGAGGGAGU |-1.09246960431895 6.1693e-05 TRUE -1.78790357269758 0.22566 FALSE
hsa-miR-3139 MIMAT0015007 C-301680-00 [UAGGAGCUCAACAGAUGCCUGUU -1.37716815069908 1.5894e-05 TRUE -1.31106163706907 0.46329 FALSE
hsa-miR-3140 MIMAT0015008 C-301681-00 [AGCUUUUGGGAAUUCAGGUAGU -1.58079760272847 6.7884e-06 TRUE -3.18144016432131 0.014453 TRUE
hsa-miR-3142 MIMAT0015011 C-301684-00 [AAGGCCUUUCUGAACCUUCAGA -0.977053358967313 10.00013963 TRUE -1.89446739540295 0.1633 FALSE
hsa-miR-3144-5p MIMAT0015014 C-301687-00 [AGGGGACCAAAGAGAUAUAUAG -1.13947775501217 3.9917e-05 TRUE -0.414321660104908 |1 FALSE
hsa-miR-3147 MIMAT0015019 C-301692-00 [GGUUGGGCAGUGAGGAGGGUGUGA |-0.942186557775687 |0.00023985 TRUE -0.157149408887514 |1 FALSE
hsa-miR-3148 MIMAT0015021 C-301694-00 [UGGAAAAAACUGGUGUGUGCUU -1.14553360648851 3.9917e-05 TRUE -1.08300314433575 0.51579 FALSE
hsa-miR-3150 MIMAT0015023 C-301696-00 [CUGGGGAGAUCCUCGAGGUUGG -1.4167699283789 1.5894e-05 TRUE -0.986527775853387 10.5811 FALSE
hsa-miR-3150b-5p MIMAT0019226 C-301961-00 [CAACCUCGAGGAUCUCCCCAGC -1.04471163915449 3.9917e-05 TRUE -2.12053729635218 0.08542 TRUE
hsa-miR-3151 MIMAT0015024 C-301697-00 [GGUGGGGCAAUGGGAUCAGGU -1.02537680303558 0.00013793 TRUE -1.56671822128811 0.26604 FALSE
hsa-miR-3152 MIMAT0015025 C-301698-00 [UGUGUUAGAAUAGGGGCAAUAA -1.13601969432149 6.1693e-05 TRUE -2.17593163296179 0.11887 TRUE
hsa-miR-3157 MIMAT0015031 C-301704-00 [UUCAGCCAGGCUAGUGCAGUCU -1.81838879899633 0.00023985 TRUE -0.798984655509925 10.76975 FALSE
hsa-miR-3180 MIMAT0018178 C-301583-00 [UGGGGCGGAGCUUCCGGAG -1.37633415637047 0.00013793 TRUE -1.9747378577519 0.050122 TRUE
hsa-miR-3186-5p MIMAT0015067 C-301749-00 [CAGGCGUCUGUCUACGUGGCUU -0.536494894531891 0.061384 FALSE -2.19613374331388 0.11887 TRUE
hsa-miR-3190-5p MIMAT0015073 C-301756-02 [UCUGGCCAGCUACGUCCCCA -1.56898213610615 3.9917e-05 TRUE -3.02592555730969 0.014453 TRUE
hsa-miR-3191-5p MIMAT0022732 C-302750-00 [CUCUCUGGCCGUCUACCUUCCA -0.896644736818671 0.01741 FALSE -2.93191055011036 0.057617 TRUE
hsa-miR-32* MIMAT0004505 C-301181-01 [CAAUUUAGUGUGUGUGAUAUUU -0.561723514860645 0.37761 FALSE -2.47247129599692 0.11887 TRUE
hsa-miR-323-5p MIMAT0004696 C-301085-01 [AGGUGGUCCGUGGCGCGUUCGC -0.997451491983143 10.0049772 FALSE -2.55198466781697 0.014453 TRUE
hsa-miR-323b-5p MIMAT0001630 C-301724-00 [AGGUUGUCCGUGGUGAGUUCGCA  |-0.870040751918234 |0.00054279 FALSE -3.51049237466915 0.014453 TRUE
hsa-miR-324-3p MIMAT0000762 C-300705-05 [ACUGCCCCAGGUGCUGCUGG -0.930125097729152 10.0021076 FALSE -2.18712046531723 0.081661 TRUE
hsa-miR-328 MIMAT0000752 C-300695-03 [CUGGCCCUCUcUGCcccuuccaGuU -1.1639709975505 8.3715e-05 TRUE -1.57395137899233 0.26604 FALSE
hsa-miR-339-3p MIMAT0004702 C-301185-01 [UGAGCGCCUCGACGACAGAGCCG -0.424124048504717 10.061384 FALSE -2.06515171637643 0.08542 TRUE
hsa-miR-342-5p MIMAT0004694 C-301083-01 [AGGGGUGCUAUCUGUGAUUGA -1.66163157467999 0.00016326 TRUE -2.01939161434937 0.12226 TRUE
hsa-miR-345-3p MIMAT0022698 C-301887-00 [GCCCUGAACGAGGGGUCUGGAG -0.839605975652715 10.0021076 FALSE -2.80466918793858 0.023579 TRUE
hsa-miR-346 MIMAT0000773 C-300712-03 [UGUCUGCCCGCAUGCCUGCCUCU -1.22592404544756 0.00023985 TRUE -1.35203588028221 0.20114 FALSE
hsa-miR-34a* MIMAT0004557 C-301145-01 [CAAUCAGCAAGUAUACUGCCCU -1.27197605437233 6.1693e-05 TRUE -0.378051811558674 |1 FALSE
hsa-miR-3529-5p MIMAT0019828 C-302292-00 [AGGUAGACUGGGAUUUGUUGUU -0.674576387471472 10.034257 FALSE -1.99747275957492 0.11887 TRUE
hsa-miR-3612 MIMAT0017989 C-301505-00 [AGGAGGCAUCUUGAGAAAUGGA -1.26286494709099 0.00026644 TRUE -1.44238772362423 0.51048 FALSE
hsa-miR-3616-3p MIMAT0017996 C-301512-00 [CGAGGGCAUUUCAUGAUGCAGGC -1.10327166715049 0.00054279 FALSE -1.69108153949499 0.11887 TRUE
hsa-miR-3619-3p MIMAT0019219 C-301952-00 [GGGACCAUCCUGCCUGCUGUGG -0.361591800679582 10.037103 FALSE -2.1201206119135 0.11887 TRUE
hsa-miR-3620-5p MIMAT0022967 C-302619-00 [GUGGGCUGGGCUGGGCUGGGCC -0.963210303847923 0.01741 FALSE -2.95077111022971 0.014453 TRUE
hsa-miR-3622b-5p MIMAT0018005 C-301522-00 [AGGCAUGGGAGGUCAGGUGA -1.03124833680421 0.00087976 FALSE -1.86140566900932 0.08542 TRUE
hsa-miR-365 MIMAT0000710 C-300666-03 [UAAUGCCCCUAAAAAUCCUUAU -1.07713706038737 0.03164 FALSE -2.565586989697 0.12226 TRUE
hsa-miR-3654 MIMAT0018074 C-301532-00 [GACUGGACAAGCUGAGGAA -0.394926641879625 10.096607 FALSE -1.99274206927806 0.057617 TRUE
hsa-miR-365b-5p MIMAT0022833 C-301900-00 [AGGGACUUUCAGGGGCAGCUGU -1.17934943470937 0.00026644 TRUE -1.48034463468101 0.22566 FALSE
hsa-miR-3666 MIMAT0018088 C-301546-00 [CAGUGCAAGUGUAGAUGCCGA -0.8322031427779 0.0027607 FALSE -2.76031104596189 0.009387 TRUE
hsa-miR-3667-3p MIMAT0018090 C-301547-00 [ACCUUCCUCUCCAUGGGUCUUU -1.53737106921222 6.1693e-05 TRUE -0.189890808664278 |1 FALSE
hsa-miR-3674 MIMAT0018097 C-301555-00 [AUUGUAGAACCUAAGAUUGGCC -0.686422173208126 10.0099219 FALSE -1.66427885423157 0.08542 TRUE
hsa-miR-3675-5p MIMAT0018098 C-301557-00 [UAUGGGGCUUCUGUAGAGAUUUC -0.704414688397948 10.0074787 FALSE -1.47755963621301 0.11887 TRUE
hsa-miR-3676-5p MIMAT0022734 C-301954-00 [AGGAGAUCCUGGGUU -0.876412168433536  10.00016326 TRUE -2.81631813362903 0.028781 TRUE
hsa-miR-3680 MIMAT0018106 C-301565-00 [GACUCACUCACAGGAUUGUGCA -0.710055072199479 10.0074787 FALSE -1.48818626629073 0.11887 TRUE
hsa-miR-3680* MIMAT0018107 C-301564-00 [UUUUGCAUGACCCUGGGAGUAGG -0.68553099516054 0.0099219 FALSE -1.8440688012842 0.057617 TRUE
hsa-miR-3681 MIMAT0018108 C-301566-00 [UAGUGGAUGAUGCACUCUGUGC -1.41416859913926 0.00013793 TRUE -1.60964747472672 0.1633 FALSE
hsa-miR-3681* MIMAT0018109 C-301567-00 [ACACAGUGCUUCAUCCACUACU -1.39472879333958 0.00013793 TRUE -1.15667754722324 0.26604 FALSE




hsa-miR-3682 MIMAT0018110 C-301568-00 [UGAUGAUACAGGUGGAGGUAG -1.46673360047121 8.3715e-05 TRUE -0.643125216570606 10.72813 FALSE
hsa-miR-3682-5p MIMAT0019222 C-301956-00 [CUACUUCUACCUGUGUUAUCAU -1.23125674549655 1.5894e-05 TRUE -2.81908923583428 0.023579 TRUE
hsa-miR-3684 MIMAT0018112 C-301570-00 [UUAGACCUAGUACACGUCCUU -0.580463595828849 10.021994 FALSE -1.45573759159026 0.11887 TRUE
hsa-miR-3688 MIMAT0018116 C-301574-00 [UAUGGAAAGACUUUGCCACUCU -0.832441806479729 10.0027607 FALSE -2.02033498247755 0.057617 TRUE
hsa-miR-3688-5p MIMAT0019223 C-301957-00 [AGUGGCAAAGUCUUUCCAUAU -0.588424467468018 10.0030028 FALSE -2.09619814608759 0.11887 TRUE
hsa-miR-3689b* MIMAT0018181 C-301587-00 [CUGGGAGGUGUGAUAUUGUGGU -1.45567876271802 9.6971e-05 TRUE -1.73246672882077 0.081661 TRUE
hsa-miR-3691 MIMAT0018120 C-301578-00 [AGUGGAUGAUGGAGACUCGGUAC -1.18761474653793 0.00054279 FALSE -1.75547134579776 0.057617 TRUE
hsa-miR-3691-3p MIMAT0019224 C-301958-00 [ACCAAGUCUGCGUCAUCCUCUC -0.810629756562153 10.00026644 TRUE -1.96328717500158 0.11887 TRUE
hsa-miR-374a MIMAT0000727 C-300681-05 [UUAUAAUACAACCUGAUAAGUG -0.718874319759212 10.0021076 FALSE -2.60836689817691 0.081661 TRUE
hsa-miR-374c MIMAT0018443 C-301630-00 [AUAAUACAACCUGCUAAGUGCU -0.337432743025632 10.32544 FALSE -1.98175619738517 0.11887 TRUE
hsa-miR-374c-3p MIMAT0022735 C-301969-00 [CACUUAGCAGGUUGUAUUAUAU -0.646260597978354 10.0018747 FALSE -2.63477891317834 0.028781 TRUE
hsa-miR-376¢ MIMAT0000720 C-300674-05 [AACAUAGAGGAAAUUCCACGU -0.624380737173221 10.0053924 FALSE -2.68639877338995 0.057617 TRUE
hsa-miR-378b MIMAT0014999 C-301672-00 [ACUGGACUUGGAGGCAGAA -0.950272981825821 10.00016326 TRUE -0.901403427172712 10.72813 FALSE
hsa-miR-378g MIMAT0018937 C-302000-00 [ACUGGGCUUGGAGUCAGAAG -0.836483927856313 10.00023985 TRUE -1.88595985918819 0.11887 TRUE
hsa-miR-380* MIMAT0000734 C-300688-03 [UGGUUGACCAUAGAACAUGCGC -1.15838836623363 0.0018747 FALSE -2.13916483631805 0.12226 TRUE
hsa-miR-381-5p MIMAT0022862 C-301920-00 [AGCGAGGUUGCCCUUUGUAUAU -0.569567310635211 0.021994 FALSE -2.14982823754668 0.08542 TRUE
hsa-miR-383 MIMAT0000738 C-300692-03 [AGAUCAGAAGGUGAUUGUGGCU -0.925079491666264 10.0052694 FALSE -2.8317437192294 0.050122 TRUE
hsa-miR-3907 MIMAT0018179 C-301585-00 [AGGUGCUCCAGGCUGGCUCACA -1.38465900005315 0.00013793 TRUE -0.257773760992354 |1 FALSE
hsa-miR-3910 MIMAT0018184 C-301590-00 [AAAGGCAUAAAACCAAGACA -0.501095287980396 10.037103 FALSE -1.43931285152292 0.11887 TRUE
hsa-miR-3913-3p MIMAT0019225 C-301959-00 [AGACAUCAAGAUCAGUCCCAAA -2.00645940017379 2.9753e-06 TRUE -3.02362886477847 0.014453 TRUE
hsa-miR-3918 MIMAT0018192 C-301600-00 [ACAGGGCCGCAGAUGGAGACU -0.975422481909615 0.015067 FALSE -2.44273172350024 0.081661 TRUE
hsa-miR-3922-5p MIMAT0019227 C-301962-00 [UCAAGGCCAGAGGUCCCACAGCA -1.00561107859174 6.1693e-05 TRUE -1.71505157929257 0.1633 FALSE
hsa-miR-3935 MIMAT0018350 C-301618-00 [UGUAGAUACGAGCACCAGCCAC -0.43578505271152 0.17522 FALSE -2.47251139472301 0.057617 TRUE
hsa-miR-3972 MIMAT0019357 C-302158-00 [CUGCCAGCCCCGUUCCAGGGCA -1.16965458786124 0.00023985 TRUE -1.70649157359084 0.40677 FALSE
hsa-miR-3975 MIMAT0019360 C-302161-00 [UGAGGCUAAUGCACUACUUCAC -1.37543164339877 8.3715e-05 TRUE -1.26480301471027 0.51579 FALSE
hsa-miR-425* MIMAT0001343 C-300718-07 [AUCGGGAAUGUCGUGUCCGCCC -0.937175749542432 10.00054279 FALSE -3.15498966014918 0.028781 TRUE
hsa-miR-4253 MIMAT0016882 C-301816-00 [AGGGCAUGUCCAGGGGGU -1.35070000422013 0.00016326 TRUE -2.47892017845828 0.11887 TRUE
hsa-miR-4290 MIMAT0016921 C-301856-00 [uGCCCUCCUUUCuUcccuC -1.2579851622971 0.00026644 TRUE -0.780428141336904 10.86349 FALSE
hsa-miR-4306 MIMAT0016858 C-301792-00 [UGGAGAGAAAGGCAGUA -1.10160128889539 0.0046172 FALSE -2.08580333486915 0.11887 TRUE
hsa-miR-4312 MIMAT0016864 C-301798-00 [GGCCUUGUUCCUGUCCCCA -0.866321092589685 10.0030028 FALSE -2.71345507691741 0.11887 TRUE
hsa-miR-4314 MIMAT0016868 C-301802-00 [CUCUGGGAAAUGGGACAG -1.5364651282067 8.3715e-05 TRUE -1.29173007577176 0.5811 FALSE
hsa-miR-4417 MIMAT0018929 C-301991-00 [GGUGGGCUUCCCGGAGGG -0.611560680456615 0.0021076 FALSE -2.09593331520836 0.11887 TRUE
hsa-miR-4418 MIMAT0018930 C-301992-00 [CACUGCAGGACUCAGCAG -0.946166316606651 10.00013793 TRUE -1.12537501301133 0.46329 FALSE
hsa-miR-4419a MIMAT0018931 C-301993-00 [UGAGGGAGGAGACUGCA -1.57297371821019 6.7884e-06 TRUE -1.73343971226014 0.1633 FALSE
hsa-miR-4420 MIMAT0018933 C-301995-00 [GUCACUGAUGUCUGUAGCUGAG -0.924563865566564 10.00013963 TRUE -0.533919074584704 10.86349 FALSE
hsa-miR-4422 MIMAT0018935 C-301997-00 [AAAAGCAUCAGGAAGUACCCA -0.890570506779186  10.00023985 TRUE -0.609244483333412 10.86349 FALSE
hsa-miR-4423-3p MIMAT0018936 C-301999-00 [AUAGGCACCAAAAAGCAACAA -0.908201173118296 10.00013793 TRUE -0.922983857808818 10.5811 FALSE
hsa-miR-4423-5p MIMAT0019232 C-301998-00 [AGUUGCCUUUUUGUUCCCAUGC -0.973577427508824 18.3715e-05 TRUE -1.75215013385816 0.1633 FALSE
hsa-miR-4425 MIMAT0018940 C-302003-00 [UGUUGGGAUUCAGCAGGACCAU -2.09487999782656 6.0932e-07 TRUE -4.02209575968718 0.0018396 TRUE
hsa-miR-4426 MIMAT0018941 C-302004-00 [GAAGAUGGACGUACUUU -1.51937100953274 6.7884e-06 TRUE -1.79705743821345 0.12226 TRUE
hsa-miR-4427 MIMAT0018942 C-302005-00 [UCUGAAUAGAGUCUGAAGAGU -0.853522749406319 10.00023985 TRUE -1.87772807758284 0.1633 FALSE
hsa-miR-4428 MIMAT0018943 C-302006-00 [CAAGGAGACGGGAACAUGGAGC -1.00869386291556 6.1693e-05 TRUE -2.00933698314586 0.12226 TRUE
hsa-miR-4430 MIMAT0018945 C-302008-00 [AGGCUGGAGUGAGCGGAG -0.738546756609574 10.00054279 FALSE -2.96189732903016 0.014453 TRUE
hsa-miR-4431 MIMAT0018947 C-302010-00 [GCGACUCUGAAAACUAGAAGGU -0.605956299781477 10.0021076 FALSE -1.84934532554394 0.11887 TRUE
hsa-miR-4432 MIMAT0018948 C-302011-00 [AAAGACUCUGCAAGAUGCCU -1.01744360848873 6.1693e-05 TRUE -3.10500591742549 0.023579 TRUE
hsa-miR-4433-3p MIMAT0018949 C-302012-00 [ACAGGAGUGGGGGUGGGACAU -0.842019427210466 10.00023985 TRUE -1.23537194391469 0.40677 FALSE
hsa-miR-4433-5p MIMAT0020956 C-302013-00 [CGUCCCACCCCCCAcCuUccuGcuU -1.14337035396948 3.6715e-05 TRUE -1.97664293733303 0.11887 TRUE
hsa-miR-4434 MIMAT0018950 C-302014-00 [AGGAGAAGUAAAGUAGAA -0.883254828802553 10.00013963 TRUE -1.1657175196267 0.46329 FALSE
hsa-miR-4435 MIMAT0018951 C-302015-00 [AUGGCCAGAGCUCACACAGAGG -0.883497505941514 10.00023985 TRUE -0.615152700112339 0.76975 FALSE
hsa-miR-4436a MIMAT0018952 C-302016-00 [GCAGGACAGGCAGAAGUGGAU -1.04036408328386 3.9917e-05 TRUE -1.59208296058719 0.22566 FALSE
hsa-miR-4437 MIMAT0018953 C-302018-00 [UGGGCUCAGGGUACAAAGGUU -1.08972765547642 3.9917e-05 TRUE -1.15841014023857 0.51048 FALSE
hsa-miR-4438 MIMAT0018956 C-302021-00 [CACAGGCUUAGAAAAGACAGU -1.17220321847248 3.6715e-05 TRUE -1.92817351938145 0.11887 TRUE
hsa-miR-4440 MIMAT0018958 C-302023-00 [UGUCGUGGGGCUUGCUGGCUUG -1.11752167173499 3.9917e-05 TRUE -2.33357733512522 0.08542 TRUE
hsa-miR-4441 MIMAT0018959 C-302024-00 [ACAGGGAGGAGAUUGUA -1.2984552451679 1.5894e-05 TRUE -0.431268961949208 10.86349 FALSE




hsa-miR-4442 MIMAT0018960 C-302025-00 [GCCGGACAAGAGGGAGG -0.97262245143818 8.3715e-05 TRUE -1.15721358729306 0.46329 FALSE
hsa-miR-4443 MIMAT0018961 C-302026-00 [UUGGAGGCGUGGGUUUU -1.75283027769511 3.4785e-06 TRUE -2.08359341608655 0.11887 TRUE
hsa-miR-4445-5p MIMAT0018963 C-301976-00 [AGAUUGUUUCUUUUGCCGUGCA -1.26374145331415 1.5894e-05 TRUE -4.01626597303824 0.0018396 TRUE
hsa-miR-4447 MIMAT0018966 C-302029-00 [GGUGGGGGCUGUUGUUU -0.841752979683909 10.00023985 TRUE -2.88111133299715 0.028781 TRUE
hsa-miR-4449 MIMAT0018968 C-302031-00 [CGUCCCGGGGCUGCGCGAGGCA -0.853462598263724 10.00023985 TRUE -1.80522351536343 0.1633 FALSE
hsa-miR-4450 MIMAT0018971 C-302034-00 [UGGGGAUUUGGAGAAGUGGUGA -1.06492940641686 4.5608e-05 TRUE -2.95948317827462 0.014453 TRUE
hsa-miR-4451 MIMAT0018973 C-302037-00 [UGGUAGAGCUGAGGACA -1.13976267989773 3.6715e-05 TRUE -0.526465448512174 0.86349 FALSE
hsa-miR-4452 MIMAT0018974 C-302038-00 [UUGAAUUCUUGGCCUUAAGUGAU -0.813274313439393 10.00026644 TRUE -0.166636659928165 |1 FALSE
hsa-miR-4453 MIMAT0018975 C-302039-00 [GAGCUUGGUCUGUAGCGGUU -1.18208500406966 3.9917e-05 TRUE -2.62562177516204 0.050122 TRUE
hsa-miR-448 MIMAT0001532 C-300721-05 [UUGCAUAUGUAGGAUGUCCCAU -1.39737830033137 0.00054279 FALSE -2.29949072457764 0.11887 TRUE
hsa-miR-449¢c MIMAT0010251 C-301488-00 [UAGGCAGUGUAUUGCUAGCGGCUGU |-0.977360548104279 [0.00013963 TRUE -1.65073035658006 0.26604 FALSE
hsa-miR-4507 MIMAT0019044 C-302113-00 [CUGGGUUGGGCUGGGCUGGG -1.08254852754089 0.015067 FALSE -2.63018823024416 0.11887 TRUE
hsa-miR-450a-3p MIMAT0022700 C-301907-00 [AUUGGGGACAUUUUGCAUUCAU -1.3171609377358 0.00013793 TRUE -1.14626230328136 0.46329 FALSE
hsa-miR-451 MIMAT0001631 C-300734-05 [AAACCGUUACCAUUACUGAGUU -1.43368456108961 8.3715e-05 TRUE -0.268670734386333 |1 FALSE
hsa-miR-452 MIMAT0001635 C-300735-07 [AACUGUUUGCAGAGGAAACUGA -0.355271404072044 10.12653 FALSE -2.45598627080639 0.050122 TRUE
hsa-miR-4525 MIMAT0019064 C-302136-00 [GGGGGGAUGUGCAUGCUGGUU -1.29162472134399 0.00013793 TRUE -1.82359755370572 0.26604 FALSE
hsa-miR-4526 MIMAT0019065 C-302137-00 [GCUGACAGCAGGGCUGGCCGCU -0.819545705994525 10.0021076 FALSE -3.08101976925394 0.057617 TRUE
hsa-miR-4527 MIMAT0019066 C-302138-00 [UGGUCUGCAAAGAGAUGACUGU -1.48851753125946 3.9917e-05 TRUE -1.1928606551261 0.5811 FALSE
hsa-miR-4533 MIMAT0019072 C-302145-00 [UGGAAGGAGGUUGCCGGACGCU -1.18624537355721 0.00016326 TRUE -0.593158084514742 10.86349 FALSE
hsa-miR-4536-3p MIMAT0020959 C-301930-00 [UCGUGCAUAUAUCUACCACAU -1.07232143191926 0.00054279 FALSE -3.00264840143944 0.014453 TRUE
hsa-miR-4536-5p MIMAT0019078 C-301929-00 [UGUGGUAGAUAUAUGCACGAU -1.31712298567513 0.00013963 TRUE -1.61271864964865 0.20114 FALSE
hsa-miR-4538 MIMAT0019081 C-302154-00 [GAGCUUGGAUGAGCUGGGCUGA -1.22689177781842 0.00013963 TRUE -1.39982249594569 0.5811 FALSE
hsa-miR-4539 MIMAT0019082 C-302155-00 [GCUGAACUGGGCUGAGCUGGGC -0.662063245722664 10.0074787 FALSE -2.55330760069272 0.11887 TRUE
hsa-miR-4632-5p MIMAT0022977 C-302499-00 [GAGGGCAGCGUGGGUGUGGCGGA |-0.597712246032446 [0.015067 FALSE -2.79546040686595 0.057617 TRUE
hsa-miR-4642 MIMAT0019702 C-302175-00 [AUGGCAUCGUCCCCUGGUGGCU -1.24506307785847 0.00013963 TRUE -1.87231348016783 0.26604 FALSE
hsa-miR-4645-3p MIMAT0019706 C-302179-00 [AGACAGUAGUUCUUGCCUGGUU -1.12025038846698 0.00026644 TRUE -1.08522858184346 0.5811 FALSE
hsa-miR-4650-3p MIMAT0019714 C-302184-00 [AGGUAGAAUGAGGCCUGACAU -1.52761158686618 3.9917e-05 TRUE -2.47248261479947 0.11887 TRUE
hsa-miR-4651 MIMAT0019715 C-302187-00 [CGGGGUGGGUGAGGUCGGGC -1.12142324138952 0.00023985 TRUE -1.06587157649805 0.5811 FALSE
hsa-miR-4652-5p MIMAT0019716 C-302188-00 [AGGGGACUGGUUAAUAGAACUA -1.12850660881293 0.00023985 TRUE -0.668591975163071 0.86349 FALSE
hsa-miR-4655-5p MIMAT0019721 C-302194-00 [CACCGGGGAUGGCAGAGGGUCG -1.21402640640325 0.00016326 TRUE -1.71020871463468 0.40677 FALSE
hsa-miR-466 MIMAT0015002 C-301675-00 [AUACACAUACACGCAACACACAU -1.57268812194273 1.5894e-05 TRUE -1.36589716672211 0.46329 FALSE
hsa-miR-4664-3p MIMAT0019738 C-302210-00 [CUUCCGGUCUGUGAGCCCCGUC -1.12808833805518 8.3715e-05 TRUE -1.3144620182497 0.26604 FALSE
hsa-miR-4664-5p MIMAT0019737 C-302209-00 [UGGGGUGCCCACUCCGCAAGUU -1.35541980608348 3.6715e-05 TRUE -0.623887404733994 10.76864 FALSE
hsa-miR-4665-5p MIMAT0019739 C-302211-00 [CUGGGGGACGCGUGAGCGCGAGC  |-1.14650290801351 6.1693e-05 TRUE -2.55003959556736 0.014453 TRUE
hsa-miR-4666b MIMAT0022485 C-302595-00 [UUGCAUGUCAGAUUGUAAUUCCC -1.25134263280118 0.0053924 FALSE -1.96334534104703 0.11887 TRUE
hsa-miR-4668-5p MIMAT0019745 C-302216-00 [AGGGAAAAAAAAAAGGAUUUGUC -1.06833102929774 0.00013793 TRUE -1.46510395349218 0.1633 FALSE
hsa-miR-4672 MIMAT0019754 C-302224-00 [UUACACAGCUGGACAGAGGCA -1.69132941190395 1.5655e-05 TRUE -1.82970618393803 0.11887 TRUE
hsa-miR-4674 MIMAT0019756 C-302226-00 [CUGGGCUCGGGACGCGCGGCU -1.30671632029371 3.9917e-05 TRUE -1.87257075861882 0.08542 TRUE
hsa-miR-4675 MIMAT0019757 C-302227-00 [GGGGCUGUGAUUGACCAGCAGG -0.49750400822998 0.015067 FALSE -1.65778479186002 0.11887 TRUE
hsa-miR-4677-5p MIMAT0019760 C-302231-00 [UUGUUCUUUGGUCUUUCAGCCA -1.01207284849144 0.00013963 TRUE -2.02433296093174 0.1633 FALSE
hsa-miR-4678 MIMAT0019762 C-302232-00 [AAGGUAUUGUUCAGACUUAUGA -0.678062145099685 10.0021076 FALSE -1.8265679594388 0.11887 TRUE
hsa-miR-4682 MIMAT0019767 C-302236-00 [UCUGAGUUCCUGGAGCCUGGUCU -0.95136903371094 0.00023985 TRUE -0.279156377102257 |1 FALSE
hsa-miR-4683 MIMAT0019768 C-302237-00 [UGGAGAUCCAGUGCUCGCCCGAU -1.03845589118353 0.00013793 TRUE -2.39905380190628 0.023579 TRUE
hsa-miR-4684-3p MIMAT0019770 C-302239-00 [UGUUGCAAGUCGGUGGAGACGU -0.997924294092217 10.00016326 TRUE -1.70225287410888 0.1633 FALSE
hsa-miR-4687-3p MIMAT0019775 C-302242-00 [UGGCUGUUGGAGGGGGCAGGC -1.08006757648135 9.6971e-05 TRUE -2.49518358442824 0.023579 TRUE
hsa-miR-4688 MIMAT0019777 C-302244-00 [UAGGGGCAGCAGAGGACCUGGG -0.933026739975212 10.00023985 TRUE -2.48777268680185 0.023579 TRUE
hsa-miR-4689 MIMAT0019778 C-302245-00 [UUGAGGAGACAUGGUGGGGGCC -1.02151466268037 0.00023985 TRUE -1.54092925086873 0.1633 FALSE
hsa-miR-4692 MIMAT0019783 C-302250-00 [UCAGGCAGUGUGGGUAUCAGAU -0.988783938058944 10.00016326 TRUE -1.1486808400672 0.40677 FALSE
hsa-miR-4693-3p MIMAT0019785 C-302252-00 [UGAGAGUGGAAUUCACAGUAUUU -1.44962435716591 3.6715e-05 TRUE -1.73885084830262 0.11887 TRUE
hsa-miR-4694-3p MIMAT0019787 C-302253-00 [CAAAUGGACAGGAUAACACCU -0.93855714822229 0.00023985 TRUE -1.50626462839686 0.1633 FALSE
hsa-miR-4694-5p MIMAT0019786 C-302254-00 [AGGUGUUAUCCUAUCCAUUUGC -0.952993076462483 10.00023985 TRUE -2.88415743782109 0.014453 TRUE
hsa-miR-4695-3p MIMAT0019789 C-302458-00 [UGAUCUCACCGCUGCcuUccuuc -1.73712530730441 3.6715e-05 TRUE -2.61115419781241 0.11887 TRUE
hsa-miR-4696 MIMAT0019790 C-302255-00 [UGCAAGACGGAUACUGUCAUCU -1.05967205505661 0.00013793 TRUE -3.0267965783108 0.009387 TRUE
hsa-miR-4697-5p MIMAT0019791 C-302257-00 [AGGGGGCGCAGUCACUGACGUG -1.49838261147195 1.5894e-05 TRUE -1.93121149945073 0.08542 TRUE




hsa-miR-4699-5p MIMAT0019794 C-302259-00 [AGAAGAUUGCAGAGUAAGUUCC -0.321333385517737 10.096607 FALSE -1.70896571432969 0.11887 TRUE
hsa-miR-4700-5p MIMAT0019796 C-302262-00 [UCUGGGGAUGAGGACAGUGUGU -0.63878129737828 0.0046172 FALSE -2.49301512707352 0.023579 TRUE
hsa-miR-4701-5p MIMAT0019798 C-302460-00 [UUGGCCACCACACCUACCCCUU -1.25407592715591 0.00016326 TRUE -2.10511844533172 0.1633 FALSE
hsa-miR-4706 MIMAT0019806 C-302269-00 [AGCGGGGAGGAAGUGGGCGCUGCUUI-0.640574202002897 [0.0030028 FALSE -1.80378336355061 0.11887 TRUE
hsa-miR-4707-3p MIMAT0019808 C-302270-00 [AGCCCGCCCCAGCCGAGGUUCU -0.833524657548794 10.00079918 FALSE -2.32407172887442 0.057617 TRUE
hsa-miR-4708-3p MIMAT0019810 C-302273-00 [AGCAAGGCGGCAUCUCUCUGAU -0.969695371193823 10.00023985 TRUE -0.525873276306624 10.86349 FALSE
hsa-miR-4708-5p MIMAT0019809 C-302272-00 [AGAGAUGCCGCCUUGCUCCUU -0.822684020528361 10.00079918 FALSE -2.10220660879154 0.08542 TRUE
hsa-miR-4709-3p MIMAT0019812 C-302275-00 [UUGAAGAGGAGGUGCUCUGUAGC -0.66432740058703 0.0027607 FALSE -1.68675985049984 0.11887 TRUE
hsa-miR-4709-5p MIMAT0019811 C-302274-00 [ACAACAGUGACUUGCUCUCCAA -1.08969801660567 9.6971e-05 TRUE -0.80626334250579 0.5811 FALSE
hsa-miR-4711-5p MIMAT0019816 C-302279-00 [UGCAUCAGGCCAGAAGACAUGAG -0.502094584622719 10.015067 FALSE -2.22945919207469 0.057617 TRUE
hsa-miR-4712-3p MIMAT0019819 C-302282-00 [AAUGAGAGACCUGUACUGUAU -1.26003058356888 3.9917e-05 TRUE -2.5282291027878 0.028781 TRUE
hsa-miR-4713-5p MIMAT0019820 C-302283-00 [UUCUCCCACUACCAGGCUCCCA -1.41056492413791 3.6715e-05 TRUE 0.152837140204165 |1 FALSE
hsa-miR-4714-5p MIMAT0019822 C-302286-00 [AACUCUGACCCCUUAGGUUGAU -0.971641326370144 10.00023985 TRUE -1.9820676345786 0.08542 TRUE
hsa-miR-4715-3p MIMAT0019825 C-302288-00 [GUGCCACCUUAACUGCAGCCAAU -0.831711497711227 10.0014577 FALSE -1.64639738941666 0.11887 TRUE
hsa-miR-4720-3p MIMAT0019834 C-302297-00 [UGCUUAAGUUGUACCAAGUAU -0.267039361511682 0.37761 FALSE -2.41942301448004 0.057617 TRUE
hsa-miR-4726-3p MIMAT0019846 C-302309-00 [ACCCAGGUUCCCUCUGGCCGCA -1.05457626001572 0.0046172 FALSE -1.96757030993053 0.11887 TRUE
hsa-miR-4726-5p MIMAT0019845 C-302310-00 [AGGGCCAGAGGAGCCUGGAGUGG  |-0.548731137329315 [0.061384 FALSE -2.20367296738285 0.11887 TRUE
hsa-miR-4730 MIMAT0019852 C-302314-00 [CUGGCGGAGCCCAUUCCAUGCCA -1.14323623131763 0.0021076 FALSE -3.22072847594229 0.014453 TRUE
hsa-miR-4731-3p MIMAT0019854 C-302316-00 [CACACAAGUGGCCCCCAACACU -0.715286408900071 0.021994 FALSE -2.11972721193743 0.11887 TRUE
hsa-miR-4733-5p MIMAT0019857 C-302319-00 [AAUCCCAAUGCUAGACCCGGUG -0.918486094585803 10.0074787 FALSE -2.80327741332156 0.023579 TRUE
hsa-miR-4740-3p MIMAT0019870 C-302329-00 [GCCCGAGAGGAUCCGUCCCUGC -0.824911201381423 10.015067 FALSE -3.46216635615516 0.014453 TRUE
hsa-miR-4743-5p MIMAT0019874 C-302462-00 [UGGCCGGAUGGGACAGGAGGCAU -1.02760222969445 0.00061109 FALSE -2.22597648616421 0.11887 TRUE
hsa-miR-4745-3p MIMAT0019879 C-302464-00 [UGGCCCGGCGACGUCUCACGGUC -1.23742515486855 0.00016326 TRUE -2.78131955234324 0.08542 TRUE
hsa-miR-4747-3p MIMAT0019883 C-302339-00 [AAGGCCCGGGCUUUCCUCCCAG -0.465231590374108 0.12653 FALSE -2.90430878110698 0.023579 TRUE
hsa-miR-4747-5p MIMAT0019882 C-302340-00 [AGGGAAGGAGGCUUGGUCUUAG -0.431504547805173 10.17522 FALSE -1.91877072137694 0.12226 TRUE
hsa-miR-4748 MIMAT0019884 C-302341-00 [GAGGUUUGGGGAGGAUUUGCU -0.555957276676544 10.061384 FALSE -2.01827086334852 0.11887 TRUE
hsa-miR-4750-3p MIMAT0022979 C-302491-00 [CCUGACCCACCCCCUCCCGCAG -0.714754040609532 10.0074787 FALSE -2.39203721905178 0.11887 TRUE
hsa-miR-4755-5p MIMAT0019895 C-302349-00 [UUUCCCUUCAGAGCCUGGCUUU -0.539113669488979 10.061384 FALSE -2.80807175968132 0.057617 TRUE
hsa-miR-4760-5p MIMAT0019906 C-302359-00 [UUUAGAUUGAACAUGAAGUUAG -0.823743933447296 10.015067 FALSE -2.78675399181231 0.028781 TRUE
hsa-miR-4768-5p MIMAT0019920 C-302372-00 [AUUCUCUCUGGAUCCCAUGGAU -0.784576616178355 0.061384 FALSE -2.06931455868509 0.11887 TRUE
hsa-miR-4774-3p MIMAT0019930 C-302383-00 [AUUGCCUAACAUGUGCCAGAA -0.980156502965659 10.03164 FALSE -1.92072766628618 0.12226 TRUE
hsa-miR-4778-3p MIMAT0019937 C-302393-00 [UCUUCUUCCUUUGCAGAGUUGA -0.468380465892249 10.17522 FALSE -2.12161516444605 0.11887 TRUE
hsa-miR-4778-5p MIMAT0019936 C-302392-00 [AAUUCUGUAAAGGAAGAAGAGG -0.108428651324849 |1 FALSE 2.20881646867654 0.08542 TRUE
hsa-miR-4782-3p MIMAT0019945 C-302398-00 [UGAUUGUCUUCAUAUCUAGAAC -0.415227659905038 10.32544 FALSE -1.91949188729733 0.11887 TRUE
hsa-miR-4792 MIMAT0019964 C-302418-00 [CGGUGAGCGCUCGCUGGC -0.681007711978918 0.096607 FALSE -2.3586952181417 0.057617 TRUE
hsa-miR-4799-5p MIMAT0019976 C-302431-00 [AUCUAAAUGCAGCAUGCCAGUC -0.362222805879938 10.32544 FALSE -1.88523388837028 0.11887 TRUE
hsa-miR-4800-5p MIMAT0019978 C-302435-00 [AGUGGACCGAGGAAGGAAGGA -1.32275981315377 0.0074787 FALSE -2.73500556024618 0.028781 TRUE
hsa-miR-4804-3p MIMAT0019985 C-302441-00 [UGCUUAACCUUGCCCUCGAAA -0.336610566496397 0.37761 FALSE -2.24438580605872 0.11887 TRUE
hsa-miR-486-3p MIMAT0004762 C-301211-01 [CGGGGCAGCUCAGUACAGGAU -0.915928947716196 10.0027607 FALSE -1.90219636227184 0.11887 TRUE
hsa-miR-487a MIMAT0002178 C-300747-03 [AAUCAUACAGGGACAUCCAGUU -0.747164545262154 10.015067 FALSE -2.42832566173827 0.040079 TRUE
hsa-miR-488 MIMAT0004763 C-301189-01 [UUGAAAGGCUAUUUCUUGGUC -0.908290335869122 10.01741 FALSE -2.18110128296813 0.11887 TRUE
hsa-miR-491-3p MIMAT0004765 C-301091-01 [CUUAUGCAAGAUUCCCUUCUAC -1.62232250510605 0.00023985 TRUE -1.07582371390113 0.46329 FALSE
hsa-miR-492 MIMAT0002812 C-300757-05 [AGGACCUGCGGGACAAGAUUCUU -0.468584149908068 10.061384 FALSE -2.72511166766836 0.014453 TRUE
hsa-miR-494 MIMAT0002816 C-300761-05 [UGAAACAUACACGGGAAACCUC -0.970219284972552 10.0021076 FALSE -3.24114885056762 0.014453 TRUE
hsa-miR-499b-3p MIMAT0019898 C-302351-00 [AACAUCACUGCAAGUCUUAACA -0.450448811655319 10.10991 FALSE -2.12877293491975 0.11887 TRUE
hsa-miR-5001-3p MIMAT0021022 C-302470-00 [UUCUGCCUCUGUCCAGGUCCUU -1.33428639345599 0.00013793 TRUE -1.54637406738355 0.40677 FALSE
hsa-miR-5003-5p MIMAT0021025 C-302474-00 [UCACAACAACCUUGCAGGGUAGA -1.32073825957867 0.00013793 TRUE -1.18738346839705 0.51579 FALSE
hsa-miR-5004-5p MIMAT0021027 C-302477-00 [UGAGGACAGGGCAAAUUCACGA -1.00354080968358 0.00079918 FALSE -3.14572597959306 0.057617 TRUE
hsa-miR-5006-5p MIMAT0021033 C-302479-00 [UUGCCAGGGCAGGAGGUGGAA -1.29090326952253 0.00013963 TRUE -1.67173993218432 0.40677 FALSE
hsa-miR-501-3p MIMAT0004774 C-301167-01 [AAUGCACCCGGGCAAGGAUUCU -0.0731774010060508 |1 FALSE 1.96439959148781 0.057617 TRUE
hsa-miR-5087 MIMAT0021079 C-301942-00 [GGGUUUGUAGCUUUGCUGGCAUG -0.359393924285983 10.10991 FALSE -1.78188598696404 0.11887 TRUE
hsa-miR-509-5p MIMAT0004779 C-301166-01 [UACUGCAGACAGUGGCAAUCA -1.74945283553728 0.00013793 TRUE -2.47315672999895 0.081661 TRUE
hsa-miR-5092 MIMAT0021084 C-302456-00 [AAUCCACGCUGAGCUUGGCAUC -1.18967239061038 0.00023985 TRUE -1.511756387148 0.46329 FALSE
hsa-miR-513a-5p MIMAT0002877 C-300844-07 [UUCACAGGGAGGUGUCAU -1.05997050839063 0.0074787 FALSE -2.37670537648159 0.11887 TRUE




hsa-miR-513c-3p MIMAT0022728 C-301908-00 [UAAAUUUCACCUUUCUGAGAAGA -0.803025559359186  10.0046172 FALSE -2.73190794276724 0.014453 TRUE
hsa-miR-514 MIMAT0002883 C-300851-07 [AUUGACACUUCUGUGAGUAGA -0.348236527420602 10.12653 FALSE -1.56224654603507 0.11887 TRUE
hsa-miR-516a-5p MIMAT0004770 C-301104-01 [UUCUCGAGGAAAGAAGCACUUUC -0.681407959396855 10.0046172 FALSE -2.18673664105892 0.11887 TRUE
hsa-miR-517a MIMAT0002852 C-300811-05 [AUCGUGCAUCCCUUUAGAGUGU -1.09820612826732 0.0018747 FALSE -2.32535259864992 0.08542 TRUE
hsa-miR-517b-3p MIMAT0002857 C-300817-06 [AUCGUGCAUCCCUUUAGAGUGU -1.68014170163936 3.9917e-05 TRUE -1.45577777456063 0.26604 FALSE
hsa-miR-517¢ MIMAT0002866 C-300832-03 [AUCGUGCAUCCUUUUAGAGUGU -1.39967029576568 0.00054279 FALSE -3.92792989935189 0.009387 TRUE
hsa-miR-518a-5p MIMAT0005457 C-301099-01 [CUGCAAAGGGAAGCCCUUUC -1.69701165144962 0.00013963 TRUE -3.84851299481868 0.014453 TRUE
hsa-miR-518b MIMAT0002844 C-300798-03 [CAAAGCGCUCCCCUUUAGAGGU -1.15359484149699 0.00087976 FALSE -2.22045683232246 0.08542 TRUE
hsa-miR-518c* MIMAT0002847 C-300804-03 [UCUCUGGAGGGAAGCACUUUCUG -1.15870379627599 0.0014577 FALSE -3.20841244988613 0.014453 TRUE
hsa-miR-518d-5p MIMAT0005456 C-301100-01 [CUCUAGAGGGAAGCACUUUCUG -0.509493211764305 10.54004 FALSE -2.82765759572384 0.081661 TRUE
hsa-miR-5192 MIMAT0021123 C-302496-00 [AGGAGAGUGGAUUCCAGGUGGU -0.929717635688366 10.0014577 FALSE -4.01918995190962 0.014453 TRUE
hsa-miR-5196-5p MIMAT0021128 C-301981-00 [AGGGAAGGGGACGAGGGUUGGG -1.16761124143466 3.6715e-05 TRUE -2.56840698714633 0.040079 TRUE
hsa-miR-520a-3p MIMAT0002834 C-300788-03 [AAAGUGCUUCCCUUUGGACUGU 0.0374069999290813 |1 FALSE 2.98674734617433 0.08542 TRUE
hsa-miR-520c-3p MIMAT0002846 C-300803-05 [AAAGUGCUUCCUUUUAGAGGGU -0.199389168688778 0.37761 FALSE -1.76230191681356 0.11887 TRUE
hsa-miR-520h MIMAT0002867 C-300833-03 [ACAAAGUGCUUCCCUUUAGAGU -0.694676795373559 10.015067 FALSE -2.26960151079303 0.08542 TRUE
hsa-miR-532-5p MIMAT0002888 C-300867-01 [CAUGCCUUGAGUGUAGGACCGU -0.687783861572295 10.021994 FALSE -3.38518185188287 0.014453 TRUE
hsa-miR-539-3p MIMAT0022705 C-301909-00 [AUCAUACAAGGACAAUUUCUUU -0.712513192949551 10.0074787 FALSE -1.7777539713116 0.12226 TRUE
hsa-miR-544b MIMAT0015004 C-301677-00 [ACCUGAGGUUGUGCAUUUCUAA -1.14820342901038 3.9917e-05 TRUE -0.449549813604399 10.91039 FALSE
hsa-miR-548ab MIMAT0018928 C-301990-00 [AAAAGUAAUUGUGGAUUUUGCU -0.602579302030159 10.0021076 FALSE -2.46432616915756 0.057617 TRUE
hsa-miR-548ac MIMAT0018938 C-302001-00 [CAAAAACCGGCAAUUACUUUUG -0.979633570213558 16.1693e-05 TRUE -2.0217602235335 0.11887 TRUE
hsa-miR-548ae MIMAT0018954 C-302019-00 [CAAAAACUGCAAUUACUUUCA -0.606375099488669 10.0030028 FALSE -2.77725501966519 0.057617 TRUE
hsa-miR-548ah-3p MIMAT0020957 C-302036-00 [CAAAAACUGCAGUUACUUUUGC -0.668405768437197 10.0014577 FALSE -2.22611084098903 0.081661 TRUE
hsa-miR-548at-5p MIMAT0022277 C-302544-00 [AAAAGUUAUUGCGGUUUUGGCU -0.0453519642557928 |1 FALSE -1.8924808826669 0.11887 TRUE
hsa-miR-548au-3p MIMAT0022292 C-302561-00 [UGGCAGUUACUUUUGCACCAG -1.52595082150064 0.0021076 FALSE -3.17672563043804 0.014453 TRUE
hsa-miR-548ax MIMAT0022474 C-302582-00 [AGAAGUAAUUGCGGUUUUGCCA -0.564257743083232 10.10991 FALSE -2.34784280477006 0.057617 TRUE
hsa-miR-548ay-5p MIMAT0025452 C-302660-00 [AAAAGUAAUUGUGGUUUUUGC -0.653127591660778 10.021994 FALSE -3.23819702467989 0.014453 TRUE
hsa-miR-548h-3p MIMAT0022723 C-301888-00 [CAAAAACCGCAAUUACUUUUGCA -1.06047561824622 0.00054279 FALSE -2.88715465104665 0.014453 TRUE
hsa-miR-548l MIMAT0005889 C-301353-00 [AAAAGUAUUUGCGGGUUUUGUC -0.59227174574884 0.061384 FALSE -2.37472439626248 0.11887 TRUE
hsa-miR-548s MIMAT0014987 C-301658-00 [AUGGCCAAAACUGCAGUUAUUUU -0.871664637647317 10.00054279 FALSE -2.25194852231406 0.11887 TRUE
hsa-miR-549 MIMAT0003333 C-300991-01 [UGACAACUAUGGAUGAGCUCU -0.71851748320711 0.01741 FALSE -2.02535291589875 0.12226 TRUE
hsa-miR-550b-2-5p  |MIMAT0022737 C-301971-00 [AUGUGCCUGAGGGAGUAAGACA -0.509912734915377 10.0074787 FALSE -1.84020688668008 0.12226 TRUE
hsa-miR-5580-5p MIMAT0022273 C-302541-00 [UGCUGGCUCAUUUCAUAUGUGU -0.250725616752794 10.54004 FALSE -2.09116428366529 0.08542 TRUE
hsa-miR-5583-3p MIMAT0022282 C-302549-00 [GAAUAUGGGUAUAUUAGUUUGG -0.580364168150873 10.10991 FALSE -2.828220915146 0.014453 TRUE
hsa-miR-5583-5p MIMAT0022281 C-302548-00 [AAACUAAUAUACCCAUAUUCUG -0.74119839633839 0.050037 FALSE -2.77350973293048 0.014453 TRUE
hsa-miR-568 MIMAT0003232 C-300886-01 [AUGUAUAAAUGUAUACACAC -0.546512240064326 10.050037 FALSE -2.16900241945777 0.11887 TRUE
hsa-miR-5681a MIMAT0022469 C-302576-00 [AGAAAGGGUGGCAAUACCUCUU -0.554451480617061 0.10991 FALSE -2.10313927081946 0.11887 TRUE
hsa-miR-5681b MIMAT0022480 C-302589-00 [AGGUAUUGCCACCCUUUCUAGU -0.990407574357977 10.015067 FALSE -2.24966625727449 0.11887 TRUE
hsa-miR-5685 MIMAT0022475 C-302583-00 [ACAGCCCAGCAGUUAUCACGGG -1.10866668617995 0.0099219 FALSE -1.81151890217456 0.11887 TRUE
hsa-miR-5686 MIMAT0022477 C-302586-00 [UAUCGUAUCGUAUUGUAUUGU -0.618603205233964 10.096607 FALSE -3.26787707054355 0.014453 TRUE
hsa-miR-5687 MIMAT0022478 C-302587-00 [UUAGAACGUUUUAGGGUCAAAU -0.4136100982672 0.25618 FALSE -1.96140285293105 0.11887 TRUE
hsa-miR-5688 MIMAT0022479 C-302588-00 [UAACAAACACCUGUAAAACAGC -0.496708860788786  10.17522 FALSE -2.54610797665859 0.028781 TRUE
hsa-miR-5689 MIMAT0022481 C-302590-00 [AGCAUACACCUGUAGUCCUAGA -0.623295340978942 10.089234 FALSE -2.01329320718309 0.11887 TRUE
hsa-miR-5692a MIMAT0022484 C-302593-00 [CAAAUAAUACCACAGUGGGUGU -0.71714659454192 0.061384 FALSE -2.47331051365896 0.057617 TRUE
hsa-miR-5692c MIMAT0022476 C-302584-00 [AAUAAUAUCACAGUAGGUGUAC -0.930027776637268 10.021994 FALSE -2.41733401849822 0.057617 TRUE
hsa-miR-5697 MIMAT0022490 C-302600-00 [UCAAGUAGUUUCAUGAUAAAGG -0.509179181511475 0.17522 FALSE -1.87679966081257 0.11887 TRUE
hsa-miR-5701 MIMAT0022494 C-302604-00 [UUAUUGUCACGUUCUGAUU -0.713050083304961 10.061384 FALSE -2.19998791399188 0.081661 TRUE
hsa-miR-5702 MIMAT0022495 C-302605-00 [UGAGUCAGCAACAUAUCCCAUG -0.634695457873147 10.089234 FALSE -2.91461280705682 0.014453 TRUE
hsa-miR-571 MIMAT0003236 C-300890-01 [UGAGUUGGCCAUCUGAGUGAG -1.04012448788134 0.00016326 TRUE -1.0680220266461 0.5811 FALSE
hsa-miR-574-3p MIMAT0003239 C-300893-03 [CACGCUCAUGCACACACCCACA -1.4521414321912 0.0018747 FALSE -2.74091004364483 0.057617 TRUE
hsa-miR-578 MIMAT0003243 C-300897-01 [CUUCUUGUGCUCUAGGAUUGU -0.525376007672939 10.038627 FALSE -2.14162436977285 0.081661 TRUE
hsa-miR-579 MIMAT0003244 C-300898-03 [UUCAUUUGGUAUAAACCGCGAUU -1.2654167775587 0.0030028 FALSE -3.8111485398612 0.014453 TRUE
hsa-miR-582-5p MIMAT0003247 C-300901-01 [UUACAGUUGUUCAACCAGUUACU -1.2010641323251 0.00070025 FALSE -2.60372535467359 0.040079 TRUE
hsa-miR-586 MIMAT0003252 C-300906-01 [UAUGCAUUGUAUUUUUAGGUCC -0.445099473295375 10.10991 FALSE -3.97498411008623 0.014453 TRUE
hsa-miR-593* MIMAT0003261 C-300917-01 [AGGCACCAGCCAGGCAUUGCUCAGC |-1.46368716545378 0.00023985 TRUE -1.69498877920483 0.1633 FALSE




hsa-miR-606 MIMAT0003274 C-300931-01 [AAACUACUGAAAAUCAAAGAU -0.637631782545375 |0.32544 FALSE -2.73649791406254 0.11887 TRUE
hsa-miR-607 MIMAT0003275 C-300932-01 [GUUCAAAUCCAGAUCUAUAAC -0.096398469481977 |1 FALSE 2.3242183673772 0.11887 TRUE
hsa-miR-6071 MIMAT0023696 C-302625-00 [UUCUGCUGCCGGCCAAGGC -0.528822533996229 0.12653 FALSE -2.1934583463063 0.11887 TRUE
hsa-miR-6075 MIMAT0023700 C-302629-00 [ACGGCCCAGGCGGCAUUGGUG -0.592038077604373 |0.037103 FALSE -2.63925181780449 0.057617 TRUE
hsa-miR-608 MIMAT0003276 C-300933-01 [AGGGGUGGUGUUGGGACAGCUCCGU|-1.41476375494069 9.6971e-05 TRUE -1.32647981772413 0.22566 FALSE
hsa-miR-6080 MIMAT0023705 C-302634-00 [UCUAGUGCGGGCGUUCCCG -0.377302781648075 |0.17522 FALSE -3.12142545628473 0.023579 TRUE
hsa-miR-6081 MIMAT0023706 C-302635-00 [AGGAGCAGUGCCGGCCAAGGCGCC [-1.07161737179969 0.0018747 FALSE -2.06272320366808 0.11887 TRUE
hsa-miR-6086 MIMAT0023711 C-302640-00 [GGAGGUUGGGAAGGGCAGAG -0.556948350994301 |0.040903 FALSE -2.86501870739423 0.028781 TRUE
hsa-miR-6133 MIMAT0024617 C-302655-00 [UGAGGGAGGAGGUUGGGUA -1.00026187079406 0.0021076 FALSE -3.11682515905473 0.014453 TRUE
hsa-miR-617 MIMAT0003286 C-300943-01 [AGACUUCCCAUUUGAAGGUGGC -1.41203659250412 0.00023985 TRUE -0.966712399788375 |0.51579 FALSE
hsa-miR-619 MIMAT0003288 C-300945-01 [GACCUGGACAUGUUUGUGCCCAGU [0.0866202298806936 |1 FALSE 2.48494644624597 0.014453 TRUE
hsa-miR-620 MIMAT0003289 C-300946-01 [AUGGAGAUAGAUAUAGAAAU -0.746644845920626 |0.096607 FALSE -3.35303260797096 0.057617 TRUE
hsa-miR-621 MIMAT0003290 C-300947-01 [GGCUAGCAACAGCGCUUACCU -0.524135944687041 ]0.49143 FALSE -3.56178952288145 0.023579 TRUE
hsa-miR-624* MIMAT0003293 C-300950-01 [UAGUACCAGUACCUUGUGUUCA -1.18323865292578 8.3715e-05 TRUE -2.08818623024311 0.11887 TRUE
hsa-miR-627 MIMAT0003296 C-300953-01 [GUGAGUCUCUAAGAAAAGAGGA -1.05366486573687 0.00016326 TRUE -1.71256975426944 0.22566 FALSE
hsa-miR-631 MIMAT0003300 C-300957-01 [AGACCUGGCCCAGACCUCAGC -2.01925344204044 3.9917e-05 TRUE -1.07267199301577 0.51048 FALSE
hsa-miR-634 MIMAT0003304 C-300961-01 [AACCAGCACCCCAACUUUGGAC -1.30123850604998 0.00016067 TRUE -0.64623077279342 0.76864 FALSE
hsa-miR-638 MIMAT0003308 C-300965-01 [AGGGAUCGCGGGCGGGUGGCGGCCY-0.639193662554625 |0.03164 FALSE -1.99612853656179 0.12226 TRUE
hsa-miR-642a-3p MIMAT0020924 C-301902-00 [AGACACAUUUGGAGAGGGAACC -0.669360409839209 |0.0099219 FALSE -2.67786191538987 0.023579 TRUE
hsa-miR-642b-5p MIMAT0022736 C-301970-00 [GGUUCCCUCUCCAAAUGUGUCU -0.982372985036737 |6.1693e-05 TRUE -2.91448575097456 0.023579 TRUE
hsa-miR-644 MIMAT0003314 C-300971-01 [AGUGUGGCUUUCUUAGAGC -1.1328764594198 0.0014577 FALSE -2.28201156273226 0.12226 TRUE
hsa-miR-646 MIMAT0003316 C-300973-01 [AAGCAGCUGCCUCUGAGGC -1.37335174868112 3.9917e-05 TRUE -1.88378259141162 0.1633 FALSE
hsa-miR-647 MIMAT0003317 C-300974-01 [GUGGCUGCACUCACUUCCUUC -0.662202123721489 |0.015067 FALSE -2.34112755480514 0.057617 TRUE
hsa-miR-6499-3p MIMAT0025451 C-302659-00 [AGCAGUGUUUGUUUUGCCCACA -0.78931105472599 0.0099219 FALSE -2.42776308682332 0.08542 TRUE
hsa-miR-650 MIMAT0003320 C-300977-01 [AGGAGGCAGCGCUCUCAGGAC -1.32232002772507 0.00054279 FALSE -2.38532145199764 0.11887 TRUE
hsa-miR-6503-3p MIMAT0025463 C-302671-00 [GGGACUAGGAUGCAGACCUCC -0.701857748301807 |0.01741 FALSE -2.26797239631951 0.08542 TRUE
hsa-miR-6503-5p MIMAT0025462 C-302670-00 [AGGUCUGCAUUCAAAUCCCCAGA -1.28829279156107 0.00061109 FALSE -4.16301032924927 0.009387 TRUE
hsa-miR-6504-3p MIMAT0025465 C-302672-00 [CAUUACAGCACAGCCAUUCU -0.219268298279075 ]0.49143 FALSE -2.3682663259571 0.08542 TRUE
hsa-miR-6505-3p MIMAT0025467 C-302675-00 [UGACUUCUACCUCUUCCAAAG -1.41016990839787 0.00054279 FALSE -2.92045878806631 0.040079 TRUE
hsa-miR-6507-5p MIMAT0025470 C-302679-00 [GAAGAAUAGGAGGGACUUUGU -0.637513482741369 |0.03164 FALSE -2.64696299700191 0.057617 TRUE
hsa-miR-6514-3p MIMAT0025485 C-302693-00 [CUGCCUGUUCUUCCACUCCAG -1.57253367763337 0.00023985 TRUE -0.857463656453242 0.72813 FALSE
hsa-miR-652-5p MIMAT0022709 C-301928-00 [CAACCCUAGGAGAGGGUGCCAUUCA |-0.590578760858739 |0.01741 FALSE -2.04113601671663 0.11887 TRUE
hsa-miR-654-5p MIMAT0003330 C-300988-01 [UGGUGGGCCGCAGAACAUGUGC -1.24102088307823 0.00054279 FALSE -4.37321715649902 0.0018396 TRUE
hsa-miR-659 MIMAT0003337 C-300994-01 [CUUGGUUCAGGGAGGGUCCCCA -0.865338332757254 |0.0053924 FALSE -2.2970254587848 0.12226 TRUE
hsa-miR-660-3p MIMAT0022711 C-301897-00 [ACCUCCUGUGUGCAUGGAUUA -0.914364872105563 |0.0018747 FALSE -2.7989676696545 0.028781 TRUE
hsa-miR-661 MIMAT0003324 C-300981-01 [UGCCUGGGUCUCUGGCCUGCGCGU [-0.966061272920722 [0.0046172 FALSE -2.04789510522588 0.11887 TRUE
hsa-miR-664b-3p MIMAT0022272 C-302539-00 [UUCAUUUGCCUCCCAGCCUACA -0.63588937093853 0.061384 FALSE -2.38779084523873 0.057617 TRUE
hsa-miR-671-5p MIMAT0003880 C-301000-03 [AGGAAGCCCUGGAGGGGCUGGAG [-1.01268622344544 0.00023985 TRUE -0.995050180707598 |0.5811 FALSE
hsa-miR-6721-5p MIMAT0025852 C-302707-00 [UGGGCAGGGGCUUAUUGUAGGAG |-1.0522716562067 0.0021076 FALSE -2.86092601806193 0.028781 TRUE
hsa-miR-7 MIMAT0000252 C-300546-07 [UGGAAGACUAGUGAUUUUGUUGU -0.833080606802588 |0.0014577 FALSE -2.34382127982937 0.11887 TRUE
hsa-miR-718 MIMAT0012735 C-301486-00 [CUUCCGCCCCGCCGGGCGUCG -0.712476270533885 |0.0014577 FALSE -2.51689917044679 0.08542 TRUE
hsa-miR-744 MIMAT0004945 C-301242-01 [UGCGGGGCUAGGGCUAACAGCA -1.31292964878657 0.0027607 FALSE -2.17130853543699 0.057617 TRUE
hsa-miR-744* MIMAT0004946 C-301241-01 [CUGUUGCCACUAACCUCAACCU -0.909425861300587 |3.9917e-05 TRUE -2.41920375944258 0.11887 TRUE
hsa-miR-764 MIMAT0010367 C-301640-00 [GCAGGUGCUCACUUGUCCUCCU -1.1596052122796 6.1693e-05 TRUE -0.963991799367289 |0.5811 FALSE
hsa-miR-767-3p MIMAT0003883 C-301003-01 [UCUGCUCAUACCCCAUGGUUUCU -0.875815222995269 |0.0021076 FALSE -2.87852305265755 0.009387 TRUE
hsa-miR-801 MI0005202 C-301014-01 [GAUUGCUCUGCGUGCGGAAUCGAC |-1.02838938735747 0.00023985 TRUE 0.128066636696993 |1 FALSE
hsa-miR-873-3p MIMAT0022717 C-301921-00 [GGAGACUGAUGAGUUCCCGGGA -0.45500701580676 0.050037 FALSE -2.17559760678154 0.08542 TRUE
hsa-miR-888* MIMAT0004917 C-301227-01 [GACUGACACCUCUUUGGGUGAA -0.798719536763374 |0.015067 FALSE -1.83668949541677 0.11887 TRUE
hsa-miR-940 MIMAT0004983 C-301269-01 [AAGGCAGGGCCCCCGCUCCCC -1.31504996360232 0.00054279 FALSE -2.52010733193133 0.11887 TRUE
hsa-miR-96 MIMAT0000095 C-300514-07 [UUUGGCACUAGCACAUUUUUGCU -0.788957233607577 |0.0074787 FALSE -2.19234338350236 0.11527 TRUE
hsa-miR-99a MIMAT0000097 C-300516-03 [AACCCGUAGAUCCGAUCUUGUG -0.986802247020601 |0.0030028 FALSE -2.42723567464877 0.11887 TRUE
Legend
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Proviral effect

Note: Hits were selected using the following Local False Discovery Rate (Ifdr) thresholds: 0.00027 in screen part 1 and 0.1226 in screen part 2. Positive log2 fold change values indicated a proviral effect of the miRNA on
the HCYV life cycle, while negative log2 fold change values indicated an antiviral effect.



V. DISCUSSION

A genome-wide miRNA mimic screen in Huh7.5.1 cells to systematically uncover human miRNAs
affecting the HCV replication cycle, especially HCV assembly and release of infectious virions,
provided the basis of the present thesis. To this end, new achievements of virus-host interactions
could be obtained: (i) miR-501-3p and miR-619-3p were found to enhance late steps of HCV infection
(i) using endogenous overexpression of miR-501-3p in human hepatoma cells, we have demonstrated
that this miRNA specifically targets OGT and regulates its expression at the protein level, (iii)
increased infectivity of HCV particles through silencing or inhibition of OGT’s enzymatic activity,
and (iv) release of bigger HCV particles after knock-down of OGT proposing that O-GIcNAcylation
mediated by OGT affects HCV morphology. Whether miR-501-3p contributes to regulate the
physiological expression of OGT in human hepatocytes remains elusive. Interestingly both miR-501-
3p and OGT are located on the X chromosome. Overall, our data and data from the literature suggest
an involvement of OGT and O-GIcNAcylation for HCV infection as well as for HCC progression,
even if their role in each disease may be completely different.

Enveloped viruses consist of an host-derived envelope membrane with viral proteins more or less
heavily glycosylated by the host glycosylation machinery as viruses pass through the secretory
pathway protecting from the host immune system (e.g. HCV) or playing a crucial role for virus entry
into host cells (e.g. Influenza virus) (Air 2014). While N-glycosylation of HCV E1 and E2
glycoproteins is well-defined as it serves as a protective glycan shield from the humoral immune
response (reviewed in Helle, Duverlie et al. 2011), a link between O-GIcNAcylation and HCV
infection had not been described before. O-GIcNAcylation is a crucial regulator for metabolic
pathways within the liver (e.g. insulin signaling, bile acid metabolism and lipogenesis) (Yang and
Qian 2017), however, due to the enormous number of O-GIcNAcylated substrates, detailed
characterization of their role in HCV infection is lacking. Interestingly, proteins can either be O-
GIcNAcylated or phosphorylated on the same residues resulting in adjusted cellular signaling (Hart,
Slawson et al. 2011) (see p.28). Potential O-GIcNAcylation and phosphorylation at the same serine
or threonine residue are defined as Yin Yang sites (Hart, Greis et al. 1995).

When we think retrospectively on the present results, since silencing of OGT through siRNAs or
inhibition of its enzymatic activity by small molecules both lead to an enhancement of HCV infection
as well as bigger particles proposing a potential role of O-GIcNAcylation for HCV morphology, one
hypothesis could be that HCV envelope glycoproteins or LVP-associated host proteins are O-
GIcNAcylated. However, since HCV assembly takes place in the ER lumen, and OGT/OGA are found
in nucleocytoplasmic and mitochondrial compartments and so far, not known to localize to the ER

lumen, a direct modulation of HCV viral proteins through O-GIcNAcylation seems unlikely, even if
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E1 and E2 both contain putative O-GIcNAcylation sites (Bandiera and Zeisel, unpublished data and
reviewed in Lavie, Hanoulle et al. 2018).

Another important aspect could have been the potential O-GIcNAcylation of host-derived proteins
associated with HCV, such as ApoE and ApoB. However, to our knowledge, although ApoE has been
shown to be O-glycosylated, its O-GIcNAcylation by OGT has not been described. Indeed, ApoE
which is primarily produced in the liver and associated with HDL and VDL has been shown the be
O-glycosylated at threonine residue 194 (Thr®#) (Wernette-Hammond, Lauer et al. 1989) and serine
residue 290 (Ser®) (Lee, Kockx et al. 2010), while he Asn-X-Thr/Ser consensus sequence needed
for N-glycosylation is lacking. Amino sugar analysis of monosialic apoE peptides revealed the
presence of galactosamine, indicating the presence of GalNAc, but absence of glucosamine,
indicating absence of GICNAc (Wernette-Hammond, Lauer et al. 1989). In contrast to monosialic
apoE, disialic apoE may exhibit a more complex carbohydrate structure as disialic apoE peptides
contained both galactosamine and glucosamine (Wernette-Hammond, Lauer et al. 1989). It could be
demonstrated that the O-glycosylation site Thr'®* is not important for secretion (Wernette-Hammond,
Lauer et al. 1989) but Ser?® O-glycosylation that is situated at the C-terminus of ApoE, is important
for ApoE stability, solubility and lipid binding (Lee, Kockx et al. 2010). In line with this, another
study could reveal that long-term ethanol treatment decreased O-glycosylation of ApoE resulting in
a shift of ApoE association from HDL to VLDL; indeed under alcoholic control decreased ApoE
levels were found in association with VLDL (Ghosh, Liu et al. 1995). In contrast, ApoB molecules
are highly N-glycosylated with 16 of 19 N-glycosylation sites found to be glycosylation (Fujioka,
Taniguchi et al. 1994; Wong and Torbati 1994), while no O-glycosylation sites have been reported
yet.

Another possibility than directly affecting the viral particle-associated proteins, could be the post-
translational modulation of one or several HCV host factors required for HCV morphogenesis via
OGT/OGA. OGT-silencing in the experimental settings used in the present paper showed no
significant effect on early steps of HCV infection, even if some O-GIcNAcylation or Yin Yang sites
of CLDN1 (Ahmad, Shabbiri et al. 2011; Butt, Khan et al. 2012) and OCLN (Bultt, Feng et al. 2012)
could be predicted suggesting that O-GIcNAcylation of CLDN1 and OCLN is not relevant for HCV
infection. Ribosomal receptor or activated C-kinase 1 (RACKZ1), an adaptor protein and component
of the 40S subunit of ribosomes, is a cellular factor required for IRES-dependent translation and
replication of HCV in human hepatocytes without interacting with the miRNA pathway (Majzoub,
Hafirassou et al. 2014). Interestingly, RACKL1 is highly O-GIcNAcylated at Serine position 122
resulting in its stability and ribosome binding. Indeed, O-GIcNAcylation of RACKL1 increases
phosphorylation of elF4E and translation of oncogenes in human hepatoma cells (Duan, Wu et al.
2018). Since increased O-GIcNAcylation is associated with tumorigenesis, angiogenesis and

47



metastasis, RACK1 has been reported as one host factor whose O-GIcNAcylation contributes to these
processes in HCC patients and is correlated to tumor progression and recurrence after chemotherapy
(Duan, Wu et al. 2018). Of note, Cao et al demonstrated that O-GIcNAcylation of elFAE resulted in
a stem-like cell potential of hepatoma cells contributing to HCC progression and tumorigenesis
proposing two host O-GIcNAcylated host factors, elF4E and RACKZ1, that built a bridge between O-
GIcNAc metabolism and tumorigenesis (Duan, Wu et al. 2018; Cao, Duan et al. 2019).

Among the host factors involved in the HCV replication cycle, nuclear pore complexes (NPCs)
consistent of nucleoporins (Nups) were also observed to be O-GIcNAcylated (Zhu, Liu et al. 2016).
NPCs are hijacked by HCV and recruited to the membranous web during viral replication where they
associate with viral proteins (core. NS5A, NS2 and NS3) contributing to the architecture of the
membranous web and facilitating transport of viral and host proteins into the membranous web
(Neufeldt, Joyce et al. 2013; Levin, Neufeldt et al. 2014). Depletion of Nup98, Nup153 and Nup155
appeared to inhibit HCV replication and assembly resulting in reduced intracellular levels of viral
RNA and secreted virus, however, without affecting the specific infectivity of secreted virions
(Neufeldt, Joyce et al. 2013). However, we could demonstrate here that knock-down of OGT resulted
in an enhanced viral infection and an alteration of specific infectivity of viral particles leading to the
conclusion that O-GIlcNAcylation level of Nups does not contribute to the effects of OGT-silencing
on HCVCcc infectivity.

Besides HCV, O-GIcNAcylation and the action of OGT and OGA could be demonstrated to be
involved in other viral infections: (i) Human immunodeficiency virus type 1 (HIV-1), Human T-cell
leukemia virus type-1 (HTVL-1), Herpes simplex virus (HSV) and Kaposi’s sarcoma-associated
herpesvirus (KSHV) (Jochmann, Thurau et al. 2009; Jochmann, Pfannstiel et al. 2013; Groussaud,
Khair et al. 2017; Angelova, Ortiz-Meoz et al. 2015). It can be assumed that the involvement of O-
GIcNAcylation is as different as the viruses itself: (i) Overexpression of OGT as well as increased O-
GIcNAcylation led to an repressed HIV-1 transcription as well as an decreased KSHYV replication
highlighting the link between viral replication and glucose metabolism (Jochmann, Thurau et al.
2009; Jochmann, Pfannstiel et al. 2013), (ii) Inhibition of OGA by HTLV-1 protein Tax led to an
increased O-GIcNAcylation resulting in an increased viral transcription (Groussaud, Khair et al.
2017), and (iii) Inhibition of OGT resulted in a decreased HSV replication (Angelova, Ortiz-Meoz et
al. 2015). Decreased OGT levels could be observed in vitro upon HCV infection (Herzog, Bandiera
et al. 2019).

Of note, deregulation of O-GIcNAcylation is associated with a variety of cancers. Increased OGT
expression as well as an enhanced O-GIcNAcylation could be observed in HCC tissue of HCV-
infected patients. It was reported that OGT activates oncogenic signaling pathways in liver-derived
cells via regulation of palmitic acid and the induction of ER stress thereby promoting tumor growth
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and metastasis (Xu, Zhang et al. 2017), and additionally a link between O-GIcNAcylation and HCC
recurrence after LT could be determined (Zhu, Zhou et al. 2012) proposing a potential role of O-
GIcNAcylation and its enzymes, OGT and OGA, in the contribution to HCV-induced liver disease
and hepatocarcinogenesis. As described in 2.3, an increased flux through glycolysis is observed in
cancer cells, additionally, it has been described that cancer cells show altered lipogenesis pathways
supporting membrane synthesis and generating signaling molecules resulting in rapid cell growth
(Baenke, Peck et al. 2013); indeed, cancer cells utilize de novo lipogenesis instead of obtaining lipids
from the bloodstream (Swinnen, Brusselmans et al. 2006) involving activation and expression of
enzymes able to generate lipids such as fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC),
ATP-citrate lyase (ACLY) as well as the transcription factor that regulates these enzymes, termed
sterol regulatory element binding protein (SREBP-1) (Santos and Schulze 2012). Recently could be
demonstrated that O-GIcNAcylation is a crucial factor in directly regulating SREBP-1
phosphorylation and stability as well as controlling ACLY and FAS (Baldini, Wavelet et al. 2016)
resulting in the regulation of lipid metabolism and cancer cell growth and survival (Sodi, Bacigalupa
et al. 2018). Moreover, liver X receptor (LXR), another key transcriptional factor to regulate de novo
lipogenesis, has been shown to be O-GIcNAcylated in response to glucose and to directly
transactivate SREBP-1 (Bindesboll, Fan et al. 2015). These results highlight that in addition to its
role in O-GIcNAcylation of oncogenic proteins, OGT is directly linked to the lipid metabolism in
(cancer) cells and might serve as a therapeutic approach against highly metabolic cancer.

Of note, in addition to HCV, another oncogenic virus, Human papillomavirus 16 (HPV16), has been
linked to OGT as well. Interestingly, it could be demonstrated that levels of HVP16 oncoproteins E6
and E7 are modulated through OGT expression (Kim, Kim et al. 2016), while in turn upregulation of
OGT through EG6 resulted in an increase of O-GIcNAcylation and an activation of oncogenic activity
of HPV (Zeng, Zhao et al. 2016) proposing a general involvement of OGT and O-GIcNAcylation in
virus-induced cancer.

Apart from O-GIcNAcylation and to close the circle of the present work, miR-501-3p who can
functionally target OGT (Herzog, Bandiera et al. 2019), has been shown to be involved in the
formation of metastasis in HCC (Luo, Yin et al. 2018). Indeed, it could be demonstrated that a
downregulation of miR-501-3p is associated with tumor progression and poor prognosis in patients
with HCC, while in contrast overexpression of this miRNA could inhibit cancer cell proliferation,
migration and evasion (Luo, Yin et al. 2018). This would be in line with the finding that O-

GIcNAcylation is increased in HCC and possibly contribute to hepatocarcinogenesis.
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VI. RESUME DE LA THESE DE DOCTORAT

Etude du r6le de ’OGT dans les étapes tardives du cycle de réplication du virus
de I’hépatite C

6.1 Introduction

L’infection chronique par le virus de I’hépatite C (HCV) est un facteur de risque majeur de maladies
hépatiques et de carcinome hépatocellulaire (CHC), la seconde cause de mortalité par cancer dans le
monde. Depuis la mise sur le marché d’antiviraux a action directe qui ciblent tous les génotypes du
HCV, I’hépatite C chronique peut étre guérie chez plus de 90% des patients traités (Baumert, Juhling
et al. 2017). Cependant, il est estimé que 71 millions d’individus sont toujours infectés par le HCV
dans le monde et la guérison virale n’élimine pas le risque de développer un CHC lorsque la maladie
hépatique est avancée (Baumert, Juhling et al. 2017; Hamdane, Juhling et al. 2019). Les traitements
curatifs du CHC sont limités a la résection chirurgicale et la transplantation hépatique. De plus, pour
prévenir la transmission globale de I’infection par le HCV, il sera primordial de développer un vaccin

préventif.

L’infection des hépatocytes humains par le HCV est un processus complexe qui fait intervenir des
facteurs viraux et cellulaires. L’identification de facteurs de I’h6te détournés par le HCV contribue a
une meilleure compréhension des interactions virus-hote sous-tendant le cycle de réplication du HCV
et le développement d’une infection chronique ainsi qu’a I’identification de cibles potentielles pour
le traitement des maladies hépatiques et la prévention du CHC (Zeisel and Baumert 2017; Zeisel,
Crouchet et al. 2015). Le cycle de réplication du HCV peut étre divisé en étapes précoces (entrée,
traduction et réplication virale) et tardives (assemblage et relargage de nouveaux virions). Chacune
de ces étapes dépend d’interactions virus-h6te qui mettent en jeu des protéines et microARN (miR)
de I’hote (Zeisel, Crouchet et al. 2015). Ces derniers constituent une classe de petits ARN non-codants
qui régulent I’expression de genes au niveau post-transcriptionnel. Ainsi ils contrélent I’expression
d’environ 60% de génes codant des protéines et sont impliqués dans tous les processus biologiques.
Les miR ciblent specifiguement des ARN messagers (ARNm) par appariement de bases avec un site
complémentaire qui est habituellement localisé dans la région 3’ non-traduite (3"UTR). Ceci conduit
généralement a la dégradation de I’ARNm ou a la répression de sa traduction en protéine. De récentes
études indiquent que les miR contribuent a la réplication du HCV en exercant des effets pro- ou
antiviraux. La découverte du ciblage direct du HCV par miR-122, un miR fortement exprimé dans le
foie, a permis de mettre en lumiére son role essentiel dans la traduction et la réplication du HCV en

stabilisant I’ARN HCV (Jopling, Yi et al. 2005). miR-122 est un facteur proviral qui joue un role
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dans I’infection chronique par le HCV, la progression de la maladie hépatique et le CHC (Jopling, Yi
et al. 2005). D’autres miR ont un effet indirect sur le HCV en modulant I'expression de protéines de
I’héte qui régulent les réponses antivirales et la surveillance immunitaire (Li, Lowey et al. 2017;
Bandiera, Pfeffer et al. 2015; Li, Jiang et al. 2016). Par leur capacité a réguler I’expression génique,
les miR représentent des outils pour des études de perte de fonction visant a découvrir de nouveaux

facteurs de I’h6te impliqués dans le cycle de réplication du HCV.

Afin d'identifier de maniére systématique les miR impliqués dans le cycle de réplication du HCV, le
laboratoire a précédemment conduit un criblage dans les cellules hépatocytaires Huh7.5.1 en utilisant
une librairie génomique de miR et un virus portant un géne rapporteur luciférase (JcR2a). Ce criblage
a permis d'identifier 495 miR qui modulent significativement I'infection par le HCV. Parmi ces miR,
186 miR sont impliqués dans les étapes précoces du cycle viral et 309 miR jouent un réle dans
I'assemblage et le relargage, deux étapes encore peu caractérisées du cycle viral. Le laboratoire a ainsi
décidé d'étudier plus particulierement les miR qui modulent les étapes tardives du cycle de réplication
du HCV. Parmi ces miR, miR-501-3p et miR-619-3p augmentent Il'infection par le HCV, ce qui
suggére qu'ils régulent des facteurs de I'néte qui jouent un réle dans la morphogenese ou la sécrétion
de virions. Par une approche combinant outils bioinformatiques et études fonctionnelles, le
laboratoire a identifié I'OGT (O-linked N-acetylglucosamine transferase ou UDP-N-
acétylglucosamine-peptide N-acétylglucosaminyltransférase ou O-GIcNAc transférase) comme cible
de miR-501-3p et miR-619-3p impliquée dans l'assemblage et I'infectivité du HCV (Herzog, Bandiera
et al. 2019). L'OGT est une enzyme qui catalyse I'addition de N-acétylglucosamine (O-GIcNAc) a
des résidus sérine et thréonine de protéines nucléaires, cytoplasmiques et mitochondriales (O-
GIcNAcylation) (Levine and Walker 2016). En plus de sa fonction enzymatique, 'OGT contribue a
la stabilisation de protéines dans des complexes multiprotéines (fonction d'échaffaudage ou scaffold).
Cette modification post-traductionnelle est hydrolisée par 'OGA (N-acétyl-b-D glucosaminidase ou
O-GIcNAcase). L'OGT et I'OGA sont les deux seules enzymes responsables de la modulation de I’O-

GIcNAcylation des protéines (Levine and Walker 2016).

6.2 Objectifs

Le but de ma thése a été d'étudier le role de I'OGT dans les interactions HCV-héte. Les objectifs
spécifiques étaient i) de caractériser le ciblage prédit de 'OGT par miR-501-3p et miR-619-3p, ii) de
déterminer comment I'OGT pouvait contribuer a la morphogenese du HCV et iii) d'étudier le réle de
miR-501-3p et de I'OGT dans la maladie hépatique induite par HCV et le CHC.
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6.3 Résultats

| 6.3.1 miR-501-3p régule I'expression de I'OGT au niveau post-transcriptionnel

Pour caractériser la réegulation de I'OGT par miR-501-3p et miR-619-3p, I'expression de I'OGT a été
analysée au niveau de I'ARNmM et au niveau protéique dans les cellules Huh7.5.1 aprés surexpression
de miR-501-3p et miR-619-3p. Tandis qu‘aucun miR n'avait d'impact sur les niveaux d'/ARNm de
I'OGT, la surexpression de miR-501-3p a significativement diminué I'expression de la protéine OGT.
miR-619-3p a également diminué l'expression protéique de I'OGT mais de maniére moins robuste

que miR-501-3p. Ainsi nous avons concentré nos travaux sur miR-501-3p.

Pour déterminer si I'OGT est une cible de miR-501-3p, un fragment de la région 3'UTR de 'ARNm
de I'OGT contenant un site potentiel de fixation pour miR-501-3p a été sous-cloné dans une cassette
d'expression de luciférase Renilla (RLuc) d'un vecteur double rapporteur exprimant également la
luciférase Firefly. La co-transfection de miR-501-3p avec le vecteur rapporteur contenant la séquence
3’UTR sauvage (RLuc wt OGT 3’UTR) a significativement diminué I'activité luciférase comparé a
la co-transfection avec le vecteur vide. Par contre, cette répression de l'activité luciférase n'a pas été
observée lorsqu'un vecteur contenant un site de fixation pour miR-501-3p muté a été co-transfecté
(RLuc mt OGT 3’UTR). L'ensemble de ces résultats indique que miR-501-3p régule I'expression

post-transcriptionnelle de I'OGT en diminuant son expression protéigue.

6.3.2 La O-GIcNAcylation module I'infectivité des HCVcc

Pour déterminer I'effet de I'OGT sur I'assemblage et le relargage du HCV, nous avons utilisé de petits
ARN interférants (siARN) pour diminuer I'expression de I'OGT dans les cellules Huh7.5.1. Les
siARN sont des molécules ARN double brin d'environ 20-25 paires de bases qui, comme les miR,
régulent I'expression de genes en dégradant spécifiqguement certains ARNm pour empécher leur
traduction. Nous avons ensuite déterminé les titres infectieux HCV (TCID50) et les taux d'ARN HCV
pour calculer I'infectivité spécifique des particules HCVcc produites dans les cellules Huh7.5.1 dans
lesquelles l'expression de I'OGT a été diminuée. De maniére intéressante, la diminution de
I'expression de I'OGT a conduit a une diminution significative des TCID50 et I'infectivité spécifique
des HCVcc. Cet effet de I'OGT sur l'infectivité des HCVcc n'est pas dépendent du génotype HCV
étant donné qu'une augmentation de l'infectivit¢ des HCVcc comportant les glycoprotéines
d'enveloppe des génotypes 1a, 1b et 2a a été observée dans les conditions ou I'expression de 'OGT a
été diminuée. Afin de déterminer si l'activité enzymatique de I'OGT module I'infectivité des HCVcc,
nous avons incubé des cellules Huh7.5.1 infectées par des HCVcc avec deux inhibiteurs
pharmacologiques ciblant 'OGT (Acs5S-GIcNACc) ou I'OGA (Thiamet G). Le traitement par I'Acs5S-
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GIcNACc a augmenteé significativement l'infectivité des HCVcc de maniére dose-dépendante, tandis
que l'effet opposé a été observe apreés le traitement par le Thiamet G. L'ensemble de ces résultats
montre que la O-GIcNAcylation module I'infectivité des HCVcc.

[ 6.3.3 La diminution de I"'expression de I'OGT module les propriétes biophysiques et la taille des
HCVcc

Au cours de la morphogenése virale, les glycoprotéines d'enveloppe du HCV interagissent
étroitement avec les apolipoprotéines B et E (ApoB et ApoE) de I'néte, ce qui contribue a masquer
les épitopes viraux a la surface des lipo-viro-particules (LVPs) (Bartenschlager, Penin et al. 2011).
Afin de déterminer l'effet de I'OGT sur la morphogenese virale, nous avons analysé les propriétés
structurales et biophysiques des HCVcc produits dans des cellules Huh7.5.1 transfectées avec des
siOGT ou des siARN contrble aprés ultracentrifugation en gradients d'iodixanol. La diminution de
I'expression de I'OGT a conduit a une production d'HCVcc plus infectieux, d'une densité plus élevée
et avec des concentrations supérieures en ApoE. Ces résultats indiquent que I'OGT a un impact sur
les propriétés biophysiques des HCVcc. A l'inverse, aucun changement dans les concentrations en
ApoB n'a été observé, en accord avec le modéle selon lequel les HCV LVPs contiendraient plusieurs
molécules échangeables d'ApoE mais une seule molécule d'’ApoB. Nous avons également purifié les
HCVcc pour les visualiser par microscopie électronique aprés immunocapture par un anticorps dirigé
contre la protéine d'enveloppe E2 du HCV (Piver, Boyer et al. 2017) pour déterminer si la diminution
de I'expression de I'OGT avait un impact sur la taille des HCVcc. En comparaison avec les particules
virales produites dans les conditions controles, les particules virales produites dans des cellules
Huh7.5.1 qui avaient été préalablement transfectées avec les siOGT présentaient des tailles plus
grandes. Il est intéressant de noter que des particules plus grandes ont été observées dans plusieurs
fractions du gradient d'iodixanol dans lesquels les HCVcc présentaient une infectivité et une
concentration en ApoE plus élevées. Ces résultats suggérent que la diminution de I'expression de
I'OGT a un impact sur la lipidation des HCVcc.

6.3.4 L'expression de I'OGT augmente dans les maladies hépatiques

Etant donné que la diminution de I'expression de I'OGT conduit a la production d'HCVcc plus
infectieuses, nous nous sommes interrogés si l'infection par le HCV pouvait avoir un effet sur
I'expression de I'OGT afin de promouvoir le cycle viral. Dans les cellules Huh7.5.1, I'infection par le
HCV a conduit a une diminution de I'expression de I'ARNm et des protéines OGT qui pourraient ainsi
augmenter l'infection par le HCV, en accord avec le rdle antiviral de la O-GIcNAcylation que nous
avions observé. Cependant, dans les tissus hépatiques de patients atteints d’hépatite C chronique, les
taux d'’ARN HCV n'étaient pas corrélés avec I'expression de I'OGT, suggérant que chez les patients il

n'y a pas deffet direct du HCV sur l'expression de I'OGT. Ensuite, étant donné que la O-
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GIcNAcylation a été associee a de nombreux cancers, nous avons également analysé I'expression de
I'OGT dans des tissus hépatiques de patients atteints de maladies hépatiques chroniques et de CHC.
Alors que nous n‘avons observé qu'une tendance a l'augmentation de I'expression de I'OGT dans des
tissus hépatiques de patients atteints d'hépatite C et présentant une fibrose et une inflammation
hépatique, les taux d'expression de I'OGT étaient significativement augmentés dans les tissus
tumoraux de patients chroniquement infectés par le HCV ou par le virus de I'hépatite B ainsi que de
patients atteints de maladie hépatique alcoolique ou non-alcoolique en comparaison avec des tissus
hépatiques non tumoraux. Ces résultats suggérent que I'expression de I'OGT augmente dans le CHC
de maniere indépendante de I'étiologie du cancer. L'ensemble de ces résultats suggere que
I'augmentation de I'expression de I'OGT est liee a I'inflammation et a la fibrose hépatique au cours de

la maladie viro-induite plutét qu'a un effet direct du virus..

6.4 Conclusions et perspectives

Au cours de ma thése, nous avons découvert un role pour I'OGT dans l'infection par le HCV. Nous
avons montré que i) miR-501-3p régule I'expression de I'OGT au niveau protéique; ii) la diminution
de l'expression de I'OGT par des siARN ou l'inhibition de son activité enzymatique augmente
I'infectivité des particules virales; iii) la diminution de I'expression de I'OGT conduit a la production
de particules virales présentant des tailles plus grandes suggérant que la O-GIcNAcylation a un impact
sur la morphogenese et l'infectivité du HCV; et iv) I'expression de I'OGT augmente au cours des

maladies hépatiques chroniques et du CHC.

En conclusion, en identifiant 'OGT comme nouveau facteur de I'hdte régulant la morphogenése du
HCV, notre étude permet de mieux comprendre les interactions HCV-h6te modulant I'infection virale.
Etant donné qu'il a été précédemment montré que I'OGT jouait un réle dans les modifications
métaboliques au cours du cancer (Jopling, Yi et al. 2005), nos résultats suggerent que I'OGT pourrait
contribuer au développement de la maladie hépatique induite par le HCV et du CHC.
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Abstract: Hepatitis C virus (HCV) infection is a worldwide health problem and is one of the main
causes of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). Despite recent
improvements, effective treatments for HCC are still missing and new tools for early detection are
needed. Non-coding RNAs (ncRNAs) have emerged as important regulators of gene expression and
key players in human carcinogenesis, including HCC. Aberrant expression of ncRNAs is associated
with HCC metastasis, invasion, dissemination, and recurrence. This review will focus on the recent
advances in ncRNA expression profiles, their dysregulation in HCV-related HCC, and the clinical
perspective of ncRNA signatures for the early detection of HCC.

Keywords: hepatocellular carcinoma; hepatitis C virus; microRNA; long non-coding RNA

1. Introduction

Despite an overall drop in the incidence of hepatitis C virus (HCV) infection within the past
years due to direct-acting antivirals (DAAs), which enable chronic hepatitis C (CHC) to be cured,
an estimated 71 million individuals are still chronically infected by HCV worldwide [1]. HCV infection
is a major risk factor of HCC and associated with 20% of cases of liver cirrhosis, which is functional
decompensation leading to hepatocellular carcinoma (HCC) [2]. Other major HCC etiologies include
chronic hepatitis B virus (HBV) infection, alcohol abuse, and metabolic causes. In HCV-infected
patients, HCC development is a consequence of fibrosis progression and occurs after the establishment
of cirrhosis [3]. According to the GLOBOCAN series of the International Agency for Research on Cancer
in 2012 [4], HCC is the fifth most common cancer and the second cause of cancer death worldwide.

HCC is a poor prognosis disease. Although the risk of developing HCC can be reduced in patients
by treatment of the underlying cause, e.g., by viral clearance or abstinence from alcohol, strategies
to prevent cancer development in patients with advanced fibrosis and/or established cirrhosis are
still lacking. Early diagnosis increases the chance of effective therapy, but the detection of small liver
tumours by ultrasound is challenging and currently there is no reliable serum biomarker that can be
used in surveillance programmes. Patients with advanced HCC carry a very poor prognosis, with an
expected survival of four to six months and despite recent improvements, treatment options for HCC
remain scarce. According to the clinical practice guidelines from the European Association for the
Study of the liver (EASL), patients eligible for curative treatment can undergo surgical resection,
radiofrequency ablation, or liver transplantation [5]. Tumour recurrence remains the major cause of
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death in HCC patients following loco-regional ablation and liver resection. Intermediate (stage B
according to the Barcelona-Clinic Liver Cancer (BCLC) classification [5]) HCCs have been shown to
benefit from trans-arterial chemoembolization (TACE) [5]. The first-line treatments for patients with
advanced HCC (BCLC stage C) [5], which are not eligible for curative treatment, are the multikinase
inhibitors sorafenib and lenvatinib, which increase survival by approximately three months [6].
Phase III clinical trials with regorafenib or cabozantinib as second-line treatment for HCC patients
undergoing tumour progression after sorafenib (RESORCE, CELESTIAL) showed an extension of
overall survival by 10 months [7,8]. Novel treatment options and prognostic tools are required to
improve the management of patients with HCC.

Among the risk factors of HCC, HCV is a positive-strand RNA virus [9,10] that does not integrate
into the host genome. It encodes a large polyprotein of about 3000 amino acids from a single open
reading frame which is processed into three structural (core, E1, and E2) and seven non-structural
(p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B) proteins [11]. HCV proteins interact with many
host-cell factors well beyond their roles in the viral life cycle and are notably involved in cell signalling,
transcription, cell proliferation, apoptosis, vesicular trafficking, and translational regulation [12].
HCV proteins contribute to HCC by modulating pathways that promote the malignant transformation
of hepatocytes through the accumulation of genetic damages and epigenetic dysregulation [13-15].
For instance, the HCV core protein sensitizes host cells to TRAIL-induced cell apoptosis by activating
the CK1x-p53-Bid dependent pathway in human hepatoma cells [16] or is able to suppress the
p53-dependent apoptosis induced by the all-trans retinoic acid (ATRA), the most biologically active
metabolite of vitamin A [17]. Moreover, the HCV core protein binds to several tumour suppressor
proteins, including p53, p73, and pRb [18,19]. Despite the development of DAAs enabling an HCV
cure and reducing the risk of liver complications [20,21], a long-term risk of HCC remains in cirrhotic
patients, even after achieving a sustained virological response (SVR) [22]. Of note, while some reports
published within the past two years have raised concerns about a potential higher risk of post-SVR HCC
in patients treated with DA As [23-25] compared to patients treated with the previous standard-of-care
interferon and ribavirin, several subsequent reports—including large multicenter studies—have failed
to confirm this [21,26-33].

Liver carcinogenesis is a multistep process driven by chronic inflammation, DNA damage,
senescence and telomerase reactivation, chromosomal instability, and epigenetic modifications.
All etiologic factors seem to act through similar mechanisms (i.e., point mutations, chromosomal
aberrations, epigenetic changes) that converge to affect common pathways. Notably, mutations and
chromosomal aberrations have been predominantly found in malignant tumour tissues, whereas
the dysregulation of signalling pathways and epigenetic changes are also detected earlier in the
natural history of HCC development, at the stage of cirrhosis [34]. Epigenetic changes that include
DNA methylation, post-translational histone modifications, and ncRNA-mediated silencing pathways
occur early in the development of HCC. Several studies have also identified mutations in a group
of chromatin regulators (ARID1A, ARID1B, ARID2, MLL, and MLL3) in approximately 20% of all
tumours, including virus- and alcohol-related HCCs (reviewed in [34]). Modulation of the methylation
status of DNA CpG islands and lysines in the histone tails in gene promoters represents important
epigenetic alterations in human cancer, including HCC. Next-generation sequencing technology has
revealed that many ncRNAs play important roles in biological processes, such as differentiation,
proliferation, and cell death [35-37], as well as in cancer [38,39]. Based on their length, ncRNAs
are classified into small ncRNAs (sncRNAs, less than 200 nucleotides) and long ncRNAs (IncRNAs,
more than 200 nucleotides), according to the RNA purification protocol that excludes small RNAs
described by Kapranov and colleagues [40]. Aberrant expression of ncRNAs is associated with
HCC metastasis, invasion, dissemination, and recurrence [41-45], suggesting that ncRNAs are key
players of human carcinogenesis, including HCC. This review will focus on sncRNAs and IncRNAs in
HCV-induced HCC.
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2. Expression and Functions of ncRNAs in HCV-Related HCC

2.1. LncRNAs in HCV-Related HCC

LncRNAs are a heterogeneous group of non-coding transcripts more than 200 nucleotides long that
are transcribed by RNA polymerase II, 5 capped, spliced, and polyadenylated [46,47]. The FANTOM
project [48] and the GENCODE consortium in the framework of the ENCODE project [49] led to the
identification of over 20,000 IncRNAs. In 2015, an analysis of 7256 RN A-seq libraries from tumours,
normal tissues, and cell lines reported the identification of 58,648 IncRNA genes [46].

LncRNAs are involved in many biological processes, such as proliferation, differentiation and
development [47,50]. The dysregulation of IncRNAs significantly contributes to numerous human
diseases, especially cancers [51,52], including HCC [47,53]. The structural complexity of IncRNAs offers
multiple possibilities for interactions with DNA, RNA, and/or proteins that depend on secondary
and tertiary structures. Several IncRNAs are localized to specific cellular compartments, nuclear
or cytosolic, in accordance with their biological function. Nuclear IncRNAs can act as guides for
chromatin-modifying-complexes or transcription factors. The majority of IncRNAs are in the cytoplasm
and often function as regulators of protein levels, either by directly controlling mRNA stability or
by acting as competing endogenous RNA [54]. Depending on their genomic location and context,
IncRNAs are classified into five categories [50,55]: (1) intergenic InNRNAs, the so-called lincRNAs are
transcribed in the intergenic region between two protein-coding genes; (2) sense/intronic IncRNAs,
which arise from intronic regions within protein-coding genes; (3) antisense IncRNAs (NATs), when
overlapping one or more exons of another transcript on the opposite strand; (4) bidirectional IncRNAs,
such as promoter upstream transcripts (PROMPTSs), which are transcribed in the promoter regions
of protein-coding genes in a bidirectional manner; and (5) enhancer IncRNAs which are transcribed
in the enhancer regions of the genome. Two other ncRNAs can be considered as IncRNAs: circular
RNAs (circRNAs), which are created from protein-coding mRNAs or linear ncRNAs that join an
upstream 3’ splice site and downstream 5’ splice site to form a covalently closed continuous loop [56];
and pseudogenes, which originate from gene duplication and have acquired various mutations,
inducing a loss of their protein-coding capacity [57,58]. Most of these pseudogenes serve as competitive
endogenous RNAs (ceRNA) to sequester miRNAs. The PTEN pseudogene, PTENPI, was the first
pseudogene shown to regulate the expression of its parental gene by binding and sequestering
PTEN-targeting miR-17, miR-19, miR-20a, and miR-21 in prostate cancer [57].

LncRNAs regulate gene expression through different mechanisms, such as epigenetic silencing,
splicing regulation, IncRNA-miRNA interaction by sequestering miRNAs, IncRNA-protein interaction,
and genetic variation [53,59,60]. The molecular functions of IncRNAs are not well-characterized,
but four categories of mode of action have been proposed [39,53]. LncRNAs can function as decoys
by binding and titrating away proteins or RNA targets such as miRNAs. This family of IncRNAs can
negatively regulate the expression of their target or bind to the transcription binding sites and avoid
the fixation of the transcription factor. LncRNAs can also have a guide function: these IncRNAs bind
proteins and direct their localization to a specific target. They act, for example, as epigenetic repressors,
i.e., HOX transcript antisense intergenic RNA (HOTAIR), or epigenetic activators, such as HOTTIP
or H19. Moreover, signal IncRNAs are expressed in a cell-type specific and stage-specific manner
and can regulate transcriptional activity or biological pathways by interacting with transcription
factors or chromatin-modifying enzymes. Finally, IncRNAs can have a scaffold function. This class
of IncRNAs serves as a central platform to bind different molecular components and facilitates their
intermolecular interactions.

Many studies have described the role of IncRNAs in HCC (for review see [47,53,61-63]).
HCC-related IncRNAs participate in diverse biological processes involved in HCC progression,
such as cell proliferation, apoptosis, invasion, metastasis, and angiogenesis. In the last decade,
hundreds of dysregulated IncRNAs have been characterized in HCC tissues compared with normal
tissues [64]. For example, the IncRNA HOTAIR is highly expressed in HCC and is associated with



Viruses 2018, 10, 591 4 0f 15

poor prognosis [65] and an increased risk of recurrence and metastasis [66,67]. Recently, IncRNA
HULC polymorphisms have been associated with HCC risk and prognosis [68]. Furthermore, Guo
and colleagues demonstrated that the IncRNA PVT1 is upregulated in HCC, promoting HCC cell
propagation and inhibiting apoptotic cells by recruiting EZH2 [69].

LncRNAs can be differentially expressed depending on the HCC etiology. In 2015, Zhang et
al. explored IncRNA expression profiles of 73 tissue samples at different stages of HCV-induced
HCC: cirrhotic tissue, dysplastic nodules, and HCC samples compared to healthy liver tissue [70].
The expression of seven IncRNAs (LINC01419, BC014579, AK021443, RP11-401P9.4, RP11-304 L19.5,
AF070632, CTB-167B5.2) in preneoplastic lesions and HCC was significantly different. Among these
IncRNAs, the IncRNA LINC01419 transcripts were expressed at higher levels in early stage HCC
compared to dysplasia and early stage HCC, and were overexpressed in HCV-related HCC when
compared with matched non-tumour liver tissues. LncRNA AK021443 levels increase in advanced
stage HCC, while IncRNA AF070632 levels decrease in advanced stage HCC. Moreover, computational
analysis suggested that LINC01419 and AK021443 regulate cell cycle genes, whereas AF070632 is
associated with cofactor binding, oxidation-reduction, and the carboxylic acid catabolic process.
LINCO01419 and AK021443 could thus promote HCV-related HCC development by modulating the cell
cycle progression. In another study conducted by Zhang et al. in 2016 [71], IncRNA hypoxia-inducing
factor a (aHIF), Prader Willi/ Angelman region RNA 5 (PAR5), and human downregulated expression
by HBx (hDREH) were associated with HCV-related HCC since their expressions were significantly
downregulated (aHIF and PARS5) or upregulated (hDREH) in tumour vs. non-tumour tissues, but these
observations have to be confirmed in a larger patient cohort. Two additional IncRNAs, urothelial
carcinoma associated-1 (UCA1) and WD repeat containing antisense to TP53 (WRAP53), have been
found to be upregulated in HCC patients with chronic HCV infection [72]. UCA1 upregulation has
been shown to increase epithelial-to-mesenchymal transition in HCC via sponging miR-203, thereby
activating the expression of transcription factor Snail2 [73] (Table 1).

Table 1. Role of IncRNAs in HCV-induced HCC. The expression of IncRNAs that have been associated
with HCV-induced HCC, as well as their biological function, are shown. IncRNAs that have been
reported to be uniquely modulated in HCC induced by HCV, but not in HCC induced by another
etiological factor, are highlighted in bold.

Expression in Molecular Mechanism for

IncRNA HCV-Induced HCC HCV-Induced HCC References

HOTAIR T Epigenetic repression [66,67]
HULC T Polymorphism [68]
PVT1 T Cell cycle progression [69]
LINC01419 T Regulation of cell cycle genes [70]
BC014579 T unknown [70]
AK021443 T Regulation of cell cycle genes [70]
RP11-401P9.4 T unknown [70]
RP11-304 L19.5 T unknown [70]
AF070632 1 Cofactor binding and catabolic processes [70]
CTB-167B5.2 1 unknown [70]
aHIF 1 unknown [71]
PAR5 1 unknown [71]
LINCO01152 1 unknown [71]
TMEVPG1 1 unknown [71]
BC017743 T unknown [71]
BC043430 T unknown [71]
PCNA-AS1 T unknown [71]
UEC1 T unknown [71]
ZEB1-AS1 T unknown [71]
hDREH 0 unknown [71]
UCA1 T Control of gene expression (target: miR-203) [72]
WRAP53 T unknown [72]
MALAT1 T Regulation of splicing processes [73]
HEIH T Cell proliferation [74]
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2.2. SncRNA in HCV-Related HCC

High-throughput sequencing technologies have enabled researchers to uncover different types of
sncRNA: small nucleolar RNAs (snoRNAs), piwi-interacting RNAs (piRNAs), and miRNAs. Within
the last decade, the role of sncRNAs—and particularly the one of miRNAs—in physiological and
pathological processes, including HCC, has been extensively studied [38].

2.2.1. Small Nucleolar RNAs (snoRNAs)

SnoRNAs are a class of intermediate-sized ncRNAs of 60 to 300 nucleotides discovered in the
nucleolus and able to regulate ribosome maturation and function [75], as well as alternative splicing
and gene silencing [76,77]. SnoRNAs are divided into two major highly conserved families based on
their structure and main function: box C/D snoRNAs and box H/ACA snoRNAs. Box C/D snoRNAs
are responsible for 2’-O-methylation of ribosomal RNAs [78], while the second family of snoRNAs
guides the pseudouridylation of nucleotides [79]. A third less represented class includes the small Cajal
body-specific RNAs (scaRNAs) that are associated with Cajal bodies, which are small membrane-less
sub-compartments of the nucleus [80]. SnoRNAs are located in introns. They are components of
small nucleolar ribonucleoprotein (snoRNPs) complexes along with specific proteins and function as a
guide for the post-transcriptional modification of ribosomal RNAs by facilitating rRNA folding and
stability [81,82]. The sequences of snoRNAs are responsible for targeting the assembled snoRNPs to a
specific target.

Alterations in snoRNA expression in human cells can affect numerous biological processes,
leading to tumorigenesis. Six snoRNAs are well-described to be dysregulated in HCC [83], regardless
of the etiological factor. For example, SNORD113-1 is significantly downregulated in HCC-tumour
tissues compared with non-tumour tissues; furthermore, a statistically significant association between
low-level expression of SNORD113-1 and relapse-free survival was observed, which suggests that
downregulation of SNORD113-1 is associated with HCC aggressiveness [84]. Furthermore, a study
performed by Fang et al. [85] demonstrated that SNORD126—located within the intron of the cyclin
Bl-interacting protein 1 (CCNB1IP1) gene—was upregulated to a high level in HCC compared with
non-tumour tissues. Overexpression of SNORD126 was associated with a shorter survival rate in HCC
patients and promoted HCC growth through upregulation of the PI3K-AKT pathway.

2.2.2. Piwi-Interacting RNAs (piRINAs)

PiRNAs are ncRNAs of 24-30 nucleotides in length that bind to the piwi subfamily of
argonaute proteins to form a piRNA-induced silencing complex (piRISC), which inhibits transposon
mobilization by both epigenetic and post-transcriptional silencing [86,87]. They are transcribed
from regions in the genome that contain transcribed transposable elements and other repetitive
elements. Three major PIWI-class proteins (PIWIL1, PIWIL2, and PIWILA4) are involved in a so-called
‘ping-pong’ amplification cycle, creating antisense piRNAs that are capable of repressing the transcript
of origin [87].

PiRNAs are abundant in the human liver, but no data is available on specific piRNA expression
profiles in HCV-related HCC. However, it has been shown by small RNA-seq that an expression
pattern of 125 piRNAs clearly differentiates cirrhotic liver from HCC tissues. Interestingly, 24 piRNAs
dysregulated in advanced HCC also showed distinctive expression patterns in earlier hepatic
lesions, suggesting that these ncRNAs may participate in the carcinogenic process in the liver
and could represent new markers of early hepatocarcinogenic lesions [87,88]. The accumulation
of piR-LLi-30552 and has-piR-020498 is associated with progression from the dysplasia stage to
HCC [88]. Furthermore, Law et al. showed that piR-Hep1 is upregulated in 46.6% of HCC tumours
compared to the corresponding adjacent non-tumour liver. piR-Hep1 could play a functional role in
hepatocarcinogenesis as it has been shown to promote cell viability, motility, and invasiveness, with a
concomitant increase in the level of active AKT phosphorylation [89].
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2.2.3. MicroRNAs (miRNAs)

MiRNAs are an important class of ncRNAs of 18-25 nucleotides that regulate gene expression at
the post-transcriptional level. MiRNAs bind to the 3’ untranslated region (3'UTR) of complementary
sequences of mRNAs to mediate mRNA deadenylation or translation blockage [90]. MiRNAs are
estimated to regulate the translation of more than 60% of protein-coding genes: a single miRNA can
target hundreds of mRNAs, thereby affecting a broad network of genes [91].

Biogenesis of miRNAs takes place through a multistep process [92]. miRNAs are most commonly
transcribed in the nucleus by the RNA polymerase II (Pol II). Monocistronic or polycistronic primary
miRNA transcripts (pri-miRNAs) are processed into precursor miRNAs (pre-miRNAs) by the
DGCR8-Drosha complex and exported to the cytoplasm by exportin 5. These pre-miRNAs undergo
cleavage by the endoribonuclease called Dicer that produces a miRNA duplex. These molecules
are loaded by the Dicer-TARBP2 (TAR RNA-binding protein 2; also known as TRBP) complex into
a member of the argonaute protein subfamily to form the RNA-induced silencing complex (RISC),
of which argonaute proteins are the catalytic endonuclease components. RISC directs the regulation of
mRNAs by recognizing a complementary sequence in the targeted mRNAs. Translation of mRNAs
into proteins is repressed by miRNAs by two main means: mRNA degradation and the inhibition of
translation initiation [93].

Several studies have investigated the role of miRNAs in various biological processes [38,39,94-96],
including proliferation, differentiation, angiogenesis, apoptosis, and development. Abnormal
expression levels of miRNAs have been described in inflammation, Alzheimer’s disease, cardiovascular
disease, cancer, and viral infection, including HCV infection [38,39,42,54,97]. Of note, several studies
revealed an association between the dysregulation of miRNAs and HCC carcinogenesis, including
HCV-related HCC [42,98,99]. For example, miR-221 that modulates different pathways involved in
the proliferation of tumour cells, survival, and metastasis [100,101] is frequently upregulated in HCC
with advanced tumour stages and associated with poor prognosis, irrespective of the HCC etiology.
In contrast, other miRNAs have been shown to be specifically deregulated in HCV-induced HCC.
Using a microarray analysis of liver tissue samples, Diaz et al. identified 18 miRNAs specifically
expressed in HCV-related HCC, including 15 miRNAs that had already been reported in previous
studies and three miRNAs (miR-497, miR-1269, and miR-424-3p) which had not been previously
described to be modulated in HCV-related HCC (Table 2) [42].

Table 2. miRNA-specific signature of HCV-induced HCC. The expression of miRNAs that have been
associated with HCV-induced HCC [42], as well as their biological function, are shown.

Expression in

miRNA HCV-Induced HCC Molecular Mechanism for HCV-Induced HCC
mir-1269 0 Increase of proliferation
mir-224 0 Increase of proliferation
mir-452 10 Increase of proliferation, migration and invasion
mir-224-3p T unknown
mir-224-5p 0 unknown
mir-221 0 Increase of proliferation and invasion
mir-497 + Inhibition of proliferation, induction of apoptosis
mir-214 1 Inhibition of proliferation, migration and invasion
mir-195 Inhibition of proliferation and EMT
p
mir-130a Inhibition of proliferation, migration and invasion
p &
mir-125a-5 1 Inhibition of proliferation
P p
mir-125b-5p 1 Inhibition of proliferation
mir-424-3p 1 unknown
mir-139-3p 1 Inhibition of proliferation and metastasis
mir-139- nhibition o , migration and invasion
ir-139-5p Inhibition of EMT, migrati di i
mir-199b- unknown
ir-199b-3p i k
mir-199a- ibition of proliferation, migration, invasion and angiogenesis
ir-199a-3p Inhibition of proliferati igration, i i d angiogenesi
mir-199a- nhibition of proliteration, migration and invasion
ir-199a-5p i Inhibition of proliferati igrati di i
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Furthermore, it has been shown that the expression of oncogenic miR-155 is increased in patients
infected with HCV and this promotes hepatocyte proliferation and tumorigenesis by activating the
Wnt signalling pathway [102]. Likewise, miR-135a-5p was shown to be upregulated in HCV-infected
patients and to promote the HCV-induced STAT3 transcriptional program in the liver of patients
by suppressing its regulator protein tyrosine phosphatase receptor delta (PTPRD), resulting in the
malignant progression of liver disease [103]. These studies underscore the functional role that miRNAs
may play in the pathogenesis of HCV-induced HCC.

The study of the role of miRNAs in HCV-induced HCC is particularly interesting since there
is a tight interplay between HCV, miRNAs, and hepatocyte metabolic pathways that contributes to
liver disease development. One of the hallmarks of HCV replication is its dependency on miR-122,
the most abundant miRNA in the liver. miR-122 plays a major role in liver physiology by regulating
metabolic pathways and as a tumour suppressor (for review see [104]). It has been shown that HCV
sequesters miR-122 from its endogenous mRNA targets, thereby leading to their derepression and
liver carcinogenesis [105]. Several other miRNAs that have a dual role in both the HCV replication
cycle and in liver disease development have been reported, underscoring the tight interplay between
HCV and miRNAs in the liver (Figure 1).

;
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Replication - \
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\ miR-155

miR-221 miR-135a-5p

miR-222 miR-130

miR-199-5p miR-21

miR-199»3p miR-196

HCV-infected hepatocyte

Figure 1. Impact of cellular miRNAs on the HCV life cycle and their contribution to HCV-induced
HCC. Impact of individual miRNAs whose expression is modulated upon HCV infection on steps of
the HCV life cycle (entry, translation, replication, assembly, and LVP release) are shown. miRNAs in
blue display a proviral effect; miRNAs in red have an antiviral effect. HCV: hepatitis C virus. LVP:
lipoviral particle. ER: endoplasmic reticulum. Golgi: Golgi apparatus. Images were adapted from
SMART (Servier Medical Art).

A recent study that comprehensively analysed miRNAs modulated upon HCV infection
showed that several of these miRNAs were known to regulate inflammation, fibrosis, and cancer
development [106]. Among the miRNAs whose expression increased during HCV infection was
miR-146a-5p, which has been associated with a modulation of the proteasome pathway, fatty acid,
and anaerobic energetic metabolism. These regulatory pathways are both in favour of HCV
infection (Figure 1) and liver disease development by promoting liver inflammation and HCC [106].
Furthermore, it has been shown that HCV infection modulates miR-196, miR-130, and miR-21 that
are able to regulate type I IFN signalling pathways to overcome their antiviral activity [45] (Figure 1).
These data are in line with miRNA expression profiles (differential expression of 19 miRNAs, including
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miR-124b, miR-34c, and miR-23a) associated with HCV infection [41]. Analysis of targeted genes using
infection-associated miRNAs revealed that the pathways related to the immune response, antigen
presentation, the cell cycle, proteasome, and lipid metabolism, are activated in the HCV-infected liver,
suggesting their implication in HCV-induced liver disease pathogenesis. Interestingly, some of these
miRNAs also contribute to the modulation of HCV infection. For example, miR-141 that is upregulated
in HCV-infected cells has been shown to downregulate the DLC-1 (Rho GTPase) tumour suppressor
and to be required for HCV replication [44] (Figure 1). Finally, miR-199-5p/miR-199-3p, miR-221,
and miR-222, whose expression is correlated with fibrosis in HCV-infected patients, have been shown
to reduce HCV RNA replication by binding the stem loop II region of HCV 5’ UTR [107]. Of note,
while DAA therapy has been reported to modulate hepatic miRNA expression, no significant changes
in the expression of miRNAs that have been previously associated with a pro- or antiviral effect on
HCV were shown, except an increase in miR-122 expression [108].

3. Conclusions and Perspectives

3.1. ncRNAs as Novel Biomarkers for Detection of HCV-Induced HCC

By contributing to the regulation of the HCV life cycle, liver disease development, and carcinogenesis,
ncRNAs play a major role in CHC. Most CHC patients are asymptomatic for many years, and HCC
usually develops after several decades of HCV infection [5]. The long latency period between initial
HCV infection and HCC development provides an important time window of opportunity for
individuals to be monitored for disease progression and intervention. Since early diagnosis increases
the chance of effective therapy, patients with cirrhosis are enrolled in periodic ultrasound-based
surveillance programmes [109]. However, given the challenge of detecting small liver tumours using
ultrasound and the absence of a robust HCC serum marker, reliable non-invasive biomarker(s) would
be most helpful for determining HCC risk and/or detecting HCC at early stages.

Molecular signatures using ncRNA expression profiles have been described as potential predictive
or prognostic biomarkers of HCC and circulating ncRNAs hold promise as biomarkers for the (early)
detection of HCC. In association with alpha-fetoprotein (AFP, the currently most widely used diagnostic
HCC serum marker), UCA1 and WRAP53 have been suggested as diagnostic and prognostic markers
of HCV-induced HCC [72] (Figure 2). Indeed, a high expression of serum UCA1 was significantly
associated with a high tumour grade, large tumour size, positive vascular invasion, and advanced
TNM stage in HCC patients [110]. Furthermore, two other IncRNAs might hold promise as potential
biomarkers for HCV-related HCC: MALAT1 and HEIH (Figure 2). Indeed, it has been reported
that MALAT1 in combination with AFP serum levels might indicate a worse liver failure score in
HCV-related HCC patients [111] and IncRNA HEIH expression in serum and exosomes appeared to be
increased in HCV-related HCC patients in contrast to patients with CHC or HCV-induced cirrhosis [74].
Further studies using different patient cohorts are needed to assess the potential of IncRNAs as HCC
biomarkers. Several panels of miRNAs have also been suggested as potential HCC biomarkers in
HCV-infected patients. For example, Zekri et al. identified an miRNA panel composed of miR-122,
miR-885-5p, and miR-29b in association with AFP as a new biomarker for the early detection of HCC
in a normal population, while another miRNA panel composed of miR-122, miR-885-5p, miR-221,
and miR-22 in association with AFP provided a high diagnostic accuracy for the early detection of HCC
in cirrhotic patients [112]. Furthermore, the potential of circulating miR-15b and miR-122, as well as
miR-182 and miR-150, have been suggested as biomarkers to assess HCC risk in cirrhotic HCV-infected
patients [113] and for the detection of cirrhosis progression and HCC in a cohort of HCV-infected
Egyptian patients [114], respectively. Moreover, Okajima et al. [115] showed that circulating miR-224
could be a novel biomarker for the detection of primary and recurrent HCC. Finally, a panel of nine
liver-associated miRNAs (miR-21, miR-30c, miR-93, miR-122, miR-125b, miR-126, miR-130a, miR-193b,
and miR-222) could discriminate healthy individuals from patients with HCV-related HCC [116]
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(Figure 2). Further patient cohort studies are required to assess the utility of these miRNAs for CHC
patient surveillance programmes.

Therapeutic strategies for
HCV infection and HCC:

miR-122 antagonists (miravirsen, RG-101)
miR-34 mimic (MRX34)

Biomarkers for
HCV-induced HCC:

UCA1 miR-122 miR-21

WRAP53  miR-885-5p miR-30c
MALAT-1 miR-29b miR-93
HEIH miR-221 miR-125b
miR-22 miR-126

miR-15b miR-130a

miR-182 miR-193b

miR-150 miR-222

miR-224

Figure 2. Schematic representation of the potential use of ncRNAs as therapeutic targets for HCV
infection and HCC or biomarkers for HCV-induced HCC. MiR-122 antagonists miravirsen and RG-101
have been shown to lead to a dose-dependent reduction of viral RNA in CHC patients [108,109].
miR-34 mimic (MRX34, Mirna Therapeutics) has been administred to patients with primary liver cancer,
but this trial was abrogated due to immune-related adverse effects. LncRNAs and miRNAs that have
been suggested as biomarkers for HCV-induced HCC are also indicated [42,72,74,111]. HCV: hepatitis
C virus. HCC: hepatocellular carcinoma. Images were adapted from SMART (Servier Medical Art).

3.2. ncRNAs as Novel Therapeutic Targets of HCV-Induced HCC

In addition to their potential role as biomarkers, ncRNAs may also represent therapeutic targets
(Figure 2). Several studies demonstrated in vivo proof-of-concept of using ncRNA /ncRNA antagonists
to modulate gene expression, including in the liver [117-119]. LncRNAs that act as transcriptional
enhancers might be used to increase gene expression, as demonstrated by the use of “antagoNATs”
(oligonucleotides or siRNA designed to inhibit NATs) [119]. Another therapeutic option is to target
miRNAs by using miRNA antagonists/antisense oligonucleotides to sequester miRNAs. The feasibility
of such strategies for targeting the human liver is demonstrated by clinical trials in CHC patients
having shown a dose-dependent prolonged reduction of viral RNA in patients treated with miR-122
antagonists miravirsen or RG-101 [117,118] (Figure 2). Furthermore, another clinical trial tested a
nanoliposome-incorporated miR-34 mimic (MRX34, Mirna Therapeutics) in patients with primary liver
cancer (Figure 2). However, this trial was abrogated due to immune-related adverse effects. Further
investigations are required to fully characterize the biological functions of ncRNAs and to understand
the impact of ncRNA modulation in liver carcinogenesis in order to develop new clinical therapies.
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Impact of OGT on late steps of the hepatitis C virus

replication cycle

Hepatitis C is caused by the hepatitis C virus (HCV) leading in most subjects to chronic liver
infection resulting in chronic hepatitis and progressive liver disease and thereby to development of
lethal complications, i.e. cirrhosis and hepatocellular carcinoma (HCC). Infection of human
hepatocytes by HCV is a multistep process involving viral and host factors. microRNAs (miRNAS)
are small non-coding RNAs that post-transcriptionally regulate gene expression. A functional high-
throughput miRNA mimic screen identified miR-501-3p and miR-619-3p as novel modulators of
HCV assembly/release. We discovered that these miRNAs regulate O-linked N-acetylglucosamine
(O-GIcNAC) transferase (OGT) protein expression and identified OGT and O-GIcNAcylation as
regulators of HCV morphogenesis and infectivity. Furthermore, increased OGT expression in
patient-derived liver tissue was associated with HCV liver disease and cancer. In addition to its
effect on HCV morphogenesis, OGT may thus play a role in HCV-induced liver disease and
hepatocarcinogenesis.

Keywords: Hepatitis C virus, microRNA, OGT, hepatocellular carcinoma

L'hépatite C est causée par le virus de I'népatite C (HCV) qui est responsable de maladies
chroniques du foie et I’une des principales causes de développement du carcinome hépatocellulaire
(CHC). L'infection des hépatocytes humains par le HCV est un processus en plusieurs étapes
impliquant des facteurs viraux et des facteurs de I'hdte. Les microARN (miR) sont de petits ARN
non codants qui régulent I'expression des genes au niveau post-transcriptionnel. En utilisant un
criblage genomique de miR, nous avons identifié miR-501-3p et miR-619-3p comme modulateurs
de I’assemblage et I’export du HCV. Nous avons découvert que ces miR régulent I'expression de
I’OGT (UDP-N-acétylglucosamine-peptide N-acétylglucosaminyltransférase) et identifié I'OGT et
la O-GIcNAcylation comme régulateurs de la morphogénése et de I'infectiosité du HCV. De plus,
I'expression de I'OGT dans les tissus hépatiques de patients infectés par le HCV était associée a la
maladie hépatique et au cancer. En plus de son effet sur la morphogénése du HCV, I'OGT peut
donc jouer un réle dans les maladies hépatiques induites par le HCV et I'hépatocarcinogenese.

Mots-clés : virus de I’hépatite C, microARN, I’OGT, carcinome hépatocellulaire




	MS Thesis HERZOGk FINAL
	Herzog, Bandiera et al main manuscript R2
	Gene expression analyses. Total RNA was purified[17] and transcribed into cDNA using Maxima reverse transcriptase (Thermo Scientific). GAPDH and OGT mRNA was detected by real time qPCR using iTaq™ Universal Probes Supermix (Bio-Rad) and TaqMan Gene Ex...
	Figure 3. miR-501-3p mediates post-transcriptional regulation of OGT by decreasing its expression at the protein level. Huh7.5.1 cells were transfected with siCtrl (Ctrl), a pool of siRNA against OGT, miR-501-3p or miR-619-3p. After 96h, RNA and prote...

	Figure 1 FINAL
	Figure 2 FINAL
	Figure 3 FINAL
	Figure 4 FINAL
	Figure 5 FINAL
	Figure 6 FINAL
	Figure 7 FINAL
	Herzog, Bandiera et al Supplementary information R2
	Viruses and infectivity assays. Cell culture-derived recombinant cell culture-derived hepatitis C virus (HCVcc) Jc1 (genotype 2a/2a chimera), H77R2a (genotype 1a/2a chimera engineered for Renilla luciferase expression), Con1R2a (genotype 1b/2b chimera...
	Purification of HCVcc particles using sucrose cushion or iodixanol density gradient. HCVcc (JcR2a) were concentrated 10-fold using a Vivaspin column (GE Healthcare). For sucrose cushion purification, HCVcc were purified by overlaying 3.5 mL of culture...
	miRNA expression analysis. Total RNA (100 ng) was purified from control or HCV-infected Huh7.5.1 cells using Tri reagent® (Thermo Scientific) and Direct-zol™ RNA purification kit (Zymo Research). Total RNA was first polyadenylated and reverse transcri...
	Western blotting. OGT and actin protein expression in human cells was assessed by Western blot as described[8] with some modifications. Briefly, cells were lysed in lysis buffer no. 6 (R&D Systems) according to the manufacturer's instructions. Equal a...

	Figure S1 FINAL
	190222 SupplementaryTable1 BCWM SB
	MS Thesis HERZOGk FINAL
	MS Thesis HERZOGk FINAL
	MS Thesis HERZOGk FINAL
	Plissonnier et al 2018 REVIEW non-coding RNA in VIRUSES
	Introduction 
	Expression and Functions of ncRNAs in HCV-Related HCC 
	LncRNAs in HCV-Related HCC 
	SncRNA in HCV-Related HCC 
	Small Nucleolar RNAs (snoRNAs) 
	Piwi-Interacting RNAs (piRNAs) 
	MicroRNAs (miRNAs) 


	Conclusions and Perspectives 
	ncRNAs as Novel Biomarkers for Detection of HCV-Induced HCC 
	ncRNAs as Novel Therapeutic Targets of HCV-Induced HCC 

	References

	MS Thesis HERZOGk FINAL

